

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 532 883

51 Int. Cl.:

G01N 33/574 (2006.01) **C12Q 1/68** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 12.06.2009 E 09761791 (4)
 (97) Fecha y número de publicación de la concesión europea: 17.12.2014 EP 2300827
- (54) Título: TET2 como nuevo marcador de diagnóstico y de pronóstico en neoplasias hematopoyéticas
- (30) Prioridad:

12.06.2008 EP 08305255 13.03.2009 EP 09155169

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 01.04.2015 (73) Titular/es:

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM) (14.3%) 101, rue de Tolbiac 75013 Paris, FR; INSTITUT GUSTAVE ROUSSY (14.3%); ASSISTANCE PUBLIQUE - HÔPITAUX DE PARIS (14.3%); CENTRE HENRI BECQUEREL (14.3%); UNIVERSITÉ PARIS DESCARTES (14.3%); UNIVERSITÉ PIERRE ET MARIE CURIE (PARIS 6) (14.3%) y UNIVERSITÉ PARIS-SUD 11 (14.3%)

(72) Inventor/es:

VIGUIE, FRANCK; BERNARD, OLIVIER; FONTENAY, MICHAELA; BASTARD, CHRISTIAN; DELHOMMEAU, FRANÇOIS y VAINCHENKER, WILLIAM

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

S 2 532 883 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

TET2 como nuevo marcador de diagnóstico y de pronóstico en neoplasias hematopoyéticas.

5 Campo de la invención

10

20

35

50

55

60

La presente invención se refiere a marcadores genéticos para diagnosticar neoplasias mieloides, más particularmente a un nuevo gen supresor de tumores recientemente identificado, el gen del miembro 2 de la familia de proteínas Ten Eleven Translocation (TET2). Las alteraciones genéticas de TET2 son útiles para diagnosticar tumores mieloides, tales como síndromes mielodisplásicos/mieloproliferativos, MDS, AML o MPD, y tumores linfoides.

Antecedentes de la invención

La hematopoyesis se mantiene mediante un sistema jerárquico en el que las células madre hematopoyéticas (HSC) dan lugar a progenitores multipotentes, que a su vez se diferencian en todos los tipos de células sanguíneas maduras. Se han estudiado ampliamente los mecanismos moleculares que controlan la multipotencialidad, autorrenovación, la quiescencia e internalización de las HSC. Sin embargo, permanecen por abordar numerosos aspectos, y siguen sin identificarse genes importantes que regulan estos procesos.

Las neoplasias mieloides incluyen leucemia mieloide aguda (AML), trastornos mieloproliferativos (MPD), síndromes mielodisplásicos (MDS) y síndromes mielodisplásicos/mieloproliferativos que son todos ellos trastornos malignos clonales de células madre (HSC) o progenitoras (TIU *et al.*, Leukemia, vol. 21(8), p: 1648-57, 2007).

Varias mutaciones genéticas se han correlacionados con AML, y se reconocen cuatro grupos: (i) la AML con anormalidades genéticas recurrentes AML t(8;21)(q22;q22) con gen de fusión RUNX1-ETO; AML con eosinófilos de médula ósea anormales e inv(16)(p13;q22) o t(16;16)(p13;q22) con reorganización CBFB/MYH11; leucemia promielocítica aguda APL con t(15;17)(q22;q12) PML/RARA; AML con anormalidades 11q23 (MLL)); (ii) AML con displasia multilinaje tras MDS o MDS/MPD o sin antecedente de MDS o MPD; (iii) terapia de AML o de MDS relacionada; y (iv) otra AML sin clasificar entre las cuales está el grupo de AML con cariotipo normal cuyo pronóstico se basa en el análisis molecular de oncogenes tales como mutaciones de FLT3-ITD o NPM1.

Los síndromes mielodisplásicos/mieloproliferativos incluyen cuatro enfermedades mieloides agrupadas en 1999 por la OMS: leucemia mielomonocítica crónica (CMML), leucemia mielomonocítica juvenil (JMML), leucemia mieloide crónica atípica (aCML) y síndromes mielodisplásicos/mieloproliferativos sin clasificar (U-MDS/MPS). HAASE *et al.*, Annals of Hematology, vol. 87, nº 7, abril de 2008, es un repaso en el campo técnico de síndromes mielodisplásicos/mieloproliferativos.

Los MDS incluyen anemia refractaria (RA), y citopenia refractaria con displasia multilinaje (RCMD). Los MDS se caracterizan por hematopoyesis ineficaz en uno o más de los linajes de la médula ósea. El MDS temprano demuestra mayoritariamente apoptosis excesiva y displasia de células hematopoyéticas (CLAESSENS *et al.*, Blood, vol. 99, p: 1594-601, 2002; CLASESSENS *et al.*, Blood, vol. 105, p: 4035-42, 2005). En alrededor de un tercio de los pacientes con MDS, esta hematopoyesis ineficaz precede la progresión a AML secundaria (sAML). Aunque se han identificado algunos sucesos moleculares asociados con subtipos de MDS específicos (ELBERT *et al.*, Nature, vol. 451(7176), p: 335-9, 2008) o con transformación de la enfermedad (BRAUN *et al.*, Blood, vol. 107(3), p: 1156-65, 2006), todavía se comprenden pobremente los defectos moleculares subyacentes. No existen actualmente marcadores biológicos, excepto rasgos morfológicos, para el diagnóstico y pronóstico tempranos.

Los MPD, denominados actualmente como neoplasias mieloproliferativas (MPN; TEFFERI y VARDIMAN, Leukemia, vol. 22, p: 14-22, 2008), son enfermedades mieloides crónicas que incluyen leucemia mielogenosa crónica (CML), policitemia vera (PV), trombocitemia esencial (ET), mielofibrosis primaria (PMF) y mielofibrosis idiopática (IMF). Los MPD se caracterizan por una mayor proliferación de uno o varios linajes mieloides. Si la mayoría de los MPD son enfermedades esporádicas, se han dado a conocer (GILBERT, Baillieres Clin. Haematol., vol. 11, p: 849-858, 1998; KRALOVICS et al., Blood, vol. 102, p: 3793-3796, 2003; BELLANNE-CHANTELOT et al., Blood, vol. 108, p: 346-352, 2006) casos familiares de MPD, para los cuales se desconoce la prevalencia exacta. El análisis clínico de estos casos familiares ha demostrado que son fenotípicamente idénticos a los casos esporádicos. No obstante, las familias de MPD se caracterizan por una heterogeneidad clínica y genética. En primer lugar, los casos de MPD de una única familia pueden presentar el mismo subtipo o tipos diferentes de MPD (GILBERT, mencionado anteriormente, 1998; BELLANNE-CHANTELOT et al., mencionado anteriormente, 2006; RUMI et al., Cancer, vol. 107, p: 2206-2211, 2006). En segundo lugar, alrededor de 6-15% de pacientes con PV y 3-5% de pacientes con ET están en riesgo de desarrollar complicación hematológica después de 15 años de evolución (FINAZZI y HARRISON, Semin. Hematol., vol. 42, p: 230-238, 2005; KILADJIAN et al., Blood, vol. 112, p: 1746, 2008; PASSAMONTI et al., Blood, vol. 111, p: 3383-3387, 2008; PASSAMONTI et al., Haematologica, vol. 93, p: 1645-1651,2008).

65 Los MPD, tanto en casos esporádicos como familiares, están habitualmente asociados con una actividad de cinasa constitutiva adquirida, como se ejemplifica por la mutación JAK2^{V617F} en policitemia vera, en la mayoría de los casos

de PV y en la mitad de los casos de ET y PMF (MORGAN y GILLIGAND, Annu. Rev. Med.,, vol. 59, p: 213-22, 2008; DELHOMMEAU *et al.*, Cell Mol. Life Sci., vol. 63(24), p: 2939-53, 2006, CAMPBELL y GREEN, N. Engl. J. Med., vol. 355(23), p: 2452-66, 2006; BELLANNE-CHANTELOT *et al.*, mencionado anteriormente, 2006; JAMES *et al.*, Nature, vol. 434, p: 1144-1148, 2005; BAXTER *et al.*, Lancet, vol. 365, p: 1054-1061, 2005; LEVINE *et al.*, Blood, vol. 106, p: 3377-3379, 2005; KRALOVICS *et al.*, N. Engl. J. Med., vol. 352, p: 1779-1790, 2005). Los MPD resultan frecuentemente de la expresión de una proteína tirosina cinasa constitutiva:

5

10

15

20

25

30

35

40

45

50

- A través de una fusión como BCR-ABL en CML, FIP1L1-PDGFRA en HES, TEL-PDGFRB en CMML con hipereosinofilia, ZNF198-FGFR1 en MPD raro acoplado a proliferación linfoide, y PCM1-JAK2 en MPDs raros, AML y linfomas de linfocitos T
- Una mutación nucleotídica limitada o individual, es decir, JAK2 V617F (1849G>T), cuyo reciente descubrimiento en PV (98%), ET (75%), IMF (50%) y un pequeño porcentaje de CMML, MDS/MPD y U-MPD permite una nueva clasificación de MPD y criterios de diagnóstico y perspectivas para el tratamiento. Además, las mutaciones *KIT* son recurrentes en la proliferación de mastocitos sistémica.
- A través de mutaciones activantes en el receptor del receptor de trombopoyetina (MPL), especialmente del triptófano 515 (MPLW515^{K/L/A}) (PIKMAN et al., PLoS Med, vol. 3(e270), 2006; CHALIGNÉ et al., Leukemia, vol. 22, p. 1557-66, 2008).
- Casos marginales de CML que se presentan con reorganización BCR/JAK2 debido a t(9;22)(p24;q11).

El gen JAK2 en el cromosoma 9p codifica una tirosina cinasa que se asocia con receptores de citocinas tipo 1. Se predice que la mutación V617F interrumpe el efecto autoinhibidor del dominio JH2 a la activación constitutiva de la cinasa. JAK2 de tipo salvaje ejerce un efecto negativo dominante sobre la actividad de la proteína mutada. Por lo tanto, la pérdida de JAK2 de WT asociada con la duplicación del gen mutado por recombinación mitótica observada en la mayoría de las muestras de MPD permite una mayor expresión y actividad de la cinasa mutada.

Sin embargo, varias observaciones, tales como la policitemia vera que coexpresa el JAK2 de WT y mutado y la caracterización de AML secundaria que surge de MPD mutado pero que carece de la mutación JAK2 en las fases de erupción, indican sucesos oncogenéticos que ocurren tempranamente antes de la mutación JAK2. Además, y como se discute previamente, la evolución de la enfermedad de MPD es de hecho muy variable en y entre familias. De este modo, existen ciertas pruebas de que existe al menos alguna otra mutación distinta de JAK2 implicada en MPD y, más específicamente, su progresión.

Los tumores linfoides consisten en la expansión de células con rasgos linfoides. La leucemia/linfoma linfoblástica aguda son proliferación de células bloqueadas en la diferenciación linfoide, ya sea de origen T (leucemia linfoblástica aguda de linfocitos T; T-ALL) o B (leucemia linfoblástica aguda de precursores de células B; BCP-ALL). Algunas leucemias y linfomas son de origen asesinas naturales (NK). Los linfomas implican la expansión de células linfoides más maduras (B o T), algunas neoplasias son crónicas, y pueden implicar linfocitos T (leucemia prolinfocítica) o células B (leucemia linfocítica crónica). La clasificación de neoplasia linfoide se basa en análisis anatomopatológicos, marcadores de diferenciación y datos de patogénesis (Swerdllow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H.,Thiele J.W., Vardiman J.W. (Eds): WHO classification of tumors of haematopoietc and lymphoid tissues. IARC: Lyon 2008). Por ejemplo, los linfomas anaplásicos de linfocitos T grandes están asociados con el oncogén de fusión NPM-ALK (y sus variantes), los linfomas foliculares están asociados con la activación de BCL2 tras la translocación cromosómica t(14;18)(q32;q21), los linfomas de células del manto están asociados con la activación de CCND1 tras la translocación cromosómica t(11;14)(q13;q32). Sin embargo, muchos linfomas carecen de cualquier marcador molecular fiable, sugiriendo un mecanismo patofisiológico. Este es el caso, en particular, de más del 50% de linfomas de células B grandes difusos (DLBCL), de la mayoría de los linfomas de linfocitos T periféricos (PTCL), y de una mayoría de linfomas de bajo grado no foliculares.

Por lo tanto, existía una necesidad urgente de un marcador de diagnóstico fiable que permite identificar neoplasias linfoides y mieloides, en particular MDS y MPD, y eventualmente pronosticar su progresión.

- La familia de proteínas Ten Eleven Translocation contiene tres miembros recientemente identificados, con funciones desconocidas, caracterizados por que comparten dos dominios muy conservados en su extremo C-terminal. Como se utiliza en la presente memoria, la expresión "gen de la familia TET" se refiere a miembros de la familia Ten Eleven Translocation, TET1, TET2 o TET3, que se han identificado recientemente (Lorsbach *et al*, Leukemia 2003).
- Entre ellos, TET1 es el único miembro estudiado, debido a que se ha identificado como una pareja de fusión con la proteína de leucemia de linaje mixto (MLL) en dos estudios diferentes e independientes (ONO et al., Cancer Research, vol. 62(14), p: 4075-80, 2002 y LORSBACH et al., Leukemia, vol. 17(3), p: 637-41, 2003). Esta proteína, también denominada LCX, o "proteína asociada a leucemia con un dominio CXXC en la región N-terminal", contiene una región de espiral enrollada α-helicoidal en su región C-terminal, región que se retiene en la fusión MLL-TET1.
 Por el contrario, el dominio CXXC del término N de TET1 no está presente en esta fusión proteica (Ono R, Cancer

Research 2002). Las dos regiones carboxi terminales muy conservadas están incluidas en la fusión MLL-TET1

(Lorsbach *et al*, Leukemia 2003). Una región conservada está interrumpida por la translocación. La otra está fusionada a MLL. A pesar de esta descripción como una pareja de fusión de MLL 7 años atrás, recientemente se ha dado a conocer el análisis funcional y de secuencia del gen TET1, después de la fecha de prioridad de la presente solicitud.

5

10

15

20

30

35

El gen MLL está situado en el cromosoma humano 11q23, y se encuentra que está reorganizado en un grupo heterogéneo de leucemias humanas linfoides, mieloides, y de linaje mixto. Se ha descrito que más de 70 loci están reorganizados en la banda cromosómica 11g23, y al menos 50 de éstos se han clonado y caracterizado a nivel molecular. La mayoría de las reorganizaciones de MLL cartografían una base de 8,3 kb de los genes. Los genes compañeros están siempre fusionados en el marco a la parte 5' de MLL, y puede incluir el propio MLL. También se han dado a conocer amplificaciones de MLL. Los genes compañeros codifican proteínas con funciones dispares. KOJIMA et. al., Leukemia, mayo de 2004, vol. 18, nº. 5, páginas 998-1005, describen que, entre ellas, se han dado a conocer previamente que tres septinas están entre las dianas para las fusiones de MLL, y este artículo identificó el gen FLJ10849 como una nueva pareia de fusión del gen MLL en una estirpe celular de leucemia mieloide humana establecida a partir de CNL en transformación blástica con t(4;11)(q21;q23). En la fusión con MLL, pueden proporcionar dominios de activación transcripcionales, reclutamiento del complejo modificador de cromatina o motivo de dimerización/oligomerización. De hecho, la expresión de una MLL-beta-galactosidasa (una proteína bacteriana capaz de tetramerizarse) o a dominio de dimerización es suficiente para inducir leucemia en modelos de ratón. Por lo tanto, no es posible interferir la función de una proteína o su implicación independiente en transformación celular a partir de su fusión a MLL (The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Daser A, Rabbitts TH. Semin Cancer Biol. enero de 2005; 15(3):175-88. Review. Chromosomal rearrangements leading to MLL gene fusions: clinical and biological aspects. Harper DP, Aplan PD. Cancer Res. 15 de diciembre de 2008; 68(24):10024-7).

Por el contrario, se sabe poco sobre la proteína TET2, que es codificada por un gen situado en la región cromosómica 4q24, y la proteína TET3, que es codificada por un gen situado en la región cromosómica 2p12.

Más específicamente, recientemente se ha diseñado el número 2 del oncogén de Ten Eleven Translocation (TET2) (Lorsbach *et al*, Leukemia 2003). El gen TET2 situado en la región cromosómica 4q24 comprende 11 exones que se extienden a lo largo de >130 Kb, y normalmente está ampliamente expresado. Este gen se referencia con el número de acceso ID 57790, y su ADNc (número de acceso NM_001127208, SEC ID nº:1) codifica una proteína de 2002 aminoácidos (número de acceso NP_001120680, SEC ID nº:2).

La proteína TET2 comparte dos regiones muy conservadas con una única proteína ortóloga predicha de Drosophila. Estas regiones son i) una región de 310 aminoácidos situada próxima al centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444), y ii) una segunda región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922) (estas regiones están resaltadas en la figura 1). La secuencia predicha de TET2 no reveló ningún motivo que corresponda a una función identificada.

40 Los solicitantes dan a conocer en la presente memoria que una o ambas copias del gen de Ten Eleven Translocation 2 (TET2) están a menudo inactivadas/modificadas por mutaciones adquiridas en MPD, MDS y CMML, pero también en linfoma. Estos sucesos tienen como diana la célula madre hematopoyética, e indican una función importante para TET2 como un gen supresor de tumores en neoplasias mieloides o linfoides.

45 Sumario de la invención

En un primer aspecto, la presente invención proporciona un método *in vitro* para diagnosticar un tumor mieloide o un tumor linfoide en un sujeto, que comprende la etapa de analizar una muestra biológica procedente de dicho sujeto:

55

60

50

(i) detectando la presencia de una mutación en el gen del miembro 2 de la familia de proteínas Ten Eleven Translocation (TET2) que codifica el polipéptido que presenta la secuencia SEC ID nº:2, en el que dicha mutación se selecciona del grupo que consiste en supresiones, inserciones y mutaciones de punto, tales como mutaciones que afectan a sitios de corte y empalme, mutación de aminoácido ("missense mutation") y mutaciones finalizadoras ("nonsense mutations"), y/o

(ii) analizando la expresión del gen TET2;

en el que la detección de tal mutación de TET2, de la ausencia de expresión de TET2, o de la expresión de una TET2 truncada es indicativa de un sujeto que desarrolla o está predispuesto a desarrollar un tumor mieloide o un tumor linfoide.

En una forma realización preferida, dicho sujeto es un mamífero, preferiblemente un ser humano.

En otra forma de realización preferida, dicho cáncer mieloide se selecciona del grupo que consiste en síndrome mielodisplásico (MDS), leucemia mieloide aguda (AML), enfermedad mieloproliferativa (MPD) y síndrome mielodisplásico/mieloproliferativo.

En todavía otra forma de realización preferida, dicho tumor linfoide se selecciona del grupo que consiste en linfoma, y más preferentemente en linfoma de linfocitos T.

Preferiblemente, dicha mutación se detecta en cada copia del gen TET2 que codifica el polipéptido que tiene la secuencia SEC ID nº:2 (codificada por el ADNc que tiene la secuencia SEC ID nº:39), y está incluida en el grupo que consiste en supresiones, inserciones y mutaciones de punto, tales como mutaciones que afectan a sitios de corte y empalme, mutaciones con falso sentido y mutaciones finalizadoras, preferiblemente mutación con falso sentido y mutaciones finalizadoras.

En un aspecto más preferido de la invención, la mutación es una supresión o una inserción que da como resultado la ausencia de expresión de la proteína TET2, o la expresión de una proteína TET2 truncada.

Incluso más preferiblemente, esta proteína TET2 truncada no comprende al menos una de las dos regiones muy conservadas compartidas por las otras proteínas TET y que corresponde a i) la región de 310 aminoácidos situada cerca del centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), o ii) la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), preferiblemente en la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4).

Por ejemplo, estas supresiones o inserciones se pueden seleccionar del grupo que comprende o que consiste en aquellas descritas en la Tabla I en referencia a SEC ID nº:39 para la posición de ácidos nucleicos, y a SEC ID nº:2 para la posición de aminoácidos.

25 Tabla I

Cambio de nucleótido	Consecuencia
del1264_1666	p.Glu135 FS
delC 1642	p.Ser261 FS
del1893_1896	p.Lys345FS
delC 2448	p.Gln530 FS
delA 2505	p.Thr549 FS
delC 2524	p. Pro555 FS
Ins 2540_2544	p.Leu560FS
delT 2685	p.Ser609 FS
delA 2815	p.Gln652FS
del 2834_2835	p.His658 FS
delA 2935	p.Glu692 FS
delT 2944	p.Leu699 STOP
delG 2994	p.Glu711 FS
delC 3009	p.His717 FS
insA 3009	p.His717 FS
del 3131_3137	p. Leu757 FS
insC 3151	p.Gln764 FS
delA 3166	p.Gln769 FS
delT3215	p.Phe785 FS
insA3350	p.Gln831FS
insT3995	p.Glu846 FS
delA3430	p.Asn857FS
insT 3465	p.Pro869 FS
insA 5757	p.Gln891 STOP
insCT 3581	pGly 908 FS
del CA 3756_3757	p.Gln966 FS
dupT 3914	p.Glu1026 STOP
delT 3998	p.Leu1046FS
delA 4130	p.Lys1090 FS
delG 4271	p.Glu1137 FS
delA4327	p.Asn1156 FS
delG 4527	p.Ala1223 FS
-	p.del 1237-1239
delG 4932	p.Glu1357 FS
insG 5119	p.Leu 1420 FS
delG 5133	p.Asp 1425 FS
insA 5177	p.Arg1440FS

Cambio de nucleótido	Consecuencia
dupA 5177	p.Arg 1440FS
delC 5222	p.Leu1457 STOP
del5521_5524	pThr1554 FS
insA 5540	p.Tyr1560 FS
del 5583_5605	p.Pro1575FS
delT 5570	p.Leu1637 FS
del5828_5843	p.Met1656 FS
del6049_6050	p.Asp1830 FS
delC 6360	p.Gln1834 FS
del6396_6531	p.Val1846 FS
delA 6507	p.Thr1883 FS
insC 6507	p.Thr1883 FS
del6511_6512	p.Pro1885FS
DelC 6555	p. Leu1889FS
sitio de corte y empalme insC	mutación de sitio de corte y empalme exón 8
Del: supresión; ins:	inserción; FS: desplazamiento del marco

En otro aspecto más preferido de la invención, la mutación es una mutación de aminoácido, que está situada en el marco de lectura abierto de la proteína TET2, preferiblemente en al menos una de las dos regiones muy conservadas compartidas por las proteínas TET y que corresponde a i) la región de 310 aminoácidos situada cerca del centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), y ii) la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), y más preferiblemente en la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4). Por ejemplo, estas mutaciones de aminoácido se pueden seleccionar del grupo que comprende o que consiste en I1175V, L1197N, H1219Y, E1235V, C1271W, K1299E, L1340P, R1302G, G1370E, A1344E, N1387S, V1417F, H1868R, G1869W, L1872P, I1873T, R1896M, y S1898F, y más preferiblemente del grupo que comprende o que consiste en L1197N, H1219Y, E1235V, C1271W, K1299E, L1340P, R1302G, G1370E, A1344E, N1387S, H1868R, G1869W, L1872P, I1873T, R1896M, y S1898F, y más preferiblemente del grupo que comprende o que consiste en H1868R, G1869W, L1872P, I1873T, R1896M, y S1898F.

15

20

25

10

En otro aspecto más preferido de la invención, la mutación es una mutación finalizadora, que está situada en el marco de lectura abierto de la proteína TET2, preferiblemente antes o dentro de al menos una de las dos regiones muy conservadas compartidas por las proteínas TET y que corresponde a i) la región de 310 aminoácidos situada cerca del centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), y ii) la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), y más preferiblemente antes o dentro de la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4). Por ejemplo, dichas mutaciones finalizadoras se pueden seleccionar del grupo que comprende o consiste en Q232Stop, Q321Stop, S354Stop, Q417Stop, R544Stop, R550Stop, Q557Stop, Q574Stop, Q635Stop, Q642Stop, Q685Stop, L699Stop, S792Stop, Q891Stop, Q943Stop, E1026Stop R1067Stop, R1216Stop, Y1225Stop, R1404Stop, L1457Stop, R1465Stop, R1516Stop, Q1524Stop, Q1542Stop, N1624Stop, Y1724Stop, Y1751Stop, L1819Stop, Q1834Stop y W1847Stop.

30

En otro aspecto de la invención, la mutación en el gen TET2 induce ausencia de expresión o subexpresión del polipéptido que tiene la secuencia SEC ID nº:2, y más preferiblemente la ausencia de expresión o subexpresión de al menos una de las dos regiones muy conservadas compartidas por las proteínas TET y que corresponde a i) la región de 310 aminoácidos situada cerca del centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), y ii) la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), más preferiblemente la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4).

35

40

En un segundo aspecto, la presente descripción se refiere al uso de un kit para diagnosticar un cáncer mieloide o linfoide en un sujeto, que comprende al menos una sonda de ácido nucleico u oligonucleótido o al menos un anticuerpo, que se puede usar en un método como se define previamente para detectar la presencia de una mutación en el gen TET2 y/o analizar la expresión del gen TET2.

45

En una forma de realización preferida de la invención, dicho oligonucleótido es al menos un cebador de PCR, y preferiblemente un conjunto de cebadores de PCR, que permite amplificar una región del gen TET2.

40

Más preferiblemente, dicho conjunto de cebadores se selecciona del grupo que comprende SEC ID n^0 :5 a SEC ID n^0 :38 (véanse los ejemplos).

La descripción proporciona también el uso de un agente hipometilante para tratar un paciente que sufre un tumor mieloide o linfoide, para cuyo tumor se ha detectado una mutación de TET2, una ausencia de la expresión de TET2, o una expresión de una TET2 truncada.

5

En un aspecto final, la presente descripción se refiere a un método para tratar a un sujeto que sufre un tumor mieloide o linfoide, para cuyo tumor se ha detectado una mutación de TET2, una ausencia de la expresión de TET2, o una expresión de una TET2 truncada, comprendiendo dicho método la etapa de administrar a dicho sujeto una cantidad terapéuticamente eficaz de un agente hipometilante.

10

Breve descripción del dibujo

La figura 1 muestra la secuencia proteica de TET2 (SEC ID nº:2), resaltando las regiones conservadas entre especies (negrita).

15

La figura 2 muestra las trazas de secuencia obtenidas secuenciando los productos de PCR obtenidos para muestras obtenidas de dos pacientes A y E, que muestran que la mutación ocurre solo en las muestras tumorales y no en las muestras no tumorales (NT), y linfocitos de sangre periférica (PBL). R corresponde a la secuencia obtenida con el cebador inverso, y F corresponde a la obtenida con el cebador directo. WT corresponde a la secuencia obtenida en individuos sanos.

20

La figura 3 muestra que, en muestras de MDS, se observa TET2 mutada en células CD34⁺ inmaduras, y se asocia con expansión in vivo del clon mutado.

25

La figura 4 muestra que células madre hematopoyéticas de MPD JAK2^{V617F} positivas con defectos en TET2 presentan capacidades repoblantes NOD/SCID potenciadas.

30

La figura 5 muestra las localizaciones de algunas de las mutaciones identificadas del gen TET2 distribuidas a lo largo de la secuencia proteica. Las regiones conservadas están marcadas con tiras grises. Las puntas de flechas indican la localización de las fronteras de exones. FS: desplazamiento del marco.

La figura 6 muestra una representación esquemática del gen y proteína TET2 que muestra las mutaciones identificadas en neoplasias mieloproliferativas familiares. Las cajas sombreadas indican exones. Las mutaciones truncantes se representan como estrellas, las mutaciones de aminoácido como triángulos invertidos. Los dominios funcionales conservados se representan como cajas en el esquema proteico. fs: desplazamiento del marco.

35

La figura 7 muestra el estudio secuencial de TET2 y JAK2 en paciente P4 (F3). Se muestran electroforegramas de secuencias para cada mutación TET2 y para JAKV617F. El diagrama en la izquierda indica el lapso de tiempo desde el diagnóstico (en años) y el fenotipo correspondiente para cada muestra (blanco: ET; gris: PV; sombreado: MF post-ET; negro: AML).

40

La figura 8 muestra la representación esquemática del estado clínico de los doce pacientes con al menos una mutación de TET2. Las cajas blancas representan etapas de ET; las grises, PV; el sombreado transversal indica mielofibrosis, ya sea primaria (inclinada a la izquierda) o post-PV/ET (inclinada a la derecha); y AML se simbolizan como cajas negras. Encima de cada punta de flecha que indica un análisis molecular se anota la mutación correspondiente de TET2. La duración de la enfermedad (en años) se indica debajo de las barras, indicando el punto "cero" el tiempo de diagnóstico. El tiempo de la muerte se simboliza como una línea vertical, cuando sea apropiado,

45

50

La figura 9 muestra los genotipos de TET2 y JAK2 en progenitores comprometidos de pacientes P2, P3 y P4. Los histogramas muestran la fracción de clones que albergan JAKV617F y dos mutaciones de TET2 (sombreado transversal) JAK2V617F y una mutación de TET2 (blanco), JAK2 de tipo salvaje y dos mutaciones de TET2 (gris claro), JAK2V617F y TET2 de tipo salvaje (gris), y ninguna mutación en ninguno de los dos genes (negro). Se analizaron dos muestras para el paciente P4; la etapa correspondiente se indica debajo de cada barra. Se indican los números de clones analizados.

55

La figura 10 muestra el estado clínico y los genotipos de TET2 en pacientes con MDS. Las cajas blancas representan MDS de grado bajo/int-1, las cajas sombreadas representan MDS de grado int-2/elevado, y las cajas negras representan AML secundaria.

60

Descripción detallada de la invención

en el extremo a la derecha.

La presente invención se basa en el descubrimiento por los presentes inventores de que los alelos de TET2 son a menudo elegidos genéticamente como dianas mediante mutaciones y/o supresiones en células tumorales en pacientes que sufren tumor linfoide o tumor mieloide, tal como MPD, AML o MDS, y se pueden considerar como un gen supresor de tumores fiable de neoplasias mieloides humanas.

En un primer aspecto, se informa que, para cáncer esporádico, las frecuencias de mutación de TET2 en series de pacientes sin seleccionar fueron 12% en MPD, 18,5% en MDS, 24% en sAML hasta 50% en pacientes con CMML. También, se demostró que TET2 es un gen supresor de tumores en trastornos de neoplasias mieloides, debido a que las células madre hematopoyéticas mutadas están dotadas de una ventaja de crecimiento que conduce a la proliferación potenciada.

En un segundo aspecto, se demostró mediante un análisis de 61 casos de MPD familiar (es decir, PV, ET, y PMF) que las anormalidades del gen TET2 se encuentran en 20% de los tres fenotipos de MPD principales (PV, ET, y PMF), con una mayor prevalencia en PMF (42%).

Entre los pacientes positivos para TET2 diagnosticados con PV o ET, 77% desarrollaron mielofibrosis (MF), sugiriendo que la presencia de sucesos adquiridos de TET2 influye en la evolución de la enfermedad. En cuatro pacientes (3 PV y 1 ET), se pudo demostrar que el defecto de TET2 precedía de uno a 7 años la complicación hematológica. Los pacientes con un defecto en TET2 tienen tendencia a evolucionar a MF. Esto sugirió altamente una posible relación entre las mutaciones adquiridas de TET2 y la gravedad de la enfermedad, más específicamente entre TET2 y el desarrollo de MF.

En un tercer aspecto, se da a conocer que, para cáncer esporádico, las frecuencias de mutación de TET2 en pacientes que sufren tumor linfoide de linfocitos T fue ~20%. Finalmente, se observaron reorganizaciones de *TET2* en pacientes que sufren tumor linfoide de células B.

De este modo, en un primer aspecto de la invención, se proporciona un método *in vitro* para diagnosticar un tumor mieloide o un tumor linfoide en un sujeto, que comprende la etapa de analizar una muestra biológica procedente de dicho sujeto:

- (i) detectando la presencia de una mutación en el gen del miembro 2 de la familia de proteínas Ten Eleven Translocation (TET2) que codifica el polipéptido que tiene una secuencia SEC ID nº:2, y/o
- 30 (ii) analizando la expresión del gen TET2;

10

15

25

35

40

45

60

en el que la detección de una mutación de TET2, de la ausencia de expresión de TET2, o de la expresión de una TET2 truncada es indicativa de un sujeto que desarrolla o que está predispuesto a desarrollar un tumor mieloide o un tumor linfoide.

Pruebas recientes indican que las proteínas de la familia TET codifican enzimas responsables de la conversión de 5-metilcitosina en 5-hidroximetilcitosina (TAHILIANI *et al.*, Sciencexpress, 2009), y de este modo tienen papeles potenciales en la desmetilación de CpG y regulación epigenética. Además, esta referencia estableció que los dominios de TET conservados, en los que se observan la mayoría de las mutaciones de TET2, están implicados en esta actividad.

Concomitantemente, varios trabajos han establecido, en los últimos años, un papel para agentes hipometilantes en MDS (ITZYKSON Y FENAUX, - Current Opinion in Hematology, vol. 16, p: 77-83, 2009) y otros tumores mieloides/linfoides (KUENDGEN *et al.*, Annals of Hematology, agosto de 2008, vol. 87, nº 8, p. 601-611 y JABBOUR *et al.*, Cancer, junio de 2008, vol. 112, nº 11, página 2348).

Los resultados de los inventores sugieren ahora que la eficiencia observada del agente hipometilante en algún MDS resulta potencialmente de un defecto de desmetilación en MDS con mutaciones de TET2.

- De este modo, los resultados de los inventores sugieren además el uso de agente hipometilante en sujetos que sufren tumor linfoide o mieloide, tal como MDS, para cuyo tumor se ha detectado una mutación de TET2, una ausencia de expresión de TET2, o una expresión de una TET2 truncada.
- Consiguientemente y según una forma de realización preferida, la detección de una mutación de TET2, de la ausencia de expresión de TET2, o de la expresión de una TET2 truncada es indicativa de un sujeto que desarrolla un tumor mieloide o un tumor linfoide que sufre un defecto de desmetilación, sujeto el cual se puede tratar ventajosamente con un agente hipometilante, tal como azacitidina (AZA).

Preferiblemente, el método de la invención está dedicado a diagnosticar tumores mieloides.

- De hecho, los inventores han establecido que la frecuencia de mutaciones de TET2 en pacientes que sufren tumor mieloide o tumor linfoide es mayor que 10%.
- La presente invención proporciona además un método para la detección de la presencia o ausencia de células que tienen el potencial para evolucionar hacia neoplasias mieloides invasivas o hacia tumores linfoides invasivos, aunque esas células no sean detectables como una lesión o precursor por medios convencionales.

Como se utiliza en la presente memoria, el término "sujeto" se refiere a un mamífero, preferiblemente un ser humano.

- Dicho sujeto puede ser un sujeto sano, pero el método de la invención es particularmente útil para evaluar un sujeto que se piensa que desarrolla o está predispuesto a desarrollar un cáncer mieloide (es decir, tumor mieloide) o un tumor linfoide. En ese caso, el método de la invención permite confirmar que dicho sujeto desarrolla o está predispuesto a desarrollar un cáncer mieloide (es decir, un tumor mieloide) o un tumor linfoide.
- Más preferiblemente, dicho tumor linfoide se selecciona del grupo que consiste en linfoma, tal como linfoma de linfocito T o de célula B, y más preferentemente de linfoma de linfocito T.
- Todavía más preferiblemente, dicho cáncer mieloide (es decir, tumor mieloide) se selecciona del grupo que consiste en síndrome mielodisplásico (MDS), leucemia mieloide aguda (AML), trastornos mieloproliferativos (MPD) y síndrome mielodisplásico/mieloproliferativo. Ventajosamente, dicho cáncer mieloide es un síndrome mielodisplásico/mieloproliferativo, y preferiblemente una leucemia mielomonocítica crónica (CMML).
- Según una forma de realización preferida, el método de la invención es para diagnosticar una mielofibrosis (MF) en un sujeto, en el que dicho sujeto sufre policitemia vera (PV) o trombocitemia (ET), y en el que la detección de una mutación de TET2 o la subexpresión de TET2 es indicativa de un sujeto que desarrolla o está predispuesto a desarrollar una mielofibrosis (MF).
 - Según todavía otra forma de realización preferida, el sujeto sufre síndrome mielodisplásico (MDS), y la detección de una mutación de TET2 o la sobreexpresión de TET2 es indicativa de un sujeto con un buen pronóstico.
 - Como se utiliza en la presente memoria, un buen pronóstico corresponde a un paciente que sufre MDS y que tiene un riesgo reducido de desarrollar una AML.
- De hecho, los inventores han establecido que la supervivencia a cinco años aumentó significativamente en pacientes con TET2 mutado que sufren MDS, en comparación con pacientes no mutados (p < 0,05).

25

35

55

- Como se utiliza en la presente memoria, la expresión "muestra biológica" se refiere a tejidos sólidos tales como, por ejemplo, una biopsia de pulmón; frotis bucal, fluidos y excreciones tales como, por ejemplo, esputo, esputo inducido, sangre, suero, plasma, orina. Preferiblemente, dicha muestra biológica es una muestra de médula ósea.
- En este aspecto de la invención, el método comprende la etapa de detectar la presencia de una mutación en el gen TET2 que codifica el polipéptido que tiene la secuencia SEC ID nº:2.
- Como se utiliza en la presente memoria, el término "mutaciones" corresponde a cualquier modificación en la secuencia de la secuencia de ácido nucleico original. Estas mutaciones comprenden mutaciones a pequeña escala, o mutaciones a gran escala. Las mutaciones a pequeña escala son aquellas que afectan a un gen en uno o unos pocos nucleótidos, incluyendo mutaciones de punto, inserciones o supresiones de uno o más nucleótidos extra en el ADN. Las mutaciones de punto pueden ser mutación silenciosa, de aminoácido, y finalizadora. La mutación a gran escala en la estructura genómica, tal como duplicación de genes, supresiones, o mutaciones cuyo efecto es yuxtaponer trozos previamente separados de ADN, juntando potencialmente genes separados para formar genes de fusión funcionalmente distintos. Estas últimas mutaciones incluyen translocaciones cromosómicas, supresiones intersticiales, inversiones cromosómicas y pérdida de heterocigosidad.
- Preferiblemente, solo se requiere una muestra biológica que contenga células que incluyan ADN genómico (u opcionalmente ARN) del sujeto que se debe evaluar.
 - Preferiblemente, esta etapa de detección se realiza en cada alelo del gen TET2. De hecho, el diagnóstico es más fiable cuando la mutación se detecta en cada alelo del TET2 que codifica el polipéptido que tiene la secuencia SEC ID nº:2.
 - En una forma de realización particular, el método *in vitro* de la invención pretende detectar la mutación incluida en el grupo que consiste en supresiones, inserciones y mutaciones de punto, tales como mutaciones que afectan a sitios de corte y empalme, mutación de aminoácido y mutaciones finalizadoras, preferiblemente mutación de aminoácido y mutaciones finalizadoras.
 - Se ha establecido que la existencia de tales mutaciones está asociada con cáncer mieloide o linfoide. Además, se observó que el dominio C-terminal polipeptídico de la proteína TET2 está seleccionada preferentemente como diana por las mutaciones dañinas en los pacientes estudiados (véanse los ejemplos).
- Para la supresión o inserción, dicha supresión o inserción da preferiblemente como resultado la ausencia de expresión de la proteína TET2 o la expresión de una proteína TET2 truncada, proteína TET2 truncada la cual no

comprende al menos una de las dos regiones muy conservadas compartidas por las otras proteínas TET y que corresponde a i) la región de 310 aminoácidos situada cerca del centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), o ii) la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4). Más preferiblemente, dicha proteína TET2 truncada no comprende la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4).

Por ejemplo, estas supresiones o inserciones se pueden seleccionar en aquellas descritas en la tabla 1.

20

25

35

40

45

60

65

Para la mutación de aminoácido, dicha mutación de aminoácido está situada preferiblemente en el marco de lectura abierto de la proteína TET2, y preferiblemente en al menos una de las dos regiones muy conservadas compartidas por las proteínas TET y que corresponde a i) la región de 310 aminoácidos situada cerca del centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), y ii) la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4).

Como ejemplo, dichas mutaciones de aminoácido se seleccionan del grupo que comprende o consiste en I1175V, L1197N, H1219Y, E1235V, C1271W, K1299E, L1340P, R1302G, G1370E, A1344E, N1387S, V1417F, H1868R, G1869W, L1872P, I1873T, R1896M, y S1898F; preferiblemente del grupo que comprende o consiste en I1175V, L1197N, H1219Y, E1235V, C1271W, K1299E, L1340P, R1302G, G1370E, A1344E, N1387S, H1868R, G1869W, L1872P, I1873T, R1896M, y S1898F.

Más preferiblemente, dicha mutación de aminoácido está situada en la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4). Incluso más preferiblemente, dichas mutaciones de aminoácido se seleccionan del grupo que comprende o que consiste en H1868R, G1869W, L1872P, I1873T, R1896M, y S1898F, como un ejemplo I1873T, R1896M, y S1898F.

Para la mutación finalizadora, dicha mutación finalizadora da preferiblemente como resultado la introducción de una mutación de parada en el marco de lectura abierto de la proteína TET2, y preferiblemente antes de al menos una de las dos regiones muy conservadas compartidas por la proteína TET2 que corresponde a i) la región de 310 aminoácidos situada cerca del centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), o ii) la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4).

Como ejemplo, dichas mutaciones finalizadoras se seleccionan del grupo que comprende o que consiste en Q232Stop, Q321Stop, S354Stop, Q417Stop, R544Stop, R550Stop, Q577Stop, Q574Stop, Q635Stop, Q642Stop, Q685Stop, L699Stop, S792Stop, Q891Stop, Q943Stop, E1026Stop R1067Stop, R1216Stop, Y1225Stop, R1404Stop, L1457Stop, R1465Stop, R1516Stop, Q1524Stop, Q1542Stop, N1624Stop, Y1724Stop, Y1751Stop, L1819Stop, Q1834Stop y W1847Stop; preferiblemente del grupo que comprende o que consiste en Q321Stop, S354Stop, R544Stop, Q557Stop, R1216Stop, e Y1724Stop.

También, dicha mutación finalizadora puede dar como resultado la introducción de una mutación de parada dentro de al menos una de las dos regiones muy conservadas compartidas por la proteína TET2 que corresponde a i) la región de 310 aminoácidos situada cerca del centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), o ii) la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4).

Más preferiblemente, dicha mutación finalizadora da como resultado la introducción de una mutación de parada en el marco de lectura abierto de la proteína TET2 antes de la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4). Como ejemplo, dicha mutación finalizadora se selecciona del grupo que comprende o que consiste en Q232Stop, Q321Stop, S354Stop, Q417Stop, R544Stop, R550Stop, Q557Stop, Q574Stop, Q635Stop, Q642Stop, Q685Stop, L699Stop, S792Stop, Q891Stop, Q943Stop, E1026Stop, R1067Stop, R1216Stop, Y1225Stop, R1404Stop, L1457Stop, R1465Stop, R1516Stop, Q1524Stop, Q1542Stop, N1624Stop, Y1724Stop, Y1751Stop, L1819Stop, y Q1834Stop.

También, dicha mutación finalizadora puede dar como resultado la introducción de una mutación de parada en el marco de lectura abierto de la proteína TET2 dentro de la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4). Como ejemplo, dicha mutación finalizadora es W1847Stop.

Las técnicas típicas para detectar la presencia de una mutación pueden incluir polimorfismo de longitud de fragmento de restricción, técnicas de hibridación, secuenciación de ADN, resistencia a exonucleasas, microsecuenciación, extensión en fase sólida usando ddNTPs, extensión en disolución usando ddNTPs, ensayos de ligación de oligonucleótidos, métodos para detectar polimorfismos de un solo nucleótido tales como hibridación

dinámica específica de alelo, reacción en cadena de ligación, minisecuenciación, "chips" de ADN, hibridación de oligonucleótidos específicos de alelo con sondas marcadas individualmente o dualmente combinada con PCR o con balizas moleculares, y otros.

Ventajosamente, la alteración se detecta en el ADNc o ADN del gen TET2 mediante PCR y secuenciación, matriz de SNP o CGH, siendo todas ellas bien conocidas por la persona experta.

10

15

20

25

30

35

En biología molecular y bioinformática, una matriz de SNP es un tipo de micromatriz de ADN que se usa para detectar polimorfismos en una población. Los principios básicos de la matriz de SNP son los mismos que los de la micromatriz de ADN. Éstos son la convergencia de hibridación de ADN, microscopía de fluorescencia, y captura de ADN en superficie sólida. Los tres componentes obligatorios de las matrices de SNP son: i) la matriz que contiene secuencias o dianas de ácido nucleico inmovilizadas; ii) una o más sondas de oligonucleótidos específicos de alelo (ASO) marcadas; y (iii) un sistema de detección que registra e interpreta la señal de hibridación (véase en Sheils, O., Finn, S. y O'Leary J. (2003) "Nucleic acid microarray: an overview." Current Diagnostic Pathology. 9:155-158).

La hibridación genómica comparativa (CGH) es un método citogenético molecular de identificación de un tumor en busca de cambios genéticos. Las alteraciones se clasifican como ganancias y pérdidas de ADN, y revelan un patrón característico que incluye mutaciones a niveles cromosómicos y subcromosómicos. El método se basa en la hibridación de ADN tumoral marcado fluorescentemente (frecuentemente fluoresceína (FITC)) y ADN normal (frecuentemente rodamina o Rojo Texas) a preparaciones de metafase humana normal. Usando microscopía de epifluorescencia y análisis de imágenes cuantitativo, se pueden detectar diferencias regionales en la relación de fluorescencia de ganancias/pérdidas frente a ADN de control, y se pueden usar para identificar regiones anormales en el genoma. CGH detectará solamente cambios de cromosomas desequilibrados. Habitualmente no se pueden detectar aberraciones cromosómicas estructurales, tales como translocaciones o inversiones recíprocas balanceadas, ya que no cambian sistemáticamente el número de copias (Emanuel BS, Saitta SC. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat Rev Genet. 2007 Nov;8(11):869-83. *Repaso*).

En otra forma de realización preferida de la invención, el método comprende la etapa de analizar la expresión del gen del miembro 2 de la familia TET (TET2).

Según los resultados obtenidos por los inventores, la ausencia de expresión o la subexpresión de la proteína TET2, o la expresión de una proteína TET2 truncada como se describe previamente, está asociada con cáncer mieloide.

Los métodos para analizar la expresión de un gen son bien conocidos por el experto en la materia.

En una forma de realización particular de la invención, la expresión del gen TET2 se evalúa analizando la expresión del transcrito de ARNm o precursores de ARNm, tales como ARN naciente, de dicho gen.

Tal análisis se puede evaluar preparando ARNm/ADNc de células en una muestra biológica procedente de un sujeto, e hibridando el ARNm/ADNc con polinucleótido de referencia. El ARNm/ADNc preparado se puede usar en ensayos de hibridación o de amplificación que incluyen, pero no se limitan a, análisis Southern o Northern, análisis de reacción en cadena de la polimerasa, tal como PCR cuantitativa (TAQMAN), y matrices de sondas tales como GENECHIP™ DNA (AFFYMETRIX).

45 Ventajosamente, el análisis del nivel de expresión de ARNm transcrito a partir del gen TET2 implica el proceso de amplificar ácido nucleico, por ejemplo mediante RT-PCR (la realización experimental se expone en la patente U.S. nº 4.683.202), la reacción en cadena de ligasa (BARANY, Proc. Natl. Acad. Sci. USA, vol.88, p: 189-193, 1991), la replicación de secuencia autosostenida (GUATELLI et al., Proc. Natl. Acad. Sci. USA, vol. 87, p. 1874-1878, 1990), sistema de amplificación transcripcional (KWOH et al., 1989, Proc. Natl. Acad. Sci. USA, vol. 86, p. 1173-1177, 1989), Q-Beta Replicase (LIZARDI et al., Biol. Technology, vol. 6, p. 1197, 1988), replicación de círculo rodante 50 (patente U. S. nº 5.854.033) o cualquier otro método de amplificación del ácido nucleico, seguido de la detección de las moléculas amplificadas usando técnicas bien conocidas por aquellos de pericia en la técnica. Estos esquemas de detección son especialmente útiles para la detección de moléculas de ácido nucleico si tales moléculas están presentes en números muy bajos. Como se usa en la presente memoria, los cebadores de amplificación se definen 55 como un par de moléculas de ácido nucleico que se pueden hibridar a regiones 5' o 3' de un gen (hebras más y menos, respectivamente, o viceversa) y contienen una región corta entre medias. En general, los cebadores de amplificación tienen una longitud de aproximadamente 10 a 30 nucleótidos, y flanquean una región de aproximadamente 50 a 200 nucleótidos de longitud. En condiciones apropiadas y con reactivos apropiados, tales cebadores permiten la amplificación de una molécula de ácido nucleico que comprende la secuencia nucleotídica 60 flanqueada por los cebadores.

En otra forma de realización particular, la expresión del gen TET2 se evalúa analizando la expresión de la proteína TET2 traducida a partir de dicho gen.

Tal análisis se puede evaluar usando un anticuerpo (por ejemplo, un anticuerpo radiomarcado, marcado con cromóforo, marcado con fluoróforo, o marcado con enzima), un derivado de anticuerpo (por ejemplo, un conjugado

de anticuerpo con un sustrato o con la proteína o ligando de una proteína de un par proteína-ligando (por ejemplo, biotina-estreptavidina)), o un fragmento de anticuerpo (por ejemplo, un anticuerpo monocatenario, un dominio hipervariable de anticuerpo aislado, etc.) que se une específicamente a la proteína TET2. Dicho análisis se puede evaluar mediante una variedad de técnicas bien conocidas por un experto en la materia, incluyendo, pero sin limitarse a, inmunoensayo enzimático (EIA), radioinmunoensayo (RIA), análisis de transferencia Western, y ensayo inmunoabsorbente ligado a enzima (ELISA).

5

10

15

20

25

30

35

40

45

60

65

Los anticuerpos policionales se pueden preparar inmunizando un animal adecuado, tal como ratón, conejo o cabra, con la proteína TET2 (SEC ID nº:2) o un fragmento de la misma (por ejemplo, al menos 10 o 15 aminoácidos). El título de anticuerpos en el animal inmunizado se puede monitorizar a lo largo del tiempo mediante técnicas estándar, tal como con un ELISA que usa polipéptido inmovilizado. En un momento apropiado tras la inmunización, por ejemplo cuando los títulos del anticuerpo específico son los más elevados, se pueden obtener células productoras de anticuerpo a partir del animal y se pueden usar para preparar anticuerpos monoclonales (mAb) mediante técnicas estándares, tales como la técnica de hibridoma descrita originalmente por KOHLER y MILSTEIN (Nature, vol. 256, p:495-497, 1975), la técnica de hibridoma de células B humanas (KOZBOR et al., Immunol., vol. 4, p: 72, 1983), la técnica de hibridoma de EBV (COLE et al., En Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., p: 77-96, 1985) o técnicas de trioma. La tecnología para producir hibridomas es bien conocida (véase generalmente Current Protocols in Immunology, COLIGAN et al. ed., John Wiley & Sons, Nueva York, 1994). Las células de hibridoma que producen el anticuerpo monoclonal deseado se detectan mediante identificación de los sobrenadantes de cultivo de hibridoma para anticuerpos que se unen al polipéptido de interés, por ejemplo usando una ELISA estándar.

Como se menciona anteriormente, las mutaciones en el gen TET2 pueden desencadenar la ausencia de expresión o la subexpresión de la proteína TET2.

Como se usa en la presente memoria, la "subexpresión" de un polipéptido se produce cuando la transcripción y/o la traducción del gen está afectada por la mutación, conduciendo a un nivel de expresión en la muestra biológica que es menor que el error estándar del ensayo utilizado para evaluar la expresión, y es preferiblemente al menos 20% inferior al nivel normal de expresión de dicho gen, preferiblemente al menos 50% inferior al nivel normal de expresión de dicho gen, y lo más preferible al menos 100% inferior al nivel normal de expresión de dicho gen.

Por lo tanto, el método de la invención puede comprender comparar el nivel de expresión del gen TET2 en una muestra biológica procedente de un sujeto con su nivel de expresión en un control (es decir, nivel de expresión normal). Un nivel significativamente menor de expresión de dicho gen en la muestra biológica de un sujeto en comparación con el nivel de expresión normal es indicativo de que el paciente puede desarrollar una neoplasia mieloide.

Como se utiliza en la presente memoria, un "control" corresponde preferiblemente a una muestra de control que comprende células no tumorales. Preferiblemente, dicho control corresponde a leucocitos de sangre periférica (PBL), y todavía más preferentemente a un leucocito de sangre periférica inmortalizado con el virus de Epstein Barr.

De este modo, el nivel "normal" de expresión del gen TET2 es el nivel de expresión de dicho gen en una muestra biológica de célula no tumoral. Preferiblemente, dicho nivel normal de expresión se evalúa en una muestra de control y, preferiblemente, el nivel de expresión promedio de dicho gen en varias muestras de control.

El análisis de la expresión normal del gen TET2 se puede evaluar mediante cualquiera de entre una variedad amplia de métodos bien conocidos para detectar la expresión de un ácido nucleico transcrito o de una proteína traducida como se describe anteriormente.

En una forma de realización preferida de la invención, dicha mutación en el gen TET2 induce la ausencia de expresión o subexpresión de las dos regiones muy conservadas compartidas por las proteínas TET2 y corresponde a i) la región de 310 aminoácidos situada cerca del centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), y ii) la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), y más preferiblemente de la región de 80 aminoácidos situada cerca del extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4).

En un segundo aspecto, la presente invención se refiere al uso de un kit para diagnosticar cáncer mieloide o cáncer linfoide en un sujeto, comprendiendo dicho kit al menos una sonda de ácido nucleico u oligonucleótido o al menos un anticuerpo, que se puede usar en un método como se define en la presente invención, para detectar la presencia de una mutación en el gen TET2 y/o analizar la expresión del gen TET2.

Preferiblemente, el oligonucleótido es al menos un cebador de PCR, preferiblemente se proporciona un conjunto de cebadores de PCR, que permite amplificar el gen TET2 o un fragmento del mismo. El experto en la materia proporciona fácilmente tal oligonucleótido o conjunto de cebadores de PCR que permiten amplificar una región del gen TET2, con la condición de que la secuencia de ácido nucleico de TET2 sea bien conocida (número de Acceso

NM_001127208, SEC ID nº:1) (Current Protocols in Molecular Biology; editado por Fred M. Ausubel *et al.*, más arriba).

En una forma de realización preferida, el kit comprende al menos un cebador de PCR seleccionado del grupo que comprende SEC ID nº:5 a SEC ID nº:38 (véanse los ejemplos y el listado de secuencia) para detectar la presencia de una mutación en el gen TET2 y/o analizar la expresión de dicho gen.

Como se utiliza en la presente memoria, el término "kit" se refiere a cualquier sistema de suministro para suministrar materiales. En el contexto de los ensayos de reacción, tales sistemas de suministro incluyen sistemas que permiten el almacenamiento, transporte, o suministro de reactivos de reacción (por ejemplo, oligonucleótidos, enzimas, etc., en los recipientes apropiados) y/o materiales de soporte (por ejemplo, tampones, instrucciones escritas para llevar a cabo el ensayo, etc.) desde una localización a otra. Por ejemplo, los kits incluyen uno o más recintos (por ejemplo, cajas) que contienen los reactivos de reacción relevantes y/o materiales de soporte. Como se utiliza en la presente memoria, la expresión "kit fragmentado" se refiere a sistemas de suministro que comprenden dos o más recipientes separados que contienen cada uno una subporción de los componentes totales del kit. Los recipientes se pueden suministrar al receptor pretendido juntos o separadamente. Por ejemplo, un primer recipiente puede contener una enzima para uso en un ensavo, mientras que un segundo recipiente contiene oligonucleótidos. La expresión "kit fragmentado" pretende comprender kits que contienen reactivos específicos para el analito (ASRs) regulados bajo la sección 520(e) del Federal Food, Drug, and Cosmetic Act, pero no se limitan a ellos. De hecho, cualquier sistema de suministro que comprende dos o más recipientes separados que contienen cada uno una subporción de los componentes totales del kit está incluido en el término "kit fragmentado". Por el contrario, un "kit combinado" se refiere a un sistema de suministro que contiene todos los componentes de un ensayo de reacción en un único recipiente (por ejemplo, en una única caja que aloja cada uno de los componentes deseados). El término "kit" incluye kits tanto fragmentados como combinados.

Los presentes kits también pueden incluir uno o más reactivos, tampones, medios de hibridación, ácidos nucleicos, cebadores, nucleótidos, sondas, marcadores de peso molecular, enzimas, soportes sólidos, bases de datos, programas de ordenador para calcular órdenes de dispensación y/o equipo de laboratorio desechable, tal como placas de múltiples pocillos, a fin de facilitar rápidamente la implementación de los presentes métodos. Las enzimas que se pueden incluir en los presentes kits incluyen nucleótido polimerasas y similares. Los soportes sólidos pueden incluir perlas y similares, mientras que los marcadores de peso molecular pueden incluir marcadores conjugables, por ejemplo biotina y estreptavidina o similares.

En una forma de realización, el kit contiene instrucciones para llevar a cabo el método descrito en la presente memoria para diagnosticar un cáncer mieloide o un cáncer linfoide en un sujeto. Las instrucciones se pueden proporcionar en una forma inteligible a través de un medio tangible, tal como impresas en papel, medios legibles por ordenador, o similares.

Todavía un aspecto adicional de la presente invención se refiere a la utilización, para diagnosticar cáncer mieloide o linfoide, del kit mencionado anteriormente que comprende al menos una sonda de ácido nucleico u oligonucleótido o al menos un anticuerpo, que se puede usar en un método como se define para detectar la presencia de una mutación en el gen TET2 y/o para analizar la expresión del gen TET2.

Ventajosamente, el cáncer mieloide se selecciona del grupo que consiste en síndrome mielodisplásico, leucemia mieloide aguda, enfermedad mieloproliferativa y síndrome mielodisplásico/mieloproliferativo.

Todavía ventajosamente, dicho cáncer linfoide se selecciona del grupo que consiste en linfoma, tal como linfoma de linfocitos T o de células B, y más preferiblemente linfoma de linfocitos T.

50 En todavía otro aspecto, la invención se refiere al uso de un agente hipometilante para tratar un paciente que sufre un tumor mieloide o un tumor linfoide, para cuyo tumor se ha detectado una mutación de TET2, una ausencia de expresión de TET2 o una expresión de una TET2 truncada.

Preferiblemente, dicho tumor mieloide no es un MDS.

5

10

15

20

25

30

45

55

60

El agente hipometilante es bien conocido por el experto en la materia, e incluye, como ejemplo, azacitidina.

En un aspecto final, la descripción se refiere a un método para tratar un sujeto que sufre un tumor mieloide o linfoide, para cuyo tumor se ha detectado una mutación de TET2, una ausencia de expresión de TET2 o una expresión de una TET2 truncada, comprendiendo dicho método la etapa de administrar a dicho sujeto una cantidad terapéuticamente eficaz de agente hipometilante.

Preferiblemente, dicho tumor mieloide no es un MDS.

65 Preferiblemente, dicho agente hipometilante es la azacitidina.

La cantidad terapéuticamente eficaz de agente hipometilante se puede determinar de forma simple por el experto en la materia. Como ejemplo de cantidad terapéuticamente eficaz de azacitidina para tratar tumor linfoide o mieloide, se puede citar el régimen que se describe en FENAUX *et al.* (Blood, vol. 110, 817, 2007).

A continuación, la invención se describe con mayor detalle haciendo referencia a secuencias de aminoácidos, secuencias de ácidos nucleicos y los ejemplos. No obstante, no se pretende ninguna limitación de la invención por los detalles de los ejemplos. Antes bien, la invención pertenece a cualquier forma de realización que comprenda detalles que no están mencionados explícitamente en los ejemplos en la presente memoria, pero que el experto en la materia aprecia sin un esfuerzo excesivo.

Ejemplos

10

35

40

45

- 1. Identificación de mutación del gen TET2 en MDS, MPD y en AML.
- Se identificaron 6 pacientes que sufren cáncer mieloide (AML (nAML1, nAML2, nAML3) o MDS (MDS01, MDS02, y MDS03)) y que alojan una translocación cromosómica adquirida asociada con una supresión genómica en la vecindad del punto de ruptura del cromosoma 4 en 4q24. Estas supresiones fueron homocigotas en un caso y heterocigotas en otros casos, y podrían indicar la localización de un gen supresor de tumores en esa región.
- 20 Los análisis de FISH permiten en primer lugar estrechar la región habitualmente suprimida en estos pacientes hasta un intervalo de ~ 500 kb (datos no mostrados). Los análisis asistidos por ordenador y por RT-PCR descubrieron la estructura de un solo gen, Ten Eleven Translocation (TET2) que se extiende en esta región (figura 1).
- El gen *TET2* comprende 11 exones extendidos a lo largo de 150 Kb. La proteína TET2 predicha, codificada por los exones 3 a 11, pertenece a una familia de tres miembros (familia TET) en ser humano y ratón. Las proteínas de la familia TET comparten dos regiones muy conservadas, con una única proteína de Drosophila ortóloga en su parte central y carboxi terminal (figura 1).
- La figura 1 muestra la secuencia proteica de TET2 (SEC ID nº:2), resaltando las regiones conservadas entre especies (en negrita).
 - Para TET2, se predijo que un codón de iniciación traduccional situado en el extremo 5' del exón 3 (nucleótidos 862-864 del ADNc, o 27-29 del exón 3) permite la síntesis de una proteína de 2002 aminoácidos (figura 1). Un ATG alternativo situado en el exón 2 (nucleótido 798-800 del ADNc, o 111-113 del exón 2) dirigirá la síntesis de 21 aminoácidos más. No se excluyen comienzos adicionales.
 - El transcrito de *TET2* está ampliamente expresado (ONO *et al.*, mencionado anteriormente, 2002; LORSBACH *et al.*, mencionado anteriormente, 2003), y como se sugiere por los datos disponibles, la expresión de TET2 se confirmó en médula ósea y tejidos sanguíneos humanos mediante RT-PCR (datos no mostrados). Más específicamente, los transcritos de *TET2* se detectaron en células sanguíneas CD34⁺ de cordón umbilical, en granulocitos de controles sanos, y en estirpes de células hematopoyéticas.
 - Finalmente, de estos seis pacientes, cinco albergaron una supresión en un cromosoma 4, mientras que se suprimieron ambas copias en MDS01.
- También se descubrió la implicación de la misma región 4q24 usando un enfoque diferente en MPD. El análisis de progenitores multipotentes CD34⁺CD38⁻, progenitores comprometidos CD34⁺CD38⁺, y células maduras, nos condujo a identificar dos subconjuntos de JAK2 V617F MPD en el diagnóstico, con cinéticas distintas de expansión hematopoyética (DUPONT et al., Blood, vol. 110(3), p:1013-21, 2007). El primer subconjunto se caracteriza por una expansión tardía del clon maligno; es decir, aguas abajo del progenitor comprometido. Por el contrario, el segundo 50 subconjunto de pacientes tuvo una expansión temprana del clon, aguas arriba del progenitor comprometido. Se teoriza que el segundo subconjunto de pacientes tuvo un defecto molecular capaz de promover la expansión temprana del clon maligno. Se analizaron cinco pacientes de este segundo subconjunto (MPD01 a MPD05) usando matrices de SNP y CGH de alta resolución para comparar ADN de células clonales presuntas (granulocitos) frente a células policionales (células mononucleares de sangre periférica o linfocitos). Un paciente con mielofibrosis primaria 55 (PMF) (MPD01) y un paciente con policitemia vera (PV) (MPD04) mostraron una gran pérdida de heterocigosidad adquirida (LOH) sin modificación del número de copias (disomía uniparental; UPD (20)) que oscila de q22 hasta gter del cromosoma 4. El tercer paciente (MPD05) demostró una supresión adquirida situada en la región 4q24. Esta supresión de 325 kb en MPD05 estaba incluida en la región de LOH de 4q24 de pacientes MPD01 y MPD04, y 60 contenía TET2 como un gen candidato individual. Esta región fue normal en las otras dos muestras de MPD estudiadas (MPD02 y MPD03).
 - Puesto que la región 4q24 está afectada en pacientes que sufren neoplasias mieloides, y puesto que TET2 se localiza en esta región, la integridad del gen TET2 puede verse afectada en estos pacientes. Además, la pérdida de las dos copias de TET2 en pacientes MDS01 y la pérdida recurrente de una copia en otros 8 pacientes con MDS, MPD o AML designó a *TET2* como un gen supresor de tumores candidato.

De este modo, se llevó a cabo la PCR sobre el gen TET2 a fin de detectar alteraciones del gen TET2 en estos pacientes. De forma importante, se analizaron ambos alelos a fin de detectar modificaciones bialélicas.

5 <u>2. Procedimiento experimental para detectar alteraciones del gen TET2</u>

2.1. Cebadores usados para la identificación de mutaciones o supresiones de TET2 (tabla 2)

Tabla 2

SEC ID NO	Tm (°C)	Secuencias	Región amplificada	Longitud del amplicón
5	60,9	TGAACTTCCCACATTAGCTGGT	106374235-	055
6	60,7	GAAACTGTAGCACCATTAGGCATT	106375189	955
7	62,0	CAAAAGGCTAATGGAGAAAGACGTA	106374894-	836
8	62,0	GCAGAAAAGGAATCCTTAGTGAACA	106375729	030
9	63,0	GCCAGTAAACTAGCTGCAATGCTAA	106375458-	843
10	62,3	TGCCTCATTACGTTTTAGATGGG	106376300	043
11	60,0	GACCAATGTCAGAACACCTCAA	106376065-	867
12	60,9	TTGATTTTGAATACTGATTTTCACCA	106376931	007
13	60,5	TTGCAACATAAGCCTCATAAACAG	106376703-	700
14	60,9	ATTGGCCTGTGCATCTGACTAT	106377490	788
15	62,1	GCAACTTGCTCAGCAAAGGTACT	106377284-	704
16	62,3	TGCTGCCAGACTCAAGATTTAAAA	106378064	781
17	60,1	ATACTACATATAATACATTCTAATTCCCTCACTG	106381631-	405
18	61,5	TGTTTACTGCTTTGTGTGAAGG	106382125	495
19	61,7	CATTTCTCAGGATGTGGTCATAGAAT	106383324-	000
20	61,5	CCCAATTCTCAGGGTCAGATTTA	106383609	286
21	60,1	AGACTTATGTATCTTTCATCTAGCTCTGG	106383864-	500
22	60,1	ACTCTCTTCCTTTCAACCAAAGATT	106384462	599
23	60,0	ATGCCACAGCTTAATACAGAGTTAGAT	106400093-	000
24	60,9	TGTCATATTGTTCACTTCATCTAAGCTAAT	106400454	362
25	61,1	GATGCTTTATTTAGTAATAAAGGCACCA	106402226-	254
26	61,5	TTCAACAATTAAGAGGAAAAGTTAGAATAATATTT	106402579	354
27	61,7	TGTCATTCCATTTTGTTTCTGGATA	106410076-	004
28	60,5	AAATTACCCAGTCTTGCATATGTCTT	106410436	361
29	63,0	CTGGATCAACTAGGCCACCAAC	106413052-	774
30	63,0	CCAAAATTAACAATGTTCATTTTACAATAAGAG	106413825	774
31	61,1	GCTCTTATCTTTGCTTAATGGGTGT	106415516-	740
32	60,5	TGTACATTTGGTCTAATGGTACAACTG	106416263	748
33	60,5	AATGGAAACCTATCAGTGGACAAC	106416016-	4407
34	60,2	TATATATCTGTTGTAAGGCCCTGTGA	106417122	1107
35	62,0	CAGAGCTTTCTGGATCCTGACAT	106/16670-	
36	60,3	GCCCACGTCATGAGAACTATACTAC	106417204	535
37	66	TCTAAGCTCAGTCTACCACCCATCCATA	106416118-	F70
38	66,7	TGCTCGCTGTCTGACCAGACCTCAT	106416671	570

2.2. PCR

15

Se llevó a cabo la PCR en 20 μ l partiendo de 25-50 ng de ADN en APPLIED BIOSYSTEM PCR 9700.

Para cada muestra: Se usaron 17 PCR para detectar las mutaciones/supresiones situadas en el gen TET2. La mezcla se preparó según lo siguiente:

	mezcla *1
10X	2
dNTP 25 mM	0,15
O1 100 pmol/μl	0,1
O2 100 pmol/μl	0,1
hot star (5 U/μl)	0,2
Agua	15,5-16,5
Muestra de ADN (25 ng/μl)	1-2

Se usaron las siguientes condiciones de ciclos de PCR:

15'	94°C	1 ciclo	
20 s	94°C		
20 s	56°C	2 ciclos	
30 s	72°C		
20 s	94°C		
20 s	54ºC	2 ciclos	
30 s	72°C		
20 s	94°C		
20 s	52°C	2 ciclos	
30 s	72°C		
20 s	94°C		
20 s	50°C	37 ciclos	
30 s	72°C		
10'	72°C	1 ciclo	

2.3. Secuenciación de los productos de la PCR

Finalmente, se realizó la secuenciación de los productos de la PCR mediante EUROFINS MWG Biotech (Francia, 9, rue de la Laponie, 91967 Les Ulis cedex) o por "Département des services commun de l'Institut Cochin" (Plate forme transcriptomique, Hôpital Cochin/Bat G. Roussy/3ème étage, 27 rue du Fg St Jacques, 75014 París) con el kit Big Dye terminator V1.1 y las máquinas de secuenciación 3130 XL (ambos de APPLIED BIOSYSTEMS).

3. Mutaciones del gen TET2 en pacientes que sufren MDS o AML con supresión de 4q24 heterocigota

3.1. En células tumorales

La integridad del gen TET2 se comprobó en la copia "intacta" de 4q24 de los 8 pacientes mencionados anteriormente que albergan la translocación cromosómica adquirida heterocigota asociada con una supresión genómica en la vecindad del punto de ruptura del cromosoma 4 en 4q24.

Para identificar mutaciones potenciales del gen TET2 en estos alelos, se investigó mediante PCR, como se describe anteriormente, la secuencia de los ocho exones codificantes y de sus sitios de corte y empalme en el ADN extraído de muestras de médula ósea de 8 pacientes que poseen una reorganización de 4q24.

La tabla 3 describe el estado de ambos alelos de los genes TET2 en pacientes que sufren MPD, MDS o AML y que tienen una supresión 4q24 en un alelo:

Paciente	Copia 1	Copia	Enfermedad
nAML1	R1896M	Supresión	AML
nAML2	I1873T	Supresión	AML
nAML3	Supresión	Desconocido	AML
MDS01	Supresión	Supresión	RA
MDS02	FS tras L560 (Exón 3)	Supresión	RA
MDS03	N1624Stop (Exón 11)	Supresión	RA
MPD01	Q557Stop	Q557Stop	PMF
MPD04	Supresión (1237 a 1239)	Supresión (1237 a 1239)	PV
MPD05	Supresión	Tipo salvaje	PV

La comparación de la secuencia obtenida de los pacientes con la contraparte de tipo salvaje identificó cambios nucleotídicos en 6 pacientes (Tabla 3). Los cambios no fueron atribuibles a polimorfismos identificados. El paciente nAML1 y nAML2 albergaron cambios de un solo nucleótido, conduciendo a una I1873T en el paciente nAML2 y a R1896M en el paciente nAML1. El paciente MDS03 mostró un cambio de CAG a TAG, introduciendo un codón de parada en lugar de N1624. El paciente MPD01 mostró un cambio de un solo nucleótido, introduciendo un codón de parada en lugar de NQ557. El paciente MDS02 tuvo una inserción de 4 pares de bases, conduciendo a un codón de parada 6 aminoácidos después de L560. El paciente MPD04 tuvo una supresión de 9 nucleótidos en el marco. No se observaron cambios nucleotídicos notables en el ADN del paciente nAML3. El paciente MDS01 aloja una supresión bialélica del gen TET2.

3.2. En células no tumorales de los pacientes

Para confirmar que los cambios observados estaban adquiridos somáticamente, se analizó el ADN procedente de muestras no tumorales cuando estuvo disponible.

10

5

25

30

35

En el paciente nAML2, no se observó el cambio T a C en ADN procedente de una población de células B transformada con el EBV (figura 2). En el paciente nAML1, los análisis de una muestra obtenida después de autotransplante de médula ósea demostraron una relación invertida entre el G de tipo salvaje y el T mutado, cuando se compara con la muestra de diagnóstico (datos no mostrados). De forma similar, la señal que corresponde al T mutado está casi ausente en el ADN extraído de PBL estimulado del paciente MDS03 (Figura 2). Este análisis ha mostrado también la ausencia de mutación para MPD04, y de supresión para MPD05 en células no tumorales (datos no representados). Este análisis ha mostrado además que se detecta una pequeña cantidad de secuencia de tipo salvaje residual en células mononucleares periféricas procedentes del paciente MPD01 (datos no representados).

La figura 2 muestra las trazas de secuencia obtenidas mediante secuenciación de PCR en muestras obtenidas de los dos pacientes nAML2 y MDS03, y que muestra que la mutación solo se produce en las muestras tumorales (R: cebador inverso y F: cebador directo) y en muestras no tumorales (NT o PBL).

Considerados conjuntamente, estos resultados demuestran que las dos copias del gen TET2 son seleccionadas como dianas en pacientes que sufren neoplasia mieloide diversa, y esto a través de dos sucesos diferentes, una translocación cromosómica asociada con una supresión y mutaciones de punto, estableciendo a TET2 como un gen supresor de tumores.

4. Alteración del gen TET2 en pacientes que sufren MDS o AML sin supresión de 4g24 citogenéticamente detectable

Para establecer si la mutación de TET2 se podría producir también independientemente de una anormalidad cromosómica, se analizó mediante PCR, como se describe anteriormente, ADN procedente de muestras de médula ósea de 309 pacientes adicionales con diferentes subtipos de MDS (n = 81), sAML (n = 21), CMML (n = 9), MPD positivo para JAK2^{V617F} (n = 181), y MPD negativo para JAK2^{V617F} (n = 17) sin anormalidad de 4q24 conocida.

La Tabla 4 describe el estado del defecto identificado de TET2 en pacientes que sufren MDS o AML:

Paciente	Defecto de TET2	Enfermedad
sAML2	S1898F	sAMLII
sAML4	FS (Exón 3)	sAMLII
sAML5	FS (Exón 11)	sAMLII
sAML6	FS (Exón 11)/Q891 stop	sAMLII
sAML7	Q943Stop	sAMLII
MDS04	K1299E/R544Stop	RA
MDS07	Sin amplificación Ex11	RA
MDS30	FS (Exón 3)	RA
MDS09	FS (Exón 3)	RARS
MDS35	Y1225Stop Exón 6	RARS
MDS10	Y1724Stop/Q321 Stop	RCMD-RS
MDS28	FS (Exón 3)	RCMD-RS
MDS18	FS (Exón 11)	RAEB1
MDS27	FS (Exón 3)/ FS (Exón 3)	RAEB1
MDS33	FS (Exón 4)	RAEB1
MDS39	L1872P	RAEB1
MDS40	FS (Exón 11)	RAEB1
MDS42	Mutación L1872P/11873T del aceptor de corte y empalme	RAEB1
MDS34	Sitio Exón 5	RAEB2
MDS41	FS (Exón 11)	RAEB2
CMML01	Q685Stop	CMML
CMML02	FS (Exón 3)/R1067Stop	CMML

RA, anemia refractaria; RARS, anemia refractaria con sideroblastos en anillo; RARS-T, RARS con trombocitosis; RAEB, anemia refractaria con exceso de blastos; RAEB1: blastos 5-9%; RAEB2: blastos 10-19%; AML, leucemia mieloide aguda; FAB, clasificación francesa-americana-británica; del, supresión; FS, desplazamiento del marco; ND, no realizado. Todos los MDS/AML ensayados (22/27) fueron negativos para *JAK2*^{V617F}. MDS03 se estudió en las fases de RAEB1 y RAEB2. Se analizaron dos muestras sucesivas de paciente MDS34. Los pacientes seleccionados analizados durante la parte inicial del estudio aparecen en negrita.

La Tabla 5 describe el estado del defecto identificado de TET2 en pacientes que sufren MPD:

Paciente	Defecto de TET2	Enfermedad	Estado de JACK2 y MPL
MPD18	R1216stop	PV	JAK2 ^{V617F}
MPD20	FS Ex11	PV	JAK2 ^{V617F}
MPD35	S354stop	ET	JAK2 ^{V617F}

20

15

5

25

35

Paciente	Defecto de TET2	Enfermedad	Estado de JACK2 y MPL
MPD43	FS Ex3/R550stop	MF post ET	JAK2 ^{V617F}
MPD45	FS Ex3	PV	JAK2 ^{V617F}
MPD69	FS Ex7/FS Ex11	PV	JAK2 ^{V617F}
MPD74	FS Ex3	PMF	WT
MPD81	FS Ex6	ET	<i>JAK</i> 2 ^{V617F}
MPD86	FS Ex5/R1404stop	PV	JAK2 ^{V617F}
MPD89	FS Ex10	PV	JAK2 ^{V617F}
MPD92	R1302G	PMF	JAK2 ^{V617F}
MPD96	W1847stop	ET	JAK2 ^{V617F}
MPD99	FS Ex3	ET	JAK2 ^{V617F}
MPD120	FS Ex3	PV	JAK2 ^{V617F}
MPD130	FS Ex3	ET	JAK2 ^{V617F}
MPD132	FS Ex3	PV	JAK2 ^{V617F}
MPD133	G1869W	ET	JAK2 ^{V617F}
MPD142	FS Ex3	PV	JAK2 ^{V617F}
MPD149	FS Ex6	ET	JAK2 ^{V617F}
MPD158	FS Ex3	PV	JAK2 ^{V617F}
MPD163	Q1542stop	ET	MPI W515L
MPD164	FS Ex3	PMF	JAK2 ^{V617F}
MPD183	FS Ex7/Q635stop	PV	JAK2 ^{V617F}
MPD200	FS Ex3/FS Ex11	ET	WT

PMF, mielofibrosis primaria, PV, policitemia vera, ET, trombocitemia esencial. WT: negativo para mutaciones $JAK2^{V617F}$ y MPL^{515} . FS, desplazamiento del marco.

- Se observaron anormalidades obvias de la secuencia codificante de *TET2* en 45 pacientes, que dan como resultado la sustitución de aminoácidos conservada, la generación de codones de parada en el marco, o desplazamientos del marco (Tablas 4 y 5. En un paciente adicional (MDS07), la amplificación de la parte 5' del exón 11 dio como resultado solamente cantidades en trazas de fragmento de PCR a pesar del uso de varias condiciones y pares de cebadores (datos no representados), lo que se atribuyó a una reorganización genómica estructural no caracterizada que afecta a esta región. Se observaron defectos de TET2 en todos los tipos de MDS (22/111) y MPDs negativos para BCR-ABL asociados con JAK2 V617F (21/181), o MPL W515L/K (1/6) o desprovistos de estas mutaciones (2/11).
- Los resultados demuestran que los defectos de *TET2* se pueden identificar en trastornos mieloides diversos no seleccionados, con una prevalencia elevada (46/309 = 17%). Como ejemplo, el pacientes MDS04 mostró dos cambios que conducen a K1299D y R544Stop. El paciente MDS10 tuvo dos mutaciones de parada, Y1724Stop y Q321Stop. El paciente sAML2 tuvo una mutación de punto que conduce a S1898F. Estas mutaciones observadas pueden dar como resultado una pérdida parcial o total de función de la proteína *TET2*. Se puede anticipar que se pueden haber perdido otros defectos, tales como supresiones del gen TET2, y de este modo se habría subestimado la frecuencia estimada de los defectos de TET2 en estas neoplasias.
 - En conjunto, en 19/55 de los pacientes con defectos de TET2, se detectaron dos mutaciones diferentes, probablemente que seleccionan como diana a ambas copias de *TET2*. Este punto se confirmó secuenciando moléculas individuales tras subclonar los fragmentos de PCR obtenidos del paciente MDS42. Se observó un único defecto en 35/55 muestras, sugiriendo que la haploinsuficiencia de TET2 puede ejercer un papel en estas neoplasias.
 - 5. Las mutaciones de TET2 seleccionan como diana a progenitores tempranos en MDS.

- 30 Los MDS son neoplasias mieloides que se originan a partir de una HSC. Si las mutaciones observadas en *TET2* son causales, también se deberían observar en la HSC. Para investigar esto, se analizó en primer lugar la presencia de los defectos de TET2 en células CD34⁺, que incluyen HSC y progenitores hematopoyéticos, procedentes de 4 pacientes con MDS (MDS03, MDS09, MDS28, MDS35).
- La figura 3a muestra los histogramas de secuenciación de células CD34⁺ clasificadas procedentes de paciente MDS03 en las fases RAEB1 y RAEB2. Con fines comparativos se muestran secuencias observadas en muestra de médula ósea sin clasificar y de control de tipo salvaje. Los asteriscos indican el nucleótido mutado.
- La figura 3b muestra el análisis mediante PCR-RFLP de ADN aislado de células CD34[†]CD38⁻ y CD34[†]CD38[†] de MDS03 clasificadas, en la fase RAEB1. Los fragmentos amplificados se digirieron usando Tas1 y se fraccionaron por tamaños mediante migración en agarosa. La proporción de TET2 mutada se evaluó midiendo las intensidades de las señales mutadas (mut) o de tipo salvaje (wt) con respecto a aquella de la señal generada por ambos alelos (wt+mut). Sin digerir (-) y digerido (+). (ctl) corresponde a productos de PCR a partir de ADN de control. MW: peso molecular.

La figura 3c muestra el análisis mediante PCR-RFLP de *TET2* llevado a cabo directamente a partir de células CD34⁺CD38⁻ y CD34⁺CD38⁻ clasificadas procedentes del paciente MDS09 usando la endonucleasa BseLI.

- La figura 3d muestra el genotipado mediante PCR-RFLP usando BseLl de células CD34⁺CD38⁻ y CD34⁺CD38⁺ clasificadas procedentes del paciente MDS09 que se hicieron crecer a una célula por pocillo. Las anotaciones son las mismas como en b. Los histogramas representan la fracción de clones con TET2 de tipo salvaje 8gris) o mutada (negro). Obsérvese la ausencia de fragmento de tipo salvaje en clones CD34⁺CD38⁺ indicados por los asteriscos.
- En todos los casos, la secuencia de *TET2* mutada se pudo detectar (Figura 3). En uno de estos pacientes (MDS03), las células CD34⁺ se pudieron analizar en anemia refractaria con fases de exceso de blastos 1 (RAEB1) y RAEB2. De forma interesante, la secuencia de tipo salvaje se detectó en la fase RAEB1, pero no en la fase RAEB2 (Figura 3a), sugiriendo expansión de progenitores mutados en *TET2* con la progresión de la enfermedad.
- A continuación se fraccionaron las CD34⁺ procedentes de estos cuatro pacientes en poblaciones de células CD34⁺CD38⁻ (que corresponden a HSC y progenitores multipotentes) y CD34⁺CD38⁺ (que corresponden a progenitores más maduros) usando anticuerpos CD34-PeCy5 y CD38-FITC (IMMUNOTECH) usando un clasificador celular FACSDiva (BECTON DICKINSON). En dos pacientes (MDS03 y MDS09), se usó análisis mediante PCR-RFLP para distinguir secuencias de *TET2* mutadas y de tipo salvaje. La carga de *TET2* mutada aumentó en ambos pacientes de células CD34⁺CD38⁻ a CD34⁺CD38⁺ (16% a 54% en MDS03, y 26% a 48% en MDS09) (Figura 3b, c). Se llevó a cabo un análisis adicional a nivel celular, sembrando progenitores hematopoyéticos individuales procedentes de MDS09.
- Las células CD34⁺CD38⁻ clasificadas procedentes de médula ósea de MDS09 se sembraron a una célula por pocillo en una capa confluente de la estirpe celular MS5 en medio MEM alfa suplementado con 10% de FBS (STEM CELL TECHNOLOGIES), y un cóctel de citocinas tempranas (trombopoyetina (Tpo), interleucina-3 (IL3), FLT3-L, factor de células madre (SCF) e interleucina-6 (IL6)). Las células CD34⁺CD38⁺ también se sembraron a una célula por pocillo usando la misma combinación de citocinas "tardías" (SCF, IL3, eritropoyetina (Epo) y factor estimulante de colonias de granulocitos (G-CSF)) como se usa en cultivos de metilcelulosa DUPONT *et al.*, mencionado anteriormente, 2007). Después de tres semanas (CD34⁺CD38⁻) o 10 días (CD34⁺CD38⁺), los clones individuales se recogieron para el genotipado posterior.
 - Los resultados muestran que la mutación de *TET2* se identificó en 8 de 32 (25%) y 18 de 30 (60%) clones derivados de células CD34⁺CD38⁻ y CD34⁺CD38⁺, respectivamente (Figura 3d). De forma interesante, la copia de tipo salvaje de TET2 no siempre se amplificó a partir de clones que poseen una *TET2* mutada, sugiriendo su pérdida en una minoría de las células.
 - Para los otros dos pacientes (MDS28, MDS35), el incremento en la carga de mutación de TET2 de muestras de CD34⁺CD38⁻ a CD34⁺CD38⁺ se evaluó con las gráficas de secuencias. Para ser más exactos, los fragmentos amplificados procedentes de muestras de MDS28 se subclonaron, y se secuenciaron los clones bacterianos individuales. La copia mutada apenas fue detectable en la población de CD34⁺CD38⁻ de MDS28, mientras que representó 32% de las secuencias de TET2 en la población de CD34⁺CD38⁺ (datos no representados). Estos datos indican que las mutaciones de *TET2* seleccionan como diana a una célula CD34⁺CD38⁻ y que, en MDS, la carga mutada de *TET2* aumenta desde progenitores inmaduros a progenitores maduros, sugiriendo una ventaja selectiva de las células mutadas durante las fases tempranas de la diferenciación hematopoyética.
 - En tres muestras de sAML (sAML2, sAML4, sAML5), también se encontraron mutaciones de TET2 en células CD34⁺ (datos no mostrados). Cuando se analizaron, en células clasificadas sAML4, sAML5, no se observaron cambios notables en la carga de TET2 mutada entre poblaciones de CD34⁺CD38⁻ y CD34⁺CD38⁺.
 - 6. Impacto de la prevalencia y del pronóstico de mutaciones de TET2 en MDS.
 - Para establecer el impacto de la prevalencia y del pronóstico de las mutaciones de TET2 en MDS, se analizaron retrospectivamente las mutaciones de *TET2* y su valor de pronóstico, en 204 MDS y AML post MDS enrolados en ensayos multicéntricos GFM (41 RA/RCMD/MDS-U/5q-, 18 RCMD, 28 RARS/RCMD-RS/RARS-T, 43 RAEB 1, 32 RAEB 2, 44 AML post MDS). El análisis de las mutaciones de TET2 se realizó como se describió previamente, y los resultados se presentan en la tabla 6.
 - La Tabla 6 describe el estado del defecto identificado de TET2 en pacientes que sufren MDS o AML:

Enfermedad	Cambio de nucleótido	Consecuencia
MDS02 G04	delA 3166	p.Gln769 FS
MDS 04	c.4755A>G + c.2490C>T	p.[Lys1299Glu]+[Arg544X]
MDS01 A08	insT 3465	p.Pro869 FS
MDS01 A11	c.5071 OT	p.Arg1404 STOP

60

35

40

45

50

Enfermedad	Cambio de nucleótido	Consecuencia
MDS02 C01	delT 2685 + insA 3009	p.Ser609 FS + p.His717 FS
MDS01 B03	insA 5540	p.Tyr1560 FS
MDS01 B11	c.2913 C>T	p.Gln685 STOP
SAML1		del/wt
MDS 07		Sin amplificación de 5' Exón 11
MDS01 C08	deIC 6360	p.Gln1834 FS
MDS01 C09	c.3532C>T + insA 5757	p.Cys1633 FS + p.Gln891 STOP
MDS01 D01	c.6475T>C	p.Leu1872Pro
MDS02 H02	c.4384A>G + c.4625C>G	p.llel 175Val + p.Tyr1255 STOP
sAML2		Ser1898Phe
MDS01 D06	del 2834_2835	p.His658 FS
MDS 10		p.Gln530 FS + p.Tyr1724 STOP
MDS02 C12	delT 2685 + c.6316T>G	p.Ser609 FS + p.Leu1819 STOP
MDS02 D01	deIC 3009	p.His717 FS
MDS 01		del/del
MDS 02		del/p.Arg581 FS
MDS01 E02	c.5730C>T	del/Gin1624 STOP
MDS02 D04	delT 2944	p.Leu699 STOP
MDS01 E06	irisC 3151 + p.5406C>T	p.Gln764 FS + Arg1516 STOP
MDS01 E07	c.6475T>C + c.6478T>C	p.Leu1872Pro + p.lle1873Thr
MDS01 E08	delC 2448 + delA 4130	p.Gln530 FS + p.Lys1090 FS
MDS01 F02	p.6360C>T	p.Gln1834 STOP
MDS01 F04	delG 2994	p.Glu711 FS
MDC00 F04	a C44.4Tr. C. v. inaT. citic do conta v. compolero	p.Tyr1751 STOP + mutación de sitio de corte y
MDS02 E01	c.6114T>G + insT sitio de corte y empalme	empalme exón 8
MDS01 F06	p.3688C>T + delA 6507	p.Gln943 STOP + p.Thr1883 FS
MDS01 G01	delG 4271 + c.6478T>C	p.Glu1137 FS + p.lle1873Thr
MDS01 G03	p.3688C>T	p.Glri943 STOP
nAML2	c.6478T>C	del/p.lle1873Thr
MDS01 G05	deIC 5222	p.Leu1457 STOP
MDS02 F11	dupT 3914	p.Glu1026 STOP
MDS01 G06	delA 2935 + del5828_5843	p.Glu692 FS + p.Met1656 FS
MDS02 A12	p.4969G>A + del6396_6531	p.Gly 1370 Glu + p.Val1846 FS
MDS01 G7/8	g.4366-1G>T	mutación de sitio de aceptor de corte y empalme exón 5
MDS02 E10	insCT 3581	pGly 908 FS
MDS02 H12	deIG 4932 + del5521_5524	p.Glu1357 FS + pThr1554 FS
MDS02 G03	insC 3151 + insC 6507	p.Gln764 FS + p.Thr1883 FS
MDS02 G01	delG 5133 + del6511_6512	p.Asp 1425 FS + p.Pro1885FS
MDS02 G07	p.5253C>T	p.Arg1465 STOP
MDS02 C07	c.4561A>T	p.Glu1234Val
MDS02 B07	c.2109C>T	p.Gln417 STOP
nAML1	C.6547G>T	del/p.Arg1896Met
MDS02 E11	c.2784C>T + p.5253C>T	p.Gln642 STOP + p.Arg1465 STOP
MDS01 H05	c.4515C>T	p.His1219 Tyr
MDS02 H06	del1264_1666	p.Glu135 FS
MDS02 B08	delA4327 + c.5020A>G	p.Asn1156 FS + Asn 1387Ser
MDS02 D10	insC 3151 + c.4891C>A	p.Gln764 FS + p.Ala1344 Glu
MDS02 B02	delT 5570 + insC sitio de corte y empalme	p.Leu1637 FS + mutación de sitio de corte y empalme exón 8
MDS01 F01	insT3995 + c.4059A>T	p.Glu846 FS + p.Arg1067 STOP
MDS02 B11	c.4673C>G + Del6049_6050	p.Cys1271 Trp + p.Asp1830 FS
MDS01 E09	insG 5119	p. Leu 1420 FS
MDS	c.5430C>T	p.Gln1524STOP
MDS	c.5177dupA	p.Arg1440FS
MDS	c.5583_5605 del	p.Pro1575FS
MDS	c.5310 A>G	p.Lysl 197Arg
MDS	c.2375C>A	p.Ser792STOP
	J	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Se encontraron 59 mutaciones del gen TET2 mediante secuenciación directa de los exones 3 a 11 (27 desplazamientos del marco, 21 mutaciones finalizadoras y 11 mutaciones de aminoácido en dominios conservados) en 43/204 pacientes (Tabla 6). Las frecuencias según los subtipos de la OMS fueron 21,8% en RA, 5,2% en RCMD,

21,4% en RARS/RARS-T/RCMD-RS, 34,9% en RAEB 1, 15,6% en RAEB 2, 19% en AML post MDS. Se encontraron otras anormalidades de la región 4q24, incluyendo una supresión en 1/46 pacientes analizados mediante CGH, y 3 LOH en 3/22 pacientes analizados mediante matrices de SNP, y 2 supresiones en 5/23 pacientes analizados mediante matrices de SNP. De este modo, la prevalencia global de las anomalías de 4q24 fue 21,6% de pacientes (44/204). 20 pacientes tuvieron dos anomalías de TET2 identificadas mediante secuenciación directa (17 pacientes), o mediante secuenciación más matriz de SNP (3 pacientes), indicando que las dos copias del gen fueron seleccionadas como diana en 43,5% de pacientes mutados.

Después, se realizaron análisis de supervivencia monofactoriales y multifactoriales con el modelo proporcional de riesgo de Cox para establecer el impacto del pronóstico de mutaciones de TET2. Las comparaciones entre los 43 pacientes con mutaciones de la secuencia codificante de *TET2* y pacientes no mutados no encontró diferencias significativas en características iniciales para sexo, edad, exposición previa a quimio o radioterapia, nivel de Hb, recuento de WBC, ANC, recuento de plt, % de blastos de médula ósea, displasia multilinaje, subtipos de la OMS y FAB, cariotipo e IPSS.

El análisis reveló que la supervivencia a cinco años (curva de Kaplan-Meier) aumentó significativamente en pacientes con TET2 mutados en comparación con pacientes no mutados (p < 0,05).

7. Reorganización del gen TET2 en pacientes que sufren MPD con anormalidad de 4q24 detectada mediante análisis de matrices de SNP o CGH.

Entre 35 muestras de MPD, 4 pacientes tuvieron una LOH mediante matrices de SNP y se analizaron en busca de mutaciones en el gen TET2 en ambos alelos. En 3 de las 4 muestras, se observó una clara mutación o supresión.

La Tabla 7 describe el estado de ambos alelos de los genes TET2 en pacientes que sufren MPD:

Paciente	Copia 1	Copia 2	Enfermedad
IGR-1	Q557Stop	LOH	PMF
IGR-2	Supresión 1237-1239	LOH	PV
IGR-3	Supresión de todo el gen	Ninguna anormalidad	PV
IGR-4	desconocido	LOH	ET

En la tabla 7, "PMF" representa mielofibrosis primitiva, "PV" policitemia vera, "EV" trombocitosis esencial. Todas estas enfermedades son MPDs de Clase II.

El paciente IGR-2 albergó una supresión en el marco de 9 pares de bases que condujo a la pérdida de tres aminoácidos, P1237, L1238, S1239. Como se muestra mediante análisis de SNP y mediante los análisis de las trazas de secuencia, los pacientes IGR-1 e IGR-2 habían perdido la otra copia de TET2. No se observó ninguna de las mutaciones en células no tumorales de los pacientes. Estos datos establecen que la inactivación de TET2 participa en el desarrollo de MPD.

La secuenciación sistemática de los genes TET2 en otros 17 pacientes reveló dos pacientes con un codón de parada en un alelo (IGR17: S354Stop, IGR-18:R1216Stop) y un paciente con una supresión nucleotídica que conduce a un desplazamiento del marco en el exón 11.

8. Análisis de la adquisición de la reorganización de TET2

Pruebas recientes indican que JAK2^{V617F} puede no ser el suceso iniciador en algunos MPD. Por lo tanto, se usaron muestras de MPD para evaluar los papeles relativos de los defectos de *TET2* y la mutación JAK2^{V617F} en estas enfermedades y para ganar conocimiento en la secuencia de la adquisición de las mutaciones. Se analizaron en primer lugar progenitores hematopoyéticos de cinco pacientes con MPD con mutaciones en ambos genes, como el paciente IGR2.

Para muestras de MPD, se sembraron células CD34⁺CD38⁻ inmaduras a una célula por pocillo durante cuatro a seis semanas en condiciones que permiten diferenciaciones simultáneas de B, NK y granulocíticas (diferenciación linfomieloide) como se describió (DUPONT *et al.*, mencionado anteriormente, 2007), mientras que se hicieron crecer células CD34⁺CD38⁺ más maduras en ensayos en metilcelulosa eritroides/granulocíticos. Los clones individuales se recogieron para el análisis de la diferenciación de B, NK, y granulocítica mediante citometría de flujo, y genotipado. Las células CD34⁺CD38⁺ se sembraron a 1.500 a 3.000 células por placa de cultivo en metilcelulosa estándar al 2% suplementada con 37% de FBS (STEM CELL TECHNOLOGIES), y un cóctel de citocinas como se describió (DUPONT *et al.*, mencionado anteriormente, 2007)). Las colonias individuales que crecieron a partir de unidades formadoras de brotes eritroides (BFU-E) y unidades formadoras de colonias granulocíticas/de macrófagos (CFU-GM) se recogieron en el día 14. Los clones obtenidos se analizaron en busca de la presencia de ambos defectos moleculares.

60

10

15

20

30

35

40

45

50

Los resultados han mostrado que, en todos los pacientes ensayados, los análisis de secuencia revelaron que estaban presentes tanto el defecto *TET2* como *JAK2* en clones derivados de progenitores linfo-mieloides (datos no mostrados). De forma interesante, la mutación JAK2^{V617F} no se observó en ausencia de defecto de *TET2*, mientras que la mutación de *TET2* se pudo observar en ausencia de JAK2^{V617F}. Estos resultados demuestran que, como en MDS, la mutación de *TET2* está presente en progenitores inmaduros de pacientes con MPD, e indican que los defectos de *TET2* preceden a la mutación de *JAK2* durante la evolución de la enfermedad.

Para definir adicionalmente el papel de las mutaciones de *TET2* en la amplificación del clon maligno, se comparó el genotipo de colonias derivadas de progenitores inmaduros (CD34⁺CD38⁻) con el de colonias de eritroides y granulocíticas derivadas de progenitores comprometidos (CD34⁺CD38⁺).

Los resultados mostraron que en tres pacientes con MPD (MPD01, MPD04, MPD35), casi todas las colonias en diferentes etapas de la diferenciación hematopoyética albergaron una mutación de *TET2*, sugiriendo que el clon mutado de *TET2* se expandió en etapas tempranas de la hematopoyesis (datos no representados). En otros 2 pacientes (MPD05, MPD20), la mayoría de los progenitores inmaduros fueron de tipo salvaje, mientras que la mayoría de los progenitores comprometidos estaban mutados para *TET2*. Dentro de los progenitores de tipo salvaje para *JAK2* de estos dos pacientes, se observó un incremento en la proporción de clones con defectos de *TET2* desde la etapa de progenitor inmaduro (2/37 y 0/34, respectivamente) a la del progenitor comprometido (10/23 y 9/54, respectivamente). Considerados en conjunto, los resultados indican que la ventaja selectiva del clon mutado para *TET2* en las etapas tempranas de diferenciación es independiente de la mutación de JAK2^{V617F}.

Globalmente, estos datos procedentes de muestras de MPD demuestran que los defectos de *TET2* (i) se producen en etapas tempranas de la diferenciación hematopoyética, y que (ii) pueden preceder a la aparición de la mutación JAK2^{V617F}, y (iii) dan una ventaja selectiva al clon a medida que se dirige hacia la diferenciación mieloide.

9. Injerto y proliferación de células mutadas para TET2 in vivo

10

15

20

25

30

35

40

50

55

Se razonó que la pérdida de función de TET2 podría conferir una ventaja de crecimiento a las células madre hematopoyéticas. Para demostrar que las mutaciones de *TET2* se producen en HSC con capacidad repobladora NOD-SCID, se usó un ensayo de xenotransplante inyectando, en ratones NOD-SCID, células CD34⁺ aisladas de pacientes con MPD con JAK2^{V617F} con mutaciones de *TET2*.

Se inyectaron intravenosamente células CD34⁺ (1 a 10 x 10⁵ células) procedentes de pacientes con MPD con JAK2^{V617F} con mutaciones de *TET2* en ratones NOD-SCID irradiados subletalmente (3,5 Gy), tratados previamente con 200 μg de anticuerpo anti-CD 122 (JAMES *et al.*, Blood, vol. 112(6), p:2429-36, 2008). La médula ósea se obtuvo con una jeringuilla heparinizada del fémur derecho a las 3, 6 y 12 semanas tras el transplante, y los ratones se sacrificaron en la semana 15. El injerto de células humanas se evaluó mediante la suma de leucocitos humanos (CD45⁺) y poblaciones eritroides (CD45⁻CD36⁺ y CD45⁻CD36⁻GlicoforinA⁺), según se evaluó mediante citometría de flujo. Las células de médula ósea se sembraron en cápsulas de cultivo y placas de 96 pocillos para ensayos en metilcelulosa y de células iniciadoras de cultivo a largo plazo (LTC-IC), respectivamente, permitiendo el crecimiento selectivo de células humanas como se describe en JAMES *et al.* (mencionado anteriormente, 2008). Las colonias individuales se recogieron a continuación y se genotiparon.

Se comparó en primer lugar la cinética de quimerismo tras el transplante de células CD34⁺ procedentes de estos pacientes con MPD con JAK2^{V617F} con mutaciones de *TET*2, y procedentes de tres MPD con JAK2^{V617F} desprovistos de defectos de *TET*2 (MPD09, MPD11, MPD27).

La figura 4a muestra el porcentaje de células CD45-positivas humanas en médula ósea de ratón monitorizada a 3, 6, 12 y 15 semanas después del transplante. MPD01 y MPD04 son pacientes con defectos de *TET*2, mientras que MPD09, MPD11, y MPD27 son pacientes de control desprovistos de defecto identificado de *TET*2.

La figura 4b muestra el análisis citométrico de flujo de células humanas presentes en médula ósea de NOD-SCID 15 semanas después del transplante con 3 x 10⁵ células CD34⁺ procedentes de pacientes MPD04 y MPD09. Los porcentajes de células mieloides y linfoides humanas CD45 (hCD45)-positiva se determinaron usando anticuerpos anti-CD45-PC7, anti-CD33-APC, y anti-CD19-PE.

Los resultados muestran que las células humanas de los tres pacientes desprovistos de la mutación de *TET2* desaparecieron con el tiempo (Figura 4a).

Por el contrario, el porcentaje de células humanas en la médula ósea de ratones injertados con células de los dos pacientes mutados para *TET2* aumentó con el tiempo (Figura 4a). En estos ratones, la diferenciación se inclinó hacia la expansión de progenitores mieloides, a costa de progenitores linfoides, según se juzga a partir de los análisis de citometría de flujo de los antígenos CD33 y CD19 (Figura 4b), a diferencia de lo que se observa con HSC normales en las que la diferenciación linfoide está favorecida (ROBERT-RICHARD *et al.*, Haematologica, vol. 17(3), p:637-41, 2003).

Las células humanas presentes en la médula ósea de ratón 15 semanas después del transplante (W15) se estudiaron en ensayos *in vitro* de progenitores y de LTC-IC, y se analizaron en busca de la presencia de mutaciones de *TET2* y *JAK2*. Los defectos de *TET2* se encontraron en colonias derivadas de CFU W15 reunidas procedentes tanto de las muestras MPD01 como MPD04, y en todas las LTC-IC y progenitores humanos individuales presentes en los ratones (datos no mostrados). Los resultados se compararon con ensayos de progenitores llevados a cabo inmediatamente antes del injerto (DO). Todas las colonias que surgen de células de progenitores comprometidos de los pacientes (D0 CFU) alojaron la mutación de *TET2*.

Estos resultados demuestran que la mutación de *TET2* se produce en una HSC. De forma interesante, los resultados han mostrado además que la proporción de células progenitoras que poseen solamente la mutación de *TET2* aumentó con el transplante a expensas de células que poseen ambas mutaciones de *TET2* y *JAK2*^{V617F}. Se piensa que estas células reflejan la población de HSC original. Por lo tanto, estas observaciones indican que las HSCs mutadas para *TET2* con una *JAK2* de tipo salvaje son más numerosas que las HSCs mutantes dobles *TET2/JAK2*, estableciendo adicionalmente la mutación de *TET2* como un suceso "pre-JAK2^{V617F}," en estos pacientes.

Por lo tanto, nuestros datos son compatibles con la hipótesis de que los defectos de *TET*2 dotan a la HSC con una ventaja de injerto selectiva independientemente de *JAK*2 V617F.

10. Posiciones de las mutaciones identificadas en el gen TET2

15

20

25

30

Se informa de que la inactivación de *TET2* es un suceso temprano habitual en MDS, MPD y sAML humanos, y que las frecuencias de la mutación de TET2 en la serie de pacientes no seleccionados fueron 15/81 = 18,5% en MDS, 2/9 = 22% en CMML, 24/198 = 12% en MPD y 5/21 = 24% en sAML. Se debe señalar que en estos análisis no se consideraron cambios de aminoácidos que se producen fuera de los dominios conservados. La secuenciación del gen TET2 usando las parejas de cebadores identificadas en la Tabla 1 permite identificar un número de mutaciones en el gen TET2 (figura 5).

La figura 5 muestra las localizaciones de algunas de las mutaciones identificadas del gen TET2 distribuidas a lo largo de la secuencia proteica.

El cartografiado de las mutaciones de TET2 identificadas en la secuencia de TET2 sugiere un papel esencial para la región conservada carboxi terminal (aminoácidos en la posición 1860 a la posición 1950) en la función de la proteína.

Finalmente, la detección de los defectos genéticos adquiridos que seleccionan como dianas a las dos copias de *TET2* en 19 de los 55 pacientes con alteración de *TET2* establece a este gen como un gen supresor de tumores fiable de neoplasias mieloides humanas. Los defectos de TET2 se observan tanto en MDS como en MPD, que son dos enfermedades mieloides distintas. Por lo tanto, es probable que sus fenotipos clínicos y biológicos característicos requieran al menos otro suceso cooperante adicional. En muestras de MPD con ambas mutaciones de *TET2* y *JAK2*, probablemente las mutaciones de *TET2* se producen primero en la historia natural de la enfermedad, precediendo a la aparición de la mutación *JAK2*^{V617F}.

11. Identificación de mutaciones del gen TET2 en MPD familiar

- Las familias con al menos 2 pacientes afectados con MPD se recogieron a través de una red nacional como se describió previamente (BELANNE-CHANTELOT *et al.*, mencionado anteriormente, 2006). Los diagnósticos de MPD se revisaron basándose en los criterios de 2008 de la Organización Mundial de la Salud. Todos los participantes firmaron una autorización.
- En una primera etapa, se analizaron 15 probandos de familias compatibles con una herencia dominante autosómica, en busca de un suceso constitucional que daría cuenta de estos casos familiares. Los probandos elegidos sufrieron mayoritariamente PV o ET. En una segunda etapa, el análisis se extendió a pacientes con complicaciones hematológicas y a familiares de pacientes con variantes de TET2.
- En conjunto, se analizaron 61 pacientes para mutaciones en la secuencia codificante de 6009 pb del gen TET2 de 42 familias con MPD (40 europeas, 2 africanas: familias F3 y F4), incluyendo al menos dos pacientes afectados disponibles con MPD. Treinta y cuatro pacientes presentaron un fenotipo simple que consiste en PV (15), ET (12) o PMF (7) sin evolución hematológica observada de la enfermedad después de un período de seguimiento de 12 años. Otros veintisiete pacientes habían experimentado una evolución de su fenotipo de MPD: PV que evoluciona en mielofibrosis (post PV MF, 5) o en AML (12); ET que evoluciona en MF (4) o AML (5), o PMF que se convierte en AML (1).

El análisis se llevó a cabo mediante reacción en cadena de la polimerasa (PCR) sobre ADN genómico extraído de torundas bucales tras calentar a 95°C durante 10 minutos para liberar el ADN genómico. Los productos de la PCR purificados se secuenciaron usando la química BIGDYE TERMINATOR (APPLIED BIOSYSTEMS) y se hicieron pasar en un secuenciador capilar APPLIED BIOSYSTEMS 3100.

El estado mutacional de JAK2V617F se determinó como se dio a conocer previamente en BELANNE-CHANTELOT et al. (mencionado anteriormente, 2006).

- Toda la región codificante del gen TET2 se secuenció como se describió previamente. Se montaron dos PCRs múltiples para estimar el número de copia de cada exón de TET2 usando el método de la PCR múltiple cuantitativa de fragmentos fluorescentes cortos (QMPSF) (CHARBONNIER et al., Cancer Res., vol. 60, p:2760-2763, 2000). Como controles internos, se usaron dos pares de cebadores adicionales que amplifican secuencias cortas del gen F9 o del DSCR1. Los productos de la PCR se separaron mediante electroforesis capilar usando un analizador genético de ADN (ABI 3100). El análisis se basa en la comparación de las alturas de los picos generadas a partir de la muestra de ADN ensayada y del ADN de control. La estimación cuantitativa de la altura de las alturas de los picos se determinó usando software de análisis comercialmente disponible (GENEMAPPER VERSION 4.0, APPLIED BIOSYSTEMS).
- 15 La Tabla 8 muestra las mutaciones de TET2 identificadas en 12 pacientes con MPD.

20

25

30

35

40

					TET2	
Pacientes	Fenotipo	Evolución	JAK2	Localización	Cambio de nucleótido	Cambio proteico
P1 (F1)	PV	MF	95	Exón 11	c.5695delC	p.Leu1899fs
P2 (F2)	PV	MF	63	Intrón 7	c.3954+2T>A	p.?
P3 (F2)	PV		49-82	Exón 3	c.3138delT	pLeu1046fs
P4 (F3)	ET	PV>MF>AML	23-47	Exón 3	c.1648C>T	p.Arg550X
			23-47	Exón 3	c.2570delA	p.Asn857fs
P5 (F3)	ET	MF>AML	0	Exón 3	C2058A>T	p.Arg686Ser
P6 (F4)	ET	AML	0	Exón 3	C1955delA	p.Gln652fs
			U	Exón 3	c.2490dupA	p.Gln831fs
P7 (F4)	ET		39	Intrón 4	c.3500+3A>C	p.?
P8	ET	MF	90	Todos los exones	c.1.4999_5014del16	p.0
P9	PMF		36	Exón 3	c.694C <t< td=""><td>p.Gln574X</td></t<>	p.Gln574X
				Exón 11		p.Leu1667fs
P10	PMF		33	Exón 3	c.4019T <c< td=""><td>p.Gln232X</td></c<>	p.Gln232X
P11	PMF		66	Exón 8	c.5603A <g< td=""><td>p.Leu1340Pro</td></g<>	p.Leu1340Pro
P12	PV	MF	78-96	Exón 11		p.His1868Arg

Los pacientes se diagnosticaron inicialmente con el fenotipo indicado en la segunda columna, y subsiguientemente tuvieron una evolución hematológica mostrada en la tercera columna. Cuando se midió en varias muestras, la carga del alelo JAK2V617F se indica como un intervalo.

La figura 6 es una representación esquemática del gen y proteína TET2 que muestra las mutaciones identificadas en este estudio. Las cajas sombreadas indican exones. Las mutaciones truncantes están representadas como estrellas, las mutaciones de aminoácido como triángulos invertidos. Los dominios funcionales conservados se representan como cajas en el esquema proteico. fs: desplazamiento del marco.

Después de este análisis, se identificó una supresión completa de TET2 en un paciente y un total de 39 variantes de punto. El examen de estas variantes mostró que 15 de ellas, identificadas en 12 pacientes, fueron mutaciones heterocigotas dañinas. Se distribuyeron como una supresión del gen completo, 11 mutaciones truncantes (3 mutaciones finalizadoras, 6 inserciones/supresiones fuera del marco, y 2 mutaciones de sitio de corte y empalme) y 3 mutaciones de aminoácido (Figura 6, Tabla 8).

Además, las tres mutaciones de aminoácido estaban ausentes de los 165 individuos de control de poblaciones étnicamente parecidas, confirmando así su efecto dañino. Dos, p.Leu1340Pro y p.His1868Arg, estaban situadas en los dominios funcionales de TET2 muy conservados (1134-1444 y 1842-1921). Las mutaciones truncantes parecían estar distribuidas aleatoriamente a lo largo de la secuencia codificante (Figura 6).

En pacientes P4, P6 y P9, se identificaron dos mutaciones de TET2. Para el primero, las amplificaciones específicas de alelos múltiples de las dos mutaciones situadas en el exón 3 mostraron que estos dos sucesos moleculares ocurrieron en diferentes alelos, conduciendo a la inactivación bialélica de TET2 (datos no representados). La observación de tal inactivación bialélica de TET2 en estos pacientes cumple los criterios del modelo recesivo de dos eventos clásico de carcinogénesis, y apoya la teoría de que TET2 actúa como un gen supresor de tumores.

Otras veinticinco variantes identificadas en la secuencia codificante de TET2 y las regiones intrónicas cercanas cortas fueron polimorfismos. Siete fueron sustituciones en regiones no codificantes (intrónica o 3'UTR), una fue una variación en una repetición en tándem corta intrónica, 4 fueron variaciones silenciosas en la secuencia codificante, y 13 fueron polimorfismos de falso sentido. Todos ellos se clasificaron como polimorfismos en base a su presencia en

bases de datos públicas, al hecho de que se encontraron en miembros de familias asintomáticos, o a su identificación en poblaciones de control. Es de interés señalar que ninguno de los polimorfismos de falso sentido estaban localizados en ninguno de los dominios funcionales.

5 12. Las mutaciones de TET2 se adquirieron secuencialmente en un paciente con dos mutaciones

Siete muestras de sangre estaban disponibles del paciente P4 de la familia F3, a lo largo de las últimas tres etapas de su evolución: PV, MF y AML. La secuenciación de estas muestras nos permitió determinar la temporalidad de los sucesos clínicos y moleculares.

10

La figura 7 muestra el estudio secuencial de TET2 y JAK2 en el paciente P4 (F3). Para cada mutación de TET2 y para JAKV617F, se muestran electroferogramas de secuencias. El diagrama en la izquierda indica el lapso de tiempo desde el diagnóstico (en años) y el fenotipo correspondiente para cada muestra (blanco: ET; gris: PV; sombreado: MF post-ET; negro: AML).

15

Los resultados muestran que JAK2V617F y la mutación de TET2 p.Arg550X ya estaban presentes en la primera muestra, cuando el paciente sufrió PV. La segunda mutación, p.Asn857fs fue detectable en la segunda muestra, 7 años más tarde y 5 meses antes del diagnóstico de MF. Este análisis secuencial ha mostrado que la carga de cada una de estas mutaciones creció con el tiempo, concomitantemente con el desarrollo de la enfermedad.

20

Finalmente, se encontraron mutaciones de TET2 en proporciones similares en pacientes positivos y negativos para JAK2V617F, sugiriendo que los sucesos moleculares en ambos genes pueden surgir independientemente uno del otro.

25

13. Los sucesos moleculares de TET2 se observaron principalmente en pacientes con PMF o pacientes con PV o ET que evolucionaron de forma secundaria hacia una transformación hematológica.

En conjunto, se encontró que 12 pacientes poseen al menos una mutación de TET2. Dan cuenta del 20% de todos los pacientes con MPD ensayados.

30

La figura 8 muestra la representación esquemática del estado clínico de estos doce pacientes con al menos una mutación de TET2. Las cajas en blanco representan las etapas de ET, las grises, PV, el sombreado transversal indica mielofibrosis, ya sea primaria (inclinado a la izquierda) o post-PV/ET (inclinado a la derecha), y AML se simbolizan como cajas negras. Encima de cada punta de flecha que indica un análisis molecular se anota la mutación correspondiente de TET2. La duración de la enfermedad (en años) se indica debajo de las barras,

35

indicando el punto "cero" el tiempo de diagnóstico. El tiempo de la muerte se simboliza como una línea vertical, cuando sea apropiado, en el extremo derecho. Este análisis muestra que estos defectos de TET2 se identificaron en pacientes diagnosticados con los tres fenotipos principales de MPD: PV (4/32), ET (5/21) y PMF (3/8). No se observó mutación de TET2 en familiares con fenotipos

40 hematológicos raros, incluyendo AML de novo y mastocitosis sistémica (datos no representados). Todos los

pacientes con un defecto de TET2 menos dos fueron positivos para la mutación de JAK2V617F. La carga alélica varió de 33 a 95% (Tabla 6). Los casos negativos fueron pacientes con ET que desarrollaron AML muy activa y murieron rápidamente (P5 y P6, datos no representados). Se debería observar que los dos pacientes, P3 y P7, que no desarrollaron MF post-PV o post-ET en el momento del examen, se caracterizaron por un nivel elevado de carga

alélica de JAK2V617F (82 y 39%, respectivamente, Tabla 6).

En conjunto, nuestros resultados establecieron que 20% de los pacientes positivos para JAK2V617F se encontraron mutados para TET2 (10/49) frente a 17% entre los pacientes negativos para JAK2V617F (2/12).

50

45

Todos los pacientes que poseen una mutación de TET2 menos dos tuvieron una mielofibrosis que apareció en el comienzo o se adquirió de forma secundaria tras PV o ET, o una AML secundaria. Por tanto, 29% (10/34) de pacientes con PMF o complicación hematológica tras PV o ET se encontraron mutados en TET2 en comparación con 7,4% (2/27) de pacientes sin ninguna complicación hematológica diagnosticada después de un tiempo medio de duración de la enfermedad de 12 años. Ambos pacientes con mutaciones de TET2 y que presentan PV o ET sin transformaciones hematológicas tuvieron no obstante un curso activo de la enfermedad.

55

60

No se puede realizar ninguna correlación entre la presentación clínica, los datos hematológicos o incluso el curso de la enfermedad en pacientes y el tipo y localización de mutaciones o entre pacientes con una única mutación de TET2 heterocigota y pacientes con dos. Como se muestra en la figura 8, se encontraron mutaciones de TET2 en tiempos diferentes en la evolución de la enfermedad para cada paciente desde el momento del diagnóstico (P9) hasta 20 años más tarde (P8); el tiempo hasta la progresión también fue variable [1-16 años].

14. Las mutaciones de TET2 estaban presentes en progenitores hematopoyéticos tempranos y se adquirieron independientemente de JAK2V617F

Había tres pacientes para el análisis de sus células progenitoras, paciente P4 de la familia F3 y pacientes P2 y P3 de F2. Las células progenitoras sanguíneas estaban disponibles para los primeros en dos etapas diferentes de su enfermedad durante la etapa de PV y la fase de erupción tras MF.

La figura 9 describe genotipos de TET2 y JAK2 en progenitores comprometidos de pacientes P2, P3 y P4. Los histogramas muestran la fracción de clones que albergan JAKV617F y dos mutaciones de TET2 (sombreado transversal), JAK2V617F y una mutación de TET2 (blanco), JAK2 de tipo salvaje y dos mutaciones de TET2 (gris claro), JAK2V617F y TET2 de tipo salvaje (gris), y ninguna mutación en ninguno de los dos genes (negro). Se analizaron dos muestras para el paciente P4, y la etapa correspondiente se indica debajo de cada barra. Se indican los números de clones analizados.

Los resultados muestran que ocho años después del diagnóstico, durante la etapa de PV, colonias de eritroides endógenos ya portan la mutación p.Arg550X (5/29) pero nunca se observó p.Asn857fs (0/29, Figura 9).

Nueve años más tarde, tras la transformación leucémica, todas las unidades formadoras de brote eritroide (BFU-E) genotipadas y todas las unidades formadoras de colonias de granulocito y macrófagos (CFU-GM), menos 2, portaban JAK2V617F y ambas mutaciones de TET2 (Figura 9). Por lo tanto, el análisis de progenitores confirmó la temporalidad de estos sucesos: en el paciente P4, p.Arg550X se adquirió primero en las etapas más tempranas de la enfermedad; y las etapas más tardías se caracterizaron por la presencia tanto de p.Arg550X como de p.Asn857fs. De forma interesante, dos CFU-GM portaron ambas mutaciones de TET2 en ausencia de JAK2V617F. Para el paciente P2, se encontraron colonias tanto con JAK2 como con las mutaciones de TET2, el JAK2V617F solo, o ninguno (Figura 9). Esto fue una indicación de que, para este paciente, la mutación de TET2 se produjo en colonias ya mutadas para JAK2. Todas las BFU-E y CFU-GM del paciente P3 diagnosticado con PV portaron tanto JAK2 como las mutaciones de TET2, y no se pudo concluir sobre la temporalidad de los sucesos de JAK2 y TET2.

15. Los sucesos moleculares de TET2 se observaron principalmente en pacientes con CMML

También se estudió la naturaleza y frecuencia de mutaciones somáticas en TET2 en médula ósea o sangre periférica recogida de 88 pacientes con CMML 1 (n = 70) o CMML2 (n = 18) según los criterios de la OMS y 14 transformaciones blásticas agudas de una CMML previamente identificada. Los pacientes firmaron su autorización según las regulaciones éticas actuales. Los pacientes con CMML en fase crónica se diagnosticaron recientemente (n = 43) o se sabía que padecían enfermedad hematopoyética, y se siguieron cada 3 meses para la abstención terapéutica, cuidados de apoyo o tratamiento citotóxico, en la mayoría de los casos con hidroxiurea (n = 45).

Las muestras de sangre y de médula ósea se recogieron en EDTA, y las células mononucleares se seleccionaron mediante Fycoll Hypaque. El ADN se extrajo usando kits comerciales (QIAGEN). La reacción en cadena de la polimerasa (PCR) y la reacción de secuenciación directa se llevaron a cabo usando condiciones estándar con cebadores específicos de los genes diseñados para amplificar secuencias codificantes que abarcan desde el exón 3 hasta el exón 11 del gen TET2 como se describe previamente. Para cada reacción de PCR, se usaron 20 ng de ADN genómico para la amplificación mediante PCR, seguido de la purificación mediante perlas magnéticas y secuenciación bidireccional usando secuenciadores capilares ABI 3300 (AGENCOURT BIOSCIENCE). Se usó Mutation Surveyor (SOFTGENETICS) para detectar mutaciones finalizadoras y de falso sentido situadas en regiones conservadas que abarcan desde 1134-1444 y 1842-1921, y las secuencias se revisaron manualmente para detectar mutaciones de desplazamiento del marco. Las anormalidades de TET2 se enumeraron según la base de datos de secuencias nucleotídicas EMBL FM 992369.

Las mutaciones identificadas en *TET2* son proporcionadas en la tabla 10.

Tabla 10

5

10

20

25

30

35

40

Paciente	OMS	Cambio de nucleótido en TET2	Exón	Consecuencia
2	CMML1	c.4453G>A	5	W1198STOP
4	CMML1	c.5214C>T; Ins 5537 (A)	10 y 11	R1452 STOP; Y1560FS
5	CMML1	c.4942G>A	9	G1361S
15	CMML1	c.4500C>A; Del 5118_21 (TTAT)	6 y 10	R1214W; L1420FS
18	CMML1	delT 4172; c.5011A>T	3 y 9	F1104FS, D1384V
19	CMML1	del 5362_5365; c.6441G>A	10 y 11	G1501FS; G1860R
20	CMML1	c.2631C>T	3	Q591 STOP
21	CMML1	Del 6507 (A)	11	T1883FS
22	CMML1	c.2961C>T	3	Q701 STOP
23	CMML1	c.1818G>T; c.4936G>A	3 y 9	E320 STOP; R1359H
24	CMML1	c.4515C>T	6	H1219Y

Paciente	OMS	Cambio de nucleótido en TET2	Exón	Consecuencia
25	CMML1	c.4663n+1 G>A; Del 6424_33	6 y 11	Mutación del sitio donante de corte y empalme Exón 6 + L1855FS
26	CMML1	ins 2468_9 (AA)	3	K536FS
		_ ,		Q138 STOP, Mutación del sitio receptor
28	CMML1	c.1272C>A; c.4814n-1 G>A	3 y 8	de corte y empalme Exón 8
31	CMML1	Ins 3151 (C); c.4390T>G	3 y 5	Q764FS; I1175S
32	CMML1	c.3675C>T	3	Q939 STOP
35	CMML1	delG 4754; dup 6569_6573 (GAGA)	7 y 11	K1298FS; M1570FS
39	CMML1	delA 3874; del 4830_31 (TC)	3 y 8	K1008FS; S1324FS
40	CMML1	c.2208A>T; del 4347 (A)	3 y 4	K450 STOP; I1163FS
41	CMML1	c.6478T>C	11	I1873T
42	CMML1	ins 1921 (A); ins 2703 (G)	3 y 3	S354FS; L615FS
44	CMML1	ins 3995 (T); c.4059 A>T	3 y 3	E846FS; R1067 STOP
17	CMML2	c.2814C>T	3	Q652 STOP
30	CMML2	Ins 4293 (A); c.6510A>G	4 y 11	G1145FS; T1884A
34	CMML2	delT 4277; c.6598G>T	4 y 11	I1139FS; G1913V
38	CMML2	c.4936G>C	9	R1359S
14	TA	c.3235C>A	3	S792 STOP
29	TA	c.2490C>T; Del 5334 (G)	3 y 10	R544 STOP; E1492FS
1	CMML1	c.5043n-1G>A; Dup 6575_6579 (GAGCA)	10 y 11	Mutación del sitio receptor de corte y empalme Exón ex10; M1907FS
7	CMML1	c.4439T>G	5	C1193W
8	CMML1	c.4726G>T	7	C1289F
9	CMML1	c.5100C>T	10	Q1414 STOP
11	CMML1	Del 6023 (G)	11	L1721FS
12	CMML1	Del 1921 (C)	3	S354 STOP
16	CMML1	c.4827G>T; Ins 5178 (A)	8 y 10	E1323 STOP; R1440FS
27	CMML1	insG 2703; ins 5125_26 (AA)	3 y 10	L615FS; K1422FS
33	CMML1	Ins of 2950_85 (dup)	3	L718FS
36	CMML1	c.4638G>A; c.4825T>C	5 y 8	C1193Y; L1322P
37	CMML1	c.6414C>T; c.6496A>C	11 y 11	Q1852 STOP; E1879A
43	CMML1	del 3859 (A)	3	N1000FS
46	CMML1	del 1264_66 (AAA)	3	E135FS
3	CMML2	c.4431C>T	5	Q1191 STOP
6	CMML2	c.5070C>T	10	R1404 STOP
10	CMML2	Del 2655_2658 (CAAA)	5	N598FS
13	CMML2	Ins 5602_5606 (TCCAA)	11	S1582FS
45	CMML2	c.2784 C>T; c.5253 C>T	3 y 10	Q642 STOP; R1465 STOP

Los resultados revelaron que se detectó un estado mutado del gen *TET2* en 44 de los 88 (50%) pacientes. Entre los 43 pacientes estudiados en el diagnóstico, se identificó un estado mutado del gen *TET2* en 18 casos (42%). Tal estado mutado se identificó en 26 de los 45 pacientes (58%) de los estudios a lo largo del curso de la enfermedad. Estos resultados sugieren así que la prevalencia de la mutación de *TET2* es mayor en CMML que en cualquier otra enfermedad mieloide estudiada.

Además, se debe observar que dos mutaciones distintas en la secuencia de *TET2*, sugiriendo una alteración bialélica del gen, se identificaron en 18 de 44 (40%) pacientes mutados con una CMML de fase crónica, incluyendo 5 de los 18 (27%) pacientes cuyas mutaciones se identificaron en el diagnóstico, y 13 de los 26 (50%) pacientes mutados estudiados a lo largo del curso de la enfermedad. En conjunto, se identificaron 69 mutaciones en *TET2*, incluyendo 33 mutaciones de desplazamiento del marco, 19 mutaciones finalizadoras, 14 mutaciones de aminoácido, y 3 mutaciones en un sitio de corte y empalme. Estas mutaciones implicaron muy frecuentemente al exón 3 (22 sucesos), al exón 10 (9 sucesos) y al exón 11 (10 sucesos).

15

20

10

Se llevó a cabo un análisis de la supervivencia global en 40 de los 43 pacientes cuyo estado de *TET2* se determinó en el diagnóstico con un seguimiento de al menos dos meses e indicó una supervivencia global a 1 año menor en pacientes con los 16 pacientes de esta cohorte con mutación de *TET2*, pero la diferencia no alcanzó significancia. Cuando el análisis de supervivencia global se limitó a los 29 pacientes con una CMML1 según la clasificación de la OMS y un seguimiento de al menos dos meses, la diferencia entonces fue significativa (p < 0,01). Ninguno de los otros parámetros ensayados, incluyendo la edad, sexo y clasificación FAB, afectó a la supervivencia. Finalmente, los resultados establecieron que la mutación de *TET2* estaba asociada en los 29 pacientes con CMML1 con una tendencia a una supervivencia significativamente menor.

16. Alteración del gen TET2 en pacientes que sufren cáncer linfoide

Los análisis de CGH de 157 pacientes que sufren linfoma de células B mostraron la pérdida de un cromosoma completo 4 en 2 casos, una supresión parcial de las secuencias del cromosoma 4q que suprime el gen TET2 en 4 casos, y la pérdida del lado en dirección 5' de TET2 asociada con duplicación del lado en dirección 3' de TET2 en un caso. Estas reorganizaciones se encontraron en linfomas de células B grandes difusos (107 casos), mientras que no se pudo encontrar ninguna reorganización en linfomas foliculares (50 casos).

Se analizaron 93 pacientes en busca de variación en la secuencia codificante de TET2. Hubo 33 linfomas de 10 linfocitos T y 60 linfomas de células B.

Se observaron 14 mutaciones en 10 muestras de linfomas de linfocitos T, incluyendo 10 desplazamientos del marco y 2 mutaciones finalizadoras y 2 mutaciones de aminoácido.

15 La Tabla 9 muestra las mutaciones de TET2 identificadas en 10 pacientes con linfomas de linfocitos T.

Enfermedad	Cambios de nucleótido	Consecuencias de aminoácidos
T-linfoma	c.3215delT	p.Phe785FS
T-linfoma	c.[1893_1896delAAGC]+[4527delG]	p.[Lys345FS]+[Ala1223FS]
T-linfoma	c.[2505delA]+[2524delC]	p.[Thr549FS]+[Pro555FS]
T-linfoma	c.6564C>T	p.Tyr1902
T-linfoma	c.6745C>T	p.Pro1962Leu
T-linfoma	c.5523_5524insA	p.Glu1555fs
T-linfoma	c.[3131_3137delCCAGACT]+[5109G>T]	p.[Leu757FS]+[Val1417Phe]
T-linfoma	c.[3747C>T]+[5331A>T]	p.[Gln963STOP]+[Lys1491STOP]
T-linfoma	c.3756_3757del CA	p.Gln966 FS
T-linfoma (LAI)	c.1642delC	p.Ser261 FS

De este modo, estos resultados establecieron que las frecuencias de la mutación de TET2 en pacientes que sufren tumor linfoide de linfocitos T es 30%.

Listado de secuencias

<110> INSERM IGR

25 <120> TET2 COMO NUEVO MARCADOR DE DIAGNÓSTICO Y DE PRONÓSTICO EN NEOPLASIAS HEMATOPOYÉTICAS

<130> 354819 D26395

30 <150> EP 08305255.5

<151> 12-06-2008

<150> EP 09155169.7

<151> 13-03-2009

<160> 39

<170> Patent In version 3.3

40 <210> 1

20

35

<211> 132428

<212> ADN

<213> Homo sapiens

45 <220>

<221> Intrón

<222> (1)..(100)

<220>

50 <221> Exón

<222> (101)..(787)

<220>

<221> Intrón

```
<222> (788)..(44167)
      <220>
      <221> Exón
      <222> (44168)..(44294)
      <220>
      <221> Intrón
      <222> (44295)..(87704)
10
      <220>
      <221> Exón
      <222> (87705)..(91159)
15
      <220>
      <221> Intrón
      <222> (91160)..(95146)
      <220>
20
      <221> Exón
      <222> (95147)..(95237)
      <220>
      <221> Intrón
25
      <222> (95238)..(96641)
      <220>
      <221> Exón
      <222> (96642)..(96735)
30
      <220>
      <221> Intrón
      <222> (96736)..(97377)
      <220>
35
      <221> Exón
      <222> (97378)..(97586)
      <220>
40
      <221> Intrón
      <222> (97587)..(113426)
      <220>
      <221> Exón
45
      <222> (113427)..(113577)
      <220>
      <221> Intrón
      <222> (113578)..(115566)
50
      <220>
      <221> Exón
      <222> (115567)..(115656)
55
      <220>
      <221> Intrón
      <222> (115657)..(123417)
      <220>
60
      <221> Exón
      <222> (123418)..(123555)
      <220>
      <221> Intrón
65
      <222> (123556)..(126371)
```

	<220> <221> Ex <222> (12	ón 26372)(126726	6)					
5	<220> <221> Inti <222> (12	rón 16727)(12885	5)					
10	<220> <221> Exc <222> (12	ón 18856)(132328	3)					
15	<220> <221> Intr <222> (13	rón 32329)(132428	3)					
	<400> 1							
		gcgcgggggc	gtgtgcgcgg	gacctcgaag	tggtggtgga	gtgcagacca	gcaaaaagtt	60
		tcaaagggaa	atcttagatg	tcacgtcttt	gtccaggcac	ccgtgccatc	ccaacctccc	120
		acctcgcccc	caaccttcgc	gcttgctctg	cttcttctcc	caggggtgga	gacccgccga	180
		ggtccccggg	gttcccgagg	gctgcaccct	tccccgcgct	cgccagccct	ggcccctact	240
		ccgcgctggt	ccgggcgcac	cactccccc	gcgccactgc	acggcgtgag	ggcagcccag	300

gtctccactg cgcgccc	cege tgtaeggeee	caggtgccgc	cggcctttgt	gctggacgcc	360
cggtgcgggg ggctaat	ttcc ctgggagccg	gggctgaggg	ccccagggcg	gcggcgcagg	420
ccggggcgga gcgggag	ggag gccggggcgg	agcaggagga	ggcccgggcg	gaggaggaga	480
gccggcggta gcggcag	gtgg cagcggcgag	agcttgggcg	gccgccgccg	cctcctcgcg	540
agegeegege geeegge	gtcc cgctcgcatg	caagtcacgt	ccgccccctc	ggcgcggccg	600
ccccgagacg ccggcc	ccgc tgagtgatga	gaacagacgt	caaactgcct	tatgaatatt	660
gatgcggagg ctaggct	tgct ttcgtagaga	agcagaagga	agcaagatgg	ctgcccttta	720
ggatttgtta gaaagga	agac ccgactgcaa	ctgctggatt	gctgcaaggc	tgagggacga	780
gaacgaggtc agagcgo	cttc tcttatgccg	cgaaactctc	cctttcttct	ccccttcgct	840
ttttctcggg cttccaq	ggga ctggggagca	aaccctgtag	tgtcacccac	aaataccaag	900
agggaagagg gaagct	tcac aaattactgg	agcctcttca	acatggctga	caaatatagt	960
tttaattccc tctaccc	cctt ttaaacctgt	agttctgtgt	tctcttctct	cctcctaatg	1020
ctcgtcccct catctco	ccag aaaacttacc	tttgtgcctc	cgacgagccg	gtttcccggc	1080
ctttttaat cctcaga	aaaa gtgatttta	aatttgcttt	cctttctaaa	atagttcagc	1140
tttgggggca ctactt	ttcc ctttaatcct	cttcccctgt	ttctttcgtg	taagtgaaac	1200
gagtctcccg tttatco	ctga acaacctcag	agagaacact	gatagggtgt	ttttcgaccc	1260
ttttatcagc tgtaggg	gtct gggtctgggt	ttgtgtctgc	ctcctcctac	cttcttatcc	1320
ccctttaggg ggctgta	acga agtgaatgto	acagggagtg	gaattggagt	acactgagtg	1380
ggttttttt ttcctta	aagt ccgcgcgttt	tgttagcggc	gctgagtgaa	agaggaaaga	1440
atagtttctc tggttco	ccca aacaagacca	. gaactcactt	ttctcaaggt	acataagtca	1500
gegetggget gageet	tcca gcctggggaa	. tgtatgtaag	agaatttatg	gacaaatctg	1560
tgtcccggct ttgtgc	ttct cccgaatcag	cttcgtttgg	ttccttggta	agtgacaggc	1620
agacacaaag gcaggc	gcag gcccggggag	ggggcgggag	ggggtgggga	gcgcagcgtt	1680
ggagttgcaa gactgc	aagg tcaggggcgc	ctaaagaaat	gaaacccaat	cccagcaaag	1740
aagtgaagag cagatt	tata acagtcccat	ccaaatttct	ctttggcttc	tctctttggt	1800
ctttcatctc tctgcc	tttc tctctgtgtc	tectetetae	tetttettet	ctctctctca	1860
tacacataca cacaca	caca cacacacac	cctcactcgc	atcttgctga	atcttttcac	1920
tgggactgct tgtctag	gttt tattaagcta	atagggtttg	tatggagagt	tttctaccta	1980
tgacataatg aagtgt	ggcc tggatagact	cctggaaagg	ccgaaaatga	aatataagtg	2040
ttatttgctg gttatt	cccc tcatgatata	cttttaatta	cattgaggga	gttctccctt	2100
cttcatctaa tgttta	agaa ttgagaaaag	gcttattttc	cagcggtaaa	atttagtgca	2160
taaaatttag tgaaata	attt atatatttac	gtgtctaggg	agtggaatac	attcatgaat	2220

ttaatatctc	aaatcacaca	ttgtgctttt	tccccttcag	tcagggatta	taatgggaaa	2280
cccaaattca	aagatattca	tcaacaaatg	atccatcata	ggaataagat	tgtatcttaa	2340
gggaagttgg	gattcacaga	gaaaagacat	tggtttggtt	tggtgtgata	ctgtgggtat	2400
tgttgcctgg	ctaatgaaat	cattacattt	gcattttaat	ggaaagttga	aatactaagg	2460
ggagttatgt	tcttttacat	gtttgtatgt	gtgcttaata	atgtttggaa	tagaatataa	2520
atttaaacac	aataaatatt	gatttttta	aatgttaata	agcagagaac	ggttaatgaa	2580
gtgttggata	atcaaactga	agtttagaag	acaatttata	ggattaaaaa	atggatagaa	2640
ggaaaaacac	aataatagat	atttctccat	aagtcgaatt	tccaaaacta	tttgtcctcg	2700
atagttcact	ttgtaacttt	ctattttgat	ctttgttaat	ttaatgtagt	ttgctttaat	2760
cattgatacg	tggggttctt	tcacatgatt	acaagggaga	agcattactc	atctctgtgg	2820
aatagaaacg	gttcattggt	tagttcttat	ttgccctaaa	attaaaacaa	aaattaggat	2880
tttaccatta	atgctgttca	tggtaaacta	tcgagaaaac	tatggttaat	tattccagca	2940
attcagaatt	aaaaacaatt	ccttttgcta	acaaactaat	atttactttt	tggggacaac	3000
ttttcaaatg	ttgtggtata	tactgtcttc	aggctactca	actaataata	gatacaacat	3060
tttccactca	ataaataaga	ataactacat	tggttaataa	ttttgaatac	aactatgaag	3120
gcttgttttt	tcctgtcatc	aaatttagat	tcttgttatt	ttgtgcatcc	tacttttata	3180
ctgaaaatag	ctgctaatta	atactgtata	aagtatttca	gtgattataa	ggaagagatg	3240
tgtatgttag	tcactttatc	ctttgttgga	aaagagaaat	tattttaata	agtatggggt	3300
agtttacaat	aaaagacata	acctcagttc	tttctttacc	atatatgtga	tcatactacc	3360
taggtgctcc	aaaaattcca	taggactgtc	ttgggttatt	gaattttagg	aacatgataa	3420
tggacaataa	caagatagat	agcttttctt	aactatgaca	ttgttttgct	tattttctta	3480
ttgaactaat	catcaatgag	aaattaagtt	gcagtgagag	aaatcccttg	ctttgtttaa	3540
attgtcatat	ttgccaaact	cttcttaagg	ctttaattag	gtctgatgtg	ccagtttatg	3600
ccagaagccg	gaggaattga	tatgattttg	aggcagtggc	acatggtcct	actagacatt	3660
ggcaagtgaa	tatcacttcc	agaacaagtg	aagtgcacct	gccaaggagt	tgttatgaaa	3720
gaattccaaa	gtccttattg	ggcactggtc	ttgtattagg	taacaacaac	tggagttaat	3780
gttttagttt	cacttgttga	agttaaaagt	tccctatcaa	ttcttctaag	actccacccc	3840
caaacaatgt	tgtaagtcaa	atgtcactat	tgaaatgtat	ttccttaatt	actgacctca	3900
ttaagaagcc	cttcttatga	ttcataggca	cacctcacag	aaactctatt	ttccatcctg	3960
cccaaagtct	gagtaggtaa	attcttatga	attcttatga	aattaccttg	aaataaaata	4020
tcttcaaaag	ttacggatgc	tagacattgt	ataatgtcaa	tattttagaa	tatctaatat	4080
ttagaaaatc	ttagatctac	tttttatgct	ttaattgctt	ctaatgcaag	ttaaattgtt	4140

tttgttgtta	ttgttttaat	agaatttcat	agtcttatct	agcaatttca	aatcgctgga	4200
aagagtcatc	tttgttatat	aaataaccat	gtagactgtt	ttaatgttat	tgtttcctac	4260
cttgggaaca	ggctaaaact	ttggaccagc	tgtcagtatt	tgttcatcag	aataacactt	4320
tgtcaatgat	tattctacca	ttgcacagta	gttcttaagg	atagtaatgg	taccaaagcc	4380
agcagcaata	gaatatctcc	caagccaact	ttacaattgg	agccttcact	gtgggaaaga	4440
ccagttgcca	agtagagctg	gtggttatct	gggaaactgt	gctgaagaac	acaaccacaa	4500
atgattttgc	caaatataca	gtatttactt	ggtctagatc	tccaatttct	atttctactc	4560
actgccaaaa	ctgagtgaat	actgtgacat	tattgaagga	ggttatgcag	tacatctgtt	4620
ggtttggtat	atagtaggag	agaagggttc	caggagggaa	aggggaaagt	cagagcatgt	4680
gaatcactgt	gactacaatc	caaaaagaat	tatgtatgtc	tgctatttcc	agcattattt	4740
ttgtcctata	ttgtacattg	cagagacttg	ctgacttaaa	atagatatat	aatcttttc	4800
tcaaaagaat	agatatttgg	ttgtccattc	caaataacaa	attttggatg	ggcgtggtga	4860
ctcatgcctg	taatcctagc	actttgggag	gccaaggtga	gagatcactt	gaggccagga	4920
gtttgaaacc	accctgggca	acacagtcag	gccccagtct	ctacaaaaaa	tttaaaaagt	4980
tagtggggca	tggtggtaca	ttcctgtagt	cccagctact	caggagactg	agataggagg	5040
atggattgag	ctcaagtgtt	ctaacttata	gtgagctctg	atcacaccac	tgcgctccag	5100
cccaggcaag	agggagagac	cctatctcaa	acagcgacaa	caacaaaacc	aaacaaacaa	5160
aaaagcacat	tctatcagct	ttgatttatg	ttttcttcat	ttgtaatgac	atgtagttaa	5220
atgtgtcata	cttcaaaaag	aagaaacaga	tagtaggtgg	attttcaata	taatatatat	5280
tagatataga	taatatatat	tttcaatata	taatatatgt	aaaaataaat	tcagtgataa	5340
tatcatccta	cctgcagttt	taagaattca	gaactcaggc	caggtgtggt	ggctcattct	5400
gggaggggaa	ggcaggagga	tcacttgagg	ccagaagttc	tagaccagcc	tgggcaacat	5460
agtgagatac	ctgtctctat	tcaataaaaa	taaaaataaa	aataattcag	aactcaatgc	5520
tttatactca	ctgaaagttg	ttcctctaaa	ctgacttgaa	atcatgttcc	aaataaactg	5580
agaattaaag	taagagacga	ggccggttgt	ggtggctcat	gcctgtaatc	ccagcacttt	5640
gggacgacaa	ggćaggtgga	tgacctgagg	tcaggagttt	gagaccagcc	tggccaacat	5700
ggtgaaaccc	tgtctctact	aaaaatacaa	aaattagccg	ggcatggtgg	cacacaccag	5760
taatcccagc	tactcaggag	gctgaggccc	gagaatcact	tgagcctggg	catggtggct	5820
catacctata	atcccagcac	tttgggaggc	cgaggcaggt	ggatcacctg	acgtcaggaa	5880
ttcgagacca	gtctggccaa	catggtgaaa	ccccatctcc	actaaacata	caaaattagc	5940
tgggtgtggt	ggcacatgcc	tgtagtctca	gctattctgg	aggctgatac	aggagaattg	6000
cttgaaccct	cccgggaggc	agaggctgcg	gtgagccgag	atggctctgc	tgcactccag	6060

cctgggcgag	gcagagagac	tctgcctcaa	aaaaagaaaa	ataataataa	taaataggag	6120
atgaataaat	tgggataaag	tgtttttgaa	ggacagtcta	ggatataaaa	tgaactggtt	6180
gtttgactaa	aaatactaca	aatgtttctt	tcaaattaca	tttcttttt	gtctattgga	6240
aggtaggcac	tgatttctat	gtctttctat	tccctaatag	aacctactgt	tgacctctca	6300
gtcaatattt	aatggatgat	atagaactag	tgaaaaacca	tgcaatttaa	ctagaaaaaa	6360
aaagtataat	ctattttctt	ttcctttttc	tttctttctt	tctttctttt	ttttttttt	6420
tttgagacgg	tatcttgctc	tgtcacctag	gctggagtgc	agtggtgtga	tctcggctca	6480
ctgcaacctc	tgccttccag	gttcaagtga	ttctctttct	cagcccccag	agtagctggg	6540
actaggagcg	tgccccacca	cacctggcta	atttttctat	ttttattaga	gacagggttt	6600
caccatgttg	gccaggctga	tctcgtactc	ctggtctcag	gtgatctgcc	tgcccgggtc	6660
tcccaaagtg	ctgggattac	aggcatgagc	cactgcacct	ggtctaatct	attttcaatg	6720
tataagagaa	aaatagtgtt	aagtgtcttg	gtgatggtga	tgatggtagg	agtaatggtg	6780
tgttttcctt	acatttaatt	tctacaggct	atggcaattg	ccctataaaa	gccacccatt	6840
ttaagcacaa	aagtgaatgg	tttttagtaa	acttatatgg	gatcatatat	ttttaattga	6900
aatattttt	gagttaatta	tagattcata	tgccattgta	tgaaataata	cagagagatt	6960
ccacgtatac	ttgctcaatt	tcccccagtg	gcaacacttt	gcaaaactat	aatatcatat	7020
cacatcacat	gcaaaactat	aatatcatat	cacaaccatg	atactgacat	tgatgtggcc	7080
tactaatctt	attcagatgt	cctcagttta	acttgtactc	atttgtgtgt	gttttgtttt	7140
ataccattta	gtcacatgat	cacatatttt	taaacctttt	tttctcaaaa	cagagaagtt	7200
tagcacaaaa	gtttagcaat	ttatcaatct	tgtgattgtg	ctgttatgcc	atattaaaat	7260
gtgtgtcaga	atgtaagttt	ttgttttctt	aaaagtcctt	tttttgatag	aatggccttt	7320
atgttaaaaa	tattttaagt	tgttttgtga	cagtgtaagt	cgatgtcatt	taattctcat	7380
cacaacccta	gagataggta	ttattcttat	ccctatttat	gagtgaggaa	actgaagccc	7440
agtgaggtta	aataacttcc	ttaagttcat	acagcctata	catggcttag	gcttagccag	7500
catttgagtt	aagcagtctg	tctctagtgc	caaatctttt	aatcactata	ttatacttca	7560
tcattatcat	tgatagctgt	aaaagtgtat	aatgtggact	atgtagagaa	agtcataaaa	7620
ggagatttaa	aatgcataca	gttgttcaca	tgaaaacttg	tagccaaatg	ttcattacag	7680
cattattaat	aatggtaaaa	aatggaaaca	acccagatgt	ctatcatgtc	atgagtgaat	7740
aaacaaattg	tggtatatcc	atacagtgaa	atattattaa	gtagtataaa	ggaatggatt	7800
attgataaat	gctgtcacat	aggtgaatct	gagaggcaca	agaaaggcca	catatgatat	7860
gctttcaatt	ttaagtaacg	tccagaatag	gcaaatctaa	ggagacagaa	agttggctag	7920
ttattactag	gggctaggga	tgggagggag	gtgactccta	ataagtatga	gatttctttt	7980

ggtgatgatg	aaaatgttct	ataattagat	agtaatgatt	gcccaactct	ttgaatatgc	8040
tgaaacccac	tgaattatat	gctttaaaag	gatgaattta	ttgtatgtga	attatatttc	8100
aaaaagctgt	tgttataaaa	atgaatgtag	ttgagttatt	tggtttattt	tatgtcagaa	8160
aatgtcttac	atctcatgca	aaagaaatgc	aggaactatt	tggattgaat	gaggctaagc	8220
atatctttct	aggaagatgg	catcaaggag	ttttattatg	cctgtaatcc	tggcactttg	8280
ggaggccaag	gcgggagacc	agaagtttga	gattagtctg	ggcaacatcc	tcttatagat	8340
gagaaggata	cttaatcact	caaaagttgg	cattgtgttt	tgtgataaca	atagccttta	8400
gagctcatat	gggaagattc	aatagatagt	gataggttat	atgacttggt	aaagagggct	8460
taatgtatag	gtgcaagaaa	ctttctcaga	tgtctttagt	tacctagcca	ttcagttcag	8520
gagatgtaac	ccaagtgtta	aaaggaatgt	gactgggtgc	ggtggctcac	acctgtaatc	8580
ccagcacttt	gcgaggcgga	agtgggtggg	tctcttgagc	tcaggagttg	gagacaagcc	8640
tgggcaacat	ggcaaaaccc	catccctaca	aaaaatgcac	aaattagctg	ggtgtggtgg	8700
cacatccctg	tagttccagg	tacttgtggg	gctgaggcgg	gaggatggct	cgagcctggg	8760
aagttgaggc	tgcagtgagc	catgttggtg	ccccacact	tcagcctggg	tgacaaaatg	8820
agaccctctc	tctcaaaaaa	aaactataaa	aattgctgtt	cttgtttaaa	ttactacaaa	8880
gtgcagttta	atctagaaat	aataacaaat	tactagattt	ggggggttat	taatgtctta	8940
tctatgtgaa	aacagaaggg	caatgcaggg	cagagaataa	acttcaaaac	tttgagtttg	9000
ttaactgttt	atatctccac	ttgtcatgtt	tcagatttta	aagttaaaat	gacaaagtat	9060
ctcatagggt	ttaaacaagt	gactcttttc	ctgttaactg	atactgtggc	atgttgaaga	9120
tgtaaaataa	ggttgaaaag	gaaattgctt	tgcagcagtc	ttcataatgc	caggacaaag	9180
tgagaaacag	ggtcagaatg	atgatggctc	tccatctttg	ctacacatgg	ctgcaagtat	9240
ttacaaatac	cagcagaact	tctacaaacc	acttacaggt	aaaatgagtg	cagattttta	9300
acactagtcc	ctatggaact	atgacttgta	gttttggaca	cacagggtga	attacttggg	9360
gttgattgta	tttgaatttc	taaccttatg	taattctaga	taccagacat	tcttgttgtg	9420
caatgcttct	ctccctttt	attctcatga	gaatgctggg	ttgcagccgg	ttggatccca	9480
taccttggga	ccatgactga	taactggagt	ggagaaaatt	cactgatctg	gaaaggttga	9540
gctttagggt	tcagagactt	atttaaggta	cacatgtgat	tgtacccaat	aaggaagtat	9600
attggcttta	tataattgtt	atgatcactt	gttcaatgag	taactataga	attttacttt	9660
ttaagagtat	gatcatagca	tctacttgta	ggtttgttga	gtatgtttga	caagcccaag	9720
atagatgctc	atgttagacc	cattaagaag	ttggtgtagt	gatggttatg	gaaagcagta	9780
agatagaatt	taggttctgt	tctccttact	ggagaaatga	ctagcttact	tgtcttcact	9840
ctctcttgtt	tctctcaaaa	ctttgtgaac	cacctcagct	gactataaat	ttttgtacta	9900

gtatctccat aattttaa	aa aagttgttca	caagtttgag	tgtagtactt	catctttgct	9960
ttttaatgca cttccaaa	aa atgtaaatct	gttctcgcat	attaggaaca	ttttgatttg	10020
ttgtttattt ttagcttt	gc tttttataag	taatttatac	agaaggtaca	ccatattcaa	10080
aagaagaaaa atgggctg	stg aatttttgct	gatgtactac	tctcttcaaa	gggaattgcc	10140
tatgttcagg catagaaa	ıtg caggcagtct	gacatttagg	tatgccatac	agagtattga	10200
tatttttaat ttgctact	tt taacattttg	agatttgtca	cagtttgttc	tgtgggtggg	10260
taaaagtaat ggtaattt	ta attacagttg	tcgtgcctca	ttagccattg	ctaaaacctg	10320
ccttaccaaa tcacttat	tt tcttgatgca	gtgttaaatc	tagcttctat	gtccaggtta	10380
tacattaatg agaacatt	ca cccatctctc	aaatgggtta	ttatagtatt	ttctcctgaa	10440
atagatgatg cataaaaa	aa agtaaaaaag	cttcaatagg	gataatgaaa	gccagataac	10500
atagcatggt atatgagt	ta ttcctcccgt	ttttcttacc	tgtctgcact	aagaagggca	10560
cccattaaat accataat	ta ttagttgtgc	tgcctctgaa	gtagagcacc	agaatgtgag	10620
agtaatacaa tgagacca	ca cccagattct	atccataaca	tactgtcctg	gtcttattaa	10680
tttttttaac ctgtttgt	tc ttttagcact	tttcctgctt	ttgtttgaag	tctcttgctt	10740
tgaagttata gaatttt	at atttgccatt	ggctgtaaag	ttatctcagc	tcttttataa	10800
cttttcatta tatttgca	itt aaaaggatca	ctttgagcac	cctgtaatta	attcagatga	10860
ttattagctt ttttgttt	gt tctactgtgc	actctcctat	atacattata	acagaagaaa	10920
aaaccatttc tacaaata	aca gtgtctgata	gttcatcaaa	tcagaatgag	catcttaaaa	10980
agtgaattat taaaata	ta attcatttac	attcctattt	taatgtacca	aatgtaactg	11040
atgaaaagaa gaatacca	ita aatgggtacc	tttcaaaaat	gaaggaaaaa	aaaatctcac	11100
aactaaagat tottacca	ata taaattattt	attttagtaa	ataattattt	tagtacaaac	11160
agatacattt tagcagga	aa aaacacactt	taaaccttgt	tttatagatt	ttatctttct	11220
tccaatctag ccactgaa	aat ggttttttct	ccagtgaagt	tatattatct	acataagttg	11280
aatttaaaac aaggttg	at tttaattttg	cagttgtctg	ccacattacg	cttgtggaaa	11340
aacactggca gaaagcaa	ag ctaatagaca	ttttgctgtt	ggctcacctt	attaatggct	11400
aagatttaat tatgtat	tc tactgaaaag	caaacttgaa	aaagacgttt	ggttactaac	11460
tgtgggaact aaaaatt	tt atttatttt	atttttatt	ttttggtaga	gtctcactct	11520
cttgcccagg ctggagt	gca gtggcatgat	cttggctcac	tgcagcctcc	tccttctggg	11580
ttcaagcgat tctcctg	ct cagecteecg	agtagctggg	attataggca	ccagccacca	11640
tgcctggcta atttttg	cat ttttagtaga	aacagcgttt	cgccatgtag	gctaggctgg	11700
tctcgaactc ctgaccto	cta gtgatccacc	cccttctgct	tcctaaagtg	ctgggattac	11760
aggcatgagc catcggc	ctg gccaacttat	ttactgttac	aacttactta	ctttgaaaca	11820

acttatttac	tgttaaaaaa	tgtggttctt	atttcaaata	agattttatg	gacatcaact	11880
aatttttaa	acatatattg	taattttaaa	acatttttac	caacatttt	caagagcatg	11940
ggaaatctag	ggtatggcat	tttaaagtga	ctttaaagac	acttcttggg	ttttgttgaa	12000
gtcagaatat	ttttaaaaat	acaatgagtt	taatttacta	ctgacagatt	ttctttaatt	12060
ttttttgcat	tgttataatt	agtcatgcct	taatcctcgg	ggtttttggg	aaactatatt	12120
taggggttaa	aaacttagtt	attgacattg	taattttct	cagtattggt	aagaattcag	12180
gtgtttaagg	aatggagttt	acttgttttc	tgttcacaaa	cccattgtaa	aagatataat	12240
gaatgtagat	gaaggtgaaa	tccgagatag	gaagagaggt	aaaatgctac	tttttttcc	12300
ttcacccaag	gaaagccatt	gaatactgaa	tgggtcatgt	tgtaatttaa	ttgggtgtaa	12360
attataactt	tgtaaatcat	ttgcctactt	agtgtatatc	tctggttttt	atgtaattca	12420
tctcccataa	tatctcagtt	tacactgaag	taaataagca	agcaggaata	agtcctgcaa	12480
atagaggaag	tagaaagtgc	attcagaatg	cattgctgaa	attgtaaaac	tgatcctaaa	12540
ttgaattagg	tagagcagtt	aatttagatt	acaagaaatg	caacaggaaa	aaaatattac	12600
agttcttcct	cttttttgga	aaaaaaaaa	gaaagaaaag	acaaataaat	cacccttagt	12660
tagtgataat	tccttgacat	ctgtatgctc	atttttaggg	ccaaaaaata	gtaggcttct	12720
ctttggaaat	tgtagacgct	ttctctcctt	ccagttacac	gcggtcacat	caacatttga	12780
cacgtgggta	ccgtgcacgt	ggcagcagta	tttacaaaca	ccatcctagg	attccagaga	12840
ctcttatgta	acagtggaga	gagtaagctt	tgagtgtctg	tgggcggagg	aatcaacaca	12900
gtttaattca	ttgtccggga	gcccttgtct	ggctctgata	gggtcatgaa	ccaaagatca	12960
aggtgtttag	gtcaggatat	tccctaacgc	atggttttcc	taccaaagcc	tcaaaagctg	13020
tgcctaaata	caagattaat	cttttcttt	ctttctttct	tttttttt	tttttttgag	13080
acggagtttc	gctcttgctg	ccaaggttgg	agtgcagtgg	cgccgcgatc	tcggctcact	13140
gcaacctccg	cctcaccggt	tcaagcgatt	ctccagcctc	agacacccaa	gtagctggga	13200
ttataggcat	gcgccaccac	gcccggctaa	ttttgtattt	ttagtacaga	cggggtttct	13260
ccatgttggt	cagcctggtg	ttgaactccc	gacttaaggt	gatccgcttg	cttcggcccc	13320
ccaaagtgct	gggattacag	gcttgagcca	ccgcgcccag	ctaagattaa	totttttatg	13380
ccctgcagca	aacaactagt	catgccaaac	catttttgtg	atttggggaa	acatgagcag	13440
atgatgcttt	ggatctgatt	ataattcaca	gtgctcttgt	aatttacgtg	agatttgcat	13500
acctgcctcc	cagcctcaca	aaatgccttt	aaaaaattac	atcttggcca	ggatggctca	13560
cgcctgtaat	cccggcattt	tgggaggcca	aggcgggtgg	caagagatcg	agatcatcct	13620
ggccaacacg	gtgaaaaccc	gtctctgcta	aaaatacaaa	aattagctgg	gcgtggtggc	13680
gggcgcctgt	aatcccagct	acttgggaga	ctgtggcagg	agaatcgctt	gaccccggga	13740

ggcggaggtt	gcagtgagcc	gagatcgcgc	cactgcactc	cagcctggcg	acagaacgag	13800
actccgtctc	agaaaaaaaa	aaaatcttga	tatttgtatg	catcttaaaa	agcaagagaa	13860
ttcatgattg	acttcccaaa	ctaaacggtc	tgaccagaaa	acactcaaga	aaactcttgg	13920
ttaatcatgc	tccttagtat	accattatac	ctgcctctcc	cctttcccca	tcctctgtaa	13980
attctctcaa	ccttctctca	ttttaattt	cataccaaga	cctagagcta	aaacaacaac	14040
aacaaagctt	taagtctcta	tatttaggga	atgtgcctcc	tatcccaaat	tgatttttag	14100
agcttttcat	ttatttttat	caatacaaag	caagttgaaa	taaaaaaaaa	ggcatcaaaa	14160
atttaaatgt	ctaaccacgt	atatttggta	tatgtatact	ggtgctatgt	attagctgta	14220
agcagactgg	tttgaatatt	taaaatatga	acagaatttg	agttcttttt	gtattgcatc	14280
taaggatcat	ttgagatgga	tgtcatcatt	tatcatccaa	aatagaagcc	ttcttgccta	14340
acaaagaatt	gtaattagat	catcaaagat	gaaatttata	gtaattgaaa	agttagctca	14400
tttgactgct	tctttcatag	actgtgtttt	tgtaattaca	ctacctttct	aaagatagga	14460
aaaatcagag	tctctgaaat	gtaatactat	aagtgaaata	tgtattttt	aaaataaagg	14520
atcttttccc	aagagctaaa	ccaagcacca	aatctgtttt	ttgggggttt	tttggtttgt	14580
tggtttgttt	gtttgtttgt	ttttgacaga	gtctccctct	gtcgcccagg	ctggagtgaa	14640
gcggagcgat	ctgggctcac	cgcaacctcc	gcctcctggg	ttccagcaat	tctctgcctc	14700
aggcttcgga	gtagctggga	ttacaggcac	tcgccaccac	gcccggctaa	tttttgtatt	14760
tttagtagag	gcggggtttt	accatcttgg	tcaggctggt	tttgaactcc	tgacctggtg	14820
atccactcgc	ctcagcctcc	caaagtgctg	ggattacagg	tgtttttctt	taagtaatac	14880
ttggtataag	agaactttat	atctggaata	atttaaatat	tatctgaccg	aatctattat	14940
tcacatatag	aaactcaggt	tttagccatt	taacatctaa	agctgttctc	atttagagga	15000
aattaccaaa	agagtgactt	atttaactaa	caataaaatc	taaggataga	tatttttca	15060
ttctgttgca	gagcaaaagc	agccttctgg	atatgaaaag	atattacttc	tttagtgttt	15120
attacttata	atttattgta	catttctgat	acactgaatt	aagatgcgat	gagagtaggt	15180
tgtagatttt	taaaagttct	tatttgcgtg	atttatctac	ttgcttttt	agtgtcggac	15240
tataaatgat	gtatttctct	caattatcct	cggcctaaat	agtaaaagct	tgggtgaaat	15300
tacttatgag	tatacttttc	ctgcacagag	cagagccatt	actgaacact	ctcgagcttt	15360
aacaaaaatc	atcctatctt	atattagaat	attaatattt	tccctctttc	tcggaccttt	15420
gtttcacagt	aaatcatata	tggatataag	ctgcaagtgc	tcagaatttg	attaaggcta	15480
taagttaatt	tctactaaaa	aagggattca	aatagaactt	tcatttggct	gtactgtagt	15540
ttcacttgaa	ggggcaagca	tgcaataaac	attgacttat	tcaatgcata	ggctgtcttc	15600
ataaagatga	gactgagtga	cagttgtctg	tgtattataa	aatatcagaa	tggtagattg	15660

aatctgatgc	ataccaagga	gcaatgtgga	aattttaggc	tgttcgtctt	ttttcagtta	15720
ctactaagtg	tgtgtatgtg	gtgtgtatgt	gttttgaact	tttcatattt	aagctgaatc	15780
ctctttggta	gaaatggtta	aatagactat	agtaaaagtt	tctgtctata	aatataaaat	15840
gaaaaaatac	tgatatcttg	cattttccct	aatatgttga	aagtgcacag	aatccttggg	15900
gtcttttgta	taaactgttt	ttatatggtt	cctgtagaag	acagctgagg	caccaaacac	15960
acacacaaaa	caaacagctt	gcttggtgat	gataacattc	gtgcaaggga	gttctctctt	16020
gcataggagt	cccaggttac	cctaatgcct	tcccacatgg	tcaaacacat	ggagctttca	16080
tatttacaca	cagctccaga	attctgaagc	ctgcagttgt	ttatcagtgg	gatacaggga	16140
gaaagagtgg	tgtctatctt	actaactgtt	taatgacctg	gatcatgaat	actgatacag	16200
aataagaaag	cactggcctg	actgcagggg	aaacatggta	gatgcctaaa	ggaggctttt	16260
ccctgcccca	cactgtttat	tttaaactat	cattatcacc	tgaaaggagc	ttttcacttt	16320
gaacttaaaa	tagtagcttt	taaccctgac	aagcaagtag	gcactttagt	attcaagaac	16380
tgaaggtgac	aagccctgag	gagtgttact	ctctttcata	accaagctga	ctcaaactct	16440
tttagaagct	agtgtagtaa	cttaaccatc	tctaataatg	ttgctgcatg	ccttcataga	16500
aacagttgga	gcaagagctg	cattttcttt	tttttaagtg	tttattattt	acattttatt	16560
tttgaaaaca	tgccattcct	attacatata	gaaatacttc	ccaaaatcac	tgtttgtata	16620
gaactatttt	gcttaacatt	aggattctat	tgaagagcct	atatctgcaa	taatacgggg	16680
agaaaatccc	cttttgtgtg	atagattaat	gataaagaga	aagaaaaggt	gagaagtaat	16740
tttgggaaat	atgcaatgat	aaactagtgg	tatttattga	actaaacacc	agcagctgtg	16800
cttagcatgg	ataattgcct	aaaaggatga	gaaaaaaaag	taaaaatcag	gagactataa	16860
atttttcagţ	gaagaataaa	ttttctgtca	caaattatga	acattttaaa	tatgtatttt	16920
aaacttttc	ctacttgtaa	caaattatca	gactttttaa	tctacctttt	ttgagctttt	16980
catctttttc	cctgaattat	agatttaatt	ctgtgtatgt	atgtgtgtgt	ttgaatatat	17040
ttttatattt	tagatctaga	tttgtaaact	agagctgttt	ctaactgctt	ataagacatt	17100
gccacctgga	ttgccaccac	tttcactcca	gtatttcaat	aaacacttca	tcaaaaacat	17160
agtttatttt	caaacataga	atcatggatt	gctacaagct	gaaaggactt	tagagaetea	17220
gtaaccccat	tccttgcatt	tacagatgag	aaaatggagg	catgggaaag	taaagtcagt	17280
tgcctcaaat	agcgtaacaa	gctatgtata	tttctaataa	tagctactat	tgattaagtt	17340
cttatgttgg	gttaagtacc	atgctaagca	ctttccaaag	attatctaat	tcttatgtca	17400
tctatatttt	tgttggtgct	attactctcc	tcactttact	aaggaagaaa	ccaagacatg	17460
gggttaaata	acttccctat	aaattttgaa	ttatctttgg	catcatctcc	ctatttgcaa	17520
atctccattg	tctctttgtt	cgtaatcaat	gtaaatcaac	tcttaaacag	ttggatgcca	17580

acaagcagtc	tggtgtttgg	agctcgaaag	tttcgagaga	gagagagaga	gagagagaga	17640
gagagagaga	gagagagaga	gagtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgttcca	17700
gctttgttga	ggtataattg	acaagtaaac	agtccacaaa	actgtacaca	tttaagagat	17760
acagtgtgat	gttttaatat	acattgtgaa	gtgattatta	ctatcaggct	aattcacatg	17820
tccatcacct	ctcagtcatt	ttttgtgttt	acggtgagaa	cacttaagag	ctactcaaat	17880
gtagtcaagg	ataccataca	gtactaactg	tagtcaccat	gctgtacatt	agatctccag	17940
aatgtattaa	atattcatct	ggcataactg	aaactgtgta	tcctttgaca	aacctatttc	18000
ccctactacc	cagcccatgg	caaccaccat	gttactctct	gcgtttatga	gttcgacttc	18060
tttagattcc	acatataagt	gagatcatgc	aataggaaga	tctaatttag	catcctgact	18120
ttccttttta	ttagctgtgt	atgtcatatt	caggttgcct	tagcatttgt	gaatctgctt	18180
ctctacctgt	aaaatgagaa	caactaataa	ttcttatctc	atggattact	gagaggatca	18240
gatgaagtaa	cataaataaa	acatccagca	tgttacttgg	caaaattgta	gtgattgaat	18300
aaatatttgt	ttattcttca	agcatgtgtt	gagcatctat	gtatcaggca	agaagagagc	18360
catcatcttt	acccttctgg	aatatacagg	ctcataggaa	ataatcaatg	ctttgatctt	18420
tttttaaagc	ataatgagat	gaaaattata	ggactcatag	actggtcagt	tgaggaattt	18480
cccaggatgc	ttccagcctc	tgctcaaaag	gtgtgaattc	ccagttgcct	gaataggcgc	18540
cagagttggc	atagctttct	cagtattggg	acctgacagg	gagattgcac	aagtgtaaca	18600
gcacagcctc	tgaagattgg	ctcaaggggg	aagagatgaa	ggattacttc	catccctttt	18660
attgtttcaa	tcaagatata	tattatgagc	tcatagtacc	atcctttcat	gatcatcctt	18720
tattgtcttt	attagataca	atgaaaagat	acaaatttgt	ccatagaaat	attaaatgat	18780
agcaggcatg	atttaaaaag	tactaaggac	tatagatatt	actgttttc	ctctattttg	18840
tatcatattt	tcaggaagaa	gagacaacat	tttggcatac	cttgcttaaa	gatagatgat	18900
agccgggtgt	ggtggctcag	acctgtaatt	ccagcacttt	gggaggccga	ggcgggcaga	18960
tcacctgagg	tcaggagttt	gaaaccaacc	tggccaacgt	agagaaaccc	cgtctgtacc	19020
aaaaaataca	aaaattagcc	aggcgtggtg	gtgggcgcct	gtaattccag	ccactcagga	19080
gactgaggca	cgagaatcac	ttgaacccag	gaggcagagg	ttgcagtgag	ctgagatcgt	19140
gccattgcac	tccagcctgg	gtgacagagg	gagacttcgt	ctcccaaaaa	ataaaaataa	19200
aaaataattg	tcttggtgtg	ctaatcagga	gcttcctgtg	agagtggaaa	ttccttacat	19260
ggcagtgtca	tgaaatttta	ggcccatgtg	aaagatgttt	ttgagtgtct	caaaatagtt	19320
aacggtttaa	aaatacatta	tttatgtgtc	agaaactgct	ttcattgaaa	ttgaagtttc	19380
tttgagaact	aggatcatat	catgtatatc	tattgaattt	cccacaacaa	ttatcacgca	19440
agcaaatgaa	tagcagaccc	tcaataacac	ttactgatga	ttattgccat	gtataagttg	19500

ggatactctt	gagtaccttt	ctaagtctgc	atttagggaa	atacagaaca	caaaatgaaa	19560
tgtttgattg	gttgcttagt	ttccacagtg	acttttcaaa	atgtatagga	gcatggtaac	19620
aaaactattt	taaatactac	aatcttaagt	atgcctttat	tattcttacc	cacaataatg	19680
cattgcttta	aaaaattgtt	tatcagtgtc	agaccatacc	tttctgagtc	tctactatgt	19740
aagatgtgaa	agttaatatt	cttcaattcc	agctactttt	cttttcctgc	cttctgtcaa	19800
ctcctgtatt	ccatatcatt	acttcttatt	gctaaattta	taatatttat	attctggttt	19860
gcatctatag	ttaattctct	tgtgcttcat	ttctcagtgc	taattgaaaa	agaaaacaca	19920
tcacttacaa	tgccatgatt	gtaataaata	aaattcactg	taacacctag	cagtatggtt	19980
gaacatgtag	aaaaggaaaa	agtgatcctg	tgacactaaa	atttagcttg	ttctaaggat	20040
gctactttaa	gcattagggt	aaaatggatt	cccttttgct	aaattctttc	agttcctcaa	20100
aattatgcca	catttttgtt	tctttcacat	ttggacttag	attttcctgt	aagcattcaa	20160
tttttcttga	aaattttaat	tgcattttt	tattcttgtt	gacagaagaa	acattttcat	20220
catatcacaa	tttttttca	gatttcttaa	ttataccatt	tgatgaatga	aatacacttt	20280
cttcttgaag	tctgattttt	ctgttctaat	ttagagtttc	ttctcatttt	tctcctggct	20340
atgtctatta	ttgctttagt	ctcatgtctt	tgtatttgat	tattattttt	ctttttacta	20400
ctgtttttct	tcttacagaa	aaaaaaagaa	aaaaaaacag	gggtttttac	aaatattgtg	20460
ctgagtcttt	acatgtccaa	aatgccttat	atttttcctt	atagtacatt	cataaattat	20520
tgtgattaga	accataaatt	caaagtaatt	ttctctcaga	gcttgggaaa	cattggtacg	20580
ttgttaccct	tcatctagga	ttgcttatga	gatagatatc	tgatgccagt	ctgattctgt	20640
cttttttaga	taacttttt	ccctattcat	atgtttatta	ggatctttat	cttttcactt	20700
ctgaaattcc	tccagatatg	gctctgttaa	aatgtattct	tctcagcact	tgatgattct	20760
gtacaatctg	gaaacaactg	cctttattta	gcttaaggta	ctttcttcc	attgtacctt	20820
tgattatttc	ttccttcttt	ttttcaccct	atctttatga	aactcatgtt	aatggtgcat	20880
tagaacttgt	gaactgattt	ttcttattta	ttaaattcca	tcacatattt	ttcatctgtt	20940
tatctctgta	tattttattţ	tctcaacttt	tgatatttt	gttaattgaa	atttaatttc	21000
caagaagtcc	attttctatt	ctctgattga	ttctttttaa	tggtagccta	tttcgtggct	21060
caaatcatat	aaaatgtatt	aaattttgtg	ggaaaattag	gcaaacaaag	aaaattaaat	21120
tttacctaac	tatatctaaa	aacaatacaa	ctaaacttaa	gaaaagtgcg	tatatgtgta	21180
cacatataca	tatgcgtgta	tatgtgtaca	catatgctac	atatacatgt	atatgtagta	21240
tatgtacatg	tagtatatgt	gtgtatgtat	gtatatacac	atgtagtata	tctatataca	21300
tgtatatgta	caaagaaaaa	atatgtatat	aatagtttca	ctgtacttta	tttgctcccc	21360
ttttaaaaat	aacagtgcta	gagttcatga	ctgactaatt	ttcagaactt	ggtgtgtatg	21420

gttgtttatt	aagccctcaa	taataatgct	ttagtattac	agtgcccagg	catagtcagt	21480
gactgtgcta	atagtcctag	cagtagcagt	tcatcctgta	cagatctaag	gtgtaactat	21540
tttcatttct	gggcccttgg	agattctttg	gttgtcttca	tatcttttac	ctatcttgct	21600
gttcaataac	aggtaataga	aaaggagata	aaacttaaat	gtcatcattt	cccactgctt	21660
aacagtcttt	aaaaataaat	gtgaaacccg	taaggacgta	atcttgccta	gctttaagga	2172.0
atgaaggaaa	cactagaaac	aacagagaga	aaaggaataa	ctgatcctcc	aacatgttct	21780
gttgactcta	cctgtaaagt	atattcagga	tctgactact	tcacaccatt	tcaccaattt	21840
ccatctccat	tcaaaccacc	ttcatgtgtt	actttgaaaa	gtgcagtttc	cctgtcatgg	21900
gtttccctgt	ttctagcttt	gctccccctt	cttacctcac	cgtgggtttt	tacccaaaca	21960
aaaattcaag	tgatcattta	aaaattaagt	caggtcatgc	ctctcctctg	cttaaaacca	22020
ttaatgggtc	tctgtttcac	tcagaatata	agccaaagcc	cttttcatga	cccaccagtc	22080
ctcaagtgaa	ttggctgcta	tttgtgtttc	tgattccatt	tcttgccact	attctccctc	22140
attctattct	aatttccttg	gttttcttgc	tgtcctggca	acaagaagag	catccttttt	22200
cctccaggcc	tttgcacttg	ctgttccctc	ttcctggagc	acccttcctt	cagagagcca	22260
caggtattgt	ttctatcttt	ccttctaatc	tctccttgag	tgttactttt	tcagagataa	22320
attccctaac	cattctatct	aacagaactc	tgactattga	ccttgcttta	ttttctctct	22380
tttttttaa	aattttattt	ttttattccc	ataggttatt	ggggaacagg	tggtatttgg	22440
ttacatgggt	aagttcttta	gtggtgattt	gtgagatctt	ggtgcaccta	tcacccgagc	22500
agtatacact	tcaccctatt	cgtagtcttt	tattcctcac	ccccttccca	cccttttccc	22560
ctgagtccct	agagtccatt	gtgtcattct	tatgcctttg	catcctcata	gcgtagctcc	22620
cacttatgag	tgagaacata	tgatgtttgg	ttttccatcc	ctgagttact	tcacttagaa	22680
taatagtctc	cagtcttatc	caggtcactg	caaatgccat	taattcattc	ctttttatgg	22740
ctgagtagta	ttccatctta	taaatatacc	acagtttctt	taactactca	ccgattgacg	22800
agcatttggg	ttggttccac	atttttgcaa	ttgcaaattg	tgctgctata	aatgtgtgtg	22860
caagtatctt	tttcatataa	tgacttttt	cctctgggta	gatacccagt	agtgggattg	22920
ctggatcaaa	tggtagttgt	acttttagtt	atttaaggaa	tetecacact	gttttccata	22980
gtggctgtac	tagtttacat	teceaceage	agtgtagaag	tgttctctgt	tcaccatatc	23040
catgccaacg	tctactattt	tttgattttt	tattgccgtt	cttgcaggag	taaagtattg	23100
cattgtggtt	ttgatttgca	tttccctgat	cattagtgat	attgaacatt	ttctcatatg	23160
tttgttggtc	atttgtatat	cttcttttta	aaattgtcta	ttcatgtcct	tagcccactt	23220
tttgatagga	ttgtttgttt	ttttccttgc	taatttgttg	gagttccttg	tagattctag	23280
atattagtcc	tttgccggat	gcatagattg	tgaagatttt	ctcccactct	gtgggttgtc	23340

tgtttacgct	gctgactgtt	cctattgctg	tgcagaggct	cttttgttta	attaagtctc	23400
acctatttat	ctttgttttt	gttgcatttg	cttttgggtt	cttggtcatg	aagtctttac	23460
ctaagccaat	gtctagaagg	gtťtttctga	tgttatcttc	tagaattttt	atagtttcag	23520
cacgtagatt	taagtttttg	atccatcttg	agttgatttt	tatataaggt	gagagatgag	23580
gatctagttt	cattcttcta	tatgtggctt	accagctatc	ccagcaccat	ttgttgaata	23640
gggtgtcctt	tacctactaa	tttatgtttt	tgtttgcttt	gtcaaaggtc	agttggctgt	23700
aagtatgtgg	gtttctttct	tggttctcta	tcccccatt	ggtctctgta	cctattttta	23760
taccagtacc	atgctgtttt	ggtgtctatg	gccttctagt	ataaagtcag	gtaatgtgat	23820
tctgcccaat	ttgttctttg	tgcttagttt	tgctttggct	ctgtgggttc	ttttttgttt	23880
tcatatgaat	tttaaaattg	tttttcctaa	ttctgtgaag	aatgatggtg	gtattttgat	23940
gggaattgca	tagtttatca	acccttggca	aagtgtttct	gcttttctta	aacaattttt	24000
attgtctgct	ttctccagta	gatgtgagtt	ctatgagatg	aggaacattg	tttgggtcac	24060
tgacatgtat	tgtcagcata	ccaaacagtg	gctagcacat	ggtgagcact	caataaatat	24120
ttggtgaaag	ttgcagtgaa	tgaaaatggt	ttctaaaatg	gcaatgacta	tagtcccagc	24180
tactctgaag	gctgaggcag	gaagattgcc	tgagtctcaa	aagtttgggg	ttgtagtgca	24240
ctatgattgt	gcctgtgaat	agctgctgca	ttgtagcctg	gtcaacacag	tgagaaccca	24300
tctctttaaa	aaaatggcaa	tgaaataatc	ttatttttac	tgcttttctc	tttaaggctg	24360
ccagtgttgt	cttttctctg	ctgatttatc	ctcattggaa	attgaagata	gataaaatat	24420
ccattgatta	tttataggtg	aaattaggct	tttggatcca	tgaggaatag	ctgagacaat	24480
cttccaggag	cttctggagc	cgaggaaaca	ttggtcacta	aaataccatt	tatattggca	24540
actgtactct	tttccgatgc	tagtgtttca	attacattgt	gcatttaaaa	ggctgttgcg	24600
gctacctcaa	aatataaaca	tgatgtgcga	cactacttgt	tagttttgaa	caactgattt	24660
ataaatagac	ttagggtgct	caageeteet	gcaagatgag	cactgcctgt	gttcttcctt	24720
ctgcttcctt	tatttcagct	gtgtgtctac	caacttcctc	ctccttctac	actaggagaa	24780
attgcactgt	ttccaatatc	tttaacatct	gctatcatga	tgagaaaata	tcttttctgg	24840
atttgaaata	ccttcttcat	tcttttttt	taaatggcgg	aaataaattc	atagtgtttt	24900
gagtgcagtt	ttcttcctgc	tgttattgct	ggctcaaaat	ccaggagcat	ttcagtgtta	24960
tttctgagct	ccatgatggg	agttccattt	ctgttttatt	caaagtgtta	tctccagtgt	25020
ctagcacagt	gcctggcaca	ttataagcct	ataatgttta	tctagtggat	gtagaccaat	25080
actattaaag	aattatcatt	gcaaagattt	agtggcatga	aaaaatgata	atgattaatg	25140
ctctactcca	tgctaaggaa	atgaagtgca	aatcgttctt	tatttttctt	ccaagtatag	25200
agaactttct	gaaattaaag	aagcattgat	taataagttt	taatatatgt	tattgatcat	25260

aataatatgt	aatcatataa	ccaaataaga	taacacaggc	catcttttgt	tctttaaaaa	25320
atgacaggaa	gattagaata	agagaaaaaa	ttagaggtca	aaacagtttt	cttcaaacca	25380
gtagtgtaac	ttactgagat	atcttctgta	atccttaaat	tctgtattga	tgctaccaag	25440
atgcaactct	tgagctacaa	ctgcctcttg	ataaaggatg	ctggtccctg	ctgccagtgt	25500
aatgtttgct	catttacagt	ggaatgtaca	atatagtacc	tgggatggtg	aagaaggtga	25560
agcaacaaat	ttaaaatagc	tgtgggtaaa	cctacagaaa	cagactattc	tctttcttcc	25620
agattgcatt	attcattttc	atatgcctgc	ctttatctgc	tttggaagcc	tatttcctaa	25680
tcttccaaga	tttatcatca	ccttcatatg	tccatagcat	gcatttctca	gacaggtaag	25740
atagaattgg	tatatatttg	gtatagcaaa	aagtcaaggt	tgtctttaga	ttatatcctt	25800
ggtttttcat	gtggtactgg	ggagaaagcc	tactgtttct	tcatctataa	aatgaaggac	25860
ctgggcaaga	taacattctg	tgaaatttca	ctgaactttg	agctcagcaa	agtagggatg	25920
cgtgtgtgtg	tgtctatttg	caatgcatca	cagaccttaa	ataaatacag	ttgacccttg	25980
aataacatgg	aggttaagag	caccaacccc	ctgcactgtc	aaaaatccac	atgtaatttt	26040
tgactcccca	aaaacttaac	tactaatagc	ctgctgttgt	ctggaggccc	tgctgataac	26100
acacacagtt	gactaacaca	tattttctat	gatatgtatt	gtgtactata	ttcttacaat	26160
aaactaagct	agagaaaaga	aactgttatt	aagaaaatcg	taaggtaaag	aaaatatatt	26220
tactatttat	taaatggaag	tagatcatca	taaagatctt	catcctttgt	tgtcttcacc	26280
ttgagtatgc	tgaagaagag	gaggaaaagg	atgggttggt	cttgctgttc	caggggtggc	26340
agaagtggaa	gaaaattcac	atataagcag	tccatgcagt	tcaaacctgt	attttaaggt	26400
caacggtatt	tgttacattg	cattttgtaa	gtgaccttgt	taatttttt	caatgaaaaa	26460
aatagtgttc	cattcaaatg	cctgtatgtt	tatgagaaac	atttcagaac	tatgaaagtt	26520
gaattcaagg	tttcttgcag	attgtttgta	tactttctgt	aatgtttgtc	atataatgag	26580
aatactaatg	gtcttacaac	ttgaaactga	ttaactgatt	aactctttaa	gcaacttaaa	26640
aagaaaatct	ttcagtgagg	aaagagtatt	catcagaagt	attctagtag	atgacatatt	26700
tttggtaatg	aaattgatat	gggcaattaa	cagctttttc	caagttggct	atgctgctac	26760
tctcttatta	tacaatgata	ctatttttca	gagcagaaag	caaattagtt	ttatttttat	26820
aaaccaaatt	ttaaatatcc	ctttagagaa	tagaaaatat	gaaaaagtat	ttgcttctca	26880
gacctctcaa	caatataaat	tttcttctta	agaggaaatt	tattcttgca	tgccaacaca	26940
aaggataaaa	agtttaccta	tccttagttt	ctaagaggaa	aatgtgcata	aaatttccat	27000
ctgctgtgtg	ccagttacca	aaacgataag	ttccaactca	atcttggttg	ggtgtggtgg	27060
ctcacgcctg	tgatcccggc	actttgggag	gccgaggtgg	gcagatcacg	agctcaggag	27120
tttgagacca	gcctggccaa	tatggtgaaa	acccgtctct	actaaaaata	caaaaaaaa	27180

aaaaaacaaa	actagcccgg	catggtggtg	tgctcccgta	gtcccagcta	cttgggaggc	27240
tgaggcagga	gaatcgattg	aacccaggag	gtggaggttg	cagtgagcca	agattgcacc	27300
actgcactcc	agcctgggca	aaagagggag	actctctctc	aaacaaacaa	aaaagactca	27360
atcttactaa	aaaactgcag	agaagaatga	gtcattttag	tcaataaagg	aaataaagaa	27420
attctagttt	tgaaaatgac	ataatttgct	acaagaatgc	aaaggtgatg	acatgaggaa	27480
aaaaggggtt	tgctgatttg	ttttctctac	tactcagcaa	atgcaggcca	ggaacccatt	27540
tattcaaata	tttattacat	ggtaaattaa	aacatttata	aaattagget	catattctta	27600
gaattcctgt	taacaaagtg	acatataaac	aagattataa	tctaatggag	attaatattg	27660
gttgagaaaa	atcttgagac	ttctttaaga	cttcagttta	ataaaatatt	gacttaggta	27720
gatatatgtg	aggaaatata	tattttaccc	atgcatgcaa	aaatgatgta	tgtatttctt	27780
aaaagagtag	gtagcaatga	cttcaaagga	ccatagctgt	ccctatcaac	atatatatta	27840
acaaaacaat	tagaaacatg	agcttagtat	gctaattata	tttctaccca	aagcctcaat	27900
ttgttctata	gctatactgt	tcatatataa	gtaaaatttt	aggggtatca	gagagagtta	27960
gaaaagagca	aatacatgta	tgaatttgat	aagcctatcc	cttaatttga	tagatcttaa	28020
aagatatttt	atcactgcat	tcttctaaag	aaatgtattt	gtacattgca	aaacaaccct	28080
ttttgagaag	tagactatga	tcacagattt	tcttgccact	agtatttcct	aagatttatt	28140
tggaatagaa	gatcgatatt	tttctgggat	gacatatggt	taaaaagtaa	aaaacaaaac	28200
aaaacaaaaa	actctttaaa	aacacaacaa	gtaaaaagct	gaatgaattg	gaaaattaac	28260
gaatcttctt	agatctgtca	gaaaaatgag	attatagggc	aaaccactgc	atcaaatatt	28320
agagaagcag	acaggtagat	agaaagaatc	acaacttagt	ggggcaaaaa	cctacaagga	28380
aaatttttgt	gggaaccggt	gccaggtagg	aaaacatgaa	ctgtaattga	aaaattgttc	28440
agtgtgggcg	gttgttcagt	gtggcaagtc	tgagggttaa	aaactccagg	aggactcact	28500
tacggaaggg	cctgtacttt	tgtgagttta	acctccagga	gtgttcacag	tgactactgg	28560
agaaaattcc	ctaaggggag	aagaaaagga	accatcttga	aatatgtcag	agcattttgt	28620
tggactcaag	cctgctctca	agtgaaacta	ttttaccaga	gcctaaactt	ttgggatttt	28680
ataagagtgt	aacctcccaa	agggaaggga	aatacctaag	ttcagccccc	ttttagcttt	28740
ccacataggg	aaaggaaaat	atataactct	ggacaactca	aaccatcctg	tccacgttag	28800
ggggcctagg	ggaactgaga	aaactggtga	agttcatagt	ccatgggtac	agtttcacca	28860
aagagggaga	ccaaattata	aggctacaga	atgcttccct	ttcccacacc	ttttactatc	28920
atattactaa	aagcctattt	gcagcagttt	cttttactga	gtatatcatg	tctgtcattc	28980
aaccaaaaaa	ttataaggca	tgctaaaagg	caggaaatgc	agtttgaaga	cactgaataa	29040
gcatcagaag	cagagtcaaa	tatggcagtg	acattggaat	tatcagacca	gaaactttat	29100

aaaaaactat ggttaatatg	gtgagggatt	aaaaaaatga	catacaagaa	cagatggata	29160
atgtaaatat agagacggaa	attttaggaa	agaaccaaag	agaaatgcca	agtatcaagc	29220
atagtgtaca gaaatgatta	aaatgtcttt	gataggctca	taagtagatt	gaacatagcc	29280
gaggaaaaaa tctttgaagt	taaggatatg	ataataggaa	cttcaaaact	aaaatgcaaa	29340
gagaaaaaag actgtgaaaa	aaacagaaga	gattattcaa	gaactgcagg	agaactacaa	29400
aaggtataat gtacgtgcaa	tgggcatact	agaaaaagaa	agaaaggatt	agatgcaata	29460
tttgaagaaa tagtgtgtga	aaatctcccc	caattaatgt	cagacaccaa	actacttctc	29520
cagagagete aaagaacace	aagcaggata	aatgtcccaa	aactactcat	gggcatatta	29580
tattcaaact tcagaaaatc	aaagattaaa	aaaatatcga	aagaatccag	aaggaaaaaa	29640
cacctataga ggagcaaaaa	taataaattt	tatctgacat	atcctcataa	accatacaaa	29700
taagagagta gagtgagaca	tttaagatgt	tgaaagaaaa	atccggcagt	gtacgattct	29760
ggaccttgca aaattgtcct	tcagaagtta	agaaataaag	tctgtcttaa	agaaacaaaa	29820
atttcaggaa tttgttgcca	gtggaccacc	cttgcaaaaa	atgtttaaag	ttctttagag	29880
agaggtaaaa tgatacaggt	tagaaactca	gatccacata	aggaaaataa	aattagggat	29940
atagtagtat tccccaactt	gataaagaaa	atacacaaaa	aacctacagt	ttacatcata	30000
cttaattttt agaaactcaa	agctttcctg	ctaagatcaa	gaacaagaca	aaggtgtctc	30060
ctcttaccac tttgtttcct	actggaagtg	ctacctaatg	caataagaca	aaggaaagaa	30120
aatgaaaagc atacagattc	cggaggaaga	aatcaaactg	tctttgttca	cggatgacag	30180
ttgtttatat ggaatatcca	aaggatcaga	aaaaagaaaa	ctggaactaa	taaatgatta	30240
ttgtaaggtt acagaataca	aacttaatat	aaagaaagcc	aatcactttc	ctgtatacca	30300
gcaataäaça agtgtaattt	gaattaaaaa	cacattacca	tttacattag	caccccaaga	30360
aatgaaatac ttttgtataa	atctaacaga	atatgtacat	gatctatatg	aagaaaacta	30420
caaaagtgta atgaaaaata	ccagtgaact	aaataatgaa	gagatgttac	atgttcattg	30480
tcaagatgtc agttcttccc	aacttgatct	atagattcag	tgcaatgcca	ttaaaaaaca	30540
cagcacgata ttttatggat	atcaacaaaa	ggattctaaa	gtttatatgg	agaggcaaaa	30600
gagcagaata gccaactcag	tatttgagga	gaacaacaaa	gtcagaggac	tgacactacc	30660
tggctttaaa gcttactata	aagctcagat	aatcaatgta	gtgggtactg	gtgaaagaat	30720
attcaaatag accaatggaa	tagaataaag	agcccaaaca	aacccatgta	aatataatca	30780
aatgatcttt gacaagggag	caaaggcaat	acaatggagc	aaagatggtc	ttttcaacaa	30840
ataatgctgg aaaaactaca	cattaacata	caacaacaaa	aatttttaa	atccaaattg	30900
agtgtaaaca cagatcttat	accctttgca	aaaattaact	tgaatcatag	acctaaatgt	30960
aaaatgcaga actataaaac	tcccagaaga	taacacagga	aaaatcctag	atgactttgg	31020

tatggcagtg	gcattttta	gatacagctc	caaaggcacg	atacatgaag	gaaatgattg	31080
acaagctgga	cttaactaaa	atttaaaact	tctgctctgt	gaaagacaat	attaagagaa	31140
tgagaagaca	agccacagat	ggaaaaatta	tttgcaaaag	atacttctca	taaaggacta	31200
ttgttcacaa	tgtgcaaaca	actcttacaa	ctcaacagtt	tgaaaatgaa	caactcaact	31260
taaaaaatga	gcaaaaaacc	tgaacagaca	actcaccaaa	gaagatacac	aagtgtcaag	31320
aaagcatagg	aaaagatgtt	aaacatcata	gtcattaggg	tattgaaaat	taaaacaaca	31380
atgagatacc	gctacatacc	tgttagaatg	gctgaagtça	gaacactgat	gaaaccaagt	31440
gctggtgaga	atgtggagca	acaggaacct	tcattcattg	ctggtaagaa	ttcaaaatgg	31500
catagtcact	ttggaagaca	gtttggcagt	ttcttacaaa	ataaacatac	tcttcccata	31560
tgattcagca	atagcgctcc	ttggtatgga	cttgaaaact	tatgtcctgg	ccgggcacag	31620
tagctcacgc	ctgtaattgc	agcactttgg	gaggcccagg	caggtggatc	atttgaggtc	31680
aggagttcaa	gaccagcctg	gtgaaatccc	atggtgaaac	cccagctcta	ctaaagatac	31740
aaaaaagtag	ctgggtgtgg	cagtgtgcgc	ctgtaatctc	agctactagg	gaggctgagg	31800
caggagaatc	acttgagccc	aggaggcgga	ggttgcagtg	agctgagatc	atgccattgc	31860
actccagcct	gagtgacaga	gcaaaactcc	atctcaaaaa	aaaaagcaaa	aacaaaaaca	31920
aacaaacaaa	acttatctcc	acataaaaac	ctgcacacat	tgtttaacag	ctttacataa	31980
ttgccaaaac	ttgggtgcaa	tcaagatatc	ctttaatatt	tgagtggata	aactgtggta	32040
catccagatg	taagaatatt	attcagcact	aagaaatgag	ctatcacatc	ataaaacgac	32100
atggatgaaa	cttaaatgca	tattataaag	tgaaagaagc	taatccgaaa	aggctaaata	32160
ctgtatgatt	ccaactatat	gacattccgg	aaaagccaaa	attatggaga	cagtaaaaag	32220
agcagtgttt	tccagaggga	ggaatgtata	ggcaaatttt	tagtgcagtg	aaatgaatct	32280
atgtaatact	atagtggtgg	atccatgtca	ttatacattt	gtccaaacac	gtaggatgta	32340
accaccaata	gtgaacccta	atgtaaacta	tggggtttgg	gtatcaaaat	gcatcaatgt	32400
aggtttatca	gttgtaacaa	atataccact	ctggtatggg	atgttgataa	tggggaaggt	32460
tgtgggtctg	tggggacagg	ggtatatggg	aactttctac	tgttttactg	tgaatcaatt	32520
ttactgtaaa	gtttattaat	gttaaaaaaat	ttaatgcaca	tgtaccctaa	aacttaaagt	32580
ataataataa	taaaataaat	ttaggcaatc	tgaaaaaatg	ttaataaaaa	agaaaataaa	32640
ctagttgaat	gtatcagttc	attttcatac	tgctataaag	tactgcctga	gactgagtaa	32700
tttataaagg	aaagagattt	aattgactca	cagtttagca	tggctgggga	ggtctcagga	32760
aacttaacag	tcatggcagg	tgacttcaca	aagtggcagg	aaggagaaat	gaacgcagaa	32820
gcaactacca	aacacttata	aaaccatcag	atctcatgag	aactcactcc	ctatgatgag	32880
aacagcatgg	gggcaactgc	ccccatgatc	caattacttc	cacctggtct	ctgccttgac	32940

acatgggtat tatggagatt	atggggatta	taattcaaga	tgagatttgg	gtggggacac	33000
aaagcctaac catatcagtg	ataaaactat	gtcttttctt	ttatggggtg	ctatagtgtt	33060
tcatttcaag ttgtcttttt	gacctccatt	ttccaatttc	tggttaggaa	aaataacttt	33120
gtctcctcct taattgaccc	acaaccttgt	ttgcaatgaa	gaatcaacac	aaatctttca	33180
ttaaaagaaa taggggaggt	gatgggggat	atccatgagt	gtccatgggc	ataattcagt	33240
tgccttcatt caatgccaat	gatactgcaa	agcctacaag	gcaaattcat	gtacctacag	33300
acagactcca tccttttct	caaactattc	aagataaaaa	atcttgtttc	attttatgtg	33360
aggatttttt tcaccatcta	tcctcaaaaa	atgaaaaata	tcctcttcat	ttgggaaatg	33420
agtgcttata atagaaagta	atttgtagtc	agctgttaca	cttagatgat	ttgtgtcacc	33480
tctgacctgc tttctgataa	tgcatgactt	cattcatggc	tctctaggtg	acctgtgtac	33540
cctgacctgg cataaaccac	tagagtatta	agtcatttca	gtggcacatg	tttgagggaa	33600
gattgacatc ccactggaag	actatctaca	gtgagatcct	ctaaagcagc	tgcattccta	33660
gtgaggcatg attaagttta	tcccactatt	aggttctgga	gtattacttg	tcatgcccaa	33720
gaggaaagtt tttctagcat	gcagagtatc	tggtttttaa	tggctactga	gctgaaataa	33780
aatgtgccta ctaagggttg	ttcatttgtc	tgtctccctt	ctttcactgt	tttttttctt	33840
ggaggttaca gtagttatgc	ctttctggtc	agctggctgt	tgacctatca	tagaaatgac	33900
actttcacat cttcaagtgt	aaggaattag	atgttccagc	cttcactttg	tttctcatcc	33960
aaaatcaatg acaaaacttt	cagtattgat	ttctcatggc	ctatgaacct	gagtcaactt	34020
ggcataaagg acttttcaga	caagcttctc	taaatgcaga	gtcagtggct	tctttttgcc	34080
aaactccact ttgctcagtg	ataacattaa	aatggtgatt	tgattcattc	ctagtctaaa	34140
aatacttcct catattccaa	aatctcagtc	attaatacat	ggaggaaaat	acaaattatt	34200
acatgcctgt gcttctcggc	tgttgtagat	agataaaata	tatacaattg	tgttctataa	34260
ttattgagtt cttttaagtt	ttatcttttt	ttgttttacc	aggaagcaaa	attatgttta	34320
tttcagagct tatttactgc	atttagaatc	tcatgacact	taaaaaacct	ttctaaaacg	34380
taaatattct ccatgatctc	catggtcaca	aacagtattt	cacgttctaa	ttgatattgc	34440
cattttatca ttttttttt	tttcttggag	acagteteae	tctgttgccc	aggctgggat	34500
gcagaagcac gatcttgcct	cactgcaacc	tccacctcct	gagttcaagc	gattctcctg	34560
cctcagcctg ccgggtagct	agaattacag	gcatgtgcca	ccacacctgg	ctaattctgt	34620
atttttagta gagacagggt	ttcacgatgt	tggccagact	ggtcttgaac	tcctgacctc	34680
aggtgateca eccacegeag	cctcccaaag	tgctggaatt	acaggcgtga	ggcactgcat	34740
ctggcccttt tatctttctt	ttaactcaaa	tcctcaaata	tatccctcca	tgtgaagttg	34800
ccttccctaa ttatgtactg	tcctagttta	atcttcattc	cttgtttgcc	tctataaaac	34860

caagtttaaa aatagtctct	gattctgtaa	atcatcactc	ttatgctcat	ttatatttct	34920
atctagaata ttttaaatcc	tttgtaacaa	agtttctact	atgcagtcta	cctttctcag	34980
ctacgatcta tatactcctt	ggccatgtct	tttgttattg	tgtgtgtttg	tctttgtgtg	35040
tgtctgtata gtagtggttt	gtaaattctc	catttagtca	caatatgctt	tttgaggatt	35100
ttccttttcc tgggaatttc	ttgatgattt	ttattttgtc	atgtgatgaa	gaatgtatgt	35160
caaagcacca ctgcagaaat	agtgcttttc	tatttacttg	cactetteca	tcttagaaga	35220
gctggtgata gacaaccgac	tcttctttta	tcttggtttc	tacaacacag	aggttgctaa	35280
gcgactttaa tcccttttaa	cacaggacaa	tcaacaacaa	attccttctt	tctttagatt	35340
cagatatttc acttagaaaa	tctagcaaat	aaaaaatggt	ttaaaacttc	tttaaaatgt	35400
gtaattctgt acaatctcct	acatctgtaa	cccctgcccc	aaatattttt	tacttatgct	35460
atttcttgag cattatgata	tgcttattca	taggcaatca	acttgtaagt	agcaatagtg	35520
tagccccttc taggaaatcg	aagatgtgaa	aatccagttt	aatgtgataa	tgagttactt	35580
tgatgaaaaa tactatgtca	caatttgtta	taaaaatact	catttggatt	tctgattcac	35640
ttatattacc ctccaacctt	aagtatgatt	gaatttatag	ctttttatac	tactttcttt	35700
atttagggag gagtgtattt	aaattctgtt	atctcggtta	ttacttgaaa	gttcaacctc	35760
atactttcat ttttatataa	ttttaatatt	atgaaaatat	tttatgtaat	tttatgtata	35820
attcgaaaac atttttaaat	attgcatctt	taaattttta	tttcttttat	caaattttcc	35880
ctatcatttg ttctctggct	acaaccaaag	ttaatagtta	cattttttc	cagtgacaaa	35940
tggtaatttg caaagacttg	taacagttgc	ttaatacttt	tttatccctt	atttaagaat	36000
catgcaaaca accagagctg	ataggcagca	ggtgcacatg	agtgtggctg	tgctgatggt	36060
tactgaaaga tttccaaggt	agctagtaat	tctgctaccc	taagccacta	tagctccttc	36120
cccattactc cctgggtcta	cccaccatcc	tgcagctaga	ataataaatg	gcatgtaggt	36180
tcctctagga tcctcctcca	gcactatgtc	tcatgcctgg	acatatgagc	tgttaaatat	36240
tttgattatc actcctgtgt	ggtaagggag	acgtctactt	gtcgtaactt	gatgtttact	36300
aaactacttt taagattacc	ttatgataaa	agtagacact	tgcaattttg	cagaatgcat	36360
agtttgtttt taacaaacca	ggtaaacata	actgcagagt	tttcctatac	gttttgaaat	36420
ctttaaaaaa gtattttta	tttgcctttc	tattagaaat	agattagata	aaaatttcct	36480
tgtttcaatt tttagaatga	acattagaga	atattgttac	tgaaggaatt	tttttaaaaa	36540
tagtgactga tcaaatgtca	gcagctttat	actatagtgt	aaaatttat	tttgtagttt	36600
gccatcccat taagcattag	aatttttata	attgatcctt	tgatgtttat	attcatgata	36660
ttaatgtaat gtctttaaac	cttagctcat	ataggtcata	tgacttaaag	catccttaga	36720
tgaagatatt tgggctataa	ataatttatg	acataagtga	tttaaaaatt	cattctttcc	36780

atccattttg aagaaattgt	aaggtagggt	tcatgtatac	ctaatactta	tcccccaaa	36840
atacgaaaaa taaaatcatt	tttaaaatat	ctgggttaat	gctatagatt	ggaagcagtt	36900
tttaaaaagc acttaaagtc	taccagttta	ttgatcctca	atctgtggct	gttttaaatg	36960
gatgcaatta gcagttcagt	ctaagagaac	catggtagta	gactcattac	tecceagaaa	37020
ccattacatc attttgtaat	attaaattac	taaatataag	gaatagaata	tatattgtaa	37080
aaattgcttt ggaatcaata	ataagtattg	tggctatcaa	ttatagttat	atattacaat	37140
gtaagggata teetttata	aacttaatat	cacacaagta	gacttagaat	aattccatta	37200
atataatttt gcttgtgttt	ttatacctat	tcatttcaat	aactcttttt	cctatatata	37260
tttttatct caaattcgat	agtatctaaa	tcatggaatc	ataaaacctt	aaagctgggt	37320
tggaacagaa ataatacaat	ttaacatctt	ataggctctc	tagtcctcag	tttccctaag	37380
tgatcggctc aagatcatga	atttatggag	gattagagtc	agaattagaa	cccaagatta	37440
atttatactt tgttatctct	tctacagcct	acccccttag	tttgcctgtg	ggtttatgga	37500
agttacagga gagacattct	gagattcagc	taaaaaccta	gctcccaata	gaattattgc	37560
cctgtagtca gccgcgcaaa	tacaatcaca	aatacctgaa	gttccttgtg	tgaagaaaaa	37620
gaaaatgact attaaagcat	caaaatcaat	gcaagttacc	tttctttgcc	cctttcttcc	37680
cctttcactc ctttcttctc	ctatactact	tgaaatttct	agcggggatc	tctaaaatgc	37740
ctggatgtta ggaatggtaa	gtctattgta	gagaattata	ttttctattt	tagtggatga	37800
aaaataaacc atacccttaa	gaggcttttc	aaagttaaga	ttttgagcac	atccttcatt	37860
ggcccagtct ctgaccagtg	aggtcaagta	ttagccagtg	tcagaatgtc	gtgaaaagtt	37920
tgtgtttcag atgcagaatt	tttttttgca	ttttctgtgt	gatgtttata	gggtattttc	37980
ttctgaaatg ttttccatct	tggtttttaa	aaatatctat	tattttaaaa	aatattccct	38040
cataacttct ttttattttc	ggaaactata	taaattgatc	tgataatcta	tacacaatgc	38100
cttgtgaatt tatacctgta	cctctcatgt	tccagtgttt	ggttcttaaa	taatcacttt	38160
gtataatgga aatactatgt	taaattgttt	ataactggtg	gttgatattt	cagccttgtt	38220
tggctatcgt agttatataa	agactgttaa	ttagaaacaa	cctcatatgg	tgtatgcttg	38280
tttttatctt catggaattt	gttctgcaaa	cactgagttc	tttactggga	gtcaccactt	38340
tgtctatgtt aggaggagca	ggaagtgaat	acatttaagg	tctttaattt	tcttcttaaa	38400
actttgacta ctgtagtggt	tttttaaagc	attaacagga	gaatagccat	cactgccaag	38460
tagctgacat tctgaaatag	cacttccctt	taggcactgt	acagttggaa	tcatttactt	38520
gcagagaggt gtgtgtgtgt	gtgtgtgtat	ttatgtgtgt	actcatgtgt	ataagaatag	38580
gagaaacact ttgtgggcat	atcctgctga	ggtgagtaac	gtgctgatta	gtgaactcca	38640
gtctcatccc atttaaacct	ggaggagaac	cacatcaagc	acagaagcag	ccaaagcagc	38700

atttcaacag	gaaggaaaca	tctattactg	gggctttgaa	gaaacatgcc	atgaaggtgt	38760
actaatatca	caaagggaag	ggaaggacta	aattcagcat	gataaacaaa	gtcccttttt	38820
tgtaacggaa	gtgtttgatg	atgtttgatc	aatggtggat	ctatctcttg	aaaggaaaat	38880
gcatttaaac	cccaaatgga	ggattcttat	ataaggtgcc	tagcttgtaa	tgatatattc	38940
atgtttatag	gtagagtgac	tggtttttag	agaagaggtt	tttttttc	cttcattttt	39000
gaacgaaaac	ttgtctgtct	ctaggctttg	aaatgtagaa	ttatttacct	ttccccaaaa	39060
tgaaatgttt	cactgaatct	cctacaagct	tgtggaggcc	atgaagcatg	ttgaataaga	39120
gcacaggete	tggaggccct	gccacccaca	aagggtgtgc	taaggtaaac	aactgatagt	39180
attttgaaaa	ttagatgact	tagaatccat	tcaataaatt	ttagctattt	ttattgtctt	39240
ttttttctaa	atctatttgg	aaaatattgc	agataaagta	gataatacct	ttctaaaaca	39300
cagtgagacc	aggcgcagtg	gctcatgcct	gtaatcccag	cactttcgga	ggccgaggta	39360
tgcggatcac	gaggtcagga	gatcgagacc	atcctggcta	acacggtgaa	atcccgtctc	39420
tactaaaaat	acaaaaatta	gccaggcgtg	ggggcatgcg	cctgtaatcc	cagctactca	39480
ggaggctgag	gcaggagaat	ggcgtgaacc	ggggaggcgg	agcttgcagt	gagccaagat	39540
cgcaccactg	cactccagcc	tgggctacag	agcaagactc	tgtctctaaa	aaataaaaaa	39600
taaaaataga	acagtgaata	gtttataaag	ataaaataga	ataggcttca	atttagggaa	39660
caaaggaaaa	tatgtttagg	aatgatatta	tgctcaaaat	gattgcaact	ttgatggtga	39720
agtgtatttt	attcaattaa	aaatgtagat	atggctgggc	gtggtggctc	acacctgtaa	39780
tcccagcact	ttggaaggtt	gacgcaggtg	gatcacttga	ggttaggagt	ttgagacctg	39840
cctgggcaac	atagtgagac	ctcatctcta	caaaaaataa	acaaaaaatg	tgctgggtgt	39900
ggtggtacat	gcctgtagtc	ctagccactt	gggagactga	gatggaagga	tagcttgagt	39960
ctgggaggtc	agtgctgcag	tgagccgaga	tcgtgccact	gcacttgagc	ctgggtgaca	40020
gagcaagacc	ctgtctcaag	aaaacaaaca	aaaaaacaaa	aacaacagta	gatatgtgtg	40080
tgggaatgag	aacatttaaa	tgtgctcatc	ggcttagatt	tttctttaac	ccccttcatg	40140
gcccttatct	taacctctgt	cttcagcact	acccttcata	tgtttgttcc	gttttatctt	40200
ctaagtgatt	tttttataac	tctcaatgta	teatggeaga	aggaaaactc	agtgtataag	40260
ctgactgtat	tttgcatttt	ctttttttt	tttttttt	tgagatggag	tctcactctg	40320
tcacccaggc	tggagtgcag	tggtgcgatc	tcagcttatt	gcaacctccg	cctcctggag	40380
gcgattctcc	cgcctcagcc	tccccagtag	ctgggactac	aggcttgcac	caccatgcct	40440
ggataatttt	tatattttta	gtagagacgg	ggtttcatca	tgttgtctag	gcaggtctca	40500
aactcctgac	ctcaagtgat	ccacccacct	tggcctccca	aagtgctggg	attgcaggca	40560
tgagccaccg	cggcctggct	tcatgatcca	aaatagcatc	attaagcttc	tctttcaaaa	40620

catgtatata	agcctgtgag	tcatcactgt	atttatcaga	atattatcat	attggagact	40680
ttgcaaagct	gaacaaagcc	agaattattg	gctactgagg	aactatattc	tagcaagaga	40740
ctattctatt	tgttggggat	cacctctttt	tactaaaggg	gactgttttg	ggcatataaa	40800
actagaattc	atggtttctc	cttgatagtt	tgccagcttg	attcccagtc	aaccagataa	40860
ctgctggtag	tgacactcat	gtcctccagg	actcccaatc	ttgtgccagc	tcagagaggg	40920
aaatccccct	agaactgctc	acaccattcc	aagaaccaca	agcaccacct	tggtatagtt	40980
aaaaatgtga	taccaactca	aattetgata	aaaacaagtt	ctataaagct	taataaagtt	41040
atattttta	ctttttaagt	tttgttttac	tattttaaac	agaaaacaga	aggtaaaaac	41100
tcctctgcct	tcctcagtat	ttggtttgtc	agttgctgaa	ctcagattta	agagtctaat	41160
catatacagg	caataaccct	cttctaatct	taataatgtt	tctttgatca	tttctttaaa	41220
aagaaaaatg	aaatagccta	ttgactccaa	ccctgacctc	ctgtacttca	cctgcctgat	41280
gaatatttat	ttggaataca	taagtttttt	caaatgcatc	atgtcaagaa	tttgtcattt	41340
cagattcctt	tctagaatta	tctatttatc	tcattagtag	catcattctt	tcagacaacc	41400
aaactcaaaa	gctttatcac	tataattgaa	tttcttttt	cttcttacat	ttaaaatgtt	41460
actaaatgcc	attcatttct	ttatcagtaa	tatttctgtt	tgatcatttt	atttcattta	41520
ttctgccacc	ctctcattcc	aactattgct	tatacttgag	tactgcaata	agccaatatc	41580
ttgcatatga	ttatttataa	cacctaaatc	ttctaccact	tcacactcac	tgggatggat	41640
ataatttta	aaacatacaa	taacaggtgt	tagtgcggat	atggaaaaat	tggaaccctg	41700
acacattgct	agtggaatgt	aaaaaggtgc	agccactttg	caaaacagtt	tggcagttca	41760
tcaaaagatt	aagcatggaa	ctaccataag	acccagtagt	ttcgctctta	gggattccac	41820
tctcaagaga	attgaaaaca	tatgcccata	caaaaactta	taaacattgt	atatccatgt	41880
ttgttgcagc	attattcaca	atagcctaaa	ggtagaagca	acccaaatgc	ctacagatgg	41940
atgaatggat	aaacagaatg	tggtatagac	atacaatgga	ctattattca	accttaaaga	42000
ggaagaaaat	tctgacacat	gctagaaaat	aaatggatct	tgtatacatt	ctactaagtg	42060
gaataagcca	atcacacaaa	gaaaaatatt	atgattccac	ttacatgagg	tacttagaat	42120
agtcaaatta	atagaggcat	acagtagaat	aatgattgcc	aggggctggg	aggaggagca	42180
aatgggaagt	tattgtttaa	tgagtataga	atttctgttt	aggaagatga	aaaagttctg	42240
gagatgggtg	gcagtgatgg	ttgcacagca	atgtgaatgt	acttaatgcc	acagaatagt	42300
atacttaaat	atggtttgaa	tggcaaactt	tgttacatac	attttatcac	aattaaaaag	42360
tttgaaatga	atatccaaag	aagcattatt	tatgaggcta	aaagtggaag	taacccaaaa	42420
gttcatcatt	gatagctaaa	ggaaacatgg	catatcaaaa	cagtagaata	ttagtcatac	42480
aaaggaataa	agtacagaca	catgctgcaa	tacagatgca	ccttaaaaac	attacactaa	42540

gtgaaagaaa	ccagacgtaa	aaggccaaat	tttgtatggt	tttatatata	taaagtcgtt	42600
caaaatagga	aaacccataa	agactgaaag	ttgattagtg	gtcaccaagg	cccgggggag	42660
gaatgaatga	aaactggctc	ctaatgggta	ctgggttttt	tggggcgagg	gggacagagt	42720
gatgaaaata	ttgtagaatt	tgatagtaat	gataggtgag	agtggcataa	tttttttaa	42780
tatactaaaa	cccactgact	catatacttt	acaaggatgt	attttatggt	atgtgaatta	42840
tatctcaaaa	caccccttaa	attttaacgt	atggctttta	tgatgccatg	tttctaaaga	42900
agcaacgtgt	cccagtctca	gcttactatt	tctaggcatg	tgactttgag	aaaaaattaa	42960
gagacctccc	ttcttactct	gtaaaatggg	aataataata	atgatgataa	tgataataat	43020
aatgatctta	ccagattttt	ttgagtgtta	aatgaggtaa	catatgtagt	gcatctagca	43080
tagtgtctgg	catttaccaa	gaaccccggg	aacctgagct	tcaactgctt	ctgatactat	43140
tccagatact	atttcaggat	attccaatac	tgtttccata	tattcaggac	aatggaccaa	43200
ctcctttagc	cattttatca	aaactcttta	gattctgttt	caaatcggtc	tttccaaagt	43260
cttcttgtgc	tcctttgtag	acactcttca	gtcagagaga	gctttttaat	ctcctccaat	43320
ttgctgcagc	tgtatctgtg	cctcaaaaca	acgctttctc	cccattcctc	ttttctctct	43380
gcccttggaa	ctctgtggac	ttctctcatg	tttttaacct	actccctttt	atcagtgcat	43440
gtcatctcca	cttatttgta	gcacccaata	tttttactac	atctttgacc	aattaagtct	43500
tacttgggtt	atgtttttaa	agtaggtatc	ttattaggtg	gtccttttaa	agtatatgtc	43560
cagtctctcc	agctaaatta	aaacccttga	gcacagagac	cacatgttat	aatgttttac	43620
cttttccata	gcacttagca	tgttaccttg	acatggcata	tactgaatga	atgcttgcta	43680
tttatgagtt	tagttagtgc	cacatctcat	gaagtacagg	gacttaatga	ttctcaatcc	43740
tgacttcatc	ttacagtcac	ctggagaata	aagtttcctc	ttagctcaac	aagtcagaat	43800
ctctgagcaa	aatcctcaac	ttcttaccta	ggtgatactc	ttgtaagcca	cactgtgaac	43860
cactggattc	aacagatgaa	gtaatataag	ccactggctc	ttaagcctca	ttgattattg	43920
cggtgaagat	gtgaagacta	aagatgcttt	gggcatggca	aagtgttcta	cagatattag	43980
aattgttatt	atggtacatt	tgagagtgtc	attgctttga	gaaagattct	ctaagttttt	44040
taacagccac	actgtaatgg	aaatatccaa	ttataggtat	ccaaaacctt	ttaaactctt	44100
tatatcaggt	gtatataccc	tgttcctttt	tgctaactta	aaaatgttca	aactctgtct	44160
tctctaggct	ggcaaacatt	cagcagcaca	ccctctcaag	attgtttact	tgcctttgct	44220
cctgttgagt	tacaacgctt	ggaagcagga	gatgggctca	gcagcagcca	ataggacatg	44280
atccaggaag	agcagtaagg	gactgagctg	ctggtaagac	agtggagaca	gttgacactt	44340
gtttgtcaag	tatgaattta	ttcctaatgt	aatggtaatc	tctctcccaa	acttcaactt	44400
caagttaccc	tgcaccctct	caaatacttt	tctttattgt	ctatgcttag	gacacatgga	44460

ttagattgtt	aagatttgtg	aatttactaa	agttgtgtac	tgacttatgt	atagctgtat	44520
ttttctggag	aaagatagat	ttttatcaat	tctcaatgtc	tatggagttt	ttaaaaagag	44580
gtaaggatta	ttcaaatgta	actataaaca	taagaaaatg	tgatatctat	aaccagttgt	44640
tagagtattt	atcgcctcca	ttttgcttca	cttgtagcca	cttcgtctca	atcttgttaa	44700
ggaccaaata	aatggtattt	gtggttactt	gctgatctga	aaagtgagta	cctcctgcac	44760
ctggctagtc	agtcttgtga	caatttggtg	ccatagaact	agcagagaac	taaattatgg	44820
aatggcagat	ctcaggagca	gctatgtgat	tttacatacg	gtttgtttt	aatggataga	44880
gacagagtct	ggctatgttg	cccaggctgc	tctgaaactc	ctgggttcaa	gccatcatcc	44940
tgccttagcc	tcttaaggag	ctgggattac	aggtgcatgc	ccccaggccc	agttcatatg	45000
attttctgaa	aatacaaaag	aaagagggag	atacaaaata	cttttttaat	catgttctta	45060
taattatctt	aataaaaatc	aatttgctct	gaatgccatg	acctgctgag	tgtcccaacc	45120
taagggttgt	cagaccattt	tctcatatat	gcatgtatag	aagtagggaa	ctaatatatt	45180
tttgtctaaa	atgtttaaga	tgaagatgag	aatgaattct	acaatatata	attttgcctg	45240
aactatataa	gacagttaaa	attatagaga	cattgcagga	gagactctgg	attagataga	45300
aaaaaggaag	aattaggctt	tttttttgtc	tataatcctt	ttagtaggta	attcagcttc	45360
agtttcacta	aatcttgttt	atgcattcag	cataacaaat	cttctaataa	gcctgtatag	45420
ctctaatctc	tgccttactg	cagacacctg	aggatataag	tatccactct	gccacttgat	45480
acttctcaga	gactgttctg	gtgctgagaa	atcctttcca	gtgtgtcctc	agttgaactc	45540
ccatgattcc	tggatgttgc	cattttcaag	acacagggca	agcgcatctg	tctagattac	45600
ctctctacct	tgggaatttt	aagtcactct	gtgagggaaa	gagaactcag	tatagtagta	45660
actctcagaa	tgaaaatttt	ccccttgcat	gttaatattt	ttagagtaat	cattgtcact	45720
gaaaatagac	ttcctctttc	ccctctcatg	ctggaaaatc	ttaggtaatt	atgaataaag	45780
cattctttac	ttttcccctc	ctcccttgat	gattgcttta	cctcactctg	tgagaactgt	45840
gactactcat	tctgctcttg	tcttttacat	gagąactgag	agcgcatttt	taagatggaa ,	45900
ttttcctcct	taatgaagtc	ataacattag	tcagaagatt	ttctcttctt	gaacgttaag	45960
cctgggtaag	gaataaagtg	cagaagttta	tggaaaatta	taagataact	taaaaaaaaa	46020
acgaagacaa	caaattaaaa	tattagccat	tgagggaaaa	ggttttacag	gtagctctct	46080
gaggagttct	tccctcatat	ctcctcaaaa	atcttgtttt	gcatttaatt	ttttacagtt	46140
ggataagctc	agcccttgac	atattttcaa	tagcaaataa	gcctagagtt	tatttttagt	46200
acatttatta	ggaatgtgtt	cttgggaaaa	ttatttaacc	tctgtaagcc	ctgctttaaa	46260
tggcaaagaa	gaaagtaggt	aataatagat	aataacagga	ttattttatg	cattacctgt	46320
acattgccca	acatatagta	agttctcaat	tttatattgg	tatttgtttt	attattaacc	46380

acttttatta a	atgttgcttt	tagtttttga	aatatgaatt	cattcaaaaa	tatttcttga	46440
gcacctgcca	aataccaggc	actcttctag	gaactagagt	ggcattaatg	agtaagaggc	46500
aaaaatctct	tcccttgttg	agcttagaat	ccattagagt	aagagacaga	cacatacaaa	46560
ataaaatgta 1	taatatagta	aataccaaga	agtgctaagt	tttaaaaatg	taaagcagaa	46620
aaaggaaatt d	gagtggcagg	gttaggtagt	aattgaagat	atagtagtca	agtaaggcag	46680
cttcaagaga a	agattatgtc	ttaaataaaa	atctgataaa	gatataaaaa	caagccatga	46740
agttatctga	aggaattgca	ggtagtggag	aacagccaaa	agacctggag	tagtaaaagg	46800
ttttatgcag a	agtgatttaa	aaagaatcac	agtatcttat	acatcagtaa	atatttacac	46860
atacacttaa (gtaagtgata	tggacaagaa	ctttggaagt	tgaatagcaa	ggtccatctg	46920
gactataaca	gaggaggctt	cacaaaggaa	ggtgacaggg	catggcctgg	atcctgaagg	46980
acaggaagaa	ttgggatcga	taacaaagaa	tgacatccca	gtggagagaa	gtggagggga	47040
aacagcatga	aatggagtga	aataagaatg	ttggccttta	gggcaggaat	gggccaggca	47100
gagggcaagt (gggaagcagg	aaaaaggcga	ccttgtataa	agttcatgtt	ggcaaataga	47160
gagaagatgg (gaaagcaggg	taaggccaaa	tttagtaaaa	tcctaaagtc	aagctaaaga	47220
ttattgcatg	ctatcctgaa	aatattgggg	aataattaga	gcagatgagt	agaaaggtga	47280
attcttgtat	ttagctatat	cattatttt	acaaatttaa	acaaataagg	aaatggaggc	47340
agtagttgga (gtaatttagg	agataaattg	aaaatggatt	ttgttaagag	agaagggaag	47400
atagatttta	tatattttaa	ggaaaaatca	tgaggattta	tttgctgact	gcacgtaaga	47460
gataaaagag	aggagtcaaa	gatttctcta	aaattttcaa	aatgattaat	tacgtgttgg	47520
tattaaaaga	aatagggaag	ttgggacata	tgagtttgaa	ttcagcatga	gtcagttaag	47580
acaatcagat	gcagatattc	ttaaggcaac	taaagttcat	ttgatatttg	tcatataggc	47640
tgaattaagt	ttctaagagc	tgtttttact	atgcattaaa	tccgtgtaat	actaacatag	47700
tacaaaagtt	gtttgctatc	caaattttgt	atttttataa	taagttggag	agacagagaa	47760
tcaaaaaatt	attgatttgg	aaccattaga	catcagctag	tccaattagt	tcattttgtg	47820
gaaggaaaaa	ggatacccag	agatgttaca	tgactttata	gccatgcctc	tagctagtat	47880
ctaacttggt	ctagcccagg	tetecatact	gagactetee	teetgetaat	aaaaaaataa	47940
taaaaaagta	ttagtggttt	gtattttgct	ggcttgcttg	tggagaatag	gattagaagg	48000
tttgacttgc	ctgttagcac	tctcttgtag	ccatttttct	aattaacata	cacattttac	48060
cctttctcat	gaaacagatc	taacttgttt	agaagcttca	gtcttcttga	tttaattaat	48120
cactttctcc	cacctttagt	cattgttgaa	gtttcctgat	ttacaatgtt	atctttttat	48180
cttttcagta	gtataaggag	gaatgatatt	tctactgttg	tactattttt	ctgtttatct	48240
ttcagaagaa	aaatagcttt	tcttattggc	ccaaaaaacc	atcaccctac	aggaaataaa	48300

tcacactctt tgcttgattt	tcctgatctg	gctactgatt	tctcttcaaa	tttaagccaa	48360
tacttagact ttaagacttc	attgttactt	ccttacaggt	cattcttatg	aactaaaatc	48420
catagtcatt gttctagcaa	gcctgagcag	tttattcttt	gagtcacagg	attataaaag	48480
aaaaaataga ccttagagat	cataatacag	tgctcttcaa	actgtactct	tcaatttttc	48540
tactacttat cagttgtttt	ttattctaat	aaaatataat	tacctagcaa	gtgagcagac	48600
atgtatttac agtagcttta	caattcttta	tacacttctt	tactctctcc	attacacatg	48660
ccacatggta tgatacaagt	cataactcaa	ctatgtgaaa	gcaaaaccac	tcttatacat	48720
ggtgtcttgc atatatatta	aggcccagag	tggtatcagt	agtctctgtg	tcccaagaga	48780
ctgaattaaa caagactgtt	gaccttcttg	tggcatttat	ctgacaacct	tggcaatccc	48840
taaattcaca aatagctgta	tagcattttt	tgcatttaat	gcatatccac	atatgatgtg	48900
tcctttgatt ttagaacaag	taaagcatgc	taaaatagac	tgcaccttat	gaaagtcatt	48960
ttcactattc ttgtgtttca	gtttcctcat	caaaaggtga	aatatcagct	gcctctgttg	49020
atctcaggat cttttaagta	gaaatggaag	agtcttagtg	aaaacagttt	gtattctgaa	49080
agaaaattgc aatgtaaata	caggcactaa	aaacgtttat	tcatctttac	agatgttaat	49140
ctgaccagac atttttctca	aaatgtgaaa	atagtatgga	ttttcttagc	tcatttaata	49200
ttgaaagact agaaaaacaa	gtaatgatgt	tctagaagaa	tctatgatca	tataattaca	49260
gttgtccttc agtatctgtg	ggagattggt	tccaggaccc	cccatggata	tcaaaatctg	49320
tggatcctca agtctcttat	ataaaatagt	gcagtatttg	cacatgattt	acatataccc	49380
tcccatatac ttcgaatcat	ctctcgatta	tttataatac	tacaatgtcc	atgctatgta	49440
agtagttatt acactgtatt	gtttagggaa	tagtgacaag	aaaattaatc	tgtacatgtt	49500
cattacaaac acagcaatcc	atttttttc	tgagtatttt	gatctgtgat	tgattgaatc	49560
cacagatgct ggaatccatg	aatacccatg	gggggctgac	tataatgttg	tctatgtgcg	49620
tagcaatttt gtaattctca	accaaggaca	cgtatagtcc	ttgaatcttg	gtaggagtct	49680
tggggacttt tcttaaaata	ttttgaccat	cttctcaaga	tcttgactcc	tacccccact	49740
tgtacacgtg cacatacttg	tgcacactca	cacacaatac	ccttccttaa	gtcctgctca	49800
ccagcttgct tcctattgca	ttgagagcat	tcaacctgta	gaccaagaac	ttctaccata	49860
tttttccacc tctaccccaa	aacacagttt	agacatatcc	attcttttca	ttcttcagag	49920
tcatctcacc acttccataa	attatttcct	aattgttccc	tctgcctctg	ttctttttt	49980
tttttctgat gatcagttca	aagtacctct	gtatgcccat	tcttaagtgc	aaatctgacc	50040
atctataccc cttcttaata	tcctttcttt	tatggatacc	catttcagac	tttattaaag	50100
gagtggaage tteecetee	ccacctcacc	acttgaagtt	tttgcaatta	gaatggagtt	50160
tatttggtta atgcaaaaat	agatgtgatg	tagaattctt	ggggacacct	acttatcccc	50220

ttttcagagt ggccctgaat	agctctgtga	acccaggaat	ctgaagaact	cagtacagaa	50280
aaccatcage ctacagaaag	tagatcaaac	tctatgcttg	atattcctga	tctggctcct	50340
ggttactctt caaattcctc	cttactatat	tgtcccttca	gatttgtaaa	tctttaccgt	50400
gacatcgtat tttacacact	gaacctttgt	accgctgttc	ctctcctgat	gaacttccct	50460
tttctcttaa ctacacagct	cagatttctc	ataagggaag	cttcatattt	gttgtggcac	50520
tgttgttcct caaacatcct	acttactgta	gtcatttgtt	tatgcttgtc	tcctttgcag	50580
attctgaaat tcctagggca	aaggctgcat	cttgtcttct	tattactaat	attttacaca	50640
gtatctggtt acatagtagg	cattcaatca	tacaatttaa	aagaagaggt	tgactttgtg	50700
atctttttca tatgttttat	ttccctctcc	ccctactggc	aacttcttcc	tacttcttaa	50760
aatagataca gcacttgccc	actaagtgga	gggaagaggt	gtgggagtcg	agtagttgga	50820
acttcaagtg tcaaaacatg	ataatctcat	ttgcaaagtt	acattatatc	ggagcttgaa	50880
cctcagagat acttaattat	aagcaacact	tgtggaacat	ttgataccta	cattttttc	50940
actaaagtat cctatcaaaa	ttaaatgtgt	tgcagttgag	atttgtgagg	ttttagctat	51000
ttagagactt tagggatatg	tttagtgttc	taattctaat	agtattgatg	aatataaatg	51060
tttcactgta gaaagagaag	tttgagagct	gttgtgaatg	atatttgatg	tctattaggt	51120
gataatttct gatgactaaa	catgctcaag	accttagtga	gaaatacatg	aatacagaaa	51180
atattttgaa aattatgaga	agtttatcat	tgattataga	ttttcttatc	cagcagtttt	51240
tggttgtgtt ctgtttttca	ctgtcagaga	agcagaaagt	ggtcagtgga	ctttagaatg	51300
taggctcttg taggaggcca	tatgtttgag	agtgctgtcc	aggtgctttg	tgatgtggct	51360
gagaatggat gcaggcttgc	agggaaaaac	taatactgta	gatctctaga	gagcatttta	51420
ggaaagactt ctaagcttta	ggttccctga	ccaaagagta	aaaagtgatt	cttaatatcc	51480
atagctatag aggaaagtaa	atacacttcc	cacatcaaat	gtagaattaa	atatttaggc	51540
atttcaagtg tatttcattt	agaacaaaat	aaaatcatat	attcactaat	gaaatataaa	51600
accagatggt ctctgaaagg	tttttccctt	tactcacttt	cagagtaagg	caaggaagag	51660
tagttttgtt ttttaattta	tattttaatt	gtccctttct	gtttttccaa	aagttttatt	51720
ttttgaaagt gagtcacctt	ttagacattt	gaaaaattag	aattactatg	atgtttattt	51780
tattagtaag tetteetaga	gtagcaacgt	agaaaagcat	ctctgaatgc	ctacatagta	51840
agtatttaat aaatgttttt	tgggccaggt	gaggtagctc	actcctgtaa	tcccagcaat	51900
ttgggaggcc gaggcgggtg	gatcacctga	ggtcaagagt	ttgagaccag	cctgaccagt	51960
atggtgaaac cccatctcta	ctaaaaatgc	aaaattagct	gggggtggtg	gtgcatgcct	52020
ataataccag ctactcggga	ggctgaggca	ggggaatcgc	ttgaactcag	gaggtggagg	52080
ttgcagtgag ccgagatcgt	gccgttgcac	tccagcctga	gcaacaagag	tgaaactctg	52140

tctcaataaa taaata	aaata aataaaata	c ataaataaat	gctttttgat	ttaacgaagg	52200
tgtcattgtc ctatga	aaaag gaaaactato	aaaatatatt	ttttaaaact	tagcttttga	52260
taatgatatg gaagat	tattt ctcttaatta	a acctaagtca	gaaactaaaa	tatgttataa	52320
aatgctaaca tcaaat	tattt gagaccagt	aaaggagaca	gaaggaagtt	atggagaaag	52380
aagcagtagc cagaaa	aataa gggcaagaa	a atgttttcta	aatttatgag	aatcagaatg	52440
tttacaaaat tgctat	ttatt atcatctgg	a aaaaatatgc	cttgtaggct	gaaaaaatga	52500
acattccctt tccata	accat gcaggaacc	tctttactgc	attcctaaga	ggactagtct	52560
agcacctaat tggata	acttg tggtaatat	tgggaactca	ctgatctggt	acatcagtgt	52620
gggagtcgag tagtca	agaac ttcaagtgto	c aaaacatgat	agtctcattt	gcgaagttac	52680
actatattag agctto	gaacc tcagagatad	ttaattataa	ttaacacttg	cagaacattt	52740
gatacttaca ttttt	ttttc actaaagtg	cctaccaaaa	ttaaatgtgt	tgcagttgag	52800
agttgtgagg ttttag	gctat ttggaaact	tagggatatg	tttagtgttc	taattccaat	52860
agtattgatg aacata	aaatg ttttactgta	a gaaagagaag	tttgagagca	agttgagcaa	52920
gaatctgtca ctctag	ggtct tctactctt	attaaagaat	gttggattca	tttataactt	52980
actggtccct taaata	attaa agtttggtg	ttggtatctt	aaacatgatt	acatccttat	53040
agggctctct tctaat	ttgcc tggatactgo	c acatctatta	atacagtctc	aaagcacact	53100
tgcttttttg atagta	aagag cgtacgatt	aatcacattg	aagttagtcc	gcaaaggttt	53160
ttgtcttttt ttcago	gcaag cagctgatg	a atgaatctct	actatccttc	actttgtgac	53220
tgtgattttc taaata	aaatg ttggagatt	taacttacaa	tttattaatt	tccatcttgt	53280
ttcttcaagt ccctco	cttta aggaaattta	a tggaaatctt	tttccatacc	atcaagtggc	53340
ttatttcttt ttaact	ttttt tccttaagt	caggagtaca	cgtgcaggtt	tgttgcatag	53400
gcaaccttgg gtcat	gggag tttgttgtad	aggttatttc	atcacccagg	tattaagcct	53460
agtacccatt agttat	ttttt cctgatcct	c tecetectec	caccctccac	cctctgatag	53520
gccccggtgt gtgtt	gttcc cctctgtgt	c catatgtcct	catcatttag	ctcccactta	53580
taagtgagaa catgca	agtat ttggttttc	gttcctatgt	tagtttgcta	tggataatgg	53640
cctccagctc catcca	atgtc catgcaaaa	a acatgatett	attctcttat	atggctgcat	53700
gttattccat ggtgta	atata taacacagt	tttttttatc	cagtctatta	ttggtgggca	53760
tttaggttga ttccat	tgtct ttgctattg	gaataggact	gcagtgaaaa	tatgtgtgca	53820
tgtgtcttta taataq	gaata attttttt	cctttggtat	atacccagta	gtggggttgc	53880
tgggttgaat agtatt	ttctg tcttgaggt	c tttgaggaat	cgctacactg	tcttccacaa	53940
tggttgaact aattta	acatt cccaccaat	a gcatataagt	gttccttttt	ctccgcaacc	54000
tcactaacgt gttatt	ttttt gacttttta	a taatagccgt	cctgactggt	gtgagatggt	54060

atctcattgt	ggttttgatt	tgcatttctc	taatgatcag	tgatgttgag	ctttatttca	54120
tatgtttgtt	ggccgcatgt	atgtcttctt	ttgtaaagtg	tctgttcatg	tcctttgccc	54180
actttttcaa	tggggatgtt	tgtttgtttg	tttgtttttc	ctgtaaattt	aagatcctta	54240
tagatgctgg	atactattgt	cagatacata	aattgcaaaa	tttttctccc	attctgtagg	54300
ttgtctgttt	tctctgttga	tagtttattt	tgctatgaag	aatgtcttta	gtttaattag	54360
atcccatttg	tgaatttttg	ctatgaactg	gatctgatat	aagcatatgt	ttaattttaa	54420
ctcccaggtc	acactgtttt	tttttgtttg	ttttgttttt	gtttttgttt	ttgtttttgt	54480
ttttttggag	atggagtctc	acgctgtcac	cagtctggag	tgtggtgata	caatcttggc	54540
tcattgcaac	ctccacattc	cgggttcaag	caattcttct	gcctcagcct	cctgagtagc	54600
tgggactaca	ggcacacacc	accatgccca	gctaattttt	gtatttttag	taaagatggg	54660
gtttcaccat	gttggccagg	atggtctcta	tctcttgact	tcatgatctg	cccgcctcag	54720
cctcccaaag	tgctgggatt	acaggcttga	gccaccacac	ctggccccag	gtcatacttt	54780
taatcaaaat	gagaaaaaag	attgacttca	ctggagtgct	tatgtcttgt	tttatattca	54840
agttttaaat	ttatgttctt	gagattatta	catcttgagt	tacttgataa	taccacggtt	54900
gaaatccatg	ttgttgaatc	cttcaacccc	ttgaggactg	agaattccct	ttaattatct	54960
gtctgaatca	ttaaatactt	gtaaatcaag	agttcaattt	agaaatgtta	tacttgatac	55020
attttttaaa	gctggataaa	ttaacctatt	aaacaaaatt	atctcttctt	caaaaaaaag	55080
gcatcacttc	ccccacaaat	gtgtaattta	ggaattgttt	tctattggag	tggttcacgc	55140
ttatatattt	tagttgctct	aatgcaaggt	gtttcctaaa	aagtttaagg	aaagtataac	55200
tttattttcå	tgtatgatag	taaataatac	aatagggggt	gcatttgtgc	tatgcttgtt	55260
tttgttccca	tttcagtgct	caattactgt	agcttctaat	aaataaaatt	atcagttgct	55320
aacatttaaa	tcaaacagtt	ccacaagtgg	aagtattgct	tatttgtgag	agttgtgttt	55380
ttttaaactt	aaccttactg	aggggtttta	aggactgcta	attatagatt	gtactaagca	55440
aagtataaag	taatagaagg	ttaccaagtt	gaggctagaa	ttcaattagt	gccaatacag	55500
ttaaaatggt	atcattaaca	gaacatcttc	atccaggacc	tttttttt	tttttttt	55560
ttttttcaga	cagggtttca	ctcctgttgc	ccagactgcg	gtgcagtggc	ctgattgagg	55620
ctcactgcag	cctcaacttc	ccaggeteag	gtgatcctcc	cacctcagct	tccagagtag	55680
ctgagaccac	aggggcatgc	caccacccct	ggctaatttt	ttgtatttt	tgtagagaca	55740
gggttttgcc	atgttgccca	ggctgttcgc	aaactcctgg	cctcaagcaa	tccacctgcc	55800
tcggcttccc	aaagtgctgg	aattatggga	atgagctgcc	acacccagcc	cctccggaat	55860
ctttagatta	ccaacttctg	tcttccaggt	ttttatgtcc	ttggaaattt	atgcatattt	55920
ttagaggtaa	gacccatcct	catcttcttc	ctaatccttg	acatattgtg	aacacagata	55980

tatatacaat	taagtagttc	cctgagttac	aaatatactt	aaatatactt	taacttatta	56040
tagaaggctt	acaaaaactg	tggataaata	acatatattt	atcttagtta	atgaataact	56100
gatgctgaaa	ataatgtgaa	tgtcaaatta	gttctctttt	tttctagccc	tcacctttga	56160
aaagcctgag	cctctgagat	gtgagatgac	tgctgtaaag	tgaagcagcg	aatttctaga	56220
ggctgggttc	acgcttcagg	tcctctaaat	cctaggtcgc	ttcccactac	tacatactac	56280
cctaaaaaat	ctgtaattcg	caaatttatt	ttttgatctt	tttcataact	tattaaattt	56340
ttattgaaca	aatacaggaa	acagttttaa	attactcatt	gctcttgaat	acattggtga	56400
ttatttttct	tctctgaaat	tctgttttcc	ttaaaggcag	tcattttttg	gtctcttcta	56460
aatgacactt	agtatttta	gtaacatcat	aacttcagtg	gccacagtga	gccctcattt	56520
tgcaacatat	gcctactttt	catatctggc	ttgcctttta	ttatttataa	tttaatgaaa	56580
agaaagtacc	actctttcca	tagttttgta	atagaattgc	tgtcaacaaa	gtagtggatg	56640
cactatgtta	taaagatttc	attgtgaaaa	catgaaatgg	ctgttaacta	tacatcaggc	56700
aaaataaaaa	caggaaatat	aaacatttcc	tggaacaggg	cagagtatga	gtaataaggt	56760
atcaaatata	attggatacc	tgaccaaata	tttttaaatg	tcttaagaaa	tgtcactgga	56820
aagactggag	tacttggatt	tgtctcttat	tcttattttg	attcctaaca	ctgtgcttgg	56880
cacatggtag	gtaattaata	aatgtgtgat	ggatgaataa	tgattgtcat	tcaattagtg	56940
actaagagag	ttggaaaggg	ctatcaattt	caaattggtt	cctttaagac	atttttacgt	57000
aagatttggg	agaaaagtaa	aagagcacca	tatgattatg	ctttactaag	agctgcttcc	57060
attcctacat	tgaccatgtg	gactcatatt	tggcctatat	aattacatta	gaataaacaa	57120
agcaccaaaa	gttggaaaag	gaagtagtag	taggagaggg	tttaagcta	tgtatttact	57180
gggaaaaaaa	gtcatgtttt	ctttttaaa	aatgttctaa	acagtactgt	aatcacttgg	57240
gaattgaatg	tgctttgtgt	cagacaaagg	tctttgtata	caatacatta	cattttgtat	57300
accaatacat	tacattacac	agaagggagt	gcctggcttt	gtatacaata	cattacattt	57360
tgtataccaa	tacattacat	tacacagaag	ggagtgcctg	gctttgtata	caatacatta	57420
cgttttgtat	accaatacat	tacattacac	agaagggagt	gcctggcttt	gggaaacaca	57480
totacotaaa	ctcttaacat	agcacaatgc	tgccatacgg	taggtaatac	caagacaaat	57540
cagggccgtt	attaacaacc	ttgaggaaat	gtcttgggaa	atatttaaat	aatttttgtt	57600
taattataat	aaggaatcta	cagcctctgt	gaagtcatcc	caaactcttc	gaggcaaatt	57660
tagtctcctc	ccacccctgt	tttttaatgt	ttctaaagga	tgttatgtat	aatctattag	57720
aaaactggcc	aagtgcagtg	gctcatgcct	gtaatcgcag	cactttggga	ggccaaggcg	57780
ggtagattac	ctgaggtcag	gagtttgaga	ccagcctagc	caatatggcg	aaaccctctc	57840
tactaaaaat	acaaaaatta	gccaggcgta	gtggcaagtg	cctgtaatcc	cagctactca	57900

ggaggctgag gcaggagaat	ctcttgaacc	cgggaggcga	ggttgcagtg	agttgagttc	57960
gcgtcactgc attccagcct	gggcgacgga	gtgagactcc	gtctcaaaaa	acaaaaacaa	58020
accaaaaaaa aaaaaaatat	atacacacac	acacacacac	acacacacac	acacacatac	58080
atacatacat tagaaaacta	attacattgt	tttcttaaaa	tgttttaagc	atctctcttc	58140
ctcaaggaca agaatcttga	atccttagtg	catatgaggt	acttaataga	tatttaaatg	58200
aatagtgagc tactattgcc	taaaaatatt	agacatcatg	taatatcagg	cctacagttg	58260
atagaaaaag tattctcaac	taagaataat	ttaccaatgg	agaaaactgt	tagttttccc	58320
ttcttttct ttgctttata	aaatttaaat	gacattaaga	gttacgtttc	ttggaaaatt	58380
gaaaagaata tctgtggcac	aatgggctct	gggtataatt	gcaggataat	ttgaaaagtt	58440
taaagaatat tttcaatagg	tataagttta	tttaggctct	gtgtctcctc	ttgagatgac	58500
tttagcagta tatatttccc	tggaacacca	tgcactctag	gttttctaat	ttattggttt	58560
aaaatacatg gcattttact	acgtaaatat	tctctgtatc	tgtaggtaca	gcacctctgt	58620
gtacactaag ttagtgtatg	tatttttta	aaattgcctt	agttttgcta	ttcactagat	58680
tattttccaa ggaacctact	cttagattta	ttaagcctac	tatatatatt	ttgttattaa	58740
ctaattctct tattttaaa	aattactttt	cctttctttg	cttaaatttg	ctttgttttc	58800
ctaaattagt gatttggaat	acttaattgt	ttttattttg	ttttgttttg	tcaataaaag	58860
agttttaaga ctctagttat	actatagcta	tagccaatgc	attttgagag	gtgcttacat	58920
attacaatta ttttcagaaa	ttccttattt	caaagctttg	ctttctttga	acaaagagtt	58980
atttaggaaa agaaaggaat	aaaaatctca	acttattctc	cacttgacta	gctttattat	59040
ttgcagtatt ctgtttttta	cttgttctaa	tacttcttta	tattttgttg	tggaattatg	59100
tcacctaaca atattttcct	taacttctta	attttagcct	gttttccaag	ttaatcattt	59160
atctgttgtt tcaatgaata	cctaagaaaa	ttttctttgt	caggataagg	cacatgaggt	59220
ctaagattta tttctagaac	agtaagcaaa	tcatttctga	aagtgtgttc	ttctactatt	59280
aagtaacatg tttatttttg	tcttttagtt	gaagtccccc	ccaacccaat	aggtactatt	59340
ctgatttgtt ctcctattca	cacattcttg	aaggagagct	gatttatctg	tacccacaaa	59400
attataatat aattttctca	gagtattcaa	aacattgtct	tttttattt	tcttttttt	59460
gagtttttca ctcttgttgc	ctaggctgga	gtgcaatggc	aggatctcag	ctcactgcaa	59520
cctccgcctc ccggtttcaa	gagattctcc	tgcctcagcc	tcccgagtag	ctgggattat	59580
aggcatgcac caccactcct	ggctaatttt	tttctatttt	tagtagagac	ggagtttctc	59640
catgttggtc aggccggtct	caaactccca	acctcaggtg	atccacctgc	ttcagcctcc	59700
taaagtgcta ggattacagg	cgtgagccac	cacacccagc	cgaaaacatt	atcttaatgg	59760
agcatttaga acgttatcac	tgacaaactt	ttttctattg	aaaatactgc	ttaaaagatc	59820

aggtcatgcc	caccccacaa	cccacaccct	ttgtatttct	cttttacttg	tcttggcctc	59880
tagttcagat	ttatagtttg	gtaatgtctg	attttctttg	ttagtgcttc	agcccatctg	59940
gttggggaac	agctctatcc	cactgggacc	tctccctttc	ctcatgagtg	acgccagggt	60000
cctgctgccc	ataagcattc	tgtttgctga	gtttgtatat	atttcctttc	cccagcttcg	60060
ctgcctttgg	ctgctttgtg	attaagtaag	acatacccat	gtttcctaaa	gcctccttcg	60120
cctttagtcc	ttgatgctgg	ggaccttttg	gttgggaaga	cagcttcctt	atgtcagggt	60180
gagcctgcta	cacaggtatg	taactcagac	agtgacctac	tgttgagttt	ctgtttagtg	60240
tttctttgtc	tccctcaaat	ggtacaaacg	tggagggctt	caactgcagt	ctacctttgt	60300
cctgttagtt	ttgtctatca	cagcccatgc	cctccaaata	agagatgatg	gagcagtctg	60360
cttattttct	gtagcactcc	acaactgact	ttaaaagagg	gactgggatt	gggctcttag	60420
tgatgacttt	taatgtggat	tcatctgcat	tttctctaga	aattctttaa	actctctgcc	60480
tctcagctgg	cactattcca	tggtatttta	gtgctaatgg	gggatctttt	ctaatttttg	60540
tttttctttg	actgtttaaa	tcatttactg	gaaagagggc	ttagatatct	gctcatatgc	60600
tcctgctagt	ctacaagtcc	tccagcctga	ttttgttcat	gaacatgatg	gaaataagct	60660
tcttaaatgc	ctttaatatt	ggatactgct	ttcaaggaaa	tttaaaatag	caagcaggct	60720
ttcaagaaga	gagaataaat	tatcagccag	tctcgcaaga	acaaaaataa	gccaagtcat	60780
ataaaacaag	tttggagtaa	acttgttttt	acatttcaaa	ttcgagttga	actcttcaag	60840
tgaagcttca	gagatataaa	aaactttaac	tgataaagat	tccaaacatt	aatatatgga	60900
aatgtatgag	ctcactgaaa	attttacata	aattttacta	gaagaggtga	ctgaccagtt	60960
gcttttataa	gattctcaaa	aagatctcaa	atcttaggga	ctaatattgt	aagtatacgg	61020
ggaaattaag	acaaagattţ	actatcttgt	gagtttttag	tttggataat	gaacttaatt	61080
tcacaagaaa	ttgctttagc	acaaacatga	aaaccttaag	catgagaact	ctccttttga	61140
agtacaaagg	gagactaaag	tgaataactc	aaactggaaa	tgtagaaaat	tgaatttgct	61200
atgatttgaa	gtcctttcag	aatagccaac	agattttaaa	caagagtttt	attgcatagt	61260
ttctttggga	tatacattga	aggagaaagg	aggagggagt	tttaaaagac	aagtggaaag	61320
ccctttctgc	ttgttttggc	tatggcttcc	atttcagtgt	ctgtatttaa	gggatcataa	61380
aaggaactgg	aaagactggt	cacaatggca	gctctgtacc	tgtatgattt	cggatgtgaa	61440
aagagtttag	cgatttcctt	gttaacctat	actgctgtgg	aagtcattca	ttatgcagtt	61500
aggcattagc	agaacaaata	aagttcacag	ctctaggaac	caaatttaac	tttatcactc	61560
ttctgattta	gaatattttc	atatgctttc	atatgtccta	cagacgataa	gaagatagaa	61620
tcaatacttg	gtgattgata	ggttattttt	taaaagggaa	gaaagaatta	aacatccatg	61680
gtttcttctt	aagtaactgg	ggggatgata	gtatccctca	caccaatggg	gagtatagat	61740

gacaggtttg gagtgaaaga	cagtgaattc	cattttggat	aagttgaatt	tgaagtgcct	61800
atgggacata caggtacaga	tgactaggag	acaattgaaa	atccaaattg	tgaactctgc	61860
tgaagattag aagtacagat	ctgagattaa	attgctactt	gagttcatgg	gaataaaata	61920
ggtcattctg caaatggtta	tctcaatatc	ttcctggcca	tctcttgggt	caccttgcca	61980
acttttcatt ctctttacaa	tctctaaatt	ctcatgtttt	taaggctctc	atcttaggcc	62040
aacttatctt gggtcacctt	gctaactttt	cattctcttt	acagtctcta	aatttgtgct	62100
tttaaggccc cattctcaag	ctggcttctc	tgttttggtg	ggaactggta	gcaaacattc	62160
atttgtaaac aacccaaatg	gctagcattg	agcaggactc	cccaacatac	tcctctgaat	62220
tacattttga gttatctgaa	ggatcaatat	ctcaaactag	gaaactgtag	ctttctcatt	62280
tattttcatc atctaattat	ttttcttgcc	tttaagtata	agggatagag	acttgattga	62340
tttttatgta caacaagtta	aaaaatttaa	ttaggcgtct	ttgccattta	atcagtttat	62400
acttcttgaa tcttttccag	tcatcaaaaa	gttgctgagc	atgcgcagct	ttacttacta	62460
gcttatagca tgaagaagag	taaaatagga	gtggataaag	gcacagtggt	gagtagtcag	62520
tgtttccaat taatctcaaa	gtttaggatt	aatttagcgt	gaattctgtt	cttttgtgtc	62580
ttcctgcttt ttgacgtggt	aacctgccat	aacaaaagga	aacagcagga	aacttggtac	62640
caattaaaac agtcttcttc	ccccaaagaa	cgaactgtca	gcaaacaatc	tcaaattcaa	62700
agtgataagt gttttagagt	gaaacaagga	taaagagaca	aggctattaa	attttaacat	62760
ctgctggaac acaaagcgca	tgccagtaga	attaagtttg	gcatttaata	agatacaatt	62820
tgcacatcag aaatgaaata	gatgcctcaa	ggcatggtat	atatatatat	atatatatat	62880
atatatata atatatatat	atatatgttt	gagcgagggg	cacttctagc	aaaactgaat	62940
acactggtat aaatgtctgc	gtgaaaattt	ttttatccat	tcacttttgg	tgtgtattcc	63000
agctgtgagt tattcaacca	ggctcactaa	gtttgagtct	gattaataac	gtttaaggtc	63060
acatctgatt aacagtattt	gaagtttgaa	tttgttctaa	gatgactcaa	gcgcaataac	63120
attttctata tcaaaatgaa	tttccatcca	aatagggagg	aaatctgaaa	tttcagttcc	63180
agtgttgact gagatgctct	ggatgagcct	ggactcagag	ctcaccaact	ttggatcttt	63240
atgttaagta gtcagtgggg	ttgacttcta	gactagagat	caaaatgttc	tacacctctt	63300
gatataggtc agtggctgat	gtaatgtgct	tccaacaact	ttcttttaac	taaaacagta	63360
catataccaa gttggtttgt	cacaatggga	acaaaacaga	aatctgacaa	cagatttctc	63420
taattttttg tgtgtatgtt	tctgaatggg	ctaaaataca	taattttact	cttccttggt	63480
gaagatgett ttataagagg	acgtgtttaa	gaaaattaag	aaatgttgta	ggtagccatg	63540
aaagaattat tttaaacaga	attagtatag	aggtgtgaag	atctactgaa	gggtgataag	63600
taagtgtgga agagatggtg	ttcagcattg	ggcttcagta	tgaataggta	gaagatgagc	63660

aaggcttaga	gacaagaagt	tcattcaata	ggctgttgcg	gttatccagc	aatgagatgg	63720
tgacagcatg	agccatggta	gtaaaagtaa	ggacatggat	aatttgtggg	ttctacagac	63780
aataagaaca	tagaaccgat	aggttatttt	ttaaacggga	agaaagaatt	aaacatccat	63840
ggtttcttct	taagtaactg	cgtggatgat	agtacccctc	acactgatgg	ggaatgtaga	63900
tgacaggttt	ggagtgaaag	aatgaattcc	attttggata	agtagagttt	gaagtgccta	63960
tgggacatac	aggtacagat	gactaggaga	cgattgaaaa	tccaaattgt	gaactctgct	64020
gaaggttaga	agtatagatc	tgagattgaa	ttgctacttg	agttcatggg	aataaaatag	64080
gtcattcagt	aaattgttat	ctcaatatct	tcctggccat	ctcttgggtc	accttgttga	64140
cttttcattc	tctttacaat	gtcaaaattc	tggtgttttt	aaggccccaa	tctcaggctg	64200
gcttctccaa	ctgtactctt	acttgggatg	atcttatcta	gtcatggggc	attaaatacc	64260
attggtaggt	taacacagtt	cacaattttc	tccagcttag	accccttgct	gatttcctga	64320
cttgtacact	caactgcctg	cctaatatac	ccactttaat	gataatgtac	atctcaaact	64380
gagcttattc	gaaatagaag	ccttaatttt	tctgtcagtc	atattgttcc	catttaccca	64440
tcctaacaaa	tagcaccatc	atcaaccttt	tagctcaaga	caaaactcta	ggcattatct	64500
tgctttcatt	cctttcatgt	actttctcac	atctaatcca	ttaccaagtt	gttctgtttc	64560
tgccttcaaa	atgtgtccta	aatttatcca	tttctctgcc	actgctattc	tctagttcag	64620
gacattctat	cctttctctt	gtattactgc	ggtctctaaa	cttcatgtat	ctatgtttta	64680
tacttttaat	tcattgtcta	tacagctacc	agagtgatct	tttaaaggtc	taaatcagtt	64740
catgtcactg	ctttatatat	aatgcaccta	tggcttccca	ctggatttaa	ataataatct	64800
taacacttta	ctcctccatg	gcctttacat	acttctagcc	gcacctcaaa	acactcctct	64860
tgttcactga	gaactaacta	gaccagtttc	tcttctcctc	agctatatca	tgctaattta	64920
tgcttcagtg	ccttttgtac	ttttgttccc	tctagctgaa	tcattcttcc	aggtcattct	64980
atcattggct	ttttcattca	gttcagatag	atatcagcaa	atcaagagag	tctttcctta	65040
cctgctctat	ctaaatagtc	ctgttttagt	cctctttatc	tcatcactca	gatttatttc	65100
cctcatagca	ctcatcagtc	tgaaattgtt	tgtttatttg	gctacttgtt	tgtctagata	65160
aacttcactg	gtgaaggaat	ccagactatc	ttgttcatcc	ctacatccct	agaacctaga	65220
acaatatgtt	aaagataaat	aaataaatag	atgaaagaat	gttgaagaga	agagggtcca	65280
gtccagcccc	ctgaggtgac	cagcatttag	ggaataagcc	gaggcagagg	agggccatta	65340
agaaggagca	atgagagata	gaggaaaact	aagaacaagg	tgtccctaaa	gtgagagtgt	65400
cctaacacag	gtctaaatga	aaggatagtt	cagaagaggg	cactgcagct	ggctgaaaga	65460
gaacaagaaa	ggctgtaagg	tggaggtgaa	tttttaattg	agccgtgaaa	gatagggaaa	65520
ttctgtatga	aggagtaaat	ggaggcatag	aggcatagag	gcagaagatg	catgcctgtt	65580

tggggaatag	tcatcccatt	tgtctttcac	atatctcatt	taatacttct	catttaatcc	65640
ttttagtgtt	aatgttgtca	ctagattaaa	aaacaaaggc	tccatcagga	tcacacagta	65700
aacagaagaa	tatggattta	aatggagatc	tatctgactg	caaagactac	ttactgtaac	65760
ttaagtcatt	gagattcctt	atggccacct	catattcacc	ctgcatataa	cagtatgcca	65820
atgtaggaat	gaggcgtgaa	taagcagggt	aacaatagaa	acatattctc	accttgatta	65880
ttcctttggt	agcttcaagg	gaaattgagt	ttgaggataa	agtaactctt	cccatgtcag	65940
cactttatct	gtcctgaaac	atgagaaatt	ccaaatgttc	aagccatgca	gtttttatct	66000
agtcagatgg	ttgagaagtc	caggttaccc	atagttgtaa	tgaatacctc	ctctttatct	66060
tcttaatgtt	ctgctttgcc	aaatgatcta	taaagattac	tcagtgtacc	tttcagattg	66120
aggtccagca	gactttcaga	acactacatt	taattacaga	aacccaacta	ataaaataat	66180
aagctcatgt	tagtttcagg	tgttgatttg	tttttaatgt	agtcaataat	atttacatat	66240
aatgactggc	aacttaacag	agttataata	gattattcac	ctgtatttgc	ctttatttgt	66300
gggtatacac	acatatatac	atgccttaaa	ctagagtaaa	atcatttatg	catactaaat	66360
caaatttgag	agtcccaaaa	ttttcaaatt	gtgtatggct	ggtctatatt	ttctaggact	66420
gtcctttctg	gtttaaatga	aattaaaaat	tgaattaatg	atattagtct	cttttaattt	66480
tctatttttt	tcatgattaa	aaaatattaa	tttccagcca	ggtgcggtag	ctcacgcctg	66540
taatcccagc	actttgggag	gctgaggcgg	gtggatcacc	tgaagtcagg	agttcaaaac	66600
cagcctggcc	aacatggtga	aaccctgtct	ctactaaaaa	tacaaaaact	agccaggcat	66660
ggtggcacgt	gcctgtagtc	ccagatactt	ggatggctga	ggcaggagaa	tcacttgaac	66720
ccaggaggcg	gaggttgcag	tgagctgaga	ttgtgccact	gcactctagc	ctggtcgaca	66780
gagtgagaat	ctgtctcaga	ggaaaaaaaa	aaattaattt	tccccattcc	cccacccacc	66840
caccaaaaga	ctccattgga	gttttatttt	acaaatgcat	ctgctcatct	acttcttttt	66900
aagtgcataa	actagtttta	caagcttgag	tttaaatctt	aactcctcaa	ttctttttct	66960
gacatagaaa	tatacaggtg	cattatgaaa	tagctaatag	tgactatttt	ctagggctgt	67020
aactcaatat	ttataagcat	aatgatataa	cctgctgaag	tttgacacgt	cagtatagtt	67080
cttttgttat	tctaagtcat	aaaggcagaa	tttggaaaaa	ttcacagctt	ttcaaatatg	67140
cagaagagga	aaaattgaga	ggaagcatac	taaaatttct	ttagccaatt	ttaatcaaat	67200
tgagtttgaa	acttacagga	ttatgcttca	aagcttgtaa	tgatcgtcaa	aagtagcctt	67260
attcaaaatg	acacactaat	ttctaccaca	tctgtattct	tctcattgta	agatgttaca	67320
tatacctatg	cttgaccaaa	tggacttcct	gctattttaa	gatattttc	tgtgttttaa	67380
gtctttctac	aaattttctc	aagcatttcc	ctttacctag	gatgttcttc	tttcactgca	67440
agtgaagaca	ttctaaaaat	tcctaaagca	cactaccaaa	agcccttcat	ttggatgacc	67500

caccttccta	tgagtctcca	tagttgcatg	tctgatggca	tttattttaa	ctctatgatc	67560
tgcttctaaa	ttagataaaa	gctctcagag	agaactatga	ccaattgtca	ttctgtttcc	67620
catggcacct	agtacagtac	tctgctcaca	ggctcaataa	gtaatgagtt	gagctacgtt	67680
tttttaaggc	agagtctccc	tctgtcgccc	agggtggagt	acagtggtgc	aatctctgct	67740
cactgcaacc	tctgctgctg	ggttcaagtg	attctcctgt	ctcagactcc	cgagtagctg	67800
ggactatacc	accatgccac	catgcctggc	taacttttag	tagaaacaag	gtttcaccat	67860
gttggccagg	ctggtctcca	actcctggcc	tcaagtgatc	cacctgcctt	ggcctcataa	67920
agtgctagga	caaaagtttg	ccattgtcat	gttacgatat	atattggttt	ttgtccatgg	67980
tttctggttc	atagctccaa	tatccctttt	tacagtcttt	tgttagaatg	tggggtgtgt	68040
tggacctcgg	ggcaggcctt	agaaaacaga	atctctcctg	ccttcctttc	acttgtcccc	68100
cgagggagat	tttttttt	tttttttt	ttgagacaag	acttccctgt	gtcacccagg	68160
ctggagtgca	gtggtgtgat	catagctcac	cgcagcctca	gcctcctagg	ttcaagcaat	68220
cctcccatct	cagcctccca	agtacctggg	actacaggca	catgccacca	cacctggcat	68280
tttttttt	tttttttt	ttgtagagag	gtttcgccat	gttgcccagt	ctggcctcca	68340
gctcctgggc	tcaagtgatc	cacccacctt	ggctcaaacc	accacaccca	accctgaggg	68400
agattctaat	cttccccacc	cttctgattt	tgagtcttaa	aaccccagag	aaggtcccac	68460
cctttgcact	ggggaaagga	atgctgatga	tcatgaagcc	tccataaaaa	ctcaggagga	68520
ttgagtctgg	ggagcttctg	gatagctgaa	ccagtggagg	ttcctggaag	gtggctcatc	68580
cagggaggac	ttagaagctc	cgtgcacttt	ccttatactt	caccctaagc	atctcttcat	68640
ctgtatcctt	tgataaacca	gcaaatataa	gtaagtgttt	cttgagttat	gtgagctgct	68700
tgaccaaacg	tattgaaccc	aaagagggtg	ttgtgggaac	cccaactcga	agctggttgg	68760
tcagaagttc	tggaggcctg	gatttgtgac	ttgtgtctgt	ggcaggagca	tcttgggaac	68820
tgagcgttta	atctacgggg	tctgacactg	tctccgggaa	ttaaattgga	ggacacccag	68880
ctagtgtctg	ctgcttgtta	ttggggagaa	accctcacac	atttggtcac	aagagagaag	68940
ttttctgttt	tgaatattgt	tgtgatgtga	gagcagagga	aaaatgcatt	ttggagaggt	69000
tttttcctac	acagccatag	gcagtgataa	gaatatgatg	cttttttcca	gaaaatgcta	69060
catgagacct	ttttataaaa	tctaattttc	ttcaactgag	tagcatttaa	actaaaaaga	69120
ataggttatt	tcagtgtctc	tctgtaataa	catcttacaa	tcacttgtca	gaccatgaaa	69180
taatgttcta	gaaaatcagt	gaaagagctt	tttaaacttt	gtgacatttg	acttatattt	69240
attaccaaaa	agcctgaatt	attattcagc	acattataat	tttatttaaa	atttaaatta	69300
gagatgaaat	acttgtaaat	gtttataaga	ttggtagctg	tgtgggcttc	cagagttaga	69360
aatgcctctg	agaaaagatt	tagagttttg	aaagtatttt	gaaaaaagaa	acagaaagga	69420

atacaacatt tttcccagca	ctgcttcaat	aatgcagtct	tcagcatcat	ctcaaagcaa	69480
taactgcagt acagatgaga	tcagccagtt	ttttttccc	ccttatctgc	agtgatttta	69540
ccatctcttc atgctacatc	ttaccacaaa	gagaacattg	aaacatggga	aagagtttgc	69600
tttgatttca accagaatgc	caactcattt	ctggggttct	aaaccataac	cttttttagc	69660
agagcagtgt agaatttta	tacgatacca	taaatggtcg	gcctgagtaa	cattttaact	69720
gtaagtcaat acctttgaag	agacatgtct	gacaactcag	agttctattt	tctccatgtg	69780
tgactaaagt accttttcta	ttaagagatc	aaccaccatt	tccttctact	ctttgttctc	69840
cccttaaata aagttaattc	agcttcaaaa	tattttatga	tcttgattac	taactgtggg	69900
tctttagaag acaatgtaaa	acatttccat	gctgtgaata	ttagagctag	tatacttgga	69960
gtttggctag tatttctggg	ggaggtagaa	gaggagacat	agagtacaaa	tgagtatttt	70020
taaagccacg ctgactaaaa	caaaaggaat	gttttataca	tgtttatttc	atagtacttc	70080
tttgaaacag gtcgggggga	ggagagttaa	aatattgctt	tgaattttaa	tçaaagttct	70140
ttcatggaat tgttggtgct	tctggtaata	acagttctat	aatctttgtg	agttaatctg	70200
aaatgctctt tttcttcatc	gtaattcagt	gcttgtctta	actggtggac	ttattttatg	70260
gtattatgtt tataagatgg	caactaaaat	cagattttt	atactcctaa	aagatggata	70320
cgatagaggg gaaagggggt	aagctacaac	ttttaggttg	ttggtgatat	ttgaagtgtt	70380
tattgcttct gatttacatt	tatatattat	attcaaatat	aaactttaaa	agtaatgatt	70440
tgccacaggt taaagcagaa	catttatatg	atatttccta	gatgttttcc	tctacaatcc	70500
tgtttttgtt ctatgaaaaa	tgccataaac	ttggatcatt	cactaattaa	tttgaagctg	70560
ttttcaaaca aaaagctaat	tcatctttta	gcggatttag	ttataatcgt	gataacagat	70620
gtatagctaa gtctgttgga	caaactgttg	gtcacatcaa	tcttaaatgc	atcatacagc	70680
gtgatgtgaa tttatgatat	ttcctaggta	atgttaaggt	tatatggaaa	tttctttgca	70740
ggtagttaag tcttattttg	aattcaaatg	ttattttcaa	tacatacgtg	gaagtgtatt	70800
ttttgtttgt cctaaatgtt	tagatttttt	gagtttacaa	tttttttgtg	tgttctttct	70860
ttgttcttgc ccctccctgc	attctctatg	aagatacatg	tcagcactat	gcaacactaa	70920
aataacaatc aaccaaatta	tatcctatga	acagaccttt	ctcttcattt	caaaggcata	70980
acttggatgg tctgtttagc	tcatggtgaa	aaaaaaaagt	tatgattttg	tatttgggca	71040
aagtacaggt gaagagcgtg	aatcattaga	acagcaatat	aactggaaga	agatagttta	71100
gtttttacaa gttaaatttg	aagctaaagc	aaaacttgca	taggtatgtg	tcctttgctc	71160
ttgaaaatga actcagaact	ctacatctga	gtggttttat	gaatttatac	tctcctagtc	71220
cacaggttct catcagtgcc	tcaagatcta	tgcacagatt	aaaattacat	aagatatcat	71280
atactacatc tgaattaggg	ttttccaaag	tatgctattc	catggaaata	ctgtttattc	71340

agggtgctcc ataaacaatg	atcctgtgtt	tcattatgtc	caggaaatgc	cacacagcac	71400
ctttccagac atcctatcat	catattaaag	actttgaggc	catgcattaa	agaaagtttt	71460
aaattagaaa aaaaataagt	tttcttgctt	gagcacagaa	ctttattttt	tctcaggctg	71520
gttctccttt tttaaaatta	cacgttaata	tcccaaagaa	ccagtcccat	agatagatat	71580
cacatatgat aagaatctgt	ttcaatggtg	ttggtgtaca	tgtgtgttca	ggtacctaca	71640
cattaggaca catctctagt	ttattaatac	tgcacttata	aagagacatg	gtagagacat	71700
caagaagaca tcattttagg	gtggacacca	ttgcctagga	cctgcttctt	aatgtcaaaa	71760
attcagaaac ccaattttat	ctctcccgca	gagttgactc	gagtgaagga	aattgagttg	71820
ttttaattaa actcacatga	gattgatgtt	taaacaaaat	tgtaagttta	tcaattaata	71880
atcaagaatt ctgattttta	attttcaaaa	tattatttat	gtccactgtc	cagggtactt	71940
getttaaggg cacceagtga	ttcttgaaga	tgaagagtct	taggaatatt	tattttctag	72000
acctcaatga agaaagcttt	ttaatcatcc	tgccccatag	aagaatttat	gttcctagtg	72060
atgtgatcat attggccaat	ccagtgtttc	ttttccaagg	acagtactga	taaggagcac	72120
caaatctacc tctttgtcct	gaacagatca	tctccatcta	ttcatagttt	ggctcagaag	72180
ttggacaagg ctgcatttta	tatctacttc	ttcctcatgt	cggctatgcc	atgccgtttc	72240
gttcttttag cttgtttact	tatgtgtaaa	atgaggtaaa	aattacaccc	ttcaaaccga	72300
aagtggtctt cgtgatgagt	tatttaattg	aagccccagt	agatatttat	cattgccagt	72360
tttagagaat catagcattt	tagaacacaa	gatgacctta	gatgtaatca	tgttcattcc	72420
cctcgtatta taaattttta	aaaattgaga	tgtggggtgg	ttgtgacttg	ctcacaaacc	72480
cacatttaga accaaaactc	agcattcttg	ttctgactgt	gtctatgtcc	tgtaggtata	72540
tgtcttgtct tctcagttaa	ataattaaag	attcttaaag	atagagacca	tattttatgc	72600
aacttctgga tcccataaat	tatgtttcca	gaagaacctt	ttgtaatgaa	aaaatatata	72660
taatgtctat attatatata	tagtctatta	ctattttgat	aatctaaaac	atgctatata	72720
attttaggcg atcttaacct	atttatcaga	gcttttcaga	tcaaagaaaa	ttagagtaat	72780
cttcatcatg tatgggaaca	ttgatgtatt	tttctgatga	acacatggtt	atatgatact	72840
cttttaaagc atctgtatta	ctctttcttc	tgatagactg	gttattttgt	ttatgttatg	72900
aaataatgtt ggcagctttt	cattagaact	gatacatatt	gaaatttctt	aaattgatag	72960
ctcatggatg tgcagttggt	ttaatggcat	ctccattatt	aatctttaag	aagatcttca	73020
tcttactctc aaaaataacc	gtaatatcct	acaaattaac	taaaacatga	tcattgctag	73080
ttgttccaaa ataggaagaa	taaaaatgac	cagattgtta	tggtaaccag	ttgattaaga	73140
ctagatcaat aggaaaacga	atttattcaa	gtctgtacaa	aacttctcca	aaacatagat	73200
ggcatgcctt ttgaggcaat	ggtagggaac	aaaatatttt	tgagaaggag	cagattttag	73260

ggatacagta	cagtacataa	ttgccaaaat	gcttgtgtta	caaggattcc	tggtacagag	73320
tttttaaata	aaatgctagg	tatgtcatgt	ttgtttcaca	ttaatattgt	agagtcccct	73380
ggggatgtga	caatttagtt	gaccaactct	aatatagtta	atttctacct	tttgatagct	73440
ttgtggggtt	ttgtttgttt	gttttttgtt	ttgccattct	tgattttagg	gctgaagata	73500
tgagacaatg	tatcaaacag	taaagaatta	tgcattgatt	aagatcatct	tggtgaatta	73560
gatgtttatt	atataactcg	actttaagac	tttgttcaga	tctcactatc	ttaatgagat	73620
ttaccctcat	tatatagtat	ttaatagggc	aaccactccc	cgatactctt	gattcctcgt	73680
tagctgccct	attatttctt	tgtttttccc	ttagcactca	acattttctt	accacaccac	73740
ataatttact	ttcttattgt	gtttattgtt	tttctcctca	ttagaatatc	aggtccaaga	73800
agacaggagt	atttatctct	tttgttcagt	ggtgtgttac	tggtgactac	tagagtgcct	73860
gacacataga	atatgttcaa	taaatattcg	ttgcatgaaa	gaatgaatac	cttgacagat	73920
tatttttata	actctaccag	tgtcattata	taactacact	gaatgattat	gagccctcct	73980
agaaattaca	taaagttctt	atatattatt	agaacccatt	tgttggcctt	atgtaatggt	74040
tctattggaa	aaatcatacc	tccgtatata	aaaatgaaag	tattttttt	ctacaattgc	74100
ccctcatata	tactattata	gtctccttca	ccccattcag	ccattaatgt	cttcttgacc	74160
aggtaacata	atttttacag	caccttttgg	ttattagaac	aattttattt	gtctttcaaa	74220
ctcagtccta	ttcattttaa	aactcccaac	tcaagcctga	gtcagtgttc	ttctcccagc	74280
acaaacttaa	acactggctc	caacccttgg	agttgaaagt	aggggagcct	cactcctgat	74340
acctcccctc	cccctctacc	gtgagcacca	gtgcctagga	gattgggcag	gactgaggaa	74400
ggatgaaaag	gagctcaggg	ctccttaagc	acctgaacaa	gactggagga	ctttggatgt	74460
tgctattttt	ctgcctggca	ttgactggct	attggacgcc	ctctgtgagg	caggcatccg	74520
aatactggct	ttcttgacat	atatggagcg	ttctttagag	aggcctacaa	gggctctcac	74580
tgcacagtac	cctgatagga	gagatctgtc	cttatttctt	ctatcaccat	agctacttca	74640
gctttgcctg	ctgagtccac	cccacagtct	ctttctgctg	gggcatcctt	gccctggaca	74700
gattcttaga	gcatgaccaa	gcctaaacaa	cttctgcaat	ttttctaagt	acacttttat	74760
ttaattgaaa	gtttcaagca	ttggataata	taaatgtatc	ctagacagtg	ttccagtaag	74820
gacaaccagc	tcacaattat	ccattctaat	aatgggagtc	aactgaaata	gaaaaatata	74880
gatttttaaa	ataatttatg	agaaacaaat	atttgtgaca	cagtacattt	ctaattatgt	74940
ttatctttat	tattattatt	atcgtttcct	tcagtacaca	ctagtttggt	gagacttgga	75000
gaaaggccag	gaataagccc	aaattcaaaa	aacaattcca	ggattaacag	ataagtggat	75060
aatagagaat	tgacaaaaga	tcatgctcat	tttaccaata	agaaactggt	tggttaactt	75120
gggttgcaaa	ctgaaagcag	atttatacta	aactggcagg	tgtctccaga	tcttaaatgc	75180

agatctctat	ctctgagtta	atctgcctct	catcttcaat	ggcattcctc	tgaatttttc	75240
tccctcaaat	aatctatata	ttattaaatt	ttgtttatac	tgccatttta	agaaacagat	75300
tttaaaactt	taaacatggg	aattaaatag	gccctactga	ggattatgaa	aaacctgaca	75360
aaacctccta	tgcacatgat	ttagattagg	agcagtgcac	acgctgtatg	tgtatgtgca	75420
gctacttgtc	caattaacac	cttttcagaa	atggaggaac	tttctctgag	gactttgaca	75480
tatttgtgtg	ttcagcagtc	ctttttcttt	ttttttattt	tttattttt	tattattata	75540
ctttaagttt	tagggtacat	gggcacaatg	tgcaggttag	ttacatatgt	atacatgtgc	75600
catgctggtg	cgctgcaccc	actaactcgt	catctagcat	taggtgtatc	tcccaatgct	75660
atccctcccc	cgtcccccca	ccccacaaca	gtccccagag	tgtgatgttc	cccttcctgt	75720
gtccatgtgt	tctcattgtt	caattcccac	ctatgagtga	gaatatgcgg	tgtttggttt	75780
tttgttcttg	tgatagttta	ctgagaatga	tgatttccaa	tttcatccat	gtccctacaa	75840
aggacatgaa	ctcatcattt	tttatggctg	catagtattc	catggtgtat	atgtgccaca	75900
ttttcttaat	ccagtctatc	attgttggac	attagggttg	gttccaagtc	tttgctattg	75960
tgaatagtgc	cgcaataaac	atacgtgtgc	atgtgtcttt	atagcagcat	gatttatagt	76020
cctttgggta	taaacccagt	aatgggatgg	ctcagtcaaa	tggtatttct	agttctagat	76080
ccctgaggaa	tcgccacact	gacttccaca	atggttgaac	tagtttacag	tcccaccaac	76140
agcgtaaaag	tgttcctatt	tctccacatc	ctctccagca	cttgttgtgt	cctcactttt	76200
taatgatcgc	cattctaact	ggtgtgagat	gatatctcat	tgtggttttg	attttcattt	76260
ctctgatggc	cagtgatggt	gagcattttt	tcatgtgtct	tttggctgca	taaatgtctt	76320
cttttgagaa	gtgtctgttc	atgtgcttcg	cccacttttt	gatgggattg	tttgttttt	76380
tcttgtaaat	ttgtttgagt	tctttgtaga	ttctggatat	tagccctttg	tcagatgagt	76440
aggttgcgaa	aattttctgc	cattttgtgg	gttgcctgtt	cactctgatg	gtagttcctt	76500
ttgctgtgca	gaagctcttt	agtttaatta	gatcccattt	gtcaattttg	gcttttgttg	76560
ccattgcttt	tggtgtttta	gacatgaagt.	ccttgcccgt	gcctatgtcg	tgaatggtgt	76620
tgcctaggtt	ttcttctagg	gtttttatgg	ttttaggtct	aacgtttaag	tctttaatcc	76680
atcttgaatt	gatttttgta	taaggtgtaa	ggaagggatc	cagtttcagc	tttccacata	76740
tggctagcca	gttttcccag	caccatttat	taaataggga	atcctttccc	catttcttgt	76800
ttttctcagg	tttgtcaaag	atcagatagt	tgtagatatg	tggccttatt	tctgagggct	76860
ctgttctgtt	ccattgatct	atatctctgt	tttggtacca	gcaccaggac	catgctcagc	76920
agtccttttt	caagagatgt	gaagtacatc	ttcacagatt	tttaaatatt	tagatagaaa	76980
gttcttacag	aatgagaaat	aaaaagttag	ctttgcctta	aaaatattaa	ttcaccttat	77040
attctccata	cttaatccat	ataggaaaca	ttatattcca	ggtctaacat	gtggcttgct	77100

tacattaatt	ttgctgttga	aaaatatatg	ttttggatta	tgtttttaaa	attttagctt	77160
taatatttaa	atattaaata	atgttaactt	taaattaacg	aagaatagtt	tttaatttta	77220
taagaaatgc	cctataaaaa	acactttctt	tacctcaaga	gtgagacttg	gcaaccatac	77280
caatattaca	tagtaatttt	aaagtcaaac	gaaatggaga	gaacttaata	gatacagaag	77340
ataagaattt	aaactaacat	tttgctcggg	attttagaac	actatacaga	gggaaattta	77400
gtagacaata	atgaagtcca	tagcattgca	cacatcttga	aataagtgta	taattgacac	77460
aagctatgtc	ccatgttgat	aggaagaatc	caaaatagtt	ttggagaata	atgccatcta	77520
tgcaggaggt	gtggccatat	acatcatctt	tactcagtgt	ttttcatgtc	aataaatatt	77580
taattcctaa	cactctgaat	tactaataga	ggtgaagcct	gtcagtggaa	gtgacagaga	77640
gatacacagt	gattcccgta	agtttgatcc	tgaaacacag	tgcctttagc	agatatagtt	77700
cccataagca	agcagtctga	agtatttacc	ctcagtaatc	tgaatgtata	aataaacagg	77760
attcatgatg	gtagagtaat	ttatatatac	ttgtagtatt	aggacatgca	aaacttattt	77820
tatggaaaaa	aataatttac	taccttatag	tatggcaact	atacaaatct	ataaattgac	77880
tcttttgtcc	ccttgaaaaa	aagctgacat	aaaatttaaa	tgatgtgtat	tttttcttag	77940
agcaataaaa	gatatacccc	cacctagaaa	agcaataaac	caaaaaataa	aacaaaaaca	78000
aaatcaagcc	ctcttcacaa	atttgagcat	atctacagct	ttatgtggtg	agagatacag	78060
ctaccattct	tgagtaatcc	gaagagtcaa	atggtatgga	gcaaaattac	agtcctaaat	78120
gcatattggt	gaaatgagat	gctgatccat	ttgcacacta	atgtgctatt	tttaagtcat	78180
gcatcatagc	atcttcaaag	aggcctgtca	taattatgat	ggattagact	gcagagtcag	78240
tcctagatgc	agtaattgtt	tcacagatgc	tgccaatgcg	actagaattt	ataataaatt	78300
attttcagag	aggcgggaga	aggaacaaaa	tcaaaggaaa	actgctgtgg	ctaaaacctg	78360
ttttggtctt	aggaaaccaa	aatgttagct	agtagtcaaa	aggccagtat	tttcaactga	78420
gataaacatg	cttcattaat	acatgcctct	gacatagaag	ataaaggtta	acataattga	78480
catatcagcc	agtctctctc	tctctctc	tctctctc	tctctctc	tctctgtctc	78540
gtagcttatg	aaaatttatt	ctggggcatt	agctgaaatt	attgagtggc	catataattg	78600
ttgcatgttt	ctatttatgt	taaattgcct	ggttataatt	tgacctttag	aatttctgaa	78660
aaaaatggtg	gtatttatag	taaatagaaa	tattcttttt	ggttccttgg	aagcccatgc	78720
attacaaaga	acattagatt	attggaataa	aaggatagac	atacataata	tgactagtgg	78780
gatctaaatt	ataacctttt	aaaattgtaa	tttaattagt	ctgtcattta	ggcaaatgat	78840
aatttctaaa	actgcctttt	tagacttaaa	aaaataccaa	agttcttata	actttagcat	78900
tatgttttgt	tcattcttaa	agtttaattc	actttgttgc	ctttttggta	aacctatgaa	78960
gaaatctcat	gctgcaccat	atagtaaaaa	atcgtgtgtg	tgtgtgtgtg	tgtgtgtgat	79020

ttgaataatg agctatgtgt	tatattttga	taagcaaaga	taagtttata	gtgaagcaga	79080
taaacatgcc atgtattttc	ctaggttaag	ggttcaataa	tcagaagagc	ttctacaact	79140
catttgcctt ctcactagtt	tttttgaaat	tgcgctctat	gagttttta	tgtggtgttc	79200
tctgtacttg ctgactactg	atgcacattt	ctccttaggt	cactggttct	cctccctcag	79260
caatgttgta ggtagctttg	atgaacattc	gttgtcagcc	ttttaccttt	gacttagtgt	79320
ttttctctca tactacggca	agaagaaatg	aagttaaatt	ttacaagagt	gacttgggtg	79380
gctgatatgc ccacattgac	agggacaaga	gctctagtct	tecectetee	tgtattccca	79440
tggcacttca gtagtctcat	tgcctcaaca	taaccacagt	tcagggcagt	agaggatgtt	79500
tgcatctttg tgttagctcc	atgccatggc	aactgcactg	agtgaggatt	caactcagtg	79560
cagcaggact gaaaaaataa	atgaactaat	gtgtcttgag	ctccaattct	ctgagtgaca	79620
ttatcagggg agattcataa	atcatcctca	aatattctag	agaaaaatca	tcagcagtcc	79680
agcattgcaa agataatctg	ggaaggtggc	aaagaaggga	tcagaataac	tctgtggcag	79740
cttcaaattc catgtcctaa	aagtttacgt	tttcttttt	attctatccc	aaaccacata	79800
aagaaatgat ttgttggcaa	aagacatgca	aaatgccctt	aatcatctta	ataattacag	79860
acctacagat acgtagccaa	aatacttgtt	ttttaatcct	aaaccttaaa	aaaaaagctt	79920
aaattgttgg ctaaatgtga	atttaataac	aaaacttact	cctttaatta	tgcacttgtc	79980
ttagtattgt gtggtgggaa	gagctttaga	gagetgeeag	agtgcttagg	cctagtccct	80040
gtgggagcct ctgttttggt	gcttcaccat	gggcagattc	ctcagttttc	acatctttaa	80100
aatgagaaaa tggtactaga	tccttgctgc	tactctgaaa	tgtttataca	ttgttaggac	80160
cattgttaca tattattact	tatatttgag	tgtcacctta	gaatttctta	gccgtgtgat	80220
atggtttggt tgttggctcc	tctaaatctc	ctgttgaaat	ataatcccca	gtgttggagg	80280
tgggggcctg gtgggaagtg	tttggattat	tggggcagat	ccctcatggc	atggtgctgt	80340
cctcctgata gtgagttctc	aagagatctg	gttaagggtg	tgtggcacgt	ccccctccct	80400
gteteettee eteeetetet	ccttccctcc	ctctgtcctt	ccctccctct	tectecetet	80460
tectetete ttttetecea	ctccagccat	gttagatgcc	tgctcccctt	ttgctttctg	80520
ccatgattat aagttttgta	aggcctcacc	caaagcagat	gccagtgctt	tgcctcctat	80580
acagcctgca gaaccatgag	ccaattaaac	ctattttctt	ataaattacc	cagacagcta	80640
tttctttata gcaactcaaa	aacagcctaa	catacctttc	aaaaggttaa	aatgctattt	80700
agtcattcca gaagcaagat	ctctttgtcc	agaattctgg	aaataaagat	gccaaaataa	80760
tatggcatgt atttgatctc	agggaatttt	catttttca	aaaggaggaa	aaaagagtaa	80820
tataattttt taatattttg	gtagctctaa	cagtgcttag	aaccagttct	caagagcaca	80880
ttgtgaaact ttcaggaatt	gcatgagctg	taggttgata	acatgatgcc	agctataacc	80940

cataagagca	tctcctgagg	aatatgttaa	aaactgtatt	cattcttaaa	ttttaactaa	81000
		acatcatgaa				81060
caggttttcc	caaaggttct	tctgtctctg	ttcttgtata	taaacttcgt	aaccagttta	81120
acaaccccaa	aaaaggcctt	aattttgatt	ggccagcatc	ctcttaggaa	agacattgcc	81180
atcctcttgt	aaagttgctt	ctcattctaa	aataagaatt	gtttccatct	agggaatgat	81240
ttttataggt	agaatcttat	ttggcatgga	ctcttttgca	tacagtgaat	tacaatgtgt	81300
agaccttcaa	tagcaaggtg	tttgaatatt	tagttgcaca	atagagcagt	atcttaatat	81360
tgtataccat	attaattttg	tgttctctgg	tgtaagaaaa	aatagaagga	tgtttaattt	81420
caactaaaaa	atcaatcatg	ataattcaaa	atatttctga	tgagtcattt	ataagagcag	81480
atatgaatta	aaattatatt	tttgttctta	gtctctgaga	agcaaaaatc	acacaaataa	81540
tctccatagc	aaaaatttat	atttatctga	aaaacagttt	aactttgaaa	aacttttctt	81600
tgcaatcatt	taaattcata	aaaaaaattc	attaactcta	ctttcactga	atagcaggtg	81660
aatagcaggt	caatatctac	aaaaattcat	ctttgaagat	ttttttatct	tacgcaaaaa	81720
ttattgactt	catgtagact	ttttatgcaa	gcttgaaaac	actgtgtaaa	tgaccccata	81780
aaaactacag	catgaaagct	ttttcagtat	ttctacaatg	agcaaaatgc	ataggtctca	81840
tttccttctc	ttttattaag	caaaataata	ctttatcaac	atcagtatgc	aagcactaag	81900
agcttgaaag	agtactgtgc	aagtgggtta	ctggatcata	atattccagg	gtatgtatat	81960
aaaaagtgtg	atttagcaca	tattaaagta	aaagaaaata	ttgcattttt	ctccttctaa	82020
aatggcagtt	tattagttta	aatttcctga	aataagattt	aaagaccaat	aacaaatttt	82080
cctcattcta	acatataact	ttcctgccct	tcttgtgaaa	aagttaacca	ttaaactttt	82140
cacacaaatg	gttgtataaa	ggacttgctg	tcacagacaa	aatagttctg	tataatgttt	82200
aaaaatggcc	attgtgttta	aaactccata	ttgaaataca	tttcttttt	agtcaccttc	82260
atttcttagt	agctattatt	atactcaaag	gatttgccct	tgacacttta	aagaatgtcc	82320
aaaattatgt	ggaatggatt	ataataaaag	ataatatatt	aaatgcttaa	aatattttat	82380
accttagaaa	gtagaaaaac	atgtattatg	tacagatcct	acaaatttta	tataatttat	82440
cataaatgta	cacatgtata	tacatgtaaa	taccttttga	ttgctctgta	tatgaattgg	82500
tgttttacag	ttaccaaaag	aaaagtgcct	ttttttggta	gtatctggac	aggtaattga	82560
ctttctttct.	gcaggattta	tttagattta	tgtctatgct	ccttaatttt	tgaaaagtga	82620
tagtgtcctg	attttggaga	agcctctcat	atcaaagact	acaaatcaat	tttcatgatt	82680
ttaaaaccta	aagtttcttt	attaggtgtt	attgatgatt	aaaagccatt	gtctcaccca	82740
aattttctac	ttgttcaata	gaaacataat	gtaagccaca	tggaatttta	cattttctag	82800
tactcacatt	aaaacaagtg	aaaaagaaac	aaattgatga	tacgtttgat	ttaacccaat	82860

acatttaaaa	tagttcaaca	tgtattaaat	attttttgag	tatttttgtg	tttttttaac	82920
actaaatctt	tgaaatccaa	actaaatgtt	ttcatagata	ccacatctca	atttggacta	82980
gacacatttt	aagggctcaa	tagctatatg	tgactagtca	ctgttggatg	atgtatatct	83040
agaccatctc	ttaatgtatg	gaaggaagta	aatctagcag	aaataaaaac	atcactttgt	83100
tttctttgtc	caatatgagt	tataacttta	tttttttgag	acagagtctc	gctctgttgc	83160
caggctggag	tgcagtggcg	cgatctcggc	tcactgcaac	ctccgcctcc	tgggttcaaa	83220
tgattctcct	gcctcagcct	cccaagtaac	tgggactaca	ggcatgcgcc	accatgccca	83280
gctacttttt	gtatttttag	tagtggcggt	gtttgaccac	gttggccaag	atggtctcga	83340
tctcttgacc	tcgtgatctg	cétgcctcag	cctcccaaag	tgctgggact	acaggcgtga	83400
gccaccgtgc	ctggcctttt	attttattta	ttaagtaata	cacatgcttg	gaagttattt	83460
aaaaaaaaa	aaaaggaata	gttaaaagta	atcccctcc	cagtgctttt	ctccagctgc	83520
cccattcctt	ttcctggagg	caaattatta	tggccagttc	attatatatt	ctccagagat	83580
gattttttt	tattttacaa	aggtataggt	tgtagcattc	ttatataaac	tgttgtgtag	83640
cttcctttat	tccatttaat	tactgggaga	tacttccatc	tgaaaatata	gagatactaa	83700
ttttaatagc	tacatggtat	tatattgtgt	ggctgtacca	taaattattt	aacataaccc	83760
ttattgatgt	aggttgtttc	taacctttta	ttactgcaaa	agattgtgcc	tacatcattt	83820
aatgtatata	tgagcatatt	tgtcagatat	atatatatat	attttttgag	acagtgtctc	83880
actctgtcac	ccaggctgga	gtgcagcatc	acaatctcac	ctcactgcag	tgtccacctc	83940
ctgggttcag	gtgattcttc	ttcctcagcc	tcccaagtaa	ctgggattac	aggtgcctac	84000
caccatgccc	tgctaatttt	tgtatctttt	taggagagac	gggatttcac	catgttggcc	84060
aggttggtct	agaactcctg	gcctcaggtg	atccactggc	cttagcttcc	caaagtgctg	84120
ggattatagg	cgtgagctac	cacacccagc	ctgtcagata	aattcttaaa	agggtcaagg	84180
aaagtgtttc	tgaaatttta	tacatattgc	caaattgtca	tcctacatga	tatttgtggc	84240
agttttgact	ctcaaaagcc	acatgagaga	gtatctgttt	tcccacatgc	ttgccaaaca	84300
tagtatagta	tcaagcttac	tgatcttcac	taattggaga	agagaaaaaa	actgtacctt	84360
gttgcagttt	taatttgcat	ttctttttat	gagcaatagt	agatatette	ttaaatactt	84420
aagagccatt	cacatttcat	tttctatgaa	ctgtccatgt	cccttgtcca	ttttttagta	84480
tgtggttatt	catttatttg	taggcgtcct	atatgttaag	aaaagtttta	tacaactttt	84540
aactctttt	acatgtttat	tttggcacat	ataaatttta	gcaaactttc	ccatctttta	84600
tgacttctag	attttgtttc	acaaaaaaag	agcttagcca	gtcattagat	ttttttaagt	84660
tttctcagat	tgtttttaac	ttttgggggg	gttttatttc	ctgtattcaa	atattaaatt	84720
catctagaat	ttatcttaaa	gtgtaaggga	atgatcccac	tttatcattt	tttcaggaga	84780

ttacccagtt g	ttctaatat	caagtatgtc	tttgaaatcc	catccttatc	ttgtagcata	84840
tttctgtggt t	tgggtctat	ttttgaacat	tctgttttat	tccattgatc	atattaatat	84900
tatatgtgca a	acacaaact	attttaagta	tagtagcttt	gttgctttta	aatatctttt	84960
aatttggcta c	taggcccca	tacaattctt	tttcagaata	ttcctggcta	cccaatttgt	85020
ttatttttcc a	aatgaactt	tggagtcaac	ttccttaatt	cctcaaaata	ttctgcaagt	85080
acttttagta a	gagtatatt	aagtgaataa	tttgacaact	atctaagaac	atattatagc	85140
ttttcccttg t	tttgttttt	gtacttatat	attagtatag	ttttaaagtt	atattaaaat	85200
aggtcttcca c	attttaaaa	acttattcct	agtgtattaa	tttcttctat	tataactaca	85260
gtattttatt c	cagtaaaac	ttctgactgg	ttgatgctct	tataaatcaa	ggctataaat	85320
ttttcttcag c	tactttgct	gaattctcac	aaactgtaac	cattttttac	ttgattctct	85380
aggttgacca g	tatataatc	tttttatctg	taaacaataa	ctttagcgtt	gctttcaaca	85440
tctatattct t	attctattt	catttttctt	gtttatcaag	aaatagctgt	tttaatagag	85500
ttgtttttcg c	ccaaaaaga	aaatagtctt	tctttttcta	cttatatctt	taaaataaat	85560
gtaatgagaa a	gactgtggg	aaaataaagc.	agacacctta	tacaatggat	taatttttt	85620
agtgccattt c	ttctggctt	tctctattat	tgggactctg	aaatcttcgt	tagtactact	85680
ctcaaaaatg t	tcgaatgaa	tgcaatcaga	ttcaagggta	caagtgcagg	ttatataggt	85740
gaattgcatg c	cttgggggt	ttggtgtaca	gactattttg	tcacccaggt	aataagcgta	85800
gtacttaata g	gtagttttt	tgatcctctc	ccttctccca	tcctcaaagt	atccctgctg	85860
tctgttgttc c	ccctctttg	tgtccatgtg	ttcttgctgt	ttagctgcca	cttaagagaa	85920
catgtggtat t	tttctgttc	ctttgttagt	ttgtttagga	taatggcctc	cagctccatc	85980
catgttgctg c	acagaacac	gattttgtgt	ttctttatgg	ctgtgtagta	ttccatggtg	86040
tatatgtaac a	ctttcttta	tccagtctac	tacttacgga	catttaggtt	gattccatgt	86100
cttcgctatc a	ttaatagtg	ctgtgatgaa	catacgtgtg	caatatgcct	ttatggtaga	86160
atgatttata t	ccctttggg	taatatgccg	aataatggga	ttgctcggtc	agatggcaat	86220
tctaagtcct c	tgaaattac	cgcactgctt	tccacaacag	ctgaactagt	ttacattccc	86280
acaagcaata a	ggggataag	tgttcccttt	tctctgcagg	aatgattaat	tcttttagag	86340
agtcaaagat g	gaatcctag	ggaagatgat	atctgaggca	ggtttagagt	cattgggcaa	86400
ataaggggat t	aagaaggca	ttctaggcag	acagaaaacc	aaaggcatga	agctctgaaa	86460
cagcttacta te	gtttggata	tttataagct	gttgttattg	ttggagtata	aactgtaaga	86520
gagagtagga g	gacagaaaa	aacagcctgt	atgcgggggg	aagaaaacat	ttaaacagaa	86580
attctcaaaa g	atttgggca	gccagcccct	ctagagaaaa	acatagaatc	acctagaaag	86640
ggtttttcat a	aagtacact	tttcatcacc	cctattctgt	cacctggaat	attgataaca	86700

ctgaagggag	tgtgccttat	ctctcaggtg	tatttggatg	aaatagtttg	agaaccatgc	86760
aggcaagttt	aagccagtgt	gttaaagaga	atatgacatc	agatttgcat	tttacaatct	86820
tccttttgat	aacaaaggga	accttaaagg	gctggagggg	aagggcagac	ggggctaggg	86880
gaggagaacc	cttttaaaaa	gctactgcag	gtggggtgcg	gtggctcaca	cctgtaatcc	86940
cagcactttg	ggaggccaag	gcaggcagat	cacctgaggt	caggagttca	agaccagcct	87000
ggccaacata	gtaaaacccc	atctctacta	aaaatacaaa	aattagctag	gcatggtagc	87060
aggcacctgt	aatctcagct	acttgggagg	ctgaggcagg	agaattgctt	gaacctggga	87120
ggcagaggtt	gcagtgagcc	aagattgtgc	cgctgcactc	cagcctgggc	aagagagtga	87180
gactccatct	caaaaaaaaa	aaaaaaaaag	ctactgcagt	agatcaggag	gaggcacagt	87240
gataaagaga	agatctgagc	tatgaagtgg	cagtcaagat	gattaaagga	atatatagga	87300
agtacagttg	atagaactta	gcaagtgatt	aggtaaatga	agtgctagag	aaaataaagg	87360
ggatatttt	caattgtttt	tagcattttg	gcaaaaaatt	atttaggaat	gaaattgatg	87420
ctagtaacta	agagtatgaa	cttcccacat	tagctggtaa	ttttgatcac	ccttgttctc	87480
catgaccata	aatattttag	agttgctatg	aagacaagaa	tgtttatttc	ctgagtagct	87540
gtcagttgtc	actatgaaac	atgaaaataa	atatcagttt	gctatgtcta	ggtattccga	87600
tatttatcca	caattattcc	ttaagatata	ttagtatttt	tatagataga	tagatagata	87660
gatagaaata	aacacatttt	aatttttgtt	tccatgctct	ttagaattca	actagagggc	87720
agccttgtgg	atggccccga	agcaagcctg	atggaacagg	atagaaccaa	ccatgttgag	87780
ggcaacagac	taagtccatt	cctgatacca	tcacctccca	tttgccagac	agaacctctg	87840
gctacaaagc	tccagaatgg	aagcccactg	cctgagagag	ctcatccaga	agtaaatgga	87900
gacaccaagt	ggcactcttt	caaaagttat	tatggaatac	cctgtatgaa	gggaagccag	87960
aatagtcgtg	tgagtcctga	ctttacacaa	gaaagtagag	ggtattccaa	gtgtttgcaa	88020
aatggaggaa	taaaacgcac	agttagtgaa	ccttctctct	ctgggctcct	tcagatcaag	88080
aaattgaaac	aagaccaaaa	ggctaatgga	gaaagacgta	acttcggggt	aagccaagaa	88140
agaaatccag	gtgaaagcag	tcaaccaaat	gtctccgatt	tgagtgataa	gaaagaatct	88200
gtgagttctg	tagcccaaga	aaatgcagtt	aaagatttca	ccagtttttc	aacacataac	88260
tgcagtgggc	ctgaaaatcc	agagcttcag	attctgaatg	agcaggaggg	gaaaagtgct	88320
aattaccatg	acaagaacat	tgtattactt	aaaaacaagg	cagtgctaat	gcctaatggt	88380
gctacagttt	ctgcctcttc	cgtggaacac	acacatggtg	aactcctgga	aaaaacactg	88440
tctcaatatt	atccagattg	tgtttccatt	gcggtgcaga	aaaccacatc	tcacataaat	88500
gccattaaca	gtcaggctac	taatgagttg	tcctgtgaga	tcactcaccc	atcgcatacc	88560
tcagggcaga	tcaattccgc	acagacctct	aactctgagc	tgcctccaaa	gccagctgca	88620

gtggtgagtg	aggċctgtga	tgctgatgat	gctgataatg	ccagtaaact	agctgcaatg	88680
ctaaatacct	gttcctttca	gaaaccagaa	caactacaac	aacaaaaatc	agtttttgag	88740
atatgcccat	ctcctgcaga	aaataacatc	cagggaacca	caaagctagc	gtctggtgaa	88800
gaattctgtt	caggttccag	cagcaatttg	caagctcctg	gtggcagctc	tgaacggtat	88860
ttaaaacaaa	atgaaatgaa	tggtgcttac	ttcaagcaaa	gctcagtgtt	cactaaggat	88920
tccttttctg	ccactaccac	accaccacca	ccatcacaat	tgcttctttc	tcccctcct	88980
cctcttccac	aggttcctca	gcttccttca	gaaggaaaaa	gcactctgaa	tggtggagtt	89040
ttagaagaac	accaccacta	ccccaaccaa	agtaacacaa	cacttttaag	ggaagtgaaa	89100
atagagggta	aacctgaggc	accaccttcc	cagagtccta	atccatctac	acatgtatgc	89160
agcccttctc	cgatgctttc	tgaaaggcct	cagaataatt	gtgtgaacag	gaatgacata	89220
cagactgcag	ggacaatgac	tgttccattg	tgttctgaga	aaacaagacc	aatgtcagaa	89280
cacctcaagc	ataacccacc	aatttttggt	agcagtggag	agctacagga	caactgccag	89340
cagttgatga	gaaacaaaga	gcaagagatt	ctgaagggtc	gagacaagga	gcaaacacga	89400
gatcttgtgc	ccccaacaca	gcactatctg	aaaccaggat	ggattgaatt	gaaggcccct	89460
cgttttcacc	aagcggaatc	ccatctaaaa	cgtaatgagg	catcactgcc	atcaattctt	89520
cagtatcaac	ccaatctctc	caatcaaatg	acctccaaac	aatacactgg	aaattccaac	89580
atgcctgggg	ggctcccaag	gcaagcttac	acccagaaaa	caacacagct	ggagcacaag	89640
tcacaaatgt	accaagttga	aatgaatcaa	gggcagtccc	aaggtacagt	ggaccaacat	89700
ctccagttcc	aaaaaccctc	acaccaggtg	cacttctcca	aaacagacca	tttaccaaaa	89760
gctcatgtgc	agtcactgtg	tggcactaga	tttcattttc	aacaaagagc	agattcccaa	89820
actgaaaaac	ttatgtcccc	agtgttgaaa	cagcacttga	atcaacaggc	ttcagagact	89880
gagccatttt	caaactcaca	ccttttgcaa	cataagcctc	ataaacaggc	agcacaaaca	89940
caaccatccc	agagttcaca	tctccctcaa	aaccagcaac	agcagcaaaa	attacaaata	90000
aagaataaag	aggaaatact	ccagactttt	cctcaccccc	aaagcaacaa	tgatcagcaa	90060
agagaaggat	cattctttgg	ccagactaaa	gtggaagaat	gttttcatgg	tgaaaatcag	90120
tattcaaaat	caagcgagtt	cgagactcat	aatgtccaaa	tgggactgga	ggaagtacag	90180
aatataaatc	gtagaaattc	cccttatagt	cagaccatga	aatcaagtgc	atgcaaaata	90240
caggtttctt	gttcaaacaa	tacacaccta	gtttcagaga	ataaagaaca	gactacacat	90300
cctgaacttt	ttgcaggaaa	caagacccaa	aacttgcatc	acatgcaata	ttttccaaat	90360
aatgtgatcc	caaagcaaga	tcttcttcac	aggtgctttc	aagaacagga	gcagaagtca	90420
caacaagctt	cagttctaca	gggatataaa	aatagaaacc	aagatatgtc	tggtcaacaa	90480
gctgcgcaac	ttgctcagca	aaggtacttg	atacataacc	atgcaaatgt	ttttcctgtg	90540

cctgaccagg	gaggaagtca	cactcagacc	cctccccaga	aggacactca	aaagcatgct	90600
gctctaaggt	ggcatctctt	acagaagcaa	gaacagcagc	aaacacagca	accccaaact	90660
gagtcttgcc	atagtcagat	gcacaggcca	attaaggtgg	aacctggatg	caagccacat	90720
gcctgtatgc	acacagcacc	accagaaaac	aaaacatgga	aaaaggtaac	taagcaagag	90780
aatccacctg	caagctgtga	taatgtgcag	caaaagagca	tcattgagac	catggagcag	90840
catctgaagc	agtttcacgc	caagtcgtta	tttgaccata	aggctcttac	tctcaaatca	90900
cagaagcaag	taaaagttga	aatgtcaggg	ccagtcacag	ttttgactag	acaaaccact	90960
gctgcagaac	ttgatagcca	caccccagct	ttagagcagc	aaacaacttc	ttcagaaaag	91020
acaccaacca	aaagaacagc	tgcttctgtt	ctcaataatt	ttatagagtc	accttccaaa	91080
ttactagata	ctcctataaa	aaatttattg	gatacacctg	tcaagactca	atatgatttc	91140
ccatcttgca	gatgtgtagg	taagtgccag	aaatgtactg	agacacatgg	cgtttatcca	91200
gaattagcaa	atttatcttc	agatatggga	ttttccttct	ttttttaaat	cttgagtctg	91260
gcagcaattt	gtaaaggctc	ataaaaatct	gaagcttaca	ttttttgtca	agttaccgat	91320
gcttgtgtct	tgtgaaagag	aacttcactt	acatgcagtt	tttccaaaag	aattaaataa	91380
tcgtgcatgt	ttatttttcc	ctctcttcag	atcctgtaaa	atttgaatgt	atctgtttta	91440
gatcaattcg	cctatttagc	tctttgtata	ttatctcctg	gagagacagc	taggcagcaa	91500
aaaaacaatc	tattaaaatg	agaaaataac	gaccataggc	agtctaatgt	acgaacttta	91560
aatattttt	aattcaaggt	aaaatatatt	agtttcacaa	gatttctggc	taatagggaa	91620
attattatct	tcagtcttca	tgagttgggg	gaaatgataa	tgctgacact	cttagtgctc	91680
ctaaagtttc	cttttctcca	tttatacatt	tggaatgttg	tgatttatat	tcattttgat	91740
tcccttttct	ctaaaatttc	atctitttga	ttaaaaaata	tgatacaggc	atacctcaga	91800
gatattgtgg	gtttggctcc	ataccacaat	aaaatgaata	ttacaataaa	gcaagttgta	91860
aggacttttt	ggtttctcac	tgtatgtaaa	agttatttat	atactatact	gtaacatact	91920
aagtgtgcaa	tagcattgtg	tctaaaaaat	atatacttta	aaaataattt	attgttaaaa	91980
aaatgccaac	aattatctgg	gcctttagtg	agtgctaatc	tttttgctgg	tggagggtcg	92040
tgcttcagta	ttgatcgctg	tggactgatc	atggtggtag	ttgctgaagg	ttgctgggat	92100
ggctgtgtgt	gtggcaattt	cttaaaataa	gacaacagtg	aagtgctgta	tcaattgatt	92160
tttccattca	caaaagattt	ctctgtagca	tgcaatgctg	tttgatagca	tttaacccac	92220
agcagaattt	ctttgaaaat	tggactcagt	cctctcaaac	tgtgctgctg	ctttatcaac	92280
taagtttttg	taattttctg	aatcctttgt	tgtcatttca	gcagtttaca	gcatcttcat	92340
tggaagtata	ttccatctca	aacattcttt	gttcatccat	aagaagcaac	ttcttatcaa	92400
gttttttcat	gacattgcag	taactcagcc	ccatcttcag	gctctacttc	taattctggt	92460

tctcttgcta	catctccctc	atctgcagtg	acctctccac	ggaagtcttg	aactcctcaa	92520
agtaatccat	gagggttgga	atcaacttct	aaactcctgt	taatgttgat	atattgaccc	92580
cctcccatga	attatgaatg	ttcttaataa	cttctaaatg	gtgatacctt	tccagaaggc	92640
tttcaatgta	ctttgcccgg	atccatcaga	agactatctt	ggcagctgta	gactaacaat	92700
atatttctta	aatgataaga	cttgaaagtc	aaaagtactc	cttaatccat	aggctgcaga	92760
atcaatgttg	tattaacagg	cacgaaaaca	gcattaatct	tgtgcatctc	catcggagct	92820
cttgggtgac	taggtgcctt	gagcagtaat	attttgaaag	gaggttttgg	ttttgtttt	92880
tgttttttt	ttttgttttt	tagcagtaag	tctcaacact	gggcttaaaa	tattcagtaa	92940
actatgttgt	aaaaagatgt	gttatcatcc	agactttgtt	gttccattac	tctacacaag	93000
cagggtacac	ttagcataat	tcttaagggc	cttggaattt	tcagaatggt	aaatgagtat	93060
gggcttcaac	ttaaaatcat	caactgcatt	agcctgtaac	aagagagtca	gcctgtcctt	93120
tgaagcaagg	cattgacttc	tatctatgaa	agtcttagat	ggcaccttgt	ttcaatagta	93180
ggctgtttag	tacagccacc	ttcatcagtg	atcttagcta	gatcttctgc	ataacttgct	93240
gcagcttcta	catcagcact	tgctgcctca	ccttgtcctt	ttatgttata	gagacagctg	93300
cgcttcttaa	actttataaa	ccaacttctg	ctagcttcca	acttctcttc	tgcagcttcc	93360
tcattctctt	catagaactg	aagggagtca	aggccttgct	ctggattaag	ctttggctta	93420
aggaatgttg	tggctgacgt	gatcttctat	ccagaccact	aaagcgctct	ccatatcagc	93480
aataaggccg	ttttgctttc	ttacctttca	tgtgttcact	ggagtaattt	ccttcaagaa	93540
tttttccttt	acattcacaa	cttggctaac	tggcatgcaa	ggcctagctt	tcagcctgtc	93600
ttggcttttg	acatgccttc	ctcacttagc	tcgtcatatc	tagcttttga	tttaaagtgg	93660
caggcataca	actcttcctt	tcacttgaac	acttagaggc	cactgtaggg	ttattaattg	93720
gcctaatttc	aatattgttg	tgttttaggg	aatagagagg	cccagggaga	gggagagagc	93780
ccaaacggct	ggttgataga	gcaggcagaa	tgcacacaac	atttatcaga	ttatgtttgc	93840
accatttacc	agattatggg	tacggtttgt	ggcacccccc	aaaaattaga	atagtaacat	93900
caaagatcac	tgatcacaga	tcgccataac	ataaataata	ataaacttta	aaatactgtg	93960
agaattacca	aaatgtgata	cagagacatg	aagtgagcac	atgctgttga	aaaaaatgac	94020
actgatagac	atacttaaca	cgtgggattg	ccacaaacct	tcagtttgta	aaagtcacag	94080
taactgtgac	tcacaaaaga	acaaagcaca	ataaaacgag	gtatgcctgt	atttttaaaa	94140
aaagcttttt	gttaaaattc	aggatatgta	ataggtctgt	aggaatagtg	aaatatttt	94200
gctgatggat	gtagatatat	acgtggatag	agatgaagat	cttaattata	gctatgcagc	94260
atagatttag	tcaaagacat	ttgaaaagac	aaatgttaaa	ttagtgtggc	taatgaccta	94320
cccgtgccat	gttttccctc	ttgcaatgag	ataccccaca	ctgtgtagaa	ggatggaggg	94380

aggactccta	ctgtccctct	ttgcgtgtgg	ttattaagtt	gcctcactgg	gctaaaacac	94440
cacacatctc	atagataata	tttggtaagt	tgtaatcgtc	ttcactcttc	tcttatcacc	94500
cacccctatc	ttcccacttt	tccatctttg	ttggtttgca	acagcccctt	ctttttgcct	94560
gactctccag	gattttctct	catcataaat	tgttctaaag	tacatactaa	tatgggtctg	94620
gattgactat	tcttatttgc	aaaacagcaa	ttaaatgtta	tagggaagta	ggaagaaaaa	94680
ggggtatcct	tgacaataaa	ccaagcaata	ttctgggggt	gggatagagc	aggaaatttt	94740
atttttaatc	ttttaaaatc	caagtaatag	gtaggcttcc	agttagcttt	aaatgttttt	94800
tttttccagc	tcaaaaaatt	ggattgtagt	tgatactaca	tataatacat	tctaattccc	94860
tcactgtatt	ctttgtttag	tttcatttat	ttggtttaaa	ataattttt	atcccatatc	94920
tgaaatgtaa	tatattttta	tccaacaacc	agcatgtaca	tatacttaat	tatgtggcac	94980
attttctaat	agatcagtcc	atcaatctac	tcattttaaa	gaaaaaaaaa	ttttaaagtc	95040
acttttagag	cccttaatgt	gtagttgggg	gttaagcttt	gtggatgtag	cctttatatt	95100
tagtataatt	gaggtctaaa	ataataatct	tctattatct	caacagagca	aattattgaa	95160
aaagatgaag	gtccttttta	tacccatcta	ggagcaggtc	ctaatgtggc	agctattaga	95220
gaaatcatgg	aagaaaggta	attaacgcaa	aggcacaggg	cagattaacg	tttatccttt	95280
tgtatatgtc	agaattttc	cagcetteae	acacaaagca	gtaaacaatt	gtaaattgag	95340
taattattag	taggcttagc	tattctaggg	ttgccaacac	tacacactgt	gctattcacc	95400
agagagtcac	aatatttgac	aggactaata	gtctgctagc	tggcacaggc	tgcccacttt	95460
gcgatggatg	ccagaaaacc	caggcatgaa	caggaatcgg	ccagccaggc	tgccagccac	95520
aaggtactgg	cacaggetee	aacgagaggt	cccactctgg	ctttcccacc	tgataataaa	95580
gtgtcaaagc	agaaagactg	gtaaagtgtg	gtataagaaa	agaaccactg	aattaaattc	95640
acctagtgtt	gcaaatgagt	acttatctct	aagttttctt	ttaccataaa	aagagagcaa	95700
gtgtgatatg	ttgaatagaa	agagaaacat	actatttaca	gctgcctttt	tttttttt	95760
tcgctatcaa	tcacaggtat	acaagtactt	gcctttactc	ctgcatgtag	aagactctta	95820
tgagcgagat	aatgcagaga	aggcctttca	tataaattta	tacagctctg	agctgttctt	95880
cttctagggt	gccttttcat	taagaggtag	gcagtattat	tattaaagta	cttaggatac	95940
attggggcag	ctaggacata	ttcagtatca	ttcttgctcc	atttccaaat	tattcatttc	96000
taaattagca	tgtagaagtt	cactaaataa	tcatctagtg	gcctggcaga	aatagtgaat	96060
ttccctaagt	gcctttttt	tgttgtttt	ttgttttgtt	ttttaaacaa	gcagtaggtg	96120
gtgctttggt	cataagggaa	gatatagtct	atttctagga	ctattccata	ttttccatgt	96180
ggctggatac	taactatttg	ccagcctcct	tttctaaatt	gtgagacatt	cttggaggaa	96240
cagttctaac	taaaatctat	tatgactccc	caagttttaa	aatagctaaa	tttagtaagg	96300

gaaaaaatag	tttatgtttt	agaagactga	acttagcaaa	ctaacctgaa	ttttgtgctt	96360
tgtgaaattt	tatatcgaaa	tgagctttcc	cattttcacc	cacatgtaat	ttacaaaata	96420
gttcattaca	attatctgta	cattttgata	ttgaggaaaa	acaaggctta	aaaaccatta	96480
tccagtttgc	ttggcgtaga	cctgtttaaa	aaataataaa	ccgttcattt	ctcaggatgt	96540
ggtcatagaa	taaagttatg	ctcaaatgtt	caaatatttt	gattgcctct	tgaattcatt	96600
tgctaattgt	atgtgtgtgt	gtttctgtgg	gtttctttaa	ggtttggaca	gaagggtaaa	96660
gctattagga	ttgaaagagt	catctatact	ggtaaagaag	gcaaaagttc	tcagggatgt	96720
cctattgcta	agtgggtaag	tgtgacttga	taaagccttt	ggtcttaaat	cttgggcatt	96780
ttgatttgta	aatctgaccc	tgagaattgg	gttacccaga	tcaaagactc	atgccagtta	96840
aaaagaacat	tacctgtatt	ttttatcatg	tgttatctct	taagaagagg	cagattagtt	96900
ctaaaatcaa	caaattgtat	ttaattgaaa	taatttagtg	atgaggaaga	ggtccattct	96960
agtgcctgct	aaatgtataa	tccttcttag	aatgtgaagt	tgtccttaaa	cttttaaata	97020
ccttcagtta	atctttatat	tgtcatttat	gaaaaccttg	aactaagact	tatgtatctt	97080
tcatctagct	ctggttttaa	tgcaggtagc	atttaattgt	ccccactgta	ctgggtatag	97140
tctgctaaac	attaaggagt	agttttgcat	ctctccttgt	tctgatacta	gggtcaaagc	97200
ccacttttta	tagatgggca	gcaaaaggca	cattggacat	gctgataaat	gttgccctaa	97260
ttgtgatcta	aacatgataa	aatatacata	cataagtgcc	cttatctgct	gcaagtgacc	97320
cttgttttgt	tttggttggg	gtggggggtg	tttgggatgg	aatggtgatc	cacgcaggtg	97380
gttcgcagaa	gcagcagtga	agagaagcta	ctgtgtttgg	tgcgggagcg	agctggccac	97440
acctgtgagg	ctgcagtgat	tgtgattctc	atcctggtgt	gggaaggaat	cccgctgtct	97500
ctggctgaca	aactctactc	ggagcttacc	gagacgctga	ggaaatacgg	cacgctcacc	97560
aatcgccggt	gtgccttgaa	tgaagagtaa	gtgaagccca	gggcctctcc	cctctttgcg	97620
gccactgata	ggaaagccca	atctttggtt	gaaaggaaga	gagttcagcg	tgcactttta	97680
catttataaa	atgggcatca	aaatgcctgt	ttggcagtca	tgcgataaga	agttgtattt	97740
gctaatgtga	ataacttgag	atgatttcat	tatctgaatt	gtacagttta	gccattaatt	97800
aggagcagtc	agagtgtctg	taaccacatg	gcctcagtta	taccataaac	ttgaaattgt	97860
ttatgtgctc	acatgctaca	agtgacggct	cctgtgtgcc	tggccactat	attagtatgt	97920
attgactcca	cttccatgtt	gcagtatctg	aaacagaaag	taagtctaat	gagaaacttt	97980
gggattccca	ggtcaaatac	cttccatatg	tatgtagcaa	aaacaaaata	caaagcctag	98040
aagttctgta	gaaatagaac	tgatttttac	tttcattcaa	actattcatt	atttccacaa	98100
tagtaatcaa	aactgcttct	acttttactg	ctgctaaatg	atcagcaaat	tactggatat	98160
ggatatatat	tattttccag	gaatataaga	atttagaata	gaactgcaag	agtatgcact	98220

taaatatatt	tagtgcatcc	agttgctaat	gttttgtttt	aaacaccatc	cactttgcat	98280
gaagtctaaa	ccttcagttg	gaaaaagcct	catttttaat	attcctctac	tgtgctgata	98340
atcctgtata	acactaaaag	aatagatgaa	tgttcacggt	gctacacaga	aatgttttt	98400
tttttttt	ttttttttt	gagatggagt	ttcgctcttg	ttgcccaggc	tggagtgcaa	98460
tggcgcgatc	ttggttcacc	gcgacctcca	cctcccaggt	tcaagagatt	ctcctgcctc	98520
agcctcccta	gtagctggga	ttacaggcat	gtgccaccac	acccggctaa	ttttgtattt	98580
ttagtagaga	cagggtttct	ccatgttggt	caggctggtc	tcgaactccc	gacctcaggt	98640
gattgcccac	ctcggcctcc	caaagtgcct	tacaggcatg	agccgccgcg	cctggccaga	9,8700
aatcttacaa	gttattttgc	ccacgattgg	ttttaaaata	attttaattt	tgcactattt	98760
cctttagtgt	ctttttctct	gcatccacca	aactatagaa	tcatttgctg	agcttataag	98820
aaatgctcat	actgctcatt	gcaacagcta	gccaaatttg	tcctttgctg	tttaaaactc	98880
taactagcat	ggttttacta	aatttatgtt	aacacagttt	ctctctctgg	gttgtgggga	98940
gacaaatcaa	ttataaataa	tctctttaga	aaagttactc	tttctatatg	aaagtgtgac	99000
ttgactttct	atgataatta	tgatccaaaa	attttatggt	gtgtacctga	ccacttttac	99060
aaatgattaa	ttggaaggta	gaaattgctg	attcataaca	tgtaacttat	aaacttatga	99120
tggactactt	taagcataaa	tttttttt	ttttttaaga	cagagtttca	ctctgtcacc	99180
caggctggag	tgcaatggtg	cgatctcggc	tcactgcaac	ctccatctcc	tgggttcaag	99240
caattctcct	gcctcagcct	cccgaatagc	tgggattaca	ggcatgcact	accacaccca	99300
gctaattttg	tatttttagt	agagacaggg	tttctccatg	ttgatcaggc	tggtctggaa	99360
ctcctgacct	cgggtgatcc	gcccgcctcg	gcctcccaga	gtgctgggat	tacaggcatg	99420
agccactgtg	cccagcctga	aatattttt	taatctaccc	tgactcctct	tgctctttct	99480
gaagaaaaat	ttttaaaaat	gtatgtaggt	gcctttaatt	agaaaaaaaa	ttaaaaatta	99540
aggcaacttg	tgctcatatt	ggtaatagca	tttctttcaa	gaactcagta	atactgcatt	99600
gtctttaaag	cataatatct	cttagacttg	acggtttgag	attctaaatc	actgaagaac	99660
ctcttgtgaa	aatgatagtt	ttaaaatttc	ttttcaaaaa	tagtcctatt	gcaaaatgtt	99720
tgattttctt	gaagtttcct	ggaaactata	tttcattcat	tgtaatgaat	ttaattttca	99780
ttaacataga	tctctaatat	ttttctcagc	tcaccacaac	ctccacctcc	cgggttcaag	99840
tgattctcat	gccacagcct	cccgagtagc	tagaattaca	ggcacccacc	cggctcattt	99900
ttgtattttt	agtagagaca	gggtttcacc	atgttggcca	gattgatctc	gaactcctgg	99960
cttcaggtaa	cccacccacc	ctggcctccc	aaagtgctgg	gattacaggt	gtaggccacc	100020
atgcccagcc	agcttttcca	taattcttat	aaatgccaat	gcctgaaatg	gaatctgaca	100080
tataaaaaat	tacatgaaga	acttttatta	ttttgcattt	gaaaaccatg	aaaaatagtt	100140

ggaccagagt	ctcagaaagc	ttgtagtttg	ttagtttaac	tgctctaaat	gtcaggcaga	100200
tacaaaacta	ttaaaagaca	tgcttcaaat	atgaagacaa	tttaaaagca	cagctgtaca	100260
cttttgcttt	ttgtctagtt	tcaaggtaaa	gatgaataat	catttagata	atgcttaagc	100320
tatgcttatg	catacttaga	gcaattctcc	aaaataaaaa	attttaatac	ttaaatacat	100380
gattaaaata	gacacgtatc	caatgtcaat	acagacttta	ctcagaaata	gcttttgaag	100440
tttcttctac	cccataaata	gattttattt	tatggctggc	agaaatgaaa	attacaactt	100500
tttgccaaga	acagagaata	gaataatctc	aaattggggc	tgcggactca	gttttatgtt	100560
caaagctgtg	tgaacctcat	cactgagttc	ttacaaatcc	ctgtgtccac	atgctccaaa	100620
ccacccactg	tgagttcaga	aaagaactct	gagtgcatct	ttcagtagga	aagtaaaaac	100680
tgatttttac	atttcctttg	agccaaacca	gctgtttctt	ctttaaagat	ttccctttga	100740
gatttccatt	ttatgactaa	gtctaaccag	tattttttg	gcaagtaaga	gttgtgggag	100800
tgtatctgtc	atcataagga	aatcaaagcc	agaaatgcct	tctgccatgg	tgggtgatgt	100860
taaacatttc	aaggaacttt	atattataaa	aattgtcaaa	cataaaagga	aaagtgcaat	100920
ataatgaatt	ccatggaccc	atcacacagc	atcaatattt	atcaacattt	tatcaatatt	100980
ttttcatata	tttttcccac	atccactccc	actagtgttt	gaaagcagaa	gacagataac	101040
ttaccatctt	acctgttaac	atttcaggat	gtatttctaa	caggtaaaga	ctttatcatt	101100
taatatttag	actgtgtttg	ttcaaattat	ctgattagat	tctatttcag	aaaacacaca	101160
cataaacaaa	aatgataatg	agaaaaagaa	agcccttcca	catgattgac	acttctgagt	101220
agtgtgatcc	cagttcatgt	ccattgtctg	ggatagctat	taaataaaac	ttcctctcat	101280
aaaattctct	ccatttagaa	gataaattct	gtgattcaca	agcctctttt	tatttataat	101340
agcccttccc	ctttctttat	gaatttgaat	ttgtttttta	aagaaactgt	gattttctct	101400
gtaaaattcc	ccacattctg	gatttggccg	atttcatctt	ggttcttttg	tttactttaa	101460
cctattcctc	tatccccagt	atcttctgtg	gactggtagt	ttgactggtt	ctttttcttt	101520
tcttttttt	tttttttt	tttttttgag	acaggctctc	gctctgtcgc	ttaggctgga	101580
gtgcagtggc	ccaatctcag	ctcactgcaa	cctccacctc	ccaggttcaa	gctattctca	101640
tgcctcagcc	tcctgagtaa	ctgggactgc	aagcatgtgc	cacctcatcc	tgctgatttt	101700
tgtactttta	gtagagacgg	ggtttcgcca	tgttggccag	gctggtctgg	aactcctggc	101760
ctcaagtgat	ccgcccacct	tggcctccca	aagtgctggg	attacaggca	tgagctatca	101820
cgcccagctg	atttttaagt	aatataagta	tgtgtgcatg	tatagtatac	attggcaaaa	101880
acacttcata	agtagtgcta	aaatcatctt	atttatatac	atcaggagac	acataatgtc	101940
tgtttgtttc	ccattttagt	gatattaaga	gtgtttagca	tgtttagttg	tcagcctgat	102000
ccatcattat	gttcttcatc	aaactttcac	cagatagttt	cacatcaatt	gatgatcatt	102060

gcctgtttct	attattttgt	tttcaagttg	acagttttct	ctcacttgat	gttgtgtaaa	102120
tttagttata	taaagttaaa	ttattttgct	attttttcta	tgctgtatac	atttgaataa	102180
ctgacctaat	ttttacttta	aaaatatttt	acaattagaa	gtccaaatag	taaatcaaag	102240
gttaagaatt	tttgcagaaa	tctgttatat	agatgacatt	ttaatatttg	ccctttatat	102300
catttaccat	gagccaaatt	tcaagtcata	ttaaaatgac	tgtcatgtgc	taattctaac	102360
aatatttgaa	agacccctat	caaaataaat	atacctttta	gtagccactt	tattagaaaa	102420
tcaactttaa	gttattcccc	catgttttt	tctaattgag	atataattca	cataccataa	102480
aatttaccct	tttaaagtat	acaattcagt	tgtttcagta	cattcacaaa	gctatgcaaa	102540
tgtcacctct	acctagtttc	agaacgtttt	catcattccc	agaaggaaac	cctgtattta	102600
ttaggcagtc	acttcccctt	ctccccttct	tecttectet	aagtggcaac	cacaaataaa	102660
cattcagttt	ctctggattt	acctattctg	ggcattttgt	attagtgaaa	tcatgtattt	102720
ggcctttctc	tctggcttct	ttcatgtacc	tcaatgtttt	caagtctcat	tcattttatt	102780
aaaaaaaaa	agtacctttt	ttcttttct	tttttttt	tttgtccacg	tatatattca	102840
caccacattt	tttgagacag	agtctcgctc	tgttgcccag	gctagggtgc	aatggtgcaa	102900
cctcagctca	ctgcaacctc	tgtctcccgg	gttcaagtga	ttctcatgcc	tcagccccca	102960
agtagttggg	attacagttg	tgcaccacca	cacccagcta	atttttgtat	ttttagtaga	103020
gacagggttt	caccatgttg	gctaggctgg	tctcaaactc	agcctcaagt	gatccttcta	103080
ccttagcctc	ctaaagtgct	gggattacaa	gcatgagcca	ctgtgcccag	ccacattttc	103140
tttttccatt	tattagttaa	ttgacatttg	gatcgtttct	actttttggc	gattataaat	103200
tatgctgcaa	tgaacatcgg	tgtacaagtt	tttgtgtgaa	catgttttca	gttaccttgg	103260
gatatacacc	taggagtgac	attgttagta	atatggtaac	tttatgttta	actttttgaa	103320
gaactgccaa	actgttttcc	aaagtagctt	tatgctttta	catttctgcc	aacaatgtat	103380
gaaggttcca	gtgtatctcc	acatcctcaa	gaaaatgtta	ttgtcttttt	aattgtaacc	103440
atccaagtgg	gtatgaagtt	tatctcgtga	ttttgatttg	cattttccta	atggctgata	103500
ttgggcatct	tttcacgtgt	gtattgacca	tgtattttt	tgagaaaagt	ctacttatat	103560
gtttttaatt	gtattatttt	tagagttgta	agaatatgtt	atgttgatac	ttgaactttg	103620
tcaaatgcct	ggtttgcaga	tattttctcc	tatcccacag	gttgtcgctt	cactttgata	103680
atgtccttaa	agtacaaaag	ttttaaattg	attttgatga	aactcaattt	ctttttaatt	103740
ggcagcttgt	gcatttgggg	tcatatttaa	gaaatcattg	cctcattcaa	gatctgaaag	103800
atttacacct	atgctttctt	ctcagagtat	tataacttta	gttcttacat	ttagattttt	103860
aattaatgtt	gagttaattt	gatggtgaga	gataagagtc	caacttcatt	cctttgcaag	103920
tagctgtcca	gttttctcag	caccatttgt	taaaagactg	tttttttca	attaactgac	103980

```
caagatgtat gggtttattt ctggactett aattetgtta atetgeatga ettttettat 104040
gccagtacca cactgtgctg attcctgtag ttttgtagta aattttgaaa tcaagacagg 104100
taagtettee aaetttgtae ttttgeetae eatgtttett gggttteeat atgeatttta 104160
gtggagetgg agtettacta tattacccaa getggttttg aacteetgge taaagagate 104280
ctccctccta ggcttcccag agagctgggg ttacaggcat gagccaccac atccaacccc 104340
\mathtt{cttctgggac}\ \mathtt{tttgactggg}\ \mathtt{gttctgttga}\ \mathtt{atctgttggt}\ \mathtt{caatttggag}\ \mathtt{agtattgata}\ 104400
tottaacatt aaagottoca atttatgaac acaggotatt tttocattta ttottaaatt 104460
totttoagta atgttttgga tgaaacatgt acaaagtoot goacttttta tttttttaa 104520
gacagagtet tgetetgetg eccagteeag agtgeagtge tgeeatetea geteaetgea 104580
acctccacct cogggttcaa gtgattctcc tgcctcagct ggaactacag gtgcgcgcca 104640
ccatgcctgg ctaattgttt tgtgtttttg gtggagacag ggtttcacca tgttggccag 104700
gctggtctca aacacctggc ctcaagtgac ctgactgcct tggcctccca aagtactggg 104760
attacaggca tgagccacca cgcctggcct gtacttctgt taaaattttt tctatgtatt 104820
ttttttatcc tattgcaaaa tcaaattttt tgttgataat atatggtcat aaatttcatt 104880
tttatatatt ggtctcatat cctaccaact tgctgaacta gcttattagc actaactttt 104940
tttggtagat tccttaggat ttgctgcata caagattatg tcatctacaa gtagagatag 105000
ttttgtttct tcacttccaa tctgggtggc tttatgtttt tttcttgcct gattacccag 105060
ttagaacttc cagaaaatgt caggtacaat taacaactgc aaacatcctt gtcttattca 105120
ttttagaaag aaatttttag tttttcacca ttaagtatga tactagttgt aggttttgtt 105180
taaaaaaaaga ctgtgtcaag ttcagaagtt cccttctgtt gctagtttgt tgaataattt 105240
tatcacgaaa gggtgttgaa cttttctcaa atgctgtggc tacatctaat gaaatgatca 105300
tgcgttcttc tcctttattc tattaatatg gtatattata ttgattcatt tttatacatt 105360
agattaacat tatatttctg gaataaatcc cacttggcct cagtgtgtat tactttttat 105420
atattgctgg agtctgtttg caggtatttc attgaggact ttcgcatctc tgttgataag 105480
gtatactgat ctttagttct cttgtgatat ctttggtttt ggtgtcagag taattctgag 105540
ttcacaaaat gcattgggaa atgttccctt ctctatcttt tggaagagtt tacaaaggat 105600
tggtttaact cttttttaaa tgtttgagga aattctctac ccctgggctt tcctttgtgg 105660
gaatttttaa acatttttaa aatagattat ttttaaagca attttagggt aaaagcacat 105720
tgaatgaaag gcacagagct teettaagta catgetgeee etgtatgtge atageeteee 105780
tcattatcaa catcetttac cagaatggta catttgttgc agtcaatgaa cetgcattga 105840
caattgtcga tgaaagttca tagtttagag ttcacctttg gtgttatgta ttctgtgagt 105900
```

```
ctggatccat gtttaatgat actcattcac cattacagta tcattcagag taatttcact 105960
gccttaaaag tcctctgtac cctacctatt tttctctcct accccactaa cccttagcaa 106020
ccaatgatct ttttatctca ataattttgc ctattccaga atgtcatata gttggaatga 106080
tacagtatat ggagcctttt cagactggtt tttgtcactt agtaataagc ttttaaattt 106140
tocaccatgt catgategtt catttettt cagcattgaa taatatteea ttgtetggtt 106200
tatcacagtt gatttatcca ttcacatagt gaaagacatc ttagttgctt ccaagttttg 106260
acaattatga ataaagctgt tataaaagta tgtaggtttt tgtgtggaca aaagttttca 106320
gctcctttga gtaaataaca cagagcacag tagcttgatt gacagtaaga gtaagaaata 106380
ttttttctca gtctgtgtct tattttttca ttcacttgac agtgccattt gcagaacaaa 106440
cagaaagttt taattttaat gaagtctagg ttatcagtta attcatgaat aatgtttttg 106500
gtattgtatc taaaaagtca acaccaaggt catctatatg ttctgtgtta tcttccagaa 106560
attttatagt tetgeatttt acatttaggg etgtgaceca ttttgeatta attttgeaaa 106620
agctataaag actatgtata gattcacttg tttgcatgtg gagttgtcca gttgttcccg 106680
taccatttct taaagactat ctttgcttta ttgtattacc tttgctactt tgtcaaagat 106740
cagttgatta taattaagtg gtctgtttct ggactcttta ttctgttcca ttgatatatt 106800
tgtctagact ttcaccaata ccacactatc ttgttaactt aggctttaga gtaagtcttg 106860
caatcatgta gtgtcagtcc tctgacattg tttttctcct tcagtattga gttggctatt 106920
cttttgccta ttactaagta aaaaaagcag tctgaaaagg ctatatatac agtcatttat 106980
tggtcttttg cctcttgata taaactttaa aattactttg tcagtatcct caaaatcttg 107040
caggaatttt gatagattgc actgcatttc tagattgagt tagaaatact gccatcttga 107100
caatacacat cttcctatcc atgaacatgg aacatctctt tcttggatat ccttcattag 107160
aattttgcat tttccccata tagaccatgt acatattaga tttatacata aatatttcat 107220
ttgggggggt gctaatggta atgtattttt atctcagatt ctgcttgtac attgctggta 107280
tgcagaaaag tgatcaactt ttgtatatta aacttgtttc ctgcaaccat gttatataat 107340
cactttagat ccagttttt tttttttggt cattctttca tattttctag gtgatcatgt 107400
catctagcaa agacaacttc tttctaatct gtataccttt tattttcttg tcttaatgta 107460
ttagctagca tttccagtat gatgttgaaa ggcattggtg agaggcaaca tacttgcctt 107520
gttcctgatc tcagcaggaa atcttcaatt ttatgttagc tctatggttt tgtagatatt 107580
ctttatttac attaaatatg ttagctgtat ggttttgtat atattcttta tcaggttcag 107640
gtagttcccc tcttttccta gtttactgag aggcttttga aaatcattaa tcagtgttgg 107700
attttgtaaa tactttttt ccacctattg atattaccat atgatttttc tttagcttat 107760
taacgaaatg gattacatta attgattttc aaattttgaa ctagactggc atacctggag 107820
```

```
caaatcccac atggttgtga tacattattt atgaatgcat tcatggtcat ggttgctatt 107880
agtctgtagt tatcttttat tgtaaagact ttggtgttgg tattaaggta atgctgccct 107940
catagaataa gttatgaagt attttctctg cttctgtctt aattgagatt gtagagaatt 108000
catataattt cttccttaaa actttggtag aaatcagaat gaaccatctg tgtctggtac 108060
tttgttttga aaagttattg ctgattcaat ttctttcata gatataggcc tatttagatt 108120
attattttgc ataaatattg gtagttgtgt ccttcaagga attggtccat ttcaccttga 108180
ttattaaatg tgtgggcaca tttgttcata atatttcttt attatccttt gtttttgaga 108240
cagggtctca ctctggttgc ccaggctgga gtgcagtagt atgatctcag ctcactgcag 108300
ccttgacttc ctgggctcaa gtgatttacc cacctcagcc tcccaagtag ctcggactac 108360
aggcacatgc caccatgcct ggctaatttt tttattatta ttagagatgg agttttccta 108420
tgttgcccag tgtggtcttg aactcctgga ctcaagcaat ctgcctgcct cagcctccaa 108480
agagtgatgg gattgcaggc atgagccatc acacctagcc tgatggcaga actttttagg 108540
aacaatagaa tggtatatgg cattttcaaa aattgttttc ccctcctcct atggaagcat 108600
gaagggattt ttctctagta ttcattgtga gaacctcatc tggctcctga atgtagaaaa 108660
ctcacaaaac tgtgaggaac ctattatgac tggatgcctt tggagttgtt cacactgaac 108720
ctccagcaat tcatcaatta tatttcagat tttcctatcc caacactggt tcctacagag 108780
gtttctgctc cagtaagctg taattctttt tatccatctg cttccttggt tgtgagggca 108840
gtgattttcc ctgtgacctc atttctctga cagatctaag tagtcttgat tacatctttt 108900
aacctgttgt aggtatattc agattttcta tttcttcttc agtcaatttt agtagtttgt 108960
gtttttctag aagtttgttc tctagctctg ctttagctcc atccaataaa atatgagtat 109020
gtcgagtttt catttacaac aaggtatttt ctaatttcta tcatgttttt ttgattcctg 109080
actgtatagg agtatatttt tacctattac ccaaatttgc ttgttattca tgtataattt 109140
tatcagaaaa cacactttgc acaatttttg cagtgttaca tttatttaga cttgttttat 109200
aacttgacat acagtccatc ctggagaatg tttcacgtgt gcttgagaag aatgtgtata 109260
ttcagctgtt ggtgggtggc atgttttata gatgtctgtt agacctagtt ggtttatagt 109320
gttttttaca acttctgttt tctttttaat cttctatcta cttttagcca ttattgaaag 109380
tggattagta aattatctat ttattccttt aattctgcca ttttttgctt catgtatttt 109440
ggtgctctgt tgcttattac atgtatgttt acatttgtta catcatttta atggcttgaa 109500
ctttttatta taaaatgtgt atatcttgta gatatcgtat agttaaatct ttttaaaaat 109560
tgatattgct agtctttgcc ttttaatttt tcaatttata tacatttaac ataattattg 109620
ataaggtagg atttgtctgc cattttgtct gtatcttgtc tttttttgtg ttcaatagat 109680
attttctagt gtactgtttt aattcccttg tcttttacta aattttttga tgttcttaat 109740
```

```
ggtttccctg gggattacaa ctaacttata acagctagtc tgaagtaata ccaatttcat 109800
tacaatataa ggaaactttg ttcccatata gctacattcc ctctttttac tctgtgctat 109860
tatacaaatt acattttatt ttatgcccat taacacagat tatgttttt cttttaaatc 109920
agattgatat tgtcatttaa atcaaatatg agaaaaatag ttacaaaaaa atacatatat 109980
gatttcatat ttacctatgt aattatcttt actggtgctc tttaagttct taggtgtatt 110040
tgaggtactg tctagtgtcc tttcctttca gcctgaagta tacatttagt attttttgta 110100
ggacatgcct gaaaacaata aactettatt tatcagagaa tgtectaatt tattatataa 110160
tacatttctg aaagatagtt ttgcaaaata cagaattctt ggttggcagt ctttttcttg 110220
tggttctatg tcattctact gccttctggt cttcattgtt tctgatcaga gatcagctat 110280
taatcttatt gggaatcctg catacatgat aatcatacag ttttcatgat tttcttgtgt 110340
tggctttcag cagtttggtt atgatgttta tatgtatgca tatctttggg tttatgttac 110400
atggagttag ttgagcttct tggacatgta gattgatgtt gttcatcaaa tttgagaagt 110460
tttcggccat tatttttcaa atattcttcc tattctttat tcttcatcct ctactttggg 110520
gacctgcatt atgtctatgt tggtatgctt tatggtcttc cacagatctc tgaggttctg 110580
tttatgtttt catttttcag actgaataat ctcaattgac ttatcttcaa gtcccttttt 110640
cccctccttt tcaactctgc tattgaaccc ctctaatttt tactgcagtt attacacttt 110700
cagctttaga attctattta ataatatctt tttcttgagt ttatctcatg tatttaataa 110760
aatgctgtag tottacttta gttatttaaa tacagttttc tttcattatt tgggcataca 110820
tgaaatagct gacttaaagt ctttgtccag tggcctaaca tctggacttt ttcaggaata 110880
gcctctattg actactttat aggggccata ctttgtttct gtttctctta attgtttaga 110940
cattttaaac taatgtaatg gctgagagca gtggctcgtg cctgtaatcc cagcacgttg 111000
agaggccaaa gcaggagcat cacttaagcc caggagttca agactagcct gggcagcata 111060
aaatcagatt ctacccctg cccagaatat gttactgttt ctggtggttg ttgtttattt 111180
ctttttaact actcctataa agtttgtatt gtttctcata gatagccatc gaagtctttg 111240
cttggttaac ttagaggtca gctaaggatt agacagaatt ccttaggtgc ctgagatcaa 111300
taagtcagtc tttgacaaag gggtctgtat gtgtgttggg gcatgcattc aacactcagc 111360
caggetattt geagetetgg attageettt atteeetget tgtgeagagt etcaaggtta 111420
qactqtqqtq aqaqtttagq gctttctqaq qtcttttqtq qgccctacaq ttgcatqtqq 111480
ctttctaaat tcccaggaat atattttcaa agcctcctgt ggatcatctc atttcccagg 111540
taatttactt ttaagetttt ttagttatet tatgttttge teeagttatt agetacaeet 111600
gagtcagtga caatattcaa cagctgccta tgattatttg acaaatgcct ctgtggaaaa 111660
```

ggtggttcac	actaggtgaa	ctccaagtta	gataaagtaa	agataacctt	actagtggga	111720
tcttccagga	aactaccaaa	caggtcaaat	aatgtaaggt	ctctgtgaat	gggactttag	111780
agtatatcca	accagtctag	agtatatcca	accaatctgg	cctcctctag	tggcagcctg	111840
gctgctgctt	ttcataataa	atgtgggctg	ttttgatttg	aaggctacca	tagagctgtg	111900
gggaaagtta	aaataccaca	gagctcactc	ttctcactga	aatcctgtct	tttttccct	111960
tgaacaaatt	ctccctatat	tgctgcaagc	tttttgctaa	tttccagatc	tgaaaaagct	112020
gattctgaca	atatttatca	gtacttttat	tgcttttatg	gaggataaaa	ttttcagaga	112080
tccttattct	gccatttttg	ctgacatgtg	taaagtgatc	atttctaatt	gtaaaattcc	112140
ttttgcattt	attagctgga	atactttaca	ggacttttcc	tcatcaaccg	ttagttacca	112200
tttaatatag	tttgtaagaa	tgatagaata	aatgcatggc	aagaatcttt	acttctcaaa	112260
tttcagagat	tttgatggga	aattatattt	agagatcaca	atcagtgtct	agatgtgctc	112320
cctgctatgg	aggtgtcatt	acttttaggc	ttttttaatg	ggcaaataca	tgaagtaatt	112380
attttttaga	aagaaaatct	gagattaact	caaatcatta	attcatactg	atttttccta	112440
ttcatagttg	acagagtatt	attatctttt	gttctgcttc	tcttgtacac	tgaaattctt	112500
ggtttttgat	attaacaatt	atttacttat	atcacaatat	acatacatta	atttaaaaat	112560
aatttacagt	gctacctgaa	tatttttct	tgtaagttgt	tttatctctc	tttgcttact	112620
tgtatgtttg	tttattgtca	ttagaatgta	tcaaactagg	gctataaagc	tgtaatacta	112680
tattttagcc	agaaactagg	acctagcact	caaatgccca	tcaatggtag	aataattcat	112740
cacatțttta	taagatggaa	tatggtactc	aatgaaaatg	aataaagtac	aactacatgc	112800
agtgatttgg	atggatatcc	caaacataat	ggaaaaagca	cacacaaata	agcttatatt	112860
atataattcc	atatacctat	gtatatatca	agtataaaag	taggcaaaac	aagctactga	112920
tggtggcaca	cacctatagt	tccagctatt	tgggaggctg	aggcgggaag	atcacttgag	112980
cccagaagtt	caggttcaac	ctgagcaaca	tagcaagacc	ccatctgtaa	aaaagaaagc	113040
attattaaca	taaaaatagg	cagaactact	atattcttag	agaagttact	gttagggaga	113100
cagacagtga	gtgactgaaa	ggcaaaatga	ggggaaattc	caggggatag	taaatatttt	113160
gtttcttagt	gtgggttcta	cttaactggg	tattttccat	ttgtaaactg	taaaattatg	113220
tgcacttttc	tgtatgtgta	ttacattgca	ataaaattgt	ttaaaagtca	attgaaatag	113280
ttctgtgtgt	ggttatgcca	cagcttaata	cagagttaga	ttagacttct	tttcaaactc	113340
attttgcata	tagacaccta	taatatcagc	tgcacagcct	atataatgct	atccatagca	113400
atgaatttgg	tcttttgatt	tttcaggaga	acttgcgcct	gtcaggggct	ggatccagaa	113460
acctgtggtg	cctccttctc	ttttggttgt	tcatggagca	tgtactacaa	tggatgtaag	113520
tttgccagaa	gcaagatccc	aaggaagttt	aagctgcttg	gggatgaccc	aaaagaggtt	113580

tgtttacttc	ctgatgtata	atcgctttat	ttttcataga	gaattcatta	gcttagatga	113640
agtgaacaat	atgacatatc	ttggtaagct	cttattaatc	aaagttttc	ccaaactgta	113700
gatacacact	attttttaag	ttggcataat	aatcatatta	tgccaaaata	atagataaaa	113760
tttgagcaac	aaaaacttcc	tctttggtct	tttatgttaa	ttccaaagtt	ttaaaggggt	113820
gtcacttcat	tgttaaaact	aaatgagaat	tggtgatgtt	tttcatattt	tgactctgaa	113880
ttatggaagt	tacataagta	ctacattcag	aaaagaccat	ttttagtcac	atttatgtgc	113940
aatgagattc	aaataattta	aagtcactgt	aatgaatgca	tttaataaag	tcactgtaat	114000
gaatgcattt	aagtaactaa	aacatttaga	ttttaatata	actctgtaat	ggaaataaat	114060
ggacactaat	ttctcactga	agtcattggt	ttttgtcttg	tctgtagaat	acgtatttct	114120
tataatttgc	aaattgataa	atttaacaac	ttttgggtgg	catgtagtct	agagtataga	114180
tacttcttga	cttatgagga	gactacattc	ctataaatcc	gttgtaaaat	gaaaatccat	114240
ttaatacccc	caataaaccc	atcctaaagt	aaaaaaaaa	cgaagccatt	ataggtcagg	114300
gactgtctcc	gtactaattg	aatgatgaga	aaacctcagt	atatttagca	tttagctatg	114360
accacatttt	cagtcattct	atacacttac	aattatcttt	tgaatttcga	atacaattaa	114420
aatatttcca	tactatagat	attataacat	tgatgagtcc	ctttaaatga	agaatttgtt	114480
aaccttatta	agctttcact	tactattata	gtcacagtta	ataaagcaag	tgcaaaaact	114540
cctgaaatca	cagtataagt	tttttaaagg	atgttttcaa	taattaaagt	ttacttaaat	114600
gtgcgagaca	tcatttcata	agacaagaat	atgaatatta	ataacttaat	gaaaagtact	114660
gattttgctt	gctgtcattt	taattttcta	cagataactt	tttttttaac	cactgtttta	114720
tcaagtgata	aatgtttatc	actttcacga	ggtttcatgt	aaaccaaatc	cagaggatac	114780
caagtaactt	attgcctctg	ttgggtagga	gagctctgtt	cagaaacctc	ctcaccttct	114840
aaaatttaca	tctctgccag	gtggttatgt	ctcacaactt	tttttttta	gagaaatatc	114900
aatctgaaat	gaagacttct	aagtataaat	ggagcagcta	aatatgatca	cctaccattt	114960
tttaacagta	tattacttgg	aaaatctgtt	cttcatgagc	agggcaggtg	ggggtgtaac	115020
tgagcatttc	ccctttcaag	taaattctgc	aaaggttttc	atgtatcctg	cattctagtt	115080
ctgaagcatt	ttatccatat	ttgaagtgtc	cagtaaattt	tagttgctct	atggagagat	115140
cattccaaat	tatttaaata	ctatctttat	aaacataaaa	tgtaaagatt	agaaatagac	115200
aaattaagct	aaagaagttc	ttttaatagt	tcatcttcct	tggtagctaa	aaaatgtgac	115260
ctćtttaaga	ccatacggct	taattcccct	aaccctactc	ctggcacagg	cttgtgtgta	115320
taaaatgcaa	aatatctgca	tgcagttaga	aaatcaatct	tatgaaaaaa	acaaatagct	115380
agatatttac	tagcacatat	gaaattaaat	gatagtcatg	ttttaaagat	gctttattta	115440
gtaataaagg	caccatatat	tgtgtttggg	attcaaaatg	taaggggaat	aatctaactg	115500

atagtctctt	ttacatagag	aaaatggact	tagaatttaa	tatgtagaat	tattcacttt	115560
atacaggaag	agaaactgga	gtctcatttg	caaaacctgt	ccactcttat	ggcaccaaca	115620
tataagaaac	ttgcacctga	tgcatataat	aatcaggtaa	gtttaaataa	tcattggcag	115680
caattgtaac	aacttacttg	ttactaatga	cctatgtcca	aaaatatttt	tgaaacaatg	115740
atttttaaat	attattctaa	cttttcctct	taattgttga	aaccactgca	gtgttcagtt	115800
tcgagtatat	aaaaattata	ccatacaaaa	gtacattttt	tttgtctttt	agctgtaaag	115860
acatgcgctt	ctaaaagtca	caggctgttc	tatctactaa	tcttgttctc	atatgaataa	115920
ttttgtttct	gtaaacagac	tatggagatt	acatcaaaat	tatgtggccc	aagctatagg	115980
ttctaactac	ctatttttac	tgcaagtcta	taagtataaa	tgagtattca	taagaattta	116040
tagacttaca	aatattcaca	taaagctatg	catatactaa	cattgtaagt	atatatattt	116100
cggtccagat	gtgtcagatt	ttgctgatct	tccttttttg	tttgaccttg	acttcataca	116160
ccaagcaaaa	acatttttt	tttctatttt	acatgtgtat	tctaaactat	agctagttaa	116220
gacaggtaga	tgatttggtc	agaaatctct	catcatgaag	gcaaaaaact	aaaatcttca	116280
ctgtttcagt	aacatcaaca	acaaaagcat	taagtgaaag	tctattacaa	actaaacact	116340
gtgtttagtc	actgggaaca	taaaggtgag	cagtgccatc	tctgtctgtc	tttaagaatt	116400
ccgtctttgc	tgggtacggt	ggctcacacc	tttaatccca	acactttggg	aggccaaggc	116460
aggtggatca	cctgaggtca	ggagttctag	accagcctga	tcaacatgga	gaaaccctgt	116520
ctctactaaa	aatacaaaat	tagctgggtg	tggtggcagg	cacctgtaat	cccagctact	116580
cggaaggcta	aggcaggaga	atagcttgaa	cctgggaggt	ggaggttgca	gtgagccgaa	116640
gtcaaaccat	tgcactccag	cctaggcaac	aagagcgaaa	ctccatctca	aaaaaaaaa	116700
aaaattcatc	tttaactggg	tgcggtagtt	tatgcctgta	atcccagcta	cccaggagac	116760
caggagtctg	aggctgcggt	gagccatgat	tgcatcactg	tgctccatcc	tgggtgacaa	116820
agatgaccca	gattctaaaa	aaaaagcaaa	aaacaaaaga	attccttctt	tagtggagac	116880
agagacatat	aaaataaata	gcaattttag	aattacacag	ttccagctgg	aatagaagaa	116940
tgtgcacatt	tctaaaaaaa	tttaaaaaca	aaacccaaaa	gtagactaga	tgtcacaagc	117000
agccttagac	gctaaataaa	gatctttgaa	ctttattctg	taggtaacca	ttgggctgtt	117060
tcaagtgtgt	gttggggatg	gaagggtaaa	gtgatgtaat	tcgtattttg	aaaaatttac	117120
ttaaaagcca	agtaagggaa	atataactta	aatctatgta	agattagaga	gagaagaaag	117180
ctattgcaat	cattgggcaa	gagattttaa	ggacctaaag	aaatggcagg	aattaagtat	117240
gtacactaac	taaggtggag	cttagagaac	ttggtgacta	gatgtatgga	tgagaaaaga	117300
atttggagat	acaacaaatt	tccagtttgg	acaggtagtt	ctattaacta	gtatcagaaa	117360
ttggtaagaa	atagtaagtt	ttgggatggg	gagaagatat	caaaattttg	gacatgctag	117420

```
gcttctaggt taattagatg gagaatcagg agaaaaattc aggctagcac tgtagatttg 117480
agagtcagaa tgctggcagg acttaaagtt gaatacatag gaatgaaagg aggttttcaa 117540
agtagagatt ataaagagga caaagggctg atgatgggat tctggagcca tcaatcattt 117600
taggcatgag tggaggaaga gaagccaatg aagtaagaac tgggggaggg agtagaagaa 117660
agacacccag agcagagtat acaggagcaa taggtatggg gctctgggat gggtgctctg 117780
tcatttactt gataatatta aagactctcg tgggattaga ttagtttaca cagcagacat 117840
ggacaaggga ctaatcctaa aatgatttag ctactcttct tttccactgt ggactttaac 117900
gtcccaaaca ttttttttt tttttggttc gaacaataga ggcaaattaa acgatggtct 117960
atttgtaagt tattttatgt caaattatgt ttttagaaat gtgtatgaat atctatgaaa 118020
agtttttaaa cactattaat agttggatta atactgttat tttgtttagc tagtatcaca 118080
aagtataagg agtgetttga tactgtegta aaagtttaat teteageaag aaettetgaa 118140
ataaatcaag ctataaaaat aaataaatga atgagtctat gttgctagat ttaaagttgg 118200
gtcattttct attaaatgaa tttttaatag gtgctgttaa tcaaatggct ttacttgagg 118260
cagaataaca aagcattgat gttctttttg ctcccttgat tcttattatg gaccgtctca 118320
tacttgaaac tattttatac atttcctaaa acttaagtac ccaaaatatg aagccatcaa 118380
atatgttcaa gttttaatat ttatatatga aaatgtgttg atgtaatgtc tagataaatt 118440
aagtcaatta atagttgtaa atggatgaga tgcttctgaa tggataaaat atttttatat 118500
tgcatggtag gtactattgg taatattcat ccatgtatgt taatatgctt tagagatcaa 118560
aataatagcc atgtgatgtt tccacacagt acacgggaag accatttgat gttatagatg 118620
ctgtcataaa acctactatt tgatctttac ctcctttccc caactgagtg tcgtatctct 118680
atttctcaca tctgaatatt cttccttgct ttattccttg atttcatgaa gtcttattgc 118740
taaagtttag ttggctctcc acagcatctc ttctgtcagt cccatggaat tagagcttca 118800
gttttctcaa cttaaatgtc ctttcttcgt gtctatccag tagacatata tttggctctg 118860
tettttetat geetgeetta eaatttaaca gtagaeetga aatageaggt gteaatetea 118920
aaatcgtgtg ctatttatca tacatgaaga tgacatttta gacaaatgct tctaagagag 118980
ctttctatga agatggaaat attctctatt tatgctgttc agtgtaatag gcactagcca 119040
catgtggtta ttatttaaca gttgatacgt ggctagtgta attgagttta aattaatgta 119100
aaaattaaca caaacagcca catgtggata atggttacca tagtgaacag cacaacctta 119160
gaccatgaga aagttatgca tttagaattg tcttccagac atttagatgg atttccagta 119220
attcattcac aaaatcctgc atggtatttt ttaggagatg gcataagtgt aatttctagc 119280
tgattgtata tctgtttttg ttcaagaaac agaataaagc taactagacc acagcatgaa 119340
```

ctgaacggcc	acaaagcaca	catctatgtt	aaagagtagt	tggtaccttc	attttccttt	119400
ggccaaagtt	ttatgaggtt	agatagacaa	atacatatat	gaatccaaca	gtaaataata	119460
tgaagccacc	acaaactttt	atcctaatgc	aagttcatct	tctagccatg	atggagtaaa	119520
cagagactac	atatgccgtt	acacatttaa	gaaaaaactg	acaaaatata	tgaaacaatg	119580
gtttttagac	atagaataag	aaattcaaga	gacagtggca	ccagagagaa	aggaagtaaa	119640
aaggtgaacc	tataaatacc	ccagtttact	tcctgaagag	agtattaggc	tccagtgtag	119700
ccagtaggaa	cccaaacaca	cccagcctta	tctctgtatt	aaggagacaa	agttcaaaat	119760
ttggagaggc	caaggtgacg	agagttcact	attcagaata	tcagagagga	, gagagtgtta	119820
ttgagaaaag	ctccagagac	ctgcagaggg	ttctgatcca	gtcttcagct	gagtattaaa	119880
cagcacatgc	atgtgaaaaa	actgccaagg	ctaggtaggg	aaagaaccat	cagaagaagc	119940
aggcagaata	atcccttgat	ctcacacagg	acctggaata	gttcttgatc	ataccagcca	120000
gacggagaag	acttcataat	actattcata	attgtattgc	cttggtagta	gaagtaaatt	120060
tggcagttct	gacctcatct	aaaaatgctt	aaaatgaaaa	catagaaggg	ccaaactgat	120120
tctaagtaat	ttaactgcat	cacagtacaa	aaattaaaaa	aaaaatctac	caacaaggta	120180
aaatttatag	tctagcattc	catcagaaaa	tacaaggcat	acaaagaaaa	aagaaaatat	120240
aacctttact	ggggaacagg	cagaaatcaa	tcaataaaaa	tagtcccaga	actgacatat	120300
gtgatacaat	atgtaaataa	gttcattaaa	atggctatca	tatttcatat	gttaaaatgc	120360
cagaggaaag	catgagagtg	ataaggaaag	atcagaagat	attaaaatac	cçtacaatga	120420
ccttctagaa	gtgaaaaata	tatatctaga	ttaaaaatac	actaggcgga	attaacagat	120480
taaggaactt	gaagacatag	taatagaaat	ttttcagtat	aaagaaaaaa	ctgaaaaaaa	120540
tgaatatata	aaagacctat	tagccaatat	tgttacacta	atatatgtgt	aattggagta	120600
ccagaaggag	gtgggagaca	gaaaaatatt	taaagaaaca	atggccaaat	ttttttcaga	120660
tttgttcaaa	actgtgaacc	cacagatete	agcagctcag	caaaccccag	attaaaaaac	120720
aaagacataa	aaaaagacta	tcaaaaattt	ataatcaact	tgcttacaat	ctgtgataaa	120780
gagaaactca	gaaaggcaaa	tggagaaaaa	aggacatatt	acactaggtg	ggaaaaaata	120840
agacaggaga	cttcattcag	aaaaaggcaa	gagagaagat	gtaagagaaa	catctttaac	120900
atactaaaag	aaaaaagact	ctccacccag	aaatatataa	ccaatgaaaa	caactctcaa	120960
aaaagacagc	aaaataaaga	atatttttc	agacatacat	acaaaagctg	aaagaattca	121020
ccaccaacaa	actagcactt	taaaaatgtt	aaacgaaatc	cttcaggaag	aaagaacatg	121080
ataccagaca	gaaatccaga	tcaacataat	gaaatgaaca	gtatcaaaaa	tagtaaacat	121140
ggttaaaaga	cttttaaaaa	aatgataact	tgctatctta	aaaatatatt	aacaatgtat	121200
tatgaggttt	ataacacgta	gaagtagcac	agaggctgag	gaattgaaag	tatattattg	121260

taaagtactt	atacgatatg	tggactgggt	atattacttg	gctgtaaact	gtgagacgtt	121320
agagtacact	gtgtacctta	aaccactaaa	aaaaaaaaaa	aaagtatata	gctaatcagc	121380
cagtaaagac	agaaaaatga	aatcaatcca	aaaatgtttt	taaaaatata	taggaccaaa	121440
aaaagataaa	tataaaaata	aaacaaatag	caagatggtt	tatttaaacc	caactgtatc	121500
aacaaccaca	ttaaatgtaa	atggttttaa	cacccctaat	tataaggcag	agcttgtgat	121560
attgaaaaaa	aagcaaaaac	caagaaaacc	actttaaata	taaagataca	aataaattaa	121620
aaagatattt	ttaacataaa	aaatgatgtt	gaaaagacat	aacaggaaaa	aatatgatta	121680
ttgcagtagg	tacagaaaaa	ccatttgata	atattcaaca	ttcataaaag	gaaactttct	121740
caacctatta	aatacataaa	tggaaagcca	aaagctaatg	ctatacttag	tggtgaaaga	121800
ctaatacttg	acccctaaga	taaggaacaa	gacaacaatg	tccattttta	accaactgct	121860
tctattcaac	atcaaactgt	aaattttaga	aagtgcagta	aggcaataaa	taaagcagtc	121920
aagattgggt	aggaaaaaat	aaaactgtac	ttatttgcag	atgacatgtt	tgtctacata	121980
agaagtctca	aaaaatctac	cagaaaatga	aattaatata	tgaatttagc	aaagttgtga	122040
aatacaaaat	tcaagtgtat	ttttatatac	tagcaataaa	taaatcaaaa	taaaccatta	122100
aaatagcatc	aaaatataaa	attcttagac	atacatttga	caaaaatgta	taagattata	122160
tactggaaac	taaaacattg	ctgagataaa	ttatagaaaa	cttcagtaac	tggagagata	122220
cactatgtta	atggatcaaa	agactaaata	ttattaagat	gtcagttctc	cccaaactaa	122280
tcaatatgtt	caatacatga	tgtttcaaaa	ccccagcagg	ttttttgaaa	gaattggaca	122340
agatggctgt	aaaatatata	tacttggaaa	tgcaaaggac	ttggaatagt	caaataatat	122400
tttaaaataa	gggcagaatt	tgagactata	tattgcatgg	ttttcagatt	tactgaaatc	122460
tataattgct	actgtctgtc	aagacagttt	gatattgccc	aggcgcagtg	gctcacgcct	122520
gtaattccag	cactttcgga	ggccgaggtg	ggtggatcac	ttgaggccag	gagttttgag	122580
accagcctgg	ccaacatggc	aaaactctat	ctctaataaa	aatacaaaaa	attactgggg	122640
catggtggcg	cgtgcttata	gtcccagctg	cttgggaggt	tgaggcctga	gaatcgcttg	122700
aatccaggag	gcagaggttg	cagtgagccc	agatcgtgcc	actgcactcc	agcctgggtg	122760
acagagtggg	actctgtctc	aataaataaa	taaaattttt	aaaaagtttg	atattgacat	122820
acctacatac	acaccattat	acacaagtgg	atcagaatag	agaatcctta	agtagaccca	122880
acatatataa	tatggtcaat	tgatttttaa	caaagatgat	tcaattggga	agggataacc	122940
attttatcca	gtagtatctg	aacagttgga	aagccataag	ggaaaaaagg	taatcttgac	123000
ccttaatttc	acaccattta	taaaaattaa	ctccaaataa	atccatttat	atgaaattct	123060
agaaaatgaa	aatctgtagt	gatagattag	tagttgtctg	agaacaaagc	aggaagcatg	123120
aattatacag	gggcatgagg	aaattttaa	gagtaatgaa	tatgtacttt	attttggttg	123180

tgacaaatat atatcaaaac	tcaaatagca	tactttatgg	cctcaataac	actataaaat	123240
aaaaatttta ccatgtcaag	atatttgctc	tattttgtgt	cattccattt	tgtttctgga	123300
tatatattta agttcaaaac	atttttttaa	agttctaaat	ggtctaaata	ctagtgagtt	123360
ttcggtgtaa gagtaaaact	aactactttc	gcattcacac	acacttttat	ttttcagatt	123420
gaatatgaac acagagcacc	agagtgccgt	ctgggtctga	aggaaggccg	tccattctca	123480
ggggtcactg catgtttgga	cttctgtgct	catgcccaca	gagacttgca	caacatgcag	123540
aatggcagca cattggtaag	ttgggctgag	gacagcttag	cagctgttga	gtctgttctc	123600
acactgctaa taaagacata	tgcaagactg	ggtaatttat	aaaggaaaga	gatttaattg	123660
actcacagtt ccacatggct	gtggaggcct	cacaatcata	gctgaaggca	aatgaggagc	123720
aaagtcacat cttacatggc	ggcaggcaag	agaacatgtg	caggggaact	cccctttata	123780
aaatcatcag atctcatgag	acttactctc	ctgagaacag	catgggaaag	atctgccccc	123840
atgattcaat tacctcccac	tgggtccttc	ccaaaacaca	tgggaatttt	gggagctaca	123900
attcaagatg agatttaggt	agggacacag	ccagaccata	tcagcagcat	ctcatgttga	123960
ggagcagaac actggaattt	agtagcattc	ggttagagta	atatgttgtc	tgcaggtttc	124020
actggacagc aatattttca	tgaatgaatt	cctgttgcaa	agtgacctgc	tttggcataa	124080
ctagcactct catgataggt	tggcacatta	gtttcctgtc	aattgtgttg	acaagcacat	124140
gagaatcatg gaaatccttg	gtgttaatct	aaaccagtga	ctatgcattg	ccagttacag	124200
ttaacttcca ggaaaatctc	aaaattcagt	gccagttacc	tggtagattg	taatcagtta	124260
agcaaaaagc caaatacaag	ccattcacct	tacagagaga	gaagcatatt	caccttacag	124320
agagagaagc ataaatgaga	aacacatcat	cattgtcaca	gtaactgtgg	taacctattg	124380
taaaagattc acagtgcaaa	agagcctgac	tacatattac	agtgggtaaa	atggatcggt	124440
cttgtaattg gaggcagtgg	tgaggggaaa	atagatacat	gttatatata	tatatata	124500
tatatatgtt ctataccaac	aaagggttca	gggtataatt	ttgcatgtaa	aggggtgacc	124560
cagagtagag ataaagaaca	aaatattctg	ttgaaaaaac	tatgaatcaa	tcaacctaat	124620
gaattatcaa catggatgta	ggtgtagttg	aagaagatgg	tcagtgagaa	tatggaaaca	124680
gatatcagga attaaagtca	tattctaggg	cagaaaagca	ttcatggagg	tattagatga	124740
tagctgaagt aatttgaaga	agctggtgtg	aagtttttgt	tgagaagcag	agaagatatt	124800
aatttaatgt tctagatcag	agattggaaa	actcttctct	ataaagggca	agatggtaaa	124860
tattttaggg actgcaggcc	acataggatt	tctgtcacat	tgtttggtgg	ggtttttttg	124920
tttattttgt tttttaaaaa	ctccttgaaa	atgtaaaaac	cattcttagt	ttactggcca	124980
tacaaacaca agctgtgagg	cacattagcc	gtaggttctg	gtttcctaac	ttctgatcca	125040
gaagaacaaa cacaaggcct	accaaccacc	ccaacatcta	aaatcatcac	taatcatgta	125100

ctcagcacct	gctcattatt	aggaggctat	gctagtttct	gaaaagcaga	agtagtaaat	125160
gataactggg	gctatagtgc	atcctaatat	aaccatgttt	cattccagga	aggtgacaga	125220
gagtaagatg	atgagaagga	tgtttagaat	caagaagaat	ttgcctctga	tagagcatgg	125280
gttctgtgaa	gtaaaatgga	aaggagcact	agataagaac	tgaatagggt	taaatatgta	125340
tgggaaaagt	aacaaggtgc	tcagagacat	gaatttgaag	acttctgtgc	agaaagtgac	125400
aggctcatta	ataccatctc	atgttgaagt	tatttctaaa	gtcagtccat	tgtgatcaca	125460
tttctctcaa	gaatatcttc	taattttatt	ttagatcaca	ttagatcaca	ttgtctccat	125520
tgatcaaaaa	cactaaatac	taaaaagtta	gtatttaaaa	accacaaata	atcttttacc	125580
aaagctagtg	taattgtagt	aactaaagca	aaaagtacca	tttaattatc	aaagcaacag	125640
aggtagcttt	cctccctcca	ccccttaccc	ttttcagagt	acccacttat	atggtcatat	125700
ttcagaaaag	aaatgaagaa	aagagaaagt	taggtttgac	agagtacaaa	ggaggagaga	125760
caagagagtg	aaaatagtat	taagttgcat	attacctgta	tcagccaaat	ctttaccttt	125820
tcatttttta	tatttttact	tcagttatct	tatggaaatt	tcttaaacag	agagagttag	125880
gtgtcaggta	tgtgaaaaga	catgaaattt	gtgttcagaa	gtatgagatg	aggcaaatgt	125940
gatactacca	aaaacagagg	aagtcatttc	gtagaaaaaa	cttttagcct	gtttttgaag	126000
aggcttcaca	tctagcacat	ctatttttga	agtgtgaaaa	gcaagagagt	gcttcatttt	126060
gggggagtgt	tgcttcttcc	catagacaga	aacatatgtg	aagaacaagg	gtcaccacag	126120
ctaactgttc	ctgatagact	cagagaaagg	gtgggtgggc	aatgtcaatt	tgtcttatct	126180
ccctgtacca	ttttgttgct	attttcatta	ataacaggta	ggatggtttt	atggtaatat	126240
atatgtcact	gatctggatc	aactaggcca	ccaacacaaa	tctgaatact	gagaggagaa	126300
agatacacac	acacacacac	gttttctttg	ggacctgtag	ttgaggctgt	aatgtcttac	126360
ttccctacca	ggtatgcact	ctcactagag	aagacaatcg	agaatttgga	ggaaaacctg	126420
aggatgagca	gcttcacgtt	ctgcctttat	acaaagtctc	tgacgtggat	gagtttggga	126480
gtgtggaagc	tcaggaggag	aaaaaacgga	gtggtgccat	tcaggtactg	agttcttttc	126540
ggcgaaaagt	caggatgtta	gcagagccag	tcaagacttg	ccgacaaagg	aaactagaag	126600
ccaagaaagc	tgcagctgaa	aagctttcct	ccctggagaa	cagctcaaat	aaaaatgaaa	126660
aggaaaagtc	agccccatca	cgtacaaaac	aaactgaaaa	cgcaagccag	gctaaacagt	126720
tggcaggtaa	atttaatgta	aagcatttgt	agataaatgt	gttgtgtggt	atattaaaaa	126780
tgaaaattat	tttggttttg	ccccatcaa	cttgtaagtt	ctggggtaca	catgcaggat	126840
gtgcaggttt	gttatacagg	taaacatgtg	ccatggtgat	ttgctgcaca	gatcaaccca	126900
ttacctaggt	attaagccca	gcatcttcct	gatgcacccc	taccaatagg	cgccagtgtg	126960
tgttgtcccc	actcccccac	catgtgtcca	tgtgctctta	ttgtaaaatg	aacattgtta	127020

attttggaaa	gttatatcaa	tcatggtctt	agttctgtgc	cagagtcttc	tctaaagtag	127080
caagggccag	gctttgttct	cagagatggt	aatgagatat	tgcaccatca	acatggaaaa	127140
catggaaaag	tctggatttt	attctataat	aaacagcaac	tttttttaac	aggtaagtga	127200
tacgatgaaa	ttcattgtaa	tttggcagta	ggccaaatta	gtagaggagc	taatagtttg	127260
gagataaaca	cagtaaacca	gaactgaggt	aacaagacct	tgaattttgt	tggttagtag	127320
caaagatata	gcaaaatgat	gcaaatgagc	tcttccaaaa	tgggaaaaag	aaaatacatt	127380
ggtgacaaaa	cactggaatg	aaagagaaga	aaagtttaaa	gatgacccca	aagttttaaa	127440
cctaaactta	acctactgtt	ttaggtttct	aaaacagtac	tatttattga	aataagtaag	127500
tttgaaaata	tgattgagag	agagagaggg	gagaatgaaa	catttttcct	tagacatgtt	127560
gagtctgtgg	tttaggaggg	gttctacatg	tagattatgc	tacaaaactt	ttacccatca	127620
aaatagatta	cagctgtagt	aataacaata	gaacattatt	catgaatact	aagttattgt	127680
ctttccatag	cctcctgctt	tatgtctgca	gtttgtaaaa	agaaaaaaaa	tccaaaattt	127740
gggatggtat	tggcctggcc	attaacaaaa	gcaaaccagt	ttgcttaaaa	ctagccatct	127800
ttgctgcttc	atgaagtcaa	atttctctac	tgattcattt	ccaagctcag	aggaactaag	127860
ttaaataatt	tagaatatgc	taaagatgct	tgataagtgt	ttattgactg	gttgacttaa	127920
cactaagtaa	atactgttca	cttaggttag	ctgtgaaata	taattagata	gaaccttgtc	127980
tctgctccct	tttaactggc	ttctgcaggt	aataatccct	tctgttctca	gaactgccat	128040
tgcagtttca	tctatttgtt	cttaactcat	atgacttttt	aaagtgaggt	caaaacagaa	128100
gtatgacttt	taaaagtttc	atttacaaag	ctgaaagttt	ctttaaagtg	ttatctacaa	128160
ctgtgttaac	ttcctttctg	gaaagcctgc	ttataaagta	gcacttgttg	attatataag	128220
atgctttttg	tgtttaaata	cgtgtcattc	tttttttca	caacattccc	gaatcttaca	128280
taataaatct	tattttaatt	atttagcaaa	ttccattgca	tgccaggcaa	tgaagaagta	128340
agtaaaataa	aacattttcc	ttcccattta	ggaatttact	taccagtggg	ggtgaagaga	128400
gggctaaaaa	cataactata	atacattgtg	agtattgctt	tatcagatct	atctttgcag	128460
ttgagtatta	caaaagcact	agaagatgag	gtcaaagcgg	tcccttgagg	aagggatgac	128520
tacaccaagg	aaggataggg	agagagggag	gaaaagggag	gcacttcaag	cagaggcatg	128580
ttcagaagtt	ccaaagaaca	ttttgctctc	aatggaatgg	ctttggatgt	ttattacatt	128640
tttttttca	ctaagttttg	tatttctaat	gccttagaca	aaaaattgtg	ctggacaatg	128700
atcagaaccc	tgactttgct	cttatctttg	cttaatgggt	gtcgtatatc	actagtggag	128760
tttcttacct	acatttaagt	atcctcacta	gccttcataa	aataatcatc	aacatcaaag	128820
atacctgttt	ctgttctctc	ttaccctgtc	cacagaactt	ttgcgacttt	caggaccagt	128880
catgcagcag	tcccagcagc	cccagcctct	acagaagcag	ccaccacagc	cccagcagca	128940

gcagagaccc	cagcagcagc	agccacatca	ccctcagaca	gagtctgtca	actcttattc	129000
tgcttctgga	tccaccaatc	catacatgag	acggcccaat	ccagttagtc	cttatccaaa	129060
ctcttcacac	acttcagata	tctatggaag	caccagccct	atgaacttct	attccacctc	129120
atctcaagct	gcaggttcat	atttgaattc	ttctaatccc	atgaaccctt	accctgggct	129180
tttgaatcag	aatacccaat	atccatcata	tcaatgcaat	ggaaacctat	cagtggacaa	129240
ctgctcccca	tatctgggtt	cctattctcc	ccagtctcag	ccgatggatc	tgtataggta	129300
tccaagccaa	gaccctctgt	ctaagctcag	tctaccaccc	atccatacac	tttaccagcc	129360
aaggtttgga	aatagccaga	gttttacatc	taaatactta	ggttatggaa	accaaaatat	129420
gcagggagat	ggtttcagca	gttgtaccat	tagaccaaat	gtacatcatg	tagggaaatt	129480
gcctccttat	cccactcatg	agatggatgg	ccacttcatg	ggagccacct	ctagattacc	129540
acccaatctg	agcaatccaa	acatggacta	taaaaatggt	gaacatcatt	caccttctca	129600
cataatccat	aactacagtg	cagctccggg	catgttcaac	agctctcttc	atgccctgca	129660
tctccaaaac	aaggagaatg	acatgctttc	ccacacagct	aatgggttat	caaagatgct	129720
tccagctctt	aaccatgata	gaactgcttg	tgtccaagga	ggcttacaca	aattaagtga	129780
tgctaatggt	caggaaaagc	agccattggc	actagtccag	ggtgtggctt	ctggtgcaga	129840
ggacaacgat	gaggtctggt	cagacagcga	gcagagcttt	ctggatcctg	acattggggg	129900
agtggccgtg	gctccaactc	atgggtcaat	tctcattgag	tgtgcaaagc	gtgagctgca	129960
tgccacaacc	cctttaaaga	atcccaatag	gaatcacccc	accaggatct	ccctcgtctt	130020
ttaccagcat	aagagcatga	atgagccaaa	acatggcttg	gctctttggg	aagccaaaat	130080
ggctgaaaaa	gcccgtgaga	aagaggaaga	gtgtgaaaag	tatggcccag	actatgtgcc	130140
tcagaaatcc	catggcaaaa	aagtgaaacg	ggageetget	gagccacatg	aaacttcaga	130200
gcccacttac	ctgcgtttca	tcaagtctct	tgccgaaagg	accatgtccg	tgaccacaga	130260
ctccacagta	actacatctc	catatgcctt	cactcgggtc	acagggcctt	acaacagata	130320
tatatgatat	cacccccttt	tgttggttac	ctcacttgaa	aagaccacaa	ccaacctgtc	130380
agtagtatag	ttctcatgac	gtgggcagtg	gggaaaggtc	acagtattca	tgacaaatgt	130440
ggtgggaaaa	acctcagctc	accagcaaca	aaagaggtta	tcttaccata	gcacttaatt	130500
ttcactggct	cccaagtggt	cacagatggc	atctaggaaa	agaccaaagc	attctatgca	130560
aaaagaaggt	ggggaagaaa	gtgttccgca	atttacattt	ttaaacactg	gttctattat	130620
tggacgagat	gatatgtaaa	tgtgatcccc	ccccccgct	tacaactcta	cacatctgtg	130680
accactttta	ataatatcaa	gtttgcatag	tcatggaaca	caaatcaaac	aagtactgta	130740
gtattacagt	gacaggaatc	ttaaaatacc	atctggtgct	gaatatatga	tgtactgaaa	130800
tactggaatt	atggcttttt	gaaatgcagt	ttttactgta	atcttaactt	ttatttatca	130860

```
aaatagctac aggaaacatg aatagcagga aaacactgaa tttgtttgga tgttctaaga 130920
aatggtgcta agaaaatggt gtctttaata gctaaaaatt taatgccttt atatcatcaa 130980
qatqctatca gtgtactcca gtgcccttga ataatagggg taccttttca ttcaagtttt 131040
tatcataatt acctattctt acacaagctt agtttttaaa atgtggacat tttaaaggcc 131100
tctggatttt gctcatccag tgaagtcctt gtaggacaat aaacgtatat atgtacatat 131160
atacacaaac atgtatatgt gcacacacat gtatatgtat aaatatttta aatggtgttt 131220
tagaagcact ttgtctacct aagctttgac aacttgaaca atgctaaggt actgagatgt 131280
ttaaaaaaca agtttacttt cattttagaa tgcaaagttg attttttaa ggaaacaaag 131340
aaagetttta aaatattttt gettttagee atgeatetge tgatgageaa ttgtgteeat 131400
ttttaacaca geeagttaaa teeaceatgg ggettaetgg atteaaggga atacgttagt 131460
ccacaaaaca tgttttctgg tgctcatctc acatgctata ctgtaaaaca gttttataca 131520
aaattgtatg acaagttcat tgctcaaaaa tgtacagttt taagaatttt ctattaactg 131580
caggtaataa ttagctgcat gctgcagact caacaaagct agttcactga agcctatgct 131640
attttatgga tcataggctc ttcagagaac tgaatggcag tctgcctttg tgttgataat 131700
tatgtacatt gtgacgttgt catttcttag cttaagtgtc ctctttaaca agaggattga 131760
gcagactgat gcctgcataa gatgaataaa cagggttagt tccatgtgaa tctgtcagtt 131820
aaaaagaaac aaaaacaggc agctggtttg ctgtggtggt tttaaatcat taatttgtat 131880
aaagaagtga aagagttgta tagtaaatta aattgtaaac aaaacttttt taatgcaatg 131940
tatatatata tgagtttgaa gcagaattca catcatgatg gtgctactca gcctgctaca 132060
aatatatcat aatgtgaget aagaattcat taaatgtttg agtgatgtte etaettgtea 132120
tatacctcaa cactagtttg gcaataggat attgaactga gagtgaaagc attgtgtacc 132180
atcatttttt tccaagtcct tttttttatt gttaaaaaaa aaagcatacc ttttttcaat 132240
acttgatttc ttagcaagta taacttgaac ttcaaccttt ttgttctaaa aattcaggga 132300
tatttcagct catgctctcc ctatgccaac atgtcacctg tgtttatgta aaattgttgt 132360
aggttaataa atatattett tgtcagggat ttaaccettt tattttgaat ceettetatt 132420
ttacttgt
                                                               132428
```

<210> 2 <211> 2002 <212> PRT <213> Homo sapiens

<400> 2

5

Met Glu Gln Asp Arg Thr Asn His Val Glu Gly Asn Arg Leu Ser Pro 1 5 10 15

Phe	Leu	Ile	Pro 20	Ser	Pro	Pro	Ile	Cys 25	Gln	Thr	Glu	Pro	Leu 30	Ala	Thr
Lys	Leu	Gln 35	Asn	Gly	Ser	Pro	Leu 40	Pro	Glu	Arg	Ala	His 45	Pro	Glu	Val
Asn	Gly 50	Asp	Thr	Lys	Trp	His 55	Ser	Phe	Lys	Ser	Tyr 60	Tyr	Gly	Ile	Pro
Cys 65	Met	Lys	Gly	Ser	Gln 70	Asn	Ser	Arg	Val	Ser 75	Pro	Asp	Phe	Thr	Gln 80
Glu	Ser	Arg	Gly	Tyr 85	Ser	Ļуs	Суѕ	Leu	Gln 90	Asn	Gly	Gly	Ile	Lys 95	Arg
Thr	Val	Ser	Glu 100	Pro	Ser	Leu	Ser	Gly 105	Leu	Leu	Gln	Ile	Lys 110	Lys	Leu
Lys	Gln	Asp 115	Gln	Lys	Ala	Asn	Gly 120	Glu	Arg	Arg	Asn	Phe 125	Gly	Val	Ser
Gln	Glu 130	Arg	Asn	Pro	Gly	Glu 135	Ser	Ser	Gln	Pro	Asn 140	Val	Ser	Asp	Leu
145		_			Ser 150					155			,		160
				165	Phe				170					175	
			180		Leu			185		_	-		190		
	_	195			Val		200	_		_		205			
	210					215					220				
225			-		Leu 230			- ,	-	235	-	-			240
				245	Thr				250					255	
Thr	Asn	Glu	Leu 260	Ser	Суѕ	Glu	Ile	Thr 265	His	Pro	Ser	His	Thr 270	Ser	Gly

Gln	Ile	Asn 275	Ser	Ala	Gln	Thr	Ser 280	Asn	Ser	Glu	Leu	Pro 285	Pro	Lys	Pro
Ala	Ala 290	Val	Val	Ser	Glu	Ala 295	Cys	Asp	Ala	Asp	Asp 300	Ala	Asp	Asn	Ala
Ser 305	Lys	Leu	Ala	Ala	Met 310	Leu	Asn	Thr	Cys	Ser 315	Phe	Gln	Lys	Pro	Glu 320
Gln	Leu	Gln	Gln	Gln 325	Lys	Ser	Val	Phe	Glu 330	Ile	Cys	Pro	Ser	Pro 335	Ala
Glu	Asn	Asn	Ile 340	Gln	Gly	Thr	Thr	Lys 345	Leu	Ala	Ser	Gly	Glu 350	Glu	Phe
Cys	Ser	Gly 355	Ser	Ser	Ser	Asn	Leu 360	Gln	Ala	Pro	Gly	Gly 365	Ser	Ser	Glu
Arg	Tyr 370	Leu	Lys	Gln	Asn	Glu 375	Met	Asn	Gly	Ala	Tyr 380	Phe	Lys	Gln	Ser
Ser 385	Val	Phe	Thr	Lys	Asp 390	Ser	Phe	Ser	Ala	Thr 395	Thr	Thr	Pro	Pro	Pro 400
Pro	Ser	Gln	Leu	Leu 405	Leu	Ser	Pro	Pro	Pro 410	Pro	Leu	Pro	Gln	Val 415	Pro
Gln	Leu	Pro	Ser 420	Glu	Gly	Lys	Ser	Thr 425	Leu	Asn	Gly	Gly	Val 430	Leu	Glu
Glu	His	His 435	His	Tyr	Pro	Asn	Gln 440	Ser	Asn	Thr	Thr	Leu 445	Leu	Arg	Glu
Val	Lys 450	Ile	Glu	Gly	Lys	Pro 455	Glu	Ala	Pro	Pro	Ser 460	Gln	Ser	Pro	Asn
Pro 465	Ser	Thr	His	Val	Cys 470	Ser	Pro	Ser	Pro	Met 475	Leu	Ser	Glu	Arg	Pro 480
Gln	Asn	Asn	Cys	Val 485	Asn	Arg	Asn	Asp	Ile 490	Gln	Thr	Ala	Gly	Thr 495	Met
Thr	Val	Pro	Leu 500	Cys	Ser	Glu	Lys	Thr 505	Arg	Pro	Met	Ser	Glu 510	His	Leu
Lys	His	Asn 515	Pro	Pro	Ile	Phe	Gly 520	Ser	Ser	Gly	Glu	Leu 525	Gln	Asp	Asn

Cys	Gln 530	Gln	Leu	Met	Arg	Asn 535	Lys	Glu	Gln	Glu	Ile 540	Leu	Lys	Gly	Arg
Asp 545	Lys	Glu	Gln	Thr	Arg 550	Asp	Leu	Val	Pro	Pro 555	Thr	Gln	His	Tyr	Leu 560
Lys	Pro	Gly	Trp	Ile 565	Glu	Leu	Lys	Ala	Pro 570	Arg	Phe	His	Gln	Ala 575	Glu
Ser	His	Leu	Lys 580	Arg	Asn	Glu	Ala	Ser 585	Leu	Pro	Ser	Ile	Leu 590	Gln	Tyr
Gln	Pro	Asn 595	Leu	Ser	Asn	Gln	Met 600	Thr	Ser	Lys	Gln	Tyr 605	Thr	Gly	Asn
Ser	Asn 610	Met	Pro	Gly	Gly	Leu 615	Pro	Arg	Gln	Ala	Tyr 620	Thr	Gln	Lys	Thr
Thr 625	Gln	Leu	Glu	His	Lys 630	Ser	Gln	Met	Tyr	Gln 635	Val	Glu	Met	Asn	Gln 640
Gly	Gln	Ser	Gln	Gly 645	Thr	Val	Asp	Gln	His 650	Leu	Gln	Phe	Gln	Lys 655	Pro
Ser	His	Gln	Val 660	His	Phe	Ser	Lys	Thr 665	Asp	His	Leu	Pro	Lys 670	Ala	His
Val	Gln	Ser 675	Leu	Cys	Gly	Thr	Arg 680	Phe	His	Phe	Gln	Gln 685	Arg	Ala	Asp
Ser	Gln 690	Thr	Glu	Lys	Leu	Met 695	Ser	Pro	Val	Leu	Lys 700	Gln	His	Leu	Asn
Gln 705	Gln	Ala	Ser	Glu	Thr 710	Glu	Pro	Phe	Ser	Asn 715	Ser	His	Leu	Leu	Gln 720
His	Lys	Pro	His	Lys 725	Gln	Ala	Ala	Gln	Thr 730	Gln	Pro	Ser	Gln	Ser 735	Ser
His	Leu	Pro	Gln 740	Asn	Gln	Gln	Gln	Gln 745	Gln	Lys	Leu	Gln	Ile 750	Lys	Asn
Lys	Glu	Glu 755	Ile	Leu	Gln	Thr	Phe 760	Pro	His	Pro	Gln	Ser 765	Asn	Asn	Asp
Gln	Gln 770	Arg	Glu	Gly	Ser	Phe	Phe	Gly	Gln	Thr	Lys 780	Val	Glu	Glu	Cys

- Phe His Gly Glu Asn Gln Tyr Ser Lys Ser Ser Glu Phe Glu Thr His 785 790 795 800
- Asn Val Gln Met Gly Leu Glu Glu Val Gln Asn Ile Asn Arg Arg Asn 805 810 815
- Ser Pro Tyr Ser Gln Thr Met Lys Ser Ser Ala Cys Lys Ile Gln Val
- Ser Cys Ser Asn Asn Thr His Leu Val Ser Glu Asn Lys Glu Gln Thr 835 840 845
- Thr His Pro Glu Leu Phe Ala Gly Asn Lys Thr Gln Asn Leu His His 850 855 860
- Met Gln Tyr Phe Pro Asn Asn Val Ile Pro Lys Gln Asp Leu Leu His 865 870 875 880
- Arg Cys Phe Gln Glu Gln Glu Gln Lys Ser Gln Gln Ala Ser Val Leu 885 890
- Gln Gly Tyr Lys Asn Arg Asn Gln Asp Met Ser Gly Gln Gln Ala Ala 900 905 910
- Gln Leu Ala Gln Gln Arg Tyr Leu Ile His Asn His Ala Asn Val Phe 915 920 925
- Pro Val Pro Asp Gln Gly Gly Ser His Thr Gln Thr Pro Pro Gln Lys
- Asp Thr Gln Lys His Ala Ala Leu Arg Trp His Leu Leu Gln Lys Gln 945 950 960
- Glu Gln Gln Gln Gln Gln Pro Gln Thr Glu Ser Cys His Ser Gln
- Met His Arg Pro Ile Lys Val Glu Pro Gly Cys Lys Pro His Ala Cys 980 985 990
- Met His Thr Ala Pro Pro Glu Asn Lys Thr Trp Lys Lys Val Thr Lys 995 1000 1005
- Gln Glu Asn Pro Pro Ala Ser Cys Asp Asn Val Gln Gln Lys Ser 1010 1015 1020
- Ile Ile Glu Thr Met Glu Gln His Leu Lys Gln Phe His Ala Lys $1025 \hspace{1.5cm} 1030 \hspace{1.5cm} 1035$

Ser Leu 1040		Asp	His		Ala 1045	Leu	Thr	Leu	Lys	Ser 1050	Gln	Lys	Gln
Val Lys 1055		Glu	Met	Ser	Gly 1060		Val	Thr	Val	Leu 1065	Thr	Arg	Gln
Thr Thr 1070		Ala	Glu	Leu	Asp 1075		His	Thr	Pro	Ala 1080	Leu	Glu	Gln
Gln Thr 1085		Ser	Ser	Glu	Lys 1090		Pro	Thr	Lys	Arg 1095	Thr	Ala	Ala
Ser Val 1100		Asn	Asn	Phe	Ile 1105		Ser	Pro	Ser	Lys 1110	Leu	Leu	Asp
Thr Pro 1115		Lys	Asn	Leu	Leu 1120	Asp	Thr	Pro	Val	Lys 1125	Thr	Gln	Tyr
Asp Phe 1130	Pro	Ser	Cys		Cys 1135		Glu	Gln	Ile	Ile 1140	Glu	Lys	Asp
Glu Gly 1145	Pro	Phe	Tyr	Thr	His 1150	Leu	Gly	Ala	Gly	Pro 1155	Asn	Val	Ala
Ala Ile 1160	Arg	Glu	Ile	Met	Glu 1165	Glu	Arg	Phe	Gly	Gln 1170	Lys	Gly	Lys
Ala Ile 1175	Arg	Ile	Glu	Arg	Val 1180	Ile	Tyr	Thr	Gly	Lys 1185	Glu	Gly	Lys
Ser Ser 1190	Gln	Gly	Суѕ	Pro	Ile 1195	Ala	Lys		Val	Val 1200	Arg	Arg	Ser
Ser Ser 1205	Glu	Glu	Lys	Leu	Leu 1210	Cys	Leu	Val	Arg	Glu 1215	Arg	Ala	Gly
His Thr 1220	Cys	Glu	Ala	Ala	Val 1225	Ile	Val	Ile	Leu	Ile 1230	Leu	Val	Trp
Glu Gly 1235		Pro	Leu	Ser	Leu 1240	Ala	Asp	Lys	Leu	Tyr 1245	Ser	Glu	Leu
Thr Glu 1250		Leu	Arg	Lys	Tyr 1255	Gly	Thr	Leu	Thr	Asn 1260	Arg	Arg	Cys
Ala Leu 1265		Glu	Glu	Arg	Thr 1270	Суз	Ala	Cys	Gln	Gly 1275	Leu	Asp	Pro

Glu Thr Cys	Gly Ala	Ser Phe 1285		Gly Cys	Ser 1290	Trp S	Ser M	let
Tyr Tyr Asr 1295	Gly Cys	Lys Phe 1300		Ser Lys	Ile 1305	Pro P	Arg L	ys
Phe Lys Leu 1310	Leu Gly	Asp Asp 1315		Glu Glu	Glu 1320	Lys I	Leu G	lu
Ser His Leu 1325	.Gln Asn	Leu Ser 1330		Met Ala	Pro 1335	Ťhr I	Tyr L	ıys
Lys Leu Ala 1340	Pro Asp	Ala Tyr 1345		Gln Ile	Glu 1350	Tyr (Glu H	lis
Arg Ala Pro 1355	Glu Cys	Arg Leu 1360		Lys Glu	Gly 1365	Arg E	?ro P	he
Ser Gly Val 1370	Thr Ala	Cys Leu 1375		Cys Ala	His 1380	Ala F	His A	rg
Asp Leu His 1385	Asn Met	Gln Asn 1390	-	Thr Leu	Val 1395	Cys I	Chr L	eu
Thr Arg Glu	Asp Asn	Arg Glu 1405			Pro 1410	Glu <i>F</i>	Asp G	lu
Gln Leu His 1415	Val Leu	Pro Leu 1420		Val Ser	Asp 1425	Val <i>F</i>	Asp G	lu
Phe Gly Ser 1430	Val Glu	Ala Gln 1435			Arg 1440	Ser G	Sly A	.la
Ile Gln Val 1445	Leu Ser	Ser Phe 1450		Lys Val	Arg 1455	Met I	Leu A	.la
Glu Pro Val 1460	. Lys Thr	Cys Arg 1465	Gln Arg	Lys Leu	Glu 1470	Ala I	Lys L	ys
Ala Ala Ala 1475	Glu Lys	Leu Ser 1480		Glu Asn	Ser 1485	Ser A	Asn L	ys
Asn Glu Lys 1490	Glu Lys	Ser Ala 1495		Arg Thr	Lys 1500	Gln T	hr G	lu
Asn Ala Ser 1505	Gln Ala	Lys Gln 1510		Glu Leu	Leu 1515	Arg I	Leu S	er

Gly Pr 15		Met	Gln	Gln	Ser 1525	Gln	Gln	Pro	Gln	Pro 1530	Leu	Gln	Lys
Gln Pr 15		Gln	Pro		Gln 1540		Gln	Arg	Pro	Gln 1545	Gln	Gln	Gln
Pro Hi 15		Pro	Gln		Glu 1555		Val	Asn	Ser	Tyr 1560	Ser	Ala	Ser
Gly Se 15		Asn	Pro		Met 1570	Arg	Arg	Pro		Pro 1575	Val	Ser	Pro
Tyr Pr		Ser	Ser		Thr 1585		Asp	Ile		Gly 1590	Ser	Thr	Ser
Pro Me 15		Phe	Tyr		Thr 1600		Ser	Gln		Ala 1605	Gly	Ser	Tyr
Leu As 16		Ser	Asn		Met 1615		Pro	Tyr		Gly 1620	Leu	Leu	Asn
Gln As: 16	n Thr 25				Ser 1630			Суз		Gly 1635	Asn	Leu	Ser
Val As		Cys	Ser		Tyr 1645		Gly			Ser 1650	Pro	Gln	Ser
Gln Pr 16		Asp	Leu		Arg 1660		Pro	Ser		Asp 1665	Pro	Leu	Ser
Lys Le 16		Leu	Pro		Ile 1675		Thr	Leu		Gln 1680	Pro	Arg	Phe
Gly As		Gln	Ser		Thr 1690		Lys	Tyr	Leu	Gly 1695	Tyr	Gly	Asn
Gln As		Gln	Gly	Asp	Gly 1705	Phe	Ser	Ser	Cys	Thr 1710	Ile	Arg	Pro
Asn Va 17		His	Val	Gly	Lys 1720	Leu	Pro	Pro	Tyr	Pro 1725	Thr	His	Glu
Met As	-	His	Phe	Met	Gly 1735	Ala	Thr	Ser	Arg	Leu 1740	Pro	Pro	Asn
Leu Se 17		Pro	Asn	Met	Asp 1750	Tyr	Lys	Asn	Gly	Glu 1755	His	His	Ser

Pro Ser His Ile Ile His Asn Tyr Ser Ala Ala Pro Gly Met Phe 1765 Asn Ser Ser Leu His Ala Leu His Leu Gln Asn Lys Glu Asn Asp 1775 1780 Met Leu Ser His Thr Ala Asn Gly Leu Ser Lys Met Leu Pro Ala Leu Asn His Asp Arg Thr Ala Cys Val Gln Gly Gly Leu His Lys 1805 1810 1815Leu Ser Asp Ala Asn Gly Gln Glu Lys Gln Pro Leu Ala Leu Val Gln Gly Val Ala Ser Gly Ala Glu Asp Asn Asp Glu Val Trp Ser 1835 1840 1845 Asp Ser Glu Gln Ser Phe Leu Asp Pro Asp Ile Gly Gly Val Ala 1850 $$ 1855 $$ 1860 Val Ala Pro Thr His Gly Ser Ile Leu Ile Glu Cys Ala Lys Arg Glu Leu His Ala Thr Thr Pro Leu Lys Asn Pro Asn Arg Asn His 1885 Pro Thr Arg Ile Ser Leu Val Phe Tyr Gln His Lys Ser Met Asn Glu Pro Lys His Gly Leu Ala Leu Trp Glu Ala Lys Met Ala Glu 1915 Lys Ala Arg Glu Lys Glu Glu Glu Cys Glu Lys Tyr Gly Pro Asp Tyr Val Pro Gln Lys Ser His Gly Lys Lys Val Lys Arg Glu Pro 1945 Ala Glu Pro His Glu Thr Ser Glu Pro Thr Tyr Leu Arg Phe Ile 1960 Lys Ser Leu Ala Glu Arg Thr Met Ser Val Thr Thr Asp Ser Thr 1975 Val Thr Thr Ser Pro Tyr Ala Phe Thr Arg Val Thr Gly Pro Tyr 1990 Asn Arg Tyr Ile 2000

5 <210> 3 <211> 311 <212> PRT <213> Homo sapiens

10 <400> 3

Arg 1	Cys	Val	Glu	Gln 5	Ile	Ile	Glu	Lys	Asp 10	Glu	Gly	Pro	Phe	Tyr 15	Thr
His	Leu	Gly	Ala 20	Gly	Pro	Asn	Val	Ala 25	Ala	Ile	Arg	Glu	Ile 30	Met	Glu
Glu	Arg	Phe 35	Gly	Gln	Lys	Gly	Lys 40	Ala	Ile	Arg	Ile	Glu 45	Arg	Val	Ile
Tyr	Thr 50	Gly	Lys	Glu	Gļy	Lys 55	Ser	Ser	Gln	Gly	Суs 60	Pro	Ile	Ala	Lys
Trp 65	Val	Val	Arg	Arg	Ser 70	Ser	Ser	Glu	Glu	Lys 75	Leu	Leu	Cys	Leu	Val 80
Arg	Glu	Arg	Ala	Gly 85	His	Thr	Cys	Glu	Ala 90	Ala	Val	Ile	Val	Ile 95	Leu
Ile	Leu	Val	Trp 100	Glu	Gly	Ile	Pro	Leu 105	Ser	Leu	Ala	Asp	Lys 110	Leu	Tyr
Ser	Glu	Leu 115	Thr	Glu	Thr	Leu	Arg 120	Lys	Tyr	Gly	Thr	Leu 125	Thr	Asn	Arg
Arg	Cys 130	Ala	Leu	Asn	Glu	Glu 135	Arg	Thr	Суѕ	Ala	Cys 140	Gln	Gly	Leu	Asp
Pro 145	Glu	Thr	Cys	Gly	Ala 150	Ser	Phe	Ser	Phe	Gly 155	Суѕ	Ser	Trp	Ser	Met 160
Tyr	Tyr	Asn	Gly	Cys 165	Lys	Phe	Ala	Arg	Ser 170	Lys	Ile	Pro	Arg	Lys 175	Phe
Lys	Leu	Leu	Gly 180	Asp	Asp	Pro	Lys	Glu 185	Glu	Glu	Lys	Leu	Glu 190	Ser	His
Leu	Gln	Asn 195	Leu	Ser	Thr	Leu	Met 200	Ala	Pro	Thr	Tyr	Lys 205	Lys	Leu	Ala

Pro Asp Ala Tyr Asn Asn Gln Ile Glu Tyr Glu His Arg Ala Pro Glu Cys Leu Asp Phe Cys Ala His Ala His Arg Asp Leu His Asn Met Gln Asn Gly Ser Thr Leu Val Cys Thr Leu Thr Arg Glu Asp Asn Arg Glu Phe Gly Gly Lys Pro Glu Asp Glu Gln Leu His Val Leu Pro Leu Tyr 275 280 285Lys Val Ser Asp Val Asp Glu Phe Gly Ser Val Glu Ala Gl
n Glu Glu 290 295 300 Lys Lys Arg Ser Gly Ala Ile 305 310 <210> 4 <211>80 <212> PRT <213> Homo sapiens <400> 4 Asn Asp Glu Val Trp Ser Asp Ser Glu Gln Ser Phe Leu Asp Pro Asp Cys Ala Lys Arg Glu Leu His Ala Thr Thr Pro Leu Lys Asn Pro Asn 35 40 45Arg Asn His Pro Thr Arg Ile Ser Leu Val Phe Tyr Gln His Lys Ser Met Asn Glu Pro Lys His Gly Leu Ala Leu Trp Glu Ala Lys Met Ala 65 70 75 10 <210>5 <211> 22 <212> ADN <213> Secuencia artificial 15 <220> <223> Cebador <400> 5 20 tgaacttccc acattagctg gt 22 <210>6 <211> 24 <212> ADN <213> Secuencia artificial 25 <220> <223> Cebador

	<400> 6 gaaactgtag caccattagg catt 24
5	<210> 7 <211> 25 <212> ADN <213> Secuencia artificial
10	<220> <223> Cebador
	<400> 7 caaaaggcta atggagaaag acgta 25
15	<210> 8 <211> 25 <212> ADN <213> Secuencia artificial
20	<220> <223> Cebador
25	<400> 8 gcagaaaagg aatccttagt gaaca 25
	<210> 9 <211> 25 <212> ADN <213> Secuencia artificial
30	<220> <223> Cebador
35	<400> 9 gccagtaaac tagctgcaat gctaa 25
40	<210> 10 <211> 23 <212> ADN <213> Secuencia artificial
	<220> <223> Cebador
45	<400> 10 tgcctcatta cgttttagat ggg 23
50	<210> 11 <211> 22 <212> ADN <213> Secuencia artificial
55	<220> <223> Cebador
	<400> 11 gaccaatgtc agaacacctc aa 22
60	<210> 12 <211> 26 <212> ADN <213> Secuencia artificial
65	<220> <223> Cebador

```
<400> 12
      ttgattttga atactgattt tcacca 26
      <210> 13
 5
      <211> 24
      <212> ADN
      <213> Secuencia artificial
      <220>
      <223> Cebador
10
      <400> 13
      ttgcaacata agcctcataa acag 24
15
      <210> 14
      <211> 22
      <212> ADN
      <213> Secuencia artificial
      <220>
20
      <223> Cebador
      <400> 14
      attggcctgt gcatctgact at 22
25
      <210> 15
      <211> 23
      <212> ADN
      <213> Secuencia artificial
30
      <220>
      <223> Cebador
      <400> 15
35
      gcaacttgct cagcaaaggt act 23
      <210> 16
      <211> 24
      <212> ADN
40
      <213> Secuencia artificial
      <220>
      <223> Cebador
45
      <400> 16
      tgctgccaga ctcaagattt aaaa 24
      <210> 17
      <211> 34
50
      <212> ADN
      <213> Secuencia artificial
      <220>
      <223> Cebador
55
      atactacata taatacattc taattccctc actg 34
      <210> 18
60
      <211> 24
      <212> ADN
      <213> Secuencia artificial
      <220>
65
      <223> Cebador
```

```
<400> 18
      tgtttactgc tttgtgtgtg aagg 24
      <210> 19
 5
      <211> 26
      <212> ADN
      <213> Secuencia artificial
      <220>
      <223> Cebador
10
      <400> 19
      cattlctcag gatgtggtca tagaat 26
15
      <210> 20
      <211> 23
      <212> ADN
      <213> Secuencia artificial
      <220>
20
      <223> Cebador
      <400> 20
      cccaattctc agggtcagat tta 23
25
      <210> 21
      <211> 29
      <212> ADN
      <213> Secuencia artificial
30
      <220>
      <223> Cebador
      <400> 21
35
      agacttatgt atctttcatc tagctctgg 29
      <210> 22
      <211> 25
      <212> ADN
40
      <213> Secuencia artificial
      <220>
      <223> Cebador
      <400> 22
45
      actetettee ttteaaceaa agatt 25
      <210> 23
      <211> 27
50
      <212> ADN
      <213> Secuencia artificial
      <220>
      <223> Cebador
55
      atgccacagc ttaatacaga gttagat 27
      <210> 24
60
      <211> 30
      <212> ADN
      <213> Secuencia artificial
      <220>
65
      <223> Cebador
```

```
<400> 24
      tgtcatattg ttcacttcat ctaagctaat 30
      <210> 25
 5
      <211> 28
      <212> ADN
      <213> Secuencia artificial
      <220>
10
      <223> Cebador
      <400> 25
      gatgctttat ttagtaataa aggcacca 28
15
      <210> 26
      <211> 35
      <212> ADN
      <213> Secuencia artificial
      <220>
20
      <223> Cebador
      <400> 26
      ttcaacaatt aagaggaaaa gttagaataa tattt 35
25
      <210> 27
      <211> 25
      <212> ADN
      <213> Secuencia artificial
30
      <220>
      <223> Cebador
      <400> 27
35
      tgtcattcca ttttgtttct ggata 25
      <210> 28
      <211> 26
      <212> ADN
40
      <213> Secuencia artificial
      <220>
      <223> Cebador
      <400> 28
45
      aaattaccca gtcttgcata tgtctt 26
      <210> 29
      <211> 22
50
      <212> ADN
      <213> Secuencia artificial
      <220>
      <223> Cebador
55
      ctggatcaac taggccacca ac 22
      <210> 30
60
      <211> 33
      <212> ADN
      <213> Secuencia artificial
      <220>
65
      <223> Cebador
```

	<400> 30 ccaaaattaa caatgttcat tttacaataa gag 33
5	<210> 31 <211> 25 <212> ADN <213> Secuencia artificial
10	<220> <223> Cebador
	<400> 31 gctcttatct ttgcttaatg ggtgt 25
15	<210> 32 <211> 27 <212> ADN <213> Secuencia artificial
20	<220> <223> Cebador
25	<400> 32 tgtacatttg gtctaatggt acaactg 27
25	<210> 33 <211> 24 <212> ADN <213> Secuencia artificial
30	<220> <223> Cebador
35	<400> 33 aatggaaacc tatcagtgga caac 24
40	<210> 34 <211> 26 <212> ADN <213> Secuencia artificial
	<220> <223> Cebador
45	<400> 34 tatatatctg ttgtaaggcc ctgtga 26
50	<210> 35 <211> 23 <212> ADN <213> Secuencia artificial
55	<220> <223> Cebador
	<400> 35 cagagettte tggateetga cat 23
60	<210> 36 <211> 25 <212> ADN <213> Secuencia artificial
65	<220> <223> Cebador

```
<400> 36
      gcccacgtca tgagaactat actac 25
      <210> 37
 5
      <211> 28
      <212> ADN
      <213> Secuencia artificial
      <220>
10
     <223> Cebador
      <400> 37
     tctaagctca gtctaccacc catccata 28
15
      <210> 38
      <211> 25
      <212> ADN
      <213> Secuencia artificial
20
      <220>
      <223> Cebador
      <400> 38
      tgctcgctgt ctgaccagac ctcat 25
25
      <210> 1
      <211>6869
      <212> ADN
      <213> Homo sapiens
30
      <400> 39
                  ccgtgccatc ccaacctccc acctcgcccc caaccttcgc gcttgctctg cttcttctcc
                                                                                          60
                                                                                         120
                  caggggtgga gacccgccga ggtccccggg gttcccgagg gctgcaccct tccccgcgct
                  eqecaqueet qqccctact ecqeqetqqt ecqqqqcac cactecece qeqecactqe
                                                                                         180
                  acggcgtgag ggcagcccag gtctccactg cgcgccccgc tgtacggccc caggtgccgc
                                                                                         240
                  cggcctttgt gctggacgcc cggtgcgggg ggctaattcc ctgggagccg gggctgaggg
                                                                                         300
                                                                                         360
                  ccccagggcg gcggcgcagg ccggggcgga gcgggaggag gccggggcgg agcaggagga
                                                                                         420
                  ggcccgggcg gaggaggaga gccggcggta gcggcagtgg cagcggcgag agcttgggcg
                                                                                         480
                  geogeogeog cetectogeg agegeogege geoegggtee egetegeatg caagteacgt
                                                                                         540
                  ccgcccctc ggcgcggccg ccccgagacg ccggccccgc tgagtgatga gaacagacgt
                                                                                         600
                  caaactqcct tatqaatatt gatqcqqaqq .ctaqqctqct ttcqtaqaqa aqcaqaaqqa
                  agcaagatgg ctgcccttta ggatttgtta gaaaggagac ccgactgcaa ctgctggatt
                                                                                         660
                  gctgcaaggc tgagggacga gaacgaggct ggcaaacatt cagcagcaca ccctctcaag
                                                                                         720
                  attgtttact tgcctttgct cctgttgagt tacaacgctt ggaagcagga gatgggctca
                                                                                         780
                  gcagcagcca ataggacatg atccaggaag agcaaattca actagagggc agccttgtgg
                                                                                         840
                  atggccccga agcaagcctg atggaacagg atagaaccaa ccatgttgag ggcaacagac
                                                                                         900
                  taagtccatt cetgatacca teacetecca tttgccagac agaacetetg getacaaage
                                                                                         960
                  tccagaatgg aagcccactg cctgagagag ctcatccaga agtaaatgga gacaccaagt
                                                                                        1020
                  ggcactcttt caaaagttat tatggaatac cctgtatgaa gggaagccag aatagtcgtg
                                                                                        1080
                  tgagtcctga ctttacacaa gaaagtagag ggtattccaa gtgtttgcaa aatggaggaa
                                                                                        1140
                                                                                        1200
                  taaaacgcac agttagtgaa ccttctctct ctgggctcct tcagatcaag aaattgaaac
```

1260

1320

aagaccaaaa ggctaatgga gaaagacgta acttcggggt aagccaagaa agaaatccag

gtgaaagcag tcaaccaaat gtctccgatt tgagtgataa gaaagaatct gtgagttctg

tagcccaaga	aaatgcagtt	aaagatttca	ccagtttttc	aacacataac	tgcagtgggc	1380
ctgaaaatcc	agagcttcag	attctgaatg	agcaggaggg	gaaaagtgct	aattaccatg	1440
acaagaacat	tgtattactt	aaaaacaagg	cagtgctaat	gcctaatggt	gctacagttt	1500
ctgcctcttc	cgtggaacac	acacatggtg	aactcctgga	aaaaacactg	tctcaatatt	1560
atccagattg	tgtttccatt	gcggtgcaga	aaaccacatc	tcacataaat	gccattaaca	1620
gtcaggctac	taatgagttg	tcctgtgaga	tcactcaccc	atcgcatacc	tcagggcaga	1680
tcaattccgc	acagacctct	aactctgagc	tgcctccaaa	gccagctgca	gtggtgagtg	1740
aggcctgtga	tgctgatgat	gctgataatg	ccagtaaact	agctgcaatg	ctaaatacct	1800
gttcctttca	gaaaccagaa	caactacaac	aacaaaaatc	agtttttgag	atatgcccat	1860
ctcctgcaga	aaataacatc	cagggaacca	caaagctagc	gtctggtgaa	gaattctgtt	1920
caggttccag	cagcaatttg	caagctcctg	gtggcagctc	tgaacggtat	ttaaaacaaa	1980
atgaaatgaa	tggtgcttac	ttcaagcaaa	gctcagtgtt	cactaaggat	tccttttctg	2040
ccactaccac	accaccacca	ccatcacaat	tgcttctttc	tececetect	cctcttccac	2100
aggttcctca	gcttccttca	gaaggaaaaa	gcactctgaa	tggtggagtt	ttagaagaac	2160
accaccacta	ccccaaccaa	agtaacacaa	cacttttaag	ggaagtgaaa	atagagggta	2220
aacctgaggc	accaccttcc	cagagtccta	atccatctac	acatgtatgc	agcccttctc	2280
cgatgctttc	tgaaaggcct	cagaataatt	gtgtgaacag	gaatgacata	cagactgcag	2340
ggacaatgac	tgttccattg	tgttctgaga	aaacaagacc	aatgtcagaa	cacctcaagc	2400
ataacccacc	aatttttggt	agcagtggag	agctacagga	caactgccag	cagttgatga	2460
gaaacaaaga	gcaagagatt	ctgaagggtc	gagacaagga	gcaaacacga	gatcttgtgc	2520
ccccaacaca	gcactatctg	aaaccaggat	ggattgaatt	gaaggcccct	cgttttcacc	2580
aagcggaatc	ccatctaaaa	cgtaatgagg	catcactgcc	atcaattctt	cagtatcaac	2640
ccaatctctc	caatcaaatg	acctccaaac	aatacactgg	aaattccaac	atgcctgggg	2700
ggctcccaag	gcaagcttac	acccagaaaa	caacacagct	ggagcacaag	tcacaaatgt	2760
accaagttga	aatgaatcaa	gggcagtccc	aaggtacagt	ggaccaacat	ctccagttcc	2820
aaaaaccctc	acaccaggtg	cacttctcca	aaacagacca	tttaccaaaa	gctcatgtgc	2880
agtcactgtg	tggcactaga	tttcattttc	aacaaagagc	agattcccaa	actgaaaaac	2940
ttatgtcccc	agtgttgaaa	cagcacttga	atcaacaggc	ttcagagact	gagccatttt	3000
caaactcaca	ccttttgcaa	cataagcctc	ataaacaggç	agcacaaaca	caaccatccc	3060
agagttcaca	tctccctcaa	aaccagcaac	agcagcaaaa	attacaaata	aagaataaag	3120
aggaaatact	ccagactttt	cctcaccccc	aaagcaacaa	tgatcagcaa	agagaaggat	3180
cattctttgg	ccagactaaa	gtggaagaat	gttttcatgg	tgaaaatcag	tattcaaaat	3240

caagcgagtt	cgagactcat	aatgtccaaa	tgggactgga	ggaagtacag	aatataaatc	3300
gtagaaattc	cccttatagt	cagaccatga	aatcaagtgc	atgcaaaata	caggtttctt	3,360
gttcaaacaa	tacacaccta	gtttcagaga	ataaagaaca	gactacacat	cctgaacttt	3420
ttgcaggaaa	caagacccaa	aacttgcatc	acatgcaata	ttttccaaat	aatgtgatcc	3480
caaagcaaga	tcttcttcac	aggtgctttc	aagaacagga	gcagaagtca	caacaagctt	35,40
cagttctaca	gggatataaa	aatagaaacc	aagatatgtc	tggtcaacaa	gctgcgcaac	3600
ttgctcagca	äaggtacttg	atacataacc	atgcaaatgt	ttttcctgtg	cctgaccagg	3660
gaggaagtca	cactcagacc	cctccccaga	aggacactca	aaagcatgct	gctctaaggt	3720
ggcatctctt	acagaagcaa	gaacagcagc	aaacacagca	accccaaact	gagtcttgcc	3780
atagtcagat	gcacaggcca	attaaggtgg	aacctggatg	caagccacat	gcctgtatgc	3840
acacagcacc	accagaaaac	aaaacatgga	aaaaggtaac	taagcaagag	aatccacctg	3900
caagctgtga	taatgtgcag	caaaagagca	tcattgagac	catggagcag	catctgaagc	3960
agtttcacgc	caagtcgtta	tttgaccata	aggctcttac	tctcaaatca	cagaagcaag	4020
taaaagttga	aatgtcaggg	ccagtcacag	ttttgactag	acaaaccact	gctgcagaac	4080
ttgatagcca	caccccagct	ttagagcagc	aaacaacttc	ttcagaaaag	acaccaacca	4140
aaagaacagc	tgcttctgtt	ctcaataatt	ttatagagtc	accttccaaa	ttactagata	4200
ctcctataaa	aaatttattg	gatacacctg	tcaagactca	atatgatttc	ccatcttgca	4260
gatgtgtaga	gcaaattatt	gaaaaagatg	aaggtccttt	ttatacccat	ctaggagcag	4320
gtcctaatgt	ggcagctatt	agagaaatca	tggaagaaag	gtttggacag	aagggtaaag	4380
ctattaggat	tgaaagagtc	atctatactg	gtaaagaagg	caaaagttct	cagggatgtc	4440
ctattgctaa	gtgggtggtt	cgcagaagca	gcagtgaaga	gaagctactg	tgtttggtgc	4500
gggagcgagc	tggccacacc	tgtgaggctg	cagtgattgt	gattctcatc	ctggtgtggg	4560
aaggaatccc	gctgtctctg	gctgacaaac	tctactcgga	gcttaccgag	acgctgagga	4620
aatacggcac	gctcaccaat	cgccggtgtg	ccttgaatga	agagagaact	tgcgcctgtc	4680
aggggctgga	tccagaaacc	tgtggtgcct	ccttctcttt	tggttgttca	tggagcatgt	4740
actacaatgg	atgtaagttt	gccagaagca	agatcccaag	gaagtttaag	ctgcttgggg	4800
atgacccaaa	agaggaagag	aaactggagt	ctcatttgca	aaacctgtcc	actcttatgg	4860
caccaacata	taagaaactt	gcacctgatg	catataataa	tcagattgaa	tatgaacaca	4920
gagcaccaga	gtgccgtctg	ggtctgaagg	aaggccgtcc	attctcaggg	gtcactgcat	4980
gtttggactt	ctgtgctcat	gcccacagag	acttgcacaa	catgcagaat	ggcagcacat	5040
tggtatgcac	tctcactaga	gaagacaatc	gagaatttgg	aggaaaacct	gaggatgagc	5100
agcttcacgt	tctgccttta	tacaaagtct	ctgacgtgga	tgagtttggg	agtgtggaag	5160

ctcaggagga	gaaaaaacgg	agtggtgcca	ttcaggtact	gagttctttt	cggcgaaaag	5220
tcaggatgtt	agcagagcca	gtcaagactt	gccgacaaag	gaaactagaa	gccaagaaag	5280
ctgcagctga	aaagctttcc	tccctggaga	acagctcaaa	taaaaatgaa	aaggaaaagt	5340
cagccccatc	acgtacaaaa	caaactgaaa	acgcaagcca	ggctaaacag	ttggcagaac	5400
ttttgcgact	ttcaggacca	gtcatgcagc	agtcccagca	gccccagcct	ctacagaagc	5460
agccaccaca	gccccagcag	cagcagagac	cccagcagca	gcagccacat	caccctcaga	5520
cagagtctgt	caactcttat	tctgcttctg	gatccaccaa	tccatacatg	agacggccca	5580
atccagttag	tccttatcca	aactcttcac	acacttcaga	tatctatgga	agcaccagcc	5640
ctatgaactt	ctattccacc	tcatctcaag	ctgcaggttc	atatttgaat	tcttctaatc	5700
ccatgaaccc	ttaccctggg	cttttgaatc	agaataccca	atatccatca	tatcaatgca	5760
atggaaacct	atcagtggac	aactgctccc	catatctggg	ttcctattct	ccccagtctc	5820
agccgatgga	tctgtatagg	tatccaagcc	aagaccctct	gtctaagctc	agtctaccac	5880
ccatccatac	actttaccag	ccaaggtttg	gaaatagcca	gagttttaca	tctaaatact	5940
taggttatgg	aaaccaaaat	atgcagggag	atggtttcag	cagttgtacc	attagaccaa	6000
atgtacatca	tgtagggaaa	ttgcctcctt	atcccactca	tgagatggat	ggccacttca	6060
tgggagccac	ctctagatta	ccacccaatc	tgagcaatcc	aaacatggac	tataaaaatg	6120
gtgaacatca	ttcaccttct	cacataatcc	ataactacag	tgcagctccg	ggcatgttca	6180
acagctctct	tcatgccctg	catctccaaa	acaaggagaa	tgacatgctt	tcccacacag	6240
ctaatgggtt	atcaaagatg	cttccagctc	ttaaccatga	tagaactgct	tgtgtccaag	6300
gaggcttaca	caaattaagt	gatgctaatg	gtcaggaaaa	gcagccattg	gcactagtcc	6360
agggtgtggc	ttctggtgca	gaggacaacg	atgaggtctg	gtcagacagc	gagcagagct	6420
ttctggatcc	tgacattggg	ggagtggccg	tggctccaac	tcatgggtca	attctcattg	6480
agtgtgcaaa	gcgtgagctg	catgccacaa	cccctttaaa	gaatcccaat	aggaatcacc	6540
ccaccaggat	ctccctcgtc	ttttaccagc	ataagagcat	gaatgagcca	aaacatggct	6600
tggctctttg	ggaagccaaa	atggctgaaa	aagcccgtga	gaaagaggaa	gagtgtgaaa	6660
agtatggccc	agactatgtg	cctcagaaat	cccatggcaa	aaaagtgaaa	cgggagcctg	6720
ctgagccaca	tgaaacttca	gagcccactt	acctgcgttt	catcaagtct	cttgccgaaa	6780
ggaccatgtc	cgtgaccaca	gactccacag	taactacatc	tccatatgcc	ttcactcggg	6840
tcacagggcc	ttacaacaga	tatatatga				6869

REIVINDICACIONES

- 1. Método *in vitro* para diagnosticar un tumor mieloide o un tumor linfoide en un sujeto, que comprende la etapa de analizar una muestra biológica de dicho sujeto:
 - (i) detectando la presencia de una mutación en el gen del miembro 2 de la familia de proteínas Ten Eleven Translocation (TET2) que codifica el polipéptido que presenta la secuencia SEC ID nº:2, en el que dicha mutación se selecciona de entre el grupo que consiste en supresiones, inserciones y mutaciones de punto, tales como mutaciones que afectan a sitios de corte y empalme, mutación de aminoácido y mutaciones finalizadoras, y/o
 - (ii) analizando la expresión del gen TET2;
- en el que la detección de tal mutación de TET2, de la ausencia de expresión de TET2, o de la expresión de una TET2 truncada es indicativa de un sujeto que desarrolla o está predispuesto a desarrollar un tumor mieloide o un tumor linfoide.
- 2. Método según la reivindicación 1, en el que dicho tumor que se debe diagnosticar es un tumor mieloide seleccionado en el grupo que comprende síndrome mielodisplásico (MDS), leucemia mieloide aguda (AML), enfermedad mieloproliferativa (MPD) y síndrome mielodisplásico/mieloproliferativo, preferentemente un síndrome mielodisplásico/mieloproliferativo y más preferentemente dicho síndrome mielodisplásico/mieloproliferativo es una leucemia mielomonocítica crónica (CMML).
- 3. Método según la reivindicación 1, en el que dicho tumor que se debe diagnosticar es un tumor linfoide seleccionado en el grupo que consiste en linfoma, preferentemente linfoma de linfocitos T.
 - 4. Método según cualquiera de las reivindicaciones 1 o 2 para diagnosticar una mielofibrosis (MF) en un sujeto, en el que dicho sujeto sufre policitemia vera (PV) o trombocitemia (ET), y en el que la detección de una mutación de TET2 o la subexpresión de TET2 es indicativa de un sujeto que desarrolla o está predispuesto a desarrollar una mielofibrosis (MF).
 - 5. Método según cualquiera de las reivindicaciones 1 o 2, en el que dicho sujeto sufre síndrome mielodisplásico (MDS), y la detección de una mutación de TET2 o la subexpresión de TET2 es indicativa de un sujeto con un buen pronóstico.
 - 6. Método según cualquiera de las reivindicaciones 1 a 5, en el que dicha mutación se detecta en uno o en ambos alelos del gen TET2 que codifica el polipéptido que presenta la secuencia SEC ID nº:2.
- 7. Método según cualquiera de las reivindicaciones 1 a 6, en el que dicha mutación se selecciona en el grupo que consiste en una supresión o inserción y da como resultado la ausencia de expresión de la proteína TET2 o la expresión de una proteína TET2 truncada.
 - 8. Método según la reivindicación 7, en el que dicha proteína TET2 truncada no comprende por lo menos una de las dos regiones muy conservadas compartidas por las otras proteínas TET y que corresponde a i) la región de 310 aminoácidos situada próxima al centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), o ii) la región de 80 aminoácidos situada próxima al extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), preferentemente la región de 80 aminoácidos situada próxima al extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4).
 - 9. Método según la reivindicación 8, en el que dicha supresión o inserción se selecciona en el grupo de supresión o inserción presentado en la tabla I, que se refiere a SEC ID nº:39 para la posición de ácido nucleico y a SEC ID nº:2 para la posición de aminoácido.

55 <u>Tabla I</u>

Cambio de nucleótido	Consecuencia
del1264_1666	p.Glu135 FS
delC 1642	p.Ser261 FS
del1893_1896	p.Lys345FS
delC 2448	p.Gln530 FS
delA 2505	p.Thr549 FS
delC 2524	p. Pro555 FS
Ins 2540_2544	p.Leu560FS
delT 2685	p.Ser609 FS

20

5

10

15

30

35

50

45

Cambia da muala étida	Composition			
Cambio de nucleótido	Consecuencia			
delA 2815	p.Gln652FS			
del 2834_2835	p.His658 FS			
delA 2935	p.Glu692 FS			
delT 2944	p.Leu699 STOP			
delG 2994	p.Glu711 FS			
delC 3009	p.His717 FS			
insA 3009	p.His717 FS			
del 3131_3137	p. Leu757 FS			
insC 3151	p.Gln764 FS			
delA 3166	p.Gln769 FS			
delT3215	p.Phe785 FS			
insA3350	p.Gln831FS			
insT3995	p.Glu846 FS			
delA3430	p.Asn857FS			
insT 3465	p.Pro869 FS			
insA 5757	p.Gln891 STOP			
insCT 3581	pGly 908 FS			
del CA 3756_3757	p.Gln966 FS			
dupT 3914	p.Glu1026 STOP			
delT 3998	p.Leu1046FS			
delA 4130	p.Lys1090 FS			
delG 4271	p.Glu1137 FS			
delA4327	p.Asn1156 FS			
delG 4527	p.Ala1223 FS			
-	p.del 1237-1239			
delG 4932	p.Glu1357 FS			
insG 5119	p.Leu 1420 FS			
delG 5133	p.Asp 1425 FS			
insA 5177	p.Arg1440FS			
dupA 5177	p.Arg 1440FS			
delC 5222	p.Leu1457 STOP			
del5521_5524	pThr1554 FS			
insA 5540	p.Tyr1560 FS			
del 5583_5605	p.Pro1575FS			
delT 5570	p.Leu1637 FS			
del1 3370 del5828_5843	p.Met1656 FS			
del6049_6050	p.Asp1830 FS			
delC 6360	p.Gln1834 FS			
delC 6360 del6396_6531	p.Val1846 FS			
delA 6507	p. var1646 FS p. Thr1883 FS			
insC 6507	p.Thr1883 FS			
del6511_6512	p.Pro1885FS			
DelC 6555	p. Leu1889FS			
sitio de corte y empalme insC				
Del: supresión; ins: inserción; FS: desplazamiento del marco				

^{10.} Método según la reivindicación 7, en el que dicha mutación de aminoácido está situada en el marco de lectura abierto de la proteína TET2, preferentemente en por lo menos una de las dos regiones muy conservadas compartidas por las proteínas TET y que corresponde a i) la región de 310 aminoácidos situada próxima al centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), e ii) la región de 80 aminoácidos situada próxima al extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), más preferentemente en la región de 80 aminoácidos situada próxima al extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), y todavía más preferentemente dicha mutación de aminoácido se selecciona en el grupo que comprende o que consiste en I1175V, L1197N, H1219Y, E1235V, C1271W, K1299E, L1340P, R1302G, G1370E, A1344E, N1387S, V1417F, H1868R, G1869W, L1872P, I1873T, R1896M, y S1898F.

5

10

15

^{11.} Método según la reivindicación 7, en el que dicha mutación finalizadora está situada en el marco de lectura abierto de la proteína TET2, preferentemente antes o dentro de por lo menos una de las dos regiones muy conservadas compartidas por las proteínas TET y que corresponde a i) la región de 310 aminoácidos situada próxima al centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), e ii) la región de 80 aminoácidos situada próxima al extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), más preferentemente antes o dentro de la región de 80 aminoácidos

situada próxima al extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), y todavía más preferentemente dicha mutación finalizadora se selecciona en el grupo que comprende o que consiste en Q232Stop, Q321Stop, S354Stop, Q417Stop, R544Stop, R550Stop, Q557Stop, Q574Stop, Q635Stop, Q642Stop, Q685Stop, L699Stop, S792Stop, Q891Stop, Q943Stop, E1026Stop R1067Stop, R1216Stop, Y1225Stop, R1404Stop, L1457Stop, R1465Stop, R1516Stop, Q1524Stop, Q1542Stop, N1624Stop, Y1724Stop, Y1751Stop, L1819Stop, y Q1834Stop.

5

10

15

20

- 12. Método según cualquiera de las reivindicaciones 1 a 11, en el que dicha mutación en el gen TET2 induce una ausencia de expresión o una subexpresión del polipéptido que presenta la secuencia SEC ID nº:2, preferentemente la ausencia de expresión o subexpresión de por lo menos una de las dos regiones muy conservadas compartidas por las proteínas TET y que corresponde a i) la región de 310 aminoácidos próxima al centro de la proteína TET2 (aminoácidos 1134 a aminoácido 1444, SEC ID nº:3), e ii) la región de 80 aminoácidos situada próxima al extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4), más preferentemente de la región de 80 aminoácidos situada próxima al extremo carboxi terminal de la proteína TET2 (que corresponde al aminoácido 1843 hasta el aminoácido 1922, SEC ID nº:4).
 - 13. Utilización de un kit para diagnosticar *in vitro* un cáncer mieloide o un cáncer linfoide en un sujeto, en la que dicho kit comprende por lo menos una sonda de ácido nucleico u oligonucleótido o por lo menos un anticuerpo, que se puede utilizar en un método como se define en cualquiera de las reivindicaciones 1 a 12 para detectar la presencia de una mutación en el gen TET2 y/o analizar la expresión del gen TET2.
 - 14. Utilización según la reivindicación 13, en la que dicho oligonucleótido es por lo menos un cebador de PCR, preferentemente un conjunto de cebadores de PCR, que permite amplificar una región del gen TET2.

MEQDRTNHVEGNRLSPFLIPSPPICQTEPLATKLQNGSPLPERAHPEVNGDTKWHSFKSYYGIPCM KGSQNSRVSPDFTQESRGYSKCLQNGGIKRTVSEPSLSGLLQIKKLKODOKANGERRNFGVSOERN PGESSQPNVSDLSDKKESVSSVAQENAVKDFTSFSTHNCSGPENPELQILNEQEGKSANYHDKNIV LLKNKAVLMPNGATVSASSVEHTHGELLEKTLSQYYPDCVSIAVQKTTSHINAINSQATNELSCEI THPSHTSGQINSAQTSNSELPPKPAAVVSEACDADDADNASKLAAMLNTCSFQKPEQLQQQKSVFE ICPSPAENNIQGTTKLASGEEFCSGSSSNLQAPGGSSERYLKONEMNGAYFKOSSVFTKDSFSATT TPPPPSQLLLSPPPPLPQVPQLPSEGKSTLNGGVLEEHHHYPNOSNTTLLREVKIEGKPEAPPSOS PNPSTHVCSPSPMLSERPQNNCVNRNDIQTAGTMTVPLCSEKTRPMSEHLKHNPPIFGSSGELQDN CQQLMRNKEQEILKGRDKEQTRDLVPPTQHYLKPGWIELKAPRFHQAESHLKRNEASLPSILQYQP NLSNQMTSKQYTGNSNMPGGLPRQAYTQKTTQLEHKSQMYQVEMNQGQSQGTVDQHLQFQKPSHQV HFSKTDHLPKAHVQSLCGTRFHFQQRADSQTEKLMSPVLKQHLNQQASETEPFSNSHLLQHKPHKQ AAQTQPSQSSHLPQNQQQQKLQIKNKEEILQTFPHPQSNNDQQREGSFFGQTKVEECFHGENQYS KSSEFETHNVQMGLEEVQNINRRNSPYSQTMKSSACKIQVSCSNNTHLVSENKEQTTHPELFAGNK TQNLHHMQYFPNNVIPKQDLLHRCFQEQEQKSQQASVLQGYKNRNQDMSGQQAAQLAQQRYLIHNH ANVFPVPDQGGSHTQTPPQKDTQKHAALRWHLLQKQEQQQTQQPQTESCHSQMHRPIKVEPGCKPH ACMHTAPPENKTWKKVTKQENPPASCDNVQQKSIIETMEQHLKQFHAKSLFDHKALTLKSQKQVKV EMSGPVTVLTRQTTAAELDSHTPALEQQTTSSEKTPTKRTAASVLNNFIESPSKLLDTPIKNLLDT PVKTQYDFPSCRCVEQIIEKDEGPFYTHLGAGPNVAAIREIMEERFGQKGKAIRIERVIYTGKEGK SSOGCPIAKWVVRRSSSEEKLLCLVRERAGHTCEAAVIVILILVWEGIPLSLADKLYSELTETLRK YGTLTNRRCALNEERTCACOGLDPETCGASFSFGCSWSMYYNGCKFARSKIPRKFKLLGDDPKEEE KLESHLQNLSTLMAPTYKKLAPDAYNNQIEYEHRAPECRLGLKEGRPFSGVTACLDFCAHAHRDLH NMQNGSTLVCTLTREDNREFGGKPEDEQLHVLPLYKVSDVDEFGSVEAQEEKKRSGAIQVLSSFRR KVRMLAE PVKTCRQRKLEAKKAAAEKLSSLENSSNKNEKEKSAPSRTKOTENASOAKOLAELLRLS GPVMQQSQQPQPLQKQPPQPQQQQRPQQQQPHHPQTESVNSYSASGSTNPYMRRPNPVSPYPNSSH TSDIYGSTSPMNFYSTSSQAAGSYLNSSNPMNPYPGLLNQNTQYPSYQCNGNLSVDNCSPYLGSYS PQSQPMDLYRYPSQDPLSKLSLPPIHTLYQPRFGNSQSFTSKYLGYGNQNMOGDGFSSCTIRPNVH HVGKLPPYPTHEMDGHFMGATSRLPPNLSNPNMDYKNGEHHSPSHIIHNYSAAPGMFNSSLHALHL QNKENDMLSHTANGLSKMLPALNHDRTACVQGGLHKLSDANGQEKQPLALVQGVASGAED**NDEVWS** DSEQSFLDPDIGGVAVAPTHGSILIECAKRELHATTPLKNPNRNHPTRISLVFYOHKSMNEPKHGL **ALWEAKMA**EKAREKEEECEKYGPDYVPQKSHGKKVKREPAEPHETSEPTYLRFIKSLAERTMSVTT DSTVTTSPYAFTRVTGPYNRYI-2002

Figura 1

PACIENTE nAML2

PACIENTE MDS03

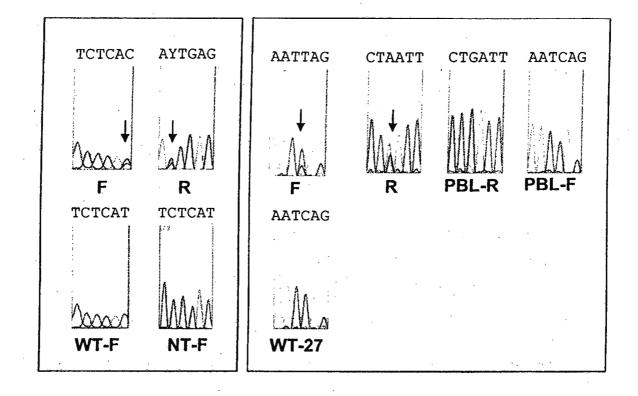


Figura 2

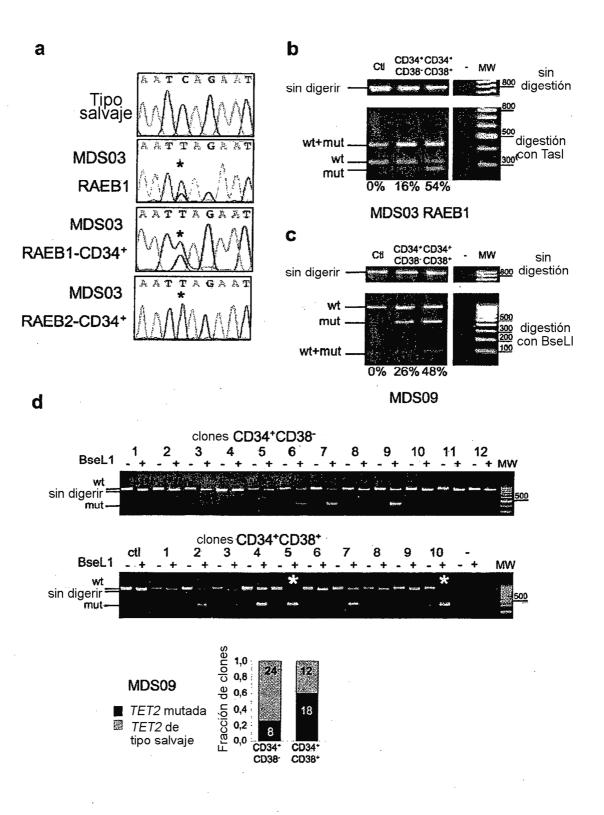
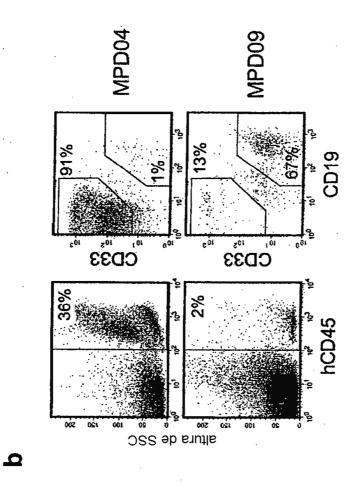
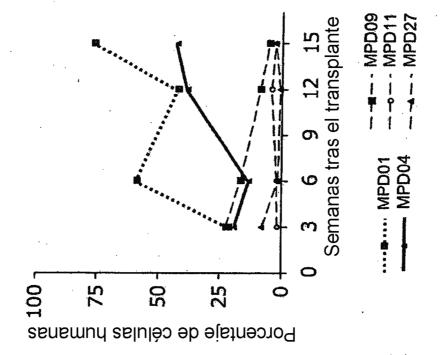




Figura 3

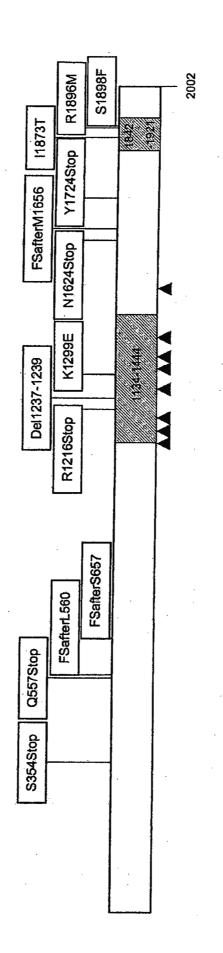
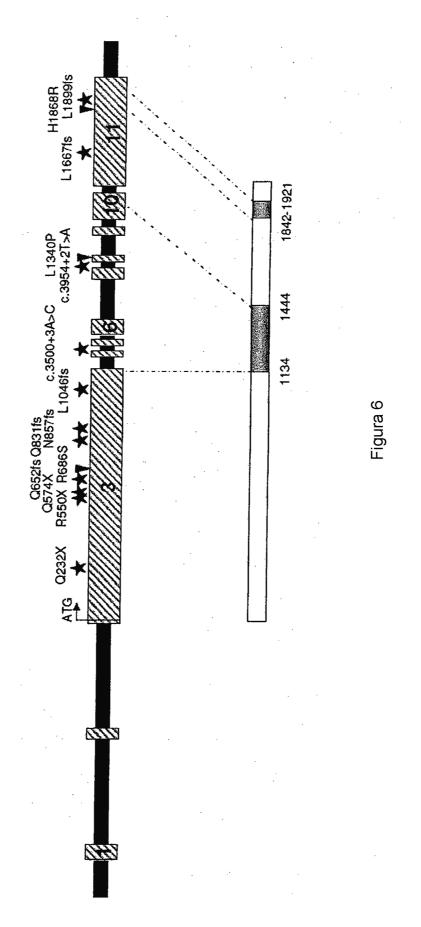



Figura 5

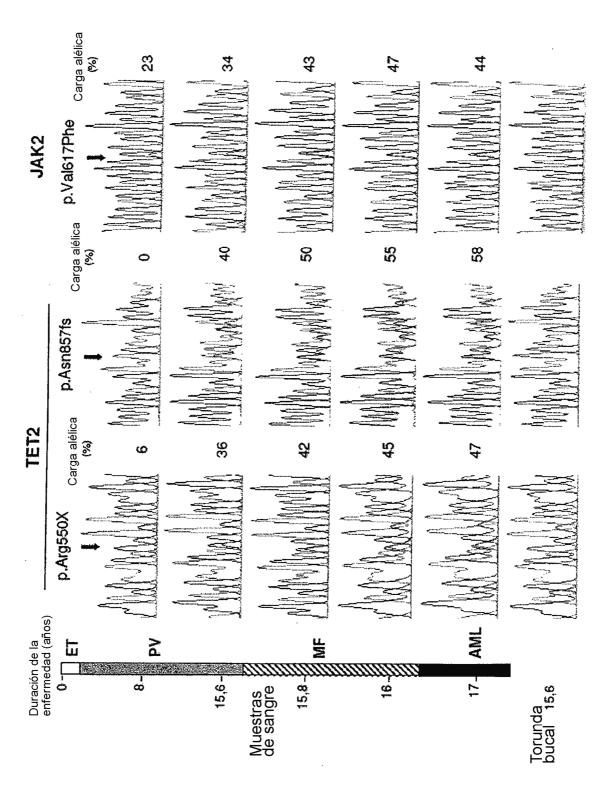


Figura 7

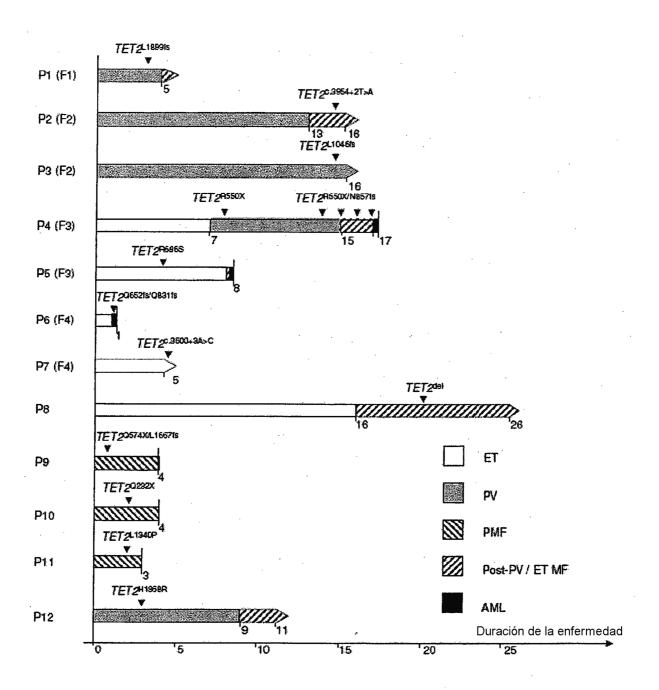
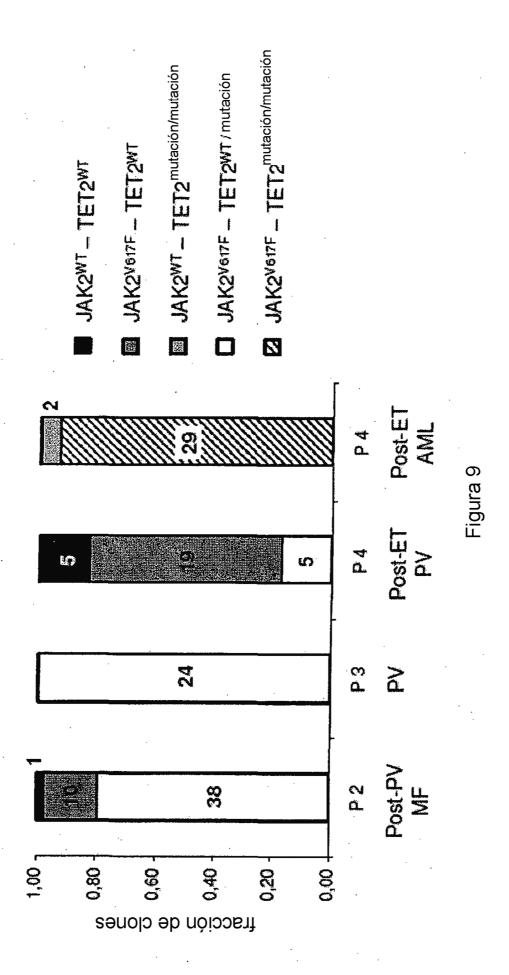



Figura 8

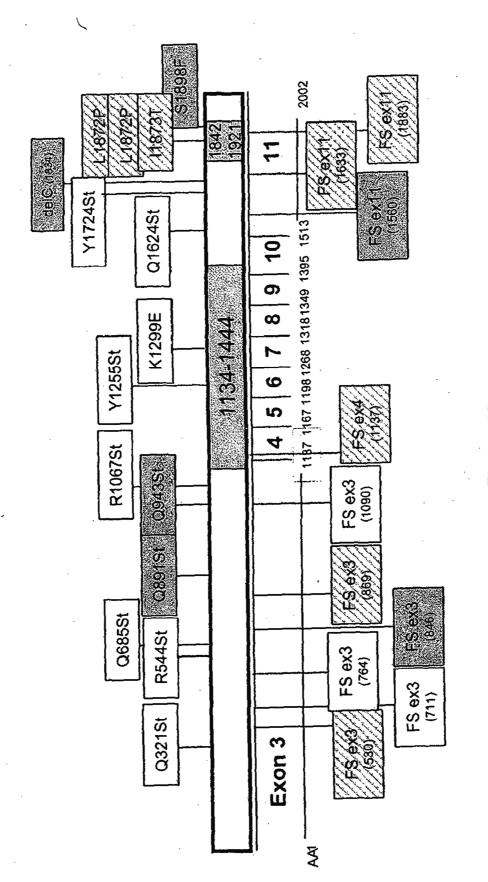


Figura 10