

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 531 462

21 Número de solicitud: 201400523

51 Int. Cl.:

C01B 31/00 (2006.01) C01B 31/12 (2006.01) C08L 97/00 (2006.01) D01F 9/17 (2006.01) D01D 5/14 (2006.01)

(12)

SOLICITUD DE PATENTE

Α1

22 Fecha de presentación:

28.06.2014

43) Fecha de publicación de la solicitud:

16.03.2015

(71) Solicitantes:

UNIVERSIDAD DE MÁLAGA (100.0%) Avda Cervantes, 2 29071 Málaga ES

(72) Inventor/es:

BERENGUER BETRIÁN, Raúl; GARCÍA MATEOS, Francisco José; RODRÍGUEZ MIRASOL, José y CORDERO ALCÁNTARA, Tomás

(54) Título: Partículas y materiales carbonosos con propiedades optimizadas, procedimientos para su obtención, y aplicaciones de los mismos

(57) Resumen:

Partículas y materiales carbonosos con propiedades optimizadas, procedimientos para su obtención, y aplicaciones de los mismos. La presente invención se refiere al procedimiento de obtención de partículas y materiales carbonosos con propiedades optimizadas caracterizado por comprender una mezcla de al menos un tipo de precursor carbonoso y al menos un tipo agente químico, así como el electrospinning o el electrohilado de dicha mezcla, comprendiendo dicho procedimiento de 1 a 3 etapas adicionales al electrospinning o al electrohilado que a su vez engloban hasta 6 procesos diferentes y que se realizan, según el caso, desde en única atmósfera, inerte u oxidante, hasta en tres atmósferas diferentes. La presente invención también refiere el uso del dispositivo descrito en el documento de patente ES2326455A1: así como las partículas y materiales carbonosos obtenidos mediante cualquiera de las variantes del procedimiento, así como las aplicaciones o usos de dichas partículas y de dichos materiales carbonosos.

DESCRIPCIÓN

PARTÍCULAS Y MATERIALES CARBONOSOS CON PROPIEDADES OPTIMIZADAS, PROCEDIMIENTOS PARA SU OBTENCIÓN, Y APLICACIONES DE LOS MISMOS

5 SECTOR TÉCNICO

La presente invención se enmarca en el ámbito de los materiales fabricados por el hombre, particularmente de aquellos de naturaleza carbonosa, así como de los procedimientos de obtención de dichos materiales y de sus aplicaciones.

10

15

20

ESTADO DE LA TÉCNICA

Debido a sus propiedades químicas, mecánicas, eléctricas y magnéticas únicas, las fibras u otras estructuras fibrilares (membranas/mallas/redes) de carbono se utilizan actualmente en numerosas aplicaciones de extraordinaria importancia tecnológica e industrial. Así, además de actuar como componentes de refuerzo muy ligeros en multitud de productos especiales de calidad superior y/o de lujo (industrias militar, aeroespacial, automovilística, deportiva, etc.), cuando se activan y presentan una porosidad adecuada estos materiales reciben gran interés en catálisis, en lechos de adsorción y absorción y/o procesos de separación, en los electrodos de pilas de combustible, supercondensadores y baterías, en almacenamiento de gases, nanoelectrónica, materiales compuestos, y cualquier otra aplicación donde se requieran materiales con una elevada superficie específica. Por otro lado, la posibilidad de preparar ensamblajes o entramados fibrilares interconectados en forma de membranas, mallas o redes ha suscitado gran interés, además, para otras aplicaciones, como los (bio)sensores o la ingeniería de tejidos en biomedicina o industria militar.

25

30

No obstante, a pesar de su gran potencial para numerosas aplicaciones, la utilización real de fibras y estructuras fibrilares de carbono depende en gran medida, además de sus propiedades y prestaciones, del coste de los procesos de producción. En este sentido, el elevado coste de los precursores carbonosos derivados del petróleo, principalmente el poli-acrilonitrilo (PAN) y las breas, y de sus etapas de procesado limitan enormemente una utilización más amplia y/o generalizada de estos materiales.

10

15

20

25

30

Como consecuencia, existe un gran interés y se están realizando grandes esfuerzos a nivel de investigación en reducir los costes de fabricación de las fibras de carbono mediante la utilización de precursores más baratos y/o procesos de preparación más sencillos y económicos y, al mismo tiempo, menos contaminantes.

Entre las diferentes alternativas, el uso de polímeros lignocelulósicos tales como la lignina, como precursor carbonoso abundante, renovable, y de bajo coste, supone una aproximación ventajosa y prometedora. De esta forma, el desarrollo de subproductos de elevado valor añadido por parte de las industrias relacionadas con la biomasa, tales como las bio-refinerías o las industrias papeleras, podría suponer una gran oportunidad para reducir sus costes e impactos medioambientales asociados.

La preparación de fibras de carbono a partir de lignina se conoce desde mediados los años sesenta. Al igual que sucede con otros precursores carbonosos, la preparación de fibras de carbono a partir de lignina requiere básicamente de un proceso de hilado, seguido de un tratamiento térmico para estabilizarlas y posteriormente carbonizarlas. Puesto que la lignina por sí sola no puede hilarse para obtener fibras, Kubo y colaboradores propusieron la conversión de lignina en polímeros funcionales mediante un método apropiado de separación de la madera (S. Kubo, Y. Uraki and Y. Sano, Carbon 1998, 36, No. 7-8, pp. 1119-1124). Entre los métodos de hilado convencionales, destaca claramente la obtención de fibras mediante extrusión del precursor fundido (meltextrusion) (US7678358B2), de forma que la gran mayoría de los trabajos de investigación han ido encaminados a mejorar y optimizar la fusibilidad de las ligninas y su proceso de extrusión. En general, las estrategias han sido la optimización del proceso de extracción y/o purificación de ligninas más adecuadas o la modificación química y/o mezcla con otros polímeros (binders) que son capaces de producir fibras mediante extrusión térmica (D.A. Baker, T.G. Rials, J. Appl. Polym. Sci. 2013, 130(2), 713-728). Sin embargo, a pesar de haber sido más estudiados, estos procesos de extrusión en fundido presentan 3 grandes desventajas: (i) el diámetro de las fibras está limitado por la obturación de las boquillas de extrusión, de forma que es difícil reducir el diámetro de las fibras por debajo de 20 µm; (ii) el uso de etapas adicionales de purificación, mezcla con polímeros, tratamientos químicos adicionales y/o tratamientos térmicos necesarios para obtener un fundido óptimo aumentan considerablemente el número de etapas y la duración y el coste global del proceso; y (iii) las estrategias que favorecen la fusión de la lignina para el proceso de extrusión, generalmente favorecen también la fusión de las fibras durante la

10

15

20

25

30

etapa de carbonización, por lo que dificultan y/o ralentizan al mismo tiempo la etapa de estabilización previa.

El uso de una técnica de producción sencilla y versátil, como el electrohilado, supone una aproximación ventajosa y prometedora para la preparación de fibras de lignina (ES2326455B2; R. Ruiz-Rosas, J. Bedia, M. Lallave, I.G. Loscertales, A. Barrero, J. Rodríguez-Mirasol, T. Cordero. Carbon, 2010, 48(3), 696-705). Así, el electrohilado resuelve gran parte de los problemas asociados al método de melt-extrusion, ya que permite la fabricación a temperatura ambiente de micro y sub(micro)fibras de lignina directamente en un solo paso y sin la adición de polímeros ni tratamientos químicos. Además, el electrohilado de disoluciones de lignina presenta varias ventajas frente al de los precursores más comunes, como el PAN, pues además de ser más barata, la elevada solubilidad de la lignina en disolventes volátiles comunes evita procesos de recuperación de disolventes que encarecen el proceso.

Independientemente del método de hilado, la preparación de fibras de carbono está limitada en gran medida por la fusibilidad térmica de los precursores poliméricos fibrilares durante la etapa de carbonización. Esto se debe a que la temperatura de transición vítrea de la mayoría de los precursores poliméricos está muy por debajo de la temperatura de carbonización. En consecuencia, las fibras poliméricas normalmente requieren de un pretratamiento de estabilización para evitar su fusión/"ablandamiento" y preservar su forma fibrilar durante la etapa de carbonización. El método más empleado para la estabilización de los precursores fibrilares es la estabilización térmica oxidativa en presencia de aire (termoestabilización oxidativa), en la que una serie de reacciones que ocurren con un aumento lento de la temperatura, incrementan la temperatura de transición vítrea a mayor velocidad que la propia temperatura del sistema, de forma que el material se mantiene en su estado vítreo durante su calentamiento. La rigidez adquirida durante este proceso permite calentar, a continuación, el precursor hasta la temperatura de carbonización sin experimentar fusión. Sin embargo, a pesar de ser un método sencillo, la estabilización de los precursores fibrilares es una etapa adicional que requiere un calentamiento muy lento (varios días) hasta temperaturas de 200-250 °C y que, por tanto, ralentiza enormemente y encarece la producción de materiales fibrilares carbonosos (D.A. Baker, T.G. Rials, J. Appl. Polym. Sci. 2013, 130(2), 713-728).

La estabilidad térmica/fusibilidad de los precursores, así como las condiciones necesarias para llevar a cabo su estabilización, dependen principalmente de su

10

15

20

25

30

composición química, que en último término está determinada por la naturaleza del precursor en cuestión y el método de obtención/extracción/purificación. Así, puesto que ya se encuentra considerablemente oxidada, la lignina puede termo-estabilizarse de forma oxidativa potencialmente a velocidades mucho mayores que las breas o el PAN. No obstante, la estabilización de fibras de lignina requiere de rampas de calentamiento todavía muy bajas, típicamente 0.05-0.08 °C/min, seguido de tiempos prolongados (típicamente 36 h) a la temperatura de estabilización (200-250 °C) (R. Ruiz-Rosas, J. Bedia, M. Lallave, I.G. Loscertales, A. Barrero, J. Rodríguez-Mirasol, T. Cordero. Carbon, 2010, 48(3), 696-705). A pesar de su importancia, la gran mayoría de los estudios sobre la preparación de fibras de carbono a partir de lignina se centran en facilitar y/u optimizar su proceso de hilado y proponer estrategias para aumentar sus propiedades mecánicas. Así, a diferencia del PAN y las breas, para los que se han propuesto numerosas estrategias de estabilización, menos son los estudios encaminados a mejorar/optimizar, acelerar o evitar la etapa de estabilización de fibras de lignina. Fundamentalmente, las estrategias se basan en (i) el diseño de nuevas rutas de extracción y/o purificación de ligninas (más adecuadas) con mayores temperaturas de transición vítrea (lignina Alcell) o con fracciones moleculares más adecuadas (WO2012112108A1; WO2013112100A1); (ii) la incorporación de determinados polímeros que favorecen el proceso de hilado y al mismo tiempo mejoran la estapa de estabilización, como el poli(etileno tereftalato) (PET) (S. Kubo and J. F. Kadla J. Polym. Environ. 2005, 13(2), 97-105) o el poli(óxido de etileno) (PEO) (S. Hu, Y.-L. Hsieh, J. Mater. Chem. A 2013, 1, 11279-11288; I. Dallmeyer, L. T. Lin, Y. Li, F. Ko, J. F. Kadla, Macromol. Mater. Eng. 2013, 298, 1–12); (iii) tratamientos térmicos de ligninas pirolíticas previos al proceso de hilado (W. Qin, J. F. Kadla, J. Appl. Polym. Sci. 2012, 126, E203–E212); (iv) tratamientos químicos (HCl 1- 6 M a 100 °C entre 2 y 6 h) para eliminar determinadas fracciones (PEG) de la lignina (J. Lin, S. Kubo, T. Yamada, K. Koda, Y. Uraki, BioResources 2010, 7(4), 5634-5646). No obstante, el uso de tratamientos físicos, químicos y/o térmicos adicionales de purificación y/o modificación, o la mezcla con otros polímeros de sacrificio aumentan considerablemente el tiempo, el número de etapas y el coste del proceso.

La posibilidad de utilizar simplemente un agente/molécula estabilizante para diferentes tipos de lignina ha sido propuesta por Poeppel y col., quienes llevan a cabo la incubación/impregnación de los precursores, antes o después de la etapa de hilado en

fundido (melt-extrusion), con varias moléculas de entrecruzamiento ("crosslinkers") para permitir la estabilización sin fusión hasta 2 °C/min (*EP2644758A1*). No obstante, el método de estabilización es completamente diferente, pues se refiere exclusivamente a la utilización de unas moléculas con estructura:

5

10

15

20

25

30

y requiere de una etapa de incubación a temperaturas relativamente bajas (0-20 °C) y de otra de pre-estabilización entre 20-60°C durante 10-60 min, previas a la principal a 240-260 °C. Por otro lado, el efecto del H₃PO₄ como agente promotor de la estabilización fue sugerido por Chenevey y col., quienes patentaron un método/proceso de preparación de fibras o films acrílicas estabilizadas mediante la incorporación de un agente estabilizante (el H₃PO₄ entre varias opciones) previa etapa de hilado (extrusión de la disolución), seguido de etapa de estabilización oxidativa entre 200-350 °C (*US4002426A*). Sin embargo, el proceso se describe exclusivamente para fibras acrílicas, cuya composición química y mecanismos de polimerización, estabilización y carbonización son bien diferentes al de los polímeros naturales, como la lignina. Además, en ambos casos el método de hilado y, por tanto, las dimensiones y otras propiedades finales de los materiales resultantes son completamente diferentes a los que aquí se reivindican.

Durante la etapa de carbonización a elevadas temperaturas y en ausencia de

oxígeno, se produce una descomposición química de los precursores carbonosos junto con una restructuración/ordenamiento de los átomos de carbono para dar lugar a dominios ordenados de anillos aromáticos. El grado de ordenamiento aumenta con la temperatura y el tiempo de tratamiento térmico. En el caso de las fibras de lignina preparadas por electrohilado, además, el incremento de la temperatura durante la etapa de carbonización produce un desarrollo considerable de la microporosidad y, por tanto, un aumento de su área superficial específica hasta valores de 1100-1200 m²/g a 900 °C (Ruiz-Rosas, J. Bedia, M. Lallave, I.G. Loscertales, A. Barrero, J. Rodríguez-Mirasol, T. Cordero. *Carbon*, **2010**, 48(3), 696-705). A pesar de obtener estas áreas relativamente elevadas, para mostrar buenas prestaciones en multitud de aplicaciones se necesita

normalmente una mayor área superficial y/o una porosidad adecuada. La obtención de

fibras y estructuras fibrilares activadas o con un elevado desarrollo de la porosidad ha

10

15

20

25

30

sido ampliamente estudiada. Dichas propiedades se han obtenido convencionalmente mediante una etapa de activación química tras la impregnación del precursor en forma fibrilar con un agente adecuado (NaOH, KOH, H₃PO₄, ZnCl₂, etc.) o activación física de las fibras carbonizadas, consistente en pasar un gas inerte (CO₂) u oxidante (vapor de agua) a elevadas temperaturas (800-900 °C). Mediante estos tratamientos se han preparado fibras de carbón activado (FCAs) con áreas (2000-3000 m²/g) que igualan o superan las de los carbones activados en forma granular o polvo, pero además de ser preparadas por otros métodos y tener dimensiones mucho mayores requieren etapas adicionales de impregnación-secado y/o activación física, y cantidades de agente activante mayores. En el caso particular de la lignina hilada por melt-extrusion, se han obtenido FCAs mediante activación con vapor de H₂O a 900 °C de hasta 3000 m²/g, igualando los de otras FCAs preparadas a partir de otros precursores y, por tanto, demostrando el potencial de la lignina para la preparación de este tipo de materiales. No obstante, además de utilizar un método de hilado diferente y obtener fibras con diámetros entre 3 y 4 veces superiores a los que aquí se reivindican, para obtener tales desarrollos de la porosidad utilizaron una etapa de activación adicional, a elevadas temperaturas, y con un mecanismo físico totalmente diferente a los que aquí se reivindican.

Respecto al efecto del H₃PO₄ durante la etapa de carbonización, Moore y col. propusieron un método/proceso de carbonización de precursores fibrilares carbonosos (en general) tratados con H₃PO₄ o derivados, en el que actúan como catalizadores de las transformaciones pirolíticas durante la carbonización y como agentes que mejoran las propiedades físicas y el rendimiento de los materiales carbonosos finales (US3527564A). No obstante, dichas propiedades y efectos son diferentes a los que aquí se reivindican, pues no describe efectos de activación referidos al desarrollo de la porosidad ni químicos, y el método no puede extenderse al proceso de electrohilado. Por otro lado, De La Pena y col. patentaron un método/proceso de preparación de fibras o films de CA a partir de la carbonización y posterior activación de fibras de celulosa en una atmósfera inerte entre 200 y 1100 °C (ambas etapas), en el que, previamente a la activación, el material celulósico o carbonizado se impregna con un compuesto que contiene átomos de boro y otro con átomos de fósforo, de forma que la impregnación aumenta la velocidad de activación y, por tanto, reduce el tiempo de activación, para conseguir áreas por encima de 700 m²/g (máxima reflejada, 1629 m²/g) (J.M.D. De La Pena, R.A. Roberts US5202302 1993). En este caso, sin embargo, además de no incluir el proceso específico

10

15

20

25

30

de electrohilado (con sus requisitos y peculiaridades), la activación y carbonización se llevan a cabo como dos etapas diferentes y se describe un efecto en la velocidad activación que nada tiene que ver con el proceso de estabilización termo-oxidativa para evitar la fusión de los materiales fibrilares termoplásticos.

Más reciente, Baker propone un método/proceso muy general de preparación de fibras de CA a partir de precursores naturales y/o renovables, incluyendo el mezclado de dichos precursores con un agente químico activante, su procesado de hilado en fibras (cospinning) y su tratamiento térmico para llevar a cabo la carbonización y activación en una sola etapa (US8377843B2). En la descripción detallada habla del electrohilado como posible técnica y propone la lignina y el H₃PO₄ como sus ejemplos "preferidos". El inventor indica 3 efectos del H₃PO₄: promotor de la carbonización a baja temperatura (400-500 °C), retardante de llama aumentando el rendimiento en carbono y asistente (favorecedor) del proceso de extrusión, además de mencionar que el hecho de utilizar temperaturas más bajas y la posibilidad de carbonizar y activar en una etapa suponen ahorros energéticos y procesados más cortos. Aunque podría parecer que esta invención reduce la novedad del procedimiento que aquí se reivindica, su existencia justifica aún más la actividad inventiva de éste. Esto puede explicarse a partir de varios detalles y consideraciones muy importantes. Y es que, además de no reivindicar nada de lo anterior, el inventor propone un ejemplo profético ("Prophetic example") con unas relaciones de impregnación lignina/H₃PO₄ preferidos desde 1/0.5 a 1/3, y la extrusión convencional y/o extrusión en fundido como técnicas de hilado. Es decir, el inventor describe procesos y efectos y propone relaciones de impregnación (convencionales y muy estudiadas) y otras condiciones experimentales (métodos tradicionales y más conocidos para la preparación de fibras) que se deducen fácilmente del estado del arte (por eso no las reivindica), para finalmente terminar reivindicando y protegiendo los materiales finales en sí (fibras de carbono activadas), preparadas a partir de precursores naturales, tratando de abarcar todas las propiedades posibles que uno pueda pensar o imaginar: materiales con una distribución de tamaños de poro desde 2 a 100 nm o predominantemente microporosas, mesoporosas o macroporosas, y conteniendo una gran variedad de heteroátomos incorporados a la estructura carbonosas y al menos un metal disperso (Pt, Pd, Ni, Fe, Cr, Ti) sobre la totalidad de la estructura de dichas fibras. En este sentido, aunque el autor trata de hablar también del proceso de electrohilado y de la lignina y el H₃PO₄, como ejemplos preferidos, las relaciones de impregnación que propone son exactamente las

10

15

20

25

30

que no permiten e imposibilitan el proceso de electrohilado (al menos, en base al procedimiento aquí propuesto y a los conocimientos de sus inventores). Por este motivo, probablemente el autor no aporta ningún detalle de este procedimiento de síntesis ni de sus condiciones de operación y, evidentemente, no lo reivindica (importante de resaltar de nuevo), pues no es fácil de llevar a cabo ni deducir cómo hacerlo. Por otro lado, no describe ningún efecto magnificado ni novedoso del H₃PO₄ en las etapas de estabilización y activación o en la resistencia a la oxidación (ni nada relacionado con las gasificaciones controladas en presencia de O₂) y, cuando reivindica la funcionalización de las estructuras carbonosas, sólo habla de N y S y que lo hace exclusivamente a partir de moléculas heterocíclicas, lo cual llama mucho la atención debido a la ampliamente conocida incorporación de P en los procesos de activación con H₃PO₄ Todo esto parece indicar que no ha hecho los experimentos que describe y no conoce, por tanto, lo que sucede (lo deduce); y al mismo tiempo termina de confirmar que, incluso de haber realizado algún experimento, no lo ha llevado a cabo con las estructuras fibrilares con propiedades únicas obtenidas exclusivamente por electrohilado.

La participación del método de electrohilado en la preparación de fibras de carbono activadas ha sido menos explorada. Sakurai y col. han patentado unas fibras de carbón activado con poros comprendidos entre 0.1 y 200 nm y diámetro por debajo de 1000 nm, el método para fabricarlas y su aplicación en supercondensadores y pilas de combustible (EP1666649A1). Dicho método consta del electrohilado de fibras de PAN o el hilado por fundido (melt-extrusion) de breas de petróleo o mesofase con un agente plastificante, que es seguidamente eliminado, para obtener fibras con diámetros por debajo de 1000 nm, una etapa de estabilización en atmósfera oxidante, una etapa de carbonización y una etapa final de activación física con H₂O(v) o química con especies alcalinas. Aunque reivindica fibras de carbón activado con áreas superficiales específicas entre 100 y 50000 m²/g, el mayor área que reporta es de 2200 m²/g para unas fibras de 100 nm muy mesoporosas (43 % del vol. total poros) preparadas a partir de una mezcla PAN:KOH = 1:5 (800 °C, 30 min). Por otro lado, con activación física con H₂O(v) (850 $^{\circ}$ C, 1 h) obtiene 1300 m²/g para una fibra de 100 nm y la mezcla Pitch:KOH = 1:5 (800 °C, 30 min) obtiene 980 m²/g para una fibra de 200 nm. A pesar de posibilitar elevados grados de activación en fibras con diámetro tan pequeño, el método utiliza otros precursores y agentes plastificantes para (por eliminación durante el tratamiento térmico) reducir el tamaño de las fibras y, por otro lado, los procesos de activación son a posteriori (tras la etapa de electrohilado), permitiendo cantidades mucho mayores de agente activante, por lo que para obtener materiales con propiedades parecidas a los que aquí se reivindican no solo requieren de un mayor número de etapas sino también de un mayor consumo de reactivos (agentes plastificantes y activantes) que deben encarecer el proceso global. Además, puesto que los procesos de activación química y física que utilizan son distintos a los de la presente invención, los materiales presentan propiedades texturales (distribución de tamaño de poros) diferentes y no pueden aprovecharse de los efectos de estabilización o resistencia a la oxidación que aquí se reivindican.

5

10

15

20

25

30

Por otro lado, la introducción de un agente activante en la disolución precursora sometida a electrohilado ha sido estudiada recientemente mediante el electrohilado de disoluciones de PAN y H₃PO₄. En estos trabajos, se ha estudiado la introducción de H₃PO₄ para facilitar la grafitización y aumentar, por tanto, las propiedades mecánicas de las fibras (J.H Kim, B. Bajaj, S.J Yoon, S.H Kim, J.R Lee, Compos. Res. 2013, 26(3), 160-164) o para introducir grupos funcionales de fósforo (X. Yan, Y. Liu, X. Fan, X. Jia, Y. Yu, X. Yang, J. Power Sources 2014, 248(15) 745-751). Sin embargo, el potencial estabilizante, activante y/o de resistencia a la oxidación del H₃PO₄ introducido directamente de forma homogénea en las fibras mediante el proceso de electrohilado no ha sido observado ni reportado en este trabajo (ni en ninguno otro), probablemente por la enorme influencia del precursor carbonoso (por ejemplo, las propiedades de un polímero natural como la lignina, con un elevado contenido en oxígeno, son totalmente diferentes a las de uno sintético como el PAN). Finalmente, existe un único trabajo que describe el electrohilado de lignina con un agente activante (S. Hu, Y.-L. Hsieh, J. Mater. Chem. A 2013, 1, 11279-11288), pero en este caso como agente activante se emplearon hidróxidos alcalinos (NaOH, KOH). Aunque se consigue desarrollar la porosidad en el material resultante, por un lado, la lignina que se utiliza en este trabajo es "modificada" y se requiere al menos un 10 % de polímero plastificante (PEO) para poder llevar a cabo el proceso de electrohilado; y por otro lado, estos agentes activantes no mejoran el proceso de estabilización, no aumentan la resistencia a la oxidación (incluso la deben disminuir) y no se consiguen áreas superficiales por encima de los 1400 m²/g.

La reactividad de diversos precursores y materiales carbonosos con oxígeno ha sido ampliamente estudiada en la bibliografía, principalmente para la introducción de grupos oxigenados o bien para estudiar y optimizar su resistencia a la oxidación. La oxidación mediante oxígeno (aire) es una reacción exotérmica cuya velocidad de

reacción es difícil de controlar. Como resultado, y a diferencia de la activación física con CO₂ o vapor de agua, el oxígeno molecular (aire) consume los materiales carbonosos desde la parte externa, sin penetrar en el interior del material carbonoso y, por tanto, sin desarrollar significativamente o incluso disminuyendo su porosidad. No obstante, la activación mediante oxígeno (aire) puede llevarse a cabo a bajas temperaturas (normalmente a T<500 °C) o mediante etapas sucesivas de oxigenación-carbonización tras una etapa inicial de. No obstante, y a diferencia del efecto de la presente invención, en estas condiciones no se consiguen activaciones muy significativas y, a mayores/elevadas temperaturas, el resultado es un consumo rápido del material carbonoso, el cual es más acusado cuanto menor sea el tamaño/diámetro de partícula/fibra y/o al aumentar su superficie específica (su reactividad).

5

10

15

20

25

30

La preparación de fibras de carbono activadas con elevada resistencia a la oxidación tiene gran importancia para varias de sus aplicaciones, como la catálisis o la electroquímica. En este sentido, es ampliamente conocido que la presencia de grupos halogenados, de boro y de fósforo aumentan la resistencia frente a la oxidación de los materiales carbonosos (J.M. Rosas, R. Ruiz-Rosas, J. Rodríguez-Mirasol, T. Cordero. Carbon 2012, 50, 1523-1537) y han sido ampliamente utilizados como retardantes de llama (US3294489A). Así, algunos autores han propuesto/patentado algunas fibras de carbono con elevada resistencia a la oxidación y su método de preparación. Saito y col. reivindicaron la introducción conjunta de distintos compuestos de Zn y/o Ca (≥ 100 ppm) y P y/o B (≥ 50 ppm) en cualquier fase/etapa del proceso global de preparación de fibras de carbono a partir de fibras acrílicas, resultando en una elevada resistencia mecánica y a la oxidación, de forma que durante un tratamiento de 3 h a 500 °C, las fibras sufrían una disminución de la masa < 20 wt% (US4197279A). Sin embargo, la patente solo va dirigida para fibras acrílicas y no contempla las ventajas del método de electrohilado para introducir el agente directamente en materiales de reducidas dimensiones, ni el de permitir la gasificación controlada a elevadas temperaturas en atmósferas conteniendo O_2 .

Por otro lado, diversos autores han observado que la impregnación con H₃PO₄ aumenta el rendimiento de carbonización y el grado de activación con CO₂ de fibras derivadas del Nomex. Fukuda y col. patentaron un proceso de preparación de fibras de carbón activado a partir de fibras de celulosa impregnadas con compuestos de fósforo (de 0.5 a 20 % wt.) que, tras un tratamiento térmico a 200-350 °C, eran sometidas a una etapa

de activación entre 450-1000 °C en una atmósfera conteniendo al menos un 5 % de $H_2O(v)$ hasta que la pérdida de masa estuviera entre 65 y 95 % (*US3969268A*). Estos autores proponen que el compuesto de fósforo favorece/promueve notablemente la activación con $H_2O(v)$, acortando el tiempo requerido para la activación. Sin embargo, y como comentábamos, la introducción de este tipo de grupos de P no se ha aplicado/estudiado para permitir/mejorar/controlar el desarrollo de la porosidad de los materiales carbonosos en presencia de gases conteniendo O_2 , (menos aún, a elevadas temperaturas y tampoco directamente durante la etapa de carbonización).

5

10

15

20

25

30

Como se puede observar a partir de esta extensa bibliografía, a pesar de las ventajas del método de electrohilado para la preparación de fibras de lignina con diámetros mucho menores a los obtenidos mediante otras técnicas, el proceso global hasta la obtención de los materiales fibrilares carbonosos todavía requiere una etapa de termoestabilización muy lenta (sin la ayuda de etapas adicionales de modificación y/o post-impregnación de algún estabilizante). Por otro lado, los materiales obtenidos no muestran directamente las propiedades necesarias como para tener un valor añadido suficiente y/o comparable, por lo que necesitan de etapas adicionales de activación, gasificación y/o funcionalización que, además de ralentizar, aumentar el consumo de reactivos y complejidad y encarecer el proceso, pueden comprometer la estructura fibrilar. Además, independientemente del coste del proceso global, no existen materiales fibrilares carbonosos obtenidos a partir de lignina con propiedades únicas y/o con unas prestaciones superiores para una aplicación dada. Todas estas desventajas limitan su comercialización y aplicación a escala industrial. En consecuencia, la obtención de fibras y otras estructuras fibrilares carbonosas con propiedades avanzadas y, por tanto, de elevado valor añadido, a partir de lignina, otros recursos renovables y/u otros residuos orgánicos altamente contaminantes mediante procesos más rápidos y sencillos/directos constituyen grandes desafíos que, de ser total o parcialmente superados/conseguidos, supondrían enormes beneficios medioambientales y una considerable reducción de los costes de su fabricación, favoreciendo o posibilitando su comercialización y aplicación a escala industrial.

Por otro lado, independientemente del precursor y del proceso de activación utilizado para desarrollar sus propiedades texturales, la extensión y el grado de activación del material carbonoso fibrilar dependen en gran medida de su diámetro, de forma que para obtener áreas del orden de 2000-3000 m²/g se requieren normalmente fibras con

diámetros suficientemente anchos (por encima de 5-10 micras), además de elevadas cantidades de agente activante. En consecuencia, resulta muy complicado obtener fibras de carbón activado con diámetros comprendidos entre los cientos de nanómetros y 5 micras y que al mismo tiempo muestren áreas superficiales por encima de los 1500 m²/g (hasta ahora, el único conocido por los autores de la presente invención es el mencionado anteriormente de Sakurai, que consigue fibras de 2200 m²/g a partir de fibras de PAN y su posterior activación con KOH).

DESCRIPCIÓN DE LA INVENCIÓN

10

15

DMSO.

30

5

La presente invención, que viene a dar respuesta y solución a los problemas señalados anteriormente y no resueltos en el estado de la técnica, se refiere a materiales fibrilares carbonosos de propiedades optimizadas, entre otros materiales fibrilares carbonosos con superficie específica y resistencia a la oxidación elevadas, a los procedimientos de obtención de dichas partículas o materiales de propiedades optimizadas, así como a aplicaciones de dichas partículas o materiales y/o de sus procedimientos de obtención.

De este modo, un objeto de la presente invención se refiere a procedimientos de obtención de partículas y materiales carbonosos de propiedades optimizadas a partir de una mezcla de al menos un precursor carbonoso y al menos un agente químico.

Un aspecto de dicho primer objeto de la invención se refiere que el precursor carbonoso es de origen natural, obtenido bien a partir de biomasa (por ejemplo, mediante pirólisis o licuefacción de compuestos orgánicos naturales) bien de origen vegetal (por ejemplo, resinas, ligninas, etc.) bien de origen fósil (por ejemplo breas, PAN, etc.). En una realización de dicho objeto de la invención el precursor carbonoso es tipo lignina, brea o resina. En una realización de dicho objeto de la invención el precursor carbonoso es tipo lignina Alcell (esto es, extraída mediante el método Alcell), si bien puede ser lignina extraída por otros métodos distintos de Alcell que emplean disolventes orgánicos apropiados, tales como alcoholes, ácidos orgánicos (por ejemplo, ácido fórmico, ácido acético, etc.), fenol, cresoles, acetato de etilo, aminas y su óxidos, cetonas, dioxano, o

Un aspecto de dicho primer objeto de la invención se refiere que el precursor carbonoso es sintético, como por ejemplo PBO, nylon, kevlar, etc.

Un aspecto de dicho objeto de la invención se refiere a que la mezcla comprende un solo tipo de precursor carbonoso, por ejemplo sólo tipo lignina, sólo tipo resina, sólo tipo brea, si bien puede comprender, por ejemplo, varios tipos de ligninas o varios tipos de resinas o varios tipos de breas. En una realización de dicho aspecto de la invención, la mezcla comprende más de un tipo de precursor carbonoso, esto es, por ejemplo, una mezcla de precursores tipo lignina y/o precursores tipo resina y/o precursores tipo brea, si bien puede comprender a su vez, por ejemplo, varios tipos de ligninas y/o varios tipos de resinas y/o varios tipos de breas.

5

10

15

20

25

30

Un aspecto de dicho primer objeto de la invención se refiere a que el agente químico permite acelerar y/u optimizar la etapa de estabilización. En una realización de dicho aspecto de la invención el agente químico es un ácido o una base inorgánicas con carácter deshidratante como el ácido fosfórico y derivados, ácido sulfúrico, ácido hidroclórico, ácido nítrico, ácido metano sulfónico, ácido sulfónico aromático, ácidos carboxílicos y alcoholes, etc., así como sus correspondientes sales o ésteres. Acelerar la etapa de estabilización de las estructuras fibrilares en condiciones inertes u oxidativas, previa a su etapa de carbonización, permite evitar la fusión/colapso de la estructura fibrilar, y por otro lado, controlar el grado de ensanchamiento y/o la interconexión por fusión de las estructuras fibrilares para dar lugar a entramados tridimensionales, mediante el control de las condiciones experimentales de dicho proceso de estabilización, tales como velocidad de calentamiento (principalmente), la temperatura y tiempo de estabilización, la concentración de aire, etc. Ejemplos de tales especies químicas son H₃PO₄, ...

Un aspecto de dicho primer objeto de la invención se refiere a que el agente químico permite inducir, acelerar y/u optimizar el proceso de activación química directa durante la etapa de carbonización, y con ello permite modular y optimizar sus propiedades texturales, estructurales y/o químicas. En una realización de dicho aspecto de la invención el agente químico es un ácido inorgánico como el fosfórico y sus derivados (por ejemplo, metafosfórico, pirofosfórico, fosforoso, fosfónico, fosfonoso, fosfónico, el sulfúrico, el nítrico, o sus sales.

Un aspecto de dicho primer objeto de la invención se refiere a que el agente químico permite aumentar la resistencia a la oxidación y/o permitir un proceso gasificación parcial durante o tras la etapa de carbonización, para modular y optimizar sus propiedades texturales, estructurales y/o químicas. En una realización de dicho

aspecto de la invención el agente químico es un compuesto que comprende fósforo (ácidos fosfórico, metafosfórico, pirofosfórico, fosforoso, fosfónico, fosfonoso, fosfínico, fosfinoso o sus sales, polifosfatos, polifosfonatos o sales de fosfonio, fosfinas y óxidos de fosfina) o boro (ácido bórico, óxido bórico, bórax, metaborato sódico, tetraborato sódico, metaborato de litio, pentaborato de litio, tetraborato de litio, metaborato potásico, tetraborato potásico). Otros compuestos que comprenden (y pueden introducir) fósforo serían triamida fosforotioica, triamida fosfórica, triamida N,N',N"-trimetilfosfórica, diamida (clorometil)fosfonotiónica, trimetil fosfato, trietil fosfato, dietil metilfosforamidato, dietil etilfosforamidato, dietil isopropilfosforamidato, diamida metilfosfónica, y mezclas de ellos (encontrados en algunas patentes para aumentar el efecto retardante de llama)

$$\begin{bmatrix} R'-N-\\ R^2 \end{bmatrix}_2 \begin{bmatrix} P-C-N-R'\\ N \end{bmatrix}_2$$

$$\begin{bmatrix} N-R'\\ R^2 \end{bmatrix}_2$$

$$Z=P-G$$

$$\begin{bmatrix} N-R'\\ R^2 \end{bmatrix}$$

$$G=-OR,$$

5

10

20

25

L = radicales alquilo (1 a 4 át. de C), radicales alquilo halogenados (1 a 4 át. de C)
Z= O, S

Un aspecto de dicho primer objeto de la invención se refiere a que la mezcla comprende un solo tipo de precursor carbonoso y un solo tipo de agente químico. En una realización de dicho aspecto de la invención la mezcla comprende más de un tipo de precursor carbonoso y un solo tipo de agente químico. En una realización de dicho aspecto de la invención la mezcla comprende un solo tipo de precursor carbonoso y más de un tipo de agente químico. En una realización de dicho aspecto de la invención la mezcla comprende más de un tipo de precursor carbonoso y más de un tipo de agente químico.

ES 2 531 462 A1

Un aspecto de dicho primer objeto de la invención se refiere a una mezcla de lignina (Alcell) y H₃PO₄, consistente en la disolución de mezclas lignina/H₃PO₄ en un disolvente apropiado, en este caso etanol, donde la proporción de lignina en la mezcla varía entre un 25% a un 99% en masa de la masa de H₃PO₄, donde la proporción de lignina en la disolución varía entre un 10% y un 90% en masa de la masa de disolvente; donde la disolución así obtenida se agita y calienta al mismo tiempo, a volumen constante durante un tiempo suficiente para disolver los posibles aglomerados de precursor carbonoso y agente químico existentes y distribuirlos homogéneamente en la mezcla (como mínimo 2 h y preferentemente 5 h).

5

10

15

20

25

30

Un aspecto de dicho primer objeto de la invención se refiere a una mezcla lignina/H₃PO₄, donde la lignina es extraída por otros métodos distintos de Alcell, que emplean disolventes orgánicos como alcoholes, ácidos orgánicos (ácido fórmico, acético), fenol, cresoles, acetato de etilo, aminas y sus óxidos, cetonas, dioxano y DMSO entre otros, en disolventes apropiados para la fabricación a temperatura ambiente de fibras de lignina, como pueden ser etanol, propanol, acetona, H₂O, etc.

Un segundo objeto de la invención se refiere a que el procedimiento de obtención de partículas y materiales carbonosos de propiedades optimizadas comprende bien el electrospinning de la mezcla de al menos un precursor carbonoso y al menos un agente químico (para la obtención de partículas carbonosas) bien el electrohilado de dicha mezcla (para la obtención de materiales carbonosos, particularmente materiales fibrilares carbonosos). En una realización de dicho aspecto de la invención el electrospinning o el electrohilado se realiza a temperatura ambiente. Una realización de dicho aspecto de la invención comprende opcionalmente la adición de polímeros facilitadores del electrospinning o del electrohilado.

Un aspecto de dicho primer objeto de la invención se refiere a que el procedimiento de obtención de partículas y materiales carbonosos de propiedades optimizadas comprende, teniendo como punto de partida el producto del *electrospinning* o del electrohilado de la mezcla de al menos un precursor carbonoso y al menos un agente químico, una etapa de calentamiento utilizando una única atmósfera comprendiendo los procesos de estabilización, activación química y carbonización. En una realización de dicho aspecto la atmósfera sería una atmósfera inerte (N₂). En otra realización de dicho aspecto la atmósfera sería una atmósfera oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂). En una realización de dicho aspecto de la invención en una

ES 2 531 462 A1

5

10

15

20

25

30

atmósfera oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂) el procedimiento comprendería, además de los procesos de estabilización, activación química y carbonización, un proceso de gasificación parcial.

Otro aspecto de dicho primer objeto de la invención se refiere a que el procedimiento de obtención de partículas y materiales carbonosos de propiedades optimizadas comprende, teniendo como punto de partida el producto del electrospinning o del electrohilado de la mezcla de al menos un precursor carbonoso y al menos un agente químico, una etapa de estabilización y una etapa de carbonización. En una realización de dicho aspecto de la invención, dichas etapas de estabilización y de carbonización se realizan en atmósferas diferentes. En una realización de dicho aspecto de la invención, la etapa de estabilización se realiza en una atmósfera oxidante (aire o cualquier mezcla N₂/O₂), y la etapa de carbonización, que comprende un proceso previo de activación química, se realiza en una atmósfera inerte (N2). En una realización de dicho aspecto de la invención, la etapa de estabilización se realiza en una atmósfera inerte (N₂), y la etapa de carbonización, comprendiendo proceso previo de activación química y un proceso posterior de gasificación parcial, se realiza en una atmósfera oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂). En una realización de dicho aspecto de la invención, la etapa de estabilización se realiza en una atmósfera oxidante (aire o cualquier mezcla N₂/O₂), y la etapa de carbonización, comprendiendo un proceso previo de activación química, en una atmósfera oxidante diferente a la empleada para la etapa de estabilización (esto es, cualquier mezcla N2/O2 diferente a la empleada para la etapa de estabilización).

Otro aspecto de dicho primer objeto de la invención se refiere a que el procedimiento de obtención de partículas y materiales carbonosos de propiedades optimizadas comprende, teniendo como punto de partida el producto del *electrospinning* o del electrohilado de la mezcla de al menos un precursor carbonoso y al menos un agente químico, una etapa de estabilización-carbonización y una etapa de gasificación parcial posterior. En una realización de dicho aspecto de la invención, dichas etapas de estabilización-carbonización y de gasificación parcial se realizan en atmósferas diferentes. En una realización de dicho aspecto de la invención, la etapa de estabilización-carbonización se realiza en una atmósfera inerte (N₂), y la etapa de gasificación parcial se realiza en una atmósfera oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂). En una realización de dicho aspecto de la invención, las etapas de

10

15

20

25

30

estabilización-carbonización y la etapa de gasificación parcial se realizan en una atmósfera oxidante (mezclas N_2/O_2 con hasta un 5 % en O_2).

Otro aspecto de dicho primer objeto de la invención se refiere a que el procedimiento de obtención de partículas y materiales carbonosos de propiedades optimizadas comprende, teniendo como punto de partida el producto del *electrospinning* o del electrohilado de la mezcla de al menos un precursor carbonoso y al menos un agente químico, tres etapas sucesivas, de estabilización, carbonización y gasificación parcial. En una realización de dicho aspecto de la invención, dichas etapas se realizan en atmósferas diferentes. En una realización de dicho aspecto de la invención, la etapa de estabilización se realiza en una atmósfera oxidante (aire o cualquier mezcla N_2/O_2); la etapa de carbonización, comprendiendo una etapa previa de activación química, se realiza en una atmósfera inerte (N_2); y la etapa de gasificación parcial se realiza en una atmósfera oxidante (mezclas N_2/O_2 con hasta un 5 % en O_2).

En una realización de dicho primer objeto, previo a, en su caso, una etapa de gasificación parcial, se dejan enfriar a temperatura ambiente las partículas o el material fruto de etapas previas a iniciar un nuevo proceso de calentamiento para la realización de dicha etapa de gasificación parcial.

Otro aspecto de dicho primer objeto de la invención se refiere al uso de un dispositivo, similar al descrito en ES2326455A1, de forma que la mezcla de al menos un precursor carbonoso y al menos un agente químico, debidamente disuelta mediante un disolvente oportuno, se fuerza a través de un tubo capilar localizado en el interior de otro tubo capilar concéntrico con él; donde un disolvente apropiado se fuerza a través del espacio anular existente entre ambos tubos; donde al aplicar una diferencia de potencial entre los tubos capilares (conectados al mismo potencial) y un electrodo de referencia se forma un menisco electrificado consistente en el menisco cónico de la disolución precursora y una capa de disolvente que lo rodea; donde aguas abajo del menisco electrificado se forma un chorro coaxial consistente en el chorro de la disolución rodeado por la capa de disolvente; donde la distancia entre el extremo del capilar interior y el electrodo de referencia varía entre 1 mm y 1 m; donde la diferencia de potencial aplicado entre ambos electrodos varía entre 1V y 100 kV; donde los caudales de la disolución y el disolvente que circulan por los capilares están comprendidos entre 0.001 ml/h y 10000 ml/h; donde el diámetro del chorro coaxial está comprendido entre 900 micras y 5 nanómetros.

10

15

20

25

30

Otro aspecto de dicho primer objeto de la invención se refiere al uso de un dispositivo, similar al descrito en ES2326455A1, de forma que la mezcla de al menos un precursor carbonoso y al menos un agente químico, debidamente disuelta mediante un disolvente oportuno, se fuerza a través del espacio anular intermedio que dejan tres tubos capilares situados de modo concéntrico; donde por el tubo más interior se fuerza un líquido inerte, que no cambia de fase durante el proceso; donde un disolvente volátil, apropiado, se fuerza a través del espacio anular existente entre los dos tubos más exteriores; donde al aplicar una diferencia de potencial entre los tubos capilares (conectados al mismo potencial) y un electrodo de referencia se forma un menisco electrificado con una estructura en la que el menisco cónico de la disolución precursora está rodeado por una capa de disolvente y contiene en su interior el menisco de líquido inerte; donde los chorros que emanan de los vértices de los meniscos dan lugar a un chorro coaxial de tres líquidos en los que la disolución precursora rodea al líquido inerte y es a su vez rodeada por una capa de disolvente; donde la distancia entre el extremo del capilar interior y el electrodo de referencia varía entre 1 mm y 1 m; donde la diferencia de potencial aplicado entre ambos electrodos varía entre 1V y 100 kV; donde los caudales de la disolución y el disolvente que circulan por los capilares están comprendidos entre 0.001 ml/h y 10000 ml/h; donde el diámetro del chorro coaxial está comprendido entre 900 micras y 5 nanómetros.

Otro aspecto de dicho primer objeto de la invención se refiere al uso de un dispositivo, similar al descrito en *ES2326455A1*, donde el líquido inerte se sustituye por otro (polímero, sol-gel, etc.) capaz de solidificar, de modo que se obtengan fibras coaxiales formadas por un material polímero o cerámico rodeado por una capa de lignina.

Un segundo objeto de la presente invención se refiere a partículas y materiales carbonosos de propiedades optimizadas obtenidos mediante cualquiera de las variantes del procedimiento, y a partir de cualquiera de las variantes (precursores, especies químicas, mezcla de los mismos), que constituyen el primer objeto de la invención. Una realización de este aspecto de la invención se refiere a materiales fibrilares carbonosos, particularmente materiales fibrilares carbonosos porosos. Los materiales fibrilares pueden tener un grado de ensanchamiento y/o mostrar un grado de interconexión determinado mediante el control de las condiciones experimentales del proceso de estabilización, tales como velocidad de calentamiento (principalmente), la temperatura y tiempo de estabilización, la concentración de aire, etc. Los materiales fibrilares pueden

10

15

20

25

30

ser rígidos, huecos o coaxiales. Los materiales fibrilares pueden ser lineales o ramificadas y/o con áreas superficiales específicas entre 100 y 4000 m²/g, principalmente microporosas o mesoporosas o con una determinada distribución de microporos y mesoporos, con contenidos en O de hasta 30 % y de P de hasta 15 %, y una elevada resistencia a la oxidación térmica (hasta 600 °C) y electroquímica (hasta 1.6 V frente a un electrodo de referencia Ag/AgCl/Cl-(sat.) en una disolución de H₂SO₄)

Una realización de este aspecto de la invención se refiere a nanopartículas. Una realización de este aspecto de la invención se refiere a submicropartículas. Una realización de este aspecto de la invención se refiere a micropartículas.

Un tercer objeto de la presente invención se refiere a la aplicación de dichas partículas y materiales que constituyen el segundo objeto de la presente invención, por ejemplo como adsorbentes, catalizadores, soporte de catalizadores y/o electrodos en supercondensadores, baterías, pilas de combustible, sensores y/u otras aplicaciones electroquímicas.

Conforme a la descripción general anterior, la invención se refiere, entre otros, a un procedimiento en el que se electrohila mezclas de precursores carbonosos con especies químicas, como el H₃PO₄, las cuales, una vez dispersas homogéneamente en el material compuesto electrohilado, presentan propiedades adecuadas para acelerar, simplificar y/o mejorar las diversas etapas de conversión de los precursores electrohilados en sus correspondientes productos carbonizados (estabilización, carbonización, activación química y/o física (gasificación)). De esta forma, mediante el nuevo procedimiento que aquí se reivindica no sólo se acelera o simplifica, reduciendo el consumo de reactivo activante y/o el número de etapas, el proceso global de fabricación de estructuras fibrilares carbonosas, sino que también, se obtienen materiales fibrilares carbonosos con propiedades avanzadas y/o únicas (en su conjunto).

El electrohilado de mezclas precursor/especie-química se lleva a cabo a temperatura ambiente y sin aditivos poliméricos, utilizando un dispositivo coaxial similar al reivindicado en una invención previa (ES2326455B2). No obstante, tanto las propiedades de la mezcla precursora como del material compuesto electrohilado y/o finalmente carbonizado, así como las condiciones experimentales del proceso de electrohilado y las etapas térmicas posteriores, son totalmente novedosas y únicas. Debido a la presencia de especies químicas, que aumentan la concentración y

normalmente con propiedades ácido-base, redox, etc., las disoluciones mezcla presentan viscosidades y conductividades relativamente elevadas que requieren un control preciso de las condiciones de operación (caudales y voltajes relativamente elevados) para permitir un proceso de electrohilado que, por tanto, queda limitarlo exclusivamente a mezclas con bajas proporciones de dichas especies químicas (desde un 1% de la cantidad del precursor carbonoso y hasta 60 ó 70%, normalmente hasta alrededor de un 50 % de la cantidad del precursor carbonoso).

En el procedimiento que aquí se reivindica, el electrohilado produce materiales fibrilares compuestos de dimensiones muy pequeñas (diámetros hasta 5 μm) y, encontrándose homogéneamente mezcladas con los precursores carbonosos, las especies químicas producen directamente 3 efectos en el proceso de conversión de los precursores poliméricos hilados en sus correspondientes estructuras carbonosas finales: (i) permiten acelerar (hasta 50 veces) y/u optimizar (permitiendo una mayor variedad de condiciones y/o reduciendo la temperatura) la etapa de estabilización evitando totalmente o mejorando el control de la fusión/hinchamiento parcial de dichas estructuras; y/o (ii) permiten activar químicamente dichas estructuras directamente durante la etapa de carbonización a diferentes temperaturas (450-1100 °C, preferentemente 500-1000 °C); y (iii) aumentando su resistencia a la oxidación, permite gasificar parcialmente y de forma controlada a elevadas temperaturas ((450-1100 °C, preferentemente 500-1000 °C), y bajo diferentes atmósferas oxidantes con O₂, dichos materiales durante o tras la etapa de carbonización a diferentes temperaturas ((450-1100 °C, preferentemente 500-1000 °C).

Como resultado de los efectos anteriores, además, se amplía considerablemente la versatilidad con la que se puede llevar a cabo la fabricación de materiales fibrilares de carbono a partir de la técnica de electrohilado. Así, en el procedimiento que aquí se reivindica, la transformación térmica de los materiales compuestos electrohilados (precursores) en sus correspondientes estructuras carbonosas puede llevarse a cabo en 1-3 etapas a través de 6 procesos diferentes según las siguientes modalidades: (i) una única etapa estabilización-carbonización utilizando una única atmósfera, inerte (N₂) u oxidante (mezclas N₂/O₂); (ii) dos etapas consistentes en una etapa de estabilización-carbonización en atmósfera inerte (N₂), seguido de una etapa adicional posterior de gasificación parcial controlada en atmósfera oxidante (mezclas N₂/O₂); (iii) dos etapas sucesivas de estabilización y carbonización llevadas a cabo en atmósferas diferentes (inerte + oxidante u oxidante + inerte); y (iv) tres etapas sucesivas de estabilización, activación-

10

15

20

25

30

carbonización y gasificación parcial llevadas a cabo en atmósferas diferentes (oxidante + inerte + oxidante (mezclas N_2/O_2)).

También es objeto de la presente invención los materiales fibrilares carbonosos fruto de realizar el procedimiento que constituye el primer objeto de la invención en cualquiera de sus variantes, no habiéndose descrito en el estado de la técnica la obtención de dichas propiedades físico-químicas conjuntamente mediante otras técnicas y/o procedimientos. Atendiendo a su morfología y dimensiones, los materiales fibrilares carbonosos pueden ser lineales o ramificados y/o interconectados, y presentan diámetros entre 100 nm y 5 µm. Por otro lado, mediante la elección adecuada de las condiciones experimentales, la introducción de especies químicas estabilizantes permite controlar el grado de ablandamiento/fusión parcial de las estructuras fibrilares en intervalos de temperatura más amplios y a velocidades de calentamiento considerablemente mayores, dando lugar a diversas estructuras interconectadas tridimensionales y a sus réplicas carbonosas. Atendiendo a su estructura, los materiales pueden ser simples (rígidos) o huecos, aunque también pueden ser de tipo coaxial, en las que el material carbonoso recubre o es recubierto coaxialmente por otro material distinto, que puede ser indistintamente de tipo carbonoso, polimérico o cerámico. Atendiendo a sus propiedades texturales, los materiales pueden ser microporosos (diámetro del poro entre 0.7 - 2.0 nm) (con volúmenes de hasta $1.5 \text{ cm}^3/\text{g}$), mesoporosos (2,0 – 50 nm) (volúmenes de hasta 0.5cm³/g) o presentar una determinada distribución de tamaños de poros que les confieren una elevada superficie específica desde 500 a 3000 m²/g. Atendiendo a su química y reactividad, los materiales fibrilares carbonosos pueden incorporar diversos heteroátomos o funcionalidades de los propios precursores y/o especies químicas o de la atmósfera reactiva, como oxígeno (desde 0.01 hasta 30 %) y fósforo (desde 0.1 hasta 15 %), con propiedades ácido-base, oxido-reducción (redox), complejantes, intercambiadoras, promotoras de la conductividad, actividad catalítica, resistencia a la oxidación, etc. para diversas aplicaciones. En particular, los materiales presentan cierta resistencia a la tracción y/o deformación (propiedades mecánicas) y una elevada resistencia a la oxidación, soportando temperaturas de hasta 600 °C en presencia de aire, previa gasificación. Además, los materiales fibrilares compuestos que aquí se reivindican pueden doparse adicionalmente con partículas catalíticas o conductoras (metálicas, cerámicas, carbonosas) u otros materiales micro- o nanoestructurados, cuyo objeto sea la

10

15

modificación de la estructura y propiedades finales de las estructuras fibrilares de carbono obtenidas a partir de las mezclas precursor/especie química.

Aunque algunos de los efectos en la estabilización, activación, simplificación de etapas y en las propiedades de los materiales fibrilares finales pudieran ser esperables o deducibles a partir de sus propiedades y/o del estado del arte de la preparación de materiales carbonosos, resultan totalmente novedosos por ser efectos considerablemente magnificados, ventajosos y/o nunca reportados a partir de cantidades relativamente pequeñas de especies químicas, que no sólo limitan la viabilidad y hacen exclusivo el proceso de electrohilado que aquí se reivindica, sino que se distribuyen homogéneamente por toda la estructura (externa e interna) de unas estructuras fibrilares de dimensiones muy pequeñas, a escala micro- y sub-micrométrica, y muy accesibles a las atmósferas en las que reaccionan.

Aunque la inclusión de especies activantes y/o promotoras de la resistencia a la oxidación, como el H₃PO₄, en el procedimiento de electrohilado de disoluciones de lignina pudiera parecer fácilmente deducible a partir del estado de la técnica, el procedimiento aquí reivindicado presenta gran actividad inventiva por diversos aspectos muy importantes:

- A) En primer lugar, frente a la invención previa de electrohilado de disoluciones de lignina (*ES2326455B2*):
- 20 (i) en la que se reivindica (tercera reivindicación) que "la disolución de lignina se dopa con partículas catalíticas u otros materiales nanoestructurados para modificar las propiedades de las fibras de carbono obtenidas a partir del tratamiento térmico de las de lignina", la presente invención reivindica la mezcla o dopado del precursor con especies químicas que, no sólo afectan a las propiedades finales de las fibras de carbono, sino que, 25 además, participan activamente y afectan determinantemente a las etapas de estabilización y carbonización. Entre estos efectos superiores o ventajosos, jamás observados, cabe destacar que dichas especies disminuyen considerablemente el tiempo (de 3 días 11 horas a 1 h 30 min, unas 50 veces) y la temperatura (de 200 a 150 °C) de estabilización; simplifican el número de etapas y la cantidad de agente activante, de 30 forma que pueden llevarse a cabo durante un misma etapa de calentamiento los procesos de estabilización, activación química, carbonización y/o activación física; y, por tanto, reducen el coste (energético, económico y/o de contaminación) del proceso global de fabricación; y, al mismo tiempo, los procesos de activación química y física (en presencia

10

15

20

25

30

de cantidades controladas de O₂ a elevadas temperaturas) durante o tras la gasificación dan lugar a estructuras con áreas superficiales significativamente mayores (hasta 3000 m²/g frente a los 700 m²/g en ausencia de dichas especies) y con una mayor variedad de propiedades texturales y químicas, como la presencia de grupos superficiales de fósforo que aumentan considerablemente la resistencia a la oxidación.

- (ii) el comportamiento y preparación de disoluciones lignina + etanol + fosfórico que aquí se reivindica es diferente al de disoluciones lignina + etanol (de la invención previa) en términos de concentración, viscosidad y conductividad eléctrica, etc., de forma que las condiciones experimentales de electrohilado (velocidad de flujo, voltaje, distancia punta colector, etc.) son distintas y más distintas cuanto mayor es la proporción de H₃PO₄.
- (iii) tras la evaporación del etanol, las fibras de lignina/fosfórico electrohiladas se comportan de una manera totalmente distinta a las de lignina pura (de la invención previa) en lo que se refiere a la velocidad de calentamiento, temperaturas de estabilización y carbonización, estabilidad química, etc.
- B) En segundo lugar, aunque el efecto activante y otras propiedades del H₃PO₄ en la preparación y las características de los carbones activados han sido ampliamente estudiados, los observados en la estabilización, activación química y aumento de la resistencia a la oxidación en el procedimiento que aquí se reivindica son de nuevo totalmente novedosos. Considerando que los efectos conocidos del H₃PO₄ solo son significativos cuando la relación precursor/H₃PO₄ es igual o superior a 1/1 (1/2, 1/3, etc.) y que dichas mezclas no pueden ser electrohiladas (por la gran inestabilidad del cono de Taylor) ni estabilizadas sin que las estructuras fibrilares colapsen por fusión, la novedad del procedimiento que aquí se reivindica se basa en el electrohilado de mezclas precursor/H₃PO₄ con pequeñas cantidades de H₃PO₄ (hasta 1/0.5 como mucho) que, a diferencia de lo que cabría esperar, producen un efecto muy notable porque las dimensiones de las fibras son muy pequeñas y el H₃PO₄ está muy bien distribuido por toda la fibra y muy accesible a la atmósfera gaseosa reactiva. De esta forma, la propia limitación del método de electrohilado para electrohilar mezclas lignina/H₃PO₄ con relaciones de impregnación que se consideran mínimas para obtener efectos apreciables, es la que ha permitido revelar que solo cuando se reducen las dimensiones del material precursor hasta valores cercanos o por debajo de las pocas micras y cuando la especie química está homogéneamente distribuida, no solo por su parte externa sino también por

toda su estructura interna (ambos requerimientos exclusivamente factibles mediante el procedimiento que aquí se reivindica), entonces ha sido posible observar efectos magnificados (efectos muy superiores a pesar de utilizar cantidades muy inferiores) de la especie química, introducida en pequeñas cantidades mediante dicho método y empleando unas condiciones experimentales específicas.

- C) Dicho esto, aunque existen trabajos e invenciones donde se estudia la estabilización de fibras de lignina con determinadas especies químicas o de otros precursores (acrílicos), incluso con H₃PO₄, éstos se han llevado a cabo por el método de extrusión. De esta forma, tanto la naturaleza de la mezcla precursor/H₃PO₄ como del método de hilado son bien distintos por lo que el procedimiento y los efectos y propiedades que aquí se reivindican son completamente diferentes y difícilmente deducibles a partir de los anteriores. Y es que el procedimiento que aquí se reivindica es el único que hasta ahora plantea y ha podido llevar a cabo con éxito el electrohilado de mezclas de lignina con H₃PO₄ y/o su transformación en materiales carbonosos. Para ello, si no se utiliza el fosfórico en las cantidades adecuadas y/o si las condiciones experimentales durante las etapas de electrohilado, estabilización y carbonización no se llevan a cabo exactamente como aquí se plantean, no se pueden obtener ni los materiales resultantes ni las novedades/ventajas del proceso de fabricación. Todas estas consideraciones son prueba de la gran dificultad y actividad inventiva del procedimiento reivindicado.
- D) Finalmente, la presente invención describe las propiedades avanzadas obtenidas conjuntamente en los materiales fibrilares carbonosos, cuya obtención mediante otros métodos no ha sido descrita en el estado de la técnica. Dicha amalgama de propiedades consiste en diámetros fibrilares del orden de las pocas micras o inferiores, elevadas áreas superficiales de hasta 3000 m²/g, y una rica química superficial con porcentajes variables de fósforo que aumentan considerablemente su resistencia a la oxidación. Considerando que al reducir el diámetro de las fibras resulta más complicado post-activarlas significativamente y/o funcionalizarlas sin romperlas o descomponerlas; que la post-impregnación de materiales fibrilares de pequeñas dimensiones con una determinada especie química tras la etapa de electrohilado y/o las de estabilización o carbonización conlleva la destrucción de la fibras y/o una distribución menos homogénea y exclusivamente externa, respectivamente , y por tanto, menos eficientes de dicha especie; la actividad inventiva radica en que solo el procedimiento que aquí se reivindica,

en el que la especie química se disuelve y dispersa homogéneamente en pequeñas proporciones con el precursor carbonosos antes del proceso de electrohilado y, por tanto, antes de conformar las pequeñas dimensiones de los materiales, permite beneficiarse y optimizar los efectos de la especie química para obtener los materiales reivindicados.

5

BREVE EXPLICACIÓN DE LAS FIGURAS

Figura 1. Imágenes SEM de fibras de lignina lineales (a) y ramificadas (b)

- Figura 2. Evolución de la velocidad de calentamiento e imágenes SEM de las fibras de lignina as-spun y estabilizadas a 0.05 °C/min y 1 °C/min (fundidas- microscopio óptico) y las de 1/0.3 as-spun y estabilizadas a 0.05 °C/min y 1 °C/min, 3 °C/min 4-5 °C/min.
- Figura 3. Isoterma del activado-1/0.3 (tras carbonización) comparada con la de lignina sin P
 - Figura 4. Estabilidad + Gasificación (TG) e isoterma del gasificado-1/0.3 comparada con la de lignina sin P
- Figura 5. Funcionalización XPS del P(2p): Los materiales carbonosos resultantes presentan grupos superficiales de fósforo fuertemente anclados (1-3 wt%P -XPS) y elevados contenidos en oxígeno (5-20 wt%O -DTP).

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

25

30

La **presente invención** reivindica un método que permite la fabricación de diversas materiales fibrilares carbonosos con superficie específica y resistencia a la oxidación elevadas mediante el electrohilado y posterior transformación térmica de materiales compuestos formados por precursores de carbono (componente mayoritario: lignina, breas y otros derivados de la pirólisis de residuos orgánicos naturales, así como resinas de origen vegetal) y un agente químico estabilizante para acelerar la etapa de estabilización y/o capaz de inducir un proceso de activación química durante la etapa de carbonización y que, aumentando la resistencia frente a la oxidación/gasificación a

10

15

20

25

30

elevadas temperaturas, permita una gasificación parcial controlada de las fibras carbonosas en presencia de gases conteniendo oxígeno durante o tras la etapa de carbonización, para reducir la duración y simplificar su proceso de fabricación global y, al mismo tiempo, modular y optimizar sus propiedades texturales, estructurales y/o químicas.

La preparación de disoluciones homogéneas de precursor carbonoso y agente químico es muy importante para poder llevar a cabo satisfactoriamente la etapa de electrohilado. Por ejemplo, para mezclas lignina/H₃PO₄, se añade una cantidad adecuada de H₃PO₄ sobre una masa determinada de lignina y, a su vez, se vierte un volumen de disolvente apropiado, como por ejemplo etanol, sobre la mezcla anterior lignina/H₃PO₄. A continuación, la mezcla se calienta, a volumen constante, bajo agitación magnética a temperaturas por debajo del punto de ebullición del disolvente. La agitación puede realizarse a diferentes velocidades (se recomienda entre 25 y 500 rpm), y es estrictamente necesaria durante un tiempo suficiente (se recomienda un mínimo 2 h) para disolver los posibles aglomerados de precursor y agente químico y obtener una mezcla homogénea, mientras que el calentamiento se requiere por la dificultad de obtener una solución viscosa de lignina a temperatura ambiente.

La concentración y naturaleza del precursor, especie química y disolvente (composición) de las disoluciones determinan su viscosidad y conductividad, propiedades muy importantes que afectan enormemente al flujo de alimentación de la mezcla y/o a la estabilidad y propiedades del cono de Taylor, que en definitiva, van a determinar tanto el éxito del proceso de electrohilado como las ventajas en las etapas térmicas posteriores y las propiedades de los materiales resultantes. En consecuencia, el control preciso de ambos parámetros, viscosidad y conductividad, resulta de vital importancia para el procedimiento que aquí se reivindica, y en mayor medida, considerando la gran influencia de las especies químicas en estos parámetros.

Debido a que es el componente mayoritario, la viscosidad de la disolución depende principalmente de la concentración del precursor carbonoso. No obstante, la naturaleza y concentración del agente químico puede jugar un papel muy importante. Así, agentes químicos sólidos (KOH, NaOH, ZnCl₂) y determinados líquidos (H₃PO₄ 85wt%. = 47 cP (20°C); H₂SO₄ 98wt%. = 20,5 cP (20°C); HNO₃ 68wt%. = 2,6 cP (20°C)) aumentan considerablemente la viscosidad de la disolución, mientras que los disolventes comunes la disminuyen (H₂O = 1,002 cP (20°C); Etanol = 1,201 cP (20°C);

10

15

20

25

30

Acetona = 0,324 cP (20°C)). En particular, la presencia de H₃PO₄ aumenta enormemente la viscosidad de las disoluciones de lignina-etanol por lo que su cebado/alimentación al sistema de electrohilado debe realizarse rápidamente tras la agitación, cuando todavía están calientes, aprovechando así su menor viscosidad con la temperatura y facilitar su desplazamiento por los conductos y agujas de reducido diámetro. A continuación, las disoluciones se enfrían rápidamente hasta temperatura ambiente, pero el aumento de su viscosidad no impide ni dificulta el flujo controlado de la mezcla debido a la inercia adquirida tras el impulso inicial. Por otro lado, la conductividad de la disolución está determinada principalmente por la naturaleza del disolvente volátil, pero, igualmente, la adición de algunos agentes químicos (ácidos y bases sobre todo) puede afectar en gran medida y condicionar la estabilidad del cono de Taylor y, en consecuencia, las propiedades de las fibras.

Respecto al proceso de electrohilado, las disoluciones deben mostrar una conductividad eléctrica mínima como para deformar la disolución y generar el cono de Taylor, mientras que las concentraciones de precursor y agente químico deben ser las apropiadas para, por un lado, conseguir la viscosidad y el entrelazado molecular necesario y que la mezcla pueda hilarse, y por otro, para mantener un cono de Taylor estable que permita la eyección continua de un chorro de disolución que se transforma en fibras. En este sentido, al aumentar la concentración de H₃PO₄ aumenta considerablemente la conductividad de la disolución mezcla y, paralelamente, la inestabilidad y latigueo del cono de Taylor, lo cual comienza a ser considerable para mezclas lignina/H₃PO₄ con una relación 1/0.5. Para mayores proporciones de H₃PO₄ el proceso de electrohilado no es factible (la viscosidad y la conductividad de la disolución son tan altas que no se puede aplicar un voltaje suficiente para que las fuerzas electrohidrodinámicas deformen el menisco, y el proceso de formación de fibras se interrumpe) e incluso aun obteniendo algunas fibras cortas, su calentamiento durante la etapa de estabilización produce el ablandamiento de fases de H₃PO₄ que funden y destruyen la estructura fibrilar. El valor máximo de viscosidad y/o conductividad dependen de la naturaleza y concentración de precursor carbonoso y agente químico, por lo que el electrohilado de diferentes mezclas requiere un conocimiento específico de cada sistema precursor/agente químico/disolvente.

Considerando todos estos factores, para la primera etapa de electrohilado del procedimiento objeto de la invención, la proporción de disolvente frente a precursor, por

ejemplo de etanol frente a lignina, puede variar entre un 40% y un 60% de la masa total (de ambos) y la proporción de agente químico frente a precursor, por ejemplo de H₃PO₄ frente a lignina, entre un 1 % a un 50% de la masa total, lo que supone relaciones de impregnación lignina/ H_3PO_4 (1/x) con x = 0.01-0.5. No obstante, y dentro del intervalo de composiciones anterior, la concentración de agente químico deber ser la necesaria para inducir el efecto de estabilización, activación y resistencia a la oxidación deseados. Dichas concentraciones y/o composiciones de las disoluciones lignina + etanol + H₃PO₄, con viscosidades y conductividades eléctricas específicas, necesarias para llevar a cabo con éxito el proceso de electrohilado no han sido reportadas y no pueden deducirse a partir del estado del arte en la técnica de electrohilado ni en la preparación de materiales carbonosos con H₃PO₄, por lo que son reivindicadas en la presente invención. Para mayores proporciones de disolvente, la concentración del precursor y especie química disminuyen y sus moléculas no son capaces de mantenerse cohesionadas y producir un material fibrilar continuo ante el voltaje aplicado. En este caso, la disolución se atomiza en forma de electrospray para dar lugar a partículas esféricas compuestas tipo precursor/agente químico con diámetros similares a los de las fibras. Por ejemplo, para las mezclas lignina/H₃PO₄/etanol esto sucede para porcentajes de etanol superiores al 60% (respecto a la de lignina) y la cantidad de H₃PO₄ no supera el 15 % de la de lignina, aumentando el porcentaje de etanol con el de especie química.

20

25

30

15

5

10

El electrohilado de las mezclas precursor/agente químico se lleva a cabo a temperatura ambiente y sin aditivos poliméricos mediante un dispositivo coaxial similar al reivindicado en una invención previa (*ES2326455B2*). Por la aguja interna se alimenta la mezcla precursor/agente químico preparada según el método aquí reivindicado y por la externa se hace pasar un flujo de disolvente con bajo punto de ebullición, típicamente etanol, con un caudal de entre el 1% y el 50% (normalmente el 10 %) el de la disolución de la mezcla, para evitar la solidificación del cono de Taylor. En general, y debido a su mayor viscosidad, se requiere aumentar el caudal y el voltaje para poder electrohilar disoluciones con cantidades crecientes de agente químico. En el caso particular de las mezclas lignina/H₃PO₄, el aumento de la viscosidad inducido por el H₃PO₄ conlleva un aumento del flujo necesario para electrohilar la disolución, siendo estrecho (normalmente alrededor de ±0.5 ml/min) el intervalo de caudales que posibilitan dicho proceso. Por ejemplo, para una mezcla con relación lignina/H₃PO₄ = 1/0.15, el caudal de disolución adecuado se sitúa alrededor de 3 ml/min y para una mezcla 1/0.3, alrededor de 4 ml/min,

10

15

20

25

30

aproximadamente el doble que en ausencia de fosfórico. Por otro lado, el aumento de viscosidad y caudal conllevan la necesidad de utilizar mayores voltajes para generar el cono de Taylor. Para los casos anteriores, por ejemplo, se necesitan voltajes de 20-22kV y 24-26 kV, respectivamente, cuando la distancia entre la aguja y el colector es de 30 cm.

Finalmente, la gran influencia de la viscosidad y la conductividad de la disolución en las fuerzas electrodinámicas durante el proceso de electrohilado afectan considerablemente, a su vez, a las propiedades morfológicas/estructurales de los materiales fibrilares resultantes. Así, dichas estructuras presentan diámetros entre 100 y 5 um (Fig. 2), aumentando con el aumento de la viscosidad de las disoluciones precursoras. Por otro lado, la inestabilidad del cono de Taylor y el fenómeno del latigueo, promovidos con el aumento de la conductividad de la disolución y los voltajes aplicados, favorecen la curvatura, el rizado, el acortamiento, la ramificación y/o la dispersión de diámetros de las fibras (Fig. 1). Respecto a su composición, y una vez secas tras la evaporación completa del disolvente, las estructuras fibrilares compuestas precursor/especie química presentan porcentajes de la especie química similares a los nominales utilizados para preparar las disoluciones. Por ejemplo, una vez electrohiladas, las fibras lignina/H₃PO₄ preparadas a partir de una disolución con relación 1/0.3, presentan un alrededor de un 7 % másico de fósforo un elevado porcentaje de oxígeno (entorno a un 30 % másico de oxígeno) proveniente del elevado contenido en oxígeno en la estructura molecular de la lignina y de la presencia de H₃PO₄. Además, y de acuerdo con el procedimiento de la presente invención, la especie química introducida eficientemente en las estructuras fibrilares del precursor carbonoso (lignina, breas y otros derivados de la pirólisis de residuos orgánicos naturales, así como resinas de origen vegetal) permite acelerar y/u optimizar la etapa de estabilización y/o inducir directamente un proceso de activación química y/o permitir una gasificación parcial (con gases conteniendo oxígeno) durante o tras la etapa de carbonización de dichas estructuras para reducir la duración y simplificar su proceso de fabricación global y, al mismo tiempo, modular y optimizar las propiedades texturales, estructurales y/o químicas de los materiales carbonosos finales. Por consiguiente, los materiales fibrilares compuestos electrohilados que aquí se reivindican son totalmente excepcionales y novedosos, diferentes a los de otras invenciones y/o trabajos del estado del arte.

Además de otros tipos de lignina y diversos residuos lignocelulósicos, el electrohilado de mezclas con especies químicas que aquí se reivindica puede llevarse a

10

15

20

25

30

cabo con otros precursores carbonosos, como resinas de origen vegetal, breas o derivados de la pirólisis de residuos orgánicos naturales, ajustando sus propiedades reológicas (viscosidad y conductividad), y otros disolventes volátiles diferentes al etanol, como propanol, acetona, H₂O, etc., o mezcla de ellos. Por otro lado, tanto las ventajas de fabricación como los efectos y propiedades novedosos que aquí se reivindican para estructuras fibrilares carbonosas, a partir del procesado electrohidrodinámico de mezclas conformaciones precursor/especie química, pueden extenderse a otras combinaciones. Así, y mediante la utilización de una configuración coaxial y disoluciones diluidas de las mezclas precursor/especie química pueden obtenerse (y tras los tratamientos térmicos posteriores) partículas carbonosas esféricas; mientras que mediante un dispositivo de configuración triaxial pueden obtenerse estructuras fibrilares carbonosas huecas o coaxiales, tan sólo pasando un líquido inerte de sacrificio u otra disolución o gel de un material susceptible de solidificar (polímeros, sol-gel, etc.) por la aguja concéntrica interior. Finalmente, los distintos materiales en forma fibrilar, tubular, coaxial y particular, obtenidos a partir del procesado electrohidrodinámico de mezclas precursor/especie química que aquí se reivindica, pueden doparse adicionalmente (y directamente en una sola etapa) con partículas (metálicas, cerámicas, carbonosas), funcionalidades y/o sus precursores, para modificar y/u optimizar las propiedades estructurales, mecánicas, conductoras, químicas (actividad catalítica, estabilidad, etc.) de los materiales carbonosos finales.

Tras la etapa de electrohilado, los materiales compuestos precursor/especie química con forma fibrilar se transforman en estructuras carbonosas a elevadas temperaturas. Debido a la naturaleza termoplástica de los precursores, la conservación de su estructura fibrilar requiere de una etapa previa de estabilización termo-oxidativa. El proceso se lleva a cabo en una estufa u horno convencional en presencia de aire, calentando desde 60 °C hasta temperaturas moderadas (250 °C como máximo). Durante esta etapa, la presencia de especies químicas estabilizantes, como el H₃PO₄, homogéneamente distribuidas por toda la estructura fibrilar del precursor carbonoso, promueven diversas reacciones de deshidratación, oxidación y entrecruzamiento entre los grupos oxigenados de las moléculas poliméricas del precursor, estabilizando sus estructuras fibrilares. En particular, las propiedades únicas de los materiales compuestos lignina/H₃PO₄ electrohilados, con proporciones de H₃PO₄ de al menos del 10 %, permiten utilizar rampas de calentamiento muy rápidas, de hasta 3 °C/min, y

temperaturas de estabilización muy bajas, de hasta 150 °C, mantenidas durante 1 h, sin comprometer la estructura fibrilar original y dar lugar a estructuras fibrilares lineales (Figura 2). En comparación al proceso de estabilización en ausencia de especies químicas estabilizantes (0.05-0.08 °C/min hasta 200 °C + 36 h) (Figura 2), esto supone una reducción extraordinaria del tiempo (de 3 días 11 horas a 1 h 30 min, unas 50 veces) y la temperatura (de 200 a 150 °C) de estabilización y, por tanto, del tiempo, costes económicos y contaminación asociados al proceso global. Además, el efecto estabilizante del H₃PO₄ es tal que, con precursores ricos en oxígeno (como la lignina), permite llevar a cabo el proceso de estabilización incluso en atmósfera inerte, como la utilizada en el proceso de carbonización y, evidentemente, en atmósferas con distintos contenidos en oxígeno.

5

10

15

20

25

30

Por otro lado, el efecto estabilizante del H₃PO₄ permite también utilizar velocidades de calentamiento más elevadas, entre 4-6 °C/min (procesos hasta 100 veces más rápidos), pero en este caso las fibras se ablandan y experimentan un determinado grado de ensanchamiento y/o fusión parcial, dando lugar a fibras interconectadas y, por tanto, estructuras tridimensionales (tipo mallas) (Figura 2). De nuevo, dichas estructuras y/o el control en su grado de interconexión no pueden conseguirse tan rápidamente en ausencia de agente estabilizante debido a la baja temperatura de transición vítrea de estos precursores poliméricos, los cuales funden totalmente a estas velocidades de calentamiento. En consecuencia, en la presente invención se reivindica no solo la etapa de electrohilado del material compuesto con la cantidad y naturaleza de agente estabilizante adecuado, sino también un método de estabilización rápido que permite control del grado de interconexión y/o dimensional de las estructuras fibrilares durante su etapa de estabilización en presencia del agente estabilizante, mediante el control de las condiciones experimentales de dicho proceso, tales como velocidad de calentamiento (principalmente), la temperatura y tiempo de estabilización, la concentración de aire, etc. Una vez carbonizadas, dichas estructuras interconectadas presentan gran interés para su uso como electrodos o soportes de electrocatalizadores para diferentes aplicaciones electroquímicas. Como agentes químicos para acelerar y/u optimizar la etapa de estabilización se pueden usar ácidos y bases inorgánicas con carácter deshidratante como el ácido fosfórico y derivados, ácido sulfúrico, ácido hidroclórico, ácido nítrico, ácido metano sulfónico, ácido sulfónico aromático, ácidos carboxílicos y alcoholes, etc., así como sus correspondientes sales o ésteres.

10

15

20

25

30

Tras la estabilización, la carbonización de los materiales fibrilares se lleva a cabo en un horno calentándolos en atmósfera inerte hasta elevadas temperaturas (500-1000 °C) y empleando rampas de calentamiento mucho más rápidas (en torno a 10-20 °C/min), sin que las estructuras electrohiladas vean comprometidas su estructura fibrilar. Durante el proceso de carbonización, se produce un reordenamiento de los átomos de carbono para dar lugar a láminas de anillos aromáticos (grafitización) y a la evolución de distintos compuestos volátiles y grupos carbonosos y/u oxigenados con desarrollo de estructura porosa. Además, en el proceso que aquí se reivindica, la presencia de especies químicas con propiedades activantes, como las del H₃PO₄, favorecen los procesos de descomposición produciendo un desarrollo extra de la porosidad. En el caso particular de materiales fibrilares preparados empleando lignina como precursor, la carbonización a 900°C en atmósfera inerte en presencia de tan solo un 30 % másico inicial de H₃PO₄ da lugar a estructuras fibrilares carbonosas lineales o interconectadas (dependiendo de la velocidad de la etapa de estabilización) con un área superficial en torno a 1300-1400 m²/g, aproximadamente el doble que en ausencia de dicho agente activante (Figura 3). Considerando que para obtener un desarrollo similar de la porosidad a partir de lignina en polvo (es decir, lignina no procesada mediante la etapa de electrohilado del procedimiento aquí reivindicado) se necesita como mínimo un 80 % inicial de H₃PO₄, de nuevo se puede afirmar que el efecto activante magnificado del H₃PO₄ reivindicado en la presente invención resulta totalmente novedoso. Además, aunque existe un trabajo en el que se ha electrohilado lignina con otros agentes activantes como el NaOH o KOH (S. Hu, Y.-L. Hsieh, J. Mater. Chem. A 2013, 1, 11279-11288), tanto el mecanismo de las reacciones de activación como las propiedades resultantes finales (principalmente en términos del tipo y distribución de la porosidad) son completamente diferentes y específicos del agente activante (A. Linares-Solano, M.A. Lillo-Ródenas, J.P. Marco-Lozar, M. Kunowsky, A.J. Romero-Anaya, Inter. J. Ener. Environ. Econ. 2012, 20(4), 59-91), por lo que los efectos magnificados, y propiedades resultantes en los ya comentados materiales con reducidas dimensiones y óptima distribución del agente activante de la presente invención son totalmente novedosos.

Por otro lado, el proceso de carbonización de los materiales fibrilares estabilizados en atmósfera inerte da lugar a un desarrollo de la porosidad inferior (hasta 1100 m²/g) al de los estabilizados en presencia de aire u otras atmósferas con oxígeno (como consecuencia de la menor captación de oxígeno en forma de grupos salientes

durante el tratamiento térmico), pero todavía mayor al conseguido en ausencia de agente activante y, además, obteniéndolo directamente tras dicha estabilización en presencia de la misma atmósfera inerte. Esta preparación de materiales fibrilares carbonosos, lineales o interconectados, en la que se introduce una especie química para inducir un proceso de estabilización en atmósfera inerte y para poder llevar a cabo un proceso de carbonización directamente sin cambiar de atmósfera, resulta también completamente exclusivo de la presente invención.

5

10

15

20

25

30

Como agentes químicos para el proceso de activación química directa durante la etapa de carbonización (que aquí se reivindica) se pueden usar diversos ácidos inorgánicos como el fosfórico y sus derivados (por ejemplo, metafosfórico, pirofosfórico, fosforoso, fosfónico, fosfonoso, fosfínico, fosfinoso), el sulfúrico, el nítrico, o sus sales. Por ejemplo, debido a la presencia de un 10-30 wt.% de H₃PO₄, durante la etapa de carbonización (en N₂) se produce la activación química de las fibras de lignina, de forma que las estructuras fibrilares obtenidas aumentan su área superficial específica entre 100-800 m²/g con respecto a las mismas fibras de lignina pura (Figura 3).

Además de la activación química inducida durante la etapa de carbonización, la presencia de un agente químico como el H₃PO₄, y/o en forma de diferentes tipos de funcionalidades de fósforo, aumenta la resistencia a la oxidación del precursor carbonoso en transformación, de forma que permite llevar a cabo el proceso de carbonización en atmósferas oxidantes (conteniendo hasta un 5-10 % en O2, dependiendo de la temperatura, tiempo de tratamiento, diámetro de las fibras) igualmente hasta elevadas temperaturas (500-1000 °C) sin producir la gasificación total descontrolada (combustión) de los materiales fibrilares (Figura 4a) (rendimientos 5-30 %). Así, la elevada resistencia a la oxidación inducida por este tipo de especies químicas permite gasificar parcialmente (de forma controlada, según el tiempo, la temperatura, la cantidad de especie química introducida, el porcentaje de oxígeno) los materiales fibrilares carbonosos durante la etapa de carbonización y producir así otro desarrollo extra de la porosidad. En particular, para materiales fibrilares preparados a partir de lignina como precursor y tan solo un 30 % másico inicial de H_3PO_4 , la carbonización a 900°C en atmósferas N_2/O_2 con un 3-4 % en O₂ da lugar a estructuras fibrilares carbonosas lineales o interconectadas (dependiendo de la velocidad de la etapa de estabilización) con un área superficial en torno a 2000-2300 m²/g, aproximadamente el triple que en ausencia de dicho agente activante (Figura 3). Al aumentar el grado de gasificación aumenta el tamaño medio de los poros,

10

15

20

25

30

aumentando por tanto la proporción de mesoporos. La gran novedad de este efecto que aquí se reivindica radica en que a elevadas temperaturas (normalmente por encima de 450 °C), y en ausencia de las especies o funcionalidades promotoras de resistencia a la oxidación), la reacción del O2 (incluso en pequeñas proporciones) con los materiales carbonosos (y sus precursores) se produce muy rápidamente y de manera descontrolada, de forma que no permite controlar el desarrollo de la porosidad y/o consume totalmente el material en poco tiempo, sobre todo en materiales de pequeñas dimensiones y mayor área expuesta (más reactivos). Puesto que el desarrollo de porosidad inducido mediante gasificación controlada con O2 es diferente (en mecanismo y propiedades inducidas) al producido por otros agentes de activación física, como por ejemplo, vapor de H₂O o CO₂, cuya operación sí es factible a elevadas temperaturas (800-1000 °C), y puesto que normalmente no puede llevarse a cabo a temperaturas incluso por encima de 450 °C, el procedimiento de la presente invención se considera totalmente novedoso y único para poder llevar a cabo este tipo de reacciones, con desarrollo de porosidad específico del O₂, a elevadas temperaturas en materiales con estructura fibrilar de pequeñas dimensiones. Además, y puesto que en el procedimiento que aquí se reivindica la etapa de estabilización puede llevarse a cabo con atmósferas conteniendo diferentes porcentajes de O2, el proceso de carbonización puede realizarse también en estas condiciones de forma directa aumentando la temperatura a continuación de la estabilización. Esto supone un proceso de gran novedad de la presente invención en el que sin cambiar de atmósfera pueden llevarse a cabo progresiva- y/o simultáneamente los procesos de estabilización, activación química, carbonización y gasificación parcial controlada con O2, con la correspondiente reducción en el tiempo, consumo energético y contaminación (asociada a dicho consumo) para producir materiales fibrilares carbonosos con propiedades avanzadas que también se reivindican en la presente invención.

Por otro lado, el aumento en la resistencia a la oxidación inducido por las especies químicas que aquí se reivindican no sólo puede aprovecharse durante el calentamiento de la etapa de carbonización, sino que determinadas funcionalidades de fósforo (hasta un 15 % másico) quedan fuertemente retenidas en la estructura carbonosa (permanecen tras lavado exhaustivo en agua a 60 °C - (Figura 5) e inducen también un aumento de la resistencia a la oxidación después de carbonizar los materiales fibrilares (Figura 4b). Por ejemplo, para materiales fibrilares preparados a partir de lignina como precursor y tan solo un 30 % másico inicial de H₃PO₄, carbonizados a 900°C en atmósferas N₂/O₂ con un

3-4 % en O₂, la gasificación no comienza hasta temperaturas por encima de 600 °C (Figura 4b). Por consiguiente, la elevada resistencia a la oxidación que se reivindica en la presente invención para llevar a cabo gasificación controlada con O₂ a elevadas temperaturas de materiales fibrilares de pequeñas dimensiones puede llevarse a cabo no solo durante la etapa de carbonización, sino también, posteriormente tras dicho proceso como etapa adicional.

Como agentes químicos para aumentar la resistencia a la oxidación y/o permitir un proceso gasificación parcial durante o tras la etapa de carbonización se pueden usar compuestos conteniendo fósforo (ácidos fosfórico, metafosfórico, pirofosfórico, fosforoso, fosfónico, fosfonoso, fosfónico, fosfonoso o sus sales, polifosfatos, polifosfonatos o sales de fosfonio, fosfinas y óxidos de fosfina) o boro (ácido bórico, óxido bórico, bórax, metaborato sódico, tetraborato sódico, metaborato de litio, pentaborato de litio, metaborato potásico, tetraborato potásico).

Otros compuestos que contienen (y pueden introducir) fósforo serían triamida fosforotioica, triamida fosfórica, triamida N,N',N''-trimetilfosfórica, diamida (clorometil)fosfonotiónica, trimetil fosfato, trietil fosfato, dietil metilfosforamidato, dietil etilfosforamidato, dietil isopropilfosforamidato, diamida metilfosfónica, y mezclas de ellos (encontrados en algunas patentes para aumentar el efecto retardante de llama)

$$\begin{bmatrix} R'-N-\\ R^2 \end{bmatrix}_{2}^{P} \begin{bmatrix} N\\ N \end{bmatrix}_{2}^{P} \begin{bmatrix} -N-R'\\ R^2 \end{bmatrix}_{3}^{Q}$$

$$Z = \begin{bmatrix} P\\ -Q\\ L \end{bmatrix}_{2}^{Q}$$

20

25

5

10

15

G = -OR, R^{g} L = radicales alquilo (1 a 4 át. de C), radicales alquilo halogenado

L = radicales alquilo (1 a 4 át. de C), radicales alquilo halogenados (1 a 4 át. de C) Z= O, S

Considerando los diferentes efectos ventajosos de las especies químicas en el proceso de estabilización, activación química y resistencia a la oxidación que se reivindican en la presente invención, y la consecuente gran versatilidad de condiciones

experimentales (velocidades de calentamiento, temperaturas, tiempos y atmósferas) a la hora de poder llevar a cabo los procesos de estabilización y carbonización, el proceso térmico de transformación de los precursores fibrilares en las correspondientes estructuras fibrilares carbonosas puede llevarse a cabo en 1 a 3 etapas (2 a 4 etapas para el proceso global, considerando la etapa previa de electrohilado) a través de 6 procesos diferentes según las siguientes modalidades:

a) 1 etapa: una única etapa de calentamiento utilizando una única atmósfera:

5

15

25

respectivamente.

- inerte (N₂), comprendiendo los procesos de estabilización + activación química + carbonización.
- oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂), comprendiendo los procesos de estabilización + activación química + carbonización + gasificación parcial.
 - b) <u>2 etapas</u>: una etapa de estabilización seguida de una de carbonización, llevadas a cabo en atmósferas diferentes:
 - oxidante (aire o cualquier mezcla N_2/O_2) + inerte (N_2), comprendiendo los procesos de estabilización (oxidante) + activación química (inerte) + carbonización (inerte).
 - inerte (N_2) + oxidante (mezclas N_2/O_2 con hasta un 5 % en O_2), comprendiendo los procesos de estabilización (inerte) + activación química (oxidante) + carbonización (oxidante) + gasificación parcial (oxidante), respectivamente.
- c) <u>2 etapas</u>: dos etapas consistentes en una etapa de estabilización-carbonización en atmósfera inerte (N₂) (modalidad (a)), seguida de una etapa posterior de gasificación parcial en atmósfera oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂).
 - d) <u>3 etapas</u>: tres etapas sucesivas de estabilización, carbonización y gasificación parcial llevadas a cabo en atmósferas diferentes, comprendiendo los procesos de estabilización (oxidante (aire o cualquier mezcla N_2/O_2)) + activación química (inerte) + carbonización (inerte) + gasificación parcial (oxidante (mezclas N_2/O_2 con hasta un 5 % en O_2)),

REIVINDICACIONES

5

15

20

- 1. Procedimiento de obtención de partículas y materiales carbonosos con propiedades optimizadas caracterizado por comprender una mezcla de al menos un tipo de precursor carbonoso y al menos un tipo agente químico, así como el electrospinning o el electrohilado de dicha mezcla.
- 2. Procedimiento según la reivindicación anterior caracterizado por que el electrospinning o el electrohilado de dicha mezcla se realiza a temperatura ambiente.
- 3. Procedimiento según cualquiera de las reivindicaciones 1 ó 2 caracterizado por que comprende la adición de polímeros facilitadores del electrospinning o del electrohilado.
 - 4. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado por que comprende una única etapa, de calentamiento, utilizando una única atmósfera y comprendiendo dicha etapa los procesos de estabilización, activación química y carbonización.
 - 5. Procedimiento según la reivindicación anterior caracterizado por que la etapa de calentamiento se realiza en una atmósfera inerte (N₂).
 - Procedimiento según la reivindicación 4 caracterizado por que la etapa de calentamiento se realiza en una atmósfera oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂).
 - 7. Procedimiento según la reivindicación anterior caracterizado por que la etapa de calentamiento comprende además un proceso de gasificación parcial.
 - 8. Procedimiento según cualquiera de las reivindicaciones anteriores 1 a 3 caracterizado por que comprende dos etapas, una etapa de estabilización y una etapa de carbonización, que se realizan en atmósferas diferentes.
 - 9. Procedimiento según la reivindicación anterior caracterizado por que la etapa de estabilización se realiza en una atmósfera oxidante (aire o cualquier mezcla N₂/O₂), y la etapa de carbonización, que comprende un proceso previo de activación química, se realiza en una atmósfera inerte (N₂).
- 30 10. Procedimiento según la reivindicación 8 caracterizado por que la etapa de estabilización se realiza en una atmósfera inerte (N2), y la etapa de carbonización, comprendiendo proceso previo de activación química y un proceso posterior de

- gasificación parcial, se realiza en una atmósfera oxidante (mezclas N_2/O_2 con hasta un 5 % en O_2).
- 11. Procedimiento según la reivindicación 8 caracterizado por que la etapa de estabilización se realiza en una atmósfera oxidante (aire o cualquier mezcla N₂/O₂), y la etapa de carbonización, comprendiendo un proceso previo de activación química, en una atmósfera oxidante diferente a la empleada para la etapa de estabilización (cualquier mezcla N₂/O₂ diferente a la empleada para la etapa de estabilización).

5

10

20

25

- 12. Procedimiento según cualquiera de las reivindicaciones anteriores 1 a 3 caracterizado por que comprende dos etapas, una etapa de estabilización-carbonización y una etapa de gasificación parcial posterior.
- 13. Procedimiento según la reivindicación anterior caracterizado por que la etapa de estabilización-carbonización se realiza en una atmósfera inerte (N₂), y la etapa de gasificación parcial se realiza en una atmósfera oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂).
- 14. Procedimiento según la reivindicación 12 caracterizado por que las etapas de estabilización-carbonización y de gasificación parcial se realizan en una atmósfera oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂).
 - 15. Procedimiento según cualquiera de las reivindicaciones anteriores 1 a 3 caracterizado por que comprende tres etapas, una etapa de estabilización-carbonización y una etapa de gasificación parcial posterior.
 - 16. Procedimiento según la reivindicación anterior caracterizado por que dichas tres etapas se realizan en atmósferas diferentes.
 - 17. Procedimiento según la reivindicación anterior caracterizado por que la etapa de estabilización se realiza en una atmósfera oxidante (aire o cualquier mezcla N₂/O₂); la etapa de carbonización, comprendiendo una etapa previa de activación química, se realiza en una atmósfera inerte (N₂); y la etapa de gasificación parcial se realiza en una atmósfera oxidante (mezclas N₂/O₂ con hasta un 5 % en O₂).
 - 18. Procedimiento según cualquiera de las reivindicaciones 7, 10, 12, 13, 14, 15, 16 ó 17 caracterizado por que previo a la etapa o al proceso de gasificación parcial se dejan enfriar a temperatura ambiente las partículas o el material fruto de etapas previas.
 - 19. Procedimiento según cualquiera de las reivindicaciones anteriores caracterizado por que el al menos un tipo de precursor carbonoso comprendido en la mezcla es de origen sintético, como por ejemplo PBO, nylon o kevlar.

- 20. Procedimiento según cualquiera de las reivindicaciones 1 a 18 caracterizado por que el al menos un tipo precursor carbonoso es de origen natural, dicho precursor carbonoso (a) obtenido a partir de biomasa, por ejemplo mediante pirólisis o licuefacción de compuestos orgánicos naturales; (b) de origen vegetal, por ejemplo resinas o ligninas; o (c) de origen fósil, por ejemplo breas o PAN.
- 21. Procedimiento según la reivindicación anterior caracterizado por que el al menos un precursor carbonoso de origen vegetal es de tipo resina, comprendiendo una o más clases de resinas.
- 22. Procedimiento según la reivindicación 20 caracterizado por que el al menos un
 precursor carbonoso de origen vegetal es de tipo lignina, comprendiendo una o más clases de ligninas.
 - 23. Procedimiento según la reivindicación anterior caracterizado por que el al menos un precursor carbonoso de origen vegetal de tipo lignina comprendiendo lignina obtenida mediante el método Alcell.
- 24. Procedimiento según la reivindicación 22 caracterizado por que el al menos un precursor carbonoso de origen vegetal de tipo lignina comprendiendo lignina obtenida mediante un método distinto al método Alcell utilizando para ello disolventes orgánicos adecuados, tales como alcoholes, ácidos orgánicos (por ejemplo, ácido fórmico, ácido acético, etc.), fenol, cresoles, acetato de etilo, aminas y su óxidos, cetonas, dioxano, o DMSO.
 - 25. Procedimiento según cualquiera de las reivindicaciones anteriores 4 a 24 caracterizado por que el al menos un tipo de agente químico comprendido en la mezcla es un agente químico adecuado para acelerar y/u optimizar la etapa de estabilización.
- 26. Procedimiento según la reivindicación anterior caracterizado por que el al menos un tipo de agente químico es un ácido o una base inorgánicos con carácter deshidratante, por ejemplo ácido fosfórico y derivados, ácido sulfúrico, ácido hidroclórico, ácido nítrico, ácido metano sulfónico, ácido sulfónico aromático, ácidos carboxílicos y alcoholes, así como sus correspondientes sales o ésteres.
- 27. Procedimiento según cualquiera de las reivindicaciones anteriores 4 a 24 caracterizado por que el al menos un tipo de agente químico comprendido en la mezcla es un agente químico adecuado para inducir, acelerar y/u optimizar el proceso de activación química directa durante la etapa de carbonización.

- 28. Procedimiento según la reivindicación anterior caracterizado por que el al menos un tipo de agente químico es un ácido inorgánico, como por ejemplo el fosfórico y sus derivados (por ejemplo, metafosfórico, pirofosfórico, fosforoso, fosfónico, fosfonoso, fosfínico, fosfinoso), el sulfúrico, el nítrico, o sus sales.
- 5 29. Procedimiento según cualquiera de las reivindicaciones anteriores 4 a 24 caracterizado por que el al menos un tipo de agente químico comprendido en la mezcla es un agente químico adecuado para aumentar la resistencia a la oxidación y/o permitir un proceso gasificación parcial durante o tras la etapa de carbonización.
- 30. Procedimiento según la reivindicación anterior caracterizado por que el al menos un tipo de agente químico es un compuesto que comprende (a) fósforo, por ejemplo 10 ácido fosfórico, metafosfórico, pirofosfórico, fosforoso, fosfónico, fosfonoso, fosfinico, fosfinoso o sus sales, polifosfatos, polifosfonatos o sales de fosfonio, fosfinas y óxidos de fosfina, triamida fosforotioica, triamida fosfórica, triamida N,N',N''-trimetilfosfórica, diamida (clorometil)fosfonotiónica, trimetil fosfato, fosfato, dietil metilfosforamidato, dietil etilfosforamidato, dietil 15 trietil isopropilfosforamidato, diamida metilfosfónica, y mezclas de ellos; o (b) boro, por ejemplo ácido bórico, óxido bórico, bórax, metaborato sódico, tetraborato sódico, metaborato de litio, pentaborato de litio, tetraborato de litio, metaborato potásico, tetraborato potásico.
- 31. Procedimiento según la reivindicación 23 caracterizado por comprender una mezcla de lignina obtenida mediante el método Alcell así como H₃PO₄ como agente químico, consistente en la disolución de una mezcla lignina/H₃PO₄ en un disolvente adecuado, donde la proporción de lignina en la mezcla varía entre un 25% a un 99% en masa de la masa de H₃PO₄, y donde la proporción de lignina en la disolución varía entre un 10% y un 90% en masa de la masa de disolvente.
 - 32. Procedimiento según la reivindicación anterior caracterizado por que el disolvente adecuado es etanol.
- 33. Procedimiento según la reivindicación 24 caracterizado por comprender una mezcla de lignina no obtenida mediante el método Alcell así como H₃PO₄ como agente químico, consistente en la disolución de una mezcla lignina/H₃PO₄ en un disolvente adecuado como por ejemplo etanol, propanol, acetona o agua.

5

- 34. Procedimiento según cualquiera de las reivindicaciones 1 a 18 caracterizado por comprender una mezcla de dos o más tipos de precursores carbonosos y al menos un tipo de agente químico,
- i. dichos dos o más tipos de precursores carbonosos comprendiendo (a) una o más clases de precursores carbonosos tipo lignina conforme a las reivindicaciones 23 ó 24, además de una o más clases de precursores carbonosos tipo resina y/o una o más clases de precursores tipo brea; (b) una o más clases de precursores carbonosos tipo resina, además de una o más clases de precursores carbonosos tipo lignina conforme a las reivindicaciones 23 ó 24 y/o una o más clases de precursores tipo brea; o (c) una o más clases de precursores tipo brea, además de una o más clases de precursores tipo lignina conforme a las reivindicaciones 23 ó 24; y
 - ii. dicho al menos un tipo de agente químico conforme a cualquiera de las reivindicaciones 25 a 30.
- 35. Procedimiento según cualquiera de las reivindicaciones 1 a 18 caracterizado por comprender una mezcla de al menos un tipo de precursor carbonoso y dos o más tipos de agentes químicos,
 - i. dicho al menos un tipo de precursor carbonoso conforme a cualquiera de las reivindicaciones 19 a 24; y
- ii. dichos dos o más tipos de agentes químicos comprendiendo (a) un tipo de agente químico conforme a las reivindicaciones 25 ó 26, además de un tipo de agente químico conforme a las reivindicaciones 27 ó 28 y/o de un tipo de agente químico conforme a las reivindicaciones 29 ó 30; (b) un tipo de agente químico conforme a las reivindicaciones 27 ó 28, además de un tipo de agente químico conforme a las reivindicaciones 25 ó 26y/o de un tipo de agente químico conforme a las reivindicaciones 29 ó 30; o (c) un tipo de agente químico conforme a las reivindicaciones 29 ó 30, además de un tipo de agente químico conforme a las reivindicaciones 25 ó 26y/o de un tipo de agente químico conforme a las reivindicaciones 25 ó 26y/o de un tipo de agente químico conforme a las reivindicaciones 25 ó 26y/o de un tipo de agente químico conforme a las reivindicaciones 27 ó 28.
- 36. Procedimiento según cualquiera de las reivindicaciones 1 a 18 caracterizado por comprender una mezcla de dos o más tipos de precursores carbonosos y de dos o más tipos de agentes químicos,

- i. dichos dos o más tipos de precursores carbonosos comprendiendo (a) una o más clases de precursores carbonosos tipo lignina conforme a las reivindicaciones 23 ó 24, además de una o más clases de precursores carbonosos tipo resina y/o una o más clases de precursores tipo brea; (b) una o más clases de precursores carbonosos tipo resina, además de una o más clases de precursores carbonosos tipo lignina conforme a las reivindicaciones 23 ó 24 y/o una o más clases de precursores tipo brea; o (c) una o más clases de precursores tipo brea, además de una o más clases de precursores tipo lignina conforme a las reivindicaciones 23 ó 24; y
- ii. dichos dos o más tipos de agentes químicos comprendiendo (a) un tipo de agente químico conforme a las reivindicaciones 25 ó 26, además de un tipo de agente químico conforme a las reivindicaciones 27 ó 28 y/o de un tipo de agente químico conforme a las reivindicaciones 29 ó 30; (b) un tipo de agente químico conforme a las reivindicaciones 27 ó 28, además de un tipo de agente químico conforme a las reivindicaciones 25 ó 26 y/o de un tipo de agente químico conforme a las reivindicaciones 29 ó 30; o (c) un tipo de agente químico conforme a las reivindicaciones 29 ó 30, además de un tipo de agente químico conforme a las reivindicaciones 25 ó 26 y/o de un tipo de agente químico conforme a las reivindicaciones 25 ó 26 y/o de un tipo de agente químico conforme a las reivindicaciones 25 ó 26 y/o de un tipo de agente químico conforme a las reivindicaciones 27 ó 28.
- 37. Procedimiento según cualquiera de las reivindicaciones 1 a 36 caracterizado por 20 comprender el uso de un dispositivo conforme al descrito en el documento de patente ES2326455A1, de forma que la mezcla de al menos un precursor carbonoso y al menos un agente químico, debidamente disuelta mediante un disolvente oportuno, se fuerza a través de un tubo capilar localizado en el interior de otro tubo capilar concéntrico con él; donde un disolvente apropiado se fuerza a través del espacio 25 anular existente entre ambos tubos; donde al aplicar una diferencia de potencial entre los tubos capilares (conectados al mismo potencial) y un electrodo de referencia se forma un menisco electrificado consistente en el menisco cónico de la disolución precursora y una capa de disolvente que lo rodea; donde aguas abajo del menisco electrificado se forma un chorro coaxial consistente en el chorro de la disolución 30 rodeado por la capa de disolvente; donde la distancia entre el extremo del capilar interior y el electrodo de referencia varía entre 1 mm y 1 m; donde la diferencia de potencial aplicado entre ambos electrodos varía entre 1V y 100 kV; donde los

caudales de la disolución y el disolvente que circulan por los capilares están comprendidos entre 0.001 ml/h y 10000 ml/h; donde el diámetro del chorro coaxial está comprendido entre 900 micras y 5 nanómetros.

- 38. Procedimiento según cualquiera de las reivindicaciones 1 a 36 caracterizado por 5 comprender el uso de un dispositivo conforme al descrito en el documento de patente ES2326455A1, de forma que la mezcla de al menos un precursor carbonoso y al menos un agente químico, debidamente disuelta mediante un disolvente oportuno, se fuerza a través del espacio anular intermedio que dejan tres tubos capilares situados de modo concéntrico; donde por el tubo más interior se fuerza un líquido inerte, que no cambia de fase durante el proceso; donde un disolvente volátil, apropiado, se 10 fuerza a través del espacio anular existente entre los dos tubos más exteriores; donde al aplicar una diferencia de potencial entre los tubos capilares (conectados al mismo potencial) y un electrodo de referencia se forma un menisco electrificado con una estructura en la que el menisco cónico de la disolución precursora está rodeado por 15 una capa de disolvente y contiene en su interior el menisco de líquido inerte; donde los chorros que emanan de los vértices de los meniscos dan lugar a un chorro coaxial de tres líquidos en los que la disolución precursora rodea al líquido inerte y es a su vez rodeada por una capa de disolvente; donde la distancia entre el extremo del capilar interior y el electrodo de referencia varía entre 1 mm y 1 m; donde la 20 diferencia de potencial aplicado entre ambos electrodos varía entre 1V y 100 kV; donde los caudales de la disolución y el disolvente que circulan por los capilares están comprendidos entre 0.001 ml/h y 10000 ml/h; donde el diámetro del chorro coaxial está comprendido entre 900 micras y 5 nanómetros.
- 39. Procedimiento según la reivindicación anterior caracterizado por que el líquido
 25 inerte se sustituye por otro, por ejemplo un polímero o un sol-gel, etc., capaz de solidificar.
 - 40. Partículas y materiales carbonosos con propiedades optimizadas obtenidos mediante un procedimiento conforme cualquiera de las reivindicaciones anteriores.
- 41. Uso de las partículas y materiales carbonosos con propiedad optimizadas obtenidos mediante un procedimiento conforme cualquiera de las reivindicaciones 1 a 39 como adsorbentes, catalizadores, soporte de catalizadores y/o electrodos en supercondensadores, baterías, pilas de combustible, sensores y/u otras aplicaciones electroquímicas.

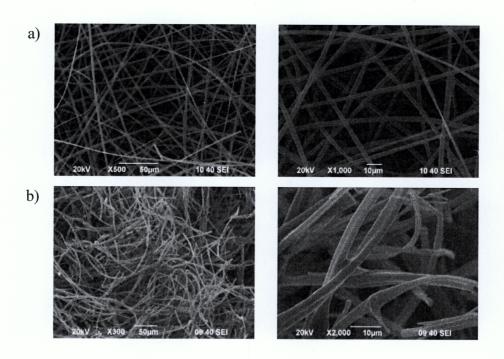


Figura 1

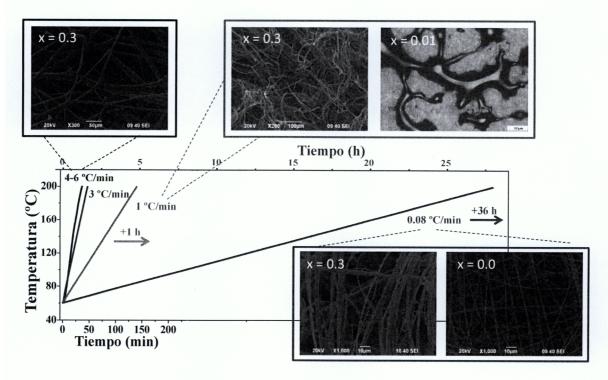
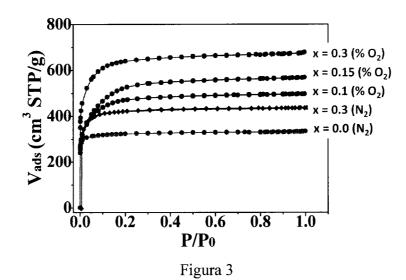



Figura 2

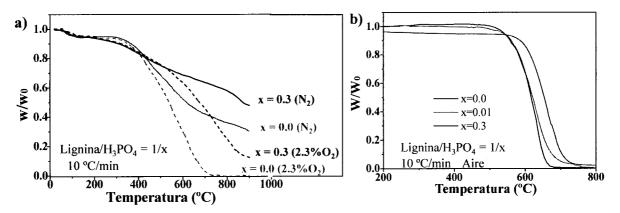


Figura 4

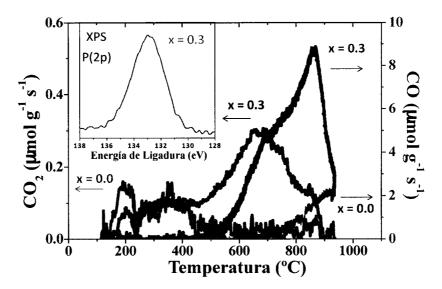


Figura 5

(21) N.º solicitud: 201400523

22 Fecha de presentación de la solicitud: 28.06.2014

32 Fecha de prioridad:

INFORME SOBRE EL ESTADO DE LA TECNICA

⑤ Int. Cl.:	Ver Hoja Adicional		

DOCUMENTOS RELEVANTES

Categoría	66	Documentos citados	Reivindicaciones afectadas	
Х	cost lignin fibers prepared by e COAST Action CM0903, 14-16 Oc [en línea 25.11.2013] [recuperado http://riuma.uma.es/xmlui/bitstream	nlui/bitstream/handle/10630/6660/		
Υ	UBIOCHEM%20IV_Berenguer_4.p	our /sequence=3	37-39	
X		production of submicron diameter carbon fibers by the 2010, vol. 48, páginas 696-705, ver Apartados 2.1 y 2.2.	1,2,8,9,20,22,23, 40,41	
X	X. XU et al., "Porous core-shell Material Letters, 2013, vol. 109, pá	carbon fibers derived from lignin and cellulose nanofibrils", aginas 175-178, ver Apartado 2.	1-3,20,22,24,40,4	
Х	US 20070142225 A1 (F. S. BAKEF párrafos [0007],[0008],[0014]-[0010		1,2,4,20,22-30, 40,41	
X	US 20120251925 A1 (N. SASAKI) párrafos [0025],[0042],[0061],[0062	I. SASAKI) 04.10.2012, 0061],[0062],[0067]-[0078]; reivindicación 12		
Y	ES 2326455 A1 (UNIVERSIDAD D página 3, líneas 46-68; página 4, lí	DE SEVILLA) 09.10.2009, íneas 1-16,41-45; página 5, líneas 7-9; reivindicaciones.	37-39	
X: d Y: d r	egoría de los documentos citados e particular relevancia le particular relevancia combinado con ot nisma categoría efleja el estado de la técnica	O: referido a divulgación no escrita tro/s de la P: publicado entre la fecha de prioridad y la de pr de la solicitud E: documento anterior, pero publicado después d de presentación de la solicitud		
	presente informe ha sido realizado para todas las reivindicaciones	para las reivindicaciones nº:		
Fecha de realización del informe 09.03.2015		Examinador E. Dávila Muro	Página 1/5	

INFORME DEL ESTADO DE LA TÉCNICA

Nº de solicitud: 201400523

CLASIFICACIÓN OBJETO DE LA SOLICITUD C01B31/00 (2006.01) **C01B31/12** (2006.01) **C08L97/00** (2006.01) **D01F9/17** (2006.01) **D01D5/14** (2006.01) Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación) C01B, C08L, D01F, D01D Bases de datos electrónicas consultadas durante la búsqueda (nombre de la base de datos y, si es posible, términos de búsqueda utilizados) INVENES, EPODOC, WPI, XPESP, NLP, REGISTRY, CAPLUS, GOOGLE SCHOLAR

OPINIÓN ESCRITA

Nº de solicitud: 201400523

Fecha de Realización de la Opinión Escrita: 09.03.2015

Declaración

Novedad (Art. 6.1 LP 11/1986)Reivindicaciones 6,7,10-18,35-39
SI

Reivindicaciones 1-5,8,9,19-34,40,41 **NO**

Actividad inventiva (Art. 8.1 LP11/1986) Reivindicaciones SI

Reivindicaciones 1-41 NO

Se considera que la solicitud cumple con el requisito de aplicación industrial. Este requisito fue evaluado durante la fase de examen formal y técnico de la solicitud (Artículo 31.2 Ley 11/1986).

Base de la Opinión.-

La presente opinión se ha realizado sobre la base de la solicitud de patente tal y como se publica.

Nº de solicitud: 201400523

1. Documentos considerados.-

A continuación se relacionan los documentos pertenecientes al estado de la técnica tomados en consideración para la realización de esta opinión.

Documento	Número Publicación o Identificación	Fecha Publicación
D01	R. BERENGUER et al., UBIOCHEM (4th International Workshop of COAST Action CM0903, 14-16 Octubre 2013, Valencia (España)	2013
D02	R. RUIZ-ROSAS et al., Carbon, 2010, vol. 48, páginas 696-705	2010
D03	X. XU et al., Material Letters, 2013, vol. 109, páginas 175-178	2013
D04	US 2007/0142225 A1 (F. S. BAKER)	21.06.2007
D05	US 2012/0251925 A1 (N. SASAKI)	04.10.2012
D06	ES 2326455 A1 (UNIVERSIDAD DE SEVILLA)	09.10.2009

2. Declaración motivada según los artículos 29.6 y 29.7 del Reglamento de ejecución de la Ley 11/1986, de 20 de marzo, de Patentes sobre la novedad y la actividad inventiva; citas y explicaciones en apoyo de esta declaración

El objeto de la invención es un procedimiento de obtención de partículas y materiales carbonosos con propiedades optimizadas mediante electrospinning o electrohilado de una mezcla que comprende al menos un precursor carbonoso y al menos un agente químico. La invención también se refiere a las partículas y materiales carbonosos obtenidos y al uso de los mismos como adsorbentes, soporte catalizadores, sensores, electrodos en supercondensadores, baterías, pilas de combustible y otras aplicaciones electroquímicas.

Novedad:

El documento D01 divulga un procedimiento de preparación de fibras de carbono mediante electrospinning de soluciones de lignina Alcell en etanol en presencia de H₃PO₄, seguido de sucesivas etapas de estabilización y carbonización, en atmósfera oxidante e inerte respectivamente, de las fibras de lignina obtenidas. El documento destaca que la presencia de H₃PO₄ en la mezcla con el precursor carbonoso incrementa la conductividad eléctrica de las fibras de carbono, acelera su termo-estabilización e induce su activación química durante la etapa de carbonización. Se obtienen materiales fibrilares de diámetros 500-700 nm con una elevada área superficial superior a 2000 m²/g y elevada resistencia a la oxidación, lo que hace que resulten adecuados para aplicaciones como catalizadores, soporte de catalizadores y electrodos para dispositivos de almacenamiento de energía.

El documento D02 divulga un procedimiento de obtención de fibras de lignina de tamaño submicrométrico con o sin la presencia de platino mediante electrospinning a temperatura ambiente de soluciones de lignina Alcell en etanol y, opcionalmente, acetilacetonato de platino. Las fibras se someten a tratamiento térmico para su estabilización primero en atmósfera oxidante a 200°C seguido de carbonización en atmósfera de N₂ a temperaturas de 600°C a 1000°C (ver página 697, apartados 2.1 y 2.2 y página 704). Se obtienen fibras de carbono con áreas superficiales específicas de 1178 y 1195 m²/g, volumen de poro de 0,52 cm³/g, diámetros de 400 nm a 1 µm y elevada resistencia a la oxidación (ver Apartado 4), que pueden tener aplicación como soporte de catalizadores para procesos de oxidación y (des)hidrogenación así como para producción y almacenamiento de hidrógeno en pilas de combustible (ver página 697).

El documento D03 se refiere a la preparación de nanofibras de carbono huecas porosas y con área superficial elevada a partir de lignina y celulosa como precursores carbonosos mediante electrospinning co-axial a temperatura ambiente de una solución de lignina Kraft y poliacrilonitrilo en DMF que forman la cubierta exterior y una solución de nanofibras de celulosa acetilada en una mezcla cloroformo/aceite de silicona que forman el núcleo de las fibras. A continuación las fibras obtenidas son estabilizadas a 550°C y posteriormente carbonizadas a 1000°C en atmósfera de H₂ y Ar (ver página 176).

El documento D04 se refiere a un método de producción de fibras de carbono activadas a partir de un precursor carbonoso mezclado con un agente químico activador, siendo el precursor carbonoso lignina y el agente activador H₃PO₄ preferentemente. La mezcla se somete a hilado, siendo el electrohilado una posibilidad, y posteriormente las fibras obtenidas son activadas y carbonizadas en una única etapa (ver párrafos [0014]-[0016] y reivindicaciones 1-7).

El documento D05 divulga un procedimiento de preparación de fibras de carbono ultrafinas que conforman un tejido no tejido flexible utilizable para materiales filtrantes y aislantes, electrodos para pilas de combustible, soporte de catalizadores y en dispositivos de almacenamiento de hidrógeno (ver párrafo [0042]). Las fibras de carbono se preparan mediante electrospinning de una solución que comprende dos precursores carbonosos que son poliacrilonitrilo y una resina fenólica, epoxi, melanina, urea, policarbodiimida, celulosa y lignina y un metal de transición que puede ser Ti,Co,Fe,Ni,Cu,Zr,Pt. A continación, las fibras obtenidas se someten a termoestabilización a 300°C y carbonización a 800°-1500°C en atmósfera inerte (ver párrafos [0025]-[0033], [0057]-[0063],[0067]-[0078]). Se obtiene fibras de carbono de diámetros de 0,1 a 15 μm y área superficial específica de 27-2700 m²/g (ver párrafo [0080]).

En consecuencia, se considera que el objeto de las reivindicaciones 1-5,8,9,19-34,40,41 no es nuevo a la vista de lo divulgado en los documentos D01-D05 y no satisfacen el criterio establecido en el artículo 6.1 LP 11/1986.

Nº de solicitud: 201400523

Actividad inventiva:

El problema técnico que plantea la solicitud radica en proporcionar un procedimiento para la preparación de materiales fibrilares carbonosos de propiedades optimizadas, con superficie específica y resistencia a la oxidación elevadas. La solución propuesta en la solicitud supone un procedimiento de obtención de partículas y materiales carbonosos a partir de una mezcla de al menos un precursor carbonoso y al menos un agente químico utilizando la técnica de electrospinning o electrohilado de dicha mezcla.

El documento D01 se considera el estado de la técnica más próximo a la invención y divulga un procedimiento de obtención de fibras de carbono mediante electrospinning de soluciones de lignina Alcell en etanol en presencia de ácido fosfórico y posterior tratamiento térmico en condiciones controladas.

La diferencia entre lo divulgado en D01 y el objeto de la invención recogido en las reivindicaciones 37-39 radica en que para llevar a cabo el electrospinning o electohilado de la mezcla se utiliza un dispositivo específico con tubos capilares coaxiales.

El documento D06 divulga un procedimiento para la fabricación a temperatura ambiente de micro y nanofibras simples y huecas o coaxiales de lignina y otros compuestos resinosos mediante electrospinning y co-electrospinning respetivamente de mezclas de ligninas procedentes de procesos de extracción tipo Alcell y Organosolv disueltas en etanol. Las fibras de lignina se transforman en nanofibras de carbono después de un tratamiento térmico adecuado. En el proceso de electrohilado divulgado en el documento D06 se utiliza un dispositivo como el recogido en las reivindicaciones 37-39 de la invención.

A la vista de lo divulgado en los documentos D01 y D06 se considera que el experto en la materia se plantearía, con razonables expectativas de éxito, la utilización de un dispositivo como el divulgado en D06 para llevar a cabo al electrohilado de la mezcla precursor carbonoso-agente activador, con objeto de obtener nanofibras de carbono a partir de una mezcla que contiene lignina como precursor carbonoso y ácido fosfórico como agente químico.

En consecuencia, el objeto de la invención recogido en las reivindicaciones 37-39 se considera que no implica actividad inventiva y no satisface el criterio establecido en el artículo 8.1 LP 11/1986.

Por otra parte, aunque no se ha encontrado recogido en el estado de la técnica un procedimiento de obtención de fibras de carbono en el que se lleven a cabo las etapas de estabilización, activación y carbonización en las condiciones específicas recogidas en las reivindicaciones dependientes 6,7,10-18, a la vista de lo descrito en los documentos D01-D05 se considera que un experto en la materia puede determinar de manera empírica las condiciones experimentales que se aplican en las etapas de termoestabilización y carbonización posteriores al electrohilado de la mezcla. También a la vista de los descrito en D01-D05 se considera que un experto en la materia se plantearía con razonables expectativas de éxito la utilización de dos o más precursores carbonosos y/o más de un tipo agente químico en las mezclas sometidas a electrohilado, tal como se recoge en las reivindicaciones 35,36 con objeto de favorecer la obtención de fibras y materiales carbonosos con mejores prestaciones.

En consecuencia, el objeto de la invención recogido en las reivindicaciones 6,7,10-18,35,36 se considera que no implican actividad inventiva y no satisfacen el criterio establecido en el art. 8.1 LP 11/1986.