

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 534 606

51 Int. Cl.:

C07D 215/56 (2006.01) A61K 31/47 (2006.01) A61P 1/00 (2006.01) A61P 3/00 (2006.01) A61P 5/00 (2006.01) A61P 11/00 (2006.01) A61P 25/00 (2006.01) A61P 31/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- Fecha de presentación y número de la solicitud europea: 24.06.2005 E 05791060 (6)
 Fecha y número de publicación de la concesión europea: 07.01.2015 EP 1773816
- (54) Título: Moduladores de transportadores del casete de unión a ATP
- (30) Prioridad:

24.06.2004 US 582676 P 22.11.2004 US 630127 P 13.12.2004 US 635674 P 03.03.2005 US 658219 P 11.03.2005 US 661311 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 24.04.2015

(73) Titular/es:

VERTEX PHARMACEUTICALS INCORPORATED (100.0%)
50 Northern Avenue
Boston, MA 02210, US

(72) Inventor/es:

HADIDA RUAH, SARAH S.; HAZLEWOOD, ANNA R.; GROOTENHUIS, PETER D. J.; VAN GOOR, FREDRICK F.; SINGH, ASHVANI K.; ZHOU, JINGLAN Y MCCARTNEY, JASON

(74) Agente/Representante:

IZQUIERDO BLANCO, María Alicia

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

Moduladores de transportadores del casete de unión a ATP

Descripción

5

10

15

20

25

CAMPO TÉCNICO DE LA INVENCIÓN

La presente invención se refiere a moduladores de transportadores del casete de unión a ATP ("ABC") o fragmentos de los mismos, que incluyen el regulador de la conductancia transmembrana de la fibrosis quística ("CFTR"), y a composiciones de los mismos. En el presente documento también se describen métodos para tratar enfermedades mediadas por el transportador de ABC usando tales moduladores.

ANTECEDENTES DE LA INVENCIÓN

Los transportadores de ABC son una familia de proteínas transportadoras de membrana que regulan el transporte de una amplia variedad de agentes farmacológicos, fármacos posiblemente tóxicos y xenobióticos, además de aniones. Los transportadores de ABC son proteínas de la membrana homólogas que se unen a y usan adenosina trifosfato (ATP) celular para sus actividades específicas. Algunos de estos transportadores se descubrieron como proteínas de resistencia a múltiples fármacos (como la glucoproteína MDR1-P, o la proteína de resistencia a múltiples fármacos, MRP1), que defienden las células cancerosas malignas de agentes quimioterapéuticos. Hasta la fecha, se han identificado 48 transportadores de ABC y agrupado en 7 familias basándose en su identidad de secuencias y función.

Los transportadores de ABC regulan una variedad de funciones fisiológicas importantes dentro del cuerpo y proporcionan defensa contra compuestos medioambientales perjudiciales. Debido a esto, representan posibles dianas para fármacos importantes para el tratamiento de enfermedades asociadas a defectos en el transportador, prevención del transporte de fármacos fuera de la célula diana e intervención en otras enfermedades en las que puede ser beneficiosa la modulación de la actividad de transportadores de ABC.

Un miembro de la familia de transportadores de ABC comúnmente asociado a enfermedad es el canal de aniones mediado por AMPc/ATP, CFTR. CFTR se expresa en una variedad de tipos de células, que incluyen células epiteliales absorbentes y secretoras, en las que regula el flujo de aniones a través de la membrana, además de la actividad de otros canales de iones y proteínas. En células epiteliales, el funcionamiento normal de CFTR es crítico para el mantenimiento del transporte de electrolitos a través del cuerpo, que incluye tejido respiratorio y digestivo. El CFTR está compuesto por aproximadamente 1480 aminoácidos que codifican una proteína constituida de una repetición en tándem de dominios transmembrana, conteniendo cada uno seis hélices transmembrana y un dominio de unión de nucleótidos. Los dos dominios transmembrana están ligados por un dominio regulador (R) polar grande con múltiples sitios de fosforilación que regulan la actividad de canales y el tráfico celular.

Se ha identificado el gen que codifica CFTR y secuenciado (véanse Gregory, R. J. y col. (1990) Nature 347:382-386;
Rich, D. P. y col. (1990) Nature 347:358-362), (Riordan, J. R. y col. (1989) Science 245:1066-1073). Un defecto en este gen produce mutaciones en CFTR produciendo fibrosis quística ("FQ"), la enfermedad genética mortal más común en los seres humanos. La fibrosis quística afecta aproximadamente a uno de cada 2.500 lactantes en los Estados Unidos. Dentro de la población general de los Estados Unidos, hasta 10 millones de personas llevan una única copia del gen defectuoso sin efectos de enfermedad evidentes. A diferencia, individuos con dos copias del gen asociado a la FQ, padecen los efectos debilitantes y mortales de la FQ, que incluyen enfermedad pulmonar crónica.

En pacientes con fibrosis quística, las mutaciones en CFTR expresadas endógenamente en epitelios respiratorios conducen a secreción aniónica apical reducida, causando un desequilibrio en el transporte de iones y fluidos. La disminución resultante en el transporte de aniones contribuye a una acumulación potenciada de moco en el pulmón e infecciones microbianas concomitantes que por último lugar producen la muerte en pacientes con FQ. Además de la enfermedad respiratoria, los pacientes con FQ normalmente padecen problemas gastrointestinales e insuficiencia pancreática que, si se deja sin tratar, produce muerte. Además, la mayoría de los hombres con fibrosis quística son estériles y la fecundidad es reducida entre mujeres con fibrosis quística. A diferencia de los graves efectos de dos copias del gen asociado a la FQ, los individuos con una única copia del gen asociado a la FQ presentan elevada resistencia al cólera y a deshidratación resultante de diarrea – que quizás explica la frecuencia relativamente alta del gen de FQ dentro de la población.

El análisis de secuencias del gen CFTR de cromosomas de FQ ha revelado una variedad de mutaciones causantes de enfermedad (Cutting, G. R. y col. (1990) Nature 346:366-369; Dean, M. y col. (1990) Cell 61:863:870; y Kerem, B-S. y col. (1989) Science 245:1073-1080; Kerem, B-S y col. (1990) Proc. Natl. Acad. Sci. USA 87:8447-8451). Hasta la fecha, se han identificado > 1000 mutaciones causantes de enfermedad en el gen de FQ (http://www.genet.sickkids.on.ca/cftr/). La mutación más prevalente es una deleción de fenilalanina en la posición 508 de la secuencia de aminoácidos de CFTR, y comúnmente se denomina Δ F508-CFTR. Esta mutación se produce en aproximadamente el 70 % de los casos de fibrosis quística y está asociada a una enfermedad grave.

La deleción del residuo 508 en Δ F508-CFTR previene que la proteína naciente se pliegue correctamente. Esto

2

65

50

55

produce la incapacidad de la proteína mutante para salir del RE, y el tránsito a la membrana plasmática. Como resultado, el número de canales presentes en la membrana es mucho menor al observado en células que expresan CFTR no mutado. Además del tráfico alterado, la mutación produce la apertura defectuosa de los canales. Juntos, el reducido número de canales en la membrana y la defectuosa apertura conducen al transporte reducido de aniones a través de los epitelios, conduciendo a transporte defectuoso de iones y fluido (Quinton, P. M. (1990), FASEB J. 4: 2709-2727). Sin embargo, los estudios han mostrado que los números reducidos de Δ F508-CFTR en la membrana son funcionales, sin embargo inferiores a CFTR no mutado (Dalemans y col. (1991), Nature Lond. 354: 526-528; Denning y col., arriba; Pasyk y Foskett (1995), J. Cell. Biochem. 270: 12347-50). Además de Δ F508-CFTR, otras mutaciones causantes de enfermedad en CFTR que producen tráfico, síntesis y/o apertura de canales defectuoso podrían ser reguladas por incremento o por disminución para alterar la secreción de aniones y modificar la progresión de la enfermedad y/o gravedad.

10

15

55

60

65

Aunque CFTR transporta una variedad de moléculas, además de aniones, es evidente que esta función (el transporte de aniones) representa un elemento en un importante mecanismo de transporte de iones y agua a través del epitelio. Los otros elementos incluyen el canal de Na⁺ epitelial, ENaC, co-transportador de Na⁺/2Cl⁻/K⁺, bomba de Na⁺-K⁺-ATPasa y los canales de K⁺ de la membrana basolateral, que son responsables de la captación de cloruro en la célula.

Estos elementos funcionan juntos para lograr el transporte direccional a través del epitelio mediante su expresión y localización selectiva dentro de la célula. La absorción de cloruro tiene lugar por la actividad coordinada de ENaC y CFTR presente sobre la membrana apical y la bomba de Na⁺-K⁺-ATPasa y canales de Cl⁻ expresados sobre la superficie basolateral de la célula. El transporte activo secundario de cloruro del lado luminal conduce a la acumulación de cloruro intracelular, que puede entonces abandonar pasivamente la célula mediante canales de Cl⁻, produciendo un transporte vectorial. La disposición del co-transportador de Na⁺/2Cl⁻/K⁺, la bomba de Na⁺-K⁺-ATPasa y los canales de K⁺ de la membrana basolateral sobre la superficie basolateral y CFTR sobre el lado luminal coordinan la secreción de cloruro mediante CFTR sobre el lado luminal. Debido a que el agua nunca es probablemente activamente transportada ella misma, su flujo a través de los epitelios depende de minúsculos gradientes osmóticos transepiteliales generados por el flujo volumétrico de sodio y cloruro.

30 Además de la fibrosis quística, la modulación de la actividad de CFTR puede ser beneficiosa para otras enfermedades no directamente producidas por mutaciones en CFTR, tales como enfermedades secretoras y otras enfermedades del plegamiento de proteínas mediadas por CFTR. Éstas incluyen, pero no se limitan a, enfermedad pulmonar obstructiva crónica (EPOC), enfermedad del ojo seco y síndrome de Sjögren. La EPOC se caracteriza por la limitación del flujo de aire que es progresiva y no completamente reversible. La limitación del flujo de aire es 35 debida a hipersecreción de moco, enfisema y bronquiolitis. Los activadores de CFTR mutante o no mutado ofrecen un posible tratamiento de la hipersecreción de moco y eliminación mucociliar alterada que es común en EPOC. Específicamente, el aumento de la secreción de aniones a través de CFTR puede facilitar el transporte de fluido en el líquido de la superficie de las vías respiratorias para hidratar el modo y viscosidad del fluido periciliar optimizada. Esto conduciría a eliminación mucociliar potenciada y una reducción en los síntomas asociados a EPOC. La 40 enfermedad del ojo seco se caracteriza por una disminución en la producción acuosa de lágrimas y perfiles de lípidos, proteínas y mucina de la película de la lágrima anormales. Hay muchas causas de ojo seco, algunas de las cuales incluyen edad, cirugía de los ojos con Lasik, artritis, medicaciones, quemaduras químicas/térmicas, alergias y enfermedades, tales como fibrosis quística y síndrome de Sjögren. El aumento de la secreción de aniones mediante CFTR potenciaría el transporte de fluido de las células endoteliales de la córnea y glándulas secretoras que rodean 45 el ojo para aumentar la hidratación de la córnea. Esto ayudaría a aliviar los síntomas asociados a enfermedad del ojo seco. El síndrome de Sjögren es una enfermedad autoinmunitaria en la que el sistema inmunitario ataca las glándulas productoras de humedad en todo el cuerpo, que incluyen el ojo, boca, piel, tejido respiratorio, hígado, vagina e intestino. Los síntomas incluyen ojo seco, boca y vagina, además de enfermedad pulmonar. La enfermedad también está asociada a artritis reumatoide, lupus sistémico, esclerosis sistémica y polimiositis/dermatomiositis. Se 50 cree que el tráfico defectuoso de proteínas produce la enfermedad, para las que las opciones de tratamiento están limitadas. Los moduladores de la actividad de CFTR pueden hidratar los diversos órganos afectados por la enfermedad y ayudar a elevar los síntomas asociados.

Como se ha tratado anteriormente, se cree que la deleción del residuo 508 en ΔF508-CFTR previene que la proteína naciente se pliegue correctamente, produciendo la incapacidad de esta proteína mutante para salir del RE, y el tránsito a la membrana plasmática. Como resultado, cantidades insuficientes de la proteína madura están presentes en la membrana plasmática y el transporte de cloruro dentro de tejidos epiteliales es significativamente reducido. En realidad, se ha mostrado que este fenómeno celular de procesamiento en el RE defectuoso de transportadores de ABC por la maquinaria del RE es la base subyacente no solo para la enfermedad de FQ, sino para una amplia variedad de otras enfermedades aisladas y heredadas. Las dos formas por las que la maquinaria del RE puede funcionar mal es tanto por la pérdida de acoplamiento a exportación del RE de las proteínas que conducen a la degradación, como por la acumulación en el RE de estas proteínas defectuosas/erróneamente plegadas [Aridor M y col., Nature Med., 5(7), pp 745-751 (1999); Shastry, B.S., y col., Neurochem. International, 43, pp 1-7 (2003); Rutishauser, J., y col., Swiss Med Wkly, 132, pp 211-222 (2002); Morello, JP y col., TIPS, 21, pp. 466- 469 (2000); Bross P. y col., Human Mut., 14, pp. 186-198 (1999)]. Las enfermedades asociadas a la primera clase de mal funcionamiento del RE son fibrosis quística (debido a ΔF508-CFTR erróneamente plegado como se ha tratado

anteriormente), enfisema hereditario (debido a a1-antitripsina; variantes no Piz), hemocromatosis hereditaria, deficiencias en la coagulación-fibrinólisis, tales como deficiencia de proteína C, angioedema hereditario tipo 1, deficiencias del procesamiento de lípidos, tales como hipercolesterolemia familiar, quilomicronemia tipo 1, abetalipoproteinemia, enfermedades de almacenamiento de lisosomas, tales como enfermedad de las células l/pseudo-Hurler, mucopolisacaridosis (debida a enzimas de procesamiento de lisosomas), Sandhof/Tay-Sachs (debida a β-hexosaminidasa), Crigler-Najjar tipo II (debida a la UDP-glucuroniltransferasa siálica), poliendocrinopatía/hiperinsulinemia, diabetes mellitus (debida al receptor de insulina), enanismo de Laron (debido al receptor de la hormona del crecimiento), deficiencia de mieloperoxidasa, hipoparatiroidismo primario (debido a la hormona preproparatiroidea), melanoma (debido a tirosinasa). Las enfermedades asociadas a la última clase del mal funcionamiento del RE son glicanosis CDG tipo 1, enfisema hereditario (debido a α1-antitripsina (variante PiZ), hipertiroidismo congénito, osteogénesis imperfecta (debida a procolágeno tipo I, II, IV), hipofibrinogenemia hereditaria (debida a fibrinógeno), deficiencia de ACT (debida a α1-antiquimotripsina), diabetes insípida (DI), DI neurohipofisaria (debida a la hormona vasopresina/receptor V2), DI nefrogénica (debida a acuaporina II), síndrome de Charcot-Marie-Tooth (debido a la proteína mielina periférica 22), enfermedad de Pelizaeus-Merzbacher, enfermedades neurodegenerativas, tales como la enfermedad de Alzheimer (debida a βAPP y presenilinas), enfermedad de Parkinson, esclerosis lateral amiotrófica, parálisis supranuclear progresiva, enfermedad de Pick, varios trastornos neurológicos de la poliglutamina, tales como Huntington, ataxia espinocerebelosa tipo I, atrofia muscular espinal y bulbar, atrofia dentato-rubro-pálido-luisiana y distrofia miotónica, así como encefalopatías espongiformes, tales como la enfermedad hereditaria de Creutzfeldt-Jakob (debida a un defecto en el procesamiento de las proteínas priónicas), enfermedad de Fabry (debida a la α-galactosidasa A lisosómica) y el síndrome de Gerstmann-Sträussler-Scheinker (debido a un defecto en el procesamiento de Prp).

10

15

20

25

30

35

40

45

50

55

60

65

Además de la regulación por incremento de la actividad de CFTR, el reducir la secreción de aniones por los moduladores de CFTR puede ser beneficioso para el tratamiento de diarreas secretoras, en las que el transporte del agua epitelial aumenta espectacularmente como resultado del transporte de cloruro activado por secretagogos. El mecanismo implica la elevación de AMPc y la estimulación de CFTR.

Aunque hay numerosas causas de la diarrea, las principales consecuencias de las enfermedades diarreicas, resultantes del excesivo transporte de cloruro, son comunes a todas, e incluyen deshidratación, acidosis, crecimiento alterado y muerte.

Las diarreas agudas y crónicas representan un problema médico importante en muchas áreas del mundo. La diarrea es tanto un factor significativo en la malnutrición como la causa frecuente de muerte (5.000.000 muertes/año) en niños de menos de cinco años de edad.

Las diarreas secretoras también son una afección peligrosa en pacientes de síndrome de inmunodeficiencia adquirida (SIDA) y enfermedad inflamatoria del intestino (EII) crónica. 16 millones de viajeros a países en desarrollo de naciones industrializadas desarrollan cada año diarrea, variando la gravedad y número de casos de diarrea dependiendo del país y área de viaje.

La diarrea en animales de establo y mascotas tales como vacas, cerdos y caballos, ovejas, cabras, gatos y perros, también conocida como diarreas neonatales, es una causa importante de muerte en estos animales. La diarrea puede resultar de cualquier transición importante, tal como destete o movimiento físico, además de en respuesta a una variedad de infecciones bacterianas o virales y generalmente se produce dentro de las primera horas de vida del animal.

La bacteria más común causante de la diarrea es *E. coli* enterotoxogénica (ETEC) que tiene el antígeno del pilo K99. Las causas virales comunes de la diarrea incluyen rotavirus y coronavirus. Otros agentes infecciosos incluyen *Cryptosporidium, Giardia lamblia* y salmonella, entre otros.

Los síntomas de la infección rotaviral incluyen la secreción de heces acuosas, deshidratación y debilidad. Los coronavirus producen una enfermedad más grave en los animales recién nacidos, y tiene una mayor tasa de mortalidad que la infección rotaviral. Frecuentemente, sin embargo, un animal joven puede infectarse con más de un virus o con una combinación de microorganismos virales y bacterianos de una vez. Esto aumenta espectacularmente la gravedad de la enfermedad.

Por consiguiente, existe la necesidad de moduladores de una actividad de transportadores de ABC, y composiciones de los mismos, que puedan usarse para modular la actividad del transportador de ABC en la membrana celular de un mamífero.

Existe la necesidad de métodos para tratar enfermedades mediadas por el transportador de ABC usando tales moduladores de la actividad de transportadores de ABC.

Existe la necesidad de métodos de modulación de una actividad de transportadores de ABC en una membrana celular ex vivo de un mamífero.

Existe la necesidad de moduladores de la actividad de CFTR que puedan usarse para modular la actividad de CFTR en la membrana celular de un mamífero.

Existe la necesidad de métodos para tratar enfermedades mediadas por CFTR usando tales moduladores de la actividad de CFTR.

Existe la necesidad de métodos de modulación de la actividad de CFTR en una membrana celular ex vivo de un mamífero.

10 RESUMEN DE LA INVENCIÓN

5

15

45

50

60

Ahora se ha encontrado que los compuestos de la presente invención y composiciones farmacéuticamente aceptables de los mismos son útiles como moduladores de la actividad de transportadores de ABC. Estos compuestos son N-(5-hidroxi-2,4-di-terc-butil-fenil)-4-oxo-1H-quinolin-3-carboxamida, o una sal farmacéutica de la misma. Según otro aspecto, la invención se refiere a una composición farmacéutica que comprende el compuesto anteriormente mencionado o una sal farmacéuticamente aceptable del mismo y un vehículo o adyuvante farmacéuticamente aceptable.

Estos compuestos y composiciones farmacéuticamente aceptables son útiles para tratar o reducir la gravedad de 20 una variedad de enfermedades, trastornos o afecciones, que incluyen, pero no se limitan a, fibrosis quística, enfisema hereditario, hemocromatosis hereditaria, deficiencias en la coagulación-fibrinólisis, tales como deficiencia de proteína C, angioedema hereditario tipo 1, deficiencias del procesamiento de lípidos, tales como hipercolesterolemia familiar, quilomicronemia tipo 1, abetalipoproteinemia, enfermedades de almacenamiento de lisosomas, tales como enfermedad de las células I/pseudo-Hurler, mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Najjar tipo II, poliendocrinopatía/hiperinsulinemia, diabetes mellitus, enanismo de Laron, deficiencia de 25 mieloperoxidasa, hipoparatiroidismo primario, melanoma, glicanosis CDG tipo 1, enfisema hereditario, hipertiroidismo congénito, osteogénesis imperfecta, hipofibrinogenemia hereditaria, deficiencia de ACT, diabetes insípida (DI), DI neurohipofisaria, DI nefrogénica, síndrome de Charcot-Marie-Tooth, enfermedad de Pelizaeus-Merzbacher, enfermedades neurodegenerativas, tales como enfermedad de Alzheimer, enfermedad de Parkinson, esclerosis 30 lateral amiotrófica, parálisis supranuclear progresiva, enfermedad de Pick, varios trastornos neurológicos de la poliglutamina, tales como Huntington, atrofia muscular espinal y bulbar, dentato-rubro-pálido-luisiana y distrofia miotónica, además de encefalopatías espongiformes, tales como enfermedad hereditaria de Creutzfeldt-Jakob, enfermedad de Fabry, síndrome de Sträussler-Scheinker, EPOC, enfermedad del ojo seco y enfermedad de Sjögren.

35 DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

I. Descripción general de compuestos de la invención:

Según la presente invención, se proporciona N-(5-hidroxi-2,4-di-*terc*-butil-fenil)-4-oxo-1H-quinolin-3-carboxamida, o una sal farmacéuticamente aceptable de la misma. Estos compuestos se denominan en el presente documento los compuestos de la presente invención.

Los compuestos reivindicados son útiles como moduladores de la actividad de transportadores de ABC y se encuentran bajo la fórmula general I:

o una sal farmacéuticamente aceptable de los mismos, en la que:

Ar¹ es un anillo monocíclico aromático de 5-6 miembros que tiene 0-4 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre, en el que dicho anillo está opcionalmente condensado con un anillo de 5-12 miembros monocíclico o bicíclico, aromático, parcialmente insaturado, o saturado, en el que cada anillo contiene 0-4 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre, en el que Ar¹ tiene m sustituyentes, cada uno independientemente seleccionado de -WR^W:

W es un enlace o es una cadena de alquilideno C_1 - C_6 opcionalmente sustituida en la que hasta dos unidades de metileno de W están opcionalmente e independientemente sustituidas con -CO-, -CS-, -COCO-, -CONR'-, -CONR'NR'-, -CO₂-, -OCO-, -NR'CO₂-, -O-, -NR'CONR'-, -OCONR'-, -NR'NR', -NR'NR'CO-, -NR'CO-, -S-, -SO, -SO₂-, -NR'-, -SO₂NR'-, NR'SO₂- o -NR'SO₂NR'-;

R^W es independientemente R', halógeno, NO₂, CN, CF₃ o OCF₃;

65 m es 0-5; cada uno de R¹, R², R³, R⁴ y R⁵ es independientemente X-R^X;

X es un enlace o es una cadena de alquilideno C₁-C₆ opcionalmente sustituida en la que hasta dos unidades de metileno de X están opcionalmente e independientemente sustituidas con -CO-, -CS-, -COCO-, -CONR'-, -CONR'NR'-, -CO₂-, -OCO-, -NR'CO₂-, -O-, -NR'CONR'-, -OCONR'-, -NR'NR', -NR'NR'CO-, -NR'CO-, -S-, -SO, -SO₂-, -NR'-, -SO₂NR'-, NR'SO₂- o -NR'SO₂NR'-;

 R^X es independientemente R', halógeno, NO_2 , CN, CF_3 o OCF_3 ; R^6_1 es hidrógeno, CF_3 , -OR', -SR', o un grupo alifático C_{1-6} opcionalmente sustituido;

R⁷ es hidrógeno o un grupo alifático C₁₋₆ opcionalmente sustituido con -X-R^X;

R' está seleccionado independientemente de hidrógeno o un grupo opcionalmente sustituido seleccionado de un grupo alifático C₁-C₈, un anillo de 3-8-miembros monocíclico saturado, parcialmente insaturado, o completamente insaturado, que tiene 0-3 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre, o un sistema de anillos bicíclicos de 8-12 miembros saturado, parcialmente insaturado, o completamente insaturado, que tiene 0-5 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre; o dos apariciones de R' se toman conjuntamente con el (los) átomo(s) a los que están unidas para formar un anillo de 3-12 miembros monocíclico o bicíclico saturado, parcialmente insaturado, o completamente insaturado, opcionalmente sustituido, que tiene 0-4 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre

Adicionalmente, en el presente documento se describen compuestos de fórmula I:

20

5

10

15

25

o una sal farmacéuticamente aceptable de los mismos, en la que:

30

Ar¹ es un anillo monocíclico aromático de 5-6 miembros que tiene 0-4 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre, en el que dicho anillo está opcionalmente condensado con un anillo de 5-12 miembros monocíclico o bicíclico, aromático, parcialmente insaturado, o saturado, en el que cada anillo contiene 0-4 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre, en el que Ar¹ tiene m sustituyentes cada uno independientemente seleccionado de -WR^W

35

W es un enlace o es una cadena de alquilideno C₁-C₆ opcionalmente sustituida en la que hasta dos unidades de metileno de W están opcionalmente e independientemente sustituidas con -CO-, -CS-, -COCO-, -CONR'-, -CONR'NR'-, -CO2-, -OCO-, -NR'CO2-, -O-, -NR'CONR'-, -OCONR'-, -NR'NR', -NR'NR'CO-, -NR'CO-, -S-, -SO, -SO₂-, -NR'-, -SO₂NR'-, NR'SO₂-, -NR'SO₂NR'-;

R^W es independientemente R', halógeno, NO₂, CN, CF₃ o OCF₃;

40

cada uno de R¹, R², R³, R⁴ y R⁵ es independientemente -X-R^X;

X es un enlace o es una cadena de alquilideno C₁-C₆ opcionalmente sustituida en la que hasta dos unidades de metileno de X están opcionalmente e independientemente sustituidas con -CO-, -CS-, -COCO-, -CONR'-, -CONR'NR'-, -CO₂-, -OCO-, -NR'CO₂-, -O-, -NR'CONR'-, -OCONR'-, -NR'NR', -NR'NR'CO-, -NR'CO-, -S-, -SO, -

SO₂-, -NR'-, -SO₂NR'-, NR'SO₂- o -NR'SO₂NR'-; 45

R^X es independientemente R', halógeno, NO₂, CN, CF₃ o OCF₃;

R⁶ es hidrógeno, CF₃, -OR', -SR', o un grupo alifático C₁-C₈ opcionalmente sustituido;

R⁷ es hidrógeno o un grupo alifático C₁-C₆ opcionalmente sustituido con -X-R^X;

R' está seleccionado independientemente de hidrógeno o un grupo opcionalmente sustituido seleccionado de un grupo alifático C₁-C₈, un anillo monocíclico de 3-8-miembros saturado, parcialmente insaturado, o completamente insaturado, que tiene 0-3 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre, o un sistema de anillos bicíclicos de 8-12 miembros saturado, parcialmente insaturado, o completamente insaturado, que tiene 0-5 heteroátomos independientemente seleccionados de nitrógeno. oxígeno o azufre; o dos apariciones de R' se toman conjuntamente con el (los) átomo(s) a los que están unidas para formar un anillo monocíclico o bicíclico de 3-12 miembros saturado, parcialmente insaturado, o completamente insaturado, opcionalmente sustituido que tiene 0-4 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre;

a condición de que:

60

65

50

55

i) si R¹, R², R³, R⁴, R⁵, R⁶ y R⁷ son hidrógeno, entonces Ar¹ no es fenilo, 2-metoxifenilo, 4-metoxifenilo, 2metilfenilo, 2,6-diclorofenilo, 2,4-diclorofenilo, 2-bromofenilo, 4-bromofenilo, 4-hidroxifenilo, 2,4-dinitrofenilo, ácido 3,5-dicarboxílico fenilo, 2,4-dimetilfenilo, 2,6-dimetilfenilo, 2-etilfenilo, 3-nitro-4metilfenilo, ácido 3-carboxílico fenilo, 2-fluorofenilo, 3-fluorofenilo, 3-trifluorometilfenilo, 3-etoxifenilo, 4clorofenilo, 3-metoxifenilo, 4-dimetilaminofenilo, 3,4-dimetilfenilo, 2-etilfenilo o 4-etoxicarbonilfenilo;

ii) si R¹, R², R³, R⁵, R⁶ y R⁷ son hidrógeno, y R⁴ es metoxi, entonces Ar¹ no es 2-fluorofenilo o 3fluorofenilo;

iii) si R¹, R³, R⁴, R⁵, R⁶ y R⁷ son hidrógeno, R² es 1,2,3,4-tetrahidroisoguinolin-1-il-sulfonilo, entonces Ar¹

no es 3-trifluorometilfenilo; iv) si R^1 , R^2 , R^3 , R^4 , R^5 y R^7 son hidrógeno, R^6 es metilo, entonces Ar^1 no es fenilo; v) si R^1 , R^4 , R^5 , R^6 y R^7 son hidrógeno, R^2 y R^3 , tomados conjuntamente, son metilendioxi, entonces Ar^1 no es 4-clorofenilo, 4-bromofenilo, 4-nitrofenilo, 4-carboetoxifenilo, 6-etoxi-benzotiazol-2-ilo, 6-carboetoxibenzotiazol-2-ilo, 6-halobenzotiazol-2-ilo, 6-nitro-benzotiazol-2-ilo o 6-tiociano-benzotiazol-2-ilo;

vi) si R¹, R⁴, R⁵, R⁶ y R⁷ son hidrógeno, R² y R³, tomados conjuntamente, son metilendioxi, entonces Ar¹ no es fenilo sustituido en 4 en el que dicho sustituyente es -SO₂NHR^{XX}, en el que R^{XX} es 2-piridinilo, 4metil-2-pirimidinilo, 3,4-dimetil-5-isoxazolilo; vii) si R¹, R², R³, R⁴, R⁵, R⁶ y R⁷ son hidrógeno, entonces Ar¹ no es tiazol-2-ilo, 1*H*-1,2,4-triazol-3-ilo o 1*H*-

1,3,4-triazol-2-ilo;

viii) si R^1 , R^2 , R^3 , R^5 , R^6 y R^7 son hidrógeno y R^4 es CF_3 , OMe, cloro, SCF_3 o OCF_3 , entonces Ar^1 no es 5-metil-1,2-oxazol-3-ilo, tiazol-2-ilo, 4-fluorofenilo, pirimidin-2-ilo, 1-metil-1,2-(1*H*)-pirazol-5-ilo, piridin-2-ilo, fenilo. N-metil-imidazol-2-ilo. imidazol-2-ilo. 5-metil-imidazol-2-ilo. 1.3-oxazol-2-ilo o 1.3.5-(1H)-triazol-2-ilo: ix) si R¹, R², R³, R⁴, R⁵, R⁶ y R⁷ es cada uno hidrógeno, entonces Ar¹ no es pirimidin-2-ilo, 4,6-dimetilpirimidin-2-ilo, 4-metoxi-6-metil-1,3,5-triazin-2-ilo; 5-bromo-piridin-2-ilo, piridin-2-ilo o 3,5-dicloro-piridin-2-

x) si R¹, R², R³, R⁴, R⁵ y R⁷ es cada uno hidrógeno, R⁶ es hidroxi, entonces Ar¹ no es 2,6-dicloro-4aminosulfonil-fenilo;

xi) si R² o R³ es un N-piperazilo, N-piperidilo o N-morfolinilo opcionalmente sustituido, entonces Ar¹ no es un anillo opcionalmente sustituido seleccionado de tiazol-2-ilo, piridilo, fenilo, tiadiazolilo, benzotiazol-2-ilo o indazolilo;

xii) si R² es ciclohexilamino opcionalmente sustituido, entonces Ar¹ no es fenilo, piridilo o tiadiazolilo opcionalmente sustituido;

xiii) Ar¹ no es tetrazolilo opcionalmente sustituido;

xiv) si R², R⁴, R⁵, R⁶ y R⁷ es cada uno hidrógeno y R¹ y R³ son ambos simultáneamente CF₃, cloro, metilo, o metoxi, entonces Ar¹ no es 4,5-dihidro-1,3-tiazol-2-ilo, tiazol-2-ilo o [3,5-bis(trifluorometil)-1*H*-pirazol-1-

xv) si R¹, R⁴, R⁵, R⁶ y R⁷ es cada uno hidrógeno, y Ar¹ es tiazol-2-ilo, entonces ni R² ni R³ es isopropilo, cloro o CF₃:

xvi) si Ar¹ es 4-metoxifenilo, 4-trifluorometilfenilo, 2-fluorofenilo, fenilo o 3-clorofenilo, entonces:

a) si R^1 , R^2 , R^4 , R^5 , R^6 y R^7 es cada uno hidrógeno, entonces R^3 no es metoxi; o b) si R^1 , R^3 , R^4 , R^5 , R^6 y R^7 es cada uno hidrógeno, entonces R^2 no es cloro; o c) si R^1 , R^2 , R^3 , R^5 , R^6 y R^7 es cada uno hidrógeno, entonces R^4 no es metoxi; o d) si R^1 , R^3 , R^4 , R^6 y R^7 es cada uno hidrógeno y R^5 es etilo, entonces R^2 no es cloro; e) si R^1 , R^2 , R^4 , R^5 , R^6 y R^7 es cada uno hidrógeno, entonces R^3 no es cloro;

xvi) si R^1 , R^3 , R^4 , R^5 , R^6 y R^7 es cada uno hidrógeno y R^2 es CF_3 o OCF_3 , entonces Ar^1 no es [3,5bis(trifluorometil)-1H-pirazol-1-il]fenilo;

xvii) si R¹, R², R⁴, R⁵, R⁶ y R⁷ es cada uno hidrógeno y R³ es hidrógeno o CF₃, entonces Ar1 no es un fenilo sustituido con -OCH2CH2Ph, -OCH2CH2(2-trifluorometil-fenilo), -OCH2CH2-(6,7-dimetoxi-1,2,3,4tetrahidroisoguinolin-2-ilo) o 1H-pirazol-3-ilo sustituido; y

xviii) se excluyen los dos siguientes compuestos: 45

2. Compuesto y definiciones

5

10

15

20

25

30

35

40

50

55

60

65

У

Como se usa en el presente documento, deben aplicarse las siguientes definiciones, a menos que se indique lo contrario.

El término "transportador de ABC", como se usa en el presente documento, significa una proteína transportadora de ABC o un fragmento de la misma que comprende al menos un dominio de unión, en el que dicha proteína o fragmento de la misma está presente in vivo o in vitro. El término "dominio de unión", como se usa en el presente documento, significa un dominio sobre el transportador de ABC que puede unirse a un modulador. Véase, por ejemplo, Hwang, T. C. y col., J. Gen. Physiol. (1998): 111(3), 477-90.

El término "CFTR", como se usa en el presente documento, significa regulador de la conductancia transmembrana de la fibrosis quística o una mutación del mismo que es capaz de regular la actividad, que incluye, pero no se limita a, ΔF508-CFTR y G551D-CFTR (véase, por ejemplo, http://www.genet.sickkids.on.ca/cftr/, para mutaciones CFTR).

5

10

15

20

25

30

35

40

45

50

55

60

65

El término "modular", como se usa en el presente documento, significa aumentar o disminuir por una cantidad medible.

Para los fines de la presente invención, los elementos químicos se identifican según la tabla periódica de los elementos, versión CAS, Handbook of Chemistry and Physics, 75ª ed. Adicionalmente, los principios generales de la química orgánica se describen en "Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, y "March's Advanced Organic Chemistry", 5ª ed., Ed.: Smith, M.B. y March, J., John Wiley & Sons, Nueva York: 2001.

Como se describe en el presente documento, los compuestos de fórmula I pueden estar opcionalmente sustituidos con uno o más sustituyentes, tal como se ilustra generalmente anteriormente, o como se ejemplifica por clases particulares, subclases y especies de la invención. Se apreciará que la expresión "opcionalmente sustituido" se usa indistintamente con el término "sustituido o sin sustituir". En general, el término "sustituido", si va precedido por el término "opcionalmente" o no, se refiere a la sustitución de radicales hidrógeno en una estructura dada con el radical de un sustituyente especificado. A menos que se indique lo contrario, un grupo opcionalmente sustituido puede tener un sustituyente en una cada posición sustituible del grupo, y cuando más de una posición en cualquier estructura dada puede estar sustituida con más de un sustituyente seleccionado de un grupo especificado, el sustituyente puede ser tanto el mismo como diferente en cada posición. Combinaciones de sustituyentes concebidas por la presente invención son preferentemente aquellas combinaciones que producen la formación de compuestos estables o químicamente factibles. El término "estable", como se usa en el presente documento, se refiere a compuestos que no están sustancialmente alterados cuando se someten a condiciones para permitir su producción, detección y preferentemente su recuperación, purificación y uso para uno o más de los fines desvelados en el presente documento. En algunos casos, un compuesto estable o compuesto químicamente factible es uno que no está sustancialmente alterado cuando se mantiene a una temperatura de 40 °C o menos, en ausencia de humedad u otras condiciones químicamente reactivas, durante al menos una semana.

El término "alifático" o "grupo alifático", como se usa en el presente documento, significa una cadena lineal (es decir, sin ramificar) o cadena de hidrocarburo ramificada, sustituida o sin sustituir, que está completamente saturada o que contiene una o más unidades de insaturación, o un hidrocarburo monocíclico o hidrocarburo bicíclico que está completamente saturado o que contiene una o más unidades de insaturación, pero que no es aromático (también denominado en el presente documento "carbociclo", "cicloalifático" o "cicloalquilo"), que tiene un único punto de unión con el resto de la molécula. A menos que se especifique de otro modo, grupos alifáticos contienen 1-20 átomos de carbono alifáticos. En algunos casos, los grupos alifáticos contienen 1-10 átomos de carbono alifáticos. En otros casos, los grupos alifáticos contienen 1-8 átomos de carbono alifáticos. En todavía más casos, los grupos alifáticos contienen 1-6 átomos de carbono alifáticos, y en todavía otros casos, los grupos alifáticos contienen 1-4 átomos de carbono alifáticos. En algunos casos, "cicloalifático" (o "carbociclo" o "cicloalquilo") se refiere a un hidrocarburo C₃-C₈ monocíclico o hidrocarburo C₈-C₁₄ bicíclico o tricíclico que está completamente saturado o que contiene una o más unidades de insaturación, pero que no es aromático, que tiene un único punto de unión con el resto de la molécula en el que cualquier anillo individual en dicho sistema de anillos bicíclicos tiene 3-7 miembros. Grupos alifáticos adecuados incluyen, pero no se limitan a, grupos alquilo, alquenilo, alquinilo lineales o ramificados, sustituidos o sin sustituir, e híbridos de los mismos tales como (cicloalquil)alquilo, (cicloalquenil)alquilo o (cicloalquil)alquenilo. Grupos cicloalifáticos adecuados incluyen cicloalquilo, cicloalquilo bicíclico (por ejemplo, decalina), bicicloalquilo con puentes tal como norbornilo o [2.2.2]biciclo-octilo, o tricíclico con puentes tal como adamantilo.

El término "heteroalifático", como se usa en el presente documento, significa grupos alifáticos en los que uno o dos átomos de carbono están independientemente sustituidos con uno o más de oxígeno, azufre, nitrógeno, fósforo o silicio. Los grupos heteroalifáticos pueden estar sustituidos o sin sustituir, ramificados o sin ramificar, cíclicos o acíclicos, e incluyen grupos "heterociclo", "heterociclio", "heterocicloalifático" o "heterocíclico".

El término "heterociclo", "heterociclio", "heterocicloalifático" o "heterocíclico", como se usa en el presente documento, significa sistemas de anillos no aromáticos, monocíclicos, bicíclicos o tricíclicos en los que uno o más miembros de anillo es un heteroátomo independientemente seleccionado. En algunos casos, el grupo "heterociclo", "heterociclio", "heterocicloalifático" o "heterocíclico" tiene tres a catorce miembros de anillo en los que uno o más miembros de anillo es un heteroátomo independientemente seleccionado de oxígeno, azufre, nitrógeno o fósforo, y cada anillo en el sistema contiene 3 a 7 miembros de anillo.

El término "heteroátomo" significa uno o más de oxígeno, azufre, nitrógeno, fósforo o silicio (incluyendo cualquier forma oxidada de nitrógeno, azufre, fósforo o silicio; la forma cuaternizada de cualquier nitrógeno básico o; un nitrógeno sustituible de un anillo heterocíclico, por ejemplo, N (como en 3,4-dihidro-2*H*-pirrolilo), NH (como en

pirrolidinilo) o NR+ (como en pirrolidinilo N-sustituido)).

5

El término "insaturado", como se usa en el presente documento, significa que un resto tiene una o más unidades de insaturación.

- El término "alcoxi", o "tioalquilo", como se usa en el presente documento, se refiere a un grupo alquilo, como se ha definido previamente, unido a la cadena de carbono principal mediante un átomo de oxígeno ("alcoxi") o de azufre ("tioalquilo").
- Los términos "haloalifático" y "haloalcoxi" significan alifático o alcoxi, según sea el caso, sustituido con uno o más átomos de halógeno. El término "halógeno" o "halo" significa F, Cl, Br o I. Ejemplos de haloalifático incluyen -CHF₂, -CH₂F, -CF₃, -CF₂- o perhaloalquilo, tal como -CF₂CF₃.
- El término "arilo", usado solo o como parte de un resto mayor como en "aralquilo", "aralcoxi", o "ariloxialquilo", se refiere a sistemas de anillos monocíclicos, bicíclicos y tricíclicos que tienen un total de cinco a catorce miembros de anillo, en los que al menos un anillo en el sistema es aromático y en los que cada anillo en el sistema contiene 3 a 7 miembros de anillo. El término "arilo" puede usarse indistintamente con el término "anillo de arilo". El término "arilo" también se refiere a sistemas de anillos de heteroarilo como se define en el presente documento más adelante.
- El término "heteroarilo", usado solo o como parte de un resto mayor como en "heteroaralquilo" o "heteroarilalcoxi", se refiere a sistemas de anillos monocíclicos, bicíclicos y tricíclicos que tienen un total de cinco a catorce miembros de anillo, en los que al menos un anillo en el sistema es aromático, al menos un anillo en el sistema contiene uno o más heteroátomos, y en los que cada anillo en el sistema contiene 3 a 7 miembros de anillo. El término "heteroarilo" puede usarse indistintamente con el término "anillo de heteroarilo" o el término "heteroaromático".
- Un grupo arilo (incluyendo aralquilo, aralcoxi, ariloxialquilo y similares) o heteroarilo (incluyendo heteroaralquilo y heteroarilalcoxi y similares) puede contener uno o más sustituyentes. Sustituyentes adecuados sobre el átomo de carbono insaturado de un grupo arilo o heteroarilo están seleccionados de halógeno; -R°-; -OR°; -SR°; 1,2-metilendioxi; 1,2-etilendioxi; fenilo (Ph) opcionalmente sustituido con R°; -O(Ph) opcionalmente sustituido con R°; -(CH₂)₁₋ 30 NR°SO₂R°; -C(=S)N(R°)₂; -C(=NH)-N(R°)₂; o -(CH₂)₀₋₂NHC(O)R° en los que cada aparición independiente de R° está seleccionada de hidrógeno, alifático C₁₋₆ opcionalmente sustituido, un heteroarilo o anillo heterocíclico de 5-6 35 miembros sin sustituir, fenilo, -O(Ph) o -CH₂(Ph), o, a pesar de la definición anterior, dos apariciones independientes de R°. sobre el mismo sustituyente o sustituyentes diferentes, tomadas conjuntamente con el (los) átomo(s) a los que cada grupo R° está unido, forman un anillo de cicloalquilo, heterociclilo, arilo o heteroarilo de 3-8 miembros que tiene 0-3 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre. Sustituyentes opcionales sobre el grupo alifático de R° están seleccionados de NH₂, NH(alifático C₁₋₄), N(alifático C₁₋₄)₂, halógeno, alifático C₁ 40 4, OH, O(alifático C₁₋₄), NO₂, CN, CO₂H, CO₂(alifático C₁₋₄), O(haloalifático C₁₋₄) o haloalifático C₁₋₄, en los que cada uno de los grupos alifáticos C₁₋₄ anteriores de R° está sin sustituir.
- Un grupo alifático o heteroalifático, o un anillo heterocíclico no aromático, puede contener uno o más sustituyentes. Sustituyentes adecuados sobre el carbono saturado de un grupo alifático o heteroalifático, o de un anillo heterocíclico no aromático, están seleccionados de aquellos enumerados anteriormente para el carbono insaturado de un grupo arilo o heteroarilo y adicionalmente incluyen los siguientes: =O, =S, =NNHR*, =NN(R*)₂, =NNHC(O)R*, =NNHCO₂(alquilo), =NNHSO₂(alquilo) o =NR*, en los que cada R* está seleccionado independientemente de hidrógeno o un alifático C₁₋₆ opcionalmente sustituido. Sustituyentes opcionales sobre el grupo alifático de R* están seleccionados de NH₂, NH(alifático C₁₋₄), N(alifático C₁₋₄)₂, halógeno, alifático C₁₋₄, OH, O(alifático C₁₋₄), NO₂, CN, CO₂H, CO₂(alifático C₁₋₄), O(haloalifático C₁₋₄) o halo(alifático C₁₋₄), en los que cada uno de los grupos alifáticos C₁₋₄ anteriores de R* está sin sustituir.
- Sustituyentes opcionales sobre el nitrógeno de un anillo heterocíclico no aromático están seleccionados de -R⁺, -N(R⁺)₂, -C(O)R⁺, -CO₂R⁺, -C(O)C(O)R⁺, -C(O)CH₂C(O)R⁺, -SO₂R⁺, -SO₂N(R⁺)₂, -C(=S)N(R⁺)₂, -C(=NH)-N(R⁺)₂ o -NR⁺SO₂R⁺; en los que R⁺ es hidrógeno, un alifático C₁₋₆ opcionalmente sustituido, fenilo opcionalmente sustituido, -O(Ph) opcionalmente sustituido; -CH₂(Ph) opcionalmente sustituido; -CH=CH(Ph) opcionalmente sustituido; o un heteroarilo o anillo heterocíclico de 5-6 miembros sin sustituir que tiene uno a cuatro heteroátomos independientemente seleccionados de oxígeno, nitrógeno o azufre, o, a pesar de la definición anterior, dos apariciones independientes de R⁺, sobre el mismo sustituyente o sustituyentes diferentes, tomadas conjuntamente con el (los) átomo(s) a los que cada grupo R⁺ está unido, forman un anillo de cicloalquilo, heterociclilo, arilo o heteroarilo de 3-8-miembros que tiene 0-3 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre. Sustituyentes opcionales sobre el grupo alifático o el anillo de fenilo de R⁺ están seleccionados de NH₂, NH(alifático C₁₋₄), N(alifático C₁₋₄), halógeno, alifático C₁₋₄, OH, O(alifático C₁₋₄), NO₂, CN, CO₂H, CO₂(alifático C₁₋₄), O(haloalifático C₁₋₄) o halo(alifático C₁₋₄), en los que cada uno de los anteriores grupos alifáticos C₁₋₄ de R⁺ está sin sustituir.

El término "cadena de alquilideno" se refiere a una cadena de carbono lineal o ramificada que puede estar completamente saturada o tener una o más unidades de insaturación y tiene dos puntos de unión al resto de la molécula. El término "espirocicloalquilideno" se refiere a un anillo carbocíclico que puede estar completamente saturado o tener una o más unidades de insaturación y tiene dos puntos de unión del mismo átomo de carbono del anillo al resto de la molécula.

Como se ha detallado anteriormente, en algunos casos, dos apariciones independientes de R° (o R^{\dagger} , o cualquier otra variable similarmente definida en el presente documento), se toman conjuntamente junto con el (los) átomo(s) a los que cada variable está unida para formar un anillo de cicloalquilo, heterociclilo, arilo o heteroarilo de 3-8-miembros que tiene 0-3 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre. Anillos a modo de ejemplo que se forman cuando dos apariciones independientes de R° (o R^{\dagger} , o cualquier otra variable similarmente definida en el presente documento) se toman conjuntamente con el (los) átomo(s) a los que cada variable está unida incluyen, pero no se limitan a, las siguientes: a) dos apariciones independientes de R° (o R^{\dagger} , o cualquier otra variable similarmente definida en el presente documento) que están unidas al mismo átomo y se toman conjuntamente con aquel átomo para formar un anillo, por ejemplo, $N(R^{\circ})_2$, en la que ambas apariciones de R° se toman conjuntamente con el átomo de nitrógeno para formar un grupo piperidin-1-ilo, piperazin-1-ilo o morfolin-4-ilo; y b) dos apariciones independientes de R° (o R^{\dagger} , o cualquier otra variable similarmente definida en el presente documento) que están unidas a diferentes átomos y se toman conjuntamente con ambos de aquellos átomos para formar un anillo, por ejemplo, en el que un grupo fenilo está sustituido con dos apariciones de OR°

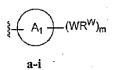
estas dos apariciones de R° se toman conjuntamente con los átomos de oxígeno a los que están unidos para formar un anillo condensado que contiene oxígeno de 6 miembros:

Se apreciará que puede formarse una variedad de otros anillos cuando dos apariciones independientes de R° (o R⁺, o cualquier otra variable similarmente definida en el presente documento) se toman conjuntamente con el (los) átomo(s) a los que cada variable está unida y que los ejemplos detallados anteriormente no pretenden ser limitantes.

Un enlace de sustituyente en, por ejemplo, un sistema de anillos bicíclicos, como se muestra más adelante, significa que el sustituyente puede unirse a cualquier átomo de anillo sustituible sobre cualquier anillo del sistema de anillos bicíclicos:

A menos que se establezca de otro modo, también se indica que las estructuras representadas en el presente documento incluyen todas las formas isoméricas (por ejemplo, enantioméricas, diaestereoméricas y geométricas (o conformacionales)) de la estructura; por ejemplo, las configuraciones R y S para cada centro asimétrico, isómeros de doble enlace (Z) y (E) e isómeros conformacionales (Z) y (E). Por tanto, isómeros estereoquímicos individuales, además de mezclas enantioméricas, diaestereoméricas y geométricas (o conformacionales) de los presentes compuestos, están dentro del alcance de la invención. A menos que se establezca de otro modo, todas las formas tautómeras de los compuestos de la invención están dentro del alcance de la invención. Por ejemplo, si R⁵ en los compuestos de fórmula I es hidrógeno, los compuestos de fórmula I pueden existir como tautómeros:

Adicionalmente, a menos que se establezca de otro modo, también se indica que las estructuras representadas en el presente documento incluyen compuestos que se diferencian solo en la presencia de uno o más átomos


isotópicamente enriquecidos. Por ejemplo, los compuestos que tienen las presentes estructuras, excepto por la sustitución de hidrógeno con deuterio o tritio, o la sustitución de un carbono con un carbono enriquecido en ¹³C o ¹⁴C, están dentro del alcance de la presente invención. Tales compuestos son útiles, por ejemplo, como herramientas analíticas o sondas en ensayos biológicos.

3. Descripción de compuestos a modo de ejemplo:

En algunos casos, Ar1 es

10

5

15

en el que el anillo A_1 anillo monocíclico aromático de 5-6 miembros que tiene 0-4 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre.

En algunos casos, A₁ es un anillo aromático de 6 miembros opcionalmente sustituido que tiene 0-4 heteroátomos, en el que dicho heteroátomo es nitrógeno. En algunos casos, A₁ es un fenilo opcionalmente sustituido. O, A₁ es un piridilo, pirimidinilo, pirazinilo o triazinilo opcionalmente sustituido. O, A₁ es un pirazinilo o triazinilo opcionalmente sustituido. O, A₁ es un pirazinilo opcionalmente sustituido.

En algunos casos, A₁ es un anillo aromático de 5 miembros opcionalmente sustituido que tiene 0-3 heteroátomos, en el que dicho heteroátomo es nitrógeno, oxígeno o azufre. En algunos casos, A₁ es un anillo aromático de 5 miembros opcionalmente sustituido que tiene 1-2 átomos de nitrógeno. En un caso, A₁ es un anillo aromático de 5 miembros opcionalmente sustituido distinto de tiazolilo.

En otros casos, W es un enlace o es una cadena de alquilideno C₁₋₆ opcionalmente sustituida en la que una o dos unidades de metileno están opcionalmente e independientemente sustituidas con O, NR', S, SO, SO₂, o COO, CO, SO₂NR', NR'SO₂, C(O)NR', NR'C(O), OC(O), OC(O)NR' y R^W es R' o halógeno. En todavía más casos, cada aparición de WR^W es independientemente -alquilo C₁-C₃, perhaloalquilo C₁-C₃, -O(alquilo C₁-C₃), -CF₃, -OCF₃, -SCF₃, -F, -Cl, -Br o -COOR', -COR', -O(CH₂)₂N(R')(R'), -O(CH₂)N(R')(R'), -CON(R')(R'), -(CH₂)₂OR', -(CH₂)OR', anillo aromático monocíclico o bicíclico opcionalmente sustituido, arilsulfona opcionalmente sustituida, anillo de heteroarilo de 5 miembros opcionalmente sustituido, -N(R')(R'), -(CH₂)₂N(R')(R') o -(CH₂)N(R')(R').

En algunos casos, m es 0. O, m es 1. O, m es 2. En algunos casos, m es 3. En todavía otros casos, m es 4.

En un caso, R⁵ es X-R^X. En algunos casos, R⁵ es hidrógeno. O, R⁵ es un grupo alifático C₁₋₈ opcionalmente sustituido. En algunos casos, R⁵ es alifático C₁₋₄ opcionalmente sustituido. O, R⁵ es bencilo.

En algunos casos, R^6 es hidrógeno. O, R^6 es un grupo alifático C_{1-8} opcionalmente sustituido. En algunos casos, R^6 es alifático C_{1-4} opcionalmente sustituido. En ciertos otros casos, R^6 es -(O-alifático C_{1-4}) o -(S-alifático C_{1-4}). Preferentemente, R^6 es -OMe o -SMe. En ciertos otros casos, R^6 es CF_3 .

45

60

En un caso, R^1 , R^2 , R^3 y R^4 son simultáneamente hidrógeno. En otro caso, R^6 y R^7 son ambos simultáneamente hidrógeno.

En otro caso, R¹, R², R³, R⁴ y R son simultáneamente hidrógeno. En otro caso, R¹, R², R³, R⁴, R⁵ y R⁶ son simultáneamente hidrógeno.

En otro caso, R^2 es $X-R^X$, en el que X es $-SO_2NR'-$ y R^X es R'; es decir, R^2 es $-SO_2N(R')_2$. En un caso, los dos R' en su interior tomados conjuntamente forman un anillo de 5-7 miembros opcionalmente sustituido con 0-3 heteroátomos adicionales seleccionados de nitrógeno, oxígeno o azufre. O, R^1 , R^3 , R^4 , R^5 y R^6 son simultáneamente hidrógeno y R^2 os $SO_2N(R')_2$.

55 R^2 es $SO_2N(R')_2$.

En algunos casos, X es un enlace o es una cadena de alquilideno C_{1-6} opcionalmente sustituida en la que una o dos unidades de metileno no adyacentes están opcionalmente e independientemente sustituidas con O, NR', S, SO₂ o COO, CO y R^X es R' o halógeno. En todavía más casos, cada aparición de XR^X es independientemente -alquilo C_{1-3} , -O(alquilo C_{1-3}), -CF₃, -OCF₃, -SCF₃, -F, -CI, -Br, OH; -COOR', -COR', -O(CH₂)₂N(R')(R'), -O(CH₂)₂N(R')(R'), -CON(R')(R'), -(CH₂)₂OR', -(CH₂)OR', fenilo opcionalmente sustituido, -N(R')(R'), -(CH₂)₂N(R')(R') o -(CH₂)N(R')(R').

En algunos casos, R⁷ es hidrógeno. En ciertos otros casos, R⁷ es alifático C₁₋₄ lineal o ramificado.

En algunos casos, R^W está seleccionado de halógeno, ciano, CF₃, CHF₂, OCHF₂, Me, Et, CH(Me)₂, CHMeEt, n-propilo, t-butilo, OMe, OEt, OPh, O-fluorofenilo, O-difluorofenilo, O-metoxifenilo, O-tolilo, O-bencilo, SMe, SCF₃,

SCHF₂, SEt, CH₂CN, NH₂, NHMe, N(Me)₂, NHEt, N(Et)₂, C(O)CH₃, C(O)Ph, C(O)NH₂, SPh, SO₂-(amino-piridilo), SO₂NH₂, SO₂Ph, SO₂NHPh, SO₂-N-morfolino, SO₂-N-pirrolidilo, N-pirrolidio, N-morfolino, 1-piperidilo, fenilo, bencilo, (ciclohexil-metilamino)metilo, 4-metil-2,4-dihidro-pirazol-3-on-2-ilo, bencimidazol-2-ilo, furan-2-ilo, [1,2,4]triazol-3-ilo, 3-(4'-clorofenil)-[1,2,4]oxadiazol-5-ilo, NHC(O)Me, NHC(O)Et, NHC(O)Ph, NHSO₂Me, 2-indolilo, 5-5 indolilo, -CH₂CH₂OH, -OCF₃, O-(2,3-dimetilfenilo), 5-metilfurilo, -SO₂-N-piperidilo, 2-tolilo, 3-tolilo, 4-tolilo, O-butilo, NHCO₂C(Me)₃, CO₂C(Me)₃, isopropenilo, n-butilo, O-(2,4-diclorofenilo), NHSO₂PhMe, O-(3-cloro-5-trifluorometil-2piridilo), fenilhidroximetilo, 2,5-dimetilpirrolilo, NHCOCH₂C(Me)₃, O-(2-*terc*-butil)fenilo, 2,3-dimetilfenilo, 3,4-dimetilfenilo, 4-dimetilaminofenilo, 2-trifluorometilfenilo, 3-trifluorometilfenilo, 4-dimetilaminofenilo, 4-dimetilaminofenilo, 3-trifluorometilfenilo, 4-dimetilaminofenilo, 4-dimetilaminofenilo, 3-trifluorometilfenilo, 4-dimetilaminofenilo, 4-dimetila trifluorometilfenilo, 4-cianometilfenilo, 4-isobutilfenilo, 3-piridilo, 4-piridilo, 4-isopropilfenilo, 3-isopropilfenilo, 2metoxifenilo, 3-metoxifenilo, 4-metoxifenilo, 3,4-metilendioxifenilo, 2-etoxifenilo, 3-etoxifenilo, 4-etoxifenilo, 2-metiltiofenilo, 4-metiltiofenilo, 2,4-dimetoxifenilo, 2,5-dimetoxifenilo, 2,6-dimetoxifenilo, 3,4-dimetoxifenilo, 5-cloro-2-10 metoxifenilo, 2-OCF₃-fenilo, 3-trifluorometoxi-fenilo, 4-trifluorometoxifenilo, 2-fenoxifenilo, 4-fenoxifenilo, 2-fluoro-3metoxi-fenilo, 2,4-dimetoxi-5-pirimidilo, 5-isopropil-2-metoxifenilo, 2-fluorofenilo, 3-fluorofenilo, 4-fluorofenilo, 3cianofenilo, 3-clorofenilo, 4-clorofenilo, 2,3-difluorofenilo, 2,4-difluorofenilo, 2,5-difluorofenilo, 3,4-difluorofenilo, 3,5-difluorofenilo, 3,4-difluorofenilo, 3,5-difluorofenilo, 3,4-difluorofenilo, 3,5-difluorofenilo, 3,4-difluorofenilo, 3,5-difluorofenilo, 3,4-difluorofenilo, 3,5-difluorofenilo, 3,5 15 difluorofenilo, 3-cloro-4-fluoro-fenilo, 3,5-diclorofenilo, 2,5-diclorofenilo, 2,3-diclorofenilo, 3,4-diclorofenilo, 2,4diclorofenilo, 3-metoxicarbonilfenilo, 4-metoxicarbonilfenilo, 3-isopropiloxicarbonilfenilo, 3-acetamidofenilo, 4-fluoro-3metilfenilo, 4-metanosulfinil-fenilo, 4-metanosulfonil-fenilo, 4-N-(2-N,N-dimetilaminoetil)carbamoilfenilo, 5-acetil-2tienilo, 2-benzotienilo, 3-benzotienilo, furan-3-ilo, 4-metil-2-tienilo, 5-ciano-2-tienilo, N'-fenilcarbonil-N-piperazinilo, NHCO₂Et, -NHCO₂Me, N-pirrolidinilo, -NHSO₂(CH₂)₂ N-piperidina, -NHSO₂(CH₂)₂ N-morfolina, -NHSO₂(CH₂)₂N(Me)₂, COCH₂N(Me)COCH₂NHMe, -CO₂Et, O-propilo, -CH₂CH₂NHCO₂C(Me)₃, hidroxi, aminometilo, pentilo, adamantilo, 20 ciclopentilo, etoxietilo, C(Me)₂CH₂OH, C(Me)₂CO₂Et, -CHOHMe, CH₂CO₂Et, -C(Me)₂CH₂NHCO₂C(Me)₃, O(CH₂)₂OEt, O(CH₂)₂OH, CO₂Me, hidroximetilo, 1-metil-1-ciclohexilo, 1-meti C(Et)₃, CONHCH₂CH(Me)₂, 2-aminometilfenilo, etenilo, 1-piperidinilcarbonilo, etinilo, ciclohexilo, 4-metilpiperidinilo, -OCO₂Me, -C(Me)₂CH₂NHCO₂CH₂CH(Me)₂, -C(Me)₂CH₂NHCO₂CH₂CH₂CH₃, -C(Me)2CH2NHCO2Et, C(Me)₂CH₂NHCO₂Me, $-C(Me)_2CH_2NHCO_2CH_2C(Me)_3$, 25 -CH₂NHCO₂C(Me)₃, -CH₂NHCOCF₃, C(Me)₂CH₂NHCO₂(CH₂)₃CH₃, C(Me)₂CH₂NHCO₂(CH₂)₂OMe, C(OH) (CF₃)₂, -C(Me)₂CH₂NHCO₂CH₂-tetrahidrofuran-3-ilo, C(Me)₂CH₂O(CH₂)₂OMe o 3-etil-2,6-dioxopiperidin-3-ilo.

En un caso, R' es hidrógeno.

En un caso, R' es un grupo alifático C_1 - C_8 , opcionalmente sustituido con hasta 3 sustituyentes seleccionados de halógeno, CN, CF₃, CHF₂, OCF₃ o OCHF₂, en el que hasta dos unidades de metileno de dicho alifático C_1 - C_8 están opcionalmente sustituidas con -CO-, -CONH(alquil C_1 - C_4)-, -CO₂-, -OCO-, -N(alquil C_1 - C_4)CON(alquil C_1 - C_4)-, -OCON(alquil C_1 - C_4)-, -N(alquil C_1 - C_4)-, -N(alquil C_1 - C_4)-, -SO₂N(alquil C_1 - C_4)-, N(alquil C_1 - C_4)-, -N(alquil C_1 - C_4)-.

En un caso, R' es un anillo monocíclico de 3-8 miembros saturado, parcialmente insaturado, o completamente insaturado, que tiene 0-3 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre, en el que R' está opcionalmente sustituido con hasta 3 sustituyentes seleccionados de halógeno, CN, CF₃, CHF₂, OCF₃, OCHF₂ o alquilo C₁-C₆, en el que hasta dos unidades de metileno de dicho alquilo C₁-C₆ están opcionalmente sustituidas con -CO-, -CONH(alquil C₁-C₄)-, -CO₂-, -OCO-, -N(alquil C₁-C₄)CO₂-, -O-, -N(alquil C₁-C₄)CON(alquil C₁-C₄)-, -N(alquil C₁-C₄)-.

En un caso, R' es un sistema de anillos bicíclicos de 8-12 miembros saturado, parcialmente insaturado, o completamente insaturado, que tiene 0-5 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre; en el que R' está opcionalmente sustituido con hasta 3 sustituyentes seleccionados de halógeno, CN, CF₃, CHF₂, OCF₃, OCHF₂ o alquilo C₁-C₆, en el que hasta dos unidades de metileno de dicho alquilo C₁-C₆ están opcionalmente sustituidas con -CO-, -CONH(alquil C₁-C₄)-, -CO₂-, -OCO-, -N(alquil C₁-C₄)CO₂-, -O-, -N(alquil C₁-C₄)CON(alquil C₁-C₄)-, -OCON(alquil C₁-C₄)-, -N(alquil C₁

En un caso, dos apariciones de R' se toman conjuntamente con el (los) átomo(s) a los que están unidas para formar un anillo monocíclico o bicíclico de 3-12 miembros saturado, parcialmente insaturado, o completamente insaturado, o pocionalmente sustituido que tiene 0-4 heteroátomos independientemente seleccionados de nitrógeno, oxígeno o azufre, en el que R' está opcionalmente sustituido con hasta 3 sustituyentes seleccionados de halógeno, CN, CF₃, CHF₂, OCF₃, OCHF₂ o alquilo C₁-C₆, en el que hasta dos unidades de metileno de dicho alquilo C₁-C₆ están opcionalmente sustituidas con -CO-, -CONH(alquil C₁-C₄)-, -CO₂-, -OCO-, -N(alquil C₁-C₄)CO₂-, -O-, -N(alquil C₁-C₄)CON(alquil C₁-C₄)-, -OCON(alquil C₁-C₄)-; -N(alquil C₁-C₄)CO-, -S-, -N(alquil C₁-C₄)-, -SO₂N(alquil C₁-C₄)-, N(alquil C₁-C₄)SO₂- o -N(alquil C₁-C₄)SO₂N(alquil C₁-C₄)-.

Adicionalmente, en el presente documento se describen compuestos de fórmula IIA.

30

35

$$R^2$$
 R^3
 R^4
 R^4

IIA

Adicionalmente se describen compuestos de fórmula IIIA:

 $\begin{array}{c|c}
 & X_2 \\
 & X_4 \\
 & X_4 \\
 & X_4 \\
 & X_4
\end{array} (WR^W)_m$ IIIA

 $20 \qquad \text{en la que cada uno de X_1, X_2, X_3, X_4 y X_5 está seleccionado independientemente de CH o N; y X_6 es O, S o NR'. } \\$

En un caso, los compuestos de fórmula IIIA tienen y apariciones del sustituyente X-R^X, en el que y es 0-4. O, y es 1. O, y es 2.

25 En algunos ejemplos de la fórmula IIIA, X₁, X₂, X₃, X₄ y X₅ tomados conjuntamente con WR^W y m es fenilo opcionalmente sustituido.

En algunos ejemplos de la fórmula **IIIA**, X_1 , X_2 , X_3 , X_4 y X_5 tomados conjuntamente es un anillo opcionalmente sustituido seleccionado de:

30 35 a-iii a-iv a-v 40 a-vii a-viii a-ix a-x 45 a-xiii a-xiv a-xi a-xii a-xvi a-xv 50 55 a-xvii a-xviii a-xix a-xxi a-xx 60

65

5

10

10

15

5

En algunos casos, R^W está seleccionado de halógeno, ciano, CF₃, CHF₂, OCHF₂, Me, Et, CH(Me)₂, CHMeEt, n-propilo, t-butilo, OMe, OEt, OPh, O-fluorofenilo, O-difluorofenilo, O-metoxifenilo, O-tolilo, O-bencilo, SMe, SCF₃, SCHF₂, SEt, CH₂CN, NH₂, NHMe, N(Me)₂, NHEt, N(Et)₂, C(O)CH₃, C(O)Ph, C(O)NH₂, SPh, SO₂-(amino-piridilo), SO₂NH₂, SO₂Ph, SO₂NHPh, SO₂-N-morfolino, SO₂-N-pirrolidilo, N-pirrolilo, N-morfolino, 1-piperidilo, fenilo, bencilo, (ciclohexil-metilamino)metilo, 4-metil-2,4-dihidro-pirazol-3-on-2-ilo, bencimidazol-2ilo, furan-2-ilo, 4-metil-4H-[1,2,4]triazol-3-ilo, 3-(4'-clorofenil)-[1,2,4]oxadiazol-5-ilo, NHC(O)Me, NHC(O)Et, NHC(O)Ph o NHSO₂Me

 $\label{eq:conjuntamente} En \ algunos \ casos, \ X \ y \ R^X, \ tomados \ conjuntamente, \ es \ Me, Et, halógeno, CN, CF_3, \ OH, \ OMe, \ OEt, SO_2N(Me)(fluorofenilo), SO_2-(4-metil-piperidin-1-ilo o SO_2-N-pirrolidinilo.$

20

Adicionalmente, en el presente documento se describen compuestos de fórmula IVA:

25

30

35

En un ejemplo, los compuestos de fórmula IVA tienen y apariciones del sustituyente X-R^X, en el que y es 0-4. O, y es 1. O, y es 2.

1. O, y es /

Adicionalmente, en el presente documento se describen compuestos de fórmula **IVA**, en la que X es un enlace y R^X es hidrógeno.

Según un ejemplo de la fórmula IVA, se proporciona el siguiente compuesto de fórmula VA-1:

40

VA-1

45

en el que cada uno de WR^{W2} y WR^{W4} está seleccionado independientemente de hidrógeno, CN, CF₃, halógeno, alquilo C₁-C₆ lineal o ramificado, cicloalifático de 3-12 miembros, fenilo, heteroarilo C₅-C₁₀ o heterocíclico C₃-C₇, en el que dicho heteroarilo o heterocíclico tiene hasta 3 heteroátomos seleccionados de O, S o N, en el que dichos WR^{W2} y WR^{W4} están independientemente y opcionalmente sustituidos con hasta tres sustituyentes seleccionados de -OR', -CF₃, -OCF₃, SR', S(O)R', SO₂R', -SCF₃, halógeno, CN, -COOR', -COR', -O(CH₂)₂N(R')(R'), -O(CH₂)N(R')(R'), -CON(R')(R'), -(CH₂)₂OR', -(CH₂)OR', CH₂CN, fenilo opcionalmente sustituido o fenoxi, -N(R')(R'), -NR'C(O)OR', -NR'C(O)R', -(CH₂)₂N(R')(R') o -(CH₂)N(R')(R'); y

55

NR'C(O)R', -(CH₂)₂N(R')(R') o -(CH₂)N(R')(R'); y WR^{W5} está seleccionado de hidrógeno, -OH, NH₂, CN, CHF₂, NHR', N(R')₂, -NHC(O)R', -NHC(O)OR', NHSO₂R', -OR', CH₂OH, CH2N(R')₂, C(O)OR', SO₂NHR' SO₂N(R')₂ o CH₂NHC(O)OR'. O, WR^{W4} y W R^{W5} tomados conjuntamente forman un anillo de 5-7 miembros que contiene 0-3 tres heteroátomos seleccionados de N, O o S, en el que dicho anillo está opcionalmente sustituido con hasta tres sustituyentes WR^W.

60

En un caso, los compuestos de fórmula VA-1 tienen y apariciones de X-R^X, caso en el que y es 0-4. En un caso v es 0

65

Adicionalmente, en el presente documento se describen compuestos de fórmula **VA-1**, en la que X es un enlace y R^X es hidrógeno.

Adicionalmente, en el presente documento se describen compuestos de fórmula VA-1, en la que:

cada uno de WR^{W2} y WR^{W4} está seleccionado independientemente de hidrógeno, CN, CF_3 , halógeno, alquilo C_1 - C_6 lineal o ramificado, cicloalifático de 3-12 miembros, o fenilo, en el que dichos WR^{W2} y WR^{W4} están independientemente y opcionalmente sustituidos con hasta tres sustituyentes seleccionados de -OR', -CF₃, - OCF_3 , $-SCF_3$, halógéno, -COOR', -COR', $-O(CH_2)_2N(R')(R')$, $-O(CH_2)N(R')(R')$, -CON(R')(R'), $-(CH_2)_2OR'$, $(CH_2)OR'$, fenilo opcionalmente sustituido, -N(R')(R'), -NC(O)OR', -NC(O)R', $-(CH_2)_2N(R')(R')$ o $-(CH_2)N(R')(R')$;

WR^{W5} está seleccionado de hidrógeno, -OH, NH₂, CN, NHR', N(R')₂, -NHC(O)R', -NHC(O)OR', NHSO₂R', -OR', CH₂OH, C(O)OR', SO₂NHR' o CH₂NHC(O)O-(R').

Adicionalmente, en el presente documento se describen compuestos de fórmula VA-1, en la que:

WR^{W2} es un anillo de fenilo opcionalmente sustituido con hasta tres sustituyentes seleccionados de -OR'. -CF₃. -OCF₃, SR', S(O)R', SO₂R', -SCF₃, halógeno, CN, -COOR', -COR', -O(CH₂)₂N(R')(R'), -O(CH₂)N(R')(R'), CON(R')(R'), -(CH₂)₂OR', -(CH₂)OR', CH₂CN, fenilo opcionalmente sustituido o fenoxi, -N(R')(R'), -NR'C(O)OR', -NR'C(O)R', $-(CH_2)_2N(R')(R')$ o $-(CH_2)N(R')(R')$; WR^{W4} es alquilo C_1 - C_6 lineal o ramificado; y WR^{W5} es OH.

20

25

5

10

15

En un caso, cada uno de WR^{W2} y WR^{W4} está seleccionado independientemente de CF_3 o halógeno. En un caso, cada uno de WR^{W2} y WR^{W4} está seleccionado independientemente de hidrógeno opcionalmente sustituido, alquilo C_1 - C_6 lineal o ramificado. En ciertos casos, cada uno de WR^{W2} y WR^{W4} está seleccionado independientemente de n-propilo, isopropilo, n-butilo, sec-butilo, 1,1-dimetil-2-hidroxietilo, 1,1-dimetil-2-(etoxicarbonil)-etilo, 1,1-dimetil-3-(t-butoxicarbonil-amino)propilo o n-pentilo opcionalmente sustituido.

En un caso, cada uno de WR^{W2} y WR^{W4} está seleccionado independientemente de cicloalifático de 3-12 miembros opcionalmente sustituido. Ejemplos de tal cicloalifático incluyen ciclopentilo, ciclohexilo, ciclohexilo, norbornilo, adamantilo, [2.2.2]biciclo-octilo, [2.3.1]biciclo-octilo o [3.3.1]biciclo-nonilo.

30

45

En ciertos casos, WRW2 es hidrógeno y WRW4 es alquilo C1-C6 lineal o ramificado. En ciertos casos, WRW4 está seleccionado de metilo, etilo, propilo, n-butilo, sec-butilo o t-butilo.

En ciertos casos, WR^{W4} es hidrógeno y WR^{W2} es alquilo C₁-C₆ lineal o ramificado. En ciertos casos, WR^{W2} está seleccionado de metilo, etilo, propilo, n-butilo, sec-butilo, t-butilo o n-pentilo. 35

En ciertos casos, cada uno de WR^{W2} y WR^{W4} es alquilo C_1 - C_6 lineal o ramificado. En ciertos casos, cada uno de WR^{W2} y WR^{W4} está seleccionado de metilo, etilo, propilo, n-butilo, sec-butilo, t-butilo o pentilo.

En un caso, WR^{W5} está seleccionado de hidrógeno, CHF_2 , NH_2 . CN, NHR', $N(R')_2$, $CH_2N(R')_2$, -NHC(O)R', -NHC(O)R', -OR', COOR', OR', 40

En ciertos casos, WR^{W5} está seleccionado de hidrógeno, NH_2 , CN, CHF_2 , NH(alquil C_1 - C_6), N(alquil C_1 - C_6), -NHC(O)(alquil C_1 - C_6), -OH, -O(alquil C_1 - C_6), -OH, -O(alquil C_1 - C_6), -OH, CH₂NH₂, CH₂OH, NHC(O)OMe, NHC(O)OEt, CN, CHF₂, -CH₂NHC(O)O(t-butilo), -O-(etoxietilo), -O-(hidroxietilo), C(O)OMe o -SO₂NH₂.

En un caso, el compuesto de fórmula VA-1 tiene una, preferentemente más, o más preferentemente todas, de las 50 siguientes características:

i) WR^{W2} es hidrógeno; ii) WR^{W4} es alquilo C₁-C₆ lineal o ramificado o alifático monocíclico o bicíclico; y iii) WR^{W5} está seleccionado de hidrógeno, CN, CHF₂, NH₂, NH(alquil C₁-C₆), N(alquil C₁-C₆)₂, -NHC(O)(alquil C_1 - C_6), -NHC(O)O(alquil C_1 - C_6), -CH₂C(O)O(alquil C_1 - C_6), -OH, -O(alquil C_1 - C_6), C(O)O(alquil C_1 - C_6), -OH, -O(alquil C_1 - C_6), C(O)O(alquil C_1 - C_6), -OH, -O(alquil C_1 - C_6) o SO_2NH_2 .

En un caso, el compuesto de fórmula VA-1 tiene uno, preferentemente más, o más preferentemente todas, de las siquientes características:

60

55

- i) WR^{W2} es halógeno, alquilo C₁-C₆, CF₃, CN o fenilo opcionalmente sustituido con hasta 3 sustituyentes seleccionados de alquilo C₁-C₄, -O(alquilo C₁-C₄) o halógeno;
- ii) WR^{W4} es CF_3 , halógeno, alquilo C_1 - C_6 o cicloalifático C_6 - C_{10} ; y iii) WR^{W5} es OH, NH_2 , NH(alquilo C_1 - C_6) o N(alquilo C_1 - C_6).

65

En un caso, X-R^x está en la posición 6 del anillo de quinolinilo. En ciertos casos, X-R^x tomados conjuntamente es

alquilo C₁-C₆, -O-(alquilo C₁-C₆) o halógeno.

En un caso, X-R^X está en la posición 5 del anillo de quinolinilo. En ciertos casos, X-R^X tomados conjuntamente es -

5

Adicionalmente, en el presente documento se describen compuestos de fórmula VA-1, en la que WRW4 y WRW5 tomados conjuntamente forman un anillo de 5-7 miembros que contiene 0-3 tres heteroátomos seleccionados de N, O o S, en el que dicho anillo está opcionalmente sustituido con hasta tres sustituyentes WR^w.

10

En ciertos casos, WR^{W4} y WR^{W5} tomados conjuntamente forman un anillo de 5-7 miembros saturado, insaturado, o aromático, opcionalmente sustituido que contiene 0 heteroátomos. En otros casos, WR^{W4} y WR^{W5} tomados conjuntamente forman un anillo de 5-7 miembros opcionalmente sustituido que contiene 1-3 heteroátomos seleccionados de N, O o S. En ciertos otros casos, WR^{W4} y WR^{W5} tomados conjuntamente forman un anillo de 5-7 miembros saturado, insaturado, o aromático, opcionalmente sustituido que contiene 1 heteroátomo de nitrógeno. En constante de 15-7 miembros saturado, o aromático, opcionalmente sustituido que contiene 1 heteroátomo de nitrógeno. En constante de 15-7 miembros casos de 15-7 miembr ciertos otros casos, WR^{W4} y WR^{W5} tomados conjuntamente forman un anillo de 5-7 miembros opcionalmente sustituido que contiene 1 heteroátomo de oxígeno.

Adicionalmente, en el presente documento se describen compuestos de fórmula V-A-2:

20

15

25

en la que:

30

Y es CH_2 , C(O)O, C(O) o $S(O)_2$; m es 0-4; y X, R^X, W y R^W son como se han definido anteriormente.

35

En un caso, los compuestos de fórmula VA-2 tienen y apariciones de X-R^X, en el que y es 0-4. En un caso, y es 0. O, y es 1. O, y es 2.

En un caso, Y es C(O). En otro caso, Y es C(O)O. O, Y es S(O)2. O, Y es CH2.

40 En un caso, m es 1 ó 2. O, m es 1. O, m es 0.

En un caso, W es un enlace.

45

En otro caso, R^W es alifático C₁-C₆, halógeno, CF₃ o fenilo opcionalmente sustituido con alquilo C₁-C₆, halógeno, ciano o CF₃, en el que hasta dos unidades de metileno de dicho alifático C₁-C₆ o alquilo C₁-C₆ están opcionalmente sustituidas con -CO-, -CONR'-, -CO₂-, -OCO-, -NR'CO₂-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO₂NR'-, NR'SO₂- o -NR'SO₂NR'-. En otro caso, R' anterior es alquilo C₁-C₄.

Ejemplos de WR^W incluyen metilo, etilo, propilo, *terc*-butilo o 2-etoxifenilo.

50

En otro caso, R^W en Y-R^W es alifático C₁-C₆ opcionalmente sustituido con N(R")₂, en la que R" es hidrógeno, alguilo C₁-C₆, o dos R" tomados conjuntamente forman un anillo heterocíclico de 5-7 miembros con hasta 2 heteroátomos adicionales seleccionados de O, S o NR'. A modo de ejemplo, tales anillos heterocíclicos incluyen pirrolidinilo, piperidilo, morfolinilo o tiomorfolinilo.

55

Adicionalmente, en el presente documento se describen compuestos de fórmula V-A-3:

60

$$\mathbb{R}^{X} \cdot X \stackrel{\text{\tiny (WR^W)}_m}{=} \mathbb{R}^{X} \cdot \mathbb{R}^{X}$$

en la que:

Q es W; R^Q es R^W; m es 0-4;

n es 0-4; y

X, R^X, W y R^W son como se han definido anteriormente.

En un caso, los compuestos de fórmula VA-3 tienen y apariciones de X-R^X, en el que y es 0-4. En un caso, y es 0. O, y es 1. O, y es 2.

En un caso, n es 0-2.

En otro caso, m es 0-2. En un caso, m es 0. En un caso, m es 1. O, m es 2.

15

20

5

En un caso, QR^Q tomados conjuntamente es halógeno, CF_3 , OCF_3 , CN, alifático C_1 - C_6 , O-alifático C_1 - C_6 , O-fenilo, NH(alifático C_1 - C_6) o N(alifático C_1 - C_6), en el que dicho alifático y fenilo están opcionalmente sustituidos con hasta tres sustituyentes seleccionados de alquilo C_1 - C_6 , O-alquilo C_1 - C_6 , halógeno, ciano, OH o CF_3 , en el que hasta dos unidades de metileno de dicho alifático C_1 - C_6 o alquilo C_1 - C_6 están opcionalmente sustituidas con -CO-, -CONR'-, - CO_2 -, - OCO_2 -, - OCO_3 -, - $OCO_$

 QR^Q a modo de ejemplo incluyen metilo, isopropilo, sec-butilo, hidroximetilo, CF_3 , NMe_2 , CN, CH_2CN , flúor, cloro, OEt, OMe, SMe, OCF_3 , OPh, C(O)OMe, C(O)O-iPr, S(O)Me, NHC(O)Me o $S(O)_2Me$.

25

30

Adicionalmente, en el presente documento se describen compuestos de fórmula V-A-4:

35

45

50

en el que X, RX y RW son como se han definido anteriormente.

En un caso, los compuestos de fórmula VA-4 tienen y apariciones de X-R^X, en el que y es 0-4. En un caso, y es 0. O, y es 1. O, y es 2.

En un caso, R^W es alifático C_1 - C_{12} , cicloalifático C_5 - C_{10} o anillo heterocíclico C_5 - C_7 , en el que dicho alifático, cicloalifático o anillo heterocíclico está opcionalmente sustituido con hasta tres sustituyentes seleccionados de alquilo C_1 - C_6 , halógeno, ciano, oxo, OH o CF_3 , en el que hasta dos unidades de metileno de dicho alifático C_1 - C_6 o alquilo C_1 - C_6 están opcionalmente sustituidos con -CO-, -CONR'-, -CO₂-, -OCO-, -NR'CO₂-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO₂NR'-, NR'SO₂- o -NR'SO₂NR'-. En otro caso, R' anterior es alquilo C_1 - C_4 .

A modo de ejemplo, R^W incluye metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, t-butilo, n-pentilo, vinilo, cianometilo, hidroximetilo, hidroxibutilo, ciclohexilo, adamantilo o $-C(CH_3)_2-NHC(O)O-T$, en el que T es alquilo C_1-C_4 , metoxietilo o tetrahidrofuranilmetilo. Adicionalmente se describen en el presente documento.

Adicionalmente, en el presente documento se describen compuestos de fórmula V-A-5:

60

en la que:

m es 0-4; y

K, R, W, R, W y R' son como se han definido anteriormente.

En un caso, los compuestos de fórmula VA-5 tienen y apariciones de X-R^X, en el que y es 0-4. En un caso, y es 0. O, y es 1. O, y es 2. caso

En un caso, m es 0-2. O, m es 1. O, m es 2.

5

En otro caso, ambos R' son hidrógeno. O, un R' es hidrógeno y el otro R' es alquilo C_1 - C_4 , por ejemplo, metilo. O, ambos R' son alquilo C_1 - C_4 , por ejemplo, metilo.

En otro caso, m es 1 ó 2 y R^W es halógeno, CF₃, CN, alifático C₁-C₆, O-alifático C₁-C₆ o fenilo, en el que dicho alifático y fenilo están opcionalmente sustituidos con hasta tres sustituyentes seleccionados de alquilo C₁-C₆, O-alquilo C₁-C₆, halógeno, ciano, OH o CF₃, en el que hasta dos unidades de metileno de dicho alifático C₁-C₆ o alquilo C₁-C₆ están opcionalmente sustituidas con -CO-, -CONR'-, -CO₂- -OCO-, -NR'CO₂-, -O-, -NR'CONR'-, -OCONR'-, -NR'CO-, -S-, -NR'-, -SO₂NR'-, NR'SO₂- o -NR'SO₃NR'-. En otro caso, R' anteriormente es alquilo C₁-C₄.

Ejemplos de R^W incluyen cloro, CF₃, OCF₃, metilo, etilo, n-propilo, isopropilo, n-butilo, t-butilo, metoxi, etoxi, propiloxi, o 2-etoxifenilo.

Adicionalmente, en el presente documento se describen compuestos de fórmula V-A-6:

20

25

35

60

V-A-6

30 en la que:

el anillo B es un anillo de 5-7 miembros monocíclico o bicíclico, heterocíclico o de heteroarilo, opcionalmente sustituido con hasta n apariciones de -Q-R^Q, en la que n es 0-4, y Q y R^Q son como se han definido anteriormente; y

Q, R^Q , X, R^X , W y R^W son como se han definido anteriormente.

En un caso, los compuestos de fórmula VA-6 tienen y apariciones de X-R^X, en el que y es 0-4. En un caso, y es 0. O, y es 1. O, y es 2. caso

40 En un caso, m es 0-2. O, m es 0. o m es 1.

En un caso, n es 0-2. O, n es 0. O, n es 1. caso

En otro caso, el anillo B es un anillo heterocíclico monocíclico de 5-7 miembros que tiene hasta 2 heteroátomos seleccionados de O, S o N, opcionalmente sustituidos con hasta n apariciones de -Q-R^Q. Anillos heterocíclicos a modo de ejemplo incluyen N-morfolinilo, N-piperidinilo, 4-benzoil-piperazin-1-ilo, pirrolidin-1-ilo o 4-metil-piperidin-1-ilo

En otro caso, el anillo B es un anillo de heteroarilo de 5-6 miembros monocíclico que tiene hasta 2 heteroátomos seleccionados de O, S o N, opcionalmente sustituido con hasta n apariciones de -Q-R^Q. A modo de ejemplo, tales anillos incluyen bencimidazol-2-ilo, 5-metil-furan-2-ilo, 2,5-dimetil-pirrol-1-ilo, piridin-4-ilo, indol-5-ilo, indol-2-ilo, 2,4-dimetoxi-pirimidin-5-ilo, furan-2-ilo, furano-3-ilo, 2-acil-tien-2-ilo, benzotiofen-2-ilo, 4-metil-tien-2-ilo, 5-ciano-tien-2-ilo, 3-cloro-5-trifluorometil-piridin-2-ilo.

55 Adicionalmente, en el presente documento se describen compuestos de fórmula I':

ĭ

o sales farmacéuticamente aceptables de los mismos, en la que R¹, R², R³, R⁴, R⁵, R⁶, R⁷ y Ar¹ son como se han definido anteriormente para los compuestos de fórmula **I**'.

En un caso, cada uno de R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 y Ar^1 en los compuestos de los ejemplos fórmula l' es independientemente como se ha definido anteriormente para cualquiera de los ejemplos de compuestos de fórmula l.

Compuestos comparativos y un compuesto de la presente invención se exponen más adelante en la siguiente Tabla 1.

Tabla 1

15

5

10

Nº comp.	Nombre
2	N-(3-metoxi-4- <i>tert</i> -butil-fenilo)-4-oxo-1H-quinolina-3-carboxamida
3	N-[2-(2-metoxifenoxi)-5-(trifluorometilo)fenilo]-4-oxo-1H-quinolina-3-carboxamida
4	N-(2-morfolinofenilo)-4-oxo-1H-quinolina-3-carboxamida
5	N-[4-(2-hidroxi-1,1-dimetilo-etil)fenilo]-4-oxo-1H-quinolina-3-carboxamida
6	N-[3-(hidroximetilo)-4-tert-butil-fenilo]-4-oxo-1H-quinolina-3-carboxamida
7	N-(4-benzoilamino-2,5-dietoxi-fenilo)-4-oxo-1H-quinolina-3-carboxamida
8	N-(3-amino-4-etil-fenilo)-4-oxo-1H-quinolina-3-carboxamida
9	4-oxo-N-(3-sulfamoilfenilo)-1H-quinolina-3-carboxamida
11	4-oxo-N-[2-[2-(trifluorometilo)fenilo]-1H-quinolina-3-carboxamida
12	N-[2-(4-dimetiloaminofenilo)fenilo]-4-oxo-1H-quinolina-3-carboxamida
13	N-(3-ciano-4-tert-butil-fenilo)-4-oxo-1H-quinolina-3-carboxamida
14	[5-[(4-oxo-1H-quinolin-3-il)carbonilamino]-2-tert-butil-fenilo]acido aminoformico metilo ester
15	N-(2-metoxi-3-piridil)-4-oxo-1H-quinolina-3-carboxamida
16	4-oxo-N-(2-propilfenilo)-1H-quinolina-3-carboxamida
17	N-(5-amino-2-propoxi-fenilo)-4-oxo-1H-quinolina-3-carboxamida
20	N-[2-(2-metilofenoxi)fenilo]-4-oxo-1H-quinolina-3-carboxamida
21	4-oxo-N-[4-(2-piridilsulfamoil)fenilo]-quinolina-3-carboxamida
23	N-[2-(2-etoxifenilo)-5-hidroxi-4- <i>tert</i> -butil-fenilo]-4-oxo-1H-quinolina-3-carboxamida
24	4-oxo-N-(3-pirrolidin-1-ilsulfonilfenilo)-1H-quinolina-3-carboxamida
25	N-[2-(3-acetilaminofenilo)fenilo]-4-oxo-1H-quinolina-3-carboxamida
26	4-oxo-N-[2-(1-piperidil)fenilo]-1H-quinolina-3-carboxamida

60

l.	El compuesto	o 433 es el compuesto de la invención; el resto de compuestos de la Tabla 1 son compuestos comparativos.
ļ	Nº comp.	Nombre
5	28	[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]acido aminoformico 2-metoxietil ester
	29	1-isopropil-4-oxo-N-fenil-1H-quinolina-3-carboxamida
10	30	[2-isopropil-5-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformico metil ester
	31	4-oxo-N-(p-tolil)-1H-quinolina-3-carboxamida
	34	N-[4-(1,1-dietilpropil)-2-fluoro-5-hidroxi-fenil]-4-hidroxi-quinolina-3-carboxamida
15	36	N-(2-isopropilfenil)-4-oxo-1H-quinolina-3-carboxamida
	38	N-[2-(1H-indol-2-il)fenil]-4-oxo-1H-quinolina-3-carboxamida
	39	[3-[(2,4-dimetoxi-3-quinolil)carbonilamino]-4-tert-butil-fenil]acido aminoformico tert-butil ester
20	40	N-[2-(2-hidroxietil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	41	N-(5-amino-2-propil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	42	N-[2-[[3-cloro-5-(trifluorometil)-2-piridil]oxi]fenil]-4-oxo-1H-quinolina-3-carboxamida
25	43	N-[2-(3-etoxifenil)-5-hidroxi-4-tert-butil-fenil]-4-oxo-1H-quinolina-3-carboxamida
	45	N-(2-ciano-3-fluoro-fenil)-4-oxo-1H-quinolina-3-carboxamida
	46	N-[3-cloro-5-(2-morfolinoetilsulfonilamino)fenil]-4-oxo-1H-quinolina-3-carboxamida
30	47	N-[4-isopropil-2-(trifluorometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	48	N-(6-cloro-2-fluoro-fenil)-4-oxo-1H-quinolina-3-carboxamida
	49	N-[2-(2,6-dimetoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
35	50	4-oxo-N-(2,4,6-trimetilfenil)-1H-quinolina-3-carboxamida
	52	N-[2-(m-tolil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	53	4-oxo-N-(4-piridil)-1H-quinolina-3-carboxamida
40	55	N-(3-amino-2-metoxi-5-tert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	57	N-[4-(3-etil-2,6-dioxo-3-piperidil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	58	N-[3-amino-4-(trifluorometoxi)fenil]-4-oxo-1H-quinolina-3-carboxamida
45	59	N-[2-(5-isopropil-2-metoxi-fenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	60	[4-isopropil-3-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformico tert-butil ester
	61	N-(2,3-dimetilfenil)-4-oxo-1H-quinolina-3-carboxamida
50	62	4-oxo-N-[3-(trifluorometoxi)fenil]-1H-quinolina-3-carboxamida
	63	N-[2-(2,4-difluorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	68	3-[2-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido benzoico metil ester
55	69	N-(3-amino-4-isopropil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	70	4-oxo-N-[2-(4-piridil)fenil]-1H-quinolina-3-carboxamida
	71	3-[2-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido benzoico isopropil ester
60	72	N-(2-etilfenil)-4-oxo-1H-quinolina-3-carboxamida
	74	4-oxo-N-[5-(trifluorometil)-2-piridil]-1H-quinolina-3-carboxamida
	76	N-[2-(3,4-difluorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
65	78	4-oxo-N-(2-sulfamoilfenil)-1H-quinolina-3-carboxamida

	El compuesto	o 433 es el compuesto de la invención; el resto de compuestos de la Tabla 1 son compuestos comparativos.
	Nº comp.	Nombre
5	79	N-[2-(4-fluoro-3-metil-fenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	80	N-(2-metoxifenil)-4-oxo-1H-quinolina-3-carboxamida
	81	4-oxo-N-(3-propionilaminofenil)-1H-quinolina-3-carboxamida
10	82	N-(4-dietilamino-2-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	83	N-[2-(3-cianofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	84	N-(4-metil-2-piridil)-4-oxo-1H-quinolina-3-carboxamida
15	85	N-[2-(3,4-diclorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	86	N-[4-[2-(aminometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	87	4-oxo-N-(3-fenoxifenil)-1H-quinolina-3-carboxamida
20	88	[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]acido aminoformico tert-butil ester
	89	N-(2-ciano-5-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
25	90	4-oxo-N-(2- <i>tert</i> -butilfenil)-1H-quinolina-3-carboxamida
	91	N-(3-cloro-2,6-dietil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	92	N-[2-fluoro-5-hidroxi-4-(1-metilciclohexil)-fenil]-4-oxo-1H-quinolina-3-carboxamida
30	93	N-[2-(5-ciano-2-tienilo)fenil]-4-oxo-1H-quinolina-3-carboxamida
	94	N-(5-amino-2-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	95	N-(2-cianofenil)-4-oxo-1H-quinolina-3-carboxamida
35	97	N-[2-(2,4-dimetoxipirimidin-5-il)fenil]-4-oxo-1H-quinolina-3-carboxamida
	98	N-(5-dimetilamino-2-propil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	99	4-oxo-N-(4-pentilfenil)-1H-quinolina-3-carboxamida
40	101	N-(5-amino-2-isopropil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	102	N-[2-[3-(4-clorofenil)-1,2,4-oxadiazol-5-il]fenil]-4-oxo-1H-quinolina-3-carboxamida
	103	5-fluoro-N-(5-hidroxi-2,4-ditert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
45	106	N-(2-ciano-4,5-dimetoxi-fenil)-4-oxo-1H-quinolina-3-carboxamida
	110	N-[4-(cianometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	111	4-oxo-N-[2-(trifluorometil)fenil]-1H-quinolina-3-carboxamida
50	114	[4-(2-etoxifenil)-3-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformico tert-butil ester
	115	N-[2-(2-furil)fenil]-4-oxo-1H-quinolina-3-carboxamida
55	117	N-(3-dimetilamino-4-isopropil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	118	N-[2-(1H-indol-6-il)fenil]-4-oxo-1H-quinolina-3-carboxamida
	119	[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]acido aminoformicoetil ester
60	120	N-(2-metoxi-5-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	121	N-(3,4-diclorofenil)-4-oxo-1H-quinolina-3-carboxamida
	122	N-(3,4-dimetoxifenil)-4-oxo-1H-quinolina-3-carboxamida
65	123	N-[2-(3-furil)fenil]-4-oxo-1H-quinolina-3-carboxamida

	El compuesto	433 es el compuesto de la invención; el resto de compuestos de la Tabla 1 son compuestos comparativos.
	Nº comp.	Nombre
5	125	N-(6-etil-2-piridil)-4-oxo-1H-quinolina-3-carboxamida
	126	N-[3-hidroxi-4-[2-(2-metoxietoxi)-1,1-dimetil-etil]-fenil]-4-oxo-1H-quinolina-3-carboxamida
10	127	[5-[(4-oxo-1H-quinolin-3-il)carbonilamino]-2-tert-butil-fenil]acido aminoformico etil ester
	128	1,6-dimetil-4-oxo-N-(2-fenilfenil)-1H-quinolina-3-carboxamida
	129	[2-etil-5-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformico metil ester
15	131	N-(3-amino-5-cloro-fenil)-4-oxo-1H-quinolina-3-carboxamida
	132	N-(5-acetilamino-2-etoxi-fenil)-4-oxo-1H-quinolina-3-carboxamida
	133	N-[3-cloro-5-[2-(1-piperidil)etilsulfonilamino]fenil]-4-oxo-1H-quinolina-3-carboxamida
20	134	N-[2-(4-metilsulfinilfenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	135	N-(2-benzo[1,3]dioxol-5-ilfenil)-4-oxo-1H-quinolina-3-carboxamida
	136	N-(2-hidroxi-3,5-ditert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
25	137	6-[(4-fluorofenil)-metil-sulfamoil]-N-(5-hidroxi-2,4-ditert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	138	N-[2-(3,5-difluorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
30	139	N-[2-(2,4-diclorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	140	N-(4-ciclohexilfenil)-4-oxo-1H-quinolina-3-carboxamida
	141	[2-metil-5-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformico etil ester
35	142	4-oxo-N-(2-sec-butilfenil)-1H-quinolina-3-carboxamida
	143	N-(2-fluoro-5-hidroxi-4- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	144	N-(3-hidroxifenil)-4-oxo-1H-quinolina-3-carboxamida
40	147	N-[2-(4-fluorofenoxi)-3-piridil]-4-oxo-1H-quinolina-3-carboxamida
	149	N-(3-acetilamino-4-etil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	150	4-oxo-N-[4-[2,2,2-trifluoro-1-hidroxi-1-(trifluorometil)etil]fenil]-1H-quinolina-3-carboxamida
45	151	N-[2-(4-metil-2-tienilo)fenil]-4-oxo-1H-quinolina-3-carboxamida
	153	N-[4-(1,1-dietil-2,2-dimetil-propil)-2-fluoro-5-hidroxi-fenil]-4-hidroxi-quinolina-3-carboxamida
	154	N-[3,5-bis(trifluorometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
50	155	4-oxo-N-(2-piridil)-1H-quinolina-3-carboxamida
	156	4-oxo-N-[2-[2-(trifluorometoxi)fenil]fenil]-1H-quinolina-3-carboxamida
	157	N-(2-etil-5-metilamino-fenil)-4-oxo-1H-quinolina-3-carboxamida
55	160	N-(3-amino-4-propil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	161	N-[3-(2-etoxietoxi)-4-tert-butil-fenil]-4-oxo-1H-quinolina-3-carboxamida
	162	N-(6-metoxi-3-piridil)-4-oxo-1H-quinolina-3-carboxamida
60	163	N-[5-(aminometil)-2-(2-etoxifenil)-fenil]-4-oxo-1H-quinolina-3-carboxamida
	164	4-oxo-N-[3-(trifluorometil)fenil]-1H-quinolina-3-carboxamida
	165	4-oxo-N-(4-sulfamoilfenil)-1H-quinolina-3-carboxamida
65	166	4-[2-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido benzoico metil ester

Nº comp.	Nombre
167	N-(3-amino-4-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
168	4-oxo-N-(3-piridil)-1H-quinolina-3-carboxamida
170	N-(5-cloro-2-piridil)-4-oxo-1H-quinolina-3-carboxamida
171	N-[2-(2,3-diclorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
172	N-(2-(benzo[b]tiofen-2-il)fenil)-1,4-dihidro-4-oxoquinolina-3-carboxamida
173	N-(6-metil-2-piridil)-4-oxo-1H-quinolina-3-carboxamida
174	N-[2-(5-acetil-2-tienilo)fenil]-4-oxo-1H-quinolina-3-carboxamida
176	4-oxo-N-[4-(trifluorometoxi)fenil]-1H-quinolina-3-carboxamida
177	N-(2-butoxifenil)-4-oxo-1H-quinolina-3-carboxamida
178	4-oxo-N-[2-(2-tert-butilfenoxi)fenil]-1H-quinolina-3-carboxamida
179	N-(3-carbamoilfenil)-4-oxo-1H-quinolina-3-carboxamida
180	N-(2-etil-6-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
181	4-oxo-N-[2-(p-tolil)fenil]-1H-quinolina-3-carboxamida
182	N-[2-(4-fluorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
185	N-(3-morfolinosulfonilfenil)-4-oxo-1H-quinolino-3-carboxamida
189	N-(4-benziloxifenil)-4-oxo-1H-quinolina-3-carboxamida
190	N-[2-(3-cloro-4-fluoro-fenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
192	N-(3-metil-2-piridil)-4-oxo-1H-quinolina-3-carboxamida
193	N-(2,6-dimetoxi-3-piridil)-4-oxo-1H-quinolina-3-carboxamida
194	N-(4-cianofenil)-4-oxo-1H-quinolina-3-carboxamida
195	N-(5-metil-2-piridil)-4-oxo-1H-quinolina-3-carboxamida
196	N-[5-(3,3-dimetilbutanoilamino)-2-tert-butil-fenil]-4-oxo-1H-quinolina-3-carboxamida
197	4-oxo-N-[6-(trifluorometil)-3-piridil]-1H-quinolina-3-carboxamida
198	N-(4-fluorofenil)-4-oxo-1H-quinolina-3-carboxamida
199	N-[2-(o-tolil)fenil]-4-oxo-1H-quinolina-3-carboxamida
201	N-(2-ciano-3-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
202	N-[2-(5-cloro-2-metoxi-fenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
205	N-[2-(4-metoxifenoxi)-5-(trifluorometil)fenil]-4-oxo-1H-quinollne-3-carboxamida
206	N-[2-(2,3-dimetilfenoxi)-3-pirldil]-4-oxo-1H-quinolina-3-carboxamida
208	N-[4-(2-adamantil)-5-hidroxi-2-metil-fenil]-4-oxo-1H-quinolina-3-carboxamida
209	N-[4-(hidroximetil)fenil]-4-oxo-1H-quinolina-3-carboxamida
210	2,4-dimetoxi-N-(2-fenilfenil)-quinolina-3-carboxamida
211	N-(2-metoxi-5-tert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
212	N-[3-(3-metil-5-oxo-1,4-dihidropirazol-1-il)fenil]-4-oxo-1H-quinolina-3-carboxamida
213	N-[2-(2,5-diclorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
214	N-(3-meltilsulfonilaminofenil)-4-oxo-1H-quinolina-3-carboxamida
215	4-oxo-N-fenil-1H-quinolina-3-carboxamida

	El compuesto 4	433 es el compuesto de la invención; el resto de compuestos de la Tabla 1 son compuestos comparativos.
	Nº comp.	Nombre
5	218	6-fluoro-N-[2-fluoro-5-hidroxi-4-(1-metilciclohexil)-fenil]-4-oxo-1H-quinolina-3-carboxamida
	219	4-oxo-N-pirazin-2-il-1H-quinolina-3-carboxamida
	220	N-(2,3-dihidroxi-4,6-ditert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
10	221	[5-[(4-oxi-1H-quinolin-3-il)carbonilamino]-2-propil-fenil]acido aminoformico metil ester
	222	N-(3-cloro-2-ciano-fenil)-4-oxo-1H-quinolina-3-carboxamida
	223	N-[2-(4-metilsulfanilfenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
15	224	4-oxo-N-[4-[2-[(2,2,2-trifluoroacetil)aminometil]fenil]-1H-quinolina-3-carboxamida
	225	[2-isopropil-5-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformico etil ester
	226	4-oxo-N-(4-propilfenil)-1H-quinolina-3-carboxamida
20	227	N-[2-(3H-benzoimidazol-2-il)fenil]-4-oxo-1H-quinolina-3-carboxamida
	228	N-[2-(hidroxi-fenil-metil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	229	N-(2-metilsulfanilfenil)-4-oxo-1H-quinolina-3-carboxamida
25	231	3-[4-hidroxi-2-[(4-oxo-1H-quinolin-3-il)carbonilamino]-5-tert-butil-fenil]acido benzoico metil ester
	232	N-(5-acetilamino-2-propil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	235	N-(6-isopropil-3-piridil)-4-oxo-1H-quinolina-3-carboxamida
30	236	4-oxo-N-[4-(trifluorometil)fenil]-1H-quinolina-3-carboxamlde
	239	[4-isopropil-3-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformicometil ester
	240	N-(2-benziloxifenil)-4-oxo-1H-quinolina-3-carboxamida
35	242	N-(5-amino-2,4-dicloro-fenil)-4-oxo-1H-quinolina-3-carboxamida
	243	N-(5-acetilamino-2-isopropil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	245	N-[2-(2,4-diclorofenoxi)fenil]-4-oxo-1H-quinolina-3-carboxamida
40	246	N-(3,4-dimetilfenil)-4-oxo-1H-quinolina-3-carboxamida
	247	4-oxo-N-[2-(2-fenoxifenil)fenil]-1H-quinolina-3-carboxamida
45	248	N-(3-acetilamino-4-metil-fenil)-4-oxo-1H-quinolina-3-carboxamlde
45	249	[4-etil-3-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformicometil ester
	250	N-(5-acetilamino-2-metoxi-fenil)-4-oxo-1H-quinolina-3-carboxamida
50	251	[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]acido aminoformicolsobutil ester
30	252	N-(2-benzoilfenil)-4-oxo-1H-quinolina-3-carboxamida
	253	4-oxo-N-[2-[3-(triffluorometoxi)fenil]fenil]-1H-quinolina-3-carboxamida
55	255	N-(5-hidroxi-2,4-ditert-butil-fenil)-4-oxo-6-pirrolidin-1-ilsulfonil-1H-quinolina-3-carboxamida
00	257	N-(4-fluoro-3-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	260	N-(5-amino-2- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
60	261	N-[2-(3,4-dimetilfenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	263	N-(4-bromo-2-etil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	264	N-(2,5-dietoxifenil)-4-oxo-1H-quinolina-3-carboxamida
65	265	N-(2-benzilfenil)-4-oxo-1H-quinolina-3-carboxamida

	El compuesto	433 es el compuesto de la invención; el resto de compuestos de la Tabla 1 son compuestos comparativos.
	Nº comp.	Nombre
5	266	N-[5-hidroxi-4- <i>tert</i> -butil-2-(trifluorometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	267	4-oxo-N-(4-fenoxiphanil)-1H-quinolina-3-carboxamida
	268	4-oxo-N-(3-sulfamoil-4-tert-butil-fenil)-1H-quinolina-3-carboxamida
10	269	[4-isopropil-3-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformicoetil ester
	271	N-(3-amino-4- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	272	N-[3-(2-morfolinoetilsulfonilamino)-5-(trifluorometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
15	275	4-benziloxi-N-(3-hidroxi-4- <i>tert</i> -butil-fenil)-quinolina-3-carboxamida
	276	N-(4-morfolinosulfonilfenil)-4-oxo-1H-quinolina-3-carboxamida.
	277	N-[2-(3-fluorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
20	278	4-oxo-N-[2-[3-(trifluorometil)fenil]fenil]-1H-quinolina-3-carboxamida
	279	N-[2-(2-metilsulfanilfenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	281	N-(2,4-dimetilfenil)-4-oxo-1H-quinolina-3-carboxamida
25	282	N-(5-amino-2-etil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	283	N-[2-(3-metoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	285	N-[2-(2,3-difluorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
30	287	N-[2-fluoro-5-hidroxi-4-(1-metilciclohexil)-fenil]-5-hidroxi-4-oxo-1H-quinolina-3-carboxamida
	288	N-(5-fluoro-2-metoxicarboniloxi-3- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
0.5	289	N-(2-fluoro-4-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
35	290	N-[2-(3-isopropilfenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	291	N-(2-cloro-5-hidroxi-4- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
40	292	N-(5-cloro-2-fenoxi-plienil)-4-oxo-1H-quinolina-3-carboxamida
40	293	4-oxo-N-[2-(1H-pirrol-1-il)fenil]-1H-quinolina-3-carboxamida
	295	4-oxo-N-(2-pirrolidin-1-ilfenil)-1H-quinolina-3-carboxamida
45	296	2,4-dimetoxi-N-(2- <i>tert</i> -butilfenil)-quinolina-3-carboxamida
40	297	N-[2-(2,5-dimetil-1H-pirrol-1-il)fenil]-4-oxo-1H-quinolina-3-carboxamida
	298	[2-etil-5-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformico etil ester
50	301	N-[4-(4-metil-4H-1,2,4-triazol-3-il)fenil]-4-oxo-1H-quinolina-3-carboxamida
00	302	N-[2-[4-(hidroximetil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	304	[4-(2-etoxifenil)-3-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenilmetil]acido aminoformico tert-butil ester
55	305	N-[2-(4-metoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	306	N-[2-(3-etoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	307	N-[2-(3-clorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
60	308	N-[2-(cianometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	310	4-oxo-N-(4-sec-butilfenil)-1H-quinolina-3-carboxamida
65	311	N-[2-(6-metil-2-furil)fenil]-4-oxo-1H-quinolina-3-carboxamida

	Nº comp.	Nombre
	312	N-[2-(2,4-dimetoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	313	N-[2-(2-fluorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	314	N-(2-etil-6-isopropil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	315	N-(2,6-dimetilfenil)-4-oxo-1H-quinolina-3-carboxamida
	316	N-(6-acetilamino-2- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	317	N-(2,6-diclorofenil)-4-oxo-1H-quinolina-3-carboxamida
	318	4-oxo-N-[3-[2-(1-piperidil)etilsulfonilamino]-5-(trifluorometil)fenil)-1H-quinolina-3-carboxamida
	319	6-fluoro-N-(2-fluoro-5-hidroxi-4-tert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	321	N-[2-(4-benzoilpiperazin-1-il)fenil]-4-oxo-1H-quinolina-3-carboxamida
	322	N-(2-etil-6-sec-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	323	[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]acido aminoformico metil ester
	324	N-(4-butilfenil)-4-oxo-1H-quinolina-3-carboxamida
	325	N-(2,6-dietilfenil)-4-oxo-1H-quinolina-3-carboxamida
	326	N-[2-(4-metilsulfonilfenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	328	N-(3-acetilfenil)-4-oxo-1H-quinolina-3-carboxamida
	330	N-(2-clorofenil)-4-oxo-1H-quinolina-3-carboxamida
	331	N-(2-carbamoilfenil)-4-oxo-1H-quinolina-3-carboxamida
	332	N-(4-etinilfenil)-4-oxo-1H-quinolina-3-carboxamida
	333	N-[2-[4-(cianometil)fenil]fenil]-4-oxo-1H-quinolina-3-carboxamida
	335	N-(2-carbamoil-5-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	336	N-(2-butilfenil)-4-oxo-1H-quinolina-3-carboxamida
	337	N-(5-hidroxi-2,4-ditert-butil-fenil)-N-metil-4-oxo-1H-quinolina-3-carboxamida.
	340	N-(3-metilsulfonilamino-4-propil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	341	[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]acido aminoformico neopentil ester
	344	N-[2-(2-etoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	346	4-oxo-N-fenil-7-(trifluorometil)-1H-quinolina-3-carboxamida
	348	N-[2-(4-etoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	349	4-oxo-N-(2-fenilsulfonilfenil)-1H-quinolina-3-carboxamida
	353	[3-[(4-oxo-1H-quinolin-3-il)carbonilamino]-4-tert-butil-fenil]acido aminoformico tert-butil ester
	354	N-[2-[(ciclohexil-metil-amino)metil]fenil]-4-oxo-1H-quinolina-3-carboxamida
	355	N-[2-(2-metoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	356	N-(5-metilamino-2-propil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	359	N-[3-(2-dimetilaminoetilsulfonilamino)-5-(trifluorometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
F	360	N-[4-(difluorometoxi)fenil]-4-oxo-1H-quinolina-3-carboxamida
H	361	N-[2-(2,5-dimetoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida

	El compuesto	433 es el compuesto de la invención; el resto de compuestos de la Tabla 1 son compuestos comparativos.
	Nº comp.	Nombre
5	362	N-(2-cloro-4-tert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	363	N-[2-(2-fluoro-3-metoxi-fenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	365	N-(2-acetilfenil)-4-oxo-1H-quinolina-3-carboxamida
10	366	4-oxo-N-[2-[4-(trifluorometil)fenil]fenil]-1H-quinolina-3-carboxamida
	367	N-[2-(3,5-diclorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	368	N-(3-amino-4-propoxi-fenil)-4-oxo-1H-quinolina-3-carboxamida
15	369	N-(2,4-dicloro-6-ciano-fenil)-4-oxo-1H-quinolina-3-carboxamida
	370	N-(3-clorofenil)-4-oxo-1H-quinolina-3-carboxamida
	371	4-oxo-N-[2-(trifluorometilsulfanil)fenil]-1H-quinolina-3-carboxamida
20	372	N-[2-(4-metil-1-piperidil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	378	N-(3-amino-4-metoxi-fenil)-4-oxo-1H-quinolina-3-carboxamida
	379	N-[3-acetilamino-5-(trifluorometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
25	380	N-(2-etoxiphonil)-4-oxo-1H-quinolina-3-carboxamida
	382	[5-[(4-oxo-1H-quinolin-3-il)carbonilamino]-2-propil-fenil]acido aminoformicoetil ester
	384	N-[2-(2,5-difluorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
30	385	N-[2-(2,4-difluorofenoxi)-3-piridil]-4-oxo-1H-quinolina-3-carboxamida
	387	N-[2-metil-3-(trifluorometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	388	4-oxo-N-[2-[4-(trifluorometoxi)fenil]fenil]-1H-quinolina-3-carboxamida
35	389	N-(3-benzilfenil)-4-oxo-1H-quinolina-3-carboxamida
	390	N-[3-(aminometil)-4- <i>tert</i> -butil-fenil]-4-oxo-1H-quinolina-3-carboxamida
	391	N-[2-(4-isobutilfenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
40	392	N-(6-cloro-3-piridil)-4-oxo-1H-quinolina-3-carboxamida
	393	N-[5-amino-2-(2-etoxifenil)-fenil]-4-oxo-1H-quinolina-3-carboxamida
	394	1,6-dimetil-4-oxo-N-fenil-1H-quinolina-3-carboxamida
45	395	N-[4-(1-adamantil)-2-fluoro-5-hidroxi-fenil]-4-hidroxi-quinolina-3-carboxamida
	396	[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamIno]fenil]-propil]acido aminoformicotetrahidrofuran-3-ilmetil ester
50	397	4-oxo-N-(4-fenilfenil)-1H-quinolina-3-carboxamida
	398	4-oxo-N-[2-(p-tolilsulfonilamino)fenil]-1H-quinolina-3-carboxamida
	399	N-(2-isopropil-5-metilamino-fenil)-4-oxo-1H-quinolina-3-carboxamida
55	400	N-(6-morfolino-3-piridil)-4-oxo-1H-quinolina-3-carboxamida
	401	N-[2-(2,3-dimetilfenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	402	4-oxo-N-(5-fenil-2-piridil)-1H-quinolina-3-carboxamida
60	403	N-[2-fluoro-5-hidroxi-4-(1-metilciclooctil)-fenil]-4-hidroxi-quinolina-3-carboxamida
	405	N-(4-clorofenil)-4-oxo-1H-quinolina-3-carboxamida
	407	N-(2-fluoro-5-hidroxi-4- <i>tert</i> -butil-fenil)-5-hidroxi-4-oxo-1H-quinolina-3-carboxamida
65	408	N-(3-metoxifenil)-4-oxo-1H-quinolina-3-carboxamida

	El compuesto	o 433 es el compuesto de la invención; el resto de compuestos de la Tabla 1 son compuestos comparativos.
	Nº comp.	Nombre
5	409	N-(5-dimetilamino-2-etil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	410	4-oxo-N-[2-(4-fenoxifenil)fenil]-1H-quinolina-3-carboxamida
	411	7-cloro-4-oxo-N-fenil-1H-quinolina-3-carboxamida
10	413	4-oxo-N-(2-fenoxifenil)-1H-quinolina-3-carboxamida
	415	N-(3-hidroxi-4- <i>tert</i> -butil-fenil)-4-metoxi-quinolina-3-carboxamida
	416	[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]acido aminoformico propil ester
15	417	N-(2-(benzo[b]tiofen-3-il)fenil)-1,4-dihidro-4-oxoquinolina-3-carboxamida
	418	N-(3-dimetilaminofenil)-4-oxo-1H-quinolina-3-carboxamida
	419	N-(3-acetilaminofenil)-4-oxo-1H-quinolina-3-carboxamida
20	420	2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-acido propanoico etil ester
	421	N-[5-metoxi-4-tert-butil-2-(trifluorometil)fenil)-4-oxo-1H-quinolina-3-carboxamida
	424	N-[2-(4-clorofenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
25	425	N-(4-isopropilfenil)-4-oxo-1H-quinolina-3-carboxamida
	426	N-(4-cloro-5-hidroxi-2- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	428	N-(3-hidroxi- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
30	429	N-[3-amino-5-(trifluorometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	430	N-(2-isopropil-6-metil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	431	N-(3-aminofenil)-4-oxo-1H-quinolina-3-carboxamida
35	432	N-[2-(4-isopropilfenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	433	N-(5-hidroxi-2,4-ditert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	434	N-(2,5-dimetilfenil)-4-oxo-1H-quinolina-3-carboxamida
40	435	N-[2-(2-fluorofenoxi)-3-piridil]-4-oxo-1H-quinolina-3-carboxamida
	436	N-[2-(3,4-dimetoxifenil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	438	N-[5-(difluorometil)-2,4-ditert-butil-fenil]-4-oxo-1H-quinolina-3-carboxamida
45	439	N-(4-metoxifenil)-4-oxo-1H-quinolina-3-carboxamida
	441	N-[3-metilsulfonilamino-5-(trifluorometil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	442	4-oxo-N-[3-(1-piperidilsulfonil)fenil]-1H-quinolina-3-carboxamida
50	444	5-[(4-oxo-1H-quinolin-3-il)carbonilamino]-2-tert-butil-acido benzoico metil ester
	445	N-(2-isopropenilfenil)-4-oxo-1H-quinolina-3-carboxamida
	447	N-(3-cianofenil)-4-oxo-1H-quinolina-3-carboxamida
55	448	4-oxo-N-(4- <i>tert</i> -butilfenil)-1H-quinolina-3-carboxamida
	449	N-(m-tolil)-4-oxo-1H-quinolina-3-carboxamida
	450	N-[4-(1-hidroxietil)fenil]-4-oxo-1H-quinolina-3-carboxamida
60	451	N-(4-ciano-2-etil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	452	4-oxo-N-(4-vinilfenil)-1H-quinolina-3-carboxamida
05	453	N-(3-amino-4-cloro-fenil)-4-oxo-1H-quinolina-3-carboxamida
65	454	N-(2-metil-5-fenil-fenil)-4-oxo-1H-quinolina-3-carboxamida

	El compuesto 4	433 es el compuesto de la invención; el resto de compuestos de la Tabla 1 son compuestos comparativos.
	Nº comp.	Nombre
5	455	N-[4-(1-adamantil)fenil]-4-oxo-1H-quinolina-3-carboxamida
	456	4-oxo-N-[3-(trifluorometilsulfanil)fenil]-1H-quinolina-3-carboxamida
	457	N-(4-morfolinofenil)-4-oxo-1H-quinolina-3-carboxamida
0	458	N-[3-(2-hidroxietoxi)-4-tert-butil-fenil]-4-oxo-1H-quinolina-3-carboxamida
	459	N-(o-tolil)-4-oxo-1H-quinolina-3-carboxamida
	460	[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]acido aminoformico butil ester
5	461	4-oxo-N-(2-fenilfenil)-1H-quinolina-3-carboxamida
	462	N-(3-dimetilamino-4-propil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	463	N-(4-etilfenil)-4-oxo-1H-quinolina-3-carboxamida
)	464	5-hidroxi-N-(5-hidroxi-2,4-ditert-butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	465	[5-[(4-oxo-1H-quinolin-3-il)carbonilamino]-2-tert-butil-fenilmetil]acido aminoformico tert-butil ester
	466	N-(2,6-diisopropilfenil)-4-oxo-1H-quinolina-3-carboxamida
5	468	1-metil-4-oxo-N-fenil-1H-quinolina-3-carboxamida
	469	4-oxo-N-(2-fenilfenil)-7-(trifluorometil)-1H-quinolina-3-carboxamida
	470	4-oxo-N-(4-fenilsulfanilfenil)-1H-quinolina-3-carboxamida
)	471	[3-[(4-oxo-1H-quinolin-3-il)carbonilamino]-4-propil-fenil]acido aminoformico metil ester
	472	[4-etil-3-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]acido aminoformico etil ester
	473	1-isopropil-4-oxo-N-(2- <i>tert</i> -butilfenil)-1H-quinolina-3-carboxamida
5	475	N-(2,5-dicloro-3-piridil)-4-oxo-1H-quinolina-3-carboxamida
	476	N-(2-ciano-5-hidroxi-4- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
	477	N-(5-fluoro-2-piridil)-4-oxo-1H-quinolina-3-carboxamida
)	480	1-etil-6-metoxi-4-oxo-N-fenil-1H-quinolina-3-carboxamida
	483	N-[2-fluoro-5-hidroxi-4-(1-metilcicloheptil)-fenil]-4-hidroxi-quinolina-3-carboxamida
	484	N-(3-metilamino-4- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida
5	485	N-(3-dimetilamino-4- <i>tert</i> -butil-fenil)-4-oxo-1H-quinolina-3-carboxamida

Compuestos útiles como productos intermedios en la síntesis de los compuestos de fórmula I incluyen los compuestos de fórmula A-I:

o una sal de los mismos; en la que:

55

60

65

 G_1 es hidrógeno, R', C(O)R', C(S)R', S(O)R', S(O)₂R', Si(CH₃)₂R', P(O)(OR')₃, P(S)(OR')₃ o B(OR')₂; G_2 es halógeno, CN, CF₃, isopropilo o fenilo, en el que dicho isopropilo o fenilo está opcionalmente sustituido con hasta 3 sustituyentes independientemente seleccionados de WR^W, en el que W y R^W are como se han definido anteriormente para la fórmula I y ejemplos de los mismos;

 G_3 es un isopropilo o un anillo cicloalifático C_3 - C_{10} , en el que dicho G_3 está opcionalmente sustituido con hasta 3 sustituyentes independientemente seleccionados de WR^W , en el que W y R^W son como se han definido anteriormente para la fórmula I y ejemplos de los mismos; a condición de que si G_1 es metoxi, G_3 es *terc*-butilo, entonces G_2 no es 2-amino-4-metoxi-5-*terc*-butil-fenilo.

5

Adicionalmente, en el presente documento se describen compuestos de fórmula A-I, a condición de que si G₂ y G₃ son cada uno t-butilo, entonces G₁ no es hidrógeno.

En otro caso:

10

15

G₁ es hidrógeno:

G₂ es halógeno o isopropilo, en el que dicho isopropilo está opcionalmente sustituido con hasta 3 sustituyentes independientemente seleccionados de R'; y

 G_3 es un isopropilo o un anillo cicloalifático C_3 - C_{10} , en el que dicho G_3 está opcionalmente sustituido con hasta 3 sustituyentes independientemente seleccionados de R'.

En otro caso:

G₁ es hidrógeno;

20 G₂ es halógeno, preferentemente flúor; y

G₃ es un anillo cicloalifático C₃-C₁₀, en el que dicho G₃ está opcionalmente sustituido con hasta 3 sustituyentes independientemente seleccionados de metilo, etilo, propilo o butilo.

En otro caso:

25

G₁ es hidrógeno;

G₂ es CN, halógeno o CF₃; y

G₃ es un isopropilo o un anillo cicloalifático C₃-C₁₀, en el que dicho G₃ está opcionalmente sustituido con hasta 3 sustituyentes independientemente seleccionados de R'.

30

35

En otro caso:

G₁ es hidrógeno;

 G_2 es fenilo que está opcionalmente sustituido con hasta 3 sustituyentes independientemente seleccionados de -O-alquilo C_1 - C_4 , CF_3 , halógeno o CN; y

G₃ es un isopropilo o un anillo cicloalifático C₃-C₁₀, en el que dicho G₃ está opcionalmente sustituido con hasta 3 sustituyentes independientemente seleccionados de R'.

G₃ a modo de ejemplo incluyen ciclopentilo, ciclohexilo, cicloheptilo o adamantilo opcionalmente sustituido. O, G3 es cadena alifática C₃-C₈ ramificada. G₃ a modo de ejemplo incluyen isopropilo, t-butilo, 3,3-dietil-prop-3-ilo o 3,3-dietil-2,2-dimetil-prop-3-ilo.

En otro caso

45

G₁ es hidrógeno;

G₂ es t-butilo: v

G₃ es un t-butilo.

4. Esquemas sintéticos generales

50

Los compuestos de la presente invención se preparan fácilmente por métodos conocidos en la técnica. A continuación se ilustran a modo de ejemplo métodos para la preparación de los compuestos de la presente invención.

55 El siguiente esquema ilustra la síntesis de precursores de ácido de los compuestos de la presente invención.

Síntesis de precursores de ácido P-IV-A:

60

a) $(CO_2Et)_2CH_2$; b) $(CO_2Et)_2CH=CH(OEt)$; c) CF_3CO_2H , PPh_3 , CCl_4 , Et_3N ; d) Mel; e) PPA o diffenil éter; f) NaOH.

35 Síntesis de precursores de ácido P-IV-A:

40
$$R \xrightarrow{a} R \xrightarrow{b} R \xrightarrow{b} R \xrightarrow{co_{2}Et} \xrightarrow{c} R \xrightarrow{co_{2}Et}$$

$$Co_{2}Et \xrightarrow{e} R \xrightarrow{OH} Co_{2}Et$$

$$Co_{2}Et \xrightarrow{e} R \xrightarrow{OH} Co_{2}Et$$

a) AcONH₄; b) EtOCHC(CO₂Et)₂, 130 °C; c) Ph₂O, Δ T; d) I₂) EtOH; e) NaOH.

Síntesis de precursores de ácido P-IV-A

50

65

POCl₃; b) R'ONa; c) n-BuLi, ClCO₂Et; d) NaOH

Síntesis de precursor de amina P-III-A:

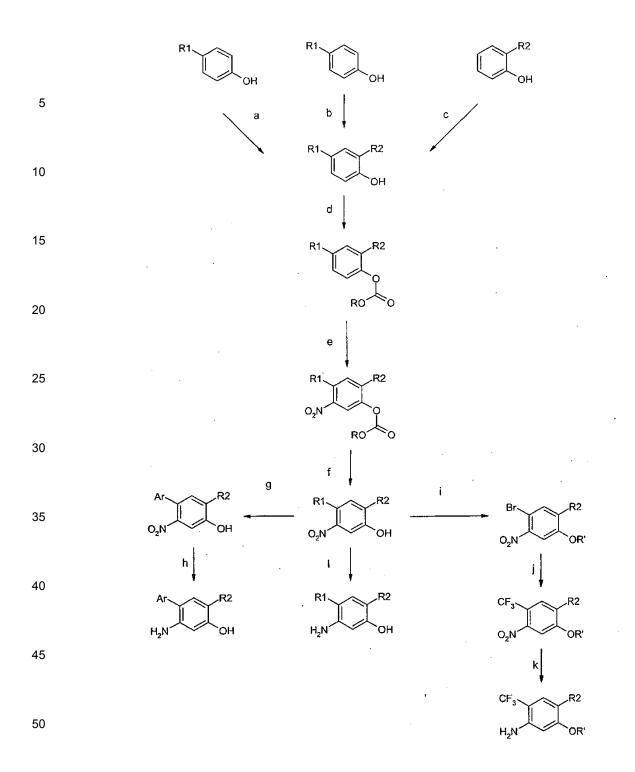
(CH₃)₂SO₄; b) K₃Fe(CN)₆, NaOH, H₂O c) HNO₃, H₂SO₄; d) RCOCH₃, MeOH), NH₃; e) H₂, Ni Raney

Síntesis de precursor de amina P-IV-A:

30 HNO₃, HOAc; b) Na₂S₂O₄, THF/H₂O; c) H₂, Pd/C.

Síntesis de precursor de amina P-V-A-1:

45 KNO₃, H₂SO₄; b) NaNO₂, H₂SO₄- H₂O; c) NH₄CO₂H Pd-C; d) R'X; e) NH₄CO₂H Pd-C Síntesis de precursor de amina **P-V-A-1**:


55

50

15

20

60

a) SO_2CI_2 , R2= CI; b) R2OH, R2=alquilo; c) NBS, R1=Br; d) $CICO_2R$, TEA; e) HNO_3 , H_2SO_4 ; f) base; g) $ArB(OH)_2$, R1=Br; h) [H]; l) R'X, R1= Br; j) $CICF_2CO_2Me$; k) [H];1) [H].

60

Síntesis de precursor de amina P-V-A-1:

5

$$R$$
 Q_2N
 R
 Q_2N
 Q_2N

 $\mathsf{KNO}_3;\,\mathsf{b})\,[\mathsf{H}];\,\mathsf{c})\,\mathsf{KNO}_3;\,\mathsf{d})\,\mathsf{AcCI};\,\mathsf{e})\,[\mathsf{H}];\,\mathsf{f})\,\mathsf{i})\,\mathsf{NaNO}_2;\,\mathsf{ii})\,\mathsf{H}_2\mathsf{O};\,\mathsf{g})\,\mathsf{HCI}$

Síntesis de precursor de amina P-V-A-1:

25

30

$$H_1N$$
 NHR'
 $PG-N$
 NHR'
 NHR'

 HNO_3 , H_2SO_4 ; b) [H]; c) protección; d) R'CHO; e) desprotección; f) [H]; g) Na_2S , S, H_2O ; h) nitración; i) $(BOC)_2O$; j) [H]; k) RX;1) [H]; PG= grupo protector

Síntesis de precursores de amina P-V-A-1 o P-V-A-2:

a) Br_2 ; b) $Zn(CN)_2$, $Pd(PPh)_3$; c) [H]; d) BH_3 ; e) $(BOC)_2O$; f) [H]; g) H_2SO_4 , H_2O ; h) R'X; i) [H]; j) $LiAlH_4$

Síntesis de precursores de amina P-V-A-1 o P-V-A-2:

 O_2N NH_2 O_2N SO_2CI O_2N SO_2NH_2

55 R SO NH

(i) NaNO₂, HCl; ii) Na₂SO₃, CuSO₄, HCl; b) NH₄Cl; c) [H]

65

60

45

50

Síntesis de precursores de amina P-V-A-1:

5
$$\frac{R}{CHO} = \frac{B}{O_2N} + \frac{C}{CHO} = \frac{C}{CHO}$$

10
$$O_2N$$
 CHF_2 H_2N CHF_2

a) CHCl₂OMe; b) KNO₃, H₂SO₄; c) Deoxo-Fluor; d) Fe

Síntesis de precursores de amina P-V-A-3:

$$\begin{array}{c|c} c & Ar & Ar & Ar & Ar & NHBoc \\ \hline & H_2N & NH_2 & \hline & H_2N & NHBoc \\ \end{array}$$

Ar = Arilo o heteroarilo

15

30

45

50

60

a) Nitración; b) ArB(OH)2, Pd; c) BH3; d) (BOC)2O

Síntesis de precursores de amina P-V-A-3 y P-V-A-6:

A₁= Arilo o heteroarilo

a) $ArB(OH)_2$, $Pd(PPh_3)_4$, K_2CO_3 , H_2O , THF o $ArB(OH)_2$, $Pd_2(dba)_3$, $P(tBu)_3$, KF, THF

Síntesis de precursores de amina P-V-A-4:

R= CN, CO₂Et; a) MeI, NaOtBu, DMF; b) HCO₂K, Pd-C, EtOH o HCO₂NH₄, Pd-C, EtOH

55 Síntesis de precursores de amina P-V-A-4:

a) ArBr, Pd(OAc)₂, PS-PPh₃, K₂CO₃, DMF

Síntesis de compuestos de fórmula I:

10 a) Ar_1R7NH , reactivo de acoplamiento, base, disolvente. Ejemplos de condiciones usadas: HATU, DIEA; BOP, DIEA, DMF; HBTU, Et_3N , CH_2CI_2 ; PFPTFA, piridina.

Síntesis de compuestos de fórmula I':

 R^5 = alifático: a) R^5X (X= Br, I), Cs_2CO_3 , DMF

Síntesis de compuestos de fórmula V-A-2 y V-A-5:

a) $SnCl_2, 2H_2O$, EtOH; b) PG=BOC: TFA, CH_2Cl_2 ; c) CH_2O , $NaBH_3CN$, CH_2Cl_2 , MeOH; d) RXCI, DIEA, THF o RXCI, NMM, 1,4-dioxano o RXCI, CH_2Cl_2 , DMF; e) R'R''NH, $LiCIO_4$, CH_2Cl_2 , R'POH

Síntesis de compuestos de fórmula V-A-2:

a) Cuando PG = BOC: TFA, CH₂Cl₂

- a) Cuando PG = BOC: TFA, CH₂Cl₂; b) ROCOCI, Et₃N, DMF
- 20 En los esquemas anteriores, el radical R empleado en el presente documento es un sustituyente, por ejemplo, R^W como se define anteriormente en este documento. Un experto en la materia apreciará fácilmente que las rutas de síntesis adecuadas para diversos sustituyentes son de forma que las condiciones de reacción y etapas empleadas no modifiquen los sustituyentes previstos.
- 25 5. Usos, formulación y administración

30

35

40

45

50

55

Composición farmacéuticamente aceptable

Como se trata anteriormente, la presente invención proporciona compuestos que son útiles como moduladores de transportadores de ABC y así son útiles en el tratamiento de enfermedad, trastornos o afecciones tales como fibrosis quística, enfisema hereditario, hemocromatosis hereditaria, deficiencias en la coagulación-fibrinólisis, tales como deficiencia de proteína C, angioedema hereditario tipo 1, deficiencias del procesamiento de lípidos, tales como hipercolesterolemia familiar, quilomicronemia tipo 1, abetalipoproteinemia, enfermedades de almacenamiento de lisosomas, tales como enfermedad de las células l/pseudo-Hurler, mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Najjar tipo II, poliendocrinopatía/hiperinsulinemia, diabetes mellitus, enanismo de Laron, deficiencia de mieloperoxidasa, hipoparatiroidismo primario, melanoma, glicanosis CDG tipo 1, hipertiroidismo congénito, osteogénesis imperfecta, hipofibrinogenemia hereditaria, deficiencia de ACT, diabetes insípida (DI), DI neurohipofisaria, DI nefrogénica, síndrome de Charcot-Marie-Tooth, enfermedad de Pelizaeus-Merzbacher, enfermedades neurodegenerativas, tales como enfermedad de Alzheimer, enfermedad de Parkinson, esclerosis lateral amiotrófica, parálisis supranuclear progresiva, enfermedad de Pick, varios trastornos neurológicos de la poliglutamina, tales como Huntington, ataxia espinocerebelosa tipo I, atrofia muscular espinal y bulbar, atrofia dentato-rubro-pálido-luisiana y distrofia miotónica, además de encefalopatías espongiformes, tales como enfermedad hereditaria de Creutzfeldt-Jakob (debida a un defecto en el procesamiento de las proteínas priónicas), enfermedad de Fabry, síndrome de Gerstmann-Sträussler-Scheinker, EPOC, enfermedad del ojo seco o enfermedad de Sjögren.

Por consiguiente, en otro aspecto de la presente invención, se proporcionan composiciones farmacéuticamente aceptables, en la que estas composiciones comprenden cualquiera de los compuestos que se reivindican en el presente documento, y opcionalmente comprenden un excipiente, adyuvante o vehículo farmacéuticamente aceptable. En ciertas realizaciones, estas composiciones comprenden opcionalmente además uno o más agentes terapéuticos adicionales.

También se apreciará que ciertos de los compuestos de la presente invención pueden existir en forma libre para el tratamiento, o si es apropiado, como derivado farmacéuticamente aceptable o un profármaco del mismo. Según la presente invención, un derivado farmacéuticamente aceptable o un profármaco incluye, pero no se limita a, sales farmacéuticamente aceptables, ésteres, sales de tales ésteres, o cualquier otro aducto o derivado que tras la administración a un paciente en necesidad del mismo pueda proporcionar, directamente o indirectamente, un compuesto como se ha descrito de otra manera en el presente documento, o un metabolito o residuo del mismo.

Como se usa en el presente documento, el término "sal farmacéuticamente aceptable" se refiere a aquellas sales que son, dentro del alcance del criterio médico sensato, adecuadas para su uso en contacto con los tejidos de seres humanos y animales inferiores sin excesiva toxicidad, irritación, respuesta alérgica y similares, y son proporcionales a una relación beneficio/riesgo razonable. Una "sal farmacéuticamente aceptable" significa cualquier sal no tóxica o sal de un éster de un compuesto de la presente invención que, tras la administración a un receptor, puede proporcionar, tanto directamente como indirectamente, un compuesto de la presente invención o un metabolito inhibitoriamente activo o residuo del mismo.

Las sales farmacéuticamente aceptables son muy conocidas en la técnica. Por ejemplo, S. M. Berge y col. describen sales farmacéuticamente aceptables en detalle en J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporado en el presente documento por referencia. Las sales farmacéuticamente aceptables de los compuestos de la presente invención incluyen aquellas derivadas de ácidos y bases inorgánicos y orgánicos adecuados. Ejemplos de sales de adición de ácido no tóxicas farmacéuticamente aceptables son sales de un grupo amino formadas con ácidos inorgánicos tales como ácido clorhídrico, ácido bromhídrico, ácido fosfórico, ácido sulfúrico y ácido perclórico o con ácidos orgánicos tales como ácido acético, ácido oxálico, ácido maleico, ácido tartárico, ácido cítrico, ácido succínico o ácido malónico o usando otros métodos usados en la materia tales como intercambio iónico. Otras sales farmacéuticamente aceptables incluyen las sales adipato, alginato, ascorbato, aspartato, bencenosulfonato, benzoato, bisulfato, borato, butirato, canforato, canforsulfonato, citrato, ciclopentanopropionato, digluconato, dodecilsulfato, etanosulfonato, formiato, fumarato, glucoheptonato, glicerofosfato, gluconato, hemisulfato, heptanoato, hexanoato, yodhidrato, 2-hidroxi-etanosulfonato, lactobionato, lactato, laurato, laurilsulfato, malato, maleato, malonato, metanosulfonato, 2-naftalenosulfonato, nicotinato, nitrato, oleato, oxalato, palmitato, pamoato, pectinato, persulfato, 3-fenilpropionato, fosfato, picrato, pivalato, propionato, estearato, succinato, sulfato, tartrato, tiocianato, p-toluenosulfonato, undecanoato, valerato y similares. Sales derivadas de bases apropiadas incluyen sales de metal alcalino, metal alcalinotérreo, amonio y N⁺(alquilo C₁₋₄)₄. La presente invención también prevé la cuaternización de cualquier grupo que contenga nitrógeno básico que contiene de los compuestos reivindicados en el presente documento. Pueden obtenerse productos solubles o dispersables en agua o aceite por tal cuaternización. Sales de metales alcalinos o alcalinotérreos representativas incluyen sodio, litio, potasio, calcio, magnesio y similares. Sales farmacéuticamente aceptables adicionales incluyen, cuando convenga, cationes amonio, amonio cuaternario y amina no tóxicos formados usando contraiones tales como haluro, hidróxido, carboxilato, sulfato, fosfato, nitrato, alquil inferior-sulfonato y arilsulfonato.

Como se ha descrito anteriormente, las composiciones farmacéuticamente aceptables de la presente invención comprenden adicionalmente un excipiente, adyuvante o vehículo farmacéuticamente aceptable, que, como se usa en el presente documento, incluye todos y cada uno de disolventes, diluyentes, u otro vehículo líquido, adyuvantes de dispersión o suspensión, agentes tensioactivos, agentes isotónicos, espesantes o emulsionantes, conservantes, aglutinantes sólidos, lubricantes y similares, como es apropiado para la forma de dosificación particular deseada. Remington's Pharmaceutical Sciences, decimosexta edición, E. W. Martin (Mack Publishing Co., Easton, Pa., 1980) desvela diversos vehículos usados en la formulación de las composiciones farmacéuticamente aceptables y técnicas conocidas para la preparación de las mismas. Excepto en la medida de que cualquier medio de vehículo convencional sea incompatible con los compuestos de la invención, tal como produciendo cualquier efecto biológico no deseable o interaccionando de otro modo de un modo periudicial con cualquier otro componente de la composición farmacéuticamente aceptable, se contempla que su uso está dentro del alcance de la presente invención. Algunos ejemplos de materiales que pueden servir de vehículos farmacéuticamente aceptables incluyen, pero no se limitan a, intercambiadores iónicos, alúmina, estearato de aluminio, lecitina, proteínas del suero, tales como albúmina de suero humano, sustancias tampón tales como fosfatos, glicina, ácido sórbico o sorbato de potasio, mezclas de glicéridos parciales de ácidos grasos vegetales saturados, agua, sales o electrolitos, tales como sulfato de protamina, hidrogenofosfato de disodio, hidrogenofosfato de potasio, cloruro sódico, sales de cinc, sílice coloidal, trisilicato de magnesio, polivinilpirrolidona, poliacrilatos, ceras, polímeros de bloques de polietilenopolioxipropileno, lanolina, azúcares tales como lactosa, glucosa y sacarosa; almidones tales como almidón de maíz y almidón de patata; celulosa y sus derivados tales como carboximetilcelulosa de sodio, etilcelulosa y acetato de celulosa; tragacanto en polvo; malta; gelatina; talco; excipientes tales como manteca de cacao y ceras de supositorio; aceites tales como aceite de cacahuete, aceite de semilla de algodón; aceite de alazor; aceite de sésamo; aceite de oliva; aceite de maíz y aceite de soja; glicoles; tales como propilenglicol o polietilenglicol; ésteres tales como oleato de etilo y laurato de etilo; agar; agentes de tamponamiento tales como hidróxido de magnesio e hidróxido de aluminio; ácido algínico; agua sin pirógenos; solución salina isotónica; disolución de Ringer; alcohol etílico y disoluciones de tampón de fosfato, además de otros lubricantes compatibles no tóxicos tales como laurilsulfato de sodio y estearato de magnesio, además de agentes colorantes, agentes de desmoldeo, agentes de recubrimiento, edulcorantes, aromatizantes y perfumantes, también puede estar presentes conservantes y antioxidantes en la composición, según el criterio del formulador.

Usos de compuestos y composiciones farmacéuticamente aceptables

5

10

15

20

25

30

35

40

45

50

65

En el presente documento se describe un método para tratar una afección, enfermedad o trastorno en la que está implicada la actividad de transportadores de ABC, por ejemplo, CFTR. En el presente documento se describe un método para tratar una afección, enfermedad o trastorno en la que está implicada una deficiencia de actividad de transportadores de ABC, comprendiendo el método administrar una composición que comprende un compuesto de fórmula (I) a un sujeto, preferentemente un mamífero, en necesidad del mismo.

En el presente documento se describe un método para tratar fibrosis quística, enfisema hereditario, hemocromatosis hereditaria, deficiencias en la coagulación-fibrinólisis, tales como deficiencia de proteína C, angioedema hereditario tipo 1, deficiencias del procesamiento de lípidos, tales como hipercolesterolemia familiar, quilomicronemia tipo 1, abetalipoproteinemia, enfermedades de almacenamiento de lisosomas, tales como enfermedad de las células l/pseudo-Hurler, mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Najjar tipo II, poliendocrinopatía/hiperinsulinemia, diabetes mellitus, enanismo de Laron, deficiencia de mieloperoxidasa, hipoparatiroidismo primario, melanoma,

glicanosis CDG tipo I, enfisema hereditario, hipertiroidismo congénito, osteogénesis imperfecta, hipofibrinogenemia hereditaria, deficiencia de ACT, diabetes insípida (DI), DI neurohipofisaria, DI nefrogénica, síndrome de Charcot-Marie-Tooth, enfermedad de Pelizaeus-Merzbacher, enfermedades neurodegenerativas, tales como enfermedad de Alzheimer, enfermedad de Parkinson, esclerosis lateral amiotrófica, parálisis supranuclear progresiva, enfermedad de Pick, varios trastornos neurológicos de la poliglutamina, tales como Huntington, ataxia espinocerebelosa tipo I, atrofia muscular espinal y bulbar, atrofia dentato-rubro-pálido-luisiana y distrofia miotónica, además de encefalopatías espongiformes, tales como enfermedad hereditaria de Creutzfeldt-Jakob (debida a un defecto en el procesamiento de las proteínas priónicas), enfermedad de Fabry, síndrome de Gerstmann-Sträussler-Scheinker, EPOC, enfermedad del ojo seco o síndrome de Sjögren, que comprende la etapa de administrar a dicho mamífero una cantidad eficaz de una composición que comprende un compuesto de la presente invención.

5

10

15

20

25

30

35

40

45

55

60

65

Además se describe un método para tratar fibrosis quística que comprende la etapa de administrar a dicho mamífero una composición que comprende la etapa de administrar a dicho mamífero una cantidad eficaz de una composición que comprende un compuesto de la presente invención.

Según la invención, una "cantidad eficaz" del compuesto o composición farmacéuticamente aceptable es aquella cantidad eficaz para tratar o reducir la gravedad de uno o más de fibrosis guística, enfisema hereditario, hemocromatosis hereditaria, deficiencias en la coaqulación-fibrinólisis, tales como deficiencia de proteína C, angioedema hereditario tipo 1, deficiencias del procesamiento de lípidos, tales como hipercolesterolemia familiar, quilomicronemia tipo 1, abetalipoproteinemia, enfermedades de almacenamiento de lisosomas, tales como enfermedad de las células I/pseudo-Hurler, mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Najjar tipo II, poliendocrinopatía/hiperinsulinemia, diabetes mellitus, enanismo de Laron, deficiencia de mieloperoxidasa, hipoparatiroidismo primario, melanoma, glicanosis CDG tipo 1, hipertiroidismo congénito, osteogénesis imperfecta, hipofibrinogenemia hereditaria, deficiencia de ACT, diabetes insípida (DI), DI neurohipofisaria, DI nefrogénica, síndrome de Charcot-Marie-Tooth, enfermedad de Pelizaeus-Merzbacher, enfermedades neurodegenerativas, tales como enfermedad de Alzheimer, enfermedad de Parkinson, esclerosis lateral amiotrófica, parálisis supranuclear progresiva, enfermedad de Pick, varios trastornos neurológicos de la poliglutamina, tales como Huntington, ataxia espinocerebelosa tipo I, atrofia muscular espinal y bulbar, atrofia dentato-rubro-pálido-luisiana y distrofia miotónica, además de encefalopatías espongiformes, tales como enfermedad hereditaria de Creutzfeldt-Jakob (debida a un defecto en el procesamiento de las proteínas priónicas), enfermedad de Fabry, síndrome de Gerstmann-Sträussler-Scheinker, EPOC, enfermedad del ojo seco o enfermedad de Sjögren.

Los compuestos y composiciones, según el método descrito en el presente documento, pueden administrarse usando cualquier cantidad y cualquier vía de administración eficaz para tratar o reducir la gravedad de uno o más de fibrosis quística, enfisema hereditario, hemocromatosis hereditaria, deficiencias en la coaqulación-fibrinólisis, tales como deficiencia de proteína C, angioedema hereditario tipo 1, deficiencias del procesamiento de lípidos, tales como hipercolesterolemia familiar, quilomicronemia tipo 1, abetalipoproteinemia, enfermedades de almacenamiento de lisosomas, tales como enfermedad de las células I/pseudo-Hurler, mucopolisacaridosis, Sandhof/Tay-Sachs, Crigler-Najjar tipo II, poliendocrinopatía/hiperinsulinemia, diabetes mellitus, enanismo de Laron, deficiencia de mieloperoxidasa, hipoparatiroidismo primario, melanoma, glicanosis CDG tipo 1, hipertiroidismo congénito, osteogénesis imperfecta, hipofibrinogenemia hereditaria, deficiencia de ACT, diabetes insípida (DI), DI neurohipofisaria, DI nefrogénica, síndrome de Charcot-Marie-Tooth, enfermedad de Pelizaeus-Merzbacher, enfermedades neurodegenerativas, tales como enfermedad de Alzheimer, enfermedad de Parkinson, esclerosis lateral amiotrófica, parálisis supranuclear progresiva, enfermedad de Pick, varios trastornos neurológicos de la poliglutamina, tales como Huntington, ataxia espinocerebelosa tipo I, atrofia muscular espinal y bulbar, atrofia dentato-rubro-pálido-luisiana y distrofia miotónica, además de encefalopatías espongiformes, tales como enfermedad hereditaria de Creutzfeldt-Jakob (debida a un defecto en el procesamiento de las proteínas priónicas), enfermedad de Fabry, síndrome de Gerstmann-Sträussler-Scheinker, EPOC, enfermedad del ojo seco o enfermedad de Sjögren.

50 En un caso, los compuestos y composiciones de la presente invención son útiles para tratar o reducir la gravedad de fibrosis quística en un paciente.

En ciertos casos, los compuestos y composiciones de la presente invención son útiles para tratar o reducir la gravedad de la fibrosis quística en pacientes que presentan actividad de CFTR residual en la membrana apical de epitelios respiratorios y no respiratorios. La presencia de actividad de CFTR residual en la superficie epitelial puede detectarse fácilmente usando métodos conocidos en la técnica, por ejemplo, técnicas electrofisiológicas, bioquímicas o histoquímicas estándar. Tales métodos identifican actividad de CFTR usando técnicas electrofisiológicas *in vivo* o ex vivo, medición de sudor o concentraciones de Cl⁻ salivares, o técnicas bioquímicas o histoquímicas ex vivo para monitorizar la densidad de la superficie celular. Usando tales métodos, la actividad de CFTR residual puede detectarse fácilmente en pacientes heterocigóticos u homocigóticos para una variedad de mutaciones diferentes, que incluyen pacientes homocigóticos o heterocigóticos para la mutación más común, ΔF508.

En otro caso, los compuestos y composiciones de la presente invención son útiles para tratar o reducir la gravedad de fibrosis quística en pacientes que tienen actividad de CFTR residual inducida o aumentada usando métodos farmacológicos o terapia génica. Tales métodos aumentan la cantidad de CFTR presente en la superficie celular, induciendo así una actividad de CFTR hasta ahora ausente en un paciente o aumentando el nivel existente de

actividad de CFTR residual en un paciente.

5

10

15

20

25

30

35

40

45

50

55

60

En un caso, los compuestos y composiciones de la presente invención son útiles para tratar o reducir la gravedad de fibrosis quística en pacientes dentro de ciertos genotipos que presentan actividad de CFTR residual, por ejemplo, mutaciones de clase III (regulación o apertura alterada), mutaciones de clase IV (conductancia alterada), o mutaciones de clase V (síntesis reducida) (Lee R. Choo-Kang, Pamela L., Zeitlin, Type I, II, III, IV, and V cystic fibrosis Transmembrane Conductance Regulator Defects and Opportunities of Therapy; Current Opinion in Pulmonary Medicine 6:521 - 529, 2000). Otros genotipos de pacientes que presentan actividad de CFTR residual incluyen pacientes homocigóticos para una de estas clases o heterocigóticos con cualquier otra clase de mutaciones, que incluyen mutaciones de clase I, mutaciones de clase II, o una mutación que carece de clasificación.

En un caso, los compuestos y composiciones de la presente invención son útiles para tratar o reducir la gravedad de fibrosis quística en pacientes dentro de ciertos fenotipos clínicos, por ejemplo, un fenotipo clínico de moderado a leve que normalmente se correlaciona con la cantidad de actividad de CFTR residual en la membrana apical de epitelios. Tales fenotipos incluyen pacientes que presentan suficiencia pancreática o pacientes diagnosticados con pancreatitis idiopática y ausencia bilateral congénita de los conductos deferentes, o enfermedad pulmonar leve.

La cantidad exacta requerida variará de sujeto a sujeto, dependiendo de la especie, edad y condición general del sujeto, la gravedad de la infección, el agente particular, su modo de administración, y similares. Los compuestos de la invención se formulan preferentemente en forma unitaria de dosificación para facilitar la administración y uniformidad de la dosificación. La expresión "forma unitaria de dosificación", como se usa en el presente documento, se refiere a una unidad físicamente discreta de agente apropiada para el paciente que va a tratarse. Se entenderá, sin embargo, que el uso diario total de los compuestos y composiciones de la presente invención se decidirá por el médico adjunto dentro del alcance del criterio médico sensato. El nivel de dosis eficaz específica para cualquier paciente u organismo particular dependerá de una variedad de factores que incluyen el trastorno que está tratándose y la gravedad del trastorno; la actividad del compuesto específico empleado; la composición específica empleada; la edad, peso corporal, salud general, sexo y dieta del paciente; el momento de administración, vía de administración y la tasa de eliminación del compuesto específico empleado; la duración del tratamiento; fármacos usados en combinación o coincidentes con el compuesto específico empleado, y factores similares muy conocidos en las ciencias médicas. El término "paciente", como se usa en el presente documento, significa un animal, preferentemente un mamífero, y lo más preferentemente un ser humano.

Las composiciones farmacéuticamente aceptables de la presente invención pueden administrarse a seres humanos y otros animales por vía oral, rectalmente, parenteralmente, intracisternalmente, intravaginalmente, intraperitonealmente, tópicamente (como por polvos, pomadas o gotas), bucalmente, como un espray oral o nasal, o similares, dependiendo de la gravedad de la infección que está tratándose. En ciertas realizaciones, los compuestos de la invención pueden administrarse por vía oral o parenteralmente a niveles de dosificación de aproximadamente 0,01 mg/kg a aproximadamente 50 mg/kg y preferentemente de aproximadamente 1 mg/kg a aproximadamente 25 mg/kg, de peso corporal del sujeto por día, una o más veces al día, para obtener el efecto terapéutico deseado.

Las formas de dosificación líquidas para administración por vía oral incluyen, pero no se limitan a, emulsiones, microemulsiones, disoluciones, suspensiones, jarabes y elixires farmacéuticamente aceptables. Además de los compuestos activos, las formas de dosificación líquidas pueden contener diluyentes inertes comúnmente usados en la materia tales como, por ejemplo, agua u otros disolventes, agentes solubilizantes y emulsionantes tales como alcohol etílico, alcohol isopropílico, carbonato de etilo, acetato de etilo, alcohol bencílico, benzoato de bencilo, propilenglicol, 1,3-butilenglicol, dimetilformamida, aceites (en particular, aceites de semilla de algodón, cacahuete, maíz, germen, oliva, ricino y de sésamo), glicerol, alcohol tetrahidrofurfurílico, polietilenglicoles y ésteres de ácidos grasos de sorbitano, y mezclas del mismo. Además de los diluyentes inertes, las composiciones orales también pueden incluir adyuvantes tales como agentes humectantes, emulsionantes y agentes de suspensión, edulcorantes, aromatizantes y perfumantes.

Pueden formularse preparaciones inyectables, por ejemplo, suspensiones acuosas u oleaginosas inyectables estériles según la técnica conocida usando dispersantes o humectantes y agentes de suspensión adecuados. La preparación inyectable estéril también puede ser una disolución, suspensión o emulsión inyectable estéril en un diluyente o disolvente parenteralmente aceptable no tóxico, por ejemplo, como una disolución en 1,3-butanodiol. Entre los vehículos y disolventes aceptables que pueden emplearse están agua, disolución de Ringer, disolución de cloruro sódico U.S.P. e isotónica. Además, se emplean convencionalmente aceites no volátiles estériles como disolvente o medio de suspensión. Para este fin puede emplearse cualquier aceite no volátil suave que incluye mono- o diglicéridos sintéticos. Además, se usan ácidos grasos tales como ácido oleico en la preparación de inyectables.

Las formulaciones inyectables pueden esterilizarse, por ejemplo, por filtración a través de un filtro de retención de bacterias, o incorporando agentes esterilizantes en forma de composiciones sólidas estériles que pueden disolverse o dispersarse en agua estéril u otro medio inyectable estéril antes de uso.

Con el fin de prolongar el efecto de un compuesto de la presente invención, es frecuentemente deseable ralentizar la

42

absorción del compuesto de la inyección subcutánea o intramuscular. Esto puede llevarse a cabo por el uso de una suspensión líquida de material cristalino o amorfo con poca solubilidad en agua. La tasa de absorción del compuesto depende entonces de su tasa de disolución que, a su vez, puede depender del tamaño del cristal y la forma cristalina. Alternativamente, la absorción retardada de una forma de compuesto parenteralmente administrada se lleva a cabo disolviendo o suspendiendo el compuesto en un vehículo de aceite. Se preparan formas de liberación prolongada inyectables formando matrices microencapsuladas del compuesto en polímeros biodegradables tales como polilactida-poliglicolida. Dependiendo de la relación de compuesto con respecto a polímero y la naturaleza del polímero particular empleado, puede controlarse la tasa de compuesto liberada. Ejemplos de otros polímeros biodegradables incluyen poli(ortoésteres) y poli(anhídridos). También se preparan formulaciones inyectables de liberación prolongada atrapando el compuesto en liposomas o microemulsiones que son compatibles con los tejidos del cuerpo.

Las composiciones para administración rectal o vaginal son preferentemente supositorios que pueden prepararse mezclando los compuestos de la presente invención con excipientes o vehículos no irritantes adecuados tales como manteca de cacao, polietilenglicol o una cera de supositorio que son sólidos a temperatura ambiente pero líquidos a temperatura corporal y, por tanto, se funden en el recto o cavidad vaginal y liberan el compuesto activo.

Las formas de dosificación sólidas para administración por vía oral incluyen cápsulas, comprimidos, píldoras, polvos y gránulos. En tales formas de dosificación sólidas, el compuesto activo se mezcla con al menos un excipiente o vehículo farmacéuticamente aceptable inerte tal como citrato de sodio o fosfato de dicalcio y/o a) cargas o sustancias de relleno tales como almidones, lactosa, sacarosa, glucosa, manitol y ácido silícico, b) aglutinantes tales como, por ejemplo, carboximetilcelulosa, alginatos, gelatina, polivinilpirrolidinona, sacarosa y goma arábiga, c) humectantes tales como glicerol, d) agentes disgregantes tales como agar-agar, carbonato cálcico, almidón de patata o de tapioca, ácido algínico, ciertos silicatos, y carbonato sódico, e) agentes retardantes de la disolución tales como parafina, f) aceleradores de la absorción tales como compuestos de amonio cuaternario, g) agentes humectantes tales como, por ejemplo, alcohol cetílico y monoestearato de glicerol, h) absorbentes tales como caolín y arcilla de bentonita, y i) lubricantes tales como talco, estearato de calcio, estearato de magnesio, polietilenglicoles sólidos, laurilsulfato de sodio, y mezclas de los mismos. En el caso de cápsulas, comprimidos y píldoras, la forma de dosificación también puede comprender agentes de tamponamiento.

También pueden emplearse composiciones sólidas de un tipo similar como cargas en cápsulas de gelatina rellenas blandas y duras usando excipientes tales como lactosa o azúcar de la leche, además de polietilenglicoles de alto peso molecular y similares. Las formas de dosificación sólidas de comprimidos, comprimidos recubiertos de azúcar, cápsulas, píldoras y gránulos pueden prepararse con recubrimientos y vainas tales como recubrimientos entéricos y otros recubrimientos muy conocidos en la técnica de la formulación farmacéutica. Pueden contener opcionalmente opacificantes y también pueden ser de una composición que libera el (los) principio(s) activo(s) solo(s), o preferencialmente, en una cierta parte del tubo intestinal, opcionalmente de una manera retardada. Ejemplos de composiciones de incorporación que pueden usarse incluyen sustancias poliméricas y ceras. También pueden emplearse composiciones sólidas de un tipo similar como cargas en cápsulas de gelatina rellenas blandas y duras usando excipientes tales como lactosa o azúcar de la leche, además de polietilenglicoles de alto peso molecular y similares.

Los compuestos activos también pueden estar en forma microencapsulada con uno o más excipientes como se observa anteriormente. Las formas de dosificación sólidas de comprimidos, comprimidos recubiertos de azúcar, cápsulas, píldoras y gránulos pueden prepararse con recubrimientos y vainas tales como recubrimientos entéricos, recubrimientos de control de la liberación y otros recubrimientos muy conocidos en la técnica de la formulación farmacéutica. En tales formas de dosificación sólidas, el compuesto activo puede mezclarse con al menos un diluyente inerte tal como sacarosa, lactosa o almidón. Tales formas de dosificación también pueden comprender, como es práctica normal, sustancias adicionales distintas de diluyentes inertes, por ejemplo, lubricantes para la formación de comprimidos y otros adyuvantes tales como estearato de magnesio y celulosa microcristalina. En el caso de cápsulas, comprimidos y píldoras, las formas de dosificación también pueden comprender agentes de tamponamiento. Pueden contener opcionalmente opacificantes y también pueden ser de una composición que libera el (los) principio(s) activo(s) solo, o preferencialmente, en una cierta parte del tubo intestinal, opcionalmente, de una manera retardada. Ejemplos de composiciones de incorporación que pueden usarse incluyen sustancias poliméricas y ceras.

Formas de dosificación para administración tópica o transdérmica de un compuesto de la presente invención incluyen pomadas, pastas, cremas, lociones, geles, polvos, disoluciones, esprays, inhalantes o parches. El componente activo se mezcla bajo condiciones estériles con un vehículo farmacéuticamente aceptable y cualquier conservante o tampón necesario que pueda requerirse. También se contempla que formulación oftálmica, gotas para los oídos y colirios están dentro del alcance de la presente invención. Adicionalmente, la presente invención contempla el uso de parches transdérmicos, que tienen la ventaja añadida de proporcionar la liberación controlada de un compuesto al cuerpo. Tales formas de dosificación se preparan disolviendo o dispensando el compuesto en el medio apropiado. También pueden usarse potenciadores de la absorción para aumentar el flujo del compuesto a través de la piel. La tasa puede controlarse tanto proporcionando una membrana de control de la tasa como dispersando el compuesto en una matriz de polímero o gel.

Como se ha descrito generalmente anteriormente, los compuestos de la invención son útiles como moduladores de los transportadores de ABC. Así, sin desear ceñirse a teoría particular alguna, los compuestos y composiciones son particularmente útiles para tratar o reducir la gravedad de una enfermedad, afección o trastorno en la que la hiperactividad o inactividad de transportadores de ABC participa en la enfermedad, afección o trastorno. Cuando la hiperactividad o inactividad de un transportador de ABC participa en una enfermedad, afección o trastorno particular, la enfermedad, afección o trastorno también puede denominarse una "enfermedad, afección o trastorno mediada por transportadores de ABC". Por consiguiente, en otro aspecto, la presente invención proporciona un método para tratar o reducir la gravedad de una enfermedad, afección o trastorno en la que la hiperactividad o inactividad de un transportador de ABC participa en el estado de enfermedad.

5

10

30

35

40

45

50

55

La actividad de un compuesto utilizado en la presente invención como modulador de un transportador de ABC puede ensayarse según métodos descritos generalmente en la materia y en los ejemplos en el presente documento.

También se apreciará que los compuestos y composiciones farmacéuticamente aceptables de la presente invención pueden emplearse en terapias de combinación, es decir, los compuestos y composiciones farmacéuticamente aceptables pueden administrarse simultáneamente con, antes de, o posterior a, uno o varios de otros procedimientos terapéuticos o médicos deseados. La combinación particular de terapias (terapéuticos o procedimientos) para emplear en una pauta de combinación tendrá en cuenta la compatibilidad de los terapéuticos y/o procedimientos deseados y el efecto terapéutico que se desea lograr. También se apreciará que las terapias empleadas pueden alcanzar un efecto deseado para el mismo trastorno (por ejemplo, un compuesto inventivo puede administrarse simultáneamente con otro agente usado para tratar el mismo trastorno), o pueden alcanzar efectos diferentes (por ejemplo, control de cualquier efecto adverso). Como se usa en el presente documento, agentes terapéuticos adicionales que normalmente se administran para tratar o prevenir una enfermedad, o afección, particular se conocen como "apropiados para la enfermedad, o afección, que está tratándose".

En una realización, el agente adicional está seleccionado de un agente mucolítico, broncodilatador, un antibiótico, un agente antiinfeccioso, un agente antiinflamatorio, un modulador de CFTR distinto de un compuesto de la presente invención, o un agente nutritivo.

La cantidad de agente terapéutico adicional presente en las composiciones de la presente invención no será superior a la cantidad que normalmente se administraría en una composición que comprende ese agente terapéutico como el único agente activo. Preferentemente, la cantidad de agente terapéutico adicional en las composiciones presentemente desveladas oscilará de aproximadamente el 50 % al 100 % de la cantidad normalmente presente en una composición que comprende ese agente como el único agente terapéuticamente activo.

Los compuestos de la presente invención o composiciones farmacéuticamente aceptables de los mismos también pueden incorporarse en composiciones para el recubrimiento de un dispositivo médico implantable, tal como prótesis, válvulas artificiales, injertos vasculares, prótesis endovasculares y catéteres. Por consiguiente, la presente invención, en otro aspecto, incluye una composición para el recubrimiento de un dispositivo implantable que comprende un compuesto de la presente invención como se describe generalmente anteriormente, y en clases y subclases en el presente documento, y un vehículo adecuado para el recubrimiento de dicho dispositivo implantable. En otro aspecto adicional, la presente invención incluye un dispositivo implantable recubierto con una composición que comprende un compuesto de la presente invención como se describe generalmente anteriormente, y en clases y subclases en el presente documento, y un vehículo adecuado para el recubrimiento de dicho dispositivo implantable. Recubrimientos adecuados y la preparación general de dispositivos implantables recubiertos se describen en las patentes de EE.UU. 6.099.562; 5.886.026; y 5.304.121. Los recubrimientos normalmente son materiales poliméricos biocompatibles tales como un polímero de hidrogel, polimetildisiloxano, policaprolactona, polietilenglicol, ácido poliláctico, etileno-acetato de vinilo, y mezclas de los mismos. Los recubrimientos pueden cubrirse opcionalmente adicionalmente por un recubrimiento superior adecuado de fluorosilicona, polisacáridos, polietilenglicol, fosfolípidos o combinaciones de los mismos para conferir características de liberación controlada a la composición.

Otro aspecto de la divulgación se refiere a modular la actividad de transportadores de ABC en una muestra biológica o un paciente (por ejemplo, *in vitro* o *in vivo*), método que comprende administrar al paciente, o poner en contacto dicha muestra biológica con un compuesto de fórmula I o una composición que comprende dicho compuesto. El término "muestra biológica", como se usa en el presente documento, incluye, sin limitación, cultivos celulares o extractos de los mismos; material de biopsia obtenido de un mamífero o extractos del mismo; y sangre, saliva, orina, heces, semen, lágrimas, u otros líquidos corporales o extractos de los mismos.

- 60 La modulación de la actividad de transportadores de ABC, por ejemplo, CFTR, en una muestra biológica es útil para una variedad de fines que son conocidos para un experto en la materia. Ejemplos de tales fines incluyen, pero no se limitan a, el estudio de transportadores de ABC en fenómenos biológicos y patológicos; y la evaluación comparativa de nuevos moduladores de transportadores de ABC.
- 65 En otro caso más se proporciona un método de modular la actividad de un canal de aniones *in vitro* o *in vivo* que comprende la etapa de poner en contacto dicho canal con un compuesto de fórmula (I). En casos preferidos, el canal

de aniones es un canal de cloruro o un canal de bicarbonato. En otros casos preferidos, el canal de aniones es un canal de cloruro.

Un método de aumentar el número de transportadores de ABC funcionales en una membrana de una célula comprende la etapa de poner en contacto dicha célula con un compuesto de fórmula (I). El término "transportador de ABC funcional", como se usa en el presente documento, significa un transportador de ABC que puede transportar actividad. Dicho transportador de ABC funcional es CFTR.

Según otro caso, la actividad del transportador de ABC se mide midiendo el potencial del voltaje transmembrana.

Medios para medir el potencial del voltaje a través de una membrana en la muestra biológica pueden emplear cualquiera de los métodos conocidos en la materia, tales como ensayo óptico del potencial de membrana u otros métodos electrofisiológicos.

El ensayo óptico del potencial de membrana utiliza sensores de FRET sensibles al voltaje descritos por Gonzalez y Tsien (véase, Gonzalez, J. E. y R. Y. Tsien (1995) "Voltage sensing by fluorescence resonance energy transfer in single cells" Biophys J 69(4): 1272-80, y Gonzalez, J. E. y R. Y. Tsien (1997) "Improved indicators of cell membrane potential that use fluorescence resonance energy transfer" Chem Biol 4(4): 269-77) en combinación con instrumentación para medir los cambios de fluorescencia tales como el lector de sonda de tensión/ionización (VIPR) (véase, Gonzalez, J. E., K. Oades, y col. (1999) "Cell-based assays and instrumentation for screening ion-channel targets" Drug Discov Today 4(9): 431-439).

Estos ensayos sensibles al voltaje se basan en el cambio en la transferencia de energía por resonancia de fluorescencia (FRET) entre el colorante sensible al voltaje soluble en la membrana DiSBAC₂(3) y un fosfolípido fluorescente, CC2-DMPE, que está unido a la capa externa de la membrana plasmática y actúa de donante de FRET. Los cambios en el potencial de membrana (V_m) hacen que DiSBAC₂(3) negativamente cargado se redistribuya a través de la membrana plasmática y, por consiguiente, cambie la cantidad de transferencia de energía de CC2-DMPE. Los cambios en la emisión de fluorescencia pueden monitorizarse usando VIPR II, que es un sistema de manipulación de líquidos integrado y detector fluorescente diseñado para realizar los cribados basados en células en placas de microtitulación de 96 ó 384 pocillos.

Además, en el presente documento se describe un kit para su uso en medir la actividad de un transportador de ABC o un fragmento del mismo en una muestra biológica *in vitro* o *in vivo* que comprende (i) una composición que comprende un compuesto de fórmula (I) o cualquiera de las realizaciones anteriores; y (ii) instrucciones para a) poner en contacto la composición con la muestra biológica y b) medir la actividad de dicho transportador de ABC o un fragmento del mismo. En un caso, el kit comprende además instrucciones para a) poner en contacto una composición adicional con la muestra biológica; b) medir la actividad de dicho transportador de ABC o un fragmento del mismo en presencia de dicho compuesto adicional, y c) comparar la actividad del transportador de ABC en presencia del compuesto adicional con la densidad del transportador de ABC en presencia de un compuesto de fórmula (I). En casos preferidos, el kit se usa para medir la densidad de CFTR.

Con el fin de que la invención descrita en el presente documento pueda entenderse más completamente, se exponen los siguientes ejemplos. Debe entenderse que estos ejemplos son para fines ilustrativos solo.

Rutas de síntesis a modo de ejemplo para los compuestos reivindicados y otros a modo de ejemplo se muestran a continuación.

EJEMPLOS

Rutas de síntesis a modo de ejemplo para los compuestos reivindicados y otros a modo de ejemplo se muestran a continuación.

Ejemplo 1:

General esquema para preparar restos de ácido:

a) 140-150 °C; b) PPA, POCl₃, 70 °C o difenil éter, 220 °C; c) i) NaOH 2 N ii) HCl 2 N

Ejemplo específico: Éster dietílico del ácido 2-fenilaminometilen-malónico

65

5

25

30

35

40

50

55

Se calentó una mezcla de anilina (25,6 g, 0,28 moles) y 2-(etoximetilen)malonato de dietilo (62,4 g, 0,29 moles) a 140-150 °C durante 2 h. La mezcla se enfrió a temperatura ambiente y se secó a presión reducida proporcionando éster dietílico del ácido 2-fenilaminometilen-malónico como un sólido, que se usó en la siguiente etapa sin más purificación. RMN 1 H (α -DMSO) δ 11,00 (d, 1H), 8,54 (d, β = 13,6 Hz, 1H), 7,36-7,39 (m, 2H), 7,13-7,17 (m, 3H), 4,17-4,33 (m, 4H), 1,18-1,40 (m, 6H).

Éster etílico del ácido 4-hidroxiquinolin-3-carboxílico

Se cargó un matraz de tres bocas de 1 l equipado con un agitador mecánico con éster dietílico del ácido 2-fenilaminometilen-malónico (26,3 g, 0,1 moles), ácido polifosfórico (270 g) y cloruro de fosforilo (750 g). La mezcla se calentó a aproximadamente 70 °C y se agitó durante 4 h, La mezcla se enfrió a temperatura ambiente y se filtró. El residuo se trató con disolución acuosa de Na₂CO₃, se filtró, se lavó con agua y se secó. Se obtuvo éster etílico del ácido 4-hidroxiquinolin-3-carboxílico como un sólido marrón pálido (15,2 g, 70 %). El producto en bruto se usó en la siguiente etapa sin más purificación.

A-1; Ácido 4-oxo-1,4-dihidroquinolin-3-carboxílico Se suspendió éster etílico del ácido 4-hidroxiquinolin-3-carboxílico (15 g, 69 mmoles) en disolución de hidróxido sódico (2 N, 150 ml) y se agitó durante 2 h a reflujo. Después de enfriarse, la mezcla se filtró, y el filtrado se acidificó hasta pH 4 con HCl 2 N. El precipitado resultante se recogió mediante filtración, se lavó con agua y se secó a vacío dando ácido 4-oxo-1,4-dihidroquinolin-3-carboxílico **(A-1)** como un sólido blanco pálido (10,5 g, 92 %). RMN ¹H (*d*-DMSO) δ 15,34 (s, 1H), 13,42 (s, 1H), 8,89 (s, 1H), 8,28 (d, *J*= 8,0 Hz, 1H), 7,88 (m, 1H), 7,81 (d, J= 8,4 Hz, 1H), 7,60 (m, 1H).

30 Ejemplo específico: A-2; Ácido 6-fluoro-4-hidroxi-quinolin-3-carboxílico

40 Se sintetizó ácido 6-fluoro-4-hidroxi-quinolin-3-carboxílico (**A-2**) siguiendo el esquema general anterior a partir de 4-fluoro-fenilamina. Rendimiento global (53 %). RMN ¹H (DMSO-*d*₆) δ 15,2 (s a, 1H), 8,89 (s, 1H), 7,93-7,85 (m, 2H), 7,80-7,74 (m, 1H); EM-ESI 207,9 m/z (MH⁺).

Ejemplo 2:

5

10

15

20

25

35

65

ii) HCl

2-Bromo-5-metoxi-fenilamina

5

15

20

25

30

35

40

Se agitó una mezcla de 1-bromo-4-metoxi-2-nitro-benceno (10 g, 43 mmoles) y Ni Raney (5 g) en etanol (100 ml) bajo H₂ (1 atm) durante 4 h a temperatura ambiente. Se separó el Ni Raney por filtración y el filtrado se concentró a presión reducida. El sólido resultante se purificó por cromatografía en columna dando 2-bromo-5-metoxi-fenilamina (7,5 g, 86 %).

Éster dietílico del ácido 2-[(2-bromo-5-metoxi-fenilamino)-metilen]-malónico

Se agitó una mezcla de 2-bromo-5-metoxi-fenilamina (540 mg, 2,64 mmoles) y 2-(etoximetilen)malonato de dietilo (600 mg, 2,7 mmoles) a 100 °C durante 2 h. Después de enfriarse, la mezcla de reacción se recristalizó en metanol (10 ml) dando 2 éster dietílico del ácido -[(2-bromo-5-metoxi-fenilamino)-metilen]-malónico como un sólido amarillo (0,8 g, 81 %).

Éster etílico del ácido 8-bromo-5-metoxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico

Se añadió éster dietílico del ácido 2-[(2-bromo-5-metoxi-fenilamino)-metilen]-malónico (9 g, 24,2 mmoles) lentamente a ácido polifosfórico (30 g) a 120 °C. La mezcla se agitó a esta temperatura durante 30 min adicionales y a continuación se enfrió a temperatura ambiente. Se añadió etanol absoluto (30 ml) y la mezcla resultante se sometió a reflujo durante 30 min. La mezcla se basificó con bicarbonato sódico acuoso a 25 °C y se extrajo con EtOAc (4 x 100 ml). Las fases orgánicas se combinaron, se secaron y el disolvente se evaporó dando éster etílico del ácido 8-bromo-5-metoxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico (2,3 g, 30 %).

Éster etílico del ácido 5-metoxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico

Se agitó una mezcla de éster etílico del ácido 8-bromo-5-metoxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico (2,3 g, 7,1 mmoles), acetato sódico (580 mg, 7,1 mmoles) y 10 % de Pd/C (100 mg) en ácido acético glacial (50 ml) bajo H₂ (2,5 atm) durante la noche. El catalizador se eliminó mediante filtración, y la mezcla de reacción se concentró a presión reducida. El aceite resultante se disolvió en CH₂Cl₂ (100 ml) y se lavó con disolución acuosa de bicarbonato sódico y agua. La fase orgánica se secó, se filtró y se concentró. El producto en bruto se purificó por cromatografía en columna proporcionando éster etílico del ácido 5-metoxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico como un sólido amarillo (1 g, 57 %).

A-4; Ácido 5-metoxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico

Se calentó una mezcla de éster etílico del ácido 5-metoxi-4-oxo-1, 4-dihidro-quinolin-3-carboxílico (1 g, 7,1 mmoles) en disolución al 10 % de NaOH (50 ml) a reflujo durante la noche y a continuación se enfrió a temperatura ambiente. La mezcla se extrajo con éter. La fase acuosa se separó y se acidificó con disolución conc. de HCl a pH 1-2. El precipitado resultante se recogió por filtración dando ácido 5-metoxi-4-oxo-1, 4-dihidro-quinolin-3-carboxílico (A-4) (530 mg, 52 %). RMN 1 H (DMSO) δ : 15,9 (s, 1H), 13,2 (a, 1H), 8,71 (s, 1H), 7,71 (t, J= 8,1 Hz, 1H), 7,18 (d, J= 8,4 Hz, 1H), 6,82 (d, J= 8,4 Hz, 1H), 3,86 (s, 3H); EM-ESI 219,9 m/z (MH $^+$).

Ejemplo 3:

$$CH_{2}(CO_{2}Et)_{2}$$

$$NCS$$

$$NAH, Et_{2}O$$

$$OH$$

$$CO_{2}Et$$

$$OH$$

$$CO_{2}Et$$

$$i) NaOH$$

$$ii) HCI$$

$$NAOH$$

$$A-16$$

Éster dietílico del ácido 2-(mercapto-fenilamino-metilen)-malónico de sodio

A una suspensión de NaH (60 % en aceite mineral, 6 g, 0,15 moles) en Et₂O a temperatura ambiente se añadió gota a gota, durante un periodo de 30 minutos, malonato de etilo (24 g, 0,15 moles). A continuación se añadió

isotiocianato de fenilo (20,3 g, 0,15 moles) gota a gota con agitación durante 30 min. La mezcla se sometió a reflujo durante 1 h y a continuación se agitó durante la noche a temperatura ambiente. El sólido se separó, se lavó con éter anhidro (200 ml) y se secó a vacío dando éster dietílico del ácido 2-(mercapto-fenilamino-metilen)-malónico de sodio como un polvo amarillo pálido (46 g, 97 %).

Éster dietílico del ácido 2-(metilsulfanil-fenilamino-metilen)-malónico

Durante un periodo de 30 min, se añadió gota a gota yoduro de metilo (17,7 g, 125 mmoles) a una disolución de éster dietílico del ácido 2-(mercapto-fenilamino-metilen)-malónico de sodio (33 g, 104 mmoles) en DMF (100 ml) y se enfrió en un baño de hielo. La mezcla se agitó a temperatura ambiente durante 1 h, y a continuación se vertió en agua con hielo (300 ml). El sólido resultante se recogió mediante filtración, se lavó con agua y se secó dando éster dietílico del ácido 2-(metilsulfanil-fenilamino-metilen)-malónico como un sólido amarillo pálido (27 g, 84 %).

Éster etílico del ácido 4-hidroxi-2-metilsulfanil-quinolin-3-carboxílico

Se calentó una mezcla de éster dietílico del ácido 2-(metilsulfanil-fenilamino-metilen)-malónico (27 g, 87 mmoles) en 1,2-diclorobenceno (100 ml) a reflujo durante 1,5 h. El disolvente se eliminó a presión reducida y el residuo aceitoso se trituró con hexano proporcionando un sólido amarillo pálido que se purificó por HPLC preparativa dando éster etílico del ácido 4-hidroxi-2-metilsulfanil-quinolin-3-carboxílico (8 g, 35 %).

A-16; Ácido 2-metilsulfanil-4-oxo-1,4-dihidro-quinolin-3-carboxílico

Se calentó éster etílico del ácido 4-hidroxi-2-metilsulfanil-quinolin-3-carboxílico (8 g, 30 mmoles) a reflujo en disolución de NaOH (10 %, 100 ml) durante 1,5 h. Después de enfriarse, la mezcla se acidificó con HCl concentrado a pH 4. El sólido resultante se recogió mediante filtración, se lavó con agua (100 ml) y MeOH (100 ml) dando ácido 2-metilsulfanil-4-oxo-1,4-dihidroquinolin-3-carboxílico (A-16) como un sólido blanco (6 g, 85 %). RMN 1 H (CDCl₃) δ 16,4 (s a, 1H), 11,1 (s a, 1H), 8,19 (d, J= 8 Hz, 1H), 8,05 (d, J= 8 Hz, 1H), 7,84 (t, J= 8, 8 Hz, 1H), 7,52 (t, J= 8 Hz, 1H), 2,74 (s, 3H); EM-ESI 235,9 m/z (MH †).

30 **Ejemplo 4**:

5

10

15

20

25

45

65

35
$$C_{NH_2}$$
 C_{CF_3} C_{CF_3} C_{CF_3} C_{CF_3} C_{CF_3} C_{CC_2E1} C_{CC_2E1}

a) PPh₃, Et₃N, CCl₄, CF₃CO₂H; b) malonato de dietilo; c) T~ 200 °C; d) 10 % de NaOH

40 Cloruro de 2,2,2-trifluoro-N-fenil-acetimidoílo

Se agitó una mezcla de Ph_3P (138,0 g, 526 mmoles), Et_3N (21,3 g, 211 mmoles), CCl_4 (170 ml) y TFA (20 g, 175 mmoles) durante 10 min en un baño de hielo. Se añadió anilina (19,6 g, 211 mmoles) disuelta en CCl_4 (20 ml). La mezcla se agitó a reflujo durante 3 h. El disolvente se eliminó a vacío y se añadió hexano. Los precipitados (Ph_3PO y Ph_3P) se separaron por filtración y se lavaron con hexano. El filtrado se destiló a presión reducida dando cloruro de 2,2,2-trifluoro-N-fenil-acetimidoílo (19 g), que se usó en la siguiente etapa sin más purificación.

Éster dietílico del ácido 2-(2,2,2-trifluoro-1-fenilimino-etil)-malónico

A una suspensión de NaH (3,47 g, 145 mmoles, 60 % en aceite mineral) en THF (200 ml) se añadió malonato de dietilo (18,5 g, 116 mmoles) a 0 °C. La mezcla se agitó durante 30 min a esta temperatura y se añadió cloruro de 2,2,2-trifluoro-N-fenil-acetimidoílo (19 g, 92 mmoles) a 0 °C. La mezcla de reacción se dejó calentar a temperatura ambiente y se agitó durante la noche. La mezcla se diluyó con CH₂Cl₂, se lavó con disolución saturada de bicarbonato sódico y salmuera. Las fases orgánicas combinadas se secaron sobre Na₂SO₄, se filtraron y se concentraron proporcionando éster dietílico del ácido 2-(2,2,2-trifluoro-1-fenilimino-etil)-malónico, que se usó directamente en la siguiente etapa sin más purificación.

Éster etílico del ácido 4-Hidroxi-2-trifluorometil-quinolin-3-carboxílico

60 Se calentó éster dietílico del ácido 2-(2,2,2-trifluoro-1-fenilimino-etil)-malónico a 210 °C durante 1 h con agitación continua. La mezcla se purificó por cromatografía en columna (éter de petróleo) dando éster etílico del ácido 4-hidroxi-2-trifluorometil-quinolin-3-carboxílico (12 g, 24 % durante 3 etapas).

A-15; Ácido 4-hidroxi-2-trifluorometil-quinolin-3-carboxílico

Se calentó una suspensión de éster etílico del ácido 4-hidroxi-2-trifluorometil-quinolin-3-carboxílico (5 g, 17,5

mmoles) en disolución acuosa al 10 % de NaOH a reflujo durante 2 h. Después de enfriarse, se añadió diclorometano y la fase acuosa se separó y se acidificó con HCl concentrado a pH 4. El precipitado resultante se recogió mediante filtración, se lavó con agua y Et₂O proporcionando ácido 4-hidroxi-2-trifluorometil-quinolin-3-carboxílico (A-15) (3,6 g, 80 %). RMN 1 H (DMSO- d_{6}) δ 8,18-8,21 (d, J = 7,8 Hz, 1H), 7,92-7,94 (d, J = 8,4 Hz, 1H), 7,79-7,83 (t, J = 14,4 Hz, 1H), 7,50-7,53 (t, J = 15 Hz, 1H); EM-ESI 257,0 m/z (MH $^{+}$).

Ejemplo 5:

5

25

30

35

40

45

50

10

$$A = A = A = A$$
 $A = A = A$
 $A = A = A$
 $A = A = A$

a) $CH_3C(O)ONH_4$, tolueno; b) $EtOCHC(CO_2Et)_2$, 130 °C; c) Ph_2O ; d) I_2 , EtOH; e) NaOH

3-Amino-ciclohex-2-enona

Se calentó una mezcla de ciclohexano-1,3-diona (56,1 g, 0,5 moles) y AcONH₄ (38,5 g, 0,5 moles) en tolueno a reflujo durante 5 h con un aparato de Dean-stark. Se separó la fase aceitosa resultante y se concentró a presión reducida dando 3-amino-ciclohex-2-enona (49,9 g, 90 %), que se usó directamente en la siguiente etapa sin más purificación.

Éster dietílico del ácido 2-[(3-oxo-ciclohex-1-enilamino)-metilen]-malónico

Se agitó una mezcla de 3-amino-ciclohex-2-enona (3,3 g, 29,7 mmoles) y 2-(etoximetilen)malonato de dietilo (6,7 g, 31,2 mmoles) a 130 °C durante 4 h. La mezcla de reacción se concentró a presión reducida y el aceite resultante se purificó por cromatografía en columna (gel de sílice, acetato de etilo) dando éster dietílico del ácido 2-[(3-oxo-ciclohex-1-enilamino)-metilen]-malónico (7,5 g, 90 %).

Éster etílico del ácido 4,5-dioxo-1,4,5,6,7,8-hexahidro-quinolin-3-carboxílico

Se sometió una mezcla de éster dietílico del ácido 2-[(3-oxo-ciclohex-1-enilamino)-metilen]-malónico (2,8 g, 1 mmol) y difenil éter (20 ml) a reflujo durante 15 min. Después de enfriarse, se añadió *n*-hexano (80 ml). El sólido resultante se aisló mediante filtración y se recristalizó en metanol dando éster etílico del ácido 4,5-dioxo-1,4,5,6,7,8-hexahidro-quinolin-3-carboxílico (1,7 g 72 %).

Éster etílico del ácido 5-hidroxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico

A una disolución de éster etílico del ácido 4,5-dioxo-1,4,5,6,7,8-hexahidro-quinolin-3-carboxílico (1,6 g, 6,8 mmoles) en etanol (100 ml) se añadió yodo (4,8 g, 19 mmoles). La mezcla se sometió a reflujo durante 19 h y a continuación se concentró a presión reducida. El sólido resultante se lavó con acetato de etilo, agua y acetona, y a continuación se recristalizó en DMF dando éster etílico del ácido 5-hidroxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico (700 mg, 43 %).

A-3; Ácido 5-hidroxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico

Se calentó una mezcla de éster etílico del ácido 5-hidroxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico (700 mg, 3 mmoles) en 10 % de NaOH (20 ml) a reflujo durante la noche. Después de enfriarse, la mezcla se extrajo con éter. La fase acuosa se separó y se acidificó con HCl conc. a pH 1-2. El precipitado resultante se recogió mediante filtración dando ácido 5-hidroxi-4-oxo-1,4-dihidro-quinolin-3-carboxílico (**A-3**) (540 mg, 87 %). RMN ¹H (DMSO-d₆) δ 13,7 (a, 1H), 13,5 (a, 1H), 12,6 (s, 1H), 8,82 (s, 1H), 7,68 (t, *J* = 8,1 Hz, 1H), 7,18 (d, *J* = 8,4 Hz, 1H), 6,82 (d, *J* = 8,4 Hz, 1H); EM-ESI 205,9 m/z (MH⁺).

Ejemplo 6:

5

OH

$$OH$$
 OMe
 O

a) POCl₃; b) MeONa; c) n-BuLi, CICO₂Et; d) NaOH

2,4-Dicloroquinolina

20

25

30

Se calentó una suspensión de quinolin-2,4-diol (15 g, 92,6 mmoles) en POCI₃ a reflujo durante 2 h. Después de enfriarse, el disolvente se eliminó a presión reducida dando 2,4-dicloroquinolina, que se usó sin más purificación.

2,4-Dimetoxiquinolina

A una suspensión de 2,4-dicloroquinolina en MeOH (100 ml) se añadió metóxido de sodio (50 g). La mezcla se calentó a reflujo durante 2 días. Después de enfriarse, la mezcla se filtró. El filtrado se concentró a presión reducida dando un residuo que se disolvió en agua y se extrajo con CH₂Cl₂. Las fases orgánicas combinadas se secaron sobre Na₂SO₄ y se concentraron dando 2,4-dimetoxiquinolina como un sólido blanco (13 g, 74 % durante 2 etapas).

2.4-Dimetoxiquinolin-3-carboxilato de etilo

A una disolución de 2,4-dimetoxiquinolina (11,5 g, 60,8 mmoles) en THF anhidro se añadió gota a gota *n*-BuLi (2,5 M en hexano, 48,6 ml, 122 mmoles) a 0 °C. Después de agitar durante 1,5 h a 0 °C, la mezcla se añadió a una disolución de cloroformiato de etilo en THF anhidro y se agitó a 0 °C durante 30 min adicionales y a continuación a temperatura ambiente durante la noche. La mezcla de reacción se vertió en agua y se extrajo con CH₂Cl₂. La fase orgánica se secó sobre Na₂SO₄ y se concentró a vacío. El residuo resultante se purificó por cromatografía en columna (éter de petróleo / EtOAc = 50/1) dando 2,4-dimetoxiquinolin-3-carboxilato de etilo (9,6 g, 60 %).

A-17; Ácido 2,4-dimetoxiquinolin-3-carboxílico

Se calentó 2,4-dimetoxiquinolin-3-carboxilato de etilo (1,5 g, 5,7 mmoles) a reflujo en disolución de NaOH (10 %, 100 ml) durante 1 h. Después de enfriarse, la mezcla se acidificó con HCl concentrado a pH 4. El precipitado resultante se recogió mediante filtración y se lavó con agua y éter dando ácido 2,4-dimetoxiquinolin-3-carboxílico (**A-17**) como un sólido blanco (670 mg, 50 %). RMN ¹H (CDCl₃) δ 8,01-8,04 (d, *J* = 12 Hz, 1H), 7,66-7,76 (m, 2H), 7,42-7,47 (t, *J* = 22 Hz, 2H), 4,09 (s, 3H). 3,97 (s, 3H); EM-ESI 234,1 m/z (MH[†]).

Ácidos comercialmente disponibles

Acido	Nombre	
A-5	6,8-Difluoro-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico	
A-6	6-[(4-Fluoro-fenil)-metil-sulfamoil]-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico	
A-7	6-(4-Metil-piperidine-1-sulfonil)-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico	
A-8	4-Oxo-6-(pirrolidina-1-sulfonil)-1,4-dihidro-quinolina-3-acido carboxílico	
A-10	6-Etil-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico	

65

50

55

	Acido	Nombre
5	A-11	6-Etoxi-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico
	A-12	4-Oxo-7-trifluorometil-1,4-dihidro-quinolina-3-acido carboxílico
	A-13	7-Cloro-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico
10	A-14	4-Oxo-5,7-bis-trifluorometil-1,4-dihidro-quinolina-3-acido carboxílico
	A-20	1-Metil-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico
	A-21	1-Isopropil-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico
15	A-22	1,6-Dimetil-4-oxo-1,4-dihidro-quinolina-3 -acido carboxílico
	A-23	1-Etil-6-metoxi-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico
	A-24	6-Cloro-4-oxo-1,4-dihidro-quinolina-3-acido carboxílico

20 Fenoles

30

35

40

Ejemplo 1:

2-terc-Butil-5-nitroanilina

A una disolución enfriada de ácido sulfúrico (90 %, 50 ml) se añadió gota a gota 2-*terc*-butil-fenilamina (4,5 g, 30 mmoles) a 0 °C. Se añadió nitrato de potasio (4,5 g, 45 mmoles) en porciones a 0 °C. La mezcla de reacción se agitó a 0-5 °C durante 5 min, se vertió en agua con hielo y a continuación se extrajo tres veces con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre Na₂SO₄. Después de eliminar el disolvente, el residuo se purificó por recristalización usando 70 % de EtOH - H_2O dando 2-*terc*-butil-5-nitroanilina (3,7 g, 64 %). RMN 1H (400 MHz, CDCl₃) δ 7,56 (dd, J = 8,7, 2,4 Hz, 1H), 7,48 (d, J = 2,4 Hz, 1H), 7,36 (d, J = 8,7 Hz, 1H), 4,17 (s, 2H), 1,46 (s, 9H); tiempo de ret. de HPLC 3,27 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 195,3 m/z (MH $^+$).

C-1-a; 2-terc-Butil-5-nitrofenol

A una mezcla de 2-terc-butil-5-nitroanilina (1,94 g, 10 mmoles) en 40 ml de H₂SO₄ al 15 % se añadió gota a gota una disolución de NaNO₂ (763 mg, 11,0 mmoles) en agua (3 ml) a 0 °C. La mezcla resultante se agitó a 0-5 °C durante 5 min. Se neutralizó el exceso NaNO₂ con urea, a continuación se añadieron 5 ml de H₂SO₄-H₂O (v/v 1:2) y la mezcla se sometió a reflujo durante 5 min. Se añadieron tres alícuotas adicionales de 5 ml de H₂SO₄-H₂O (v/v 1:2) mientras que se calentaba a reflujo. La mezcla de reacción se enfrió a temperatura ambiente y se extrajo dos veces con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄. Después de eliminar el disolvente, el residuo se purificó por cromatografía en columna (0-10 % de EtOAc - hexano) dando 2-terc-butil-5-nitrofenol (C-1-a) (1,2 g, 62 %). RMN ¹H (400 MHz, CDCl₃) δ 7,76 (dd, J = 8,6, 2,2 Hz, 1H), 7,58 (d, J = 2,1 Hz, 1H), 7,43 (d, J = 8,6 Hz, 1H), 5,41 (s, 1H), 1,45 (s, 9H); tiempo de ret. de HPLC 3,46 min, 10-99 % de CH₃CN, 5 min de ejecución.

C-1; 2-terc-Butil-5-aminofenol. A una disolución a reflujo de 2-terc-butil-5-nitrofenol (C-1-a) (196 mg, 1,0 mmol) en EtOH (10 ml) se añadió formiato de amonio (200 mg, 3,1 mmoles), seguido de 140 mg de 10 % de Pd-C. La mezcla de reacción se sometió a reflujo durante 30 min adicionales, se enfrió a temperatura ambiente y se filtró a través de un tapón de Celite. El filtrado se concentró a sequedad y se purificó por cromatografía en columna (20-30 % de EtOAc-hexano) dando 2-terc-butil-5-aminofenol (C-1) (144 mg, 87 %). RMN ¹H (400 MHz, DMSO-d₆) δ 8,76 (s, 1H), 6,74 (d, J = 8,3 Hz, 1H), 6,04 (d, J = 2,3 Hz, 1H), 5,93 (dd, J = 8,2, 2,3 Hz, 1H), 4,67 (s, 2H), 1,26 (s, 9H); tiempo de ret. de HPLC 2,26 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 166,1 m/z (MH[†]).

Ejemplo 2:

65 Esquema general:

5
$$O_2N$$
 O_1 O_2N O_2N

a) RX (X = Br, I), K_2CO_3 o Cs_2CO_3 , DMF; b) HCO_2NH_4 o HCO_2K , Pd-C, EtOH

Ejemplo específico:

10

20

25

35

40

45

50

60

65

15
$$CH_3I$$
, K_2CO_3 O_2N O_2N

1-terc-Butil-2-metoxi-4-nitrobenceno

A una mezcla de 2-*terc*-butil-5-nitrofenol **(C-1-a)** (100 mg, 0,52 mmoles) y K_2CO_3 (86 mg, 0,62 mmoles) en DMF (2 ml) se añadió CH_3I (40 ul, 0,62 mmoles). La mezcla de reacción se agitó a temperatura ambiente durante 2 h, se diluyó con agua y se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄. Después de la filtración, el filtrado se evaporó a sequedad dando 1-*terc*-butil-2-metoxi-4-nitrobenceno (82 mg, 76 %) que se usó sin más purificación. RMN 1H (400 MHz, $CDCI_3$) δ 7,77 (t, J = 4,3 Hz, 1H), 7,70 (d, J = 2,3 Hz, 1H), 7,40 (d, J = 8,6 Hz, 1H), 3,94 (s, 3H), 1,39 (s, 9H).

30 C-2; 4-terc-Butil-3-metoxianilina

A una disolución a reflujo de 1-*terc*-butil-2-metoxi-4-nitrobenceno (82 mg, 0,4 mmoles) en EtOH (2 ml) se añadió formiato de potasio (300 mg, 3,6 mmoles) en agua (1 ml), seguido de 10 % de Pd-C (15 mg). La mezcla de reacción se sometió a reflujo durante 60 min adicionales, se enfrió a temperatura ambiente y se filtró a través de Celite. El filtrado se concentró a sequedad dando 4-*terc*-butil-3-metoxianilina (C-2) (52 mg, 72 %) que se usó sin más purificación. Tiempo de ret. de HPLC 2,29 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 180,0 m/z (MH⁺).

Otros ejemplos:

C-3; 3-(2-Etoxietoxi)-4-terc-butilbencenamina

Se sintetizó 3-(2-etoxietoxi)-4-*terc*-butilbencenamina (C-3) siguiendo el esquema general anterior a partir de 2-*terc*-butil-5-nitrofenol (**C**-1-**a**) y 1-bromo-2-etoxietano. RMN 1 H (400 MHz, CDCl₃) δ 6,97 (d, J = 7,9 Hz, 1H), 6,17 (s, 1H), 6,14 (d, J = 2,3 Hz, 1H), 4,00 (t, J = 5,2 Hz, 2H), 3,76 (t, J = 5,2 Hz, 2H), 3,53 (q, J = 7,0 Hz, 2H), 1,27 (s, 9H), 1,16 (t, J = 7,0 Hz, 3H); tiempo de ret. de HPLC 2,55 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 238,3 m/z (MH $^+$).

C-4; 2-(2-terc-Butil-5-aminofenoxi)etanol

Se sintetizó 2-(2-*terc*-butil-5-aminofenoxi)etanol **(C-4)** siguiendo el esquema general anterior a partir de 2-*terc*-butil-5-nitrofenol **(C-1-a)** y 2-bromoetanol. Tiempo de ret. de HPLC 2,08 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 210,3 m/z (MH⁺).

Ejemplo 4:

Esquema general:

20 X = F, CI; a) ROH, H₂SO₄ o MeSO₃H, CH₂Cl₂; b) R'CO₂Cl, Et₃N, 1,4-dioxano o CHCl₃; c) HNO₃, H₂SO₄ o HNO₃, AcOH; d) piperidina, CH₂Cl₂; e) HCO₂NH₄, Pd-C, EtOH o SnCl₂,2H₂O, EtOH o H₂, Pd-C, MeOH.

Ejemplo específico

2-terc-Butil-4-fluorofenol

65

Se disolvieron 4-fluorofenol (5 g, 45 mmoles) y *terc*-butanol (5,9 ml, 63 mmoles) en CH₂Cl₂ (80 ml) y se trató con ácido sulfúrico concentrado (98 %, 3 ml). La mezcla se agitó a temperatura ambiente durante la noche. La fase orgánica se lavó con agua, se neutralizó con NaHCO₃, se secó sobre MgSO₄ y se concentró. El residuo se purificó por cromatografía en columna (5-15 % de EtOAc - hexano) dando 2-*terc*-butil-4-fluorofenol (3,12 g, 42 %). RMN ¹H (400 MHz, DMSO-*d*₆) δ 9,32 (s, 1H), 6,89 (dd, J = 11,1, 3,1 Hz, 1H), 6,84-6,79 (m, 1H), 6,74 (dd, J = 8,7, 5,3 Hz, 1H), 1,33 (s, 9H).

Carbonato de 2-terc-butil-4-fluorofenilmetilo

A una disolución de 2-terc-butil-4-fluorofenol (2,63 g, 15,7 mmoles) y NEt₃ (3,13 ml, 22,5 mmoles) en dioxano (45 ml) se añadió cloroformiato de metilo (1,27 ml, 16,5 mmoles). La mezcla se agitó a temperatura ambiente durante 1 h. El precipitado se eliminó mediante filtración. El filtrado se diluyó a continuación con agua y se extrajo con éter. El extracto de éter se lavó con agua y se secó sobre MgSO₄. Después de eliminar el disolvente, el residuo se purificó

por cromatografía en columna dando carbonato de 2-*terc*-butil-4-fluorofenilmetilo (2,08 g, 59 %). RMN 1 H (400 MHz, DMSO- d_{6}) δ 7,24 (dd, J = 8,8, 5,4 Hz, 1H), 7,17-7,10 (m, 2H), 3,86 (s, 3H), 1,29 (s, 9H).

Carbonato de 2-terc-butil-4-fluoro-5-nitrofenilmetilo (C-7-a) y carbonato de 2-terc-butil-4-fluoro-6-nitrofenilmetilo (C-6-a)

A una disolución de carbonato de 2-terc-butil-4-fluorofenilmetilo (1,81 g, 8 mmoles) en H_2SO_4 (98 %, 1 ml) se añadió lentamente a una mezcla enfriada de H_2SO_4 (1 ml) y HNO $_3$ (1 ml) a 0 °C. La mezcla se agitó durante 2 h mientras que se calentaba a temperatura ambiente, se vertió en hielo y se extrajo con éter dietílico. El extracto de éter se lavó con salmuera, se secó sobre MgSO $_4$ y se concentró. El residuo se purificó por cromatografía en columna (0-10 % de EtOAc - hexano) dando carbonato de 2-terc-butil-4-fluoro-5-nitrofenilmetilo (**C-7-a**) (1,2 g, 55 %) y carbonato de 2-terc-butil-4-fluoro-6-nitrofenilmetilo (**C-6-a**) (270 mg, 12 %). Carbonato de 2-terc-butil-4-fluoro-5-nitrofenilmetilo (**C-7-a**): RMN 1 H (400 MHz, DMSO- d_6) δ 8,24 (d, J = 7,1 Hz, 1H), 7,55 (d, J = 13,4 Hz, 1H), 3,90 (s, 3H), 1,32 (s, 9H). Carbonato de 2-terc-butil-4-fluoro-6-nitrofenilmetilo (**C-6-a**): RMN 1 H,(400 MHz, DMSO- d_6) δ 8,04 (dd, J = 7,6, 3,1 Hz, 1H), 7,69 (dd, J = 10,1, 3,1 Hz, 1H), 3,91 (s, 3H), 1,35 (s, 9H).

2-terc-Butil-4-fluoro-5-nitrofenol

A una disolución de carbonato de 2-*terc*-butil-4-fluoro-5-nitrofenilmetilo **(C-7-a)** (1,08 g, 4 mmoles) en CH₂Cl₂ (40 ml) se añadió piperidina (3,94 ml, 10 mmoles). La mezcla se agitó a temperatura ambiente durante 1 h y se extrajo con NaOH 1 N (3x). La fase acuosa se acidificó con HCl 1 N y se extrajo con éter dietílico. El extracto de éter se lavó con salmuera, se secó (MgSO₄) y se concentró dando 2-*terc*-butil-4-fluoro-5-nitrofenol (530 mg, 62 %). RMN ¹H (400 MHz, DMSO-*d*₆) δ 10,40 (s, 1H), 7,49 (d, J = 6,8 Hz, 1H), 7,25 (d, J = 13,7 Hz, 1H), 1,36 (s, 9H).

C-7; 2-terc-Butil-5-amino-4-fluorofenol

A una disolución a reflujo de 2-terc-butil-4-fluoro-5-nitrofenol (400 mg, 1,88 mmoles) y formiato de amonio (400 mg, 6,1 mmoles) en EtOH (20 ml) se añadió 5 % de Pd-C (260 mg). La mezcla se sometió a reflujo durante 1 h adicional, se enfrió y se filtró a través de Celite. El disolvente se eliminó mediante evaporación dando 2-terc-butil-5-amino-4-fluorofenol (C-7) (550 mg, 83 %). RMN 1 H (400 MHz, DMSO- d_{6}) δ 8,83 (s a, 1H), 6,66 (d, J = 13,7 Hz, 1H), 6,22 (d, J = 8,5 Hz, 1H), 4,74 (s a, 2H), 1,26 (s, 9H); tiempo de ret. de HPLC 2,58 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 184,0 m/z (MH $^{+}$).

Otros ejemplos:

5

10

15

25

30

35

40

50

55

60

C-10; 2-terc-Butil-5-amino-4-clorofenol

Se sintetizó 2-*terc*-butil-5-amino-4-clorofenol **(C-10)** siguiendo el esquema general anterior a partir de 4-clorofenol y *terc*-butanol. Rendimiento global (6 %). Tiempo de ret. de HPLC 3,07 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 200,2 m/z (MH⁺).

C-13; 5-Amino-4-fluoro-2-(1-metilciclohexil)fenol

Se sintetizó 5-amino-4-fluoro-2-(1-metilciclohexil)fenol **(C-13)** siguiendo el esquema general anterior a partir de 4-fluorofenol y 1-metilciclohexanol. Rendimiento global (3 %). Tiempo de ret. de HPLC 3,00 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 224,2 m/z (MH⁺).

5

10 C-19; 5-Amino-2-(3-etilpentan-3-il)-4-fluoro-fenol

Se sintetizó 5-amino-2-(3-etilpentan-3-il)-4-fluoro-fenol **(C-19)** siguiendo el esquema general anterior a partir de 4-fluorofenol y 3-etil-3-pentanol. Rendimiento global (1 %).

15

20

C-20; 2-Admantil-5-amino-4-fluoro-fenol

Se sintetizó 2-admantil-5-amino-4-fluoro-fenol **(C-20)** siguiendo el esquema general anterior a partir de 4-fluorofenol y adamantan-1-ol.

30

35

C-21; 5-Amino-4-fluoro-2-(1-metilcicloheptil)fenol

Se sintetizó 5-amino-4-fluoro-2-(1-metilcicloheptil)fenol **(C-21)** siguiendo el esquema general anterior a partir de 4fluorofenol y 1-metil-cicloheptanol.

45

50 C-22; 5-Amino-4-fluoro-2-(1-metilciclooctil)fenol

Se sintetizó 5-amino-4-fluoro-2-(1-metilciclooctil)fenol (C-22) siguiendo el esquema general anterior a partir de 4-fluorofenol y 1-metil-ciclooctanol.

55

60

C-23; 5-Amino-2-(3-etil-2,2-dimetilpentan-3-il)-4-fluoro-fenol

Se sintetizó 5-amino-2-(3-etil-2,2-dimetilpentan-3-il)-4-fluoro-fenol **(C-23)** siguiendo el esquema general anterior a partir de 4-fluorofenol y 3-etil-2,2-dimetil-pentan-3-ol.

Ejemplo 5:

F

$$HCO_2NH_4$$
 $Pd-C$, EtOH

 NH_2
 $C-6-a$
 $C-6$

15 C-6; Carbonato de 2-terc-butil-4-fluoro-6-aminofenilmetilo

A una disolución a reflujo de carbonato de 2-*terc*-butil-4-fluoro-6-nitrofenilmetilo (250 mg, 0,92 mmoles) y formiato de amonio (250 mg, 4 mmoles) en EtOH (10 ml) se añadió 5 % de Pd-C (170 mg). La mezcla se sometió a reflujo durante 1 h adicional, se enfrió y se filtró a través de Celite. El disolvente se eliminó mediante evaporación y el residuo se purificó por cromatografía en columna (0-1 %, EtOAc - hexano) dando carbonato de 2-*terc*-butil-4-fluoro-6-aminofenilmetilo (C-6) (60 mg, 27 %). Tiempo de ret. de HPLC 3,35 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 242,0 m/z (MH[†]).

Ejemplo 6:

20

60

65

Éster metílico del éster 2,4-di-terc-butil-fenílico del ácido carbónico

Se añadió gota a gota cloroformiato de metilo (58 ml, 750 mmoles) a una disolución de 2,4-di-*terc*-butil-fenol (103,2 g, 500 mmoles), Et₃N (139 ml, 1000 mmoles) y DMAP (3,05 g, 25 mmoles) en diclorometano (400 ml) enfriado en un baño de agua con hielo a 0 °C. La mezcla se dejó calentar a temperatura ambiente mientras que se agitaba durante la noche, a continuación se filtró a través de gel de sílice (aprox. 1 l) usando 10 % de acetato de etilo - hexanos (~ 4 l) como eluyente. Los filtrados combinados se concentraron dando éster metílico del éster 2,4-di-*terc*-butil-fenílico del ácido carbónico como un aceite amarillo (132 g, cuant.). RMN ¹H (400 MHz, DMSO-d₆) δ 7,35 (d, J = 2,4 Hz, 1H), 7,29 (dd, J = 8,5, 2,4 Hz, 1H), 7,06 (d, J = 8,4 Hz, 1H), 3,85 (s, 3H), 1,30 (s, 9H), 1,29 (s, 9H).

Éster metílico del éster 2,4-di-terc-butil-5-nitro-fenílico del ácido carbónico y éster metílico del éster 2,4-di-terc-butil-6-nitro-fenílico del ácido carbónico

A una mezcla con agitación de éster metílico del éster 2,4-di-*terc*-butil-fenílico del ácido carbónico (4,76 g, 18 mmoles) en ácido sulfúrico conc. (2 ml), se enfrió en un baño de agua con hielo, se añadió a una mezcla enfriada de ácido sulfúrico (2 ml) y ácido nítrico (2 ml). La adición se hizo lentamente de manera que la temperatura de reacción no superó 50 °C. La reacción se dejó con agitación durante 2 h mientras que se calentaba a temperatura ambiente. A continuación, la mezcla de reacción se añadió a agua con hielo y se extrajo en éter dietílico. La fase de éter se secó (MgSO₄), se concentró y se purificó por cromatografía en columna (0 - 10 % de acetato de etilo - hexanos)

dando una mezcla de éster metílico del éster 2,4-di-*terc*-butil-5-nitrofenílico del ácido carbónico y éster metílico del éster 2,4-di-*terc*-butil-6-nitro-fenílico del ácido carbónico como un sólido amarillo pálido (4,28 g), que se usó directamente en la siguiente etapa.

2,4-Di-terc-butil-5-nitro-fenol y 2,4-di-terc-butil-6-nitro-fenol

La mezcla de éster metílico del éster 2,4-di-terc-butil-5-nitro-fenílico de ácido carbónico y éster metílico del éster 2,4-di-terc-butil-6-nitro-fenílico del ácido carbónico (4,2 g, 12,9 mmoles) se disolvió en MeOH (65 ml) y se añadió KOH (2,0 g, 36 mmoles). La mezcla se agitó a temperatura ambiente durante 2 h. A continuación, la mezcla de reacción se acidificó (pH 2-3) añadiendo HCl conc. y se repartió entre agua y éter dietílico. La fase de éter se secó (MgSO₄), se concentró y se purificó por cromatografía en columna (0 - 5 % de acetato de etilo - hexano) proporcionando 2,4-di-terc-butil-5-nitro-fenol (1,31 g, 29 % durante 2 etapas) y 2,4-di-terc-butil-6-nitrofenol. 2,4-Di-terc-butil-5-nitro-fenol: RMN 1 H (400 MHz, DMSO- d_6) δ 10,14 (s, 1H, OH), 7,34 (s, 1H), 6,83 (s, 1H), 1,36 (s, 9H), 1,30 (s, 9H). 2,4-Di-terc-butil-6-nitro-fenol: RMN 1 H (400 MHz, CDCl₃) δ 11,48 (s, 1H), 7,98 (d, J = 2,5 Hz, 1H), 7,66 (d, J = 2,4 Hz, 1H), 1,47 (s, 9H), 1,34 (s, 9H).

C-9; 5-Amino-2,4-di-terc-butil-fenol

A una disolución en reflujo de 2,4-di-*terc*-butil-5-nitro-fenol (1,86 g, 7,4 mmoles) y formiato de amonio (1,86 g) en etanol (75 ml) se añadió Pd-5 % en peso sobre carbón activo (900 mg). La mezcla de reacción se agitó a reflujo durante 2 h, se enfrió a temperatura ambiente y se filtró a través de Celite. El Celite se lavó con metanol y los filtrados combinados se concentraron dando 5-amino-2,4-di-*terc*-butil-fenol como un sólido gris (1,66 g, cuant.). RMN ¹H (400 MHz, DMSO-*d*₆) δ 8,64 (s, 1H, OH), 6,84 (s, 1H), 6,08 (s, 1H), 4,39 (s, 2H, NH₂), 1,27 (m, 18H); tiempo de ret. de HPLC 2,72 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 222,4 m/z (MH[†]).

C-8; 6-Amino-2,4-di-terc-butil-fenol

Una disolución de 2,4-di-*terc*-butil-6-nitro-fenol (27 mg, 0,11 mmoles) y SnCl₂·2H₂O (121 mg, 0,54 mmoles) en EtOH (1,0 ml) se calentó en horno microondas a 100 °C durante 30 min. La mezcla se diluyó con EtOAc y agua, se basificó con NaHCO₃ sat. y se filtró a través de Celite. La fase orgánica se separó y se secó sobre Na₂SO₄. Se eliminó el disolvente mediante evaporación proporcionando 6-amino-2,4-di-*terc*-butil-fenol (C-8), que se usó sin más purificación. Tiempo de ret. de HPLC 2,74 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 222,5 m/z (MH⁺).

Ejemplo 7:

5

10

15

25

30

35

55

60

65

4-terc-Butil-2-cloro-fenol

A una disolución de 4-*terc*-butil-fenol (40,0 g, 0,27 moles) y SO₂Cl₂ (37,5 g, 0,28 moles) en CH₂Cl₂ se añadió MeOH (9,0 g, 0,28 moles) a 0 °C. Después de completarse la adición, la mezcla se agitó durante la noche a temperatura ambiente y a continuación se añadió agua (200 ml). La disolución resultante se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron sobre Na₂SO₄ anhidro, se filtraron y se concentraron a vacío. El residuo se purificó por cromatografía en columna (éter de pet./ EtOAc, 50:1) dando 4-*terc*-butil-2-cloro-fenol (47,0 g, 95 %).

Carbonato de 4-terc-butil-2-clorofenilmetilo

A una disolución de 4-terc-butil-2-clorofenol (47,0 g, 0,25 moles) en diclorometano (200 ml) se añadió Et₃N (50,5 g, 0,50 moles), DMAP (1 g) y cloroformiato de metilo (35,4 g, 0,38 moles) a 0 °C. La reacción se dejó calentar a temperatura ambiente y se agitó durante 30 min adicionales. La mezcla de reacción se lavó con H_2O y la fase orgánica se secó sobre Na_2SO_4 y se concentró dando carbonato de 4-terc-butil-2-clorofenilmetilo (56,6 g, 92 %), que se usó directamente en la siguiente etapa.

Carbonato de 4-terc-butil-2-cloro-5-nitrofenilmetilo

Se disolvió carbonato de 4-*terc*-butil-2-clorofenilmetilo (36,0 g, 0,15 moles) en H₂SO₄ conc. (100 ml) a 0 °C. Se añadió KNO₃ (0,53 g, 5,2 mmoles) en porciones durante 25 min. La reacción se agitó durante 1,5 h y se vertió en hielo (200 g). La fase acuosa se extrajo con diclorometano. Las fases orgánicas combinadas se lavaron con NaHCO₃ ac., se secaron sobre Na₂SO₄ y se concentraron a vacío dando carbonato de 4-*terc*-butil-2-cloro-5-nitrofenilmetilo (41,0 g), que se usó sin más purificación.

4-terc-Butil-2-cloro-5-nitro-fenol

Se añadió hidróxido potásico (10,1 g, 181 mmoles) a carbonato de 4-*terc*-butil-2-cloro-5-nitrofenilmetilo (40,0 g, 139 mmoles) en MeOH (100 ml). Después de 30 min, la reacción se acidificó con HCl 1 N y se extrajo con diclorometano. Las fases orgánicas combinadas se combinaron, se secaron sobre Na₂SO₄ y se concentraron a vacío. El residuo en bruto se purificó por cromatografía en columna (éter de pet./ EtOAc, 30:1) dando 4-*terc*-butil-2-cloro-5-nitro-fenol (23,0 g, 68 % durante 2 etapas).

C-11; 4-terc-Butil-2-cloro-5-amino-fenol

A una disolución de 4-*terc*-butil-2-cloro-5-nitro-fenol (12,6 g, 54,9 mmoles) en MeOH (50 ml) se añadió Ni (1,2 g). La reacción se agitó bajo H₂ (1 atm) durante 4 h. La mezcla de reacción se filtró y el filtrado se concentró. El residuo se purificó por cromatografía en columna (P.E. / EtOAc, 20:1) dando 4-*terc*-butil-2-cloro-5-amino-fenol **(C-11)** (8,5 g, 78 %). RMN ¹H (DMSO-*d*₆) δ 9,33 (s, 1H), 6,80 (s, 1H), 6,22 (s, 1H), 4,76 (s, 1H), 1,23 (s, 9H); EM-ESI 200,1 m/z (MH⁺).

Ejemplo 8:

5

10

15

20

65

Carbonato de 2-admantil-4-metil-feniletilo

Se añadió cloroformiato de etilo (0,64 ml, 6,7 mmoles) gota a gota a una disolución de 2-admantil-4-metilfenol (1,09 g, 4,5 mmoles), Et₃N (1,25 ml, 9 mmoles) y DMAP (cantidad catalítica) en diclorometano (8 ml) enfriada en un baño de agua con hielo a 0 °C. La mezcla se dejó calentar a temperatura ambiente mientras que se agitaba durante la noche, a continuación se filtró y el filtrado se concentró. El residuo se purificó por cromatografía en columna (10-20 % de acetato de etilo - hexanos) dando carbonato de 2-admantil-4-metil-feniletilo como un aceite amarillo (1,32 g, 94 %).

Carbonato de 2-admantil-4-metil-5-nitrofeniletilo

A una disolución enfriada de carbonato de 2-admantil-4-metil-feniletilo (1,32 g, 4,2 mmoles) en H₂SO₄ (98 %, 10 ml) se añadió KNO₃(510 mg, 5,0 mmoles) en pequeñas porciones a 0 °C. La mezcla se agitó durante 3 h mientras que se calentaba a temperatura ambiente, se vertió en hielo y a continuación se extrajo con diclorometano. Las fases orgánicas combinadas se lavaron con NaHCO₃ y salmuera, se secaron sobre MgSO₄ y se concentraron a sequedad. El residuo se purificó por cromatografía en columna (0-10 % de EtOAc - hexano) dando carbonato de 2-admantil-4-metil-5-nitrofeniletilo (378 mg, 25 %).

2-Admantil-4-metil-5-nitrofenol

A una disolución de carbonato de 2-admantil-4-metil-5-nitrofeniletilo (378 mg, 1,05 mmoles) en CH₂Cl₂ (5 ml) se añadió piperidina (1,0 ml). La disolución se agitó a temperatura ambiente durante 1 h, se adsorbió sobre gel de sílice a presión reducida y se purificó por cromatografía ultrarrápida sobre gel de sílice (0-15 %, EtOAc - hexanos) proporcionando 2-admantil-4-metil-5-nitrofenol (231 mg, 77 %).

C-12; 2-Admantil-4-metil-5-aminofenol

A una disolución de 2-admantil-4-metil-5-nitrofenol (231 mg, 1,6 mmoles) en EtOH (2 ml) se añadió Pd- 5 % en peso sobre carbón (10 mg). La mezcla se agitó bajo H₂ (1 atm) durante la noche y a continuación se filtró a través de Celite. El filtrado se evaporó a sequedad proporcionando 2-admantil-4-metil-5-aminofenol (**C-12**), que se usó sin más purificación. Tiempo de ret. de HPLC 2,52 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 258,3 m/z (MH⁺).

Ejemplo 9:

5

45

55

65

10 NBS CICO₂Me HNO3, H2SO4 CH₃CN Et,N, CH,CI, 15 20 BnBr, Cs₂CO₃ KOH, MeOH DMF O₂N O₂N C-14-a 25 CICF,CO,Me HCO2NH4 KF, KBr, Cul Pd-C, EtOH 30 DMF C-14

2-terc-Butil-4-bromofenol

A una disolución de 2-terc-butilfenol (250 g, 1,67 moles) en CH₃CN (1500 ml) se añadió NBS (300 g, 1,67 moles) a temperatura ambiente. Después de la adición, la mezcla se agitó a temperatura ambiente durante la noche y a continuación el disolvente se eliminó. Se añadió éter de petróleo (1000 ml), y el precipitado blanco resultante se separó por filtración. El filtrado se concentró a presión reducida dando el 2-terc-butil-4-bromofenol en bruto (380 g), que se usó sin más purificación.

(2-terc-Butil-4-bromofenil)carbonato de metilo

A una disolución de 2-t-butil-4-bromofenol (380 g, 1,67 moles) en diclorometano (1000 ml) se añadió Et₃N (202 g, 2 moles) a temperatura ambiente. Se añadió gota a gota cloroformiato de metilo (155 ml) a la disolución anterior a 0 °C. Después de la adición, la mezcla se agitó a 0 °C durante 2 h., se extinguió con disolución saturada de cloruro de amonio y se diluyó con agua. La fase orgánica se separó y se lavó con agua y salmuera, se secó sobre Na₂SO₄ y se concentró proporcionando el (2-terc-butil-4-bromofenil)carbonato de metilo en bruto (470 g), que se usó sin más purificación.

50 (2-terc-Butil-4-bromo-5-nitrofenil)carbonato de metilo

Se disolvió (2-terc-butil-4-bromofenil)carbonato de metilo (470 g, 1,67 moles) en H_2SO_4 conc. (1000 ml) a 0 °C. Se añadió KNO $_3$ (253 g, 2,5 moles) en porciones durante 90 min. La mezcla de reacción se agitó a 0 °C durante 2 h y se vertió en agua con hielo (20 l). El precipitado resultante se recogió mediante filtración y se lavó con agua minuciosamente, se secó y recristalizó en éter dando (2-terc-butil-4-bromo-5-nitrofenil)carbonato de metilo (332 g, 60 % durante 3 etapas).

C-14-a; 2-terc-Butil-4-bromo-5-nitro-fenol

A una disolución de (2-terc-butil-4-bromo-5-nitrofenil)carbonato de metilo (121,5 g, 0,366 moles) en metanol (1000 ml) se añadió hidróxido potásico (30,75 g, 0,549 moles) en porciones. Después de la adición, la mezcla se agitó a temperatura ambiente durante 3 h y se acidificó con HCl 1 N a pH 7. Se eliminó el metanol y se añadió agua. La mezcla se extrajo con acetato de etilo y la fase orgánica se separó, se secó sobre Na₂SO₄ y se concentró dando 2-terc-butil-4-bromo-5-nitro-fenol (C-14-a) (100 g, 99 %).

1-terc-Butil-2-(benciloxi)-5-bromo-4-nitrobenceno

A una mezcla de 2-*terc*-butil-4-bromo-5-nitrofenol **(C-14-a)** (1,1 g, 4 mmoles) y Cs₂CO₃ (1,56 g, 4,8 mmoles) en DMF (8 ml) se añadió bromuro de bencilo (500 μl, 4,2 mmoles). La mezcla se agitó a temperatura ambiente durante 4 h, se diluyó con H₂O y se extrajo dos veces con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄. Después de eliminar el disolvente, el residuo se purificó por cromatografía en columna (0-5 % de EtOAc - hexano) dando 1-*terc*-butil-2-(benciloxi)-5-bromo-4-nitrobenceno (1,37 g, 94 %). RMN ¹H (400 MHz, CDCl₃) 7,62 (s, 1H), 7,53 (s, 1H), 7,43 (m, 5H), 5,22 (s, 2H), 1,42 (s, 9H).

1-terc-Butil-2-(benciloxi)-5-(trifluorometil)-4-nitrobenceno

Se agitó una mezcla de 1-*terc*-butil-2-(benciloxi)-5-bromo-4-nitrobenceno (913 mg, 2,5 mmoles), KF (291 mg, 5 mmoles), KBr (595 mg, 5 mmoles), Cul (570 mg, 3 mmoles), clorodifluoroacetato de metilo (1,6 ml, 15 mmoles) y DMF (5 ml) a 125 °C en un tubo cerrado durante la noche, se enfrió a temperatura ambiente, se diluyó con agua y se extrajo tres veces con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄ anhidro. Después de eliminarse el disolvente, el residuo se purificó por cromatografía en columna (0-5 % de EtOAchexano) dando 1-*terc*-butil-2-(benciloxi)-5-(trifluorometil)-4-nitrobenceno (591 mg, 67 %). RMN ¹H (400 MHz, CDCl₃) 7,66 (s, 1H), 7,37 (m, 5H), 7,19 (s, 1H), 5,21 (s, 2H), 1,32 (s, 9H).

C-14; 5-Amino-2-terc-butil-4-trifluorometil-fenol

A una disolución a reflujo de 1-*terc*-butil-2-(benciloxi)-5-(trifluorometil)-4-nitrobenceno (353 mg, 1,0 mmol) y formiato de amonio (350 mg, 5,4 mmoles) en EtOH (10 ml) se añadió 10 % de Pd-C (245 mg). La mezcla se sometió a reflujo durante 2 h adicionales, se enfrió a temperatura ambiente y se filtró a través de Celite. Después de eliminar el disolvente, el residuo se purificó por cromatografía en columna dando 5-amino-2-*terc*-butil-4-trifluorometil-fenol (C-14) (120 mg, 52 %). RMN ¹H (400 MHz, CDCl₃) δ 7,21 (s, 1H), 6,05 (s, 1H), 1,28 (s, 9H); tiempo de ret. de HPLC 3,46 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 234,1 m/z (MH⁺).

Ejemplo 10:

5

10

15

20

25

65

30 Esquema general:

40 a) $ArB(OH)_2$, K_2CO_3 , $Pd(PPh_3)_4$, H_2O , DMF o $ArB(OH)_2$, $(dppf)PdCl_2$, K_2CO_3 , EtOH; b) H_2 , Ni Raney, MeOH o HCO_2NH_4 , Pd-C, EtOH o $SnCl_2$, $2H_2O$.

Ejemplo específico:

2-terc-Butil-4-(2-etoxifenil)-5-nitrofenol

A una disolución de 2-*terc*-butil-4-bromo-5-nitrofenol (C-14-a) (8,22 g, 30 mmoles) en DMF (90 ml) se añadió ácido 2-etoxifenilborónico (5,48 g, 33 mmoles), carbonato de potasio (4,56 g, 33 mmoles), agua (10 ml) y Pd(PPh₃)₄ (1,73 g, 1,5 mmoles). La mezcla se calentó a 90 °C durante 3 h bajo nitrógeno. El disolvente se eliminó a presión reducida. El residuo se repartió entre agua y acetato de etilo. Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron y se purificaron por cromatografía en columna (éter de petróleo - acetato de etilo, 10:1) proporcionando
2-*terc*-butil-4-(2-etoxifenil)-5-nitrofenol (9,2 g, 92 %). RMN ¹H (DMSO-d₆) δ 10,38 (s, 1H), 7,36 (s, 1H), 7,28 (m, 2H), 7,08 (s, 1H), 6,99 (t, 1 H, *J* = 7,35 Hz), 6,92 (d, 1 H, *J* = 8,1 Hz), 3,84 (q, 2 H, *J* = 6,6 Hz), 1,35 (s, 9H), 1,09 (t, 3 H, *J* = 6,6 Hz); EM-ESI 314,3 m/z (MH[†]).

C-15; 2-terc-Butil-4-(2-etoxifenil)-5-aminofenol

A una disolución de 2-terc-butil-4-(2-etoxifenil)-5-nitrofenol (3,0 g, 9,5 mmoles) en metanol (30 ml) se añadió Ni

Raney (300 mg). La mezcla se agitó bajo H_2 (1 atm) a temperatura ambiente durante 2 h. El catalizador se separó por filtración y el filtrado se concentró. El residuo se purificó por cromatografía en columna (éter de petróleo-acetato de etilo, 6:1) proporcionando 2-*terc*-butil-4-(2-etoxifenil)-5-aminofenol **(C-15)** (2,35 g, 92 %). RMN ¹H (DMSO- d_6) δ 8,89 (s, 1H), 7,19 (t, 1H, J = 4,2 Hz), 7,10 (d, 1H, J = 1,8 Hz), 7,08 (d, 1H, J = 1,8 Hz), 6,94 (t, 1H, J = 3,6 Hz), 6,67 (s, 1H), 6,16 (s, 1H), 4,25 (s, 1H), 4,00 (q, 2H, J = 6,9 Hz), 1,26 (s, 9H), 1,21 (t, 3 H, J = 6,9 Hz); EM-ESI 286,0 m/z (MH⁺).

Otros ejemplos:

5

25

35

55

60

C-16; 2-terc-Butil-4-(3-etoxifenil)-5-aminofenol

Se sintetizó 2-*terc*-butil-4-(3-etoxifenil)-5-aminofenol (C-16) siguiendo el esquema general anterior a partir de 2-*terc*-butil-4-bromo-5-nitrofenol (**C-14-a**) y ácido 3-etoxifenilborónico. Tiempo de ret. de HPLC 2,77 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 286,1 m/z (MH⁺).

30 C-17; 2-terc-Butil-4-(3-metoxicarbonilfenil)-5-aminofenol (C-17)

Se sintetizó 2-*terc*-butil-4-(3-metoxicarbonilfenil)-5-aminofenol **(C-17)** siguiendo el esquema general anterior a partir de 2-*terc*-butil-4-bromo-5-nitrofenol **(C-14-a)** y ácido 3-(metoxicarbonil)fenilborónico. Tiempo de ret. de HPLC 2,70 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 300,5 m/z (MH⁺).

Ejemplo 11;

40

Br

$$CH_3I$$
, Cs_2CO_3
 O_2N
 O_2N

1-terc-Butil-2-metoxi-5-bromo-4-nitrobenceno

A una mezcla de 2-*terc*-butil-4-bromo-5-nitrofenol **(C-14-a)** (1,5 g, 5,5 mmoles) y Cs_2CO_3 (2,2 g, 6,6 mmoles) en DMF (6 ml) se añadió yoduro de metilo (5150 μ l, 8,3 mmoles). La mezcla se agitó a temperatura ambiente durante 4 h, se diluyó con H_2O y se extrajo dos veces con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄. Después de eliminar el disolvente, el residuo se lavó con hexano dando 1-*terc*-butil-2-metoxi-5-bromo-4-nitrobenceno (1,1 g, 69 %). RMN 1 H (400 MHz, CDCl₃) δ 7,58 (s, 1H), 7,44 (s, 1H), 3,92 (s, 3H), 1,39 (s, 0H)

1-terc-Butil-2-metoxi-5-(trifluorometil)-4-nitrobenceno

65 Se agitó una mezcla de 1-*terc*-butil-2-metoxi-5-bromo-4-nitrobenceno (867 mg, 3,0 mmoles), KF (348 mg, 6 mmoles), KBr (714 mg, 6 mmoles), Cul (684 mg, 3,6 mmoles), clorodifluoroacetato de metilo (2,2 ml, 21,0 mmoles) en DMF (5

ml) a 125 °C en un tubo cerrado durante la noche, se enfrió a temperatura ambiente, se diluyó con agua y se extrajo tres veces con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄ anhidro. Después de eliminar el disolvente, el residuo se purificó por cromatografía en columna (0-5 % de EtOAc - hexano) dando 1-*terc*-butil-2-metoxi-5-(trifluorometil)-4-nitrobenceno (512 mg, 61 %). RMN 1 H (400 MHz, CDCl₃) δ 7,60 (s, 1H), 7,29 (s, 1H), 3,90 (s, 3H), 1,33 (s, 9H).

C-18; 1-terc-Butil-2-metoxi-5-(trifluorometil)-4-aminobenceno

A una disolución a reflujo de 1-*terc*-bulil-2-metoxi-5-(trifluorometil)-4-nitrobenceno (473 mg, 1,7 mmoles) y formiato de amonio (473 mg, 7,3 mmoles) en EtOH (10 ml) se añadió 10 % de Pd-C (200 mg). La mezcla se sometió a reflujo durante 1 h, se enfrió y se filtró a través de Celite. El disolvente se eliminó mediante evaporación dando 1-*terc*-butil-2-metoxi-5-(trifluorometil)-4-aminobenceno (**C-18**) (403 mg, 95 %). RMN ¹H (400 MHz, CDCl₃) δ 7,19 (s, 1H), 6,14 (s, 1H), 4,02 (bs, 2H), 3,74 (s, 3H), 1,24 (s, 9H).

Ejemplo 12:

5

10

15

25

30

35

40

50

55

C-27; 2-terc-Butil-4-bromo-5-amino-fenol

A una disolución de 2-*terc*-butil-4-bromo-5-nitrofenol **(C-14-a)** (12 g, 43,8 mmoles) en MeOH (90 ml) se añadió Ni (2,4 g). La mezcla de reacción se agitó bajo H_2 (1 atm) durante 4 h. La mezcla se filtró y el filtrado se concentró. El producto en bruto se recristalizó en acetato de etilo y éter de petróleo dando 2-*terc*-butil-4-bromo-5-amino-fenol **(C-27)** (7,2 g, 70 %). RMN 1 H (DMSO- d_6) δ 9,15 (s, 1H), 6,91 (s, 1H), 6,24 (s, 1H), 4,90 (s a, 2H), 1,22 (s, 9H); EM-ESI 244,0 m/z (MH $^+$).

Ejemplo 13:

H₂N OH NaBH ₃CN, MeOH HN C-24

C-24; 2,4-Di-terc-butil-6-(N-metilamino)fenol

45 Se agitó a reflujo una mezcla de 2,4-di-*terc*-butil-6-amino-fenol **(C-9)** (5,08 g, 23 mmoles), NaBH₃CN (4,41 g, 70 mmoles) y paraformaldehído (2,1 g, 70 mmoles) en metanol (50 ml) durante 3 h. Después de eliminar el disolvente, el residuo se purificó por cromatografía en columna (éter de petróleo-EtOAc, 30:1) dando 2,4-di-*terc*-butil-6-(N-metilamino)fenol (C-24) (800 mg, 15 %). RMN ¹H (DMSO-*d*₆) δ 8,67 (s, 1H), 6,84 (s, 1H), 5,99 (s, 1H), 4,36 (q, *J* = 4,8 Hz, 1H), 2,65 (d, *J* = 4,8 Hz, 3H), 1,23 (s, 18H); EM-ESI 236,2 m/z (MH⁺).

Ejemplo 14:

60

2-Metil-2-fenil-propan-1-ol

40

45

A una disolución de ácido 2-metil-2-fenil-propiónico (82 g, 0,5 moles) en THF (200 ml) se añadió gota a gota borano-sulfuro de dimetilo (2 M, 100 ml) a 0-5 °C. La mezcla se agitó a esta temperatura durante 30 min y a continuación se calentó a reflujo durante 1 h. Después de enfriarse se añadieron metanol (150 ml) y agua (50 ml). La mezcla se extrajo con EtOAc (100 ml \times 3) y las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄ y se concentraron dando 2-metil-2-fenil-propan-1-ol como un aceite (70 g, 77 %).

2-(2-Metoxi-etoxi)-1,1-dimetil-etil]-benceno

A una suspensión de NaH (29 g, 0,75 moles) en THF (200 ml) se añadió gota a gota una disolución de 2-metil-2-fenil-propan-1-ol (75 g, 0,5 moles) en THF (50 ml) a 0 °C. La mezcla se agitó a 20 °C durante 30 min y a continuación se añadió gota a gota una disolución de 1-bromo-2-metoxi-etano (104 g, 0,75 moles) en THF (100 ml) a 0 °C. La mezcla se agitó a 20 °C durante la noche, se vertió en agua (200 ml) y se extrajo con EtOAc (100 ml × 3). Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄ y se concentraron. El residuo se purificó por cromatografía en columna (gel de sílice, éter de petróleo) dando 2-(2-metoxi-etoxi)-1,1-dimetil-etil]-benceno como un aceite (28 g, 27 %).

1-[2-(2-Metoxi-etoxi)-1,1-dimetil-etil]-4-nitro-benceno

A una disolución de 2-(2-metoxi-etoxi)-1,1-dimetil-etil]-benceno (52 g, 0,25 moles) en CHCl₃ (200 ml) se añadió KNO₃ (50,5 g, 0,5 moles) y TMSCl (54 g, 0,5 moles). La mezcla se agitó a 20 °C durante 30 min y a continuación se añadió AlCl₃ (95 g, 0,7 moles). La mezcla de reacción se agitó a 20 °C durante 1 h y se vertió en agua con hielo. La fase orgánica se separó y la fase acuosa se extrajo con CHCl₃ (50 ml × 3). Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄ y se concentraron. El residuo se purificó por cromatografía en columna (gel de sílice, éter de petróleo) obteniéndose 1-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-4-nitro-benceno (6 g, 10 %).

4-[2-(2-Metoxi-etoxi)-1,1-dimetil-etil]-fenilamina

Se agitó una suspensión de 1-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-4-nitro-benceno (8,1 g, 32 mmoles) y Ni Raney (1 g) en MeOH (50 ml) bajo H_2 (1 atm) a temperatura ambiente durante 1 h. El catalizador se separó por filtración y el filtrado se concentró obteniéndose 4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-fenilamina (5,5 g, 77 %).

4-[2-(2-Metoxi-etoxi)-1,1-dimetil-etil]-3-nitro-fenilamina

A una disolución de 4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-fenilamina (5,8 g, 26 mmoles) en H₂SO₄ (20 ml) se añadió KNO₃ (2,63 g, 26 mmoles) a 0 °C. Después de completarse la adición, la mezcla se agitó a esta temperatura durante 20 min y a continuación se vertió en agua con hielo. La mezcla se extrajo con EtOAc (50 ml × 3). Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄ y se concentraron. El residuo se purificó por cromatografía en columna (éter de petróleo-EtOAc, 100:1) dando 4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-3-nitro-fenilamina (5 g, 71 %).

N-{4-[2-(2-Metoxi-etoxi)-1,1-dimetil-etil]-3-nitro-fenil}-acetamida

A una suspensión de NaHCO₃ (10 g, 0,1 moles) en diclorometano (50 ml) se añadió 4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-3-nitro-fenilamina (5 g, 30 mmoles) y cloruro de acetilo (3 ml, 20 mmoles) a 0-5 °C. La mezcla se agitó durante la noche a 15 °C y a continuación se vertió en agua (200 ml). La fase orgánica se separó y la fase acuosa se extrajo con diclorometano (50 ml × 2). Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄ y se concentraron a sequedad dando N-{4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-3-nitro-fenil}-acetamida (5,0 g, 87 %).

25 N-{3-Amino-4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-fenil}-acetamida

Se agitó una mezcla de N- $\{4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-3-nitro-fenil\}$ -acetamida (5 g, 16 mmoles) y Ni Raney (1 g) en MeOH (50 ml) bajo H₂ (1 atm) a temperatura ambiente 1 h. El catalizador se separó por filtración y el filtrado se concentró. El residuo se purificó por cromatografía en columna (éter de petróleo-EtOAc, 100:1) dando N- $\{3-mino-4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-fenil\}$ -acetamida (1,6 g, 35 %).

N-{3-Hidroxi-4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-fenil}-acetamida

A una disolución de N-{3-amino-4-[2- (2-metoxi- etoxi)-1,1-dimetil-etil]-fenil}-acetamida (1,6 g, 5,7 mmoles) en H₂SO₄ (15 %, 6 ml) se añadió NaNO₂ a 0-5 °C. La mezcla se agitó a esta temperatura durante 20 min y a continuación se vertió en agua con hielo. La mezcla se extrajo con EtOAc (30 ml × 3). Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄ y se concentraron. El residuo se purificó por cromatografía en columna (éter de petróleo-EtOAc, 100:1) dando N-{3-hidroxi-4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-fenil}- acetamida (0,7 g, 38 %).

C-25; 2-(1-(2-Metoxietoxi)-2-metilpropan-2-il)-5-aminofenol

Se calentó a reflujo una mezcla de N-{3-hidroxi-4-[2-(2-metoxi-etoxi)-1,1-dimetil-etil]-fenil}-acetamida (1 g, 3,5 mmoles) y HCl (5 ml) durante 1 h. La mezcla se basificó con disolución de Na₂CO₃ a pH 9 y a continuación se extrajo con EtOAc (20 ml × 3). Las fases orgánicas combinadas se lavaron con agua y salmuera, se secaron sobre Na₂SO₄ y se concentraron a sequedad. El residuo se purificó por cromatografía en columna (éter de petróleo - EtOAc, 100:1) obteniéndose 2-(1-(2-metoxietoxi)-2-metilpropan-2-il)-5-aminofenol (C-25) (61 mg, 6 %). RMN ¹H (CDCl₃) δ 9,11 (s a, 1H), 6,96-6,98 (d, *J* = 8 Hz, 1H), 6,26-6,27 (d, *J* = 4 Hz, 1H), 6,17-6,19 (m, 1H), 3,68-3,69 (m, 2H), 3,56-3,59 (m, 4 H), 3,39 (s, 3H), 1,37 (s, 6H); EM-ESI 239,9 m/z (MH⁺).

Ejemplo 15:

60

55

5

20

30

4,6-di-terc-Butil-3-nitrociclohexa-3,5-dieno-1,2-diona

A una disolución de 3,5-di-terc-butilciclohexa-3,5-dieno-1,2-diona (4,20 g, 19,1 mmoles) en ácido acético (115 ml) se añadió lentamente HNO₃ (15 ml). La mezcla se calentó a 60 °C durante 40 min antes de verterse en H₂O (50 ml). La 20 mezcla se dejó reposar a temperatura ambiente durante 2 h, a continuación se dispuso en un baño de hielo durante 1 h. El sólido se recogió y se lavó con agua proporcionando 4,6-di-terc-butil-3-nitrociclohexa-3,5-dieno-1,2-diona (1,2 g, 24 %). RMN 1 H (400 MHz, DMSO- d_{6}) δ 6,89 (s, 1H), 1,27 (s, 9H), 1,24 (s, 9H).

4,6-Di-terc-butil-3-nitrobenceno-1,2-diol

En un embudo de decantación se dispuso THF/H₂O (1:1, 400 ml), 4,6-di-terc-butil-3-nihociclohexa-3,5-dieno-1,2diona (4,59 g, 17,3 mmoles) y Na₂S₂O₄ (3 g, 17,3 mmoles). Se tapó el embudo de decantación y se agitó durante 2 min. La mezcla se diluyó con EtOAc (20 ml). Las fases se separaron y la fase orgánica se lavó con salmuera, se secó sobre MgSO₄ y se concentró proporcionando 4,6-di-terc-butil-3-nitrobenceno-1,2-diol (3,4 g, 74 %), que se usó sin más purificación. RMN ¹H (400 MHz, DMSO- d_6) δ 9,24 (s, 1H), 8,76 (s, 1H), 6,87 (s, 1H), 1,35 (s, 9H), 1,25 (s, 9H).

C-26; 4,6-Di-terc-butil-3-aminobenceno-1,2-diol

A una disolución de 4,6-di-terc-butil-3-nitrobenceno-1,2-diol (1,92 g, 7,2 mmoles) en EtOH (70 ml) se añadió Pd-5 % en peso sobre carbón (200 mg). La mezcla se agitó bajo H₂ (1 atm) durante 2 h. La reacción se recargó con Pd-5 % en peso sobre carbón (200 mg) y se agitó bajo H2 (1 atm) durante otras 2 h. La mezcla se filtró a través de Celite y el filtrado se concentró y se purificó por cromatografía en columna (10-40 % de acetato de etilo - hexanos) dando 4,6di-terc-butil-3-aminobenceno-1,2-diol (C-26) (560 mg, 33 %), RMN ¹H (400 MHz, CDCl₃) δ 7,28 (s, 1H), 1,42 (s, 9H), 1,38 (s, 9H).

Anilinas

45 Ejemplo 1:

25

30

35

40

55

Esquema General SnCl₂.2H₂O 50 **EtOH** H₂N X = NO, o NH,

Ejemplo específico:

60
$$O_{2}N$$

$$O_{3}N$$

$$O_{4}N$$

$$O_{5}N$$

$$O_{5}N$$

$$O_{7}N$$

$$O_{8}N$$

D-1; 4-Cloro-benceno-1,3-diamina

Se agitó una mezcla de 1-cloro-2,4-dinitro-benceno (100 mg, 0,5 mmoles) y $SnCl_2 \cdot 2H_2O$ (1,12 g, 5 mmoles) en etanol (2,5 ml) a temperatura ambiente durante la noche. Se añadió agua y a continuación la mezcla se basificó a pH 7-8 con disolución saturada de NaHCO3. La disolución se extrajo con acetato de etilo. Las fases orgánicas combinadas se lavaron con salmuera, se secaron sobre Na_2SO_4 , se filtraron y se concentraron dando 4-clorobenceno-1,3-diamina (D-1) (79 mg, cuant.). Tiempo de ret. de HPLC 0,38 min, 10-99 % de CH_3CN , 5 min de ejecución; EM-ESI 143,1 m/z (MH^+)

10 Otros ejemplos:

5

30

40

45

15 CI

D-2; 4,6-Dicloro-benceno-1,3-diamina

Se sintetizó 4,6-dicloro-benceno-1,3-diamina (**D-2**) siguiendo el esquema general anterior a partir de 1,5-dicloro-2,4-dinitro-benceno. Rendimiento (95 %). Tiempo de ret. de HPLC 1,88 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 177,1 m/z (MH⁺).

25 H₂N NH₂

D-3; 4-Metoxi-benceno-1,3-diamina

Se sintetizó 4-metoxi-benceno-1,3-diamina (**D-3**) siguiendo el esquema general anterior a partir de 1-metoxi-2,4-dinitro-benceno. Rendimiento (cuant.). Tiempo de ret. de HPLC 0,31 min, 10-99 % de CH₃CN, 5 min de ejecución.

35 O CF₃

D-4; 4-Trifluorometoxi-benceno-1,3-diamina

Se sintetizó 4-trifluorometoxi-benceno-1,3-diamina **(D-4)** siguiendo el esquema general anterior a partir de 2,4-dinitro-1-trifluorometoxi-benceno. Rendimiento (89 %). Tiempo de ret. de HPLC 0,91 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 193,3 m/z (MH⁺).

50 55

D-5; 4-Propoxibenceno-1,3-diamina

Se sintetizó 4-propoxibenceno-1,3-diamina (**D-5**) siguiendo el esquema general anterior a partir de 5-nitro-2-propoxifenilamina. Rendimiento (79 %). Tiempo de ret. de HPLC 0,54 min, 10-99 % de CH_3CN , 5 min de ejecución; EM-ESI 167,5 m/z (MH^+).

Ejemplo 2:

a) HNO₃, H₂SO₄; b) SnCl₂·2H₂O, EtOH o H₂, Pd-C, MeOH

Ejemplo específico:

2,4-Dinitro-propilbenceno

Se enfrió una disolución de propilbenceno (10 g, 83 mmoles) en H₂SO₄ conc. (50 ml) a 0 °C durante 30 min, y se añadió en porciones una disolución de H₂SO₄ conc. (50 ml) y HNO₃ fumante (25 ml), previamente enfriado a 0 °C, durante 15 min. La mezcla se agitó a 0 °C durante 30 min adicionales, y a continuación se dejó que se calentara a temperatura ambiente. La mezcla se vertió en hielo (200 g) - agua (100 ml) y se extrajo con éter (2 x 100 ml). Los extractos combinados se lavaron con H₂O (100 ml) y salmuera (100 ml), se secaron sobre MgSO₄, se filtraron y se concentraron proporcionando 2,4-dinitro-propilbenceno (15,6 g, 89 %). RMN ¹H (CDCl₃, 300 MHz) δ 8,73 (d, *J* = 2,2 Hz, 1H), 8,38 (dd, *J* = 8,3, *J* = 2,2, 1H), 7,6 (d, *J* = 8,5 Hz, 1H), 2,96 (dd, 2H), 1,73 (m, 2H), 1,06 (t, *J* = 7,4 Hz, 3H).

D-6; 4-Propil-benceno-1,3-diamina

A una disolución de 2,4-dinitro-propilbenceno (2,02 g, 9,6 mmoles) en etanol (100 ml) se añadió SnCl₂ (9,9 g, 52 mmoles) seguido de HCl conc. (10 ml). La mezcla se sometió a reflujo durante 2 h, se vertió en agua con hielo (100 ml) y se neutralizó con bicarbonato sódico sólido. La disolución se basificó adicionalmente con disolución al 10 % de NaOH a pH ~ 10 y se extrajo con éter (2 x 100 ml). Las fases orgánicas combinadas se lavaron con salmuera (100 ml), se secaron sobre MgSO₄, se filtraron y se concentraron proporcionando 4-propil-benceno-1,3-diamina (**D-6**) (1,2 g, 83 %). No fue necesaria más purificación para uso en la siguiente etapa; sin embargo, el producto no fue estable durante un periodo de tiempo prolongado. RMN ¹H (CDCl₃, 300 MHz) δ 6,82 (d, *J* = 7,9 Hz, 1H), 6,11 (dd, *J* = 7,5, *J* = 2,2 Hz, 1H), 6,06 (d, *J* = 2,2 Hz, 1H), 3,49 (s a, 4H, NH₂), 2,38 (t, *J* = 7,4 Hz, 2H), 1,58 (m, 2H), 0,98 (t, *J*= 7,2 Hz, 3H); EM-ESI 151,5 m/z (MH⁺).

45 Otros ejemplos:

50

55

60

65

D-7; 4-Etilbenceno-1,3-diamina

Se sintetizó 4-etilbenceno-1,3-diamina (D-7) siguiendo el esquema general anterior a partir de etilbenceno. Rendimiento global (76 %).

D-8; 4-Isopropilbenceno-1,3-diamina

Se sintetizó 4-isopropilbenceno-1,3-diamina (D-8) siguiendo el esquema general anterior a partir de

isopropilbenceno. Rendimiento global (78 %).

5 H₂N

10 D-9; 4-terc-Butilbenceno-1,3-diamina

Se sintetizó 4-*terc*-butilbenceno-1,3-diamina **(D-9)** siguiendo el esquema general anterior a partir de *terc*-butilbenceno. Rendimiento global (48 %). RMN 1 H (400 MHz, CDCl₃) δ 7,01 (d, J = 8,3 Hz, 1H), 6,10 (dd, J = 2,4, 8,3 Hz, 1H), 6,01 (d, J = 2,4 Hz, 1H), 3,59 (a, 4H), 1,37 (s, 9H);RMN 13 C (100 MHz, CDCl₃) δ 145,5, 145,3, 127,6, 124,9, 105,9, 104,5, 33,6, 30,1; EM-ESI 164,9 m/z (MH $^{+}$).

Ejemplo 3:

15

20

25

30

35

50

55

65

Esquema General

H₂N

O

R

BocHN

NO₂

BocHN

NH

a) KNO_3 , H_2SO_4 ; b) (i) HNO_3 , H_2SO_4 ; (ii) Na_2S , S, H_2O ; c) Boc_2O , NaOH, THF; d) H_2 , Pd-C, MeOH

40 Ejemplo específico:

4-terc-Butil-3-nitro-fenilamina

A una mezcla de 4-*terc*-butil-fenilamina (10,0 g, 67,01 mmoles) disuelta en H₂SO₄ (98 %, 60 ml) se añadió lentamente KNO₃ (8,1 g, 80,41 mmoles) a 0 °C. Después de la adición, la reacción se dejó calentar a temperatura ambiente y se agitó durante la noche. A continuación, la mezcla se vertió en agua con hielo y se basificó con disolución sat. de NaHCO₃ a pH 8. La mezcla se extrajo varios veces con CH₂Cl₂. Las fases orgánicas combinadas se lavaron con salmuera, se secaron sobre Na₂SO₄ y se concentraron. El residuo se purificó por cromatografía en columna (éter de petróleo - EtOAc, 10:1) dando 4-*terc*-butil-3-nitro-fenilamina (10 g, 77 %).

Éster terc-butílico del ácido (4-terc-butil-3-nitro-fenil)-carbámico

Se agitó una mezcla de 4-*terc*-butil-3-nitro-fenilamina (4,0 g, 20,6 mmoles) y Boc₂O (4,72 g, 21,6 mmoles) en NaOH (2 N, 20 ml) y THF (20 ml) a temperatura ambiente durante la noche. Se eliminó THF a presión reducida. El residuo se disolvió en agua y se extrajo con CH₂Cl₂. La fase orgánica se lavó con NaHCO₃ y salmuera, se secó sobre Na₂SO₄ y se concentró proporcionando éster *terc*-butílico del ácido (4-*terc*-butil-3-nitro-fenil)-carbámico (4,5 g, 74 %).

D-10; Éster terc-butílico del ácido (3-amino-4-terc-butil-fenil)-carbámico

Se agitó una suspensión de éster terc-butílico del ácido (4-terc-butil-3-nitro-fenil)-carbámico (3,0 g, 10,19 moles) y 10 % de Pd-C (1 g) en MeOH (40 ml) bajo H₂ (1 atm) a temperatura ambiente durante la noche. Después de la filtración, el filtrado se concentró y el residuo se purificó por cromatografía en columna (éter de petróleo - EtOAc, 5:1) dando éster terc-butílico del ácido (3-amino-4-terc-butil-fenil)-carbámico (**D-10**) como un aceite marrón (2,5 g, 93 %). RMN 1 H (CDCl₃) δ 7,10 (d, J= 8,4 Hz, 1H), 6,92 (s, 1H), 6,50-6,53 (m, 1H), 6,36 (s, 1H), 3,62 (s a, 2H), 1,50 (s, 9H), 1,38 (s, 9H); EM-ESI 528,9 m/z (2M+H $^+$).

Otros ejemplos:

10

15

20

25

5

D-11; Éster terc-butílico del ácido (3-amino-4-isopropil-fenil)-carbámico

Se sintetizó éster *terc*-butílico del ácido (3-amino-4-isopropil-fenil)-carbámico (**D-11**) siguiendo el esquema general anterior a partir de isopropilbenceno. Rendimiento global (56 %).

D-12; Éster terc-butílico del ácido (3-amino-4-etil-fenil)-carbámico

Se sintetizó éster *terc*-butílico del ácido (3-amino-4-etil-fenil)-carbámico (**D-12**) siguiendo el esquema general anterior a partir de etilbenceno. Rendimiento global (64 %). RMN 1 H (CD₃OD, 300 MHz) δ 6,87 (d, J= 8,0 Hz, 1H), 6,81 (d, J= 2,2 Hz, 1H), 6,63 (dd, J= 8,1, J= 2,2, 1H), 2,47 (q, J= 7,4 Hz, 2H), 1,50 (s, 9H), 1,19 (t, J= 7,4 Hz, 3H); EM-ESI 237,1 m/z (MH $^+$).

35

40

45

D-13; Éster terc-butílico del ácido (3-amino-4-propil-fenil)-carbámico

Se sintetizó éster *terc*-butílico del ácido (3-amino-4-propil-fenil)-carbámico (**D-13**) siguiendo el esquema general anterior a partir de propilbenceno. Rendimiento global (48 %).

Ejemplo 4:

55

60

65

Éster bencílico del ácido (3-amino-4-terc-butil-fenil)-carbámico

Se enfrió una disolución de 4-terc-butilbenceno-1,3-diamina (D-9) (657 mg, 4 mmoles) y piridina (0,39 ml, 4,8

mmoles) en CH_2CI_2 / MeOH (12/1,8 ml) a 0 °C, y se añadió gota a gota una disolución de cloroformiato de bencilo (0,51 ml, 3,6 mmoles) en CH_2CI_2 (8 ml) durante 10 min. La mezcla se agitó a 0 °C durante 15 min, a continuación se calentó a temperatura ambiente. Después de 1 h, la mezcla se lavó con ácido cítrico 1 M (2 x 20 ml), bicarbonato sódico acuoso saturado (20 ml), se secó (Na_2SO_4), se filtró y se concentró a vacío proporcionando el éster bencílico del ácido (3-amino-4-*terc*-butil-fenil)-carbámico en bruto como una goma viscosa marrón (0,97 g), que se usó sin más purificación. RMN 1 H (400 MHz, $CDCI_3$) δ 7,41-7,32 (m, 6H,), 7,12 (d, J= 8,5 Hz, 1H), 6,89 (s a, 1H), 6,57 (dd, J= 2,3, 8,5 Hz, 1H), 5,17 (s, 2H), 3,85 (s a, 2H), 1,38 (s, 9H); RMN 13 C (100 MHz, $CDCI_3$, rotámero) δ 153,3 (a), 145,3, 136,56, 136,18, 129,2, 128,73, 128,59, 128,29, 128,25, 127,14, 108,63 (a), 107,61 (a), 66,86, 33,9, 29,7; EM-ESI 299,1 m/z (MH $^+$).

Éster bencílico del ácido (4-terc-butil-3-formilamino-fenil)-carbámico

Se enfrió una disolución de éster bencílico del ácido (3-amino-4-terc-butil-fenil)-carbámico (0,97 g, 3,25 mmoles) y piridina (0,43 ml, 5,25 mmoles) en CH₂Cl₂ (7,5 ml) a 0 °C y se añadió gota a gota una disolución de anhídrido fórmico-acético (3,5 mmoles, preparada mezclando ácido fórmico (158 µl, 4,2 mmoles, 1,3 equiv) y anhídrido acético (0,32 ml, 3,5 mmoles, 1,1 eq.) puro y envejeciendo durante 1 hora) en CH₂Cl₂ (2,5 ml) durante 2 min. Después de completarse la adición, la mezcla se dejó calentar a temperatura ambiente, tras lo cual se depositó un precipitado, y la suspensión resultante se agitó durante la noche. La mezcla se lavó con ácido cítrico 1 M (2 x 20 ml), bicarbonato sódico acuoso saturado (20 ml), se secó (Na₂SO₄) y se filtró. La mezcla turbia depositó un fino lecho de sólido sobre el agente secante, el análisis de HPLC mostró que ésta era la formamida deseada. El filtrado se concentró a aproximadamente 5 ml, y se diluyó con hexano (15 ml) para precipitar formamida adicional. El agente secante (Na₂SO₄) se suspendió con metanol (50 ml), se filtró, y el filtrado se combinó con material de la recristalización de CH₂Cl₂ / hexano. La mezcla resultante se concentró proporcionando éster bencílico del ácido (4-terc-butil-3formilamino-fenil)-carbámico como un sólido blanquecino (650 mg, 50 % durante 2 etapas). Las RMN ¹H y ¹³C (CD₃OD) muestran el producto como una mezcla de rotámeros. RMN ¹H (400 MHz, CD₃OD, rotámero) δ 8,27 (s, 1Hà), 8,17 (s, 1H-b), 7,42-7,26 (m, 8H), 5,17 (s, 1H-a), 5,15 (s, 1H-b), 4,86 (s, 2H), 1,37 (s, 9H-a), 1,36 (s, 9H-b); RMN 13 C (100 MHz, CD₃OD, rotámero) δ 1636,9, 163,5, 155,8, 141,40, 141,32, 139,37, 138,88, 138,22, 138,14, 136,4, 135,3, 129,68, 129,65, 129,31, 129,24, 129,19, 129,13, 128,94, 128,50, 121,4 (a), 118,7 (a), 67,80, 67,67, 35,78, 35,52, 31,65, 31,34; EM-ESI 327,5 m/z (MH⁺).

N-(5-Amino-2-terc-butil-fenil)-formamida

Se cargó un matraz de 100 ml con éster bencílico del ácido (4-*terc*-butil-3-formilamino-fenil)-carbámico (650 mg, 1,99 mmoles), metanol (30 ml) y 10 % de Pd-C (50 mg), y se agitó bajo H_2 (1 atm) durante 20 h. Se añadió CH_2CI_2 (5 ml) para extinguir el catalizador, y la mezcla se filtró a continuación a través de Celite, y se concentró proporcionando N-(5-amino-2-*terc*-butil-fenil)-formamida como un sólido blanquecino (366 mg, 96 %). Rotámero por RMN 1 H y 13 C (DMSO-d₆). RMN 1 H (400 MHz, DMSO-d₆, rotámero) δ 9,24 (d, J = 10,4 Hz, 1H), 9,15 (s, 1H), 8,23 (d, J = 1,5 Hz, 1H), 8,06 (d, J = 10,4 Hz, 1H), 7,06 (d, J = 8,5 Hz, 1H), 7,02 (d, J = 8,5 Hz, 1H), 6,51 (d, J = 2,5Hz, 1H), 6,46 (dd, J = 2,5, 8,5 Hz, 1H), 6,39 (dd, J = 2,5, 8,5 Hz, 1H), 6,29 (d, J = 2,5Hz, 1H), 5,05 (s, 2H), 4,93 (s, 2H), 1,27 (s, 9H); RMN 13 C (100 MHz, DMSO-d₆, rotámero) δ 164,0, 160,4, 147,37, 146,74, 135,38, 135,72, 132,48, 131,59, 127,31, 126,69, 115,15, 115,01, 112,43, 112,00, 33,92, 33,57, 31,33, 30,92; EM-ESI 193,1 m/z (MH $^{+}$).

D-14; 4-terc-butil-N³-metil-benceno-1,3-diamina

Se cargó un matraz de 100 ml con *N*-(5-amino-2-*terc*-butil-fenil)-formamida (340 mg, 1,77 mmoles) y se purgó con nitrógeno. Se añadió THF (10 ml) y la disolución se enfrió a 0 °C. Se añadió una disolución de hidruro de litio y aluminio en THF (4,4 ml, disolución 1 M) durante 2 min. A continuación, la mezcla se dejó calentar a temperatura ambiente. Después de someter a reflujo durante 15 h, la suspensión amarilla se enfrió a 0 °C, se extinguió con agua (170 μl), NaOH acuoso al 15 % (170 μl) y agua (510 μl), que se añadieron secuencialmente y se agitó a temperatura ambiente durante 30 min. La mezcla se filtró a través de Celite, y la torta de filtración se lavó con metanol (50 ml). Los filtrados combinados se concentraron a vacío dando un sólido gris-marrón, que se repartió entre cloroformo (75 ml) y agua (50 ml). La fase orgánica se separó, se lavó con agua (50 ml), se secó (Na₂SO₄), se filtró y se concentró proporcionando 4-*terc*-butil-*N*³-metilbenceno-1,3-diamina (**D-143**) como un aceite marrón que solidificó dejándolo estar (313 mg, 98 %). RMN ¹H (400 MHz, CDCl₃) δ 7,01 (d, *J*= 8,1 Hz, 1H), 6,05 (dd, *J*= 2,4, 8,1 Hz, 1H), 6,03 (d, *J*= 2,4 Hz, 1H), 3,91 (s a, 1H), 3,52 (s a, 2H), 2,86 (s, 3H), 1,36 (s, 9H); RMN ¹³C (100 MHz, CDCl₃) δ 148,4, 145,7, 127,0, 124,3, 103,6, 98,9, 33,5, 31,15, 30,31; EM-ESI 179,1 m/z (MH⁺).

Ejemplo 5:

60

10

15

20

25

30

35

40

BocHN

2,4-Dinitro-propilbenceno

30

35

40

50

55

60

65

Se enfrió una disolución de propilbenceno (10 g, 83 mmoles) en H_2SO_4 conc. (50 ml) a 0 °C durante 30 min, y se añadió una disolución de H_2SO_4 conc. (50 ml) y HNO₃ fumante (25 ml), previamente enfriada a 0 °C, en porciones durante 15 min. La mezcla se agitó a 0 °C durante 30 min adicionales, y a continuación se dejó calentar a temperatura ambiente. La mezcla se vertió en hielo (200 g), agua (100 ml) y se extrajo con éter (2 x 100 ml). Los extractos combinados se lavaron con H_2O (100 ml) y salmuera (100 ml), se secaron sobre MgSO₄, se filtraron y se concentraron proporcionando 2,4-dinitro-propilbenceno (15,6 g, 89 %). RMN 1H (CDCl₃, 300 MHz) δ 8,73 (d, J= 2,2 Hz, 1H), 8,38 (dd, J= 8,3, 2,2 Hz, 1H), 7,6 (d, J= 8,5 Hz, 1H), 2,96 (m, 2H), 1,73 (m, 2H), 1,06 (t, J= 7,4 Hz, 3H).

EtOAc

BocN

D-15

45 4-Propil-3-nitroanilina

Se calentó una suspensión de 2,4-dinitro-propilbenceno (2 g, 9,5 mmoles) en H_2O (100 ml) próxima a reflujo y se agitó vigorosamente. Se añadió gota a gota una disolución naranja-roja transparente de polisulfuro (300 ml (10 eq.), previamente preparada calentando sulfuro de sodio monohidratado (10,0 g), polvo de azufre (2,60 g) y H_2O (400 ml), durante 45 min. La disolución roja-marrón se calentó a reflujo durante 1,5 h. La mezcla se enfrió a 0 °C y a continuación se extrajo con éter (2 x 200 ml). Los extractos orgánicos combinados se secaron sobre MgSO₄, se filtraron y se concentraron a presión reducida proporcionando 4-propil-3-nitroanilina (1,6 g, 93 %), que se usó sin más purificación.

Éster terc-butílico del ácido (3-nitro-4-propil-fenil)-carbámico

DMF

Se disolvió 4-propil-3-nitroanilina (1,69 g, 9,4 mmoles) en piridina (30 ml) con agitación. Se añadió Boc-anhídrido (2,05 g, 9,4 mmoles). La mezcla se agitó y se calentó a reflujo durante 1 h antes de eliminarse el disolvente a vacío. El aceite obtenido se redisolvió en CH₂Cl₂ (300 ml) y se lavó con agua (300 ml) y salmuera (300 ml), se secó sobre Na₂SO₄, se filtró y se concentró. El aceite en bruto que contenía productos nitro tanto mono- como *bis*-acilados se purificó por cromatografía en columna (0-10 % de CH₂Cl₂ - MeOH) proporcionando éster *terc*-butílico del ácido (3-nitro-4-propilfenil)-carbámico (2,3 g, 87 %).

Éster terc-butílico del ácido metil-(3-nitro-4-propil-fenil)-carbámico

A una disolución de éster terc-butílico del ácido (3-nitro-4-propil-fenil)-carbámico (200 mg, 0,71 mmoles) en DMF (5

ml) se añadió Ag_2O (1,0 g, 6,0 mmoles), seguido de yoduro de metilo (0,20 ml, 3,2 mmoles). La suspensión resultante se agitó a temperatura ambiente durante 18 h y se filtró a través de una almohadilla de Celite. La torta de filtración se lavó con CH_2Cl_2 (10 ml). El filtrado se concentró a vacío. El aceite en bruto se purificó por cromatografía en columna (0-10 % de CH_2Cl_2 - MeOH) proporcionando éster *terc*-butílico del ácido metil-(3-nitro-4-propil-fenil)-carbámico como un aceite amarillo (110 mg, 52 %). RMN 1H (CDCl₃, 300 MHz) δ 7,78 (d, J= 2,2 Hz, 1H), 7,42 (dd, J= 8,2, 2,2 Hz, 1H), 7,26 (d, J= 8,2 Hz, 1H), 3,27 (s, 3H), 2,81 (t, J= 7,7 Hz, 2H), 1,66 (m, 2H), 1,61 (s, 9H), 0,97 (t, J= 7,4 Hz, 3H).

D-15; Éster terc-butílico del ácido (3-amino-4-propil-fenil)-metil-carbámico

A una disolución de éster terc-butílico del ácido metil-(3-nitro-4-propil-fenil)-carbámico (110 mg, 0,37 mmoles) en EtOAc (10 ml) se añadió 10 % de Pd-C (100 mg). La suspensión resultante se agitó a temperatura ambiente bajo H_2 (1 atm) durante 2 días. El progreso de la reacción se monitorizó por CCF. Tras completarse, la mezcla de reacción se filtró a través de una almohadilla de Celite. El filtrado se concentró a vacío proporcionando éster terc-butílico del ácido (3-amino-4-propil-fenil)-metil-carbámico (**D-15**) como un compuesto cristalino incoloro (80 mg, 81 %). EM-ESI 265,3 m/z (MH $^+$).

Otros ejemplos:

5

10

15

35

D-16; Éster terc-butílico del ácido (3-amino-4-etil-fenil)-metil-carbámico

Se sintetizó éster *terc*-butílico del ácido (3-amino-4-etil-fenil)-metil-carbámico (**D-16**) siguiendo el esquema general anterior a partir de etilbenceno. Rendimiento global (57 %).

40 D-17; Éster terc-butílico del ácido (3-amino-4-isopropil-fenil)-metil-carbámico

Se sintetizó éster *terc*-butílico del ácido (3-amino-4-isopropil-fenil)-metil-carbámico (**D-17**) siguiendo el esquema general anterior a partir de isopropilbenceno. Rendimiento global (38 %).

45 **Ejemplo 6:**

50
$$O_{2}N \xrightarrow{Br} + O \xrightarrow{Pd_{2}(dba_{2})_{3}, KF} O_{2}N \xrightarrow{Na_{2}S, S} H_{2}O$$

$$O_{2}N \xrightarrow{Br} + O \xrightarrow{Pd_{2}(dba_{2})_{3}, KF} O_{2}N \xrightarrow{Na_{2}S, S} H_{2}O$$

$$O_{2}N \xrightarrow{NH_{2}} O \xrightarrow{NHBoc} O \xrightarrow{NiCl_{2}.6H_{2}O} O \xrightarrow{NiCl_{2}.6H_{2}O} O \xrightarrow{NiCl_{2}.6H_{2}O} O \xrightarrow{Na_{2}S, S} O \xrightarrow{NHBoc} O \xrightarrow{NiCl_{2}.6H_{2}O} O \xrightarrow{NiCl_{2}.6H_{2}O} O \xrightarrow{Na_{2}S, S} O \xrightarrow{Na_{2}S, S} O \xrightarrow{NiCl_{2}.6H_{2}O} O \xrightarrow{NiCl_{2}.6H_{2}O} O \xrightarrow{Na_{2}S, S} O \xrightarrow{NiCl_{2}.6H_{2}O} O \xrightarrow{NiCl$$

2'-Etoxi-2,4-dinitro-bifenilo

5

10

15

20

25

30

35

40

45

60

65

Se cargó un matraz a presión con ácido 2-etoxifenilborónico (0,66 g, 4,0 mmoles), KF (0,77 g, 13 mmoles), Pd₂(dba)₃ (16 mg, 0,02 mmoles) y 2,4-dinitro-bromobenceno (0,99 g, 4,0 mmoles) en THF (5 ml). El recipiente se purgó con argón durante 1 min, seguido de la adición de tri-*terc*-butilfosfina (0,15 ml, 0,48 mmoles, disolución al 10 % en hexanos). El recipiente de reacción se purgó con argón durante 1 min adicional, se tapó y se calentó a 80 °C durante la noche. Después de enfriarse a temperatura ambiente, la disolución se filtró a través de un tapón de Celite. La torta de filtración se aclaró con CH_2Cl_2 (10 ml), y los extractos orgánicos combinados se concentraron a presión reducida proporcionando el producto en bruto 2'-etoxi-2,4-dinitro-bifenilo (0,95 g, 82 %). No se realizó más purificación. RMN 1H (300 MHz, $CDCl_3$) δ 8,75 (s, 1H), 8,43 (d, J= 8,7 Hz, 1H), 7,60 (d, J= 8,4 Hz, 1H), 7,40 (t, J= 7,8 Hz, 1H), 7,31 (d, J= 7,5 Hz, 1H), 7,08 (t, J= 7,5 Hz, 1H), 6,88 (d, J= 8,4 Hz, 1H), 3,44 (q, J= 6,6 Hz, 2H), 1,24 (t, J= 6,6 Hz, 3H); tiempo de ret. de HPLC 3,14 min, 10-100 % de CH_3CN , gradiente de 5 min.

2'-Etoxi-2-nitrobifenil-4-ilamina

Se añadió gota a gota una disolución naranja-roja transparente de polisulfuro (120 ml, 7,5 eq.), previamente preparada calentando sulfuro de sodio monohidratado (10 g), azufre (1,04 g) y agua (160 ml), a 90 °C durante 45 minutos a una suspensión de 2'-etoxi-2,4-dinitro-bifenilo (1,2 g, 4,0 mmoles) en agua (40 ml). La disolución rojamarrón se calentó a reflujo durante 1,5 h. La mezcla se enfrió a temperatura ambiente y se añadió NaCl sólido (5 g). La disolución se extrajo con CH₂Cl₂ (3 x 50 ml), y los extractos orgánicos combinados se concentraron proporcionando 2'-etoxi-2-nitrobifenil-4-ilamina (0,98 g, 95 %) que se usó en la siguiente etapa sin más purificación. RMN 1 H (300 MHz, CDCl₃) δ 7,26 (m, 2H), 7,17 (d, J= 2,7 Hz, 1H), 7,11 (d, J= 7,8 Hz, 1H), 7,00 (t, J= 6,9 Hz, 1H), 6,83 (m, 2H), 3,91 (q, J= 6,9 Hz, 2H), 1,23 (t, J= 7,2 Hz, 3H); tiempo de ret. de HPLC 2,81 min, 10-100 % de CH₃CN, gradiente de 5 min; EM-ESI 259,1 m/z (MH $^+$).

Éster terc-butílico del ácido (2'-etoxi-2-nitrobifenil-4-il)-carbámico

Se calentó una mezcla de 2'-etoxi-2-nitrobipenil-4-ilamina (0,98 g, 4,0 mmoles) y Boc₂O (2,6 g, 12 mmoles) con una pistola térmica. Tras el consumo del material de partida como se indica por CCF, la mezcla en bruto se purificó por cromatografía ultrarrápida (gel de sílice, CH_2CI_2) proporcionando éster *terc*-butílico del ácido (2'-etoxi-2-nitrobifenil-4-il)-carbámico (1,5 g, 83 %). RMN ¹H (300 MHz, CDCI₃) δ 7,99 (s, 1H), 7,55 (d, J = 8,4 Hz, 1H), 7,25 (m, 3H), 6,99 (t, J = 7,5 Hz, 1H), 6,82 (m, 2H), 3,88 (q, J= 6,9 Hz, 2H), 1,50 (s, 9H), 1,18 (t, J= 6,9 Hz, 3H); tiempo de ret. de HPLC 3,30 min, 10-100 % de CH_3CN , gradiente de 5 min.

D-18; Éster terc-butílico del ácido (2'-etoxi-2-aminobifenil-4-il)-carbámico

A una disolución de NiCl₂·6H₂O (0,26 g, 1,1 mmoles) en EtOH (5 ml) se añadió NaBH₄ (40 mg, 1,1 mmoles) a -10 °C. Se observó desprendimiento de gas y se formó un precipitado negro. Después de agitar durante 5 min, se añadió una disolución de éster *terc*-butílico del ácido 2'-etoxi-2-nitrobifenil-4-il)carbámico (0,50 g, 1,1 mmoles) en EtOH (2 ml). Se añadió NaBH₄ adicional (80 mg, 60 mmoles) en 3 porciones durante 20 min. La reacción se agitó a 0 °C durante 20 min, seguido de la adición de NH₄OH (4 ml, disolución ac. al 25 %). La disolución resultante se agitó durante 20 min. La mezcla en bruto se filtró a través de un tapón corto de sílice. La torta de sílice se lavó con 5 % de MeOH en CH₂Cl₂ (10 ml), y los extractos orgánicos combinados se concentraron a presión reducida proporcionando éster *terc*-butílico del ácido (2'-etoxi-2-aminobifenil-4-il)-carbámico (**D-18**) (0,36 g, cuant.), que se usó sin más purificación. Tiempo de ret. de HPLC 2,41 min, 10-100 % de CH₃CN, gradiente de 5 min; EM-ESI 329,3 m/z (MH[†]).

Ejemplo 7:

50

$$H_2N$$
 H_2N
 H_2N

D-19; N-(3-Amino-5-trifluorometil-fenil)-metanosulfonamida

Se enfrió una disolución de 5-trifluorometil-benceno-1,3-diamina (250 mg, 1,42 mmoles) en piridina (0,52 ml) y CH₂Cl₂ (6,5 ml) a 0 °C. Se añadió lentamente cloruro de metanosulfonilo (171 mg, 1,49 mmoles) a una tasa tal que la temperatura de la disolución se mantuviera por debajo de 10 °C. La mezcla se agitó a ~ 8 °C y a continuación se dejó calentar a temperatura ambiente después de 30 min. Después de agitar a temperatura ambiente durante 4 h, la reacción casi se había completado como se indica por análisis de CL-EM. La mezcla de reacción se inactivó con disolución ac. sat. de NH₄Cl (10 ml), se extrajo con CH₂Cl₂ (4 x 10 ml), se secó sobre Na₂SO₄, se filtró y se concentró dando N-(3-amino-5-trifluorometil-fenil)-metanosulfonamida (D-19) como un semisólido rojizo (0,35 g, 97 %), que se usó sin más purificación. RMN ¹H (CDCl₃, 300 MHz) δ 6,76 (m, 1H), 6,70 (m, 1H), 6,66 (s, 1H), 3,02 (s,

3H); EM-ESI 255,3 m/z (MH⁺).

Otras aminas

Ejemplo 1:

5

45

50

55

10

$$CN$$
 HNO_3
 H_2SO_4
 O_2N
 $RF, Pd_2(dba_2)_3$
 $P(t-Bu)_{3_1}$ THF

 RDO_2O
 $RF, Pd_2(dba_2)_3$
 R

4-Bromo-3-nitrobenzonitrilo

A una disolución de 4-bromobenzonitrilo (4,0 g, 22 mmoles) en H₂SO₄ conc. (10 ml) se añadió gota a gota a 0 °C ácido nítrico (6 ml). La mezcla de reacción se agitó a 0 °C durante 30 min, y a continuación a temperatura ambiente durante 2,5 h. La disolución resultante se vertió en agua con hielo. El precipitado blanco se recogió mediante filtración y se lavó con agua hasta que los lavados fueron neutros. El sólido se recristalizó dos veces en una mezcla de etanol/agua (1:1, 20 ml) proporcionando 4-bromo-3-nitrobenzonitrilo como un sólido cristalino blanco (2,8 g, 56
%). RMN ¹H (300 MHz, DMSO-d₆) δ 8,54 (s, 1H), 8,06 (d, *J*= 8,4 Hz, 1H), 7,99 (d, *J*= 8,4 Hz, 1H); RMN ¹³C (75 MHz, DMSO-d₆) δ 150,4, 137,4, 136,6, 129,6, 119,6, 117,0, 112,6; tiempo de ret. de HPLC 1,96 min, 10-100 % de CH₃CN, gradiente de 5 min; EM-ESI 227,1 m/z (MH[†]).

2'-Etoxi-2-nitrobifenil-4-carbonitrilo

Se cargó un matraz redondo de 50 ml con 4-bromo-3-nitrobenzonitrilo (1,0 g 4,4 mmoles), ácido 2-etoxifenilborónico (731 mg, 4,4 mmoles), $Pd_2(dba)_3$ (18 mg, 0,022 mmoles) y fluoruro de potasio (786 mg, 13,5 mmoles). El recipiente de reacción se evacuó y se llenó con argón. Se añadió THF seco (300 ml), seguido de la adición de $P(t-Bu)_3(0,11 \text{ ml}, 10\%)$ en peso en hexano). La mezcla de reacción se agitó a temperatura ambiente durante 30 min y a continuación se calentó a 80 °C durante 16 h. Después de enfriarse a temperatura ambiente, la mezcla resultante se filtró a través de una almohadilla de Celite y se concentró. Se aisló 2'-etoxi-2-nitrobifenil-4-carbonitrilo como un sólido amarillo (1,12 g, 95 %). RMN 1 H (300 MHz, DMSO- d_6) 3 8,51 (s, 1H), 8,20 (d, 3 8,1 Hz, 1H), 7,68 (d, 3 8,4 Hz, 1H), 7,41 (t, 3 8,4 Hz, 1H), 7,37 (d, 3 7,5 Hz, 1H), 7,08 (t, 3 7,5 Hz, 1H), 7,03 (d, 3 8,1 Hz, 1H), 3,91 (q, 3 7,2 Hz, 2H), 1,12 (t, 3 7,2 Hz, 3H); RMN 3 C (75 MHz, DMSO- 3 C) 3 C 154,9, 149,7, 137,3, 137,2, 134,4, 131,5, 130,4, 128,4, 125,4, 121,8, 117,6, 112,3, 111,9, 64,1, 14,7; tiempo de ret. de HPLC 2,43 min, 10-100 % de CH 3 CN, gradiente de 5 min; EM-ESI 269,3 m/z (MH $^+$).

4-Aminometil-2'-etoxi-bifenil-2-ilamina

A una disolución de 2'-etoxi-2-nitrobifenil-4-carbonitrilo (500 mg, 1,86 mmoles) en THF (80 ml) se añadió una disolución de BH₃·THF (5,6 ml, 10 % en peso en THF, 5,6 mmoles) a 0 °C durante 30 min. La mezcla de reacción se agitó a 0 °C durante 3 h y a continuación a temperatura ambiente durante 15 h. La disolución de reacción se enfrió a 0 °C y se añadió una mezcla de H₂O/THF (3 ml). Después de agitarse a temperatura ambiente durante 6 h, los volátiles se eliminaron a presión reducida. El residuo se disolvió en EtOAc (100 ml) y se extrajo con HCl 1 N (2 x 100 ml). La fase acuosa se basificó con disolución 1 N de NaOH a pH 1 y se extrajo con EtOAc (3 x 50 ml). Las fases orgánicas combinadas se lavaron con agua (50 ml), se secaron sobre Na₂SO₄, se filtraron y se evaporaron. Después

de secar a vacío, se aisló 4-aminometil-2'-etoxi-bifenil-2-ilamina como un aceite marrón (370 mg, 82 %). RMN 1 H (300 MHz, DMSO- d_6) δ 7,28 (dt, J= 7,2 Hz, J= 1,8 Hz, 1H), 7,09 (dd, J= 7,2 Hz, J= 1,8 Hz, 1H), 7,05 (d, J= 7,5 Hz, 1H), 6,96 (dt, J= 7,2 Hz, J= 0,9 Hz, 1H), 6,83 (d, J= 7,5 Hz, 1H), 6,66 (d, J= 1,2 Hz, 1H), 6,57 (dd, J= 7,5 Hz, J= 1,5 Hz, 1H), 4,29 (s, 2H), 4,02 (q, J= 6,9 Hz, 2H), 3,60 (s, 2H), 1,21 (t, J= 6,9 Hz, 3H); tiempo de ret. de HPLC 1,54 min, 10-100 % de CH₃CN, gradiente de 5 min; EM-ESI 243,3 m/z (MH $^{+}$).

E-1; Éster terc-butílico del ácido (2-amino-2'-etoxi-bifenil-4-ilmetil)carbámico

Se añadió una disolución de Boc₂O (123 mg, 0,565 mmoles) en 1,4-dioxano (10 ml) durante un periodo de 30 min a una disolución de 4-aminometil-2'-etoxi-bifenil-2-ilamina (274 mg, 1,13 mmoles) en 1,4-dioxano (10 ml). La mezcla de reacción se agitó a temperatura ambiente durante 16 h. Los volátiles se eliminaron sobre un evaporador rotatorio. El residuo se purificó por cromatografía ultrarrápida (gel de sílice, EtOAc - CH₂Cl₂, 1:4) proporcionando éster *terc*-butílico del ácido (2-amino-2'-etoxi-bifenil-4-ilmetil)carbámico (E-1) como un aceite amarillo pálido (119 mg, 31 %). RMN ¹H (300 MHz, DMSO-d₆) δ 7,27 (m, 2H), 7,07 (dd, *J*= 7,2 Hz, *J*=1,8 Hz, 1H), 7,03 (d, *J*= 7,8 Hz, 1H), 6,95 (dt, *J*=7,2 Hz, *J*= 0,9 Hz, 1H), 6,81 (d, *J*=7,5 Hz, 1H), 6,55 (s, 1H), 6,45 (dd, *J*= 7,8 Hz, *J*= 1,5 Hz, 1H), 4,47 (s, 2H), 4,00 (q, *J*= 7,2 Hz, 2H), 1,38 (s, 9H), 1,20 (t, *J*= 7,2 Hz, 3H); tiempo de ret. de HPLC 2,34 min, 10-100 % de CH₃CN, gradiente de 5 min; EM-ESI 343,1 m/z (MH⁺).

Ejemplo 2:

5

10

15

20

2-Bromo-1-terc-butil-4-nitrobenceno

A una disolución de 1-*terc*-butil-4-nitrobenceno (8,95 g, 50 mmoles) y sulfato de plata (10 g, 32 mmoles) en 50 ml de ácido sulfúrico al 90 % se añadió gota a gota bromo (7,95 g, 50 mmoles). La agitación continuó a temperatura ambiente durante la noche, y a continuación la mezcla se vertió en disolución diluida de hidrogenosulfito de sodio y se extrajo tres veces con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄. Después de la filtración, el filtrado se concentró dando 2-bromo-1-*terc*-butil-4-nitrobenceno (12,7 g, 98 %), que se usó sin más purificación. RMN ¹H (400 MHz, CDCl₃) δ 8,47 (d, J = 2,5 Hz, 1H), 8,11 (dd, J = 8,8, 2,5 Hz, 1H), 7,63 (d, J = 8,8 Hz, 1H), 1,57 (s, 9H); tiempo de ret. de HPLC 4,05 min, 10-100 % de CH₃CN, gradiente de 5 min.

2-terc-Butil-5-nitrobenzonitrilo

A una disolución de 2-bromo-1-terc-butil-4-nitrobenceno (2,13 g, 8,2 mmoles) y Zn(CN)₂ (770 mg, 6,56 mmoles) en DMF (10 ml) se añadió Pd(PPh₃)₄ (474 mg, 0,41 mmoles) bajo una atmósfera de nitrógeno. La mezcla se calentó en un recipiente cerrado a 205 °C durante 5 h. Después de enfriarse a temperatura ambiente, la mezcla se diluyó con agua y se extrajo dos veces con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄. Después de eliminar el disolvente, el residuo se purificó por cromatografía en columna (0-10 % de EtOAc-Hexano) dando 2-terc-butil-5-nitrobenzonitrilo (1,33 g, 80 %). RMN ¹H (400 MHz, CDCl₃) δ 8,55 (d, J = 2,3 Hz, 1H), 8,36 (dd, J = 8,8, 2,2 Hz, 1H), 7,73 (d, J= 8,9 Hz, 1H), 1,60 (s, 9H); tiempo de ret. de HPLC 3,42 min, 10-100 % de CH₃CN, gradiente de 5 min.

E-2; 2-terc-Butil-5-aminobenzonitrilo

A una disolución a reflujo de 2-*terc*-butil-5-nitrobenzonitrilo (816 mg, 4,0 mmoles) en EtOH (20 ml) se añadió formiato de amonio (816 mg, 12,6 mmoles), seguido de 10 % de Pd-C (570 mg). La mezcla de reacción se sometió a reflujo durante 90 min adicionales, se enfrió a temperatura ambiente y se filtró a través de Celite. El filtrado se concentró dando 2-*terc*-butil-5-aminobenzonitrilo (E-2) (630 mg, 91 %), que se usó sin más purificación. Tiempo de ret. de HPLC 2,66 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 175,2 m/z (MH⁺).

Ejemplo 3:

50

(2-terc-Butil-5-nitrofenil)metanamina

A una disolución de 2-*terc*-butil-5-nitrobenzonitrilo (612 mg, 3,0 mmoles) en THF (10 ml) se añadió una disolución de BH₃·THF (12 ml, 1M en THF, 12,0 mmoles) bajo nitrógeno. La mezcla de reacción se agitó a 70 °C durante la noche y se enfrió a 0 °C. Se añadió metanol (2 ml) seguido de la adición de HCl 1 N (2 ml). Después de someter a reflujo durante 30 min, la disolución se diluyó con agua y se extrajo con EtOAc. La fase acuosa se basificó con NaOH 1 N y se extrajo dos veces con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre Mg₂SO₄. Después de eliminar el disolvente, el residuo se purificó por cromatografía en columna (0-10 % MeOH - CH₂Cl₂) dando (2-*terc*-butil-5-nitrofenil)metanamina (268 mg, 43 %). RMN 1 H (400 MHz, DMSO- 1 G) 3 B,54 (d, J = 2,7 Hz, 1H), 7,99 (dd, J = 8,8, 2,8 Hz, 1H), 7,58 (d, J = 8,8 Hz, 1H), 4,03 (s, 2H), 2,00 (t, J = 2,1 Hz, 2H), 1,40 (s, 9H); tiempo de ret. de HPLC 2,05 min, 10-100 % de CH₃CN, gradiente de 5 min; EM-ESI 209,3 m/z (MH $^+$).

2-terc-Butil-5-nitrobencilcarbamato de terc-butilo

Se sometió a reflujo una disolución de (2-*terc*-butil-5-nitrofenil)metanamina (208 mg, 1 mmol) y Boc₂O (229 mg, 1,05 mmoles) en THF (5 ml) durante 30 min. Después de enfriarse a temperatura ambiente, la disolución se diluyó con agua y se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄. Después de la filtración, el filtrado se concentró dando 2-*terc*-butil-5-nitrobencilcarbamato de *terc*-butilo (240 mg, 78 %), que se usó sin más purificación. RMN ¹H (400 MHz, DMSO-*d*₆) δ 8,26 (d, J = 2,3 Hz, 1H), 8,09 (dd, J = 8,8, 2,5 Hz, 1H), 7,79 (t, J = 5,9 Hz, 1H), 7,68 (d, J = 8,8 Hz, 1H), 4,52 (d, J = 6,0 Hz, 2H), 1,48 (s, 18H); tiempo de ret. de HPLC 3,72 min, 10-100 % de CH₃CN, gradiente de 5 min.

E-4; 2-terc-Butil-5-aminobencilcarbamato de terc-butilo

A una disolución de 2-*terc*-butil-5-nitrobencilcarbamato de *terc*-butilo (20 mg, 0,065 mmoles) en 5 % de AcOH-MeOH (1 ml) se añadió 10 % de Pd-C (14 mg) bajo atmósfera de nitrógeno. La mezcla se agitó bajo H₂ (1 atm) a temperatura ambiente durante 1 h. El catalizador se eliminó mediante filtración a través de Celite, y el filtrado se concentró dando 2-*terc*-butil-5-aminobencilcarbamato de *terc*-butilo (E-4), que se usó sin más purificación. RMN ¹H (400 MHz, CDCl₃) δ 7,09 (d, J = 8,5 Hz, 1H), 6,62 (d, J = 2,6 Hz, 1H), 6,47 (dd, J = 8,5, 2,6 Hz, 1H), 4,61 (s a, 1H),
4,40 (d, J = 5,1 Hz, 2H), 4,15 (s a, 2H), 1,39 (s, 9H), 1,29 (s, 9H); tiempo de ret. de HPLC 2,47 min, 10-100 % de CH₃CN, gradiente de 5 min; EM-ESI 279,3 m/z (MH⁺).

Ejemplo 4:

45

50

55

60

65

5

10

Ácido 2-terc-butil-5-nitrobenzoico

Se calentó en microondas una disolución de 2-*terc*-butil-5-nitrobenzonitrilo (204 mg, 1 mmol) en 5 ml de H_2SO_4 al 75 % a 200 °C durante 30 min. La mezcla de reacción se vertió en hielo, se extrajo con EtOAc, se lavó con salmuera y se secó sobre MgSO₄. Después de la filtración, el filtrado se concentró dando ácido 2-*terc*-butil-5-nitrobenzoico (200 mg, 90 %), que se usó sin más purificación. RMN 1 H (400 MHz, CDCl₃) δ 8,36 (d, J = 2,6 Hz, 1H), 8,24 (dd, J = 8,9, 2,6 Hz, 1H), 7,72 (d, J = 8,9 Hz, 1H) 1,51 (s, 9H); tiempo de ret. de HPLC 2,97 min, 10-100 % de CH₃CN, gradiente de 5 min.

2-terc-Butil-5-nitrobenzoato de metilo

A una mezcla de ácido 2-*terc*-butil-5-nitrobenzoico (120 mg, 0,53 mmoles) y K_2CO_3 (147 mg, 1,1 mmoles) en DMF (5,0 ml) se añadió CH₃I (40 µl, 0,64 mmoles). La mezcla de reacción se agitó a temperatura ambiente durante 10 min, se diluyó con agua y se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄. Después de la filtración, el filtrado se concentró dando 2-*terc*-butil-5-nitrobenzoato de metilo, que se usó sin más purificación. RMN 1 H (400 MHz, CDCI₃) δ 8,20 (d, J = 2,6 Hz, 1H), 8,17 (t, J = 1,8 Hz, 1H), 7,66 (d, J = 8,6 Hz, 1H), 4,11 (s, 3H), 1,43 (s, 9H).

E-6; 2-terc-Butil-5-aminobenzoato de metilo

A una disolución a reflujo de 2-terc-butil-5-nitrobenzoato (90 mg, 0,38 mmoles) en EtOH (2,0 ml) se añadió formiato de potasio (400 mg, 4,76 mmoles) en agua (1 ml); seguido de la adición de 20 mg de 10 % de Pd-C. La mezcla de reacción se sometió a reflujo durante 40 min adicionales, se enfrió a temperatura ambiente y se filtró a través de Celite. El filtrado se concentró dando 2-terc-butil-5-aminobenzoato de metilo (**E-6**) (76 mg, 95 %), que se usó sin más

purificación. RMN 1 H (400 MHz, CDCl₃) δ 7,24 (d, J = 8,6 Hz, 1H), 6,67 (dd, J = 8,6, 2,7 Hz, 1H), 6,60 (d, J = 2,7 Hz, 1H), 3,86 (s, 3H), 1,34 (s, 9H); tiempo de ret. de HPLC 2,19 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 208,2 m/z (MH $^{+}$).

5 Ejemplo 5:

Cloruro de 2-terc-butil-5-nitrobenceno-1-sulfonilo

Se enfrió una suspensión de 2-*terc*-butil-5-nitrobencenamina (0,971 g, 5 mmoles) en HCl conc. (5 ml) a 5-10 °C y se añadió gota a gota una disolución de NaNO₂ (0,433 g, 6,3 mmoles) en H₂O (0,83 ml). La agitación continuó durante 0,5 h, después de lo cual la mezcla se filtró a vacío. El filtrado se añadió simultáneamente con una disolución de Na₂SO₃ (1,57 g, 12,4 mmoles) en H₂O (2,7 ml), a una disolución con agitación de CuSO₄ (0,190 g, 0,76 mmoles) y Na₂SO₃ (1,57 g, 12,4 mmoles) en HCl (11,7 ml) y H₂O (2,7 ml) a 3-5 °C. La agitación continuó durante 0,5 h y el precipitado resultante se separó por filtración, se lavó con agua y se secó dando cloruro de 2-*terc*-butil-5-nitrobenceno-1-sulfonilo (0,235 g, 17 %). RMN ¹H (400 MHz, DMSO-*d*₆) δ 9,13 (d, J = 2,5 Hz, 1H), 8,36 (dd, J = 8,9, 2,5 Hz, 1H), 7,88 (d, J = 8,9 Hz, 1H), 1,59 (s, 9H).

2-terc-Butil-5-nitrobenceno-1-sulfonamida

A una disolución de cloruro de 2-*terc*-butil-5-nitrobenceno-1-sulfonilo (100 mg, 0,36 mmoles) en éter (2 ml) se añadió NH₄OH acuoso (128 μl, 3,6 mmoles) a 0 °C. La mezcla se agitó a temperatura ambiente durante la noche, se diluyó con agua y se extrajo con éter. Los extractos de éter combinados se lavaron con salmuera y se secaron sobre Na₂SO₄. Después de eliminar el disolvente, el residuo se purificó por cromatografía en columna (0-50 % de EtOAchexano) dando 2-*terc*-butil-5-nitrobenceno-1-sulfonamida (31,6 mg, 34 %).

E-7; 2-terc-Butil-5-aminobenceno-1-sulfonamida

Se calentó una disolución de 2-*terc*-butil-5-nitrobenceno-1-sulfonamida (32 mg, 0,12 mmoles) y SnCl₂·2H₂O (138 mg, 0,61 mmoles) en EtOH (1,5 ml) en horno microondas a 100 °C durante 30 min. La mezcla se diluyó con EtOAc y agua, se basificó con NaHCO₃ sat. y se filtró a través de Celite. La fase orgánica se separó del agua y se secó sobre Na₂SO₄. Se eliminó el disolvente mediante evaporación proporcionando 2-*terc*-butil-5-aminobenceno-1-sulfonamida (E-7) (28 mg, 100 %), que se usó sin más purificación. Tiempo de ret. de HPLC 1,99 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 229,3 m/z (MH⁺).

50 **Ejemplo 6**:

40

45

65

60 E-8; (2-terc-Butil-5-aminofenil)metanol

A una disolución de 2-terc-butil-5-aminobenzoato de metilo (159 mg, 0,72 mmoles) en THF (5 ml) se añadió gota a gota LiAlH₄ (1,4 ml, 1 M en THF, 1,4 mmoles) a 0 °C. La mezcla de reacción se sometió a reflujo durante 2 h, se diluyó con H_2O y se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera y se secaron sobre MgSO₄. Después de la filtración, el filtrado se concentró dando (2-terc-butil-5-aminofenil)metanol (**E-8**) (25 mg, 20 %), que se usó sin más purificación. RMN 1H (400 MHz, CDCl₃) δ 7,17 (d, J = 8,5 Hz, 1H), 6,87 (d, J = 2,6 Hz,

1H), 6,56 (dd, J = 8,4, 2,7 Hz, 1H), 4,83 (s, 2H), 1,36 (s, 9H).

Ejemplo 7:

Sal del ácido monometilsulfúrico de 1-metil-piridinio

Se añadió gota a gota sulfato de metilo (30 ml, 39,8 g, 0,315 moles) a piridina seca (25,0 g, 0,316 moles) añadida gota a gota. La mezcla se agitó a temperatura ambiente durante 10 min, a continuación a 100 °C durante 2 h. La mezcla se enfrió a temperatura ambiente dando sal del ácido monometilsulfúrico de 1-metil-piridinio en bruto (64,7 g, cuant.), que se usó sin más purificación.

1-Metil-2-piridona

20

25

30

35

45

50

55

Se enfrió una disolución de sal del ácido monometilsulfúrico de 1-metil-piridinio (50 g, 0,243 moles) en agua (54 ml) a 0 °C. Se prepararon disoluciones separadas de ferricianuro de potasio (160 g, 0,486 moles) en agua (320 ml) e hidróxido sódico (40 g, 1,000 moles) en agua (67 ml) y se añadieron gota a gota de dos embudos de decantación a la disolución bien agitada de sal del ácido monometilsulfúrico de 1-metil-piridinio, a una tasa tal que la temperatura de la mezcla de reacción no subió por encima de 10 °C. La tasa de adición de estas dos disoluciones se reguló de manera que toda la disolución de hidróxido sódico se hubiera introducido en la mezcla de reacción cuando se había añadido la mitad de la disolución de cianuro férrico de potasio. Después de completarse la adición, la mezcla de reacción se dejó calentar a temperatura ambiente y se agitó durante la noche. Se añadió carbonato sódico seco (91,6 g), y la mezcla se agitó durante 10 min. La fase orgánica se separó, y la fase acuosa se extrajo con CH₂Cl₂ (100 ml × 3). Las fases orgánicas combinadas se secaron y se concentraron dando 1-metil-2-piridona (25,0 g, 94 %), que se usó sin más purificación.

40 1-Metil-3,5-dinitro-2-piridona

Se añadió 1-metil-2-piridona (25,0 g, 0,229 moles) a ácido sulfúrico (500 ml) a 0 °C. Después de agitar durante 5 min, se añadió gota a gota ácido nítrico (200 ml) a 0 °C. Después de la adición, la temperatura de reacción se aumentó lentamente hasta 100 °C, y a continuación se mantuvo durante 5 h. La mezcla de reacción se vertió en hielo, se basificó con carbonato de potasio a pH 8 y se extrajo con CH₂Cl₂ (100 ml × 3). Las fases orgánicas combinadas se secaron sobre Na₂SO₄ y se concentraron dando 1-metil-3,5-dinitro-2-piridona (12,5 g, 28 %), que se usó sin más purificación.

2-Isopropil-5-nitro-piridina

A una disolución de 1-metil-3,5-dinitro-2-piridona (8,0 g, 40 mmoles) en alcohol metílico (20 ml) se añadió gota a gota 3-metil-2-butanona (5,1 ml, 48 mmoles), seguido de disolución de amoniaco en alcohol metílico (10,0 g, 17 %, 100 mmoles). La mezcla de reacción se calentó a 70 °C durante 2,5 h bajo presión atmosférica. El disolvente se eliminó a vacío y el aceite residual se disolvió en CH₂Cl₂, y a continuación se filtró. El filtrado se secó sobre Na₂SO₄ y se concentró proporcionando 2-isopropil-5-nitro-piridina (1,88 g, 28 %).

E-9; 2-Isopropil-5-amino-piridina

Se disolvió 2-isopropil-5-nitro-piridina (1,30 g, 7,82 mmoles) en alcohol metílico (20 ml) y se añadió Ni Raney (0,25 g). La mezcla se agitó bajo H_2 (1 atm) a temperatura ambiente durante 2 h. El catalizador se separó por filtración, y el filtrado se concentró a vacío dando 2-isopropil-5-amino-piridina (**E-9**) (0,55 g, 52 %). RMN 1 H (CDCl₃) δ 8,05 (s, 1H), 6,93-6,99 (m, 2H), 3,47 (s a, 2H), 2,92-3,02 (m, 1H), 1,24-1,26 (m, 6H). EM-ESI 137,2 m/z (MH $^+$).

Ejemplo 8:

5

$$(EiO)_2POCI$$
 NaH, THF
 $O=P-OEI$
 OEI

10

 $MeCCHCl_2$
 $TiCl_4$, CH_2Cl_2
 O_2N
 $O_$

Éster dietílico del éster 2,4-di-terc-butil-fenílico del ácido fosfórico

A una suspensión de NaH (60 % en aceite mineral, 6,99 g, 174,7 mmoles) en THF (350 ml) se añadió gota a gota una disolución de 2,4-di-*terc*-butilfenol (35 g, 169,6 mmoles) en THF (150 ml) a 0 °C. La mezcla se agitó a 0 °C durante 15 min y a continuación se añadió gota a gota éster dietílico del ácido fosforoclorídico (30,15 g, 174,7 mmoles) a 0 °C. Después de la adición, la mezcla se agitó a esta temperatura durante 15 min. La reacción se inactivó con NH₄Cl sat. (300 ml). La fase orgánica se separó y la fase acuosa se extrajo con Et₂O (350 ml × 2). Las fases orgánicas combinadas se lavaron con salmuera, se secaron sobre Na₂SO₄ anhidro y se concentraron a vacío dando éster dietílico del éster 2,4-di-*terc*-butil-fenílico del ácido fosfórico en bruto como un aceite amarillo (51 g, contaminado con algo de aceite mineral), que se usó directamente en la siguiente etapa.

1,3-Di-terc-butil-benceno

45

50

55

60

65

A NH $_3$ (líquido, 250 ml) se añadió una disolución de éster dietílico del éster 2,4-di-*terc*-butil-fenílico del ácido fosfórico (51 g, en bruto de la última etapa, aproximadamente 0,2 moles) en Et $_2$ O (anhidro, 150 ml) a -78 °C bajo atmósfera de N $_2$. Se añadió metal litio a la disolución en pequeños trozos hasta que persistió un color azul. La mezcla de reacción se agitó a -78 °C durante 15 min y a continuación se extinguió con disolución sat. de NH $_4$ Cl hasta que la mezcla se volvió incolora. Se evaporó NH $_3$ líquido y el residuo se disolvió en agua, se extrajo con Et $_2$ O (300 ml × 2). Las fases orgánicas combinadas se secaron sobre Na $_2$ SO $_4$ y se concentraron dando 1,3-di-*terc*-butil-benceno en bruto como un aceite amarillo (30,4 g, 94 % durante 2 etapas, contaminado con algunos aceite mineral), que se usó directamente en la siguiente etapa.

2,4-Di-terc-butil-benzaldehído y 3,5-di-terc-butil-benzaldehído

A una disolución con agitación de 1,3-di-*terc*-butil-benceno (30 g, 157,6 mmoles) en CH₂Cl₂ (700 ml) se añadió TiCl₄ (37,5 g, 197 mmoles) a 0 °C, y seguido de la adición gota a gota de MeOCHCl₂ (27,3 g, 236,4 mmoles). La reacción se dejó calentar a temperatura ambiente y se agitó durante 1 h. La mezcla se vertió en agua con hielo y se extrajo con CH₂Cl₂. Las fases orgánicas combinadas se lavaron con NaHCO₃ y salmuera, se secaron sobre Na₂SO₄ y se concentraron. El residuo se purificó por cromatografía en columna (éter de petróleo) dando una mezcla de 2,4-di-*terc*-butil-benzaldehído y 3,5-di-*terc*-butil-benzaldehído (21 g, 61 %).

2,4-Di-terc-butil-5-nitro-benzaldehído y 3,5-di-terc-butil-2-nitro-benzaldehído

A una mezcla de 2,4-di-terc-butil-benzaldehído y 3,5-di-terc-butil-benzaldehído en H₂SO₄ (250 ml) se añadió KNO₃

(7,64 g, 75,6 mmoles) en porciones a 0 °C. La mezcla de reacción se agitó a esta temperatura durante 20 min y a continuación se vertió en hielo picado. La mezcla se basificó con disolución de NaOH a pH 8 y se extrajo con Et₂O (10 ml x 3). Las fases orgánicas combinadas se lavaron con agua y salmuera y se concentraron. El residuo se purificó por cromatografía en columna (éter de petróleo) dando una mezcla de 2,4-di-*terc*-butil-5-nitro-benzaldehído y 3,5-di-*terc*-butil-2-nitro-benzaldehído (2:1 por RMN) como un sólido amarillo (14,7 g, 82 %). Después de más purificación por cromatografía en columna (éter de petróleo), se aisló 2,4-di-*terc*-butil-5-nitrobenzaldehído (2,5 g, contiene 10 % de 3,5-di-*terc*-butil-2-nitro-benzaldehído).

1,5-Di-terc-butil-2-difluorometil-4-nitro-benceno y 1,5-di-terc-butil-3-difluorometil-2-nitro-benceno

Se agitó 2,4-di-*terc*-butil-5-nitro-benzaldehído (2,4 g, 9,11 mmoles, contaminados con 10 % de 3,5-di-*terc*-butil-2-nitro-benzaldehído) en disolución de Deoxo-Fluor puro a temperatura ambiente durante 5 h. La mezcla de reacción se vertió en disolución sat. enfriada de NaHCO₃ y se extrajo con diclorometano. Los extractos orgánicos combinados se secaron sobre Na₂SO₄, se concentraron y se purificaron por cromatografía en columna (éter de petróleo) dando 1,5-di-*terc*-butil-2-difluorometil-4-nitro-benceno y 1,5-di-*terc*-butil-3-difluorometil-2-nitro-benceno (0,75 g, contiene 28 % de 1,5-di-*terc*-butil-3-difluorometil-2-nitro-benceno).

E-10; 1,5-Di-terc-butil-2-difluorometil-4-amino-benceno

A una suspensión de polvo de hierro (5,1 g, 91,1 mmoles) en 50 % de ácido acético (25 ml) se añadió 1,5-di-*terc*-butil-2-difluorometil-4-nitro-benceno (1,3 g, 4,56 mmoles). La mezcla de reacción se calentó a 115 °C durante 15 min. El sólido separado por filtración se lavó con ácido acético y CH_2Cl_2 . El filtrado combinado se concentró y se trató con HCl/MeOH. El precipitado se recogió mediante filtración, se lavó con MeOH y se secó dando la sal de HCl de 1,5-di-*terc*-butil-2-difluorometil-4-aminobenceno (**E-10**) como un sólido blanco (1,20 g, 90 %). RMN ¹H (DMSO- d_6) δ 7,35-7,70 (t, J= 53,7 Hz, 1H), 7,56 (s, 1H), 7,41 (s, 1H), 1,33-1,36 (d, J= 8,1 Hz, 1H); EM-ESI 256,3 m/z (MH †).

Ejemplo 9

5

10

15

20

25

35

40

50

55

30 Esquema General:

$$H_2N$$
 $+$
 $Ar-B$
 OH
 OH
 $A \circ B$
 H_2N
 Ar

A) Pd(PPh₃)₄, K₂CO₃, H₂O, THF; **B**) Pd₂(dba)₃, P(*t*Bu)₃, KF, THF

Método A

45 En un vial de 2 dracmas, se disolvieron 2-bromoanilina (100 mg, 0,58 mmoles) y el ácido arilborónico correspondiente (0,82 mmoles) en THF (1 ml). Se añadió H₂O (500 μl) seguido de K₂CO₃ (200 mg, 1,0 mmol) y Pd(PPh₃)₄ (100 mg, 0,1 mmoles). El vial se purgó con argón y se cerró. A continuación, el vial se calentó a 75 °C durante 18 h. La muestra en bruto se diluyó en EtOAc y se filtró a través de un tapón de gel de sílice. Los extractos orgánicos se concentraron mediante Savant Speed-vac. La amina en bruto se usó sin más purificación.

Método B

En un vial de 2 dracmas, se añadió el ácido arilborónico correspondiente (0,58 mmoles) seguido de KF (110 mg, 1,9 mmoles). Los sólidos se suspendieron en THF (2 ml), y a continuación se añadió 2-bromoanilina (70 μ l, 0,58 mmoles). El vial se purgó con argón durante 1 min. Se añadió $P(^tBu)_3$ (100 μ l, 10 % de sol. en hexanos), seguido de $P(^tBu)_3$ (900 μ l, 0,005 M en THF). El vial se purgó de nuevo con argón y se cerró. El vial se agitó en un agitador orbital a temperatura ambiente durante 30 min y se calentó en un bloque térmico a 80 °C durante 16 h. A continuación, el vial se enfrió a 20 °C y la suspensión se pasó a través de una almohadilla de Celite. La almohadilla se lavó con EtOAc (5 ml). Los extractos orgánicos se combinaron y se concentraron a vacío dando una amina en bruto que se usó sin más purificación.

La siguiente tabla incluye las aminas preparadas siguiendo el esquema general anterior.

65

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	

Producto	Nombre	Método
F-1	4'-Metil-bifenil-2-ilamina	Α
F-2	3'-Metil-bifenil-2-ilamina	А
F-3	2'-Metil-bifenil-2-ilamina	А
F-4	2',3'-Dimetil-bifenil-2-ilamina	A
F-5	(2'-Amino-bifenil-4-il)-metanol	A
F-6	N*4'*,N*4'*-Dimetil-bifenil-2,4'-diamina	В
F-7	2'-Trifluorometil-bifenil-2-ilamina	В
F-8	(2'-Amino-bifenil-4-il)-acetonitrilo	Α
F-9	4'-lsobutil-bifenil-2-ilamina	Α
F-10	3'-Trifluorometil-bifenil-2-ilamina	В
F-11	2-Piridin-4-il-fenilamina	В
F-12	2-(1H-Indol-5-il)-fenilamina	В
F-13	3',4'-Dimetil-bifenil-2-ilamina	Α
F-14	4'-lsopropil-bifenil-2-ilamina	Α
F-15	3'-lsopropil-bifenil-2-ilamina	A
F-16	4'-Trifluorometil-bifenil-2-ilamina	В
F-17	4'-Metoxi-bifenil-2-ilamina	В
F-18	3'-Metoxi-bifenil-2-ilamina	В
F-19	2-Benzo[1,3]dioxol-5-il-fenilamina	В
F-20	3'-Etoxi-bifenil-2-ilamina	В
F-21	4'-Etoxi-bifenil-2-ilamina	В
F-22	2'-Etoxi-bifenil-2-ilamina	В
F-23	4'-Metilsulfanil-bifenil-2-ilamina	В
F-24	3',4'-Dimetoxi-bifenil-2-ilamina	В
F-25	2',6'-Dimetoxi-bifenil-2-ilamina	В
F-26	2',5'-Dimetoxi-bifenil-2-ilamina	В
F-27	2',4'-Dimetoxi-bifenil-2-ilamina	В
F-28	5'-Cloro-2'-metoxi-bifenil-2-ilamina	В
F-29	4'-Trifluorometoxi-bifenil-2-ilamina	В
F-30	3'-Trifluorometoxi-bifenil-2-ilamina	В
F-31	4'-Fenoxi-bifenil-2-ilamina	В

	Producto	Nombre	Método
	F-32	2'-Fluoro-3'-metoxi-bifenil-2-ilamina	В
5	F-33	2'-Fenoxy-bifenil-2-ilamina	В
	F-34	2-(2,4-Dimetoxi-pirimidin-5-il)-fenilamina	В
	F-35	5'-lsopropil-2'-metoxi-bifenil-2-ilamina	В
10	F-36	2'-Trifluorometoxi-bifenil-2-ilamina	В
	F-37	4'-Fluoro-bifenil-2-ilamina	В
	F-38	3'-Fluoro-bifenil-2-ilamina	В
15	F-39	2'-Fluoro-bifenil-2-ilamina	В
	F-40	2'-Amino-bifenil-3-carbonitrilo	В
	F-41	4'-Fluoro-3'-metil-bifenil-2-ilamina	В
20	F-42	4'-Cloro-bifenil-2-ilamina	В
	F-43	3'-Cloro-bifenil-2-ilamina	В
	F-44	3',5'-Difluoro-bifenil-2-ilamina	В
25	F-45	2',3'-Difluoro-bifenil-2-ilamina	В
	F-46	3',4'-Difluoro-bifenil-2-ilamina	В
••	F-47	2',4'-Difluoro-bifenil-2-ilamina	В
30	F-48	2',5'-Difluoro-bifenil-2-ilamina	В
	F-49	3'-Cloro-4'-fluoro-bifenil-2-ilamina	В
0.5	F-50	3',5'-Dicloro-bifenil-2-ilamina	В
35	F-51	2',5'-Dicloro-bifenil-2-ilamina	В
	F-52	2',3'-Dicloro-bifenil-2-ilamina	В
40	F-53	3',4'-Dicloro-bifenil-2-ilamina	В
40	F-54	Ester metil 2'-Amino-bifenil-4-acido carboxílico	В
	F-55	Ester metil 2'-Amino-bifenil-3-acido carboxílico	В
45	F-56	2'-Metilsulfanil-bifenil-2-ilamina	В
40	F-57	N-(2'-Amino-bifenil-3-il)-acetamida	В
	F-58	4'-Metanosulfinil-bifenil-2-ilamina	В
50	F-59	2',4'-Dicloro-bifenil-2-ilamina	В
30	F-60	4'-Metanosulfonil-bifenil-2-ilamina	В
	F-61	Ester isopropil 2'-Amino-bifenil-2-acido carboxílico	В
55	F-62	2-Furan-2-il-fenilamine	В
	F-63	1-[5-(2-Amino-fenil)-tiofen-2-il]-etanona	В
	F-64	2-Benzo[b]tiofen-2-il-fenilamine	В
60	F-65	2-Benzo[b]tiofen-3-il-fenilamine	В
	F-66	2-Furan-3-il-fenilamine	В
	F-67	2-(4-Metil-tiofen-2-il)-fenilamina	В
05	F-68	5-(2-Amino-fenil)-tiofene-2-carbonitrilo	В

Ejemplo 10:

15

20

25

30

10 2-(4-Nitrofenil)-2-metilpropanoato de etilo

Se añadió t-butóxido de sodio (466 mg, 4,85 mmoles) a DMF (20 ml) a 0 °C. La disolución turbia se volvió a enfriar a 5 °C. Se añadió 4-nitrofenilacetato de etilo (1,0 g, 4,78 mmoles). La suspensión púrpura se enfrió a 5 °C y se añadió yoduro de metilo (0,688 ml, 4,85 mmoles) durante 40 min. La mezcla se agitó a 5-10 °C durante 20 min, y a continuación se volvió a cargar con t-butóxido de sodio (466 mg, 4,85 mmoles) y yoduro de metilo (0,699 ml, 4,85 mmoles). La mezcla se agitó a 5-10 °C durante 20 min y se añadió una tercera carga de t-butóxido de sodio (47 mg, 0,48 mmoles), seguido de yoduro de metilo (0,057 ml, 0,9 mmoles). Se añadieron acetato de etilo (100 ml) y HCl (0,1 N, 50 ml). La fase orgánica se separó, se lavó con salmuera y se secó sobre Na₂SO₄. Después de la filtración, el filtrado se concentró proporcionando 2-(4-nitrofenil)-2-metilpropanoato de etilo (900 mg, 80 %), que se usó sin más purificación.

G-1; 2-(4-Aminofenil)-2-metilpropanoato de etilo

Se trató una disolución de 2-(4-nitrofenil)-2-metilpropanoato de etilo (900 mg, 3,8 mmoles) en EtOH (10 ml) con 10 % de Pd-C (80 mg) y se calentó a 45 °C. Se añadió una disolución de formiato de potasio (4,10 g, 48,8 mmoles) en H₂O (11 ml) durante un periodo de 15 min. La mezcla de reacción se agitó a 65 °C durante 2 h y a continuación se trató con 300 mg adicionales de Pd/C. La reacción se agitó durante 1,5 h y a continuación se filtró a través de Celite. El volumen de disolvente se redujo aproximadamente el 50 % a presión reducida y se extrajo con EtOAc. Las fases orgánicas se secaron sobre Na₂SO₄ y el disolvente se eliminó a presión reducida dando 2-(4-aminofenil)-2-metilpropanoato de etilo (G-1) (670 mg, 85 %). RMN ¹H (400 MHz, CDCl₃) δ 7,14 (d, J = 8,5 Hz, 2H), 6,65 (d, J = 8,6 Hz, 2H), 4,10 (q, J = 7,1 Hz, 2H), 1,53 (s, 6H), 1,18 (t, J = 7,1 Hz, 3H).

Eiemplo 11:

35

OH H_2N G-1 H_2N G-2OH G-2

G2; 2-(4-Aminofenil)-2-metilpropan-1-ol

45 Se trató una disolución de 2-(4-aminofenil)-2-metilpropanoato de etilo (30 mg, 0,145 mmoles) en THF (1 ml) con LiAlH₄ (disolución 1 M en THF, 0,226 ml, 0,226 mmoles) a 0 °C y se agitó durante 15 min. La reacción se trató con NaOH 0,1 N, se extrajo con EtOAc y las fases orgánicas se secaron sobre Na₂SO₄. El disolvente se eliminó a presión reducida dando 2-(4-aminofenil)-2-metilpropan-1-ol (**G-2**), que se usó sin más purificación: RMN ¹H (400 MHz, CDCl₃) δ 7,17 (d, J = 8,5 Hz, 2H), 6,67 (d, J = 8,5 Hz, 2H), 3,53 (s, 2H), 1,28 (s, 6H).

Ejemplo 12:

60

50

55

2-metil-2-(4-nitrofenil)propanonitrilo

20

25

30

35

45

50

55

Se trató una suspensión de *terc*-butóxido de sodio (662 mg, 6,47 mmoles) en DMF (20 ml) a 0 °C con 4-nitrofenilacetonitrilo (1000 mg, 6,18 mmoles) y se agitó durante 10 min. Se añadió yoduro de metilo (400 μl, 6,47 mmoles) gota a gota durante 15 min. La disolución se agitó a 0-10 °C durante 15 min y a continuación a temperatura ambiente durante 15 min adicionales. A esta disolución púrpura se añadió *terc*-butóxido de sodio (662 mg, 6,47 mmoles) y la disolución se agitó durante 15 min. Se añadió gota a gota yoduro de metilo (400 μl, 6,47 mmoles) durante 15 min y la disolución se agitó durante la noche. Se añadió *terc*-butóxido de sodio (192 mg, 1,94 mmoles) y la reacción se agitó a 0 °C durante 10 minutos. Se añadió yoduro de metilo (186 μl, 2,98 mmoles) y la reacción se agitó durante 1 h. A continuación, la mezcla de reacción se repartió entre HCl 1 N (50 ml) y EtOAc (75 ml). La fase orgánica se lavó con HCl 1 N y salmuera, se secó sobre Na₂SO₄ y se concentró dando 2-metil-2-(4-nitrofenil)propanonitrilo como un sólido ceroso verde (1,25 g, 99 %). RMN ¹H (400 MHz, CDCl₃) δ 8,24 (d, J = 8,9 Hz, 2H), 7,66 (d, J = 8,9 Hz, 2H), 1,77 (s, 6H).

2-Metil-2-(4-nitrofenil)propan-1-amina

A una disolución enfriada de 2-metil-2-(4-nitrofenil)propanonitrilo (670 mg, 3,5 mmoles) en THF (15 ml) se añadió BH₃ (1 M en THF, 14 ml, 14 mmoles) gota a gota a 0 °C. La mezcla se calentó a temperatura ambiente y se calentó a 70 °C durante 2 h. Se añadió disolución 1 N de HCl (2 ml), seguido de la adición de NaOH hasta que pH > 7. La mezcla se extrajo con éter y el extracto de éter se concentró dando 2-metil-2-(4-nitrofenil)propan-1-amina (610 mg, 90 %), que se usó sin más purificación. RMN 1 H (400 MHz, CDCl₃) δ 8,20 (d, J = 9,0 Hz, 2H), 7,54 (d, J = 9,0 Hz, 2H), 2,89 (s, 2H), 1,38 (s, 6H).

40 2-Metil-2-(4-nitrofenil)propilcarbamato de terc-butilo

A una disolución enfriada de 2-metil-2-(4-nitrofenil)propan-1-amina (600 mg, 3,1 mmoles) y NaOH 1 N (3 ml, 3 mmoles) en 1,4-dioxano (6 ml) y agua (3 ml) se añadió Boc₂O (742 mg, 3,4 mmoles) a 0 °C. La reacción se dejó calentar a temperatura ambiente y se agitó durante la noche. La reacción se acidificó con disolución al 5 % de KHSO₄ y a continuación se extrajo con acetato de etilo. La fase orgánica se secó sobre MgSO₄ y se concentró dando 2-metil-2-(4-nitrofenil)propilcarbamato de *terc*-butilo (725 mg, 80 %), que se usó sin más purificación. RMN ¹H (400 MHz, CDCl₃) δ 8,11 (d, J = 8,9 Hz, 2H), 7,46 (d, J = 8,8 Hz, 2H), 3,63 (s, 2H), 1,31-1,29 (m, 15H).

G3; 2-Metil-2-(4-aminofenil)propilcarbamato de terc-butilo

A una disolución a reflujo de 2-metil-2-(4-nitrofenil)propilcarbamato de *terc*-butilo (725 mg, 2,5 mmoles) y formiato de amonio (700 mg, 10,9 mmoles) en EtOH (25 ml) se añadió Pd-5 % en peso sobre carbón (400 mg). La mezcla se sometió a reflujo durante 1 h, se enfrió y se filtró a través de Celite. El filtrado se concentró dando 2-metil-2-(4-aminofenil)propilcarbamato de *terc*-butilo (G-3) (550 mg, 83 %), que se usó sin más purificación. RMN 1 H (400 MHz, DMSO- d_{6}) δ 6,99 (d, J = 8,5 Hz, 2H), 6,49 (d, J = 8,6 Hz, 2H), 4,85 (s, 2H), 3,01 (d, J = 6,3 Hz, 2H), 1,36 (s, 9H), 1,12 (s, 6H); tiempo de ret. de HPLC 2,02 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 265,2 m/z (MH †).

Ejemplo 15:

N-(2-Bromo-bencil)-2,2,2-trifluoro-acetamida

A una disolución de 2-bromobencilamina (1,3 ml, 10,8 mmoles) en metanol (5 ml) se añadió trifluoroacetato de etilo (1,54 ml, 21,6 mmoles) y trietilamina (1,4 ml, 10,8 mmoles) bajo una atmósfera de nitrógeno. La reacción se agitó a temperatura ambiente durante 1 h. A continuación, la mezcla de reacción se concentró a vacío dando N-(2-bromobencil)-2,2,2-trifluoro-acetamida (3,15 g, cuant.). Tiempo de ret. de HPLC 2,86 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 283,9 m/z (MH[†]).

I-1; N-(4'-Amino-bifenil-2-ilmetil)-2,2,2-trifluoro-acetamida

Aminas comercialmente disponibles

2	U	
_	_	

Amina	Nombre
J-1	2-metoxi-5-metilbencenamina
J-2	2,6-diisopropilbencenamina
J-3	piridin-2-amina
J-4	4-pentilbencenamina
J-6	anilina
J-7	4-fenoxibencenamina
J-8	2-(2,3-dimetilfenoxi)piridin-3-amina
J-9	4-etinilbencenamina
J-10	2-sec-butilbencenamina
J-11	2-amino-4,5-dimetoxibenzonitrilo
J-12	2-terc-butilbencenamina
J-14	4-(4-metil-4H-1,2,4-triazol-3-il)bencenamina
J-15	2'-Aminometil-bifenil-4-ilamina
J-17	2-(2-metoxifenoxi)-5-(trifluorometil)bencenamina
J-18	2-terc-butilbencenamina
J-19	2,4,6-trimetilbencenamina
J-22	2-sec-butil-6-etilbencenamina
J-24	4-(benciloxi)bencenamina
J-25	2'-Metoxi-bifenil-2-ilamina

	Amina	Nombre
	J-27	3-benzilbencenamina
5	J-28	4-isopropilbencenamina
	J-29	2-(fenilsulfonil)bencenamina
	J-30	2-metoxibencenamina
10	J-31	4-amino-3-etilbenzonitrilo
	J-32	4-metilpiridin-2-amina
	J-33	4-clorobencenamina
15	J-34	2-(benciloxi)bencenamina
	J-35	2-amino-6-clorobenzonitrilo
	J-36	3-metilpiridin-2-amina
20	J-37	4-aminobenzonitrilo
	J-38	3-cloro-2,6-dietilbencenamina
	J-39	3-fenoxibencenamina
25	J-40	2-bencilbencenamina
	J-41	2-(2-fluorofenoxi)piridin-3-amina
	J-42	5-cloropiridin-2-amina
30	J-43	2-(trifluorometil)bencenamina
	J-44	(4-(2-aminofenil)piperazin-1-il)(fenil)metanona
	J-46	2-(1H-indol-2-il)bencenamina
35	J-47	4-Metil-bifenil-3-ilamina
	J-48	piridin-3-amina
	J-49	3,4-dimetoxibencenamina
40	J-51	3-aminobenzonitrilo
	J-52	6-cloropiridin-3-amina
	J-53	o-toluidina
45	J-56	2-metoxipiridin-3-amina
	J-57	2-butoxibencenamina
	J-58	2,6-dimetilbencenamina
50	J-59	2-(metiltio)bencenamina
	J-60	2-(5-metilfuran-2-il)bencenamina
	J-61	3-(4-aminofenil)-3-etilpiperidina-2,6-diona
55	J-62	2,4-dimetilbencenamina
	J-63	5-fluoropiridin-2-amina
	J-64	4-ciclohexilbencenamina
60	J-65	4-Amino-bencenosulfonamida
	J-66	2-etilbencenamina
	J-67	4-fluoro-3-metilbencenamina
65	J-68	2,6-dimetoxipiridin-3-amina
		·

	Amina	Nombre
	J-69	4-terc-butilbencenamina
5	J-70	4-sec-butilbencenamina
	J-72	3-(Pirrolidina-1-sulfonil)-fenilamina
	J-73	4-Adamantan-1-il-fenilamina
10	J-76	5-cloro-2-fenoxibencenamina
	J-77	N1-tosilbenceno-1,2-diamina
	J-78	3,4-dimetilbencenamina
15	J-79	2-(trifluorometiltio)bencenamina
	J-81	3-metoxibencenamina
	J-83	2-(2,4-difluorofenoxi)piridin-3-amina
20	J-84	2-(4-aminofenil)acetonitrilo
	J-85	2,6-diclorobencenamina
	J-87	p-toluidina
25	J-89	2-terc-butilbencenamina
	J-90	3-clorobencenamina
	J-91	4-terc-butil-2-clorobencenamina
30	J-92	2-Amino-bencenosulfonamida
	J-93	1-(2-aminofenil)etanona
	J-94	m-toluidina
35	J-95	2-(3-cloro-5-(trifluorometil)piridin-2-iloxi)bencenamina
	J-96	2-amino-6-melhilbenzonitrilo
	J-97	2-(prop-1-en-2-il)bencenamina
40	J-98	4-Amino-N-piridin-2-il-bencenosulfonamida
	J-99	2-etoxibencenamina
	J-101	Bifenil-2-ilamina
45	J-102	2-(trifluorometil)-4-isopropilbencenamina
	J-103	2,6-dietilbencenamina
	J-104	5-(trifluorometil)piridin-2-amina
50	J-105	2-aminobenzamida
	J-106	3-(trifluorometoxi)bencenamina
	J-107	3,5-bis(trifluorometil)bencenamina
55	J-108	4-vinilbencenamina
	J-109	4-(trifluorometil)bencenamina
	J-110	2-morfolinobencenamina
60	J-114	piracin-2-amina
	J-115	1-(3-aminofenil)etanona
	J-116	2-etil-6-isopropilbencenamina
65	J-117	2-(3-(4-clorofenil)-1,2,4-oxadiazol-5-il)bencenamina
	1	

	Amina	Nombre
	J-118	N-(4-amino-2,5-dietoxifenil)benzamida
5	J-120	2-(1H-benzo[d]imidazol-2-il)bencenamina
	J-122	2,5-dietoxibencenamina
	J-123	2-isopropil-6-metilbencenamina
10	J-125	2-(2-aminofenil)etanol
	J-126	(4-aminofenil)metanol
	J-127	5-metilpiridin-2-amina
15	J-128	2-(pirrolidin-1-il)bencenamina
	J-129	4-propilbencenamina
	J-130	3,4-diclorobencenamina
20	J-131	2-fenoxibencenamina
	J-132	Bifenil-2-ilamina
	J-133	2-clorobencenamina
25	J-134	2-amino-4-metilbenzonitrilo
	J-135	(2-aminofenil)(fenil)metanona
	J-136	anilina
30	J-137	3-(trifluorometiltio)bencenamina
	J-138	2-(2,5-dimetil-1H-pirrol-1-il)bencenamina
	J-139	4-(Morfoline-4-sulfonil)-fenilamina
35	J-141	2-amino-3,5-diclorobenzonitrilo
	J-142	2-fluoro-4-metilbencenamina
	J-143	6-etilpiridin-2-amina
40	J-144	2-(1H-pirrol-1-il)bencenamina
	J-149	5-fenilpiridin-2-amina
	J-150	Bifenil-2-ilamina
45	J-151	4-(difluorometoxi)bencenamina
	J-152	5-terc-butil-2-metoxibencenamina
	J-153	2-(2- <i>terc</i> -butilfenoxi)bencenamina
50	J-154	3-aminobenzamida
	J-155	4-morfolinobencenamina
	J-158	2,5-dicloropiridin-3-amina
55	J-159	2,5-dimetilbencenamina
	J-160	4-(feniltio)bencenamina
	J-162	2-(4-aminofenil)-1,1,1,3,3,3-hexafluoropropan-2-ol
60	J-163	4-bromo-2-etilbencenamina
	J-164	4-metoxibencenamina
	J-165	3-(Piperidina-1-sulfonil)-fenilamina
65	J-167	6-(trifluorometil)piridin-3-amina
	-	•

	Amina	Nombre	
	J-168	3-(trifluorometil)-2-metilbencenamina	
5	J-169	(2-aminofenil)(fenil)metanol	
	J-170	anilina	
	J-171	6-metoxipiridin-3-amina	
10	J-172	4-butilbencenamina	
	J-173	3-(Morfoline-4-sulfonil)-fenilamina	
	J-174	2,3-dimetilbencenamina	
15	J-175	anilina	
	J-176	Bifenil-2-ilamina	
	J-177	2-(2,4-diclorofenoxi)bencenamina	
20	J-178	piridin-4-amina	
	J-179	2-(4-metoxifenoxi)-5-(trifluorometil)bencenamina	
	J-180	6-metilpiridin-2-amina	
25	J-181	5-cloro-2-fluorobencenamina	
	J-183	6-morfolinopiridin-3-amina	
	J-184	anilina	
30	J-186	2-[(Ciclohexil-metil-amino)-metil]-fenilamina	
	J-189	2-aminobenzonitrilo	
	J-190	N1,N1-dietil-3-metilbenceno-1,4-diamina	
35	J-191	anilina	
	J-192	2-butilbencenamina	
	J-193	1-(4-aminofenil)etanol	
40	J-194	2-amino-4-metilbenzamida	
	J-196	2-(piperidin-1-il)bencenamina	
	J-197	3-Amino-bencenosulfonamida	
45	J-198	2-etil-6-metilbencenamina	
	J-199	Bifenil-4-ilamina	
	J-200	2-(o-toliloxi)bencenamina	
50	J-202	4-etilbencenamina	
	J-203	2-isopropilbencenamina	
	J-204	3-(trifluorometil)bencenamina	
55	J-205	2-amino-6-fluorobenzonitrilo	
	J-206	2-(2-aminofenil)acetonitrilo	
00	J-207	2-(4-fluorofenoxi)piridin-3-amina	
60	J-208	anilina	
	J-209	2-(4-metilpiperidin-1-il)bencenamina	
G.E.	J-210	4-fluorobencenamina	
65	J-211	2-propilbencenamina	

	Amina	Nombre
	J-212	4-(trifluorometoxi)bencenamina
5	J-213	3-aminofenol
	J-216	N-(3-aminofenil)acetamida
	J-217	1-(3-aminofenil)-3-metil-1H-pirazol-5(4H)-one
10	J-218	5-(trifluorometil)benceno-1,3-diamina
	J-219	5-terc-butil-2-metoxibenceno-1,3-diamina
	J-220	N-(3-amino-4-etoxifenil)acetamida
15	J-221	N-(3-Amino-fenil)-metanesulfonamida
	J-222	N-(3-aminofenil)propionamida
	J-223	N1,N1-dimetilbenceno-1,3-diamina
20	J-224	N-(3-amino-4-metoxifenil)acetamida
	J-225	benceno-1,3-diamina
	J-226	4-metilbenceno-1,3-diamina
25	J-240	5-Cloro-benceno-1,3-diamina

Amidas (Compuestos de fórmula I)

30 En el siguiente texto, los compuestos marcados con un asterisco (*) son compuestos comparativos.

Esquema general:

35 $R2 \longrightarrow R1 \longrightarrow O \longrightarrow R2 \longrightarrow R1 \longrightarrow O \longrightarrow R2 \longrightarrow R1 \longrightarrow R7$ $R3 \longrightarrow R4 \longrightarrow R5 \longrightarrow R6 \longrightarrow R7$ $R4 \longrightarrow R5 \longrightarrow R6 \longrightarrow R7$

a) Ar₁R7NH, reactivo de acoplamiento, base, disolvente. Ejemplos de condiciones usadas: HATU, DIEA, DMF; BOP, DIEA, DMF; HBTU, Et₃N, CH₂Cl₂; PFP-TFA, piridina

50 Ejemplo específico:

60

65

215; 4-Oxo-N-fenil-1H-quinolin-3-carboxamida (*)

A una disolución de ácido 4-hidroxi-quinolin-3-carboxílico (A-1) (19 mg, 0,1 mmoles), HATU (38 mg, 0,1 mmol) y DIEA (34,9 μ l, 0,2 mmol) en DMF (1 ml) se añadió anilina (18,2 μ l, 0,2 mmoles) y la mezcla de reacción se agitó a temperatura ambiente durante 3 h. La disolución resultante se filtró y se purificó por HPLC (10-99 % de CH₃CN / H₂O) dando 4-oxo-N-fenil-1H-quinolin-3-carboxamida (215) (12 mg, 45 %). RMN 1 H (400 MHz, DMSO- d_6) δ 12,97 (s,

1H), 12,50 (s, 1H), 8,89 (s,1H), 8,34 (dd, J = 8,1,1,1 Hz, 1H), 7,83 (t, J = 8,3 Hz, 1H), 7,75 (m, 3H), 7,55 (t, J = 8,1 Hz, 1H), 7,37 (t, J = 7,9 Hz, 2H), 7,10 (t, J = 6,8 Hz, 1H); tiempo de ret. de HPLC 3,02 min, 10-99 % de CH_3CN , 5 min de ejecución; EM-ESI 265,1 m/z (MH^{+}).

5 La siguiente tabla enumera otros ejemplos sintetizados por el esquema general anterior. En la tabla, el compuesto 433 es un compuesto según la invención. Todos los otros compuestos son compuestos comparativos.

10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

60

Compuesto de la formula I	Acido	Amina
2	A-1	C-2
3	A-1	J-17
4	A-1	J-110
5	A-1	G-2
6	A-1	E-8
7	A-1	J-118
8	A-1	D-7
9	A-1	J-197
11	A-1	F-7
12	A-1	F-6
13	A-1	E-2
15	A-1	J-56
16	A-1	J-211
20	A-1	J-200
21	A-1	J-98
23	A-1	C-15
24	A-1	J-72
25	A-1	F-57
26	A-1	J-196
29	A-21	J-208
31	A-1	J-87
34	A-1	C-19
36	A-1	J-203
38	A-1	J-46
39	A-17	D-10
40	A-1	J-125
42	A-1	J-95
43	A-1	C-16
45	A-1	J-205
47	A-1	J-102
48	A-1	J-181

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			
60			
65			

Compuesto de la formula I	Acido	Amina
49	A-1	F-25
50	A-1	J-19
52	A-1	F-2
53	A-1	J-178
55	A-1	J-219
57	A-1	J-61
58	A-1	D-4
59	A-1	F-35
60	A-1	D-11
61	A-1	J-174
62	A-1	J-106
63	A-1	F-47
68	A-1	F-55
69	A-1	D-8
70	A-1	F-11
71	A-1	F-61
72	A-1	J-66
74	A-1	J-104
76	A-1	F-46
78	A-1	J-92
79	A-1	F-41
80	A-1	J-30
81	A-1	J-222
82	A-1	J-190
83	A-1	F-40
84	A-1	J-32
85	A-1	F-53
86	A-1	J-15
87	A-1	J-39
88	A-1	G-3
89	A-1	J-134
90	A-1	J-18
91	A-1	J-38
92	A-1	C-13
93	A-1	F-68
95	A-1	J-189
97	A-1	F-34
99	A-1	J-4

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		
65		

Compuesto de la formula I	Acido	Amina
102	A-1	J-117
103	A-2	C-9
106	A-1	J-11
110	A-1	J-84
111	A-1	J-43
114	A-1	D-18
115	A-1	F-62
118	A-1	F-12
120	A-1	J-1
121	A-1	J-130
122	A-1	J-49
123	A-1	F-66
125	A-1	J-143
126	A-1	C-25
128	A-22	J-176
131	A-1	J-240
132	A-1	J-220
134	A-1	F-58
135	A-1	F-19
136	A-1	C-8
137	A-6	C-9
138	A-1	F-44
139	A-1	F-59
140	A-1	J-64
142	A-1	J-10
143	A-1	C-7
144	A-1	J-213
147	A-1	J-207
150	A-1	J-162
151	A-1	F-67
153	A-1	C-23
154	A-1	J-107
155	A-1	J-3
156	A-1	F-36
160	A-1	D-6
161	A-1	C-3
162	A-1	J-171
164	A-1	J-204

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		
65		

Compuesto de la formula I	Acido	Amina
165	A-1	J-65
166	A-1	F-54
167	A-1	J-226
168	A-1	J-48
170	A-1	J-42
171	A-1	F-52
172	A-1	F-64
173	A-1	J-180
174	A-1	F-63
176	A-1	J-212
177	A-1	J-57
178	A-1	J-153
179	A-1	J-154
180	A-1	J-198
181	A-1	F-1
182	A-1	F-37
185	A-1	J-173
189	A-1	J-24
190	A-1	F-49
192	A-1	J-36
193	A-1	J-68
194	A-1	J-37
195	A-1	J-127
197	A-1	J-167
198	A-1	J-210
199	A-1	F-3
201	A-1	J-96
202	A-1	F-28
205	A-1	J-179
206	A-1	J-8
208	A-1	C-12
209	A-1	J-126
210	A-17	J-101
211	A-1	J-152
212	A-1	J-217
213	A-1	F-51
214	A-1	J-221
215	A-1	J-136

5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			
60			
65			

Compuesto de la formula I	Acido	Amina
218	A-2	C-13
219	A-2 A-1	J-114
-		
220	A-1	C-26
222	A-1	J-35
223	A-1	F-23
224	A-1	I-1
226	A-1	J-129
227	A-1	J-120
228	A-1	J-169
229	A-1	J-59
231	A-1	C-17
235	A-1	E-9
236	A-1	J-109
240	A-1	J-34
242	A-1	D-2
245	A-1	J-177
246	A-1	J-78
247	A-1	F-33
250	A-1	J-224
252	A-1	J-135
253	A-1	F-30
255	A-8	C-9
257	A-1	J-67
261	A-1	F-13
263	A-1	J-163
264	A-1	J-122
265	A-1	J-40
266	A-1	C-14
267	A-1	J-7
268	A-1	E-7
271	A-1	D-9
276	A-1	J-139
277	A-1	F-38
278	A-1	F-10
279	A-1	F-56
281	A-1	J-62
283	A-1	F-18
285	A-1	F-45
	<u> </u>	

	Compuesto de
	287
5	288
	289
	290
10	291
	292
	293
15	295
	296
	297
20	301
	302
	304
25	305
	306
	307
30	308
	310
	311
35	312
	313
	314
40	315
	317
	319
45	321
	322
50	324
50	325
	326
55	328
55	330
	331
60	332
50	333
	335
65	336
55	337

Compuesto de la formula I	Acido	Amina
287	A-3	C-13
288	A-1	C-6
289	A-1	J-142
290	A-1	F-15
291	A-1	C-10
292	A-1	J-76
293	A-1	J-144
295	A-1	J-128
296	A-17	J-12
297	A-1	J-138
301	A-1	J-14
302	A-1	F-5
304	A-1	E-1
305	A-1	F-17
306	A-1	F-20
307	A-1	F-43
308	A-1	J-206
310	A-1	J-70
311	A-1	J-60
312	A-1	F-27
313	A-1	F-39
314	A-1	J-116
315	A-1	J-58
317	A-1	J-85
319	A-2	C-7
321	A-1	J-44
322	A-1	J-22
324	A-1	J-172.
325	A-1	J-103
326	A-1	F-60
328	A-1	J-115
330	A-1	J-133
331	A-1	J-105
332	A-1	J-9
333	A-1	F-8
335	A-1	J-194
336	A-1	J-192
337	A-1	C-24

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		
60		
65		

Compuesto de la formula I	Acido	Amina
344	A-1	F-22
346	A-12	J-6
348	A-1	F-21
349	A-1	J-29
353	A-1	D-10
354	A-1	J-186
355	A-1	J-25
360	A-1	J-151
361	A-1	F-26
362	A-1	J-91
363	A-1	F-32
365	A-1	J-93
366	A-1	F-16
367	A-1	F-50
368	A-1	D-5
369	A-1	J-141
370	A-1	J-90
371	A-1	J-79
372	A-1	J-209
378	A-1	D-3
380	A-1	J-99
384	A-1	F-48
385	A-1	J-83
387	A-1	J-168
388	A-1	F-29
389	A-1	J-27
391	A-1	F-9
392	A-1	J-52
394	A-22	J-170
395	A-1	C-20
397	A-1	J-199
398	A-1	J-77
400	A-1	J-183
401	A-1	F-4
402	A-1	J-149
403	A-1	C-22
405	A-1	J-33
407	A-3	C-7

esto de la formula I A	Compuesto de
408	
410	410
411	411
413	413
417	417
418	
419	
420	
421	
424	
425	
426	
428	
429	
430	
431	
432	
433	
434	
435	
436	
439	
441	
442	
444	
445	
447	
448	
449	449
450	450
451	451
452	452
453	453
454	454
455	455
456	456
457	457

	Acido	Amina
408	A-1	J-81
410	A-1	F-31
411	A-13	J-191
413	A-1	J-131
417	A-1	F-65
418	A-1	J-223
419	A-1	J-216
420	A-1	G-1
421	A-1	C-18
424	A-1	F-42
425	A-1	J-28
426	A-1	C-11
428	A-1	C-1
429	A-1	J-218
430	A-1	J-123
431	A-1	J-225
432	A-1	F-14
433	A-1	C-9
434	A-1	J-159
435	A-1	J-41
436	A-1	F-24
438	A-1	E-10
439	A-1	J-164
441	A-1	D-19
442	A-1	J-165
444	A-1	E-6
445	A-1	J-97
447	A-1	J-51
448	A-1	J-69
449	A-1	J-94
450	A-1	J-193
451	A-1	J-31
452	A-1	J-108
453	A-1	D1
454	A-1	J-47
455	A-1	J-73
456	A-1	J-137
457	A-1	J-155

5	
10	
15	
20	
25	
30	

Compuesto de la formula I	Acido	Amina
458	A-1	C-4
459	A-1	J-53
461	A-1	J-150
463	A-1	J-202
464	A-3	C-9
465	A-1	E-4
466	A-1	J-2
468	A-20	J-184
469	A-12	J-132
470	A-1	J-160
473	A-21	J-89
475	A-1	J-158
477	A-1	J-63
480	A-23	J-175
483	A-1	C-21
484	A-1	D-14
C-27-I	A-1	C-27
D-12-l	A-1	D-12
D-13-I	A-1	D-13
D-15-I	A-1	D-15
D-16-I	A-1	D-16
D-17-l	A-1	D-17

<u>Fenoles</u>

Ejemplo 1:

Esquema general:

Begin a general:

RX (X=Br,I)

Cs₂CO₃, DMF

A28

Ejemplo específico:

275; 4-Benciloxi-N-(3-hidroxi-4-terc-butil-fenil)-quinolin-3-carboxamida (*)

A una mezcla de N-(3-hidroxi-4-*terc*-butil-fenil)-4-oxo-1H-quinolin-3-carboxamida **(428)** (6,7 mg, 0,02 mmoles) y Cs_2CO_3 (13 mg, 0,04 mmoles) en DMF (0,2 ml) se añadió BnBr (10 ul, 0,08 mmoles). La mezcla de reacción se agitó a temperatura ambiente durante 3 h. La mezcla de reacción se filtró y se purificó usando HPLC dando 4-benciloxi-N-(3-hidroxi-4-*terc*-butil-fenil)-quinolin-3-carboxamida **(275)**. RMN 1 H (400 MHz, DMSO- d_6) δ 12,23 (s, 1H), 9,47 (s, 1H), 9,20 (s, 1H), 8,43 (d, J = 7,9 Hz, 1H), 7,79 (t, J = 2,0 Hz, 2H), 7,56 (m, 1H), 7,38-7,26 (m; 6H), 7,11 (d, J = 8,4 Hz, 1H), 6,99 (dd, J = 8,4,2,1 Hz, 1H), 5,85 (s, 2H), 1,35 (s, 9H). Tiempo de ret. de HPLC 3,93 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 427,1 m/z (MH $^+$).

Otro ejemplo:

15

20

25

30

35

45

60

65

415; N-(3-Hidroxi-4-terc-butil-fenil)-4-metoxi-guinolin-3-carboxamida (*)

Se sintetizó N-(3-hidroxi-4-*terc*-butil-fenil)-4-metoxi-quinolin-3-carboxamida **(415)** siguiendo el esquema general anterior haciendo reaccionar N-(3-hidroxi-4-*terc*-butil-fenil)-4-oxo-1H-quinolin-3-carboxamida **(428)** con yoduro de metilo. RMN 1 H (400 MHz, DMSO- d_6) δ 12,26 (s, 1H), 9,46 (s, 1H), 8,99 (s, 1H), 8,42 (t, J = 4,2 Hz, 1H), 7,95-7,88 (m, 2H), 7,61-7,69 (m, 1H), 7,38 (d, J = 2,1 Hz, 1H), 7,10 (d, J = 8,4 Hz, 1H), 6,96 (dd, J = 8,4, 2,1 Hz, 1H), 4,08 (s, 3H), 1,35 (s, 9H); tiempo de ret. de HPLC 3,46 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 351,5 m/z (MH $^+$).

Ejemplo 2:

476; N-(4-terc-Butil-2-ciano-5-hidroxifenil)-1,4-dihidro-4-oxoquinolin-3-carboxamida (*)

A una suspensión de N-(4-terc-butil-2-bromo-5-hidroxifenil)-1,4-dihidro-4-oxoquinolin-3-carboxamida (**C-27-I**) (84 mg, 0,2 mmoles), Zn(CN)₂ (14 mg, 0,12 mmoles) en NMP (1 ml) se añadió Pd(PPh₃)₄ (16 mg, 0,014 mmoles) bajo nitrógeno. La mezcla se calentó en un horno microondas a 200 °C durante 1 h, se filtró y se purificó usando HPLC preparativa dando N-(4-terc-butil-2-ciano-5-hidroxifenil)-1,4-dihidro-4-oxoquinolin-3-carboxamida (476). RMN ¹H (400 MHz, DMSO-d₆) δ 13,00 (d, J =6,4 Hz, 1H), 12,91 (s, 1H), 10,72 (s, 1H), 8,89 (d, J =6,8Hz, 1H), 8,34 (d, J =8,2Hz,

1H), 8,16 (s, 1H), 7,85-7,75 (m, 2H), 7,56-7,54 (m, 1H), 7,44 (s, 1H), 1,35 (s, 9H); tiempo de ret. de HPLC 3,42 min, 10-100 % de CH_3CN , gradiente de 5 min; EM-ESI 362,1 m/z (MH^{\dagger}).

Anilinas

5

20

35

40

45

50

55

Ejemplo 1:

Esquema general:

Ejemplo específico:

260; N-(5-Amino-2-terc-butil-fenil)-4-oxo-1H-quinolin-3-carboxamida (*)

Se agitó una mezcla de éster terc-butílico del ácido [3-[(4-oxo-1H-quinolin-3-il)carbonilamino]-4-terc-butilfenil]aminofórmico (353) (33 mg, 0,08 mmoles), TFA (1 ml) y CH₂Cl₂ (1 ml) a temperatura ambiente durante la noche. La disolución se concentró y el residuo se disolvió en DMSO (1 ml) y se purificó por HPLC (10-99 % de CH₃CN / H₂O) dando el producto, N-(5-amino-2-terc-butil-fenil)-4-oxo-1H-quinolin-3-carboxamida (260) (15 mg, 56 %). RMN 1 H (400 MHz, DMSO- d_{6}) δ 13,23 (d, J = 6,6 Hz, 1H), 12,20 (s, 1H), 10,22 (s a, 2H), 8,88 (d, J = 6,8 Hz, 1H), 8,34 (d, J = 7,8 Hz, 1H), 7,86-7,80 (m, 3H), 7,56-7,52 (m, 2H), 7,15 (dd, J = 8,5, 2,4 Hz, 1H), 1,46 (s, 9H); tiempo de ret. de HPLC 2,33 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 336,3 m/z (MH $^{+}$).

La siguiente tabla enumera otros ejemplos sintetizados siguiendo el esquema general anterior. En la siguiente tabla, los compuestos marcados con un asterisco (*) son compuestos comparativos.

Intermediario de inicio	Producto
60	101(*)
D-12-I	282(*)
D-13-I	41(*)
114	393(*)
D-16-I	157(*)
D-15-I	356(*)
D-17-I	399(*)

60

Ejemplo 2:

Esquema General:

The second secon

Ejemplo específico:

15

25

30

35

40

45

50

55

20 CH₂O, AcOH NaBH₃CN CH₂Cl₂, MeOH 485

485; N-(3-Dimetilamino-4-terc-butil-fenil)-4-oxo-1H-quinolin-3-carboxamida (*)

A una suspensión de N-(3-amino-4-*terc*-butil-fenil)-4-oxo-1H-quinolin-3-carboxamida **(271)** (600 mg, 1,8 mmoles) en CH_2CI_2 (15 ml) y metanol (5 ml) se añadieron ácido acético (250 µl) y formaldehído (268 µl, 3,6 mmoles, 37 % en peso en agua). Después de 10 min, se añadió cianoborohidruro de sodio (407 mg, 6,5 mmoles) en una porción. Se añadió formaldehído adicional (135 µl, 1,8 mmoles, 37 % en peso en agua) a 1,5 y 4,2 h. Después de 4,7 h, la mezcla se diluyó con éter (40 ml), se lavó con agua (25 ml) y salmuera (25 ml), se secó (Na₂SO₄), se filtró y se concentró. La espuma roja-marrón resultante se purificó por HPLC preparativa proporcionando N-(3-dimetilamino-4-*terc*-butil-fenil)-4-oxo-1H-quinolin-3-carboxamida **(485)** (108 mg, 17 %). RMN 1 H (300 MHz, CDCl₃) δ 13,13 (s a, 1H), 12,78 (s, 1H), 8,91 (s a, 1H), 8,42 (s a, 1H), 8,37 (d, J = 8,1 Hz, 1H), 7,72-7,58 (m, 2H), 7,47-7,31 (m, 3H), 3,34 (s, 6H), 1,46 (s, 9H); tiempo de ret. de HPLC 2,15 min, 10-100 % de CH₃CN, 5 min de ejecución; EM-ESI 364,3 m/z (MH $^+$).

La siguiente tabla enumera otros ejemplos sintetizados siguiendo el esquema general anterior. En la siguiente tabla, los compuestos marcados con un asterisco (*) son compuestos comparativos.

Intermediario de inicio	Producto
69	117 (*)
160	462 (*)
282	409 (*)
41	98 (*)

Ejemplo 3:

Esquema general:

60

R

1. HBTU, DIEA, THF

2. SnCl₂.2H₂O, EtOH

Ejemplo específico:

94; N-(5-Amino-2-metil-fenil)-4-oxo-1H-quinolin-3-carboxamida (*)

A una disolución de ácido 4-hidroxi-quinolin-3-carboxílico (A-1) (50 mg, 0,26 mmoles), HBTU (99 mg, 0,26 mmoles) y DIEA (138 µl, 0,79 mmoles) en THF (2,6 ml) se añadió 2-metil-5-nitro-fenilamina (40 mg, 0,26 mmoles). La mezcla se calentó a 150 °C en el microondas durante 20 min y se concentró la disolución resultante. El residuo se disolvió en EtOH (2 ml) y se añadió SnCl₂·2H₂O (293 mg, 1,3 mmoles). La reacción se agitó a temperatura ambiente durante la noche. La mezcla de reacción se basificó con disolución sat. de NaHCO₃ a pH 7-8 y se extrajo con acetato de etilo. Las fases orgánicas combinadas se lavaron con salmuera, se secaron sobre Na₂SO₄, se filtraron y se concentraron. El residuo se disolvió en DMSO y se purificó por HPLC (10-99 % de CH₃CN / H₂O) dando el producto, N-(5-amino-2-metil-fenil)-4-oxo-1H-quinolin-3-carboxamida (94) (6 mg, 8 %). Tiempo de ret. de HPLC 2,06 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 294,2 m/z (MH⁴).

Otro ejemplo:

15

20

25

30

35

65

NH₂

17; N-(5-Amino-2-propoxi-fenil)-4-oxo-1H-quinolin-3-carboxamida (*)

Se preparó N-(5-amino-2-propoxi-fenil)-4-oxo-1H-quinolin-3-carboxamida (17) siguiendo el esquema general anterior a partir de ácido 4-hidroxi-quinolin-3-carboxílico (A-1) y 5-nitro-2-propoxi-fenilamina. Rendimiento (9 %). Tiempo de ret. de HPLC 3,74 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 338,3 m/z (MH⁺).

40 **Ejemplo 4**:

Esquema General:

X= CO, CO₂, SO₂: a) R2XCI, DIEA, THF o R2XCI, NMM, 1,4-dioxano o R2XCI, Et₃N, CH₂Cl₂, DMF.

55 Ejemplo específico:

248; N-(3-Acetilamino-4-metil-fenil)-4-oxo-1H-quinolin-3-carboxamida (*)

A una disolución de N-(3-amino-4-metil-fenil)-4-oxo-1H-quinolin-3-carboxamida (167) (33 mg, 0,11 mmoles) y DIEA

(49 μl, 0,28 mmoles) en THF (1 ml) se añadió cloruro de acetilo (16 μl, 0,22 mmoles). La reacción se agitó a temperatura ambiente durante 30 min. El análisis de CL-EM indica que se había producido la diacilación. Se añadió una disolución de piperidina (81 μl, 0,82 mmoles) en CH₂Cl₂ (2 ml) y la reacción se agitó durante otros 30 min, momento en el que solo se detectó el producto deseado por CL-EM. Se concentró la disolución de reacción y el residuo se disolvió en DMSO y se purificó por HPLC (10-99 % de CH₃CN / H₂O) dando el producto, N-(3-acetilamino-4-metil-fenil)-4-oxo-1H-quinolin-3-carboxamida (248) (4 mg, 11 %). RMN 1 H (400 MHz, DMSO- d_6) δ 12,95 (d, J = 6,6 Hz, 1H), 12,42 (s, 1H), 9,30 (s, 1H), 8,86 (d, J = 6,8 Hz, 1H), 8,33 (dd, J = 8,1, 1,3 Hz, 1H), 7,85-7,81 (m, 2H), 7,76 (d, J = 7,8 Hz, 1H), 7,55 (t, J = 8,1 Hz, 1H), 7,49 (dd, J = 8,2, 2,2 Hz, 1H), 7,18 (d, J = 8,3 Hz, 1H), 2,18 (s, 3H), 2,08 (s, 3H); tiempo de ret. de HPLC 2,46 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 336,3 m/z (MH $^+$).

La siguiente tabla enumera otros ejemplos sintetizados siguiendo el esquema general anterior. En la siguiente tabla, los compuestos marcados con un asterisco (*) son compuestos comparativos.

45				
15	Empezando por	Х	R2	Producto
	260	со	Ме	316 (*)
20	260	со	neopentil	196 (*)
20	429	со	Ме	379 (*)
	41	со	Me	232 (*)
25	101	со	Me	243 (*)
25	8	со	Ме	149 (*)
	271	CO ₂	Et	127 (*)
30	271	CO ₂	Me	14 (*)
30	167	CO ₂	Et	141 (*)
	69	CO ₂	Me	30 (*)
35	160	CO ₂	Me	221 (*)
	160	CO ₂	Et	382 (*)
	69	CO ₂	Et	225 (*)
40	282	CO ₂	Me	249 (*)
10	282	CO ₂	Et	472 (*)
	41	CO ₂	Ме	471 (*)
45	101	CO ₂	Ме	239 (*)
	101	CO ₂	Et	269 (*)
	8	CO ₂	Ме	129 (*)
50	8	CO ₂	Et	298 (*)
	160	SO ₂	Me	340 (*)

Ejemplo 5:

55

5

10

Esquema General:

Ejemplo específico:

5

10

15

20

25

30

35

40

45

4-Oxo-N-[3-(trifluorometil)-5-(vinilsulfonamido)fenil]-1,4-dihidroquinolin-3-carboxamida (*)

A una suspensión de N-[3-amino-5-(trifluorometil)fenil]-4-oxo-1H-quinolin-3-carboxamida (**429**) (500 mg 1,4 mmoles) en 1,4-dioxano (4 ml) se añadió NMM (0,4 ml, 3,6 mmoles). Se añadió cloruro de β-cloroetilsulfonilo (0,16 ml, 1,51 mmoles) bajo una atmósfera de argón. La mezcla se agitó a temperatura ambiente durante 6 ½ h, después de lo cual la CCF (CH₂Cl₂ - EtOAc, 8:2) mostró una nueva mancha con un R_f muy similar al del material de partida. Se añadieron otros 0,5 eq. de NMM, y la mezcla se agitó a temperatura ambiente durante la noche. El análisis de CL-EM de la mezcla en bruto mostró >85 % de conversión en el producto deseado. La mezcla se concentró, se trató con HCl 1 M (5 ml) y se extrajo con EtOAc (3 x 10 ml) y CH₂Cl₂ (3 x 10 ml). Los extractos orgánicos combinados se secaron sobre Na₂SO₄, se filtraron y se concentraron dando 4-oxo-*N*-[3-(trifluorometil)-5-(vinilsulfonamido)fenil]-1,4-dihidroquinolin-3-carboxamida como una espuma naranja (0,495 g, 79 %), que se usó en la siguiente etapa sin más purificación. RMN 1 H (d_6 -acetona, 300 MHz) δ 8,92 (s, 1H), 8,41-8,38 (m, 1H), 7,94 (m, 2H), 7,78 (s a, 2H), 7,53-7,47 (m, 1H), 7,30 (s, 1H), 6,87-6,79 (dd, J = 9,9 Hz, 1H), 6,28 (d, J = 16,5 Hz, 1H), 6,09 (d, J = 9,9 Hz, 1H); EM-ESI 436,4 m/z (MH^T)

318; 4-Oxo-N-[3-[2-(1-piperidil)etilsulfonilamino]-5-(trifluorometil)fenil]-1H-quinolin-3-carboxamida (*)

Se suspendió una mezcla de 4-oxo-N-[3-(trifluorometil)-5-(vinilsulfonamido)fenil]-1,4-dihidroquinolin-3-carboxamida (50 mg, 0,11 mmoles), piperidina (18 μ I, 1,6 eq) y LiClO₄ (20 mg, 1,7 eq) en una disolución 1:1 de CH₂Cl₂: isopropanol (1,5 ml). La mezcla se sometió a reflujo a 75 °C durante 18 h. Después de este tiempo, el análisis de CL-EM mostró >95 % de conversión en el producto deseado. La mezcla en bruto se purificó por HPLC de fase inversa proporcionando 4-oxo-N-[3-[2-(1-piperidil)etilsulfonilamino]-5-(trifluorometil)fenil]-1H-quinolin-3-carboxamida (318) como un sólido amarillento (15 mg, 25 %). RMN 1 H (d_{6} -acetona, 300 MHz) δ 8,92 (s a, 1H), 8,4 (d, J = 8,1 Hz, 1H), 8,05 (s a, 1H), 7,94 (s a, 1H), 7,78 (s a, 2H), 7,53-751 (m, 1H), 7,36 (s a, 1H), 3,97 (t, J = 7,2 Hz, 2H), 3,66 (t, J = 8 Hz, 2H), 3,31-3,24 (m, 6H), 1,36-1,31 (m, 4H); EM-ESI 489,1 m/z (MH $^{+}$).

La siguiente tabla enumera otros ejemplos sintetizados siguiendo el esquema general anterior. En la siguiente tabla, los compuestos marcados con un asterisco (*) son compuestos comparativos.

Intermediario de inicio	Amina	Producto
429	morfolina	272 (*)
429	Dimetilamina	359 (*)
131	piperidina	133 (*)
131	morfolina	46 (*)

50 **Otro**

Ejemplo 1:

Esquema General:

TFA

CH₂Cl₂

NH₂

Ejemplo específico:

15 163; Ácido 4-oxo-1,4-dihidro-quinolin-3-carboxílico (4-aminometil-2'-etoxi-bifenil-2-il)-amida (*)

Se agitó éster terc-butílico del ácido {2'-etoxi-2-[(4-oxo-1,4-dihidroquinolin-3-carbonil)-amino]-bifenil-4-ilmetil}-carbámico (**304**) (40 mg, 0,078 mmoles) en una mezcla de CH₂Cl₂ / TFA (3:1, 20 ml) a temperatura ambiente durante 1 h. Los volátiles se eliminaron en un evaporador rotatorio. El producto en bruto se purificó por HPLC preparativa proporcionando (4-aminometil-2'-etoxibifenil-2-il)amina del ácido 4-oxo-1,4-dihidroquinolin-3-carboxílico (**163**) como un sólido de color tostado (14 mg. 43 %). RMN 1 H (300 MHz, DMSO- d_{6}) δ 12,87 (d, J= 6,3 Hz, 1H), 11,83 (s, 1H), 8,76 (d, J= 6,3 Hz, 1H), 8,40 (s, 1H), 8,26 (s a, 2H), 8,01 (dd, J= 8,4 Hz, J= 1,5 Hz, 1H), 7,75 (dt, J= 8,1 Hz, J= 1,2 Hz, 1H), 7,67 (d, J= 7,8 Hz, 1H), 7,47-7,37 (m, 2H), 7,24 (s, 2H), 7,15 (dd, J= 7,5 Hz, J= 1,8 Hz, 1H), 7,10 (d, J= 8,1 Hz, 1H), 7,02 (dt, J= 7,5 Hz, J= 0,9 Hz, 1H), 4,09 (m, 2H), 4,04 (q, J= 6,9 Hz, 2H), 1,09 (t, J= 6,9 Hz, 3H); tiempo de ret. de HPLC 1,71 min, 10-100 % de CH₃CN, gradiente de 5 min; EM-ESI 414,1 m/z (MH †).

Otro ejemplo:

20

25

45

40 390; N-[3-(Aminometil)-4-terc-butil-fenil]-4-oxo-1H-quinolin-3-carboxamida (*)

Se sintetizó N-[3-(aminometil)-4-terc-butil-fenil]-4-oxo-1H-quinolin-3-carboxamida (**390**) siguiendo el esquema general anterior a partir de éster terc-butílico del ácido [5-[(4-oxo-1H-quinolin-3-il)carbonilamino]-2-terc-butil-fenil]metilaminofórmico (**465**). Tiempo de ret. de HPLC 2,44 min, 10-99 % de CH₃CN, gradiente de 5 min; EM-ESI m/z 350,3 (M + H)⁴.

Ejemplo 2:

Ejemplo específico:

3-(2-(4-(1-Amino-2-metilpropan-2-il)fenil)acetil)quinolin-4(1H)-ona (*)

Se combinaron éster *terc*-butílico del ácido (2-metil-2-{4-[2-oxo-2-(4-oxo-1,4-dihidro-quinolin-3-il)-etil]-fenil}-propil)-carbámico (88) (0,50 g, 1,15 mmoles), TFA (5 ml) y CH₂Cl₂ (5 ml) y se agitó a temperatura ambiente durante la noche. A continuación, la mezcla de reacción se neutralizó con NaOH 1 N. El precipitado se recogió mediante filtración dando el producto 3-(2-(4-(1-amino-2-metilpropan-2-il)fenil)acetil)quinolin-4(1H)-ona como un sólido marrón (651 mg, 91 %). Tiempo de ret. de HPLC 2,26 min, 10-99 % de CH₃CN, 5 min de ejecución; EM-ESI 336,5 m/z (MH⁺).

10 323; Éster metílico del ácido [2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]aminofórmico (*)

Se añadió cloroformiato de metilo (0,012~g, 0,150~mmoles) a una disolución de 3-(2-(4-(1-amino-2-metilpropan-2-il)fenil)acetil)quinolin-4(1H)-ona <math>(0,025~g, 0,075~mmoles), TEA (0,150~mmoles, 0,021~ml) y DMF (1~ml) y se agitó a temperatura ambiente durante 1 h. A continuación se añadió piperidina (0,074~ml, 0,750~mmoles) y la reacción se agitó durante otros 30 min. La mezcla de reacción se filtró y se purificó por HPLC preparativa $(10-99~\%~de~CH_3CN-H_2O)~dando~el~producto~éster~metílico~del~ácido~[2-metil-2-[4-[(4-oxo-1H-quinolin-3-il)carbonilamino]fenil]-propil]aminofórmico <math>(323)$. RMN 1H $(400~MHz, DMSO-d6)~\delta$ $12,94~(s~a, 1H), 12,44~(s, 1H), 8,89~(s, 1H), 8,33~(dd, J=8,2,1,1~Hz,1H), 7,82~(t, J=8,3~Hz,1H), 7,76~(d, J=7,7~Hz,1H), 7,67~(d, J=8,8~Hz,2H), 7,54~(t, J=8,1~Hz,1H), 7,35~(d, J=8,7~Hz,2H), 7,02~(t, J=6,3~Hz,1H), 3,50~(s,3H), 3,17~(d, J=6,2~Hz,2H), 1,23~(s,6H); tiempo~de~ret.~de~HPLC~2,93~min, 10-99~%~de~CH₃CN,5~min~de~ejecución; EM-ESI 394,0~m/z~(MH<math>^+$).

La siguiente tabla enumera otros ejemplos sintetizados siguiendo el esquema general anterior. En la tabla, los compuestos marcados con un asterisco (*) son compuestos comparativos.

Producto	Cloroformato
119 (*)	Etil cloroformato
416 (*)	Propil cloroformato
460 (*)	Butil cloroformato
251 (*)	Isobutil cloroformato
341 (*)	Neopentil cloroformato
28 (*)	2-metoxietil cloroformato
396 (*)	(tetrahidrofuran-3-il)metil cloroformato

40 A continuación se exponen datos caracterizadores para los compuestos de la presente invención preparados según los ejemplos anteriores. En la Tabla 2, el compuesto nº 433 es un compuesto según la invención. Todos los otros compuestos son compuestos comparativos.

455055

5

15

20

25

30

35

60

Tabla 2

5
U

1	0	

No .	LC:MS	LC RT
Comp.	M+1	min
. 2	350.1	3.8
3	455.3	3.75
4	350.3	2.81
5	337,3	2.76
6	351.4	3
7	472.3	3.6
8	307.1	1.21
9	344.1	2.43
11	408.1	2.91
12	383.1	2.63
13	346.3	3,48
14	394.3	3.07
15	296.3	2.68
16	307.3	3.38
17	338.3	3.74
20	371.3	3.53
21	421.1	2.66

NIO	L C MO	'LO'DT
N°	LC-MS	LC-RT
Comp.	M+1	min
23	457.5	3.56
24	398.3	. 3.13
25	397.1	2.38
26	348.1	. 2.51
28	438.4	2.9
29	307.1	3.32
30	379.1	2.62
31	. 278.9	3.03
34	397.1	4.19
36	307.3	3.25
38	380.3	3.33
39 ·	480.5	3.82
40	309.1	2.46
41	321.1	1.88
42	460.0	3.71
43	457.5	3,6

N°	LC-MS,	LC-RT
Comp.	M#1	min
45	308.1	3.18
46	490.1	1.89
47	375.3	3.33
48	317.1	3.06
49	400.1	2.88
50	307.3	3.08
52	354.1	3,02
53	266.1	1.99
55	366.3	2.6
57	403.1	2.86
58	364.3	3.02
59	412.1	3.31
60	422.2	3.53
61	293.1	3.05
62	349.1	3,4
63	376.1	2.89

5	N° Comp.	LC-MS M+1	LC-RT
	68	398.1	2.85
	69	322.5	2.37
10	70	341.1	2.15
	71	426.1	2.6
	72	293.1	3.27
		 	3.32
15	74	334.1	
	76	376.1	2.97
1	78	344.1	2.38
	79	372.1	3.07
20	80	295.3	2.78
	81	336,3	2.73
	82	350.3	2.11
25	83	365.1	2:76
20	84	280.3	2.11
1	85	408.0	3.25
	86	370.3	2.08
30	87	357.1	3.5
	88	436.3	3.37
	89	303.9	3.1
	90	321.1	3.43
35	91	355.2	3.47
	92	295.2	3.84
	93	371.0	2.75
	94	294.2	2.06
40	95	290.1	2.78
	97	402.1	2.59
	98	349.1	1.96
45	99	334.1	3.13
-J	101	322.5	2.35
Ĭ	102	443.1	3.97
ľ	103	411.2	3.85
50	106	350.3	2.86

Comp. M+1 min 110 303.9 2.75 111 333.1 3 114 499.2 3.74 115 330.1 2.67 117 349.1 1.32 118 379.1 2.61 119 408.4 3.07 120 309.1 2.93 121 333.1 3.69 122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33 137 580.5 4.1	T
111 333.1 3 114 499.2 3.74 115 330.1 2.67 117 349.1 1.32 118 379.1 2.61 119 408.4 3.07 120 309.1 2.93 121 333.1 3.69 122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
114 499.2 3.74 115 330.1 2.67 117 349.1 1.32 118 379.1 2.61 119 408.4 3.07 120 309.1 2.93 121 333.1 3.69 122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	<u> </u>
115 330.1 2.67 117 349.1 1.32 118 379.1 2.61 119 408.4 3.07 120 309.1 2.93 121 333.1 3.69 122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
117 349.1 1.32 118 379.1 2.61 119 408.4 3.07 120 309.1 2.93 121 333.1 3.69 122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	ļ
118 379.1 2.61 119 408.4 3.07 120 309.1 2.93 121 333.1 3.69 122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
119 408.4 3.07 120 309.1 2.93 121 333.1 3.69 122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	?
120 309.1 2.93 121 333.1 3.69 122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
121 333.1 3.69 122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	<u>,</u>
122 325.1 2.66 123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	}
123 330.1 2.64 125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
125 294.3 2.21 126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	}
126 411.1 3.06 127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
127 408.5 3.22 128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
128 369.1 3.53 129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	;
129 365.1 1.74 131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
131 313.0 2.4 132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
132 365.9 2.73 133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
133 488.1 1.97 134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	T
134 402.1 2.25 135 384.1 2.94 136 393.1 4.33	
135 384.1 2.94 136 393.1 4.33	
136 393.1 4.33	
J	
137 580.5 4.1	
138 376.1 2.98	
139 408.0 3.17	
140 346.1 4	
141 366.3 2.89	1
142 321.3 3.58	
143 355.2 3.45	
144 281.3 2.49	
147 376.3 3.27	
149 349.1 1.45	
150 430.0 3.29	

Nº	LC-MS	LC-RT
Comp.	M+1	min
151	360.0	3
153	425.1	4.52
154	401.3	3.77
155	266.1	2.11
156	424.1	3.12
157	321.0	2.13
160	321.1	1.34
161	409,2	3.82
162	296.3	2.61
163	413.1	1.71
164	333.1	3.33
165	344.1	2.41
166	398,1	2.83
167	294.3	2.12
168	265.9	1.96
170	300.3	3,08
171	408.0	3.08
172	396.0	3.14
173	280.3	2.14
174	388.0	2.58
176	349.1	3.38
177	337.1	3.5
178	413.3	4
179	308.5	2.33
180	307.3	3,08
181	354.1	2.97
182	358.1	2.89
185	414.1	2.96
189	370.9	3,38
190	392.0	3,09
192	280.3	2.13

55

60

		· · · · · · · · · · · · · · · · · · ·	,
	No	LC-MS	LC-R1
	Comp. 193	M+1 326.3	3.02
5	194	290.1	2,98
	195	280.3	2.14
	196	434.5	3.38
10	197	334.1	3.15
10	198	283.1	3.15
	199		
		354.1	2.96
15	201	303:9	3.08
	202	404.0	3.19
	205	455.5	3.74
	206	386.1	3.5
20	208	429.7	3,89
	209	294.1	2,39
	210	385.2	3.72
25	211	351.3	3.53
25	212	360.9	2.45
	213	408.0	3.3
	214	358.1	2.7
30	215	265.3	3,07
00	218	413.2	3.98
	219	266.9	2.48
	220	409.0	3,35
35	221	379.1	2.68
	222	324.3	3.27
	223	386.1	3.14
40	224	466.3	3.08
40	225	393.1	2.75
	226	306.1	3.6
	227	381.1	2.24
45	228	371.1	2.84
	229	311.1	2.93
	231	471.3	3.41
	232	363.1	2.57
50	·		

N°	LC-MS	LC-RT
Comp.	M+1	min
235	308.4	2.12
236	333.1	3.35
239	379.0	2.62
240	370.9	3.65
242	348.3	3.08
243	363.0	2.44
245	425.1	3.69
246	292.9	3.2
247	432.1	3.23
248	336.3	2.46
249	365.0	2.54
250	352.3	2.53
251	436.2	3.38
252	368.9	3.17
253	424.1	3.25
255	526.5	3.89
257	297.3	3.28
260	336,3	2.33
261	368.1	3.08
263	372.9	3.69
264	353.1	3.42
265	354.9	3.4
266	405.3	4.05
267	357.1	3.43
268	400.3	6.01
269	393.0	2.75
271	336.5	2.75
272	524.1	1.87
275	427.1	3.93
276	414.3	2.81

Nº	LC-MS	LC-RT
	M+1	min
Comp. 277	358.1	2.89
278	408,1	3.09
279	386.1	2,88
281	293.1	3.22
282	307.1	1.22
283	370.1	3
285	376.1	2,88
287	411.2	4.15
288	413.3	3.8
289	297.3	3.25
290	382.1	3.19
291	371.0	3.57
292	391.1	3.69
293	330.3	3.05
295	334.3	2.26
296	365.3	3.6
297	358.3	3.26
298	379.1	1.91
301	346.3	2,26
302	370.1	2.28
304	513.2	3.66
305	370.1	2.98
306	384.1	3.11
307	374.0	3.05
308	304.1	2.71
310	320.1	3.73
311	344.9	3.43
312	400.1	2.86
313	358.1	2.8
314	335.1	3.52
315	293.1	2.9
316	378.5	2.84
317	333.2	2.91
318	522.1	1,8
310	022,1	1.0

		Nº	LC-MS	LC-RT
		Comp.	M+1	min
5		319	373.3	3,59
		321	453.5	3.12
		322	349.3	3.7
40		323	394.0	2.93
10		324	320.1	3.81
		325	321.3	3.22
		326	418.0	2.5
15		328	307.1	2.76
		330	299.3	3.02
		331	308.3	2.25
		332	288.0	2.5
20		333	379.1	2.61
		335	322.3	2.41
		336	321.5	3.52
25		337	407.5	3.37
	ě	340	399.1	2.6
		341	450.4	3.56
		344	384.1	3.07
30	-	346	333.1	3.38
	.]	348	384.1	3.12
	[349	405.3	2.85
35	Ī	353	436.3	3,53
	Ī	354	390.3	2.36
	[355	370.9	3.37
	ſ	356	335.0	1.81
40		359	482.1	1.74
		360	331.3	3.07

N°	LC-MS	LC-RT
Comp.	M+1	min
361	400.1	2.91
362	355.5	3.46
363	388.1	2.92
365	307.1	2.6
366	408.1	3.09
367	408.0	3.14
368	338.2	2,33
369	358.1	3.29
370	299.1	3.03
371	365:0	3.27
372	362.1	2.66
378	310,3	2.07
379	389.0	2.53
380	309.3	3.02
382	393.1	2.84
384	376.1	2.87
385	393.9	3.32
387	347.1	3.22
388	424.1	3.3
389	355.3	3.65
390	350.3	2.44
391	396.1	3,43
392	300,3	2.86
393	399.4	2.12
394	293.1	3,17
395	433.5	4.21
396	464.4	2.97
397	341.3	3.45
398	434.3	3.1
399	335.0	1.75
400	351.3	2.11
401	368.1	3.09
402	342.1	2.96

N° Comp	LC-MS	LC-RT
Comp.	M+1	min
403	423.1	4.45
405	299.3	3.16
407	371.3	3.8
408	295.3	2.9
409	335.1	1.82
410	432.1	3.41
411	299.1	3.17
413	357.1	3.37
415	351.5	3.44
416	422.4	3.23
417	396.0	2.67
418	308.3	2.23
419	322.3	2,48
420	379.1	3.2
421.	419.2	3.82
424	374.0	3.06
425	306.1	3.53
426	371.3	2.95
428	337.2	3.32
429	348.3	2.98
430	321.3	3.22
431	280,3	2.09
432	382.1	3.22
433	393.2	3.71
434	293.1	3.12
435	376.3	3.22
436	400.1	2.88
438	427.5	3.87
439	295.3	2.8
441	425.0	2.67
442	412.3	3.35
444	379.2	3.42

	N° Comp.	LC-MS M+1	LC-RT mln
5 .	445	305.5	3.08
	447	290.1	2.88
	448	321.3	3.5
10	449	279.1	3.22
	450	308.1	1.97
	451	318.1	3.28
	452	290.1	3.32
15	453	314.1	2.75
	454	355.1	3.58
	455	398.1	3.6
20	456	365.1	3.65
	457	350.3	2.26
	458	381.2	3,19

N° Comp.	LC-MS M+1	LC-RT
459	279.3	2.9
460	436.2	3.38
461	341.3	3.23
462	349.1	1.9
463	292.1	3.35
464	409.4	4.03
465	450.5	3.65
466	349.3	3.5
468	279.1	2.98
469	409.1	3.69
470	373.3	3.64
471	379.0	2.73
472	379.0	2.67

N°	LC-MS	LC-RT
Comp.	M+1	min
473	363.3	3.64
475	334.3	3.23
476	362.1	3.42
477	283.9	2.8
480	323.5	3.22
483	409.5	4.35
484	349.1	2.16
485	363.1	2.15

A continuación se muestran los datos de RMN para compuestos seleccionados en la Tabla 2-A: En la Tabla 2-A, el compuesto nº 433 es un compuesto según la invención. Todos los otros compuestos son compuestos comparativos.

Nº Comp. Datos RMN		Datos RMN		
35	2	1H RMN (300 MHz, CDCl3) δ 12.53 (s, 1H), 11.44 (br d, J = 6.0 Hz, 1H), 9.04 (d, J = 6.7 Hz, 1H), 8.43 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.3 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.33-7.21 (m, 3H), 7.10 (d, J = 8.2 Hz, 1H), 3.79 (s, 3H), 1.36 (s, 9H)		
40	5	H RMN (400 MHz, DMSO-d6) δ 12.94 (bs, 1H), 12.41 (s, 1H), 8.88 (s, 1H), 8.34 (dd, <i>J</i> = 8, 1 Hz, 1H), 7.82 (ddd, <i>J</i> = 8, 8, 1 Hz, 1H), 7.75 (d, <i>J</i> = 8 Hz, 1H), 7.64 (dd, <i>J</i> = 7, 2 HZ, 2H), 7.54 (ddd, <i>J</i> = 8, 8, 1 Hz, 1H), 7.35 (dd, <i>J</i> = 7, 2 Hz, 2H), 4.66 (t, <i>J</i> = 5 Hz, 1H), 3.41 (d, <i>J</i> = 5 Hz, 2H), 1.23 (s, 6H).		
	8	1H RMN (CD3OD, 300 MHz) δ 8.86 (s, 1H), 8.42 (d, J = 8.5 Hz, 1H), 7.94 (s, 1H), 7.81 (t, J = 8.3 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.54 -7.47 (m, 2H), 7.38 (d, J = 8.5 Hz, 1H), 2.71 (q, J = 7.7 Hz, 2H), 1.30 (t, J = 7.4 Hz, 3H).		
	13	H RMN (400 MHz, DMSO-d6) δ 13.05 (bs, 1H), 12.68 (s, 1H), 8.89 (s, 1H), 8.35 (t, J = 2.6 Hz, 1 H), 8.32 (d, J = 1.1 Hz, 1H), 7.85-7.76 (m, 3H), 7.58-7.54 (m, 2H), 1.47 (s, 9H)		
45	14	H RMN (400 MHz, DMSO-d6) δ 1.32 (s, 9H), 3.64 (s, 3H), 7.36 (d, J = 8.4 Hz, 1H), 7.55 (m, 3H), 7.76 (d, J = 8.0 Hz, 1H), 7.83 (m, 1H), 8.33 (d, J = 7.0 Hz, 1H), 8.69 (s, 1H), 8.87 (d, J = 6.7 Hz, 1H), 12.45 (s, 1H), 12.97 (s, 1H)		
50	29	H RMN (400 MHz, CDCl3) δ 9.0 9 (s, 1H), 8.62 (dd, J = 8.1 and 1.5 Hz, 1H), 7.83-7.79 (m, 3H), 7.57 (d, J = 7.2 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.14 (t, J = 7.4 Hz, 2H), 5.05 (m, 1H), 1.69 (d, J = 6.6 Hz, 6H)		
	43	H RMN (400 MHz, DMSO-d6) δ 12.77 (s, 1H), 11.94 (s, 1H), 9.56 (s, 1H), 8.81 (s, 1H), 8.11 (dd, J = 8.2, 1.1 Hz, 1H), 7.89 (s, 1H), 7.79-7.75 (m, 1H), 7.70 (d, J = 7.7 Hz, 1H), 7.49-7.45 (m, 1H), 7.31 (t, J = 8.1 Hz, 1H), 7.00 (s,1H),6.93-6.87 (m,3H),4.07 (q, J = 7.0 Hz, 2H), 1.38 (s, 9H), 1.28 (t, J = 7.0 Hz, 3H)		
55	47	H RMN (400 MHz, DMSO-d6) δ 1.24 (d, J = 6.9 Hz, 6H), 3.00 (m, 1H), 7.55 (m, 3H), 7.76 (d, J = 7.7 Hz, 1H), 7.83 (m, 1H), 8.26 (d, J = 8.2 Hz, 1H), 8.33 (d, J = 9.2 Hz, 1H), 8.89 (s, 1H), 12.65 (s, 1H), 12.95 (s, 1H)		
60	58	H RMN (400 MHz, DMSO-d6) δ 12.95 (d, J = 0.6 Hz, 1H), 12.39 (s, 1H), 8.86 (d, J = 6.8 Hz, 1H), 8.33 (d, J = 7.3 Hz, 1H), 7.82 (t, J = 8.3 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 7.29 (d, J = 2.5 Hz, 1H), 7.07 (dd, J = 8.7, 1.3 Hz, 1H), 6.91 (dd, J = 8.8, 2.6 Hz, 1H), 5.44 (br s, 2H)		
	69	H RMN (400 MHz, DMSO-d6) $\bar{0}$ 13.06 (d, J = 6.5 Hz, 1H), 12.51 (s, 1H), 8.88 (d, J = 6.6 Hz, 1H), 8.33 (dd, J = 8.1, 1.0 Hz, 1H), 7.85-7.74 (m, 3H), 7.55 (t, J = 8.1 Hz, 1H), 7.38 (dd, J = 8.4, 1.9 Hz, 1H), 7.32 (d, J = 8.5 Hz, 1H), 3.03 (septet, J = 6.8 Hz, 1H), 1.20 (d, J = 6.7 Hz, 6H)		

N° Comp. Datos Ri		Datos RMN
5	76	1H-RMN (CDCl3, 300 MHz) δ 8.84 (d, J = 6.6 Hz, 1H), 8.31 (d, J = 6.2 Hz, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.44-7.13 (m, 8H), 6.78 (d, J = 7.5 Hz, 1H).
10	88	H RMN (400 MHz, DMSO-d6) $\bar{0}$ 12.96 (d, J = 6.6 Hz, 1H), 12.42 (s, 1H), 8.89 (d, J = 6.7 Hz, 1H), 8.33 (dd, J = 8.1, 1.2 Hz, 1H), 7.82 (t, J = 8.3 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 8.7 Hz, 2H), 7.54 (t, J = 8.1 Hz, 1H), 7.34 (d, J = 8.7 Hz, 2H), 6.67 (t, J = 6.3 Hz, 1H), 3.12 (d, J = 6.3 Hz, 2H), 1.35 (s, 9H), 1.22 (s, 6H)
15	90	1H RMN (400 MHz, DMSO-d6) δ 11.98 (s, 1H), 8.89 (s, 1H), 8.34 (dd, J = 8.2, 1.1 Hz, 1H), 7.84-7.75 (m, 2H), 7.59 (dd, J = 7.8, 1.5 Hz, 1H), 7.55-7.51 (m, 1H), 7.42 (dd, J = 7.9, 1.5 Hz, 1H), 7.26-7.21 (m, 1H), 7.19-7.14 (m, 1H), 1.43 (s, 9H)
	103	H RMN (400 MHz, DMSO-d6) δ 1.37 (s, 9H), 1.38 (s, 9H), 7.08 (s, 1H), 7.17 (s, 1H), 7.74 (m, 1H), 7.86 (m, 1H), 7.98 (dd, J = 9.2, 2.9 Hz, 1H), 8.90 (d, J = 6.7 Hz, 1H), 9.21 (s, 1H), 11.71 (s, 1H), 13.02 (d, J = 6.7 Hz, 1H)
20	114	1H RMN (300 MHz, DMSO-d6): ō 12.65 (d, J = 6.9 Hz, 1H), 11.60 (s, 1H), 9.33 (s, 1H), 8.71 (d, J = 6.6 Hz, 1H), 8.36 (d, J = 1.8 Hz, 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.66 (t, J = 7.2 Hz, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.12 (m, 2H), 6.97 (m, 3H), 3.97 (m, 2H), 1.45 (s, 9H), 1.06 (t, J = 6.6 Hz, 3H).
25	126	H RMN (400 MHz, DMSO-d6) δ 12.94 (s, 1H), 12.33 (s, 1H), 9.49 (s, 1H), 8.88 (s, 1H), 8.35 (dd, J = 8.7, 0.5 Hz, 1H 7.86-7.82 (m, 1H), 7.77 (d, J = 7.8 Hz,, 7.58-7.54 (m, 1H), 7.40 (d, J = 2.2 Hz, 1H), 7.11 (d, J = 8.5 Hz, 1H), 6.98 (dd, J = 8.4, 2.2 Hz, 1H), 3.67 (s, 2H), 3.51-3.47 (m, 2H), 3.44-3.41 (m, 2H), 3.36 (s, 3H), 1.33 (s, 6H)
30	127	H RMN (400 MHz, DMSO-d6) δ 1.23 (t, J = 7.0 Hz, 3H), 1.32 (s, 9H), 4.10 (q, J = 7.0 Hz, 2H), 7.36 (d, J = 8.5 Hz, 1H), 7.54 (m, 3H), 7.76 (d, J = 7.9 Hz, 1H), 7.82 (m, 1H) 8.33 (d, J = 9.2 Hz, 1H), 8.64 (s, 1H), 8.87 (s, 1H), 12.45 (s, 1H), 12.99 (s, 1H)
35	129	1H-RMN (CD30D, 300 MHz) δ 8.83 (s, 1H), 8.41 (d, J = 8.1 Hz, 1H), 7.80 (m, 2H), 7.65 (d, J = 8.1 Hz, 1H), 7.55 (m, 2H), 7.22 (d, J = 8.1 Hz, 1H), 3.76 (s, 3H, OMe), 2.62 (q, J = 7.5 Hz, 2H), 1.21 (t, J = 7.5 Hz, 3H).
40	131	1H RMN (300 MHz, DMSO-d6) δ 12.37 (s, 1H), 8.81 (s, 1H), 8.30 (d, J = 8.1 Hz, 1H), 7.77 (m, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.09 (s, 1H), 6.74 (s, 1H), 6.32 (s, 1H), 5.47 (s, 2H).
	135	1H-RMN (CDCl3, 300 MHz) δ 8.86 (d, J = 6.6 Hz, 1H), 8.32 (d, J = 6.2 Hz, 1H), 8.07 (d, J = 7.9 Hz, 1H), 7.47 -7.24 (m, 6H), 6.95 -6.83 (m, 3H), 5.95 (s, 2H).
45	136	H RMN (400 MHz, DMSO-d6) δ 1.29 (s, 9H), 1.41 (s, 9H), 7.09 (d, J = 2.4 Hz, 1H), 7.47 (d, J = 2.3 Hz, 1H), 7.57 (t, J = 8.1 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.85 (t, J = 8.4 Hz, 1H), 8.36 (d, J = 9.5 Hz, 1H), 8.93 (d, J = 6.8 Hz, 1H), 9.26 (s, 1H), 12.66 (s, 1H), 13.04 (d, J = 6.6 Hz, 1H)
50	141	H RMN (400 MHz, DMSO-d6) δ 12.96 (d, J = 6.6 Hz, 1H), 12.42 (s, 1H), 8.87 (d, J = 6.8 Hz, 1H), 8.33 (dd, J = 8.1, 1.2 Hz, 1H), 7.85-7.75 (m, 3H), 7.55 (t, J = 8.1 Hz, 1H), 7.46 (dd, J = 8.2, 2.2 Hz, 1H), 7.16 (d, J = 8.5 Hz, 1 H), 4.14 (q, J = 7.1 Hz, 2H), 2.18 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H)
55	143	H RMN (400 MHz, DMSO-d6) δ 12.96 (d, J = 6.8 Hz, 1H), 12.56 (s, 1H), 9.44 (s, 1H), 8.87 (d, J = 6.8 Hz, 1H), 8.34 (dd, J = 8.2, 1.3 Hz, 1H), 8.08 (d, J = 7.4 Hz, 1H), 7.83 (t, J = 8.3 Hz, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.55 (t, J = 8.1 Hz, 1H), 7.00 (d, J = 13.3 Hz, 1H), 1.34 (s, 9H)
55	150	1H-RMN (DMSO d6, 300 MHz) δ 8.86 (d, J = 6.9 Hz, 1H), 8.63 (s, 1H), 8.30 (d, J = 8.1 Hz, 1H), 7.86 (d, J = 8.7 Hz, 2H), 7.82-7.71 (m, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.52 (td, J = 1.2Hz, 1H).
60	157	1H-RMN (CD3OD, 300 MHz) δ 8.91 (s, 1H), 8.57 (s, 1H), 8.45 (d, J = 8.3 Hz, 1H), 7.83 (t, J = 7.2 Hz, 1H), 7.69 (d, J = 9.0 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.16 (d, J = 6.0 Hz, 1H), 3.08 (s, 3H, NMe), 2.94 (q, J = 7.4 Hz, 2H), 1.36 (t, J = 7.4 Hz, 3H).
65	161	H RMN (400 MHz, DMSO-d6) δ 12.96 (s, 1H), 12.41 (s, 1H), 8.88 (s, 1H), , 8.33 (dd, J = 8.2, 1.2 Hz, 1H), 7.84-7.80 (m, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.55 (t, J = 8.1 Hz, 1H), 7.44 (s, 1H), 7.19 (s, 2H), 4.13 (t, J = 4.6 Hz, 2H), 3.79 (t, J = 4.6 Hz, 2H), 3.54 (q, J = 7.0 Hz, 2H), 1.36 (s, 9H), 1.15 (t, J = 7.0 Hz, 3H)

N° Comp. Datos RMN		Datos RMN
5	163	1H-RMN (300 MHz, DMSO-d6) δ 12.87 (d, J = 6.3 Hz, 1H), 11.83 (s, 1H), 8.76 (d, J = 6.3 Hz, 1H), 8.40 (s, 1H), 8.26 (br s, 2H), 8.08 (dd, J = 8.4 Hz, J = 1.5 Hz, 1H), 7.75(m, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.47-7.37 (m, 2H), 7.24 (d, J = 0.9 Hz, 1H), 7.15 (dd, J = 7.5 Hz, J = 1.8 Hz, 1H), 7.10 (d, J = 8.1 Hz, 1H), 7.02 (dt, J = 7.5 Hz, J = 0.9 Hz, 1H), 4.07 (m, 4H), 1.094 (t, J = 6.9 Hz, 3H).
10	167	H RMN (400 MHz, DMSO-d6) δ 2.03 (s, 3H), 4.91 (s, 2H), 6.95 (m, 3H), 7.53 (m, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.81 (m, 1H), 8.33 (d, J = 8.0 Hz, 1H), 8.84 (s, 1H), 12.20 (s, 1H), 12.90 (s, 1H)
	178	1H RMN (400 MHz, DMSO-d6) δ 12.86 (s, 1H), 8.89 (d, J = 6.8 Hz, 1H), 8.65 (dd, J = 8.1, 1.6 Hz, 1H), 8.19 (dd, J = 8.2, 1.3 Hz, 1H), 7.80-7.71 (m, 2H), 7.48-7.44 (m, 2H), 7.24-7.20 (m, 1H), 7.16-7.09 (m, 2H), 7.04-7.00 (m, 1H), 6.80 (dd, J = 8.0, 1.3 Hz, 1H), 6.69 (dd, J. = 8.1, 1.4 Hz, 1H), 1.46 (s, 9H)
15	215	H RMN (400 MHz, DMSO-d6) ō 12.97 (s, 1H), 12.50 (s, 1H), 8.89 (s, 1H), 8.34 (dd, J = 8.1, 1.1 Hz, 1H), 7.83 (t, J = 8.3 Hz, 1H), 7.75 (m, 3H), 7.65 (t, J = 8.1 Hz, 1H), 7.37 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 6.8 Hz, 1H)
20	220	H RMN (400 MHz, DMSO-d6) δ 12.99 (d, J = 6.6 Hz, 1H), 12.07 (s, 1H), 8.93 (d, J = 6.8 Hz, 1H), 8.35 (d, J = 7.1 Hz, 1H), 8.27 (s, 1H), 8.12 (s, 1H), 7.85-7.77 (m, 2H), 7.54 (td, J = 7.5, 1.2 Hz, 1H), 6.81 (s, 1H), 1.37 (d, J = 3.9 Hz, 9H), 1.32 (d, J = 17.1 Hz, 9H)
25	225	1H RMN (CD3OD, 300 MHz) δ 8.79 (s, 1H), 8.37 (d, J = 7.9 Hz, 1H), 7.75 (m, 2H), 7.61 (d, J = 8.3 Hz, 1H), 7.5 (m, 2H), 7.29 (d, J = 8.3 Hz, 1H), 4.21 (q, J = 7.2, 2H), 3.17 (m, 1H), 1.32 (t, J = 7.2 Hz, 3H), 1.24 (d, J = 6.9 Hz, 6H).
30	232	1H-RMN (CD3OD, 300 MHz) δ 8.87 (s, 1H), 8.45 (d, J = 8.25, 1H), 8.27 (m, 1H), 7.83 (t, J= 6.88, 1H), 7.67 (d, J= 8.25, 1H), 7.54 (t, J = 7.15, 1H), 7.39 (d, J= 6.05, 1H), 7.18 (d, J= 8.5, 1H), 2.77 (t, J= 6.87, 2H), 2.03 (s, 3H), 1.7 (q, 2H), 1.04 (t, J= 7.42, 3H)
30	235	H RMN (400 MHz, DMSO-d6) δ 13,09 (d, J = 6.5 Hz, 1H), 12.75 (s, 1H), 9.04 (s, 1H), 8.92 (d, J = 6.8 Hz, 1H), 8.42 (d, J = 7.1 Hz, 1H), 8.34 (d, J = 6.9 Hz, 1H), 7.85 (t, J = 8.4 Hz, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.63-7.56 (m, 2H), 3.15 (m, 1H), 1.29 (d, J = 6.9 Hz, 6H)
35	242	H RMN (400 MHz, DMSO-d6) ō 12.95 (d, J = 6.6 Hz, 1H), 12.65 (s, 1H), 8.87 (d, J = 6.8 Hz, 1H), 8.34 (dd, J = 8.1, 1.1 Hz, 1H), 8.17 (s, 1H), 7.83 (t, J = 8.3 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 7.37 (s, 1H), 5.60 (s, 2H)
40	243	1H-RMN (CD30D, 300 MHz) δ 8.87 (s, 1H), 8.45 (d, J = 8.25, 1H), 8.27 (m, 1H), 7.83 (t, J= 6.88, 1H), 7.67 (d, J= 8.25, 1H), 7.54 (t, J= 7.15, 1H), 7.39 (d, J = 6.05, 1H), 7.18 (d, J= 8.5, 1H), 2.77 (t, J= 6.87, 2H), 2.03 (s, 3H), 1.7 (q, 2H), 1.04 (t, J= 7.42, 3H) RMN muestra reglo isomero
45	248	H RMN (400 MHz, DMSO-d6) δ 12.95 (d, J = 6.6 Hz, 1H), 12.42 (s, 1H), 9.30 (s, 1H), 8.86 (d, J = 6.8 Hz, 1H), 8.33 (dd, J = 8.1, 1.3 Hz, 1H), 7.85-7.81 (m, 2H), 7.76 (d, J = 7.8 Hz, 1H), 7.55 (t, J = 8.1 Hz, 1H), 7.49 (dd, J = 8.2, 2.2 Hz, 1H), 7.18 (d, J = 8.3 Hz, 1H), 2.18 (s, 3H), 2.08 (s, 3H)
50	260	H RMN (400 MHz, DMSO-d6) δ 13.23 (d, J = 6.6 Hz, 1H), 12.20 (s, 1H), 10.22 (br s, 2H), 8.88 (d, J = 6.8 Hz, 1H), 8.34 (d, J = 7.8 Hz, 1H), 7.86-7.80 (m, 3H), 7.56-7.52 (m, 2H), 7.15 (dd, J = 8.5, 2.4 Hz, 1H), 1.46 (s, 9H)
30	261	1H-RMN (d6-DMSO, 300 MHz) δ 11.99 (s, 1H, NH), 8.76 (s, J = 6.6 Hz, 1H), 8.26 (d, J = 6.2 Hz, 1H), 8.09 (d, J = 7.9 Hz, 1H), 7.72 -7.63 (m, 2H), 7.44 -7.09 (m, 7H), 2.46 (s, 3H), 2.25 (s, 3H).
55	266	H RMN (400 MHz, DMSO-d6) δ 12.94 (d, J = 6.6 Hz, 1H), 12.57 (s, 1H), 10.37 (s, 1H), 8.88 (d, J = 6.8 Hz, 1H), 8.34-8.32 (m, 1H), 7.99 (s, 1H), 7.85-7.81 (m, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.56-7.52 (m, 1H), 7.38 (s, 1H), 1.37 (s, 9H)
60	268	H RMN (400 MHz, DMSO-d6) δ 13.02 (s, 1H), 12.62 (s, 1H), 8.91 (s, 1H), 8.34 (dd, J = 8.1, 1.1 Hz, 1H), 8.22 (d, J = 2.4 Hz, 1H), 8.14 (dd, J = 8.8, 2.4 Hz, 1H), 7,84 (t, J = 8.3 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.65-7.54 (m, 4H), 1.52 (s, 9H)
0.5	271	H RMN (400 MHz, DMSO-d6) δ 1.38 (s, 9H), 4.01 (s, 2H), 7.35 (s, 2H), 7.55 (m, 1H), 7.65 (s, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.83 (m, 1H), 8.33 (d, J = 7.6 Hz, 1H), 8.86 (d, J = 6.8 Hz, 1H), 12.49 (s, 1H), 13.13 (s, 1H)
65		·

Nº Comp. Datos RMN		Datos RMN
5	272	1H-RMN (d6-Acetona, 300 MHz) δ 8.92 (d, J= 6.6 Hz, 1H), 8.39 (d, J= 7.8 Hz, 1H), 7.94 (s, 1H), 7.79 (s, 1H), 7.77 (s, 2H), 7.53 (m, 1H), 7.36 (s, 1H), 3.94-3.88 (m, 5H), 3.64-3.59 (m, 3H), 3.30 (m, 4H).
	275	H RMN (400 MHz, DMSO-d6) δ 12.23 (s, 1H), 9.47 (s, 1H), 9.20 (s, 1H), 8.43 (d, J = 7.9 Hz, 1H), 7.79 (t, J = 2.0 Hz, 2H), 7.56 (m, 1H), 7.38-7.26 (m, 6H), 7.11 (d, J = 8.4 Hz, 1H), 6.99 (dd, J = 8.4, 2.1 Hz, 1H), 5.85 (s, 2H), 1.35 (s, 9H)
10	282	1H RMN (CD3OD, 300 MHz) δ 8.90 (s, 1H), 8.51 (s, 1H), 8.44 (d, J = 7.9 Hz, 1H), 7.82 (t, J = 8.3 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.56 (t, J = 7.7 Hz, 2H), 7.42 (d, J = 7.9 Hz, 1H), 7.07 (d, J = 5.8 Hz, 1H), 2.93 (q, J = 7.4 Hz, 2H), 1.36 (t, J = 7.5 Hz, 3H).
15	283	1W-RMN (CDCl3, 300 MHz) δ 8.82 (d, J = 6.6 Hz, 1H), 8.29 (d, J = 6.2 Hz, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.43 7.24 (m, 6H), 7.02 (m, 2H), 6.87 -6.81 (dd, 2H), 3.76 (s, 3H).
20	287	H RMN (400 MHz, DMSO-d6) δ 13.51 (s, 1H), 13.28 (d, J = 6.6 Hz, 1H), 11.72 (d, J = 2.2 Hz, 1H), 9.42 (s, 1H), 8.87 (d, J = 6.9 Hz, 1H), 8.04 (d, J = 7.4 Hz, 1H), 7.67 (t, J = 8.2 Hz, 1H), 7.17 (dd, J = 8.3, 0.8 Hz, 1H), 7.01 (d, J = 13.7 Hz, 1H), 6.81 (dd, J = 8.1, 0.8 Hz, 1H), 2.10 (m, 2H), 1.63-1.34 (m, 8H), 1.26 (s, 3H)
25	288	H RMN (400 MHz, DMSO-d6) δ 13.16 (s, 1H), 12.85 (s, 1H), 8.98 (s, 1H), 8.43 (dd, J = 8.1, 1.1 Hz, 1H), 8.34 (dd, J = 10.3, 3.1 Hz, 1H), 7.93 (t, J = 8.4 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.66 (t, J = 8.1 Hz, 1H), 7.03 (dd, J = 10.7, 3.2 Hz, 1H), 4.06 (s, 3H), 1.42 (s, 9H)
	295	H RMN (400 MHz, DMSO-d6) δ 1.98 (m, 4H), 3.15 (m, 4H), 7.04 (m, 2H), 7.17 (d, J = 7.8 Hz, 1H), 7.52 (m, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.81 (m, 1H), 8.19 (dd, J = 7.9, 1.4 Hz, 1H), 8.33 (d, J = 8.1 Hz, 1H), 8.88 (d, J = 6.7 Hz, 1H), 12.19 (s, 1H), 12.87 (s, 1H)
30	304	1H RMN (300 MHz, DMSO-d6) δ 11.70 (s, 1H), 8.74 (s, 1H), 8.15 (s, 1H), 8.07 (m, 1H), 7.72 (m, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.45-7.31 (m, 3H), 7.15-6.95 (m, 5H), 4.17 (d, J = 6.0 Hz, 2H), 4.02 (q, J = 6.9 Hz, 2H), 1.40 (s, 9H), 1.09 (t, J = 6.9 Hz, 3H).
35	307	1H-RMN (CDCl3, 300 MHz) δ 8.81 (d, J = 6.6 Hz, 1H), 8.30 (d, J = 6.2 Hz, 1H), 8.02 (d, J = 7.9 Hz, 1H), 7.44-7.26 (m, 9H), 6.79 (d, J = 7.5 Hz, 1H).
40	318	1H-RMN (d6-Acetona, 300 MHz) $\bar{\delta}$ 8.92 (bs, 1H), 8.40 (d, J= 8.1 Hz, 1H), 8.05 (bs, 1H), 7.94 (bs, 1H), 7.78 (bs, 2H), 7.52 (m, 1H), 7.36 (bs, 1H), 3.97 (t, J = 7.2 Hz, 2H), 3.66 (t, J= 8 Hz, 2H), 3.31-3.24 (m, 6H), 1.36-1.31 (m, 4H).
40	321	H RMN (400 MHz, DMSO-d6) $\bar{\delta}$ 2.93 (m, 4H), 3.72 (m, 4H), 7.10 (m, 2H), 7.27 (d, J = 7.8 Hz, 1H), 7.51 (m, 6H), 7.74 (d, J = 8.2 Hz, 1H), 7.81 (m, 1H), 8.40 (d, J = 8.1 Hz, 1H), 8.58 (d, J = 8.0 Hz, 1H), 8.88 (d, J = 6.7 Hz, 1H), 12.69 (s, 1H), 12.86 (s, 1H)
45	323	H RMN (400 MHz, DMSO-d6) δ 12.94 (br s, 1H), 12.44 (s, 1H), 8.89 (s, 1H), 8.33 (dd, J = 8.2,1.1 Hz, 1H), 7.82 (t, J = 8.3 Hz, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.67 (d, J = 8.8 Hz, 2H), 7.54 (t, J = 8.1 Hz, 1H), 7.35 (d, J = 8.7 Hz, 2H), 7.02 (t, J = 6.3 Hz, 1H), 3.50 (s, 3H), 3.17 (d, J = 6.2 Hz, 2H), 1.23 (s, 6H)
50	337	H RMN (400 MHz, DMSO-d6) δ 12.19 (s, 1H), 9.35 (s, 1H), 8.22 (dd, J = 8.1, 1.1 Hz, 1H), 8.08 (s, 1H), 7.74-7.70 (m, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.44-7.40 (m, 1H), 7.23 (s, 1H), 3.31 (s, 3H), 1.37 (s, 9H), 1.36 (s, 9H)
55	351	1H RMN (400 MHz, DMSO-d6) δ 12.92 (s, 1H), 12.34 (s, 1H), 10.96 (s, 1H), 8.91 (s, 1H), 8.48 (s, 1H), 8.37 (d, J = 8.1 Hz, 1H), 7.84-7.76 (m, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.39 (s, 1H), 7.26 (t, J = 2.6 Hz, 1H), 6.34 (s, 1H), 2.89-2.84 (m, 2H), 1.29 (t, J = 7.4 Hz, 3H)
	353	1H RMN (400 MHz, DMSO-d6) δ 11.90 (s, 1H), 9.30 (s, 1H), 8.88 (s, 1H), 8.34 (dd, J = 8.2, 1.1 Hz, 1H), 7.84-7.71 (m, 3H), 7.55-7.50 (m, 1H), 7.28-7.26 (m, 1H), 7.20-7.17 (m, 1H), 1.47 (s, 9H), 1.38 (s, 9H)
60	356	1H-RMN (CD30D, 300 MHz) δ 8.89 (s, 1H), 8.59 (s, 1H), 8.45 (d, J = 8.3 Hz, 1H), 7.83 (t, J = 7.2 Hz, 1H), 7.69 (d, J = 9.0 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.17 (d, J = 6.0 Hz, 1H), 3.09 (s, 3H, NMe), 2.91 (t, J = 7.4 Hz, 2H), 1.76 (m, 2H), 1.09 (t, J = 7.4 Hz, 3H),
65	363	1H-RMN (CDCl3, 300 MHz) δ 8.86 (d, J = 6.6 Hz, 1H), 8.24 (d, J = 6.2 Hz, 1H), 8.14 (d, J = 7.9 Hz, 1H), 7.43 -7.16 (m, 5H), 7.02 -6.92 (m, 2H), 6.83 (d, J = 7.9 Hz, 2H), 3.87 (s, 3H).

	Nº Comp.	Datos RMN	
5	368	H RMN (400 MHz, DMSO-d6) ō 12.97 (d, J = 6.6 Hz, 1H), 12.36 (s, 1H), 8.86 (d, J = 6.7 Hz, 1H), 8.33 (dd, J = 8.1, 1.0 Hz, 1H), 7.83 (t, J = 8.3 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.62 (s, 1H), 7.55 (t, J = 8.1 Hz, 1H), 7.25 (dd, J = 8.7, 2.2 Hz, 1H), 7.01 (d, J = 8.8 Hz, 1H), 3.98 (t, J = 6.5 Hz, 2H), 1.78 (sextet, J = 6.9 Hz, 2H), 1.02 (t, J = 7.4 Hz, 3H)	
10	378	H RMN (400 MHz, DMSO-d6) δ 12.98 (d, J = 6.6 Hz, 1H), 12.39 (s, 1H), 8.86 (d, J = 6.7 Hz, 1H), 8.33 (dd, J = 8.1, 1.2 Hz, 1H), 7.83 (t, J = 8.3 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.69 (s, 1H), 7.55 (t, J = 8.1 Hz, 1H), 7.31 (dd; J = 8.8, 2.4 Hz, 1H), 7.06 (d, J = 8.8 Hz, 1H), 3.85 (s, 3H)	
15	379	1H RMN (300 MHz, DMSO-d6) δ 12.79 (s, 1H), 10.30 (s, 1H), 8.85 (s, 1H), 8.32 (d, J = 7.8 Hz, 1H), 8.06 (s, 1H), 7.93 (s, 1H), 7.81 (t, J = 7.8 Hz, 1H), 7.74 (d, J = 6.9 Hz, 1H), 7.73 (s, 1 H), 7.53 (t, J = 6.9 Hz, 1H), 2.09 (s, 3H).	
20	382	1H RMN (CD30D, 300 MHz) δ 8.83 (s, 1H), 8.40 (d, J = 7.4 Hz, 1H), 7.81 -7.25 (m, 2H), 7.65 (d, J = 8.3 Hz, 1H), 7.51 (d, J = 8.2, 1H), 7.24 (d, J = 8.3, 1H), 2.58 (t, J = 7.7 Hz, 2H), 2.17 (s, 3H), 1.60 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).	
25	393	1H RMN (300 MHz, MeOH) δ 8.78 (s, 1H), 8.45 (d, J = 2.1 Hz, 1H), 8.16 (d, J = 8.1 Hz, 1H), 7.71 (t, J = 6.9, Hz, 1H), 7.56 (d, J = 8.7 Hz, 1H), 7.39 (m, 3H), 7.18 (m, 2H), 7.06 (m, 2H), 4.02 (m, 2H), 1.13 (t, J = 6.9, Hz, 3H);	
	399	1H-RMN (CD3OD, 300 MHz) δ 8.91 (s, 1H), 8.51 (s, 1H), 8.42 (d, J = 8.3 Hz, 1H), 7.84 (t, J = 7.2 Hz, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.56 (t, J = 7.9 Hz, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.24 (d, J = 6.0 Hz, 1H), 3.48 (m, 1H), 3.09 (s, 3H, NMe), 1.39 (d, J = 6.8 Hz, 6H).	
30	415	H RMN (400 MHz, DMSO-d6) δ 12.26 (s, 1H), 9.46 (s, 1H), 8.99 (s, 1H), 8.43-8.41 (m, 1H), 7.94-7.88 (m, 2H), 7.65-7.61 (m, 1H), 7.38 (d, J = 2.1 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 6.96 (dd, 1H), 4.08 (s, 3H), 1.35 (s, 9H)	
35	420	H RMN (400 MHz, DMSO-d6) $\bar{\delta}$ 12.91 (bs, 1H), 12.51 (s, 1H), 8.89 (s, 1H), 8.33 (dd, J = 8, 1Hz, 2H), 7.82 (ddd, J = 8, 8, 1Hz, 1H), 7.75 (dd, J = 8, 1Hz, 1H), 7.70 (d, J = 9 Hz, 2H), 7.54 (ddd, J = 8, 8, 1Hz, 1H), 4.09 (q, J =7 Hz, 2H), 1.51 (s, 6H), 1.13 (t, J = 7 Hz, 3H).	
40	425	1H-RMN (DMSO d6, 300 MHz) δ 8.84 (s, 1H), 8.29 (d, J = 8.1 Hz, 1H), 7.78-7.70 (m, 2H), 7.61 (d, J = 8.4 Hz, 2H), 7.50 (t, J = 7.8 Hz, 1H), 7.20 (d, J = 8.7 Hz, 2H), 2.85 (h, J = 6.9 Hz, 1H), 1.19 (d, J = 6.9 Hz, 6H).	
45	428	1H RMN (300 MHz, CD30D) δ 12.30 (s, 1H), 8.83 (s, 1H), 8.38 (d, J = 7.4 Hz, 1H), 7.78 (app dt, J = 1.1, 7.1 Hz, 1H), 7.64 (d, J = 83 Hz, 1H), 7.53 (app t, J = 7.5 Hz, 1H), 7.21 (br d, J = 0.9 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 6.98 (dd, J = 2.1, 8.4 Hz, 1H), 1.38 (s, 9H)	
40	429	H RMN (400 MHz, DMSO-d6) δ 13.13 (d, J = 6.8 Hz, 1H), 12.63 (s, 1H), 8.86 (d, J = 6.8 Hz, 1H), 8.33 (d, J = 7.0 Hz, 1H), 7.84 (t, J = 8.3 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 8.1 Hz, 1H), 7.51 (s, 1H), 7.30 (s, 1H), 6.77 (s, 1H)	
50	433	H RMN (400 MHz, DMSO-d6) δ 12.87 (br s, 1H), 11.82 (s, 1H), 9.20 (s, 1H), 8.87 (s, 1H), 8.33 (dd, J = 8.2, 1.1 Hz, 1H), 7.81 (t, J = 8.3 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 7.52 (t, J = 8.1 Hz, 1H), 7.17 (s, 1H), 7.10 (s, 1H), 1.38 (s, 9H)	
55	438	H RMN (400 MHz, DMSO-d6) δ 12.97 (d, J = 6.6 Hz, 1H), 12.08 (s, 1H), 8.90 (d, J = 6.8 Hz, 1H), 8.35-8.34 (m, 1H), 8.03 (s, 1H), 7.85-7.81 (m, 1H), 7.77-7.71 (m, 1H), 7.58-7.44 (m, 2H), 1.46 (s, 9H), 1.42 (s, 9H)	
60	441	1H-RMN (d6-Acetona, 300 MHz) δ 11.90 (br s, 1H), 8.93 (br s, 1H), 8.42 (d, J = 8.1 Hz, 1H), 8.08 (s, 1H), 7.92 (s, 1H), 7.79 (m, 2H), 7.57 (m, 1H), 7.36 (s, 1H), 3.13 (s, 3H).	
	444	H RMN (400 MHz, DMSO-d6) δ 12.56 (s, 1H), 12.17 (br d, <i>J</i> = 6 Hz, 1H), 8.89 (d, <i>J</i> = 6 Hz, 1H), 8.42 (dd, <i>J</i> = 9, 2 Hz, 1H), 7.77 (d, <i>J</i> = 2 Hz, 1H), 7.68 (dd, <i>J</i> = 9, 2 Hz, 1H), 7.60 (ddd, J = 9, 9, 2 Hz, 1H), 7.46-7.40 (m, 3H), 3.47 (s, 3H), 1.35 (s, 9H).	

N° Comp. Datos RMN		Datos RMN
5	448	H RMN (400 MHz, DMSO-d6) δ 12.96 (br s, 1H), 12.42 (s, 1H), 8.88 (s, 1H), 8.33 (dd, J = 8.2, 1.1 Hz, 1H), 7.82 (t, J = 8.3 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 7.66 (d, J = 8.7 Hz, 2H), 7.54 (t, J = 8.1 Hz, 1H), 7.39 (d, J = 8.7 Hz, 2H), 1.29 (s, 9H)
10	453	H RMN (400 MHz, DMSO-d6) δ 12.95 (d, J = 6.5 Hz, 1H), 12.38 (s, 1H), 8.86 (d, J = 6.8 Hz, 1H), 8.33 (d, J = 8.1 Hz, 1H), 7.83 (t, J = 8.3 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.54 (t, J = 8.1 Hz, 1H), 7.28 (d, J = 2.4 Hz, 1H), 7.15 (d, J = 8.6 Hz, 1H), 6.94 (dd, J = 8.6, 2.4 Hz, 1 H)
	458	H RMN (400 MHz, DMSO-d6) δ 12.97 (d, J = 7.1 Hz, 1H), 12.39 (s, 1H), 8.88 (d, J = 6.8 Hz, 1H), 8.33 (d, J = 7.9 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.47 (s, 1H), 7.17 (s, 2H), 4.04 (t, J = 5.0 Hz, 2H), 3.82 (t, J = 5.0 Hz, 2H), 1.36 (s, 9H)
15	461	1H-RMN (d6-DMSO, 300 MHz) δ 11.97 (s, 1H), 8.7 (s, 1H), 8.30 (d, J = 7.7 Hz, 1H), 8.07 (d, J = 7.7 Hz, 1H), 7.726 -7.699 (m, 2H), 7.446 -7.357 (m, 6H), 7.236 -7.178 (m, 2H). 13C-RMN (d6-DMSO, 75 MHz) d 176.3, 163.7, 144.6, 139.6, 138.9, 136.3, 134.0, 133.4, 131.0, 129.8, 129.2, 128.4, 128.1, 126.4, 126.0, 125.6, 124.7, 123.6, 119.6, 111.2.
20	463	1H-RMN (DMSO d6, 300 MHz) δ 8.83 (s, 1H), 8.29 (d, J = 7.8 Hz, 1H), 7.78-7.70 (m, 2H), 7.61 (d, J = 7.8 Hz, 2H), 7.51 (t, 1H), 7.17 (d, J = 8.1 Hz, 2H), 2.57 (q, J = 7.5 Hz, 2H), 1.17 (t, J = 7.5 Hz, 1H), 0.92 (t, J = 7.8 Hz, 3H).
25	464	H RMN (400 MHz, DMSO-d6) ō 1.37 (s, 9H), 1.38 (s, 9H), 6.80 (dd, J = 8.1, 0.9 Hz, 1H), 7.15 (m, 3H), 7.66 (t, J = 8.2 Hz, 1H), 8.87 (d, J = 6.9 Hz, 1H), 9.24 (s, 1H), 11.07 (s, 1H), 13.23 (d, J = 6.5 Hz, 1H), 13.65 (s, 1H)
30	465	H RMN (400 MHz, DMSO-d6) δ 12.94 (d, J = 6.0 Hz, 1H), 12.40 (s, 1H), 8.87 (d, J = 6.8 Hz, 1H), 8.33 (d, J = 8.2 Hz, .1H), 7.84-7.75 (m, 3H), 7.57-7.43 (m, 2H), 7.31 (d, J = 8.6 Hz, 1H), 4.40 (d, J = 5.8 Hz, 2H), 1.44 (s, 9H), 1.38 (s, 9H)
35	471	1H-RMN (CD30D, 300 MHz) δ 8.87 (s, 1H), 8.44 (d, J= 8.25, 1H), 8.18 (m, 1H), 7.79 (t, J= 6.88, 1H), 7.67 (d, J= 8.25, 1H), 7.54 (t, J= 7.15, 1 H), 7.23 (d, J= 6.05, 1H), 7.16 (d, J= 8.5, 1H), 3.73 (s, 3H), 2.75 (t, J= 6.87, 2H), 1.7 (q, 2H), 1.03 (t, J= 7.42, 3H)
	476	H RMN (400 MHz, DMSO-d6) ō 13.00 (d, J = 6.4 Hz, 1H), 12.91 (s, 1H), 10.72 (s, 1H), 8.89 (d, J = 6.8 Hz, 1H), 8.34 (d, J = 8.2 Hz, 1H), 8.16 (s, 1H), 7.85-7.75 (m, 2H), 7.56-7.54 (m, 1H), 7.44 (s, 1H), 1.35 (s, 9H)
40	484	1H RMN (300 MHz, DMSO-d6) δ 12.90 (d, J = 6.3 Hz, 1H), 12.21 (s, 1H), 8.85 (d, J = 6.8 Hz, 1H), 8.31 (d, J = 8.0 Hz, 1H), 7.79 (app dt, J = 12,8.0 Hz, 1H), 7.72 (d, J = 8.3 Hz, 1H), 7.52 (dd, J = 6.9, 8.1 Hz, 1H), 7.05 (d, J = 8.3 Hz, 1H), 6.94 (s with fine str, 1H), 1H), 6.90 (d with fine str, J = 8.4 Hz, 1H), 2.81 (s, 3H), 1.34 (s, 9H)
45	485	1H RMN (300 MHz, CDCl3) δ 13.13 (br s, 1H), 12.78 (s, 1H), 8.91 (br s, 1H), 8.42 (br s, 1H), 8.37 (d, J = 8.1 Hz, 1H), 7.72-7.58 (m, 2H), 7.47-7.31 (m, 3H), 3.34 (s, 6H), 1.46 (s, 9H)

50 B) Ensayos para detectar y medir las propiedades de corrección de ΔF508-CFTR de compuestos

- I) <u>Métodos ópticos de potencial de membrana para ensayar las propiedades de modulación de ΔF508-CFTR de compuestos</u>
- El ensayo de potencial de membrana óptica utilizó sensores de FRET sensibles al voltaje descritos por Gonzalez y Tsien (véase, Gonzalez, J. E. y R. Y. Tsien (1995) "Voltage sensing by fluorescence resonance energy transfer in single cells" Biophys J 69(4): 1272-80, y Gonzalez, J. E. y R. Y. Tsien (1997) "Improved indicators of cell membrane potential that use fluorescence resonance energy transfer" Chem Biol 4(4): 269-77) en combinación con instrumentación para medir cambios de fluorescencia tales como el lector de la sonda de voltaje/iones (VIPR) (véase, Gonzalez, J. E., K. Oades, y col. (1999) "Cell-based assays and instrumentation for screening ion-channel targets" Drug Discov Today 4(9): 431-439).
- Estos ensayos sensibles al voltaje se basan en el cambio en la transferencia de energía por resonancia de fluorescencia (FRET) entre el colorante sensible al voltaje soluble en la membrana, DiSBAC₂(3), y un fosfolípido fluorescente, CC2-DMPE, que está unido a la capa externa de la membrana plasmática y actúa de donante de FRET. Cambios en el potencial de la membrana (V_m) hacen que el DiSBAC₂(3) negativamente cargado se distribuya

a través de la membrana plasmática y, por consiguiente, cambie la cantidad de transferencia de energía de CC2-DMPE. Los cambios en la emisión de fluorescencia se monitorizaron usando $VIPR^{m}$ II, que es un manipulador de líquidos integrado y detector fluorescente diseñado para realizar los cribados basados en células en placas de microtitulación de 96 ó 384 pocillos.

Identificación de compuestos de corrección

Para identificar moléculas pequeñas que corrigen el defecto del tráfico asociado a Δ F508-CFTR, se desarrolló un formato de ensayo de HTS de una sola adición. Las células se incubaron en medio sin suero durante 16 h a 37 °C en presencia o ausencia (control negativo) de compuesto de prueba. Como control positivo, células sembradas en placas de 384 pocillos se incubaron durante 16 h a 27 °C para Δ F508-CFTR "corregida con la temperatura". Las células se aclararon posteriormente 3X con disolución de Krebs-Ringer y se cargaron con los colorantes sensibles al voltaje. Para activar Δ F508-CFTR, se añadieron forskolina 10 μ M y el potenciador de CFTR genisteína (20 μ M), junto con medio libre de Cl⁻ a cada pocillo. La adición de medio libre de Cl⁻ promovió la salida de Cl⁻ en respuesta a la activación de Δ F508-CFTR y la despolarización de la membrana resultante se monitorizó ópticamente usando colorantes sensibles al voltaje basados en FRET.

Identificación de compuestos potenciadores

20 Para identificar potenciadores de ΔF508-CFTR, se desarrolló un formato de ensayo de HTS de adición doble. Durante la primera adición, se añadió un medio libre de Cl⁻ con o sin compuesto de prueba a cada pocillo. Después de 22 s, se añadió una segunda adición de medio libre de Cl⁻ que contenía forskolina 2 - 10 μM para activar ΔF508-CFTR. La concentración de Cl⁻ extracelular tras ambas adiciones fue 28 mM, que promovió la salida de Cl⁻ en respuesta a la activación de ΔF508-CFTR y la despolarización de la membrana resultante se monitorizó ópticamente usando los colorantes sensibles al voltaje basados en FRET.

<u>Disolución</u>

5

10

15

30	Disolución del bano nº 1: (en mM)	NaCl 160, KCl 4,5, CaCl ₂ 2, MgCl ₂ 1, HEPES 10, pH 7,4 con NaOH.
	Disolución del baño libre de cloruro:	Las sales de cloruro en la disolución del baño nº 1 se sustituyen con
		sales de gluconato.

sales de gluconato.

CC2-DMPE: Preparada como una disolución madre 10 mM en DMSO y guardada a

-20 °C

 $_{35}$ DiSBAC $_2$ (3): Preparada como una disolución madre 10 mM en DMSO y guardada a

-20 °C.

Cultivo celular

Se usan fibroblastos de ratón NIH3T3 que expresan establemente ΔF508-CFTR para las mediciones ópticas del potencial de membrana. Las células se mantienen a 37 °C en 5 % de CO₂ y 90 % de humedad en medio Eagle modificado por Dulbecco complementado con glutamina 2 mM, 10 % de suero bovino fetal, 1 X NEAA, β-ME, 1 X pen/estrep y HEPES 25 mM en matraces de cultivo de 175 cm². Para todos los ensayos ópticos, las células se sembraron a ~30.000/pocillo en placas recubiertas con Matrigel de 384 pocillos y se cultivaron durante 2 h a 37 °C antes cultivar a 27 °C durante 24 h para el ensayo de potenciador. Para los ensayos de corrección, las células se cultivan a 27 °C o 37 °C con y sin compuestos durante 16 - 24 horas.

Ensayos electrofisiológicos para ensayar las propiedades de modulación de ΔF508-CFTR de compuestos.

50 1. Ensayo en cámara de Ussing

Se realizaron experimentos en cámara de Ussing sobre células epiteliales polarizadas que expresan Δ F508-CFTR para caracterizar adicionalmente los moduladores de Δ F508-CFTR identificados en los ensayos ópticos. Se montaron células epiteliales FRT $^{\Delta$ F508-CFTR} cultivadas sobre insertos de cultivo celular Costar Snapwell en una cámara de Ussing (Physiologic Instruments, Inc., San Diego, CA), y las monocapas se cortocircuitaron continuamente usando un sistema de pinzas de voltaje (Departamento de Bioingeniería, Universidad de Iowa, IA, y, Physiologic Instruments, Inc., San Diego, CA). Se midió la resistencia transepitelial aplicando un pulso de 2 mV. Bajo estas condiciones, los epitelios de FRT demostraron resistencias de 4 K Ω / cm 2 o más. Las disoluciones se mantuvieron a 27 °C y se burbujearon con aire. El potencial de compensación del electrodo y la resistencia del fluido se corrigieron usando un inserto libre de células. Bajo estas condiciones, la corriente refleja el flujo de Cl $^-$ a través de Δ F508-CFTR expresado en la membrana apical. La I $_{SC}$ se adquirió digitalmente usando una interfaz MP100A-CE y el software AcqKnowledge (v3.2.6; BIOPAC Systems, Santa Barbara, CA).

65

55

Identificación de compuestos de corrección

El protocolo típico utilizó un gradiente de concentración de Cl $^{-}$ de la membrana de basolateral a apical. Para fijar este gradiente, se usó Ringer normal sobre la membrana basolateral, mientras que el NaCl apical se sustituyó con gluconato de sodio equimolar (valorado a pH 7,4 con NaOH) dando un gran gradiente de concentración de Cl $^{-}$ a través del epitelio. Todos los experimentos se realizaron con monocapas intactas. Para activar completamente Δ F508-CFTR, se aplicaron forskolina (10 μ M) y el inhibidor de PDE, IBMX (100 μ M), por la adición del potenciador de CFTR, genisteína (50 μ M).

Como se ha observado en otros tipos de células, la incubación a bajas temperaturas de células FRT que expresan establemente ΔF508-CFTR aumenta la densidad funcional de CFTR en la membrana plasmática. Para determinar la actividad de compuestos de corrección, las células se incubaron con 10 μM del compuesto de prueba durante 24 horas a 37 °C y posteriormente se lavaron 3X antes del registro. La I_{SC} mediada por AMPc y genisteína en células tratadas con compuesto se normalizó a los controles a 27 °C y 37 °C y se expresó como el porcentaje de actividad de actividad. La preincubación de las células con el compuesto de corrección aumentó significativamente la I_{SC} mediada por AMPc y genisteína en comparación con los controles a 37 °C.

Identificación de compuestos potenciadores

20 El protocolo típico utilizó un gradiente de concentración de Cl⁻ de la membrana de basolateral a apical. Para fijar este gradiente, se usó Ringer normal sobre la membrana basolateral y se permeabilizó con nistatina (360 μg/ml), mientras que el NaCl apical se sustituyó con gluconato de sodio equimolar (valorado a pH 7,4 con NaOH) dando un gran gradiente de concentración de Cl⁻ a través del epitelio. Todos los experimentos se realizaron 30 min después de la permeabilización con nistatina. Se añadieron forskolina (10 μM) y todos los compuestos de prueba a ambos lados de los insertos de cultivo celular. La eficacia de los potenciadores de ΔF508-CFTR putativos se comparó con la del potenciador conocido, genisteína.

Disoluciones

Disolución basolateral: (en mM) NaCl

NaCl (135), $CaCl_2$ (1,2), $MgCl_2$ (1,2), K_2HPO_4 (2,4), KHPO4 (0,6), ácido N-2-hidroxietilpiperazin-N'-2-etanosulfónico (HEPES) (10) y dextrosa (10). La disolución se valoró a pH 7,4 con NaOH.

Disolución apical (en nM):

Misma que la disolución basolateral con NaCl sustituido con gluconato de Na (135).

Cultivo celular

35

40

45

65

Se usaron células epiteliales de rata Fisher (FRT) que expresan Δ F508-CFTR (FRT $^{\Delta$ F508-CFTR}) para experimentos en la cámara de Ussing para los moduladores de Δ F508-CFTR putativos identificados a partir de los ensayos ópticos de los presentes inventores. Las células se cultivaron sobre insertos de cultivo celular Costar Snapwell y se cultivaron durante cinco días a 37 °C y 5 % de CO₂ en medio Ham's F-12 modificado con Coon complementado con 5 % de suero bovino fetal, 100 U/ml de penicilina y 100 µg/ml de estreptomicina. Antes de uso para caracterizar la actividad potenciadora de compuestos, las células se incubaron a 27 °C durante 16 - 48 h para corregir Δ F508-CFTR. Para determinar la actividad de compuestos de corrección, las células se incubaron a 27 °C con y sin los compuestos durante 24 horas.

2. Registros de células completas

Se monitorizaron la corriente de ΔF508-CFTR macroscópica (I_{ΔF508}) en células NIH3T3 corregidas con la temperatura y el compuesto de prueba que expresan establemente ΔF508-CFTR usando el registro de células completas de parches perforados. Brevemente, se realizaron registros de pinzas de voltaje de I_{ΔF508} a temperatura ambiente usando un amplificador de pinzamiento zonal Axopatch 200B (Axon Instruments Inc., Foster City, CA). Todos los registros se adquirieron a una frecuencia de muestreo de 10 kHz y se filtraron a paso bajo a 1 kHz. Las pipetas tuvieron una resistencia de 5 - 6 MΩ cuando se llenaron con la disolución intracelular. Bajo estas condiciones de registro, el potencial de inversión calculado de Cl⁻ (E_{Cl}) a temperatura ambiente fue -28 mV. Todos los registros tuvieron una resistencia al sellado > 20 GΩ y una resistencia en serie < 15 MΩ. Se realizaron generación de pulsos, adquisición de datos y análisis usando un PC equipado con una interfaz A/D Digidata 1320 conjuntamente con Clampex 8 (Axon Instruments Inc.). El baño contuvo < 250 μl de solución salina y se perfundió continuamente a una tasa de 2 ml/min usando un sistema de perfusión accionada por la gravedad.

Identificación de compuestos de corrección

Para determinar la actividad de los compuestos de corrección para aumentar la densidad de Δ F508-CFTR funcional en la membrana plasmática, los presentes inventores usaron las técnicas de registro de parches perforados

anteriormente descritas para medir la densidad de corriente tras 24 h de tratamiento con los compuestos de corrección. Para activar completamente Δ F508-CFTR, se añadieron forskolina 10 μ M y genisteína 20 μ M a las células. Bajo las condiciones de registro de los presentes inventores, la densidad de corriente tras la incubación de 24 h a 27 °C fue superior a la observada tras la incubación de 24 h a 37 °C. Estos resultados están de acuerdo con los efectos conocidos de la incubación a baja temperatura sobre la densidad de Δ F508-CFTR en la membrana plasmática. Para determinar los efectos de los compuestos de corrección sobre la densidad de corriente de CFTR, las células se incubaron con 10 μ M del compuesto de prueba durante 24 horas a 37 °C y la densidad de corriente se comparó con los controles a 27 °C y 37 °C (% de actividad). Antes del registro, las células se lavaron 3X con medio de registro extracelular para eliminar cualquier compuesto de prueba restante. La preincubación con 10 μ M de compuestos de corrección aumentó significativamente la corriente dependiente de AMPc y de genisteína en comparación con los controles a 37 °C.

Identificación de compuestos potenciadores

La capacidad de potenciadores de ΔF508-CFTR para aumentar la corriente de Cl⁻ de ΔF508-CFTR macroscópica (I_{ΔF508}) en células NIH3T3 que expresan establemente ΔF508-CFTR también se investigó usando técnicas de registro de parches perforados. Los potenciadores identificados de los ensayos ópticos provocaron un aumento dependiente de la dosis en IΔ_{F508} con potencia y eficacia similar observada en los ensayos ópticos. En todas las células examinadas, el potencial inverso antes y durante la aplicación del potenciador fue aproximadamente -30 mV, que es la E_{Cl} calculada (-28 mV).

Disoluciones

5

10

25

35

45

50

55

Disolución intracelular (en mM): Aspartato de Cs (90), CsCl (50), MgCl₂ (1), HEPES (10) y 240 µg/ml

de anfotericina B (pH ajustado a 7,35 con CsOH).

Disolución extracelular (en mM): N-metil-D-glucamina (NMDG)-Cl (150), MgCl₂ (2), CaCl₂ (2), HEPES

(10) (pH ajustado a 7,35 con HCl).

30 Cultivo celular

Se usan fibroblastos de ratón NIH3T3 que expresan establemente Δ F508-CFTR para los registros de células completas. Las células se mantienen a 37 °C en 5 % de CO₂ y 90 % de humedad en medio Eagle modificado por Dulbecco complementado con glutamina 2 mM, 10 % de suero bovino fetal, 1 X NEAA, β -ME, 1 X pen/estrep y HEPES 25 mM en matraces de cultivo de 175 cm². Para los registros de células completas, se sembraron 2.500 - 5.000 células sobre cubreobjetos de vidrio recubiertos con poli-L-lisina y se cultivaron durante 24 - 48 h a 27 °C antes de uso para probar la actividad de potenciadores; y se incubaron con o sin el compuesto de corrección a 37 °C para medir la actividad de correctores.

40 3. Registros de un solo canal

Se observaron las actividades de un solo canal de AF508-CFTR corregido por la temperatura expresado establemente en células NIH3T3 y las actividades de compuestos potenciadores usando parche de membrana invertido escindido. Brevemente, se realizaron registros de pinza de voltaje de la actividad de un solo canal a temperatura ambiente con un amplificador de pinzamiento zonal Axopatch 200B (Axon Instruments Inc.). Todos los registros se adquirieron a una frecuencia de muestreo de 10 kHz y se filtraron a paso bajo 400 Hz. Las pipetas de parche se fabricaron de vidrio Corning Kovar Sealing #7052 (World Precision Instruments, Inc., Sarasota, FL) y tuvieron una resistencia de 5 - 8 M Ω cuando se llenaron con la disolución extracelular. Se activó Δ F508-CFTR después de la escisión, añadiendo Mg-ATP 1 mM y 75 nM de la proteína cinasa dependiente de AMPc, subunidad catalítica (PKA; Promega Corp. Madison, WI). Después de estabilizarse la actividad del canal, el parche se perfundió usando un sistema de microperfusión conducido por la gravedad. El flujo de entrada se dispuso adyacente al parche, produciendo el intercambio de disolución completo dentro de 1 - 2 s. Para mantener la actividad de ∆F508-CFTR durante la rápida perfusión, el inhibidor de fosfatasa no específico F⁻ (NaF 10 mM) se añadió a la disolución del baño. Bajo estas condiciones de registro, la actividad del canal permaneció constante durante toda la duración del registro del parche (hasta 60 min). Las corrientes producidas por la carga positiva que se mueve de las disoluciones intra- a extracelulares (aniones que se mueven en la dirección opuesta) se muestran como corrientes positivas. El potencial de la pipeta (V_p) se mantuvo a 80 mV.

La actividad del canal se analizó a partir de parches de membrana que contenían ≤ 2 canales activos. El número máximo de aperturas simultáneas determinó el número de canales activos durante el transcurso de un experimento. Para determinar la amplitud de la corriente de un solo canal, los datos registrados a partir de 120 s de actividad de CFTR-F508 se filtraron "fuera de línea" a 100 Hz y a continuación se usaron para construir histogramas de todos los puntos que se ajustaron con funciones multigaussianas usando el software de análisis Bio-Patch (Bio-Logic Comp. Francia). La corriente microscópica total y la probabilidad de apertura (P₀) se determinaron a partir de 120 s de la actividad del canal. Se determinó P₀ usando el software Bio-Patch o a partir de la relación P₀ = I/i(N) en la que I =

corriente media, i = amplitud de corriente de un único canal y N = número de canales activos en el parche.

Disoluciones

5

10

15

25

30

Disolución intracelular (en mM): NMDG (150), ácido aspártico (150), CaCl₂ (5), MgCl₂ (2) y HEPES (10) (pH

ajustado a 7,35 con base Tris).

Disolución extracelular (en mM): NMDG-CI (150), MgCl₂ (2), EGTA (5), TES (10) y base Tris (14) (pH ajustado a

7,35 con HCI).

Cultivo celular

Se usan fibroblastos de ratón NIH3T3 que expresan establemente $\Delta F508$ -CFTR para las lecturas de pinzamiento zonal de membrana escindida. Las células se mantienen a 37 °C en 5 % de CO₂ y 90 % de humedad en medio Eagle modificado por Dulbecco complementado con glutamina 2 mM, 10 % de suero bovino fetal, 1 X NEAA, β -ME, 1 X pen/estrep y HEPES 25 mM en matraces de cultivo de 175 cm². Para las lecturas de un único canal, se sembraron 2.500 - 5.000 células sobre cubreobjetos de vidrio recubiertos con poli-L-lisina y se cultivaron durante 24 - 48 h a 27 °C antes de uso.

Los compuestos de la invención son útiles como moduladores de transportadores del casete de unión a ATP. La Tabla 3 ilustra a continuación la CE₅₀ y eficacia relativa de ciertos ejemplos en la Tabla 1. En la Tabla 3, el compuesto nº 433 es un compuesto según la invención. Todos los otros compuestos son compuestos comparativos.

En la Tabla 3 se aplican los siguientes significados:

Actividad %

++

++

++

++

+++

+

++

+

++

++

++

++

++

++

CE50: "+++" significa < 10 uM; "++" significa entre 10 uM y 25 uM; "+" significa entre 25 uM y 60 uM. % de eficacia: "+" significa < 25 %; "++" significa entre 25 % y el 100 %; "+++" significa > 100 %.

Table3

CE50

(uM)

+++

+++

+++

+++

++

+++

+

+++

+

+++

+++

+++

+++

++

+++

Comp.

#

2

3

4

5

6

7

8

9

11

12

13

14

15

16

40	

35

45

50

5	5	

Comp.	CE50 (uM)	Actividad %
17	+++	++
20	+++	++
21	+	+
23	+++	++
24	+	+
25	++	++
26	+++	++
28	++	++
29	++	++
30	+++	++
31	+++	++

Comp.	(7.0	Actividad %
34	+++	++
36	+++	++
38	+++	++
39	++	++
40	+	+
41	+++	++
42	+++	++
43	+++	++
46	++	++
47	+++	++
48	+++	++
49	+++	++
50	+++	++
		<u> </u>

60

			.,
5	Comp.		Actividad %
	#	(uM)	<u> </u>
	52	+++	++
	53	+	+
10	55	+	+
	57.	++	+++
	58	'+++	++
	59	+++	+++
15	60.	+++	. ++
	61	+++	++
	62	+++	++
	63	+++	++
20	68	+++	++
	69	+++	++
	70	++	++
	71.	+++	++
25	72	+++	++
	74	+	+
	76	+++	++
	78	+	+
30	79	+++	++
	80.	+++	++
	81,	+	+
	82	+++	++
35	83.	+++	++
	84	+	+
	85	+++	++
	86	++	++
40	87	+++	` ++
	88,	+++	++
	89	+	+
	90,	+++	++
45	91	+++	++
	92	+++	++
	93	+++	++
	94	+++	++
50			

Comp.	71 C	Actividad %
#	(uM)	
95.	++	++
97.	+++	++
98	+++	++
99	+++	++
101.	.+++	++
102	++	++
103	+++	+++
106	+	+
110	+	+
111	+++	++
114	+++	++
115	+++	++
117.	+++	++
118	+++	++
119	444	++
120	++ '	++
122	+	+
123	+++	++
125	++	++
126	. +++	++
127.	+++	++
128	+	+
129	++	++
131,	+++	++
132	+	+
133	++	++
134	+++	++
135	+++	+++
136	+++	++
137	+++	++
138	+++	++
139	+++	++

	·	
Comp.		Actividad %
#	(uM)	
140	+++	++
141	++	++
142	+++	++
143	+++	++
144,	+++	++
147	+++	++ •
149	++	++
150	+++	++
151.	+++	++
153,	+++	++
154	+	+
155	+	. +
156	+++	4-4
157	+++	++
160⋅	+++	++
161	+++	++
162	+	+
163 ⁻	. ++	++
164	+++	++
165.	+	+
166	+++	++
167	4+	++
168	+ .	+
170 ;	+	+
171.	+++	++
172	+++	++
173.	+	+ •
174	+++	++
176.	+++	++
177-	+++	+++
178⋅	+++	++
179	+	+
180 ,	4++	++
181.	+++	++
182·	+++	++

	Comp. #	CE50 (uM)	Actividad %
5	185	+	+
	189.	+++	++
	190.	+++	++
	192;	+	+
10	193	++	++
	194	+	+
	195	+	+
	196	+++	++
15	197	+	+
	198	+++ '	++
	199	+++	++
	201,	++	+
20	202	+++	++
	205	+++	++
	206	+++	++
	208	+++	++
25	209	++	++
	210 .	++	++
	211.	+++	++
	212	+	+ .
30	213	+++	++.
	214	++	++
	215	+++	++
25	218	+++	++
35	219	+	+
	220	+++	++
	221	+++	++
40	222	++	++
40	223	+++	++
	224	+++ ,	++
	225·	+++	++
45	226′	+++	++
	227	+	+

Comp. #	CE50 (uM)	Actividad %
228	+++	++
229	+++	++
231	+++	++
232	++	++
235	+++	++
236	+++	++
239	+++	++
240.	+++	++
242	+++	++
243	++	++
245	+++	++
246	+++	++
247	+++	++
248,	++	++
249	++	++
250	+	+
251	+++	++ .
252	++	++
253	+++	++
255.	+++	++
257	+++	++
260	+++	++
261	+++	++
263	+++	++
264	++	++
265	+++•	++
266	+++	++
267	+++	++
268	++	++
269	+++	++
271	+++	++

Comp	CE50	T
#	(uM)	Actividad %
272	++	++
275	++	++ .
276	++	++
277	+++	+++
278	+++	++
279	+++	++
281	+++	++
282	+++	++
283	+++	+++
285	+++	++
287	+++	++
288	+++	++
289	+++	++
290	+++	++
291.	+++	+++
292	+++	++
293	++	+++
295.	+++	++
296	++	++
297	4++	++
298	+++	++
301,	+	+
302	++	++
304	+++	++
305	+++	+++
306	+++	+++
307·	+++	++
308	++	++
310	+++	++
311₹	+++	++
312	+++	++
313	+++	++
314	+++	++
315	+++	++

		T	
	Comp.	CE50 (uM)	Actividad %
	316	++	++
5	317	+++	++
	318	++	++
	319	+++	++
4.0	321	+++	++
10	322	+++	++
	323.	+++	++
	324.	+++	++
4-	325	+++	++
15	326	++	++
	328	+	+
	330	+++	++
	331	+	+
20	332	+++	++
	333	+++	++
	335	+	+
0.5	336	+++	++
25	337	+++	++
	340,	+++	++
	341,	+++	++
20	344	+++	++
30	346	+++	++
	348	+++	++
	353	+++	++
	354	+++	++
35	355	+++	++
	356	+++	++
	359	++	++
	360	+++	++
40			

Comp. # 361 362 363 365 366 367	CE50 (uM) +++ +++ +++ +++ +++	Actividad % +++ ++ ++ ++
361 362 . 363 365 366	+++ +++ +++ +++	+++++++++
362 . 363 . 365 . 366	+++ +++ +++	+++++++++
363 365 366	+++ +++ +++	+++
366	+++	
366	+++	++
367		
-		++
368	+++	++
369	++	+
370	+++	++
371.	+++	++
372	+++	++
378	++	++
379	++	++
380	+++	++
382.	. +++	++
384	+++	++
385	. +++	++
387	+++	++
388	+++	++
389.	+++	++
390	+	+
391	++ +	++
392	+	+
393	+++	++
394	<u> </u> +	+,
395	+++	++
396	++	++
39.7	+++	<u>+</u> +
398	++	++
399	+++	. ++
400.	+	+
401	+++	++
402	+++	+
403	+++	++

		T
Comp. #	CE50 (uM)	Actividad %
405,	+++	++
407	+++	++
408.	+++	++
409	+++	++
410	+++	+++
411	+++	++
413	+++	++
415	+++	++
416	+++	++
417	+++	++
418	++	++
419	.+	+
420	. +++	++
421	+++	++
424	+++	++
425	+++	++
426	+++	++
428	+++	++
429	+++	++
430	+++	++
431	++	++
432	+++	++
433	+++	++
434	+++	++
435	+++	++
436	+++	++
438	+++	++
439	+++	++
441	+++	++
442	+	+
444	+++	++
445	+++	+++
447	++	++
448	444	++
449	+++	++
ali) (7		

Comp. #	CE50 (uM)	Actividad %
450	++	++
451	+++	++
452	+++	++
453	+++	++
454	+	+
455	+++	++
456	+++	++
457	+	+
458	+++	++
459	+++	++
460	+++	++
461	+++	++

Comp. #	CE50 (uM)	Actividad %
462	+++	++ •
463	+++	++
464	+++	++
465	+++	++
466	+++	++
468	+	+
469	+++	++
470	+++	++
471	+++	++
472	+++	++
473	++	++

Comp. #	CE50 (uM)	Actividad %
476	+++	++
477.	+	+
480	+	+
483	. +++	++
484	+++	++
485	+++	++

Reivindicaciones

5	1. Un compuesto de N-(5-hidroxi-2,4-di- $terc$ -butil-fenil)-4-oxo-1H-quinolin-3-carboxamida o una sal farmacéuticamente aceptable del mismo.			
	2. Una composición farmacéutica que comprende un compuesto según la reivindicación 1 y un vehículo o adyuvante farmacéuticamente aceptable.			
10				
15				
20				
25				
30				
35				
40				
45				
50				
55				
60				