

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 537 121

51 Int. Cl.:

C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 01.09.2010 E 10763790 (2)

(97) Fecha y número de publicación de la concesión europea: 25.02.2015 EP 2473629

54) Título: Identificación del tropismo celular de virus

(30) Prioridad:

04.09.2009 FR 0956045

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 02.06.2015

(73) Titular/es:

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) (25.0%) 3, rue Michel-Ange 75016 Paris, FR; ASSISTANCE PUBLIQUE HÔPITAUX DE PARIS (25.0%); UNIVERSITÉ PARIS DIDEROT - PARIS 7 (25.0%) y UNIVERSITÉ DE MONTPELLIER (25.0%)

(72) Inventor/es:

LECELLIER, CHARLES-HENRI; COURGNAUD, VALÉRIE; BOUTTIER, MANUELLA; DESCAMPS, DIANE y COLLIN, GILLES

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Identificación del tropismo celular de virus.

Campo de la invención

5

10

15

20

25

30

35

40

45

50

55

60

65

La presente invención, como se define en las reivindicaciones 1 a 16, se refiere a un método de caracterización del tropismo celular de un virus, en particular del virus de la inmunodeficiencia Humana (VIH), y en particular de la capacidad del virus VIH para utilizar los receptores CXCR4 y/o CCR5 para entrar en las células.

Técnica anterior

La entrada del virus VIH en las células involucra a varias proteínas virales, incluyendo las proteínas de envoltura gp41 y gp120. La primera etapa del ciclo de replicación del virus VIH hace intervenir la fijación del virus a los linfocitos T4 auxiliares por interacción de la proteína gp120 con la proteína celular CD4. Además, para que la fusión de las membranas viral y celular se produzca, el virus VIH debe interactuar con un co-receptor celular. Los co-receptores más importantes *in vivo* son los receptores de quimiocinas CXCR4 y CCR5. La utilización de los diferentes co-receptores está asociada a la evolución de la deficiencia inmunitaria y, por lo tanto, de la infección: al principio de la infección, los virus denominados R5 interactúan con el co-receptor CCR5, y después, en una fase más avanzada, algunos virus utilizan el co-receptor CXCR4 (virus denominado X4). En esta fase, la población viral comprende bien una mezcla de virus R5 y X4, o bien unos virus de doble tropismo R5/X4. En algunos casos, los virus R5 pueden provocar directamente la aparición del SIDA, sin embargo, es la aparición de virus X4 la que está generalmente asociada con el desarrollo de la enfermedad. Por lo tanto, es esencial poder detectar precozmente la aparición de los virus X4 en el paciente.

Así, se ha desarrollado un cierto número de métodos que tienen como objetivo determinar el tropismo celular de los virus VIH.

Por ejemplo la prueba TROFILE (MONOGRAM) es una prueba fenotípica del virus VIH propuesta por la compañía Monogram Biosciences y Pfizer. En primer lugar, se ha realizado una biblioteca de vectores que contiene las regiones que codifican la envoltura de los virus VIH de un paciente. Estos vectores son después amplificados y las regiones que codifican la envoltura son clonadas en un vector que expresa un virus VIH desprovisto de proteína de envoltura y que expresa el gen de la luciferasa. Por último, se utilizan los virus recombinantes obtenidos a partir de estos vectores para infectar unas células que expresan CD4 y CCR5 o CXCR4. La capacidad de un virus para infectar estas células se determina por medición de la emisión de luz producida por la luciferasa. Esta prueba adolece de varios inconvenientes, como señaló en noviembre de 2007 el TRT.5 el Afssaps y la HAS (Alta Autoridad de la Salud). En primer lugar, tiene un coste muy elevado. Además, el plazo de recepción de los resultados es de cuatro a cinco semanas, lo que no es compatible con una toma de decisión rápida en caso de un cambio de tratamiento. Además, no es imposible que un cambio de tropismo viral pueda intervenir en algunos pacientes en dicho plazo. Por otra parte, no hay ninguna prueba Trofile disponible para los virus de tipo VIH-2.

Existe por lo tanto una necesidad real de pruebas alternativas simples, rápidas, fiables y poco costosas que permitan determinar el tropismo celular de los virus VIH. El objeto de la presente invención es proporcionar pruebas de este tipo.

Resumen de la invención

La presente invención, como se define mediante las reivindicaciones 1 a 16, surge del descubrimiento inesperado, por los inventores, de que la expresión de miARN en una célula susceptible de ser infectada por un virus VIH está modulada en función del co-receptor utilizado por el virus VIH para entrar en la célula.

Así, la presente invención se refiere a un método *in vitro* de identificación de microARN, o de sus ARNm diana, cuya expresión, cuando tiene lugar la infección de células por un virus que utiliza un receptor celular y por lo menos un coreceptor celular para entrar en la célula, está específicamente modificada en función del co-receptor celular utilizado por el virus para su entrada en las células, que comprende:

- i) determinar los niveles de expresión de microARN en una célula de prueba, que expresa un receptor, un primer co-receptor y por lo menos otro co-receptor, después de la infección respectivamente por un primer virus que utiliza el primer co-receptor y por lo menos por otro virus que utiliza otro co-receptor;
- ii) identificar los microARN cuyo nivel de expresión se modula cuando tiene lugar la infección por cada uno de los virus con respecto al nivel de expresión en unas células no infectadas;
- iii) comparar los microARN así identificados;
- iv) seleccionar los microARN cuya modificación del nivel de expresión es específica de la utilización de un co-

receptor;

10

15

20

25

30

35

40

45

50

55

60

65

- v) eventualmente identificar los ARNm diana de los micro-ARN así seleccionados.
- La invención se refiere también a un método *in vitro* de identificación de un co-receptor celular utilizado por un virus que utiliza un receptor celular y por lo menos un co-receptor celular para entrar en una célula, en un paciente infectado por el virus, que comprende:
 - i) poner en contacto una muestra del paciente susceptible de contener el virus con una célula de prueba que expresa un receptor celular del virus y por lo menos un co-receptor celular del virus;
 - ii) determinar el nivel de expresión de por lo menos un miARN y/o de por lo menos un ARNm diana de un miARN en la célula de prueba;
 - iii) comparar el nivel de expresión con un valor predeterminado:
 - iv) deducir si el virus utiliza o no un co-receptor celular expresado por la célula de prueba.

Descripción de la invención

El término "miARN" o "microARN" se refiere a una clase de ARN, generalmente de 20 a 25 nucleótidos de largo, implicados en la regulación post-transcripcional de algunos genes específicos degradando o bloqueando la traducción del ARNm procedente de la transcripción de estos genes. Por "ARNm diana" de un miARN, se entiende un ARNm del cual se sabe o del cual se ha determinado que está degradado, o cuya traducción está bloqueada por dicho miARN. Los miARN están descritos en particular en Griffiths-Jones ((2004) Nucleic Acids Res 32:D109-D111), en Griffiths-Jones et al. ((2008) Nucleic Acids Res 36:D154-D158) y en la base de datos sobre los miARN (miRBase, http://microARN.sanger.ac.uk).

La expresión "virus" tal como se utiliza en la presente memoria comprende todos los tipos de virus. En particular, el virus se puede seleccionar de entre el grupo de los virus cuyas variantes o especies son más o menos patógenas, por ejemplo los retrovirus, en particular el virus VIH, los virus de la gripe, los coronavirus, los virus de la rubeola, los herpesvirus (incluyendo los virus EBV, Simplex y CMV), los papilomavirus. Preferentemente, el virus es un retrovirus seleccionado de entre los retrovirus humanos, en particular VIH, HTLV-I y XMRV. Aún más preferentemente, el virus es el VIH y en particular los virus VIH-1 y VIH-2 (descritos en particular en la base de datos *HIV databases*, http://www.hiv.|an|.gov/content/index). Si el virus según la invención es el VIH, los virus utilizados para realizar las infecciones pueden, por ejemplo, ser unos virus prototipos, como los virus VIH-1, NL4.3, VIH-2 ROD o VIH-1 NLAD8 o unos virus de un paciente. Los virus VIH según la invención pueden utilizar uno o varios co-receptores para entrar en las células diana. Preferentemente, en los métodos de identificación de micro-ARN según la invención, los virus VIH utilizados utilizan un solo tipo de co-receptor para entrar en una célula.

El término "paciente" designa un ser humano infectado por un virus. Preferentemente, el virus es el VIH. El paciente puede entonces eventualmente haber desarrollado un SIDA (Síndrome de Inmuno-Deficiencia Adquirida). Eventualmente, el paciente está bajo tratamiento anti-retroviral, por ejemplo bajo tratamiento HAART (tratamiento anti-retroviral altamente activo ("Highly Active Anti-Retroviral Therapy").

Los términos "receptor" y "receptor celular" según la invención designan una estructura de superficie celular, en general una proteína, que interviene en el reconocimiento de una célula diana por un virus y conduce generalmente a la fijación de este virus a la célula diana. Los términos "co-receptor" y "co-receptor celular" agrupan el conjunto de las proteínas celulares de superficie que participan en la entrada del virus, con la exclusión del receptor celular.

Cuando el virus es el VIH, los términos "co-receptor" y "co-receptor celular" agrupan más específicamente el conjunto de las proteínas celulares de superficie que participan en la entrada del virus, además de la interacción entre el virus y el receptor celular CD4. La entrada de un virus VIH en una célula hospedante implica la fusión entre las membranas celular y viral. En particular, el co-receptor se puede seleccionar de entre el grupo constituido por CXCR4, CCR5, CCR3, CCR2, CCR1, CCR4, CCR8, CCR9, CXCR2, STRL33, V28, gpr1, gpr15 y ChemR23. Preferentemente, el co-receptor es CCR5 o CXCR4.

CXCR4 es también conocido bajo los nombres de Fusin, LESTR y NPY3R. El gen CRCR4 designa en la presente memoria preferentemente la secuencia del gen CXCR4 humano cuya secuencia de ARNm puede, por ejemplo, ser la SEC ID nº 1 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen CXCR4 codifica la proteína CXCR4 que puede tener la secuencia representada por la SEC ID nº 2 o cualquier variante natural de ésta.

CCR5 es también conocido bajo los nombres de CKR-5 y CMKRB5. El gen CCR5 designa en la presente memoria preferentemente la secuencia del gen CCR5 humano cuya secuencia de ARNm puede, por ejemplo, ser la SEC ID nº 3 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras

especies. El gen CCR5 codifica la proteína CCR5, que puede tener la secuencia representada por la SEC ID nº 4 o cualquier variante natural de ésta.

- CCR3 es asimismo conocido bajo los nombres de CC-CKR-3, CKR-3 y CMKBR3. El gen CCR3 designa en la presente memoria preferentemente la secuencia del gen CCR3 humano cuya secuencia de ARNm puede, por ejemplo, ser la SEC ID nº 5 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen CCR3 codifica la proteína CCR3 que puede tener la secuencia representada por la SEC ID nº 6 o cualquier variante natural de ésta.
- 10 CCR2 es también conocido bajo los nombres de CCR2b y CMKBR2. El gen CCR2 designa en la presente memoria preferentemente la secuencia del gen CCR2 humano cuya secuencia de ARNm puede, por ejemplo, ser la SEC ID nº 7 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen CCR2 codifica la proteína CCR2, que puede tener la secuencia representada por la SEC ID nº 8 o cualquier variante natural de ésta.

15

20

25

45

50

- CCR1 es también conocido bajo los nombres de CKR1 y CMKBR1. El gen CCR1 designa en la presente memoria preferentemente la secuencia del gen CCR1 humano cuya secuencia de ARNm puede, por ejemplo, ser la SEC ID nº 9 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen CCR1 codifica la proteína CCR1 que puede tener la secuencia representada por la SEC ID nº 10 o cualquier variante natural de ésta.
- CCR4 es también conocido bajo el nombre de CKR-4. El gen CCR4 designa en la presente memoria preferentemente la secuencia del gen CCR4 humana cuya secuencia de ARNm puede, por ejemplo, ser la SEC ID nº 11 o cualquier variante alélica o polimórfica de esta, así como las secuencias ortólogas presentes en otras especies. El gen CCR4 codifica la proteína CCR4, que puede ser de secuencia representada por la SEC ID nº 12 o cualquier variante natural de ésta.
- CCR8 es también conocido bajo los nombres de ChemR1, TER1 y CMKBR8. El gen CCR8 designa en la presente memoria preferentemente la secuencia del gen CCR8 humano cuya secuencia de ARN puede, por ejemplo, ser la SEC ID nº 13 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen CCR8 codifica la proteína CCR8 que puede tener la secuencia representada por la SEC ID nº 14 o cualquier variante natural de ésta.
- CCR9 es también conocido bajo el nombre de D6. El gen CCR9 designa en la presente memoria preferentemente la secuencia del gen CCR9 humano cuya secuencia de ARN puede, por ejemplo, ser la SEC ID nº 15 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen CCR9 codifica la proteína CCR9, que puede tener la secuencia representada por la SEC ID nº 16 o cualquier variante natural de ésta.
- CXCR2 es también conocido bajo el nombre de IL-8RB. El gen CXCR2 designa en la presente memoria preferentemente la secuencia del gen CXCR2 humano cuya secuencia de ARN puede, por ejemplo, ser la SEC ID nº 17 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen CXCR2 codifica la proteína CXCR2, que puede tener la secuencia representada por la SEC ID nº 18 o cualquier variante natural de ésta.
 - STRL33 es también conocido bajo los nombres de Bonzo, CXCR6 y TYMSTR. El gen STRL33 designa en la presente memoria preferentemente la secuencia del gen STRL33 humano cuya secuencia de ARN puede, por ejemplo, ser la SEC ID nº 19 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen STRL33 codifica la proteína STRL33, que puede tener la secuencia representada por la SEC ID nº 20 o cualquier variante natural de ésta.
 - V28 es también conocido bajo los nombres de CMKBRL1, CX3CR1 y GPR13. El gen V28 designa en la presente memoria preferentemente la secuencia del gen V28 humano cuya secuencia de ARN puede, por ejemplo, ser la SEC ID nº 21 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen V28 codifica la proteína V28, que puede tener la secuencia representada por la SEC ID nº 22 o cualquier variante natural de ésta.
- El gen gpr1 o GPR1 designa en la presente memoria preferentemente la secuencia del gen gpr1 humano, cuya secuencia de ARN puede, por ejemplo, ser la SEC ID nº 23 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen gpr1 codifica la proteína gpr1, que puede tener la secuencia representada por la SEC ID nº 24 o cualquier variante natural de ésta.
- gpr15 o GPR15 es también conocido bajo el nombre de BOB. El gen gpr15 designa en la presente memoria preferentemente la secuencia del gen gpr15 humano cuya secuencia de ARN puede, por ejemplo, ser la SEC ID nº: 25 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen gpr15 codifica la proteína gpr15, que puede tener la secuencia representada por la SEC ID nº 26 o cualquier

variante natural de ésta.

Apj es también conocido bajo los nombres de angiotensin-receptor-like, apelin receptor (APLNR) y AGTRL1. El gen Apj designa en la presente memoria preferentemente la secuencia del gen Apj humano, cuya secuencia de ARN puede, por ejemplo, ser la SEC ID nº 27 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen Apj codifica la proteína Apj, que puede tener la secuencia representada por la SEC ID nº 28 o cualquier variante natural de ésta.

El gen ChemR23 es también conocido bajo los nombres de CMKLR1 y DEZ. El gen ChemR23 designa en la presente memoria preferentemente la secuencia del gen ChemR23 humano, cuya secuencia de ARN puede, por ejemplo, ser la SEC ID nº 29 o cualquier variante alélica o polimórfica de ésta, así como las secuencias ortólogas presentes en otras especies. El gen ChemR23 codifica la proteína ChemR23, que puede tener la secuencia representada por la SEC ID nº 30 o cualquier variante natural de ésta.

Según la invención, se entiende por "célula de prueba" cualquier célula susceptible de ser infectada por un virus según la invención. Preferentemente, cuando el virus es el VIH, la célula de prueba según la invención expresa CD4, un primer y por lo menos otro co-receptor del virus VIH tal como se ha definido anteriormente. Más preferentemente, la célula de prueba según la invención expresa CXCR4 y CCR5. Una célula de prueba según la invención puede expresar naturalmente estos receptores o ser genéticamente modificada con el fin de expresar estos receptores. La célula de prueba según la invención puede por ejemplo ser una célula dendrítica, una célula procedente de las líneas linfoide (preferentemente un linfocito T) o mieloide (preferentemente un macrófago), una célula epitelial o un fibroblasto. Preferentemente, la célula de prueba según la invención se selecciona de entre el grupo que comprende las células Jurkat (descritas en particular en Schneider *et al.* Int J Cancer (1997) 19(5): 621-6), por ejemplo el clon de célula Jurkat E6-1 (ATCC No: TIB-152), las células Jurkat-CCR5 (descritas en particular en Alkhatib *et al.* (1996) Science 272: 1955-1958 y AIDS reagent NIBSC, UK). Aún más preferentemente, la célula de prueba según la invención es una célula Jurkat-CCR5.

Las técnicas que permiten infectar una célula de prueba según la invención por un virus VIH son bien conocidas por el experto en la materia y están descritas en particular en Barré-Sinoussi *et al.* ((1983) Science 220(4599): 868-71)).

El nivel de expresión de microARN o el nivel de expresión de ARNm diana en las células de prueba se puede medir mediante cualquier técnica conocida por el experto en la materia. Se conocen numerosos métodos, que permiten cuantificar los ARN, por ejemplo, los métodos basados en unos PCR después de la transcripción inversa (RT-PCR) que utiliza unos oligonucleótidos específicos de las secuencias de ARN o unos métodos que permiten la hibridación de estos ARN, unos duplicados o triplicados de estos ARN con unas sondas bajo condiciones rigurosas. Cuando el nivel de expresión de los ARNm diana se mide, es posible realizar una RT-PCR o unos chips de ADNc específicos con una sola sonda que permite la transcripción inversa de todos los ARNm. Las sondas según la invención están preferentemente depositadas sobre unos microarrays. Las estrictas condiciones pueden fácilmente ser determinadas por el experto en la materia. Por ejemplo, las estrictas condiciones según la invención pueden comprender una etapa de hibridación de 10 a 20 horas, preferentemente 16h, a una temperatura de 40 a 50°C, preferentemente a 50°C, en presencia de una fuerza iónica equivalente a la inducida por una concentración de 500 mM a 2 M de NaCl, preferentemente 1M de NaCl. También pueden ser añadidos otros productos, como unas soluciones tampón, tales como el Tris o MES, EDTA, Tween y BSA (albúmina de suero bovino).

Los niveles de expresión de los microARN o de sus ARNm diana así medidos, en una célula de prueba respectivamente infectada por un primer virus que utiliza un primer co-receptor y por lo menos por otro virus que utiliza otro co-receptores, pueden permitir identificar los microARN o sus ARNm diana cuya expresión es modulada cuando tiene lugar la infección por cada uno de los virus con respecto a unas células no infectadas. La identificación de los microARN o de sus ARNm diana, cuya expresión se modula cuando tiene lugar la infección por cada uno de los virus puede ser realizada comparando los niveles de expresión de los miARN o de sus ARNm diana medidos después de la infección por cada uno de los virus con el nivel de expresión de dichos miARN o de dichos ARNm diana en unas células no infectadas. Preferentemente, para que un microARN o sus ARNm diana estén considerados por tener una expresión modulada cuando tiene lugar la infección de las células de prueba por un virus, esta expresión es aumentada o disminuida con respecto a la expresión en las células de prueba no infectadas de un log2 de la relación (expresión de dicho miARN en unas células infectadas/expresión de dicho miARN en unas células no infectadas) superior a 0,5 o inferior a -0,5 respectivamente.

Los microARN o sus ARNm diana identificados por tener una expresión modulada cuando tiene lugar la infección por cada uno de los virus pueden después ser comparados con el fin de seleccionar los miARN o sus ARNm diana cuya expresión está modificada específicamente por la utilización de un co-receptor por el virus.

Por "modificación del nivel de expresión específica de la utilización de un co-receptor" según la invención se entiende una modificación, aumento o disminución, de la expresión suficiente para permitir identificar el co-receptor utilizado por el virus.

Por "células de prueba no infectadas" o "células no infectadas por el virus del paciente" se entiende unas células que

65

60

30

35

no se han puesto en contacto con un virus, sea cual sea, pero también las células infectadas por un virus, en particular un retrovirus, cuyos co-receptores celulares son presentados por las células de prueba pero son distintos del primer co-receptor o del por lo menos otro co-receptor utilizado por el virus para entrar en la célula de prueba en los métodos según la invención. Por ejemplo, este virus puede ser un virus VIH pseudotipado por una envoltura anfotrópica de tipo VSV o el virus PFV-1.

Por ejemplo, si la expresión de un miARN o de uno de sus ARNm diana es aumentada cuando tiene lugar una infección con un primer virus VIH que utiliza el co-receptor CXCR4 en unas células Jurkat-CCR5 (que expresa CXCR4 y CCR5) con respecto a la expresión del miARN o de uno de sus ARNm diana en unas células jurkat-CCR5 no infectadas y si la expresión de este miARN o de uno de sus ARNm diana no es aumentada cuando tiene lugar una infección con un segundo virus VIH que utiliza el co-receptor CCR5 en unas células Jurkat-CCR5 con respecto a la expresión del miARN o de uno de sus ARNm diana en las células Jurkat-CCR5 no infectadas, entonces el aumento de la expresión de dicho miARN o de dicho ARNm diana es específico de la utilización del receptor CXCR4 por el virus VIH.

La presente invención puede referirse también a un método *in vitro* de identificación de microARN o de sus ARNm diana cuya expresión, cuando tiene lugar la infección de células por un virus que utiliza un receptor y por lo menos un co-receptor celular para entrar en la célula, está específicamente modificada en función del co-receptor celular utilizado por el virus para su entrada en las células, que comprende:

- i) determinar los niveles de expresión de microARN en una célula de prueba, que expresa el receptor, un primer co-receptor y por lo menos otro co-receptor, después de la infección respectivamente por un primer virus que utiliza el primer co-receptor y por lo menos por otro virus que utiliza otro co-receptor;
- 25 ii) comparar los niveles de expresión de los micro-ADN así determinados;

5

10

15

20

35

40

- iii) identificar los microARN cuya modificación del nivel de expresión es específica de la utilización de un coreceptor.
- 30 Los niveles de expresión de los microARN o de sus ARNm diana así medidos en una célula de prueba después de la infección, respectivamente, por un virus que utiliza un primer co-receptor y por lo menos otro virus que utiliza otro co-receptor pueden entonces ser comparados directamente entre sí. Esta comparación permite entonces identificar los microARN o sus ARNm diana cuya modificación de la expresión es específica de la utilización del primer co-receptor o del por lo menos otro co-receptor por el virus.
 - Los métodos según la invención pueden también comprender una etapa suplementaria que permite identificar los ARNm diana de los micro-ARN característicos así identificados, cuya modificación del nivel de expresión es específica de la utilización de un co-receptor por un virus para entrar en una célula. Las dianas de los miARN pueden estar identificadas en unas bases de datos, en particular miRBase (http://microrna.sanger.ac.uk/ y en particular descrito en Griffiths-Jones et al. (2008) Nucleic Acids Res 36, Griffiths-Jones et al. (2006) Nucleic Acids Res 34, Griffiths-Jones et al. (2004) Nucleic Acids Research 32) y TargetScan (http://www.targetscan.org/ y en particular descrito en Lewis et al. (2005) Cell 120: 15-20, Grimson et al. (2007) Molecular Cell 27: 91-105, Friedman et al. (2009) Genome Research 19: 92-105).
- La expresión "muestra del paciente susceptible de comprender el virus VIH" comprende todos los líquidos o tejidos biológicos que provienen de un paciente y que puede contener unos virus como por ejemplo, la sangre periférica, las mucosas genitales, los tejidos linfoides, el líquido cefalorraquídeo, la placenta o la leche materna. La muestra puede ser puesta directamente en contacto con las células de prueba. Preferentemente, los virus son extraídos de la muestra antes del contacto con las células hospedantes. Por ejemplo, los virus de los pacientes pueden proceder de aislados primarios procedentes de una muestra biológica y ser obtenidos mediante cualquier método conocido por el experto en la materia, por ejemplo, el aislamiento de los virus VIH puede efectuarse por co-cultivo de los linfocitos de pacientes infectados por el VIH con unos linfocitos de donantes seronegativos para el VIH, en particular según la técnica descrita por Barre-Sinoussi *et al.* ((1983) Science 220(4599):868-71). La sangre periférica de un paciente infectado por el virus VIH puede también ser tratado para separar el plasma de las células (como se describe en particular por Fang *et al.* (1995) Proc. Natl. Acad. Sci. USA 92:12110-4).
 - Con el fin de elaborar el método de identificación de un co-receptor celular utilizado por un virus que utiliza un receptor celular y por lo menos un co-receptor celular para entrar en una célula en un paciente, se mide el nivel de expresión de por lo menos un miARN y/o de por lo menos un ARNm diana de este miARN. Preferentemente, este miARN y/o su ARNm diana se ha identificado por tener una modificación del nivel de expresión específica de la utilización por el virus de un co-receptor. Preferentemente, este miARN y/o su ARNm diana se identificará mediante un método según la invención.
- En particular, el método de identificación de virus en un paciente según la invención se puede utilizar para identificar unos virus que utilizan CXCR4 y/o CCR5. Preferentemente, este miARN y/o su ARNm diana se identificó entonces por tener una modificación del nivel de expresión específica de la utilización por el virus VIH del receptor CXCR4 y/o

CCR5. Preferentemente, este miARN y/o su ARNm diana se identificó mediante el método de identificación de miARN según la invención.

Preferentemente, el método según la invención se aplica para identificar la presencia o la ausencia de virus que utiliza el co-receptor CXCR4 en un paciente. El método según la invención se puede aplicar también varias veces en muestras procedentes de un mismo paciente extraídas en diferentes momentos a lo largo del tiempo con el fin de identificar la aparición del virus utilizando el receptor CXCR4 y así seguir la evolución de la enfermedad en este paciente.

5

15

30

35

40

45

50

55

60

65

10 El valor predeterminado puede ser un valor único como, por ejemplo, un nivel o una media de niveles de expresión de un miARN dado o de un ARNm diana dado.

Por ejemplo, con el fin de identificar un virus que utiliza un co-receptor dado, el valor predeterminado puede ser el valor de la expresión de un miARN dado o de un ARNm diana dado en una célula que expresa este co-receptor e infectada por un virus de referencia conocido por utilizar este co-receptor para entrar en la célula. Por ejemplo, con el fin de identificar unos virus que utilizan CXCR4 y/o CCR5 en un paciente, el valor predeterminado puede ser el valor de la expresión de un miARN dado o de un ARNm diana dado en una célula que expresa CXCR4 o CCR5 después de la infección con un virus VIH de referencia que utiliza CXCR4 o CCR5 para entrar en una célula.

La comparación entre el valor de expresión obtenido y el valor predeterminado permite determinar si el virus estudiado utiliza o no el mismo co-receptor que el virus de referencia para entrar en las células. Por ejemplo, si el valor obtenido es próximo al valor predeterminado, es posible deducir que un co-receptor utilizado por el virus ensayado sea idéntico al utilizado por el virus de referencia para entrar en las células. Por valor próximo se entiende, preferentemente unos valores que no difieren de más del 50%, 40%, 30%, 20% o 10% y aún más preferentemente de menos del 5%.

El valor de referencia puede también ser, por ejemplo, el valor de la expresión de un miARN dado o de un ARNm diana dado en una célula no infectada y por lo tanto en ausencia de infección por el virus del paciente. Preferentemente, se habrá demostrado entonces previamente que la expresión de dicho miARN o de dicho ARNm diana se modula, aumenta o disminuye, de manera específica después de la infección de la célula con un virus de referencia que utiliza un co-receptor dado con respecto a la expresión en una célula no infectada. El aumento o la disminución del valor de expresión de un miARN o de un ARNm diana de la misma naturaleza que la determinada anteriormente indica entonces una utilización de un mismo co-receptor por los virus. Por expresión aumentada o disminuida de la misma naturaleza, se entienden preferentemente unos valores de log2 de la relación (expresión de dicho miARN y/o de un ARNm diana en unas células infectadas/expresión de dicho miARN y/o de un ARNm diana en unas células no infectadas) del mismo signo (negativo o positivo, respectivamente). La etapa de comparación del nivel de expresión con un valor determinado (iii) en el método de identificación de un co-receptor utilizado por un virus de un paciente infectado según la invención es entonces preferentemente llevada a cabo determinando si el nivel de expresión de por lo menos un miARN y/o por lo menos un ARNm diana de un miARN aumenta o disminuye con respecto al nivel de expresión de por lo menos un miARN y/o de por lo menos un ARNm diana de un miARN en unas células de prueba no infectadas.

Por ejemplo, la medición de la expresión de uno o más microARN o ARNm diana, cuya expresión se ha mostrado como específicamente modificada (aumentada o disminuida) por unos virus VIH de referencia utilizando el coreceptor CXCR4, en unas células no infectadas puede ser comparada con unas mediciones de la expresión de dichos microARN o ARNm diana en unas células después de la infección por unos virus de un paciente. En caso de ausencia de modulaciones predefinidas de algunos microARN, esta prueba identificará que CXCR4 no es un coreceptor utilizado por un virus VIH del paciente. A la inversa, si se observan las modulaciones predefinidas (aumento o disminución), la prueba identificará que CXCR4 es un co-receptor utilizado por el virus VIH del paciente, se puede señalar que dicho virus puede ser un virus de doble tropismo por ejemplo, que puede utilizar CCR5 y CXCR4.

El miARN cuya expresión está determinada puede ser, por ejemplo, seleccionado de entre el grupo constituido por hsa-miR-574-5p (en particular de SEC ID nº 31, ugagugugugugugugugugugugugugu), hsa-miR-663 (en particular de SEC ID nº: 32, aggcggggcgcgcggggaccgc), hsa-miR-149* (en particular de SEC ID nº: 33, agggagggacgggggugugc), hsa-miR-575 (en particular de SEC ID nº: 34, gagccaguuggacaggagc), hsa-miR-638 (en particular de SEC ID nº: 35, agggaucgcgggggggggggggcgcu), hsa-miR-181b (en particular de SEC ID nº: 36, aacauucauugcugucggugggu), hsa-let-7g (en particular de SEC ID nº: 37, ugagguaguaguuuguacaguu), hsa-miR-30a (en particular de SEC ID nº: 38, uguaaacauccucgacuggaag), hsa-miR-148a (en particular de SEC ID nº: 39, ucagugcacuacagaacuuugu) y hsa-miR-9* (en particular de SEC ID nº: 40, auaaagcuagauaaccgaaagu). Preferentemente, el miARN cuya expresión está determinada es hsa-miR-638.

Los miARN cuya expresión está determinada pueden también ser unas variantes alélica o polimórfica de las SEC ID nº 31 a 40, así como unas secuencias ortólogas presentes en otras especies que derivan de los miARN de secuencia SEC ID nº 31 a 40 y que desempeña la misma función, en particular regulando la expresión de los mismos ARNm diana. Por ejemplo, estos miARN pueden derivar de los miARN de las secuencia SEC ID nº 31 a 40 por una o más mutaciones de ácidos nucleicos.

El ARNm cuya expresión está determinada puede ser, por ejemplo, seleccionado de entre el grupo constituido por los ARNm diana de los miARN de las SEC ID nº 31 a 40 o por los miARN que derivan de ellas. En particular, los ARNm diana pueden ser identificados en unas bases de datos como ha descrito anteriormente.

Por ejemplo, un aumento de la expresión de por lo menos un miARN seleccionado de entre el grupo que comprende hsa-miR574-5p, hsa-miR-663, hsa-miR-149*, hsa-miR-575, hsa-miR-638 o una disminución de la expresión de por lo menos un microARN seleccionado de entre el grupo que comprende hsa-miR-181b, hsa-let-7g, hsa-miR-30a, hsa-miR-148a y hsa-miR-9* indica que CXCR4 es un co-receptor utilizado por un virus VIH del paciente. Por el contrario, una ausencia de aumento de la expresión de por lo menos un miARN seleccionado de entre el grupo que comprende hsa-miR574-5p, hsa-miR-663, hsa-miR-149*, hsa-miR-575, hsa-miR-638, o una ausencia de disminución de la expresión de por lo menos un microARN seleccionado de entre el grupo que comprende hsa-miR-181b, hsa-let-7g, hsa-miR-30a, hsa-miR-148a y hsa-miR-9* indica que CXCR4 no es un co-receptor utilizado por un virus del paciente.

Figura

5

15

20

30

35

45

65

Figura 1: Expresión de hsa-miR-638 en respuesta a la infección por unos aislados primarios HIV-1 de tropismo CXCR4, CCR5 o de los virus de doble tropismo (dual). Unas células Jurkat-CCR5 son infectadas por 4 aislados DUAL (dual 1, dual 2, dual 3, dual 4), 4 aislados CXCR4 (X4 1, X4 2, X4 3, X4 4) y 3 aislados CCR5 (R5 1, R5 2, R5 3). Tres días después de la infección, las células son lisadas y los ARN son analizados por RT-qPCR dirigida contra el hsa-miR-638. La expresión de hsa-miR-638 en las células infectadas está normalizada por la expresión de células de control Jurkat R5 no infectadas (NI).

25 Ejemplos

Material y métodos

Virus y líneas celulares

Los virus utilizados en este estudio son los virus prototipos VIH-1 NL4.3 y VIH-2 ROD que utilizan ambos el coreceptor CXCR4, el virus VIH-1 NLAD8 que utiliza el co-receptor CCR5 y unos virus procedentes de aislados primarios que utilizan el co-receptor CXCR4 (3 aislados denominados X4 1, X4 2, X4 3 y X4 4), que utiliza el co-receptor CCR5 (3 aislados denominados R5 1, R5 2 y R5 3) o que puede utilizar los dos co-receptores CXCR4 y CCR5 (4 aislados denominados dual 1, dual 2, dual 3 y dual 4) así como otro retrovirus, el PFV-1, que no utiliza ni CD4, ni CXCR4 ni CCR5 para su entrada.

Se utilizan las líneas celulares Jurkat y Jurkat-CCR5 que expresa CCR5 de manera estable.

40 Infección

- infección por los virus prototipos

Las células Jurkat y Jurkat-CCR5 se infectan durante 3 días por dos dosis infecciosas de VIH-1 NL4.3, VIH-2 ROD con el fin de tener en cuenta unas modulaciones relacionadas con la multiplicidad de infección. Las células Jurkat-CCR5 se infectan durante 3 días por VIH-1 NLAD8 o PFV-1.

- infección por los virus procedentes de aislados primarios
- Las células Jurkat-CCR5 se infectan durante 3 días por los virus X4 1, X4 2, X4 3 y X4 4, R5 1, R5 2, R5 3, dual 1, dual 2, dual 3 o dual 4. Unas células Jurkat-CCR5 no infectadas se utilizan como control (NI).

Análisis de la expresión de los microARN

55 - Análisis por chip micro-ARN

Tres días después de la infección por los virus prototipos, se extraen los ARN y se someten a análisis por chip microARN (LC Sciences o Affymetrix).

60 - Análisis de la expresión de hsa-miR-638 por RT-PCR

Tres días después de la infección por los virus procedentes de aislados primarios, las células son lisadas y la expresión de hsa-miR-368 se analiza por RT-qPCR. La expresión de hsa-miR-368 en las células infectadas se normaliza con respecto a la expresión de hsa-miR-368 en unas células control Jurkat-CCR5 no infectadas (NI).

Resultados

15

20

Ejemplo 1: identificación de los micro-ARN

Se han estudiado las modulaciones de la expresión de los microARN inducidas por los virus prototipos VIH-1 NL4.3 y VIH-2 ROD, que utilizan ambos el co-receptor CXCR4. Con el fin de limitar las variaciones interindividuos y trabajar con una base genética idéntica (y por lo tanto un repertorio de microARN comparable), estas modulaciones se estudian al mismo tiempo cuando tiene lugar la infección de la línea celular Jurkat y de la línea Jurkat que expresa CCR5. Tres días después de la infección, los ARN de las células Jurkat se extraen y se someten a análisis por chip microARN. La tabla 1 muestra una subpoblación de microARN modulados al mismo tiempo por VIH-1 NL4.3 y VIH-2 ROD.

Tabla 1. Modulaciones significativas (p<0,01) del repertorio de microARN celulares inducidas cuando tiene lugar una infección por VIH-1 NL4.3 y VIH-2 ROD de células Jurkat y Jurkat-CCR5 a 1 y 100 TCID50.

microARN cuya expresión aumenta cuando tiene lugar la infección por NL4.3 y ROD						
hsa-miR-574-5p	hsa-miR-575					
hsa-miR-663	hsa-miR-638					
hsa-miR-149*						

microARN cuya expresión disminuye cuando tiene lugar la infección por NL4.3 y ROD						
hsa-miR-181b	hsa-miR-374b					
hsa-let-7g	hsa-miR-148a					
hsa-miR-26b	hsa-miR-181d					
hsa-let-7c	hsa-miR-9*					
hsa-miR-7	hsa-miR-98					
hsa-miR-30a	hsa-let-7e					
hsa-miR-9						

La infección de células Jurkat-CCR5 por VIH-1 NLAD8 (de tropismo R5, Tabla 2) y por el retrovirus PFV-1 control que no utiliza ni CD4, ni CXCR4 ni CCR5 para su entrada conlleva también unas modulaciones de la expresión de microARN

Tabla 2. Modulaciones significativas (p<0,01) del repertorio de microARN celulares inducidas cuando tiene lugar la infección VIH-1 NLAD8.

microARN cuya expresión aumenta cu	ando tiene lugar la infección por NLAD8
hsa-miR-19a	hsa-miR-30b
hsa-miR-19b	hsa-miR-23b
hsa-miR-30e	hsa-miR-128
hsa-miR-29a	hsa-miR-106a
hsa-miR-29c	hsa-miR-15a
hsa-miR-342-3p	hsa-miR-17
hsa-miR-30c	hsa-miR-222
hsa-miR-92b	hsa-miR-30d
hsa-miR-1280	hsa-miR-93
hsa-miR-16	hsa-miR-150
hsa-miR-18b	hsa-let-7i
hsa-miR-92a	hsa-miR-25
hsa-miR-18a	hsa-miR-20b
hsa-miR-106b	hsa-let-7g
hsa-miR-23a	hsa-miR-191
hsa-miR-20a	

microARN cuiva expresión disminuiv	e cuando tiene lugar la infección por NLAD8								
hsa-let-7d hsa-miR-923									
hsa-let-7a	hsa-miR-374b								
hsa-miR-181b	hsa-miR-342-5p								
hsa-miR-21	hsa-miR-181d								
hsa-miR-155	hsa-miR-638								
hsa-miR-26b	hsa-let-7b								
hsa-miR-1826	hsa-miR-9								
hsa-miR-423-5p	hsa-miR-575								
hsa-miR-7	hsa-miR-1246								

microARN cuya expresión disminuye cuando tiene lugar la infección por NLAD8								
hsa-miR-320c	hsa-miR-98							
hsa-miR-130b	hsa-miR-149*							
hsa-miR-182	hsa-let-7e							
hsa-miR-320b	hsa-miR-574-5p							
hsa-miR-320d	hsa-miR-483-5p							
hsa-let-7c	hsa-miR-375							
hsa-miR-1275	hsa-miR-936							
hsa-miR-320a								

Por comparación de estas tablas, se puede constatar que la expresión de nueve microARN disminuye sistemáticamente cuando tiene lugar la infección, sea cual sea el VIH y su tropismo (Tabla 3). La expresión de estos microARN no está afectada por la infección por PFV-1.

Tabla 3. Modulaciones significativas (p<0,01) del repertorio de microARN celulares inducidas cuando tiene lugar la infección por NL4.3, ROD y NLAD8.

microARN cuya expresión disminuye cuando tiene lugar la infección por NL4.3, ROD y NLAD8						
hsa-miR-181b	hsa-miR-374b					
hsa-miR-26b	hsa-miR-181d					
hsa-let-7c	hsa-miR-98					
hsa-miR-7	hsa-let-7e					
hsa-miR-9						

Por otra parte, la expresión de 5 microARN aumenta cuando tiene lugar la infección por NL4.3 o ROD, pero no aumenta cuando tiene lugar la infección por NLAD8. Por último, la expresión de 4 microARN disminuye específicamente cuando tiene lugar la infección por NL4.3 o ROD pero no disminuye cuando tiene lugar la infección por NLAD8 (tabla 4). Ningún microARN cuya expresión aumenta o disminuye específicamente cuando tiene lugar la infección por NL4.3 o ROD está afectado cuando tiene lugar la infección por PFV-1.

Tabla 4. Modulaciones significativas (p<0,01) del repertorio de microARN celulares inducidas específicamente cuando tiene lugar la infección por NL4.3 y ROD (Aumentada, microARN cuya expresión aumenta cuando tiene lugar la infección, disminuida: microARN cuya expresión disminuye cuando tiene lugar la infección).

nombre del microARN	infección por NL4.3 o ROD	SEC ID nº
hsa-miR-574-5p	aumentada	33
hsa-miR-663	aumentada	34
hsa-miR-149*	aumentada	35
hsa-miR-575	aumentada	36
hsa-miR-638	aumentada	37
hsa-miR-181b	disminuida	38
hsa-let-7g	disminuida	39
hsa-miR-30a	disminuida	40
hsa-miR-148a	disminuida	41
hsa-miR-9*	disminuida	42

Estos resultados ilustran la importancia de las modulaciones del repertorio de microARN celulares inducidas por la entrada del virus. Estos análisis ponen también en evidencia la posibilidad, gracias a los métodos según la invención, de distinguir la utilización de un cierto tipo de co-receptor (en este caso CXCR4 o CCR5) por el VIH en base a cambios del repertorio celular de microARN.

Ejemplo 2:

Con el fin de validar los resultados así obtenidos, unas células Jurkat-CCR5 (que expresan al mismo tiempo el receptor CXCR4 y el receptor CCR5) se infectan por unos virus procedentes de aislados primarios que utilizan el coreceptor CXCR4 (X4 1, X4 2, X4 3 y X4 4), que utiliza el co-receptor CCR5 (R5 1, R5 2 y R5 3) o que puede utilizar los dos co-receptores CXCR4 y CCR5 (dual 1, dual 2, dual 3 y dual 4).

La expresión de hsa-miR-638 en las células infectadas o no infectadas (NI, control) se mide después de 3 días. Como se esperaba y como se indica en la figura 1, la expresión de hsa-miR-638 no se modifica en las células no infectadas. Esta expresión no se modifica tampoco estadísticamente en las células infectadas por unos virus que utilizan únicamente CCR5 como co-receptor para entrar en las células (R5 1, R5 2 y R5 3) (FIG. 1). Por el contrario, esta expresión aumenta significativamente en las células que han sido infectadas por un virus capaz de utilizar el co-receptor CXCR4 para entrar en las células (X4 1, X4 2, X4 3, X4 4, dual 1, dual 2, dual 3 y dual 4) (FIG. 1).

5

15

20

25

Estos resultados indican que sólo una infección que hace intervenir el co-receptor CXCR4 provoca un aumento de la expresión de hsa-miR-638.

Estos resultados confirman por lo tanto los datos obtenidos en el ejemplo 1 y demuestran, si fuese necesario, que el nivel de expresión de este micro-ARN en una célula infectada permite determinar el co-receptor utilizado por el virus para infectar esta célula, y permite por lo tanto identificar el tropismo de este virus.

Listado de secuencias

10

<110> Centre National de la Recherche Scientifique (CNRS)

<120> Identificación del tropismo celular de virus

15 <130> BFF09P0281

<160> 40

<170> PatentIn versión 3.4

20

<210> 1

<211> 4320

<212> ADN

<213> Homo sapiens

25

<220>

<221> CDS

<222> (1038)..(1052)

30 <220>

<221> CDS

<222> (3185)..(4225)

<400> 1

tttcatctc coggettat ttgctggtt ctccqaatgc gggccttgte tggttcacce 60 tggatcccca acgcctagaa cagtgcgtgg cacgcagttc gtccttctat aaatatcgga 120 ctaaatgcat ctctgtgatg gtaataccca cacggtgttg tgagaatgaa tgagtgattc 180 tgtgcaagtt cctagtgatc tgttacaaaa agtactggtc gctaaattac tcttataata 240 aagcatactt ttaggataat aaagcactat tcgcgaattg gttaccgcta ttatgaaatt 300 actgagcaat acatatctac atctgatcag tctccagaat tatgccaaat cctaccttct 360 tctgaaagta tctcctaatt atctgcacct gaccctagtg atgctggaa tgtgcaagta 420 tagctacatc ctccgaagga aggatctta ctcctttac ctcctgaatg ggctgcgtct 480 gctgaaagcg cgggggaatg ggcggttgga agcttggccc tacttccagc attgccgcct 540 actggttggg ttactccagc aagtcactcc ccttccctgg gcctcagtgt ctctactgta 600 gcattcccag gtctggaatt ccatccactt tagcaaggat ggacgcgcca cagagagacg 660 cgttcctagc ccgcgcttcc cacctgtctt caggcgcatc ccgcttccct caaacttagg 720 aaatgcctct gggaggtcct gtccggctcc ggactcacta ccgaccaccc gcaaacagca 780 gggtcccctg ggcttcccaa gccgcgcacc tctccgccc gcccctgcgc cctccttcct 840 cgcgtctgcc cctctccca accccgcctt ctcccccc gcccaagcgg cgcatgcgcc 900 gcgctcggag cgtgtttta taaaagtccg gccgcggcca gaaacttcag tttgttggct 960 gcggcagcag gtagcaaagt gacgccgagg gcctgagtgc tccagtagcc accgcatctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1072							
ctaaatgcat ctctgtgatg gtaataccca cacggtgttg tgagaatgaa tgagtgattc 180 tgtgcaagtt cctagtgatc tgttacaaaa agtactggtc gctaaattac tcttataata 240 aagcatactt ttaggataat aaagcactat tcgcgaattg gttaccgcta ttatgaaatt 300 actgagcaat acatactac atctgatcag tctccagaat tatgccaaat cctaccttct 360 tctgaaagta tctcctaatt atctgcacct gaccctagtg atgctgtgaa tgtgcaagta 420 tagctacatc ctccgaagga aggatcttta ctccttttac ctcctgaatg ggctgcgtct 480 gctgaaagcg cgggggaatg ggcggttgga agcttggccc tacttccagc attgccgcct 540 actggttggg ttactccagc aagtcactcc ccttccctgg gcctcagtgt ctctactgta 600 gcattcccag gtctggaatt ccatccactt tagcaaggat ggacgcgcca cagagagacg 660 cgttcctagc ccgcgcttcc cacctgtctt caggcgcatc ccgcttcct caaacttagg 720 aaatgcctct gggaggtcct gtccggctcc ggactcacta ccgaccaccc gcaaacagca 780 gggtcccctg ggcttcccaa gccgcgcacc tctccqccc gcccctgcgc cctccttcct 840 cgcgtctgca cctctcccca acccgcctt ctccctccc gccccagcgg cgcatgcgcc 900 gcgctcggag cgtgtttta taaaagtccg gccgcggcca gaaacttcag tttgttggct 960 gcggcagcag gtagcaaagt gacgccgagg gcctgagtgc tccagtagcc accgcatctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1072 Met Glu Gly 11e Ser	tttcatctct	ccgggcttat	ttgctggttt	ctccgaatgc	gggccttgtc	tggttcacgc	60
tgtgcaagtt cctagtgatc tgttacaaaa agtactggtc gctaaattac tcttataata 240 aagcatactt ttaggataat aaagcactat tcgcgaattg gttaccgcta ttatgaaatt 300 actgagcaat acatatctac atctgatcag tctccagaat tatgccaaat cctaccttct 360 tctgaaagta tctcctaatt atctgcacct gaccctagtg atgctgtgaa tgtgcaagta 420 tagctacatc ctccgaagga aggatcttta ctccttttac ctcctgaatg ggctgcgtct 480 gctgaaaggc cgggggaatg ggcggttgga agcttggccc tacttccagc attgccgcct 540 actggttggg ttactccagc aagtcactcc ccttccctgg gcctcagtgt ctctactgta 600 gcattcccag gtctggaatt ccatccactt tagcaaggat ggacgcgcca cagagagacg 660 cgttcctagc ccgcgcttcc cacctgtctt caggcgcatc ccgctccct caaacttagg 720 aaatgcctct gggaggtcct gtccggctcc ggactcacta ccgaccaccc gcaaacagca 780 gggtcccctg ggcttcccaa gccgcgccc tctccgcccc gcccctgcgc cctccttcct	tggatcccca	acgcctagaa	cagtgcgtgg	cacgcagttc	gtccttctat	aaatatcgga	120
aagcatactt ttaggataat aaagcactat tcgcgaattg gttaccgcta ttatgaaatt 300 actgagcaat acatatctac atctgatcag tctccagaat tatgccaaat cctaccttct 360 tctgaaagta tctcctaatt atctgcacct gaccctagtg atgctgtgaa tgtgcaagta 420 tagctacatc ctccgaagga aggatcttta ctcctttac ctcctgaatg ggctgcgtct 480 gctgaaagcg cgggggaatg ggcggttgga agcttggccc tacttccagc attgccgcct 540 actggttggg ttactccagc aagtcactcc ccttccctgg gcctcagtgt ctctactgta 600 gcattcccag gtctggaatt ccatccactt tagcaaggat ggacgcgca cagagagacg 660 cgttcctagc ccgcgttcc cacctgtctt caggcgcatc ccgcttccct caaacttagg 720 aaatgcctct gggaggtcct gtccggctcc ggactcacta ccgaccacce gcaaacagca 780 gggtcccctg ggcttcccaa gccgcgcacc tctccgccc gcccctgcgc cctccttcct 840 cgcgtctgca cgtgtttta taaaagtccg gccgcgcac gaaacttcag tttgttggct 960 gcgctcggag cgtgtttta taaaagtccg gccgcggcca gaaacttcag tttgttggct 960 gcgcgcagcag gtagcaaagt gacgccgagg gcctgagtgc tccagtagcc accgcatctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1072 Met Glu Gly 11e Ser	ctaaatgcat	ctctgtgatg	gtaataccca	cacggtgttg	tgagaatgaa	tgagtgattc	180
actgagcaat acatatetac atetgateag tetecagaat tatgecaaat ectacettet 360 tetgaaagta tetectaatt atetgeaect gaceetagtg atgetgtgaa tgtgeaagta 420 tagetacate eteegaagga aggatetta eteetttae eteetgaatg ggetgegtet 480 getgaaagge egggggaatg ggeggttgga agettggeee taetteeage attgeegeet 540 actggttggg ttaeteeage aagteaetee eetteeetgg geeteagtgt etetaetgta 600 geatteeeag gtetggaatt ecateeaett tageaaggat ggaeggeea eagagagaeg 660 egtteetage eegegettee eacetgtett eaggegeate eegetteeet eaaaettagg 720 aaatgeetet gggaagteet gteeggetee ggaeteaeta eegeeteeet eaaaettagg 780 gggteeeetg ggetteeeaa geegegeaee teteegeeee geeeetgege eeteetteet 840 egegtetgee eeteeteeee aceeegeett eteeeteeee geeeetgege egeatgegee 900 gegeteggag egtgtttta taaaagteeg geegeggeea gaaaetteag tttgttgget 960 geggeageag gtagcaaagt gaegeegagg geetgagtge teeagtagee acegeatetg 1020 gagaaceage ggttaee atg gag ggg ate agt gtaagteeag ttteaaeetg 1072	tgtgcaagtt	cctagtgatc	tgttacaaaa	agtactggtc	gctaaattac	tcttataata	240
tetgaaagta tetectaatt atetgeacet gaceetagtg atgetgtgaa tgtgeaagta 420 tagetacate eteegaagga aggatettta eteetttae eteetgaatg ggetgegtet 480 getgaaageg egggggaatg ggeggttgga agettggeee taetteeage attgeegeet 540 actggttggg ttaeteeage aagteactee eetteeetgg geeteagtgt etetaetgta 600 geatteeeag gtetggaatt eeateeactt tageaaggat ggaegegeea eagagagaeg 660 egtteetage eegegettee eacetgtett eaggegeate eegetteeet eaaacttagg 720 aaatgeetet gggaggteet gteeggetee ggaeteacta eegaceacee geaaacagea 780 gggteeeetg ggetteeeaa geegegeaee teteegeeee geeeetgege eeteetteet 840 egegtetgee eeteteeee aceeegeett eteeeteeee geeeeagegg egeatgegee 900 gegeteggag egtgtttta taaaagteeg geegeggeea gaaactteag tttgttgget 960 geggeageag gtageaaagt gacgeegagg geetgagtge teeagtagee acegeatetg 1020 gagaaccage ggttace atg gag ggg ate agt gtaagteeag ttteaacetg 1072 Met Glu Gly Ile Ser	aagcatactt	ttaggataat	aaagcactat	tcgcgaattg	gttaccgcta	ttatgaaatt	300
tagctacate etecgaagga aggatettta eteettttae eteetgaatg ggetgegtet 480 getgaaageg egggggaatg ggeggttgga agettggeee tactteeage attgeegeet 540 actggttggg ttacteeage aagteactee eetteeetgg geeteagtgt etetactgta 600 geatteeeag gtetggaatt eeacteactt tagcaaggat ggaegegeea eagagagaeg 660 egtteetage eegegettee eacetgtett eaggegeate eegetteeet eaaacttagg 720 aaatgeetet gggaggteet gteeggetee ggaeteacta eegaceacee geaaacagea 780 gggteeeetg ggetteeeaa geegegeaee teteegeeee geeeetgege eeteetteet 840 egegtetgee eeteeteeee aceeegeett eteegteee geeeeagegg egeatgegee 900 gegeteggag egtgtttta taaaagteeg geegeggeea gaaactteag tttgttgget 960 geggeageag gtagcaaagt gaegeegagg geetgagtge teeagtagee acegeatetg 1020 gagaaccage ggttace atg gag ggg ate agt gtaagteeag ttteaacetg 1072 Met Glu Gly Ile Ser	actgagcaat	acatatctac	atctgatcag	tetecagaat	tatgccaaat	cctaccttct	360
gctgaaagcg cgggggaatg ggcggttgga agcttggccc tacttccagc attgccgcct 540 actggttggg ttactccagc aagtcactcc cettccctgg gcctcagtgt ctctactgta 600 gcattcccag gtctggaatt ccatccactt tagcaaggat ggacgcgcca cagagagacg 660 cgttcctagc ccgcgcttcc cacctgtctt caggcgcatc ccgcttccct caaacttagg 720 aaatgcctct gggaggtcct gtccggctcc ggactcacta ccgaccaccc gcaaacagca 780 gggtcccctg ggcttcccaa gccgcgcacc tctccgcccc gcccctgcgc cctccttcct 840 cgcgtctgcc cctctcccc accccgcctt ctccctccc gcccagegg cgcatgcgcc 900 gcgctcggag cgtgtttta taaaagtccg gccgcggcca gaaacttcag tttgttggct 960 gcggcagcag gtagcaaagt gacgccgagg gcctgagtgc tccagtagcc accgcatctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1072 Met Glu Gly Ile Ser	tctgaaagta	tctcctaatt	atctgcacct	gaccctagtg	atgctgtgaa	tgtgcaagta	420
actggttggg ttactccage aagtcactce cettecetgg geeteagtgt etetactgta 600 geatteceag gtetggaatt ecatecactt tageaaggat ggaegegeea cagagagaeg 660 egtteetage eegegttee eacetgtett eaggegeate eegetteeet eaaacttagg 720 aaatgeetet gggaggteet gteeggetee ggaeteacta eegaceacee geaaacagea 780 gggteeeetg ggetteeea geegegeace teteegeeee geeeetgege eeteetteet 840 egegtetgee eeteteeee acceegeett eteecteeee geeeeagegg egeatgegee 900 gegeteggag egtgtttta taaaagteeg geegeggeea gaaactteag tttgttgget 960 geggeageag gtageaaagt gaegeegagg geetgagtee tecagtagee acceedatetg 1020 gagaaccage ggttace atg gag ggg ate agt gtaagteeag ttteaacetg 1072 Met Glu Gly Ile Ser	tagctacatc	ctccgaagga	aggatcttta	ctccttttac	ctcctgaatg	ggctgcgtct	480
gcattcccag gtctggaatt ccatccactt tagcaaggat ggacgcgcca cagagagacg 660 cgttcctagc ccgcgcttcc cacctgtctt caggcgcatc ccgcttccct caaacttagg 720 aaatgcctct gggaggtcct gtccggctcc ggactcacta ccgaccaccc gcaaacagca 780 gggtcccctg ggcttcccaa gccgcgcacc tctccgcccc gcccctgcgc cctccttcct 840 cgcgtctgcc cctctccccc accccgcctt ctccctcccc gccccagcgg cgcatgcgcc 900 gcgctcggag cgtgtttta taaaagtccg gccgcggcca gaaacttcag tttgttggct 960 gcggcagcag gtagcaaagt gacgccgagg gcctgagtgc tccagtagcc accgcatctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1072 Met Glu Gly Ile Ser	gctgaaagcg	cgggggaatg	ggcggttgga	agcttggccc	tacttccagc	attgccgcct	540
cgttectage ecgegettee cacetgtett caggegeate eegetteeet caaacttagg 720 aaatgeetet gggaggteet gteeggetee ggaeteacta eegaceacee geaaacagea 780 gggteeeetg ggetteeeaa geegegeace teteegeeee geeeetgege eeteetteet 840 egegtetgee eeteteeeee acceegeett eteesteeee geeeeagegg egeatgegee 900 gegeteggag egtgtttta taaaagteeg geegeggeea gaaactteag tttgttgget 960 geggeageag gtageaaagt gacgeegagg geetgagtge teeagtagee accgeatetg 1020 gagaaccage ggttace atg gag ggg ate agt gtaagteeag ttteaacetg 1072 Met Glu Gly Ile Ser	actggttggg	ttactccagc	aagtcactcc	ccttccctgg	gcctcagtgt	ctctactgta	600
aaatgeetet gggaggteet gteeggetee ggaeteacta eegaceace geaaacagea 780 gggteecetg ggetteecaa geeggeace teteegeee geeeetgege eeteetteet 840 egegtetgee eeteteecee acceegeett eteecteece geeceagegg egeatgegee 900 gegeteggag egtgtttta taaaagteeg geegggeea gaaactteag tttgttgget 960 geggeageag gtageaaagt gaegeegagg geetgagtge teeagtagee acegeatetg 1020 gagaaccage ggttace atg gag ggg atc agt gtaagteeag ttteaacetg 1072 Met Glu Gly Ile Ser	gcattcccag	gtctggaatt	ccatccactt	tagcaaggat	ggacgcgcca	cagagagacg	660
gggtcccctg ggcttcccaa gccgcgcacc tctccgcccc gcccctgcgc cctccttcct 840 cgcgtctgcc cctctccccc accccgcctt ctccctcccc gccccagegg cgcatgcgcc 900 gcgctcggag cgtgtttta taaaagtccg gccgcggcca gaaacttcag tttgttggct 960 gcggcagcag gtagcaaagt gacgccgagg gcctgagtgc tccagtagcc accgcatctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1072 Met Glu Gly Ile Ser	cgttcctagc	cegegettee	cacctgtctt	caggcgcatc	ccgcttccct	caaacttagg	720
cgcgtctgcc cctctcccc accccgcctt ctccctccc gccccagcgg cgcatgcgcc 900 gcgctcggag cgtgtttta taaaagtccg gccgcggcca gaaacttcag tttgttggct 960 gcggcagcag gtagcaaagt gacgccgagg gcctgagtgc tccagtagcc accgcatctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1072 Met Glu Gly Ile Ser	aaatgcctct	gggaggtcct	gtccggctcc	ggactcacta	ccgaccaccc	gcaaacagca	780
gcgctcggag cgtgtttta taaaagtccg gccgcggcca gaaacttcag tttgttggct 960 gcggcagcag gtagcaaagt gacgccgagg gcctgagtgc tccagtagcc accgcatctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1072 Met Glu Gly Ile Ser	gggtcccctg	ggcttcccaa	gccgcgcacc	teteegeeee	gcccctgcgc	cctccttcct	840
gcggcagcag gtagcaaagt gacgccgagg gcctgagtgc tccagtagcc accgcatctg 1020 gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg 1072 Met Glu Gly Ile Ser	cgcgtctgcc	cctctcccc	accccgcctt	ctccctcccc	gccccagcgg	cgcatgcgcc	900
gagaaccagc ggttacc atg gag ggg atc agt gtaagtccag tttcaacctg Met Glu Gly Ile Ser	gcgctcggag	cgtgttttta	taaaagtccg	gccgcggcca	gaaacttcag	tttgttggct	960
Met Glu Gly Ile Ser	gcggcagcag	gtagcaaagt	gacgccgagg	gcctgagtgc	tccagtagcc	accgcatctg	1020
1 5	gagaaccagc	•••			gtecag ttte	aacctg	1072

ctttgtcata	aatgtacaaa	cgtttgaact	tagagcgcag	cccctctccg	agcgggcaga	1132
ageggeeagg	acattggagg	tacccgtact	ccaaaaaagg	gtcaccgaaa	ggagttttct	1192
tgaccatgcc	tatatagtgc	gggtgggtgg	ggggggagca	ggattggaat	ctttttctct	1252
gtgagtcgag	gagaaacgac	tggaaagagc	gttccagtgg	ctgcatgtgt	ctccccttg	1312
agtecegeeg	cgcgcggcgg	cttgcacgct	gtttgcaaac	gtaagaacat	tctgtgcaca	1372
agtgcagaga	aggcgtgcgc	gctgcctcgg	gactcagacc	accggtctct	tccttgggga	1432
agcggggatg	tcttggagcg	agttacattg	tctgaattta	gaggcggagg	gcggcgtgcc	1492
tgggctgact	teccaggagg	agattgcgcc	cgctttaact	teggggttaa	gcgcctggtg	1552
actgttcttg	acactgggtg	cgtgtttgtt	aaactctgtg	cggccgacgg	agctgtgcca	1612
gtctcccagc	acagtaggca	gagggcggga	gaggcgggtg	gacccaccgc	gccgatectc	1672
tgaggggatc	gagtggtggc	agcagctagg	agttgatccg	cccgcgcgct	ttgggtttga	1732
ggggaaacc	ttcccgccgt	ccgaagcgcg	cetetteece	acggccgcga	gtgggtcctg	1792
cagttcgaga	gtttggggtc	gtgcagaggt	cagcggagtg	gtttgacctc	ccctttgaca	1852
ccgcgcagct	gccagccctg	a gatttgcgc	tccggggata	ggagcgggta	cggggtgagg	1912
ggcggggggg	gttaagaccg	cacctgggct	gccaggtcgc	cgccgcgaag	actggcaggt	1972
gcaagtgggg	aaaccgtttg	gctctctccg	agtccagttg	tgatgtttaa	ccgtcggtgg	2032
tttccagaaa	ccttttgaaa	ccctcttgct	agggagtttt	tggtttcctg	cagcggcgcg	2092
caattcaaag	acgctcgcgg	cggagccgcc	cagtcgctcc	ccagcaccct	gtgggacaga	2152
gcctggcgtg	tegeceageg	gageceetge	agegetgett	gegggeggtt	ggcgtgggtg	2212
tagtgggcag	cegeggegge	ccggggctgg	acgacccggc	ccccccctt	cccaccgcct	2272
ggaggcttcc	agctgcccac	ctccggccgg	gttaactgga	tcagtggcgg	ggtaatggga	2332
agccacccgg	gagagtgagg	aaatgaaact	tggggcgagg	accacgggtg	cagaccccgt	2392
taccttctcc	acccaggaaa	atgccccgct	ccctaacgtc	ccaaacgcgc	caagtgataa	2452
acacgaggat	ggcaagagac	ccadacaccg	gaggagcgcc	cgcttggggg	aggaggtgcc	2512
gtttgttcat	tttctgacac	tecegeceaa	tataccccaa	gcaccgaagg	gccttcgttt	2572
taagaccgca	ttctctttac	ccactacaag	ttgcttgaag	cccagaatgg	tttgtattta	2632
ggcaggcgtg	ggaaaattaa	gtttttgcgc	tttaggagaa	tgagtctttg	caacgccccc	2692
gccetecece	cgtgatecte	cettetecce	tetteeetee	ctgggcgaaa	aacttcttac	2752
aaaaagttaa	tcactgcccc	tcctagcagc	acccacccca	cccccacgc	cgcctgggag	2812
tggcctcttt	gtgtgtattt	ttttttcct	cctaaggaag	gtttttttc	ttccctctag	2872
tgggcggggc	agaggagtta	gccaagatgt	gactttgaaa	ccctcagcgt	ctcagtgccc	2932
ttttgttcta	aacaaagaat	tttgtaattg	gttctaccaa	agaaggatat	aatgaagtca	2992
ctatgggaaa	agatggggag	gagagttgta	ggattctaca	ttaattctct	tgtgccctta	3052

gcccactact tcagaatttc ctgaagaaag caagcctgaa ttggtttttt aaattgcttt	3112
aaaaattttt tttaactggg ttaatgcttg ctgaattgga agtgaatgtc cattcctttg	3172
cetettttge ag ata tae act tea gat aac tae ace gag gaa atg gge tea Ile Tyr Thr Ser Asp Asn Tyr Thr Glu Glu Met Gly Ser 10 15	3223
ggg gac tat gac tcc atg aag gaa ccc tgt ttc cgt gaa gaa aat gct Gly Asp Tyr Asp Ser Met Lys Glu Pro Cys Phe Arg Glu Glu Asn Ala 20 25 30	3271
aat ttc aat aaa atc ttc ctg ccc acc atc tac tcc atc atc ttc tta Asn Phe Asn Lys Ile Phe Leu Pro Thr Ile Tyr Ser Ile Ile Phe Leu 35 40 50	3319
act ggc att gtg ggc aat gga ttg gtc atc ctg gtc atg ggt tac cag Thr Gly Ile Val Gly Asn Gly Leu Val Ile Leu Val Met Gly Tyr Gln 55 60 65	3367
aag aaa ctg aga agc atg acg gac aag tac agg ctg cac ctg tca gtg Lys Lys Leu Arg Ser Met Thr Asp Lys Tyr Arg Leu His Leu Ser Val 70 75 80	3415
gcc gac ctc ctc ttt gtc atc acg ctt ccc ttc tgg gca gtt gat gcc Ala Asp Leu Leu Phe Val Ile Thr Leu Pro Phe Trp Ala Val Asp Ala 85 90 95	3463
gtg gca aac tgg tac ttt ggg aac ttc cta tgc aag gca gtc cat gtc Val Ala Asn Trp Tyr Phe Gly Asn Phe Leu Cys Lys Ala Val His Val 100 105 110	3511
ate tac aca gtc aac etc tac age agt gtc etc ate etg gec ttc ate Ile Tyr Thr Val Asn Leu Tyr Ser Ser Val Leu Ile Leu Ala Phe Ile 115 120 125 130	3559
agt ctg gac cgc tac ctg gcc atc gtc cac gcc acc aac agt cag agg Ser Leu Asp Arg Tyr Leu Ala Ile Val His Ala Thr Asn Ser Gln Arg 135 140 145	3607
cca agg aag ctg ttg gct gaa aag gtg gtc tat gtt ggc gtc tgg atc Pro Arg Lys Leu Leu Ala Glu Lys Val Val Tyr Val Gly Val Trp Ile 150 155 160	3655
cct gcc ctc ctg ctg act att ccc gac ttc atc ttt gcc aac gtc agt Pro Ala Leu Leu Thr Ile Pro Asp Phe Ile Phe Ala Asn Val Ser 165 170 175	3703
gag gca gat gac aga tat atc tgt gac cgc ttc tac ccc aat gac ttg Glu Ala Asp Asp Arg Tyr Ile Cys Asp Arg Phe Tyr Pro Asn Asp Leu 180 185 190	3751
tgg gtg gtt gtg ttc cag ttt cag cac atc atg gtt ggc ctt atc ctg Trp Val Val Val Phe Gln Phe Gln His Ile Met Val Gly Leu Ile Leu 195 200 205 210	3799
cct ggt att gtc atc ctg tcc tgc tat tgc att atc atc tcc aag ctg Pro Gly Ile Val Ile Leu Ser Cys Tyr Cys Ile Ile Ile Ser Lys Leu 215 220 225	3847
tca cac tcc aag ggc cac cag aag cgc aag gcc ctc aag acc aca gtc Ser His Ser Lys Gly His Gln Lys Arg Lys Ala Leu Lys Thr Thr Val 230 235 240	3895

atc ctc atc ctg gct ttc ttc gcc tgt tgg ctg cct tac tac att ggg Ile Leu Ile Leu Ala Phe Phe Ala Cys Trp Leu Pro Tyr Tyr Ile Gly 245 250 255	3943								
atc agc atc gac tcc ttc atc ctc ctg gaa atc atc aag caa ggg tgt Ile Ser Ile Asp Ser Phe Ile Leu Leu Glu Ile Ile Lys Gln Gly Cys 260 265 270	3991								
gag ttt gag aac act gtg cac aag tgg att tcc atc acc gag gcc cta Glu Phe Glu Asn Thr Val His Lys Trp Ile Ser Ile Thr Glu Ala Leu 275 280 285 290	4039								
gct ttc ttc cac tgt tgt ctg aac ccc atc ctc tat gct ttc ctt gga Ala Phe Phe His Cys Cys Leu Asn Pro Ile Leu Tyr Ala Phe Leu Gly 295 300 305	4087								
gcc aaa ttt aaa acc tct gcc cag cac gca ctc acc tct gtg agc aga Ala Lys Phe Lys Thr Ser Ala Gln His Ala Leu Thr Ser Val Ser Arg 310 315 320	4135								
ggg tcc agc ctc aag atc ctc tcc aaa gga aag cga ggt gga cat tca Gly Ser Ser Leu Lys Ile Leu Ser Lys Gly Lys Arg Gly Gly His Ser 325 330 335	4183								
tct gtt tcc act gag tct gag tct tca agt ttt cac tcc agc Ser Val Ser Thr Glu Ser Glu Ser Ser Ser Phe His Ser Ser 340 . 345 350	4225								
taacacagat gtaaaagact ttttttata cgataaataa cttttttta agttacacat	4285								
ttttcagata taaaagactg accaatattg tacag									

<210> 2

<211> 352

<212> PRT

<213> Homo sapiens

<400> 2

10

. Met Glu Gly Ile Ser Ile Tyr Thr Ser Asp Asn Tyr Thr Glu Glu Met

Gly Ser Gly Asp Tyr Asp Ser Met Lys Glu Pro Cys Phe Arg Glu Glu 20 25 30

Asn Ala Asn Phe Asn Lys Ile Phe Leu Pro Thr Ile Tyr Ser Ile Ile 35 40 45

Phe Leu Thr Gly Ile Val Gly Asn Gly Leu Val Ile Leu Val Met Gly 50 55 60

Tyr Gln Lys Lys Leu Arg Ser Met Thr Asp Lys Tyr Arg Leu His Leu 65 70 80

Ser Val Ala Asp Leu Leu Phe Val Ile Thr Leu Pro Phe Trp Ala Val 85 90 95

Asp Ala Val Ala Asn Trp Tyr Phe Gly Asn Phe Leu Cys Lys Ala Val

			100					105					110		
His	Val	Ile 115	Tyr	Thr	Val	Asn	Leu 120	Tyr	Ser	Ser	Val	Leu 125	Ile	Leu	Ala
Phe	Ile 130	Ser	Leu	Asp	Arg	Tyr 135	Leu	Ala	Ile	Val	His 140	Ala	Thr	Asn	Ser
Gln 1 4 5	Arg	Pro	Arg	Lys	Leu 150	Leu	Ala	Glu	Lys	Val 155	Val	Tyr	Val	Gly	Val 160
Trp	Ile	Pro	Ala	Leu 165	Leu	Leu	Thr	Ile	Pro 170	Asp	Phe	Ile	Phe	Ala 175	Asn
Val	Ser	Glu	Ala 180	Asp	Asp	Arg	туг	Ile 185	Cys	Asp	Arg	Phe	Tyr 190	Pro	Asn
Asp	Leu	Trp 195	Val	Val	Val	Phe	Gln 200	Phe	Gln	His	Ile	Met 205	Val	Gly	Leu
Ile	Leu 210	Pro	Gly	Ile	Val	Ile 215	Leu	Ser	Cys	Tyr	Cys 220	Ile	Ile	Ile	Ser
Lys 225	Leu	Ser	His	Ser	Lys 230	Gly	His	Gln	Lys	Arg 235	Lys	Ala	Leu	Lys	Thr 240
Thr	Val	Ile	Leu	11e 245	Leu	Ala	Phe	Phe	Ala 250	Cys	Trp	Leu	Pro	Tyr 255	Tyr
Ile	Gly	Ile	Ser 260	Ile	Asp	Ser	Phe	11e 265	Leu	Leu	Glu	Ile	Ile 270	Lys	Gln
Gly	Сув	Glu 275	Phe	Glu	Asn	Thr	Val 280	His	Lys	Trp	Ile	Ser 285	Ile	Thr	Glu
Ala	Leu 290	Ala	Phe	Phe	His	Cys 295	Cys	Leu	Asn	Pro	Ile 300	Leu	Tyr	Ala	Phe
Leu 305	Gly	Ala	Lys	Phe	Lys 310	Thr	Ser	Ala	Gln	His 315	Ala	Leu	Thr	Ser	Val 320
Ser	Arg	Gly	Ser	Ser 325	Leu	Lys	Ile	Leu	Ser 330	Lys	Gly	Lys	Arg	Gly 335	Gly
His	Ser	Ser	Val 340	Ser	Thr	Glu	Ser	Glu 345	Ser	Ser	Ser	Phe	His 350	Ser	Ser
<211 <212	<210> 3 <211> 1560 <212> ADN <213> Homo sapiens														
<220 <221 <222	> CD		416)												

5

10

<400> 3

cttcagatag attatatctg gagtgaagaa tcctgccacc tatgtatctg gcatagtatt	60
ctgtgtagtg ggatgagcag agaacaaaaa caaaataatc cagtgagaaa agcccgtaaa	120
taaaccttca gaccagagat ctattctcta gcttatttta agctcaactt aaaaagaaga	180
actgttctct gattcttttc gccttcaata cacttaatga tttaactcca ccctccttca	240
aaagaaacag catttcctac ttttatactg tctatatgat tgatttgcac agctcatctg	300
gccagaagag ctgagacatc cgttccccta caagaaactc tccccgggtg gaacaag	357
atg gat tat caa gtg tca agt cca atc tat gac atc aat tat tat aca Met Asp Tyr Gln Val Ser Ser Pro Ile Tyr Asp Ile Asn Tyr Tyr Thr 1 5 10 15	405
tcg gag ccc tgc caa aaa atc aat gtg aag caa atc gca gcc cgc ctc Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu 20 25 30	453
ctg cct ccg ctc tac tca ctg gtg ttc atc ttt ggt ttt gtg ggc aac Leu Pro Pro Leu Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn 35 40 45	501
atg ctg gtc atc ctc atc ctg ata aac tgc aaa agg ctg aag agc atg Met Leu Val Ile Leu Ile Leu Ile Asn Cys Lys Arg Leu Lys Ser Met 50 55 60	549
act gac atc tac ctg ctc aac ctg gcc atc tct gac ctg ttt ttc ctt Thr Asp Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu Phe Phe Leu 65 70 75 80	597
ctt act gtc ccc ttc tgg gct cac tat gct gcc gcc cag tgg gac ttt Leu Thr Val Pro Phe Trp Ala His Tyr Ala Ala Ala Gln Trp Asp Phe 85 90 95	645
gga aat aca atg tgt caa ctc ttg aca ggg ctc tat ttt ata ggc ttc Gly Asn Thr Met Cys Gln Leu Leu Thr Gly Leu Tyr Phe Ile Gly Phe 100 105 110	693
Phe Ser Gly Ile Phe Phe Ile Ile Leu Leu Thr Ile Asp Arg Tyr Leu 115 120 125	741
gct gtc gtc cat gct gtg ttt gct tta aaa gcc agg acg gtc acc ttt Ala Val Val His Ala Val Phe Ala Leu Lys Ala Arg Thr Val Thr Phe 130 135 140	789
ggg gtg gtg aca agt gtg atc act tgg gtg gtg gct gtg ttt gcg tct Gly Val Val Thr Ser Val Ile Thr Trp Val Val Ala Val Phe Ala Ser 145 150 155 160	837
ctc cca gga atc atc ttt acc aga tct caa aaa gaa ggt ctt cat tac Leu Pro Gly Ile Ile Phe Thr Arg Ser Gln Lys Glu Gly Leu His Tyr 165 170 175	885

		-						_	_		caa Gln			_		933
											gtc Val					981
											act Thr 220					1029
											ctt Leu					1077
											aac Asn					1125
-					_				_		aat Asn	-	-	-		1173
											act Thr					1221
	-	-							_		gtc Val 300			_		1269
_					_				_		att Ile	-		_		1317
_		-	_				-			_	CCC Pro		_	_	_	1365
	-			_					_	_	ata Ile				_	1413
-							_	_	_		gtgc					1466
-			_		_					ıgag	gtct	tttt	ta a	aaag	gaagtt	1526
	_	tag a	- ggg1	cca	ag at	.ccat	.ccat	L TT	1 T							1560
<212	> 352 > PR		apiens	5												
<400	> 4															
Met 1	Asp	Tyr	Gln	Val 5	Ser	Ser	Pro	Ile	Tyr 10	Asp	Ile	Asn	Tyr	Tyr 15	Thr	

5

10

17

Ser Glu Pro Cys Gln Lys Ile Asn Val Lys Gln Ile Ala Ala Arg Leu 20 25 30

Leu	Pro	Pro 35	Leu	Tyr	Ser	Leu	Val 40	Phe	Ile	Phe	Gly	Phe 45	Val	Gly	Asn
Met	Leu 50	Val	Ile	Leu	Ile	Leu 55	Ile	Asn	Сув	Lys	Arg 60	Leu	Lys	Ser	Met
Thr 65	Asp	Ile	Tyr	Leu	Leu 70	Aşn	Leu	Ala	Ile	Ser 75	Asp	Leu	Phe	Phe	Leu 80
Leu	Thr	Val	Pro	Phe 85	Trp	Ala	His	Tyr	Ala 90	Ala	Ala	Gln	Trp	Asp 95	Phe
Gly	Asn	Thr	Met 100	Cys	Gln	Leu	Leu	Thr 105	Gly	Leu	Tyr	Phe	Ile 110	Сĵ	Phe
Phe	Ser	Gly 115	Ile	Phe	Phe	Ile	Ile 120	Leu	Leu	Thr	Ile	Asp 125	Arg	Tyr	Leu
Ala	Val 130	val	His	Ala	Val	Phe 135	Ala	Leu	Lys	Ala	Arg 140	Thr	Val	Thr	Phe
Gly 145	Val	Val	Thr	Ser	Val 150	Ile	Thr	Trp	Val	Val 155	Ala	Val	Phe	Ala	Ser 160
Leu	Pro	Gly	Ile	Ile 165	Phe	Thr	Arg	Ser	Gln 170	Lys	Glu	Gly	Leu	His 175	Tyr
Thr	Cys	Ser	Ser 180	His	Phe	Pro	Tyr	Ser 185	Gln	Tyr	Gln	Phe	Trp 190	Lys	Asn
Phe	Gln	Thr 195	Leu	Lys	Ile	Val	Ile 200	Leu	Gly	Leu	Val	Leu 205	Pro	Leu	Leu
Val	Met 210	Val	Ile	Cys	Tyr	Ser 215	Gly	Ile	Leu	Lys	Thr 220	Leu	Leu	Arg	Суз
Arg 225	Asn	Glu	Lys	Lys	Arg 230	His	Arg	Ala	Val	Arg 235	Leu	Ile	Phe	Thr	Ile 240
Met	Ile	Val	Tyr	Phe 245	Leu	Phe	Trp	Ala	Pro 250	Tyr	Asn	Ile	Val	Leu 255	Leu
Leu	Asn	Thr	Phe 260	Gln	Glu	Phe	Phe	Gly 265	Leu	Asn	Asn	Cys	Ser 270	Ser	Ser

Asn Arg Leu Asp Gln Ala Met Gln Val Thr Glu Thr Leu Gly Met Thr 275 280 285

His Cys Cys Ile Asn Pro Ile Ile Tyr Ala Phe Val Gly Glu Lys Phe 290 295 300

Arg Asn Tyr Leu Leu Val Phe Phe Gln Lys His Ile Ala Lys Arg Phe 305 310 315 320

Cys Lys Cys Cys Ser Ile Phe Gln Gln Glu Ala Pro Glu Arg Ala Ser 325 330 335

Ser Val Tyr Thr Arg Ser Thr Gly Glu Glu Glu Ile Ser Val Gly Leu 340 345 350

<210>5

<211> 5160

<212> ADN

<213> Homo sapiens

<220>

5

10

<221> CDS

<222> (4015)..(5082)

<400>5

ttcttcctaa atttatttac aaatqtaaca caattccacc caaacttatg tttttataag 60 taattgagta gatgatocta aagtttaata aaacaaatgg ctctaatagg taagacattt 120 ggaaatgtat aatgaaaggg agttgcataa taagatcatc tatataaatc atctaataaa 180 totacaataa aaagtgtoto tagcacagaa ataagatato aatagaatat aaggtacaaa 240 atcagattca ggaacattaa agaatatacg acaaaggtga tatttcaagc ccaaagggga 300 gaagatggtt attcaacaca tagtgtttta aaatttgtca gataagaatg gagaggagga 360 ggctcctctc ctctgacccc agggaatgtg agaagagaca cagtggttat gaaaggaagc 420 agteacacet gtggatecet acettececa teagagetag ggggeatgga gegetetetg 480 ctaagatggg gaccccaag gaatgtctcc ctgtggggca cttccttacc agatgggatg 540 gccagtgcgg ttaagttggt ggtcaggcag aaaaaaaaga tctagtttgt actcttgaga 600 gttcctcggt ttgttcatgg catgggcagg gagtcaagga gcagcagcct tgcctcagtg 660 cctaccagtg caggaaaagg tgcatagcct gggccagggc cagggccctg gtggaggcgt 720 780 agtggtaaca gagagggete tecattecag eccaaggaag actaagaatg aataceteat gagtatatta gctacaaacc accacagcag gttccagaaa aaggctcagc gttggaacca 840 ggtcaccccc actcagcaga caccagtcat ataaatcaag gaccaacagg agacaggaac 900 accccettee caetetgeec catgteteaa gttgtagtgg ceetteetee agatetetge 960 1020 caccatctta qaaaqqaaca ctgaaaqaaq aaactgaaat tataagctga cagcataaag aggatgagta aaacctaaaa tcattgttca aatgaatgaa tcaagagaag tttaaaccac 1080 tttggactaa aatgtgtgaa tcctttttcc tgctatccag cagatgagaa gctggtaaca 1140

gagaccaaaa	tagtttggag	actaaagaat	cattgcacat	ttcactgctg	agttgtattg	1200
tgagtaattt	tagttgacct	cacttttgta	aatcttgcac	acgggcatcc	atatetgeae	1260
agagatatgt	taacagtggt	aaatgctgca	tgaggagatt	gggtgatttt	tactttcgtt	1320
tttgtgctct	tctttcttat	tgttcttact	tatttacgat	taccctatcg	ttttccaaaa	1380
tgtaaaaggc	cattttgaaa	gcctaattca	aacctcttca	ctattttgta	tctaagtatt	1440
caccttgatt	gagactgggt	agacaggtga	aaaccatatc	aggttttaa	tttttaatt	1500
tttaattatt	tatttattta	tttattttt	gagatggagt	ctggctgtcg	cccaggctgg	1560
agtgcagcgg	cgtgatcaca	gttcactgca	gcctcaacct	tctaggctca	agggattctc	1620
ccacctcage	cccccaagta	gttgggacca	cacgtatgcg	ccaccatgcc	tggctaattt	1680
cttattttt	tgtagagata	ggatctcact	atattgtcca	ggctggtctt	gaatteetgg	1740
gctcaggtga	gcctcccacc	tgggcctccc	aaagtactgg	gattacaggc	atgagccaag	1800
gteccetgee	catatgagat	tttctgtctc	tgatcccatg	cagctagtaa	tcaaggactt	1860
ggctgctgac	tctggaggac	ctgcatgctt	tcttgagctg	tgaacttcag	tgctaaaagc	1920
tcataggcag	ccctgaaacc	caaaccaaaa	ggttctatgg	tttatcatcc	cgatcatgtt	1980
gattttatag	aaataacaca	tgaattaaag	acactaccct	caaactgagc	aaaacttaag	2040
taatttttt	aaagtttgac	ctgtttttaa	atcactcttg	gagaaaaagg	aaaataaata	2100
caaataatta	acggtgaata	caggctacta	tacctttgtt	ctccagaatt	agcagttctg	2160
ttctttctt	gctttagatg	ctgaagtgca	gaaggacact	ctgtgattgt	acgtgtgtaa	2220
ctgacaaaat	gtgtatttt	tttctcagct	gctatggatt	ggattatgct	attatgaata	2280
agaatgctga	tgggagcaca	cacaaaccat	ttgttcctca	gtccattttc	ctcctcaaaa	2340
gcctggaatg	tgccattgat	cagtgggaga	tgtacctgga	cagacccatg	aaaagagatc	2400
aacaagttcc	acccaaggga	ccctatttt	cctaatttca	tttgaaatgg	cttctaattg	2460
tccttcttc	attcctgctt	cctaccagtt	ttacagcttt	ttctggtttc	aaatgtgaac	2520
tcacatacac	tctcattttt	cctcatcaca	accccaagtg	acccaatggt	cctcactttc	2580
gatataagta	aaggaggete	tgcattaagg	gcttgtccaa	ggcacgcagc	tgagaggege	2640
taggactggc	tccatttcca	tctctattct	cactgacttt	gactacccag	aaccccaaca	2700
tgtggggcct	cagtattcga	tcaattattc	tattaagaag	caaaaacaat	tccccgcatt	2760
ggccccagtt	attaagcatt	tctcagattt	accttgagaa	atgcccatcg	gcctgtatat	2820
tcacatcttc	accettgtcc	cttcctccta	gaaaggagaa	agtcagttgg	atgccctctg	2880
aggaactagt	gcatggctta	actgtccttc	catgactcct	gccttatctg	ttttctattt	2940
tcctcctttt	ccaccgaagt	ctataatctc	aagaaaagca	ggcactggcc	ttagggctcc	3000
tggcctaaga	aatatcaagt	ccagtgagaa	atcccattga	ctgacccctc	ctgcttaccc	3060
ctttgtgatg	gagaagctcc	caggggtttg	ctttttgcat	gttaccaggc	ctaactcagc	3120

atcaccaggg gcaagaaaag gaaagtaacc taaactaatg ctgcttataa ttgtaattat	3180
tgtaatagtt aattactgtg attgtacatg tgtaacagac aaaatgtgta ttttttcac	3240
agctgctgtg gattggatta tgccatttgg aataagaatg ctgttaagag cacacaagcc	3300
aggttcctca agtccgtagc aaatttttca aaagttaaat ttaaaaatca ctacatttga	3360
atctagtgac aggagaaatg gacatggata gagactaaag atctagccca aattttatat	3420
ttacttgtta gaggattttg aacaaattac taaatttctt caaggttcaa tttccccatt	3480
aactataatg aatggctcat cattatgggg ccctggagaa gcataattac ttgtaattgt	3540
aataatcatt gttattatta ttatacatat tttgctttta aatggataag gatttttaag	3600
gtatatgtaa actgtaaaac ataaaatgca aaatgccgta agagacagta gtaataataa	3660
tgattattat attgttatca ttatctagec tgttttttcc tgttttgtat ttcttccttt	3720
anatgettte agammatetgt atceccatte ttemecacea ceccacamea tttetgette	3780
ttttcccatg ccgggtcatg ctaactttga aagcttcagc tctttccttc ctcaatcctt	3840
ttoctggcac ctctgatatg ccttttgaaa ttcatgttaa agaatcccta ggctgctatc	3900
acatgtggca tetttgttga gtacatgaat aaatcaactg gtgtgtttta egaaggatga	3960
ttatgcttca ttgtgggatt gtatttttct tcttctatca cagggagaag tgaa atg Met 1	4017
aca acc tca cta gat aca gtt gag acc ttt ggt acc aca tcc tac tat Thr Thr Ser Leu Asp Thr Val Glu Thr Phe Gly Thr Thr Ser Tyr Tyr 5 10 15	4065
gat gac gtg ggc ctg ctc tgt gaa aaa gct gat acc aga gca ctg atg Asp Asp Val Gly Leu Leu Cys Glu Lys Ala Asp Thr Arg Ala Leu Met 20 25 30	4113
gcc cag ttt gtg ccc ccg ctg tac tcc ctg gtg ttc act gtg ggc ctc Ala Gln Phe Val Pro Pro Leu Tyr Ser Leu Val Phe Thr Val Gly Leu ~ 35 40 45	4161
ttg ggc aat gtg gtg gtg atg atc ctc ata aaa tac agg agg ctc Leu Gly Asn Val Val Val Met Ile Leu Ile Lys Tyr Arg Arg Leu 50 55 60 65	4209
cga att atg acc aac atc tac ctg ctc aac ctg gcc att tcg gac ctg Arg Ile Met Thr Asn Ile Tyr Leu Leu Asn Leu Ala Ile Ser Asp Leu 70 75 80	4257
ctc ttc ctc gtc acc ctt cca ttc tgg atc cac tat gtc agg ggg cat Leu Phe Leu Val Thr Leu Pro Phe Trp Ile His Tyr Val Arg Gly His 85 90 95	4305
aac tgg gtt ttt ggc cat ggc atg tgt aag ctc ctc tca ggg ttt tat Asn Trp Val Phe Gly His Gly Met Cys Lys Leu Leu Ser Gly Phe Tyr 100 105 110	4353
cac aca ggc ttg tac agc gag atc ttt ttc ata atc ctg ctg aca atc His Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile Leu Leu Thr Ile 115 120 125	4401

-			_	_		_		_	_		-		cga Arg	-		4449
													ggc Gly			4497
		_	-			_							gaa Glu 175		_	4545
	_				_								aca Thr			45 93
-							_	-	_				tgt Cys		gtt Val	4641
		_		-	•			_					atc Ile		-	4689
													egg Arg		att Ile	4737
	-		_										tac Tyr 255			4785
	_												aat Asn	_	_	4833
		_	_		_	_	_	_	_	_			gag Glu			4881
-				_	_	_		_				_	ttt Phe	_		4929
				_		-	-						cac His	_		4977
													aag Lys 335			5025
_		_		-					_		_	-	ctc Leu			5073
	ttt Phe 355	tag	gtea	agato	gca (yaaa a	attgo	ec ta	aaga	aggaa	a gga	accaa	agga			5122
gate	gaago	caa a	acaca	atta	ag co	ette	cacao	t to	accto	st						5160
<210	> 6															

<210> 6

<211> 355

<212> PRT

<213> Homo sapiens

<400> 6

Met 1	Thr	Thr	Ser	Leu 5	Asp	Thr	Val	Glu	Thr 10	Phe	Gly	Thr	Thr	Ser 15	Tyr
Tyr	Asp	Asp	Val 20	Gly	Leu	Leu	Сув	Glu 25	Lys	Ala	Asp	Thr	Arg 30	Ala	Leu
Met	Ala	G1n 35	Phe	Val	Pro	Pro	Leu 40	Tyr	Ser	Leu	Val	Phe 45	Thr	Val	Gly
Leu	Leu 50	Gly	Asn	Val	Val	Va 1 55	Val	Met	Ile	Leu	Ile 60	Lys	Tyr	Arg	Arg
Leu 65	Arg	Ile	Met	Thr	As n 7 0	Ile	Tyr	Leu	Leu	Asn 75	Leu	Ala	Ile	Ser	Asp 80
Leu ,	Leu	Phe	Leu	Val 85	Thr	Leu	Pro	Phe	Trp 90	Ile	His	Tyr	Val	Arg 95	Gly
His	Asn	Trp	Val 100	Phe	Gly	His	Gly	Met 105	Суз	Lys	Leu	Leu	Ser 110	Gly	Phe
Tyr	His	Thr 115	Gly	Leu	Tyr	Ser	Glu 120	Ile	Phe	Phe	Ile	11e 125	Leu	Leu	Thr
Ile	Asp 130	Arg	Tyr	Leu	Ala	Ile 135	Val	His	Ala	Val	Phe 140	Ala	Leu	Arg	Ala
Arg 145	Thr	Val	Thr	Phe	Gly 150	Val	Ile	Thr	Ser	Ile 155	Val	Thr	Trp	Gly	Leu 160
Ala	Val	Leu	Ala	Ala 165	Leu	Pro	Glu	Phe	Ile 170	Phe	Tyr	Glu	Thr	Glu 175	Glu
Leu	Phe	Glu	Glu 180	Thr	Leu	Суз	Ser	Ala 185	Leu	Tyr	Pro	Glu	Asp 190	Thr	Val
Tyr	Ser	Trp 195	Arg	His	Phe	His	Thr 200	Leu	Arg	Met	Thr	Ile 205	Phe	Сув	Leu
Val	Leu 210	Pro	Leu	Leu	Val	Met 215	Ala	Ile	Cys	Tyr	Thr 220	Gly	Ile	Ile	Lys
Thr 225		Leu	Arg	Сув	Pro 230	Ser	Lys	Lys	_	Tyr 235	Lys	Ala	Ile	Arg	Leu 240

Val Ala Ile Leu Leu Ser Ser Tyr Gln Ser Ile Leu Phe Gly Asn Asp 260 265 270	
Cys Glu Arg Ser Lys His Leu Asp Leu Val Met Leu Val Thr Glu Val 275 280 285	
Ile Ala Tyr Ser His Cys Cys Met Asn Pro Val Ile Tyr Ala Phe Val 290 295 300	
Gly Glu Arg Phe Arg Lys Tyr Leu Arg His Phe Phe His Arg His Leu 305 310 315 320	
Leu Met His Leu Gly Arg Tyr Ile Pro Phe Leu Pro Ser Glu Lys Leu 325 330 335	
Glu Arg Thr Ser Ser Val Ser Pro Ser Thr Ala Glu Pro Glu Leu Ser 340 345 350	
Ile Val Phe 355	
<210> 7 <211> 1680 <212> ADN <213> Homo sapiens	
<220> <221> CDS <222> (361)(1485)	
<400> 7	
agaaacagga gcagatgtac agggtttgcc tgactcacac tcaaggttgc ataagcaaga	60
tttcaaaatt aatcctattc tggagacctc aacccaatgt acaatgttcc tgactggaaa	120
agaagaacta tatttttctg atttttttt tcaaatcttt accattagtt gccctgtatc	180
tecgeettea etttetgeag gaaactttat tteetaette tgeatgeeaa gtttetaeet	240
ctagatetgt ttggtteagt tgetgagaag eetgacatae eaggaetgee tgagaeaage	300
cacaagctga acagagaaag tggattgaac aaggacgcat ttccccagta catccacaac	360
atg ctg tcc aca tct cgt tct cgg ttt atc aga aat acc aac gag agc Met Leu Ser Thr Ser Arg Ser Arg Phe Ile Arg Asn Thr Asn Glu Ser 1 5 10 15	408
ggt gaa gaa gtc acc acc ttt ttt gat tat gat tac ggt gct ccc tgt Gly Glu Glu Val Thr Thr Phe Phe Asp Tyr Asp Tyr Gly Ala Pro Cys 20 . 25 30	456
cat aaa ttt gac gtg aag caa att ggg gcc caa ctc ctg cct ccg ctc His Lys Phe Asp Val Lys Gln Ile Gly Ala Gln Leu Leu Pro Pro Leu	504

		35					40					45				
	_	_										-	-	gtc Val	gtc Val	552
														att Ile		600
														ctc Leu 95		648
														gca Ala		696
_						_								gga Gly		744
					-			-	-		_	_		gtc Val		792
-			•			_		_	-					gtg Val		840
-					_					_		_		gga Gly 175		888
														ggc Gly		936
			-									-		aac As n		984 `
-		_	_		_					_		-		tcg Ser		1032
														cat His		1080
														ttc Phe 255		1128
														ttc Phe		1176
ggc Gly	ctg Leu	agt Ser 275	aac Asn	tgt Cys	gaa Glu	agc Ser	acc Thr 280	agt Ser	caa Gln	ctg Leu	gac Asp	caa Gln 285	gcc Ala	acg Thr	cag Gln	1224
														atc Ile		1272

305 310 315 320	
ggc tgt agg att gcc cca ctc caa aaa cca gtg tgt gga ggt cca gga Gly Cys Arg Ile Ala Pro Leu Gln Lys Pro Val Cys Gly Gly Pro Gly 325 330 335	
gtg aga cca gga aag aat gtg aaa gtg act aca caa gga ctc ctc gat Val Arg Pro Gly Lys Asn Val Lys Val Thr Thr Gln Gly Leu Leu Asp 340 345 350	
ggt cgt gga aaa gga aag tca att ggc aga gcc cct gaa gcc agt ctt Gly Arg Gly Lys Gly Lys Ser Ile Gly Arg Ala Pro Glu Ala Ser Leu 355 360 365	
cag gac aaa gaa gga gcc tag agacagaaat gacagatete tgetttggaa Gln Asp Lys Glu Gly Ala 370	
atcacacgtc tggcttcaca gatgtgtgat tcacagtgtg aatcttggtg tctacgttac	
caggcaggaa ggctgagagg agagagactc cagctgggtt ggaaaacagt attttccaaa	
ctaccttcca gttcctcatt tttgaataca ggcatagagt tcaga	
<210> 8 <211> 374 <212> PRT <213> Homo sapiens	
<400> 8	
Met Leu Ser Thr Ser Arg Ser Arg Phe Ile Arg Asn Thr Asn Glu Ser 1 5 10 15	
Gly Glu Glu Val Thr Thr Phe Phe Asp Tyr Asp Tyr Gly Ala Pro Cys 20 25 30	
His Lys Phe Asp Val Lys Gln Ile Gly Ala Gln Leu Leu Pro Pro Leu 35 40 45	
35 40 45 Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn Met Leu Val Val	
Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn Met Leu Val Val 50 55 60 Leu Ile Leu Ile Asn Cys Lys Lys Leu Lys Cys Leu Thr Asp Ile Tyr	
Tyr Ser Leu Val Phe Ile Phe Gly Phe Val Gly Asn Met Leu Val Val 50 Leu Ile Leu Ile Asn Cys Lys Lys Leu Lys Cys Leu Thr Asp Ile Tyr 75 Leu Leu Asn Leu Ala Ile Ser Asp Leu Leu Phe Leu Ile Thr Leu Pro	

Phe	Phe 130	Ile	Ile	Leu	Leu	Thr 135	Ile	Asp	Arg	Tyr	Leu 140	Ala	Ile	Val	His
Ala 145	Val	Phe	Ala	Leu	Lys 150	Ala	Arg	Thr	Val	Thr 155	Phe	Gly	Val	Val	Thr 160
Ser	Val	Ile	Thr	Trp 165	Leu	Val	Ala	Val	Phe 170	Ala	Ser	Val	Pro	Gly 175	Ile
Ile	Phe	Thr	Lys 180	Cys	Gln	Lys	Glu	As p 185	Ser	Val	Tyr	Val	Cys 190	Gly	Pro
Tyr	Phe	Pro 195	Arg	Gly	Trp	Asn	Asn 200	Phe	His	Thr	Ile	Met 205	Arg	Asn	Ile
Leu	Gly 210	Leu	Val	Leu	Pro	Leu 215	Leu	Ile	Met	Val	Ile 220	Cys	Tyr	Ser	Gly
11e 225	Leu	Lys	Thr	Leu	Leu 230	Arg	Cys	Arg	Asn	Glu 235	Lys	Lys	Arg	His	Arg 240
Ala	Val	Arg	Val	Ile 245	Phe	Thr	Ile	Met	11e 250	Val	Tyr	Phe	Leu	Phe 255	Trp
		-	260					265					G1u 270		
Gly	Leu	Ser 275	Asn	Суѕ	Glu	Ser	Thr 280	Ser	Gln	Leu	Asp	G1n 285	Ala	Thr	Gln
Val	Thr 290	Glu	Thr	Leu	Gly	Met 295	Thr	His	Сув	Cys	11e 300	Asn	Pro	Ile	Ile
Tyr 305	Ala	Phe	Val	Gly	Glu 310	Lys	Phe	Arg	Ser	Leu 315	Phe	His	Ile	Ala	Leu 320
				325					330		_		Gly	335	_
	_		340	-	or .		_	345				_	1eu 350		_
Gly	Arg	355	Lys	Gly	Lys	Ser	360	Gly	Arg	Ala	Pro	365	Ala	Ser	Leu
Gln	Asp 370	Lys	Glu	Gly	Ala										
<212	> 9 > 126 > AD > Hoi	N	apiens	6											
<220 <221 <222			39)												

5

10

<400> 9

ataaaaaccc agaaagcccc agaaacaaag acttcacgga caaagtccct tggaaccaga 6											
gagaagccgg g atg gaa act cca aac acc aca gag gac tat gac acg acc Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr 1 5 10	110										
aca gag ttt gac tat ggg gat gca act ccg tgc cag aag gtg aac gag Thr Glu Phe Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu 15 20 25	158										
agg gcc ttt ggg gcc caa ctg ctg ccc cct ctg tac tcc ttg gta ttt Arg Ala Phe Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe 30 35 40 45	206										
gtc att ggc ctg gtt gga aac atc ctg gtg gtc ctg gtc ctt gtg caa Val Ile Gly Leu Val Gly Asn Ile Leu Val Val Leu Val Leu Val Gln 50 55 60	254										
tac aag agg cta aaa aac atg acc agc atc tac ctc ctg aac ctg gcc Tyr Lys Arg Leu Lys Asn Met Thr Ser Ile Tyr Leu Leu Asn Leu Ala 65 70 75	302										
att tot gad otg otd tto otg tto acg ott occ tto tgg ato gad tac Ile Ser Asp Leu Leu Phe Leu Phe Thr Leu Pro Phe Trp Ile Asp Tyr 80 85 90	350										
aag ttg aag gat gac tgg gtt ttt ggt gat gcc atg tgt aag atc ctc Lys Leu Lys Asp Asp Trp Val Phe Gly Asp Ala Met Cys Lys Ile Leu 95 105	398										
tct ggg ttt tat tac aca ggc ttg tac agc gag atc ttt ttc atc atc Ser Gly Phe Tyr Tyr Thr Gly Leu Tyr Ser Glu Ile Phe Phe Ile Ile 110 125	446										
ctg ctg acg att gac agg tac ctg gcc atc gtc cac gcc gtg ttt gcc Leu Leu Thr Ile Asp Arg Tyr Leu Ala Ile Val His Ala Val Phe Ala 130 135 140	494										
ttg cgg gca cgg acc gtc act ttt ggt gtc atc acc agc atc atc att Leu Arg Ala Arg Thr Val Thr Phe Gly Val Ile Thr Ser Ile Ile 145 150 155	542										
tgg gcc ctg gcc atc ttg gct tcc atg cca ggc tta tac ttt tcc aag Trp Ala Leu Ala Ile Leu Ala Ser Met Pro Gly Leu Tyr Phe Ser Lys 160 165 170	590										
acc caa tgg gaa ttc act cac cac acc tgc agc ctt cac ttt cct cac Thr Gln Trp Glu Phe Thr His His Thr Cys Ser Leu His Phe Pro His 175 180 185	638										
gaa agc cta cga gag tgg aag ctg ttt cag gct ctg aaa ctg aac ctc Glu Ser Leu Arg Glu Trp Lys Leu Phe Gln Ala Leu Lys Leu Asn Leu 190 200 205	686										

ttt ggg ctg gta ttg cct ttg ttg gtc atg atc atc tgc tac aca ggg Phe Gly Leu Val Leu Pro Leu Leu Val Met Ile Ile Cys Tyr Thr Gly 210 215 220	734								
att ata aag att ctg cta aga cga cca aat gag aag aaa tcc aaa gct Ile Ile Lys Ile Leu Leu Arg Arg Pro Asn Glu Lys Lys Ser Lys Ala 225 230 235	782								
gtc cgt ttg att ttt gtc atc atg atc atc ttt ttt ctc ttt tgg acc Val Arg Leu Ile Phe Val Ile Met Ile Ile Phe Phe Leu Phe Trp Thr 240 245 250	830								
ccc tac aat ttg act ata ctt att tct gtt ttc caa gac ttc ctg ttc Pro Tyr Asn Leu Thr Ile Leu Ile Ser Val Phe Gln Asp Phe Leu Phe 255 260 265	878								
acc cat gag tgt gag cag agc aga cat ttg gac ctg gct gtg caa gtg Thr His Glu Cys Glu Gln Ser Arg His Leu Asp Leu Ala Val Gln Val 270 280 285	926								
acg gag gtg atc gcc tac acg cac tgc tgt gtc aac cca gtg atc tac Thr Glu Val Ile Ala Tyr Thr His Cys Cys Val Asn Pro Val Ile Tyr 290 295 300	974								
gcc ttc gtt ggt gag agg ttc cgg aag tac ctg cgg cag ttg ttc cac Ala Phe Val Gly Glu Arg Phe Arg Lys Tyr Leu Arg Gln Leu Phe His 305 310 315	1022								
agg cgt gtg gct gtg cac ctg gtt aaa tgg ctc ccc ttc ctc tcc gtg Arg Arg Val Ala Val His Leu Val Lys Trp Leu Pro Phe Leu Ser Val 320 325 330	1070								
gac agg ctg gag agg gtc agc tcc aca tct ccc tcc aca ggg gag cat Asp Arg Leu Glu Arg Val Ser Ser Thr Ser Pro Ser Thr Gly Glu His 335 340 345	1118								
gaa ctc tct gct ggg ttc tga ctcagaccat aggaggccaa cccaaaataa Glu Leu Ser Ala Gly Phe 350 355	1169								
gcaggegtga cctgccagge acactgagee agcageetgg ctctcccage caggttctga	1229								
ctcttggcac agcatggagt cacagccact t	1260								
<210> 10 <211> 355 <212> PRT <213> Homo sapiens									
<400> 10									
Met Glu Thr Pro Asn Thr Thr Glu Asp Tyr Asp Thr Thr Thr Glu Phe 1 5 10 15									
Asp Tyr Gly Asp Ala Thr Pro Cys Gln Lys Val Asn Glu Arg Ala Phe 20 25 30									
Gly Ala Gln Leu Leu Pro Pro Leu Tyr Ser Leu Val Phe Val Ile Gly									

Leu	Val 50	Gly	Asn	Ile	Leu	Val 55	Val	Leu	Val	Leu	Val 60	Gln	Tyr	Lys	Arg
Leu 65	Lys	Asn	Met	Thr	Ser 70	Ile	Tyr	Leu	Leu	Asn 75	Leu	Ala	Ile	Ser	Asp 80
Leu	Leu	Phe	Leu	Phe 85	Thr	Leu	Pro	Phe	Trp 90	Ile	Asp	Tyr	Lys	Leu 95	Lys
Asp	Asp	Trp	Val 100	Phe	Gly	Asp	Ala	Met 105	Суз	Lys	Ile	Leu	Ser 110	Gly	Phe
Tyr	Tyr	Thr 115	Gly	Leu	Tyr	Ser	Glu 120	Ile	Phe	Phe	Ile	Ile 125	Leu	Leu	Thr
Ile	Asp 130	Arg	Tyr	Leu	Ala	Ile 135	Val	His	Ala	Val	Phe 140	Ala	Leu	Arg	Ala
Arg 145	Thr	Val	Thr	Phe	Gly 150	Val	Ile	Thr	Ser	Ile 155	Ile	Ile	Trp	Ala	Leu 160
				165					170					Gln 175	
			180			-		185					190	Ser	
		195	_				200		_			205		Gly	
	210				,	215			_	_	220	-	-	Ile	-
225					230					235				Arg	240
				245					250					Tyr 255	
			260					26 5	_				270	His	
Сув	Glu	G1n 275	Ser	Arg	His	Leu	Asp 280	Leu	Ala	Val	Gln	Val 285	Thr	Glu	Val

Ile Ala Tyr Thr His Cys Cys Val Asn Pro Val Ile Tyr Ala Phe Val 290 295 300

Gly Glu Arg Phe Arg Lys Tyr Leu Arg Gln Leu Phe His Arg Arg Val

305	310	315	320
Ala Val His Leu Val 325	Lys Trp Leu Pro Ph		Arg Leu 335
Glu Arg Val Ser Ser 340	Thr Ser Pro Ser Th	er Gly Glu His Glu : 350	Leu Ser
Ala Gly Phe 355			
<210> 11 <211> 1380 <212> ADN <213> Homo sapiens			
<220> <221> CDS <222> (183)(1265)			
<400> 11			
cgggggtttt gatcttct	te ecettettt ettee	ecette ttettteett e	ctccctccc 60
teteteattt ecettete	ct teteceteag tetec	acatt caacattgac a	agtccattc 120
agaaaagcaa gctgcttc	tg gttgggccca gacct	gcctt gaggagcctg t	agagttaaa 180
_		e acc ctc gat gaa a Thr Leu Asp Glu S 10	
Met Asn Pro Thr	Asp Ile Ala Asp Thr 5 ctg tat gaa agt at	Thr Leu Asp Glu S 10 c ccc aag cct tgc e Pro Lys Pro Cys	er Ile 15 acc aaa 275
Met Asn Pro Thr . 1 tac agc aat tac tat Tyr Ser Asn Tyr Tyr	Asp Ile Ala Asp Thr 5 ctg tat gaa agt at Leu Tyr Glu Ser Il 25 ttt ggg gag ctc tt	Thr Leu Asp Glu S 10 c ccc aag cct tgc e Pro Lys Pro Cys c ctg ccc cca ctg	er Ile 15 acc aaa 275 Thr Lys 30 tat tcc 323
Met Asn Pro Thr . 1 tac agc aat tac tat Tyr Ser Asn Tyr Tyr 20 gaa ggc atc aag gca Glu Gly Ile Lys Ala	Asp Ile Ala Asp Thr ctg tat gaa agt at Leu Tyr Glu Ser Il 25 ttt ggg gag ctc tt Phe Gly Glu Leu Ph 40 ggt ctg ctt gga aa	Thr Leu Asp Glu S 10 c ccc aag cct tgc e Pro Lys Pro Cys c ctg ccc cca ctg e Leu Pro Pro Leu 45	er Ile 15 acc aaa 275 Thr Lys 30 tat tcc 323 Tyr Ser ctg gtc 371
Met Asn Pro Thr. 1 tac agc aat tac tat Tyr Ser Asn Tyr Tyr 20 gaa ggc atc aag gca Glu Gly Ile Lys Ala 35 ttg gtt ttt gta ttt Leu Val Phe Val Phe	ctg tat gaa agt at Leu Tyr Glu Ser Il 25 ttt ggg gag ctc tt Phe Gly Glu Leu Ph 40 ggt ctg ctt gga aa Gly Leu Leu Gly As 55	to the ten Asp Glu S 10 ce cee aag cet tge le Pro Lys Pro Cys ce ctg cee cea ctg le Leu Pro Pro Leu 45 let tet gtg gtg gtt lin Ser Val Val Val 60 cg act gat gtg tae	er Ile 15 acc aaa 275 Thr Lys 30 tat tcc 323 Tyr Ser ctg gtc 371 Leu Val ctg ctc 419
Met Asn Pro Thr. 1 tac agc aat tac tat Tyr Ser Asn Tyr Tyr 20 gaa ggc atc aag gca Glu Gly Ile Lys Ala 35 ttg gtt ttt gta ttt Leu Val Phe Val Phe 50 ctg ttc aaa tac aag Leu Phe Lys Tyr Lys	ctg tat gaa agt at Leu Tyr Glu Ser Il 25 ttt ggg gag ctc tt Phe Gly Glu Leu Ph 40 ggt ctg ctt gga aa Gly Leu Leu Gly As 55 cgg ctc agg tcc at Arg Leu Arg Ser Me 70 gat ctg ctc ttc gt	to the Leu Asp Glu S 10 ce cee aag cet tge te Pro Lys Pro Cys ce ctg cee cea ctg te Leu Pro Pro Leu 45 te tet gtg gtg gtt to Ser Val Val Val 60 cg act gat gtg tac te Thr Asp Val Tyr 75	er Ile 15 acc aaa 275 Thr Lys 30 tat tcc 323 Tyr Ser ctg gtc 371 Leu Val ctg ctc 419 Leu Leu ttt tgg 467
Met Asn Pro Thr. 1 tac agc aat tac tat Tyr Ser Asn Tyr Tyr 20 gaa ggc atc aag gca Glu Gly Ile Lys Ala 35 ttg gtt ttt gta ttt Leu Val Phe Val Phe 50 ctg ttc aaa tac aag Leu Phe Lys Tyr Lys 65 aac ctt gcc atc tcg Asn Leu Ala Ile Ser	ctg tat gaa agt at Leu Tyr Glu Ser Il ttt ggg gag ctc tt Phe Gly Glu Leu Ph 40 ggt ctg ctt gga aa Gly Leu Leu Gly As 55 cgg ctc agg tcc at Arg Leu Arg Ser Me 70 gat ctg ctc ttc gt Asp Leu Leu Phe Va 85	t tct gtg gtg gtt set tct gat gtg tac act gat gtg tac act Thr Asp Val Tyr 75 g ttt tcc ctc ctc ctc ctc tcl phe Ser Leu Pro 90 et ggg cta ggt ctg set ggg cta ggt Leu Gly Leu Gly Leu	er Ile 15 acc aaa 275 Thr Lys 30 tat tcc 323 Tyr Ser ctg gtc 371 Leu Val ctg ctc 419 Leu Leu ttt tgg 467 Phe Trp 95 tgc aag 515
Met Asn Pro Thr 1 tac agc aat tac tat Tyr Ser Asn Tyr Tyr 20 gaa ggc atc aag gca Glu Gly Ile Lys Ala 35 ttg gtt ttt gta ttt Leu Val Phe Val Phe 50 ctg ttc aaa tac aag Leu Phe Lys Tyr Lys 65 aac ctt gcc atc tcg Asn Leu Ala Ile Ser 80 ggc tac tat gca gca Gly Tyr Tyr Ala Ala	ctg tat gaa agt at Leu Tyr Glu Ser Il 25 ttt ggg gag ctc tt Phe Gly Glu Leu Ph 40 ggt ctg ctt gga aa Gly Leu Leu Gly As 55 cgg ctc agg tcc at Arg Leu Arg Ser Me 70 gat ctg ctc ttc gt Asp Leu Leu Phe Va 85 gac cag tgg gtt tt Asp Gln Trp Val Ph 10 tac ttg gtg ggc tt	thr Leu Asp Glu S 10 c ccc aag cct tgc e Pro Lys Pro Cys c ctg ccc cca ctg e Leu Pro Pro Leu 45 ct tct gtg gtg gtt en Ser Val Val Val 60 cg act gat gtg tac et Thr Asp Val Tyr 75 cg ttt tcc ctc cct ell Phe Ser Leu Pro 90 ct ggg cta ggt ctg en Gly Leu Gly Leu 65 ct tac agt ggc ata	er Ile

Val Met Leu 130	Met Ser Ile	Asp Arg Tyr 135		Val His Ala Val .40	
_		_		tc acc agt ttg le Thr Ser Leu	659
			_	gc ttt ctg ttc Dy Phe Leu Phe 175	707
				aa acc aag tac ys Thr Lys Tyr 190	755
Ser Leu Asn				etg gaa atc aac eu Glu Ile Asn 205	803
			Ile Met Leu P	tt tgc tac tcc he Cys Tyr Ser 20	851
				ag aag aac aag ys Lys Asn Lys	899
	_		_	ett ggg ttc tgg eu Gly Phe Trp 255	947
				tg gag cta gaa 'al Glu Leu Glu 270	995
Val Leu Gln	-			at gcc atc cag yr Ala Ile Gln 285	1043
•		-	Cys Cys Leu A	at ccc atc atc sn Pro Ile Ile 00	1091
		-	-	ta cag ctc ttc eu Gln Leu Phe	1139
				gt ggg ctc ctc ys Gly Leu Leu 335	1187
caa att tac Gln Ile Tyr	tct gct gac Ser Ala Asp 340	ace eee age Thr Pro Ser	tca tct tac a Ser Ser Tyr T 345	cg cag tcc acc hr Gln Ser Thr 350	1235
Met Asp His			tag gaaaaatga	a atggtgaaat	1285
gcagagtcaa t	gaacttttc ca	acattcaga gct	tacttta aaatt	ggtat ttttaggtaa	1345
gagatecetg a	gccagtgtc aq	ggaggaagg ctt	ac		1380

<210> 12

<211> 360

<212> PRT

<213> Homo sapiens

<400> 12

Met 1	Asn	Pro	Thr	Asp 5	Ile	Ala	Asp	Thr	Thr 10	Leu	Asp	Glu	Ser	Ile 15	Tyr
Ser	Asn	Tyr	Туг 20	Leu	Tyr	Glu	Ser	11e 25	Pro	Lys	Pro	Cys	Thr 30	Lys	Glu
Gly	Ile	Lys 35	Ala	Phe	Gly	Glu	Leu 40	Phe	Leu	Pro	Pro	Leu 45	Tyr	Ser	Leu
Val	Phe 50	Val	Phe	Gly	Leu	Leu 55	Gly	Asn	Ser	Val	Val 60	Val	Leu	Val	Leu
Phe 65	Lys	Tyr	Lys	Arg	Le u 70	Arg	Ser	Met	Thr	Asp 75	Val	Tyr	Leu	Leu	Asn 80
Leu	Ala	Ile	Ser	Asp 85	Leu	Leu	Phe	Val	Phe 90	Ser	Leu	Pro	Phe	Trp 95	Gly
Tyr	Tyr	Ala	Ala 100	Asp	Gln	Trp	Val	Phe 105	G1y	Leu	Gly	Leu	Cys 110	Lys	Met
Ile	Ser	Trp 115	Met	Tyr	Leu	Val	Gly 120	Phe	Tyr	Ser	Gly	Ile 125	Phe	Phe	Val
Met	Leu 130	Met	Ser	Ile	Asp	Arg 135	Tyr	Leu	Ala	Ile	Val 140	His	Ala	Val	Phe
Ser 145	Leu	Arg	Ala	Arg	Thr 150	Leu	Thr	Tyr	Gly	Val 155	Ile	Thr	Ser	Leu	Ala 160
Thr	Trp	Ser	Val	Ala 165	Val	Phe	Ala	Ser	Leu 170	Pro	Gly	Phe	Leu	Phe 175	Ser
	<u>-</u>	-	180		_			185	-	-	-		190	Tyr	
Leu	Asn	Ser 195	Thr	Thr	Trp	Lys	Val 200	Leu	Ser	Ser	Leu	G1u 205	Ile	Asn	Ile
Leu	Gly 210	Leu	Val	Ile	Pro	Leu 215	Gly	Ile	Met	Leu	Phe 220	Cys	Tyr	Ser	Met
11e 225	Ile	Arg	Thr	Leu	Gln 230	His	Сув	Lys	Asn	Glu 235	Lys	Lys	Asn	Lys	Ala 240

vai	тАя	met	116	245	ALA	val	Val	Val	250	Pne	Leu	GIY	, rue	255	III	
Pro	Tyr	Asn	Ile 260	Val	Leu	Phe	Leu	Glu 265	Thr	Leu	Val	Glu	Leu 270	Glu	Val	
Leu	Gln	Asp 275	Сув	Thr	Phe	Glu	Arg 280	Tyr	Leu	Asp	Tyr	Ala 285	Ile	Gln	Ala	
Thr	Glu 290	Thr	Leu	Ala	Phe	Val 295	His	Cys	Cys	Leu	Asn 300	Pro	Ile	Ile	Tyr	
Phe 305	Phe	Leu	Gly	Glu	Lys 310	Phe	Arg	Lys	Tyr	Ile 315	Leu	Gln	Leu	Phe	Lys 320	
Thr	Сув	Arg	Gly	Leu 325	Phe	Val	Leu	Cys	Gln 330	Tyr	Cys	Gly	Leu	Leu 335	Gln	
Ile	Tyr	Ser	Ala 340	Asp	Thr	Pro	Ser	Ser 345	Ser	Tyr	Thr	Gln	Ser 350	Thr	Met	
Asp	His	Asp 355	Leu	His	Asp	Ala	Leu 360				-					
<212	> 132 > AD		apiens	6												
	> CD	S 9)(1	206)													
<400	> 13															
ttt	gtagl	gg g	gagga	ataco	et co	cagaç	gaggo	tgo	etget	cat	tgaç	gctgo	ac t	caca	atgagg	60
ata	cagad	ett t	gtga	agaa	ag ga	aatto	gcaa	cac	etgaa	acc	teca	agaad	aa a	ıggct	gtcac	120
taaq	ggted	ccg o	etge	ttg							ctc Leu					171
		-					_				agc Ser		-	_		219
											gct Ala					267
											ctg Leu 55					315
ctt	gtg	gtc	tgc	aag	aag	ctg	agg	agc	atc	aca	gat	gta	tac	ctc	ttg	363

Leu 60	Val	V al	Cys	Lys	Lys 65	Leu	Arg	Ser	Ile	Thr 70	Asp	Val	Tyr	Leu	Leu 75	
					gac Asp											411
					gac Asp											459
					tat Tyr						-	-	-			507
					gtg Val											555
					agg Arg 145											603
_	_				gcc Ala		_	•				_				651
			_		gaa Glu	_		_		_	_					699
					aag Lys										aac Asn	747
					atc Ile											795
		_		_	ctg Leu 225	_		_					_		_	843
-			_		ctc Leu			_		-						891
_					gtt Val						_		-	_		939
					agc Ser											987
					tcc Ser											1035
					gag Glu 305											1083
					caa Gln											1131

320 325	330
agg gag agc tgt gaa aag tca tca tcc tgc Arg Glu Ser Cys Glu Lys Ser Ser Ser Cys 335 340	
tcc tcc agc gta gac tac att ttg tga gga Ser Ser Ser Val Asp Tyr Ile Leu 350 355	atcaatga agactaaata 1226
taaaaaacat tttcttgaat ggcatgctag tagcag	gtgag caaaggtgtg ggtgtgaaag 1286
gtttccaaaa aaagttcage atgaaggatg ccat	1320
<210> 14 <211> 355 <212> PRT <213> Homo sapiens	
<400> 14	
Met Asp Tyr Thr Leu Asp Leu Ser Val Thr	r Thr Val Thr Asp Tyr Tyr
1 5 10	15
Tyr Pro Asp Ile Phe Ser Ser Pro Cys Asp	o Ala Glu Leu Ile Gln Thr
20 25	30
Asn Gly Lys Leu Leu Leu Ala Val Phe Tyr	c Cys Leu Leu Phe Val Phe
35 40	45
Ser Leu Leu Gly Asn Ser Leu Val Ile Leu	ı Val Leu Val Val Cys Lys
50 55	60
Lys Leu Arg Ser Ile Thr Asp Val Tyr Leu	ı Leu Asn Leu Ala Leu Ser
65 70	75 80
Asp Leu Leu Phe Val Phe Ser Phe Pro Phe	e Gln Thr Tyr Tyr Leu Leu
85 90	95
Asp Gln Trp Val Phe Gly Thr Val Met Cys	s Lys Val Val Ser Gly Phe 110
Tyr Tyr Ile Gly Phe Tyr Ser Ser Met Phe	e Phe Ile Thr Leu Met Ser
115 120	125
Val Asp Arg Tyr Leu Ala Val Val His Ala	a Val Tyr Ala Leu Lys Val
130 135	140
Arg Thr Ile Arg Met Gly Thr Thr Leu Cys	s Leu Ala Val Trp Leu Thr
145	155 160
Ala Ile Met Ala Thr Ile Pro Leu Leu Val	_

Glu	Asp	Gly	Val 180	Leu	Gln	Сув	Tyr	Ser 185	Phe	Tyr	Asn	Gln	Gln 190	Thr	Leu	
Lys	Trp	Lys 195	Ile	Phe	Thr	Asn	Phe 200	Lys	Met	Asn	Ile	Leu 205	Gly	Leu	Leu	
Ile	Pro 210	Phe	Thr	Ile	Phe	Met 215	Phe	Cys	Tyr	Ile	Lys 220	Ile	Leu	His	Gln	
Leu 225	Ĺys	Arg	Сув	Gln	Asn 230	His	Asn	Lys	Thr	Lys 235	Ala	Ile	Arg	Leu	Val 240	
Leu	Ile	Val	Val	Ile 245	Ala	Ser	Leu	Leu	Phe 250	Trp	Val	Pro	Phe	Asn 255	Val	
Val	Leu	Phe	Leu 260	Thr	Ser	Leu	His	Ser 265	Met	His	Ile	Leu	Asp 270	Gly	Cys	
Ser	Ile	Ser 275	Gln	Gln	Leu	Thr	Tyr 280	Ala	Thr	His	Val	Thr 285	Glu	Ile	Ile	
Ser	Phe 290	Thr	His	Сув	Cys	Val 295	Asn	Pro	Val	Ile	Tyr 300	Ala	Phe	Val	Gly	
Glu 305	Lys	Phe	Lys	Lys	His 310	Leu	Ser	Glu	Ile	Phe 315	Gĺn	Lys	Ser	Cys	Ser 320	
Gln	Ile	Phe	Asn	Tyr 325	Leu	Gly	Arg	Gln	Met 330	Pro	Arg	Glu	Ser	Cys 335	Glu	
Lys	Ser	Ser	Ser 340	Сув	Gln	Gln	His	Ser 345	Ser	Arg	Ser	Ser	Ser 350	Val ´	Asp	
Tyr	Ile	Leu 355										,				
<210: <211: <212: <213:	> 118 > ADN	1	piens	i												
<220: <221: <222:	> CDS		69)													
<400	> 15															
tgto	ccag	gg a	gagt	tgca	t cg	ccct	ccac	aga	gcag	gct	tgca	tctg	ac t	gacc	cacc	59
			Thr					Pro					Ala .	gat (Asp . 15		107

tat o																155
ttc a																203
cat t His I					_									-	_	251
ggc a Gly A 65		_		_			_				-		_		_	299
acc a	-		_	_			_		_	_			_			347
ttt c												Ala				395
aag t Lys I		-			_	_	-		-		_	_		_	_	443
aac t Asn I			_	_		_	_		-	-		Ser		_		491
tac a Tyr 1 145																539
agg (587
gct o	_		-			_				_			_		_	635
tee (683
aaa o Lys I	_	-		-	-	_		_	-	-		_			_	731
ctt c Leu I 225																779
ctg a			-	_	_			_			_			-		827
atc a	act	gtc	ctg	acc	gtc	ttt						ccc			tgc	875

	-	_		-			_	-		_	_			tcc Ser		923
														cag Gln		971
	-				_	-	-			-			_	ttt Phe		1019
		•		_		_		Val			-	_		ttg Leu 335		1067
_		-	_	_	_		_					_		gga Gly	_	1115
_	_	_	_		_	_	_							ctc Leu		1163
ctc Leu	tga	gggg	gtctt	ct o	ctgaç	ggt			•							1186

<210> 16

<211> 369

<212> PRT

<213> Homo sapiens

<400> 16

Met Thr Pro Thr Asp Phe Thr Ser Pro Ile Pro Asn Met Ala Asp Asp 1 5 10 15

Tyr Gly Ser Glu Ser Thr Ser Ser Met Glu Asp Tyr Val Asn Phe Asn 20 25 30

Phe Thr Asp Phe Tyr Cys Glu Lys Asn Asn Val Arg Gln Phe Ala Ser 35 40 45

His Phe Leu Pro Pro Leu Tyr Trp Leu Val Phe Ile Val Gly Ala Leu 50 60

Gly Asn Ser Leu Val Ile Leu Val Tyr Trp Tyr Cys Thr Arg Val Lys 65 70 75 80

Thr Met Thr Asp Met Phe Leu Leu Asn Leu Ala Ile Ala Asp Leu Leu 85 90 95

Phe Leu Val Thr Leu Pro Phe Trp Ala Ile Ala Ala Ala Asp Gln Trp 100 105 110

10 Lys Phe Gln Thr Phe Met Cys Lys Val Val Asn Ser Met Tyr Lys Met

		115					120					125			
Asn	Phe 130	Tyr	Ser	Cys	Val	Leu 135	Leu	Ile	Met	Cys	Ile 140	Ser	Val	Asp	Arg
Туг 145	Ile	Ala	Ile	Ala	Gln 150	Ala	Met	Arg	Ala	His 155	Thr	Trp	Arg	Glu	Lys 160
Arg	Leu	Leu	Tyr	Ser 165	Lys	Met	Val	Сув	Phe 170	Thr	Ile	Trp	Val	Leu 175	Ala
Ala	Ala	Leu	Суs 180	Ile	Pro	Glu	Ile	Leu 185	Tyr	Ser	Gln	Ile	Lys 190	Glu	Glu
Ser	Gly	Ile 195	Ala	Ile	Cys	Thr	Met 200	Val	Tyr	Pro	Ser	Asp 205	Glu	Ser	Thr
Lys	Leu 210	Lys	Ser	Ala	Val	Leu 215	Thr	Leu	Lys	Val	Ile 220	Leu	Gly	Phe	Phe
Leu 225	Pro	Phe	Val	Val	Met 230	Ala	Суз	Cys	Tyr	Thr 235	Ile	Ile	Ile	His	Thr 240
Leu	Ile	Gln	Ala	Lys 245	Lys	Ser	Ser	Lys	His 250	Lys	Ala	Leu	Lys	Val 255	Thr
Ile	Thr	Val	Leu 260	Thr	Val	Phe	Val	Leu 265	Ser	Gln	Phe	Pro	Tyr 270	Asn	Cys
Ile	Leu	Leu 275	Val	Gln	Thr	Ile	Asp 280	Ala	Tyr	Ala	Met	Phe 285	Ile	Ser	Asn
Cys	Ala 290	Val	Ser	Thr	Asn	11e 295	Asp	Ile	Cys	Phe	Gln 300	Val	Thr	Gln	Thr
Ile 305	Ala	Phe	Phe	His	Ser 310	Суз	Leu	Asn	Pro	V al 315	Leu	Tyr	Val	Phe	Val 320
Gly	Glu	Arg	Phe	Arg 325	Arg	Asp	Leu	Val	Lys 330	Thr	Leu	Lys	A sn	Leu 335	Gly
Суз	Ile	Ser	Gln 340	Ala	Gln	Trp	Val	Ser 345	Phe	Thr	Arg	Arg	G1u 350	Gly	Ser
Leu	Lys	Leu 355	Ser	Ser	Met	Lein	Leu 360	Glu	Thr	Thr	Ser	Gly 365	Ala	Leu	Ser.
Leu															
<210 <211 <212 <213	> 240 !> AD	N	apien	ıs											
<220 <221 <222	> CD		(2260))											

5

10

<400> 17

caccetecae acceaggett ceccagagea ggatetgtge tgtccctgtg geaagggeag	60
agccccagga gctagactaa atctgagagg aacaggggag tcaaggctag atggaggcac	120
acatgcagga caggaagggt ctccagcagg gctgaaagca ccaagcaagg gtagtgcaaa	180
ccctgtcttc tctgcttcct gctgcccctc tcttattggg tagcagactg gctgtgtctg	240
cttatcccgc atggtggcac atggctgccc agagctcccc aaataacctg ttacgtttcc	300
acccacaggg agaatcaggc agcccgcttg cttattgttt ttaatatact tttccaaact	360
acacagacat toccasageg ggtotoctto tacccasaag agasacgetg ggcottacta	420
attaactgaa gactetgeta getegageet tecaaaacte catgecacaa ttgtteaaac	480
cattttccag aatacatctt ttaaaataac ttttagaaaa ttgaacaaag ggattcatgt	540
ctcagcttta tagtcaaacc atgatctttt ctgagggtat agcccatttg gagttcctgc	600
ttaatcccct gattaaaaac tgaatggggc tgagtgcagt gctcatgcct atattcccag	660
cactttggga gacagaggca ggagaattac ttaaggtcag gagtttaaga ccatcctgag	720
caacataaca agtccccatc tctaagacaa aaaaaaaaga actgagtgac atctcacatc	780
tcacatttct gaacattaaa cccagccttg atagccaaag atgctcgcca ctgaaggatc	840
caggtagtat tgagggttct gtggggatta tccaaagaga actttctaca aagttttagg	900
tgatggcgat gctaaaagaa atgctaagaa tttctctctt atattaaaga gaactatggt	960
ceteteataa aatgtaceat ttateaceaa atttatetea taacetaaga getaceaett	1020
acaaatttga agggaaaaat tactacattg taatactcaa gccaacacaa agaatcctat	1080
cccagtttct tgagtggatg ggcaagaata tggggaattt attatgcagt aaccttcatc	1140
tctcttctat aggtcaggat ttaagtttac ctcaaaa atg gaa gat ttt aac atg Met Glu Asp Phe Asn Met 1 5	1195
gag agt gac agc ttt gaa gat ttc tgg aaa ggt gaa gat ctt agt aat Glu Ser Asp Ser Phe Glu Asp Phe Trp Lys Gly Glu Asp Leu Ser Asn 10 15 20	1243
tac agt tac agc tct acc ctg ccc cct ttt cta cta gat gcc gcc cca Tyr Ser Tyr Ser Ser Thr Leu Pro Pro Phe Leu Leu Asp Ala Ala Pro 25 30 35	1291
tgt gaa cca gaa tcc ctg gaa atc aac aag tat ttt gtg gtc att atc Cys Glu Pro Glu Ser Leu Glu Ile Asn Lys Tyr Phe Val Val Ile Ile	1339

	40					45					50					
					ctg Leu 60											1387
					agc Ser											1435
_	-			_	ttg Leu	-	•				_	_		-		1483
					aag Lys											1531
					ctc Leu											1579
•		_	_	-	atc Ile 140	-		-	_		_	-		_		1627
					acc Thr											1675
					ctg Leu											1723
	-			_	tac Tyr				•	-		_	_			1771
					aca Thr											1819
	_				ttc Phe 220				-	_		_			_	1867
				_	cgt Arg	-	_		_	_		_		-	_	1915
					gtc Val											1963
					aac Asn											2011
					gag Glu											2059
					gag Glu 300											2107

ccc ctc atc tac gcc ttc att ggc cag aag ttt cgc cat gga ctc ctc Pro Leu Ile Tyr Ala Phe Ile Gly Gln Lys Phe Arg His Gly Leu Leu 315 320 325	2155
aag att cta gct ata cat ggc ttg atc agc aag gac tcc ctg ccc aaa Lys Ile Leu Ala Ile His Gly Leu Ile Ser Lys Asp Ser Leu Pro Lys 330 335 340	2203
gac agc agg cet tee ttt gtt ggc tet tet tea ggg cac act tee act Asp Ser Arg Pro Ser Phe Val Gly Ser Ser Ser Gly His Thr Ser Thr 345 350 355	2251
act ctc taa gacctcctgc ctaagtgcag cccgtggggt tcctcccttc Thr Leu 360	2300
tetteacagt cacatteeaa geeteatgte cactggttet tettggtete agtgteaatg	2360
cagococcat tgtggtcaca ggaagtagag gaggccacgt	2400
<210> 18 <211> 360 <212> PRT <213> Homo sapiens	
<400> 18	
Met Glu Asp Phe Asn Met Glu Ser Asp Ser Phe Glu Asp Phe Trp Lys 1 10 15	
Gly Glu Asp Leu Ser Asn Tyr Ser Tyr Ser Ser Thr Leu Pro Pro Phe 20 25 30	
Leu Leu Asp Ala Ala Pro Cys Glu Pro Glu Ser Leu Glu Ile Asn Lys 35 40 45	
Tyr Phe Val Val Ile Ile Tyr Ala Leu Val Phe Leu Leu Ser Leu Leu 50 60	
Gly Asn Ser Leu Val Met Leu Val Ile Leu Tyr Ser Arg Val Gly Arg 65 70 75 80	
Ser Val Thr Asp Val Tyr Leu Leu Asn Leu Ala Leu Ala Asp Leu Leu 85 90 95	
Phe Ala Leu Thr Leu Pro Ile Trp Ala Ala Ser Lys Val Asn Gly Trp 100 105 110	
Ile Phe Gly Thr Phe Leu Cys Lys Val Val Ser Leu Leu Lys Glu Val 115 120 125	
Asn Phe Tyr Ser Gly Ile Leu Leu Leu Ala Cys Ile Ser Val Asp Arg 130 135 140	

Tyr 145	Leu	Ala	Ile	Val	His 150	Ala	Thr	Arg	Thr	Leu 155	Thr	Gln	Lys	Arg	Tyr 160
Leu	Val	Lys	Phe	11e 165	Cys	Leu	Ser	Ile	Trp 170	Gly	Leu	Ser	Leu	Leu 175	Leu
Ala	Leu	Pro	Val 180	Leu	Leu	Phe	Arg	Arg 185	Thr	Val	Tyr	Ser	Ser 190	Asn	Val
Ser	Pro	Ala 195	Cys	Tyr	Glu	Asp	Met 200	Gly	Asn	Asn	Thr	Ala 205	Asn	Trp	Arg
Met	Leu 210	Leu	Arg	Ile	Leu	Pro 215	Gln	Ser	Phe	Gly	Phe 220	Ile	Val	Pro	Leu
Leu 225	Ile	Met	Leu	Phe	Cys 230	Tyr	Gly	Phe	Thr	Leu 235	Arg	Thr	Leu	Phe	Lys 240
Ala	His	Met	Gly	Gln 245	Lys	His	Arg	Ala	Met 250	Arg	Val	Ile	Phe	Ala 255	Val
Val	Leu	Ile	Phe 260	Leu	Leu	Cys	Trp	Leu 265	Pro	Tyr	Asn	Leu	Val 270	Leu	Leu
Ala	Asp	Thr 275	Leu	Met	Arg	Thr	Gln 280	Val	Ile	Gln	Glu	Thr 285	Cys	Gl u	Arg
Arg	Asn 290	His	Ile	Asp	Arg	Ala 295	Leu	Asp	Ala	Thr	Glu 300	Ile	Leu	Gly	Ile
Leu 305	His	Ser	Сув	Leu	Asn 310	Pro	Leu	Ile	Tyr	Ala 315	Phe	Ile	Gly	Gln	Lys 320
Phe	Arg	His	Gly	Leu 325	Leu	Lys	Ile	Leu	Ala 330	Ile	His	Gly	Leu	Ile 335	Ser
Lys	Asp	Ser	Leu 340	Pro	Lys	Asp	Ser	Arg 345	Pro	Ser	Phe	Val	Gly 350	Ser	Ser
Ser	Gly	His 355	Thr	Ser	Thr	Thr	Leu 360								
<210 <211 <212 <213	> 102 > AD	N	apiens	3											
<220 <221 <222	> CD		9)												
<400	> 19														

atg Met 1															48
gac Asp	-	-	_					-	_	_		_	_	_	96
ttt Phe															144
aac Asn		_		_	_						_	_	_	_	192
ctg Leu 65	_	-			_				_	-	_	_			240
gtc Val															288
ttt Phe															336
ttc Phe															384
att i	_		_	_	_		_	_		_		-	_		432
atg Met 145															480
ctg (Leu '	•		_							_				_	528
aag Lys															576
gcc a					_				 _	_	_				624
gtc :															672
cag a Gln : 225	_		_			_			_		_	-			720
ctg (Leu)															768

											tac Tyr					816
											aac Asn					864
-		-	_	_	_		_	_			tgg Trp 300				_	912
			_						-		cat His					960
											cac His					1008
	agc Ser	_		-	tta Leu	tag										1029
<210 <211 <212 <213	> 342 > PR	Т	ıpiens	8												
<400	> 20															
Met 1	Ala	Glu	His	Asp 5	Tyr	His	Glu	Asp	Tyr 10	Gly	Phe	Ser	Ser	Phe 15	Asn	
Asp	Ser	Ser	Gln 20	Glu	Glu	His	Gln	Asp 25	Phe	Leu	Gln	Phe	Ser 30	Lys	Val	
			20					25			Gln Cys		30			
Phe	Leu	Pro 35	20 Cys	Met	Туг	Leu	Va1 40	25 Val	Phe	Val		Gly 45	30 Leu	Val	Gly	
Phe	Leu Ser 50	Pro 35 Leu	20 Cys Val	Met Leu	Tyr Val	Leu Ile 55	Val 40 Ser	Val	Phe Phe	Val Tyr	Cys	Gly 45 Lys	Leu Leu	Val Gln	Gly Ser	
Phe Asn Leu 65	Leu Ser 50	Pro 35 Leu Asp	20 Cys Val	Met Leu Phe	Tyr Val Leu 70	Leu Ile 55 Val	Val 40 Ser Asn	Val Ile Leu	Phe Phe Pro	Val Tyr Leu 75	Cys His 60	Gly 45 Lys Asp	Leu Leu Leu	Val Gln Val	Gly Ser Phe 80	
Phe Asn Leu 65	Leu Ser 50 Thr	Pro 35 Leu Asp	20 Cys Val Val Leu	Met Leu Phe Pro 85	Tyr Val Leu 70	Leu Ile 55 Val	Val 40 Ser Asn	25 Val Ile Leu	Phe Phe Pro Ala 90	Val Tyr Leu 75	Cys His 60	Gly 45 Lys Asp	Leu Leu Leu	Val Gln Val Trp 95	Gly Ser Phe 80 Val	

Ile	Val 130	Val	Val	Lys	Ala	Thr 135	Lys	Ala	Tyr	Asn	Gln 140	Gln	Ala	Lys	Arg
Met 145	Thr	Trp	Gly	Lys	Val 150	Thr	Ser	Leu	Leu	Ile 155	Trp	Val	Ile	Ser	Leu 160
Leu	Val	Ser	Leu	Pro 165	Gln	Ile	Ile	Tyr	Gly 170	Asn	Val	Phe	Asn	Leu 175	Ąsp
Lys	Leu	Ile	Cys 180	Gly	Tyr	His	Asp	Glu 185	Ala	Ile	Ser	Thr	Val 190	Val	Leu
Ala	Thr	Gln 195	Met	Thr	Leu	Gly	Phe 200	Phe	Leu	Pro	Leu	Leu 205	Thr	Met	Ile
V al	Cys 210	Tyr	Ser	Val	Ile	Ile 215	Lys	Thr	Leu	Leu	His 220	Ala	Gly	Gly	Phe
Gln 225	Lys	His	Arg	Ser	Leu 230	Lys	Ile	Ile	Phe	Leu 235	Val	Met	Ala	Val	Phe 240
Leu	Leu	Thr	Gln	Met 245	Pro	Phe	Asn	Leu	Met 250	Lys	Phe	Ile	Arg	Ser 255	Thr
His	Trp	Glu	Туг 260	Tyr	Ala	Met	Thr	Ser 265	Phe	His	Tyr	Thr	11e 270	Met	Val
Thr	Glu	Ala 275	Ile	Ala	Tyr	Leu	Arg 280	Ala	Cys	Leu	Asn	Pro 285	Val	Leu	Tyr
Ala	Phe 290	Val	Ser	Leu	Lys	Phe 295	Arg	Lys	Asn	Phe	Trp 300	Lys	Leu	Val	Lys
Asp 305	Ile	Gly	Cys	Leu	Pro 310	Tyr	Leu	Gly	Val	Ser 315	His	Gln	Trp	Lys	Ser 320
Ser	Glu	Asp	Asn	Ser 325	Lys	Thr	Phe	Ser	Ala 330	Ser	His	Asn	Val	Glu 335	Ala
Thr	Ser	Met	Phe 340	Gln	Leu										
<210: <211: <212: <213:	> 126 > AD	N	apiens	3											
<220 <221 <222	> CD	_	60)												

5

10

<400> 21

gaaatactcg tetetggtaa agtetgagca ggacagggtg getgaetgge agatecagag	60
gttcccttgg cagtccacgc caggccttca cc atg gat cag ttc cct gaa tca Met Asp Gln Phe Pro Glu Ser 1 5	113
gtg aca gaa aac ttt gag tac gat gat ttg gct gag gcc tgt tat att Val Thr Glu Asn Phe Glu Tyr Asp Asp Leu Ala Glu Ala Cys Tyr Ile 10 15 20	161
ggg gac atc gtg gtc ttt ggg act gtg ttc ctg tcc ata ttc tac tcc Gly Asp Ile Val Val Phe Gly Thr Val Phe Leu Ser Ile Phe Tyr Ser 25 30 35	209
gtc atc ttt gcc att ggc ctg gtg gga aat ttg ttg gta gtg ttt gcc Val Ile Phe Ala Ile Gly Leu Val Gly Asn Leu Leu Val Val Phe Ala 40 45 50	257
ctc acc aac agc aag aag ccc aag agt gtc acc gac att tac ctc ctg Leu Thr Asn Ser Lys Lys Pro Lys Ser Val Thr Asp Ile Tyr Leu Leu 60 65 70	305
aac ctg gcc ttg tct gat ctg ctg ttt gta gcc act ttg ccc ttc tgg Asn Leu Ala Leu Ser Asp Leu Leu Phe Val Ala Thr Leu Pro Phe Trp 75 80 85	353
act cac tat ttg ata aat gaa aag ggc ctc cac aat gcc atg tgc aaa Thr His Tyr Leu Ile Asn Glu Lys Gly Leu His Asn Ala Met Cys Lys 90 95 100	401
ttc act acc gcc ttc ttc ttc atc ggc ttt ttt gga agc ata ttc ttc Phe Thr Thr Ala Phe Phe Phe Ile Gly Phe Phe Gly Ser Ile Phe Phe 105 110 115	449
atc acc gtc atc agc att gat agg tac ctg gcc atc gtc ctg gcc gcc Ile Thr Val Ile Ser Ile Asp Arg Tyr Leu Ala Ile Val Leu Ala Ala 120 135	497
aac tcc atg aac aac cgg acc gtg cag cat ggc gtc acc atc agc cta Asn Ser Met Asn Asn Arg Thr Val Gln His Gly Val Thr Ile Ser Leu 140 145 150	545
ggc gtc tgg gca gca gcc att ttg gtg gca gca ccc cag ttc atg ttc Gly Val Trp Ala Ala Ala Ile Leu Val Ala Ala Pro Gln Phe Met Phe 155 160 165	593
aca aag cag aaa gaa aat gaa tgc ctt ggt gac tac ccc gag gtc ctc Thr Lys Gln Lys Glu Asn Glu Cys Leu Gly Asp Tyr Pro Glu Val Leu 170 175 180	641
cag gaa atc tgg ccc gtg ctc cgc aat gtg gaa aca aat ttt ctt ggc Gln Glu Ile Trp Pro Val Leu Arg Asn Val Glu Thr Asn Phe Leu Gly 185 190 195	689
tte eta ete ece etg ete att atg agt tat tge tae tte aga ate ate Phe Leu Leu Pro Leu Leu Ile Met Ser Tyr Cys Tyr Phe Arg Ile Ile 200 205 210 215	737
Cag acg ctg ttt tcc tgc aag aac cac aag aaa gcc aaa gcc att aaa Gln Thr Leu Phe Ser Cys Lys Asn His Lys Lys Ala Lys Ala Ile Lys 220 225 230	785
ctg atc ctt ctg gtg gtc atc gtg ttt ttc ctc ttc tgg aca ccc tac	833

Leu	Ile	Leu	Leu 235	Val	Val	Ile	Val	Phe 240	Phe	Leu	Phe	Trp	Thr 245	Pro	Tyr	
											tat Tyr		Phe			881
											ctc Leu 275					929
											ctc Leu					977
											ctg Leu					1025
_	_	-	_	_		_		_		_	gat Asp					1073
											agc Ser					1121
	His	acg Thr	_	_		_	_	_				tga	agg	gaato	ecc	1170
	345					350					355					
aaaq		igt (yteta	caga	ng as		gagl	tce	ctgaa	acct		gctga	act a	agtga	aggaaa	1230
	gcctt	:gt q gtt q	-	-	-	accto			etgaa	acct		getga	act a	agtga	aggaaa	1230 1260
<pre></pre>	> 22 > 355 > PR	ytt (jttat	ttci	-	accto			etgaa	acct		gctga	act a	agtga	aggaaa	
<pre></pre>	> 22 > 355 > PR > Hol	g tt (5	jttat	ttci	-	accto			ctgaa	acct		getga	act a	agtga	aggaaa	
<pre></pre>	> 22 > 355 > PR > Hor	gtt q	yttat	ettei	ct ac	acctç	cacaa	3								
<pre><210 <211 <212 <213 <400 Met 1</pre>	> 22 > 355 > PR > Hoi > 22	gtt g	gttat apiens	Pro 5	Glu	acct; caggo	val	Thr	Glu 10	Asn	gatç	Glu	Туг	Asp 15	Asp	
<pre>gate <210 <211 <212 <213 <400 Met 1</pre>	> 22 > 355 > PR > Hoi > 22 Asp	gtt o	piens Phe Ala 20	Pro 5	Glu Tyr	acctç caggo Ser	Val	Thr Asp 25	Glu 10	Asn Val	gato	Glu Phe	Tyr Gly 30	Asp 15	Asp Val	
<pre>gate <210 <211 <212 <213 <400 Met 1 Leu Phe</pre>	22	Gln Glu Ser 35	Phe Ala 20	Pro 5	Glu Tyr	ser Ile	Val Gly Val 40	Thr Asp 25	Glu 10 Ile	Asn Val Ala	gate Phe Val	Glu Phe Gly 45	Tyr Gly 30 Leu	Asp 15 Thr	Asp Val Gly	

10

5

Val Ala Thr Leu Pro Phe Trp Thr His Tyr Leu Ile Asn Glu Lys Gly 85 90 95

						~							- 1			61
	ren	HIS	ASN	100	Met	Сув	Lys	Pne	105	Thr	ALS	Pue	hue	110	Ile	GIĀ
	Phe	Phe	Gly 115	Ser	Ile	Phe	Phe	11e 120	Thr	Val	Ile	Ser	11e 125	Asp	Arg	Tyr
,	Leu	Ala 130	Ile	Val	Leu	Ala	Ala 135	Asn	Ser	Met	Asn	Asn 140	Arg	Thr	Val	Gln
	His 145	Gly	Val	Thr	Ile	Ser 150	Leu	Gly	Val	Trp	Ala 155	Ala	Ala	Ile	Leu	Val 160
	Ala	Ala	Pro	Gln	Phe 165	Met	Phe	Thr	Lys	Gln 170	Lys	Glu	Asn	Glu	Cys 175	Leu
	Gly	Asp	Tyr	Pro 180	Glu	Val	Leu	Gln	Glu 185	Ile	Trp	Pro	Val	Leu 190	Arg	Asn
	Val	Glu	Thr 195	Asn	Phe	Leu	Gly	Phe 200	Leu	Leu	Pro	Leu	Leu 205	Ile	Met	Ser
	Tyr	Cys 210	Туг	Phe	Arg	Ile	Ile 215	Gln	Thr	Leu	Phe	Ser 220	Cys	Lys	Asn	His
	Lys 225	Lys	Ala	Lys	Ala	Ile 230	Lys	Leu	Ile	Leu	Le u 235	Val	Val	Ile	Val	Phe 240
	Phe	Leu	Phe	Trp	Thr 245	Pro	Tyr	Asn	Val	Met 250	Ile	Phe	Leu	G1u	Thr 255	Leu
	Lys	Leu	Tyr	Asp 260	Phe	Phe	Pro	Ser	Cys 265	Asp	Met	Arg	Lys	Asp 270	Leu	Arg
	Leu	Ala	Leu 275	Ser	Val	Thr	Glu	Thr 280	Val	Ala	Phe	Ser	His 285	Cys	Суз	Leu
	Asn	Pro 290	Leu	Ile	Tyr	Ala	Phe 295	Ala	Gly	Glu	Lys	Phe 300	Arg	Arg	Tyr	Leu
	Туг 305	His	Leu	Tyr	Gly	Lys 310	Cys	Leu	Ala	Val	Leu 315	Сув	Gly	Arg	Ser	Val 320
	His	Val	Asp	Phe	Ser 325	Ser	Ser	Glu	Ser	Gln 330	Arg	Ser	Arg	His	Gly 335	Ser
	Val	Leu	Ser	Ser 340	Asn	Phe	Thr	Tyr	His 345	Thr	Ser	Asp	Gly	Asp 350	Ala	Leu
Le	eu L		eu 55													
~?	10 - 0															
<2	10> 2 11> 1	560														
<2	12> <i>F</i>	NDN														

50

<213> Homo sapiens

<220> <221> CDS

<222> (387)..(1454)

<400> 23

aacagattta cttaaccact ggcaaaccac attteetttt ccagggcaat aacttaaaat	60
attatgtatt tecettigtt geaaagagag gaaataette tteetagaet cagggeaget	120
gtgacccgtc ctcccagaga aatcattaaa ccacaaggat tcagacagag cccagagccc	180
tgaaaacttt ggccacgcac tttcccgcag cagccacagg caccggcaac ttcagagagc	240
cagataaaag tggaatgagg aatgcagecg ttetgaacae caecetecat tteattetgg	300
aaccgggaag gtacacccag gcatgacaat agcttctctc ctcacagaaa tttaactgat	360
ttcttcattc tccatttagc aaggtc atg gaa gat ttg gag gaa aca tta ttt Met Glu Asp Leu Glu Glu Thr Leu Phe 1 5	413
gaa gaa ttt gaa aac tat tcc tat gac cta gac tat tac tct ctg gag Glu Glu Phe Glu Asn Tyr Ser Tyr Asp Leu Asp Tyr Tyr Ser Leu Glu 10 15 20 25	461
tct gat ttg gag gag aaa gtc cag ctg gga gtt gtt cac tgg gtc tcc Ser Asp Leu Glu Lys Val Gln Leu Gly Val Val His Trp Val Ser 30 35 40	509
ctg gtg tta tat tgt ttg gct ttt gtt ctg gga att cca gga aat gcc Leu Val Leu Tyr Cys Leu Ala Phe Val Leu Gly Ile Pro Gly Asn Ala 45 50 55	557
atc gtc att tgg ttc acg ggg ttc aag tgg aag aag aca gtc acc act Ile Val Ile Trp Phe Thr Gly Phe Lys Trp Lys Lys Thr Val Thr Thr 60 65 70	605
ctg tgg ttc ctc aat cta gcc att gcg gat ttc att ttt ctt ctc ttt Leu Trp Phe Leu Asn Leu Ala Ile Ala Asp Phe Ile Phe Leu Leu Phe 75 80 85	653
ctg ccc ctg tac atc tcc tat gtg gcc atg aat ttc cac tgg ccc ttt Leu Pro Leu Tyr Ile Ser Tyr Val Ala Met Asn Phe His Trp Pro Phe 90 95 100 105	701
ggc atc tgg ctg tgc aaa gcc aat tcc ttc act gcc cag ttg aac atg Gly Ile Trp Leu Cys Lys Ala Asn Ser Phe Thr Ala Gln Leu Asn Met 110 115 120	749
ttt gcc agt gtt ttt ttc ctg aca gtg atc agc ctg gac cac tat atc Phe Ala Ser Val Phe Phe Leu Thr Val Ile Ser Leu Asp His Tyr Ile 125 130 135	797
cac ttg atc cat cct gtc tta tct cat cgg cat cga acc ctc aag aac	845

His	Leu	Ile 140	His	Pro	Val	Leu	Ser 145	His	Arg	His	Arg	Thr 150	Leu	Lys	Asn	,
					ata Ile											893
		-	-		ttc Phe 175		_									941
	_				ttt Phe	_	_		_		-			_		989
					act Thr											1037
					agt Ser											1085
_	-	-	_		ctg Leu			-							_	1133
_	-	_		_	ttt Phe 255			_						_		1181
					acc Thr											1229
_	•	-			ccc Pro						-				_	1277
_	_				ctt Leu		-			_	_	_			_	1325
_					gtt Val	_				-			_		-	1373
					aca Thr 335											1421
					ctg Leu					taa	gtta	attad	stt 1	ttcc	acaaat	1474
cagi	tatat	tgg d	sttti	ttate	gt g	ggtco	ctate	g act	tgate	gatt	tcaç	gatta	aaa a	attgl	ttcca	1534
agai	tagaç	gag d	ccga	etcc	ac ti	tcat	:									1560

5

<210> 24 <211> 355

<212> PRT

<213> Homo sapiens

<400> 24

Met 1	Glu	Asp	Leu	Glu 5	Glu	Thr	Leu	Phe	Glu 10	Glu	Phe	Glu	Asn	Tyr 15	Ser
Tyr	Asp	Leu	Asp 20	Tyr	Tyr	Ser	Leu	Glu 25	Ser	Asp	Leu	Glu	Glu 30	Lys	Val
Gln	Leu	Gly 35	Val	Val	His	Trp	Val 40	Ser	Leu	Val	Leu	Tyr 45	Сув	Leu	Ala
Phe	Val 50	Leu	Gly	Ile	Pro	Gly 55	Asn	Ala	Ile	Val	Ile 60	Trp	Phe	Thr	Gly
Phe 65	Lys	Trp	Lys	Lys	Thr 70	Val	Thr	Thr	Leu	Trp 75	Phe	Leu	Asn	Leu	Ala 80
Ile	Ala	Asp	Phe	Ile 85	Phe	Leu	Leu	Phe	Leu 90	Pro	Leu	Tyr	Ile	Ser 95	Tyr
Val	Ala	Met	Asn 100	Phe	His	Trp	Pro	Phe 105	Gly	Ile	Trp	Leu	Cys 110	Lys	Ala
Asn	Ser	Phe 115	Thr	Ala	Gln	Leu	Asn 120	Met	Phe	Ala	Ser	Val 125	Phe	Phe	Leu
Thr	Val 130	Ile	Ser	Leu	Asp	His 135	Tyr	Ile	His	Leu	Ile 140	His	Pro	Val	Leu
Ser 145	His	Arg	His	Arg	Thr 150	Leu	Lys	Asn	Ser	Leu 155	Ile	Val	Ile	Ile	Phe 160
Ile	Trp	Leu	Leu	Ala 165	Ser	Leu	Ile	Gly	Gly 170	Pro	Ala	Leu	Tyr	Phe 175	Arg
Asp	Thr	Val	Glu 180	Phe	Asn	Asn	His	Thr 185	Leu	Cys	Tyr	Asn	A sn 190	Phe	Gln
Lys	His	Asp 195	Pro	Asp	Leu	Thr	Leu 200	Ile	Arg	His	His	Val 205	Leu	Thr	Trp
Val	Lys 210	Phe	Ile	Ile	Gly	Tyr 21 5	Leu	Phe	Pro	Leu	Leu 220	Thr	Met	Ser	Ile
Cys 225	Tyr	Leu	Суз	Leu	Ile 230	Phe	Lys	Val	Lys	Lys 235	Arg	Ser	Ile	Leu	Ile 240
Ser	Ser	Arg	His	Phe	Trp	Thr	Ile	Leu	Val		Val	Val	Ala	Phe	Val

Val	Сув	Trp	Thr 260	Pro	Tyr	His	Leu	Phe 265	Ser	Ile	Trp	Glu	Leu 270	Thr	Ile	
His	His	Asn 275	Ser	Tyr	Ser	His	His 280	Val	Met	Gln	Ala	Gly 285	Ile	Pro	Leu	
Ser	Thr 290	Gly	Leu	Ala	Phe	Leu 295	Asn	Ser	Cys	Leu	Asn 300	Pro	Ile	Leu	Tyr	
Val 305	Leu	Ile	Ser	Lys	Lys 310	Phe	Gln	Ala	Arg	Phe 315	Arg	Ser	Ser	Val	Ala 320	
Glu	Ile	Leu	Lys	Tyr 325	Thr	Leu	Trp	Glu	Val 330	Ser	Cys	Ser	Gly	Thr 335	Val	
Ser	Glu	Gln	Leu 340	Arg	Asn	Ser	Glu	Thr 345	Lys	Asn	Leu	Cys	Leu 350	Leu	Glu	
Thr	Ala	Gln 355														
<210 <211 <212 <213	> 108 > AD	N	ıpiens	8												
<220 <221 <222	> CD	_	3)													
<400	> 25															
						tca Ser										48
						agg Arg										96
						ttt Phe										144
						atg Met 55										192
						ttt Phe										240
						cct Pro										288
gga	ctg	tgg	agg	acg	ggc	tcc	ttc	ctg	tgc	aaa	ggg	agc	tcc	tac	atg	336

Gly	Leu	Trp	Arg 100	Thr	Gly	Ser	Phe	Leu 105	Cys	Lys	Gly	Ser	Ser 110	Tyr	Met	
	tcc Ser							Val								384
_	gac Asp 130	_		_	_					_	_					432
_	agg Arg		-	•	-		-	-	-	_	_					480
	tgc Cys															528
	gat Asp	-	_			_	_			_	_					576
	ata Ile			_		_							_		_	624
	agc Ser 210															672
	tac Tyr	_				_				_	_	_				720
	atc Ile															768
	aat Asn			_		_	_		_			_			-	816
	tat Tyr															864
	ttg Leu 290															912
	gac Asp	_			_		-		_		_		_		_	960
	aaa Lys															1008
	act Thr															1056
	agg Arg	_						taa								1083
355					36	0										
<210)> 26															

5 <210> 26 <211> 360 <212> PRT <213> Homo sapiens

10 <400> 26

Met	Asp	Pro	Glu	Glu	Thr	Ser	Val	Tyr	Leu	Asp	Tyr	Tyr	Tyr	Ala	Thr
1				5					10					15	

- Ser Pro Asn Ser Asp Ile Arg Glu Thr His Ser His Val Pro Tyr Thr 20 25 30
- Ser Val Phe Leu Pro Val Phe Tyr Thr Ala Val Phe Leu Thr Gly Val 35 40 45
- Leu Gly Asn Leu Val Leu Met Gly Ala Leu His Phe Lys Pro Gly Ser 50 60
- Arg Arg Leu Ile Asp Ile Phe Ile Ile Asn Leu Ala Ala Ser Asp Phe 65 70 75 80
- Ile Phe Leu Val Thr Leu Pro Leu Trp Val Asp Lys Glu Ala Ser Leu 85 90 95
- Gly Leu Trp Arg Thr Gly Ser Phe Leu Cys Lys Gly Ser Ser Tyr Met 100 105 110
- Ile Ser Val Asn Met His Cys Ser Val Leu Leu Leu Thr Cys Met Ser 115 120 125
- Val Asp Arg Tyr Leu Ala Ile Val Trp Pro Val Val Ser Arg Lys Phe 130 140
- Arg Arg Thr Asp Cys Ala Tyr Val Val Cys Ala Ser Ile Trp Phe Ile 145 150 155 160
- Ser Cys Leu Leu Gly Leu Pro Thr Leu Leu Ser Arg Glu Leu Thr Leu 165 170 175
- Ile Asp Asp Lys Pro Tyr Cys Ala Glu Lys Lys Ala Thr Pro Ile Lys 180 185 190
- Leu Ile Trp Ser Leu Val Ala Leu Ile Phe Thr Phe Phe Val Pro Leu 195 200 205
- Leu Ser Ile Val Thr Cys Tyr Cys Cys Ile Ala Arg Lys Leu Cys Ala 210 215 220

H18 Ty 225	Ar CT	ı Gin	Ser	230	Lys	Hls	Asn	Lys	Lys 235	Leu	гÀ2	Lys	Ser	240
Lys I	le Ile	e Phe	Ile 245	Val	Val	Ala	Ala	Phe 250	Leu	Val	Ser	Trp	Leu 255	Pro
Phe As	sn Th	Phe 260	Lys	Phe	Leu	Ala	Ile 265	Val	Ser	Gly	Leu	Arg 270	Gln	Glu
His T	yr Lei 27		Ser	Ala	Ile	Leu 280	Gln	Leu	Gly	Met	Glu 285	Val	Ser	Gly
Pro Le	eu Ala 90	a Phe	Ala	Asn	Ser 295	Сув	Val	Asn	Pro	Phe 300	Ile	Tyr	Tyr	Ile
Phe As	sp Sei	Tyr	Ile	Arg 310	Arg	Ala	Ile	Val	His 315	Суз	Leu	Суз	Pro	Cys 320
Leu Ly	ys Ası	1 Tyr	Asp 325	Phe	Gly	Ser	Ser	Thr 330	Glu	Thr	Ser	Asp	Ser 335	His
Leu Tì	hr Ly:	340	Leu	Ser	Thr	Pḥe	Ile 345	His	Ala	Glu	Asp	Phe 350	Ala	Arg
Arg A	rg Ly: 35	_	Ser	Val	Ser	Leu 360								
<210> 2 <211> 2 <212> 7 <213> 1	1680 ADN	sapiens	S											
<220> <221> (<222> (1592)												
<400> 2	27													
	_				_		_	_		_	_		- •	atttg
														gactc
														jacagg iggtgg
														steete
												_		caagcc
agaaat		gctgo	sttgc	a ga	agtgo	gtga	caç	gage	cacg	gago	tggl	tgt (ccctç	ggacc

					gac Asp											521
		_		_	ctc Leu 30			_			_	_	-			569
					aac Asn											617
			_		cgc Arg		_	_				_	-	-		665
					ttc Phe											713
_			-		gac Asp								_	_		761
_	_				ttc Phe 110	_		_		_	_	_		_		809
					gac Asp											857
					ctg Leu											905
		-			gcc Ala		_	_	_		_	_			_	953
					gag Glu											1001
					act Thr 190											1049
_				_	acc Thr							_			_	1097
_	_		_		ttc Phe			_				_				1145
					gag Glu											1193
									gcc							1241

cac ctg gtg aag acg ctg tac atg ctg ggc agc ctg ctg cac tgg ccc His Leu Val Lys Thr Leu Tyr Met Leu Gly Ser Leu Leu His Trp Pro 265 270 275 280	1289
tgt gac ttt gac ctc ttc ctc atg aac atc ttc ccc tac tgc acc tgc Cys Asp Phe Asp Leu Phe Leu Met Asn Ile Phe Pro Tyr Cys Thr Cys 285 290 295	1337
atc agc tac gtc aac agc tgc ctc aac ccc ttc ctc tat gcc ttt ttc Ile Ser Tyr Val Asn Ser Cys Leu Asn Pro Phe Leu Tyr Ala Phe Phe 300 305 310	1385
gac ccc cgc ttc cgc cag gcc tgc acc tcc atg ctc tgc tgt ggc cag Asp Pro Arg Phe Arg Gln Ala Cys Thr Ser Met Leu Cys Cys Gly Gln 315 320 325	1433
age agg tge gea gge ace tee cac age age agt ggg gag aag tea gee Ser Arg Cys Ala Gly Thr Ser His Ser Ser Ser Gly Glu Lys Ser Ala 330 335 340	1481
age tac tet teg ggg cac age cag ggg ccc ggc ccc aac atg ggc aag Ser Tyr Ser Ser Gly His Ser Gln Gly Pro Gly Pro Asn Met Gly Lys 345 350 355 360	1529
ggt gga gaa cag atg cac gag aaa tcc atc ccc tac agc cag gag acc Gly Gly Glu Gln Met His Glu Lys Ser Ile Pro Tyr Ser Gln Glu Thr 365 370 375	1577
ctt gtg gtt gac tag ggctgggagc agagagaagc ctggcgccct cggccctccc Leu Val Val Asp 380	1632
cggcctttgc ccttgctttc tgaaaatcag gtagtgtggc tactcctt	1680
<210> 28 <211> 380 <212> PRT <213> Homo sapiens	2000
<211> 380 <212> PRT	2000
<211> 380 <212> PRT <213> Homo sapiens	
<211> 380 <212> PRT <213> Homo sapiens <400> 28 Met Glu Glu Gly Gly Asp Phe Asp Asn Tyr Tyr Gly Ala Asp Asn Gln	
<pre><211> 380 <212> PRT <213> Homo sapiens <400> 28 Met Glu Glu Gly Gly Asp Phe Asp Asn Tyr Tyr Gly Ala Asp Asn Gln 1</pre>	
<pre><211> 380 <212> PRT <213> Homo sapiens <400> 28 Met Glu Glu Gly Gly Asp Phe Asp Asn Tyr Tyr Gly Ala Asp Asn Gln 1</pre>	
<pre><211> 380 <212> PRT <213> Homo sapiens <400> 28 Met Glu Glu Gly Gly Asp Phe Asp Asn Tyr Tyr Gly Ala Asp Asn Gln 1</pre>	

Phe	Gly	Thr		Phe	Сув	Lys	Leu		Ser	Tyr	Leu	Ile		V al	Asn
			100					105					110		
Met	Tyr	Ala 115	Ser	Val	Phe	Cys	Leu 120	Thr	G1 y	Leu	Ser	Phe 125	Asp	Arg	Tyr
Leu	Ala 130	Ile	Val	Arg	Pro	Val 135	Ala	Asn	Ala	Arg	Leu 140	Arg	Leu	Arg	Val
Ser 145	Gly	Ala	Val	Ala	Thr 150	Ala	Val	Leu	Trp	Val 155	Leu	Ala	Ala	Leu	Leu 160
Ala	Met	Pro	Val	Met 165	Val	Leu	Arg	Thr	Thr 170	Gly	Asp	Leu	Glu	As n 175	Thr
Thr	Lys	Val	Gln 180	Cys	Tyr	Met	Asp	Tyr 185	Ser	Met	Val		Thr 190	Val	Ser
Ser	Glu	Trp 195	Ala	Trp	Glu	Val	Gly 200	Leu	Gly	Val	Ser	Ser 205	Thr	Thr	Val
Gly	Phe 210	Val	Val	Pro	Phe	Thr 215	Ile	Met	Leu	Thr	Cys 220	Tyr	Phe	Phe	Ile
Ala 225	Gln	Thr	Ile	Ala	Gly 230	His	Phe	Arg	Lys	Glu 235	Arg	Ile	Glu	Gly	Leu 240
Arg	Lys	Arg	Arg	Arg 245	Leu	Leu	Ser	Ile	Ile 250	Val	Val	Leu	Val	Val 255	Thr
Phe	Ala	Leu	Cys 260	Trp	Met	Pro	Tyr	His 265	Leu	Val	Lys	Thr	Leu 270	Tyr	Met
Leu	Gly	Ser 275	Leu	Leu	His	Trp	Pro 280	Cys	Asp	Phe	Asp	Leu 285	Phe	Leu	Met
Asn	Ile 290	Phe	Pro	Tyr	Cys	Thr 295	Cys	Ile	Ser	Tyr	Val 300	Asn	Ser	Cys	Leu
Asn 305	Pro	Phe	Leu	Tyr	Ala 310	Phe	Phe	Asp	Pro	Arg 315	Phe	Arg	Gln	Ala	Cys 320
Thr	Ser	Met	Leu	Cys 325	Cys	Gly	Gln	Ser	Arg 330	Cys	Ala	Gly	Thr	Ser 335	His
Ser	Ser	Ser	Gly 340	Glu	Lys	Ser	Ala	Ser 345	Tyr	Ser	Ser	Gly	His 350	Ser	Gln
Gly	Pro	Gly 355	Pro	Asn	Met	Gly	Lys 360	Gly	Gly	Glu	Gln	Met 365		Glu	ı Lys
Ser	Ile 370	Pro	Tyr	Ser	Gln	Glu 375	Thr	Leu	Val	Val	Asp 380				

^{5 &}lt;210> 29

<211> 1560

<212> ADN

<213> Homo sapiens

<220> <221> CDS <222> (355)..(1476)

<400> 29

gaatteggea e	gageceegg co	ggccagcag gg	agctcagg	acagagcagg (etccctggga (50
agcctccggg t	gataggggt gt	tccagctg cg	gcgctctg	ggggttcaga q	gggggatett 12	20
gaatgaacaa a	itgaatgaac to	getttetgg ge	aaacagcc	acagccagag (gageetgtga 18	30
ttggcagaaa g	paagecaggg to	gtgcaagtc tc	cccaacag	cctcgagtgg (ectgcagtca 24	10
cagggaaccc t	caggaagac ct	teegggea ga	gaccagag	ggtgtttcta (getgtgtaca 30)0
gggactgatt g	ggctgaggac to	cacattgga ga	gctgcaga	caacataacg (gtga atg 35 Met 1	5 7
aga atg gag Arg Met Glu)5
tac cct gat Tyr Pro Asp 20	_		-			3
ttg gaa gcc Leu Glu Ala 35						1
gtc tgc ttc Val Cys Phe 50						19
acc ttc aag Thr Phe Lys)7
gca gtg gca Ala Val Ala	-	-				15
tat gcc gcc Tyr Ala Ala 100					-)3
atc agc aac Ile Ser Asn 115			Met Phe		•	11

ctg acc Leu Thr 130															789
tgg tcc Trp Ser															837
gtc atc Val Ile															885
cgg gac Arg Asp		_		_						_					933
agc ctg Ser Leu 195	Ser														981
gac cct Asp Pro 210	gtg Val	GJĀ	tat Tyr	agc Ser 215	cgg Arg	cac His	atg Met	gtg Val	gtg Val 220	act Thr	gtc Val	acc Thr	cgc Arg	ttc Phe 225	1029
ctc tgt Leu Cys			_	_		_					_	_			1077
acc atc	_	_		_		-		-	-	-	•		-	_	1125
ccc ttc Pro Phe	_												_		1173
tgc ccc Cys Pro 275	Tyr												_	_	1221
cct ggc Pro Gly 290															1269
att gcc Ile Ala															1317
gac tto Asp Phe															1365
cta agt Leu Ser		Asp													1413
acc aag Thr Lys 355	Met														1461
acc ggc Thr Gly 370	_		tga	tect	cact	tgt (ggaad	ccct	c a	atgga	actc	t cto	caac	ccag	1516
ggacacc	caa	ggat	atgt	ct to	ctgaa	agate	c aaq	ggcaa	agaa	cct	3				1560

<210> 30

<211> 373

<212> PRT

<213> Homo sapiens

<400> 30

Met 1	Arg	Met	Glu	Asp 5	Glu	Asp	Tyr	Asn	Thr 10	Ser	Ile	Ser	Tyr	Gly 15	Asp
Glu	Tyr	Pro	Asp 20	Tyr	Leu	Asp	Ser	Ile 25	Val	Val	Leu	Glu	Asp 30	Leu	Ser
Pro	Leu	Glu 35	Ala	Arg	Val	Thr	Arg 40	Ile	Phe	Leu	Val	Val 45	Val	Tyr	Ser
Ile	Val 50	Сув	Phe	Leu	Gly	Ile 55	Leu	Gly	Asn	Gly	Leu 60	Val	Ile	Ile	Ile
Ala 65	Thr	Phe	Lys	Met	Lys 70	Lys	Thr	Val	Asn	Met 75	Val	Trp	Phe	Leu	Asn 80
Leu	Ala	Val	Ala	Asp 85	Phe	Leu	Phe	Asn	Val 90	Phe	Leu	Pro	Ile	His 95	Ile
Thr	Tyr	Ala	Ala 100	Met	Asp	Tyr	His	Trp 105	Val	Phe	Gly	Thr	Ala 110	Met	Cys
Lys	Ile	Ser 115	Asn	Phe	Leu	Leu	Ile 120	His	Asn	Met	Phe	Thr 125	Ser	Val	Phe
Leu	Leu 130	Thr	Ile	Ile	Ser	Ser 135	Asp	Arg	Cys	Ile	Ser 140	Val	Leu	Leu	Pro
Val 145	Trp	Ser	Gln	Asn	His 150	Arg	Ser	Val	Arg	Leu 155	Ala	Tyr	Met	Ala	Cys 160
Met	Val	Ile	Trp	Val 165	Leu	Ala	Phe	Phe	Leu 170	Ser	Ser	Pro	Ser	Leu 175	Val
Phe	Arg	Asp	Thr 180	Ala	Asn	Leu	His	Gly 185	Lys	Ile	Ser	Cys	Phe 190	Asn	Asn
Phe	Ser	Leu 195	Ser	Thr	Pro	Gly	Ser 200	Ser	Ser	Trp	Pro	Thr 205	His	Ser	Gln
Met	Asp		Val	Gly	_	Ser	Arg	His	Met	Val	Val	Thr	Val	Thr	Arg

	Phe 225	Leu	Cys	Gly	Phe	230	Val	Pro	Val	Leu	11e 235	Ile	Thr	Ala	Сув	Tyr 240
	Leu	Thr	Ile	Val	Cys 245	Lys	Leu	His	Arg	Asn 250	Arg	Leu	Ala	Lys	Thr 255	Lys
	Lys	Pro	Phe	Lys 260	Ile	Ile	Val	Thr	11e 265	Ile	Ile	Thr	Phe	Phe 270	Leu	Сув
	Trp	Cys	Pro 275	Tyr	His	Thr	Leu	As n 280	Leu	Leu	Glu	Leu	His 285	His	Thr	Ala
	Met	Pro 290	Gly	Ser	Val	Phe	Ser 295	Leu	Gly	Leu	Pro	Leu 300	Ala	Thr	Ala	Leu
	Ala 305	Ile	Ala	Asn	Ser	Cys 310	Met	Asn	Pro	Ile	Leu 315	Tyr	Val	Phe	Met	Gly 320
	Gln	Asp	Phe		Lys 325	Phe	Lys	Val	Ala	Leu 330	Phe	Ser	Arg	Leu	Val 335	Asn
	Ala	Leu	Ser	Glu 340	Asp	Thr	Gly	His	Ser 345	Ser	Tyr	Pro	Ser	His 350	Arg	Ser
	Phe	Thr	Lys 355	Met	Ser	Ser	Met	Asn 360	Glu	Arg	Thr	Ser	Met 365	Asn	Glu	Arg
	Glu	Thr 370	Gly	Met	Leu											
5	<210 <211 <212 <213	> 23 > AR		apiens	5											
	<400> 31															
10	ugag	ugug	ug ug	lugug	agug	ugu							23			
15	<210> 32 <211> 22 <212> ARN <213> Homo sapiens															
	<400	> 32														
20	aggcggggcg ccgcgggacc gc 22															
20	<210> 33 <211> 21 <212> ARN <213> Homo sapiens															
25	<400> 33															
	aggg	aggg	ac gg	gggc	ugug	С							21			
30	<210 <211 <212 <213	> 19 > AR		apiens	S											

	<400> 34	
5	gagccaguug gacaggagc	19
	<210> 35 <211> 25 <212> ARN <213> Homo sapiens	
10	<400> 35	
	agggaucgcg ggcggguggc ggccu	25
15	<210> 36 <211> 23 <212> ARN <213> Homo sapiens	
20	<400> 36	
	aacauucauu.gcugucggug ggu	23
25	<210> 37 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 37	
30	ugagguagua guuuguacag uu	22
35	<210> 38 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 38	
40	uguaaacauc cucgacugga ag	22
45	<210> 39 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 39	
50	ucagugcacu acagaacuuu gu	22
	<210> 40 <211> 22 <212> ARN <213> Homo sapiens	
55	<400> 40	
	auaaagcuag auaaccgaaa gu	22

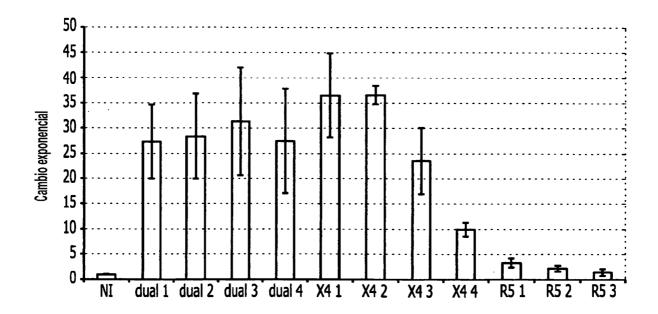
REIVINDICACIONES

- 1. Método *in vitro* de identificación de microARN, o de sus ARNm diana, cuya expresión, cuando tiene lugar la infección de células por un virus que utiliza un receptor celular y por lo menos un co-receptor celular para entrar en la célula, es modificada específicamente en función del co-receptor celular utilizado por el virus para su entrada en las células, que comprende:
 - i) determinar los niveles de expresión de microARN en una célula de prueba, que expresa un receptor, un primer co-receptor y por lo menos otro co-receptor, después de la infección respectivamente por un primer virus que utiliza el primer co-receptor y por lo menos por otro virus que utiliza otro co-receptor;
 - ii) identificar los microARN cuyo nivel de expresión es modulado cuando tiene lugar la infección por cada uno de los virus con respecto al nivel de expresión en unas células no infectadas;
- 15 iii) comparar los microARN así identificados;

5

10

25


50

55

- iv) seleccionar los microARN cuya modificación del nivel de expresión es específica de la utilización de un coreceptor;
- 20 v) eventualmente identificar los ARNm diana de los micro-ARN así seleccionados.
 - 2. Método según la reivindicación 1, en el que la célula de prueba expresa un primer y un segundo co-receptores y es infectada por un primer virus que utiliza el primer co-receptor y un segundo virus que utiliza el segundo co-receptor para entrar en la célula.
 - 3. Método según la reivindicación 1 o 2, en el que los virus son unos retrovirus.
 - 4. Método según una de las reivindicaciones 1 a 3, en el que los virus son unos virus VIH.
- 5. Método según la reivindicación 4, en el que el co-receptor utilizado por uno de los virus VIH se selecciona de entre el grupo constituido por CXCR4, CCR5, CCR3, CCR2, CCR1, CCR4, CCR8, CCR9, CXCR2, STRL33, V28, gpr1, gpr15 y ChemR23.
- 6. Método según la reivindicación 5, en el que el co-receptor utilizado por el primer virus VIH es CXCR4 y el co-35 receptor utilizado por el segundo virus VIH es CCR5.
 - 7. Método según una de las reivindicaciones 4 a 6, en el que las células de prueba son las células Jurkat-CCR5.
- 8. Método *in vitro* de identificación de un co-receptor celular utilizado por un virus que utiliza un receptor celular y por lo menos un co-receptor celular para entrar en una célula, en un paciente infectado por el virus, que comprende:
 - i) poner en contacto una muestra del paciente susceptible de contener el virus con una célula de prueba que expresa un receptor celular del virus y por lo menos un co-receptor celular del virus;
- ii) determinar el nivel de expresión de por lo menos un miARN cuya expresión está específicamente modificada en función del co-receptor celular utilizado por el virus para su entrada en las células y/o de por lo menos un ARNm diana de dicho miARN en la célula de prueba;
 - iii) comparar el nivel de expresión con un valor predeterminado;
 - iv) deducir si el virus utiliza o no un co-receptor celular expresado por la célula de prueba.
 - 9. Método según la reivindicación 8, en el que el valor predeterminado es el nivel de expresión del miARN o del ARNm en una célula de prueba no infectada.
 - 10. Método según la reivindicación 8 o 9, en el que el virus es el virus VIH y en el que la célula de prueba expresa el receptor celular CD4.
- 11. Método según la reivindicación 10, en el que la célula de prueba expresa un co-receptor celular seleccionado de entre el grupo constituido por CXCR4, CCR5, CCR3, CCR2, CCR1, CCR4, CCR8, CCR9, CXCR2, STRL33, V28, gpr1, gpr15 y ChemR23.
 - 12. Método según la reivindicación 10, en el que la célula de prueba expresa CXCR4.
- 13. Método según una de las reivindicaciones 10 a 12, en el que el microARN se selecciona de entre el grupo constituido por hsa-miR574-5p, hsa-miR-663, hsa-miR-149*, hsa-miR-575, hsa-miR-638, hsa-miR-181b, hsa-let-7g,

hsa-miR-30a, hsa-miR-148a y hsa-miR-9*.

- 14. Método según la reivindicación 13, en el que un aumento de la expresión de por lo menos un microARN seleccionado de entre el grupo que comprende hsa-miR574-5p, hsa-miR-663, hsa-miR-149*, hsa-miR-575, hsa-miR-638 o una disminución de la expresión de por lo menos un microARN seleccionado de entre el grupo que comprende hsa-miR-181b, hsa-let-7g, hsa-miR-30a, hsa-miR-148a y hsa-miR-9* indica que CXCR4 es un co-receptor utilizado por el virus VIH.
- 15. Método según una de las reivindicaciones 8 a 14, en el que el nivel de expresión de los microARN o la cantidad de ARNm se mide por RT-PCR o con la ayuda de un microchip.
 - 16. Método según una de las reivindicaciones 10 a 15, en el que las células de prueba se seleccionan de entre el grupo constituido por las células Jurkat y por las células Jurkat-CCR5.

