

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 536 730

51 Int. Cl.:

C07D 487/04 (2006.01) A61K 31/4985 (2006.01) A61P 35/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 17.09.2009 E 09783126 (7)
 (97) Fecha y número de publicación de la concesión europea: 08.04.2015 EP 2376492

(54) Título: Derivados de 3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona

(30) Prioridad:

19.09.2008 EP 08164714

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 28.05.2015

(73) Titular/es:

NERVIANO MEDICAL SCIENCES S.R.L. (100.0%) Viale Pasteur, 10 P.O. Box 11 20014 Nerviano (MI) , IT

(72) Inventor/es:

MIRIZZI, DANILO; CERVI, GIOVANNI; D'ANELLO, MATTEO; PAPEO, GIANLUCA MARIANO ENRICO; FERGUSON, RON y CASUSCELLI, FRANCESCO

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Derivados de 3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona

La presente invención se refiere a determinados derivados 4,7-disusutituidos de compuestos 3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona, que modulan la actividad de proteína quinasas. Por lo tanto, los compuestos de esta invención son útiles en el tratamiento de enfermedades producidas por la desregulación de la actividad de proteína quinasas. La presente invención describe también métodos para preparar estos compuestos, bibliotecas combinatorias de los mismos, composiciones farmacéuticas que comprenden estos compuestos, y métodos de tratamiento de enfermedades que usan composiciones farmacéuticas que comprenden estos compuestos. El mal funcionamiento de las proteína quinasas (PK) es la característica de numerosas enfermedades. Una gran parte de los oncogenes y protooncogenes implicados en los cánceres humanos codifican PK. Las actividades potenciadas de las PK también están implicadas en muchas enfermedades no malignas, tales como hiperplasia prostática benigna, adenomatosis familiar, poliposis, neurofibromatosis, psoriasis, proliferación de células lisas vasculares asociada con aterosclerosis, fibrosis pulmonar, artritis, glomerulonefritis y estenosis y reestenosis postquirúrgica.

Las PK también están implicadas en afecciones inflamatorias y en la multiplicación de virus y parásitos. Las PK también pueden tener una función principal en la patogénesis y desarrollo de enfermedades neurodegenerativas.

Para referencias generales al mal funcionamiento o desregulación de las PK véase, por ejemplo, *Current Opinion in Chemical Biology* 1999, 3, 459 - 465 y *Carcinogenesis* 2008, 29, 1087-191.

Se describen derivados de 8-hidroxi-3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona para prevenir y tratar la infección por el VIH y en la prevención, retraso del inicio y tratamiento del SIDA, en el documento WO 2004/047725 de Merck & Co., Inc., EE.UU. Los autores de la presente invención ahora han descubierto que los nuevos compuestos de fórmula (I), descritos más adelante, son inhibidores de quinasa y por lo tanto son útiles en terapia como agentes antitumorales.

Por lo tanto, un primer objeto de la presente invención es proporcionar un compuesto 4,7-disustituido-3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona representado por la fórmula (I):

25

30

35

45

5

10

15

20

en donde:

R1 es un grupo -NR^aR^b o -OR^a y

R2 es - NH₂, -NHCOR^c, -NHCONHR^c, -NHSO₂R^c, -C≡CR^d o R^d,

en donde R^a , R^b , R^c y R^d , iguales o diferentes, son cada uno independientemente hidrógeno o un grupo además opcionalmente sustituido, seleccionado de alquilo C_1 - C_6 , alquenilo C_2 - C_6 o alquinilo C_2 - C_6 lineal o ramificado, cicloalquilo C_3 - C_6 , cicloalquil-alquilo(C_1 - C_6), heterociclilo, heterociclil-alquilo(C_1 - C_6), arilo, aril-alquilo(C_1 - C_6), heteroarilo y heteroaril-alquilo(C_1 - C_6), o R^a y R^b , considerados junto con el átomo de nitrógeno al que están unidos, pueden formar un heterociclilo o heteroarilo de 3 a 7 miembros opcionalmente sustituido, que contiene opcionalmente un heteroátomo o grupo heteroatómico adicional seleccionado de S, O, N o NH, y sus sales farmacéuticamente aceptables.

La presente invención también proporciona métodos de síntesis de compuestos 4,7-disustituido-3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona, representados por la fórmula (I), preparados por un procedimiento que consiste en transformaciones sintéticas convencionales.

La presente invención también describe un método para tratar enfermedades causadas y/o asociadas con la actividad de proteína quinasa desregulada, en particular la familia de PLK, ABL, AKT1, ALK, AUR1, AUR2, BRK, CDC7/DBF4, CDK2/CYCA, CHK1, CK2, EE2FK, EGFR1, ERK2, FAK, FGFR1, FLT3, GSK3beta, IGFR1, IKK2, IR, JAK2, JAK3, KIT, LCK, MAPKAPK2, MET, MPS1, MST4, NEK6, NIM1, P38alfa, PAK4, PDGFR, PDK1, PERK, PIM1, PIM2, PIM3, PKAalfa, PKCbeta, PLK1, RET, SULU1, SYK, TRKA, VEGFR2, VEGFR3 o ZAP70.

Un método descrito preferido de la presente invención es tratar una enfermedad causada por y/o asociada con la actividad de proteína quinasa desregulada seleccionada del grupo que consiste en cáncer, infección vírica, prevención del desarrollo del SIDA en individuos infectados por el VIH, trastornos de proliferación celular, trastornos

autoinmunitarios y neurodegenerativos. Otro método descrito preferido de la presente invención es tratar tipos específicos de cánceres que incluyen: carcinoma tal como de vejiga, mama, colon, riñón, hígado, pulmón, que incluye cáncer del pulmón de células pequeñas, esófago, vesícula biliar, ovario, páncreas, estómago, cuello del útero, tiroides, próstata y piel, que incluye carcinoma de células escamosas; tumores hematopoyéticos de línea linfoide que incluyen leucemia, leucemia linfocítica aguda, leucemia linfoblástica aguda, linfoma de células B, linfoma de células T, linfoma de Hodgkin, linfoma no de Hodgkin, linfoma de células pilosas y linfoma de Burkitt; tumores hematopoyéticos de línea mieloide, que incluyen leucemias mieloides aguda y crónica, síndrome mielodisplásico y leucemia promielocítica; tumores de origen mesenquimatoso, que incluyen fibrosarcoma y rabdomiosarcoma; tumores del sistema nervioso central y periférico, que incluyen astrocitoma neuroblastoma, glioma y schwannomas; otros tumores, que incluyen melanoma, seminoma, teratocarcinoma, osteosarcoma, xeroderma pigmentoso, queratoxantoma, cáncer folicular tiroideo y sarcoma de Kaposi.

10

15

20

Otro método descrito preferido de la presente invención es tratar trastornos de proliferación celular específicos tales como, por ejemplo, hiperplasia prostática benigna, adenomatosis familiar, poliposis, neurofibromatosis, psoriasis, proliferación de células lisas vasculares asociada con aterosclerosis, fibrosis pulmonar, artritis, glomerulonefritis y estenosis y reestenosis postquirúrgica.

Los compuestos de esta invención pueden ser útiles en la inhibición de la angiogénesis tumoral y metástasis, así como en el tratamiento del rechazo de trasplante de órgano y enfermedades de hospedante contra injerto.

La presente invención describe además un método de tratamiento que comprende un compuesto de fórmula (I) en combinación con terapia de radiación o régimen de quimioterapia para uso simultáneo, separado o secuencial en la terapia anticáncer. Además la invención proporciona un método in vitro para inhibir la actividad de proteína quinasa, que comprende poner en contacto dicha proteína quinasa con una cantidad eficaz de un compuesto de fórmula (I).

La presente invención proporciona también una composición farmacéutica que comprende uno o más compuestos de fórmula (I) o una de sus sales farmacéuticamente aceptables y un excipiente, vehículo o diluyente farmacéuticamente aceptable.

25 La presente invención también proporciona una composición farmacéutica que comprende un compuesto de fórmula (I) en combinación con agentes citostáticos o citotóxicos conocidos, agentes de tipo antibiótico, agentes que dañan o intercalantes del ADN, agentes basados en platino, agentes alquilantes, agentes antimetabolitos, agentes hormonales, agentes antihormonales tales como antiestrógenos, antiandrógenos e inhibidores de aromatasa, agentes inmunológicos, agentes de tipo interferón, inhibidores de ciclooxigenasa (p. ej., inhibidores de la COX-2), 30 inhibidores de metaloproteasas de la matriz, inhibidores de proteína quinasa, inhibidores de otras quinasas, agentes anti-receptores de factores de crecimiento, agentes anti-HER, agentes anti-EGFR, agentes antiangiogénesis (p. ej., inhibidores de la angiogénesis), inhibidores de la farnesil-transferasa, inhibidores de la ruta de transducción de señales ras-raf, inhibidores del ciclo celular, otros inhibidores de cdk, agentes de unión a tubulina, inhibidores de topoisomerasa I, inhibidores de topoisomerasa II, inhibidores de guinesinas, anticuerpos monoclonales terapéuticos, inhibidores de mTOR, inhibidores de histona desacetilasa, inhibidores de la respuesta hipóxica y similares, para el 35 uso simultáneo, separado o secuencial en la terapia anticáncer. Adicionalmente, la invención proporciona un producto o kit que comprende un compuesto de fórmula (I) o una de sus sales farmacéuticamente aceptables, como se ha definido antes, o composiciones farmacéuticas del mismo y uno o más agentes quimioterapéuticos, como un preparado combinado para uso simultáneo, separado o secuencial en la terapia anticáncer.

40 En otro aspecto más la invención proporciona un compuesto de fórmula (I) o una de sus sales farmacéuticamente aceptables, como se ha definido antes, para usar como un medicamento.

Además, la invención proporciona el uso de un compuesto de fórmula (I) o una de sus sales farmacéuticamente aceptables, como se ha definido antes, en la fabricación de un medicamento con actividad antitumoral.

Finalmente, la invención proporciona un compuesto de fórmula (I) o una de sus sales farmacéuticamente aceptables, como se ha definido antes, para usar en un método de tratamiento del cáncer.

A menos que se especifique otra cosa, cuando se refiere a los compuestos de fórmula (I) per se además de cualquier composición farmacéutica del mismo o a cualquier método de tratamiento terapéutico que los comprende, la presente invención incluye todos los hidratos, solvatos, complejos, vehículos, N-óxidos y sales farmacéuticamente aceptables de los compuestos de esta invención.

50 Los N-óxidos son compuestos de fórmula (I) en donde el nitrógeno y oxígeno están unidos por un enlace dativo.

Todas las formas de isómeros quirales u otras formas de isómeros incluyendo enantiómeros y diastereoisómeros, se pretende que estén cubiertas en la presente memoria. Los compuestos que contienen un centro quiral pueden usarse como una mezcla racémica o como una mezcla enantioméricamente enriquecida, o la mezcla racémica puede separarse usando técnicas bien conocidas y se puede usar un enantiómero individual solo.

En casos en donde los compuestos pueden existir en formas tautómeras, tal como tautómeros ceto-enólico, cada forma tautómera se contempla como que está incluida en esta invención existan en equilibrio o predominantemente en una forma.

En la presente descripción, a menos que se especifique otra cosa, con la expresión "alquilo C₁-C₆ lineal o ramificado" se indica cualquier grupo tal como, por ejemplo, metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, secbutilo, terc-butilo, n-pentilo, n-hexilo, y similares.

Con la expresión "alquenilo C_2 - C_6 lineal o ramificado" o "alquinilo C_2 - C_6 lineal o ramificado" se indica cualquiera de los grupos alquenilo o alquinilo con de 2 a 6 átomos de carbono, por ejemplo, incluyendo vinilo, alilo, 1-propenilo, isopropenilo, 1-, 2- o 3-butenilo, pentenilo, hexenilo, etinilo, 1- o 2-propinilo, butinilo, pentinilo, hexinilo, y similares. Con la expresión "cicloalquilo C_3 - C_6 " se indica, a menos que se especifique otra cosa, un anillo monocíclico todo de carbonos de 3 a 6 miembros, que puede contener uno o más dobles enlaces pero no tiene un sistema de electrones π completamente conjugado. Los ejemplos de grupos cicloalquilo son ciclopropano, ciclobutano, ciclopentano, ciclohexano, ciclohexano, ciclohexano, ciclohexadieno.

Con el término "heterociclilo" se indica un anillo carbocíclico saturado o parcialmente insaturado, de 3 a 7 miembros, donde uno o más átomos de carbono se sustituyen por heteroátomos tales como nitrógeno, oxígeno y azufre. Ejemplos no limitantes de grupos heterociclilo son, por ejemplo, pirano, pirrolidina, pirrolina, imidazolina, imidazolidina, pirazolidina, pirazolidina, tiazolidina, dihidrofurano, tetrahidrofurano, 1,3-dioxolano, piperidina, piperazina, morfolina y similares.

Con el término "arilo" se indica un hidrocarburo mono, bi o poli-carbocíclico con de 1 a 4 sistemas anulares, opcionalmente además condensados o unidos los unos a los otros por enlaces sencillos, en donde al menos uno de los anillos carbocíclicos es "aromático", en donde el término "aromático" se refiere a un sistema de enlaces de electrones π completamente conjugado. Ejemplos no limitantes de dichos grupos arilo son grupos fenilo, α- ο β-naftilo o bifenilo.

Con el término "heteroarilo" se indica anillos heterocíclicos aromáticos, típicamente heterociclos de 5 a 7 miembros con de 1 a 3 heteroátomos seleccionados entre N, O o S; el anillo de heteroarilo puede opcionalmente estar adicionalmente condensado o unido a anillos carbocíclicos y heterocíclicos aromáticos y no aromáticos. Ejemplos no limitantes de dichos grupos heteroarilos son, por ejemplo, piridilo, pirazinilo, pirimidinilo, indolilo, imidazolilo, tiazolilo, isotiazolilo, pirrolilo, fenil-pirrolilo, fenil-furilo, oxazolilo, pirazolilo, pirazolilo, tienilo, benzotienilo, isoindolinilo, benzoimidazolilo, quinolinilo, isoquinolinilo, 1,2,3-triazolilo, 1-fenil-1,2,3-triazolilo, 2,3-dihidroindolilo, 2,3-dihidrobenzofuranilo, 2,3-dihidrobenzotiofenilo; benzopiranilo, 2,3-dihidrobenzoxazinilo, 2,3-dihidroquinoxalinilo y similares.

De acuerdo con los significados proporcionados para R^a, R^b, R^c y R^d, cualquiera de los grupos anteriores puede estar además opcionalmente sustituido en cualquiera de las posiciones libres, con uno o más grupos, por ejemplo de 1 a 6 grupos, seleccionados de: halógeno, nitro, grupo oxo (=O), carboxi, ciano, alquilo C₁-C₆, alquilo polifluorado, alquenilo C₂-C₆, alquinilo C₂-C₆, cicloalquilo C₃-C₆, heterociclilo, arilo, heteroarilo; grupos amino y derivados de los mismos, tales como por ejemplo, alquilamino, dialquilamino, arilamino, diarilamino, ureido, alquilureido o arilureido; grupos carbonilamino y derivados de los mismos, tales como, por ejemplo, formilamino, alquilcarbonilamino, alquilcarbonilamino, arilcarbonilamino, arilcarbonilamino, grupos hidroxi y derivados de los mismos, tales como, por ejemplo, alcoxi, alcoxi polifluorado, ariloxi, alquilcarboniloxi, arilcarboniloxi, cicloalqueniloxi o alquilidenaminoxi; grupos carbonilo y derivados de los mismos, tales como, por ejemplo, alquilcarbonilo, arilcarbonilo, alquilaminocarbonilo, alquilaminocarbonilo, dialquilaminocarbonilo; derivados sulfurados tales como, por ejemplo, alquiltio, ariltio, alquilsulfonilo, arilsulfonilo, alquilsulfinilo, arilsulfinilo, arilsulfinilo, alquilaminosulfonilo o dialquilaminosulfonilo.

Con el término "nitro" se indica un grupo -NO2.

10

35

40

Con el término "halógeno" se indica un átomo de flúor, cloro, bromo o yodo.

Con la expresión "alquilo o alcoxi polifluorado" se indica un grupo alquilo o alcoxi C_1 - C_6 lineal o ramificado como se ha definido antes, en donde más de un átomo de hidrógeno se sustituye por átomos de flúor, tal como, por ejemplo, trifluorometilo, trifluorometoxi, 2,2,2-trifluoroetilo, 2,2,2-trifluoroetoxi, 1,2-difluoroetilo, 1,1,1,3,3,3-hexafluoropropil-2-ilo, y similares.

A partir de todo lo anterior, está claro para el experto en la técnica que cualquier grupo cuyo nombre se haya identificado como un nombre compuesto, tal como, por ejemplo, cicloalquilalquilo, arilalquilo, heterociclilalquilo, alcoxi, alquiltio, arilalquiloxi, alquilcarboniloxi y similares, debe considerarse como formado convencionalmente de las partes de las que deriva. Por lo tanto, como un ejemplo, los términos heterociclil-alquilo y cicloalquil-alquilo indican un grupo alquilo lineal o ramificado que está además sustituido con un grupo heterocíclico o cicloalquilo, respectivamente, como se han definido antes.

La expresión "sales farmacéuticamente aceptables" abarca sales usadas habitualmente para formar sales de metales alcalinos y formar sales de adición de ácidos libres o bases libres. La naturaleza de la sal no es crítica, con

la condición de que sea farmacéuticamente aceptable. Las sales de adición de ácido farmacéuticamente aceptables de los compuestos de la presente invención, se pueden preparar a partir de un ácido inorgánico o a partir de un ácido orgánico. Los ejemplos de dichos ácidos inorgánicos son ácido clorhídrico, bromhídrico, yodhídrico, nítrico, carbónico, sulfúrico y fosfórico. Los ácidos orgánicos adecuados se pueden seleccionar de clases de ácidos orgánicos de clases carboxílico y sulfónico, alifáticos, cicloalifáticos, aromáticos, aralifáticos, heterocíclicos, ejemplos de los cuales son ácido fórmico, acético, trifluoroacético, propiónico, succínico, glicólico, glucónico, láctico, málico, tartárico, cítrico, ascórbico, glucurónico, maleico, fumárico, pirúvico, aspártico, glutámico, benzoico, antranílico, mesílico, salicíclico, p-hidroxibenzoico, fenilacético, mandélico, embrónico (pamoico), metanosulfónico, etanosulfónico, bencenosulfónico, pantoténico, toluenosulfónico, 2-hidroxietanosulfónico, sulfanílico, esteárico, ciclohexilaminosulfónico, algénico, hidroxibutírico, galactárico y galacturónico. Las sales de adición de base farmacéuticamente aceptables de los compuestos de la presente invención incluyen sales metálicas hechas de aluminio, calcio, litio, magnesio, potasio, sodio y cinc, o sales orgánicas hechas de N,N'-dibenciletilendiamina, cloroprocaína, colina, dietanolamina, etilendiamina, meglumina (N-metil-glucamina) y procaína. Todas estas sales se pueden preparar por medios convencionales a partir de los correspondientes compuestos de la presente invención, por ejemplo haciéndolos reaccionar con el ácido o base adecuados.

Una clase preferida de compuestos de fórmula (I) son los compuestos en donde:

R1 es un grupo -NR a R b y R a y R b son ambos átomos de hidrógeno o uno de ellos es un átomo de hidrógeno y el que queda de R a o R b es un grupo alquilo C₁-C₆ o alquenilo C₂-C₆ lineal o ramificado, o es un grupo arilo opcionalmente sustituido o aril-alquilo(C₁-C₆).

20 Otra clase preferida de compuestos de fórmula (I) son los compuestos en donde:

R2 es un grupo -NHCOR^c en donde R^c es como se ha definido antes.

5

10

15

30

35

Una clase adicional preferida de compuestos de fórmula (I) son los compuestos en donde:

R2 es un grupo -NHCONHR^c en donde R^c es como se ha definido antes.

Una clase más preferida de compuestos de fórmula (I) son los compuestos en donde:

25 R2 es un grupo -NHSO₂R^c en donde R^c es como se ha definido antes.

Para una referencia a cualquier compuesto específico de fórmula (I) de la invención, opcionalmente en forma de sales farmacéuticamente aceptables, véase la sección experimental.

La presente invención también proporciona un procedimiento para la preparación de un compuesto de fórmula (I) como se ha definido antes, caracterizado en que el procedimiento comprende:

a) nitrar en condiciones ácidas el compuesto de fórmula (II):

b) hacer reaccionar el compuesto de fórmula (III) resultante:

con una sal de amonio de fórmula (IV):

en donde Ra es alquilo C₁-C₆;

opcionalmente convertir el compuesto de fórmula (V) resultante:

en donde R1 representa OR^a y R^a es como se ha definido antes, en otro compuesto de fórmula (V) en donde R1 es como se ha definido antes, sustituyendo el grupo -OR^a por un grupo R1 diferente,

5 c) reducir dicho compuesto de fórmula (V) para dar un compuesto de fórmula (I) o una sal del mismo:

en donde R1 es como se ha definido antes, y R2 es NH₂;

opcionalmente separar el compuesto resultante de fórmula (I) en los isómeros individuales; convertir el compuesto de fórmula (I) resultante en un compuesto de fórmula (I) diferente, por derivatización del resto amino, y/o sustituyendo el grupo -ORª por un grupo diferente que representa R1, y/o convirtiéndolo en una sal farmacéuticamente aceptable, si se desea.

La presente invención proporciona además un procedimiento para preparar un compuesto de fórmula (I) como se ha definido antes, caracterizado porque el compuesto de fórmula (I) se convierte en otro compuesto de fórmula (I), llevándose a cabo dicha conversión mediante una o más de las siguientes reacciones:

- d) hacer reaccionar un compuesto de fórmula (I) en donde R1 es -OR^a y R^a es alquilo C₁-C₆, y R2 es NH₂ de acuerdo con una cualquiera de las etapas alternativas:
 - d.1) con un ácido o un haluro de acilo de fórmula (VI):

en donde R^c es como se ha definido antes y Z es un halógeno o un grupo -OH, para dar un compuesto de fórmula (I):

en donde R1 es -OR^a y R^a es alquilo C₁-C₆ y R^c es como se ha definido antes; o

d.2) con un isocianato de fórmula (VII):

25

10

20

en donde R^c es como se ha definido antes, para dar un compuesto de fórmula (I):

en donde R1 es -OR a y R a es alquilo C $_1$ -C $_6$ y R c es como se ha definido antes; o

d.3) con un haluro de sulfonilo de fórmula (VIII):

en donde R^c es como se ha definido antes y Z' es un halógeno, para dar un compuesto de fórmula (I):

en donde R1 es -OR^a y R^a es alquilo C₁-C₆ y R^c es como se ha definido antes,

opcionalmente separar el compuesto resultante de fórmula (I) en los isómeros individuales; convertir el compuesto de fórmula (I) resultante en un compuesto de fórmula (I) diferente, sustituyendo el grupo -OR^a por un grupo diferente que representa R1, y/o en una sal farmacéuticamente aceptable, si se desea.

La presente invención también proporciona otro procedimiento para preparar un compuesto de fórmula (XI), caracterizado porque el procedimiento comprende:

e) yodación del compuesto de fórmula (II):

15

10

5

f) hacer reaccionar el compuesto de fórmula (IX) resultante:

con una sal de amonio de fórmula (IV):

20 en donde R^a es alquilo C₁-C₆;

g) ciclar en condiciones básicas el compuesto de fórmula (X) resultante:

$$(X)$$
 O
 O
 O
 O
 O
 O

en donde R^a es como se ha definido antes, para dar el compuesto de fórmula (XI):

5 en donde R^a es como se ha definido antes;

10

convirtiéndolo en un compuesto de fórmula (XI) diferente sustituyendo el yodo por un grupo diferente que representa R2, opcionalmente separándolo en los isómeros individuales, convirtiéndolo en un compuesto de fórmula (XI) diferente sustituyendo el grupo -ORª por un grupo diferente que representa R1 y/o en una sal farmacéuticamente aceptable si se desea. La presente invención proporciona además un procedimiento para preparar compuestos de fórmula (I) como se han definido antes, caracterizados porque el procedimiento comprende:

h) hacer reaccionar un compuesto de fórmula (XI) en donde R1 es - OR^a y R^a es alquilo C_1 - C_6 , de acuerdo con una cualquiera de las etapas alternativas:

h.1) con un ácido o éster borónico de fórmula (XII):

$$R2'B(OZ"Z"')_2$$
 (XII)

en donde R2' es R^d y R^d es como se ha definido antes, Z" y Z" son H, alquilo o considerados junto con los átomos de oxígeno a lo que están unidos, pueden formar un heterociclo de 5 a 6 miembros opcionalmente sustituido, para dar un compuesto de fórmula (I):

en donde R1 es -OR^a y R^a es alquilo C₁-C₆ y R2' es como se ha definido antes; o

20 h.2) con un alquino terminal de fórmula (XIII):

en donde R^d es como se ha definido antes, para dar un compuesto de fórmula (I):

5

25

30

en donde R1 es -OR a y R a es alquilo C $_1$ -C $_6$ y R d es como se ha definido antes, opcionalmente separar el compuesto de fórmula (I) resultante en los isómeros individuales; convertir el compuesto de fórmula (I) diferente, sustituyendo el grupo -OR a por un grupo diferente que representa R1, y/o en una sal farmacéuticamente aceptable, si se desea.

La presente invención proporciona además un procedimiento para preparar un compuesto de fórmula (I) como se ha definido antes, caracterizado porque el compuesto de fórmula (I) se convierte en otro compuesto de fórmula (I), dicha conversión se lleva a cabo mediante una o más de las siguientes reacciones:

- m.1) hidrólisis ácida o básica de un compuesto de fórmula (I), en donde R1 es -OR^a y R^a es alquilo C₁-C₆, para dar el correspondiente compuesto de fórmula (I) en donde R1 es -OR^a y R^a es hidrógeno, o la sal correspondiente;
 - m.2) transesterificación de un compuesto de fórmula (I) en donde R1 es - OR^a y R^a es alquilo C_1 - C_6 , por reacciones con un compuesto de fórmula (XIV):

- 15 para dar el correspondiente compuesto de fórmula (I) en donde R1 es -OR^a y R^a es un alquilo C₁-C₆ diferente;
 - m.3) aminolisis de un compuesto de fórmula (I) en donde R_1 es -OR a y R^a es alquilo C_1 - C_6 , por reacción con un compuesto de fórmula (XV):

$$HNR^aR^b$$
 (XV)

para dar el correspondiente compuesto de fórmula (I) en donde R1 es -NR^aR^b;

- 20 m.4) esterificación de un compuesto de fórmula (I) en donde R1 es un grupo -OH o su sal correspondiente, por reacción con un compuesto de fórmula (XIV) como se ha definido antes, para dar el correspondiente compuesto de fórmula (I) en donde R1 es -OR^a;
 - m.5) amidación de un compuesto de fórmula (I) en donde R1 es un grupo -OH o su sal correspondiente, por reacción con un compuesto de fórmula (XV) como se ha definido antes, para dar el correspondiente compuesto de fórmula (I) en donde R1 es -NR^aR^b.

La presente invención proporciona además un procedimiento para preparar un compuesto de fórmula (I) como se ha definido antes, caracterizado porque el compuesto de fórmula (V) como se ha definido antes, se convierte en otro compuesto de fórmula (V), dichas conversiones se llevan a cabo por una o más de las siguientes reacciones:

- n.1) hidrólisis ácida o básica de un compuesto de fórmula (V), en donde R1 es -OR^a y R^a es alquilo C₁-C₆, para dar un compuesto de fórmula (V) en donde R1 es -OR^a y R^a es hidrógeno, o la sal correspondiente;
 - n.2) transesterificación de un compuesto de fórmula (V) en donde R1 es - OR^a y R^a es alquilo C_1 - C_6 , por reacción con un compuesto de fórmula (XIV) como se ha definido antes, para dar un compuesto de fórmula (V) en donde R1 es - OR^a y R^a es un alquilo C_1 - C_6 diferente;
- n.3) amidación de un compuesto de fórmula (V) en donde R1 es -ORª y Rª es alquilo C₁-C₆, por reacción con un compuesto de fórmula (XV) como se ha definido antes, para dar un compuesto de fórmula (V) en donde R1 es NRªR^b:
 - n.4) esterificación de un compuesto de fórmula (V) en donde R1 es -OR^a y R^a es hidrógeno, o la sal correspondiente, por reacción con un compuesto de fórmula (XVI) como se ha definido antes, para dar un compuesto de fórmula (V) en donde R1 es OR^a y R^a es distinto de hidrógeno;

n.5) amidación de un compuesto de fórmula (V) en donde R1 es - OR^a y R^a es hidrógeno, por reacción con un compuesto de fórmula (XV) como se ha definido antes, para dar un compuesto de fórmula (V) en donde R1 es - NR^aR^b .

La presente invención proporciona además un procedimiento para preparar un compuesto de fórmula (I) como se ha definido antes, caracterizado porque el compuesto de fórmula (XI) como se ha definido antes, se convierte en otro compuesto de fórmula (XI), dichas conversiones se llevan a cabo por una o más de las siguientes reacciones:

- o.1) hidrólisis ácida o básica de un compuesto de fórmula (XI), en donde R1 es - OR^a y R^a es alquilo C_1 - C_6 , para dar un compuesto de fórmula (XI) en donde R1 es - OR^a y R^a es hidrógeno, o la sal correspondiente;
- o.2) transesterificación de un compuesto de fórmula (XI) en donde R1 es -OR^a y R^a es alquilo C₁-C₆, por reacción
 con un compuesto de fórmula (XIV) como se ha definido antes, para dar un compuesto de fórmula (XI) en donde R1 es -OR^a y R^a es un alquilo C₁-C₆ diferente;
 - o.3) amidación de un compuesto de fórmula (XI) en donde R1 es $-OR^a$ y R^a es alquilo C_1-C_6 , por reacción con un compuesto de fórmula (XV) como se ha definido antes, para dar un compuesto de fórmula (XI) en donde R1 es $-NR^aR^b$;
- o.4) esterificación de un compuesto de fórmula (XI) en donde R1 es -OR^a y R^a es hidrógeno, o la sal correspondiente, por reacción con un compuesto de fórmula (XVI) como se ha definido antes, para dar un compuesto de fórmula (XI) en donde R1 es -OR^a y R^a es distinto de hidrógeno;
 - o.5) amidación de un compuesto de fórmula (XI) en donde R1 es -ORª y Rª es hidrógeno, por reacción con un compuesto de fórmula (XV) como se ha definido antes, para dar un compuesto de fórmula (XI) en donde R1 es -NRªR^b.

A partir de todo lo anterior, está claro para el experto en la técnica que si un compuesto de fórmula (I), (V), o (XI) preparado de acuerdo con los procedimientos anteriores comprendiendo cualquiera de sus variantes, se obtiene como una mezcla de isómeros, su separación en isómeros individuales de fórmula (I), llevada a cabo de acuerdo con técnicas convencionales, está todavía dentro del alcance de la presente invención.

25 Igualmente, la conversión de un compuesto de fórmula (I) en una sal farmacéuticamente aceptable del mismo, o alternativamente, la conversión en el compuesto libre (I) de una sal correspondiente, de acuerdo con procedimientos bien conocidos en la técnica, está todavía dentro del alcance de la invención.

Cuando se preparan los compuestos de fórmula (I) de acuerdo con cualquier variante del procedimiento, que se pretende que estén todas dentro del alcance de la invención, los grupos funcionales opcionales dentro de los materiales de partida, los reactivos o los compuestos intermedios de los mismos, y que podrían dar lugar a reacciones secundarias indeseadas, es necesario que estén protegidos de forma adecuada de acuerdo con técnicas convencionales.

Los materiales de partida del procedimiento objeto de la presente invención, que comprende cualquier variante posible, así como cualquier reaccionante de los mismos, son compuestos conocidos, y si no están disponibles en el comercio ellos mismos, se pueden preparar de acuerdo con métodos bien conocidos.

Por ejemplo, el compuesto de fórmula (II) está disponible en el comercio.

5

20

30

35

Los compuestos de fórmula (IV) se preparan partiendo de los correspondientes

4-bromocrotonatos que a su vez están disponibles en el comercio o se puede preparar de acuerdo con métodos bien conocidos.

40 Por ejemplo, el 4-aminocrotonato de etilo se prepara a partir del 4-bromocrotonato de etilo (XVI):

$$Br \sim O_O \sim (XVI)$$

i) haciéndolo reaccionar con la sal sódica de la diformilimida (XVII) disponible en el comercio:

I) hidrolizando en condiciones ácidas el compuesto de fórmula (XVIII) resultante:

para dar el compuesto de fórmula (IV) en donde Ra es etilo.

Los compuestos de fórmula (VI), (VII), (VIII), (XIII), (XIIV) y (XV) son conocidos o se obtienen fácilmente de acuerdo con métodos conocidos, para una referencia general véase: Smith, Michael - March's Advanced Organic Chemistry: reactions mechanisms and structure - 5° Edición, Michael B. Smith and Jerry March, John Wiley & Sons Inc., New York (NY), 2001.

El compuesto intermedio de fórmula (V):

5

15

20

25

30

10 en donde R1 es como se ha definido antes, es nuevo y por lo tanto representa un objeto adicional de la invención.

El compuesto intermedio de fórmula (XI):

en donde R1 es como se ha definido antes, es nuevo y por lo tanto representa un objeto adicional de la invención.

De acuerdo con la etapa (a) del procedimiento, la nitración del compuesto de fórmula (II) en condiciones ácidas se puede llevar a cabo en una variedad de formas de acuerdo con métodos convencionales. Preferiblemente, la reacción se lleva a cabo en presencia de ácido nítrico y anhídrido acético, a una temperatura en el intervalo de -40°C a temperatura ambiente, y durante un tiempo de 6 horas a toda la noche.

De acuerdo con la etapa (b) del procedimiento, la conversión del compuesto de fórmula (III) en el correspondiente derivado amido de fórmula (V), se puede llevar a cabo en una variedad de formas de acuerdo con métodos convencionales para obtener derivados amido a partir de las correspondientes α, α, α -triclorocetonas. Preferiblemente, la reacción se lleva a cabo por reacción de una sal de amonio de fórmula (IV) en presencia de N,N-diisopropiletilamina, usando diclorometano como disolvente.

De acuerdo con la etapa (c) del procedimiento, la reducción del grupo nitro del compuesto de fórmula (V) para dar un compuesto de fórmula (I) se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales para reducir el grupo nitro al correspondiente derivado amino. Preferiblemente, la reacción se lleva a cabo en presencia de paladio sobre carbón en etanol y ácido clorhídrico, en una atmósfera de hidrógeno a temperatura ambiente, durante un tiempo en el intervalo de 6 a 8 horas.

De acuerdo con una cualquiera de las etapas (d.1) a (d.3), la preparación de derivados funcionalizados con amino partiendo de la correspondiente amina, se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales.

Preferiblemente, de acuerdo con la etapa (d.1) y (d.3) del procedimiento, el compuesto de fórmula (I) se disuelve en un disolvente adecuado tal como diclorometano, *N,N*-dimetilformamida, *N,N*-dimetilacetamida, tetrahidrofurano, dioxano o similares, y se añade al mismo una base adecuada tal como trietilamina, *N,N*-diisopropiletilamina o

carbonato sódico. Después se añaden los compuestos de fórmula general (VI) u (VIII) y la mezcla se agita durante un tiempo de aproximadamente 2 horas a aproximadamente 15 horas, a una temperatura en el intervalo de aproximadamente 20°C a aproximadamente 80°C. Se puede usar opcionalmente un catalizador adecuado tal como dimetilaminopiridina.

Preferiblemente, de acuerdo con la etapa (d.2) del procedimiento, las condiciones de reacción son las mismas que las indicadas antes para las etapas (d.1) y (d.3) excepto que puede no ser necesaria la base. Después se añade el compuesto de fórmula general (VII) y la mezcla se agita como se ha descrito antes para las etapas (d.1) y (d.3).

10

15

25

30

40

45

50

55

De acuerdo con la etapa (e) del procedimiento, la yodación del compuesto de fórmula (II) se puede llevar a cabo en una variedad de formas de acuerdo con métodos convencionales. Preferiblemente, la reacción se lleva a cabo en condiciones neutras en presencia de yodo y trifluoroacetato de plata, a una temperatura en el intervalo de 0°C a 18°C y durante un tiempo de 5 horas a toda la noche.

De acuerdo con la etapa (f) del procedimiento, la conversión del compuesto de fórmula (IX) en el correspondiente derivado amido de fórmula (X), se puede llevar a cabo en una variedad de formas de acuerdo con métodos convencionales para obtener derivados amido a partir de las correspondientes α, α, α -triclorocetonas. Preferiblemente, la reacción se lleva a cabo como se describe en la etapa (b).

De acuerdo con la etapa (g) del procedimiento, la ciclación del compuesto de fórmula (X) en el correspondiente derivado de fórmula (XIa) se puede llevar a cabo en una variedad de formas de acuerdo con métodos convencionales. Preferiblemente, la reacción se lleva a cabo usando una base tal como diaza(1,3)biciclo[5.4.0]undecano y acetonitrilo como el disolvente.

De acuerdo con una cualquiera de las etapas (h.1) y (h.2) la conversión de un compuesto de fórmula (XIa) en un compuesto de fórmula (I) se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales.

Preferiblemente la reacción de la etapa (h.1) se lleva a cabo por el acoplamiento de Suzuki entre un derivado organoborónico de fórmula (XII) y un compuesto de fórmula (XIa), para dar el correspondiente compuesto de fórmula (I) en presencia de un catalizador de Pd y una base tal como carbonato de sodio o cesio, en una mezcla de disolventes, tal como dimetoxietano y agua, a una temperatura que varía de temperatura ambiente a 80°C y durante un tiempo entre 4 horas y toda la noche. Preferiblemente, la reacción de la etapa (h.2) se lleva a cabo por el acoplamiento de Sonogashira entre un derivado de alquino de fórmula (XIII) y un compuesto de fórmula (XIa), para dar el correspondiente compuesto de fórmula (I) en presencia de un catalizador de Pd, una base tal como trietilamina y un aditivo tal como yoduro de cobre(I), usando N,N-dimetilformamida como disolvente, a temperatura ambiente y durante un tiempo entre 4 horas y toda la noche.

De acuerdo con la etapa (i) del procedimiento, la reacción de sustitución del 4-bromocrotonato de etilo de fórmula (XVI) con la sal sódica de la diformilimida de fórmula (XVII) para dar un producto de fórmula (XVIII) se lleva a cabo en acetonitrilo a reflujo durante un tiempo entre 10 horas y toda la noche.

De acuerdo con la etapa (I) del procedimiento, la hidrólisis ácida de un compuesto de fórmula (XVIII) para dar un producto de fórmula (IV) se lleva a cabo en una mezcla a reflujo de etanol-ácido trifluoroacético durante un tiempo entre 8 horas y toda la noche.

De acuerdo con cualquiera de las etapas (m.1) a (m.5) la conversión de un compuesto de fórmula (I) en otro compuesto de fórmula (I), se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales.

Preferiblemente, de acuerdo con la etapa (m.1) del procedimiento, la hidrólisis de un compuesto de fórmula (I) en donde R1 es -OCH₂CH₃, para dar el correspondiente compuesto de fórmula (I) en donde R1 es -OH se lleva a cabo en condiciones ácidas o básicas. Preferiblemente, la reacción se lleva a cabo como se describe en la etapa (a). De acuerdo con las condiciones de operación que se van a usar, el compuesto de fórmula (I) en donde R1 es -OH se podría obtener en su forma ácida o, alternativamente, como una sal.

Preferiblemente, de acuerdo con la etapa (m.2) del procedimiento, la transesterificación de un compuesto de fórmula (I) en donde R1 es -OCH₂CH₃, para dar el correspondiente compuesto de fórmula (I) en donde R1 es -OR^a y R^a es un alquilo diferente de etilo, se lleva a cabo por reacción con un compuesto de fórmula (XV) en un disolvente adecuado, tal como el propio compuesto de fórmula (XV) o dioxano a la temperatura de reflujo, opcionalmente en presencia de un catalizador basado en metal adecuado, como óxido de dibutilestaño o alcóxidos de titano tales como, por ejemplo, etóxido de titanio (IV), isopropóxido de titanio (IV) y similares.

Preferiblemente, de acuerdo con la etapa (m.3) del procedimiento, la aminolisis de un compuesto de fórmula (I) en donde R1 es -OCH₂CH₃, para dar el correspondiente compuesto de fórmula (I) en donde R1 es - NR^aR^b, se lleva a cabo en un disolvente adecuado tal como dioxano o diclorometano, opcionalmente en presencia de un catalizador basado en metal adecuado, como trimetilaluminio.

Preferiblemente, de acuerdo con la etapa (m.4) del procedimiento, la esterificación de un compuesto de fórmula (I) en donde R1 es un grupo -OH para dar el correspondiente compuesto de fórmula (I) en donde R1 es -OR^a; se lleva a cabo en presencia de un agente de condensación adecuado, por ejemplo diciclohexilcarbodiimida (DCC), 1-etil-3-(3'-dimetilaminopropil)carbodiimida (EDC), 3,4-dihidro-3-hidroxi-4-oxo-1,2,3-benzotriazina (DHBT), tetrafluoroborato de O-benzotriazoliltetrametilisouronio (TBTU), hexafluorofosfato de benzotriazol-1-iloxitripirrolidinofosfonio (PyBOP), o hexafluorofosfato de 2-(1H-benzotriazol-1-il)-1,1,3,3-tetrametiluronio (HBTU), en un disolvente adecuado tal como diclorometano (DCM), *N*,*N*-dimetilformamida (DMF) o *N*,*N*-dimetilacetamida (DMA).

Preferiblemente, de acuerdo con la etapa (m.5) del procedimiento, la amidación de un compuesto de fórmula (I) en donde R1 es un grupo -OH para dar el correspondiente compuesto de fórmula (I) en donde R1 es -NR^aR^b se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales para obtener derivados amido a partir de los correspondientes ácidos. Preferiblemente, la reacción se lleva a cabo por reacción con el compuesto de fórmula (XV) después de activación de la función carboxílica del compuesto de fórmula (I) por reacción con cloruro de tionilo, cloruro de oxalilo o alternativamente en presencia de un agente de condensación adecuado, por ejemplo diciclohexilcarbodiimida (DCC), 1-etil-3-(3'-dimetilaminopropil)carbodiimida (EDC), 3,4-dihidro-3-hidroxi-4-oxo-1,2,3-benzotriazina (HBTOH), tetrafluoroborato de O-benzotriazoliltetrametilisouronio (TBTU) o hexafluorofosfato de benzotriazol-1-iloxitripirrolidinofosfonio (PyBOP), en un disolvente adecuado tal como diclorometano, y/o N,N-dimetilformamida o N,N-dimetilacetamida.

De acuerdo con una cualquiera de las etapas (m.1) a (m.5) la conversión de un compuesto de fórmula (V) en otro compuesto de fórmula (V), se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales.

Preferiblemente, se lleva a cabo como se ha descrito en las etapas (m.1) a (m.5).

5

10

15

20

35

De acuerdo con una cualquiera de las etapas (o.1) a (o.5) la conversión de un compuesto de fórmula (XI) en otro compuesto de fórmula (XI), se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales.

25 Preferiblemente, se lleva a cabo como se ha descrito en las etapas (m.1) a (m.5).

Además de lo anterior, los compuestos de fórmula (I) se pueden preparar de forma ventajosa de acuerdo con técnicas de química combinatoria ampliamente conocidas en la técnica, llevando a cabo las reacciones mencionadas antes entre los compuestos intermedios de una forma seriada y trabajando en condiciones de síntesis en fase sólida (SPS).

30 Como un ejemplo, los derivados intermedios ésteres carboxílicos de fórmula (Va) que se obtienen en la etapa (b) de los procedimientos anteriores, se pueden convertir primero en el derivado de ácido carboxílico libre mediante hidrólisis llevada a cabo de acuerdo con métodos convencionales, después pueden ser soportados fácilmente sobre una resina polimérica, por ejemplo, mediante la formación de un grupo carboxamido.

El compuesto intermedio soportado de esta forma se puede hacer reaccionar posteriormente de acuerdo con las etapas restantes del procedimiento. La ruta sintética anterior se puede resumir como sigue:

en donde la resina es una resina poliestirénica disponible en el comercio que incluye, por ejemplo, resina de Wang, resina de tritilo, resina de Cl-tritilo, resina de amida de Rink, resina Tentagel OH y derivados de las mismas, R2" y R^a son como se han definido antes.

Cualquiera de las reacciones anteriores se lleva a cabo de acuerdo con métodos conocidos, trabajando como se ha descrito anteriormente, y permite obtener compuestos de fórmula (I) como se ha expuesto antes.

De acuerdo con una realización preferida de la invención, la resina poliestirénica es una resina formil-poliestirénica derivatizada que se puede obtener haciendo reaccionar una resina formil-poliestirénica disponible en el comercio, p. ej. resina de 4-(4-formil-3-metoxifenoxi)butiril-AM, con un derivado de amino adecuado en condiciones reductoras, por ejemplo, en presencia de triacetoxiborohidruro sódico y derivados de los mismos, sustancialmente como sique:

La reacción se puede llevar a cabo en un disolvente adecuado tal como tetrahidrofurano y en presencia de ácido acético. Los derivados de amino soportado sobre polímero así obtenidos, en particular los que se pueden denominar como resina formil-poliestirénica derivatizada, son ampliamente conocidos en la técnica.

En general, las aminas cargadas en resinas formil-poliestirénicas también conocidas como resinas de metoxibenzaldehído-poliestireno sensibles a ácido (resina AMEBA) se preparan por aminación reductora convencional en presencia de un exceso de amina en TMOF/DCE y NaBH(OAc)₃ o AcOH/DMF y NaCNBH₃, por ejemplo como se describe en *Tetrahedron Letters* (1997), 38, 7151-7154; *J. Am. Chem. Soc.* (1998), 120, 5441; y *Chem. Eur. J.* (1999), 5, 2787.

Por lo tanto, un objeto adicional de la presente invención es un procedimiento para preparar los compuestos de fórmula (I), y las sales farmacéuticas aceptables de los mismos, cuyo procedimiento comprende:

- p) hidrolizar en condiciones ácidas o básicas el compuesto de fórmula (V) en donde R1 es -OR a y R a es alquilo C $_1$ -C $_6$:
- r) hacer reaccionar el derivado de ácido resultante con una resina formil-poliestirénica derivatizada de fórmula (XIX):

$$(P)$$
- CH_2 - NHR^a (XIX)

en donde (P) es la resina y R^a es como se ha definido antes;

5

20

30

У

s) hacer reaccionar el compuesto de fórmula (XX) resultante:

$$(XX) \int_{\mathbb{R}^{a}}^{\mathbb{Q}} \mathbb{R}^{a}$$

en donde (P) y R^a son como se han descrito antes, con un agente de reducción adecuado tal como cloruro de cromo (II), hidrogenosulfuro de tetrabutilamonio o cloruro de estaño (II);

t) hacer reaccionar el compuesto de fórmula (XXI) resultante:

$$(XXI) \bigvee_{O} \bigvee_{R^a}^{O}$$

en donde (P) y R^a son como se han descrito antes, como se describe en una cualquiera de las etapas (d.1) o (d.2);

u) escindir la resina en condiciones ácidas del compuesto de fórmula (XXII) resultante:

10

15

20

para dar un compuesto de fórmula (I), en donde R2" es -NHCOR^c o -NHCONHR^c, en donde R^c es como se ha definido antes, y R1 es -NHR^a, en donde R^a es como se ha definido antes;

opcionalmente separar el compuesto de fórmula (I) resultante en los isómeros individuales; convertir el compuesto de fórmula (I) resultante en un compuesto de fórmula (I) diferente y/o en una sal farmacéuticamente aceptable si se desea.

De acuerdo con la etapa (p) del procedimiento, la hidrólisis de un compuesto de fórmula (Va), para dar el correspondiente compuesto de fórmula (V) en donde R1 es -OH se lleva a cabo como se ha descrito en la etapa (m.1).

De acuerdo con la etapa (r) del procedimiento, la reacción con la resina de poliestireno se lleva a cabo en un disolvente adecuado, por ejemplo DMF, en presencia de *N,N*-diisopropiletilamina (DIPEA) y de un agente de condensación adecuado tal como, por ejemplo, hexafluorofosfato de benzotriazol-1-iloxitripirrolidinofsofonio (PyBOP), tetrafluoroborato de O-benzotriazolil-tetrametilisouronio (TBTU) o hexafluorofosfato de 2-(1H-benzotriazol-1-il)-1,1,3,3-tetrametiluronio (HBTU).

De acuerdo con la etapa (s) del procedimiento, el compuesto de fórmula (XX) se reduce para obtener el correspondiente derivado de amino; la reacción se lleva a cabo en presencia de cloruro de estaño (II) en dimetilformamida (DMF) a temperatura ambiente durante un tiempo en el intervalo de 4 a 24 horas.

De acuerdo con la etapa (t), el compuesto de fórmula (XXI) soportado se hace reaccionar además opcionalmente para dar una variedad de compuestos funcionalizados en la posición 4 del anillo de 3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona, como se describe en una cualquiera de las etapas (d.1) y (d.2).

De acuerdo con la etapa (u), la escisión de la resina se lleva a cabo en condiciones ácidas en presencia de ácidos adecuados tales como, por ejemplo, ácido clorhídrico, trifluoroacético, metanosulfónico o p-toluenosulfónico. Preferiblemente, la reacción se lleva a cabo usando ácido trifluoroacético en diclorometano como disolvente.

Como otro ejemplo, los derivados intermedios ésteres carboxílicos de fórmula (XIa) que se obtienen en la etapa (g) de los procedimientos anteriores, se pueden convertir primero en el derivado de ácido carboxílico libre mediante hidrólisis llevada a cabo de acuerdo con métodos convencionales, después pueden ser soportados fácilmente sobre una resina polimérica, por ejemplo, mediante la formación de un grupo carboxamido.

El compuesto intermedio soportado de esta forma se puede hacer reaccionar posteriormente de acuerdo con las etapas restantes del procedimiento.

La ruta sintética anterior se puede resumir como sigue:

en donde R2, R2"', Ra y la resina son como se han definido antes.

- Por lo tanto, un objeto adicional de la presente invención es un procedimiento para preparar los compuestos de fórmula (I), y sus sales farmacéuticamente aceptables, cuyo procedimiento comprende:
 - v) hidrolizar en condiciones ácidas o básicas el compuesto de fórmula (XI) en donde R1 es -OR a y R a es alquilo C $_1$ -C $_6$;
 - w) hacer reaccionar el derivado de ácido resultante con una resina formil-poliestirénica derivatizada de fórmula (XIX):

$$(P)$$
- CH_2 - NHR^a (XIX)

- 10 en donde (P) es la resina y R^a es como se ha definido antes;
 - z) hacer reaccionar el compuesto de fórmula (XXIII) resultante:

en donde (P) y Ra son como se han descrito antes, con un ácido o éster borónico de fórmula (XII):

en donde R2" es R^d y R^d es un grupo además opcionalmente sustituido, seleccionado de alquilo C_1 - C_6 lineal o ramificado, cicloalquilo C_3 - C_6 , cicloalquil-alquilo(C_1 - C_6), heterociclilo, heterociclil-alquilo(C_1 - C_6), arilo, aril-alquilo(C_1 - C_6), heteroarilo o heteroaril-alquilo(C_1 - C_6), y Z" y Z" son como se han definido antes;

x) escindir la resina en condiciones ácidas del compuesto de fórmula (XXVI) resultante:

para dar un compuesto de fórmula (I), en donde R2" es como se ha definido antes y R1 es -NHR^a,

en donde R^a es como se ha definido antes, separando opcionalmente el compuesto de fórmula (I) resultante en los isómeros individuales; convertir el compuesto de fórmula (I) resultante en un compuesto de fórmula (I) diferente y/o en una sal farmacéuticamente aceptable si se desea.

De acuerdo con la etapa (v) del procedimiento, la hidrólisis de un compuesto de fórmula (XIa) se lleva a cabo como se ha descrito en la etapa (m.1) y etapa (p).

De acuerdo con la etapa (w) del procedimiento, la reacción con la resina de poliestireno se lleva a cabo como se ha descrito en la etapa (r). De acuerdo con la etapa (z) del procedimiento, la reacción con el ácido o éster borónico de fórmula (XII) en donde R2'" es arilo o heteroarilo, se lleva a cabo como se ha descrito en la etapa (h.1).

De acuerdo con la etapa (x) del procedimiento, la escisión de la resina se lleva a cabo como se ha descrito en la etapa (u).

Claramente, trabajando de acuerdo con técnicas de química combinatoria como se ha indicado anteriormente, se puede obtener una pluralidad de compuestos de fórmula (I).

Por lo tanto, un objeto adicional de la presente invención es una biblioteca de dos o más compuestos de fórmula (I)

en donde

25

30

5

R1 es un grupo -NR^aR^b o -OR^c:

20 R2 es - NH₂, -NHCOR^c, -NHCONHR^c, -NHSO₂R^c, -C≡CR^d o R^d,

en donde R^a , R^b , R^c y R^d , iguales o diferentes, son cada uno independientemente hidrógeno o un grupo además opcionalmente sustituido, seleccionado de alquilo C_1 - C_6 , alquenilo C_2 - C_6 o alquinilo C_2 - C_6 lineal o ramificado, cicloalquilo C_3 - C_6 , cicloalquil-alquilo(C_1 - C_6), heterociclilo, heterociclil-alquilo(C_1 - C_6), arilo, aril-alquilo(C_1 - C_6), heteroarilo y heteroaril-alquilo(C_1 - C_6), o R^a y R^b , considerados junto con el átomo de nitrógeno al que están unidos, pueden formar un heterociclilo o heteroarilo de 3 a 7 miembros opcionalmente sustituido, que contiene opcionalmente un heteroátomo o grupo heteroatómico adicional seleccionado de S, O, N o NH, y sales farmacéuticamente aceptables de los mismos.

De acuerdo con una realización preferida de la invención, la biblioteca mencionada antes comprende los compuestos de fórmula (I) en donde R1 es un grupo -NR a R b y R a y R b son ambos átomos de hidrógeno o uno de ellos es un átomo de hidrógeno y el otro que queda de R a o R b es un grupo alquilo C₁-C₆ o alquenilo C₂-C₆ lineal o ramificado, o es un grupo arilo opcionalmente sustituido o aril-alquilo(C₁-C₆).

También se prefiere una biblioteca de compuestos de fórmula (I) en donde R2 es un grupo -NHCOR c como un alquilo C_1 - C_6 lineal o ramificado, cicloalquilo o grupo arilo opcionalmente sustituido o arilalquilo.

También se prefiere una biblioteca de compuestos de fórmula (I) en donde R2 es un grupo -NHCONHR c con R^c como un átomo de hidrógeno o como un alquilo C_1 - C_6 lineal o ramificado, grupo arilo opcionalmente sustituido o arilalquilo.

Para una referencia general a las bibliotecas anteriores de compuestos de fórmula (I), véase la sección experimental.

A partir de todo lo anterior, está claro para el experto en la técnica que una vez que se ha preparado así una biblioteca de derivados de 3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona, que consiste, por ejemplo, en miles de compuestos de fórmula (I), dicha biblioteca se puede usar ventajosamente para la selección frente a quinasas dadas, como se ha descrito anteriormente.

Para una referencia general a bibliotecas de compuestos y usos de las mismas como herramientas para selección de actividades biológicas, véase, *J. Med. Chem.* 1999, 42, 2373-2382; y *Bioorg. Med. Chem. Lett.* 10 (2000), 223-226.

Farmacología

5

La actividad inhibidora de inhibidores de quinasa putativos y la potencia de compuestos seleccionados se determina por un método de ensayo basado en el uso del ensayo de quinasa luminiscente Kinase-Glo® (disponible en el comercio en Promega corporation y descrito en Koresawa, M. y Okabe, T. (2004) "High-throughput screening with quantitation of ATP consumption: A universal non-radioisotope, homogeneous assay for protein kinase". *Assay Drug Dev. Technol.* 2, 153-60).

La reducción drástica del ATP como resultado de la actividad de quinasa se puede controlar de una forma muy sensible mediante el uso de Kinase-Glo[®] o Kinase-Glo[®] Plus Reagent, que usa luciferina, oxígeno y ATP como sustratos en una reacción que produce oxiluciferina y luz.

Las formas cortas y abreviaturas usadas en la presente memoria tienen el siguiente significado:

BSA albúmina de suero bovino 2-Amino-2-(hidroximetil)-1,3-propanodiol Tris 25 N-(2-hidroxietil)piperazina-N'-(ácido 2-etanosulfónico) Hepes DTT treo-1,4-Dimercapto-2,3-butanodiol THF tetrahidrofurano éter de terc-butilo y metilo MTBE **DIPEA** N,N-diisopropiletilamina 30 **PyBOP** hexafluorofosfato de benzotriazol-1-iloxitris(pirrolidino)fosfonio 1-etil-3-(3'-dimetilaminopropil)carbodiimida EDC DHBT 3.4-dihidro-3-hidroxi-4-oxo-1.2.3-benzotriazina **HBTU** hexafluorofosfato de 2-(1H-benzotriazol-1-il)-1,1,3,3-tetrametiluronio **TFA** ácido trifluoroacético ortoformiato de trimetilo 35 **TMOF** DCE dicloroetano **DCM** diclorometano DMF N.N-dimetilformamida **DMA** N,N-dimetilacetamida 40 **DMSO** dimetilsulfóxido kiloDalton KDa miligramos mg microgramos μg nanogramos ng 45 litros mililitros ml μl microlitros M molar mm milimolar 50 micromolar μΜ nanomolar

Las condiciones de reacción de quinasa son dependientes de la diana (enzima) y por lo tanto se someten a adaptaciones individuales. El ensayo de quinasa luminiscente Kinase-Glo[®] se puede usar prácticamente con cualquier combinación de quinasa y sustrato.

Las condiciones del tampón también pueden variar dependiendo de la quinasa de interés (p. ej., para la PKA se usa una composición de Tris 40 mM a pH 7,5, MgCl $_2$ 20 mM, BSA 0,1 mg/ml, en un volumen final de 50 μ l). Típicamente el intervalo de valoración del ATP es de 0,1 μ M a 10 μ M.

El sustrato de quinasa óptimo produce el mayor cambio en luminiscencia cuando se comparan pocillos de reacción con quinasa con pocillos sin quinasa.

La cantidad óptima de quinasa se determina haciendo diluciones seriadas de dos veces a través de las placas usando la cantidad óptima de ATP y el sustrato de quinasa óptimo. La cantidad óptima de quinasa para usar en los posteriores cribados de compuestos y determinaciones de CI50 es la cantidad necesaria para que la luminiscencia esté dentro del intervalo lineal de la curva de valoración de quinasa (respuesta a la dosis sigmoidal).

Ensayo de Kinase-Glo® robotizado

5

20

35

40

50

Este ensayo se estableció para la medición de la actividad y/o la inhibición de quinasa. Es homogéneo, adecuado para todo tipo de proteína quinasas, es rápido y está exento de radioactividad.

- 10 Se estableció el ensayo en placas de 384 pocillos: la mezcla de ensayo consistía en:
 - 1) 3x mezcla enzimática (hecha en tampón de quinasa 3X), 5 µl/pocillo
 - 2) 3x mezcla de sustrato y ATP (hecha en ddH2O), 5 µl/pocillo
 - 3) 3x compuesto de fórmula (I) (diluido en ddH2O DMSO al 3%) 5 µl/pocillo)

Como resultado, se evaluó el porcentaje de inhibición con concentración 10 µM para cada compuesto ensayado: véase a continuación la dilución de compuestos y el esquema de ensayo. Cada enzima tenía su propia constitución de tampón, tipo de sustrato y concentración. En cambio el tiempo de incubación era 90 min para todas las dianas.

Los compuestos de ensayo se recibieron como una solución 1 mM en DMSO al 100% en placas de 96 pocillos. Las placas se diluyeron a 30 μ M en ddH₂O, DMSO al 3%; 4 placas se reorganizaron en una placa de 384 pocillos dispensando 5 μ I de cada placa de 96 pocillos en los cuatro cuadrantes de una placa de 384 pocillos. En los pocillos P23 y P24 se añadió el inhibidor de referencia interna estaurosporina.

Esquema de ensavo

Primero se añadieron en las placas de ensayo $5 \,\mu$ l de la dilución de compuesto ($30 \,\mu$ M, correspondiente a dilución 3X) y después se cargaron en una estación robotizada junto con un depósito para la mezcla enzimática (3X) y uno para la mezcla de ATP (3X), específico para cada diana que se estudia.

- Para empezar el ensayo, el robot aspiraba 5 μl de ATP/mezcla de sustrato, creaba un espacio de aire dentro de las puntas (5 μl) y aspiraba 5 μl de mezcla enzimática. La dispensación posterior en las placas de ensayo permitió que se iniciara la reacción de quinasa después de 3 ciclos de mezcla, realizados por el propio robot pipeteando arriba y abajo. En este punto se restableció la concentración correcta para todos los reactivos.
- El robot incubó las placas durante 90 minutos a temperatura ambiente, y después paró la reacción pipeteando 15 μl de reactivo Kinase-Glo® en la mezcla de reacción. Se realizaron inmediatamente tres ciclos de mezclamiento después de la adición del reactivo.

El principio de la técnica de Kinase-Glo® es la presencia en la mezcla de reactivos de oxígeno, luciferina y enzima luciferasa: En presencia de ATP, que queda de la reacción de quinasa, se produce oxiluciferina con emisión de luz, directamente dependiente de la cantidad de ATP. Para los rendimientos óptimos de esta técnica, la reacción de quinasa debería usar al menos 15-20% del ATP disponible.

Después de otros 60 min de incubación para estabilizar la señal luminiscente, las placas se leyeron en un instrumento ViewLux®. Los datos se analizaron usando el paquete de software Assay Explorer® que proporcionó datos de porcentaje de inhibición. Como ejemplo, en la presente memoria se describen las condiciones de ensayo usadas para ensayar los compuestos de fórmula (I) contra ALK (la proteína ALK se preparó como se describe en el documento WO2009013126, el sustrato ALKtide YFF APCo se obtuvo en lotes de >95% de pureza de péptido de American Peptide Company, Inc. (Sunnyvale, CA, EE.UU.).

Condiciones de ensayo:

Concentración de ATP: 1 µm Concentración enzimática: 100 nM

45 Concentración de sustrato ALKtide YFF APCo: 80 µM

Tampón de reacción: Hepes 50 mM a pH 7,5, MgCl₂ 5 mM, MnCl₂ 1 mM, DTT 1 mM, NaVO₃ 3 uM, BSA 0,2 mg/ml

Procedimiento de ensayo: añadir 5 μ l de compuesto de fórmula (I) (3x), añadir 5 μ l de mezcla de ATP/S (3x) en tampón 1x; añadir 5 μ l de enzima en tampón 2x + 3X BSA; para el blanco, añadir 5 μ l de tampón 2x + 3x BSA sin enzima. Después de 90 min de incubación, añadir 15 μ l/pocillo de reactivo Kinase-Glo. Después de 60-90 min de incubación para estabilizar la señal luminiscente, las placas se leen en un instrumento ViuwLux.

ES 2 536 730 T3

Los compuestos de la presente invención se encontraron activos con una concentración de 10 a 10000 nM.

Ensayo bioquímico para inhibidores de la actividad de quinasa PIM-1

La actividad inhibidora de inhibidores de quinasa putativos y la potencia de compuestos seleccionados se determinaron usando un ensavo de trans-fosforilación.

5 Los sustratos péptidos o proteínas específicos son trans-fosforilados por su ser-thr o tyr quinasa específica en presencia de ATP sequido con ³³P-y-ATP, y en presencia de su propio tampón y cofactores óptimos.

Al final de la reacción de fosforilación, más de 98% de ATP no marcado y ATP radiactivo es capturado por un exceso de la resina de intercambio iónico Dowex; después la resina se deposita en la parte inferior de la placa de reacción por gravedad. Posteriormente el líquido sobrenadante se extrae y se transfiere a una placa de recuento, después se evalúa por recuento β.

Reactivos/condiciones de ensavo

10

i. Preparación de la resina Dowex

Se pesan 500 g de resina húmeda (SIGMA, resina preparada adaptada DOWEX 1x8 nº de malla 200-400, 2,5 Kg) y se diluyen en 2 litros de formiato sódico 150 mM, pH 3,00.

15 La resina se deja sedimentar (algunas horas) y después el líquido sobrenadante se descarta.

Después de 3 lavados como antes a lo largo de un par de días, la resina se deja sedimentar y se añaden dos volúmenes (wrt el volumen de resina) de tampón de formiato amónico 150 mM.

Después se mide el pH y debería ser alrededor de 3,00

La resina lavada es estable durante más de una semana; la resina almacenada se mantiene a 4ºC antes de usar.

20 ii. Tampón de quinasa (KB)

> El tampón para el ensayo de PIM-1 estaba compuesto de HEPES 50 mM, a pH 7,5, con MgCl₂ 10 mM, DTT 1 mM, NaVO₃ 3 µM, y BSA 0,2 mg/ml

> La PIM-1 humana de longitud completa se expresó y se purificó como se describe en Bullock AN, et al., J. Biol. Chem. 2005, 280. 41675-82.

- 25 La enzima mostraba una cinética lineal después de una etapa de pre-activación por autofosforilación en las siguientes condiciones: se incubó PIM1 1,7 µM 1 h a t.a. a 28°C en presencia de ATP 125 µM
 - iii. Condiciones de ensayo.

Concentración de ATP: 200 μ M $^{33}P-\mu$ -ATP: 6 nM

35

45

30 Concentración enzimática: 1 nM

Concentración de sustrato Aktide (número de registro de Chemical Abstract Service 324029-01-8): 25 µM

Ensayo Dowex robotizado

La mezcla de ensayo consistía en:

- 1) 3x mezcla enzimática (hecha en tampón de quinasa 3X), 5 μ l/pocillo 2) 3x mezcla de sustrato y ATP (hecha en ddH2O), junto con 33 P- γ -ATP, 5 μ l/pocillo
- 3) 3x compuestos de ensayo (diluido en ddH2O DMSO al 3%) 5 µl/pocillo

Véase a continuación la dilución de compuestos y el esquema de ensayo.

La dilución de compuestos y el esquema de ensayo se definen a continuación:

- i. Dilución de compuestos
- 40 Los compuestos de ensayo se reciben como una solución 1 mM en DMSO al 100%, distribuidos en placas de 96 o 384 pocillos:
 - a) para estudios de porcentaje de inhibición (HTS), las placas de dilución individuales 1 mM se diluyen a una concentración 3X (30 µM) en ddH₂O (DMSO al 3% = concentración final) usando una plataforma de pipeteo automática Beckman NX. Se usa el mismo instrumento para distribuir las placas madre diluidas en las placas de ensayo.

b) para la determinación de la CI50 (plataforma KSS), se transfieren 100 µl de cada compuesto 1 mM en DMSO al 100% desde la placa original a la primera columna de otra placa de 96 pocillos (de A1 a G1); el pocillo H1 se deja vacío para el inhibidor de referencia interna, normalmente estaurosporina.

Se usa una estación automatizada para diluciones seriadas (Biomek FX, Beckman) para producir diluciones 1:3 en DMSO al 100%, desde la fila A1 a A10, y para los 7 compuestos en la columna. Además, se preparan 4-5 copias de placas hija cambiando el formato de 5 µl de este primer conjunto de placas de dilución en DMSO al 100% en placas de 384 pocillos profundos: una copia de las placas hija con las diluciones seriadas de los compuestos de ensayo se descongelará el día de los experimentos, se reconstituirá a una concentración 3X con agua y se usará en los ensayos de determinación de CI50. En un experimento de referencia, la concentración más alta (3X) de todos los compuestos es 30 µM, mientras que la más baja es 1,5 nM.

Cada placa de 384 pocillos contendrá pocillos de referencia (actividad enzimática total frente a sin actividad enzimática) para Z' y la evaluación de señal a señal de fondo.

ii. Esquema de ensayo

20

30

35

Se preparan placas de 384 pocillos, de fondo en V (placas de ensayo) con 5 µl de la dilución de compuesto (3X) y después se ponen en una estación robotizada PlateTrak 12 (Perkin Elmer; el robot tiene una cabeza de pipeteo de 384 puntas para empezar el ensayo más una cabeza de 96 puntas para dispensar la resina) junto con un depósito para la mezcla enzimática (3X) y uno para la mezcla de ATP (3X).

Al inicio de la ejecución, el robot aspira 5 µl de la mezcla de ATP, crea un espacio de aire dentro de las puntas (2 µl) y aspira 2 µl de mezcla de PIM. La siguiente dispensación en las placas permite que empiece la reacción de quinasa tras 3 ciclos de mezclamiento, realizados por el propio robot.

En este punto, se establece la concentración correcta para todos los reactivos.

El robot incuba las placas durante 60 min a temperatura ambiente, y después detiene la reacción mediante pipeteo de 70 µl de suspensión de resina Dowex en la mezcla de reacción. Inmediatamente después de la adición de la resina se realizan tres ciclos de mezclamiento.

La suspensión de resina es muy densa; con el fin de evitar la obstrucción, se usan puntas de diámetro ancho para dispensarla.

Se lleva a cabo otro ciclo de mezclamiento después de detener todas las placas, esta vez usando puntas normales: después se deja que las placas reposen durante aproximadamente 1 hora con el fin de maximizar la captura de ATP. En este punto, se transfieren 20 µl del líquido sobrenadante a placas 384-OptiPlate (Perkin-Elmer), con 70 µl de Microscint 40 (Perkin-Elmer); después de 5 min de agitación orbital las placas se leen en un contador de radiactividad Perkin-Elmer TopCount.

iii. Análisis de datos

Los datos se analizan mediante una versión adaptada internamente del paquete de SW "Assay Explorer" que proporciona el % de inhibición para los ensayos primarios o los ajustes sigmoidales de las curvas de 10 diluciones para la determinación de la CI50 en los ensayos secundarios/rutinas de confirmación de aciertos.

Ensavo bioquímico para inhibidores de la actividad de quinasa de PIM-2

La actividad inhibidora de inhibidores de quinasa putativos y la potencia de compuestos seleccionados se determinaron usando un ensayo de trans-fosforilación como se ha descrito antes para PIM-1.

- i. Tampón de quinasa (KB)
- 40 El tampón para el ensayo de PIM-2 estaba compuesto de HEPES 50 mM, a pH 7,5, con MgCl $_2$ 1 mM, DTT 1 mM, NaVO $_3$ 3 μ M, y BSA 0,2 mg/ml

La PIM-2 humana de longitud completa se expresó y purificó como se describe en Fedorov O, et al, *PNAS* 2007 104, 51, 20523-28).

ii. Condiciones de ensayo

45 Concentración de ATP: 4 μM

³³P-µ-ATP: 1 nM

Concentración enzimática: 1,5 nM

Concentración de sustrato Aktide (número de registro de Chemical Abstract Service 324029-01-8): 5 µM

La enzima mostraba una cinética lineal sin necesidad de ninguna etapa de preactivación.

50 Ensayo Dowex robotizado

ES 2 536 730 T3

Véase el mismo procedimiento descrito para PIM-1.

Los compuestos de la presente invención mostraban CI_{50} menor de 10 μM cuando se ensayaban frente a PIM-1 y PIM-2, véase la tabla A a continuación para algunos ejemplos.

En la tabla A, los compuestos ensayados se identifican con un código que se explica más adelante.

5 Cuando se resuelven los diastereoisómeros, la quiralidad se indica en la estructura de 3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona.

Compuesto	PIM-1 CI50 µM	PIM-2 CI50 µM	Compuesto	PIM-1 CI50 µM	PIM-2 CI50
A33-M-B22	0,46	5,03	A144-M-B22	0,48	0,66
A33-M-B30	0,58	1,92	A144-M-B30	1,10	0,68
A127-M-B14	0,18	2,74	A150-M-B14	0,14	1,52
A127-M-B22	0,07	2,46	A150-M-B24	0,21	4,06
A127-M-B30	0,19	1,67	A150-M-B25	0,45	5,86
A127-M-B32	0,61	10	A150-M-B26	0,24	5,51
A127-M-B39	0,57	1,15	A150-M-B32	0,23	4,49
A127-M-B40	0,23	4,81	A150-M-B36	1,39	8,98
A127-M-B47	0,52	2,25	A150-M-B38	1,06	7,51
A128-M-B14	0,20	2,11	A150-M-B39	0,22	0,60
A128-M-B22	0,12	3,12	A150-M-B40	0,04	0,98
A128-M-B30	0,27	2,03	A150-M-B42	0,59	10
A128-M-B32	0,70	7,55	A150-M-B43	0,79	5,89
A128-M-B39	0,54	0,87	A150-M-B45	0,58	4,65
A128-M-B40	0,25	4,50	A150-M-B48	0,12	2,86
A129-M-B14	0,28	4,51	A150-M-B49	0,23	1,61
A129-M-B22	0,13	5,92	A150-M-B52	0,43	5,17
A129-M-B30	0,12	1,25	A151-M-B14	0,10	2,25
A132-M-B22	0,36	10	A151-M-B32	0,49	10
A133-M-B14	0,81	7,40	A151-M-B39	4,11	3,69
A133-M-B22	0,38	10	A133-M-B61 isómero R	5,94	10
A133-M-B28	0,84	3,13	A127-M-B61 isómero R	0,38	3,90
A133-M-B30	0,61	3,62	A157-M-B61 isómero R	0,27	2,83
A134-M-B14	0,72	7,22	A158-M-B61 isómero R	0,86	5,55
A134-M-B28	0,36	1,50	A133-M-B61 isómero S	0,07	4,79
A134-M-B30	0,89	5,80	A127-M-B61 isómero S	0,02	0,25
A137-M-B14	0,40	3,46	A133-M-B62 isómeroR	4,83	10
A137-M-B39	0,92	3,56	A127-M-B62 isómero R	1,84	2,62
A139-M-B14	0,22	3,44	A157-M-B62 isómeroR	1,14	1,05
A139-M-B22	0,09	4,47	A158-M-B62 isómero R	0,55	0,66
A139-M-B30	0,41	3,37	A133-M-B62 isómero S	0,13	1,33
A139-M-B39	0,98	3,05	A127-M-B62 isómero S	0,09	0,52
A139-M-B40	0,13	2,22	A133-M-B63	2,54	10
A140-M-B30	0,49	10	A127-M-B63	0,39	2,44
A142-M-B14	4,83	6,62	A157-M-B63	0.69	2,37
A142-M-B28	3,72	4,15	A158-M-B63	0,40	3,05
A142-M-B30	2,52	2,58	A133-M-B64 isómero R	2,04	10
A144-M-B14	10,00	4,92	A127-M-B64 isómero R	2,91	10

1	Compuesto	PIM-1 CI50	PIM-2 CI50
ł	ii	μ M	µM o.cc
	A144-M-B22	0,48	0,66
	A144-M-B30	1,10	0,68
	A150-M-B14	0,14	1,52
ļ	A150-M-B24	0,21	4,06
	A150-M-B25	0,45	5,86
	A150-M-B26	0,24	5,51
,	A150-M-B32	0,23	4,49
ļ	A150-M-B36	1,39	8,98
Ì	A150-M-B38	1,06	7,51
	A150-M-B39	0,22	0,60
2	A150-M-B40	0,04	0,98
	A150-M-B42	0,59	10
	A150-M-B43	0,79	5,89
	A150-M-B45	0,58	4,65
	A150-M-B48	0,12	2,86
	A150-M-B49	0,23	1,61
	A150-M-B52	0,43	5,17
	A151-M-B14	0,10	2,25
	A151-M-B32	0,49	10
	A151-M-B39	4,11	3,69
	A133-M-B61 isómero R	5,94	10
1	A127-M-B61 isómero R	0,38	3,90
	A157-M-B61 isómero R	0,27	2,83
	A158-M-B61 isómero R	0,86	5,55
	A133-M-B61 isómero S	0,07	4,79
	A127-M-B61 isómero S	0,02	0,25
	A133-M-B62 isómeroR	4,83	10
	A127-M-B62 isómero R	1,84	2,62
	A157-M-B62 isómeroR	1,14	1,05
	A158-M-B62 isómero R	0,55	0,66
	A133-M-B62 isómeroS	0,13	1,33
	A127-M-B62 isómero S	0,09	0,52
	A133-M-B63	2,54	10
	A127-M-B63	0,39	2,44
	A157-M-B63	0.69	2,37
	A158-M-B63	0,40	3,05
	A133-M-B64 isómero R	2,04	10
	A127-M-B64 isómero R	2,91	10

Compuesto	PIM-1 CI50 µM	PIM-2 CI50 µM
A157-M-B64 isómero R	0,70	2,81
A133-M-B64 isómero S	0,56	2,92
A127-M-B64isómero S	0,14	0,68
A133-M-B65 isómero S	0,05	0,82

25

30

35

40

Compuesto	PIM-1 CI50 µM	PIM-2 CI50 µM
A127-M-B65 isómero S	0,01	0,18
A157-M-B65 isómeroS	0,01	0,10
A157-M-B65 isómeroR	0,15	0,50
A158-M-B65 isómero S	0,03	0,18

A partir de todo lo anterior, los nuevos compuestos de fórmula (I) de la invención parece que son particularmente ventajosos en la terapia de enfermedades causadas por la actividad de proteína quinasa desregulada tales como el cáncer.

Los compuestos de la presente invención pueden administrarse o bien como agentes sencillos o, de forma alternativa, en combinación con tratamientos anticáncer conocidos tal como terapia de radiación o régimen de quimioterapia en combinación con agentes citostáticos o citotóxicos, agentes tipo antibiótico, agentes alquilantes, agentes antimetabolito, agentes hormonales, agentes inmunológicos, agentes tipo interferón, inhibidores de ciclooxigenasa (por ejemplo, inhibidores de COX-2), inhibidores de metaloproteasas de matriz, inhibidores de telomerasa, inhibidores de tirosina quinasa, agentes anti-receptor del factor de crecimiento, agentes anti-HER, agentes anti-EGFR, agentes antiangiogénesis (por ejemplo, inhibidores de angiogénesis), inhibidores de farnesil transferasa, inhibidores de la ruta de transducción de señales ras-raf, inhibidores del ciclo celular, otros inhibidores de cdk, agentes de unión a tubulina, inhibidores de topoisomerasa I, inhibidores de topoisomerasa II y similares.

Si se formula como una dosis fija, dichos productos de combinación emplean los compuestos de esta invención en el intervalo de dosis descrito a continuación y el otro agente farmacéuticamente activo en el intervalo de dosis aprobado.

Los compuestos de fórmula (I) pueden usarse secuencialmente con agentes anticáncer conocidos cuando la formulación de combinación es inapropiada.

Los compuestos de fórmula (I) de la presente invención, adecuados para la administración a un mamífero, por ejemplo, a seres humanos, pueden administrarse por las rutas normales y el nivel de dosificación depende de la edad, peso, condiciones del paciente y ruta de administración.

Por ejemplo, una dosis adecuada adoptada para administración oral de un compuesto de fórmula (I) puede oscilar de aproximadamente 10 a aproximadamente 500 mg por dosis, de 1 a 5 veces al día. Los compuestos de la invención pueden administrarse en una variedad de formas farmacéuticas, por ejemplo, por vía oral, en forma de comprimidos, cápsulas, comprimidos recubiertos de azúcar o película, disoluciones o suspensiones líquidas; por vía reactal en forma de supositorios; por vía parenteral, por ejemplo, por vía intramuscular, o por inyección o infusión intravenosa y/o intratecal y/o intraespinal.

La presente invención también incluye composiciones farmacéuticas que comprenden un compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo en asociación con un excipiente farmacéuticamente aceptable, que puede ser un vehículo o un diluyente.

Las composiciones farmacéuticas que contienen los compuestos de la invención se preparan normalmente siguiendo métodos convencionales y se administran en una forma farmacéutica adecuada. Por ejemplo, las formas orales sólidas pueden contener, junto con el compuesto activo, diluyentes, por ejemplo, lactosa, dextrosa, sacarosa, azúcar, celulosa, almidón de maíz o almidón de patata; lubricantes, por ejemplo, sílice, talco, ácido esteárico, estearato de magnesio o calcio, y/o polietilenglicoles; agentes aglutinantes, por ejemplo, almidones, goma arábiga, gelatina metilcelulosa, carboximetilcelulosa o polivinilpirrolidona; agentes disgregantes, por ejemplo, almidón, ácido algínico, alginatos o glicolato sódico de almidón; mezclas efervescentes; colorantes; edulcorantes; agentes humectantes tales como lecitina, polisorbatos, laurilsulfatos; y, en general, sustancias no tóxicas y farmacológicamente inactivas usadas en formulaciones farmacéuticas. Estos preparados farmacéuticos pueden fabricarse de forma conocida, por ejemplo, por medio de procedimientos de mezcla, granulado, formación de comprimidos, recubrimiento con azúcar o recubrimiento con película.

Las dispersiones líquidas para administración oral pueden ser, por ejemplo, jarabes, emulsiones y suspensiones. Como un ejemplo, los jarabes pueden contener, como vehículo, sacarosa o sacarosa con glicerina y/o manitol y sorbitol.

Las suspensiones y las emulsiones pueden contener, como ejemplos de vehículos, goma natural, agar, alginato sódico, pectina, metilcelulosa, carboximetilcelulosa o poli(alcohol vinílico). La suspensión o disoluciones para inyecciones intramusculares pueden contener, junto con el compuesto activo, un vehículo farmacéuticamente aceptable, por ejemplo, agua estéril, aceite de oliva, oleato de etilo, glicoles, por ejemplo, propilenglicol y, si se desea, una cantidad adecuada de hidrocloruro de lidocaína.

Las disoluciones para inyecciones o infusiones intravenosas pueden contener, como un vehículo, agua estéril o preferiblemente pueden estar en forma de soluciones salinas, estériles, acuosas, isotónicas, o pueden contener propilenglicol como un vehículo.

Los supositorios pueden contener, junto con el compuesto activo, un vehículo farmacéuticamente aceptable, por ejemplo, manteca de cacao, polietilenglicol, un tensioactivo de éster de ácido graso de polietilensorbitano o lecitina.

Con el objetivo de ilustrar mejor la presente invención, ahora se dan los siguientes ejemplos.

Sección experimental

Métodos generales

5

10

15

35

40

La cromatografía ultrarrápida se llevó a cabo en gel de sílice (Merck calidad 9395, 60A). Los tiempos de retención de la cromatografía líquida de alta presión (HPLC: valores de t.r.) se determinaron mediante:

Método de HPLC 1:

En esta aplicación se usó el equipo Waters Alliance LC modelo 2795 equipado con un detector de UV variable modelo 2487, un detector de quimioluminiscencia de nitrógeno (CLND, Antek 8060) y un detector de masas Waters ZQ2000 (interfase ESI). El flujo total se dividió y se distribuyó en los tres detectores con una relación fijada (UV:MS:CLND 64:15:21). El cromatógrafo de líquidos estaba equipado con una columna de 30 x 3,0 mm D.I. (Waters xBridge C18, partículas de 3,5 um), regulada por termostato a 50°C. Se usaron dos fases móviles: la fase A era ácido fórmico al 0,05% en p/v (1 ml/l de ácido fórmico al 50% Fluka 09676 en agua altamente purificada) y la fase B era MeOH/iPrOH/H2O 70/25/5 (v/v/v) que contenía ácido fórmico al 0,035% en p/v (700 ul/l de ácido fórmico al 50% Fluka 09676).

- Se inyectó un volumen de 5 ul de solución de muestra nominal 1 mM en DMSO (modo de bucle parcial, secuencial, sin espacios de aire) y se llevó a cabo un análisis con gradiente de fase inversa genérico (clasificado como método "nº IN63SEQ79") a 0,8 ml/min de 0% a 100% de fase B (v/v) a lo largo de 5 min, mantenido 0,7 min a 100% de B y se invirtió abruptamente a 0% de B a los 5,71 min, con el tiempo de parada de la ejecución fijado en 6,3 min. El tiempo de análisis total ("entre inyecciones") era 7,9 min.
- El detector UV trabajaba a 220 nm, velocidad de muestreo de 5 Hz. El dispositivo de MS trabajaba a un voltaje del capilar de 3,2 kV, cono 30 V, extractor 2 V, lentes RF 0,5 V, flujo de desolvatación 400 l/h, flujo de cono 100 l/h, temperatura de la fuente 100°C, temperatura de desolvatación 150°C, ESI(+) barrido completo adquisición de 120-1200 uma, a la velocidad de muestreo de 1,7 Hz. El detector CLND trabajaba a una temperatura del horno de 1050°C, flujo de entrada de oxígeno 280 ml/min, entrada de argón 80 ml/min, argón de reposición 25 ml/min, ozono 30 ml/min, vacío 28 torr, voltaje PMT 750 V, cámara PMT a +10°C, sensibilidad alta, selección 5, velocidad de muestreo 4 Hz.

Método de HPLC 2:

Los análisis de HPLC-MS se llevaron a cabo en un espectrómetro de masas de trampa de iones Finnigan MAT modelo LCQ, equipado con una fuente de iones de ESI (electropulverización), el espectrómetro de masas está conectado directamente a un HPLC SSP4000 (Thermo Separation) equipado con un muestreador automático Lc Pal (CTC Analytics) y un detector UV6000LP PDA.

Condiciones de HPLC:

Columna:	Phenome	Phenomenex Gemini C18, 3 µm, 50 x 4,6 mm (por defecto)		
Temperatura	40°C	40°C		
Fase móvil A:	Tampón	de acetato 5 mM pH 4,5 : acetonitrilo 95:5 (v:v)		
Fase móvil B:	Tampón	de acetato 5 mM pH 4,5 : acetonitrilo 5:95 (v:v)		
Gradiente de elución:				
		Tiempo (min)	% de fase móvil A	
		0	100	
	7 0			
	9 0			
	11 100			
	13 100			
Caudal: 1 ml/min, volumen de inyección: 10 μl		10 μΙ		
Temperatura de la columna:		40°C		

Condiciones de MS: El espectrómetro de masas LCQ trabaja con una interfase de ionización por electropulverización (ESI) en un modo de ion positivo y negativo siguiendo los parámetros de trabajo indicados en la tabla 1. Los experimentos de MS/MS se llevan a cabo automáticamente en el ion más intenso de cada barrido

mediante el software Xcalibur. Se usó una energía de colisión de 45% para la fragmentación de los iones precursores.

Tabla 1. Parámetros del instrumento espectrómetro de masas

Parámetro	Valor
Temperatura del capilar (°C)	255
Voltaje de la fuente (kV)	4,00
Voltaje del capilar (V)	21,0
Offset de lente tubular (V)	-5,0
Amplificador de RF multipolo (Vp-p)	400,0
Offset multipolo 1 (V)	-3,00
Offset multipolo 2 (V)	-6,50
Voltaje lente intermultipolo (V)	-16,00
Voltaje de offset de trampa DC (V)	-10,00
Microbarridos completos	3
Iones objetivo AGC completo	5*10 [′]
Tiempo de iones máx. completo (ms)	150
Microbarridos MSn	3
Iones objetivo de AGC MSn	2*10 [′]
Tiempo de iones máx. MSn (ms)	200
Electromultiplicador (V)	-950,0

5 Método de HPLC 3:

Los análisis de HPLC-MS se llevaron a cabo en un espectrómetro de masas de trampa de iones Finnigan MAT modelo LCQ, equipado con una fuente de iones ESI (electropulverización), el espectrómetro de masas está conectado directamente a un HPLC SSP4000 (Thermo Separation) equipado con un muestreador automático Lc Pal (CTC Analytics) y un detector UV6000LP PDA.

10 Condiciones de HPLC:

Columna:	Phenomenex Gemini C18, 3 µm, 50 x 4,6 mm (por defecto)			
Temperatura	40°C	40°C		
Fase móvil A:	Tampón de acetato	5 mM pH 4,5 : acetonitrilo	95:5 (v:v)	
Fase móvil B:	Tampón de acetato	5 mM pH 4,5 : acetonitrilo	5:95 (v:v)	
Gradiente de elución:				
		Tiempo (min)	% de fase móvil A	
		0	100	
	2 80			
	9 60			
	10 0			
	12 0			
		12,10	100	
Caudal:		1 ml/min		
Volumen de inyección:		10 μl		
Temperatura de la columna:		40°C		

Condiciones de MS:

15

El espectrómetro de masas LCQ trabaja con una interfase de ionización por electropulverización (ESI) en un modo de ion positivo y negativo siguiendo los parámetros de trabajo indicados en la tabla 2. Los experimentos de MS/MS se llevan a cabo automáticamente en el ion más intenso de cada barrido mediante el software Xcalibur. Se usó una energía de colisión de 45% para la fragmentación de los iones precursores.

Tabla 2. Parámetros del instrumento espectrómetro de masas

Parámetro	Valor
Temperatura del capilar (°C)	255
Voltaje de la fuente (kV)	4,00
Voltaje del capilar (V)	21,0
Offset de lente tubular (V)	-5,0
Amplificador de RF multipolo (Vp-p)	400,0
Offset multipolo 1 (V)	-3,00
Offset multipolo 2 (V)	-6,50
Voltaje lente intermultipolo (V)	-16,00
Voltaje de offset de trampa DC (V)	-10,00
Microbarridos completos	3
Iones objetivo de AGC completo	5*10 ⁷
Tiempo de iones máx. completo (ms)	150
Microbarridos MSn	3
Iones objetivo de AGC MSn	2*10 [′]
Tiempo de iones máx. MSn (ms)	200
Electromultiplicador (V)	-950,0

Método de HPLC 4:

Los análisis se realizaron en un Sistema Waters Acquity UPLCTM equipado con unos detectores 2996 PDA (UV-VIS) y Acquity ELSDTM. El sistema LC se acopló a un espectrómetro de masas de cuadrupolo sencillo Waters Acquity 3100 SQDTM para determinaciones de masa atómica. Una columna Waters Acquity UPLCTM BEH C18, de 1,7 μm, 2,1x50 mm a 45°C se usó con un caudal de 0,7 ml/min del siguiente sistema disolvente binario y gradiente.

Fase móvil A: Ácido trifluoroacético al 0,1% en H₂O/Acetonitrilo (95:5)

Fase móvil B: Acetonitrilo/H₂O (95:5)

Tiempo (min)	% de fase móvil A	% de fase móvil B
0,00	95%	5%
2,00	5%	95%

Condiciones de MS:

El espectrómetro de masas LCQ trabaja con una interfase de ionización por electropulverización (ESI) en un modo de ion positivo y negativo siguiendo los parámetros de trabajo indicados en la tabla 3. Los experimentos de MS/MS se llevan a cabo automáticamente en el ion más intenso de cada barrido mediante el software Xcalibur. Se usó una energía de colisión de 45% para la fragmentación de los iones precursores.

Tabla 3. Parámetros del instrumento espectrómetro de masas

Modo de ionización	ESI+ y ESI-
Voltaje del capilar	3 kV (ES+); 3 kV (ES-)
Voltaje del cono	30 V (ES+); 30 V (ES-)
Voltaje del extractor	1 V
Voltaje de la lente RF	0,1 V
Temperatura de la fuente	120°C
Temperatura de desolvatación	350°C
Flujo de gas en el cono	100 l/h
Flujo de gas de desolvatación	600 l/h
Resolución LM	15,0
Resolución HM	15,0
Energía iónica	0,3
Ganancia	1
Modo barrido	Barrido completo (Intervalo = 100-800 m/z)
	Tiempo de barrido = 0,1 s
	Demora entre barridos = 0,02 s

10

15

Método de HPLC 5:

5

Los análisis se realizaron en un Sistema Waters Alliance HT 2795 equipado con un detector 996 PDA (UV-VIS). El sistema LC se acopló a un espectrómetro de masas de cuadrupolo sencillo Waters/Micromass ZQTM para determinaciones de masa atómica. Una columna Waters Ascentis Express C18, de 2,7 µm, 4,6x50 mm se usó con un caudal de 1,0 mL/min del siguiente sistema disolvente binario y gradiente.

Fase móvil A: Ácido trifluoroacético al 0,1% en H₂O/Acetonitrilo (95:5)

Fase móvil B: Acetonitrilo/H2O (95:5)

Tiempo (min)	% de fase móvil A	% de fase móvil B
0,00	90%	10%
4,00	10%	90%
4,10	0%	100%

Condiciones de MS:

El espectrómetro de masas LCQ trabaja con una interfase de ionización por electropulverización (ESI) en un modo de ion positivo y negativo siguiendo los parámetros de trabajo indicados en la tabla 4. Los experimentos de MS/MS se llevan a cabo automáticamente en el ion más intenso de cada barrido mediante el software Xcalibur. Se usó una energía de colisión de 45% para la fragmentación de los iones precursores.

Tabla 4. Parámetros del instrumento espectrómetro de masas

Modo de ionización	ESI+ y ESI-
Voltaje del capilar	3,48 kV (ES+); 2,76 kV (ES-)
Voltaje del cono	15 V (ES+); 27 V (ES-)
Voltaje del extractor	1 V
Voltaje de la lente RF	0,1 V
Temperatura de la fuente	120°C
Temperatura de desolvatación	240°C
Flujo de gas en el cono	100 l/h
Flujo de gas de desolvatación	600 l/h
Resolución LM	15,0
Resolución HM	15,0
Energía iónica	0,5
Multiplicador	600
Modo barrido	Barrido completo (Intervalo = 100-800 m/z) Tiempo de barrido = 0,5 s; Demora entre barridos = 0,3 s

15

20

25

Los tiempos de retención (t.r. HPLC) se dan en minutos a 220 nm o a 254 nm. La masa se da como la relación m/z.

Cuando era necesario, los compuestos se purificaron por HPLC preparativa usando uno de los siguientes dos sistemas. Una columna Waters X-Bridge Prep Shield RP18 (19 x 100 mm, 5 μ m) o una columna Phenomenex Gemini C18 (21,2 x 250 mm, 10 μ m), usando un sistema de autopurificación Waters FractionLynx equipado con un detector 996 Waters PDA y un espectrómetro de masas de cuadrupolo simple Micromass mod. ZQ, ionización por electropulverización, modo positivo. La fase móvil A era NH3 al 0,05% en agua/acetonitrilo 95:5, y la fase móvil B era acetonitrilo. Gradiente de 10 a 90% de B en 8 min o 15 min. Caudal 20 ml/min.

Alternativamente, las purificaciones se realizaron en un Sistema Biotage Parallex Flex, equipado con cuatro bombas de corriente de flujo binario independientes, un detector UV con celdas de flujo de cuatro canales que controlan dos longitudes de onda (220 y 254 nm), y cuatro colectores de fracciones. El fraccionamiento se realizó a 254 nm. Se usaron columnas Waters XTerra Prep RP18, de 5 µm, 100 x 19 mm, con un caudal de 20 ml/min. Los gradientes se aplicaron según el tiempo de retención del producto deseado obtenido del análisis de HPLC analítico.

Sistema disolvente binario estándar:

Fase móvil A: Ácido trifluoroacético al 0,1% en H₂O/Acetonitrilo (95:5)

30 Fase móvil B: Acetonitrilo

Gradiente A:

Tiempo (min)	% de fase móvil A	% de fase móvil B
0,0	100%	0%
6,0	80%	20%
8,0	80%	50%
8,5	50%	100%

Gradiente B:

Tiempo (min)	% de fase móvil A	% de fase móvil B
0,0	100%	0%
6,0	70%	30%
8.0	0%	100%

5 Gradiente C:

Tiempo (min)	% de fase móvil A	% de fase móvil B
0,0	100%	0%
6,0	50%	50%
8,0	0%	100%

Gradiente D:

15

20

Tiempo (min)	% de fase móvil A	% de fase móvil B
0,0	90%	10%
6,0	30%	70%
8,0	0%	100%

La espectrometría de RMN de ¹H se llevó a cabo en un instrumento Bruker AVANCE 400MHz single bay con gradientes. Está equipado con una sonda QNP (sonda de 4 núcleos intercambiables - ¹H, ¹³C, ¹⁹F y ³¹P) (método de RMN 1) o en un Mercury VX 400 que trabaja a 400,45 MHz equipado con una sonda doble de resonancia de 5 mm [1H (15N-31P) ID_PFG Varian] (método de RMN 2).

Los compuestos de fórmula (I), que tienen un átomo de carbono asimétrico y obtenidos como mezcla racémica, se resolvieron por separación por HPLC en columnas quirales. En particular, por ejemplo, se pueden usar las columnas preparativas CHIRALPACK® AD, CHIRALPACK® AS, CHIRALCELL®OJ.

Alternativamente, cuando R1 contiene un centro quiral y da lugar a una pareja de diastereoisómeros, se usaron técnicas de HPLC de fase inversa tradicionales descritas antes para resolver las especies.

Algunos compuestos preparados de acuerdo con técnicas de química en disolución y combinatoria se han identificado de forma conveniente y sin ambigüedad, conforme al sistema de codificación de las tablas III junto con el tiempo de retención de HPLC (métodos 1-5) y masa.

Cada código, que identifica un solo compuesto de fórmula (I) específico, consiste en tres unidades A-M-B.

A representa cualquier sustituyente R2- [véase la fórmula (I)] y está unido en la posición 7 del resto de 3,4-dihidro-2*H*-pirrolo[1,2-*a*]pirazin-1-ona; cada sustituyente A está representado en la siguiente tabla I.

B representa cualquier sustituyente R1- [véase la fórmula (I)] y está unido al resto del resto de 3,4-dihidro-2*H*-pirrolo[1,2-*a*]pirazin-1-ona por el átomo de carbono del grupo carbonilo, para así tener derivados de 3,4-dihidro-2*H*-pirrolo[1,2-*a*]pirazin-1-ona; cada sustituyente B está representado en la siguiente tabla II.

M se refiere al núcleo central del resto 3,4-dihidro-2*H*-pirrolo[1,2-a]pirazin-1-ona divalente que está sustituido en la posición 7 con grupos A y en el grupo carbonilo con grupo B, sustancialmente como sigue:

Para facilitar la referencia, cada grupo A y B, en las tablas I y II respectivamente, se ha identificado con la fórmula química adecuada y una indicación del punto de unión con el núcleo de la molécula M.

5

10

Como ilustración, el compuesto A-127-M-B22 de la tabla III (entrada 913) representa el núcleo M, 3,4-dihidro-2*H*-pirrolo[1,2-a]pirazin-1-ona, que está sustituido en la posición 7 con el grupo A127 y con el grupo B22 por el grupo carbonilo; igualmente, el compuesto A150-M-B40 de la tabla III (entrada 1241) representa el núcleo M, 3,4-dihidro-2*H*-pirrolo[1,2-a]pirazin-1-ona, que está sustituido en la posición 7 con el grupo A150 y con el grupo B40 por el grupo carbonilo, como sigue:

Tabla I - grupos A

Fragmento	CÓDIGO
M	A1
\°\\\	A2
	A3
	A4
	A5
*	A6
F M	A7
F O M	A8

Tabla I - grupos A		
Fragmento	CÓDIGO	
F O N M	A9	
HO	A10	
N N N	A11	
M-H	A12	
HN N	A13	
M. H. CO	A14	
S N	A15	
w # # # # # # # # # # # # # # # # # # #	A16	

Fragmento	CÓDIGO
~ n n n n n n n n n n n n n n n n n n n	A17
	A18
	A19
a M	A20
0= N	A21
» M	A22
∑ ×	A24
M	A25

Fragmento	CÓDIGO
	A26
a	A27
Y = A	A28
M	A29
	A30
	A31
	A32
S M	A33

Fragmento	CÓDIGO
€ M	A34
N N	A35
O II M	A36
M-Y-S	A37
	A38
M. H.	A39
M H S	A4 0
F N	A41

Fragmento	CÓDIGO
T M	A42
F a	A43
HN M	A44
X H M	A45
M. N.	A46
	A47
M ZH O	A48
M. N.	A49

Fragmento	CÓDIGO
→ N M	A50
N _M	A51
H N N N N N N N N N N N N N N N N N N N	A52
M F	A53
N M	A54
F M	A55
F F	A56
M H O	A57

Fragmento	CÓDIGO
M S	A58
F N N N N N N N N N N N N N N N N N N N	A59
Z z ×	A60
	A61
	A62
F N	A63
M F	A64
W- N	A65

Fragmento	CÓDIGO
E ZH O	A66
F O	A67
M N O	A68
N.W	A69
F CO	A70
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A71
N N N N N N N N N N N N N N N N N N N	A72
M P P	A73

Fragmento	CÓDIGO
M-HN SEO	A74
M-N O	A75
M. N. D.	A76
N N N N N N N N N N N N N N N N N N N	A77
M. P. C.	A78
M N N N N N N N N N N N N N N N N N N N	A79
F N N N	A80
M B B	A81

Fragmento	CÓDIGO
H W H	A82
	A83
	A84
SH SH	A85
× H C	A86
	A87
F O N M	A88
w H H C	A89

Fragmento	CÓDIGO
W-H-O	A 90
M N	A91
	A92
N N N N N N N N N N N N N N N N N N N	A93
a	A94
M T T	A95
M NH	A96
M H NH	A97

Fragmento	CÓDIGO
=z 	A 98
a L N N N N N N N N N N N N N N N N N N	A 99
	A100
J N N N N N N N N N N N N N N N N N N N	A101
	A102
	A103
M H H	A104
M NH	A105

Fragmento	CÓDIGO
	A106
T H H M	A107
w #	A108
M F C	A 109
M. H. H.	A 110
F F NH	A111
~ N N N N N N N N N N N N N N N N N N N	A112
ON THE M	A113

Fragmento	CÓDIGO
M N M	A114
N M	A115
_oN_M	A116
	A117
wh H	A118
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A119
XXXXX	A120
~~~ H H M	A121

Fragmento	CÓDIGO
	A122
M-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	A123
Z > 2	A124
H ₂ N M	A125
HO M	A126
F M	A127
F _M	A128
FM	A129

Fragmento ·	CÓDIGO
2=>2	A130
	A131
° ↓ M	A132
F	A133
F N M	A134
F N	A135
H ₂ N M	A136
	A137

Fragmento	CÓDIGO
O	A138
F M	A139
√s ✓ M	A140
· · · · · · · · · · · · · · · · · · ·	<b>A14</b> 1
	A142
F F M	A143
M H	A144
Br N	A145

Fragmento	CÓDIGO
O F	A146
∑ ×	A147
O F	A148
F F	A149
a N	A150

Fragmento	CÓDIGO
F M	A151
M	A152
× (	A153
M	A154
M M	A155

Fragmento	CÓDIGO
N M	A156
F N	A157
F M	A158

Tabla II - grupo B

Fragmento	CÓDIGO
M	B1
HO M	B2
·	В3
N M	B4
N _M	В5
M. H.	<b>B</b> 6
_o	В7
	В8

Tabla II - grupo B		
Fragmento	CÓDIGO	
∑ H M	B9	
" N M	B10	
//N M	B11	
M-β ~ ()	B12	
→ N M	B13	
M. K.	B14	
	B15	
M H	B16	

Fragmento	CÓDIGO
∕ H M	B17
T N M	B18
△ _N M	B19
	<b>B</b> 20
H _M	B21
W. H.	B22
	B23
D, w	B24

Fragmento	CÓDIGO	Fragmento	CÓDIGO	Fragmento	CÓDIGO
√ HZ M	B25	N N N M	B33	H ₂ N . M	B41
N−M N−M	B26	S. N	B34	,°~~, H, M	B42
₩ M	B27	\XX	B35	× H, M	<b>B</b> 43
₩ _м	B28	N ZH	B36	M, H N	B44
M. N.	B29	M NH	B37	N _M	<b>B</b> 45
F N N N N N N N N N N N N N N N N N N N	B30	M-H-NO	B38	M N	B46
S-X	B31	M. N. D.	B39	John H-w	B47
→ N-M	B32	m_HO)	B40	M. H.	B48

Fragmento	CÓDIGO	Fragmento	CÓDIGO	[	Fragmento	CÓDIGO
N_N_M	B49	M N	B55		м-	B61
	B50		B56		м Н он	B62
N M	B51		B57			B63
M-H	B52		<b>B</b> 58		M, H	B64
, N H W	B53	N N N	B59		M- NH2	B65
N N N N N N N N N N N N N N N N N N N	B54		B60			

Preparación de 2,2,2-tricloro-1-(4-nitro-1*H*-pirrol-2-il)etanona (III):

15

Se añadió gota a gota ácido nítrico (90%, 2 ml) a lo largo de un periodo de 30 minutos a una solución de 2,2,2-tricloro-1-(1*H*-pirrol-2-il)etanona (II) (1 g, 4,7 mmol) en anhídrido acético (10 ml), se enfrió a -40°C. La mezcla de reacción se dejó calentar lentamente a temperatura ambiente y se agitó durante 6 h. El disolvente se evaporó a vacío y el residuo se purificó por cromatografía ultrarrápida (hexano-EtOAc 9:1) para obtener el compuesto de fórmula (III) en forma de un sólido amarillo (670 mg, 55% de rendimiento). También se obtuvo la 2,2,2-tricloro-1-(5-nitro-1*H*-pirrol-2-il)etanona como producto secundario (349 mg, 29% de rendimiento).

10 LCMS (Método de HPLC 2): m/z 256 [M-H] a t.r. 5,44 min. RMN ¹H (400 MHz, DMSD-d₆) δ= 13,65 (s ancho, 1 H), 8,39 (dd, J = 1,4, 3,6 Hz, 1 H), 7,73 (t, J= 1,8 Hz, 1H)

Preparación de (7-nitro-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (V, donde R1=OCH₂CH₃):

Se añadió trifluoroacetato de (2E)-4-aminobut-2-enoato de etilo (IV) (5,99 g, 24,6 mmol) a una solución de 2,2,2-tricloro-1-(4-nitro-1*H*-pirrol-2-il)etanona (III) (3,17 g, 12,3 mmol) y DIPEA (12,6 ml, 73,8 mmol) en CH₂Cl₂ seco (120 ml) y la mezcla de reacción se agitó a temperatura ambiente durante la noche. El disolvente se evaporó a vacío y el

residuo se purificó por cromatografía ultrarrápida (hexano-EtOAc 2:3), para obtener el compuesto de fórmula (V) (donde R1=OCH₂CH₃) en forma de un sólido amarillo claro (3,19 g, 97% de rendimiento).

LCMS (Método de HPLC 2): m/z 268 [M+H]⁺ a t.r. 3,48 min. RMN ¹H (400 MHz, DMSO-d₆))  $\delta$ = 8,13 (s ancho, 1 H), 8,12 (d, J = 1,7 Hz, 1 H), 7,14 (d, J = 1,8 Hz, 1 H), 4,74 - 4,84 (m, 1 H), 4,11 (q, J = 7,2 Hz, 2 H), 3,75 (ddd, J = 1,8, 4,2, 13,4 Hz, 1H), 3,44 (dt, J = 4,2,13,4 Hz, 1 H), 2,96 (dd, J = 1,6, 6,8 Hz, 2 H), 1,19 (t, J = 7,1 Hz, 3 H)

#### Eiemplo 1

5

10

15

25

30

Preparación del hidrocloruro de (7-amino-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (I):

A una solución de (7-nitro-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (V, donde R1=OCH₂CH₃) (0,55 g, 2,1 mmol) en etanol al 100% (20 ml) se añadió ácido clorhídrico (solución 4 M en 1,4-dioxano, 0,52 ml, 2,1 mmol). La mezcla de reacción se agitó a temperatura ambiente en presencia de Pd-C (10%) (0,11 g), en atmósfera de argón (3,5 kg/cm² (50 psi)). Después de 7 h, el sólido se filtró a través de Celite (se lavó con etanol) y el disolvente se evaporó a vacío, para obtener el compuesto hidrocloruro de (7-amino-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (I) en forma de un sólido marrón claro (0,56 g, 98% de rendimiento), usado sin más purificación en las siguientes etapas. *Producto muy higroscópico. Para almacenar durante un periodo de tiempo corto y en atmósfera de gas inerte*. LCMS (Método de HPLC 2): *m/z* 238 [M-H]⁻ a t.r. 1,89 min (pico ancho). RMN ¹H (400 MHz, DMSO-d₆) δ= 9,75 (s ancho, 2 H), 7,84 (s ancho, 1 H), 7,10 (d, *J* = 1,8 Hz, 1 H), 6,62 (d, *J* = 1,8 Hz, 1 H), 4,64 - 4,75 (m, 1 H), 4,05 - 4,15 (m, 2 H), 3,64 - 3,75 (m, 1 H), 3,34 - 3,44 (m, 1 H), 2,83 - 2,94 (m, 1 H), 2,73 - 2,82 (m, 1 H), 1,20 (t, *J* = 7,1 Hz, 3 H).

## Ejemplo 2

20 Preparación de A7-M-B1 (entrada 34, tabla III):

Una solución de ácido 4-fluorobenzoico (0,29 g, 2,1 mmol), 1-etil-3-(3'-dimetilaminopropil)carbodiimida (EDC) (0,4 g, 2,1 mmol), 3,4-dihidro-3-hidroxi-4-oxo-1,2,3-benzotriazina (DHBT) (0,34 g, 2,1 mmol) y *N,N*-diisopropiletilamina (DIPEA) (0,75 ml, 4,2 mmol) en acetonitrilo seco (10 ml) se agitó a temperatura ambiente durante 10 min, antes de añadir hidrocloruro de (7-amino-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (I) (0,52 g, 1,9 mmol). La mezcla de reacción se agitó durante la noche a la misma temperatura. El disolvente se evaporó a vacío y el residuo se purificó por cromatografía ultrarrápida (EtOAc + MeOH al 5%), para obtener el compuesto A7-M-B1 (entrada 34, tabla III) en forma de un sólido blanquecino (0,49 g, 71% de rendimiento).

LCMS (Método de HPLC 2): m/z 361 [M+H]⁺ a t.r. 3,99 min. RMN ¹H (500 MHz, DMSO-d₆)  $\delta$  = 10,37 (s, 1 H), 7,97 - 8,02 (m, 2 H), 7,66 (s ancho, 1 H), 7,44 (d, J=1,6 Hz, 1 H), 7,31 - 7,38 (m, 2 H), 6,73 (d, J=1,6 Hz, 1 H), 4,63 (ddd, J = 3,2, 3,3, 6,8 Hz, 1 H), 4,09 (q, J = 7,0 Hz, 2 H), 3,66 - 3,72 (m, 1 H), 3,34 - 3,39 (m, 1 H), 2,81 - 2,89 (m, 1 H), 2,68 - 2,77 (m, 1 H), 1,19 (t, J = 7,1 Hz, 3 H).

## Eiemplo 3

Preparación de A9-M-B1 (entrada 54, tabla III):

Se añadió *N,N*-diisopropiletilamina (DIPEA) (0,19 ml, 1,1 mmol) a una solución de 1-fluoro-4-isocianatobenceno (0,15 ml, 1,2 mmol) y (una suspensión de) hidrocloruro de (7-amino-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (I) (0,30 g, 1,1 mmol) en diclorometano seco (10 ml). La mezcla de reacción se agitó a temperatura ambiente durante la noche, el disolvente se evaporó a vacío y el residuo se purificó por cromatografía ultrarrápida (EtOAc + MeOH al 5%), para obtener el compuesto A9-M-B1 (entrada 54, tabla III) en forma de un sólido blanquecino (0,33 g, 80% de rendimiento). LCMS (Método de HPLC 2): *m/z* 376 [M+H]⁺ a t.r. 4,04 min. RMN ¹H (500 MHz, DMSO-d₆) δ = 8,56 (s, 1 H), 8,37 (s, 1 H), 7,59 (d, *J* = 2,6 Hz, 1 H), 7,38 - 7,46 (m, 2 H), 7,10 - 7,11 (m, 1 H), 7,05 - 7,12 (m, 2 H), 6,48 (d, *J* = 1,8 Hz, 1 H), 4,53 - 4,59 (m, 1 H), 4,06 - 4,12 (m, 2 H), 3,64 - 3,70 (m, 1 H), 3,29 - 3,36 (m, 1 H), 2,79 - 2,85 (m, 1 H), 2,69 - 2,74 (m, 1 H), 1,19 (t, *J* = 7,1 Hz, 3 H).

## Ejemplo 4

Preparación de A8-M-B1 (entrada 52, tabla III):

Se añadió *N*-metilmorfolina (0,28 ml, 2,6 mmol) a una solución de cloruro de 4-fluorobencenosulfonilo (0,25 g, 1,3 mmol) y (una suspensión de) hidrocloruro de (7-amino-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (I) (0,32 g, 1,2 mmol) en diclorometano seco (10 ml) y la mezcla de reacción se agitó a temperatura ambiente durante la noche. El disolvente se evaporó a vacío y el residuo se purificó por cromatografía ultrarrápida (EtOAc), para obtener el compuesto A8-M-B1 (entrada 52, tabla III) en forma de un sólido blanquecino (0,30 g, 64% de rendimiento).

LCMS (Método de HPLC 2): m/z 397 [M+H]⁺ a t.r. 3,96 min. RMN ¹H (500 MHz, DMSO-d₆)  $\delta$  = 9,75 (s, 1 H), 7,70 - 7,77 (m, 2 H), 7,65 (d, J = 2,9 Hz, 1 H), 7,35 - 7,42 (m, 2 H), 6,67 (d, J = 1,8 Hz, 1 H), 6,20 (d, J = 1,8 Hz, 1 H), 4,50 - 4,56 (m, 1 H), 3,99 - 4,10 (m, J = 3,5, 3,7, 7,1, 7,1,10,6 Hz, 2 H), 3,58 - 3,64 (m, 1 H), 3,26 - 3,32 (m, 1 H), 2,78 (dd, J = 6,4,16,0 Hz, 1 H), 2,58 - 2,68 (m, 1 H), 1,16 (t, J = 7,1 Hz, 3 H).

Preparación de 2,2,2-tricloro-1-(4-yodo-1*H*-pirrol-2-il)etanona (IX):

Se añadió yodo (1,2 g, 4,7 mmol) en porciones a una solución de 2,2,2-tricloro-1-(1*H*-pirrol-2-il)etanona (1 g, 4,7 mmol) y trifluoroacetato de plata (1,1 g, 5 mmol) en diclorometano seco (24 ml), se enfrió a 0°C. La mezcla de reacción se dejó calentar lentamente a 18°C (baño de agua) y se agitó a la misma temperatura durante 5 h. El sólido se filtró, la fase orgánica se lavó con Na₂S₂O₅ (solución acuosa al 5%) hasta que se produjo la decoloración y finalmente se lavó con H₂O (1 x 20 ml). La fase orgánica se secó sobre Na₂SO₄ y se filtró a través de un tapón de SiO₂ (hexano-EtOAc 4:1), para obtener el compuesto 2,2,2-tricloro-1-(4-yodo-1H-pirrol-2-il)etanona (IX) en forma de un sólido blanquecino (1,49 g, 94% de rendimiento).

LCMS (Método de HPLC 2): m/z 336 [M-H]⁻ a t.r. 6,3 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 12,76 (s ancho, 1 H), 7,52 (dd, J = 1,3, 3,3 Hz, 1 H), 7,39 (dd, J = 1,3, 2,6 Hz, 1 H).

Preparación de (2E)-4-{[(4-yodo-1*H*-pirrol-2-il)carbonil)amino}but-2-enoato de etilo (X, donde R1=OCH₂CH₃):

Se añadió trifluoroacetato de (2E)-4-aminobut-2-enoato de etilo (IV) (0,97 g, 4 mmol) a una solución de 2,2,2-tricloro-1-(4-yodo-1*H*-pirrol-2-il)etanona (IX) (0,68 g, 2 mmol) y *N,N*-diisopropiletilamina (DIPEA) (2,7 ml, 16 mmol) en diclorometano (20 ml) y la mezcla de reacción se agitó a temperatura ambiente durante la noche. El disolvente se evaporó a vacío y el residuo se purificó por cromatografía ultrarrápida (SiO₂, hexano-EtOAc 1:1) para obtener el compuesto (2E)-4-{[(4-yodo-1*H*-pirrol-2-il)carbonil]amino}but-2-enoato de etilo (X, donde R1=OCH₂CH₃) en forma de un sólido blanquecino (0,48 g, 68% de rendimiento).

LCMS (Método de HPLC 2): m/z 349 [M+H]⁺ a t.r. 4,7 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 11,82 (s ancho, 1 H), 8,39 (t, J = 5,8 Hz, 1 H), 7,01 (dd, J = 1,5, 2,9 Hz, 1 H), 6,96 (dd, J = 1,5, 2,5 Hz, 1 H), 6,90 (dt, J = 4,7, 15,7 Hz, 1 H), 5,87 (dt, J = 1,8, 15,7 Hz, 1H), 4,12 (q, J = 7,1 Hz, 2 H), 3,99 - 4,06 (m, 2 H), 1,21 (t, J = 7,1 Hz, 3 H).

Preparación de (7-yodo-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (XI, donde R1=OCH₂CH₃):

Se añadió diaza(1,3)biciclo[5.4.0]undecano (DBU) (0,04 ml, 0,3 mmol) a una solución de (2E)-4-{[(4-yodo-1H-pirrol2-il)carbonil]amino}but-2-enoato de etilo (X, donde R1=OCH $_2$ CH $_3$ ) (0,45 g, 1,3 mmol) en acetonitrilo (8 ml) y la mezcla de reacción se agitó a temperatura ambiente durante 30 min. El disolvente se evaporó a vacío y el residuo se purificó por cromatografía ultrarrápida (SiO $_2$ , hexano-EtOAc 1:1) para obtener el compuesto (7-yodo-1-oxo-1,2,3,4-tetrahidropirrolo[1,2- $_3$ pirazin-4-il)acetato de etilo (XII, donde R1=OCH $_2$ CH $_3$ ) en forma de un sólido blanquecino (0,35 g, 79% de rendimiento).

LCMS (Método de HPLC 2): m/z 349 [M+H]⁺ a t.r. 4,15 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 7,72 (s ancho, 1 H), 7,13 (d, J = 1,7 Hz, 1 H), 6,72 (d, J = 1,6 Hz, 1 H), 4,59 - 4,71 (m, 1 H), 4,10 (qd, J = 1,8, 7,1 Hz, 2 H), 3,66 (ddd, J = 1,7, 4,2, 13,1 Hz, 1 H), 3,30 - 3,38 (m, 1 H), 2,83 (d, J = 6,7 Hz, 2 H), 1,19 (t, J = 7,1 Hz, 3 H).

Ejemplo 5

5

10

15

20

25

30

35

50

Preparación de A21-M-B1 (entrada 127, tabla III):

Una mezcla de (7-yodo-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-*a*]pirazin-4-il)acetato de etilo (XI, donde R1=OCH₂CH₃) (50 mg, 0,14 mmol), dicloruro de 1,1'-bis(difenilfosfino)ferrocenopaladio(II), complejo con diclorometano (1:1) (12 mg, 0,015 mmol) y ácido 4-nitrofenilborónico (47 mg, 0,28 mmol) en dimetoxietano (DME) (1 ml) se desgasificó antes de añadir carbonato sódico (45 mg, 0,42 mmol en 0,5 ml de H₂O) y la mezcla de reacción se agitó a 80°C durante 3 h, en atmósfera de argón. La mezcla de reacción se filtró a través de sílice (se lavó con EtOAc) y el disolvente se evaporó a vacío. El residuo se purificó por cromatografía ultrarrápida (EtOAc-hex), para obtener el compuesto A21-M-B1 (entrada 127, tabla III) (29 mg, 60% de rendimiento).

40 LCMS (Método de HPLC 2): m/z 345 [M+H]⁺ a t.r. 4,61 min. RMN ¹H (400 MHz, DMSO-d₆) δ = 8,19 (d, J = 9,0 Hz, 2 H), 7,87 (d, J = 9,0 Hz, 2 H), 7,80 (d, J = 1,7 Hz, 1 H), 7,76 (d, J = 1,8 Hz, 1 H), 7,24 (d, J = 1,8 Hz, 1 H), 4,71 (ddd, J = 3,4, 3,6, 6,6 Hz, 1 H), 4,04 - 4,17 (m, 2 H), 3,74 (ddd, J = 1,8, 4,1, 13,3 Hz, 1 H), 3,35- 3,45 (m, 1 H), 2,88 - 2,99 (m, 2 H),1,15 - 1,22 (m, 3 H).

Ejemplo 6

45 Preparación de A22-M-B1 (entrada 128, tabla III):

Una mezcla de (7-yodo-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (XI, donde R1=OCH₂CH₃) (50 mg, 0,14 mmol), dicloruro de 1,1'-bis(difenilfosfino)ferrocenopaladio(II), complejo con diclorometano (1:1) (12 mg, 0,015 mmol) y ácido trans-2-(4-metoxifenil)vinilborónico (50 mg, 0,28 mmol) en dimetoxietano (DME) (1 ml) se desgasificó antes de añadir carbonato sódico (45 mg, 0,42 mmol en 0,5 ml de H₂O) y la mezcla se agitó a 80°C durante 6 h, en atmósfera de argón. La mezcla de reacción se filtró a través de sílice (se lavó con EtOAc) y el disolvente se evaporó a vacío. El residuo se purificó por cromatografía ultrarrápida (EtOAc-hex), para obtener el compuesto A22-M-B1 (entrada 128, tabla III) (31 mg, 62% de rendimiento).

LCMS (Método de HPLC 2): m/z 356 [M+H] $^+$  a t.r. 5,12 min. RMN  1 H (400 MHz, DMSO-d₆)  $\delta$  = 7,66 (d, J = 3,2 Hz, 1 H), 7,38 - 7,45 (m, 2 H), 7,13 (d, J = 1,6 Hz, 1 H), 6,87 - 6,93 (m, 4 H), 6,79 - 6,85 (m, 1 H), 4,58 - 4,66 (m, 1 H), 4,12 (q, J = 7,1 Hz, 2 H), 3,76 (s, 3 H), 3,65 - 3,73 (m, 1 H), 3,32 - 3,39 (m, 1 H), 2,76 - 2,91 (m, 2 H), 1,20 (t, J = 7,1 Hz, 3 H).

## 5 Ejemplo 7

10

15

20

Preparación de A27-M-B1 (entrada 151, tabla III):

Una mezcla de (7-yodo-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (XI, donde R1=OCH₂CH₃) (500 mg, 1,44 mmol), dicloruro de bis(trifenilfosfina)paladio(II) (50 mg, 0,07 mmol), yoduro de cobre(I) (41 mg, 0,22 mmol), 1-cloro-4-etinilbenceno (0, 29 g, 2,15 mmol) y trietilamina (0,58 ml, 5,74 mmol) en dimetilformamida seca (14 ml) se desgasificó y la mezcla de reacción se agitó a temperatura ambiente durante la noche, en atmósfera de argón. El disolvente se evaporó a vacío el residuo se purificó por cromatografía ultrarrápida (EtOAc-CH₂Cl₂), para obtener el compuesto A27-M-B1 (entrada 151, tabla III) (0,51 g, 99% de rendimiento).

LCMS (Método de HPLC 2): m/z 358 [M+H]⁺ a t.r. 6,48 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 7,82 (s ancho, 1 H), 7,42 - 7,50 (m, 4 H), 7,37 (d, J = 1,6 Hz, 1 H), 6,78 (d, J = 1,6 Hz, 1 H), 4,63 - 4,70 (m, 1 H), 4,11 (q, J = 7,1 Hz, 2 H), 3,65 - 3,74 (m, 1 H), 3,33 - 3,41 (m, 1 H), 2,81 - 2,91 (m, 2 H), 1,19 (t, J = 7,1 Hz, 3 H).

Preparación de (2E)-4-(diformilamino)but-2-enoato de etilo (XV):

Una solución de 4-bromo-crotonato de etilo (1 g, 5,18 mmol), sal sódica de la diformilimida (0,59 g, 6,22 mmol) y yoduro sódico (0,78 g, 5,18 mmol) en acetonitrilo seco (25 ml) se agitó a temperatura de reflujo durante la noche. El disolvente se evaporó a vacío y el residuo se repartió entre diclorometano y agua (1:1, 40 ml). La fase acuosa se volvió a extraer con diclorometano (3 x 15 ml) y las capas orgánicas combinadas se secaron sobre Na₂SO₄. El disolvente se evaporó a vacío y el residuo se purificó por cromatografía ultrarrápida (hexano-EtOAc 6:4) para obtener el compuesto (2E)-4-(diformilamino)but-2-enoato de etilo (XV) en forma de un sólido marrón claro (0,92 g, 96% de rendimiento). Alternativamente, se añadió Et₂O al residuo aceitoso marrón oscuro para obtener el producto en forma de un sólido cristalino.

25 LCMS (Método de HPLC 2): m/z 186 [M-H]⁻ a t.r. 3,36 min. RMN ¹H (400 MHz, DMSO-d₆) δ = 9,01 (s, 2 H), 6,78 (dt, J = 4,6, 15,9 Hz, 1 H), 5,88 (dt, J = 2,0, 15,8 Hz, 1 H), 4,26 (dd, J = 2,0, 4,5 Hz, 2 H), 4,12 (q, J = 7,1 Hz, 2 H), 1,21 (t, J = 7,1 Hz, 3 H)

Preparación de trifluoroacetato de (2E)-4-aminobut-2-enoato de etilo (IV):

Una solución de (2E)-4-(diformilamino)but-2-enoato de etilo (XV) (0,89 mg, 4,8 mmol) en una mezcla de ácido trifluoroacético-etanol (absoluto) (2:1, 10 ml) se agitó a reflujo durante la noche (la reacción se siguió por LC-MS y se detuvo cuando se logró la conversión completa). El disolvente se evaporó a vacío para obtener el compuesto trifluoroacetato de (2E)-4-aminobut-2-enoato de etilo (IV) en forma de un aceite marrón (rendimiento indeterminado), que se usó sin más purificación en la siguiente etapa.

Ejemplo 8

35 Preparación de A2-M-B2 (entrada 8, tabla III):

A una solución del derivado A2-M-B1 (entrada 7, tabla III) (24 mg, 0,07 mmol) en una mezcla de tetrahidrofurano-agua (1:1, 2 ml) se añadió hidróxido de litio (6 mg, 0,04 mmol) y la mezcla de reacción se agitó a temperatura ambiente durante 3 h. La fase orgánica se lavó con diclorometano (2 x 5 ml). La fase acuosa se acidificó con ácido clorhídrico (1 M) hasta pH<1 y se extrajo con EtOAc (4 x 10 ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y el disolvente se evaporó a vacío para obtener el compuesto A2-M-B2 (entrada 8, tabla III) en forma de un sólido blanquecino (21 mg, 100% de rendimiento).

LCMS (Método de HPLC 2): m/z 302 [M+H]⁺ a t.r. 3,06 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 7,64 (s ancho, 1 H), 7,45 - 7,50 (m, 2 H), 7,37 (d, J = 1,8 Hz, 1 H), 6,96 (d, J = 1,8 Hz, 1 H), 6,88 - 6,94 (m, 2 H), 4,57 - 4,63 (m, 1 H), 3,76 (s, 3 H), 3,67 - 3,73 (m, 1 H), 3,37 - 3,42 (m, 1 H), 2,74 - 2,86 (m, 2 H).

45 Ejemplo 9

40

50

Preparación de A5-M-B5 (entrada 29. tabla III):

A una solución del derivado A5-M-B2 (entrada 23, tabla III) (45 mg, 0,14 mmol) en una mezcla de acetonitrilo-dimetilformamida seca (3:1, 4 ml), se añadieron 1-etil-3-(3'-dimetilaminopropil)carbodiimida (EDC) (32 mg, 0,17 mmol), 3,4-dihidro-3-hidroxi-4-oxo-1,2,3-benzotriazina (DHBT) (28 mg, 0,17 mmol) y *N,N*-diisopropiletilamina (DIPEA) (0,024 ml, 0,14 mmol) y la mezcla de reacción se agitó a temperatura ambiente durante 10 min antes de añadir piperidina (0,028 ml, 0,28 mmol). La mezcla de reacción se agitó a la misma temperatura durante la noche. Después la mezcla de reacción se diluyó con agua y se extrajo con EtOAc (4 x 5 ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄, el disolvente se evaporó a vacío y el residuo se purificó por HPLC

preparativa para obtener el compuesto A5-M-B5 (entrada 29, tabla III) en forma de un sólido blanco (13 mg, 23% de rendimiento).

LCMS (Método de HPLC 2): m/z 397 [M+H]⁺ a t.r. 3,74 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 8,50 (s, 1 H), 8,34 (s, 1 H), 7,51 (d, J = 2,9 Hz, 1 H), 7,42 (d, J = 7,6 Hz, 2 H), 7,24 (t, J = 8,0 Hz, 2 H), 7,12 (d, J = 1,7 Hz, 1 H), 6,92 (t, J = 7,3 Hz, 1 H), 6,48 (d, J = 1,7 Hz, 1 H), 4,58 (tt, J = 3,9, 6,7 Hz, 1 H), 3,67 (ddd, J = 1,1, 4,3, 12,9 Hz, 1 H), 2,79 (dd, J = 5,7,16,1 Hz, 1 H), 2,74 (dd, J = 7,1, 16,1 Hz, 1 H), 1,55 (quin, J = 5,6 Hz, 2 H), 1,37 -1,48 (m, 4 H).

Preparación de ácido 7-nitro-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazina-4-carboxílico (V, donde R1=OH)

Se añadió LiOH.H₂O (27 mg, 1,12 mmol) a una solución de (7-nitro-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (V, donde R1=OCH₂CH₃) (0,15 g, 0,56 mmol) en una mezcla de tetrahidrofurano-agua (1:1, 9 ml) y la mezcla de reacción se agitó a temperatura ambiente durante 3 h. La fase orgánica se lavó con diclorometano (2 x 10 ml). La fase acuosa se acidificó con ácido clorhídrico (1 M) hasta alcanzar pH<1 y se extrajo con EtOAc (3 x 10 ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y el disolvente se evaporó a vacío para obtener el compuesto ácido 7-nitro-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazina-4-carboxílico (V, donde R1=OH) en forma de un sólido blanquecino (101 mg, 75% de rendimiento).

LCMS (Método de HPLC 2): m/z 240 [M+H]⁺ a t.r. 1,05 min. RMN ¹H (400 MHz, DMSO-d₆) δ = 8,13 (d, J = 1,7 Hz, 1 H), 8,11 (d, J = 1,7 Hz, 1 H), 7,14 (d, J = 1,8 Hz, 1 H), 4,70 - 4,79 (m, 1 H), 3,71 - 3,77 (m, 1 H), 3,44 (dt, J = 4,3, 13,4 Hz, 1 H), 2,80 - 2,96 (m, 2 H).

Procedimiento general: carga de fenetilamina (que corresponde al fragmento B6 de la tabla I) en resina de metoxibenzaldehído-poliestireno sensible a ácido (resina AMEBA II).

Se suspendió resina de 4-(4-formil-3-metoxifenoxi)butiril-aminometilo (copoliestireno-DVB 1%) (6,0 g, 5,88 mmol, 0,98 mmol/g, 1 eq.) en THF seco (60 ml) y se añadió fenetilamina (29,4 mmol, 5 eq.). La suspensión resultante se agitó a 25°C durante 2 h. Después se añadieron ácido acético (1,68 ml, 29,4 mmol, 5 eq.) y NaBH(AcO)₃ (3,12 g, 14,7 mmol, 3 eq.) y la suspensión final se agitó durante 16 h a 25°C. La resina se lavó con THF (2 ciclos), MeOH (2 ciclos), DCM (2 ciclos), MeOH (2 ciclos), DCM (3 ciclos) y DCM (3 ciclos) y después se secó en flujo de nitrógeno.

Carga de la estructura de 3,4-dihidro-2*H*-pirrolo[1,2-a]pirazin-1-ona en la resina preparada como se ha descrito antes.

Una solución de ácido 7-nitro-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazina-4-carboxílico (V, donde R1=OH) (0,24 g, 1 mmol), *N,N*-diisopropiletilamina (DIPEA) (0,34 ml, 2 mmol) y hexafluorofosfato de benzotriazol-1-iloxitripirrolidinofosfonio (PyBOP) (0,52 g, 1 mmol) en *N,N*-dimetilacetamida seca (7,5 ml) se agitó durante 30 min, después se añadió a la resina del ejemplo 17 (0,67 mmol, 1 eq) y la suspensión final se agitó durante 24 h a temperatura ambiente. La resina se lavó con un ciclo de DMF, MeOH, DCM (3 veces), DCM (3 veces) y 1,4-dioxano (1 vez) y se secó en flujo de nitrógeno. Después la resina se usó en la siguiente etapa.

Reducción del grupo nitro:

5

10

30

35

La resina de fórmula (XVIII) (0,67 mmol, 1 eq) se suspendió en una solución 2 M de SnCl₂,2H₂O en *N,N*-dimetilformamida (10 ml). La suspensión final se agitó durante 48 h a temperatura ambiente. La resina se lavó con

un ciclo de DMF, MeOH, DCM (3 veces), DCM (3 veces) y 1,4-dioxano (1 vez) y se secó en flujo de nitrógeno. Después la resina se usó en la siguiente etapa.

La resina anterior unida a 3,4-dihidro-2*H*-pirrolo[1,2-*a*]pirazin-1-ona se hizo reaccionar además de acuerdo con las siguientes etapas alternativas para así conseguir derivados de carboxamido y ureido.

## 5 Ejemplo 10

10

15

20

25

30

40

Preparación de A11-M-B6 (entrada 71, tabla III):

Se añadió un ácido carboxílico de fórmula (VI), en donde R^c corresponde al fragmento A11 de la tabla II (1,35 mmol, 15 eq.) a una solución de 1-etil-3-(3'-dimetilaminopropil)carbodiimida (EDC) (0,26 g, 1,35 mmol, 15 eq) y 3,4-dihidro-3-hidroxi-4-oxo-1,2,3-benzotriazina (DHBT) (0,22 g, 1,35 mmol, 15 eq) en *N*-metilpirrolidona seca (NMP) (1 ml) y la solución se agitó durante 30 min, después se añadió a la resina del ejemplo 19 (0,09 mmol, 1 eq.) y se agitó durante la noche a temperatura ambiente en un reactor (Quest 210™ o Miniblocks™). La resina se lavó con un ciclo de DMF, MeOH, DCM (3 veces), DCM (3 veces) y 1,4-dioxano (1 vez) y se secó en flujo de nitrógeno. La resina se suspendió en una solución de TFA-DCM (1:1, 2 ml) y se agitó durante 2 h a temperatura ambiente. Se recogió la solución y la resina se lavó con DCM (recogido también), y se llevó a cabo un segundo ciclo. El lavado final se llevó a cabo con MeOH. Todas las capas orgánicas recogidas se secaron a presión reducida dando el compuesto A11-M-B6 (véase la entrada 71 de la tabla III más adelante).

LCMS (Método de HPLC 2): m/z 399 [M+H]⁺ a t.r. 2,7 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 10,53 (s, 1 H), 9,74 (s ancho, 1 H), 8,07 (t, J = 5,6 Hz, 1 H), 7,67 (d, J = 3,5 Hz, 1 H), 7,12 - 7,32 (m, 6 H), 6,60 (d, J = 1,7 Hz, 1 H), 4,48 - 4,67 (m, 1 H), 3,94 - 4,09 (m, 2 H), 3,66 (dd, J = 4,6,13,3 Hz, 1 H), 2,81 (s, 6 H), 2,63 - 2,75 (m, 2 H).

## Ejemplo 11

Preparación de A17-M-B6 (entrada 117, tabla III):

Un isocianato de fórmula (VII) en donde R^c corresponde al fragmento A17 de la tabla II (1,35 mmol, 15 eq) se añadió a una suspensión de la resina del ejemplo 19 (0,09 mmol, 1 eq) en diclorometano seco (1 ml). La suspensión final se agitó durante la noche a temperatura ambiente en un reactor (Quest 210™ o Miniblocks™). La resina se lavó con un ciclo de DMF, MeOH, DCM (3 veces), DCM (3 veces) y 1,4-dioxano (1 vez) y se secó en flujo de nitrógeno. La resina se suspendió en una solución de TFA-DCM (1:1, 2 ml) y se agitó durante 2 h a temperatura ambiente. Se recogió la solución y la resina se lavó con DCM (recogido también), y se llevó a cabo un segundo ciclo. El lavado final se llevó a cabo con MeOH. Todas las capas orgánicas recogidas se secaron a presión reducida dando el compuesto A17-M-B6 (véase la entrada 117 de la tabla III más adelante).

LCMS (Método de HPLC 2): m/z 463 [M+H]⁺ a t.r. 4,02 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 8,29 (s, 1 H), 8,26 (s, 1 H), 8,07 (t, J = 5,7 Hz, 1 H), 7,52 (d, J = 3,0 Hz, 1 H), 7,28 - 7,33 (m, 2 H), 7,10 (d, J = 1,8 Hz, 1 H), 6,77 - 6,85 (m, 2 H), 6,46 (d, J = 1,7 Hz, 1 H), 4,50 (tt, J = 3,9,6,9 Hz, 0 H), 3,70 (s, 4 H), 3,63 (ddd, J = 1,3, 4,2,12,8 Hz, 1 H).

35 Preparación de ácido 7-yodo-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazina-4-carboxílico (XI, donde R1=OH)

Se añadió LiOH. $H_2O$  (63 mg, 1,5 mmol) a una solución de (7-yodo-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazin-4-il)acetato de etilo (XII, donde R1=OC $H_2CH_3$ ) (0,26 g, 0,75 mmol) en una mezcla de tetrahidrofurano-agua (1:1, 8 ml) y la mezcla de reacción se agitó a temperatura ambiente durante 3 h. La fase orgánica se lavó con diclorometano (2 x 10 ml). La fase acuosa se acidificó con ácido clorhídrico (1 M) hasta alcanzar pH<1 y se extrajo con EtOAc (3 x 10 ml). Las capas orgánicas combinadas se secaron sobre  $Na_2SO_4$  y el disolvente se evaporó a vacío para obtener el

compuesto ácido 7-yodo-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazina-4-carboxílico (XII, donde R1=OH) en forma de un sólido blanquecino (0,23 g, 75% de rendimiento).

LCMS (Método de HPLC 2): m/z 321 [M+H]⁺ a t.r. 2,52 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 12,63 (s ancho, 1 H), 7,71 (s ancho, 1 H), 7,14 (d, J = 1,7 Hz, 1 H), 6,72 (d, J = 1,7 Hz, 1 H), 4,54 - 4,66 (m. 1 H), 3,59 - 3,70 (m, 1 H), 3,32 - 3,38 (m, 1 H), 2,76 (d, J = 7,0 Hz, 2 H).

Carga de la estructura de 3,4-dihidro-2*H*-pirrolo[1,2-a]pirazin-1-ona en la resina preparada como se ha descrito previamente.

Una solución de ácido 7-yodo-1-oxo-1,2,3,4-tetrahidropirrolo[1,2-a]pirazina-4-carboxílico (XI, donde R1=OH) (0,92 g, 2,87 mmol), N,N-diisopropiletilamina (DIPEA) (0,99 ml, 5,76 mmol) y hexafluorofosfato de benzotriazol-1-iloxitripirrolidinofosfonio (PyBOP) (1,5 g, 2,87 mmol) en *N,N*-dimetilacetamida seca (9 ml) se agitó durante 30 min, después se añadió la resina del ejemplo 17 (1,44 mmol, 1 eq) y la suspensión final se agitó durante 24 h a temperatura ambiente. La resina se lavó con un ciclo de DMF, MeOH, DCM (3 veces), DCM (3 veces) y 1,4-dioxano (1 vez) y se secó en flujo de nitrógeno. Después la resina se usó en la siguiente etapa.

#### Eiemplo 12

5

10

15

20

25

30

Preparación de A24-M-B6 (entrada 135, tabla III):

Una mezcla del ácido borónico de fórmula (XII), en donde R^c corresponde al fragmento A24 de la tabla II (0,37 g, 3 mmol*), complejo de dicloruro de 1,1'-bis(difenilfosfino)ferrocenopaladio(II) con diclorometano (1:1) (PdCl₂(dppf).CH₂Cl₂) (65 mg, 0,08 mmol), carbonato de cesio (0,52 g, 1,6 mmol) y la resina del ejemplo 23 (0,2 mmol, 1 eq.) en una mezcla de dimetoxietano-agua (3:1, 2 ml) se agitó durante la noche a 80°C en un reactor (Quest 210™). La resina se lavó con un ciclo de DMF, MeOH, DCM (3 veces), DCM (3 veces) y 1,4-dioxano (1 vez) y se secó en un flujo de nitrógeno. La resina se suspendió en una solución de TFA-DCM (1:1, 2 ml) y se agitó durante 2 h a temperatura ambiente. Se recogió la solución y la resina se lavó con DCM (recogido también), y se llevó a cabo un segundo ciclo. El lavado final se llevó a cabo con MeOH. Todas las capas orgánicas recogidas se secaron a presión reducida dando el compuesto A24-M-B6 (véase la entrada 135 de la tabla III más adelante).

LCMS (Método de HPLC 2): m/z 376 [M+H]⁺ a t.r. 4,17 min. RMN ¹H (400 MHz, DMSO-d₆)  $\delta$  = 8,64 (d, J = 6,3 Hz, 2 H), 8,11 (s, 1 H), 8,05 (d, J = 6,5 Hz, 2 H), 7,95 (d, J = 1,6 Hz, 1 H), 7,88 (d, 1 H), 7,47 (d, J = 1,7 Hz, 1 H), 7,23 (t, J = 7,4 Hz, 2 H), 7,15 (t, J = 7,3 Hz, 1 H), 7,10 (dd, J = 1,5, 7,4 Hz, 2 H), 4,73 (tt, J = 3,7,7,1 Hz, 1 H), 3,68 (ddd, 1 H). Siguiendo el procedimiento descrito en los ejemplos 4-6, 9-11, 14-15 y 16-24 y usando cualquier reaccionante adecuado para el procedimiento de la invención, se prepararon también los siguientes compuestos de la tabla III.

Tabla III

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1	A1-M-B1	2	5,17	323,2
2	A1-M-B2	2	4,49	295,2
3	A1-M-B6	2	6,04	398,3
4	A1-M-B7	2	5,06	352,3
5	A1-M-B8	2	4,27	380,3
6	A1-M-B9	2	6,05	364,3
7	A2-M-B1	2	4,53	329,2
8	A2-M-B2	2	3,06	301,2
9	A2-M-B3	2	5,31	357,3
10	A2-M-B4	2	4,15	398,3
11	A3-M-B1	2	3,92	372,2
12	A3-M-B2	2	2,8	344,2
13	A3-M-B5	2	3,77	411,3
14	A4-M-B1	2	4,08	392,2
15	A4-M-B10	2	3,72	461,3
16	A4-M-B11	2	3,8	461,3
17	A4-M-B2	2	2,86	364,2
18	A5-M-B1	2	3,95	357,2
19	A5-M-B12	1	2,54	412,3
20	A5-M-B16	1	3,19	432,3
21	A5-M-B17	1	2,38	356,3
22	A5-M-B18	1	3,6	424,3
23	A5-M-B2	2	2,72	329,2
24	A5-M-B21	1	3,34	432,3
25	A5-M-B22	1	3,55	424,3
26	A5-M-B23	1	2,94	384,3
27	A5-M-B24	1	3,28	410,3
28	A5-M-B26	1	2,99	396,3
29	A5-M-B5	2	3,74	396,3
30	A5-M-B7	2	3,11	386,3
31	A5-M-B7	1	2,34	386,3
32	A5-M-B8	2	2,72	413,3
, 33	A6-M-B1	2	4,18	321,2
34	A7-M-B1	2	3,99	360,2
35	A7-M-B12	1	2,62	415,3
36	A7-M-B13	1	2,7	373,3
37	A7-M-B14	1	3,11	421,3
38	A7-M-B16	1	3,33	435,3
39	A7-M-B17	1	2,48	359,2
40	A7-M-B18	1	3,64	427,3
41	A7-M-B19	1	2,49	371,2
42	A7-M-B2	2	3,7	332,2
43	A7-M-B20	1	3,35	435,3
44	A7-M-B21	1	3,38	435,3
45	A7-M-B22	1	3,59	427,3
46	A7-M-B23	1	3	387,3
47	A7-M-B24	1	. 3,33	413,3
48	A7-M-B25	1	2,73	373,3
49	A7-M-B26	1	3,06	399,3
50	A7-M-B27	1	2,61	371,2
_ 30	1 /11 111 1121	J	2,01	1 0. 1,=

Entrada	Compuesto	Método HPLC	HPLC tR:	[M+H] ⁺
51	A7-M-B7	1	2,43	389,3
52	A8-M-B1	2	3,96	396,2
53	A8-M-B2	2	3,5	368,2
54	A9-M-B1	2 .	4,04	375,2
55	A9-M-B14	1	3,19	436.3
56	A9-M-B15	1	3,04	402,3
57	A9-M-B16	1	3,38	450,3
58	A9-M-B17	1	2,53	374,3
59	A9-M-B18	1	3,69	442,3
60	A9-M-B19	1	2,56	386,3
61	A9-M-B2	2	3,68	347,2
62	A9-M-B20	1	3,43	450,3
63	A9-M-B21	1	3,47	450,3
64	A9-M-B22	1	3,66	442,3
65	A9-M-B23	1	3,08	402,3
66	A9-M-B24	1	3,41	428,3
67	A9-M-B26	1	3,13	414,3
68	A9-M-B27	1	2,67	386,3
69	A9-M-B7	1	2,48	404,3
70	A10-M-B2	2	1,34	265,2
71	A11-M-B6	2	2,7	398,3
72	A11-M-B7	2	1,06	352,3
73	A11-M-B8	2	3,32	379,3
74	A11-M-B9	2	2,52	364,3
75	A12-M-B13	1	1,99	319,3
76	A12-M-B14	1	2,43	367,3
77	A12-M-B16	1	2,71	381,3
78	A12-M-B20	1	2,73	381,3
79	A12-M-B21	1	2,79	381,3
80	A12-M-B22	1	3,03	373,3
81	A12-M-B7	2	3,29	335,3
82	A12-M-B8	2	2,69	362,3
83	A13-M-B7	2	2,81	334,2
84	A13-M-B8	2	1,26	361.3
85_	A13-M-B9	2	3,12	346,3
86	A14-M-B7	2	3,84	389,2
87	A14-M-B8	2	3,03	416,3
88	A15-M-B12	1	2,61	417,3
89	A15-M-B13	1	2,68	375,2
90	A15-M-B14	1	3,07	423,2
91	A15-M-B15	1	2,92	389,3
92	A15-M-B16	1	3,28	437,3
93	A15-M-B18	1	3,59	429,3
94	A15-M-B19	1	2,52	373,2
95	A15-M-B20	1	3,3	437,3
96	A15-M-B21	1	3,32	437,3
97	A15-M-B22	1	3,52	429,3
98	A15-M-B23	1	2,97	389,3
99	A15-M-B24	1	3,28	415,3
100	A15-M-B25	1	2,72	375,2

		Método	HPLC tR	
Entrada	Compuesto	HPLC	(min)	[M+H] ⁺
101	A15-M-B26	1	3,02	401,3
102	A15-M-B27	1	2,6	373,2
103	A15-M-B7	1	2,44	391,2
104	A15-M-B8	2	2,85	418,3
105	A16-M-B14	1	3,32	424,3
106	A16-M-B18	1	3,83	430,4
107	A16-M-B20	1	3,56	438,3
108	A16-M-B21	1	3,6	438,3
109	A16-M-B22	1	3,81	430,4
110	A16-M-B23	1	3,23	390,3
111	A16-M-B24	1	3,54	416,4
112	A16-M-B27	1	2,82	374,3
113	A16-M-B8	2	2,89	419,4
	A17-M-B14	1	2,89	448,3
114	A17-M-B14	1	3,17	462,3
115	A17-IN-B21	1 1	3,17	440,3
116	A17-IVI-B24	2	4,02	462,3
117	·	2	2,72	443,3
118	A17-M-B8 A17-M-B9	2	3,97	443,3
119				
120	A18-M-B5	2	3,62	399,3
121	A19-M-B5	2	4,38	388,3
122	A20-M-B1	2	5,13	333,2
123	A20-M-B6	2	5,98	408,2
124	A20-M-B7	2	4,99	362,2
125	A20-M-B8	2	3,33	389,2
126	A20-M-B9	2	5,99	374,3
127	A21-M-B1	2	4,61	344,2
128	A22-M-B1	2	5,12	355,3
129	A22-M-B2	2	4,4	327,2
130	A22-M-B6	2	5,87	430,3
131	A22-M-B7	2	4,94	384,3
132	A22-M-B8	2	4, 14	411,3
133	A22-M-B9	2	5,88	396.3
135	A24-M-B6	2	4,17	375,3
136	A24-M-B7	2	2,45	329,3
137	A24-M-B8	2	1,97	356,3
138	A24-M-B9	2	4,07	341,3
139	A25-M-B1	2	6,16	315,3
140	A25-M-B2	2	4,58	287,2
141	A25-M-B6	2	6,23	390,3
142	A25-M-B7	2	5,2	344,3
143	A25-M-B8	2	4,3	371,3
144	A25-M-B9	2	6,24	356,3
145	A26-M-B1	2	5,9	353,2
146	A26-M-B2	2	4,48	325,2
147	A26-M-B6	2	5,96	428,3
148	A26-M-B7	2	5,04	382,3
149	A26-M-B8	2	4,22	409,3
150	A26-M-B9	2	5,98	394,3
151	A27-M-B1	2	6,48	357,2
152	A27-M-B2	2	4,98	329,2
153	A27-M-B6	2	6,5	432,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]*
154	A27-M-B7	2	5,57	386,2
155	A27-M-B8	2	4,72	413,3
156	A27-M-B9	2	6,54	398,3
157	A28-M-B1	2	6,92	416,3
158	A28-M-B2	2	5,52	388,3
159	A28-M-B6	2	6,9	491,3
160	A28-M-B7	2	6,07	445,3
161	A28-M-B8	2	5,16	472,4
162	A28-M-B9	2	6,95	457,4
163	A29-M-B1	2	5,12	263,2
164	A29-M-B2	2	3,51	235,2
165	A29-M-B6	2	5,35	338,3
166	A29-M-B7	2	4,14	292,3
167	A29-M-B8	2	3,35	319,3
168	A29-M-B9	2	5,31	304,3
169	A30-M-B1	2	6,8	331,3
170	A30-M-B2	2	5,11	303,3
	A30-M-B6	2	6,76	406,3
171	A30-M-B7	2	5,76	360,3
172	A30-M-B8	2	4,78	387.4
173	A30-M-B9	2	6,82	372,4
174		2		325,2
175	A31-M-B1	2	5,92	
176	A31-M-B2	2	4,45	297,2
177	A31-M-B6	2	5,98	400,3
178	A31-M-B7 A31-M-B8	2	5,02	354,3
179		2	4,17	381,3 366,3
180	A31-M-B9 A32-M-B1	2	5,99 6,4	359,2
181	A32-M-B1	2	4,92	331,2
182		2	6,41	434,3
183	A32-M-B6 A32-M-B7	2		
184		2	5,5 4,7	388,2 415,3
185	A32-M-B8 A32-M-B9	2		400,3
186		2	6,45 5,42	380,2
187	A33-M-B6			334,2
188	A33-M-B7	2	4,33	
189	A33-M-B8	3	3,88 5,39	361,2 346,3
190	A33-M-B9			
191	A34-M-B6	2	5,55	374,3 328,3
192	A34-M-B7	2	4,48	355,3
193	A34-M-B8	3	4,11	
194	A34-M-B9	2	5,49	340,3
195	A35-M-B7	2	4,62	371,3
196	A36-M-B12	1	3,02	425,3
197	A36-M-B14	1	3,44	431,3
198	A36-M-B15	1	3,33	397,3
199	A36-M-B16	1	3,63	445,3
200	A36-M-B17	1	2,91	369,3
201	A36-M-B20	1	3,65	445,3
202	A36-M-B21	1	3,65	445,3
203	A36-M-B22	1	3,85	437,3
204	A36-M-B26	1 1	3,4	409,3
205	A36-M-B7	1	2,86	399,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] [†]
206	A37-M-B12	1	2,3	403,2
207	A37-M-B13	1	2,34	361,2
208	A37-M-B14	1	2,77	409,2
209	A37-M-B15	1	2,61	375,2
210	A37-M-B16	1	3	423,2
211	A37-M-B17	1	2,14	347,2
212	A37-M-B18	1	3,33	415,3
213	A37-M-B19	1	2,17	359,2
214	A37-M-B20	1	3,02	423,2
215	A37-M-B21	1	3,05	423,2
216	A37-M-B22	1	3,26	415,3
217	A37-M-B23	1	2,65	375,2
218	A37-M-B24	1	2,98	401,3
219	A37-M-B25	1	2,37	361,2
220	A37-M-B26	1	2,7	387,2
221	A37-M-B27	1	2,26	359,2
222	A37-M-B7	1	2,11	377,2
223	A38-M-B12	1	2,75	411,3
224	A38-M-B13	1	2,84	369,3
225	A38-M-B14	1	3,21	417,3
226	A38-M-B15	1	3,07	383,3
227	A38-M-B16	1	3,41	431,3
228	A38-M-B17	1	2,63	355,3
229	A38-M-B18	1	3,7	423,3
230	A38-M-B19	1	2,66	367,3
231	A38-M-B20	1	3,43	431,3
232	A38-M-B21	1	3,46	431,3
233	A38-M-B22	1	3,65	423,3
234	A38-M-B23	1	3,1	383,3
235	A38-M-B24	1	3,41	409,3
236	A38-M-B25	1	2,87	369,3
237	A38-M-B26	1	3,16	395,3
238	A38-M-B27	1	2,74	367,3
239	A38-M-B7	1	2,58	385,3
240	A39-M-B12	1	2,33	422,3
241	A39-M-B13	1	2,39	380,3
242	A39-M-B14	1	2,79	428,3
243	A39-M-B15	1	2,64	394,3
244	A39-M-B16	1	3,02	442,3
245	A39-M-B18	1	3,32	434,3
246	A39-M-B19	1	2,22	378,2
247	A39-M-B20	1	3,02	442,3
248	A39-M-B21	1	3,04	442,3
249	A39-M-B22	1	3,24	434,3
250	A39-M-B23	1	2,67	394,3
251	A39-M-B24	1	2,98	420,3
252	A39-M-B25	1	2,42	380,3
253	A39-M-B26	1	2,72	406,3
254	A39-M-B27	1	2,32	378,2
255	A39-M-B7	1	2,18	396,3
256	A40-M-B12	1	2,31	403,2
257	A40-M-B13	1	2,36	361,2

Entrada	Compuesto	Método HPLC	HPLC tR: (min)	[M+H] ⁺
258	A40-M-B14	1	2.8	409,2
259	A40-M-B15	1	2.63	375,2
260	A40-M-B16	1	3,04	423,2
261	A40-M-B18	1	3,38	415,3
262	A40-M-B19	1	2,17	359,2
263	A40-M-B20	1	3,06	423,2
264	A40-M-B21	1	3.1	423,2
265	A40-M-B22	<del></del>	3,31	415,3
266	A40-M-B23	1	2,67	375,2
267	A40-M-B24	1	3,03	401,3
268	A40-M-B25	1	2,39	361,2
269	A40-M-B26	1	2,73	387,2
270	A40-M-B27	1	2,27	359,2
271	A40-M-B7	1	2,13	377,2
	A41-M-B12	1	2,88	433,3
272	A41-M-B13	1	2,97	391,3
273	A41-M-B14	1	3,36	
274	A41-M-B15	1		439,3
275		1	3,22	405,3
276	A41-M-B16		3,56	453,3
277	A41-M-B18	1	3.8	445,3
278	A41-M-B19	1	2.78	389,2
279	A41-M-B20	1	3.59	453,3
280	A41-M-B21	1	3.6	453,3
281	A41-M-B22	1	3.8	445,3
282	A41-M-B23	1	3.26	405,3
283	A41-M-B24	1	3.57	431,3
284	A41-M-B25	1	3	391,3
285	A41-M-B26	1	3.31	417,3
286	A41-M-B27	1	2,87	389,2
287	A41-M-B7	1	2,68	407,2
288	A42-M-B12	1	2,89	425,3
289	A42-M-B13	1	2,99	383,3
290	A42-M-B14	1	3,38	431,3
291	A42-M-B15		3,23	397,3
292	A42-M-B16		3,56	445,3
293	A42-M-B18	1	3,84	437,3
294	A42-M-B19	1	2.8	381,3
295	A42-M-B20	1	3,59	445,3
296	A42-M-B21	1	3,63	445,3
297	A42-M-B22	1	3,82	437,3
298	A42-M-B23	1	3,27	397,3
299	A42-M-B24	1	3,57	423,3
300	A42-M-B25	1	3,02	383,3
301	A42-M-B26	1	3,33	409,3
302	A42-M-B27	1	2.9	381,3
303	A42-M-B7	1	2.73	399,3
304	A43-M-B12	1	2.84	449,2
305	A43-M-B14	1	3.3	455,2
306	A43-M-B15	1	3.16	421,2
307	A43-M-B16	1	3.5	469,2
308	A43-M-B18	1	3.76	461,3
309	A43-M-B19	1 1	2.74	405,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]
310	A43-M-B20	1	3,53	469,2
311	A43-M-B21	1	3,55	469,2
312	A43-M-B22	1	3,75	461,3
313	A43-M-B23	1	3,21	421,2
314	A43-M-B24	1	3,5	447,3
315	A43-M-B25	1	2,95	407,2
316	A43-M-B26	1	3,25	433,2
317	A43-M-B27	1	2,83	405,2
318	A43-M-B7	1	2,66	423,2
319	A44-M-B13	1	2,26	429,3
	A44-M-B14	1	2,74	381,3
320	A44-M-B15	1	2,54	347,3
321		1	2,98	
322	A44-M-B16 A44-M-B17	1		395,3
323			2,04	319,3
324	A44-M-B20	1	3,02	395,3
325	A44-M-B21	1	3,08	395,3
326	A44-M-B22	1	3,3	387,3
327	A44-M-B25	1	2,29	333,3
328	A44-M-B26	1	2,65	359,3
329	A45-M-B12	1	2,66	391,3
330	A45-M-B13	1	2,77	349,3
331	A45-M-B14	1	3,21	397,3
332	A45-M-B15	1	3,05	363,3
333	A45-M-B17	1	2,52	335,3
334	A45-M-B20	1	3,45	411,3
335	A45-M-B21	1	3,5	411,3
336	A45-M-B22	1	3,72	403,4
337	A45-M-B25	1	2,81	349,3
338	A45-M-B26	1	3,15	375,3
339	A45-M-B7	1	2,46	365,3
340	A46-M-B12	1	2,34	422,3
341	A46-M-B13	1	2,4	380,3
342	A46-M-B14	1	2,8	428,3
343	A46-M-B15	1	2,65	394,3
344	A46-M-B16	1	3,03	442,3
345	A46-M-B17	1	2,21	366,2
346	A46-M-B18	1	3,25	434,3
347	A46-M-B19	1	2,23	378,2
348	A46-M-B20	1	3,04	442,3
349	A46-M-B25	1	2,42	380,3
350	A46-M-B26	1	2,73	406,3
351	A46-M-B27	1	2,32	378,2
352	A46-M-B7	1	2,18	396,3
353	A47-M-B13	1	2,61	369,3
354	A47-M-B13	1	3,06	417,3
	A47-M-B15	1	2,89	383,3
355	A47-M-B15	1	3,26	431,3
356	A47-M-B17	1		355,3
357	<u> </u>		2,38	
358	A47-M-B18	1	3,58	423,3
359	A47-M-B19	1	2,4	367,3
360	A47-M-B20	1	3,31	431,3
361	A47-M-B21	1 1	3,35	431,3

Entrada	Compuesto	Método HPLC	HPLC tR	[M+H] ⁺
362	A47-M-B22	1	3,55	423,3
	A47-M-B23	1	2,92	383,3
363	A47-M-B24	1		
364		1	3,27	409,3
365	A47-M-B25		2,64	369,3
366	A47-M-B26	1	2,99	395,3
367	A47-M-B27	1	2,52	367,3
368	A47-M-B7	1	2,35	385,3
369	A48-M-B12	1	2,77	411,3
370	A48-M-B13	1	2,84	369,3
371	A48-M-B14	1	3,23	417,3
372	A48-M-B15	1	3,09	383,3
373	A48-M-B16	1	3,44	431,3
374	A48-M-B17	1	2.64	355,3
375	A48-M-B19	1	2,67	367,3
376	A48-M-B20	1	3,45	431,3
377	A48-M-B21	1	3,48	431,3
378	A48-M-B22	1	3,67	423,3
379	A48-M-B26	1	3,16	395,3
380	A48-M-B7	- 1	2,6	385,3
381	A49-M-B12	1	2,78	403,3
382	A49-M-B13	1	2,89	361,3
383	A49-M-B14	1	3,31	409,3
384	A49-M-B15	1	3,16	375,3
385	A49-M-B16	1	3,51	423,3
386	A49-M-B17	1	2,66	347,3
387	A49-M-B18	1	3,82	415,4
388	A49-M-B19	1	2,68	359,3
389	A49-M-B20	1	3,56	423,3
390	A49-M-B21	1	3,59	423,3
391	A49-M-B22	1	3,79	415,4
392	A49-M-B23	1	3,2	375,3
393	A49-M-B24	1	3,53	401,3
394	A49-M-B25	1	2,92	361,3
395	A49-M-B26	1	3,26	387,3
	A49-M-B27	1	2,8	359,3
396	A49-M-B7	1	2,6	377,3
397	A50-M-B12	1	2,58	391,3
398	A50-M-B13	1	2,66	349,3
399	A50-M-B14	1	3,15	397,3
400		1 1	2,95	363,3
401	A50-M-B15	1 1		411,3
402	A50-M-B16		3,33	
403	A50-M-B17	1	2,4	335,3
404	A50-M-B20	1	3,39	411,3
405	A50-M-B21	1	3,44	411,3
406	A50-M-B22	1	3,66	403,4
407	A50-M-B25	1	2,72	349,3
408	A50-M-B26	1	3,06	375,3
409	A51-M-B12	1	2,37	377,3
410	A51-M-B13	1	2,44	335,3
411	A51-M-B14	1	2,91	383,3
412	A51-M-B15	1	2,73	349,3
413	A51-M-B16	1	3,15	397,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	
414	A51-M-B17	1	2,2	321,3
415	A51-M-B22	1	3,48	389,3
416	A51-M-B25	1	2,47	335,3
417	A51-M-B26	1	2,83	361,3
418	A51-M-B27	1	2,34	333,3
419	A52-M-B12	1	2,89	425,3
420	A52-M-B13	1	2,99	383,3
421	A52-M-B14	1	3,38	431,3
422	A52-M-B15	1	3,24	397,3
423	A52-M-B16	1	3,56	445,3
424	A52-M-B18	1	3,83	437,3
425	A52-M-B19	1	2,8	381,3
426	A52-M-B20	1	3,59	445,3
427	A52-M-B21	1	3,62	445,3
428	A52-M-B22	1	3,82	437,3
429	A52-M-B23	1	3,28	397,3
430	A52-M-B24	1	3,57	423,3
431	A52-M-B25	1	3,03	383,3
432	A52-M-B26	1	3,33	409,3
433	A52-M-B27	1	2,91	381,3
434	A52-M-B7	1	2,72	399,3
435	A53-M-B12	1	2,26	433,3
436	A53-M-B13	1	2,31	391,3
437	A53-M-B14	1	2,75	439,3
438	A53-M-B15	1	2,57	405,3
439	A53-M-B16	1	2,98	453,3
440	A53-M-B20	1	3,01	453,3
441	A53-M-B21	1	3	453,3
442	A53-M-B26	1	2,65	417,3
443	A53-M-B7	1	2,08	407,2
444	A54-M-B13	1	2,38	335,3
445	A54-M-B14	1	2,88	383,3
446	A54-M-B15	1	2,67	349,3
447	A54-M-B20	1	3,15	397,3
448	A54-M-B21	1	3,2	397,3
449	A54-M-B26	1	2,78	361,3
450	A55-M-B12	<u> </u>	2,55	433,3
451	A55-M-B13	1	2,62	391,3
452	A55-M-B14	1	3,06	439,3
453	A55-M-B15	1	2,88	405,3
453	A55-M-B16	1	3,26	453,3
455	A55-M-B17	1	2,4	377,2
	A55-M-B18	1	3,51	445,3
456 457	A55-M-B19	1	2,43	389,2
	A55-M-B20	1-1	3,29	453,3
458	A55-M-B21	1	3,33	453,3
459	A55-M-B22	1	3,53	445,3
460	A55-M-B23	1	2,93	405,3
461				391,3
462	A55-M-B25	1	2,65	
463	A55-M-B26	1	2,98	417,3
464	A55-M-B27	1	2,53	389,2
465	A55-M-B7	1	2,36	407,2

Entrada	Compuesto	Método HPLC	HPLC tR	[M+H] ⁺
466	A56-M-B13	1	2,99	391,3
467	A56-M-B14	1	3,38	439,3
468	A56-M-B15	1	3,23	405,3
469	A56-M-B16	1	3,58	453,3
470	A56-M-B18	1	3,86	445,3
471	A56-M-B19	1	2,79	389,2
472	A56-M-B20	1	3,61	453,3
473	A56-M-B21	1	3,62	453,3
474	A56-M-B22	1	3,81	445,3
475	A56-M-B23	1	3,28	405,3
476	A56-M-B24	1	3,59	431,3
477	A56-M-B25	1	3,01	391,3
	A56-M-B26	1	3,33	417,3
478	A56-M-B27	1	2,89	389,2
479	A56-M-B7	1	2.7	407,2
480		1		
481	A57-M-B12	1	3.09	425,3
482	A57-M-B13	L		383,3
483	A57-M-B14	1	3,53	431,3 397,3
484	A57-M-B15	1	3,42	, ,
485	A57-M-B16	1	3,71	445,3
486	A57-M-B18	1	3,97	437,3
487	A57-M-B19	1	3,05	381,3
488	A57-M-B20	1	3,73	445,3
489	A57-M-B21	1	3,74	445,3
490	A57-M-B22	2	5,77	437,3
491	A57-M-B23	1	3,45	397,3
492	A57-M-B24	1	3,72	423,3
493	A57-M-B25	1	3,23	383,3
494	A57-M-B26	1	3,49	409,3
495	A57-M-B27	1	3,13	381,3
496	A57-M-B7	1	2,95	399,3
497	A58-M-B13	1	2,53	375,2
498	A58-M-B15	1	2.8	389,3
499	A58-M-B16	1	3,16	437,3
500	A58-M-B17	1	2,32	361,2
501	A58-M-B20	1	3,19	437,3
502	A58-M-B21	1	3,21	437,3
503	A58-M-B25	1	2,56	375,2
504	A58-M-B26	1	2,88	401,3
505	A59-M-B12	1	2,67	449,2
506	A59-M-B13	1	2,75	407,2
507	A59-M-B14	1	3,19	455,2
508	A59-M-B15	1	3,01	421,2
509	A59-M-B16	1	3,38	469,2
510	A59-M-B18	1	3,69	461,3
511	A59-M-B19	1	2,55	405,2
512	A59-M-B20	1	3,41	469,2
513	A59-M-B21	1	3,46	469,2
514	A59-M-B22	1	3,65	461,3
515	A59-M-B23	1 1	3,06	421,2
516	A59-M-B25	<del>                                     </del>	2,78	407,2
517	A59-M-B26	1	3,12	433,2
<u> </u>	. 100 .41 020	<u> </u>	1 0,12	1.00,2

518	Compuesto	HPLC	HPLC tR (min)	[M+H] ⁺
	A59-M-B27	1	2,65	405,2
519	A59-M-B7	1	2,47	423,2
	A60-M-B12	1	2,34	377,3
	A60-M-B13	1	2,4	335,3
	A60-M-B14	1	2,88	383,3
	A60-M-B15	1	2,69	349,3
	A60-M-B16	1	3,1	397,3
	A60-M-B20	1	3,15	397,3
	A60-M-B21	1	3,21	397,3
	A60-M-B22	1	3,44	389,3
	A60-M-B23	1	2,73	349,3
<u> </u>	A60-M-B25	1	2,43	335,3
T	A60-M-B26	1	2,81	361,3
<del></del>	A60-M-B27	1	2,3	333,3
	A61-M-B13	1	2,52	335,3
	A61-M-B14	1	2,98	383,3
	A61-M-B15	1	2,8	349,3
100.	A61-M-B16	1	3,2	397,3
1 1	A61-M-B17	1	2,27	321,3
	A61-M-B19	1	2,31	333,3
	A61-M-B20	1	3,25	397,3
	A61-M-B21	1	3,3	397,3
	A61-M-B26	1	2,9	361,3
	A62-M-B12	1	2,42	397,3
	A62-M-B13	1	2,49	355,3
	A62-M-B14	1	2,91	403,3
	A62-M-B15	1	2,75	369,3
	A62-M-B16	1	3,13	417,3
	A62-M-B17	1	2,26	341,3
	A62-M-B18	1	3,46	409,3
	A62-M-B19	1	2,29	353,3
	A62-M-B20	1	3,16	417,3
1 4 1 4	A62-M-B21	1	3,2	417,3
	A62-M-B22	1	3,39	409,3
100.1	A62-M-B23	1	2,78	369,3
552	A62-M-B24	1	3,12	395,3
553	A62-M-B25	1	2,51	355,3
554 555	A62-M-B26	1	2,83	381,3
	A62-M-B27	1	2,38	353,3
556	A62-M-B7	1	2,36	371,3
557	A63-M-B12	1	2,24	429,3
558	A63-M-B13	1	3,07	387,3
559	A63-M-B14	1	3,41	435,3
560	A63-M-B15	1	3,41	401,3
561	A63-M-B16	1	3,6	449,3
562	A63-M-B17	1	2,86	373,3
<del> </del>	A63-M-B18	1	3,88	441,3
<del></del>	A63-M-B19	1	2,89	385,3
565		<u> </u>		
566	A63-M-B20	1	3,63	449,3
567	A63-M-B21	1	3,64	449,3
568	A63-M-B22	1	3,83	441,3
569	A63-M-B26	1	3,38	413,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
570	A63-M-B27	1	2,99	385,3
571	A63-M-B7	1	2,82	403,3
572	A64-M-B12	1	2,34	415,3
573	A64-M-B14	1	2,84	421,3
574	A64-M-B15	1	2,67	387,3
	A64-M-B16	1	3,06	435,3
575	A64-M-B17	1	2,22	359,2
576	A64-M-B20	1	3,09	435,3
577	A64-M-B21	1	3,13	435,3
578		1	3,13	427,3
579	A64-M-B22	1		
580	A64-M-B26		2,75	399,3
581	A64-M-B27	1	2,34	371,2
582	A64-M-B7	1	2,19	389,3
583	A65-M-B12	1	2,51	389,3
584	A65-M-B14	1	3,05	395,3
585	A65-M-B15	1	2,86	361,3
586	A65-M-B16	1	3,26	409,3
587	A65-M-B17	1	2,34	333,3
588	A65-M-B18	1	3,59	401,3
589	A65-M-B19	1	2,37	345,3
590	A65-M-B20	1	3.3	409,3
591	A65-M-B21	1	3.34	409,3
592	A65-M-B22	1	3.57	401,3
593	A65-M-B26	1	2.97	373,3
594	A65-M-B7	1	2.3	363,3
595	A66-M-B12	1	2.56	449,2
596	A66-M-B14	1	3.08	455,2
597	A66-M-B15	1 ·	2.9	421,2
598	A66-M-B16	1	3.29	469,2
599	A66-M-B20	1	3,32	469,2
600	A66-M-B21	1	3,35	469,2
601	A66-M-B25	1	2,66	407,2
602	A66-M-B26	1	3,02	433,2
603	A67-M-B12	1	2.5	433,3
604	A67-M-B14	1 .	3	439,3
605	A67-M-B15	1	2.84	405,3
606	A67-M-B16	1	3,21	453,3
607	A67-M-B18	1	3,45	445,3
608	A67-M-B19	1	2,37	389.2
609	A67-M-B20	1	3,24	453,3
610	A67-M-B21	1	3,28	453,3
611	A67-M-B26	1	2,92	417,3
612	A67-M-B27	1	2,49	389,2
613	A67-M-B7	1	2,32	407,2
614	A68-M-B12	1	2,43	431,2
615	A68-M-B14	1	2,95	437,2
616	A68-M-B15	1	2,78	403,2
	A68-M-B16	1	3,17	451.2
617	A68-M-B17	1	2,29	375,2
618	A68-M-B18	1	3,47	443,3
619	A68-M-B19	<del></del>	2,31	387,2
620		1		
621	A68-M-B20	1	3,19	451,2

Entrada I	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
622	A68-M-B21	1	3,24	451,2
623	A68-M-B26	1	2,87	415,2
624	A68-M-B27	1	2,41	387,2
625	A68-M-B7	1	2,25	405,2
626	A69-M-B14	1	2,61	369,3
627	A69-M-B15	1	2,38	335,3
628	A69-M-B16	1	2,85	383,3
629	A69-M-B20	1	2,9	383,3
630	A69-M-B21	1	2,95	383,3
631	A69-M-B25	1	2,15	321,3
632	A69-M-B26	1	2,5	347,3
633	A70-M-B12	1	2,62	415,3
634	A70-M-B14	1	3,12	421,3
635	A70-M-B15	1	2,97	387,3
636	A70-M-B16	1	3,33	435,3
637	A70-M-B17	1	2,48	359,2
638	A70-M-B18	1	3,63	427,3
639	A70-M-B19	1	2,5	371,2
640	A70-M-B20	1	3,35	435,3
641	A70-M-B21	1	3,37	435,3
642	A70-M-B26	1	3,06	399.3
643	A70-M-B27	1	2,61	371.2
644	A70-M-B7	1	2,43	389,3
645	A71-M-B14	1	2,58	369,3
646	A71-M-B16	1	2,84	383,3
647	A71-M-B20	1	2,87	383,3
648	A71-M-B21	1	2,93	383,3
649	A71-M-B25	1	2,11	321,3
650	A72-M-B14	1	2,52	421,3
651	A72-M-B16	1	2,74	435,3
652	A72-M-B18	1	3,06	427,3
653	A72-M-B20	1	2,75	435,3
654	A72-M-B21	1	2,77	435,3
655	A72-M-B27	1	2,07	371,3
656	A73-M-B12	1	2,66	430,3
657	A73-M-B14	1	3,17	436,3
658	A73-M-B17	1	2,17	374,3
659	A73-M-B20	1	3,4	450,3
660	A73-M-B21	1	3,45	450,3
661	A73-M-B24	1	3,38	428,3
662	A73-M-B26	1	3,11	414,3
663	A74-M-B16	1	2,87	453,3
664	A74-M-B17	1	2,04	377,2
665	A75-M-B18	1	2,95	399,3
666	A75-M-B19	1	1,91	343,2
667	A75-M-B20	1 1	2,72	407,3
668	A75-M-B21	1	2,75	407,3
669	A75-M-B22	1	2,98	399,3
670	A75-M-B23	1	2,34	359,3
671	A75-M-B24	1	2,68	385,3
672	A75-M-B25	1	2,09	345,2
673	A75-M-B27	1	1,98	343,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
674	A76-M-B18	1	2,69	410,3
675	A76-M-B19	1	1,7	354,2
676	A76-M-B20	1	2,45	418,3
677	A76-M-B21	1	2,5	418,3
	A76-M-B22	1	2,72	410,3
678	A76-M-B23	- 1	2,72	370,3
679	A76-M-B24	1	2,00	396,3
680	A76-M-B25	1	1,85	356,3
681	A77-M-B23	1	2,64	421,3
682	A77-M-B14	1	2,04	435,3
683	A77-M-B18	1	3,2	433,3
684		1		
685	A77-M-B20		2,89	435,3
686	A77-M-B21	1	2,92	435,3
687	A77-M-B27	1	2,19	371,3
688	A78-M-B12	1	2,69	442,3
689	A78-M-B14	1	3,16	448,3
690	A78-M-B15	1	3,02	414,3
691	A78-M-B16	1	3,38	462,3
692	A78-M-B17	1	2,57	386,3
693	A78-M-B18	1	3,65	454,3
694	A78-M-B19	1	2,59	398,3
695	A78-M-B20	1	3,38	462,3
696	A78-M-B21	1	3,42	462,3
697	A78-M-B22	1	3,62	454,3
698	A78-M-B23	1	3,07	414,3
699	A78-M-B24	1	3,37	440,3
700	A78-M-B26	1	3,12	426,3
701	A78-M-B7	1	2,51	416,3
702	A79-M-B14	1	3,69	466,3
703	A79-M-B18	1	4,09	472,3
704	A79-M-B21	1	3,9	480,3
705	A79-M-B22	1	4,07	472,3
706	A79-M-B24	1	3,86	458,3
707	A79-M-B26	1	3,65	444,3
708	A80-M-B14	1	3,66	470,2
709	A80-M-B15	1	3,56	436,2
710	A80-M-B18	1	4,06	476,3
711	A80-M-B19	1	3,19	420,2
712	A80-M-B21	1	3,87	484,2
713	A80-M-B22	1	4,04	476,3
714	A80-M-B24	1	3,87	462,3
715	A81-M-B14	1	3,64	466,3
716	A81-M-B18	1	4,06	472,3
717	A81-M-B19	1	3,11	416,2
718	A81-M-B21	1	3,88	480,3
719	A81-M-B22	1	4,06	472,3
720	A81-M-B24	1	3,83	458,3
721	A82-M-B14	1	3,4	446,3
722	A82-M-B18	1	3,86	452,4
723	A82-M-B19	1	2,8	396,3
724	A82-M-B20	1	3,62	460,3
$\overline{}$	A82-M-B21	1	3,66	460,3
725	1 402-1VI-B21	1 1	3,00	1 400,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
726	A82-M-B22	1	3,86	452,4
727	A82-M-B24	1	3,59	438,3
728	A83-M-B14	1	3,45	446,3
729	A83-M-B18	1	3,89	452,4
730	A83-M-B19	1	2,87	396,3
731	A83-M-B20	1	3,65	460,3
732	A83-M-B22	1	3,89	452,4
733	A83-M-B24	1	3,64	438,3
734	A84-M-B14	1	3,03	432,3
735	A84-M-B18	1	3,58	438,3
736	A84-M-B19	1	2,38	382,3
737	A84-M-B20	1	3,27	446,3
738	A84-M-B21	1	3,32	446,3
739	A84-M-B22	1	3,54	438,3
740	A85-M-B14	1	3,56	450,3
741	A85-M-B17	1	3,04	388,3
742	A85-M-B20	1	3,76	464,3
743	A85-M-B21	1	3,79	464,3
744	A85-M-B22	2	5,71	456,3
745	A86-M-B14	1	3,02	410,3
746	A86-M-B20	1	3,27	424,3
747	A86-M-B21	1	3,32	424,3
748	A86-M-B25	1	2,61	362,3
749	A87-M-B14	1	3,33	446,3
750	A87-M-B20	1	3,55	460,3
751	A88-M-B14	1	3,31	454,3
752	A88-M-B16	1	3,49	468,3
753	A88-M-B17	1	2,63	392,2
754	A88-M-B19	1	2,66	404,2
755	A88-M-B20	1	3,53	468,3
	A88-M-B21	<u> </u>	3,57	468,3
756 757	A89-M-B14	1	2,64	422,3
758	A89-M-B20	1	2,91	436,3
759	A89-M-B21	<del>                                     </del>	2,97	436,3
760	A90-M-B13	1	1,89	349,3
	A90-M-B16	1	2,56	411,3
761	A90-M-B20	1	2,6	411,3
762	A90-M-B21	1	2,68	411,3
763	A91-M-B14	1	2,00	407,3
764	A91-M-B16	1		421,3
765	A91-M-B18		2,68	
766	<u></u>	1	2,99	413,3
767	A91-M-B20	1 1	2,65	421,3
768	A91-M-B21	1	2,69	421,3
769	A91-M-B26	1	2,35	385,3
770	A92-M-B12	1	3,15	446,3
771	A92-M-B14	1	3,58	452,2
772	A92-M-B17	1	3,05	390,2
773	A92-M-B20	1	3,78	466,3
774	A92-M-B21	1	3,8	466,3
775	A92-M-B22	1	3,97	458,3
776	A92-M-B24	1	3,78	444,3
777	A92-M-B26	1	3,56	430,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]*
778	A92-M-B7	1	2,98	420,2
779	A93-M-B14	1	3,41	452,2
780	A93-M-B16	1	3,6	466,3
781	A93-M-B17	1	2,82	390,2
782	A93-M-B20	<del></del> i	3,63	466,3
783	A93-M-B21	<del>i</del>	3,66	466,3
784	A93-M-B22	1	3,85	458,3
	A93-M-B24	<u> </u>	3,63	444,3
785	A93-M-B26	<del></del>	3,37	430,3
786 787	A93-M-B27	1	2,96	402,2
	A93-M-B7	<u> </u>	2,76	420,2
788	A94-M-B14	1	3,58	452,2
789		1		
790	A94-M-B17		3,04	390,2
791	A94-M-B21	1	3,81	466,3
792	A94-M-B24	1	3,78	444.3
793	A94-M-B26	1	3,55	430,3
794	A95-M-B14	1	3,16	432,3
795	A95-M-B20	1	3,39	446,3
796	A95-M-B21	1	3,45	446,3
797	A95-M-B24	1	3,37	424,3
798	A95-M-B26	1	3,09	410,3
799	A96-M-B14	1	3,36	432,3
800	A96-M-B20	1	3,58	446,3
801	A96-M-B21	1	3,62	446.3
802	A96-M-B22	1	3,81	438,3
803	A96-M-B24 A97-M-B12	1	3,57	424,3
804	A97-M-B12	1	2,59 3,1	442,3 448,3
805	A97-M-B16	1	3,26	462,3
806	A97-M-B17	1	2,46	386,3
807	A97-M-B17	1	3,56	454,3
808	A97-M-B10	1	3,30	462,3
809	A97-M-B20	1	3,52	454.3
810	A97-M-B24	1	3,32	440,3
811	A97-M-B26	1	3,02	426,3
812	A98-M-B14	1	2,97	443,3
813	A98-M-B17	1	2,4	381,3
814	A98-M-B20	1	3,2	457,3
815	A98-M-B22	1	3,4	449,3
816	A98-M-B24	1	3,4	435,3
817				411,3
818	A98-M-B7	1	2,35	
819	A99-M-B14	1	3,86	466,3
820	A99-M-B20	1	3,99	480,3
821	A99-M-B22	1	4,17	472,3
822	A99-M-B24	1	3,98	458,3
823	A99-M-B26	1	3,79	444,3
824	A100-M-B14	11	3,65	446,3
825	A100-M-B22		4,04	452,4
826	A100-M-B24		3,84	438,3
827	A100-M-B26		3,62	424,3
828	A101-M-B14		3,33	412,3
829	A101-M-B19	1	2,71	362,3
830	A101-M-B20	1	3,54	426,3

# ES 2 536 730 T3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
831	A101-M-B21	1	3,59	426,3
832	A101-M-B22	1	3,8	418,4
833	A102-M-B14	1	3,29	436,3
834	A102-M-B17	1	2,67	374,3
835	A102-M-B19	1	2,69	386,3
836	A102-M-B20	1	3,51	450,3
837	A102-M-B21	1	3,55	450,3
838	A102-M-B22	1	3,74	442,3
839	A103-M-B14	1	2,95	398,3
840	A103-M-B20	1	3,21	412,3
841	A103-M-B21	1	3,27	412,3
842	A103-M-B22	1	3,5	404,4
843	A104-M-B16	1	3,36	460,3
844	A104-M-B22	1	3,68	452,4
845	A105-M-B14	1	3,65	446,3
846	A105-M-B20	1	3,83	460,3
847	A105-M-B21	1	3,86	460,3
848	A105-M-B22	1	4,05	452,4
849	A106-M-B14	1	3,64	446,3
850	A106-M-B16	1	3,82	460,3
851	A106-M-B17	1	3,12	384,3
852	A106-M-B20	1	3,85	460,3
853	A106-M-B21	1	3,87	460,3
854	A106-M-B24	1	3,84	438,3
855	A106-M-B26	1	3,63	424,3
856	A107-M-B14	1	3,67	466,3
857	A107-M-B16	1	3,83	480,3
858	A107-M-B24	1	3,91	458,3
859	A107-M-B26	1	3,65	444,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
860	A108-M-B20	1	3,81	437,3
861	A108-M-B25	1	3,28	375,3
862	A108-M-B27	1	3,17	373,3
863	A109-M-B13	1	2,47	407,2
864	A109-M-B16	1	3,12	469,2
865	A110-M-B14	1	3,57	450,3
866	A110-M-B17	1	3,03	388,3
867	A110-M-B20	1	3,76	464,3
868	A111-M-B14	1	3,59	454,3
869	A111-M-B17	1	3,05	392,2
870	A111-M-B22	1	3,99	460,3
871	A112-M-B16	1	2,55	369,3
872	A112-M-B21	1	2,64	369,3
873	A113-M-B16	1	2,66	419,3
874	A114-M-B16	1	2,38	405,3
875	A115-M-B16	1	2,59	419,3
876	A116-M-B20	1	2,39	385,3
877	A116-M-B21	1	2,48	385,3
878	A117-M-B20	1	2,59	428,3
879	A118-M-B20	1	2,69	440,3
880	A118-M-B21	1	2,76	440,3
881	A119-M-B20	1	2,87	398,3
882	A120-M-B21	1	3,32	412,3
883	A121-M-B21	1	2,53	414,3
884	A122-M-B21	1	2,03	433,3
885	A122-M-B22	1	2,21	425,3
886	A123-M-B25	11	2,16	345,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]*
887	A20-M-B14	1	3,92	394,2
888	A20-M-B17	1	3,41	332,2
889	A20-M-B19	1	3,41	344,2
890	A20-M-B24	1	4,09	386,3
891	A20-M-B25	1	3,63	346,2
892	A20-M-B26	1	3,88	372,2
893	A20-M-B31	1	3,31	332,2
894	A20-M-B32	1	4,07	374,3
895	A20-M-B33	1	2,59	450,3
896	A20-M-B35	1	3,24	318,2
897	A20-M-B36	1	3,93	394,2
898	A20-M-B39	1	2,4	395,2
899	A20-M-B40	1	3,67	384,2
900	A20-M-B42	1	3,39	376,2
901	A20-M-B56	1	2,42	387,3
902	A20-M-B59	1	2,44	401,3
903	A33-M-B14	4	1,172	366,1
904	A33-M-B22	4	1,33	372,2
905	A33-M-B28	4	0,929	360,1
906	A33-M-B29	4	0,645	367,1
907	A33-M-B30	4	1,205	384,1
908	A124-M-B9	4	0,655	341,2
909	A125-M-B9	4	0,74	355,2
910	A126-M-B9	4	1,018	356,2
911	A127-M-B14	4	1,29	378,2
912	A127-M-B19	1	3,06	328,2
913	A127-M-B22	4	1,405	384,2
914	A127-M-B24	1	3,79	370,3
915	A127-M-B25	1	3,28	330,3
916	A127-M-B26	1	3,56	356,3
917	A127-M-B28	4	1	372,2
918	A127-M-B29	4	0,757	379,1
919	A127-M-B30	4	1,279	396,1
920	A127-M-B31		2,95	316,2
921	A127-M-B32		3,8	358,3
922	A127-M-B33	1	2,28	434,3
923	A127-M-B36		3,63	378,3
924	A127-M-B37		3,83	378,3
925	A127-M-B38		2,1	401,3
926	A127-M-B39		2,06	379,2
927	A127-M-B40		3,35	368,2
928	A127-M-B41		2,68	399,3
929	A127-M-B42		3,04	360,3
930	A127-M-B43		3,59	344,3
931	A127-M-B46		3,38	344,3
932	A127-M-B47	1	3,6	382,2
933	A127-M-B48		3,36	342,3
934	A127-M-B49		2,26	397,3
935	A127-M-B50	1	3,12	342,3
936	A127-M-B51		2,9	358,2
937	A127-M-B52		3,62	364,2
938	A127-M-B53	1	2,12	413,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
939	A127-M-B54	1	3,04	410,3
940	A127-M-B56	1	2,08	371,3
941	A127-M-B57	1	1,74	454,4
942	A127-M-B58	1	2,79	435,2
943	A127-M-B60	1	2,09	359,3
944	A127-M-B7	1	2,96	346,2
945	A127-M-B9	4	1,311	358,2
946	A128-M-B14	4	1,23	378,2
947	A128-M-B14	1	3,56	378,3
948	A128-M-B17	1	2,98	316,2
949	A128-M-B19	1	2,98	328,2
950	A128-M-B22	4	1,401	384,2
951	A128-M-B25	1	3,24	330,3
952	A128-M-B26	1	3,5	356,3
953	A128-M-B28	4	0,952	372,2
954	A128-M-B29	4	0,73	379,1
955	A128-M-B30	4	1,268	396,1
	A128-M-B31	1	2,9	316,2
956	A128-M-B32	1	3,76	358,3
957	A128-M-B33	1	2,26	434,3
958		1		374,2
959	A128-M-B34	1	3,23	
960	A128-M-B35	1	2,79	302,2 378,3
961	A128-M-B36	1	3,56	
962	A128-M-B37		3,77	378,3
963	A128-M-B38	1	2,08	401,3
964	A128-M-B39	1	2,03	379,2
965	A128-M-B40	1	3,29	368,2
966	A128-M-B41	1	2,64	399,3
967	A128-M-B42	1	2,98	360,3
968	A128-M-B43	1	3,54	344,3
969	A128-M-B45		3,52	370,3
970	A128-M-B46		3,35	344,3
971	A128-M-B47	1	3,51	382,2
972	A128-M-B48		3,31	342,3
973	A128-M-B49		2,21	397,3
974	A128-M-B50		3,08	342,3
975	A128-M-B51		2,86	358,2
976	A128-M-B54		3	410,3
977	A128-M-B55		3,06	438,3
978	A128-M-B56		2,1	371,3
979	A128-M-B57		1,75	454,4
980	A128-M-B58		2,76	435,2
981	A128-M-B59	L	2,1	385,3
982	A128-M-B60		2,08	359,3
983	A128-M-B7	1	2,89	346,2
984	A128-M-B9	4	1,304	358,2
985	A129-M-B14	4	1,242	378,2
986	A129-M-B22	4	1,399	384,2
987	A129-M-B28	4	0,96	372,2
988	A129-M-B29		0,752	379,1
989	A129-M-B30		1,31	396,1
990	A129-M-B9	4	1,303	358,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
991	A130-M-B9	4	0,984	366,2
992	A131-M-B9	4	1,164	382,2
993	A132-M-B14	4	1,16	404,2
994	A132-M-B22	4	1,309	410,2
995	A132-M-B28	4	0,878	398,2
996	A132-M-B29	4	0,693	405,1
997	A132-M-B30	4	1,24	422,1
998	A132-M-B9	4	1,219	384,2
999	A133-M-B14	4	1,406	428,2
1000	A133-M-B22	4	1,6	434,2
1001	A133-M-B28	4	1,158	422,2
1002	A133-M-B29	4	0,95	429,1
1003	A133-M-B30	4	1,427	446,1
1004	A133-M-B9	4	1,473	408,2
1005	A134-M-B14	4	1,45	444,1
1006	A134-M-B22	4	1,593	450,2
1007	A134-M-B28	4	1,206	438,2
1008	A134-M-B29	4	1,002	445,1
1009	A134-M-B30	4	1,471	462,1
1010	A134-M-B9	4	1,516	424,2
1011	A135-M-B9	4	1,526	424,2
1012	A136-M-B9	4	0,674	355,2
1013	A137-M-B14	4	1,314	374,2
1014	A137-M-B14	1	3,76	374,3
1015	A137-M-B22	4	1,477	380,2
1016	A137-M-B24	1	3,93	366,3
1017	A137-M-B25	1	3,45	326,3
1018	A137-M-B26	1	3,7	352,3
1019	A137-M-B28	4	1,08	368,2
1020	A137-M-B29	4	0,808	375,2
1021	A137-M-B30	4	1,346	392,2
1022	A137-M-B32	1	3,95	354,3
1023	A137-M-B33	11	2,4	430,3
1024	A137-M-B34	1	3,42	370,3
1025	A137-M-B35		3,01	298,2
1026	A137-M-B36	1	3,77	374,3
1027	A137-M-B39	1	2,19	375,3
1028	A137-M-B40	1	3,49	364,3
	A137-M-B43		3,73	340,3
	A137-M-B48		3,5	338,3
	A137-M-B49		2,4	393,3
	A137-M-B50		3,27	338,3
1033	A137-M-B52	1	3,76	360,3
1034	A137-M-B54	1	3,19	406,3
1035	A137-M-B55	1	3,24	434,3
	A137-M-B56		2,25	367,3
	A137-M-B58		2,93	431,3
	A137-M-B59		2,25	381,3
	A138-M-B14		1,206	390,2
	A138-M-B22		1,43	396,2
	A138-M-B28		0,926	384,2
1042	A138-M-B29	4	0,726	391,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1043	A138-M-B30	4	1,23	408,2
1044	A139-M-B14	1	3,75	396,2
1045	A139-M-B17	1	3,22	334,2
1046	A139-M-B19	1	3,23	346,2
1047	A139-M-B22	4	1,441	402,2
1048	A139-M-B24	1	3,93	388,3
1049	A139-M-B25	1	3,46	348,2
1050	A139-M-B26	1	3,71	374,3
1051	A139-M-B28	4	1,023	390,2
1052	A139-M-B29	4	0,822	397,1
1053	A139-M-B30	4	1,32	414,1
1054	A139-M-B31	1	3,12	334,2
	A139-M-B32	1	3,91	376,3
1056	A139-M-B33	1	2,45	452,3
1057	A139-M-B35	1	3,03	320,2
1058	A139-M-B36	1	3,77	396,2
1058	A139-M-B37	<del>i</del>	3,95	396,2
1060	A139-M-B38	1	2,29	419,3
	A139-M-B39	1	2,23	397,2
1061	A139-M-B40	1	3,51	386,2
1062	A139-M-B41	1	2,87	417,3
1063	A139-M-B42	1		378,3
1064	A139-M-B43	1	3,21	362,3
1065	A139-M-B45	1	3,71 3,71	388,3
1066	A139-M-B46			362,3
1067	A139-M-B48	1	3,53	360,2
1068	A139-M-B49	1	3,51	415,3
1069	A139-M-B50	1	2,38 3,29	360,2
1070	A139-M-B51	1		
1071	A139-M-B52	1	3,08	376,2 382,2
		<u>'</u>		431,3
1073		1	2,3	
1074			2,28	389,3
10/5	A139-M-B57		1,89	472,3 453,2
1076	A139-M-B58 A139-M-B60	1	2,96 2,24	377,3
		1		364,2
1078			3,13	
1079	A140-M-B14	4	1,36	406,2
	A140-M-B22		1,474	412,2
	A140-M-B28		1,06	400,2
1082	A140-M-B29	4	0,846	407,1
1083	A140-M-B30	4	1,352	424,1
	A141-M-B14		1,176	418,2
1085		L	1,321	424,2
1086	1		0,932	412,2
1087			0,745	419,2
1088	A141-M-B30		1,206	436,2
1089	A142-M-B14	4	1,197	418,2
	A142-M-B22		1,345	424,2
1091	<del></del>		0,933	412,2
1092		L	0,756	419,2
1093		<u> </u>	1,225	436,2
1094	A143-M-B14	4	1.45	428,2

Entrada	¹ Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1095	A143-M-B22	4	1,562	434,2
1096	A143-M-B28	4	1,178	422,2
1097	A143-M-B29	4	0,977	429,1
1098	A143-M-B30	4	1,443	446,1
1099	A144-M-B14	4	0,649	350,2
	A144-M-B22	. 4	0,83	356,2
	A144-M-B30	4	0,686	368,1
	A145-M-B14	4	1,52	477,1
	A145-M-B22	4	1,594	483,1
	A146-M-B14	1	3,6	408,3
1105	A146-M-B17	1	3,06	346,2
	A146-M-B19	1	3,07	358,2
	A146-M-B24	1	3,77	400,3
1108		1	3,29	360,3
1109		1	3,55	386,3
1110	·	1	2,97	346,2
1111	A146-M-B32	1	3,77	388,3
		1	2,32	464,3
	A146-M-B34	1	3,27	404,2
1114	A146-M-B35	1	2,88	332,2
	A146-M-B36	1	3,64	408,3
	A146-M-B37	1	3,83	408,3
	A146-M-B38	1	2,24	431,3
	<del></del>	1	2,17	409,3
	A146-M-B40	1	3,34	398,2
	A146-M-B41	1	2,73	429,3
1121	A146-M-B42	1	3,05	390,3
1122	A146-M-B43		3,57	374,3
1123	A146-M-B44		2,28	415,3
1124	A146-M-B45		3,56	400,3
1124	A146-M-B46		3,38	374,3
		1	3,58	412,3
1127	L		3,34	372,3
1128	A146-M-B49		2,33	427,3
1120	A146-M-B50	1	3,13	372,3
	A146-M-B51		2,92	388,3
	A146-M-B52		3,63	394,2
	A146-M-B53		2,19	443,3
	A146-M-B54		3,04	440,3
	A146-M-B55		3,11	468,3
	A146-M-B58		2,84	465,3
	A146-M-B7	1	2,97	376,3
	A147-M-B14		3,76	374,3
	A147-M-B17		3,70	312,3
	A147-M-B24		3,93	366,3
	A147-M-B25		3,46	326,3
	A147-M-B26		3,71	352,3
	A147-M-B31		3,12	312,3
	A147-M-B32		3,95	354,3
	A147-M-B33		2,42	430,3
	A147-M-B34			
	A147-M-B36		3,43	370,3 374,3
1140	147-W-D30	<u>'</u>	3,76	3/4,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1147	A147-M-B37	1	3,96	374,3
1148	A147-M-B39	1	2,24	375,3
1149	A147-M-B40	1	3,5	364,3
1150	A147-M-B41	1	2,86	395,3
1151	A147-M-B42	1	3,19	356,3
1152	A147-M-B43	1	3,75	340,3
1153	A147-M-B45	1	3,73	366,3
1154	A147-M-B46	1	3,55	340,3
1155	A147-M-B47	1	3,74	378,3
1156	A147-M-B48	1	3,52	338,3
1157	A147-M-B50	1	3,29	338,3
1158	A147-M-B51	1	3,08	354,3
1159	A147-M-B52		3,76	360,3
1160	A147-M-B54	1	3,19	406,3
1161	A147-M-B58	1	2,95	431,3
1162	A147-M-B7	1	3,12	342,3
1163	A148-M-B14	1	3,57	408,3
1164	A148-M-B17	1	3,01	346,2
1165	A148-M-B19	1	3,03	358,2
1166	A148-M-B24	1	3,72	400,3
1167	A148-M-B25	1	3,24	360,3
1168	A148-M-B26	1	3,51	386,3
	A148-M-B31	1	2,93	346,2
1169	A148-M-B32	1	3,74	388,3
1171	A148-M-B33	1	2,3	464,3
	A148-M-B34	1	3,23	404,2
1173			2,85	332,2
1174	A148-M-B36		3,59	408,3
1175	A148-M-B37	1	3,78	408,3
1176	A148-M-B39	1	2,13	409,3
	A148-M-B40		3,3	398,2
1177 1178	A148-M-B41	1	2,69	429,3
1179	A148-M-B42		3,02	390,3
11/9	A148-M-B43		3,52	374,3
1100	A148-M-B45	1	3,52	400,3
1101	A148-M-B46	1	3,35	374,3
1102	A148-M-B47	1	3,54	412,3
	A148-M-B48		3,31	372,3
1104	A148-M-B50	1	3,11	372,3
	A148-M-B51		2,9	388,3
	A148-M-B52		3,59	394,2
			2,17	443,3
	A148-M-B53		3,01	440,3
1189	A148-M-B54	1	3,07	468,3
1190	A148-M-B55	1		401,3
	A148-M-B56		2,2	465,3
	A148-M-B58		2,8	
	A148-M-B7		2,94	376,3
	A149-M-B14		3,83	396,2
	A149-M-B17		3,3	334,2
1196	A149-M-B19	1	3,3	346,2
1197	A149-M-B24	1	3,99	388,3
1198	A149-M-B25	11	3,53	348,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1199	A149-M-B26	1	3,79	374,3
1200	A149-M-B31	1	3,2	334,2
1201	A149-M-B33	1	2,49	452,3
1202	A149-M-B34	1	3,49	392,2
1203	A149-M-B35	1	3,09	320,2
1204	A149-M-B36	1	3,73	396,2
1205	A149-M-B38	1	2,32	419,3
1206	A149-M-B39	1	2,29	397,2
1207	A149-M-B40	1	3,58	386,2
1208	A149-M-B41	1	2,93	417,3
1209	A149-M-B42	1	3,29	378,3
1210	A149-M-B43	1	3,81	362,3
	A149-M-B44	1	2,37	403,3
	A149-M-B45	1	3,78	388,3
	A149-M-B46	1	3,58	362,3
1	A149-M-B47	1	3,81	400,2
	A149-M-B48	1	3,59	360,2
	A149-M-B49	1	2,44	415,3
	A149-M-B50	1	3,36	360,2
	A149-M-B51	1	3,15	376,2
	A149-M-B52	1	3,83	382,2
	A149-M-B53	1	2,29	431,3
	A149-M-B54	1	3,26	428,3
1	A149-M-B55	1	3,34	456,3
	A149-M-B56	1	2,32	389,3
	A149-M-B57	1	1,92	472,3
	A149-M-B58	1	3,02	453,2
	A149-M-B60	1	2,27	377,3
	A150-M-B14	1	3,88	394,2
	A150-M-B17	1	3,38	332,2
	A150-M-B19	1	3,38	344,2
	A150-M-B24	1	4,05	386,3
	A150-M-B25	1	3,6	346,2
	A150-M-B26	1	3,83	372,2
	A150-M-B31	1	3,29	332,2
	A150-M-B32		4,04	374,3
	A150-M-B33		2,59	450,3
	A150-M-B35		3,2	318,2
	A150-M-B36		3,89	394,2
	A150-M-B37		4,06	394,2
1239	A150-M-B38	1	2,39	417,3
1240	A150-M-B39	1	2,35	395,2
	A150-M-B40		3,65	384,2
	A150-M-B41		3,04	415,2
	A150-M-B42		3,35	376,2
	A150-M-B43		3,86	360,2
	A150-M-B45		3,85	386,3
	A150-M-B46		3,68	360,2
1247	<del></del>		3,65	358,2
	A150-M-B49	L	2,51	413,3
	A150-M-B50		3,43	358,2
1250			3,23	374,2
1230	p00 III DOT	<u>.                                    </u>	L	1 0. 7,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1251	A150-M-B52	1	3,89	380,2
1252	A150-M-B53	1	2,38	429,3
1253	A150-M-B54	1	3,34	426,3
1254	A150-M-B55	1	3,39	454,3
1255	A150-M-B56	1	2,44	387,3
1256	A150-M-B57	1	1,98	470,3
1257	A150-M-B58	1	3,11	451,2
1258	A150-M-B59	1	2,41	401,3
1259	A150-M-B7	1	3,28	362,2
1260	A151-M-B14	1	3,72	396,2
1261	A151-M-B17	1	3,18	334,2
1262	A151-M-B19	1	3,18	346,2
1263	A151-M-B24	1	3,89	388,3
1264	A151-M-B25	1	3,42	348,2
1265	A151-M-B26	1	3,68	374,3
	A151-M-B31	1	3,09	334,2
1266	A151-M-B32	1	3,9	376,3
1267	A151-M-B33	1	2,41	452,3
1268	A151-M-B35	1	2,99	320,2
1.222	A151-M-B36	1	3,84	396,2
1270	A151-M-B37	1		396.2
1271	A151-M-B38	1	3,91 2,23	
	A151-M-B39	1	2,23	419,3
		1	<u> </u>	397,2
	A151-M-B41	1	2,83	417,3
	A151-M-B42	1	3,17	378,3
	A151-M-B43 A151-M-B45	1	3,72 3,69	362,3 388,3
<del></del>	A151-M-B46	1	3,51	362,3
<u> </u>	A151-M-B48	1	3,48	360,2
	A151-M-B49	1	2,34	415,3
	A151-M-B49	1	3,25	360,2
		1	3,05	376,2
	A151-M-B51	1	3,74	382,2
	A151-M-B53	1	2,23	431,3
1285	A151-M-B54 A151-M-B56	1	3,16 2,24	428,3 389,3
	A151-M-B57		<del></del>	472,3
1287	A 151-W-B57	1	1,86	1
1288	A151-M-B58	1	2,93	453,2
1289	A151-M-B59		2,24	403,3 377,3
1290	A151-M-B60	1	2,21	
	A151-M-B7		3,07	364,2
1292	A152-M-B14	1 1	3,95	352,3
1293	A152-M-B17	1	3,42	290,3
1294	A152-M-B19	1 1	3,43	302,3
1295	A152-M-B24	1	4,12	344,3
1296	A152-M-B25	1	3,66	304,3
	A152-M-B26		3,92	330,3
1298			3,32	290,3
	A152-M-B32		4,13	332,3
1300			2,69	408,3
1301		1	3,63	348,3
1302	A152-M-B35	1	3,23	276,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1303	A152-M-B36	1	3,95	352,3
1304		1	4,15	352,3
	A152-M-B38	1	2,42	375,3
	A152-M-B39	1	2,49	353,3
1307	A152-M-B40	1	3,69	342,3
1308	A152-M-B41	1	3,04	373,3
	A152-M-B42	1	3,4	334,3
	A152-M-B43	1	3,95	318,3
	A152-M-B45	1	3,91	344,3
	A152-M-B46	1	3,74	318,3
	A152-M-B47	1	3,9	356,3
	A152-M-B48	1	3,72	316,3
	A152-M-B49	1	2,52	371,3
1316	A152-M-B50	1	3,49	316,3
1317	A152-M-B51	1	3,28	332,3
1318	A152-M-B52	1	3,96	338,3
	A152-M-B53	1	2,46	387,4
1320	A152-M-B54	1	3,38	384,3
1321	A152-M-B55	1	3,44	412,4
1322	A152-M-B56	1	2,42	345,3
1323	A152-M-B57	1	1,99	428,4
	A152-M-B58	1	3,14	409,3
1325	A152-M-B7	1	3,33	320,3
1326	A153-M-B48	1	3,64	350,3
1327	A154-M-B14	1	3,34	324,3
1328	A154-M-B17	1	2,58	262,2
1329	A154-M-B19	1	2,6	274,2
1330	A154-M-B24	1	3,54	316,3
1331	A154-M-B25	1	2,9	276,3
	A154-M-B26	1	3,25	302,3
	A154-M-B31	1	2,46	262,2
	A154-M-B32	1	3,53	304,3
1335	A154-M-B33	1	2	380,3
1336	A154-M-B34	1	2,88	320,2
	A154-M-B35	1	2,32	248,2
1338	A154-M-B36	1	3,29	324,3

Entrada	Compuesto	Método HPLC	HPLC tRt (min)	[M+H] ⁺
1339	A154-M-B42	1	2,63	306,3
1340	A154-M-B43	1	3,29	290,3
1341	A154-M-B45	1	3,27	316,3
1342	A154-M-B47	1	3,25	328,3
1343	A154-M-B48	1	2,99	288.3
1344	A154-M-B49	1	1,85	343.3
1345	A154-M-B51	1	2,45	304.3
1346	A154-M-B52	1	3,32	310.2
1347	A154-M-B53	1	1,83	359,3
1348	A154-M-B54	1	2,65	355,2
1349	A154-M-B55	1	2,73	384,3
1350	A154-M-B58	1	2,38	381,3
1351	A154-M-B7	1	2,49	292,3
1352	A155-M-B17	1	2,03	323,2
1353	A155-M-B19	1	2,05	335,2
1354	A155-M-B25	1	2,28	337,3
1355	A155-M-B31	1	2	323,2
	A155-M-B32	1	2,9	365,3
1357	A155-M-B33	1	1,86	441,3
1358	A155-M-B35	1	1,87	309,2
1359	A155-M-B36	1	2,71	385,3
1360	A155-M-B39	1	1,72	386,3
1361	A155-M-B40	1	2,37	375,2
1362	A155-M-B43	1	2,61	351,3
1363	A155-M-B45	1	2,66	377,3
1364	A155-M-B53	1	1,74	420,3
1365	A155-M-B7	1	2,02	353,3
1366	A156-M-B24	1	3,19	403,3
1367	A156-M-B34	1	2,59	407,2
1368	A156-M-B37	1	3,23	411,3
1369	A156-M-B45	1	2,96	403,3
1370	A156-M-B49	1	2,01	430,3
1371	A156-M-B51	1	2,21	391,3
1372	A156-M-B52	1	2,94	397,3
1373	A156-M-B54	1	2,4	443,3

Cuando R1 es un sustituyente con un centro quiral, los compuestos obtenidos eran mezcla de diastereoisómeros y se separaron por HPLC preparativa.

Cuando se resuelven los diastereoisómeros, la quiralidad se indica en la estructura de 3,4-dihidro-2H-pirrolo[1,2-a]pirazin-1-ona.

Trabajando de una forma paralela, se prepararon los siguientes compuestos:

5

Entrada	Compuesto	RMN ¹ H (400 MHz, DMSO-d ₆ )	Método	HPLC	$[M+H]^{+}$
			de HPLC	t.r.	
				min.	
1374	A157-M-B65	$\delta$ = 8,50 (d, J = 8,5 Hz, 1H), 8,09 (d, J = 5,4 Hz, 1H), 7,83 (s	4	1,196	408,2
	isómero S	ancho, 1H), 7,44 (d, J = 1,7 Hz, 1H), 7,28 (s, 1H), 5,08 - 5,17			
		(m, 1H), 4,61 - 4,75 (m, 1H), 3,73 (dd, J = 13,1, 4,0 Hz, 1 H),			
		3,36 - 3,46 (m, 1H), 3,10 - 3,18 (m, 1H), 2,90 - 3,04 (m, 1H),			
		2,68 - 2,84 (m, 2H).			
1375	A157-M-B65	$\delta$ = 8,61 (d, J = 8,5 Hz, 1H), 8,11 (d, J = 5,4 Hz, 1H), 7,68 (d,	4	1,224	408,2
	isómero R	J = 1,7 Hz, 1H), 5,11 (td, J = 8,9, 4,6 Hz, 1H), 4,63 - 4,72 (m,			
		1H), 2,78 (d, J = 6,7 Hz, 2H)			

# ES 2 536 730 T3

Entrada	Compuesto	RMN ¹ H (400 MHz, DMSO-d ₆ )	Método de HPLC	HPLC t.r.	[M+H] ⁺
				min.	
1376	A133-M-B61 isómero R		4	1,373	464,2
1377	A127-M-B61 isómero R		4	1,332	414,2
1378	A157-M- B161 isómero R	8,41 - 8,60 (m, 1H), 6,90 - 8,36 (m, 5H), 4,71 (dd, J = 33,3, 3,3 Hz, 2H), 3,56 - 3,82 (m, 1H), 2,61 - 2,82 (m, 2H), 1,37 - 1,75 (m, 2H), 0,80-1,23 (m, 10H)	4	1,052	415,2
1379	A158-M-B61 isómero R		4	1,238	432,2
1380	A133-M-B61 isómero S	7,54 (t, J = 7,7 Hz, 1H), 7,45 (d, J = 1,8 Hz, 1H), 7,16 (d, J = 1,7 Hz, 1H), 4,69 (sxt, J = 4,2 Hz, 1H), 4,49 (s ancho, 1H), 3,72 (dd, J = 13,0, 4,1 Hz, 1H), 3,59 (dq, J = 8,9, 5,8 Hz, 1H), 2,82 (dd, J = 14,9, 8,7 Hz, 1H), 2,57 (dd, J = 14,5, 5,4 Hz, 1H)	4	1,375	464,2
1381	A127-M-B61 isómero S	7,68 (d, J = 3,4 Hz, 1H), 7,63 (d, J = 9,2 Hz, 1H), 7,28 - 7,42 (m, 4H), 7,09 (d, J = 1,8 Hz, 1H), 6,90 - 6,99 (m, 1H), 4,61 - 4,72 (m, 1H), 4,50 (t, J = 5,4 Hz, 1H), 3,69 (ddd, J = 13,0, 4,2, 1,2 Hz, 1H), 3,60 (dq, J = 9,2, 5,8 Hz, 1H), 2,79 (dd, J = 14,6, 8,4 Hz, 1H), 2,58 (dd, J = 14,8, 5,8 Hz, 1H)	4	1,363	414,2
1382	A133-M-B62 isómero R	7,60 (d, J = 1,7 Hz, 1H), 7,17 (d, J = 1,8 Hz, 1H), 4,89 (dt, J = 7,9, 6,3 Hz, 1H), 4,73 - 4,95 (m, 1 H), 4,59 - 4,69 (m, 1H), 2,83 (dd, J = 14,8, 6,5 Hz, 1H), 2,74 (dd, J = 14,9, 7,2 Hz, 1H)	4	1,426	458,2
1383	A127-M-B62 isómero R	8,49 (d, J = 8,3 Hz, 1H), 7,47 (d, J = 1,8 Hz, 1H), 7,08 (d, J = 1,8 Hz, 1H), 6,91 - 7,00 (m, 1H), 4,82 - 4,94 (m, 1H), 4,62 (dd, J = 9,5, 2,8 Hz, 1H), 3,57 - 3,66 (m, 1H), 3,50 (d, J = 6,0 Hz, 2H), 2,68 - 2,83 (m, 2H)	4	1,092	408,2
1384	A157-M-B62 isómero R	8,51 (d, J = 8,3 Hz, 1H), 8,11 (d, J = 5,4 Hz, 1H), 7,72 (d, J = 1,8 Hz, 1H), 7,18 - 7,27 (m, 1H), 4,84 - 4,93 (m, 1H), 4,61 - 4,72 (m, 1H), 3,64 (d, J = 5,2 Hz, 1H), 3,34 (s ancho, 1H), 2,69 - 2,87 (m, 2H)	4	409,2	1,003
1385	A158-M-B62 isómero R	8,45 (d, J = 8,2 Hz, 1H), 7,76 (s ancho, 1H), 7,55 (ddd, J = 9,8, 6,3, 3,2 Hz, 1H), 7,45 - 7,50 (m, 1H), 7,26 - 7,34 (m, 5H), 7,18 - 7,25 (m, 1H), 7,13 - 7,16 (m, 1H), 6,99 - 7,08 (m, 1H), 4,82 - 4,90 (m, 1H), 4,79 (s ancho, 1H), 4,68 (s, 1H), 3,65 (dd, J = 9,0, 1,8 Hz, 1H), 3,50 (s ancho, 2H), 3,37 (d, J = 2,3 Hz, 9H), 2,68 - 2,85 (m, 2H)	4	1,109	426,2
1386	A133-M-B62 isómero S	8,41 (d, J = 8,3 Hz, 1H), 7,41 (d, J = 1,8 Hz, 1H),7,15-7,18 (m,1H), 4,79 - 4,90 (m, 2H), 4,66 (s ancho, 1H), 3,68 (d, J = 1,2 Hz, 1H), 3,45 - 3,61 (m, 1H), 3,34 - 3,43 (m, 1H), 2,79 - 2,88 (m, 1H), 2,70 (dd, J = 15,0, 6,8 Hz, 1H)	4	1,332	458,2
1387	A127-M-B62 isómero S	8,43 (d, J = 8,3 Hz, 1H), 7,08 (d, J = 1,8 Hz, 1H), 7,03 - 7,43 (m, 11H), 6,93 - 7,01 (m, J = 5,1, 4,0, 0,9, 0,9, 0,9 Hz, 1H), 4,88 (q, J = 6,0 Hz, 1H), 4,64 (q, J = 3,3 Hz, 1H), 3,62 - 3,71 (m, 2H), 3,55 (dd, J = 7,4, 5,5 Hz, 2H), 3,34 (s ancho, 2H), 2,65 - 2,73 (m, 1H)	4	1,121	408,2
1388	A133-M-B63 Mezcla de diast. no resuelta	7,85 (s ancho, 1H), 7,65 (s ancho, 2H), 7,49 (s, 2H), 7,36 (s ancho, 2H), 7,17 (s, 2H), 4,75 (s ancho, 1H), 2,18 (s, 1H), 2,07 (s, 1H), 1,96 (s, 1H), 1,75 (s, 1H), 1,63 (s, 7H), 1,23 (s ancho, 2H), 0,14 - 0,34 (m, 2H)	4	1,173	497,2
1389	A127-M-B63 Mezcla de diast. no resuelta	7,59 (d, J = 1,1 Hz, 1H), 7,49 (s, 1H), 7,40 (s ancho, 2H), 5,44 - 6,15 (m, J = 155,3 Hz, 1H), 4,33 - 5,20 (m, 1H), 4,17 (dd, J = 13,4, 11,8 Hz, 1H), 3,67 - 3,94 (m, 1H), 2,80 (d, J = 16,4 Hz, 1H), 0,15 - 0,35 (m, 1H)	4	1,02	447,2
1390	A157-M-B63 Mezcla de diast. no resuelta		4	0,782	448,2
1391	A158-M-B63 P26 Mezcla de diast. no resuelta.	7,13 - 7,40 (m, 1H), 3,28 - 3,58 (m, 16H), 3,08 - 3,28 (m, 1H), 2,41 - 2,60 (m, 5H)	4	1,031	465,2

# ES 2 536 730 T3

Entrada	Compuesto	RMN ¹ H (400 MHz, DMSO-d ₆ )	Método de HPLC	HPLC t.r. min.	[M+H] ⁺
1392	A133-M-B64 isómero R	7,96 (s, 1H), 7,36 - 7,90 (m, 1H), 7,12 - 7,31 (m, 1H), 7,09 - 7,39 (m, 1H), 4,54 (s, 1H), 3,95 (d, J = 4,9 Hz, 1H), 3,53 (s ancho, 1H), 3,33 (s, 13H), 3,15 - 3,41 (m, 1H), 3,08 - 3,29 (m, 1H), 2,52 - 2,90 (m, 1H), 2,41 - 2,62 (m, 4H)	4	1,44	472,2
1393	A127-M-B64 isómero R	8,00 (d, J = 8,4 Hz, 1H), 7,65 (s ancho, 1H), 7,39 - 7,41 (m, 1H), 7,24 - 7,30 (m, 2H), 7,18 - 7,22 (m, 2H), 7,08 (d, J = 1,8 Hz, 1H), 6,92 - 7,00 (m, 1H), 4,53 (s, 1H), 3,93 (s ancho, 1H), 3,51 (s, 3H), 2,53 - 2,93 (m, 4H)	4	1,148	422,2
1394	A157-M-B64 isómero R	8,10 (d, J = 5,4 Hz, 1H), 7,94 (d, J = 8,5 Hz, 1H), 7,73 (s ancho, 1H), 7,63 (d, J = 1,7 Hz, 1H), 7,44 - 7,54 (m, 1H), 7,27 (d, J = 1,8 Hz, 1H), 4,56 (s ancho, 1H), 3,92 (s ancho, 1H), 3,49 - 3,60 (m, 1H), 3,26 - 3,38 (m, 1H), 3,23 (s ancho, 1H), 3,16 (s, 1H), 2,82 (s, 1H), 2,65 (s, 1H), 2,48 - 2,56 (m, 4H)	4	0,92	423,2
1395	A158-M-B64 isómero S	7,94 (d, J = 8,4 Hz, 1H), 7,56 (d, J = 1,8 Hz, 1H), 7,15-7,16 (m, 1H), 7,14 - 7,20 (m, 2H), 7,09 - 7,13 (m, 2H), 7,03 - 7,08 (m, 1H), 4,77 (t, J = 5,5 Hz, 1H), 4,56 (s ancho, 1H), 3,87 - 3,99 (m, 1H), 3,56 - 3,63 (m, 1H), 2,54 - 2,80 (m, 4H)	4	1,331	472,2
1396	A127-M-B64 isómero S	6,91 - 7,00 (m, 1H), 4,50 - 4,59 (m, J = 7,1, 3,4, 3,4 Hz, 1H), 3,89 - 3,99 (m, J = 5,9 Hz, 1H), 3,53 - 3,63 (m, J = 13,6, 3,2 Hz, 1H), 2,76 (dd, J = 13,5, 5,7 Hz, 1H), 2,62 - 2,70 (m, 1H), 2,52 - 2,62 (m, 2H)	4	1,181	422,2
1397	A133-M-B65 isómero S	8,62 (d, J = 8,5 Hz, 1H), 8,49 (d, J = 8,4 Hz, 1H), 7,81 - 8,00 (m, 2H), 7,75 (d, J = 7,9 Hz, 2H), 5,00 - 5,18 (m, J = 2,7 Hz, 1H), 4,60 - 4,75 (m, J = 4,3 Hz, 1H)	4	1,571	457,2
1398	A127-M-B65 isómero S	8,62 (d, J = 8,4 Hz, 1H), 8,50 (d, J = 8,7 Hz, 1H), 7,89 (s ancho, 3H), 7,73 (s ancho, 1H), 5,05 - 5,22 (m, J = 3,5 Hz, 1H), 4,58 - 4,72 (m, J = 6,9, 6,9, 3,3 Hz, 1 H)	4	1,44	407,2
1399	A158-M-B65 isómero S	8,58 (d, J = 8,3 Hz, 1H), 8,45 (d, J = 8,3 Hz, 1H), 5,02 - 5,26 (m, J = 9,0, 4,6, 4,6 Hz, 1H), 4,63 - 4,77 (m, 1H)	4	1,451	425,2

## REIVINDICACIONES

1. Un compuesto de fórmula (I):

en la que:

10

5 R1 es un grupo -NR_aR^b o -OR^a y

R2 es - NH₂, -NHCOR^c, -NHCONHR^c, -NHSO₂R^c, -C=CR^d o R^d

en donde  $R^a$ ,  $R^b$ ,  $R^c$  y  $R^d$ , iguales o diferentes, son cada uno independientemente hidrógeno o un grupo además opcionalmente sustituido, seleccionado de alquilo  $C_1$ - $C_6$ , alquenilo  $C_2$ - $C_6$  o alquinilo  $C_2$ - $C_6$  lineal o ramificado, cicloalquilo  $C_3$ - $C_6$ , cicloalquil-alquilo( $C_1$ - $C_6$ ), heterociclilo, heterociclil-alquilo( $C_1$ - $C_6$ ), arilo, aril-alquilo( $C_1$ - $C_6$ ), heteroaril-alquilo( $C_1$ - $C_6$ ), o  $R^a$  y  $R^b$ , considerados junto con el átomo de nitrógeno al que están unidos, pueden formar un heterociclilo o heteroarilo de 3 a 7 miembros opcionalmente sustituido, que contiene opcionalmente un heteroátomo o grupo heteroatómico adicional seleccionado de S, O, N o NH, y sales farmacéuticamente aceptables del mismo.

2. Un compuesto de fórmula (I) según la reivindicación 1, en donde R2 es un fragmento indicado por cualquiera de los códigos A1-A158 y R1 es un fragmento indicado por cualquiera de los códigos B1-B27:

Fragmento	CÓDIGO
M M	A1
N N	A2
	A3
O N N	A4
	A5
*	A6
F M	A7
F O M	A8

Fragmento	CÓDIGO
F O N N	А9
но	A10
J N N N	A11
M-H-	A12
N N N N N N N N N N N N N N N N N N N	A13
M N N	A14
S M	A15
M-H-H-	A16

Fragmento	CÓDIGO
~ C N N N N N N N N N N N N N N N N N N	A17
	A18
	A19
□ M	A20
0=-N	A21
~ <b>X</b>	A22
N N	A24
	A25

Fragmento	CÓDIGO
^° C M	A26
a	A27
	A28
M	A29
	A30
	A31
	A32
S M	A33

Fragmento	CÓDIGO
€ M	A34
N N	A35
S II M	A36
M-H s	A37
	A38
M. H.	A39
m p s	<b>A4</b> 0
F H M	A41

Fragmento	CÓDIGO
₩ M	A42
M H O	A43
HN M	A44
× H ×	A45
M, NH	A46
	A47
M ZH O	A48
M. N.	A49

Fragmento	CÓDIGO
→ N M	A50
N _M	A51
M. ZH	A52
M F	A53
N N N	A54
F M	A55
F F	A56
M N O	A57

Francosta	oópico.
Fragmento	CÓDIGO A58
F A N	A59
Z H W	A60
O EF S	A61
M. ZH	A62
F N	A63
M F	A64
M-N	A65

Fragmento	CÓDIGO
F O O	A66
F F	A67
a H	A68
J. W	A69
F O	A70
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A71
N N N N N N N N N N N N N N N N N N N	A72
M p F	A73

Fragmento	CÓDIGO
S = O	A74
W-H CO	A75
ZI Z	A76
Z Z Z	A77
M H H	A78
w h h h a	A79
F N N M	A80
M N N	A81

Fragmento	CÓDIGO
M H H	A82
The state of the s	A83
M H H	A84
P N N N N N N N N N N N N N N N N N N N	A85
w H C	A86
	A87
F N N M	A88
M-H-H-C)	A89

Fragmento	CÓDIGO
M- H	A90
M N N N N N N N N N N N N N N N N N N N	A91
	A92
M H H	A93
C C C C C C C C C C C C C C C C C C C	A94
M H H	A95
M NH	A96
	A97

Fragmento	CÓDIGO
×	A98
	<b>A</b> 99
	A100
T N N N N	A101
F N N N N N N N N N N N N N N N N N N N	A102
THE STATE OF THE S	A103
M H H	A104
M NH	A105

Fragmento	CÓDIGO
	A106
	A107
w # 1	A108
M F C	A109
M. H. H.	<b>A110</b>
F H	A111
→ T M	A112
O S M	A113

Fragmento	CÓDIGO
√ S N M	A114
S N M	A115
,o, ↓ M	A116
~~~#\#\	A117
M H H	A118
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A119
XX XX	A120
~~~ H H M	A121

Fragmento	CÓDIGO
	A122
M ZH	A123
^Z =	A124
H₂N M	A125
HO M	A126
F M	A127
F _M	A128
FM	A129

Fragmento ·	CÓDIGO
2= > 2	A130
د د د	A131
M M	A132
F S	A133
F O O O	A134
F N M	A135
H ₂ N M	A136
	A137

Fragmento	CÓDIGO
O	A138
F M	A139
s de la constant de l	A140
· · · · · · · · · · · · · · · · · · ·	<b>A14</b> 1
	A142
F F M	A143
M N N	A144
Br H M	A145

Fragmento	CÓDIGO
O F	A146
∑ ×	A147
O F	A148
F F	A149
a N	A150

Fragmento	CÓDIGO
F M	A151
	A152
	A153
	A154
N M	A155

Fragmento	CÓDIGO
	A156
N F	A157
F M	A158

Fragmento	CÓDIGO	Fragmento	CÓDIGO		Fragmento	CÓDIGO
<u></u>	B1	∑, ll. w	B9		∕ Y. M	B17
но М	B2	″ N M	B10		T N	B18
O_M	В3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	B11		A M	B19
N M	B4	M-A-0	B12	-	M H	B20
N _N M	B5	→ ZH M	B13		II. W	B21
M. H.	<b>B</b> 6	M_ ET	B14		M. N.	B22
_o~_N_w	В7	~ H. M	B15		↓ N _M	B23
	B8	M. H.	B16		H.w	B24

Fragmento	CÓDIGO	Fragmento	CÓDIGO	[	Fragmento	CÓDIGO
√ Y Z Y N	B25	N N N M	B33		H ₂ N · M	B41
N-W	B26	S N	B34		`o^ H_™	B42
∕ L ^M	B27	→ H, M	B35		XXM	<b>B4</b> 3
N _M	B28	M H	B36		M, H	B44
M H	B29	M NH	B37		N _M	B45
F M. NH	B30	M N N	B38		×-×	B46
<u> </u>	B31	M. P. C.	B39		John H-w	B47
H.W	B32	w-H-(°)	B40		m H	B48

Fragmento	CÓDIGO	Fragmento	CÓDIGO	[	Fragmento	CÓDIGO
N_N_M	B49	M N	B55		м-	B61
	B50		B56		м Н он	B62
N M	B51		B57			B63
M-H	B52		<b>B</b> 58		M, H	B64
, N H W	B53	N N N	B59		M- NH2	B65
N N N N N N N N N N N N N N N N N N N	B54		B60			

- 3. Un procedimiento para preparar un compuesto de fórmula (I) como se define en la reivindicación 1, caracterizado porque el procedimiento comprende:
- 5 d) hacer reaccionar un compuesto de fórmula (I):

en donde R1 es - $OR^a$  y  $R^a$  es alquilo  $C_1$ - $C_6$ , y R2 es  $NH_2$ , según una cualquiera de las etapas alternativas:

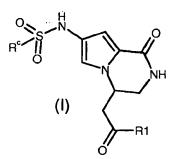
d.1) con un ácido o un haluro de acilo de fórmula (VI):

en donde  $R^c$  es como se define en la reivindicación 1 y Z es un halógeno o un grupo -OH, para dar un compuesto de fórmula (I):

5

en donde R1 es -OR $^{\rm a}$  y R $^{\rm a}$  es alquilo C $_{\rm 1}$ -C $_{\rm 6}$  y R $^{\rm c}$  es como se ha definido antes; o

d.2) con un isocianato de fórmula (VII):


en donde R^c es como se ha definido antes, para dar un compuesto de fórmula (I):

10

en donde R1 es -OR a  y R a  es alquilo C $_1$ -C $_6$  y R c  es como se ha definido antes; o d.3) con un haluro de sulfonilo de fórmula (VIII):

$$R^{c}SO_{2}Z'$$
 (VIII)

en donde R^c es como se ha definido antes y Z' es un halógeno, para dar un compuesto de fórmula (I):



15

en donde R1 es -OR $^{\rm a}$  y R $^{\rm a}$  es alquilo C $_{\rm 1}$ -C $_{\rm 6}$  y R $^{\rm c}$  es como se ha definido antes; o

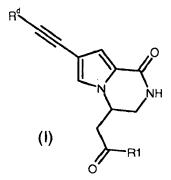
h) hacer reaccionar un compuesto de fórmula (XI):

en donde R1 es -OR^a y R^a es alquilo C₁-C₆, según una cualquiera de las etapas alternativas:

h.1) con un ácido o éster borónico de fórmula (XII):

5

20


$$R2'B(OZ"Z"")_2 \qquad (XII)$$

en donde R2' es R^d y R^d es como se define en la reivindicación 1, Z" y Z" son H, alquilo o considerados junto con los átomos de oxígeno a lo que están unidos, pueden formar un heterociclo de 5 a 6 miembros opcionalmente sustituido, para dar un compuesto de fórmula (I):

10 en donde R1 es -OR^a y R^a es alquilo C₁-C₆ y R2' es como se ha definido antes; o

h.2) con un alquino terminal de fórmula (XIII):

en donde R^d es como se ha definido antes, para dar un compuesto de fórmula (I):



en donde R1 es -OR^a y R^a es alquilo C₁-C₆ y R^d es como se ha definido antes;

opcionalmente separar el compuesto de fórmula (I) resultante en los isómeros individuales; convertir el compuesto de fórmula (I) resultante en un compuesto de fórmula (I) diferente, sustituyendo el grupo -OR^a por un grupo diferente que representa R1, y/o en una sal farmacéuticamente aceptable.

4. Un procedimiento según la reivindicación 3, caracterizado porque la conversión opcional de un compuesto de fórmula (I) en otro compuesto de fórmula (I), se lleva a cabo por una o más de las siguientes reacciones:

m.1) hidrólisis ácida o básica de un compuesto de fórmula (I), en donde R1 es - $OR^a$  y  $R^a$  es alquilo  $C_1$ - $C_6$ , para dar el correspondiente compuesto de fórmula (I) en donde R1 es - $OR^a$  y  $R^a$  es hidrógeno, o la sal correspondiente;

m.2) transesterificación de un compuesto de fórmula (I) en donde R1 es - $OR^a$  y  $R^a$  es alquilo  $C_1$ - $C_6$ , por reacciones con un compuesto de fórmula (XIV):

para dar el correspondiente compuesto de fórmula (I) en donde R1 es -OR^a y R^a es un alquilo C₁-C₆ diferente;

5 m.3) aminolisis de un compuesto de fórmula (I) en donde R₁ es -OR^a y R^a es alquilo C₁-C₆, por reacción con un compuesto de fórmula (XV):

$$HNR^aR^b$$
 (XV)

para dar el correspondiente compuesto de fórmula (I) en donde R1 es -NRªRb;

m.4) esterificación de un compuesto de fórmula (I) en donde R1 es un grupo -OH o su sal correspondiente, por reacción con un compuesto de fórmula (XIV) como se ha definido antes, para dar el correspondiente compuesto de fórmula (I) en donde R1 es -OR^a;

m.5) amidación de un compuesto de fórmula (I) en donde R1 es un grupo -OH o su sal correspondiente, por reacción con un compuesto de fórmula (XV) como se ha definido antes, para dar el correspondiente compuesto de fórmula (I) en donde R1 es -NRªR^b.

5. Un procedimiento para preparar un compuesto de fórmula (I) como se define en la reivindicación 1, o una de sus sales farmacéuticamente aceptables, cuyo procedimiento comprende:

p) hidrolizar en condiciones ácidas o básicas el compuesto de fórmula (V) en donde R1 es -OR a  y R a  es alquilo C $_1$ -C $_6$ ;

r) hacer reaccionar el derivado de ácido resultante con una resina formil-poliestirénica derivatizada de fórmula (XIX):

en donde (P) es la resina y Ra es como se define en la reivindicación 1;

s) hacer reaccionar el compuesto de fórmula (XX) resultante:

20

У

en donde (P) y R^a son como se han descrito antes, con un agente de reducción adecuado tal como cloruro de cromo (II), hidrogenosulfuro de tetrabutilamonio o cloruro de estaño (II);

t) hacer reaccionar el compuesto de fórmula (XXI) resultante:

$$(XXI) \bigvee_{O} \bigvee_{R^a}^{NH}$$

en donde (P) y R^a son como se han descrito antes, como se describen en la reivindicación 3 en una cualquiera de las etapas (d.1) y (d.2);

u) escindir la resina en condiciones ácidas del compuesto de fórmula (XXII) resultante:

para dar un compuesto de fórmula (I), en donde R2" es -NHCOR^c o -NHCONHR^c, en donde R^c es como se define en la reivindicación 1, y R1 es -NHR^a, en donde R^a es como se define en la reivindicación 1;

- 5 (
  - v) hidrolizar en condiciones ácidas o básicas el compuesto de fórmula (XI) en donde R1 es -OR a  y R a  es alquilo C $_1$ -C $_6$ ;
  - w) hacer reaccionar el derivado de ácido resultante con una resina formil-poliestirénica derivatizada de fórmula (XIX):

$$(P)-CH_2-NHR^a$$
 (XIX)

- 10 en donde (P) es la resina y R^a es como se ha definido antes;
  - z) hacer reaccionar el compuesto de fórmula (XXIII) resultante:

en donde (P) y R^a son como se han descrito antes, con un ácido o éster borónico de fórmula (XII):

$$R2"'B(OZ"Z"')_2 \qquad (XII)$$

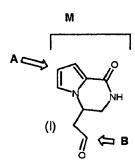
- en donde R2" es R^d y R^d es un grupo además opcionalmente sustituido, seleccionado de alquilo  $C_1$ - $C_6$  lineal o ramificado, cicloalquilo  $C_3$ - $C_6$ , cicloalquil-alquilo( $C_1$ - $C_6$ ), heterociclilo, heterociclil-alquilo( $C_1$ - $C_6$ ), arilo, aril-alquilo( $C_1$ - $C_6$ ), heteroarilo o heteroaril-alquilo( $C_1$ - $C_6$ ), y Z" y Z" son como se definen en la reivindicación 3;
  - x) escindir la resina en condiciones ácidas del compuesto de fórmula (XXVI) resultante:

- 20 para dar un compuesto de fórmula (I), en donde R2" es como se ha definido antes y R1 es -NHRª,
  - en donde Ra es como se ha definido antes;

opcionalmente separar el compuesto de fórmula (I) resultante en los isómeros individuales; convertir el compuesto de fórmula (I) resultante en un compuesto de fórmula (I) diferente y/o en una sal farmacéuticamente aceptable si se desea.

6. Una biblioteca de dos o más compuestos de fórmula (I):

en la que:


10

R1 es un grupo -NR^aR^b o -OR^a y

5 R2 es - NH₂, -NHCOR^c, -NHCONHR^c, -NHSO₂R^c, -C=CR^d o R^d

en donde  $R^a$ ,  $R^b$ ,  $R^c$  y  $R^d$ , iguales o diferentes, son cada uno independientemente hidrógeno o un grupo además opcionalmente sustituido, seleccionado de alquilo  $C_1$ - $C_6$ , alquenilo  $C_2$ - $C_6$  o alquinilo  $C_2$ - $C_6$  lineal o ramificado, cicloalquilo  $C_3$ - $C_6$ , cicloalquil-alquilo( $C_1$ - $C_6$ ), heterociclilo, heterociclil-alquilo( $C_1$ - $C_6$ ), arilo, aril-alquilo( $C_1$ - $C_6$ ), heteroarilo y heteroaril-alquilo( $C_1$ - $C_6$ ), o  $R^a$  y  $R^b$ , considerados junto con el átomo de nitrógeno al que están unidos, pueden formar un heterociclilo o heteroarilo de 3 a 7 miembros opcionalmente sustituido, que contiene opcionalmente un heteroátomo o grupo heteroatómico adicional seleccionado de S, O, N o NH, y sales farmacéuticamente aceptables del mismo.

7. Una biblioteca según la reivindicación 6, en donde el compuesto tiene la fórmula:



en donde los fragmentos A y B son como se definen en la reivindicación 2, y en donde el compuesto es uno de los citados en la presente memoria a continuación:

## ES 2 536 730 T3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1	A1-M-B1	2	5,17	323,2
2	A1-M-B2	2	4,49	295,2
3	A1-M-B6	2	6,04	398,3
4	A1-M-B7	2	5,06	352,3
5	A1-M-B8	. 2	4,27	380,3
6	A1-M-B9	2	6,05	364,3
7	A2-M-B1	2	4,53	329,2
8	A2-M-B2	2	3,06	301,2
9	A2-M-B3	2	5,31	357,3
10	A2-M-B4	2	4,15	398,3
11	A3-M-B1	2	3,92	372,2
12	A3-M-B2	2	2,8	344,2
13	A3-M-B5	2	3,77	411,3
14	A4-M-B1	2	4,08	392,2
15	A4-M-B10	2	3,72	461,3
16	A4-M-B11	2	3,8	461,3
17	A4-M-B2	2	2,86	364,2
18	A5-M-B1	2	3,95	357,2
19	A5-M-B12	1	2,54	412,3
20	A5-M-B16	1	3,19	432,3
21	A5-M-B17	1	2,38	356,3
22	A5-M-B18	1	3,6	424,3
23	A5-M-B2	2	2,72	329,2
24	A5-M-B21	1	3,34	432,3
25	A5-M-B22	1	3,55	424,3
26	A5-M-B23	1	2,94	384,3
27	A5-M-B24	1	3,28	410,3
28	A5-M-B26	1	2,99	396,3
29	A5-M-B5	2	3,74	396,3
30	A5-M-B7	2	3,11	386,3
31	A5-M-B7	1	2,34	386,3
32	A5-M-B8	2	2,72	413,3
33	A6-M-B1	2	4,18	321,2

Entrada	Compuesto	Método HPLC	HPLC tR	[M+H] ⁺
34	A7-M-B1	2	3,99	360,2
35	A7-M-B12	1	2,62	415,3
36	A7-M-B13	1	2,7	373,3
37	A7-M-B14	1	3,11	421,3
38	A7-M-B16	1	3,33	435,3
39	A7-M-B17	1	2,48	359,2
40	A7-M-B18	1	3,64	427,3
41	A7-M-B19	1	2,49	371,2
42	A7-M-B2	2	3,7	332,2
43	A7-M-B20	1	3,35	435,3
44	A7-M-B21	1	3,38	435,3
45	A7-M-B22	1	3,59	427,3
46	A7-M-B23	1	3	387,3
47	A7-M-B24	1	3,33	413,3
48	A7-M-B25	1	2,73	373,3
49	A7-M-B26	-1	3,06	399,3
50	A7-M-B27	11	2,61	371,2
51	A7-M-B7	1	2,43	389,3
52	A8-M-B1	2	3,96	396,2
53	A8-M-B2	2	3,5	368,2
54	A9-M-B1	2	4,04	375,2
55	A9-M-B14	1	3,19	436,3
56	A9-M-B15	1	3,04	402,3
57	A9-M-B16	1	3,38	450,3
58	A9-M-B17	1	2,53	374,3
59	A9-M-B18	1	3,69	442,3
60	A9-M-B19	. 1	2,56	386,3
61	A9-M-B2	2	3,68	347,2
62	A9-M-B20	1	3,43	450,3
63	A9-M-B21	1	3,47	450,3
64	A9-M-B22	1	3,66	442,3
65	A9-M-B23	1	3,08	402,3
66	A9-M-B24	1	3,41	428,3

68 69 70 71 72 73 74	A9-M-B26 A9-M-B27 A9-M-B7 A10-M-B2 A11-M-B6 A11-M-B7	1 1 1 2	3,13 2,67 2,48	414,3 386,3
69 70 71 72 73 74	A9-M-B7 A10-M-B2 A11-M-B6	1 2		386,3
70 71 72 73 74	A10-M-B2 A11-M-B6	2	2,48	
71 72 73 74	A11-M-B6		1 - 1	404,3
72 73 74			1,34	265,2
73 74	A11-M-B7	2	2.7	398,3
74		2	1,06	352,3
74	A11-M-B8	2	3,32	379,3
	A11-M-B9	2	2,52	364,3
1 / 1 /	12-M-B13	1	1,99	319,3
	12-M-B14	1	2,43	367,3
	12-M-B16	1	2,71	381,3
-	12-M-B20	1	2,73	381,3
	12-M-B21	1	2,79	381,3
	12-M-B22	1	3,03	373,3
	A12-M-B7	2	3,29	335,3
	A12-M-B8	2	2,69	362,3
	A13-M-B7	2	2,81	334,2
	A13-M-B8	2	1,26	361,3
	A13-M-B9	2	3,12	346,3
<u> </u>	A14-M-B7	2	3,84	389,2
	A14-M-B8	2	3,03	416,3
	15-M-B12	1	2,61	417,3
	15-M-B13	1	2,68	375,2
	15-M-B14	1	3,07	423,2
	15-M-B15	1	2,92	389,3
	15-M-B16	1	3,28	437,3
	15-M-B18	1	3,59	429,3
	15-M-B19	1	2,52	373,2
95 A	15-M-B20	1	3.3	437,3
	15-M-B21	1	3,32	437,3
97 <i>F</i>	15-M-B22	1	3,52	429,3
98 /	15-M-B23	1	2,97	389,3
99 A	15-M-B24	1	3,28	415,3
100 F	15-M-B25	1	2,72	375,2
101 <i>A</i>	15-M-B26	1	3,02	401,3
102 F	115-M-B27	1	2,6	373,2
103	A15-M-B7	1	2,44	391,2
	A15-M-B8	2	2,85	418,3
	16-M-B14	1	3,32	424,3
	16-M-B18	1	3,83	430,4
	\16-M-B20	1	3,56	438,3
108 <i>F</i>	16-M-B21	1	3,6	438,3
109	16-M-B22	1	3,81	430,4
110	16-M-B23	1	3,23	390,3
111 /	16-M-B24	1	3,54	416,4
112 A	116-M-B27	1	2,82	374,3
113	A16-M-B8	2	2,89	419,4
	17-M-B14	1	2,89	448,3
	17-M-B21	1	3,17	462,3
	17-M-B24	1	3,11	440,3
	A17-M-B6	2	4,02	462,3
	A17-M-B8	2	2,72	443,3

120 121 122 123	A17-M-B9 A18-M-B5	HPLC 2		
120 121 122 123	A18-M-B5		3,97	428,3
121 122 123		2	3,62	399,3
122 123	A19-M-B5	2	4,38	388,3
123	A20-M-B1	2	5,13	333,2
<del> </del>	A20-M-B6	2	5,98	408,2
	A20-M-B7	2	4,99	362,2
	A20-M-B8	2	3,33	389,2
	A20-M-B9	2	5,99	374,3
	A21-M-B1	2	4,61	344,2
	A22-M-B1	2	5,12	355,3
	A22-M-B2	2	4,4	327,2
	A22-M-B6	2	5,87	430,3
	A22-M-B7	2	4,94	384,3
	A22-M-B8	2	4,14	411,3
	A22-M-B9	2	5,88	396,3
	A24-M-B6	2	4,17	375,3
	A24-M-B7	2	2,45	329,3
	A24-M-B8	2	1,97	356,3
<del></del>	A24-M-B9	2	4,07	341,3
	A25-M-B1	2	6,16	315,3
	A25-M-B2	2	4,58	287,2
	A25-M-B6	2	6,23	390,3
	A25-M-B7	2	5,2	344.3
	A25-M-B8	2	4,3	371,3
	A25-M-B9	2	6,24	356,3
	A26-M-B1	2	5,9	353,2
	A26-M-B2	2	4,48	325,2
	A26-M-B6	2	5,96	428,3
	A26-M-B7	2	5,04	382,3
	A26-M-B8	2	4,22	409,3
	A26-M-B9	2	5,98	394,3
	A27-M-B1	2	6,48	357,2
	A27-M-B2	2	4,98	329,2
	A27-M-B6	2	6,5	432,2
	A27-M-B7	2	5,57	386,2
	A27-M-B8	2	4,72	413,3
	A27-M-B9	2	6,54	398,3
	A28-M-B1	2	6,92	416,3
	A28-M-B2	2	5,52	388,3
	A28-M-B6	2	6,9	491,3
	A28-M-B7	2	6,07	445,3
	A28-M-B8	2	5,16	472,4
	A28-M-B9	2	6,95	457,4
	A29-M-B1	2	5,12	263.2
	A29-M-B2	2	3,51	235,2
	A29-M-B6	2	5,35	338,3
	A29-M-B7	2	4,14	292,3
	A29-M-B8	2	3,35	319,3
	A29-M-B9	2	5,31	304,3
	A30-M-B1	2	6,8	331,3
-	A30-M-B2	2	5,11	303,3
	A30-M-B6	2	6,76	406,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
172	A30-M-B7	2	5,76	360,3
173	A30-M-B8	2	4,78	387,4
174	A30-M-B9	2	6,82	372,4
175	A31-M-B1	2	5,92	325,2
176	A31-M-B2	2	4,45	297,2
177	A31-M-B6	2	5,98	400,3
178	A31-M-B7	2	5,02	354,3
179	A31-M-B8	2	4,17	381,3
180	A31-M-B9	2	5,99	366,3
181	A32-M-B1	2	6,4	359,2
182	A32-M-B2	2	4,92	331,2
183	A32-M-B6	2	6,41	434,3
184	A32-M-B7	2	5,5	388,2
185	A32-M-B8	2	4,7	415,3
186	A32-M-B9	2	6,45	400,3
187	A33-M-B6	2	5,42	380,2
188	A33-M-B7	2	4,33	334,2
189	A33-M-B8	3	3,88	361,2
190	A33-M-B9	2	5,39	346,3
191	A34-M-B6	2	5,55	374,3
192	A34-M-B7	2	4,48	328,3
193	A34-M-B8	3	4,11	355,3
194	A34-M-B9	2	5,49	340,3
195	A35-M-B7	2	4,62	371,3
196	A36-M-B12	1	3,02	425,3
197	A36-M-B14	1	3,44	431,3
198	A36-M-B15	1	3,33	397,3
199	A36-M-B16	1	3,63	445,3
200	A36-M-B17	1	2,91	369,3
201	A36-M-B20	1	3,65	445,3
202	A36-M-B21	1	3,65	445,3
203	A36-M-B22	1	3,85	437,3
204	A36-M-B26	1	3,4	409,3
205	A36-M-B7	1	2,86	399,3
206	A37-M-B12	1	2,3	403,2
207	A37-M-B13	1	2,34	361,2
208	A37-M-B14	1	2,77	409,2
209	A37-M-B15	1	2,61	375,2
210	A37-M-B16	1	3	423,2
211	A37-M-B17	1	2,14	347,2
212	A37-M-B18	1	3,33	415,3
213	A37-M-B19	1	2,17	359,2
214	A37-M-B20	1	3,02	423,2
215	A37-M-B21	1	3,05	423,2
216	A37-M-B22	1	3,26	415,3
217	A37-M-B23	1	2,65	375,2
218	A37-M-B24	1	2,98	401,3
219	A37-M-B25	1	2,37	361,2
220	A37-M-B26	1	2,7	387,2
221	A37-M-B27	1	2,26	359,2
222	A37-M-B7	1	2,11	377,2
223	A38-M-B12	<del></del>	2,75	411,3
		L		,,,

Entrada	Compuesto	Método HPLC	HPLC tR:	[M+H]*
224	A38-M-B13	1	2,84	369,3
225	A38-M-B14	1 .	3,21	417,3
226	A38-M-B15	1	3,07	383,3
227	A38-M-B16	1	3,41	431,3
228	A38-M-B17	1	2,63	355,3
229	A38-M-B18	1	3,7	423,3
230	A38-M-B19	1	2,66	367,3
231	A38-M-B20	1	3,43	431,3
232	A38-M-B21	1	3,46	431,3
233	A38-M-B22	1	3,65	423,3
234	A38-M-B23	1	3,1	383,3
235	A38-M-B24	1	3,41	409,3
236	A38-M-B25	1	2,87	369,3
237	A38-M-B26	1	3,16	395,3
238	A38-M-B27	1	2,74	367,3
1	A38-M-B7	1	2,58	385.3
239	A39-M-B12	1	2,33	422,3
240 241	A39-M-B13	1	2,39	380,3
	A39-M-B14	1	2,79	428,3
242	A39-M-B15	1	2,64	394,3
243	A39-M-B16	1	3,02	442,3
244	A39-M-B18	1	3,32	434,3
245	A39-M-B19	1	2,22	378,2
246	A39-M-B20	1 1		442,3
247	A39-M-B21	1	3,02	442,3
248	A39-M-B22	1	3,04	434,3
249	A39-M-B23	1	3,24	394,3
250	A39-M-B24	1	2,67	420,3
251	A39-M-B25	1	2,98 2,42	380,3
252	A39-M-B26	1	2,72	406,3
253	A39-M-B27	1		378,2
254	A39-M-B7	1	2,32 2,18	396,3
255	A40-M-B12	1	2,18	403,2
256 257	A40-M-B13	1	2,36	361,2
<del></del>	A40-M-B14	1	2,30	409,2
258	A40-M-B15	1	2,63	375,2
259	A40-M-B16	1	3,04	423,2
260	A40-M-B18			415,3
261	A40-M-B19	1	3,38 2,17	
262		1		359,2
263	A40-M-B20		3,06	423,2
264	A40-M-B21	1	3,1	423,2
265	A40-M-B22	. 1	3,31	415,3
266	A40-M-B23	1	2,67	375,2
267	A40-M-B24	1	3,03	401,3
268	A40-M-B25	1	2,39	361,2
269	A40-M-B26	1	2,73	387,2
270	A40-M-B27	1	2,27	359,2
271	A40-M-B7	1	2,13	377,2
272	A41-M-B12	1	2,88	433,3
273	A41-M-B13	1	2,97	391,3
274	A41-M-B14	1	3,36	439,3
275	A41-M-B15	1	3,22	405,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
276	A41-M-B16	1	3,56	453,3
277	A41-M-B18	1	3,8	445,3
278	A41-M-B19	1	2,78	389,2
279	A41-M-B20	1	3,59	453,3
280	A41-M-B21	1	3,6	453,3
281	A41-M-B22	1	3,8	445,3
282	A41-M-B23	1	3,26	405,3
283	A41-M-B24	1	3,57	431,3
284	A41-M-B25	1	3	391,3
285	A41-M-B26	1	3,31	417,3
286	A41-M-B27	1	2,87	389,2
287	A41-M-B7	1	2,68	407,2
288	A42-M-B12	1	2,89	425,3
289	A42-M-B13	1	2,99	383,3
290	A42-M-B14	1	3,38	431,3
291	A42-M-B15	1	3,23	397,3
292	A42-M-B16	1	3,56	445,3
293	A42-M-B18	1	3,84	437,3
294	A42-M-B19	1	2,8	381,3
295	A42-M-B20	1	3,59	445,3
296	A42-M-B21	1	3,63	445,3
297	A42-M-B22	1	3,82	437,3
298	A42-M-B23	1	3,27	397,3
299	A42-M-B24	1	3,57	423,3
300	A42-M-B25	1	3,02	383,3
301	A42-M-B26	1	3,33	409,3
302	A42-M-B27	1	2,9	381,3
303	A42-M-B7	1	2,73	399,3
304	A43-M-B12	1	2,84	449,2
305	A43-M-B14	1	3,3	455,2
306	A43-M-B15	1	3,16	421,2
307	A43-M-B16	1	3,5	469,2
308	A43-M-B18	1	3,76	461,3
309	A43-M-B19	1	2,74	405,2
310	A43-M-B20	1	3,53	469,2
311	A43-M-B21	1	3,55	469,2
312	A43-M-B22	1 .	3,75	461,3
313	A43-M-B23	1	3,21	421,2
314	A43-M-B24	1	3,5	447,3
315	A43-M-B25	1	2,95	407,2
316	A43-M-B26	1	3,25	433,2
317	A43-M-B27	1	2,83	405,2
318	A43-M-B7	1	2,66	423,2
319	A44-M-B13	1	2,26	429,3
320	A44-M-B14	1	2,74	381.3
321	A44-M-B15	1	2,54	347,3
322	A44-M-B16	1	2,98	395,3
323	A44-M-B17	1	2,04	319,3
324	A44-M-B20	1	3,02	395,3
325	A44-M-B21	1	3,08	395,3
326	A44-M-B22	1	3,3	387,3
327	A44-M-B25	. 1	2.29	333,3
		<u></u>		· · · ·

Entrada	Compuesto	Método	HPLC tR	[M+H] ⁺
<b></b>		HPLC	(min)	
328	A44-M-B26	1	2,65	359,3
329	A45-M-B12	1	2,66	391,3
330	A45-M-B13	1	2,77	349,3
*331	A45-M-B14	1	3,21	397,3
332	A45-M-B15	1	3,05	363,3
333	A45-M-B17	1	2,52	335,3
334	A45-M-B20	11	3,45	411,3
335	A45-M-B21	1	3,5	411,3
336	A45-M-B22	1	3,72	403,4
337	A45-M-B25	1	2,81	349,3
338	A45-M-B26	, 1	3,15	375,3
339	A45-M-B7	1	2,46	365,3
340	A46-M-B12	1	2,34	422,3
341	A46-M-B13	1	2,4	380,3
342	A46-M-B14	1	2,8	428,3
343	A46-M-B15	1	2,65	394,3
344	A46-M-B16	1	3,03	442,3
345	A46-M-B17	1	2,21	366,2
346	A46-M-B18	1	3,25	434,3
347	A46-M-B19	1	2,23	378,2
348	A46-M-B20	1	3,04	442,3
349	A46-M-B25	1	2,42	380,3
350	A46-M-B26	1	2,73	406,3
351	A46-M-B27	1	2,32	378,2
352	A46-M-B7	1	2,18	396,3
353	A47-M-B13	-1	2,61	369,3
354	A47-M-B14	1	3,06	417,3
355	A47-M-B15	1	2,89	383,3
356	A47-M-B16	1	3,26	431,3
357	A47-M-B17	<u>i</u>	2,38	355,3
358	A47-M-B18	1	3,58	423,3
359	A47-M-B19	1	2,4	367,3
360	A47-M-B20	1	3,31	431,3
	A47-M-B21	1	3,35	431,3
361	A47-M-B22	1	3,55	423,3
362	A47-M-B23	1	2,92	383,3
363	A47-M-B24	1	3,27	409,3
364	A47-M-B25	1		
365	A47-M-B26	1	2,64	369,3
366		1	2,99	395,3
367	A47-M-B27		2,52	367,3
368	A47-M-B7	1	2,35	385,3
369	A48-M-B12	1	2,77	411,3
370	A48-M-B13	1	2,84	369,3
371	A48-M-B14	1	3,23	417,3
372	A48-M-B15	1	3,09	383,3
373	A48-M-B16	1	3,44	431,3
374	A48-M-B17	1	2,64	355,3
375	A48-M-B19	1	2,67	367,3
376	A48-M-B20	1	3,45	431,3
377	A48-M-B21	1	3,48	431,3
378	A48-M-B22	1	3,67	423,3
379	A48-M-B26	1	3,16	395,3

	Compuesto	Método HPLC	HPLC tR (min)	[M+H]*
380	A48-M-B7	1	2,6	385,3
	A49-M-B12	1	2,78	403,3
	A49-M-B13	1	2,89	361,3
	A49-M-B14	1	3,31	409,3
	A49-M-B15	1	3,16	375,3
	A49-M-B16	1	3,51	423,3
	A49-M-B17	1	2,66	347,3
	A49-M-B18	1	3,82	415,4
	A49-M-B19	1	2,68	359,3
	A49-M-B20	1	3,56	423,3
	A49-M-B21	1	3,59	423,3
	A49-M-B22	1	3,79	415,4
	A49-M-B23	1	3,2	375,3
	A49-M-B24	1	3,53	401,3
	A49-M-B25	1	2,92	361,3
	A49-M-B26	1	3,26	387,3
	A49-M-B27	1	2,8	359,3
397	A49-M-B7	1	2,6	377,3
	A50-M-B12	1	2,58	391,3
	A50-M-B13	1	2,66	349,3
	A50-M-B14	1	3,15	397,3
	A50-M-B15	1	2,95	363,3
	A50-M-B16	1	3,33	411,3
	A50-M-B17	1	2,4	335,3
<u> </u>	A50-M-B20	1	3,39	411,3
	A50-M-B21	1	3,44	411,3
	A50-M-B22	1	3,66	403,4
<del></del>	A50-M-B25	1	2,72	349,3
	A50-M-B26	1	3,06	375,3
	A51-M-B12	1	2,37	377,3
<del></del>	A51-M-B13	1	2,44	335,3
411	A51-M-B14	1	2,91	383,3
412	A51-M-B15	1	2,73	349,3
413	A51-M-B16	1	3,15	397,3
414	A51-M-B17	1	2,2	321,3
415	A51-M-B22	1	3,48	389,3
416	A51-M-B25	1	2,47	335,3
417	A51-M-B26	1	2,83	361,3
	A51-M-B27	1	2,34	333,3
<u> </u>	A52-M-B12	1	2,89	425,3
	A52-M-B13	1	2,99	383,3
	A52-M-B14	1	3,38	431,3
422	A52-M-B15	1	3,24	397,3
	A52-M-B16	1	3,56	445,3
	A52-M-B18	1	3,83	437,3
	A52-M-B19	1	2,8	381,3
426	A52-M-B20	1	3,59	445,3
-	A52-M-B21	1	3,62	445,3
428	A52-M-B22	1	3,82	437,3
429	A52-M-B23	1	3,28	397,3
430	A52-M-B24	11	3,57	423,3
431	A52-M-B25	1	3,03	383,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]*
432	A52-M-B26	1	3,33	409,3
433	A52-M-B27	1	2,91	381,3
434	A52-M-B7	1	2,72	399,3
435	A53-M-B12	1	2,26	433,3
436	A53-M-B13	1	2,31	391,3
437	A53-M-B14	1	2,75	439,3
438	A53-M-B15	1	2,57	405,3
439	A53-M-B16	1	2,98	453,3
440	A53-M-B20	1	3,01	453,3
441	A53-M-B21	1	3	453,3
442	A53-M-B26	1	2,65	417,3
443	A53-M-B7	1	2,08	407,2
444	A54-M-B13	1	2,38	335,3
445	A54-M-B14	1	2,88	383,3
446	A54-M-B15	1	2,67	349,3
447	A54-M-B20	<del>- i</del>	3,15	397,3
448	A54-M-B21	1	3,2	397,3
449	A54-M-B26	1	2,78	361,3
450	A55-M-B12	<del>- i</del>	2,55	433,3
450	A55-M-B13	1	2,62	391.3
	A55-M-B14	1	3,06	439,3
452	A55-M-B15	1	2,88	405,3
453	A55-M-B16	1	3,26	453,3
454	A55-M-B17	1	2,4	
455	A55-M-B18			377,2
456	A55-M-B19	1	3,51 2,43	445,3 389,2
457	A55-M-B20	1	3,29	453,3
458	A55-M-B21	1		
459	A55-M-B22	1	3,33	453,3 445,3
460	A55-M-B23	1	3,53	
461	A55-M-B25	1	2,93 2,65	405,3
462	A55-M-B26	1	2,98	391,3 417,3
463	A55-M-B27	1		
464	A55-M-B7		2,53	389,2
465	<del></del>		2,36	407,2
466	A56-M-B13	1	2,99	391,3
467	A56-M-B14 A56-M-B15	1	3,38	439,3
468	A56-M-B16	1	3,23	405,3
469		1	3,58	453,3
470	A56-M-B18		3,86	445,3
471	A56-M-B19	1	2,79	389,2
472	A56-M-B20	11	3,61	453,3
473	A56-M-B21	1	3,62	453,3
474	A56-M-B22	1	3,81	445,3
475	A56-M-B23	1	3,28	405,3
476	A56-M-B24	1	3,59	431,3
477	A56-M-B25	1	3,01	391,3
478	A56-M-B26	1	3,33	417,3
479	A56-M-B27	1	2,89	389,2
480	A56-M-B7	1	2,7	407,2
481	A57-M-B12	1	3,09	425,3
482	A57-M-B13	1	3,2	383,3
483	A57-M-B14	1	3,53	431,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]*
484	A57-M-B15	1	3,42	397,3
485	A57-M-B16	1	3,71	445,3
486	A57-M-B18	1	3,97	437,3
487	A57-M-B19	1	3,05	381,3
488	A57-M-B20	1	3,73	445,3
489	A57-M-B21	1	3,74	445,3
490	A57-M-B22	2	5,77	437,3
491	A57-M-B23	1	3,45	397,3
492	A57-M-B24	1	3,72	423,3
	A57-M-B25	1	3,23	383,3
493	A57-M-B26	1	3,49	409,3
494	A57-M-B27	1	3,13	381,3
495	A57-M-B7	1		
496		1	2,95	399,3
497	A58-M-B13	1	2,53	375,2
498	A58-M-B15		2,8	389,3
499	A58-M-B16	1 1	3,16	437,3
500	A58-M-B17		2,32	361,2
501	A58-M-B20	1	3,19	437,3
502	A58-M-B21	1	3,21	437,3
503	A58-M-B25	1	2,56	375,2
504	A58-M-B26	1	2,88	401,3
505	A59-M-B12	1	2,67	449,2
506	A59-M-B13	1	2,75	407,2
507	A59-M-B14	1	3,19	455,2
508	A59-M-B15	1	3,01	421,2
509	A59-M-B16	1	3,38	469,2
510	A59-M-B18	. 1	3,69	461,3
511	A59-M-B19	1	2,55	405,2
512	A59-M-B20	1	3,41	469,2
513	A59-M-B21	1	3,46	469,2
514	A59-M-B22	1	3,65	461,3
515	A59-M-B23	1	3,06	421,2
516	A59-M-B25	1	2,78	407,2
517	A59-M-B26	1	3,12	433,2
518	A59-M-B27	1	2,65	405,2
519	A59-M-B7	1	2,47	423,2
520	A60-M-B12	1	2,34	377,3
521	A60-M-B13	1	2,4	335,3
522	A60-M-B14		2,88	383,3
523	A60-M-B15	1	2,69	349,3
524	A60-M-B16	1	3,1	397,3
525	A60-M-B20	1	3,15	397,3
526	A60-M-B21	1	3,21	397,3
527	A60-M-B22	1	3,44	389,3
528	A60-M-B23	1	2,73	349,3
529	A60-M-B25	1	2,43	335,3
530	A60-M-B26	1	2,81	361,3
531	A60-M-B27	1 .	2,3	333,3
532	A61-M-B13	1	2,52	335,3
533	A61-M-B14	1	2,98	383,3
534	A61-M-B15	1	2,8	349,3
535	A61-M-B16	1	3,2	397,3

Entrada	0	Método	HPLC tR	
	Compuesto	HPLC	(min)	[M+H]*
536	A61-M-B17	1	2,27	321,3
537	A61-M-B19	1	2,31	333,3
538	A61-M-B20	1	3,25	397,3
539	A61-M-B21	1	3,3	397,3
540	A61-M-B26	1	2,9	361,3
541	A62-M-B12	1	2,42	397,3
542	A62-M-B13	1	2,49	355,3
543	A62-M-B14	-	2,91	403,3
544	A62-M-B15	1	2,75	369,3
545	A62-M-B16	1	3,13	417,3
546	A62-M-B17	1	2,26	341,3
547	A62-M-B18	1	3,46	409,3
548	A62-M-B19	1	2,29	353,3
549	A62-M-B20	1	3,16	417,3
550	A62-M-B21	1	3,2	417,3
551	A62-M-B22	1	3,39	409,3
552	A62-M-B23	1	2,78	369,3
553	A62-M-B24	1	3,12	395,3
554	A62-M-B25	1	2,51	355,3
555	A62-M-B26	1	2,83	381,3
556	A62-M-B27	1	2,38	353,3
557	A62-M-B7	1	2,24	371,3
558	A63-M-B12	1	2,96	429,3
559	A63-M-B13	1	3,07	387,3
560	A63-M-B14	1	3,41	435,3
561	A63-M-B15	1	3,3	401,3
562	A63-M-B16	1	3,6	449,3
563	A63-M-B17	1	2,86	373,3
564	A63-M-B18	1	3,88	441,3
565	A63-M-B19	1	2,89	385,3
566	A63-M-B20	1	3,63	449,3
567	A63-M-B21	1	3,64	449,3
568	A63-M-B22	1	3,83	441,3
569	A63-M-B26	1	3,38	413,3
570	A63-M-B27	1	2,99	385,3
571	A63-M-B7	1	2,82	403,3
572	A64-M-B12	1	2,34	415,3
573	A64-M-B14	1	2,84	421,3
574	A64-M-B15	1	2,67	387,3
575	A64-M-B16	1	3,06	435,3
576	A64-M-B17	1	2,22	359,2
577	A64-M-B20	1	3,09	435,3
578	A64-M-B21	1	3,13	435,3
579	A64-M-B22	1	3,33	427,3
580	A64-M-B26	1	2,75	399,3
581	A64-M-B27	1	2,34	371,2
582	A64-M-B7	1	2,19	389,3
583	A65-M-B12	1	2,51	389,3
584	A65-M-B14	1	3,05	395,3
585	A65-M-B15	1	2,86	361,3
586	A65-M-B16	1	3,26	409,3
587	A65-M-B17	1	2,34	333,3
20/ 1				

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
588	A65-M-B18	1	3,59	401,3
589	A65-M-B19	1	2,37	345,3
590	A65-M-B20	1 .	3,3	409,3
591	A65-M-B21	1	3,34	409,3
592	A65-M-B22	1	3,57	401,3
593	A65-M-B26	1	2,97	373,3
594	A65-M-B7	1	2,3	363,3
595	A66-M-B12	1	2,56	449,2
596	A66-M-B14	1	3,08	455,2
597	A66-M-B15	1	2,9	421,2
598	A66-M-B16	1	3,29	469,2
599	A66-M-B20	1	3,32	469,2
600	A66-M-B21	1	3,35	469,2
601	A66-M-B25	1	2,66	407,2
602	A66-M-B26	1	3,02	433,2
603	A67-M-B12	1	2,5	433,3
604	A67-M-B14	1	3	439,3
605	A67-M-B15	1	2,84	405,3
606	A67-M-B16	1	3,21	453,3
607	A67-M-B18	1	3,45	445,3
608	A67-M-B19	1	2,37	389,2
609	A67-M-B20	1	3,24	453,3
610	A67-M-B21	1	3,28	453,3
611	A67-M-B26	1	2,92	417,3
612	A67-M-B27	1	2,49	389,2
613	A67-M-B7	1	2,32	407,2
614	A68-M-B12	1	2,43	431,2
615	A68-M-B14	1	2,95	437,2
616	A68-M-B15	1	2,78	403,2
617	A68-M-B16	1	3,17	451,2
618	A68-M-B17	1	2,29	375,2
619	A68-M-B18	1	3,47	443,3
620	A68-M-B19	1	2,31	387,2
621	A68-M-B20	1	3,19	451,2
622	A68-M-B21	1	3,24	451,2
623	A68-M-B26	1	2,87	415,2
624	A68-M-B27	1	2,41	387,2
625	A68-M-B7	1	2,25	405,2
626	A69-M-B14	1	2,61	369,3
627	A69-M-B15	1	2,38	335,3
628	A69-M-B16	1	2,85	383,3
629	A69-M-B20	1	2,9	383,3
630	A69-M-B21	1	2,95	383,3
631	A69-M-B25	1	2,15	321,3
632	A69-M-B26	1	2,5	347,3
633	A70-M-B12	1	2,62	415,3
634	A70-M-B14	1	3,12	421,3
635	A70-M-B15	1	2,97	387,3
636	A70-M-B16	1	3,33	435,3
637	A70-M-B17	1	2,48	359,2
638	A70-M-B18	· 1	3,63	427,3
639	A70-M-B19	1	2,5	371,2
_ 505		· ·	,	, -,

Entrada	Compuesto	Método HPLC	HPLC tR	[M+H]*
640	A70-M-B20	1	3,35	435,3
641	A70-M-B21	1	3,37	435,3
642	A70-M-B26	1	3,06	399,3
643	A70-M-B27	1	2,61	371,2
644	A70-M-B7	1	2,43	389,3
645	A71-M-B14	1	2,58	369,3
646	A71-M-B16	1	2,84	383,3
647	A71-M-B20	1	2,87	383,3
648	A71-M-B21	1	2,93	383,3
649	A71-M-B25	1	2,11	321,3
650	A72-M-B14	1	2,52	421,3
651	A72-M-B16	1	2,74	435,3
652	A72-M-B18	1	3,06	427,3
653	A72-M-B20	1	2,75	435,3
654	A72-M-B21	1	2,77	435,3
655	A72-M-B27	1	2,07	371,3
656	A73-M-B12	1 .	2,66	430,3
657	A73-M-B14	1	3,17	436,3
658	A73-M-B17	. 1	2,17	374,3
659	A73-M-B20	1	3.4	450,3
660	A73-M-B21	1	3,45	450,3
661	A73-M-B24	1	3,38	428,3
662	A73-M-B26	1	3,11	414,3
663	A74-M-B16	1	2,87	453,3
664	A74-M-B17	1	2,04	377,2
665	A75-M-B18	1	2,95	399,3
666	A75-M-B19	1	1,91	343,2
667	A75-M-B20	1	2,72	407,3
668	A75-M-B21	1	2,75	407,3
669	A75-M-B22	1	2,98	399,3
670	A75-M-B23	1	2,34	359,3
671	A75-M-B24	1	2,68	385,3
672	A75-M-B25	1	2,09	345,2
673	A75-M-B27	1	1.98	343,2
674	A76-M-B18	1	2,69	410,3
675	A76-M-B19	1	1,7	354,2
676	A76-M-B20	1	2,45	418,3
677	A76-M-B21	1	2,5	418,3
678	A76-M-B22	1	2,72	410,3
679	A76-M-B23	1	2,06	370,3
680	A76-M-B24	1	2,4	396,3
681	A76-M-B25	1	1,85	356,3
682	A77-M-B14	1	2,64	421,3
683	A77-M-B14	1	2,9	435,3
684	A77-M-B18	1	3,2	427,3
	A77-M-B10	1	2,89	435,3
685	A77-M-B21	1	2,92	435,3
686	A77-M-B27	1	2,19	371,3
687	A78-M-B12	1		
688		1	2,69	442,3
689	A78-M-B14		3,16	448,3
690	A78-M-B15	1	3,02	414,3
691	A78-M-B16	1	3,38	462,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]*
692	A78-M-B17	1	2,57	386,3
693	A78-M-B18	1	3,65	454,3
694	A78-M-B19	1	2,59	398,3
695	A78-M-B20	1	3,38	462,3
696	A78-M-B21	1	3,42	462,3
697	A78-M-B22	1	3,62	454,3
698	A78-M-B23	1	3,07	414,3
699	A78-M-B24	1	3,37 `	440,3
700	A78-M-B26	1	3,12	426,3
701	A78-M-B7	1	2,51	416,3
702	A79-M-B14	1	3,69	466,3
703	A79-M-B18	1	4,09	472,3
704	A79-M-B21	1	3,9	480,3
705	A79-M-B22	1	4,07	472,3
706	A79-M-B24	1	3,86	458,3
707	A79-M-B26	1	3,65	444,3
708	A80-M-B14	1	3,66	470,2
709	A80-M-B15	1	3,56	436,2
710	A80-M-B18	1	4,06	476,3
711	A80-M-B19	1	3,19	420,2
712	A80-M-B21	1	3,87	484,2
713	A80-M-B22	1	4,04	476,3
714	A80-M-B24	1	3,87	462,3
715	A81-M-B14	1	3,64	466,3
716	A81-M-B18	1	4,06	472,3
717	A81-M-B19	1	3,11	416,2
718	A81-M-B21	1	3,88	480,3
719	A81-M-B22	1	4,06	472,3
720	A81-M-B24	1	3,83	458,3
721	A82-M-B14	1	3,4	446,3
722	A82-M-B18	1	3,86	452,4
723	A82-M-B19	1	2,8	396,3
724	A82-M-B20	1	3,62	460,3
725	A82-M-B21	1	3,66	460,3
726	A82-M-B22	1	3,86	452,4
.727	A82-M-B24	1	3,59	438,3
728	A83-M-B14	1	3,45	446,3
729	A83-M-B18	1	3,89	452,4
730	A83-M-B19	1	2,87	396,3
731	A83-M-B20	1	3,65	460,3
732	A83-M-B22	1	3,89	452,4
733	A83-M-B24	1	3,64	438,3
734	A84-M-B14	1	3,03	432,3
735	A84-M-B18	1	3,58	438,3
736	A84-M-B19	1	2,38	382,3
737	A84-M-B20	1	3,27	446,3
738	A84-M-B21	1	3,32	446,3
739	A84-M-B22	1.	3,54	438,3
740	A85-M-B14	1	3,56	450,3
741	A85-M-B17	1	3,04	388,3
742	A85-M-B20	1	3,76	464,3
743	A85-M-B21	1	3,79	464,3
		<del></del> _		, 0

6,3 0,3 4,3 1,3 2,3 6,3 0,3 1,3 3,3 2,2 1,2 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3,3 3
0,3 1,3 1,3 2,3 6,3 0,3 1,3 3,3 2,2 1,2 2,3 3,3 2,3
4,3 4,3 2,3 6,3 0,3 4,3 3,3 2,2 4,2 3,3 2,3
1,3 2,3 6,3 0,3 1,3 3,3 2,2 1,2 3,3 3,3 2,3
2,3 5,3 0,3 4,3 3,3 2,2 4,2 3,3 3,3 2,3
5,3 0,3 4,3 3,3 2,2 4,2 3,3 3,3 2,3
0,3 4,3 3,3 2,2 4,2 3,3 3,3 2,3
1,3 3,3 2,2 1,2 3,3 3,3 2,3
3,3 2,2 4,2 3,3 3,3 2,3
2,2 4,2 3,3 3,3 2,3
1,2 3,3 3,3 2,3
3,3 3,3 2,3
3,3 2,3
2,3
3,3
9,3
,3
,3
,3
7,3
,3
3,3
,3
,3
,3
3,3
2,2
),2
3,3
3,3
3,3
1,3
),3
),2
2,2
3,3
),2
3,3
3,3
3,3
١,3
),3
-,-
2,2
2,2
2,2 ),2
2,2 ),2 2,2 ),2
2,2 ),2 2,2 ),2 3,3
2,2 2,2 2,2 3,3 1,3
2,2 ),2 2,2 ),2 3,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]*
796	A95-M-B21	1	3,45	446,3
797	A95-M-B24	1	3,37	424,3
798	A95-M-B26	1	3,09	410,3
799	A96-M-B14	1	3,36	432,3
800	A96-M-B20	1	3,58	446,3
801	A96-M-B21	1	3,62	446,3
802	A96-M-B22	1	3,81	438,3
803	A96-M-B24	1	3,57	424,3
804	A97-M-B12	1	2,59	442,3
805	A97-M-B14	1	3,1	448,3
806	A97-M-B16	1	3,26	462,3
807	A97-M-B17	1	2,46	386,3
808	A97-M-B18	1	3,56	454,3
809	A97-M-B20	1	3,29	462,3
810	A97-M-B22	1	3,52	454,3
811	A97-M-B24	1	3,26	440,3
812	A97-M-B26	1	3,02	426,3
813	A98-M-B14	1	2,97	443,3
814	A98-M-B17	1	2,4	381,3
815	A98-M-B20	1	3,2	457,3
816	A98-M-B22	1	3,4	449,3
817	A98-M-B24	1	3,21	435,3
818	A98-M-B7	1	2,35	411,3
819	A99-M-B14	1	3,86	466,3
820	A99-M-B20	1	3,99	480,3
821	A99-M-B22	1	4,17	472,3
822	A99-M-B24	1	3,98	458,3
823	A99-M-B26	1	3,79	444,3
824	A100-M-B14	1	3,65	446,3
825	A100-M-B22	1	4,04	452,4
826	A100-M-B24	1	3,84	438,3
827	A100-M-B26	1	3,62	424,3
828	A101-M-B14	1	3,33	412,3
829	A101-M-B19	1	2,71	362,3
	A101-M-B20	1	3,54	426,3
	A101-M-B21	1	3,59	426,3
832	A101-M-B22	1	3,8	418,4
	A102-M-B14	1	3,29	436,3
	A102-M-B17	1	2,67	374,3
	A102-M-B19	1	2,69	386,3
	A102-M-B20	1	3,51	450,3
837	A102-M-B21	1	3,55	450,3
838	A102-M-B22	1	3,74	442,3
	A103-M-B14	1	2,95	398,3
	A103-M-B20	1	3,21	412,3
	A103-M-B21	1	3,27	412,3

Entrada	Compuesto	Método HPLC	HPLC tR	[M+H] ⁺
842	A103-M-B22	1	3,5	404,4
843	A104-M-B16	1	3,36	460,3
844	A104-M-B22	1	3,68	452,4
845	A105-M-B14	1	3,65	446,3
846	A105-M-B20	1	3,83	460,3
847	A105-M-B21	1	3,86	460,3
848	A105-M-B22	1	4,05	452,4
849	A106-M-B14	1	3,64	446,3
850	A106-M-B16	1	3,82	460,3
851	A106-M-B17	1	3,12	384,3
852	A106-M-B20	1	3,85	460,3
853	A106-M-B21	1	3,87	460,3
854	A106-M-B24	1	3,84	438,3
855	A106-M-B26	. 1	3,63	424,3
856	A107-M-B14	1	3,67	466,3
857	A107-M-B16	<u> </u>	3,83	480,3
858	A107-M-B24	1	3,91	458,3
859	A107-M-B26	1	3,65	444,3
860	A108-M-B20	1	3,81	437,3
861	A108-M-B25	1	3,28	375,3
862	A108-M-B27	1	3,17	373,3
863	A109-M-B13	1	2,47	407,2
864	A109-M-B16	1 ,	3,12	469,2
865	A110-M-B14	1	3,57	450,3
866	A110-M-B17	1	3,03	388,3
867	A110-M-B20	1-	3,76	464,3
868	A111-M-B14	1	3,59	454,3
869	A111-M-B17	1	3,05	392,2
870	A111-M-B22	1	3,99	460.3
871	A112-M-B16	1	2,55	369,3
872	A112-M-B21	1	2,64	369,3
	A113-M-B16	1	2,66	419,3
874	A114-M-B16	1	2.38	405,3
875	A115-M-B16	1	2,59	419,3
	A116-M-B20	1	2,39	385,3
	A116-M-B21	1 .	2,48	385,3
	A117-M-B20	1	2,59	428,3
	A118-M-B20	1	2,69	440,3
	A118-M-B21	1	2,76	440,3
881	A119-M-B20	1	2,87	398,3
	A120-M-B21	1	3,32	412,3
	A121-M-B21	1	2,53	414,3
	A122-M-B21	1	2,03	433,3
	A122-M-B22	1	2,21	425,3
	A123-M-B25	1	2,16	345,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]*
887	A20-M-B14	1	3,92	394,2
888	A20-M-B17	1	3,41	332,2
889	A20-M-B19	1	3,41	344,2
890	A20-M-B24	1	4,09	386,3
891	A20-M-B25	1	3,63	346,2
892	A20-M-B26	1	3,88	372,2
893	A20-M-B31	1	3,31	332,2
894	A20-M-B32	1	4,07	374,3
895	A20-M-B33	1	2,59	450,3
896	A20-M-B35	1	3,24	318,2
897	A20-M-B36	1	3,93	394,2
898	A20-M-B39	1	2,4	395,2
899	A20-M-B40	1	3,67	384,2
900	A20-M-B42	1	3,39	376,2
901	A20-M-B56	1	2,42	387,3
902	A20-M-B59	1	2,44	401,3
903	A33-M-B14	4	1,172	366,1
904	A33-M-B22	4	1,33	372,2
905	A33-M-B28	4	0,929	360,1
906	A33-M-B29	4	0,645	367,1
907	A33-M-B30	4	1,205	384,1
908	A124-M-B9	4	0,655	341,2
909	A125-M-B9	4	0,74	355,2
910	A126-M-B9	4	1,018	356,2
911	A127-M-B14	4	1,29	378,2
912	A127-M-B19	1	3,06	328,2
913	A127-M-B22	4	1,405	384,2
914	A127-M-B24	1	3,79	370,3
915	A127-M-B25	1	3,28	330,3
916	A127-M-B26	1	3,56	356,3
917	A127-M-B28	4	1	372,2
918	A127-M-B29	4	0,757	379,1
919	A127-M-B30	4	1,279	396,1
920	A127-M-B31		2,95	316,2
921	A127-M-B32		3,8	358,3
922	A127-M-B33	1	2,28	434,3
923	A127-M-B36		3,63	378,3
924	A127-M-B37		3,83	378,3
925	A127-M-B38		2,1	401,3
926	A127-M-B39		2,06	379,2
927	A127-M-B40		3,35	368,2
928	A127-M-B41		2,68	399,3
929	A127-M-B42		3,04	360,3
930	A127-M-B43		3,59	344,3
931	A127-M-B46		3,38	344,3
932	A127-M-B47	1	3,6	382,2
933	A127-M-B48		3,36	342,3
934	A127-M-B49		2,26	397,3
935	A127-M-B50	1	3,12	342,3
936	A127-M-B51		2,9	358,2
937	A127-M-B52		3,62	364,2
938	A127-M-B53	1	2,12	413,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
939	A127-M-B54	1	3,04	410,3
940	A127-M-B56	1	2,08	371,3
941	A127-M-B57	1	1,74	454,4
942	A127-M-B58	1	2,79	435,2
943	A127-M-B60	1	2,09	359,3
944	A127-M-B7	1	2,96	346,2
945	A127-M-B9	4	1,311	358,2
946	A128-M-B14	4	1,23	378,2
947	A128-M-B14	1	3,56	378,3
948	A128-M-B17	1	2,98	316,2
949	A128-M-B19	1	2,98	328,2
950	A128-M-B22	4	1,401	384,2
951	A128-M-B25	1	3,24	330,3
952	A128-M-B26	1	3,5	356,3
953	A128-M-B28	4	0,952	372,2
954	A128-M-B29	4	0,73	379,1
955	A128-M-B30	4	1,268	396,1
	A128-M-B31	1	2,9	316,2
956	A128-M-B32	1	3,76	358,3
957	A128-M-B33	1	2,26	434,3
958		1		374,2
959	A128-M-B34	1	3,23	302,2
960	A128-M-B35	1	2,79	
961	A128-M-B36	1	3,56	378,3
962	A128-M-B37		3,77	378,3
963	A128-M-B38	1	2,08	401,3
964	A128-M-B39		2,03	379,2
965	A128-M-B40	1	3,29	368,2
966	A128-M-B41	1	2,64	399,3
967	A128-M-B42	1	2,98	360,3
968	A128-M-B43	1	3,54	344,3
969	A128-M-B45		3,52	370,3
970	A128-M-B46		3,35	344,3
971	A128-M-B47	1	3,51	382,2
972	A128-M-B48		3,31	342,3
973	A128-M-B49		2,21	397,3
974	A128-M-B50		3,08	342,3
975	A128-M-B51		2,86	358,2
976	A128-M-B54	1	3	410,3
977	A128-M-B55		3,06	438,3
978	A128-M-B56		2,1	371,3
979	A128-M-B57		1,75	454,4
980	A128-M-B58		2,76	435,2
981	A128-M-B59		2,1	385,3
982	A128-M-B60		2,08	359,3
983	A128-M-B7	1	2,89	346,2
984	A128-M-B9	4	1,304	358,2
985	A129-M-B14	i	1,242	378,2
986	A129-M-B22	4	1,399	384,2
987	A129-M-B28		0,96	372,2
988	A129-M-B29	4	0,752	379,1
989	A129-M-B30	4	1,31	396,1
990	A129-M-B9	4	1,303	358,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
991	A130-M-B9	4	0,984	366,2
992	A131-M-B9	4	1,164	382,2
993	A132-M-B14	4	1,16	404,2
994	A132-M-B22	4	1,309	410,2
995	A132-M-B28	4	0,878	398,2
996	A132-M-B29	4	0,693	405,1
997	A132-M-B30	4	1,24	422,1
998	A132-M-B9	4	1,219	384,2
999	A133-M-B14	4	1,406	428,2
1000	A133-M-B22	4	1,6	434,2
1001	A133-M-B28	4	1,158	422,2
1002	A133-M-B29	4	0,95	429,1
1003	A133-M-B30	4	1,427	446,1
1004	A133-M-B9	4	1,473	408,2
1005	A134-M-B14	4	1,45	444,1
1006	A134-M-B22	4	1,593	450,2
1007	A134-M-B28	4	1,206	438,2
1008	A134-M-B29	4	1,002	445,1
1009	A134-M-B30	4	1,471	462,1
1010	A134-M-B9	4	1,516	424,2
1011	A135-M-B9	4	1,526	424,2
1012	A136-M-B9	4	0,674	355,2
1013	A137-M-B14	4	1,314	374,2
1014	A137-M-B14	1	3,76	374,3
1015	A137-M-B22	4	1,477	380,2
1016	A137-M-B24	1	3,93	366,3
1017	A137-M-B25	1	3,45	326,3
1018	A137-M-B26	1	3,7	352,3
1019	A137-M-B28	4	1,08	368,2
1020	A137-M-B29	4	0,808	375,2
1021	A137-M-B30	4	1,346	392,2
1022	A137-M-B32	1	3,95	354,3
1023	A137-M-B33	11	2,4	430,3
1024	A137-M-B34	1	3,42	370,3
1025	A137-M-B35		3,01	298,2
1026	A137-M-B36	1	3,77	374,3
1027	A137-M-B39	1	2,19	375,3
1028	A137-M-B40	1	3,49	364,3
	A137-M-B43		3,73	340,3
	A137-M-B48		3,5	338,3
	A137-M-B49		2,4	393,3
	A137-M-B50		3,27	338,3
1033	A137-M-B52	1	3,76	360,3
1034	A137-M-B54	1	3,19	406,3
1035	A137-M-B55	1	3,24	434,3
	A137-M-B56		2,25	367,3
	A137-M-B58		2,93	431,3
	A137-M-B59		2,25	381,3
	A138-M-B14		1,206	390,2
	A138-M-B22		1,43	396,2
	A138-M-B28		0,926	384,2
1042	A138-M-B29	4	0,726	391,2

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1043	A138-M-B30	4	1,23	408,2
1044	A139-M-B14	1	3,75	396,2
1045	A139-M-B17	1	3,22	334,2
1046	A139-M-B19	1	3,23	346,2
1047	A139-M-B22	4	1,441	402,2
1048	A139-M-B24	1	3,93	388,3
1049	A139-M-B25	1	3,46	348,2
1050	A139-M-B26	1	3,71	374,3
1051	A139-M-B28	4	1,023	390,2
1052	A139-M-B29	4	0,822	397,1
1053	A139-M-B30	4	1,32	414,1
1054	A139-M-B31	1	3,12	334,2
1055	A139-M-B32	1	3,91	376,3
1056	A139-M-B33	1	2,45	452,3
1057	A139-M-B35	1	3,03	320,2
1058	A139-M-B36	1	3,77	396,2
1059	A139-M-B37	1	3,95	396,2
1060	A139-M-B38	1	2,29	419,3
1061	A139-M-B39	1	2,23	397,2
1062	A139-M-B40	1	3,51	386,2
1063	A139-M-B41	1	2,87	417,3
1064	A139-M-B42	1	3,21	378,3
1065	A139-M-B43	1	3,71	362,3
1066	A139-M-B45	1	3,71	388,3
1067	A139-M-B46	1	3,53	362,3
1068	A139-M-B48	1	3,51	360,2
1069	A139-M-B49	1	2,38	415,3
1070	A139-M-B50	1	3,29	360,2
1071	A139-M-B51	1	3,08	376,2
1072	A139-M-B52	1	3,77	382,2
1073	A139-M-B53	1	2,3	431,3
1074	A139-M-B56	1	2,28	389,3
1075		1	1,89	472,3
1076	A139-M-B58		2,96	453,2
1077		1	2,24	377,3
1078		1	3,13	364,2
1079	A140-M-B14		1,36	406,2
	A140-M-B22		1,474	412,2
1081			1,06	400,2
	A140-M-B29		0,846	407,1
1083	A140-M-B30	4	1,352	424,1
1084	A141-M-B14	4	1,176	418,2
1085	A141-M-B22	4	1,321	424,2
1086	A141-M-B28	4	0,932	412,2
	1		0,745	419,2
1	A141-M-B30		1,206	436,2
1089	A142-M-B14	4	1,197	418,2
1090			1,345	424,2
1090	A142-M-B28		0,933	412,2
1091	<u> </u>		0,756	419,2
			1,225	436,2
1093		<u> </u>	1.45	430,2
1094	M 143-1VI-B 14	<u> </u>	1.45	420,2

Entrada	¹ Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1095	A143-M-B22	4	1,562	434,2
1096	A143-M-B28	4	1,178	422,2
1097	A143-M-B29	4	0,977	429,1
1098	A143-M-B30	4	1,443	446,1
1099	A144-M-B14	4	0,649	350,2
	A144-M-B22	. 4	0,83	356,2
	A144-M-B30	4	0,686	368,1
	A145-M-B14	4	1,52	477,1
	A145-M-B22	4	1,594	483,1
	A146-M-B14	1	3,6	408,3
1105	A146-M-B17	1	3,06	346,2
	A146-M-B19	1	3,07	358,2
	A146-M-B24	1	3,77	400,3
1108		1	3,29	360,3
1109		1	3,55	386,3
1110	·	1	2,97	346,2
1111	A146-M-B32	1	3,77	388,3
		1	2,32	464,3
	A146-M-B34	1	3,27	404,2
1114	A146-M-B35	1	2,88	332,2
	A146-M-B36	1	3,64	408,3
	A146-M-B37	1	3,83	408,3
	A146-M-B38	1	2,24	431,3
	<del></del>	1	2,17	409,3
	A146-M-B40	1	3,34	398,2
	A146-M-B41	1	2,73	429,3
1121	A146-M-B42	1	3,05	390,3
1122	A146-M-B43		3,57	374,3
1123	A146-M-B44		2,28	415,3
1124	A146-M-B45		3,56	400,3
1124	A146-M-B46		3,38	374,3
		1	3,58	412,3
1127	L		3,34	372,3
1128	A146-M-B49		2,33	427,3
1120	A146-M-B50	1	3,13	372,3
	A146-M-B51		2,92	388,3
	A146-M-B52		3,63	394,2
	A146-M-B53		2,19	443,3
	A146-M-B54		3,04	440,3
	A146-M-B55		3,11	468,3
	A146-M-B58		2,84	465,3
	A146-M-B7	1	2,97	376,3
	A147-M-B14		3,76	374,3
	A147-M-B17		3,70	312,3
	A147-M-B24		3,93	366,3
	A147-M-B25		3,46	326,3
	A147-M-B26		3,71	352,3
	A147-M-B31		3,12	312,3
	A147-M-B32		3,95	354,3
	A147-M-B33		2,42	430,3
	A147-M-B34			
	A147-M-B36		3,43	370,3 374,3
1140	147-W-D30	<u>'</u>	3,76	3/4,3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1147	A147-M-B37	1	3,96	374,3
1148	A147-M-B39	1	2,24	375,3
1149	A147-M-B40	1	3,5	364,3
1150	A147-M-B41	1	2,86	395,3
1151	A147-M-B42	1	3,19	356,3
1152	A147-M-B43	1	3,75	340,3
1153	A147-M-B45	1	3,73	366,3
1154	A147-M-B46	1	3,55	340,3
1155	A147-M-B47	1	3,74	378,3
1156	A147-M-B48	1	3,52	338,3
1157	A147-M-B50	1	3,29	338,3
1158	A147-M-B51	1	3,08	354,3
1159	A147-M-B52	1	3,76	360,3
1160	A147-M-B54	1	3,19	406,3
1161	A147-M-B58	1	2,95	431,3
1162	A147-M-B7	1	3,12	342,3
1163	A148-M-B14	1	3,57	408,3
1164	A148-M-B17	1	3,01	346,2
1165	A148-M-B19	1	3,03	358,2
1166	A148-M-B24	1	3,72	400,3
1167	A148-M-B25	1	3,24	360,3
1168	A148-M-B26	1	3,51	386,3
1169	A148-M-B31	1	2,93	346,2
1170	A148-M-B32	1	3,74	388,3
1171	A148-M-B33	1	2,3	464,3
	A148-M-B34	1	3,23	404,2
1173			2,85	332,2
1174	A148-M-B36		3,59	408,3
1175	A148-M-B37	1	3,78	408,3
1176	A148-M-B39	1	2,13	409,3
1177	A148-M-B40	1	3,3	398,2
1178	A148-M-B41	1	2,69	429,3
1179	A148-M-B42	1	3,02	390,3
1180	A148-M-B43		3,52	374,3
1181	A148-M-B45	1	3,52	400,3
1182	A148-M-B46	1	3,35	374,3
1183	A148-M-B47	1	3,54	412,3
	A148-M-B48		3,31	372,3
1185	A148-M-B50	1	3,11	372,3
	A148-M-B51		2,9	388,3
	A148-M-B52		3,59	394,2
	A148-M-B53		2,17	443,3
	A148-M-B54		3,01	440,3
1190	A148-M-B55	1	3,07	468,3
1191	A148-M-B56	1	2,2	401,3
	A148-M-B58		2,8	465,3
	A148-M-B7		2,94	376,3
	A149-M-B14		3,83	396,2
	A149-M-B17		3,3	334,2
	A149-M-B19		3,3	346,2
1107	A149-M-B24	1	3,99	388,3
1100	A149-M-B25	1	3,53	348,2
1198	17 143-IVI-D23	<u> </u>	3,55	J 340,Z

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1199	A149-M-B26	1	3,79	374,3
1200	A149-M-B31	1	3,2	334,2
1201	A149-M-B33	1	2,49	452,3
1202	A149-M-B34	1	3,49	392,2
1203	A149-M-B35	1	3,09	320,2
1204	A149-M-B36	1	3,73	396,2
1205	A149-M-B38	1	2,32	419,3
1206	A149-M-B39	1	2,29	397,2
1207	A149-M-B40	1	3,58	386,2
1208	A149-M-B41	1	2,93	417,3
1209	A149-M-B42	1	3,29	378,3
1210	A149-M-B43	1	3,81	362,3
	A149-M-B44	1	2,37	403,3
	A149-M-B45	1	3,78	388,3
	A149-M-B46	1	3,58	362,3
	A149-M-B47	<u> </u>	3,81	400,2
	A149-M-B48	1	3,59	360,2
	A149-M-B49	1	2,44	415,3
	A149-M-B50	1	3,36	360,2
	A149-M-B51	1	3,15	376,2
	A149-M-B52	1	3,83	382,2
	A149-M-B53	1	2,29	431,3
	A149-M-B54	1	3,26	428,3
1	A149-M-B55	1	3,34	456,3
	A149-M-B56	1	2,32	389,3
	A149-M-B57	1	1,92	472,3
	A149-M-B58	1	3,02	453,2
	A149-M-B60	1	2,27	377,3
	A150-M-B14	1	3,88	394,2
	A150-M-B17	1	3,38	332,2
	A150-M-B19	1	3,38	344,2
	A150-M-B24	1	4,05	386,3
	A150-M-B25	1	3,6	346,2
	A150-M-B26	1	3,83	372,2
	A150-M-B31	1	3,29	332,2
	A150-M-B32		4,04	374,3
	A150-M-B33		2,59	450,3
	A150-M-B35		3,2	318,2
	A150-M-B36		3,89	394,2
	A150-M-B37		4,06	394,2
1239	A150-M-B38	1	2,39	417,3
1240	A150-M-B39	1	2,35	395,2
	A150-M-B40		3,65	384,2
	A150-M-B41		3,04	415,2
	A150-M-B42		3,35	376,2
	A150-M-B43		3,86	360,2
	A150-M-B45		3,85	386,3
	A150-M-B46		3,68	360,2
1247	<del></del>		3,65	358,2
	A150-M-B49	L	2,51	413,3
	A150-M-B50		3,43	358,2
1250			3,23	374,2
1200	p // 25 201	· · · · · ·		1,-

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
1251	A150-M-B52	1	3,89	380,2
1252	A150-M-B53	1	2,38	429,3
1253	A150-M-B54	1	3,34	426,3
1254	A150-M-B55	1	3,39	454,3
1255	A150-M-B56	1	2,44	387,3
1256	A150-M-B57	1	1,98	470,3
1257	A150-M-B58	1	3,11	451,2
1258	A150-M-B59	1	2,41	401,3
1259	A150-M-B7	1	3,28	362,2
1260	A151-M-B14	1	3,72	396,2
1261	A151-M-B17	1	3,18	334,2
1262		1	3,18	346,2
1263	A151-M-B24	1	3,89	388,3
	A151-M-B25	1	3,42	348,2
	A151-M-B26	1	3,68	374,3
	A151-M-B31	1	3,09	334,2
	A151-M-B31	1	3,9	376,3
	A151-M-B33	1	2,41	452,3
	A151-M-B35	1	2,99	320,2
	A151-M-B36	1	3,84	396,2
1	A151-M-B37	1	3,91	396.2
1271		1	2,23	419,3
	A151-M-B38	1		
1273	A151-M-B39	1	2,2	397,2
1274	A151-M-B41		2,83	417,3
1275	A151-M-B42	1	3,17	378,3
1276	A151-M-B43	1	3,72	362,3
1277	A151-M-B45	1	3,69	388,3
1278	A151-M-B46	1	3,51	362,3
	A151-M-B48	1	3,48	360,2
1280	A151-M-B49	1	2,34	415,3
1281	A151-M-B50	1	3,25	360,2
	A151-M-B51	1	3,05	376,2
1283	A151-M-B52	1	3,74	382,2
1284	A151-M-B53	1	2,23	431,3
	A151-M-B54		3,16	428,3
<u> </u>	A151-M-B56		2,24	389,3
1287	A151-M-B57	1	1,86	472,3
1288	A151-M-B58	1	2,93	453,2
1289	A151-M-B59	1	2,24	403,3
1290	A151-M-B60	1	2,21	377,3
1291	A151-M-B7	1	3,07	364,2
1292	A152-M-B14	1	3,95	352,3
	A152-M-B17	1	3,42	290,3
	A152-M-B19	1	3,43	302,3
	A152-M-B24		4,12	344,3
1296	A152-M-B25	1	3,66	304,3
1297	A152-M-B26	1	3,92	330,3
1298	A152-M-B31	1	3,32	290,3
1299	A152-M-B32	1	4,13	332,3
1300	A152-M-B33	1	2,69	408,3
1301	A152-M-B34		3,63	348,3
1000	A152-M-B35		3,23	276,3

## ES 2 536 730 T3

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺	
1303	A152-M-B36	1	3,95	352,3	
1304	A152-M-B37	1	4,15	352,3	
1305	A152-M-B38	1	2,42	375,3	
1306	A152-M-B39	1	2,49	353,3	
1307	A152-M-B40	1	3,69	342,3	
	A152-M-B41	1	3,04	373,3	
1309	A152-M-B42	1	3,4	334,3	
1310	A152-M-B43	1	3,95	318,3	
1311	A152-M-B45	1	3,91	344,3	
1312	A152-M-B46	1	3,74	318,3	
	A152-M-B47	1	3,9	356,3	
	A152-M-B48	1	3,72	316,3	
	A152-M-B49	1	2,52	371,3	
1316	A152-M-B50	1	3,49	316,3	
1317	A152-M-B51	1	3,28	332,3	
	A152-M-B52	1	3,96	338,3	
	A152-M-B53	1	2,46	387,4	
1320	A152-M-B54	1	3,38	384,3	
1321	A152-M-B55	1	3,44	412,4	
,	A152-M-B56	1	2,42	345,3	
	A152-M-B57	11	1,99	428,4	
	A152-M-B58	1	3,14	409,3	
	A152-M-B7	1	3,33	320,3	
1326	A153-M-B48	1	3,64	350,3	
1327	A154-M-B14	1	3,34	324,3	
1328	A154-M-B17	1	2,58	262,2	
1329	A154-M-B19	1	2,6	274,2	
	A154-M-B24	1	3,54	316,3	
	A154-M-B25		2,9	276,3	
1332	A154-M-B26	1	3,25	302,3	
1333	A154-M-B31	1	2,46	262,2	
1334	A154-M-B32	1	3,53	304,3	
	A154-M-B33		2	380,3	
	A154-M-B34		2,88	320,2	
1337	A154-M-B35	1	2,32	248,2	
1338	A154-M-B36	1	3,29	324,3	

Entrada	Compuesto	Método HPLC	HPLC tRt (min)	[M+H] ⁺
1339	A154-M-B42	1	2,63	306,3
	A154-M-B43	1	3,29	290,3
1341	A154-M-B45	1	3,27	316,3
1342	A154-M-B47	1	3,25	328,3
1343	A154-M-B48	1	2,99	288.3
1344	A154-M-B49	1	1,85	343.3
1345	A154-M-B51	1	2,45	304.3
1346	A154-M-B52	1	3,32	310.2
1347	A154-M-B53	1	1,83	359,3
1348	A154-M-B54	1	2,65	355,2
1349	A154-M-B55	1	2,73	384,3
1350	A154-M-B58	1	2,38	381,3
1351	A154-M-B7	1	2,49	292,3
1352	A155-M-B17	1	2,03	323,2
1353	A155-M-B19	1	2,05	335,2
1354	A155-M-B25	1	2,28	337,3
1355	A155-M-B31	1	2	323,2
1356	A155-M-B32	1	2,9	365,3
1357	A155-M-B33	1	1,86	441,3
1358	A155-M-B35	1	1,87	309,2
1359		1	2,71	385,3
1360	A155-M-B39	1	1,72	386,3
	A155-M-B40	1	2,37	375,2
	A155-M-B43	1	2,61	351,3
	A155-M-B45	1	2,66	377,3
1364	A155-M-B53	1	1,74	420,3
1365		1	2,02	353,3
1366	A156-M-B24	1	3,19	403,3
1367	A156-M-B34	1	2,59	407,2
1368	A156-M-B37	1	3,23	411,3
1369	A156-M-B45	1	2,96	403,3
1370	A156-M-B49	1	2,01	430,3
1371	A156-M-B51	1	2,21	391,3
1372		1	2,94	397,3
1373	A156-M-B54	1	2,4	443,3

Entrada	Compuesto	Método de HPLC	HPLC t.r. min.	[M+H] ⁺
1374	A157-M-B65 isómero S	4	1,196	408,2
1375	A157-M-B65 isómero R	4	1,224	408,2
1376	A133-M-B61 isómero R	4	1,373	464,2
1377	A127-M-B61 isómero R	4	1,332	414,2
1378	A157-M-B161 isómero R	4	1,052	415,2
1379	A158-M-B61 isómero R	4	1,238	432,2
1380	A133-M-B61 isómero S	4	1,375	464,2
1381	A127-M-B61 isómero S	4	1,363	414,2
1382	A133-M-B62 isómero R	4	1,426	458,2
1383	A127-M-B62 isómero R	4	1,092	408,2
1384	A157-M-B62 isómero R	4	409,2	1,003
1385	A158-M-B62 isómero R	4	1,109	426,2
1386	A133-M-B62 isómero S	4	1,332	458,2
1387	A127-M-B62 isómero S	4	1,121	408,2
1388	A133-M-B63 Mezcla de diast. no resuelta	4	1,173	497,2
1389	A127-M-B63 Mezcla de diast. no resuelta	4	1,02	447,2
1390	A157-M-B63 Mezcla de diast. no resuelta	4	0,782	448,2
1391	A158-M-B63 P26 Mezcla de diast. no resuelta.	4	1,031	465,2
1392	A133-M-B64 isómero R	4	1,44	472,2
1393	A127-M-B64 isómero R	4	1,148	422,2
1394	A157-M-B64 isómero R	4	0,92	423,2
1395	A158-M-B64 isómero S	4	1,331	472,2
1396	A127-M-B64 isómero S	4	1,181	422,2
1397	A133-M-B65 isómero S	4	1,571	457,2
1398	A127-M-B65 isómero S	4	1,44	407,2
1399	A158-M-B65 isómero S	4	1,451	425,2

- 8. Un método in vitro para inhibir la actividad de proteína quinasa que comprende poner en contacto la quinasa con una cantidad eficaz de un compuesto de fórmula (I) como se define en la reivindicación 1.
- 9. Una composición farmacéutica que comprende una cantidad terapéuticamente eficaz de un compuesto de fórmula
   (I), como se define en la reivindicación 1, y al menos un excipiente, vehículo y/o diluyente farmacéuticamente aceptable.
  - 10. Un producto o kit que comprende un compuesto de fórmula (I) como se define en la reivindicación 1 o una composición farmacéutica del mismo como se define en la reivindicación 9, y uno o más agentes quimioterapéuticos, como un preparado combinado para uso simultáneo, separado o secuencial en la terapia anticáncer.
- 10 11. Un compuesto de fórmula (I) o una de sus sales farmacéuticamente aceptable, como se define en la reivindicación 1, para usar como un medicamento.
  - 12. Un compuesto de fórmula (I) o una de sus sales farmacéuticamente aceptable, como se define en la reivindicación 1, para usar en un método para tratar enfermedades causadas y/o asociadas con una actividad de proteína quinasa alterada.
- 15 13. Un compuesto intermedio de fórmula (V)

en donde R1 es como se define en la reivindicación 1.

14. Un compuesto intermedio de fórmula (XI)

en donde R1 es como se define en la reivindicación 1.