

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 536 536

51 Int. Cl.:

A61M 5/178 (2006.01) A61M 5/31 (2006.01) A61M 25/00 (2006.01) A61M 5/32 (2006.01) A61M 25/06 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 22.06.2009 E 12178063 (9)
(97) Fecha y número de publicación de la concesión europea: 11.02.2015 EP 2567721

(54) Título: Protector de resorte para punta de aguja

(30) Prioridad:

17.07.2008 US 175068

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 26.05.2015

(73) Titular/es:

SMITHS MEDICAL ASD, INC. (100.0%) 160 Weymouth Street Rockland, MA 02370, US

(72) Inventor/es:

MUSKATELLO, JAMES M. y LILLEY, THOMAS F., JR.

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Protector de resorte para punta de aguja

Campo técnico

5

10

15

30

35

40

45

50

55

La presente invención se refiere a agujas médicas (tales como agujas hipodérmicas, agujas de inserción de catéter o cánulas, u otras cánulas huecas o sólidas de punta afilada) y, más particularmente, a dispositivos que protegen la punta afilada de la aguja después de retirarla de un paciente.

Antecedentes de la invención

Una variedad de diferentes protectores de punta de aguja se han desarrollado o propuesto para proteger, es decir para rodear o proteger de otro modo, puntas de aguja afiladas reconociendo la necesidad de reducir o eliminar los pinchazos accidentales con agujas. Algunos protectores de punta de aguja incluyen mecanismos que tienen muchas partes cooperantes diferentes. Estos protectores de punta de aguja son a menudo poco fiables y difíciles de fabricar. Otros protectores de punta de aguja requieren que el profesional sanitario active el dispositivo de protección mediante un mecanismo de disparo u otro activador. Así, tales dispositivos, en lugar de ser activados de forma pasiva, requieren pasos adicionales antes de ofrecer protección. Aún otros protectores de punta de aguja requieren agujas más largas que las que normalmente se utilizan en una versión no protegida por su calibre correspondiente, especialmente cuando el protector de aguja es grande y ocupa parte de la longitud axial disponible de la aguja. Aún otros requieren adaptar la forma o la superficie de la aguja o conducto u otro accesorio al conector de cánula para evitar que el protector de punta de aguja se salga de la aguja.

Un dispositivo de protección de aguja según se define en el preámbulo de la reivindicación 1 se describe en el documento WO 93/25254. Un ejemplo de un protector de punta de aguja se describe en los documentos de patente US 5.328.482 y 5322517. Estas patentes describen el concepto general de un resorte helicoidal dispuesto alrededor de un eje de aguja en un estado enrollado y que se puede desenrollar para sujetar el eje de la aguja. Más en concreto, la aguja se dispone a través de un paso formado por el interior del resorte helicoidal. Un extremo del resorte se fija con respecto al otro extremo y puede ser rotado ("enrollado") haciendo frente a la desviación de rotación del resorte para ampliar el diámetro del paso. Tras la liberación, el resorte se desenrolla para reducir el diámetro del paso a fin de sujetar el eje de la aguja.

Sin embargo, el protector de punta de aguja de los documentos de patente US 5.328.482 y 5322517 comprende muchos componentes y partes cooperantes y por tanto su fabricación es compleja y costosa. Por ejemplo, el resorte se mantiene en su configuración enrollada mediante un pestillo de rotación independiente y se desenrolla sólo si se libera este pestillo independiente. Además, el alojamiento del dispositivo incluye núcleos exteriores e interiores concéntricos. El núcleo exterior se desplaza con respecto al núcleo interior para enrollar el resorte. Una vez que el pestillo ha sido liberado para permitir que el resorte se desenrolle y sujete una aguja, se debe impedir que estos núcleos se desplacen uno respecto al otro para evitar el rebobinado accidental del resorte. Por tanto, se proporciona un segundo resorte que impide la rotación del núcleo exterior. Como resultado de ello, este protector de punta de aguja sufre los inconvenientes de la complejidad descrita anteriormente.

Resumen

La presente invención proporciona un protector de resorte para punta de aguja que supera las diversas desventajas e inconvenientes de los planteamientos anteriores. Con este fin, y de acuerdo con los principios de la presente invención, un resorte rodea una aguja y se pone en contacto con una superficie de soporte de manera que la aguja puede desplazarse dentro del resorte, aunque el resorte puede alejarse de la superficie de soporte para sujetar la aguja una vez que la aguja se retrae. Más en concreto, el resorte normalmente tiene un diámetro interior dimensionado para acoplarse con sujeción al eje de la aguja y puede ser enrollado a un estado armado con un diámetro interior dimensionado para permitir que la aguja pase a través del mismo. El resorte se mantiene en el estado armado, en contacto con la superficie de soporte, hasta que se tira de la punta de la aguja hacia el resorte, y posiblemente dentro del mismo, momento en el que el resorte se desconecta de la superficie de soporte para desenrollarse a un estado de sujeción, impidiendo así el desplazamiento axial adicional de la aguja con respecto al resorte. De esta manera, el resorte se autoactiva y no requiere mecanismos independientes para liberar el resorte como con ciertos protectores de resorte para punta de aguja anteriores.

Para lograr el estado armado, el resorte incluye aspectos primero y segundo que pueden ser enrollados uno respecto al otro. Por ejemplo, el primer aspecto del resorte puede ser retenido por un alojamiento de manera que el segundo aspecto del resorte se puede enrollar con respecto al mismo, cambiando así el diámetro interior del resorte. Es decir, cuando el resorte está "enrollado", el primer aspecto del resorte puede estar retenido, mientras que el segundo aspecto del resorte gira haciendo frente a la desviación de rotación del resorte. Como resultado de ello, el resorte se puede configurar en un estado de sujeción con un diámetro interior dimensionado para acoplarse mediante sujeción al eje de la aguja, o en un estado armado en el que se amplía el diámetro interior a fin de permitir el desplazamiento axial de la aguja con respecto al resorte.

El aparato de la presente invención se puede usar con agujas hipodérmicas u otras agujas, tales como en un aparato de inserción de catéter. Cuando se utiliza con un aparato de inserción de catéter, la superficie de soporte puede estar en el interior de un conector de catéter, la superficie de soporte puede ser parte de un alojamiento (que incluye un paso para la aguja) independiente de un conector de catéter o la superficie de soporte puede ser otra parte del mismo resorte. Cuando se utiliza un alojamiento independiente, la punta de la aguja no tiene por qué ser retraída completamente en el resorte, siempre que se haya retraído dentro del alojamiento antes de que se libere el resorte, aunque la punta puede estar rodeada por el resorte de manera que sea protegida tanto por el resorte como por el alojamiento. De cualquier manera, la punta de la aguja queda protegida con el fin de reducir o eliminar la posibilidad de pinchazos accidentales con agujas.

10 De acuerdo aún con otro aspecto, cuando el resorte sujeta la aguja, una fuerza de sujeción entre el resorte y la aguja es mayor que una fuerza de retención entre el alojamiento y el conector de catéter. En consecuencia, la retracción continua de la aquia retira la aquia completamente del conector de catéter, junto con el protector de resorte para punta de aguja. El aparato de la presente invención puede estar configurado de manera que el alojamiento sólo se libere del conector de catéter después de que el resorte se haya movido del estado armado al estado de sujeción para acoplarse con sujeción a la aguja. Por otra parte, el resorte y el alojamiento pueden 15 estar configurados para permitir que todo el resorte gire con respecto al alojamiento cuando estén en el estado de sujeción. Esto evitaría, por ejemplo, un rebobinado del resorte después de la activación. El resorte y cualquier alojamiento pueden ser dimensionados para cooperar con el conector de catéter de manera que pueda usarse una cánula de aquia de longitud estándar para el correspondiente calibre del catéter, aunque se pueden usar, si 20 se desea, agujas más largas. Además, aunque pueden utilizarse cambios de superficie y conductos, el acoplamiento con sujeción del resorte a la aguja limita aún más el desplazamiento axial de la aguja de manera que no es necesario modificar la superficie de la aguja o usar conductos o similares.

Por tanto, el protector de resorte para punta de aguja de esta invención requiere relativamente pocas partes. Además, esta invención proporciona un protector de resorte para punta de aguja que supera las diversas desventajas e inconvenientes de los planteamientos anteriores, haciéndolo de una manera sencilla y a bajo coste y permitiendo el uso de agujas de tamaño y forma estándar y sin la necesidad de conductos y similares. Estos y otros objetos y ventajas de la presente invención quedarán claros a partir de los dibujos adjuntos y de la descripción de los mismos.

Breve descripción de los dibujos

25

40

30 Los dibujos adjuntos, que se incorporan en esta descripción y forman una parte de la misma, ilustran realizaciones de la invención y junto con la descripción general de la invención dada anteriormente, y la descripción detallada de las realizaciones dadas a continuación, sirven para explicar los principios de la presente invención.

La figura 1 es una vista en sección transversal de una primera realización de un protector de resorte para punta 35 de aguja, que representa una parte de una aguja en una posición extendida con respecto a un resorte de torsión en un estado armado de tal manera que la aguja puede desplazarse con respecto al resorte:

La figura 1A es una vista extrema de la aguja y el resorte de la figura 1;

La figura 2 es una vista en sección transversal de la parte de la aguja de la figura 1 ahora en una posición retraída con respecto al resorte de torsión en un estado activado de forma que el resorte se acopla con sujeción al eje de la aguja;

La figura 2A es una vista extrema de la aguja y el resorte de la figura 2;

Las figuras 3A a 3C son vistas laterales de un conjunto de catéter que incluye una segunda realización de un protector de resorte para punta de aguja de acuerdo con los principios de la presente invención;

La figura 4 es una vista en sección transversal de la segunda realización del protector de resorte para punta de aguja de las figuras 3A a 3C de la presente invención;

La figura 5 es una vista extrema de la segunda realización del protector de resorte para punta de aguja de la figura 4;

La figura 6 es una vista en sección transversal del conector de catéter de las figuras 3A a 3C para explicar la interacción del conector de catéter y el protector de resorte para punta de aguja de la presente invención;

La figura 7 es una vista en sección transversal del conjunto de catéter montado de las figuras 3A a 3C, en el que la aguja está en una posición extendida y el resorte está en un estado armado;

La figura 8 es una vista en sección transversal del conjunto de catéter de las figuras 3A a 3C con la aguja desplazada a una posición retraída y el resorte en un estado activado

Las figuras 9A y 9B son vistas en sección transversal lateral y en sección transversal extrema del protector de resorte para punta de aguja de la figura 4 cuando la aguja se extiende a través del resorte en un estado armado;

Las figuras 10A y 10B son vistas en sección transversal lateral y en sección transversal extrema que representan los cambios que se producen en el protector de resorte para punta de aguja de las figuras 9A y 9B conforme el resorte pasa del estado armado al estado activado;

5

15

Las figuras 11A y 11B son vistas en sección transversal lateral y en sección transversal extrema que representan el protector de resorte para punta de aguja de las figuras 10A y 10B después de que el resorte haya alcanzado el estado activado;

La figura 12A es una vista en alzado en sección transversal de un conjunto de catéter que muestra una tercera realización de un protector de resorte para punta de aguja de acuerdo con los principios de la presente invención, antes de la introducción de una aguja y con el resorte enrollado y en una primera posición axial.

La figura 12B es una vista en alzado en sección transversal del conjunto de catéter de la figura 12A después de la introducción de una aguja y con el resorte en una segunda posición axial.

La figura 12C es una vista en alzado en sección transversal del conjunto de catéter de la figura 12B después de retraer la aguja.

La figura 12D una vista en alzado en sección transversal del conjunto de catéter de la figura 12C con el resorte en el estado de sujeción.

La figura 12E una vista en alzado en sección transversal del conjunto de catéter de la figura 12D con el resorte retraído a su primera posición axial y los brazos elásticos flexionados.

La figura 12F es una vista en alzado en sección transversal del conjunto de catéter de la figura 12E con la aguja y el protector de resorte para punta de aguja casi retirados.

Las figuras 13A a 13D son vistas en sección transversal del protector de resorte para punta de aguja de las figuras 12A a 12D por las líneas 13A a 13A de la figura 12A, 13B a 13B de la figura 12B, 13C a 13C de la figura 12C y 13D a 13D de la figura 12D;

La figura 14 es una vista en perspectiva de un conjunto de catéter que incluye una cuarta realización (no visible) de un protector de resorte para punta de aguja de acuerdo con los principios de la presente invención;

La figura 15 es una vista despiezada del conjunto de catéter de la figura 14, con el protector de resorte para punta de aguja en el estado prearmado;

La figura 16 es una vista despiezada del protector de resorte para punta de aguja de la figura 15;

30 La figura 16A es una vista en detalle parcial del resorte y la arandela de la figura 15, bloqueados juntos.

La figura 17 es una vista en sección transversal lateral en alzado del protector de resorte para punta de aguja la figura 14 en el estado montado, antes del prearmado;

La figura 17A es una vista en sección transversal como se indica en la figura 17;

La figura 17B es una vista en sección transversal como se indica en la figura 17;

La figura 18 es una vista en alzado lateral del protector de resorte para punta de aguja de la figura 14 en el estado prearmado, con la sección transversal en un ángulo que muestra el saliente del brazo flexible:

La figura 18A es una vista en sección transversal como se indica en la figura 18;

La figura 19 es una sección transversal de la vista en alzado lateral del protector de resorte para punta de aguja de la figura 14 en el estado armado, con una cánula instalada;

40 La figura 19A es una vista en sección transversal como se indica en la figura 19;

La figura 20 es una vista en alzado lateral de una parte del conjunto de catéter de la figura 14;

La figura 20A es una vista en sección transversal parcial como se indica en la figura 20;

La figura 21 es una vista en alzado lateral de una parte del conjunto de catéter de la figura 14, con la cánula siendo retraída y el protector de resorte a punto de ser disparado;

La figura 21A es una vista en sección transversal como se indica en la figura 21;

La figura 22 es una sección transversal de una vista en alzado lateral del protector de resorte para punta de aguja de la figura 14 después de que se haya disparado y de que haya sido retirado del conector de catéter; y

La figura 22A es una vista en sección transversal como se indica en la figura 22.

5 Descripción detallada

10

30

35

40

45

50

55

Con referencia a las figuras 1 a 2A, se muestra una realización de un protector de resorte para punta de aguja 10 que incluye un elemento elástico 12 para rodear una aguja 14 de acuerdo con la presente invención. En la realización ilustrada, el elemento elástico 12 se muestra como un resorte 16. Por tanto, una realización del protector de resorte para punta de aguja 10 puede incluir simplemente un resorte 16 que rodee una aguja 14 (tal como cuando se utiliza con una aguja hipodérmica). Sin embargo, la aguja 14 puede ser cualquiera de una variedad de agujas médicas. Por consiguiente, un experto en la técnica reconocerá que el protector de resorte para punta de aguja descrito en este documento funcionará con agujas convencionales, así como con cánulas para conjuntos de catéter y similares.

En la figura 1, una punta 18 de la aguja 14 está expuesta de manera que la aguja 14 puede ser utilizada para penetrar en el cuerpo de un paciente. En la descripción que se proporciona en el presente documento, ha de entenderse que la punta 18 es la que está en el extremo distal 20 de la aguja 14. Por tanto en el presente documento, cuando se describen otros componentes diferentes, sus respectivos extremos distales serán el extremo que esté más lejos de un profesional sanitario (y más cerca del paciente) y el extremo proximal será el extremo que esté más cerca del profesional sanitario (y más lejos del paciente).

La aguja 14 incluye un eje 22 con una cámara hueca 24 que funciona como un paso de fluido a través de la aguja 14. El eje 22 se extiende desde el extremo distal 20 en una dirección proximal a un extremo proximal (no mostrado). La punta 18 de la aguja 14 incluye una región 26 que varía en diámetro desde un diámetro nominal del eje 22 a una punta afilada 28. En las figuras 1 y 1A, una parte del eje de la aguja 22 está circunferencialmente rodeada por el resorte 16. El resorte 16 define un paso 30 por el que pasa la aguja 14 e incluye un extremo proximal 32 y un extremo distal 34. Los extremos proximal y distal 32, 34 se desplazan uno con respecto al otro de manera que si, por ejemplo, el extremo proximal 32 estuviera retenido, el extremo distal 34 podría ser enrollado al girarlo haciendo frente a la desviación de rotación del resorte 16.

El resorte 16 puede ser un resorte de torsión convencional, que tiene un estado de reposo definido como cuando el resorte no está retenido por ningún objeto, e incluye en particular, un diámetro interior 36. Acero inoxidable, cuerda de piano y otros materiales similares son ejemplos de materiales que pueden ser utilizados para fabricar el resorte 16. Tal resorte 16 se fabrica típicamente de material redondeado de manera uniforme formado en una pluralidad de vueltas. Sin embargo, también se puede utilizar material de resorte que tenga otros perfiles de sección transversal, tales como rectangular. Así, aunque que una sección transversal del resorte 16 puede ser circular, los expertos en la técnica reconocerán que no tiene que ser de una forma en particular, siempre y cuando la superficie interior 38 incluya una pluralidad de puntos de contacto que creen un diámetro interior virtual o efectivo. Estos puntos de contacto son los lugares donde la superficie interior 38 del resorte 16 entra en contacto con el eje de aguja 22 para sujetar el eje 22 cuando el resorte 16 está en un estado de sujeción. El diámetro 36 es más grande cuando el resorte 16 está en el estado de sujeción que cuando el resorte 16 está en el estado de reposo. Además, un experto en la técnica reconocerá que el tamaño físico del resorte 16 puede depender de la aguja 14. Por lo tanto, para una aplicación determinada, el resorte 16 se selecciona para permitir el desplazamiento de la aguja 14 cuando el resorte 16 está en su estado enrollado o armado, aunque se acoplará con sujeción a la aquia 14 una vez que el resorte 16 se desplace a su estado de sujeción al tratar de desenrollarse a su estado de reposo.

El resorte 16 incluye un primer aspecto y un segundo aspecto, que pueden ser extremos del resorte 16 que pueden enrollarse uno con otro de manera que el diámetro interior 36 del resorte 16 aumenta. Más en concreto, cuando el primer aspecto, tal como el extremo distal 34 del resorte 16 está "enrollado", una fuerza de rotación se aplica al primer aspecto haciendo frente a la desviación de rotación del resorte 16, mientras que el segundo aspecto, tal como el extremo proximal 32, permanece fijo. Este enrollado amplía el diámetro interior 36 del resorte 16 al mover la superficie interior 38 del resorte 16 radialmente hacia fuera. Cuando está enrollado, el resorte 16 está en un estado armado e incluye energía almacenada capaz de mover el resorte 16 hacia su posición de reposo. Para mantener el estado armado, se retiene el desplazamiento del extremo distal 34, al menos temporalmente. Se reconocerá que el primer aspecto puede enrollarse mientras que el segundo aspecto se mantiene en una posición fija; el segundo aspecto puede ser enrollado mientras que el primer aspecto se mantiene en una posición fija; o los aspectos primero y segundo pueden ser enrollados cada uno en direcciones opuestas entre sí. Además, no es necesario que el diámetro interior 36 sea aumentado de manera que la superficie interior 38 del resorte 16 no haga contacto con la aguja 14, siempre y cuando la aguja 14 no esté sujeta y pueda desplazarse axialmente con respecto al resorte 16.

Las figuras 1 y 1A ilustran la aguja 14 en una primera posición extendida y el resorte 16 en el estado armado de manera que su diámetro interior 36 permite que la aguja 14 se deslice a través del paso 30 del resorte 16. En esta configuración, el resorte 16 puede permanecer relativamente inmóvil con respecto a un paciente mientras se retira la aguja 14 del paciente.

Las figuras 2 y 2A ilustran la aguja 14 en una segunda posición retraída y el resorte 16 en un estado de sujeción. En este sentido, la aguja 14 se desplaza a la posición retraída al moverla en una dirección proximal de manera que la punta 18 de la misma se desplaza hacia el resorte 16. Cuando la aguja 14 se retrae a una posición en la que al menos una parte de la punta 18 es proximal al extremo distal 34 del resorte 16, la retención en el extremo distal 34 del resorte 16 se elimina de manera que al extremo distal 34 se le permite girar en la dirección de la desviación de rotación del resorte 16. Mientras esto ocurre, el resorte 16 se desplaza hacia su estado de reposo (y su estado de sujeción) de manera que el diámetro interior 36 del resorte 16 disminuye y se aproxima al diámetro exterior de la aguja 14 y se sujeta a la misma en el estado de sujeción del resorte 16.

15

20

25

50

Más en concreto, cuando la aguja 14 está en la posición extendida (figuras 1 y 1A), al menos una parte de la aguja 14 está dispuesta dentro del resorte 16. El resorte 16, que tiene un eje de resorte 40, se mantiene en alineación coaxial sustancial con la aguja 14, que tiene un eje de aguja 42, debido a la presencia de la aguja 14 dentro del paso 30 del resorte 16. Cuando la aguja 14 se retrae (figuras 2 y 2A), el extremo distal 34 de la aguja 16 se traslada a un punto que permite que al menos una parte del resorte 16, tal como el extremo distal 34, se desplace con respecto a la aquia 14. Esto permite que el resorte 16 se aleje (ver, por ejemplo, la figura 10A) de una superficie de soporte (no mostrada) para a continuación girar en la dirección de la desviación de rotación del resorte 16. El resorte 16 se puede desplazar fuera de contacto con una superficie de soporte (no mostrada) debido a que una parte del resorte 16 se sale de la alineación coaxial sustancial con la aquia 14, o debido a una alteración del espacio entre una parte de la aguja 14, tal como la región 26, y el resorte 16. El resorte 16 puede entonces girar o desenrollarse. Como resultado de ello, el diámetro interior 36 del resorte 16 se reduce al estado de sujeción para que el resorte 16 se acople con sujeción al eje 22. Por tanto, en la configuración de las figuras 2 y 2A, la aguja 14 y el resorte 16 se acoplan de manera que la aguja 14 no puede desplazarse con respecto al resorte 16. Debido a que el resorte 16 se acopla de forma segura al exterior del eje 22, la punta de la aguja 18 permanece protegida a pesar de que la aquia 14 puede continuar desplazándose con respecto a un paciente o cuando se somete a fuerzas que podrían ocurrir razonablemente durante la posterior manipulación de la aguja

30 En consecuencia, el resorte 16 puede rodear sustancialmente la punta 18 y proteger a los profesionales sanitarios del contacto accidental con la punta 18. Aunque la figura 2 muestra toda la punta 18 protegida dentro del resorte 16, otras realizaciones descritas más adelante contemplan sólo una parte de la punta 18 protegida dentro del resorte 16 (con el resto protegido de otra manera, tal como dentro de un alojamiento). Por tanto, tal como se usa en el presente documento, cuando la punta 18 de la aguja 14 se describe como protegida dentro del resorte 16, dicha descripción puede incluir la punta 18 totalmente dentro del resorte 16 o sólo una parte de la punta 18 dentro del resorte 16. En cualquier caso, el resorte 16 proporciona un medio fácil de fabricar, fiable y de fácil accionamiento y de bajo coste para proteger a un profesional sanitario del contacto accidental con la punta de aguja 18.

Con referencia a las figuras 3A a 3C, se muestra un conjunto de catéter 100 que incluye una segunda realización de un protector de resorte para punta de aguja 102. El protector de resorte para punta de aguja 102 puede incluir esencialmente el mismo resorte 16 que el protector de resorte para punta de aguja 10 de las figuras 1 a 2A, aunque el protector de resorte para punta de aguja 102 también incluye un alojamiento 104 que tiene un paso 106 (figura 4) para recibir la aguja 14 a través del mismo, y unos brazos elásticos primero y segundo 108, 110. Al menos uno de los brazos elásticos 108, 110 define un paso 112 (figura 4) en general alineado axialmente con el paso 106 para recibir la aguja 14 a través del mismo. Los brazos elásticos primero y segundo 108, 110 interactúan con un conector de catéter 114 para controlar la liberación del protector de resorte para punta de aguja 102 del conector de catéter 114.

La figura 3A representa el conjunto de catéter 100 como una unidad montada que está en una posición para ser insertado dentro de un paciente. El conjunto de catéter 100 incluye un conector de aguja 116 con la aguja 14 extendiéndose distalmente desde ahí. El conector de catéter 114 del conjunto de catéter 100 incluye un adaptador luer 118 en un extremo proximal 120 y un tubo de catéter 122 que se extiende distalmente desde un extremo distal 124. El eje de aguja 22 se extiende a través del alojamiento 104, el resorte 16, el conector de catéter 114 y el tubo de catéter 122 con una punta expuesta 18 que sale de un extremo distal 125 del tubo del catéter 122 en una primera posición extendida de la aquia 14.

El protector de resorte para punta de aguja 102 está configurado para permitir el desplazamiento de la aguja 14 con respecto al protector de resorte para punta de aguja 102. De una manera similar a la descrita con respecto a la figura 1, al eje 22 de la aguja 14 se le permite desplazarse libremente a través del protector de resorte para punta de aguja 102 en una dirección generalmente proximal, de manera que la aguja 14 se desplaza mientras el protector de resorte para punta de aguja 102 se mantiene relativamente inmóvil con respecto a un paciente. Por lo tanto, el conector de aguja 116 se retira proximalmente con respecto al protector de resorte para punta de aguja 102 para comenzar a retirar la aguja 14 y para comenzar a separar el conector de aguja 116 del

alojamiento 104 del protector de resorte para punta de aguja 102, como se ve en la figura 3B. Una vez que la aguja 14 se desplaza a una posición en la que la punta de aguja 18 está situada dentro del protector de resorte para punta de aguja 102, entonces el resorte 16 del protector de resorte para punta de aguja 102 se desplazará para acoplarse con sujeción a la aguja 14 de manera similar al modo descrito con respecto a la figura 2. Una vez que el resorte 16 se acopla con sujeción a la aguja 14, entonces la aguja 14 tiene un desplazamiento limitado con respecto al protector de resorte para punta de aguja 102. En consecuencia, la retracción continua de la aguja 14 dará lugar a la configuración de la figura 3C en la que el protector de resorte para punta de aguja 102 se fija alrededor de la punta 18 de la aguja 14 y se desengancha de la parte interior del conector de catéter 114. Por tanto, los profesionales sanitarios están protegidos del contacto accidental con la punta 18 de la aguja 14 y el tubo de catéter 122 permanece insertado dentro del paciente.

10

15

20

25

30

35

40

45

50

55

60

También con referencia a la figura 4, el protector de resorte para punta de aguja 102 incluye el alojamiento 104 que tiene el paso 106 por el que puede pasar la aguja 14. El material del alojamiento 104 puede ser de plástico, de acero inoxidable, de metal no reactivo y de otros materiales similares. Un extremo distal 126 del alojamiento 104 incluye un primer brazo elástico 108 y un segundo brazo elástico 110. El segundo brazo elástico 110 incluye el paso 112 en general axialmente alineado con el paso 106. Al menos un brazo, y como en la realización ilustrada, los dos brazos 108, 110, pueden incluir un fiador 128 en extremos distales 130, 132 de los brazos elásticos primero y segundo 108, 110, respectivamente, para definir segmentos de un anillo anular 134. Los brazos elásticos primero y segundo 108, 110 interactúan con características del conector de catéter 114, como se explica a continuación, para controlar la liberación del protector de resorte para punta de aguja 102 del conector de catéter 114. Los brazos elásticos primero y segundo 108, 110 son, sin embargo, ejemplares y la presente invención contempla realizaciones en las que el alojamiento 104 incluye un brazo elástico o incluye más de dos brazos elásticos.

El resorte 16 está dispuesto al menos parcialmente en el paso 106 y se extiende desde el mismo en la realización ilustrada. El segundo brazo elástico 110 incluye una superficie de soporte 136 en la que se acopla el extremo distal 34 del resorte 16. En la realización particular de la figura 4, la superficie de soporte 136 es generalmente plana y paralela al extremo distal 34 del resorte 16.

Con referencia a la figura 5, se muestra un canal 138 o medio similar que retiene el extremo proximal 32 del resorte 16. El extremo proximal 32 se apoyará en un lado rígido del canal 138, impidiendo que el extremo proximal 32 se desplace (por ejemplo, que gire) con respecto al alojamiento 104. Así, volviendo a la figura 4, cuando el extremo distal 34 del resorte 16 se enrolla haciendo frente a la desviación de rotación del resorte con respecto al extremo proximal 32 del resorte 16 y queda retenido contra la superficie de soporte 136, el resorte 16 estará en un estado armado con el paso 30 incluyendo el diámetro interior 36 a través del cual puede pasar la aguja 14. El paso 30 está dimensionado lo suficientemente grande como para aceptar la aguja 14, aunque lo suficientemente pequeño como para que la aguja 14, cuando esté presente, evite que el segundo brazo elástico 110 se flexione o se desplace.

Con referencia a la figura 6, se verá que el conector de catéter 114 incluye una cámara interior 140 definida por una superficie interior 142 que tiene una parte proximal 144 cónica de acuerdo con la norma ISO u otras normas aplicables a Luers hembra. La cámara interior 140 define un elemento de alojamiento - acoplamiento 146 para cooperar con el protector de resorte para punta de aguja 102. En la realización ilustrada, el elemento de alojamiento - acoplamiento 146 es un saliente generalmente anular 148 que se extiende radialmente hacia dentro desde la superficie interior 142 hacia la cámara interior 140. El saliente anular 148 es generalmente distal a la parte proximal cónica de luer 144 para no interferir con las conexiones luer macho cónicas al conector de catéter 114. El saliente 148 puede, por ejemplo, formarse a partir de un labio anular que se extiende a lo largo de toda la circunferencia interior de la cámara interior 140. En realizaciones alternativas, el elemento de alojamiento - acoplamiento 146 puede incluir una pluralidad de salientes, una ranura, una pluralidad de ranuras o una ranura anular que se extiende alrededor de la circunferencia interior de la cámara interior 140.

El saliente anular 148 y los fiadores 128 cooperan para mantener el protector de resorte para punta de aguja 102 en el conector de catéter 114 en la posición extendida de la aguja 14 y permitir su liberación cuando la aguja 14 se desplaza proximalmente hacia la posición retraída. En este sentido, y con mayor referencia a la figura 7, se verá que en la posición extendida de la aguja 14, el eje 22 de la misma está en el paso 112, lo que limita la capacidad del segundo brazo elástico 110 para comprimirse (es decir, flexionarse radialmente hacia dentro). Al mismo tiempo, los fiadores 128 definen un diámetro exterior del anillo anular 134 que es ligeramente mayor que el diámetro interior del saliente anular 148, que puede corresponder estrechamente al diámetro interior de la superficie interior del conector de catéter 142 justo de forma distal al saliente anular 148. Así, con el eje de aguja 22 en la posición extendida, como se ve en la figura 7, los fiadores 128 proporcionan una retención generalmente rígida al conector de catéter 114 al cooperar con la superficie distal del saliente anular 148.

En la figura 7, el extremo proximal 32 del resorte 16 se mantiene en su lugar (por ejemplo, el canal 138) mientras que el resorte 16 está en un estado armado con su extremo distal 34 retenido contra la superficie de soporte 136. En esta configuración, a la aguja 14 se le permite desplazarse libremente a través del alojamiento 104, el resorte 16, el conector de catéter 114 y el tubo de catéter 122. Por otra parte, con la aguja 14 en la posición extendida, los fiadores 128 están asentados de manera distal al saliente anular 148 en el conector de catéter 114 con un

ajuste ligero por fricción que permite al profesional sanitario (no mostrado) girar el conector de catéter 114 con respecto al protector de resorte para punta de aguja 102. Así, inicialmente el protector de resorte para punta de aguja 102 está acoplado de manera fija con el conector de catéter 114 en la figura 7 de manera que cualquier fuerza resultante del desplazamiento proximal de la aquia 14 (por ejemplo, mediante el desplazamiento proximal del conector de aquia 116 por parte de un profesional sanitario) es insuficiente para liberar el protector de resorte para punta de aguja 102 del conector de catéter 114. Sin embargo, una vez que el resorte 16 se activa para acoplar con sujeción el eje 22 de la aquia 14 (como se muestra en la figura 8), el protector de resorte para punta de aguja 102 y la aguja 14 se fijan entre sí de manera efectiva de modo que el desplazamiento proximal de la aguja 14 genera una fuerza suficiente para superar la fuerza de retención del alojamiento 104 al conector de catéter 114. Más en concreto, con la aguja 14 fuera, a los brazos elásticos primero y segundo 108, 110 se les permite flexionarse y desplazarse más allá del saliente 148 y dejar que el protector de resorte para punta de aguja 102 se libere del conector de catéter 114. Por tanto, hasta que el eje de aguja 22 no está efectivamente proximalmente más allá del paso 112, tal como con la punta 18 protegida por un protector de resorte para punta de aguja 102 en la posición retraída de la aguja 14, como se ve en la figura 8, no se flexiona cualquiera o ambos de los brazos elásticos primero y segundo 108, 110. Como consecuencia de ello, la extracción proximal continua en el conector de aguja 116 hace que uno o ambos brazos elásticos 108, 110 se flexionen lo suficiente como para que los fiadores 128 se desplacen proximalmente al saliente anular 148 y luego se flexionen o expandan de vuelta a la posición nominal.

10

15

20

25

30

35

40

45

50

Para pasar al estado de sujeción en la posición retraída de la aguja, el resorte 16 puede desplazarse fuera de contacto con la superficie de soporte 136 mediante mecanismos alternativos. Por ejemplo, con referencia a las figuras 7 a 11B, cuando la aguja 14 está en la posición extendida, la aguja 14 y el resorte 16 están en alineación coaxial sustancial. Se evita que el resorte 16 se desplace fuera de la alineación coaxial sustancial debido a la presencia de la aguja 14 dentro del paso 30 del resorte 16. A medida que la aguja 14 se retrae, el extremo distal 20 de la aguja 14 se desplazará a un punto que permite que al menos un segmento del resorte 16, tal como el extremo distal 34, se desplace con respecto a la aguja 14. Por ejemplo, como se muestra en la figura 9A, la aguja 14 se ha retraído de manera que su punta distal 18 está dentro del paso 112 del segundo brazo elástico 110. El resorte 16 está en el estado armado con su extremo distal 34 retenido contra una superficie de soporte 136 del segundo brazo elástico 110 del alojamiento 104. Como se puede ver en la vista de la figura 9B, el extremo distal 34 del resorte 16 termina en una superficie relativamente plana 154 que se asienta sobre una superficie de soporte relativamente plana 136. La desviación de rotación del resorte 16 impulsa el extremo distal 34 en el sentido contrario a las agujas del reloj en este ejemplo. Un experto en la técnica reconocerá que el extremo distal 34 también podría estar posicionado para representar un resorte giratorio en el sentido de las agujas del reloj 16.

Sin embargo, para que el extremo distal 34 gire, el resorte 16 tendría que flexionarse hacia arriba de manera que el extremo distal 34 pueda deslizarse más allá de la superficie de soporte 136. Sin embargo, tal flexión hacia arriba se evita por la presencia de la aquia 14. Mientras el resorte 16 intenta flexionarse hacia arriba, se detiene cuando la superficie interior 38 entra en contacto con el eje 22 de la aquia 14. En tal configuración, la aquia 14 y el resorte 16 están en alineación coaxial sustancial. En la figura 10A, la aguja 14 se retira a un punto donde una parte de punta de aquia 18, por ejemplo, la región 26, es proximal al extremo distal 34 del resorte 16. Debido a que la punta 18 de la aquia 14 no retiene completamente el extremo distal 34 del resorte 16 en esta posición, el extremo distal 34 es capaz de flexionarse de manera que puede escapar de la retención proporcionada por la superficie de soporte 136 y puede comenzar la rotación en el sentido contrario a las agujas del reloi, como se muestra en la figura 10B. Por tanto, el paso de una parte de la punta 18 de la aguja 14 más allá del extremo distal 34 del resorte 16 permite que al menos una parte del resorte 16 se desplace fuera de la alineación coaxial sustancial con la aguja 14 para activar la liberación del resorte 16 al estado de sujeción. Sin embargo, se reconocerá que en realizaciones alternativas, una parte del resorte 16 no tiene que desplazarse fuera de la alineación coaxial sustancial con la aguja 14 para liberar el resorte 16 de la superficie 136. Por ejemplo, si la superficie de soporte 136 estuviera sobre la aguja 14 en lugar de en el alojamiento 104, la región 26 de la aguja 14 puede proporcionar espacio para el resorte 16 a fin de liberarse de la superficie de soporte 136 sin que el resorte 16 se salga de la alineación coaxial sustancial con la aguja 14. También se reconocerá que aunque la figura 10B está diseñada con la región 26 hacia abajo, hacia el soporte 136, permitiendo así que el resorte 16 empiece a desviarse hacia arriba tan pronto como la región 26 entra en el resorte 16, la activación todavía podría ocurrir incluso aunque la región 26 se orientara hacia arriba, o hacia cualquier otra orientación, aunque la activación pueda ser retrasada hasta que la punta afilada 28 se encuentre completamente dentro del resorte 16.

Las figuras 11A y 11B ilustran el resorte 16 una vez activado y acoplado con sujeción al eje 22 de la aguja 14. El resorte 16 queda retenido dentro del protector de resorte para punta de aguja 102 a través de su extremo proximal 32. De este modo, el desplazamiento de la aguja 14 será transferido directamente hacia el protector de resorte para punta de aguja 102 a través del acoplamiento del resorte 16 con la aguja 14. Además, con la aguja 14 retirada del paso 112, el segundo brazo elástico 110 es libre para flexionarse hacia dentro. El primero brazo elástico 108 también es libre de flexionarse hacia dentro y, por tanto, los brazos elásticos 108, 110 pueden flexionarse más allá del saliente anular 148 para permitir que el protector de resorte para punta de aguja 102 se libere del conector de catéter 114. De esta manera, la actividad normal de retracción del conector de aguja 116 del conector de catéter 114 activa el protector de resorte para punta de aguja 102 sin ninguna acción adicional por parte del profesional sanitario, y la retracción adicional del conector de aguja 116, después de la activación,

libera el protector de resorte para punta de aguja 102 del conector de catéter 114 sin manipulación adicional por parte del profesional sanitario.

Con referencia a las figuras 12A a 12F se muestra un conjunto de catéter 200 que puede ser esencialmente el mismo que el conjunto de catéter 100 descrito anteriormente, aunque incluyendo una tercera realización de un protector de resorte para punta de aguja 202. El protector de resorte para punta de aguja 202 puede incluir esencialmente el mismo resorte 16 que en las realizaciones primera y segunda. El protector de resorte para punta de aguja 202 incluye un alojamiento 204 que tiene un paso 206 para recibir la aguja 14 a través del mismo y unos brazos elásticos primero y segundo 208, 210, en el que al menos un brazo define un paso 212 en general axialmente alineado con el paso 206. La figura 12A representa el conjunto de catéter 200 antes de la introducción de la aguja 14 en el conjunto. La figura 12B representa el conjunto de catéter 200 como una unidad montada con la aguja 14 introducida en el conjunto. Las figuras 12C a 12F representan el funcionamiento del protector de resorte para punta de aguja 202 y las posiciones correspondientes del conector de catéter 114 y el protector de resorte para punta de aguja 202 durante el uso.

5

10

45

50

55

60

El conjunto de catéter 200 incluye un conector de aguja 116 (figura 3B) con la aguja 14 que se extiende desde el mismo. El conector de catéter 114 del conjunto de catéter 200 incluye un adaptador luer 118 en su extremo proximal y el tubo de catéter 122 que se extiende distalmente desde el extremo distal 124 del conector de catéter 114. El eje de aguja 22 se extiende a través del alojamiento 204, el resorte 16, el conector de catéter 114 y el tubo de catéter 122 con una punta expuesta 18 que sale del extremo distal 125 del tubo de catéter 122 en una posición extendida de la aguja 14 (como se muestra en la figura 12B).

El resorte 16 tiene una primera posición axial y una segunda posición axial con respecto al alojamiento 204. En la 20 figura 12A, el resorte 16 se muestra en la primera posición axial antes de la inserción de la aquia 14 en el conjunto de catéter 200. La figura 12B representa el resorte 16 después de haber sido desplazado a la segunda posición axial, con la aguja 14 insertada a través del protector de resorte para punta de aguja 202. El resorte 16 se puede desplazar desde la primera posición axial hasta la segunda posición axial mediante el uso de una 25 herramienta independiente (no mostrada) para empujar el resorte 16 en una dirección distal. En tal realización, el resorte 16 está en un estado armado en la primera posición axial y permanece en un estado armado cuando se desplaza a la segunda posición axial. Un estado armado en la primera posición axial se obtiene enrollando el resorte 16 sujetando el extremo distal 34 del resorte 16 haciendo frente a su desviación de rotación y en contacto con un reborde 213 definido por una superficie interior 214 del alojamiento 204, y sosteniendo el extremo 30 proximal 32 haciendo frente a su desviación de rotación y en contacto con una herramienta (no mostrada) fuera del alojamiento 204. Una vez enrollado, el resorte 16 se desplaza ligeramente de manera distal para que el extremo proximal 32 se coloque sobre un contorno 216 de una muesca 218 en un extremo proximal 220 del alojamiento 204, como se ve en la figura 12A.

Mientras el resorte 16 se desplaza de la primera posición axial de la figura 12A a la segunda posición axial de la figura 12B, el extremo distal 34 del resorte 16 permanece en contacto con el reborde 213 hasta que se desplaza hacia una superficie de soporte 222 (véanse las figuras 12A y 13A) y por tanto no gira en la dirección de desviación de rotación del resorte 16. Aunque no se muestra en la figura 12B, pero como se puede observar en las figuras 13A – 13B, cuando se desplaza a la segunda posición axial, el extremo distal 34 del resorte 16 se desplaza para perder contacto con el reborde 213 del alojamiento 204 para ser recibido por la superficie de soporte 222 del alojamiento 204.

Además, a medida que el resorte 16 se desplaza desde la primera posición axial hacia la segunda posición axial, el extremo proximal 32 del resorte 16 se desplaza distalmente a lo largo del contorno 216 de la muesca 218. La muesca 218 de la realización ilustrada tiene normalmente forma de U o forma de V con un extremo abierto 224 y un extremo cerrado 226. Sin embargo, los expertos en la técnica reconocerán que la forma de U o de V no es necesaria y que puede utilizarse cualquier forma que cumpla los principios de la presente invención. Cuando el resorte 16 alcanza la segunda posición axial, el extremo proximal 32 se sitúa en una parte distal 228 de la muesca 218. Antes de ser recibido en la parte distal 228, el extremo proximal 32 pasa a través de una parte estrecha 230 formada por un saliente 232. La parte estrecha 230 está conformada de manera que permitirá el paso del extremo proximal 32 en una dirección desde el extremo abierto 224 a la parte distal 228, aunque impedirá el paso del extremo proximal 32 en una dirección de la parte distal 228 al extremo abierto 224. Puesto que el extremo proximal 32 del resorte 16 se recibe en un lado distal del saliente 232, la desviación de rotación del resorte 16 mantendrá el extremo proximal 32 en la parte distal 228, mientras que el resorte 16 está en el estado armado.

El extremo distal 238 del alojamiento 204 incluye un primer brazo elástico 208 y un segundo brazo elástico 210. El segundo brazo elástico 210 incluye un paso 212 en general axialmente alineado con el paso 206. Por lo menos un brazo, y como en la realización ilustrada, los dos brazos 208, 210, incluyen un fiador 240 en extremos distales 242, 244, respectivamente, para definir segmentos de un anillo anular 246. Estos brazos elásticos primero y segundo 208, 210 interactúan con características del conector de catéter 114, como se explica a continuación, para controlar la liberación del protector de resorte para punta de aguja 202 del conector de catéter 114.

Además, como se puede ver en las figuras 12A a 12F, el primer brazo elástico 208 tiene una superficie 248 que puede ser proporcionada por una pata 250 que entra en contacto y es opuesta a la superficie exterior 251 del resorte 16 cuando el resorte 16 está en la segunda posición axial. En la realización ilustrada, la pata 250 está situada en un extremo distal 242 del primer brazo elástico 208. Sin embargo, esta ubicación es meramente ejemplar. Además, cualquier superficie del primer brazo elástico 208 puede ser usada para poner en contacto el resorte 16 y por tanto no se requiere un saliente que cuelgue hacia abajo, tal como la pata 250. Se puede ver también a partir de las figuras que el primer brazo elástico 208 está dispuesto de manera proximal al extremo distal 238 del alojamiento 204.

5

10

15

20

25

40

Con el resorte 16 en la segunda posición axial y la aguja 14 en la posición extendida, los fiadores 240 se asientan de manera distal al saliente anular 148 en el conector de catéter 114 con un ligero ajuste por fricción que permite al profesional sanitario (no mostrado) girar el conector de catéter 114 con respecto al protector de resorte para punta de aguja 202. Por tanto, inicialmente el protector de resorte para punta de aguja 202 se acopla de manera fija con el conector de catéter 114 (como en la figura 12B) de tal manera que cualquier fuerza resultante del desplazamiento proximal de la aguja 14 (por ejemplo, mediante el desplazamiento proximal del conector de aguja 116 por un profesional sanitario) es insuficiente para liberar el protector de resorte para punta de aguja 202 del conector de catéter 114. Sin embargo, una vez que el protector de resorte para punta de aguja 202 se activa, de manera que el resorte 16 se acopla con sujeción al eje 22 de la aguja 14 (figura 12D) el protector de resorte para punta de aguja 202 y la aguja 14 se fijan entre sí de manera efectiva de tal forma que el desplazamiento proximal de la aquia 14 genera una fuerza suficiente para superar la fuerza de retención del alojamiento 204 al conector de catéter 114. Más en concreto, con la aguja 14 fuera, a los brazos elásticos primero y segundo 208, 210 se les permite flexionarse y desplazarse más allá del saliente 148 y permite que el protector de resorte para punta de aquia 202 se libere del conector de catéter 114. Por tanto, no es hasta que el eje de aguja 22 está de manera efectiva proximalmente más allá de paso 212, tal como con la punta 18 protegida por un protector de resorte para punta de aguja 202 en la posición retraída de la aguja 14, que cualquiera o ambos de los brazos elásticos primero y segundo 208, 210 se flexionan. Como consecuencia de ello, la extracción proximal continua en el conector de aguja 116 hace que uno o ambos de brazos elásticos 208, 210 se flexionen de manera suficiente como para que los fiadores 240 se desplacen proximalmente al saliente anular 148, mientras que la superficie 248 de la pata 250 se desplaza hacia el espacio anteriormente ocupado por el resorte 16 (figura 12E) y después se flexionen o expandan de nuevo hacia la posición nominal (figura 12F).

A medida que el resorte 16 se desplaza desde la segunda posición axial hacia la primera posición axial y hacia una tercera posición axial (que puede estar en o cerca de la primera posición axial), la superficie exterior 251 del resorte 16 se desplaza proximalmente y sin contacto con la pata 250. Esto proporciona espacio para que el primer brazo elástico 208 se flexione a fin de liberar el alojamiento 204 del interior del conector de catéter 114. Como apreciarán los expertos en la técnica, la colocación del resorte 16 en contacto con la pata 250 en la segunda posición axial evita que el alojamiento 204 se libere del conector de catéter 114 hasta que el resorte 16 se desplace del estado de fijación para fijar la aguja 14. Esto asegura que el alojamiento 204 no pueda ser retirado del conector de catéter 114 hasta que la punta de la aguja 18 esté protegida.

Con la aguja 14 retirada del paso 212, el segundo brazo elástico 210 está libre para flexionarse, y por tanto se puede alejar del saliente 148 para permitir que el protector de resorte para punta de aguja 202 se libere del conector de catéter 114, como se describió anteriormente. Los expertos en la técnica reconocerán que el segundo brazo elástico 210 no necesita ser recibido distalmente de un saliente 148, sino que puede acoplar otros elementos de acoplamiento de alojamiento 146, tales como una pluralidad de salientes, una ranura, una pluralidad de ranuras o una ranura anular.

En funcionamiento, el conjunto de catéter 200 se inserta en un paciente y, mientras que el conector de catéter 114 se mantiene fijo, el conector de aguja 116 y la aguja 14 se pueden retraer para retirar la aguja 14 del paciente (como se muestra en las figuras 12C a 12F). A medida que la aguja 14 se retrae (es decir, se retira proximalmente), la punta de aguja 18 pasará a través del paso 212 hacia el resorte 16. Como se muestra en la figura 12C, el extremo distal 18 de la aguja 14 se desplazará a un punto que permite que al menos un segmento del resorte 16, tal como el extremo distal 34, se desplace con respecto a la aguja 14. En particular, la región 26 de la aguja 14 se desplazará a una posición adyacente al extremo distal 34 del resorte 16. La región 26 proporciona espacio al extremo distal 34 del resorte 16 para alejarse de la superficie de soporte 222 y a continuación, para girar en la dirección de la desviación de rotación del resorte 16. Como resultado del resorte 16 que gira de esta manera, el diámetro interior 36 del resorte 16 se reduce al estado de sujeción para que acople con sujeción el eje 22, como se muestra en las figuras 12D y 13D.

Una vez que el resorte 16 acopla con sujeción la aguja 14, la retracción continua de la aguja 14 dará como resultado la configuración de las figuras 12E y 12F, en las que el protector de resorte para punta de aguja 202 se desacopla de la parte interior del conector de catéter 114 mientras rodea la punta 18 de la aguja 14. Mientras la aguja 14 se retrae, el extremo proximal 32 del resorte 16 se desplazará de manera cooperativa desde la parte distal 228 de la muesca 218 (segunda posición axial) al extremo cerrado 226 de la muesca 218 (tercera posición axial). El contacto del extremo proximal 32 del resorte 16 con el extremo cerrado 226 proporciona la fuerza, con la retracción continua de la aguja 14, para retirar el protector de resorte para punta de aguja 202 del conector de catéter 114.

De esta manera, en funcionamiento, el protector de resorte para punta de aguja 202 se acopla dentro del conector de catéter 114 con una fuerza de sujeción mayor que la fuerza que la aguja 14 pueda ejercer en el protector de resorte para punta de aguja 202, mientras que la aguja 14 se retrae. Como resultado de ello, el protector de resorte para punta de aguja 202 permanece unido al conector de catéter 114 mientras que el conector de aguja 116 y la aguja 14 se retraen para retirar la aguja 14 del paciente. Sin embargo, cuando el protector de resorte para punta de aguja 202 se activa para sujetar el eje 22 de la aguja 14, la fuerza de sujeción es mayor que la fuerza de retención entre el conector de catéter 114 y el protector de resorte para punta de aguja 202. Por tanto, cuando la aguja 14 continúa siendo retraída después de que el protector de resorte para punta de aguja 202 se ha activado, el protector de resorte para punta de aguja 202 se libera del conector de catéter 114 y permanece en posición cubriendo la punta 18 de la aguja 14.

10

15

20

25

30

35

40

45

50

55

60

De este modo, esta realización de la presente invención proporciona una liberación pasiva del protector de resorte para punta de aguja 202 del conector de catéter 114. La actividad normal de la retracción del conector de aguja 116 del conector de catéter 114 activa el protector de resorte para punta de aguja 202 sin ninguna acción adicional por parte del profesional sanitario. Además, la retracción adicional del conector de aguja libera el protector de resorte para punta de aguja 202 del conector de catéter 114 sin manipulación adicional por parte del profesional sanitario. Como resultado de ello, la presente invención proporciona un protector de resorte para punta de aguja 202 para un conjunto de catéter 200 que incluye tanto activación pasiva como liberación pasiva.

Una cuarta realización de un protector de resorte para punta de aguja se describe con referencia a las figuras 14 a 22A. Esta realización incluye ciertas características para mejorar la capacidad de fabricación, así como para asegurar aún más el protector de resorte para punta de aguja en la aguja después de que ha sido activado. Para este fin, las figuras 14 y 15 representan un conjunto de catéter 300 que consta de un conector de aguja 116 que tiene una aguja 14 que se extiende distalmente del mismo, un protector de resorte para punta de aguja 302 y un conector de catéter 114 que tiene tubo de catéter 122 que se extiende distalmente del mismo. Cuando está montado, la aguja 14 se extiende a través del protector de resorte para punta de aguja 302 y pasa a través del tubo de catéter 122 de manera que la punta 18 sobresale más allá del extremo distal 125 del tubo de catéter 122. El protector de resorte para punta de aguja 302 está dispuesto en el conector de catéter 114 y está adaptado para proteger la punta 18 de la aguja 14 cuando la aguja 16 se retira.

Los detalles del protector de resorte para punta de aguja 302 se ilustran en las figuras 16 a 17a e incluyen una copa 304, una arandela 306, un resorte 16 y un alojamiento 308 que cooperan de manera colectiva para realizar una función de protección de punta de aguja 14. La copa 304 tiene una base 310 con una cara proximal 312, una cara distal 314 y una la abertura 316 a través de la base 310 y que se extiende entre las caras proximal y distal 312, 314. La abertura 316 está dimensionada para recibir el eje 22 de la aquia 14 a través de la misma. Cuatro brazos 318 se extienden distalmente desde la base 310 y definen una cámara interior 320. Un eje central 322 de la copa 304 se define a través del centro de la abertura 316, generalmente perpendicular a la base 310 y aproximadamente en línea con el centro de los cuatro brazos 318. Cuando no se instala en el alojamiento 308, el ángulo entre la base 310 y los brazos 318 es mayor de 90 grados, y preferiblemente aproximadamente de 95 grados, lo que da como resultado un ligero ensanchamiento de los brazos 318 en una dirección radialmente hacia afuera. Cada brazo 318 tiene una pestaña interior 324, una pestaña exterior 326 en lados opuestos del brazo 318 y una pestaña distal 328 opuesta a la base 310. Las pestañas interiores 324 y las pestañas exteriores 326 tienen una relación de superposición y definen al menos en parte la cámara interior 320. Más particularmente, la pestaña interior 324 de un brazo 318 está más cerca de, aunque no hace contacto con, la pestaña exterior 326 del brazo cercano 318. Esta disposición permite que los cuatro brazos 318 sean comprimidos o flexionados hacia dentro, cambiando el ángulo con respecto a la base 310 de aproximadamente 95 grados, a un ángulo más pequeño tal como aproximadamente 90 grados, antes de que las pestañas interior y exterior 324, 326 entren en contacto una con otra.

La pestaña exterior 326 tiene una parte de pestaña proximal 330 que está inclinada radialmente hacia fuera desde el eje central 322 de la copa 304, que termina en un borde de bloqueo 332. Cada una de las pestañas distales 328 tiene una nariz que se extiende circunferencialmente, que define un punto de bloqueo 334 en el extremo de la misma. Cada una de las pestañas distales 326 tiene una parte de inserción 336 que está inclinada hacia el eje central 322 para ayudar en la entrada de los cuatro brazos 318 en el extremo proximal del alojamiento 308 durante el montaje. Una de las cuatro pestañas interiores 324 (figura 17A) es una pestaña de armado 338 que es más larga que las otras tres pestañas interiores 324 y tiene una muesca en forma generalmente de V 340 formada en las mismas. Un recorte semicircular 342 en el borde de la base 310 proporciona una referencia visual y táctil opcional para la ubicación de la pestaña de armado 338. Unas ventanas opuestas 344 se definen entre los brazos cercanos 318 y la base adyacente 310 haciendo posible que los objetos pasen a través de la cámara interior 320. Como se describe a continuación, las ventanas 344 pueden ser utilizadas durante el montaje del protector de resorte para punta de aguja 302. La base 310 puede incluir además uno o más recortes 346 utilizados en la fabricación y/o montaje de la protector de punta 302.

Como se muestra en las figuras 16 y 16A, la arandela 306 tiene una cabeza 348, un vástago 350 que se extiende distalmente del mismo y un paso 351 que se extiende a través de la arandela 306. La cabeza 348 incluye una cara proximal 352, un primer bisel 354, un segundo bisel 356 y una parte generalmente cilíndrica 358. El vástago 350 es generalmente cilíndrico, termina en una cara distal 359 y tiene una dimensión transversal menor que una

dimensión transversal de la parte cilíndrica 358 de la cabeza 348 para definir un resalte orientado de manera distal 360. Además, la arandela 306 incluye una ranura 362 que se extiende generalmente en una dirección proximal-distal y abierta a lo largo de la periferia exterior de la arandela 306. La parte de la ranura 362 en el vástago 350 incluye un primer conductor 364 que define una primera esquina 366 y un segundo conductor 368 que define una segunda esquina 370. La ranura de la arandela 362 está en comunicación con un receptáculo de resorte 372 que define una primera superficie de tope 374, una segunda superficie de tope 376, una superficie de tope proximal 378 y una superficie de tope distal 380. El receptáculo de resorte 372 está adaptado para recibir el extremo proximal 32 del resorte 16 en el mismo. El paso 351 puede incluir biseles proximal y distal 382, 384 adyacentes a las caras proximal y distal 352, 359, respectivamente. El paso 351 tiene una configuración escalonada para definir un resalte orientado de manera distal 386 en el mismo. Para los propósitos descritos a continuación, el segundo bisel 356 de la cabeza 348 incluye una parte de entrada 388 y la parte cilíndrica 358 de la cabeza 348 incluye un canto de entrada flat 390.

10

15

20

40

45

50

55

60

El alojamiento 308 incluye una cara proximal 400, una parte proximal 402, una parte intermedia 404, una parte distal 406 y una cara distal 408. Las partes de alojamiento 308 tienen una configuración escalonada para definir un primer resalte orientado de manera distal 410 entre la parte proximal 402 y parte intermedia 404 y un segundo resalte orientado de manera distal 412 entre la parte intermedia 404 y la parte distal 406. El alojamiento 308 también puede incluir uno o más refuerzos inclinados 414 entre la parte proximal 402 y la parte intermedia 404. El alojamiento 308 puede incluir además uno o más biseles tales como los biseles 416, 418 entre las diferentes partes o entre una parte y una cara correspondiente. El alojamiento 308 incluye, además, unos espacios interconectados primero y segundo 420, 422 para definir un brazo elástico 424. El brazo elástico 424 es sustancialmente plano en el lado orientado de manera opuesta a un eje central 426 del alojamiento 308. La superficie plana 428 continúa proximalmente a través de la parte proximal 402 hacia la cara proximal 400 donde define un canto grande 430. El brazo elástico 424 tiene un fiador 128 que crea un segmento de un anillo anular 432 y comprende, además, un conductor 434 y un canto 436 (figura 18).

Las características interiores del alojamiento 308 incluyen una cavidad proximal 438 que tiene un primer diámetro y una cavidad distal 442 que tiene un segundo diámetro reducido para definir un resalte 446 entre las dos cavidades. La cavidad proximal 438 tiene una ranura anular 448 formada en la misma y una cara proximal adyacente 400. La cavidad distal 442 está delimitada en el extremo distal de la misma por una cara interior 450 de la parte distal 406. Además, la parte distal 406 incluye un paso 451 a través de la misma en comunicación con la cavidad distal 442 y está dimensionada para recibir el eje 22 de la aguja 14 a través de la misma. El interior del alojamiento 308 incluye además una pluralidad (por ejemplo, cuatro) de nervios separados circunferencialmente 452 (figura 17B). Los nervios 452 tienen conductores de nervio que se extienden proximalmente 454 y superficies interiores curvas 456 que forman un diámetro de resalte discontinuo eficaz 458. El nervio 452 que es adyacente al brazo elástico 424 y al extremo distal 34 del resorte 16 tiene un relieve de nervio 460. Además, el brazo elástico 424 tiene una superficie de soporte 462 que define una parte prearmada 464 (figura 17B) y una parte de armado 466 que es distal de la parte prearmada 464.

A continuación se describirá la capacidad de interconexión de los diversos componentes del alojamiento 308. Esto incluye, por ejemplo, colocar el protector de resorte para punta de aquia 302 en un estado prearmado y un estado armado. Además, también se describirá el montaje de un conjunto de catéter 300 que incluye el protector de resorte para punta de aguja 302. En lo que respecta al montaje del protector de resorte para punta de aguja 302, la copa 304 se coloca debajo de la base sobre un primer pasador mecánico (no mostrado) que pasa a través de la abertura 316 en la base 310. Otros dos pasadores mecánicos (no mostrados) se pasan a través de ventanas opuestas 344 en la copa 304 para quedar situados sustancialmente horizontales a cada lado de y generalmente perpendiculares al primer pasador mecánico. La arandela 306, proximal boca abajo (figura 17) se alinea para que el canto de entrada 390 y la parte de entrada 388 se alineen con la pestaña de armado 338 de la copa 304, como se muestra en la figura 17A. La arandela 306 se baja a continuación en el primer pasador mecánico y en la copa 304 para descansar sobre los dos pasadores horizontales que se extienden a través de las ventanas 344. Los pasadores horizontales colocan el receptáculo de resorte 372 de la arandela 306 en alineación vertical con la muesca 340 en la pestaña de armado 338. El resorte 16 se coloca sobre el primer pasador mecánico y baja de manera que el extremo proximal 32 se acopla en la ranura de resorte 362 y en el receptáculo de resorte 372 de la arandela 306 (figura 16A). Una vez insertado en su interior, el desplazamiento del extremo proximal 32 del resorte 16 fuera del receptáculo de resorte 372 se limita debido a la configuración de la primera esquina 366, la segunda esquina 370 y la superficie de tope distal 380. Por tanto, la arandela 306 y el resorte 16 se convierten en un montaje sustancialmente inseparable con el extremo proximal 32 del resorte 16 colocado en el receptáculo de resorte 372 y en alineación con la muesca 340.

Con referencia además a la figura 17, el alojamiento 308 está orientado circunferencialmente para que el extremo distal 34 del resorte 16 pase entre el relieve de nervio 460 y el brazo elástico 424. El alojamiento 308 se baja después sobre el primer pasador mecánico para que los nervios 452 pasen sobre la superficie exterior 251 del resorte 16. Mientras la cara proximal 400 del alojamiento 308 se aproxima a la copa 304, las partes de inserción 336 de los brazos 318 entran en la cavidad proximal 438 del alojamiento 308 y los brazos 318 comienzan a flexionarse desde su posición radialmente hacia fuera (por ejemplo, inclinada aproximadamente 95 grados con respecto a la base 310) hacia su posición radialmente hacia dentro (por ejemplo, inclinada aproximadamente 90 grados con respecto a la base 310). El alojamiento 308 y la copa 304 son empujados juntos

hasta que el punto de bloqueo 334 en las pestañas distales 328 entra en la ranura anular 448. Aproximadamente al mismo tiempo, el extremo distal 34 del resorte 16 alcanza la parte prearmada 464 de la superficie de soporte 462 sobre el brazo elástico 424. Como se ve en las figuras 17 y 17B, existe cierta holgura entre la superficie exterior 251 del resorte 16 y la superficie interior 456 de los nervios 452 mientras que el resorte 16 está en su estado de reposo. Los brazos 318 de la copa 304 se flexionan a su posición radialmente hacia dentro mediante el alojamiento 308 y la elasticidad de los brazos 318 ejerce una fuerza radialmente hacia fuera a través de los puntos de bloqueo 334 en el interior del alojamiento 308 en la ranura anular 448 para retener el copa 304 en el mismo.

10

15

20

25

30

35

40

45

50

55

60

Para prearmar el protector de resorte para punta de aguja 302 (figura 18), el alojamiento 308 se gira en la dirección de la flecha (figura 17B) con respecto a la copa 304, que se mantiene fija mediante los dos pasadores horizontales a través de las ventanas opuestas 344 o por cualquier otro medio adecuado. Esta rotación pone inmediatamente la parte prearmada 464 en contacto con el extremo distal 34 del resorte 16, que entonces impulsa el extremo proximal 32 del resorte 16 de manera fija en la muesca 340 sobre la pestaña de armado 338 de la copa 304. La rotación continua del alojamiento 308, tal como, por ejemplo, durante un total de aproximadamente dos vueltas y media, agranda el diámetro de resorte 36 como se muestra en las figuras 18 y 18A. En este estado, conocido como estado prearmado, el protector de resorte para punta de aguja 302 es estable. Se impide que el alojamiento 308 y la copa 304 giren entre sí en la dirección inversa mediante los puntos de bloqueo 334 que se acoplan en la ranura anular 448. Es decir, la nariz que se extiende circunferencialmente sobre las pestañas distales 328 está configurada para permitir la rotación del alojamiento 308 en una primera dirección circunferencial, aunque impide la rotación en la dirección circunferencial opuesta. Se impide que la arandela 306 se desplace hacia la base de copa 310 por el extremo proximal 32 del resorte 16 que mantiene firmemente la arandela 306 a la altura de la muesca 340. El extremo distal 34 del resorte 16 no se va a desenrollar porque el diámetro exterior ahora agrandado del resorte 16 no tiene espacio para desplazarse dentro del diámetro real de nervio 458 de los nervios 452. Por consiguiente, se impide que el extremo distal 34 se flexione lejos de o se desacople de otro modo de la parte prearmada 464 de la superficie de soporte 462. Una vez en la posición prearmada, los dos pasadores horizontales pueden ser retirados y el protector de resorte para punta de aguja 302 (figuras 15 y 18) puede ser retirado de toda la mecanización y manipularse y almacenarse para el montaje posterior en un conjunto de catéter 300, como se describirá ahora.

Aunque la descripción anterior contempla prearmar el protector de resorte para punta de aguja 302 mediante la rotación del alojamiento 308 con respecto a la copa 304, tal prearmado puede realizarse también de otras maneras que se contemplan dentro del ámbito de aplicación de la invención. Por ejemplo, podría proporcionarse un canto sobre la aguja que se va a utilizar para interconectarse con una característica en el alojamiento y la aguja podría entonces ser girada para girar el alojamiento y enrollar el resorte. Sin embargo, si este fuera el caso, sería necesario preenrollar el resorte a un diámetro lo suficientemente grande como para que la aguja pase a través del resorte para alcanzar la característica de interfaz o la característica de interfaz podría en cambio ser proximal al resorte. De este modo, el resorte puede necesitar ser preenrollado lo suficiente para permitir que la aguja pase, y después ser enrollado además para dar al resorte más torsión a fin de empujarlo contra el brazo elástico.

Para armar el protector de resorte para punta de aquia 302 (figura 19), la punta 18 de la aquia 14 primero se pasa a través del protector de resorte para punta de aquia 302. La cara distal 468 del conector de aquia 116 entra en contacto con la cara proximal 312 de la base 310 y empuja la copa 304, la arandela 306 y el resorte 16 distalmente hacia la cavidad proximal 438 y la cavidad distal 442 del alojamiento 308 hasta que los bordes de bloqueo 332 de los brazos 318 se acoplan en la ranura anular 448. Este desplazamiento hace que el extremo distal 34 del resorte 16 se desplace desde la parte prearmada 464 de la superficie de soporte 462 (figuras 18 y 18A) hacia la parte de armado 466 (figuras 19 y 19A). Además, este desplazamiento también hace que un extremo distal 34 del resorte 16 se desplace distalmente de los nervios 452. Aunque el extremo distal 34 del resorte 16 no está retenido por los nervios 452, el eje 22 de la aguja 16 impide la desviación del extremo distal 34 lejos de la parte de armado 466 de la superficie de soporte 462. En este estado, conocido como el estado armado, el resorte 16 es capaz de desenrollar y sujetar la aguja 14 en el modo descrito en las realizaciones anteriores cuando se activa. Cuando está armado, el resorte 16 aplica una fuerza hacia fuera al brazo elástico 424 cuyo fin se describirá en más detalle a continuación. Aunque el método de armado descrito anteriormente implica empujar la copa 304 en el alojamiento 308 mediante el conector de aguja 116, otros métodos adecuados que desplazan la copa 304 hacia el alojamiento 308 o el alojamiento 308 sobre la copa 304 mientras se coloca primero el eje 22 de la aquia 14 a través del resorte 16. también servirían para armar el protector de resorte para punta de aguja 302.

Para construir el conjunto de catéter 300 (figura 20), el conector de aguja 116 y el protector de resorte para punta de aguja 302, que está dispuesto coaxialmente sobre la aguja 14, se insertan en el conector de catéter 114, con el conductor 434 del brazo elástico 424 facilitando el paso distal del fiador 128 sobre el saliente anular 148. El anillo anular 432 interactúa con el saliente anular 148 para evitar que el protector de resorte para punta de aguja 302 sea retirado de manera no deseada del conector de catéter 114. Los refuerzos inclinados 414 y la parte proximal 402 del alojamiento 308 (figura 16) proporcionan estabilización adicional entre el alojamiento 308 y el conector de catéter 114 para que se minimice cualquier balanceo, inclinación u otro desplazamiento no deseado del protector de resorte para punta de aguja 302 en el interior del conector de catéter 114. El conector de aguja

116 puede ser mantenido en posición con respecto al conector de catéter 114 a través de una característica de ajuste a presión o de otras maneras de sobra conocidas en la técnica (no se muestran).

Para activar el protector de resorte para punta de aguja 302 (figuras 21 y 21A), un profesional sanitario sólo necesita utilizar el conjunto de catéter 300 de la manera habitual. Tras la retirada de la aguja 14 del paciente, la región 26 de la aguja 14 entra en el resorte 16, permitiendo que el extremo distal 34 del resorte 16 se desvíe alejándose de la parte de armado 466 de la superficie de soporte 462 del brazo elástico 424. La parte de armado 466 puede ser inclinada para facilitar el desacople del extremo distal 34 de la parte de armado 466. Cuando el extremo distal 34 se desvía alejándose de la parte de armado 466, el resorte 16 se desenrolla en la dirección de su estado de reposo haciendo que el diámetro interior 36 del resorte 16 disminuya o se contraiga. Al igual que en otras realizaciones, el resorte 16 se desplaza hacia su estado de sujeción (figura 22), en el que el diámetro interior 36 alcanza el diámetro del eje 22 para sujetar el eje 22 firmemente. El extremo proximal 32 del resorte 16, aunque sigue colocado cerca de la muesca 340, ya no tiene la fuerza del resorte 16 para mantenerlo firmemente acoplado con el mismo. Además, ya que el extremo distal 34 del resorte 16 ya no se apoya sobre el brazo elástico 424, el resorte 16 ya no ejerce una fuerza radialmente hacia fuera para sostener el fiador 128 firmemente contra la superficie interior 142 del catéter 114 justo distal del saliente anular 148.

5

10

15

20

25

55

60

Para retirar la aguja 14 con la punta 18 de la misma protegida por el protector de resorte para punta de aguja 302 (figura 22), el profesional sanitario continúa desplazando el conector de aguja 116 proximalmente, tirando de la manera normal. La aguja 14 tira del resorte 16 y la arandela 306 proximalmente con el mismo, haciendo que la arandela 306 y el resorte 16 salgan de la muesca 340 y se desplacen proximalmente hacia la cámara interior 320 de tal manera que la cara proximal 352 de la arandela 306 se acople con la cara distal 314 de la base 310 de la copa 304. El desplazamiento adicional proximal de la aguja 14 aplica una fuerza a la copa 304, que se acopla al alojamiento 308 mediante los bordes de bloqueo 332 que se acoplan a la ranura anular 448. Esta fuerza dirigida proximalmente causada al tirar de la aguja 14 se transfiere ahora al alojamiento 308. El brazo elástico 424 del alojamiento 308 que ya no tiene una fuerza aplicada al mismo mediante el extremo distal 34 del resorte 16, se desvía radialmente hacia el interior para permitir que el fiador 128 se desplace más allá del saliente anular 148 y permitir que el alojamiento 308 sea retirado del conector de catéter 114. Por consiguiente, el protector de resorte para punta de aguja 302 encierra la punta 18 de la aguja 14 y protege al profesional sanitario del contacto accidental con la misma.

Una característica de esta cuarta realización es que evita o reduce la probabilidad de extracción accidental o intencionada del protector de resorte para punta de aguja 302 al retorcer la aguja 14 con respecto al protector de resorte para punta de aguja 302. Es decir, puede ser deseable permitir que la aguja 14 gire en relación al alojamiento 308 del protector de resorte para punta de aguja 302. En esta realización, el protector de resorte para punta de aguja 302 está diseñado para permitir la rotación relativa entre tales. Más en concreto, la arandela 306 y la cámara interior 320 están dimensionadas de tal manera que cuando la arandela 306 haya sido desplazada hacia el interior de la cámara interior 320 (por ejemplo, durante la extracción de la aguja 14) la arandela 306 esté libre para girar o rotar dentro de la cámara interior 320. En consecuencia, el resorte 16 permanece en su estado de sujeción independientemente de la rotación de la aguja 14 con respecto al alojamiento 308 del protector de resorte para punta de aguja 302. De esta manera, el resorte 16 no se puede enrollar o desplazar de vuelta a su estado armado.

Aunque la presente invención ha sido ilustrada mediante la descripción de realizaciones de la misma, y aunque las realizaciones se han descrito en gran detalle, no se pretende restringir o limitar en modo alguno el ámbito de aplicación de las reivindicaciones adjuntas a dicho detalle. Para los expertos en la técnica quedarán claras las ventajas y modificaciones adicionales. Por ejemplo, la superficie de soporte que retiene el extremo distal del resorte no tiene necesariamente que ser plana o de cualquier forma particular. Las superficies de soporte y el extremo distal pueden ser de cualquier variedad de formas complementarias que actúan para retener temporalmente el extremo distal mientras la aguja está en su lugar, pero que permiten la liberación pasiva del resorte cuando la punta se desplaza sobrepasando el extremo distal. Alternativamente, la activación puede tener lugar antes de que la punta llegue al resorte, tal como mediante el uso de un paso proximal en el alojamiento y un paso distal en el alojamiento para hacer la aguja estable y luego hacer la aguja y el resorte inestables cuando la aguja sale del paso distal, pero aún no ha alcanzado el resorte. Esto todavía daría lugar a que la punta de la aguja esté protegida por el alojamiento.

Además, un protector de resorte para punta de aguja de acuerdo con los principios de la presente invención no necesariamente tiene que ser parte de un conjunto de catéter. El protector de resorte para punta de aguja puede ser parte de una aguja hipodérmica u otro dispositivo, similar. En tal configuración, el protector de resorte para punta de aguja, no el conector de catéter, se desplaza con respecto a la aguja de manera que la punta de la aguja entraría en el protector de resorte para punta de aguja y activaría de forma pasiva el resorte. Tal protector de resorte para punta de aguja también podría omitir características que se describen en este documento que proporcionan una liberación pasiva de un conector de catéter, ya que tal conector no está presente. Además, aunque las realizaciones descritas utilizan agujas de acabados de metal estándar y sin ninguna geometría tal como muescas o aristas añadidas, podrían utilizarse agujas de acabados o geometría de superficie modificada, especialmente si se quiere aumentar la fuerza de sujeción del resorte en el eje.

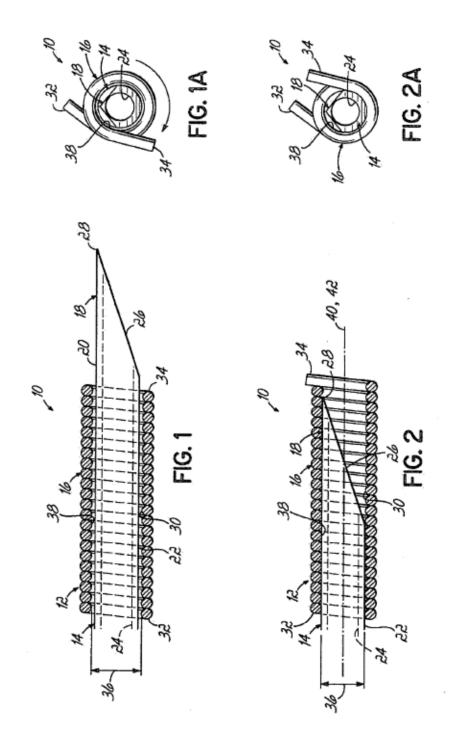
De este modo, la invención en sus aspectos más amplios no está por tanto limitada a los detalles específicos, aparatos y métodos representativos y ejemplos ilustrativos mostrados y descritos. En consecuencia, se pueden realizar cambios en tales detalles sin apartarse del ámbito de aplicación del concepto inventivo general.

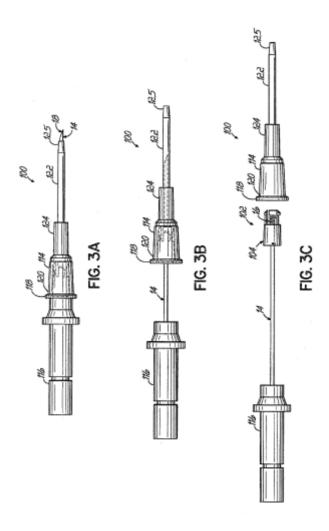
REIVINDICACIONES

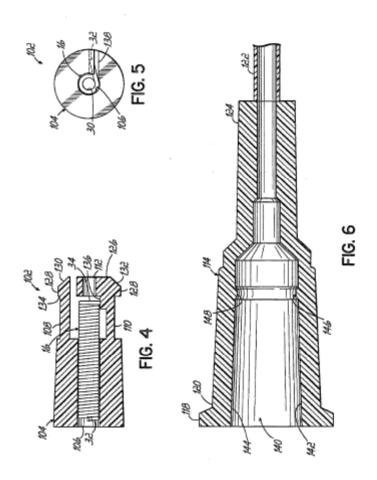
1. Catéter de seguridad que comprende un conector de catéter (114) que tiene un elemento de acoplamiento (148) en una superficie interior (146) del conector de catéter (114) situado distalmente de una abertura proximal (120) del conector de catéter (114), un protector de punta (202) que tiene un alojamiento exterior (204) y un elemento elástico interior (16) adaptado para deslizarse axialmente con respecto al alojamiento exterior (204) entre una primera posición axial y una segunda posición axial, teniendo el alojamiento exterior (204) un extremo distal (238) dispuesto en el conector de catéter (114), teniendo el alojamiento exterior (204) un saliente dirigido radialmente hacia fuera (240) dimensionado para acoplarse al elemento de acoplamiento de conector de catéter (148) para mantener el protector de punta (202) en el conector de catéter (114), y una aguja (14) que tiene un eje (22) que se extiende hasta una punta afilada distal (18), extendiéndose el eje (22) a través del elemento elástico interior (16) y el conector de catéter (114) para hacer que sobresalga la punta afilada (18) distalmente más allá del conector de catéter (114) en una posición extendida de la aquia (14) con el elemento elástico interior (16) en la primera posición axial, pudiéndose desplazar la aquia (14) en la dirección proximal para acoplarse al elemento elástico interior (16) durante tal desplazamiento para desplazar el elemento elástico interior (16) a la segunda posición axial y para aplicar fuerzas dirigidas de manera proximal al mismo, estando adaptado el elemento elástico interior (16) para acoplarse en el alojamiento exterior (204) en la segunda posición axial de manera que las fuerzas dirigidas de manera proximal aplicadas al elemento interior elástico (16) en la segunda posición axial son trasladadas al alojamiento exterior (204) para hacer que el alojamiento exterior (204) se desplace proximalmente, caracterizado por que el acoplamiento entre el elemento interior elástico (16) y el alojamiento exterior (204) es tal que el desplazamiento proximal adicional supera el acoplamiento entre el saliente (240) del alojamiento exterior (204) y el elemento de acoplamiento de conector de catéter (148) para retirar el protector de punta (202) del conector de catéter (114).

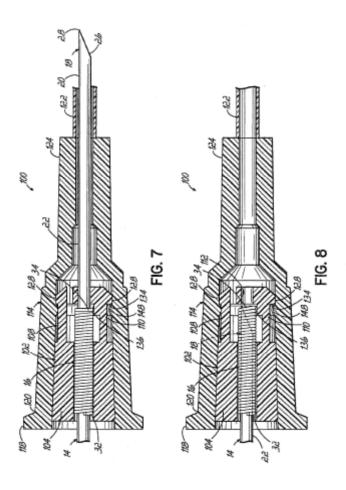
5

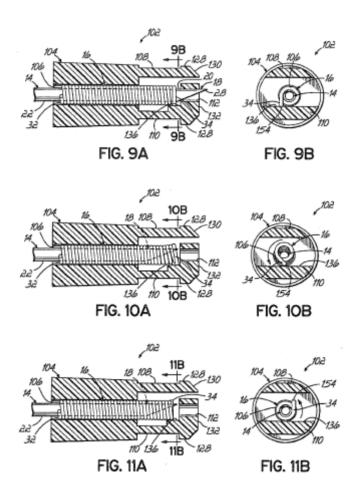
10


15


20


45


- 2. Catéter de seguridad de acuerdo con la reivindicación 1, pudiendo desviarse el saliente (240) contra el elemento de acoplamiento (148) para salir del mismo.
- 25 3. Catéter de seguridad de acuerdo con la reivindicación 1 o la reivindicación 2, fijándose la punta afilada de aguja (18) en el alojamiento exterior (204) mediante el elemento elástico interior (16) en la primera posición axial.
 - 4. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, incluyendo el alojamiento exterior (204) un segundo saliente dirigido radialmente hacia fuera (240) dispuesto de manera opuesta al primer saliente dirigido radialmente hacia fuera (240).
- 30 5. Catéter de seguridad de acuerdo con la reivindicación 4, siendo el elemento de acoplamiento (148) anular en relación a un aspecto interno del conector de catéter (114), estando dimensionado el segundo saliente dirigido radialmente hacia fuera (240) para acoplarse con el elemento de acoplamiento (148) del conector de catéter (114).
- 6. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, seleccionándose el elemento de acoplamiento (148) del grupo que consiste en un saliente en la superficie interior (146) del conector de catéter (114), un saliente anular alrededor de la superficie interior (146) del conector de catéter (114), una ranura definida por la superficie interior (146) del conector de catéter (114) y una ranura anular definida por y dispuesta circunferencialmente alrededor de la superficie interior (146).
- 7. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, estando dispuesto el elemento elástico interior (16) dentro del alojamiento exterior (204) en la primera posición axial.
 - 8. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, estando dispuesto el elemento elástico interior (16) dentro del alojamiento exterior (204) en la segunda posición axial.
 - 9. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, siendo un extremo distal (34) del elemento elástico interior (16) proximal al extremo distal (238) del alojamiento exterior (204) en ambas posiciones axiales primera y segunda del elemento interior.
 - 10. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, siendo un extremo proximal (32) del elemento elástico interior (16) distal a un extremo proximal (220) del alojamiento exterior (204) en ambas posiciones axiales primera y segunda del elemento elástico interior (16).
- 11. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, siendo el elemento elástico interior (16) un resorte helicoidal (16) que tiene un paso a través del cual pasa el eje de aguja (22), estando el resorte (16) adaptado para ser enrollado y desenrollado a fin de aumentar el diámetro a medida que el resorte (16) se enrolla y disminuir el diámetro a medida que el resorte (16) se desenrolla, enrollándose el resorte (16) con el elemento elástico interior (16) en la primera posición axial, por lo que el eje de aguja (22) puede ser recibido de manera deslizante a través del paso, desenrollándose el resorte (16) con el elemento elástico interior (16) en la segunda posición axial para así acoplarse con el eje de aguja (22) a fin de transmitir las fuerzas dirigidas proximalmente en el eje de aguja (22) al elemento interior elástico (16) que a su vez son transmitidas al alojamiento exterior (204).


- 12. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el elemento elástico interior (16) es de metal.
- 13. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el alojamiento exterior (204) es de plástico.
- 5 14. Catéter de seguridad de acuerdo con cualquiera de las reivindicaciones anteriores, en el que el alojamiento exterior (204) incluye un brazo elástico (208) que soporta el primer saliente dirigido radialmente hacia fuera (240).

