

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 535 719

51 Int. Cl.:

G01N 33/564 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 17.09.2009 E 09748405 (9)

(97) Fecha y número de publicación de la concesión europea: 28.01.2015 EP 2342566

(54) Título: Procedimiento de diagnóstico de una esclerodermia sistémica o de una hipertensión arterial pulmonar

(30) Prioridad:

17.09.2008 FR 0856255

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 14.05.2015

(73) Titular/es:

ASSISTANCE PUBLIQUE HÔPITAUX DE PARIS (33.3%) 3 Avenue Victoria 75001 Paris, FR; UNIVERSITÉ PARIS DESCARTES (33.3%) y UNIVERSITÉ PARIS-SUD 11 (33.3%)

(72) Inventor/es:

MOUTHON, LUC; HUMBERT, MARC; CALZAS, CYNTHIA; CAMOIN, LUC y SAHBATOU, YOUNES

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Procedimiento de diagnóstico de una esclerodermia sistémica o de una hipertensión arterial pulmonar

La invención se refiere a un procedimiento *in vitro* de detección de una esclerodermia sistémica (ScS) o de una hipertensión arterial pulmonar asociada a una esclerodermia (HTAP-ScS), o de una hipertensión arterial pulmonar idiopática (HTAPi) en un sujeto, que comprende la determinación de la presencia y/o de la cantidad de anticuerpos en una muestra biológica procedente de un paciente, como se describe en las reivindicaciones.

Estado de la técnica

5

10

15

20

25

30

35

40

La esclerodermia sistémica (ScS) es una enfermedad rara que se caracteriza por la aparición de lesiones fibrosas que afectan a la piel y a ciertas vísceras como el pulmón, el tubo digestivo y el corazón, así como una hiperreactividad vascular que es causa de un fenómeno de Raynaud y de manifestaciones severas como la crisis renal y la hipertensión arterial pulmonar (HTAP). La fisiología de la ScS es compleja y parcialmente comprendida. La aparición de una ScS resulta de la disfunción de tres tipos de células, los linfocitos B y T responsables de una desregulación inmunitaria, las células endoteliales responsables de anomalías vasculares y los fibroblastos responsables de lesiones fibrosas.

El noventa por ciento de los pacientes esclerodérmicos tienen anticuerpos antinucleares (AAN) en su suero. Ciertos auto-anticuerpos son muy específicos de la ScS y mutuamente excluyentes, como los anticuerpos antitopoisomerasa I (anti-SCI-70) (ATA) (Tamby et al., 2007), presentes con mayor frecuencia en las formas difusas de la enfermedad, los anticuerpos anti-centrómero (ACA), asociados en general a las formas cutáneas limitadas (Moroi et al., 1980), o los anticuerpos anti-ARN polimerasa III asociados a las formas cutáneas difusas y a la aparición de una crisis renal (Bunn et al., 1998). Los AAN no tienen ningún papel patógeno demostrado en el curso de la ScS pero su detección constituye una ayuda para el diagnóstico precoz de la ScS. Otros auto-anticuerpos no específicos de la ScS como los anticuerpos anti-ribonucleoproteína, anti-SSA y anti-SSB, los anticuerpos anti-cardiolipina o el factor reumatoide se encuentran algunas veces en el curso de la ScS. Los anticuerpos anti-células endoteliales (AECA) se pueden detectar en el 28 a 54 % de los pacientes esclerodérmicos. Estos autoanticuerpos son capaces de inducir la expresión de moléculas de adhesión y de provocar una apoptosis de las células endoteliales en presencia de células citotóxicas naturales (« natural killer ») (Bordron et al., 1998). Las dianas de los AECA en el curso de la ScS todavía son mal conocidas y a fecha de hoy no se ha identificado el antígeno específico de la célula endotelial. En cambio, la ADN topoisomerasa 1 (Garcia de la Pena-Lefebvre et. al., 2004) y la proteína centromérica B (Servettaz et al., 2006) han sido identificadas como las dianas de los AECA en los enfermos esclerodérmicos. Los anticuerpos anti-fibroblastos (AFA) han sido identificados en los pacientes esclerodérmicos. Estos anticuerpos son capaces de activar los fibroblastos, de aumentar la expresión de moléculas de adhesión como la molécula-1 de adhesión inter-celular (ICAM) y pro-inflamatorios (aumento de los niveles de ARNm, de IL-1α, de IL-1β y de IL-6) así como la síntesis de colágeno (Chizzolini et al., 2002). Se ha demostrado recientemente que los AFA se pueden fijar sobre la topoisomerasa 1 adsorbida en la superficie de los fibroblastos (Henault et al., 2006). En el ensayo ELISA (ensayo de inmunoabsorbente ligado a enzimas), los AFA se han encontrado en el 30 % de los pacientes que presentan una HTAP asociada a una ScS (Tamby et al., 2006).

La hipertensión arterial pulmonar (HTAP) es una patología rara responsable de la aparición de una descompensación cardíaca derecha que puede llevar a la muerte. El diagnóstico de HTAP se establece mediante un cateterismo derecho que permite la medida de la presión arterial pulmonar media superior o igual a 25 mm de Hg en reposo en ausencia de elevación de la presión capilar pulmonar (Rubin, 1997). La aparición de una HTAP es la consecuencia de una obstrucción crónica de las pequeñas arterias pulmonares secundaria a la proliferación de células endoteliales, de células musculares lisas vasculares y de fibroblastos (Dorfmuller *et al*, 2003). En particular, la neo-muscularización de las pequeñas arterias pulmonares periféricas normalmente no musculares es una característica común a todas las formas de remodelado asociadas a la HTAP.

La HTAP puede ser idiopática, es decir esporádica, pero también familiar, asociada a la toma de anorexígenos (dexfenfluramina), o asociada a un cierto número de patologías incluyendo la infección por el virus de la inmunodeficiencia humana (VIH). La HTAP puede estar asociada también a colagenosis como la ScS (Hachulla *et al*, 2005), el síndrome de Sharp (o conectivitis mixta), o más raramente el lupus eritematoso sistémico. Aproximadamente 8 a 12 % de los pacientes esclerodérmicos desarrollan una HTAP, causa de una mortalidad elevada. Además, en el curso de la HTAP idiopática, se encuentran de vez en cuando señales de auto-inmunidad, a saber anticuerpos anti-nucleares o anticuerpos anti-tiroglobulina. La presencia de anticuerpos anti-células endoteliales (Tamby *et al*, 2005) y de anticuerpos anti-fibroblastos (Tamby *et al*, 2006) ha sido descrita en el curso de la HTAP idiopática o asociada a la ScS. Sin embargo, no ha sido estudiado el valor predictivo de estos anticuerpos en la aparición de la HTAP y el papel potencial de los fenómenos auto-inmunes en la patogenia de la HTAP idiopática permanece incierto (Mouthon *et al*, 2005).

En la mayor parte de los casos, la HTAP se detecta cuando el paciente presenta una disnea de grado III o IV. Cuando el paciente es atendido por una enfermedad crónica como la ScS, la HTAP se detecta por una ecografía cardíaca anual. La solicitud de patente US 2002/0009749 describe la detección de anticuerpos anti-HMG-1 (proteína 1 del grupo de alta movilidad) y anti-HMG-2 para el diagnóstico de enfermedades auto-inmunes, entre otras la

esclerodermia sistémica. Terrier *et al.*, han identificado los antígenos de anticuerpos anti-fibroblastos presentes en los pacientes afectados de hipertensión arterial pulmonar (Terrier *et al.*, 2008). Sigue haciendo falta un ensayo sencillo y fiable para la detección de una ScS y/o de una HTAP, que sería valioso para un diagnóstico lo más precoz posible y que permitiría poner en marcha rápidamente estrategias terapéuticas para mejorar el estado del paciente y sus posibilidades de sobrevivir. La invención tiene por objeto un ensayo de ese tipo.

Resumen de la invención

10

30

35

La invención proporciona ahora un procedimiento *in vitro* de detección de una esclerodermia sistémica (ScS) o de una hipertensión arterial pulmonar asociada a una esclerodermia (HTAP-ScS) o de una hipertensión arterial pulmonar idiopática (HTAPi) en un sujeto, que comprende la determinación de la presencia y/o de la cantidad de al menos un anticuerpo elegido del grupo constituido por los anticuerpos anti-galectina-1, anti-proteína FAM10A4, anti-fosfoproteína 1 inducida por el estrés, y anti-precursor de la proteína de 78 kDa regulada por la glucosa, en una muestra biológica procedente de un paciente,

siendo indicativa de una ScS o de una HTAPi, la presencia de un anticuerpo anti-precursor de la proteína de 78 kDa regulada por la glucosa;

15 siendo indicativa de una HTAP-ScS o de una HTAPi, la presencia de un anticuerpo anti-proteína FAM10A4;

siendo indicativa de una ScS, la presencia de un anticuerpo anti-galectina-1;

o siendo indicativa de una ScS, de una HTAP-ScS o de una HTAPi, la presencia de una cantidad superior a un valor control de un anticuerpo anti-fosfoproteína 1 inducida por el estrés.

Descripción detallada de la invención

La esclerodermia sistémica (ScS) y la hipertensión arterial pulmonar (HTAP) se caracterizan las dos por la presencia de autoanticuerpos (AAc) en el suero de los pacientes, en particular AAc dirigidos contra las células endoteliales y los fibroblastos. Antes de los trabajos presentados a continuación, ningún AAc dirigido contra las células musculares lisas vasculares (CMLV) había sido puesto en evidencia. La caracterización por los inventores de dichos anticuerpos dirigidos contra las CMLV es de una importancia capital, especialmente teniendo en cuenta el papel clave de estas células en la fisiopatología de la ScS, con o sin HTAP, y de la HTAPi.

Los inventores se han propuesto identificar los anticuerpos dirigidos contra las CMLV y caracterizar las dianas antigénicas. Para hacer esto, los inventores han utilizado las CMLV de las arterias mamarias internas como fuente de antígenos y han analizado los sueros de pacientes de fenotipo idéntico (pacientes que tienen una ScS sin o con HTAP, pacientes que tienen una HTAP idiopática, o HTAPi, y sujetos sanos). Se han buscado los anticuerpos con ayuda de una técnica de inmunotransferencia en dos dimensiones seguida de una identificación de los antígenos por espectrometría de masas (véase la sección « Ejemplos » más adelante).

Los inventores han podido demostrar así numerosas reactividades de IgG de las que algunas son muy intensas con el conjunto (pool) de los sueros de pacientes analizados en inmunotransferencia en una dimensión, mientras que los sujetos sanos no expresaban casi ninguna reactividad de IgG. Los inventores han caracterizado, en inmunotransferencia en dos dimensiones, varias manchas proteicas reconocidas por al menos el 80 % de las IgG de los conjuntos de sueros de un grupo de pacientes dados, y no por las IgG séricas de un conjunto de sujetos sanos y otras manchas proteicas reconocidas por la gran mayoría de las IgG séricas de los conjuntos de enfermos con una intensidad mayor que la de las IgG séricas del conjunto de sujetos sanos.

Definiciones:

- 40 El término « muestra biológica » se refiere a cualquier muestra biológica procedente de un paciente. Los ejemplos de muestras incluyen los líquidos biológicos y las biopsias de tejidos. Los fibroblastos de pacientes esclerodérmicos cultivados a partir de biopsias de la piel constituyen igualmente un ejemplo de muestra biológica. De manera preferente, la muestra puede ser de sangre, suero, saliva, orina, semen. De manera ventajosa preferida, la muestra biológica es una muestra de sangre o de suero.
- El término « paciente » se refiere a cualquier sujeto susceptible de ser sometido a ensayo. Con preferencia se trata de un ser humano, pero el término incluye cualquier otro mamífero, tal como perros, gatos, roedores, ganado, caballos, monos etc. El paciente puede ser sometido a ensayo independientemente de su sexo o edad. El paciente puede ser un sujeto en riesgo, puede ser asintomático o puede presentar signos precoces o avanzados de una ScS y/o de una HTAP. Por ejemplo el paciente puede ser un sujeto predispuesto a desarrollar una ScS y/o una HTAP, en particular un sujeto que es portador de una o varias mutaciones en el gen que codifica BMPRII, endoglina o ALK1.

El término « diagnóstico » significa la identificación de la patología o la evaluación del estado de gravedad de la patología.

El término « pronóstico » significa la evaluación del riesgo de empeoramiento y de sus consecuencias.

El término « valor control » se refiere a un valor basal que corresponde a la media de los valores obtenidos con la muestra biológica de sujetos sanos, no afectados por una ScS o una HTAP o una enfermedad susceptible de provocar una HTAP. Se puede tratar de un valor estadístico de referencia.

Para evaluar la evolución de la patología, puede ser útil someter a ensayo a un paciente y controlar el efecto de un tratamiento o la evolución de la patología, sometiendo de nuevo a ensayo al paciente, por ejemplo con varios meses de intervalo. En este caso, los resultados de la segunda prueba se comparan con los resultados de la primera prueba, y también frecuentemente con el valor denominado « control ».

Una cantidad de anticuerpos « superior al valor control » significa generalmente un aumento estadísticamente significativo, por ejemplo de al menos dos desviaciones estándar por encima de la media de las densidades ópticas de las reactividades de IgG del conjunto de los sujetos sanos.

Por « antígeno de captura », se entiende un antígeno, con preferencia fijado a una base sólida, que es capaz de retener dicho al menos un anticuerpo, presente en una muestra biológica, por unión por afinidad. El antígeno de captura puede ser marcado. El término « marcado » se refiere también tanto a un marcaje directo (por medio de enzimas, radioisótopos, fluorocromos, compuestos luminiscentes, etc.) como a un marcaje indirecto (por ejemplo, por medio de anticuerpos marcados ellos mismos de manera directa o con la ayuda de reactivos de una " pareja de afinidad " marcada, tal como, pero no exclusivamente, la pareja avidina marcada-biotina, etc.).

Anticuerpos identificados:

5

10

15

25

30

35

40

45

50

55

Como se indica en la sección « Ejemplos », los inventores han identificado varios anticuerpos anti-CMLV en los enfermos que tienen una ScS con o sin HTAP, o que tienen una HTAPi.

La detección y/o la cuantificación de estos anticuerpos se pueden utilizar para detectar una ScS y/o una HTAP, para realizar el pronóstico o el seguimiento de estas patologías, o para evaluar la eficacia de un tratamiento contra estas patologías.

Los antígenos reconocidos por los anticuerpos identificados se enumeran más adelante. El nombre y los números de acceso que corresponden a estos antígenos en la base de datos de secuencias proteicas SWISSPROT se dan en las tablas 1 y 2 de la sección « Ejemplos ».

Los inventores han caracterizado varias reactividades contra las CMLV en los sueros de pacientes que no se encuentran en los sueros de sujetos sanos. Los anticuerpos identificados son los anticuerpos anti-precursor de la proteína de 78 kDa regulada por la glucosa, anti-caldesmona, anti-proteína FAM10A4, anti-zixina, anti-galectina 1, anti-precursor A3 de la proteína disulfuro-isomerasa, anti-desmina, anti-periferina, anti-ribonucleoproteína H nuclear heterogénea, anti-cadena beta de la tubulina y anti-polimerasa I y factor de liberación de transcripción. En un modo particular de realización, el procedimiento descrito en este documento comprende la determinación de la presencia de al menos un anticuerpo elegido del grupo constituido por los anticuerpos anti-precursor de la proteína de 78 kDa regulada por la glucosa, anti-caldesmona, anti-proteína FAM10A4, anti-zixina, anti-galectina 1, anti-precursor A3 de la proteína disulfuro-isomerasa, anti-desmina, anti-periferina, anti-ribonucleoproteína H nuclear heterogénea, anticadena beta de la tubulina y anti-polimerasa I y factor de liberación de transcripción en una muestra biológica procedente de un paciente, siendo indicativa la presencia de dicho al menos un anticuerpo, de una esclerodermia sistémica y/o de una hipertensión arterial pulmonar o de un riesgo de desarrollar una esclerodermia sistémica y/o una hipertensión arterial pulmonar.

Los inventores han caracterizado igualmente varias reactividades que tienen una intensidad significativamente mayor en los pacientes que en los sujetos sanos. Estas reactividades corresponden a los anticuerpos anti-vimentina, anti-fosfoproteína 1 inducida por el estrés, anti-α-enolasa, anti-triosafosfato isomerasa, anti-precursor de la albúmina sérica, anti-lsozima L1 de la carboxilo-terminal hidrolasa de ubiquitina, anti-actina citoplásmica 2, antiperoxiredoxina-6, anti-proteína 2 de unión al elemento aguas arriba Far (o anti-proteína 2) anti-precursor de la reticulocabina-1, anti-γ-enolasa, anti-precursor mitocondrial de la peróxido reductasa dependiente de la tioredoxina, anti-proteína de activación de GTPasa específica de Ran y anti-proteína B1 del grupo de alta movilidad. En un modo particular de realización, los anticuerpos que corresponden a las reactividades que tienen mayor intensidad en los pacientes que en los sujetos sanos se utilizan en un procedimiento descrito en este documento que comprende la comparación de la cantidad de al menos un anticuerpo elegido del grupo constituido por los anticuerpos antivimentina, anti-fosfoproteína 1 inducida por el estrés, anti-α-enolasa, anti-triosafosfato isomerasa, anti-precursor de la albúmina sérica, anti-lsozima L1 de la carboxilo-terminal hidrolasa de ubiquitina, anti-actina citoplásmica 2, antiperoxiredoxina-6, anti-proteína 2 de unión al elemento aguas arriba Far (o anti-proteína 2) anti-precursor de la reticulocabina-1, anti-y-enolasa, anti-precursor mitocondrial de la peróxido reductasa dependiente de la tioredoxina, anti-proteína de activación de GTPasa específica de Ran y anti-proteína B1 del grupo de alta movilidad en una muestra biológica procedente de un paciente, con un valor control, siendo indicativa la presencia de dicho al menos un anticuerpo en una cantidad superior al valor control, de una esclerodermia sistémica y/o de una hipertensión arterial pulmonar o de un riesgo de desarrollar una esclerodermia sistémica y/o una hipertensión arterial pulmonar.

La invención se refiere por tanto a la utilización de al menos un anticuerpo dirigido contra las CMLV, en un procedimiento, con preferencia *in vitro*, de detección de una ScS y/o de una HTAP.

Con preferencia, los anticuerpos dirigidos contra las CMLV utilizados en los procedimientos descritos, se eligen del grupo constituido por los anticuerpos anti-precursor de la albúmina sérica, anti-zixina, anti-galectina-1, anti-lsozima L1 de la carboxilo-terminal hidrolasa de ubiquitina, anti-caldesmona, anti-proteína FAM10A4, anti-proteína 2 de unión al elemento aguas arriba Far, anti-actina citoplásmica 2, anti-γ-enolasa, anti-precursor A3 de la proteína disulfuro-isomerasa, anti-desmina, anti-periferina, anti-ribonucleoproteína H nuclear heterogénea, anti-fosfoproteína 1 inducida por el estrés, anti-triosafosfato isomerasa, anti-peroxiredoxina-6, anti-reticulocabina-1, anti-peroxiredoxina-2, anti-precursor mitocondrial de la peróxido reductasa dependiente de la tioredoxina, anti-proteína de activación de GTPasa específica de Ran, anti-proteína B1 del grupo de alta movilidad, anti-cadena beta de la tubulina y anti-polimerasa I y factor de liberación de transcripción.

En un modo particular de realización, los anticuerpos dirigidos contra las CLMV utilizados en los procedimientos descritos, se eligen del grupo constituido por los anticuerpos anti-precursor de la albúmina sérica, anti-zixina, anti-galectina-1, anti-lsozima L1 de la carboxilo-terminal hidrolasa de ubiquitina, anti-caldesmona, anti-proteína FAM10A4, anti-proteína 2 de unión al elemento aguas arriba Far, anti-actina citoplásmica 2, anti-γ-enolasa, anti-precursor A3 de la proteína disulfuro-isomerasa, anti-desmina, anti-periferina, anti-ribonucleoproteína H nuclear heterogénea, anti-fosfoproteína 1 inducida por el estrés, anti-triosafosfato isomerasa, anti-peroxiredoxina-6 y anti-reticulocabina-1.

Los anticuerpos identificados por los inventores se pueden utilizar en los procedimientos descritos solos o en combinación. La detección y/o la cuantificación se pueden realizar con respecto a uno solo de los anticuerpos identificados, o pueden implicar a una pluralidad de anticuerpos. Se puede componer así la realización del procedimiento sobre un soporte sólido, por ejemplo una microplaca, sobre la cual se disponen de manera definida y ordenada los antígenos que corresponden a la pluralidad de anticuerpos a detectar y/o cuantificar.

Según un modo de realización de la invención, los procedimientos descritos utilizan la detección de un anticuerpo anti-galectina 1 o anti-fosfoproteína 1 inducida por el estrés.

Según un modo de realización de la invención, los procedimientos descritos utilizan la detección de un anticuerpo anti-galectina 1 para el diagnóstico, el pronóstico o el seguimiento de la ScS. En efecto, los inventores han podido demostrar que este anticuerpo es específico de la ScS, teniendo en cuenta su presencia en los sueros de pacientes de ScS con o sin HTAP asociada, y su ausencia en los sueros de pacientes que sufren de HTAPi.

Según otro modo de realización de la invención, los procedimientos descritos utilizan la detección de un anticuerpo anti-precursor de la proteína de 78 kDa regulada por la glucosa para el diagnóstico, el pronóstico o el seguimiento de la ScS o de la HTAPi.

Según otro modo de realización de la invención, los procedimientos descritos utilizan la detección de un anticuerpo anti-proteína FAM10A4 para el diagnóstico, el pronóstico o el seguimiento de la HTAP, ya sea idiopática o asociada a una ScS.

Valoración de los anticuerpos:

20

30

45

La muestra biológica es con preferencia una muestra de suero, con preferencia diluido 1/100, o más, por ejemplo 1/200 o 1/400.

De manera ventajosa, la cantidad de anticuerpos se puede determinar mediante un inmunoensayo.

La muestra biológica se puede tratar opcionalmente en una etapa preliminar, o se puede poner directamente en presencia de al menos un antígeno de captura.

40 El procedimiento según la invención se puede realizar según diversos formatos bien conocidos por los expertos en la técnica: en fase sólida o en fase homogénea; en un tiempo o en dos tiempos; en método competitivo, a titulo de ejemplos no limitativos.

Según un modo de realización preferido, el antígeno de captura se inmoviliza sobre una fase sólida. Se pueden utilizar, a titulo de ejemplos no limitativos de fase solida, las microplacas, especialmente microplacas de poliestireno, tales como las comercializadas por la empresa Nunc, Dinamarca. También se pueden utilizar partículas o perlas sólidas, perlas paramagnéticas, tales como las suministradas por Dynal o Merck-Eurolab (Francia) (bajo la marca EstaporTM) o también tubos de ensayo de poliestireno o polipropileno, etc.

Es igualmente posible un formato de inmunoensayo para la detección de anticuerpos por competición. También son posibles otras modalidades de inmunoensayo y son bien conocidas por los expertos en la técnica.

Las valoraciones por ELISA, radioinmunoensayos, o cualquier otra técnica de detección se pueden utilizar para revelar la presencia de los complejos de antígeno-anticuerpo formados.

Según un modo particular de realización preferido, el antígeno de captura corresponde a una proteína completa o a un fragmento de dicha proteína. Por ejemplo, el procedimiento de la invención comprende poner en contacto una muestra biológica con una proteína completa reconocida por el anticuerpo que se va a detectar y/o cuantificar. A

título ilustrativo, la invención comprende poner en contacto una muestra de sangre o de suero con la galectina 1 o la fosfoproteína 1 inducida por el estrés completa, para la detección y/o la cuantificación de los anticuerpos antigalectina o anti-fosfoproteína 1 inducida por el estrés, en dicha muestra.

En un ejemplo particular, el antígeno de captura se puede acoplar a una glutatión S transferasa (GST), antes de ser depositado sobre una microplaca.

A título ilustrativo, las muestras de suero que se van a someter a ensayo, por ejemplo, diluidas 1/100, se incuban sobre la microplaca. Después de lavado, se añaden anticuerpos anti-Fcy humanos marcados (por ejemplo, con una fosfatasa alcalina), siendo revelados los complejos (por ejemplo, mediante la adición de un sustrato de la fosfatasa cuya escisión se puede detectar mediante la lectura de la absorbancia).

10 Pacientes diana:

5

20

25

30

35

40

45

50

Los pacientes diana son aquellos susceptibles de desarrollar una ScS y/o una HTAP.

Se puede tratar de un paciente que sufre una HTAP asociada a una conectivitis, tal como una esclerodermia sistémica, al síndrome de Sharp (que es una conectivitis mixta), o a un lupus eritematoso sistémico.

El paciente puede sufrir igualmente una HTAP idiopática o familiar.

Más generalmente, todo paciente afectado de una enfermedad vascular pulmonar puede ser sometido de forma ventajosa al procedimiento de detección de una HTAP tal como se define en la invención.

Además, la HTAP detectada puede ser también una hipertensión porto-pulmonar (es decir una HTAP asociada a una hipertensión portal), o estar asociada a una cardiopatía congénita, o a una infección por el virus de la inmunodeficiencia humana (VIH), o también puede ser una hipertensión pulmonar post-embólica, que complica la evolución de una bronquitis crónica obstructiva o de una cardiopatía cianógena.

Otros pacientes diana son los expuestos a ciertos medicamentos supresores del apetito como la fenfluramina cuya prescripción puede contribuir a la aparición de una HTAP.

Otras personas susceptibles de beneficiarse de este tipo de ensayo son las portadoras de una mutación en el gen que codifica BMPRII, endoglina o ALK1, y que eventualmente no presentan HTAP detectable en la ecografía, con el fin de detectar los individuos susceptibles de desarrollar posteriormente una HTAP.

Evaluación de la eficacia de un tratamiento:

Otro objeto de este documento es un procedimiento *in vitro* de evaluación de la eficacia de un tratamiento contra una ScS y/o una HTAP, que comprende la determinación de la presencia y/o de la cantidad de al menos un anticuerpo tal como se ha definido antes en una muestra biológica procedente de un paciente, a diferentes tiempos antes, en el curso de o después del tratamiento, siendo indicativa de una mejoría de la ScS o de la HTAP, la disminución de la cantidad de dicho al menos un anticuerpo a lo largo del tiempo.

El tratamiento clásico actual de la HTAP asocia un tratamiento sintomático y un tratamiento vasodilatador. El tratamiento sintomático asocia anti-coagulantes, una oxigenoterapia y diuréticos. El tratamiento vasodilatador se apoya sobre las siguientes moléculas: bloqueadores de los canales de calcio, epoprostenol (prostaciclina) prescrito por vía intravenosa en perfusión continua, los inhibidores de los receptores de la endotelina, selectivos o no, en particular el bosentán, el sitaxentán y el ambrisentán, los inhibidores de las fosfodiesterasas de tipo 5 en particular el sildenafilo, el taladafilo, siendo administrado el conjunto de estos medicamentos por vía oral, y el iloprost inhalado, análogo de la prostaciclina, administrado por inhalación. Estos tratamientos se pueden combinar opcionalmente. En caso de fracaso de estas terapias, se puede proponer un trasplante pulmonar o de corazón-pulmones. En el curso de la ScS es clásico prescribir vasodilatadores, en primer lugar los inhibidores cálcicos en el tratamiento del fenómeno de Raynaud, los inhibidores de la bomba de protones y un procinético, la domperidona, en el tratamiento del reflujo gastro-esofágico. Los otros tratamientos dependen de las afecciones presentadas por el paciente: colchicina o corticoides en dosis bajas en caso de afección articular inflamatoria, inhibidores de la enzima de conversión en caso de crisis renal, ciclofosfamida en caso de neumopatía infiltrante difusa evolutiva, tratamiento vasodilatador de una hipertensión arterial pulmonar.

Las figuras y ejemplos que siguen ilustran la invención sin limitar su alcance.

Leyendas de las figuras

La figura 1 corresponde a una inmunotransferencia en una dimensión que muestra las reactividades de las IgG séricas de pacientes esclerodérmicos con HTAP (n=3) o sin HTAP (n=6), de pacientes que tienen una HTAP idiopática (n=6) y de sujetos sanos (n=4) con respecto a las proteínas de células musculares lisas vasculares. La HTAP estaba documentada por cateterismo derecho en el conjunto de los pacientes. ScS: esclerodermia sistémica; HTAP: hipertensión arterial pulmonar; HTAPi: hipertensión arterial pulmonar idiopática; HTAP-ScS: hipertensión

arterial pulmonar asociada a una esclerodermia; C: control interno (HTAP-ScS); PBS: solución salina tamponada con fosfato.

La figura 2 corresponde a un gel de referencia en dos dimensiones de un extracto proteico total de células musculares lisas vasculares, teñido con nitrato de plata. La primera dimensión (eje horizontal): pH 3-10, segunda dimensión (eje vertical): gradiente de acrilamida 7-18 %, permiten el recuento de 880 manchas proteicas.

La figura 3 es un gráfico que muestra el número de manchas proteicas reconocidas por las IgG de 15 conjuntos de 3 sueros de pacientes fenotípicamente idénticos que tienen una esclerodermia sistémica y/o una HTAP y por un conjunto de 12 sujetos sanos después de ajuste sobre el gel de referencia. La escala de las ordenadas indica el número de reactividades de IgG.

La figura 4 muestra la proporción de las manchas de reactividad reconocidas por las IgG de los sueros de los conjuntos de 3 pacientes en el seno de cada grupo (reconocidas o no por los sujetos sanos). 20 %, 40 %, 60 %, 80 %, 100 %: número de manchas proteicas reconocidas respectivamente por 1/5, 2/5, 3/5, 4/5, 5/5 de los conjuntos de pacientes en un grupo dado.

La figura 5 representa el número de manchas reconocidas por las IgG de los sueros de los conjuntos de pacientes de cada grupo y no reconocidas por los sueros de los sujetos sanos. 20 %, 40 %, 60 %, 80 %, 100 %: número de manchas proteicas reconocidas respectivamente por 1/5, 2/5, 3/5, 4/5, 5/5 de los conjuntos de pacientes en un grupo dado.

La figura 6 muestra la localización de las manchas proteicas candidatos sobre el gel de electroforesis en dos dimensiones de un extracto proteico total de células musculares lisas vasculares, teñido con nitrato de plata. Primera dimensión (eje horizontal): pH 3-10, segunda dimensión (eje vertical): gradiente de acrilamida 7-18 %.

La figura 7 muestra la intensidad de las reactividades de las IgG de los 15 conjuntos de 3 sueros de pacientes y del conjunto de sueros de sujetos sanos dirigidas contra la α-enolasa y la fosfoproteína 1 inducida por el estrés sobre membranas de PVDF de los diferentes grupos de enfermos. La zona de membrana de PVDF representada para cada uno de los grupos corresponde a un pHi comprendido entre 6,6 y 7,9 y pesos moleculares comprendidos entre 51 y 70 kDa.

La figura 8 es una representación gráfica de la detección de anticuerpos anti-fosfoproteína 1 inducida por el estrés (stress induced phosphoprotein 1 o STIP1) por ELISA en los sueros de pacientes que sufren una ScS, una HTAPi, una HTAP asociada a una ScS y en los sueros de sujetos controles sanos (HC). Los datos registrados corresponden a la densidad óptica de las proteínas a 405 nm (DO405), habiéndose restado el ruido de fondo (DO405 del tampón de bicarbonato). Cada punto representa la reactividad de una muestra de suero. Las barras horizontales únicas indican la media y las barras horizontales dobles indican la desviación estándar. Las muestras se consideran positivas cuando la densidad óptica es superior o igual a la media + 2 desviaciones estándar del control (2 et).

La figura 9 muestra el efecto del suero y de las IgG purificadas de pacientes que tienen una ScS, una ScS-HTAP o una HTAPi, sobre la contracción de una matriz de colágeno por las CMLV de la aorta. Se ha seguido durante 4 días la contracción de matrices de colágeno sembradas con las CMLV, en presencia de SVF (suero de ternera fetal), de suero, o de IgG purificadas de pacientes que tienen una ScS, ScS-HTAP, o una HTAPi. A: fotografías de 4 matrices que corresponden a las 4 condiciones patológicas, incubadas con el suero (A1) o con las IgG purificadas (A2), en los días 0 y 4 (J0 y J4). B: representación gráfica de la cinética de contracción de matrices de colágeno incubadas con el suero (A1) o con las IgG purificadas (A2) de pacientes ScS, ScS-HTAP o HTAPi, o de sujetos sanos emparejados. Para cada condición, se han utilizado 10 sueros o IgG purificadas. Sueros: Sanos/ScS p = 0,012; IgG purificadas Sanos/HTAPi p = 0,001.

La figura 10 muestra el efecto del suero y de las IgG purificadas de pacientes que tienen una ScS, una ScS-HTAP, o una HTAPi, sobre la contracción de una matriz de colágeno por las CMLV activadas por el TNF-α. La contracción de matrices de colágeno sembradas con las CMLV se ha seguido durante dos días (sueros) o tres días (IgG purificadas), en presencia de SVF, de suero, o de IgG purificadas de pacientes que tienen una ScS, una ScS-HTAP, o una HTAPi. A: fotografías de 4 matrices que corresponden a las 4 condiciones patológicas, incubadas con el suero (A1) o con las IgG purificadas (A2), los días 0 y 2 (suero) o el día 3 (IgG purificadas). B: representación gráfica de la cinética de contracción de matrices de colágeno incubadas con el suero (B1) o con las IgG purificadas (B2) de pacientes ScS, ScS-HTAP o HTAPi, o de sujetos sanos emparejados. Para cada condición, se han utilizado 10 sueros o IgG purificadas. Sanos/HTAPi p = 0,001; Sanos/ScS-HTAP p = 0,029

Ejemplo 1

5

20

25

30

35

40

45

50

55

Materiales y métodos

Sueros

Los inventores han utilizado los sueros de pacientes que tienen una HTAPi o una ScS con o sin HTAP. La HTAP era detectada por una ecografía cardíaca trans-torácica y confirmada por un cateterismo derecho. Los pacientes

esclerodérmicos respondían a los criterios de la Asociación Americana de Reumatología (ARA) y/o a los criterios de Leroy y Medsger. Los sueros se recogían y conservaban a -80 °C antes de su utilización. Todos los pacientes habían firmado un consentimiento informado en el marco del estudio de HTAP-Ig (Contrato de Investigación y de Investigación Clínica 2005 N° CRC 05066, promotor Assistance Publique-Hôpitaux de Paris).

En un primer tiempo los sueros de 15 pacientes que tienen una HTAPi, 15 pacientes que tienen una HTAP-ScS, 15 pacientes que tienen una ScS sin HTAP y de 12 sujetos sanos, han sido sometidos a ensayo en experimentos de inmunotransferencia 1D (1 dimensión). En un segundo tiempo, los mismos sueros han sido sometidos a ensayo en la forma de conjuntos de 3 sueros de pacientes que tienen un fenotipo similar. Un conjunto de 12 sueros de sujetos sanos, diferentes de los utilizados en 1D se ha utilizado como testigo en los experimentos de inmunotransferencia en 2D (2 dimensiones).

Células

15

20

30

45

55

Las CMLV humanas obtenidas a partir de las arterias mamarias en los pacientes que han sufrido un puente aortocoronario han sido proporcionadas por el Dr. Babett Weksler (Institut Cochin, Paris). Estas células han sido inmortalizadas después de la transducción secuencial lentiviral de la subunidad catalítica de la holoenzima humana telomerasa transcriptasa inversa y del antígeno T del poliomavirus SV40 (Virus del simio 40) en un cultivo primario de CMLV adultas (Weksler *et al.*, 2005). Estas células han sido cultivadas en frascos de 175 cm² en el medio de cultivo Medio 2 de crecimiento de células del músculo liso (PromoCell, Heidelberg, Alemania) suplementado con 5 % de suero de ternera fetal descomplementado (SVF), 0,5 ng/ml de Factor de crecimiento epitelial (EGF), 2 ng/ml de Factor de crecimiento de fibroblastos básico, 5 µg/ml de insulina, 1 % de penicilina/estreptomicina y 1 % de ciprofloxacino. Estas células han sido utilizadas para los experimentos de inmunotransferencia en 1D y 2D.

Las CMLV de aorta humana (Cambrex) han sido utilizadas en los experimentos que evalúan el efecto del suero y de las IgG purificadas de pacientes que tienen una ScS, una ScS-HTAP, o una HTAPi, sobre la contracción de una matriz de colágeno por las CMLV no activadas o activadas por el TNF-α

Extracción de las proteínas

25 Electroforesis en una dimensión

Las CMLV llegadas a la confluencia se despegaban con tripsina, se lavaban con solución salina tamponada con fosfato (PBS) y después se centrifugaban a 1600 rpm. a 20 °C. El sedimento celular se recuperaba a continuación en un tampón que contiene dodecilsulfato de sodio al 2 % (SDS), Tris 62,5 mM pH 6,8, β -mercaptoetanol al 5 % en presencia de inhibidores de proteasas: 1 μ g/ml de pepstatina, de aprotinina, de leupeptina y fluoruro de fenilmetilsulfonilo 1 mM (PMSF). Se sometía enseguida la mezcla a sonicación en 4 ciclos de 30 segundos en hielo a 4 °C a una potencia de 25 W y después se calentaba durante 10 min a 100 °C. Los extractos proteicos eran divididos seguidamente en alícuotas y conservados a -80 °C hasta utilización.

Electroforesis en dos dimensiones

Las CMLV llegadas a la confluencia se lavaban 2 veces en PBS desprovisto de Mg²⁺ y de Ca²⁺, después se despegaban y se recuperaban en una solución isotónica en ausencia de la enzima que contiene agentes quelantes como EDTA (tampón de disociación de células libre de enzimas basado en PBS, Invitrogen, Carlsbad, CA, Estados Unidos). Se recogían las células y después se centrifugaban durante 5 min a 1300 rpm a 20 °C. Después de un lavado en una solución isotónica de NaCl, se realizaba una segunda centrifugación. Después de haber repetido esta operación por segunda vez, el sedimento celular se congelaba a -80 °C en presencia de PMSF 1 mM y de un cóctel de inhibidor de proteasas (Complete Mini, Roche Diagnóstico, Meylan, Francia).

En un segundo tiempo, las proteínas se extraían después de tres sonicaciones de 30 s cada una a 4 °C en un tampón compuesto de urea 5 M, tiourea 2 M, sulfonato de 3-[(3-colamidopropil)dimetilamonio]-1-propano (CHAPS) al 2 %, Tris 40 mM y anfolitos Bio-Lyte 3/10 al 0,2 % (ReadyPrep Sequential Extraction Reagent 3, Bio-Rad, Hercules, CA, Estados Unidos). A continuación se realizaban dos ultracentrifugaciones a 150 000 g durante 25 min cada una a 4 °C (Optima LE-80K, Beckman, Fullerton, CA, Estados Unidos). Con el fin de evitar la perturbación artefactual del ADN liberado a lo largo de la sonicación, se realizaba una congelación a -80 °C con el fin de hacer precipitar el ADN. El extracto se descongelaba a continuación, se centrifugaba y se recuperaba el sobrenadante. Finalmente, se medía la concentración en proteínas por el método de Lowry (RC DC Protein Assay, Bio-Rad, Richmond, Estados Unidos). Se añadía ditiotreitol (DTT) al extracto a una concentración final 64 mM antes de la congelación a -80 °C.

50 Inmunotransferencia 1D

Separación de las proteínas por electroforesis monodimensional

Las proteínas de la muestra eran separadas según su peso molecular (PM) sobre geles de poliacrilamida desnaturalizantes en presencia de SDS (SDS-PAGE) con acrilamida al 10 % (acrilamida al 10 %, bisacrilamida al 0,27 %, Tris/HCI 0,375 M pH 8,8, SDS al 0,1 %, persulfato de amonio al 0,1 %, 0,04 % de tetrametiletilendiamina (TEMED) (Biorad, Hercules, CA, Estados Unidos)). Se depositaban ciento veinte microlitros de proteínas en lo alto

de cada gel y se efectuaba la migración en un tampón de migración (Tris /HCl 25 mM, glicina 192 mM, SDS al 0,1 %) a 25 mA por gel en amperaje constante con un dispositivo mini-PROTEAN III (Bio Rad) durante aproximadamente 50 min.

Electrotransferencia a partir de geles en una dimensión

Les proteínas así separadas se transferían del gel sobre una membrana de nitrocelulosa (Immunetics Inc., Boston, Massachusetts, Estados Unidos) gracias a un módulo de electrotransferencia semi-seco (Semi Dry Electroblotter A ANCOS, Hoejby, Dinamarca) durante 1 h a 50 mA por módulo de transferencia. Las membranas eran bloqueadas a continuación durante 1 h 30 min en el PBS-Tween 20 al 0,2 % (Sigma) e incubadas durante toda la noche en presencia de sueros que pertenecen a uno de los tres grupos siguientes: ScS asociada o no a una HTAP, HTAPi.
 Los sueros de 12 sujetos sanos eran utilizados como controles y el PBS-Tween al 0,2 % solo sin Ac era utilizado como testigo negativo.. Cada suero de pacientes se diluía a 1/2 en el PBS-Tween al 0,2 % y los sueros de sujetos sanos se diluían a 1/100.

Después de 5 lavados cortos de 20 s y 5 lavados largos de 5 min en una solución de PBS-Tween al 0,2 %, las membranas eran incubadas durante 1 h 30 min a 20 °C con un Ac secundario anti-IgG humanas específico del fragmento Fcy humano (Ac anti-Fcγ humano) conjugado con la fosfatasa alcalina (Dako, Glostrup, Dinamarca). Después de 5 lavados cortos y 1 lavado largo en PBS-Tween al 0,2 %, las membranas han sido lavadas en una solución salina tamponada con Tris (TBS: Tris 24 mM, NaCl 136,9 mM, KCl 18,6 mM, pH 8) y las reactividades eran reveladas con ayuda del sustrato de la fosfatasa alcalina (bromo-cloro-indolil-fosfato y nitroazul de tetrazolio (Sigma)) en un tampón que contiene Tris 100 mM, NaCl 100 mM, MgCl 2 5 mM (VWR internacional). La reacción se paraba por los lavados con agua bidestilada, y las membranas se secaban y después se sometían a un barrido con ayuda de un escáner de alta resolución (Perfection 12008 Seiko Epson Corporation, Hirooka, Japón).

Inmunotransferencia 2D

15

20

25

30

35

40

45

50

Isoelectroenfoque (IEF)

El isoelectroenfoque permite la separación de las proteínas según su pH isoeléctrico (pHi). Esta etapa se realizaba en gradiente de pH inmovilizado (IPG), es decir que se llevaba a cabo sobre un gel de acrilamida vertido sobre una banda rígida (tira) en la que se había preformado un gradiente de pH, aquí, un gradiente de 3 a 10 (ReadyStrip 17 cm, pH 3-10, Bio-Rad). Las bandas eran colocadas en una cuba horizontal Bio-Rad tipo célula Protean IEF a temperatura ambiente. Cada banda se colocaba en una ranura en presencia de una mezcla que contiene tampón de rehidratación y 100 µg de extractos proteicos de CMLV; era recubierto todo con 2 ml de aceite mineral con el fin de limitar la evaporación. El tampón de rehidratación estaba constituido por urea de alta pureza 7 M (VWR, Fontenay-Sous-Bois, Francia), tiourea 2 M (Sigma), CHAPS al 4 % (Sigma), triton X100 al 0,002 % (Sigma), DTT (Sigma), azul de bromofenol, y anfolitos Pharmalytes 3-10 (Amersham Biosciences, Uppsala, Suecia).

El isoelectroenfoque comprendía una hidratación pasiva de 9 h seguida de una hidratación activa de 12 h de las bandas bajo una tensión de 50 V. A continuación, se realizaba el isoelectroenfoque como sigue: 1 h a 200 V (eliminación del exceso de sales), después subida lineal de la tensión durante 1 h hasta 1000 V, después durante 6 h hasta 10.000 V y después durante 1 h hasta 10.000 V.

Separación de las proteínas en gel de acrilamida (SDS-PAGE)

Esta segunda etapa permitía la separación de las proteínas según su peso molecular (PM). Doce geles de 20 x 20 x 0,1 cm con un gradiente de acrilamida de 7 a 18,5 % eran vertidos simultáneamente en una cuba multi-geles (Protean Plus Multi-Casting Chamber, Bio- Rad) asegurando una reproductibilidad óptima y permitiendo la separación de proteínas con un PM comprendido entre 10 y 250 kDa. Antes de realizar la segunda dimensión, las bandas obtenidas al final de la etapa precedente eran puestas en presencia de 2 tampones de equilibrio con el fin de reducir y alcalinizar los grupos sulfhidrilo de las cisteínas. El primer tampón de equilibrio se componía de Tris 50 mM, urea 6 mM, glicerol al 40 %, SDS 52 mM y DTT 32,4 mM. El segundo tampón estaba compuesto de Tris 50 mM, urea 6 mM, glicerol al 40 %, SDS 52 mM y yodoacetamida 86,5 mM. A continuación, las bandas se mantenían en contacto con los geles de acrilamida en una solución de agarosa al 1 % (Agarosa de bajo punto de fusión ultrapura, Gibco BRL Invitrogen) que contiene azul de bromofenol para seguir el frente de la migración. Se habían dispuesto marcadores de PM a ambas partes de la banda. La migración duraba alrededor de 30 h en un tampón de migración (Tris 25 mM, glicina 192 mM, SDS 3,5 mM, tiosulfato de sodio 1,25 mM (Sigma)) mantenido a 10 °C (Cuve Protean Plus Dodeca Cell Bio-Rad, Cryostat MultiTemp III Amersham Biosciences) a amperaje constante; 40 V durante 1 h después 80 V durante 1 h y finalmente 15 mA/gel hasta que el frente de migración se había salido de los geles.

Al final de la migración en la segunda dimensión, 11 geles eran transferidos sobre las membranas de fluoruro de polivinilideno (PVDF) (membranas de transferencia Immobilon-P, poros de $0,45~\mu m$, Millipore, Bedford, MA, Estados Unidos), mientras que el último gel era teñido con nitrato de plata.

Electrotransferencia

10

15

20

40

50

55

La transferencia semiseca se efectuaba a 4 °C durante 1 h 30 min a amperaje constante (320 mA). Al final de la transferencia, las membranas se sumergían durante 5 min en una solución de PBS compuesta de NaCl 148 mM, NaH₂PO₄,2H₂O 3,5 mM, Na₂HPO₄,12H₂O 17,6 mM, y después se secaban.

5 Tinción de los geles no transferidos

El gel no transferido (llamado también gel de referencia) se teñía con nitrato de plata (Rabilloud *et al.*, 1990) en 5 etapas; fijación (etanol absoluto al 30 %, ácido acético al 5 %), lavado (nitrato de plata 11,8 mM (Sigma), formaldehido 3,45 mM (Sigma), tinción (nitrato de plata al 0,02 %) y finalmente revelado (formaldehido al 37 %, carbonato de sodio, tiosulfato). El gel era conservado a continuación en una solución de conservación (dimetilsulfóxido al 2 % (Sigma), ácido acético al 10 % antes de ser barrido con ayuda de un densitómetro (GS-800, Bio-Rad).

Incubación de las membranas de PVDF con los sueros y revelado de las reactividades

Las membranas de PVDF inicialmente bloqueadas con PBS-Tween al 0,2 % se incubaban toda la noche en presencia de sueros de pacientes que pertenecen a uno de los tres grupos descritos precedentemente: HTAPi, HTAP-ScS o ScS sin HTAP. Para cada membrana, se utilizaba un conjunto de tres sueros que pertenecen a un mismo grupo diluido a 1/100 en una solución de PBS-Tween al 0,2 %. Para cada experimento, se incubaba una membrana con un conjunto de 12 sueros de sujetos sanos diluido en el mismo tampón a 1/100. El revelado de las reactividades se efectuaba como precedentemente en el caso de la inmunotransferencia 1D (Ac anti-Fcy humano conjugado con fosfatasa alcalina, revelado de las reactividades con ayuda del sustrato de la fosfatasa alcalina) después se secaban las membranas y se fotografiaban con ayuda de un densitómetro (GS-800, Bio-Rad). Las membranas se teñían a continuación con oro coloidal (Protogold®, BioCell, Cardiff, GB) con el fin de revelar el conjunto de las proteínas transferidas a la superficie de las membranas. A continuación se efectuaba una nueva adquisición densitométrica.

Análisis informático

25 El análisis informático de los geles y membranas era realizado con ayuda de un programa concebido especialmente para el análisis de los geles bidimensionales (Image Master 2D® Platinum 6.0, Buckinghamshire, Inglaterra). La primera etapa consistía en una detección automática de las manchas proteicas en función de los parámetros que se han elegido (número de operaciones efectuadas para eliminar el ruido de fondo, umbral Laplacien y superficie mínima de las manchas a detectar). Las manchas detectadas se controlaban visualmente con ayuda de 30 procedimientos de reconstrucción en 3 dimensiones, con el fin de eliminar los falsos positivos y ver las manchas de reactividad no detectadas por el programa. A continuación, cada mancha proteica reconocida por las IgG de un individuo era emparejada con la proteína correspondiente con ayuda de la fotografía densitométrica de la misma membrana realizada después de la tinción con oro coloidal. Esta etapa se realizaba para cada una de las 16 membranas. Finalmente, las proteínas transferidas sobre las membranas se emparejaban con las proteínas del gel elegido como gel de referencia. Esto permitía recoger todas las informaciones sobre el gel de referencia y poder 35 comparar a continuación las manchas proteicas reconocidas por los sujetos sanos y por los pacientes en el seno de los diferentes grupos estudiados.

Espectrometría de masas

Las manchas proteicas reconocidas como dianas antigénicas eran extraídas por taladro de un nuevo gel de acrilamida cargado con 400 µg de extractos proteicos y coloreado con azul de Coomassie. Cada mancha extraída era colocada en el pocillo de una placa de 96 pocillos y digerida en presencia de tripsina (Promega, Francia) durante toda una noche. Las muestras digeridas eran transferidas seguidamente a otra placa de 96 pocillos depositada después a 4 °C antes del análisis por espectrometría de masas tipo 'Desorción-ionización mediante láser asistida por matriz-Tiempo de vuelo' (MALDI- TOF) (PerSeptive Biosystems Framingham, MA, Estados Unidos).

45 Valoración de anticuerpos anti-STIP1 por ELISA

La fosfoproteína 1 inducida por el estrés (STIP1) ha sido obtenida de la sociedad Tebu-bio (Tebu-bio, Maryland, USA), se ha diluido en un tampón de bicarbonato y se ha depositado sobre placas de 96 pocillos (Maxisorb, NalgeNunc Int. Rochester, NY, USA) a una concentración final de 3 μg/mL a 4 °C. La reactividad de las IgG séricas obtenidas a partir de 75 pacientes esclerodérmicos sin HTAP, 74 afectados de HTAPi, 37 pacientes esclerodérmicos con HTAP (ScS-HTAP), y 70 sujetos sanos (HC) ha sido analizada por ELISA contra STIP-1. Los pocillos han sido lavados cinco veces con tampón fosfato (PBS) y bloqueados con ayuda de una solución PBS-seroalbúmina bovina al 1 % durante una hora a 37 °C. Los sueros han sido diluidos a 1/100 en PBS, introducidos por duplicado e incubados durante una hora a temperatura ambiente. Anticuerpos policlonales de ratones anti-STIP-1 (Tebu-bio, Maryland, USA) han sido diluidos a 1/500 y utilizados como control positivo. Las placas se han lavado como se ha mencionado antes, y los anticuerpos de conejo anti-Fcγ humano conjugados con fosfatasa alcalina (Tebu-bio, Maryland, USA; diluidos a 1/1000), con los anticuerpos de asno anti-IgG de conejo (Jackson ImmunoResearch, West Baltimore Pike, USA; diluidos a 1/10000) se han incubado durante una hora a temperatura ambiente. Las

reactividades se han revelado por la adición de p-nitrofenilfosfato (Sigma-Aldrich, St. Louis, USA) y se ha medido la absorbancia (DO) a 405 nm. El ruido de fondo de densidad óptica (pocillos recubiertos de tampón bicarbonato únicamente) se ha restado del valor de la DO obtenido con las proteínas. Las muestras se han considerado positivas cuando la densidad óptica era superior o igual a la media + 2 desviaciones estándar del control (2et).

5 Estudio del efecto de los sueros o de las IgG purificadas de pacientes frente a sujetos sanos sobre la contracción de las CMLV o de los fibroblastos

Sueros e IgG purificadas

Los inventores han utilizado los sueros de 10 pacientes esclerodérmicos sin HTAP (denominados en lo sucesivo ScS), 10 pacientes esclerodérmicos con HTAP (ScS-HTAP), y 10 pacientes afectados de HTAPi. Diez sujetos sanos emparejados en cuanto a sexo y edad han sido igualmente sometidos a ensayo. Los pacientes esclerodérmicos responden a los criterios de la Asociación Americana de Reumatología (ARA) y/o a los criterios de Leroy y Medsger. Los sueros se conservaban a -80 °C antes de su utilización. Todos los pacientes y los sujetos sanos han firmado un consentimiento informado en el marco del estudio HTAP-Ig (Contrato de Investigación y de Investigación Clínica 2005 N° CR C 05066, promotor Assistance Publique-Hôpitaux de Paris; investigador coordinador Luc Mouthon; centro de gestión URC Cochin).

Las IgG han sido purificadas del suero de los pacientes y de los sujetos sanos sobre una columna de proteína G sefarosa. Las IgG purificadas han sido cuantificadas por espectrofotometría a 260 y 280 nm. La pureza de las preparaciones de IgG purificadas ha sido determinada por SDS-PAGE.

Cultivo celular

10

15

30

35

40

50

55

Las CMLV humanas obtenidas a partir de las arterias mamarias de los pacientes que han sufrido un puente aortocoronario inmortalizadas después de la transducción secuencial lentiviral de la subunidad catalítica de la holoenzima humana telomerasa transcriptasa inversa (hTERT) y del antígeno T del poliomavirus SV40 (Virus del simio 40) en un cultivo primario de CMLV adultas (Weksler *et al.*, 2005) han sido proporcionadas por el Dr. Babett Weksler (Institut Cochin, Paris). Estas células han sido cultivadas en medio de cultivo DMEM (Gibco BRL Invitrogen™ Cergy Pontoise, Francia) suplementado con 10 % de suero de ternera fetal (SVF) filtrado y descomplementado, con 1 % de penicilina/estreptomicina y 1 % de ciprofloxacino.

Las CMLV humanas de la aorta (PromoCell, Heidelberg, Alemania) han sido cultivadas en el medio de cultivo Medio 2 de crecimiento de células del músculo liso (PromoCell, Heidelberg, Alemania) suplementado con 5 % de suero de ternera fetal descomplementado (SVF), 0,5 ng/ml de Factor de crecimiento epitelial (EGF), 2 ng/ml de Factor de crecimiento de fibroblastos básico (bFGF), 5 µg/ml de insulina, 1 % de penicilina/estreptomicina y 1 % de ciprofloxacino.

Contracción de una matriz de colágeno

Las CMLV han sido recogidas con tripsina al 0,25 % EDTA 1 mM (Gibco BRL Invitrogen™ Cergy Pontoise, Francia) neutralizada por 5 % de SVF. Las matrices de colágeno han sido preparadas en placas de 35 mm con 1 ml de medio sin SVF que contienen 500.000 CMLV, 1,65 ml de medio 1 % de suero (SVF, suero de paciente o suero sano) o 128 μg/ml de IgG purificadas, y 1 ml de colágeno a 3,35 mg/ml (BD Biosciences, Franklin Lakes, Estados Unidos). Para el ensayo de contracción con activación de las CMLV, se han añadido 40 ng/ml de TNF-α (R&D Systems, Abingdon, England). Después de una incubación de 1 h a 37 °C que permite la polimerización, se han despegado las matrices dando golpecitos suaves sobre los bordes de la placa, con el fin de iniciar la contracción. Para determinar el grado de contracción del gel, se han realizado fotografías los días 2 y 4, con el fin de medir la superficie de la matriz. Se han comparado los resultados obtenidos con los sueros de sujetos sanos y de pacientes. Se han analizado veinte sueros en cada experimento; los diferentes ensayos de contracción se han verificado gracias al SVF y a un suero de referencia utilizado por duplicado. Este control permitía verificar la buena reproductibilidad del ensayo. Las medidas se han efectuado gracias al programa Image J (Nacional Institute of Health NIH, Estados Unidos).

45 Resultados

Inmunotransferencia 1D

En un primer tiempo, los inventores han ensayado por separado las reactividades de IgG de los sueros de 15 pacientes en cada grupo y de 15 sujetos sanos en inmunotransferencia 1D a una dilución de 1/100. Se han puesto en evidencia numerosas reactividades con los sueros de pacientes (ScS, HTAP-ScS, HTAPi) de las cuales algunas eran muy intensas en comparación con los sueros de sujetos sanos que no presentaban casi ninguna banda de inmunorreactividad de IgG. El número de las bandas de reactividad era más importante en el caso de los pacientes esclerodérmicos con o sin HTAP que en el caso de los pacientes que tienen una HTAPi. Además, ciertas bandas de reactividades parecían específicas de un grupo de enfermos dado, en particular una banda de aproximadamente 90 kDa en ciertos pacientes esclerodérmicos con o sin HTAP (Figura 1). Con el fin de identificar las dianas antigénicas de las IgG anti-CMVL de los pacientes, los inventores han efectuado después las inmunotransferencias 2D.

Cartografía de las proteínas de CMLV después de la separación en dos dimensiones

Después de haber hecho migrar 100 µg de extractos proteicos de CMLV preparados como se describe en la sección Materiales y métodos, los inventores han podido separar y después teñir con nitrato de plata 880 manchas proteicas y obtener el gel representado en la figura 2. Los inventores han podido estimar el PM y el pHi de cada una de estas manchas proteicas después de un análisis informático según su disposición en el gel y con ayuda de marcadores de PM; las manchas tenían mayoritariamente un PM comprendido entre 10 y 125 kDa y un pHi comprendido entre 3 y 8.

Inmunotransferencia 2D de las IgG séricas de sujetos sanos y de pacientes con respecto a proteínas de células musculares lisas vasculares

Se han identificado 635 reactividades después del emparejamiento de las reactividades presentes sobre cada una de las dieciséis membranas de PVDF con el gel de referencia, considerando las reactividades de las IgG séricas de los conjuntos de tres pacientes y las del conjunto de sujetos sanos adicionadas.

Sujetos sanos

5

15

20

35

Se han mezclado los sueros de 12 sujetos sanos y se han analizado sus reactividades. Las IgG de estos sujetos reconocían 150 manchas proteicas de CMVL (Figura 3). Veintiuna manchas proteicas eran específicas de los sujetos sanos (no reconocidas por los pacientes).

Pacientes esclerodérmicos

Los 5 conjuntos de 3 sueros de pacientes afectados de ScS sin HTAP reconocían una media de 127 ± 26 manchas proteicas (figura 3) y un total de 367 manchas diferentes. El 71 % de estas manchas no eran reconocidas por los sujetos sanos. Entre estas 367 manchas, 13 eran comunes a los 5 conjuntos de pacientes esclerodérmicos (de las cuales una sola no era reconocida por los sujetos sanos), 18 comunes a 4 conjuntos sobre 5 (de las cuales 7 no eran reconocidas por los sujetos sanos) y 39 comunes a 3 conjuntos sobre 5 (de las cuales 19 no eran reconocidas por los sujetos sanos) (figura 4).

Las manchas proteicas comunes a los 5 conjuntos de pacientes ScS sin HTAP eran todas igualmente reconocidas por ciertos conjuntos de pacientes afectados de HTAPi y de HTAP-ScS. Sobre las 18 manchas proteicas reconocidas por 4/5 de los conjuntos de pacientes ScS, 9 eran igualmente reconocidas por al menos 3/5 de los conjuntos de pacientes de cada uno de los otros dos grupos de enfermos (de las cuales 3 no eran reconocidas por los sujetos sanos), 5 eran reconocidas por al menos 3/5 de los conjuntos de los pacientes HTAP-ScS (de las cuales una no era reconocida por los sujetos sanos), y 3 eran reconocidas por al menos 3/5 de los conjuntos de los pacientes HTAPi (de las cuales 2 no eran reconocidas por los sujetos sanos). Una mancha (5325) era reconocida por un solo conjunto de pacientes HTAP-ScS, por ningún conjunto de pacientes HTAPi y por ningún conjunto de sujetos sanos.

Las IgG de los 5 conjuntos de 3 sueros de pacientes afectados de HTAP-ScS reconocían una media de 145 ± 48 manchas proteicas (figura 4). En total, 264 manchas proteicas diferentes eran reconocidas por las IgG séricas de estos pacientes, de las cuales el 77 % no eran reconocidas por las IgG de los sujetos sanos. Entre estas 264 manchas proteicas, 19 eran comunes a los 5 conjuntos de pacientes HTAP-ScS (de las cuales 2 no eran reconocidas por los sujetos sanos), 29 comunes a 4/5 de los conjuntos (de las cuales 9 no eran reconocidas por los sujetos sanos) y 47 comunes a 3/5 de los conjuntos (de las cuales 30 no eran reconocidas por los sujetos sanos) (figura 4).

Las manchas proteicas comunes a los 5 conjuntos de pacientes HTAP-ScS eran igualmente mayoritariamente reconocidas por los pacientes afectados de HTAPi y de HTAP-ScS. Más precisamente, 16 manchas eran reconocidas por al menos 3/5 de los conjuntos de pacientes de los otros dos grupos (de las cuales 1 sola no era reconocida por los sujetos sanos), 3 eran reconocidas por al menos 3/5 de los conjuntos de pacientes HTAPi (de las cuales 1 sola no era reconocida por los sujetos sanos) y 1 mancha era reconocida por al menos 3/5 de los conjuntos de pacientes ScS.

Contrariamente a los pacientes afectados de ScS, la mayoría de las manchas reconocidas por 4/5 de los conjuntos de pacientes HTAP-ScS eran reconocidas por menos de 40 % de los enfermos de los otros dos grupos. Más precisamente, 12 manchas eran reconocidas por menos de 40 % de los enfermos de los otros dos grupos, de las cuales 5 manchas no eran reconocidas por los pacientes ScS (4658, 5206, 4831, 4707, 4659) y 3 manchas no eran reconocidas por los pacientes HTAPi (4656, 5190, 4707). 9 manchas eran reconocidas por al menos 3/5 de los conjuntos de los pacientes ScS y HTAPi (de las cuales 2 no eran reconocidas por los sujetos sanos), 5 eran reconocidas por al menos 3/5 de los pacientes HTAPi (de las cuales 1 no era reconocida por los sujetos sanos) y 3 eran reconocidas por al menos 3/5 de los pacientes ScS (estas 3 manchas eran todas igualmente reconocidas por los sujetos sanos).

Pacientes afectados de HTAP idiopática

5

10

15

20

25

30

Las IgG de los 5 conjuntos de 3 sueros de pacientes afectados de HTAPi reconocían una media de 130 ± 25 manchas proteicas (figura 3). En total, 356 manchas proteicas diferentes eran reconocidas por las IgG de estos pacientes, y el 70 % no eran reconocidas por las IgG de los sujetos sanos. Entre estas 356 manchas proteicas, 12 eran comunes a los 5 conjuntos de pacientes (pero todas eran reconocidas por los sujetos sanos), 24 comunes a 4/5 de los conjuntos (de las cuales 7 no eran reconocidas por los sujetos sanos) y 54 comunes a 3/5 de los conjuntos (de las cuales 31 no eran reconocidas por los sujetos sanos) (figura 4).

Las manchas proteicas comunes a los 5 conjuntos de pacientes HTAPi eran igualmente mayoritariamente reconocidas por los conjuntos de pacientes afectados de HTAPi o de HTAP-ScS. Más precisamente, 10 eran igualmente reconocidas por al menos 3/5 de los conjuntos de los pacientes ScS y de los pacientes HTAP-ScS, una era reconocida igualmente por al menos 3/5 de los conjuntos de los pacientes ScS y otra por al menos 3/5 de los conjuntos de los pacientes HTAP-ScS.

Las manchas proteicas reconocidas por 4/5 de los conjuntos de sueros de pacientes HTAPi eran mayoritariamente compartidas con los otros 2 grupos de enfermos. Más precisamente, 15 manchas eran igualmente reconocidas por al menos 3/5 de los conjuntos de los pacientes ScS y 3/5 de los conjuntos de los pacientes HTAP-ScS (de las cuales 4 no eran reconocidas por los sujetos sanos), 3 manchas eran igualmente reconocidas por al menos 3/5 de los conjuntos de los pacientes ScS (de las cuales una no era reconocida por los sujetos sanos) y una era también reconocida por al menos 3/5 de los conjuntos de los pacientes HTAP-ScS (y por los sujetos sanos). 5 manchas eran reconocidas por menos del 40 % de los conjuntos de los pacientes ScS o HTAP-ScS (de las cuales 4 no eran reconocidas por los sujetos sanos). Entre estas 4 manchas, una no era reconocida por los pacientes ScS (4735).

Comparación de las reactividades de las IgG de pacientes esclerodérmicos con o sin HTAP, de pacientes que tienen una HTAP idiopática y de sujetos sanos e identificación de los antígenos específicos de un grupo de enfermos

Los inventores han comparado los perfiles de reactividad de las IgG del conjunto de sueros de sujetos sanos y de los conjuntos de sueros de pacientes con respecto a las proteínas de CMLV. Cualquiera que sea el grupo de pacientes, la mayor parte de las manchas proteicas no reconocidas por las IgG de sujetos sanos lo eran por un único grupo de pacientes sobre 5 (figura 5). Seleccionando las manchas proteicas reconocidas por al menos 3/5 de los conjuntos de sueros de pacientes de un grupo dado y no por el conjunto de los sujetos sanos, los inventores han identificado 21 manchas proteicas de interés (tabla 1). Aunque el resultado de todas las manchas proteicas digeridas no se ha obtenido todavía, se han podido identificar 13 manchas proteicas interesantes. La localización de estas manchas proteicas sobre el gel de referencia está indicada en la figura 6. Dos manchas (5190, 5325) parecen específicas de la ScS puesto que son reconocidas respectivamente por 3/5 y 4/5 de los conjuntos de pacientes ScS y 4/5 y 1/5 de los conjuntos de pacientes HTAP-ScS, pero por ningún conjunto de pacientes HTAPi. Una de ellas (5325) ha sido identificada como la galectina.

Tabla 1: Identificación de las manchas proteicas reconocidas por las IgG de al menos 4/5 de los conjuntos de pacientes de un grupo dado y no por las IgG del conjunto de sujetos sanos. La identificación de un mismo antígeno candidato para manchas diferentes corresponde a la detección de isoformas de la proteína.

Mancha	pHi	PM (kDa)	Antígeno candidato	pacient	o de conju es que rec el antígen HTAP- ScS	conocen	Nombre y número de acceso Swissprot de los antígenos candidatos
4484	6,7	82	Precursor de la proteína de 78 kDa regulada por la glucosa	4	(n=5) 0	3	GRP78_HUMAN P11021 (SEQ. ID. NO: 18)
4488	488 6,8 81 735 5,5 51		Caldesmona	2	2	4	CALD1_HUMAN Q05682 (SEQ. ID. NO: 5)
4735			Proteína FAM10A4	0	2	4	F10A4_HUMAN Q81ZP2 (SEQ. ID. NO: 6)
4787			Actina citoplásmica 2	3	3	4	ACTG_HUMAN P63261 (SEQ. ID. NO: 8)
4660	6,2	60	Precursor A3 de la proteína disulfuro-isomerasa, Desmina,	1	4	1	PDIA3_HUMAN
			Periferina				PERI_HUMAN P41219 (SEQ. ID. NO: 12)
4691	6,4	56	Ribonucleoproteína H nuclear heterogénea	1	4	1	HNRH1_HUMAN P31943 (SEQ. ID. NO: 13)

Identificación de los antígenos diana de las IgG anti-CMLV reconocidos con una intensidad significativamente mayor en los enfermos que en los sujetos sanos

5

10

En un segundo tiempo los inventores han identificado las manchas proteicas de CMLV reconocidas por las IgG de conjuntos de 3 sueros de pacientes y por las IgG del conjunto de sujetos sanos, con la condición que estas manchas proteicas sean reconocidas con una gran intensidad por las IgG de un gran número de conjuntos de 3 sueros de pacientes y con una intensidad mayor que los sujetos sanos. Veintisiete manchas proteicas han respondido a estos criterios (Tabla 2). Las reactividades de las IgG séricas de los diferentes grupos de enfermos con respecto a las manchas proteicas 4576, 4570 y 4576 identificadas como las isoformas de la fosfoproteína inducida por el estrés y con respecto a la mancha 4738 identificada como la α-enolasa se representan en la figura 7. La región seleccionada se representa en la figura 6.

Tabla 2: Identificación de las manchas proteicas reconocidas con una intensidad significativamente mayor en los pacientes que en los sujetos sanos

Mancha	рНі	PM (kDa)	Antígeno candidato	Núme paciente	ro de conju es que reco antígeno	onocen el	Nombre y número de acceso Swissprot de los antígenos
				ScS (n=5)	HTAP- ScS (n=5)	HTAPi (n=5)	candidatos
4757	5,2	49	Vimentina	5	4	5	VIME_HUMAN P08670 (SEQ. ID. NO: 19)
4576	6,9	70	Fosfoproteína 1 inducida por el estrés	5	4	5	STIP1_HUMAN P31948 (SEQ. ID. NO: 14)
4570	7,1	70	Fosfoproteína 1 inducida por el estrés	5	5	5	STIP1_HUMAN P31948 (SEQ. ID. NO: 14)
4575	6,8	70	Fosfoproteína 1 inducida por el estrés	5	4	5	STIP1_HUMAN P31948 (SEQ. ID. NO: 14)
4538	7,4	51	α-enolasa	5	5	5	ENOA_HUMAN P06733 (SEQ. ID. NO: 20)
5052	6,7	27	Triosafosfato isomerasa	3	2	2	TPIS_HUMAN P60174 (SEQ. ID. NO: 15)
4536	6,1	74	Precursor de la albúmina sérica	4	4	4	ALBU_HUMAN P02768 (SEQ. ID. NO: 1)
5063	5,8	26	Isozima L1 de la carboxilo- terminal hidrolasa de ubiquitina	4	1	3	UCHL1_HUMAN P09936 (SEQ. ID. NO: 4)
5064	5,9	26	Isozima L1 de la carboxilo- terminal hidrolasa de ubiquitina	4	1	4	UCHL1_HUMAN P09936 (SEQ. ID. NO: 4)
4463	6,7	85	Zixina	4	3	4	ZYX_HUMAN Q15942 (SEQ. ID. NO: 2)
4539	6,2	73	Precursor de la albúmina sérica	4	4	4	ALBU_HUMAN P02768 (SEQ. ID. NO: 1)
5325	5,4	15	Galectina-1	4	0	1	LEG1_HUMAN P09382 (SEQ. ID. NO: 3)
4734	7,0	51	α-enolasa	4	1	5	ENOA_HUMAN P06733 (SEQ. ID. NO: 20)
5047	6,8	27	Peroxiredoxina-6	2	5	4	PRDX6_HUMAN P30041 (SEQ. ID. NO: 16)
4441	7,4	89	Proteína 2 (proteína 2 de unión al elemento aguas arriba Far)	3	4	3	FUBP2_HUMAN Q92945 (SEQ. ID. NO: 7)
4446	7,2	89	Proteína 2 (proteína 2 de unión al elemento aguas arriba Far)	3	4	2	FUBP2_HUMAN Q92945 (SEQ. ID. NO: 7)
4833	4,9	43	Precursor de la reticulocalbina-1	2	3	5	RCN1_HUMAN Q15293 (SEQ. ID. NO: 17)
4747	5,2	50	γ-enolasa Vimentina	1	3	5	ENOG_HUMAN P009104 (SEQ. ID. NO: 9) VIME_HUMAN P08670 (SEQ. ID. NO: 19)

Valoración con ELISA de anticuerpos anti-STIP1

Los inventores han puesto en evidencia que 56/75 (74,6 %) pacientes esclerodérmicos, 24/74 (32,4 %) pacientes con una HTAPi, 27/37 (73 %) pacientes con una HTAP-ScS y 2/70 (2,8 %) sujetos sanos tenían anticuerpos anti-STIP1. Por lo tanto casi las tres cuartas partes de los pacientes esclerodérmicos, tuvieran o no una HTAP y casi un tercio de los pacientes afectados de HTAPi tenían anticuerpos anti-STIP1, mientras que por regla general estos anticuerpos estaban ausentes en los sujetos sanos.

Efecto de los sueros o de las IgG purificadas de pacientes frente a sujetos sanos sobre la contracción de las CMLV o de los fibroblastos

Los inventores han determinado si los sueros y/o las IgG séricas de pacientes que tienen una ScS y/o una HTAP tenían un efecto sobre la contracción de las CMLV y de los fibroblastos, fenómeno implicado en el remodelado vascular y en la movilidad de las células. Para esto, se han sembrado las células en una matriz de colágeno, y se han incubado en presencia de 1 % de SVF, de sueros, o de IgG purificadas de pacientes que tenían una ScS y/o una HTAP frente a los de sujetos sanos. La retracción cuantificable de la matriz de colágeno refleja la actividad contráctil de las células. El experimento se ha realizado a partir de células sanas y no activadas. Se ha seguido la cinética de contracción de las matrices de colágeno durante 4 días para las CMLV y durante 7 días para los fibroblastos. Los resultados obtenidos con las CMLV se presentan en la figura 9.

CMLV

5

20

40

45

50

55

Para estas células, se han analizado los sueros de 15 pacientes de cada condición patológica (ScS, HTAPi, ScS-HTAP) y de 15 sujetos sanos así como las IgG purificadas de 10 de estos 15 pacientes y de 10 de estos 15 sujetos sanos. El SVF utilizado por duplicado, ha permitido ponderar entre sí los diferentes ensayos. La cinética de contracción de las matrices de colágeno se ha seguido durante 4 días, los experimentos preliminares habían puesto en evidencia que las modificaciones observadas más allá de esto eran mínimas (Figura 9B); las superficies de las matrices de colágeno se han medido los días 2 y 4 con ayuda del programa Image J y se han calculado en porcentaje de la superficie de la matriz inicial.

El día 4 (J4), la media de las superficies de las 15 matrices (en % de la superficie inicial) incubadas con el suero era de 27,8 % ± 6,0 para los ScS, 31,1 % ± 8,3 para los HTAPi, 29,4 % ± 4,7 para los ScS-HTAP, y 34,3 % ± 7,1 para los sujetos sanos. Las 15 superficies de las matrices de colágeno incubadas con el suero de los pacientes ScS diferían significativamente en comparación con las superficies de las 15 matrices incubadas con el suero de los sujetos sanos (p = 0,012). En cambio, las diferencias entre las superficies obtenidas en presencia de los otros dos grupos de sueros de pacientes (HTAPi, ScS-HTAP) y el grupo de sueros de los sujetos sanos no eran significativas.

El día 4, la media de las superficies de las 10 matrices (en % de la superficie inicial) incubadas con las IgG purificadas era de $53.9 \% \pm 8.2$ para los ScS, $48.0 \% \pm 3.2$ para los HTAPi, $55.8 \% \pm 8.9$ para los ScS-HTAP, y $34.3 \% \pm 8.6$ para los sujetos sanos. Se nota una diferencia significativa entre las matrices incubadas con las IgG purificadas de pacientes HTAPi y las incubadas con las IgG de sujetos sanos (p = 0.001).

35 Si se comparan entre sí los dos experimentos (Figura 9B1 vs 9B2), se observa que las matrices incubadas con las IgG purificadas se retraían menos que las incubadas con los sueros.

Ejemplo 2

Los inventores han sometido las muestras de los pacientes afectados de una ScS, de una HTAP-ScS o de una HTAPi, así como las muestras de sujetos sanos, a otro análisis de sus reactividades con el fin de afinar los resultados obtenidos y de identificar otros anticuerpos anti-CMLV.

Este estudio ha permitido poner en evidencia reactividades contra la peroxirredoxina-2 (mancha 5122; Swissprot: PRDX2_HUMAN, n°P32119; SEQ ID NO:21), el precursor mitocondrial de la peróxido-reductasa dependiente de la tioredoxina (Precursor mitocondrial de la peróxido-reductasa dependiente de la tioredoxina; mancha 5096; Swissprot: PRDX3_HUMAN, n°P30048; SEQ ID NO:22), de la proteína de activación de GTPasa específica de Ran (Proteína de activación de GTPasa específica de Ran; mancha 5024; Swissprot: RANG_HUMAN, n°P43487; SEQ ID NO:23) y de la proteína B1 del grupo de alta movilidad (mancha 5011; Swissprot: HMGB1_HUMAN, n°P09429; SEQ ID NO:24). Las reactividades contra la cadena beta de la tubulina y contra la polimerasa I y factor de liberación de la transcripción en la mancha 4672. Entre estas reactividades, las dirigidas contra la peroxiredoxina-2, la cadena beta de la tubulina y la polimerasa I y factor de liberación de la transcripción están específicamente presentes en las IgG de los conjuntos de pacientes, y no en las IgG del conjunto de sujetos sanos. Las reactividades contra el precursor mitocondrial de la peróxido-reductasa dependiente de la tioredoxina, la proteína de activación de GTPasa específica de Ran y la proteína B1 del grupo de alta movilidad han sido identificadas en los conjuntos de pacientes y de sujetos sanos, pero de manera significativamente más elevada en los pacientes.

Además, los resultados que se presentan en el ejemplo 1 han podido ser afinados. Los inventores han podido demostrar así que los anticuerpos anti-actina citoplásmica 2 están presentes en los conjuntos de pacientes y de sujetos sanos, pero de manera significativamente más elevada en los pacientes. Han podido demostrar igualmente

la existencia de reactividad contra la galectina 1 y la zixina en las IgG de los conjuntos de pacientes, y no en las IgG del conjunto de sujetos sanos.

Referencias

Bordron et al, 1998, Arthritis and rheumatism, 41 (10):1738-47

5 Chizzolini et al, 2002, Arthritis and rheumatism, 46(6):1602-13

Dorfmuller et al, 2003, Eur Respir J, 22(2):358-63

Garcia de la Pena-Lefebvre et al, 2004, Clin Immunol, 111 (3):241 -51

Hachulla et al, 2005, Arthritis and rheumatism, 52(12):3792-800

Henault et al, 2006, Arthritis and rheumatism, 54(3):963-73

10 Moroi et al, 1980, Proceedings of the Nacional Academy of Sciences of the United States of America, 77(3): 1627-31

Mouthon et al, 2005, Eur Respir J, 26(6):986-8

Nicolls MR et al, 2005, Eur Respir J, 26(6):1110-8

Rabilloud et al, 1990, Electrophoresis, 11 (10):785-94

Rubin, 1997, N Engl J Med, 336(2):111 -7

15 Servettaz et al, Clinical immunology, 120(2):212-9

Tamby et al, 2005, Thorax 60(9):765-72

Tamby et al, 2006, Eur Respir J, 28(4):799-807

Tamby et al, 2007, Annals of the New York Academy of Sciences, 1109:221-8

Terrier et al, 2008, Am. J. Respir. Crit. Care Med., 177: 1128-1134

20 Weksler et al, 2005 Faseb J, 19(13):1872-4

LISTA DE SECUENCIAS

<110> ASSISTANCE PUBLIQUE - HOPITAUX DE PARIS UNIVERSITE RENE DESCARTES - PARIS 5 UNIVERSITE PARIS-SUD 11

<120> Procedimiento de diagnóstico de una esclerodermia sistémica o de una hipertensión arterial pulmonar

<130> B762PC00

<160> 24

5

10 <170> Patentln versión 3.3

<210> 1

<211>609

<212> PRT

15 <213> Homo sapiens

<400> 1

Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala 1 5 10 15

Tyr Ser Arg Gly Val Phe Arg Arg Asp Ala His Lys Ser Glu Val Ala 20 25 30

His Arg Phe Lys Asp Leu Gly Glu Glu Asn Phe Lys Ala Leu Val Leu 35 40 45

Ile Ala Phe Ala Gln Tyr Leu Gln Gln Cys Pro Phe Glu Asp His Val 50 55 60

Lys Leu Val Asn Glu Val Thr Glu Phe Ala Lys Thr Cys Val Ala Asp 70 75 80

Glu Ser Ala Glu Asn Cys Asp Lys Ser Leu His Thr Leu Phe Gly Asp 85 90 95

Lys Leu Cys Thr Val Ala Thr Leu Arg Glu Thr Tyr Gly Glu Met Ala 100 105 110

Asp Cys Cys Ala Lys Gln Glu Pro Glu Arg Asn Glu Cys Phe Leu Gln 115 120 125

His Lys Asp Asp Asn Pro Asn Leu Pro Arg Leu Val Arg Pro Glu Val
130 135 140

Asp Val Met Cys Thr Ala Phe His Asp Asn Glu Glu Thr Phe Leu Lys
145 150 155 160

Lys	Tyr	Leu	Tyr	Glu 165	Ile	Ala	Arg	Arg	His 170	Pro	Tyr	Phe	Tyr	Ala 175	Pro
Glu	Leu	Leu	Phe 180	Phe	Ala	Lys	Arg	Tyr 185	Lys	Ala	Ala	Phe	Thr 190	Glu	Cys
Cys	Gln	Ala 195	Ala	Asp	Lys	Ala	Ala 200	Cys	Leu	Leu	Pro	Lys 205	Leu	Asp	Glu
Leu	Arg 210	Asp	Glu	Gly	Lys	Ala 215	Ser	Ser	Ala	Lys	Gln 220	Arg	Leu	Lys	Cys
Ala 225	Ser	Leu	Gln	Lys	Phe 230	Gly	Glu	Arg	Ala	Phe 235	Lys	Ala	Trp	Ala	Val 240
Ala	Arg	Leu	Ser	Gln 245	Arg	Phe	Pro	Lys	Ala 250	Glu	Phe	Ala	Glu	Val 255	Ser
Lys	Leu	Val	Thr 260	Asp	Leu	Thr	Lys	Val 265	His	Thr	Glu	Cys	Cys 270	His	Gly
Asp	Leu	Leu 275	Glu	Cys	Ala	Asp	Asp 280	Arg	Ala	Asp	Leu	Ala 285	Lys	Tyr	Ile
Суѕ	Glu 290	Asn	Gln	Asp	Ser	Ile 295	Ser	Ser	Lys	Leu	Lys 300	Glu	Cys	Cys	Glu
Lys 305	Pro	Leu	Leu	Glu	Lys 310	Ser	His	Cys	Ile	Ala 315	Glu	Val	Glu	Asn	Asp 320
Glu	Met	Pro	Ala	Asp 325	Leu	Pro	Ser	Leu	Ala 330	Ala	Asp	Phe	Val	Glu 335	Ser
Lys	Asp	Val	Cys 340	Lys	Asn	Tyr	Ala	Glu 345	Ala	Lys	Asp	Val	Phe 350	Leu	Gly
Met	Phe	Leu 355	Tyr	Glu	Tyr	Ala	Arg 360	Arg	His	Pro	Asp	Tyr 365	Ser	Val	Val
Leu	Leu 370	Leu	Arg	Leu	Ala	Lys 375	Thr	Tyr	Glu	Thr	Thr 380	Leu	Glu	Lys	Cys
Cys 385	Ala	Ala	Ala	Asp	Pro 390	His	Glu	Cys	Tyr	Ala 395	Lys	Val	Phe	Asp	Glu 400

Phe Lys Pro Leu Val Glu Glu Pro Gln Asn Leu Ile Lys Gln Asn Cys 405 Glu Leu Phe Glu Gln Leu Gly Glu Tyr Lys Phe Gln Asn Ala Leu Leu 425 Val Arg Tyr Thr Lys Lys Val Pro Gln Val Ser Thr Pro Thr Leu Val 435 440 445 Glu Val Ser Arg Asn Leu Gly Lys Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys Ala Glu Asp Tyr Leu Ser Val Val 470 475 Leu Asn Gln Leu Cys Val Leu His Glu Lys Thr Pro Val Ser Asp Arg 485 490 Val Thr Lys Cys Cys Thr Glu Ser Leu Val Asn Arg Arg Pro Cys Phe 505 500 Ser Ala Leu Glu Val Asp Glu Thr Tyr Val Pro Lys Glu Phe Asn Ala 515 520 Glu Thr Phe Thr Phe His Ala Asp Ile Cys Thr Leu Ser Glu Lys Glu 535 Arg Gln Ile Lys Lys Gln Thr Ala Leu Val Glu Leu Val Lys His Lys 545 Pro Lys Ala Thr Lys Glu Gln Leu Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys Ala Asp Asp Lys Glu Thr Cys Phe 580 585 Ala Glu Glu Gly Lys Lys Leu Val Ala Ala Ser Gln Ala Ala Leu Gly 600

Leu

<210> 2 <211> 572 <212> PRT <213> Homo sapiens

<400> 2

Met 1	Ala	Ala	Pro	Arg 5	Pro	Ser	Pro	Ala	Ile 10	Ser	Val	Ser	Val	Ser 15	Ala
Pro	Ala	Phe	Tyr 20	Ala	Pro	Gln	Lys	Lys 25	Phe	Gly	Pro	Val	Val 30	Ala	Pro
Lys	Pro	Lys 35	Val	Asn	Pro	Phe	Arg 40	Pro	Gly	Asp	Ser	Glu 45	Pro	Pro	Pro
Ala	Pro 50	Gly	Ala	Gln	Arg	Ala 55	Gln	Met	Gly	Arg	Val 60	Gly	Glu	Ile	Pro
Pro 65	Pro	Pro	Pro	Glu	Asp 70	Phe	Pro	Leu	Pro	Pro 75	Pro	Pro	Leu	Ala	Gly 80
Asp	Gly	Asp	Asp	Ala 85	Glu	Gly	Ala	Leu	Gly 90	Gly	Ala	Phe	Pro	Pro 95	Pro
Pro	Pro	Pro	Ile 100	Glu	Glu	Ser	Phe	Pro 105	Pro	Ala	Pro	Leu	Glu 110	Glu	Glu
Ile	Phe	Pro 115	Ser	Pro	Pro	Pro	Pro 120	Pro	Glu	Glu	Glu	Gly 125	Gly	Pro	Glu
Ala	Pro 130	Ile	Pro	Pro	Pro	Pro 135	G1n	Pro	Arg	Glu	Lys 140	Val	Ser	Ser	Ile
Asp 145	Leu	Glu	Ile	Asp	Ser 150	Leu	Ser	Ser	Leu	Leu 155	Asp	Asp	Met	Thr	Lys 160
Asn	Asp	Pro	Phe	Lys 165		Arg		Ser		_	_	Val		Pro 175	Pro
Val	Ala	Thr	Pro 180	Phe	Ser	Ser	Lys	Ser 185	Ser	Thr	Lys	Pro	Ala 190	Ala	Gly
Gly	Thr	Ala 195	Pro	Leu	Pro	Pro	Trp 200	Lys	Ser	Pro	Ser	Ser 205	Ser	Gln	Pro
Leu	Pro 210	Gln	Val	Pro	Ala	Pro 215	Ala	Gln	Ser	Gln	Thr 220	Gln	Phe	His	Val
Gln 225	Pro	Gln	Pro	Gln	Pro 230	Lys	Pro	Gln	Val	Gln 235	Leu	His	Val	Gln	Ser 240

Gln	Thr	Gln	Pro	Val 245	Ser	Leu	Ala	Asn	Thr 250	Gln	Pro	Arg	Gly	Pro 255	Pro
Ala	Ser	Ser	Pro 260	Ala	Pro	Ala	Pro	Lys 265	Phe	Ser	Pro	Val	Thr 270	Pro	Lys
Phe	Thr	Pro 275	Val	Ala	Ser	Lys	Phe 280	Ser	Pro	Gly	Ala	Pro 285	Gly	Gly	Ser
Gly	Ser 290	Gln	Pro	Asn	Gln	Lys 295	Leu	Gly	His	Pro	Glu 300	Ala	Leu	Ser	Ala
Gly 305	Thr	Gly	Ser	Pro	Gln 310	Pro	Pro	Ser	Phe	Thr 315	Tyr	Ala	Gln	Gln	Arg 320
Glu	Lys	Pro	Arg	Val 325	Gln	Glu	Lys	Gln	His 330	Pro	Val	Pro	Pro	Pro 335	Ala
Gln	Asn	Gln	Asn 340	Gln	Val	Arg	Ser	Pro 345	Gly	Ala	Pro	Gly	Pro 350	Leu	Thr
Leu	Lys	Glu 355	Val	Glu	Glu	Leu	Glu 360	Gln	Leu	Thr	Gln	Gln 365	Leu	Met	Gln
Asp	Met 370	Glu	His	Pro	Gln	Arg 375	Gln	Asn	Val	Ala	Val 380	Asn	Glu	Leu	Cys
Gly 385	Arg	Cys	His	Gln	Pro 390	Leu	Ala	Arg	Ala	Gln 395	Pro	Ala	Val	Arg	Ala 400
Leu	Gly	Gln	Leu	Phe 405	His	Ile	Ala	Суѕ	Phe 410	Thr	Cys	His	Gln	Cys 415	Ala
Gln	Gln	Leu	Gln 420	Gly	Gln	Gln	Phe	Tyr 425	Ser	Leu	Glu	Gly	Ala 430	Pro	Tyr
Cys	Glu	Gly 435	Cys	Tyr	Thr	Asp	Thr 440	Leu	Glu	Lys	Суз	Asn 445	Thr	Cys	Gly
Glu	Pro 450	Ile	Thr	Asp	Arg	Met 455	Leu	Arg	Ala	Thr	Gly 460	Lys	Ala	Tyr	His
Pro 465	His	Cys	Phe	Thr	Cys 470	Val	Val	Cys	Ala	Arg 475	Pro	Leu	Glu	Gly	Thr 480

Ser	Phe	Ile	· Val	Ası 485		n Al	a As	sn A	Arg	Pro 490	His	Cys	Val	Pro	Asp 495	Tyr
His	Lys	Gln	Туг 500		a Pr	o Ar	.a C		Ser 505	Val	Cys	Ser	Glu	Pro 510	Ile	Met
Pro	Glu	Pro 515		/ Ar	g As	p Gl		nr 7 20	Val	Arg	Val	Val	Ala 525	Leu	Asp	Lys
Asn	Phe 530	His	Met	Lys	з Су	s Ty 53		/S (Cys	Glu	Asp	Cys 540	Gly	Lys	Pro	Leu
Ser 545	Ile	Glu	. Ala	ı Asp	55	_	n Gl	Ly (Cys	Phe	Pro 555	Leu	Asp	Gly	His	Val 560
Leu	Cys	Arg	Lys	: Су: 565		s Th	r Al	la 2	Arg	Ala 570	Gln	Thr				
<210><211><211><212><213>	> 135 > PRT		oiens	30.	,					3,0						
<400> Met	-	Cvs	Glv	Leu	Val	Ala	Ser	Ası	n Le	u As	sn Le	u Lys	s Pro	Glv	Glu	
1		-1-	1	5					10			<u>,</u>		15		
Cys	Leu	Arg	Val 20	Arg	Gly	Glu	Val	Ala 25	a Pr	o As	sp Al	a Lys	s Ser 30	Phe	· Val	
Leu	Asn	Leu 35	Gly	Lys	Asp	Ser	Asn 40	Ası	n Le	u Cy	s Le	u His 45	s Phe	. Asn	Pro	
Arg	Phe 50	Asn	Ala	His	Gly	Asp 55	Ala	Ası	n Th	r Il	e Va 60	l Cys	s Asn	Ser	Lys	
Asp 65	Gly	Gly	Ala	Trp	Gly 70	Thr	Glu	Gla	n Ar	g G1 75		a Val	l Phe	Pro	Phe 80	
Gln	Pro	Gly	Ser	Val 85	Ala	Glu	Val	Су	s Il 90		ır Ph	e Asp	o Gln	Ala 95	Asn	
Leu	Thr	Val	Lys 100	Leu	Pro	Asp	Gly	Ту: 10		u Ph	ne Ly	s Phe	e Pro 110		Arg	
Leu	Asn		Glu	Ala	Ile	Asn	_	Me	t Al	a Al	a As	p Gly	_	Phe	Lys	
	Lys (130	115 Cys V	/al A	la P		sp 35	120					125)			

<210> 4

10

<211> 223

<212> PRT

<212> PRT <213> Homo sapiens <400> 4 Met Gln Leu Lys Pro Met Glu Ile Asn Pro Glu Met Leu Asn Lys Val 10 15 Leu Ser Arg Leu Gly Val Ala Gly Gln Trp Arg Phe Val Asp Val Leu 25 Gly Leu Glu Glu Glu Ser Leu Gly Ser Val Pro Ala Pro Ala Cys Ala 40 Leu Leu Leu Phe Pro Leu Thr Ala Gln His Glu Asn Phe Arg Lys 55 Lys Gln Ile Glu Glu Leu Lys Gly Gln Glu Val Ser Pro Lys Val Tyr Phe Met Lys Gln Thr Ile Gly Asn Ser Cys Gly Thr Ile Gly Leu Ile 90 His Ala Val Ala Asn Asn Gln Asp Lys Leu Gly Phe Glu Asp Gly Ser 100 105 Val Leu Lys Gln Phe Leu Ser Glu Thr Glu Lys Met Ser Pro Glu Asp 115 120 Arg Ala Lys Cys Phe Glu Lys Asn Glu Ala Ile Gln Ala Ala His Asp 135 140 Ala Val Ala Gln Glu Gly Gln Cys Arg Val Asp Asp Lys Val Asn Phe 145 150 155 His Phe Ile Leu Phe Asn Asn Val Asp Gly His Leu Tyr Glu Leu Asp 165 170 Gly Arg Met Pro Phe Pro Val Asn His Gly Ala Ser Ser Glu Asp Thr 185 Leu Leu Lys Asp Ala Ala Lys Val Cys Arg Glu Phe Thr Glu Arg Glu 195 200 205 Gln Gly Glu Val Arg Phe Ser Ala Val Ala Leu Cys Lys Ala Ala 210 215 <210> 5 10 <211> 793

<213> Homo sapiens

<400> 5

145

5

Met Asp Asp Phe Glu Arg Arg Arg Glu Leu Arg Arg Gln Lys Arg Glu

Glu Met Arg Leu Glu Ala Glu Arg Ile Ala Tyr Gln Arg Asn Asp Asp
20

Asp Glu Glu Glu Glu Ala Ala Arg Glu Arg Arg Arg Arg Arg Ala Arg Gln Glu
35

Arg Leu Arg Gln Lys Gln Glu Glu Glu Glu Ser Leu Gly Gln Val Thr Asp
50

Gln Val Glu Val Asn Ala Gln Asn Ser Val Pro Asp Glu Glu Ala Lys
65

Thr Thr Thr Thr Asn Thr Gln Val Glu Gly Arg Arg Arg Ala Ala Phe
95

Leu Glu Arg Leu Ala Arg Arg Gln Lys Gln Glu Glu Glu Arg Arg Asp Asp Glu Ala Ala Phe
95

Leu Glu Arg Leu Ala Arg Arg Glu Glu Arg Arg Gln Lys Arg Leu Gln
110

Glu Ala Leu Glu Arg Gln Lys Gln Lys Glu Phe Asp Pro Thr Ile Thr Asp Ala
115

Ser Leu Ser Leu Pro Ser Arg Arg Met Gln Asn Asp Thr Ala Glu Asn
130

Glu Thr Thr Glu Lys Glu Glu Lys Ser Glu Ser Arg Gln Glu Arg Tyr

Glu Ile Glu Glu Thr Glu Thr Val Thr Lys Ser Tyr Gln Lys Asn Asp

150

Trp Arg Asp Ala Glu Glu Asn Lys Lys Glu Asp Lys Glu Lys Glu Glu 180 185 190

Glu Glu Glu Lys Pro Lys Arg Gly Ser Ile Gly Glu Asn Gln Val 200 Glu Val Met Val Glu Glu Lys Thr Thr Glu Ser Gln Glu Glu Thr Val 210 215 Val Met Ser Leu Lys Asn Gly Gln Ile Ser Ser Glu Glu Pro Lys Gln 230 235 Glu Glu Glu Arg Glu Gln Gly Ser Asp Glu Ile Ser His His Glu Lys 245 250 Met Glu Glu Glu Asp Lys Glu Arg Ala Glu Ala Glu Arg Ala Arg Leu 260 265 Glu Ala Glu Glu Arg Glu Arg Ile Lys Ala Glu Gln Asp Lys Lys Ile 275 280 Ala Asp Glu Arg Ala Arg Ile Glu Ala Glu Glu Lys Ala Ala Ala Gln 290 295 300 Glu Arg Glu Arg Glu Ala Glu Glu Arg Glu Arg Met Arg Glu Glu 305 310 315 320 Glu Lys Arg Ala Ala Glu Glu Arg Gln Arg Ile Lys Glu Glu Glu Lys 325 330 335 Arg Ala Ala Glu Glu Arg Gln Arg Ile Lys Glu Glu Glu Lys Arg Ala 340 345 350 Ala Glu Glu Arg Gln Arg Ile Lys Glu Glu Lys Arg Ala Ala Glu 355 360 365 Glu Arg Gln Arg Ala Arg Ala Glu Glu Glu Lys Ala Lys Val Glu 370 375 380 Glu Gln Lys Arg Asn Lys Gln Leu Glu Glu Lys Lys Arg Ala Met Gln 390 395 400 385 Glu Thr Lys Ile Lys Gly Glu Lys Val Glu Gln Lys Ile Glu Gly Lys 405 410 415 Trp Val Asn Glu Lys Lys Ala Gln Glu Asp Lys Leu Gln Thr Ala Val 420 425 430

Leu	Lys	Lys 435	Gln	Gly	Glu	Glu	Lys 440	Gly	Thr	Lys	Val	Gln 445	Ala	Lys	Arg
Glu	Lys 450	Leu	Gln	Glu	Asp	Lys 455	Pro	Thr	Phe	Lys	Lys 460	Glu	Glu	Ile	Lys
Asp 465	Glu	Lys	Ile	Lys	Lys 470	Asp	Lys	Glu	Pro	Lys 475	Glu	Glu	Val	Lys	Ser 480
Phe	Met	Asp	Arg	Lys 485	Lys	Gly	Phe	Thr	Glu 490	Val	Lys	Ser	Gln	Asn 495	Gly
Glu	Phe	Met	Thr 500	His	Lys	Leu	Lys	His 505	Thr	Glu	Asn	Thr	Phe 510	Ser	Arg
Pro	Gly	Gly 515	Arg	Ala	Ser	Val	Asp 520	Thr	Lys	Glu	Ala	Glu 525	Gly	Ala	Pro
Gln	Val 530	Glu	Ala	Gly	Lys	Arg 535	Leu	Glu	Glu	Leu	Arg 540	Arg	Arg	Arg	Gly
Glu 545	Thr	Glu	Ser	Glu	Glu 550	Phe	Glu	Lys	Leu	Lys 555	Gln	Lys	Gln	Gln	Glu 560
Ala	Ala	Leu	Glu	Leu 565	Glu	Glu	Leu	Lys	Lys 570	Lys	Arg	Glu	Glu	Arg 575	Arg
Lys	Val	Leu	Glu 580	Glu	Glu	Glu	Gln	Arg 585	Arg	Lys	Gln	Glu	Glu 590	Ala	Asp
Arg	Lys	Leu 595	Arg	Glu	Glu	Glu	Glu 600	Lys	Arg	Arg	Leu	Lys 605	Glu	Glu	Ile
Glu	Arg 610	Arg	Arg	Ala	Glu	Ala 615	Ala	Glu	Lys	Arg	Gln 620	Lys	Met	Pro	Glu
Asp 625	Gly	Leu	Ser	Asp	Asp 630	Lys	Lys	Pro	Phe	Lys 635	Суѕ	Phe	Thr	Pro	Lys 640
Gly	Ser	Ser	Leu	Lys 645	Ile	Glu	Glu	Arg	Ala 650	Glu	Phe	Leu	Asn	Lys 655	Ser
Val	Gln	Lys	Ser 660	Ser	Gly	Val	Lys	Ser 665	Thr	His	Gln	Ala	Ala 670	Ile	Val

Ser Lys Ile Asp Ser Arg Leu Glu Gln Tyr Thr Ser Ala Ile Glu Gly 680 Thr Lys Ser Ala Lys Pro Thr Lys Pro Ala Ala Ser Asp Leu Pro Val 690 695 Pro Ala Glu Gly Val Arg Asn Ile Lys Ser Met Trp Glu Lys Gly Asn 705 710 715 Val Phe Ser Ser Pro Thr Ala Ala Gly Thr Pro Asn Lys Glu Thr Ala 725 730 Gly Leu Lys Val Gly Val Ser Ser Arg Ile Asn Glu Trp Leu Thr Lys 740 745 Thr Pro Asp Gly Asn Lys Ser Pro Ala Pro Lys Pro Ser Asp Leu Arg 755 760 765 Pro Gly Asp Val Ser Ser Lys Arg Asn Leu Trp Glu Lys Gln Ser Val 770 775 780 Asp Lys Val Thr Ser Pro Thr Lys Val <210> 6 <211> 240 <212> PRT <213> Homo sapiens <400>6 Met Asp Pro Arg Lys Val Asn Glu Leu Arg Ala Phe Val Lys Met Cys Lys Lys Asp Pro Ser Ile Leu His Thr Gln Glu Met Arg Phe Leu Arg Glu Trp Val Glu Ser Met Gly Gly Thr Ala Thr Gln Lys Ala Lys Ser 35 40 Glu Glu Asn Thr Lys Glu Glu Lys Pro Asp Ser Lys Val Glu Glu Asp 50 55 Leu Lys Ala Asp Glu Pro Ser Ser Glu Glu Ser Asp Leu Glu Ile Asp 75 70 65 8.0 Lys Glu Gly Val Ile Glu Pro Asp Thr Asp Ala Pro Gln Glu Met Gly 90 85

Asp	Glu	Asn	Ala 100	Glu	Ile	Thr	Glu	Glu 105	Val	Met	Asp	Gln	Ala 110	Asn	Asp
Lys	Lys	Val 115	Ala	Ala	Ile	Glu	Ala 120	Leu	Asn	Asp	Gly	Glu 125	Leu	Gln	Lys
Ala	Ile 130	Asp	Leu	Phe	Thr	Asp 135	Ala	Ile	Lys	Leu	Asn 140	Pro	Arg	Leu	Ala
Ile 145	Leu	Tyr	Ala	Lys	Arg 150	Ala	Ser	Val	Phe	Val 155	Lys	Leu	Gln	Lys	Pro 160
Asn	Ala	Ala	Ile	Arg 165	Asp	Cys	Asp	Arg	Ala 170	Ile	Glu	Ile	Asn	Pro 175	Asp
Ser	Ala	Gln	Pro 180	Tyr	Lys	Arg	Arg	Gly 185	Lys	Ala	His	Arg	Leu 190	Leu	Gly
His	Trp	Glu 195	Glu	Ala	Ala	His	Asp 200	Leu	Ala	Leu	Ala	Cys 205	Lys	Phe	Asp
Tyr	Asp 210	Glu	Asp	Ala	Ser	Ala 215	Met	Leu	Lys	Glu	Val 220	Gln	Pro	Arg	Ala
225		Ile	Ala	Glu	His 230	Gln	Arg	Lys	Tyr	Glu 235	Arg	Lys	Arg	Glu	Glu 240
<210><211><211><212><213>	> 710 > PRT		iens												
<400>	> 7														
Met 1	Ser	Asp	Tyr	Ser 5	Thr	Gly	Gly	Pro	Pro 10	Pro	Gly	Pro	Pro	Pro 15	Pro
Ala	Gly	Gly	Gly 20	Gly	Gly	Ala	Gly	Gly 25	Ala	Gly	Gly	Gly	Pro 30	Pro	Pro
Gly	Pro	Pro 35	Gly	Ala	Gly	Asp	Arg 40	Gly	Gly	Gly	Gly	Pro 45	Cys	Gly	Gly
Gly	Pro 50	Gly	Gly	Gly	Ser	Ala 55	Gly	Gly	Pro	Ser	Gln 60	Pro	Pro	Gly	Gly

Gly 65	Gly	Pro	Gly	Ile	Arg 70	Lys	Asp	Ala	Phe	Ala 75	Asp	Ala	Val	Gln	Arg 80
Ala	Arg	Gln	Ile	Ala 85	Ala	Lys	Ile	Gly	Gly 90	Asp	Ala	Ala	Thr	Thr 95	Val
Asn	Asn	Ser	Thr 100	Pro	Asp	Phe	Gly	Phe 105	Gly	Gly	Gln	Lys	Arg 110	Gln	Leu
Glu	Asp	Gly 115	Asp	Gln	Pro	Glu	Ser 120	Lys	Lys	Leu	Ala	Ser 125	Gln	Gly	Asp
Ser	Ile 130	Ser	Ser	Gln	Leu	Gly 135	Pro	Ile	His	Pro	Pro 140	Pro	Arg	Thr	Ser
Met 145	Thr	Glu	Glu	Tyr	Arg 150	Val	Pro	Asp	Gly	Met 155	Val	Gly	Leu	Ile	Ile 160
Gly	Arg	Gly	Gly	Glu 165	Gln	Ile	Asn	Lys	Ile 170	Gln	Gln	Asp	Ser	Gly 175	Cys
Lys	Val	Gln	Ile 180	Ser	Pro	Asp	Ser	Gly 185	Gly	Leu	Pro	Glu	Arg 190	Ser	Val
Ser	Leu	Thr 195	Gly	Ala	Pro	Glu	Ser 200	Val	Gln	Lys	Ala	Lys 205	Met	Met	Leu
Asp	Asp 210	Ile	Val	Ser	Arg	Gly 215	Arg	Gly	Gly	Pro	Pro 220	Gly	Gln	Phe	His
Asp 225	Asn	Ala	Asn	Gly	Gly 230	Gln	Asn	Gly	Thr	Val 235	Gln	Glu	Ile	Met	Ile 240
Pro	Ala	Gly	Lys	Ala 245	Gly	Leu	Val	Ile	Gly 250	Lys	Gly	Gly	Glu	Thr 255	Ile
Lys	Gln	Leu	Gln 260	Glu	Arg	Ala	Gly	Val 265	Lys	Met	Ile	Leu	Ile 270	Gln	czA
Gly	Ser	Gln 275	Asn	Thr	Asn	Val	Asp 280	Lys	Pro	Leu	Arg	11e 285	Ile	Gly	σzΑ
Pro	Tyr 290	Lys	Val	Gln	Gln	Ala 295	Суз	Glu	Met	Val	Met 300	Asp	Ile	Leu	Arg
Glu	Arg	Asp	Gln	Gly	Gly	Phe	Gly	Asp	Arg	Asn	Glu	Tyr	Gly	Ser	Arg

305					310					315					320
Ile	GTA	Gly	Gly	Ile 325	Asp	Val	Pro	Val	Pro 330	Arg	His	Ser	Va_	G1y 335	Val
Val	Ile	Gly	Arg 340	Ser	Gly	Glu	Met	Ile 345	Lys	Lys	Ile	Gln	Asn 350	Asp	Ala
Gly	Val	Arg 355	Ile	Gln	Phe	Lys	Gln 360	Asp	Asp	Gly	Thr	Gly 365	Pro	Glu	Lys
I1e	Ala 370	His	Ile	Met	Gly	Pro 375	Pro	Asp	Arg	Cys	Glu 380	His	Ala	Ala	Arg
Ile 385	Ile	Asn	Asp	Leu	Leu 390	Gln	Ser	Leu	Arg	Ser 395	Gly	Pro	Pro	Gly	Pro 400
Pro	Gly	Gly	Pro	Gly 405	Met	Pro	Pro	Gly	Gly 410	Arg	Gly	Arg	Gly	Arg 415	Gly
Gln	Gly	Asn	Trp 420	Gly	Pro	Pro	Gly	Gly 425	Glu	Met	Thr	Phe	Ser 430	Ile	Pro
Thr	His	⊥уз 435	Суз	Cly	Leu	Val	Ile 440	Cly	Arg	Cly	Cly	Glu 445	Asn	Val	Lys
Ala	Ile 450	Asn	Gln	Gln	Thr	Gly 455	Ala	Phe	Val	Glu	Ile 460	Ser	Arg	Gln	Leu
Pro 465	Pro	Asn	Gly	Asp	Pro 470	Asn	Phe	Lys	Leu	Phe 475	Ile	Ile	Arg	Gly	Ser 480
Pro	Gln	Gln	Ilc	Лsр 485	His	Λla	Lys	Gln	Leu 490	Ilc	Glu	Glu	Lys	Ilc 495	Glu
Gly	Pro	ĭeu	Cys 500	Pro	Val	Gly	Pro	Gly 505	Pro	Gly	Gly	Pro	Gly 510	Pro	Ala
Gly	Pro	Met 515	Gly	Pro	Phe	Asn	Pro 520	Gly	Pro	Phe	Asn	Gln 525	Gly	Pro	Pro
Gly	Ala 530	Pro	Pro	His	Ala	Gly 535	Gly	Pro	Pro	Pro	His 540	Gln	Tyr	Pro	Pro
Gln 545	Gly	Trp	Gly	Asn	Thr 550	Tyr	Pro	Gln	Trp	Gln 555	Pro	Pro	Ala	Pro	His 560

Asp Pro Ser Lys Ala Ala Ala Ala Ala Asp Pro Asn Ala Ala Trp Ala Ala Tyr Tyr Ser His Tyr Tyr Gln Gln Pro Pro Gly Pro Val Pro Gly Pro Ala Pro Ala Pro Ala Ala Pro Pro Ala Gln Gly Glu Pro Pro Gln Pro Pro Pro Thr Gly Gln Ser Asp Tyr Thr Lys Ala Trp Glu Glu Tyr Tyr Lys Lys Ile Gly Gln Gln Pro Gln Gln Pro Gly Ala Pro Pro Gln Gln Asp Tyr Thr Lys Ala Trp Glu Glu Tyr Tyr Lys Lys Gln Ala Gln Val Ala Thr Gly Gly Gly Pro Gly Ala Pro Pro Gly Ser Gln Pro Asp Tyr Ser Ala Ala Trp Ala Glu Tyr Tyr Arg Gln Gln Ala Ala Tyr Tyr Gly Gln Thr Pro Val Pro Gly Pro Gln Pro Pro Pro Thr Gln Gln Gly Gln Gln Gln Ala Gln <210> 8 <211> 375 <212> PRT <213> Homo sapiens Met Glu Glu Glu Ile Ala Ala Leu Val Ile Asp Asn Gly Ser Gly Met Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val Phe Pro Ser Ile Val Gly Arg Pro Arg His Gln Gly Val Met Val Gly Met Gly

Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val Ala Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn Pro 100 105 Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn 115 120 125 Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala 130 135 Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr 150 His Thr Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu 165 170 Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp Tyr Leu Met Lys Ile Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg Glu Ile 1.95 200 205 Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu 210 215 Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Leu Glu Lys Ser Tyr 235 225 230 Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg 245 Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys Cly Ile His Clu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr

	290					295					300				
Met 305	Tyr	Pro	Gly	Ile	Ala 310	Asp	Arg	Met	Gln	Lys 315	Glu	Ile	Thr	Ala	Leu 320
Ala	Pro	Ser	Thr	Met 325	Lys	Ile	Lys	Ile	Ile 330	Ala	Pro	Pro	Glu	Arg 335	Lys
Tyr	Ser	Val	Trp 340	Ile	Gly	Gly	Ser	Ile 345	Leu	Ala	Ser	Leu	Ser 350	Thr	Phe
Gln	Gln	Met 355	Trp	Ile	Ser	Lys	Gln 360	Glu	Tyr	Asp	Glu	Ser 365	Gly	Pro	Ser
Ile	Val 370	His	Arg	Lys	Cys	Phe 375									
			iens												
<400	> 9														
Met 1	Ser	Ile	Glu	Lys 5	Ile	Trp	Ala	Arg	Glu 10	Ile	Leu	Asp	Ser	Arg 15	Gly
Asn	Pro	Thr	Val 20	Glu	Val	Asp	Leu	Tyr 25	Thr	Ala	Lys	Gly	Leu 30	Phe	Arg
Ala	Ala	Val 35	Pro	Ser	Gly	Ala	Ser 40	Thr	Gly	Ile	Tyr	Glu 45	Ala	Leu	Glu
Leu	Arg 50	Asp	Gly	Asp	Lys	Gln 55	Arg	Tyr	Leu	Gly	Lys 60	Gly	Val	Leu	Lys
Ala 65	Val	Asp	His	Ile	Asn 70	Ser	Thr	Ile	Ala	Pro 75	Ala	Leu	Ile	Ser	Ser 80
Gly	Leu	Ser	Val	Val 85	Glu	Gln	Glu	Lys	Leu 90	Asp	Asn	Leu	Met	Leu 95	Glu
Leu	Asp	Gly	Thr 100	Glu	Asn	Lys	Ser	Lys 105	Phe	Gly	Ala	Asn	Ala 110	Ile	Leu
Gly	Val	Ser 115	Leu	Ala	Val	Суз	Lys 120	Ala	Gly	Ala	Ala	Glu 125	Arg	Glu	Leu

Pro Leu Tyr Arg His Ile Ala Gln Leu Ala Gly Asn Ser Asp Leu Ile 135 Leu Pro Val Pro Ala Phe Asn Val Ile Asn Gly Gly Ser His Ala Gly 150 Asn Lys Leu Ala Met Gln Glu Phe Met Ile Leu Pro Val Gly Ala Glu Ser Phe Arg Asp Ala Met Arg Leu Gly Ala Glu Val Tyr His Thr Leu 185 Lys Gly Val Ile Lys Asp Lys Tyr Gly Lys Asp Ala Thr Asn Val Gly 195 200 Asp Glu Gly Gly Phe Ala Pro Asn Ile Leu Glu Asn Ser Glu Ala Leu 210 215 220 Glu Leu Val Lys Glu Ala Ile Asp Lys Ala Gly Tyr Thr Glu Lys Ile 225 230 235 Val Ile Gly Met Asp Val Ala Ala Ser Glu Phe Tyr Arg Asp Gly Lys 245 250 Tyr Asp Leu Asp Phe Lys Ser Pro Thr Asp Pro Ser Arg Tyr Ile Thr 260 Gly Asp Gln Leu Gly Ala Leu Tyr Gln Asp Phe Val Arg Asp Tyr Pro 280 Val Val Ser Ile Glu Asp Pro Phe Asp Gln Asp Asp Trp Ala Ala Trp 295 Ser Lys Phe Thr Ala Asn Val Gly Ile Gln Ile Val Gly Asp Asp Leu 310 315 Thr Val Thr Asn Pro Lys Arg Ile Glu Arg Ala Val Glu Glu Lys Ala 325 330 335 Cys Asn Cys Leu Leu Leu Lys Val Asn Gln Ile Gly Ser Val Thr Glu 340 345 350 Ala Ile Gln Ala Cys Lys Leu Ala Gln Glu Asn Gly Trp Gly Val Met

Val	Ser 370	His	Arg	Ser	Gly	Glu 375	Thr	Glu	Asp	Thr	Phe 380	Ile	Ala	Asp	Leu
Val 385	Val	Gly	Leu	Cys	Thr 390	Gly	Gln	Ile	Lys	Thr 395	Gly	Ala	Pro	Cys	Arg 400
Ser	Glu	Arg	Leu	Ala 405	Lys	Tyr	Asn	Gln	Leu 410	Met	Arg	Ile	Glu	Glu 415	Glu
Leu	Gly	Asp	Glu 420	Ala	Arg	Phe	Ala	Gly 425	His	Asn	Phe	Arg	Asn 430	Pro	Ser
Val	Leu														
<210: <211: <212: <213:	> 505 > PRT		oiens												
<400	> 10														
Met 1	Arg	Leu	Arg	Arg 5	Leu	Ala	Leu	Phe	Pro 10	Gly	Val	Ala	. Leu	Leu 15	Leu
Ala	Ala	Ala	Arg 20	Leu	Ala	Ala	Ala	Ser 25	Asp	Val	Leu	Glu	. Leu 30	Thr	Asp
Asp	Asn	Phe 35	Glu	Ser	Arg	Ile	Ser 40	Asp	Thr	Gly	Ser	Ala 45	. Gly	Leu	Met
Leu	Val 50	Glu	Phe	Phe	Ala	Pro 55	Trp	Cys	Gly	His	Cys 60	Lys	Arg	Leu	Ala
Pro 65	Glu	Tyr	Glu	Ala	Ala 70	Ala	Thr	Arg	Leu	Lys 75	Gly	· Ile	· Val	Pro	Leu 80
Ala	Lys	Val	Asp	Cys 85	Thr	Ala	Asn	Thr	Asn 90	Thr	Cys	Asn	. Lys	Tyr 95	Gly
Val	Ser	Gly	Tyr 100	Pro	Thr	Leu	Lys	Ile 105		Arg	Asp	Gly	Glu 110		Ala
Gly	Ala	Tyr 115	Asp	Gly	Pro	Arg	Thr 120	Ala	Asp	Gly	Ile	Val 125	Ser	His	Leu
Lys	Lys 130	Gln	Ala	Gly	Pro	Ala 135	Ser	Va1	Pro	Leu	Arg		Glu	Glu	Glu

Phe Lys Ly 145	s Phe Ile	Ser Asp 150	Lys Ası		Ser Ile 155	Val Gly	Phe	Phe 160
Asp Asp Se	r Phe Ser 165		His Se	r Glu E 170	Phe Leu	Lys Ala	Ala 175	Ser
Asn Leu Ar	g Asp Asn 180	Tyr Arg	Phe Ala		Thr Asn	Val Glu 190		Leu
Val Asn Gl 19		Asp Asn	Gly Gli 200	ı Gly 1	Ile Ile	Leu Phe 205	Arg	Pro
Ser His Le 210	u Thr Asn	Lys Phe 215		o Lys T	Thr Val 220	Ala Tyr	Thr	Glu
Gln Lys Me 225	t Thr Ser	Gly Lys 230	Ile Ly:		Phe Ile 235	Gln Glu	Asn	Ile 240
Phe Gly Il	e Cys Pro 245		Thr Gli	a Asp <i>F</i> 250	Asn Lys	Asp Leu	Ile 255	Gln
Gly Lys As	p Leu Leu 260	Ile Ala	Tyr Ty.		Jal Asp	Tyr Glu 270		Asn
Ala Lys Gl 27		Tyr Trp	Arg Ası 280	n Arg V	<i>V</i> al Met	Met Val 285	Ala	Lys
Lys Phe Le 290	u Asp Ala	Gly His 295	Lys Le	ı Asn E	Phe Ala 300	Val Ala	Ser	Arg
Lys Thr Ph 305	e Ser His	Glu Leu 310	Ser As _l		Gly Leu 315	Glu Ser	Thr	Ala 320
Gly Glu Il	e Pro Val 325		Ile Arc	g Thr <i>F</i> 330	Ala Lys	Gly Glu	Lys 335	Phe
Val Met Gl	n Glu Glu 340	Phe Ser	Arg Ası		Lys Ala	Leu Glu 350		Phe
Leu Gln As 35		Asp Gly	Asn Le	ı Lys <i>F</i>	Arg Tyr	Leu Lys 365	Ser	Glu
Pro Ile Pr 370	o Glu Ser	Asn Asp 375	Gly Pro	o Val I	Lys Val 380	Val Val	Ala	Glu

Asn Phe Asp Glu Ile Val Asn Asn Glu Asn Lys Asp Val Leu Ile Glu 385 390 395 Phe Tyr Ala Pro Trp Cys Gly His Cys Lys Asn Leu Glu Pro Lys Tyr 405 410 415 Lys Glu Leu Gly Glu Lys Leu Ser Lys Asp Pro Asn Ile Val Ile Ala 420 425 430 Lys Met Asp Ala Thr Ala Asn Asp Val Pro Ser Pro Tyr Glu Val Arg 435 440 Gly Phe Pro Thr Ile Tyr Phe Ser Pro Ala Asn Lys Lys Leu Asn Pro 450 Lys Lys Tyr Glu Gly Gly Arg Glu Leu Ser Asp Phe Ile Ser Tyr Leu 470 Gln Arg Glu Ala Thr Asn Pro Pro Val Ile Gln Glu Glu Lys Pro Lys 485 490 Lys Lys Lys Ala Gln Glu Asp Leu 505 500 <210> 11 <211> 470 <212> PRT <213> Homo sapiens <400> 11 Met Ser Gln Ala Tyr Ser Ser Ser Gln Arg Val Ser Ser Tyr Arg Arg 10 Thr Phe Gly Gly Ala Pro Gly Phe Pro Leu Gly Ser Pro Leu Ser Ser 25 Pro Val Phe Pro Arg Ala Gly Phe Gly Ser Lys Gly Ser Ser Ser Val Thr Ser Arg Val Tyr Gln Val Ser Arg Thr Ser Gly Gly Ala Gly 55 Gly Leu Gly Ser Leu Arg Ala Ser Arg Leu Gly Thr Thr Arg Thr Pro 70 Ser Ser Tyr Gly Ala Gly Glu Leu Leu Asp Phe Ser Leu Ala Asp Ala

				85					90					95	
Val	Asn	Gln	Glu 100	Phe	Leu	Thr	Thr	Arg 105	Thr	Asn	Glu	Lys	Val 110	Glu	Leu
Gln	Glu	Leu 115	Asn	Asp	Arg	Phe	Ala 120	Asn	Туг	Ile	Glu	Lys 125	Val	Arg	Phe
Leu	Glu 130	Gln	Gln	Asn	Ala	Ala 135	Leu	Ala	Ala	Glu	Val 140	Asn	Arg	Leu	Lys
Gly 145	Arg	Glu	Pro	Thr	Arg 150	Val	Ala	Glu	Leu	Tyr 155	Glu	Glu	Glu	Leu	Arg 160
Glu	Leu	Arg	Arg	Gln 165	Val	Glu	Val	Leu	Thr 170	Asn	Gln	Arg	Ala	Arg 175	Val
Asp	Val	Glu	Arg 180	Asp	Asn	Leu	Leu	Asp 185	Asp	Leu	Gln	Arg	Leu 190	Lys	Ala
Lys	Leu	Gln 195	Glu	Glu	Ile	Gln	Leu 200	Lys	Glu	Glu	Ala	Glu 205	Asn	Asn	Leu
Ala	Ala 210	Phe	Arg	Ala	Asp	Val 215	Asp	Ala	Ala	Thr	Leu 220	Ala	Arg	Ile	qaA
Leu 225	Glu	Arg	Arg	Tle	Glu 230	Ser	Leu	Asn	Glu	Glu 235	Tle	Ala	Phe	Tieu	Tys 240
Lys	Val	His	Glu	Glu 245	Glu	Ile	Arg	Glu	Leu 250	Gln	Ala	Gln	Leu	Gln 255	Glu
Gln	Gln	Val	Gln 260	Val	Glu	Met	Asp	Met 265	Ser	Lys	Pro	Asp	Leu 270	Thr	Ala
Ala	Leu	Arg 275	Asp	I⊥e	Arg	Ala	Gln 280	Tyr	Glu	Thr	Ile	Ala 285	Ala	Lys	Asn
Ile	Ser 290	Glu	Ala	Glu	Glu	Trp 295	Tyr	Lys	Ser	Lys	Val 300	Ser	Asp	Leu	Thr
Gln 305	Ala	Ala	Asn	Lys	Asn 310	Asn	Asp	Ala	Leu	Arg 315	Gln	Ala	Lys	Gln	Glu 320
Met	Met	Glu	Tyr	Arg 325	His	Gln	lle	Gln	Ser 330	Туr	Thr	Суз	Glu	11e 335	qгА

Ala	Leu	Lys	Gly 340	Thr	Asn	Asp	Ser	Leu 345	Met	Arg	Gln	Met	Arg 350	Glu	Leu
Glu	Asp	Arg 355	Phe	Ala	Ser	Glu	Ala 360	Ser	Gly	Tyr	Gln	Asp 365	Asn	Ile	Ala
Arg	Leu 370	Glu	Glu	Glu	Ile	Arg 375	His	Leu	Lys	Asp	Glu 380	Met	Ala	Arg	His
Leu 385	Arg	Glu	Tyr	Gln	Asp 390	Leu	Leu	Asn	Val	Lys 395	Met	Ala	Leu	Asp	Val 400
Glu	Ile	Ala	Thr	Tyr 405	Arg	Lys	Leu	Leu	Glu 410	Gly	Glu	Glu	Ser	Arg 415	Ile
Asn	Leu	Pro	Ile 420	Gln	Thr	Tyr	Ser	Ala 425	Leu	Asn	Phe	Arg	Glu 430	Thr	Ser
Pro	Glu	Gln 435	Arg	Gly	Ser	Glu	Val 440	His	Thr	Lys	Lys	Thr 445	Val	Met	Ile
Lys	Thr 450	Ile	Glu	Thr	Arg	Asp 455	Gly	Glu	Val	Val	Ser 460	Glu	Ala	Thr	Gln
Gln 465	Gln	His	Glu	Val	Leu 470										
<210: <211: <212: <213:	> 470 > PRT		iens												
<400> Met 1		His	His	Pro 5	Ser	Gly	Leu	Arg	Ala 10	. Gly	Phe	: Ser	: Ser	Thr 15	Ser
Tyr	Arg	Arg	Thr 20	Phe	Gly	Pro	Pro	Pro 25	Ser	Leu	Ser	Pro	Gly 30	' Ala	Phe
Ser	Tyr	Ser 35	Ser	Ser	Ser	Arg	Phe 40	Ser	Ser	Ser	Arg	Leu 45	ı Leu	Gly	Ser
Ala	Ser 50	Pro	Ser	Ser	Ser	Val 55	Arg	Leu	Gly	Ser	Phe 60	Arç	ser Ser	Pro	Arg

Ala Gly Ala Gly Ala Leu Leu Arg Leu Pro Ser Glu Arg Leu Asp Phe Ser Met Ala Glu Ala Leu Asn Gln Glu Phe Leu Ala Thr Arg Ser Asn Glu Lys Gln Glu Leu Gln Glu Leu Asn Asp Arg Phe Ala Asn Phe Ile 105 Glu Lys Val Arg Phe Leu Glu Gln Gln Asn Ala Ala Leu Arg Gly Glu Leu Ser Gln Ala Arg Gly Gln Glu Pro Ala Arg Ala Asp Gln Leu Cys 130 135 Gln Gln Glu Leu Arg Glu Leu Arg Glu Leu Glu Leu Gly Arg 155 150 Glu Arg Asp Arg Val Gln Val Glu Arg Asp Gly Leu Ala Glu Asp Leu 165 170 Ala Ala Leu Lys Gln Arg Leu Glu Glu Glu Thr Arg Lys Arg Glu Asp 180 185 Ala Glu His Asn Leu Val Leu Phe Arg Lys Asp Val Asp Asp Ala Thr Leu Ser Arg Leu Glu Leu Glu Arg Lys 11e Glu Ser Leu Met Asp Glu 215 Ile Glu Phe Leu Lys Lys Leu His Glu Glu Glu Leu Arg Asp Leu Gln 230 235 Val Ser Val Glu Ser Gln Gln Val Gln Val Glu Val Glu Ala Thr 245 250 Val Lys Pro Glu Leu Thr Ala Ala Leu Arg Asp Ile Arg Ala Gln Tyr 260 265 Glu Ser Ile Ala Ala Lys Asn Leu Gln Glu Ala Glu Glu Trp Tyr Lys 275 280 Ser Lys Tyr Ala Asp Leu Ser Asp Ala Ala Asn Arg Asn His Glu Ala 295 Leu Arg Gln Ala Lys Gln Glu Met Asn Glu Ser Arg Arg Gln Ile Gln

305				310					315					320
Ser Le	eu Thr	Cys	Glu 325	Val	Asp	Gly	Leu	Arg 330	Gly	Thr	Asn	Glu	Ala 335	Leu
Leu Ai	rg Gln	Leu 340	Arg	Glu	Leu	Glu	Glu 345	Gln	Phe	Ala	Leu	Glu 350	Ala	Gly
Gly Ty	yr Gln 355	Ala	Gly	Ala	Ala	Arg 360	Leu	Glu	Glu	Glu	Leu 365	Arg	Gln	Leu
	lu Glu 70	Met	Ala	Arg	His 375	Leu	Arg	Glu	Tyr	Gln 380	Glu	Leu	Leu	Asn
Val Ly 385	ys Met	Ala	Leu	Asp 390	Ile	Glu	Ile	Ala	Thr 395	Tyr	Arg	Lys	Leu	Leu 400
Glu G	ly Glu	Glu	Ser 405	Arg	Ile	Ser	Val	Pro 410	Val	His	Ser	Phe	Ala 415	Ser
Leu As	sn Ile	Lys 420	Thr	Thr	Val	Pro	Glu 425	Val	Glu	Pro	Pro	Gln 430	Asp	Ser
His S€	er Arg 435	Lys	Thr	Val	Leu	Ile 440	Lys	Thr	Ile	Glu	Thr 445	Arg	Asn	Gly
	al Val 50	Thr	Glu	Ser	Gln 455	Lys	Glu	Gln	Arg	Ser 460	Glu	Leu	Asp	Lys
Ser Se 465	er Ala	His	Ser	Tyr 470										
<210> 13 <211> 4 <212> P <213> H	49 RT	iens												
<400> 13 Met Me 1	3 et Leu	Gly	Thr 5	Glu	Gly	Gly	Glu	Gly 10	Phe	Val	Val	Lys	Val 15	Arg
Gly Le	eu Pro	Trp 20	Ser	Cys	Ser	Ala	Asp 25	Glu	Val	Gln	Arg	Phe 30	Phe	Ser
Asp Cy	ys Lys 3 5	Ile	Gln	Asn	Gly	Ala 40	Gln	Gly	Ile	Arg	Phe 45	Ile	Tyr	Thr

Arg G		Arg	Pro	Ser	Gly 55	Glu	Ala	Phe	Val	Glu 60	Leu	Glu	Ser	Glu
Asp G	lu Val	Lys	Leu	Ala 70	Leu	Lys	Lys	Asp	Arg 75	Glu	Thr	Met	Gly	His 80
Arg T	yr Val	Glu	Val 85	Phe	Lys	Ser	Asn	Asn 90	Val	Glu	Met	Asp	Trp 95	Val
Leu L	ys His	Thr 100	Gly	Pro	Asn	Ser	Pro 105	Asp	Thr	Ala	Asn	Asp 110	Gly	Phe
Val A	rg Leu 115	Arg	Gly	Leu	Pro	Phe 120	Gly	Cys	Ser	Lys	Glu 125	Glu	Ile	Val
Gln Pi	ne Phe 30	Ser	Gly	Leu	Glu 135	Ile	Val	Pro	Asn	Gly 140	Ile	Thr	Leu	Pro
Val As 145	sp Phe	Gln	Gly	Arg 150	Ser	Thr	Gly	Glu	Ala 155	Phe	Val	Gln	Phe	Ala 160
Ser G	ln Glu	Ile	Ala 165	Glu	Lys	Ala	Leu	Lys 170	Lys	His	Lys	Glu	Arg 175	Ile
Gly H:	is Arg	Tyr 180	Ile	Glu	Ile	Phe	Lys 185	Ser	Ser	Arg	Ala	Glu 190	Val	Arg
Thr H	is Tyr 195	Asp	Pro	Pro	Arg	Lys 200	Leu	Met	Ala	Met	Gln 205	Arg	Pro	Gly
Pro Ty	yr Asp 10	Arg	Pro	Gly	Ala 215	Gly	Arg	Gly	Tyr	Asn 220	Ser	Ile	Gly	Arg
Gly Al 225	la Gly	Phe	Glu	Arg 230	Met	Arg	Arg	Gly	Ala 235	Tyr	Gly	Gly	Gly	Tyr 240
Gly G	ly Tyr	Asp	Asp 245	Tyr	Asn	Gly	Tyr	Asn 250	Asp	Gly	Tyr	Gly	Phe 255	Gly
Ser As	sp Arg	Phe 260	Gly	Arg	Asp	Leu	Asn 265	Tyr	Cys	Phe	Ser	Gly 270	Met	Ser
Asp H	is Arg 275	Tyr	Gly	Asp	Gly	Gly 280	Ser	Thr	Phe	Gln	Ser 285	Thr	Thr	Gly

His	Cys 290	Val	His	Met	Arg	Gly 295	Leu	Pro	Tyr	Arg	Ala 300	Thr	Glu	Asr	ı Asp	P
Ile 305	Tyr	Asn	Phe	Phe	Ser 310	Pro	Leu	Asn	Pro	Val 315	Arg	Val	His	Ile	Glu 320	
Ile	Gly	Pro	Asp	Gly 325	Arg	Val	Thr	Gly	Glu 330	Ala	Asp	Val	Glu	Ph∈ 335		a
Thr	His	Glu	Asp 340	Ala	Val	Ala	Ala	Met 345	Ser	Lys	Asp	Lys	Ala 350	Asn	n Met	Ξ.
Gln	His	Arg 355	Tyr	Val	Glu	Leu	Phe 360	Leu	Asn	Ser	Thr	Ala 365	Gly	Ala	ı Sei	r
Gly	Gly 370	Ala	Tyr	Glu	His	Arg 375	Tyr	Val	Glu	Leu	Phe 380	Leu	Asn	Ser	Thi	r
Ala 385	Gly	Ala	Ser	Gly	Gly 390	Ala	Tyr	Gly	Ser	Gln 395	Met	Met	Gly	Gl _y	7 Met 400	
Gly	Leu	Ser	Asn	Gln 405	Ser	Ser	Tyr	Gly	Gly 410	Pro	Ala	Ser	Gln	Gln 415		1
Ser	Gly	Gly	Tyr 420	Gly	Gly	Gly	Tyr	Gly 425	Gly	Gln	Ser	Ser	Met 430	Ser	: Gly	Y
Tyr	Asp	Gln 435	Val	Leu	Gln	Glu	Asn 440	Ser	Ser	Asp	Phe	Gln 445	Ser	Asn	ı Ile	Э
Ala																
<210: <211: <212: <213:	> 543 > PRT		oiens													
<400 Met 1		Gln	Val	Asr 5	ı Glı	ı Le	u Ly	s Gl	u L <u>y</u> 10	ys G.)	ly A	sn I	ys <i>I</i>	Ala	Leu 15	Se:
Val	Gly	Asn	Ile 20	Asp	Asp	o Al	a Le	u Gl 25		ys T	yr S	er G		Ala 30	Ile	Lуя
Leu	Asp	Pro 35	His	Asr	n His	s Va	l Le 40		r S€	er A	sn A		er A 5	Ala	Ala	Ту

Ala Lys Lys Gly Asp Tyr Gln Lys Ala Tyr Glu Asp Gly Cys Lys Thr Val Asp Leu Lys Pro Asp Trp Gly Lys Gly Tyr Ser Arg Lys Ala Ala Ala Leu Glu Phe Leu Asn Arg Phe Glu Glu Ala Lys Arg Thr Tyr Glu 90 Glu Gly Leu Lys His Glu Ala Asn Asn Pro Gln Leu Lys Glu Gly Leu 105 Gln Asn Met Glu Ala Arg Leu Ala Glu Arg Lys Phe Met Asn Pro Phe 115 120 125 Asn Met Pro Asn Leu Tyr Gln Lys Leu Glu Ser Asp Pro Arg Thr Arg Thr Leu Leu Ser Asp Pro Thr Tyr Arg Glu Leu Ile Glu Gln Leu Arg Asn Lys Pro Ser Asp Leu Gly Thr Lys Leu Gln Asp Pro Arg Ile Met 165 170 Thr Thr Leu Ser Val Leu Leu Gly Val Asp Leu Gly Ser Met Asp Glu Glu Glu Glu Ile Ala Thr Pro Pro Pro Pro Pro Pro Pro Lys Lys Glu 195 200 Thr Lys Pro Glu Pro Met Glu Glu Asp Leu Pro Glu Asn Lys Lys Gln Ala Leu Lys Glu Lys Glu Leu Gly Asn Asp Ala Tyr Lys Lys Lys Asp 235 Phe Asp Thr Ala Leu Lys His Tyr Asp Lys Ala Lys Glu Leu Asp Pro 245 250 Thr Asn Met Thr Tyr Ile Thr Asn Gln Ala Ala Val Tyr Phe Glu Lys 260 265 270 Gly Asp Tyr Asn Lys Cys Arg Glu Leu Cys Glu Lys Ala Ile Glu Val

Gly	Arg 290	Glu	Asn	Arg	Glu	Asp 295	Tyr	Arg	Gln	Ile	Ala 300	Lys	Ala	Tyr	Ala
Arg 305	Ile	Gly	Asn	Ser	Tyr 310	Phe	Lys	Glu	Glu	Lys 315	Tyr	Lys	Asp	Ala	Ile 320
His	Phe	Tyr	Asn	Lys 325	Ser	Leu	Ala	Glu	His 330	Arg	Thr	Pro	Asp	Val 335	Leu
Lys	Lys	Cys	Gln 340	Gln	Ala	Glu	Lys	Ile 345	Leu	Lys	Glu	Gln	Glu 350	Arg	Leu
Ala	Tyr	Ile 355	Asn	Pro	Asp	Leu	Ala 360	Leu	Glu	Glu	Lys	Asn 365	Lys	Gly	Asn
Glu	Cys 370	Phe	Gln	Lys	Gly	Asp 375	Tyr	Pro	Gln	Ala	Met 380	Lys	His	Tyr	Thr
Glu 385	Ala	Ile	Lys	Arg	Asn 390	Pro	Lys	Asp	Ala	Lys 395	Leu	Tyr	Ser	Asn	Arg 400
Ala	Ala	Cys	Tyr	Thr 405	Lys	Leu	Leu	Glu	Phe 410	Gln	Leu	Ala	Leu	Lys 415	Asp
Cys	Glu	Glu	Cys 420	Ile	Gln	Leu	Glu	Pro 425	Thr	Phe	Ile	Lys	Gly 430	Tyr	Thr
Arg	Lys	Ala 435	Ala	Ala	Leu	Glu	Ala 440	Met	Lys	Asp	Tyr	Thr 445	Lys	Ala	Met
Asp	Val 450	Tyr	Gln	Lys		Leu 455	Asp	Leu	Asp	Ser	Ser 460	Cys	Lys	Glu	Ala
Ala 465	Asp	Gly	Tyr	Gln	Arg 470	Cys	Met	Met	Ala	Gln 475	Tyr	Asn	Arg	His	Asp 480
Ser	Pro	Glu	Asp	Val 485	Lys	Arg	Arg	Ala	Met 490	Ala	Asp	Pro	Glu	Val 495	Gln
Gln	Ile	Met	Ser 500	Asp	Pro	Ala	Met	Arg 505	Leu	Ile	Leu	Glu	Gln 510	Met	Gln
Lys	Asp	Pro	Gln	Ala	Leu	Ser	Glu	His	Leu	Lys	Asn	Pro	Val	Ile	Ala
Gln		515		Lys :	Leu 1		520			eu I		525			
<210:	> 15 > 240														

5 <211> 249 <212> PRT

<213> Homo sapiens

400	4-														
<400 Met 1		Pro	Ser	Arg 5	Lys	Phe	Phe	Val	Gly 10	Gly	Asn	Trp	Lys	Met 15	Asn
Gly	Arg	Lys	Gln 20	Ser	Leu	Gly	Glu	Leu 25	Ile	Gly	Thr	Leu	Asn 30	Ala	Ala
Lys	Val	Pro 35	Ala	Asp	Thr	Glu	Val 40	Val	Cys	Ala	Pro	Pro 45	Thr	Ala	Tyr
Ile	Asp 50	Phe	Ala	Arg	Gln	Lys 55	Leu	Asp	Pro	Lys	Ile 60	Ala	Val	Ala	Ala
Gln 65	Asn	Cys	Tyr	Lys	Val 70	Thr	Asn	Gly	Ala	Phe 75	Thr	Gly	Glu	Ile	Ser 80
Pro	Gly	Met	Ile	Lys 85	Asp	Cys	Gly	Ala	Thr 90	Trp	Val	Val	Leu	Gly 95	His
Ser	Glu	Arg	Arg 100	His	Val	Phe	Gly	Glu 105	Ser	Asp	Glu	Leu	Ile 110		Gln
Lys	Val	Ala 115	His	Ala	Leu	Ala	Glu 120	Gly	Leu	Gly	Val	Ile 125		Cys	Ile
Gly	Glu 130	Lys	Leu	Asp	Glu	Arg 135	Glu	Ala	Gly	Ile	Thr 140	Glu	Lys	Val	Val
Phe 145	Glu	Gln	Thr	Lys	Val 150	Ile	Ala	Asp	Asn	Val 155		Asp	Trp	Ser	Lys 160
Val	Val	Leu	Ala	Tyr 165	Glu	Pro	Val	Trp	Ala 170	Ile	Gly	Thr	Gly	Lys 175	Thr
Ala	Thr	Pro	Gln 180	Gln	Ala	Gln	Glu	Val 185	His	Glu	Lys	Leu	Arg 190		Trp
		195					200					205			Ile Gln
Pro 225	Asp	Val	Asp	Gly	Phe 230	Leu	Val	Gly	Gly	Ala 235	Ser	Leu	Lys	Pro	Glu 240

Phe Val Asp Ile Ile Asn Ala Lys Gln 245

```
<212> PRT
<213> Homo sapiens
<400> 16
Met Pro Gly Gly Leu Leu Gly Asp Val Ala Pro Asn Phe Glu Ala
               5 10 15
Asn Thr Thr Val Gly Arg Ile Arg Phe His Asp Phe Leu Gly Asp Ser
                               25
                                                   30
Trp Gly Ile Leu Phe Ser His Pro Arg Asp Phe Thr Pro Val Cys Thr
               40
        35
Thr Glu Leu Gly Arg Ala Ala Lys Leu Ala Pro Glu Phe Ala Lys Arg
                       55
Asn Val Lys Leu Ile Ala Leu Ser Ile Asp Ser Val Glu Asp His Leu
                   7.0
Ala Trp Ser Lys Asp Ile Asn Ala Tyr Asn Cys Glu Glu Pro Thr Glu
Lys Leu Pro Phe Pro Ile Ile Asp Asp Arg Asn Arg Glu Leu Ala Ile
           100
                               105
Leu Leu Gly Met Leu Asp Pro Ala Glu Lys Asp Glu Lys Gly Met Pro
       115
                           120
Val Thr Ala Arg Val Val Phe Val Phe Gly Pro Asp Lys Lys Leu Lys
                       135
Leu Ser Ile Leu Tyr Pro Ala Thr Thr Gly Arg Asn Phe Asp Glu Ile
145 150 155 160
Leu Arg Val Val Ile Ser Leu Gln Leu Thr Ala Glu Lys Arg Val Ala
               165
Thr Pro Val Asp Trp Lys Asp Gly Asp Ser Val Met Val Leu Pro Thr
            180
                               185
Ile Pro Glu Glu Glu Ala Lys Lys Leu Phe Pro Lys Gly Val Phe Thr
        195
                            200
                                               205
Lys Glu Leu Pro Ser Gly Lys Lys Tyr Leu Arg Tyr Thr Pro Gln Pro
    210
                        215
                                            220
<210> 17
<211> 331
<212> PRT
```

<210> 16 <211> 224

<213> Homo sapiens

<400 Met 1		Arg	Gly	Gly 5	Arg	Gly	Arg	Arg	Leu 10	Gly	Leu	Ala	Leu	Gly 15	Leu
Leu	Leu	Ala	Leu 20	Val	Leu	Ala	Pro	Arg 25	Val	Leu	Arg	Ala	Lys 30	Pro	Thr
Val	Arg	Lys 35	Glu	Arg	Val	Val	Arg 40	Pro	Asp	Ser	Glu	Leu 45	Gly	Glu	Arg
Pro	Pro 50	Glu	Asp	Asn	Gln	Ser 55	Phe	Gln	Tyr	Asp	His 60	Glu	Ala	Phe	Leu
Gly 65	Lys	Glu	Asp	Ser	Lys 70	Thr	Phe	Asp	Gln	Leu 75	Thr	Pro	Asp	Glu	Ser 80
Lys	Glu	Arg	Leu	Gly 85	Lys	Ile	Val	Asp	Arg 90	Ile	Asp	Asn	Asp	Gly 95	Asp
Gly	Phe	Val	Thr 100	Thr	Glu	Glu	Leu	Lys 105	Thr	Trp	Ile	Lys	Arg 110	Val	Gln
Lys	Arg	Tyr 115	Ile	Phe	Asp	Asn	Val 120	Ala	Lys	Val	Trp	Lys 125	Asp	Tyr	Asp
Arg	Asp 130	Lys	Asp	Asp	Lys	Ile 135	Ser	Trp	Glu	Glu	Tyr 140	Lys	Gln	Ala	Thr
Tyr 145	Gly	Tyr	Tyr	Leu	Gly 150	Asn	Pro	Ala	Glu	Phe 155	His	Asp	Ser	Ser	Asp 160

His	His	Thr	Phe	Lys 165	Lys	Met	Leu	Pro	Arg 170		Glu	Arg	Arg	Phe 175	Lys
Ala	Ala	Asp	Leu 180	Asn	Gly	Asp	Leu	Thr 185		Thr	Arg	Glu	Glu 190	Phe	Thr
Ala	Phe	Leu 195	His	Pro	Glu	Glu	Phe 200		. His	Met	. Lys	Glu 205	ı Ile	Val	Val
Leu	Glu 210	Thr	Leu	Glu	Asp	Ile 215	_	Lys	Asn	ı Gly	7 Asp 220	_	Phe	Val	Asp
Gln 225	Asp	Glu	Tyr	Ile	Ala 230	Asp	Met	Phe	Ser	His 235		Glu	ı Asn	Gly	Pro 240
Glu	Pro	Asp	Trp	Val 245	Leu	Ser	Glu	Arg	Glu 250		ı Phe	Asn	Glu	Phe 255	Arg
Asp	Leu	Asn	Lys 260	Asp	Gly	Lys	Leu	Asp 265		s Asp	Glu	Ile	e Arg 270	His	Trp
Ile	Leu	Pro 275	Gln	Asp	Tyr	Asp	His 280		. Gln	n Ala	Glu	Ala 285	Arg	His	Leu
Val	Tyr 290	Glu	Ser	Asp	Lys	Asn 295	_	Asp	Glu	ı Lys	300		Lys	Glu	Glu
Ile 305	Leu	Glu	Asn	Trp	Asn 310	Met	Phe	Val	Gly	Ser 315		Ala	Thr	Asn	Tyr 320
Gly	Glu	Asp	Leu	Thr 325	Lys	Asn	His	Asp	Glu 330	Leu)	l				
<210><211><211><212><213>	654 PRT	o sapie	ens												
<400> Met 1		Leu	Ser	Leu 5	Val	Ala	Ala	Met	Leu 10	Leu	Leu	Leu	Ser A	ala A .5	.la
Arg	Ala	Glu	Glu 20	Glu	Asp	Lys	Lys	Glu 25	Asp	Val	Gly		Val V 30	al G	ly

Ile Asp Leu Gly Thr Thr Tyr Ser Cys Val Gly Val Phe Lys Asn Gly Arg Val Glu Ile Ile Ala Asn Asp Gln Gly Asn Arg Ile Thr Pro Ser Tyr Val Ala Phe Thr Pro Glu Gly Glu Arg Leu Ile Gly Asp Ala Ala Lys Asn Gln Leu Thr Ser Asn Pro Glu Asn Thr Val Phe Asp Ala Lys Arg Leu Ile Gly Arg Thr Trp Asn Asp Pro Ser Val Gln Gln Asp Ile 100 105 Lys Phe Leu Pro Phe Lys Val Val Glu Lys Lys Thr Lys Pro Tyr Ile 115 120 125 Gln Val Asp Ile Gly Gly Gln Thr Lys Thr Phe Ala Pro Glu Glu 130 135 Ile Ser Ala Met Val Leu Thr Lys Met Lys Glu Thr Ala Glu Ala Tyr Leu Gly Lys Lys Val Thr His Ala Val Val Thr Val Pro Ala Tyr Phe Asn Aso Ala Gln Arg Gln Ala Thr Lys Asp Ala Gly Thr Ile Ala Gly 180 185 Leu Asn Val Met Arg Ile Ile Asn Glu Pro Thr Ala Ala Ala Ile Ala Tyr Gly Leu Asp Lys Arg Glu Gly Glu Lys Asn Ile Leu Val Phe Asp 210 215 Leu Gly Gly Gly Thr Phe Asp Val Ser Leu Leu Thr Ile Asp Asn Gly Val Phe Glu Val Val Ala Thr Asn Gly Asp Thr His Leu Gly Glu Asp Phe Asp Gln Arg Val Mot Glu His Phe Ile Lys Leu Tyr Lys Lys 260 265 270 Lys Thr Gly Lys Asp Val Arg Lys Asp Asn Arg Ala Val Gln Lys Leu

	275					280					285			
Arg Arg 290	G⊥u	Val	Glu	Lys	Ala 295	Lys	Arg	Ala	Leu	Ser 300	Ser	Gln	His	G⊥n
Ala Arg 305	Ile	Glu	Ile	Glu 310	Ser	Phe	Tyr	Glu	Gly 315	Glu	Asp	Phe	Ser	Glu 320
Thr Leu	Thr	Arg	Ala 325	Lys	Phe	Glu	Glu	Leu 330	Asn	Met	Asp	Leu	Phe 335	Arg
Ser Thr	Met	Lys 340	Pro	Val	Gln	Lys	Val 345	Leu	Glu	Asp	Ser	Asp 350	Leu	Lys
Lys Ser	Asp 355	Ile	Asp	Glu	Ile	Val 360	Leu	Val	Gly	Gly	Ser 365	Thr	Arg	Ile
Pro Lys 370	Ile	Gln	Gln	Leu	Val 375	Lys	Glu	Phe	Phe	Asn 380	Gly	Lys	Glu	Pro
Ser Arg 385	Gly	Ile	Asn	Pro 390	Asp	Glu	Ala	Val	Ala 395	Tyr	Gly	Ala	Ala	Val 400
Gln Ala	Gly	Val	Leu 405	Ser	Gly	Asp	Gln	Asp 410	Thr	Gly	Asp	Leu	Val 415	Leu
Leu Asp	Val	Cys 420	Pro	Tieu	Thr	Leu	Gly 425	Tle	Glu	Thr	Val	Gly 430	Gly	Val
Met Thr	Lys 435	Leu	Ile	Pro	Arg	Asn 440	Thr	Val	Val	Pro	Thr 445	ūγs	Lys	Ser
Gln Ile 450	Pho	Ser	Thr	Λla	Sor 455	Λsp	Λsn	Gln	Pro	Thr 460	Val	Thr	Ile	Lys
Val Tyr 465	Glu	Gly	Glu	Arg 470	Pro	Leu	Thr	Lys	Asp 475	Asn	His	Tieu	Leu	Gly 480
Thr Phe	Asp	Leu	Thr 485	Gly	Ile	Pro	Pro	Ala 490	Pro	Arg	Gly	Val	Pro 495	Gln
Ile Glu	Val	Thr 500	Phe	Glu	Ile	Asp	Val 505	Asn	Gly	Ile	Leu	Arg 510	Val	Thr
Ala Glu	Asp 515	ГЛЗ	Gly	Thr	Gly	Asn 520	Lys	Asn	Lys	⊥le	Thr 525	⊥le	Thr	Asn

Asp	Gln 530	Asn	Arg	Leu	Thr	Pro 535	Glu	Glu	Ile	Glu	Arg 540	Met	Val	Asn	Asp
Ala 545	Glu	Lys	Phe	Ala	Glu 550	Glu	Asp	Lys	Lys	Leu 555	Lys	Glu	Arg	Ile	Asp 560
Thr	Arg	Asn	Glu	Leu 565	Glu	Ser	Tyr	Ala	Tyr 570	Ser	Leu	Lys	Asn	Gln 575	Ile
Gly	Asp	Lys	Glu 580	Lys	Leu	Gly	Gly	Lys 585	Leu	Ser	Ser	Glu	Asp 590	Lys	Glu
Thr	Met	Glu 595	Lys	Ala	Val	Glu	Glu 600	Lys	Ile	Glu	Trp	Leu 605	Glu	Ser	His
Gln	Asp 610	Ala	Asp	Ile	Glu	Asp 615	Phe	Lys	Ala	Lys	Lys 620	Lys	Glu	Leu	Glu
Glu 625	Ile	Val	Gln	Pro	Ile 630	Ile	Ser	Lys	Leu	Tyr 635	Gly	Ser	Ala	Gly	Pro 640
Pro	Pro	Thr	Gly	Glu 645	Glu	Asp	Thr	Ala	Glu 650	Lys	Asp	Glu	Leu		
<210: <211: <212: <213:	> 466 > PRT		iens												
<400: Met 1		Thr	Arg	Ser 5	Val	Ser	Ser	Ser	Ser 10	Tyr	Arg	Arg	Met	Phe 15	Gly
Gly	Pro	Gly	Thr 20	Ala	Ser	Arg	Pro	Ser 25	Ser	Ser	Arg	Ser	Туr 30	Val	Thr
Thr	Ser	Thr 35	Arg	Thr	Tyr	Ser	Leu 40	Gly	Ser	Ala	Leu	Arg 45	Pro	Ser	Thr
Ser	Arg 50	Ser	Leu	Tyr	Ala	Ser 55	Ser	Pro	Gly	Gly	Val 60	Tyr	Ala	Thr	Arg
Ser 65	Ser	Ala	Val	Arg	Leu 70	Arg	Ser	Ser	Val	Pro 75	Gly	Val	Arg	Leu	Leu 80

Gln	Asp	Ser	Val	Asp 85	Phe	Ser	Leu	Ala	Asp 90	Ala	Ile	Asn	Thr	Glu 95	Phe
Lys	Λsn	Thr	Arg 100	Thr	Λsn	Glu	Lys	Val 105	Glu	Leu	Gln	Glu	Leu 110	Λsn	Λsp
Arg	Phe	Ala 115	Asn	Tyr	Ile	Asp	Lys 120	Val	Arg	Phe	Leu	Glu 125	Gln	Gln	Asn
Lys	Ile 130	Leu	Leu	Ala	Glu	Leu 135	Glu	Gln	Leu	Lys	Gly 140	Gln	Gly	Lys	Ser
Arg 145	Leu	Gly	Asp	Leu	Tyr 150	Glu	Glu	Glu	Met	Arg 155	Glu	Leu	Arg	Arg	Gln 160
Val	Asp	Gln	Leu	Thr 165	Asn	Asp	Lys	Ala	Arg 170	Val	Glu	Val	Glu	Arg 175	Asp
Asn	Leu	Ala	Glu 180	Asp	Ile	Met	Arg	Leu 185	Arg	Glu	Lys	Leu	Gln 190	Glu	Glu
Met	Leu	Gln 195	Arg	Glu	Glu	Ala	Glu 200	Asn	Thr	Leu	Gln	Ser 205	Phe	Arg	Gln
Asp	Val 210	Asp	Asn	Ala	Ser	Leu 215	Ala	Arg	Leu	Asp	Leu 220	Glu	Arg	ьуѕ	Val
Glu 225	Ser	Leu	Gln	Glu	Glu 230	Ile	Ala	Phe	Leu	Lys 235	lys	Leu	His	Glu	Glu 240
Glu	Ile	Gln	Glu	Leu 245		Ala	Gln	Ile	Gln 250		Gln	Fis	Val	Gln 255	Ile
Asp	Val	Asp	Val 260	Ser	Lys	Pro	Asp	Leu 265	Thr	Ala	Ala	Leu	Arg 270	Asp	Val
Arg	Gln	Gln 275	Tyr	Glu	Ser	Val	Ala 280	Ala	Lys	Asn	Leu	Gln 285	Glu	Ala	Glu
Glu	Trp 290	Tyr	Lys	Ser	Lys	Phe 295	Ala	Asp	Leu	Ser	Glu 300	Ala	Ala	Asn	Arg
Asn 305	Asn	Asp	Ala	Leu	Arg 310	Gln	Ala	Lys	Gln	Glu 315	Ser	Thr	Glu	Tyr	Arg 320
Arg	Gln	Val	Gln	Ser	Leu	Thr	Cys	Glu	Val	Asp	Ala	Leu	Lys	Gly	Thr

				325					330					335	5
Asn	Glu	Ser	Leu 340	Glu	Arg	Gln	Met	Arg 345		Met	Glu	Glu	ı Asr 350		e Ala
Val	Glu	Ala 355	Ala	Asn	Tyr	Gln	Asp 360		Ile	Gly	Arg	Leu 365		ı Asp	o Glu
Ile	Gln 370	Asn	Met	Lys	Glu	Glu 375	Met	Ala	Arg	His	Leu 380		, Glu	ı Туг	r Glr
Asp 385	Leu	Leu	Asn	Val	Lys 390	Met	Ala	Leu	Asp	Ile 395		Ile	e Ala	ı Thi	Tyr 400
Arg	Lys	Leu	Leu	Glu 405	Gly	Glu	Glu	Ser	Arg 410	Ile	Ser	Leu	ı Pro	Leu 415	ı Pro
Asn	Phe	Ser	Ser 420	Leu	Asn	Leu	Arg	Glu 425		Asn	Leu	Asp	Ser 430		ı Pro
Leu	Val	Asp 435	Thr	His	Ser	Lys	Arg 440	Thr	Leu	Leu	Ile	Lys 445		: Val	l Glu
Thr	Arg 450	Asp	Gly	Gln	Val	Ile 455	Asn	Glu	Thr	Ser	Gln 460		s His	s Asp	o Asp
Leu 465	Glu														
<210><211><211><212><213>	> 434 > PRT		iens												
<400> Met 1	-	Ile	Leu	Lys 5	Ile	His	Ala	Arg	Glu 10	Ile	Phe	Asp	Ser	Arg 15	Gly
Asn	Pro	Thr	Val 20	Glu	Val	Asp	Leu	Phe 25	Thr	Ser	Lys	Gly	Leu 30	Phe	Arg
Ala	Ala	Val 35	Pro	Ser	Gly	Ala	Ser 40	Thr	Gly	Ile	Tyr	Glu 45	Ala	Leu	Glu
Leu	Arg 50	Asp	Asn	Asp	Lys	Thr 55	Arg	Tyr	Met	Gly	Lys 60	Gly	Val	Ser	Lys

Ala 65	Val	Glu	His	Ile	Asn 70	Lys	Thr	Ile	Ala	Pro 75	Ala	Leu	Val	Ser	Lys 80
Lys	Leu	Asn	Val	Thr 85	Glu	Gln	Glu	Lys	Ile 90	Asp	Lys	Leu	Met	Ile 95	Glu
Met	Asp	Gly	Thr 100	Glu	Asn	Lys	Ser	Lys 105	Phe	Gly	Ala	Asn	Ala 110	Ile	Leu
Gly	Val	Ser 115	Leu	Ala	Val	Cys	Lys 120	Ala	Gly	Ala	Val	Glu 125	Lys	Gly	Val
Pro	Leu 130	Tyr	Arg	His	Ile	Ala 135	Asp	Leu	Ala	Gly	Asn 140	Ser	Glu	Val	Ile
Leu 145	Pro	Val	Pro	Ala	Phe 150	Asn	Val	Ile	Asn	Gly 155	Gly	Ser	His	Ala	Gly 160
Asn	Lys	Leu	Ala	Met 165	Gln	Glu	Phe	Met	Ile 170	Leu	Pro	Val	Gly	Ala 175	Ala
Asn	Phe	Arg	Glu 180	Ala	Met	Arg	Ile	Gly 185	Ala	Glu	Val	Tyr	His 190	Asn	Leu
Lys	Asn	Val 195	Ile	Lys	Glu	Lys	Tyr 200	Gly	Lys	Asp	Ala	Thr 205	Asn	Val	Gly
Asp	Glu 210	Gly	Gly	Phe	Ala	Pro 215	Asn	Ile	Leu	Glu	Asn 220	Lys	Glu	Gly	Leu
Glu 225	Leu	Leu	Lys	Thr	Ala 230	Ile	Gly	Lys	Ala	Gly 235	Tyr	Thr	Asp	Lys	Val 240
Val	Ile	Gly	Met	Asp 245	Val	Ala	Ala	Ser	Glu 250	Phe	Phe	Arg	Ser	Gly 255	Lys
Tyr	Asp	Leu	Asp 260	Phe	Lys	Ser	Pro	Asp 265	Asp	Pro	Ser	Arg	Tyr 270	Ile	Ser
Pro	Asp	Gln 275	Leu	Ala	Asp	Leu	Tyr 280	Lys	Ser	Phe	Ile	Lys 285	Asp	Tyr	Pro
Val	Val 290	Ser	Ile	Glu	Asp	Pro 2 9 5	Phe	Asp	Gln	Asp	Asp 300	Trp	Gly	Ala	Trp

Gln Lys Phe Thr Ala Ser Ala Gly Ile Gln Val Val Gly Asp Asp Leu

Thr	Val	Thr	Asn	Pro 325	Lys	Arg	Ile	Ala	Lys 330	Ala	Val	Asn	Glu	Lys 335	Ser
Cys	Asn	Суѕ	Leu 340	Leu	Leu	Lys	Val	Asn 345	Gln	Ile	Gly	Ser	Val 350	Thr	Glu
Ser	Leu	Gln 355	Ala	Cys	Lys	Leu	Ala 360	Gln	Ala	Asn	Gly	Trp 365	Gly	Val	Met
Val	Ser 370	His	Arg	Ser	Gly	Glu 375	Thr	Glu	Asp	Thr	Phe 380	Ile	Ala	Asp	Leu
Val 385	Val	Gly	Leu	Cys	Thr 390	Gly	Gln	Ile	Lys	Thr 395	Gly	Ala	Pro	Cys	Arg 400
Ser	Glu	Arg	Leu	Ala 405	Lys	Tyr	Asn	Gln	Leu 410	Leu	Arg	Ile	Glu	Glu 415	Glu
Leu	Gly	Ser	Lys 420	Ala	Lys	Phe	Ala	Gly 425	Arg	Asn	Phe	Arg	Asn 430	Pro	Leu
Ala	Lys														
			iens												
<400: Met 1	> 21 Ala	Ser	Gly	Asn 5	Ala	Arg	Ile	Gly	Lys 10	Pro	Ala	Pro	Asp	Phe 15	Lys
Ala	Thr	Ala	Val 20	Val	Asp	Gly	Ala	Phe 25	Lys	Glu	Val	Lys	Leu 30	Ser	Asp
Tyr	Lys	Gly 35	Lys	Tyr	Val	Val	Leu 40	Phe	Phe	Tyr	Pro	Leu 45	Asp	Phe	Thr
Phe	Val 50	Суѕ	Pro	Thr	Glu	Ile 55	Ile	Ala	Phe	Ser	Asn 60	Arg	Ala	Glu	Asp
Phe 65	Arg	Lys	Leu	Gly	Cys 70	Glu	Val	Leu	Gly	Val 75	Ser	Val	Asp	Ser	Gln 80

Phe	Thr	His	Leu	Ala 85	Trp	Ile	Asn	Thr	Pro 90	Arg	Lys	Glu	Gly	Gly 95	Leu
Gly	Pro	Leu	Asn 100	Ile	Pro	Leu	Leu	Ala 105	Asp	Val	Thr	Arg	Arg 110	Leu	Ser
Glu	Asp	Tyr 115	Gly	Val	Leu	Lys	Thr 120	Asp	Glu	Gly	Ile	Ala 125	Tyr	Arg	Gly
Leu	Phe 130	Ile	Ile	Asp	Gly	Lys 135	Gly	Val	Leu	Arg	Gln 140	Ile	Thr	Val	Asn
Asp 145	Leu	Pro	Val	Gly	Arg 150	Ser	Val	Asp	Glu	Ala 155	Leu	Arg	Leu	Val	Gln 160
Ala	Phe	Gln	Tyr	Thr 165	Asp	Glu	His	Gly	Glu 170	Val	Cys	Pro	Ala	Gly 175	Trp
Lys	Pro	Gly	Ser 180	Asp	Thr	Ile	Lys	Pro 185	Asn	Val	Asp	Asp	Ser 190	Lys	Glu
Tyr	Phe	Ser 195	Lys	His	Asn										
<210><211><211><212><213>	256 PRT	o sapi	ens												
<400> Met 1		Ala	Ala	Val 5	Gly	Arg	Leu	Leu	Arg 10	Ala	Ser	Val	Ala	Arg 15	His
Val	Ser	Ala	Ile 20	Pro	Trp	Gly	Ile	Ser 25	Ala	Thr	Ala	Ala	Leu 30	Arg	Pro
Ala	Ala	Cys 35	Gly	Arg	Thr	Ser	Leu 40	Thr	Asn	Leu	Leu	Cys 45	Ser	Gly	Ser
Ser	Gln 50	Ala	Lys	Leu	Phe	Ser 55	Thr	Ser	Ser	Ser	Cys 60	His	Ala	Pro	Ala
Val 65	Thr	Gln	His	Ala	Pro 70	Tyr	Phe	Lys	Gly	Thr 75	Ala	Val	Val	Asn	Gly 80

Glu	Phe	Lys	Asp	Leu 85	Ser	Leu	Asp	Asp	Phe 90	Lys	Gly	Lys	Tyr	Leu 95	Val
Leu	Phe	Phe	Tyr 100	Pro	Leu	Asp	Phe	Thr 105	Phe	Val	Cys	Pro	Thr 110	Glu	Ile
Val	Ala	Phe 115	Ser	Asp	Lys	Ala	Asn 120	Glu	Phe	His	Asp	Val 125	Asn	Cys	Glu
Val	Val 130	Ala	Val	Ser	Val	Asp 135	Ser	His	Phe	Ser	His 140	Leu	Ala	Trp	Ile
Asn 145	Thr	Pro	Arg	Lys	Asn 150	Gly	Gly	Leu	Gly	His 155	Met	Asn	Ile	Ala	Leu 160
Leu	Ser	Asp	Leu	Thr 165	Lys	Gln	Ile	Ser	Arg 170	Asp	Tyr	Gly	Val	Leu 175	Leu
Glu	Gly	Ser	Gly 180	Leu	Ala	Leu	Arg	Gly 185	Leu	Phe	Ile	Ile	Asp 190	Pro	Asn
Gly	Val	Ile 195	Lys	His	Leu	Ser	Val 200	Asn	Asp	Leu	Pro	Val 205	Gly	Arg	Ser
Val	Glu 210	Glu	Thr	Leu	Arg	Leu 215	Val	Lys	Ala	Phe	Gln 220	Tyr	Val	Glu	Thr
His 225	Gly	Glu	Val	Cys	Pro 230	Ala	Asn	Trp	Thr	Pro 235	Asp	Ser	Pro	Thr	Ile 240
Lys <210>		Ser	Pro	Ala 245	Ala	Ser	Lys	Glu	Tyr 250	Phe	Gln	Lys	Val	Asn 255	Gln
<211> <211> <212> <213>	201 PRT	o sapi	ens												
<400> Met 1		Ala	Ala	Lys 5	Asp	Thr	His	Glu	Asp 10	His	Asp	Thr	Ser	Thr 15	Glu
Asn	Thr	Asp	Glu 20	Ser	Asn	His	Asp	Pro 25	Gln	Phe	Glu	Pro	Ile 30	Val	Ser
Leu	Pro	Glu 35	Gln	Glu	Ile	Lys	Thr 40	Leu	Glu	Glu	Asp	Glu 45	Glu	Glu	Leu

Phe	Lys 50	Met	Arg	Ala	Lys	Leu 55	Phe	Arg	Phe	Ala	Ser 60	Glu	Asn	Asp	Leu
Pro 65	Glu	Trp	Lys	Glu	Arg 70	Gly	Thr	Gly	Asp	Val 75	Lys	Leu	Leu	Lys	His 80
Lys	Glu	Lys	Gly	Ala 85	Ile	Arg	Leu	Leu	Met 90	Arg	Arg	Asp	Lys	Thr 95	Leu
Lys	Ile	Cys	Ala 100	Asn	His	Tyr	Ile	Thr 105	Pro	Met	Met	Glu	Leu 110	Lys	Pro
Asn	Ala	Gly 115	Ser	Asp	Arg	Ala	Trp 120	Val	Trp	Asn	Thr	His 125	Ala	Asp	Phe
Ala	Asp 130	Glu	Cys	Pro	Lys	Pro 135	Glu	Leu	Leu	Ala	Ile 140	Arg	Phe	Leu	Asn
Ala 145	Glu	Asn	Ala	Gln	Lys 150	Phe	Lys	Thr	Lys	Phe 155	Glu	Glu	Cys	Arg	Lys 160
Glu	Ile	Glu	Glu	Arg 165	Glu	Lys	Lys	Ala	Gly 170	Ser	Gly	Lys	Asn	Asp 175	His
Ala	Glu	Lys	Val 180	Ala	Glu	Lys	Leu	Glu 185	Ala	Leu	Ser	Val	Lys 190	Glu	Glu
Thr	Lys	Glu 195	Asp	Ala	Glu	Glu	Lys 200	Gln							
			iens												
<400 Met 1		Lys	Gly	Asp 5	Pro	Lys	Lys	Pro	Arg 10	Gly	Lys	Met	Ser	Ser 15	Туг
Ala	Phe	Phe	Val 20	Gln	Thr	Cys	Arg	Glu 25	Glu	His	Lys	Lys	Lys 30	His	Pro
Asp	Ala	Ser 35	Val	Asn	Phe	Ser	Glu 40	Phe	Ser	Lys	Lys	Cys 45	Ser	Glu	Arg

REIVINDICACIONES

1. Procedimiento *in vitro* de detección de una esclerodermia sistémica (ScS) o de una hipertensión arterial pulmonar asociada a una esclerodermia (HTAP-ScS) o de una hipertensión arterial pulmonar idiopática (HTAPi) en un sujeto, que comprende la determinación de la presencia y/o de la cantidad de al menos un anticuerpo elegido del grupo constituido por los anticuerpos anti-galectina-1, anti-proteína FAM10A4, anti-fosfoproteína 1 inducida por el estrés, y anti-precursor de la proteína de 78 kDa regulada por la glucosa, en una muestra biológica procedente de un paciente,

siendo indicativa de una ScS o de una HTAPi, la presencia de un anticuerpo anti-precursor de la proteína de 78 kDa regulada por la glucosa;

10 siendo indicativa de una HTAP-ScS o de una HTAPi, la presencia de un anticuerpo anti-proteína FAM10A4;

siendo indicativa de una ScS, la presencia de un anticuerpo anti-galectina-1;

- o siendo indicativa de una ScS, de una HTAP-ScS o de una HTAPi, la presencia de una cantidad superior a un valor control de un anticuerpo anti-fosfoproteína 1 inducida por el estrés.
- 2. Procedimiento según la reivindicación 1, en el cual la muestra biológica es una muestra de sangre o de suero.
- 15 3. Procedimiento según una de las reivindicaciones 1 o 2, en el cual la cantidad de dicho al menos un anticuerpo se determina por un inmunoensayo.
 - 4. Procedimiento según la reivindicación 3, en el cual el inmunoensayo es una valoración ELISA.
 - 5. Procedimiento según una de las reivindicaciones 1 a 4, en el cual el paciente es un ser humano.
- 6. Procedimiento según una de las reivindicaciones 1 a 5, en el cual el paciente sufre de una esclerodermia sistémica, con o sin hipertensión arterial pulmonar asociada.
 - 7. Procedimiento según una de las reivindicaciones 1 a 5, en el cual el paciente sufre de una hipertensión arterial pulmonar idiopática.
 - 8. Procedimiento según una de las reivindicaciones 1 a 6, en el cual la hipertensión arterial pulmonar está asociada a una hipertensión portal, a una cardiopatía congénita, o a una infección por el virus de la inmunodeficiencia humana (VIH), o es una hipertensión pulmonar post-embólica.
 - 9. Procedimiento según una de las reivindicaciones 1 a 6, en el cual el paciente es un sujeto predispuesto a desarrollar una esclerodermia sistémica o una hipertensión arterial pulmonar asociada a una esclerodermia o una hipertensión arterial pulmonar idiopática
- 10. Procedimiento según la reivindicación 9, en el cual el sujeto es portador de una o varias mutaciones en el gen que codifica BMPRII. endoglina o ALK1.
 - 11. Procedimiento según una cualquiera de las reivindicaciones 1 a 10, comprendiendo dicho al menos un anticuerpo, un anticuerpo anti-galectina 1.
 - 12. Procedimiento según una cualquiera de las reivindicaciones 1 a 10, comprendiendo dicho al menos un anticuerpo, un anticuerpo anti-fosfoproteína 1 inducida por el estrés.

35

25

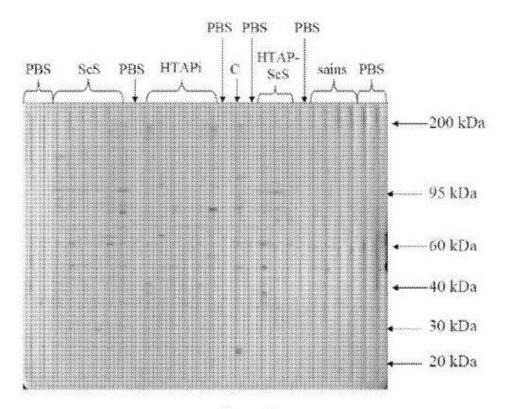


Figura 1

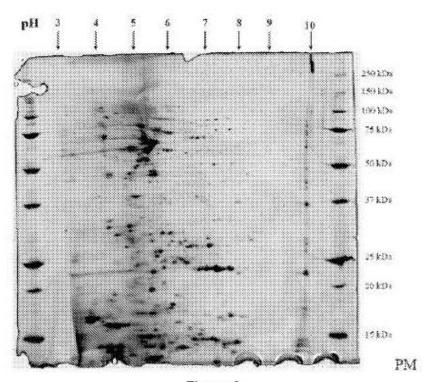


Figura 2

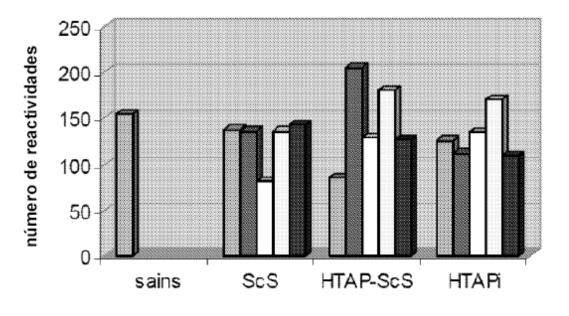
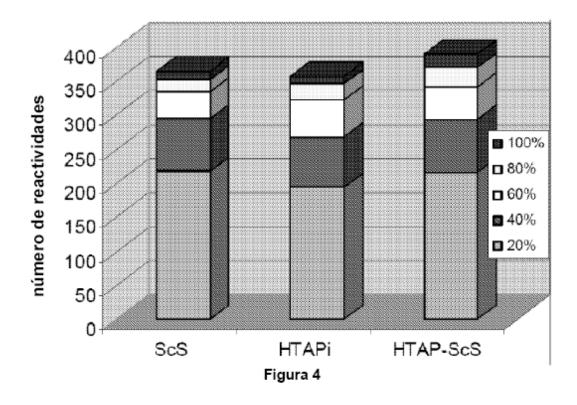
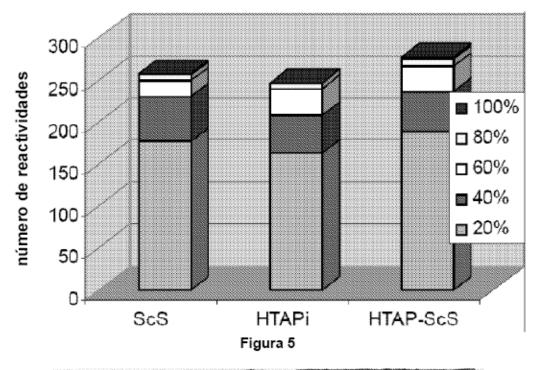




Figura 3

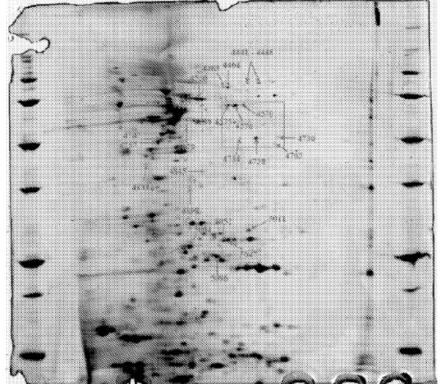


Figura 6

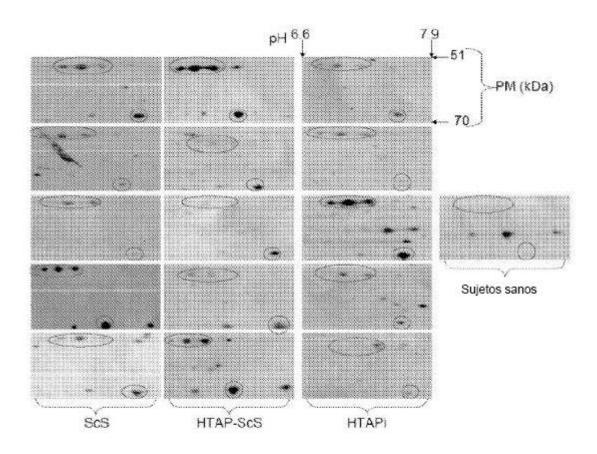


Figura 7

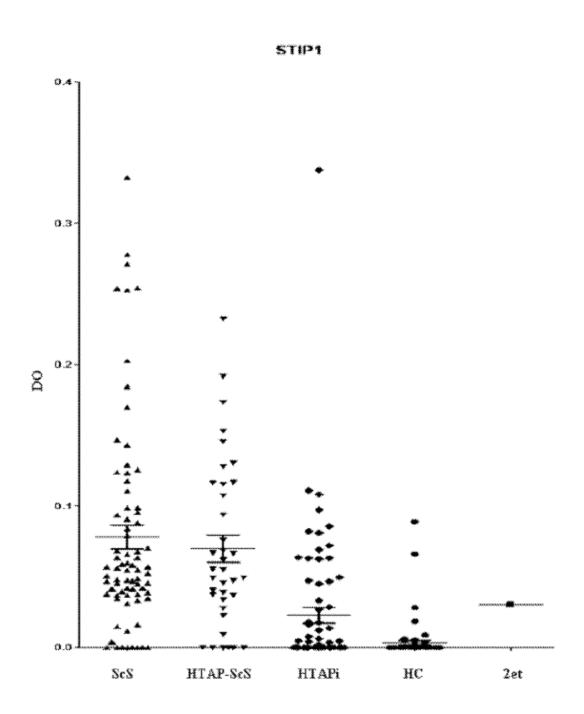


Figura 8

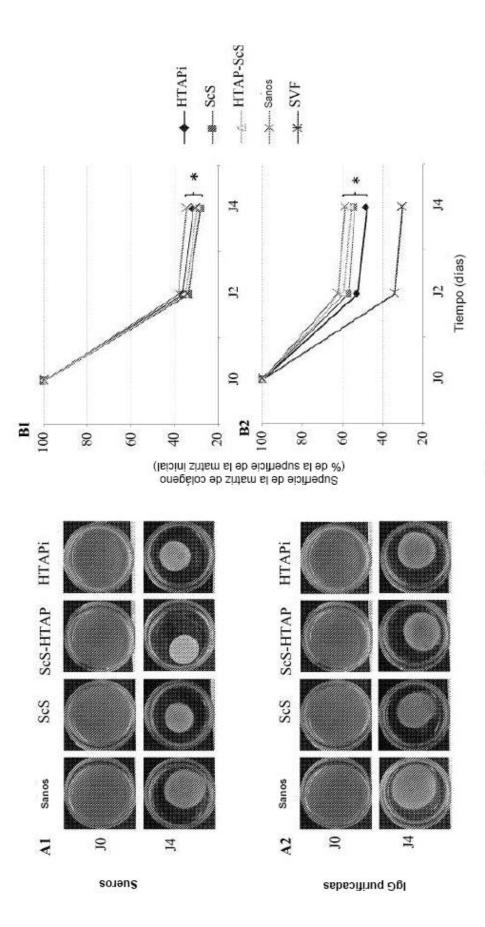
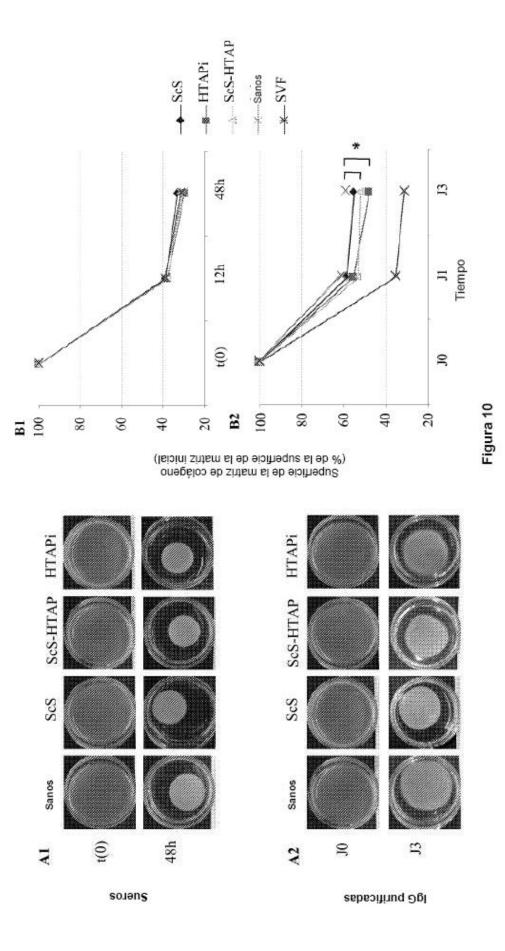



Figura 9

