

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 531 448

51 Int. Cl.:

C07D 401/12 (2006.01) C07D 401/14 (2006.01) C07D 403/12 (2006.01) C07D 403/14 (2006.01) C07D 407/14 (2006.01) C07D 413/12 C07D 417/12 C07D 417/14 (2006.01) A01N 43/60 (2006.01) A01N 43/80 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- Fecha de presentación y número de la solicitud europea: 18.07.2011 E 11737922 (2)
 Fecha y número de publicación de la concesión europea: 10.12.2014 EP 2595981
- (54) Título: Nuevos compuestos de hetaril (tio)carboxamida para controlar plagas de invertebrados
- (30) Prioridad:

22.07.2010 US 366542 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 16.03.2015

(73) Titular/es:

BASF SE (100.0%) 67056 Ludwigshafen, DE

(72) Inventor/es:

SÖRGEL, SEBASTIAN; DEFIEBER, CHRISTIAN; LE VEZOUET, RONAN; CULBERTSON, DEBORAH L. y ANSPAUGH, DOUGLAS D.

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

S 2 531 448 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Nuevos compuestos de hetaril (tio)carboxamida para controlar plagas de invertebrados

La presente invención se refiere a nuevos compuestos de hetaril (tio)carboxamida, a sus diastereómeros, N-óxidos, sales o los enantiómeros o sales agrícola o veterinariamente aceptables de los mismos que son útiles para combatir o controlar plagas de invertebrados, en particular plagas de artrópodos y nemátodos. La invención también se refiere a procedimientos para controlar plagas de invertebrados mediante el uso de estos compuestos. La invención también se refiere a un procedimiento para proteger el material de propagación vegetal y/o las plantas que crecen a partir del mismo mediante el uso de estos compuestos. La presente invención también se refiere a un material de propagación vegetal y a unas composiciones agrícolas y/o veterinarias que comprenden dichos compuestos.

Las plagas de invertebrados y en particular de artrópodos y de nemátodos, destruyen los cultivos en crecimiento y recolectados y atacan a las estructuras de madera de viviendas y comerciales, causando de este modo grandes pérdidas económicas en el suministro de alimentos y a los propietarios. Aunque se conoce una gran cantidad de agentes plaguicidas, debido a la capacidad de las plagas diana para desarrollar resistencias a dichos agentes, existe una necesidad en desarrollo de nuevos agentes para combatir las plagas de invertebrados tales como insectos, arácnidos y nemátodos. Por lo tanto, un objeto de la presente invención es proporcionar compuestos que tengan una buena actividad plaguicida y que muestren un amplio espectro de actividad frente al un gran número de diferentes plagas de invertebrados, especialmente frente a insectos, arácnidos y nemátodos difíciles de controlar.

El documento EP 78989 y el documento DE 3436550 describen N-acil amidas de 1-fenilpiridazinoiminas. Se menciona que los compuestos son útiles como un medicamento para tratar enfermedades tales como hipertonía, Parkinson y depresión.

El documento WO 2010034737 y el documento WO 2010034738 describen compuestos de pirazol y se menciona su uso para combatir plagas de invertebrados.

Es un objeto de la presente invención proporcionar compuestos que tengan una buena actividad plaguicida, en particular actividad insecticida, y que muestren un amplio espectro de actividad frente al un gran número de diferentes plagas de invertebrados, especialmente frente a plagas de artrópodos y/o nemátodos difíciles de controlar.

Se ha encontrado que estos objetivos se pueden conseguir con compuestos de fórmula I, tal como se define a continuación, incluyendo cualquier estereoisómero posible de fórmula I, con sus sales, con sus tautómeros y con sus N-óxidos y con las sales de dichos tautómeros y N-óxidos, en particular sus sales agrícola o veterinariamente aceptables.

Por lo tanto, en un primer aspecto, la presente invención se refiere a compuestos de hetaril (tio)carboxamida de fórmula I.

$$\begin{array}{c|c} X & & \\ \hline & N & \\ \hline & N & \\ \end{array}$$

35 en la que

40

5

20

25

X es S o O;

es alquilo C_1 - C_{10} , haloalquilo C_1 - C_{10} , alquenilo C_3 - C_{10} , alquinilo C_3 - C_{10} , alquileno C_1 - C_4 - C_1 , fenil-alquilo C_1 - C_4 , cicloalquil C_3 - C_1 0-alquilo C_1 - C_4 , heterociclil-alquilo C_1 - C_4 de 5 o 6 miembros saturado, o hetaril-alquilo C_1 - C_4 de 5 o 6 miembros, en el que el anillo de cicloalquilo y el anillo de heterociclilo en cicloalquil C_3 - C_1 0-alquilo C_1 - C_4 y heterociclil-alquilo C_1 - C_4 , respectivamente, está sin sustituir o llevan 1, 2, 3, 4 o 5, en particular 1, 2 o 3, sustituyentes R^y idénticos o diferentes, y en el que el anillo de fenilo y el anillo de hetarilo en fenil-alquilo C_1 - C_4 y hetaril-alquilo C_1 - C_4 , respectivamente, está sin sustituir o lleva 1, 2, 3, 4 o 5 sustituyentes R^y idénticos o diferentes;

A es un hetarilo de 5 miembros que tiene las fórmulas A1, A2, A3, A4, A5, A6, o A7:

$$(R^{A})_{n}$$
 $(R^{A})_{n}$
 $(R^{A})_{n}$

en las que # representa el punto de unión al resto de fórmula I, Z es O, S o N-R^N, en el que R^N es tal como se define en la reivindicación 1, N es N0, N1, N2 o N3.

R^{A'} es hidrógeno, o tiene uno de los significados dados para R^A; o se selecciona entre el grupo que consiste en los radicales de las fórmulas A8-1, A8-2, A8-3, A8-4, A8-5, A8-6, A8-7, A8-8, y A8-9:

en las que # representa el punto de unión al resto de fórmula I, y R^{Z1} , R^{Z2} , R^{Z3} , R^{Z4} y R^{Z5} si están presentes, se seleccionan independientemente entre sí entre hidrógeno, halógeno, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C_1 - C_4 , haloalcoxi C_1 - C_4 , alquileno C_1 - C_3 -CN, alquileno C_1 - C_3 - CR^a , cicloalquilo C_3 - C_7 , cicloalquilo C_3 - C_7 -alquilo C_1 - C_3 , y heterociclil-alquilo C_1 - C_3 saturado de 3 a 7 miembros, en el que cicloalquilo y heterociclilo en los 3 últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes R^y idénticos o diferentes;

 R^A se selecciona entre el grupo que consiste en halógeno, CN, NO_2 , alquilo C_1 - C_{10} , alquenilo C_2 - C_{10} y alquinilo C_2 - C_{10} , en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^X idénticos o diferentes, y también entre el grupo que consiste en OR^a , $C(Y)R^b$, $C(Y)OR^c$, $S(O)_mR^d$, NR^eR^f , heterociclilo, fenilo, hetarilo, cicloalquilo C_3 - C_{10} y cicloalquenilo C_5 - C_{10} , en el que los cinco últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes R^Y idénticos o diferentes; y

 R^N se selecciona entre el grupo que consiste en hidrógeno, CN, NO_2 , alquilo C_1 - C_{10} , alquenilo C_2 - C_{10} , alquenilo C_2 - C_{10} , en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^x idénticos o diferentes, y también entre el grupo que consiste en OR^a , $C(Y)R^b$, $C(Y)OR^c$, $S(O)_mR^d$, NR^eR^f , $C(Y)NR^gR^h$,

5

10

15

20

25

S(O)_mNR^eR^f, C(Y)NRNR^eR^f, alquileno C₁-C₅-OR^a, alquileno C₁-C₅-CN, alquileno C₁-C₅-C(Y)R^b, C₁-C₅alquilen- $C(Y)OR^c$, alquileno $C_1-C_5-NR^eR^f$, alquileno $C_1-C_5-C(Y)NR^gR^h$, alquileno $C_1-C_5-S(O)_mR^d$, alquileno C₁-C₅-S(O)_mNR^eR^f, alquileno C₁-C₅-NRNR^eR^f, heterociclilo, hetarilo, cicloalquilo C₃-C₁₀, cicloalquenilo C_5 - C_{10} , heterociclil-alquilo C_1 - C_5 , hetaril-alquilo C_1 - C_5 , cicloalquil C_3 - C_{10} -alquilo C_1 - C_5 , 5 cicloalquenil C₅-C₁₀-alquilo C₁-C₅, fenil-alquilo C₁-C₅ y fenilo, en el que los anillos de los diez últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes Ry idénticos o diferentes: es 0, 1 o 2 m YesOoS; Ra, Rb, Rc 10 se seleccionan independientemente entre sí entre hidrógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆, cicloalquilmetilo C₃-C₆, halocicloalquilo C₃-C₆, alquenilo C₂-C₄, haloalquenilo C₂-C₄, alquinilo C2-C4, alcoxi C1-C4-alquilo C1-C4, fenilo, hetarilo, heterociclilo, fenil-alquilo C1-C4, hetarilalquilo C₁-C₄ y heterociclil-alquilo C₁-C₄, en los que el anillo en los seis últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3, 4 o sustituyentes que, independientemente entre sí, se seleccionan entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-15 R^d se selecciona entre alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , cicloalquilo C_3 - C_6 , cicloalquilmetilo C_3 - C_6 , halocicloalquilo C₃-C₆, alquenilo C₂-C₄, haloalquenilo C₂-C₄, alquinilo C₂-C₄, alcoxi C₁-C₄-alquilo C₁-C₄. fenilo, hetarilo, heterociclilo, fenil-alquilo C1-C4, hetaril-alquilo C1-C4 y heterociclil-alquilo C1-C4 en el que 20 el anillo en los seis últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 sustituyentes que se seleccionan independientemente entre sí entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄, R^e, R^f se seleccionan independientemente entre sí entre hidrógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C_3 - C_6 , cicloalquilmetilo C_3 - C_6 , halocicloalquilo C_3 - C_6 , alquenilo C_2 - C_4 , haloalquenilo C_2 - C_4 , alquinilo C_2 - C_4 , alcoxi C_1 - C_4 -alquilo C_1 - C_4 , alquilcarbonilo C_1 - C_4 , haloalquilcarbonilo C_1 - C_4 -C25 alquilsulfonilo C₁-C₄, haloalquilsulfonilo C₁-C₄, fenilo, fenilcarbonilo, fenilsulfonilo, hetarilo, hetarilcarbonilo, hetarilsulfonilo, heterociclilo, heterociclilcarbonilo, heterociclilsulfonilo, fenil-alguilo C₁-C₄, hetaril-alquilo C₁-C₄ y heterociclil-alquilo C₁-C₄ en los que el anillo en los doce últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 sustituyentes que, 30 independientemente entre sí, se seleccionan entre halógeno, ciano, nitro, alguilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄, o Re y Rf junto con el átomo de nitrógeno al que están unidos forman un heterociclo de 5 o 6 miembros, saturado o insaturado, que puede llevar un heteroátomo adicional que se selecciona entre O. S v N como un átomo miembro del anillo y en los que el heterociclo puede estar sin sustituir o puede o llevar 35 1, 2, 3, 4 o 5 sustituyentes que se seleccionan independientemente entre sí entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄; R^g, R^h se seleccionan independientemente entre sí entre hidrógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆, halocicloalquilo C₃-C₆, alquenilo C₂-C₄, haloalquenilo C₂-C₄, alquinilo C₂-C₄, alcoxi C₁-C₄-alquilo C₁-C₄, fenilo, hetarilo, heterociclilo, fenil-alquilo C₁-C₄, hetaril-alquilo C₁-C₄, y heterociclil-40 alquilo C₁-C₄ en los que el anillo en los seis últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3 o 4 sustituyentes que se seleccionan independientemente entre sí entre halógeno, ciano, nitro, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C_1 - C_4 y haloalcoxi C_1 - C_4 ; R^{i} se selecciona entre hidrógeno, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , cicloalquilo C_3 - C_6 , cicloalquilmetilo C_3 -C₆, halocicloalquilo C₃-C₆, alquenilo C₂-C₄, haloalquenilo C₂-C₄, alquinilo C₂-C₄, alcoxi C₁-C₄-alquilo C₁-C₄, fenilo y fenil-alquilo C₁-C₄ en el que el anillo de fenilo en los dos últimos radicales mencionados 45 puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 sustituyentes que se seleccionan independientemente entre sí entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C1-C4; R^{x} se selecciona independientemente de los otros entre ciano, nitro, alcoxi C₁-C₄, haloalcoxi C₁-C₄, 50 alquiltio C₁-C₄, C₁-C₄-haloalquiltio, alquilsulfinilo C₁-C₄, haloalquilsulfinilo C₁-C₄, alquilsulfonilo C₁-C₄, haloalquil C₁-C₄-sulfonilo, alquilcarbonilo C₁-C₁₀, cicloalquilo C₃-C₆, heterociclilo de 5 a 7 miembros, fenilo, cicloalcoxi C₃-C₆, heterocicliloxi de 3 a 6 miembros y fenoxi, en el que los 6 últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 radicales seleccionados entre el grupo que consiste en halógeno, ciano, nitro, alguilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi 55 R^{y} se selecciona entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄, haloalcoxi C₁- C_4 , $S(O)_m R^d$, $S(O)_m N R^e R^f$, alquilcarbonilo $C_1 - C_4$, haloalquilcarbonilo $C_1 - C_4$, alcoxicarbonilo $C_1 - C_4$, haloalcoxicarbonilo C₁-C₄, cicloalquilo C₃-C₆, halocicloalquilo C₃-C₆, alquenilo C₂-C₄, haloalquenilo C₂-C₄, alquinilo C₂-C₄, alcoxi C₁-C₄-alquilo C₁-C₄, cicloalquilo C₃-C₆, heterociclilo de 5 a 7 miembros, hetarilo, fenilo, cicloalcoxi C₃-C₆, heterocicliloxi de 3 a 6 miembros, hetariloxi y fenoxi, en el que los 8 60 últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 radicales seleccionados entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄;

y las sales de los mismos, los N-óxidos de los mismos, los tautómeros de los mismos y las sales de dichos N-óxidos

65

o tautómeros.

Los compuestos de la presente invención son particularmente útiles para controlar plagas de invertebrados, en particular para controlar artrópodos y nemátodos, especialmente para controlar insectos, en particular para controlar insectos del orden de los homópteros. Por lo tanto, la invención también se refiere al uso de un compuesto de fórmula I, un tautómero o un N-óxido del mismo o una sal del mismo, en particular una sal agrícola o veterinariamente aceptable del mismo, para controlar plagas de invertebrados, en particular para controlar artrópodos y nemátodos, especialmente para controlar insectos, en particular para controlar insectos del orden de los homópteros.

5

10

30

35

Un aspecto adicional de la presente invención se refiere a un procedimiento para controlar plagas de invertebrados procedimiento que comprende tratar las plagas, su suministro de alimentos, su hábitat o su lugar de reproducción o una planta cultivada, materiales de propagación vegetal tal como semilla, suelo, área, material o entorno en el que las plagas crecen o pueden crecer, o los materiales, plantas, semillas, suelos, superficies o espacios a proteger del ataque o infestación por plagas con una cantidad plaguicidamente eficaz de un compuesto de fórmula I de acuerdo con la presente invención o una sal del mismo o un N-óxido del mismo o una sal de dicho N-óxido, en las que el hábitat o su lugar de reproducción no es un organismo humano ni animal.

Un aspecto adicional de la presente invención se refiere a los compuestos de fórmula I tal como se ha definido en el comienzo, un tautómero o un N-óxido o una sal del mismo, para controlar plagas de invertebrados por tratamiento del hábitat de las plagas o su lugar de reproducción con una cantidad plaguicidamente eficaz de los mismos, en el que el hábitat por su lugar de reproducción es un organismo humano o animal.

Un aspecto adicional de la presente invención se refiere a un procedimiento para proteger el material de propagación vegetal, en particular semillas y/o las plantas que crecen a partir de las mismas, procedimiento que comprende tratar el material de propagación vegetal con una cantidad plaguicidamente eficaz de un compuesto de fórmula I de acuerdo con la presente invención o una sal agrícolamente aceptable, un tautómero o un N-óxido del mismo o una sal agrícolamente aceptable de dicho N-óxido o de dicho tautómero.

Un aspecto adicional de la presente invención se refiere a material de propagación vegetal, que comprende al menos un compuesto de fórmula I de acuerdo con la presente invención y/o una sal agrícolamente aceptable o un N-óxido del mismo o una sal agrícolamente aceptable de dicho N-óxido o de dicho tautómero.

Un aspecto adicional de la presente invención se refiere a una composición agrícola que contiene al menos un compuesto de fórmula I de acuerdo con la presente invención y/o una sal agrícolamente aceptable del mismo o un N-óxido o tautómero del mismo y/o una sal agrícolamente aceptable de dicho N-óxido o dicho tautómero y al menos un vehículo líquido o sólido.

Dependiendo del patrón de sustitución, los compuestos de fórmula I pueden tener uno o más centros de quiralidad, en cuyo caso están presentes como mezclas de enantiómeros o diastereómeros. La invención proporciona tanto los enantiómeros puros como los diastereómeros puros de fórmula I y sus mezclas y el uso de acuerdo con la invención de los enantiómeros o diastereómeros puros del compuesto I o sus mezclas. Los compuestos de fórmula I adecuados también incluyen todos los estereoisómeros geométricos posibles (isómeros cis/trans) y mezclas de los mismos.

Dependiendo del patrón de sustitución, los compuestos de fórmula I pueden estar presentes en forma de sus tautómeros. Por lo tanto la invención también se refiere a los tautómeros de fórmula I y las sales de dichos tautómeros.

Los compuestos de fórmula I así como sus N-óxidos y tautómeros pueden ser amorfos o pueden existir en uno o más estados cristalinos diferentes (polimorfos) que pueden tener diferentes propiedades macroscópicas tales como estabilidad o mostrar diferentes propiedades biológicas tales como actividades. La presente invención incluye compuestos tanto amorfos como cristalinos de fórmula I, sus tautómeros o N-óxidos, mezclas de diferentes estados cristalinos del respectivo compuesto de fórmula I, sus tautómeros o N-óxidos, así como sales amorfas o cristalinas del mismo.

Las sales de los compuestos de fórmula I, sus tautómeros o N-óxidos, son preferentemente sales agrícola y veterinariamente aceptables. Se pueden formar en un procedimiento habitual, por ejemplo haciendo reaccionar el compuesto con un ácido si el compuesto de fórmula I tiene un grupo funcional básico o haciendo reaccionar el compuesto con una base adecuada si el compuesto de fórmula I tiene un grupo funcional ácido.

Las sales agrícolamente aceptables adecuadas son especialmente las sales de aquellos cationes o las sales de adición ácida de aquellos ácidos cuyos cationes y aniones, respectivamente, que no presentan ningún efecto adverso sobre la acción plaguicida de los compuestos de acuerdo con la presente invención. Los cationes adecuados son en particular los iones de los metales alcalinos, preferentemente litio, sodio y potasio, de los metales alcalino térreos, preferentemente calcio, magnesio y bario, y de los metales de transición, preferentemente manganeso, cobre, cinc y hierro, y también amonio (NH₄⁺) y amonio sustituido en los que de uno a cuatro de los átomos de hidrógeno están sustituidos con alquilo C₁-C₄, hidroxialquilo C₁-C₄, alcoxi C₁-C₄-alquilo C₁-C₄, hidroxi-alcoxi C₁-C₄-alquilo C₁-C₄, fenilo o bencilo. Los ejemplos de iones de amonio sustituido comprenden metilamonio, isopropilamonio, dimetilamonio, diisopropilamonio, trimetilamonio, tetrametilamonio, tetraetilamonio,

tetrabutilamonio, 2-hidroxietilamonio, 2-(2-hidroxietoxi)etilamonio, bis(2-hidroxietil)amonio, benciltrimetilamonio y benciltrietilamonio, además iones fosfonio, iones sulfonio, preferentemente tri(alquil C_1 - C_4)sulfonio, e iones sulfoxonio, preferentemente tri(alquil C_1 - C_4)sulfoxonio.

Los aniones de sales de adición ácida útiles son principalmente cloruro, bromuro, fluoruro, hidrogenosulfato, sulfato, dihidrogenofosfato, hidrogenofosfato, fosfato, nitrato, bicarbonato, carbonato, hexafluorosilicato, hexafluorofosfato, benzoato, y los cationes de ácidos alcanoicos C₁-C₄, preferentemente formiato, acetato, propionato y butirato. Se pueden formar haciendo reaccionar compuestos de fórmula I con un ácido del anión correspondiente, preferentemente de ácido clorhídrico, ácido bromhídrico, ácido sulfúrico, ácido fosfórico o ácido nítrico.

5

15

20

40

50

55

El término "N-óxido" incluye cualquier compuesto de fórmula I que tiene al menos un átomo de nitrógeno terciario que se oxida a un resto de N-óxido.

La expresión "plaga de invertebrados" tal como se usa en el presente documento incluye poblaciones animales, tales como plagas de artrópodos, incluyendo insectos y arácnidos, así como nemátodos, que pueden atacar a las plantas causando de este modo un daño sustancial a las plantas atacadas, así como ectoparásitos que pueden infestar animales, en particular animales de sangre caliente tales como por ejemplo mamíferos o pájaros, u otros animales superiores tales como reptiles, anfibios o peces, causando de este modo un daño sustancial a los animales infestados.

La expresión "material de propagación vegetal" tal como se usa en el presente documento incluye todas las partes generativas de la planta tales como semillas y material vegetativo de la planta tal como esquejes y tubérculos (por ejemplo, patatas), que se pueden usar para la multiplicación de la planta. Esto incluye semillas, raíces, frutos, tubérculos, bulbos, rizomas, brotes, vástagos y otras partes de las plantas. También se pueden incluir plántulas y plantas jóvenes, que se van a trasplantar después de la germinación o después de la emergencia del suelo. Estos materiales de propagación vegetal se pueden tratar profilácticamente con un compuesto de protección vegetal en el momento o antes que la plantación o trasplante.

Los restos orgánicos mencionados en las definiciones anteriores de las variables son - como el término halógeno – términos colectivos de listados individuales de los miembros del grupo individual.

El término halógeno representa en cada caso flúor, bromo, cloro o yodo, en particular flúor, cloro o bromo.

El término "alquilo" tal como se usa en el presente documento y en los restos alquilo de alcoxi, alquilcarbonilo, alquiltio, alquil-sulfonilo y alcoxialquilo representa en cada caso un grupo alquilo de cadena lineal o ramificado que tiene normalmente de 1 a 10 átomos de carbono.

30 El término "haloalquilo" tal como se usa en el presente documento y en los restos haloalquilo de haloalcoxi, haloalquiltio, haloalquilcarbonilo, haloalquilsulfonilo y haloalquilsulfinilo, representa en cada caso un grupo alquilo de cadena lineal o ramificado que tiene normalmente de 1 a 10 átomos de carbono, frecuentemente de 1 a 6 átomos de carbono, en el que los átomos de hidrógeno de este grupo es tan parcial o totalmente sustituidos con átomos de halógeno.

El término "cicloalquilo" tal como se usa en el presente documento y en los restos cicloalquilo de cicloalcoxi y cicloalquilmetilo representa en cada caso un radical cicloalifático mono o bicíclico que tiene normalmente de 3 a 10 átomos de carbono o de 3 a 6 átomos de carbono.

El término "heterociclilo" incluye en general radicales no aromáticos heterocíclicos monocíclicos de 3, 4, 5, 6, 7 o 8 miembros, en particular de 5, 6, 7 o 8 miembros y radicales no aromáticos heterocíclicos bicíclicos de 8 a 10 miembros, los radicales no aromáticos mono y bicíclicos pueden estar saturados o insaturados. Los radicales no aromáticos heterocíclicos mono y bicíclicos comprenden normalmente 1, 2, 3 o 4 heteroátomos, en particular 1 o 2 heteroátomos seleccionados entre N, O y S como miembros del anillo, en los que los átomos de S como miembros del anillo pueden estar presentes en forma de S, SO o SO₂.

El término "hetarilo" incluye en general radicales heterocíclicos monocíclicos insaturados de 5 o 6 miembros y radicales heterocíclicos bicíclicos insaturados de 8 a 10 miembros que son aromáticos, es decir cumplen la regla de Hückel (regla de 4n + 2). Hetarilo normalmente comprende 1, 2, 3 o 4 heteroátomos seleccionados entre N, O y S como miembros del anillo.

El término "hetarilo" incluye radicales heteroaromáticos de 5 o 6 miembros monocíclicos que comprenden como miembros del anillo 1, 2, 3 o 4 heteroátomos seleccionados entre N, O y S. El término "hetarilo" también incluye radicales heteroaromáticos de 8 a 10 miembros bicíclicos que comprenden como miembros del anillo 1, 2 o 3 heteroátomos seleccionados entre N, O y S, en el que un anillo heteroaromático de 5 o 6 miembros está condensado con un anillo de fenilo o a un radical heteroaromático de 5 o 6 miembros.

Los comentarios que se hacen a continuación con respecto a las realizaciones preferentes de las variables (sustituyentes) de los compuestos de fórmula I son válidos por sí mismos así como preferentemente en combinación entre sí.

Los comentarios que se hacen a continuación con respecto a realizaciones preferentes de las variables son válidos adicionalmente con respecto a los compuestos de fórmula I así como con respecto a los usos y procedimientos de acuerdo con la invención y la composición de acuerdo con la presente invención.

Una primera realización preferente de la invención se refiere a los compuestos de hetaril (tio)carboxamida de fórmula 1 en la que X es O, a sus N-óxidos, tautómeros y a las sales de los mismos y a los procedimientos y usos de tales compuestos. Estos compuestos también se denominan en lo sucesivo en el presente documento compuestos de fórmula 11.

Otra realización de la invención se refiere a los compuestos de hetaril (tio)carboxamida de fórmula I en la que X es S, a sus N-óxidos, tautómeros y a las sales de los mismos y a los procedimientos ilusos de tales compuestos.

Entre los compuestos de fórmula I, se da preferencia adicional a cada realización de la invención con respecto a R¹ como tal o considerado en combinación con A y/o X.

Los ejemplos de radicales R¹ preferentes incluyen:

- alquilo C₁-C₁₀, en particular alquilo C₁-C₄, tal como metilo, etilo, n-propilo, isopropilo, n-butilo, terc-butilo o 2-metiloropilo:
- haloalquilo C₁-C₁₀, en particular haloalquilo C₁-C₄, tal como 2-fluoroetilo, 2-cloroetilo, 2-brometilo, 2,2-difluoroetilo, 2,2-dicloroetilo, 2,2-dibromoetilo o 2,2,2-trifluoroetilo;
 - alquenilo C₃-C₁₀, en particular alquenilo C₃-C₄ tal como 2-propenilo, 2-buten-1-ilo cis o trans;
 - haloalquenilo C₃-C₄ tal como 3,3-dicloro-2-propenilo o 3,3-dibromo-2-propenilo;
 - alquinilo C₃-C₁₀, en particular alquinilo C₃-C₄ tal como propargilo, 1-metilpropargilo o 2-butin-1-ilo;
- 20 alquileno C₁-C₄-CN tal como cianometilo o cianoetilo;

35

40

55

- alquileno C₁-C₄-OR^a tal como metoximetilo, etoximetilo, 2-metoxietilo o 2-etoxietilo;
- alquileno C₁-C₄-NR^eR^f tal como 2-(dimetilamino)etilo;
- alquileno C₁-C₄-C(Y)NR⁹R^h tal como N,N-dimetilcarbamoilmetilo o N,N-dimetiltiocarbamoilmetilo;
- cicloalquilo C₃-C₆, tal como ciclopropilo, ciclobutilo o ciclopentilo;
- cicloalquil C₃-C₆-alquilo C₁-C₄, en particular cicloalquilmetilo C₃-C₆, 1-cicloalquiletilo C₃-C₆ o 2-cicloalquiletilo C₃-C₆ tal como ciclopropilmetilo, ciclobutilmetilo o ciclopentilmetilo;
 - fenilo, que puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5, en particular 1, 2 o 3 radicales R^y tal como se define en el presente documento;
- fenil-alquilo C₁-C₄, en particular bencilo, 1-feniletilo o 2-feniletilo, en el que los radicales fenilo pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5, en particular 1, 2 o 3 radicales R^y tal como se define en el presente documento, por ejemplo bencilo;
 - heterociclil-alquilo C₁-C₄, en particular heterociclilmetilo, 1-heterocicliletilo o 2-heterocicliletilo, en el que los radicales heterociclilo pueden estar sin sustituir o pueden llevar 1, 2 o 3 radicales R^y tal como se ha definido anteriormente, por ejemplo oxetan-2-ilmetilo, oxetan-3-ilmetilo, tietan-3-ilmetilo, 3,3-dioxatietan-3-ilmetilo, oxolan-2-ilmetilo, oxolan-3-ilmetilo, oxazolin-2-ilmetilo, tiazolin-2-ilmetilo, 1H-imidazolin-2-ilmetilo, 1-metil-1H-imidizolin-2-ilmetilo o 5,5-dimetiltetrahidrofuran-2-ilmetilo; γ
 - hetarilo, que puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5, en particular 1, 2 o 3 radicales R^y tal como se define en el presente documento, por ejemplo 2-furilo, 3-furilo, 5-metilfuran-2-ilo, 2-tienilo, 3-tienilo, isotiazol-3-ilo, isotiazol-4-ilo, isoxazol-3-ilo, isoxazol-4-ilo, isoxazol-5-ilo, oxazol-2-ilo, oxazol-2-ilo, oxazol-4-ilo, oxazol-5-ilo, tiazol-2-ilo, tiazol-4-ilo, 1H-pirazol-3-ilo, 1H-pirazol-3-ilo, 2H-pirazol-3-ilo, 1H-imidazol-3-ilo, 1H-imidazol-2-ilo, 1H-imidazol-2-ilo, 1-metil-1H-pirazol-3-ilo, 1-metil-1H-imidazol-3-ilo, 1
- hetaril-alquilo C₁-C₄, en particular hetarilmetilo, 1-hetariletilo o 2-hetariletilo, en el que los radicales hetarilo pueden estar sin sustituir o pueden llevar 1, 2 o 3 radicales R^y tal como se ha definido anteriormente, por ejemplo 2-furilmetilo, 3-furilmetilo, 5-metilfuran-2-ilmetilo, 2-tienilmetilo, 3-tienilmetilo, isotiazol-3-ilmetilo, isotiazol-4-ilmetilo, isotiazol-5-ilmetilo, isoxazol-4-ilmetilo, isoxazol-5-ilmetilo, oxazol-2-ilmetilo, oxazol-4-ilmetilo, 1H-pirazol-4-ilmetilo, 2H-pirazol-3-ilmetilo, 1-metil-1H-pirazol-3-ilmetilo, 1-metil-1H-pirazol-4-ilmetilo, 2-metil-2H-pirazol-3-ilmetilo, 1-metil-1H-imidazol-4-ilmetilo, 1-metil-1H-imidazol-5-ilmetilo, 1-metil-1H-imidazol-2-ilmetilo, 1-metil-1H-imidazol-5-ilmetilo, 2-piridilmetilo, 1-metil-1H-imidazol-5-ilmetilo, 2-piridilmetilo, 1-metil-1H-imidazol-5-ilmetilo, 2-piridilmetilo

Entre esta realización y las realizaciones que se describen a continuación, los ejemplos de radicales R¹ son los siguientes radicales, que por sí mismos se refieren a realizaciones en particular de los compuestos de fórmula I: metilo, etilo, propilo, iso-propilo, terc-butilo, butilo, sec-butilo, isobutilo, 1-metoxietilo, 2-metoxietilo, 2-metoxietilo, ciclopropil-metilo, cianometilo, 1-cianoetilo, 2-cianoetilo, ciclopropilo, 2,2,2-trifluoroetilo, piridin-2-ilmetilo, piridin-3-ilmetilo, piridin-4-ilmetilo, furan-2-ilmetilo, furan-3-ilmetilo, tiofen-2-ilmetilo, tiofen-3-ilmetilo, tetrahidrofuran-2-il-metilo, tetrahidrofuran-3-ilmetilo, pirrol-3-ilmetilo, pirrol-3-ilmetilo, 1-metilpirrol-2-ilmetilo, bencilo, alilo, 2-buten-1-ilo cis o trans, propargilo y but-2-inilo.

Una realización de la invención se refiere a compuestos de fórmula I, a sus N-óxidos y sus sales, en la que los ejemplos anteriores de sustituyentes R¹ están en combinación con otros R¹.

Una realización adicional de la invención se refiere a compuestos de fórmula I, a sus N-óxidos y sus sales, en la que los ejemplos anteriores de sustituyentes R¹ no están en combinación con otros R¹.

Otra realización de la invención se refiere a los compuestos de fórmula I, a sus N-óxidos y sus sales, en la que R^1 se selecciona entre el grupo que consiste en alquileno C_1 - C_4 -CN, alquileno C_1 - C_4 - OR^a , alquileno C_1 - C_4 - $C(Y)R^b$, alquileno C_1 - C_4 - NR^eR^I , alquileno C_1 - C_4 - $C(Y)NR^gR^h$, fenil-alquilo C_1 - C_4 , en particular bencilo, heterociclilalquilo C_1 - C_4 , en particular heterociclilmetilo, y hetaril-alquilo C_1 - C_4 , en particular hetarilmetilo, en los que el anillo de fenilo, heterociclilo o hetarilo en los seis últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 radicales R^y , que son tal como se definen en el presente documento y que preferentemente se seleccionan respectivamente entre NO_2 , alcoxi C_1 - C_4 , haloalcoxi C_1 - C_4 , alquilsulfonilo C_1 - C_4 y haloalquilsulfonilo C_1 - C_4 o entre halógeno, NO_2 , alquilo C_1 - C_4 , haloalquilo C_1 - C_4

5

10

15

20

25

50

55

Una realización en particular adicional de la invención se refiere a compuestos de fórmula I, a sus N-óxidos y sus sales, en la que R^1 se selecciona entre el grupo que consiste en fenilo y hetarilo, en particular entre fenilo, en los que fenilo y hetarilo están sin sustituir o llevan 1, 2, 3, 4 o 5 radicales R^y , que son tal como se definen en el presente documento y que preferentemente se seleccionan respectivamente entre NO_2 , alcoxi C_1 - C_4 , haloalcoxi C_1 - C_4 , alquilsulfonilo C_1 - C_4 y haloalquil C_1 - C_4 -sulfonilo o entre halógeno, NO_2 , alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , haloalcoxi C_1 - C_4 .

Una realización preferente en particular de la invención se refiere a los compuestos de fórmula I, a sus N-óxidos y sus sales, en la que R^1 se selecciona entre el grupo que consiste en alquilo C_1 - C_4 , haloalquilo C_1 - C_4 y alcoxi C_1 - C_4 -alquilo C_1 - C_4 . Entre esta realización, se da preferencia en particular a compuestos, en los que R^1 es alquilo C_1 - C_3 . Además, entre esta realización, se da preferencia del mismo modo a compuestos, en los que R^1 es haloalquilo C_1 - C_3 o alcoxi C_1 - C_2 - alquilo C_1 - C_2 .

En otra realización en particular, la invención se refiere a compuestos de fórmula I, a sus N-óxidos y sus sales, en la que, R^1 se selecciona entre el grupo que consiste en alquileno C_1 - C_4 - NR^eR^f , fenil-alquilo C_1 - C_4 , en particular bencilo, 1-feniletilo o 2-feniletilo, heterociclil-alquilo C_1 - C_4 , en particular heterociclilmetilo, 1-heterocicliletilo, o 2-heterocicliletilo, y hetaril-alquilo C_1 - C_4 , en particular hetaril-metilo, 1-hetariletilo o 2-hetariletilo, en la que los doce últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2 o 3 radicales R^y , que son tal como se han definido anteriormente y que se seleccionan preferentemente entre halógeno, NO_2 , alquilo C_1 - C_4 , haloalquilsulfonilo C_1 - C_4 .

El radical R^A, se selecciona preferentemente entre el grupo que consiste en halógeno, CN, NO₂, alquilo C₁-C₄ y 30 alquenilo C₂-C₁₀ o, en el que los dos últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes idénticos o diferentes seleccionados entre alcoxi C₁-C₄, haloalcoxi C₁-C₄, cicloalquilo C₃-C₆, hetarilo, fenilo y fenoxi, en el que los tres últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 radicales seleccionados entre halógeno, alquilo C1-C4, haloalquilo C₁-C₄, alcoxi C₁-C₄, haloalcoxi C₁-C₄, alquilsulfonilo C₁-C₄ y haloalquilsulfonilo C₁-C₄, o en el que R^A se selecciona adicionalmente entre cicloalquilo C_3 - C_6 , hetarilo C_5 - C_6 y fenilo, en el que los tres últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes idénticos o diferentes 35 seleccionados entre halógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄, haloalcoxi C₁-C₄, alquilsulfonilo C₁-C₄ y haloalquil C₁-C₄-sulfonilo. En particular, el radical R^A se selecciona entre halógeno, CN, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆ halocicloalquilo C₃-C₆ y fenilo, en el que fenilo que puede estar sin sustituir o 40 puede llevar 1, 2, 3, 4 o 5 radicales seleccionados entre halógeno, alquilo C₁-C₄, haloalguilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C_1 - C_4 . Más preferentemente, el radical R^A se selecciona entre halógeno, C_1 , C_2 , haloalquilo C_3 - C_6 y haloalquilo C_3 - C_6 . Incluso más preferentemente, R^A se selecciona entre halógeno, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆ y halocicloalquilo C₃-C₆. Más particularmente R^A es halógeno, alquilo C₁-C₂ o haloalquilo C₁-C₂.

45 En las fórmulas A1, A2 y A3 la variable n es preferentemente 0 o 1, en particular 1

En las fórmulas A1, A2 y A3, cuando la variable n es 2 o 3, R^A puede ser idéntico o diferente.

En las fórmulas A1, A2 y A3, el radical R^A se selecciona preferentemente entre el grupo que consiste en halógeno, CN, NO₂, alquilo C₁-C₄ y alquenilo C₂-C₁₀ o, en el que los dos últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes idénticos o diferentes seleccionados entre alcoxi C₁-C₄, haloalcoxi C₁-C₄, cicloalquilo C₃-C₆, hetarilo, fenilo y fenoxi, en el que los tres últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 radicales seleccionados entre halógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄, haloalcoxi C₁-C₄, alquilsulfonilo C₁-C₄ y haloalquilsulfonilo C₁-C₄, o en el que R^A se selecciona adicionalmente entre cicloalquilo C₃-C₆, hetarilo C₅-C₆ y fenilo, en el que los tres últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes idénticos o diferentes seleccionados entre halógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄, haloalquilsulfonilo C₁-C₄, el particular, el radical R^A se selecciona entre halógeno, CN, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, haloalquilo C₁-C₄, haloalquilo C₁-C₄, haloalquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄,

haloalquilo C_1 - C_4 , cicloalquilo C_3 - C_6 y halocicloalquilo C_3 - C_6 . Incluso más preferentemente, R^A se selecciona entre halógeno, NO_2 , alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , cicloalquilo C_3 - C_6 y halocicloalquilo C_3 - C_6 . Más particularmente R^A es alquilo C_1 - C_2 o haloalquilo C_1 - C_2 .

5

10

15

20

25

30

35

45

50

En las fórmulas A4, A5, A6 y A7, el radical RA, puede ser hidrógeno. En las fórmulas A4, A5, A6 y A7, el radical RA, si fuera diferente de hidrógeno, se selecciona preferentemente entre el grupo que consiste en halógeno, CN, NO₂, alquilo C₁-C₄ y alquenilo C₂-C₁₀ o, en el que los dos últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes idénticos o diferentes seleccionados entre alcoxi C₁-C₄, haloalcoxi C₁-C₄, cicloalquilo C₃-C₆, hetarilo, fenilo y fenoxi, en el que los tres últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 radicales seleccionados entre $hal\'ogeno, \ alquilo \ C_1-C_4, \ haloalquilo \ C_1-C_4, \ haloalquil$ C₁-C₄, o en las que R^{A'} se selecciona adicionalmente entre cicloalquilo C₃-C₆, hetarilo C₅-C₆ y fenilo, en el que los tres últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes idénticos o diferentes seleccionados entre halógeno, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C_1 - C_4 , haloalquilo C_1 - C_4 , haloalquilo C_1 - C_4 , in fuera diferente de hidrógeno, se selecciona entre halógeno, CN, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆ halocicloalquilo C₃-C₆ y fenilo, en el que fenilo puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 radicales seleccionados entre halógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄. Más preferentemente, el radical R^{A'}, si fuera diferente de hidrógeno, se selecciona entre halógeno, CN, NO_2 , alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , cicloalquilo C_3 - C_6 y halocicloalquilo C_3 - C_6 . Incluso más preferentemente, R^A , si fuera diferente de hidrógeno, se selecciona entre halógeno, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆ y halocicloalquilo C₃-C₆. Más particularmente R^{A'}, si fuera diferente hidrógeno, es alquilo C₁-C₂ o haloalquilo C₁-C₂.

Las realizaciones en particular del radical A son radicales de fórmulas A1, A2, A3, A4, A5, A6 y A7, en las que Z es N-R^N, en el que N-R^N es tal como se ha definido anteriormente y en el que R^N se selecciona preferentemente entre el grupo que consiste en alquilo C_1 - C_{10} , alquenilo C_2 - C_{10} y alquinilo C_2 - C_{10} , en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^x idénticos o diferentes, o en el que R^N se selecciona adicionalmente entre OR_a , $C(Y)R^b$, $C(Y)OR_c$, $S(O)_mR^d$, NR^eR^f , $C(Y)NR^gR^h$, $S(O)_mNR^eR^f$, $C(Y)NR^iNR^eR^f$, alquileno C_1 - C_5 - $C(Y)R^b$, alquileno C_1 - C_5 - $C(Y)OR^c$, alquileno C_1 - C_5 , cicloalquileno C_1 - C_5 , fenil-alquilo C_1 - C_5 , y fenilo, en el que los anillos de los diez últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes R^y idénticos o diferentes.

En particular R^N se selecciona entre el grupo que consiste en alquilo C_1 - C_{10} , alquenilo C_2 - C_{10} y alquinilo C_2 - C_{10} , en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^x idénticos o diferentes, alcoxi C_1 - C_4 -alquilo C_2 - C_4 , alquileno C_1 - C_4 - C_1 , heterociclilo, hetarilo, cicloalquilo C_3 - C_1 0, cicloalquenilo C_5 - C_1 0, heterociclil-alquilo C_1 - C_5 , hetaril-alquilo C_1 - C_5 , cicloalquenilo C_1 - C_5 , en el que los anillos en los 8 últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2 o 3 sustituyentes R^y idénticos o diferentes.

En particular R^N se selecciona entre el grupo que consiste en alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquil C₃-C₆-alquilo C₁-C₄, en el que el resto de cicloalquilo está sin sustituir o lleva 1 o 2 radicales seleccionados entre halógeno, CN y haloalquilo C₁-C₂, heterociclil-alquilo C₁-C₄, alcoxi C₁-C₄-alquilo C₁-C₄ y alquileno C₁-C₄-CN.

En particular R^N se selecciona entre el grupo que consiste en alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C_1 - C_2 -alquilo C_2 - C_4 , alquileno C_1 - C_4 - C_1 , cicloalquilo C_3 - C_6 y cicloalquil C_3 - C_6 -alquilo C_1 - C_4 , en el que el resto de cicloalquilo en los dos últimos radicales mencionados está sin sustituir o lleva 1 o 2 radicales seleccionados entre halógeno, CN y haloalquilo C_1 - C_2 . Especialmente, R^N es alquilo C_1 - C_4 o haloalquilo C_1 - C_4 .

Una realización muy preferente de la invención se refiere a compuestos de fórmula I, a las sales y N-óxidos de los mismos y a los procedimientos y usos de tales compuestos, en la que A es un radical A2 y los radicales R¹ y X restantes son tal como se definen en el presente documento.

Dentro de la realización que se refiere a los compuestos de fórmula I en la que A es A2, una realización particularmente preferente se refiere a compuestos en los que Z es NR^N.

Dentro de la realización que se refiere a compuestos en los que A es A2, una realización adicional se refiere a compuestos en los que Z es O.

Dentro de la realización que se refiere a compuestos en los que A es A2, una realización adicional se refiere a compuestos en los que Z es S.

Entre los compuestos de fórmula I, en la que A es A2, una realización preferente de la invención se refiere a compuestos de fórmula I, en la que X es O y R¹ tiene en particular uno de los significados preferentes. Dentro de esta realización preferente, se da preferencia particularmente a los compuestos de fórmula I en la que n es 1.

Entre los compuestos de fórmula I, en la que A es A2, una realización adicional se refiere a compuestos de fórmula I, en la que X es O, R¹ tiene uno de los significados preferentes y en la que n es 2.

Entre los compuestos de fórmula I, en la que A es A2, se da preferencia a aquellos compuestos, en los que R^A , si estuviera presente, se selecciona entre el grupo que consiste en halógeno, CN, NO₂, alquilo C₁-C₄ y alquenilo C₂-C₁₀ o, en el que los dos últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes idénticos o diferentes seleccionados entre alcoxi C₁-C₄, haloalcoxi C₁-C₄, cicloalquilo C₃-C₆, hetarilo, fenilo y fenoxi, en el que los tres últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 radicales seleccionados entre halógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄, haloalcoxi C₁-C₄, alquilsulfonilo C₁-C₄ y haloalquilsulfonilo C₁-C₄, o en los que R^A se selecciona adicionalmente entre cicloalquilo C₃-C₆, hetarilo C₅-C₆ y fenilo, en el que los tres últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes idénticos o diferentes seleccionados entre halógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄, haloalcoxi C₁-C₄, alquilsulfonilo C₁-C₄ y haloalquilsulfonilo C₁-C₄, alquilsulfonilo C₁-C₄, alquilsulfo

5

10

25

30

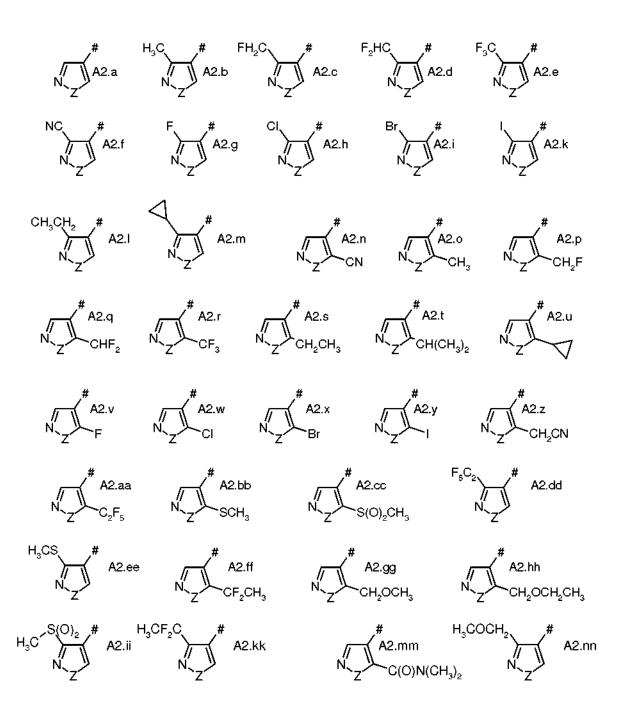
35

45

Entre los compuestos de fórmula I, en la que A es A2, se da preferencia particular a aquellos compuestos, en los que R^A se selecciona entre el grupo que consiste en halógeno, CN, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆ halocicloalquilo C₃-C₆ y fenilo, en el que fenilo que puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 radicales seleccionados entre halógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄. Más preferentemente R^A se selecciona entre halógeno, CN, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆. En particular, R^A se selecciona entre hidrógeno, halógeno, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆ y halocicloalquilo C₃-C₆. Más particularmente R^A es alquilo C₁-C₂ o haloalquilo C₁-C₂.

Entre los compuestos de fórmula I, en la que A es A2, se da preferencia adicional a aquellos compuestos, en los que Z es $N-R^N$ y en el que R^N se seleccionan entre el grupo que consiste en NO_2 , alquilo C_1-C_{10} , alquenilo C_2-C_{10} y alquinilo C_2-C_{10} , en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^X idénticos o diferentes, o en el que R^N se selecciona adicionalmente entre OR^a , $C(Y)R^b$, $C(Y)OR^c$, $S(O)_mR^d$, NR^eR^f , $C(Y)NR^gR^h$, $S(O)_mNR^eR^f$, $C(Y)NR^iNR^eR^f$, alquileno $C_1-C_5-OR^a$, alquileno $C_1-C_5-C(Y)R^b$, heterociclilo, cicloalquilo C_3-C_1 0, cicloalquenilo C_5-C_1 0, heterociclil-alquilo C_1-C_5 , hetaril-alquilo C_1-C_5 , cicloalquenilo C_5-C_1 0, heterociclil-alquilo C_1-C_5 0, hetaril-alquilo C_1-C_5 1, cicloalquenilo C_5-C_1 2, fenil-alquilo C_1-C_5 3, fenil-alquilo C_1-C_5 4, alquileno C_1-C_5 5, cicloalquenilo C_5-C_1 0, heterociclil-alquilo C_1-C_5 5, fenil-alquilo C_1-C_5 6, sustituyentes C_1 1, diénticos o diferentes.

En los compuestos de fórmula I, en la que A es A2 y Z es N-R^N, R^N se selecciona más preferentemente entre el grupo que consiste en alquilo C_1 - C_{10} , alquenilo C_2 - C_{10} y alquinilo C_2 - C_{10} , en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^x idénticos o diferentes, alcoxi C_1 - C_4 -alquilo C_2 - C_4 , alquileno C_1 - C_4 -CN, heterociclilo, hetarilo, cicloalquilo C_3 - C_{10} , cicloalquenilo C_5 - C_{10} , heterociclil-alquilo C_1 - C_5 , hetaril-alquilo C_1 - C_5 , cicloalquenilo C_1 - C_5 , en el que los anillos en los 8 últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2 o 3 sustituyentes R^y idénticos o diferentes.


En los compuestos en los que A es A2 y Z es N-R^N, R^N se selecciona más preferentemente entre alquilo C₁-C₆, 40 haloalquilo C₁-C₆, cicloalquilo C₃-C₆, cicloalquil C₃-C₆-alquilo C₁-C₄, en el que el resto de cicloalquilo que está en los dos últimos radicales mencionados está sin sustituir o lleva 1 o 2 radicales seleccionados entre halógeno, CN y haloalquilo C₁-C₂, heterociclil-alquilo C₁-C₄, alcoxi C₁-C₄-alquilo C₁-C₄ y alquileno C₁-C₄-CN.

En particular R^N se selecciona entre el grupo que consiste en alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C_1 - C_2 -alquilo C_2 - C_4 , alquileno C_1 - C_4 - C_4 , cicloalquilo C_3 - C_6 y cicloalquil C_3 - C_6 -alquilo C_1 - C_4 , en el que el resto de cicloalquilo que está en los dos últimos radicales mencionados está sin sustituir o lleva 1 o 2 radicales seleccionados entre halógeno, C_1 y haloalquilo C_1 - C_2 . Especialmente, R^N es alquilo C_1 - C_4 o haloalquilo C_1 - C_4 .

Las realizaciones de la presente invención se refieren a compuestos de fórmula I en la que A se selecciona entre los siguientes ejemplos de radicales A2 adecuados.

Cada grupo de radical A2 adecuado del siguiente ejemplo constituye una realización de la invención.

Los ejemplos de radicales A2 adecuados son los radicales de fórmulas A2.a, A2.b, A2.c, A2.d, A2.e, A2.f, A2.g, A2.h, A2.i, A2.k, A2.l, A2.m, A2.n, A2.o, A2.p, A2.q, A2.r, A2.s, A2.t, A2.u, A2.v, A2.w, A2.x, A2.y, A2.z, A2.aa, A2.bb, A2.cc, A2.dd, A2.ee, A2.ff, A2.gg, A2.hh, A2.ii, A2.kk, A2.mm, A2.nn, A2.oo, A2.pp, A2.qq, A2.rr, A2.ss, A2.tt, A2.uu y A2.vv, dando preferencia a los radicales A2.a, A2.b, A2.c, A2.d, A2.e, A2.f, A2.n, A2.o, A2.q, A2.r, A2.s, A2.t, A2.u, A2.v, A2.w, A2.x, A2.y, A2.z, A2.aa, A2.bb, A2.cc, A2.dd, A2.ee, A2.ff, A2.gg, A2.hh, A2.kk, A2.ss, A2.tt, A2.uu y A2.vv y dando preferencia en particular a los radicales de fórmulas A2.o, A2.p, A2.r y A2.tt, en los que Z es O, o S o NR^N con R^N siendo tal como se ha definido anteriormente en el presente documento en la realización que se refiere a R^N.

Por analogía a los ejemplos de radicales que se han mencionado anteriormente de fórmula A2.a a A2.z, los radicales A2 adecuados adicionales son los radicales de fórmulas A2O.a, A2O.b, A2O.c, A2O.d, A2O.e, A2O.f, A2O.g, A2O.h, A2O.i, A2O.k, A2O.l, A2O.m, A2O.n, A2O.o, A2O.p, A2O.q, A2O.r, A2O.s, A2O.t, A2O.u, A2O.v, A2O.w, A2O.x, A2O.y, A2O.z, A2O.aa, A2O.bb, A2O.cc, A2O.dd, A2O.ee, A2O.ff, A2O.gg, A2O.hh, A2O.ii, A2O.kk, A2O.mm, A2O.nn, A2O.oo, A2O.pp, A2O.qq, A2O.rr, A2O.ss, A2O.tt, A2O.uu y A2O.vv, en las que Z es O.

Por analogía a los ejemplos de radicales que se han mencionado anteriormente de fórmula A2.a la A2.z, los radicales A2 adecuados adicionales son los radicales de fórmulas A2S.a, A2S.b, A2S.c, A2S.d, A2S.e, A2S.f, A2S.g, A2S.h, A2S.i, A2S.k, A2S.l, A2S.m, A2S.n, A2S.o, A2S.p, A2S.r, A2S.s, A2S.t, A2S.u, A2S.v, A2S.v, A2S.v, A2S.z, A2S.a, A2S.b, A2S.d, A2S.ee, A2S.ff, A2S.gg, A2S.hh, A2S.ii, A2S.kk, A2S.mm, A2S.nn, A2S.oo, A2S.pp, A2S.qq, A2S.rr, A2S.ss, A2S.tt, A2S.uu y A2S.vv, en las que Z es S.

Los radicales A2 particularmente preferentes son los radicales del tipo A2.Nx

15

20

5

10

en el que # representa el punto de unión del resto del compuesto de fórmula I, R^N es tal como se define en el presente documento, R^{A'} es hidrógeno o tiene uno de los significados dados para R^A, y en el que R^{A''} es hidrógeno o tiene uno de los significados dados para R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A.

Ejemplos de radicales A2 particularmente preferentes son los radicales del tipo A2.Nx numerados de A2.N1 a A2.N1014 en los que # representa el punto de unión del resto del compuesto de fórmula I, R^N , $R^{A'}$ y $R^{A''}$ se representan mediante cada línea de la siguiente Tabla A.

Tabla A: Radicales A2.N...

N°	R^N	R ^A "	R ^A '	Nº	R ^N	R ^A "	R ^A '
1	Н	Н	Н	36	Н	CI	1
2	Н	Н	CH₃	37	Н	CI	cC₃H₅
3	Н	Н	C ₂ H ₅	38	Н	CI	CN
4	Н	Н	C_3H_7	39	Н	CI	CH₂CN
5	Н	Н	CHF ₂	40	CH₃	Н	Н
6	Н	Н	CF ₃	41	CH₃	Н	CH ₃
7	Н	Н	F	42	CH₃	Н	C ₂ H ₅
8	Н	Н	Cl	43	CH₃	Н	C ₃ H ₇
9	Н	Н	Br	44	CH₃	Н	CHF ₂
10	Н	Н	I	45	CH₃	Н	CF ₃
11	Н	Н	cC ₃ H ₅	46	CH₃	Н	F
12	Н	Н	CN	47	CH₃	Н	Cl
13	Н	Н	CH₂CN	48	CH₃	Н	Br
14	Н	F	Н	49	CH₃	Н	I
15	Н	F	CH₃	50	CH₃	Н	cC₃H₅
16	Н	F	C_2H_5	51	CH₃	Н	CN
17	Н	F	C ₃ H ₇	52	CH₃	Н	CH ₂ CN
18	Н	F	CHF ₂	53	CH₃	F	Н
19	Н	F	CF ₃	54	CH₃	F	CH ₃
20	Н	F	F	55	CH₃	F	C₂H₅
21	Н	F	Cl	56	CH₃	F	C ₃ H ₇
22	Н	F	Br	57	CH₃	F	CHF ₂
23	Н	F	I	58	CH₃	F	CF ₃
24	Н	F	cC₃H₅	59	CH₃	F	F
25	Н	F	CN	60	CH₃	F	CI
26	Н	F	CH₂CN	61	CH₃	F	Br
27	Н	CI	Н	62	CH₃	F	I
28	Н	CI	CH₃	63	CH₃	F	cC₃H₅
29	Н	CI	C ₂ H ₅	64	CH₃	F	CN
30	Н	CI	C ₃ H ₇	65	CH₃	F	CH ₂ CN
31	Н	CI	CHF ₂	66	CH₃	CI	Н
32	Н	CI	CF ₃	67	CH₃	CI	CH ₃
33	Н	CI	F	68	CH₃	CI	C₂H₅
34	Н	CI	Cl	69	CH₃	CI	C ₃ H ₇
35	Н	CI	Br	70	CH₃	CI	CHF ₂

N°	R ^N	R ^A "	R ^A '	N°	R ^N	R ^A "	R ^A '
71	CH₃	CI	CF ₃	110	CH ₂ CH ₃	CI	CF ₃
72	CH₃	CI	F	111	CH ₂ CH ₃	CI	F
73	CH₃	CI	Cl	112	CH ₂ CH ₃	CI	CI
74	CH ₃	CI	Br	113	CH₂CH₃	CI	Br
75	CH ₃	CI	I	114	CH₂CH₃	CI	I
76	CH ₃	CI	cC₃H₅	115	CH ₂ CH ₃	CI	cC₃H₅
77	CH₃	CI	CN	116	CH ₂ CH ₃	CI	CN
78	CH₃	CI	CH ₂ CN	117	CH ₂ CH ₃	CI	CH ₂ CN
79	CH₂CH₃	Н	Н	118	CH₂CH₂CH₃	Н	Н
80	CH ₂ CH ₃	Н	CH ₃	119	CH ₂ CH ₂ CH ₃	Н	CH ₃
81	CH₂CH₃	Н	C ₂ H ₅	120	CH ₂ CH ₂ CH ₃	Н	C ₂ H ₅
82	CH₂CH₃	Н	C ₃ H ₇	121	CH₂CH₂CH₃	Н	C ₃ H ₇
83	CH₂CH₃	Н	CHF ₂	122	CH₂CH₂CH₃	Н	CHF ₂
84	CH₂CH₃	Н	CF ₃	123	CH ₂ CH ₂ CH ₃	Н	CF ₃
85	CH₂CH₃	Н	F	124	CH₂CH₂CH₃	Н	F
86	CH₂CH₃	Н	Cl	125	CH ₂ CH ₂ CH ₃	Н	CI
87	CH₂CH₃	Н	Br	126	CH ₂ CH ₂ CH ₃	Н	Br
88	CH₂CH₃	Н	I	127	CH ₂ CH ₂ CH ₃	Н	I
89	CH₂CH₃	Н	cC₃H₅	128	CH₂CH₂CH₃	Н	cC₃H₅
90	CH₂CH₃	Н	CN	129	CH₂CH₂CH₃	Н	CN
91	CH₂CH₃	Н	CH₂CN	130	CH ₂ CH ₂ CH ₃	Н	CH₂CN
92	CH₂CH₃	F	Н	131	CH ₂ CH ₂ CH ₃	F	Н
93	CH₂CH₃	F	CH ₃	132	CH ₂ CH ₂ CH ₃	F	CH ₃
94	CH₂CH₃	F	C ₂ H ₅	133	CH₂CH₂CH₃	F	C ₂ H ₅
95	CH₂CH₃	F	C ₃ H ₇	134	CH₂CH₂CH₃	F	C ₃ H ₇
96	CH₂CH₃	F	CHF ₂	135	CH ₂ CH ₂ CH ₃	F	CHF ₂
97	CH₂CH₃	F	CF ₃	136	CH ₂ CH ₂ CH ₃	F	CF ₃
98	CH₂CH₃	F	F	137	CH₂CH₂CH₃	F	F
99	CH₂CH₃	F	CI	138	CH₂CH₂CH₃	F	CI
100	CH ₂ CH ₃	F	Br	139	CH ₂ CH ₂ CH ₃	F	Br
101	CH₂CH₃	F	I	140	CH ₂ CH ₂ CH ₃	F	I
102	CH₂CH₃	F	cC₃H₅	141	CH ₂ CH ₂ CH ₃	F	cC₃H₅
103	CH₂CH₃	F	CN	142	CH₂CH₂CH₃	F	CN
104	CH₂CH₃	F	CH ₂ CN	143	CH₂CH₂CH₃	F	CH ₂ CN
105	CH₂CH₃	CI	Н	144	CH₂CH₂CH₃	CI	Н
106	CH ₂ CH ₃	CI	CH ₃	145	CH ₂ CH ₂ CH ₃	CI	CH ₃
107	CH₂CH₃	CI	C ₂ H ₅	146	CH ₂ CH ₂ CH ₃	CI	C ₂ H ₅
108	CH₂CH₃	CI	C ₃ H ₇	147	CH ₂ CH ₂ CH ₃	CI	C ₃ H ₇
109	CH₂CH₃	CI	CHF ₂	148	CH ₂ CH ₂ CH ₃	CI	CHF ₂

	- N	- A.	,	nuacio		_ N	_A.	_A.
N°	R ^N	R ^A "	R ^A '		10	R ^N	R ^A "	R ^A '
149	CH ₂ CH ₂ CH ₃	CI	CF ₃		88	CH(CH ₃) ₂	CI	CF ₃
150	CH ₂ CH ₂ CH ₃	CI	F		39	CH(CH ₃) ₂	CI	F
151	CH ₂ CH ₂ CH ₃	CI	CI		90	CH(CH ₃) ₂	CI	CI
152	CH₂CH₂CH₃	CI	Br	19	91	CH(CH ₃) ₂	CI	Br
153	CH₂CH₂CH₃	CI	I	19	92	CH(CH ₃) ₂	CI	I
154	CH ₂ CH ₂ CH ₃	CI	cC₃H₅	19	93	CH(CH ₃) ₂	CI	cC₃H₅
155	CH ₂ CH ₂ CH ₃	CI	CN	19	94	CH(CH ₃) ₂	Cl	CN
156	CH ₂ CH ₂ CH ₃	CI	CH₂CN	19	95	CH(CH ₃) ₂	Cl	CH₂CN
157	CH(CH ₃) ₂	Н	Н	19	96	CH₂CF ₃	Н	Н
158	CH(CH ₃) ₂	Н	CH₃	19	97	CH ₂ CF ₃	Н	CH₃
159	CH(CH ₃) ₂	Н	C ₂ H ₅	19	98	CH ₂ CF ₃	Н	C ₂ H ₅
160	CH(CH ₃) ₂	Н	C ₃ H ₇	19	99	CH ₂ CF ₃	Н	C ₃ H ₇
161	CH(CH ₃) ₂	Н	CHF ₂	20	00	CH ₂ CF ₃	Н	CHF ₂
162	CH(CH ₃) ₂	Н	CF ₃	20	01	CH₂CF₃	Н	CF ₃
163	CH(CH ₃) ₂	Н	F	20	02	CH₂CF₃	Н	F
164	CH(CH ₃) ₂	Н	CI	20	03	CH ₂ CF ₃	Н	CI
165	CH(CH ₃) ₂	Н	Br	20	04	CH₂CF₃	Н	Br
166	CH(CH ₃) ₂	Н	I	20	05	CH ₂ CF ₃	Н	I
167	CH(CH ₃) ₂	Н	cC₃H₅	20	06	CH₂CF₃	Н	cC₃H₅
168	CH(CH ₃) ₂	Н	CN	20	07	CH ₂ CF ₃	Н	CN
169	CH(CH ₃) ₂	Н	CH₂CN	20	30	CH₂CF₃	Н	CH₂CN
170	CH(CH ₃) ₂	F	Н	20	09	CH₂CF₃	F	Н
171	CH(CH ₃) ₂	F	CH ₃	2	10	CH₂CF₃	F	CH ₃
172	CH(CH ₃) ₂	F	C ₂ H ₅	2	11	CH₂CF₃	F	C ₂ H ₅
173	CH(CH ₃) ₂	F	C ₃ H ₇	2	12	CH₂CF₃	F	C ₃ H ₇
174	CH(CH ₃) ₂	F	CHF ₂	2	13	CH ₂ CF ₃	F	CHF ₂
175	CH(CH ₃) ₂	F	CF ₃	2	14	CH ₂ CF ₃	F	CF ₃
176	CH(CH ₃) ₂	F	F	2	15	CH₂CF₃	F	F
177	CH(CH ₃) ₂	F	CI	2	16	CH₂CF₃	F	CI
178	CH(CH ₃) ₂	F	Br	2	17	CH₂CF₃	F	Br
179	CH(CH ₃) ₂	F	I	2	18	CH₂CF₃	F	I
180	CH(CH ₃) ₂	F	cC₃H₅	2	19	CH₂CF₃	F	cC₃H₅
181	CH(CH ₃) ₂	F	CN	2:	20	CH₂CF₃	F	CN
182		F			21	CH₂CF₃	F	CH₂CN
183	CH(CH ₃) ₂	CI	Н		22	CH₂CF₃	CI	Н
184	CH(CH ₃) ₂	CI	CH ₃		23	CH ₂ CF ₃	CI	CH₃
185	CH(CH ₃) ₂	CI		l	24	CH₂CF₃	CI	C ₂ H ₅
186		CI			25	CH₂CF₃	CI	C ₃ H ₇
								CHF ₂
180 181 182 183 184 185	CH(CH ₃) ₂	F F Cl Cl Cl	cC ₃ H ₅ CN CH ₂ CN	2° 2° 2° 2° 2° 2° 2°	19 20 21 22 23 24	CH_2CF_3 CH_2CF_3 CH_2CF_3 CH_2CF_3 CH_2CF_3 CH_2CF_3	F F CI CI CI	CC ₃ H CN CH ₂ C H CH CH CH CH C3H

Nº	R ^N	R ^A "	R ^A '	Nº	R ^N	R ^A "	R ^A '
227	CH₂CF₃	CI	CF ₃	266	C(CH ₃) ₃	CI	CF ₃
228	CH₂CF₃	CI	F	267	C(CH ₃) ₃	CI	F
229	CH₂CF₃	CI	CI	268	C(CH ₃) ₃	CI	CI
230	CH₂CF₃	CI	Br	269	C(CH ₃) ₃	CI	Br
231	CH₂CF₃	CI	I	270	C(CH ₃) ₃	CI	I
232	CH₂CF₃	CI	cC₃H₅	271	C(CH ₃) ₃	CI	cC₃H₅
233	CH₂CF₃	CI	CN	272	C(CH ₃) ₃	CI	CN
234	CH₂CF₃	CI	CH₂CN	273	C(CH ₃) ₃	CI	CH₂CN
235	C(CH ₃) ₃	Н	Н	274	CH₂F	Н	Н
236	C(CH ₃) ₃	Н	CH ₃	275	CH₂F	Н	CH ₃
237	C(CH ₃) ₃	Н	C ₂ H ₅	276	CH₂F	Н	C ₂ H ₅
238	C(CH ₃) ₃	Н	C ₃ H ₇	277	CH₂F	Н	C ₃ H ₇
239	C(CH ₃) ₃	Н	CHF ₂	278	CH₂F	Н	CHF ₂
240	C(CH ₃) ₃	Н	CF ₃	279	CH₂F	Н	CF ₃
241	C(CH ₃) ₃	Н	F	280	CH₂F	Н	F
242	C(CH ₃) ₃	Н	Cl	281	CH₂F	Н	CI
243	C(CH ₃) ₃	Н	Br	282	CH₂F	Н	Br
244	C(CH ₃) ₃	Н	I	283	CH₂F	Н	I
245	C(CH ₃) ₃	Н	cC₃H₅	284	CH₂F	Н	cC₃H₅
246	C(CH ₃) ₃	Н	CN	285	CH₂F	Н	CN
247	C(CH ₃) ₃	Н	CH₂CN	286	CH₂F	Н	CH₂CN
248	C(CH ₃) ₃	F	Н	287	CH₂F	F	Н
249	C(CH ₃) ₃	F	CH ₃	288	CH₂F	F	CH₃
250	C(CH ₃) ₃	F	C ₂ H ₅	289	CH₂F	F	C ₂ H ₅
251	C(CH ₃) ₃	F	C ₃ H ₇	290	CH₂F	F	C ₃ H ₇
252	C(CH ₃) ₃	F	CHF ₂	291	CH₂F	F	CHF ₂
253	C(CH ₃) ₃	F	CF ₃	292	CH₂F	F	CF₃
254	C(CH ₃) ₃	F	F	293	CH₂F	F	F
255	C(CH ₃) ₃	F	Cl	294	CH₂F	F	CI
256	C(CH ₃) ₃	F	Br	295	CH₂F	F	Br
257	C(CH ₃) ₃	F	I	296	CH₂F	F	I
258	C(CH ₃) ₃	F	cC₃H₅	297	CH₂F	F	cC₃H₅
259	C(CH ₃) ₃	F	CN	298	CH₂F	F	CN
260	C(CH ₃) ₃	F	CH₂CN	299	CH₂F	F	CH₂CN
261	C(CH ₃) ₃	CI	Н	300	CH₂F	CI	Н
262	C(CH ₃) ₃	CI	CH₃	301	CH₂F	CI	CH₃
263	C(CH ₃) ₃	CI	C ₂ H ₅	302	CH₂F	CI	C ₂ H ₅
264	C(CH ₃) ₃	CI	C ₃ H ₇	303	CH₂F	CI	C ₃ H ₇
265	C(CH ₃) ₃	CI	CHF ₂	304	CH₂F	CI	CHF ₂

N°	R^{N}	R ^A "	R ^A '	N°	R ^N	R ^A "	R ^A '
305	CH₂F	CI	CF ₃	344	CHF ₂	CI	CF ₃
306	CH₂F	CI	F	345	CHF ₂	CI	F
307	CH₂F	CI	Cl	346	CHF ₂	CI	CI
308	CH₂F	CI	Br	347	CHF ₂	CI	Br
309	CH₂F	CI	I	348	CHF ₂	CI	I
310	CH₂F	CI	cC₃H₅	349	CHF ₂	CI	cC₃H₅
311	CH₂F	CI	CN	350	CHF ₂	CI	CN
312	CH₂F	CI	CH ₂ CN	351	CHF ₂	CI	CH ₂ CN
313	CHF ₂	Н	Н	352	CF ₃	Н	Н
314	CHF ₂	Н	CH₃	353	CF ₃	Н	CH ₃
315	CHF ₂	Н	C ₂ H ₅	354	CF ₃	Н	C ₂ H ₅
316	CHF ₂	Н	C ₃ H ₇	355	CF ₃	Н	C ₃ H ₇
317	CHF ₂	Н	CHF ₂	356	CF ₃	Н	CHF ₂
318	CHF ₂	Н	CF ₃	357	CF ₃	Н	CF ₃
319	CHF ₂	Н	F	358	CF ₃	Н	F
320	CHF ₂	Н	С	359	CF ₃	Н	CI
321	CHF ₂	Н	Br	360	CF ₃	Н	Br
322	CHF ₂	Н	1	361	CF ₃	Н	1
323	CHF ₂	Н	cC₃H₅	362	CF ₃	Н	cC₃H₅
324	CHF ₂	Н	CN	363	CF ₃	Н	CN
325	CHF ₂	Н	CH ₂ CN	364	CF ₃	Н	CH₂CN
326	CHF ₂	F	H	365	CF ₃	F	Н
327	CHF ₂	F	CH₃	366	CF ₃	F	CH ₃
328	CHF ₂	F	C ₂ H ₅	367	CF ₃	F	C ₂ H ₅
329	CHF ₂	F	C ₃ H ₇	368	CF ₃	F	C ₃ H ₇
330	CHF ₂	F	CHF ₂	369	CF ₃	F	CHF ₂
331	CHF ₂	F	CF ₃	370	CF ₃	F	CF ₃
332	CHF ₂	F	F	371	CF ₃	F	F
333	CHF ₂	F	Cl	372	CF ₃	F	CI
334	CHF ₂	F	Br	373	CF ₃	F	Br
335	CHF ₂	F	1	374	CF ₃	F	I
336	CHF ₂	F	cC₃H₅	375	CF ₃	F	cC₃H₅
337	CHF ₂	F	CN	376	CF ₃	F	CN
338	CHF ₂	F	CH₂CN	377	CF ₃	F	CH₂CN
339	CHF ₂	CI	Н	378	CF ₃	CI	Н
340	CHF ₂	CI	CH₃	379	CF ₃	CI	CH ₃
341	CHF ₂	CI	C ₂ H ₅	380	CF ₃	CI	C ₂ H ₅
342	CHF ₂	CI	C ₃ H ₇	381	CF ₃	CI	C ₃ H ₇
343	CHF ₂	CI	CHF ₂	382	CF ₃	CI	CHF ₂

391				(001111	nuacion)			
384 CF₃ CI F 423 CH₂CHF₂ CI F 385 CF₃ CI CI 424 CH₂CHF₂ CI CI 386 CF₃ CI Br 425 CH₂CHF₂ CI Br 387 CF₃ CI I 426 CH₂CHF₂ CI I 388 CF₃ CI CN 428 CH₂CHF₂ CI CG₁H₂ 389 CF₃ CI CN 428 CH₂CHF₂ CI CM₂CH 390 CF₃ CI CH₂CN 429 CH₂CHF₂ CI CH₂CN 391 CH₂CHF₂ H H 430 CH₂CH H₂ H CH₂CH 392 CH₂CHF₂ H CH₃ 431 CH₂CI H CH₃ 393 CH₂CHF₂ H CH₂ 433 CH₂CI H CH₃ 394 CH₂CHF₂ H CH₂ CH₂ 433 CH₂CI </td <td>N°</td> <td>R^N</td> <td>R^A"</td> <td>R^A'</td> <td>N°</td> <td>R^N</td> <td>R^A"</td> <td>R^A'</td>	N°	R ^N	R ^A "	R ^A '	N°	R ^N	R ^A "	R ^A '
385	383	CF ₃	CI	CF ₃	422	CH ₂ CHF ₂	CI	CF ₃
386 CF₃ CI Br 425 CH₂CHF₂ CI Br 387 CF₃ CI I 426 CH₂CHF₂ CI I 388 CF₃ CI CC₃H₅ 427 CH₂CHF₂ CI CC₃H₅ 389 CF₃ CI CN 428 CH₂CHF₂ CI CN 390 CF₃ CI CH₂CN 429 CH₂CHF₂ CI CN 391 CH₂CHF₂ H H 430 CH₂CI H H 392 CH₂CHF₂ H CH₃ 431 CH₂CI H CH₃ 393 CH₂CHF₂ H CH₃ 432 CH₂CI H CH₃ 394 CH₂CHF₂ H CH₂ 433 CH₂CI H CH₃ 395 CH₂CHF₂ H CH₂ 434 CH₂CI H CH₂ 396 CH₂CHF₂ H F 436 CH₂CI H	384	CF ₃	CI	F	423	CH ₂ CHF ₂	CI	F
387 CF₃ CI I 426 CH₂CHF₂ CI I 388 CF₃ CI cC₃H₅ 427 CH₂CHF₂ CI CC₃H₅ 389 CF₃ CI CN 428 CH₂CHF₂ CI CN 390 CF₃ CI CH₂CN 429 CH₂CHF₂ CI CN₂ 391 CH₂CHF₂ H H 430 CH₂CI H H 392 CH₂CHF₂ H CH₃ 431 CH₂CI H CH₃ 393 CH₂CHF₂ H CA₃H₅ 432 CH₂CI H CH₃ 394 CH₂CHF₂ H CH₽₂ 433 CH₂CI H CH₂ 395 CH₂CHF₂ H CH₽₂ 434 CH₂CI H CH₂ 396 CH₂CHF₂ H F 436 CH₂CI H F 397 CH₂CHF₂ H CI 437 CH₂CI H	385	CF ₃	CI	Cl	424	CH ₂ CHF ₂	CI	CI
388 CF₃ CI CC₃H₅ 427 CH₂CHF₂ CI CC₃H₅ 389 CF₃ CI CN 428 CH₂CHF₂ CI CN 390 CF₃ CI CH₂CN 429 CH₂CHF₂ CI CN₂ 391 CH₂CHF₂ H H 430 CH₂CI H H 392 CH₂CHF₂ H CH₃ 431 CH₂CI H CH₃ 393 CH₂CHF₂ H CH₃H₂ 432 CH₂CI H CH₃H₂ 394 CH₂CHF₂ H CH₂F₂ H CH₂P₂ CH₂CI H CH₂CI 395 CH₂CHF₂ H CH₂F₂ H CH₂ 334 CH₂CI H CH₂ 396 CH₂CHF₂ H F 436 CH₂CI H F 397 CH₂CHF₂ H F 436 CH₂CI H F 398 CH₂CHF₂ H CI<	386	CF ₃	CI	Br	425	CH₂CHF₂	CI	Br
389 CF₃ CI CN 428 CH₂CHF₂ CI CN 390 CF₃ CI CH₂CN 429 CH₂CHF₂ CI CH₂CN 391 CH₂CHF₂ H H H 430 CH₂CI H H 392 CH₂CHF₂ H CH₃ 431 CH₂CI H CH₃ 393 CH₂CHF₂ H CH₃ 432 CH₂CI H CH₃ 394 CH₂CHF₂ H CH₅² 433 CH₂CI H CH₂ 395 CH₂CHF₂ H CH₂ 434 CH₂CI H CH₂² 396 CH₂CHF₂ H CH₃ 435 CH₂CI H CF₃ 397 CH₂CHF₂ H G 437 CH₂CI H CF₃ 398 CH₂CHF₂ H Br 438 CH₂CI H CI 400 CH₂CHF₂ H I 439 CH₂CI	387	CF ₃	CI	I	426	CH₂CHF₂	CI	I
390 CF₃ CI CH₂CN 429 CH₂CHF₂ CI CH₂CN 391 CH₂CHF₂ H H 430 CH₂CI H H 392 CH₂CHF₂ H CH₃ 431 CH₂CI H CH₃ 393 CH₂CHF₂ H CH₃ 432 CH₂CI H CH₃ 394 CH₂CHF₂ H CH₂ 433 CH₂CI H CH₃ 395 CH₂CHF₂ H CH₂ 434 CH₂CI H CH₂ 396 CH₂CHF₂ H F 436 CH₂CI H CF₃ 397 CH₂CHF₂ H F 436 CH₂CI H F 399 CH₂CHF₂ H Br 438 CH₂CI H F 400 CH₂CHF₂ H CH₃ 439 CH₂CI H I 401 CH₂CHF₂ H CH₃ CH₂CI H CH₂CI	388	CF ₃	CI	cC ₃ H ₅	427	CH₂CHF₂	CI	cC₃H₅
391	389	CF ₃	CI	CN	428	CH ₂ CHF ₂	CI	CN
392	390	CF₃	CI	CH₂CN	429	CH ₂ CHF ₂	CI	CH ₂ CN
393 CH₂CHF₂ H C₂H₅ 432 CH₂CI H C₂H₅ 394 CH₂CHF₂ H C₃H७ 433 CH₂CI H C₃H₀ 395 CH₂CHF₂ H CH₂² 434 CH₂CI H CH₂² 396 CH₂CHF₂ H CF₃ 435 CH₂CI H CF₃ 397 CH₂CHF₂ H F 436 CH₂CI H F 398 CH₂CHF₂ H CI 437 CH₂CI H CI 399 CH₂CHF₂ H Br 438 CH₂CI H Br 400 CH₂CHF₂ H CC₃H₅ 440 CH₂CI H CI 401 CH₂CHF₂ H CN 441 CH₂CI H CN³ 402 CH₂CHF₂ H CN₃CH 442 CH₂CI H CN² 403 CH₂CHF₂ F CH₃ 444 CH₂CI F<	391	CH ₂ CHF ₂	Н	Н	430	CH₂CI	Н	Н
394 CH₂CHF₂ H C₃H₂ 433 CH₂CI H C₃H₂ 395 CH₂CHF₂ H CHF₂ 434 CH₂CI H CH₂ 396 CH₂CHF₂ H CF₃ 435 CH₂CI H CF₃ 397 CH₂CHF₂ H F 436 CH₂CI H F 398 CH₂CHF₂ H CI 437 CH₂CI H CI 399 CH₂CHF₂ H Br 438 CH₂CI H Br 400 CH₂CHF₂ H CC₃H₅ 440 CH₂CI H I 401 CH₂CHF₂ H CN 441 CH₂CI H CN 402 CH₂CHF₂ H CN 441 CH₂CI H CN 403 CH₂CHF₂ H CH₂CN 442 CH₂CI H CH₂CN 404 CH₂CHF₂ F CH₃ 444 CH₂CI F	392	CH ₂ CHF ₂	Н	CH₃	431	CH₂CI	Н	CH ₃
395 CH₂CHF₂ H CH₂₂ 434 CH₂CI H CH₂ 396 CH₂CHF₂ H CF₃ 435 CH₂CI H CF₃ 397 CH₂CHF₂ H F 436 CH₂CI H F 398 CH₂CHF₂ H CI 437 CH₂CI H CI 399 CH₂CHF₂ H Br 438 CH₂CI H CI 400 CH₂CHF₂ H I 439 CH₂CI H II 400 CH₂CHF₂ H CN 441 CH₂CI H CC₃H₅ 402 CH₂CHF₂ H CN 441 CH₂CI H CN 403 CH₂CHF₂ H CN 442 CH₂CI H CN₂CN 404 CH₂CHF₂ F CH₃ 444 CH₂CI F CH₃ 405 CH₂CHF₂ F CH₃ 444 CH₂CI F	393	CH₂CHF₂	Н	C_2H_5	432	CH₂CI	Н	C ₂ H ₅
396 CH₂CHF₂ H CF₃ 435 CH₂CI H CF₃ 397 CH₂CHF₂ H F 436 CH₂CI H F 398 CH₂CHF₂ H CI 437 CH₂CI H CI 399 CH₂CHF₂ H I 438 CH₂CI H Br 400 CH₂CHF₂ H I 439 CH₂CI H I 401 CH₂CHF₂ H CN 440 CH₂CI H CO₃H₅ 402 CH₂CHF₂ H CN 441 CH₂CI H CN 403 CH₂CHF₂ H CN 441 CH₂CI H CN 404 CH₂CHF₂ F CH₃ 442 CH₂CI H CH₂CN 404 CH₂CHF₂ F CH₃ 444 CH₂CI F CH₃ 405 CH₂CHF₂ F CH₃ 444 CH₂CI F <	394	CH ₂ CHF ₂	Н	C ₃ H ₇	433	CH₂CI	Н	C ₃ H ₇
397 CH₂CHF₂ H F 436 CH₂CI H F 398 CH₂CHF₂ H CI 437 CH₂CI H CI 399 CH₂CHF₂ H Br 438 CH₂CI H Br 400 CH₂CHF₂ H I 439 CH₂CI H I 401 CH₂CHF₂ H CC₃H₅ 440 CH₂CI H CC₃H₅ 402 CH₂CHF₂ H CN 441 CH₂CI H CN 403 CH₂CHF₂ H CN 442 CH₂CI H CH₂CN 404 CH₂CHF₂ F CH₃ 444 CH₂CI F CH₃ 405 CH₂CHF₂ F CH₃ 444 CH₂CI F CH₃ 406 CH₂CHF₂ F CH₃ 445 CH₂CI F CH₃ 407 CH₂CHF₂ F CHF₂ 447 CH₂CI F	395	CH ₂ CHF ₂	Н	CHF ₂	434	CH₂CI	Н	CHF ₂
398 CH₂CHF₂ H CI 437 CH₂CI H CI 399 CH₂CHF₂ H Br 438 CH₂CI H Br 400 CH₂CHF₂ H I 439 CH₂CI H I 401 CH₂CHF₂ H CC₃H₅ 440 CH₂CI H CC₃H₅ 402 CH₂CHF₂ H CN 441 CH₂CI H CN 403 CH₂CHF₂ H CH₂CN 442 CH₂CI H CH₂CN 404 CH₂CHF₂ F CH₃ 444 CH₂CI F CH₃ 404 CH₂CHF₂ F CH₃ 444 CH₂CI F CH₃ 405 CH₂CHF₂ F CH₃ 444 CH₂CI F CH₃ 406 CH₂CHF₂ F CH₃ 445 CH₂CI F CH₃ 407 CH₂CHF₂ F CHF₂ CHF₂ CH₂CI F<	396	CH ₂ CHF ₂	Н	CF ₃	435	CH₂CI	Н	CF ₃
399 CH₂CHF₂ H Br 438 CH₂CI H Br 400 CH₂CHF₂ H I 439 CH₂CI H I 401 CH₂CHF₂ H CC₃H₅ 440 CH₂CI H CC₃H₅ 402 CH₂CHF₂ H CN 441 CH₂CI H CN 403 CH₂CHF₂ H CH₂CN 442 CH₂CI H CH₂CN 404 CH₂CHF₂ F H 443 CH₂CI F H 405 CH₂CHF₂ F CH₃ 444 CH₂CI F CH₃ 406 CH₂CHF₂ F C₂H₅ 445 CH₂CI F C₂H₅ 407 CH₂CHF₂ F C₃H₂ 447 CH₂CI F C₃H₃ 408 CH₂CHF₂ F CH₂ 447 CH₂CI F CH̄₂ 409 CH₂CHF₂ F CF₃ 448 CH₂CI F	397	CH ₂ CHF ₂	Н	F	436	CH₂CI	Н	F
400 CH2CHF2 H I 4389 CH2CI H I 401 CH2CHF2 H CC3H5 440 CH2CI H CC3H5 402 CH2CHF2 H CN 441 CH2CI H CN 403 CH2CHF2 H CH2CN 442 CH2CI H CH2CN 404 CH2CHF2 F H 443 CH2CI F H CH2CN 404 CH2CHF2 F CH3 444 CH2CI F CH3 405 CH2CHF2 F CH3 444 CH2CI F CH3 406 CH2CHF2 F CH3 445 CH2CI F CH3 407 CH2CHF2 F CH2 447 CH2CI F CH3 408 CH2CHF2 F CH5 4448 CH2CI F CH5 410 CH2CHF2 F CH2 447 CH2	398	CH ₂ CHF ₂	Н	Cl	437	CH₂CI	Н	CI
401 CH2CHF2 H CC3H5 440 CH2CI H CC3H5 402 CH2CHF2 H CN 441 CH2CI H CN 403 CH2CHF2 H CH2CN 442 CH2CI H CH2CN 404 CH2CHF2 F H 443 CH2CI F H 405 CH2CHF2 F CH3 444 CH2CI F CH3 406 CH2CHF2 F CH3 444 CH2CI F CH3 407 CH2CHF2 F CH5 445 CH2CI F CH3 408 CH2CHF2 F CHF2 447 CH2CI F CH5 409 CH2CHF2 F CF3 448 CH2CI F F 410 CH2CHF2 F F 449 CH2CI F F 411 CH2CHF2 F CI 450 CH2CI F	399	CH ₂ CHF ₂	Н	Br	438	CH₂CI	Н	Br
402 CH2CHF2 H CN 441 CH2CI H CN 403 CH2CHF2 H CH2CN 442 CH2CI H CH2CN 404 CH2CHF2 F H 443 CH2CI F H 405 CH2CHF2 F CH3 444 CH2CI F CH3 406 CH2CHF2 F CH5 445 CH2CI F CH3 407 CH2CHF2 F C3H7 446 CH2CI F C3H7 408 CH2CHF2 F CHF2 447 CH2CI F CH52 409 CH2CHF2 F CF3 448 CH2CI F CH52 410 CH2CHF2 F F F 449 CH2CI F F 411 CH2CHF2 F Br 451 CH2CI F Br 412 CH2CHF2 F Br 451 CH2CI	400	CH₂CHF₂	Н	1	439	CH₂CI	Н	1
403 CH2CHF2 H CH2CN 442 CH2CI H CH2CN 404 CH2CHF2 F H 443 CH2CI F H 405 CH2CHF2 F CH3 444 CH2CI F CH3 406 CH2CHF2 F C2H5 445 CH2CI F CH5 407 CH2CHF2 F C3H7 CH2CI F C2H5 408 CH2CHF2 F CHF2 447 CH2CI F CH5 409 CH2CHF2 F CF3 448 CH2CI F CF3 410 CH2CHF2 F F 449 CH2CI F F 411 CH2CHF2 F GI 450 CH2CI F F 412 CH2CHF2 F Br 451 CH2CI F Br 413 CH2CHF2 F C CH3 452 CH2CI F	401	CH ₂ CHF ₂	Н	cC₃H₅	440	CH₂CI	Η	cC₃H₅
404 CH2CHF2 F H 443 CH2CI F H 405 CH2CHF2 F CH3 444 CH2CI F CH3 406 CH2CHF2 F C2H5 445 CH2CI F C2H5 407 CH2CHF2 F C3H7 446 CH2CI F C3H7 408 CH2CHF2 F CHF2 447 CH2CI F C3H7 409 CH2CHF2 F CF3 448 CH2CI F CH52 410 CH2CHF2 F F H49 CH2CI F F 411 CH2CHF2 F F CI 450 CH2CI F F 411 CH2CHF2 F Br 451 CH2CI F Br 413 CH2CHF2 F Br 451 CH2CI F Br 414 CH2CHF2 F CN 452 CH2CI	402	CH ₂ CHF ₂	Н	CN	441	CH₂CI	Н	CN
405 CH2CHF2 F CH3 406 CH2CHF2 F C2H5 407 CH2CHF2 F C3H7 408 CH2CHF2 F CHF2 409 CH2CHF2 F CF3 410 CH2CHF2 F F 410 CH2CHF2 F F 410 CH2CHF2 F F 411 CH2CHF2 F F 411 CH2CHF2 F CI 450 CH2CI F F 411 CH2CHF2 F Br 412 CH2CHF2 F Br 413 CH2CHF2 F I 414 CH2CHF2 F CC3H5 415 CH2CHF2 F CN 416 CH2CHF2 F CN 416 CH2CHF2 F CH2CN 417 CH2CHF2 CI CH3 418 CH2CHF2	403	CH ₂ CHF ₂	Н	CH₂CN	442	CH₂CI	Н	CH ₂ CN
406 CH2CHF2 F C2H5 445 CH2CI F C2H5 407 CH2CHF2 F C3H7 446 CH2CI F C3H7 408 CH2CHF2 F CHF2 447 CH2CI F CHF2 409 CH2CHF2 F CF3 448 CH2CI F CH53 410 CH2CHF2 F F 449 CH2CI F F 411 CH2CHF2 F CI 450 CH2CI F F 411 CH2CHF2 F Br 451 CH2CI F F 412 CH2CHF2 F Br 451 CH2CI F Br 413 CH2CHF2 F I 452 CH2CI F Br 414 CH2CHF2 F CC3H5 453 CH2CI F CC3H5 415 CH2CHF2 F CN 454 CH2CI F	404	CH ₂ CHF ₂	F	Н	443	CH₂CI	F	Н
407 CH2CHF2 F C3H7 446 CH2CI F C3H7 408 CH2CHF2 F CHF2 447 CH2CI F CHF2 409 CH2CHF2 F CF3 448 CH2CI F CH53 410 CH2CHF2 F F 449 CH2CI F CF3 411 CH2CHF2 F CI 450 CH2CI F F 411 CH2CHF2 F Br 451 CH2CI F CI 412 CH2CHF2 F Br 451 CH2CI F Br 413 CH2CHF2 F I 452 CH2CI F Br 414 CH2CHF2 F CC3H5 453 CH2CI F CC3H5 415 CH2CHF2 F CH2CN 454 CH2CI F CH2CN 416 CH2CHF2 F CH2CN 455 CH2CI	405	CH ₂ CHF ₂	F	CH₃	444	CH₂CI	F	CH ₃
408 CH2CHF2 F CHF2 409 CH2CHF2 F CF3 410 CH2CHF2 F F 411 CH2CHF2 F F 411 CH2CHF2 F CI 412 CH2CHF2 F Br 413 CH2CHF2 F I 414 CH2CHF2 F CC3H5 415 CH2CHF2 F CN 416 CH2CHF2 F CH2CN 417 CH2CHF2 CI H 418 CH2CHF2 CI CH3 419 CH2CHF2 CI CH3 420 CH2CHF2 CI C3H7	406	CH ₂ CHF ₂	F	C ₂ H ₅	445	CH₂CI	F	C ₂ H ₅
409 CH ₂ CHF ₂ F CF ₃ 410 CH ₂ CHF ₂ F F 411 CH ₂ CHF ₂ F CI 411 CH ₂ CHF ₂ F CI 412 CH ₂ CHF ₂ F Br 413 CH ₂ CHF ₂ F I 414 CH ₂ CHF ₂ F CC ₃ H ₅ 415 CH ₂ CHF ₂ F CN 416 CH ₂ CHF ₂ F CH ₂ CN 417 CH ₂ CHF ₂ CI H 418 CH ₂ CHF ₂ CI CH ₃ 419 CH ₂ CHF ₂ CI C ₂ H ₅ 420 CH ₂ CHF ₂ CI C ₃ H ₇	407	CH ₂ CHF ₂	F	C ₃ H ₇	446	CH₂CI	F	C ₃ H ₇
410 CH ₂ CHF ₂ F F 449 CH ₂ CI F F 411 CH ₂ CHF ₂ F CI 450 CH ₂ CI F CI 412 CH ₂ CHF ₂ F Br 451 CH ₂ CI F Br 413 CH ₂ CHF ₂ F I 452 CH ₂ CI F Br 414 CH ₂ CHF ₂ F CC ₃ H ₅ 453 CH ₂ CI F CC ₃ H ₅ 415 CH ₂ CHF ₂ F CN 454 CH ₂ CI F CN 416 CH ₂ CHF ₂ F CH ₂ CN 455 CH ₂ CI F CH ₂ CN 417 CH ₂ CHF ₂ CI H 456 CH ₂ CI CI H 418 CH ₂ CHF ₂ CI CH ₃ 457 CH ₂ CI CI CH ₃ 419 CH ₂ CHF ₂ CI C ₂ H ₅ 458 CH ₂ CI CI C ₂ H ₅ 420 CH ₂ CHF ₂	408	CH₂CHF₂	F	CHF ₂	447	CH₂CI	F	CHF ₂
411 CH2CHF2 F CI 450 CH2CI F CI 412 CH2CHF2 F Br 451 CH2CI F Br 413 CH2CHF2 F I 452 CH2CI F I 414 CH2CHF2 F CC3H5 453 CH2CI F CC3H5 415 CH2CHF2 F CN 454 CH2CI F CN 416 CH2CHF2 F CH2CN 455 CH2CI F CH2CN 417 CH2CHF2 CI H 456 CH2CI CI H 418 CH2CHF2 CI CH3 457 CH2CI CI CH3 419 CH2CHF2 CI C2H5 458 CH2CI CI C2H5 420 CH2CHF2 CI C3H7 459 CH2CI CI C3H7	409	CH₂CHF₂	F	CF ₃	448	CH₂CI	F	CF ₃
412 CH ₂ CHF ₂ F Br 451 CH ₂ CI F Br 413 CH ₂ CHF ₂ F I 452 CH ₂ CI F I 414 CH ₂ CHF ₂ F CC ₃ H ₅ 453 CH ₂ CI F CC ₃ H ₅ 415 CH ₂ CHF ₂ F CN 454 CH ₂ CI F CN 416 CH ₂ CHF ₂ F CH ₂ CN 455 CH ₂ CI F CH ₂ CN 417 CH ₂ CHF ₂ CI H 456 CH ₂ CI CI H 418 CH ₂ CHF ₂ CI CH ₃ 457 CH ₂ CI CI CH ₃ 419 CH ₂ CHF ₂ CI C ₂ H ₅ 458 CH ₂ CI CI C ₂ H ₅ 420 CH ₂ CHF ₂ CI C ₃ H ₇ 459 CH ₂ CI CI C ₃ H ₇	410	CH ₂ CHF ₂	F	F	449	CH₂CI	F	F
413 CH ₂ CHF ₂ F I 452 CH ₂ CI F I 414 CH ₂ CHF ₂ F cC ₃ H ₅ 453 CH ₂ CI F cC ₃ H ₅ 415 CH ₂ CHF ₂ F CN 454 CH ₂ CI F CN 416 CH ₂ CHF ₂ F CH ₂ CN 455 CH ₂ CI F CH ₂ CN 417 CH ₂ CHF ₂ CI H 456 CH ₂ CI CI H 418 CH ₂ CHF ₂ CI CH ₃ 457 CH ₂ CI CI CH ₃ 419 CH ₂ CHF ₂ CI C ₂ H ₅ 458 CH ₂ CI CI C ₂ H ₅ 420 CH ₂ CHF ₂ CI C ₃ H ₇ 459 CH ₂ CI CI C ₃ H ₇	411	CH ₂ CHF ₂	F	Cl	450	CH₂CI	F	CI
414 CH ₂ CHF ₂ F cC ₃ H ₅ 453 CH ₂ CI F cC ₃ H ₅ 415 CH ₂ CHF ₂ F CN 454 CH ₂ CI F CN 416 CH ₂ CHF ₂ F CH ₂ CN 455 CH ₂ CI F CH ₂ CN 417 CH ₂ CHF ₂ CI H 456 CH ₂ CI CI H 418 CH ₂ CHF ₂ CI CH ₃ 457 CH ₂ CI CI CH ₃ 419 CH ₂ CHF ₂ CI C ₂ H ₅ 458 CH ₂ CI CI C ₂ H ₅ 420 CH ₂ CHF ₂ CI C ₃ H ₇ 459 CH ₂ CI CI C ₃ H ₇	412	CH ₂ CHF ₂	F	Br	451	CH₂CI	F	Br
415 CH ₂ CHF ₂ F CN 454 CH ₂ CI F CN 416 CH ₂ CHF ₂ F CH ₂ CN 455 CH ₂ CI F CH ₂ CN 417 CH ₂ CHF ₂ CI H 456 CH ₂ CI CI H 418 CH ₂ CHF ₂ CI CH ₃ 457 CH ₂ CI CI CH ₃ 419 CH ₂ CHF ₂ CI C ₂ H ₅ 458 CH ₂ CI CI C ₂ H ₅ 420 CH ₂ CHF ₂ CI C ₃ H ₇ 459 CH ₂ CI CI C ₃ H ₇	413	CH ₂ CHF ₂	F	I	452	CH ₂ CI	F	I
416 CH ₂ CHF ₂ F CH ₂ CN 455 CH ₂ CI F CH ₂ CN 417 CH ₂ CHF ₂ CI H 456 CH ₂ CI CI H 418 CH ₂ CHF ₂ CI CH ₃ 457 CH ₂ CI CI CH ₃ 419 CH ₂ CHF ₂ CI C ₂ H ₅ 458 CH ₂ CI CI C ₂ H ₅ 420 CH ₂ CHF ₂ CI C ₃ H ₇ 459 CH ₂ CI CI C ₃ H ₇	414	CH ₂ CHF ₂	F	cC ₃ H ₅	453	CH ₂ CI	F	cC ₃ H ₅
417 CH ₂ CHF ₂ CI H 456 CH ₂ CI CI H 418 CH ₂ CHF ₂ CI CH ₃ 457 CH ₂ CI CI CH ₃ 419 CH ₂ CHF ₂ CI C ₂ H ₅ 458 CH ₂ CI CI C ₂ H ₅ 420 CH ₂ CHF ₂ CI C ₃ H ₇ 459 CH ₂ CI CI C ₃ H ₇	415	CH ₂ CHF ₂	F	CN	454	CH₂CI	F	CN
418 CH ₂ CHF ₂ CI CH ₃ 457 CH ₂ CI CI CH ₃ 419 CH ₂ CHF ₂ CI C ₂ H ₅ 458 CH ₂ CI CI C ₂ H ₅ 420 CH ₂ CHF ₂ CI C ₃ H ₇ 459 CH ₂ CI CI C ₃ H ₇	416	CH ₂ CHF ₂	F	CH ₂ CN	455	CH ₂ CI	F	CH ₂ CN
419 CH ₂ CHF ₂ CI C ₂ H ₅ 458 CH ₂ CI CI C ₂ H ₅ 420 CH ₂ CHF ₂ CI C ₃ H ₇ 459 CH ₂ CI CI C ₃ H ₇	417	CH ₂ CHF ₂	CI	Н	456	CH ₂ CI	CI	Н
420 CH ₂ CHF ₂ CI C ₃ H ₇ 459 CH ₂ CI CI C ₃ H ₇	418	CH ₂ CHF ₂	CI	CH₃	457	CH ₂ CI	CI	CH ₃
	419	CH ₂ CHF ₂	CI	C ₂ H ₅	458	CH ₂ CI	CI	C ₂ H ₅
421 CHaCHEs CI CHES 460 CH-CI CI CHES	420	CH ₂ CHF ₂	CI	C ₃ H ₇	459	CH ₂ CI	CI	C ₃ H ₇
TET OFFICE OF OFFICE OF OFFICE OF OFFICE OFFI	421	CH ₂ CHF ₂	CI	CHF ₂	460	CH₂CI	CI	CHF ₂

DN	D ^A "	,		DN	DA	R ^A '
	1		-			CF₃
	 			•		F
						Cl
						Br
				· · ·		l
				•		cC ₃ H ₅
	-					CN
						CH₂CN
						Н
CH ₂ CH(CH ₃) ₂	-	CH₃		CH ₂ CH ₂ OCH ₃	Н	CH₃
CH ₂ CH(CH ₃) ₂	Н	C ₂ H ₅	510	CH₂CH₂OCH₃	Н	C ₂ H ₅
CH ₂ CH(CH ₃) ₂	Н	C ₃ H ₇	511	CH₂CH₂OCH₃	Н	C ₃ H ₇
CH ₂ CH(CH ₃) ₂	Н	CHF ₂	512	CH₂CH₂OCH₃	Н	CHF ₂
CH ₂ CH(CH ₃) ₂	Н	CF ₃	513	CH₂CH₂OCH₃	Н	CF₃
CH ₂ CH(CH ₃) ₂	Н	F	514	CH₂CH₂OCH₃	Н	F
CH ₂ CH(CH ₃) ₂	Н	CI	515	CH₂CH₂OCH₃	Н	CI
CH ₂ CH(CH ₃) ₂	Н	Br	516	CH₂CH₂OCH₃	Н	Br
CH ₂ CH(CH ₃) ₂	Н	-	517	CH₂CH₂OCH₃	Н	I
CH ₂ CH(CH ₃) ₂	Н	cC₃H₅	518	CH₂CH₂OCH₃	Н	cC₃H₅
CH ₂ CH(CH ₃) ₂	Н	CN	519	CH₂CH₂OCH₃	Н	CN
CH ₂ CH(CH ₃) ₂	Н	CH ₂ CN	520	CH₂CH₂OCH₃	Н	CH₂CN
CH ₂ CH(CH ₃) ₂	F	Н	521	CH₂CH₂OCH₃	F	Н
CH ₂ CH(CH ₃) ₂	F	CH ₃	522	CH₂CH₂OCH₃	F	CH₃
CH ₂ CH(CH ₃) ₂	F	C ₂ H ₅	523	CH ₂ CH ₂ OCH ₃	F	C ₂ H ₅
CH ₂ CH(CH ₃) ₂	F	C ₃ H ₇	524	CH ₂ CH ₂ OCH ₃	F	C ₃ H ₇
CH ₂ CH(CH ₃) ₂	F	CHF ₂	525	CH ₂ CH ₂ OCH ₃	F	CHF ₂
CH ₂ CH(CH ₃) ₂	F	CF ₃	526	CH ₂ CH ₂ OCH ₃	F	CF ₃
CH ₂ CH(CH ₃) ₂	F	F	527	CH₂CH₂OCH₃	F	F
CH ₂ CH(CH ₃) ₂	F	CI	528	CH ₂ CH ₂ OCH ₃	F	CI
CH ₂ CH(CH ₃) ₂	F	Br	529	CH₂CH₂OCH₃	F	Br
CH ₂ CH(CH ₃) ₂	F	I	530	CH₂CH₂OCH₃	F	I
CH ₂ CH(CH ₃) ₂	F	cC ₃ H ₅	531	CH₂CH₂OCH₃	F	cC ₃ H ₅
CH ₂ CH(CH ₃) ₂	F	CN	532	CH₂CH₂OCH₃	F	CN
CH ₂ CH(CH ₃) ₂	F	CH₂CN	533	CH₂CH₂OCH₃	F	CH₂CN
CH ₂ CH(CH ₃) ₂	CI	Н	534	CH₂CH₂OCH₃	CI	Н
CH ₂ CH(CH ₃) ₂	CI	CH₃	535	CH₂CH₂OCH₃	CI	CH₃
CH ₂ CH(CH ₃) ₂	CI		536	CH ₂ CH ₂ OCH ₃	CI	C ₂ H ₅
CH ₂ CH(CH ₃) ₂	CI		537	CH ₂ CH ₂ OCH ₃	CI	C ₃ H ₇
CH ₂ CH(CH ₃) ₂	CI	CHF ₂	538	CH₂CH₂OCH₃	CI	CHF ₂
	CH ₂ CH(CH ₃) ₂	CH₂CI CI CH₂CH(CH₃)₂ H CH₂CH(CH₃)₂ F CH₂CH(CH₃)₂ C CH₂CH(CH₃)₂ C <t< td=""><td>R^N R^{A™} R^{A™} CH₂CI CI CF₃ CH₂CI CI F CH₂CI CI CI CH₂CI CI Br CH₂CI CI CC₃H₅ CH₂CI CI CN CH₂CI CI CN CH₂CI CI CH₂CN CH₂CH(CH₃)₂ H H CH₂CH(CH₃)₂ H CH₃ CH₂CH(CH₃)₂ H CH₃ CH₂CH(CH₃)₂ H CH₂ CH₂CH(CH₃)₂ H CH₂ CH₂CH(CH₃)₂ H CH CH₂CH(CH₃)₂ H CI CH₂CH(CH₃)₂ H CH CH₂CH(CH₃)₂ H CH₂CN CH₂CH(CH₃)₂ H CH₂CN CH₂CH(CH₃)₂ F CH₃ CH₂CH(CH₃)₂ F CH₃ CH₂CH(CH₃)₂ F CH₅ CH₂CH(CH</td><td>CH₂CI CI CF₃ 500 CH₂CI CI F 501 CH₂CI CI CI 502 CH₂CI CI Br 503 CH₂CI CI I 504 CH₂CI CI CC₃H₅ 505 CH₂CI CI CN 506 CH₂CI CI CH₂CN 507 CH₂CH(CH₃)₂ H H 508 CH₂CH(CH₃)₂ H CH₃ 509 CH₂CH(CH₃)₂ H CH₃ 510 CH₂CH(CH₃)₂ H CH₂ 512</td><td>R^N R^N R^N N° R^N CH₂CI CI CF₃ 500 CH₂CH(CH₃)₂ CH₂CI CI F 501 CH₂CH(CH₃)₂ CH₂CI CI CI 502 CH₂CH(CH₃)₂ CH₂CI CI Br 503 CH₂CH(CH₃)₂ CH₂CI CI CC₃H₅ 505 CH₂CH(CH₃)₂ CH₂CI CI CN 506 CH₂CH(CH₃)₂ CH₂CI CI CN 506 CH₂CH(CH₃)₂ CH₂CH(CH₃)₂ H H 508 CH₂CH(CH₃)₂ CH₂CH(CH₃)₂ H CH₃ 509 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H CH₃ 509 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H CH₃ 510 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H CH₃ 511 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H CH₃ 512 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H F 514 CH₂CH₂COH₃ CH₂CH(CH₃)</td><td>R^N R^A** R^A** N° R^N R^A** CH₂CI CI CF₃ 500 CH₂CH(CH₃)₂ CI CH₂CI CI F 501 CH₂CH(CH₃)₂ CI CH₂CI CI Br 503 CH₂CH(CH₃)₂ CI CH₂CI CI I 504 CH₂CH(CH₃)₂ CI CH₂CI CI CN 506 CH₂CH(CH₃)₂ CI CH₂CH(CH₃)₂ H H 508 CH₂CH(CH₃)₂ CI CH₂CH(CH₃)₂ H CH₃ 509 CH₂CH₂COCH₃ H CH₂CH(CH₃)₂ H CH₃ 510 CH₂CH₂COCH₃ H CH₂CH(CH₃)₂ H CH₂ <td< td=""></td<></td></t<>	R ^N R ^{A™} R ^{A™} CH ₂ CI CI CF ₃ CH ₂ CI CI F CH ₂ CI CI CI CH ₂ CI CI Br CH ₂ CI CI CC ₃ H ₅ CH ₂ CI CI CN CH ₂ CI CI CN CH ₂ CI CI CH ₂ CN CH ₂ CH(CH ₃) ₂ H H CH ₂ CH(CH ₃) ₂ H CH ₃ CH ₂ CH(CH ₃) ₂ H CH ₃ CH ₂ CH(CH ₃) ₂ H CH ₂ CH ₂ CH(CH ₃) ₂ H CH ₂ CH ₂ CH(CH ₃) ₂ H CH CH ₂ CH(CH ₃) ₂ H CI CH ₂ CH(CH ₃) ₂ H CH CH ₂ CH(CH ₃) ₂ H CH ₂ CN CH ₂ CH(CH ₃) ₂ H CH ₂ CN CH ₂ CH(CH ₃) ₂ F CH ₃ CH ₂ CH(CH ₃) ₂ F CH ₃ CH ₂ CH(CH ₃) ₂ F CH ₅ CH ₂ CH(CH	CH₂CI CI CF₃ 500 CH₂CI CI F 501 CH₂CI CI CI 502 CH₂CI CI Br 503 CH₂CI CI I 504 CH₂CI CI CC₃H₅ 505 CH₂CI CI CN 506 CH₂CI CI CH₂CN 507 CH₂CH(CH₃)₂ H H 508 CH₂CH(CH₃)₂ H CH₃ 509 CH₂CH(CH₃)₂ H CH₃ 510 CH₂CH(CH₃)₂ H CH₂ 512	R ^N R ^N R ^N N° R ^N CH₂CI CI CF ₃ 500 CH₂CH(CH₃)₂ CH₂CI CI F 501 CH₂CH(CH₃)₂ CH₂CI CI CI 502 CH₂CH(CH₃)₂ CH₂CI CI Br 503 CH₂CH(CH₃)₂ CH₂CI CI CC₃H₅ 505 CH₂CH(CH₃)₂ CH₂CI CI CN 506 CH₂CH(CH₃)₂ CH₂CI CI CN 506 CH₂CH(CH₃)₂ CH₂CH(CH₃)₂ H H 508 CH₂CH(CH₃)₂ CH₂CH(CH₃)₂ H CH₃ 509 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H CH₃ 509 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H CH₃ 510 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H CH₃ 511 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H CH₃ 512 CH₂CH₂COH₃ CH₂CH(CH₃)₂ H F 514 CH₂CH₂COH₃ CH₂CH(CH₃)	R ^N R ^A ** R ^A ** N° R ^N R ^A ** CH ₂ CI CI CF ₃ 500 CH ₂ CH(CH ₃) ₂ CI CH ₂ CI CI F 501 CH ₂ CH(CH ₃) ₂ CI CH ₂ CI CI Br 503 CH ₂ CH(CH ₃) ₂ CI CH ₂ CI CI I 504 CH ₂ CH(CH ₃) ₂ CI CH ₂ CI CI CN 506 CH ₂ CH(CH ₃) ₂ CI CH ₂ CI CI CN 506 CH ₂ CH(CH ₃) ₂ CI CH ₂ CI CI CN 506 CH ₂ CH(CH ₃) ₂ CI CH ₂ CI CI CN 506 CH ₂ CH(CH ₃) ₂ CI CH ₂ CH(CH ₃) ₂ H H 508 CH ₂ CH(CH ₃) ₂ CI CH ₂ CH(CH ₃) ₂ H CH ₃ 509 CH ₂ CH ₂ COCH ₃ H CH ₂ CH(CH ₃) ₂ H CH ₃ 510 CH ₂ CH ₂ COCH ₃ H CH ₂ CH(CH ₃) ₂ H CH ₂ <td< td=""></td<>

Nº	R^{N}	R ^A "	R ^A '	nuación) Nº	R^{N}	R ^A "	R ^A '
539	CH₂CH₂OCH₃	CI	CF₃	578	CH ₂ CH ₂ CN	CI	CF₃
540	CH ₂ CH ₂ OCH ₃	Cl	F	579	CH ₂ CH ₂ CN	CI	F
541	CH₂CH₂OCH₃	CI	Cl	580	CH ₂ CH ₂ CN	CI	Cl
542	CH ₂ CH ₂ OCH ₃	CI	Br	581	CH ₂ CH ₂ CN		Br
543	CH ₂ CH ₂ OCH ₃	CI	-0.11	582	CH ₂ CH ₂ CN	CI	-0.11
544	CH ₂ CH ₂ OCH ₃	CI	cC₃H₅	583	CH ₂ CH ₂ CN	CI	cC₃H₅
545	CH ₂ CH ₂ OCH ₃	CI	CN	584	CH ₂ CH ₂ CN	CI	CN
546	CH₂CH₂OCH₃	CI	CH₂CN	585	CH ₂ CH ₂ CN	CI	CH₂CN
547	CH ₂ CH ₂ CN	Н	Н	586	CH₂CH(CH₃)CN	Н	Н
548	CH ₂ CH ₂ CN	Н	CH₃	587	CH₂CH(CH₃)CN	Н	CH₃
549	CH ₂ CH ₂ CN	Н	C₂H₅	588	CH₂CH(CH₃)CN	Н	C₂H₅
550	CH₂CH₂CN	Н	C ₃ H ₇	589	CH₂CH(CH₃)CN	Н	C ₃ H ₇
551	CH ₂ CH ₂ CN	Н	CHF ₂	590	CH₂CH(CH₃)CN	Н	CHF ₂
552	CH ₂ CH ₂ CN	Н	CF₃	591	CH₂CH(CH₃)CN	Н	CF ₃
553	CH ₂ CH ₂ CN	Н	F	592	CH₂CH(CH₃)CN	Н	F
554	CH ₂ CH ₂ CN	Н	Cl	593	CH₂CH(CH₃)CN	Н	CI
555	CH ₂ CH ₂ CN	Н	Br	594	CH₂CH(CH₃)CN	Н	Br
556	CH ₂ CH ₂ CN	Н	I	595	CH ₂ CH(CH ₃)CN	Н	1
557	CH ₂ CH ₂ CN	Н	cC₃H₅	596	CH ₂ CH(CH ₃)CN	Н	cC₃H₅
558	CH ₂ CH ₂ CN	Н	CN	597	CH₂CH(CH₃)CN	Н	CN
559	CH ₂ CH ₂ CN	Н	CH₂CN	598	CH₂CH(CH₃)CN	Н	CH₂CN
560	CH ₂ CH ₂ CN	F	Н	599	CH ₂ CH(CH ₃)CN	F	Н
561	CH ₂ CH ₂ CN	F	CH ₃	600	CH ₂ CH(CH ₃)CN	F	CH ₃
562	CH ₂ CH ₂ CN	F	C ₂ H ₅	601	CH₂CH(CH₃)CN	F	C ₂ H ₅
563	CH ₂ CH ₂ CN	F	C ₃ H ₇	602	CH₂CH(CH₃)CN	F	C ₃ H ₇
564	CH ₂ CH ₂ CN	F	CHF ₂	603	CH₂CH(CH₃)CN	F	CHF ₂
565	CH ₂ CH ₂ CN	F	CF ₃	604	CH₂CH(CH₃)CN	F	CF ₃
566	CH ₂ CH ₂ CN	F	F	605	CH₂CH(CH₃)CN	F	F
567	CH ₂ CH ₂ CN	F	Cl	606	CH₂CH(CH₃)CN	F	CI
568	CH ₂ CH ₂ CN	F	Br	607	CH₂CH(CH₃)CN	F	Br
569	CH ₂ CH ₂ CN	F	I	608	CH₂CH(CH₃)CN	F	I
570	CH ₂ CH ₂ CN	F	cC₃H₅	609	CH₂CH(CH₃)CN	F	cC₃H₅
571	CH ₂ CH ₂ CN	F	CN	610	CH₂CH(CH₃)CN	F	CN
572	CH ₂ CH ₂ CN	F	CH₂CN	611	CH₂CH(CH₃)CN	F	CH ₂ CN
573	CH ₂ CH ₂ CN	CI	Н	612	CH₂CH(CH₃)CN	CI	Н
574	CH ₂ CH ₂ CN	CI	CH ₃	613	CH₂CH(CH₃)CN	CI	CH ₃
575	CH ₂ CH ₂ CN	CI	C ₂ H ₅	614	CH₂CH(CH₃)CN	CI	C ₂ H ₅
576	CH ₂ CH ₂ CN	CI	C ₃ H ₇	615	CH₂CH(CH₃)CN	CI	C ₃ H ₇
577	CH ₂ CH ₂ CN	CI	CHF ₂	616	CH₂CH(CH₃)CN	CI	CHF ₂
1							

N°	R ^N	R ^A "	R ^A '	N°	R ^N	R ^A "	R ^A '
617	CH₂CH(CH₃)CN	CI	CF ₃	656	CH(CH ₃)CH ₂ CN	CI	CF ₃
618	CH₂CH(CH₃)CN	CI	F	657	CH(CH ₃)CH ₂ CN	CI	F
619	CH₂CH(CH₃)CN	CI	CI	658	CH(CH ₃)CH ₂ CN	CI	CI
620	CH₂CH(CH₃)CN	CI	Br	659	CH(CH ₃)CH ₂ CN	CI	Br
621	CH₂CH(CH₃)CN	CI	I	660	CH(CH ₃)CH ₂ CN	CI	I
622	CH₂CH(CH₃)CN	CI	cC₃H₅	661	CH(CH ₃)CH ₂ CN	CI	cC₃H₅
623	CH₂CH(CH₃)CN	CI	CN	662	CH(CH ₃)CH ₂ CN	CI	CN
624	CH₂CH(CH₃)CN	CI	CH₂CN	663	CH(CH ₃)CH ₂ CN	CI	CH ₂ CN
625	CH(CH ₃)CH ₂ CN	Н	Н	664	cC₃H₅	Н	Н
626	CH(CH ₃)CH ₂ CN	Н	CH₃	665	cC₃H₅	Н	CH ₃
627	CH(CH ₃)CH ₂ CN	Н	C ₂ H ₅	666	cC₃H₅	Н	C ₂ H ₅
628	CH(CH ₃)CH ₂ CN	Н	C ₃ H ₇	667	cC₃H₅	Н	C ₃ H ₇
629	CH(CH₃)CH₂CN	Н	CHF ₂	668	cC₃H₅	Н	CHF ₂
630	CH(CH₃)CH₂CN	Н	CF ₃	669	cC₃H₅	Н	CF ₃
631	CH(CH₃)CH₂CN	Н	F	670	cC₃H₅	Н	F
632	CH(CH₃)CH₂CN	Н	Cl	671	cC₃H₅	Н	CI
633	CH(CH₃)CH₂CN	Н	Br	672	cC₃H₅	Н	Br
634	CH(CH₃)CH₂CN	Н	I	673	cC₃H₅	Н	1
635	CH(CH₃)CH₂CN	Н	cC₃H₅	674	cC₃H₅	Н	cC₃H₅
636	CH(CH₃)CH₂CN	Н	CN	675	cC₃H₅	Н	CN
637	CH(CH₃)CH₂CN	Н	CH₂CN	676	cC₃H₅	Н	CH ₂ CN
638	CH(CH₃)CH₂CN	F	Н	677	cC₃H₅	F	Н
639	CH(CH₃)CH₂CN	F	CH₃	678	cC₃H₅	F	CH ₃
640	CH(CH₃)CH₂CN	F	C ₂ H ₅	679	cC₃H₅	F	C ₂ H ₅
641	CH(CH₃)CH₂CN	F	C ₃ H ₇	680	cC₃H₅	F	C ₃ H ₇
642	CH(CH₃)CH₂CN	F	CHF ₂	681	cC₃H₅	F	CHF ₂
643	CH(CH ₃)CH ₂ CN	F	CF ₃	682	cC₃H₅	F	CF ₃
644	CH(CH₃)CH₂CN	F	F	683	cC₃H₅	F	F
645	CH(CH₃)CH₂CN	F	CI	684	cC₃H₅	F	CI
646	CH(CH₃)CH₂CN	F	Br	685	cC₃H₅	F	Br
647	CH(CH₃)CH₂CN	F	I	686	cC₃H₅	F	I
648	CH(CH₃)CH₂CN	F	cC₃H₅	687	cC₃H₅	F	cC₃H₅
649	CH(CH₃)CH₂CN	F	CN	688	cC₃H₅	F	CN
650	CH(CH₃)CH₂CN	F	CH₂CN	689	cC₃H₅	F	CH ₂ CN
651	CH(CH₃)CH₂CN	CI	Н	690	cC₃H₅	CI	Н
652	CH(CH₃)CH₂CN	CI	CH₃	691	cC₃H₅	CI	CH ₃
653	CH(CH₃)CH₂CN	CI	C ₂ H ₅	692	cC₃H₅	CI	C ₂ H ₅
654	CH(CH₃)CH₂CN	CI	C ₃ H ₇	693	cC₃H₅	CI	C ₃ H ₇
655	CH(CH₃)CH₂CN	Cl	CHF ₂	694	cC₃H₅	CI	CHF ₂

N°	R^{N}	R ^A "	R ^A '	nuación) Nº	R ^N	R ^A "	R ^A '
695	cC₃H₅	Cl	CF₃	734	1-F-cC ₃ H ₄	Cl	CF ₃
696	cC₃H₅	CI	F	735	1-F-cC ₃ H ₄	CI	F
697	cC₃H₅	CI	Cl	736	1-F-cC ₃ H ₄	CI	Cl
698	cC₃H₅	CI	Br	737	1-F-cC ₃ H ₄		Br
699	cC₃H₅	CI	-0.11	738	1-F-cC ₃ H ₄	CI	-0.11
700	cC₃H₅	CI	cC₃H₅	739	1-F-cC ₃ H ₄	CI	cC₃H₅
701	cC₃H₅	CI	CN	740	1-F-cC ₃ H ₄	CI	CN
702	cC₃H₅	CI	CH₂CN	741	1-F-cC ₃ H ₄	CI	CH₂CN
703	1-F-cC ₃ H ₄	Н	Н	742	1-Cl-cC ₃ H ₄	Н	Н
704	1-F-cC₃H₄	Н	CH₃	743	1-Cl-cC₃H₄	Н	CH ₃
705	1-F-cC₃H₄	Н	C₂H₅	744	1-CI-cC ₃ H ₄	Н	C ₂ H ₅
706	1-F-cC₃H₄	Н	C ₃ H ₇	745	1-CI-cC ₃ H ₄	Н	C ₃ H ₇
707	1-F-cC₃H₄	Н	CHF ₂	746	1-CI-cC ₃ H ₄	Н	CHF ₂
708	1-F-cC ₃ H ₄	Н	CF₃	747	1-Cl-cC₃H₄	Н	CF ₃
709	1-F-cC ₃ H ₄	Н	F	748	1-Cl-cC₃H₄	Н	F
710	1-F-cC₃H₄	Н	CI	749	1-CI-cC ₃ H ₄	Н	CI
711	1-F-cC₃H₄	Н	Br	750	1-CI-cC ₃ H ₄	Н	Br
712	1-F-cC₃H₄	Н	1	751	1-CI-cC ₃ H ₄	Н	1
713	1-F-cC₃H₄	Н	cC₃H₅	752	1-Cl-cC₃H₄	Н	cC₃H₅
714	1-F-cC₃H₄	Н	CN	753	1-CI-cC ₃ H ₄	Н	CN
715	1-F-cC₃H₄	Н	CH₂CN	754	1-CI-cC ₃ H ₄	Н	CH ₂ CN
716	1-F-cC₃H₄	F	Н	755	1-CI-cC ₃ H ₄	F	Н
717	1-F-cC₃H₄	F	CH₃	756	1-CI-cC ₃ H ₄	F	CH ₃
718	1-F-cC ₃ H ₄	F	C ₂ H ₅	757	1-CI-cC ₃ H ₄	F	C ₂ H ₅
719	1-F-cC ₃ H ₄	F	C ₃ H ₇	758	1-Cl-cC₃H₄	F	C ₃ H ₇
720	1-F-cC₃H₄	F	CHF ₂	759	1-Cl-cC ₃ H ₄	F	CHF ₂
721	1-F-cC₃H₄	F	CF ₃	760	1-Cl-cC ₃ H ₄	F	CF ₃
722	1-F-cC ₃ H ₄	F	F	761	1-Cl-cC₃H₄	F	F
723	1-F-cC₃H₄	F	CI	762	1-Cl-cC ₃ H ₄	F	CI
724	1-F-cC₃H₄	F	Br	763	1-CI-cC ₃ H ₄	F	Br
725	1-F-cC₃H₄	F	I	764	1-CI-cC ₃ H ₄	F	I
726	1-F-cC₃H₄	F	cC ₃ H ₅	765	1-CI-cC ₃ H ₄	F	cC₃H₅
727	1-F-cC₃H₄	F	CN	766	1-CI-cC ₃ H ₄	F	CN
728	1-F-cC₃H₄	F	CH₂CN	767	1-CI-cC ₃ H ₄	F	CH ₂ CN
729	1-F-cC₃H₄	CI	Н	768	1-CI-cC ₃ H ₄	CI	Н
730	1-F-cC₃H₄	CI	CH ₃	769	1-CI-cC ₃ H ₄	CI	CH ₃
731	1-F-cC₃H₄	CI	C ₂ H ₅	770	1-CI-cC ₃ H ₄	CI	C ₂ H ₅
732	1-F-cC₃H₄	CI	C ₃ H ₇	771	1-CI-cC ₃ H ₄	CI	C ₃ H ₇
733	1-F-cC₃H₄	CI	CHF ₂	772	1-Cl-cC ₃ H ₄	CI	CHF ₂
733	1-F-cC ₃ H ₄	CI	CHF ₂	772	1-Cl-cC ₃ H ₄	CI	CHF ₂

7773	N°	R ^N	R ^A "	(conti	nuación) Nº	R ^N	R ^A "	R ^A '
774 1-Cl-Cc3H₄ Cl F 813 CH₂cC3H₅ Cl F 775 1-Cl-cC3H₄ Cl Cl 814 CH₂cC₃H₅ Cl Cl 776 1-Cl-cC₃H₄ Cl Br 815 CH₂cC₃H₅ Cl Cl 777 1-Cl-cC₃H₄ Cl I 816 CH₂cC₃H₅ Cl I 778 1-Cl-cC₃H₄ Cl CN 818 CH₂cC₃H₅ Cl Cc 779 1-Cl-Cc₃H₄ Cl CN 818 CH₂cC₃H₅ Cl Cc 780 1-Cl-Cc₃H₄ Cl CN 818 CH₂cC₃H₅ Cl Ch₂c 781 CH₂cC₃H₆ H H 820 CH₂(1-F-cC₃H₆ Cl CH₂c 781 CH₂cC₃H₆ H CH₃ 821 CH₂(1-F-cC₃H₆ H CH₂ 782 CH₂cC₃H₆ H CH₃ 822 CH₂(1-F-cC₃H₆ H C 783 CH₂cC₃H₆ H					l			
7775 1-Cl-Cc3H4 Cl Cl 814 CH₂C3H5 Cl C 776 1-Cl-Cc3H4 Cl Br 815 CH₂cC3H5 Cl B 777 1-Cl-Cc3H4 Cl I 816 CH₂cC3H5 Cl I 778 1-Cl-Cc3H4 Cl CN 818 CH₂cC3H5 Cl CC 779 1-Cl-Cc3H4 Cl CN 818 CH₂cC3H5 Cl CC 780 1-Cl-Cc3H4 Cl CH₂CN 819 CH₂cC3H5 Cl CH₂ 781 CH₂cC3H5 H H 820 CH₂(1-F-cC3H4) H F 782 CH₂CC3H5 H CH₃ 821 CH₂(1-F-cC3H4) H CH₂ 783 CH₂cC3H5 H CyH5 822 CH₂(1-F-cC3H4) H CH₂ 784 CH₂cC3H5 H CyH5 823 CH₂(1-F-cC3H4) H CH₂ 785 CH₂cC3H5 H							1	
776 1-Cl-cC ₃ H ₄ Cl Br 815 CH ₂ CC ₃ H ₅ Cl B 777 1-Cl-cC ₃ H ₄ Cl I 816 CH ₂ CC ₃ H ₅ Cl I 778 1-Cl-cC ₃ H ₄ Cl CC ₆ H ₅ 817 CH ₂ CC ₃ H ₅ Cl CC 779 1-Cl-cC ₃ H ₄ Cl CN 818 CH ₂ CC ₃ H ₅ Cl CH 780 1-Cl-cC ₃ H ₄ Cl CH ₂ CN 819 CH ₂ cC ₃ H ₅ Cl CH ₂ 781 CH ₂ CC ₃ H ₅ H H 820 CH ₂ (1-F-cC ₃ H ₄) H CH ₂ 782 CH ₂ CC ₃ H ₅ H CH ₃ 821 CH ₂ (1-F-cC ₃ H ₄) H CH 783 CH ₂ CC ₃ H ₅ H CH ₃ 822 CH ₂ (1-F-cC ₃ H ₄) H CH 784 CH ₂ CC ₃ H ₅ H CH ₂ 824 CH ₂ (1-F-cC ₃ H ₄) H CH CH 825 CH ₂ (1-F-cC ₃ H ₄) H CH R32 CH ₂ (1-F-cC ₃ H ₄							-	
7777 1-Cl-cC ₃ H ₄ Cl I 816 CH ₂ CC ₃ H ₅ Cl I 778 1-Cl-cC ₃ H ₄ Cl cC ₃ H ₅ 817 CH ₂ CC ₃ H ₅ Cl cC ₃ 779 1-Cl-cC ₃ H ₄ Cl CN 818 CH ₂ CC ₃ H ₅ Cl Cl 780 1-Cl-cC ₃ H ₄ Cl CH ₂ CN 819 CH ₂ CC ₃ H ₅ Cl CH ₂ 781 CH ₂ CC ₃ H ₅ H H 820 CH ₂ (1-F-cC ₃ H ₄) H CH ₂ 782 CH ₂ CC ₃ H ₅ H CH ₃ 821 CH ₂ (1-F-cC ₃ H ₄) H CH 783 CH ₂ CC ₃ H ₅ H CJH ₅ 822 CH ₂ (1-F-cC ₃ H ₄) H C ₂ 784 CH ₂ CC ₃ H ₅ H CHF ₂ 824 CH ₂ (1-F-cC ₃ H ₄) H CH C ₃ R23 CH ₂ (1-F-cC ₃ H ₄) H CH C ₃ R25 CH ₂ (1-F-cC ₃ H ₄) H CH C ₃ R25 CH ₂ (1-F-cC ₃ H ₄) H CH			-		ł l			
778 1-Cl-cC ₃ H ₄ Cl cC ₃ H ₅ 817 CH ₂ cC ₃ H ₅ Cl cC ₃ 779 1-Cl-cC ₃ H ₄ Cl CN 818 CH ₂ cC ₃ H ₅ Cl Cl 780 1-Cl-cC ₃ H ₄ Cl CH ₂ CN 819 CH ₂ cC ₃ H ₅ Cl CH ₂ 781 CH ₂ cC ₃ H ₅ H H 820 CH ₂ (1-F-cC ₃ H ₄) H F 782 CH ₂ cC ₃ H ₅ H CH ₃ 821 CH ₂ (1-F-cC ₃ H ₄) H CH 783 CH ₂ cC ₃ H ₅ H C ₃ H ₇ 822 CH ₂ (1-F-cC ₃ H ₄) H C ₃ 784 CH ₂ cC ₃ H ₅ H CH ₂ 824 CH ₂ (1-F-cC ₃ H ₄) H CH 785 CH ₂ cC ₃ H ₅ H CF ₃ 825 CH ₂ (1-F-cC ₃ H ₄) H CH 787 CH ₂ cC ₃ H ₅ H F 826 CH ₂ (1-F-cC ₃ H ₄) H F 788 CH ₂ cC ₃ H ₅ H CI 827 CH ₂ (1-F			-				-	
779 1-Cl-cC₃H₄ Cl CN 818 CH₂cC₃H₅ Cl Cl 780 1-Cl-cC₃H₄ Cl CH₂CN 819 CH₂cC₃H₅ Cl CH₂ 781 CH₂cC₃H₅ H H 820 CH₂(1-F-cC₃H₄) H H 782 CH₂cC₃H₅ H CH₃ 821 CH₂(1-F-cC₃H₄) H CH₂ 783 CH₂cC₃H₅ H CH₃ 822 CH₂(1-F-cC₃H₄) H CH₂ 784 CH₂cC₃H₅ H CH₂² 823 CH₂(1-F-cC₃H₄) H CH₂ 785 CH₂cC₃H₅ H CH₂² 824 CH₂(1-F-cC₃H₄) H CH₂ 786 CH₂cC₃H₅ H F 826 CH₂(1-F-cC₃H₄) H CH₂ 787 CH₂cC₃H₅ H F 826 CH₂(1-F-cC₃H₄) H F 788 CH₂cC₃H₅ H B 828 CH₂(1-F-cC₃H₄) H C 789 CH₂cC₃H₅	 		_				+	
T-R0							1	cC₃H₅
781 CH ₂ CC ₃ H ₅ H H B20 CH ₂ (1-F-cC ₃ H ₄) H H 782 CH ₂ CC ₃ H ₅ H CH ₃ 821 CH ₂ (1-F-cC ₃ H ₄) H CH 783 CH ₂ CC ₃ H ₅ H C ₃ H ₅ 822 CH ₂ (1-F-cC ₃ H ₄) H C ₂ 784 CH ₂ CC ₃ H ₅ H CHF2 824 CH ₂ (1-F-cC ₃ H ₄) H C ₃ 785 CH ₂ CC ₃ H ₅ H CHF2 824 CH ₂ (1-F-cC ₃ H ₄) H CH 786 CH ₂ CC ₃ H ₅ H CF3 825 CH ₂ (1-F-cC ₃ H ₄) H CH 787 CH ₂ CC ₃ H ₅ H CI 827 CH ₂ (1-F-cC ₃ H ₄) H CH 788 CH ₂ CC ₃ H ₅ H CI 827 CH ₂ (1-F-cC ₃ H ₄) H CH 789 CH ₂ CC ₃ H ₅ H I 829 CH ₂ (1-F-cC ₃ H ₄) H CH 790 CH ₂ CC ₃ H ₅ H CC ₃ H ₅ 830 CH ₂ (CN
782 CH ₂ CC ₃ H ₆ H CH ₃ 821 CH ₂ (1,F-CC ₃ H ₄) H CH 783 CH ₂ CC ₃ H ₆ H C ₂ H ₅ 822 CH ₂ (1,F-CC ₃ H ₄) H C ₂ H ₅ 784 CH ₂ CC ₃ H ₆ H C ₃ H ₇ 823 CH ₂ (1,F-CC ₃ H ₄) H C ₃ H ₇ 785 CH ₂ CC ₃ H ₆ H CH ₂ 824 CH ₂ (1,F-CC ₃ H ₄) H CH 786 CH ₂ CC ₃ H ₅ H CF ₃ 825 CH ₂ (1,F-CC ₃ H ₄) H CH 787 CH ₂ CC ₃ H ₅ H CI 827 CH ₂ (1,F-CC ₃ H ₄) H CH 788 CH ₂ CC ₃ H ₅ H CI 827 CH ₂ (1,F-CC ₃ H ₄) H CH 789 CH ₂ CC ₃ H ₅ H CI 827 CH ₂ (1,F-CC ₃ H ₄) H CH 790 CH ₂ CC ₃ H ₅ H CI 828 CH ₂ (1,F-CC ₃ H ₄) H C 791 CH ₂ CC ₃ H ₅ H CN 831								CH₂CN
783 CH ₂ CC ₃ H ₆ H C ₂ H ₅ 822 CH ₂ (1-F-CC ₃ H ₄) H C ₂ H ₅ 784 CH ₂ CC ₃ H ₆ H C ₃ H ₇ 823 CH ₂ (1-F-CC ₃ H ₄) H C ₃ H ₇ 785 CH ₂ CC ₃ H ₆ H CH ₂ 824 CH ₂ (1-F-CC ₃ H ₄) H CH 786 CH ₂ CC ₃ H ₆ H CF ₃ 825 CH ₂ (1-F-CC ₃ H ₄) H CH 787 CH ₂ CC ₃ H ₆ H F 826 CH ₂ (1-F-CC ₃ H ₄) H CH 789 CH ₂ CC ₃ H ₅ H CI 827 CH ₂ (1-F-CC ₃ H ₄) H C 789 CH ₂ CC ₃ H ₅ H I 828 CH ₂ (1-F-CC ₃ H ₄) H C 790 CH ₂ CC ₃ H ₅ H C 830 CH ₂ (1-F-CC ₃ H ₄) H C 791 CH ₂ CC ₃ H ₅ H C C ₃ H ₅ 830 CH ₂ (1-F-CC ₃ H ₄) H C 792 CH ₂ CC ₃ H ₅ H CN 8								Н
784 CH ₂ CC ₃ H ₅ H C ₃ H ₇ 823 CH ₂ (1-F-cC ₃ H ₄) H C ₃ 785 CH ₂ CC ₃ H ₅ H CHF ₂ 824 CH ₂ (1-F-cC ₃ H ₄) H CH 786 CH ₂ CC ₃ H ₅ H CF ₃ 825 CH ₂ (1-F-cC ₃ H ₄) H CH 787 CH ₂ CC ₃ H ₅ H F 826 CH ₂ (1-F-cC ₃ H ₄) H F 788 CH ₂ CC ₃ H ₅ H CI 827 CH ₂ (1-F-cC ₃ H ₄) H C 789 CH ₂ CC ₃ H ₅ H B 828 CH ₂ (1-F-cC ₃ H ₄) H B 790 CH ₂ CC ₃ H ₅ H I 829 CH ₂ (1-F-cC ₃ H ₄) H C 791 CH ₂ CC ₃ H ₅ H CN 831 CH ₂ (1-F-cC ₃ H ₄) H C 792 CH ₂ CC ₃ H ₅ H CN 831 CH ₂ (1-F-cC ₃ H ₄) H CH ₂ 793 CH ₂ CC ₃ H ₅ F H 833 CH ₂ (1-F-cC ₃ H ₄)					ł	-	1	CH₃
785 CH ₂ CC ₃ H ₅ H CHF ₂ 824 CH ₂ (1-F-cC ₃ H ₄) H CH 786 CH ₂ CC ₃ H ₅ H CF ₃ 825 CH ₂ (1-F-cC ₃ H ₄) H CH 787 CH ₂ CC ₃ H ₅ H F 826 CH ₂ (1-F-cC ₃ H ₄) H F 788 CH ₂ CC ₃ H ₅ H CI 827 CH ₂ (1-F-cC ₃ H ₄) H CI 789 CH ₂ CC ₃ H ₅ H B 828 CH ₂ (1-F-cC ₃ H ₄) H B 790 CH ₂ CC ₃ H ₅ H I 829 CH ₂ (1-F-cC ₃ H ₄) H CG 791 CH ₂ CC ₃ H ₅ H CN 830 CH ₂ (1-F-cC ₃ H ₄) H CG 792 CH ₂ CC ₃ H ₅ H CN 831 CH ₂ (1-F-cC ₃ H ₄) H CH ₂ CC ₃ H ₅ 793 CH ₂ CC ₃ H ₅ F H 833 CH ₂ (1-F-cC ₃ H ₄) F F 794 CH ₂ CC ₃ H ₅ F CH ₃ 834 CH ₂ (1-F-cC ₃						,	1	C ₂ H ₅
786 CH ₂ cC ₃ H ₅ H CF ₃ 825 CH ₂ (1-F-cC ₃ H ₄) H CF 787 CH ₂ cC ₃ H ₅ H F 826 CH ₂ (1-F-cC ₃ H ₄) H F 788 CH ₂ cC ₃ H ₅ H CI 827 CH ₂ (1-F-cC ₃ H ₄) H C 789 CH ₂ cC ₃ H ₅ H Br 828 CH ₂ (1-F-cC ₃ H ₄) H B 790 CH ₂ cC ₃ H ₅ H I 829 CH ₂ (1-F-cC ₃ H ₄) H B 791 CH ₂ cC ₃ H ₅ H CC ₃ H ₅ 830 CH ₂ (1-F-cC ₃ H ₄) H CC ₃ 792 CH ₂ cC ₃ H ₅ H CN 831 CH ₂ (1-F-cC ₃ H ₄) H CH ₂ 793 CH ₂ cC ₃ H ₅ F H 832 CH ₂ (1-F-cC ₃ H ₄) H CH ₂ 794 CH ₂ cC ₃ H ₅ F CH ₃ 834 CH ₂ (1-F-cC ₃ H ₄) F C 795 CH ₂ cC ₃ H ₅ F CH ₃ 835 CH ₂ (1-F-cC	 	CH₂cC₃H₅	Н	C ₃ H ₇	823	-	+	C₃H ₇
787 CH2cC3H5 H F 826 CH2(1-F-cC3H4) H F 788 CH2cC3H5 H CI 827 CH2(1-F-cC3H4) H C 789 CH2cC3H5 H Br 828 CH2(1-F-cC3H4) H B 790 CH2cC3H5 H I 829 CH2(1-F-cC3H4) H I 791 CH2cC3H5 H CC3H5 830 CH2(1-F-cC3H4) H CC3 792 CH2cC3H5 H CN 831 CH2(1-F-cC3H4) H CC3 793 CH2cC3H5 H CN 832 CH2(1-F-cC3H4) H CH2 794 CH2cC3H5 F H 833 CH2(1-F-cC3H4) F F 795 CH2cC3H5 F CH3 834 CH2(1-F-cC3H4) F C2 797 CH2cC3H5 F C2H5 835 CH2(1-F-cC3H4) F C3 798 CH2cC3H5 F <td>785</td> <td></td> <td>Н</td> <td></td> <td></td> <td>,</td> <td>Н</td> <td>CHF₂</td>	785		Н			,	Н	CHF ₂
788 CH2cC3H5 H CI 827 CH2(1-F-cC3H4) H C 789 CH2cC3H5 H Br 828 CH2(1-F-cC3H4) H B 790 CH2cC3H5 H I 829 CH2(1-F-cC3H4) H I 791 CH2cC3H5 H CC3H5 830 CH2(1-F-cC3H4) H CC3 792 CH2cC3H5 H CN 831 CH2(1-F-cC3H4) H CC3 793 CH2cC3H5 H CH2CN 832 CH2(1-F-cC3H4) H CH2 794 CH2cC3H5 F CH3 834 CH2(1-F-cC3H4) F F 795 CH2cC3H5 F CH3 834 CH2(1-F-cC3H4) F CH2 796 CH2cC3H5 F C3H5 835 CH2(1-F-cC3H4) F C3 798 CH2cC3H5 F CHF2 837 CH2(1-F-cC3H4) F CH 800 CH2cC3H5	786	CH ₂ cC ₃ H ₅	Н	CF ₃	825	CH ₂ (1-F-cC ₃ H ₄)	Н	CF ₃
789 CH2CC3H5 H Br 828 CH2(1-F-CC3H4) H B 790 CH2CC3H5 H I 829 CH2(1-F-CC3H4) H I 791 CH2CC3H5 H CC3H5 B30 CH2(1-F-CC3H4) H CC3 792 CH2CC3H5 H CN 831 CH2(1-F-CC3H4) H CH2 793 CH2CC3H5 H CH2CN 832 CH2(1-F-CC3H4) H CH2 794 CH2CC3H5 F H 833 CH2(1-F-CC3H4) F CH2 795 CH2CC3H5 F CH3 834 CH2(1-F-CC3H4) F CH2 796 CH2CC3H5 F CH3 835 CH2(1-F-CC3H4) F C2 797 CH2cC3H5 F CHF2 837 CH2(1-F-CC3H4) F CH3 800 CH2cC3H5 F CF3 838 CH2(1-F-CC3H4) F CH3 801 CH2cC3H5	787	CH ₂ cC ₃ H ₅	Н	F	826	CH ₂ (1-F-cC ₃ H ₄)	Н	F
790 CH2CC3H5 H I 829 CH2(1-F-cC3H4) H I 791 CH2cC3H5 H CC3H5 830 CH2(1-F-cC3H4) H CC3 792 CH2cC3H5 H CN 831 CH2(1-F-cC3H4) H CI 793 CH2cC3H5 H CH2CN 832 CH2(1-F-cC3H4) H CH2 794 CH2cC3H5 F H 833 CH2(1-F-cC3H4) F CH2 795 CH2cC3H5 F CH3 834 CH2(1-F-cC3H4) F CH2 796 CH2cC3H5 F C3H7 836 CH2(1-F-cC3H4) F C2 797 CH2cC3H5 F CH2 837 CH2(1-F-cC3H4) F C3 798 CH2cC3H5 F CF3 838 CH2(1-F-cC3H4) F CH 800 CH2cC3H5 F F B 839 CH2(1-F-cC3H4) F CH 801 CH	788	CH ₂ cC ₃ H ₅	Н	CI	827	CH ₂ (1-F-cC ₃ H ₄)	Н	CI
791 CH2cC3H5 H cC3H5 830 CH2(1-F-cC3H4) H cC3 792 CH2cC3H5 H CN 831 CH2(1-F-cC3H4) H CI 793 CH2cC3H5 H CH2CN 832 CH2(1-F-cC3H4) H CH2 794 CH2cC3H5 F H 833 CH2(1-F-cC3H4) F CH2 795 CH2cC3H5 F CH3 834 CH2(1-F-cC3H4) F CH2 796 CH2cC3H5 F C2H5 835 CH2(1-F-cC3H4) F CP 797 CH2cC3H5 F C3H7 836 CH2(1-F-cC3H4) F C3 798 CH2cC3H5 F CHF2 837 CH2(1-F-cC3H4) F CH 800 CH2cC3H5 F CF3 838 CH2(1-F-cC3H4) F CF 801 CH2cC3H5 F CI 840 CH2(1-F-cC3H4) F CF 802 CH2cC3H5	789	CH ₂ cC ₃ H ₅	Н	Br	828	CH ₂ (1-F-cC ₃ H ₄)	Н	Br
792 CH2cC3H5 H CN 831 CH2(1-F-cC3H4) H CI 793 CH2cC3H5 H CH2CN 832 CH2(1-F-cC3H4) H CH2 794 CH2cC3H5 F H 833 CH2(1-F-cC3H4) F H 795 CH2cC3H5 F CH3 834 CH2(1-F-cC3H4) F CH2 796 CH2cC3H5 F C2H5 835 CH2(1-F-cC3H4) F C2l 797 CH2cC3H5 F C3H7 836 CH2(1-F-cC3H4) F C3 798 CH2cC3H5 F CH2 837 CH2(1-F-cC3H4) F CH3 800 CH2cC3H5 F CF3 838 CH2(1-F-cC3H4) F CF 801 CH2cC3H5 F F G 840 CH2(1-F-cC3H4) F CF 802 CH2cC3H5 F B 841 CH2(1-F-cC3H4) F B 803 CH2c	790	CH ₂ cC ₃ H ₅	Н	I	829	CH ₂ (1-F-cC ₃ H ₄)	Н	I
793 CH ₂ cC ₃ H ₅ H CH ₂ CN 832 CH ₂ (1-F-cC ₃ H ₄) H CH ₂ 794 CH ₂ cC ₃ H ₅ F H 833 CH ₂ (1-F-cC ₃ H ₄) F H 795 CH ₂ cC ₃ H ₅ F CH ₃ 834 CH ₂ (1-F-cC ₃ H ₄) F CH 796 CH ₂ cC ₃ H ₅ F C ₂ H ₅ 835 CH ₂ (1-F-cC ₃ H ₄) F C ₂ I 797 CH ₂ cC ₃ H ₅ F C ₃ H ₇ 836 CH ₂ (1-F-cC ₃ H ₄) F C ₃ I 798 CH ₂ cC ₃ H ₅ F CHF ₂ 837 CH ₂ (1-F-cC ₃ H ₄) F CH 800 CH ₂ cC ₃ H ₅ F CF ₃ 838 CH ₂ (1-F-cC ₃ H ₄) F CF 801 CH ₂ cC ₃ H ₅ F CI 840 CH ₂ (1-F-cC ₃ H ₄) F CF 802 CH ₂ cC ₃ H ₅ F B 841 CH ₂ (1-F-cC ₃ H ₄) F B 803 CH ₂ cC ₃ H ₅ F CG ₃ H ₅ 843	791	CH₂cC₃H₅	Н	cC₃H₅	830	CH ₂ (1-F-cC ₃ H ₄)	Н	cC₃H₅
794 CH2cC3H5 F H 833 CH2(1-F-cC3H4) F H 795 CH2cC3H5 F CH3 834 CH2(1-F-cC3H4) F CH 796 CH2cC3H5 F C2H5 835 CH2(1-F-cC3H4) F C2 797 CH2cC3H5 F C3H7 836 CH2(1-F-cC3H4) F C3 798 CH2cC3H5 F CHF2 837 CH2(1-F-cC3H4) F CH 799 CH2cC3H5 F CF3 838 CH2(1-F-cC3H4) F CH 800 CH2cC3H5 F F B39 CH2(1-F-cC3H4) F F 801 CH2cC3H5 F CI 840 CH2(1-F-cC3H4) F CI 802 CH2cC3H5 F B 841 CH2(1-F-cC3H4) F B 803 CH2cC3H5 F I 842 CH2(1-F-cC3H4) F I 804 CH2cC3H5 F	792	CH₂cC₃H₅	Н	CN	831	CH ₂ (1-F-cC ₃ H ₄)	Н	CN
795 CH ₂ cC ₃ H ₅ F CH ₃ 834 CH ₂ (1-F-cC ₃ H ₄) F CH 796 CH ₂ cC ₃ H ₅ F C ₂ H ₅ 835 CH ₂ (1-F-cC ₃ H ₄) F C ₂ I 797 CH ₂ cC ₃ H ₅ F C ₃ H ₇ 836 CH ₂ (1-F-cC ₃ H ₄) F C ₃ I 798 CH ₂ cC ₃ H ₅ F CHF ₂ 837 CH ₂ (1-F-cC ₃ H ₄) F CH 799 CH ₂ cC ₃ H ₅ F CF ₃ 838 CH ₂ (1-F-cC ₃ H ₄) F CH 800 CH ₂ cC ₃ H ₅ F CI 840 CH ₂ (1-F-cC ₃ H ₄) F F 801 CH ₂ cC ₃ H ₅ F CI 840 CH ₂ (1-F-cC ₃ H ₄) F C 802 CH ₂ cC ₃ H ₅ F B 841 CH ₂ (1-F-cC ₃ H ₄) F B 803 CH ₂ cC ₃ H ₅ F CG ₃ H ₅ B 842 CH ₂ (1-F-cC ₃ H ₄) F D 804 CH ₂ cC ₃ H ₅ F CN C	793	CH ₂ cC ₃ H ₅	Н	CH ₂ CN	832	CH ₂ (1-F-cC ₃ H ₄)	Н	CH₂CN
796 CH ₂ cC ₃ H ₅ F C ₂ H ₅ 835 CH ₂ (1-F-cC ₃ H ₄) F C ₂ I 797 CH ₂ cC ₃ H ₅ F C ₃ H ₇ 836 CH ₂ (1-F-cC ₃ H ₄) F C ₃ I 798 CH ₂ cC ₃ H ₅ F CHF ₂ 837 CH ₂ (1-F-cC ₃ H ₄) F CH 799 CH ₂ cC ₃ H ₅ F CF ₃ 838 CH ₂ (1-F-cC ₃ H ₄) F CH 800 CH ₂ cC ₃ H ₅ F F 839 CH ₂ (1-F-cC ₃ H ₄) F F 801 CH ₂ cC ₃ H ₅ F CI 840 CH ₂ (1-F-cC ₃ H ₄) F CI 802 CH ₂ cC ₃ H ₅ F B 841 CH ₂ (1-F-cC ₃ H ₄) F B 803 CH ₂ cC ₃ H ₅ F I 842 CH ₂ (1-F-cC ₃ H ₄) F B 804 CH ₂ cC ₃ H ₅ F CN 843 CH ₂ (1-F-cC ₃ H ₄) F CC ₃ 805 CH ₂ cC ₃ H ₅ F CN 844 CH ₂ (1	794	CH ₂ cC ₃ H ₅	F	Н	833	CH ₂ (1-F-cC ₃ H ₄)	F	Н
797 CH2cC3H5 F C3H7 836 CH2(1-F-cC3H4) F C3 798 CH2cC3H5 F CHF2 837 CH2(1-F-cC3H4) F CH 799 CH2cC3H5 F CF3 838 CH2(1-F-cC3H4) F CH 800 CH2cC3H5 F F 839 CH2(1-F-cC3H4) F F 801 CH2cC3H5 F CI 840 CH2(1-F-cC3H4) F C 802 CH2cC3H5 F Br 841 CH2(1-F-cC3H4) F B 803 CH2cC3H5 F I 842 CH2(1-F-cC3H4) F I 804 CH2cC3H5 F CN 843 CH2(1-F-cC3H4) F CC3 805 CH2cC3H5 F CN 844 CH2(1-F-cC3H4) F CH 806 CH2cC3H5 F CH2CN 845 CH2(1-F-cC3H4) F CH2 807 CH2cC3H5 CI	795	CH ₂ cC ₃ H ₅	F	CH₃	834	CH ₂ (1-F-cC ₃ H ₄)	F	CH₃
798 CH2cC3H5 F CHF2 837 CH2(1-F-cC3H4) F CH 799 CH2cC3H5 F CF3 838 CH2(1-F-cC3H4) F CF 800 CH2cC3H5 F F 839 CH2(1-F-cC3H4) F F 801 CH2cC3H5 F CI 840 CH2(1-F-cC3H4) F C 802 CH2cC3H5 F Br 841 CH2(1-F-cC3H4) F B 803 CH2cC3H5 F I 842 CH2(1-F-cC3H4) F I 804 CH2cC3H5 F CC3H5 843 CH2(1-F-cC3H4) F CC3 805 CH2cC3H5 F CN 844 CH2(1-F-cC3H4) F CH2 806 CH2cC3H5 F CH2CN 845 CH2(1-F-cC3H4) F CH2 807 CH2cC3H5 CI H 846 CH2(1-F-cC3H4) CI F 808 CH2cC3H5	796	CH ₂ cC ₃ H ₅	F	C ₂ H ₅	835	CH ₂ (1-F-cC ₃ H ₄)	F	C ₂ H ₅
799 CH2CC3H5 F CF3 838 CH2(1-F-cC3H4) F CF 800 CH2CC3H5 F F B39 CH2(1-F-cC3H4) F F 801 CH2cC3H5 F CI 840 CH2(1-F-cC3H4) F C 802 CH2cC3H5 F Br 841 CH2(1-F-cC3H4) F B 803 CH2cC3H5 F I 842 CH2(1-F-cC3H4) F I 804 CH2cC3H5 F CC3H5 843 CH2(1-F-cC3H4) F CC3 805 CH2cC3H5 F CN 844 CH2(1-F-cC3H4) F CI 806 CH2cC3H5 F CH2CN 845 CH2(1-F-cC3H4) F CH2 807 CH2cC3H5 CI H 846 CH2(1-F-cC3H4) CI H 808 CH2cC3H5 CI CH3 847 CH2(1-F-cC3H4) CI CH	797	CH ₂ cC ₃ H ₅	F	C ₃ H ₇	836	CH ₂ (1-F-cC ₃ H ₄)	F	C ₃ H ₇
800 CH2cC3H5 F CH2(1-F-cC3H4) F F B	798	CH ₂ cC ₃ H ₅	F	CHF ₂	837	CH ₂ (1-F-cC ₃ H ₄)	F	CHF ₂
801 CH ₂ cC ₃ H ₅ F CI 840 CH ₂ (1-F-cC ₃ H ₄) F C 802 CH ₂ cC ₃ H ₅ F Br 841 CH ₂ (1-F-cC ₃ H ₄) F B 803 CH ₂ cC ₃ H ₅ F I 842 CH ₂ (1-F-cC ₃ H ₄) F I 804 CH ₂ cC ₃ H ₅ F cC ₃ H ₅ 843 CH ₂ (1-F-cC ₃ H ₄) F cC ₃ 805 CH ₂ cC ₃ H ₅ F CN 844 CH ₂ (1-F-cC ₃ H ₄) F CI 806 CH ₂ cC ₃ H ₅ F CH ₂ CN 845 CH ₂ (1-F-cC ₃ H ₄) F CH ₂ 807 CH ₂ cC ₃ H ₅ CI H 846 CH ₂ (1-F-cC ₃ H ₄) CI H 808 CH ₂ cC ₃ H ₅ CI CH ₃ 847 CH ₂ (1-F-cC ₃ H ₄) CI CH	799	CH ₂ cC ₃ H ₅	F	CF ₃	838	CH ₂ (1-F-cC ₃ H ₄)	F	CF ₃
802 CH ₂ cC ₃ H ₅ F Br 841 CH ₂ (1-F-cC ₃ H ₄) F B 803 CH ₂ cC ₃ H ₅ F I 842 CH ₂ (1-F-cC ₃ H ₄) F I 804 CH ₂ cC ₃ H ₅ F cC ₃ H ₅ 843 CH ₂ (1-F-cC ₃ H ₄) F cC ₃ 805 CH ₂ cC ₃ H ₅ F CN 844 CH ₂ (1-F-cC ₃ H ₄) F CI 806 CH ₂ cC ₃ H ₅ F CH ₂ CN 845 CH ₂ (1-F-cC ₃ H ₄) F CH ₂ 807 CH ₂ cC ₃ H ₅ CI H 846 CH ₂ (1-F-cC ₃ H ₄) CI H 808 CH ₂ cC ₃ H ₅ CI CH ₃ 847 CH ₂ (1-F-cC ₃ H ₄) CI CH	800	CH ₂ cC ₃ H ₅	F	F	839	CH ₂ (1-F-cC ₃ H ₄)	F	F
803 CH ₂ cC ₃ H ₅ F I 842 CH ₂ (1-F-cC ₃ H ₄) F I 804 CH ₂ cC ₃ H ₅ F cC ₃ H ₅ 843 CH ₂ (1-F-cC ₃ H ₄) F cC ₃ 805 CH ₂ cC ₃ H ₅ F CN 844 CH ₂ (1-F-cC ₃ H ₄) F CI 806 CH ₂ cC ₃ H ₅ F CH ₂ CN 845 CH ₂ (1-F-cC ₃ H ₄) F CH ₂ 807 CH ₂ cC ₃ H ₅ CI H 846 CH ₂ (1-F-cC ₃ H ₄) CI H 808 CH ₂ cC ₃ H ₅ CI CH ₃ 847 CH ₂ (1-F-cC ₃ H ₄) CI CH	801	CH ₂ cC ₃ H ₅	F	Cl	840	CH ₂ (1-F-cC ₃ H ₄)	F	CI
804 CH ₂ cC ₃ H ₅ F cC ₃ H ₅ 843 CH ₂ (1-F-cC ₃ H ₄) F cC ₃ 805 CH ₂ cC ₃ H ₅ F CN 844 CH ₂ (1-F-cC ₃ H ₄) F CI 806 CH ₂ cC ₃ H ₅ F CH ₂ CN 845 CH ₂ (1-F-cC ₃ H ₄) F CH ₂ 807 CH ₂ cC ₃ H ₅ CI H 846 CH ₂ (1-F-cC ₃ H ₄) CI H 808 CH ₂ cC ₃ H ₅ CI CH ₃ 847 CH ₂ (1-F-cC ₃ H ₄) CI CH	802	CH ₂ cC ₃ H ₅	F	Br	841	CH ₂ (1-F-cC ₃ H ₄)	F	Br
805 CH ₂ cC ₃ H ₅ F CN 844 CH ₂ (1-F-cC ₃ H ₄) F CI 806 CH ₂ cC ₃ H ₅ F CH ₂ CN 845 CH ₂ (1-F-cC ₃ H ₄) F CH ₂ 807 CH ₂ cC ₃ H ₅ CI H 846 CH ₂ (1-F-cC ₃ H ₄) CI H 808 CH ₂ cC ₃ H ₅ CI CH ₃ 847 CH ₂ (1-F-cC ₃ H ₄) CI CH	803	CH ₂ cC ₃ H ₅	F	I	842	CH ₂ (1-F-cC ₃ H ₄)	F	I
806 CH ₂ cC ₃ H ₅ F CH ₂ CN 845 CH ₂ (1-F-cC ₃ H ₄) F CH ₂ 807 CH ₂ cC ₃ H ₅ CI H 846 CH ₂ (1-F-cC ₃ H ₄) CI H 808 CH ₂ cC ₃ H ₅ CI CH ₃ 847 CH ₂ (1-F-cC ₃ H ₄) CI CH	804	CH ₂ cC ₃ H ₅	F	cC₃H₅	843	CH ₂ (1-F-cC ₃ H ₄)	F	cC₃H₅
807 CH ₂ cC ₃ H ₅ CI H 846 CH ₂ (1-F-cC ₃ H ₄) CI H 808 CH ₂ cC ₃ H ₅ CI CH ₃ 847 CH ₂ (1-F-cC ₃ H ₄) CI CH	805	CH₂cC₃H₅	F	CN	844	CH ₂ (1-F-cC ₃ H ₄)	F	CN
808 CH ₂ cC ₃ H ₅ CI CH ₃ 847 CH ₂ (1-F-cC ₃ H ₄) CI CH	806	CH₂cC₃H₅	F	CH₂CN	845	CH ₂ (1-F-cC ₃ H ₄)	F	CH₂CN
	807	CH₂cC₃H₅	CI	Н	846	CH ₂ (1-F-cC ₃ H ₄)	CI	Н
	808	CH₂cC₃H₅	CI	CH ₃	847	CH ₂ (1-F-cC ₃ H ₄)	CI	CH ₃
$oxed{809}$ $oxed{CH_2cC_3H_5}$ $oxed{CI}$ $oxed{C_2H_5}$ $oxed{848}$ $oxed{CH_2(1-F-cC_3H_4)}$ $oxed{CI}$ $oxed{C_2I}$	809	CH ₂ cC ₃ H ₅	CI	C ₂ H ₅	848	CH ₂ (1-F-cC ₃ H ₄)	CI	C ₂ H ₅
	810		CI		849	CH ₂ (1-F-cC ₃ H ₄)	CI	C ₃ H ₇
	811		CI		850		CI	CHF ₂

N°	R^{N}	R ^A "	R ^A '	N°	R^{N}	R ^A "	R ^A '
851	CH ₂ (1-F-cC ₃ H ₄)	CI	CF ₃	890	CH ₂ (1-Cl-cC ₃ H ₄)	CI	CF ₃
852	CH ₂ (1-F-cC ₃ H ₄)	CI	F	891	CH ₂ (1-Cl-cC ₃ H ₄)	CI	F
853	CH ₂ (1-F-cC ₃ H ₄)	CI	Cl	892	CH ₂ (1-Cl-cC ₃ H ₄)	CI	Cl
854	CH ₂ (1-F-cC ₃ H ₄)	CI	Br	893	CH ₂ (1-Cl-cC ₃ H ₄)	CI	Br
855	CH ₂ (1-F-cC ₃ H ₄)	CI	I	894	CH ₂ (1-Cl-cC ₃ H ₄)	CI	I
856	CH ₂ (1-F-cC ₃ H ₄)	CI	cC₃H₅	895	CH ₂ (1-Cl-cC ₃ H ₄)	CI	cC₃H₅
857	CH ₂ (1-F-cC ₃ H ₄)	CI	CN	896	CH ₂ (1-Cl-cC ₃ H ₄)	CI	CN
858	CH ₂ (1-F-cC ₃ H ₄)	CI	CH ₂ CN	897	CH ₂ (1-Cl-cC ₃ H ₄)	CI	CH₂CN
859	CH ₂ (1-Cl-cC ₃ H ₄)	Н	Н	898	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	Н
860	CH ₂ (1-Cl-cC ₃ H ₄)	Н	CH ₃	899	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	CH ₃
861	CH ₂ (1-Cl-cC ₃ H ₄)	Н	C ₂ H ₅	900	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	C ₂ H ₅
862	CH ₂ (1-Cl-cC ₃ H ₄)	Н	C₃H ₇	901	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	C ₃ H ₇
863	CH ₂ (1-Cl-cC ₃ H ₄)	Н	CHF ₂	902	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	CHF ₂
864	CH ₂ (1-Cl-cC ₃ H ₄)	Н	CF ₃	903	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	CF ₃
865	CH ₂ (1-Cl-cC ₃ H ₄)	Н	F	904	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	F
866	CH ₂ (1-Cl-cC ₃ H ₄)	Н	Cl	905	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	CI
867	CH ₂ (1-Cl-cC ₃ H ₄)	Н	Br	906	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	Br
868	CH ₂ (1-Cl-cC ₃ H ₄)	Н	I	907	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	I
869	CH ₂ (1-Cl-cC ₃ H ₄)	Н	cC₃H₅	908	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	cC₃H₅
870	CH ₂ (1-Cl-cC ₃ H ₄)	Н	CN	909	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	CN
871	CH ₂ (1-Cl-cC ₃ H ₄)	Н	CH ₂ CN	910	CH ₂ (1-CF ₃ -cC ₃ H ₄)	Н	CH₂CN
872	CH ₂ (1-Cl-cC ₃ H ₄)	F	Н	911	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	Н
873	CH ₂ (1-Cl-cC ₃ H ₄)	F	CH ₃	912	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	CH ₃
874	CH ₂ (1-Cl-cC ₃ H ₄)	F	C ₂ H ₅	913	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	C ₂ H ₅
875	CH ₂ (1-Cl-cC ₃ H ₄)	F	C ₃ H ₇	914	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	C ₃ H ₇
876	CH ₂ (1-Cl-cC ₃ H ₄)	F	CHF ₂	915	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	CHF ₂
877	CH ₂ (1-Cl-cC ₃ H ₄)	F	CF ₃	916	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	CF ₃
878	CH ₂ (1-Cl-cC ₃ H ₄)	F	F	917	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	F
879	CH ₂ (1-Cl-cC ₃ H ₄)	F	Cl	918	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	CI
880	$CH_2(1-Cl-cC_3H_4)$	F	Br	919	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	Br
881	CH ₂ (1-Cl-cC ₃ H ₄)	F	_	920	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	I
882	CH ₂ (1-Cl-cC ₃ H ₄)	F	cC₃H₅	921	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	cC₃H₅
883	CH ₂ (1-Cl-cC ₃ H ₄)	F	CN	922	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	CN
884	CH ₂ (1-Cl-cC ₃ H ₄)	F	CH₂CN	923	CH ₂ (1-CF ₃ -cC ₃ H ₄)	F	CH ₂ CN
885	CH ₂ (1-Cl-cC ₃ H ₄)	CI	Н	924	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	Н
886	$CH_2(1-Cl-cC_3H_4)$	CI	CH₃	925	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	CH ₃
887	CH ₂ (1-Cl-cC ₃ H ₄)	CI	C ₂ H ₅	926	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	C ₂ H ₅
888	CH ₂ (1-Cl-cC ₃ H ₄)	CI	C ₃ H ₇	927	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	C ₃ H ₇
889	CH ₂ (1-Cl-cC ₃ H ₄)	CI	CHF ₂	928	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	CHF ₂

N°	R ^N	R ^A "	R ^A '	nuación) Nº	R ^N	R ^A "	R ^A '
929	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	CF ₃	968	CH ₂ (1-CN-cC ₃ H ₄)	CI	CF ₃
930	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	F	969	CH ₂ (1-CN-cC ₃ H ₄)	CI	F
931	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	CI	970	CH ₂ (1-CN-cC ₃ H ₄)	CI	CI
932	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	Br	971	CH ₂ (1-CN-cC ₃ H ₄)	CI	Br
933	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	I	972	CH ₂ (1-CN-cC ₃ H ₄)	CI	I
934	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	cC₃H₅	973	CH ₂ (1-CN-cC ₃ H ₄)	CI	cC₃H₅
935	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	CN	974	CH ₂ (1-CN-cC ₃ H ₄)	CI	CN
936	CH ₂ (1-CF ₃ -cC ₃ H ₄)	CI	CH ₂ CN	975	CH ₂ (1-CN-cC ₃ H ₄)	CI	CH₂CN
937	CH ₂ (1-CN-cC ₃ H ₄)	Н	Н	976	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	Н
938	CH ₂ (1-CN-cC ₃ H ₄)	Н	CH₃	977	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	CH ₃
939	CH ₂ (1-CN-cC ₃ H ₄)	Н	C ₂ H ₅	978	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	C ₂ H ₅
940	CH ₂ (1-CN-cC ₃ H ₄)	Н	C ₃ H ₇	979	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	C ₃ H ₇
941	CH ₂ (1-CN-cC ₃ H ₄)	Н	CHF ₂	980	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	CHF ₂
942	CH ₂ (1-CN-cC ₃ H ₄)	Н	CF ₃	981	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	CF ₃
943	CH ₂ (1-CN-cC ₃ H ₄)	Н	F	982	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	F
944	CH ₂ (1-CN-cC ₃ H ₄)	Н	Cl	983	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	CI
945	CH ₂ (1-CN-cC ₃ H ₄)	Н	Br	984	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	Br
946	CH ₂ (1-CN-cC ₃ H ₄)	Н	I	985	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	I
947	CH ₂ (1-CN-cC ₃ H ₄)	Н	cC₃H₅	986	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	cC₃H₅
948	CH ₂ (1-CN-cC ₃ H ₄)	Н	CN	987	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	CN
949	CH ₂ (1-CN-cC ₃ H ₄)	Н	CH ₂ CN	988	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	Н	CH ₂ CN
950	CH ₂ (1-CN-cC ₃ H ₄)	F	Н	989	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	Н
951	CH ₂ (1-CN-cC ₃ H ₄)	F	CH ₃	990	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	CH ₃
952	CH ₂ (1-CN-cC ₃ H ₄)	F	C ₂ H ₅	991	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	C ₂ H ₅
953	CH ₂ (1-CN-cC ₃ H ₄)	F	C ₃ H ₇	992	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	C ₃ H ₇
954	CH ₂ (1-CN-cC ₃ H ₄)	F	CHF ₂	993	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	CHF ₂
955	CH ₂ (1-CN-cC ₃ H ₄)	F	CF ₃	994	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	CF ₃
956	CH ₂ (1-CN-cC ₃ H ₄)	F	F	995	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	F
957	CH ₂ (1-CN-cC ₃ H ₄)	F	Cl	996	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	CI
958	CH ₂ (1-CN-cC ₃ H ₄)	F	Br	997	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	Br
959	CH ₂ (1-CN-cC ₃ H ₄)	F	I	998	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	I
960	CH ₂ (1-CN-cC ₃ H ₄)	F	cC₃H₅	999	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	cC₃H₅
961	CH ₂ (1-CN-cC ₃ H ₄)	F	CN	1000	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	CN
962	CH ₂ (1-CN-cC ₃ H ₄)	F	CH ₂ CN	1001	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	F	CH₂CN
963	CH ₂ (1-CN-cC ₃ H ₄)	CI	Н	1002	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	Н
964	CH ₂ (1-CN-cC ₃ H ₄)	CI	CH ₃	1003	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	CH ₃
965	CH ₂ (1-CN-cC ₃ H ₄)	CI	C ₂ H ₅	1004	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	C ₂ H ₅
966	CH ₂ (1-CN-cC ₃ H ₄)	CI	C ₃ H ₇	1005	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	C ₃ H ₇
967	CH ₂ (1-CN-cC ₃ H ₄)	CI	CHF ₂	1006	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	CHF ₂

N°	R ^N	R ^A "	R ^A '
1007	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	CF ₃
1008	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	F
1009	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	Cl
1010	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	Br
1011	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	I

N°	R ^N	R ^A "	R ^A '
1012	$CH_2(2,2-Cl_2-cC_3H_3)$	CI	cC₃H₅
1013	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	CN
1014	CH ₂ (2,2-Cl ₂ -cC ₃ H ₃)	CI	CH₂CN

 C_3H_7 = n-propilo cC_3H_5 = ciclopropilo

Las realizaciones muy preferentes de la presente invención se refieren a los compuestos de fórmula I, en particular de fórmula I1, en las que A es uno de los radicales A2 preferentes enumerados en la tabla A.

5 Cada línea individual de la tabla A constituye un radical preferente A2 de acuerdo con la presente invención.

Dentro del grupo de los radicales A2 enumerados en la tabla A, un subgrupo muy preferente se refiere a los radicales A2 en los que $R^{A''}$ en la tabla A es H.

Los radicales A2 preferentes también son los radicales del tipo A2.N1bx

en los que # representa el punto de unión del resto del compuesto de fórmula I, R^N es tal como se define en el presente documento, R^{A'} es hidrógeno o tiene uno de los significados dados para R^A, y en los que R^{A''} es hidrógeno o tiene uno de los significados para R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A.

Los ejemplos de radicales A2.N1bx son los radicales de los tipos A2.N1bx numerados de A2.N1b1 a A2.N1b1014 en los que # representa el punto de unión del resto del compuesto de fórmula I, R^N, R^{A'} y R^{A''} se representan mediante cada línea de la Tabla A anterior.

Los radicales A2 preferentes también son los radicales del tipo A2.N1cx

25

30

en los que # representa el punto de unión del resto del compuesto de fórmula I, R^N es tal como se define en el presente documento, R^{A'} es hidrógeno o tiene uno de los significados dados para R^A, y en los que R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A.

Ejemplos de radicales A2.N1cx son los radicales de los tipos A2.N1cx enumerados de A2.N1c1 a A2,N1c1014 en los que # representa el punto de unión del resto del compuesto de fórmula I, R^N, R^{A'} y R^{A''} se representan mediante cada línea de la Tabla A anterior.

También son realizaciones particulares de los radicales A2 los radicales de los tipos A2.Ox y A2.Oax respectivamente, en los que # representa el punto de unión del resto del compuesto de fórmula I, $R^{A'}$ es hidrógeno o tiene uno de los significados dados para R^{A} , y en los que $R^{A''}$ es hidrógeno o tiene uno de los significados dados para R^{A} . En particular $R^{A''}$ es hidrógeno o tiene uno de los significados preferentes de R^{A} . En particular $R^{A''}$ es hidrógeno o tiene uno de los significados preferentes de R^{A} .

Ejemplos de radicales A2.Ox y A2.Oax respectivamente son los radicales A2.O1 a A2.O169 y A2.Oa1 a A2.Oa169 en los que # representa el punto de unión del resto del compuesto de fórmula I, R^{A'} y R^{A''} se representan mediante cada línea de la Tabla R^A que sigue a continuación:

También son realizaciones particulares de los radicales A2 los radicales de los tipos A2.O1bx y A2.O2bx respectivamente, en los que # representa el punto de unión del resto del compuesto de fórmula I, R^{A'} es hidrógeno o tiene uno de los significados dados para R^A, y en los que R^{A''} es hidrógeno o tiene uno de los significados dados para R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A.

Ejemplos de radicales de los tipos A2.O1bx y A2.O2bx respectivamente son los radicales A2.O1b1 a A2.O1b169 y A2.O2b1 a A2.O2b169 en los que # representa el punto de unión del resto del compuesto de fórmula I, R^{A'} y R^{A''} se representan mediante cada línea de la Tabla R^A que sigue a continuación:

También son realizaciones particulares de los radicales A2 los radicales de los tipos A2.O1cx y A2.O2cx respectivamente, en los que # representa el punto de unión del resto del compuesto de fórmula I, R^{A'} es hidrógeno o tiene uno de los significados dados para R^A, y en los que R^{A''} es hidrógeno o tiene uno de los significados dados para R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A.

Ejemplos de radicales de los tipos A2.O1cx y A2.O2cx respectivamente son los radicales A2.O1c1 a A2.O1b169 y A2.O2c1 a A2.O2c169 en los que # representa el punto de unión del resto del compuesto de fórmula I, R^{A'} y R^{A''} se representan mediante cada línea de la Tabla R^A que sigue a continuación.

También son realizaciones particulares de los radicales A2 los radicales de los tipos A2.Sx y A2.Sax respectivamente, en los que # representa el punto de unión del resto del compuesto de fórmula I, R^{A'} es hidrógeno o tiene uno de los significados dados para R^A. En particular R^{A'} es hidrógeno o tiene uno de los significados preferentes de R^A. En particular R^{A''} es hidrógeno o tiene uno de los significados preferentes de R^A.

$$R^{A^{-}}$$
 $R^{A^{-}}$
 $R^{A^{-}}$
 $R^{A^{-}}$
 $R^{A^{-}}$
 $R^{A^{-}}$
 $R^{A^{-}}$
 $R^{A^{-}}$

Ejemplos de radicales de los tipos A2.Sx y A2.Sax respectivamente son los radicales A2.S1 a A2.S169 y A2.Sa1 a A2.Sa169 en los que # representa el punto de unión del resto del compuesto de fórmula I, R^{A'} y R^{A''} se representan mediante cada línea de la Tabla R^A que sigue a continuación.

30

10

20

También son realizaciones particulares de los radicales A2 los radicales de los tipos A2.S1 bx y A2.S2bx respectivamente, en los que # representa el punto de unión del resto del compuesto de fórmula I, $R^{A'}$ es hidrógeno o tiene uno de los significados dados para R^{A} , y en los que $R^{A''}$ es hidrógeno o tiene uno de los significados dados para R^{A} . En particular $R^{A''}$ es hidrógeno o tiene uno de los significados preferentes de R^{A} . En particular $R^{A''}$ es hidrógeno o tiene uno de los significados preferentes de R^{A} .

Ejemplos de radicales de los tipos A2.S1 bx y A2.S2bx respectivamente son los radicales A2.S1 b1 a A2.S1 b169 y A2.S2b1 a A2.S2b169 en los que # representa el punto de unión del resto del compuesto de fórmula I, R^{A'} y R^{A''} se representan mediante cada línea de la Tabla R^A que sigue a continuación.

También son realizaciones particulares de los radicales A2 los radicales de los tipos A2.S1cx y A2.S2cx respectivamente, en los que # representa el punto de unión del resto del compuesto de fórmula I, $R^{A'}$ es hidrógeno o tiene uno de los significados dados para R^{A} , y en los que $R^{A''}$ es hidrógeno o tiene uno de los significados dados para R^{A} . En particular $R^{A''}$ es hidrógeno o tiene uno de los significados preferentes de R^{A} . En particular $R^{A''}$ es hidrógeno o tiene uno de los significados preferentes de R^{A} .

Ejemplos de radicales de los tipos A2.S1cx y A2.S2cx respectivamente enumerados de A2.S1c1 a A2.S1c169 y de A2.S2c1 a A2.S2c169 en los que # representa el punto de unión del resto del compuesto de fórmula I, R^{A'} y R^{A''} se representan mediante cada línea de la Tabla R^A que sigue a continuación:

Tabla R^A

5

10

15

20

Línea	R ^{a·}	R ^a
1	Н	Н
2	CH₃	Н
3	CH ₂ CH ₃	Н

Línea	R ^{a·}	R ^{A*}
4	CH ₂ CH ₂ CH ₃	Н
5	CHF ₂	Н
6	CF ₃	Н

		(Co
Línea	R ^{a·}	R ^{A*}
7	F	Н
8	CI	Н
9	Br	Н
10	1	Н
11	cC₃H₅	Н
12	CN	Н
13	CH₂CN	Н
14	Н	CH ₃
15	CH₃	CH₃
16	CH₂CH₃	CH ₃
17	CH ₂ CH ₂ CH ₃	CH ₃
18	CHF ₂	CH ₃
19	CF ₃	CH ₃
20	F	CH ₃
21	CI	CH ₃
22	Br	CH ₃
23	I	CH ₃
24	cC₃H₅	CH ₃
25	CN	CH ₃
26	CH₂CN	CH₃
27	Н	CH₂CH₃
28	CH ₃	CH₂CH₃
29	CH₂CH₃	CH₂CH₃
30	CH ₂ CH ₂ CH ₃	CH₂CH₃
31	CHF ₂	CH₂CH₃
32	CF ₃	CH₂CH₃
33	F	CH₂CH₃
34	CI	CH₂CH₃
35	Br	CH₂CH₃
36	I	CH₂CH₃
37	cC₃H₅	CH₂CH₃
38	CN	CH₂CH₃
39	CH₂CN	CH₂CH₃
40	Н	CH ₂ CH ₂ CH ₃
41	CH ₃	CH ₂ CH ₂ CH ₃
42	CH₂CH₃	CH ₂ CH ₂ CH ₃
43	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
44	CHF ₂	CH ₂ CH ₂ CH ₃
45	CF ₃	CH ₂ CH ₂ CH ₃

Línea	R ^{A.}	R ^{a-}
46	F	CH ₂ CH ₂ CH ₃
47	CI	CH ₂ CH ₂ CH ₃
48	Br	CH ₂ CH ₂ CH ₃
49	I	CH ₂ CH ₂ CH ₃
50	cC₃H₅	CH ₂ CH ₂ CH ₃
51	CN	CH ₂ CH ₂ CH ₃
52	CH₂CN	CH ₂ CH ₂ CH ₃
53	Н	CHF ₂
54	CH ₃	CHF ₂
55	CH₂CH₃	CHF ₂
56	CH ₂ CH ₂ CH ₃	CHF ₂
57	CHF ₂	CHF ₂
58	CF ₃	CHF ₂
59	F	CHF ₂
60	CI	CHF ₂
61	Br	CHF ₂
62	I	CHF ₂
63	cC₃H₅	CHF ₂
64	CN	CHF ₂
65	CH₂CN	CHF ₂
66	Н	CF ₃
67	CH ₃	CF ₃
68	CH₂CH₃	CF ₃
69	CH ₂ CH ₂ CH ₃	CF ₃
70	CHF ₂	CF ₃
71	CF ₃	CF ₃
72	F	CF ₃
73	Cl	CF ₃
74	Br	CF ₃
75	1	CF ₃
76	cC₃H₅	CF ₃
77	CN	CF ₃
78	CH₂CN	CF ₃
79	Н	F
80	CH ₃	F
81	CH₂CH₃	F
82	CH ₂ CH ₂ CH ₃	F
83	CHF ₂	F
84	CF ₃	F

Línea	R ^{A'}	R ^{A"}
85	F	F
86	CI	F
87	Br	F
88	I	F
89	cC₃H₅	F
90	CN	F
91	CH₂CN	F
92	Н	CI
93	CH₃	CI
94	CH₂CH₃	CI
95	CH ₂ CH ₂ CH ₃	CI
96	CHF ₂	CI
97	CF ₃	CI
98	F	CI
99	CI	CI
100	Br	CI
101	I	CI
102	cC ₃ H ₅	CI
103	CN	CI
104	CH₂CN	CI
105	Н	Br
106	CH ₃	Br
107	CH₂CH₃	Br
108	CH ₂ CH ₂ CH ₃	Br
109	CHF ₂	Br
110	CF ₃	Br
111	F	Br
112	CI	Br
113	Br	Br
114	I	Br
115	cC₃H₅	Br
116	CN	Br
117	CH₂CN	Br
118	Н	I
119	CH ₃	I
120	CH₂CH₃	I
121	CH ₂ CH ₂ CH ₃	I
122	CHF ₂	I
123	CF ₃	I

Línea	R ^{a·}	R ^{a-}
124	F	I
125	CI	I
126	Br	I
127	1	1
128	cC₃H₅	1
129	CN	I
130	CH₂CN	1
131	Н	cC₃H₅
132	CH₃	cC₃H₅
133	CH₂CH₃	cC₃H₅
134	CH₂CH₂CH₃	cC₃H₅
135	CHF ₂	cC ₃ H ₅
136	CF ₃	cC₃H₅
137	F	cC₃H₅
138	CI	cC₃H₅
139	Br	cC₃H₅
140	1	cC₃H₅
141	cC₃H₅	cC₃H₅
142	CN	cC₃H₅
143	CH₂CN	cC₃H₅
144	Н	CN
145	CH₃	CN
146	CH₂CH₃	CN
147	CH ₂ CH ₂ CH ₃	CN
148	CHF ₂	CN
149	CF ₃	CN
150	F	CN
151	CI	CN
152	Br	CN
153	1	CN
154	cC₃H₅	CN
155	CN	CN
156	CH₂CN	CN
157	Н	CH₂CN
158	CH ₃	CH₂CN
159	CH₂CH₃	CH₂CN
160	CH ₂ CH ₂ CH ₃	CH₂CN
161	CHF ₂	CH₂CN
162	CF ₃	CH₂CN

		\ -
Línea	R ^{a·}	R ^{a··}
163	F	CH₂CN
164	CI	CH₂CN
165	Br	CH₂CN
166	I	CH₂CN

511)			
Línea	R ^A	R ^{A"}	
167	cC₃H₅	CH₂CN	
168	CN	CH₂CN	
169	CH₂CN	CH₂CN	

 cC_3H_5 = ciclopropilo

Una realización adicional de la invención se refiere a compuestos de fórmula I, a las sales y N-óxidos de los mismos y a los procedimientos y usos de tales compuestos, en los que A es un radical A1.

- Una realización de la invención se refiere a compuestos de hetaril (tio)carboxamida de fórmula I, a los N-óxidos y tautómeros de los mismos y a las sales de los mismos y a los procedimientos y usos de tales compuestos, en los que A es un radical A1 y los radicales restantes R¹ y X son tal como se han definido anteriormente en el presente documento.
- Dentro de la realización que se refiere a compuestos de fórmula I en la que A es A1, una realización particularmente preferente se refiere a compuestos en los que Z es NR^N. En esta realización, R^N tiene preferentemente uno de los significados preferentes o particularmente preferentes dados anteriormente en conexión con el radical A2.
 - Dentro de la realización que se refiere a compuestos en los que A es A1, una realización adicional se refiere a compuestos en los que Z es O.
- Dentro de la realización que se refiere a compuestos en los que A es A1, una realización adicional se refiere a compuestos en los que Z es S.
 - Una realización adicional se refiere a compuestos de fórmula I, en la que A es A1, en la que X es A1, en la que A es A1, en la que A1 es A1 es
 - Dentro de esta realización preferente, se da preferencia particularmente a los compuestos de fórmula I en la que n es 1.
- Entre los compuestos de fórmula I, en la que A es A1, una realización adicional se refiere a compuestos de fórmula I, en la que X es O, R¹ tiene uno de los significados preferentes tal como se define en el presente documento y en la que n es 2.
 - Entre los compuestos de fórmula I, en la que A es A1, se da preferencia a aquellos compuestos, en la que R^A tiene dos significados tal como se definen en las diferentes realizaciones en las que A es A2.
- Las realizaciones de la presente invención se refieren a compuestos de fórmula I en la que A se selecciona entre los siguientes ejemplos adecuados de radicales A1.
 - Una realización adicional de la invención se refiere a compuestos de fórmula I, a las sales y N-óxidos de los mismos y a los procedimientos y usos de tales compuestos, en la que A es un radical A3.
- Una realización de la invención se refiere a compuestos de hetaril (tio)carboxamida de fórmula I, a sus sales, a sus tautómeros y N-óxidos y a las sales de los mismos y a los procedimientos y usos de tales compuestos, en la que A es un radical A3 y los radicales restantes R¹ y X son tal como se han definido anteriormente en el presente documento.
 - Dentro de la realización que se refiere a compuestos de fórmula I en la que A es A3, una realización particularmente preferente se refiere a compuestos en los que Z es NR^N.
- Dentro de la realización que se refiere a compuestos en los que A es A3, una realización adicional se refiere a compuestos en los que Z es O.
 - Dentro de la realización que se refiere a compuestos en los que A es A3, una realización adicional se refiere a compuestos en los que Z es S.
- Una realización adicional se refiere a compuestos de fórmula I, en la que A es A3, en la que X es O y R¹ tiene en particular uno de los significados preferentes tal como se define en el presente documento.
 - Dentro de esta realización preferente, se da preferencia particularmente a los compuestos de fórmula I en la que n es 1.

Entre los compuestos de fórmula I, en la que A es A3, una realización adicional se refiere a compuestos de fórmula I, en la que X es O, R¹ tiene uno de los significados preferentes tal como se define en el presente documento y en la que n es 2.

Entre los compuestos de fórmula I, en la que A es A3, se da preferencia a aquellos compuestos, en los que R^A tiene dos significados tal como se definen en las diferentes realizaciones en las que A es A2.

Cada grupo de ejemplos adecuados de radicales A3 constituye una realización de la invención.

Por razones de claridad, cuando se establece analogía entre un radical A2 y un radical A3 esto debería significar que el átomo de N en la posición 2 en el radical A2 se intercambia con el sustituyente en la posición 3 en el radical tal como se representa en el siguiente esquema ilustrativo:

5

10

15

20

45

Para una analogía estructural, solo los significados en las posiciones 2 y 3 se intercambian en el contexto de los radicales A2 y A3

De forma análoga a los radicales que se han mencionado anteriormente de fórmulas A2.a a A2.z y A2.aa a A2.tt, los ejemplos de radicales A3 adecuados son los radicales de fórmulas A3.a, A3.b, A3.c, A3.d, A3.e, A3.f, A3.g, A3.h, A3.i, A3.k, A3.l, A3.m, A3.n, A3.o, A3.p, A3.q, A3.r, A3.s, A3.t, A3.u, A3.v, A3.w, A3.x, A3.y, A3.z, A3.aa, A3.bb, A3.cc, A3.dd, A3.ee, A3.ff, A3.gg, A3.hh, A3.ii, A3.kk, A3.mm, A3.nn, A3.oo, A3.pp, A3.qq, A3.rr, A3.ss, A3.tt, A3.uu y A3.vv, cuyas estructuras son análogas a las estructuras de los radicales anteriores de fórmulas A2.a a A2.z y A2.aa a A2.vv y en las que Z es NR^N con R^N siendo preferentemente tal como se ha mencionado anteriormente en el presente documento en la realización que se refiere a R^N.

De forma análoga a los radicales que se han mencionado anteriormente de fórmulas A2O.a a A2O.z y A2O.aa a A2O.tt, los radicales A3 adecuados adicionales son los radicales de fórmulas A3O.a, A3O.b, A3O.c, A3O.d, A3O.e, A3O.f, A3O.g, A3O.h, A3O.i, A3O.k, A3O.n, A3O.n, A3O.o, A3O.p, A3O.q, A3O.r, A3O.s, A3O.t, A3O.u, A3O.v, A3O.w, A3O.x, A3O.y, A3O.z, A3O.aa, A3O.bb, A3O.cc, A3O.dd, A3O.ee, A3O.ff, A3O.gg, A3O.hh, A3O.ii, A3O.kk, A3O.mm, A3O.nn, A3O.oo, A3O.pp, A3O.qq, A3O.rr, A3O.ss, A3O.tt, A3O.uu y A3O.vv cuyas estructuras son análogas a las estructuras de los radicales anteriores de fórmulas A2O.a a A2O.z y A2O.aa a A2O.vv y en las que Z es O.

De forma análoga a los radicales que se han mencionado anteriormente de fórmulas A2S.a a A2S.z y A2S.aa a A2S.tt, los radicales A3 adecuados adicionales son los radicales de fórmulas A3S.a, A3S.b, A3S.c, A3S.d, A3S.e, A3S.f, A3S.g, A3S.h, A3S.i, A3S.k, A3S.l, A3S.m, A3S.o, A3S.p, A3S.p, A3S.r, A3S.s, A3S.t, A3S.u, A3S.v, A3S.w, A3S.x, A3S.y, A3S.z, A3S.aa, A3.bb, A3O.cc, A3S.dd, A3S.ee, A3S.ff, A3S.gg, A3S.hh, A3S.ii, A3S.kk, A3S.mm, A3S.oo, A3S.pp, A3S.qq, A3S.rr, A3S.ss, A3S.tt, A3S.uu y A3S.vv cuyas estructuras son análogas a las estructuras de los radicales anteriores de fórmulas A2S.a a A2S.z y A2S.aa a A2S.vv y en las que Z es S.

Se da preferencia en particular a los radicales de fórmulas A3.a, A3.b, A3.c, A3.d, A3.e, A3.f, A3.n, A3.o, A3.q, A3.r, A3.s, A3.t, A3.u, A3.v, A3.w, A3.x, A3.y y A3.z.

Será preferencia muy particular a los radicales de fórmulas A3.n, A3.o, A3.q, A3.r, A3.s, A3.t, A3.u, A3.v, A3.w, A3.x, A3.y y A3.z.

También se da preferencia en particular a los radicales de fórmulas A3.aa, A3.bb, A3.cc, A3.dd, A3.ee, A1,ff, A3.gg, A3.hh, A3.kk, A3.ss, A3.tt, A3.uu y A3.vv.

Una realización de la invención se refiere a compuestos de fórmula I, a las sales y N-óxidos de los mismos y a los procedimientos y usos de tales compuestos, en la que A es un radical de fórmulas A4, A5, A6 o A7 y los radicales restantes R¹ y X son tal como se han definido anteriormente en el presente documento.

Dentro de la realización que se refiere a compuestos de fórmula I en la que A es un radical de fórmulas A4, A5, A6 o A7, una realización particularmente preferente se refiere a compuestos en los que Z es NR^N.

Dentro de la realización que se refiere a compuestos de fórmula I en la que A es un radical de fórmulas A4, A5, A6 o A7, una realización adicional se refiere a compuestos en los que Z es O.

Dentro de la realización que se refiere a compuestos de fórmula I en la que A es un radical de fórmulas A4, A5, A6 o A7, una realización adicional se refiere a compuestos en los que Z es S.

Una realización adicional se refiere a compuestos de fórmula I, en la que A es un radical de fórmulas A4, A5, A6 o A7, en las que X es O y R¹ tiene en particular uno de los significados preferentes tal como se define en el presente documento.

Dentro de esta realización, se da preferencia particularmente a los compuestos de fórmula I en la que n es 1.

Entre los compuestos de fórmula I, en la que A es un radical de fórmulas A4, A5, A6 o A7, se da preferencia a aquellos compuestos, en los que R^A tiene dos significados tal como se definen en las diferentes realizaciones en las que A es A2.

5 Una realización de la presente invención se refiere a compuestos de fórmula I en la que A se selecciona entre el siguiente ejemplo adecuado de radicales A4, A5, A6 o A7.

Cada grupo de ejemplos adecuados de radicales A4, A5, A6 o A7 constituyen la realización de la invención.

Las realizaciones en particular de la invención se refieren a los compuestos de fórmula I, a sus sales y N-óxidos, en la que el radical A es un radical de fórmula A4:

10

25

35

en el que # indica el punto de unión al resto de fórmula I y $R^{A'}$ es tal como se define en el presente documento. Los ejemplos de radicales A4 son aquellos, en los que $R^{A'}$ tiene uno de los significados de la línea 1 a 13 de la Tabla R^A y en la que Z es NR^N con R^N siendo tal como preferentemente se ha definido anteriormente en el presente documento en la realización que se refiere a R^N .

Por analogía con los ejemplos mencionados anteriormente de radicales A4 adecuados, los radicales A4 adecuados adicionales son los radicales en los que Z es O.

Por analogía con los ejemplos mencionados anteriormente de radicales A4 adecuados, los radicales A4 adecuados adicionales son los radicales en los que Z es S.

Las realizaciones en particular de la invención se refieren a los compuestos de fórmula I, a sus sales y N-óxidos, en la que el radical A es un radical de fórmula A5:

en las que # indica el punto de unión al resto de fórmula I y R^{A'} es tal como se define en el presente documento. Los ejemplos de radicales A5 son aquéllos en los que R^{A'} tienen cada uno el significado de la línea 1 a 13 de la Tabla R^A y en la que Z es NR^N con R^N siendo tal como preferentemente se ha definido anteriormente en el presente documento en la realización que se refiere a R^N.

Por analogía con los ejemplos mencionados anteriormente de radicales A5 adecuados, los radicales A5 adecuados adicionales son los radicales en los que Z es O.

Por analogía con los ejemplos mencionados anteriormente de radicales A5 adecuados, los radicales A5 adecuados adicionales son los radicales en los que Z es S.

Las realizaciones en particular de la invención se refieren a los compuestos de fórmula I, a sus sales y N-óxidos, en la que el radical A es un radical de fórmula A6:

$$R^{A}$$
, Z (A6)

en la que # indica el punto de unión al resto de fórmula I y en la que Z y $R^{A'}$ son tal como se define en el presente documento. los ejemplos de radicales A6 son aquéllos en los que $R^{A'}$ tiene uno de los significados de la línea 1 a 13 de la Tabla R^{A} y en la que Z es NR^{N} con R^{N} siendo tal como preferentemente se ha definido anteriormente en el presente documento en la realización que se refiere a R^{N} .

Por analogía con los ejemplos mencionados anteriormente de radicales A6 adecuados, los radicales A6 adecuados adicionales son los radicales en los que Z es O.

Por analogía con los ejemplos mencionados anteriormente de radicales A6 adecuados, los radicales A6 adecuados adicionales son los radicales en los que Z es S.

Las realizaciones en particular de la invención se refieren a los compuestos de fórmula I, a sus sales y N-óxidos, en la que el radical A es un radical de fórmula A7:

5

20

en la que # indica el punto de unión al resto de fórmula I y en la que Z y $R^{A'}$ son tal como se define en el presente documento. los ejemplos de radicales A7 son aquéllos en los que $R^{A'}$ tiene uno de los significados de la línea 1 a 13 de la Tabla R^A y en la que Z es NR^N con R^N siendo tal como preferentemente se ha definido anteriormente en el presente documento en la realización que se refiere a R^N .

10 Por analogía con los ejemplos mencionados anteriormente de radicales A7 adecuados, los radicales A7 adecuados adicionales son los radicales en los que Z es O.

Por analogía con los ejemplos mencionados anteriormente de radicales A7 adecuados, los radicales A7 adecuados adicionales son los radicales en los que Z es S.

Una realización preferente en particular de la invención se refiere a compuestos de fórmula I, a las sales de los mismos, los N-óxidos de los mismos y las sales de los N-óxidos de los mismos y a los procedimientos y usos de tales compuestos, en la que A es un radical A8-1,

$$R^{Z_2}$$
 N # (A8-1)

en el que #, R^{Z2}, R^{Z4} y R^{Z5} son tal como se definen en el presente documento.

Preferentemente, uno o dos de los sustituyentes R^{Z2}, R^{Z4} y R^{Z5} son hidrógeno. Ejemplos de radicales A8-1 adecuados son los radicales de fórmulas A8-1.1 a A8-1.173, tal como se define en la Tabla A8-1:

Tabla A8-1

(A8-1.1)	PY4
(A8-1.2)	2-CI-PY4
(A8-1.3)	2-Br-PY4
(A8-1.4)	2-CH ₃ -PY4
(A8-1.5)	2-C ₂ H ₅ -PY4
(A8-1.6)	2-cC ₃ H ₅ -PY4
(A8-1.7)	2-CH(CH ₃) ₂ -PY4
(A8-1.8)	2-CH ₂ CH(CH ₃) ₂ -PY4
(A8-1.9)	2-CH ₂ cC ₃ H ₅ -PY4
(A8-1.10)	2-CHF ₂ -PY4
(A8-1.11)	2-CF ₃ -PY4
(A8-1.12)	2-CH ₂ CF ₃ -PY4
(A8-1.13)	2-CH ₂ OCH ₃ -PY4
(A8-1.14)	2-CH ₂ OCHF ₂ -PY4

(A8-1.15) 2-CH ₂ OCF ₃ -PY4 (A8-1.16) 2-CH ₂ CN-PY4 (A8-1.17) 2-CH ₂ CH ₂ OCH ₃ -PY4 (A8-1.18) 2-OCF ₃ -PY4 (A8-1.19) 2-OCF ₃ -PY4 (A8-1.20) 5,6-(CH ₃) ₂ -PY4 (A8-1.21) 5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.22) 6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.23) 5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.24) 2,5,6-(CH ₃) ₃ -PY4 (A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.30) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.31) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.32) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.36) 2-CH ₁ (CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH ₁ (CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH ₁ (CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH ₁ (CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH ₁ (CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH ₁ (CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH ₁ (CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH ₁ (CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH ₁ (CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH ₁ (CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(continuación)		
(A8-1.17) 2-CH ₂ CH ₂ OCH ₃ -PY4 (A8-1.18) 2-OCF ₃ -PY4 (A8-1.19) 2-OCF ₃ -PY4 (A8-1.20) 5,6-(CH ₃) ₂ -PY4 (A8-1.21) 5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.22) 6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.23) 5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.24) 2,5,6-(CH ₃) ₂ -PY4 (A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.32) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.15)	2-CH ₂ OCF ₃ -PY4	
(A8-1.18) 2-OCH ₃ -PY4 (A8-1.19) 2-OCF ₃ -PY4 (A8-1.20) 5,6-(CH ₃) ₂ -PY4 (A8-1.21) 5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.22) 6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.23) 5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.24) 2,5,6-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-C ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.16)	2-CH ₂ CN-PY4	
(A8-1.19) 2-OCF ₃ -PY4 (A8-1.20) 5,6-(CH ₃) ₂ -PY4 (A8-1.21) 5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.22) 6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.23) 5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.24) 2,5,6-(CH ₃) ₃ -PY4 (A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.32) 2-CG ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CG ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	,	2-CH ₂ CH ₂ OCH ₃ -PY4	
(A8-1.20) 5,6-(CH ₃) ₂ -PY4 (A8-1.21) 5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.22) 6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.23) 5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.24) 2,5,6-(CH ₃) ₃ -PY4 (A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.32) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.18)	2-OCH ₃ -PY4	
(A8-1.21) 5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.22) 6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.23) 5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.24) 2,5,6-(CH ₃) ₃ -PY4 (A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.19)	2-OCF ₃ -PY4	
(A8-1.22) 6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.23) 5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.24) 2,5,6-(CH ₃) ₃ -PY4 (A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.20)	5,6-(CH ₃) ₂ -PY4	
(A8-1.23) 5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.24) 2,5,6-(CH ₃) ₃ -PY4 (A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.32) 2-CG ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CG ₃ H ₅ -5-CH ₃ -6-CH ₃ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.21)	5-CH ₃ -6-C ₂ H ₅ -PY4	
(A8-1.24) 2,5,6-(CH ₃) ₃ -PY4 (A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.22)	6-CH ₃ -5-C ₂ H ₅ -PY4	
(A8-1.25) 2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4 (A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.23)	5,6-(C ₂ H ₅) ₂ -PY4	
(A8-1.26) 2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4 (A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-cC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.24)	2,5,6-(CH ₃) ₃ -PY4	
(A8-1.27) 2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4	(A8-1.25)	2,5-(CH ₃) ₂ -6-C ₂ H ₅ -PY4	
(A8-1.28) 2-CF ₃ -5,6-(CH ₃) ₂ -PY4 (A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-CC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4	(A8-1.26)	2,6-(CH ₃) ₂ -5-C ₂ H ₅ -PY4	
(A8-1.29) 2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-cC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.35) 2-CC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4	(A8-1.27)	2-CH ₃ -5,6-(C ₂ H ₅) ₂ -PY4	
(A8-1.30) 2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-cC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.35) 2-cC ₃ H ₅ -6,-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4	(A8-1.28)	2-CF ₃ -5,6-(CH ₃) ₂ -PY4	
(A8-1.31) 2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.32) 2-cC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.35) 2-cC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4	(A8-1.29)	2-CF ₃ -5-CH ₃ -6-C ₂ H ₅ -PY4	
(A8-1.32) 2-cC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4 (A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.35) 2-cC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4	(A8-1.30)	2-CF ₃ -6-CH ₃ -5-C ₂ H ₅ -PY4	
(A8-1.33) 2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.34) 2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.35) 2-cC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.31)	2-CF ₃ -5,6-(C ₂ H ₅) ₂ -PY4	
(A8-1.34) 2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.35) 2-cC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.32)	2-cC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4	
(A8-1.35) 2-cC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.33)	2-CC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4	
(A8-1.36) 2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.34)	2-CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4	
(A8-1.37) 2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.35)	2-cC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4	
(A8-1.38) 2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.36)	2-CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4	
(A8-1.39) 2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4 (A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.37)	2-CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	
(A8-1.40) 2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4 (A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.38)	2-CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4	
(A8-1.41) 2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4 (A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.39)	2-CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	
(A8-1.42) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4 (A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.40)	2-CH ₂ CH(CH ₃) ₂ -5,6-(CH ₃) ₂ -PY4	
(A8-1.43) 2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.41)	2-CH ₂ CH(CH ₃) ₂ -5-CH ₃ -6-C ₂ H ₅ -PY4	
	(A8-1.42)	2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -5-C ₂ H ₅ -PY4	
(A8-1.44) 2-CH ₂ cC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4	(A8-1.43)	2-CH ₂ CH(CH ₃) ₂ -5,6-(C ₂ H ₅) ₂ -PY4	
	(A8-1.44)	2-CH ₂ cC ₃ H ₅ -5,6-(CH ₃) ₂ -PY4	
(A8-1.45) 2-CH ₂ cC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4	(A8-1.45)	2-CH ₂ cC ₃ H ₅ -5-CH ₃ -6-C ₂ H ₅ -PY4	
(A8-1.46) 2-CH ₂ CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4	(A8-1.46)	2-CH ₂ CC ₃ H ₅ -6-CH ₃ -5-C ₂ H ₅ -PY4	
(A8-1.47) 2-CH ₂ cC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4	(A8-1.47)	2-CH ₂ cC ₃ H ₅ -5,6-(C ₂ H ₅) ₂ -PY4	
(A8-1.48) 6-CH ₃ -PY4	(A8-1.48)	6-CH ₃ -PY4	
(A8-1.49) 2-CH ₃ -6-CH ₃ -PY4	(A8-1.49)	2-CH ₃ -6-CH ₃ -PY4	
(A8-1.50) 2-CF ₃ -6-CH ₃ -PY4	(A8-1.50)	2-CF ₃ -6-CH ₃ -PY4	
(A8-1.51) 2-cC ₃ H ₅ -6-CH ₃ -PY4	(A8-1.51)	2-cC ₃ H ₅ -6-CH ₃ -PY4	
(A8-1.52) 2-CH(CH ₃)2-6-CH ₃ -PY4	(A8-1.52)	2-CH(CH ₃)2-6-CH ₃ -PY4	
(A8-1.53) 2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -PY4	(A8-1.53)	2-CH ₂ CH(CH ₃) ₂ -6-CH ₃ -PY4	

	(continuación)
(A8-1.54)	2-CH ₂ cC ₃ H ₅ -6-CH ₃ -PY4
(A8-1.55)	6-C ₂ H ₅ -PY4
(A8-1.56)	2-CH ₃ -6-C ₂ H ₅ -PY4
(A8-1.57)	2-CF ₃ -6-C ₂ H ₅ -PY4
(A8-1.58)	2-cC ₃ H ₅ -6-C ₂ H ₅ -PY4
(A8-1.59)	2-CH(CH ₃) ₂ -6-C ₂ H ₅ -PY4
(A8-1.60)	2-CH ₂ CH(CH ₃) ₂ -6-C ₂ H ₅ -PY4
(A8-1.61)	2-CH ₂ CC ₃ H ₅ -6-C ₂ H ₅ -PY4
(A8-1.62)	6-CF ₃ -PY4
(A8-1.63)	2-CH ₃ -6-CF ₃ -PY4
(A8-1.64)	2,6-(CF ₃) ₂ -PY4
(A8-1.65)	2-cC ₃ H ₅ -6-CF ₃ -PY4
(A8-1.66)	2-CH(CH ₃) ₂ -6-CF ₃ -PY4
(A8-1.67)	2-CH ₂ CH(CH ₃) ₂ -6-CF ₃ -PY4
(A8-1.68)	2-CH ₂ cC ₃ H ₅ -6-CF ₃ -PY4
(A8-1.69)	6-CHF ₂ -PY4
(A8-1.70)	2-CH ₃ -6-CHF ₂ -PY4
(A8-1.71)	2-CF ₃ -6-CHF ₂ -PY4
(A8-1.72)	2-cC ₃ H ₅ -6-CHF ₂ -PY4
(A8-1.73)	2-CH(CH ₃) ₂ -6-CHF ₂ -PY4
(A8-1.74)	2-CH ₂ CH(CH ₃) ₂ -6-CHF ₂ -PY4
(A8-1.75)	2-CH ₂ cC ₃ H ₅ -6-CHF ₂ -PY4
(A8-1.76)	6-CH ₂ CF ₃ -PY4
(A8-1.77)	6-CH ₂ OCH ₃ -PY4
(A8-1.78)	6-CH ₂ OCHF ₂ -PY4
(A8-1.79)	6-CH ₂ OCF ₃ -PY4
(A8-1.80)	6-CH ₂ CN-PY4
(A8-1.81)	6-CH ₂ CH ₂ OCH ₃ -PY4
(A8-1.82)	2-CH ₃ -6-CH ₂ CF ₃ -PY4
(A8-1.83)	2-CH ₃ -6-CH ₂ OCH ₃ -PY4
(A8-1.84)	2-CH ₃ -6-CH ₂ OCHF ₂ -PY4
(A8-1.85)	2-CH ₃ -6-CH ₂ OCF ₃ -PY4
(A8-1.86)	2-CH ₃ -6-CH ₂ CN-PY4
(A8-1.87)	2-CH ₃ -6-CH ₂ CH ₂ OCH ₃ -PY4
(A8-1.88)	2-CF ₃ -6-CH ₂ CF ₃ -PY4
(A8-1.89)	2-CF ₃ -6-CH ₂ OCH ₃ -PY4
(A8-1.90)	2-CF ₃ -6-CH ₂ OCHF ₂ -PY4
(A8-1.91)	2-CF ₃ -6-CH ₂ OCF ₃ -PY4
(A8-1.92)	2-CF ₃ -6-CH ₂ CN-PY4

(continuación)

	(continuacion)
(A8-1.93)	2-CF ₃ -6-CH ₂ CH ₂ OCH ₃ -PY4
(A8-1.94)	2-cC ₃ H ₅ -6-CH ₂ CF ₃ -PY4
(A8-1.95)	2-cC ₃ H ₅ -6-CH ₂ OCH ₃ -PY4
(A8-1.96)	2-cC ₃ H ₅ -6-CH ₂ OCHF ₂ -PY4
(A8-1.97)	2-cC ₃ H ₅ -6-CH ₂ OCF ₃ -PY4
(A8-1.98)	2-cC ₃ H ₅ -6-CH ₂ CN-PY4
(A8-1.99)	2-cC ₃ H ₅ -6-CH ₂ CH ₂ OCH ₃ -PY4
(A8-1.100)	2-CH(CH ₃) ₂ -6-CH ₂ CF ₃ -PY4
(A8-1.101)	2-CH(CH ₃) ₂ -6-CH ₂ OCH ₃ -PY4
(A8-1.102)	2-CH(CH ₃) ₂ -6-CH ₂ OCHF ₂ -PY4
(A8-1.103)	2-CH(CH ₃) ₂ -6-CH ₂ OCF ₃ -PY4
(A8-1.104)	2-CH(CH ₃) ₂ -6-CH ₂ CN-PY4
(A8-1.105)	2-CH(CH ₃) ₂ -6-CH ₂ CH ₂ OCH ₃ -PY4
(A8-1.106)	2-CH ₂ CH(CH ₃) ₂ -6-CH ₂ CF ₃ -PY4
(A8-1.107)	2-CH ₂ CH(CH ₃) ₂ -6-CH ₂ OCH ₃ -PY4
(A8-1.108)	2-CH ₂ CH(CH ₃) ₂ -6-CH ₂ OCHF ₂ -PY4
(A8-1.109)	2-CH ₂ CH(CH ₃) ₂ -6-CH ₂ OCF ₃ -PY4
(A8-1.110)	2-CH ₂ CH(CH ₃) ₂ -6-CH ₂ CN-PY4
(A8-1.111)	2-CH ₂ CH(CH ₃) ₂ -6-CH ₂ CH ₂ OCH ₃ -PY4
(A8-1.112)	2-CH ₂ cC ₃ H ₅ -6-CH ₂ CF ₃ -PY4
(A8-1.113)	2-CH ₂ cC ₃ H ₅ -6-CH ₂ OCH ₃ -PY4
(A8-1.114)	2-CH ₂ cC ₃ H ₅ -6-CH ₂ OCHF ₂ -PY4
(A8-1.115)	2-CH ₂ cC ₃ H ₅ -6-CH ₂ OCF ₃ -PY4
(A8-1.116)	2-CH ₂ cC ₃ H ₅ -6-CH ₂ CN-PY4
(A8-1.117)	2-CH ₂ cCsH ₅ -6-CH ₂ CH ₂ OCH ₃ -PY4
(A8-1.118)	6-CI-PY4
(A8-1.119)	2-CH ₃ -6-CI-PY4
(A8-1.120)	2-CF ₃ -6-Cl-PY4
(A8-1.121)	2-cC ₃ H ₅ -6-Cl-PY4
(A8-1.122)	2-CH(CH ₃) ₂ -6-CI-PY4
(A8-1.123)	2-CH ₂ CH(CH ₃)2-6-CI-PY4
(A8-1.124)	2-CH ₂ cC ₃ H ₅ -6-Cl-PY4
(A8-1.125)	6-Br-PY4
(A8-1.126)	2-CH ₃ -6-Br-PY4
(A8-1.127)	2-CF ₃ -6-Br-PY4
(A8-1.128)	2-cC ₃ H ₅ -6-Br-PY4
(A8-1.129)	2-CH(CH ₃) ₂ -6-Br-PY4
(A8-1.130)	2-CH ₂ CH(CH ₃) ₂ -6-Br-PY4v
(A8-1.131)	2-CH ₂ cC ₃ H ₅ -6-Br-PY4
·	· · · · · · · · · · · · · · · · · · ·

(continuación)

	(continuación)
(A8-1.132)	6-cC ₃ H ₅ -PY4
(A8-1.133)	6-CH(CH ₃) ₂ -PY4
(A8-1.134)	6-CH ₂ CH(CH ₃) ₂ -PY4
(A8-1.135)	6-CH ₂ cC ₃ H ₅ -PY4
(A8-1.136)	2-CH ₃ -6-cC ₃ H ₅ -PY4
(A8-1.137)	2-CH ₃ -6-CH(CH ₃) ₂ -PY4
(A8-1.138)	2-CH ₃ -6-CH ₂ CH(CH ₃) ₂ -PY4
(A8-1.139)	2-CH ₃ -6-CH ₂ cC ₃ H ₅ -PY4
(A8-1.140)	2-CF ₃ -6-cC ₃ H ₅ -PY4
(A8-1.141)	2-CF ₃ -6-CH(CH ₃) ₂ -PY4
(A8-1.142)	2-CF ₃ -6-CH ₂ CH(CH ₃) ₂ -PY4
(A8-1.143)	2-CF ₃ -6-CH ₂ cC ₃ H ₅ -PY4
(A8-1.144)	2,6-(cC ₃ H ₅) ₂ -PY4
(A8-1.145)	2-cC ₃ H ₅ -6-CH(CH ₃) ₂ -PY4
(A8-1.146)	2-cC ₃ H ₅ -6-CH ₂ CH(CH ₃) ₂ -PY4
(A8-1.147)	2-cC ₃ H ₅ -6-CH ₂ cC ₃ H ₅ -PY4
(A8-1.148)	2-CH(CH ₃) ₂ -6-cC ₃ H ₅ -PY4
(A8-1.149)	2,6-[CH(CH ₃)2]2-PY4
(A8-1.150)	2-CH(CH ₃) ₂ -6-CH ₂ CH(CH ₃) ₂ -PY4
(A8-1.151)	2-CH(CH ₃) ₂ -6-CH ₂ cC ₃ H ₅ -PY4
(A8-1.152)	2-CH ₂ CH(CH ₃) ₂₋₆ -cC ₃ H ₅ -PY4
(A8-1.153)	2-CH ₂ CH(CH ₃) ₂ -6-CH(CH ₃) ₂ -PY4
(A8-1.154)	2,6-[CH ₂ CH(CH ₃)2]2-PY4
(A8-1.155)	2-CH ₂ CH(CH ₃) ₂ -6-CH ₂ cCsH ₅ -PY4
(A8-1.156)	2-CH ₂ cC ₃ H ₅ -6-cC ₃ H ₅ -PY4
(A8-1.157)	2-CH ₂ cC ₃ H ₅ -6-CH(CH ₃) ₂ -PY4
(A8-1.158)	2-CH ₂ cC ₃ H ₅ -6-CH ₂ CH(CH ₃) ₂ -PY4
(A8-1.159)	2,6-(CH ₂ cC ₃ H ₅) ₂ -PY4
(A8-1.160)	6-OCH ₃ -PY4
(A8-1.161)	2-CH ₃ -6-OCH ₃ -PY4
(A8-1.162)	2-CF ₃ -6-OCH ₃ -PY4
(A8-1.163)	2-cC ₃ H ₅ -6-OCH ₃ -PY4
(A8-1.164)	2-CH(CH ₃) ₂ -6-OCH ₃ -PY4
(A8-1.165)	2-CH ₂ CH(CH ₃) ₂ -6-OCH ₃ -PY4
(A8-1.166)	2-CH ₂ cC ₃ H ₅ -6-OCH ₃ -PY4
(A8-1.167)	6-OCHF ₂ -PY4
(A8-1.168)	2-CH ₃ -6-OCHF ₂ -PY4
(A8-1.169)	2-CF ₃ -6-OCHF ₂ -PY4
(A8-1.170)	2-cC ₃ H ₅ -6-OCHF ₂ -PY4

(continuación)

(A8-1.171)	2-CH(CH ₃) ₂ -6-OCHF ₂ -PY4	
(A8-1.172)	2-CH ₂ CH(CH ₃) ₂ -6-OCHF ₂ -PY4	
(A8-1.173) 2-CH ₂ cC ₃ H ₅ -6-OCHF ₂ -PY4		
PY4 = pirimidin-4-ilo cC_3H_5 = ciclopropilo		

Otra realización preferente de la invención se refiere a los compuestos de fórmula I, a las sales de los mismos, los Nóxidos de los mismos y las sales de los N-óxidos de los mismos y a los procedimientos y usos de tales compuestos, en la que A es un radical A8-2,

en el que # , R^{Z1}, R^{Z3} y R^{Z5} son tal como se definen en el presente documento.

Otra realización preferente de la presente invención se refiere a compuestos de fórmula I en la que A se selecciona entre los ejemplos adecuados de radicales A8.

Los ejemplos de radicales A8-2 adecuados son los radicales de fórmulas A8-2.1 a A8-2.131, tal como se define en la Tabla A8-2.

Tabla A8-2

5

(A8-2.1)	5-Pirimidinilo
(A8-2.2)	2-CI-PY5
(A8-2.3)	2-Br-PY5
(A8-2.4)	2-CH ₃ -PY5
(A8-2.5)	2-C ₂ H ₅ -PY5
(A8-2.6)	2-c-C ₃ H ₅ -PY5
(A8-2.7)	2-CH(CH ₃) ₂ -PY5
(A8-2.8)	2-Isobutil-PY5
(A8-2.9)	2-CH ₂ -c-C ₃ H ₅ -PY5
(A8-2.10)	2-CHF ₂ -PY5
(A8-2.11)	2-CF ₃ -PY5
(A8-2.12)	2-CH ₂ CF ₃ -PY5
(A8-2.13)	2-CH ₂ OCH ₃ -PY5
(A8-2.14)	2-CH ₂ OCHF ₂ -PY5
(A8-2.15)	2-CH ₂ OCF ₃ -PY5
(A8-2.16)	2-CH ₂ CN-PY5
(A8-2.17)	2-CH ₂ CH ₂ OCH ₃ -PY5
(A8-2.18)	2-OCH ₃ -PY5
(A8-2.19)	2-OC ₂ H ₅ -PY5
(A8-2.20)	2-CI-4-CH ₃ -PY5
(A8-2.21)	2-Br-4-CH ₃ -PY5
(A8-2.22)	2,4-(CH ₃) ₂ -PY5

(A8-2.28)	2-CHF ₂ -4-CH ₃ -PY5
(A8-2.29)	2-CF ₃ -4-CH ₃ -PY5
(A8-2.30)	2-CH ₂ CF ₃ -4-CH ₃ -PY5
(A8-2.31)	2-CH ₂ OCH ₃ -4-CH ₃ -PY5
(A8-2.32)	2-CH ₂ OCHF ₂ -4-CH ₃ -PY5
(A8-2.33)	2-CH ₂ OCF ₃ -4-CH ₃ -PY5
(A8-2.34)	2-CH ₂ CN-4-CH ₃ -PY5
(A8-2.35)	2-CH ₂ OC ₂ H ₅ -4-CH ₃ -PY5
(A8-2.36)	2-OCH ₃ -4-CH ₃ -PY5
(A8-2.37)	2-OC ₂ H ₅ -4-CH ₃ -PY5
(A8-2.38)	2-CI-4-CF ₃ -PY5
(A8-2.39)	2-Br-4-CF ₃ -PY5
(A8-2.40)	2-CH ₃ -4-CF ₃ -PY5
(A8-2.41)	2-C ₂ H ₅ -4-CF ₃ -PY5
(A8-2.42)	2-c-C ₃ H ₅ -4-CF ₃ -PY5
(A8-2.43)	2-CH(CH ₃) ₂ -4-CF ₃ -PY5
(A8-2.44)	2-Isobutil-4-CF ₃ -PY5
(A8-2.45)	2-CH ₂ -c-C ₃ H ₅ -4-CF ₃ -PY5
(A8-2.46)	2-CHF ₂ -4-CF ₃ -PY5
(A8-2.47)	2-CF ₃ -4-CF ₃ -PY5
(A8-2.48)	2-CH ₂ CF ₃ -4-CF ₃ -PY5
(A8-2.49)	2-CH ₂ OCH ₃ -4-CF ₃ -PY5

(continuación)

	(COILL	iluacion)	
(A8-2.23)	2-C ₂ H ₅ -4-CH ₃ -PY5	(A8-2.50)	2-CH ₂ OCHF ₂ -4-CF ₃ -PY5
(A8-2.24)	2-c-C ₃ H ₅ -4-CH ₃ -PY5	(A8-2.51)	2-CH ₂ OCF ₃ -4-CF ₃ -PY5
(A8-2.25)	2-CH(CH ₃) ₂ -4-CH ₃ -PY5	(A8-2.52)	2-CH ₂ CN-4-CF ₃ -PY5
(A8-2.26)	2-Isobutil-4-CH ₃ -PY5	(A8-2.53)	2-CH ₂ OC ₂ H ₅ -4-CF ₃ -PY5
(A8-2.27)	2-CH ₂ -c-C ₃ H ₅ -4-CH ₃ -PY5	(A8-2.54)	2-OCH ₃ -4-CF ₃ -PY5
(A8-2.55)	2-OC ₂ H ₅ -4-CF ₃ -PY5	(A8-2.94)	2-c-C ₃ H ₅ -4-C ₂ H ₅ -PY5
(A8-2.56)	2,4-Cl ₂ -PY5	(A8-2.95)	2-CH(CH ₃)2-4-C ₂ H ₅ -PY5
(A8-2.57)	2-CH ₃ -4-CI-PY5	(A8-2.96)	2-Isobutil-4-C ₂ H ₅ -PY5
(A8-2.58)	2-OC ₂ H ₅ -4-Cl-PY5	(A8-2.97)	2-CH ₂ -c-C ₃ H ₅ -4-C ₂ H ₅ -PY5
(A8-2.59)	2-c-C ₃ H ₅ -4-Cl-PY5	(A8-2.98)	2-CHF ₂ -4-C ₂ H ₅ -PY5
(A8-2.60)	2-CH(CH ₃) ₂ -4-Cl-PY5	(A8-2.99)	2-CF ₃ -4-C ₂ H ₅ -PY5
(A8-2.61)	2-Isobutil-4-CI-PY5	(A8-2.100)	2-CH ₂ CF ₃ -4-C ₂ H ₅ -PY5
(A8-2.62)	2-CH ₂ -c-C ₃ H ₅ -4-CI-PY5	(A8-2.101)	2-CH ₂ OCH ₃ -4-C ₂ H ₅ -PY5
(A8-2.63)	2-CHF ₂ -4-CI-PY5	(A8-2.102)	2-CH ₂ OCHF ₂ -4-C ₂ H ₅ -PY5
(A8-2.64)	2-CF ₃ -4-Cl-PY5	(A8-2.103)	2-CH ₂ OCF ₃ -4-C ₂ H ₅ -PY5
(A8-2.65)	2-CH ₂ CF ₃ -4-Cl-PY5	(A8-2.104)	2-CH ₂ CN-4-C ₂ H ₅ -PY5
(A8-2.66)	2-CH ₂ OCH ₃ -4-CI-PY5	(A8-2.105)	2-CH ₂ OC ₂ H ₅ -4-C ₂ H ₅ -PY5
(A8-2.67)	2-CH ₂ OCHF ₂ -4-CI-PY5	(A8-2.106)	2-OCH ₃ -4-C ₂ H ₅ -PY5
(A8-2.68)	2-CH ₂ OCF ₃ -4-Cl-PY5	(A8-2.107)	2-OC ₂ H ₅ -4-C ₂ H ₅ -PY5
(A8-2.69)	2-CH ₂ CN-4-CI-PY5	(A8-2.108)	2-CI-4-CHF ₂ -PY5
(A8-2.70)	2-CH ₂ OC ₂ H ₅ -4-Cl-PY5	(A8-2.109)	2-Br-4-CHF ₂ -PY5
(A8-2.71)	2-OCH ₃ -4-Cl-PY5	(A8-2.110)	2-CH ₃ -4-CHF ₂ -PY5
(A8-2.72)	2-OC ₂ H ₅ -4-CI-PY5	(A8-2.111)	2-C ₂ H ₅ -4-CHF ₂ -PY5
(A8-2.73)	2-Cl-4-C ₂ H ₅ -PY5	(A8-2.112)	2-c-C ₃ H ₅ -4-CHF ₂ -PY5
(A8-2.74)	2,4-Br ₂ -PY5	(A8-2.113)	2-CH(CH ₃) ₂ -4-CHF ₂ -PY5
(A8-2.75)	2-CH ₃ -4-Br-PY5	(A8-2.114)	2-Isobutil-4-CHF ₂ -PY5
(A8-2.76)	2-C ₂ H ₅ -4-Br-PY5	(A8-2.115)	2-CH ₂ -c-C ₃ H ₅ -4-CHF ₂ -PY5
(A8-2.77)	2-c-C ₃ H ₅ -4-Br-PY5	(A8-2.116)	2,4-(CHF ₂) ₂ -PY5
(A8-2.78)	2-CH(CH ₃) ₂ -4-Br-PY5	(A8-2.117)	2-CF ₃ -4-CHF ₂ -PY5
(A8-2.79)	2-Isobutil-4-Br-PY5	(A8-2.118)	2-CH ₂ CF ₃ -4-CHF ₂ -PY5
(A8-2.80)	2-CH ₂ -c-C ₃ H ₅ -4-Br-PY5	(A8-2.119)	2-CH ₂ OCH ₃ -4-CHF ₂ -PY5
(A8-2.81)	2-CHF ₂ -4-Br-PY5	(A8-2.120)	2-CH ₂ OCHF ₂ -4-CHF ₂ -PY5
(A8-2.82)	2-CF ₃ -4-Br-PY5	(A8-2.121)	2-CH ₂ OCF ₃ -4-CHF ₂ -PY5
(A8-2.83)	2-CH ₂ CF ₃ -4-Br-PY5	(A8-2.122)	2-CH ₂ CN-4-CHF ₂ -PY5
(A8-2.84)	2-CH ₂ OCH ₃ -4-Br-PY5	(A8-2.123)	2-CH ₂ OC ₂ H ₅ -4-CHF ₂ -PY5
(A8-2.85)	2-CH ₂ OCHF ₂ -4-Br-PY5	(A8-2.124)	2-OCH ₃ -4-CHF ₂ -PY5
(A8-2.86)	2-CH ₂ OCF ₃ -4-B1PY5	(A8-2.125)	2-OC ₂ H ₅ -4-CHF ₂ -PY5
(A8-2.87)	2-CH ₂ CN-4-Br-PY5	(A8-2.126)	4-CH ₃ -PY5
(A8-2.88)	2-CH ₂ OC ₂ H ₅ -4-Br-PY5	(A8-2.127)	4-CF ₃ -PY5
,			

(continuación)

	(00.1
(A8-2.90)	2-OC ₂ H ₅ -4-Br-PY5
(A8-2.91)	2-B14-C ₂ H ₅ -PY5
(A8-2.92)	2-CH ₃ -4-C ₂ H ₅ -PY5
(A8-2.93)	2-C ₂ H ₅ -4-C ₂ H ₅ -PY5

5

20

(A8-2.129)	4-Br-PY5
(A8-2.130)	4-C ₂ H ₅ -PY5
(A8-2.131)	4-CHF ₂ -PY5

PY5 = pirimidin-5-ilo $c-C_3H_5$ = ciclopropilo

Otra realización preferente de la invención se refiere a compuestos de fórmula I, a las sales de los mismos, los Nóxidos de los mismos y las sales de los N-óxidos de los mismos y a los procedimientos y usos de tales compuestos, en la que A es un radical A8-3,

$$R^{Z_2}$$
 N # (A8-3)

en el que #, R^{Z2}, R^{Z3} y R^{Z4} son tal como se definen en el presente documento.

Los ejemplos de radicales A8-3 adecuados son los radicales de fórmulas A8-3.1 a A8-3.13, tal como se define en la Tabla A8-3.

Tabla A8-3

(A8-3.1)	2-Pirimidinilo	(A8-3.8)	4,5-(CH ₃) ₂ -2-pirimidinilo
(A8-3.2)	4-CH ₃ -2-pirimidinilo	(A8-3.9)	4,5,6-(CH ₃) ₃ -2-pirimidinilo
(A8-3.3)	5-CH ₃ -2-pirimidinilo	(A8-3.10)	4-C ₂ H ₅ -5-CH ₃ -2-pirimidinilo
(A8-3.4)	4-C ₂ H ₅ -2-pirimidinilo	(A8-3.11)	4-CH ₃ -5-C ₂ H ₅ -2-pirimidinilo
(A8-3.5)	5-C ₂ H ₅ -2-pirimidinilo	(A8-3.12)	4-CF ₃ -5-CH ₃ -2-pirimidinilo
(A8-3.6)	4-CF ₃ -2-pirimidinilo	(A8-3.13)	4-CH ₃ -5-CF ₃ -2-pirimidinilo
(A8-3.7)	5-CF ₃ -2-pirimidinilo		

Una realización preferente de la invención se refiere a compuestos de fórmula I y a las sales de los mismos, los Nóxidos de los mismos y las sales de los N-óxidos de los mismos, en la que X¹ es O. Estos compuestos se denominan en lo sucesivo en el presente documento compuestos I1.

En la fórmula I1, las variables A y R¹ son tal como se definen en el presente documento.

15 Entre los compuestos de fórmula I1, se da preferencia a aquellos compuestos en los que los radicales A y R¹ tienen uno de los significados preferentes.

Una realización preferente de la invención se refiere a los compuestos de fórmula I1, a sus N-óxidos y sus sales, en la que R^1 se selecciona entre el grupo que consiste en CN, alquilo C_1 - C_{10} , haloalquilo C_1 - C_{10} , alquenilo C_3 - C_{10} , haloalquenilo C_3 - C_{10} , alquinilo C_3 - C_{10} , alquinilo C_3 - C_1 0, alquinilo C_3 - C_1 0, alquinilo C_1 - C_4 0, haloalquilo C_1 - C_4 0, alquinilo C_3 0, alquinil

Otra realización preferente de la invención se refiere a los compuestos de fórmula I1, a sus N-óxidos y sus sales, en

la que R^1 se selecciona entre el grupo que consiste en alquileno C_1 - C_4 -CN, alquileno C_1 - C_4 - OR^a , alquileno C_1 - OR^a , alquileno C_1 - OR^a , alquileno C_1 - OR^a , en particular bencilo, heterociclilalquilo C_1 - OR^a , en particular heterolieno, en el que el anillo de fenilo, heterociclilo o hetarilo en los seis últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 radicales R^y , que son tal como se definen en el presente documento y que preferentemente se seleccionan respectivamente entre NO_2 , alcoxi C_1 - C_4 , haloalcoxi C_1 - C_4 , alquilsulfonilo C_1 - C_4 y haloalquilsulfonilo C_1 - C_4 o entre halógeno, NO_2 , alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , haloalcoxi C_1 - C_4 , haloalcoxi C_1 - C_4 .

Una realización particularmente preferente adicional de la invención se refiere a compuestos de fórmula I1, a sus N-óxidos y sus sales, en la que R^1 se selecciona entre el grupo que consiste en fenilo y hetarilo, en particular entre fenilo, en el que fenilo y hetarilo están sin sustituir o llevan 1, 2, 3, 4 o 5 radicales R^y , que son tal como se definen en el presente documento y que preferentemente se seleccionan respectivamente entre NO_2 , alcoxi C_1 - C_4 , haloalquilo C_1 - C_4 .

10

30

35

40

45

50

55

Una realización particularmente preferente adicional de la invención se refiere a los compuestos de fórmula I1, a sus N-óxidos y sus sales, en la que R¹ se selecciona entre el grupo que consiste en alquilo C₁-C₄, haloalquilo C₁-C₄ y alcoxi C₁-C₄-alquilo C₁-C₄. Entre esta realización, se da preferencia en particular a compuestos, en los que R¹ es alquilo C₁-C₃. Además, entre esta realización, se da preferencia del mismo modo a compuestos, en los que R¹ es haloalquilo C₁-C₃ o alcoxi C₁-C₂- alquilo C₁-C₂.

En otra realización preferente en particular, la invención se refiere a compuestos de fórmula I1, a sus N-óxidos y sus sales, en la que, R¹ se selecciona entre el grupo que consiste en alquileno C₁-C₄-NR^eR^f, fenil-alquilo C₁-C₄, en particular bencilo, 1-feniletilo o 2-feniletilo, heterociclil-alquilo C₁-C₄, en particular heterocicliletilo, 1-heterocicliletilo o 2-heterocicliletilo, y hetaril-alquilo C₁-C₄, en particular hetaril-metilo, 1-hetariletilo o 2-hetariletilo, en el que los doce últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2 o 3 radicales R^y, que son tan como se han definido anteriormente y que se seleccionan preferentemente entre halógeno, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄, haloalcoxi C₁-C₄, alquilsulfonilo C₁-C₄ y haloalquilsulfonilo C₁-C₄.

Una realización muy preferente de la invención se refiere a compuestos de fórmula I1 y a las sales de los mismos, los N-óxidos de los mismos y las sales de los N-óxidos de los mismos, en la que A es un radical A2, en particular un radical A2, en el que Z es N-R^N, en el que R^N es tal como se define en el presente documento y en el que R^N se selecciona preferentemente entre el grupo que consiste en NO2, alquilo C_1 - C_{10} , alquenilo C_2 - C_{10} y alquinilo C_2 - C_{10} , en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^x idénticos o diferentes, o en el que R^N se selecciona adicionalmente entre OR^a , $C(Y)R^b$, $C(Y)OR^c$, $S(O)_mR^d$, NR^eR^f , $C(Y)NRgR^h$, $S(O)_mNR^eR^f$, $C(Y)NRiNR^eR^f$, alquileno C_1 - C_5 - OR^a , alquileno C_1 - C_5 - OR^a , alquileno C_1 - C_5 - OR^a , alquileno C_1 - OR^a

En los compuestos de fórmula I1, en la que A es A2 y Z es N-R^N, R^N se selecciona más preferentemente entre el grupo que consiste en alquilo C₁-C₁₀, alquenilo C₂-C₁₀ y alquinilo C₂-C₁₀, en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^x idénticos o diferentes, alcoxi C₁-C₄-alquilo C₂-C₄, alquileno C₁-C₄-CN, heterociclilo, hetarilo, cicloalquilo C₃-C₁₀, cicloalquenilo C₅-C₁₀, heterociclil-alquilo C₁-C₅, hetaril-alquilo C₁-C₅, cicloalquil C₃-C₁₀-alquilo C₁-C₅, en el que los anillos en los 8 últimos radicales mencionados que puede estar sin sustituir o puede llevar 1, 2 o 3 sustituyentes R^y idénticos o diferentes. En los compuestos de fórmula I1, en la que A es A2 y Z es N-R^N, R^N se selecciona más preferentemente entre alquilo C₁-C₆, haloalquilo C₁-C₆, cicloalquilo C₃-C₆, cicloalquil C₃-C₆-alquilo C₁-C₄, en el que el resto de cicloalquilo que está en los dos últimos radicales mencionados está sin sustituir o lleva 1 o 2 radicales seleccionados entre halógeno, CN y haloalquilo C₁-C₂, heterociclil-alquilo C₁-C₄, alcoxi C₁-C₄-alquilo C₁-C₄, alcoxi C₁-C₂-alquilo C₂-C₄, alquileno C₁-C₄, alquileno C₁-C₄-CN, cicloalquilo C₃-C₆ y cicloalquil C₃-C₆-alquilo C₁-C₄, en el que el resto de cicloalquilo C₂-C₄, alquileno C₁-C₄-CN, cicloalquilo C₃-C₆ y cicloalquil C₃-C₆-alquilo C₁-C₄, en el que el resto de cicloalquilo que está en los dos últimos radicales mencionados está sin sustituir o lleva 1 o 2 radicales seleccionados entre halógeno, CN y haloalquilo C₁-C₂. Especialmente, R^N es alquilo C₁-C₄ o haloalquilo C₁-C₄.

Una realización muy preferente de la invención se refiere a compuestos de fórmula I1 y a las sales de los mismos, los N-óxidos de los mismos y las sales de los N-óxidos de los mismos, en la que A es un radical A8.

Dentro de esta realización, se da preferencia muy particular adicionalmente a los compuestos de fórmula 11, en la que A es un radical A8 seleccionado entre los radicales A8-1, A8-2 y A8-3, y seleccionado particularmente entre los radicales A8-1.1 a A8-1.173, A8-2.1 a A8-2.131 y A8-3.1 a A8-3.13.

Los ejemplos adicionales de estas realizaciones preferentes se representan mediante las sales y N-óxidos de los compuestos preferentes de acuerdo con la presente invención tal como se ha definido anteriormente en el presente documento.

Los compuestos de fórmula I, en la que X es O (compuestos I1), se pueden preparar por ejemplo de acuerdo con el procedimiento que se representa en el esquema 1 haciendo reaccionar una N-(4-piridazinil)-carboxamida II' con un compuesto activado R¹-LG (LG = grupo saliente) en el sentido de una reacción de N-alquilación. La reacción se puede realizar por analogía con la N-alquilación conocida de piridazinas. La N-alquilación de Piridazinas se conoce en la bibliografía y se puede encontrar por ejemplo en: N. Haider, G. Heinisch, *J. Chem. Soc, Perkin Trains. 1* 1988, 401 y S.-F. Chen, R. P. Panzica, *J. Org. Chem.* 1981, 46, 2467.

Esquema 1:

5

10

15

20

25

30

35

40

45

$$A = \begin{bmatrix} N & R^{1} - LG \\ N & (II') \end{bmatrix}$$

$$A = \begin{bmatrix} N & N \\ N & (II) \end{bmatrix}$$

$$A = \begin{bmatrix} N & N \\ N & (II) \end{bmatrix}$$

$$A = \begin{bmatrix} N & N \\ N & (II) \end{bmatrix}$$

En el esquema 1, los radicales A y R^1 tienen los significados dados anteriormente y en particular los significados dados como preferentes. LG es un grupo saliente clásico. Los grupos salientes clásicos incluyen halógeno, tal como CI, Br, I, grupos sulfonato de (halo)alquilo y sulfonato de arilo (R-SO₂O, en el que R es arilo tal como fenilo, que está sin sustituir o lleva 1, 2 o 3 radicales inertes tales como metilo, cloro o metoxi o R es alquilo o haloalquilo) tal como mesilato, fenilsulfonato, triflato (OTf) o tosilato, o LG también puede ser alquilsulfato tal como metilsulfato (CH₃OSO₂O) o (halo)alquilcarboxilato tal como acetato o trifluoroacetato.

La reacción del esquema 1 es particularmente adecuada para compuestos, en los que LG se une a R^1 a través de un átomo de carbono alifático, es decir el átomo de carbono de R^1 al que se une LG es un átomo de carbono alifático, en particular un átomo de carbono primario (CH₂) o secundario (CH). La reacción del esquema 1 se realiza habitualmente en presencia de una base. Las bases adecuadas incluyen por ejemplo hidruros de metales alcalinos, tales como NaH, LiH, KH y similares, hidróxidos de metales alcalinos tales como NaOH, KOH y similares o carbonatos de metales alcalinos tales como Na₂CO₃, K_2 CO₃ o Cs_2 CO₃. La reacción se realiza preferentemente en un disolvente, más preferentemente en un disolvente aprótico tal como dimetilformamida (DMF), acetonitrilo, dimetilsulfóxido (DMSO), diclorometano (DCM), cetonas tales como ciclohexanona, acetona o metiletil cetona o mezclas de los mismos.

La cantidad de base es preferentemente al menos casi estequiométrica con respecto al compuesto R¹-LG, es decir la cantidad de base es preferentemente al menos de 0,95 equiv. con respecto al compuesto R¹-LG, en particular de 0,95 equiv. a 5 equiv. Con respecto al compuesto R¹-LG. El compuesto R¹-LG se puede usar en cantidades casi estequiométricas con respecto al compuesto de fórmula II' o en exceso, por ejemplo de 0,9 a 5 moles por mol de compuestos II'. La temperatura de la reacción puede variar de 0 °C a temperatura de reflujo de la mezcla de reacción, por ejemplo de 0 °C a 200 °C o de 5 °C a 150 °C.

Los compuestos de fórmula I, en la que X es O (compuestos I1), también se pueden preparar de acuerdo con el procedimiento que se representa en el esquema 2 haciendo reaccionar una 4-piridazinimina sustituida en la posición 1 de fórmula III con un agente de acilación de fórmula IV:

En el esquema 2, los radicales A y R¹ tienen los significados dados anteriormente y en particular los significados dados como preferentes. LG' es un grupo saliente adecuado tal como OH, halógeno, N₃, para-nitrofenoxi o pentafluorofenoxi y similares. La reacción del esquema 2 es particularmente adecuada para los compuestos en los que R¹ es arilo (es decir fenilo opcionalmente sustituido) o hetarilo. Los agentes de acilación adecuados IV son ácidos carboxílicos (es decir LG' es OH) y derivados de ácido carboxílico activado, en los que LG' es por ejemplo halógeno, N³, para-nitrofenoxi o pentafluorofenoxi y similares.

La reacción de derivados de ácido carboxílico activados ser de realizar por analogía a procedimientos convencionales tal como se desvela por ejemplo en Houben-Weyl: "Methoden der organ. Chemie" [Methods of Organic Chemistry], Georg-Thieme-Verlag, Stuttgart, Nueva York 1985, Volumen E5, páginas 941-1045) o en el documento de patente EP 78989 o en el documento de patente DE 3436550. Los compuestos IV, en los que LG' es

OH se hacen reaccionar preferentemente con los compuestos III en presencia de un agente de acoplamiento. Los agentes de acoplamiento y las condiciones de reacción adecuados se pueden tomar por ejemplo de:

- agentes de acoplamiento en base a carbodiimidas, por ejemplo N,N'-diciclohexilcarbodiimida [J.C. Sheehan, G.P. Hess, J. Am. Chem. Soc. 1955, 77, 1067], N-(3-dimetilaminopropil)-N'-etilcarbodiimida;
- agentes de acoplamiento que forman anhídridos mixtos con ésteres carbónicos, por ejemplo 2-etoxi-1-etoxicarbonil-1,2-dihidroquinolina [B. Belleau, G. Malek, J. Amer. Chem. Soc. 1968, 90, 1651], 2-isobutiloxi-1-isobutiloxicarbonil-1,2-dihidroquinolina [Y. Kiso, H. Yajima, J. Chem. Soc., Chem. Commun. 1972, 942];

10

15

20

30

45

50

55

- agentes de acoplamiento en base a sales de fosfonio, por ejemplo hexafluorofosfato de (benzotriazol-1-iloxi)tris(dimetilamino)fosfonio [B. Castro, J.R. Domoy, G. Evin, C. Selve, Tetrahedron Lett. 1975, 14, 1219], hexafluorofosfato de (benzotriazol-1-il-oxi)tripirrolidinofosfonio [J. Coste y col., Tetrahedron Lett. 1990,31,205];
- agentes de acoplamiento en base a sales de uronio o que tienen una estructura de N-óxido de guanidinio, por ejemplo hexafluorofosfato de N,N,N',N'-tetrametil-O-(1H-benzotriazol-1-il)uronio [R. Knorr, A. Trzeciak, W. Bannwarth, D. Gillessen, Tetrahedron Lett. 1989, 30, 1927], tetrafluoroborato de N,N,N',N'-tetrametil-O-(benzotriazol-1-il)uronio, hexafluorofosfato de (benzotriazol-1-iloxi)dipiperidinocarbenio [S. Chen, J. Xu, Tetrahedron Lett. 1992, 33, 647];
- agentes de acoplamiento que forman cloruros de ácido, por ejemplo cloruro de bis-(2-oxo-oxazolidinil)fosfínico [J. Diago-Mesequer, Synthesis 1980, 547].

Los compuestos de fórmula III se conocen, por ejemplo a partir del documento de patente EP 78989, documento de patente EP 227941 y documento de patente DE 3436550 o se pueden reparar por analogía a los procedimientos que se describen en los mismos.

Los compuestos con X = S se pueden preparar a partir de los compuestos anteriores de fórmula I1 (X = O) de acuerdo con los procedimientos que se describen en la técnica, por ejemplo haciendo reaccionar un compuesto de fórmula I1 con 2,4-disulfuro de 2,4-bis(4-metoxifenil)-1,3,2,4-ditiadifosfetano o pentasulfuro de fósforo de acuerdo con el procedimiento que se describe en M. Jesberger *y col.* en Synthesis 2003, 1929.

Los N-óxidos de los compuestos de fórmulas I o I1, se pueden preparar por oxidación de los compuestos I o I1, de acuerdo con procedimientos convencionales para preparar N-óxidos heteroaromáticos, por ejemplo con el procedimiento que se describe en C. Botteghi *y col.* en Journal of Organometallic Chemistry 1989, 370, 17-31.

Como una regla, los compuestos de fórmulas I o I1 se pueden preparar con los procedimientos que se han descrito anteriormente. Si los compuestos individuales no se pueden preparar a través de las rutas que se han descrito anteriormente, se pueden preparar por derivatización de otros compuestos I o II o mediante modificaciones habituales de las rutas de síntesis descritas. Por ejemplo, en casos individuales, determinados compuestos I o I1 se pueden preparar de forma ventajosa a partir de otros compuestos I o I1 por hidrólisis de éster, amidación, esterificación, escisión de éter, olefinación, reducción, oxidación y similares.

Las mezclas de reacción se tratan de la forma habitual, por ejemplo mezclando con agua, separando las fases, y, si fuera apropiado, purificando los productos en bruto por cromatografía, por ejemplo sobre alúmina o sobre gel de sílice. Algunos de los compuestos intermedios y productos finales se pueden obtener en forma de aceites viscosos incoloros o de color marrón pálido que están libres o purificados de componentes volátiles a presión reducida y la temperatura moderadamente elevada. Si los compases intermedios los productos finales se obtienen en forma de sólidos, se pueden purificar por recristalización o trituración.

40 Debido a su actividad excelente, los compuestos de fórmula general I se pueden usar para controlar plagas de invertebrados.

Por consiguiente, la presente invención también proporciona un procedimiento para controlar plagas de invertebrados procedimiento que comprende tratar las plagas, su suministro de alimentos, su hábitat o su lugar de reproducción o una planta cultivada, materiales de propagación vegetal (tales como semillas), suelo, área, material o entorno en el que crecen o pueden crecer las plagas, o los materiales, plantas cultivadas, material de propagación vegetal (tal como semilla), suelos, superficies o espacios a proteger del ataque o infestación por la plaga con una cantidad plaguicidamente eficaz de un compuesto de fórmula (I) o una sal o N-óxido del mismo o una composición tal como se ha definido anteriormente.

Preferentemente, el procedimiento de la invención sirve para proteger el material de propagación vegetal (tal como semilla) y la planta que crece a partir del mismo del ataque o la infestación de plagas de invertebrados y comprende tratar el material de propagación vegetal (tal como semilla) con una cantidad plaguicidamente eficaz de un compuesto de fórmula (I) o una sal agrícolamente aceptable o N-óxido del mismo tal como se ha definido anteriormente o con una cantidad plaguicidamente eficaz de una composición agrícola tal como se ha definido anteriormente y a continuación. El procedimiento de la invención no se limita a la protección del "sustrato" (planta, material de propagación vegetal, material de suelo, etc.) que se ha tratado de acuerdo con la invención, sino que también presenta un efecto preventivo, por lo tanto, por ejemplo, protegiendo a una planta que crece a partir de un material de propagación vegetal tratado (tal como semilla), no habiendo sido tratada la propia planta.

En el sentido de la presente invención, las "plagas de invertebrados" se seleccionan preferentemente entre artrópodos y nemátodos, más preferentemente entre insectos, arácnidos y nemátodos nocivos, e incluso más preferentemente entre insectos, ácaros y nemátodos. En el sentido de la presente invención, las "plagas de invertebrados" son lo más preferentemente insectos preferentemente insectos del orden Homópteros.

- La invención también proporciona una composición agrícola para combatir tales plagas de invertebrados, que comprende tal cantidad de al menos un compuesto de fórmula general I o al menos una sal o N-óxido del mismo agrícolamente útil y al menos un líquido inerte y/o vehículo sólido agronómicamente aceptable que tiene una acción plaguicida y, si se desea, al menos un tensioactivo.
- Tal composición puede contener un solo compuesto activo de fórmula I o una sal o N-óxido del mismo o una mezcla de varios compuestos activos I o II o sus sales de acuerdo con la presente invención. La composición de acuerdo con la presente invención puede comprender un isómero individual o mezclas de isómeros así como tautómeros individuales o mezclas de tautómeros.

15

20

- Los compuestos de fórmula I y las composiciones plaguicidas que los comprenden son agentes eficaces para controlar plagas de artrópodos y nemátodos. Las plagas de invertebrados controladas con los compuestos de fórmula I incluyen por ejemplo
- insectos del orden de los lepidópteros (Lepidoptera), por ejemplo Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyrestia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choristoneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendrolimus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersicella Lambdina fiscellaria Laphygma exigua, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Lyonetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea
- Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xylostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobipalpula absoluta, Sitotroga cerealella, Sparganothis pilleriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusiani y Zeiraphera canadensis;
- escarabajos (Coleoptera), por ejemplo Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Amphimallus solstitialis, Anisandrus dispar, Anthonomus grandis, Anthonomus pomorum, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebulosa, Cerotoma trifurcata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Diabrotica longicornis, Diabrotica 12 punctata, Diabrotica virgifera, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa dece mlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus communis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Ortiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllotreta chrysocephala, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, Popillia japonica, Sitona lineatus y Sitophilus granaria:
 - dípteros (Diptera), por ejemplo Aedes aegypti, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Contarinia sorghicola, Cordylobia anthropophaga, Culex pipiens, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Fannia canicularis, Gasterophilus intestinalis, Glossina morsitans, Haematobia irritans, Haplodiplosis equestris, Hylemyia platura,
- Hypoderma lineata, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cuprina, Lucilia sericata, Lycoria pectoralis, Mayetiola destructor, Musca domestica, Muscina stabulans, Oestrus ovis, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Rhagoletis cerasi, Rhagoletis pomonella, Tabanus bovinus, Tipula oleracea y Tipula paludosa;
- trips (Thysanoptera), por ejemplo *Dichromothrips corbetti, Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi y Thrips tabaci;*
 - himenópteros (Hymenoptera), por ejemplo Athalia rosae, Atta cephalotes, Atta sexdens, Atta texana, Hoplocampa minuta, Hoplocampa testudinea, Monomorium pharaonis, Solenopsis geminata y Solenopsis invicta;
 - heterópteros (Heteroptera), por ejemplo Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis y Thyanta perditor;
- Ilineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis y Thyanta perditor;
 homópteros (Homoptera), por ejemplo Acyrthosiphon onobrychis, Adelges laricis, Aphidula nasturtii, Aphis fabae,
 Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci,
 Acyrthosiphon pisum, Aulacorthum solani, Bemisia argentifolii, Bemisia tabaci, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chaetosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysaulacorthum pseudosolani, Dysaphis plantaginea, Dysaphis piri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lactucae. Macrosiphum avenae. Macrosiphum euphorbiae. Macrosiphon rosae. Megoura viciae.

Melanaphis pirarius, Metopolophium dirhodum, Myzodes persicae, Myzus ascalonicus, Myzus cerasi, Myzus

persicae, Myzus varians, Nasonovia ribisnigri, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mali, Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Sogatella furcifera Trialeurodes vaporariorum, Toxoptera aurantiiand, y Viteus vitifolii;

- termitas (Isoptera), por ejemplo Calotermes flavicollis, Leucotermes flavipes, Reticulitermes flavipes, Reticulitermes lucifugus y Termes natalensis;
 - ortópteros (Orthoptera), por ejemplo Acheta domestica, Blatta orientalis, Blattella germanica, Forficula auricularia, Gryllotalpa gryllotalpa, Locusta migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Melanoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Periplaneta americana, Schistocerca americana, Schistocerca peregrina, Stauronotus maroccanus y Tachycines asynamorus;
- americana, Schistocerca peregrina, Stauronotus maroccanus y Tachycines asynamorus; aracnoideos, tal como arácnidos (Acarina), por ejemplo de las familias Argasidae, Ixodidae y Sarcoptidae, tales como Amblyomma americanum, Amblyomma variegatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ornithodorus moubata. Otobius megnini. Dermanyssus gallinae. Psoroptes ovis. Rhipicephalus appendiculatus.
- Rhipicephalus evertsi, Sarcoptes scabiei, y Eriophyidae spp. tal como Aculus schlechtendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp. tal como Phytonemus pallidus y Polyphagotarsonemus latus; Tenuipalpidae spp. tal como Brevipalpus phoenicis; Tetranychidae spp. tal como Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius y Tetranychus urticae, Panonychus ulmi, Panonychus citri, y oligonychus pratensis; siphonatera, por ejemplo Xenopsylla cheopsis, Ceratophyllus spp.
- Las composiciones y compuestos de fórmula I son útiles para el control de nemátodos, especialmente nemátodos parasitarios de plantas tales como nemátodos inductores de agallas, *Meloidogyne hapla*, *Meloidogyne incognita*, *Meloidogyne javanica*, y otras especies de Meloidogyne; nemátodos formadores de quistes, *Globodera rostochiensis* y otras especies de Globodera; *Heterodera avenae*,
- Heterodera glicinas, Heterodera schachtii, Heterodera trifolii, y otras especies de Heterodera; Nemátodos de agalla de semilla, especies de Anguina; Nemátodos de tallo y foliares, especies de Aphelenchoides; Nemátodos de aguijón, Belonolaimus longicaudatus y otras especies de Belonolaimus; Nemátodos de pino, Bursaphelenchus xylophilus y otras especies de Bursaphelenchus; Nemátodos anulares, especies de Criconema, especies de Criconemella, especies de Criconemoides, especies de Mesocriconema; Nemátodos de tallo y bulbo, Ditylenchus destructor, Ditylenchus dipsaci y otras especies de Ditylenchus; Nemátodos de punzón, especies de Dolichodorus; Nematodos
- Ditylenchus dipsaci y otras especies de Ditylenchus; Nemátodos de punzón, especies de Dolichodorus; Nematodos espirales, Heliocotylenchus multicinctus y otras especies de Helicotylenchus; Nemátodos de vaina y vainoides, especies de Hemicicliophora y especies de Hemicriconemoides; especies de Hirshmanniella; Nemátodos de lanza, especies de Hoploaimus; falsos nemátodos inductores de agallas, especies de Nacobbus; Nemátodos de aguja, Longidorus elongatus y otras especies de Longidorus; Nemátodos de alfiler, especies de Paratylenchus; Nemátodos de lesión, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus, Pratylenchus goodeyi y otras
- especies de Pratylenchus; Nemátodos excavadores, *Radopholus similis* y otras especies de Radopholus; Nemátodos reniformes, *Rotylenchus robustus* y otras especies de Rotylenchus; especies de Scutellonema; Nemátodos de raíz gruesa, *Trichodorus primitivus* y otras especies de Trichodorus, especies de Paratrichodorus; Nemátodos del raquitismo, *Tylenchorhynchus claytoni, Tylenchorhynchus dubius* y otras especies de Tylenchorhynchus; Nemátodos de cítricos, especies de Tylenchulus; Nemátodos de daga, especies de Xiphinema; y otras especies de nemátodos parasitarios de plantas.

En una realización preferente de la invención los compuestos de fórmula I se usan para controlar insectos o arácnidos, en particular insectos de los órdenes Lepidoptera, Coleoptera, Thysanoptera y Homoptera y arácnidos del orden Acarina. Los compuestos de fórmula I de acuerdo con la presente invención son particularmente útiles para controlar insectos del orden Thysanoptera y Homoptera.

- Los compuestos de fórmula I o las composiciones plaguicidas que los comprenden se pueden usar para proteger plantas y cultivos en crecimiento del ataque o infestación por plagas de invertebrados, especialmente insectos, ácaros o arácnidos por contacto de la planta/cultivo con una cantidad plaguicidamente eficaz de los compuestos de fórmula I. El término "cultivo" se refiere tanto a cultivos en crecimiento como cultivos cosechados.
- Los compuestos de fórmula I se pueden convertir en formulaciones habituales, por ejemplo soluciones, emulsiones, suspensiones, polvos finos, polvos, pastas y gránulos. La forma de uso depende del fin pretendido en particular; en cada caso, se debería asegurar una distribución fina y uniforme del compuesto de acuerdo con la invención.
- mayor y que las formulaciones se preparan de una manera conocida (véase por ejemplo para revisión la patente de Estados Unidos Nº 3.060.084, el documento de patente EP-A 707 445 (para concentrar los líquidos), Browning, "Agglomeration", Chemical Engineering, 4 de diciembre de 1967, 147-48, Perry's Chemical Engineer's Handbook, 4ª Ed., McGraw-Hill, Nueva York, 1963, páginas 8-57 y siguientes, documento de patente WO 91/13546, patente de Estados Unidos Nº 4.172.714, patente de Estados Unidos Nº 4.144.050, patente de Estados Unidos Nº 3.920.442, patente de Estados Unidos Nº 5.180.587, patente de Estados Unidos Nº 5.232.701, patente de Estados Unidos Nº 5.208.030, patente del Reino Unido Nº 2.095.558, patente de Estados Unidos Nº 3.299.566, Klingman, Weed Control as a Science, John Wiley e Hijos, Inc., Nueva York, 1961, Hance *y col.*, Weed Control Handbook, 8ª Ed., Blackwell Scientific Publications, Oxford, 1989 y Mollet, H., Grubemann, A., Formulation technology, Wiley VCH Verlag GmbH, Weinheim (Alemania), 2001, 2, D. A. Knowles, Chemistry and Technology of Agrochemical Formulations, Kluwer Academic Publishers, Dordrecht, 1998 (ISBN 0-7514-0443-8), por ejemplo extendiendo el compuesto activo con

auxiliares adecuados para la formulación de productos agroquímicos, tales como disolventes y/o vehículos, si se desea emulsionantes, tensioactivos y dispersantes, conservantes, agentes antiespumantes, agentes anticongelantes, y para formulación de tratamiento de semilla también opcionalmente colorantes y/o aglutinantes y/o agentes gelificantes.

- Los ejemplos de disolventes adecuados son agua, disolventes aromáticos (por ejemplo productos de Solvesso, xileno), parafinas (por ejemplo fracciones de aceite mineral), alcoholes (por ejemplo metanol, butanol, pentanol, alcohol bencílico), cetonas (por ejemplo ciclohexanona, gamma-butirolactona), pirrolidonas (N-metilpirrolidona [NMP], N-octilpirrolidona [NOP]), acetatos (diacetato de glicol), glicoles, dimetilamidas de ácido graso, ácidos grasos y ésteres de ácidos grasos. En principio, también se usan mezclas de disolventes.
- Los emulsionantes adecuados son emulsionantes no iónicos y aniónicos (por ejemplo éteres de alcohol graso de polioxietileno, alquilsulfonatos y arilsulfonatos).

Los ejemplos de dispersantes son aguas residuales de lignina-sulfito y metilcelulosa.

Los tensioactivos adecuados usados son sales de metales alcalinos, metales alcalino térreos y amonio de ácido lignosulfónico, ácido naftalenosulfónico, ácido fenolsulfónico, ácido dibutilnaftalenosulfónico, alquilarilsulfonatos, sulfatos de alquilo, alquilsulfonatos, sulfatos de alcohol graso, ácidos grasos y glicol éteres de alcohol graso sulfatados, además condensados de naftaleno sulfonados y derivados de naftaleno con formaldehído, condensados de naftaleno o de ácido naftalenosulfónico con fenol y formaldehído, polioxietileno octilfenol éter, isooctilfenol etoxilado, octilfenol, nonilfenol, alquilfenol poliglicol éteres, tributilfenilo poliglicol éter, triestearilfenil poliglicol éter, alquilaril poliéter alcoholes, condensados de alcohol y alcohol graso con óxido de etileno, aceite de ricino etoxilado, polioxietilen alquil éteres, polioxipropileno etoxilado, poliglicol éter acetal de laúricol, ésteres de sorbitol, licores residuales de lignosulfito y metilcelulosa.

Las sustancias que son adecuadas para la preparación de soluciones, emulsiones, pastas o dispersiones oleosas pulverizables directamente son fracciones de aceite mineral de punto de ebullición medio a alto, tales como queroseno o gasolina diésel, además aceites de alquitrán de hulla y aceites de origen vegetal o animal, hidrocarburos alifáticos, cíclicos y aromáticos, por ejemplo tolueno, xileno, parafina, tetrahidronaftaleno, naftalenos alquilados o sus derivados, metanol, etanol, propanol, butanol, ciclohexanol, ciclohexanona, isoforona, disolventes altamente polares, por ejemplo dimetilsulfóxido, N-metilpirrolidona o agua.

También se pueden añadir a la formulación agentes anticongelantes tales como glicerina, etilenglicol, propilenglicol y bactericidas.

30 Los agentes antiespumantes adecuados son por ejemplo antiespumantes basados en estearato de silicio o magnesio.

Por ejemplo, un conservante adecuado es el diclorofeno.

25

Las formulaciones para tratamiento de semillas pueden comprender adicionalmente aglutinantes y opcionalmente colorantes.

- 35 Se pueden añadir alucinantes para mejorar la adhesión de los materiales activos sobre las semillas después del tratamiento. Son aglutinantes adecuados copolímeros en boque de tensioactivos de OE/OP, pero también alcoholes de polivinilo, polivinilpirrolidonas, poliacrilatos, polimetacrilatos, polibutenos, poliisobutilenos, poliestireno, polietilenaminas, polietilenamidas, polietileniminas (Lupasol®, Polymin®), poliéteres, poliuretanos, acetato de polivinilo, tilosa y copolímeros derivados de estos polímeros.
- Opcionalmente, en la formulación también se pueden incluir colorantes. Son colorantes o tintes adecuados para el tratamiento de semillas Rodamina B, Pigmento Rojo C.I. 112, Disolvente Rojo C.I. 1, pigmento azul 15:4, pigmento azul 15:3, pigmento azul 15:2, pigmento azul 15:1, pigmento azul 80, pigmento amarillo 1, pigmento amarillo 13, pigmento rojo 112, pigmento rojo 48:2, pigmento rojo 48:1, pigmento rojo 57:1, pigmento rojo 53:1, pigmento naranja 43, pigmento naranja 34, pigmento naranja 5, pigmento verde 36, pigmento verde 7, pigmento blanco 6, pigmento marrón 25, violeta básico 10, violeta básico 49, rojo ácido 51, rojo ácido 52, rojo ácido 14, azul ácido 9, amarillo ácido 23, rojo básico 10, rojo básico 108.

Un ejemplo de un agente gelificante es el carragenano (Satiagel[®]).

Los polvos, materiales para dispersión y productos para espolvorear se pueden preparar mezclando o moliendo conjuntamente las sustancias activas con un vehículo sólido.

50 Los gránulos, por ejemplo gránulos revestidos, gránulos impregnados y gránulos homogéneos, se pueden preparar uniendo los compuestos activos a vehículos sólidos.

Los ejemplos de vehículos sólidos son tierras minerales tales como geles de sílice, silicatos, talco, caolín, atapulgita activada, caliza, cal, creta, arcilla calcareoferruginosa, loess, arcilla, dolomita, tierra de diatomeas, sulfato cálcico, sulfato de magnesio, óxido de magnesio, materiales sintéticos molidos, fertilizantes tales como, por ejemplo, sulfato

de amonio, fosfato de amonio, nitrato de amonio, ureas y productos de origen vegetal tales como harina de cereal, harina de corteza de árbol, polvo de madera y harina de cáscara de nuez, polvos de celulosa y otros vehículos sólidos.

En general, las formulaciones comprenden de un 0,01 a un 95 % en peso, preferentemente de un 0,1 a un 90 % en peso, del compuesto o compuestos activos. En este caso, el compuesto o compuestos activos se usan con una pureza de un 90 % a un 100 % en peso, preferentemente de un 95 % a un 100 % en peso (de acuerdo con el espectro de RMN).

Con fines de tratamiento de semillas, las formulaciones respectivas se pueden diluir de 2 a 10 veces, conduciendo a concentraciones en las preparaciones listas para usar de un 0,01 a un 60 % en peso de compuesto activo en peso, preferentemente de un 0.1 a un 40 % en peso.

Los compuestos de fórmula I se pueden usar como tales, en forma de sus formulaciones o las formas de uso preparadas a partir de las mismas, por ejemplo en forma de soluciones, polvos, suspensiones o dispersiones directamente pulverizables, emulsiones, dispersiones oleosas, pastas, productos para espolvorear, materiales o gránulos para dispersar, por medio de pulverización, atomización, espolvoreo, dispersión o vertido. Las formas de uso dependen enteramente de los fines pretendidos; se pretende que aseguren en cada caso la distribución más fina posible del compuesto o compuestos activos de acuerdo con la invención.

Las formas acuosas de uso se pueden preparar a partir de concentrados en emulsión, pastas o polvos humectables (polvos pulverizables, dispersiones oleosas) añadiendo agua. Para preparar emulsiones, pastas o dispersiones oleosas, las sustancias, como tal o disueltas en un aceite o disolvente, se pueden homogeneizar en agua por medio de un agente humectante, adhesivo, dispersante o emulsionante. Sin embargo, también es posible preparar concentrados que consisten en sustancia activa, agente humectante, adhesivo, dispersante o emulsionante y, si es adecuado, disolvente o aceite, y tales concentrados son adecuados para dilución con agua.

Las concentraciones del compuesto activo en las preparaciones listas para usar pueden variar dentro de intervalos relativamente amplios. En general, son de un 0,0001 a un 10 % en peso, preferentemente de un 0,01 a un 1 % en peso.

El compuesto o compuestos activos también se pueden usar con éxito en el procedimiento de volumen ultrabajo (ULV), siendo posible aplicar formulaciones que comprenden más de un 95 % en peso de compuesto activo, o incluso aplicar el compuesto activo sin aditivos.

Los siguientes son ejemplos de formulaciones:

5

10

15

20

25

35

40

45

50

55

- Productos para dilución con agua para aplicaciones foliares. Para fines de tratamiento de semillas, tales productos se pueden aplicar a las semillas diluidos o sin diluir.
 - A) Concentrados hidrosolubles (SL, LS)
 - Se disuelven 10 partes en peso del compuesto o compuestos activos en 90 partes en peso de agua o un disolvente hidrosoluble. Como alternativa, se añaden agentes humectantes u otros adyuvantes. El compuesto o compuestos activos se disuelven tras dilución con agua, con lo que se obtiene una formulación con un 10 % (p/p) de compuesto o compuestos activos.
 - B) Concentrados dispersables (DC)
 - Sé disuelven 20 partes en peso del compuesto o compuestos activos en 70 partes en peso de ciclohexanona con la adición de 10 partes en peso de un dispersante, por ejemplo polivinilpirrolidona. La dilución con agua proporciona una dispersión, con lo que se obtiene una formulación con un 20 % (p/p) de compuesto o compuestos activos.
 - C) Concentrados emulsionables (EC)
 - Se disuelven 15 partes en peso del compuesto o compuestos activos en 7 partes en peso de xileno con adición de dodecilbencenosulfonato cálcico y etoxilato de aceite de ricino (en cada caso 5 partes en peso). La dilución con agua proporciona una emulsión, con lo que se obtiene una formulación con un 15 % (p/p) de compuesto o compuestos activos.
 - D) Emulsiones (EW, EO, ES)
 - Se disuelven 25 partes en peso del compuesto o compuestos activos en 35 partes en peso de xileno con adición de dodecilbencenosulfonato cálcico y etoxilato de aceite de ricino (en cada caso 5 partes en peso). Esta mezcla se introduce en 30 partes en peso de agua por medio de una máquina emulsionadora (por ejemplo, Ultraturrax) y se fabrica en una emulsión homogénea. La dilución con agua proporciona una emulsión, con lo que se obtiene una formulación con un 25 % (p/p) de compuesto o compuestos activos.
 - E) Suspensiones (SC, OD, FS)
 - En un molino de bolas con agitación, se trituran 20 partes en peso del compuesto o compuestos activos con adición de 10 partes en peso de dispersantes, agentes humectantes y 70 partes en peso de agua o de un disolvente orgánico para dar una suspensión fina del compuesto o compuestos activos. La dilución con agua proporciona una suspensión estable del compuesto o compuestos activos, con lo que se obtiene una formulación con un 20 % (p/p) de compuesto o compuestos activos.

- F) Gránulos dispersables en agua y gránulos hidrosolubles (WG, SG)
- Se trituran finamente 50 partes en peso del compuesto o compuestos activos con adición de 50 partes en peso de dispersantes y agentes humectantes y se fabrican como gránulos dispersables en agua o hidrosolubles por medio de aparatos técnicos (por ejemplo, extrusión, torre de pulverización, lecho fluidizado). La dilución con agua proporciona una dispersión o solución estable del compuesto o compuestos activos, con lo que se obtiene una formulación con un 50 % (p/p) de compuesto o compuestos activos.
- G) Polvos dispersables en agua y polvos hidrosolubles (WP, SP, SS, WS)
- Se trituran 75 partes en peso del compuesto o compuestos activos en un molino rotor-estátor con la adición de 25 partes en peso de dispersantes, agentes humectantes y gel de sílice. La dilución con agua proporciona una dispersión o solución estable del compuesto o compuestos activos, con lo que se obtiene una formulación con 75% (p/p) de compuesto o compuestos activos.
- H) Formulación en gel (GF)

5

10

15

20

25

30

- En un molino de bolas con agitación, se trituran 20 partes en peso del compuesto o compuestos activos con adición de 10 partes en peso de dispersantes, 1 parte en peso de un agente gelificante y agentes humectantes y 70 partes en peso de agua o de un disolvente orgánico para dar una suspensión fina del compuesto o compuestos activos. La dilución con agua proporciona una suspensión estable del compuesto o compuestos activos, con lo que se obtiene una formulación con un 20 % (p/p) de compuesto o compuestos activos.
- 2. Productos para aplicar sin dilución para aplicaciones foliares. Con fines de tratamiento de semillas, tales productos se pueden aplicar a las semillas diluidos o sin diluir.
 - I) Polvos para espolvorear (DP, DS)
 - Se muelen finamente 5 partes en peso del compuesto o compuestos activos y se mezclan íntimamente con 95 partes en peso de de caolín finamente dividido. Esto proporciona un producto para espolvorear que tiene un 5 % (p/p) de compuesto o compuestos activos.
 - J) Gránulos (GR, FG, GG, MG)
 - Se muelen finamente 0,5 partes en peso del compuesto o compuestos activos y se asocian con 95,5 partes en peso de vehículos, con lo que se obtiene una formulación con un 0,5 % (p/p) de compuesto o compuestos activos. Los procedimientos actuales son extrusión, secado por pulverización o el lecho fluidizado. Esto proporciona gránulos para aplicar sin dilución para uso foliar.
 - K) Soluciones ULV (UL)
 - Se disuelven 10 partes en peso del compuesto o compuestos activos en 90 partes en peso de un disolvente orgánico, por ejemplo xileno. Esto proporciona un producto que tiene un 10 % (p/p) descompuesto o compuestos activos, que se aplica sin diluir para uso foliar.
- Los compuestos de fórmula I también son adecuados para el tratamiento de material de propagación vegetal (tal como semilla). Las formulaciones convencionales para el tratamiento de semillas incluyen, por ejemplo, concentrados fluidificables de FS, soluciones LS, polvos para tratamiento en seco DS, polvos dispersables en agua para tratamiento en suspensión espesa WS, polvos hidrosolubles SS y emulsión ES y EC y formulación en gel GF. Estas formulaciones se pueden aplicar a las semillas diluidas o sin diluir. La aplicación a las semillas se realiza antes de la siembra, directamente en las semillas o después de que las últimas hayan pre-germinado.
- En una realización preferente, se usa una formulación de FS para el tratamiento de semillas. Por lo general, una formulación de FS puede comprender de 1 a 800 g/l de principio activo, de 1 a 200 g/l de tensioactivo, de 0 a 200 g/l de agente anticongelante, de 0 a 400 g/l de aglutinante, de 0 a 200 g/l de un pigmento y hasta 1 litro de un disolvente, preferentemente agua.
- Otras formulaciones de FS preferentes de compuestos de fórmula I para el tratamiento de semillas comprenden de un 0,5 a un 80 % en peso del principio activo, de un 0,05 a un 5 % en peso de un agente humectante, de un 0,5 a un 15 % en peso de un agente dispersante, de un 0,1 a un 5 % en peso de un espesante, de un 5 a un 20 % en peso de un agente anticongelante, de un 0,1 a un 2 % en peso de un agente antiespumante, de un 1 a un 20 % en peso de un pigmento y/o un colorante, de un 0 a un 15 % en peso de adhesivo/agente de adhesión, de un 0 a un 75 % en peso de una carga/vehículo y de un 0,01 a un 1 % en peso de un conservante.
- 50 Se pueden añadir diversos tipos de aceites, agentes humectantes, adyuvantes, herbicidas, fungicidas, otros plaguicidas o bactericidas, a los principios activos si fuera apropiado inmediatamente antes del uso (mezcla en tanque). Estos agentes se mezclan habitualmente con los agentes de acuerdo con la invención en una relación de peso de 1:10 a 10:1.
- Los compuestos de fórmula I son eficaces a través tanto por contacto (a través de suelo, vidrio, pared, mosquitera, alfombra, partes de planta o partes de animal), como por ingestión (cebo o parte de planta).
 - Para uso frente a hormigas, termitas, avispas, moscas, mosquitos, grillos o cucarachas, los compuestos de fórmula I se usan preferentemente en una composición de cebo.
 - El cebo puede ser una preparación líquida, sólida o semisólida (por ejemplo, un gel). Los cebos sólidos se pueden

formar en diversas conformaciones y formas adecuadas para la aplicación respectiva, por ejemplo, gránulos, bloques, barras, discos. Los cebos líquidos pueden rellenar diversos dispositivos para asegurar una aplicación apropiada, por ejemplo envases abiertos, dispositivos de pulverización, fuentes de goteo o fuentes de evaporación. Los geles se pueden basar en matrices acuosas u oleosas y se pueden formular para necesidades particulares en términos de pegajosidad, retención de humedad o características de envejecimiento. El cebo usado en la composición es un producto que es suficientemente atractivo para incitar a insectos tales como hormigas, termitas, avispas, moscas, mosquitos, grillos, etc. o cucarachas a comerlo. El atractivo se puede manipular usando estimulantes alimentarios o feromonas sexuales. Los estimulantes alimentarios se eligen, por ejemplo, pero no exclusivamente, de proteínas animales y/o vegetales (harina de carne, pescado o sangre, partes de insecto, yema de huevo), de grasas y aceites de origen animal y/o vegetal o mono-, oligo- o poliorganosacáridos, especialmente sacarosa, lactosa, fructosa, dextrosa, glucosa, almidón, pectina o incluso melazas o miel. Las partes frescas o descompuestas de frutos, cultivos, plantas, animales, insectos o partes específicas de los mismos también servir pueden como estimulante alimentario. Se conoce que las feromonas sexuales son más específicas para insectos. En la bibliografía se describen feromonas específicas y son conocidas por los expertos en la materia.

5

10

30

35

40

45

15 Las formulaciones de compuestos de fórmula I como aerosoles (por ejemplo, en botes pulverizadores), pulverizadores de aceite o pulverizadores de bomba son altamente deseables para el usuario no profesional para controlar plagas tales como moscas, pulgas, garrapatas, mosquitos o cucarachas. Las fórmulas de aerosol están compuestas preferentemente por compuesto activo, disolventes tales como alcoholes inferiores (por ejemplo, metanol, etanol, propanol, butanol), cetonas (por ejemplo, acetona, metil etil cetona), hidrocarburos parafinados (por ejemplo, querosenos) que tienen intervalos de ebullición de aproximadamente 50 a 250 °C, dimetilformamida, N-20 metilpirrolidona, dimetilsulfóxido, hidrocarburos aromáticos tales como tolueno, xileno, agua, además adyuvantes tales como emulsionantes tales como monooleato de sorbitol, etoxilato de oleílo que tiene de 3 a 7 moles de óxido de etileno, etoxilato de alcohol graso, aceites perfumados tales como aceites de éter, ésteres de ácidos grasos medios con alcoholes inferiores, compuestos carbonílicos aromáticos, si fuera apropiado estabilizantes tales como benzoato de sódico, tensioactivos anfotéricos, epóxidos inferiores, ortoformiato de trietilo y, si fuera necesario, 25 propelentes tales como propano, butano, nitrógeno, aire comprimido, dimetil éter, dióxido de carbono, óxido nitroso o mezclas de estos gases.

Las formulaciones de pulverización de aceite difieren de las fórmulas de aerosol en que no se usan propelentes.

Los compuestos de fórmula I y sus composiciones respectivas también se pueden usar en espirales antimosquitos y de fumigación, cartuchos de humo, placas vaporizadoras o vaporizadores a largo plazo y también en papeles antipolillas, pastillas antipolillas u otros sistemas vaporizadores independientes del calor.

Los procedimientos para controlar enfermedades infecciosas transmitidas por insectos (por ejemplo, malaria, denque y fiebre amarilla, filariasis linfática y leishmaniosis) con compuestos de fórmula I y sus composiciones respectivas comprenden también el tratamiento de superficies de cabañas y casas, pulverización del aire e impregnación de cortinas, tiendas, artículos de vestir, mosquiteras, trampas para mosca tsé tsé o similares. Las composiciones insecticidas para aplicación a fibras, tela, artículos tejidos, no tejidos, material o láminas de malla y toldos comprenden preferentemente una mezcla que incluye el insecticida, opcionalmente un repelente y al menos un aglutinante. Por ejemplo, son repelentes adecuados N,N-dietil-meta-toluamida (DEET), N,N-dietilfenilacetamida (DE-PA), 1-(3-ciclohexan-1-il-carbonil)-2-metilpiperina, lactona del ácido (2-hidroximetilciclohexil) acético, 2-etil-1,3hexanodiol, indalona, Metilneo-decanamida (MNDA), un piretroide no usado para control de insectos tal como (+) trans-crisantemato de {(+/-)-3-alil-2-metil-4-oxociclopent-2-(+)-enilo (Esbiotrina), un repelente derivado de o idéntico a extractos vegetales como limoneno, eugenol, (+)-Eucamalol (1), (-)-1-epi-eucamalol o extractos vegetales brutos de plantas como Eucalyptus maculata, Vitex rotundifolia, Cymbopogan martinii, Cymbopogan citratus (hierba de limón), Cymopogan nartdus (citronela). Los aglutinantes adecuados se seleccionan, por ejemplo, entre polímeros y copolímeros de ésteres vinílicos de ácidos alifáticos (tales como acetato de vinilo y versatato de vinilo), ésteres acrílicos y metacrílicos de alcoholes tales como acrilato de butilo, acrilato de 2-etilhexilo y acrilato de metilo, hidrocarburos mono- y dietilénicamente insaturados tales como estireno y dienos alifáticos tales como butadieno.

La impregnación de cortinas y mosquiteras se realiza en general sumergiendo el material textil en emulsiones o dispersiones de los compuestos activos de fórmula I o pulverizándolos sobre las mallas.

Los procedimientos que se pueden usar para tratar la semilla son, en principio, todas las técnicas de tratamiento de semillas y especialmente de desinfección de semillas adecuadas conocidas en la técnica, tales como revestimiento de semillas (por ejemplo, peletización de semillas), espolvoreo de semillas e imbibición de semillas (por ejemplo, empapado de semillas). Aquí, "tratamiento de semillas" hace referencia a todos los procedimientos que ponen en contacto semillas y los compuestos de fórmula I entre sí, y "desinfección de semillas" a procedimientos para el tratamiento de semillas que proporcionan a las semillas una cantidad de los compuestos de fórmula I, es decir que generan una semilla que comprende el compuesto de fórmula I. En principio, el tratamiento puede se aplicar a la semilla en cualquier momento desde la recolección de la semilla hasta la siembra de la semilla. La semilla se puede tratar inmediatamente antes, o durante la plantación de la semilla, por ejemplo usando el procedimiento de "maceta". Sin embargo, el tratamiento se puede realizar también durante varias semanas o meses, por ejemplo hasta 12 meses, antes de plantar la semilla, por ejemplo en forma de un tratamiento de desinfección de semillas, sin que se observe una eficacia sustancialmente reducida.

Convenientemente, el tratamiento se aplica a semilla no sembrada. Tal como se usa en el presente documento, la expresión "semilla no sembrada" pretende incluir semilla en cualquier periodo desde la recolección de la semilla hasta la siembra de la semilla en el terreno con fines de germinación y crecimiento de la planta.

Específicamente, se sigue un procedimiento en el tratamiento en el que se mezcla la semilla, en un dispositivo adecuado, por ejemplo un dispositivo de mezclado para asociados de mezcla sólidos o sólidos/líquidos, con la cantidad deseada de formulaciones para el tratamiento de semillas, como tales o después de dilución previa con agua, hasta que la composición se distribuye uniformemente sobre la semilla. Si fuera apropiado, esto va seguido por una etapa de secado.

5

10

15

20

25

30

35

40

50

55

Los compuestos activos se pueden aplicar solos o en una mezcla con agentes sinérgicos o con otros compuestos activos que actúan frente a endo- y ectoparásitos patógenos.

La plaga de invertebrados, es decir artrópodos y nemátodos, la planta, suelo o agua en los que crece la planta se puede poner en contacto con el compuesto o compuestos de fórmula I o composición o composiciones que los contienen mediante cualquier procedimiento de aplicación conocido en la técnica. Como tal, "poner en contacto" incluye tanto el contacto directo (aplicación de los compuestos/composiciones directamente sobre la plaga de invertebrados o planta - por lo general al follaje, tallo o raíces de la planta) como el contacto indirecto (aplicación de los compuestos/composiciones al sitio de la plaga de invertebrados o planta).

Además las plagas de invertebrados se pueden controlar poniendo en contacto la plaga objetivo, su suministro de alimento, hábitat, lugar de reproducción o su sitio con una cantidad plaguicidamente eficaz de compuestos de fórmula I. Como tal, la aplicación se puede realizar antes o después de la infección del sitio, cultivos en crecimiento, o cultivos recolectados, por la plaga.

"Sitio" en general significa un hábitat, lugar de reproducción, plantas cultivadas, material de propagación vegetal (tal como semilla), suelo, área, material un entorno en el que la plaga o parásito está creciendo o puede crecer.

En general "cantidad plaguicidamente eficaz" significa la cantidad de principio activo necesario para conseguir un efecto observable en el crecimiento, incluyendo los efectos de necrosis, muerte, retraso, prevención, y eliminación, destrucción, o disminución de otro modo de la aparición y actividad del organismo objetivo. La cantidad plaguicidamente eficaz puede variar para los diversos compuestos/composiciones usados en la invención. Una cantidad plaguicidamente eficaz de las composiciones también variará de acuerdo con las condiciones prevalentes tales como efecto y duración plaguicida, climatología, especies objetivo, sitio, modo de aplicación deseados, y similares.

Los compuestos de fórmula I y las composiciones que comprenden dichos compuestos se pueden usar para proteger materiales de madera tales como árboles, vallas de madera, traviesas, etc. y edificios tales como casas, edificios anexos, fábricas, y además materiales de construcción, mobiliario, cueros, fibras, artículos de vinilo, hilos y cables eléctricos, etc. de hormigas y/o termitas, y para controlar que hormigas y termitas no dañen cultivos o seres humanos (por ejemplo, cuando las plagas invaden casas e instalaciones públicas). Los compuestos de fórmula I se aplican no solo a la superficie del suelo o al suelo bajo tierra para proteger materiales de madera, sino que también se pueden aplicar a artículos de serrería tales como superficies del hormigón bajo el suelo, postes de nicho, contrachapado, mobiliario, etc., artículos de madera tales como tableros de partículas, medios tableros, etc., y artículos de vinilo tales como alambres eléctricos revestidos, láminas de vinilo, material aislante térmico tal como espumas de estireno, etc. En caso de aplicación frente a hormigas que dañan cultivos o seres humanos, el controlador de hormigas de la presente invención se aplica a los cultivos o al suelo circundante, o se aplica directamente al nido de hormigas o similar.

Los compuestos de fórmula I también se pueden aplicar preventivamente a sitios en los que se espera la aparición de plagas.

Los compuestos de fórmula I también se pueden usar para proteger plantas en crecimiento del ataque o infestación por plagas mediante la puesta en contacto de la planta con una cantidad plaguicidamente eficaz de compuestos de fórmula I. Como tal, "poner en contacto la planta" incluye tanto el contacto directo (aplicación de los compuestos/composiciones directamente sobre la plaga y/o planta, por lo general al follaje, tallo o raíces de la planta) como el contacto indirecto (aplicación de los compuestos/composiciones al sitio de la plaga y/o planta).

En el caso de tratamiento de suelo o de aplicación al sitio de residencia o nido de las plagas, la cantidad de principio activo varía de 0,0001 a 500 g por 100 m², preferentemente de 0,001 a 20 g por 100 m².

Los índices de aplicación habituales en la en protección de materiales son, por ejemplo, de 0,01 g a 1000 g de compuesto activo por m² de material tratado, de forma deseable de 0,1 g a 50 g por m².

Las composiciones insecticidas para uso en la impregnación de materiales por lo general contienen de un 0,001 a un 95 % en peso, preferentemente de un 0,1 a un 45 % en peso, y más preferentemente de un 1 a un 25 % en peso de al menos un repelente y/o insecticida.

Para uso en composiciones de cebo, el contenido habitual del principio activo es de un 0,001 % en peso a un 15 % en peso, de forma deseable de un 0,001 % en peso a un 5 % en peso de compuesto activo.

Para uso en composiciones de pulverización, el contenido del principio activo es de un 0,001 a un 80 % en peso, preferentemente de un 0,01 a un 50 % en peso y lo más preferentemente de un 0,01 a un 15 % en peso.

Para uso en el tratamiento de plantas de cultivo, el índice de aplicación de los principios activos de la presente invención puede estar en el intervalo de 0,1 g a 4000 g por hectárea, de forma deseable de 5 g a 600 g por hectárea, deforma más deseable de 10 g a 300 g por hectárea.

En el tratamiento de semillas, los índices de aplicación de los principios activos son generalmente de 0,1 g a 10 kg por 100 kg de semillas, preferentemente de 1 g a 1 kg por 100 kg de semillas, en particular de 1 g a 250 g por 100 kg de semillas, en particular de 10 g a 150 g por 100 kg de semillas.

La presente invención se ilustra a continuación con más detalle con los siguientes ejemplos.

I. Ejemplos de preparación

10

15

20

25

30

35

Con una modificación apropiada, se usaron los procedimientos proporcionados en el ejemplo de síntesis que sigue a continuación para obtener compuestos I adicionales. Los compuestos obtenidos de este modo se enumeran en la tabla que sigue a continuación, junto con datos físicos.

Los productos que se muestran a continuación se caracterizaron por determinación del punto de fusión, mediante espectroscopía de RMN o de masas ([m/z]) o tiempo de retención (TR; [min.]) determinados por espectrometría de HPLC-MS.

HPLC-MS = cromatografía líquida de alto rendimiento acoplada a espectrometría de masas; condiciones de HPLC para los ejemplos 1-27: columna de HPLC: columna de RP-18 (Chromolith® Speed ROD de Merck KgaA, Alemania), 50 * 4,6 mm; fase móvil: acetonitrilo + ácido trifluoroacético al 0,1 % (TFA)/agua + TFA al 0,1 %, usando un gradiente de 5:95 a 100:0 durante 5 minutos a 40 °C, caudal 1,8 ml/min.

Condiciones de HPLC para los ejemplos 28-32: columna de HPLC: columna RP-18 (Kinetex™ XB C18 de 1,7 µ de Phenomenex, Alemania), 50 * 2,0 mm; fase móvil: acetonitrilo + ácido trifluoroacético al 0,1 % (TFA)/agua + TFA 0,1 %, usando un gradiente de 5:95 a 100:0 durante 1,5 minutos a 60 °C, caudal de 0,8 ml/min a 1,0 ml/min.

MS: ionización por electronebulización tetrapolar, 80 V (modo positivo).]

Preparación de [1-metil-1H-piridazin-(4E)-iliden]-amida del ácido 5-metil-1-(2,2,2-trifluoro-etil)-1H-pirazol-4-carboxílico (Ejemplo 7)

Se suspendieron piridazin-4-ilamida del ácido 5-metil-1-(2,2,2-trifluoro-etil)-1H-pirazol-4-carboxílico (500 mg, 1,75 mmol, 1,0 equiv.) y carbonato de cesio (1,43 g, 2,28 mmol, 2,5 equiv.) en 30 ml de Dimetilformamida (DMF). Se añadió yoduro de metilo (324 mg, 2,28 mmol, 1,3 equiv.) y la mezcla se agitó a 60 °C durante una noche. El disolvente se retiró a presión reducida y el residuo se diluyó con CH₂Cl₂ y se lavó con agua. Las fases se separaron y la fase orgánica se secó sobre Na₂SO₄, se filtró y el disolvente se retiró a presión reducida. El residuo se trituró con una mezcla de éter de petróleo y metil-terc-butiléter (MTBE) para producir 259 mg del compuesto del título (47 %, pureza de un 95 %). LC-MS: Ret. 1,840 min, 300.1 [M[†]].

Ejemplos: Compuestos de fórmula I

Ej.	A	Х	R ¹	t.r. [min]	m
1	5-difluorometil-1-(2,2,2-trifluoro-etil)-1H-pirazol-4 ilo	0	piridin-2-ilmetilo	2,285	413,0
2	5-metil-1-(2,2,2-trifluoroetil)-1H-pirazol-4 ilo	0	piridin-2-ilmetilo	2,026	377,1
3	5-metil-1-(2,2,2-trifluoroetil)-1H-pirazol-4 ilo	0	alilo	1,992	326,1
4	5-difluorometil-1-(2,2,2-trifluoro-etil)-1H-pirazol-4 ilo	0	piridin-3-ilmetilo	1,851	413,0
5	5-metil-1-(2,2,2-trifluoroetil)-1H-pirazol-4 ilo	0	piridin-3-ilmetilo	1,600	377,1
6	5-difluorometil-1-(2,2,2-trifluoro-etil)-1H-pirazol-4 ilo	0	tetrahidrofuran-2-ilmetilo	2,313	406,1
7	5-metil-1-(2,2,2-trifluoroetil)-1H-pirazol-4 ilo	0	metilo	1,840	300,1
8	1-(2-metoxietil)-5-metil-1H-pirazol-4-ilo	0	piridin-2-ilmetilo	1,829	353,2
9	1-(2-metoxietil)-5-metil-1H-pirazol-4-ilo	0	bencilo	2,254	352,1
10	1-(ciclopropilmetil)-5-metil-1H-pirazol-4-ilo	0	piridin-2-ilmetilo	2,128	349,1

(continuación)

	(continuación	'/		T	П	
Ej.	Α	Χ	R1	t.r. [min]	m	
11	1-(ciclopropilmetil)-5-metil-1H-pirazol-4-ilo	0	bencilo	2,504	348,1	
12	1-isopropil-5-metil-1H-pirazol-4-ilo	0	piridin-2-ilmetilo	2,032	337,1	
13	1-isopropil-5-metil-1H-pirazol-4-ilo	0	bencilo	2,431	336,1	
14	1-(ciclopropilmetil)-5-metil-1H-pirazol-4-ilo	0	metilo	1,915	272,1	
15	1-(ciclopropilmetil)-5-metil-1H-pirazol-4-ilo	0	alilo	2,133	298,1	
16	1-isopropil-5-metil-1H-pirazol-4-ilo	0	metilo	1,756	260,1	
17	1-isopropil-5-metil-1H-pirazol-4-ilo	0	alilo	2,042	286,1	
18	4-metiltiazol-5-ilo	0	bencilo	2,109	311,0	
19	4-metiltiazol-5-ilo	0	piridin-2-ilmetilo	1,687	312,0	
20	4-metiltiazol-5-ilo	0	alilo	1,617	261,1	
21	3-metil-isotiazol-4-ilo	0	bencilo	2,162	311,1	
22	3-metil-isoxazol-4-ilo	0	bencilo	2,178	295,1	
23	2,4-dimetilpirimidin-5-ilo	0	metilo	1,266	244,0	
24	2,4-dimetilpirimidin-5-ilo	0	bencilo	1,994	320,0	
25	2,4-dimetilpirimidin-5-ilo	0	piridin-2-ilmetilo	1,617	321,0	
27	1-isopropil-5-metil-1H-pirazol-4-ilo	0	metoximetilo	1,873	290,1	
28	5-metil-1-(2,2,2-trifluoro-1-metil-etil)-1H-pirazol-4-ilo	0	metoximetilo	0,759	344,1	
29	5-metil-1-(2,2,2-trifluoro-1-metil-etil)-1H-pirazol-4-ilo	0	bencilo	0,905	390,1	
30	5-metil-1-(2,2,2-trifluoro-1-metil-etil)-1H-pirazol-4-ilo	0	piridin-2-ilmetilo	0,802	391,1	
31	5-metil-1-(2,2,2-trifluoro-1-metil-etil)-1H-pirazol-4-ilo	0	alilo	0,795	340,1	
32	5-metil-1-(2,2,2-trifluoro-1-metil-etil)-1H-pirazol-4-ilo	0	metilo	0,721	314,1	
t.r. = tiempo de retención por HPLC						

m = masa molecular de picos [M]

- II. Evaluación de la actividad plaguicida:
- II.1 Áfido del algodón (Aphis gossypii, diversos estadios vitales)
- Los compuestos activos se formularon en ciclohexanona como una solución de 10.000 ppm suministrada en tubos 5 de 1,3 ml de ABgene[®]. Estos tubos se introdujeron en un pulverizador electrostático automatizado equipado con una boquilla de atomización y sirvieron como soluciones de reserva para las que se realizaron diluciones más bajas en acetona al 50 %:aqua al 50 % (v/v). Se incluyó un tensioactivo no iónico (Kinetic®) en la solución a un volumen de un 0,01 % (v/v).
- 10 Las plantas de algodón en la etapa de cotiledón se infestaron con áfidos antes del tratamiento colocando una hoja muy infestada de la colonia principal de áfidos en la parte superior de cada cotiledón. Se permitió que los áfidos se transfirieran durante una noche para lograr una infestación de 80-100 áfidos por planta y se retiró la hoja huésped. A continuación, las plantas infestadas pulverizaron con un pulverizador electrostático automatizado equipado con una boquilla de pulverización de atomización. Las plantas se secaron en la campana de humos del pulverizador, se sacaron del pulverizador y a continuación se mantuvieron en una cámara de crecimiento con iluminación 15 fluorescente en un fotoperiodo de 24 h a 25 °C y una humedad relativa de un 20-40 %. La mortalidad de los áfidos en las plantas tratadas, con respecto a la mortalidad en las plantas de control sin tratar se determinó después de 5 días.
- En este ensayo, los compuestos 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 24 y 25, resp., a 300 ppm mostraron una 20 mortalidad de al menos un 75 % en comparación con los controles sin tratar .

II.2 Áfido verde del melocotón (Myzus persicae, diversos estadios vitales)

Los compuestos activos se formularon en ciclohexanona como una solución de 10.000 ppm suministrada en tubos de 1,3 ml de ABgene[®]. Estos tubos se introdujeron en un pulverizador electrostático automatizado equipado con una boquilla de atomización y sirvieron como soluciones de reserva para las que se realizaron diluciones más bajas en acetona al 50 %:agua al 50 % (v/v). Se incluyó un tensioactivo no iónico (Kinetic®) en la solución a un volumen de un 0,01 % (v/v).

Plantas de pimentón en el primer estadio de hoja verdadera se infestaron antes del tratamiento introduciendo hojas muy infestadas de la colonia principal en la parte superior de las plantas de tratamiento. Se permitió que los áfidos se transfirieran durante una noche para lograr una infestación de 30-50 áfidos por planta y se retiró las hojas huésped. A continuación, las plantas infestadas se pulverizaron con un pulverizador electrostático automatizado equipado con una boquilla de pulverización de atomización. Las plantas se secaron en la campana de humos del pulverizador, se sacaron del pulverizador y a continuación se mantuvieron en una cámara de crecimiento con iluminación fluorescente en un fotoperiodo de 24 h a 25 °C y una humedad relativa de un 20-40 %. La mortalidad de los áfidos en las plantas tratadas, con respecto a la mortalidad en las plantas de control sin tratar se determinó después de 5 días.

En este ensayo, los compuestos 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 23, 24 y 25, resp., a 300 ppm mostraron una mortalidad de al menos un 75 % en comparación con los controles sin tratar .

II.3 Áfido negro (Aphis craccivora)

5

10

15

20

30

40

Los compuestos activos se formularon en acetona: agua a 50:50 (vol:vol). La solución ensayo se preparó el día del uso.

Se pulverizaron plantas de judía de careta colonizadas con 100 - 150 ácidos de diversos estadios después de haber registrado la población de plagas. La reducción de la población se valoró después de 24, 72, y 120 horas.

En este ensayo, los compuestos 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 21, 23, 24 y 25, resp., a 300 ppm mostraron una mortalidad de al menos un 90 % en comparación con los controles sin tratar .

25 II.4 Áfido de la algarroba (Megoura viciae)

Los compuestos activos se formularon en DMSO:agua a 1:3 (vol:vol) con diferentes concentraciones de los compuestos formulados.

Se colocaron discos de hoja de judía en placas de microtitulación rellenas con agar-agar al 0,8 % y 2,5 ppm de OPUS™. Los discos de hoja se pulverizaron con 2,5 µl de la solución de ensayo y se colocaron de 5 a 8 áfidos adultos en las placas de microtitulación que a continuación se cerraron y se mantuvieron a 23 ± 1 °C y una humedad relativa de un 50 ± 5 % con luz fluorescente durante 6 días. La mortalidad se evaluó en base a los áfidos vitales reproducidos. La mortalidad y la fecundidad de los áfidos se evaluaron visualmente.

En este ensayo, los compuestos 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17 y 27, resp. A la concentración de la solución de ensayo de 2500 mg/l mostraron una mortalidad de al menos un 90 %.

35 II.5 Gorgojo del algodón (Anthonomus grandis)

Los compuestos se formularon en agua: DMSO a 75:25 (vol:vol).

Para evaluar el control del gorgojo del algodón (Anthonomus grandis) la unidad ensayo consistía en placas de microtitulación de 24 pocillos que contenían una dieta de insecto y 20-30 A. de huevos de grandis. Se pulverizaron diferentes concentraciones de los compuestos formulados sobre la dieta del insecto a 20 μ l, usando un micro atomizador de integrado adaptado, con dos duplicados. Después de la aplicación, las placas de microtitulación se incubaron a 23 \pm 1 °C y una humedad relativa de un 50 \pm 5 % durante 5 días. A continuación, la mortalidad de los huevos y las larvas se evaluó visualmente.

En este ensayo, los compuestos 2, 4, 6, 8, 12, 13 y 22, resp. A una concentración de la solución de ensayo de 2500 mg/l mostraron una mortalidad de al menos un 50 %.

45 II.6 Actividad frente al Áfido Verde del Melocotón (Myzus persicae)

Para evaluar el control del áfido verde del melocotón (Myzus persicae) a través de medios sistémicos, la unidad de ensayo consistía en placas de microtitulación de 96 pocillos que contenían dieta artificial líquida bajo una membrana artificial.

Los compuestos se formularon usando una solución que contenía agua al 75 % en v/v y DMSO al 25 % en v/v. Se pipetearon diferentes concentraciones de los compuestos formulados en la dieta del áfido, usando un pipeteador integrado adaptado y con dos duplicados. Después de la aplicación, de 5 a 8 áfidos adultos se introdujeron en la

membrana artificial dentro de los pocillos de la placa de microtitulación. A continuación, se permitió que los áfidos succionaran la dieta para áfidos tratados y se incubaron a aproximadamente 23 + 1 °C y una humedad relativa de aproximadamente un 50 + 5 % durante 3 días. La mortalidad y la fecundidad de los áfidos se evaluaron visualmente.

En este ensayo, los compuestos 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 23, 24, 25 y 27, resp., a 2500 ppm presentaron una mortalidad de un 100 % en comparación con los controles sin tratar.

II.7 Mosca Blanca de las Hojas Plateadas (Bemisia argentifolii, adulta)

5

10

15

20

Los compuestos activos se formularon en ciclohexanona como una solución de 10.000 ppm suministrada en tubos de 1,3 ml de ABgene[®]. Estos tubos se introdujeron en un pulverizador electrostático automatizado equipado con una boquilla de atomización y sirvieron como soluciones de reserva para las que se realizaron diluciones más bajas en acetona al 50 %:agua al 50 % (v/v). Se incluyó un tensioactivo no iónico (Kinetic®) en la solución a un volumen de un 0,01 % (v/v).

Las plantas de algodón en la etapa de cotiledón (una planta por recipiente) se pulverizaron con un pulverizador de plantas electrostático automatizado equipado con una boquilla de pulverización por atomización. Las plantas se secaron en la campana de humos del pulverizador y a continuación se sacaron del pulverizador. Cada recipiente se puso en una taza de plástico y se introdujeron de 10 a 12 moscas blancas adultas (de aproximadamente 3-5 días de edad). Los insectos se recogieron usando un aspirado y un trozo de tubo de 0,6 cm de Tygon®, no tóxico (R-3603) conectado a una punta de pipeta de barrera. La punta, que contenía los insectos recogidos, se introdujo suavemente a continuación en el suelo que contenía la planta tratada, permitiendo que los insectos treparan hacia fuera de la punta para alcanzar el follaje para su alimentación. Las tazas se cubrieron con una tapa de malla reutilizable (pantalla PeCap de poliéster de malla de 150 micrómetros de Tetko, Inc.). Las plantas del ensayo se mantuvieron en una habitación de crecimiento a 25 °C y una humedad relativa de un 20-40 % durante 3 días, evitando la exposición directa a la luz fluorescente (fotoperiodo de 24 horas) para evitar el calor atrapado dentro de la taza. La mortalidad se evaluó 3 días después del tratamiento, en comparación con las plantas de control sin tratar.

En este ensayo, los compuestos 2, 3, 4, 6, 7, 8, 9, 10, 12, 15 y 17, resp., a 300 ppm mostraron una mortalidad de al menos un 75 % en comparación con los controles sin tratar.

REIVINDICACIONES

1. Compuestos de hetaril (tio)carboxamida de fórmula I

$$A = \begin{bmatrix} X & Y & R^1 \\ Y & Y & N \end{bmatrix}$$
 (I)

en la que

5 X es S u O;

10

 R^1 es alquilo C_1 - C_{10} , haloalquilo C_1 - C_{10} , alquenilo C_3 - C_{10} , alquinilo C_3 - C_{10} , alquileno C_1 - C_4 - C_4 , or C_4 - C_4 , cicloalquil C_3 - C_{10} -alquilo C_1 - C_4 , heterociclil-alquilo C_1 - C_4 de 5 o 6 miembros saturado, o hetaril-alquilo C_1 - C_4 de 5 o 6 miembros, en el que el anillo de cicloalquilo y el anillo de heterociclilo en cicloalquilo C_3 - C_{10} -alquilo C_1 - C_4 y heterociclil-alquilo C_1 - C_4 , respectivamente, está sin sustituir o lleva 1, 2, 3, 4 o 5 sustituyentes R^y idénticos o diferentes, y en el que el anillo de fenilo y el anillo de hetarilo en fenil-alquilo C_1 - C_4 y hetaril-alquilo C_1 - C_4 y sustituir o lleva 1, 2, 3, 4 o 5 sustituyentes R^y idénticos o diferentes:

A es un hetarilo de 5 miembros que tiene las fórmulas A1, A2, A3, A4, A5, A6, o A7:

$$(R^{A})_{n}$$
 $(R^{A})_{n}$
 $(R^{A})_{n}$

en las que # representa el punto de unión al resto de fórmula I,

Z es O, S o N- \mathbb{R}^{N} , en el que \mathbb{R}^{N} es tal como se define en la reivindicación 1, n es 0, 1, 2, o 3,

R^{A'} es hidrógeno, o tiene uno de los significados dados para R^A;

o es seleccionado entre el grupo que consiste en los radicales de fórmulas A8-1, A8-2, A8-3, A8-4, A8-5, A8-6, A8-7, A8-8, y A8-9:

en las que # representa el punto de unión al resto de fórmula I, y R^{Z1} , R^{Z2} , R^{Z3} , R^{Z4} y R^{Z5} si están presentes, son seleccionados independientemente entre sí entre hidrógeno, halógeno, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C₁-C₄, haloalcoxi C₁-C₄, alquileno C₁-C₃-CN, alquileno C₁-C₃-OR^a, cicloalquilo C₃-C₇, cicloalquil C₃-C₇-alquilo C₁-C₃, heterociclil-alquilo C₁-C₃ saturado de 3 a 7 miembros, en los que cicloalquilo y heterociclilo en los 3 últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes Ry idénticos o diferentes:

R^A es seleccionado entre el grupo que consiste en halógeno, CN, NO₂, alguilo C₁-C₁₀, alguenilo C₂-C₁₀ y alquinilo C₂-C₁₀, en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar

parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^x idénticos o diferentes, y también entre el grupo que consiste en OR^a , $C(Y)R^b$, $C(Y)OR^c$, $S(O)_mR^d$, NR^eR^f , heterociclilo, fenilo, hetarilo, cicloalquilo C_3 - C_{10} y cicloalquenilo C_5 - C_{10} , en el que los cinco últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes Ry idénticos o diferentes; y

R^N es seleccionado entre el grupo que consiste en hidrógeno, CN, NO₂, alquilo C₁-C₁₀, alquenilo C₂-C₁₀ y alquinilo C2-C10, en el que los tres últimos radicales mencionados pueden estar sin sustituir, pueden estar parcial o totalmente halogenados o pueden llevar 1, 2 o 3 sustituyentes R^x idénticos o diferentes, y también entre el grupo que consiste en OR_a , $C(Y)R^b$, $C(Y)OR^c$, $S(O)_mR^d$, NR^eR^f , $C(Y)NR^gR^h$, $S(O)_mNR^eR^f$,

C(Y)NRⁱNR^eR^f, alquileno C₁-C₅-OR^a, alquileno C₁-C₅-CN,

alquileno C_1 - C_5 - $C(Y)R^b$, alquileno C_1 - C_5 - $C(Y)OR^c$, alquileno C_1 - C_5 - NR^eR^f , alquileno C_1 - C_5 - $C(Y)NR^gR^h$, alquileno C_1 - C_5 - $S(O)_mR^d$, alquileno C_1 - C_5 - $S(O)_mR^eR^f$, alquileno C_1 - C_5 - $NR^hR^eR^f$, heterociclilo, hetarilo, cicloalquilo C₃-C₁₀, cicloalquenilo C₅-C₁₀, heterociclil-alquilo C₁-C₅, hetaril-alquilo C₁-C₅, cicloalquil C₃-C₁₀alquilo C₁-C₅, cicloalquenil C₅-C₁₀-alquilo C₁-C₅, fenil-alquilo C₁-C₅ y fenilo, en el que los anillos de los diez últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 sustituyentes R^y idénticos o diferentes:

25 v cuando

5

10

15

20

30

35

40

45

50

m es 0, 1 o 2

Y es O, o S;

Ra, Rb, Rc son seleccionados independientemente entre sí entre hidrógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆, cicloalquilmetilo C₃-C₆, halocicloalquilo C₃-C₆, alquenilo C₂-C₄, haloalquenilo C₂-C₄, alquinilo C2-C4, alcoxi C1-C4-alquilo C1-C4, fenilo, hetarilo, heterociclilo, fenil-alquilo C1-C4, hetaril-alquilo C1-C4 y heterociclil-alquilo C₁-C₄, en los que el anillo en los seis últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3, 4 o sustituyentes que, independientemente entre sí, son seleccionados entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄;

R^d es seleccionado entre alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆, cicloalquilmetilo C₃-C₆, halocicloalquilo C₃-C₆, alquenilo C₂-C₄, haloalquenilo C₂-C₄, alquinilo C₂-C₄, alcoxi C₁-C₄-alquilo C₁-C₄, fenilo, hetarilo, heterociclilo, fenil-alquilo C₁-C₄, hetaril-alquilo C₁-C₄ y heterociclil-alquilo C₁-C₄, en el que el anillo en los seis últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 sustituyentes que son seleccionados independientemente entre sí entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄;

Re, Rt son seleccionados independientemente entre sí entre hidrógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆, cicloalquilmetilo C₃-C₆, halocicloalquilo C₃-C₆, alquenilo C₂-C₄, haloalquenilo C₂-C₄, alquinilo haloalguilsulfonilo C₁-C₄, fenilo, fenilcarbonilo, fenilsulfonilo, hetarilo, hetarilcarbonilo, hetarilsulfonilo, het heterociclilcarbonilo, heterociclilsulfonilo, fenil-alquilo C₁-C₄, hetaril-alquilo C₁-C₄ y heterociclil-alquilo C₁-C₄ en los que el anillo en los doce últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 sustituyentes que, independientemente entre sí, son seleccionados entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄; o

Re y Ri junto con el átomo de nitrógeno al que están unidos forman un heterociclo de 5 o 6 miembros, saturado o insaturado, que puede llevar un heteroátomo adicional que es seleccionado entre O, S y N como un átomo miembro del anillo y en los que el heterociclo puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 sustituyentes que son seleccionados independientemente entre sí entre halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄;

R^g, R^h son seleccionados independientemente entre sí entre hidrógeno, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C_3 - C_6 , halocicloalquilo C_3 - C_6 , alquenilo C_2 - C_4 , haloalquenilo C_2 - C_4 , alquinilo C_2 - C_4 , alcoxi C_1 - C_4 -

- alquilo C_1 - C_4 , fenilo, hetarilo, hetarociclilo, fenil-alquilo C_1 - C_4 , hetaril-alquilo C_1 - C_4 y hetarociclil-alquilo C_1 - C_4 en los que el anillo en los seis últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3 o 4 sustituyentes que son seleccionados independientemente entre sí entre halógeno, ciano, nitro, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C_1 - C_4 y haloalcoxi C_1 - C_4 ; R^i es seleccionado entre hidrógeno, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , cicloalquilo C_3 - C_6 , cicloalquilmetilo C_3 - C_6
- R' es seleccionado entre hidrógeno, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , cicloalquilo C_3 - C_6 , cicloalquilmetilo C_3 - C_6 , halocicloalquilo C_3 - C_6 , alquenilo C_2 - C_4 , haloalquenilo C_2 - C_4 , alquinilo C_2 - C_4 , alcoxi C_1 - C_4 -alquilo C_1 - C_4 , fenilo y fenil-alquilo C_1 - C_4 en el que el anillo de fenilo en los dos últimos radicales mencionados puede estar sin sustituir o puede llevar 1, 2, 3, 4 o 5 sustituyentes que son seleccionados independientemente entre sí entre halógeno, ciano, nitro, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C_1 - C_4 y haloalcoxi C_1 - C_4 ;
- R^x es seleccionado independientemente de los otros entre ciano, nitro, alcoxi C₁-C₄, haloalcoxi C₁-C₄, C₁-C₄-alquiltio, C₁-C₄-haloalquiltio, alquilsulfinilo C₁-C₄, haloalquilsulfinilo C₁-C₄, alquilsulfonilo C₁-C₄, haloalquilsulfinilo C₁-C₄, alquilsulfonilo C₁-C₄, alquilcarbonilo C₁-C₁₀, cicloalquilo C₃-C₆, heterociclilo de 5 a 7 miembros, fenilo, cicloalcoxi C₃-C₆, heterocicliloxi de 3 a 6 miembros y fenoxi, en el que los 6 últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 radicales seleccionados entre el grupo que consiste en halógeno, ciano, nitro, alquilo C₁-C₄, haloalquilo C₁-C₄, alcoxi C₁-C₄ y haloalcoxi C₁-C₄;
 - R^y es seleccionado entre halógeno, ciano, nitro, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C_1 - C_4 , haloalcoxi C_1 - C_4 , $S(O)_m R^d$, $S(O)_m R^e$, alquilcarbonilo C_1 - C_4 , haloalquilcarbonilo C_1 - C_4 , alcoxicarbonilo C_1 - C_4 , haloalcoxicarbonilo C_1 - C_4 , cicloalquilo C_3 - C_6 , halocicloalquilo C_3 - C_6 , alquenilo C_2 - C_4 , haloalquenilo C_2 - C_4 , alquinilo C_2 - C_4 , alquinilo C_3 - C_6 , heterociclilo de 5 a 7 miembros, hetarilo, fenilo, cicloalcoxi C_3 - C_6 , heterocicliloxi de 3 a 6 miembros, hetariloxi y fenoxi, en el que los 8 últimos radicales mencionados pueden estar sin sustituir o pueden llevar 1, 2, 3, 4 o 5 radicales seleccionados entre halógeno, ciano, nitro, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , alcoxi C_1 - C_4 y haloalcoxi C_1 - C_4 ;

y las sales de los mismos, los N-óxidos de los mismos, los tautómeros de los mismos y las sales de dichos N-óxidos o tautómeros.

25 2. Compuestos de fórmula I de acuerdo con la reivindicación 1, en la que X es oxígeno.

20

35

40

- 3. Compuestos de fórmula I de acuerdo con la reivindicación 1, en la que A es un radical A2.
- 4. Compuestos de fórmula I de acuerdo con la reivindicación 1, en la que A es un radical A1.
- 5. Compuestos de fórmula I de acuerdo con la reivindicación 1, en la que A es un radical A3.
- 6. Compuestos de fórmula I de acuerdo con la reivindicación 1, en la que A es seleccionado entre el grupo que consiste en los radicales A4, A5, A6, y A7.
 - 7. Compuestos de fórmula I de acuerdo con una cualquiera de las reivindicaciones 1 a 6, en la que Z es NR^N con R^N siendo seleccionado entre el grupo que consiste en alquilo C_1 - C_6 , haloalquilo C_1 - C_6 , heterociclil-alquilo C_1 - C_4 , alcoxi C_1 - C_4 -alquilo C_1 - C_4 , alquileno C_1 - C_4 -CN, cicloalquilo C_3 - C_6 , cicloalquil C_3 - C_6 -alquilo C_1 - C_4 , en el que el resto de cicloalquilo en los dos últimos radicales mencionados está sin sustituir o lleva 1 o 2 radicales seleccionados entre halógeno, CN y haloalquilo C_1 - C_2 .
 - 8. Compuestos de fórmula I de acuerdo con la reivindicación 7, en la que A es un radical A2, X es O y Z es NR^N con R^N siendo alquilo C_1 - C_6 o haloalquilo C_1 - C_6 .
 - 9. Compuestos de fórmula I de acuerdo con una cualquiera de las reivindicaciones 1 a 8, en la que R^A, si está presente, es seleccionado entre el grupo que consiste en hidrógeno, halógeno, NO₂, alquilo C₁-C₄, haloalquilo C₁-C₄, cicloalquilo C₃-C₆ y halocicloalquilo C₃-C₆.
 - 10. Compuestos de fórmula I de acuerdo con la reivindicación 1, en la que R^{Z1} , R^{Z2} , R^{Z3} , R^{Z4} y R^{Z5} , si estuvieran presentes, son seleccionados independientemente entre sí entre el grupo que consiste en hidrógeno, halógeno, alquilo C_1 - C_4 , haloalquilo C_1 - C_4 , cicloalquilo C_3 - C_6 y halocicloalquilo C_3 - C_6 .
- 11. Un procedimiento de control de plagas de invertebrados, procedimiento que comprende tratar las plagas, su suministro de alimentos, su hábitat o su lugar de reproducción o una planta, semilla, suelo, área, material o entorno en el que crecen o pueden crecer las plagas, o los materiales, plantas, semillas, suelos, superficies o espacios a proteger del ataque o infestación por plagas con una cantidad plaguicidamente eficaz de un compuesto de fórmula I, un tautómero o un N-óxido o una sal del mismo tal como se ha definido en una cualquiera de las reivindicaciones 1 a 9, en el que el hábitat o su lugar de reproducción no es un organismo humano ni animal.
- 50 12. Compuestos de fórmula I tal como se ha definido en una cualquiera de las reivindicaciones 1 a 9, un tautómero o un N-óxido o una sal de los mismos para uso en el control de plagas de invertebrados por tratamiento del hábitat o lugar de reproducción de las plagas en el que crecen o pueden crecer las plagas con una cantidad plaguicidamente eficaz de los mismos, en las que el hábitat o su lugar de reproducción es un organismo humano o animal.