

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 532 969

51 Int. Cl.:

B66B 5/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 22.11.2011 E 11190104 (7)

97) Fecha y número de publicación de la concesión europea: 07.01.2015 EP 2457860

54 Título: Dispositivo de seguridad para un elevador

(30) Prioridad:

29.11.2010 DE 102010062154

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **06.04.2015**

(73) Titular/es:

THYSSENKRUPP AUFZUGSWERKE GMBH (100.0%) Bernhäuser Strasse 45 73765 Neuhausen, DE

(72) Inventor/es:

ROHR, STEPHAN; ZERELLES, HOLGER; HERRMANN, GÜNTHER; DOLDE, WALTER; VON SCHOLLEY, HANS-FERDINAND y ALTENBURGER, BERND

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Dispositivo de seguridad para un elevador

20

25

50

La invención se refiere a un dispositivo de seguridad para un elevador con las características del preámbulo de la reivindicación 1 de la patente.

Tales dispositivos de seguridad se conocen a partir del documento EP 2 165 960 A1. Se emplean en elevadores, que presentan una cabina, que es desplazable en una caja en dirección vertical hacia arriba y hacia abajo, para transportar personas y/o cargas. La cabina presenta al menos una puerta de cabina, cuyo estado abierto y cerrado es detectable por un sensor de puerta. Si la cabina abandona un lugar de parada, entonces la puerta debe estar cerrada. Si éste no es el caso, entonces la cabina debe pararse por razones de seguridad dentro de un tiempo muy corto. Un abandono incontrolado de un lugar de parada con la puerta de la cabina abierta se impide por medio del dispositivo de seguridad.

El cometido de la presente invención es preparar un dispositivo de seguridad del tipo mencionado al principio, que es lo más económico posible y requiere un espacio de construcción lo más reducido posible, y garantiza una alta medida de seguridad.

15 Este cometido se soluciona a través de un dispositivo de seguridad con las características de la reivindicación 1 de la patente.

En la invención confluye la idea de que se puede evitar de una manera fiable el abandono incontrolado de un lugar de parada con puerta de cabina abierta por medio de módulos previstos normalizados del elevador y por medio de valores de medición detectados normalizados, que son evaluados también para el desplazamiento de la cabina durante el funcionamiento normal del elevador. El dispositivo de evaluación comprende a tal fin el control del elevador previsto normalizado así como el aparato de control previsto normalizado, que controla la instalación de accionamiento. El aparato de control presente, como es habitual, un convertidor de frecuencia, el control del elevador y el aparato de control colaboran como dispositivo de evaluación del dispositivo de seguridad, de tal manera que se desconecta el motor de accionamiento y se activan los frenos de funcionamiento cuando la cabina abandona la zona de la puerta con la puerta abierta y también cuando la aceleración y/o la velocidad de la cabina adoptan valores inadmisibles dentro de la zona de la puerta. En ambos casos, la cabina se puede detener en una zona de un metro después del lugar de parada. Esto se consigue porque la zona relevante de la puerta está dimensionada correspondientemente corta, de manera que la cabina se puede frenar de una manera fiable en dicha zona.

- 30 En la zona de un lugar de parada puede ser necesario corregir la posición de la cabina con relación a una posición enrasada. Tales correcciones pueden resultar, por ejemplo, durante la carga y descarga de la cabina en virtud de la modificación del peso implicada con ello. La cabina se puede mover a tal fin dentro de la zona de la puerta a velocidad reducida y aceleración reducida. Para la corrección de la cabina se pueden predeterminar valores máximos fiables de la velocidad y de la aceleración.
- 35 Si el dispositivo de evaluación en forma del control del elevador y del aparato de control reconoce que la aceleración y/o la velocidad presentes en la zona de la puerta exceden el valor máximo admisible, entonces se desconecta la instalación de accionamiento y se activa el freno de funcionamiento, de manera que la cabina es retenida con seguridad en la zona de un metro después del lugar de parada.
- De acuerdo con la invención, por medio del dispositivo de evaluación se pueden supervisar señales de salida no seguras, acondicionadas por el dispositivo de medición con respecto a su factibilidad. Por ejemplo, puede estar previsto que se puedan detectar las inestabilidades de la señales de salida por el dispositivo de evaluación. En presencia de una inestabilidad, se pueden desconectar por medio del dispositivo de evaluación del motor de accionamiento y se puede activar el freno de funcionamiento.

El dispositivo de seguridad de acuerdo con la invención se emplea especialmente en elevadores con accionamientos sin engranaje. En este caso, el freno de funcionamiento puede estar autorizado como freno de seguridad.

La al menos una zona de la puerta puede estar definida por banderolas de zona instaladas en la caja, que pueden ser detectadas óptica, magnética, capacitiva o inductivamente.

Es ventajoso que el dispositivo de medición comprenda al menos un circuito de supervisión de zonas de la puerta y al menos un generador de impulsos de la instalación de accionamiento o de un limitador de velocidad. Los limitadores de velocidad son conocidos en sí por el técnico. Se emplean para frenar una cabina, que presenta una velocidad inadmisiblemente alta, dentro de muy corto tiempo. El dispositivo de medición puede comprender un generador de impulsos que colabora con el limitador de velocidad, que acondiciona impulsos para el dispositivo de evaluación en función de la velocidad de la cabina. También puede estar previsto que el generador de impulsos colabore con el motor de accionamiento o con una polea del elevador, para acondicionar impulsos para el dispositivo

de evaluación, que son dependientes de la velocidad de la cabina. Adicionalmente al menos a un generador de impulsos, el dispositivo de medición presenta al menos un circuito de supervisión de zonas de la puerta. Durante el funcionamiento normal, por medio del al menos un circuito de supervisión de zonas de la puerta se detecta la posición de la cabina con relación a una zona de la puerta, de tal manera que el circuito de supervisión de zonas de la puerta del control del elevador acondiciona una señal, que depende de si la cabina se encuentra dentro o fuera de la zona de la puerta. Como ya se ha mencionado, a tal fin se pueden emplear banderolas de zonas instaladas en la caja.

5

10

35

40

45

50

55

Éstas pueden ser detectadas por un sensor de zonas de la puerta, que está dispuesto en la cabina. Si se detecta una banderola de zona por el sensor de zonas de la puerta, entonces el control del elevador recibe la información de que la cabina se encuentra dentro de la zona de la puerta.

Es favorable que el dispositivo de freno comprenda un freno de funcionamiento del elevador homologado como freno de seguridad. De esta manera se puede suprimir un freno de seguridad adicional.

Con preferencia, el dispositivo de evaluación está constituido exclusivamente por el control del elevador y por el aparato de control de la instalación de accionamiento. Se pueden suprimir componentes adicionales.

- Es ventajoso que la parte del dispositivo de evaluación, que reconoce el abandono de la zona de la puerta, esté implementada entro del control del elevador y en el caso de abandono incontrolado de una zona de la puerta se desconecte la instalación de accionamiento sin empleo del aparato de control. La instalación de accionamiento se puede desconectar en una configuración de este tipo desde el dispositivo de evaluación, sin que deba emplearse a tal fin el aparato de control. A tal fin, el control del elevador puede colaborar, por ejemplo, con una cadena de seguridad del elevador, que desconecta la instalación de accionamiento en el caso de una avería. Una avería de este tipo puede ser detectada por el control del elevador, estableciendo que en el caso de abandono de una zona de la puerta, se abre la puerta de la cabina. Si éste es el caso, entonces se puede desconectar inmediatamente desde el control del elevador el motor de accionamiento, sin que deba emplearse el aparato de control del motor de accionamiento.
- De manera más favorable, la parte de la unidad de valuación, que reconoce aceleraciones inadmisibles y/o velocidades inadmisibles ya dentro de la zona de la puerta, está implementada dentro del aparato de control. Esto da la posibilidad de desconectar el motor de accionamiento en el caso de una aceleración inadmisible y/o en el caso de una velocidad inadmisible de la cabina dentro de la zona de la puerta, sin que deba emplearse el control el elevador. La desconexión se puede realizar más bien directamente por el aparato de control.
- 30 Es ventajoso que el dispositivo de evaluación presente una primera parte, que reconoce el abandono de una zona de la puerta, y una segunda parte, que reconoce aceleraciones y/o velocidades inadmisibles dentro de la zona de la puerta, supervisando mutuamente las dos partes su función por medio de señales intercambiadas de forma bidireccional y provocando en el caso de fallo, la desconexión del motor de accionamiento.
 - Es ventajoso que las zonas de la puerta del dispositivo de seguridad presenten una longitud distinta que las zonas de la puerta de otras unidades funcionales del elevador. Así, por ejemplo, puede estar previsto que en cada lugar de parada estén configuradas una primera zona de la puerta y una segunda zona de la puerta, estando asociada la primera zona de la puerta al dispositivo de seguridad y siendo decisiva la segunda zona de la puerta para la entrada de la cabina con la puerta de la cabina que se abre en un lugar de parada. La entrada de la cabina con puerta que se abre se puede realizar, por ejemplo, en una zona de 35 cm con relación a la posición enrasada de la cabina en el lugar de parada, en cambio la zona de la puerta que colabora con el dispositivo de seguridad puede adoptar una zona más corta, por ejemplo una zona de sólo 10 cm con relación a la posición enrasada de la cabina en el lugar de parada. Las dos zonas de la puerta pueden estar equipadas, respectivamente, como banderolas de zonas instaladas en la caja, que pueden ser detectadas óptica, magnética, capacitiva o inductivamente por un sensor de zona de puerta asociado. También puede estar previsto que al menos una zona de la puerta sea detectable por cálculo, por ejemplo a través de la evaluación de las señales de un generador de impulsos.

En una forma de realización especialmente preferida del dispositivo de seguridad de acuerdo con la invención, el aparato de control comprende una barrera de impulsos segura, que separa con seguridad los impulsos de control, que son acondicionados por un miembro de control el aparato de control de una electrónica de potencia del aparato de control. Durante el funcionamiento normal del elevador se acondiciona para el motor de accionamiento la tensión de alimentación desde una electrónica de potencia, en función de señales de control de un miembro de control, por ejemplo de un microcontrolador. La transmisión de la señales de control se realiza a través de una barrera de impulsos segura, que presenta a tal fin de manera más favorable al menos dos optoacopladores conectaos en serie entre sí. La transmisión de señales de control se puede interrumpir dentro de muy corto tiempo, por ejemplo porque se interrumpe la tensión de funcionamiento de los optoacopladores. La preparación de una barrara de impulsos posibilita de esta manera al dispositivo de seguridad de acuerdo con la invención, separar el motor de accionamiento dentro de muy corto tiempo de una manera fiable desde su tensión de alimentación.

Es especialmente ventajoso que por medio de la barrera de impulsos segura se pueda interrumpir de manera

forzada la alimentación eléctrica del freno de funcionamiento. En una configuración de este tipo, la barrera de impulsos no sólo interrumpe las señales de control para la electrónica de potencia del aparato de control, sino que adicionalmente la barrera de impulsos interrumpe también la tensión de alimentación del freno de funcionamiento, de manera que éste se suprime y de esta manera se frena la cabina.

5 De manera alternativa o complementaria puede estar previsto que desde el aparato de control se pueda generar para la desconexión rápida del motor de accionamiento un cortocircuito electromagnético en el motor de accionamiento.

10

15

20

25

40

50

Es ventajoso que el dispositivo de medición comprenda un reconocimiento de la posición relacionada con un valor absoluto de la cabina, que está conectado con el control del elevador y que está configurada al menos de dos canales. Por medio del reconocimiento de la posición relacionada con el valor absoluto, el control del elevador puede controlar durante el funcionamiento normal del elevador la marcha de la cabina, acondicionando el reconocimiento de la posición permanentemente indicaciones de la posición de la cabina. El reconocimiento de la posición está configurado en este caso seguro, es decir, que tiene el menos dos canales. Como reconocimiento de la posición relacionada con un valor absoluto se puede emplear, por ejemplo, una banda magnética codificada, en combinación con al menos dos sensores sensibles al campo magnético, que exploran la banda magnética durante la marcha de la cabina. La banda magnética se extiende sobre toda la longitud de la caja, de manera que se pueden acondicionar sobre toda la longitud de la caja indicaciones de la posición del control del elevador.

En una configuración especialmente económica del dispositivo de seguridad de acuerdo con la invención, el dispositivo de medición está constituido por el reconocimiento de la posición relacionada con un valor absoluto mencionado anteriormente así como por un generador de impulsos de la instalación de accionamiento y/o de un limitador de velocidad.

En el caso de que el dispositivo de seguridad disponga de un reconocimiento de la posición relacionada con un valor absoluto, se pueden reproducir zonas de la puerta en el software del control del elevador. Una distinción en zonas de la puerta de diferente tamaño para diferentes funciones en cada lugar de parada se puede convertir en el software sin costes adicionales.

La descripción siguiente de una forma de realización preferida de la invención sirve en conexión con el dibujo para la explicación siguiente. En este caso:

La figura 1 muestra una representación esquemática de un elevador con un dispositivo de seguridad de acuerdo con la invención.

30 La figura 2 muestra un diagrama de bloques del dispositivo de seguridad de acuerdo con la invención.

La figura 3 muestra una parte de un dispositivo de evaluación del dispositivo de seguridad, estando integrada esta parte en un aparato de control, y

La figura 4 muestra un diagrama de bloques de un convertidor de frecuencia del aparato de control de la figura 3.

En la figura 1 se representa de forma esquemática un elevador 10 con una cabina 12, que es desplazable por medio de una instalación de accionamiento 14 en una caja 16 en dirección vertical hacia arriba y hacia abajo, de manera que se puede detener en diferentes lugares de parada, de los que en la figura 1 se representan solamente tres lugares de parada 18, 19 y 20, para ser cargados y descargados.

La instalación de accionamiento 14 comprende un motor de accionamiento 22, que es controlado por un aparato de control 24, en el que para el motor de accionamiento 22 es acondicionada a través el aparato de control 24 – como se explica en detalle a continuación – una tensión de alimentación. Además, la instalación de accionamiento 14 comprende una polea 26, que se desplaza en rotación por el motor de accionamiento 22. Un cable 28 está conducido alrededor de la polea 26 y conecta la cabina 12 con un contra peso 30.

A la polea 26 está asociado un freno de funcionamiento 32, que está conectado de la misma manera que el aparato de control 24 con un control del elevador 34.

45 A la polea 26 está asociado un generador de impulsos 36, que detecta la rotación de la polea 26 y acondiciona una señal de impulso dependiente de la rotación de la polea 26.

La cabina 12 presenta una puerta de cabina 38 con una primera hoja de puerta 39 y una segunda hoja de puerta 40, cuya posición abierta y cerrada es detectada, respectivamente, por un sensor de puerta 41 y 42, respectivamente. Por medio de un cable de suspensión conocido en sí por el técnico, no representado en el dibujo, los dos sensores de la puerta 41, 42 están conectados con el control del elevador 34.

Dentro de la caja 16 se extiende sobre toda su longitud una banda magnética 44, que puede ser detectada por un primer sensor de posición 45 y por un segundo sensor de posición 46, que están dispuestos ambos en la cabina 12.

ES 2 532 969 T3

Los dos sensores de posición 45, 46 forman en combinación con la banda magnética 44 un reconocimiento seguro de la posición de la cabina 12 relacionada con un valor absoluto de dos canales. Los sensores de posición 45 y 46 están conectados a través el cable de suspensión ya mencionado de la misma manera con el control del elevador 34

- En cada lugar de retención 18, 19 y 20 están dispuestas en la caja 12 una primera banderola de zona 48 y una segunda banderola de zona 49, que pueden ser detectadas por un primer sensor de zonas de la puerta 51 y por un segundo sensor de zonas de la puerta 52. Los dos sensores de zonas de la puerta 51 y 52 están fijados en la cabina 12 y están conectados a través del cable de suspensión ya mencionado con el control del elevador 34.
- Como ya se ha mencionado, la cabina 12 se puede desplazar por medio de la instalación de accionamiento 14 en la caja 16. Para la carga y descarga, la cabina 12 puede adopta runa posición enrasada con el lugar de parada 18, 19 ó 20. A través de la carga y descarga se modifica el peso de la cabina 12. Esto puede conducir a que la cabina 12 modifique en una medida insignificante su posición con relación al lugar de parada 18, 19 ó 20. Entonces se puede reajustar la posición de la cabina 12 con relación al lugar de parada 18, 19 ó 20 respectivo, activando la instalación de accionamiento 14. El movimiento de ajuste se realiza en este caso con velocidad muy reducida y con aceleración muy reducida dentro de una primera zona de la puerta, que se predetermina a través de la primera banderola de la zona 48. En efecto, solamente se puede realizar un movimiento de ajuste de la cabina 12 cuando el primer sensor de zonas de la puerta 51 detecta la primera banderola de las zonas 48. La primera banderola de las zonas 48 se extiende en el ejemplo de realización representado partiendo desde una posición enrasada de la cabina 12, 100 mm verticalmente hacia arriba y hacia abajo.
- Si la cabina 12 se aproxima a un lugar de parada 18, 19 ó 20, entonces se puede abrir ya la cabina 38m todavía antes de que la cabina 12 haya alcanzado la posición enrasada. La apertura de la puerta de la cabina 38 se puede realizar tan pronto como el segundo sensor de zonas de la puerta 52 detecta la segunda banderola de las zonas 49. La segunda banderola de las zonas define de esta manera un segunda zona de la puerta, dentro de la segunda zona de la puerta se puede abrir la puerta de la cabina 38 durante una aproximación de la cabina 12 a un lugar de parada 18, 19 ó 20. La segunda banderola de las zona 49 se extiende en el ejemplo de realización representado partiendo desde una posición enrasada de la cabina 12, 350 mm verticalmente hacia arriba y hacia abajo. La segunda zona de la puerta es, por lo tanto, más larga que la primera zona de la puerta. En el ejemplo de realización representado, la longitud de la segunda zona de la puerta es mayor que tres veces la primera zona de la puerta.
- Si la cabina 12 abandona un puesto de parada 18, 19 ó 20, entonces debe asegurarse que la puerta de la cabina 38 está cerrada. Si éste no es el caso, entonces se lleva la cabina 12 al estado de reposo dentro de una zona de un metro después de la posición enrasada. A tal fin, se emplea un dispositivo de seguridad 55 descrito en particular a continuación con referencia a las figuras 2 a 4. El dispositivo de seguridad 55 comprende un dispositivo de medición 57, un dispositivo de evaluación 58 y un dispositivo de freno 59. El dispositivo de medición 57 se forma por el generador de impulsos 36 y por un circuito de supervisión de las zonas de la puerta 61, que está constituido por el primer sensor de las zonas de la puerta 51 y por la primera banderola de la puerta 48. Por medio del circuito de supervisión de las zonas de la puerta 61 se puede establecer si la cabina 12 se encuentra dentro de la primera zona de la puerta, que se define por la primera banderola de la zona 48.
 - El dispositivo de evaluación 58 se forma por el control del elevador 34 y por el aparato de control 24, que están conectados entre sí por medio de una conexión eléctrica bidireccional 63 y que están conectados, respectivamente, en una cadena de seguridad 65 del elevador 10.
 - El dispositivo de freno 59 comprende el motor de accionamiento 22 así como el freno de accionamiento 32.

40

- Por medio del dispositivo de seguridad 55 se puede impedir que la cabina 12 abandone de forma incontrolada un puesto de retención 18, 19 ó 20 con puerta de la cabina abierta 38. Si el control del elevador 34 recibe desde el circuito de supervisión de las zonas de la puerta 61 la señal de que la cabina 38 abandona la primera zona de la puerta, y el control del elevador 34 recibe desde los sensores de la puerta 41 y/o 42 al mismo tiempo la señal de que al menos una hoja de la puerta 39 ó 40 no está cerrada, entonces el control del elevador 34 abre la cadena de seguridad 65. Esto tiene como consecuencia que se activa el freno de funcionamiento 32, es decir, que se interrumpe su alimentación de corriente, de manera que se suprime el freno de funcionamiento 59 y, además, se desconecta el motor de accionamiento 22.
- El aparato de control 24 está conectado para la conducción de señales con el generador de impulsos 36. Los impulsos acondicionados por el generador de impulsos 36, que dependen del número de revoluciones de la polea 26, son evaluados por el aparato de control 24 para determinar si existe una aceleración y/o una velocidad inadmisiblemente alta de la cabina 12. Como se muestra a partir de la figura 3, la señal acondicionada por el generador de impulsos 36 se somete en primer lugar a una primera verificación de la señal 67, en la que se verifica la factibilidad de la señal de impulsos acondicionada. En este caso se verifica si la señal de impulsos experimenta una modificación inestable o no. Una modificación inestable significaría que la señal de impulso no es factible. En tal caso, se interrumpe de la misma manera la cadena de seguridad 65, de manera que el motor de accionamiento 22

ES 2 532 969 T3

se desconectará y se activará el freno de funcionamiento 32. Si la señal de impulso es factible, entonces experimenta una segunda verificación de la señal 69, en la que a partir de la señal de impulso acondicionada se determinan la velocidad y la aceleración de la cabina 12. Durante una corrección de la posición de la cabina 12 con relación a un lugar de parada 18, 19 ó 20, como se ha explicado anteriormente, se comparan la velocidad y la aceleración de la cabina con valores máximos admisibles, es decir, con valores de la velocidad y de la aceleración, que son admisibles dentro de la primera zona de la puerta para la corrección de la posición de la cabina 12. Éstos son acondicionados para el aparato de control 24 desde el control del elevador. Si se exceden los valores máximos admisibles, entonces se interrumpe la cadena de seguridad 65 y, además, se activa un bloqueo de impulsos 72, que se explica todavía en detalle a continuación. Si no existe ningún exceso de los valores máximos admisibles, entonces se acondiciona para un miembro de control 74 de un convertidor de frecuencia 76 del aparato de control 24 una señal, que señaliza un funcionamiento normal.

Por medio del miembro de control 74 se pueden acondicionar señales de control para una electrónica de potencia 78 del convertidor de frecuencia 76, de manera que ésta acondiciona para el motor de accionamiento 22 una tensión de alimentación en forma de un patrón de impulso alterno, que posibilita al motor de accionamiento 22 provocar un movimiento giratorio, para desplazar la polea 26 en rotación y de esta manera mover la cabina 12. La tensión de alimentación es acondicionada para la electrónica de potencia 78 a través de una línea del motor 80.

La transmisión de las señales de control desde el miembro de control 74 hacia la electrónica de potencia 78 se realiza a través del bloqueo del impulso 72. El miembro de control 74 está conectado, en general, a través de seis líneas de control con la electrónica de potencia 78, de manera que en la figura 4 para la consecución de una visión de conjunto mejorada solamente se representan una primera línea de control 84 y una segunda línea de control 85. A través de otra línea de control 87, el miembro de control 74 del convertidor de frecuencia 76 está conectado con un control del freno 89, que controla el freno de funcionamiento 32. Tanto en las seis líneas de control, a través de las cuales el miembro de control 74 está conectado con la electrónica de potencia 78, como también la otra línea de control 87, a través de la cual el miembro de control 74 está conectado con el control del freno 89, están conectados en serie, respectivamente, dos optoacopladores 91, 92. La tensión de funcionamiento de los optoacopladores 91, 92 se alimenta a través de primeros contactos de conexión 94, que se pueden abrir y cerrar desde un relé guiado forzado conocido en sí, no representado en el dibujo, en función del resultado de la segunda verificación de la señal 69. Si los valores de la aceleración y/o de la velocidad, detectados durante una corrección de la cabina 12 dentro de la primera zona de la puerta por medio del generador de impulsos 36, exceden los valores máximos admisibles, entonces se interrumpe la tensión de funcionamiento de los optoacopladores del bloqueo del impulso 72 por medio de los primeros contactos de conexión 94. De esta manera, no se puede transmitir desde el miembro de control 74 ninguna señal de control ya a la electrónica de potencia 78. Al mismo tiempo, por medio de dos contactos de conexión 96 se interrumpe la tensión de funcionamiento del control del freno 89, de manera que no se puede alimentar a éste ya energía eléctrica y al mismo tiempo por medio de los optoacopladores 91, 92 conectados en la otra línea de control 87 se interrumpe la transmisión de señales de control desde el miembro de control 74. Esto tiene como consecuencia que se activa el freno de funcionamiento 32, es decir, que el freno de funcionamiento 32 incide y de esta manera frena la polea 26.

Por medio del dispositivo de seguridad 55 se puede impedir de esta manera, por una parte, de forma fiable, que la cabina 12 abandone la primera zona de la puerta con la puerta de la cabina 38 abierta. Por otra parte, se puede impedir de manera fiable que la cabina 12 adopte dentro de la primera zona de la puerta una aceleración o una velocidad que es mayor que los valores máximos admisibles para una corrección de la posición de la cabina 12 dentro de la primera zona de la puerta. El dispositivo de seguridad 55 se forma en este caso por componentes del elevador 10, que el elevador 10 requiere también para su funcionamiento normal. Por lo tanto, el dispositivo de seguridad 55 se puede acondicionar de una manera muy económica y no requiere ningún espacio de construcción adicional. La cabina se puede llevar a posición de reposo por medio del dispositivo de seguridad 55 en el caso de una avería en una zona de un metro después del lugar de parada 18, 29, 20.

50

5

10

15

20

25

30

35

40

REIVINDICACIONES

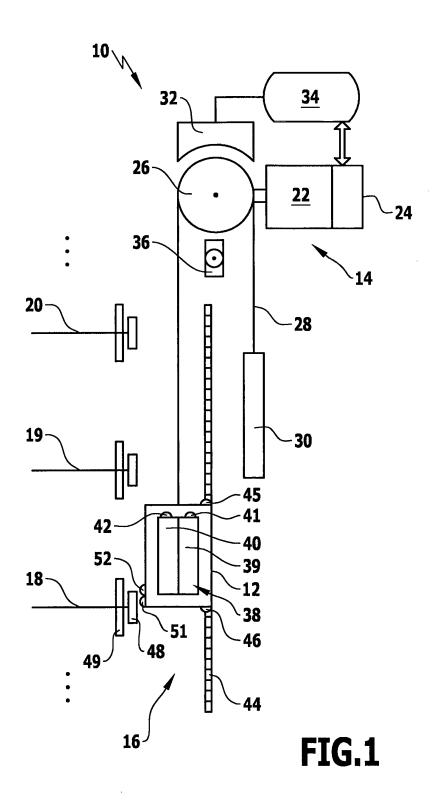
1.- Dispositivo de seguridad para un elevador con un control de elevador (34), con un dispositivo de accionamiento (14) controlado por un aparato de control (24), con un freno de funcionamiento (32) y con una cabina (12), en el que la cabina (12) presenta al menos una puerta de cabina (38) y por medio del dispositivo de seguridad (55) se puede impedir el abandono incontrolado de la cabina (12) desde un lugar de parada (18, 19, 20) con la puerta de la cabina (38) abierta, en el que el dispositivo de seguridad (55) presenta un dispositivo de medición (57), un dispositivo de evaluación (58) y un dispositivo de freno (59), en el que por medio del dispositivo de medición (57) se pueden detectar la posición de la cabina (12), con relación al menos a una zona de la puerta configurada en un lugar de parada (18, 19, 20), y la aceleración y/o la velocidad de la cabina (12) dentro de la zona de la puerta, y en el que el dispositivo de evaluación (58) comprende el control del elevador (34) y el aparato de control (24) y por medio del dispositivo de evaluación (58) con la ayuda de señales de salida del dispositivo de medición (57) se puede reconocer tanto el abandono de la al menos una zona de la puerta con puerta de la cabina (38) abierta como también la consecución de aceleraciones y/o velocidades inadmisibles de la cabina (12) dentro de la zona de la puerta y, respectivamente, se pueden activar la desconexión de un motor de accionamiento (22) y la entrada del freno de funcionamiento (32), y en el que la longitud de la zona de la puerta está dimensionada de tal forma que la cabina (12) se para en la zona de un metro después del lugar de parada (18, 19, 20), caracterizado por que el dispositivo de evaluación (58) supervisa valores de medición no seguros con respecto a su factibilidad.

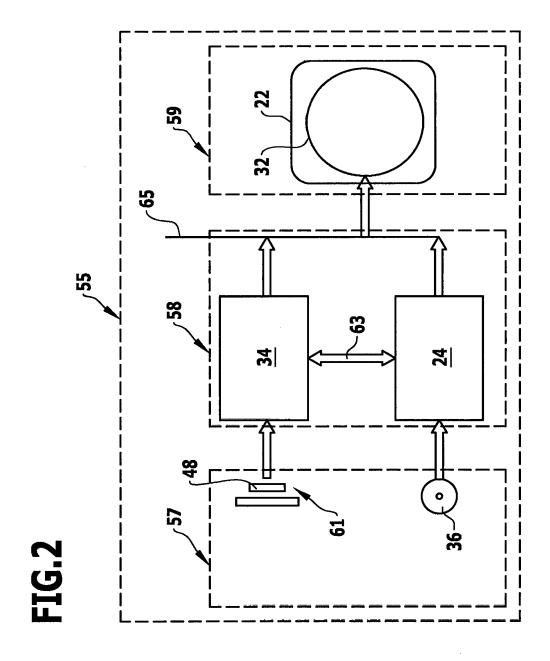
5

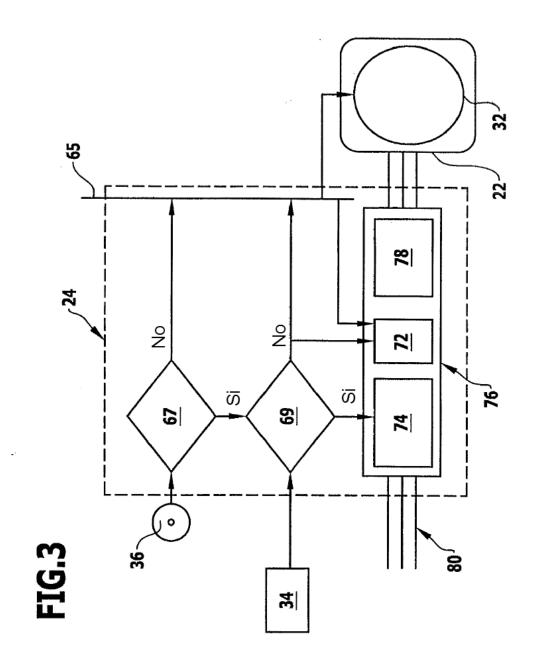
10

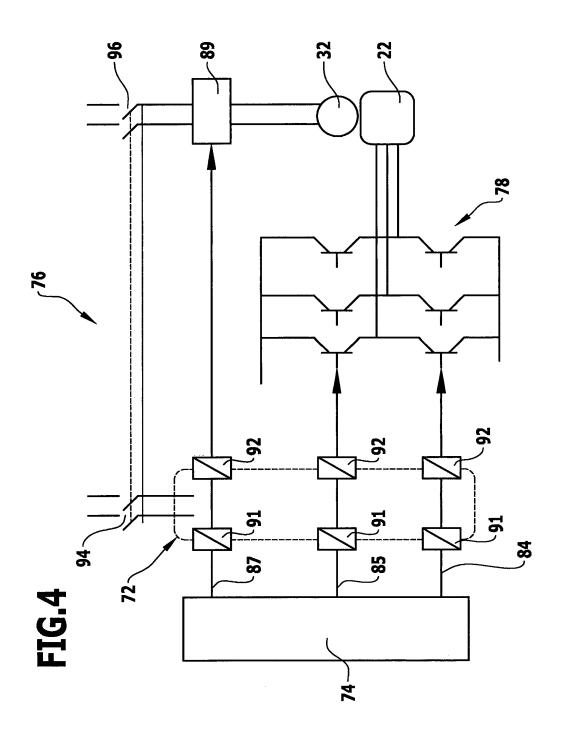
15

20


35


45


- 2.- Dispositivo de seguridad de acuerdo con la reivindicación 1, caracterizado por que el dispositivo de medición (57) comprende al menos un circuito de supervisión de zonas de la puerta (61) y al menos un generador de impulsos (36) de la instalación de accionamiento (14) y de un limitador de velocidad.
- 3.- Dispositivo de seguridad de acuerdo con la reivindicación 1 ó 2, caracterizado por que el dispositivo de freno (59) comprende un freno de funcionamiento (32) homologado como freno de seguridad.
- 4.- Dispositivo de seguridad de acuerdo con una de las reivindicaciones anteriores, caracterizado por que el dispositivo de evaluación (58) está constituido por el control del elevador (34) y el aparato de control (24).
- 5.- Dispositivo de seguridad de acuerdo con una de las reivindicaciones anteriores, caracterizado por que el dispositivo de evaluación (58) presenta una primera parte, que reconoce el abandono de la zona de la puerta con la puerta de la cabina (38) abierta y que está implementada dentro del control del elevador (34) y provoca una desconexión de la instalación de accionamiento (14) sin el empelo del aparato de control (24).
- 6.- Dispositivo de seguridad de acuerdo con una de las reivindicaciones anteriores, caracterizado por que el dispositivo de evaluación presenta una segunda parte, que reconoce aceleraciones y/o velocidades inadmisibles entro de la zona de la puerta y está implementado dentro del aparato de control (24) y provoca una desconexión de la instalación de accionamiento (14) sin el empleo del control del elevador (34).
 - 7.- Dispositivo de seguridad de acuerdo con una de las reivindicaciones anteriores, caracterizado por que el dispositivo de evaluación (58) presenta una primera parte, que reconoce el abandono de la zona de la puerta con la puerta de la cabina (38) abierta, y una segunda parte, que reconoce aceleraciones y/o velocidades inadmisibles dentro de la zona de la puerta, en el que las dos partes supervisan mutuamente su función por medio de señales intercambiada bidireccionalmente y en el caso de fallo provocan una desconexión de la instalación de accionamiento (14).
- 8.- Dispositivo de seguridad de acuerdo con una de las reivindicaciones anteriores, caracterizado por que las zonas de la puerta del dispositivo de seguridad (55) presentan una longitud distinta que las zonas de la puerta de otras unidades funcionales del elevador, en particular una longitud distinta que la zona de la puerta decisiva para la entrada con la puerta de la cabina que se abre.
 - 9.- Dispositivo de seguridad de acuerdo con una de las reivindicaciones anteriores, caracterizado por que el aparato de control (24) comprende un bloqueo de impulsos seguro (72) para la desconexión de la instalación de accionamiento (14).
 - 10.- Dispositivo de seguridad de acuerdo con la reivindicación 9, caracterizado por que el bloqueo de impulsos (72) interrumpe de manera forzada la alimentación eléctrica del freno de funcionamiento (32).
 - 11.- Dispositivo de seguridad de acuerdo con una de las reivindicaciones anteriores, caracterizado por que el aparato de control (24) genera para la desconexión de la instalación de accionamiento (14) en el motor de accionamiento (22) un cortocircuito electromagnético.
 - 12.- Dispositivo de seguridad de acuerdo con una de las reivindicaciones anteriores, caracterizado por que el dispositivo de medición (57) presenta un reconocimiento de la posición de la cabina (12) relacionada con un valor absoluto, que está configurado al menos de dos canales.


ES 2 532 969 T3

13.- Dispositivo de seguridad de acuerdo con una de las reivindicaciones anteriores, caracterizado por que el dispositivo de medición (57) está constituido por un reconocimiento de la posición de la cabina (12) relacionada con un valor absoluto y por un generador de impulsos (36).

