

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 536 438

51 Int. Cl.:

A61K 38/00 (2006.01) C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 03.01.2007 E 12165748 (0)
 (97) Fecha y número de publicación de la concesión europea: 11.03.2015 EP 2502630
- (54) Título: Métodos y composiciones basados en los microARN para el diagnóstico, pronóstico y tratamiento del cáncer de pulmón
- (30) Prioridad:

05.01.2006 US 756400 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **25.05.2015**

(73) Titular/es:

THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION (100.0%) 1524 North High Street Columbus, OH 43201, US

(72) Inventor/es:

CROCE, CARLO; YANAIHARA, NOZOMU y HARRIS, CURTIS

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Métodos y composiciones basados en los microARN para el diagnóstico, pronóstico y tratamiento del cáncer de pulmón

Apoyo Gubernamental

5

10

15

35

40

45

50

55

60

65

Esta invención se llevó a cabo con el apoyo, en todo o en parte, con la subvención CA76259 y los fondos propios de CCR/NCI/NIH y por los fondos Federales de NCI/NIH bajo el Contrato Nº NO1-CO-12400. El Gobierno tiene ciertos derechos en esta invención.

Antecedente de la invención

El cáncer de pulmón causa más muertes en todo el mundo que cualquier otra forma de cáncer (Goodman, G.E., Thorax 57: 994-999 (2002)). En los Estados Unidos, el cáncer de pulmón es la primera causa de muerte por cáncer tanto entre hombres como entre mujeres. En 2002, la tasa de mortalidad por cáncer de pulmón se estimó en 134.900 muertes. El cáncer de pulmón también encabeza las muertes por cáncer en todos los países europeos y el número de muertes relacionadas con el cáncer de pulmón está aumentando rápidamente en los países en desarrollo.

La tasa de supervivencia a los cinco años entre todos los pacientes de cáncer de pulmón, sin tener en cuenta el estadio de la enfermedad en el momento del diagnóstico, es solo de aproximadamente el 13 %. Esto contrasta con una tasa de supervivencia a los cinco años del 46 % entre los casos detectados cuando la enfermedad está aún localizada. Sin embargo, solo el 16 % de los cánceres de pulmón se descubren antes de que la enfermedad se haya extendido. La detección precoz es difícil porque los síntomas clínicos a menudo no se observan hasta que la enfermedad alcanza un estadio avanzado. Normalmente, el diagnóstico se ayuda del uso de radiografías de tórax, el análisis del tipo de células que contiene el esputo y el examen del tracto bronquial con fibra óptica. Los regímenes de tratamiento se determinan por el tipo y estadio del cáncer, e incluyen la cirugía, la radioterapia y/o la quimioterapia. A pesar de las considerables investigaciones en terapias para este y otros tipos de cáncer, el cáncer de pulmón sigue siendo difícil de diagnosticar y tratar eficazmente. Por lo tanto, existe una gran necesidad de mejores métodos para detectar y tratar tales cánceres.

El análisis sistemático de los niveles de expresión de ARNm y proteínas entre miles de genes ha contribuido a definir la red molecular de carcinogénesis pulmonar (Meyerson y Carbone, J Clin. Oncol. 23: 3219-3226 (2005); Granville y Dennis, Cell Mol. Biol. 32: 169-176 (2005)). Por ejemplo, son comunes los defectos en las rutas *p53* y *RB/p16* en el cáncer de pulmón. Varios genes distintos, tales como *K-ras, PTEN, FHIT* and *MYO18B*, están alterados genéticamente en los cánceres de pulmón, aunque menos frecuentemente (Minna y col., Cancer Cell 1: 49-52 (2002); Sekido y col., Annu. Rev. Med. 54:73-87 (2003); Yokota y Kohno, Cancer Sci. 95: 197-204 (2004)). Aunque centrarse en los genes y proteínas conocidos ha dado una información útil, también se puede prestar atención a marcadores de cáncer de pulmón desconocidos previamente en la biología del cáncer de pulmón.

Los microARN (miARN) son una clase de ARN pequeños, no codificantes que controlan la expresión génica hibridándose con y desencadenando la represión traduccional o, menos frecuentemente, la degradación de un ARN mensajero (ARNm) diana. El descubrimiento y estudio de los miARN han revelado mecanismos génicos reguladores mediados por miARN que tienen papeles importantes en el desarrollo de organismos y varios procesos celulares, tales como diferenciación celular, crecimiento celular y muerte celular (Cheng, A.M. y col., Nucleic Acids Res. 33: 1290-1297 (2005)). Los estudios recientes sugieren que la expresión aberrante de miARN particulares puede estar implicada en enfermedades humanas, tales como trastornos neurológicos (Ishizuka, A. y col., Genes Dev. 16: 2497-2508 (2002)) y cáncer. Los genes microARN están altamente asociados con las características cromosómicas implicadas en la etiología de distintos cánceres. Por lo tanto la evaluación de la expresión génica de miR puede utilizarse para indicar la presencia de una lesión cromosómica causante de cáncer en un sujeto. Como el cambio en el nivel de la expresión génica de miR producido por una característica cromosómica asociada con el cáncer puede contribuir también a cancerigénesis, un determinado cáncer se puede tratar restaurando el nivel de la expresión génica a los valores normales (documento WO 2005/078139). En particular, se ha descubierto una expresión errónea de miR-16-1 y/o miR-15a en leucemias linfocíticas crónicas (Calin, G.A. y col., Proc. Natl. Acad. Sci. U.S.A. 99: 15524-15529 (2002)). Además, la expresión reducida del microARN let-7 en cánceres de pulmón humanos se correlacionó con la supervivencia tras la resección potencialmente curativa (Takamizawa J. y col., Cancer Research 64, 3753-3756, June 1 (2004)). La familia de los microARN let-7 regula negativamente el let-60/RAS. La expresión de let-7 es menor en tumores pulmonares que en el tejido pulmonar normal, al tiempo que la proteína RAS es significativamente más alta en los tumores pulmonares (Johnson S.M. y col., Cell 120, 635-647, March 11 (2005)).

El desarrollo y uso de micromatrices que contienen todos los microARN conocidos ha permitido un análisis simultáneo de la expresión de cada miARN en una muestra (Liu, C.G. y col., Proc Natl. Acad. Sci. U.S.A. 101: 9740-9744 (2004)). Estas micromatrices de microARN no sólo se han utilizado para confirmar que el miR-16-1 está mal regulado en las células humanas de LLC, sino también para generar firmas de expresión de miARN que se asocian con cuadros clinicopatológicos bien definidos de LLC humanas (Calin, G.A. y col., Proc. Natl. Acad. Sci. U.S.A. 101: 1175-11760 (2004)). Se puede utilizar el aislamiento, el enriquecimiento y/o el marcado de moléculas de miARN

para preparar matrices u otras técnicas de detección para el análisis de miARN. Los perfiles de miARN se pueden emplear en aplicaciones terapéuticas, diagnósticas y pronósticas (documento WO 2005/118806).

La identificación de microARN que se expresan diferencialmente en las células del cáncer de pulmón ayudaría al diagnóstico, el pronóstico y el tratamiento del cáncer de pulmón. Además, la identificación de las supuestas dianas de estos miARN ayudaría a desvelar su papel patogénico. La presente invención proporciona métodos nuevos métodos para el pronóstico del cáncer de pulmón.

Sumario

5

10

15

20

25

30

35

40

45

50

55

60

65

La presente invención se basa, en parte, en la identificación de los miARN específicos asociados con niveles de expresión alterados en las células del cáncer de pulmón.

La presente divulgación engloba métodos para diagnosticar si un sujeto tiene, o está en riesgo de desarrollar, un cáncer de pulmón. Según los métodos desvelados en el presente documento, el nivel de al menos un producto génico de miR en una muestra de ensayo del sujeto se compara con el nivel de un correspondiente producto génico de miR en una muestra control. Una alteración (por ejemplo, un aumento, un descenso) del nivel del producto génico de miR en la muestra de ensayo, con respecto al nivel de un correspondiente producto génico de miR en la muestra control, es indicativa de que el sujeto tiene, o está en riesgo de desarrollar, cáncer de pulmón. El al menos un producto génico de miR puede seleccionarse del grupo que consiste en miR-21, miR-191, miR-126*, miR-210, miR-155, miR-143, miR-205, miR-192-prec, miR-224, miR-126, miR-24-2, miR-30a-5p, miR-212, miR-140, miR-9, miR-214, miR-17-3p, miR-124a-1, miR-218-2, miR-95, miR-145, miR-198, miR-216-prec, miR-219-1, miR-106a, miR-197, miR-192, miR-125a-prec, miR-26a-1-prec, miR-146, miR-203, miR-199b-prec, let-7a-2-prec, miR-27b, miR-32, miR-29b-2, miR-220, miR-33, miR-181c-prec, miR-150, miR-101-1, miR-124a-3, miR-125a y let-7f-1. En una divulgación en particular, el al menos un producto génico de miR se seleccionan entre el grupo que consiste en miR-21, miR-191, miR-155, miR-210, miR-126* y miR-224. En otra divulgación, el al menos un producto génico de miR se selecciona entre el grupo que consiste miR-21, miR-205 y miR-216. En otra divulgación más, el cáncer de pulmón es un adenocarcinoma de pulmón y el al menos un producto génico de miR se selecciona entre el grupo que consiste en miR-21, miR-191, miR-155, miR-210, miR-126*, miR-126, miR-24-2, "miR-219-1, miR-95, miR-192-prec, miR-220, miR-216-prec, miR-204-prec, miR-188, miR-198, miR-145 y miR-224.

El nivel del al menos un producto génico de miR se puede medir utilizando varias técnicas que son bien conocidas por los expertos en la técnica (por ejemplo, RT-PCR semicuantitativa o cuantitativa, análisis de transferencia de Northern, detección de hibridación en solución). En una realización particular, el nivel de al menos un producto génico de miR se mide haciendo la transcripción inversa del ARN de una muestra de ensayo obtenida de un sujeto, que proporciona una serie de oligodesoxinucleótidos diana, hibridando los oligodesoxinucleótidos diana con uno o más oligonucleótidos sonda específicos de miARN (por ejemplo, en una micromatriz que comprende oligonucleótidos sonda específicos de miARN) que proporciona un perfil de hibridación para la muestra de ensayo y comparando el perfil de hibridación de la muestra de ensayo con un perfil de hibridación generado a partir de una muestra control. Una alteración en la señal de al menos un miARN en la muestra de ensayo con respecto a la muestra control es indicativa de que el sujeto o tiene o está en riesgo de desarrollar un cáncer de pulmón. En una divulgación particular, la micromatriz comprende oligonucleótidos sonda específicos de miARN de una parte sustancial de todos los miARN humanos conocidos. La micromatriz puede comprender oligonucleótidos sonda específicos de miARN para uno o más de los miARN seleccionados entre el grupo que consiste en miR-21, miR-191, miR-126*, miR-210, miR-155, miR-143, miR-205, miR-192-prec, miR-224, miR-126, miR-24-2, miR-30a-5p, miR-212, miR-140, miR-9, miR-214, miR-17-3p, miR-124a-1, miR-218-2, miR-95, miR-145, miR-198, miR-216-prec, miR-219-1, miR-106a, miR-197, miR-192, miR-125a-prec, miR-26a-1-prec, miR-146, miR-203, miR-199b-prec, let-7a-2-prec, miR-27b, miR-32, miR-29b-2, miR-220, miR-33, miR-181c-prec, miR-150, miR-101-1, miR-124a-3, miR-125a y let-7f-

La presente invención proporciona métodos para determinar el pronóstico de un sujeto con cáncer de pulmón, que comprenden la medición del nivel de productos génicos de miR en una muestra de ensayo del sujeto, estando asociados dichos productos génicos con un pronóstico adverso en el cáncer de pulmón. De acuerdo con estos métodos, una alteración en el nivel de los productos génicos de miR, que se asocian con un pronóstico adverso, en la muestra de ensayo, cuando se compara con el nivel de los correspondientes productos génicos de miR en una muestra control, es indicativa de pronóstico adverso. El cáncer de pulmón es un adenocarcinoma de pulmón y los productos génicos de miR consisten en miR-155 y let-7a-2. Además, el nivel del producto génico de miR-155 en la muestra de ensayo es mayor que el nivel del producto génico de miR correspondiente y el nivel del producto génico de let-7a-2 en la muestra de ensayo es menor que el nivel del producto génico de miR correspondiente en la muestra de control. En ciertas realizaciones, los productos génicos de miR son un grupo de productos génicos de miR que consiste en miR-155, miR-17-3p, miR-106a, miR-93, let-7a-2, miR-145, let-7b, miR-20 y miR-21. El nivel del al menos un producto génico de miR se puede medir como se describe en el presente documento (por ejemplo, por RT-PCR semicuantitativa o cuantitativa, análisis de transferencia de Northern, detección de hibridación en solución, análisis por micromatrices). Una alteración en la señal de al menos un miARN en la muestra de ensayo, con respecto a la muestra control es indicativa de que el sujeto o tiene o está en riesgo de desarrollar un cáncer de pulmón con un pronóstico adverso. En una divulgación en particular, una alteración en la señal de miR-125a, miR-

125b-1, miR-224 y/o miR-21 es indicativa de que el sujeto o tiene o está en riesgo de desarrollar un cáncer de pulmón con un pronóstico adverso. En cierta divulgación, la micromatriz comprende oligonucleótidos sonda específicos de miARN para uno o más de los miARN seleccionados entre el grupo que consiste en miR-21, miR-191, miR-126*, miR-210, miR-155, miR-143, miR-205, miR-192-prec, miR-224, miR-126, miR-24-2, miR-30a-5p, miR-212, miR-140, miR-9, miR-214, miR-17-3p, miR-124a-1, miR-218-2, miR-95, miR-145, miR-198, miR-216-prec, miR-219-1, miR-106a, miR-197, miR-192, miR-125a-prec, miR-26a-1-prec, miR-146, miR-203, miR-199b-prec, let-7a-2-prec, miR-27b, miR-32, miR-29b-2, miR-220, miR-33, miR-181c-prec, miR-150, miR-101-1, miR-124a-3, miR-125a y let-7f-1.

- También se desvelan métodos para el tratamiento del cáncer de pulmón en un sujeto, en el que al menos un producto génico de miR está desregulado (por ejemplo, regulado negativamente, regulado positivamente) en las células cancerosas del sujeto. Cuando al menos un producto génico de miR aislado está regulado negativamente en las células del cáncer de pulmón, el método comprende la administración de una cantidad eficaz de un producto génico aislado de miR o una variante aislada o un fragmento biológicamente activo del mismo, de forma que se inhiba la proliferación de las células cancerosas en el sujeto. Cuando al menos un producto génico de miR aislado está regulado positivamente en las células cancerosas, el método comprende la administración al sujeto de una cantidad eficaz de al menos un compuesto para inhibir la expresión del al menos un producto génico de miR, de forma que se inhiba la proliferación de las células del cáncer de pulmón.
- En una divulgación relacionada, los métodos para el tratamiento del cáncer de pulmón en un sujeto comprenden adicionalmente la etapa de determinar en primer lugar la cantidad de al menos un producto génico de miR en las células del cáncer de pulmón del sujeto y comparar ese nivel con el nivel del correspondiente producto génico de miR en las células control. Si la expresión del producto génico de miR está desregulado (por ejemplo, regulado negativamente, regulado positivamente) en las células del cáncer de pulmón, los métodos además comprenden la alteración de la cantidad del al menos un producto génico de miR expresado por las células del cáncer de pulmón. En una divulgación, la cantidad del producto génico de miR expresado en las células cancerígenas es menor que la cantidad del producto génico de miR expresado en las células control y se administra al sujeto una cantidad eficaz del producto génico de miR o una variante aislada o un fragmento biológicamente activo del mismo. En otra divulgación, la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células cancerosas es mayor que la cantidad del producto génico de miR expresado en las células c

También se desvelan composiciones farmacéuticas para el tratamiento del cáncer de pulmón. En una divulgación, las composiciones farmacéuticas comprenden al menos un producto génico de miR aislado o una variante aislada o un fragmento biológicamente activo del mismo y un vehículo farmacéuticamente aceptable. En una divulgación particular, el al menos un producto génico de miR corresponde a un producto génico de miR que tiene un nivel de expresión disminuido en las células del cáncer de pulmón con respecto al de las células control adecuadas. En ciertas divulgaciones el producto génico de miR aislado se selecciona entre el grupo que consiste en miR-126*, miR-143, miR-192, miR-224, miR-126, miR-30a-Sp, miR-140, miR-9, miR-124a-1, miR-218-2, miR-95, miR-145, miR-198, miR-216, miR-219-1, miR-125a, miR-26a-1, miR-199b, let-7a-2, miR-27b, miR-32, miR-29b-2, miR-220, miR-33, miR-181c, miR-101-1, miR-124a-3, let-7f-1 y una combinación de los mismos.

35

40

45

50

55

60

65

En otra divulgación, las composiciones farmacéuticas comprenden al menos un compuesto inhibidor de la expresión de miR. En una divulgación particular, el al menos un compuesto inhibidor de la expresión de miR es específico para un producto génico de miR cuya expresión es mayor en las células del cáncer de pulmón que en las células control. En ciertas divulgaciones, el compuesto inhibidor la expresión de miR es específico para uno o más productos génicos de miR seleccionados entre el grupo que consiste en miR-21, miR-191, miR-210, miR-155, miR-205, miR-24-2, miR-212, miR-214, miR-17-3p, miR-106a, miR-197, miR-192, miR-146, miR-203, miR-150 y una combinación de los mismos.

La divulgación también engloba métodos para identificar un agente anticáncer de pulmón, que comprenden proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR en la célula. En una divulgación, el método comprende proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR asociado con niveles de expresión disminuidos en las células del cáncer de pulmón. Un incremento en el nivel del producto génico de miR en la célula, con respecto a una célula control adecuada, es indicativo de que el agente de ensayo es un agente anticáncer de pulmón. En una divulgación particular, el al menos un producto génico de miR asociado con niveles de expresión disminuidos en las células del cáncer de pulmón se seleccionan entre el grupo que consiste en miR-126*, miR-143, miR-192, miR-224, miR-126, miR-30a-5p, miR-140, miR-9, miR-124a-1, miR-218-2, miR-95, miR-145, miR-198, miR-216, miR-219-1, miR-125a, miR-26a-1, miR-199b, let-7a-2, miR-27b, miR-32, miR-29b-2, miR-220, miR-33, miR-181c, miR-101-1, miR-124a-3, let-7f-1 y una combinación de los mismos.

En otras divulgaciones, el método comprende proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR asociado con niveles de expresión aumentados en las células del cáncer de pulmón. Un descenso en la célula del nivel del producto génico de miR asociado con niveles de expresión aumentados en el cáncer de pulmón, con respecto a una célula control adecuada, es indicativo de que el agente de

ensayo es un agente anticáncer de pulmón. En una divulgación particular, el al menos un producto génico de miR asociado con niveles de expresión aumentados en las células del cáncer de pulmón se seleccionan entre el grupo que consiste en miR-21, miR-191, miR-210, miR-155, miR-205, miR-24-2, miR-212, miR-214, miR-17-3p, miR-106a, miR-197, miR-192, miR-146, miR-203, miR-150 y una combinación de los mismos.

Breve descripción de los dibujos

5

10

15

20

45

60

65

El documento de patente o solicitud contiene al menos un dibujo ejecutado en color. Las copias de esta publicación de patente o solicitud de patente con dibujos en color se proporcionarán por la Oficina bajo pedido y pago de las tasas necesarias.

- La FIG. 1 muestra unos gráficos que representan el nivel de expresión relativa de miR-21 precursor humano (hsa-mir-21; paneles superiores), de miR-126* precursor humano (hsa-mir-126*; paneles medios) y de miR-205 precursor humano (hsa-mir-205; paneles inferiores) en tejidos con cáncer de pulmón (Ca) y no cancerosos (N), que se determinaron por análisis RT-PCR en tiempo real. Las muestras de cáncer fueron de adenocarcinoma o de carcinoma de células escamosas (SCC). Se llevó a cabo un ensayo t pareado para asegurar la significación estadística entre los niveles de expresión en tejidos de cáncer de pulmón y tejidos no cancerosos de pulmón.
- La FIG. 2 representa la expresión de los miARN maduros para miR-21 (hsa-mir-21), miR-126* (hsa-mir-126*) y miR-205 (hsa-mir-205) en muestras de cáncer de pulmón (es decir, adenocarcinomas (Adeno) y carcinomas de células escamosas (SCC)), detectados por hibridación en solución. Ca representa tejidos cancerosos de pulmón y N representa tejidos de pulmón no cancerosos. El ARNr 5S sirvió como un control de carga.
- La FIG. 3A es un dendrograma que representa un agrupamiento jerárquico que se basa en los perfiles de expresión de microARN de 13 líneas celulares de cáncer de pulmón que representan carcinomas de pulmón de células pequeñas (SCLC) y carcinomas de pulmón de células no pequeñas (NSCLC).
- La FIG. 3B describe una vista de grupo de la expresión de un miARN de 13 líneas celulares de cáncer de pulmón (arriba), que corresponde a los que se enumeraron en la FIG. 3A. Los niveles de expresión de varios miARN, enumerados a la derecha de la figura, se indican según el color. El azul indica los niveles de expresión por debajo de la media, el negro indica los niveles de expresión que son aproximadamente iguales a la media y el naranja indica los niveles de expresión que son mayores que la media. El gris indica puntos de datos perdidos.
- La FIG. 4 es una curva de supervivencia de Kaplan-Meier para pacientes con adenocarcinoma. Los casos de adenocarcinoma en los que la intensidad de hibridación era diferente de los antecedentes (véase el Ejemplo 4) se clasificaron de acuerdo con la expresión de *hsa-mir-155* y los datos de supervivencia se compararon utilizando un ensayo de intervalo logarítmico. La relación de expresión media se define como la relación de expresión media = media de la expresión del tumor / media de la expresión del tejido no canceroso. El grupo de alta expresión del *hsa-mir-155* (es decir, el grupo con una relación de expresión ≥ la relación de expresión media (1,42); n=27) se comparó con los correspondientes tejidos de pulmón no cancerosos. El grupo de baja expresión del *hsa-mir-155* (es decir, el grupo con una relación de expresión < la relación de expresión media (1,42); n=28) se comparó con los correspondientes tejidos pulmonares no cancerosos. Las relaciones representan la intensidad de la señal de hibridación en la muestra de cáncer de pulmón con respecto a los controles no cancerosos.
 - La FIG. 5 es una curva de supervivencia de Kaplan-Meier para pacientes con adenocarcinoma. Los casos de adenocarcinoma en los que la intensidad de la hibridación fue diferente del antecedente (véase el Ejemplo 4) se clasificaron de acuerdo con la expresión del *hsa-let-7a-2* y los datos de supervivencia se compararon utilizando un ensayo de intervalo logarítmico. La relación de expresión media se definió como relación de expresión media = media de expresión del tumor / media de la expresión del tejido no canceroso. El grupo de alta expresión del *hsa-let-7a-2* (es decir, el grupo con una relación de expresión ≥ que la relación de expresión media (0,95); n=34) se comparó con los tejidos pulmonares no cancerosos correspondientes. El grupo de baja expresión del *hsa-let-7a-2* (es decir, el grupo con una relación de expresión < relación de expresión media (0,95); n=18) se comparó con los tejidos pulmonares no cancerosos correspondientes.
- La FIG. 6 es una curva de supervivencia de Kaplan-Meier para pacientes con adenocarcinoma. Treinta y dos casos de adenocarcinoma de una cohorte original se clasificaron de acuerdo con la expresión del *hsa-miR-155* precursor y los datos de supervivencia se compararon utilizando un ensayo de intervalo logarítmico. La relación de expresión media se definió como relación de expresión media = media de expresión tumoral / media de expresión del tejido no canceroso. El grupo de expresión alta del precursor *hsa-miR-155* (es decir el grupo con una relación de expresión ≥ que la relación de expresión media (1,19); n=19) se comparó con los tejidos de pulmón no cancerosos correspondientes.
 - La FIG. 7 es una curva de supervivencia de Kaplan-Meier para pacientes con adenocarcinoma. Treinta y dos casos de adenocarcinoma de una cohorte original se clasificaron de acuerdo con la expresión del precursor del hsa-let-7a-2 y los datos de supervivencia se compararon utilizando un ensayo de intervalo logarítmico. La relación media de expresión se definió como relación de expresión media = media de la expresión tumoral / media de la expresión del tejido no canceroso. El grupo de expresión alta del precursor del hsa-let-7a-2 (es decir, el grupo con una relación de expresión ≥ la relación de expresión media (0,92); n=18) se comparó con los correspondientes tejidos pulmonares no cancerosos. El grupo de expresión media (0,92); n=14) se comparó con los correspondientes tejidos pulmonares no cancerosos.
 - La FIG. 8 es una curva de supervivencia de Kaplan-Meier para pacientes con adenocarcinoma. Treinta y dos

casos de una cohorte adicional independiente se clasificaron de acuerdo con la expresión del *hsa-mir-155* precursor y los datos de supervivencia se compararon utilizando el ensayo de intervalo logarítmico. El grupo de alta expresión del *hsa-mir-155* precursor (n=14); el grupo de baja expresión del *hsa-mir-155* precursor (n=18).

La FIG. 9 es una curva de supervivencia de Kaplan-Meier para pacientes con adenocarcinoma. Treinta y dos casos de adenocarcinoma de una cohorte adicional independiente se clasificaron de acuerdo con la expresión del *hsa-let-7a-2* precursor y los datos de supervivencia se compararon utilizando el ensayo de intervalo logarítmico. El grupo de alta expresión del precursor *hsa-let-7a-2* (n=15); el grupo de baja expresión del precursor *hsa-let-7a-2* (n=17).

La FIG. 10 es una curva de supervivencia de Kaplan-Meier para pacientes con adenocarcinoma. Sesenta y cuatro casos de la combinación de 2 cohortes independientes se clasificaron de acuerdo con la expresión del hsa-mir-155 precursor, estimado por el análisis RT-PCR en tiempo real. Los datos de supervivencia se compararon utilizando el ensayo de intervalo logarítmico. La relación de expresión media se definió como relación de expresión media = media de la expresión tumoral / media de expresión de los tejidos no cancerosos. El grupo de alta expresión del hsa-miR-155 precursor (es decir el grupo con una relación de expresión ≥ relación de la media de expresión (1,19); n=27) se comparó con los correspondientes tejidos pulmonares no cancerosos. El grupo de baja expresión del hsa-miR-155 precursor (es decir el grupo con una relación de expresión < la relación de expresión media (1.19); n=37) se comparó con los correspondientes tejidos tumorales no cancerosos. La FIG. 11 es una curva de supervivencia de Kaplan-Meier para pacientes con adenocarcinoma. Sesenta y cuatro casos de adenocarcinoma de una combinación de 2 cohortes independientes se clasificaron de acuerdo con la expresión del hsa-let-7a-2 precursor, como se estimó por análisis RT-PCR en tiempo real. Los datos de supervivencia se compararon utilizando el ensayo de intervalo logarítmico. La relación de expresión media se definió como la relación de expresión media = media de la expresión tumoral / media de la expresión de tejido no canceroso. El grupo de alta expresión del hsa-let-7a-2 precursor (es decir, el grupo con una relación de expresión ≥ relación de expresión media (0,92); n=33) se comparó con los correspondientes tejidos pulmonares no cancerosos. El grupo de baja expresión del hsa-let-7a-2 precursor (es decir, el grupo con una relación de expresión < la relación de expresión media (0,92); n=31) se comparó con los correspondientes tejidos pulmonares no cancerosos.

La FIG. 12 describe la expresión de ARNm *MYO18B* tras el tratamiento con 5-aza-dC y/o TSA en dos líneas celulares de cáncer de pulmón (H157, A549), como se determinó por análisis RT-PCR. Calle 1, sin tratamiento; Calle 2, tratamiento con 5-aza-dC 1,0 μM durante 72 h; Calle 3, tratamiento con TSA 1,0 μM durante 24 h; Calle 4, tratamiento con 5-aza-dC 1,0 μM durante 72 horas, seguido por tratamiento con TSA 1,0 μM durante 24 h. La expresión de *GAPDH* sirvió como control de carga.

Descripción detallada

5

10

15

20

25

30

35

50

55

60

65

La presente invención se basa, en parte, en la identificación de microARN particulares que tienen alterada la expresión en células de cáncer de pulmón con respecto a células normales de control y en la asociación de estos microARN con características pronósticas particulares.

40 Como se usa en el presente documento de manera intercambiable, un "producto génico de miR", "microARN", "miR" o "miARN" se refiere al ARN procesado o sin procesar transcrito a partir de un gen miR. Como los productos génicos de miR no se traducen en proteínas, la expresión "productos génicos de miR" no incluye proteínas. El gen miR transcrito no procesado también se llama "miR precursor" y normalmente comprende un ARN transcrito de una longitud aproximada de 70-100 nucleótidos. El miR precursor se puede procesar por digestión con ARNasa (por ejemplo, Dicer, Argonaut, ARNasa III (por ejemplo ARNasa III de *E. coli*)) en una molécula de ARN activa con 19-25 nucleótidos. Esta molécula activa de ARN de 19-25 nucleótidos también se llama gen transcrito de miR "procesado" o miARN "maduro".

La molécula activa de ARN con 19-25 nucleótidos se pueden obtener a partir de miR precursor por medio de rutas de procesamiento natural (por ejemplo, utilizando células intactas o lisados celulares) o por rutas de procesamiento sintético (por ejemplo utilizando enzimas de procesamiento aisladas, tales como Dicer, Argonaut o ARNasa III aisladas). Se entiende que la molécula activa de ARN de 19-25 nucleótidos también se puede producir directamente por síntesis biológica o química, sin tener que procesarse a partir de miR precursor. Cuando en el presente documento se llama a un microARN por su nombre, el nombre corresponde tanto a la forma de precursor como a la madura, a menos que se indique otra cosa.

La presente divulgación engloba métodos para diagnosticar si un sujeto tiene o está en riesgo de desarrollar cáncer de pulmón, comprendiendo la medición del nivel de al menos un producto génico de miR en una muestra de ensayo del sujeto y comparando el nivel del producto génico de miR en la muestra de ensayo con el nivel del correspondiente producto génico de miR en una muestra de control. Como se utiliza en el presente documento, un "sujeto" puede ser cualquier mamífero que tenga o sea sospechoso de tener un cáncer de pulmón.

El cáncer de pulmón puede ser cualquier forma de cáncer de pulmón, por ejemplo, cánceres de pulmón de diferentes histologías (por ejemplo, adenocarcinoma, carcinoma de células escamosas). Además, el cáncer de pulmón se puede asociar con un pronóstico particular (por ejemplo, tasa baja de supervivencia, progresión rápida).

Las Tablas 1a y 1b describen las secuencias de nucleótidos de microARN humanos precursores y maduros.

Tabla 1a- Secuencias de precursores de microARN humano

	Tabla 1a- Secuencias de precursores de microARN humano	1 0 = 0
Nombre del Precursor	Secuencia (de 5' a 3')*	SEC ID Nº
let-7A-1	CACUGUGGGA <u>UGAGGUAGUAGUU</u> UU AGGGUCACACCACCACUGGGAGAUAACUAUACA AUCUACUGUCUUUCCUAACGUG	1
let-7a-2	AGGU <u>UGAGGUAGUAGGUUGUAUAGUU</u> UAGAAUUA CAUCAAGGGAGAUAACUGUACAGCCUCCUAGCUU UCCU	2
let-7a-3	GGG <u>UGAGGUAGUAGGUUGUAUAGUU</u> UGGGGCUCU GCCCUGCUAUGGGAUAACUAUACAAUCUACUGUC UUUCCU	3
let-7a-4	GUGACUGCAUGCUCCCAGGU <u>UGAGGUAGUAGGUU</u> GUAUAGUUUAGAAUUACACAAGGGAGAUAACUGU ACAGCCUCCUAGCUUUCCUUGGGUCUUGCACUAA ACAAC	4
let-7b	GGCGGG <u>UGAGGUAGUAGGUUGUGUGUU</u> UCAGG GCAGUGAUGUUGCCCCUCGGAAGAUAACUAUACA ACCUACUGCCUUCCCUG	5
let-7c	GCAUCCGGGU <u>UGAGGUAGGUUGUAUGGUU</u> UA GAGUUACACCCUGGGAGUUAACUGUACAACCUUC UAGCUUUCCUUGGAGC	6
let-7d	CCUAGGA <u>AGAGGUAGGUUGCAUAGU</u> UUUAGG GCAGGGAUUUUGCCCACAAGGAGGUAACUAUACG ACCUGCUGCCUUUCUUAGG	7
let-7d-v1	CUAGGA <u>AGAGGUAGUUUGCAUAGU</u> UUUAGGG CAAAGAUUUUGCCCACAAGUAGUUAGCUAUACGA CCUGCAGCCUUUUGUAG	8
let-7d-v2	CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGG UUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCA AGCUACUGCCUUGCUAG	9
let-7e	CCCGGGCUGAGGUAGGAGGUUGUAUAGUUGAGGA GGACACCCAAGGAGAUCACUAUACGGCCUCCUAG CUUUCCCCAGG	10
let-7f-1	UCAGAG <u>UGAGGUAGUUGUAUAGUU</u> GUGGGG UAGUGAUUUUACCCUGUUCAGGAGAUAACUAUAC AAUCUAUUGCCUUCCCUGA	11
let-7f-2-1	CUGUGGGA <u>UGAGGUAGAUUGUAUAGUU</u> GUGG GGUAGUGAUUUUACCCUGUUCAGGAGAUAACUAU ACAAUCUAUUGCCUUCCCUGA	12
let-7f-2-2	CUGUGGGA <u>UGAGGUAGAUUGUAUAGUU</u> UUAG GGUCAUACCCCAUCUUGGAGAUAACUAUACAGUC UACUGUCUUUCCCACGG	13
let-7g	UUGCCUGAUUCCAGGC <u>UGAGGUAGUAGUUUGUAC</u> <u>AGU</u> UUGAGGGUCUAUGAUACCACCCGGUACAGGA GAUAACUGUACAGGCCACUGCCUUGCCAGGAACA GCGCGC	14

let-7i	CUGGC <u>UGAGGUAGUAGUUUGUGCU</u> GUUGGUCGGG UUGUGACAUUGCCCGCUGUGGAGAUAACUGCGCA AGCUACUGCCUUGCUAG	15
miR-1b-1-1	ACCUACUCAGAGUACAUACUUCUUUAUGUACCCA UAUGAACAUACAAUGCUA <u>UGGAAUGUAAAGAAGU</u> AUGUAUUUUUGGUAGGC	16
miR-1b-1-2	CAGCUAACAACUUAGUAAUACCUACUCAGAGUAC AUACUUCUUUAUGUACCCAUAUGAACAUACAAUG CUA <u>UGGAAUGUAAAGAAGUAUGUA</u> UUUUUGGUAG GCAAUA	17
miR-1b-2	GCCUGCUUGGGAAACAUACUUCUUUAUAUGCCCA UAUGGACCUGCUAAGCUA <u>UGGAAUGUAAAGAAGU</u> AUGUAUCUCAGGCCGGG	18
miR-1b	UGGGAAACAUACUUCUUUAUAUGCCCAUAUGGAC CUGCUAAGCUA <u>UGGAAUGUAAAGAAGUAUGUA</u> UC UCA	19
miR-1d	ACCUACUCAGAGUACAUACUUCUUUAUGUACCCA UAUGAACAUACAAUGCUA <u>UGGAAUGUAAAGAAGU</u> AUGUAUUUUUGGUAGGC	20
miR-7-1a	UGGAUGUUGGCCUAGUUCUGUG <u>UGGAAGACUAGU</u> GAUUUUGUUGUUUUUAGAUAACUAAAUCGACAAC AAAUCACAGUCUGCCAUAUGGCACAGGCCAUGCC UCUACA	21
miR-7-1b	UUGGAUGUUGGCCUAGUUCUGUG <u>UGGAAGACUAG</u> <u>UGAUUUUGUU</u> GUUUUUAGAUAACUAAAUCGACAA CAAAUCACAGUCUGCCAUAUGGCACAGGCCAUGC CUCUACAG	22
miR-7-2	CUGGAUACAGAGUGGACCGGCUGGCCCCAUC <u>UGG</u> <u>AAGACUAGUGAUUUUGUU</u> GUUGUCUUACUGCGCU CAACAACAAAUCCCAGUCUACCUAAUGGUGCCAG CCAUCGCA	23
miR-7-3	AGAUUAGAGUGGCUGUGGUCUAGUGCUGUG <u>UGGA</u> AGACUAGUGAUUUUGUUGUUCUGAUGUACUACGA CAACAAGUCACAGCCGGCCUCAUAGCGCAGACUCC CUUCGAC	24
miR-9-1	CGGGGUUGGUUA <u>UCUUUGGUUAUCUAGCUGU</u> AUGAGUGGUGGAGUCUUCA <u>UAAAGCUAGAUAA</u> CCGAAAGUAAAAAUAACCCCA	25
miR-9-2	GGAAGCGAGUUGUUA <u>UCUUUGGUUAUCUAGCUGU</u> AUGAGUGUAUUGGUCUUCA <u>UAAAGCUAGAUAACC</u> GAAAGUAAAAACUCCUUCA	26
miR-9-3	GGAGGCCCGUUUCUC <u>UCUUUGGUUAUCUAGCUGU</u> AUGAGUGCCACAGAGCCGUCA <u>UAAAGCUAGAUAA</u> CCGAAAGUAGAAAUGAUUCUCA	27
miR-10a	GAUCUGUCUGUCUGUAUAUACCCUGUAGAUC CGAAUUUGUGUAAGGAAUUUUUGUGGUCACAAUU CGUAUCUAGGGGAAUAUGUAGUUGACAUAAACAC UCCGCUCU	28

miR-10b	CCAGAGGUUGUAACGUUGUCUAUAUA <u>UACCCUGU</u>	29
	AGAACCGAAUUUGUGUGGUAUCCGUAUAGUCACA GAUUCGAUUC	
miR-15a-2	GCGCGAAUGUGUUUUAAAAAAAAAAAAAACCUUG GAGUAAAG <u>UAGCAGCACAUAAUGGUUUGUG</u> GAUU UUGAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAA AAAUAC	30
miR-15a	CCUUGGAGUAAAG <u>UAGCAGCACAUAAUGGUUUGU</u> GGAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGC CUCAAAAAUACAAGG	31
miR-15b-1	CUG <u>UAGCAGCACAUCAUGGUUUACA</u> UGCUACAGU CAAGAUGCGAAUCAUUAUUUGCUGCUCUAG	32
miR-15b-2	UUGAGGCCUUAAAGUACUG <u>UAGCAGCACAUCAUG</u> GUUUACAUGCUACAGUCAAGAUGCGAAUCAUUAU UUGCUGCUCUAGAAAUUUAAGGAAAUUCAU	33
miR-16-1	GUCAGCAGUGCCU <u>UAGCAGCACGUAAAUAUUGGC</u> GUUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUG UGCUGCUGAAGUAAGGUUGAC	34
miR-16-2	GUUCCACUC <u>UAGCAGCACGUAAAUAUUGGCG</u> UAG UGAAAUAUAUUAAACACCAAUAUUACUGUGCU GCUUUAGUGUGAC	35
miR-16-13	GCAGUGCCU <u>UAGCAGCACGUAAAUAUUGGCG</u> UUA AGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCU GCUGAAGUAAGGU	36
miR-17	GUCAGAAUAAUGU <u>CAAAGUGCUUACAGUGCAGGU</u> AGUGAUAUGUGCAUCU <u>ACUGCAGUGAAGGCACUU</u> GUAGCAUUAUGGUGAC	37
miR-18	UGUUC <u>UAAGGUGCAUCUAGUGCAGAUA</u> GUGAAGU AGAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUG GCA	38
miR-18-13	UUUUUGUUC <u>UAAGGUGCAUCUAGUGCAGAUA</u> GUG AAGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCU UCUGGCAUAAGAA	39
miR-19a	GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUAC AAGAAGAAUGUAGU <u>UGUGCAAAUCUAUGCAAAAC</u> UGAUGGUGGCCUGC	40
miR-19a-13	CAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACA AGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACU GAUGGUGGCCUG	41
miR-19b-1	CACUGUCUAUGGUUAGUUUUGCAGGUUUGCAUC CAGCUGUGUGAUAUUCUGC <u>UGUGCAAAUCCAUGC</u> AAAACUGACUGUGGUAGUG	42
miR-19b-2	ACAUUGCUACUUACAAUUAGUUUUUGCAGGUUUGC AUUUCAGCGUAUAUAUGUAUAUGUGGC <u>UGUGCAA</u> AUCCAUGCAAAACUGAUUGUGAUAAUGU	43

miR-19b-13	UUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCU GUGUGAUAUUC <u>UGCUGUGCAAAUCCAUGCAAAAC</u> <u>UGA</u> CUGUGGUAG	44
miR-19b-X	UUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGU AUAUAUGUAUAUG <u>UGGCUGUGCAAAUCCAUGCAA</u> AACUGAUUGUGAU	45
miR-20 (miR-20a)	GUAGCAC <u>UAAAGUGCUUAUAGUGCAGGUA</u> GUGUU UAGUUAUCUACUGCAUUAUGAGCACUUAAAGUAC UGC	46
miR-21	UGUCGGG <u>UAGCUUAUCAGACUGAUGUUGA</u> CUGUU GAAUCUCAUGGCAACACCAGUCGAUGGGCUGUCU GACA	47
miR-21-17	ACCUUGUCGGG <u>UAGCUUAUCAGACUGAUGUUGA</u> C UGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCU GUCUGACAUUUUG	48
miR-22	GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUU UAUGUCCUGACCCAGCUA <u>AAGCUGCCAGUUGAAG</u> AACUGUUGCCCUCUGCC	49
miR-23a	GGCCGGCUGGGGUUCCUGGGGAUUUGCUU CCUGUCACAAAUCACAUUGCCAGGGAUUUCCAAC CGACC	50
miR-23b	CUCAGGUGCUCGGCUUGGGUUCCUGGCAUG CUGAUUUGUGACUUAAGAUUAAA <u>AUCACAUUGCC</u> AGGGAUUACCACGCAACCACGACCUUGGC	51
miR-23-19	CCACGGCCGGCUGGGGUUCCUGGGGAUGUUUGCUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCCCAACCGACCCUGA	52
miR-24-1	CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAU UUUACACACUGGCUCAGUUCAGCAGGAACAGGAG	53
miR-24-2	CUCUGCCUCCGUGCCUACUGAGCUGAAACACAGU UGGUUUGUGUACAC <u>UGGCUCAGUUCAGCAGGAAC</u> AGGG	54
miR-24-19	CCCUGGGCUCUGCCUCCGUGCCUACUGAGCUGAA ACACAGUUGGUUUGUGUACAC <u>UGGCUCAGUUCAG</u> CAGGAACAGGGG	55
miR-24-9	CCCUCCGGUGCCUACUGAGCUGAUAUCAGUUCUC AUUUUACACAC <u>UGGCUCAGUUCAGCAGGAACAG</u> C AUC	56
miR-25	GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUG CUGGACGCUGCCCUGGGCAUUGCACUUGUCUCGG UCUGACAGUGCCGGCC	57
miR-26a	AGGCCGUGGCCUCGUUCAAGUAAUCCAGGAUAGG CUGUGCAGGUCCCAAUGGCCUAUCUUGGUUACUU GCACGGGGACGCGGGCCU	58
miR-26a-1	GUGGCCUCG <u>UUCAAGUAAUCCAGGAUAGGCU</u> GU CAGGUCCCAAUGGGCCUAUUCUUGGUUACUUGC CGGGGACGC	59

miR-26a-2	GGCUGUGGCUGGA <u>UUCAAGUAAUCCAGGAUAGGC</u> <u>U</u> GUUUCCAUCUGUGAGGCCUAUUCUUGAUUACUU GUUUCUGGAGGCAGCU	60
miR-26b	CCGGGACCCAG <u>UUCAAGUAAUUCAGGAUAGGU</u> UG UGUGCUGUCCAGCCUGUUCUCCAUUACUUGGCUC GGGGACCGG	61
miR-27a	CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGG UCCACACCAAGUCGUG <u>UUCACAGUGGCUAAGUUC</u> CGCCCCCAG	62
miR-27b-1	AGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAU UGGUUUCCGCUUUG <u>UUCACAGUGGCUAAGUUCUG</u> CACCU	63
miR-27b-2	ACCUCUCUAACAAGGUGCAGAGCUUAGCUGAUUG GUGAACAGUGAUUGGUUUCCGCUUUG <u>UUCACAGU</u> GGCUAAGUUCUGCACCUGAAGAGAAGGUG	64
miR-27-19	CCUGAGGAGCAGGCUUAGCUGCUUGUGAGCAGG GUCCACACCAAGUCGUG <u>UUCACAGUGGCUAAGUU</u> CCGCCCCCAGG	65
miR-28	GGUCCUUGCCCUC <u>AAGGAGCUCACAGUCUAUUG</u> A GUUACCUUUCUGACUUUCCCACUAGAUUGUGAGC UCCUGGAGGCAGGCACU	66
miR-29a-2	CCUUCUGUGACCCCUUAGAGGAUGACUGAUUUCU UUUGGUGUUCAGAGUCAAUAUAAUUUU <u>CUAGCAC</u> CAUCUGAAAUCGGUUAUAAUGAUUGGGGAAGAGC ACCAUG	67
miR-29a	AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAU AAUUUUCUAGCACCAUCUGAAAUCGGUUAU	68
miR-29b-1	CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAU UUAAAUAGUGAUUGUC <u>UAGCACCAUUUGAAAUCA</u> GUGUUCUUGGGGG	69
miR-29b-2	CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAU UUUUCCAUCUUUGUAUC <u>UAGCACCAUUUGAAAUC</u> AGUGUUUUAGGAG	70
miR-29c	ACCACUGGCCCAUCUCUUACACAGGCUGACCGAUU UCUCCUGGUGUUCAGAGUCUGUUUUUGU <u>CUAGCA</u> CCAUUUGAAAUCGGUUAUGAUGUAGGGGGAAAAG CAGCAGC	71
miR-30a	GCGAC <u>UGUAAACAUCCUCGACUGGAAGC</u> UGUGAA GCCACAGAUGGG <u>CUUUCAGUCGGAUGUUUGCAGC</u> UGC	72
miR-30b-1	A <u>UGUAAACAUCCUACACUCAGC</u> UGUAAUACAUGG AUUGGCUGGAGGUGGAUGUUUACGU	73
miR-30b-2	ACCAAGUUUCAGUUCA <u>UGUAAACAUCCUACACUC</u> AGCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUG UUUACUUCAGCUGACUUGGA	74
miR-30c	AGAUAC <u>UGUAAACAUCCUACACUCUCAGC</u> UGUGG AAAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCU UUCU	75

miR-30d	GUUGU <u>UGUAAACAUCCCCGACUGGAAG</u> CUGUAAG ACACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCU AC	76
miR-30e	CUGUAAACAUCCUUGACUGGAAGCUGUAAGGUGU UCAGAGGAGCUUUCAGUCGGAUGUUUACAG	77
miR-31	GGAGAGGAGCAAGAUGCUGCAUAGCUGUUGAA CUGGGAACCUGCUAUGCCAACAUAUUGCCAUCUU UCC	78
miR-32	GGAGA <u>UAUUGCACAUUACUAAGUUGC</u> AUGUUGUC ACGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUU UC	79
miR-33b	GGGGGCCGAGAGAGGCGGCGGCCCCGCGGUGCA <u>UUGCUGUUGCAUUG</u> CACGUGUGUGAGGCGGGUGC AGUGCCUCGGCAGUGCAGCCCGGAGCCGGCCCCUG GCACCAC	80
miR-33b-2	ACCAAGUUUCAGUUCA <u>UGUAAACAUCCUACACUC</u> AGCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUG UUUACUUCAGCUGACUUGGA	81
miR-33	CUGUG <u>GUGCAUUGUAGUUGCAUUG</u> CAUGUUCUGG UGGUACCCAUGCAAUGUUUCCACAGUGCAUCACA G	82
miR-34-a	GGCCAGCUGUGAGUGUUUCUU <u>UGGCAGUGUCUUA</u> GCUGGUUGUUGUGAGCAAUAGUAAGGAAGCAAUC AGCAAGUAUACUGCCCUAGAAGUGCUGCACGUUG UGGGGCCC	83
miR-34-b	GUGCUCGGUUUGUAGGCAGUGUCAUUAGCUGAUU GUACUGUGGUGGUUACAAUCACUAACUCCACUGC CAUCAAAACAAGGCAC	84
miR-34-c	AGUCUAGUUACU <u>AGGCAGUGUAGUUAGCUGAUUG</u> CUAAUAGUACCAAUCACUAACCACACGGCCAGGU AAAAAGAUU	85
miR-91-13	UCAGAAUAAUGU <u>CAAAGUGCUUACAGUGCAGGUA</u> GUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUG UAGCAUUAUGGUGA	86
miR-92-1	CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUG UGUUUCUGUAUGG <u>UAUUGCACUUGUCCCGGCCUG</u> <u>U</u> UGAGUUUGG	87
miR-92 -2	UCAUCCUGGGUGGGGAUUUGUUGCAUUACUUGU GUUCUAUAUAAAG <u>UAUUGCACUUGUCCCGGCCUG</u> UGGAAGA	88
miR-93-1 (miR- 93-2)	CUGGGGGCUCC <u>AAAGUGCUGUUCGUGCAGGUAG</u> U GUGAUUACCCAACCUACUGCUGAGCUAGCACUUC CCGAGCCCCCGG	89
miR-95-4	AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAU UGAAAUGCGUUACA <u>UUCAACGGGUAUUUAUUGAG</u> <u>CA</u> CCCACUCUGUG	90

miR-96-7	UGGCCGAU <u>UUUGGCACUAGCACAUUUUUGC</u> UUGU GUCUCCCGCUCUGAGCAAUCAUGUGCAGUGCCA AUAUGGGAAA	91
miR-97-6 (miR- 30*)	GUGAGCGACUGUAAACAUCCUCGACUGGAAGCUG UGAAGCCACAGAUGGGCUUUCAGUCGGAUGUUUG CAGCUGCCUACU	92
miR-98	G <u>UGAGGUAGUAAGUUGUAUUGUU</u> GUGGGGUAGGG AUAUUAGGCCCCAAUUAGAAGAUAACUAUACAAC UUACUACUUUCC	93
miR-99b	GGCACC <u>CACCCGUAGAACCGACCUUGCG</u> GGCCCUU CGCCGCACACAAGCUCGUGUCUGUGGGUCCGUGU C	94
miR-99a	CCCAUUGGCAUA <u>AACCCGUAGAUCCGAUCUUGUG</u> GUGAAGUGGACCGCACAAGCUCGCUUCUAUGGGU CUGUGUCAGUGUG	95
miR-100-1/2	AAGAGAGAGAUAUUGAGGCCUGUUGCCACAAAC CCGUAGAUCCGAACUUGUGGUAUUAGUCCGCACA AGCUUGUAUCUAUAGGUAUGUCUGUUAGGCAA UCUCAC	96
miR-100-11	CCUGUUGCCACA <u>AACCCGUAGAUCCGAACUUGUG</u> GUAUUAGUCCGCACAAGCUUGUAUCUAUAGGUAU GUGUCUGUUAGG	97
miR-101-1/2	AGGCUGCCCUGGCUCAGUUAUCACAGUGCUGAUG CÙGUCUAUUCUAAAGG <u>UACAGUACUGUGAUAACU</u> GAAGGAUGGCAGCCAUCUUACCUUCCAUCAGAGG AGCCUCAC	98
miR-101	UCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAA AGGUACAGUACUGUGAUAACUGA	99
miR-101-1	UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGU CUAUUCUAAAGG <u>UACAGUACUGUGAUAACUGAAG</u> GAUGGCA	100
miR-101-2	ACUGUCCUUUUUCGGUUAUCAUGGUACCGAUGCU GUAUAUCUGAAAGG <u>UACAGUACUGUGAUAACUGA</u> AGAAUGGUGGU	101
miR-101-9	UGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUGU AUAUCUGAAAGG <u>UACAGUACUGUGAUAACUGAAG</u> AAUGGUG	102
miR-102-1	CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAU UUUUCCAUCUUUGUAUC <u>UAGCACCAUUUGAAAUC</u> AGUGUUUUAGGAG	103
miR-102-7.1 (miR-102-7.2)	CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAU UUAAAUAGUGAUUGUC <u>UAGCACCAUUUGAAAUCA</u> GUGUUCUUGGGGG	104
miR-103-2	UUGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGU AGCAUUCAGGUCAAGCAACAUUGUACAGGGCUAU GAAAGAACCA	105

miR-103-1	UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGU UGCAUAUGGAUCAA <u>GCAGCAUUGUACAGGGCUAU</u> GAAGGCAUUG	106
miR-104-17	AAAUGUCAGACAGCCCAUCGACUGGUGUUGCCAU GAGAUUCAACAG <u>UCAACAUCAGUCUGAUAAGCUA</u> CCCGACAAGG	107
miR-105-1	UGUGCAUCGUGG <u>UCAAAUGCUCAGACUCCUGU</u> GG UGGCUGCUCAUGCACCACGGAUGUUUGAGCAUGU GCUACGGUGUCUA	108
miR-105-2	UGUGCAUCGUGG <u>UCAAAUGCUCAGACUCCUGU</u> GG UGGCUGCUUAUGCACCACGGAUGUUUGAGCAUGU GCUAUGGUGUCUA	109
miR-106-a	CCUUGGCCAUGUAAAAGUGCUUACAGUGCAGGUA GCUUUUUGAGAUCUACUGCAAUGUAAGCACUUCU UACAUUACCAUGG	110
miR-106-b	CCUGCCGGGC <u>UAAAGUGCUGACAGUGCAGAU</u> AG UGGUCCUCCGUGCUACCGCACUGUGGGUACUU GCUGCUCCAGCAGG	111
miR-107	CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUU GUGGCAUGGAGUUCAAGC <u>AGCAUUGUACAGGGCU</u> <u>AUCA</u> AAGCACAGA	112
miR-108-1- pequeño	ACACUGCAAGAACAAUAAGGAUUUUUUAGGGGCAU UAUGACUGAGUCAGAAAACACAGCUGCCCCUGAA AGUCCCUCAUUUUUCUUGCUGU	113
miR-108-2- pequeño	ACUGCAAGAGCAAUAAGGAUUUUUAGGGGCAUUA UGAUAGUGGAAUGGAA	114
miR-122a-1	CCUUAGCAGAGCUG <u>UGGAGUGUGACAAUGGUGUU</u> <u>UGU</u> GUCUAAACUAUCAAACGCCAUUAUCACACUA AAUAGCUACUGCUAGGC	115
miR-122a-2	AGCUGUGGAGUGUGACAAUGGUGUUUGUGUCCAA ACUAUCAAACGCCAUUAUCACACUAAAUAGCU	116
miR-123	ACAUUAUUACUUUUGGUACGCGCUGUGACACUUC AAACUCGUACCGUGAGUAAUAAUGCGC	117
miR-124a-1	AGGCCUCUCUCCGUGUUCACAGCGGACCUUGA UUUAAAUGUCCAUACAA <u>UUAAGGCACGCGGUGAA</u> UGCCAAGAAUGGGGCUG	118
miR-124a-2	AUCAAGAUUAGAGGCUCUGCUCUCCGUGUUCACA GCGGACCUUGAUUUAAUGUCAUACAA <u>UUAAGGCA</u> CGCGGUGAAUGCCAAGAGCGGAGCCUACGGCUGC ACUUGAAG	119
miR-124a-3	UGAGGCCCCUCUGCGUGUUCACAGCGGACCUUG AUUUAAUGUCUAUACAA <u>UUAAGGCACGCGGUGAA</u> UGCCAAGAGAGGCGCCUCC	120
miR-124a	CUCUGCGUGUUCACAGCGGACCUUGAUUUAAUGU CUAUACAAUUAAGGCACGCGGUGAAUGCCAAGAG	121
miR-124b	CUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGU CAUACAAUUAAGGCACGCGGUGAAUGCCAAGAG	122

miR-125a-1	UGCCAGUCUCUAGG <u>UCCCUGAGACCCUUUAACCU</u> GUGAGGACAUCCAGGGUCACAGGUGAGGUUCUUG GGAGCCUGGCGUCUGGCC	123
miR-125a-2	GGUCCCUGAGACCCUUUAACCUGUGAGGACAUCC AGGGUCACAGGUGAGGUUCUUGGGAGCCUGG	124
miR-125b-1	UGCGCUCCUCAG <u>UCCCUGAGACCCUAACUUGUG</u> AUGUUUACCGUUUAAAUCCACGGGUUAGGCUCUU GGGAGCUGCGAGUCGUGCU	125
miR-125b-2	ACCAGACUUUUCCUAG <u>UCCCUGAGACCCUAACUU</u> <u>GUGA</u> GGUAUUUUAGUAACAUCACAAGUCAGGCUC UUGGGACCUAGGCGGAGGGGA	126
miR-126-1	CGCUGGCGACGGGACAUUAUUACUUUUGGUACGC GCUGUGACACUUCAAACUCGUACCGUGAGUAAUA AUGCGCCGUCCACGGCA	127
miR-126-2	ACAUUAUUACUUUUGGUACGCCUGUGACACUUC AAACUCGUACCGUGAGUAAUAAUGCGC	128
miR-127-1	UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGA GGGCUCUGAUUCAGAAAGAUCA <u>UCGGAUCCGUCU</u> GAGCUUGGCUGGUCGGAAGUCUCAUCAUC	129
miR-127-2	CCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAG AAAGAUCA <u>UCGGAUCCGUCUGAGCUUGGCU</u> GGUC GG	130
miR-128a	UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUG AGAGGUUUACAUUUC <u>UCACAGUGAACCGGUCUCU</u> UUUUCAGCUGCUUC	131
miR-128b	GCCCGGCAGCCACUGUGCAGUGGGAAGGGGGCC GAUACACUGUACGAGAGUGAGUAGCAGGUC <u>UCAC</u> AGUGAACCGGUCUCUUUCCCUACUGUGUCACACU CCUAAUGG	132
miR-128	GUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGU UUACAUUUC <u>UCACAGUGAACCGGUCUCUUUU</u> UCA GC	133
miR-129-1	UGGAUCUUUUUGCGGUCUGGGCUUGCUGUUCCUC UCAACAGUAGUCAGGAAGCCCUUACCCCAAAAAG UAUCUA	134
miR-129-2	UGCCCUUCGCGAAUCUUUUUGCGGUCUGGGCUUG CUGUACAUAACUCAAUAGCCGGAAGCCCUUACCCC AAAAAGCAUUUGCGGAGGGCG	135
miR-130a	UGCUGCUGGCCAGAGCUCUUUUCACAUUGUGCUA CUGUCUGCACCUGUCACUAG <u>CAGUGCAAUGUUAA</u> AAGGGCAUUGGCCGUGUAGUG	136
miR-131-1	GCCAGGAGGCGGGUUGGUUGUUAUCUUUGGUUA UCUAGCUGUAUGAGUGGUGUGGAGUCUUCA <u>UAAA</u> GCUAGAUAACCGAAAGUAAAAAUAACCCCAUACA CUGCGCAG	137

miR-131-3	CACGGCGCGCAGCGCACUGGCUAAGGGAGGCC CGUUUCUCUUUGGUUAUCUAGCUGUAUGAGUG CCACAGAGCCGUCA <u>UAAAGCUAGAUAACCGAAAG</u> UAGAAAUG	138
miR-131	GUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGU AUUGGUCUUCA <u>UAAAGCUAGAUAACCGAAAGU</u> AA AAAC	139
miR-132-1	CCGCCCCGCGUCUCCAGGGCAACCGUGGCUUUCG AUUGUUACUGUGGGAACUGGAGG <u>UAACAGUCUAC</u> AGCCAUGGUCGCCCGCAGCACGCCCCACGCGC	140
miR-132-2	GGGCAACCGUGGCUUUCGAUUGUUACUGUGGGAA CUGGAGG <u>UAACAGUCUACAGCCAUGGU</u> CGCCC	141
miR-133a-1	ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCA AAUCGCCUCUUCAAUGGAU <u>UUGGUCCCCUUCAAC</u> CAGCUGUAGCUAUGCAUUGA	142
miR-133a-2	GGGAGCCAAAUGCUUUGCUAGAGCUGGUAAAAUG GAACCAAAUCGACUGUCCAAUGGAU <u>UUGGUCCCC</u> UUCAACCAGCUGUAGCUGUGCAUUGAUGGCGCCG	143
miR-133	GCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCU UCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGC	144
miR-133b	CCUCAGAAGAAGAUGCCCCCUGCUCUGGCUGGU CAAACGGAACCAAGUCCGUCUUCCUGAGAGGU <u>UU</u> GGUCCCUUCAACCAGCUACAGCAGGGCUGGCAA UGCCCAGUCCUUGGAGA	145
miR-133b- pequeño	GCCCCUGCUCUGGCUGGUCAAACGGAACCAAGUC CGUCUUCCUGAGAGGUUUGGUCCCCUUCAACCAG CUACAGCAGGG	146
miR-134-1	CAGGGUG <u>UGUGACUGGUUGACCAGAGGG</u> GCAUGC ACUGUGUUCACCCUGUGGGCCACCUAGUCACCAAC CCUC	147
miR-134-2	AGGGUG <u>UGUGACUGGUUGACCAGAGGG</u> GCAUGCA CUGUGUUCACCCUGUGGGCCACCUAGUCACCAACC CU	148
miR-135a-1	AGGCCUCGCUGUUCUC <u>UAUGGCUUUUUAUUCCUA</u> <u>UGUGAU</u> UCUACUGCUCACUCAUAUAGGGAUUGGA GCCGUGGCGCACGGCGGGACA	149
miR-135a-2 (miR- 135-2)	AGAUAAAUUCACUCUAGUGCUU <u>UAUGGCUUUUUA</u> <u>UUCCUAUGUGA</u> UAGUAAUAAAGUCUCAUGUAGGG AUGGAAGCCAUGAAAUACAUUGUGAAAAAUCA	150
miR-135	C <u>UAUGGCUUUUUAUUCCUAUGUGAU</u> UCUACUGCU CACUCAUAUAGGGAUUGGAGCCGUGG	151
miR-135b	CACUCUGCUGUGGCC <u>UAUGGCUUUUCAUUCCUAU</u> GUGAUUGCUGUCCCAAACUCAUGUAGGGCUAAAA GCCAUGGGCUACAGUGAGGGCGAGCUCC	152
miR-136-1	UGAGCCCUCGGAGGACUCCAUUUGUUUUGAUGAU GGAUUCUUAUGCUCCAUCAUCGUCUCAAAUGAGU CUUCAGAGGGUUCU	153

miR-136-2	GAGG <u>ACUCCAUUUGUUUUGAUGAUGGA</u> UUCUUAU GCUCCAUCAUCGUCUCAAAUGAGUCUUC	154
miR-137	CUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACG GAUUACGUUGU <u>UAUUGCUUAAGAAUACGCGUAG</u> U CGAGG	155
miR-138-1	CCCUGGCAUGGUGUGGUGGGGCAGCUGGUGUUGU GAAUCAGGCCGUUGCCAAUCAGAGAACGGCUACU UCACAACACCAGGGCCACACCACA	156
miR-138-2	CGUUGCUGC <u>AGCUGGUGUUGUGAAUC</u> AGGCCGAC GAGCAGCGCAUCCUCUUACCCGGCUAUUUCACGAC ACCAGGGUUGCAUCA	157
miR-138	CAGCUGGUGUUGUGAAUCAGGCCGACGAGCAGCG CAUCCUCUUACCCGGCUAUUUCACGACACCAGGGU UG	158
miR-139	GUGUAU <u>UCUACAGUGCACGUGUCU</u> CCAGUGUGGC UCGGAGGCUGGAGACGCGGCCCUGUUGGAGUAAC	159
miR-140	UGUGUCUCUCUGUGUCCUGCCAGUGGUUUUAC CCUAUGGUAGGUUACGUCAUGCUGUUCUACCACA GGGUAGAACCACGGACAGGAUACCGGGGCACC	160
miR-140as	UCCUGCC <u>AGUGGUUUUACCCUAUGGUAG</u> GUUACG UCAUGCUGUUC <u>UACCACAGGGUAGAACCACGGA</u> C AGGA	161
miR-140s	CCUGCC <u>AGUGGUUUUACCCUAUGGUAG</u> GUUACGU CAUGCUGUUC <u>UACCACAGGGUAGAACCACGGA</u> CA GG	162
miR-141-1	CGGCCGGCCCUGGGUCCAUCUUCCAGUACAGUGU UGGAUGGUCUAAUUGUGAAGCUCCU <u>AACACUGUC</u> UGGUAAAGAUGGCUCCCGGGUGGGUUC	163
miR-141-2	GGGUCCAUCUUCCAGUACAGUGUUGGAUGGUCUA AUUGUGAAGCUCCU <u>AACACUGUCUGGUAAAGAUG</u> GCCC	164
miR-142	ACCCAUAAAGUAGAAAGCACUACUAACAGCACUG GAGGGUGUAGUGUUUCCUACUUUAUGGAUG	165
miR-143-1	GCGCAGCGCCUGUCUCCCAGCCUGAGGUGCAGUG CUGCAUCUCUGGUCAGUUGGGAGUC <u>UGAGAUGAA</u> GCACUGUAGCUCAGGAAGAGAAGUUGUUCUGC AGC	166
miR-143-2	CCUGAGGUGCAGUGCAUCUCUGGUCAGUUGG GAGUCUGAGAUGAAGCACUGUAGCUCAGG	167
miR-144-1	UGGGCCCUGGCUGGGAUAUCAUCAUAUACUGUA AGUUUGCGAUGAGACAC <u>UACAGUAUAGAUGAUGU</u> ACUAGUCCGGGCACCCCC	168
miR-144-2	GGCUGGGAUAUCAUAUACUGUAAGUUUGCGA UGAGACACUACAGUAUAGAUGAUGUACUAGUC	169
miR-145-1	CACCUUGUCCUCACGGUCCAGUUUUUCCCAGGAAUC CCUUAGAUGCUAAGAUGGGGAUUCCUGGAAAUAC UGUUCUUGAGGUCAUGGUU	170

miR-1 45-2	CUCACG <u>GUCCAGUUUUCCCAGGAAUCCCUU</u> AGAU GCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUG AG	171
miR-146-1	CCGAUGUGUAUCCUCAGCUU <u>UGAGAACUGAAUUC</u> CAUGGGUUGUGUCAGUGUCAGACCUCUGAAAUUC AGUUCUUCAGCUGGGAUAUCUCUGUCAUCGU	172
miR-146-2	AGCUU <u>UGAGAACUGAAUUCCAUGGGUU</u> GUGUCAG UGUCAGACCUGUGAAAUUCAGUUCUUCAGCU	173
miR-147	AAUCUAAAGACAACAUUUCUGCACACACACCAGA CUAUGGAAGCCA <u>GUGUGUGGAAAUGCUUCUGC</u> UA GAUU	174
miR-148a (miR- 148)	GAGGCAAAGUUCUGAGACACUCCGACUCUGAGUA UGAUAGAAGUCAGUGCACUACAGAACUUUGUCUC	175
miR-148b	CAAGCACGAUUAGCAUUUGAGGUGAAGUUCUGUU AUACACUCAGGCUGUGGCUCUCUGAAAG <u>UCAGUG</u> CAUCACAGAACUUUGUCUCGAAAGCUUUCUA	176
miR-148b- pequeño	AAGCACGAUUAGCAUUUGAGGUGAAGUUCUGUUA UACACUCAGGCUGUGGCUCUCUGAAAGUCAGUGC AU	177
miR-149-1	GCCGGCCCCGAGC <u>UCUGGCUCCGUGUCUUCACUC</u> <u>C</u> CGUGCUUGUCCGAGGAGGGAGGGACGGGG GCUGUGCUGGGGCAGCUGGA	178
miR-149-2	GCUCUGGCUCCGUGUCUUCACUCCCGUGCUUGUCC GAGGAGGGAGGGAGGGAC	179
miR-150-1	CUCCCAUGGCCCUG <u>UCUCCCAACCCUUGUACCAG</u> <u>UG</u> CUGGGCUCAGACCCUGGUACAGGCCUGGGGA CAGGGACCUGGGGAC	180
miR-150-2	CCCUG <u>UCUCCCAACCCUUGUACCAGUG</u> CUGGGCUC AGACCCUGGUACAGGCCUGGGGGACAGGG	181
miR-151	UUUCCUGCCCUCGAGGAGCUCACAGUCUAGUAUG UCUCAUCCCCUA <u>CUAGACUGAAGCUCCUUGAGG</u> A CAGG	182
miR-151-2	CCUGUCCUCAAGGAGCUUCAGUCUAGUAGGGGAU GAGACAUACUAGACUGUGAGCUCCUCGAGGGCAG G	183
miR-152-1	UGUCCCCCGGCCCAGGUUCUGUGAUACACUCCG ACUCGGGCUCUGGAGCAG <u>UCAGUGCAUGACAGAA</u> CUUGGGCCCGGAAGGACC	184
miR-152-2	GGCCCAGGUUCUGUGAUACACUCCGACUCGGGCU CUGGAGCAG <u>UCAGUGCAUGACAGAACUUGG</u> GCCC CGG	185
miR-153-1-1	CUCACAGCUGCCAGUGUCAUUUUUUGUGAUCUGCA GCUAGUAUUCUCACUCCAG <u>UUGCAUAGUCACAAA</u> AGUGAUCAUUGGCAGGUGUGGC	186
miR-153-1-2	UCUCUCUCCCUCACAGCUGCCAGUGUCAUUGUC ACAAAAGUGAUCAUUGGCAGGUGUGGCUGCA UG	187

miR-153-2-1	AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAG CUAGUAAUAUGAGCCCAG <u>UUGCAUAGUCACAAAA</u> GUGAUCAUUGGAAACUGUG	188
miR-153-2-2	CAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUA UGAGCCCAG <u>UUGCAUAGUCACAAAAGUGA</u> UCAUU G	189
miR-154-1	GUGGUACUUGAAGA <u>UAGGUUAUCCGUGUUGCCUU</u> CGCUUUAUUUGUGACG <u>AAUCAUACACGGUUGACC</u> UAUUUUUCAGUACCAA	190
miR-154-2	GAAGA <u>UAGGUUAUCCGUGUUGCCUUCG</u> CUUUAUU UGUGACGAAUCAUACACGGUUGACCUAUUUUU	191
miR-155	CUG <u>UUAAUGCUAAUCGUGAUAGGGG</u> UUUUUGCCU CCAACUGACUCCUACAUAUUAGCAUUAACAG	192
miR-156 = miR- 157=solapamiento miR-141	CCUAACACUGUCUGGUAAAGAUGGCUCCCGGGUG GGUUCUCUCGGCAGUAACCUUCAGGGAGCCCUGA AGACCAUGGAGGAC	193
miR-158- pequeño = miR- 192	GCCGAGACCGAGUGCACAGGGCUCUGACCUAUGA AUUGACAGCCAGUGCUCUCGUCUCCCCUCUGGCUG CCAAUUCCAUAGGUCACAGGUAUGUUCGCCUCAA UGCCAGC	194
miR-159-1- pequeño	UCCCGCCCCUGUAACAGCAACUCCAUGUGGAAGU GCCCACUGGUUCCAGUGGGGCUGCUGUUAUCUGG GGCGAGGGCCA	195
miR-161- pequeño	AAAGCUGGGUUGAGAGGCGAAAAAGGAUGAGGU GACUGGUCUGGGCUACGCUAUGCUGCGGCGCUCG GG	196
miR-163-1b- pequeño	CAUUGGCCUCCUAAGCCAGGGAUUGUGGGUUCGA GUCCCACCGGGGUAAAGAAAGGCCGAAUU	197
miR-163-3- pequeño	CCUAAGCCAGGGAUUGUGGGUUCGAGUCCCACCU GGGGUAGAGGUGAAAGUUCCUUUUACGGAAUUUU UU	198
miR-162	CAAUGUCAGCAGUGCCU <u>UAGCAGCACGUAAAUAU</u> <u>UGGCG</u> UUAAGAUUCUAAAAUUAUCUCCAGUAUUA ACUGUGCUGCUGAAGUAAGGUUGACCAUACUCUA CAGUUG	199
miR-175- pequeño =miR- 224	GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAG AUGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGU GACUACAAAGCCC	200
miR-177- pequeño	ACGCAAGUGUCCUAAGGUGAGCUCAGGGAGCACA GAAACCUCCAGUGGAACAGAAGGGCAAAAGCUCA UU	201
miR-180- pequeño	CAUGUGUCACUUUCAGGUGGAGUUUCAAGAGUCC CUUCCUGGUUCACCGUCUCCUUUGCUCUUCCACAA C	202

miR-181a	AGAAGGCUAUCAGGCCAGCCUUCAGAGGACUCC AAGG <u>AACAUUCAACGCUGUCGGUGAGU</u> UUGGGAU UUGAAAAAACCACUGACCGUUGACUGUACCUUGG GGUCCUUA	203
miR-181b-1	CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAU C <u>AACAUUCAUUGCUGUCGGUGGGUU</u> GAACUGUGU GGACAAGCUCACUGAACAAUGAAUGCAACUGUGG CCCCGCUU	204
miR-181b-2	CUGAUGGCUGCACUC <u>AACAUUCAUUGCUGUCGGU</u> GGGUUUGAGUCUGAAUCAACUCACUGAUCAAUGA AUGCAAACUGCGGACCAAACA	205
miR-181c	CGGAAAAUUUGCCAAGGGUUUGGGGGAACAUUCA ACCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACC AUCGACCGUUGAGUGGACCCUGAGGCCUGGAAUU GCCAUCCU	206
miR-182-as	GAGCUGCUUGCCUCCCCCGUUU <u>UUGGCAAUGGU</u> AGAACUCACACUGGUGAGGUAACAGGAUCCGG <u>UG</u> GUUCUAGACUUGCCAACUAUGGGGCGAGGACUCA GCCGGCAC	207
miR-182	UUU <u>UUGGCAAUGGUAGAACUCACA</u> CUGGUGAGGU AACAGGAUCCGG <u>UGGUUCUAGACUUGCCAACUA</u> U GG	208
miR-183	CCGCAGAGUGUGACUCCUGUUCUGUG <u>UAUGGCAC</u> <u>UGGUAGAAUUCACUG</u> UGAACAGUCUCAGUCAGUG AAUUACCGAAGGGCCAUAAACAGAGCAGAG	209
miR-184-1	CCAGUCACGUCCCCUUAUCACUUUUCCAGCCCAGC UUUGUGACUGUAAGUGU <u>UGGACGGAGAACUGAUA</u> AGGGUAGGUGAUUGA	210
miR-184-2	CCUUAUCACUUUUCCAGCCCAGCUUUGUGACUGU AAGUGUUGGACGGAGAACUGAUAAGGGUAGG	211
miR-185-1	AGGGGCGAGGGAUUCCU GAUGGUCCCCCCAGGGGCUGGCUUUCCUCUGG UCCUUCCCUCCCA	212
miR-185-2	AGGGAU <u>UGGAGAGAAAGGCAGUUC</u> CUGAUGGUCC CCUCCCAGGGGCUGGCUUUCCUCUGGUCCUU	213
miR-186-1	UGCUUGUAACUUUC <u>CAAAGAAUUCUCCUUUUUGGG</u> <u>CUU</u> UCUGGUUUUAUUUUAAGCCCAAAGGUGAAUU UUUUGGGAAGUUUGAGCU	214
miR-186-2	ACUUUC <u>CAAAGAAUUCUCCUUUUGGGCUU</u> UCUGG UUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGA AGU	215
miR-187	GGUCGGGCUCACCAUGACACAGUGUGAGACUCGG GCUACAACACAGGACCCGGGGCGCUGCUCUGACCC CUCGUGUCUUGUGUUGCAGCCGGAGGGACGCAGG UCCGCA	216
miR-188-1	UGCUCCCUCUCACAUCCCUUGCAUGGUGGAGG GUGAGCUUUCUGAAAACCCCUCCCACAUGCAGGG UUUGCAGGAUGGCGAGCC	217

miR-188-2	UCUCACAUCCCUUGCAUGGUGGAGGGUGAGCUUU CUGAAAACCCCUCCCACAUGCAGGGUUUGCAGGA	218
miR-189-1	CUGUCGAUUGGACCCGCCCUCCGGUGCCUACUGAG CUGAUAUCAGUUCUCAUUUUACACACUGGCUCAG UUCAGCAGGAACAGGAGUCGAGCCCUUGAGCAA	219
miR-189-2	CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAU UUUACACACUGGCUCAGUUCAGCAGGAACAGGAG	220
miR-190-1	UGCAGGCCUCUGUG <u>UGAUAUGUUUGAUAUAUUAG</u> GUUGUUAUUUAAUCCAACUAUAUAUCAAACAUAU UCCUACAGUGUCUUGCC	221
miR-190-2	CUGUG <u>UGAUAUGUUUGAUAUUAGGUU</u> GUUAUU UAAUCCAACUAUAUAUCAAACAUAUUCCUACAG	222
miR-191-1	CGGCUGGACAGCGGGCAACGGAAUCCCAAAAGCA GCUGUUGUCUCCAGAGCAUUCCAGCUGCGCUUGG AUUUCGUCCCCUGCUCCUGCCU	223
miR-191-2	AGCGGGCAACGGAAUCCCAAAAGCAGCUGUUGUC UCCAGAGCAUUCCAGCUGCGCUUGGAUUUCGUCC CCUGCU	224
miR-192-2/3	CCGAGACCGAGUGCACAGGGCU <u>CUGACCUAUGAA</u> <u>UUGACAGCC</u> AGUGCUCUCGUCUCCCCUCUGGCUGC CAAUUCCAUAGGUCACAGGUAUGUUCGCCUCAAU GCCAG	225
miR-192	GCCGAGACCGAGUGCACAGGGCU <u>CUGACCUAUGA</u> <u>AUUGACAGCC</u> AGUGCUCUCGUCUCCCCUCUGGCUG CCAAUUCCAUAGGUCACAGGUAUGUUCGCCUCAA UGCCAGC	226
miR-193-1	CGAGGAUGGGAGCUGAGGCUGGGUCUUUGCGGG CGAGAUGAGGGUGUCGGAUC <u>AACUGGCCUACAAA</u> GUCCCAGUUCUCGGCCCCG	227
miR-193-2	GCUGGGUCUUUGCGGGCGAGAUGAGGGUGUCGGA UCAACUGGCCUACAAAGUCCCAGU	228
miR-194-1	AUGGUGUUAUCAAG <u>UGUAACAGCAACUCCAUGUG</u> <u>GA</u> CUGUGUACCAAUUUCCAGUGGAGAUGCUGUUA CUUUUGAUGGUUACCAA	229
miR-194-2	GUGUAACAGCAACUCCAUGUGGACUGUGUACCAA UUUCCAGUGGAGAUGCUGUUACUUUUGAU	230
miR-195-1	AGCUUCCCUGGCUC <u>UAGCAGCACAGAAAUAUUGG</u> CACAGGGAAGCGAGUCUGCCAAUAUUGGCUGUGC UGCUCCAGGCAGGUGGUG	231
miR-195-2	UAGCAGCACAGAAAUAUUGGCACAGGGAAGCGAG UCUGCCAAUAUUGGCUGUGCUGCU	232
miR-196-1	CUAGAGCUUGAAUUGGAACUGCUGAGUGAAU <u>UAG</u> GUAGUUUCAUGUUGUUGGGCCUGGGUUUCUGAAC ACAACAACAUUAAACCACCCGAUUCACGGCAGUU ACUGCUCC	233
miR-196a-1	GUGAAU <u>UAGGUAGUUUCAUGUUGUUGG</u> GCCUGGG UUUCUGAACACAACAACAUUAAACCACCCGAUUC AC	234

miR-196a-2 (miR- 196-2)	UGCUCGCUCAGCUGAUCUGUGGCU <u>UAGGUAGUUU</u> CAUGUUGUUGGGAUUGAGUUUUGAACUCGGCAAC AAGAAACUGCCUGAGUUACAUCAGUCGGUUUUCG UCGAGGGC	235
miR-196	GUGAAU <u>UAGGUAGUUUCAUGUUGUUGG</u> GCCUGGG UUUCUGAACACAACAUUAAACCACCCGAUUC AC	236
miR-196b	ACUGGUCGGUGAUU <u>UAGGUAGUUUCCUGUUGUUG</u> GGAUCCACCUUUCUCUCGACAGCACGACACUGCCU UCAUUACUUCAGUUG	237
miR-197	GGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAA GAGCUCUUCACCC <u>UUCACCACCUUCUCCACCCAGC</u> AUGGCC	238
miR-197-2	GUGCAUGUGUAUGUAUGUGCAUGUGU AUGUGUAUGAGUGCAUGCGUGUGUGC	239
miR-198	UCAUU <u>GGUCCAGAGGGGAGAUAGG</u> UUCCUGUGAU UUUUCCUUCUUCUCUAUAGAAUAAAUGA	240
miR-199a-1	GCCAACCCAGUGUUCAGACUACCUGUUCAGGAGG CUCUCAAUGUGUACAGUAGUCUGCACAUUGGUUA GGC	241
miR-199a-2	AGGAAGCUUCUGGAGAUCCUGCUCCGUCGC <u>CCA</u> <u>GUGUUCAGACUACCUGUU</u> CAGGACAAUGCCGUUG <u>UACAGUAGUCUGCACAUUGGUU</u> AGACUGGGCAAG GGAGAGCA	242
miR-199b	CCAGAGGACACCUCCACUCCGUCUACCCAGUGUUU AGACUAUCUGUUCAGGACUCCCAAAUUGUACAGU AGUCUGCACAUUGGUUAGGCUGGGCUG	243
miR-199s	GCCAACCCAGUGUUCAGACUACCUGUUCAGGAGG CUCUCAAUGUG <u>UACAGUAGUCUGCACAUUGGUU</u> A GGC	244
miR-200a	GCCGUGGCCAUCUUACUGGGCAGCAUUGGAUGGA GUCAGGU <u>CUCUAAUACUGCCUGGUAAUGAUG</u> ACG GC	245
miR-200b	CCAGCUCGGGCAGCCGUGGCCAUCUUACUGGGCA GCAUUGGAUGGAGUCAGGUCUCUAAUACUGCCUG GUAAUGAUGACGGCGGAGCCCUGCACG	246
miR-200c	CCCUCGUCUUACCCAGCAGUGUUUGGGUGCGGUU GGGAGUCUCUAAUACUGCCGGGUAAUGAUGAGG	247
miR-202	GUUCCUUUUUCCUAUGCAUAUACUUCUUUGAGGA UCUGGCCUAAAGAGGUAUAGGGCAUGGGAAGAUG GAGC	248
miR-203	GUGUUGGGACUCGCGCGCUGGGUCCAGUGGUUC UUAACAGUUCAACAGUUCUGUAGCGCAAUU <u>GUGA</u> AAUGUUUAGGACCACUAGACCCGGCGGGCGCGCGCGCGCG	249

miR-204	GGCUACAGUCUUUCUUCAUGUGACUCGUGGAC <u>UU</u> CCCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAG GAGGCUGGGAAGGCAAAGGGACGUUCAAUUGUCA UCACUGGC	250
miR-205	AAAGAUCCUCAGACAAUCCAUGUGCUUCUCUUGU CCUUCAUUCCACCGGAGUCUGUCUCAUACCCAACC AGAUUUCAGUGGAGUGAAGUUCAGGAGGCAUGGA GCUGACA	251
miR-206-1	UGCUUCCCGAGGCCACAUGCUUCUUUAUAUCCCCA UAUGGAUUACUUUGCUA <u>UGGAAUGUAAGGAAGUG</u> UGUGGUUUCGGCAAGUG	252
miR-206-2	AGGCCACAUGCUUCUUUAUAUCCCCAUAUGGAUU ACUUUGCUA <u>UGGAAUGUAAGGAAGUGUGUGG</u> UUU U	253
miR-208	UGACGGCGAGCUUUUGGCCCGGGUUAUACCUGA UGCUCACGU <u>AUAAGACGAGCAAAAAGCUUGU</u> UGG UCA	254
miR-210	ACCCGGCAGUGCCUCCAGGCGCAGGGCAGCCCCUG CCCACCGCACACUGCGCUGCCCCAGACCCA <u>CUGUG</u> CGUGUGACAGCGGCUGAUCUGUGCCUGGGCAGCG CGACCC	255
miR-211	UCACCUGGCCAUGUGACUUGUGGGC <u>UUCCCUUUG</u> <u>UCAUCCUUCGCCU</u> AGGGCUCUGAGCAGGGCAGGG ACAGCAAAGGGGUGCUCAGUUGUCACUUCCCACA GCACGGAG	256
miR-212	CGGGGCACCCCGCCCGGACAGCGCGCCCGCACCUU GGCUCUAGACUGCUUACUGCCCGGGCCGCCCUCAG UAACAGUCUCCAGUCACGGCCACCGACGCCUGGCC CCGCC	257
miR-213-2	CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAU C <u>AACAUUCAUUGCUGUCGGUGGGUU</u> GAACUGUGU GGACAAGCUCACUGAACAAUGAAUGCAACUGUGG CCCCGCUU	258
miR-213	GAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGC UGUCGGUGAGUUUGGAAUUAAAAUCAAA <u>ACCAUC</u> GACCGUUGAUUGUACCCUAUGGCUAACCAUCAUC UACUCC	259
miR-95-4	GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCU GUCUACACUUGCUGUGCAGAACAUCCGCUCACCU GUACAGCAGGCACAGACAGGCAGUCACAUGACAA CCCAGCCU	260
miR-215	AUCAUUCAGAAAUGGUAUACAGGAAA <u>AUGACCUA</u> <u>UGAAUUGACAGAC</u> AAUAUAGCUGAGUUUGUCUGU CAUUUCUUUAGGCCAAUAUUCUGUAUGACUGUGC UACUUCAA	261
miR-216	GAUGGCUGUGAGUUGGCU <u>UAAUCUCAGCUGGCAA</u> CUGUGAGAUGUUCAUACAAUCCCUCACAGUGGUC UCUGGGAUUAUGCUAAACAGAGCAAUUUCCUAGC CCUCACGA	262

miR-217	AGUAUAAUUAUUACAUAGUUUUUUGAUGUCGCAGA <u>UACUGCAUCAGGAACUGAUUGGAU</u> AAGAAUCAGU CACCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUC UAAACAAG	263
miR-218-1	GUGAUAAUGUAGCGAGAUUUUCUG <u>UUGUGCUUGA</u> <u>UCUAACCAUGU</u> GGUUGCGAGGUAUGAGUAAAACA UGGUUCCGUCAAGCACCAUGGAACGUCACGCAGC UUUCUACA	264
miR-218-2	GACCAGUCGCUGCGGGCUUUCCU <u>UUGUGCUUGA</u> <u>UCUAACCAUGU</u> GGUGGAACGAUGGAAACGGAACA UGGUUCUGUCAAGCACCGCGGAAAGCACCGUGCU <u>CUCCUGCA</u>	265
miR-219	CCGCCCGGGCCGCGCUCC <u>UGAUUGUCCAAACGC</u> <u>AAUUCU</u> CGAGUCUAUGGCUCCGGCCGAGAGUUGA GUCUGGACGUCCCGAGCCGCCCCCAAACCUCG AGCGGG	266
miR-219-1	CCGCCCGGGCCGCGCUCC <u>UGAUUGUCCAAACGC</u> <u>AAUUCU</u> CGAGUCUAUGGCUCCGGCCGAGAGUUGA GUCUGGACGUCCCGAGCCGCCCCCAAACCUCG AGCGGG	267
miR-219-2	ACUCAGGGGCUUCGCCAC <u>UGAUUGUCCAAACGCA</u> <u>AUUCU</u> UGUACGAGUCUGCGGCCAACCGAGAAUUG UGGCUGGACAUCUGUGGCUGAGCUCCGGG	268
miR-220	GACAGUGUGGCAUUGUAGGGCU <u>CCACACCGUAUC</u> <u>UGACACUUU</u> GGGCGAGGGCACCAUGCUGAAGGUG UUCAUGAUGCGGUCUGGGAACUCCUCACGGAUCU UACUGAUG	269
miR-221	UGAACAUCCAGGUCUGGGGCAUGAACCUGGCAUA CAAUGUAGAUUUCUGUGUUCGUUAGGCAACAGCU ACAUUGUCUGCUGGGUUUCAGGCUACCUGGAAAC AUGUUCUC	270
miR-222	GCUGCUGGAAGGUGUAGGUACCCUCAAUGGCUCA GUAGCCAGUGUAGAUCCUGUCUUUCGUAAUCAGC AGCUACAUCUGGCUACUGGGUCUCUGAUGGCAUC UUCUAGCU	271
miR-223	CCUGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUG ACAAGCUGAGUUGGACACUCCAUGUGGUAGAG <u>UG</u> <u>UCAGUUUGUCAAAUACCCC</u> AAGUGCGGCACAUGC UUACCAG	272
miR-95-4	GGGCUUU <u>CAAGUCACUAGUGGUUCCGUUUA</u> GUAG AUGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGU GACUACAAAGCCC	273
miR-294-1 (chr16)	CAAUCUUCCUUUAUCAUGGUAUUGAUUUUUCAGUGCU UCCCUUUUGUGUGAGAGAAGAUA	274
miR-296	AGGACCCUUCCAGAGGGCCCCCCCUCAAUCCUGUUGUG CCUAAUUCAGAGGGUUGGGUGGAGGCUCUCCUGAAGG GCUCU	275
miR-299	AAGAAAUGGUUUACCGUCCCACAUACAUUUUGAAUAU GUAUGUGGGAUGGUAAACCGCUUCUU	276

miR-301	ACUGCUAACGAAUGCUCUGACUUUAUUGCACUACUGU ACUUUACAGCUAGCAGUGCAAUAGUAUUGUCAAAGCA UCUGAAAGCAGG	277
miR-302a	CCACCACUUAAACGUGGAUGUACUUGCUUUGAAACUA AAGAAGUAAGUGCUUCCAUGUUUUGGUGAUGG	278
miR-302b	GCUCCCUUCAACUUUAACAUGGAAGUGCUUUCUGUGA CUUUAAAAGUAAGUGCUUCCAUGUUUUAGUAGGAGU	279
miR-302c	CCUUUGC <u>UUUAACAUGGGGGUACCUGCUG</u> UGUGAAAC AAAAGUAAGUGCUUCCAUGUUUCAGUGGAGG	280
miR-302d	CCUCUACUUUAACAUGGAGGCACUUGCUGUGACAUGA CAAAAAUAAGUGCUUCCAUGUUUGAGUGUGG	281
miR-320	GCUUCGCUCCCCUCCGCUUCUCUCCCGGUUCUUCCC GGAGUCGGGAAAAGCUGGGUUGAGAGGCGAAAAAGG AUGAGGU	282
miR-321	UUGGCCUCC <u>UAAGCCAGGGAUUGUGGGUUCGAGUCC</u> C ACCCGGGGUAAAGAAGGCCGA	283
miR-323	UUGGUACUUGGAGAGAGGUGGUCCGUGGCGCGUUCGC UUUAUUUAUGGCGCACAUUACACGGUCGACCUCUUUG CAGUAUCUAAUC	284
miR-324	CUGACUAUGCCUCCCCGCAUCCCCUAGGGCAUUGGUGU AAAGCUGGAGACCCACUGCCCCAGGUGCUGCUGGGGGU UGUAGUC	285
miR-325	AUACAGUGCUUGGUUCCUAGUAGGUGUCCAGUAAGUG UUUGUGACAUAAUUUGUUUAUUGAGGACCUCCUAUCA AUCAAGCACUGUGCUAGGCUCUGG	286
miR-326	CUCAUCUGUCUGUUGGGCUGGAGGCAGGGCCUUUGUG AAGGCGGGUGGUGCUCAGAUCGCCUCUGGGCCCUUCCU CCAGCCCGAGGCGGAUUCA	287
miR-328	UGGAGUGGGGGGCAGGAGGGGCUCAGGGAGAAAGUG CAUACAGCCCCUGGCCCUCUCUGCCCUUCCGUCCCCUG	288
miR-330	CUUUGGCGAUCACUGCCUCUCUGGGCCUGUGUCUUAGG CUCUGCAAGAUCAACCGAGCAAAGCACACGGCCUGCAG AGAGGCAGCGCUCUGCCC	289
miR-331	GAGUUUGGUUUUGGGUUUGUUCUAGGUAUGGUC CCAGGGAUCCAGAUCAAACCAGGCCCCUGGGCCUAUC CUAGAACCAACCUAAGCUC	290
miR-335	UGUUUUGAGCGGGG <u>UCAAGAGCAAUAACGAAAAAUG</u> UUUGUCAUAAACCGUUUUUUCAUUAUUGCUCCUGACCU CCUCUCAUUUGCUAUAUUCA	291
miR-337	GUAGUCAGUAGUUGGGGGGGGGGAACGGCUUCAUACA GGAGUUGAUGCACAGUUAUCCAGCUCCUAUAUGAUGC CUUUCUUCAUCCCCUUCAA	292
miR-338	UCUCCAACAAUAUCCUGGUGCUGAGUGAUGACUCAGG CGACUCCAGCAUCAGUGAUUUUGUUGAAGA	293
miR-339	CGGGGCGCCCCCCCCCCCCCAGGAGCCCACGU GUGCCUGCCUGUGAGCCCCCAGAGCCGGCGC CUGCCCCAGUGUCUGCGC	294

miR-340	UUGUACCUGGUGUGAUUAUAAAGCAAUGAGACUGAUU GUCAUAUGUCGUUUGUGGGA <u>UCCGUCUCAGUUACUUU</u> AUAGCCAUACCUGGUAUCUUA	295
miR-342	GAAACUGGGCUCAAGGUGAGGGGUGCUAUCUGUGAUU GAGGGACAUGGUUAAUGGAAUUGUCUCACACAGAAAU CGCACCCGUCACCUUGGCCUACUUA	296
miR-345	ACCCAAACCCUAGGUC <u>UGCUGACUCCUAGUCCAGGGC</u> U CGUGAUGGCUGGUGGGCCCUGAACGAGGGUCUGGAG GCCUGGGUUUGAAUAUCGACAGC	297
miR-346	GUCUGUCUGCCGCAUGCCUGCCUCUCUGUUGCUCUGA AGGAGGCAGGGCCUGGGCCUGCAGCUGCCUGGGCAGA GCGCUCCUGC	298
miR-367	CCAUUACUGUUGCUAAUAUGCAACUCUGUUGAAUAUA AAUUGGAAUUGCACUUUAGCAAUGGUGAUGG	299
miR-368	AAAAGGUGGAUAUUCCUUCUAUGUUUAUGUUAUUUAU GGUUAAACAUAGAGGAAAUUCCACGUUUU	300
miR-369	UUGAAGGGAGAUCGACCGUGUUAUAUUCGCUUUAUUG ACUUCGAAUAAUACAUGGUUGAUCUUUUCUCAG	301
miR-370	AGACAGAGAAGCCAGGUCACGUCUCUGCAGUUACACA GCUCACGAGU <u>GCCUGCUGGGGUGGAACCUGG</u> UCUGUC U	302
miR-371	GUGGCACUCAAACUGUGGGGGCACUUUCUGCUCUCUG GUGAAAGUGCCGCCAUCUUUUGAGUGUUAC	303
miR-372	GUGGGCCUCAAAUGUGGAGCACUAUUCUGAUGUCCAA GUGGAAAGUGCUGCGACAUUUGAGCGUCAC	304
miR-373	GGGAUACUCAAAAUGGGGGCGCUUUCCUUUUUGUCUG UACUGGGAAGUGCUUCGAUUUUGGGGUGUCCC	305
miR-374	UACAUCGGCCA <u>UUAUAAUACAACCUGAUAAGUG</u> UUAU AGCACUUAUCAGAUUGUAUUGUAAUUGUCUGUGUA	306
miR-hes1	AUGGAGCUGCUCACCUGUGGGCCUCAAAUGUGGAGG AACUAUUCUGAUGUCCAAGUGGAAAGUGCUGCGACAU UUGAGCGUCACCGGUGACGCCCAUAUCA	307
miR-hes2	GCAUCCCCUCAGCCUGUGGCACUCAAACUGUGGGGGCA CUUUCUGCUCUCUGGUGAAAGUGCCGCCAUCUUUUGA GUGUUACCGCUUGAGAAGACUCAACC	308
miR-hes3	CGAGGAGCUCAUACUGGGAUACUCAAAAUGGGGGCGC UUUCCUUUUUGUCUGUUACUGGGAAGUGCUUCGAUUU UGGGGUGUCCCUGUUUGAGUAGGGCAUC	309

^{*} Una secuencia subrayada dentro de una secuencia de precursor corresponde a un transcrito de miR procesado maduro (véase la Tabla 1b). Algunas secuencias de precursor tienen dos secuencias subrayadas que indican dos miR maduros diferentes que se obtienen a partir del mismo precursor. Todas las secuencias son humanas.

Tabla 1b - Secuencias de microRNA Maduro Humano

	Tabla 1b - Secuencias de microrina Maduro Humano.				
Nombre de miRNA	Secuencia de miRNA Maduro (5' a 3')	SEC ID №	microRNA precursor		
Maduro			correspondiente(s); véase la Tabla 1a		
let-7a	ugagguaguagguuguauaguu	310	let-7a-1; let-7a-2; let-7a-3; let-7a-4		
let-7b	ugagguaguagguugugguu	311	let-7b		
let-7c	ugagguaguagguuguaugguu	312	let-7c		
let-7d	agagguaguagguugcauagu	313	let-7d; let-7d-v1		
let-7e	ugagguaggagguuguauagu	314	let-7e		
let-7f	ugagguaguagauuguauaguu	315	let-7f-1; let-7f-2-1; let-7f-2-2		

=		1 040	1.7
let-7g	ugagguaguaguuuguacagu	316	let-7g
let-7i	ugagguaguaguuugugcu	317	let-7i
miR-1	uggaauguaaagaaguaugua	318	miR-1b; miR-1b-1; miR-1b-2
miR-7	uggaagacuagugauuuuguu	319	miR-7-1; miR-7-1a; miR-7-2; miR-7-3
miR-9	ucuuugguuaucuagcuguauga	320	miR-9-1; miR-9-2; miR-9-3
miR-9*	uaaagcuagauaaccgaaagu	321	miR-9-1; miR-9-2; miR-9-3
miR-10a	uacccuguagauccgaauuugug	322	miR-10a
miR-10b	uacccuguagaaccgaauuugu	323	miR-10b
miR-15a	uagcagcacauaaugguuugug	324	miR-15a; miR-15a-2
miR-15b	uagcagcacaucaugguuuaca	325	miR-15b
miR-16	uagcagcacguaaauauuggcg	326	miR-16-1; miR-16-2; miR-16-13
miR-17-5p	caaagugcuuacagugcagguagu	327	miR-17
miR-17-3p	acugcagugaaggcacuugu	328	miR-17
miR-18	uaaggugcaucuagugcagaua	329	miR-18; miR-18-13
miR-19a	ugugcaaaucuaugcaaaacuga	330	miR-19a; miR-19a-13
miR-19b	ugugcaaauccaugcaaaacuga	331	miR-19b-1; miR-19b-2
miR-20	uaaagugcuuauagugcaggua	332	miR-20 (miR-20a)
miR-21	uagcuuaucagacugauguuga	333	miR-21; miR-21-17
miR-22	aagcugccaguugaagaacugu	334	miR-22
miR-23a	aucacauugccagggauuucc	335	miR-23a
miR-23b	aucacauugccagggauuaccac	336	miR-23b
miR-95-4	uggcucaguucagcaggaacag	337	miR-24-1; miR-24-2; miR-24-19; miR- 24-9
miR-25	cauugcacuugucucggucuga	338	miR-25
miR-26a	uucaaguaauccaggauaggcu	339	miR-26a; miR-26a-1; miR-26a-2
miR-26b	uucaaguaauucaggauaggu	340	miR-26b
miR-27a	uucacaguggcuaaguuccgcc	341	miR-27a
miR-27b	uucacaguggcuaaguucug	342	miR-27b-1; miR-27b-2
miR-28	aaggagcucacagucuauugag	343	miR-28
miR-29a	cuagcaccaucugaaaucgguu	344	miR-29a-2; miR-29a
miR-29b	uagcaccauuugaaaucagu	345	miR-29b-1; miR-29b-2
miR-29c	uagcaccauuugaaaucgguua	346	miR-29c
miR-30a-5p	uguaaacauccucgacuggaagc	347	miR-30a
miR-30a-3p	cuuucagucggauguuugcagc	348	miR-30a
miR-30b	uguaaacauccuacacucagc	349	miR-30b-1; miR-30b-2
miR-30c	uguaaacauccuacacucucagc	350	miR-30c
miR-30d	uguaaacauccccgacuggaag	351	miR-30d
miR-30e	uguaaacauccuugacugga	352	miR-30e
miR-31	ggcaagaugcuggcauagcug	353	miR-31
miR-32	uauugcacauuacuaaguugc	354	miR-32
miR-33	gugcauuguaguugcauug	355	miR-33; miR-33b
miR-34a	uggcagugucuuagcugguugu	356	miR-34a
miR-34b	aggcagugucauuagcugauug	357	miR-34b
miR-34c	aggcaguguaguuagcugauug	358	miR-34c
miR-92	uauugcacuugucccggccugu	359	miR-92-2; miR-92-1
miR-93	aaagugcuguucgugcagguag	360	miR-93-1; miR-93-2
miR-95	uucaacggguauuuauugagca	361	miR-95
miR-96	uuuggcacuagcacauuuuugc	362	miR-96
miR-98	ugagguaguaaguuguauuguu	363	miR-98
miR-99a	aacceguagaucegaucuugug	364	miR-99a
miR-99b	cacceguagaaccgaccuugcg	365	miR-99b
miR-100	uacaguacugugauaacugaag	366	miR-100
miR-101	uacaguacugugauaacugaag	367	miR-101-1; miR-101-2
miR-103	agcagcauuguacagggcuauga	368	miR-103-1
miR-105	ucaaaugcucagacuccugu	369	miR-105
miR-106-a	aaaagugcuuacagugcagguagc	370	miR-105-a
miR-106-b		370	miR-106-b
miR-107	uaaagugcugacagugcagau	371	miR-107
miR-122a	agcagcauuguacagggcuauca	373	miR-122a-1; miR-122a-2
miR-124a	uggagugugacaaugguguuugu	373	miR-124a-1; miR-124a-2; miR-124a-3
miR-125a	uuaaggcacgcggugaaugcca		miR-125a-1; miR-125a-2
บบก- เ∠วส	ucccugagacccuuuaaccugug	375	11110-123a-1, 1111ñ-123a-2

miR-125b	ucccugagacccuaacuuguga	376	miR-125b-1; miR-125b-2
miR-126*	cauuauuacuuuugguacgcg	377	miR-126-1; miR-126-2
miR-126	ucguaccgugaguaauaaugc	378	miR-126-1; miR-126-2
miR-127	ucggauccgucugagcuuggcu	379	miR-127-1; miR-127-2
miR-128a	ucacagugaaccggucucuuuu	380	miR-128; miR-128a
miR-128b	ucacagugaaccggucucuuuc	381	miR-128b
miR-129	cuuuuugcggucugggcuugc	382	miR-129-1; miR-129-2
miR-130a	cagugcaauguuaaaagggc	383	miR-130a
miR-130b	cagugcaaugaugaaagggcau	384	miR-130b
miR-132	uaacagucuacagccauggucg	385	miR-132-1
miR-133a	uugguccccuucaaccagcugu	386	miR-133a-1; miR-133a-2
miR-133b	uugguccccuucaaccagcua	387	miR-133b
miR-95-4	ugugacugguugaccagaggg	388	miR-134-1; miR-134-2
miR-135a	uauggcuuuuuauuccuauguga	389	miR-135a; miR-135a-2 (miR-135-2)
miR-135b	uauggcuuuucauuccuaugug	390	miR-135b
miR-136	acuccauuuguuuugaugaugga	391	miR-136-1; miR-136-2
miR-137	uauugcuuaagaauacgcguag	392	miR-137
miR-138	agcugguguugugaauc	393	miR-138-1; miR-138-2
miR-139	ucuacagugcacgugucu	394	miR-139
miR-140	agugguuuuacccuaugguag	395	miR-140; miR-140as; miR-140s
miR-141	aacacugucugguaaagaugg	396	miR-141-1; miR-141-2
miR-142-3p	uguaguguuuccuacuuuaugga	397	miR-142
miR-142-5p	cauaaaguagaaagcacuac	398	miR-142
miR-143	ugagaugaagcacuguagcuca	399	miR-143-1
miR-144		400	miR-144-1; miR-144-2
miR-145	uacaguauagaugauguacuag	401	miR-145-1; miR-145-2
miR-146	guccaguuuucccaggaaucccuu	401	miR-146-1; miR-146-2
miR-147	ugagaacugaauuccauggguu	402	miR-147
miR-148a	guguguggaaaugcuucugc	403	miR-148a (miR-148)
	ucagugcacuacagaacuuugu		
miR-148b	ucagugcaucacagaacuuugu	405	miR-148b
miR-149	ucuggcuccgugucuucacucc	406	miR-149
miR-150	ucucccaacccuuguaccagug	407	miR-150-1; miR-150-2
miR-151	acuagacugaagcuccuugagg	408	miR-151
miR-152	ucagugcaugacagaacuugg	409	miR-152-1; miR-152-2
miR-153	uugcauagucacaaaaguga	410	miR-153-1-1; miR-153-1-2; miR-153- 2-1; m iR-153-2-2
miR-154	uagguuauccguguugccuucg	411	miR-154-1; miR-154-2
miR-154*	aaucauacacgguugaccuauu	412	miR-154-1; miR-154-2
miR-155	uuaaugcuaaucgugauagggg	413	miR-155
miR-181a	aacauucaacgcugucggugagu	414	miR-181a
miR-181b	aacauucauugcugucgguggguu	415	miR-181b-1; miR-181b-2
miR-181c	aacauucaaccugucggugagu	416	miR-181c
miR-182	uuuggcaaugguagaacucaca	417	miR-182; miR-182as
miR-182*	ugguucuagacuugccaacua	418	miR-182; miR-182as
miR-183	uauggcacugguagaauucacug	419	miR-183
miR-95-4	uggacggagaacugauaagggu	420	miR-184-1; miR-184-2
miR-185	uggagagaaaggcaguuc	421	miR-185-1; miR-185-2
miR-186	caaagaauucuccuuuugggcuu	422	miR-186-1; miR-186-2
miR-187	ucgugucuuguguugcagccg	423	miR-187
miR-188	caucccuugcaugguggagggu	424	miR-188
miR-189	gugccuacugagcugauaucagu	425	miR-189-1; miR-189-2
miR-190	ugauauguuugauauauuaggu	426	miR-190-1; miR-190-2
miR-191	caacggaaucccaaaagcagcu	427	miR-191-1; miR-191-2
miR-192	cugaccuaugaauugacagcc	428	miR-192
miR-193	aacuggccuacaaagucccag	429	miR-193-1; miR-193-2
miR-95-4		430	miR-193-1; miR-193-2
miR-195	uguaacagcaacuccaugugga	431	miR-194-1; IIIIn-194-2
miR-196a	uagcagcacagaaauauuggc	431	miR-196a; miR-196a-2 (miR19
	uagguaguuucauguugg		
miD 10ch			
miR-196b	uagguaguuuccuguuguugg	433	miR-196b
miR-196b miR-197 miR-198	uagguaguuuccuguuguugg uucaccaccuucuccacccagc gguccagaggggagauagg	433 434 435	miR-1960 miR-197 miR-198

miR-199a	cccaguguucagacuaccuguuc	436	miR-199a-1; miR-199a-2
miR-199a*	uacaguagucugcacauugguu	437	miR-199a-1; miR-199a-2; miR-199s; miR-199b
miR-199b	cccaguguuuagacuaucuguuc	438	miR-199b
miR-200a	uaacacugucugguaacgaugu	439	miR-200a
miR-200b	cucuaauacugccugguaaugaug	440	miR-200b
miR-200c	aauacugccggguaaugaugga	441	miR-200c
miR-202	agagguauagggcaugggaaga	442	miR-202
miR-203	gugaaauguuuaggaccacuag	443	miR-203
miR-204	uucccuuugucauccuaugccu	444	miR-204
miR-205	uccuucauuccaccggagucug	445	miR-205
miR-206	uggaauguaaggaagugugugg	446	miR-206-1; miR-206-2
miR-208	auaagacgagcaaaaagcuugu	447	miR-208
miR-210	cugugcgugugacagcggcug	448	miR-210
miR-211	uucccuuugucauccuucgccu	449	miR-211
miR-212	uaacagucuccagucacggcc	450	miR-212
miR-213	accaucgaccguugauuguacc	451	miR-213
miR-214	acagcaggcacagacaggcag	452	miR-95-4
miR-215	augaccuaugaauugacagac	453	miR-215
miR-216	uaaucucagcuggcaacugug	454	miR-216
miR-217	uacugcaucaggaacugauuggau	455	miR-217
miR-218	uugugcuugaucuaaccaugu	456	miR-218-1; miR-218-2
miR-219	ugauuguccaaacgcaauucu	457	miR-219; miR-219-1; miR-219-2
miR-220	ccacaccguaucugacacuuu	458	miR-220
miR-221	agcuacauugucugcuggguuuc	459	miR-221
miR-222	agcuacaucuggcuacugggucuc	460	miR-222
miR-223	ugucaguuugucaaauacccc	461	miR-223
miR-224	caagucacuagugguuccguuua	462	miR-224
miR-296	agggccccccucaauccugu	463	miR-296
miR-299	ugguuuaccgucccacauacau	464	miR-299
miR-301	cagugcaauaguauugucaaagc	465	miR-301
miR-302a	uaagugcuuccauguuuugguga	466	miR-302a
miR-302b*	acuuuaacauggaagugcuuucu	467	miR-302b
miR-302b	uaagugcuuccauguuuuaguag	468	miR-302b
miR-302c*	uuuaacauggggguaccugcug	469	miR-302c
miR-302c	uaagugcuuccauguuucagugg	470	miR-302c
miR-302d	uaagugcuuccauguuugagugu	471	miR-302d
miR-320	aaaagcuggguugagagggcgaa	472	miR-320
miR-321	uaagccagggauuguggguuc	473	miR-321
miR-323	gcacauuacacggucgaccucu	474	miR-323
miR-324-5p	cgcauccccuagggcauuggugu	475	miR-324
miR-324-3p	ccacugccccaggugcugcugg	476	miR-324
miR-325	ccuaguagguguccaguaagu	477	miR-325
miR-326	ccucugggcccuuccuccag	478	miR-326
miR-328	cuggeccucucugeccuucegu	479	miR-328
miR-330	gcaaagcacacggccugcagaga	480	miR-330
miR-331	gccccugggccuauccuagaa	481	miR-331
miR-335	ucaagagcaauaacgaaaaaugu	482	miR-335
miR-337	uccagcuccuauaugaugccuuu	483	miR-337
miR-338	uccagcaucagugauuuuguuga	484	miR-338
miR-339	ucccuguccuccaggagcuca	485	miR-339
miR-340	uccgucucaguuacuuuauagcc	486	miR-340
miR-342	ucucacacagaaaucgcacccguc	487	miR-342
miR-345	ugcugacuccuaguccagggc	488	miR-345
miR-346	ugucugcccgcaugccugccucu	489	miR-346
miR-367	aauugcacuuuagcaaugguga	490	miR-367
miR-368	acauagaggaaauuccacguuu	491	miR-368
miR-369	aauaauacaugguugaucuuu	492	miR-369
	gccugcugggguggaaccugg	493	miR-370
MIK-3/U			
miR-370 miR-371	gugccgccaucuuuugagugu	494	miR-371

miR-373*	acucaaaaugggggcgcuuucc	496	miR-373
miR-373	gaagugcuucgauuuuggggugu	497	miR-373
miR-374	uuauaauacaaccugauaagug	498	miR-374

El nivel del al menos un producto génico de miR se puede medir en las células de una muestra biológica obtenida de un sujeto. Por ejemplo, se puede extraer una muestra de tejido de un sujeto del que se sospecha que tiene un cáncer de pulmón por medio de las técnicas de biopsia convencionales. En otra realización, se puede extraer una muestra de sangre del sujeto y se pueden aislar los glóbulos blancos para extraer el ADN por las técnicas de referencia. La muestra de sangre o de tejido se obtiene del sujeto preferentemente antes del inicio de la radioterapia, quimioterapia u otro tratamiento terapéutico. Se puede obtener una correspondiente muestra de tejido o de sangre de control o una muestra control de referencia, a partir de tejidos sin afectar del sujeto, a partir de un individuo humano normal o una población de individuos humanos normales o a partir de cultivos celulares que correspondan con la mayoría de las células de la muestra del sujeto. La muestra control de tejido o de sangre se procesa entonces junto con la muestra del sujeto, de forma que se puedan comparar los niveles del producto génico de miR producido por un gen miR determinado en las células de la muestra del sujeto con los niveles del producto génico de miR correspondiente de las células de la muestra control. De manera alternativa, se puede obtener una muestra de referencia y procesarse independientemente (por ejemplo, a una hora diferente) de la muestra de ensayo y se puede comparar el nivel del producto génico de miR producido por un determinado gen miR en las células de la muestra de ensayo con el nivel del correspondiente producto génico de miR de la muestra de referencia.

10

15

20

25

30

35

40

45

El nivel de al menos un producto génico de miR en la muestra de ensayo puede ser mayor que el nivel del correspondiente producto génico de miR en la muestra control (es decir, la expresión del producto génico de miR está "regulada positivamente"). Como se usa en el presente documento, la expresión de un producto génico de miR está "regulada positivamente" cuando la cantidad del producto génico de miR en una célula o muestra de tejido del sujeto es mayor que la cantidad del mismo producto génico en una célula o muestra de tejido de control. Como alternativa, el nivel del al menos un producto génico de miR en la muestra de ensayo puede ser menor que el nivel del correspondiente producto génico de miR de la muestra de control (es decir, la expresión del producto génico de miR está "regulada negativamente"). Como se usa en el presente documento, la expresión de un gen miR está "regulada negativamente" cuando la cantidad del producto génico de miR producido por ese gen en una célula o muestra de tejido del sujeto es menor que la cantidad producida por el mismo gen en una célula o muestra de tejido de control. La expresión génica de miR relativa en las muestras de control y normales se puede determinar con respecto a una o más expresiones de ARN de referencia. Las referencias pueden comprender, por ejemplo, un nivel cero de expresión génica de miR, el nivel de expresión génica de miR en tejidos sin afectar del sujeto o el nivel medio de la expresión génica de miR obtenida previamente para una población se seres humanos normales de control.

Una alteración (es decir, un aumento o disminución) del nivel de un producto génico de miR en la muestra obtenida del sujeto, con respecto al nivel de un correspondiente producto génico de miR de la muestra control, es indicativa de la presencia de cáncer de pulmón en el sujeto. El nivel de al menos un producto génico de miR en la muestra de ensayo puede ser mayor que el nivel del correspondiente producto génico de miR en la muestra control. Como alternativa, el nivel de al menos un producto génico de miR en la muestra de ensayo puede ser menor que el nivel del correspondiente producto génico de miR en la muestra control. En cierta divulgación, el al menos un producto génico de miR se selecciona entre el grupo que consiste en miR-21, miR-191, miR-126*, miR-210, miR-155, miR-143, miR-205, miR-192-prec, miR-224, miR-126, miR-24-2, miR-30a-5p, miR-212, miR-140, miR-9, miR-194, miR-17-3p, miR-124a-1, miR-218-2, miR-95, miR-145, miR-198, miR-216-prec, miR-219-1, miR-106a, miR-197, miR-192, miR-125a-prec, miR-26a-1-prec, miR-146, miR-203, miR-199b-prec, let-7a-2-prec, miR-27b, miR-32, miR-29b-2, miR-220, miR-33, miR-181c-prec, miR-150, miR-101-1, miR-124a-3, miR-125a y let-7f-1. En una divulgación en particular, el al menos un producto génico de miR se selecciona entre el grupo que consiste en miR-21, miR-205 and miR-216. En otra divulgación, el cáncer de pulmón es un adenocarcinoma de pulmón y el al menos un producto génico de miR se selecciona entre el grupo que consiste en miR-210, miR-126* y miR-224.

En una divulgación particular, el producto génico de miR no es uno o más de let7a-2, let-7c, let-7g, let-7i, miR-7-2, miR-7-3, miR-9, miR-9-1, miR-10a, miR-15a, miR-15b, miR-16-1, miR-16-2, miR-17-5p, miR-20a, miR-20a, miR-24-1, miR-24-2, miR-25, miR-29b-2, miR-30, miR-30a-5p, miR-30c, miR-30d, miR-31, miR-32, miR-34, miR-34a, miR-34a prec, miR-34a-1, miR-34a-2, miR-92-2, miR-96, miR-99a, miR-99b prec, miR-100, miR-103, miR-106a, miR-107, miR-123, miR-124a-1, miR-125b-1, miR-125b-2, miR-126*, miR-127, miR-128b, miR-129, miR-129-1/2 prec, miR-132, miR-135-1, miR-136, miR-137, miR-141, miR-142-as, miR-143, miR-146, miR-148, miR-149, miR-153, miR-155, miR 159-1, miR-181, miR-181b-1, miR-182, miR-186, miR-191, miR-192, miR-195, miR-196-1, miR-196-1 prec, miR-196-2, miR-199a-1, miR-199a-2, miR-199b, miR-200b, miR-202, miR-203, miR-204, miR-205, miR-210, miR-211, miR-212, miR-214, miR-215, miR-217, miR-221 y/o miR-223.

60 El nivel de un producto génico de miR en una muestra se puede medir utilizando cualquier técnica que sea adecuada para detectar los niveles de expresión de ARN en una muestra biológica. Las técnicas adecuadas (por ejemplo, análisis de transferencia de Northern, RT-PCR, hibridación *in situ*) para determinar los niveles de expresión

de ARN en una muestra biológica (por ejemplo, células, tejidos) son bien conocidas por los expertos en la técnica. En una realización en particular, el nivel de al menos un producto génico de miR se detecta utilizando el análisis de transferencia de Northern. Por ejemplo, el ARN total celular se puede purificar a partir de las células por homogenización en presencia de un tampón de extracción de ácido nucleico, seguido por centrifugación. Los ácidos nucleicos se precipitan y el ADN se elimina tratándolo con ADNasa y precipitación. Las moléculas de ARN se separan entonces por electroforesis en gel sobre geles de agarosa según las técnicas de referencia y se transfieren a los filtros de nitrocelulosa. Entonces se inmoviliza el ARN sobre los filtros por calentamiento. La detección y la cuantificación de ARN específico se consigue utilizando sondas de ADN o ARN marcadas adecuadamente que sean complementarias del ARN en cuestión. Véase, por ejemplo, Molecular Cloning: A Laboratory Manual, J. Sambrook y col., eds., 2ª edición, Cold Spring Harbor Laboratory Press, 1989, Capítulo 7.

5

10

15

40

45

50

55

60

65

Las sondas adecuadas (por ejemplo, sondas ADN, sondas ARN) para la hibridación por transferencia de Northern de un determinado producto génico de miR se pueden producir a partir de las secuencias proporcionadas en la Tabla 1a y la Tabla 1b e incluyen, pero sin limitación, sondas que tienen al menos una complementariedad de aproximadamente el 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 98 % o el 99 % con el producto génico de miR de interés. Los métodos para la preparación de sondas marcadas de ADN y ARN y las condiciones para la hibridación de las mismas con las secuencias de nucleótidos diana se describen en Molecular Cloning: A Laboratory Manual, J. Sambrook y col., eds., 2ª edición, Cold Spring Harbor Laboratory Press, 1989, Capítulos 10 y 11.

- Por ejemplo, la sonda de ácido nucleico se puede marcar con, por ejemplo un radionucleido, tal como ³H, ³²P, ³³P, ¹⁴C o ³⁵S; un metal pesado; un ligando capaz de funcionar como un miembro de un par de unión específico para un ligando marcado (por ejemplo, biotina, avidina o un anticuerpo); una molécula fluorescente; una molécula quimioluminiscente; una enzima o similares.
- Las sondas se pueden marcar para que tengan una actividad específica alta bien por el método de traducción de Nick de Rigby y col. (1977), J Mol. Biol. 113: 237-251 o por el método del cebador aleatorio de Fienberg y col. (1983), Anal. Biochem. 132: 6-13. Este último es el método de elección para sintetizar sondas de actividad específica alta marcadas con ³²P a partir de matrices de ADN de cadena sencilla o de moldes de ARN. Por ejemplo, remplazando los nucleótidos preexistentes con nucleótidos altamente radiactivos según el método de traducción de Nick, es posible preparar sondas de ácido nucleico marcadas con ³²P con una actividad específica en exceso de 10⁸ cpm/microgramo. Se puede entonces llevar a cabo la detección autorradiográfica de hibridación, exponiendo una película fotográfica a los filtros hibridados. El escáner densitométrico de las películas fotográficas expuestas por los filtros hibridados proporciona una medición precisa de los niveles de transcripción del gen miR. Utilizando otra estrategia, los niveles de transcripción del gen miR se pueden cuantificar por sistemas de imagen computarizados, tales como el Molecular Dynamics 400-B 2D Phosphorimager disponible en Amersham Biosciences, Piscataway, NJ.

En el caso de que el marcado de ADN o ARN por radionucleidos no sea práctico, se puede utilizar el método del cebador aleatorio para incorporar un análogo, por ejemplo, el análogo dTTP 5-(N-(N-blotinil-epsilon-aminocaproil)-3-aminoalil) desoxiuridina trifosfato, en la molécula sonda. El oligonucleótido sonda biotinilado se puede detectar al reaccionar con proteínas unidas a biotina, tales como la avidina, estreptavidina y anticuerpos (por ejemplo, anticuerpos antibiotina) acoplados a tintes fluorescentes o enzimas que producen reacciones de color.

Además de la técnica Northern y otras técnicas de hibridación de ARN, la determinación de las transcripciones de ARN se puede conseguir utilizando la técnica de hibridación *in situ*. Esta técnica necesita menos células que la técnica de transferencia de Northern e implica depositar las células enteras en un cubreobjetos de microscopio y sondar el contenido de ácido nucleico de la célula con una solución que contiene sondas de ácido nucleico radiactivo o marcado de alguna manera (por ejemplo, ADNc o ARN). Esta técnica es particularmente muy precisa para analizar muestras de biopsias de sujetos. La práctica de la técnica de la hibridación *in situ* se describe con mayor detalle en la Patente de Estados Unidos Nº 5.427.916. Las sondas adecuadas para la hibridación *in situ* de un determinado producto génico de miR se pueden producir a partir de las secuencias de ácidos nucleicos proporcionadas en la Tabla 1a y la Tabla 1b, e incluyen, sin limitación, sondas que tienen al menos una complementariedad de aproximadamente el 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 98 % o el 99 % con un producto génico de miR de interés, así como sondas que tienen una complementariedad completa con un producto génico de interés, como se ha descrito anteriormente.

El número relativo de transcritos del gen miR en las células también se puede determinar por transcripción inversa de los transcritos del gen miR, seguida por la amplificación de los transcritos transcritos inversamente por reacción en cadena de la polimerasa (RT-PCR). Los niveles de transcritos del gen miR se pueden cuantificar comparándolos con una referencia interna, por ejemplo, el nivel de ARNm de un gen constitutivo presente en la misma muestra. Un gen constitutivo adecuado para su uso como referencia interna incluye, por ejemplo, el de la miosina o la gliceraldehido-3-fosfato deshidrogenasa (G3PDH). Los métodos para llevar a cabo la RT-PCR cuantitativa y semicuantitativa y variaciones de las mismas, son bien conocidos por los expertos en la técnica.

En algunos casos, puede ser deseable determinar simultáneamente el nivel de expresión de una pluralidad de diferentes productos génicos de miR en una muestra. En otros casos, puede ser deseable determinar el nivel de expresión de los transcritos de todos los genes miR conocidos que se correlacionan con un cáncer. Evaluar los

niveles de expresión específicos del cáncer para cientos de genes miR o productos génicos tarda mucho tiempo y necesita una gran cantidad de ARN total (por ejemplo, al menos 20 mg para cada transferencia de Northern) y las técnicas autorradiográficas necesitan isótopos radiactivos.

Para superar estas limitaciones, puede construirse una genoteca de oligos, en formato de microchip (es decir, una micromatriz) que contenga una serie de oligonucleótidos sondas (por ejemplo, oligodesoxinucleótidos) que son específicos para una serie de genes miR. Utilizando tal micromatriz, se puede determinar el nivel de expresión de múltiples microARN en una muestra biológica haciendo una transcripción inversa de los ARN para generar una serie de oligodesoxinucleótidos diana, e hibridándolos con los oligonucleótidos sonda de la micromatriz para generar un perfil de hibridación o de expresión. El perfil de hibridación de la muestra de ensayo se puede entonces comparar con el de una muestra control para determinar cuáles son los microARN que tienen un nivel de expresión alterado en las células del cáncer de pulmón. Como se usa en el presente documento, "oligonucleótido sonda" u "oligodesoxinucleótido sonda" se refiere a un oligonucleótido que es capaz de hibridarse con un oligonucleótido diana. "Oligonucleótido diana" u "oligodesoxinucleótido diana" se refiere a una molécula que se tiene que detectar (por ejemplo, por medio de hibridación). Por "oligonucleótido sonda específico de miR" u "oligonucleótido sonda específico para un miR" se entiende un oligonucleótido sonda que tiene una secuencia seleccionada para hibridarse con un producto génico de miR o con una transcripción inversa del producto génico de miR específico.

20

25

30

35

40

45

50

55

60

65

Un "perfil de expresión" o un "perfil de hibridación" de una muestra particular es esencialmente una huella dactilar del estado de la muestra, aunque cualquier gen en particular puede tener dos estados que se expresen de forma similar, la evaluación de un cierto número de genes simultáneamente permite la generación de un perfil de expresión génica que es único del estado de la célula. Es decir que el tejido normal se puede distinguir del tejido del cáncer de pulmón y se pueden determinar diferentes estados pronósticos en el tejido del cáncer de pulmón (por ejemplo, pronósticos de supervivencia buenos o malos a largo plazo). Comparando los perfiles de expresión del tejido del cáncer de pulmón en diferentes estados, se obtiene información con respecto a cuáles son los genes importantes (incluyendo tanto la regulación positiva como negativa de genes) en cada uno de esos estados. La identificación de secuencias que se expresan diferencialmente en el teiido del cáncer de pulmón o en el teiido pulmonar normal, así como la expresión diferencial que da lugar a diferentes resultados pronósticos, permite el uso de esta información de varias maneras. Por ejemplo, se puede evaluar un régimen de tratamiento particular (por ejemplo, para determinar si el fármaco quimioterapéutico actúa para mejorar el pronóstico a largo plazo en un paciente en particular). De manera similar, el diagnóstico se puede hacer o confirmar comparando muestras del paciente con perfiles de expresión conocidos. Además, estos perfiles de expresión génica (o genes individuales) permiten seleccionar entre los fármacos candidatos que suprimen el perfil de expresión del cáncer de pulmón o convierten un perfil de pronóstico malo en un perfil de pronóstico mejor.

En consecuencia, la presente divulgación proporciona métodos para diagnosticar si un sujeto tiene o está en riesgo de desarrollar un cáncer de pulmón, que comprende la transcripción inversa del ARN de una muestra de ensayo obtenida del sujeto para proporcionar una serie de oligodesoxinucleótidos diana, hibridando los oligodesoxinucleótidos diana con una micromatriz que comprende oligonucleótidos sonda específicos de miARN para proporcionar un perfil de hibridación de la muestra de ensayo y comparando el perfil de hibridación de la muestra de ensayo con un perfil de hibridación generado a partir una muestra de control, de manera que una alteración en la señal de al menos un miARN es indicativa de que el sujeto o tiene o está en riesgo de desarrollar un cáncer de pulmón. En una realización, la micromatriz comprende oligonucleótidos sonda específicos de miARN para una parte sustancial de todos los miARN humanos conocidos. En una divulgación particular, la micromatriz comprende oligonucleótidos sonda específicos de miARN para uno o más de los miARN seleccionados entre el grupo que consiste en miR-21, miR-191, miR-126*, miR-210, miR-155, miR-143, miR-205, miR-192-prec, miR-224, miR-126, miR-24-2, miR-30a-5p, miR-212, miR-140, miR-9, miR-214, miR-17-3p, miR-124a-1, miR-218-2, miR-25, miR-145, miR-198, miR-216-prec, miR-219-1, miR-106a, miR-197, miR-192, miR-125a-prec, miR-26a-1-prec, miR-146, miR-203, miR-199b-prec, let-7a-2-prec, miR-27b, miR-32, miR-29b-2, miR-220, miR-33, miR-181c-prec, miR-150, miR-101-1, miR-124a-3, miR-125a, let-7f-1 y una combinación de los mismos.

La micromatriz se puede preparar con oligonucleótidos sonda específicos de un gen generados a partir de secuencias conocidas de miARN. La matriz puede contener dos oligonucleótidos sonda diferentes para cada miARN, uno que contiene la secuencia madura, activa y el otro que es específico para el miARN precursor. La matriz también puede contener controles, tales como una o más secuencias de ratón que se diferencian de los ortólogos humanos solamente en unas pocas bases, que pueden servir como controles para las condiciones de rigurosidad de la hibridación. Se pueden imprimir en el microchip ARNt y otros ARN (por ejemplo, ARNr, ARNm) de ambas especies, proporcionando un control interno positivo de hibridación específica, relativamente estable. También se pueden incluir en el microchip uno o más controles apropiados de hibridación no específica. Con este propósito, las secuencias se seleccionan basándose en la ausencia de cualquier homología con cualquiera de los miARN conocidos.

La micromatriz puede fabricarse utilizando técnicas conocidas en la técnica. Por ejemplo, los oligonucleótidos sonda de una longitud apropiada, por ejemplo, 40 nucleótidos, se modifican en 5'-amino en la posición C6 y se imprimen utilizando los sistemas de micromatrices disponibles en el mercado, por ejemplo el GeneMachine OmniGrid™ 100 Microarrayer y portaobjetos activados Amersham CodeLink™. El oligómero ADNc marcado correspondiente a los

ARN diana se prepara por transcripción inversa del ARN diana con el cebador marcado. Después de la síntesis de la primera cadena, los híbridos ARN/ADN se desnaturalizan para degradar las matrices. Los ADNc marcados preparados de esta manera se hibridan con el chip de la micromatriz bajo condiciones de hibridación, por ejemplo SSPE 6X /formamida al 30 % a 25º C durante 18 horas y a continuación lavándolo con TNT 0,75x a 37º C durante 40 minutos. La hibridación se produce en las posiciones de la matriz en las que la sonda ADN inmovilizada reconoce un ADNc diana complementario de la muestra. El ADNc diana marcado marca la posición exacta en la matriz donde se produce la unión, permitiendo la detección automática y la cuantificación. El resultado consiste en un lista de acontecimientos de hibridación, indicando la abundancia relativa de las secuencias específicas de ADNc y por tanto la abundancia relativa de los correspondientes miR complementarios, en la muestra del paciente. De acuerdo con una realización, el oligómero ADNc marcado es un ADNc marcado con biotina, preparado a partir de un cebador marcado con biotina. La micromatriz se procesa entonces por detección directa de los transcritos que contienen biotina utilizando, por ejemplo, Streptavidina-Alexa647 conjugada y seleccionada utilizando los métodos de selección convencionales. Las intensidades de las imágenes de cada mancha en la matriz son proporcionales a la abundancia del correspondiente miR en la muestra del paciente.

El uso de la matriz tiene varias ventajas en la detección de la expresión de miARN. En primer lugar, se puede identificar la expresión global de varios cientos de genes en la misma muestra a la vez. En segundo lugar, con el diseño cuidadoso de los oligonucleótidos sonda, se pueden identificar tanto las moléculas precursoras como las maduras. En tercer lugar, comparado con el análisis de transferencia de Northern, el chip necesita una pequeña cantidad de ARN y proporciona resultados reproducibles utilizando 2,5 mg de ARN en total. El número relativamente limitado de miARN (unos pocos cientos por especie) permite la construcción de una micromatriz común para varias especies, con oligonucleótidos sonda distintivos de cada una. Tal herramienta permitiría analizar la expresión transespecífica para cada miR conocido bajo distintas condiciones.

Además de usarse para los ensayos cuantitativos del nivel de expresión de miR específicos, un microchip que contenga oligonucleótidos sonda específicos de miARN que se correspondan con una parte sustancial de miRNoma, preferentemente el miRNoma entero, se puede emplear para llevar a cabo el perfil de expresión génica de miR, por el análisis de los patrones de expresión de miR. Las distintas firmas de miR se pueden asociar con marcadores establecidos de enfermedades o directamente con un estado de enfermedad.

De acuerdo con los métodos de creación del perfil de expresión descritos en el presente documento, el ARN total de una muestra de un sujeto sospechoso de tener un cáncer (por ejemplo, un cáncer de pulmón) se transcribe inversamente de manera cuantitativa para proporcionar una serie de oligodesoxinucleótidos diana marcados, complementarios del ARN de la muestra. Los oligodesoxinucleótidos diana entonces se hibridan con una micromatriz que comprende oligonucleótidos sonda específicos de miARN para proporcionar un perfil de hibridación de la muestra. El resultado es un perfil de hibridación de la muestra que representa el patrón de expresión del miARN de la muestra. El perfil de hibridación comprende la señal de la unión de los oligodesoxinucleótidos diana de la muestra con los oligonucleótidos sonda específicos de miARN de la micromatriz. El perfil se puede registrar como presencia o ausencia de señal (señal contra cero señal). Más preferentemente, el perfil registrado incluye la intensidad de la señal de cada hibridación. El perfil se compara con el perfil de hibridación generado a partir de una muestra normal, por ejemplo no cancerosa, de control. Una alteración en la señal es indicativa de la presencia de cáncer o la propensión a desarrollar un cáncer en el sujeto.

Otras técnicas para la medición de la expresión génica de miR están dentro de la experiencia de la técnica y se incluyen distintas técnicas para medir tasas de transcripción y degradación del ARN.

La presente invención proporciona métodos para determinar el pronóstico de un sujeto con cáncer de pulmón, que comprenden la medición del nivel de productos génicos de miR, asociándose dichos productos génicos de miR con un pronóstico adverso en el cáncer de pulmón en la muestra de ensayo de un sujeto. Según estos métodos, una alteración en el nivel de los productos génicos de miR que se asocian con un pronóstico adverso, en la muestra de ensayo, al compararse con el nivel de los correspondientes productos génicos de miR en una muestra control, es indicativa de que el sujeto tiene un cáncer de pulmón con un pronóstico adverso. El cáncer de pulmón es un adenocarcinoma de pulmón y los productos génicos de miR consisten en miR-155 y let-7a-2. Los ejemplos de un pronóstico adverso incluyen, sin limitación, baja tasa de supervivencia y progresión rápida de la enfermedad. En ciertas realizaciones, los productos génicos de miR asociados con un pronóstico adverso son un grupo de productos génicos de miR que consiste en miR-155, miR-17-3p, miR-106a, miR-93, let-7a-2, miR-145, let-7b, miR-20 y miR-21. En ciertas realizaciones, el nivel del al menos un producto génico de miR se mide haciendo la transcripción inversa del ARN de una muestra de ensayo obtenida de un sujeto para proporcionar una serie de oligodesoxinucleótidos diana, hibridando los oligodesoxinucleótidos diana con una micromatriz que comprende oligonucleótidos sonda específicos de miARN para proporcionar un perfil de hibridación de la muestra de ensayo y comparando el perfil de hibridación generado a partir de una muestra control.

Sin desear quedar ligados por teoría alguna, se cree que las alteraciones en el nivel de uno o más productos génicos de miR en las células pueden dar lugar a la desregulación de una o más posibles dianas de estos miR, lo que conduce a la formación del cáncer de pulmón. Por tanto, alterando el nivel del producto génico de miR (por ejemplo disminuyendo el nivel de un miR que está regulado positivamente en las células del cáncer de pulmón, aumentando

el nivel de un miR que está regulado negativamente en las células del cáncer de pulmón) se puede tratar con éxito el cáncer de pulmón.

5

10

15

20

25

30

35

40

45

50

55

60

65

En consecuencia, la presente divulgación engloba métodos para tratar el cáncer de pulmón en un sujeto, en el que al menos un producto génico de miR está desregulado (por ejemplo, regulado negativamente, regulado positivamente) en las células (por ejemplo, células del cáncer de pulmón) del sujeto. En una divulgación, el nivel de al menos un producto génico de miR en una muestra de ensayo (por ejemplo, una muestra de cáncer de pulmón) es mayor que el nivel del correspondiente producto génico de miR en una muestra control. En otra divulgación, el nivel de al menos un producto génico de miR en una muestra de ensayo (por ejemplo, una muestra de cáncer de pulmón) es menor que el nivel del correspondiente producto génico en una muestra control. Cuando el al menos un producto génico de miR aislado está regulado negativamente en las células del cáncer de pulmón, el método comprende la administración de una cantidad eficaz del al menos un producto génico de miR aislado o una variante aislada o un fragmento biológicamente activo del mismo, de forma que se inhiba la proliferación de las células del cáncer en el sujeto. Por ejemplo, cuando un producto génico de miR está regulado negativamente en una célula cancerígena de un sujeto, la administración de una cantidad eficaz de un producto génico de miR aislado al sujeto puede inhibir la proliferación de las células cancerígenas. El producto génico de miR aislado que se administra al sujeto puede ser idéntico al producto génico silvestre endógeno de miR (por ejemplo, un producto génico de miR mostrado en la Tabla 1a o la Tabla 1b) que está regulado negativamente en la célula cancerígena o puede ser una variante o un fragmento biológicamente activo del mismo. Como se define en el presente documento, una "variante" de un producto génico de miR se refiere a un miARN que tiene menos del 100 % de identidad con el correspondiente producto génico silvestre de miR y posee una o más actividades biológicas del correspondiente producto génico silvestre de miR. Ejemplos de tales actividades biológicas incluyen, pero sin limitación, la inhibición de la expresión de una molécula de ARN diana (por ejemplo, inhibiendo la traducción de una molécula de ARN diana, modulando la estabilidad de una molécula de ARN diana, inhibiendo el procesamiento de una molécula de ARN diana) y la inhibición de un proceso celular asociado con el cáncer de pulmón (por ejemplo, diferenciación celular, crecimiento celular, muerte celular). Estas variantes incluyen variantes de especie y variantes que son la consecuencia de una o más mutaciones (por ejemplo, una sustitución, una deleción, una inserción) en un gen miR. En ciertas divulgaciones, la variante es idéntica en al menos aproximadamente el 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 98 % o el 99 % a un correspondiente producto génico silvestre de miR.

Como se define en el presente documento, un "fragmento biológicamente activo" de un producto génico de miR se refiere a un fragmento de ARN de un producto génico de miR que posee una o más actividades biológicas del correspondiente producto génico silvestre de miR. Como se ha descrito anteriormente, los ejemplos de tales actividades biológicas incluyen, pero sin limitación, la inhibición de la expresión de una molécula de ARN diana y la inhibición del proceso celular asociado con cáncer de pulmón. En ciertas divulgaciones, el fragmento biológicamente activo tiene al menos una longitud de aproximadamente 5, 7, 10, 12, 15 o 17 nucleótidos. En una divulgación particular, un producto génico de miR aislado se puede administrar a un sujeto en combinación con uno o más tratamientos anticáncer adicionales. Los tratamientos anticáncer adecuados incluyen, pero sin limitación, quimioterapia, radioterapia y combinaciones de las mismas (por ejemplo quimiorradiación).

Cuando el al menos un producto génico de miR aislado está regulado positivamente en las células cancerígenas, el método comprende la administración al sujeto de una cantidad eficaz de un compuesto que inhiba la expresión del al menos un producto génico de miR, de forma que se inhiba la proliferación de las células del cáncer de pulmón. Se hace referencia a tales compuestos en el presente documento como compuestos inhibidores de la expresión génica de miR. Ejemplos de compuestos inhibidores de la expresión génica de miR incluyen, pero sin limitación, los descritos en el presente documento (por ejemplo, ARN de doble cadena, ácidos nucleicos antisentido y moléculas enzimáticas de ARN). En una divulgación particular, un compuesto inhibidor de la expresión génica de miR se puede administrar a un sujeto en combinación con uno o más tratamientos anticáncer adicionales. Los tratamientos anticáncer adecuados incluyen, pero sin limitación, quimioterapia, radioterapia y la combinación de las mismas (por ejemplo, quimiorradiación).

En cierta divulgación, el producto génico de miR aislado que está desregulado en el cáncer de pulmón se selecciona entre el grupo que consiste en miR-21, miR-191, miR-126*, miR-210, miR-155, miR-143, miR-205, miR-192-prec, miR-224, miR-126, miR-24-2, miR-30a-5p, miR-212, miR-140, miR-9, miR-214, miR-17-3p, miR-124a-1, miR-218-2, miR-95, miR-145, miR-198, miR-216-prec, miR-219-1, miR-106a, miR-197, miR-192, miR-125a-prec, miR-26a-1-prec, miR-203, miR-199b-prec, let-7a-2-prec, miR-27b, miR-32, miR-29b-2, miR-220, miR-33, miR-181c-prec, miR-150, miR-101-1, miR-124a-3, miR-125a y let-7f-1. En una divulgación particular, el al menos un producto génico de miR se selecciona entre el grupo que consiste en miR-21, miR-205 y miR-216. En otra divulgación, el cáncer de pulmón es un adenocarcinoma de pulmón y el al menos un producto génico de miR se selecciona entre el grupo que consiste en miR-21, miR-191, miR-155, miR-210, miR-126* y miR-224.

En una divulgación en particular, el producto génico de miR no es uno o más de let7a-2, let-7c, let-7g, let-7i, miR-7-2, miR-7-3, miR-9, miR-9-1, miR-10a, miR-15a, miR-15b, miR-16-1, miR-16-2, miR-17-5p, miR-20a, miR-20a, miR-24-1, miR-24-2, miR-25, miR-29b-2, miR-30, miR-30a-5p, miR-30c, miR-30d, miR-31, miR-32, miR-34, miR-34a, miR-34a prec, miR-34a-1, miR-34a-2, miR-92-2, miR-96, miR-99a, miR-99b prec, miR-100, miR-103, miR-106a, miR-107, miR-123, miR-124a-1, miR-125b-1, miR-125b-2, miR-126*, miR-127, miR-128b, miR-129, miR-129-1/2 prec, miR-126*

132, miR-135-1, miR-136, miR-137, miR-141, miR-142-as, miR-143, miR-146, miR-148, miR-149, miR-153, miR-155, miR 159-1, miR-181, miR-181b-1, miR-182, miR-186, miR-191, miR-192, miR-195, miR-196-1, miR-196-1 prec, miR-196-2, miR-199a-1, miR-199a-2, miR-199b, miR-200b, miR-202, miR-203, miR-204, miR-205, miR-210, miR-211, miR-212, miR-214, miR-215, miR-217, miR-221 y/o miR-223.

5

10

Los términos "tratar", "tratando" y "tratamiento", como se utilizan en el presente documento, se refieren a la mejoría de los síntomas asociados con una enfermedad o afección, por ejemplo, el cáncer de pulmón, incluyendo la prevención o el retraso de la aparición de los síntomas de la enfermedad, y/o la disminución de la gravedad o la frecuencia de los síntomas de la enfermedad o afección. Los términos "sujeto" e "individuo" se definen en el presente documento para incluir animales, tales como mamíferos, incluyendo, pero sin limitación, primates, vacas, ovejas, cabras, caballos, perros, gatos, conejos, cobayas, ratas, ratones u otras especies de bovinos, ovinos, equinos, caninos, felinos, roedores o murinos. En una divulgación preferida, el animal es un ser humano.

15

Como se utiliza en el presente documento, una "cantidad eficaz" de un producto génico de miR aislado es una cantidad suficiente para inhibir la proliferación de una célula cancerígena en un sujeto que padece cáncer de pulmón. Un experto en la técnica puede rápidamente determinar una cantidad eficaz de un producto génico de miR para administrarla a un determinado sujeto, teniendo en cuenta factores tales como el tamaño y el peso del sujeto; el grado de penetración de la enfermedad; la edad, salud y sexo del sujeto; la vía de administración; y si la administración es regional o sistémica.

20

Por ejemplo, una cantidad eficaz de un producto génico de miR aislado se puede basar en el peso aproximado de la masa tumoral que se tiene que tratar. El peso aproximado de una masa tumoral se puede determinar calculando el volumen aproximado de la masa, en la que un centímetro cúbico es equivalente más o menos a un gramo. Una cantidad eficaz del producto génico de miR aislado basándose en el peso de la masa tumoral puede estar en el intervalo de aproximadamente 10-500 microgramos/gramo de masa tumoral. En ciertas divulgaciones, la cantidad eficaz puede ser de al menos aproximadamente 10 microgramos/gramo de masa tumoral, al menos aproximadamente 60 microgramos/gramo de masa tumoral o al menos aproximadamente de 100 microgramos/gramo de masa tumoral.

30

25

Una cantidad eficaz de un producto génico de miR aislado también se puede basar en el peso corporal aproximado o estimado del sujeto que se tiene que tratar. Preferentemente, tales cantidades eficaces se administran parenteral o entéricamente, como se describe en el presente documento. Por ejemplo, una cantidad eficaz del producto génico de miR aislado que se administra a un sujeto puede variar de aproximadamente 5 – 3000 microgramos/kg de peso corporal, de aproximadamente 700 – 1000 microgramos/kg de peso corporal o aproximadamente más de 1000 microgramos/kg de peso corporal.

35

40

Un experto en la técnica también puede determinar fácilmente un régimen de dosificación apropiado para la administración de un producto génico de miR aislado a un determinado sujeto. Por ejemplo, un producto génico de miR se puede administrar al sujeto una vez (por ejemplo como inyección única o de depósito). De manera alternativa, un producto génico de miR se puede administrar una vez o dos veces al día a un sujeto durante un periodo de aproximadamente tres a aproximadamente veintiocho días, más particularmente de aproximadamente siete a aproximadamente diez días. En un régimen de dosificación particular, un producto génico de miR se administra una vez al día durante siete días. Cuando un régimen de dosificación comprende múltiples administraciones, se entiende que la cantidad eficaz del producto génico de miR administrado al sujeto puede comprender la cantidad total del producto génico administrado durante el régimen de dosificación completo.

45

50

Como se utiliza en el presente documento, un producto génico de miR "aislado" es uno que se sintetiza o se altera o se extrae de su estado natural por medio de la intervención humana. Por ejemplo, un producto génico de miR sintético o un producto génico de miR separado parcial o completamente de los materiales con los que coexiste en su estado natural, se considera que está "aislado". Un producto génico de miR aislado puede existir en una forma sustancialmente purificada o puede existir en una célula a la que se le ha suministrado el producto génico de miR. Por tanto, un producto génico de miR que se ha suministrado deliberadamente a o se ha expresado en, una célula, se considera un producto génico de miR "aislado". Un producto génico de miR producido dentro de una célula a partir de una molécula precursora de un miR también se considera que es una molécula "aislada". Según la presente divulgación, los productos génicos de miR aislados descritos en el presente documento se pueden utilizar para la fabricación de un medicamento para tratar el cáncer de pulmón en un sujeto (por ejemplo, un ser humano).

55

60

Los productos génicos de miR aislados se pueden obtener utilizando varias técnicas de referencia. Por ejemplo, los productos génicos de miR se pueden sintetizar químicamente o producirse de forma recombinante utilizando métodos conocidos en la técnica. En una divulgación, los productos génicos de miR se sintetizan químicamente utilizando fosforamiditas de nucleósido protegidas apropiadamente y un sintetizador convencional de ADN/ARN. Se incluyen entre los proveedores comerciales de moléculas sintéticas de ARN o reactivos de síntesis, por ejemplo, Proligo (Hamburgo, Alemania), Dharmacon Research (Lafayette, CO, U.S.A.), Pierce Chemical (parte de Perbio Science, Rockford, IL, U.S.A.), Glen Research (Sterling, VA, U.S.A.), ChemGenes (Ashland, MA, U.S.A.) y

65 Cruachem (Glasgow, RU).

35

De manera alternativa, los productos génicos de miR se pueden expresar a partir de plásmidos ADN recombinantes circulares o lineales utilizando cualquier promotor adecuado. Los promotores adecuados para expresar ARN a partir de un plásmido incluyen, por ejemplo, las secuencias promotoras U6 o H1 de la ARN pol III o los promotores de citomegalovirus. La selección de otros promotores adecuados está dentro de la experiencia de la técnica. Los plásmidos recombinantes de la divulgación también pueden comprender promotores inducibles o regulables para la expresión de los productos génicos de miR en las células cancerosas.

Los productos génicos de miR que se expresan a partir de plásmidos recombinantes se pueden aislar de sistemas de expresión de cultivos celulares por técnicas de referencia. Los productos génicos de miR que se expresan de los plásmidos recombinantes también pueden suministrarse a y expresarse directamente en las células cancerosas. El uso de plásmidos recombinantes para suministrar los productos génicos de miR a las células cancerosas se trata con más detalle posteriormente.

Los productos génicos se pueden expresar de un plásmido recombinante aparte o se pueden expresar del mismo plásmido recombinante. En una divulgación, los productos génicos de miR se expresan como moléculas precursoras de ARN a partir de un único plásmido y las moléculas precursoras se procesan para producir el producto génico de miR funcional por medio de un sistema de procesamiento adecuado, incluyendo, pero sin limitación, los restantes sistemas de procesamiento que existen en una célula cancerígena. Otros sistemas de procesamiento adecuados incluyen, por ejemplo, el sistema de lisado celular de Drosófila *in vitro* (por ejemplo, como el descrito en la Solicitud de Patente de Estados Unidos publicada Nº 2002/0086356 a Tuschi y col.) y el sistema ARNasa III de *E.coli* (por ejemplo, como el que se describe en la Solicitud de Patente de Estados Unidos publicada Nº 2004/0014113 a Yang y col.).

La selección de plásmidos adecuada para expresar los productos génicos de miR, los métodos para insertar las secuencias de ácido nucleico en el plásmido para expresar los productos génicos y los métodos para suministrar el plásmido recombinante a las células de interés, están dentro de la experiencia de la técnica. Véanse, por ejemplo, Zeng y col. (2002), Molecular Cell 9: 1327-1333; Tuschl (2002), Nat. Biotechnol, 20: 446-448; Brummelkamp y col. (2002), Science 296: 550-553; Miyagishi y col. (2002), Nat. Biotechnol. 20: 497-500; Paddison y col. (2002), Genes Dev. 16: 948-958; Lee y col. (2002), Nat. Biotechnol. 20: 500-505; y Paul y col. (2002), Nat. Biotechnol. 20: 505-508.

En una divulgación, un plásmido que expresa los productos génicos de miR comprende una secuencia que codifica un ARN precursor de miR bajo el control del promotor temprano intermedio del CMV. Como se utiliza en el presente documento, "bajo el control" de un promotor significa que las secuencias del ácido nucleico que codifican el producto génico de miR están localizados en el 3' del promotor, de forma que el promotor puede iniciar la transcripción de las secuencias codificantes del producto génico de miR.

Los productos génicos de miR también se pueden expresar a partir de vectores virales recombinantes. Se considera que los productos génicos de miR se pueden expresar a partir de dos vectores virales recombinantes separados o a partir del mismo vector viral. El ARN expresado a partir de vectores virales recombinantes puede aislarse de sistemas de expresión de cultivos celulares por técnicas de referencia o puede expresarse directamente en las células cancerosas. El uso de vectores virales recombinantes para suministrar los productos génicos de miR a las células cancerosas se trata con mayor detalle posteriormente.

Los vectores virales recombinantes de la divulgación comprenden secuencias que codifican los productos génicos de miR y cualquier promotor adecuado para expresar secuencias de ARN. Los promotores adecuados incluyen, pero sin limitación, las secuencias de promotor U6 o H1 de la ARN pol III o los promotores de citomegalovirus. La selección de otros promotores adecuados está dentro de la experiencia de la técnica. Los vectores virales recombinantes de la divulgación también pueden comprender promotores inducibles o regulables para la expresión de los productos génicos de miR en una célula cancerosa.

Se puede utilizar cualquier vector viral capaz de aceptar las secuencias codificantes para los productos génicos de miR; por ejemplo, vectores que derivan de adenovirus (AV); adenovirus asociados (AAV); retrovirus (por ejemplo, lentivirus (LV), rabdovirus, virus de leucemia murina); herpesvirus y similares. El tropismo de los vectores virales se puede modificar seudotipando los vectores con envueltas de proteínas u otros antígenos de superficie de otros virus o sustituyendo diferentes proteínas de la cápside vírica, según sea apropiado.

Por ejemplo, los vectores lentivirales de la divulgación se pueden seudotipar con proteínas de superficie del virus de la estomatitis vesicular (VSV), rabia, Ébola, Mokola y similares. Los vectores AAV de la divulgación se pueden hacer para dirigirse a diferentes células manipulando los vectores para que expresen diferentes serotipos de proteínas de la cápside. Por ejemplo, un vector AAV que exprese un serotipo 2 de cápside sobre un genoma de serotipo 2 se llama AAV 2/2. Este gen de cápside de serotipo 2 en el vector 2/2 se puede remplazar por un gen de serotipo 5 de cápside para producir un vector AAV 2/5. Las técnicas para construir vectores AAV que expresen diferentes serotipos de proteínas de la cápside están dentro de la experiencia de la técnica; véase, por ejemplo, Rabinowitz, J.E. y col. (2002), J. Virol. 76: 791-801.

65

5

10

25

30

35

40

45

50

55

60

La selección de vectores virales recombinantes adecuados para su uso en la divulgación, los métodos para insertar secuencias de ácidos nucleicos para expresar ARN en el vector, los métodos de suministro del vector viral a las células de interés y la recuperación de los productos de ARN expresados están en la experiencia de la técnica. Véase, por ejemplo, Dornburg (1995), Gene Therap. 2: 301-310; Eglitis (1988), Biotechniques 6: 608-614; Miller (1990), Hum. Gene Therap. 1: 5-14; y Anderson (1998), Nature 392: 25-30,

5

10

15

20

35

40

45

50

55

Son particularmente adecuados los vectores derivados de AV y AAV. Un vector AV adecuado para expresar los productos génicos de miR, un método para construir un vector AV recombinante y un método para suministrar el vector en las células diana, se describen en Xia y col. (2002), Nat. Biotech. 20: 1006-1010. Los vectores AAV adecuados para expresar los productos génicos de miR, los métodos para construir el vector AAV recombinante y los métodos para suministrar los vectores en las células diana se describen en Samulski y col. (1987), J. Virol. 61: 3096-3101; Fisher y col. (1996), J. Virol., 70: 520-532; Samulski y col. (1989), J. virol. 63: 3822-3826; Patente de Estados Unidos Nº 5.252.479; Patente de Estados Unidos Nº 5.139.941; Solicitud de Patente Internacional Nº WO 94/13788; y Solicitud de Patente Internacional Nº WO 93/24641. En una divulgación, los productos génicos de miR se expresan de un vector AAV recombinante único que comprende el promotor temprano intermedio del CMV.

En cierta divulgación, un vector viral AAV recombinante comprende una secuencia de ácido nucleico que codifica un ARN precursor de miR en conexión operativa con una secuencia del extremo poliT bajo el control de un ARN promotor U6 humano. Como se utiliza en el presente documento "en conexión operativa con una secuencia del extremo poliT" significa que las secuencias de ácido nucleico que codifican las cadenas sentido o antisentido están inmediatamente adyacentes a la señal del extremo T en la dirección 5'. Durante la transcripción de las secuencias de miR a partir del vector, el extremo poliT actúa para terminar la transcripción.

En otras divulgaciones de los métodos de tratamiento, se puede administrar al sujeto una cantidad eficaz de al menos un compuesto inhibidor de la expresión de miR. Como se utiliza en el presente documento, "inhibidor de la expresión de miR" significa que la producción del precursor y/o el producto génico de miR maduro, activo tras el tratamiento es menor que la cantidad producida antes del tratamiento. Un experto en la técnica puede fácilmente determinar si la expresión de miR se ha inhibido en una célula cancerosa, utilizando, por ejemplo, las técnicas para determinar el nivel de transcripción de miR revisadas en el presente documento. La inhibición puede producirse a nivel de la expresión génica (es decir, inhibiendo la transcripción de un gen miR que codifica el producto génico de miR) o a nivel del procesamiento (por ejemplo, inhibiendo el procesamiento de un precursor de miR que da lugar a un miR maduro, activo).

Como se utiliza en el presente documento, una "cantidad eficaz" de un compuesto inhibidor de la expresión de miR es una cantidad suficiente para inhibir la proliferación de una célula cancerosa en un sujeto que padece un cáncer (por ejemplo, un cáncer de pulmón). Un experto en la técnica puede fácilmente determinar una cantidad eficaz de un compuesto inhibidor de la expresión de un miR que se tiene que administrar a un sujeto determinado, teniendo en cuenta factores tales como el tamaño y el peso del sujeto; el grado de penetración de la enfermedad; la edad, salud y sexo del sujeto; la vía de administración; y si la administración es regional o sistémica.

Por ejemplo, una cantidad eficaz del compuesto inhibidor de la expresión se puede basar en el peso aproximado de la masa tumoral que se tiene que tratar, como se ha descrito en el presente documento. Una cantidad eficaz de un compuesto que inhibe la expresión de miR se puede basar también en el peso corporal aproximado o estimado de un sujeto que se tiene que tratar, como se ha descrito en el presente documento.

Un experto en la técnica también puede determinar fácilmente un régimen de dosificación apropiado para la administración de un compuesto a un sujeto determinado que inhiba la expresión de miR, como se ha descrito en el presente documento. Los compuestos adecuados para inhibir la expresión del gen miR incluyen el ARN de cadena doble (tal como el ARN corto o pequeño interferente o "ARNsi"), los ácidos nucleicos antisentido y las moléculas enzimáticas de ARN, tales como las ribozimas. Cada uno de estos compuestos se puede dirigir a un determinado producto génico de miR e interfiere con la expresión (por ejemplo, inhibiendo la traducción, induciendo la escisión y/o la degradación) del producto génico de miR diana.

Por ejemplo, la expresión de un determinado gen miR se puede inhibir induciendo la interferencia de ARN del gen miR con una molécula aislada de ARN de doble cadena (ARNds) que tiene al menos el 90 %, por ejemplo al menos el 95 %, al menos el 98 %, al menos el 99 % o el 100 %, de homología de secuencia con al menos una parte del producto génico de miR. En una divulgación en particular, la molécula de ARNds es un "ARN corto o pequeño interferente" o "ARNsi".

El ARNsi útil en los métodos presentes comprende un ARN corto de doble cadena con una longitud aproximada de 17 nucleótidos a aproximadamente 29 nucleótidos, preferentemente una longitud de aproximadamente 19 a aproximadamente 25 nucleótidos. El ARNsi comprende una cadena ARN sentido y una cadena de ARN antisentido complementaria hibridadas juntas por las interacciones de emparejamiento de bases de referencia de Watson-Crick (en lo sucesivo en la presente memoria "emparejamiento de bases"). La cadena sentido comprende una secuencia de ácido nucleico que es sustancialmente idéntica a la secuencia de ácido nucleico que está contenida en el producto génico de miR diana.

Como se utiliza en el presente documento, una secuencia de ácido nucleico en un ARNsi que es "sustancialmente idéntica" a una secuencia diana que está contenida en el miARN diana, es una secuencia de ácido nucleico que es idéntica a la secuencia diana o que se diferencia de la secuencia diana por uno o dos nucleótidos. Las cadenas de ARNsi sentido y antisentido pueden comprender dos moléculas complementarias de ARN de cadena única o comprender una única molécula en la que dos partes complementarias están emparejadas y unidas covalentemente por un área "horquilla" de una cadena única.

5

10

25

45

50

55

60

65

El ARNsi también puede ser un ARN alterado, que difiere del ARN que se produce naturalmente, por adición, deleción, sustitución y/o alteración de uno o más nucleótidos. Tales alteraciones pueden incluir la adición de material no nucleotídico, tal como el de los extremos del ARNsi o de uno o más nucleótidos internos del ARNsi o modificaciones que hacen que el ARNsi sea resistente a la digestión por nucleasas o la sustitución de uno o más nucleótidos en el ARNsi por desoxirribonucleótidos.

Una o ambas cadenas del ARNsi pueden comprender también un saliente 3'. Como se utiliza en el presente documento, un "saliente 3'" se refiere a al menos un nucleótido no emparejado que se extiende desde el extremo 3' de una cadena de ARN duplicada. Por eso, en ciertas divulgaciones, el ARNsi comprende al menos un saliente 3' de una longitud de 1 a aproximadamente 6 nucleótidos (que incluyen ribonucleótidos o desoxirribonucleótidos), de una longitud de 1 a aproximadamente 5 nucleótidos, de una longitud de 1 a aproximadamente 4 nucleótidos o de una longitud de aproximadamente 2 a aproximadamente 4 nucleótidos. En una divulgación en particular, el saliente 3' está presente en ambas cadenas del ARNsi y tiene una longitud de 2 nucleótidos. Por ejemplo cada cadena del ARNsi puede comprender salientes 3' de ácido ditimidílico ("TT") o ácido diuridílico ("uu").

El ARNsi se puede producir química o biológicamente o se puede expresar a partir de un plásmido recombinante o un vector viral, como se ha descrito anteriormente para los productos génicos de miR aislados. Los métodos ilustrativos para producir y ensayar las moléculas de ARNds o ARNsi se describen en la Solicitud de Patente de Estados Unidos publicada Nº 2002/0173478 a Gewirtz y en la Solicitud de Patente de Estados Unidos publicada Nº 2004/0018176 a Reich y col.

La expresión de un determinado gen miR también se puede inhibir por un ácido nucleico antisentido. Como se utiliza en el presente documento, un "ácido nucleico antisentido" se refiere a una molécula de ácido nucleico que se une al ARN diana por medio de interacciones de ácidos nucleicos ARN-ARN, ARN-ADN o ARN-péptido, que alteran la actividad del ARN diana. Los ácidos nucleicos antisentido adecuados para su uso en los presentes métodos son ácidos nucleicos de cadena única (por ejemplo, ARN, ADN, quimeras ARN-ADN, ácidos nucleicos peptídicos (PNA)) que generalmente comprenden una secuencia de ácido nucleico complementaria con una secuencia de ácido nucleico contigua en un producto génico de un miR. El ácido nucleico antisentido puede comprender una secuencia de ácido nucleico que tiene una complementariedad del 50 al 100 %, el 75-100 % de complementariedad o el 95-100 % de complementariedad con una secuencia de ácido nucleico contigua en un producto génico de miR. Las secuencias de ácido nucleico de particulares productos génicos de miR humanos se proporcionan en la Tabla 1a y en la Tabla 1b. Sin desear quedar ligados por teoría alguna, se cree que los ácidos nucleicos antisentido activan la ARNasa H u otra nucleasa celular que digiere el dúplex producto génico de miR/ácido nucleico antisentido.

Los ácidos nucleicos antisentido también pueden contener modificaciones en la cadena principal del ácido nucleico o en los restos azúcar y base (o su equivalente) para mejorar la especificidad con la diana, la resistencia a las nucleasas, el suministro u otras propiedades relacionadas con la eficacia de la molécula. Tales modificaciones incluyen restos de colesterol, intercaladores de dúplex, tales como la acridina o uno o más grupos resistentes a la nucleasa.

Los ácidos nucleicos antisentido se pueden producir química o biológicamente o pueden expresarse a partir de un plásmido recombinante o un vector viral, como se ha descrito anteriormente para los productos génicos de miR aislado. Los métodos ilustrativos para producirlos y ensayarlos están en la experiencia de la técnica, véase, por ejemplo, Stein y Cheng (1993), Science 261: 1004 y la Patente de Estados Unidos Nº 5.849.902 de Woolf y col.

La expresión de un determinado gen miR también se puede inhibir por un ácido nucleico enzimático. Como se utiliza en el presente documento, un "ácido nucleico enzimático" se refiere a un ácido nucleico que comprende una región de unión al sustrato que tiene complementariedad con una secuencia de ácido nucleico contigua de un producto génico de miR y que es capaz de escindir específicamente el producto génico de miR. La región de unión al sustrato del ácido nucleico enzimático puede ser, por ejemplo, complementaria en un 50-100 %, complementaria en un 75-100 % o complementaria en un 95-100 % con una secuencia de ácido nucleico contigua en un producto génico de miR. Los ácidos nucleicos enzimáticos también pueden comprender modificaciones en la base, azúcar, y/o grupos fosfato. Un ácido nucleico enzimático ejemplar para su uso en los presentes métodos es una ribozima.

Los ácidos nucleicos enzimáticos se pueden producir química o biológicamente o se pueden expresar a partir de un plásmido recombinante o un vector viral, como se ha descrito anteriormente para los productos génicos de miR aislados. Los métodos ilustrativos para producir y ensayar moléculas de ARNds o ARNsi se describen en Wemer and Uhlenbeck (1995), Nucl. Acids Res. 23: 2092-96; Hammann y col. (1999), Antisense and Nucleic Acid Drug Dev. 9: 25-3 1; y Patente de Estados Unidos Nº 4.987.071 de Cech y col.

La administración de al menos un producto génico de miR o al menos un compuesto para inhibir la expresión de miR inhibirá la proliferación de las células cancerosas en un sujeto que tenga un cáncer (por ejemplo, un cáncer de pulmón). Como se utiliza en el presente documento, "inhibir la proliferación de una célula cancerosa" significa matar la célula o arrestarla temporal o permanentemente o ralentizar el crecimiento de la célula. La inhibición de la proliferación celular del cáncer se puede inferir si el número de tales células en el sujeto permanece constante o disminuye tras la administración de los productos génicos de miR o de los compuestos inhibidores de la expresión génica de miR. Una inhibición de la proliferación celular del cáncer también se puede inferir si el número absoluto de tales células aumenta, pero la tasa de crecimiento del tumor disminuye.

- 10 El número de células cancerosas en el cuerpo de un sujeto se puede determinar por medición directa o por estimación a partir del tamaño de las masas tumorales primaria o metastásica. Por ejemplo, el número de células en un sujeto se puede medir por métodos inmunohistológicos, citometría de flujo, u otras técnicas diseñadas para detectar los marcadores de superficie característicos de las células cancerosas.
- El tamaño de una masa tumoral puede determinarse por observación visual directa o por métodos de diagnóstico por imagen, tales como rayos X, imágenes de resonancia magnética, ultrasonidos y centellografía. Los métodos de diagnóstico por imagen que se usan para determinar el tamaño de una masa tumoral se pueden utilizar con o sin agentes de contraste, como se conoce en la técnica. El tamaño de una masa tumoral también puede determinarse por medios físicos, tales como palpación del tejido de la masa o medición del tejido de la masa con un instrumento de medida, tal como un calibre.
 - Los productos génicos de miR o los compuestos inhibidores de la expresión génica de miR se pueden administrar a un sujeto por cualquier medio adecuado para suministrar estos compuestos a las células cancerosas del sujeto. Por ejemplo, los productos génicos de miR o los compuestos inhibidores de la expresión de miR se pueden administrar por métodos adecuados para transfectar células del sujeto con estos compuestos o con ácidos nucleicos que comprenden secuencias que codifican estos compuestos. En una divulgación, las células se transfectan con un plásmido o un vector viral que comprenden secuencias que codifican al menos un producto génico de miR o un compuesto inhibidor de la expresión génica el miR.
- Los métodos de transfección para células eucariotas se conocen bien en la técnica, e incluyen, por ejemplo, la inyección directa del ácido nucleico en el núcleo o pronúcleo de una célula; la electroporación; la trasferencia por liposomas o la transferencia mediada por materiales lipófilos; el suministro de ácido nucleico mediado por receptor, biobalística o aceleración de partículas; precipitación en fosfato cálcico y la transfección mediada por vectores virales.
- Por ejemplo, las células pueden transfectarse con un compuesto de transferencia liposómico, por ejemplo, DOTAP (N-[1-(2,3-dioleoiloxi) propil]-N, N, N-trimetil-amonio metilsulfato, Boehringer-Mannheim) o un equivalente, tal como la LIPOFECTINA. La cantidad de ácido nucleico utilizado no es crítica para la práctica de la divulgación; se pueden alcanzar resultados aceptables con 0,1-100 microgramos de ácido nucleico/10⁵ células. Por ejemplo, se puede utilizar una relación de aproximadamente 0,5 microgramos de vector plásmido en 3 microgramos de DOTAP por 10⁵ células
 - Un producto génico de miR o el compuesto inhibidor de la expresión génica de miR también se pueden administrar a un sujeto por cualquier vía de administración adecuada entérica o parenteral. Las vías adecuadas de administración entérica para los presentes métodos incluyen, por ejemplo, el suministro oral, rectal o intranasal. Las vías de administración parenteral adecuadas incluyen, por ejemplo, la administración intravascular (por ejemplo, la inyección intravenosa en bolo, la infusión intravenosa, la inyección intra-arterial en bolo, la infusión intra-arterial y la instilación por catéter en el sistema vascular); la inyección peri e intratisular (por ejemplo, la inyección peri-tumoral e intratumoral, la inyección intrarretiniana o la inyección subretiniana); la inyección subcutánea o de depósito, incluyendo la infusión subcutánea (tal como las bombas osmóticas); la aplicación directa sobre el tejido de interés, por ejemplo por medio de un catéter u otro dispositivo de aplicación (por ejemplo, un microgránulo retiniano o un supositorio o un implante que comprenda un material poroso, no poroso o gelatinoso); y por inhalación. Las vías de administración particularmente adecuadas son la inyección, la infusión y la inyección directa en el tumor.
- En los presentes métodos, un producto génico de miR o un compuesto inhibidor de la expresión génica de un miR se puede administrar al sujeto o bien como ARN desnudo, en combinación con un reactivo de suministro o bien como un ácido nucleico (por ejemplo, un plásmido recombinante o un vector viral) que comprendan secuencias que expresan el producto génico de miR o el compuesto inhibidor de la expresión génica de miR. Los reactivos de suministro adecuados incluyen, por ejemplo, el reactivo lipófilo Mirus Transit TKO; LIPOFECTINA; lipofectamina; cellfectina; policationes (por ejemplo, la polilisina) y liposomas.
 - Los plásmidos recombinantes y los vectores virales comprenden secuencias que expresan los productos génicos de miR o los compuestos inhibidores de la expresión génica el miR y las técnicas para suministrar tales plásmidos y vectores a las células cancerosas, se tratan en el presente documento y/o son bien conocidas en la técnica.

65

25

35

45

50

En una divulgación particular, se utilizan liposomas para suministrar el producto génico de miR o el compuesto inhibidor de la expresión génica de miR (o ácidos nucleicos que comprenden secuencias que los codifican) a un sujeto. Los liposomas también pueden aumentar la vida media sanguínea de los productos génicos o los ácidos nucleicos. Los liposomas adecuados para su uso en la divulgación se pueden formar a partir de los lípidos formadores de vesículas de referencia, que generalmente incluyen fosfolípidos cargados negativamente o neutros y un esterol, tal como el colesterol. La selección de los lípidos está guiada generalmente por la consideración de ciertos factores, tales como el tamaño deseado del liposoma y la vida media de los liposomas en la corriente sanguínea. Se conoce varios métodos para preparar liposomas, por ejemplo, los que se describen en Szoka y col. (1980), Ann. Rev. Biophys. Bioeng. 9: 467; y Patentes de Estados Unidos Nº 4.235.871, 4.501.728, 4.837.028 y 5.019.369.

Los liposomas para su uso en los presentes métodos pueden comprender una molécula ligando que dirija el liposoma a las células cancerosas. Se prefieren los ligandos que se unen a los receptores prevalentes en las células cancerosas, tales como los anticuerpos monoclonales que se unen a los antígenos celulares del tumor.

10

15

20

25

50

55

60

Los liposomas para su uso en los presentes métodos también se pueden modificar de forma que eviten su eliminación por el sistema mononuclear fagocitario ("MMS") y el sistema reticuloendotelial ("RES"). Tales liposomas modificados tienen restos inhibidores de la opsonización sobre la superficie o incorporados en la estructura del liposoma. En una divulgación particularmente preferida, un liposoma puede comprender un resto inhibidor de la opsonización y un ligando.

Los restos inhibidores de la opsonización para su uso en la preparación de los liposomas desvelados son normalmente grandes polímeros hidrófilos que se unen a la membrana del liposoma. Como se utiliza en el presente documento, un resto inhibidor de la opsonización se "une" a la membrana de un liposoma cuando se fija química o físicamente a la membrana, por ejemplo, por intercalación de un ancla liposoluble en la misma membrana o uniéndose directamente a grupos activos de los lípidos de la membrana. Estos polímeros hidrófilos inhibidores de la opsonización forman una capa de superficie protectora que disminuye significativamente la captación de los liposomas por el MMS y RES; por ejemplo, como se describe en la Patente de Estados Unidos Nº 4.920.016.

30 Los restos inhibidores de la opsonización adecuados para modificar los liposomas son preferentemente polímeros solubles en agua con un peso molecular medio de aproximadamente 500 a aproximadamente 40.000 Dalton y más preferentemente de aproximadamente 2.000 a aproximadamente 20.000 Dalton. Tales polímeros incluyen el polietilenglicol (PEG) o polipropilenglicol (PPG) o derivados de los mismos; por ejemplo, metoxi PEG o PPG y estearato de PEG o PPG; polímeros sintéticos, tales como poliacrilamida o poli N-vinil pirrolidona; poliamidoaminas lineales, ramificadas o dendriméricas; ácidos poliacrílicos, polialcoholes, por ejemplo, alcohol polivinílico y polixilitol a 35 los que se unen químicamente los grupos amino o carboxílico, así como gangliósidos, tales como el gangliósido GM1. También son adecuados los copolímeros de PEG, metoxiPEG o metoxiPPG o derivados de los mismos. Además, el polímero inhibidor de la opsonización puede ser un copolímero de bloque de PEG y o un poliaminoácido, polisacárido, poliamidoamina, polietilenamina o polinucleótido. Los polímeros inhibidores de la opsonización también 40 pueden ser polisacáridos naturales que contengan aminoácidos o ácidos carboxílicos, por ejemplo, ácido galacturónico, ácido glucurónico, ácido manurónico, ácido hialurónico, ácido péctico, ácido neuramínico, ácido algínico, carragenano; polisacáridos u oligosacáridos aminados (lineales o ramificados); o polisacáridos u oligosacáridos carboxilados, por ejemplo, que reaccionan con derivados de ácidos carbónicos con el resultado de unión de grupos carboxílicos. Preferentemente, el resto inhibidor de la opsonización es un PEG, PPG o un derivado 45 de los mismos. Los liposomas modificados con PEG o derivados del PEG se llaman a veces "liposomas PEGilados".

El resto inhibidor de la opsonización se puede unir a la membrana del liposoma por cualquiera de las numerosas técnicas que son bien conocidas. Por ejemplo, un N-hidroxisuccinimida éster de PEG puede unirse a un ancla liposoluble fosfatidil-etanolamina y después se unen a la membrana. De manera similar, se puede derivar un polímero de dextrano con un ancla liposoluble estearilamina por medio de aminación reductiva utilizando Na (CN) BH3 y una mezcla disolvente, tal como tetrahidrofurano y agua en una relación de 30:12 a 60 °C.

Los liposomas modificados con restos inhibidores de la opsonización permanecen en la circulación mucho más tiempo que los liposomas que no están modificados. Por esta razón, tales liposomas a veces se denominan liposomas "furtivos". Los liposomas furtivos se conocen por acumularse en los tejidos irrigados por un sistema microvascular poroso o "permeable". Por tanto, el tejido que se caracteriza por esos defectos en el sistema microvascular, como por ejemplo, los tumores sólidos (por ejemplo, los cánceres de pulmón), acumularán eficazmente estos liposomas; véase Gabizon y col. (1988), Proc. Natl. Acad. Sci., U.S.A., 18: 6949-53. Además, su reducida captación por el RES disminuye la toxicidad de los liposomas furtivos previniendo significativamente la acumulación de los liposomas en el hígado y el bazo. Por tanto, los liposomas que se han modificado con restos inhibidores de la opsonización son particularmente adecuados para suministrar los productos génicos de miR o los compuestos inhibidores de la expresión génica de miR (o los ácidos nucleicos que comprenden secuencias que los codifican) a las células tumorales.

65 Los productos génicos de miR o los compuestos inhibidores de la expresión génica de miR se pueden formular como composiciones farmacéuticas, a veces llamadas "medicamentos", antes de administrarlos a un sujeto, según las

técnicas conocidas en la técnica. En consecuencia, la divulgación engloba composiciones farmacéuticas para tratar el cáncer de pulmón. En una divulgación, la composición farmacéutica comprende al menos un producto génico de miR aislado o una variante aislada o un fragmento biológicamente activo del mismo y un vehículo farmacéuticamente aceptable. En una divulgación particular, el al menos un producto génico de miR se corresponde con un producto génico de miR que tiene un nivel de expresión disminuido en las células del cáncer de pulmón con respecto a las células de control adecuadas. En ciertas divulgaciones el producto génico de miR se selecciona entre el grupo que consiste en miR-126*, miR-192, miR-224, miR-126, miR-30a-5p, miR-140, miR-9, miR-124a-1, miR-218-2, miR-295, miR-145, miR-198, miR-216, miR-219-1, miR-125a, miR-26a-1, miR-199b, let-7a-2, miR-27b, miR-27b, miR-29b-2, miR-220, miR-33, miR-181c, miR-101-1, miR-124a-3, miR-125b-1, let-7f-1 y una combinación de los mismos. En una divulgación, el producto génico de miR no es miR-210 o miR-210 o miR-212. En otra divulgación, el producto génico de miR no es miR-21, miR-191, miR-126*, miR-143, miR-205 o miR-9. En otra divulgación más, el producto génico de miR no es miR-21, miR-191, miR-126*, miR-210, miR-155, miR-143, miR-205, miR-126, miR-30a-5p, miR-140, miR-214, miR-218-2, miR-145, miR-106a, miR-192, miR-203, miR-150, miR-220, miR-210 o miR-9.

15

20

25

60

65

10

En otras divulgaciones, las composiciones farmacéuticas comprenden al menos un compuesto inhibidor de la expresión de miR. En una divulgación particular, el al menos un compuesto inhibidor de la expresión génica de miR es específico para un gen miR cuya expresión es mayor en las células del cáncer de pulmón que en las células de control. En ciertas divulgaciones, el compuesto inhibidor de la expresión génica de miR es específico para uno o más productos génicos de miR seleccionados entre el grupo que consiste en miR-21, miR-191, miR-210, miR-155, miR-205, miR-24-2, miR-212, miR-214, miR-17-3p, miR-106a, miR-197, miR-192, miR-146, miR-203, miR-150 y una combinación de los mismos. En una divulgación, el producto génico de miR aislado no es específico para miR-210 o miR-212. En otra divulgación adicional, el producto génico de miR no es específico para miR-21, miR-143, miR-205 o miR-9. En otra divulgación más, el producto génico de miR no es específico para miR-21, miR-191, miR-126*, miR-210, miR-155, miR-143, miR-205, miR-126, miR-30a-5p, miR-140, miR-214, miR-218-2, miR-145, miR-106a, miR-192, miR-203, miR-150, miR-220, miR-212 o miR-9.

Las composiciones farmacéuticas de la presente divulgación se caracterizan por ser al menos estériles y libres de pirógenos. Como se utiliza en el presente documento, las "composiciones farmacéuticas" incluyen las formulaciones para seres humanos y de uso veterinario. Los métodos para preparar las composiciones farmacéuticas desveladas están en la experiencia de la técnica, por ejemplo, como se describen Remington's Pharmaceutical Science, 17ª ed., Mack Publishing Company, Easton, PA. (1985).

Las presentes composiciones farmacéuticas comprenden al menos un producto génico de miR o un compuesto inhibidor de la expresión génica de miR (o al menos un ácido nucleico que comprende una secuencia que codifica el producto génico de miR o el compuesto inhibidor de la expresión génica de miR) (por ejemplo, del 0,1 al 90 % en peso) o una sal fisiológicamente aceptable del mismo, mezclado con un vehículo farmacéuticamente aceptable. En ciertas divulgaciones, la composición farmacéutica comprende adicionalmente uno o más agentes anticáncer (por ejemplo, agentes quimiterapéuticos). Las formulaciones farmacéuticas de la divulgación pueden comprender también al menos un producto génico de miR o un compuesto inhibidor de la expresión génica de miR (o al menos un ácido nucleico que comprenda secuencias que codifiquen el producto génico de miR o un compuesto inhibidor de la expresión génica de miR), que está encapsulado por liposomas y un vehículo farmacéuticamente aceptable. En una divulgación, la composición farmacéutica comprende un gen miR o un producto génico que no es de miR-15, miR-143 y/o miR-145.

Vehículos farmacéuticamente aceptables especialmente adecuados son el agua, el agua tamponada, la solución salina normal, la solución salina al 0,4 %, la glicina al 0,3 %, el ácido hialurónico y similares.

En una divulgación particular, las composiciones farmacéuticas comprenden al menos un producto génico de miR o un compuesto inhibidor de la expresión génica de miR (o al menos un ácido nucleico que comprende una secuencia que codifica el producto génico de miR o el compuesto inhibidor de la expresión génica de miR) que es resistente a la degradación por nucleasas. Un experto en la técnica puede fácilmente sintetizar ácidos nucleicos que sean resistentes a las nucleasas, por ejemplo incorporando uno o más ribonucleótidos que están modificados en la posición 2' en el producto génico de miR. Los ribonucleótidos modificados en 2' adecuados incluyen aquellos modificados en la posición 2' con fluoro, amino, alguil, alcoxi y O-alil.

Las composiciones farmacéuticas desveladas también pueden comprender excipientes y/o aditivos farmacéuticos convencionales. Los excipientes farmacéuticos adecuados incluyen estabilizadores, antioxidantes, agentes para ajustar la osmolalidad, tampones y agentes para ajustar el pH. Los aditivos adecuados incluyen, por ejemplo, tampones fisiológicamente biocompatibles (por ejemplo, hidrocloruro de trometamina), adiciones de quelantes (tales como, por ejemplo, DTPA o DTPA-bisamida) o complejos quelantes del calcio (tales como, por ejemplo, DTPA cálcico o CaNaDTPA-bisamida) u, opcionalmente, adiciones de sales de calcio o sodio (por ejemplo, cloruro cálcico, ascorbato cálcico, gluconato cálcico o lactato cálcico). Las composiciones farmacéuticas desveladas pueden envasarse para su uso en forma líquida o pueden estar liofilizados.

Para las composiciones farmacéuticas sólidas de la divulgación, se pueden utilizar vehículos farmacéuticamente aceptables, convencionales, sólidos, no tóxicos; por ejemplo, manitol, lactosa, almidón, estearato magnésico, sacarina sódica, talco, celulosa, glucosa, sacarosa, carbonato magnésico y similares de calidad farmacéutica.

- Por ejemplo, una composición farmacéutica sólida para administración oral puede comprender cualquiera de los vehículos y excipientes enumerados anteriormente y el 10-95 %, preferentemente el 25 %-75 % del al menos un producto génico de miR o un compuesto inhibidor de la expresión génica de miR (o al menos un ácido nucleico que comprende una secuencia que los codifica). Una composición farmacéutica para administración por aerosol (vía inhalatoria) puede comprender del 0,01-20 % en peso, preferentemente del 1 %-10 % en peso, del al menos un producto génico de miR o un compuesto inhibidor de la expresión génica de miR (o al menos un ácido nucleico que comprende una secuencia que codifica el producto génico de miR o el compuesto inhibidor de la expresión génica de miR) encapsulado en un liposoma como se ha descrito anteriormente y un propulsor. Se puede incluir también, si se desea, un vehículo; por ejemplo, lecitina para suministro intranasal.
- Las composiciones farmacéuticas desveladas pueden comprender además uno o más agentes anticáncer. En una 15 divulgación particular, las composiciones comprenden al menos un producto génico de miR o un compuesto inhibidor de la expresión génica de miR (o al menos un ácido nucleico que comprende una secuencia que codifica el producto génico de miR o el compuesto inhibidor de la expresión de miR) y al menos un agente quimiterapéutico. Los agentes quimiterapéuticos que son adecuados para los métodos desvelados incluyen, pero sin limitación, agentes alquilantes 20 de ADN, agentes antibióticos antitumorales, agentes antimetabólicos, agentes estabilizadores de la tubulina, agentes desestabilizantes de la tubulina, agentes antagonistas hormonales, inhibidores de la topoisomerasa, inhibidores de la proteína quinasa, inhibidores de HMG-CoA, inhibidores de la CDK, inhibidores de la ciclina, inhibidores de la caspasa, inhibidores de la metaloproteinasa, ácidos nucleicos antisentido, ADN de triple hélice, aptámeros de ácidos nucleicos y agentes virales, bacterianos o exotóxicos modificados molecularmente. Ejemplos de agentes adecuados 25 para las composiciones incluyen, pero sin limitación, arabinósido de citidina, metotrexato, vincristina, etopósido (VP-16), doxorrubicina (adriamicina), cisplatino (CDDP), dexametasona, arglabin, ciclofosfamida, sarcolisina, metilnitrosourea, fluorouracilo, 5-fluorouracilo (5FU), vinblastina, camptotecina, actinomicina-D, mitomicina-C, peróxido de hidrógeno, oxaliplatino, irinotecan, topotecan, leucovorín, carmustina, estreptozocina, CPT-11, taxol, tamoxifeno, dacarbacina, rituximab, daunorrubicina, 1-β-D-arabinofuranosilcitosina, imatinib, fludarabina, docetaxel y FOLFOX4. 30
 - La divulgación también engloba métodos para identificar un agente anticáncer de pulmón, que comprende proporcionar un agente de ensayo a un célula y medir el nivel de al menos un producto génico de miR en la célula. En una divulgación, el método comprende proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico asociado con disminución de los niveles de expresión en las células del cáncer de pulmón. Un aumento del nivel del producto génico de miR en la célula, con respecto a un control adecuado (por ejemplo, el nivel del producto génico de miR en una célula control), es indicativo de que el agente de ensayo es un agente anticáncer de pulmón. En una divulgación particular, el al menos un producto génico de miR asociado con una disminución de los niveles de expresión en las células del cáncer de pulmón se selecciona entre el grupo que consiste en miR-126*, miR-192, miR-224, miR-126, miR-30a-5p, miR-140, miR-9, miR-124a-1, miR-218-2, miR-95, miR-145, miR-198, miR-216, miR-219-1, miR-125a, miR-26a-1, miR-199b, let-7a-2, miR-27b, miR-32, miR-29b-2, miR-220, miR-33, miR-181c, miR-101-1, miR-124a-3, miR-125b-1, let-7f-1 y una combinación de los mismos. En una divulgación, el producto génico de miR no es uno o más de let7a-2, let-7c, let-7g, let-7i, miR-7-2, miR-7-3, miR-9, miR-9-1, miR-10a, miR-15a, miR-15b, miR-16-1, miR-16-2, miR-17-5p, miR-20a, miR-21, miR-24-1, miR-24-2, miR-25, miR-39b-2, miR-30, miR-30a-5p, miR-30c, miR-30d, miR-31, miR-32, miR-34, miR-34a, miR-34a prec, miR-34a-1, miR-34a-2, miR-92-2, miR-96, miR-99a, miR-99b prec, miR-100, miR-103, miR-106a, miR-107, miR-123, miR-124a-1, miR-125b-1, miR-125b-2, miR-126*, miR-127, miR-128b, miR-129, miR-129-1/2 prec, miR-132, miR-135-1, miR-136, miR-137, miR-141, miR-142-as, miR-143, miR-146, miR-148, miR-149, miR-153, miR-155, miR 159-1, miR-181, miR-181b-1, miR-182, miR-186, miR-191, miR-192, miR-195, miR-196-1, miR-196-1 prec, miR-196-2, miR-199a-1, miR-199a-2, miR-199b, miR-200b, miR-202, miR-203, miR-204, miR-205, miR-210, miR-211, miR-212, miR-214, miR-215, miR-217, miR-221 y/o miR-223.

35

40

45

50

55

60

65

En otras divulgaciones el método comprende proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR asociado con un aumento de los niveles de expresión en las células del cáncer de pulmón. Un descenso en el nivel del producto génico de miR en la célula, con respecto a un control adecuado (por ejemplo, el nivel del producto génico de miR en una célula de control), es indicativo de que el agente de ensayo es un agente anticáncer de pulmón. En una divulgación particular, al menos un producto génico de miR asociado con el aumento de los niveles de expresión en las células del cáncer de pulmón se selecciona entre el grupo que consiste en miR-21, miR-191, miR-210, miR-155, miR-205, miR-24-2, miR-212, miR-214, miR-17-3p, miR-106a, miR-197, miR-192, miR-146, miR-203, miR-150 y una combinación de los mismos. En una divulgación, el producto génico de miR no es uno o más de let7a-2, let-7c, let-7g, let-7i, miR-7-2, miR-7-3, miR-9, miR-9-1, miR-10a, miR-15a, miR-15b, miR-16-1, miR-16-2, miR-17-5p, miR-20a, miR-21, miR-24-1, miR-24-2, miR-25, miR-29b-2, miR-30, miR-30a-5p, miR-30c, miR-30d, miR-31, miR-32, miR-34, miR-34a, miR-34a prec, miR-34a-1, miR-34a-2, miR-92-2, miR-96, miR-99a, miR-99b prec, miR-100, miR-103, miR-106a, miR-107, miR-123, miR-124a-1, miR-125b-1, miR-125b-2, miR-126*, miR-127, miR-128b, miR-129, miR-129-1/2 prec, miR-132, miR-135-1, miR-181, miR-181b-1, miR-182, miR-186, miR-186, miR-148, miR-149, miR-149, miR-153, miR-155, miR 159-1, miR-181, miR-181b-1, miR-182, miR-186,

miR-191, miR-192, miR-195, miR-196-1, miR-196-1, miR-196-2, miR-199a-1, miR-199a-2, miR-199b, miR-200b, miR-202, miR-203, miR-204, miR-205, miR-201, miR-211, miR-212, miR-214, miR-215, miR-217, miR-221 y/o miR-223.

Los agentes adecuados incluyen, pero sin limitarse, fármacos (por ejemplo, moléculas pequeñas, péptidos) y macromoléculas biológicas (por ejemplo, proteínas, ácidos nucleicos). El agente se puede producir recombinantemente, sintéticamente o puede aislarse (por ejemplo, purificarse) de una fuente natural. Se conocen bien en la técnica varios métodos para proporcionar tales agentes a una célula (por ejemplo, transfección) y varios de tales métodos se han descrito anteriormente en el presente documento. Los métodos para detectar la expresión de al menos un producto génico de miR (por ejemplo, transferencia de Northern, hibridación *in situ*, RT-PCR, perfil de expresión) también son bien conocidos en la técnica. Varios de estos métodos también se han descrito en el presente documento.

La invención ahora se ilustrará por los siguientes ejemplos no limitantes.

Ejemplos

15

40

45

50

55

60

65

Ejemplo 1: Expresión de ARNm alterada en cánceres primarios de pulmón

20 Materiales y métodos

Muestras

Se utilizaron en este estudio 104 parejas de cánceres primarios de pulmón y sus correspondientes tejidos pulmonares no cancerosos. Se utilizaron 32 casos adicionales, en los que se podía hacer un seguimiento durante 5 años, como una base de datos de validación independiente. Estos tejidos se obtuvieron entre 1990 y 1999 como especímenes quirúrgicos de pacientes en el área metropolitana de Baltimore, con consentimiento informado y de acuerdo con el Consejo de Revisión Institucional. Los tejidos de cáncer de pulmón se obtuvieron de 65 pacientes con adenocarcinoma de pulmón y 39 pacientes con carcinoma de células escamosas de pulmón. Comprendían el grupo 65 pacientes masculinos y 39 pacientes femeninos, con una edad media de 65 años (intervalo de 38-84). Se clasificaron 65 tumores como de estadio I, 17 como de estadio II y 22 tumores como de estadio III o IV. Para la mayoría de las muestras, estaba disponible la información clínica y biológica. El ARN total de los tejidos se aisló con el Reactivo TRIzol® (Invitrogen), según las instrucciones del fabricante.

35 Análisis de micromatrices

El análisis de micromatrices se llevó a cabo como se ha descrito previamente (Liu, C.G. y col., Proc. Natl. Acad. Sci. U.S.A. 101: 9740-9744 (2004)). Resumiendo, 5 µg de ARN total se hibridó con chips de micromatrices miARN que contenían 352 sondas por triplicado. Específicamente, estos chips contenían oligonucleótidos sondas específicas del gen 40-miR, aplicadas por tecnologías de contacto y fijadas covalentemente a una matriz polimérica, que fueron generadas de 161 miARN humanos, 84 miARN de ratón, miARN de otras tres especies y ARNt. Las micromatrices se hibridaron en SSPE 6x (NaCl 0,9 M/ NaH₂PO₄·H₂O 60 mM/EDTA 8 mM, pH 7,4)/formamida al 30 % a 25 °C durante 18 h, se lavaron en TNT 0,75x (Tris-HCl/NaCl/Tween 20) a 37 °C durante 40 min y se procesaron utilizando un método de detección directa de transcripciones que contienen biotina con streptavidina-Alexa647 conjugada (Molecular Probes, Carlsbad, CA). Los portaobjetos procesados se exploraron utilizando un Scanner PerkinElmer ScanArray XL5K, con el láser ajustado a 635 nm, a 80 de potencia y 70 de PMT y con una resolución de exploración de 10 µm. Un valor medio de las tres réplicas de las manchas para cada miARN se normalizó y analizó con BRB-Array Tools versión 3.2.3. Después de excluir valores negativos con intensidad de hibridación por debajo del fondo, se llevó a cabo la normalización utilizando un método de normalización per chip sobre la media y normalización para la matriz media como referencia. Finalmente, se seleccionaron 147 miARN con valores logarítmicos congruentes presentes en más del 50 % de las muestras. Los genes que se expresaron de manera diferente entre los grupos se identificaron utilizando el ensayo t o F y los genes se consideraron estadísticamente significativos si su valor de p era menor de 0,001. Se llevó a cabo también un ensayo global para ver si los perfiles de expresión eran diferentes entre los grupos, permutando los marcadores de las matrices que correspondían a los grupos. Para cada permutación, los valores de p se recalcularon y se apuntó el número de genes significativos al nivel de 0,001. La proporción de las permutaciones que dieron al menos tantos genes significativos como los datos actuales fue el nivel significativo del ensavo global

Análisis de detección de hibridación en solución y análisis RT-PCR en tiempo real

Los niveles de expresión de los miARN maduros se midieron por detección de hibridación en solución utilizando el Kit de detección *mir*VanaTM (Ambion Inc., TX). En resumen, se incubó 1 mg de ARN total con sondas marcadas radiactivamente que correspondían con estos miARN. Después de someterse a digestión para eliminar cualquier sonda que no se hubiera unido al miARN diana, se fraccionaron los productos marcados radiactivamente por desnaturalización por electroforesis en gel de poliacrilamida. Las sondas se prepararon marcando el extremo 5' utilizando polinucleótido quinasa T4 con el kit Probe & Marker de *mir*VanaTM (Ambion Inc., TX), según las

instrucciones del fabricante. Se llevó a cabo la PCR cuantitativa en tiempo real como se ha descrito (Schmittgen y col., Nucl. Acids Res. 32: e43 (2004)) sobre un Sistema Aplicado de Detección de Secuencias de Biosistemas, haciéndose todas las reacciones por triplicado. En resumen, el ARN se transcribió inversamente a ADNc con cebadores génicos específicos y Thermoscript y la cantidad relativa de cada miARN con respecto al ARNt, se determinó por medio del iniciador de la metionina, utilizando la ecuación:

$$2^{-dC}_{T}$$
, donde $dC_{T} = (C_{TmiABN} - C_{TU6})$.

Análisis de supervivencia

Se identificaron los genes cuya expresión estaba relacionada significativamente con la supervivencia del paciente. Se valoró la significación estadística para cada gen basándose en el modelo de regresión de riesgos proporcionales univariado de Cox en BRB-ArrayTools versión 3.2.3. Estos valores de *p* se utilizaron en un ensayo multivariado de permutación en el que los tiempos de supervivencia y los indicadores de censura se permutaron aleatoriamente entre las matrices. Los genes se consideraron estadísticamente significativos si su valor de *p* era menor de 0,05.

Se estimaron las curvas de supervivencia por el método de Kaplan-Meier (SAS Institute, Cary, NC) y las curvas resultantes se compararon utilizando un ensayo de intervalo logarítmico. Se examinaron el efecto articulación y las covariables utilizando el modelo de regresión de riesgos proporcionales de Cox. El análisis estadístico se llevó a cabo utilizando el StatMate (ATMS Co. Ltd., Tokyo, Japón).

Resultados

5

10

15

20

25

30

35

40

45

50

55

Se analizó la expresión de miARN en 104 pares de cáncer primario de pulmón y en los correspondientes tejidos pulmonares no cancerosos para investigar la participación de los miARN en el cáncer de pulmón. La comparación de la expresión de miARN para varios pares de un grupo específico se enumera en la Tabla 2. Se identificaron los miARN que se expresaron de manera diferente en 5 clasificaciones fenotípicas e histológicas (Tabla 2).

Al compararse la expresión del miARN en los tejidos del cáncer de pulmón y en los correspondientes tejidos pulmonares no cancerosos, se identificaron 43 miARN que mostraban diferencias de la expresión entre los grupos estadísticamente significativas (Tabla 3). Se llevó a cabo el ensayo de permutación multivariada en el análisis de comparación de clases utilizando nuestra herramienta de análisis de micromatrices, para controlar las múltiples comparaciones. El ensayo proporciona un nivel de confianza específica para asegurar que el número de descubrimientos falsos no exceda el nivel de dianas o para asegurar que la proporción de la lista de genes que representa falsos descubrimientos no exceda un nivel de dianas. Por tanto, si no hay diferencias reales entre las clases, la probabilidad de obtener por casualidad al menos 43 miARN expresados de manera diferente que sea estadísticamente significativa a un nivel <0,001, sería 0 y así se estimó por el ensayo de permutación multivariada. Además, el 91 % de los 104 cánceres de pulmón se clasificaron correctamente utilizando el método de predicción de validación de clase dejando uno fuera, basándose en el predictor covariado compuesto. Basándose en 2.000 permutaciones aleatorias, el valor de *p*, que se define como la proporción de las permutaciones aleatorias que dan una tasa de errores de validación cruzada no mayor que la tasa de error de validación cruzada con los datos reales, fue < 0.0005.

Varios de estos miARN se asociaron con FRA (Tabla 3). En particular, tres miARN están localizados dentro de sitios frágiles (hsa-mir-21 en FRA17B, hsa-mir-27b en FRA9D y hsa-mir-32 en FRA9E). Además, muchos de estos miARN identificados se localizan en regiones que son eliminadas o amplificadas frecuentemente en varias enfermedades malignas (Tabla 3). Por ejemplo, hsa-mir-21 y hsa-mir-205 están localizados en la región amplificada en el cáncer de pulmón, mientras que hsa-mir-126* y hsa-mir-126 están en 9q34.3, una región eliminada en el cáncer del pulmón. La expresión reducida de los precursores let-7a-2 y let-7f-1 se descubrió en el adenocarcinoma y en el carcinoma de células escamosas con un valor de p con un límite de 0,05. De igual manera. Los análisis de comparación entre el adenocarcinoma vs. tejidos no cancerosos y el carcinoma de células escamosas vs. tejidos no cancerosos revelaron respectivamente, 17 y 16 miARN con una expresión estadísticamente diferente (Tabla 4). Seis miARN (hsa-mir-21, hsa-mir-191, hsa-mir-155, hsa-mir-210, hsa-mir-126* y hsa-mir-224) se compartieron en los dos tipos histológicos de carcinoma de pulmón de células no pequeñas (NSCLC).

Tabla 2. Análisis de comparación de clasificaciones clinicopatológicas

Clasificación (Número)	Total	Nº de genesª	FDR ^b	% clasificados correctamente ^c (valor de <i>p</i>)
Clasificación Fenotípica				, , ,
Todos los tumores (104) vs. Todos los normales (104)	208	43	0	91 (< 0,0005)
Tumor Adeno ^d (65) vs. Adeno normal (65)	130	17	0,001	80 (< 0,0005)
Tumor SCC ^e (39) vs. SCC normal (39)	78	16	0	92 (< 0,0005)
Clasificación Histológica				
Tumor Adeno (65) vs. Tumor SCC (39)	104	6	0,001	81 (< 0,0005)

Clasificación por Edad

104	Λ	
	Ū	
65	0	
39	0	
		_
104	0	
65	0	
39	0	
		_
104	0	
65	0	
39	0	
104	0	
65	1	
39	0	
	104 65 39 104 65 39	65 0 39 0 104 0 65 0 39 0 104 0 65 0 39 0

Tabla 3. 43 miARN expresados diferencialmente en tejidos del cáncer de pulmón vs. Tejidos pulmonares no cancerosos.

miARN	Localización	Valor de <i>p</i>	Tipo	Asociación con	Regiones genómicas	Gen
				FRA ^a	asociadas con Cáncer ^a	hospedador ^b
hsa-mir-21	17q23.2	p < 1e-07	Positivo	FRA17B	Amp ^c -netwoblastoma;	TMEM49
					pulmón ca	
hsa-mir-191	3p21.31	p < 1e-07	Positivo			Proteína nueva
hsa-mir-126*	9q34.3	p < 1e-07	Negativo		Del ^d -NSCLC ^e ; HCC ^f	EGFL-7
hsa-mir-210	11p15.5	1,00E-07	Positivo		Del-ovárico: pulmón co	Proteína nueva
hsa-mir-155	21q21.3	1,00E-07	Positivo		Amp-colon ca	BIC
hsa-mir-143	5q32	4,00E-07	Negativo		Del-próstata ca	minARNc ^F
hsa-mir-205	1q32.2	4,00E-07	Positivo		Amp-pulmón ca	minARNc
hsa-mir-192-	11q13.1	5,00E-07	Negativo	FRA11A	Del-tiroides ca	minARNc
prec		_				
hsa-mir-224	Xq28	5,00E-07	Negativo	FRAXF		G4BRE
hsa-mir-126	9q34.3	7,00E-07	Negativo		Del-NSCLC: HCC	EGFL-7
hsa-mir-24-2	19p13.1	1,30E-06	Positivo			ND ^b
hsa-mir-30a-	6q13	4,S0E-06	Negativo			minARNc
5p		_				
hsa-mir-212	17p13.3	5,00E-06	Positivo			ND
hsa-mir-140	16q22.1	5,10E-06	Negativo			ATROPINA-1
hsa-mir-9	15q26.1	6,50E-06	Negativo			Proteína nueva
hsa-mir-214	1q24.3	8,60E-06	Positivo			ND
hsa-mir-17-	13q31.3	9,40E-06	Positivo			Proteína nueva
3p						5
hsa-mir-	8p23.1	1,23E-05	Negativo		Amp-MFHs ⁱ	Proteína nueva
124a-1		=				01.170
hsa-mir-218-	5q34	1,34E-05	Negativo			SLIT3
2	4 40 4	4 405 05				A D. II 40
hsa-mir-95	4p16.1	1,48E-05	Negativo		D 1 (1)	ABLIM2
hsa-mir-145	5q32	1,90E-05	Negativo		Del-próstata ca	minARNc
hsa-mir-198	3q13.33	2,43E-05	Negativo			FSTL1
hsa-mir-216-	2p16.1	3,05E-05	Negativo			ND
prec	0-04.00	F F0F 0F	NI			ND
hsa-mir-219-	6p21.32	5,56E-05	Negativo			ND
1 haa mir 106a	V~06.0	6 00F 0F	Positivo		Dal avárias as	ND
hsa-mir-106a		6,20E-05	Positivo		Del-ovárico ca	ND ND
hsa-mir-197	1p13.3	7,23E-05		EDA11A	Dal tiraidas as	ND ND
hsa-mir-192	11q13.1	0,000119	Positivo	FRA11A	Del-tiroides ca	
hsa-mir-	19q13.41	0,000143	Negativo			minARNc
125a-prec			ū			

^aNº de genes, Número de genes significativos a 0,001. ^bFDR, Tasa de falsos descubrimientos que es la probabilidad de genes significativos por casualidad.

^{° %} clasificados correctamente (valor de p). Método de predicción de clases de validación cruzada dejando uno fuera basado en el predictor covariado compuesto. El valor de p es la proporción de permutaciones aleatorias que daban una tasa de error de validación cruzada que no era mayor que la tasa de error de validación cruzada con los datos reales.
^dAdeno, Adenocarcinoma.

^eSCC, Carcinoma de célu<u>las escamosas.</u>

hsa-mir-26a- 1-prec	3p22.3	0,000148	Negativo		Del-epitelial ca	NIF1
hsa-mir-146 hsa-mir-203	5q33.3 14q32.33	0,000163 0,000267	Positivo Positivo			minARNc ND
hsa-mir- 199b-prec	9q34.11	0,000304	Negativo		Del-vejiga ca	GOLGA2
hsa-mir-7a-2- prec	11q24.1	0,000398	Negativo	FRA11B	Del-pulmón ca	minARNc
hsa-mir-27b hsa-mir-32	9q22.32 9q31.3	0,000454 0,000458	Negativo Negativo	FRA9D FRA9E	Del-Vejiga ca Del-pulmón ca	Proteína nueva Proteína nueva
hsa-mir-29b- 2-	1q32.2	0,000466	Negativo			minARNc
hsa-mir-220 hsa-mir-33	Xq25 22q13.2	0,000630 0,000683	Negativo Negativo		Del-colon ca	ND <i>SREBF2</i>
hsa-mir- 181c-prec	19p13.12	0,000736	Negativo			NANOS3
hsa-mir-150	19q13.33	0,000784	Positivo			ND
hsa-mir-101- 1	1p31.3	0,000844	Negativo	FRA1C	Del-ovárico; mama ca	ND
hsa-mir- 124n-3	20q13.33	0,000968	Negativo			ND
hsa-mir-125a	19q13.41	0,000993	Negativo		N :	ND

^a La información se obtuvo de un informe previo (Calin, G.A. y col., Proc. Natl. Acad. Sci. U.S.A. 101: 2999-3004 (2004)). ^b La información se obtuvo de un informe previo (Rodríguez, A. y col., Genome Res. 14: 1902-1910 (2004)). ^c Amp, Amplificación; ^dDel, Deleción; ^eNSCLC, Carcinoma de pulmón de células no pequeñas; ^fHCC, carcinoma hepatocelular; ^gminARNc, ARN no codificante similar a mARN; ^hND, no definido; ^fMFHs, Histiocitomas fibrosos malignos.

El análisis PCR en tiempo real de los precursores de miARN seleccionados se llevó a cabo para validar los resultados del análisis de la micromatriz. Primero, se prepararon los ADNc de 16 pares de adenocarcinomas pulmonares y 16 pares de carcinoma pulmonar de células escamosas, utilizando cebadores génicos específicos para *hsa-mir-21*, *hsa-mir-126**, *hsa-mir-205* y *U6* (como control). A continuación, se llevaron a cabo los análisis de RT-PCR en tiempo real para determinar los niveles de expresión de estos miARN en diferentes muestras. Al menos una regulación doblemente positiva de la expresión de los precursores de miARN *hsa-mir-21* y *hsa-mir-205* se encontró en el 66 % y el 56 % de los 32 casos, respectivamente, cuando se compararon con los niveles de expresión de estos miARN en los tejidos no cancerosos correspondientes (FIG. 1). Las diferencias fueron estadísticamente significativas con una *p*<0,001 según el ensayo-t pareado. Por el contrario, el 31 % de los 32 casos de cáncer de pulmón examinados mostraron una reducción de la expresión del precursor *hsa-mir-126** de más del 50 %, aunque estos resultados no fueron estadísticamente significativos (FIG. 1). Estos hallazgos muestran que los miARN precursores específicos están regulados frecuentemente de forma positiva o están reducidos en los cánceres de pulmón, lo que es congruente con los patrones de expresión de sus miARN maduros, como se determinó utilizando el análisis de micromatriz.

Tabla 4. miARN expresados diferencialmente en tejidos con adenocarcinoma/tejidos con carcinoma pulmonar de células escamosas vs. Tejidos pulmonares no cancerosos.

miARN	Localización	Valor de p	Tipo
Adenocarcinoma			_
*hsa-mir-21	17q23.2	p < 1e-07	Positivo
hsa-mir-191	3p21.31	1,20E-06	Positivo
hsa-mir-155	21q21.3	4,10E-06	Positivo
hsa-mir-210	11p15.5	9,90E-06	Positivo
hsa-mir-126*	9q34.3	1,92E-05	Negativo
hsa-mir-126	9q34.3	4,13E-05	Negativo
hsa-mir-24-2	19p13.1	0,000228	Positivo
hsa-mir-219-1	6p21.32	0,000251	Negativo
hsa-mir-95	4p16.1	0,000303	Negativo
hsa-mir-192-prec	11q13.1	0,000307	Negativo
hsa-mir-220	Xq25	0,000309	Negativo
hsa-mir-216-prec	2p16.1	0,00042	Negativo
hsa-mir-204-prec	9q21.11	0,000449	Negativo
hsa-mir-188	Xp11.23	0,000475	Negativo
hsa-mir-198	3q13.33	0,000494	Negativo
hsa-mir-145	5q32	0,000579	Negativo
hsa-mir-224	Xq28	0,000925	Negativo

Carcinoma de células escamosas

10

15

hsa-mir-205	1g32.2	p < 1e-07	Positivo
hsa-mir-224	Xq28	4,14E-05	Negativo
hsa-mir-191	3p21.31	5,18E-05	Positivo
hsa-mir-126*	9q34.3	9,74E-05	Negativo
hsa-mir-140	16q22.1	0,000132	Negativo
hsa-mir-210	11p15.5	0,0001383	Positivo
hsa-mir-17-3p	13q31.3	0,0001772	Positivo
hsa-mir-29b	1q32.2	0,0002046	Negativo
hsa-mir-143	5q32	0,0003141	Negativo
hsa-mir-203	14q32.33	0,0003293	Positivo
hsa-mir-155	21q21.3	0,0003688	Positivo
hsa-mir-21	17q23.2	0,0003904	Positivo
hsa-mir-214	1q24.3	0,0004546	Positivo
hsa-mir-212	17p13.3	0,0005426	Positivo
hsa-mir-30a-5p	6q13	0,0006165	Negativo
hsa-mir-197	1p13.3	0,0008507	Positivo

Además, los datos de la micromatriz para los tres precursores de miARN, *hsa-mir-21*, *hsa-mir-126* y hsa-mir-205*, se confirmaron por el método de detección de hibridación en solución, sus miARN maduros. Específicamente, se analizaron siete pares de tejidos de cáncer de pulmón primario y sus correspondientes tejidos pulmonares no cancerosos, para los que estaban disponibles cantidades suficientes de ARN. Las formas maduras de *hsa-mir-21* y *hsa-mir-205* estaban claramente reguladas positivamente en los tejidos del cáncer de pulmón cuando se comparaban con los correspondientes tejidos pulmonares no cancerosos (FIG. 2), mientras que *hsa-mir-126** estaba regulado negativamente en la mayoría de los tejidos de cáncer de pulmón examinados. Por tanto, como en los resultados de la RT-PCR, estos análisis confirmaron los datos de la expresión de la micromatriz para estos tres miARN.

Ejemplo 2: Firmas distintivas de la expresión de miARN en líneas celulares de cáncer de pulmón. Materiales y métodos

15 Muestras

10

20

Se utilizaron en este estudio trece líneas celulares de cáncer de pulmón, que consistían en cinco líneas celulares de carcinoma de pulmón de células pequeñas (SCLC) y ocho líneas celulares de carcinoma de pulmón de células no pequeñas (NSCLC). Las 5 líneas celulares SCLC fueron DMS 92, NCI-H82, NCI-H146, NCI-H446 y NCI-H417 (American Tissue Culture Collection). Las ocho líneas celulares NSCLC fueron NCI-H157, Calu-1, Calu-6, NCI-H292, NCI-H596, A-427, A549, and A2182 (American Tissue Culture Collection, Manassas, VA). Se aisló el ARN total de los tejidos y los cultivos celulares con Reactivo TRIzol® (Invitrogen, Carlsbad, CA), según las instrucciones del fabricante.

25 Análisis de micromatriz

Se llevó a cabo el análisis de la micromatriz como se ha descrito anteriormente (Liu, C.G. y col., Proc. Natl. Acad. Sci. U.S.A. 101: 9740-9744 (2004), véase también el Ejemplo 1).

30 Análisis estadístico

Se llevaron a cabo los análisis estadísticos como se describe anteriormente en el presente documento (véase, por ejemplo, el Ejemplo 1).

35 Resultados

Se generaron con el análisis de micromatriz, los perfiles de expresión del miARN de cinco líneas celulares de carcinoma de pulmón de células pequeñas (SCLC) y ocho líneas celulares de carcinoma de pulmón de células no pequeñas (NSCLC). La comparación de los perfiles de expresión del miARN de NSCLC y SCLC reveló diferencias estadísticamente significativas (*p*<0,001 por el ensayo-t) en el nivel de expresión de 3 miARN (*hsa-mir-24-1, hsa-mir-29a y hsa-mir-29c*). Además, se revelaron distintos grupos cuando se aplicó el análisis de agrupamiento jerárquico a los 18 miARN expresados más diferencialmente para cada tipo de muestra, de forma que todas las líneas celulares NSCLC caían dentro del grupo que era distinto de las líneas celulares de SCLC (FIG. 3A, FIG. 3B). Estos resultados indican que los perfiles de expresión del miARN pueden ser diferentes en células de diferentes orígenes y/o tipos, como se había descubierto en estudios previos (véase, por ejemplo Liu, C.G. y col., Proc. Natl. Acad. Sci. U.S.A. 101: 9740-9744 (2004); Bhattacharjee, A. y col., Proc. Natl. Acad. Sci. U.S.A. 98: 13790-13795 (2001); Garber, M.E. y col., Proc. Natl. Acad. Sci. U.S.A. 98: 13784-13789 (2001)).

Ejemplo 3: Identificación de los miARN asociados con características clinicopatológicas del cáncer de pulmón

Materiales y métodos

5 Análisis de micromatrices

Se llevaron a cabo los análisis de micromatrices como se ha descrito anteriormente (Liu, C.G. y col., Proc. Natl. Acad. Sci. U.S.A. 101: 9740-9744 (2004), véase también, el Ejemplo 1).

10 Análisis estadísticos

Los análisis estadísticos se llevaron a cabo como se ha descrito anteriormente en el presente documento (véase, por ejemplo, el Ejemplo 1).

15 Resultados

20

25

35

40

45

50

55

60

65

Se analizó si los datos de la micromatriz revelaban firmas moleculares específicas para subgrupos de cáncer de pulmón que se diferenciaran por su comportamiento clínico. Para este análisis, se examinaron las relaciones de cinco tipos de información clínica y patológica (Tabla 2). En la clasificación histológica, se identificaron seis miARN (hsa-mir-205, hsa-mir-99b, hsa-mir-203, hsa-mir-202, hsa-mir-102 y hsa-mir-204-prec) que se expresaban de forma diferente en los dos tipos histológicos más comunes de NSCLC, adenocarcinoma y carcinoma de células escamosas. Los niveles de expresión de hsa-mir-99b y hsa-mir-102 fueron mayores en el adenocarcinoma. No se identificaron miARN que se expresaran de manera diferente para los grupos que se habían diferenciado por la edad, el género o la raza.

Ejemplo 4: Correlación entre la expresión de hsa-mir-155 and hsa-let-7a-2 y el pronóstico de los pacientes con adenocarcinoma de pulmón.

Materiales y métodos

30 Análisis de micromatriz

Se llevó a cabo el análisis de micromatriz como se ha descrito previamente (Liu, C.G. y col., Proc. Natl. Acad. Sci. U.S.A. 101: 9740-9744 (2004), véase también, el Ejemplo 1).

Análisis estadístico

Se llevaron a cabo los análisis estadísticos como se ha descrito anteriormente en el presente documento (véase, por ejemplo, el Ejemplo 1).

Análisis de Ontología Génica

Las dianas predichas del *hsa-mir-155* y *hsa-let-7a* se determinaron por los métodos de Lewis *y col.*, (Lewis, B.P. y col., Cell 120: 15-20 (2005)) y PicTar (Krek, A. y col., Nat. Genet. 37: 495-500 (2005)) y se analizaron con respecto a la sobre-representación en los agrupamientos biológicos de una Ontología Génica (GO) particular. Las listas de término GO se sometieron a análisis utilizando la aplicación Whole Pathway Scope (WPS) y esos términos se enumeraron si la puntuación de la prueba exacta de Fisher era menor de 0,005.

Resultados

Se evaluó la correlación de la expresión del miARN con la supervivencia del paciente. El modelo de regresión de riesgos proporcionales de Cox univariado con el ensayo de permutación total en el BRB-Array Tools indicaron que ocho miARN (hsa-mir-155, hsa-mir-17-3p, hsa-mir-106a, hsa-mir-93, hsa-let-7a-2, hsa-mir-145, hsa-let-7b y hsa-mir-21) estaban relacionados con la supervivencia del paciente con adenocarcinoma. Se descubrió que la alta expresión de hsa-mir-155, hsa-mir-17-3p, hsa-mir-106a, hsa-mir-93 o hsa-mir-21 y la baja expresión de hsa-let-7a-2, hsa-let-7b o hsa-mir-145 tenían un pronóstico significativamente peor. Además, el análisis de supervivencia entre 41 pacientes con adenocarcinoma en estadio I reveló que tres miARN (hsa-mir-155, hsa-mir-17-3p y hsa-mir-20) estaban asociados con el resultado del paciente. Estos resultados demuestran la importante relación entre los perfiles de expresión del miARN y la supervivencia del paciente, independientemente del estadio de la enfermedad.

Debido a que cinco de estos miARN (hsa-mir-155, hsa-mir-17-3p, hsa-let-7a-2, hsa-mir-145 y hsa-mir-21) se expresaban de manera diferente en los tejidos del cáncer de pulmón con respecto a los correspondientes tejidos pulmonares no cancerosos, se utilizaron estos miARN para más análisis de supervivencia. Se calculó la relación entre la expresión en el cáncer de pulmón y la correspondiente expresión en el tejido pulmonar no canceroso para cada uno de estos cinco miARN y los casos se clasificaron de acuerdo con la relación de expresión. Utilizando este agrupamiento para cada miARN, se llevó a cabo el análisis de supervivencia de Kaplan-Meier. La supervivencia

estimada por Kaplan-Meier mostraba que los pacientes con adenocarcinoma de pulmón con alta expresión de *hsa-mir-155* o con expresión reducida de *hsa-let-7a-2* tenían peores perspectivas de supervivencia que los pacientes con expresión baja de *hsa-mir-155* o alta expresión de *hsa-let-7a-2* (FIG. 4 y FIG. 5). La diferencia pronóstica de estos dos grupos era altamente significativa para *hsa-mir-155* (*p*=0,006; ensayo de intervalo logarítmico), pero menos significativo para *hsa-let-7a-2* (*p*=0,033; ensayo de intervalo logarítmico). Los análisis de supervivencia de los factores clinicopatológicos mostraron que el estadio estaba asociado significativamente con la supervivencia (*p*=0,01; ensayo de intervalo logarítmico), mientras que la edad, la raza, el sexo y la historia de fumador no contaba para el pronóstico malo (Tablas 5A y 5B). Para ajustarlo por comparaciones múltiples, utilizamos el método de Storey *y col.*, (Storey, J.D. and Tibshirani, R., Proc. Natl. Acad. Sci. U.S.A. 100: 9440-9445 (2003)) limitando las tasas de falsos descubrimientos a 0,05. Utilizando esta tasa, *hsa-mir-155* y el estadio de enfermedad fueron aun estadísticamente significativos. Posteriormente, se llevó a cabo un análisis de regresión de riesgos proporcionales de Cox multivariado utilizando todos estos factores clinicopatológicos y moleculares. La expresión alta del *hsa-mir-155* se determinó que era un factor de pronóstico desfavorable, independiente de otros factores clinicopatológicos (*p*=0,027; relación de riesgo 3,03; 95 % CI, 1,13-8,14), en adición al estadio de la enfermedad (*p*=0,013; relación de riesgo 3,27; 95 % CI, 1,31-8,37; Tabla 5A).

Tabla 5A. Supervivencia postoperatoria de pacientes con adenocarcinoma de pulmón en relación con las características moleculares y clinicopatológicas y la expresión de miARN analizada por análisis de micromatriz.

Variable	subgrupo	subgrupo Relación de riesgo (95 % Cl ^a)	
Análisis univariados (n=65)			
Edad	Edad≥67/Edad<67	1,41 (0,67-3,06)	0,348
Sexo	Masculino/femenino	1,36 (0,64-2,93)	0,413
Estadio	II-IV/I	2,51 (1,29-6,82)	0,010
Historia de fumador	Actual/exfumador	1,32 (0,63-2,79)	0,456
<i>hsa-mir-155</i> (n=55)	alto/bajo	3,42 (1,42-8,19)	0,006
hsa-let-7a-2 (n=52)	bajo/alto	2,35 (1,08-6,86)	0,033
Análisis Multivariado (n=55) ^{b, c}			
Edad	Edad≥67/Edad<67	1,92 (0,71-5,17)	0,195
Sexo	Masculino/femenino	1,23 (0,47-3,22)	0,669
Estadio	II-IV/I	3,27 (1,31-8,37)	0,013
Historia de fumador	Actual/exfumador	1,49 (0,51-4,34)	0,457
hsa-mir-155	alto/bajo	3,03 (1,13-8,14)	0,027

^a95 % CI, 95 % Intervalo de confianza.

5

10

15

20

Tabla 5B. Supervivencia postoperatoria en pacientes con adenocarcinoma de pulmón en relación con las características clinicopatológicas y la expresión de miARN precursores analizados por análisis RT-PCR en tiempo

		Cohorte Origin (n=32)	al	Cohorte Adicio (n=32)	onal	Todos los cas (n=64)	os
Variable	Subgrupo	Relación de riesgos (95 % Cl ^a)	р	Relación de riesgos (95 % CI)	р	Relación de riesgos (95 % CI)	р
Análisis univaria	ıdo						
Edad	Edad≥67/Edad<67	1,89 (0,62-5,34)	0,274	1,21 (0,46-3,21)	0,679	1,28 (0,64- 2,58)	0,482
Sexo	Masculino/femenino	0,53 (0,14-1,56)	0,232	1,37 (0,54-3,63)	0,479	0,99 (0,49- 1,98)	0,975
Estadio	II-IV/I	4,22 (1,91-23,6)	0,003	2,37 (1,01-7,83)	0,048	3,07 (1,82- 8,84)	<0,00
Historia de fumador	Actual/exfumador	0,92 (0,31-2,66)	0,921	1,22 (0,47-3,16)	0,674	1,12 (0,56- 2,25)	0,757
Precursor hsa-mir-155	alto/bajo	2,75 (1,05-12,1)	0,047	2,52 (1,10-7,45)	0,033	2,74 (1,53- 6,91)	0,002
precursor hsa-let-7a-2	bajo/alto	3,01 (1,09-9,86)	0,037	2,22 (0,91-5,71)	0,084	2,73 (1,42- 5,88)	0,003

^bAnálisis multivariado, Modelo de regresión de riesgos proporcionados de Cox.

^c hsa-let-7a-2 bajo/alto no fue estadísticamente significativo (p=0,089).

Análisis Multivariado ^b							
Edad	Edad≥67/Edad<67	0,91 (0,22-3,68)	0,899	0,93 (0,30-2,91)	0,914	1,22 (0,58- 2,53)	0,593
Sexo	Masculino/femenino	0,35 (0,11-1,17)	0,089	0,92 (0,32-2,66)	0,885	0,85 (0,41- 1,74)	0,659
Estadio	II-IV/I	8,99 (1,95-41,2)	0,004	4,91 (1,51-15,9)	0,008	5,58 (2,42- 12,8)	<0,001
Historia de fumador	Actual/exfumador	1,01 (0,30-3,38)	0,980	2,27 (0,70-7,34)	0,170	1,89 (0,85- 4,21)	0,117
Precursor hsa-mir-155	alto/bajo	13,3 (2,59-69,0)	0,002	3,77 (1,32-10,6)	0,013	4,98 (2,29- 10,8)	<0,001
Precursor hsa-let-7a-2	bajo/alto	3,93 (1,06-14,5)	0,040	2,97 (1,07-8,23)	0,036	3,55 (1,64- 7,69)	0,001

^a95 % CI. 95 % Intervalo de confianza.

Para investigar las consecuencias biológicas de la expresión alterada de *hsa-mir-155* and *hsa-let-7a-2*, se llevó a cabo un análisis bioinformático para agrupar las dianas predichas de estos miARN de acuerdo con los términos de Ontología Génica (Tabla 6). Además de las asociaciones con los términos más generales de GO, se vio un enriquecimiento significativo para las dianas asociado con la transcripción del *hsa-mir-155*. El *hsa-let-7a* mostró una sobre representación de dianas génicas unidas con la proteína quinasa y las cascadas intracelulares de señalización, un hallazgo congruente con la interacción funcional que se había informado, entre el *let-7* y RAS (Johnson, S.M. y col., Cell 120:635-647 (2005)).

Tabla 6. Análisis de ontología génica (proceso biológico) para las dianas de transcripción predichas de hsa-mir-155 y hsa-let-7a.

	nsa-iet-7a.	0 . 1 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Proceso biológico	Ontología Génica	Valor de <i>p</i>
hsa-mir-155			
	regulación del proceso biológico	GO:0050789	3,44343E-05
	regulación de base nucleica \ nucleósido \ nucleótido y metabolismo	GO:0019219	0,000149553
	de ácido nucleico		
	regulación de proceso fisiológico	G0:0050791	0,000192938
	regulación de transcripción \ dependiente de ADN	GO:0006355	0,000244233
	regulación del metabolismo	GO:0019222	0,000310887
	regulación de la transcripción	GO:0045449	0,000367426
	transcripción\dependiente de ADN	GO:0006351	0,000373583
	transcripción	GO:0006350	0,000749403
	Importación de sustrato del núcleo que contiene NLS	GO:0006607	0,000871079
	Diferenciación de base nucleica celular B \ nucleósido \	GO:0030183	0,00142995
	nucleótido y metabolismo de ácido nucleico	GO:0006139	0,0021327
	Selección de proteínas diana	GO:0006605	0,00238267
	hemopoyesis	GO:0030097	0,00243434
	proceso celular	GO:0009987	0,00270393
	metabolismo de uridina	GO:0046108	0,0040568
	activación celular B	GO:0042113	0,00458041
hsa-let-7a			ĺ
	modificación proteica	GO:0006464	9,02643E-05
	mantenimiento y crecimiento celular	GO:0008151	9,99217E-05
	proceso fisiológico celular	GO:0050875	0,000128316
	cascada de la proteína quinasa	GO:0007243	0,000703203
	proceso celular	GO:0009987	0,000870863
	cascada de señalización intracelular	GO:0007242	0,001290613
	transporte	GO:0006810	0,004305096
	modificación de la cromatina	GO:0016568	0,004414505
	localización	GO:0051179	0,004492152
	metabolismo del fósforo	GO:0006793	0,00481218
	metabolismo del fosfato	GO:0006796	0,00481218

Se llevaron a cabo los análisis de la RT-PCR en tiempo real para *hsa-mir-155* y *hsa-let-7a-2* para determinar si la expresión de los miARN precursores también tenía un impacto pronóstico en los pacientes con adenocarcinoma. Primero, se sometieron 32 pares de adenocarcinoma del grupo original, en los que estaba disponible el ARN, al análisis RT-PCR en tiempo real. Se calculó la relación entre la expresión en cáncer de pulmón y la expresión de los correspondientes tejidos pulmonares no cancerosos y se clasificaron los casos de acuerdo con la relación de expresión. El análisis de supervivencia de Kaplan-Meier (FIG. 6, FIG. 7) demostró una supervivencia

5

10

^b Análisis multivariado, modelo de regresión de riesgos proporcionales de Cox.

significativamente peor para los pacientes que tenían una expresión alta del precursor *hsa-mir-155* (*p*=0,047; ensayo de intervalo logarítmico) o una expresión reducida del precursor *hsa-let-7a-2* (*p*=0,037; ensayo de intervalo logarítmico) (Tabla 5B). Para validar más los clasificadores de pronóstico descritos aquí, se analizó un grupo adicional independiente de 32 adenocarcinomas utilizando el análisis RT-PCR en tiempo real. Las curvas de supervivencia de Kaplan-Meier (FIG. 8, FIG. 9) mostraron también en esta cohorte una relación clara entre la expresión del *hsa-mir-155* precursor (*p*=0,033; ensayo de intervalo logarítmico) y cerca de la significación en la expresión de *hsa-let-7a-2* (*p*=0,084; ensayo de intervalo logarítmico) (Tabla 5B). Además, se descubrió que la expresión alta del precursor *hsa-mir-155* era un predictor independiente de pronóstico malo con un análisis de regresión de riesgos proporcionales de Cox multivariado (Tabla 5B). Para confirmar más si había cualquier fuerza de agrupamiento en el grupo original (32 casos) y el grupo adicional (32 casos), se llevaron a cabo los análisis de supervivencia multivariado y univariado de los 64 casos. De manera congruente con los resultados previos, estos análisis mostraron la significación de la expresión del *hsa-mir-155* precursor (Tabla 5B; FIG. 10). Es importante decir que la expresión reducida del precursor *hsa-let-7a-2* también tiene un impacto pronóstico similar en los pacientes con adenocarcinoma (Tabla 5B; FIG. 11), lo que es congruente con un informe previo (Takamizawa, J. y col., Cancer Res. 64, 3753-3756 (2004)).

Ejemplo 5: Falta de regulación epigenética de la expresión de miARN en líneas celulares de NSCLC.

Materiales y métodos

20

5

10

15

Análisis de micromatriz

El análisis de micromatriz se llevó a cabo como se ha descrito anteriormente (Liu, C.G., et al., Proc. Natl. Acad. Sci. U.S.A. 101: 9740-9744 (2004), véase también, el Ejemplo 1).

25

Análisis estadístico

El análisis estadístico se llevó a cabo como se ha descrito anteriormente en el presente documento (véase, por ejemplo, el Ejemplo 1).

30

35

Tratamiento con 5-aza-dC y/o TSA

Se incubaron células A549 y NCI-H157 de cáncer de pulmón (disponibles en la American Tissue Culture Collection) en un medio que contenía 5-aza-dC 1,0 mM (Sigma, St. Louis, MO) durante 48 h y luego se incubaron durante 24 h adicionales en presencia de TSA 1,0 mM (Sigma, St. Louis, MO). Se aisló el ARN total con ReactivoTRIzol[®] (Invitrogen) y se llevó a cabo el análisis de micromatriz como se ha descrito anteriormente. Cada tratamiento se llevó a cabo por triplicado.

Resultados

40

45

Se utilizaron las micromatrices de miARN para analizar la expresión de varios miARN en el tratamiento con 5-aza-2'-desoxicitidina (5-aza-dC), un inhibidor de la metilación del ADN, y/o Tricostatina A (TSA), un potente inhibidor de la histona desacetilasa, en dos líneas celulares de cáncer de pulmón (A549 y NCI-H157). Aunque se confirmó el aumento de la expresión de un gen, que se sabe que está silenciado transcripcionalmente (MYO18B) después del tratamiento con 5-aza-dC o TSA (FIG. 12), ningún miARN de la micromatriz mostró cambios de expresión, estadísticamente significativos tras el tratamiento con cualquiera de los productos, sugiriendo que la hipermetilación y la desacetilación de histona no eran responsables de la reducción de los niveles de la expresión de miARN, al menos en estas dos líneas celulares.

50 A m

Aunque esta invención se ha mostrado y descrito particularmente con referencia a las realizaciones preferidas de la misma, se entenderá por los expertos en la técnica que se pueden hacer varios cambios en su forma y detalles sin alejarse del ámbito de lo que engloba la invención en las reivindicaciones adjuntas.

LISTADO DE SECUENCIAS

55

<110> THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION NATIONAL INSTITUTES OF HEALTH

<120> MÉTODOS Y COMPOSICIONES BASADOS EN LOS MICROARN PARA EL DIAGNÓSTICO, PRONÓSTICO Y TRATAMIENTO DEL CÁNCER DE PULMÓN

60

<130> 53-28348 <140> AU 2007205234 <141> 03-01-2007

65

<150> PCT/US07/000103

<151> 03-01-2007

	<150> 60/756.400 <151> 01-05-2006						
	<160> 498						
5	<170> PatentIn ve	ersión 3.5					
10	<210> 1 <211> 90 <212> ARN <213> Homo sapi	iens					
	<400> 1						
	cacuguggga	ugagguagua	gguuguauag	uuuuaggguc	acacccacca	cugggagaua	60
15	acuauacaau	cuacugucuu	uccuaacgug				90
20	<210> 2 <211> 72 <212> ARN <213> Homo sapa	iens					
	<400> 2						
	agguugaggu	aguagguugu	auaguuuaga	auuacaucaa	gggagauaac	uguacagccu	60
25	ccuagcuuuc	cu					72
23	<210> 3 <211> 74 <212> ARN						
30	<213> Homo sapi	iens					
	<400> 3						-
	gggugaggua	guagguugua	uaguuugggg	cucugcccug	cuaugggaua	acuauacaau	60
	cuacugucuu	uccu					74
35	<210> 4 <211> 107 <212> ARN <213> Homo sapa	iens					
40	<400> 4						
	gugacugcau	gcucccaggu	ugagguagua	gguuguauag	uuuagaauua	cacaagggag	60
	auaacuguac	agccuccuag	cuuuccuugg	gucuugcacu	aaacaac		107
45	<210> 5 <211> 85 <212> ARN <213> Homo sapa	iens					
50	<400> 5						
50	ggcgggguga	gguaguaggu	ugugugguuu	cagggcagug	auguugcccc	ucggaagaua	60
	acuauacaac	cuacugccuu	cccug				85
	<210> 6 <211> 84						

	<212> ARN <213> Homo sap	piens					
	<400> 6						
5	gcauccgggu	ugagguagua	gguuguaugg	uuuagaguua	cacccuggga	guuaacugua	60
	caaccuucua	gcuuuccuug	gagc				84
10	<210> 7 <211> 87 <212> ARN <213> Homo sap	piens					
	<400> 7						
	ccuaggaaga	gguaguaggu	ugcauaguuu	uagggcaggg	auuuugccca	caaggaggua	60
15	acuauacgac	cugcugccuu	ucuuagg				87
20	<210> 8 <211> 85 <212> ARN <213> Homo sap	piens					
	<400> 8						
	cuaggaagag	guaguaguuu	gcauaguuuu	agggcaaaga	uuuugcccac	aaguaguuag	60
25	cuauacgacc	ugcagccuuu	uguag				85
20	<210> 9 <211> 85 <212> ARN <213> Homo sap	piens					
30	<400> 9						
	cuggcugagg	uaguaguuug	ugcuguuggu	cggguuguga	cauugcccgc	uguggagaua	60
	acugcgcaag	cuacugccuu	gcuag				85
35	<210> 10 <211> 79 <212> ARN <213> Homo sap	piens					
40	<400> 10						
	cccgggcuga ccuccuagcu	gguaggaggu uuccccagg	uguauaguug	aggaggacac	ccaaggagau	cacuauacgg	60 79
45	<210> 11 <211> 87 <212> ARN <213> Homo sap	piens					
50	<400> 11						
	ucagagugag	guaguagauu	guauaguugu	gggguaguga	uuuuacccug	uucaggagau	60
	aacuauacaa	ucuauugccu	ucccuga				87
	<210> 12						

	<211> 89 <212> ARN <213> Homo sap	piens					
5	<400> 12						
	cugugggaug	agguaguaga	uuguauaguu	gugggguagu	gauuuuaccc	uguucaggag	60
	auaacuauac	aaucuauugc	cuucccuga				89
10	<210> 13 <211> 85 <212> ARN <213> Homo sap	piens					
15	<400> 13						
15	cugugggaug	agguaguaga	uuguauaguu	uuagggucau	accccaucuu	ggagauaacu	60
	auacagucua	cugucuuucc	cacgg				85
20	<210> 14 <211> 108 <212> ARN <213> Homo sap	piens					
	<400> 14						
	uugccugauu	ccaggcugag	guaguaguuu	guacaguuug	agggucuaug	auaccacccg	60
25	guacaggaga	uaacuguaca	ggccacugcc	uugccaggaa	cagcgcgc		108
30	<210> 15 <211> 85 <212> ARN <213> Homo sap	piens					
	<400> 15						
	cuggcugagg	uaguaguuug	ugcuguuggu	cggguuguga	cauugcccgc	uguggagaua	60
35	acugcgcaag	cuacugccuu	gcuag				85
00	<210> 16 <211> 85 <212> ARN <213> Homo sap	piens					
40	<400> 16						
45	_	aguacauacu guauuuuugg	_	cccauaugaa	cauacaaugc	uauggaaugu	60 85
.0	<210> 17 <211> 108 <212> ARN <213> Homo sap	piens					
50	<400> 17						
	cagcuaacaa	cuuaguaaua	ccuacucaga	guacauacuu	cuuuauguac	ccauaugaac	60
	auacaaugcu	auggaaugua	aagaaguaug	uauuuuuggu	aggcaaua		108

5	<210> 18 <211> 85 <212> ARN <213> Homo sap	piens					
·	<400> 18						
	gccugcuugg	gaaacauacu	ucuuuauaug	cccauaugga	ccugcuaagc	uauggaaugu	60
	aaagaaguau	guaucucagg	ccggg				85
10	<210> 19 <211> 71 <212> ARN <213> Homo sap	piens					
15	<400> 19						
	ugggaaacau	acuucuuuau	augcccauau	ggaccugcua	agcuauggaa	uguaaagaag	60
	uauguaucuc	a					71
20	<210> 20 <211> 85 <212> ARN <213> Homo sap	piens					
25	<400> 20						
20	accuacucag	aguacauacu	ucuuuaugua	cccauaugaa	cauacaaugc	uauggaaugu	60
	aaagaaguau	guauuuuugg	uaggc				85
30	<210> 21 <211> 108 <212> ARN <213> Homo sap	piens					
	<400> 21						
	uggauguugg	ccuaguucug	uguggaagac	uagugauuuu	guuguuuuua	gauaacuaaa	60
35	ucgacaacaa	aucacagucu	gccauauggc	acaggccaug	ccucuaca		108
40	<210> 22 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 22						
	uuggauguug	gccuaguucu	guguggaaga	cuagugauuu	uguuguuuuu	agauaacuaa	60
1 E	aucgacaaca	aaucacaguc	ugccauaugg	cacaggccau	gccucuacag		110
45	<210> 23 <211> 110 <212> ARN <213> Homo sap	piens					
50	<400> 23						

	cuggauacag	aguggaccgg	cuggccccau	cuggaagacu	agugauuuug	uuguugucuu	60
	acugcgcuca	acaacaaauc	ccagucuacc	uaauggugcc	agccaucgca		110
5	<210> 24 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 24						
	agauuagagu	ggcugugguc	uagugcugug	uggaagacua	gugauuuugu	uguucugaug	60
10	uacuacgaca	acaagucaca	gccggccuca	uagcgcagac	ucccuucgac		110
15	<210> 25 <211> 89 <212> ARN <213> Homo sap	piens					
	<400> 25						
	cgggguuggu	uguuaucuuu	gguuaucuag	cuguaugagu	gguguggagu	cuucauaaag	60
20	cuagauaacc	gaaaguaaaa	auaacccca				89
20	<210> 26 <211> 87 <212> ARN <213> Homo sap	oiens					
25	<400> 26						
	ggaagcgagu	uguuaucuuu	gguuaucuag	cuguaugagu	guauuggucu	ucauaaagcu	60
	agauaaccga	aaguaaaaac	uccuuca				87
30	<210> 27 <211> 90 <212> ARN <213> Homo sap	oiens					
35	<400> 27						
	ggaggcccgu	uucucucuuu	gguuaucuag	cuguaugagu	gccacagagc	cgucauaaag	60
	cuagauaacc	gaaaguagaa	augauucuca				90
40	<210> 28 <211> 110 <212> ARN <213> Homo sap	piens					
45	<400> 28						
45	gaucugucug	ucuucuguau	auacccugua	gauccgaauu	uguguaagga	auuuuguggu	60
	cacaaauucg	uaucuagggg	aauauguagu	ugacauaaac	acuccgcucu		110
50	<210> 29 <211> 110 <212> ARN <213> Homo sar	niens					

	<400> 29						
	ccagagguug	uaacguuguc	uauauauacc	cuguagaacc	gaauuugugu	gguauccgua	60
	uagucacaga	uucgauucua	ggggaauaua	uggucgaugc	aaaaacuuca		110
5	<210> 30 <211> 108 <212> ARN <213> Homo sap	piens					
10	<400> 30						
	gcgcgaaugu	guguuuaaaa	aaaauaaaac	cuuggaguaa	aguagcagca	cauaaugguu	60
	uguggauuuu	gaaaaggugc	aggccauauu	gugcugccuc	aaaaauac		108
15	<210> 31 <211> 83 <212> ARN <213> Homo sap	piens					
20	<400> 31						
20	ccuuggagua	aaguagcagc	acauaauggu	uuguggauuu	ugaaaaggug	caggccauau	60
	ugugcugccu	caaaaauaca	agg				83
25	<210> 32 <211> 64 <212> ARN <213> Homo sap	piens					
	<400> 32						
	cuguagcagc	acaucauggu	uuacaugcua	cagucaagau	gcgaaucauu	auuugcugcu	60
30	cuag						64
35	<210> 33 <211> 98 <212> ARN <213> Homo sap	piens					
	<400> 33						
	uugaggccuu	aaaguacugu	agcagcacau	caugguuuac	augcuacagu	caagaugcga	60
40	aucauuauuu	gcugcucuag	aaauuuaagg	aaauucau			98
	<210> 34 <211> 89 <212> ARN <213> Homo sap	piens					
45	<400> 34						
	gucagcagug	ccuuagcagc	acguaaauau	uggcguuaag	auucuaaaau	uaucuccagu	60
	auuaacugug	cugcugaagu	aagguugac				89
50	<210> 35 <211> 81 <212> ARN						

	<213> Homo sap	piens					
	<400> 35						
	guuccacucu	agcagcacgu	aaauauuggc	guagugaaau	auauauuaaa	caccaauauu	60
5	acugugcugc	uuuaguguga	С				81
10	<210> 36 <211> 81 <212> ARN <213> Homo sap	piens					
	<400> 36						
	gcagugccuu	agcagcacgu	aaauauuggc	guuaagauuc	uaaaauuauc	uccaguauua	60
15	acugugcugc	ugaaguaagg	u				81
	<210> 37 <211> 84 <212> ARN <213> Homo sap	piens					
20	<400> 37						
	gucagaauaa	ugucaaagug	cuuacagugc	agguagugau	augugcaucu	acugcaguga	60
	aggcacuugu	agcauuaugg	ugac				84
25	<210> 38 <211> 71 <212> ARN <213> Homo sap	piens					
30	<400> 38						
	uguucuaagg	ugcaucuagu	gcagauagug	aaguagauua	gcaucuacug	cccuaagugc	60
	uccuucuggc	a					71
35	<210> 39 <211> 81 <212> ARN <213> Homo sap	piens					
40	<400> 39						
40	uuuuuguucu	aaggugcauc	uagugcagau	agugaaguag	auuagcaucu	acugcccuaa	60
	gugcuccuuc	uggcauaaga	a				81
45	<210> 40 <211> 82 <212> ARN <213> Homo sap	piens					
	<400> 40						
	gcaguccucu	guuaguuuug	cauaguugca	cuacaagaag	aauguaguug	ugcaaaucua	60
50	ugcaaaacug	augguggccu	gc				82
	<210> 41						

	<211> 80 <212> ARN <213> Homo sap	piens					
5	<400> 41						
	caguccucug	uuaguuuugc	auaguugcac	uacaagaaga	auguaguugu	gcaaaucuau	60
	gcaaaacuga	ugguggccug					80
10	<210> 42 <211> 87 <212> ARN <213> Homo sap	piens					
. =	<400> 42						
15	cacuguucua	ugguuaguuu	ugcagguuug	cauccagcug	ugugauauuc	ugcugugcaa	60
	auccaugcaa	aacugacugu	gguagug				87
20	<210> 43 <211> 96 <212> ARN <213> Homo sap	piens					
	<400> 43						
	acauugcuac	uuacaauuag	uuuugcaggu	uugcauuuca	gcguauauau	guauaugugg	60
25	cugugcaaau	ccaugcaaaa	cugauuguga	uaaugu			96
30	<210> 44 <211> 80 <212> ARN <213> Homo sap	piens					
	<400> 44						
	uucuaugguu	aguuuugcag	guuugcaucc	agcuguguga	uauucugcug	ugcaaaucca	60
35	ugcaaaacug	acugugguag					80
33	<210> 45 <211> 81 <212> ARN <213> Homo sap	piens					
40	<400> 45	oren 3					
		uuuugcaggu	uugcauuuca	gcguauauau	guauaugugg	cugugcaaau	60
		cugauuguga					81
45	<210> 46 <211> 71 <212> ARN <213> Homo sap						
50	<400> 46						
	guagcacuaa	agugcuuaua	gugcagguag	uguuuaguua	ucuacugcau	uaugagcacu	60
	uaaaguacug	С					71

5	<210> 47 <211> 72 <212> ARN <213> Homo sap	piens					
	<400> 47						
	ugucggguag	cuuaucagac	ugauguugac	uguugaaucu	cauggcaaca	ccagucgaug	60
10	ggcugucuga	ca					72
	<210> 48 <211> 81 <212> ARN <213> Homo sap	piens					
15	<400> 48						
	accuugucgg	guagcuuauc	agacugaugu	ugacuguuga	aucucauggc	aacaccaguc	60
	gaugggcugu	cugacauuuu	g				81
20	<210> 49 <211> 85 <212> ARN <213> Homo sap	piens					
25	<400> 49						
	ggcugagccg	caguaguucu	ucaguggcaa	gcuuuauguc	cugacccagc	uaaagcugcc	60
	aguugaagaa	cuguugcccu	cugcc				85
30	<210> 50 <211> 73 <212> ARN <213> Homo sap	piens					
O.E.	<400> 50						
35	ggccggcugg	gguuccuggg	gaugggauuu	gcuuccuguc	acaaaucaca	uugccaggga	60
	uuuccaaccg	acc					73
40	<210> 51 <211> 97 <212> ARN <213> Homo sap	piens					
	<400> 51						
	cucaggugcu	cuggcugcuu	ggguuccugg	caugcugauu	ugugacuuaa	gauuaaaauc	60
45	acauugccag	ggauuaccac	gcaaccacga	ccuuggc			97
50	<210> 52 <211> 81 <212> ARN <213> Homo sap	niens					
50	<400> 52	noi la					

	ccacggccgg	cugggguucc	uggggauggg	auuugcuucc	ugucacaaau	cacauugcca	60
	gggauuucca	accgacccug	a				81
5	<210> 53 <211> 68 <212> ARN <213> Homo sap	piens					
	<400> 53						
	cuccggugcc	uacugagcug	auaucaguuc	ucauuuuaca	cacuggcuca	guucagcagg	60
10	aacaggag						68
15	<210> 54 <211> 73 <212> ARN <213> Homo sap	piens					
	<400> 54						
	cucugccucc	cgugccuacu	gagcugaaac	acaguugguu	uguguacacu	ggcucaguuc	60
20	agcaggaaca	ggg					73
	<210> 55 <211> 81 <212> ARN <213> Homo sap	piens					
25	<400> 55						
	cccugggcuc	ugccucccgu	gccuacugag	cugaaacaca	guugguuugu	guacacuggc	60
	ucaguucagc	aggaacaggg	g				81
30	<210> 56 <211> 71 <212> ARN <213> Homo sap	piens					
35	<400> 56						
	cccuccggug	ccuacugagc	ugauaucagu	ucucauuuua	cacacuggcu	caguucagca	60
	ggaacagcau	C					71
40	<210> 57 <211> 84 <212> ARN						
	<213> Homo sap	piens					
45	<400> 57						
	ggccaguguu	gagaggcgga	gacuugggca	auugcuggac	gcugcccugg	gcauugcacu	60
	ugucucgguc	ugacagugcc	ggcc				84
50	<210> 58 <211> 86 <212> ARN <213> Homo sap	piens					

	<400> 58						
	aggccguggc	cucguucaag	uaauccagga	uaggcugugc	aggucccaau	ggccuaucuu	60
5	gguuacuugc	acggggacgc	gggccu				86
5	<210> 59 <211> 77 <212> ARN <213> Homo sap	piens					
10	<400> 59						
	guggccucgu	ucaaguaauc	caggauaggc	ugugcagguc	ccaaugggcc	uauucuuggu	60
	uacuugcacg	gggacgc					77
15	<210> 60 <211> 84 <212> ARN <213> <i>Homo sap</i>	piens					
20	<400> 60						
	ggcuguggcu	ggauucaagu	aauccaggau	aggcuguuuc	caucugugag	gccuauucuu	60
	gauuacuugu	uucuggaggc	agcu				84
25	<210> 61 <211> 77 <212> ARN <213> Homo sap	piens					
00	<400> 61						
30	ccgggaccca	guucaaguaa	uucaggauag	guugugugcu	guccagccug	uucuccauua	60
	cuuggcucgg	ggaccgg					77
35	<210> 62 <211> 78 <212> ARN <213> Homo sap	piens					
	<400> 62						
	cugaggagca	gggcuuagcu	gcuugugagc	aggguccaca	ccaagucgug	uucacagugg	60
40	cuaaguuccg	cccccag					78
45	<210> 63 <211> 73 <212> ARN <213> Homo sap	piens					
	<400> 63						
	aggugcagag	cuuagcugau	uggugaacag	ugauugguuu	ccgcuuuguu	cacaguggcu	60
50	aaguucugca	ccu					73
50	<210> 64 <211> 97						

	<212> ARN <213> <i>Homo sap</i>	piens					
	<400> 64						
5	accucucuaa	caaggugcag	agcuuagcug	auuggugaac	agugauuggu	uuccgcuuug	60
	uucacagugg	cuaaguucug	caccugaaga	gaaggug			97
10	<210> 65 <211> 80 <212> ARN <213> Homo sap	piens					
	<400> 65						
	ccugaggagc	agggcuuagc	ugcuugugag	caggguccac	accaagucgu	guucacagug	60
15	gcuaaguucc	gcccccagg					80
20	<210> 66 <211> 86 <212> ARN <213> Homo sap	piens					
	<400> 66						
	gguccuugcc	cucaaggagc	ucacagucua	uugaguuacc	uuucugacuu	ucccacuaga	60
25	uugugagcuc	cuggagggca	ggcacu				86
	<210> 67 <211> 108 <212> ARN <213> Homo sap	piens					
30	<400> 67						
	ccuucuguga	ccccuuagag	gaugacugau	uucuuuuggu	guucagaguc	aauauaauuu	60
	ucuagcacca	ucugaaaucg	guuauaauga	uuggggaaga	gcaccaug		108
35	<210> 68 <211> 64 <212> ARN <213> Homo sap	piens					
40	<400> 68						
	augacugauu	ucuuuuggug	uucagaguca	auauaauuuu	cuagcaccau	cugaaaucgg	60
	uuau						64
45	<210> 69 <211> 81 <212> ARN <213> Homo sap	piens					
50	<400> 69						
	cuucaggaag	cugguuucau	auggugguuu	agauuuaaau	agugauuguc	uagcaccauu	60
	ugaaaucagu	guucuugggg	g				81

5	<210> 70 <211> 81 <212> ARN <213> <i>Homo sap</i> <400> 70	piens					
	cuucuggaag	cugguuucac	augguggcuu	agauuuuucc	aucuuuguau	cuagcaccau	60
	uugaaaucag	uguuuuagga	g				81
10	<210> 71 <211> 110 <212> ARN <213> Homo sap	piens					
15	<400> 71						
	accacuggcc	caucucuuac	acaggcugac	cgauuucucc	ugguguucag	agucuguuuu	60
	ugucuagcac	cauuugaaau	cgguuaugau	guagggggaa	aagcagcagc		110
20	<210> 72 <211> 71 <212> ARN <213> Homo sap	piens					
0.5	<400> 72						
25	gcgacuguaa	acauccucga	cuggaagcug	ugaagccaca	gaugggcuuu	cagucggaug	60
	uuugcagcug	С					71
30	<210> 73 <211> 60 <212> ARN <213> Homo sap	piens					
35	<400> 73 auguaaacau ccua	acacuca gcuguaa	uac auggauuggc	ugggaggugg augi	uuuacgu 60		
33	<210> 74 <211> 88 <212> ARN						
40	<213> Homo sap	piens					
40	<400> 74						
	accaaguuuc	aguucaugua	aacauccuac	acucagcugu	aauacaugga	uuggcuggga	60
	gguggauguu	uacuucagcu	gacuugga				88
45	<210> 75 <211> 72 <212> ARN <213> Homo sap	piens					
50	<400> 75						
	agauacugua	aacauccuac	acucucagcu	guggaaagua	agaaagcugg	gagaaggcug	60
	uuuacucuuu	cu					72
55	<210> 76 <211> 70						

	<212> ARN <213> Homo sap	piens					
	<400> 76						
5	guuguuguaa	acauccccga	cuggaagcug	uaagacacag	cuaagcuuuc	agucagaugu	60
	uugcugcuac						70
10	<210> 77 <211> 64 <212> ARN <213> Homo sap	piens					
	<400> 77						
	cuguaaacau	ccuugacugg	aagcuguaag	guguucagag	gagcuuucag	ucggauguuu	60
15	acag						64
20	<210> 78 <211> 71 <212> ARN <213> Homo sap	piens					
	<400> 78						
	ggagaggagg	caagaugcug	gcauagcugu	ugaacuggga	accugcuaug	ccaacauauu	60
25	gccaucuuuc	С					71
	<210> 79 <211> 70 <212> ARN <213> Homo say	piens					
30	<400> 79						
	ggagauauug	cacauuacua	aguugcaugu	ugucacggcc	ucaaugcaau	uuagugugug	60
	ugauauuuuc						70
35	<210> 80 <211> 110 <212> ARN <213> Homo sap	piens					
40	<400> 80						
	gggggccgag	agaggcgggc	ggccccgcgg	ugcauugcug	uugcauugca	cgugugugag	60
	gcgggugcag	ugccucggca	gugcagcccg	gagccggccc	cuggcaccac		110
45	<210> 81 <211> 88 <212> ARN <213> Homo sap	piens					
50	<400> 81						
50	accaaguuuc	aguucaugua	aacauccuac	acucagcugu	aauacaugga	uuggcuggga	60
	gguggauguu	uacuucagcu	gacuugga				88

5	<210> 82 <211> 69 <212> ARN <213> <i>Homo sap</i> <400> 82	piens					
		uuguaguugc	auugcauguu	cuggugguac	ccaugcaaug	uuuccacagu	60
	gcaucacag						69
10	<210> 83 <211> 110 <212> ARN <213> Homo sap	piens					
15	<400> 83						
	ggccagcugu	gaguguuucu	uuggcagugu	cuuagcuggu	uguugugagc	aauaguaagg	60
	aagcaaucag	caaguauacu	gcccuagaag	ugcugcacgu	uguggggccc		110
20	<210> 84 <211> 84 <212> ARN <213> Homo sap	piens					
25	<400> 84						
20	gugcucgguu	uguaggcagu	gucauuagcu	gauuguacug	uggugguuac	aaucacuaac	60
	uccacugcca	ucaaaacaag	gcac				84
30	<210> 85 <211> 77 <212> ARN <213> Homo sap	piens					
	<400> 85						
	agucuaguua	cuaggcagug	uaguuagcug	auugcuaaua	guaccaauca	cuaaccacac	60
35	ggccagguaa	aaagauu					77
40	<210> 86 <211> 82 <212> ARN <213> Homo sap	piens					
	<400> 86						
		gucaaagugc	uuacagugca	gguagugaua	ugugcaucua	cugcagugaa	60
15	ggcacuugua	gcauuauggu	ga				82
45	<210> 87 <211> 78 <212> ARN <213> Homo sap	piens					
50	<400> 87						
	cuuucuacac ccggccuguu	agguugggau gaguuugg	cgguugcaau	gcuguguuuc	uguaugguau	ugcacuuguc	60 78

_	<210> 88 <211> 75 <212> ARN <213> Homo sap	piens					
5	<400> 88						
	ucaucccugg	guggggauuu	guugcauuac	uuguguucua	uauaaaguau	ugcacuuguc	60
	ccggccugug	gaaga					75
10	<210> 89 <211> 80 <212> ARN <213> Homo sap	piens					
15	<400> 89						
	cugggggcuc	caaagugcug	uucgugcagg	uagugugauu	acccaaccua	cugcugagcu	60
	agcacuuccc	gagcccccgg					80
20	<210> 90 <211> 81 <212> ARN <213> Homo sap	piens					
0.5	<400> 90						
25	aacacagugg	gcacucaaua	aaugucuguu	gaauugaaau	gcguuacauu	caacggguau	60
	uuauugagca	cccacucugu	g				81
30	<210> 91 <211> 78 <212> ARN <213> Homo sap	piens					
	<400> 91						
	uggccgauuu	uggcacuagc	acauuuuugc	uugugucucu	ccgcucugag	caaucaugug	60
35	cagugccaau	augggaaa					78
40	<210> 92 <211> 80 <212> ARN <213> Homo sap	niens					
	<400> 92						
	gugagcgacu	guaaacaucc	ucgacuggaa	gcugugaagc	cacagauggg	cuuucagucg	60
45	gauguuugca	gcugccuacu					80
	<210> 93 <211> 80 <212> ARN <213> Homo sap	piens					
50	<400> 93						
	gugagguagu uauacaacuu		guuguggggu	agggauauua	ggccccaauu	agaagauaac	60 80

5	<210> 94 <211> 70 <212> ARN <213> Homo sap <400> 94	piens					
		cguagaaccg	accuugcggg	gccuucgccg	cacacaagcu	cgugucugug	60
	gguccguguc						70
10	<210> 95 <211> 81 <212> ARN <213> Homo sap	piens					
15	<400> 95						
	cccauuggca	uaaacccgua	gauccgaucu	uguggugaag	uggaccgcac	aagcucgcuu	60
	cuaugggucu	gugucagugu	g				81
20	<210> 96 <211> 108 <212> ARN <213> Homo sap	piens					
	<400> 96						
25	aagagagaag	auauugaggc	cuguugccac	aaacccguag	auccgaacuu	gugguauuag	60
	uccgcacaag	cuuguaucua	uagguaugug	ucuguuaggc	aaucucac		108
30	<210> 97 <211> 80 <212> ARN <213> Homo sap	piens					
	<400> 97						
	ccuguugcca	caaacccgua	gauccgaacu	ugugguauua	guccgcacaa	gcuuguaucu	60
35	auagguaugu	gucuguuagg					80
40	<210> 98 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 98						
	aggcugcccu	ggcucaguua	ucacagugcu	gaugcugucu	auucuaaagg	uacaguacug	60
45	ugauaacuga	aggauggcag	ccaucuuacc	uuccaucaga	ggagccucac		110
50	<210> 99 <211> 57 <212> ARN <213> Homo sap	piens					
- -	<400> 99 ucaguuauca cag	ugcugau gcugucc	auu cuaaagguac	aguacuguga uaa	cuga 57		
	<210> 100						

	<211> 75 <212> ARN <213> Homo sapi	iens					
5	<400> 100						
	ugcccuggcu	caguuaucac	agugcugaug	cugucuauuc	uaaagguaca	guacugugau	60
	aacugaagga	uggca					75
10	<210> 101 <211> 79 <212> ARN <213> Homo sapa	iens					
15	<400> 101						
13	acuguccuuu	uucgguuauc	augguaccga	ugcuguauau	cugaaaggua	caguacugug	60
	auaacugaag	aaugguggu					79
20	<210> 102 <211> 75 <212> ARN <213> Homo sapi	iens					
	<400> 102						
	uguccuuuuu	cgguuaucau	gguaccgaug	cuguauaucu	gaaagguaca	guacugugau	60
25	aacugaagaa	uggug					75
30	<210> 103 <211> 81 <212> ARN <213> Homo sapi	iens					
	<400> 103						
	cuucuggaag	cugguuucac	augguggcuu	agauuuuucc	aucuuuguau	cuagcaccau	60
35	uugaaaucag	uguuuuagga	g				81
	<210> 104 <211> 81 <212> ARN <213> Homo sapi	iens					
40	<400> 104						
	cuucaggaag	cugguuucau	auggugguuu	agauuuaaau	agugauuguc	uagcaccauu	60
	ugaaaucagu	guucuugggg	g				81
45	<210> 105 <211> 78 <212> ARN <213> Homo sapa	iens					
50	<400> 105						
	uugugcuuuc agggcuauga		cagugcugcc	uuguagcauu	caggucaagc	aacauuguac	60 78

5	<210> 106 <211> 78 <212> ARN <213> Homo sap <400> 106	piens					
	uacugcccuc	ggcuucuuua	cagugcugcc	uuguugcaua	uggaucaagc	agcauuguac	60
	agggcuauga	aggcauug					78
10	<210> 107 <211> 78 <212> ARN <213> Homo sap	piens					
15	<400> 107						
	aaaugucaga	cagcccaucg	acugguguug	ccaugagauu	caacagucaa	caucagucug	60
	auaagcuacc	cgacaagg					78
20	<210> 108 <211> 81 <212> ARN <213> Homo sap	piens					
25	<400> 108						
20	ugugcaucgu	ggucaaaugc	ucagacuccu	gugguggcug	cucaugcacc	acggauguuu	60
	gagcaugugc	uacggugucu	a				81
30	<210> 109 <211> 81 <212> ARN <213> Homo sap	piens					
	<400> 109						
	ugugcaucgu	ggucaaaugc	ucagacuccu	gugguggcug	cuuaugcacc	acggauguuu	60
35	gagcaugugc	uauggugucu	a				81
40	<210> 110 <211> 81 <212> ARN <213> Homo sap	piens					
	<400> 110						
	ccuuggccau	guaaaagugc	uuacagugca	gguagcuuuu	ugagaucuac	ugcaauguaa	60
45	gcacuucuua	cauuaccaug	g				81
50	<210> 111 <211> 82 <212> ARN <213> Homo sap	piens					
	<400> 111						

	ccugccgggg	cuaaagugcu	gacagugcag	auaguggucc	ucuccgugcu	accgcacugu	60
	ggguacuugc	ugcuccagca	gg				82
5	<210> 112 <211> 81 <212> ARN <213> Homo sap	piens					
	<400> 112						
	cucucugcuu	ucagcuucuu	uacaguguug	ccuuguggca	uggaguucaa	gcagcauugu	60
10	acagggcuau	caaagcacag	a				81
15	<210> 113 <211> 90 <212> ARN <213> Homo sap	piens					
	<400> 113						
	acacugcaag	aacaauaagg	auuuuuaggg	gcauuaugac	ugagucagaa	aacacagcug	60
20	ccccugaaag	ucccucauuu	uucuugcugu				90
20	<210> 114 <211> 80 <212> ARN <213> Homo sap	piens					
25		oletis					
	<400> 114						60
	acugcaagag	caauaaggau	uuuuaggggc	auuaugauag	uggaauggaa	acacaucuge	60
	ccccaaaagu	cccucauuuu					80
30	<210> 115 <211> 85 <212> ARN <213> Homo sap	piens					
35	<400> 115						
	ccuuagcaga	gcuguggagu	gugacaaugg	uguuuguguc	uaaacuauca	aacgccauua	60
	ucacacuaaa	uagcuacugc	uaggc				85
40	<210> 116 <211> 66 <212> ARN <213> Homo sap	piens					
1 E	<400> 116						
45	agcuguggag	ugugacaaug	guguuugugu	ccaaacuauc	aaacgccauu	aucacacuaa	60
	auagcu						66
50	<210> 117 <211> 61 <212> ARN <213> Homo sar	piens					

	<400> 117						
	acauuauuac	uuuugguacg	cgcugugaca	cuucaaacuc	guaccgugag	uaauaaugcg	60
	С						61
5	<210> 118 <211> 85 <212> ARN <213> Homo sap	piens					
10	<400> 118						
	aggccucucu	cuccguguuc	acagcggacc	uugauuuaaa	uguccauaca	auuaaggcac	60
	gcggugaaug	ccaagaaugg	ggcug				85
15	<210> 119 <211> 110 <212> ARN <213> Homo sap	piens					
00	<400> 119						
20	aucaagauua	gaggcucugc	ucuccguguu	cacagcggac	cuugauuuaa	ugucauacaa	60
	uuaaggcacg	cggugaaugc	caagagcgga	gccuacggcu	gcacuugaag		110
25	<210> 120 <211> 87 <212> ARN <213> Homo sap	piens					
	<400> 120						
	ugagggcccc	ucugcguguu	cacagcggac	cuugauuuaa	ugucuauaca	auuaaggcac	60
30	gcggugaaug	ccaagagagg	cgccucc				87
35	<210> 121 <211> 68 <212> ARN <213> Homo sap	piens					
00	<400> 121	oren 3					
		ucacagcgga	ccuugauuua	augucuauac	aauuaaggca	cgcggugaau	60
40	gccaagag						68
40	<210> 122 <211> 67						
	<211> 67 <212> ARN						
15	<213> Homo sap	piens					
45	<400> 122						
	cucuccgugu	ucacagcgga	ccuugauuua	augucauaca	auuaaggcac	gcggugaaug	60
	ccaagag						67
50	<210> 123 <211> 86 <212> ARN						

	<213> Homo sap	piens					
	<400> 123						
	ugccagucuc	uaggucccug	agacccuuua	accugugagg	acauccaggg	ucacagguga	60
5	gguucuuggg	agccuggcgu	cuggcc				86
10	<210> 124 <211> 65 <212> ARN <213> Homo sap	piens					
	<400> 124						
	ggucccugag	acccuuuaac	cugugaggac	auccaggguc	acaggugagg	uucuugggag	60
15	ccugg						65
	<210> 125 <211> 88 <212> ARN <213> Homo sap	piens					
20	<400> 125						
	ugegeueeue	ucagucccug	agacccuaac	uugugauguu	uaccguuuaa	auccacgggu	60
	uaggcucuug	ggagcugcga	gucgugcu				88
25	<210> 126 <211> 89 <212> ARN <213> Homo sap	oiens					
30	<400> 126						
	accagacuuu	uccuaguccc	ugagacccua	acuugugagg	uauuuuagua	acaucacaag	60
	ucaggcucuu	gggaccuagg	cggagggga				89
35	<210> 127 <211> 85 <212> ARN <213> Homo sap	niens					
40	<400> 127						
40	cgcuggcgac	gggacauuau	uacuuuuggu	acgcgcugug	acacuucaaa	cucguaccgu	60
	gaguaauaau	gcgccgucca	cggca				85
45	<210> 128 <211> 61 <212> ARN <213> Homo sap	piens					
	<400> 128						
	acauuauuac	uuuugguacg	cgcugugaca	cuucaaacuc	guaccgugag	uaauaaugcg	60
50	С						61
	<210> 129						

	<211> 97 <212> ARN <213> Homo sap	piens					
5	<400> 129						
	ugugaucacu	gucuccagcc	ugcugaagcu	cagagggcuc	ugauucagaa	agaucaucgg	60
	auccgucuga	gcuuggcugg	ucggaagucu	caucauc			97
10	<210> 130 <211> 70 <212> ARN <213> Homo sap	piens					
15	<400> 130						
15	ccagccugcu	gaagcucaga	gggcucugau	ucagaaagau	caucggaucc	gucugagcuu	60
	ggcuggucgg						70
20	<210> 131 <211> 82 <212> ARN <213> Homo sap	piens					
	<400> 131						
	ugagcuguug	gauucggggc	cguagcacug	ucugagaggu	uuacauuucu	cacagugaac	60
25	cggucucuuu	uucagcugcu	uc				82
30	<210> 132 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 132						
	gcccggcagc	cacugugcag	ugggaagggg	ggccgauaca	cuguacgaga	gugaguagca	60
35	ggucucacag	ugaaccgguc	ucuuucccua	cugugucaca	cuccuaaugg		110
33	<210> 133 <211> 70 <212> ARN <213> Homo sap	oione.					
40	<400> 133	nens					
		gggccguagc	acugucugag	agguuuagau	uucucacagu	gaaccggucu	60
		gggccgaagc	acagacagag	aggaaaacaa	uucucucugu	gaaccggaca	70
45	cuuuuucagc						70
45	<210> 134 <211> 74 <212> ARN <213> Homo sap	piens					
50	<400> 134						
	uggaucuuuu	ugcggucugg	gcuugcuguu	ccucucaaca	guagucagga	agcccuuacc	60
	ccaaaaagua	ucua					74

5	<210> 135 <211> 90 <212> ARN <213> Homo sap	piens					
	<400> 135						
	ugcccuucgc	gaaucuuuuu	gcggucuggg	cuugcuguac	auaacucaau	agccggaagc	60
	ccuuacccca	aaaagcauuu	gcggagggcg				90
10	<210> 136 <211> 89 <212> ARN <213> Homo sap	piens					
15	<400> 136						
	ugcugcuggc	cagagcucuu	uucacauugu	gcuacugucu	gcaccuguca	cuagcagugc	60
	aauguuaaaa	gggcauuggc	cguguagug				89
20	<210> 137 <211> 110 <212> ARN <213> Homo sap	piens					
25	<400> 137						
20	gccaggaggc	gggguugguu	guuaucuuug	guuaucuagc	uguaugagug	guguggaguc	60
	uucauaaagc	uagauaaccg	aaaguaaaaa	uaaccccaua	cacugcgcag		110
30	<210> 138 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 138						
	cacggcgcgg	cagcggcacu	ggcuaaggga	ggcccguuuc	ucucuuuggu	uaucuagcug	60
35	uaugagugcc	acagagccgu	cauaaagcua	gauaaccgaa	aguagaaaug		110
40	<210> 139 <211> 72 <212> ARN <213> Homo sap	piens					
	<400> 139						
	guuguuaucu	uugguuaucu	agcuguauga	guguauuggu	cuucauaaag	cuagauaacc	60
1 E	gaaaguaaaa	ac					72
45	<210> 140 <211> 101 <212> ARN <213> Homo sap	niens					
50	<400> 140						

	ccgccccgc	gucuccaggg	caaccguggc	uuucgauugu	uacuguggga	acuggaggua	60
	acagucuaca	gccauggucg	ccccgcagca	cgcccacgcg	С		101
5	<210> 141 <211> 66 <212> ARN <213> Homo sap	piens					
	<400> 141						
	gggcaaccgu	ggcuuucgau	uguuacugug	ggaacuggag	guaacagucu	acagccaugg	60
10	ucgccc						66
15	<210> 142 <211> 88 <212> ARN <213> Homo sap	piens					
	<400> 142						
	acaaugcuuu	gcuagagcug	guaaaaugga	accaaaucgc	cucuucaaug	gauuuggucc	60
20	ccuucaacca	gcuguagcua	ugcauuga				88
20	<210> 143 <211> 102 <212> ARN <213> Homo sap	niens					
25	<400> 143	nens					
		ugcuuugcua	gagcugguaa	aauggaacca	aaucgacugu	ccaauggauu	60
		caaccagcug					102
30	<210> 144 <211> 68 <212> ARN <213> Homo sap	piens					
35	<400> 144						
	gcuagagcug	guaaaaugga	accaaaucgc	cucuucaaug	gauuuggucc	ccuucaacca	60
	gcuguagc						68
40	<210> 145 <211> 119 <212> ARN <213> Homo sap	piens					
1 5	<400> 145						
45	ccucagaaga	aagaugcccc	cugcucuggc	uggucaaacg	gaaccaaguc	cgucuuccug	60
	agagguuugg	uccccuucaa	ccagcuacag	cagggcuggc	aaugcccagu	ccuuggaga	119
50	<210> 146 <211> 80 <212> ARN <213> Homo sar	piens					

	<400> 146						
	gcccccugcu	cuggcugguc	aaacggaacc	aaguccgucu	uccugagagg	uuuggucccc	60
	uucaaccagc	uacagcaggg					80
5	<210> 147 <211> 73 <212> ARN <213> Homo sap	piens					
10	<400> 147						
	cagggugugu	gacugguuga	ccagaggggc	augcacugug	uucacccugu	gggccaccua	60
	gucaccaacc	cuc					73
	<210> 148 <211> 71 <212> ARN <213> Homo sap	niens					
20	<400> 148						
20	agggugugug	acugguugac	cagaggggca	ugcacugugu	ucacccugug	ggccaccuag	60
	ucaccaaccc	u					71
	<210> 149 <211> 90 <212> ARN <213> Homo sap	piens					
	<400> 149						
	aggccucgcu	guucucuaug	gcuuuuuauu	ccuaugugau	ucuacugcuc	acucauauag	60
30	ggauuggagc	cguggcgcac	ggcggggaca				90
35	<210> 150 <211> 100 <212> ARN <213> Homo sap	piens					
	<400> 150						
	agauaaauuc	acucuagugc	uuuauggcuu	uuuauuccua	ugugauagua	auaaagucuc	60
40	auguagggau	ggaagccaug	aaauacauug	ugaaaaauca			100
40	<210> 151 <211> 60 <212> ARN <213> Homo sap	niens					
45	<400> 151 cuauggcuuu uuau	uuccuau gugauuc	uac ugcucacuca	uauagggauu gga(gccgugg 60		
50	<210> 152 <211> 97 <212> ARN <213> Homo sap	niens					
	<400> 152						
55							

	cacucugcug	uggccuaugg	cuuuucauuc	cuaugugauu	gcugucccaa	acucauguag	60
	ggcuaaaagc	caugggcuac	agugaggggc	gagcucc			97
5	<210> 153 <211> 82 <212> ARN <213> Homo sap	piens					
	<400> 153						
	ugagcccucg	gaggacucca	uuuguuuuga	ugauggauuc	uuaugcucca	ucaucgucuc	60
10	aaaugagucu	ucagaggguu	cu				82
15	<210> 154 <211> 62 <212> ARN <213> Homo sap	piens					
	<400> 154						
	gaggacucca	uuuguuuuga	ugauggauuc	uuaugcucca	ucaucgucuc	aaaugagucu	60
20	uc						62
20	<210> 155 <211> 73 <212> ARN <213> Homo sap	niens					
25	<400> 155						
	cuucggugac	ggguauucuu	ggguggauaa	uacggauuac	guuguuauug	cuuaagaaua	60
	cgcguagucg	agg					73
30	<210> 156 <211> 99 <212> ARN <213> Homo sap	piens					
35	<400> 156						
	cccuggcaug	gugugguggg	gcagcuggug	uugugaauca	ggccguugcc	aaucagagaa	60
	cggcuacuuc	acaacaccag	ggccacacca	cacuacagg			99
40	<210> 157 <211> 84 <212> ARN <213> Homo sap	piens					
45	<400> 157						
+∪	cguugcugca	gcugguguug	ugaaucaggc	cgacgagcag	cgcauccucu	uacccggcua	60
	uuucacgaca	ccaggguugc	auca				84
50	<210> 158 <211> 71 <212> ARN <213> Homo sap	piens					

	<400> 158						
	cagcuggugu	ugugaaucag	gccgacgagc	agcgcauccu	cuuacccggc	uauuucacga	60
	caccaggguu	g					71
5	<210> 159 <211> 68 <212> ARN <213> Homo sap	piens					
10	<400> 159						
	guguauucua	cagugcacgu	gucuccagug	uggcucggag	gcuggagacg	cggcccuguu	60
	ggaguaac						68
15	<210> 160 <211> 100 <212> ARN <213> Homo sap	piens					
20	<400> 160						
20	ugugucucuc	ucuguguccu	gccagugguu	uuacccuaug	guagguuacg	ucaugcuguu	60
	cuaccacagg	guagaaccac	ggacaggaua	ccggggcacc			100
25	<210> 161 <211> 72 <212> ARN <213> Homo sap	piens					
	<400> 161						
	uccugccagu	gguuuuaccc	uaugguaggu	uacgucaugc	uguucuacca	caggguagaa	60
30	ccacggacag	ga					72
35	<210> 162 <211> 70 <212> ARN <213> Homo sap	piens					
	<400> 162						
	ccugccagug	guuuuacccu	augguagguu	acgucaugcu	guucuaccac	aggguagaac	60
40	cacggacagg						70
40	<210> 163 <211> 95 <212> ARN <213> Homo sap	piens					
45	<400> 163						
	cggccggccc	uggguccauc	uuccaguaca	guguuggaug	gucuaauugu	gaagcuccua	60
	acacugucug	guaaagaugg	cucccgggug	gguuc			95
50	<210> 164 <211> 72 <212> ARN						

	<213> Homo sap	oiens					
	<400> 164						
	ggguccaucu	uccaguacag	uguuggaugg	ucuaauugug	aagcuccuaa	cacugucugg	60
5	uaaagauggc	CC					72
10	<210> 165 <211> 64 <212> ARN <213> Homo sap	piens					
	<400> 165						
	acccauaaag	uagaaagcac	uacuaacagc	acuggagggu	guaguguuuc	cuacuuuaug	60
15	gaug						64
	<210> 166 <211> 106 <212> ARN <213> Homo sap	piens					
20	<400> 166						
	gcgcagcgcc	cugucuccca	gccugaggug	cagugcugca	ucucugguca	guugggaguc	60
	ugagaugaag	cacuguagcu	caggaagaga	gaaguuguuc	ugcagc		106
25	<210> 167 <211> 63 <212> ARN <213> Homo sap	piens					
30	<400> 167						
	ccugaggugc	agugcugcau	cucuggucag	uugggagucu	gagaugaagc	acuguagcuc	60
	agg						63
35	<210> 168 <211> 86 <212> ARN <213> Homo sap	piens					
40	<400> 168						
40	uggggcccug	gcugggauau	caucauauac	uguaaguuug	cgaugagaca	cuacaguaua	60
	gaugauguac	uaguccgggc	accccc				86
45	<210> 169 <211> 66 <212> ARN <213> Homo sap	piens					
	<400> 169						
	ggcugggaua	ucaucauaua	cuguaaguuu	gcgaugagac	acuacaguau	agaugaugua	60
50	cuaguc						66
	<210> 170						

	<211> 88 <212> ARN <213> Homo sap	viens					
5	<400> 170						
	caccuugucc	ucacggucca	guuuucccag	gaaucccuua	gaugcuaaga	uggggauucc	60
	uggaaauacu	guucuugagg	ucaugguu				88
10	<210> 171 <211> 70 <212> ARN <213> Homo sap	niens					
. F	<400> 171						
15	cucacggucc	aguuuuccca	ggaaucccuu	agaugcuaag	auggggauuc	cuggaaauac	60
	uguucuugag						70
20	<210> 172 <211> 99 <212> ARN <213> Homo sap	iens					
	<400> 172						
	ccgaugugua	uccucagcuu	ugagaacuga	auuccauggg	uugugucagu	gucagaccuc	60
25	ugaaauucag	uucuucagcu	gggauaucuc	ugucaucgu			99
30	<210> 173 <211> 65 <212> ARN <213> Homo sap	niens					
	<400> 173						
	agcuuugaga	acugaauucc	auggguugug	ucagugucag	accugugaaa	uucaguucuu	60
35	cagcu						65
33	<210> 174 <211> 72 <212> ARN <213> Homo sap	niens					
40	<400> 174						
		caacauuucu	gcacacacac	cagacuaugg	aagccagugu	guggaaaugc	60
	uucugcuaga	uu					72
45 50	<210> 175 <211> 68 <212> ARN <213> Homo sap <400> 175						
		ucugagacac	uccgacucuq	aguaugauag	aagucagugc	acuacagaac	60
	uuugucuc		-	-		-	68

	<210> 176						
	<211> 99						
	<212> ARN						
		iono					
-	<213> Homo sap	ieris					
5	<400> 176						
	170						
	caagcacgau				ucaggcugug	gcucucugaa	60
	agucagugca	ucacagaacu	uugucucgaa	agcuuucua			99
10							
	<210> 177						
	<211> 70						
	<212> ARN						
	<213> Homo sap	iens					
15	,						
	<400> 177						
	aagcacgauu	agcauuugag	gugaaguucu	guuauacacu	caggcugugg	cucucugaaa	60
	3 3	3 3 3		3	33 3 33	-	
	gucagugcau						70
20	<210> 178						
20	<211> 89						
	<211> 69 <212> ARN						
		iono					
	<213> Homo sap	ieris					
O.E.	.400, 170						
25	<400> 178						
	gccggcgccc	gagcucuggc	uccgugucuu	cacucccgug	cuuguccgag	gagggaggga	60
							0.0
	gggacggggg	cugugcuggg	gcagcugga				89
	<210> 179						
30	<211> 53						
00	<212> ARN						
	<213> Homo sap	ione					
	<2102 Homo sap	16113					
	<400> 179						
35		HOLINGS CHOOCOIN	acii ilallecasaas (nanaanaana nac l	53		
33	gcucuggcuc cgug	ucuuca cuccegu	you uguccyayya (gygagygagy gac (J3		
	<210> 180						
	<211> 84						
40	<212> ARN						
40	<213> Homo sap	iens					
	100 100						
	<400> 180						
	aa.a.a.a	~~~			~~~~~~~		60
	cuccccaugg	ceeugueuce	caacccuugu	accagugeug	ggeueagaee	cugguacagg	60
	ccugggggac	agggaccugg	ggac				84
45							
	<210> 181						
	<211> 64						
	<212> ARN						
	<213> Homo sap	iens					
50	·						
	<400> 181						
	cccugucucc	caacccuugu	accagugcug	ggcucagacc	cugguacagg	ccugggggac	60
	aggg						64
55	<210> 182						
	<211> 72						
	<212> ARN						

	<213> Homo sapi	iens					
	<400> 182						
	uuuccugccc	ucgaggagcu	cacagucuag	uaugucucau	ccccuacuag	acugaagcuc	60
5	cuugaggaca	a a					72
	<210> 183 <211> 69						
10	<212> ARN <213> Homo sapi	iens					
	<400> 183						
	ccuguccuca	aggagcuuca	gucuaguagg	ggaugagaca	uacuagacug	ugagcuccuc	60
15	gagggcagg						69
	<210> 184 <211> 87 <212> ARN <213> Homo sapi	iens					
20	<400> 184						
	ugucccccc	ggcccagguu	cugugauaca	cuccgacucg	ggcucuggag	cagucagugc	60
	augacagaac	uugggcccgg	aaggacc				87
25	<210> 185 <211> 71 <212> ARN <213> Homo sapi	iens					
30	<400> 185						
	ggcccagguu	cugugauaca	cuccgacucg	ggcucuggag	cagucagugc	augacagaac	60
	uugggccccg	g					71
35	<210> 186 <211> 90 <212> ARN <213> Homo sapi	iens					
40	<400> 186						
40	cucacagcug	ccagugucau	uuuugugauc	ugcagcuagu	auucucacuc	caguugcaua	60
	gucacaaaag	ugaucauugg	cagguguggc				90
45	<210> 187 <211> 71 <212> ARN <213> Homo sapi	iens					
	<400> 187						
	ucucucucuc	ccucacagcu	gccaguguca	uugucacaaa	agugaucauu	ggcaggugug	60
50	gcugcugcau	g					71
	<210> 188						

	<211> 87 <212> ARN <213> Homo sapi	iens					
5	<400> 188						
	agcgguggcc ucacaaaagu			gcagcuagua	auaugagccc	aguugcauag	60 87
10	<210> 189 <211> 69 <212> ARN <213> Homo sapi	iens					
15	<400> 189						
	cagugucauu	uuugugaugu	ugcagcuagu	aauaugagcc	caguugcaua	gucacaaaag	60
	ugaucauug						69
20	<210> 190 <211> 84 <212> ARN <213> Homo sapi	iens					
25	<400> 190						
20	gugguacuug	aagauagguu	auccguguug	ccuucgcuuu	auuugugacg	aaucauacac	60
	gguugaccua	uuuuucagua	ccaa				84
30	<210> 191 <211> 66 <212> ARN <213> Homo sapa	iens					
	<400> 191						
	gaagauaggu	uauccguguu	gccuucgcuu	uauuugugac	gaaucauaca	cgguugaccu	60
35	auuuuu						66
	<210> 192 <211> 65 <212> ARN						
40	<213> Homo sapi	iens					
	<400> 192						60
	cuguuaaugc	uaaucgugau	agggguuuuu	geeueeaaeu	gacuccuaca	uauuagcauu	60
45	aacag						65
5 0	<210> 193 <211> 82 <212> ARN <213> Homo sapi	iens					
50	<400> 193						
	ccuaacacug	ucugguaaag	auggcucccg	gguggguucu	cucggcagua	accuucaggg	60
	agcccugaag	accauggagg	ac				82
55	<210> 194						

	<211> 110 <212> ARN <213> Homo sapiens					
5	<400> 194					
		gcacagg gcucugaco uuccaua ggucacagg			cucgucuccc	60 110
10	<210> 195 <211> 80 <212> ARN <213> Homo sapiens					
15	<400> 195					
	ucccgccccc ugua	acagca acuccaugu	ig gaagugccca	cugguuccag	uggggcugcu	60
	guuaucuggg gcga	agggcca				80
20	<210> 196 <211> 70 <212> ARN <213> <i>Homo sapiens</i>					
O.E.	<400> 196					
25	aaagcugggu ugag	gagggcg aaaaaggau	ıg aggugacugg	ucugggcuac	gcuaugcugc	60
	ggcgcucggg					70
30	<210> 197 <211> 64 <212> ARN <213> <i>Homo sapiens</i>					
	<400> 197					
	cauuggccuc cuaa	igccagg gauuguggg	u ucgaguccca	cccgggguaa	agaaaggccg	60
35	aauu					64
40	<210> 198 <211> 70 <212> ARN					
40	<213> Homo sapiens					
	<400> 198			~~~~		60
		uguggg uucgagucc	ec accuggggua	gaggugaaag	uuccuuuuac	
45	ggaauuuuuu					70
	<210> 199 <211> 108 <212> ARN <213> Homo sapiens					
50	<400> 199					
	caaugucagc agug	ccuuag cagcacgua	a auauuggcgu	uaagauucua	aaauuaucuc	60
	caguauuaac ugug	gcugcug aaguaaggu	u gaccauacuc	uacaguug		108
55	<210> 200					

	<211> 81 <212> ARN						
	<213> Homo sar	piens					
5	<400> 200						
	gggcuuucaa	gucacuagug	guuccguuua	guagaugauu	gugcauuguu	ucaaaauggu	60
	gcccuaguga	cuacaaagcc	С				81
10	<210> 201 <211> 70 <212> ARN <213> Homo sap	piens					
15	<400> 201						
15	acgcaagugu	ccuaagguga	gcucagggag	cacagaaacc	uccaguggaa	cagaagggca	60
	aaagcucauu						70
20	<210> 202 <211> 70 <212> ARN <213> Homo sap	piens					
	<400> 202						
	caugugucac	uuucaggugg	aguuucaaga	gucccuuccu	gguucaccgu	cuccuuugcu	60
25	cuuccacaac						70
30	<210> 203 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 203						
	agaagggcua	ucaggccagc	cuucagagga	cuccaaggaa	cauucaacgc	ugucggugag	60
35	uuugggauuu	gaaaaaacca	cugaccguug	acuguaccuu	gggguccuua		110
40	<210> 204 <211> 110 <212> ARN <213> Homo sap	piens					
40	<400> 204						
	ccugugcaga	gauuauuuuu	uaaaagguca	caaucaacau	ucauugcugu	cgguggguug	60
	aacugugugg	acaagcucac	ugaacaauga	augcaacugu	ggccccgcuu		110
45	<210> 205 <211> 89 <212> ARN <213> Homo sap	piens					
50	<400> 205						
	cugauggcug	cacucaacau	ucauugcugu	cgguggguuu	gagucugaau	caacucacug	60
	aucaaugaau	gcaaacugcg	gaccaaaca				89

5	<210> 206 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 206						
	cggaaaauuu	gccaaggguu	ugggggaaca	uucaaccugu	cggugaguuu	gggcagcuca	60
	ggcaaaccau	cgaccguuga	guggacccug	aggccuggaa	uugccauccu		110
10	<210> 207 <211> 110 <212> ARN <213> Homo sap	piens					
15	<400> 207						
	gagcugcuug	ccuccccccg	uuuuuggcaa	ugguagaacu	cacacuggug	agguaacagg	60
	auccgguggu	ucuagacuug	ccaacuaugg	ggcgaggacu	cagccggcac		110
20	<210> 208 <211> 70 <212> ARN <213> Homo sap	piens					
25	<400> 208						
_0	uuuuuggcaa	ugguagaacu	cacacuggug	agguaacagg	auccgguggu	ucuagacuug	60
	ccaacuaugg						70
30	<210> 209 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 209						
	ccgcagagug	ugacuccugu	ucuguguaug	gcacugguag	aauucacugu	gaacagucuc	60
35	agucagugaa	uuaccgaagg	gccauaaaca	gagcagagac	agauccacga		110
40	<210> 210 <211> 84 <212> ARN <213> Homo sap	piens					
	<400> 210						
	ccagucacgu	ccccuuauca	cuuuuccagc	ccagcuuugu	gacuguaagu	guuggacgga	60
45	gaacugauaa	ggguagguga	uuga				84
45	<210> 211 <211> 65 <212> ARN <213> Homo sap	piens					
50	<400> 211						

	ccuuaucacu	uuuccagccc	agcuuuguga	cuguaagugu	uggacggaga	acugauaagg	60
	guagg						65
5	<210> 212 <211> 82 <212> ARN <213> Homo sap	piens					
	<400> 212						
	agggggcgag	ggauuggaga	gaaaggcagu	uccugauggu	ccccucccca	ggggcuggcu	60
10	uuccucuggu	ccuucccucc	ca				82
15	<210> 213 <211> 66 <212> ARN <213> Homo sap	piens					
	<400> 213						
	agggauugga	gagaaaggca	guuccugaug	guccccuccc	caggggcugg	cuuuccucug	60
20	guccuu <210> 214 <211> 86 <212> ARN <213> Homo sap	piens					66
25	<400> 214						
	ugcuuguaac	uuuccaaaga	auucuccuuu	ugggcuuucu	gguuuuauuu	uaagcccaaa	60
	ggugaauuuu	uugggaaguu	ugagcu				86
30	<210> 215 <211> 71 <212> ARN <213> Homo sap	piens					
35	<400> 215						
	acuuuccaaa	gaauucuccu	uuugggcuuu	cugguuuuau	uuuaagccca	aaggugaauu	60
	uuuugggaag	u					71
40	<210> 216 <211> 109 <212> ARN <213> Homo sap	piens					
45	<400> 216						
40	ggucgggcuc	accaugacac	agugugagac	ucgggcuaca	acacaggacc	cggggcgcug	60
	cucugacccc	ucgugucuug	uguugcagcc	ggagggacgc	agguccgca		109
50	<210> 217 <211> 86 <212> ARN <213> Homo sar	niens					

	<400> 217						
	ugcucccucu	cucacauccc	uugcauggug	gagggugagc	uuucugaaaa	ccccucccac	60
	augcaggguu	ugcaggaugg	cgagcc				86
5	<210> 218 <211> 68 <212> ARN <213> Homo sap	piens					
10	<400> 218						
	ucucacaucc	cuugcauggu	ggagggugag	cuuucugaaa	accccuccca	caugcagggu	60
	uugcagga						68
15	<210> 219 <211> 102 <212> ARN <213> Homo sap	piens					
20	<400> 219						
20	cugucgauug	gacccgcccu	ccggugccua	cugagcugau	aucaguucuc	auuuuacaca	60
	cuggcucagu	ucagcaggaa	caggagucga	gcccuugagc	aa		102
25	<210> 220 <211> 68 <212> ARN <213> Homo sap	piens					
	<400> 220						
	cuccggugcc	uacugagcug	auaucaguuc	ucauuuuaca	cacuggcuca	guucagcagg	60
30	aacaggag						68
35	<210> 221 <211> 85 <212> ARN <213> Homo sap	piens					
	<400> 221						
	ugcaggccuc	ugugugauau	guuugauaua	uuagguuguu	auuuaaucca	acuauauauc	60
40	aaacauauuc	cuacaguguc	uugcc				85
	<210> 222 <211> 67 <212> ARN <213> Homo sap	piens					
45	<400> 222						
	cugugugaua	uguuugauau	auuagguugu	uauuuaaucc	aacuauauau	caaacauauu	60
	ccuacag						67
50	<210> 223 <211> 92 <212> ARN						

	<213> Homo sap	oiens					
	<400> 223						
	cggcuggaca	gcgggcaacg	gaaucccaaa	agcagcuguu	gucuccagag	cauuccagcu	60
5	gcgcuuggau	uucguccccu	gcucuccugc	cu			92
10	<210> 224 <211> 74 <212> ARN <213> Homo sap	piens					
	<400> 224						
	agcgggcaac	ggaaucccaa	aagcagcugu	ugucuccaga	gcauuccagc	ugcgcuugga	60
1 5	uuucgucccc	ugcu					74
15	<210> 225 <211> 108 <212> ARN <213> Homo sap	piens					
20	<400> 225						
	ccgagaccga	gugcacaggg	cucugaccua	ugaauugaca	gccagugcuc	ucgucucccc	60
	ucuggcugcc	aauuccauag	gucacaggua	uguucgccuc	aaugccag		108
25	<210> 226 <211> 110 <212> ARN <213> Homo sap	piens					
30	<400> 226						
	gccgagaccg	agugcacagg	gcucugaccu	augaauugac	agccagugcu	cucgucuccc	60
	cucuggcugc	caauuccaua	ggucacaggu	auguucgccu	caaugccagc		110
35	<210> 227 <211> 88 <212> ARN <213> Homo sap	piens					
40	<400> 227						
40	cgaggauggg	agcugagggc	ugggucuuug	cgggcgagau	gagggugucg	gaucaacugg	60
	ccuacaaagu	cccaguucuc	ggcccccg				88
45	<210> 228 <211> 58 <212> ARN <213> Homo sap	piens					
50	<210> 229 <211> 85	gggcgag augaggg	gugu cggaucaacu	ggccuacaaa gucc	ccagu 58		
	<212> ARN <213> <i>Homo sap</i>	oiens					

	<400> 229						
	augguguuau c	aaguguaac	agcaacucca	uguggacugu	guaccaauuu	ccaguggaga	60
	ugcuguuacu u	uugaugguu	accaa				85
5	<210> 230 <211> 63 <212> ARN <213> Homo sapie	ns					
10	<400> 230						
	guguaacagc a	acuccaugu	ggacugugua	ccaauuucca	guggagaugc	uguuacuuuu	60
	gau						63
15	<210> 231 <211> 87 <212> ARN <213> Homo sapie	ns					
20	<400> 231						
20	agcuucccug g	cucuagcag	cacagaaaua	uuggcacagg	gaagcgaguc	ugccaauauu	60
	ggcugugcug c	uccaggcag	gguggug				87
25	<210> 232 <211> 58 <212> ARN <213> Homo sapie	ns					
20	<400> 232 uagcagcaca gaaaua	auugg cacaggg	aag cgagucugcc	aauauuggcu gugo	cugcu 58		
30	<210> 233 <211> 110 <212> ARN <213> Homo sapie	ns					
35	<400> 233						
	cuagagcuug a	auuggaacu	gcugagugaa	uuagguaguu	ucauguuguu	gggccugggu	60
	uucugaacac a	acaacauua	aaccacccga	uucacggcag	uuacugcucc		110
40	<210> 234 <211> 70 <212> ARN <213> Homo sapie	ns					
45	<400> 234						
	gugaauuagg u	aguuucaug	uuguugggcc	uggguuucug	aacacaacaa	cauuaaacca	60
	cccgauucac						70
50	<210> 235 <211> 110 <212> ARN <213> Homo sapie	ns					
	<400> 235						

	ugcucgcuca	gcugaucugu	ggcuuaggua	guuucauguu	guugggauug	aguuuugaac	60
	ucggcaacaa	gaaacugccu	gaguuacauc	agucgguuuu	cgucgagggc		110
5	<210> 236 <211> 70 <212> ARN <213> Homo sap	piens					
10	<400> 236						
10	gugaauuagg	uaguuucaug	uuguugggcc	uggguuucug	aacacaacaa	cauuaaacca	60
	cccgauucac						70
15	<210> 237 <211> 84 <212> ARN <213> Homo sap	piens					
	<400> 237						
	acuggucggu	gauuuaggua	guuuccuguu	guugggaucc	accuuucucu	cgacagcacg	60
20	acacugccuu	cauuacuuca	guug				84
25	<210> 238 <211> 75 <212> ARN <213> Homo sap	piens					
	<400> 238						
	ggcugugccg	gguagagagg	gcagugggag	guaagagcuc	uucacccuuc	accaccuucu	60
30	ccacccagca	uggcc					75
	<210> 239 <211> 60 <212> ARN <213> Homo sap	piens					
35	<400> 239 gugcaugugu aug	uaugugu gcauguç	gcau guguaugugu	ı augagugcau gcg	jugugugc 60		
40	<210> 240 <211> 62 <212> ARN <213> Homo sap	piens					
	<400> 240						
45	ucauuggucc	agaggggaga	uagguuccug	ugauuuuucc	uucuucucua	uagaauaaau	60
	ga						62
50	<210> 241 <211> 71						
50	<212> ARN <213> Homo sa	piens					
	<400> 241						

	gccaacccag	uguucagacu	accuguucag	gaggcucuca	auguguacag	uagucugcac	60
	auugguuagg	С					71
5	<210> 242 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 242						
	aggaagcuuc	uggagauccu	gcuccgucgc	cccaguguuc	agacuaccug	uucaggacaa	60
10	ugccguugua	caguagucug	cacauugguu	agacugggca	agggagagca		110
15	<210> 243 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 243						
	ccagaggaca	ccuccacucc	gucuacccag	uguuuagacu	aucuguucag	gacucccaaa	60
20	uuguacagua	gucugcacau	ugguuaggcu	gggcuggguu	agacccucgg		110
20	<210> 244 <211> 71 <212> ARN	olono.					
25	<213> Homo sap	nens					
	<400> 244	11011110202011	20010111020	~2~~~~	2110010012020	1120110110020	60
		uguucagacu	accuguucag	gaggeaeaea	auguguacag	uagucugcac	
	auugguuagg	С					71
30	<210> 245 <211> 70 <212> ARN <213> Homo sap	piens					
35	<400> 245						
	gccguggcca	ucuuacuggg	cagcauugga	uggagucagg	ucucuaauac	ugccugguaa	60
	ugaugacggc						70
40	<210> 246 <211> 95 <212> ARN <213> Homo sap	piens					
1 E	<400> 246						
45	ccagcucggg	cagccguggc	caucuuacug	ggcagcauug	gauggaguca	ggucucuaau	60
	acugccuggu	aaugaugacg	gcggagcccu	gcacg			95
50	<210> 247 <211> 68 <212> ARN <213> Homo sar	piens					

	<400> 247						
	cccucgucuu	acccagcagu	guuugggugc	gguugggagu	cucuaauacu	gccggguaau	60
	gauggagg						68
5	<210> 248 <211> 72 <212> ARN <213> Homo sap	piens					
10	<400> 248						
	guuccuuuuu	ccuaugcaua	uacuucuuug	aggaucuggc	cuaaagaggu	auagggcaug	60
	ggaagaugga	gc					72
15	<210> 249 <211> 110 <212> ARN <213> Homo sap	piens					
00	<400> 249						
20	guguugggga	cucgcgcgcu	ggguccagug	guucuuaaca	guucaacagu	ucuguagcgc	60
	aauugugaaa	uguuuaggac	cacuagaccc	ggcgggcgcg	gcgacagcga		110
25	<210> 250 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 250						
	ggcuacaguc	uuucuucaug	ugacucgugg	acuucccuuu	gucauccuau	gccugagaau	60
30	auaugaagga	ggcugggaag	gcaaagggac	guucaauugu	caucacuggc		110
35	<210> 251 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 251						
	aaagauccuc	agacaaucca	ugugcuucuc	uuguccuuca	uuccaccgga	gucugucuca	60
40	uacccaacca	gauuucagug	gagugaaguu	caggaggcau	ggagcugaca		110
	<210> 252 <211> 86 <212> ARN <213> Homo sap	piens					
45	<400> 252						
	ugcuucccga	ggccacaugc	uucuuuauau	ccccauaugg	auuacuuugc	uauggaaugu	60
	aaggaagugu	gugguuucgg	caagug				86
50	<210> 253 <211> 69 <212> ARN						

	<213> Homo sap	oiens					
	<400> 253						
	aggccacaug	cuucuuuaua	uccccauaug	gauuacuuug	cuauggaaug	uaaggaagug	60
5	ugugguuuu						69
	<210> 254 <211> 71						
10	<212> ARN	niono					
10	<213> Homo sap	Dieris					
	<400> 254						
	ugacgggcga	gcuuuuggcc	cggguuauac	cugaugcuca	cguauaagac	gagcaaaaag	60
15	cuuguugguc	a					71
. 0	<210> 255						
	<211> 110						
	<212> ARN	nione					
20	<213> Homo sap	DIETIS					
_0	<400> 255						
	acccggcagu	gccuccaggc	gcagggcagc	cccugcccac	cgcacacugc	gcugccccag	60
	acccacugug	cgugugacag	cggcugaucu	gugccugggc	agcgcgaccc		110
25	<210> 256						
	<211> 110						
	<212> ARN						
	<213> Homo sap	oiens					
30	<400> 256						
	ucaccuggcc	augugacuug	ugggcuuccc	uuugucaucc	uucgccuagg	gcucugagca	60
							110
		agcaaagggg	ugcucaguug	ucacuuccca	caycacyyay		110
35	<210> 257 <211> 110						
33	<211> 110 <212> ARN						
	<213> Homo sap	oiens					
	<400> 257						
40	cggggcaccc	cgcccggaca	gcgcgccggc	accuuggcuc	uagacugcuu	acugcccggg	60
		uaacagucuc					110
	-010- 0E0						
	<210> 258 <211> 110						
45	<211> 110 <212> ARN						
	<213> Homo sap	oiens					
	<400> 258						
		~21111211111111	11222266162	(1221)	11021111001101	aaalaaalla	60
		gauuauuuuu				cyguggguug	
50	aacugugugg	acaagcucac	ugaacaauga	augcaacugu	ggccccgcuu		110
	<210> 259						

	<211> 108 <212> ARN <213> Homo sap	piens					
5	<400> 259						
	gaguuuugag	guugcuucag	ugaacauuca	acgcugucgg	ugaguuugga	auuaaaauca	60
	aaaccaucga	ccguugauug	uacccuaugg	cuaaccauca	ucuacucc		108
10	<210> 260 <211> 110 <212> ARN <213> Homo sap	piens					
15	<400> 260						
15	ggccuggcug	gacagaguug	ucaugugucu	gccugucuac	acuugcugug	cagaacaucc	60
	gcucaccugu	acagcaggca	cagacaggca	gucacaugac	aacccagccu		110
20	<210> 261 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 261						
	aucauucaga	aaugguauac	aggaaaauga	ccuaugaauu	gacagacaau	auagcugagu	60
25	uugucuguca	uuucuuuagg	ccaauauucu	guaugacugu	gcuacuucaa		110
30	<210> 262 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 262						
	gauggcugug	aguuggcuua	aucucagcug	gcaacuguga	gauguucaua	caaucccuca	60
35	caguggucuc	ugggauuaug	cuaaacagag	caauuuccua	gcccucacga		110
55	<210> 263 <211> 110 <212> ARN <213> Homo sap	piens					
40	<400> 263						
	aguauaauua	uuacauaguu	uuugaugucg	cagauacugc	aucaggaacu	gauuggauaa	60
	gaaucaguca	ccaucaguuc	cuaaugcauu	gccuucagca	ucuaaacaag		110
45	<210> 264 <211> 110 <212> ARN <213> Homo sap	piens					
50	<400> 264						
	gugauaaugu	agcgagauuu	ucuguugugc	uugaucuaac	caugugguug	cgagguauga	60
	guaaaacaug	guuccgucaa	gcaccaugga	acgucacgca	gcuuucuaca		110

5	<210> 265 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 265						
	gaccagucgc	ugcggggcuu	uccuuugugc	uugaucuaac	cauguggugg	aacgauggaa	60
10	acggaacaug	guucugucaa	gcaccgcgga	aagcaccgug	cucuccugca		110
	<210> 266 <211> 110 <212> ARN <213> Homo sap	piens					
15	<400> 266						
	ccgccccggg	ccgcggcucc	ugauugucca	aacgcaauuc	ucgagucuau	ggcuccggcc	60
	gagaguugag	ucuggacguc	ccgagccgcc	gcccccaaac	cucgagcggg		110
20	<210> 267 <211> 110 <212> ARN <213> Homo sap	piens					
25	<400> 267						
	ccgccccggg	ccgcggcucc	ugauugucca	aacgcaauuc	ucgagucuau	ggcuccggcc	60
	gagaguugag	ucuggacguc	ccgagccgcc	gcccccaaac	cucgagcggg		110
30	<210> 268 <211> 97 <212> ARN <213> Homo sap	niens					
0.5	<400> 268						
35	acucaggggc	uucgccacug	auuguccaaa	cgcaauucuu	guacgagucu	gcggccaacc	60
	gagaauugug	gcuggacauc	uguggcugag	cuccggg			97
40	<210> 269 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 269						
	gacagugugg	cauuguaggg	cuccacaccg	uaucugacac	uuugggcgag	ggcaccaugc	60
45	ugaagguguu	caugaugcgg	ucugggaacu	ccucacggau	cuuacugaug		110
50	<210> 270 <211> 110 <212> ARN <213> Homo sap	niens					
50	<400> 270) (G) (G)					

	ugaacaucca	ggucuggggc	augaaccugg	cauacaaugu	agauuucugu	guucguuagg	60
	caacagcuac	auugucugcu	ggguuucagg	cuaccuggaa	acauguucuc		110
5	<210> 271 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 271						
	gcugcuggaa	gguguaggua	cccucaaugg	cucaguagcc	aguguagauc	cugucuuucg	60
10	uaaucagcag	cuacaucugg	cuacuggguc	ucugauggca	ucuucuagcu		110
15	<210> 272 <211> 110 <212> ARN <213> Homo sap	piens					
	<400> 272						
	ccuggccucc	ugcagugcca	cgcuccgugu	auuugacaag	cugaguugga	cacuccaugu	60
20	gguagagugu	caguuuguca	aauaccccaa	gugcggcaca	ugcuuaccag		110
	<210> 273 <211> 81 <212> ARN <213> Homo sap	piens					
25	<400> 273						
	gggcuuucaa	gucacuagug	guuccguuua	guagaugauu	gugcauuguu	ucaaaauggu	60
	gcccuaguga	cuacaaagcc	С				81
30	<210> 274 <211> 60 <212> ARN <213> Homo sap	piens					
35	<400> 274 caaucuuccu uuat	ucauggu auugauu	uuu cagugcuucc	cuuuugugug aga	gaagaua 60		
40	<210> 275 <211> 80 <212> ARN	via ma					
	<213> Homo sap <400> 275	oiens					
		сададддссс	ccccucaauc	cuguugugcc	ນລອນນເວລດອດ	aannaaanaa	60
4=						99999-99	80
45 50	<210> 276<211> 63<212> ARN<213> Homo sap						80
	<400> 276						

	aagaaauggu	uuaccguccc	acauacauuu	ugaauaugua	ugugggaugg	uaaaccgcuu	60
	cuu						63
5	<210> 277 <211> 86 <212> ARN <213> Homo sap	piens					
	<400> 277						
	acugcuaacg	aaugcucuga	cuuuauugca	cuacuguacu	uuacagcuag	cagugcaaua	60
10	guauugucaa	agcaucugaa	agcagg				86
15	<210> 278 <211> 69 <212> ARN <213> Homo sap	piens					
	<400> 278						
	ccaccacuua	aacguggaug	uacuugcuuu	gaaacuaaag	aaguaagugc	uuccauguuu	60
20	uggugaugg						69
20	<210> 279 <211> 73 <212> ARN <213> Homo sap	piens					
25	<400> 279						
	gcucccuuca	acuuuaacau	ggaagugcuu	ucugugacuu	uaaaaguaag	ugcuuccaug	60
	uuuuaguagg	agu					73
30	<210> 280 <211> 68 <212> ARN <213> Homo sap	piens					
35	<400> 280						
	ccuuugcuuu	aacauggggg	uaccugcugu	gugaaacaaa	aguaagugcu	uccauguuuc	60
	aguggagg						68
40	<210> 281 <211> 68 <212> ARN <213> Homo sap	piens					
45	<400> 281						
45	ccucuacuuu	aacauggagg	cacuugcugu	gacaugacaa	aaauaagugc	uuccauguuu	60
	gagugugg						68
50	<210> 282 <211> 82 <212> ARN <213> Homo sap	piens					

	<400> 282						
	gcuucgcucc	ccuccgccuu	cucuucccgg	uucuucccgg	agucgggaaa	agcuggguug	60
	agagggcgaa	aaaggaugag	gu				82
5	<210> 283 <211> 59 <212> ARN <213> Homo sap	piens					
10	<400> 283 uuggccuccu aago	ccaggga uuguggg	uuc gagucccacc	ogggguaaag aaag	igccga 59		
15	<210> 284 <211> 86 <212> ARN <213> Homo sap	piens					
	<400> 284						
	uugguacuug	gagagaggug	guccguggcg	cguucgcuuu	auuuauggcg	cacauuacac	60
20	ggucgaccuc	uuugcaguau	cuaauc				86
25	<210> 285 <211> 83 <212> ARN <213> Homo sap	piens					
	<400> 285						
	cugacuaugc	cuccccgcau	ccccuagggc	auugguguaa	agcuggagac	ccacugcccc	60
30	aggugcugcu	ggggguugua	guc				83
	<210> 286 <211> 98 <212> ARN <213> Homo sap	piens					
35	<400> 286						
	auacagugcu	ugguuccuag	uaggugucca	guaaguguuu	gugacauaau	uuguuuauug	60
	aggaccuccu	aucaaucaag	cacugugcua	ggcucugg			98
40	<210> 287 <211> 95 <212> ARN <213> Homo sap	piens					
45	<400> 287						
	cucaucuguc	uguugggcug	gaggcagggc	cuuugugaag	gcggguggug	cucagaucgc	60
	cucugggccc	uuccuccagc	cccgaggcgg	auuca			95
50	<210> 288 <211> 75 <212> ARN <213> Homo sap	piens					
	<400> 288						

	uggagugggg	gggcaggagg	ggcucaggga	gaaagugcau	acagccccug	gcccucucug	60
	cccuuccguc	cccug					75
5	<210> 289 <211> 94 <212> ARN <213> Homo sap	niens					
10	<400> 289						
10	cuuuggcgau	cacugccucu	cugggccugu	gucuuaggcu	cugcaagauc	aaccgagcaa	60
	agcacacggc	cugcagagag	gcagcgcucu	gccc			94
15	<210> 290 <211> 94 <212> ARN <213> Homo sap	niens					
	<400> 290						
	gaguuugguu	uuguuugggu	uuguucuagg	uaugguccca	gggaucccag	aucaaaccag	60
20	gccccugggc	cuauccuaga	accaaccuaa	gcuc			94
25	<210> 291 <211> 94 <212> ARN <213> Homo sap	piens					
	<400> 291						
	uguuuugagc	gggggucaag	agcaauaacg	aaaaauguuu	gucauaaacc	guuuuucauu	60
30	auugcuccug	accuccucuc	auuugcuaua	uuca			94
	<210> 292 <211> 93 <212> ARN <213> Homo sap	oiens					
35	<400> 292						
	guagucagua	guuggggggu	gggaacggcu	ucauacagga	guugaugcac	aguuauccag	60
	cuccuauaug	augccuuucu	ucauccccuu	caa			93
40	<210> 293 <211> 67 <212> ARN <213> Homo sap	oiens					
45	<400> 293						
	ucuccaacaa	uauccuggug	cugagugaug	acucaggcga	cuccagcauc	agugauuuug	60
	uugaaga						67
50	<210> 294 <211> 94 <212> ARN <213> Homo sar	niens					

	<400> 294						
	cggggcggcc	gcucucccug	uccuccagga	gcucacgugu	gccugccugu	gagcgccucg	60
	acgacagagc	cggcgccugc	cccagugucu	gcgc			94
5	<210> 295 <211> 95 <212> ARN <213> Homo sap	piens					
10	<400> 295						
	uuguaccugg	ugugauuaua	aagcaaugag	acugauuguc	auaugucguu	ugugggaucc	60
	gucucaguua	cuuuauagcc	auaccuggua	ucuua			95
15	<210> 296 <211> 99 <212> ARN <213> Homo sap	piens					
20	<400> 296						
20	gaaacugggc	ucaaggugag	gggugcuauc	ugugauugag	ggacaugguu	aauggaauug	60
	ucucacacag	aaaucgcacc	cgucaccuug	gccuacuua			99
25	<210> 297 <211> 98 <212> ARN <213> Homo sap	piens					
	<400> 297						
	acccaaaccc	uaggucugcu	gacuccuagu	ccagggcucg	ugauggcugg	ugggcccuga	60
30	acgagggguc	uggaggccug	gguuugaaua	ucgacagc			98
35	<210> 298 <211> 86 <212> ARN <213> Homo sap	piens					
	<400> 298						
	gucugucugc	ccgcaugccu	gccucucugu	ugcucugaag	gaggcagggg	cugggccugc	60
40	agcugccugg	gcagagcggc	uccugc				86
	<210> 299 <211> 68 <212> ARN <213> Homo sap	piens					
45	<400> 299						
	ccauuacugu	ugcuaauaug	caacucuguu	gaauauaaau	uggaauugca	cuuuagcaau	60
	ggugaugg						68
50	<210> 300 <211> 66 <212> ARN						

	<213> Homo sapier	าร					
	<400> 300						
	aaaaggugga ua	auuccuucu	auguuuaugu	uauuuauggu	uaaacauaga	ggaaauucca	60
5	cguuuu						66
	<210> 301 <211> 70						
10	<212> ARN <213> Homo sapier	ne					
10	•	15					
	<400> 301						
	uugaagggag at	ucgaccgug	uuauauucgc	uuuauugacu	ucgaauaaua	caugguugau	60
15	cuuuucucag						70
	<210> 302						
	<211> 75 <212> ARN						
	<213> Homo sapier	าร					
20	12102 Home Suprem						
	<400> 302						
	agacagagaa go	ccaggucac	gucucugcag	uuacacagcu	cacgagugcc	ugcuggggug	60
	gaaccugguc uq	gucu					75
25	<210> 303						
	<211> 67						
	<212> ARN						
	<213> Homo sapier	าร					
30	<400> 303						
	guggcacuca aa	acugugggg	gcacuuucug	cucucuggug	aaagugccgc	caucuuuuga	60
	guguuac						67
	<210> 304						
35	<211> 67						
	<212> ARN						
	<213> Homo sapier	ns					
40	<400> 304						
+0	gugggccuca aa	auguggagc	acuauucuga	uguccaagug	gaaagugcug	cgacauuuga	60
	gcgucac						67
45	<210> 305 <211> 69 <212> ARN <213> Homo sapien	าร					
	<400> 305						
	gggauacuca aa	aaugggggc	gcuuuccuuu	uugucuguac	ugggaagugc	uucgauuuug	60
50	ggguguccc						69
	<210> 306						

	<211> 72 <212> ARN <213> Homo sap	piens					
5	<400> 306						
	uacaucggcc	auuauaauac	aaccugauaa	guguuauagc	acuuaucaga	uuguauugua	60
	auugucugug	ua					72
10	<210> 307 <211> 102 <212> ARN <213> Homo sap	piens					
15	<400> 307						
10	auggagcugc	ucacccugug	ggccucaaau	guggaggaac	uauucugaug	uccaagugga	60
	aagugcugcg	acauuugagc	gucaccggug	acgcccauau	ca		102
20	<210> 308 <211> 101 <212> ARN <213> Homo sap	piens					
	<400> 308						
	gcauccccuc	agccuguggc	acucaaacug	ugggggcacu	uucugcucuc	uggugaaagu	60
25	gccgccaucu	uuugaguguu	accgcuugag	aagacucaac	С		101
30	<210> 309 <211> 102 <212> ARN <213> Homo sap	piens					
	<400> 309						
	cgaggagcuc	auacugggau	acucaaaaug	ggggcgcuuu	ccuuuuuguc	uguuacuggg	60
35	aagugcuucg	auuuuggggu	gucccuguuu	gaguagggca	uc		102
	<210> 310 <211> 22 <212> ARN <213> Homo sap	niens					
40	<400> 310 ugagguagua ggu						
45	<210> 311 <211> 22 <212> ARN <213> Homo sap	piens					
50	<400> 311 ugagguagua ggu	ugugugg uu 22					
55	<210> 312 <211> 22 <212> ARN <213> Homo sap	piens					
	<400×312						

	ugagguagua gguuguaugg uu 22
5	<210> 313 <211> 21 <212> ARN <213> Homo sapiens
10	<400> 313 agagguagua gguugcauag u 21
15	<210> 314 <211> 21 <212> ARN <213> Homo sapiens
13	<400> 314 ugagguagga gguuguauag u 21
20	<210> 315 <211> 22 <212> ARN <213> Homo sapiens
25	<400> 315 ugagguagua gauuguauag uu 22
30	<210> 316 <211> 21 <212> ARN <213> Homo sapiens
	<400> 316 ugagguagua guuuguacag u 21
35	<210> 317 <211> 19 <212> ARN <213> Homo sapiens
40	<400> 317 ugagguagua guuugugcu 19
45	<210> 318 <211> 21 <212> ARN <213> Homo sapiens
50	<400> 318 uggaauguaa agaaguaugu a 21
	<210> 319 <211> 21 <212> ARN <213> Homo sapiens
55	<400> 319 uggaagacua gugauuuugu u 21
60	<210> 320 <211> 23 <212> ARN <213> Homo sapiens
65	<400> 320 ucuuugguua ucuagcugua uga 23

```
<210> 321
      <211>21
      <212> ARN
     <213> Homo sapiens
 5
      <400> 321
     uaaagcuaga uaaccgaaag u 21
     <210> 322
10
      <211>23
      <212> ARN
      <213> Homo sapiens
     <400> 322
15
     uacccuguag auccgaauuu gug 23
     <210> 323
      <211> 22
      <212> ARN
20
     <213> Homo sapiens
      <400> 323
     uacccuguag aaccgaauuu gu 22
25
     <210> 324
     <211> 22
      <212> ARN
      <213> Homo sapiens
30
      <400> 324
      uagcagcaca uaaugguuug ug 22
     <210> 325
     <211> 22
      <212> ARN
35
      <213> Homo sapiens
      <400> 325
     uagcagcaca ucaugguuua ca 22
40
      <210> 326
      <211> 22
      <212> ARN
      <213> Homo sapiens
45
      <400> 326
     uagcagcacg uaaauauugg cg 22
     <210> 327
50
     <211> 24
      <212> ARN
     <213> Homo sapiens
      <400> 327
55
     caaagugcuu acagugcagg uagu 24
      <210> 328
      <211> 20
      <212> ARN
60
      <213> Homo sapiens
      <400> 328
     acugcaguga aggcacuugu 20
65
      <210> 329
      <211> 22
```

```
<212> ARN
      <213> Homo sapiens
     <400> 329
 5
     uaaggugcau cuagugcaga ua 22
      <210> 330
     <211>23
      <212> ARN
     <213> Homo sapiens
10
      <400> 330
     ugugcaaauc uaugcaaaac uga 23
15
      <210> 331
      <211>23
      <212> ARN
      <213> Homo sapiens
     <400> 331
20
     ugugcaaauc caugcaaaac uga 23
     <210> 332
     <211> 22
25
     <212> ARN
     <213> Homo sapiens
      <400> 332
     uaaagugcuu auagugcagg ua 22
30
      <210> 333
      <211> 22
      <212> ARN
      <213> Homo sapiens
35
      <400> 333
     uagcuuauca gacugauguu ga 22
     <210> 334
40
     <211> 22
      <212> ARN
      <213> Homo sapiens
      <400> 334
45
     aagcugccag uugaagaacu gu 22
      <210> 335
      <211>21
     <212> ARN
50
     <213> Homo sapiens
      <400> 335
     aucacauugc cagggauuuc c 21
55
     <210> 336
      <211>23
      <212> ARN
     <213> Homo sapiens
     <400> 336
60
     aucacauugc cagggauuac cac 23
      <210> 337
      <211> 22
65
     <212> ARN
      <213> Homo sapiens
```

	<400> 337 uggcucaguu cagcaggaac ag 22
5	<210> 338 <211> 22 <212> ARN <213> Homo sapiens
10	<400> 338 cauugcacuu gucucggucu ga 22
15	<210> 339 <211> 22 <212> ARN <213> Homo sapiens
	<400> 339 uucaaguaau ccaggauagg cu 22
20	<210> 340 <211> 21 <212> ARN <213> Homo sapiens
25	<400> 340 uucaaguaau ucaggauagg u 21
30	<210> 341 <211> 22 <212> ARN <213> Homo sapiens
35	<400> 341 uucacagugg cuaaguuccg cc 22
	<210> 342 <211> 20 <212> ARN <213> Homo sapiens
40	<400> 342 uucacagugg cuaaguucug 20
45	<210> 343 <211> 22 <212> ARN <213> Homo sapiens
50	<400> 343 aaggagcuca cagucuauug ag 22
55	<210> 344 <211> 22 <212> ARN <213> Homo sapiens
	<400> 344 cuagcaccau cugaaaucgg uu 22
60	<210> 345 <211> 20 <212> ARN <213> Homo sapiens
65	<400> 345 uagcaccauu ugaaaucagu 20

```
<210> 346
      <211> 22
      <212> ARN
     <213> Homo sapiens
 5
      <400> 346
     uagcaccauu ugaaaucggu ua 22
     <210> 347
10
      <211>23
      <212> ARN
      <213> Homo sapiens
     <400> 347
15
     uguaaacauc cucgacugga agc 23
     <210> 348
      <211> 22
      <212> ARN
20
     <213> Homo sapiens
      <400> 348
     cuuucagucg gauguuugca gc 22
25
     <210> 349
      <211>21
      <212> ARN
      <213> Homo sapiens
30
      <400> 349
      uguaaacauc cuacacucag c 21
     <210> 350
      <211>23
35
      <212> ARN
      <213> Homo sapiens
      <400> 350
     uguaaacauc cuacacucuc agc 23
40
      <210> 351
      <211> 22
      <212> ARN
      <213> Homo sapiens
45
      <400> 351
     uguaaacauc cccgacugga ag 22
     <210> 352
50
     <211> 20
      <212> ARN
     <213> Homo sapiens
      <400> 352
55
     uguaaacauc cuugacugga 20
      <210> 353
      <211>21
      <212> ARN
60
      <213> Homo sapiens
      <400> 353
     ggcaagaugc uggcauagcu g 21
65
      <210> 354
      <211>21
```

```
<212> ARN
      <213> Homo sapiens
     <400> 354
     uauugcacau uacuaaguug c 21
      <210> 355
     <211> 19
      <212> ARN
     <213> Homo sapiens
10
      <400> 355
     gugcauugua guugcauug 19
      <210> 356
15
      <211> 22
      <212> ARN
      <213> Homo sapiens
     <400> 356
20
     uggcaguguc uuagcugguu gu 22
     <210> 357
     <211> 22
25
     <212> ARN
     <213> Homo sapiens
      <400> 357
      aggcaguguc auuagcugau ug 22
30
      <210> 358
      <211> 22
      <212> ARN
      <213> Homo sapiens
35
      <400> 358
     aggcagugua guuagcugau ug 22
     <210> 359
40
     <211> 22
      <212> ARN
      <213> Homo sapiens
      <400> 359
45
     uauugcacuu gucccggccu gu 22
      <210> 360
      <211> 22
     <212> ARN
50
     <213> Homo sapiens
      <400> 360
     aaagugcugu ucgugcaggu ag 22
55
     <210> 361
      <211> 22
      <212> ARN
     <213> Homo sapiens
60
     <400> 361
     uucaacgggu auuuauugag ca 22
      <210> 362
      <211> 22
65
     <212> ARN
```

<213> Homo sapiens

	<400> 362 uuuggcacua gcacauuuuu gc 22
5	<210> 363 <211> 22 <212> ARN <213> Homo sapiens
10	<400> 363 ugagguagua aguuguauug uu 22
15	<210> 364 <211> 22 <212> ARN <213> Homo sapiens
	<400> 364 aacccguaga uccgaucuug ug 22
20	<210> 365 <211> 22 <212> ARN <213> Homo sapiens
25	<400> 365 cacccguaga accgaccuug cg 22
30	<210> 366 <211> 22 <212> ARN <213> Homo sapiens
-	<400> 366 uacaguacug ugauaacuga ag 22
35	<210> 367 <211> 22 <212> ARN <213> Homo sapiens
40	<400> 367 uacaguacug ugauaacuga ag 22
45	<210> 368 <211> 23 <212> ARN <213> Homo sapiens
50	<400> 368 agcagcauug uacagggcua uga 23
55	<210> 369 <211> 20 <212> ARN <213> Homo sapiens
	<400> 369 ucaaaugcuc agacuccugu 20
60	<210> 370 <211> 24 <212> ARN <213> Homo sapiens
65	<400> 370 aaaagugcuu acagugcagg uagc 24

```
<210> 371
      <211>21
      <212> ARN
     <213> Homo sapiens
 5
      <400> 371
     uaaagugcug acagugcaga u 21
     <210> 372
10
      <211>23
      <212> ARN
      <213> Homo sapiens
     <400> 372
15
     agcagcauug uacagggcua uca 23
     <210> 373
      <211>23
      <212> ARN
20
     <213> Homo sapiens
      <400> 373
     uggaguguga caaugguguu ugu 23
25
     <210> 374
      <211> 22
      <212> ARN
      <213> Homo sapiens
30
      <400> 374
      uuaaggcacg cggugaaugc ca 22
     <210> 375
      <211>23
      <212> ARN
35
      <213> Homo sapiens
      <400> 375
     ucccugagac ccuuuaaccu gug 23
40
      <210> 376
      <211> 22
      <212> ARN
      <213> Homo sapiens
45
      <400> 376
     ucccugagac ccuaacuugu ga 22
     <210> 377
50
     <211>21
      <212> ARN
     <213> Homo sapiens
      <400> 377
55
     cauuauuacu uuugguacgc g 21
      <210> 378
      <211>21
      <212> ARN
60
      <213> Homo sapiens
      <400> 378
     ucguaccgug aguaauaaug c 21
65
      <210> 379
      <211> 22
```

	<212> ARN <213> Homo sapiens
5	<400> 379 ucggauccgu cugagcuugg cu 22
10	<210> 380 <211> 22 <212> ARN <213> Homo sapiens
	<400> 380 ucacagugaa ccggucucuu uu 22
15	<210> 381 <211> 22 <212> ARN <213> Homo sapiens
20	<400> 381 ucacagugaa ccggucucuu uc 22
25	<210> 382 <211> 21 <212> ARN <213> Homo sapiens
	<400> 382 cuuuuugcgg ucugggcuug c 21
30	<210> 383 <211> 20 <212> ARN <213> Homo sapiens
35	<400> 383 cagugcaaug uuaaaagggc 20
40	<210> 384 <211> 22 <212> ARN <213> Homo sapiens
45	<400> 384 cagugcaaug augaaagggc au 22
50	<210> 385 <211> 22 <212> ARN <213> Homo sapiens
	<400> 385 uaacagucua cagccauggu cg 22
55	<210> 386 <211> 22 <212> ARN <213> Homo sapiens
60	<400> 386 uugguccccu ucaaccagcu gu 22
65	<210> 387 <211> 21 <212> ARN

<213> Homo sapiens

	<400> 387 uugguccccu ucaaccagcu a 21
5	<210> 388 <211> 21 <212> ARN <213> Homo sapiens
10	<400> 388 ugugacuggu ugaccagagg g 21
15	<210> 389 <211> 23 <212> ARN <213> Homo sapiens
	<400> 389 uauggcuuuu uauuccuaug uga 23
20	<210> 390 <211> 22 <212> ARN <213> Homo sapiens
25	<400> 390 uauggcuuuu cauuccuaug ug 22
30	<210> 391 <211> 23 <212> ARN <213> Homo sapiens
35	<400> 391 acuccauuug uuuugaugau gga 23
	<210> 392 <211> 22 <212> ARN <213> Homo sapiens
40	<400> 392 uauugcuuaa gaauacgcgu ag 22
45	<210> 393 <211> 17 <212> ARN <213> Homo sapiens
50	<400> 393 agcugguguu gugaauc 17
55	<210> 394 <211> 18 <212> ARN <213> Homo sapiens
	<400> 394 ucuacagugc acgugucu 18
60	<210> 395 <211> 21 <212> ARN <213> Homo sapiens
65	<400> 395 agugguuuua cccuauggua g 21

```
<210> 396
      <211>21
      <212> ARN
     <213> Homo sapiens
 5
      <400> 396
     aacacugucu gguaaagaug g 21
     <210> 397
10
      <211>23
      <212> ARN
      <213> Homo sapiens
     <400> 397
     uguaguguuu ccuacuuuau gga 23
15
     <210> 398
      <211> 20
      <212> ARN
20
     <213> Homo sapiens
      <400> 398
     cauaaaguag aaagcacuac 20
     <210> 399
25
      <211> 22
      <212> ARN
      <213> Homo sapiens
30
      <400> 399
      ugagaugaag cacuguagcu ca 22
      <210> 400
      <211> 22
      <212> ARN
35
      <213> Homo sapiens
      <400> 400
     uacaguauag augauguacu ag 22
40
      <210> 401
      <211> 24
      <212> ARN
      <213> Homo sapiens
45
      <400> 401
     guccaguuuu cccaggaauc ccuu 24
     <210> 402
50
     <211> 22
      <212> ARN
     <213> Homo sapiens
      <400> 402
55
     ugagaacuga auuccauggg uu 22
      <210> 403
      <211> 20
      <212> ARN
60
      <213> Homo sapiens
      <400> 403
     guguguggaa augcuucugc 20
65
      <210> 404
      <211> 22
```

	<212> ARN <213> Homo sapiens
5	<400> 404 ucagugcacu acagaacuuu gu 22
10	<210> 405 <211> 22 <212> ARN <213> Homo sapiens
	<400> 405 ucagugcauc acagaacuuu gu 22
15	<210> 406 <211> 22 <212> ARN <213> Homo sapiens
20	<400> 406 ucuggcuccg ugucuucacu cc 22
25	<210> 407 <211> 22 <212> ARN <213> Homo sapiens
30	<400> 407 ucucccaacc cuuguaccag ug 22
	<210> 408 <211> 22 <212> ARN <213> Homo sapiens
35	<400> 408 acuagacuga agcuccuuga gg 22
40	<210> 409 <211> 21 <212> ARN <213> Homo sapiens
45	<400> 409 ucagugcaug acagaacuug g 21
50	<210> 410 <211> 20 <212> ARN <213> Homo sapiens
	<400> 410 uugcauaguc acaaaaguga 20
55	<210> 411 <211> 22 <212> ARN <213> Homo sapiens
60	<400> 411 uagguuaucc guguugccuu cg 22
65	<210> 412 <211> 22 <212> ARN <213> Homo sapiens

	<400> 412 aaucauacac gguugaccua uu 22
5	<210> 413 <211> 22 <212> ARN <213> Homo sapiens
10	<400> 413 uuaaugcuaa ucgugauagg gg 22
15	<210> 414 <211> 23 <212> ARN <213> Homo sapiens
	<400> 414 aacauucaac gcugucggug agu 23
20	<210> 415 <211> 24 <212> ARN <213> Homo sapiens
25	<400> 415 aacauucauu gcugucggug gguu 24
30	<210> 416 <211> 22 <212> ARN <213> Homo sapiens
35	<400> 416 aacauucaac cugucgguga gu 22
	<210> 417 <211> 22 <212> ARN <213> Homo sapiens
40	<400> 417 uuuggcaaug guagaacuca ca 22
45	<210> 418 <211> 21 <212> ARN <213> Homo sapiens
50	<400> 418 ugguucuaga cuugccaacu a 21
55	<210> 419 <211> 23 <212> ARN <213> Homo sapiens
	<400> 419 uauggcacug guagaauuca cug 23
60	<210> 420 <211> 22 <212> ARN <213> Homo sapiens
65	<400> 420 uggacggaga acugauaagg gu 22

```
<210> 421
      <211> 18
      <212> ARN
     <213> Homo sapiens
 5
      <400> 421
     uggagagaaa ggcaguuc 18
     <210> 422
10
      <211>23
      <212> ARN
      <213> Homo sapiens
     <400> 422
15
     caaagaauuc uccuuuuggg cuu 23
     <210> 423
      <211>21
      <212> ARN
20
     <213> Homo sapiens
      <400> 423
     ucgugucuug uguugcagcc g 21
25
      <210> 424
      <211> 22
      <212> ARN
      <213> Homo sapiens
30
      <400> 424
      caucccuugc augguggagg gu 22
     <210> 425
     <211> 23
      <212> ARN
35
     <213> Homo sapiens
      <400> 425
     gugccuacug agcugauauc agu 23
40
      <210> 426
      <211> 22
      <212> ARN
      <213> Homo sapiens
45
      <400> 426
     ugauauguuu gauauauuag gu 22
     <210> 427
50
     <211> 22
      <212> ARN
     <213> Homo sapiens
      <400> 427
55
     caacggaauc ccaaaagcag cu 22
      <210> 428
      <211> 21
      <212> ARN
60
      <213> Homo sapiens
      <400> 428
     cugaccuaug aauugacagc c 21
65
      <210> 429
      <211>21
```

```
<212> ARN
      <213> Homo sapiens
     <400> 429
     aacuggccua caaaguccca g 21
      <210> 430
     <211> 22
      <212> ARN
     <213> Homo sapiens
10
      <400> 430
     uguaacagca acuccaugug ga 22
15
      <210> 431
      <211>21
      <212> ARN
      <213> Homo sapiens
     <400> 431
20
     uagcagcaca gaaauauugg c 21
     <210> 432
     <211>21
25
     <212> ARN
     <213> Homo sapiens
      <400> 432
     uagguaguuu cauguuguug g 21
30
      <210> 433
      <211>21
      <212> ARN
      <213> Homo sapiens
35
      <400> 433
     uagguaguuu ccuguuguug g 21
     <210> 434
40
     <211> 22
      <212> ARN
      <213> Homo sapiens
      <400> 434
45
     uucaccaccu ucuccaccca gc 22
     <210> 435
      <211> 19
     <212> ARN
50
     <213> Homo sapiens
      <400> 435
     gguccagagg ggagauagg 19
55
      <210> 436
      <211>23
      <212> ARN
     <213> Homo sapiens
60
     <400> 436
     cccaguguuc agacuaccug uuc 23
      <210> 437
      <211> 22
65
      <212> ARN
      <213> Homo sapiens
```

	<400> 437 uacaguaguc ugcacauugg uu 22
5	<210> 438 <211> 23 <212> ARN <213> Homo sapiens
10	<400> 438 cccaguguuu agacuaucug uuc 23
15	<210> 439 <211> 22 <212> ARN <213> Homo sapiens
	<400> 439 uaacacuguc ugguaacgau gu 22
20	<210> 440 <211> 24 <212> ARN <213> Homo sapiens
25	<400> 440 cucuaauacu gccugguaau gaug 24
30	<210> 441 <211> 22 <212> ARN <213> Homo sapiens
35	<400> 441 aauacugccg gguaaugaug ga 22
	<210> 442 <211> 22 <212> ARN <213> Homo sapiens
40	<400> 442 agagguauag ggcaugggaa ga 22
45	<210> 443 <211> 22 <212> ARN <213> Homo sapiens
50	<400> 443 gugaaauguu uaggaccacu ag 22
55	<210> 444 <211> 22 <212> ARN <213> Homo sapiens
	<400> 444 uucccuuugu cauccuaugc cu 22
60	<210> 445 <211> 22 <212> ARN <213> Homo sapiens
65	<400> 445 uccuucauuc caccggaguc ug 22

```
<210> 446
      <211> 22
      <212> ARN
     <213> Homo sapiens
 5
      <400> 446
     uggaauguaa ggaagugugu gg 22
     <210> 447
10
      <211> 22
      <212> ARN
      <213> Homo sapiens
     <400> 447
15
     auaagacgag caaaaagcuu gu 22
     <210> 448
      <211>21
      <212> ARN
20
     <213> Homo sapiens
      <400> 448
     cugugcgugu gacagcggcu g 21
25
     <210> 449
      <211> 22
      <212> ARN
      <213> Homo sapiens
30
      <400> 449
      uucccuuugu cauccuucgc cu 22
     <210> 450
      <211>21
      <212> ARN
35
      <213> Homo sapiens
      <400> 450
     uaacagucuc cagucacggc c 21
40
      <210> 451
      <211> 22
      <212> ARN
      <213> Homo sapiens
45
      <400> 451
     accaucgacc guugauugua cc 22
     <210> 452
50
     <211>21
      <212> ARN
     <213> Homo sapiens
      <400> 452
55
     acagcaggca cagacaggca g 21
      <210> 453
      <211>21
      <212> ARN
60
      <213> Homo sapiens
      <400> 453
     augaccuaug aauugacaga c 21
65
      <210> 454
```

<211>21

```
<212> ARN
      <213> Homo sapiens
     <400> 454
     uaaucucagc uggcaacugu g 21
      <210> 455
     <211> 24
      <212> ARN
     <213> Homo sapiens
10
      <400> 455
     uacugcauca ggaacugauu ggau 24
15
     <210> 456
      <211>21
      <212> ARN
      <213> Homo sapiens
     <400> 456
20
     uugugcuuga ucuaaccaug u 21
     <210> 457
     <211>21
25
     <212> ARN
     <213> Homo sapiens
      <400> 457
      ugauugucca aacgcaauuc u 21
30
      <210> 458
      <211>21
      <212> ARN
      <213> Homo sapiens
35
      <400> 458
     ccacaccgua ucugacacuu u 21
     <210> 459
40
     <211>23
      <212> ARN
      <213> Homo sapiens
      <400> 459
45
     agcuacauug ucugcugggu uuc 23
      <210> 460
      <211> 24
     <212> ARN
50
     <213> Homo sapiens
      <400> 460
     agcuacaucu ggcuacuggg ucuc 24
55
      <210> 461
      <211>21
      <212> ARN
     <213> Homo sapiens
60
      <400> 461
     ugucaguuug ucaaauaccc c 21
      <210> 462
      <211> 23
65
      <212> ARN
```

<213> Homo sapiens

	<400> 462 caagucacua gugguuccgu uua 23
5	<210> 463 <211> 21 <212> ARN <213> Homo sapiens
10	<400> 463 agggcccccc cucaauccug u 21
15	<210> 464 <211> 22 <212> ARN <213> Homo sapiens
	<400> 464 ugguuuaccg ucccacauac au 22
20	<210> 465 <211> 23 <212> ARN <213> Homo sapiens
25	<400> 465 cagugcaaua guauugucaa agc 23
30	<210> 466 <211> 23 <212> ARN <213> Homo sapiens
35	<400> 466 uaagugcuuc cauguuuugg uga 23
	<210> 467 <211> 23 <212> ARN <213> Homo sapiens
40	<400> 467 acuuuaacau ggaagugcuu ucu 23
45	<210> 468 <211> 23 <212> ARN <213> Homo sapiens
50	<400> 468 uaagugcuuc cauguuuuag uag 23
55	<210> 469 <211> 22 <212> ARN <213> Homo sapiens
	<400> 469 uuuaacaugg ggguaccugc ug 22
60	<210> 470 <211> 23 <212> ARN <213> Homo sapiens
65	<400> 470 uaagugcuuc cauguuucag ugg 23

```
<210> 471
      <211>23
      <212> ARN
     <213> Homo sapiens
 5
      <400> 471
     uaagugcuuc cauguuugag ugu 23
     <210> 472
10
      <211>23
      <212> ARN
      <213> Homo sapiens
     <400> 472
15
     aaaagcuggg uugagagggc gaa 23
     <210> 473
      <211>21
      <212> ARN
20
     <213> Homo sapiens
      <400> 473
     uaagccaggg auuguggguu c 21
25
      <210> 474
      <211> 22
      <212> ARN
      <213> Homo sapiens
30
      <400> 474
      gcacauuaca cggucgaccu cu 22
     <210> 475
     <211> 23
      <212> ARN
35
     <213> Homo sapiens
      <400> 475
     cgcauccccu agggcauugg ugu 23
40
      <210> 476
      <211> 22
      <212> ARN
      <213> Homo sapiens
45
      <400> 476
     ccacugccc aggugcugcu gg 22
     <210> 477
50
     <211>21
      <212> ARN
     <213> Homo sapiens
      <400> 477
55
     ccuaguaggu guccaguaag u 21
      <210> 478
      <211> 20
      <212> ARN
60
      <213> Homo sapiens
      <400> 478
     ccucugggcc cuuccuccag 20
65
      <210> 479
      <211> 22
```

```
<212> ARN
      <213> Homo sapiens
     <400> 479
     cuggeccucu cugeccuuce gu 22
      <210> 480
     <211>23
      <212> ARN
     <213> Homo sapiens
10
      <400> 480
     gcaaagcaca cggccugcag aga 23
15
     <210> 481
      <211>21
      <212> ARN
      <213> Homo sapiens
     <400> 481
20
     gccccugggc cuauccuaga a 21
     <210> 482
     <211>23
25
     <212> ARN
     <213> Homo sapiens
      <400> 482
     ucaagagcaa uaacgaaaaa ugu 23
30
      <210> 483
      <211> 23
      <212> ARN
      <213> Homo sapiens
35
      <400> 483
     uccagcuccu auaugaugcc uuu 23
     <210> 484
40
     <211>23
      <212> ARN
      <213> Homo sapiens
      <400> 484
45
     uccagcauca gugauuuugu uga 23
      <210> 485
      <211>21
     <212> ARN
50
     <213> Homo sapiens
      <400> 485
     ucccuguccu ccaggagcuc a 21
55
     <210> 486
      <211>23
      <212> ARN
     <213> Homo sapiens
60
      <400> 486
     uccgucucag uuacuuuaua gcc 23
      <210> 487
      <211> 24
65
      <212> ARN
      <213> Homo sapiens
```

	<400> 487 ucucacacag aaaucgcacc cguc 24
5	<210> 488 <211> 21 <212> ARN <213> Homo sapiens
10	<400> 488 ugcugacucc uaguccaggg c 21
15	<210> 489 <211> 23 <212> ARN <213> Homo sapiens
	<400> 489 ugucugcccg caugccugcc ucu 23
20	<210> 490 <211> 22 <212> ARN <213> Homo sapiens
25	<400> 490 aauugcacuu uagcaauggu ga 22
30	<210> 491 <211> 22 <212> ARN <213> Homo sapiens
35	<400> 491 acauagagga aauuccacgu uu 22
40	<210> 492 <211> 21 <212> ARN <213> Homo sapiens
40	<400> 492 aauaauacau gguugaucuu u 21
45	<210> 493 <211> 21 <212> ARN <213> Homo sapiens
50	<400> 493 gccugcuggg guggaaccug g 21
55	<210> 494 <211> 21 <212> ARN <213> Homo sapiens
	<400> 494 gugccgccau cuuuugagug u 21
60	<210> 495 <211> 23 <212> ARN <213> Homo sapiens
65	<400> 495 aaagugcugc gacauuugag cgu 23

```
<210> 496
      <211> 22
      <212> ARN
      <213> Homo sapiens
 5
      <400> 496
      acucaaaaug ggggcgcuuu cc 22
      <210> 497
10
      <211> 23
      <212> ARN
      <213> Homo sapiens
      <400> 497
15
      gaagugcuuc gauuuugggg ugu 23
     <210> 498
<211> 22
      <212> ARN
20
      <213> Homo sapiens
      <400> 498
      uuauaauaca accugauaag ug 22
```

REIVINDICACIONES

1. Un método para determinar el pronóstico de un sujeto con cáncer de pulmón, que comprende la medición del nivel de productos génicos de miR en una muestra de ensayo de dicho sujeto, en el que:

5

la firma de los productos génicos de miR está asociada con un pronóstico adverso en cáncer de pulmón; y una alteración del nivel de los productos génicos de miR en la muestra de ensayo de pulmón, con respecto al nivel de los productos génicos correspondientes de miR en una muestra de control, es indicativa de un pronóstico adverso,

10

en donde el cáncer de pulmón es un adenocarcinoma de pulmón, y los productos génicos de miR consisten en miR-155 y let-7a-2; y en donde el nivel del producto génico de miR-155 en la muestra de ensayo es mayor que el nivel del producto génico correspondiente de miR en la muestra de control, y en donde el nivel del producto génico de let-7a-2 en la

muestra de ensavo es menor que el nivel del producto génico correspondiente de miR en la muestra de control.

15

2. El método de la reivindicación 1 en el que los productos génicos de miR son un grupo de productos génicos de miR que consiste en miR-155, miR-17-3p, miR-106a, miR-93, let-7a-2, miR-145, let-7b, miR-20 y miR-21; en donde el nivel de los productos génicos de miR-155, miR-17-3p, miR-106a, miR-93 y miR-21 en la muestra de ensayo es mayor que el nivel de los productos génicos correspondientes de miR en la muestra de control; y en donde el nivel de los productos génicos de let-7a-2, miR-145 y let-7b en la muestra de ensayo es menor que el

20 en donde el nivel de los productos génicos de let-7a-2, miR-145 y let-7b en la mivel de los productos génicos correspondientes de miR en la muestra de control.

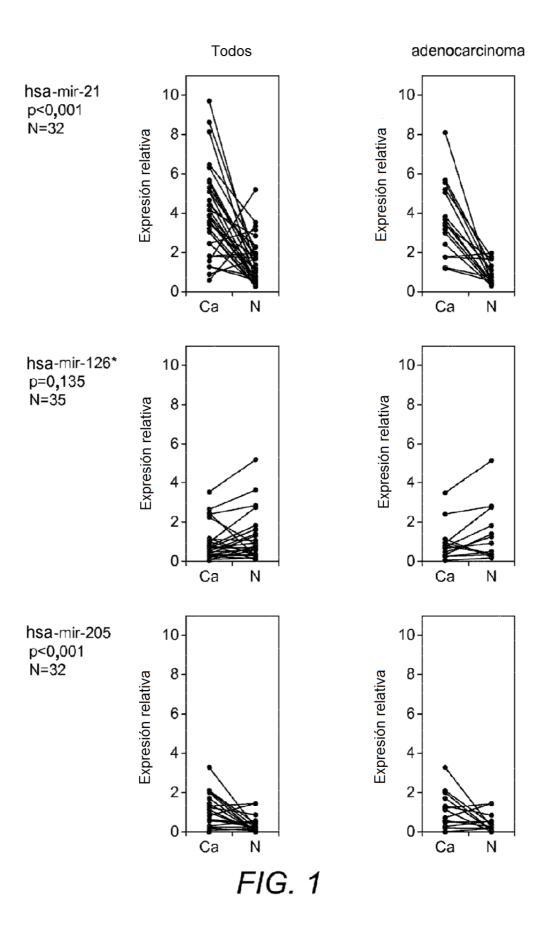
3. Un método para diagnosticar si un sujeto tiene cáncer de pulmón, que comprende:

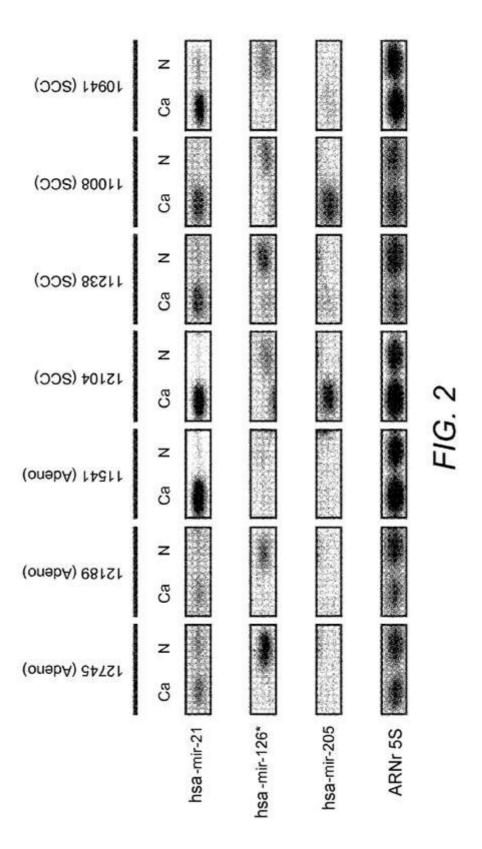
la transcripción inversa de ARN de una muestra de ensayo obtenida del sujeto para proporcionar un conjunto de oligodesoxinucleótidos diana;

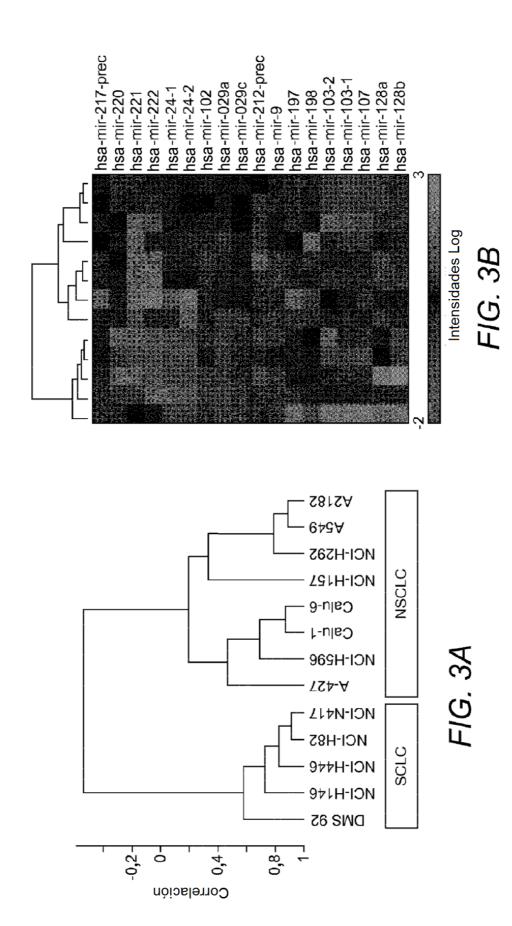
hibridar los oligodesoxinucleótidos diana con una micromatriz que comprende oligonucleótidos sonda específicos de miARN para proporcionar un perfil de hibridación de la muestra de ensayo; y

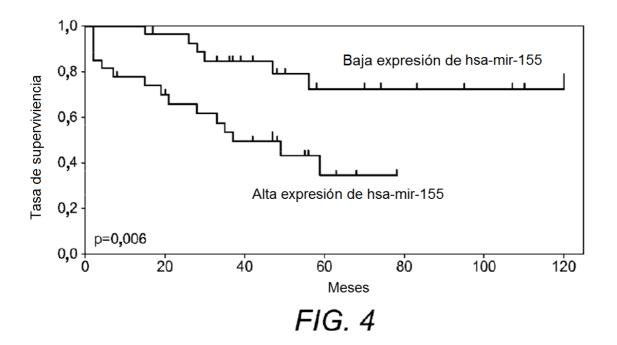
comparar el perfil de hibridación de la muestra de ensayo con el perfil de hibridación generado a partir de una muestra de control,

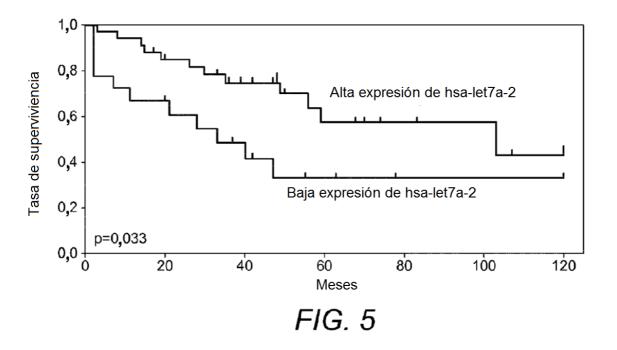
en donde una alteración de la señal de productos génicos de miR es indicativa de que el sujeto tiene cáncer de pulmón.


en donde el cáncer de pulmón es un adenocarcinoma de pulmón y los productos génicos de miR consisten en miR-155 y let-7a-2; y


- en donde el nivel del producto génico de miR-155 en la muestra de ensayo es mayor que el nivel del producto génico correspondiente de miR en la muestra de control; y en donde el nivel del producto génico de let-7a-2 en la muestra de ensayo es menor que el nivel del producto génico correspondiente de miR en la muestra de control.
- 4. El método de la reivindicación 3 en el que los productos génicos de miR son un grupo de productos génicos de miR que consiste en miR-155, miR-17-3p, miR-106a, miR-93, let-7a-2, miR-145, let-7b, miR-20 y miR-21; en donde el nivel de los productos génicos de miR-155, miR-17-3p, miR-106a, miR-93 y miR-21 en la muestra de ensayo es mayor que el nivel de los productos génicos correspondientes de miR en la muestra de control; y en donde el nivel de los productos génicos de let-7a-2, miR-145 y let-7b en la muestra de ensayo es menor que el nivel de los productos génicos correspondientes de miR en la muestra de control.


45


30


5. El método de las reivindicaciones 3 o 4, en el que el cáncer de pulmón es cáncer de pulmón con un pronóstico adverso.

