

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

1 Número de publicación: 2 533 185

51 Int. CI.:	
G01N 33/50	(2006.01)

(12)	TRADUCCIÓN DE P	ATENTE EL	Т3	
 Fecha de presentación y núme Fecha y número de publicaciór 	ro de la solicitud europea: n de la concesión europea:	06.04.2010 31.12.2014	E 12166847 (9) EP 2503334	

54 Título: Identificación de linfocitos T reguladores mediante el regulador del gen global SatB1

30 Prioridad:	Titular/es:
02.04.2009 US 165970 P	BECTON DICKINSON AND COMPANY (50.0%)
 Fecha de publicación y mención en BOPI de la traducción de la patente: 08.04.2015 	One Becton Drive Franklin Lakes, NJ 07417, US y RHEINISCHE FRIEDRICH-WILHELMS- UNIVERSITÄT BONN (50.0%) (72) Inventor/es:
	SCHULTZE, JOACHIM LUDWIG; BEYER, MARC DANIEL; WARNER, NOEL y BALDERAS, ROBERT
	(74) Agente/Representante:
	CARPINTERO LÓPEZ, Mario

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Identificación de linfocitos T reguladores mediante el regulador del gen global SatB1

La presente invención proporciona un procedimiento para la identificación de linfocitos T reguladores inestables basándose en los elevados niveles del regulador del gen global SATB1 en linfocitos T reguladores. La invención también se refiere a un procedimiento que utiliza ligandos que se unen específicamente a SATB1 para identificar linfocitos T reguladores inestables.

Antecedentes de la invención

5

Los linfocitos T reguladores (T_{reg}) están implicados en la auto-tolerancia, homeostasis inmunitaria, prevención de la autoinmunidad y supresión de la inmunidad a patógenos o tumores (Sakaguchi, S. y col., Cell 133:775-787 (2008);
Balkaid, Y., Nat. Rev. Immunol 7:875-888 (2007); Beyer, M., Schultze, J., Blood 1008:804-811 (2006)). El factor de transcripción de forkhead FOXP3 es esencial para el desarrollo y la función de T_{reg} ya que las mutaciones en FOXP3 producen grave autoinmunidad en ratones y seres humanos (Hori, S. y col., Science 299:1057-1061 (2003); Fontenot, J.D y col., Nat. Immunol. 4:330-336 (2003); Khattri, R. y col., Nat. Immunol. 4:337-342 (2003); Brunkow, M.E. y col., Nat. Genet. 27:68-73 (2001); Bennett, C.L. y col., Nat. Genet. 27:20-21 (2001); Wildin, R.S. y col., Nat. Genet. 27:18-20 (2001)). FOXP3 previene el compromiso del linaje de linfocitos T efectores (T_{efector}) (Zhou, L. y col., Nature 453:236-240 (2008)), además, los mecanismos moleculares subyacentes son todavía imprecisos.

Los T_{reg} se caracterizan por su función supresora e incapacidad para producir citocinas. Se requiere la expresión de FOXP3 para el establecimiento y mantenimiento del linaje, identidad y función supresora de T_{reg} (Hori, S. y col., Science 299:1057-1061 (2003); Fontenot, J.D y col., Nat. Immunol. 4:330-336 (2003); Khattri, R. y col., Nat. Immunol. 4:337-342 (2002): Lina W used. Nat. We was a supersora de 2:0007): We was a supersora de 2:0007); Khattri, R. y col., Nat. Immunol. 4:337-342

- 20 (2003); Lin, W. y col., Nat. Immunol. 8:359-368 (2007); Wan, Y.Y., Flavell, R.A., Nature 445:766-770 (2007); Lahl, K. y col., J. Immunol. in press (2009); Williams, L. M., Rudensky, A.Y., Nat. Immunol. 8:277-284 (2007)). La pérdida de FOXP3 en T_{reg} se ha asociado a un fenotipo TH2 (Lin, W. y col., Nat. Immunol. 8:359-368 (2007); Wan, Y.Y., Flavell, R.A., Nature 445:766-770 (2007); Lahl, K. y col., J. Immunol. in press (2009)) respectivamente TH1 (Lin, W. y col., Nat. Immunol. 8:359-368 (2007)) o TH17 (Gavin, M.A. y col., Nature 445:771-775 (2007)) de T_{reg} que sugiere que FOXP3
- 25 suprime activamente la diferenciación de T_{reg} en T_{efector}. Un mecanismo de represión de la diferenciación de T_{efector} por FOXP3 podría ser la modulación directa de factores de transcripción (Ziegler, S.F., Annu. Rev. Immunol. 24:209-226 (2006)), tales como el factor 4 regulador de interferón (IRF4), que es necesario para la supresión mediada por T_{reg} de la diferenciación de células efectoras TH2 (Zheng, Y. y col., Nature (2009)). Se ha sugerido el control epigenético por metilación de ADN o modificación de histonas como un mecanismo alternativo que sostiene el fenotipo y función de T_{reg}
- 30 (Wei, G. y col., Immunity 30:155-167 (2009)). Estos hallazgos novedosos indican que hay un grado significativo de plasticidad entre linajes de T_{efector} y T_{reg} y que los mecanismos reguladores activos deben permitir T_{reg} comprometidos para prevenir la diferenciación de T_{efector}. La presente invención proporciona novedosos genes marcadores para la identificación y caracterización específica de linfocitos T supresores humanos y/o reguladores que incluyen linfocitos T CD4⁺CD25⁺FOXP3⁺ naturales, adaptativos y ampliados en individuos sanos, además de pacientes con tumor o pacientes con enfermedades autoinmunitarias.

Pfoertner y col. (GenomeBiology 2006, 7:R54) describe la firma genética de linfocitos T reguladores.

Breve descripción de la invención

Se ha encontrado ahora que la enzima remodeladora de cromatina SATB1 (SEC ID Nº: 2) que se requiere para el desarrollo normal de linfocitos T tímicos (Alvarez, J.D. y col., Genes Dev. 14:521-535 (2000)), homeostasis de linfocitos T periféricos (Nie, H. y col., J. Immunol. 174:4745-4752 (2005)), polarización de TH1/TH2 (Cai, S. y col. Nat. Genet. 38:1278-1288 (2006); Lund, R. y col., Eur. J. Immunol. 35:3307-3319 (2005)) y reprogramación de la expresión génica (Han, H.J. y col., Nature 452:187-193 (2008)) es un gen diana importante de FOXP3. La expresión de SATB1 enducidos. FOXP3 reduce la expresión de SATB1 directamente como un represor transcripcional en el sitio de SATB1 e indirectamente mediante la inducción de

- 45 microARN miR-155, miR-21, miR-7, miR-34 y miR-18a, uniéndose específicamente a la 3'UTR del ARNm de SATB1. La expresión reducida de SATB1 en células FOXP3⁺ alcanzada tanto por la expresión en exceso como la inducción de FOXP3 está ligada a la reducción significativa en citocinas TH1 y TH2. La pérdida de función de FOXP3 tanto por inactivación como mutación genética conduce a una regulación por incremento significativa de SATB1 y la posterior liberación de citocinas. Como el sitio de SATB1 está similarmente desmetilado en T_{reg} y T_{efector}, el compromiso del linaje
- 50 de T_{reg} requiere la inhibición activa y continua mediada por FOXP3 de SATB1, prohibiendo así la diferenciación de T_{efector}. Esto da importancia a la modulación específica de linfocitos T mediada por SATB1 de la remodelación de cromatina global durante el proceso de decisiones entre la función de linfocitos T efectores y reguladores. Y, lo que es más importante, la expresión en exceso de SATB1 en linfocitos T_{reg} naturales humanos conduce a pérdida de función supresora y aumento de la función de T_{efector} en linfocitos T_{reg}. Estos datos sugieren fuertemente que la inhibición de la
- 55 modulación específica de linfocitos T mediada por SATB1 de la remodelación de cromatina global es centralmente

	importante para el control de plasticidad funcional en linfocitos T _{reg} . Así, la invención proporciona
5	 Un procedimiento de detección de linfocitos T reguladores inestables en una población de linfocitos T reguladores que tienen el potencial de convertir en funcionalidad de linfocitos T efectores, procedimiento que comprende detectar células con niveles elevados de expresión de proteínas SATB1 en la población de linfocitos T.
	 El procedimiento de la claúsula 1, en el que las células con niveles elevados de expresión de proteínas SATB1 en la población de linfocitos T se detectan mediante un procedimiento que comprende
	(a) poner en contacto la población de células con uno o más ligandos que se unen específicamente a SATB1, y
10	(b) identificar los linfocitos T reguladores en la población de células debido a una reducción significativa de la unión con los ligandos de unión a SATB1 en comparación con la unión de dichos ligandos con las otras células en la población de células.
	 El procedimiento de la claúsula 1 ó 2, que es adecuado para el control de calidad de poblaciones de linfocitos T reguladores.
15	 El procedimiento de la claúsula 2, en el que los ligandos son anticuerpos o fragmentos de los mismos, preferentemente los ligandos son anticuerpos monoclonales o fragmentos de los mismos.
	5. El procedimiento de la claúsula 2 ó 4, en el que los ligandos/anticuerpos llevan restos funcionales que incluyen, pero no se limitan a, marcas, colorantes y toxinas.
20	6. El procedimiento de la claúsula 2, 4 ó 5, en el que la población de células está seleccionada de cultivo celular, sangre completa y fracciones de sangre completa y/o la población de células comprende células de mamífero que incluyen células humanas.
	 El procedimiento de la claúsula 6, que comprende además poner en contacto la población de células humanas con uno o más ligandos que se unen específicamente a CD4, CD25 y/o CD127 sobre los linfocitos T.
	8. El procedimiento de la claúsula 6 ó 7, que comprende además ensayar la expresión de FOXP3.
25	9. Uso del ligando, el anticuerpo o fragmento de anticuerpo de la claúsula 2, 4 ó 5 para identificar linfocitos T reguladores inestables en una población de células.

Breve descripción de las figuras

Fig. 1: SATB1 se regula por disminución en linfocitos T reguladores naturales humanos. Se purificaron linfocitos T reguladores (T_{reg}) naturales CD4⁺CD25^{alto} CD127^{bajo} tanto por clasificación de FACS como de MACS (>95 % de pureza). Se usaron linfocitos T convencionales (T_{conv}) CD4⁺CD25⁻ para la comparación. Se estudiaron al menos 4 30 donantes y se representa la media +/- DE; * p< 0,05. a: Expresión de ARNm de SATB1 (rojo) y FOXP3 (azul) como se evalúa por el análisis de micromatrices en un total de 48 condiciones experimentales (3-4 duplicados cada uno, véase la Tabla 1). Las condiciones individuales se agrupan aquí según condición experimental (act=activación, rep=reposo, exp=expandidas)) y linaje (T_{reg} CD4⁺CD25⁺ (T_{reg}) frente a linfocitos T CD4⁺CD25⁻ (CD25⁻) frente a 35 linfocitos T CD4⁺ totales (T_{conv})). b: La correlación de la expresión de miARN con la expresión de ARNm de SATB1 se representa contra las veces de cambio de miARN (Trea frente a Tconv) para los 735 miARN ensayados. Resaltado en rojo está miR-155. c: Expresión relativa de ARNm de SATB1 en Treg y Tconv evaluados por qRT-PCR (media +/-DE, se realizaron 6 experimentos individuales). d: Análisis de transferencia Western de la expresión de proteínas SATB1 en un donante representativo (izquierda) y expresión relativa de SATB1 (n=3, media +/- SD, derecha). e: Tinción intracelular para SATB1 en un experimento representativo (izquierda) y expresión media de SATB1 +/- DE 40 en T_{rea} y T_{conv} (n=11, derecha). f: Influencia en la activación de TCR, coestimulación y estimulación de TGFβ sobre la expresión de ARNm de SATB1 en T_{conv} y T_{reg} evaluados por qPCR después del cultivo durante 72 h (media +/-DE, se realizaron 5 experimentos individuales).

Fig. 2: SATB1 se regula por disminución durante la inducción de linfocitos T reguladores humanos. Linfocitos T
 CD45RA⁺CCR7⁺CD4⁺ humanos sin tratamiento previo tanto se dejaron sin estimular (T_{no est}), se estimularon con perlas de CD3 y CD28 (T_{estim}) como se estimularon en presencia de TGFβ para convertirse en linfocitos T reguladores inducidos (iT_{reg}). Se estudiaron al menos 3 donantes y se representa la media +/- DE; * p< 0,05. <u>a:</u> Expresión de ARNm de SATB1 (media +/- DE) como se ha evaluado por qRT-PCR después de 5 d (n= 6). <u>b:</u> Análisis de transferencia Western de la expresión de proteínas SATB1 en un experimento representativo (izquierda) y expresión relativa de SATB1 (n= 3, media +/- DE, derecha). <u>c:</u> Análisis de citometría de flujo de la expresión de proteínas CD25 en T_{estim} y iT_{reg} para un donante representativo (izquierda) y expresión de CD25 media +/- DE

(derecha) después de 5 días (n=4). <u>d</u>: Evaluación por CBA de la secreción de citocinas IL6 y IFN-γ (n=7, media +/-DE).

<u>Fig. 3: SATB1 se desregula *in vivo* en linfocitos T_{reg} deficientes en FOXP3 a partir de ratones DEREG. a:</u> Análisis de expresión de ARNm de SATB1 (media +/- DE; * p< 0,05) en T_{conv} y T_{reg} derivados de ratones DEREG macho. Se muestra un representante de dos experimentos independientes. <u>b</u>: Tinción intracelular para SATB1 en un experimento representativo en T_{reg} y T_{conv} de ratones DEREG. <u>c</u>: Tinción inmunofluorescente de timocitos para la expresión de proteínas SATB1 (rojo) en T_{reg} GFP⁺ (verde) contrateñidos con DAPI (azul) y CD4 (magenta) de ratones DEREG macho y DEREG deficientes en FOXP3 (DEREG x scurfy) como se ha evaluado por tinción cuádruple. <u>d</u>: Expresión de ARNm de SATB1 (media +/- DE; * p< 0,05) en T_{conv} y T_{reg} derivados de ratones DEREG x scurfy machos deficientes en FOXP3 evaluado por qRT-PCR. Se muestra un representante de dos experimentos independientes. <u>e</u>: Análisis de citometría de flujo de la expresión de proteínas SATB1 intracelulares en T_{reg} GFP⁺ suficientes para FOXP3 (FOXP3⁺, izquierda) y deficientes (FOXP3⁻, derecha) de ratones DEREG hembra heterocigóticos para la mutación scurfy. <u>f</u>: Tinción inmunofluorescente para la expresión de proteínas SATB1 (rojo) y FOXP3 (verde) en T_{reg} GFP⁺ clasificados de tejido de timo de ratones DEREG hembra heterocigóticos para la mutación scurfy. <u>f</u>: Tinción inmunofluorescente para la expresión de proteínas SATB1 (rojo) y FOXP3 (verde) en T_{reg} GFP⁺ clasificados de tejido de timo de ratones DEREG hembra heterocigóticos para la mutación scurfy. <u>f</u>: Tinción inmunofluorescente para la expresión de proteínas SATB1 (rojo) y FOXP3 (verde) en T_{reg} GFP⁺ clasificados de tejido de timo de ratones DEREG hembra heterocigóticos para la mutación scurfy contrateñidos con DAPI (azul).

5

10

15

45

50

55

Fig. 4: Supresión directa de la transcripción de ARNm de SATB1 por FOXP3. a: Representación de la región genómica de SATB1 genómica humana y el sitio de unión de FOXP3 conservado. b: Ensayo de desplazamiento por electromovilidad (EMSA) que evalúa la unión de FOXP3 a la región de SATB1 genómica (intrón 2). Extractos nucleares de Trea naturales humanos expandidos; oligo de SATB1: nucleótido específico para el sitio de unión a FOXP3 en la región genómica de SATB1; oligo de FKH: nucleótido que contiene el motivo forkhead general; oligo 20 de mSATB1: nucleótido mutado para el sitio de unión de FOXP3 en la región de SATB1 genómica. c: Unión de FOXP3 a la región de SATB1 genómica en el intrón 2 evaluado por ChIP-qPCR. Se realizó PCR usando un conjunto de cebadores correspondiente a la región del intrón 2 de SATB1 y el anticuerpo para FOXP3 o IgG de control precipitó cromatina aislada de T_{req} naturales humanos expandidos. Se usó el sitio del promotor de IL7R 25 como positivo, la región del intrón 4 de IL7R como control negativo. Aquí se muestra un experimento representativo de 2. d: Se evaluó la actividad de luciferasa por análisis luminométrico después de la transfección de una construcción indicadora que contiene el posible sitio de unión de FOXP3 en la región genómica de SATB1 en el intrón 2 o con un motivo mutado en células HEK293. Se evaluó la unión de FOXP3 en comparación entre células transfectadas con un vector de control o que expresa FOXP3 (media +/- DE; * p<0,05) en comparación con el motivo mutado. Se muestra un representante de tres experimentos independientes. e-g: Treg naturales humanos 30 purificados por MACS tanto se transfectaron con un ARNip de control negativo como ARNip específico de FOXP3 y se evaluó 48 h después de la inactivación. e: Expresión de ARNm de SATB1 (media +/- DE; n=6, * p<0,05) en Treg naturales humanos primarios suficientes en FOXP3 (ARNip de control) y deficientes (ARNip de FOXP3) evaluados por qRT-PCR. f: Análisis de expresión de ARNm de IL-5 y IFN-γ (n=4, media +/- DE) en T_{reg} naturales humanos 35 primarios suficientes en FOXP3 (ARNip de control) y deficientes (ARNip de FOXP3) evaluados por qRT-PCR. g: Evaluación por CBA de la secreción de citocinas IL-4 y IFN-γ (triplicados, media +/- DE) de T_{reg} naturales humanos primarios suficientes en FOXP3 (ARNip de control) y deficientes (ARNip de FOXP3) (n=4). h: Evaluación de la expresión de ARNm de IL-5 y IFN-γ (media +/- DE) en T_{reg} naturales humanos primarios transfectados con ARNip específico de SATB1 después del silenciamiento de FOXP3 48 horas después de la inactivación. i: Análisis de la expresión de FOXP3 (izquierda) y SATB1 (derecha) en linfocitos T CD4⁺ empobrecidos en T_{rea} convencionales 40 humanos lentiviralmente transfectados con FOPX3 por gRT-PCR (media +/- DE, n=5, * p<0,05).

<u>Fig. 5: Regulación de SATB1 por miARN.</u> a: Expresión media de miR-155 en T_{reg} naturales humanos en comparación con T_{conv} (media +/- DE; n=7, * p<0,05) como se ha evaluado por qPCR. <u>b</u>: Representación de la región genómica de SATB1 genómica humana y el sitio de unión de miR-155 conservado en 3' UTR (SEC ID N°: 43). <u>c</u>: Se evaluó la actividad de luciferasa por análisis luminométrico después de la transfección de una construcción indicadora que contiene 3' UTR de SATB1 en células HEK293. La regulación de la expresión de SATB1 por miR-155 se evaluó por transfección de miR-155 para demostrar la especificidad. Se muestra un representante de tres experimentos independientes. <u>d</u>: T_{reg} naturales humanos purificados por MACS tanto se transfectaron con un ARNip de miR-122 (control) como ARNip específico de miR-155 y la regulación de la expresión de la expresión de la expresión de ARNm de SATB1 se evaluó 48 h después de la inactivación por qRT-PCR (media +/- DE, n=5, * p<0,05). <u>f</u>: Metilación de ADN de la isla CpG predicha en la región genómica de SATB1 en T_{reg} y T_{conv} .

Fig. 6: Disposición de experimentos en micromatrices realizados para identificar la expresión de SATB1 y la regulación de microARN en T_{reg.} Se evaluaron linfocitos T CD4⁺ humanos, T_{conv} CD4⁺ CD25⁺, T_{reg} CD4⁺ CD25⁺ y T_{reg} expandidos tanto directamente después del aislamiento (reposo), después de hasta 24 h de cultivo celular sin estimulación adicional (reposo), como después de la activación por diversos estímulos (activados). También se incluyen condiciones inhibidoras de linfocitos T CD4⁺ estimulados en presencia de señales inhibidoras que incluyen IL10, prostaglandina-E2 (PGE2), PD1, CTLA-4 o TGFβ1. Si no se indica de otro modo, las células se estimularon

durante 8 h antes de recogerse para el análisis de micromatrices (véase también la Tabla 1).

<u>Fig. 7: Evaluación de miR-155 por análisis de matrices.</u> Expresión de miR-155 media en nT_{reg} humanos en comparación con T_{conv} como se ha evaluado por análisis de micromatrices de miARN. Se estudiaron al menos 3 donantes y se representa la media +/- DE; * p<0,05.

5 Fig. 8: Influencia de la activación y estimulación de TGF β sobre la secreción de citocinas TH1/TH2 en T_{conv} y T_{req}. Se purificaron nT_{reg} CD4⁺ CD25^{alto} CD127^{bajo} por clasificación por MACS (>96 % de pureza). Se usaron T_{conv} CD4⁺ CD25⁻ para la comparación. Se evaluó la influencia de la activación (perlas CD3 + CD28) y estimulación de TGF β sobre la liberación de IL6 y IFN- γ en T_{conv} (barras grises) y T_{reg} (barras blancas) por matrices de perlas citométricas. Se cultivaron células durante 72 h, se estudiaron 4 donantes y se representa la media +/- DE; * p< 0,05.

Fig. 9: Expresión de FOXP3 y función supresora de linfocitos T reguladores inducidos. Linfocitos T CD45RA⁺CCR7⁺CD4⁺ humanos sin tratamiento previo tanto se dejaron sin estimular (T_{no est}), se estimularon con perlas de CD3 y CD28 (T_{estim}) como se estimularon en presencia de TGFβ para convertirse en linfocitos T reguladores inducidos (iT_{reg}). Se estudiaron al menos 3 donantes y se representa la media +/- DE; * p< 0,05. <u>a</u>: Expresión de ARNm de FOXP3 (media +/- DE) como se ha evaluado por qRT-PCR después de 5 d (n= 6). <u>b</u>: Tinción intracelular de FOXP3 en un experimento representativo (izquierda) y expresión de FOXP3 media +/- DE (derecha) después de 5 d (n= 4). <u>c</u>: Análisis de citometría de flujo de la función reguladora de T_{no est}, T_{estim} e iT_{reg} como se ha evaluado por la inhibición de la proliferación de linfocitos T CD4⁺ alógenos a una relación 1:1; aquí se muestran la tinción por CFSE de un experimento representativo (izquierda) y la actividad supresora media +/- DE (n=9) de T_{no est}, T_{estim} e iT_{reg} (derecha). Los linfocitos T CD4⁺ convencionales en reposo sirvieron de control negativo, los linfocitos T alógenos estimulados con perlas CD3 y CD28 de control positivo.

<u>Fig. 10:</u> Análisis de citometría de flujo de la expresión de SATB1 en ratones DEREG. Se tiñeron T_{reg} , además de T_{conv} , de ratones DEREG para CD4, FOXP3 y SATB1 y dependieron de la expresión de CD4, GFP y FOXP3. La expresión de SATB1 en linfocitos T_{reg} y T_{conv} de nodos linfáticos (a) y timo (b) se evaluó por citometría de flujo. Los valores de MFI se presentan en las esquinas izquierda resp. derecha superiores para T_{reg} resp. T_{conv} .

25 Fig. 11: Análisis de micromatrices de la expresión de SATB1 en T_{reg}, de ratones ΔFOXP3. Se reanalizaron los datos de micromatrices de Williams, L. M. & Rudensky, A. Y., Nat Immunol 8, 277-284 (2007) para la expresión de SATB1 en linfocitos T_{reg} y T_{reg} inactivados de FOXP3.

Fig. 12: Conservación del sitio de unión de FOXP3 en el sitio SATB1 con respecto a varios mamíferos (SEC ID Nº: 35-42). El alineamiento de secuencias se realizó usando ClustalW.

<u>Fig. 13: Inactivación de FOXP3 en T_{reg} humanos primarios</u>. Se transfectaron T_{reg} humanos tanto con ARNip de control como ARNip específico de FOXP3 y se evaluaron 48 horas después de la inactivación. <u>a:</u> Expresión relativa de ARNm de FOXP3 (media +/- DE, n=6, * p<0,05). <u>b:</u> Análisis representativo de citometría de flujo de la expresión de FOXP3 intracelular 48 horas después de la inactivación de FOXP3 en T_{reg}. <u>c:</u> Expresión de proteínas FOXP3 media (media +/- DE, n=6, * p<0,05). <u>d:</u> Función supresora de T_{reg} tratados con ARNip de control o de FOXP3 evaluada en un ensayo supresor convencional usando linfocitos T alógenos CD4⁺ como lectura. Se muestra un experimento representativo. <u>e:</u> Capacidad inhibidora media (media +/- DE, n=3, * p<0,05).

<u>Fig. 14:</u> Diferenciación de TH1/TH2 de T_{reg} de ratones DEREG x scurfy. Para evaluar si T_{reg} que expresan SATB1 se diferencian en linfocitos T colaboradores que expresan citocinas TH1/TH2, los presentes inventores aislaron T_{reg} GFP⁺ y se analizó la producción de ARNm de IL-6 (a) y IFN- γ (b) por T_{reg} derivados de ratones DEREG o DEREG x scurfy. Se muestra un representante de dos experimentos independientes.

<u>Fig. 15:</u> T_{conv} transfectados con FOXP3 muestran producción reducida de citocina. Análisis de la expresión de IL-5 (izquierda) e IFN_γ (derecha) en linfocitos T CD4⁺ empobrecidos en T_{reg} convencionales humanos lentiviralmente transfectados con FOPX3 por qRT-PCR (media +/- DE, n=5, * p<0,05).

<u>Fig. 16: miR-155 se expresa altamente en iT_{reg} humanos.</u> Análisis de la expresión de miR-155 en linfocitos $T_{no est}$, T_{estim} y iT_{reg} por PCR específica de miARN.

<u>Fig. 17: miR-155 es una diana en la dirección 3' de FOXP3 en linfocitos T humanos.</u> <u>a</u>: La regulación de miR-155 después de la inactivación de FOXP3 en nT_{reg} humanos se analizó por PCR específica de miARN en comparación con un ARNip de control. <u>b</u>: Después de la transducción lentiviral de T_{conv} CD4+ con tanto FOXP3 como un vector de control se evaluó la expresión de miR-155 por PCR específica de miARN.

50 Fig. 18: Metilación de ADN de la isla CpG para el sitio FOXP3 en T_{reg} y T_{conv}.

40

45

Fig. 19: Metilación de histonas en el sitio del gen SATB1. Se reanalizaron los datos publicados por Wei, G. y col.,

Immunity 30:155-167 (2009) para los mapas de expresión de SATB1 y de metilación de histonas en linfocitos T sin tratamiento previo murinos, T_{efector} (ThH1, TH2, resp. TH17), iT_{reg} y nT_{reg}. <u>a</u>: Expresión de SATB1 como se ha evaluado por el análisis de micromatrices. <u>b</u>: Los datos de secuenciación de ChIP se re-analizaron para el sitio SATB1. La trimetilación de H3K4 está asociada a la activación génica, mientras que la di- y trimetilación de H3K27 están asociadas a la represión génica. En ninguno de los subconjuntos de linfocitos T se detectó la trimetilación de H3K27, mientras que T_{efector} mostró altos niveles de metilación de H3K4 y menor metilación de T_{reg}.

5

Fig. 20: Modelo para el modo de acción de FOXP3 y miR155 de la expresión de proteínas SATB1 y secreción de citocinas TH1 y TH2 en la dirección 3'.

- Fig. 21: Represión dependiente de FOXP3 de la expresión de SATB1 en linfocitos T reguladores. (a) Análisis de micromatrices de expresión de ARNm de SATB1 en linfocitos T convencionales (T_{conv}, azul) y linfocitos T 10 reguladores (T_{req}, rojo) bajo diferentes condiciones; act = activados mediante TCR durante 8 h, rep = sin activación, TGF = estimulación con TGF β durante 8 h, exp = expandidas con TCR y coestimulación durante 7 d. Experimentos representativos de un total de 46 condiciones que comprenden 171 experimentos en matriz. (b) Expresión relativa de ARNm de SATB1 en T_{req} y T_{conv} evaluados por qRT-PCR (media +/- DE, n= 5; * p< 0,05). (c) Análisis de transferencia Western de la expresión de proteínas SATB1 en un donante representante (izquierda) y expresión 15 relativa de SATB1 (n= 6, media +/- DE, derecha; * p< 0,05). (d) Análisis de citometría de flujo de la expresión de proteínas SATB1 en T_{conv}, y T_{reg} para un donante representativo (izquierda) y expresión media de SATB1 +/- DE (derecha, n= 11; * p< 0,05). (e) Análisis de citometría de flujo de la expresión de proteínas SATB1 en T_{conv} y T_{reg} después de la estimulación (3 d; n= 4; * p< 0,05). (f)-(h) para linfocitos T humanos sin tratamiento previo de 5 d se dejaron sin estimular (T_{no est}), se estimularon con perlas de CD3 y CD28 (T_{estim}) o se estimularon en presencia de 20 TGF_β para obtener linfocitos T reguladores inducidos (iT_{reg}). (f) Expresión de ARNm de SATB1 (media +/- DE) como se ha evaluado por gRT-PCR después de 5 d (n= 6; * p< 0,05). (g) Análisis de citometría de flujo de la expresión de proteínas SATB1 después de 5 d en un experimento representativo (izquierda) y expresión relativa de SATB1 (derecha, n= 3, media +/- DE; * p< 0,05). (h) Evaluación por CBA de la secreción de citocinas de IL4 y IFN-γ 25 (media +/- DE; * p< 0,05). (i) Análisis de la expresión de ARNm de SATB1 (media +/- DE; * p< 0,05) en T_{conv} y T_{reg} derivados de ratones DEREG macho, además de ratones DEREG x scurfy deficientes en FOXP3 como se ha evaluado por qRT-PCR. Se muestra un representante de dos experimentos independientes. (i) Tinción por inmunofluorescencia para la expresión de proteínas SATB1 (rojo) y FOXP3 (verde) en Treg GFP⁺ clasificados del bazo de ratones DEREG hembra heterocigóticos para la mutación scurfy contrateñida con DAPI (azul). (k) Análisis de citometría de flujo de la expresión de proteínas SATB1 intracelulares en timocitos positivos individuales CD4⁺ 30 (izquierda, gris claro), además de T_{reg} GFP⁺ suficientes para FOXP3 positiva individual tímica (FOXP3⁺, centro, gris oscuro) y deficientes (FOXP3⁻, derecha, negro) de ratones DEREG hembra heterocigóticos para la mutación scurfy mostrada para un donante representativo (izquierda) y como expresión de SATB1 media +/- DE (derecha, n= 2). Control de isotipo mostrado como línea continua.
- 35 Fig. 22: Supresión directa de la transcripción de ARNm de SATB1 por FOXP3. (a) FOXP3. Datos de matrices de baldosas ChIP de linfocitos Treg expandidos humanos recubiertos en sitio de SATB1 humano. (b) Representación de la región genómica de SATB1 genómica humana y los sitios de unión de FOXP3. (c) Se evaluó la unión de FOXP3 a las regiones de SATB1 genómicas por ChIP-qPCR sobre cromatina aislada de T_{reg} naturales humanos expandidos. Se realizó PCR usando un conjunto de cebadores específico para la región correspondiente en el sitio 40 de SATB1. Se representa el enriquecimiento en FOXP3-ChIP sobre el ADN de entrada normalizado para controlar IgG. Aquí se muestra un experimento representativo de 2. (d) Se definieron K_D para la unión de FOXP3 al sitio de SATB1 por RIA para motivos de unión a modo de ejemplo. (e) Se evaluó la actividad de luciferasa por análisis luminométrico después de la transfección de una construcción indicadora que contiene los posibles sitios de unión de FOXP3 en el sitio de SATB1 genómico o con un motivo mutado. Se evaluó la unión de FOXP3 en comparación 45 entre células transfectadas con un vector de control o que expresa FOXP3 (media +/- DE; * p< 0,05) en comparación con el motivo mutado. Se muestra un representante de tres experimentos independientes. (f)-(i) T_{reg} naturales humanos purificados por MACS tanto se transfectaron con un ARNip de control negativo como ARNip específico de FOXP3, (f) expresión de ARNm de SATB1 (media +/- DE; n= 6, * p< 0,05) evaluada por qRT-PCR en Treg naturales humanos primarios suficientes en FOXP3 (ARNip de control) y deficientes (ARNip de FOXP3) 50 cultivados durante 36 h en presencia de CD3 y IL-2 o CD3 y CD28. (g) Análisis de la expresión de ARNm de IL-5 y IFN-γ por qRT-PCR (n= 4, media +/- DE, * p< 0,05) en T_{reg} naturales humanos primarios suficientes en FOXP3 (ARNip de control) y deficientes (ARNip de FOXP3) estimulados durante 48 h en presencia de CD3 y IL-2 después de la inactivación. (h) Evaluación por CBA de la secreción de citocinas de IL-4 y IFN- γ de T_{reg} naturales humanos primarios suficientes en FOXP3 (ARNip de control) y deficientes (ARNip de FOXP3) (media +/- DE, * p< 0,05) estimulados durante 48 h en presencia CD3 e IL-2 después de la inactivación. (i) Evaluación de la expresión de 55 ARNm de IL-5 y IFN-γ (media +/- DE) en T_{reg} naturales humanos primarios transfectados con ARNip específico de SATB1 después del silenciamiento de FOXP3 48 h después de la inactivación estimulados con CD3 y CD28 (n= 4, media +/- DE, ANOVA unilateral, * p< 0,05). (i) Análisis de expresión de FOXP3 (izquierda) y SATB1 (derecha) en linfocitos T CD4⁺ empobrecidos en T_{rea} convencionales humanos lentiviralmente transfectados con FOPX3 por qRT-

PCR (media +/- DE, n= 5, * p< 0,05).

55

Fig. 23: La expresión de SATB1 reprograma linfocitos T reguladores en linfocitos T efectores. (a) Análisis de la función supresora de T_{reg} humanos lentiviralmente transfectados con SATB1 (derecha, azul) o vector de control (dsRed, izquierda, rojo) mostrado para un donante representativo (izquierda) y como proliferación media de linfocitos T de CD8⁺ +/- DE (derecha, n= 3, * p< 0,05). (b) Evaluación por CBA de la secreción de citocinas IL-4 y IFN-γ de T_{reg} transducidos con SATB1, además de transducidos con control, 4 y 16 h después de la estimulación con perlas recubiertas con CD3/CD28 (media +/- DE, * p<0,05). (c) Genes regulados por incremento y por disminución en T_{reg} transducidos con SATB1. Los datos se normalizaron a la puntuación z. (d) Clasificación de genes inducidos por SATB1 según las comparaciones entre linfocitos T_{conv} y T_{reg}, linfocitos T no estimulados y sin tratamiento previo estimulados con CD3/CD28 y genes comunes a ambos subconjuntos (T_{conv} y linfocitos T activados). (e) Patrón de expresión de genes dependientes de SATB1 que contribuyen posiblemente a la reprogramación de T_{reg} en T_{efector}, clasificados en genes específicos para TH1, TH2 y TH17. Los datos se normalizaron a la puntuación z.

- Fig. 24: Regulación de SATB1 por miARN. (a) Metilación de ADN de las islas CpG predichas en la región genómica de SATB1 en Treg y Tconv. (b) Representación de la 3' UTR de SATB1 genómica humana y los sitios de unión de 15 miARN conservados. (c) Expresión de miARN media para miR-155, miR-21, miR-7, miR-34a y miR-18a en Treg naturales humanos en comparación con T_{conv} (media +/- DE; n= 5, * p< 0,05) como se ha evaluado por qPCR. (d) La correlación de la expresión de miARN con la expresión de ARNm de SATB1 se representa contra las veces de cambio de miARN (Treg frente a Tconv) para todos los 735 miARN evaluados. Se resaltan miR-155, miR-21, miR-7, miR-34a y miR-18a. (e) Unión de FOXP3 al sitio genómico de miR-155, miR-21 y miR-7 en linfocitos T_{reg} naturales 20 humanos como se define por matrices de baldosas ChIP de FOXP3. (f) Se evaluó la actividad de luciferasa por análisis luminométrico después de la transfección de una construcción indicadora que contiene la 3' UTR de SATB1. Se evaluó la regulación de la expresión de SATB1 por miARN por transfección del miARN correspondiente en comparación con un miARN de control (media +/- DE; * p< 0,05). Se usó mutación del motivo de miARN para 25 demostrar la especificidad. Se muestra un representante de tres experimentos independientes. (g) Análisis de transferencia Western de la expresión de proteínas SATB1 en Treg clasificadas de ratones con una pérdida de DICER completa específica de T_{req} (DICER^{1/fl}) en comparación con T_{req} DICER^{1/fl}.
- Fig. 25: Disposición de experimentos en micromatrices realizados para identificar la expresión de SATB1 y regulación de microARN en T_{reg.} Se evaluaron linfocitos T CD4⁺ humanos, T_{conv} CD4⁺ CD25⁻, T_{reg} CD4⁺ CD25⁺ y T_{reg}
 expandidos tanto directamente después del aislamiento (reposo), después de hasta 24 h de cultivo celular sin estimulación adicional (reposo) como después de la activación por diversos estímulos (activados). También se incluyeron condiciones inhibidoras de linfocitos T CD4⁺ estimulados en presencia de señales inhibidoras que incluyen IL-10, prostaglandina-E2 (PGE2), PD1, CTLA-4 o TGFβ1. Si no se indica de otro modo, se estimularon células durante 8 h antes de la recogida para el análisis de micromatrices (véase también la Tabla 1).
- 35 Figura 26: Evaluación citométrica del flujo de la expresión de proteínas SATB1 en T_{conv} y T_{reg} estimulados. Análisis de citometría de flujo de la expresión de proteínas SATB1 en T_{conv} y T_{reg} después de la estimulación con CD3 y IL-2 o CD3 y CD28 durante 3 d ejemplificado para un donante. Se presentan valores de MFI en la esquina derecha superior para T_{reg} y T_{conv}, respectivamente.
- Fig. 27: Análisis de la expresión de SATB1 en T_{reg} murinos. (a) Se tiñeron T_{reg} tímicos, además de T_{conv} de ratones DEREG, para CD4, CD8, FOXP3 y SATB1 y se seleccionaron para la expresión CD4, CD8, GFP y FOXP3. La expresión de SATB1 en linfocitos T_{reg} y T_{conv} de tejido de timo se evaluó por citometría de flujo y se muestra para un donante representativo (izquierda) y como expresión de SATB1 media +/- DE (derecha, n=3). La expresión de SATB1 en timocitos positivos individuales CD4⁺ fue considerablemente superior a en T_{conv} CD4⁺ del bazo (datos no mostrados) ya que la expresión de SATB1 es esencial para el desarrollo de timocitos (Alvarez, J. D. y col., Genes Dev 14, 521-535 (2000)), todavía fue detectable una regulación por disminución significativa de SATB1 en T_{reg} en ambos tejidos (datos no mostrados). Se presentan valores de MFI en la esquina superior izquierda o derecha para T_{reg} y T_{conv}, respectivamente. (b) Análisis de transferencia Western de la expresión de proteínas SATB1 en T_{reg} y T_{conv} murinos. (c) y (d) Tinción por inmunofluorescencia para la expresión de proteínas SATB1 (rojo) y GFP (verde) en timocitos de ratones DEREG macho contrateñidos con DAPI (azul).
- 50 <u>Fig. 28: Evaluación de la unión de FOXP3 al sitio de SATB1.</u> Las KD para la unión de FOXP3 al sitio de SATB1 se definieron por RIA para los motivos de unión de FOXP3 identificados en el sitio genómico de SATB1 en comparación con motivos mutados como se ejemplifica para BS5 y BS6.

<u>Fig. 29: Inactivación de FOXP3 en T_{reg} humanos primarios.</u> T_{reg} humanos tanto se transfectaron con ARNip de control como ARNip específico de FOXP3 y se evaluaron 48 h después de la inactivación. (a) Expresión relativa de ARNm de FOXP3 (media +/- DE, n=6, * p<0,05). (b) Análisis de citometría de flujo representativo de la expresión de FOXP3 intracelular 48 h después de la inactivación de FOXP3 en T_{reg}. (c) Expresión de proteínas FOXP3 media

(media +/- DE, n= 6, * p< 0,05). (d) Función supresora de T_{reg} tratados con ARNip de control o de FOXP3 evaluada en un ensayo supresor estándar usando linfocitos T alógenos CD4⁺ como lectura. Se muestra un experimento representativo. (e) Capacidad inhibidora media (media +/- DE, n= 3, * p< 0,05).

<u>Fig. 30:</u> Diferenciación de TH1/TH2 de T_{reg} de ratones DEREG x scurfy. Para evaluar si los T_{reg} que expresan SATB1 se diferencian en linfocitos T colaboradores que expresan citocinas TH1/TH2, los presentes inventores aislaron T_{reg} GFP⁺ y analizaron (a) la producción de ARNm de IL-6 y (b) de IFN- γ por T_{reg} derivados de ratones DEREG o DEREG x scurfy. Se muestra un representante de dos experimentos independientes.

<u>Fig. 31: T_{conv} transfectados con FOXP3 muestran producción reducida de citocinas.</u> Análisis de la expresión de IL-5 (izquierda) y IFN-γ (derecha) en linfocitos T CD4⁺ empobrecidos en T_{reg} convencionales humanos lentiviralmente transducidos con FOPX3 por qRT-PCR (media +/- DE, n= 5, * p< 0,05).

Fig. 32: Metilación de ADN de la isla CpG del sitio de FOXP3 en T_{reg} y T_{conv}.

Fig. 33: Metilación de histonas en el sitio del gen SATB1. Se reanalizaron datos muy recientemente publicados sobre la metilación de histonas del genoma completo (Wei, G. y col., Immunity 30, 155-167, (2009)) para la expresión de mapas de SATB1 y de metilación de histonas en linfocitos T sin tratamiento previo murinos, T_{efector} (TH1, TH2, resp. TH17), iT_{reg} y nT_{reg}. (a) Expresión de SATB1 como se ha evaluado por análisis de micromatrices. (b) y (c) Se reanalizaron los datos de secuenciación de ChIP para el sitio de SATB1. La trimetilación de H3K4 está asociada a la activación génica, mientras que la di- y trimetilación de H3K27 están asociadas a la represión génica. Se detectó trimetilación de baja a ausente de H3K27 en los subconjuntos de linfocitos T analizados, mientras que T_{efector} mostró altos niveles de metilación de H3K4 y T_{reg} menor metilación. (b) Datos acumulados para T sin tratamiento previo, TH1, TH2, TH17, iT_{reg} y nT_{reg}. (c) Análisis de islas de trimetilación (rojo: H3K4, azul: H3K27) mapeadas sobre el sitio de SATB1 genómico.

<u>Fig. 34:</u> Expressión de SATB1 después del silenciamiento mediado por ARNip de miR-155 en $T_{reg.}$ Se transfectaron T_{reg} naturales humanos purificados por MACS con tanto un inhibidor de control o de miR-155 y se evaluó la regulación de la expresión de ARNm de SATB1 48 h después de la inactivación por qRT-PCR (media +/- DE, n= 5, * p< 0,05) en T_{reg} no estimulados, estimulados con CD3 y IL-2, o CD3 y CD28.

<u>Fig. 35:</u> Expressión de SATB1 en T_{reg} empobrecidos en miARN. Análisis de transferencia Western de la expressión de proteínas SATB1 en T_{reg} clasificados de ratones con un pérdida de DICER completa específica de T_{reg} (DICER^{1/II}) en comparación con T_{reg} DICER^{1/II}.

Fig. 36: Modelo para el modo de acción de FOXP3. (a), (b) Modelo para la remodelación dependiente de SATB1
 mediada por FOXP3 y miARN de los sitios genómicos respectivos para la liberación de citocinas TH1 y TH2 y la inducción de la función supresora de T_{reg}.

Descripción detallada de la invención

5

10

25

40

50

Los procedimientos de los aspectos (1) a (5) de la invención identifican los linfocitos T reguladores en la población de células debido a la reducción significativa (o incluso ausencia) de la unión de tales linfocitos T reguladores a ligandos que se unen específicamente a SATB1 en comparación con las células restantes de la población de células. En otras palabras, todas las células (excepto los linfocitos T reguladores) de la población de células muestran la unión con dichos ligandos.

Los "ligandos" según la invención pueden ser anticuerpos o fragmentos de los mismos, que incluyen anticuerpos humanos, murinos, de conejo y cabra, y fragmentos de anticuerpos. Ligandos particularmente adecuados son anticuerpos monoclonales o fragmentos de los mismos.

Según la los ligandos/anticuerpos llevan restos funcionales que permiten la detección, que incluyen, pero no se limitan a, marcas (tales como colorantes de fluorescencia y bioluminiscencia y marcas radiactivas), ligandos (tales como ADN, ARN y moléculas de proteínas, moléculas de fusión de Ig, moléculas de ARN bifuncional y moléculas penetrantes en la membrana celular que se acoplan a un ligando), toxinas (tales como ricina, lectina y toxina diftérica).

45 El procedimiento de la invención es aplicable a cualquier tipo de población de células que incluye, pero no se limita a, cultivo celular, sangre completa y fracciones de sangre completa, y células de cualquier origen que incluyen, pero no se limitan a, células de mamífero tales como células humanas y células murinas.

En una realización particularmente preferida, el procedimiento es adecuado para el control de calidad de poblaciones de linfocitos T, en particular de poblaciones de linfocitos T reguladores, en las que los linfocitos T efectores contaminantes se detectan en la población de linfocitos T reguladores, o una población de linfocitos T efectora, en la que los linfocitos T reguladores contaminantes se detectan en la población de linfocitos T reguladores.

El procedimiento de la invención puede combinarse con otros procedimientos de detección de linfocitos T reguladores conocidos en la técnica. Para identificar linfocitos T humanos se desea que la población de linfocitos T se ponga en contacto con uno o más ligandos que se unen específicamente a CD4, CD25 y/o CD127 sobre los linfocitos T. Otro procedimiento es ensayar la expresión de FOXP3. El kit del aspecto (6) de la invención puede comprender, aparte de los ligandos/anticuerpos/fragmentos de anticuerpos, tampones y reactivos para realizar el procedimiento de detección de la

5 ligandos/anticuerpos/fragmentos de anticuerpos, tampones y reactivos para realizar el procedimiento de detección de la invención, suspensiones de células convencionales y también reactivos para realizar los procedimientos de detección adicionales citados anteriormente.

La invención se describe además en los siguientes ejemplos que, sin embargo, no deben interpretarse como una limitación de la invención.

10 Ejemplos

30

40

50

Materiales y procedimientos

Ratones: Se compraron ratones C57BL/6 (B6) de Jackson Laboratory. Previamente se han descrito ratones *DEREG*, scurfy y *DEREG x scurfy* (Brunkow, M.E. y col., Nat. Genet. 27:68-73 (2001); Lahl, K. y col., J. Immunol. in revision; Lahl K. y col., J. Exp. Med. 204:57-63 (2007)). Los ratones *DEREG x scurfy* macho fueron indistinguibles de los ratones *scurfy* en lo referente a las manifestaciones inmunológicas y clínicas de autoinmunidad, mientras que los ratones *DEREG*

- 15 en lo referente a las manifestaciones inmunológicas y clínicas de autoinmunidad, mientras que los ratones *DEREG* hembra heterocigóticos para FOXP3 estuvieron libres de síntomas. Se alojaron los ratones bajo condiciones específicas libres de patógenos y se usaron según las pautas del Comité Institucional para el Cuidado Animal en el Instituto para Microbiología, Inmunología e Higiene Médica, TU Munich.
- Anticuerpos y análisis de FACS: Se compraron anticuerpos conjugados con colorante fluorescente de BD, Biolegend o eBioscience. Se preparó anticuerpo monoclonal de ratón anti-SATB1 humana conjugado con Alexa 647 (clon 14) reactivo de forma cruzada con SATB1 murina marcando el anticuerpo comercialmente disponible (número de material de BD Biosciences 611182) con el colorante. Los datos de FACS se adquirieron sobre un citómetro de flujo FACSCanto (Becton Dickinson) y se analizaron usando el paquete de software FlowJo (Tri-Star). Se realizó tinción intracelular de FOXP3 y SATB1 humanas y murinas usando tanto el kit de tinción de linfocitos T reguladores de ratón de FOXP3 humana como de ratón (Biolegend) con la adición de reactivos de bloqueo de FcR (CD16/CD32 o IgG humana) 15 min antes de la
- tinción intranuclear.

Purificación y clasificación de T_{reg} humanos: Se purificaron T_{reg} y T_{efector} humanos de sangre completa de donantes humanos sanos en cumplimiento con los protocolos del comité de ética médica (IRB) por selección negativa usando CD4-RosetteSep (Stem Cell), seguido de selección positiva usando perlas de MACS específicas de CD25 (Miltenyi Biotech) o clasificando en un clasificador de células FACSDiVa (Becton Dickinson) después de incubar las células con combinaciones de anticuerpos monoclonales marcados para fluorocromo con CD4, CD25 y CD127. Para experimentos con células no clasificadas, solo se usaron muestras con >95 % de T_{reg}.

<u>Purificación y clasificación de T_{reg} murinos</u>: Se purificaron T_{reg} GFP⁺ murinos de timo, bazo o ganglios linfáticos periféricos clasificando en un citómetro de alto rendimiento MoFlo (Beckman Coulter) directamente o después del enriquecimiento positivo de linfocitos T CD4⁺ después de la selección positiva usando perlas de MACS específicas de CD4 (Miltenyi Biotech).

<u>Generación de T_{reg} inducidos:</u> Se purificaron linfocitos CD4⁺ humanos de sangre completa de donantes humanos sanos por selección negativa usando CD4-RosetteSep (Stem Cell). A continuación, esta población se incubó con perlas de MACS específicas de CD25 (Miltenyi Biotech). Después de la selección negativa, se incubaron linfocitos CD4⁺ convencionales con perlas de MACS específicas de CD45RA (Miltenyi Biotech). Se obtuvieron linfocitos T convencionales

- sin tratamiento previo pasando la mezcla de células sobre columnas de separación magnética MidiMACS (Miltenyi Biotech) y recogiendo los linfocitos T CD4⁺ CD25⁻ CD45RA⁺. Se estimularon linfocitos T CD4⁺ empobrecidos en T_{reg} sin tratamiento previo (5 x 10⁴ células pocillo⁻¹) en medio Aim-V/X-Cell sin suero (50 % /50 % V/V) con 5 x 10⁴ perlas magnéticas recubiertas con 5 % de CD3 (OKT3, Ortho Biotech), 12 % de CD28 (9,3) y 83 % de anticuerpo monoclonal entit MHC L (M6/22) pocillo⁻¹ y TCC⁰¹ (J² D C) con 5 x 10⁴ perlas pocilio⁻¹ durante un partidad de *T* díce en quepersion de ll 2. El
- 45 anti-MHC-I (W6/32) pocillo⁻¹ y TGFβ1 (R&D Systems) 5 ng ml⁻¹ durante un periodo de 7 días en ausencia de IL-2. El TGFβ1 no se trató con ácido antes de la adición. La composición descrita de perlas se optimizó para la inducción de linfocitos T_{reg}.

<u>Ensayo de supresión *in vitro*</u>: Para los ensayos de supresión *in vitro*, T_{efector} marcados con CFSE (1 x 10⁵ células pocillo⁻¹) se co-cultivaron con T_{reg} naturales o inducidos marcados con PKH-26 a las relaciones indicadas en presencia de perlas magnéticas recubiertas con CD3/CD28/MHC-I (3,3 x 10⁴ perlas pocillo⁻¹) en placas de 96 pocillos en medio X-Vivo-15 complementado con 10 % de SBF durante 72 h. Se midió la dilución de CFSE en un citómetro de flujo FACSCanto.

<u>Matriz de perlas citométricas de citocinas:</u> Se midieron concentraciones de IL-4, IL-6 y IFN-gamma usando el kit II de citocinas TH1/TH2 humanas (BD Pharmingen).

<u>qRT-PCR sobre muestras humanas</u>: Se usó ARN total de T_{conv} o T_{reg} para generar ADNc junto con el kit de síntesis Transcriptor First Strand cDNA (Roche Diagnostics). Se realizó qRT-PCR usando el kit maestro LightCycler Taqman y el ensayo Universal Probe Library específico para SATB1, FOXP3, IL-5, IFN-gamma y microglobulina beta-2 (B2M; Roche Diagnostics). Para cada experimento se realizaron al menos dos duplicados técnicos. Los resultados se normalizaron a la expresión de B2M.

<u>Análisis de transferencia Western:</u> Se prepararon lisados celulares de T_{conv} , iT_{reg} y nT_{reg} purificados como se describe previamente (Classen, S. y col., J. Immunol. 178:6931-6940 (2007)), seguido de transferencia Western con SATB1 o anticuerpos para beta-actina.

Expresión génica del genoma completo en células humanas: Se extrajo todo el ARN usando TRIZOL (Invitrogen) y se purificó en el laboratorio de los inventores usando procedimientos convencionales. Se realizaron amplificación de muestras, marcado e hibridación sobre Illumina WG6 Sentrix BeadChips V1 para todas las matrices en este estudio según las instrucciones del fabricante (Illumina) usando un Illumina BeadStation. Todos los datos de análisis se realizaron usando Bioconductor para el software estadístico R (http://www.r-project.org). Los valores de expresión se normalizaron y se resumieron usando el paquete IlluminaGUI. A partir de los conjuntos de datos resultantes, los presentes inventores extrajeron una lista de genes con una expresión diferente significativa en T_{reg} en comparación con

T_{conv}. Puede accederse a datos de micromatrices bajo GSE15390.

<u>Microscopía de inmunofluorescencia:</u> Linfocitos sin purificar de ratones macho *DEREG* o *DEREG* x scurfy o T_{reg} GFP⁺ de ratones hembra *DEREG* x scurfy heterocigóticos purificados de timo, ganglios linfáticos y bazos se fijaron en paraformaldehído frío durante 10 min, se lavaron con PBS, se permeabilizaron con Triton-X y se bloquearon previamente en PBS que contenía 10 % de suero de cabra normal y 1 % de gelatina de piel de peces de agua fría durante 30 min. A continuación se incubaron portaobjetos en combinaciones de anticuerpos primarios (de conejo anti-GFP, de ratón anti-FOXP3, de rata anti-CD4, de ratón anti-SATB1-AF647) durante 60 min, se lavaron dos veces y se incubaron con anticuerpos secundarios (anti-AF488 de conejo, anti-AF555 de ratón, anti-AF555 de rata) durante 60 min, se tiñeron con DAPI y se examinó la fluorescencia usando un microscopio confocal Fluoview FV1000 de Olympus.

- 25 <u>qRT-PCR de T_{reg} murinos</u>: Se extrajo ARN total con el reactivo TRIZOL de T_{reg} CD4⁺ GFP⁺ suficientes y deficientes en FOXP3, además de T_{conv} purificados por FACS de ratones macho *DEREG* y *DEREG* x *scurfy*, respectivamente. Se sintetizó ADN complementario (Miltenyi). Se realizó qPCR usando el kit maestro LightCycler Taqman y el ensayo Universal Probe Library (Roche Diagnostics). Las secuencias de cebadores de PCR se enumeran en la Tabla 2.
- Ensayos de desplazamiento por electromovilidad, inmunoprecipitación de cromatina y qPCR: Se realizaron EMSA con oligonucleótidos conjugados con colorante fluorescente como se ha descrito previamente (Mantel, P.Y. y col., J. Immunol. 176:3593-3602 (2006)) con extractos nucleares de T_{reg} CD4⁺ CD25⁺ humanos expandidos purificados con MACS según las recomendaciones del fabricante (LI-COR) y se analizaron con el sistema de obtención de imágenes de infrarrojos Odyssey tras la electroforesis. Se realizaron ChIPs de anticuerpo para FOXP3 (eBioscience) e IgG (BD Bioscience) usando T_{reg} CD4⁺ CD25⁺ humanos expandidos purificados con MACS siguiendo las instrucciones del fabricante (Active Motif). Se midió la abundancia relativa de regiones de interés en ADN precipitado por PCR semicuantitativa. Adicionalmente, se realizaron qPCR usando iQ SYBR Green Supermix (Bio-Rad) con resultados iguales. Las secuencias de oligonucleótidos y cebadores de PCR se enumeran en la Tabla 3.

Perfilado de miARN y aRT-PCR: Se extrajo todo el ARN usando TRIZOL (Invitrogen) y se purificó en el laboratorio de los inventores usando procedimientos convencionales. Se realizaron amplificación de muestras, marcado e hibridación sobre
 la matriz de matrices de miARN Illumina con el kit de perfilado de la expresión humana MicroRNA v1 para todas las matrices en este estudio según las instrucciones del fabricante (Illumina) usando una Illumina BeadStation. Todos los análisis de datos se realizaron usando Bioconductor para el software estadístico R (http://www.r-project.org). Se normalizaron los valores de expresión y se resumen usando el paquete IlluminaGUI. A partir de los conjuntos de datos resultantes, los presentes inventores extrajeron una lista de miARN con una expresión diferente significativa en T_{req} en

- 45 comparación con T_{conv}. Para qRT-PCR específica de miARN, se extrajo ARN total usando TRIZOL. Se sintetizó ADN complementario de la primera hebra para cada miARN evaluado usando el kit TaqMan MicroRNA RT y el kit específico de miARN correspondiente (Applied Biosystems). Se midieron los niveles de miARN por qPCR usando TaqMan Universal PCR MasterMix (Applied Biosystems) en un ciclador iQ5 (Bio-Rad). Se usaron ARN nuclear pequeño U6 expresado ubicuamente o miR-26b para la normalización. Las secuencias de cebadores de PCR se enumeran en la
- 50 Tabla 4.

5

<u>Silenciamiento de ARN específico de genes, inactivación de miARN y miARN agonista:</u> Todos los ARNip, además de los miméticos e inhibidores de miARN, se compraron de Biomers o Dharmacon. Se diseñaron miméticos de miARN según las secuencias publicadas en miRBase y que se parecían a los productos de escisión por Dicer bicatenarios. Se diseñaron inhibidores de miARN como oligonucleótidos de 2'OM antisentido monocatenarios. Éstos se transfectaron en

55 T_{reg} humanos primarios recientemente aislados con nucleofección como se ha descrito previamente (Mantei, A. y col., Eur. J. Immunol. 38:2616-2625 (2008)). Para ensayos de luciferasa, células HEK293T se transfectaron con tanto los

plásmidos indicadores como los dúplex de ARN pequeño usando Lipofectamine 2000 en un formato de 96 pocillos y se midió la actividad de luciferasa 24 h después.

Ensayos de luciferasa: Se mantuvieron 293T de riñón embrionario humano (HEK) (ATCC CRL-11268) en DMEM que contenía 10 % de suero bovino fetal inactivado por calor y penicilina/estreptomicina. Los 200 pb que rodean el sitio de

- 5 unión de FOXP3 humano en el intrón 2 de SATB1 y la 3'UTR de SATB1 humana se amplificó usando PCR y se clonó en un vector psiCHECK II para generar psiCHECK II-SATB1-intrón 2, respectivamente psiCHECK II-SATB1-3'UTR. Estas construcciones (2 ng) se co-transfectaron por separado en células HEK293T en placas de 96 pocillos junto con 2 ng de plásmido de control o plásmidos que expresan FOXP3, respectivamente, un mimético de miARN para miR-155 o un miARN de control negativo. Se realizaron la lisis y el análisis 24 h después de la transfección usando el kit de luciferasa
- 10 dual Promega. Se contó la actividad de luciferasa en un lector de placas Mithras (Berthold).

Transducciones de FOXP3: Linfocitos T_{conv} CD4⁺ humanos empobrecidos en T_{reg} se transdujeron lentiviralmente con pELNS YFP 2A FOXP3 o plásmidos de control que contenían GFP como se ha descrito previamente (Basu, S. y col., J. Immunol., 180:5794-5798 (2008)) y se evaluaron después de 72-120 h para la expresión de SATB1.

Secuenciación de bisulfito: Se aisló ADN genómico de linfocitos Treg humanos y linfocitos T convencionales purificados 15 por selección negativa usando CD4-RosetteSep (Stem Cell), seguido de clasificación en un clasificador de células FACSDiVa (Becton Dickinson) después de incubar las células con combinaciones de anticuerpos monoclonales marcados con fluorocromo para CD4, CD25 y CD127 usando la extracción en fenol/cloroformo siguiendo las recomendaciones del proveedor. Se realizó tratamiento del ADN genómico con bisulfato sódico produciendo la desaminación de citosinas no metiladas a uracilo, mientras que las citosinas metiladas siguieron invariables. Después de 20 la amplificación se purificaron los productos de PCR y se secuenciaron en ambas direcciones.

Análisis estadístico: Se realizaron pruebas de Mann-Whitney y pruebas de la t de Student con el software SPSS 15.0.

Generación de anticuerpos: Un procedimiento para generar anticuerpos contra SATB1 implica administrar una célula presentadora de antígeno (APC) a animales, por ejemplo, ratón, rata, conejo, cabra. Esto produce la activación de linfocitos B para producir anticuerpos que reconocen linfocitos Trea en un modo específico de SATB1. La APC puede pulsarse con SATB1 o un péptido de SATB1 que se une a una molécula del complejo mayor de histocompatibilidad.

Otro procedimiento incluye la generación de anticuerpos contra SATB1 administrando SATB1 o un péptido de SATB1 que se une a una molécula del complejo mayor de histocompatibilidad, que se procesa por una célula presentadora de antígeno que, a su vez, activa linfocitos B para producir anticuerpos que reconocen linfocitos T_{req} en un modo específico de SATB1. El polipéptido de SATB1 o péptido de SATB1 usado en este procedimiento puede administrarse en asociación con un adyuvante.

30

25

35

Alternativamente, un procedimiento implica administrar una molécula de ácido nucleico que codifica SATB1 o un péptido de SATB1 que se une a una molécula del complejo mayor de histocompatibilidad. La molécula de ácido nucleico se expresa de manera que puede procesarse por células presentadoras de antígeno, que activan linfocitos B para producir anticuerpos que reconocen SATB1 en un modo específico de SATB1. La molécula de ácido nucleico que codifica SATB1 o un péptido de SATB1 puede estar presente en un vector de expresión.

- Después de exponer un animal varias veces a linfocitos B de SATB1 del bazo o ganglios linfáticos, a continuación se fusionan con células tumorales de mieloma que pueden crecer indefinidamente en cultivo y que han perdido la capacidad para producir anticuerpos. Esta fusión se hace haciendo las membranas celulares más permeables por el uso de polietilenglicol o electroporación. Las células de hibridomas fusionadas se diluyen suficientemente para garantizar la
- 40 clonalidad y crecimiento. Los anticuerpos de los diferentes clones se prueban a continuación para su capacidad para unirse al antígeno (por ejemplo, con una prueba tal como ELISA) o inmunotransferencia puntual, y se recoge el más sensible. A continuación se producen anticuerpos monoclonales en cultivo celular por, por ejemplo, cámaras de fermentación.
- Otro procedimiento de generación de anticuerpos contra SATB1 implica el uso de SATB1 o un péptido de SATB1 para 45 unir anticuerpos expresados por una biblioteca de fagos. Se expresan numerosos anticuerpos en la biblioteca como fusiones con la proteína de la envuelta de un bacteriófago, de manera que se expresan sobre la superficie de la partícula viral. El ADN extraído de fagos que interaccionan contiene las secuencias de los anticuerpos específicos que reconocen SATB1 en un modo específico de SATB1.

Tabla 1: Expresión de SATB1

- N° Tipo de célula donante condición n
- 1 4 sana CD4+ 12 h cultivadas a continuación CD3CD28 activadas durante 8 h

2	4	sana	CD4+ 8 h CD3CD28 activadas
3	4	sana	CD4+ 8 h CD3CD28 activadas y TGFb1
			(continuación)
N٥	n	Tipo de célula donante	condición
4	4	sana	CD4+ 12 h cultivadas a continuación CD3CD28 activadas y TGFb1 durante 8 h
5	4	sana	CD4+ 8 h CD3CD28 activadas y VEGF
6	3	sana	CD4+ 12 h cultivadas a continuación CD3CD28 activadas y VEGF durante 8 h
7	4	sana	CD4+ 8 h CD3CD28 activadas e IL10
8	3	sana	CD4+ 12 h cultivadas a continuación CD3CD28 activadas e IL10 durante 8 h
9	4	sana	CD4+ 8 h CD3CD28 activadas y PGE2
10	4	sana	CD4+ 8 h CD3CD28 activadas y PD1
11	4	sana	CD4+ 8 h CD3CD28 activadas y CTLA4
12	4	sana	CD4+ 8 h CD3 activadas
13	3	sana	CD4+ 18 h cultivadas a continuación TGFb1 durante 1 h
14	3	sana	CD4+ 18 h cultivadas a continuación TGFb1 durante 2 h
15	3	sana	CD4+ 18 h cultivadas a continuación TGFb1 durante 8 h
16	4	sana	CD4+ 8 h cultivadas
17	4	sana	CD4+ 12 h cultivadas
18	3	sana	CD4+ 18 h cultivadas
19	3	sana	CD4+ 19 h cultivadas
20	6	sana	CD4+ 20 h cultivadas
21	3	sana	CD4+ 26 h cultivadas
22	4	sana	CD4+ 12 h cultivadas a continuación 1 ng/ml de TGFb1 durante 8 h
23	4	sana	CD4+ 12 h cultivadas a continuación 10 ng/ml de TGFb1 durante 8 h
24	3	sana	CD4+ 18 h TGFb1
25	7	sana	CD4+ sin tratar
26	4	sana	CD4+CD25- sin tratar
27	4	CLL	CD4+CD25- sin tratar
28	2	sana	CD4+CD25- sin tratar
29	2	sana	CD4+CD25- sin tratar
30	3	sana	CD4+CD25- 6 h cultivadas
31	4	sana	CD4+CD25- 24 h CD3/IL2 estimuladas
32	4	CLL	CD4+CD25- 24 h CD3/IL2 estimuladas
33	2	sana	CD4+CD25- sin tratar
34	3	sana	CD4+CD25bajoCD127+ sin tratar

35	3	sana	CD4+CD25-CD127+ sin tratar
36	4	sana	CD4+CD25-/bajoCD127+ sin tratar
			(continuación)
N⁰	n	Tipo de célula donante	condición
37	4	CLL	CD4+CD25+ sin tratar
38	4	sana	CD4+CD25+ sin tratar
39	4	sana	CD4+CD25+ 24 h CD3/IL2 estimuladas
40	4	CLL	CD4+CD25+ 24 h CD3/IL2 estimuladas
41	4	sana	CD4+CD25+ sin tratar
42	2	sana	CD4+CD25+ sin tratar
43	2	sana	CD4+CD25+ 6 h cultivadas
44	4	sana	CD4+CD25+ expandidas
45	4	sana	CD4+CD25+ expandidas con rapamicina
46	4	sana	CD4+CD25+ expandidas y activación de 6 h a corto plazo de CD3CD28

Tabla 2: qPCR murina de cebadores

nombre	secuencia	SEC ID Nº
B-actina Directo	CTAAGGCCAACCGTGAAAAG	3
B-actina Inverso	ACCAGAGGCATACAGGGACA	4
Foxp3 Directo	ACCACACTTCATGCATCAGC	5
Foxp3 Inverso	CCAGTGGCAGCAGAAGGT	6
SATB1 Directo	AGGAGTGCCCCCTTTCAC	7
SATB1 Inverso	TGCTGCTGAGACATTTGCAT	8
IFNgamma Directo	CAGGAAGCGGAAAAGGAGT	9
IFNgamma Inverso	AAAATTCAAATAGTGCTGGCAGA	10
IL6 Directo	GCTACCAAACTGGATATAATCAGGA	11
IL6 Inverso	CCAGGTAGCTATGGTACTCCAGAA	12

Tabla 3: ChIP-PCR de cebadores

nombre	secuencia	SEC ID Nº:
Promotor de IL-7R Directo	CAGGGAATATCCAGGAGGAA	13
Promotor de IL-7R Inverso	TGTGTGAGCCAGTGTGTATGAA	14
Intrón 4 de IL-7R Directo	GAGGTGGCAGAAGAGTGGAG	15
Intrón 4 de IL-7R Inverso	TGCATCACACTGCAAACAAA	16
SATB1 Directo	GCAGTAGAAAGGTGGGTTCTTC	17

TGGTGACGAAAGAGAAATAAATG	18
GAAAGGTGGGTTCTTCTGAAGATA	19
(continuación)	
secuencia	SEC ID Nº:
GCAATGAATGCAGAATTACCTTT	20
GTATACAGTATGCAAACATAACTCACCATT	21
AATGGTGAGTTATGTTTGCATACTGTATAC	22
GTATACAGTATCGTCGAGCAACTCACCATT	23
AATGGTGAGTTGCTCGACGATACTGTATAC	24
TCAAAAATATTGAAGTGTTATCACATACAC	25
GTGTATGTGATAACACTTCAATATTTTTGA	26
	TGGTGACGAAAGAGAAATAAATG GAAAGGTGGGTTCTTCTGAAGATA (continuación) secuencia GCAATGAATGCAGAATTACCTTT GTATACAGTATGCAGAACATAACTCACCATT AATGGTGAGTTATGTTTGCATACTGTATAC GTATACAGTATCGTCGAGCAACTCACCATT AATGGTGAGTTGCTCGACGATACTGTATAC GTGTATGTGATAACACTTCAATATTTTGA

Tab. 4: qPCR humana de cebadores

nombre	secuencia	SEC ID NO
SATB1 Directo	CGATGAACTGAAACGAGCAG	27
SATB1 Inverso	CGGAGGATTTCTGAAAGCAA	28
Foxp3 Directo	ACCTACGCCACGCTCATC	29
Foxp3 Inverso	TCATTGAGTGTCCGCTGCT	30
IL5 Directo	GGTTTGTTGCAGCCAAAGAT	31
IL5 Inverso	TCTTGGCCCTCATTCTCACT	32
IFNgamma Directo	CACTGAAGAAATCTTTCAGGGAAT	33
IFNgamma Inverso	CCGTCTTTCTTCTCCACACTTT	34

- 5 Ejemplo 1: Para identificar circuitos reguladores que participan en la inhibición mediada por FOXP3 de la diferenciación de linfocitos T_{efector}, se inició un gran experimento del transcriptoma que comprendió 171 muestras individuales en 48 condiciones humanas de linfocitos T FOXP3⁻ CD25⁻ convencionales (T_{conv}) en reposo o activados humanos y linfocitos T CD25⁺ FOXP3⁺ reguladores naturales (nT_{reg}) (Fig. 6 y Tabla 1). Como los miARN representan un nivel adicional de regulación génica, los presentes inventores realizaron el perfilado de microRNA (miARN) de 753 miARN humanos en T_{reg}
- 10 frente a T_{conv} que permitió a los inventores calcular correlaciones inversas entre la expresión génica y la expresión de miARN (total de 35 x 10⁶ correlaciones). Se filtraron los genes 1) por su expresión diferencial entre muestras de T_{reg} y T_{conv}, 2) por una correlación inversa significativa entre la expresión génica y aquellos microARN significativamente enriquecidos en T_{reg}, y 3) por su ontología génica asociada a, por ejemplo, regulación transcripcional, metilación de ADN o modificación de histonas. De los 47 genes diferencialmente expresados entre T_{reg} y T_{conv}, la proteína 1 de unión a
- 15 secuencias ricas en AT especial (SATB1) (Fig. 1a) estuvo entre los genes con la correlación inversa más significativa para un miARN particular, concretamente miR-155 (Fig. 1b), un miARN que se enriqueció significativamente en T_{reg} (Fig. 7). En clones de TH2 murinos, se ha mostrado que SATB1 sirve de regulador transcripcional global que se ancla específicamente a la topología de bucle del sitio de citocina TH2, un requisito previo para la inducción de ciertas citocinas TH2 (Cai, S. y col., Nat. Genet 38-1278-1288 (2006); Pipkin, M.E., Monticell, S., Immunology 124:23-32 (2008)). Como
- 20 los miocitos deficientes en SATB1 no se desarrollan más allá del estadio positivo doble (Alvarez, J.D. y col., Genes dev. (14: 521-535 (2000); Cai, S. y col., Nat. Genet. 34:42-51 (2003)), la función de SATB1 en linfocitos T periféricos, particularmente en T_{reg}, es todavía imprecisa.

Se confirmó la expresión reducida de ARNm y de proteínas SATB1 en nT_{reg} para un conjunto mayor de muestras por qRT-PCR (Fig. 1c), transferencia Western (Fig. 1d) y citometría de flujo intracelular usando un mAb para SATB1 directamente conjugado (Fig. 1e). En nT_{reg}, SATB1 puede regularse por señales exógenas tales como receptor de linfocitos T (TCR) y co-estimulación (aquí CD28), sin embargo la expresión nunca superó los niveles observados en T_{conv}

- 5 en reposo (Fig. 1f). TGFβ disminuye significativamente la expresión de SATB1 tanto en nT_{reg} como en T_{conv}, mientras que solo los T_{conv} estimulados, pero no nT_{reg}, expresaron citocinas TH1 y TH2 (Fig. 1f y Fig. 7). Como TGFβ es el principal estímulo para la inducción de linfocitos T_{reg} adaptativos o inducidos (iT_{reg}) (Chen, W. y col., J. Exp. Med. 198:1875-1886 (2003)), los presentes inventores evaluaron la regulación de SATB1 bajo estas condiciones. Se estimularon linfocitos T CD25⁻ CD45RA⁺ humanos sin tratamiento previo mediante TCR y CD28 con o sin TGFβ. Los linfocitos T estimulados en
- 10 presencia de TGFβ presentaron todos los distintivos de iT_{reg}, concretamente expresión significativa de ARNm de FOPX3 y función supresora de proteínas, además de linfocitos T (Fig. 8). Como se ha informado previamente por otros, la estimulación de TCR y CD28 (T_{estim}) también podría inducir la función de FOXP3 transitoria y supresora, sin embargo, esto fue variable y siempre inferior a iT_{reg}. A diferencia, cuando se evalúa la expresión de SATB1, solo se observó expresión significativamente potenciada en T_{estim}, pero no en iT_{reg} (Fig. 2a, b). La remodelación de cromatina mediada por
- SATB1 mediante la modificación de la acetilación de histonas y la ubicación de nucleosomas se ha ligado a transcripción reducida del gen de IL-2RA (Yasui, D. y col., Nature 419:641-645 (2002)). De acuerdo con estos hallazgos previos, los presentes inventores observan la mayor regulación por incremento de CD25 en iT_{reg} en ausencia de inducción de SATB1 (Fig. 2c). A diferencia, las citocinas TH1 y TH2 solo se producen en células con expresión de SATB1 significativamente elevada (Fig. 2d). Tomados conjuntamente, la reducción de la expresión de SATB1 parece ser un novedoso distintivo de
- $20 \qquad tanto \ iT_{reg} \ como \ nT_{reg} \ en \ seres \ humanos.$

La expresión de SATB1 también se redujo significativamente en T_{reg} murinos clasificados por flujo derivados de ratones DEREG (Lahl, K. y col., J. Exp. Med. 204:57-63 (2007)) (Fig. 3a, b y Fig. 9) sugiriendo la regulación conservada de SATB1 en T_{reg}. Estos hallazgos se soportaron adicionalmente por inmunohistoquímica de cuatro colores de tejido tímico que muestra la reducción de la expresión de SATB1 en T_{reg} *in vivo* (Fig. 3c). Incluso más sorprendente, ratones DEREG

- 25 macho que alojan una FOXP3 mutada (DEREG x scurfy), mostraron una expresión de SATB1 significativamente elevada en T_{reg} (Fig. 3c, d). Estos hallazgos hicieron que los presentes inventores reanalizaran un análisis del transcriptoma previo (Williams, L.M. y col., Nat. Immunol 8:277-284 (2007)) en ratones transgénicos para un gen FOXP3 mutado en T_{reg}, que reveló una relación similar entre pérdida de función de FOXP3 y aumento de la expresión de SATB1 en T_{reg} murinos (Fig. 10). En ratones DEREG hembra heterocigóticos para el alelo scurfy mutado, los presentes inventores pudieron demostrar
- 30 un aumento de la expresión de SATB1 en T_{reg} deficientes en FOXP3 en comparación con T_{reg} con FOXP3 intacto que soporta adicionalmente que la expresión de SATB1 es dependiente de FOXP3 en T_{reg} *in vivo* (Fig. 3e, f).

Después de establecer la reducción de la expresión de SATB1 en T_{reg} humanos y murinos *in vivo* e *in vitro*, los presentes inventores intentaron a continuación descubrir los mecanismos moleculares responsables de la reducción de la expresión de SATB1 en T_{reg}. Primero, los presentes inventores evaluaron el potencial de FOXP3 que reprime directamente SATB1.

- Una búsqueda de sitios de unión de FOXP3 conservados dentro del sitio genómico de SATB1 murina y humana reveló un motivo de FOXP3 dentro del segundo intrón (Fig. 4a y Fig. 11). El re-análisis del análisis de ChIP-Chip previamente informado de T_{reg} murinos (Zheng, Y. y col., Nature 445:936-940 (2007)) sugirió unión de FOXP3 significativo en esta región conservada dentro del sitio de SATB1 murina. Usando EMSA (ensayos de desplazamiento por movilidad electroforética, Fig. 4b) y un ChIP específico de FOXP3 (inmunoprecipitación de cromatina) (Fig. 4c), los presentes
- 40 inventores pudieron demostrar la unión de FOXP3 al sitio de SATB1 *in vitro* e *in vivo* en nT_{reg} humanos altamente purificados. Para demostrar las consecuencias funcionales de la unión de FOXP3 al sitio de SATB1, los presentes inventores clonaron una construcción indicadora compuesta de los 180 pb del segundo intrón de SATB1 adyacente al sitio de unión de FOXP3 fusionado con un gen indicador de luciferasa. La expresión de esta construcción en células HEK293T produjo actividad de luciferasa constitutiva y la co-transfección de FOXP3 humana condujo a una disminución
- 45 significativa en la actividad (Fig. 4d). Esto actividad de luciferasa reducida no se observó tras la mutación del sitio de unión de FOXP3.

Para evaluar la consecuencia del agotamiento de FOXP3 sobre la expresión de SATB1 en nT_{reg} humanos se realizaron experimentos de pérdida de función que silencian FOXP3 por ARNip. Esto produjo una pérdida significativa de expresión de FOXP3 y función supresora de nT_{reg} (Fig. 12). Un aumento significativo de la expresión de SATB1 fue evidente en

- 50 linfocitos nT_{reg} humanos agotados en FOXP3 (Fig. 4e), que fue acompañada de una inducción de citocinas TH1 (IFN-γ) y TH2 (IL-4 y IL-5) (Fig. 4f, g). De acuerdo con este hallazgo se observó un aumento de citocinas TH1 y TH2 *in vivo* en T_{reg} de ratones DEREG x scurfy (Fig. 13). La inactivación adicional de SATB1 en T_{reg} humanos con un gen FOXP3 silenciado produjo la disminución de la inducción de citocinas T colaboradoras (Fig. 4h) que indica que la liberación de citocinas T_{efector} en T_{reg} deficientes en FOXP3 depende de SATB1.
- 55 Cuando se realizan experimentos de aumento de la función que expresan en exceso FOXP3 en linfocitos T_{conv}, se observó una expresión de SATB1 reducida que soporta adicionalmente el efecto regulador de FOXP3 sobre la expresión de SATB1 (Fig. 4i) que fue acompañada por una disminución concomitante en la expresión de ARNm de citocinas (Fig. 14). Juntos, estos hallazgos establecen que la reducción de la expresión de SATB1 no es solo un distintivo de T_{req}, sino

una consecuencia de la inhibición directa por FOXP3. Se requiere la supresión de SATB1 mediada por FOXP3 para prevenir la expresión de citocinas T_{efector} en T_{reg} murinos y humanos.

Se evaluó el potencial de miR-155 para controlar la expresión de SATB1. miR-155 se ha asociado al desarrollo y diferenciación de linfocitos B y T normales, pero también a tumorigénesis (Rodriguez, A. y col., Science 316:608-611

- 5 (2007; Thai, T.H. y col., Science 316:604-608; Eis, P.S. y col., Proc. Natl. Acad. Scie. USA 102:3627-3632 (2005)). Más recientemente se sugirió una diana en la dirección 3' de FOXP3 (Zheng, Y. y col., Nature 445:936-940 (2007); Lu, L.F. y col., Immunity 30:80-91 (2009)). miR-155 se expresa altamente en linfocitos T humanos, particularmente en nT_{reg} (Fig. 5a), pero también en iT_{reg} (Fig. 15) (Cobb, B.S. y col., J. Exp. Med. 203:2519-2527 (2006)). La inactivación mediada por ARNip de FOXP3 en linfocitos T_{reg} humanos produjo una marcada disminución en la expresión de miR-155, mientras que
- 10 la expresión en exceso de FOXP3 indujo la expresión de miR-155 que corrobora la regulación de miR-155 por FOXP3 (Fig. 16). La unión de sitios de la misma semilla se predijo computacionalmente usando miRBase Targets (Griffiths-Jones, S. y col., Nucleic Acids Res. 36:D154-158 (2008)), miRanda (Betel, D. y col., Nucleic Acids Res. 36:D149-153 (2008)), PicTar (Krek, A. y col., Nat. Genet. 37:495-500 (2005)) y TargetScan (Lewis, B.P. y col., Cell 115:787-798 (2003)) (Fig. 5b). Los presentes inventores fusionaron la 3' UTR de SATB1 con un gen indicador de luciferasa y
- 15 determinaron la actividad de luciferasa en células 293T transfectadas con miR-155 sintético. La expresión en exceso de miR-155 reprimió significativamente la actividad de luciferasa, mientras que un miARN de control, que carece de un motivo de unión predicho, no tuvo efecto (Fig. 5c). A diferencia, la mutación del motivo de unión de miR-155 produjo una restauración de la actividad de luciferasa (Fig. 5c). Los experimentos de pérdida de función por inhibición mediada por oligonucleótidos antisentido de miR-155 en linfocitos T_{reg} humanos primarios conducen a un aumento significativo en la
- 20 expresión de ARNm de SATB1 (Fig. 5d). En conjunto, la expresión de SATB1 no solo se reduce a un nivel transcripcional por unión directa de FOXP3 al sitio genómico de SATB1, sino que la reducida expresión se estabiliza adicionalmente por el miR-155 regulado por FOXP3.

Para estudiar la regulación epigenética del sitio de SATB1, se seleccionó una región específica para el análisis de metilación basado en la densidad de CpG que se alinea con los 1600 pares de bases del promotor de SATB1 predicho en la dirección 5' del exón 1. Como control, también se analizó el sitio bien descrito de metilación diferencial en el sitio de FOXP3 (Floess, S. y col., PloS Biol. 5:e38 (2007); Baron, U. y col., Eur. J. Immunol. 37:2378-2389 (2007)) por secuenciación de bisulfito (Fig. 17). Aunque hubo una clara diferencia en la metilación del sitio de FOXP3 entre T_{reg} y T_{conv}, el sitio de SATB1 se desmetiló similarmente en ambos tipos de células (Fig. 5e). Este hallazgo soporta que la metilación de motivos CpG dentro de un elemento seleccionado del sitio de SATB1 no contribuye a la expresión impedida

- 30 de SATB1 en linfocitos T_{reg}. Reanalizando un conjunto de datos de la secuenciación de ChIP para la metilación de histonas en subconjuntos de linfocitos T (Wei, G. y col., Immunity 30:155-167 (2009)), la trimetilación de H3 en el residuo de lisina 4 (H3K4me3), que es permisiva para la transcripción génica, fue detectable en iT_{reg} y nT_{reg} y adicionalmente elevada en linfocitos T y T_{efector} sin tratamiento previo. La trimetilación de H3 en el residuo de lisina 27 (H3K27me3), que se ha asociado al silenciamiento de genes, estuvo ausente en todo el subconjunto de linfocitos T (Fig. 18a, b). Tomados conjuntamente, la ausencia de silenciamiento de la metilación de histonas y de ADN es compatible con la accesibilidad
- del sitio de SATB1 para la transcripción de genes en T_{reg}.

En conclusión, se estableció la represión transcripcional mediada por FOXP3 y postranscripcional mediada por miR-155 del organizador de cromatina global SATB1 en iT_{reg} y nT_{reg} en el hombre y ratones (Fig. 19 y 20). Estos datos implican que los T_{reg} componen una red de circuitos reguladores continuamente activados que suprimen genes diana importantes, tales como SATB1, requeridos para la diferenciación de T_{efector}. Un bloqueo activo y continuo de la función de T_{efector} en

lugar de la diferenciación terminal de T_{reg} permite a los linfocitos T un mayor grado de plasticidad. Esto podría ser particularmente interesante en situaciones en las que hay una inducción temporal de linfocitos T_{reg} adaptivos que puede obtener función de T_{efector} una vez FOXP3 se inactiva de nuevo. Datos recientes referentes a la regulación de factores de transcripción tales como IRF4 (Zheng, Y. y col., Nature (2009)) o la regulación epigenética de factores de transcripción asociados al linaje T (Wei, G. y col., Immunity 30:155-167 (2009)) también están de acuerdo con un modelo de redes reguladoras continuamente activas que moldea la función global de los linfocitos T en la periferia como una alternativa a

la diferenciación terminal.

40

Ejemplo 2: Para identificar circuitos reguladores que participan en la inhibición mediada por FOXP3 de la diferenciación de T_{efector}, se realizó análisis del transcriptoma completo de linfocitos T FOXP3 CD25⁻ convencionales (T_{conv}) en reposo o activados humanos y linfocitos T CD25⁺FOXP3⁺ reguladores naturales (nT_{reg}) (Fig. 25 y Tabla 1). De los 47 genes que se diferencian específicamente entre T_{reg} y T_{conv}, la proteína 1 de unión a secuencias ricas en AT especiales (SATB1) (Fig. 21a) estuvo entre los genes que siempre se expresaron a niveles significativamente menores en T_{reg} en comparación con T_{conv}. La re-evaluación de los datos del transcriptoma de informes previos confirmó la observación de los inventores de que SATB1 era una posible diana de la expresión mediada por FOXP3 (Pfoertner, S. y col., Genome Biol 7, R54 (2006);

55 Zheng, Y. y col., Nature 445, 936-940 (2007); Sugimoto, N. y col., Int Immunol 18, 1197-1209 (2006)). SATB1 es un factor de transcripción y el organizador de cromatina esencial para controlar un gran número de genes que participan en el desarrollo y la activación de linfocitos T (Alvarez, J. D. y col., Genes Dev 14, 521-535 (2000)). SATB1 regula la expresión génica reclutando directamente los factores de modificación de cromatina (Yasui, D. y col., Nature 419, 641-

645 (2002)) y anclando regiones de unión a la matriz a la matriz nuclear (Cai, S. y col., Nat Genet 34, 42-51 (2003)). En clones de TH2 murinos, se ha mostrado que SATB1 sirve de regulador transcripcional global que se ancla específicamente a la topología de bucle del sitio de citocinas TH2, un requisito previo para la inducción de ciertas citocinas TH2 (Cai, S. y col., Nat Genet 38, 1278-1288 (2006)). Como los timocitos deficientes en SATB1 no se

- 5 desarrollan más allá del estadio positivo doble (Alvarez, J. D. y col. Genes Dev 14, 521-535 (2000); Cai, S. y col., Nat Genet 34, 42-51 (2003)), la función de SATB1 en linfocitos T periféricos, que incluye T_{reg}, es todavía imprecisa. A continuación, los presentes inventores validaron los datos del transcriptoma iniciales en un mayor conjunto de muestras por qRT-PCR (Fig. 21b), transferencia Western (Fig. 21c) y tinción intranuclear (Fig. 21d) y pudieron demostrar claramente la expresión reducida de ARNm y de proteínas de SATB1 en nT_{reg} humanos. Como el aumento en la
- 10 expresión de SATB1 se asoció previamente a la activación /diferenciación de linfocitos T CD4⁺ (Lund, R. y col., Eur J Immunol 35, 3307-3319 (2005)), los presentes inventores evaluaron la regulación de SATB1 en T_{conv} y T_{reg} durante la activación mediante el receptor de linfocitos T (usando mAb para CD3) en presencia de co-estimulación (mAb para CD28) o la citocina interleucina-2. El análisis de citometría de flujo de la expresión de SATB1 estableció una regulación por incremento dependiente de la estimulación de SATB1 en T_{conv} mientras que T_{reg} en reposo mostraron expresión de
- 15 SATB1 significativamente menor y ausencia de regulación por incremento dependiente de la estimulación (Fig. 21e y Fig. 26).

Como TGF β es un estímulo importante para la inducción de T_{reg} adaptivos o inducidos (iT_{reg}) (Chen, W. y col., J Exp Med 198, 1875-1886 (2003)), los presentes inventores evaluaron la regulación de SATB1 bajo estas condiciones. Se estimularon linfocitos T CD25⁻CD45RA⁺ humanos sin tratamiento previo mediante TCR y CD28 con o sin TGF β . Los

- 20 linfocitos T estimulados en presencia de TGFβ presentaron los distintivos de iT_{reg}, concretamente significativa expresión de ARNm de FOPX3, y proteína, además de función supresora de linfocitos T (datos no mostrados). Como se ha informado previamente, la estimulación de TCR y CD28 (T_{estim}) también pudo inducir la expresión de FOXP3 transitoria y función supresora, sin embargo, esto fue variable y siempre inferior a iT_{reg}. A diferencia, cuando se evalúa la expresión de SATB1, solo se observó expresión significativamente potenciada en T_{estim}, pero no en iT_{reg} o linfocitos T sin tratamiento
- 25 previo después de 5 días de cultivo (Fig. 21f, g). De acuerdo con esta observación, las citocinas TH1 y TH2 solo se producen en células con expresión de SATB1 significativamente elevada (Fig. 21h). Tomados conjuntamente, la expresión de SATB1 reducida parece ser un distintivo novedoso de tanto iT_{reg} como nT_{reg} en seres humanos.

A continuación, se evaluó la expresión de SATB1 en T_{reg} tímicos murinos en ratones que expresan GFP bajo el promotor de FOXP3 (Lahl, K. y col., J Exp Med 204, 57-63 (2007)) usando qPCR, transferencia Western, citometría de flujo y microscopía confocal. *In vivo*, la expresión de ARNm y de proteínas de SATB1 fue siempre inferior a T_{reg} (Fig. 21i-k y Fig. 27), sugiriendo regulación conservada de SATB1 en T_{reg} humanos y murinos. Similar a informes previos, los presentes inventores observaron localización nuclear de SATB1 en timocitos FOXP3⁻ que forman una estructura similar a jaula dentro del núcleo (Cai, S. y col., Nat Genet 34, 42-51 (2003)). En T_{reg} FOXP3⁺ GFP⁺, la localización y distribución de SATB1 fue comparable; sin embargo, la intensidad de fluorescencia fue siempre menor (Fig. 21j y Fig. 27c, d).

- 35 Para esclarecer adicionalmente SATB1 como posible gen diana de FOXP3, los presentes inventores analizaron T_{reg} de ratones DEREG macho que alojan un alelo FOXP3 espontáneamente mutado (DEREG x scurfy). Los T_{reg} clasificados por flujo de estos animales mostraron una expresión de SATB1 significativamente elevada en T_{reg} en comparación con T_{reg} competentes para FOXP3 (Fig. 21i). Estos hallazgos se validaron por la re-evaluación de tres conjuntos de datos del transcriptoma (GSE18387, GSE6681, GSE11775) (Williams, L. M. & Rudensky, A. Y., Nat Immunol 8, 277-284 (2007);
- 40 Anz, D. y col., J Immunol 184, 939-946; Kuczma, M. y col., J Immunol 183, 3731-3741 (2009)) derivados de ratones con un gen FOXP3 mutado en T_{reg} (datos no mostrados). En general, la pérdida de función de FOXP3 se asoció a elevada expresión de SATB1 en estos sistemas de modelo murino. Para tratar adicionalmente la función del control de FOXP3 sobre la expresión de SATB1 en T_{reg} *in vivo*, los presentes inventores evaluaron la expresión de SATB1 en los llamados ' T_{reg} exFOXP3 ' introducidos por Bluestone y colaboradores (Zhou, X. y col., Nat Immunol 10, 1000-1007 (2009)). En este
- 45 modelo murino, pueden identificarse células que han perdido la expresión de FOXP3 durante su periodo de vida y han recuperado función efectora. Cuando se evaluaron estos 'T_{reg} exFOXP3' bajo condiciones en reposo, la expresión de SATB1 fue todavía significativamente menor que en T_{conv} (datos no mostrados).

El control autónomo de células de SATB1 por FOXP3 se soportó adicionalmente por los hallazgos en ratones DEREG hembra heterocigóticos para el alelo scurfy mutado. Estos ratones alojan tanto T_{reg} con función de FOXP3 normal como T_{reg} con FOXP3 mutada. La evaluación al nivel de células individuales usando citometría de flujo y microscopía confocal reveló de nuevo el aumento de expresión de SATB1 en T_{reg} con FOXP3 mutada, pero no en T_{reg} que alojan FOXP3 normal (Fig. 22j, k).

50

La correlación inversa entre la expresión de FOXP3 y de SATB1 en linfocitos T_{reg} murinos y humanos sugirió fuertemente que FOXP3 podría actuar directamente de represor transcripcional del sitio de SATB1. Los presentes inventores realizaron matrices de baldosas FOXP3-ChIP de T_{reg} naturales humanos (Fig. 22a), además de predicción por ordenador bioinformática para identificar 8 lados para la validación de qPCR que se localizaron -5kb en la dirección 5' de TSS, además de en el sitio genómico de SATB1 (Fig. 22b). La unión de FOXP3 dentro de la región promotora o sitio genómico de SATB1 en T_{reg} se demostró por la PCR cuantitativa acoplada a ChIP (ChIP-qPCR) (Fig. 22c) y ensayos de

desplazamiento por movilidad electroforética (datos no mostrados). La afinidad de unión de FOXP3 se evaluó para los seis elementos de unión de FOXP3 más hacia 3' por estudios de interacción de ADN-proteína *in vitro* que revelan K_D entre x-y μM (Fig. 22d). Se descartó unión no específica usando motivos de unión de FOXP3 mutados, que mostraron K_D significativamente mayores para la unión de FOXP3, soportando adicionalmente una unión específica de FOXP3 a numerosos sitios en el sitio de SATB1 genómico.

Para probar las consecuencias funcionales de la unión de FOXP3 al sitio de SATB1, se realizó un ensayo indicador de luciferasa para seis de las regiones de unión de FOXP3. Las regiones de unión de FOXP3 se clonaron entre un elemento promotor minP y un gen indicador de luciferasa. La expresión de estas construcciones produjo actividad de luciferasa y la co-transfección de FOXP3 humana condujo a una disminución significativa en la actividad para cinco de las seis regiones analizadas (Fig. 22e). El uso de los motivos de unión de FOXP3 mutados dentro de estas regiones rescató la disminuyó

10 analizadas (Fig. 22e). El uso de los motivos de unión de FOXP3 mutados dentro de estas regiones rescató la disminuyó de la actividad de luciferasa (Fig. 22e), que indica que la expresión de SATB1 se reprime activamente uniendo FOXP3 a varios sitios de unión funcionales dentro del sitio de SATB1 genómico.

5

Para evaluar la consecuencia del agotamiento de FOXP3 sobre la expresión de SATB1 en nT_{reg} humanos, los presentes inventores realizaron primero experimentos de pérdida de función silenciando FOXP3 por ARNip. Esto produjo una pérdida significativa de la expresión de FOXP3 y función supresora de nT_{reg} (Fig. 28). Un aumento pequeño, pero significativo, de la expresión de SATB1 ya fue evidente en nT_{reg} humanos empobrecidos en FOXP3 no estimulados (Fig. 2f), pero esto se potenció significativamente cuando los T_{reg} se estimularon mediante TCR con co-estimulación o IL-2. Este aumento en la expresión de SATB1 fue acompañado de una inducción de citocinas TH1 (IFN-γ) y TH2 (IL-4 y IL-5) (Fig. 22 g, h). De acuerdo con este hallazgo, se observó un aumento de citocinas TH1 y TH2 *in vivo* en T_{reg} de ratones

- 20 DEREG x scurfy (Fig. 29). La inactivación adicional de SATB1 en T_{reg} humanos con un gen FOXP3 silenciado produjo una inducción significativamente reducida de citocinas T colaboradoras (Fig. 22i), que indica que la liberación de citocinas T_{efector} en T_{reg} deficientes en FOXP3 depende de SATB1. Los experimentos de aumento de la función que expresan en exceso FOXP3 en T_{conv} produjeron una expresión reducida de SATB1 (Fig. 22j), que fue acompañada de una disminución concomitante en la expresión de ARNm de citocinas (Fig. 30). Juntos, estos hallazgos establecen que la
- 25 reducción de la expresión de SATB1 no solo es un distintivo de T_{reg}, sino una consecuencia de la inhibición directa por FOXP3. Se requiere la supresión mediada por FOXP3 de SATB1 para prevenir la expresión de citocinas de T_{efector} en T_{reg} murinos y humanos.

El bloqueo de citocinas de T_{efector} es necesario, pero no suficiente, para que los T_{reg} ejerzan la función supresora. Para determinar si la supresión de SATB1 es necesaria para la función supresora de T_{reg}, los presentes inventores expresaron en exceso SATB1 en T_{reg} CD25^{alto} FOXP3⁺ naturales humanos y evaluaron la función supresora en comparación con T_{reg} transducidos con vector de control. A diferencia de T_{reg} transducidos con control, los linfocitos T_{reg} que expresan SATB1 pierden función supresora (Fig. 23a). Al mismo tiempo, estas células ganaron expresión de citocinas TH1 (IFN-γ) y TH2 (IL-4) (Fig. 23b), sugiriendo una reprogramación de linfocitos T_{reg} en T_{efector} una vez se pierde la regulación de SATB1 en T_{reg}.

- Para estimar los cambios globales en linfocitos T_{reg} que expresan en exceso SATB1, se realizó análisis del transcriptoma completo. Aumentaron significativamente un total de 100 genes en T_{reg} SATB1^{alto}, mientras que 21 disminuyeron (Fig. 23c). El análisis de notación cruzada de los genes diferencialmente expresados reveló que el 29 % de los genes cambiados se asociaron principalmente con la activación de linfocitos T, el 20 % se asociaron a la expresión en T_{conv} (en comparación con T_{reg}), el 16 % se clasificaron como genes de activación de T_{conv}. Los restantes genes (35 %) no mostraron asociación particular con la función o linaje de linfocitos T y se clasificaron como específicos de SATB1- (Fig.
- 23d). Además, los cambios de la evaluación transcripcional para el enriquecimiento de genes asociados a la diferenciación de TH1, TH2 y TH17 revelaron la inducción de muchos genes que participaron en la diferenciación de T_{efector} en T_{reg} SATB1^{alto} (Fig. 23e).
- Podría lograrse otro nivel de regulación de SATB1 por control epigenético del sitio de SATB1, por ejemplo, por metilación de ADN en sitios ricos en CpG. El análisis de densidad de CpG del sitio de SATB1 reveló tres sitios ricos en CpG en la dirección 5' del exón 1 (Fig. 24a) que se analizaron por secuenciación de bisulfito. El sitio de metilación diferencial en el sitio de FOXP3 (Floess, S. y col., PLoS Biol 5, e38 (2007)) se usó como control positivo (Fig. 31). Aunque hubo una clara diferencia en la metilación del sitio de FOXP3 entre T_{reg} y T_{conv}, el sitio de SATB1 se desmetiló similarmente en ambos tipos de células (Fig. 24a). Similarmente, cuando se analiza un conjunto de datos para la secuenciación de ChIP del
- 50 genoma completo para la metilación de histonas en subconjuntos de linfocitos T (Zheng, Y. y col., Nature 445, 936-940 (2007)), la trimetilación de H3 en el residuo de lisina 4 (H3K4me3), permisivo para la transcripción génica, fue detectable en iT_{reg} y nT_{reg} en el sitio de SATB1 y se elevó adicionalmente en T_{efector} (Fig. 32). La trimetilación de H3 en el residuo de lisina 27 (H3K27me3), que está asociado con el silenciamiento de genes, fue baja o estuvo ausente en todos los subconjuntos de linfocitos T (Fig. 32). La falta de silenciamiento de histonas y la metilación de ADN es compatible con la accesibilidad del sitio de SATB1 para la transcripción génica en T_{reg}.

Además de la supresión mediada por FOXP3 directa, los microARN (miARN) podrían representan un nivel postranscripcional adicional de la regulación génica que modula la expresión de SATB1 en T_{reg} humanos. La realización

del perfilado de miARN de 753 miARN humanos en T_{reg} frente a T_{conv} permitió establecer miARN diferencialmente expresados en T_{reg} y calcular correlaciones inversas entre la expresión de SATB1 génica y la expresión de miARN (Fig. 24a). Usando este enfoque, además de la predicción computacional de la unión de miARN de sitios de la misma semilla usando miRBase Targets, miRanda, PicTar y TargetScan (Fig. 24b), se identificaron 5 miARN que se expresaron

- 5 diferencialmente entre T_{reg} y T_{conv} (Fig. 24c) que muestran una correlación inversa significativa entre la expresión de SATB1 y de miARN (Fig. 24d). De estos 5 miARN, miR-155, miR-21 y miR-7 son dianas directas de FOXP3 como se ha informado previamente para miR-155 (Zheng, Y. y col., Nature 445, 936-940 (2007); Lu, L. F. y col., Immunity 30, 80-91 (2009)) y miR-21 y confirmado por matrices de baldosas de FOXP3-ChIP (Fig. 24e), además de en análisis funcionales (Simon Barry, datos no publicados).
- 10 Par la evaluación de la unión funcionalmente relevante de los miARN a la 3' UTR de los ARNm de SATB1, los presentes inventores fusionaron la 3' UTR de SATB1 con un gen indicador de luciferasa y determinaron la actividad de luciferasa en células transfectadas con miARN sintéticos. La expresión de cualquiera de los 5 miARN reprimió significativamente la actividad de luciferasa constitutiva, mientras que un miARN de control, que carece de un motivo de unión en 3' UTR de SATB1, no tuvo efecto (Fig. 24f). La mutación de los motivos de unión respectivos produjo restauración de la actividad de
- 15 luciferasa (Fig. 24f). A modo de ejemplo, los presentes inventores evaluaron a continuación el potencial de un único miARN, miR-155, para controlar la expresión de SATB1. Los experimentos de pérdida de función por inhibición mediada por oligonucleótidos antisentido de miR-155 en T_{reg} humanos primarios produjo solo diferencias menores en la expresión de ARNm de SATB1 (Fig. 33), indicando claramente que la pérdida de un único miARN no puede rescatar la expresión de SATB1. Sin embargo, la pérdida completa de todos los miARN, como se consigue en ratones por una deleción de
- 20 DICER específica de T_{reg} (Zhou (2008)), conduce claramente a regulación por incremento de SATB1 en tanto el nivel de ARNm como de proteína usando 2 modelos de ratón independientes (Fig. 24g y Fig. 34). Hasta la fecha, los datos de los presentes inventores muestran que la expresión de SATB1 se reduce en T_{reg} tanto por unión directa de FOXP3 al sitio genómico de SATB1 como unión de miARN regulados por FOXP3 a la 3' UTR del ARNm de SATB1.

En conclusión, se estableció la represión transcripcional mediada por FOXP3 y postranscripcional mediada por miARN del organizador de cromatina global SATB1 en iT_{reg} y nT_{reg} en seres humanos y ratones. Se requiere la represión de SATB1 para sostener la función supresora de T_{reg} y la inhibición de la función efectora en estas células (Fig. 36). Además, estos datos implican que T_{reg} componen una red de circuitos reguladores continuamente activados que suprimen genes diana importantes tales como SATB1 requerida para la diferenciación de T_{efector}. Un bloqueo activo y continuo de la función de T_{efector} en lugar de la diferenciación de T_{reg} terminales permite a los linfocitos T un mayor grado

30 de plasticidad. Esto podría ser particularmente interesante en situaciones en las que hay una inducción temporal de linfocitos T_{reg} adaptativos que pueden ganar función de T_{efector} una vez FOXP3 se inactiva de nuevo (Zhou (2009)). Datos recientes referentes a la regulación de factores de transcripción tales como IRF4 (Zheng, Y. y col., Nature (2009)) o la regulación epigenética de factores de transcripción asociados al linaje de T (Wei, G. y col., Immunity 30, 155-167 (2009)) también están de acuerdo con un modelo de redes reguladoras continuamente activas que moldean la función global de linfocitos T en la periferia como una alternativa a la diferenciación terminal.

Listado de secuencias – Texto libre

SEC ID Designación

- 1/2 >gi| 33356175| ref| NM_002971.2| homeocaja 1 de SATB de Homo sapiens (SATB1), ARNm y CDS
- 3-34 cebador
- 35-42 sitios de unión de FOXP3 en el sitio de SATB1 en varios mamíferos
- 43 sitio de unión de miR-155 humano

LISTADO DE SECUENCIAS

<110> Rheinische Friedrich-Wilhelms-Universitaet Bonn Becton, Dickinson and Company

40

<120> Identificación de linfocitos T reguladores mediante el regulador del gen global SatB1

<130> 120944ep

<150> EP 10715520.2

<151>06-04-2010

<150> US 61/165.970

5 <151> 02-04-2009

<160>43

<170> PatentIn versión 3.3

10

<210> 1

<211> 3782

<212> ADN

<213> Homo sapiens

15

<220> <221> CDS <222> (246) .. (2537)

20 <400> 1

ES 2 533 185 T3

ttctgccctt cccccgctta gggggggggg ggtaggggaa aggaaaataa tacaattt	ca 60
ggggaagtcg cottcaggtc tgotgotttt ttatttttt tttttaatta aaaaaaaa	aa 120
ggacatagaa aacatcagte ttgaacttet etteaagaac eegggetgea aaggaaat	ct 180
cctttgtttt tgttatttat gtgctgtcaa gttttgaagt ggtgatcttt agacagtg	ac 240
tgagt atg gat cat ttg aac gag gca act cag ggg aaa gaa cat tca g Met Asp His Leu Asn Glu Ala Thr Gln Gly Lys Glu His Ser G 1 5 10 1	aa 290 lu 5
atg tet aac aat gtg agt gat eeg aag ggt eea eea gee aag att gee Met Ser Asn Nal Ser Asp Pro Lys Gly Pro Pro Ala Lys Ile Ala 20 25 30	338
cgc ctg gag cag aac ggg agc ccg cta gga aga gga agg ctt ggg agt Arg Leu Glu Gln Asn Gly Ser Pro Leu Gly Arg Gly Arg Leu Gly Ser 35 40 45	386
aca ggt gca aaa atg cag gga gtg cct tta aaa cac tcg ggc cat ctg Thr Gly Ala Lys Met Gln Gly Val Pro Leu Lys His Ser Gly His Leu 50 55 60	434
atg aaa acc aac ctt agg aaa gga acc atg ctg cca gtt ttc tgt gtg Met Lys Thr Asn Leu Arg Lys Gly Thr Met Leu Pro Val Phe Cys Val 65 70 75	482
gtg gaa cat tat gaa aac gcc att gaa tat gat tgc aag gag gag cat Val Glu His Tyr Glu Asn Ala Ile Glu Tyr Asp Cys Lys Glu Glu His 80 85 90 95	530
gca gaa ttt gtg ctg gtg aga aag gat atg ctt ttc aac cag ctg atc Ala Glu Phe Val Leu Val Arg Lys Asp Met Leu Phe Asn Gln Leu Ile	578

					100					105					110		
ç	gaa Glu	atg Met	gca Ala	ttg Leu 115	ctg Leu	tct Ser	cta Leu	ggt Gly	tat Tyr 120	tca Ser	cat His	agc Ser	tct Ser	gct Ala 125	gcc Ala	cag Gln	626
2	jcc Ala	aaa Lys	ggg Gly 130	cta Leu	atc Ile	cag Gln	gtt Val	gga Gly 135	aag Lys	tgg Trp	aat Asn	cca Pro	gtt Val 140	cca Pro	ctg Leu	tct Ser	674
t	tac Fyr	gtg Val 145	aca Thr	gat Asp	gcc Ala	cct Pro	gat Asp 150	gct Ala	aca Thr	gta Val	gca Ala	gat Asp 155	atg Met	ctt Leu	caa Gln	gat Asp	722
ç N J	gtg Val 160	tat Tyr	cat His	gtg Val	gtc Val	aca Thr 165	ttg Leu	aaa Lys	att Ile	cag Gln	tta Leu 170	cac His	agt Ser	tgc Cys	ccc Pro	aaa Lys 175	770
3	cta Leu	gaa Glu	gac Asp	ttg Leu	cct Pro 180	ccc Pro	gaa Glu	caa Gln	tgg Trp	tcg Ser 185	cac His	acc Thr	aca Thr	gtg Val	agg Arg 190	aat Asn	818
Ż	gct Ala	ctg Leu	aag Lys	gac Asp 195	tta Leu	ctg Leu	aaa Lys	gat Asp	atg Met 200	aat Asn	cag Gln	agt Ser	tca Ser	ttg Leu 205	gcc Ala	aag Lys	866
ç	gag Glu	tgc Cys	ccc Pro 210	ctt Leu	tca Ser	cag Gln	agt Ser	atg Met 215	att Ile	tct Ser	tcc Ser	att Ile	gtg Val 220	aac Asn	agt Ser	act Thr	914
	tac Tyr	tat Tyr 225	gca Ala	aat Asn	gtc Val	tca Ser	gca Ala 230	gca Ala	aaa Lys	tgt Cys	caa Gln	gaa Glu 235	ttt Phe	gga Gly	agg Arg	tgg Trp	962
	tac Tyr 240	aaa Lys	cat His	ttc Phe	aag Lys	aag Lys 245	aca Thr	aaa Lys	gat Asp	atg Met	atg Met 250	gtt Val	gaa Glu	atg Met	gat Asp	agt Ser 255	1010
1	ctt Leu	tct Ser	gag Glu	cta Leu	tcc Ser 260	cag Gln	caa Gln	ggc Gly	gcc Ala	aat Asn 265	cat His	gtc Val	aat Asn	ttt Phe	ggc Gly 270	cag Gln	1058
Ċ	caa Gln	cca Pro	gtt Val	cca Pro 275	999 G1y	aac Asn	aca Thr	gcc Ala	gag Glu 280	cag Gln	cct Pro	cca Pro	tcc Ser	cct Pro 285	gcg Alą	cag Gln	1106
•	ctc Leu	tcc Ser	cat His 290	ggc Gly	agc Ser	cag Gln	ccc Pro	tct Ser 295	gtc Val	cgg Arg	aca Thr	cct Pro	ctt Leu 300	cca Pro	aac Asn	ctg Leu	1154
1	cac His	cct Pro 305	999 Gly	ctc Leu	gta Val	tca Ser	aca Thr 310	cct Pro	atc Ile	agt Ser	cct Pro	caa Gln 315	ttg Leu	gtc Val	aac Asn	cag Gln	1202
	cag Gln 320	ctg Leu	gtg Val	atg Met	gct Ala	cag Gln 325	ctg Leu	ctg Leu	aac Asn	cag Gln	cag Gln 330	tat Tyr	gca Ala	gtg Val	aat Asn	aga Arg 335	1250
	ctt Leu	tta Leu	gcc Ala	cag Gln	cag Gln 340	tcc Ser	tta Leu	aac Asn	caa Gln	caa Gln 345	tac Tyr	ttg Leu	aac Asn	cac His	cct Pro 350	ccc Pro	1298
1	cct Pro	gtc Val	agt Ser	aga Arg 355	tct Ser	atg Met	aat Asn	aag Lys	cct Pro 360	ttg Leu	gag Glu	caa Gln	cag Gln	gtt Val 365	tcg Ser	acc Thr	1346

aac Asn	aca Thr	gag Glu 370	gtg Val	tct Ser	tcc Ser	gaa Glu	atc Ile 375	tac Tyr	cag Gln	tgg Trp	gta Val	cgc Arg 380	gat Asp	gaa Glu	ctg Leu	1394
aaa Lys	cga Arg 385	gca Ala	gga Gly	atc Ile	tcc Ser	cag Gln 390	gcg Ala	gta Val	ttt Phe	gca Ala	cgt Arg 395	gtg Val	gct Ala	ttt Phe	aac Asn	1442
aga Arg 400	act Thr	cag Gln	ggc Gly	ttg Leu	ctt Leu 405	tca Ser	gaa Glu	atc Ile	ctc Leu	cga Arg 410	aag Lys	gaa Glu	gag Glu	gac Asp	ccc Pro 415	1490
aag Lys	act Thr	gca Ala	tcc Ser	cag Gln 420	tct Ser	ttg Leu	ctg Leu	gta Val	aac Asn 425	ctt Leu	cgg Arg	gct Ala	atg Met	cag Gln 430	aat Asn	1538
ttc Phe	ttg Leu	cag Gln	tta Leu 435	ccg Pro	gaa Glu	gct Ala	gaa Glu	aga Arg 440	gac Asp	cga Arg	ata Ile	tac Tyr	cag Gln 445	gac Asp	gaa Glu	1586
agg Arg	gaa Glu	agg Arg 450	agc Ser	ttg Leu	aat Asn	gct Ala	gcc Ala 455	tcg Ser	gcc Ala	atg Met	ggt Gly	cct Pro 460	gcc Ala	ccc Pro	ctc Leu	1634
atc Ile	agc Ser 465	aca Thr	cca Pro	ccc Pro	agc Ser	cgt Arg 470	cct Pro	ccc Pro	cag Gln	gtg Val	aaa Lys 475	aca Thr	gct Ala	act Thr	att Ile	1682
gcc Ala 480	act Thr	gaa Glu	agg Arg	aat Asn	ggg Gly 485	aaa Lys	cca Pro	g ag Glu	aac Asn	aat Asn 490	acc Thr	atg Met	aac Asn	att Ile	aat Asn 495	1730
gct Ala	tcc Ser	att Ile	tat Tyr	gat Asp 500	gag Glu	att Ile	cag Gln	cag Gln	gaa Glu 505	atg Met	aag Lys	cgt Arg	gct Ala	aaa Lys 510	gtg Val	1778
tct Ser	caa Gln	gca Ala	ctg Leu 515	ttt Phe	gca Ala	aag Lys	gtt Val	gca Ala 520	gca Ala	acc Thr	aaa Lys	agc Ser	cag Gln 525	gga Gly	tgg Trp	1826
ttg Leu	tgc Cys	gag Glu 530	ctg Leu	tta Leu	cgc Arg	tgg Trp	aaa Lys 535	gaa Glu	gat Asp	cct Pro	tct Ser	cca Pro 540	gaa Glu	aac Asn	aga Arg	1874
acc Thr	ctg Leu 545	tgg Trp	gag Glu	aac Asn	ctc Leu	tcc Ser 550	atg Met	atc Ile	cga Arg	agg Arg	ttc Phe 555	ctc Leu	agt Ser	ctt Leu	cct Pro	1922
cag Gln 560	cca Pro	gaa Glu	cgt Arg	gat Asp	gcc Ala 565	att Ile	tat Tyr	gaa Glu	cag Gln	gag Glu 570	agc Ser	aac Asn	gcg Ala	gtg Val	cat His 575	1970
cac His	cat His	ggc Gly	gac Asp	agg Arg 580	ccg Pro	ccc Pro	cac His	att Ile	atc Ile 585	cat His	gtt Val	cca Pro	gca Ala	gag Glu 590	cag Gln	2018
att Ile	cag Gln	caa Gln	cag Gln 595	cag Gln	cag Gln	caa Gln	cag Gln	caa Gln 600	cag Gln	cag Gln	cag Gln	cag Gln	cag Gln 605	cag Gln	cag Gln	2066
gca Ala	ccg Pro	ccg Pro 610	cct Pro	cca Pro	cag Gln	cca Pro	cag Gln 615	cag Gln	cag Gln	cca Pro	cag Gln	aca Thr 620	ggc Gly	cct Pro	cgg Arg	2114

	ctc Leu	ccc Pro 625	cca Pro	cgg Arg	caa Gln	ccc Pro	acg Thr 630	gtg Val	gcc Ala	tct Ser	cca Pro	gca Ala 635	ga g Glu	tca Ser	gat Asp	gag Glu	210	62
	gaa Glu 640	aac Asn	cga Arg	cag Gln	aag Lys	acc Thr 645	cgg Arg	cca Pro	cga Arg	aca Thr	aaa Lys 650	att Ile	tca Ser	gtg Val	gaa Glu	gcc Ala 655	22:	10
	ttg Leu	gga Gly	atc Ile	ctc Leu	cag Gln 660	agt Ser	ttc Phe	ata Ile	caa Gln	gac Asp 665	gtg Val	ggc Gly	ctg Leu	tac Tyr	cct Pro 670	gac Asp	22	58
	gaa Glu	gag Glu	gcc Ala	atc Ile 675	cag Gln	act Thr	ctg Leu	tct Ser	gcc Ala 680	cag Gln	ctc Leu	gac Asp	ctt Leu	ccc Pro 685	aag Lys	tac Tyr	23	06
	acc Thr	atc Ile	atc Ile 690	aag Lys	ttc Phe	ttt Phe	cag Gln	aac Asn 695	cag Gln	cgg Arg	tac Tyr	tat Tyr	ctc Leu 700	aag Lys	cac His	CaC Hìs	23	54
	ggc Gly	aaa Lys 705	ctg Leu	aag Lys	gac Asp	aat Asn	tcc Ser 710	ggt Gly	tta Leu	gag Glu	gtc Val	gat Asp 715	gtg Val	gca Ala	gaa Glu	tat Tyr	24	02
	aaa Lys 720	gaa Glu	gag Glu	gag Glu	ctg Leu	ctg Leu 725	aag Lys	gat Asp	ttg Leu	gaa Glu	gag Glu 730	agt Ser	gtc Val	caa Gln	gat Asp	aaa Lys 735	24	50
	aat Asn	act Thr	aac Asn	acc Thr	ctt Leu 740	ttt Phe	tca Ser	gtg Val	aaa Lys	cta Leu 745	gaa Glu	gaa Glu	gag Glu	ctg Leu	tca Ser 750	gtg Val	24:	98
	gaa Glu	gga Gly	aac Asn	aca Thr 755	gac Asp	att Ile	aat Asn	act Thr	gat Asp 760	ttg Leu	aaa Lys	gac Asp	tga	gata	aaaq	gta -	25	47
	tttç	gt tt¢	egt t	caad	cagto	rc ca	actgo	gtati	: tao	ctaad	caaa	atga	aaaa	gtc d	cacct	tgtct	26	07
	tete	stcaç	jaa a	aacct	ttgt	t gl	tcat	tgtt	t tg	jccaa	atga	atci	tcaa	iaa a	actto	gcacaa	26	67
	acaç	jaaaa	agt 1	tggaa	aaago	ja ta	ata	cagao	tgo	acta	aat	gtti	teet	et ç	gttt i	acaaa	27:	27
	ctgo	sttgg	jca 🤉	gecea	caggt	g aa	agcat	tcaaq	g gat	tgti	tgg	tati	aaaa	att 1	gtgl	tcacg	27	87
	ggat	gcad	cca a	aagto	gtgta	.c co	cogta	aagca	a tga	aaco	cagt	gtti	ttt	ytt 1	ttt	tttag	28	47
	ttct	tatt	ccc q	ggago	cctca	la ad	caage	catta	a tad	ctto	ctgt	gati	atga	att 1	ccto	tccta	29	07
	taat	tatt	tc 1	tgtaq	gcact	c ca	acact	tgato	: tti	ggaa	act	tgcd	cctt	at t	taaa	aaaaa	29	67
	aaaa	igaaa	aa a	aaaga	agttt	g ti	acto	stati	: gta	atgti	taca	aaaq	yaact	at a	agact	gtgga	30;	27
	atgo	agtt	ta a	aagat	tgaca	it al	geea	acaa	a atç	gcati	tgta	ttai	atg	gca d	tgaa	gtaat	30	87
	tcaa	aattt	:gt 1	ttta	attt	g ga	aata	aaaq	g tta	acto	gtac	ttti	tttt	ca t	tete	attgt	31	47
	taca	atgat	tt 1	tttaa	aaaaa	la go	yaaa	agaaa	a atç	rtgaa	aaca	caat	tta	gte d	tcat	tattt	32	07
	atti	gtaç	gat d	cctg	cagea	t ca	atgti	tgtaa	a tta	atti	ttt	ggaa	agtti	ee ç	gttaa	atgta	32	67
	atat	tgct	te t	tetto	gttac	c at	acto	gatto	ttt	teta	attt	ataa	aatgt	at t	tt g a	atgggc	333	27
	agta	aaaa	caa a	agtgi	tctta	la aa	agtti	taaa	a taq	jagaa	aat	gtga	sttta	aca d	cagtt	gccta	33	B 7
	taaa	aagt	.gc 1	tctat	tgtta	it co	caage	caati	cat	acta	ataa	gcti	cact	ct t	atto	gttgta	34	47
tgo	caat	ttt	act	tatc	atge	aaa	ataa	gctt	agç	gtaa	ataa	aad	taa	taga	tca	lecttaga		3507
aaa	atta	tgca	at at	taat	gtga	aaa	ataa	ttga	tgt	ttg	caat	gtç	tcti	tcct	ttç	gtttaca		3567
ato	caat	ttta	aa	gcta	cato	tgl	cata	aaat	tta	tgt	ataa	ago	,tgt	attt	ctt	tttatg		3627
agt	tta	tggo	ta:	tgaa	aaca	gci	tatt	ttgt	tad	cage	tggc	tgt	ttt	tata	agt	gtatcac		3687
aat	ttt	cttt	: at	gcag	aaat	gti	tctg	acta	gga	igtg	gtta	ttç	gacto	gtaa	cta	cacaatt		3747
aaa	att	gttt	: gt	atcg	taaa	aaa	aaaa	aaaa	aaa	aa								3782

<210> 2 <211> 763 <212> PRT <213> Homo sapiens

<400>2

Met 1	Asp	His	Leu	Asn 5	Glu	Ala	Thr	Gln	Gly 10	Lys	Glu	His	Ser	Glu 15	Met
Ser	Asn	Asn	Val 20	Ser	Asp	Pro	Lys	G1 y 25	Pro	Pro	Ala	Lys	Ile 30	Ala	Arg
Leu	Glu	Gln 35	Asn	Gly	Ser	Pro	Leu 40	Gly	Arg	Gly	Arg	Leu 45	Gly	Ser	Thr
Gly	Ala 50	Lys	Met	Gln	Gly	Val 55	Pro	Leu	Lys	His	Ser 60	Gly	His	Leu	Met
Lys 65	Thr	Asn	Leu	Arg	Lys 70	Gly	Thr	Met	Leu	Pro 75	Val	Phe	Cys	Val	Val 80
Glu	His	Tyr	Glu	Asn 85	Ala	Ile	Glu	Tyr	Asp 90	Cys	Lys	Glu	Glu	His 95	Ala
Glu	Phe	Val	Leu 100	Val	Arg	Lys	Asp	Met 105	Leu	Phe	Asn	Gln	Leu 110	Ile	Glu
Met	Ala	Leu 115	Leu	Ser	Leu	Gly	Tyr 120	Ser	His	Ser	Ser	Ala 125	Ala	Gln	Ala
Lys	Gly 130	Leu	Ile	Gln	Val	Gly 135	Lys	Trp	Asn	Pro	Val 140	Pro	Leu	Ser	Tyr
Val 145	Thr	Asp	Ala	Pro	Asp 150	Ala	Thr	Val	Ala	Asp 155	Met	Leu	Gln	Asp	Val 160
Tyr	His	Val	Val	Thr 165	Leu	Lys	Ile	Gln	Leu 170	His	Ser	Cys	Pro	Lys 175	Leu

Glu	Asp	Leu	Pro 180	Pro	Glu	Gln	Trp	Ser 185	His	Thr	Thr	Val	Arg 190	Asn	Ala
Leu	Lys	Asp 195	Leu	Leu	Lys	Asp	Met 200	Asn	Gln	Ser	Ser	Leu 205	Ala	Lys	Glu
Cys	Pro 210	Leu	Ser	Gln	Ser	Met 215	Ile	Ser	Ser	Ile	Val 220	Asn	Ser	Thr	Tyr
Tyr 225	Ala	Asn	Val	Ser	Ala 230	Ala	Lys	Cys	Gln	Glu 235	Phe	Gly	Arg	Trp	Tyr 240
Lys	His	Phe	Lyş	Lys 245	Thr	Lys	Asp	Met	Met 250	Val	Glu	Met	Asp	Ser 255	Leu
Ser	Glu	Leu	Ser 260	Gln	Gln	Gly	Ala	Asn 265	His	Val	Asn	Phe	Gly 270	Gln	Gln
Pro	Val	Pro 275	Gly	Asn	T hr	Ala	Glu 280	Gln	Pro	Pro	Ser	Pro 285	Ala	Gln	Leu
Ser	His 290	Gly	Ser	Gln	Pro	Ser 295	Val	Arg	Thr	Pro	Leu 300	Pro	Asn	Leu	His
Pro 305	Gly	Leu	Val	Ser	Thr 310	Pro	Ile	Ser	Pro	Gl n 315	Leu	Val	Asn	Gln	Gln 320
Leu	Val	Met	Ala	Gln 325	Leu	Leu	Asn	Gln	Gln 330	Tyr	Ala	Val	Asn	Arg 335	Leu
Leu	Ala	Gln	Gln 340	Ser	Leu	Asn	Gln	Gln 345	Tyr	Leu	Asn	His	Pro 350	Pro	Pro
Val	Ser	Arg 355	Ser	Met	Asn	Lys	Pro 360	Leu	Glu	Gln	Gln	Val 365	Ser	Thr	Asn
Thr	Glu 370	Val	Ser	Ser	Glu	I le 375	Tyr	Gln	Trp	Val	Arg 380	Asp	Glu	Leu	Lys
Arg 385	Ala	Gly	Ile	Ser	G1n 390	Ala	Val	Phe	Ala	A rg 395	Val	Ala	Phe	Asn	Arg 400
Thr	Gln	Gly	Leu	Leu 405	Ser	Glu	Ile	Leu	Arg 410	Lys	Glu	Glu	Asp	Pro 415	Lys
Thr	Ala	Ser	Gln 420	Ser	Leu	Leu	Val	Asn 425	Leu	Arg	Ala	Met	Gln 430	Asn	Phe
Leu	Gln	Leu	Pro	Glu	Ala	Glu	Arg	Asp	Arg	Ile	Tyr	Gln	Asp	Glu	Arg

435		440	445	
Glu Arg Ser Let 450	ı Asn Ala Ala 455	Ser Ala Met G	Gly Pro Ala Pro 460	Leu Ile
Ser Thr Pro Pro 465	o Ser Arg Pro 470	Pro Gln Val I 4	Lys Thr Ala Thr 175	Ile Ala 480
Thr Glu Arg As	n Gly Lys Pro 485	Glu Asn Asn 1 490	Thr Met Asn Ile	Asn Ala 495
Ser Ile Tyr Asj 509	o Glu Ile Gln	Gln Glu Met I 505	Lys Arg Ala Lys 510	Val Ser
Gln Ala Leu Pho 515	e Ala Ly s Val	Ala Ala Thr I 520	Lys Ser Gln Gly 525	Trp Leu
Cys Glu Leu Leo 530	1 Arg Trp Lys 535	Glu Asp Pro S	Ser Pro Glu Asn 540	Arg Thr
Leu Trp Glu As: 545	n Leu Ser Met 550	Ile Arg Arg E	Phe Leu Ser Leu 555	Pro Gln 560
Pro Glu Arg As	p Ala Ile Tyr 565	Glu Gln Glu S 570	Ser Asn Ala Val	. His His 575
His Gly Asp Are 58	g Pro Pro His)	Ile Ile His V 585	Val Pro Ala Glu 590	Gln Ile
Gln Gln Gln Gln 595	n Gln Gln Gln	Gln Gln Gln 6 600	Sln Gln Gln Glr 605	ı Gln Ala
Pro Pro Pro Pro 610	o Gln Pro Gln 615	Gln Gln Pro (Gln Thr Gly Pro 620	Arg Leu
Pro Pro Arg Gl: 625	n Pro Thr Val 630	Ala Ser Pro A	Ala Glu Ser As <u>r</u> 635	Glu Glu 640
Asn Arg Gln Ly	s Thr Arg Pro 645	Arg Thr Lys 1 650	Ile Ser Val Glu	Ala Leu 655
Gly Ile Leu Gl 66	n Ser Phe Ile)	Gln Asp Val (665	Gly Leu Tyr Pro 670	Asp Glu
Glu Ala Ile GL 675	n Thr Leu Ser	Ala Gln Leu A 680	Asp Leu Pro Lys 685	; Tyr Thr
Ile Ile Lys Ph 690	e Phe Gln Asn 695	Gln Arg Tyr 1	Tyr Leu Lys His 700	His Gly

	Lys 705	Leu	Lys	Asp	Asn	Ser 710	Gly	Leu	Glu	Val	Asp 715	Val	Ala	Glu	Tyr	Lys 720
	Glu	Glu	Glu	Leu	Leu 725	Lys	Asp	Leu	Glu	Glu 730	Ser	Val	Gln	Asp	Lys 735	Asn
	Thr	Asn	Thr	Leu 740	Phe	Ser	Val	Lys	Leu 745	Glu	Glu	Glu	Leu	Ser 750	Val	Glu
	Gly	Asn	Thr 755	Asp	Ile	Asn	Thr	Asi p 760	Leu	Lys	Asp					
<210> 3																
<211> 20																
<212> ADN																
<213> Artifi	cial															
<220>																
<223> ceba	dor															
<400> 3																
ctaaggccaa	a ccgt	gaaaa	ag	2	0											
<210> 4																
<211> 20																
<212> ADN																
<213> Artifi	cial															
<220>																
<223> ceba	dor															
<400> 4																
accagaggca	a taca	ggga	ca	2	0											
<210> 5																
<211> 20																
<212> ADN																

<213> Artificial

	<220>	
	<223> cebador	
	<400> 5	
5	accacacttc atgcatcagc	20
	<210> 6	
	<211> 18	
	<212> ADN	
10	<213> Artificial	
	<220>	
	<223> cebador	
15	<400> 6	
	ccagtggcag cagaaggt	18
	<210> 7	
	<211> 18	
20	<212> ADN	
	<213> Artificial	
	<220>	
	<223> cebador	
25		
	<400> 7	
	aggagtgccc cctttcac	18
	<210> 8	
30	<211> 20	
	<212> ADN	
	<213> Artificial	
	<220>	
35	<223> cebador	

	<400> 8	
	tgctgctgag acatttgcat	20
	<210> 9	
5	<211> 19	
	<212> ADN	
	<213> Artificial	
	<220>	
10	<223> cebador	
	-100-0	
	<400>9	10
	саууааусуу ааааууауг	19
15	<210> 10	
	<211> 23	
	<212> ADN	
	<213> Artificial	
20	<220>	
	<223> cebador	
	<400> 10	
	aaaattcaaa tagtgctggc aga	23
25		
	<210> 11	
	<211> 25	
	<212> ADN	
00	<213> Artificial	
30	<220>	
	~22U2	
	<400> 11	

35 gctaccaaac tggatataat cagga 25

<210> 12

<211> 24

<212> ADN

<213> Artificial

5

<220>

<223> cebador

<400> 12

10 ccaggtagct atggtactcc agaa 24

<210> 13

<211> 20

<212> ADN

15 <213> Artificial

<220>

<223> cebador

20 <400> 13

cagggaatat ccaggaggaa 20

<210> 14

<211> 22

25 <212> ADN

<213> Artificial

<220>

<223> cebador

30

<400> 14

tgtgtgagcc agtgtgtatg aa 22

<210> 15

35 <211>20

<213> Artificial

<220>

5 <223> cebador

<400> 15	
gaggtggcag aagagtggag	20

10 <210> 16

<211> 20 <212> ADN

<213> Artificial

15 <220>

<223> cebador

<400> 16

tgcatcacac tgcaaacaaa	20
-----------------------	----

20

<210> 17

<211> 22

<212> ADN

<213> Artificial

25

<220>

<223> cebador

<400> 17

30 gcagtagaaa ggtgggttct tc 22

<210> 18

<211> 23

<212> ADN

35 <213> Artificial

	<220>	
	<223> cebador	
	<400> 18	
5	tggtgacgaa agagaaataa atg	23
	<210> 19	
	<211> 24	
	<212> ADN	
10	<213> Artificial	
	<220>	
	<223> cebador	
15	<400> 10	
15		24
	ସିସ୍ପର୍ବରିଥିନିଥିଲି । ମେମ୍ବର୍ଯ୍ୟର ସିସ୍ଥାସ	24
	<210> 20	
	<211> 23	
20	<212> ADN	
	<213> Artificial	
	<220>	
	<223> cebador	
25		
	<400> 20	
	gcaatgaatg cagaattacc ttt	23
	<210> 21	
30	<211> 30	
	<212> ADN	
	<213> Artificial	
	<220>	
35	<223> cebador	

	<400> 21	
	gtatacagta tgcaaacata actcaccatt	30
	<210> 22	
5	<211> 30	
	<212> ADN	
	<213> Artificial	
	<220>	
10	<223> cebador	
	<400>22	00
	aatggtgagt tatgtttgca tactgtatac	30
15	<210> 23	
	<211> 30	
	<212> ADN	
	<213> Artificial	
20	<220>	
	<223> cebador	
	<400> 23	
	gtatacagta tcgtcgagca actcaccatt	30
25		
	<210> 24	
	<211> 30	
	<212> ADN	
	<213> Artificial	
30		
	<220>	
	<223> Cedador	
	<400> 24	
35	aatggtgagt tgctcgacga tactgtatac	30

	<210> 25
	<211> 30
	<212> ADN
	<213> Artificial
5	
	<220>
	<223> cebador
	<400> 25
10	tcaaaaatat tgaagtgtta tcacatacac 30
	<210> 26
	<211> 30
	<212> ADN
15	<213> Artificial
	<220>
	<223> cebador
20	<400> 26
	gtgtatgtga taacacttca atatttttga 30
	<210> 27
05	<211>20
25	
	<213> Artificial
	<220>
30	
00	<400> 27
	costosacto asacosocar 20
	<210> 28

<213> Artificial

<220>

5 <223> cebador

<400> 28	
cggaggattt ctgaaagcaa	20

10 <210>29

<211> 18

<212> ADN

<213> Artificial

15 <220>

<223> cebador

<400> 29

acctacgcca cgctcatc	18

20

<210> 30

<211> 19

<212> ADN

<213> Artificial

25

<220>

<223> cebador

<400> 30

30tcattgagtg tccgctgct19

<210> 31

<211> 20

<212> ADN

35 <213> Artificial
	<220>
	<223> cebador
	<400> 31
5	ggtttgttgc agccaaagat 20
	<210> 32
	<211> 20
	<212> ADN
10	<213> Artificial
	<220>
	<223> cebador
15	<400> 32
	tettggeeet catteteact 20
	<210> 33
	<211> 24
20	<212> ADN
	<213> Artificial
	<220>
	<223> cebador
25	
	<400> 33
	cactgaagaa atctttcagg gaat 24
	<210> 34
30	<211> 22
	<212> ADN
	<213> Artificial
	<220
	SZZU2

35 <223> cebador

	<400> 34
	ccgtctttct tctccacact tt 22
	<210> 35
5	<211> 55
	<212> ADN
	<213> Homo sapiens
	<400> 35
10	ataaatggtg agttatgttt gcatactgta tactactcat agcaaattag agaag 55
	<210> 36
	<211> 55
	<212> ADN
15	<213> Pan troglodytes
20	<210> 37
	<211> 50
	<212> ADN
	<213> Mus musculus
25	<400> 37
	acaactgcag tgggttctgt ttgcgtagca gttaaagcaa atcagaccag 50
	<210> 38
	<211> 57
30	<212> ADN
	<213> Rattus norvegicus
	<400> 38
	acaagtgcag agggttctgt ttgcgttctg tgtagcagtt agagcaaatc agaccag 57

	<210> 39	
	<211> 57	
	<212> ADN	
	<213> Canis familiaris	
5		
	<400> 39	
	acgcctatag tgagttctgt ttgcaccctg aataccactc acagcagatc agataag	57
	<210> 40	
10	<211> 57	
	<212> ADN	
	<213> Bos taurus	
	<400> 40	
15	ccgagctgag tgaattacat ttgcacacca ggtaccactc acagcagatc agaccag	57
	<210> 41	
	<211> 60	
	<212> ADN	
20	<213> Gallus gallus	
	<400> 41	
	acatetgeag tgtgtattta ggttetegtg etgeetgeta eteacaacaa ateaggeagg	60
25	<210> 42	
	<211>12	
	<212> ADIN	
30	<220>	
00	<223> consenso de EOXP3	
	<400> 42	
	ttatgtttgc at 12	

<210> 43

<211> 20

<212> ADN

<213> Homo sapiens

5

<400>43

tgagttatgt ttgcatactg 20

REIVINDICACIONES

1. Un procedimiento de detección de linfocitos T reguladores inestables en una población de linfocitos T reguladores que tiene el potencial de conversión en funcionalidad de linfocitos T efectores, procedimiento que comprende detectar células con niveles elevados de expresión de proteínas SATB1 en la población de linfocitos T.

5 2. El procedimiento de la reivindicación 1, en el que las células con niveles elevados de expresión de proteínas SATB1 en la población de linfocitos T son detectadas mediante un procedimiento que comprende

(a) poner en contacto la población de células con uno o más ligandos que se unen específicamente a SATB1, y

(b) identificar los linfocitos T reguladores en la población de células debido a una reducción significativa de la unión con los ligandos de unión a SATB1 en comparación con la unión de dichos ligandos con las otras células en la población de células.

10

3. El procedimiento de la reivindicación 1 ó 2, que es adecuado para el control de calidad de poblaciones de linfocitos T reguladores.

4. El procedimiento de la reivindicación 2, en el que los ligandos son anticuerpos o fragmentos de los mismos, preferentemente los ligandos son anticuerpos monoclonales o fragmentos de los mismos.

15 5. El procedimiento de la reivindicación 2 ó 4, en el que los ligandos/anticuerpos llevan restos funcionales que incluyen, pero no se limitan a, marcas, colorantes y toxinas.

6. El procedimiento de la reivindicación 2, 4 ó 5, en el que la población de células está seleccionada de cultivo celular, sangre completa y fracciones de sangre completa y/o la población de células comprende células de mamífero que incluyen células humanas.

20 7. El procedimiento de la reivindicación 6, que comprende además poner en contacto la población de células humanas con uno o más ligandos que se unen específicamente a CD4, CD25 y/o CD127 sobre los linfocitos T.

8. El procedimiento de la reivindicación 6 ó 7, que comprende además ensayar la expresión de FOXP3.

9. Uso del ligando, el anticuerpo o fragmento de anticuerpo de la reivindicación 2, 4 ó 5 para identificar linfocitos T reguladores inestables en una población de células.

25

ES 2 533 185 T3

Fig.1a

Fig.1b

Fig.1c

Fig.1d

Fig.1e

Fig.2b

 $\begin{array}{c} 800\\ 600\\ 9\\ 9\\ 200\\ 0\\ \hline \\ Tno est Testim i Treg \end{array}$

Fig.2d

Fig.3b

Fig.3e

Fig.3f

Fig.4a

ES 2 533 185 T3

Extracto nuclear de Treg oligo de SATB1 oligo de FKH oligo de mSATB1

Fig.4c

.

.

Fig.5b

ES 2 533 185 T3

Fig.6

Fig.7

Fig.8a

Fig.8b

Fig.9b

homo_sapiens pan_troglodytes mus_musculus rattus norwegicus Canis_familiares bos taurus gallus_gallus consensus

AT--AAATGGTGAG---TTATGTTTGCATACTGTATACTACTCATAGCAAATTAGAGAAG AT--AAATAGTGAG---TTATGTTTGCATACTGTATACTACTGCAGAAAATTAGAGAA ACAACTGCAGTGGG---TTCTGTTTGCGTA-----GCAGTTAAAGCAAATCAGACCAG ACAAGTGCAGAGGG---TTCTGTTTGCGTTCTGTGTAGCAGTTAGAGCAAATCAGACCAG ACGCCTATAGTGAG---TTCTGTTTGCACCCTGAATACCACTCACAGCAGATCAGATAAG CCGAGCTGAGTGAA---TTACATTTGCACACCAGGTACCACTCACAGCAGATCAGACCAG TTATGTTTGCAT

motivo de unión de FOXP3

TACAAACG

Fig.12

Fig.13a

Fig.13d

Fig.14b

Fig.17b

Fig.18

Fig.21a

Fig.21b

Fig.21c

Fig.21d

Fig.21e

Fig.21f

Fig.21h

Fig.21j

Fig.21k

Fig.22b

Fig.22c

K _o [µg/ml]	wt	mutados
BS1	1,52	2,36
BS2	0,28	1,17
BS3	0,89	1,35
BS4	0,32	0,46
BS5	1,56	1,45
BS6	0,53	1,01

Fig.22d

ES 2 533 185 T3

Fig.22f

Fig.22g

Fig.22h

Fig.22j

Fig.23b

ES 2 533 185 T3

ES 2 533 185 T3

Fig.23e

ES 2 533 185 T3

ES 2 533 185 T3

Fig.25

Fig.28a

Fig.28b

BS6

Fig.30a

Fig.31

ES 2 533 185 T3

Fig.32

ES 2 533 185 T3

Fig.35

Fig.36