

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 537 340

51 Int. Cl.:

C12N 9/26 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 06.03.2009 E 09718114 (3)

(97) Fecha y número de publicación de la concesión europea: 06.05.2015 EP 2268805

(54) Título: Producción a gran escala de hialuronidasa soluble

(30) Prioridad:

06.03.2008 US 68622 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **05.06.2015**

(73) Titular/es:

HALOZYME, INC. (100.0%) 11388 Sorrento Valley Road San Diego, CA 92121, US

(72) Inventor/es:

BAKER, DAVID y BOOKBINDER, LOUIS

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Producción a gran escala de hialuronidasa soluble

5 Campo de la invención

Se proporcionan métodos para la producción a gran escala de una proteína humana recombinante.

Antecedentes

10

15

Las hialuronidasas son una familia de enzimas que degradan el ácido hialurónico (también conocido como hialuronano o hialuronato), un componente esencial de la matriz extracelular y un constituyente principal de la barrera intersticial. Al catalizar la hidrólisis de ácido hialurónico, la hialuronidasa reduce la viscosidad del ácido hialurónico, lo que aumenta la permeabilidad del tejido. Como tales, se han utilizado hialuronidasas, por ejemplo, como un agente de diseminación o de dispersión junto con otros agentes, fármacos y proteínas para mejorar su dispersión y liberación. Las hialuronidasas también tienen otros usos terapéuticos y cosméticos. Debido a la creciente utilización de hialuronidasas para usos terapéuticos y cosméticos, hay una necesidad de cantidades a gran escala de hialuronidasa purificada. Por lo tanto, entre los objetos de la presente memoria, existe el objeto de proporcionar métodos para la producción y purificación de hialuronidasas.

20

La Publicación de los Estados Unidos Núm. 2004026825 describe glicoproteínas hialuronidasas activas neutras solubles (sHASECP), incluyendo formas solubles de PH20 humana (sHuPH20). Los métodos para la producción de sHASEGP se describen, pero no se extienden a la producción a gran escala de hialuronidasas solubles.

25 Compendio

En la presente memoria se proporcionan métodos para la producción y purificación de rHuPH20 soluble. Los métodos proporcionados en este documento se pueden utilizar para producir y purificar cualquier cantidad de rHuPH20 soluble. Por ejemplo, los métodos y etapas descritos en la presente memoria son modificables para el aumento de la escala o la disminución de la escala, como sería evidente para un experto en la técnica.

En un primer aspecto, la invención proporciona un método para producir rHuPH20 soluble, en donde rHuPH20 soluble se refiere a una forma soluble de PH20 humana (también conocida como proteína PH20 de la superficie de espermatozoides) que se expresa de forma recombinante por ejemplo en células de ovario de hámster chino (CHO), comprendiendo el método:

a) inocular medio celular en un biorreactor con un inóculo de células que codifican rHuPH20 soluble para producir un cultivo celular, en donde:

40

35

30

las células comprenden entre 150 y 300 copias de ácido nucleico que codifica rHuPH20 soluble; el biorreactor contiene al menos 100 litros de cultivo celular; se inoculan 10¹⁰ - 10¹¹ células por 100 litros de cultivo celular; y las células se cultivan a una temperatura de ajuste;

45

50

- b) alimentar las células con un primer medio de alimentación que contiene glucosa, L-alanil-L-glutamina, insulina humana y extracto de levadura en cantidades suficientes para aumentar el crecimiento celular y la densidad de células máxima, y para aumentar la síntesis de rHuPH20 soluble, en donde el medio de alimentación se añade al cultivo en un volumen de 0,5% a 20% del volumen de cultivo celular;
- c) alimentar las células con un segundo medio de alimentación que contienen glucosa, L-alanil-L-glutamina, extracto de levadura y butirato de sodio en cantidades suficientes para aumentar la síntesis de rHuPH20 soluble e inducir la detención del ciclo celular; y

reducir la temperatura en comparación con la temperatura en la etapa a) a una temperatura suficiente para aumentar la detención del ciclo celular, aumentar la viabilidad celular y estabilizar la hialuronidasa soluble; en donde:

55

- la cantidad de L-alanil-L-glutamina se reduce en comparación con la cantidad de L-alanil-L-glutamina de la etapa b);
- la cantidad de extracto de levadura aumenta en comparación con la cantidad de extracto de levadura de la etapa b); y
- se añade el medio de alimentación al cultivo en un volumen de 0,5% a 20% del volumen de cultivo celular;

60

d) alimentar las células con un tercer medio de alimentación que contienen glucosa, L-alanil-L-glutamina, extracto de levadura y butirato de sodio en cantidades suficientes para aumentar la síntesis de rHuPH20 soluble y aumentar la detención del ciclo celular, y

reducir la temperatura en comparación con la temperatura en la etapa c) a una temperatura suficiente para aumentar la detención del ciclo celular, aumentar la viabilidad celular y estabilizar la hialuronidasa soluble; en donde:

5

la cantidad de L-alanil-L-glutamina se reduce en comparación con la cantidad de L-alanil-L-glutamina de la etapa c);

las cantidades de extracto de levadura, glucosa y butirato de sodio aumentan en comparación con las cantidades de extracto de levadura, glucosa y butirato de sodio de la etapa c); y

se añade el medio de alimentación al cultivo en un volumen de 0,5% o al 20% del volumen de cultivo celular:

10

e) alimentar las células con un cuarto medio de alimentación que contienen glucosa, L-alanil-L-glutamina, extracto de levadura y butirato de sodio en cantidades suficientes para aumentar la síntesis de rHuPH20 soluble y aumentar la detención del ciclo celular, y

15

reducir la temperatura en comparación con la temperatura de la etapa d) a una temperatura suficiente para aumentar la detención del ciclo celular, aumentar la viabilidad celular y estabilizar la hialuronidasa soluble; en donde:

20

la cantidad de L-alanil-L-glutamina y la glucosa se reduce en comparación con la cantidad de L-alanil-L-glutamina y glucosa de la etapa d);

la cantidad de butirato de sodio se reduce en comparación con la cantidad de butirato de sodio de la etapa d); y

se añade el medio de alimentación al cultivo en un volumen de 0,5% a 20% del volumen de cultivo celular;

25

- f) continuar cultivando las células hasta que la viabilidad cae por debajo de al menos 50%;
- g) obtener el líquido de cultivo celular recolectado; y
- h) purificar rHuPH20 del fluido del cultivo celular recolectado.

El líquido de cultivo celular recolectado se puede filtrar antes de la purificación. En algunos ejemplos, la temperatura en la etapa a) es de 37°C, la temperatura en la etapa c) es 36,5°C, la temperatura en la etapa d) es de 36°C y la temperatura en la etapa d) es 35,5°C. La purificación de rHuPH20 soluble se puede efectuar mediante cromatografía en columna, tal como cromatografía en columna con cuentas de agarosa entrecruzada, cromatografía en columna con cuentas de agarosa sustituida con fenilo entrecruzada, cromatografía en columna con aminofenilboronato y cromatografía en columna con hidroxiapatita.

35

40

En un ejemplo, el método para producir rHuPH20 soluble de acuerdo con el primer aspecto de la invención indicado anteriormente, incluye las etapas (a) a (h) en donde:

en la etapa a), las células se cultivan a 37°C;

en la etapa b) del primer medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 32 mM, 16,6 g/L de extracto de levadura y 33 mg/L de insulina, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular;

en la etapa c) el segundo medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 16 mM, 33,4 g/L de extracto de levadura y 0,92 g/L de butirato de sodio, y el medio de alimentación se añade a la de cultivo a un volumen de 4% del volumen de cultivo celular; y

45 la temperatura se reduce a 36,5°C;

en la etapa d) el tercer medio de alimentación contiene 50 g/L de glucosa, L-alanil-L-glutamina 10 mM, 50 g/L de extracto de levadura y 1,8 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 36°C;

en la etapa e) el cuarto medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 6,6 mM, 50 g/L de extracto de levadura y 0,92 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 35.5°C; comprendiendo adicionalmente

filtrar el líquido de cultivo celular recolectado obtenido en la etapa g) y

en la etapa h) purificar rHuPH20 del líquido de cultivo recolectado utilizando cromatografía en columna con cuentas de agarosa entrecruzada, cromatografía en columna con cuentas de agarosa sustituida con fenilo entrecruzada, cromatografía en columna con aminofenilboronato y cromatografía de columna con hidroxiapatita.

60

En otro ejemplo, el método para producir rHuPH20 soluble de acuerdo con el primer aspecto de la invención indicado anteriormente incluye las etapas (a) a (h) en donde:

en la etapa a) las células se inoculan a una densidad celular de 4 x 10⁵ células/mL; y las células se cultivan a 37°C;

en la etapa b) el primer medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 32 mM, 83,3

g/L de extracto de levadura y 33 mg/L de insulina, y el medio de alimentación se añade al cultivo a un volumen de 4 del volumen de cultivo celular;

en la etapa c) el segundo medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 13 mM, 166,7 g/L de extracto de levadura y 0,92 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 36,5°C;

en la etapa d) el tercer medio de alimentación contiene 50 g/L de glucosa, L-alanil-L-glutamina 10 mM, 250 g/L de extracto de levadura y 1,8 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 36°C;

en la etapa e) el cuarto medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 6,7 mM, 250 g/L de extracto de levadura y 0,92 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4 del volumen de cultivo celular; y

la temperatura se reduce a 35,5°C; comprendiendo adicionalmente

filtrar el líquido de cultivo celular recolectado obtenida en la etapa g) y

en la etapa h) purificar rHuPH20 del líquido de cultivo recolectado utilizando cromatografía en columna con cuentas de agarosa entrecruzada, cromatografía en columna con cuentas de agarosa sustituida con fenilo entrecruzada, cromatografía en columna con aminofenilboronato y cromatografía de columna con hidroxiapatita.

20

25

30

35

40

45

50

5

10

15

En algunos ejemplos, el volumen de cultivo celular en el biorreactor es o es de aproximadamente 200, 300, 400, 500, 1000, 1500, 2000, 2500, 3000 o 3500 litros. En algunos ejemplos, la cantidad de rHuPH20 soluble producida por 100 L de cultivo celular utilizando los métodos proporcionados en la presente memoria es al menos o aproximadamente 1, 5, 10, 15, 20, 25, 30, 35 o 40 gramos de rHuPH20 soluble. La actividad específica de rHuPH20 soluble puede ser al menos o aproximadamente 80000, 100000, 120000, 140000, 160000 o 180000 unidades/mg. Las células que codifican rHuPH20 soluble pueden, en algunos casos, ser células CHO DG44. Adicionalmente, la rHuPH20 puede ser codificada por el ácido nucleico mostrado en el SEQ ID NO: 47.

Descripción detallada

Esquema

- A. Definiciones
- B. Información general
- C. Hialuronidasa
 - 1. Estructura y función
 - 2. PH20
 - 3. Usos terapéuticos de las hialuronidasas
 - a. Uso como agente de dispersión
 - b. Uso en hipodermoclisis
 - c. Uso en vitrectomía y trastornos y afecciones oftálmicas
 - d. Uso en terapia génica
 - e. Usos cosméticos
 - f. Uso en el trasplante de órganos
 - g. Uso en el tratamiento del cáncer
 - h. Uso en el tratamiento de la acumulación de glicosaminoglicanos en el cerebro
 - i. Uso en el tratamiento de la acumulación de glicosaminoglicanos en enfermedades cardiovasculares
 - j. Uso en enfermedades pulmonares
 - k. Otros usos
 - D. Células que expresan hialuronidasa
 - a. Células 3D35M
 - b. Células 2B2
 - E. Expansión del cultivo celular
 - F. Producción de proteínas
 - G. Concentración de proteína G y cambio de tampón
 - H. Purificación
 - 1. Columna con cuentas de agarosa entrecruzada
 - 2. Columna con cuentas de agarosa sustituida con fenilo entrecruzada
 - 3. Columna con aminofenilboronato
 - 4. Columna con hidroxiapatita
 - 6. Eliminación de virus, concentración de proteína y cambio de tampón
 - I. Carga

60

55

- J. Seguimiento y análisis
 - 1. Condiciones de seguimiento
 - 2. Seguimiento de la producción de rHuPH20 soluble

K. Ejemplos

5

10

15

20

A. Definiciones

A menos que se defina lo contrario, todos los términos técnicos y científicos utilizados en la presente memoria tienen el mismo significado comúnmente comprendido por un experto en la técnica a la que pertenecen la invención o invenciones.

En caso de que haya una pluralidad de definiciones de términos en la presente memoria, prevalecerán los de esta sección. Cuando se haga referencia a una URL u otro identificador o dirección, se entiende que tales identificadores pueden cambiar y la información concreta en Internet se sucede, pero se puede encontrar información equivalente buscando en Internet. La referencia a esto evidencia la disponibilidad y difusión pública de dicha información.

Según se utiliza en la presente memoria, hialuronidasa se refiere a una enzima que degrada ácido hialurónico. Las hialuronidasas incluyen hialuronidasas bacterianas (EC 4.2.99.1), hialuronidasas de sanguijuelas, otros parásitos y crustáceos (EC 3.2.1.36), y hialuronidasas de tipo mamífero (EC 3.2.1.35). Las hialuronidasas también incluyen cualquiera de origen no humano, incluyendo, pero no limitado a, murino, canino, felino, leporino, aviar, bovino, ovino, porcino, equino, de peces, de ranas, bacteriano, y cualquiera de sanguijuelas, otros parásitos y crustáceos. Las hialuronidasas no humanas ilustrativas incluyen, hialuronidasas de vacas (SEQ ID NO: 10), avispa chaqueta amarilla (SEQ ID NOS: 11 y 12), abeja melífera (SEQ ID NO: 13), avispa de cara blanca (SEQ ID NO: 14), avispa de papel (SEQ ID NO: 15), ratón (SEQ ID NOS: 16-18, 29), cerdo (SEQ ID NOS: 19-20), rata (SEQ ID NOS: 21-23, 28), conejo (SEQ ID NO: 24), oveja (SEQ ID NO: 25), orangután (SEQ ID NO: 26), mono cynomolgus (SEQ ID NO: 27), cobaya (SEQ ID NO: 30), *Staphylococcus aureus* (SEQ ID NO: 31), *Streptococcus pyogenes* (SEQ ID NO: 32), y *Clostridium perfringens* (SEQ ID NO: 33). Las hialuronidasas humanas ilustrativas incluyen HYAL1 (SEQ ID NO: 34), HYAL2 (SEQ ID NO: 35), HYAL3 (SEQ ID NO: 36), HYAL4 (SEQ ID NO: 37), y PH20 (SEQ ID NO: 1). También se incluyen entre las hialuronidasas PH20 humana soluble y rHuPH20 soluble.

30

35

40

55

60

25

Las referencias a las hialuronidasas incluyen polipéptidos de hialuronidasa precursores y polipéptidos de hialuronidasa maduros (tales como aquellos en los que se ha eliminado una secuencia de señal), formas truncadas de los mismos que tienen actividad, e incluyen variantes y variantes de especie alélica, variantes codificadas por variantes de empalme, y otras variantes, incluyendo polipéptidos que tienen al menos 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% o más identidad de secuencia con los polipéptidos precursores mostrados en los SEQ ID NOS: 1 y 10-37, o la forma madura de los mismos. Por ejemplo, la referencia a la hialuronidasa también incluye las variantes de polipéptidos precursores de PH20 humana mostrados en los SEQ ID NOS: 48-49. Las hialuronidasas también incluyen aquellas que contienen modificaciones químicas o postraduccionales y aquellas que no contienen modificaciones químicas o postraduccionales. Tales modificaciones incluyen, pero no se limitan a, pegilación, albuminación, glicosilación, farnesilación, carboxilación, hidroxilación, fosforilación, y otras modificaciones de polipéptidos conocidos en la técnica.

Según se utiliza en la presente memoria, PH20 humana soluble o sHuPH20 incluyen polipéptidos maduros que carecen de toda o una porción del sitio de anclaje a glicosilfosfatidil inositol (GPI) en el extremo C-terminal de manera que tras la expresión, los polipéptidos son solubles. Los polipéptidos sHuPH20 ilustrativos incluyen polipéptidos maduros que tienen una secuencia de aminoácidos mostrada en cualquiera de los SEQ ID NOS: 4-9 y 45-46. Los polipéptidos precursores para tales polipéptidos sHuPH20 ilustrativos incluyen una secuencia señal. Los ejemplos de los precursores son los mostrados en los SEQ ID NOS: 3 y 38-44, cada uno de los cuales contiene una secuencia señal de 35 aminoácidos en las posiciones de aminoácidos 1-35. Los polipéptidos HuPH20 solubles incluyen también los degradados durante o después de los métodos de producción y purificación descritos en la

incluyen también los degradados durante o después de los métodos de producción y purificación descritos en la presente memoria.

Según se utiliza en la presente memoria, rHuPH20 soluble se refiere a una forma soluble de PH20 humana que se expresa de forma recombinante en células de ovario de hámster chino (CHO). La rHuPH20 soluble es codificada por el ácido nucleico que incluye la secuencia señal y se muestra en SEQ ID NO: 47. También se incluyen moléculas de ADN que son variantes alélicas de la misma y otras variantes solubles. El ácido nucleico que codifica rHuPH20 soluble se expresa en células CHO que secretan el polipéptido maduro. A medida que se produce en el medio de cultivo existe heterogeneidad en el extremo C-terminal de manera que el producto incluye una mezcla de especies que pueden incluir uno o más de los SEQ ID NOS. 4-9 en diversa abundancia. También se incluyen las variantes alélicas correspondientes y otras variantes, incluyendo las correspondientes a los polipéptidos PH20 humanos precursores mostrados en los SEQ ID NOS: 48-49. Otras variantes pueden tener 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más de identidad de secuencia con cualquiera de los SEQ ID NOS. 4, siempre que conserven actividad hialuronidasa y sean solubles.

ES 2 537 340 T3

Según se utiliza en la presente memoria, "células que expresan rHuPH20 soluble" se refiere a cualquier célula CHO que exprese rHuPH20 soluble. Las células que expresan rHuPH20 soluble ilustrativas incluyen células 2B2 y 3D35M. Las células que expresan rHuPH20 soluble son células CHO en las que se ha introducido el ácido nucleico que contiene la secuencia mostrada en el SEQ ID NO: 55.

5

10

15

Según se utiliza en la presente memoria, la actividad hialuronidasa se refiere a cualquier actividad exhibida por un polipéptido de hialuronidasa. Tales actividades se pueden someter a ensayo *in vitro* y/o *in vivo* e incluyen, pero no se limitan a, la actividad enzimática, por ejemplo para efectuar la escisión de ácido hialurónico, capacidad para actuar como agente de dispersión o de diseminación y antigenicidad. La actividad de la hialuronidasa se refiere a cualquier actividad exhibida por un polipéptido de hialuronidasa.

Según se utiliza en la presente memoria, la actividad enzimática se refiere a la actividad de una hialuronidasa, tal como se evaluó en análisis enzimáticos *in vitro*, para escindir un sustrato, tal como ácido hialurónico. Los análisis *in vitro* para determinar la actividad enzimática de la hialuronidasas, tales como rHuPH20 soluble, son conocidos en la técnica y se describe en la presente memoria. Los análisis ilustrativos incluyen el análisis de microturbidez descrito a continuación (véase p. ej. el Ejemplo 9 y la sección I) que mide la escisión de ácido hialurónico por la hialuronidasa indirectamente mediante la detección del precipitado insoluble formado cuando el ácido hialurónico no escindido se une a la albúmina sérica.

Según se utiliza en la presente memoria, la actividad específica con referencia a rHuPH20 soluble es la actividad enzimática relativa a la cantidad de rHuPH20 soluble. La actividad específica se calcula dividiendo la actividad enzimática (unidades/mL) por la concentración de proteína (mg/mL).

Según se utiliza en la presente memoria, "exhibe al menos una actividad" o "conserva al menos una actividad" se refiere a la actividad exhibida por una variante rHuPH20 soluble en comparación con cualquier rHuPH20 soluble mostrada en los SEQ ID NO: 4-9 bajo las mismas condiciones. Típicamente, una variante de rHuPH20 soluble que conserva o exhibe al menos una actividad de una rHuPH20 soluble mostrada en el SEC ID NOS: 4-9 conserva una actividad de, o de aproximadamente, 0,5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500% la actividad de una rHuPH20 soluble mostrada en los SEQ ID NO: 4-9. Las actividades ilustrativas incluyen, pero no se limitan a, la actividad de la hialuronidasa y la actividad enzimática.

Según se utiliza en la presente memoria, cromatografía en columna con cuentas de agarosa entrecruzada se refiere a cromatografía utilizando una columna cargada con cuentas de agarosa entrecruzada. La agarosa entrecruzada ilustrativa en cuentas es Q Sepharose™.

Según se utiliza en la presente memoria, cromatografía en columna con cuentas de agarosa sustituida con fenilo entrecruzada se refiere a cromatografía utilizando una columna cargada con cuentas de agarosa sustituida con fenilo entrecruzada. La agarosa sustituida con fenilo entrecruzada es Phenyl Sepharose™.

40

35

Según se utiliza en la presente memoria, cromatografía en columna con aminofenilboronato se refiere a cromatografía utilizando una columna empaquetada con aminofenilboronato-agarosa.

Según se utiliza en la presente memoria, cromatografía de columna con hidroxiapatita se refiere a cromatografía utilizando una columna empaquetada con hidroxiapatita.

Según se utiliza en la presente memoria, líquido de cultivo celular recolectado o líquido de cultivo celular cosechado (HCCF) se refiere al líquido obtenido después de la recolección de las células del biorreactor y la separación del medio de cultivo celular de las células, restos celulares y otros productos agregados. El cultivo celular que es cosechado del biorreactor se puede filtrar para aclarar el cultivo, eliminando las células, los restos celulares y otros productos agregados para dejar el líquido de cultivo celular cosechado.

Según se utiliza en la presente memoria, la densidad celular se refiere al número de células en un volumen dado de medio.

55

50

Según se utiliza en la presente memoria, la cultura o cultivo celular se refiere a una población de células que se suspende en un medio en condiciones adecuadas para mantener la viabilidad de las células o crecer las células.

Según se utiliza en la presente memoria, medio, medio celular o medio de cultivo celular se refiere a una disolución que contiene suficientes nutrientes para promover el crecimiento de las células en un cultivo. Típicamente, estas disoluciones contienen aminoácidos esenciales y no esenciales, vitaminas, fuentes de energía, lípidos y/o oligoelementos. El medio también puede contener suplementos adicionales, tales como hormonas, factores de crecimiento e inhibidores del crecimiento. Se incluye la referencia a medio de cultivo celular

Según se utiliza en la presente memoria, los residuos de los α -aminoácidos de origen natural son los residuos de los 20 α -aminoácidos encontrados en la naturaleza que se incorporan a la proteína mediante el reconocimiento específico de la molécula de ARNt cargado con su codón de ARNm cognado en los seres humanos.

Según se utiliza en la presente memoria, "en cantidades suficientes para aumentar" cuando se refiere a una sustancia que incrementa parámetros tales como la velocidad de crecimiento celular, la densidad celular máxima, la síntesis de proteínas o la detención del ciclo celular se refiere a la cantidad de una sustancia que efectúa un aumento en uno de estos parámetros en comparación con el observado en ausencia de la sustancia. Los parámetros se pueden evaluar en presencia y ausencia de una sustancia, y se puede determinar la cantidad de sustancia que aumenta el parámetro (tal como la tasa de crecimiento celular, la densidad celular máxima, la síntesis de proteínas o la detención del ciclo celular) en comparación con la ausencia de la sustancia. La tasa de crecimiento, la densidad celular máxima, la síntesis de proteínas o detención del ciclo celular en presencia de la sustancia puede aumentarse en, o aproximadamente, 0,5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 30%, 40%, 50%, 60 %, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500% o más en comparación con la tasa de crecimiento, la densidad celular máxima, la síntesis de proteínas o la detención del ciclo celular en ausencia de la sustancia.

Según se utiliza en la presente memoria, los ácidos nucleicos incluyen ADN, ARN y análogos de los mismos, incluyendo ácidos peptidonucleicos (PNA) y mezclas de los mismos. Los ácidos nucleicos pueden ser de cadena sencilla o doble. Cuando se hace referencia a sondas o cebadores, que están opcionalmente marcados, por ejemplo con un marcador detectable, tal como una marca fluorescente o radiomarca, se contemplan las moléculas de cadena sencilla. Dichas moléculas tienen típicamente una longitud tal que su diana es estadísticamente única o de bajo número de copias (típicamente menos de 5, generalmente menos de 3) para sondear o cebar una biblioteca. Generalmente una sonda o cebador contiene al menos 14, 16 o 30 nucleótidos contiguos de la secuencia complementaria a o idéntica a un gen de interés. Las sondas y cebadores pueden ser de 10, 20, 30, 50, 100 o más ácidos nucleicos de longitud.

Según se utiliza en la presente memoria, un péptido se refiere a un polipéptido que tiene de 2 a 40 aminoácidos de longitud.

Según se utiliza en la presente memoria, los aminoácidos que aparecen en las diversas secuencias de aminoácidos proporcionadas en la presente memoria se identifican de acuerdo con sus abreviaturas de tres letras o de una letra conocidas (Tabla 1). Los nucleótidos que aparecen en los diversos fragmentos de ácido nucleico se designan con las denominaciones de una sola letra convencionales utilizadas rutinariamente en la técnica.

Según se utiliza en la presente memoria, un "aminoácido" es un compuesto orgánico que contiene un grupo amino y un grupo ácido carboxílico. Un polipéptido contiene dos o más aminoácidos. Para los propósitos de la presente memoria, los aminoácidos incluyen los veinte aminoácidos de origen natural, aminoácidos no naturales y análogos de aminoácidos (es decir, aminoácidos en los que el carbono α tiene una cadena lateral).

Según se utiliza en la presente memoria, "residuo de aminoácido" se refiere a un aminoácido formado tras la digestión química (hidrólisis) de un polipéptido en sus enlaces peptídicos. Se supone que los residuos de aminoácido descritos en la presente memoria están en la forma isomérica "L". Los residuos en la forma isomérica "D", que son designados de ese modo, pueden ser sustituidos por cualquier residuo de L-aminoácido, siempre que la propiedad funcional deseada sea retenida por el polipéptido. NH₂ se refiere al grupo amino libre presente en el extremo amino terminal de un polipéptido. COOH se refiere al grupo carboxi libre presente en el extremo carboxilo terminal de un polipéptido. De acuerdo con la nomenclatura de polipéptidos convencional descrita en J. Biol. Chem., 243: 3552-3559 (1969), y adoptada 37 C. F. R.
§§ 1.821-1.822, las abreviaturas para los residuos de aminoácidos se muestran en la Tabla 1:

Tabla 1 - Tabla de Correspondencia

5

10

15

20

25

30

35

40

45

50

SÍMBOLO		
1-Letra 3-Letras		AMINOÁCIDOS
Υ	Tyr	Tirosina
G	Gly	Glicina
F	Phe	Fenilalanina
M	Met	Metionina
Α	Ala	Alanina
S	Ser	Serina

7

SÍMBOLO				
1-Letra	3-Letras	AMINOÁCIDOS		
I	ÉI	Isoleucina		
L	Leu	Leucina		
Т	Thr	Treonina		
V	Val	Valina		
Р	Pro	Prolina		
K	Lys	Lisina		
Н	Su	Histidina		
Q	Gln	Glutamina		
E	Glu	Ácido glutamico		
Z	Glx	Glu y/o Gln		
W	Trp	Triptófano		
R	Arg	Arginina		
D	Áspid	Ácido aspártico		
N	Asn	Asparragina		
В	Asx	Asn y/o Asp		
С	Cys	Cisteína		
X	Xaa	Desconocido u otro		

Cabe señalar que todas las secuencias de residuos de aminoácidos representadas en la presente memoria por fórmulas tienen una orientación de izquierda a derecha en la dirección convencional del extremo amino al extremo carboxilo-terminal. Además, la frase "residuo de aminoácido" se define ampliamente para incluir los aminoácidos que figuran en la Tabla de Correspondencia (Tabla 1) y aminoácidos modificados e inusuales, como los mencionados en 37 CFR §§ 1.821-1.822. Además, se debe tener en cuenta que un guión al principio o al final de una secuencia de residuos de aminoácidos indica un enlace peptídico a una secuencia adicional de uno o más residuos de aminoácidos, a un grupo amino-terminal tal como NH₂ o a un grupo carboxilo-terminal tal como COOH.

Según se utiliza en la presente memoria, "aminoácidos de origen natural" se refiere a los ácidos 20 L-aminoácidos que aparecen en los polipéptidos.

5

- Según se utiliza en la presente memoria, "aminoácido no natural" se refiere a un compuesto orgánico que tiene una estructura similar a un aminoácido natural pero que ha sido modificado estructuralmente para imitar la estructura y reactividad de un aminoácido natural. Los aminoácidos de origen no natural por lo tanto incluyen, por ejemplo, aminoácidos o análogos de aminoácidos distintos de los 20 aminoácidos de origen natural e incluyen, pero no se limitan a, los D-isostereómeros de aminoácidos. Los aminoácidos no naturales ilustrativos se describen en la presente memoria y son conocidos por los expertos en la técnica.
- 20 Según se utiliza en la presente memoria, un constructo de ADN es una molécula de ADN monocatenario o bicatenario, lineal o circular que contiene segmentos de ADN combinados y yuxtapuestos de una manera que no se encuentra en la naturaleza. Existen constructos de ADN como resultado de la manipulación humana, e incluyen clones y otras copias de moléculas manipuladas.
- Según se utiliza en la presente memoria, "similitud" entre dos proteínas o ácidos nucleicos se refiere a la relación entre la secuencia de aminoácidos de las proteínas o las secuencias de nucleótidos de los ácidos nucleicos. La similitud puede basarse en el grado de identidad y/u homología de las secuencias de residuos y los residuos contenidos en las mismas. Los métodos para evaluar el grado de similitud entre las proteínas o los ácidos nucleicos son conocidos por los expertos en la técnica. Por ejemplo, en un método de evaluación de la similitud de secuencia, dos secuencias de aminoácidos o nucleótidos se alinean de una manera que produce un nivel máximo de identidad entre las secuencias. "Identidad" se refiere al grado en el que las secuencias de aminoácido o de nucleótidos son invariantes. El alineamiento de las secuencias de aminoácidos, y hasta cierto punto de las secuencias de nucleótidos, también puede tomar en cuenta las diferencias conservativas y/o las sustituciones frecuentes en los aminoácidos (o nucleótidos). Diferencias conservativas son aquellas que preservan las propiedades físico-químicas

de los residuos implicados. Los alineamientos pueden ser globales (alineamiento de las secuencias comparadas en toda la longitud de las secuencias e incluyendo todos los residuos) o locales (el alineamiento de una porción de las secuencias que incluye únicamente la región o regiones más similares).

"Identidad" per se tiene un significado reconocido en la técnica y puede calcularse utilizando técnicas publicadas. (Véanse, p. ej.: Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome. Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., y Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; y Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). Si bien existen diversos métodos para medir la identidad entre dos polinucleótidos o polipéptidos, el término "identidad" es bien conocido por los expertos en la técnica (Carillo, H. & Lipton, D., SIAM J Applied Math 48:1073 (1988)).

15

20

25

30

35

40

45

50

55

60

Según se utiliza en la presente memoria, homólogo (con respecto a las secuencias ácidos nucleicos y/o de aminoácidos) significa aproximadamente mayor que o igual a 25% de homología de secuencia, típicamente mayor que o igual a 25%, 40%, 50%, 60%, 70%, 80%, 85%, 90% o 95% de homología de secuencia; el porcentaje preciso se puede especificar si fuera necesario. Para los fines de la presente memoria, los términos "homología" e "identidad" se usan indistintamente, a menos que se indigue lo contrario. En general, para la determinación de la homología o porcentaje de identidad, las secuencias se alinean de modo que se obtiene el emparejamiento de mayor orden (véase, p. ej.: Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., y Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; Carillo et al. (1988) SIAMJ Applied Math 48:1073). Mediante homología de secuencia, el número de aminoácidos conservados se determina mediante programas de algoritmos de alineamiento convencionales, y se puede utilizar con penalizaciones por hueco por defecto establecidas por cada proveedor. Las moléculas de ácido nucleico sustancialmente homólogas podrían hibridar típicamente a rigurosidad moderada o a alta rigurosidad en toda la longitud del ácido nucleico de interés. También se contemplan las moléculas de ácido nucleico que contienen codones degenerados en lugar de codones en la molécula de ácido nucleico que hibrida.

El que cualquiera de las dos moléculas tienen secuencias de nucleótidos o secuencias de aminoácidos que son al menos 60%. 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% o 99% "idéntica" u "homóloga" puede determinarse utilizando algoritmos informáticos conocidos tales como el programa "FASTA", utilizando, por ejemplo, los parámetros por defecto como en Pearson et al. (1988) Proc. Natl. Acad. Sci. USA 85: 2444 (otros programas incluyen el paquete de programas GCG (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S. F., et al, J Molec Biol. 215:403 (1990)); Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994, y Carillo et al. (1988) SIAM J Applied Math 48:1073). Por ejemplo, la función BLAST de la base de datos del Centro Nacional de Información sobre Biotecnología se puede utilizar para determinar la identidad. Otros programas comercialmente o públicamente disponibles incluyen, el programa "MegAlign" DNAStar (Madison, WI) y el programa "Gap" del Genetics Computer Group de la Universidad de Wisconsin (UWG) (Madison WI). El porcentaje de homología o identidad de proteínas y/o moléculas de ácido nucleico se pueden determinar, por ejemplo, comparando la información de secuencia utilizando un programa de ordenador GAP (p. ej., Needleman et al. (1970) J. Mol. Biol. 48:443, revisado por Smith y Waterman (1981) Adv. Appl. Math. 2:482). En resumen, el programa GAP define la similitud como el número de símbolos alineados (es decir, nucleótidos o aminoácidos), que son similares, dividido por el número total de símbolos en la más corta de las dos secuencias. Los parámetros por defecto para el programa GAP pueden incluir: (1) una matriz de comparación unaria (que contiene un valor de 1 para identidades y 0 para no identidades) y la matriz de comparación ponderada de Gribskov et al. (1986) Nucl. Acids Res. 14:6745, como describen Schwartz y Dayhoff, eds., ATLAS OF PROTEIN SEQUENCE AND STRUCTURE, National Biomedical Research Foundation, págs. 353-358 (1979); (2) una penalización de 3,0 para cada hueco y una penalización adicional de 0,10 para cada símbolo en cada hueco; y (3) sin penalización para los huecos finales.

Por lo tanto, según se utiliza en la presente memoria, el término "identidad" u "homología" representa una comparación entre una prueba y un polipéptido o polinucleótido de referencia. Según se utiliza en la presente memoria, el término al menos "90% idéntica a" se refiere a identidades por ciento desde 90 hasta 99,99 con respecto a la secuencia de ácido nucleico o de aminoácidos de referencia del polipéptido. Identidad a un nivel de 90% o más es indicativa del hecho de que, suponiendo fines ilustrativos, se compara una longitud del polipéptido de ensayo y referencia de 100 aminoácidos. No más de 10% (es decir, 10 de 100) de los aminoácidos en el polipéptido de ensayo difiere del del polipéptido de referencia. Se pueden realizar comparaciones similares entre polinucleótidos de ensayo y de referencia. Tales diferencias pueden ser representadas como mutaciones puntuales distribuidas al azar a lo largo de toda la longitud de un polipéptido o pueden ser agrupadas en una o más localizaciones de longitud variable hasta el máximo permisible, p. ej.. diferencia de 10/100 aminoácidos (aproximadamente 90% de identidad). Las diferencias se definen como sustituciones, inserciones o deleciones de ácido nucleico o aminoácidos. A nivel de

homologías o identidades por encima de aproximadamente 85-90%, el resultado debería ser independiente del programa y del ajuste de parámetros de los huecos; dichos altos niveles de identidad pueden evaluarse fácilmente, a menudo por medio de alineamiento manual sin depender del soporte lógico.

Según se utiliza en la presente memoria, una secuencia alineada se refiere al uso de homología (similitud y/o identidad) para alinear las posiciones correspondientes en una secuencia de nucleótidos o aminoácidos. Típicamente, dos o más secuencias que están relacionadas por 50% o más de identidad están alineadas. Un conjunto alineado de secuencias se refiere a 2 o más secuencias que se alinean en posiciones correspondientes y pueden incluir el alineamiento de secuencias derivadas de ARN, tales como EST y otros ADNc, alineados con la secuencia de ADN genómico.

Según se utiliza en la presente memoria, "cebador" se refiere a una molécula de ácido nucleico que puede actuar como un punto de iniciación de la síntesis de ADN dirigida por molde en condiciones apropiadas (p. ej., en presencia de cuatro nucleósidos trifosfato diferentes y un agente de polimerización, tal como ADN polimerasa , ARN polimerasa o transcriptasa inversa) en un tampón apropiado y a una temperatura adecuada. Se apreciará que ciertas moléculas de ácido nucleico pueden servir como "sonda" y como "cebador". Un cebador, sin embargo, tiene un grupo 3' hidroxilo para la extensión. Se puede utilizar un cebador en una variedad de métodos, incluyendo, por ejemplo, reacción en cadena de la polimerasa (PCR), transcriptasa inversa (RT)-PCR, PCR con ARN, LCR, PCR múltiplex, PCR angosta, PCR de captura, PCR de expresión, RACE 3' y 5', PCR in situ, PCR mediada por ligación y otros protocolos de amplificación.

15

20

25

30

35

40

45

55

60

Según se utiliza en la presente memoria, una variante alélica o variación alélica hace referencia a cualquiera de dos o más formas alternativas de un gen que ocupa el mismo locus cromosómico. La variación alélica surge naturalmente a través de mutación, y puede dar como resultado polimorfismo fenotípico dentro de las poblaciones. Las mutaciones génicas pueden ser silenciosas (sin cambio en el polipéptido codificado) o pueden codificar polipéptidos que tienen la secuencia de aminoácidos alterada. El término "variante alélica" también se utiliza en la presente memoria para indicar una proteína codificada por una variante alélica de un gen. Típicamente, la forma de referencia del gen codifica una forma de tipo salvaje y/o una forma predominante de un polipéptido de una población o miembro de referencia individual de una especie. Típicamente, las variantes alélicas, que incluyen variantes intere intra-especie tienen típicamente al menos 80%, 90% o más de identidad de aminoácidos con una forma de tipo salvaje y/o predominante de la misma especie; el grado de identidad depende del gen y de si la comparación es interespecífica o intraespecífica. Generalmente, la variantes alélicas intraespecíficas tienen al menos aproximadamente 80%, 85%, 90% o 95% o más de identidad con una forma de tipo salvaje y/o predominante de un polipéptido, incluyendo 96%, 97%, 98%, 99% o más de identidad con una forma de tipo salvaje y/o predominante. La referencia a una variante alélica en la presente memoria generalmente se refiere a las variaciones de proteínas entre los miembros de la misma especie.

Según se utiliza en la presente memoria, "alelo", que se utiliza indistintamente en la presente memoria con "variante alélica" se refiere a formas alternativas de un gen o porciones del mismo. Los alelos ocupan el mismo locus o posición en cromosomas homólogos. Cuando un sujeto tiene dos alelos idénticos de un gen, se dice que el sujeto es homocigótico para ese gen o alelo. Cuando un sujeto tiene dos alelos diferentes de un gen, se dice que el sujeto es heterocigótico para el gen. Los alelos de un gen específico pueden diferir entre sí en un solo nucleótido o varios nucleótidos, y pueden incluir sustituciones, deleciones e inserciones de nucleótidos. Un alelo de un gen también puede ser una forma de un gen que contiene una mutación.

Según se utiliza en la presente memoria, variantes de especie se refieren variantes en polipéptidos entre diferentes especies, incluyendo diferentes especies de mamíferos, tales como ratón y ser humano.

Según se utiliza en la presente memoria, una variante de empalme se refiere a una variante producida por procesamiento diferencial de un transcrito primario de ADN genómico que da como resultado más de un tipo de ARNm.

Según se utiliza en la presente memoria, la modificación es en referencia a la modificación de una secuencia de aminoácidos de un polipéptido o una secuencia de nucleótidos en una molécula de ácido nucleico e incluye deleciones, inserciones, y sustituciones de aminoácidos y nucleótidos, respectivamente. Métodos de modificación de un polipéptido son rutinarios para los expertos en la técnica, tal como mediante el uso de metodologías de ADN recombinante.

Según se utiliza en la presente memoria, el término promotor significa una porción de un gen que contiene secuencias de ADN que proporcionan la unión de la ARN polimerasa y la iniciación de la transcripción. Las secuencias promotoras se encuentran comúnmente, pero no siempre, en la región no codificante 5' de los genes.

Según se utiliza en la presente memoria, polipéptido o proteína o porción biológicamente activa de los mismos aislados o purificados están sustancialmente libres de material celular u otras proteínas contaminantes de la célula o

tejido del que deriva la proteína, o sustancialmente libres de precursores químicos u otros productos químicos cuando se sintetizan químicamente. Se puede determinar que las preparaciones están sustancialmente libres si aparecen libres de impurezas fácilmente detectables según se determina por medio de métodos de análisis convencionales, tales como cromatografía en capa fina (TLC), electroforesis en gel y cromatografía líquida de alto rendimiento (HPLC), utilizadas por los expertos en la técnica para evaluar tal pureza, o son suficientemente puras de manera que la purificación adicional no alteraría de forma detectable las propiedades físicas y químicas, por ejemplo las actividades enzimática y biológicas, de la sustancia. Los métodos para la purificación de los compuestos para producir compuestos sustancialmente químicamente puros son conocidos por los expertos en la técnica. Un compuesto sustancialmente químicamente puro, sin embargo, puede ser una mezcla de estereoisómeros. En tales casos, la purificación adicional podría aumentar la actividad específica del compuesto.

10

15

20

25

30

35

40

45

50

55

60

El término sustancialmente libre de material celular incluye preparaciones de proteínas en las que la proteína se separa de los componentes celulares de las células de las que se aísla o produce de forma recombinante. En una realización, el término sustancialmente libre de material celular incluye preparaciones de proteínas enzimáticas que tienen menos de aproximadamente 30% (en peso seco) de proteínas no enzimáticas (también denominadas en la presente memoria proteínas contaminantes), generalmente menos de aproximadamente 20% de proteínas no enzimáticas o 10% de proteínas no enzimáticas o menos de aproximadamente 5% de proteínas no enzimáticas. Cuando se produce de forma recombinante la proteína enzimática, también está sustancialmente libre de medio de cultivo, es decir, el medio de cultivo representa cantidades de menos de aproximadamente, o de, 20%, 10% o 5% del volumen de la preparación de proteína enzimática.

Según se utiliza en la presente memoria, el término sustancialmente libre de precursores químicos u otros productos químicos incluye preparaciones de proteínas enzimáticas en las que la proteína está separada de precursores químicos u otros productos químicos que están implicados en la síntesis de la proteína. El término incluye preparaciones de proteínas enzimáticas tienen menos de aproximadamente 30% (en peso seco) 20%, 10%, 5% o menos de precursores químicos o productos químicos no enzimáticos o componentes.

Según se utiliza en la presente memoria, sintético, con referencia a, por ejemplo, una molécula sintética de ácido nucleico o un gen sintético o un péptido sintético se refiere a una molécula de ácido nucleico o molécula de polipéptido que se produce por métodos recombinantes y/o por métodos de síntesis química.

Según se utiliza en la presente memoria, un vector de expresión incluye vectores capaces de expresar ADN que está conectado operativamente a secuencias reguladoras, tales como regiones promotoras, que son capaces de efectuar la expresión de tales fragmentos de ADN. Tales segmentos adicionales pueden incluir secuencias promotoras y terminadoras, y opcionalmente pueden incluir uno o más orígenes de replicación, uno o más marcadores seleccionables, un potenciador, una señal de poliadenilación, y similares. Los vectores de expresión derivan generalmente de ADN plasmídico o viral, o pueden contener elementos de ambos. Por lo tanto, un vector de expresión se refiere a un constructo de ADN o ARN recombinante, tal como un plásmido, un fago, virus recombinante u otro vector que, tras la introducción en una célula anfitriona apropiada, da como resultado la expresión del ADN clonado. Los vectores de expresión apropiados son bien conocidos por los expertos en la técnica e incluyen aquellos que son replicables en células eucarióticas y/o células procarióticas y aquellos que permanecen episómicos o aquellos que se integran en el genoma de la célula anfitriona.

En la presente memoria, vector también incluye "virus vectores" o "vectores virales". Los vectores virales son virus modificados genéticamente que están unidos operativamente a genes exógenos para transferir (como vehículos o lanzaderas) los genes exógenos a las células.

Según se utiliza en la presente memoria, se pretende que el término evaluar incluya la determinación cuantitativa y cualitativa en el sentido de obtener un valor absoluto para la actividad de una proteasa, o un dominio de la misma, presente en la muestra, y también de obtener un índice, razón, porcentaje, valor visual u otro valor indicativo del nivel de actividad. La evaluación puede ser directa o indirecta y las especies químicas detectadas realmente no tienen que ser, por supuesto, el propio producto de la proteólisis, sino que puede ser por ejemplo un derivado de la misma o alguna sustancia adicional. Por ejemplo, la detección de un producto de escisión de una proteína del complemento, por ejemplo mediante SDS-PAGE y tinción de proteínas con azul de Coomasie.

Según se utiliza en la presente memoria, una composición se refiere a cualquier mezcla. Puede ser una disolución, suspensión, líquido, polvo, pasta, acuosos, no acuosos o cualquier combinación de los mismos. Según se utiliza en la presente memoria, un kit es una combinación empaquetada que opcionalmente incluye otros elementos, tales como reactivos adicionales e instrucciones de uso de la combinación o elementos de los mismos.

Según se utiliza en la presente memoria, "enfermedad o trastorno" se refiere a una afección patológica en un organismo que resulta de causa o afección, incluyendo, pero no limitada a, infecciones, afecciones adquiridas, afecciones genéticas, y se caracterizan por síntomas identificables.

Según se utiliza en la presente memoria, "tratar" un sujeto con una enfermedad o afección significa que los síntomas del sujeto se alivian parcialmente o totalmente, o permanecen estáticos después del tratamiento. Por lo tanto el tratamiento abarca la profilaxis, terapia y/o cura. La profilaxis se refiere a la prevención de una enfermedad potencial y/o una prevención de empeoramiento de los síntomas o la progresión de una enfermedad. El tratamiento también abarca cualquier uso farmacéutico de un interferón modificado y de la composiciones proporcionadas en la presente memoria.

Según se utiliza en la presente memoria, un agente farmacéuticamente eficaz, incluye cualquier agente terapéutico o agentes bioactivos, incluyendo, pero no limitados a, por ejemplo, anestésicos, vasoconstrictores, agentes dispersantes, fármacos terapéuticos convencionales, incluyendo fármacos de moléculas pequeñas y proteínas terapéuticas.

Según se utiliza en la presente memoria, tratamiento significa cualquier forma en la que los síntomas de una afección, trastorno o enfermedad u otra indicación, mejoran o resultan alterados por lo demás de manera beneficiosa.

Según se utiliza en la presente memoria, un paciente se refiere a un sujeto humano.

Según se utiliza en la presente memoria, una cantidad eficaz es la cantidad de un agente terapéutico necesaria para prevenir, curar, mejorar, detener o detener parcialmente un síntoma de una enfermedad o trastorno.

Según se utiliza en la presente memoria, animal incluye cualquier animal, tal como, pero no limitado a primates incluyendo seres humanos, gorilas y monos; roedores, tales como ratones y ratas; aves de corral, tales como pollos; rumiantes, tales como cabras, vacas, ciervos, ovejas; ganado porcino, tal como cerdos y otros animales. Los animales no humanos excluyen los seres humanos como el animal contemplado. Las hialuronidasas proporcionadas en la presente memoria son de cualquier fuente, animal, vegetal, procariótica y fúngica. La mayoría de las enzimas son de origen animal, incluidas las procedentes de mamíferos.

Según se utiliza en la presente memoria, un control se refiere a una muestra que es sustancialmente idéntica a la muestra de ensayo, excepto que no se trata con un parámetro de ensayo, o, si se trata de una muestra de plasma, puede ser de un voluntario normal no afectado de la afección de interés. Un control puede ser también un control interno.

Según se utiliza en la presente memoria, las formas singulares "un", "una", "el", y "la" incluyen los referentes plurales a menos que el contexto indique claramente lo contrario. Así, por ejemplo, la referencia a un compuesto, que comprende "un dominio extracelular" "incluye compuestos con uno o una pluralidad de dominios extracelulares.

Según se utiliza en la presente memoria, los intervalos y las cantidades se pueden expresar como "aproximadamente" un valor o rango concreto. Aproximadamente también incluye la cantidad exacta. De ahí que "aproximadamente 5 mM" y también "5 mM".

Según se utiliza en la presente memoria, las abreviaturas para los grupos protectores, aminoácidos y otros compuestos, son, a menos que se indique lo contrario, de acuerdo con su uso común, abreviaturas reconocidas, o de la Comisión sobre Nomenclatura Bioquímica de la IUPAC-IUB (véase, (1972) Biochem. 11: 1726).

B. Esquema

5

10

15

25

40

45

50

55

60

En la presente memoria se proporcionan métodos para la producción a gran escala de rHuPH20 soluble. Los métodos utilizan típicamente biorreactores para cultivar células que producen la rHuPH20 soluble, es decir, células CHO (p. ej., células CHO DG44). Son ilustrativas de tales células las células 2B2, que producen rHuPH20 soluble. El volumen de cultivo celular en el biorreactor es típicamente o es de aproximadamente 200, 300, 400, 500, 1000, 1504, 2000, 2500, 3000 o 3500 litros. Antes de la inoculación del biorreactor, las células se expanden a través de una serie de volúmenes crecientes de cultivo celular para generar el número necesario de células para la siembra del biorreactor. Típicamente, el cultivo celular en el biorreactor se siembra con 10⁵ a 10⁶ células/mL, pero se puede sembrar con más o menos. Las células se incuban a continuación en el biorreactor durante 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 o más días.

Durante esta incubación, se añadió medio de alimentación al cultivo celular para suministrar nutrientes y suplementos adicionales. Los suplementos o nutrientes incluidos en los medios de alimentación incluyen, pero no están limitados a, glucosa, glutamina o sucedáneo de glutamina, tal como L-alanil-L-glutamina, insulina, y butirato de sodio. El tipo y la cantidad de suplemento añadido pueden influir en el crecimiento celular y la producción de proteínas. Por ejemplo, la insulina y el sucedáneo de glutamina se incorporan a los primeros medios de alimentación añadidos al cultivo celular para aumentar el crecimiento celular y la densidad celular máxima. Los medios de alimentación posteriores están diseñados para promover la producción de proteínas más que el crecimiento celular.

Suplementos tales como la insulina se excluyen y se reduce la cantidad de suplementos tales como la glutamina o el sucedáneo de glutamina, por ejemplo la L-alanil-L-glutamina. En contraste, se aumenta la cantidad de suplementos tales como extracto de levadura que mejora la síntesis de proteínas. Además, también se incluye butirato de sodio que mejora la detención del ciclo celular y, por lo tanto, aumenta la producción de proteína.

Después de la producción de proteínas en el biorreactor, las células se recogen y la rHuPH20 soluble, que ha sido secretada al medio de cultivo celular se concentra antes del comienzo del procedimiento de purificación. La rHuPH20 soluble se purifica a continuación a partir de la disolución de proteína concentrada utilizando una serie de etapas de purificación. Los métodos de purificación ilustrativos que se utilizan para los métodos de la presente invención es una combinación de cromatografía de intercambio iónico, cromatografía de interacción hidrófoba y cromatografía de afinidad. La proteína purificada se concentra y se somete a diafiltración.

Utilizando los procedimientos descritos en la presente memoria, se producen entre aproximadamente 0,5-50 gramos de rHuPH20 soluble, por 100 L de cultivo celular. En algunos ejemplos, la cantidad de rHuPH20 soluble producida por 100 L de cultivo es o es de aproximadamente 1, 2, 3, 4, 5, 10, 15, 20, 30, o 40 gramos o más. En algunos ejemplos, el rendimiento de rHuPH20 soluble después de la purificación puede variar entre o entre aproximadamente 10% a 50% de la cantidad producida antes de la purificación. Por ejemplo, el rendimiento después de la purificación puede ser o es aproximadamente 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% o 50% de la cantidad producida antes de la purificación. Generalmente, la actividad específica de rHuPH20 soluble producida utilizando los métodos en la presente memoria es al menos o aproximadamente de 80000, 100000, 120000, 140000, 160000 o 180000 unidades/mg.

C. Hialuronidasas

5

10

15

20

35

40

45

50

55

60

Las hialuronidasas son una familia de enzimas que degradan el ácido hialurónico (también conocido como hialuronano o hialuronato), un componente esencial de la matriz extracelular y un constituyente principal de la barrera intersticial. Por medio de la catálisis de la hidrólisis de ácido hialurónico, la hialuronidasa reduce la viscosidad de ácido hialurónico, lo que aumenta la permeabilidad del tejido. Como tales, las hialuronidasas se han utilizado, por ejemplo, como un agente de de diseminación o dispersión junto con otros agentes, fármacos y proteínas para mejorar su dispersión y liberación.

1. Estructura y función de la hialuronidasas

Existen tres clases generales de hialuronidasas; hialuronidasa mamíferos, hialuronidasa bacteriana e hialuronidasa de las sanguijuelas, otros parásitos y crustáceos. Las hialuronidasas de tipo mamífero (CE 3.2.1.35) son *endo-\beta-N-acetil*-hexosaminidasas que hidrolizan enlace glicosídico $\beta 1 \rightarrow 4$ del ácido hialurónico a varias longitudes de oligosacáridos tales como tetrasacáridos y hexasacáridos. Tienen actividades hidrolítica y transglicosidasa y pueden degradar ácido hialurónico y sulfatos de condroitina, tales como C4-S y C6-S. Las hialuronidasas de este tipo incluyen, pero no se limitan a, hialuronidasas de vacas (SEQ ID NO: 10), avispa chaqueta amarilla (SEQ ID NOS: 11 y 12), abeja melífera (SEQ ID NO: 13), avispa de cara blanca (SEQ ID NO: 14), avispa de papel (SEQ ID NO: 15), ratón (SEQ ID NOS: 16-18, 29), cerdo (SEQ ID NOS: 19-20), rata (SEQ ID NOS: 21- 23, 228), conejo (SEQ ID NO: 24), oveja (SEQ ID NO: 25), orangután (SEQ ID NO: 26), mono cynomolgus (SEQ ID NO: 27), cobaya (SEQ ID NO: 30) e hialuronidasas humanas.

Hay seis genes de tipo hialuronidasa en el genoma humano: HYAL1, HYAL2, HYAL3, HYAL4, HYALP1 y PH20/SPAM1. HYALP1 es un pseudogen, y no se ha demostrado que HYAL3 (SEQ ID NO: 36) posea actividad enzimática frente a ningún sustrato conocido. HYAL4 (polipéptido precursor mostrado en el SEQ ID NO: 37) es una condroitinasa y exhibe poca actividad frente el ácido hialurónico. HYAL1 (polipéptido precursor mostrado en el SEQ ID NO: 34) es la enzima prototípica activa a pH ácido y PH20 (polipéptido precursor mostrado en el SEQ ID NO: 1) es la enzima prototípica activa a pH neutro. Las hialuronidasas activas a pH ácido, tales como HYAL1 y HYAL2 (polipéptido precursor mostrado en el SEQ ID NO: 35) generalmente carecen de actividad catalítica a pH neutro (es decir, pH 7). Por ejemplo, HYAL1 tiene poca actividad catalítica in vitro por encima de pH 4,5 (Frost et al. (1997) Anal Biochemistry 251:263-269). HYAL2 es una enzima activa a pH ácido con una actividad específica muy baja in vitro. Las enzimas de tipo hialuronidasa también pueden ser caracterizadas por aquellas que generalmente se bloquean en la membrana plasmática a través de un ancla de glicosilfosfatidil inositol tal como HYAL2 humana y PH20 humana (Danilkovitch-Miagkova, et al. (2003) Proc Natl Acad Sci USA. 100(8):4580-5), y aquellas que son generalmente solubles, tales como HYAL1 humana (Frost et al, (1997) Biochem Biophys Res Commun. 236(1):10-5). Por medio de la catálisis de la hidrólisis de ácido hialurónico, un constituyente principal de la barrera intersticial, la hialuronidasa reduce la viscosidad del ácido hialurónico, lo que aumenta la permeabilidad del tejido. También se ha demostrado que muestra actividades anti-cáncerosa y anti-carcinogénica.

La glicosilación de algunas hialuronidasas ligadas a N puede ser muy importante para su actividad y estabilidad catalítica. Si bien la alteración del tipo de glicano que modifica una glicoproteína puede tener afectos drásticos sobre la antigenicidad de una proteína, el plegamiento estructural, la solubilidad y estabilidad, no se considera que muchas

enzimas requieran glicosilación para una actividad óptima de la enzima. Las hialuronidasas son, por lo tanto, únicas en este sentido, ya que la eliminación de la glicosilación ligada a N puede dar como resultado la inactivación casi completa de la actividad hialuronidasa. Para tales hialuronidasas, la presencia de glicanos ligados a N es crítica para generar una enzima activa.

Existen siete sitios de glicosilación ligados a N potenciales en N82, N166, N235, N254, N368, N393, N490 de PH20 humana ilustrada en el SEQ ID NO: 1. Los enlaces disulfuro se forman entre los residuos de cisteína C60 y C351 y entre C224 y C238 para formar el dominio hialuronidasa central. Sin embargo, se requieren cisteínas adicionales en el extremo carboxi terminal para la actividad catalítica de la enzima neutra de manera que los aminoácidos 36 a 464 del SEQ ID NO: 1 contienen el dominio hialuronidasa PH20 humano mínimamente activo. Por lo tanto, no se requiere el sitio de glicosilación ligado a N N490 para la actividad hialuronidasa adecuada.

Oligosacáridos ligados a N se clasifican en varios tipos principales (oligomanosa, complejos, híbridos, sulfatados), todos los cuales tienen (hombre) núcleos de 3-GlcNAc-GlcNAc unidos mediante el nitrógeno amídico de los residuos de Asn que caen dentro de las secuencias -Asn-Xaa-Thr/Ser- (donde Xaa no es Pro). Se ha referido la glicosilación en un sitio -Asn-Xaa-Cys- para la proteína C de la coagulación. En algunos casos, la hialuronidasa puede contener enlaces tanto N-glucosídicos como O-glicosídicos. Por ejemplo, rHuPH20 (según se produce en los métodos descritos en la presente memoria) tiene oligosacáridos ligados a O, así como los oligosacáridos ligados a N.

Los métodos descritos en la presente memoria proporcionan un procedimiento para la producción y purificación de grandes cantidades de una preparación soluble de preparación de hialuronidasa PH20 humana.

2. PH20

5

10

15

45

50

55

60

La PH20 humana (también conocida como proteína de la superficie de espermatozoides PH20), como se señaló anteriormente, es la enzima activa a pH neutro prototípica que es generalmente bloqueada en la membrana plasmática a través de un ancla de glicosilfosfatidil inositol (GPI). Está implicada de forma natural en la adherencia espermatozoide-óvulo y ayuda a la penetración por espermatozoide de la capa de células del cumulus por digestión del ácido hialurónico. El transcrito de ARNm de PH20 se traduce normalmente para generar una proteína precursora de 509 aminoácidos que contiene una secuencia señal de 35 aminoácidos en el extremo N-terminal (posiciones de residuos de aminoácidos 1-35). El polipéptido maduro PH20 es, por lo tanto, un polipéptido de 474 aminoácidos con una secuencia de aminoácidos mostrada en el SEQ ID NO: 2.

La forma soluble de PH20 humana (sHuPH20), rHuPH20, puede ser producida y purificada utilizando los métodos descritos en la presente memoria. La generación de sHuPH20 se describe en las Solicitudes de Patente de los Estados Unidos Núms. 10/795.095, 11/065.716 y 11/238.171 (referidas también en estas solicitudes como sHASEGP o rHuPH20) relacionadas, y en los Ejemplos 1 y 4, a continuación. Las formas solubles se producen mediante la expresión del ácido nucleico que codifica truncamientos C-terminales del polipéptido maduro PH20 que carece de los sitios de anclaje de GPI. La forma soluble de PH20 humana, rHuPH20, se produce y se purifica utilizando los métodos proporcionados en la presente memoria.

3. Usos terapéuticos de las hialuronidasas

Varias formas de hialuronidasas se han preparado y aprobado para uso terapéutico en humanos. Por ejemplo, la preparaciones de hialuronidasa de derivadas de animales incluyen Vitrase® (ISTA Pharmaceuticals), una hialuronidasa testicular ovina purificada y Amphadase® (Amphastar Pharmaceuticals), una hialuronidasa testicular bovina. Hylenex® (Halozyme Therapeutics) es una hialuronidasa humana recombinante producida por células de ovario de hámster chino (CHO) modificadas genéticamente que contienen ácido nucleico que codifica rHuPH20 soluble. Los usos terapéuticos aprobados para la hialuronidasa incluyen el uso como un coadyuvante para aumentar la absorción y la dispersión de otros fármacos inyectados, por hipodermoclisis (administración subcutánea de líquidos), y como un complemento en urografía subcutánea para mejorar la resorción de agentes radiopacos. Además de estas indicaciones, las hialuronidasas, incluyendo sHuPH20, se pueden utilizar como un agente terapéutico o cosmético para el tratamiento de enfermedades y afecciones adicionales.

Como se señaló anteriormente, la hialuronidasa es una sustancia de diseminación o difusión que modifica la permeabilidad de tejido conectivo a través de la hidrólisis del ácido hialurónico, un polisacárido que se encuentra en la sustancia fundamental intercelular del tejido conectivo, y de ciertos tejidos especializados, tales como el cordón umbilical y el humor vítreo. Cuando no está presente factor de dispersión, los materiales inyectados por vía subcutánea, tales como fármacos, proteínas, péptidos y ácidos nucleicos, se diseminan muy lentamente. La inyección simultánea con hialuronidasa, sin embargo, puede causar la diseminación rápida. La velocidad de difusión es proporcional a la cantidad de enzima, y el grado de difusión es proporcional al volumen de la disolución. La absorción y dispersión de fármacos y agentes inyectados se pueden mejorar mediante la adición de 10-1000 unidades de hialuronidasa a la disolución inyectable. En algunos ejemplos, se añaden 150 U de hialuronidasa. Las hialuronidasas tienen múltiples usos, incluyendo y, además de su uso como un agente de diseminación. La

hialuronidasa se utiliza comúnmente, por ejemplo, para bloqueo peribulbar en la anestesia local de la cirugía oftálmica anterior. La presencia de la enzima evita la necesidad de bloques adicionales y acelera el tiempo para la aparición de acinesia (pérdida de movimiento ocular). El bloqueo peribulbar y sub-Tenon son las aplicaciones más comunes de la hialuronidasa para procedimientos oftálmicos. La hialuronidasa también puede promover la acinesia en la cirugía estética, por ejemplo en blefaroplastias y estiramientos faciales. Los usos terapéuticos y cosméticos ilustrativos para la hialuronidasa se describen a continuación.

a. Uso como agente de diseminación

La rHuPH20 soluble producida utilizando los métodos descritos en la presente memoria, se puede utilizar para promover o mejorar los agentes de liberación y las moléculas en cualquiera de una variedad de tejidos de mamíferos *in vivo*. Se puede utilizar para facilitar la difusión y, por lo tanto, promover la liberación, de agentes farmacológicos de molécula pequeña, así como agentes farmacológicos de molécula más grandes, tales como proteínas, ácidos nucleicos y ácidos ribonucleicos, y composiciones macromoleculares que puede contener una combinación de componentes que incluye, pero no se limita a, ácidos nucleicos, proteínas, carbohidratos, lípidos, moléculas y fármacos basados en lípidos. Por ejemplo, las moléculas y los complejos macromoleculares que varían de aproximadamente 10 nm a aproximadamente 500 nm de diámetro, pueden exhibir mejoras drásticas en la liberación a través de espacios intersticiales cuando el espacio intersticial ha sido previamente, o está coincidentemente, expuesto a la hialuronidasa (véanse por ejemplo, las Solicitudes de Patente de los Estados Unidos Núms. 10/795.095, 11/065.716 y 11/238.171).

Los ejemplos de los agentes y moléculas farmacéuticos, terapéuticos y cosméticos que se pueden administrar con rHuPH20 incluyen, pero no se limitan a, anestésicos; antimetabolitos, antineoplásicos y otros agentes anticancerosos; antivirales; antiinfecciosos, incluyendo antibacterianos y otros antibióticos, antifúngicos y otros antiinfecciosos; agentes inmunomoduladores; antiinflamatorios esteroideos y no esteroideos; beta bloqueadores; simpaticomiméticos; ducosanoides, prostaglandinas y análogos de prostaglandinas; mióticos, colinérgicos y anticolinesterasa; anti-alergénicos y descongestivos; agentes hormonales; factores de crecimiento; inmunosupresores; vacunas y toxoides; sueros inmunológicos; anticuerpos; y cualquier combinación de los mismos. En un ejemplo, se administra rHuPH20 con una catepsina, tales como la catepsina L.

b. Uso en hipodermoclisis

25

30

35

40

60

La hipodermoclisis, la infusión de líquidos y electrolitos en la hipodermis de la piel, es una técnica de hidratación útil y simple adecuada para pacientes adultos ligeramente a moderadamente deshidratados, especialmente ancianos. Aunque se considera segura y efectiva, el efecto adverso más frecuente es un edema subcutáneo leve que puede ser tratado por medio de un masaje local o diuréticos sistémicos. Se pueden administrar aproximadamente 3 L en un período de 24 horas en dos sitios separados. Los sitios de infusión comunes incluyen el pecho, el abdomen, los muslos y los brazos. Las disoluciones utilizadas en la hipodermoclisis incluyen, por ejemplo, solución salina normal, solución salina semi-normal, glucosa con solución salina y glucosa al 5%. El cloruro de potasio también se puede añadir a la disolución. La adición de hialuronidasa a la disolución puede mejorar la absorción de líquido y aumentar la tasa global de administración.

c. Uso en vitrectomía y trastornos y afecciones oftálmicos

- La hialuronidasa se puede utilizar para minimizar el desprendimiento o desgarro de la retina durante la vitrectomía. Esto podría causar, por ejemplo, el desacoplamiento o "desinserción" del cuerpo vítreo de la retina, antes de la eliminación del cuerpo vítreo. Tal desinserción o desacoplamiento del cuerpo vítreo pueden minimizar la probabilidad de que se produzca más desgarro o desprendimiento de la retina a medida que se retira el cuerpo vítreo.
- La hialuronidasa se puede utilizar para diversas aplicaciones oftálmicas, incluida la aplicación como complemento de la vitrectomía descrita en la Patente de los Estados Unidos Núm. 5.292.509. El uso de una hialuronidasa altamente purificada, tal como rHuPH20 soluble producida y purificada mediante los métodos descritos en la presente memoria, es preferible para procedimientos intraoculares para minimizar la inmunogenicidad y la toxicidad. En algunos ejemplos, se puede utilizar una hialuronidasa pegilada para prolongar su residencia en el vítreo y prevenir la captación localizada.

Las hialuronidasas pueden ser utilizadas para tratar y/o prevenir trastornos oftálmicos, por ejemplo, la prevención de la neovascularización y el aumento de la tasa de aclaramiento del humor vítreo de materiales tóxicos para la retina. La hialuronidasa puede ser administrada en una cantidad eficaz para licuar el humor vítreo del ojo sin causar daño tóxico al ojo. La licuefacción del humor vítreo aumenta la tasa de cambio de líquido de la cámara vítrea. Este aumento del intercambio elimina los materiales contaminantes cuya presencia puede causar daños oftalmológicos y de la retina.

La hialuronidasa también se puede utilizar para reducir la presión postoperatoria. El ácido hialurónico se ha utilizado

en el ojo principalmente como un espaciador durante los procedimientos quirúrgicos de cataratas y de la lente intraocular. También se utiliza en otros procedimientos quirúrgicos oculares tales como glaucoma, cirugía del humor vítreo y la retina y en el trasplante de córnea. Un efecto secundario común que ocurre en el postoperatorio de los pacientes con cataratas es un aumento de la presión intraocular temprano significativo, y ocasionalmente prolongado. Tal afección es a veces grave, especialmente en pacientes con cambios de disco óptico glaucomatoso. La hialuronidasa puede ser co-administrada con ácido hialurónico al ojo antes de la cirugía para reducir la presión postoperatoria en el ojo. La hialuronidasa se administra en una cantidad eficaz para reducir la presión intraocular a los niveles pre-operatorios al romper el ácido hialurónico sin disminuir su eficacia durante la cirugía y no causar efectos secundarios en el paciente (Patente de los Estados Unidos Núm. 6.745.776).

10

15

La hialuronidasa también se puede administrar a pacientes con glaucoma para eliminar los glicosaminoglicanos de la malla trabecular y reducir la presión intraocular, y se puede aplicar al humor vítreo para promover la resolución de hemorragias vítreas (es decir, extravasación de sangre al humor vítreo), que se puede producir en conexión con afecciones tales como la retinopatía diabética, la neovascularización retiniana, la oclusión de la vena retiniana, el desprendimiento posterior del humor vítreo, los desgarros retinianos, los traumas oculares y similares. La presencia de hemorragias vítreas, que suelen ser lentas de resolver, puede retrasar, complicar o evitar procedimientos que requieren que la retina sea visualizada a través del humor vítreo para el diagnóstico y/o para los procedimientos de tratamiento, como la fotocoagulación con láser y similares, que a menudo son los tratamientos primarios para afecciones tales como la retinopatía diabética proliferativa.

20

25

d. Uso en terapia génica

La eficacia de la mayoría de los vehículos de liberación génica *in vivo* no se corresponde con la eficacia encontrada observada *in vitro*. Los glicosaminoglicanos pueden obstaculizar la transferencia y difusión de ADN y vectores virales a muchos tipos de células. Los niveles de semejante material de matriz extracelular pueden dificultar considerablemente el proceso. La administración de hialuronidasa puede abrir canales en la matriz extracelular, mejorando así la liberación de la terapia génica. Por ejemplo, la hialuronidasa se puede administrar con colagenasa para facilitar la transducción de ADN *in vivo* (Dubensky et al. (1984) Proc Natl Acad Sci USA 81(23): 7529-33). La hialuronidasa también puede mejorar la terapia génica utilizando virus adeno-asociados (Favre et al., (2000) Gene Therapy 7(16):1417-20). Los canales abiertos después de la administración de hialuronidasa son de un tamaño que normalmente mejora la difusión de moléculas más pequeñas tales como retrovirus, adenovirus, virus adeno-asociados y complejos de ADN (así como otros agentes terapéuticos y farmacológicos de interés). Los poros no son tan grandes, sin embargo, como para promover la dislocación y el movimiento de las células.

30

35

En algunos ejemplos, los virus pueden modificarse por ingeniería genética para expresar hialuronidasa para facilitar su replicación y propagación dentro de un tejido diana. El tejido diana puede ser, por ejemplo, un tejido canceroso por medio del cual el virus es capaz de replicar selectivamente dentro del tumor. El virus también puede ser un virus no lítico en donde el virus replica selectivamente bajo un promotor específico de tejido. A medida que los virus replican, la co-expresión de hialuronidasa con genes virales puede facilitar la propagación del virus *in vivo*.

40

e. Usos cosméticos

45

Las hialuronidasas pueden ser administradas para eliminar los glicosaminoglicanos implicados en la acumulación de la celulitis y para promover el flujo linfático. En algunos ejemplos, se utilizan hialuronidasas humanas, como por ejemplo, rHuPH20 soluble, para el tratamiento de la celulitis. La hialuronidasa se puede administrada a través de inyecciones subcutáneas repetidas, a través de administración transdérmica en forma de pomadas o cremas o a través del uso de formulaciones de liberación lenta inyectables para promover la degradación continua de glicosaminoglicanos y evitar su regreso.

50

55

La hialuronidasa también se puede utilizar para tratar afecciones tales como el edema "piel de cerdo" o el edema "piel de naranja". Las hialuronidasas pueden efectuar la despolimerización de las largas cadenas de mucopolisacáridos que se pueden acumular en la dermis y que son responsables de la retención de agua unida y de la desaceleración, por compresión capilar, de la difusión de líquidos orgánicos, que eliminan los desechos metabólicos. Dicha retención de agua y desechos asociados con la sobrecarga de grasa de los lipocitos, constituye el clásico edema "piel de cerdo" o edema "piel de naranja". La despolimerización puede cortar las cadenas largas de mucopolisacáridos en cadenas más cortas, dando como resultado la eliminación del agua unida y los desechos y la restauración de la circulación venosa y linfática, culminando con la desaparición del edema local.

60

f. Uso en el trasplante de órganos

El contenido de ácido hialurónico en un órgano puede aumentar con la inflamación. Se ha observado un aumento de la concentración de ácido hialurónico en el tejido de diferentes órganos caracterizados por lesión inmunológica inflamatoria tal como alveolitis (Nettelbladt et al. (1991) Am. Rev. Resp. Dis. 139: 759-762) e infarto de miocardio (Waldenstrom et al. (1991) J. Clin. Invest. 88(5): 1622-28). Otros ejemplos incluyen el rechazo del aloinjerto después

de un transplante renal (Ha'llgren et al. (1990) J. Exp. Med. 171: 2063-2076; Wells et al. (1990) Transplantation 50: 240-243), intestino delgado (Wallander et al. (1993) Transplant. Int. 6: 133-137) o cardíaco (Haellgren et al. (1990) J Clin Invest 185: 668-673); o una inflamación del miocardio de origen viral (Waldenstrom et al. (1993) Eur. J. Clin. Invest. 23: 277-282). La aparición de edemas intersticiales en relación con el injerto de un órgano constituye un grave problema en el campo de la cirugía de trasplantes. Los injertos con edemas intersticiales se pueden hinchar hasta un grado tal que se puede perder la función temporalmente. En algunos casos, la inflamación puede causar la alteración del riñón, dando como resultado una hemorragia masiva. Las hialuronidasas se pueden utilizar para degradar los glicosaminoglicanos acumulados en un trasplante de órgano. La eliminación de dichos glicosaminoglicanos promueve la eliminación de agua del injerto y por lo tanto mejora la función del órgano.

q. Uso en el tratamiento del cáncer

10

15

20

25

30

35

40

45

50

55

60

La hialuronidasa tiene efectos anticancerígenos directos. La hialuronidasa impide el crecimiento de tumores trasplantados en ratones (De Maeyer et al., (1992) Int. J. Cancer 51: 657-660) e inhibe la formación de tumores tras la exposición a agentes carcinógenos (Pawlowski et al. (1979) Int. J. Cancer 23: 105-109). La hialuronidasa es eficaz como único agente terapéutico en el tratamiento de cáncer de cerebro (gliomas) (documento WO 198802261). Además de estos efectos, las hialuronidasas también se pueden utilizar para mejorar la penetración de agentes quimioterapéuticos en tumores sólidos. Se pueden inyectar por vía intratumoral con agentes anticancerígenos o intravenosa para los cánceres diseminados o los tumores de difícil acceso. El agente anticanceroso puede ser un agente quimioterápico, un anticuerpo, un péptido, o un vector de terapia génica, virus o ADN. Además, la hialuronidasa se puede utilizar para reclutar células tumorales de la reserva en ciclo para la sensibilización en los tumores previamente refractarios a quimioterapia que han adquirido resistencia a múltiples fármacos (St Croix et al., (1998) Cancer Lett Septiembre 131(1): 35-44). Las hialuronidasas, tales como, por ejemplo la rHuPH20 soluble, también pueden mejorar la liberación de productos biológicos tales como anticuerpos monoclonales, citocinas y otros fármacos en tumores que acumulan glicosaminoglicanos.

Las hialuronidasas también se pueden utilizar para aumentar la sensibilidad de los tumores que son resistentes a la quimioterapia convencional. Por ejemplo, la hialuronidasa, tal como rHuPH20 soluble, se puede administrar a un paciente que tiene un tumor asociado con un defecto de HYAL1 en una cantidad eficaz para aumentar la difusión alrededor del sitio del tumor (p. ej., para facilitar la circulación y/o concentraciones de agentes quimioterápicos en y alrededor del sitio del tumor), inhibir la motilidad de las células tumorales, por ejemplo por degradación del ácido hialurónico, y/o para disminuir el umbral de apoptosis de las células tumorales. Esto puede llevar a la célula o las células tumorales a un estado de anoikis, que hace que a la célula tumoral más susceptible a la acción de agentes quimioterapéuticos. La administración de hialuronidasa puede inducir la capacidad de respuesta de los tumores de páncreas, estómago, colon, ovarios y mama anteriormente resistentes a la quimioterapia (Baumgartner et al. (1988) Reg. Cancer Treat. 1: 55-58; Zanker et al. (1986) Proc. Amer. Assoc. Cancer Res. 27: 390).

En un ejemplo, se utilizan hialuronidasas en el tratamiento de cánceres metastásicos y no metastásicos, incluyendo aquellos que tienen una menor actividad hialuronidasa endógena con respecto a las células no cancerosas. Las hialuronidasas se pueden utilizar como un agente quimioterapéutico solo o combinado con otros agentes quimioterapéuticos. Los cánceres ilustrativos incluyen, pero no se limitan a, carcinoma de pulmón de células pequeñas, carcinoma de pulmón de células escamosas, y cánceres de mama, ovarios, cabeza y cuello, o cualquier otro cáncer asociado con niveles deprimidos de actividad hialuronidasa o disminución del catabolismo de ácido hialurónico.

h. Uso en el tratamiento de la acumulación de glicosaminoglicanos en el cerebro

Los niveles de ácido hialurónico son elevados en una serie de afecciones patológicas cerebroespinales. Los niveles de ácido hialurónico cerebroespinal son normalmente menores de 200 µg/L en adultos (Laurent et al. (1996) Acta Neurol Scand Septiembre 94(3): 194-206), pero se pueden elevar a niveles de más de 8000 µg/L en enfermedades tales como meningitis, estenosis espinal, lesión en la cabeza y infarto cerebral. Las hialuronidasas, tales como, por ejemplo, la rHuPH20 soluble, se pueden utilizar para degradar niveles críticamente elevados de sustrato.

La falta de vasos linfáticos eficaces en el cerebro también puede conducir a un edema que amenace la vida tras un traumatismo craneal. La acumulación de ácido hialurónico es el resultado de un aumento de la síntesis por las ácido hialurónico sintasas y una disminución de la degradación. La acumulación de ácido hialurónico puede servir inicialmente para el propósito beneficioso de aumentar el contenido de agua en el tejido dañado para facilitar la extravasación de leucocitos, pero la acumulación continua puede ser letal. La administración de hialuronidasa, por ejemplo por vía intratecal o intravenosa, a un paciente que padece traumatismo craneal puede servir para eliminar la acumulación de ácido hialurónico en el tejido y el agua asociada con él.

Las hialuronidasas también se pueden utilizar en el tratamiento del edema asociado con tumores cerebrales, particularmente el asociado con glioblastoma multiforme. El edema asociado con tumores cerebrales resulta de la acumulación de ácido hialurónico en las porciones no cancerosas del cerebro adyacente al tumor. La administración

de hialuronidasa en los sitios de acumulación de ácido hialurónico (p. ej, por medio de inyección intravenosa o a través de un shunt) puede aliviar el edema asociado con tales tumores malignos por degradación del exceso de ácido hialurónico en estos sitios.

5 i. Uso en el tratamiento de la acumulación de glicosaminoglicanos en la enfermedad cardiovascular

La hialuronidasa se puede utilizar en el tratamiento de alguna enfermedad cardiovascular. La administración de hialuronidasa en modelos animales después de infarto de miocardio experimental puede reducir el tamaño del infarto (Maclean, et al (1976), Science 194 (4261): 199-200). Un mecanismo propuesto por el cual se puede producir esto es mediante la reducción de la acumulación de ácido hialurónico que se produce después de la reperfusión de la isquemia. Se cree que la reducción del tamaño del infarto se produce a partir del drenaje linfático y el aumento de la oxigenación del tejido y la reducción del contenido de agua del miocardio.

Las hialuronidasas también se pueden utilizar para limitar las placas coronarias de la arterioesclerosis. Tales placas acumulan glicosaminoglicanos y median la adherencia celular de macrófagos y células espumosas (Kolodgie et al. (2002) Arterioscler Thromb Vasc Biol. 22 (10): 1642-8).

j. Uso en la enfermedad pulmonar

Los niveles de ácido hialurónico en lavados broncoalveolares (BAL) de individuos normales están generalmente por debajo de 15 ng/mL. Sin embargo, los niveles de ácido hialurónico en el BAL aumentan drásticamente en condiciones de dificultad respiratoria (Bjermer et al. (1987) Br Med J (Clin Res Ed) 295 (6602): 803-6). El aumento del ácido hialurónico en el pulmón puede impedir la difusión de oxígeno y el intercambio gaseoso, así como la activación de respuestas de neutrófilos y macrófagos. Las preparaciones purificadas de rHuPH20 soluble, tales como las producidas utilizando los métodos proporcionados en la presente memoria, pueden ser liberadas por medio de liberación pulmonar o intravenosa a los pacientes que se presentan con tales afecciones para reducir los niveles de hialuronano. Las hialuronidasas también se pueden administrar a pacientes que padecen otras complicaciones pulmonares que están asociadas con glicosaminoglicanos elevados o para aumentar la liberación de otras moléculas co-liberadas en el pulmón.

k. Otros usos

10

15

30

35

40

45

50

En otros ejemplos de su uso terapéutico, la hialuronidasa se puede utilizar para fines tales como un antídoto para la necrosis local procedente de inyección paravenosa de sustancias necróticas como alcaloides de Vinca (Few et al. (1987) Amer. J. Matern. Child Nurs. 12, 23-26), el tratamiento de quistes ganglionares (Paul et al. (1997) J Hand Surg. 22(2): 219-21) y el tratamiento de la necrosis del tejido debida a insuficiencia venosa (Elder et al. (1980) Lancet 648-649). Las hialuronidasas también se pueden utilizar para tratar quistes ganglionares (también conocidos como quistes de muñeca, quiste Bible, o quiste dorsal del tendón), que son la masa de tejido blando más común de la mano y son sacos llenos de líquido que se pueden sentir por debajo de la piel.

Las hialuronidasas se pueden utilizar en el tratamiento de la lesión de la médula espinal mediante la degradación de los proteoglicanos de sulfato de condroitina (CSPG). Después de una lesión de la médula espinal, los astrocitos producen cicatrices gliales que contienen CSPG. Los CSPG desempeñan un papel crucial en la inhibición del crecimiento axonal. Además, se ha demostrado que la expresión de CSPG aumenta después de una lesión del sistema nervioso central (SNC). Las hialuronidasas se pueden utilizar también para el tratamiento de discos herniados en un proceso conocido como quimionucleolisis. La condroitinasa ABC, una enzima que escinde sustratos similares a los de la hialuronidasa, puede inducir la reducción de la presión intradiscal en la columna vertebral lumbar. Hay tres tipos de lesiones del disco. Un disco sobresaliente es uno que está intacto pero abultado. En un disco extruido, la envoltura fibrosa ha roto y el NP ha rezumado, pero todavía está conectado al disco. En un disco secuestrado, un fragmento de NP se ha desprendido del disco y está libre en el canal espinal. la quimionucleólisis es típicamente eficaz en discos sobresalientes y extruidos, pero no en lesiones de disco secuestrado.

D. Células que expresan rHuPH20 soluble

Los métodos descritos en la presente memoria se pueden utilizar para generar y purificar grandes cantidades de rHuPH20 soluble. La rHuPH20 soluble se expresa en células CHO que se cultivan en cultivo celular a gran escala. La expresión se lleva a cabo utilizando un vector de expresión que contiene la secuencia de nucleótidos que codifica la secuencia de aminoácidos mostrada en el SEQ ID NO: 3 (correspondiente a los aminoácidos 1 a 482 del polipéptido PH20 humano precursor mostrado en el SEQ ID NO: 1). Después de la traducción, la secuencia señal de 35 aminoácidos se escinde y la rHuPH20 soluble se secreta al medio. El vector también contiene un IRES aguas abajo de la región codificante de rHuPH20 soluble, un gen de dihidrofolato reductasa de ratón y la secuencia de SV40 pA. El vector de expresión se introdujo en células DG44, que deficientes en dihidrofolato reductasa (dhfr-) que han sido adaptadas para crecer en cultivo en suspensión en un medio libre de producto animal definido químicamente. Las células que expresan rHuPH20 solubles resultantes incluyen aquellas descritas en los Ejemplos

1 y 4, más abajo, e incluyen las células denominadas células 3D35M, 2B2, 3E10B, 1B3, 5C1, 1G11 y 2G10.

Se pueden utilizar otras células para producir hialuronidasas similares a rHuPH20. Generalmente, se utilizan sistemas de expresión de proteínas adecuados para la introducción de residuos de glicosilación unidos a N críticos en hialuronidasas. Tales células incluyen, por ejemplo, células de levadura, células fúngicas, células vegetales, células de insectos y células de mamíferos. Se encuentran disponibles muchas líneas celulares para la expresión en mamífero incluyendo células de ratón, rata, humano, mono, pollo y hámster. Las líneas celulares ilustrativas incluyen, pero no se limitan a líneas celulares CHO (incluyendo células DG44 y células CHO-S), Balb/3T3, HeLe, MT2, NS0 de ratón (no segregante) y otras líneas celulares de mieloma, líneas celulares de hibridoma y heterohibridoma, linfocitos, fibroblastos, células SP2/0, COS, NIH3T3, HEK293, 293S, 2B8, y HKB. También se encuentran disponibles líneas celulares adaptadas a medios libres de suero, lo que facilita la purificación

de las proteínas secretadas a partir de los medios de cultivo celular.

a. Células 3D35M

15

20

25

30

35

40

45

50

55

60

10

Son ilustrativas de las células que expresan rHuPH20 soluble las células 3D35M, descritas en el Ejemplo 1, a continuación, y en las Publicaciones de Patente de los Estados Unidos 20040268425, 20050260186y 20060104968. Las células 3D35M son células CHO DG44 deficientes en dihidrofolato reductasa (dhfr) que expresan la rHuPH20 soluble. Las células se transformaron con un vector de expresión HZ24 que tenía la secuencia de nucleótidos mostrada en el SEQ ID NO: 50. Este vector contiene un promotor de CMV que dirige la expresión de ácido nucleico que codifica un polipéptido de 482 aminoácidos (SEQ ID NO: 3) que corresponde a las posiciones de aminoácidos 1 a 482 de PH20 humana completa mostrada en el SEQ ID NO: 1. Esto incluye una secuencia señal N-terminal de 35 aminoácidos. El vector también contiene un sitio interno de entrada al ribosoma (IRES) después de la secuencia codificante de PH20, seguido de un gen de dihidrofolato reductasa de ratón y la secuencia de poliadenilación de SV40. Después de la traducción, el polipéptido de 482 aminoácidos se procesa para eliminar la secuencia señal de 35 aminoácidos, lo que da como resultado la secreción de rHuPH20 soluble.

La caracterización de las células 3D35M demostró que la región de ácido nucleico que codifica la rHuPH20 soluble está presente en las células a un número de copias de aproximadamente 318 copias/célula. La rHuPH20 soluble producida a partir de las células 3D35M por los métodos de la presente invención es una mezcla de especies que puede incluir uno o más de los polipéptidos que tienen las secuencias mostradas en los SEQ ID NO: 4-9. En una caracterización ilustrativa de estas especies (descritas en el Ejemplo 11), la especie mostrada en el SEQ ID NO: 4 estuvo presente a una abundancia de 0,2%, la especie mostrada en el SEQ ID NO: 5 (correspondiente a los aminoácidos 1 a 446 del SEQ ID NO: 4) estuvo presente a una abundancia de 18,4%, la especie mostrada en el SEQ ID NO: 6 (correspondiente a los aminoácidos 1 a 445 del SEQ ID NO: 4) estuvo presente a una abundancia de 11,8%, la especie mostrada en el SEQ ID NO: 7 (correspondiente a los aminoácidos 1 a 444 del SEQ ID NO: 4) estuvo presente a una abundancia de 56,1%; y la especies mostrada en el SEQ ID NO: 8 (correspondiente a los aminoácidos 1 a 443 del SEQ ID NO: 4) estuvo presente a una abundancia de 13,6%. Tal heterogeneidad en la preparación rHuPH20 soluble es probablemente un resultado de la escisión C-terminal por las peptidasas presentes durante los métodos de producción y purificación proporcionados en la presente memoria.

Las células 3D35M se pueden cultivar en medio de cultivo celular con o sin metotrexato. También se pueden añadir suplementos adicionales, tales como glutamina. En algunos ejemplos, las células se cultivan en medio de cultivo celular que contiene, por ejemplo, metotrexato 50 nM, 100 nM, 500 nM, 1 µM, o 2 µM y carente de hipoxantina y timidina. En un ejemplo, las células 3D35M se cultivan a 37°C en CO₂ al 5-7% en medio de cultivo (tal como medio CD CHO, Invitrogen) sin hipoxantina no timidina y con metotrexato 100 nM y glutamina o un sustituto de glutamina, tal como L-Alanil-L-Glutamina, una forma dipeptídica estabilizada de L-glutamina. Se pueden utilizar otros medios de cultivo celular apropiados para las células CHO para el cultivo de células 3D35M incluyendo, pero no limitados a, medio de Eagle modificado por Dulbecco (DMEM), medio esencial mínimo de Eagle (EMEM), medio de Eagle modificado de Iscove (IMEM), F12 y RPMI. Las células 3D35M cultivadas bajo tales condiciones en matraces oscilante pueden producir más de 1000 unidades/mL de actividad hialuronidasa. Cuando se cultivan en un biorreactor, tal como se describe en el Ejemplo 3, a continuación, las células 3D35M pueden producir rHuPH20 soluble con actividad enzimática superior a 2000 unidades/mL.

b. Células 2B2

Los ejemplos de las células que expresan rHuPH20 soluble para la producción de rHuPH20 en los métodos proporcionados en la presente memoria se describen en el Ejemplo 4 y se denominan células 2B2. Las células 2B2 se generaron mediante la adaptación de células 3D35M a niveles más altos de metotrexato (es decir 20 µM) y la selección de clones que crecían en la concentración de metotrexato más alta. Esta adaptación aumentó la actividad hialuronidasa producida por las células. Las células DG44 son deficientes en dihidrofolato reductasa (dhfr-) y, por lo tanto, no pueden elaborar nucleósidos. El vector de expresión presente en las células 3D35M y 2B2 contiene, además del gen H20, la secuencia codificante para dihidrofolato reductasa de ratón. El metotrexato es un fuerte inhibidor competitivo de la dihidrofolato reductasa. Por lo tanto, mediante el aumento de la concentración de

metotrexato en el medio de cultivo, las células que expresan hialuronidasa se ven obligadas a producir más dihidrofolato reductasa de ratón para seguir siendo viables. Esto se puede efectuar, por ejemplo, mediante amplificación de genes o reordenamiento del ADN integrado a una disposición más estable y productiva. Por lo tanto, forzando un aumento en la producción de dihidrofolato reductasa de ratón también se puede producir un aumento en la producción de sHuPH20. Una comparación de la actividad enzimática de la rHuPH20 soluble producida por las células 2B2 y las células 3D35M demostró que la actividad era típicamente entre 80% y 100% más alta en las células 2B2 (véase, p. ej. el Ejemplo 5, a continuación) en comparación con las células 3D35M.

Las células 2B2 células fueron seleccionados entre los clones celulares que fueron aislados después de la selección con metotrexato 20 μM como la línea celular que producía rHuPH20 soluble que tenía una mayor actividad enzimática (véase, p. ej., el Ejemplo 4). Cuando se caracterizó, se observó que la región de ácido nucleico que codificaba rHuPH20 soluble estaba presente en las células 2B2 en un número de copias de aproximadamente 206 copias/célula. El análisis de transferencia Southern de ADN genómico de células 2B2 digerido con Spe I-, Xba I y BamH I/Hind III utilizando una sonda específica para la región de ácido nucleico que codificaba rHuPH20 soluble reveló el siguiente perfil de digestión de restricción: una banda principal de hibridación de ~ 7,7 kb y cuatro bandas de hibridación menores (~13,9, ~6,6, ~5,7 y ~4,6 kb) con ADN digerido con Spe I; una banda principal de hibridación de ~5,0 kb y dos bandas de hibridación menores (~13,9 y ~6,5 kb) con ADN digerido con Xba I; y una banda de hibridación única de ~1,4 kb observada utilizando ADN de 2B2 digerido con BamH I/Hind III.

Las células 2B2 células se pueden cultivar en medio de cultivo celular con o sin metotrexato. También se pueden añadir otros suplementos, tales como glutamina, insulina y extracto de levadura. En algunos ejemplos, las células se hacen crecer en medio de cultivo celular que contiene, por ejemplo, metotrexato 50 nM, 100 nM, 500 nM, 1 μM, 2 μM, 5 μM, 10 μM, 20 μM o más y carente de hipoxantina y timidina. En un ejemplo, las células 2B2 se cultivan a 37°C en CO₂ al 5-7% en medio de cultivo (tal como Medio CD CHO, Invitrogen) sin hipoxantina ni timidina y con metotrexato 20 mM y glutamina o L-alanil-L-glutamina, una forma dipeptídica estabilizada de L-glutamina. Se pueden utilizar otros medios de cultivo celular apropiados para cultivar las células CHO para cultivar las 2B2 células, incluyendo, pero no limitados a, medio de Eagle modificado por Dulbecco (DMEM), medio esencial mínimo de Eagle (EMEM), medio de Eagle modificado de Iscove (IMEM), F12 y RPMI. Las células 2B2 cultivadas bajo tales condiciones en matraces oscilante pueden producir más de 3000 unidades/mL de actividad hialuronidasa. Cuando se cultivan en un biorreactor, tal como se describe en el Ejemplo 8, a continuación, las células 2B2 pueden producir rHuPH20 soluble que tiene actividad enzimática de más de 17.000 unidades/mL de actividad hialuronidasa.

La rHuPH20 soluble producida a partir de células 2B2 por los métodos de la presente invención es una mezcla de especies de polipéptidos que tienen las secuencias mostradas en los SEQ ID NOS: 4-9. En una caracterización ilustrativa el producto de la rHuPH20 soluble producida por las células 2B2 (descrito en el Ejemplo 11), la especie mostrada en el SEQ ID NO: 4 estuvo presente en una abundancia de 1,9%, la especie mostrada en el SEQ ID NO: 5 (correspondiente a los aminoácidos 1 a 446 del SEQ ID NO: 4) estuvo presente en una abundancia de 46,7%, la especie mostrada en el SEQ ID NO: 6 (correspondiente a los aminoácidos 1 a 445 de SEQ ID NO: 4) estuvo presente en una abundancia de 16,7%, la especie mostrada en el SEQ ID NO: 7 (correspondiente a los aminoácidos 1 a 444 del SEQ ID NO: 4) estuvo presente en una abundancia de 27,8%; y la especie mostrada en el SEQ ID NO: 8 (correspondiente a los aminoácidos 1 a 443 del SEQ ID NO: 4) estuvo presente en una abundancia de 6,9%. Como se ha señalado para la rHuPH20 soluble producida a partir de células 3D35M, la heterogeneidad en la preparación de rHuPH20 soluble de células 2B2 es probablemente resultado de la escisión C-terminal por peptidasas presentes durante los métodos de producción y purificación proporcionados en la presente memoria.

E. expansión del cultivo celular

10

15

35

40

45

50

55

60

Los métodos descritos en la presente memoria emplean biorreactores para hacer crecer grandes volúmenes de cultivo celular para producir grandes cantidades de rHuPH20 soluble. Como se describe en detalle más adelante, estos métodos incluyen una fase de expansión celular, una fase de producción de proteínas, una fase de concentración de proteína y cambio de tampón, y una fase de purificación. Las células que expresan rHuPH20 solubles, tales como células 2B2, se expanden inicialmente a partir de un inóculo original, tal como una alícuota de células de un banco de células de trabajo (WCB) o banco de células maestro (MCB), a un volumen más grande antes del cultivo en el biorreactor para la fase de producción. El volumen de cultivo final en la fase de expansión es directamente proporcional al volumen del biorreactor utilizado en la siguiente fase de producción. Típicamente, se inocula un biorreactor más grande utilizando un volumen de cultivo final de la fase de expansión más grande que es un biorreactor más pequeño.

Las células que expresan rHuPH20 soluble se expanden a través de una serie de cultivos, incrementando cada uno en volumen con respecto a la anterior, y utilizándose cada uno como el inóculo para el cultivo posterior. Los ejemplos de tales células son las células 2B2. El inóculo original es típicamente uno en el que la pureza y la identidad de las células y el número de células están definidos. Estas células se pueden almacenar congeladas, tal como a -20°C, -70°C o -80°C, o se pueden mantener en medios líquidos, por ejemplo, a 4°C, o mantener en cultivo, por ejemplo, a 37°C. En algunos casos, el inóculo original es una alícuota de un banco de células maestro o un banco de células de trabajo que se ha almacenado congelado. En tales casos, el inóculo se descongela, por ejemplo

en un baño de agua a 37°C. El inóculo celular original se centrifuga típicamente y las células se resuspenden en un medio de cultivo celular apropiado. Por ejemplo, las células 2B2 se pueden resuspender, y posteriormente, cultivar en medios basales, tales como medios CD CHO (Invitrogen), o medios CD CGO AGT™ en polvo reconstituidos (Invitrogen), con un suplemento de glutamina o L-alanil-L- glutamina 8 mM y metotrexato 20 mM. En otro ejemplo, las células pueden ser cultivadas en medios basales con un suplemento de glutamina o L-alanil-L-glutamina 8 mM y metotrexato 100 mM. También se puede utilizar cualquier otro medio de cultivo celular adecuado para expandir las células que expresan hialuronidasa. Por ejemplo, se pueden cultivar las células en medio de Eagle modificado por Dulbecco (DMEM), medio esencial mínimo de Eagle (EMEM), medio de Eagle modificado de Iscove (IMEM), F12, RPMI, u otros medios químicamente definidos o indefinidos, con o sin suplementos adicionales. Típicamente, las células se hacen crecer en medio libre de suero, pero también se pueden cultivar en medios que contienen suero. Un experto en la técnica podría preparar medios de cultivo celular utilizando otros medios de cultivo celular en los que se pueden añadir diversos nutrientes como suplemento para elaborar medios de cultivo celular en los que se cultivan las células que expresan rHuPH20 soluble.

El inóculo de las células se añade al primero de una serie de volúmenes crecientes de medio de cultivo celular, expandiendo así el cultivo celular. Después de la inoculación inicial, las células se expanden en un incubador humidificado o biorreactor a una temperatura apropiada con una cantidad apropiada de CO₂. Típicamente, la cantidad de CO₂ se encuentra entre 4% y 9%, típicamente entre 6,0% y 8,0%, tal como 7,0% y la temperatura se encuentra entre 35°C y 39°C, típicamente entre 36°C y 38°C, tal como 37°C. Por ejemplo, las células 2B2 y 3D35M se pueden cultivar en un incubador humidificado a 37°C con CO₂ al 7%. El cultivo puede ser agitado, por ejemplo a 90-130 rpm, durante este proceso. Cuando las células alcanzan la densidad deseada, tal como, por ejemplo, más de 1,0 × 10⁶ células/mL (p. ej., entre 1,5 × 10⁶ células/mL y 2,5 × 10⁶ células/mL), el cultivo celular se utiliza para inocular un volumen más grande de medios de cultivo celular frescos. Por ejemplo, las células pueden ser inoculadas en el siguiente cultivo a una densidad de 4 × 10⁴ a 4 × 10⁶ células/mL, típicamente de 2 × 10⁵ a 6 × 10⁵ células/mL, tal como 4 × 10⁵ células/mL. El proceso se repite hasta que las células se han ampliado hasta el volumen y la densidad celular deseados para la siembra, por ejemplo, de 4 × 10⁴ a 4 × 10⁶ células/mL en el biorreactor

En un ejemplo, las células que expresan rHuPH20 soluble, tales como las células 2B2, se añaden inicialmente a aproximadamente 20 mL de medio de cultivo celular fresco en un matraz oscilante de 125 mL, dando como resultado un volumen de cultivo de 20-30 mL, típicamente 25 mL. Después de la incubación a 37°C, CO2 al 7% y expansión de las células a una densidad de más de 1,5 × 10⁶ células/mL, se añade medio fresco al matraz para expandir el cultivo celular a 40 mL. Las células se incuban de nuevo hasta que se alcanza una densidad de más de 1,5 × 10⁶ células/mL, después de lo cual se añade todo el cultivo celular (aproximadamente 40 mL) a medios fresco hasta hacer 100 mL de volumen de cultivo en un matraz de agitación de 125 mL. Este proceso se repite transfiriendo todo el cultivo celular (aproximadamente 100 mL) a un matraz de agitación de 250 mL que contiene suficiente medio fresco para alcanzar un volumen de cultivo final de 200 mL, a continuación, a un matraz de agitación de 1 L que contiene suficiente medio fresco para alcanzar un volumen de cultivo final de 800 mL, a continuación, un matraz de agitación de 6 L que contiene suficiente medio fresco para alcanzar un volumen de cultivo final de 5 L, y finalmente a un matraz de agitación de 36 L que contiene suficiente medio fresco para alcanzar un volumen de cultivo final de 32 L. Entre cada transferencia, las células se incuban hasta que el cultivo alcanza una densidad de más de 1,5 × 10⁶ células/mL. En algunos ejemplos, se logra una mayor densidad celular después de la incubación del matraz de agitación de 36 L final. Por ejemplo, las células en el matraz de agitación de 36 L se pueden expandir a una densidad celular de $3,55 \times 10^6$ células/mL a $6,05 \times 10^6$ células/mL. Este proceso se puede utilizar para expandir las células que expresan rHuPH20 soluble antes de la introducción en un biorreactor de 400 L (volumen de cultivo 300 L) para la fase de producción de proteínas (véase, p. ej., el Ejemplo 8).

Este proceso, como cualquiera de los procesos descritos en la presente memoria, también puede ser aumentado a escala por un experto en la técnica para la introducción de las células en un biorreactor con un volumen de cultivo más grande que 300 L. Por ejemplo, el proceso se puede aumentar a escala para la introducción de las células en un biorreactor con un volumen de cultivo 2.500 L, tal como se describe en el Ejemplo 12. Por lo tanto, en un ejemplo de los métodos proporcionados en la presente memoria, después de la descongelación, las células se expanden en serie por medio de un matraz oscilante de 125 mL (volumen de trabajo de 20-30 mL, tal como 25 mL), un matraz oscilante de 250 mL (volumen de trabajo de 45-55 mL, tal como 50 mL), un matraz oscilante de 1 L (volumen de trabajo de 190-210 mL, tal como 200 mL), dos matraces oscilantes de 2 L (volumen de trabajo de 350-450 mL por matraz, tal como 400 mL por matraz), seis matraces oscilantes de 2 L (volumen de trabajo de 350 a 450 mL por matraz, tal como 400 mL por matraz), un biorreactor de ola de 25 L (volumen de trabajo de 14 a 16 L, tal como 15 L), un biorreactor de ola de 100 L (volumen de trabajo de 75-85 L, tal como 80 L), y un biorreactor de siembra de 600 L (volumen de trabajo de 440 a 520 L, tal como 480 L).

F. Producción de proteínas

10

30

35

40

45

50

55

60

Después de la expansión celular, las células que expresan rHuPH20 soluble se transfieren a un biorreactor para la fase de producción, durante la cual se secretan grandes cantidades de rHuPH20 soluble al medio celular. Esta fase

normalmente está diseñada de tal manera que el crecimiento de las células se maximiza en la primera mitad de la ronda en el biorreactor, y la producción de rHuPH20 soluble se maximiza en la segunda mitad de la ronda en el biorreactor. Se proporciona a las células una serie de medios de alimentación en puntos de tiempo concretos a lo largo de la producción para regular este proceso. Las condiciones del biorreactor también son controladas típicamente para asegurar que se mantienen unas condiciones óptimas durante todo el proceso. Los métodos descritos en la presente memoria para la proteínas pueden ser reducidos o aumentados a escala por un experto en la técnica. Además, las modificaciones, por ejemplo, de los medios, los tiempos de incubación, los protocolos de alimentación. Un experto en la técnica puede determinar empíricamente las condiciones apropiadas para la producción de proteínas para cualquier biorreactor y tipo de célula dados.

10

15

20

25

Se pueden utilizar biorreactores de diferentes tamaños y diseños en los métodos de la presente memoria. En algunos ejemplos, se utiliza un biorreactor de 125 L, 400 L o 3500 L en los métodos de la presente memoria para cultivar células en volúmenes de aproximadamente 100L, 300L y 2. 500 L, respectivamente. Típicamente, el biorreactor se esteriliza antes de la adición de medios de cultivo celular o células. La esterilización se puede efectuar mediante tratamiento en autoclave o tratamiento de otro modo con vapor de agua para algunos biorreactores, o mediante tratamiento con una solución esterilizante, tal como hidróxido de sodio diluido, ácido nítrico diluido o hipoclorito de sodio. En algunos ejemplos, el biorreactor se esteriliza por medio de vapor de agua a 121°C, 1,41 kg/cm² durante 30 minutos. Después de la esterilización, se pueden añadir medios de cultivo celular al biorreactor y luego evaluar la contaminación, tal como la contaminación microbiana, después de un período de tiempo para asegurar que el proceso de esterilización fue eficaz.

El cultivo celular de la fase de expansión, descrito anteriormente, se añade al biorreactor esterilizado que contiene medio de cultivo celular fresco. Las células que expresan rHuPH20 soluble se inoculan en el medio de cultivo celular fresco a una densidad celular de 14⁵ a 10⁶ células/mL. En un ejemplo, las células que expresan rHuPH20 soluble se inoculan a una densidad celular de 4 × 10⁵ células/mL. El recuento total de células después de la inoculación depende del tamaño del biorreactor y de la densidad celular. Por ejemplo, un volumen de cultivo celular de 100 L puede tener una densidad celular después de la inoculación de aproximadamente 10¹⁰ o 10¹¹ células.

Los volúmenes de inoculación de cultivo celular y los medios de cultivo frescos utilizados dependen del tamaño del biorreactor y de la densidad celular del inóculo. Por ejemplo, se pueden añadir aproximadamente 30 L de células que expresan rHuPH20 soluble, tales como células 2B2, a un biorreactor de 400 L que contiene 230 L de medio de cultivo celular fresco, para un volumen total de aproximadamente 260 L y una densidad celular de inoculación de 4 × 10⁵ células/mL (recuento total de células de aproximadamente 10¹¹ células). Esto se puede aumentar o disminuir a escala según sea necesario, dependiendo del biorreactor.

En un ejemplo, para la producción en un biorreactor de 3500 L, se añaden las células 2B2 a medios de cultivo celular frescos para un volumen total de cultivo celular de 1900-2300 L, tal como 2100 L.

El medio de cultivo celular fresco contiene los suplementos apropiados para proporcionar los nutrientes necesarios a las células para promover el crecimiento celular. Los suplementos que se pueden añadir al medio de células basales 40 incluyen, pero no se limitan a, glucosa, insulina, butirato de sodio, extracto de levadura y glutamina o un sustituto de glutamina, tal como L-alanil-L-glutamina. En algunos casos, el medio basal contiene glucosa suficiente para que no haya necesidad de añadir más glucosa. En otros casos, se añade glucosa a los medios más tarde en el proceso de producción, tal como en un medio de alimentación posterior. La adición de insulina al medio puede promover el crecimiento celular y aumentar la densidad celular máxima. La glutamina o los sustitutos de glutamina, tales como 45 L-alanil-L-glutamina, puede apoyar el progreso del ciclo celular y también mejorar el crecimiento celular. Un experto en la técnica puede determinar empíricamente la cantidad y la calidad de los nutrientes que se pueden añadir como complemento al medio basal. En algunos ejemplos, se añaden glutamina o sustituto de glutamina al medio de cultivo celular basal a 1 mM, 2 mM, 3 mM, 4 mM, 5 mM, 6 mM, 7 mM, 8 mM, 9 mM, 10 mM, 15 mM o 20 mM. La insulina se puede añadir al medio de cultivo celular, por ejemplo, de 0,5 mg/L a 50 mg/L, tal como de 1 mg/L a 40 mg/L, de 2 mg a 30 mg/L, o de 5 mg/L, a 20 mg/L. Por ejemplo, medio de cultivo celular basal con suplemento de 5 mg/L de 50 insulina y L-alanil-L-glutamina 8 mM se puede utilizar como medio de cultivo celular fresco en el que se inoculan las células que expresan rHuPH20 soluble. También se pueden añadir suplementos adicionales, tales como antibióticos, antifúngicos, indicadores, sales, vitaminas, aminoácidos y factores de crecimiento.

Los parámetros individuales del biorreactor se pueden ajustar para mantener las condiciones óptimas a lo largo de todo el proceso de producción de proteínas. Los parámetros específicos que se pueden establecer dependen del biorreactor utilizado, y pueden incluir, pero no se limitan a, la temperatura, el pH, el oxígeno disuelto, la velocidad del impulsor, la presión del recipiente, el burbujeo de aire y la superposición de aire. En un ejemplo, las condiciones de un biorreactor de 125 L que contiene 100 L de cultivo celular de células 3D35M se establecen para; temperatura:
 37°C; oxígeno disuelto: 25% ± 10%; velocidad del impulsor: 50 RPM; presión del recipiente: 0,21 kg/cm²; burbujeo de aire: 1 L/minuto; superposición de aire: 1 L/minuto, pH: 7,2. En otro ejemplo, las condiciones de un biorreactor de 400L que contiene un volumen de cultivo celular inicial de 260 L se ajustan a; temperatura: 37°C; velocidad del impulsor 40-55 RPM; presión del recipiente: 0,21 kg/cm²; burbujeo de aire: 0,5-1,5 L/minuto; superposición de aire: 1 L/minuto. En un ejemplo adicional, las condiciones de un biorreactor 3000 L que contiene un volumen de cultivo

inicial de 2100 L se ajustan a; temperatura: 37° C (o entre $36,5^{\circ}$ C y $37,5^{\circ}$ C; velocidad del impulsor: 35° RPM (o $70-80^{\circ}$ RPM); presión del recipiente: 0.35° kg/cm² (o $0.21-0.49^{\circ}$ kg/cm²); burbujeo de aire: 12° L/minuto (u $11-13^{\circ}$ L/minuto); oxígeno disuelto: 25° , o > 25° ; pH pre-inoculación: 7,2 (o pH 7,1 a 7,3); pH post-inoculación: 47,2 (o 47,3). Un experto en la técnica puede determinar empíricamente las condiciones apropiadas para el crecimiento de una célula que expresa rHuPH20 soluble particular, en un biorreactor particular.

Las células que expresan rHuPH20 soluble son normalmente cultivadas en el biorreactor durante entre 10 y 25 días. En algunos ejemplos, las células que expresan rHuPH20 soluble son cultivadas en el biorreactor durante 12, 13, 14, 15 o 16 días antes de la cosecha. Las células se cosechan cuando el recuento de células viables (VCC) cae a un nivel concreto, tal como, por ejemplo, 25%, 30%, 35%, 40%, o 45%. En un ejemplo, las células se cosechan cuando la VCC está entre 30% y 35%. En otro ejemplo, las células se cosechan a las 24 horas de que la VCC caiga por debajo de 50%.

10

15

20

25

30

55

Durante el cultivo en el biorreactor, las células se hacen crecer como cultivos alimentados por lotes y se proveen de una serie de medios de alimentación en puntos de tiempo concretos para complementar los nutrientes y la glucosa. En algunos casos, los nutrientes proporcionados en el medio de cultivo celular en el que se inocularon las células se han agotado a los 3, 4, 5, 6, 7 días o más después de la inoculación. Por lo tanto, proporcionar nutrientes o suplementos adicionales puede producir rendimientos más altos de proteína que en los cultivos por lotes. En un ejemplo, las células cuentan con medios de alimentación en los días 6, 9 y 11 después de la inoculación. En otro ejemplo, las células cuentan con medios de alimentación en los días 7, 9 y 11 después de la inoculación. En un ejemplo adicional, las células cuentan con medios de alimentación en los días 5, 7, 9 y 11 después de la inoculación. El volumen de los medios de alimentación añadido al biorreactor de cultivo oscila entre 0,5% y 20%, tal como 1-20%, 2-15%, 3-10% o 4-5% del volumen de cultivo celular. En algunos casos, los medios de alimentación se añaden a un volumen equivalente al 4% del volumen de cultivo celular.

La adición de varios suplementos a los medios de alimentación se utiliza para regular el crecimiento y/o el ciclo celular de las células. Los nutrientes y suplementos que se incluyen en los medios de alimentación incluyen, pero no se limitan a, glutamina o sustituto de glutamina, tal como L-Alanil-L-Glutamina, insulina, extracto de levadura, glucosa y butirato de sodio o butirato de sodio. Además, los medios basales utilizados en los medios de alimentación también pueden ser concentrados, proporcionando así nutrientes adicionales, tales como aminoácidos esenciales, que pueden haberse agotado durante el cultivo celular. Los medios basales en los medios de alimentación pueden ser concentrados 2 × 3 ×, 4 ×, × 5, 6 × o más. En otros ejemplos, los medios basales están menos concentrados, o tienen la misma concentración que el medio de cultivo celular en el biorreactor.

35 Los suplementos incluidos en los medios de alimentación pueden ser utilizados para regular el crecimiento celular y la producción de proteínas. El primer medio de alimentación añadió al cultivo celular incluye nutrientes que mejoran el progreso del ciclo celular, el crecimiento celular y la densidad celular máxima. Los medios de alimentación posteriores promueven la detención del crecimiento celular y/o la síntesis de proteínas. La cantidad de cada suplemento en cada medio de alimentación puede variar, como por ejemplo mediante el aumento o la disminución 40 de un medio de alimentación al siguiente, o puede ser la misma de un medio de alimentación al siguiente. En algunos ejemplos, la cantidad de suplemento aumenta de un medio de alimentación al siguiente, por ejemplo un 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100 %, 150%, 200%, 300%, 400% o más. En otros ejemplos, la cantidad de suplemento disminuye de un medio de alimentación al siguiente, por ejemplo un 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90 % o más. En un ejemplo, se omite un suplemento de un medio de alimentación. En otros ejemplos, la cantidad de un suplemento en el medio de alimentación sigue siendo la misma. Un experto en la 45 técnica puede determinar empíricamente la cantidad óptima de cada suplemento para cada medio de alimentación para promover la cantidad deseada de crecimiento celular y la producción de proteínas.

Los suplementos o nutrientes que se incluyen en los medios de alimentación incluyen, pero no se limitan a, glucosa, glutamina o sustituto de glutamina, tal como L-alanil-L-glutamina, insulina, y butirato de sodio. El tipo y la cantidad de suplemento añadido pueden influir en el crecimiento celular y la producción de proteínas.

La insulina y el sustituto de glutamina L-Alanil-L-Glutamina se incorporan al primer medio de alimentación añadido al cultivo celular para aumentar el crecimiento celular y la densidad celular máxima. Los medios de alimentación posteriores están diseñados para promover la producción de proteínas más que el crecimiento celular. El suplemento de insulina se excluye y se reduce la cantidad de L-Alanil-L-Glutamina. En contraste, se aumenta la cantidad del suplemento de extracto de levadura, que mejora la síntesis de proteínas. También se incluye butirato de sodio que mejora la detención del ciclo celular y, por lo tanto, aumenta la producción de proteína.

La adición de la insulina puede aumentar la densidad celular máxima, por ejemplo, 2%, 5%, 10%, 15%, 20%, 25%, 30% o más. La insulina se añade a los medios de alimentación tempranos, es decir, los primeros medios de alimentación, para promover el crecimiento celular máximo en la fase inicial del proceso del biorreactor. Por ejemplo, el primer medio de alimentación, puede contener una cantidad de insulina de, o aproximadamente de, 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L, 30 mg/L, 35 mg/L, 40 mg/L, 45 mg/L, 50 mg/L, 55 mg/L, 60 mg/L o más.

El sustituto de glutamina, L-Alanil-L-Glutamina, también se añade a los medios de alimentación. La cantidad de sustituto de glutamina añadido al primer medio de alimentación es mayor que la cantidad de sustituto de glutamina añadido a cada medio de alimentación posterior se reduce en comparación con la cantidad añadida a los primeros medios de alimentación. La cantidad óptima añadida a cada medio de alimentación puede ser determinada empíricamente por un experto en la técnica, y puede incluir, por ejemplo, concentraciones de sustituto de glutamina de o alrededor de 1 mM, 5 mM, 10 mM, 15 mM, 20 mM, 25 mM, 30 mM, 35 mM, 40 mM, 45 mM, 50 mM o más.

5

15

20

- Por lo general, los medios basales utilizados en los medios de alimentación también se complementan con glucosa. La cantidad de glucosa añadida a cada medio de alimentación puede ser aumentada o disminuida con respecto a los medios de alimentación anteriores, o puede permanecer aproximadamente constante. En algunos ejemplos, la cantidad de glucosa añadida a los medios de alimentación es de, o aproximadamente de, 10 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, 35 g/L, 40 g/L, 45 g/L, 50 g/L, 60 g/L, 75 g/L, 80 g/L o más.
 - Además, también se incluyen los suplementos que promueven la síntesis de proteínas. Estos nutrientes incluyen extracto de levadura. En algunos casos, se incrementa la cantidad de extracto de levadura incluido en los medios de alimentación durante la ronda del biorreactor. Por ejemplo, la cantidad de extracto de levadura en los terceros medios de alimentación se puede aumentar en comparación con la cantidad en el segundo medio de alimentación, que se puede aumentar en comparación con la cantidad en el segundo medio de alimentación. En algunos ejemplos, la cantidad de extracto de levadura añadida a los medios de alimentación es de entre 5 y 1. 000 g/L, por ejemplo o aproximadamente 10 g/L, 20 g/L, 30 g/L, 40 g/L, 50 g/L, 75 g/L, 100 g/L, 125 g/L, 150 g/L, 175 g/L, 200 g/L, 250 g/L, 300 g/L, 400 g/L, 00 g/
- También se incluyen suplementos que mejoran la detención del ciclo celular y, por lo tanto, aumentan la producción de proteína, es decir, butirato de sodio. Típicamente, tal suplemento se incluye en los medios de alimentación que se añaden al biorreactor más adelante en la ronda y no se incluyen en el primer medio de alimentación. El butirato de sodio que mejora la detención del ciclo celular se añade a los segundos medios de alimentación y a los medios de alimentación posteriores. En algunos ejemplos, la cantidad de butirato de sodio añadida a los medios de alimentación es de entre 0,1 g/L y 10 g/L, por ejemplo o aproximadamente 0,2 g/L, 0,3 g/L, 0,4 g/L, 0,5 g/L, 0,6 g/L, 0,7 g/L, 0,8 g/L, 0,9 g/L, 1,0 g/L, 1,1 g/L, 1,2 g/L, 1,3 g/L, 1,4 g/L, 1,5 g/L, 1,6 g/L, 1,7 g/L, 1,8 g/L, 1,9 g/L, 2,0 g/L, 2,5 g/L, 3,0 g/L, 3,5 g/L, o más.
- Además, una o más cualesquiera de las condiciones del biorreactor pueden ser alterada durante la fase de producción para optimizar la producción de proteínas. La temperatura se disminuye. Esto sirve para promover la detención del ciclo celular, prolongar la viabilidad celular (aumentando de ese modo la producción de proteína total), y ayudar a estabilizar la hialuronidasa que se ha secretado. Por ejemplo, la temperatura del biorreactor puede ser reducida en cada alimentación, por ejemplo desde 37°C a 36,5°C en la segunda alimentación, a 36°C en la tercera alimentación y a 35,5°C en la cuarto alimentación. Un experto en la técnica puede determinar empíricamente los medios de alimentación apropiados y el momento en el cual proporcionar la alimentación, así como las condiciones apropiadas en el biorreactor.
- En un ejemplo, se provee a las células de medios de alimentación en los días 6, 9 y 11 después de la inoculación. En otro ejemplo, se provee a las células de medios de alimentación en los días 7, 9 y 11 después de la inoculación. 45 En un ejemplo adicional, se provee a las células de medios de alimentación en los días 5, 7, 9 y 11 después de la inoculación. Los medios de alimentación provistos en cada punto del tiempo son diferentes, e incluyen suplementos tales como, pero no limitados a, glucosa, butirato de sodio, insulina, glutamina o un sustituto glutamina y extracto de levadura tal como se definen en las reivindicaciones. Por ejemplo, las células 2B2 que crecen en un cultivo de 260 L en un biorreactor de 400 L pueden proveerse de de una primera alimentación el día 5 que contiene 10,4 L de 4 × 50 medio basal (p. ej., medio CD CHO) con 33 g/L de glucosa, L-alanil-L-glutamina 32 mM, 16,6 g/L de extracto de levadura y 33 mg/L de insulina, una segunda alimentación el día 7 que contiene 10,8 L de 2 × medio basal (p. ej., medio CD CHO), 33 g/L de glucosa, L-alanil-L-glutamina 16 mM, 33,4 g/L de extracto de levadura y 0,92 g/L de butirato de sodio, una tercera alimentación el día 9 que contiene 10,8 L 1 × medio basal (p. ej., medio CD CHO), 50 g/L de glucosa, L-alanil-L-glutamina 10 mM, 50 g/L de extracto de levadura y 1,80 g/L de butirato de sodio, y una cuarta alimentación el día 11 que contiene 1 × medio basal (p. ej., medio CD CHO), 33 g/L de glucosa, L-alanil-L-55 glutamina 6,6 mM, 50 g/L de extracto de levadura y 0,92 g/L de butirato de sodio. Esto puede ser aumentado o disminuido a escala por un experto en la técnica para la producción de rHuPH20 en biorreactores más grandes o más pequeños, respectivamente. Además, un experto en la técnica puede alterar la cantidad o el tipo de uno más suplementos añadidos a los medios para mejorar el crecimiento celular y/o la producción de proteínas. 60

En otro ejemplo, se provee a las células de los siguientes medios de alimentación en los días 5, 7, 9 y 11: Medio de Alimentación núm. 1: medio basal + 33 g/L de glucosa + L-alanil-L-glutamina 26,6 mM + 83. 3 g/L de Yeastolate + 33 mg/L de rHuInsulina; Alimentación núm. 2: medio basal + 33 g/L de glucosa + L-alanil-L-glutamina 13,4 mM + 166,7 g/L de Yeastolate + 0,92 g/L de butirato de sodio; Alimentación núm. 3: medio basal + 50 g/L de glucosa + L-alanil-L-

glutamina 10 mM + 250 g/L de Yeastolate + 1,8 g/L de butirato de sodio; Alimentación núm. 4: medio basal + 33,3 g/L de glucosa + L-alanil-L-glutamina 6,7 mM + 250 g/L de Yeastolate + 0,92 g/L de butirato de sodio.

G. Cosecha del cultivo celular, concentración de proteína y cambio de tampón

Después de la fase de producción de proteínas, las células se cosechan y la rHuPH20 soluble que ha sido secretada al medio de cultivo celular se concentra antes del inicio del proceso de purificación. Además de la concentración de la proteína, el medio de cultivo celular se puede intercambiar por un tampón apropiado en este momento. Múltiples sistemas y procesos para efectuar la concentración de proteína y el cambio de tampón se conocen en la técnica y se pueden utilizar en los métodos de la presente memoria. A continuación se describen métodos ilustrativos de los mismos, y un experto en la técnica reconocerá que estos métodos pueden ser modificados o sustituidos por otros métodos eficaces para alcanzar un nivel satisfactorio de concentración de proteína y cambio de tampón.

Las células se cosechan del biorreactor y se procesan a través de un sistema de eliminación y acalaramiento celulares para separar el líquido de cultivo celular que contiene la hialuronidasa a partir de las células y los desechos celulares. Un ejemplo de semejante sistema es aquel que contiene una serie de filtros que permiten que solamente la proteína pase a través y se recoja. Se puede utilizar cualquier filtro o serie de filtros capaces de separar la hialuronidasa de las células y los deshechos celulares. Por ejemplo, la cosecha del cultivo celular se puede hacer pasar a través de una serie de filtros en cápsulas, tales como filtros de polietersulfona. Estos pueden tener tamaños de poro decrecientes para eliminar de forma gradual, por ejemplo, células, desechos celulares y partículas más pequeñas, tales como virus. En algunos ejemplos, se utiliza una serie de cuatro filtros con tamaños de poro de 8,0 µm, 0,65 µm, 0,22 µm y 0,22 µm para aclarar el cultivo celular para obtener el líquido de cultivo celular cosechado (HCCF). Otro ejemplo de un sistema de eliminación y aclarado celulares que se puede utilizar en los métodos de la presente memoria es una serie de filtros que en la primera etapa contiene cuatro módulos en paralelo, que contienen cada uno una capa de tierra de diatomeas graduada a 1,4-1,1 µm, seguido de una membrana de celulosa. La segunda etapa contiene un único módulo que contiene una capa de tierra de diatomeas graduada a 0,1-0,11 µm y una capa de tierra de diatomeas graduada a <0,1 µm seguido de una membrana de celulosa, y la tercera etapa es un filtro de cápsula de polietersulfona de 0,22 µm.

Una vez que las células y los desechos han sido separados del HCCF, la proteína del HCCF se concentra típicamente y el medio de cultivo celular se cambia por un tampón apropiado. La proteína se puede concentra 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x, 11x, 12x, 13x o más. En algunos ejemplos, la proteína se concentra 10x. En otros ejemplos, la proteína se concentra 6x. Se puede utilizar cualquier método de concentración de proteínas conocido en la técnica. Los ejemplos de tales métodos incluyen la concentración utilizando sistemas de filtración de flujo tangencial (TFF) con filtros con corte de peso molecular (MWCO). Por ejemplo, el HCCF aclarado se puede hacer pasar a través de una serie de dos filtros de polietersulfona espirales MWCO de 30 kDa para concentrar la proteína 10x. En otro ejemplo, el HCCF se hace pasas a través de una serie de cuatro filtros MWCO de 30 kDa. Para la producción a gran escala de hialuronidasa, tal como, por ejemplo, cultivos de 100 L y 300 L, se emplean típicamente filtros con áreas de superficie de entre 0,5 y 5 metros cuadrados para este propósito. En algunos ejemplos, se utilizan filtros con un área de superficie de 1,2 metros cuadrados o 2,8 metros cuadrados.

El cambio de tampón se realiza después de la concentración de proteínas. Un experto en la técnica puede determinar empíricamente el tampón apropiado. Los ejemplos de los tampones adecuados son un tampón Hepes 10 mM, NaCl 25 mM, pH 7,0, o un tampón Tris 10 mM, Na₂SO₄, pH 7,5. Después de la cosecha, la concentración y el cambio de tampón, la disolución de proteína concentrada se hace pasar típicamente a través de otro filtro, tal como un filtro de cápsula de 0,22 µm, antes de ser almacenada en una bolsa de almacenamiento estéril.

En algunos ejemplos, la disolución de proteína concentrada se trata para inactivar cualquier contaminación por virus residual. La inactivación de virus se puede llevar a cabo por cualquier método conocido en la técnica. Por ejemplo, la disolución de proteína concentrada se puede mezclar con Triton X-100 al 10%, fosfato de tri-(n-butilo) al 3% (TNBP), a una concentración final de Triton X-100 al 1%, TNBP al 0,3%, a la temperatura ambiente entre 15 y 75 minutos. En algunos ejemplos, la proteína se expone a la disolución inactivación viral durante 30-45 minutos.

H. Purificación

5

10

15

20

25

45

50

55

60

La rHuPH20 soluble se purifica a partir de la disolución de proteína concentrada utilizando una serie de etapas de purificación. Se conocen en la técnica muchos mecanismos de purificación y se pueden utilizar en los métodos de la presente memoria. Tales métodos pueden incluir, pero no se limitan a, métodos cromatográficos tales como cromatografía de intercambio iónico, cromatografía de exclusión por tamaño, cromatografía de afinidad (AC), cromatografía líquida de alta resolución (HPLC), cromatografía de fase inversa (RPC) y cromatografía de interacción hidrófoba (HIC), y métodos de filtración en gel, o cualquier combinación de los mismos.

Los ejemplos de los métodos de purificación que se utilizan para los métodos de la presente invención son una combinación de cromatografía de intercambio iónico, cromatografía de interacción hidrófoba y cromatografía de afinidad. En la cromatografía de intercambio iónico, las proteínas se pueden separar de una disolución compleja o una mezcla basándose en las fuerzas electrostáticas entre grupos funcionales cargados de las proteínas y los

grupos funcionales cargados de la matriz de la columna de cromatografía. Las resinas de intercambio catiónico tienen grupos funcionales cargados negativamente que atraen a los grupos funcionales cargados positivamente de las proteínas, y las resinas de intercambio aniónico tienen grupos funcionales cargados positivamente que atraen a los grupos funcionales cargados negativamente de las proteínas. Las proteínas unidas a través de fuerzas electrostáticas a la matriz se pueden hacer eluir mediante el aumento de la fuerza iónica de la disolución tampón dentro de la columna de cromatografía con el tiempo. En la cromatografía de interacción hidrófoba, una proteína se puede separar de una disolución compleja o una mezcla basándose en su carácter hidrófobo. Una disolución compleja que contiene la proteína se aplica a una columna de cromatografía equilibrada con un tampón con alto contenido de sal que facilita la unión de la proteína a la resina. A continuación se introduce una fase móvil con gradiente salino con fuerza iónica decreciente en la columna de cromatografía para liberar las proteínas unidas de la matriz. Alternativamente, la cromatografía de interacción hidrófoba puede separar una proteína monomérica de una disolución compleja o una mezcla mediante la unión de impurezas hidrófobas, incluyendo dímeros inactivos y agregados de la proteína, a la vez que permite que la proteína monomérica fluya través de la columna de cromatografía relativamente sin impedimentos. En la cromatografía de afinidad, se puede separar una proteína de una solución compleja basándose en la afinidad de la proteína por un ligando o una entidad de unión al ligando que está unido covalentemente a la matriz. Otras proteínas de la disolución compleja o la mezcla con una afinidad débil, o que carecen de afinidad, por el ligando o la entidad de unión al ligando fluyen a través de la columna de cromatografía sin impedimentos, dejando la proteína de interés unida a la matriz. La proteína puede entonces ser eluida de la columna de cromatografía mediante la alteración de las condiciones del tampón para disminuir la afinidad por el ligando o la entidad de unión al ligando.

En un ejemplo, la rHuPH20 soluble se purifica a partir de la disolución de proteína concentrada mediante purificación secuencial a través de una columna de cuentas agarosa entrecruzada, tal como una columna Q Sepharose™ (cromatografía de intercambio iónico), columna de cuentas de agarosa entrecruzada sustituida con fenilo, tal como una columna Phenyl Sepharose™ (cromatografía de interacción hidrófoba), una columna de Amino Fenil Boronato (cromatografía de afinidad) y, finalmente, a través de una columna de Hidroxiapatita (cromatografía de intercambio iónico). Cada una de estas columnas muestra diferentes propiedades de unión con respecto a la hialuronidasa, de tal manera que la columna de cuentas de agarosa entrecruzada (p. ej., columna Q Sepharose™) es una etapa de captura (es decir la rHuPH20 soluble se une a la resina mientras que algunas otras proteínas fluyen), las cuentas de agarosa entrecruzada sustituida con fenilo (p. ej., columna de Phenyl Sepharose™) es una etapa de flujo (es decir la rHuPH20 soluble fluye a través de la columna mientras que algunas otras proteínas son capturados), la columna de Amino Fenil Boronato es otra etapa de captura, y la columna de Hidroxiapatita es una etapa de afinado para purificar adicionalmente la rHuPH20 soluble.

35 Antes de su uso, las columnas son típicamente esterilizadas y equilibradas. La esterilización se puede llevar a cabo mediante cualquier método conocido en la técnica, incluyendo, pero no limitado a, esterilización con NaOH 1,0 M. El equilibrado se puede efectuar mediante la adición de un tampón apropiado a la columna, tal como un tampón similar a o igual al tampón utilizado para lavar posteriormente la columna o el tampón en el que la proteína está contenida antes de la carga. Un experto en la técnica puede determinar fácilmente tampones adecuados para su uso en el 40 equilibrado cada columna. Los tampones ilustrativos se proporcionan a continuación. Entre cada etapa de cromatografía, la proteína eluida se puede filtrar, por ejemplo a través de un filtro de 0,22 µm, para eliminar cualquier microorganismo contaminante o grandes agregados. En algunos ejemplos, el producto eluido filtrado se almacena, por ejemplo en bolsas de almacenamiento estériles, antes de su uso en la siguiente etapa. Después de la cromatografía en columna, la hialuronidasa purificada se puede someter posteriormente a una etapa de eliminación 45 de virus, seguida de concentración de proteína y cambio de tampón para la formulación final. Los métodos de purificación ilustrativos se describen con más detalle a continuación.

1. Columna de cuentas de agarosa entrecruzada

10

15

20

25

30

60

50 La proteína concentrada obtenida a partir del líquido de cultivo celular cosechado (HCCF) se puede cargar en una columna de cuentas de agarosa entrecruzada, tal como, por ejemplo, una columna Q Sepharose™, que es un intercambiador de aniones fuerte y captura la rHuPH20 soluble permitiendo al mismo tiempo que otras proteínas fluyan. La rHuPH20 soluble unida se puede hacer eluir después utilizando un tampón apropiado. Las dimensiones de la columna utilizada son típicamente dependientes del volumen de proteína concentrada obtenida del HCCF. Por 55 ejemplo, la proteína concentrada obtenida a partir de cultivo de células que expresan hialuronidasa en un cultivo en biorreactor de 100 L se puede cargar en una columna que tiene 20 cm de alto, 14 cm de diámetro y contiene 3 L de resina. En otro ejemplo, la proteína concentrada obtenida a partir de cultivo de células que expresan rHuPH20 soluble en un cultivo en biorreactor de 300 L se puede cargar en una columna que tiene 29 cm de alto, 20 cm de diámetro y contiene 9 L de resina. Esto se puede aumentar o disminuir a escala según sea necesario, dependiendo del volumen de la disolución de proteína concentrada y la cantidad de proteína esperada. Por ejemplo, la proteína concentrada obtenida a partir del cultivo de células que expresan rHuPH20 soluble en un cultivo en biorreactor de 2500 L se puede cargar en una columna de Q Sepharose™ que tiene 26 cm de alto, 63 cm de diámetro y contiene 81 L de resina.

Antes de cargarla con la proteína, la columna se equilibra típicamente. El equilibrado se puede efectuar haciendo pasar a través de 1, 2, 3, 4, 5, 6, 7, 8, 9 o más volúmenes de la columna de tampón. En algunos ejemplos, se hacen pasar 5 volúmenes de columna de tampón a través de la columna para el equilibrado. Los tampones adecuados para el equilibrado incluyen aquellos similares a los tampones que se utilizarán para lavar la columna después de haberse cargado la proteína. Por ejemplo, una columna de cuentas de agarosa entrecruzada, tal como una columna de Q Sepharose™ puede ser equilibrada con Hepes 10 mM, NaCl 25 mM, pH 7,5. Se pueden utilizar otros tampones de pH neutro, como será reconocido por un experto en la técnica.

Después de cargar el producto concentrado de proteína, la columna se lava y se hace eluir la proteína. Los tampones adecuados para el lavado de tales columnas que contienen rHuPH20 soluble unida incluyen, por ejemplo, Hepes 10 mM, NaCl 25 mM, pH 7,0; Hepes 10 mM, NaCl 50 mM, pH 7,0; y Tris10 mM, Na₂SO₄ 20 mM, pH 7,5. La columna se puede lavar con uno o más tipos de tampón. Por ejemplo, la columna se puede lavar con Na₂SO₄ 20 mM, pH 7,5 y Hepes 10 mM, NaCl 50 mM, pH 7,0. Típicamente, el lavado se efectúa haciendo pasar a través de 1, 2, 3, 4, 5, 6, 7, 8, 9 o más volúmenes de columna de tampón. En algunos ejemplos, se utilizan 5 volúmenes de columna de tampón para lavar la columna. La rHuPH20 soluble se hace eluir a continuación utilizando un tampón con una concentración de sal superior, tal como por ejemplo, Hepes 10 mM, NaCl 400 mM, pH 7,0. En algunos ejemplos, la absorbancia a A₂₈₀ se controla para determinar cuándo recoger el producto eluido, como cualquier absorbancia durante este proceso generalmente se indica la presencia de rHuPH20 soluble. Por lo tanto, en un ejemplo, el producto eluido se recoge cuando la lectura de inicio de la absorbancia es de 0,025. Típicamente, el producto eluido se filtra a través de un filtro apropiado, tal como un filtro de 0,22 μm, antes de ser almacenado, por ejemplo en una bolsa de almacenamiento estéril.

2. Columna de cuentas de agarosa entrecruzada sustituida con fenilo

Después de la purificación a través de una columna de cuentas de agarosa entrecruzada, la disolución de proteína se puede someter a cromatografía de interacción hidrófoba utilizando una columna de cuentas de agarosa entrecruzada sustituida con fenilo, tal como una columna de Phenyl Sepharose™, en donde la rHuPH20 soluble fluye a través de la columna mientras otras proteínas contaminantes son capturadas. La columna utilizada en los métodos de la presente memoria puede variar de tamaño, dependiendo del volumen y la cantidad de proteína que está siendo purificada a través de ella. Los tamaños ilustrativos incluyen columnas que tienen 29 cm de alto, 20 cm de diámetro con 9 L de resina para su uso en la purificación de la rHuPH20 soluble a partir de células desarrolladas en un biorreactor de cultivo de 100 L, columnas que tienen 29 cm de alto, 30 cm de diámetro con 19- 21 L de resina para su uso en la purificación de hialuronidasa a partir de células desarrolladas en un biorreactor de cultivo de 300 L, y columnas que tienen 35 cm de alto, 80 cm de diámetro con 176 L de resina para su uso en la purificación de la rHuPH20 soluble a partir de células desarrolladas en un biorreactor de cultivo de 2.500 L. Un experto en la técnica puede aumentar o disminuir a escala, según corresponda.

La columna de cuentas de agarosa entrecruzada sustituida con fenilo esterilizada, tal como una columna de Fenil Sepharose™, se puede equilibrar antes de la carga de la proteína con un tampón apropiado, tal como, por ejemplo, fosfato de potasio 5 mM, sulfato de amonio 0,5 M, CaCl₂ 0,01 mM ,pH 7,0. El producto eluido de proteína de la purificación en columna de Q Sepharose también se complementa con sulfato de amonio, fosfato de potasio y CaCl₂. Estos pueden complementar la proteína a concentraciones finales de, por ejemplo, aproximadamente fosfato de potasio 5 mM, sulfato de amonio 0,5 M y CaCl₂ 0,1 mM, PH 7,0. Después de la carga de la proteína, se añaden también a la columna fosfato de potasio 5 mM, sulfato de amonio 0,5 M y CaCl₂ 0,1 mM, pH 7,0 y se recoge el flujo directo filtrado, por ejemplo en una bolsa estéril.

3. Columna de Amino Fenil Boronato

10

15

20

40

45

50

55

60

Después de cromatografía de interacción hidrófoba, la proteína purificada en la columna se puede cargar en una columna de Amino Fenil Boronato para una purificación adicional. La cromatografía mediada por ligando de Amino Fenil Boronato difiere de muchos otros ligandos utilizados para la cromatografía de afinidad. Mientras que la mayoría de los ligandos se unen a un sitio de unión concreto en una proteína por una mezcla de interacciones no covalentes, el fenil boronato interactúa predominantemente mediante la formación de un enlace covalente temporal con grupos 1,2-cis-diol. El ligando boronato se unirá a cualquier molécula que contenga el grupo apropiado, incluyendo rHuPH20 soluble, que está altamente glicosilada.

La columna de Amino Fenil Boronato utilizada en los métodos de la presente memoria puede variar de tamaño, dependiendo del volumen y la cantidad de proteína que se purifica a través de ella. Los tamaños ilustrativos incluyen columnas que tienen 29 cm de alto, 20 cm de diámetro con 6,3 L de resina para uso en la purificación de hialuronidasa a partir de células desarrolladas en un biorreactor de cultivo de 100 L, columnas que tienen 29 cm de alto, 30 cm de diámetro con 19-21 L de resina para su uso en la purificación de hialuronidasa a partir de células cultivadas en un biorreactor de cultivo de 300 L, y, columnas que tienen 35 cm de alto, 80 cm de diámetro con 176 L de resina para su uso en la purificación de hialuronidasa a partir de células desarrolladas en un biorreactor de cultivo de 2.500 L. Un experto en la técnica puede aumentar o disminuir a escala, según corresponda. Los tampones

adecuados para el equilibrado de la columna de Amino Fenil Boronato incluyen, por ejemplo, tampones que contienen fosfato de potasio 5 mM, sulfato de amonio 0,5 M, pH 7,0.

Después de la carga de la columna de proteína purificada en columna de Fenil-Sepharose en la columna de Amino Fenil Boronato, la columna se lava con tampones de lavado adecuados. Los tampones de lavado ilustrativos incluyen, pero no se limitan a, fosfato de potasio 5 mM, sulfato de amonio 0,5 M, pH 7,0, y bicina 20 mM, sulfato de amonio 0,5 M, pH 9,0 y bicina 20 mM, NaCl 100 mM, pH 9,0. En un ejemplo, la columna de Amino Fenil Boronato con la hialuronidasa unida se lava primero con fosfato de potasio 5 mM, sulfato de amonio 0,5 M, pH 7,0, a continuación, con bicina 20 mM, sulfato de amonio 0,5 M, pH 9,0 y finalmente con bicina 20 mM, NaCl 100 mM, pH 9,0. La hialuronidasa unida hacerse eluir a continuación, por ejemplo con Hepes 50 mM, NaCl 100 mM, pH 7,0. Un experto en la técnica puede modificar uno o más de los tampones para llevar la purificación de manera similar. Típicamente, la rHuPH20 soluble eluida también se filtra para eliminar cualquier contaminación microbiana o grandes agregados.

4. Columna de hidroxiapatita

5

10

15

20

25

30

35

40

45

50

55

Después de la cromatografía en columna de Fenil Boronato, la disolución de proteína que contiene la rHuPH20 soluble se puede cargar en una columna de Hidroxiapatita en una etapa de afinado final. La hidroxiapatita es una forma cristalina de fosfato de calcio con la fórmula molecular $Ca_{10}(PO_4)_8(OH)_2$. Se puede utilizar como una etapa de afinado para separar proteínas que se co-purifican muy próximamente, que opera mediante un intercambio iónico de modo fijo debido a su inclusión de radicales cargados tanto positivamente como negativamente. Se encuentran disponibles en el mercado diversos medios cromatográficos de hidroxiapatita, y se puede utilizar cualquier forma disponible del material en los métodos de la presente memoria. Los ejemplos de hidroxiapatitas incluyen, pero no se limitan a, los que se aglomeran para formar partículas y los que sinterizan a altas temperaturas en una masa cerámica porosa estable. El tamaño de partícula puede variar, oscilando por ejemplo de aproximadamente 1 μ 00 μ 10 μ 100 μ

La columna de hidroxiapatita utilizada en los métodos de la presente memoria puede variar de tamaño, dependiendo del volumen y la cantidad de proteína que se purifica a través de ella. Los tamaños ilustrativos incluyen columnas que tienen 20 cm de alto, 30 cm de diámetro con 13 L de resina para su uso en la purificación de hialuronidasa a partir de células desarrolladas en un biorreactor de cultivo de 300 L, y columnas que tienen 23 cm de alto, 80 cm de diámetro con 116 L resina para uso en la purificación de hialuronidasa a partir de células desarrolladas en un biorreactor de cultivo de 2.500 L. Un experto en la técnica puede aumentar o disminuir a escala, según corresponda.

Para los métodos descritos en la presente memoria, la columna de Hidroxiapatita se puede equilibrar con fosfato de potasio 5 mM, NaCl 200 mM o fosfato de potasio 5 mM, NaCl 200 mM, CaCl₂ 0,1 mM, pH 7,0. El equilibrado utilizando disoluciones tales como éstas hace que la columna sea compatible con la hialuronidasa parcialmente purificada, que a su vez se complementa con fosfato de potasio y CaCl₂ a concentraciones finales de 5 mM y 0,1 mM, respectivamente. Después de la carga de la proteína en la columna, la columna se puede lavar, por ejemplo, con fosfato de potasio 10 mM, NaCl 100 mM, CaCl₂ 0,1 mM, pH 7,0, para eliminar cualquier proteína contaminante no unida. La rHuPH20 soluble unida puede hacerse eluir a continuación con un tampón de elución apropiado. Por ejemplo, la elución se puede llevar a cabo mediante la adición de fosfato de potasio 70 mM, pH 7,0. En algunos ejemplos, el producto eluido se filtra, por ejemplo a través de un filtro de 0,22 μm.

6. Eliminación de virus, concentración de proteína y cambio de tampón

La rHuPH20 soluble obtenida después de la cromatografía en columna se puede someter a etapas de postpurificación que sirven para formular la proteína en el tampón deseado a la concentración deseada. La proteína también puede ser sometida a una etapa de eliminación viral para asegurarse de que está libre de contaminación y es adecuada para su uso como agente terapéutico. La eliminación viral se efectúa típicamente con el uso de un filtro que sólo permite solamente que la proteína soluble pase a través, a la vez que atrapa cualquier tipo de virus (y otros contaminantes que tienen un tamaño igual o más grande que los virus). Tales filtros se encuentran disponibles en el mercado, y cualquiera puede ser utilizado en los métodos de la presente memoria. Los tamaños de poro de los filtros útiles para la eliminación viral incluyen, pero no se limitan a, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 40 nm, 50 nm, 60 nm, 75 nm y 100 nm. En un ejemplo, la hialuronidasa purificada se filtra a través de un filtro que contiene poros 20 nm. La proteína se puede bombear al filtro, por ejemplo, por medio de una bomba peristáltica o mediante el uso de un tanque de presión.

Después de la eliminación viral, la rHuPH20 soluble se puede concentrar y someter a cambio de tampón. La rHuPH20 soluble se puede concentrar 2x, 3x, 4x, 5x, 6x, 7x, 8x, 9x, 10x, 11x, 12x, 13x o más. En algunos ejemplos, la proteína se concentra aproximadamente 6x. Esto puede dar como resultado, por ejemplo, una concentración de entre 0,1 mg/mL y 50 mg/mL. En algunos ejemplos, la hialuronidasa purificada se concentra hasta aproximadamente 1 mg/mL. En otros ejemplos, la hialuronidasa purificada se concentra hasta aproximadamente 10 mg/mL. Se puede

utilizar cualquier método de concentración de proteína conocido en la técnica. Los ejemplos de tales métodos incluyen la concentración utilizando filtración de flujo tangencial (TFF) con sistemas con filtros de corte de peso molecular (MWCO). Por ejemplo, la hialuronidasa purificada se puede hacer pasar a través de filtros de polietersulfona espirales con MWCO de 10 kDa para concentrar la proteína 10x. En otro ejemplo, la proteína se hace pasar a través de una serie de cuatro filtros con MWCO de 30 kDa. Para la producción a gran escala de hialuronidasa, tal como, por ejemplo, cultivos de 100 L y 300 L, se emplean típicamente filtros con áreas de superficie de entre 0,5 y 5 metros cuadrados para este propósito. En algunos ejemplos, se utilizan filtros con un área de superficie de 1,2 metros cuadrados o 2,8 metros cuadrados.

El cambio de tampón se realiza generalmente después de la concentración de proteína para formular la proteína en el tampón deseado para su uso posterior, por ejemplo, como un agente terapéutico. Un experto en la técnica puede determinar empíricamente un tampón apropiado. Los ejemplos de los tampones adecuados son los tampones salinos, incluyendo, pero no limitados a, Hepes 10 mM, NaCl 130 mM, pH 7,0, y Histidina 10 mM, NaCl 130 mM, pH 6,0. La hialuronidasa purificada puede, en algunos ejemplos, hacerse pasar a través de otro filtro, tal como un filtro de cápsula de 0,22 μm, antes de ser almacenada en un ambiente estéril.

I. Carga

20

25

30

35

45

50

55

60

Los métodos descritos en la presente memoria para la producción y purificación de rHuPH20 soluble también pueden incluir una etapa de carga, en la que la proteína purificada se carga asépticamente en recipientes más pequeños para su almacenamiento y uso a largo plazo. La rHuPH20 soluble se puede cargar en los recipientes en forma de una formulación líquida, o en forma de un polvo, por ejemplo después de la liofilización. Para la producción a gran escala, se utilizan típicamente sistemas de carga automatizados que incluyen, por ejemplo, bombas para transferir la proteína a los contenedores y estaciones de pesaje para medir el volumen de carga y están ampliamente disponibles. Sin embargo, también se puede llevar a cabo una carga manual o una combinación de automática y manual de los recipientes. Los recipientes adecuados incluyen, pero no se limitan a, viales de vidrio o plástico, envases blíster, frascos, tubos, inhaladores, bombas, bolsas, jeringas, botellas o cualquier otro recipiente adecuado. También se pueden utilizar cierres o tapas adecuados para sellar el recipiente. El proceso de carga puede incluir primero hacer pasar la rHuPH20 soluble a través de un filtro antes de la carga para eliminar los contaminantes microbianos y los agregados más grandes o los sedimentos. Por ejemplo, la proteína se puede filtrar a través de un filtro de 0, 22 µm antes de repartirlo en alícuotas en recipientes adecuados. Un experto en la técnica puede determinar el volumen de carga apropiado y puede incluir, por ejemplo, volúmenes que van desde 0,1 mL a 100 mL. En algunos ejemplos, los viales se llenan asépticamente con 1 mL. 5 mL o 20 mL de rHuPH20 soluble. Después de cubrir o cerrar los recipientes, los recipientes se pueden almacenar a una temperatura apropiada. En algunos ejemplos, los recipientes se congelan instantáneamente y se almacenan entre -15°C y -35°C. En otros ejemplos, los recipientes se refrigeran, por ejemplo entre 3°C y 15°C. Típicamente, el almacenamiento a largo plazo de los líquidos se produce a temperaturas más bajas para minimizar la degradación. La RHuPH20 soluble en forma de polvo se puede almacenar durante largos períodos a temperatura ambiente sin degradación significativa.

40 J. Seguimiento y análisis

Los métodos descritos en la presente memoria pueden ser supervisados en una o más etapas, midiendo una o más condiciones, parámetros o productos en cada punto. Esto puede asegurar que las condiciones óptimas se mantienen, y también puede ser utilizado para evaluar la eficacia y la productividad del proceso. Se puede producir el seguimiento, por ejemplo, una o más veces durante la fase de expansión celular, la fase de producción de proteínas (es decir, en el biorreactor), y/o la etapa de purificación de proteínas, así como en cualquier momento entre, antes o después, por ejemplo durante los procesos de concentración/cambio de tampón o de carga. El seguimiento puede incluir, pero no se limita a, la medición del pH, la temperatura, los volúmenes, la contaminación, la pureza, la concentración de proteínas, la actividad enzimática, la viabilidad celular y el número de células. Además del seguimiento de las condiciones, los parámetros o los productos en todo el proceso, también se puede evaluar la rHuPH20 soluble purificada producida como producto final y se puede caracterizar con respecto a, por ejemplo, la concentración de proteínas, la actividad enzimática, las impurezas, la contaminación, la osmolaridad, la degradación, las modificaciones post-traduccionales y el contenido de monosacáridos.

1. Seguimiento de las condiciones

Las condiciones durante una o más de las etapas de los métodos proporcionados en la presente memoria pueden ser supervisadas para asegurar que las condiciones óptimas se mantienen durante todo el proceso. Si el seguimiento demuestra que las condiciones no están dentro de un intervalo óptimo, las condiciones pueden ser alteradas. Las condiciones que pueden ser supervisadas varían para cada proceso. Por ejemplo, durante las fases de cultivo celular (es decir, la expansión celular y la producción de proteínas en el biorreactor), las condiciones que se deben controlar incluyen, pero no se limitan a, temperatura, pH de cultivo celular, nutrientes de cultivo celular (p. ej., glucosa), niveles de CO₂ y niveles de O₂. Típicamente, las condiciones se supervisan automáticamente utilizando sistemas integrados, por ejemplo en la incubador o el biorreactor.

Durante la etapa de purificación de proteínas,las condiciones que se pueden supervisar incluyen, pero no se limitan a, pH, conductividad y velocidad de flujo. Estas condiciones pueden ser supervisadas antes, durante y/o después de una o más etapas de cromatografía en columna. Por ejemplo, los tampones utilizados para equilibrar, lavar o hacer eluir la columna pueden ser supervisados. Esto se puede realizar antes de que se cargue el tampón o después de que el tampón haya corrido a través de la columna.

2. Seguimiento de la producción de rHuPH20 soluble

La producción de rHuPH20 soluble, y los parámetros asociados con la producción de rHuPH20 soluble, también pueden ser supervisados durante todo el proceso. Estos incluyen, pero no se limitan a, el número de células, la viabilidad celular, la contaminación, la concentración de proteínas, la actividad enzimática, la pureza, la osmolaridad, las modificaciones post-traduccionales. Se puede utilizar cualquier método para evaluar estos parámetros. Por ejemplo, la viabilidad de células de mamífero se puede evaluar tomando una pequeña alícuota del cultivo celular y tiñendo con azul de tripano, que penetra solamente en las membranas celulares dañadas, tiñendo de ese modo sólo las células muertas. Las células pueden ser visualizadas bajo el microscopio y contadas utilizando, por ejemplo, un hemocitómetro. Otros métodos incluyen la evaluación de la viabilidad celular mediante la medición de la actividad metabólica. Por ejemplo, se puede incubar una alícuota del cultivo celular con una sal de tetrazolio (p. ej., MTT, XTT o WST-1) que es escindida a un producto de formazán coloreado por las células metabólicamente activas.

20

25

30

50

55

60

La concentración de rHuPH20 soluble en una muestra concreta se puede evaluar por medio de métodos bien conocidos en la técnica, incluyendo pero no limitados a, análisis de inmunoabsorción ligados a enzimas (ELISA); SDS-PAGE; métodos Bradford, Lowry, y/o BCA; Absorbancia UV, y otros métodos de marcaje de proteínas cuantificables, tales como, pero no limitados a, métodos inmunológicos, radiactivos y fluorescentes y métodos relacionados. Además, la presencia y el grado de degradación se pueden medir mediante técnicas convencionales, tales como electroforesis en gel de poliacrilamida-dodecil sulfato de sodio (SDS-PAGE), transferencia Western de muestras que contienen hialuronidasa sometida a electroforesis y cromatografía, tales como, por ejemplo, RP-HPLC. La pureza de una muestra que contiene hialuronidasa se puede evaluar, por ejemplo, mediante SDS-PAGE, RP-HPLC, cromatografía de exclusión por tamaño, cromatografía de intercambio aniónico e isoelectroenfoque (IEF). Las muestras que contienen RHuPH20 soluble, tales como las muestras que contienen hialuronidasa purificada, se pueden caracterizar adicionalmente mediante la evaluación del contenido de ácido siálico y de monosacáridos. Esto se puede lograr, por ejemplo, hidrolizando la muestra con ácido trifluoroacético al 40%, etiquetando fluorescentemente los monosacáridos liberados y separándolos utilizando RP-HPLC (véase el Ejemplo 10).

La rHuPH20 soluble producida y purificada utilizando los métodos proporcionados en la presente memoria también se puede evaluar para determinar la presencia de modificaciones posteriores a la traducción. Dichos análisis son conocidos en la técnica e incluyen análisis para medir la glicosilación, hidroxilación, y carboxilación. En un análisis ilustrativo para la glicosilación, el análisis de carbohidratos se puede realizar, por ejemplo, mediante análisis SDS PAGE de la rHuPH20 soluble expuesta a hidrazinolisis o tratamiento con endoglicosidasa. La hidrazinolisis libera los glicanos unidos a N y O de las glicoproteínas mediante incubación con hidracina anhidra, mientras que la liberación de endoglicosidasa implica PNGasa F, que libera la mayoría de los N-glicanos de las glicoproteínas. La hidrazinolisis o el tratamiento con endoglicosidasa de los polipéptidos de rHuPH20 solubles generan un extremo reductor que puede ser etiquetado con una marca de fluoróforo o cromóforo. Los polipéptidos de rHuPH20 solubles marcados pueden ser analizados por electroforesis de carbohidratos asistida por fluoróforo (FACE). La etiqueta fluorescente para los glicanos también se puede utilizar para el análisis de monosacáridos, perfilado o huella dactilar de los patrones de glicosilación complejos por HPI C. Los métodos de HPI C ilustrativos incluyen cromatografía de

patrones de glicosilación complejos por HPLC. Los métodos de HPLC ilustrativos incluyen cromatografía de interacción hidrófila, interacción electrónica, intercambio iónico, interacción hidrófoba y cromatografía de exclusión por tamaño. La sondas de glicano ilustrativas incluyen, pero no se limitan a, 3- (acetilamino)-6-aminoacridina (AA-Ac) y ácido 2-aminobenzoico (2-AA). Los radicales carbohidrato también se pueden detectar a través del uso de anticuerpos específicos que reconocen el polipéptido de hialuronidasa glicosilado.

Un análisis ilustrativo para medir (3-hidroxilación comprende el análisis de HPLC de fase inversa de polipéptidos de

rHuPH20 solubles que han sido sometidos a hidrólisis alcalina (Przysiecki et al. (1987) PNAS 84: 7856-7860). La carboxilación y la γ-carboxilación de los polipéptidos de hialuronidasa pueden ser evaluadas utilizando el análisis de espectrometría de masas con desorción/ionización mediante láser asistida por matriz de tiempo de vuelo (MALDITOF), como se describe en la técnica (véase, p. ej., Harvey et al. J Biol Chem 278: 8363-8369, Maum et al. Prot Sci

14: 1171-1180).

La actividad enzimática de rHuPH20 soluble en una muestra se puede evaluar en cualquier punto durante los métodos descritos en la presente memoria. En un ejemplo, la actividad se mide utilizando un análisis de microturbidez (véase, p. ej., el Ejemplo 10). Éste se basa en la formación de un producto precipitado insoluble cuando el ácido hialurónico se une a la albúmina sérica. La actividad se mide mediante la incubación de rHuPH20 soluble con hialuronato de sodio (ácido hialurónico) durante un período determinado de tiempo (p. ej., 10 minutos) y posterior precipitación del hialuronato de sodio no digerido con la adición de albúmina de suero acidulada. La turbidez de la muestra resultante se mide a 640 nm después de un período de desarrollo adicional. La disminución

de la turbidez resultante de la actividad de la enzima sobre el sustrato de hialuronato de sodio es una medida de la actividad enzimática de la rHuPH20 soluble. En otro ejemplo, la actividad enzimática se mide utilizando un análisis de microtitulación en el que el ácido hialurónico biotinilado residual se mide después de la incubación con la muestra que contiene rHuPH20 soluble (véase, p. ej., Frost and Stem (1997) Anal. Biochem. 251: 263-269, Publicación de Patente de los Estados Unidos Núm. 20050260186). Los grupos carboxilo libres en los residuos de ácido glucurónico del ácido hialurónico están biotinilados, y el sustrato de ácido hialurónico biotinilado es acoplado covalentemente a una placa de microtitulación. Después de la incubación con la muestra que contiene rHuPH20 soluble, se detecta el sustrato de ácido hialurónico biotinilado residual utilizando una reacción de avidina-peroxidasa, y se compara con la obtenida después de la reacción con patrones de hialuronidasa de actividad conocida. Otros análisis para medir la actividad enzimática también se conocen en la técnica y se pueden utilizar en los métodos de la presente memoria (véanse p. ej., Delpech et al., (1995) Anal. Biochem. 229: 35-41; Takahashi et al., (2003) Anal. Biochem. 322: 257-263).

También se puede supervisar la presencia de cualquier tipo de contaminación. La contaminación puede incluir, pero no se limita a, contaminación microbiana (por ejemplo, virus, bacterias y micoplasmas), contaminación con productos microbianos (p. ej., endotoxina), u otras impurezas relacionadas con el proceso. Se puede utilizar cualquier método o análisis adecuado. Por ejemplo, se pueden cultivar virus y bacterias utilizando métodos bien conocidos en la técnica para determinar si están presentes o no en una muestra, y si es así, en qué cantidades. También se puede utilizar la microscopía para detectar la contaminación microbiana. Por ejemplo, se puede evaluar una muestra para determinar la presencia de virus o bacterias utilizando microscopía electrónica de transmisión (TEM). La detección de micoplasmas se puede efectuar utilizando, por ejemplo, técnicas bioquímicas o moleculares, incluyendo, pero no limitadas a, PCR para amplificar el ácido nucleico específico del micoplasma, pruebas bioquímicas para detectar enzimas de micoplasmas y fluorescencia basada en células para detectar antígenos o ácidos nucleicos de micoplasmas.

25

30

35

50

55

60

10

15

20

La presencia de productos microbianos, tales como endotoxinas bacterianas, también se puede supervisar. Un ejemplo de un análisis adecuado para detectar la presencia de endotoxinas es el análisis Producto lisado de Amebocitos de Limulus (LAL). Se pueden utilizar dos tipos de análisis LAL: coágulo de gel y fotométrico (cromogénico y turbimétrico). LAL es un extracto acuoso de las células sanguíneas (amebocitos) del cangrejo de herradura. La endotoxina desencadena una cascada de reacciones enzimáticas, que dan como resultado la enzima de coagulación activada. En la presencia de endotoxinas bacterianas, a una temperatura elevada, el reactivo LAL se coagulará después de la adición de reactivo. La formación del coágulo de gel es proporcional a la concentración de la endotoxina. En el análisis cinético, la proenzima de LAL se activa cuando entra en contacto con endotoxinas producidas por bacterias gram negativas. La velocidad de activación es directamente proporcional a la concentración de endotoxina presente. El nivel de activación se puede medir a través de una reacción del sustrato posterior que se mide espectrofotométricamente.

K. Ejemplos

40 Los siguientes ejemplos se incluyen únicamente con fines ilustrativos y no se pretende que limiten el alcance de la invención.

Ejemplo 1

45 Generación de una línea celular que expresa rHuPH20 soluble

El plásmido HZ24 (mostrado en el SEQ ID NO: 50) se utilizó para transfectar ovario de hámster chino (células CHO) (véase, p. ej. las solicitudes relacionadas Núms. 10.795.095, 11/065.716 y 11/238.171). El vector plasmídico HZ24 para la expresión de rHuPH20 soluble contiene una cadena principal de vector pCI (Promega), ADN que codifica los aminoácidos 1-482 de la hialuronidasa PH20 humana (SEQ ID NO: 47), un sitio interno de entrada al ribosoma (IRES) del virus ECMV (Clontech), y el gen de la dihidrofolato reductasa (DHFR) de ratón. La cadena principal del vector pCI también incluye ADN que codifica el gen de resistencia a Beta-lactamasa (AmpR), un origen de replicación fl. una región potenciadora/promotora temprana inmediata de citomegalovirus (CMV), un intrón quimérico y una señal de poliadenilación tardía de SV40 (SV40). El ADN que codifica el constructo de rHuPH20 soluble contiene un sitio Nhel y una secuencia consenso de Kozak antes del ADN que codifica la metionina en la posición del aminoácido 1 de la secuencia señal de 35 aminoácidos nativa de PH20 humana, y un codón de parada después del ADN que codifica la tirosina correspondiente a la posición del aminoácido 482 de la hialuronidasa PH20 humana mostrada en el SEC ID NO: 1), seguido de un sitio de restricción BamHI. El constructo pCI-PH20-IRES-DHFR-SV40pa (HZ24), por lo tanto, da como resultado una sola especie de ARNm dirigido por el promotor de CMV que codifica los aminoácidos 1 a 482 de PH20 humana (mostrada en el SEQ ID NO: 3) y los aminoácidos 1-186 de la dihidrofolato reductasa de ratón (mostrados en el SEQ ID NO: 51), separados por el sitio interno de entrada al ribosoma (IRES).

Las células CHO DG44 no transfectadas crecen en medios CD-CHO Modificados de GIBCO para células DHFR (-),

con un suplemento de glutamina 4 mM y 18 ml/L de Plurionic F68/L (Gibco), se sembraron a 0,5 x 10⁶ células/mL en un matraz oscilante en la preparación para la transfección. Las células se cultivaron a 37°C en CO₂ al 5% en un incubador humidificado, con oscilación a 120 rpm. Las células CHO DG44 en crecimiento exponencial no transfectadas se sometieron a ensayo para determinar la viabilidad antes de la transfección.

Sesenta millones de células viables del cultivo de células CHO DG44 no transfectadas se sedimentaron y se resuspendieron a una densidad de 2 x 10⁷ células en 0,7 ml de 2x tampón de transfección (2x HeBS: Hepes 40 mM, pH 7,0, NaCl 274 mM, KCl 10 mM, Na₂HPO₄ 1,4 mM, dextrosa 12 mM). A cada alícuota de células resuspendidas, se le añadieron 0,09 ml (250 µg) del plásmido HZ24 lineal (linealizado mediante digestión durante la noche con Cla I (New England Biolabs) se añadió, y las disoluciones de células/ADN se transfirieron a cubetas de electroporación BTX con ranura de 0,4 cm (Gentronics) a temperatura ambiente. Se realizó una electroporación de control negativo sin ADN plasmídico mezclado con las células. Las mezclas de células/plásmido se sometió a electroporación con una descarga de condensador de 330 V y 960µF o a 350 V y 960 µF.

Las células se retiraron de las cubetas después de la electroporación y se transfirieron a 5 ml de medios CD-CHO modificados para células DHFR (-), se complementaron con glutamina 4 mM y 18 ml/L de Plurionic F68/L (Gibco), y se dejaron crecer en un pocillo de una placa de cultivo de tejidos de 6 pocillos sin selección durante 2 días a 37°C en 5% de CO₂ en un incubador humidificado.

Dos días después de la electroporación, se eliminaron 0,5 mL de medio de cultivo de tejido a cada pocillo y se sometieron a ensayo para determinar la presencia de actividad hialuronidasa, utilizando el análisis de microturbidez descrito en el Ejemplo 9.

Tabla 1: Actividad hialuronidasa Inicial de las células CHO DG44 transfectadas con HZ24 a las 40 horas de la transfección

	Dilución	Unidades de Actividad/mL			
Transfección 1 330V	1 a 10	0. 25			
Transfección 2 350V	1 a 10	0. 52			
Control Negativo	1 a 10	0,015			

Las células de la Transfección 2 (350V) se recogieron de los pocillos de cultivo de tejidos, se contaron y se diluyeron a 1 x 10⁴ a 2 x 10⁴ células viables por ml. Se transfirió una alícuota de 0,1 mL de la suspensión celular a cada pocillo de cinco placas de cultivo de tejidos de fondo redondo de 96 pocillos. Se añadieron cien microlitros de medios CD-CHO (GIBCO) que contenían suplemento GlutaMAX™-I 4 mM (GIBCO™, Invitrogen Corporation) y sin suplementos de hipoxantina y timidina a los pocillos que contenían las células (volumen final de 0,2 mL).

Se identificaron diez clones a partir de las 5 placas cultivadas sin metotrexato.

Tabla 2. Actividad hialuronidasa de clones identificados

Placa/ID Pocillo	Hialuronidasa Relativa
1C3	261
2C2	261
3D3	261
3E5	243
3C6	174
2G8	103
1B9	304
2D9	273
4D10	302

35

5

10

Se expandieron en cultivo seis clones HZ24 y se transfieren a matraces oscilantes en forma de suspensiones de células individuales. Los clones 3D3; 3E5, 2G8, 2D9, 1E11, y 4D10 se sembraron en placas para cultivo de tejidos de 96 pocillos de fondo redondo utilizando una estrategia de dilución bidimensional infinita en la que las células se diluyeron 1:2 en la parte inferior de la placa, y 1:3 a través de la placa, partiendo de 5000 células en el pocillo de la

parte superior izquierda. Los clones diluidos se cultivaron en un fondo de 500 células CHO DG44 no transfectadas por pocillo, para proporcionar los factores de crecimiento necesarios para los días iniciales en cultivo. Se prepararon diez placas por subclón, conteniendo 5 placas metotrexato 50 nM y 5 placas sin metotrexato.

El clon 3D3 produjo 24 subclones visuales (13 a partir del tratamiento sin metotrexato, y 11 a partir del tratamiento con metotrexato 50 nM. Se midió una actividad hialuronidasa significativa en los sobrenadantes de 8 de los 24 subclones (> 50 Unidades/mL), y estos 8 subclones se expandieron en matraces de cultivo de tejido T-25. Los clones aislados a partir del protocolo de tratamiento con metotrexato se expandieron en presencia de metotrexato50 nM. El clon 3D35M se amplió en metotrexato 500 nM dando lugar a clones que producían más de 1.000 Unidades/mL en matraces oscilantes (clon 3D35M, o Gen1 3D35M). A continuación, se preparó un banco de células maestro (MCB) de las células 3D35M.

Ejemplo 2

20

25

30

45

50

55

60

15 Determinación del número de copias de la región de ácido nucleico que codifica rHuPH20 soluble en células 3D35M

El número de copias de la región de ácido nucleico que codifica rHuPH20 soluble en las células 3D35M se determinó mediante PCR cuantitativa. Se extrajo en ADN genómico total de las células 3D35M del MCB. Se prepararon seis diluciones independientes del ADN para el análisis por duplicado, cada una de las cuales contenía aproximadamente 6,6 ng de ADN (equivalente a aproximadamente 100 células). Los controles negativos que no contenían molde también se prepararon, como lo fueron los controles positivos que contenían el plásmido y el ADN equivalente de 1.000 células CHO (6,6 ng). Las reacciones se ensamblaron de acuerdo con el Protocolo de Mezcla Maestra de PCR Universal TaqMan (Applied Biosystems) y ejecutaron por duplicado. Se generó una curva patrón utilizando ocho diluciones del plásmido HZ24, lo que representa un intervalo de aproximadamente 5 x 10⁶ a 49 copias de ADN plasmídico. El patrón se diluyó en ADN genómico de control CHO (equivalente de 100 células). Las reacciones se ensamblaron de acuerdo con el Protocolo de Mezcla Maestra de PCR Universal TaqMan™ (Applied Biosystems) utilizando el cebador directo HZM3. P1 y el cebador inverso HZM3.P2 (mostrado en los SEQ ID NO: 52 y 53, respectivamente) y la sonda HZM3 (SEQ ID NO: 54), que contenía los colorantes fluorescentes 6FAM (6carboxifluoresceína) y TAMRA (6-carboxitetrametil-rodamina). Las reacciones se realizaron por duplicado utilizando las siguientes condiciones de ciclo: 50°C durante 2 minutos, 95°C durante 10 minutos, seguido por 40 ciclos de 95°C durante 15 segundos y 60°C durante 1 minuto. También se realizó una reacción de PCR cuantitativa convencional para analizar copias de GAPDH para cada muestra de ADN. Los datos fueron recogidos por medio de soporte lógico ABI Prism 7700[™] Sequence Detection System versión 1.9 (Applied Biosystems).

35 El número de copias del gen diana por célula se calcularon como la razón de copias diana (rHuPH20 soluble) con respecto a las copias normalizadas (GAPDH) para las seis diluciones de ADN genómico 3D35M. La prueba estadística Dixon Q de valores atípicos se aplicó al conjunto de datos. Se encontró que el número de copias de la región sHuPH20 en las células 3D35M era de 317,87 ± 11,64.

40 Ejemplo 3

Producción y purificación de rHuPH20 soluble del Gen1

A. Procedimiento en biorreactor de 5 L

Un vial de 3D35M se descongeló y se expandió desde matraces T-25 a través de matraces de agitación de 1 L en CD CHO (Invitrogen, Carlsbad Calif.) con un suplemento de metotrexato 100 nM y 40 mL/L de GlutaMAX™-I (Invitrogen; solución de partida 200 mM) . Las células se transfirieron de matraces de agitación a un biorreactor de 5 L (Braun) a una densidad de inoculación de 4 x 10⁵ células viables por mL en medios 5 L. Los parámetros fueron Punto de ajuste de temperatura a 37°C, pH 7,2 (Punto de ajuste inicial), con el punto de ajuste del oxígeno disuelto de 25% y una capa de aire de 0 a 100 cc/min. A las 168 horas, se añadieron 250 mL de Medio de Alimentación Núm. 1 (CD CHO con 50 g/L de glucosa). A las 216 horas, se añadieron 250 mL de Medio de Alimentación Núm. 2 (CD CHO con 50 g/L de glucosa y butirato de sodio 10 mM), y a las 264 horas se añadieron 250 mL de Medio de Alimentación Núm. 2. Este procedimiento dio como resultado una productividad final del 1600 Unidades por mL con una densidad celular máxima de 6 x 10⁶ células/mL. La adición de butirato de sodio fue para mejorar la producción de rHuPH20 soluble en las etapas finales de la producción.

Los medios condicionados del clon 3D35M se clarificó mediante filtración en profundidad y diafiltración de flujo tangencial en Hepes 10 mM de pH 7,0. A continuación la rHuPH20 soluble se purificó mediante cromatografía secuencial en Q Sepharose (Pharmacia) de intercambio iónico, cromatografía de intercación hidrófoba con Phenyl Sepharose (Pharmacia), cromatografía con Aminofenilboronato (ProMedics) y con hidroxiapatita (Biorad, Richmond, CA).

La rHuPH20 soluble se unió a Q Sepharose y se eluyó en NiCl 400 mM en el mismo tampón. El producto eluido se

diluyó con sulfato de amonio 2 M a una concentración final de sulfato de amonio 500 mM y se hizo pasar pasó a través de una columna de Phenyl Sepharose (baja sustitución), seguido de unión en las mismas condiciones a una resina de fenil boronato. La rHuPH20 soluble se eluyó de la resina de Phenyl Sepharose en Hepes de pH 6,9 después de lavar a pH 9,0 en bicina 50 mM sin sulfato de amonio. El producto eluido se cargó en una resina de hidroxiapatita cerámica a pH 6,9 en fosfato de potasio 5 mM y CaCl₂ 1 mM y se eluyó con fosfato de potasio 80 mM, de pH 7,4 con CaCl₂ 0,1 mM.

La rHuPH20 soluble resultante poseía una actividad específica en exceso de 65.000 Unidades/mg de proteína por medio del análisis de microturbidez (véase el Ejemplo 9). La rHuPH20 soluble purificada eluyó como un solo pico a partir de 24 a 26 minutos de una columna de estireno-divinilbenceno Pharmacia 5RPC con un gradiente entre TFA al 0,1%/H₂O y TFA al 0,1%/acetonitrilo al 90%/H₂O al 10% y resolvió como una sola banda ancha de 61 kDa mediante electroforesis en SDS que se redujo a una banda afilada de 51 kDa tras el tratamiento con PNGASA-F. La secuenciación de aminoácidos N-terminal reveló que el péptido líder se había eliminado eficazmente.

15 B. Procedimiento de expansión del Cultivo Celular aguas arriba en cultivo celular en biorreactor de 100 L

5

10

20

25

30

35

60

Se utilizó un procedimiento de aumento a escala para purificar por separado rHuPH20 soluble a partir de cuatro viales diferentes de células 3D35M para producir 4 lotes separados de sHuPH20; HUA0406C, HUA0410C, HUA0415C y HUA0420C. Cada vial se expandió por separado y se cultivó por medio de un biorreactor de 125 L, a continuación se purificó utilizando cromatografía en columna. Se tomaron muestras durante todo el procedimiento para evaluar parámetros tales como el rendimiento de la enzima. La descripción del procedimiento proporciona a continuación especificaciones representativas para objetos tales como el biorreactor de partida y los volúmenes medios de alimentación, las densidades celulares de transferencia, y los volúmenes de lavado y elución. Los números exactos varían ligeramente con cada lote, y se detallan en las Tablas 3 a 10.

Se descongelaron cuatro viales de células 3D35M en un baño de agua a 37°C, se añadieron células CD CHO que contenían metotrexato 100 nM y 40 mL/L de GlutaMAX™-l y las células se centrifugaron. Las células se resuspendieron en un matraz de agitación de 125 mL con 20 mL de medio de nueva aportación y se colocaron en una incubadora a 37°C, 7% de CO₂. Las células se expandieron hasta 40 mL en el matraz oscilante de 125 mL. Cuando la densidad celular alcanzó de 1,5 a 2,5 x 10⁶ células/mL, el cultivo se expandió en un matraz de agitación de 125 mL en un volumen de cultivo de 100 mL. El matraz se incubó a 37°C, con CO₂ al 7%. Cuando la densidad celular alcanzó de 1,5 a 2,5 x 10⁶ células/mL, el cultivo se expandió en un matraz de agitación de 250 mL en 200 mL de volumen de cultivo, y el matraz se incubó a 37°C, con CO₂ al 7%. Cuando la densidad celular alcanzó de 1,5 a 2,5 x 10⁶ células/mL, el cultivo se expandió en un matraz de agitación de 1 L en 800 mL de volumen de cultivo y se incubaron a 37°C, CO₂ al 7%. Cuando la densidad celular alcanzó de 1,5 a 2,5 x 10⁶ células/mL, el cultivo se expandió en un matraz de agitación de 6 L en un volumen de cultivo de 5 L y se incubaron a 37°C, CO₂ al 7%. Cuando la densidad celular alcanzó de 1,5 a 2,5 x 10⁶ células/mL, el cultivo se expandió en un matraz de agitación de 36 L en un volumen de cultivo de 20 L y se incubaron a 37°C, CO₂ al 7%.

40 Un reactor de 125 L se esterilizó con vapor de aqua a 121°C, se añadieron 1,36 atm y 65 litros de medio CD CHO. Antes de su uso, se verificó la contaminación del reactor. Cuando la densidad celular en los matraces de agitación de 36 L alcanzó 1,8 - 2,5 x 10⁶ células/mL, se transfirieron 20 L de cultivo celular desde los matraces de agitación de 36L al biorreactor de 125 L (Braun), dando como resultado un volumen final de 85 L y una densidad de siembra de aproximadamente 4×10^5 células/mL. Los parámetros fueron punto de ajuste de temperatura, 37° C; pH: 7,2; Oxígeno disuelto: 25% ± 10%; Velocidad del impulsor 50 rpm; Presión del recipiente 0,290 atm; burbujeo de are 1 45 L/min.: Superposición de Aire: 1 L/min. Se tomaron muestras del reactor diariamente para los recuentos de células. la verificación de pH, el análisis de los medios, la producción y la retención de proteínas. Se añadieron las alimentaciones de nutrientes durante la ronda. En el día 6, se añadieron 3,4 L de Medio de Alimentación Núm. 1 (CD CHO + 50 g/L de glucosa + 40 mL/L de GlutaMAX™-I), y la temperatura de cultivo se cambió a 36,5°C. El día 9, se añadieron 3,5 L de la Alimentación Núm. 2 (CD CHO + 50 g/L de glucosa + 40 mL/L de GlutaMAX™-I + 1,1 g/L de 50 butirato de sodio), y la temperatura de cultivo se cambió a 36°C. El día 11, se añadieron 3,7 L de la Alimentación Núm. 3 (CD CHO + 50 g/L de glucosa + 40 mL/L de GlutaMAX™-I + 1,1 g/L de butirato de sodio), y la temperatura de cultivo se cambió a 35.5°C. El reactor fue cosechado a los 14 días o cuando la viabilidad de las células se redujo por debajo de 50%. El procedimiento dio como resultado la producción de rHuPH20 soluble con una actividad 55 enzimática de 1600 unidades/mL con una densidad celular máxima de 8 millones de células/mL. En la cosecha, se tomaron muestras del cultivo para determinar los micoplasmas, la carga biológica, las endotoxinas, y los virus in vitro e in vivo, la microscopía electrónica de transmisión (TEM) para las partículas virales, y la actividad enzimática.

La cosecha del cultivo celular del biorreactor 100 L se filtró a través de una serie de filtros de cápsula desechables que tienen un medio de polietersulfona (Sartorius): primero a través de una cápsula de profundidad de 8,0 μm, una cápsula de profundidad 0,65 μm, una cápsula de 0,22 μm, y finalmente a través de un filtro Sartopore de 2.000 cm² de 0,22 μm y dentro de una bolsa de almacenamiento estéril de 100 L. El cultivo se concentró 10x utilizando dos TFF con filtros de Polietersulfona Espirales con un MWCO de 30 kDa (Millipore), seguido de 6 x tampón de intercambio con Hepes 10 mM, Na₂SO₄ 25 mM, pH 7,0 en un filtro final de 0,22 μm en una bolsa de almacenamiento

estéril de 20 L. La Tabla 3 proporciona datos de seguimiento relacionados con el cultivo celular, la cosecha, la concentración y las etapas de cambio de tampón.

Tabla 3. Los datos de seguimiento para el cultivo celular, la cosecha, la concentración y las etapas de cambio de tampón.

5

10

15

20

35

Parámetro	HUA0406C	HUA04010C	HUA0415C	HUA0420C
Tiempo de deshielo para inocular 100 L biorreactor (días)	21	19	17	18
densidad de inoculación en 100 L (x 10 ⁶ células/mL)	0,45	0,33	0,44	0,46
Tiempo de duplicación del crecimiento logarítmico (hr)	29,8	27,3	29,2	23,5
Densidad celular máx. (x 10 ⁶ células/mL)	5,65	8,70	6,07	9,70
Viabilidad de la cosecha (%)	41	48	41	41
Título de cosecha (U/mL)	1964	1670	991	1319
Tiempo en el biorreactor de 100 L (días)	13	13	12	13
Volumen aclarado de la cosecha (mL)	81800	93300	91800	89100
Análisis enzimático aclarado de la cosecha (U/mL)	2385	1768	1039	1425
Análisis enzimático concentrado (U/mL)	22954	17091	8561	17785
Análisis enzimático de producto concentrado con cambio de tampón (U/mL)	15829	11649	9915	8679
Análisis enzimático de producto concentrado con cambio de tampón filtrado (U/mL)	21550	10882	9471	8527
Volumen de producto concentrado con intercambió de tampón (mL)	10699	13578	12727	20500
Razón de concentración de unidades enzimáticas/cosecha	0,87	0,96	1,32	1,4

Se preparó una columna de intercambio iónico AQ Sepharose (Pharmacia) (3 L de resina, Altura = 20 cm, diámetro = 14 cm). Se recogieron muestras de lavado para una determinación del pH, la conductividad y análisis de endotoxinas (LAL). La columna se equilibró con 5 volúmenes de columna de Tris 10 mM, Na₂SO₄ 20 mM, pH 7,5. La cosecha concentrada, sometida a diafiltración se cargó en la columna Q a una velocidad de flujo de 100 cm/hr. La columna se lavó con 5 volúmenes de columna de Tris 10 mM, Na₂SO₄ 20 mM, pH 7,5 y Hepes 10 mM, NaCl 50 mM, pH 7,0. La proteína se eluyó con Hepes 10 mM, NaCl 400 mM, pH 7,0 y se filtró a través de un filtro final de 0,22 μm a una bolsa estéril.

A continuación se realizó una cromatografía de interacción hidrófoba con Phenyl-Sepharose (Pharmacia). Se preparó una columna de Phenyl-Sepharose (PS) (9,1 L de resina, Altura = 29 cm, diámetro = 20 cm). La columna se equilibró con 5 volúmenes de columna de fosfato de potasio 5 mM, sulfato de amonio 0,5 M, CaCl₂ 0,1 mM, pH 7,0. Al producto eluido de proteína anterior se le añadió un suplemento de sulfato de amonio 2 M, fosfato de potasio 1 M y disoluciones de partida de CaCl₂ 1 M a concentraciones finales 5 mM, 0,5 M y 0,1 mM, respectivamente. La proteína se cargó en la columna de PS a una velocidad de flujo de 100 cm/h. Se añadieron fosfato de potasio 5 mM, sulfato de amonio 0,5 M y CaCl₂ 0,1 mM a pH 7,0 a 100 cm/h. El flujo directo se hizo pasar a través de un filtro final de 0,22 μm a una bolsa estéril.

La proteína purificada con PS se cargó en una columna de aminofenilboronato (ProMedics) (6,3 L de resina, Altura = 20 cm, Diámetro = 20 cm) que había sido equilibrada con 5 volúmenes de columna de fosfato de potasio 5 mM, sulfato de amonio 0,5 M. La proteína se hizo pasar a través de la columna a una velocidad de flujo de 100 cm/hr, y la columna se lavó con fosfato de potasio 5 mM, sulfato de amonio 0,5 M, pH 7,0. A continuación, la columna se lavó con bicina 20 mM, NaCl 100 mM, pH 9,0 y la proteína se eluyó con Hepes 50 mM, NaCl 100 mM a pH 6,9 a través de un filtro estéril y a una bolsa estéril de 20 L. El producto eluido se sometió a ensayo para determinar la carga biológica, la concentración de proteína y la actividad enzimática.

Una columna de hidroxiapatita (HAP) (BioRad) (resina de 1,6 L, Altura = 10 cm, Diámetro = 14 cm) se equilibró con fosfato de potasio 5 mM, NaCl 100 mM, CaCl₂ 0,1 mM a pH 7,0. Se recogieron muestras de lavado y se sometieron a ensayo para determinar el pH, la conductividad y la endotoxina (análisis LAL). A la proteína purificada con aminofenilboronato se le añadió un suplemento de fosfato de potasio y CaCl₂ para producir concentraciones finales de fosfato de potasio 5 mM y CaCl₂ 0,1 mM y se cargó en la columna HAP en una velocidad de flujo de 100 cm/h. La

columna se lavó con fosfato de potasio 5 mM a pH 7,0, NaCl 100 mM, CaCl₂ 0,1 mM, a continuación, fosfato de potasio 10 mM a pH 7,0, NaCl 100 mM. CaCl₂ 0,1 mM pH. La proteína se eluyó con fosfato de potasio 70 mM a pH 7,0 y se filtró a través de un filtro de 0,22 µm en una bolsa de almacenamiento estéril de 5 L. El producto eluido se sometió a ensayo para determinar la carga biológica, concentración de proteína y la actividad enzimática.

5

10

15

20

A continuación, la proteína purificada con HAP se bombeó a través de un filtro de eliminación viral 20 nM a través de un tanque de presión. La proteína se añadió al tanque de presión y filtro DV20 (Pall Corporation), pasando a través de un filtro DV20 Ultipor con poros de 20 nm (Pall Corporation) en una bolsa de almacenamiento estéril de 20 L. El producto filtrado se sometió a ensayo para determinar los perfiles de concentración de proteínas, actividad enzimática, oligosacáridos, monosacáridos y ácido siálico, y las impurezas relacionadas con el procedimiento. A continuación, la proteína en el producto filtrado se concentró a 1 mg/mL utilizando un sistema de filtración de flujo tangencial (TFF) Sartocon Slice (Sartorius) con corte de peso molecular (MWCO) de 10 kD. El filtro se preparó en primer lugar mediante lavado con una disolución de Hepes/suero salino (Hepes 10 mM, NaCl 130 mM, pH 7,0) y se tomaron muestras del permeato para determinar el pH y la conductividad. Después de la concentración, se tomaron muestras de la proteína concentrada y se sometió a ensayo para determinar la concentración de proteína y la actividad enzimática. Se realizó un intercambio de 6 x tampón sobre la proteína concentrada en el tampón final: Hepes 10 mM, NaCl 130 mM, pH 7,0. La proteína concentrada se hizo pasar a través de un filtro de 0,22 µm en una bolsa de almacenamiento estéril de 20 L. Se tomaron muestras de la proteína y se sometió a ensayó para determinar la concentración de proteínas, la actividad enzimática, los grupos sulfhidrilo libres, los perfiles de oligosacáridos y la osmolaridad.

Tablas 4 a 10 proporcionan datos de seguimiento relacionados con cada una de las etapas de purificación descritas anteriormente, para cada lote de células 3D35M.

25 Tabla 4. Datos de la columna Q Sepharose

Parámetro	HUA0406C	HUA0410C	HUA0415C	HUA0420C
Volumen de carga (mL)	10647	13524	12852	20418
Razón de volumen de carga/volumen de resina	3,1	4,9	4,5	7,3
Volumen de la columna (mL)	2770	3840	2850	2880
Volumen del producto eluido (mL)	6108	5923	5759	6284
Conc de Proteína del producto eluido (mg/mL)	2,8	3,05	2,80	2,86
Análisis enzimático del producto eluido (U/mL)	24493	26683	18321	21052
Rendimiento de enzima (%)	65	107	87	76

Tabla 5. Datos de la columna con Phenyl Sepharose

Parámetro	HUA0406C	HUA0410C	HUA0415C	HUA0420C
Volumen antes de la adición de la disolución de partida (mL)	5670	5015	5694	6251
Volumen de carga (mL)	7599	6693	7631	8360
Volumen de la columna (mL)	9106	9420	9340	9420
Razón de volumen de carga/volumen de resina	0,8	0,71	0,82	0,89
Volumen del producto eluido (mL)	16144	18010	16960	7328
Cono de proteína o producto eluido (mg/mL)	0,4	0,33	0,33	0,38
Análisis enzimático del producto eluido (U/mL)	8806	6585	4472	7509
Rendimiento de Proteína (%)	41	40	36	37
Rendimientos de enzimas (%)	102	88	82	96

Tabla 6. Datos de la columna con aminofenilboronato

Parámetro	HUA0406C	HUA0410C	HUA0415C	HUA0420C
Volumen de carga (mL)	16136	17958	16931	17884
Razón de volumen de carga/volumen de resina	2,99	3,15	3,08	2,98
Volumen de la columna (mL)	5400	5700	5500	5300

Parámetro	HUA0406C	HUA0410C	HUA0415C	HUA0420C
Volumen de producto eluido (mL)	17595	22084	20686	19145
Conc. de proteína del producto eluido (mg/mL)	0,0	0,03	0,03	0,04
Conc. de proteína del producto eluido filtrado (mg/mL)	No sometido a ensayo	0,03	0,00	0,04
Análisis enzimático del producto eluido (U/mL)	4050	2410	1523	4721
Rendimiento de Proteína (%)	0	11	11	12
Rendimiento de enzima (%)	no determinado	41	40	69

Tabla 7. Datos de la columna de hidroxiapatita

Parámetro	HUA0406C	HUA0410C	HUA0415C	HUA0420C
Volumen antes de la adición de la disolución de partida (mL)	16345	20799	20640	19103
Razón de volumen de carga/volumen de resina	10,95	13,58	14,19	12,81
Volumen de la columna (mL)	1500	1540	11462	1500
Volumen de carga (mL)	16429	20917	20746	19213
Volumen de producto eluido (mL)	4100	2415	1936	2419
Conc. de proteína del producto eluido (mp/mL)	No sometido a ensayo	0,24	0,17	0,23
Conc. de proteína del producto eluido filtrado (mg/mL)	N/A	N/A	0,17	N/A
Analisis enzimático del producto eluido (U/mL)	14051	29089	20424	29826
Rendimiento de Proteína (%)	No sometido a ensayo	93	53	73
Rendimiento de enzima (%)	87	118	140	104

Tabla 8. Datos de filtración DV20

10000 01 0000 00 00000 0000				
Parámetro	HUA0406C	HUA0410C	HUA0415C	HUA0420C
Volumen inicial (mL)	4077	2233	1917	2419
Volumen de producto filtrado (mL)	4602	3334	2963	3504
Conc. de proteína del producto filtrado (mg/mL)	0,1	N/A	0,09	N/A
Conc. de proteína del producto eluido filtrado (mg/mL)	N/A	0,15	0,09	0,16
Rendimiento de Proteína (%)	No sometido a ensayo	93	82	101

Tabla 9. Datos de concentración final

5

Parámetro	HUA0406C	HUA0410C	HUA0415C	HUA0420C
Volumen Inicial (mL)	4575	3298	2963	3492
Volumen Concentrado (mL)	562	407	237	316
Conc. de proteína de producto concentrado (mg/mL)	0,9	1,24	1,16	1,73
Rendimiento de Proteína (%)	111	102	103	98

Tabla 10. Intercambio de tampón en datos de formulación final

Parámetro HUA0406C HUA0410C HUA0415C HUA0420C

Parámetro	HUA0406C	HUA0410C	HUA0415C	HUA0420C
Volumen inicial (mL)	562	407	237	316
Volumen final de producto concentrado con cambio de tampón (mL)	594	516	310	554
Conc. de proteína de producto concentrado (mg/mL)	1,00	0,97	0,98	1,00
Conc. de Proteína de producto concentrado filtrado (mg/mL)	0,95	0,92	0,95	1,02
Rendimiento de Proteína (%)	118	99	110	101

La proteína rHuPH20 soluble purificada y concentrada se cargó asépticamente en viales estériles con volúmenes de carga de 5 mL y 1 mL. La proteína se hizo pasar a través de un filtro de 0,22 μ m a una bomba controlada por el operador que se utilizó para cargar los viales utilizando una lectura gravimétrica. Los viales se cerraron con tapones y se aseguraron con tapas onduladas. Los viales cerrados fueron inspeccionados visualmente para detectar partículas extrañas y a continuación se etiquetaron. Después de etiquetado, los viales se congelaron instantáneamente por inmersión en nitrógeno líquido durante no más de 1 minuto y se almacenaron a \leq 15°C (-20 \pm 5°C). La producción y purificación de rHuPH20 soluble utilizando este método produjo aproximadamente 400-700 mg rHuPH20 soluble con una actividad específica de 96.000 unidades/mg a 144.000 unidades/mg.

Ejemplo 4

10

30

35

40

Producción de rHuPH20 soluble del Gen2

La línea celular 3D35M del Gen1 descrita anteriormente se adaptó a los niveles más altos de metotrexato para producir clones del Gen2. Las células 3D35M se sembraron a partir de cultivos que contenían metotrexato establecidos en medio CD CHO que contenía GlutaMAX™-I 8 mM y metotrexato 1,0 M. Las células se adaptaron a un nivel más alto de metotrexato cultivándolas y haciéndolas pasar 9 veces durante un período de 46 días en un incubador humidificado a 37°C, con CO₂ al 7%. La población amplificada de células se clonó por dilución limitante en placas de 96 pocillos de cultivo de tejidos que contenían medio con metotrexato 2,0 M. Después de aproximadamente 4 semanas, los clones se identificaron y se seleccionó el clon 3E10B para su expansión. Las células 3E10B se cultivaron en medio CD CHO que contenía GlutaMAX™-I 8 mM y metotrexato 2,0 M durante 20 pases, realizando ensayos para determinar la viabilidad celular mediante tinción con azul de tripano y contando con un hemocitómetro, y la actividad enzimática mediante el ensayo de microturbidez (descrito a continuación en el Ejemplo 9). Se creó un banco de células maestro (MCB) de la línea celular 3E10B y se congeló y se utilizó para estudios posteriores.

La amplificación de la línea celular continuó cultivando células 3E10B en medio CD CHO con GlutaMAXTM-I 8 mM y metotrexato 4,0 M. Después del 12⁹ pase, las células se congelaron en viales como banco de células de investigación (RCB). Un vial de la RCB se descongeló y se cultivó en medio que contenía metotrexato 8,0 M. Después de 5 días, la concentración de metotrexato en el medio se incrementó a 16,0 μM después 20,0 M 18 días más tarde. Las células del 8⁹ pase en medio que contenía metotrexato 20,0 mM se clonaron mediante dilución limitante en placas de 96 pocillos de cultivo de tejidos que contenían medio CD CHO que contenía GlutaMAXTM-I 4 mM y metotrexato 20,0 M. Los clones 1B3, 2B2 y 5C1 se identificaron 5-6 semanas después. Las células del 9⁹ pase de 3D35M también se clonaron mediante dilución limitante en placas de 96 pocillos de cultivo de tejidos con medio CD CHO que contenía GlutaMAXTM-I 8 mM y metotrexato 20,0 M, y los clones se identificaron 1G11, 2E10 y 2G10.

Se sembraron cultivos celulares de cada uno de 1B3, 2B2, 5C1, 1G11, 2E10 y 2G10 a una densidad de 4 x 10^5 células/mL en un volumen de 50 mL en matraces de agitación de 250 mL. Los cultivos se dejaron crecer y declinar sin alimentaciones adicionales durante 10-14 días para determinar la tasa de crecimiento y la productividad de las células. Se tomaron muestras periódicamente y se analizaron para determinar la actividad hialuronidasa (Tablas 11 y 12).

Tabla 11. Actividad hialuronidasa de 1B3, 2B2 y 5C1 células

Horas después de la inoculación	Actividad Enzimática de rHuPH20 soluble en cultivo celular (unidades)			
	1B3 2B2 5C1			
74			382	
95		942		
101			582	

Horas después de la inoculación	Actividad Enzimática de	Actividad Enzimática de rHuPH20 soluble en cultivo celular (unidades)				
	1B3	2B2	5C1			
142		2287				
144	955					
169	1200					
195						
238	1611					
242			2139			
265		3070				
336	2252					

Tabla 12. Actividad hialuronidasa de células 1B3, 2B2 y 2E10

Horas después de la inoculación	Actividad Enzim	ática de rHuPH20 solubl	e en cultivo celular (unidades)
	1B3	2B2	2E10
98	470		
123			1179
143		2228	
216			2814
290	2860		
291			2542
337		2992	

Se compararon cuatro líneas celulares (2B2, 2G10, 1G11 y 2E10) en un estudio en el que todas se sembraron a una densidad de 4 x 10⁵ células/mL en un volumen de 50 mL en matraces oscilantes de 250 mL. Todas recibieron alimentaciones al 10% (v/v) el día 8 y alimentaciones al 5% con medios de alimentaciones que contenían medio CD CHO con un suplemento de 50 g/L de glucosa, 40 g/L de extracto de levadura y 1,1 g/L de butirato de sodio. Las células se recogieron el día 15. Se tomaron muestras periódicamente y se analizaron para determinar la actividad enzimática de rHuPH20 soluble (Tabla 13).

Tabla 13. Actividad hialuronidasa de células 2E10, 1G11, 2G10 y 2B2

Horas después de la inoculación	Actividad E	Actividad Enzimática de rHuPH20 soluble en cultivo celular (unidades)					
	2E10	1G11	2G10	2B2			
122	991	87	1688				
124				878			
194	2151	1387	2430				
196				2642			
285	6231	3831	7952				
287				8822			
364	5880	2955	11064				
366				15684			

En condiciones tanto de lote como de alimentación por lotes, el cultivo de células 2B2 exhibió mayor actividad enzimática, aunque otras células (p. ej., Células 2G10) también mostraron una buena productividad enzimática de la línea celular 2B2, por lo tanto, se seleccionó para su expansión en medio que contenía metotrexato 20,0 μM. Después de la 11º pase, las 2B2 células se congelaron en viales como banco de células de investigación (RCB).

Ejemplo 5

5

10

Actividad enzimática de rHuPH20 soluble producida en células 3E10B y 2B2

Se sometió a ensayo rHuPH20 producida por las células 3E10B y 2B2 para determinar la actividad enzimática utilizando el ensayo de Microturbidez (Ejemplo 9). Los viales congelados de los bancos de células 3E10B y 2B2 se descongelaron y las células se cultivaron por separado para dos pases en medio de crecimiento (medio CD CHO con GlutaMAX™-I 8 mM y, o bien metotrexato 2,0 M para las células 3E10B, o bien metotrexato 20,0 μM para las células 2B2) en un incubador humidificado a 37°C, con CO₂ al 6%. Las células se inocularon en 20 mL de medio de crecimiento en matraces Erlenmeyer de 125 mL (Corning) a 5 x 10⁵ células/mL, y se cultivaron durante 8 días en un incubador humidificado a 37°C, con CO² al 6% en con una plataforma de agitación que giraba aproximadamente a 100 rpm. Los días 8 y 10, los cultivos recibieron 5% v/v de medio de alimentación que contenía medio CD CHO con un suplemento de 50 g/L de glucosa, 50 g/L de extracto de levadura, y 2,2 g/L (20 mM) de butirato de sodio para iniciar la fase de producción. Se tomaron muestras de los cultivos durante la fase de producción el día 8 día (190 horas), el día 10 (240 horas), el día 14 (332 horas), el día 15 (258 horas), el día 16 (382 horas) y el día 18 (427 horas), y se dejó que la viabilidad disminuyera a cero. Las muestras se analizaron a continuación para determinar la actividad hialuronidasa.

Tablas 14 y 15 exponen la viabilidad (densidad celular viable (VCD) y porcentaje de viabilidad) y la actividad (unidades/matraz) de las células 3E10B y 2B2 en cada punto temporal. La actividad enzimática de rHuPH20 soluble producida por las células 2B2 fue considerablemente mayor que la producida por las células 3E10B. Por ejemplo, el día 8, la actividad enzimática de rHuPH20 soluble producida por las células 2B2 fue 69% mayor que la producida por las células 3E10B (2484 unidades/mL en comparación con 1469 unidades/mL). Se observó una tendencia similar en toda la fase de producción. La viabilidad de los cultivos celulares se redujo a un ritmo similar. Cuando se calculó la tasa de producción de las células, se observó que las células 3E10B producían 0,23 picogramos de rHuPH20 soluble por célula por día (pcd) el día 8 y 0,38 pcd el día 15. En comparación, las 2B2 células produjeron 0,46 picogramos de rHuPH20 soluble el día 8 y 0,69 pcd el día 15, que era 100% y 82% mayor que la producción por 3E10B los días 8 y 15, respectivamente. A continuación, se preparó el banco de células maestro (MCB) de células 2B2 para estudios posteriores.

Tabla 14. Viabilidad v actividad del Clon 3E10B

Horas después de la inoculación	VCD	% de viabilidad	Actividad (unidades/mL)	Volumen (mL)
0	5	99	0	20
190	79,8	96	1469	20
240	61,6	76	2388	20
332	16,8	22	5396	20
358	16,4	17	5628	20
382	8,4	10	6772	20
427	0	0	6476	20
Actividad total (unidades) por matraz	(U/mL vec	es volumen (mL)):	129520	

Tabla 15. Viabilidad y actividad del Clon 2B2

Horas después de la inoculación	VCD	% de Viabilidad	Actividad (Unidades/frasco)	Volumen (mL)
0	5	99	0	20
190	68	94	2484	20
240	77,6	89	3532	20
332	32	38	8196	20
358	5,8	17	9680	20
382	9,8	13	10788	20
427	0	0	10044	20
Actividad total (unidades) por matraz	(U/mL ve	eces volumen (mL)):	200880	**

Ejemplo 6

35

5

10

15

20

25

30

Pruebas de estabilidad genética de las células 2B2

A. Determinación del número de copias de la región de ácido nucleico que codifica rHuPH20 soluble en células 2B2

El número de copias de la región de ácido nucleico que codifica rHuPH20 soluble en células 2B2 se determinó mediante PCR. ADN genómico total se extrajo de 2 x 10⁷ células 2B2 del MCB utilizando un kit QIAamp DNeasy (Qiagen). El ADN genómico también se extrajo a partir de células CHO DG-44 como control negativo. La pureza del ADN extraído se verificó por electroforesis en gel de agarosa y espectrofotometría UV. Para generar fragmentos de ADN (en comparación con ADN de alto peso molecular), el ADN genómico se fragmentó mediante sonicación. Esto aseguró un pipeteo más preciso y accesibilidad al molde. Se prepararon seis diluciones independientes del ADN genómico (a diluciones de cantidades equivalentes a aproximadamente 1000 células/I) de células 2B2 y la DG-44 y se analizaron por duplicado en dos ensayos; un ensayo de la diana, que elegía como diana y amplificaba una secuencia específica para la región de ácido nucleico que codifica el ADN del plásmido rHuPH20 soluble, y un control endógeno, que elegía como diana y amplificaba una secuencia GAPDH. El control endógeno se usó como una normalización de los resultados. El ensayo diana incluyó una curva patrón generada a partir de una dilución en serie de cantidades conocidas del plásmido HZ24 mezclado en el ADN genómico de CHO DG-44. El control endógeno incluyó una curva patrón generada a partir de diluciones seriadas de ADN genómico de CHO DG-44 mezclado con ADN de plásmido HZ24. Se supone que el tamaño del genoma de mamíferos es de 3 x 109 pares de bases. Cada ensayo incluyó un control negativo (sin molde) y un control positivo (ADN del plásmido HZ24 para el ensayo diana y ADN de la célula anfitriona para el ensayo de normalización de control endógeno). Las reacciones se prepararon utilizando el cebador directo HZM3.P1 y el cebador inverso HZM3.P2 (mostrados en los SEQ ID NO: 52 y 53, respectivamente) y la sonda HZM3 (SEQ ID NO: 54), que contenía los colorantes fluorescentes 6FAM (6carboxifluoresceína) y TAMRA (6-carboxitetrametil-rodamina). Las muestras se amplificaron utilizando Applied Biosystems Prism® 7900 Sequence Detection System con condiciones de ciclación convencionales (50°C durante 2 minutos, 95°C 10 min, 95°C 15 segundos y 60°C durante 1 min para 40 ciclos).

El número de copias del gen diana por célula se calculó como la razón de copias de la diana frente a las copias normalizadas (GAPDH) para las seis diluciones de ADN genómico 2B2. La prueba estadística Q de Dixon de valores atípicos se aplicó al conjunto de datos. Se encontró que el número de copias de la región de ácido nucleico que codificaba el plásmido rHuPH20 soluble en células 2B2 era de 206,61 ± 8,35.

B. Análisis de la secuencia de ARNm

10

15

20

25

30

35

40

45

50

55

Se determinó la secuencia del ARNm de PH20 generado a partir del plásmido HZ24 en células 2B2. El ARN se extrajo de 2 x 10⁷ células 2B2 del MCB utilizando un kit RNeasy Mini (Qiagen). La muestra se trató con ADNasa I para eliminar la contaminación por ADN, y la pureza del ARN se verificó mediante electroforesis en gel de agarosa y espectrofotometría UV. Se realizaron una reacción de transcripción inversa utilizando transcriptasa inversa Superscript™ (Invitrogen) y una reacción de control que carecía de la transcriptasa inversa utilizando el ARN extraído y oligo d(t) y cebadores al azar. Los productos de ADNc resultantes se utilizaron a continuación como molde en las amplificaciones mediante PCR. Se utilizaron dos conjuntos diferentes de pares de cebadores; AP01/AP03 y AP10/AP12. AP01/AP03 fue diseñado para amplificar la región de 1719 pares de bases, mientras que el par de cebadores AP10/AP12 fue diseñado para amplificar una región más grande (1811 pares de bases) para obtener la secuencia de la cadena inversa del extremo 3'. La Tabla 5 expone las secuencias de los cebadores. Cada reacción de PCR incluyó controles individuales de cebadores, un control negativo utilizando el control sin transcriptasa inversa (descrito anteriormente) como molde, y un control positivo con cebadores de control y molde de control. Los productos de amplificación se visualizaron mediante electroforesis en gel de agarosa y se confirmó que eran del tamaño esperado, a continuación se purificaron para eliminar el exceso de cebadores y los dNTP mediante extracción en gel o EXOSAP (USB).

Los productos purificados se secuenciaron utilizando el BigDye[®] v1.1 Terminator Cycle Sequencing Kit (Applied Biosystems) y los cebadores indicados en la Tabla 16. Se ensamblaron los datos de secuencia y la secuencia consenso obtenida (SEQ ID NO: 55) se comparó con la secuencia de referencia utilizando el soporte lógico Sequencher versión 4.1.2 (Gen Code Corporation). Se generaron un total de 1449 pares de bases de datos de secuencias. Se encontró que la secuencia era idéntica a la secuencia de referencia (SEQ ID NO: 47), excepto para la diferencia de un par de bases en la posición 1131, que se observó que era una timidina (T) en lugar de la esperada citosina I. Esta es una mutación silenciosa, sin ningún efecto sobre la secuencia de aminoácidos.

Tabla 16. Cebadores para la amplificación y secuenciación mediante PCR

. a.a.a a. a a a a a a a a a a a a	· ampiniousion y socialismoniamo i si c	
Nombre del cebador	Secuencia	SEQ ID NO.
AP01	TTCTCTCCACAGGTGTC	56
AP02	AAGATTTCCTTACAAGAC	57
AP03	TGGCGAGAGGGGAAAGAC	58

Nombre del cebador	Secuencia	SEQ ID NO.
AP04	CCATTTATTTGAACACTC	59
AP06	CCGAACTCGATTGCGCAC	60
AP07	AGCCATTCCCAAATTGTC	61
AP08	CTCCCAGTTCAATTACAG	62
AP09	CGTTAGCTATGGATCCTC	63
AP10	CGAGACAGAGAGACTCTTGCG	64
AP12	CATTCAACAGACCTTGCATTCC	65

C. Análisis de transferencia Southern de células 2B2

Se realizó un análisis de Transferencia Southern en células 2B2 para obtener un mapa de estructura. El ADN total se extrajo de 1 x 10⁷ células 2B2 y 1 x 10⁷ células DG-44 de control utilizando un sistema Maxwell 16[®] (Promega). El ADN extraído y un constructo de control del plásmido HZ24 se evaluaron para determinar la pureza mediante electroforesis en gel de agarosa. El ADN de las células 2B2, las células DG-44 y el control de plásmido HZ24 se digirieron con Spe I, Xba I, y una doble digestión utilizando BamH I/Hind III. Se llevó a cabo otra digestión con BamH I/Hind sobre el control de plásmido HZ24 y las aproximadamente 1,4 kb se purificaron por extracción en gel y se marcaron radiactivamente con α³²P para generar una sonda marcada. Aproximadamente 10 μg de cada ADN digerido de 2B2 y ADN de DG-44, y 10 μg de ADN de DG-44 con 250 pg de ADN del plásmido HZ24, se sometieron a electroforesis en un gel de agarosa. Se tomó una imagen en el gel después de la electroforesis, a continuación, se realizó una transferencia mediante transferencia Southern. La membrana de nailon se hibridó con la sonda marcada, después se lavó a temperatura ambiente durante 30 minutos y a continuación dos veces a 55°C durante 30 minutos. Una autorradiografía inicial se expuso durante 24 horas y se inspeccionó visualmente. Se determinó que se necesitaba una exposición más larga, por lo que una segunda autorradiografía se expuso durante 3 días para una exposición más oscura de las bandas hibridadas. Después de desarrollar la película, las bandas se dimensionaron mediante un Alphalmager[®] (Alpha Innotech).

No se observaron bandas de hibridación para el producto digerido del control negativo DG-44 y se observaron bandas de hibridación individuales de los tamaños esperados en las digestiones de HZ24 (producto digerido con BamH I/Hind III: ~1,4 kb; producto digerido con Spe I: ~6,6 kb; producto digerido con XbaI: ~6,5 kb). Había una banda principal de hibridación de ~7,7 kb y se observaron cuatro bandas de hibridación menores (~13,9, ~6,6, ~5,7 y ~4,6 kb) utilizando ADN de 2B2 digerido con Spe I, se observaron una banda hibridación de principal de ~5,0 kb y dos bandas de hibridación menores (~13,9 y ~6,5 kb) utilizando ADN de 2B2 digerido con Xba I, y se observó una banda de hibridación única de ~1,4 kb utilizando ADN de 2B2 digerido con BamH I/Hind III. La presencia de la banda única de ~1,4 kb que hibridaba en BamH I/Hind III indicó que no había grandes inserciones o deleciones de secuencia dentro de la región sondeada. Los resultados de las digestiones individuales con Xba I y Spe I indican que hay múltiples sitios de integración del plásmido HZ24 en el genoma de las células 2B2.

Ejemplo 7

10

15

30

45

50

Producción de rHuPH20 soluble del Gen2 en un biorreactor de cultivo celular de 30 L

La rHuPH20 soluble se produjo y se purificó a partir de células 2B2 utilizando un biorreactor de 36 L (volumen de cultivo de 30 L) para determinar los procesos óptimos de aumento a escala hasta un biorreactor de 400 L (volumen de cultivo de 300 L). A continuación se detallan cuatro rondas del biorreactor 36 L por separado en las secciones A a

40 A. Producción y caracterización de los lotes 056-099 y 056-100 de rHuPH20 soluble

Un vial de 2B2 (1 x 10⁷ células) se descongeló y se cultivaron a 37°C, CO₂ al 7% durante 8 pases en CD CHO (Invitrogen, Carlsbad, CA), con un suplemento de metotrexato 20 µM y 40 mL/L de GlutaMAX™-I (Invitrogen), después de lo cual se amplió a 600 mL. Una semana más tarde, el cultivo se expandió hasta 5L en medio CD CHO con un suplemento de 40 mL/L de GlutaMAX™-I y sin metotrexato. A un biorreactor de 36 L que contenía 25 L medio CD CHO con un suplemento de 1 L de GlutaMAX™-I y 30 mL de sulfato gentamicina se le inoculó el cultivo de 5 L a una densidad de siembra inicial de 3,6 x 10⁵ células/mL. El punto de fijación de la agitación del biorreactor se ajustó a 75 RPM; temperatura: 37°C; pH: 7,15; oxígeno disuelto: 30%. El biorreactor recibió una capa superior de aire filtrado y un burbujeo de aire/oxígeno/CO₂, controlado por un controlador Applikon.

El cultivo se alimentó 7 veces durante la ronda del biorreactor, en el plazo de 161, 184, 237, 256, 280, 304 y 328

horas después de la inoculación. Los medios de alimentación se filtraron en el biorreactor mediante una bomba peristáltica. El contenido de cada uno de los medios de alimentación y de los parámetros de alimentación del biorreactor en toda la ronda se proporcionan en las Tablas 17 y 18, respectivamente.

5 Tabla 17. Formulaciones de medios de alimentación

		aloo de dilifici					I
Componente	Alimentación Núm. 1	Alimentación Núm. 2	Alimentación Núm. 3	Alimentación Núm. 4	Alimentación Núm. 5	Alimentación Núm. 6	Alimentación Núm. 7
Medio líquido CD CHO	1 L	1 L	1 L	1 L	1 L	1 L	1 L
GlutaMAX™-I	120 ml	80 ml	40 ml	40 ml	40 ml	30 ml	30 ml
Polvo CD CHO AGT	48,6 g	24,3 g	0	0	0	0	0
Yeastolate ultrafiltrado (200 g/L)	150 ml	300 ml	300 ml	150 ml	150 ml	0	0
Butirato de sodio	1,65 g	2,35 g	1,65 g				

Tabla 18. Parámetros del Biorreactor

10

15

Horas	VCD	% de Viabilidad	pН	Unidades hialuronidasa	Vol (L)	Glucosa	Alimentación
0	3,6	97	7,28	0	31	6000	-
15	6,2	94	7,45	117	31	5780	-
44	11,3	97	7,15	290	31	5320	-
88	25,6	97	6,85	517	31	3430	-
115	42,6	95	6,75	1132	31	2920	-
139	56,4	96	6,74	1320	31	2220	-
161	71,9	97	6,82 2296 31 520		520	Alimentación Núm. 1	
184	83,9	96	6,81	2748	32 610		Alimentación Núm. 2
213	82,7	96	6,87	3396	33	1190	-
237	80,5	89	7,21	4450	33	200	Alimentación Núm. 3
256	62,3	71	7,03	4750	34	240	Alimentación Núm. 4
280	52,7	66	7,01	5030	35	600	Alimentación Núm. 5
304	44,6	59	7,00	5970	5970 36 560		Alimentación Núm. 6
328	33,3	47	7,00	7240	37	570	Alimentación Núm. 7
351	26,1	34	7,00	7360	37	250	-

El biorreactor se cosechó y se filtró a través de un sistema que contenía una serie de filtros de cápsula (Sartorius) con tamaños de poro de 8 μm, 0,65 μm, 0,45 μm y 0,22 μm, respectivamente. La cosecha se realizó utilizando una bomba peristáltica y se completó en aproximadamente 5 horas, obteniéndose aproximadamente 32 L de líquido de cultivo celular cosechado (HCCF). Al HCCF se le añadió un suplemento de EDTA y Tris a concentraciones finales de 10 mM de cada uno, pH 7,6. A continuación, el HCCF se almacenó a 2-8°C antes de ser concentrado y sometido a un cambio de tampón.

Para concentrar la proteína, un cartucho enrollado en espiral Millipore de 0,232 m² con un MWCO de 30 kDa se

equilibró primero en NaCl 150 mM, Hepes 10 mM, EDTA 10 mM, pH 7,5. Quince L de HCCF se concentraron a 15 x 1 L. El producto concentrado se sometió a 10 x cambio de tampón con el tampón NaCl 150 mM, Hepes 10 mM, EDTA 10 mM, pH 7,5 y el producto retenido se filtró a través de una cápsula de 0,2 µm en una bolsa de almacenamiento de 2 L, para un volumen final de 1,1 L. El producto retenido se almacenó a continuación a 2-8°C.

5

10

15

A continuación, la disolución de proteína concentrada y sometida a cambio de tampón se purificó mediante cromatografía de columna a través de una columna con Q Sepharose, una columna con Phenyl Sepharose, una columna con Aminofenilo y una columna con Hidroxiapatita. Las unidades de hialuronidasa en la disolución de proteína antes y después de cada etapa de cromatografía se evaluaron y se utilizaron para determinar el rendimiento para cada etapa.

En resumen, una columna de Q Sepharose con un lecho de columna 1,1 L se desinfectó con 2,8 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. A continuación, se limpió con 2,5 L de Hepes 10 mM, NaCl 400 mM, pH 7,0, se enjuagó en 4,1 L de agua estéril para inyectables (SWFI) y se equilibró con 2,5 L de Hepes 10 mM, NaCl 25 mM, pH 7,0. La proteína sometida a cambio de tampón (1L a 170.160 unidades/mL) se cargó en la columna. El flujo directo fue de 1,0 L a 479 unidades/mL, lo que indica que casi todo el producto se unía a la resina. La columna se lavó con 4 L de Hepes 10 mM, NaCl 25 mM, pH 7,0, y 4,2 L de Hepes 10 mM, NaCl 50 mM, pH 7,0. El producto se eluyó en 3,0 L de Hepes 10 mM, NaCl 400 mM, pH 7,0, obteniéndose 3 L a 49.940 unidades/mL, y se filtró a través de un filtro de 0,2 µm.

20

25

Una columna de Phenyl Sepharose con un lecho de columna de 2,1 L se desinfectó con 4,8 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. A continuación, se enjuagó con 5,0 L de SWFl y se limpió con 4,6 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M y se enjuagó de nuevo con 6,8 L de SWFl. La columna se equilibró en 5,5 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M. Al producto eluido de la columna de Q Sepharose, se le añadieron 10,3 mL de fosfato de potasio monobásico 1 M, 10,3 mL de fosfato de potasio dibásico 1 M y 0,42 mL de CaCl₂ 1 mM. A continuación, esto se cargó en la columna y se recogieron el flujo directo y el agente de captura (1 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 mM), obteniéndose 7,4 L a 20.030 unidades/mL. El producto se filtró a través de un filtro de 0,2 µm.

Una columna de Amino Fenil boronato con un lecho de columna de 1,8 L se desinfectó con 4,5 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. A continuación, se enjuagó con 3,9 L de SWFI, se limpió con 4,2 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M y se enjuagó de nuevo con 4,0 L de SWFI. La columna se equilibró con 7,5 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M. La sustancia del flujo directo de la columna de Phenyl Sepharose se cargó en la columna de Amino Fenil Boronato después de haber añadido un suplemento de sulfato de amonio a una concentración final de 0,5 M. La columna se lavó con 6,5 L de fosfato de potasio 5 mM a pH 7,0, y a continuación con 7,8 L de bicina 20 mM, pH 9,0 después con 9,0 L de bicina 20 mM, NaCl 100 mM, pH 9,0. El producto se eluyó con 4,8 L de Hepes 50 mM, NaCl 100 mM, pH 7,0, dando como resultado 4,8 L a 22.940 unidades/mL, y se filtró a través de un filtro de 0,2 μm.

40 Una columna de hidroxiapatita con un lecho de columna de 1,8 L se desinfectó con 2,7 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. La columna se neutralizó con 2,1 L de fosfato de potasio 200 mM, pH 7,0 y a continuación se equilibró en 2,2 L de fosfato de potasio 5 mM, NaCl 100 mM. Al producto eluido de la columna de Amino Fenil Boronato, se le añadieron 9,1 mL de de fosfato de potasio monobásico 1 M, 9,1 mL de fosfato de potasio dibásico 1 M y 0,452 mL de CaCl₂ 1 mM. A continuación, esto se cargó en la columna y el flujo directo fue de 4,5 L a 10 unidades/mL, indicando una buena unión de la HuPH20 soluble. La columna se lavó con 3,3 L de fosfato de potasio 5 mM, NaCl 100 mM, sulfato de amonio 0,5 M, pH 7,0, y a continuación con 2,9 L de fosfato de potasio 10 mM, NaCl 100 mM, sulfato de amonio 0,5 M, pH 7,0. El producto se eluyó con 1,0 L de fosfato de potasio 70 mM, pH 7,0, dando como resultado 1 L a 130.000 unidades/mL, y se filtró a través de un filtro de 0,2 μm.

El producto purificado se concentró utilizando un cartucho Millipore de 0,232 m² con MWCO de 30 kDa que había sido equilibrado en NaCl 130 mM, Hepes 10 mM, pH 7,0. El producto se concentró hasta 74 mL, y se sometió a cambio de tampón 10 x con el tampón NaCl 130 mM, Hepes 10 mM, pH 7,0 a continuación se filtró a través de un filtro de 0,2 μm. Se realizaron las mediciones de A₂₈₀ e indicaron que la concentración de proteína era de 11,3 mg/mL. Se añadieron 9,6 mL adicionales de tampón NaCl 130 mM, Hepes 10 mM, pH 7,0 para llevar la concentración de proteína a 10 mg/mL (Lot 056-99). Diez mL de la disolución de proteína de 10 mg/mL se diluyeron en el tampón para proporcionar una disolución de 1 mg/mL (Lot 056-100. Ambas disoluciones se filtraron a través de un filtro de 0,2 μm.

El producto formulado se cargó en viales de vidrio de 10 mL y de 1 mL, cuyo total combinado produjo 761 mg de rHuPH20 soluble. Los viales se congelaron a -80°C, a continuación se transfirieron a -20°C para el almacenamiento. Los lotes 056-99 y 056-100 fueron caracterizados a continuación con respecto a la actividad y la pureza. Los lotes 056-99 y 056-100 exhibieron una actividad enzimática de 1.350.786 unidades/mL y 129.982 unidades/mL y una actividad específica de 130.00 unidades/mg y 124.00 unidades/mg (calculada a partir de la actividad enzimática y la concentración de proteínas). La pureza de las muestras de rHuPH20 soluble se determinó mediante SDS-PAGE,

isoelectroenfoque (IEF), cromatografía líquida de alta presión de fase inversa (RP-HPLC), cromatografía de exclusión por tamaño (SEC) y cromatografía de intercambio aniónico. Según se determinó mediante RP-HPLC, se observó que la pureza de los dos Lotes era de aproximadamente 95%. Según se determinó mediante SEC, se observó que la pureza de los dos Lotes era de aproximadamente 99%. Se mostró que los niveles de endotoxina eran ≤0,5 UE/mL y 0,1 UE/mL para los lotes 056-99 y 056-100, respectivamente. Se midió que la osmolaridad era de 271 mOsm/kg y 291 mOsm/kg para los lotes 056-99 y 056-100, respectivamente.

B. Modificaciones para aumentar la producción de rHuPH20 soluble: lote de biorreactor 2B2-20K.5

- Se realizaron modificaciones al método descrito anteriormente en la sección A. Estas modificaciones estaban destinadas a aumentar el rendimiento de producto y mejorar la eficacia y la escalabilidad de fabricación. Las etapas de fabricación descritas a continuación incluyen la descongelación de células congeladas del banco de células de investigación, la expansión de las células en cultivo continuo, el funcionamiento del sistema del biorreactor de alimentación por lotes, la cosecha y el aclarado del líquido de cultivo celular, y la concentración y el cambio de tampón del producto a granel. Las modificaciones incluyen, por ejemplo, la adición de insulina humana recombinante al medio del biorreactor para aumentar la tasa de crecimiento y los niveles de expresión de producto de las células. Asimismo, el número de alimentaciones se redujo de 7 a 5. Se realizaron también otras modificaciones de los métodos descritos anteriormente.
- Un vial de 2B2 (1 x 10⁷ células) se descongeló y se cultivó en CD CHO (Invitrogen, Carlsbad, CA) con un suplemento de metotrexato 20 μM y 40 mL/L de GlutaMAXTM-I (Invitrogen), después de lo cual se expandió hasta 100 mL, 450 mL y a continuación a 4,5 L en medio CD CHO con un suplemento de 40 mL/L de GlutaMAXTM-I y sin metotrexato. A un biorreactor de 36 L que contenía 20 L de medio CD CHO con un suplemento de 800 L de GlutaMAXTM-I, 30 mL de sulfato de gentamicina y 100 mg de insulina humana recombinante se le inocularon 3,6 L de cultivo 2B2 a una densidad de siembra inicial de 4,3 x 10⁵ células/mL. El punto de fijación de la agitación del biorreactor se ajustó a 80 rpm; Temperatura: 37°C; pH: 7,15; oxígeno disuelto: 25%. El biorreactor recibió superposición de aire filtrado y un burbujeo de aire/oxígeno/CO₂, controlado por un controlador Applikon.

El cultivo se alimentó 5 veces durante la ronda del biorreactor de 13 días, en el plazo de 117, 143, 196, 235 y 283 horas después de la inoculación. Los medios de alimentación se filtraron en el biorreactor mediante una bomba peristáltica. El contenido de cada uno de los medios de alimentación y de los parámetros de alimentación de biorreactor en toda la ronda se proporcionan en las Tablas 19 y 20, respectivamente.

Tabla 19. Formulaciones de Medios de Alimentación

5

Componente	Medio inicial del biorreactor	Alimentación Núm. 1	Alimentación Núm. 2	Alimentación Núm. 3	Alimentación Núm. 4	Alimentación Núm. 5
Medio Iíquido CD CHO	12 L	0	0	0	0	0
GlutaMAX™-I	800 ml	120 ml	80 ml	40 ml	40 ml	40 ml
Polvo CD CHO AGT	194,4 g	97,2 g	48,6 g	24,3 g	24,3 g	24,3 g
SWFI	8 L	800 ml	900 ml	700 ml	700 ml	700 ml
Yeastolate ultrafiltrado (200 g/L)	0	0	0	200 ml	200 ml	200 ml
Dextrosa	0	30 g	60 g	40 g	40 g	40 g
Gentamicina	30 ml	0	0	0	0	0
rHulnsulina	25 ml	0	0	0	0	0
Butirato de sodio	0	0	0	2,2 g	1,1 g	1,1 g

Tabla 20. Parámetros del biorreactor

Horas	VCD	% de Viabilidad	рН	Unidades de hialuronidasa	Vol (L)	Glucosa	Alimentación
0	4,3	98	7,28	0	25	8820	-
55	17,1	99	7,07	580	25	4950	-
94	40,6	99	6,77	1059	25	3800	-
117	57,5	99	6,76	1720	25	2310	Alimentación Núm. 1

Horas	VCD	% de Viabilidad	рН	Unidades de hialuronidasa	Vol (L)	Glucosa	Alimentación
143	88,8	99	6,75	3168	26	2770	Alimentación Núm. 2
167	93,7	99	6,80	6982	27	3830	-
196	96,2	97	6,89	4560	27	2060	Alimentación Núm. 3
222	78,9	85	6,83	4920	128	2720	-
235	80	76	6,81	5670	28	1870	Alimentación Núm. 4
260	54,3	65	6,76	5865	29	2930	-
283	38,7	44	6,73	6540	29	1880	Alimentación Núm. 5
308	37,3	39	6,78	8460	29	2400	-
313	33,7	34	6,78	8190	29	2300	-

El biorreactor se cosechó y se filtró a través de un sistema que contenía una serie de filtros Millipore Pod D0HC (0,5 m²) y apilamientos A1HC, que contenían capas de tierra de diatomeas de tamaño de poro graduado, seguido de filtración final a través de filtro de cápsula (Sartorius Sartobran 300) en una bolsa de almacenamiento de 50 L. La cosecha se realizó utilizando una bomba peristáltica y se completó en aproximadamente 2 horas, obteniéndose aproximadamente 30 L de líquido de cultivo celular cosechado (HCCF). A 28 L de HCCF se les añadió un suplemento de EDTA y Tris a concentraciones finales de 10 mM cada uno, y un pH 7,5. Los 2 L de HCCF restantes se dejaron sin Tris/EDTA, para evaluar el efecto de la adición de Tris/EDTA en la etapa de concentración/cambio de tampón. A continuación, el HCCF se almacenó a 2-8°C antes de ser concentrado y se sometió a un cambio de tampón.

5

10

15

20

30

Para concentrar la proteína, se equilibró primero un casete de filtración Millipore Pellicon 2 Biomax A de 0,1 m² con un MWCO de 30 kDa en Na₂SO₄ 20 mM, Tris 10 mM, pH 7,5. Se concentraron 2L de HCCF con y sin Tris/EDTA, 10x y se sometieron a 10x cambio de tampón con el tampón Na₂SO₄ 20 mM, Tris 10 mM, pH 7,5. Los niveles de proteína se midieron mediante absorbancia a A₂₆₀. El HCCF restante (aproximadamente 26,5 L) se concentró y se sometió a cambio de tampón. Dos casetes de filtración Millipore Pellicon 2 Biomax A de 0,1 m² con un MWCO de 30 kDa se ensamblaron en el sistema TFF y se equilibraron en Na₂SO₄ 20 mM, Tris 10 mM, pH 7,5. El HCCF se concentró aproximadamente 10x hasta 2,5 L, y se sometió a cambio de tampón con 10x Na₂SO₄ 20 mM, Tris 10 mM, pH 7,5. El producto retenido se filtró a través de un filtro de vacío de 0,2 µm en bolsas de almacenamiento de 1 L y 500 mL, para un volumen final de 2,6 L. A continuación, el producto retenido se almacenó a 2-8°C. Las muestras tomadas durante el proceso de concentración y el cambio de tampón se analizaron mediante RP-HPLC para determinar el efecto de la adición de Tris/EDTA a la muestra. Se observó que la adición de Tris/EDTA facilitó una etapa de procesamiento más eficiente.

25 C. Producción y caracterización de los Lotes 056-122 y 056-123 de rHuPH20 soluble (lote 2B2-20K.6 del biorreactor).

Las modificaciones descritas anteriormente en la sección C se incorporaron a las etapas de fabricación para producir y purificar dos lotes de rHuPH20 soluble; Lotes 056-122 y 056-123. El procedimiento descrito a continuación incluye la descongelación de las células congeladas del banco de células de investigación HZ24-2B2; la expansión de las células en cultivo continuo; la operación del Sistema del biorreactor de alimentación por lotes de 36 L a escala de 30L; la eliminación de células, el aclarado, y el cambio de tampón del producto a granel; cromatografía en columna de 4 etapas; y las operaciones de formulación, carga, y terminación.

Un vial de 2B2 (1 x 10⁷células) se descongeló y se cultivó a 37°C, CO₂ al 7% en CD CHO (Invitrogen, Carlsbad, CA), con un suplemento de metotrexato 20 μM y 40 mL/L de GlutaMAX™-I (Invitrogen), después de lo cual se expandió hasta 400 mL, a continuación 4,4 L en medio CD CHO con un suplemento de 40 mL/L de GlutaMAX™-I y sin metotrexato. A un biorreactor de 36 L (Bellco serie 1964) que contenía 20 L de medio CD CHO con un suplemento de 800 L de GlutaMAX™-I, 100 mg de insulina humana recombinante y 30 mL de sulfato de gentamicina se le inoculó el cultivo de 4 L a una densidad de siembra inicial de 4,9 x 10⁵ células/mL. El punto de fijación de la agitación del biorreactor se ajustó a 80 rpm; Temperatura: 37°C; pH: 7,15; oxígeno disuelto: 25%. El biorreactor recibió superposición de aire filtrado y un burbujeo de aire/oxígeno/CO₂, controlado por un controlador Applikon ADI 1030.

El cultivo se alimentó 4 veces durante la ronda del biorreactor de 13 días, en el plazo de 127, 163, 208 y horas

después de la inoculación. Los medios de alimentación se filtraron en el biorreactor mediante una bomba peristáltica. El punto de ajuste de la temperatura del biorreactor se redujo de 37°C a 36,5°C el día 7, a 36,0°C el día 9 y finalmente a 35,5°C el día 11. El contenido de cada uno de los medios de alimentación y de los parámetros de alimentación del biorreactor en toda la ronda se proporcionan en las Tablas 21 y 22, respectivamente.

Tabla 21. Formulaciones de los medios de alimentación

Componente	Medio inicial del biorreactor	Alimentación Núm. 1	Alimentación Núm. 2	Alimentación Núm. 3	Alimentación Núm. 4
Polvo CD CHO AGT (Invitrogen; Núm. de parte: 10743-029; Núm. de lote 1366333)	0	97,2 g	48,6 g	24,3 g	24,3 g
Polvo de CD CHO AGT (Invitrogen; Núm. de parte: 10743-029; Núm. de lote 1320613)	267,3 g	0	0	0	0
Polvo de CD CHO AGT (Invitrogen; Núm. de parte: 12490-017; Núm. de lote 1300803)	218,7 g	0	0	0	0
SWFI	20 L	700 ml	700 ml	600 ml	600 ml
GlutaMAX™-I (Invitrogen)	800 ml	160 ml	80 ml	60 ml	40 ml
Yeastolate ultrafiltrado (Invitrogen; 200 g/L)	0	100 ml	200 ml	300 ml	300 ml
Dextrosa (D-glucosa)	0	40 g	40 g	60 g	40 g
Gentamicina	30 ml	0	0	0	0
rHulnsulina	100 mg	40 mg	0	0	0
Butirato de sodio	0	0	1,1 g	2,2 g	1,1 g

Tabla 22. Parámetros del Biorreactor

Horas	Densidad de células viables (x 10 ⁵ células/mL)	% de Viabilidad	рН	Unidades de hialuronidasa	Vol (L)	Glucosa	Alimentación
0	4,9	92	7,26	79	25	7780	-
24	9,2	95	7,21	141	25	6060	-
48	17,3	97	7,13	243	25	5280	-
72	33	99	6,82	407	25	3910	-
98	49,3	99	6,77	658	25	3200	-
127	67	98	6,83	1296	25	1610	Alimentación Núm. 1
144	88,1	98	6,78	1886	26	2860	-
163	92,4	99	6,89	2439	26	1680	Alimentación Núm. 2
192	91	97	6,85	3140	27	1480	-
208	92,7	96	6,91	3188	27	230	Alimentación Núm. 3
235	70	76	6,86	5118	28	1940	-
261	63	61	6,84	5862	28	280	Alimentación Núm. 4
291	36,4	45	6,76	7072	29	1570	-
307	29,3	32	6,81	8160	29	1250	Cosecha

El biorreactor se cosechó y se filtró a través de un sistema que contenía una serie de filtros Millipore Pod D0HC (0,5 m²) y apilamientos A1HC (0,1 m²), que contenían capas de tierra de diatomeas de tamaño de poro graduado, seguido de filtración final a través de filtro de cápsula (Sartorius Sartobran 300) en bolsas de almacenamiento de 20 L. La cosecha se realizó utilizando una bomba peristáltica y se completó en aproximadamente 1 hora, obteniéndose

aproximadamente 34 L de líquido de cultivo celular cosechado (HCCF). Esto incluye el volumen del biorreactor de 29 L más aproximadamente 5 L del agente de captura PBS. Al HCCF se le añadieron suplementos de EDTA y Tris a concentraciones finales de 10 mM cada uno, y un pH final de 7,5. A continuación, el HCCF se almacenó a 2-8°C antes de ser concentrado y se sometió a un cambio de tampón.

5

10

15

20

Para concentrar la proteína, se equilibró en primer lugar un casete de flujo transversal Sartorius Sartocon 2 de 0,65 m 2 con un MWCO de 30 kDa en Na $_2$ SO $_4$ 20 mM, Tris 10 mM, pH 7,5. Se concentraron 34 L de HCCF 10x hasta 3 L y se sometieron a cambio de tampón 10x con el tampón Na $_2$ SO $_4$ 20 mM, Tris 10 mM, pH 7,5. El producto retenido se filtró a través de un filtro de cápsula de 0,2 micras en bolsas de almacenamiento de 5 L para un volumen final de 3,0 L. A continuación, el producto retenido se almacenó a 2-8°C.

La disolución de proteína concentrada y sometida a cambio de tampón se purificó a continuación utilizando cromatografía en columna a través de una columna de Q Sepharose, una columna de Phenyl Sepharose, una columna de Amino Fenilo y una columna de Hidroxiapatita. Las unidades de hialuronidasa en la disolución de proteína antes y después de cada etapa cromatográfica se evaluaron y se utilizaron para determinar el rendimiento de cada etapa.

En resumen

En resumen, una columna de Q Sepharose con un lecho de columna 1,1 L, un diámetro de 7 cm, una altura de 28 cm se desinfectó con 2,1 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. A continuación, se limpió con 2,5 L de Hepes 10 mM, NaCl 400 mM, pH 7,0, se enjuagó en 4,5 L de agua estéril para inyectables (SWFI) y se equilibró con 4,2 L de Hepes 10 mM, NaCl 25 mM, pH 7,0. La proteína sometida a cambio de tampón (3L a 94.960 unidades/mL) se cargó en la columna. El flujo directo fue de 5830 mL a 75 unidades/mL, lo que indica que casi todo el producto (99,8%) se unía a la resina. La columna se lavó con 4,2 L de Hepes 10 mM, NaCl 25 mM, pH 7,0, y 4,6 L de Hepes 10 mM, NaCl 50 mM, pH 7,0. El producto se eluyó a continuación en 2,9 L de Hepes 10 mM, NaCl 400 mM, pH 7,0, obteniéndose 2880 mL a 96.080 unidades/mL, y se filtró a través de un filtro de 0,2 µm.

25

30

Una columna de Phenyl Sepharose con un lecho de columna de 2,2 L (altura 28 cm, diámetro 10 cm) se desinfectó con 5,0 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. A continuación, se enjuagó con 4,5 L de SWFI y se limpió con 4,6 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M y se enjuagó de nuevo con 6,8 L de SWFI. La columna se equilibró en 4,6 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M. Al producto eluido de la columna de Q Sepharose, se le añadieron 9,6 mL de fosfato de potasio monobásico 1 M, 9,6 mL de fosfato de potasio dibásico 1 M y 0,4 mL de CaCl₂ 1 mM. A continuación, esto se cargó en la columna y se recogieron el flujo directo y el agente de captura (fosfato de potasio 5 mM, sulfato de amonio 0,5 mM), obteniéndose 6905 mL a 36.280 unidades/mL. El producto se filtró a través de un filtro de 0,2 µm.

35

40

Una columna de Amino Fenil boronato con un lecho de columna de 2,2 L (altura 29 cm, diámetro 10 cm) se desinfectó con 3,8 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. A continuación, se enjuagó con 5,0 L de SWFI, se limpió con 5,0 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M y se enjuagó de nuevo con 5,0 L de SWFI. La columna se equilibró a continuación con 5,0 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M. La sustancia del flujo directo de la columna de Phenyl Sepharose se cargó en la columna de Amino Fenil Boronato. La columna se lavó con 9,9 L de fosfato de potasio 5 mM a pH 7,0, y a continuación con 9,7 L de bicina 20 mM, pH 9,0 después con 9,9 L de bicina 20 mM, NaCl 100 mM, pH 9,0. El producto se eluyó con 5,0 L de Hepes 50 mM, NaCl 100 mM, pH 7,0, dando como resultado 4460 mL a 48.400 unidades/mL, y se filtró a través de un filtro de 0,2 µm.

45

50

Una columna de Hidroxiapatita con un lecho de columna de 1,1 L (diámetro 7 cm, altura 28 cm) se desinfectó con 2,7 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. La columna se neutralizó con 2,1 L de fosfato de potasio 200 mM, pH 7,0 a continuación se equilibró en 2,2 L de fosfato de potasio 5 mM, NaCl 100 mM. Al producto eluido de la columna de Amino Fenil Boronato, se le añadieron 11,2 mL de de fosfato de potasio monobásico 1 M, 11,2 mL de fosfato de potasio dibásico 1 M y 0,45 mL de CaCl₂ 1 mM. A continuación, esto se cargó en la columna y después se lavó con 3,3 L de fosfato de potasio 5 mM, NaCl 100 mM, sulfato de amonio 0,5 M, pH 7,0, a continuación con 3,5 L de fosfato de potasio 10 mM, NaCl 100 mM, sulfato de amonio 0,5 M, pH 7,0. El producto se eluyó con 1,4 L de fosfato de potasio 70 mM, pH 7,0, dando como resultado 1260 mL a 152.560 unidades/mL, y se filtró a través de un filtro de 0,2 µm.

55

60

El producto purificado se concentró utilizando un cartucho Millipore de $46,46~\text{cm}^2$ con MWCO de 30~kDa que había sido equilibrado en NaCl 130~mM, Hepes 10~mM, pH 7,0. El producto se concentró de 1250~mL hasta 1,04~mg/mL a 120~mL y se sometió a cambio de tampón 10~x con el tampón NaCl 130~mM, Hepes 10~mM, pH 7,0, a continuación se filtró a través de un filtro de $0,2~\text{\mu m}$. Se realizaron las mediciones de A_{280} e indicaron que la concentración de rHuPH20 soluble de los 118~ml restantes era de 11,45~mg/mL. Se añadieron 17~mL adicionales de tampón NaCl 130~mM, Hepes 10~mM, pH 7,0~para llevar la concentración de proteína a 10~mg/mL (Lot 056-99). Diez mL de la disolución de proteína de 10~mg/mL se diluyeron en el tampón para proporcionar una disolución de 1~mg/mL (Lote 056-100. Ambas disoluciones se filtraron a través de un filtro de $0,2~\text{\mu m}$.

El producto formulado se cargó en viales de vidrio de 10 mL y de 1 mL, cuyo total combinado produjo 1308 mg de rHuPH20 soluble. Los viales se congelaron a -80°C, a continuación se transfirieron a -20°C para el almacenamiento. Los lotes 056-122 y 056-123 fueron caracterizados a continuación con respecto a la actividad y la pureza. Los lotes 056-122 y 056-123 exhibieron una actividad enzimática de 1.376.992 unidades/mL y 129.412 unidades/mL y una actividad específica de 136.900 unidades/mg y 124.400 unidades/mg (calculada a partir de la actividad enzimática y la concentración de proteínas). La pureza de las muestras de rHuPH20 soluble se determinó mediante SDS-PAGE, isoelectroenfoque (IEF), cromatografía líquida de alta presión de fase inversa (RP-HPLC), cromatografía de exclusión por tamaño (SEC) y cromatografía de intercambio aniónico. Según se determinó mediante RP-HPLC, se observó que la pureza de los dos Lotes era de aproximadamente 96,2%. Según se determinó mediante SEC, se observó que la pureza de los dos Lotes era de aproximadamente 99%. Se mostró que los niveles de endotoxina eran ≤0,8 UE/mL y 0,09 UE/mL para los lotes 056-122 y 056-123, respectivamente. Se midió que la osmolaridad era de 265 mOsm/kg y 256 mOsm/kg para los lotes 056-122 y 056-123, respectivamente.

D. Reproducibilidad del procedimiento de producción de rHuPH20 soluble del Gen2 en cultivo celular en un Biorreactor de 30 L

El procedimiento descrito anteriormente para el Lote 2B2-20K.6 se utilizó para un lote posterior para demostrar la reproducibilidad del procedimiento. El procedimiento se modificó ligeramente por medio de la incorporación de una etapa de inactivación viral inmediatamente antes de las etapas de cromatografía en columna.

Un vial de células 2B2 (1 x10 7 células) se descongeló y se cultivó a 37°C, CO $_2$ al 7% durante 7 pases en CD CHO (Invitrogen, Carlsbad, CA), con un suplemento de metotrexato 20 μ M y 40 mL/L de GlutaMAX TM -I (Invitrogen), después de lo cual se expandió hasta 400 mL, a continuación 4,4 L en medio CD CHO con un suplemento de 40 mL/L de GlutaMAX TM -I y sin metotrexato. A un biorreactor de 36 L (Bellco serie 1964) que contenía 20 L de medio CD CHO con un suplemento de 800 L de GlutaMAX TM -I, 100 mg de insulina humana recombinante y 300 mg de sulfato de gentamicina se le inoculó el cultivo de 3 L a una densidad de siembra inicial de 4,7 x 10 5 células/mL. El punto de fijación de la agitación del biorreactor se ajustó a 80 RPM; temperatura: 37°C; pH: 7,15; oxígeno disuelto: 25%. El biorreactor recibió superposición de aire filtrado y un burbujeo de aire/oxígeno/CO $_2$, controlado por un controlador Applikon ADI 1030.

El cultivo se alimentó 4 veces durante la ronda del biorreactor de 13 días, en el plazo de 127, 163, 208 y horas después de la inoculación. Los medios de alimentación se filtraron en el biorreactor mediante una bomba peristáltica. El punto de ajuste de la temperatura del biorreactor se redujo de 37°C a 36,5°C el día 7, a 36,0°C el día 9 y finalmente a 35,5°C el día 11. El contenido de cada uno de los medios de alimentación y de los parámetros de alimentación del biorreactor en toda la ronda se proporcionan en las Tablas 23 y 24, respectivamente.

Tabla 23. Formulaciones de los medios de alimentación

5

10

15

20

25

30

Componente	Medio inicial del biorreactor	Alimentación Núm. 1	Alimentación Núm. 2	Alimentación Núm. 3	Alimentación Núm. 4
Medio líquido CD CHO (Invitrogen)	20 L	0	0	0	0
polvo CD CHO AGT	0 g	97,2 g	48,6 g	24,3 g	24,3 g
SWFI	0	700 mL	700 mL	600 mL	600 mL
GlutaMAX™-I (Invitrogen)	800 mL	160 mL	80 mL	60 mL	40 mL
Yeastolate ultrafiltrado (Invitrogen; 200 g/L)	0	100 mL	200 mL	300 mL	300 mL
Dextrosa (D-glucosa)	0	40 g	40 g	60 g	50 g
Gentamicina	300 mg	0	0	0	0
rhulnsulina	100 mg	40 mg	0	0	0
Butirato de sodio	0	0	1,1 g	2,2 g	1,1 g

Tabla 24 Parámetros del biorreactor

· abia	Table 21.1 distinction do blottodotol								
Horas	Densidad celular viable (x10 ⁵ células/mL)	% de Viabilidad	рН	Unidades de hialuronidasa	Vol (L)	Glucosa	Alimentación		
0	4,7	98	7,28	113	24	8200	-		
24	8,9	98	7,23	202	24	6160	-		

Horas	Densidad celular viable (x10 ⁵ células/mL)	% de Viabilidad	рН	Unidades de hialuronidasa	Vol (L)	Glucosa	Alimentación
50	19,3	97	7,15	332	24	5480	-
76	36,7	99	6,85	680	24	3620	-
120	73,6	99	6,76	1619	24	2100	Alimentación Núm. 1
145	84,3	99	6,75	2842	25	2660	-
165	98,8	99	6,87	3756	25	840	Alimentación Núm. 2
190	95,3	99	6,85	4773	26	1330	-
201	105	97	6,90	5484	26	270	Alimentación Núm. 3
214	95,9	93	6,82	6344	27	2590	-
242	81,2	81	6,75	7890	27	1350	Alimentación Núm. 4
268	51,9	48	6,65	10398	28	2500	-
287	38,4	41	6,70	11864	28	12170	-
308	31,6	31	6,66	12864	28	1850	Harvest

El biorreactor se cosechó y se filtró a través de un sistema que contenía una serie de filtros Millipore Pod D0HC (0,5 m²) y apilamientos A1HC (0,1 m²), que contenían capas de tierra de diatomeas de tamaño de poro graduado, seguido de filtración final a través de filtro de cápsula (Sartorius Sartobran 300) en bolsas de almacenamiento de 20 L. La cosecha se realizó utilizando una bomba peristáltica y se completó en aproximadamente 75 minutos, obteniéndose aproximadamente 30 L de líquido de cultivo celular cosechado (HCCF). Esto incluye el volumen del biorreactor de 29 L más aproximadamente 2 L del agente de captura PBS. Al HCCF se le añadieron suplementos de EDTA y Tris a concentraciones finales de 10 mM cada uno, y un pH final de 7,5. A continuación, el HCCF se almacenó a 2-8°C antes de ser concentrado y se sometió a un cambio de tampón.

Para concentrar la proteína, se equilibró en primer lugar un sistema Sartorius Slice con 3x casetes de flujo transversal Sartocon Slice de 929,36 cm 2 (MWCO de 30 kDa) en Na_2SO_4 20 mM, Tris 10 mM, pH 7,5. Se concentraron 30 L de HCCF 10x hasta 3 L y se sometieron a cambio de tampón 10x con el tampón Na_2SO_4 20 mM, Tris 10 mM, pH 7,5. La velocidad de flujo media durante la diafiltración fue de 150 mL/min y la presión transmembrana media fue de 1,05 kg/cm 2 . El producto retenido se filtró a través de sistemas de filtro de cápsula de 0,2 µm en bolsas de almacenamiento de 5 L para un volumen final de 3,0 L. A continuación, el producto retenido se almacenó a 2-8°C.

10

15

20

25

30

35

La inactivación viral se realizó mezclando 235 mL de una disolución filtrada de Tritón X-100 al 10% p/p, fosfato de tributilo al 35% p/p en SWFl con 2,15 L de proteína concentrada y sometida a cambio de tampón a temperatura ambiente en un matraz de agitación de vidrio agitando a 30-40 rpm. Al cabo de 45 minutos, la disolución de proteína se cargó en la columna de Q Sepharose (como se describe más abajo). La carga llevó 24 minutos, lo que dio como resultado un tiempo de exposición total a la disolución de detergente de 69 minutos.

La columna de Q Sepharose con un lecho de columna de 1,1 L, diámetro 7 cm, altura 28 cm se desinfectó con 2,1 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. A continuación, se limpió con 2,5 L de Hepes 10 mM, NaCl 400 mM, pH 7,0, se enjuagó en 4,5 L de agua estéril para inyectables (SWFI) y se equilibró con 4,5 L de Hepes 10 mM, NaCl 25 mM, pH 7,0. El cambio de tampón, la proteína viral inactivada (2385 mL a 133.040 unidades de hialuronidasa/mL) se cargó en la columna. La columna se lavó con 4,5 L de Hepes 10 mM, NaCl 25 mM, pH 7,0, y 4,5 L de Hepes 10 mM, NaCl 50 mM, pH 7,0. El producto se eluyó en 2,5 L de Hepes 10 mM, NaCl 400 mM, pH 7,0, obteniéndose 2500 mL a 133.680 unidades/mL, y se filtró a través de un filtro de 0,2 μm.

Una columna de Phenyl Sepharose con un lecho de columna de 2,2 L (altura 28 cm, diámetro 10 cm) se desinfectó con 5,0 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. A continuación, se enjuagó con 6,0 L de SWFI y se equilibró en 4,6 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 mM. Para eluir la columna, se añadieron 9,6 mL de fosfato de potasio monobásico 1 M, 9,6 mL de fosfato de potasio dibásico 1 M y 0,4 mL de CaCl $_2$ 1 mM. A continuación, esto se cargó en la columna y se recogieron el flujo directo y del agente de captura (fosfato de potasio 5 mM, sulfato de amonio 0,5 mM), proporcionando 6450 mL a 43.840 unidades/mL. El producto se filtró a través de un filtro de 0,2 µm.

Una columna de Fenil Amino Boronato con un lecho de columna de 2,2 L (altura 29 cm, diámetro 10 cm) se desinfectó con 3,5 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. A continuación, se enjuagó con 5,0 L de SWFI y se equilibró con 9,0 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M. La sustancia del flujo directo de la columna de Phenyl Sepharose se cargó en la columna de Amino Fenil Boronato. La columna se lavó con 9,9 L de fosfato de potasio 5 mM, sulfato de amonio 0,5 M, pH 7,0, y a continuación con 9,9 L de bicina 20 mM, sulfato de amonio 0,5 M, pH 9,0. El producto se eluyó con 4,4 L de Hepes 50 mM, NaCl 100 mM, pH 7,0, obteniéndose 4389 mL a 33.840 unidades/mL, y se filtró a través de un filtro de 0,2 µm.

- Una columna de hidroxiapatita con un lecho de columna de 1,1 L (diámetro 7 cm, altura 28 cm) se desinfectó con 2,1 L de NaOH 1,0 N y se almacenó en NaOH 0,1 N antes de su uso. La columna se neutralizó con 3,6 L de fosfato de potasio 200 mM, pH 7,0, a continuación, se equilibró en 3,2 L de fosfato de potasio 5 mM, NaCl 100 mM. Al producto eluido de la columna de Fenil Amino Boronato, se le añadieron 11 mL de fosfato de potasio monobásico 1 M, 11 mL de fosfato de potasio dibásico 1 M y 0,44 mL de CaCl₂ 1 mM. A continuación, esto se cargó en la columna y posteriormente se lavó con 4,8 L de fosfato de potasio 5 mM, NaCl 100 mM, sulfato de amonio 0,5 M, pH 7,0, y a continuación con 3,8 L de fosfato de potasio 10 mM, NaCl 100 mM, sulfato de amonio 0,5 M, pH 7,0. El producto se eluyó con 1,5 L de fosfato de potasio 70 mM, pH 7,0, dando como resultado 1500 mL a 114.320 unidades/mL, y se filtró a través de un filtro de 0,2 um.
- El producto purificado se concentró utilizando un cartucho Millipore de 46,47 cm² con MWCO de 30 kDa que había sido equilibrado en NaCl 130 mM, Hepes 10 mM, pH 7,0. El producto se concentró de 1.500 mL a 0,961 mg/mL a 125 mL y se sometió a cambio de tampón 10x con el tampón NaCl 130 mM, Hepes 10 mM, pH 7,0, después se filtró a través de un filtro de 0,2 μm. Se realizaron las mediciones de A₂₈₀ e indicaron que la concentración de proteína de los restantes 122 mL era de 11.431 mg/mL. Se añadieron 17,5 mL adicionales de tampón NaCl 130 mM, Hepes 10 mM, pH 7,0 para llevar la concentración de proteína a 10 mg/mL (Lote 056-135). Diez mL de la disolución de proteína de 10 mg/mL se diluyeron en el tampón para proporcionar una disolución de 1 mg/mL (Lote 056-136). Ambas disoluciones se filtraron a través de un filtro de 0.2 μm.
- El producto formulado se introdujo en viales de vidrio de 5 mL y 1 mL, el total combinado de los cuales produjo 1324
 mg de rHuPH20 soluble. Los viales se congelaron a -80°C, después se transfirió a -20°C para el almacenamiento.
 Los Lotes 056-135 y 056-136 fueron caracterizados con respecto a la actividad y la pureza. Los Lotes 056-135 y
 056-136 exhibieron una actividad enzimática de 1.301.010 unidades/mL y 127.661 unidades/mL, y una actividad
 específica de 121.600 unidades/mg y 127.700 unidades/mg (calculada a partir de la actividad enzimática y la
 concentración de proteínas). La pureza de las muestras de rHuPH20 soluble se determinó mediante SDS-PAGE,
 isoelectroenfoque (IEF), cromatografía líquida de alta presión de fase inversa (RP-HPLC), cromatografía de
 exclusión por tamaño (SEC) y cromatografía de intercambio aniónico. Según se determinó mediante RP-HPLC, se
 observó que la pureza de los dos Lotes estaba entre 93,5% y 93,7%. Según se determinó mediante SEC, se
 observó que la pureza de los dos Lotes era mayor de 99%. Se demostró que los niveles de endotoxina eran ≤0,84
 UE/mL y 0,09 UE/mL para los lotes 056-135 y 056-136, respectivamente. Se midió que la osmolaridad era de 255
 mOsm/kg y 260 mOsm/kg para los lotes 056-135 y 056-136, respectivamente. El pH de cada uno fue de 7,2.

Ejemplo 8.

5

A. Producción de rHuPH20 soluble del Gen2 en cultivo celular en biorreactor de 300 L

45 Los métodos de producción y purificación detallados en el Ejemplo 7, anteriormente, fueron aumentados a escala para la producción utilizando un biorreactor de 400 L. Un vial de 2B2 células (1 x 10⁷ células) se descongeló y se expandió desde matraces oscilantes a través de matraces de agitación de 36L en CD CHO (Invitrogen, Carlsbad, CA), con un suplemento de metotrexato 20 µM y GlutaMAX™-I 8 mM (Invitrogen). En resumen, un vial de células se descongeló en un baño de agua 37°C, se añadió medio y las células se centrifugaron. Las células se resuspendieron 50 en un matraz de agitación de 125 mL con 20 mL de medio de nueva aportación y se colocaron en un incubador a 37°C, CO₂ al 7%. Las células se expandieron hasta 40 mL en el matraz de agitación de 125 mL. Cuando la densidad celular alcanzó más de 1.5 x 10⁶ células/mL, el cultivo se expandió en un matraz de de agitación de 125 mL en un volumen de cultivo de 100 mL. El matraz se incubó a 37°C, 7% de CO₂. Cuando la densidad celular alcanzó más de 1,5 x 10⁶ células/mL, el cultivo se expandió en un matraz de agitación de 250 mL en 200 mL de volumen de cultivo, y el matraz se incubó a 37°C, CO₂ al 7%. Cuando la densidad celular alcanzó más de 1,5 x 10⁶ células/mL, el cultivo 55 se expandió en un matraz de agitación de 1 L en 800 mL de volumen de cultivo y se incubaron a 37°C, CO2 al 7%. Cuando la densidad celular alcanzó más de 1,5 x 10⁶ células/mL el cultivo se expandió en un matraz de agitación de 6 L en un volumen de cultivo de 5000 mL y se incubó a 37°C, CO2 al 7%. Cuando la densidad celular alcanzó más de 1,5 x 10⁶ células/mL el cultivo se expandió en un matraz de agitación de 36 L en volumen de cultivo de 32 L y se 60 incubó a 37°C, CO2 al 7%.

Un reactor de 400 L se esterilizó por medio de vapor de agua a 121°C durante 30 minutos y se añadieron 230 mL de medio CD CHO con un suplemento de GlutaMAX™-I 8 mM y 5 mg/L de rHuInsulina. Antes de su uso, se verificó la contaminación del reactor. Se transfirieron aproximadamente células de 30 L de los matraces de agitación de 36L al

biorreactor de 400 L (Braun) a una densidad de inoculación de 4,0 x 10⁵ células viables por mL y un volumen total de 260L. Los parámetros fueron ajuste de temperatura, 37°C; Velocidad del impulsor 40-55 RPM; Presión del Recipiente: 0,21 kg/cm²; Burbujeo de Aire 0,5-1,5 l/min.; Superposición de Aire: 3 L/min. Se tomaron muestras del reactor diariamente para los recuentos de células, verificación de pH, análisis del medio, producción y retención de proteínas. Asimismo, durante la ronda se añadieron alimentaciones de nutrientes. A las 120 horas (día 5), se añadieron 10,4 L de Medio de Alimentación Núm. 1 (4 x CD CHO + 33 g/L de glucosa + 160 mL/L de GlutaMAX™-I + 16,6 g/L de Yeastolate + 33 mg/L rHulnsulina). A las 168 horas (día 7) se añadieron, 10,8 litros de Alimentación Núm. 2 (2 x CD CHO + 33 g/L de Glucosa + 80 mL/L de GlutaMAXTM-I + 33,4 g/L de Yeastolate + 0,92 g/L de butirato de sodio), y la temperatura de cultivo se cambió a 36,5°C. A las 216 horas (día 9), se añadieron 10,8 L de Alimentación Núm. 3 (1x CD CHO + 50 g/L de Glucosa + 50 mL/L de GlutaMAX™-I + 50 g/L de Yeastolate + 1,80 g/L de butirato de sodio), y la temperatura de cultivo se cambió a 36°C. A las 264 horas (día 11), se añadieron 10,8 L de Alimentación Núm. 4 (1 x CD CHO + 33 g/L de glucosa + 33 mL/L de GlutaMAX™-I + 50 g/L de Yeastolate + 0,92 g/L de butirato de sodio), y la temperatura de cultivo se cambió a 35,5°C. Se observó que la adición de los medios meioraba drásticamente la producción de rHuPH20 soluble en las etapas finales de producción. El reactor fue cosechado a los 14 días o cuando la viabilidad de las células se redujo por debajo de 40%. El procedimiento dio como resultado una productividad final de 17.000 Unidades por mL con una densidad celular máxima de 12 millones de células/mL. En la cosecha, se tomaron muestras de cultivo para micoplasma, carga biológica, endotoxinas y partículas virales in vitro e en vivo. TEM para las partículas virales y la actividad enzimática.

El cultivo se bombeó mediante una bomba peristáltica a través de cuatro módulos del sistema de filtración Millistak (Millipore) en paralelo, conteniendo cada uno una capa de tierra de diatomeas graduada a 4-8 μm y una capa de tierra de diatomeas graduada a 1,4-1,1 μm, seguido de una membrana de celulosa, a continuación, a través de un segundo sistema único de filtración Millistak (Millipore) que contenía una capa de tierra de diatomeas graduada a 0,4-0,11 μm y una capa de tierra de diatomeas graduada a <0,1 μm, seguido de una membrana de celulosa, y a continuación a través de un filtro final de 0,22 μm en una bolsa flexible de un solo uso estéril con una capacidad de 350 L. Al líquido de cultivo celular cosechado se le añadió un suplementó de EDTA 10 mM y Tris 10 mM a un pH de 7,5. El cultivo se concentró 10 veces con un aparato de filtración de flujo tangencial (TFF) modelo que utiliza cuatro filtros de poliétersulfona (PES) de 30 kDa de peso molecular de corte (MWCO) Sartoslice TFF (Sartorius), seguido de 10x cambio de tampón con Tris 10 mM, Na₂SO₄ 20 mM, pH 7,5 en un filtro final de 0,22 μm en una bolsa de almacenamiento estéril de 50 L.

La cosecha concentrada, sometida a diafiltración fue inactivada por virus. Antes de la inactivación viral, se preparó una disolución de Triton X-100 al 10%, fosfato de tri(n-butilo) (TNBP) al 3%. La cosecha concentrada, sometida a diafiltración se expuso a Triton X-100 al 1%, TNBP al 0,3% durante 1 hora en un recipiente de reacción de vidrio de 36 L inmediatamente antes de la purificación en la columna de la Q.

B. Purificación de sHuPH20 del Gen2

10

15

35

50

55

Se preparó una columna de intercambio iónico (resina 9 L, H = 29 cm, D = 20 cm) Q Sepharose (Pharmacia). Se recogieron muestras de lavado para una determinación del pH, la conductividad y el análisis de endotoxina (LAL). La columna se equilibró con 5 volúmenes de columna de Tris 10 mM, Na₂SO₄ 20 mM, pH 7,5. Después de la inactivación viral, la cosecha concentrada, sometida a diafiltración, se cargó en la columna Q a una velocidad de flujo de 100 cm/hr. La columna se lavó con 5 volúmenes de columna de Tris 10 mM, Na₂SO₄ 20 mM, pH 7,5 y Hepes 10 mM, NaCl 50 mM, pH 7,0. La proteína se evaluó con Hepes 10 mM, NaCl 400 mM, pH 7,0 a una bolsa estéril en un filtro final de 0,22 µm. La muestra de producto eluido se sometió a ensayo para determinar la carga biológica, la concentración de proteína y la actividad enzimática. Las lecturas de absorbancia A₂₈₀ se tomaron al principio y al final del intercambio.

A continuación se llevó a cabo una cromatografía de interacción hidrófoba con Phenyl-Sepharose (Pharmacia). Se preparó una columna de Phenyl-Sepharose (PS) (19-21 L de resina, H=29 cm, D= 30 cm). El lavado se recogió y se tomaron muestras para el pH, la conductividad y las endotoxinas (análisis LAL). La columna se equilibró con 5 volúmenes de columna de fosfato de potasio 5 M, sulfato de amonio 0,5 M, CaCl2 0,1 mM, pH 7,0. Al producto eluido de proteína anterior se le añadió un suplemento de sulfato de amonio 2M, fosfato de potasio 1 M y disoluciones de partida de CaCl₂ 1 M para proporcionar concentraciones finales 5 mM, 0,5 M y 0,1 mM, respectivamente. La proteína se cargó en la columna PS a una velocidad de flujo de 100 cm/hr. Se añadieron fosfato de potasio 5 M, sulfato de amonio 0,5 M y CaCl₂ 0,1 mM a pH 7,0 a 100 cm/hr. El flujo directo se hizo pasar a través de un filtro final de 0,22 μm a una bolsa estéril. Se tomaron muestras del flujo directo para determinar la carga biológica, la concentración de proteína y la actividad enzimática.

Se preparó una columna de aminofenilboronato (ProMedics; 21 L de resina, H=29 cm, D= 30 cm). El lavado se recogió y se tomaron muestras para el pH, la conductividad y las endotoxinas (análisis LAL). La columna se equilibró con 5 volúmenes de columna de fosfato de potasio 5 M, sulfato de amonio 0,5 M. La proteína purificada en PS se cargó en la columna de aminofenilboronato a una velocidad de flujo de 100 cm/hr. La columna se lavó con fosfato de potasio 5 M, sulfato de amonio 0,5 M, pH 7,0. La columna se lavó con bicina 20 mM, sulfato de amonio 0,5 M, pH

- 9,0. La columna se lavó con bicina 20 mM, cloruro de sodio 100 mM, pH 9,0. La proteína se eluyó con Hepes 50 mM, NaCl 100 mM, pH 6,9 y se hizo pasar a través de un filtro estéril a una bolsa estéril. La muestra eluida se sometió a ensayo para determinar la carga biológica, la concentración de proteína y la actividad enzimática.
- Se preparó la columna de hidroxiapatita (HAP) (BioRad; 13 L de resina, H=20 cm, D= 30 cm). El lavado se recogió y se sometió a ensayo para determinar el pH, la conductividad y las endotoxinas (análisis LAL). La columna se equilibró con fosfato de potasio 5 M, NaCl 100 mM, CaCl₂ 0,1 mM, pH 7,0. A la proteína purificada con aminofenilboronato se le añadió un suplemento a concentraciones finales de fosfato de potasio 5 M y CaCl₂ 0,1 mM y se cargó en la columna HAP a una velocidad de flujo de 100 cm/hr. La columna se lavó con fosfato de potasio 5 M, pH 7, NaCl 100 mM, CaCl₂ 0,1 mM. La columna se lavó a continuación con fosfato de potasio 10 mM, pH 7, NaCl 100 mM, CaCl₂ 0,1 mM. La proteína se evaluó con fosfato de potasio 70 mM, pH 7,0 y se hizo pasar a través de un filtro estéril de 0,22 μm a una bolsa estéril. La muestra eluida se sometió a ensayo para determinar la carga biológica, la concentración de proteína y la actividad enzimática.
- La proteína purificada mediante HAP se hizo pasar después a través de un filtro para eliminación de virus. El filtro Virosart (Sartorius) esterilizado se preparó en primer lugar lavando con 2 L de fosfato de potasio 70 mM, pH 7,0. Antes de su uso, se tomaron muestras del tampón filtrado para determinar el pH y la conductividad. La proteína purificada mediante HAP se bombeó a través de una bomba peristáltica a través del filtro para eliminación de virus 20 nM. La proteína filtrada en fosfato de potasio 70 mM, pH 7,0 se hizo pasar a través de un filtro final de 0,22 µm a una bolsa estéril. La muestra filtrada de virus se sometió a ensayo para determinar el perfil de concentración de proteína, actividad enzimática, oligosacáridos, monosacáridos y ácido siálico (como se describe en los Ejemplos 9 a 10, más abajo).
- La proteína en el producto filtrado se concentró a continuación hasta 10 mg/mL utilizando un sistema de filtración de flujo tangencial (TFF) Sartocon Slice con un peso molecular de corte (MWCO) de 10 kD (Sartorius). El filtro se preparó en primer lugar lavando con histidina 10 mM, NaCl 130 mM, pH 6,0 y se tomaron muestras del permeato para determinar el pH y la conductividad. Después de la concentración, se tomaron muestras de la proteína concentrada y se sometieron a ensayo para determinar la concentración de proteína y la actividad enzimática. Se realizó un cambio de tampón 6x en la proteína concentrada al tampón final: histidina 10 mM, NaCl 130 mM, pH 6,0.

 Después del cambio de tampón, la proteína concentrada se hizo pasar a través de un filtro de 0,22 µm a una bolsa de almacenamiento estéril de 20 L. Se tomaron muestras de la proteína y se sometió a ensayo para determinar la concentración de proteína, la actividad enzimática, los grupos sulfhidrilo libres, el perfil de oligosacáridos y la osmolaridad (como se describe en los Ejemplos 9 a 10, más abajo).
- La proteína a granel filtrada en condiciones estériles se dispensó asépticamente a 20 mL a viales de Teflón estériles de 30 mL (Nalgene). Los viales se sometieron a continuación a congelación instantánea y se almacenaron a -20 ± 5°C. La producción y purificación de rHuPH20 soluble utilizando este método produjo aproximadamente 11 y 15 gramos, con actividad específica de 95.000 unidades/mg a 120.000 unidades/mg.
- 40 C. Comparación de la producción y purificación de sHuPH20 del Gen1 y Gen2

45

La producción y purificación de rHuPH20 soluble del Gen2 en un cultivo celular en biorreactor de 300L contenía algunos cambios en los protocolos en comparación con la producción y purificación de rHuPH20 soluble del Gen1 en un cultivo celular en biorreactor de 100 L (descrito en el Ejemplo 4). La Tabla 25 muestra diferencias ilustrativas, además de simples cambios de aumento a escala, entre los métodos.

Tabla 25. Diferencias ilustrativas entre la producción y purificación de rHuPH20 soluble del Gen1 y Gen2 utilizando los métodos de cultivo celular en biorreactor de 100 L y 300 L

Diferencia de procedimiento	rHuPH20 soluble del Gen1	rHuPH20 soluble del Gen2
Línea celular	3D35M	2B2
Medios utilizados para expandir las células	Contiene 0,10 µM	Contiene 20 µM
inóculo	metotrexato (0,045 mg/L)	metotrexato (9 mg/L)
Medios en cultivos de 6L en curso	Contiene metotrexato 0,10 µM	No contiene metotrexato
matraz de agitación de 36 L	Sin instrumentación	Equipado con instrumentación que verifica y controla el pH, el oxígeno disuelto, el burbujeo y la velocidad de flujo del gas de superposición.
	Volumen de funcionamiento 20 L.	volumen de funcionamiento 32 L

Diferencia de procedimiento	rHuPH20 soluble del Gen1	rHuPH20 soluble del Gen2
Values en final de		
	Aprox. 100 L en un biorreactor de 125 L (volumen de cultivo inicial + 65 L)	Aprox. 300L en un biorreactor de 400L (volumen de cultivo inicial + 260 L)
Medios de cultivo en el biorreactor final	Sin rHuinsulina	5,0 mg/L de rHulnsulina
	cultivo celular del biorreactor es decir	Aumentado a 4% del volumen de cultivo celular del biorreactor es decir 10,4, 10,8, 11,2 y 11,7 L, dando como resultado un volumen de biorreactor diana de ~303 L.
Alimentación de medios	Medio de Alimentación Núm. 1: CD CHO + 50 g/L de Glucosa + GlutaMAX™-I 8 mM	Medio de Alimentación Núm. 1: 4x CD CHO + 33 g/L de Glucosa + GlutaMAX™-I 32 mM + 16,6 g/L de Yeastolate + 33 mg/L de rHuInsulina
	Alimentación Núm. 2 (CD CHO + 50 g/L de Glucosa + 8 mM GlutaMAX™-I + 1,1 g/L de Butirato de Sodio	Alimentación Núm. 2: 2x CD CHO + 33 g/L de Glucosa + GlutaMAX™-I 16 mM + 33,4 g/L de Yeastolate + 0,92 g/L de Butirato de Sodio
	Alimentación Núm. 3: CD CHO + 50	
	g/L de Glucosa + GlutaMAX™-I 8 mM + 1,1 g/L de Butirato de Sodio	Alimentación Núm. 3: 1 x CD CHO + 50 g/L de Glucosa + GlutaMAX™-I 10 mM + 50 g/L de Yeastolate + 1,80 g/L de Butirato de Sodio
		Alimentación Núm. 4:1 x CD CHO + 33 g/L de Glucosa + GlutaMAX™-I 6,6 mM + 50 g/L de Yeastolate + 0,92 g/L de Butirato de Sodio
Filtración del cultivo celular del biorreactor	Cuatro filtros de polietersulfona (8,0 $\mu m,\ 0,65\ \mu m,$	1ª fase - Cuatro módulos en paralelo, cada uno con una capa
	0,22 μm y 0,22 μm) en serie	de tierra de diatomeas graduada a 4-8 µm y una capa de tierra de diatomeas graduada a 1,4-1,1 µm, seguida de una membrana de celulosa.
		2ª fase - módulo individual que contiene una capa de tierra de diatomeas graduada a 0,4-0,11 μm y una capa de tierra de diatomeas graduada a <0,1 μm, seguida de una membrana de celulosa.
		3ª fase - filtro de polietersulfona de 0,22 µm
	bolsa de almacenamiento de 100 L	bolsa de almacenamiento de 300L
		Al cultivo celular cosechado se le añade un suplemento de EDTA 10 mM, Tris 10 mM a un pH de 7,5.
Concentración y cambio de tampón antes de la cromatografía	Filtro Millipore espiral de	Producto concentrado utilizando cuatro Filtros Sartorius Sartoslice TFF con MWCO de 30K
	Cambio de Tampón del Producto concentrado 6x con Hepes 10 mM, NaCl 25 mM, pH 7,0	
	bolsa de almacenamiento estéril de 20L	bolsa de almacenamiento estéril de 50L
Inactivación viral antes de la cromatografía	Ninguna	Inactivación viral realizada con la adición de Triton X-100 al 1%, Fosfato de Tributilo al 0,3%, pH 7,5.
1 ^a etapa de purificación (Q	Sin lectura de absorbancia	mediciones de A280 al principio y al final

Diferencia de procedimiento	rHuPH20 soluble del Gen1	rHuPH20 soluble del Gen2
Sepharose)		
Filtración Viral después de la cromatografía	Filtro Pall DV-20 (20 nm)	Filtro Sartorius Virosart (20 nm)
Concentración y	Tampón Hepes/solución salina pH 7,0	Tampón Histidina/solución salina, pH 6,0
cambio de tampón después de la cromatografía	Proteína concentrada a 1 mg/mL	Proteína concentrada a 10 mg/mL
Carga del vial	Volúmenes de carga de 5 mL y 1 mL	Volúmenes de carga de 20 mL
	Almacenado a - ≤0°C	Almacenado a ≤0°C
	Cierre de vidrio/caucho	Tapa de Teflón/rosca
Rendimiento de rHuPH20 soluble	Aprox. 400-700 mg	Aprox. 11-25 g

Ejemplo 9

5

10

15

20

25

30

35

40

Determinación de la actividad enzimática de rHuPH20 soluble

Se determinó la actividad enzimática de rHuPH20 soluble en muestras tales como cultivos celulares, fracciones de purificación y disoluciones purificadas utilizando un análisis turbidimétrico, que se basa en la formación de un producto precipitado insoluble cuando el ácido hialurónico se une a albúmina del suero. La actividad se mide incubando la rHuPH20 soluble con hialuronato de sodio (ácido hialurónico) durante un período de tiempo ajustado (10 minutos) y a continuación precipitando el hialuronato de sodio no digerido con la adición de albúmina de suero acidulada. El turbidez de la muestra resultante se mide a 640 nm después de un período de desarrollo de 30 minutos. La disminución de la turbidez resultante de la actividad enzimática sobre el sustrato de hialuronato de sodio es una medida de la actividad enzimática de la rHuPH20 soluble. El método se ejecuta utilizando una curva de calibración generada con diluciones de un patrón de referencia que funciona en un análisis de rHuPH20 soluble, y las mediciones de la actividad de la muestra se vuelven relativas para esta curva de calibración.

Las diluciones de la muestra se prepararon en Disoluciones de Diluyente de Enzima. La Disolución de Diluyente de Enzima se preparó disolviendo 33.0 ± 0.05 mg de gelatina hidrolizada en 25.0 mL de Tampón de Reacción PIPES 50 mM (NaCl 140 mM, PIPES 50 mM, pH 5.5) y 25.0 mL de SWFI, y diluyendo 0,2 mL de disolución de Buminato al 25% en la mezcla y sometiendo a vórtice durante 30 segundos. Esto se realizó a las 2 horas de uso y se almacenó en hielo hasta que se necesitó. Las muestras se diluyeron a 1-2 U/mL estimadas. Generalmente, la dilución máxima por etapa no excedió de 1:100 y el tamaño de la muestra inicial para la primera dilución no fue inferior a 20 μ L. Los volúmenes de muestra mínimos necesarios para realizar el análisis fueron: Muestras En Proceso, Fracciones de FPLC: 80 μ L; Sobrenadantes de Cultivo de Tejidos: 1 mL; Material Concentrado 80 μ L; Material Purificado o de la Etapa Final: 80 μ L. Las diluciones se realizaron por triplicado en una placa de 96 pocillos con Baja Unión a Proteína, y se transfirieron 30 μ L de cada dilución de color negro/de fondo transparente OPTILUX (BD Biosciences).

Las diluciones de rHuPH20 soluble conocida con una concentración de 2,5 U/mL se prepararon en Disolución de Diluyente de Enzima para generar una curva patrón y se añadieron a la placa Optilux por triplicado. Las diluciones incluían 0 U/mL, 0,25 U/mL, 0,5 U/mL, 1,0 U/mL, 1,5 U/mL, 2,0 U/mL, y 2,5 U/mL. Se incluyeron pocillos "Blanco reactivo" que contenían 60 µL de Disolución de Diluyente de Enzima en la placa como control negativo. La placa se cubrió después y se calentó en un bloque térmico de calor durante 5 minutos a 37°C. La cubierta se retiró y la placa se sacudió durante 10 segundos. Después de agitar, la placa se devolvió a la placa para calentar el bloque y se cebó el MULTIDROP 384 Liquid Handling Device con 0,25 mg/mL de disolución de hialuronato sódico caliente preparada disolviendo 100 mg de hialuronato de sodio (Lifecore Biomedical) en 20,0 mL de SWFI. Esta se mezcló por rotación y/o balanceo suave a 2-8°C durante 2-4 horas, o hasta que se disolvió por completo). La placa de reacción se transfirió al MULTIDROP 384 y la reacción se inició pulsando la tecla de inicio para dispensar 30 µL de hialuronato de sodio en cada pocillo. La placa se retiró a continuación del MULTIDROP 384 y se sacudió durante 10 segundos antes de ser transferida a un bloque térmico con la cubierta de la placa recolocada. La placa se incubó a 37°C durante 10 minutos

Se preparó el MULTIDROP 384 para detener la reacción cebando la máquina con Disolución Trabajo de Suero y cambiando el ajuste de volumen a 240 µL. (25 mL de Disolución de Partida de S [1 volumen de Suero de Caballo (Sigma) se diluyó con 9 volúmenes de Disolución de Tampón Acetato 500 mM y el pH se ajustó a 3,1 con ácido

clorhídrico] en 75 mL de Disolución de Tampón Acetato 500 mM). La placa se retiró del bloque térmico y se colocó sobre el MULTIDROP 384 y se dispensaron 240 μ L de Disoluciones de Trabajo de suero en los pocillos. La placa se retiró y se sacudió en un lector de placas durante 10 segundos. Después de otros 15 minutos, se midió la turbidez de las muestras a 640 nm y se determinó la actividad de la enzima (en U/mL) de cada muestra mediante el ajuste a la curva patrón.

La actividad específica (Unidades/mg) se calculó dividiendo la actividad de la enzima (U/mL) por la concentración de proteína (mg/mL).

10 Ejemplo 10

5

15

20

25

30

50

55

Determinación del contenido de ácido siálico y monosacárido

Se puede evaluar el contenido de ácido siálico y monosacárido de la rHuPH20 soluble mediante cromatografía líquida de fase inversa (RPLC) después de la hidrólisis con ácido trifluoroacético. En un ejemplo, se determinó el contenido de ácido siálico y monosacárido de la hialuronidasa purificada lote núm. HUB0701E (1,2 mg/mL; producida y purificada esencialmente como se describe en el Ejemplo 8). Brevemente, se hidrolizaron 100 µg de muestra con ácido trifluoroacético al 40% (v/v) a 100°C durante 4 horas por duplicado. Después de la hidrólisis, las muestras se secaron y se resuspendieron en 300 µL de aqua. Se transfirió una parte alícuota de 45 µL de cada muestra re-suspendida a un nuevo tubo y se secó, y se añadieron a cada uno 10 µL de una disolución de 10 mg/mL de acetato de sodio. Los monosacáridos liberados se marcaron fluorescentemente por medio de la adición de 50 µL de una disolución que contenía 30 mg/mL de ácido 2-aminobenzoico, 20 mg/mL de cianoborohidruro de sodio, aproximadamente 40 mg/mL de acetato de sodio y 20 mg/mL de ácido bórico en metanol. La mezcla se incubó durante 30 minutos a 80°C en la oscuridad. La reacción de derivatización se sofocó mediante la adición de 440 µL de fase móvil A (n-butilamina al 0,2% (v/v), ácido fosfórico al 0,5% (v/v), tetrahidrofurano al 1% (v/v)). También se hidrolizó un blanco de matriz de agua y se derivatizó como se describe para la muestra de hialuronidasa como un control negativo. Los monosacáridos liberados se separaron por medio de RPLC utilizando una columna de fase inversa de Octadecilo (C₁₈) (4,6 x 250 mm, 5 µm de tamaño de partícula; J.T. Baker) y se supervisó mediante la detección de fluorescencia (excitación a 360 nm, emisión a 425 nm). La cuantificación del contenido de monosacárido se hizo por comparación de los cromatogramas de la muestra de hialuronidasa con los cromatogramas de los patrones de monosacáridos incluyendo N-D-glucosamina (GlcN), N-D-galactosamina (GalN), galactosa, fucosa y manosa. La Tabla 26 presenta la razón molar de cada monosacárido por molécula de hialuronidasa.

35	Tahla 26	Contenido de m	onosacárido (de rHuPH20 soluble

Tubia 20. Contoni	ao ao monocacan	iao ao ii iai ii	20 0010010			
Lote	Réplicas	GlcN	GalN	Galactosa	Manosa	Fucosa
HUB0701E	1	14,28	0,07*	6,19	25,28	2,69
	2	13,66	0,08 *	6,00	24,34	2,61
	Promedio	13,97	0,08 *	6,10	24,81	2,65
* Los resultados de GalN estaban por debajo del límite de detección						

Ejemplo 11

Heterogeneidad C-terminal de rHuPH20 soluble de células 3D35M y 2B2

La secuenciación C-terminal se realizó en dos lotes de sHuPH20 producida y purificada a partir de células 3D35M en un volumen de biorreactor 100 L (Lote HUA0505MA) y células 2B2 en un volumen de biorreactor de 300L (Lote HUB0701EB). Los lotes se digirieron por separado con endoproteinasa Asp-N, que escinde específicamente los enlaces peptídicos N-terminalmente en el ácido aspártico y cisteico. Esto libera la porción C-terminal de la rHuPH20 soluble en el ácido aspártico en la posición 431 del SEQ ID NO: 4. Los fragmentos C-terminales se separaron y se caracterizaron para determinar la secuencia y la abundancia de cada población en el Lote HUA0505MA y el Lote HUB0701EB.

Se observó que las preparaciones de rHuPH20 soluble de las células 3D35M y las células 2B2 mostraban heterogeneidad, y contenían polipéptidos que diferían entre sí en su secuencia C-terminal (Tablas 27 y 28). Esta heterogeneidad es probablemente el resultado de la escisión C-terminal del polipéptido de 447 aminoácidos expresado (SEQ ID NO: 4) por las peptidasas presentes en el medio de cultivo celular u otras disoluciones durante el proceso de producción y purificación. Los polipéptidos de las preparaciones de rHuPH20 soluble tienen secuencias de aminoácidos correspondiente a los aminoácidos 1-447, 1-446, 1-445, 1-444 y 1-443 de la secuencia de rHuPH20 soluble mostrada en el SEQ ID NO: 4. La secuencia de aminoácidos completa de cada uno de estos polipéptidos se muestra en los SEQ ID NO: 4 a 8, respectivamente. Como se ha indicado en las tablas 27 y 28, la abundancia de cada polipéptido en las preparaciones de rHuPH20 soluble de células 3D35M y células 2B2 difiere.

Tabla 27. Análisis de fragmentos C-terminales del Lote HUA0505MA

Fragmento	Posición del aminoácido (con respecto al SEQ ID NO: 4)	Secuencia	Masa Teórica	Masa Exp.	Error	Tiempo Elución	Abundancia
D28a	431-447	DAFKLPPMETEEPQIFY (SEQ ID NO: 66)	2053,97	2054,42	0,45	99,87	0,2%
D28b	431-446	DAFKLPPMETEEPQIF (SEQ ID NO: 67)	1890,91	1891,28	0,37	97,02	18,4%
D28c	431-445	DAFKLPPMETEEPQI (SEQ ID NO: 68)	1743,84	1744,17	0,33	86,4	11,8%
D28D	431-444	DAFKLPPMETEEPQ (SEQ ID NO: 69)	1630,70	1631,07	0,32	74,15	56,1%
D28e	431-443	DAFKLPPMETEEP (SEQ ID NO: 70)	1502,70	1502,98	0,28	77,36	13,6%
D28f	431-442	DAFKLPPMETEE (SEQ ID NO: 71)	1405,64	ND	N/A	N/A	0,0%

Tabla 28. Análisis de fragmentos C-terminales del Lote HUB0701EB

Fragmento	Posición del aminoácido (con respecto al SEQ ID NO: 4)	Secuencia	Masa Teórica	Masa Exp.	Error	Tiempo de elución	Abundancia
D28a	431-477	DAFKLPPMETEEPQIFY (SEQ ID NO: 66)	2053,97	2054,42	0,45	99,89	1,9%
D28b	431-446	DAFKLPPMETEEPQIF (SEQ ID NO: 67)	1890,91	1891,36	0,45	96,92	46,7%
D28c	431-445	DAFKLPPMETEEPQI (SEQ ID NO: 68)	1743,84	1744,24	0,40	85,98	16,7%
D28D	431-444	DAFKLPPMETEEPQ (SEQ ID NO: 69)	1630i,70	1631,14	0,39	73,9	27,8%
D28e	431-443	DAFKLPPMETEEP (SEQ ID NO: 70)	1502,70	1503,03	0,33	77,02	6,9%
D28f	431-442	DAFKLPPMETEE (SEQ ID NO: 71)	1405,64	ND	N/A	N/A	0,0%

Ejemplo 12

Producción y purificación de rHuPH20 soluble en un biorreactor de cultivo celular de 2500 L

La producción y purificación de rHuPH20 soluble pueden ser aumentadas a escala a partir de un procedimiento en biorreactor alimentado por lotes de 300 L (descrito en el Ejemplo 8) a un procedimiento en biorreactor alimentado por lotes de 2500 L. Al igual que la producción de rHuPH20 en un biorreactor de cultivo celular de 300 L, la producción de rHuPH20 en un biorreactor de cultivo celular de 2500 L se realiza primero descongelando y expandiendo un vial de células 2B2, cultivando en un biorreactor, cosechando y aclarando el cultivo, concentrando y cambiando el tampón de la cosecha, seguido de inactivación viral. La rHuPH20 se purifica a continuación a partir del producto concentrado utilizando una serie de etapas de purificación que utilizan Q Sepharose, Phenyl Sepharose, aminofenil boronato y boronato hidroxiapatita, seguido de filtración viral.

1. Expansión del cultivo celular

Para generar el mayor número de células requerido para sembrar el cultivo celular del biorreactor de 2500 L en comparación con el cultivo de 300 L, el cultivo celular se expandió seriadamente a través de un matraz oscilante de 125 mL, un matraz oscilante de 1 L, dos matraces oscilantes de 2 L, seis matraces oscilantes de 2 L, una biorreactor WAVE™ (GE Healthcare Life Sciences) de 25 L, un biorreactor WAVE™ de 100 L y un biorreactor de siembra de tanque agitado de 600 L (ABEC, Inc. Bethlehem, PA; Stainless Technology Division). En cada expansión, la densidad de siembra diana es de 4 x 10⁵ células/mL. La temperatura a lo largo de la expansión es de 37°C (o entre 36°C y 38°C) con CO₂ al 7% (o entre 6-8% de CO₂). Los matraces se agitaron a

5

20

aproximadamente 110 RPM (o 90-130 RPM), los WAVE Bioreactor™ de 25 L y 100 L se sacudieron a 20 RPM (o 15-25 o 18-22 RPM, respectivamente) y el biorreactor de siembra de 600 L se agita a 90 RPM (o 85-95 RPM).

En primer lugar, un vial de 2B2 células (1 x 10⁷ células) del banco de células de trabajo se descongela en un baño de agua a 37°C durante aproximadamente 2 minutos (preferiblemente no más de 5 minutos) antes de añadir los medios y las células se centrifugan. Las células se vuelven a suspender hasta aproximadamente 25 mL (o entre 20-30 mL) con medios de nueva aportación (CD CHO AGT™ con 40 mL/L de GlutaMAX™-I (8mM) y metotrexato 20 µM en un matraz oscilante de 125 mL y se coloca en un incubador a 37°C, CO₂ al 7%. Cuando la densidad celular alcanza aproximadamente 8 x 10⁵ células/mL, el cultivo se transfiere a un matraz oscilante de 250 mL en un volumen de cultivo de 50 mL (o 45-55 mL). Después de la incubación, cuando la densidad celular alcanza aproximadamente 1,6 x 10⁶ células/mL, el cultivo se expande en un matraz de 1 L en 200 mL volumen de cultivo (o 190-210 mL) y se incuba. Cuando la densidad celular en el matraz de 1 L alcanza aproximadamente 1,6 x 106 células/mL, el cultivo se expande en 2 x matraces de 2 L, cada uno con un volumen de cultivo total de aproximadamente 400 mL (o entre 350-450 mL por matraz), y se incuba. Cuando la densidad celular en los matraces de 2 L alcanza aproximadamente 1,2 x 10⁶ células/mL, el cultivo se expande en 6 x matraces de 2 L, cada uno con a volumen de cultivo total de aproximadamente 400 mL (o entre 350-450 mL por matraz), y se incuba. Cuando la densidad celular en los matraces de 2 L alcanza aproximadamente 2,5 x 10⁶ células/mL, el cultivo se expande en un WAVE Bioreactor™ de 25L, con un volumen de cultivo total de aproximadamente 15 L (o entre 14-16 L) y se incuba con un flujo de aire de 1,5 minuto.

Cuando la densidad celular en el WAVE BioreactorTM de 25 L alcanza aproximadamente 2,2 x 10^6 células/mL, el cultivo se expande en un WAVE BioreactorTM 100 L, con un volumen de cultivo total de aproximadamente 80 L (o entre 75-85 L), utilizando medio CD-CHO AGTTM al que se añade un suplemento de 3,6 g/L de metotrexato, 40 mL/L de GlutaMAXTM-I y 1 mL/L de NaOH 1N, y se incuba con un flujo de aire de 1,5 L/minuto. Cuando la densidad celular en el WAVE BioreactorTM de 100 L alcanza aproximadamente 2,6 x 10^6 células/mL, el cultivo se expande en un biorreactor de siembra de 600 L ABEC, Inc. Bethlehem, PA; Stainless Technology Division) con un volumen de cultivo total de aproximadamente 480 L (o entre 440-520 L) utilizando medio CD-CHO AGTTM al que se añade un suplemento de 40 mL/L de GlutaMAXTM-I y se incuba hasta que la densidad celular en el biorreactor de 600 L alcanza aproximadamente $1,6 \text{ x } 10^6$ células/mL.

2. Producción de rHuPH20

5

10

15

20

25

30

35

40

45

50

55

Se utiliza un biorreactor de 3500 L con un volumen total de 3523 L y un volumen de trabajo de 500-2500 L (ABEC, Inc, Bethlehem, PA) para la producción de alto rendimiento de rHuPH20. Después de la esterilización, se añaden aproximadamente 1800-2000 L de medios CD-CHO AGT™ que contienen 24,3 g/L de CD-CHO AGT™ en polvo, con un suplemento de 40 mL/L de GlutaMAX™-I y 5 mg/L de rHuInsulina al biorreactor. Los parámetros se ajustan a: punto de ajuste de temperatura, 37°C; Velocidad del Impulsor 75 RPM; Presión del Recipiente: 0,35 kg/cm²; Burbujeo de aire 18 L/min; oxígeno disuelto: 25%; pH ≤7,2. Antes de su uso, se verifica la contaminación del reactor. Se inoculan aproximadamente entre 300-500 L de células (dependiendo del recuento celular) del cultivo en el biorreactor de siembra de 600 L al medio de cultivo celular en el biorreactor de 3500 L a una densidad de inoculación de 4,0 x 10⁵ células viables por mL, para alcalinizar un volumen total de 2100 L. Durante la incubación celular del día 14, se toman muestras del biorreactor diariamente para determinar la viabilidad celular, la densidad celular, la verificación del pH, y la actividad enzimática. También se verifican detenidamente la temperatura y el oxígeno disuelto.

Las alimentaciones de nutrientes se añaden durante la ronda del biorreactor del día 14, cada una a aproximadamente 4% v/v. El día 5, se añaden aproximadamente 84 L (o 4 % v/v) de Medio de Alimentación Núm. 1 (81 g/L de CD-CHO AGT™ en polvo + 33 g/L de Glucosa + 13,3 mL/L de GlutaMAX™-I + 83,3 g/L de Yeastolate + 33 mg/L de rHuInsulina). El día 7, se añaden aproximadamente 87 L (o 4 % v/v) de Alimentación Núm. 2 (40,5 g/L de CD-CHO AGT™ en polvo + 33 g/L de Glucosa + 66,7 mL/L de GlutaMAX™-I + 166,7 g/L de Yeastolate + 0,92 g/L de Butirato de sodio), y la temperatura de cultivo se cambia a 36,5°C. El día 9, se añaden aproximadamente 91 L (o 4 % v/v) de Alimentación Núm. 3 (20,3 g/L de CD-CHO AGT™ en polvo + 50 g/L de Glucosa + 50 mL/L de GlutaMAX™-I + 250 g/L de Yeastolate + 1,8 g/L de Butirato de sodio), y la temperatura de cultivo se cambia a 36°C. El día 11, se añaden aproximadamente 94 L (o 4 % v/v) de Alimentación Núm. 4 (20,3 g/L de CD-CHO AGT™ en polvo+ 33,3 g/L de Glucosa + 33,3 mL/L de GlutaMAX™-I + 250 g/L de Yeastolate + 0,92 g/L de Butirato de sodio), y la temperatura de cultivo se cambia a 35,5°C. El reactor se cosecha a los 14 días, produciendo 2400-2600 L de cultivo (típicamente aproximadamente 2500 L).

El cultivo se transfiere a presión a través de 20 módulos del sistema de filtración Millistak (Millipore) en paralelo, conteniendo cada uno una capa de tierra de diatomeas graduada a 4-8 µm y una capa de tierra de diatomeas graduada a 1,4-1,1 µm, seguida de una membrana de celulosa, a continuación a través de un segundo sistema de filtración Millistak (Millipore) que contenía 10 módulos, cada uno con una capa de tierra de diatomeas graduada a 0,4-0,11 µm y una capa de tierra de diatomeas graduada a <0,1 µm, seguida de una membrana de celulosa, y a continuación a través de un filtro final de 0,22 µm a una bolsa flexible de un solo uso con una capacidad de 350 L. Al

líquido de cultivo celular cosechado se le añade un suplemento de EDTA 10 mM y Tris 10 mM, pH 8,4, a un objetivo de pH de 7,5. El cultivo se concentra 10x con un aparato de filtración de flujo tangencial (TFF) (Pall) utilizando filtros de polietersulfona con peso molecular de corte (MWCO) de 30 kDa de 18-21 m^2 de Sartoslice TFF, seguido de 10x cambio de tampón con Tris 10 mM, Na₂SO₄ 20 mM, pH 7,5 en un filtro final de 0,22 μ m a una bolsa de almacenamiento estéril de 350 L.

Se inactivaron los virus de la cosecha sometida a diafiltración, concentrada. Antes de la inactivación viral, se preparó una disolución de Triton X-100 al 10%, fosfato de tri(n-butilo) (TNBP) al 3%. La cosecha sometida a diafiltración, concentrada se expuso a Triton X-100 al 1%, TNBP al 0,3% hasta 2 horas en recipientes de reacción de acero inoxidable de 500 L inmediatamente antes de la purificación en la columna Q.

B. Purificación de rHuPH20 del Gen2

10

15

20

25

30

35

40

45

50

55

60

Se prepara una columna de intercambio iónico Q Sepharose (Pharmacia) (resina 81 L, H = 26 cm, D = 63 cm). La columna se equilibra con 5 volúmenes de columna de Tris 10 mM, Na₂SO₄ 20 mM, pH 7,5. Después de la inactivación viral, la cosecha concentrada, sometida a diafiltración de aproximadamente 250 L, se carga en la columna Q a una velocidad de flujo de 150 cm/hr. La columna se lava con 5 volúmenes de columna de Tris 10 mM, Na₂SO₄ 20 mM, pH 7,5 y Hepes 10 mM, NaCl 50 mM, pH 7,0. La proteína se evalúa con Hepes 10 mM, NaCl 400 mM, pH 7,0 a una bolsa estéril en un filtro final de 0,22 µm. La muestra de producto eluido se somete a ensayo para determinar la carga biológica, la concentración de proteína y la actividad enzimática. Las lecturas de absorbancia A₂₈₀ se toman al principio y al final del intercambio.

A continuación se lleva a cabo una cromatografía de interacción hidrófoba con Phenyl-Sepharose (Pharmacia). Se prepara una columna de Phenyl-Sepharose (PS) (176 L de resina, H= 35 cm, D= 80 cm). La columna se equilibra con 5 volúmenes de columna de fosfato de potasio 5 M, sulfato de amonio 0,5 M, CaCl2 0,1 mM, pH 7,0. Al producto eluido de proteína anterior se le añade un suplemento de sulfato de amonio 2M, fosfato de potasio 1 M y disoluciones de partida de CaCl₂ 1 M para proporcionar concentraciones finales 5 mM, 0,5 M y 0,1 mM, respectivamente. La proteína se carga en la columna PS a una velocidad de flujo de 100 cm/hr. Se añadieron fosfato de potasio 5 M, sulfato de amonio 0,5 M y CaCl₂ 0,1 mM a pH 7,0 a 100 cm/hr. El flujo directo se hizo pasar a través de un filtro final de 0,22 μm a una bolsa estéril. Se toman muestras del flujo directo para determinar la carga biológica, la concentración de proteína y la actividad enzimática.

Se prepara una columna de aminofenilboronato (ProMedics; 176 L de resina, H= 35 cm, D= 80 cm). La columna se equilibra con 5 volúmenes de columna de fosfato de potasio 5 M, sulfato de amonio 0,5 M. La proteína purificada en PS se carga en la columna de aminofenilboronato a una velocidad de flujo de 50 cm/hr. La velocidad de flujo se incrementa a 100 cm/hr durante el resto del procedimiento. La columna se lava primero con fosfato de potasio 5 M, sulfato de amonio 0,5 M, pH 7,0, a continuación bicina 20 mM, sulfato de amonio 0,5 M, pH 9,0, y a continuación bicina 20 mM, cloruro de sodio 100 mM, pH 9,0. La proteína se eluye con Hepes 50 mM, NaCl 100 mM, pH 6,9 y se hace pasar a través de un filtro estéril a una bolsa estéril. La muestra eluida se somete a ensayo para determinar la carga biológica, la concentración de proteína y la actividad enzimática.

Se prepara la columna de hidroxiapatita (HAP) (BioRad; 116 L de resina, H=23 cm, D= 80 cm). La columna se equilibra con fosfato de potasio 5 M, NaCl 100 mM, CaCl₂ 0,1 mM, pH 7,0. A la proteína purificada con aminofenilboronato se le añade un suplemento a concentraciones finales de fosfato de potasio 5 M y CaCl₂ 0,1 mM y se carga en la columna HAP a una velocidad de flujo de 100 cm/hr. La columna se lava primero con fosfato de potasio 5 M, pH 7, NaCl 100 mM, CaCl₂ 0,1 mM, a continuación fosfato de potasio 10 mM, pH 7, NaCl 100 mM, CaCl₂ 0,1 mM. La proteína se evalúa con fosfato de potasio 70 mM, pH 7,0 y se hace pasar a través de un filtro estéril de 0,22 µm a una bolsa estéril. La muestra eluida se somete a ensayo para determinar la carga biológica, la concentración de proteína y la actividad enzimática.

La proteína purificada mediante HAP se hace pasar después a través de un filtro para eliminación de virus. El filtro Virosart (Sartorius) esterilizado se prepara en primer lugar lavando con 2 L de fosfato de potasio 70 mM, pH 7,0. La proteína purificada mediante HAP se bombea a través de una bomba peristáltica a través del filtro para eliminación de virus de 20 nM. La proteína filtrada en fosfato de potasio 70 mM, pH 7,0 se hace pasar a través de un filtro final de 0,22 µm a una bolsa estéril. La muestra filtrada de virus se somete a ensayo para determinar el perfil de concentración de proteína, actividad enzimática, oligosacáridos, monosacáridos y ácido siálico (como se describe en los Ejemplos 9 a 10, más abajo).

La proteína en el producto filtrado se concentró a continuación 8-12x utilizando tres casetes Sartocon PES con un peso molecular de corte (MWCO) de 10 kD, cada uno con un área de superficie del filtro de 0,7 m² para un área de superficie total de 2,1 m². Después de la concentración, se tomaron muestras de la proteína concentrada y se sometieron a ensayo para determinar la concentración de proteína y la actividad enzimática. A continuación se realiza una diafiltración 10x sobre la proteína concentrada. Esto se puede realizar de dos maneras: 1) utilizando un tampón de histidina 20 mM, NaCl 130 mM, pH 6,5 y polisorbato 80; o 2) utilizando un tampón de histidina 10 mM,

NaCl 130 mM, pH 6,5. La proteína a granel sometida a diafiltración, concentrada se encuentra a una concentración de aproximadamente 10 mg/ml. Después del cambio de tampón, la proteína concentrada se hace pasar a través de un filtro de 0,22 µm a una bolsa de almacenamiento estéril de 20 L.

- La proteína a granel filtrada en condiciones estériles se dispensa asépticamente a 400 mL a botellas PFA Nalgene estériles de 1 L. Las botellas se someten a continuación a congelación instantánea y se almacenaron a -20°C para determinar la proteína a granel que no contiene el polisorbato 80, y a menos de -70°C para la proteína a granel que contiene el polisorbato 80.
- La Tabla 29 muestra algunas diferencias ilustrativas entre la producción de rHuPH20 en un biorreactor de cultivo de 300 L y 2500 L

Tabla 29. Diferencias ilustrativas entre la producción de rHuPH20 en un biorreactor de cultivo de 300 L y 2500 L

Tabla 29. Dilerencias	ilustrativas entre la producción de rHuPH20 en	i un biorreactor de cultivo de 300 L y 2500 L				
Diferencia en el Procedimiento	Cultivo celular de 300 L	Cultivo celular de 2500 L				
Línea celular	2B2	2B2				
Medios utilizados		Contiene metotrexato 20 M				
para expandir el inóculo celular	(9 mg/L)	(9 mg/L)				
Expansión celular	Expandido a través de un matraz de 125 mL, un matraz de 250 mL, un matraz de 1 L, un matraz de 6 L y un matraz de 36 L.	Expandido a través de un matraz de 125 mL, un matraz de 250 mL, un matraz de 1 L, 2 matraces de agitación de 2 L, 6 matraces de agitación de 2 L, un WAVE Bioreactor™ de 25 L, un WAVE Bioreactor™ de 100 L y un biorreactor de siembra de tanque agitado de 600 L				
Volumen de operación final en el biorreactor	Aprox. 300L en un biorreactor de 400L	Aprox. 2500 L en un biorreactor de 3500 L				
Medios de cultivo en el momento de la inoculación en el biorreactor	CD CHO con 5,0 mg/L de rHuInsulina	CD CHO AGT™ con 5,0 mg/L de rHuInsulina				
	40 ml/L (8 mM)	40 ml/L (8 mM)				
	GlutaMAX™-I	GlutaMAX™-I				
Volumen de medios de alimentación	Aumento a 4% del volumen de cultivo celular del biorreactor es decir, aproximadamente 10,4, 10,8, 11,2 y 11,7 L, lo que resulta en un volumen de biorreactor objetivo de ~ 300 L.	87, 91, y 94 L, lo que resulta en un volumen de				
Medios de Alimentación	Medio de Alimentación Núm. 1: 4 x CD CHO + 33 g/L de Glucosa + 32 mM GlutaMAX™-I + 16. 6 g/L de Yeastolate + 33 mg/L de rHuInsulina					
	Alimentación Núm. 2: 2x CD CHO + 33 g/L de Glucosa + GlutaMAX™-I 16 mM + 33,4 g/L de Yeastolate + 0,92 g/L de Butirato de Sodio					
	Alimentación Núm. 3: 1 x CD CHO + 50 g/L de Glucosa + GlutaMAX™-I 10 mM + 50 g/L de Yeastolate + 1,80 g/L de Butirato de Sodio	Alimentación Núm. 3: 20,3 g/L CD-CHO AGT™ en polvo + 50 g/L de Glucosa + GlutaMAX™-I 10 mM + 250 g/L de Yeastolate + 1,8 g/L de				
	Alimentación Núm. 4: 1 x CD CHO + 33 g/L de Glucosa + 6,7 mM GlutaMAX™-I + 50 g/L de Yeastolate + 0,92 g/L de Butirato de Sodio	Alimentación Núm. 4: 20,3 g/L CD-CHO AGT™ en polvo + 33,3 g/L de Glucosa + GlutaMAX™-I 6,7 mM + 250 g/L de Yeastolate + 0,92 g/L de				
	60					

Diferencia en el Procedimiento	Cultivo celular de 300 L	Cultivo celular de 2500 L
		Butirato de Sodio
Filtración del cultivo celular del biorreactor	1ª fase - 4 módulos en paralelo, cada uno con una capa de tierra de diatomeas graduada a 4-8 µm y una capa de tierra de diatomeas graduada a 1,4-1,1 µm, seguido de una membrana de celulosa.	1ª fase - 20 módulos en paralelo, cada uno con una capa de tierra de diatomeas graduada a 4-8 μm y una capa de tierra de diatomeas graduada a 1,4-1,1 μm, seguido de una membrana de celulosa.
	2^a fase un solo módulo que contiene una capa de tierra de diatomeas graduada a 0,4-0,11 µm y una capa de tierra de diatomeas graduada a <0,1 µm, seguido de una membrana de celulosa.	2 nd fase -10 módulos que contienen una capa de tierra de diatomeas graduada a 0,4-0,11 μm y una capa de tierra de diatomeas graduada a <0,1 micras, seguido de una membrana de celulosa.
	3 ^a fase - filtro de polietersulfona de 0,22 μm	3ª fase - filtro de polietersulfona de 0,22 µm
	Bolsa de almacenamiento de 300 L	Bolsa de almacenamiento de 350 L
Concentración y cambio de tampón antes de la cromatografía	Producto concentrado utilizando cuatro Filtro Sartorius Sartoslice TFF con MWCO de 30 K	Producto concentrado con 2 TFF con Filtros de Polietersulfona espiral Millipore con MWCO de 30K
		Cambio de tampón del producto concentrado 6 veces con Hepes 10 mM, NaCl 25 mM, pH 7,0
	bolsa de almacenamiento estéril de 50L	bolsa de almacenamiento estéril de 20L
Columna Q Sepharose	9 L de resina, H = 29 cm, D = 20 cm	81 L de resina, H = 26 cm, D = 63 cm
Una columna Phenyl Sepharose (PS)	19-21 L de resina, H = 29 cm, D = 30 cm	176 de resina L, H = 35 cm, D = 80 cm
columna de aminofenilboronato	21 L de resina, H = 29 cm, D = 30 cm	176 de resina L, H = 35 cm, D = 80 cm
columna de hidroxiapatita (HAP)	13 L de resina, H = 20 cm, D = 30 cm	116 L de resina, H = 23 cm, D = 80 cm
Concentración de proteínas	una sola filtración de flujo tangencial (TFF) Sartocon Slice con MWCO de 10 kDa	Tres casetes Sartocon PES con corte de peso molecular (MWCO) de 10 kD
	6 x cambio de tampón con histidina 10 mM, NaCl 130 mM, pH 6,0	10x diafiltración con: 1) tampón histidina 20 mM, NaCl 130 mM, pH 6,5 y polisorbato 80 al 1%; o 2) tampón histidina 10 mM, NaCl 130 mM, pH 6,5.
Carga del Vial	volúmenes de carga de 20 mL	volúmenes de carga de 400 mL
	Almacenado a ≤20°C	Almacenado a ≤20°C si la proteína no contiene polisorbato 80 o ≤70°C si la proteína contiene polisorbato 80

Dado que las modificaciones serán evidentes para los expertos en esta técnica, se pretende que esta invención esté limitada solamente por el alcance de las reivindicaciones adjuntas.

LISTA DE SECUENCIAS

```
<110> Halozyme, Inc. Baker, David Bookbinder, Louis
            <120> PRODUCCION DE GRAN ESCALA DE HIALURONIDASA SOLUBLE
            <130> 0119374-00094/3057PC
5
            <140> No cedido todavía
            <141> Adjunto
            <150> 61/068.622
            <151> 2008-03-06
            <160> 71
10
            <170> FastSEQ para Windows Versión 4.0
            <210> 1
            <211> 509
            <212> PRT
            <213> Homo sapiens
            <220>
15
            <223> precursor de PH20 humana
            <400> 1
            Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
                                                  10
                                                                       1.5
             Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
                                              25
                                                                   30
                         20
             Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro
                     35
                                          40
                                                               45
             Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
                                     55 ·
             Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg
                                 70
             Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
                             85
                                                  90
             Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly
                                              105
                                                                   110
                         100
             Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys
                                         120
                                                               125
                     115
             Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val
                                     135
                                                          140
                .130
             Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro
                                 150
                                                      155
             Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn
                             165
                                                  170
                                                                       175
             Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe
                         180
                                              185
                                                                   190
             Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys
                     195
                                          200
                                                               205
             Leu Leu Arg. Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
                                     215
                                                           220
             Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn
                                                      235
                                  230
```

```
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
                                250
              245
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
           260
                       265
                                             270
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
                      280
       275
                                            285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
            295
                                        300
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu
                 310
                                    315
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
              325
                                 330
                                                    335
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu 340 345 350
          340
                             345
                                               350
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
       355
                          360
                                            365
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
                     375
                                        380
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu
385
                  390
                                    395
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr 405
           405
                             410
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
           420 425 430
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
                      440
                                           445
      435
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
               455
                              460
 450
Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile
       470
                          475
Phe Tyr Asn Ala Ser Pro Ser Thr Leu Ser Ala Thr Met Phe Ile Val
            485
                              490
Ser Ile Leu Phe Leu Ile Ile Ser Ser Val Ala Ser Leu
<210> 2
<211> 474
<212> PRT
<213> Homo sapiens
<220>
<223> PH20 madura
<400> 2
Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp
                               10
              5
Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro
                             25
        20
Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala
                        40
Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr
                      55
                                        60
Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro
         70
Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys Lys Asp Ile
           85
                               90
Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp
         100
                           105
```

Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val

```
Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Gln Asn Val Gln Leu
   130
                      135
                                         140
Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala
                150
                                    155
Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg
              165
                                 170
                                                    175
Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His
           180
                             185
                                               190
His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn Val Glu Ile
                       200
                                         205
Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser Thr Ala Leu
                   215
                                         220
Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr
                 230
                                   235
Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile
                                 250 .
              245
Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val
                             265
                                               270
          260
Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr
                        280
                                            285
      275
Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp
                                      300
                    295
Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp
                                  315
               310
Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu
              325
                                 330
Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys
                             345
                                               350
Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp
                          360
                                             365
Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly
                  375
                                         380
Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys Phe Tyr Cys
                                    395
                  390
Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp Val Lys Asp
                                                   415
              405
                                410
Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys Ile Asp Ala
                           425
 . 420
Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile Phe Tyr Asn
 435
                       440
Ala Ser Pro Ser Thr Leu Ser Ala Thr Met Phe Ile Val Ser Ile Leu
                    455
Phe Leu Ile Ile Ser Ser Val Ala Ser Leu
                   470
<210> 3
<211> 482
<212> PRT
<213> Homo sapiens
<220>
<223> precursor rHuPH20 soluble
<400> 3
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
                                 10
Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
           20
                              25
                                                 30
Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro
                          40
```

```
Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
                      55
                                         60
Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg
                  70
                                     75
Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
              85
                                 90
Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly
          100
                         105
                                              110
Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys
      115
                         120
                                            125
Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val
              135
                               140
Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro 145 150 155 160
                                    155
145
                150
Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Gln Asn
                                170
             165
                                                  175
Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe
         180
                           185
                                               190
Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys
                200
                                          205
     195
Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
                   215
                                       220
Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn
                230
                                   235
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
              245
                                250
                                                   255
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
          260
                             265
                                               270
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
                         280
     275
                                            285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
                   295
                                      300
  290
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu
                 310
                                    315
                                                        320
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
            325
                                 330
                                                   335
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu
                            345
        340
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
       355
                          360
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
                     37.5
                                         380
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu
                  390
                                     395
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr
              405
                                410
                                                   415
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
                            425
                                               430
          420
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
                         440
                                            445
       435
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
                   455
                                       460
Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile
465
Phe Tyr
<210> 4
<211> 447
<212> PRT
<213> Homo sapiens
<220>
<223> rHuPH20 soluble 1-447
<400> 4
```

```
Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp
               5
                                 10
Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro
        20
                             25
Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala
                         40
Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr
   50
                   55
Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro
                70
                                     75
Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys Lys Asp Ile
            85
                               90
Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp
                             105
          100
Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val
     115
                        120
                                            125
Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn Val Gln Leu
                      135
                                         140
  130
Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala
                                   155
                150
Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg
            165
                                170
Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His
                             185
          180
                                                190
His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn Val Glu Ile
195 200 205
                        200
       195
                                           205
Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser Thr Ala Leu 210 215 220
Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr
225 230
                                    235
Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile
              245
                                 250
                                                    255
Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val
                             265
         260
Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr
                         280
                                             285
       275
Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp
                      295
                                         300
Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp
                310
                                      315
Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu 325 330 335
           325
                               330
Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys
                                               350
          340
                            345
Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp
                          360
                                            365
       355
Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly
                    375
                                       380
 370
Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys Phe Tyr Cys
                                      395
                   390
Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp Val Lys Asp
                                 410
Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys Ile Asp Ala
           420
                             425
                                                430
Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile Phe Tyr
                   440
                                      445
435
<210> 5
<211> 446
<212> PRT
```

<213> Homo sapiens

<223> rHuPH20 soluble 1-446

<220>

```
<400> 5
Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp
                5
                                   10
Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro
          20
                              25
Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala
                           40
Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr
                      55
Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro
                   70
                                    75
Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys Lys Asp Ile
               85
                                  90
Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp
                             105
           100
                                                110
Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val
                          120
                                             125
     115
Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn Val Gln Leu
                                         140
                     135
   130
Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala
                                     155
                  150
Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg
                                170
          165
Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His
         180
                             185
                                                 190
His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn Val Glu Ile
                          200
                                             205
Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser Thr Ala Leu
   210
                       215
                                          220
Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr
                  230
                                      235
                                                          240
Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile
              245
                                   250
                                                   255
Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val
                              265
                                                  270
           260
Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr
                         280
                                             285
       275
Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp 290 295 300
Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp
                 310
                                     315
Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu
               325
                                   330
                                                      335
Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys
         340
                              345
Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp
       355
                          360
                                              365
Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly
                      375
                                          380
Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys Phe Tyr Cys
                   390
                                      395
Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp Val Lys Asp
                                  410
Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys Ile Asp Ala
          420
                              425
                                                 430
Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile Phe
                          440
    435
<210> 6
<211> 445
<212> PRT
<213> Homo sapiens
<220>
```

<223> rHuPH20 soluble 1-445

```
<400> 6
Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp
               5
                                  10
Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro
          20
                              25
Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala
       35
                          40
Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr
                      55
Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro
                70
                                   75
Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys Lys Asp Ile
              85
                                 90
Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp
                            105
         100
                                               110
Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val
                          120
     115
                                             125
Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn Val Gln Leu
                     135
Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala
                   150
                                      155
Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg
165 170 175
Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His
          180
                              185
                                               190
His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn Val Glu Ile
                          200
       195
                                             205
Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser Thr Ala Leu
                                       220
                    215
Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr
                 230
                                   235
Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile 245 250 255
Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val
          260
                              265
Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr
                         280
                                             285
Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp
                      295
Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp
                 310
                                    315
Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu
               325
                                  330
Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys
                              345
Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp
                          360
                                              365
       355
Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly
 370
                   375
                                         380
Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys Phe Tyr Cys
                  390
                                     395
Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp Val Lys Asp
                                  410
              405
                                                     415
Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys Ile Asp Ala
          420
                              425
Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile
                           440
<210> 7
<211> 444
<212> PRT
```

<213> Homo sapiens

<220>

<223> rHuPH20 soluble 1-444

```
<400> 7
Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp
               5
                                  10
Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro
          20
                              25
Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala
       35
                          40
Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr
                     5.5
Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro
                                   75
                70
Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys Lys Asp Ile
                                90
              85
Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp
                             105
                                                110
          100
Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val
                          120
     115
Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn Val Gln Leu
                     135
                                         140
Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala
                   150
                                      155
Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg
              165
                                 170
                                                     175
Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His
                              185
                                                190
His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn Val Glu Ile
                          200
                                              205
       195
Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser Thr Ala Leu
                                       220
                    215
  210
Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr
                                    235
                  230
Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile
              245
                                250
                                                  255
Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val
                              265
                                                270
          260
Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr
       275
                         280
                                             285
Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp
Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp
                 310
                                   315
Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu
                                  330
               325
Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys
                              345
Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp
                          360
                                              365
       355
Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly
 370
                    375
                                         380
Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys Phe Tyr Cys
                   390
                                      395
Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp Val Lys Asp
                                 410
              405
Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys Ile Asp Ala
          420
                              425
Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln
<210> 8
<211> 443
<212> PRT
<213> Homo sapiens
<220>
<223> rHuPH20 soluble 1-443
```

```
<400> 8
Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp
               5
                                  10
Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro
          20
                              25
Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala
       35
                          40
Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr
                   55
Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro
               70
                                  75
Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys Lys Asp Ile
             85
                                90
Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp
                            105
                                                110
         100
Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val
      115
                          120
Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Gln Asn Val Gln Leu
                     135
                                        140
Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala
                  150
                                     155
Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg
165 170 175
Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His
                                               190
          180
                             185
His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn Val Glu Ile
                         200
                                           205
       195
Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser Thr Ala Leu
  210
                   215
                                  220
Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr 225 230 235 240
Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile
                                  250
Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val
         260
                              265
                                                  270
 Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr
     275
                         280 285
 Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp
                    295
                                         300
   290
 Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp
                                    315
                 310
Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu 325 330 335
               325
Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys
                             345
                                                350
           340
 Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp
                          360
                                              365
        355
 Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly
                    375
                                        380
  370
Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys Phe Tyr Cys
                                      395
                  390
 Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp Val Lys Asp
               405
                                 410
 Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys Ile Asp Ala
          420
                              425
 Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro
                           440
<210> 9
<211> 442
<212> PRT
<213> Homo sapiens
<220>
<223> rHuPH20 soluble 1-442
```

```
<400> 9
Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp
                                10
Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro
         20
                            25
Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala
       35
                         40
Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr
            55
Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro
                                 75
               70
Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys Lys Asp Ile
            85
                               90
Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp
                          105
                                        110
          100
Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val
115 120 125
                        120
     115
Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Gln Asn Val Gln Leu
                                      140
                   135
 130
Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala
                150
                                 155
Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg
        165 170 175
Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His 180 \hspace{1cm} 185 \hspace{1cm} 190
       180
His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn Val Glu Ile
               200
Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser Thr Ala Leu 210 215 220
Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr
225
                                   235
                230
Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile
             245
                              250
                                                255
Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val
                                             270
          260
                          265
Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr
275 280 285
      275
                         280
                                           285
Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp
                   295 300
Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp
                 310
                                  315
Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu
                              330
            325
Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys
                          345
         340
                                            350
Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp
                                          365
                       360
      355
Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly
 370
                  375
                                        380
Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys Phe Tyr Cys
                390
                                  395
Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp Val Lys Asp
405
415
             405
                               410
                                               415
Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys Ile Asp Ala
                           425
        420
Phe Leu Lys Pro Pro Met Glu Thr Glu Glu
<210> 10
<211> 450
<212> PRT
<213> Bos taurus
<220>
```

5

<223> hialuronidasa

```
<400> 10
Met Arg Pro Phe Ser Leu Glu Val Ser Leu His Leu Pro Trp Ala Met
                                  10
Ala Ala His Leu Leu Pro Val Cys Thr Leu Phe Leu Asn Leu Leu Ser
                                                30
           20
                              25
Met Thr Gln Gly Ser Arg Asp Pro Val Val Pro Asn Gln Pro Phe Thr
                          40
Thr Ile Trp Asn Ala Asn Thr Glu Trp Cys Met Lys Lys His Gly Val
                     55
Asp Val Asp Ile Ser Ile Phe Asp Val Val Thr Asn Pro Gly Gln Thr
                                  75
                  70
Phe Arg Gly Pro Asn Met Thr Ile Phe Tyr Ser Ser Gln Leu Gly Thr
              85
                                90
Tyr Pro Tyr Tyr Thr Ser Ala Gly Glu Pro Val Phe Gly Gly Leu Pro
           100
                              105
                                                110
Gln Asn Ala Ser Leu Asn Ala His Leu Ala Arg Thr Phe Gln Asp Ile
       115
                       120
                                         125
Leu Ala Ala Met Pro Glu Pro Arg Phe Ser Gly Leu Ala Val Ile Asp
 130
           135
                                         140
Trp Glu Ala Trp Arg Pro Arg Trp Ala Phe Asn Trp Asp Thr Lys Asp
                  150
                                      155
Ile Tyr Arg Gln Arg Ser Arg Ala Leu Val Gln Lys Gln His Pro Asp
                                 170
              165
                                                     175
Trp Leu Ala Pro Arg Val Glu Ala Ala Ala Gln Asp Gln Phe Glu Gly
                              185
           180
                                                 190
Ala Ala Glu Glu Trp Met Ala Gly Thr Leu Lys Leu Gly Gln Ala Leu
                       200
       195
                                           205
Arg Pro Gln Gly Leu Trp Gly Phe Tyr Asn Phe Pro Glu Cys Tyr Asn
                           . 220
                     215
Tyr Asp Phe Lys Ser Pro Asn Tyr Thr Gly Arg Cys Pro Leu Asn Ile
       230
225
                                     235
Cys Ala Gln Asn Asp Gln Leu Gly Trp Leu Trp Gly Gln Ser Arg Ala
               245
                                  250
                                                    255
Leu Tyr Pro Ser Ile Tyr Leu Pro Ala Ala Leu Glu Gly Thr Lys Lys
                            265
                                                270
        260
Thr Gln Met Phe Val Gln His Arg Val Ala Glu Ala Phe Arg Val Ala
    · 275
                       280
                                           285
Ala Gly Ala Gly Asp Pro Lys Leu Pro Val Leu Pro Tyr Met Gln Leu
                    295
                                        300
Phe Tyr Asp Met Thr Asn His Phe Leu Pro Ala Glu Glu Leu Glu His
                 310
                                    315
Ser Leu Gly Glu Ser Ala Ala Gln Gly Ala Ala Gly Val Val Leu Trp
            325
                                  330
Val Ser Trp Leu Ser Thr Ser Thr Lys Glu Ser Cys Gln Ala Ile Lys
                              345
Glu Tyr Val Asp Thr Thr Leu Gly Pro Ser Ile Leu Asn Val Thr Ser
      355
                          360
                                             365
Gly Ala Arg Leu Cys Ser Gln Val Leu Cys Ser Gly His Gly Arg Cys
   370
                      375
                                         380
Ala Arg Arg Pro Ser Tyr Pro Lys Ala Arg Leu Ile Leu Asn Ser Thr
                                     395
                   390
Ser Phe Ser Ile Lys Pro Thr Pro Gly Gly Gly Pro Leu Thr Leu Gln 405
              405
Gly Ala Leu Ser Leu Glu Asp Arg Leu Arg Met Ala Val Glu Phe Glu
                              425
           420
                                                 430
Cys Arg Cys Tyr Arg Gly Trp Arg Gly Thr Arg Cys Glu Gln Trp Gly
                         440
Met Trp
   450
<210> 11
<211> 331
<212> PRT
<213> Vespula vulgaris
```

<220>

```
<223> hialuronidasa A
<400> 11
Ser Glu Arg Pro Lys Arg Val Phe Asn Ile Tyr Trp Asn Val Pro Thr 1 \phantom{-}5\phantom{+} 10 \phantom{-}15\phantom{+}
Phe Met Cys His Gln Tyr Asp Leu Tyr Phe Asp Glu Val Thr Asn Phe
                              25
Asn Ile Lys Arg Asn Ser Lys Asp Asp Phe Gln Gly Asp Lys Ile Ala
                          40
      35
Ile Phe Tyr Asp Pro Gly Glu Phe Pro Ala Leu Leu Ser Leu Lys Asp
                 55
                                         60
Gly Lys Tyr Lys Lys Arg Asn Gly Gly Val Pro Gln Glu Gly Asn Ile
                  70
                                      75
Thr Ile His Leu Gln Lys Phe Ile Glu Asn Leu Asp Lys Ile Tyr Pro
               85
Asn Arg Asn Phe Ser Gly Ile Gly Val Ile Asp Phe Glu Arg Trp Arg
                               105
         100
Pro Ile Phe Arg Gln Asn Trp Gly Asn Met Lys Ile His Lys Asn Phe
                          120
       115
                                             125
Ser Ile Asp Leu Val Arg Asn Glu His Pro Thr Trp Asn Lys Lys Met
                      135
                                         140
Ile Glu Leu Glu Ala Ser Lys Arg Phe Glu Lys Tyr Ala Arg Phe Phe
                                    155
                   150
Met Glu Glu Thr Leu Lys Leu Ala Lys Lys Thr Arg Lys Gln Ala Asp
165 170 175
                                 170
             165
Trp Gly Tyr Tyr Gly Tyr Pro Tyr Cys Phe Asn Met Ser Pro Asn Asn 180 185 190
                            185
                                        190
           180
Leu Val Pro Glu Cys Asp Val Thr Ala Met His Glu Asn Asp Lys Met
                        200
     195
                                              205
Ser Trp Leu Phe Asn Asn Gln Asn Val Leu Leu Pro Ser Val Tyr Val
                    215
                                           220
Arg Gln Glu Leu Thr Pro Asp Gln Arg Ile Gly Leu Val Gln Gly Arg
                   230
                                     235
Val Lys Glu Ala Val Arg Ile Ser Asn Asn Leu Lys His Ser Pro Lys
245 250 255
             245
                                 250
                                                    255
Val Leu Ser Tyr Trp Trp Tyr Val Tyr Gln Asp Glu Thr Asn Thr Phe
         260 265
Leu Thr Glu Thr Asp Val Lys Lys Thr Phe Gln Glu Ile Val Ile Asn
                          280
Gly Gly Asp Gly Ile Ile Ile Trp Gly Ser Ser Ser Asp Val Asn Ser 290 295 300
Leu Ser Lys Cys Lys Arg Leu Gln Asp Tyr Leu Leu Thr Val Leu Gly
                  310
                                       315
Pro Ile Ala Ile As<br/>n Val Thr Glu Ala Val As<br/>n \,
<210> 12
<211> 340
<212> PRT
<213> Vespula vulgaris
<220>
<223> hialuronidasa B
```

5

10

<400> 12

```
Asp Arg Thr Ile Trp Pro Lys Lys Gly Phe Ser Ile Tyr Trp Asn Ile
                                 10
Pro Thr His Phe Cys His Asn Phe Gly Val Tyr Phe Lys Glu Leu Lys
                           25
        20
Gln Phe Asn Ile Lys Tyr Asn Ser Met Asn Asn Phe Arg Gly Glu Thr
     35
                      40
Ile Ser Leu Phe Tyr Asp Pro Gly Asn Phe Pro Ser Met Val Leu Leu
 50 55
                                       60
Lys Asn Gly Thr Tyr Glu Ile Arg Asn Glu Gly Val Pro Gln Lys Gly
                 70
Asn Leu Thr Ile His Leu Glu Gln Phe Thr Lys Glu Leu Asp Glu Ile
            85
                                90
Tyr Pro Lys Lys Ile Ala Gly Gly Ile Gly Val Ile His Phe His Asn
                              105
         100
Trp Arg Pro Ile Phe Arg Arg Asn Val Asp Asn Leu Lys Ile Asn Lys
                       120
                                           125
Asp Ile Ser Ile Asp Leu Val Arg Lys Glu His Pro Lys Trp Asp Lys
                    135
                                         140
Ser Met Ile Glu Lys Glu Ala Ser Asn Arg Phe Glu Thr Ser Ala Lys
                  150
                                     155
Ile Phe Met Glu Lys Thr Leu Lys Leu Ala Lys Glu Ile Arg Lys Lys
              165
                                 170
                                                    175
Thr Glu Trp Gly Tyr His Gly Tyr Pro His Cys Leu Ser Gly Ser Thr
                          185
        180
                                        190
Asp Lys Pro Ser Phe Asp Cys Asp Ala Leu Ser Met Ser Glu Asn Asp
                       200
      195
                                          205
Lys Met Ser Trp Leu Phe Asn Asn Gln Asn Val Leu Leu Pro Ser Ile
                   215
                                       220
Tyr Leu Lys Asn Val Leu Lys Pro Asp Glu Lys Ile His Leu Val Gln
                  230
                                    235
Glu Arg Leu Lys Glu Ala Ile Arg Ile Ser Lys Asn Phe Lys His Leu
                               250
            245
Pro Lys Val Leu Pro Tyr Trp Trp Tyr Thr Tyr Gln Asp Lys Glu Ser 260 265 270
                              265
        260
                                             270
Ile Phe Leu Thr Glu Ala Asp Val Lys Asn Thr Phe Lys Glu Ile Leu
                        280
Thr Asn Gly Ala Asp Gly Ile Ile Ile Trp Gly Val Ser Tyr Glu Leu
                      295
                                         300
Thr Asp Arg Lys Arg Cys Glu Lys Leu Lys Glu Tyr Leu Met Lys Ile
                  310
                                   315
Leu Gly Pro Ile Ala Phe Lys Val Thr Lys Ala Val Lys Glu Asn Thr
                                  330
Pro Leu Asn Phe
           340
<210> 13
<211> 382
<212> PRT
<213> Apis mellifera
<220>
<223> hialuronidasa
```

5

<400> 13

```
Met Ser Arg Pro Leu Val Ile Thr Glu Gly Met Met Ile Gly Val Leu
                                10
Leu Met Leu Ala Pro Ile Asn Ala Leu Leu Leu Gly Phe Val Gln Ser
                            25
       20
                                               30
Thr Pro Asp Asn Asn Lys Thr Val Arg Glu Phe Asn Val Tyr Trp Asn
                       40
     35
                                         4.5
Val Pro Thr Phe Met Cys His Lys Tyr Gly Leu Arg Phe Glu Glu Val
                    55
                                     60
Ser Glu Lys Tyr Gly Ile Leu Gln Asn Trp Met Asp Lys Phe Arg Gly
                  70
                                  75
Glu Glu Ile Ala Ile Leu Tyr Asp Pro Gly Met Phe Pro Ala Leu Leu
                               90
           85
Lys Asp Pro Asn Gly Asn Val Val Ala Arg Asn Gly Gly Val Pro Gln
        100
                           105
                                               110
Leu Gly Asn Leu Thr Lys His Leu Gln Val Phe Arg Asp His Leu Ile
           120
Asn Gln Ile Pro Asp Lys Ser Phe Pro Gly Val Gly Val Ile Asp Phe
                     135
                                        140
Glu Ser Trp Arg Pro Ile Phe Arg Gln Asn Trp Ala Ser Leu Gln Pro
         150
                                  155
Tyr Lys Lys Leu Ser Val Glu Val Val Arg Arg Glu His Pro Phe Trp
                              170
            165
Asp Asp Gln Arg Val Glu Gln Glu Ala Lys Arg Arg Phe Glu Lys Tyr
          180
                            185
Gly Gln Leu Phe Met Glu Glu Thr Leu Lys Ala Ala Lys Arg Met Arg
                         200
       195
Pro Ala Ala Asn Trp Gly Tyr Tyr Ala Tyr Pro Tyr Cys Tyr Asn Leu
                    215
                                       220
Thr Pro Asn Gln Pro Ser Ala Gln Cys Glu Ala Thr Thr Met Gln Glu
                  230
                                    235
Asn Asp Lys Met Ser Trp Leu Phe Glu Ser Glu Asp Val Leu Leu Pro
           245
                               250
Ser Val Tyr Leu Arg Trp Asn Leu Thr Ser Gly Glu Arg Val Gly Leu
                             265
         260
Val Gly Gly Arg Val Lys Glu Ala Leu Arg Ile Ala Arg Gln Met Thr
      275 280
                                         285
Thr Ser Arg Lys Lys Val Leu Pro Tyr Tyr Trp Tyr Lys Tyr Gln Asp
                   295
                                        300
Arg Arg Asp Thr Asp Leu Ser Arg Ala Asp Leu Glu Ala Thr Leu Arg
               310
                                  315
Lys Ile Thr Asp Leu Gly Ala Asp Gly Phe Ile Ile Trp Gly Ser Ser
                              330
             325
                                                    335
Asp Asp Ile Asn Thr Lys Ala Lys Cys Leu Gln Phe Arg Glu Tyr Leu
                            345
          340
                                             350
Asn Asn Glu Leu Gly Pro Ala Val Lys Arg Ile Ala Leu Asn Asn Asn
                         360
                                         365
      355
Ala Asn Asp Arg Leu Thr Val Asp Val Ser Val Asp Gln Val
                   375
 370
<210> 14
<211> 331
<212> PRT
<213> Dolichovespula maculata
<220>
<223> hialuronidasa
<400> 14
```

```
Ser Glu Arg Pro Lys Arg Val Phe Asn Ile Tyr Trp Asn Val Pro Thr
                                 10
Phe Met Cys His Gln Tyr Gly Leu Tyr Phe Asp Glu Val Thr Asn Phe
                           25
        20
Asn Ile Lys His Asn Ser Lys Asp Asp Phe Gln Gly Asp Lys Ile Ser
                         40
Ile Phe Tyr Asp Pro Gly Glu Phe Pro Ala Leu Leu Pro Leu Lys Glu
                 55
Gly Asn Tyr Lys Ile Arg Asn Gly Gly Val Pro Gln Glu Gly Asn Ile
               70
                                     75
Thr Ile His Leu Gln Arg Phe Ile Glu Asn Leu Asp Lys Thr Tyr Pro
                                 90
            85
Asn Arg Asn Phe Asn Gly Ile Gly Val Ile Asp Phe Glu Arg Trp Arg
         100
                              105
Pro Ile Phe Arg Gln Asn Trp Gly Asn Met Met Ile His Lys Lys Phe
                        120
     115
Ser Ile Asp Leu Val Arg Asn Glu His Pro Phe Trp Asp Lys Lys Met
                      135
                                        140
Ile Glu Leu Glu Ala Ser Lys Arg Phe Glu Lys Tyr Ala Arg Leu Phe
                150
                                   155
Met Glu Glu Thr Leu Lys Leu Ala Lys Lys Thr Arg Lys Gln Ala Asp
165 170 175
              165
Trp Gly Tyr Tyr Gly Tyr Pro Tyr Cys Phe Asn Met Ser Pro Asn Asn
                             185
Leu Val Pro Asp Cys Asp Ala Thr Ala Met Leu Glu Asn Asp Lys Met
       195
                         200
Ser Trp Leu Phe Asn Asn Gln Asn Val Leu Leu Pro Ser Val Tyr Ile
                      215
                                          220
Arg His Glu Leu Thr Pro Asp Gln Arg Val Gly Leu Val Gln Gly Arg
                  230
                                  235
Val Lys Glu Ala Val Arg Ile Ser Asn Asn Leu Lys His Ser Pro Lys
245
250
255
            245
                                250
Val Leu Ser Tyr Trp Trp Tyr Val Tyr Gln Asp Asp Thr Asn Thr Phe
                              265
Leu Thr Glu Thr Asp Val Lys Lys Thr Phe Gln Glu Ile Ala Ile Asn
                         280
Gly Gly Asp Gly Ile Ile Ile Trp Gly Ser Ser Ser Asp Val Asn Ser
                                  300
   290
                      295
Leu Ser Lys Cys Lys Arg Leu Arg Glu Tyr Leu Leu Thr Val Leu Gly
                310
                                     315
Pro Ile Thr Val Asn Val Thr Glu Thr Val Asn
               325
                                  330
```

<210> 15

<211> 367

<212> PRT

<213> Polistes annularis

<220>

5

<223> hialuronidasa

<400> 15

```
Tyr Val Ser Leu Ser Pro Asp Ser Val Phe Asn Ile Ile Thr Asp Asp
                                 10
Ile Ser His Gln Ile Leu Ser Arg Ser Asn Cys Glu Arg Ser Lys Arg
                          25
        20
Pro Lys Arg Val Phe Ser Ile Tyr Trp Asn Val Pro Thr Phe Met Cys
35 40 45
                       40
      35
His Gln Tyr Gly Met Asn Phe Asp Glu Val Thr Asp Phe Asn Ile Lys
                   55
His Asn Ser Lys Asp Asn Phe Arg Gly Glu Thr Ile Ser Ile Tyr Tyr
                  70
Asp Pro Gly Lys Phe Pro Ala Leu Met Pro Leu Lys Asn Gly Asn Tyr
                                 90
Glu Glu Arg Asn Gly Gly Val Pro Gln Arg Gly Asn Ile Thr Ile His
           100
                            105
                                              110
Leu Gln Gln Phe Asn Glu Asp Leu Asp Lys Met Thr Pro Asp Lys Asn
                         120
                                            125
      115
Phe Gly Gly Ile Gly Val Ile Asp Phe Glu Arg Trp Lys Pro Ile Phe
                                 140
                   135
 130
Arg Gln Asn Trp Gly Asn Thr Glu Ile His Lys Lys Tyr Ser Ile Glu 145 150 155 160
Leu Val Arg Lys Glu His Pro Lys Trp Ser Glu Ser Met Ile Glu Ala
            165 170 175
Glu Ala Thr Lys Lys Phe Glu Lys Tyr Ala Arg Tyr Phe Met Glu Glu
180 190
                            185
                                             190
Thr Leu Lys Leu Ala Lys Lys Thr Arg Lys Arg Ala Lys Trp Gly Tyr
                  200
                                           205
     195
Tyr Gly Phe Pro Tyr Cys Tyr Asn Val Thr Pro Asn Asn Pro Gly Pro
                     215
Asp Cys Asp Ala Lys Ala Thr Ile Glu Asn Asp Arg Leu Ser Trp Met
                 230
                                    235
Tyr Asn Asn Gln Glu Ile Leu Phe Pro Ser Val Tyr Val Arg His Glu
              245
                                 250
                                                    255
Gln Lys Pro Glu Glu Arg Val Tyr Leu Val Gln Gly Arg Ile Lys Glu
          260
                             265
Ala Val Arg Ile Ser Asn Asn Leu Glu His Ser Pro Ser Val Leu Ala
                         280
Tyr Trp Trp Tyr Val Tyr Gln Asp Lys Met Asp Ile Tyr Leu Ser Glu
                      295
                                         300
Thr Asp Val Glu Lys Thr Phe Gln Glu Ile Val Thr Asn Gly Gly Asp
                  310
                                     315
Gly Ile Ile Ile Trp Gly Ser Ser Ser Asp Val Asn Ser Leu Ser Lys
            325
                               330
Cys Lys Arg Leu Arg Glu Tyr Leu Leu Asn Thr Leu Gly Pro Phe Ala
           340
                             345 350
Val Asn Val Thr Glu Thr Val Asn Gly Arg Ser Ser Leu Asn Phe
                          360
                                             365
<210> 16
<211> 462
<212> PRT
<213> Mus musculus
<220>
<223> hialuronidasa
```

5

<400> 16

```
Met Leu Gly Leu Thr Gln His Ala Gln Lys Val Trp Arg Met Lys Pro
                                 10
Phe Ser Pro Glu Val Ser Pro Gly Ser Ser Pro Ala Thr Ala Gly His
                            25
        20
Leu Leu Arg Ile Ser Thr Leu Phe Leu Thr Leu Leu Glu Leu Ala Gln
                          40
     35
Val Cys Arg Gly Ser Val Val Ser Asn Arg Pro Phe Ile Thr Val Trp
                    55
Asn Gly Asp Thr His Trp Cys Leu Thr Glu Tyr Gly Val Asp Val Asp
Val Ser Val Phe Asp Val Val Ala Asn Lys Glu Gln Ser Phe Gln Gly
                                 90
Ser Asn Met Thr Ile Phe Tyr Arg Glu Glu Leu Gly Thr Tyr Pro Tyr
           100
                              105
                                                 110
Tyr Thr Pro Thr Gly Glu Pro Val Phe Gly Gly Leu Pro Gln Asn Ala
                                            125
      115
                          120
Ser Leu Val Thr His Leu Ala His Thr Phe Gln Asp Ile Lys Ala Ala
                    135
                                         140
  130
Met Pro Glu Pro Asp Phe Ser Gly Leu Ala Val Ile Asp Trp Glu Ala
          150
                               155
Trp Arg Pro Arg Trp Ala Phe Asn Trp Asp Ser Lys Asp Ile Tyr Arg 165 170 175
Gln Arg Ser Met Glu Leu Val Gln Ala Glu His Pro Asp Trp Pro Glu
           180
                              185
                                                 1.90
Thr Leu Val Glu Ala Ala Ala Lys Asn Gln Phe Gln Glu Ala Ala Glu
                        200
    195
Ala Trp Met Ala Gly Thr Leu Gln Leu Gly Gln Val Leu Arg Pro Arg
                      215
                                          220
Gly Leu Trp Gly Tyr Tyr Gly Phe Pro Asp Cys Tyr Asn Asn Asp Phe
                 230
                           235
Leu Ser Leu Asn Tyr Thr Gly Gln Cys Pro Val Phe Val Arg Asp Gln
               245
                                 250
Asn Asp Gln Leu Gly Trp Leu Trp Asn Gln Ser Tyr Ala Leu Tyr Pro
260 265 270
          260
                              265
                                             270
Ser Ile Tyr Leu Pro Ala Ala Leu Met Gly Thr Gly Lys Ser Gln Met
                                              285
      275 280
Tyr Val Arg His Arg Val Gln Glu Ala Leu Arg Val Ala Ile Val Ser
                                         300
                      295
Arg Asp Pro His Val Pro Val Met Pro Tyr Val Gln Ile Phe Tyr Glu
                   310
                                      315
Met Thr Asp Tyr Leu Leu Pro Leu Glu Glu Leu Glu His Ser Leu Gly
              325
                                 330
Glu Ser Ala Ala Gln Gly Val Ala Gly Ala Val Leu Trp Leu Ser Ser
                              345
Asp Lys Thr Ser Thr Lys Glu Ser Cys Gln Ala Ile Lys Ala Tyr Met
                         360
     355
Asp Ser Thr Leu Gly Pro Phe Ile Val Asn Val Thr Ser Ala Ala Leu
                      375
Leu Cys Ser Glu Ala Leu Cys Ser Gly His Gly Arg Cys Val Arg His
                  390
                                      395
Pro Ser Tyr Pro Glu Ala Leu Leu Thr Leu Asn Pro Ala Ser Phe Ser
              405
                                  410
Ile Glu Leu Thr His Asp Gly Arg Pro Pro Ser Leu Lys Gly Thr Leu
        420
                              425
                                               430
Ser Leu Lys Asp Arg Ala Gln Met Ala Met Lys Phe Arg Cys Arg Cys
                       440
                                          445
 435
Tyr Arg Gly Trp Arg Gly Lys Trp Cys Asp Lys Arg Gly Met
                       455
   450
<210> 17
<211> 473
<212> PRT
<213> Mus musculus
<220>
<223> Hialuronidasa 2
```

```
<400> 17
Met Arg Ala Gly Leu Gly Pro Ile Ile Thr Leu Ala Leu Val Leu Glu
                                   10
Val Ala Trp Ala Gly Glu Leu Lys Pro Thr Ala Pro Pro Ile Phe Thr
          20
                              25
                                                  30
Gly Arg Pro Phe Val Val Ala Trp Asn Val Pro Thr Gln Glu Cys Ala
       35
                        40
Pro Arg His Lys Val Pro Leu Asp Leu Arg Ala Phe Asp Val Lys Ala
                      5.5
                                         60
Thr Pro Asn Glu Gly Phe Phe Asn Gln Asn Ile Thr Thr Phe Tyr Tyr
                                . 75
                  70
Asp Arg Leu Gly Leu Tyr Pro Arg Phe Asp Ala Ala Gly Thr Ser Val
               85
                                90
His Gly Gly Val Pro Gln Asn Gly Ser Leu Cys Ala His Leu Pro Met
                             105
                                                 110
          100
Leu Lys Glu Ser Val Glu Arg Tyr Ile Gln Thr Gln Glu Pro Gly Gly
                          120
       115
Leu Ala Val Ile Asp Trp Glu Glu Trp Arg Pro Val Trp Val Arg Asn
                      135
                                         140
Trp Gln Glu Lys Asp Val Tyr Arg Gln Ser Ser Arg Gln Leu Val Ala
                   150
                                   155
Ser Arg His Pro Asp Trp Pro Ser Asp Arg Val Met Lys Gln Ala Gln
165 170 175
               165
Tyr Glu Phe Glu Phe Ala Ala Arg Gln Phe Met Leu Asn Thr Leu Arg
           180
                              185
                                               190
Tyr Val Lys Ala Val Arg Pro Gln His Leu Trp Gly Phe Tyr Leu Phe
                          200
                                              205
       195
Pro Asp Cys Tyr Asn His Asp Tyr Val Gln Asn Trp Glu Ser Tyr Thr
210 225 220
                      215
  210
Gly Arg Cys Pro Asp Val Glu Val Ala Arg Asn Asp Gln Leu Ala Trp 225 230 235 240
                                   235
                  230
Leu Trp Ala Glu Ser Thr Ala Leu Phe Pro Ser Val Tyr Leu Asp Glu
                                  250
Thr Leu Ala Ser Ser Val His Ser Arg Asn Phe Val Ser Phe Arg Val
                               265
          260
Arg Glu Ala Leu Arg Val Ala His Thr His His Ala Asn His Ala Leu
      275
                        280
                                             285
Pro Val Tyr Val Phe Thr Arg Pro Thr Tyr Thr Arg Gly Leu Thr Gly
                    295
 290
                                          300
Leu Ser Gln Val Asp Leu Ile Ser Thr Ile Gly Glu Ser Ala Ala Leu
                   310
                                    315
Gly Ser Ala Gly Val Ile Phe Trp Gly Asp Ser Glu Asp Ala Ser Ser
325 330 335
Met Glu Thr Cys Gln Tyr Leu Lys Asn Tyr Leu Thr Gln Leu Leu Val
          340
                             345
                                               350
Pro Tyr Ile Val Asn Val Ser Trp Ala Thr Gln Tyr Cys Ser Trp Thr
                       360
      355
                                              365
Gln Cys His Gly His Gly Arg Cys Val Arg Arg Asn Pro Ser Ala Asn
                      375
  370
                                          380
Thr Phe Leu His Leu Asn Ala Ser Ser Phe Arg Leu Val Pro Gly His
                                      395
                 390
Thr Pro Ser Glu Pro Gln Leu Arg Pro Glu Gly Gln Leu Ser Glu Ala
             405
                                 410
Asp Leu Asn Tyr Leu Gln Lys His Phe Arg Cys Gln Cys Tyr Leu Gly
          420
                              425
                                                 430
Trp Gly Glu Gln Cys Gln Arg Asn Tyr Lys Gly Ala Ala Gly Asn
                         440
Ala Ser Arg Ala Trp Ala Gly Ser His Leu Thr Ser Leu Leu Gly Leu
                      455
                                          460
Val Ala Val Ala Leu Thr Trp Thr Leu
                   470
<210> 18
<211> 412
```

<212> PRT

<213> Mus musculus

```
<220>
<223> hialuronidasa 3
<400> 18
Met Ile Met His Leu Gly Leu Met Met Val Val Gly Leu Thr Leu Cys
                                  10
Leu Met His Gly Gln Ala Leu Leu Gln Val Pro Glu His Pro Phe Ser
           20
                               25
Val Val Trp Asn Val Pro Ser Ala Arg Cys Lys Ala His Phe Gly Val
                           40
His Leu Pro Leu Asp Ala Leu Gly Ile Val Ala Asn His Gly Gln His
                       55
                                         60
Phe His Gly Gln Asn Ile Ser Ile Phe Tyr Lys Asn Gln Phe Gly Leu
                                      75
                   70
Tyr Pro Tyr Phe Gly Pro Arg Gly Thr Ala His Asn Gly Gly Ile Pro
                                   90
               85
Gln Ala Val Ser Leu Asp His His Leu Ala Arg Ala Ala His Gln Ile
100 105 110
           100
                               105
                                                   110
Leu His Ser Leu Gly Ser Ser Phe Ala Gly Leu Ala Val Leu Asp Trp
                        120
                                              125
        115
Glu Glu Trp Tyr Pro Leu Trp Ala Gly Asn Trp Gly Pro His Arg Gln
                      135
                                           140
    130
Val Tyr Leu Ala Ala Ser Trp Val Trp Thr Gln Gln Met Phe Pro Gly
                                      155
                 150
Leu Asp Pro Gln Glu Gln Leu His Lys Ala His Thr Ser Phe Glu Gln
                                   170
                165
                                                       175
Ala Ala Arg Ala Leu Met Glu Tyr Thr Leu Gln Leu Gly Arg Thr Leu
180 185 190
                               185
Arg Pro Ser Gly Leu Trp Gly Phe Tyr Arg Tyr Pro Ala Cys Gly Asn
                            200
Gly Trp His Lys Met Ala Ser Asn Tyr Thr Gly His Cys His Ala Ala
                      215
                                          220
Ile Thr Thr Gln Asn Thr Gln Leu Arg Trp Leu Trp Ala Ala Ser Ser
                    230
                                       235
Ala Leu Phe Pro Ser Ile Tyr Leu Pro Pro Arg Leu Pro Leu Ala Tyr
                                 250
              245
Arg Gln Ala Phe Val Arg His Arg Leu Glu Glu Ala Phe Arg Val Ala
           260
                               265
Leu Leu Glu His Ser His Pro Leu Pro Val Leu Ala Tyr Ser Arg Leu
                        280
Thr His Arg Ser Ser Gly Arg Phe Leu Ser Leu Asp Asp Leu Met Gln
                       295
                                           300
Thr Ile Gly Val Ser Ala Ala Leu Gly Thr Ala Gly Val Val Leu Trp
                   310
                                      315
Gly Asp Leu Ser Phe Ser Ser Ser Glu Glu Lys Cys Trp Arg Leu His
                325
                                    330
Asp Tyr Leu Val Gly Thr Leu Gly Pro Tyr Val Ile Asn Val Thr Lys
                               345
Ala Asp Met Ala Cys Ser His Gln Arg Cys His Gly His Gly Arg Cys
                            360
                                                365
Ala Arg Lys Asp Pro Gly Gln Met Glu Ala Phe Leu His Leu Gln Pro
                       375
                                           380
Asp Asp Ser Leu Gly Ala Trp Asn Ser Phe Arg Cys His Cys Tyr Ser
                    390
                                    395
Gly Trp Ala Gly Pro Thr Cys Leu Glu Pro Lys Pro
               405
                                    410
<210> 19
<211> 435
<212> PRT
<213> Sus scrofa
<220>
```

5

10

<223> hialuronidasa

```
<400> 19
Met Ala Ala His Leu Leu Pro Ile Cys Thr Leu Phe Leu Asn Leu Leu
                                  10
Ser Val Ala Gln Gly Ser Arg Asp Pro Val Val Leu Asn Arg Pro Phe
          20
                              25
Thr Thr Ile Trp Asn Ala Asn Thr Gln Trp Cys Leu Lys Arg His Gly
                          40
Val Asp Val Asp Val Ser Val Phe Glu Val Val Val Asn Pro Gly Gln
                  55
Thr Phe Arg Gly Pro Asn Met Thr Ile Phe Tyr Ser Ser Gln Leu Gly 65 70 75 80
                                    75
Thr Tyr Pro Tyr Tyr Thr Ser Ala Gly Glu Pro Val Phe Gly Gly Leu
              85
                                 90
Pro Gln Asn Ala Ser Leu Asp Val His Leu Asn Arg Thr Phe Lys Asp
           100
                           105
                                                 110
Ile Leu Ala Ala Met Pro Glu Ser Asn Phe Ser Gly Leu Ala Val Ile
      115
                 120
                                             125
Asp Trp Glu Ala Trp Arg Pro Arg Trp Ala Phe Asn Trp Asp Ala Lys
 130
                   135
                                          140
Asp Ile Tyr Arg Gln Arg Ser Arg Ala Leu Val Gln Lys Gln His Pro
                   150
                                      155
Asp Trp Pro Ala Pro Trp Val Glu Ala Ala Ala Gln Asp Gln Phe Gln
              165
                                  170
Glu Ala Ala Gln Thr Trp Met Ala Gly Thr Leu Lys Leu Gly Gln Thr
          180
                              185
                                                 190
Leu Arg Pro His Gly Leu Trp Gly Phe Tyr Gly Phe Pro Asp Cys Tyr
       195
                          200
                                           205
Asn Tyr Asp Phe Gln Ser Ser Asn Tyr Thr Gly Gln Cys Pro Pro Gly 210 220
                    215
                                         220
Val Ser Ala Gln Asn Asp Gln Leu Gly Trp Leu Trp Gly Gln Ser Arg
                   230
                                      235
Ala Leu Tyr Pro Ser Ile Tyr Leu Pro Ser Ala Leu Glu Gly Thr Asn
              245
                                 250
Lys Thr Gln Leu Tyr Val Gln His Arg Val Asn Glu Ala Phe Arg Val
           260
                              265
                                                 270
Ala Ala Ala Gly Asp Pro Asn Leu Pro Val Leu Pro Tyr Ala Gln
275
280
285
       275
                       280
                                          285
Ile Phe His Asp Met Thr Asn Arg Leu Leu Ser Arg Glu Glu Leu Glu
   290
              <sub>3</sub> 295
                                          300
His Ser Leu Gly Glu Ser Ala Ala Gln Gly Ala Ala Gly Val Val Leu
                                     315
                  310
Trp Val Ser Trp Glu Asn Thr Arg Thr Lys Glu Ser Cys Gln Ser Ile
               325
                                330
                                                     335
Lys Glu Tyr Val Asp Thr Thr Leu Gly Pro Phe Ile Leu Asn Val Thr
          340
                              345
                                                 350
Ser Gly Ala Leu Leu Cys Ser Gln Ala Val Cys Ser Gly His Gly Arg
                       360
                                            365
      355
Cys Val Arg Arg Pro Ser His Thr Glu Ala Leu Pro Ile Leu Asn Pro
                   375
                                         380
Ser Ser Phe Ser Ile Lys Pro Thr Pro Gly Gly Pro Leu Thr Leu
                390
                                     395
Gln Gly Ala Leu Ser Leu Lys Asp Arg Val Gln Met Ala Glu Glu Phe
              405
                                 410
Gln Cys Arg Cys Tyr Pro Gly Trp Arg Gly Thr Trp Cys Glu Gln Gln
Gly Thr Arg
<210> 20
<211> 419
<212> PRT
<213> Sus scrofa
<220>
```

<223> hialuronidasa 3

```
<400> 20
Met Thr Met Gln Leu Gly Leu Ala Leu Val Leu Gly Val Ala Met Cys
                                  10
Leu Gly Cys Gly Gln Pro Leu Leu Arg Ala Pro Glu Arg Pro Phe Cys
          20
                              25
Val Leu Trp Asn Val Pro Ser Ala Arg Cys Lys Ala Arg Phe Gly Val
                          40
His Leu Pro Leu Glu Ala Leu Gly Ile Thr Ala Asn His Gly Gln Arg
                      55
Phe His Gly Gln Asn Ile Thr Ile Phe Tyr Lys Ser Gln Leu Gly Leu 65 70 75
                                   75
                   70
Tyr Pro Tyr Phe Gly Pro Arg Gly Thr Ala His Asn Gly Gly Ile Pro
              85
                                  90
Gln Ala Val Ser Leu Asp His His Leu Ala Arg Ala Ala Tyr Gln Ile
           100
                              105
His Arg Ser Leu Arg Pro Gly Phe Thr Gly Leu Ala Val Leu Asp Trp
                          120
                                              125
       115
Glu Glu Trp Cys Pro Leu Trp Ala Gly Asn Trp Gly Arg Arg Gln Ala
                    135
                                         140
Tyr Gln Ala Ala Ser Cys Ala Trp Ala Gln Arg Val Tyr Pro Asn Leu
                   150
                                     155
Asp Pro Gln Glu Gln Leu Cys Lys Ala Arg Ala Gly Phe Glu Glu Ala
165 170 175
                                170
            165
Ala Arg Ala Leu Met Glu Asp Thr Leu Arg Leu Gly Arg Met Leu Arg
                              185
                                                 190
          180
Pro His Gly Leu Trp Gly Phe Tyr His Tyr Pro Ala Cys Gly Asn Gly
                        200
     195
Trp His Gly Thr Ala Ser Asn Tyr Thr Gly His Cys His Ala Ala Ala
   210
                      215
                                          220
Leu Ala Arg Asn Thr Gln Leu Tyr Trp Leu Trp Ala Ala Ser Ser Ala
            230
                                   235
Leu Phe Pro Ser Ile Tyr Leu Pro Pro Gly Leu Pro Pro Ala Tyr His 245 255
                                  250 255
Gln Ala Phe Val Arg Tyr Arg Leu Glu Glu Ala Phe Arg Val Ala Leu
                                                 270
          260
                              265
Val Gly His Pro His Pro Leu Pro Val Leu Ala Tyr Ala Arg Leu Thr
       275
                         280
                                              285
His Arg Asn Ser Gly Arg Phe Leu Ser Gln Asp Glu Leu Val Gln Thr
290 295 300
                      295
Ile Gly Val Ser Ala Ala Leu Gly Ala Ser Gly Val Val Leu Trp Gly
                                     315
305
                 310
Asp Leu Ser Phe Ser Ser Ser Glu Glu Glu Cys Trp His Leu Arg Gly
              325
                                  330
                                                     335
Tyr Leu Val Gly Thr Leu Gly Pro Tyr Val Ile Asn Val Thr Arg Ala
                            345
         340
Ala Met Ala Cys Ser His Gln Arg Cys His Gly His Gly Arg Cys Ala
                          360
                                              365
Trp-Gln Asp Pro Gly Gln Leu Lys Val Phe Leu His Leu His Pro Gly
                      375
                                         380
Gly Ser Pro Gly Ala Trp Glu Ser Phe Ser Cys Arg Cys Tyr Trp Gly
                 390
                                   395
Trp Ala Gly Pro Thr Cys Gln Glu Pro Arg Pro Glu Leu Gly Pro Glu
               405
                                  410
Glu Ala Thr
<210> 21
<211> 449
<212> PRT
<213> Rattus norvegicus
<220>
<223> hialuronidasa 1
<400> 21
```

```
Met Lys Pro Phe Ser Pro Glu Val Ser Pro Asp Pro Cys Pro Ala Thr
                                 10
Ala Ala His Leu Leu Arg Thr Tyr Thr Leu Phe Leu Thr Leu Leu Glu
                            25
          20
Leu Ala Gln Gly Cys Arg Gly Ser Met Val Ser Asn Arg Pro Phe Ile
                       40
       35
                                          45
Thr Val Trp Asn Ala Asp Thr His Trp Cys Leu Lys Asp His Gly Val
            . 55
                                       60
Asp Val Asp Val Ser Val Phe Asp Val Val Ala Asn Lys Glu Gln Asn
                   70
Phe Gln Gly Pro Asn Met Thr Ile Phe Tyr Arg Glu Glu Leu Gly Thr
            85
                                90
Tyr Pro Tyr Tyr Thr Pro Thr Gly Glu Pro Val Phe Gly Gly Leu Pro
                              105
          100
                                                 110
Gln Asn Ala Ser Leu Val Thr His Leu Ala His Ala Phe Gln Asp Ile
                       120
  115
                                  125
Lys Ala Ala Met Pro Glu Pro Asp Phe Ser Gly Leu Ala Val Ile Asp
                     135
                                         140
Trp Glu Ala Trp Arg Pro Arg Trp Ala Phe Asn Trp Asp Ser Lys Asp
145
                                   155
               150
Ile Tyr Gln Gln Arg Ser Met Glu Leu Val Arg Ala Glu His Pro Asp
                                  170
              165
                                                     175
Trp Pro Glu Thr Leu Val Glu Ala Glu Ala Gln Gly Gln Phe Gln Glu
         180
                             185
                                               190
Ala Ala Glu Ala Trp Met Ala Gly Thr Leu Gln Leu Gly Gln Val Leu
                        200
                                             205
   195
Arg Pro Arg Gly Leu Trp Gly Tyr Tyr Gly Phe Pro Asp Cys Tyr Asn
                    215
                                        220
Tyr Asp Phe Leu Ser Pro Asn Tyr Thr Gly Gln Cys Ser Leu Ser Ile
                 230
                                     235
His Asp Gln Asn Asp Gln Leu Gly Trp Leu Trp Asn Gln Ser Tyr Ala
             245
                                250
Leu Tyr Pro Ser Ile Tyr Leu Pro Ala Ala Leu Met Gly Thr Gly Lys
                              265
                                                 270
Ser Gln Met Tyr Val Arg Tyr Arg Val Gln Glu Ala Phe Arg Leu Ala
                         280
                                            285
Leu Val Ser Arg Asp Pro His Val Pro Ile Met Pro Tyr Val Gln Ile
                      295
                                         300
Phe Tyr Glu Lys Thr Asp Tyr Leu Leu Pro Leu Glu Glu Leu Glu His
                  310
                                     315
Ser Leu Gly Glu Ser Ala Ala Gln Gly Ala Ala Gly Ala Val Leu Trp
              325
                                 330
Ile Ser Ser Glu Lys Thr Ser Thr Lys Glu Ser Cys Gln Ala Ile Lys
          340
                              345
                                                350
Ala Tyr Met Asp Ser Thr Leu Gly Pro Phe Ile Leu Asn Val Thr Ser
                        360
                                            365
      355
Ala Ala Leu Cys Ser Glu Ala Leu Cys Ser Gly Arg Gly Arg Cys
                      375
                                          380
Val Arg His Pro Ser Tyr Pro Glu Ala Leu Leu Thr Leu Ser Pro Ala
                  390
                                     395
Ser Phe Ser Ile Glu Pro Thr His Asp Gly Arg Pro Leu Ser Leu Lys
                                  410
               405
Gly Thr Leu Ser Leu Lys Asp Arg Ala Gln Met Ala Met Lys Phe Lys
          420
                             425
                                         430
Cys Arg Cys Tyr Arg Gly Trp Ser Gly Glu Trp Cys Lys Lys Gln Asp
                          440
                                             445
Met
<210> 22
<211> 473
<212> PRT
<213> Rattus norvegicus
<220>
<223> hialuronidasa 2
```

```
<400> 22
Met Arg Ala Gly Leu Gly Pro Ile Ile Thr Leu Ala Leu Val Leu Glu
                                   10
Val Ala Trp Ala Ser Glu Leu Lys Pro Thr Ala Pro Pro Ile Phe Thr
           20
                              25
Gly Arg Pro Phe Val Val Ala Trp Asn Val Pro Thr Gln Glu Cys Ala
                          40
       35
Pro Arg His Lys Val Pro Leu Asp Leu Arg Ala Phe Asp Val Glu Ala
                     55
                                          60
Thr Pro Asn Glu Gly Phe Phe Asn Gln Asn Ile Thr Thr Phe Tyr Tyr
                   70
                                      75
Asp Arg Leu Gly Leu Tyr Pro Arg Phe Asp Ala Ala Gly Met Ser Val
                                90
               85
His Gly Gly Val Pro Gln Asn Gly Ser Leu Cys Ala His Leu Pro Met
           100 '
                               105
                                                  110
Leu Lys Glu Ala Val Glu Arg Tyr Ile Gln Thr Gln Glu Pro Ala Gly
                          120
                                              125
Leu Ala Val Ile Asp Trp Glu Glu Trp Arg Pro Val Trp Val Arg Asn
  130
                       135
                                          140
Trp Gln Glu Lys Asp Val Tyr Arg Gln Ser Ser Arg Gln Leu Val Ala
                 150
                                    155
Ser Arg His Pro Asp Trp Pro Ser Asp Arg Ile Val Lys Gln Ala Gln
                                   170
               165
Tyr Glu Phe Glu Phe Ala Ala Arg Gln Phe Met Leu Asn Thr Leu Arg
          180
                              185
Tyr Val Lys Ala Val Arg Pro Gln His Leu Trp Gly Phe Tyr Leu Phe
195 200 205
                        200
                                              205
     195
Pro Asp Cys Tyr Asn His Asp Tyr Val Gln Asn Trp Asp Ser Tyr Thr
210 215 220
Gly Arg Cys Pro Asp Val Glu Val Ala Gln Asn Asp Gln Leu Ala Trp
                230
                                    235
Leu Trp Ala Glu Asn Thr Ala Leu Phe Pro Ser Val Tyr Leu Asp Lys
                                   250
Thr Leu Ala Ser Ser Lys His Ser Arg Asn Phe Val Ser Phe Arg Val
           260
                              265
                                                  270
Gln Glu Ala Leu Arg Val Ala His Thr His His Ala Asn His Ala Leu
       275
                        280
Pro Val Tyr Val Phe Thr Arg Pro Thr Tyr Thr Arg Arg Leu Thr Glu
                     295
                                          300
Leu Asn Gln Met Asp Leu Ile Ser Thr Ile Gly Glu Ser Ala Ala Leu
                                      315
                   310
Gly Ser Ala Gly Val Ile Phe Trp Gly Asp Ser Val Tyr Ala Ser Ser
                325
                                   330
Met Glu Asn Cys Gln Asn Leu Lys Lys Tyr Leu Thr Gln Thr Leu Val
                             345
Pro Tyr Ile Val Asn Val Ser Trp Ala Thr Gln Tyr Cys Ser Trp Thr
       355
                        360
                                              365
Gln Cys His Gly His Gly Arg Cys Val Arg Arg Asn Pro Ser Ala Ser
    370
                       375
                                          380
Thr Phe Leu His Leu Ser Pro Ser Ser Phe Arg Leu Val Pro Gly Arg
                390
                                     395
Thr Pro Ser Glu Pro Gln Leu Arg Pro Glu Gly Glu Leu Ser Glu Asp
              405
                                  410
Asp Leu Ser Tyr Leu Gln Met His Phe Arg Cys His Cys Tyr Leu Gly
          420
                            425
                                                 430
Trp Gly Glu Gln Cys Gln Trp Asn His Lys Arg Ala Ala Gly Asp
       435
                          440
Ala Ser Arg Ala Trp Ala Gly Ala His Leu Ala Ser Leu Leu Gly Leu
                     455
Val Ala Met Thr Leu Thr Trp Thr Leu
<210> 23
<211> 412
<212> PRT
```

<213> Rattus norvegicus

```
<220>
<223> hialuronidasa 3
<400> 23
Met Ile Thr Gln Leu Gly Leu Thr Leu Val Val Gly Leu Thr Leu Cys
Leu Val His Val Gln Ala Leu Leu Gln Val Pro Glu Phe Pro Phe Ser
           20
                               25
Val Leu Trp Asn Val Pro Ser Ala Arg Cys Lys Thr Arg Phe Gly Val
                          40
     35
His Leu Pro Leu Asp Ala Leu Gly Ile Ile Ala Asn His Gly Gln Arg
                       55
                                         60
Phe His Gly Gln Asn Ile Thr Ile Phe Tyr Lys Asn Gln Phe Gly Leu
                  70
                                      75
Tyr Pro Tyr Phe Gly Pro Arg Gly Thr Ala His Asn Gly Gly Ile Pro
               85
                                   90
Gln Ala Val Ser Leu Asp His His Leu Ala Gln Ala Ala His Gln Ile
           100
                              105
                                                  110
Leu His Asn Leu Gly Ser Ser Phe Ala Gly Leu Ala Val Leu Asp Trp
       115
                       120
                                             125
Glu Glu Trp Tyr Pro Leu Trp Ala Gly Asn Trp Gly Thr His Arg Gln
                                          140
                      135
Val Tyr Gln Ala Ala Ser Trp Ala Trp Ala Gln Gln Met Phe Pro Asp
                  150
                                     155
Leu Asn Pro Gln Glu Gln Leu His Lys Ala Gln Thr Gly Phe Glu Gln
                                 170
                                                     175
               165
Ala Ala Arg Ala Leu Met Glu His Thr Leu Arg Leu Gly Gln Met Leu
          180
                             185
Arg Pro His Gly Leu Trp Gly Phe Tyr Arg Tyr Pro Val Cys Gly Asn
     195
                           200
                                              205
Gly Trp His Asn Met Ala Ser Asn Tyr Thr Gly His Cys His Pro Ala
                      215
                                          220
Ile Ile Thr Arg Asn Thr Gln Leu Arg Trp Leu Trp Ala Ala Ser Ser
                   230
                                      235
Ala Leu Phe Pro Ser Ile Tyr Leu Pro Pro Arg Leu Pro Pro Ala Tyr
               245
                                   250
                                                      255
His Gln Thr Phe Val Arg His Arg Leu Glu Glu Ala Phe Arg Val Ala
                              265
                                                270
           260
Leu Thr Gly His Ala His Pro Leu Pro Val Leu Ala Tyr Val Arg Leu
       275
                        280
                                              285
Thr His Arg Ser Ser Gly Arg Phe Leu Ser Leu Asp Asp Leu Met Gln
                      295
                                        300
Thr Ile Gly Val Ser Ala Ala Leu Gly Ala Ala Gly Val Val Leu Trp
                   310
                                      315
Gly Asp Leu Ser Val Ser Ser Ser Glu Glu Glu Cys Trp Arg Leu His
              325
                                  330
Asp'Tyr Leu Val Gly Thr Leu Gly Pro Tyr Val Ile Asn Val Thr Lys
                               345
Ala Ala Thr Ala Cys Ser His Gln Arg Cys His Gly His Gly Arg Cys
                          360
Ser Trp Lys Asp Pro Gly Gln Met Glu Ala Phe Leu His Leu Gln Pro
                                          380
                       375
Asp Asp Asn Leu Gly Ala Trp Lys Ser Phe Arg Cys Arg Cys Tyr Leu
                  390
                                    395
Gly Trp Ser Gly Pro Thr Cys Leu Glu Pro Lys Pro
                405
                                   410
<210> 24
<211> 545
<212> PRT
<213> Oryctolagus cuniculus
<220>
<223> PH20
<400> 24
```

```
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Gly Ser Ala Val Glu
                               10
Leu Ser Gly Val Phe Gln Ile Val Phe Ile Phe Leu Leu Ile Pro Cys
                          25
         20
                                            30
Cys Leu Thr Ala Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro
    35 40
                                        4.5
Phe Leu Trp Ala Trp Asn Ala Pro Thr Glu Phe Cys Leu Gly Lys Ser
 50 55
                                    60
Gly Glu Pro Leu Asp Met Ser Leu Phe Ser Leu Phe Gly Ser Pro Arg
                70
                                   75
Lys Asn Lys Thr Gly Gln Gly Ile Thr Ile Phe Tyr Val Asp Arg Leu
        85
                             90
Gly Tyr Tyr Pro Tyr Ile Asp Pro His Thr Gly Ala Ile Val His Gly
         100
                         105
                                             110
Arg Ile Pro Gln Leu Gly Pro Leu Gln Gln His Leu Thr Lys Leu Arg
                      120
      115
Gln Glu Ile Leu Tyr Tyr Met Pro Lys Asp Asn Val Gly Leu Ala Val
                    135
                                      140
Ile Asp Trp Glu Glu Trp Leu Pro Thr Trp Leu Arg Asn Trp Lys Pro
          150
                           155
Lys Asp Ile Tyr Arg Ile Lys Ser Ile Glu Leu Val Lys Ser Gln His 165 170 175
Pro Gln Tyr Asn His Ser Tyr Ala Thr Glu Lys Ala Lys Arg Asp Phe
         180
                           185
                                             190
Glu Lys Ala Gly Lys Asp Phe Met Glu Glu Thr Leu Lys Leu Gly Arg
195 200 205
Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
           215
 210
                                     220
Tyr Asn His His Tyr Asp Lys Pro Asn Leu Tyr Lys Gly Ser Cys Phe
225 230 235
Asp Ile Glu Lys Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Lys Glu
             245
                               250
                                                255
Ser Thr Ala Leu Phe Pro Ser Val Tyr Leu Thr Ser Arg Ala Arg Ser
                          265
        260
Ala Thr Ala Leu Ser Lys Leu Tyr Val Val Arg Asn Arg Val His Glu
                     280
                                         285
Ala Ile Arg Val Ser Lys Ile Pro Asp Asp Lys Ser Pro Leu Pro Asn
                    295
                                     300
Phe Val Tyr Thr Arg Leu Val Phe Thr Asp Gln Ile Phe Gln Phe Leu
305
                 310
                                  315
Ser His His Asp Leu Val Tyr Thr Ile Gly Glu Ile Val Ala Leu Gly 325 330 335
Ala Ser Gly Ile Val Val Trp Gly Ser Gln Ser Leu Ala Arg Ser Met
          340 345 350
Lys Ser Cys Leu His Leu Asp Asn Tyr Met Lys Thr Ile Leu Asn Pro
                       360
                                       365
      355
Tyr Leu Ile Asn Val Thr Leu Ala Ala Lys Met Cys Asn Gln Val Leu
                  375 380
 370
Cys Gln Glu Gln Gly Val Cys Thr Arg Lys Asn Trp Asn Pro Asn Asp
                 390
                                  395
```

```
Tyr Leu His Leu Asn Pro Gly Asn Phe Ala Ile Gln Leu Gly Ser Asn
                                410
              405
Gly Thr Tyr Lys Val Asp Gly Lys Pro Thr Leu Thr Asp Leu Glu Gln
          420
                     425
                                               430
Phe Ser Lys Asn Phe Gln Cys Ser Cys Tyr Thr Asn Leu Asn Cys Lys
435 440 445
Glu Arg Thr Asp Met Asn Asn Val Arg Thr Val Asn Val Cys Ala Val
           455
                                        460
Glu Asn Val Cys Ile Asp Thr Asn Val Gly Pro Gln Ala Val Thr Tyr
                                    475
                 470
Ala Pro Lys Glu Lys Lys Asp Val Ala His Ile Leu Ser Asn Thr Thr
                     490 495
           485
Ser Ile Asn Ser Ser Thr Thr Met Ser Leu Pro Phe Pro Arg Lys His 500 \hspace{1.5cm} 505 \hspace{1.5cm} 510
Val Ser Gly Cys Leu Leu Val Leu Cys Met Tyr Ser Gln Tyr Leu Asn
                      520
                               525
     515
Ile Cys Tyr Arg Leu Val Ala Ile Gly Ile Gln His Gly Tyr Tyr Leu
                      535
Lys
545
<210> 25
<211> 476
<212> PRT
<213> Ovis aries
<220>
<223> hialuronidasa 2
<400> 25
Met Trp Thr Gly Leu Gly Pro Ala Val Thr Leu Ala Leu Val Leu Val
                                 10
Val Ala Trp Ala Thr Glu Leu Lys Pro Thr Ala Pro Pro Ile Phe Thr
                            25
                                              30
        20
Gly Arg Pro Phe Val Val Ala Trp Asp Val Pro Thr Gln Asp Cys Gly
                         40
       35
Pro Arg His Lys Met Pro Leu Asp Pro Lys Asp Met Lys Ala Phe Asp
                   55
                                     60
Val Gln Ala Ser Pro Asn Glu Gly Phe Val Asn Gln Asn Ile Thr Ile
                  70
                                     75
Phe Tyr Arg Asp Arg Leu Gly Met Tyr Pro His Phe Asn Ser Val Gly
                                 90
             85
Arg Ser Val His Gly Gly Val Pro Gln Asn Gly Ser Leu Trp Val His
           100
                             105
                                                110
Leu Glu Met Leu Lys Gly His Val Glu His Tyr Ile Arg Thr Gln Glu
      115
                         120
                                          125
Pro Ala Gly Leu Ala Val Ile Asp Trp Glu Asp Trp Arg Pro Val Trp
                      135
                                        140
Val Arg Asn Trp Gln Asp Lys Asp Val Tyr Arg Arg Leu Ser Arg Gln
                  150
                                    155
Leu Val Ala Ser His His Pro Asp Trp Pro Pro Glu Arg Ile Val Lys
                              170
                                                    175
             165
Glu Ala Gln Tyr Glu Phe Glu Phe Ala Ala Arg Gln Phe Met Leu Glu
180 185 190
Thr Leu Arg Phe Val Lys Ala Phe Arg Pro Arg His Leu Trp Gly Phe
     195 200
                                  205
Tyr Leu Phe Pro Asp Cys Tyr Asn His Asp Tyr Val Gln Asn Trp Glu
                                        220
                     215
Thr Tyr Thr Gly Arg Cys Pro Asp Val Glu Val Ser Arg Asn Asp Gln
                                  235
                  230
```

10

```
Leu Ser Trp Leu Trp Ala Glu Ser Thr Ala Leu Phe Pro Ser Val Tyr
                                250
              245
Leu Glu Glu Thr Leu Ala Ser Ser Thr His Gly Arg Asn Phe Val Ser
           260
                       265
                                               270
Phe Arg Val Gln Glu Ala Leu Arg Val Ala Asp Val His His Ala Asn
                        280
       275
                                            285
His Ala Leu Pro Val Tyr Val Phe Thr Arg Pro Thr Tyr Ser Arg Gly
   290
                     295
                                         300
Leu Thr Gly Leu Ser Glu Met Asp Leu Ile Ser Thr Ile Gly Glu Ser
                 310
                                    315
Ala Ala Leu Gly Ala Ala Gly Val Ile Leu Trp Gly Asp Ala Gly Phe
              325
                                330
                                                    335
Thr Thr Ser Asn Glu Thr Cys Arg Arg Leu Lys Asp Tyr Leu Thr Arg
           340
                             345
                                                350
Ser Leu Val Pro Tyr Val Val Asn Val Ser Trp Ala Ala Gln Tyr Cys
                          360
                                            365
Ser Trp Ala Gln Cys His Gly His Gly Arg Cys Val Arg Arg Asp Pro
                     375
                                        380
Asn Ala His Thr Phe Leu His Leu Ser Ala Ser Ser Phe Arg Leu Val
                390
                                  395
Pro Ser His Ala Pro Asp Glu Pro Arg Leu Arg Pro Glu Gly Glu Leu
            405
                                410
                                                   415
Ser Trp Ala Asp Arg Asn His Leu Gln Thr His Phe Arg Cys Gln Cys
         420
                          425
                                             430
Tyr Leu Gly Trp Gly Gly Glu Gln Cys Gln Trp Asp Arg Arg Ala
                       440
                                           445
      435
Ala Gly Gly Ala Ser Gly Ala Trp Ala Gly Ser His Leu Thr Gly Leu
                   455
                                      460
Leu Ala Val Ala Val Leu Ala Phe Thr Trp Thr Ser
465
<210> 26
<211> 414
<212> PRT
<213> Pongo pygmaeus
<220>
<223> hialuronidasa 3
<400> 26
Met Thr Thr Arg Leu Gly Pro Ala Leu Val Leu Gly Val Ala Leu Cys
                               10
Leu Gly Cys Gly Gln Pro Leu Pro Gln Val Pro Glu Arg Pro Phe Ser
          20
                             25
Val Leu Trp Asn Val Pro Ser Ala His Cys Lys Ser Arg Phe Gly Val
  35
                       40
His Leu Pro Leu Asn Ala Leu Gly Ile Ile Ala Asn Arg Gly Gln His
                    55
                                     60
Phe His Gly Gln Asn Met Thr Ile Phe Tyr Lys Asn Gln Leu Gly Leu
                 70
                                    75
Tyr Pro Tyr Phe Gly Pro Lys Gly Thr Ala His Asn Gly Gly Ile Pro
             85
                                90
Gln Ala Leu Pro Leu Asp Arg His Leu Ala Leu Ala Ala Tyr Gln Ile
         100
                           105
His His Ser Leu Arg Pro Gly Phe Ala Gly Pro Ala Val Leu Asp Trp
                         120
       115
Glu Glu Trp Cys Pro Leu Trp Ala Gly Asn Trp Gly Arg Arg Ala
                   135
                                      140
Tyr Gln Ala Ala Ser Trp Ala Trp Ala Gln Gln Val Phe Pro Asp Leu
```

```
Asp Pro Gln Glu Gln Leu Tyr Lys Ala Tyr Thr Gly Phe Glu Gln Ala
               165
                                   170
Ala Arg Ala Leu Met Glu Asp Thr Leu Arg Val Ala Gln Ala Leu Arg
           180
                               185
                                                  190
Pro His Gly Leu Trp Gly Phe Tyr His Tyr Pro Ala Cys Gly Asn Gly
                        200
                                              205
Trp His Ser Met Ala Ser Asn Tyr Thr Gly Arg Cys His Ala Ala Thr
                       215
                                           220
Leu Ala Arg Asn Thr Gln Leu His Trp Leu Trp Ala Ala Ser Ser Ala
                                     235
                 230
Leu Phe Pro Ser Ile Tyr Leu Pro Pro Arg Leu Pro Pro Ala His His
               245
                                  250
                                                      255
Gln Ala Phe Val Arg His Arg Leu Glu Glu Ala Phe Arg Val Ala Leu
                               265
                                                  270
Val Gly His Leu Pro Val Leu Ala Tyr Val Arg Leu Thr His Arg Arg
                           280
Ser Gly Arg Phe Leu Ser Gln Asp Asp Leu Val Gln Thr Ile Gly Val
                      295
                                          300
Ser Ala Ala Leu Gly Ala Ala Gly Val Val Leu Trp Gly Asp Leu Ser
                   310
                                       315
                                                           320
Leu Ser Ser Ser Glu Glu Glu Cys Trp His Leu His Asp Tyr Leu Val
              325
                                   330
Asp Thr Leu Gly Pro Tyr Gly Ile Asn Val Thr Arg Ala Ala Met Ala
            340
                              345
                                               350
Cys Ser His Gln Arg Cys His Gly His Gly Arg Cys Ala Arg Arg Asp
                          360
                                               365
        355
Pro Gly Gln Met Glu Ala Phe Leu His Leu Trp Pro Asp Gly Ser Leu
                       375
                                          380
Gly Asp Trp Lys Ser Phe Ser Cys His Cys Tyr Trp Gly Trp Ala Gly
                               395
        390
Pro Thr Cys Gln Glu Pro Arg Leu Gly Pro Lys Glu Ala Val
               405
<210> 27
<211> 510
<212> PRT
<213> Macaca fascicularis
<220>
<223> PH20
<400> 27
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
                                   10
Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
          20
                               25
Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Ile Ile Pro Asn Val Pro
     35
                          40
Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
                      55
Asn Glu Pro Leu Asp Met Ser Leu Phe Thr Leu Met Gly Ser Pro Arg
                   70
Ile Asn Val Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
                                  90
             85
Gly Tyr Tyr Pro Tyr Ile Asp Leu Thr Thr Gly Val Thr Val His Gly
                               105
                                                  110
Gly Ile Pro Gln Lys Val Ser Leu Gln Asp His Leu Asp Lys Ser Lys
      115
                          120
```

Gln Asp Ile Leu Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val

```
Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro
                                    155
                  150
Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn
              165
                                170
                                                   175
Val Gln Leu Ser Leu Pro Gln Ala Thr Asp Lys Ala Lys Gln Glu Phe
           180
                         185
                                               190
Glu Lys Ala Gly Lys Asp Phe Met Leu Glu Thr Ile Lys Leu Gly Arg
       195
                      200
                                          205
Ser Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
                     215
                                        220
Tyr Asn His His Tyr Arg Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asp
225
                  230
                                  235
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser 245 250 255
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Val Val
                                             270
          260
               265
Val Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
                        280
      275
                                          285
Ser Lys Ile Pro Asp Ala Lys Asn Pro Leu Pro Val Phe Val Tyr Ala
                  295
                                      300
   290
Arg Leu Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Arg Glu Glu
        310
                                 315
Leu Val Ser Thr Leu Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
            325
                               330
                                                 335
Val Ile Trp Gly Ser Leu Ser Ile Thr Arg Ser Met Lys Ser Cys Leu
          340
                             345
Leu Leu Asp Thr Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
                  360
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
   370
                     375
Gly Val Cys Ile Arg Lys Asp Trp Asn Ser Ser Asp Tyr Leu His Leu
                 390
                                    395
Asn Pro Asp Asn Phe Asp Ile Arg Leu Glu Lys Gly Gly Lys Phe Thr
              405
                               410
                                                   415
Val His Gly Lys Pro Thr Val Glu Asp Leu Glu Glu Phe Ser Glu Lys
420 425 430
                          425
          420
Phe Tyr Cys Ser Cys Tyr Thr Asn Leu Ser Cys Lys Glu Lys Ala Asp 435 440 445
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
                   455
                                      460
Ile Asp Ala Ser Leu Lys Pro Pro Val Glu Thr Glu Gly Ser Pro Pro
                470
                                   475
Ile Phe Tyr Asn Thr Ser Ser Ser Thr Val Ser Thr Thr Met Phe Ile
              485
                                 490
Val Asn Ile Leu Phe Leu Ile Ile Ser Ser Val Ala Ser Leu
                             505
<210> 28
<211> 529
<212> PRT
<213> Cavia porcellus
<220>
<223> PH20
Met Gly Ala Phe Thr Phe Lys His Ser Phe Phe Gly Ser Phe Val Glu
               5
                                 10
Cys Ser Gly Val Leu Gln Thr Val Phe Ile Phe Leu Leu Ile Pro Cys
           20
                             25
```

```
Cys Leu Ala Asp Lys Arg Ala Pro Pro Leu Ile Pro Asn Val Pro Leu
                            40
                                                  45
Leu Trp Val Trp Asn Ala Pro Thr Glu Phe Cys Ile Gly Gly Thr Asn
                      55
                                              60
  50
Gln Pro Leu Asp Met Ser Phe Phe Ser Ile Val Gly Thr Pro Arg Lys
                   70
                                         75
Asn Ile Thr Gly Gln Ser Ile Thr Leu Tyr Tyr Val Asp Arg Leu Gly
              85
                                   90
Tyr Tyr Pro Tyr Ile Asp Pro His Thr Gly Ala Ile Val His Gly Gly
100 105 110
Leu Pro Gln Leu Met Asn Leu Gln Gln His Leu Arg Lys Ser Arg Gln
 . 115
               120
                                                  125
Asp Ile Leu Phe Tyr Met Pro Thr Asp Ser Val Gly Leu Ala Val Ile
130 135 140
Asp Trp Glu Glu Trp Arg Pro Thr Trp Thr Arg Asn Trp Arg Pro Lys 145 150 155
Asp Ile Tyr Arg Asn Lys Ser Ile Glu Leu Val Lys Ser Gln His Pro
165 170 175
Gln Tyr Asn His Ser Tyr Ala Val Ala Val Ala Lys Arg Asp Phe Glu
180 185 190
Arg Thr Gly Lys Ala Phe Met Leu Glu Thr Leu Lys Leu Gly Lys Ser 195 200 205
Leu Arg Pro Ser Ser Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr 210 215 220
Asn Thr His Phe Thr Lys Pro Asn Tyr Asp Gly His Cys Pro Pro Ile
225 230 235 240
Glu Leu Gln Arg Asn Asn Asp Leu Gln Trp Leu Trp Asn Asp Ser Thr
245 250 255
Ala Leu Tyr Pro Ser Val Tyr Leu Thr Ser Arg Val Arg Ser Ser Gln 260 265 270
Asn Gly Ala Leu Tyr Val Arg Asn Arg Val His Glu Ser Ile Arg Val
275 280 285
Ser Lys Leu Met Asp Asp Lys Asn Pro Leu Pro Ile Tyr Val Tyr Ile
290 295 300
Arg Leu Val Phe Thr Asp Gln Thr Thr Thr Phe Leu Glu Leu Asp Asp 305 310 315
                    310
                                          315
Leu Val His Ser Val Gly Glu Ile Val Pro Leu Gly Val Ser Gly Ile
              325 330
Ile Ile Trp Gly Ser Leu Ser Leu Thr Arg Ser Leu Val Ser Cys Ile 340 345 350
Gly Leu Glu Asn Tyr Met Lys Gly Thr Leu Leu Pro Tyr Leu Ile Asn 355 360 365
Val Thr Leu Ala Ala Lys Met Cys Gly Gln Val Leu Cys Lys Asn Gln
                     375
                                             380
  370
Gly Ile Cys Thr Arg Lys Asp Trp Asn Thr Asn Thr Tyr Leu His Leu 385 390 395 400
                    390
                                          395
Asn Ala Thr Asn Phe Asp Ile Glu Leu Gln Gln Asn Gly Lys Phe Val
405 410 415
Val His Gly Lys Pro Ser Leu Glu Asp Leu Gln Glu Phe Ser Lys Asn 420 425 430
Phe His Cys Ser Cys Tyr Thr Asn Val Ala Cys Lys Asp Arg Leu Asp 435 440 445
Val His Asn Val Arg Ser Val Asn Val Cys Thr Ala Asn Asn Ile Cys
                       455
                                             460
Ile Asp Ala Val Leu Asn Phe Pro Ser Leu Asp Asp Asp Asp Glu Pro
                 470
                                         475
Pro Ile Thr Asp Asp Thr Ser Gln Asn Gln Asp Ser Ile Ser Asp Ile
485 490 495
                485
Thr Ser Ser Ala Pro Pro Ser Ser His Ile Leu Pro Lys Asp Leu Ser
                                                     510
           500
                               505
Trp Cys Leu Phe Leu Leu Ser Ile Phe Ser Gln His Trp Lys Tyr Leu
```

515 520 525

Leu

5

<210> 29

<211> 512

<212> PRT

<213> Rattus norvegicus <220> <223> PH20 <400> 29 Met Gly Glu Leu Gln Phe Lys Trp Leu Phe Trp Arg Ser Phe Ala Glu 10 Ser Gly Gly Thr Phe Gln Thr Val Leu Ile Phe Leu Phe Ile Pro Tyr 25 20 Ser Leu Thr Val Asp Tyr Arg Ala Thr Pro Val Leu Ser Asp Thr Thr 40 35 45 Phe Val Trp Val Trp Asn Val Pro Thr Glu Ala Cys Val Glu Asn Val 55 Thr Glu Pro Ile Asp Leu Ser Phe Phe Ser Leu Ile Gly Ser Pro Arg 70 75 Lys Thr Ala Ile Gly Gln Pro Val Thr Leu Phe Tyr Val Asp Arg Leu 85 90 Gly Asn Tyr Pro His Ile Asp Ala Gln Gln Thr Glu His His Gly Gly 100 105 110 Ile Pro Gln Lys Gly Asp Leu Thr Thr His Leu Val Lys Ala Lys Glu 120 125 115 Asp Val Glu Arg Tyr Ile Pro Thr Asp Lys Leu Gly Leu Ala Ile Ile 130 135 140 Asp Trp Glu Glu Trp Arg Pro Thr Trp Met Arg Asn Trp Thr Pro Lys . 150 155 Asp Ile Tyr Arg Asn Lys Ser Ile Glu Leu Val Gln Ala Ala Asp Pro 170 165 175 Ala Ile Asn Ile Thr Glu Ala Thr Val Arg Ala Lys Ala Gln Phe Glu 185 180 190 Gly Ala Ala Lys Glu Phe Met Glu Gly Thr Leu Lys Leu Gly Lys His 195 200 Ile Arg Pro Lys His Leu Trp Gly Phe Tyr Leu Phe Pro Asp Cys Tyr 215 220 Asn Asn Lys Phe Gln Val Asp Asn Tyr Asp Gly Gln Cys Pro Asp Val 230 235 Glu Lys Lys Arg Asn Asp Asp Leu Asp Trp Leu Trp Lys Glu Ser Thr 245 250 255 250 245 Gly Leu Tyr Pro Ser Val Tyr Leu Lys Lys Asp Leu Lys Ser Ser Arg 265 Lys Ala Thr Leu Tyr Val Arg Tyr Arg Val Leu Glu Ser Ile Arg Val 280 Ser Lys Val Ser Asp Glu Ser Asp Pro Val Pro Ile Phe Val Tyr Ile 290 295 300 295 300 Arg Leu Val Phe Thr Asp His Val Ser Glu Tyr Leu Leu Glu Asp Asp 305 310 315 Leu Val Asn Thr Ile Gly Glu Ile Val Ala Gln Gly Thr Ser Gly Ile 330 325 335 Ile Ile Trp Asp Ala Met Ser Leu Ala Gln Arg Ser Ala Gly Cys Pro 340 345 350 Ile Leu Arg Gln Tyr Met Lys Thr Thr Leu Asn Pro Tyr Ile Val Asn

360

Val Thr Leu Ala Ala Lys Met Cys Ser Gln Thr Leu Cys Lys Glu Lys

5

```
375
Gly Met Cys Ser Arg Lys Thr Glu Ser Ser Asp Ala Tyr Leu His Leu
        390
                                  395
Asp Pro Ser Ser Phe Ser Ile Asn Val Thr Glu Ala Gly Lys Tyr Glu
           405
                              410
Val Leu Gly Lys Pro Glu Val Lys Asp Leu Glu Tyr Phe Ser Glu His
          420
                          425
Phe Lys Cys Ser Cys Phe Ser Lys Met Thr Cys Glu Glu Thr Ser Asp
     435 . 440
Met Arg Ser Ile Gln Asp Val Asn Val Cys Met Gly Asp Asn Val Cys
                    455
                                       460
Ile Lys Ala Thr Leu Gly Pro Asn Ser Ala Phe His Leu Leu Pro Gly
       470
                                   475
Lys Gly Leu Leu Met Thr Thr Leu Ala His Ile Leu His His Leu
        485
                               490
                                                  495
Pro His Asp Ile Phe Val Phe Pro Trp Lys Met Leu Val Ser Thr Pro
                             505
<210> 30
<211> 512
<212> PRT
<213> Mus musculus
<220>
<223> PH20
<400> 30
Met Gly Glu Leu Arg Phe Lys His Leu Phe Trp Gly Ser Phe Val Glu
                                 10
Ser Gly Gly Thr Phe Gln Thr Val Leu Ile Phe Leu Leu Ile Pro Cys
                             25
Ser Leu Thr Val Asp Tyr Arg Ala Ala Pro Ile Leu Ser Asn Thr Thr
                      40
Phe Leu Trp Ile Trp Asn Val Pro Thr Glu Arg Cys Val Gly Asn Val
                    55
                                        60
Asn Asp Pro Ile Asp Leu Ser Phe Phe Ser Leu Ile Gly Ser Pro Arg 65 70 75 80
                                    75
Lys Thr Ala Thr Gly Gln Pro Val Thr Leu Phe Tyr Val Asp Arg Leu
85 90 95
              85
                                90
Gly Leu Tyr Pro His Ile Asp Ala Asn Gln Ala Glu His Tyr Gly Gly
         100
                           105
Ile Pro Gln Arg Gly Asp Tyr Gln Ala His Leu Arg Lys Ala Lys Thr
                         120
     115
Asp Ile Glu His Tyr Ile Pro Asp Asp Lys Leu Gly Leu Ala Ile Ile
                    135
Asp Trp Glu Glu Trp Arg Pro Thr Trp Leu Arg Asn Trp Lys Pro Lys
                  150
                                    155
Asp Asn Tyr Arg Asn Lys Ser Ile Glu Leu Val Gln Ser Thr Asn Pro
              165
                                 170 ·
                                                   175
Gly Leu Ser Ile Thr Glu Ala Thr Gln Lys Ala Ile Gln Gln Phe Glu
           180
                             185
                                               190
Glu Ala Gly Arg Lys Phe Met Glu Gly Thr Leu His Leu Gly Lys Phe
                                           205
      195
                       200
Leu Arg Pro Asn Gln Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr
                    215
                                       220
Asn Asn Lys Phe Gln Asp Pro Lys Tyr Asp Gly Gln Cys Pro Ala Val
                                  235
               230
Glu Lys Lys Arg Asn Asp Asn Leu Lys Trp Leu Trp Lys Ala Ser Thr
                                250
              245
Gly Leu Tyr Pro Ser Val Tyr Leu Lys Lys Asp Leu Lys Ser Asn Arg
```

10

```
265
Gln Ala Thr Leu Tyr Val Arg Tyr Arg Val Val Glu Ala Ile Arg Val
      275
                           280
                                               285
Ser Lys Val Gly Asn Ala Ser Asp Pro Val Pro Ile Phe Val Tyr Ile
                    295
                                           300
Arg Leu Val Phe Thr Asp Arg Thr Ser Glu Tyr Leu Leu Glu Asp Asp
                  310
                                     315
                                                           320
Leu Val Asn Thr Ile Gly Glu Ile Val Ala Leu Gly Thr Ser Gly Ile
                                  330
                                                      335
             325
Ile Ile Trp Asp Ala Met Ser Leu Ala Gln Arg Ala Ala Gly Cys Pro
           340
                               345
                                                  350
Ile Leu His Lys Tyr Met Gln Thr Thr Leu Asn Pro Tyr Ile Val Asn
                          360
                                             365
      355
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Thr Leu Cys Asn Glu Lys
                     375
                                           380
Gly Met Cys Ser Arg Arg Lys Glu Ser Ser Asp Val Tyr Leu His Leu
                  390
                                    395
Asn Pro Ser His Phe Asp Ile Met Leu Thr Glu Thr Gly Lys Tyr Glu
              405
                                  410
                                                      415
Val Leu Gly Asn Pro Arg Val Gly Asp Leu Glu Tyr Phe Ser Glu His
                              425
           420
Phe Lys Cys Ser Cys Phe Ser Arg Met Thr Cys Lys Glu Thr Ser Asp
      435
                           440
Val Lys Asn Val Gln Asp Val Asn Val Cys Val Gly Asp Asn Val Cys
                      455
Ile Lys Ala Lys Val Glu Pro Asn Pro Ala Phe Tyr Leu Leu Pro Gly
                   470
                                      475
Lys Ser Leu Leu Phe Met Thr Thr Leu Gly His Val Leu Tyr His Leu
                                 490
             485
Pro Gln Asp Ile Phe Val Phe Pro Arg Lys Thr Leu Val Ser Thr Pro
            500
                               505
<210> 31
<211> 807
<212> PRT
<213> Staphylococcus aureus
<220>
<223> hialuronidasa
<400> 31
Met Thr Tyr Arg Ile Lys Lys Trp Gln Lys Leu Ser Thr Ile Thr Leu
                                   10
Leu Met Ala Gly Val Ile Thr Leu Asn Gly Gly Glu Phe Arg Ser Val
                               25 ·
           20
Asp Lys His Gln Ile Ala Val Ala Asp Thr Asn Val Gln Thr Pro Asp
      35
                          40
Tyr Glu Lys Leu Arg Asn Thr Trp Leu Asp Val Asn Tyr Gly Tyr Asp
    50
                     55
Lys Tyr Asp Glu Asn Asn Pro Asp Met Lys Lys Lys Phe Asp Ala Thr
                                       75
                   70
Glu Lys Glu Ala Thr Asn Leu Leu Lys Glu Met Lys Thr Glu Ser Gly
              85
                                  90
Arg Lys Tyr Leu Trp Ser Gly Ala Glu Thr Leu Glu Thr Asn Ser Ser
                               105
                                                  110
           100
His Met Thr Arg Thr Tyr Arg Asn Ile Glu Lys Ile Ala Glu Ala Met
                          120
                                              125
Arg Asn Pro Lys Thr Thr Leu Asn Thr Asp Glu Asn Lys Lys Val
                       135
                                           140
Lys Asp Ala Leu Glu Trp Leu His Lys Asn Ala Tyr Gly Lys Glu Pro
```

```
150
                                        155
Asp Lys Lys Val Lys Glu Leu Ser Glu Asn Phe Thr Lys Thr Thr Gly
165 170 175
Lys Asn Thr Asn Leu Asn Trp Trp Asp Tyr Glu Ile Gly Thr Pro Lys
180 . 185 . 190
                           185
Ser Leu Thr Asn Thr Leu Ile Leu Leu Asn Asp Gln Phe Ser Asn Glu
     195 200
                                               205
Glu Lys Lys Lys Phe Thr Ala Pro Ile Lys Thr Phe Ala Pro Asp Ser
 210
                      215
                                             220
Asp Lys Ile Leu Ser Ser Val Gly Lys Ala Glu Leu Ala Lys Gly Gly 225 230 235 240
               230
Asn Leu Val Asp Ile Ser Lys Val Lys Leu Leu Glu Cys Ile Ile Glu
245 250 255
Glu Asp Lys Asp Met Met Lys Lys Ser Ile Asp Ser Phe Asn Lys Val
           260
                                265
Phe Thr Tyr Val Gln Asp Ser Ala Thr Gly Lys Glu Arg Asn Gly Phe 275 280 285
Tyr Lys Asp Gly Ser Tyr Ile Asp His Gln Asp Val Pro Tyr Thr Gly 290 295 300
  290
Ala Tyr Gly Val Val Leu Leu Glu Gly Ile Ser Gln Met Met Pro Met
                   310
                                        315
Ile Lys Glu Thr Pro Phe Asn Asp Lys Thr Gln Asn Asp Thr Thr Leu 325 330 335
             325
                                330
                                                  335
Lys Ser Trp Ile Asp Asp Gly Phe Met Pro Leu Ile Tyr Lys Gly Glu 340 345 350
Met Met Asp Leu Ser Arg Gly Arg Ala Ile Ser Arg Glu Asn Glu Thr
        355
                            360
                                                 365
Ser His Ser Ala Ser Ala Thr Val Met Lys Ser Leu Leu Arg Leu Ser 370 375 380
 370
Asp Ala Met Asp Asp Ser Thr Lys Ala Lys Tyr Lys Lys Ile Val Lys
                  390
                                      395
Ser Ser Val Glu Ser Asp Ser Ser Tyr Lys Gln Asn Asp Tyr Leu Asn
405
410
415
                                  410
               405
Ser Tyr Ser Asp Ile Asp Lys Met Lys Ser Leu Met Thr Asp Asn Ser 420 425 430
Ile Ser Lys Asn Gly Leu Thr Gln Gln Leu Lys Ile Tyr Asn Asp Met 435 440 445
Asp Arg Val Thr Tyr His Asn Lys Asp Leu Asp Phe Ala Phe Gly Leu 450 455
Ser Met Thr Ser Lys Asn Val Ala Arg Tyr Glu Ser Ile Asn Gly Glu
465 470 475 480
Asn Leu Lys Gly Trp His Thr Gly Ala Gly Met Ser Tyr Leu Tyr Asn 485 490 495
Ser Asp Val Lys His Tyr His Asp Asn Phe Trp Val Thr Ala Asp Met 500 505 510
Lys Arg Leu Ser Gly Thr Thr Thr Leu Asp Asn Glu Ile Leu Lys Asp 515 520 525
Thr Asp Asp Lys Lys Ser Ser Lys Thr Phe Val Gly Gly Thr Lys Val
  530
                      535
                                          540
Asp Asp Gln His Ala Ser Ile Gly Met Asp Phe Glu Asn Gln Asp Lys
                  550
                                        555
Thr Leu Thr Ala Lys Lys Ser Tyr Phe Ile Leu Asn Asp Lys Ile Val
Phe Leu Gly Thr Gly Ile Lys Ser Thr Asp Ser Ser Lys Asn Pro Val
            580
                             585
                                                   590
Thr Thr Ile Glu Asn Arg Lys Ala Asn Gly Tyr Thr Leu Tyr Thr Asp
                           600
     595
                                                605
Asp Lys Gln Thr Thr Asn Ser Asp Asn Gln Glu Asn Asn Ser Val Phe
                      615
                                           620
Leu Glu Ser Thr Asp Thr Lys Lys Asn Ile Gly Tyr His Phe Leu Asn
                     630
                                         635
```

```
Lys Pro Lys Ile Thr Val Lys Lys Glu Ser His Thr Gly Lys Trp Lys
                645
                                    650
                                                        655
Glu Ile Asn Lys Ser Gln Lys Asp Thr Gln Lys Thr Asp Glu Tyr Tyr
                              665
Glu Val Thr Gln Lys His Ser Asn Ser Asp Asn Lys Tyr Gly Tyr Val
       675
                           680
                                               685
Leu Tyr Pro Gly Leu Ser Lys Asp Val Phe Lys Thr Lys Lys Asp Glu
                      695
                                           700
 690
Val Thr Val Val Lys Gln Glu Asp Asp Phe His Val Val Lys Asp Asn
                   710
                                       715
Glu Ser Val Trp Ala Gly Val Asn Tyr Ser Asn Ser Thr Gln Thr Phe
              725
                                   730
                                                       735
Asp Ile Asn Asn Thr Lys Val Glu Val Lys Ala Lys Gly Met Phe Ile
                               745
           740
                                                   750
Leu Lys Lys Lys Asp Asp Asn Thr Tyr Glu Cys Ser Phe Tyr Asn Pro
                        760
       755
                                            765
Glu Ser Thr Asn Ser Ala Ser Asp Ile Glu Ser Lys Ile Ser Met Thr
                      775
                                           780
Gly Tyr Ser Ile Thr Asn Lys Asn Thr Ser Thr Ser Asn Glu Ser Gly
785
                   790
                                       795
Val His Phe Glu Leu Thr Lys
                805
<210> 32
<211> 371
<212> PRT'
<213> bacteriófago H4489A de Streptococcus pyogenes
<220>
<223> hialuronidasa
<400> 32
Met Thr Glu Asn Ile Pro Leu Arg Val Gln Phe Lys Arg Met Ser Ala
                5
                                  10
Asp Glu Trp Ala Arg Ser Asp Val Ile Leu Leu Glu Gly Glu Ile Gly
                               25
           20
                                                   30
Phe Glu Thr Asp Thr Gly Phe Ala Lys Phe Gly Asp Gly Gln Asn Thr
                                              45
                         40
     35
Phe Ser Lys Leu Lys Tyr Leu Thr Gly Pro Lys Gly Pro Lys Gly Asp
                      55
                                           60
Thr Gly Leu Gln Gly Lys Thr Gly Gly Thr Gly Pro Arg Gly Pro Ala
                   70
Gly Lys Pro Gly Thr Thr Asp Tyr Asp Gln Leu Gln Asn Lys Pro Asp
               85
                                   90
                                                       95
Leu Gly Ala Phe Ala Gln Lys Glu Glu Thr Asn Ser Lys Ile Thr Lys
                              105
           100
Leu Glu Ser Ser Lys Ala Asp Lys Ser Ala Val Tyr Ser Lys Ala Glu
       115
                          120
                                               125
Ser Lys Ile Glu Leu Asp Lys Lys Leu Ser Leu Thr Gly Gly Ile Val
```

Thr Gly Gln Leu Gln Phe Lys Pro Asn Lys Ser Gly Ile Lys Pro Ser

Ser Ser Val Gly Gly Ala Ile Asn Ile Asp Met Ser Lys Ser Glu Gly

Ala Ala Met Val Met Tyr Thr Asn Lys Asp Thr Thr Asp Gly Pro Leu

Met Ile Leu Arg Ser Asp Lys Asp Thr Phe Asp Gln Ser Ala Gln Phe

Val Asp Tyr Ser Gly Lys Thr Asn Ala Val Asn Ile Val Met Arg Gln

```
Pro Ser Ala Pro Asn Phe Ser Ser Ala Leu Asn Ile Thr Ser Ala Asn
                                   235
                 230
Glu Gly Gly Ser Ala Met Gln Ile Arg Gly Val Glu Lys Ala Leu Gly
             245
                               250
                                               255
Thr Leu Lys Ile Thr His Glu Asn Pro Asn Val Glu Ala Lys Tyr Asp
                            265
          260
                                            270
Glu Asn Ala Ala Leu Ser Ile Asp Ile Val Lys Lys Gln Lys Gly
       275 280
                                         285
Gly Lys Gly Thr Ala Ala Gln Gly Ile Tyr Ile Asn Ser Thr Ser Gly
  290
                    295
                                       300
Thr Ala Gly Lys Met Leu Arg Ile Arg Asn Lys Asn Glu Asp Lys Phe
                          315
305
                 310
Tyr Val Gly Pro Asp Gly Gly Phe His Ser Gly Ala Asn Ser Thr Val 325 330 335
Ala Gly Asn Leu Thr Val Lys Asp Pro Thr Ser Gly Lys His Ala Ala
                                    350
         340
                       345
Thr Lys Asp Tyr Val Asp Glu Lys Ile Ala Glu Leu Lys Lys Leu Ile
                         360
      355
Leu Lys Lys
   370
<210> 33
<211> 1628
<212> PRT
<213> Clostridium perfringens
<220>
<223> hialuronidasa
<400> 33
Met Asn Lys Asn Ile Arg Lys Ile Ile Thr Ser Thr Val Leu Ala Ala
          5
                             10
Met Thr Ile Ser Val Leu Pro Ser Asn Leu Val Val Phe Ala Thr Asp
        20
                  25
Gly Ile Thr Glu Asn Phe Tyr Glu Ile Tyr Pro Lys Pro Gln Glu Ile
                       40
                                          45
    35
Ser Tyr Ser Gly Gly Glu Phe Gln Ile Ser Asp Glu Ile Asn Ile Val
                  55 .
                              60
Tyr Asp Asp Gly Ile Asp Thr Tyr Thr Lys Lys Arg Val Asp Glu Val 65 70 75 80
                                  75
               70
Leu Glu Ala Ser Asn Leu Glu Ala Thr Val Ser Asn Glu Ile Val Pro
                               90
             85
Gly Lys Thr Asn Phe Leu Val Gly Ile Asn Glu Ser Gly Gly Val Val
          100
                          105
                                              110
Asp Asn Tyr Phe Asn Lys Asn Ile Pro His Asp Glu Ser Phe Phe Asp
    115
               120
                                          125
Glu Lys Met Asp Ala Asn Ile Val Ser Val Lys Asp Gly Val Ile Gly
             135
   130
                                     140
Val Ile Gly Glu Asp Thr Asp Ser Ala Phe Tyr Gly Val Thr Thr Leu
                 150
                                  155
Lys His Val Phe Asn Gln Leu Glu Glu Gly Asn Lys Ile Gln Ser Phe
           165 170
                                                 175
Arg Ala Asp Asp Tyr Ala Glu Val Ala His Arg Gly Phe Ile Glu Gly 180 185 190
Tyr Tyr Gly Asn Pro Trp Ser Asn Glu Asp Arg Ala Glu Leu Met Lys
     195 200
                                         205
Phe Gly Gly Asp Tyr Lys Leu Asn Gln Tyr Val Phe Ala Pro Lys Asp
                    215
                                    220
 210
Asp Pro Tyr His Asn Ser Lys Trp Arg Asp Leu Tyr Pro Glu Glu Lys
                                   235
```

10

5

```
Leu Ser Glu Ile Lys Lys Leu Ala Gln Val Gly Asn Glu Thr Lys Asn
                                    250
                245
Arg Tyr Val Tyr Ala Leu His Pro Phe Met Asn Asn Pro Val Arg Phe
                              265
          260
Asp Thr Glu Glu Asn Tyr Gln Asn Asp Leu Gly Val Ile Lys Ala Lys
275 280 285
                           280
                                                 285
Phe Thr Gln Leu Leu Glu Asn Asp Val Arg Gln Phe Ala Ile Leu Ala
            295
                                            300
Asp Asp Ala Ser Ala Pro Ala Gln Gly Ala Ser Met Tyr Val Lys Leu 305 . 310 . 315 . 320
Leu Thr Asp Leu Thr Arg Trp Leu Glu Glu Gln Gln Ser Thr Tyr Pro
325 . 330 335
Asp Leu Lys Thr Asp Leu Met Phe Cys Pro Ser Asp Tyr Tyr Gly Asn
         340
                              345
                                                    350
Gly Ser Ser Ala Gln Leu Lys Glu Leu Asn Lys Ala Glu Asp Asn Val
355 360 365
                  <sup>-</sup> 360
                                              365
Ser Ile Val Met Thr Gly Gly Arg Ile Trp Gly Glu Val Asp Glu Asn 370 375 380
                       375
                                           380
Phe Ala Asn Asn Phe Met Asn Asn Ile Ser Thr Glu Gly His Pro Gly
        390 395
Arg Ala Pro Phe Phe Trp Ile Asn Trp Pro Cys Ser Asp Asn Ser Lys
         405
                         410
Gln His Leu Ile Met Gly Gly Asn Asp Thr Phe Leu His Pro Gly Val
420 425 430
Asp Pro Ser Lys Ile Asp Gly Ile Val Leu Asn Pro Met Gln Gln Ala
435 440 445
Glu Ala Asn Lys Ser Ala Leu Phe Ala Ile Ala Asp Tyr Ala Trp Asn 450 460
               455
                                          460
Ile Trp Asp Asn Lys Glu Glu Ala Asp Glu Asn Trp Asn Asp Ser Phe465470475480
Lys Tyr Met Asp His Gly Thr Ala Glu Glu Thr Asn Ser Ser Leu Ala
               485
                                    490
Leu Arg Glu Ile Ser Lys His Met Ile Asn Gln Asn Met Asp Gly Arg 500 505 510
Val Arg Pro Leu Gln Glu Ser Val Glu Leu Ala Pro Lys Leu Glu Ala
    515 520 525
Phe Lys Gln Lys Tyr Asp Ser Gly Ala Ser Ile Lys Glu Asp Ala Leu 530 535 540
Glu Leu Ile Ala Glu Phe Thr Asn Leu Gln Lys Ala Ala Asp Tyr Tyr 545 550 555 560
Lys Asn Asn Pro Gly Asn Glu Arg Thr Arg Asp Gln Ile Ile Tyr Trp 565 570 575
Leu Asn Cys Trp Glu Asp Thr Met Asp Ala Ala Ile Gly Tyr Leu Lys 580 585 590
Ser Ala Ile Ala Ile Glu Glu Gly Asp Asp Glu Ala Ala Trp Ala Asn 595 · 600 605
     595 ·
                           600
Tyr Ser Glu Ala Gln Gly Ala Phe Glu Lys Ser Lys Thr Tyr Gly Phe
                       615
                                            620
His Tyr Val Asp His Thr Glu Tyr Ala Glu Val Gly Val Gln His Ile
625 630 635 640
                 630
                                     635
Val Pro Phe Ile Lys Ser Met Gly Gln Asn Leu Ser Val Val Ile Gly
645 650 655
                                    650
               645
Ser Ile Val Asp Pro Asn Arg Ile Ile Ala Thr Tyr Ile Ser Asn Arg
           660
                               665
                                                    670
Gln Asp Ala Pro Thr Gly Asn Pro Asp Asn Ile Phe Asp Asn Asn Ala 675 680 685
Ser Thr Glu Leu Val Tyr Lys Asn Pro Asn Arg Ile Asp Val Gly Thr
Tyr Val Gly Val Lys Tyr Ser Asn Pro Ile Thr Leu Asn Asn Val Glu 705
Phe Leu Met Gly Ala Asn Ser Asn Pro Asn Asp Thr Met Gln Lys Ala
```

```
725
                                    730
                                                          735
Lys Ile Gln Tyr Thr Val Asp Gly Arg Glu Trp Ile Asp Leu Glu Glu 740 745 750
            740
                                 745
Gly Val Glu Tyr Thr Met Pro Gly Ala Ile Lys Val Glu Asn Leu Asp
755 760 765
                         760
Leu Lys Val Arg Gly Val Arg Leu Ile Ala Thr Glu Ala Arg Glu Asn
   770
                     775
                                          780
Thr Trp Leu Gly Val Arg Asp Ile Asn Val Asn Lys Lys Glu Asp Ser
785
                 790
                                       795
Asn Ser Gly Val Glu Phe Asn Pro Ser Leu Ile Arg Ser Glu Ser Trp
               805
                           810
                                                       815
Gln Val Tyr Glu Gly Asn Glu Ala Asn Leu Leu Asp Gly Asp Asn Asn 820 825
Thr Gly Val Trp Tyr Lys Thr Leu Asn Gly Asp Thr Ser Leu Ala Gly
       835
                           840
                                                845
Glu Phe Ile Gly Leu Asp Leu Gly Lys Glu Ile Lys Leu Asp Gly Ile
 850
              855
                                    860
Arg Phe Val Ile Gly Lys Asn Gly Gly Gly Ser Ser Asp Lys Trp Asn 865 870 875 880
Lys Phe Lys Leu Glu Tyr Ser Leu Asp Asn Glu Ser Trp Thr Thr Ile
               885
                                    890
                                                         895
Lys Glu Tyr Asp Lys Thr Gly Ala Pro Ala Gly Lys Asp Val Ile Glu
900 905 910
Glu Ser Phe Glu Thr Pro Ile Ser Ala Lys Tyr Ile Arg Leu Thr Asn
915 920 925
Met Glu Asn Ile Asn Lys Trp Leu Thr Phe Ser Glu Phe Ala Ile Ile 930 935 940
                      935
Ser Asp Glu Leu Glu Asn Ala Gly Asn Lys Glu Asn Val Tyr Thr Asn 945 950 955 960
Thr Glu Leu Asp Leu Leu Ser Leu Ala Lys Glu Asp Val Thr Lys Leu 965 970 975
Ile Pro Thr Asp Asp Ile Ser Leu Asn His Gly Glu Tyr Ile Gly Val
                              985
           980
Lys Leu Asn Arg Ile Lys Asp Leu Ser Asn Ile Asn Leu Glu Ile Ser 995 1000 1005
Asn Asp Thr Gly Leu Lys Leu Gln Ser Ser Met Asn Gly Val Glu Trp
  1010 1015 1020
Thr Glu Ile Thr Asp Lys Asn Thr Leu Glu Asp Gly Arg Tyr Val Arg 1025 1030 1035 1040
Leu Ile Asn Thr Ser Asn Glu Ala Val Asn Phe Asn Leu Thr Lys Phe
1045 1050 1055
Glu Val Asn Ser Asn Glu Val Tyr Glu Pro Ser Leu Val Asp Ala Tyr
1060 1065 1070
                              1065
Val Gly Asp Asp Gly Ala Lys Lys Ala Val Asp Gly Asp Leu Lys Thr
1075 1080 1085
Arg Val Lys Phe Leu Gly Ala Pro Ser Thr Gly Asp Thr Ile Val Tyr 1090 1095 1100
Asp Leu Gly Gln Glu Ile Leu Val Asp Asn Leu Lys Tyr Val Val Leu
                1110 1115
                                                           1120
Asp Thr Glu Val Asp His Val Arg Asp Gly Lys Ile Gln Leu Ser Leu 1125 1130 1135
Asp Gly Glu Thr Trp Thr Asp Ala Ile Thr Ile Gly Asp Gly Val Glu 1140 1145 1150
Asn Gly Val Asp Asp Met Phe Ser Thr Pro Leu Lys Asn Gly Tyr Lys 1155 1160 1165
His Gly Asn Gln Ser Gly Gly Ile Val Pro Ile Asp Ser Ala Tyr Val
  1170 1175
                                   1180
Glu Gly Asp Asn Leu Asn Gln Lys Ala Arg Tyr Val Arg Ile Leu Phe 1185 1190 1195 1200
Thr Ala Pro Tyr Arg His Arg Trp Thr Val Ile Asn Glu Leu Met Ile
                1205
                                    1210
```

```
Asn Asn Gly Glu Tyr Ile Ser Thr Val Asn Asp Pro Thr Tyr Ile Ser
        1220
               1225 1230
Asn Pro Ile Glu Glu Arg Gly Phe Ala Pro Ser Asn Leu Arg Asp Gly
      1235
             1240 1245
Asn Leu Thr Thr Ser Tyr Lys Pro Asn Thr Asn Asn Gly Glu Ile Ser
                1255
                           1260
Glu Gly Ser Ile Thr Tyr Arg Leu Ser Glu Lys Thr Asp Val Arg Lys
       1270 1275 1280
Val Thr Ile Val Gln Ser Gly Ser Ser Ile Ser Asn Ala Lys Val Met
           1285 1290 1295
Ala Arg Val Gly Asp Gly Ser Glu Asn Val Thr Asp Gln Trp Val Gln
         1300
                        1305
                               1310
Leu Gly Thr Leu Ser Asn Ser Leu Asn Glu Phe Ile Asn Arg Asp Tyr
    1315 1320
                           1325
Asn Asn Ile Tyr Glu Ile Lys Ile Glu Trp Thr Asp Val Ala Pro Asn
          1335
                                1340
Ile Tyr Glu Ile Ile Thr Leu Asn Gln Glu Phe Glu Phe Pro Val Asn
                              1355
       1350
                                             1360
Asp Ser Leu Lys Ala Lys Tyr Asp Glu Leu Ile Asn Leu Ser Gly Asp
                           1370 . 1375
           1365
Glu Tyr Thr Leu Ser Ser Phe Glu Thr Leu Lys Glu Ala Leu Asn Glu
        1380 1385 1390
Ala Lys Ser Ile Leu Asp Asp Ser Asn Ser Ser Gln Lys Lys Ile Asp
      1395 1400 1405
Lys Ala Leu Glu Lys Leu Asn Lys Ala Glu Glu Arg Leu Asp Leu Arg
  1410 1415 1420
Ala Thr Asp Phe Glu Asp Phe Asn Lys Val Leu Thr Leu Gly Asn Ser
      1430 1435
                                      1440
Leu Val Glu Glu Glu Tyr Thr Ala Glu Ser Trp Ala Leu Phe Ser Glu
           1445 1450 1455
Val Leu Glu Ala Ala Asn Glu Ala Asn Lys Asn Lys Ala Asp Tyr Thr
                       1465 1470
        1460
Gln Asp Gln Ile Asn Gln Ile Val Ile Asp Leu Asp Ala Ser Ile Lys
     1475
                    1480
                                     1485
Ala Leu Val Lys Glu Thr Pro Glu Val Asp Lys Thr Asn Leu Gly Glu
           1495
                                  1500
Leu Ile Asn Gln Gly Lys Ser Leu Leu Asp Glu Ser Val Glu Gly Phe 1505 1510 1515 1520
Asn Val Gly Glu Tyr His Lys Gly Ala Lys Asp Gly Leu Thr Val Glu
           1525 1530 1535
Ile Asn Lys Ala Glu Glu Val Phe Asn Lys Glu Asp Ala Thr Glu Glu 1540 1545 1550
Glu Ile Asn Leu Ala Lys Glu Ser Leu Glu Gly Ala Ile Ala Arg Phe
1555 1560 1565
Asn Ser Leu Leu Ile Glu Glu Ser Thr Gly Asp Phe Asn Gly Asn Gly
   1570 1575
                               1580
Lys Ile Asp Ile Gly Asp Leu Ala Met Val Ser Lys Asn Ile Gly Ser
1585 1590 1595 1600
Thr Thr Asn Thr Ser Leu Asp Leu Asn Lys Asp Gly Ser Ile Asp Glu
          1605 1610
                                   1615
Tyr Glu Ile Ser Phe Ile Asn His Arg Ile Leu Asn
         1620
                  1625
<210> 34
<211> 435
<212> PRT
<213> Homo sapiens
<220>
<223> Hialuronidasa-1 [Precursor]
<400> 34
```

```
Met Ala Ala His Leu Leu Pro Ile Cys Ala Leu Phe Leu Thr Leu Leu
                                   10
Asp Met Ala Gln Gly Phe Arg Gly Pro Leu Leu Pro Asn Arg Pro Phe
                               25
           20
                                                 30
Thr Thr Val Trp Asn Ala Asn Thr Gln Trp Cys Leu Glu Arg His Gly
                          40
                                              45
      35
Val Asp Val Asp Val Ser Val Phe Asp Val Val Ala Asn Pro Gly Gln
                    55
                                        60
Thr Phe Arg Gly Pro Asp Met Thr Ile Phe Tyr Ser Ser Gln Leu Gly
                  70
                                      75
Thr Tyr Pro Tyr Tyr Thr Pro Thr Gly Glu Pro Val Phe Gly Gly Leu
              85
                                   90
Pro Gln Asn Ala Ser Leu Ile Ala His Leu Ala Arg Thr Phe Gln Asp
           100
                              105
                                                 110
Ile Leu Ala Ala Ile Pro Ala Pro Asp Phe Ser Gly Leu Ala Val Ile
                        120
                                              125
      115
Asp Trp Glu Ala Trp Arg Pro Arg Trp Ala Phe Asn Trp Asp Thr Lys
                       135
                                          140
  130
Asp Ile Tyr Arg Gln Arg Ser Arg Ala Leu Val Gln Ala Gln His Pro
                  150
                                     155
Asp Trp Pro Ala Pro Gln Val Glu Ala Val Ala Gln Asp Gln Phe Gln
               165
                                   170
Gly Ala Ala Arg Ala Trp Met Ala Gly Thr Leu Gln Leu Gly Arg Ala
          180
                              185
                                                  190
Leu Arg Pro Arg Gly Leu Trp Gly Phe Tyr Gly Phe Pro Asp Cys Tyr
       195
                           200
                                               205
Asn Tyr Asp Phe Leu Ser Pro Asn Tyr Thr Gly Gln Cys Pro Ser Gly 210 215
 210
                      215
                                          220
Ile Arg Ala Gln Asn Asp Gln Leu Gly Trp Leu Trp Gly Gln Ser Arg
225
                  230
                                      235
Ala Leu Tyr Pro Ser Ile Tyr Met Pro Ala Val Leu Glu Gly Thr Gly
                                  250
                                                      255
               245
Lys Ser Gln Met Tyr Val Gln His Arg Val Ala Glu Ala Phe Arg Val
                              265
                                                270
           260
Ala Val Ala Ala Gly Asp Pro Asn Leu Pro Val Leu Pro Tyr Val Gln
                           280
                                              285
Ile Phe Tyr Asp Thr Thr Asn His Phe Leu Pro Leu Asp Glu Leu Glu
                     295
                                         300
His Ser Leu Gly Glu Ser Ala Ala Gln Gly Ala Ala Gly Val Val Leu
                   310
                                       315
Trp Val Ser Trp Glu Asn Thr Arg Thr Lys Glu Ser Cys Gln Ala Ile
               325
                                 330
Lys Glu Tyr Met Asp Thr Thr Leu Gly Pro Phe Ile Leu Asn Val Thr
           340
                              345
                                                 350
Ser Gly Ala Leu Leu Cys Ser Gln Ala Leu Cys Ser Gly His Gly Arg
       355
                           360
                                              365
Cys Val Arg Arg Thr Ser His Pro Lys Ala Leu Leu Leu Asn Pro
                                        380
                    375
  370
Ala Ser Phe Ser Ile Gln Leu Thr Pro Gly Gly Gly Pro Leu Ser Leu
                   390
                                      395
Arg Gly Ala Leu Ser Leu Glu Asp Gln Ala Gln Met Ala Val Glu Phe
             405
                                 410
Lys Cys Arg Cys Tyr Pro Gly Trp Gln Ala Pro Trp Cys Glu Arg Lys
Ser Met Trp
     435
<210> 35
<211> 473
<212> PRT
<213> Homo sapiens
<220>
<223> Hialuronidasa-2 [Precursor]
<400> 35
```

```
Met Arg Ala Gly Pro Gly Pro Thr Val Thr Leu Ala Leu Val Leu Ala
                                  10
Val Ala Trp Ala Met Glu Leu Lys Pro Thr Ala Pro Pro Ile Phe Thr
          20
                             25
                                                 30
Gly Arg Pro Phe Val Val Ala Trp Asp Val Pro Thr Gln Asp Cys Gly
                       40
Pro Arg Leu Lys Val Pro Leu Asp Leu Asn Ala Phe Asp Val Gln Ala
 50
                   55
Ser Pro Asn Glu Gly Phe Val Asn Gln Asn Ile Thr Ile Phe Tyr Arg
                  70
                                     75
Asp Arg Leu Gly Leu Tyr Pro Arg Phe Asp Ser Ala Gly Arg Ser Val
               85
                               90
His Gly Gly Val Pro Gln Asn Val Ser Leu Trp Ala His Arg Lys Met
           100
                           105
Leu Gln Lys Arg Val Glu His Tyr Ile Arg Thr Gln Glu Ser Ala Gly
                        120
     115
                                            125
Leu Ala Val Ile Asp Trp Glu Asp Trp Arg Pro Val Trp Val Arg Asn
  130
                      135
                                        140
Trp Gln Asp Lys Asp Val Tyr Arg Arg Leu Ser Arg Gln Leu Val Ala
                150
                                   155
Ser Arg His Pro Asp Trp Pro Pro Asp Arg Ile Val Lys Gln Ala Gln
                                 170
             165
Tyr Glu Phe Glu Phe Ala Ala Gln Gln Phe Met Leu Glu Thr Leu Arg
         180
                            185
Tyr Val Lys Ala Val Arg Pro Arg His Leu Trp Gly Phe Tyr Leu Phe
      195
                         200
Pro Asp Cys Tyr Asn His Asp Tyr Val Gln Asn Trp Glu Ser Tyr Thr
                     215
                                         220
Gly Arg Cys Pro Asp Val Glu Val Ala Arg Asn Asp Gln Leu Ala Trp
225
                  230
                              235
Leu Trp Ala Glu Ser Thr Ala Leu Phe Pro Ser Val Tyr Leu Asp Glu
                                 250
                                                    255
              245
Thr Leu Ala Ser Ser Arg His Gly Arg Asn Phe Val Ser Phe Arg Val
                              265
           260
                                                270
Gln Glu Ala Leu Arg Val Ala Arg Thr His His Ala Asn His Ala Leu
       275
                       280
                                          285
Pro Val Tyr Val Phe Thr Arg Pro Thr Tyr Ser Arg Arg Leu Thr Gly
                   295
                                      300
Leu Ser Glu Met Asp Leu Ile Ser Thr Ile Gly Glu Ser Ala Ala Leu
                                   315
                  310
Gly Ala Ala Gly Val Ile Leu Trp Gly Asp Ala Gly Tyr Thr Thr Ser
325 330 335
                                  330
              325
Thr Glu Thr Cys Gln Tyr Leu Lys Asp Tyr Leu Thr Arg Leu Leu Val
                             345
Pro Tyr Val Val Asn Val Ser Trp Ala Thr Gln Tyr Cys Ser Arg Ala
                        360
Gln Cys His Gly His Gly Arg Cys Val Arg Arg Asn Pro Ser Ala Ser
                      375
                                         380
Thr Phe Leu His Leu Ser Thr Asn Ser Phe Arg Leu Val Pro Gly His
               390
                                   395
Ala Pro Gly Glu Pro Gln Leu Arg Pro Val Gly Glu Leu Ser Trp Ala
              405
                                 410
                                                    415
Asp Ile Asp His Leu Gln Thr His Phe Arg Cys Gln Cys Tyr Leu Gly
                              425
           420
Trp Ser Gly Glu Gln Cys Gln Trp Asp His Arg Gln Ala Ala Gly Gly
      435
                         440
                                          445
Ala Ser Glu Ala Trp Ala Gly Ser His Leu Thr Ser Leu Leu Ala Leu
                      455
                                         460
Ala Ala Leu Ala Phe Thr Trp Thr Leu
                  470
<210> 36
<211> 417
<212> PRT
<213> Homo sapiens
<220>
```

```
<223> Hialuronidasa-3 [Precursor]
<400> 36
Met Thr Thr Gln Leu Gly Pro Ala Leu Val Leu Gly Val Ala Leu Cys
                              10
Leu Gly Cys Gly Gln Pro Leu Pro Gln Val Pro Glu Arg Pro Phe Ser
          20
                            25
Val Leu Trp Asn Val Pro Ser Ala His Cys Glu Ala Arg Phe Gly Val
                       40
     35
His Leu Pro Leu Asn Ala Leu Gly Ile Ile Ala Asn Arg Gly Gln His
                   55
  50
                                       60
Phe His Gly Gln Asn Met Thr Ile Phe Tyr Lys Asn Gln Leu Gly Leu
                                   75
                70
Tyr Pro Tyr Phe Gly Pro Arg Gly Thr Ala His Asn Gly Gly Ile Pro
                                 90
             85
Gln Ala Leu Pro Leu Asp Arg His Leu Ala Leu Ala Ala Tyr Gln Ile
                             105
                                                110
His His Ser Leu Arg Pro Gly Phe Ala Gly Pro Ala Val Leu Asp Trp
                          120
                                             125
Glu Glu Trp Cys Pro Leu Trp Ala Gly Asn Trp Gly Arg Arg Arg Ala
130 140
                     135
                                        140
Tyr Gln Ala Ala Ser Trp Ala Trp Ala Gln Gln Val Phe Pro Asp Leu
                150 155
Asp Pro Gln Glu Gln Leu Tyr Lys Ala Tyr Thr Gly Phe Glu Gln Ala
                                170
              165
                                                    175 .
Ala Arg Ala Leu Met Glu Asp Thr Leu Arg Val Ala Gln Ala Leu Arg
                     185
          180
Pro His Gly Leu Trp Gly Phe Tyr His Tyr Pro Ala Cys Gly Asn Gly 195 200 205
                       200
                                          205
      195
Trp His Ser Met Ala Ser Asn Tyr Thr Gly Arg Cys His Ala Ala Thr
                    215
Leu Ala Arg Asn Thr Gln Leu His Trp Leu Trp Ala Ala Ser Ser Ala
                  230
                                     235
Leu Phe Pro Ser Ile Tyr Leu Pro Pro Arg Leu Pro Pro Ala His His 245 250 255
Gln Ala Phe Val Arg His Arg Leu Glu Glu Ala Phe Arg Val Ala Leu
                                       270
          260
                             265
Val Gly His Arg His Pro Leu Pro Val Leu Ala Tyr Val Arg Leu Thr
                         280
                                            285
His Arg Arg Ser Gly Arg Phe Leu Ser Gln Asp Asp Leu Val Gln Ser
   290
                      295
                                         300
Ile Gly Val Ser Ala Ala Leu Gly Ala Ala Gly Val Val Leu Trp Gly
                310
                                   315
Asp Leu Ser Leu Ser Ser Ser Glu Glu Glu Cys Trp His Leu His Asp
              325
                                  330
                                                   335
Tyr Leu Val Asp Thr Leu Gly Pro Tyr Val Ile Asn Val Thr Arg Ala
           340
                              345
Ala Met Ala Cys Ser His Gln Arg Cys His Gly His Gly Arg Cys Ala
                        360
                                            365
Arg Arg Asp Pro Gly Gln Met Glu Ala Phe Leu His Leu Trp Pro Asp
                    375
                                         380
Gly Ser Leu Gly Asp Trp Lys Ser Phe Ser Cys His Cys Tyr Trp Gly
                 390
                                  395
Trp Ala Gly Pro Thr Cys Gln Glu Pro Arg Pro Gly Pro Lys Glu Ala
               405
Val
<210> 37
<211> 481
<212> PRT
<213> Homo sapiens
<220>
<223> Hialuronidasa-4
```

5

```
<400> 37
Met Lys Val Leu Ser Glu Gly Gln Leu Lys Leu Cys Val Val Gln Pro
                                  10
Val His Leu Thr Ser Trp Leu Leu Ile Phe Phe Ile Leu Lys Ser Ile
           20
                               25
Ser Cys Leu Lys Pro Ala Arg Leu Pro Ile Tyr Gln Arg Lys Pro Phe
       35
                           40
Ile Ala Ala Trp Asn Ala Pro Thr Asp Gln Cys Leu Ile Lys Tyr Asn
                    55
                                          60
Leu Arg Leu Asn Leu Lys Met Phe Pro Val Ile Gly Ser Pro Leu Ala
                  70
                                     75
Lys Ala Arg Gly Gln Asn Val Thr Ile Phe Tyr Val Asn Arg Leu Gly
                                  90
              85
Tyr Tyr Pro Trp Tyr Thr Ser Gln Gly Val Pro Ile Asn Gly Gly Leu
100 105 110
          100
                              105
                                                 110
Pro Gln Asn Ile Ser Leu Gln Val His Leu Glu Lys Ala Asp Gln Asp
                          120
       115
                                              125
Ile Asn Tyr Tyr Ile Pro Ala Glu Asp Phe Ser Gly Leu Ala Val Ile
                     135
Asp Trp Glu Tyr Trp Arg Pro Gln Trp Ala Arg Asn Trp Asn Ser Lys
                   150
                                      155
Asp Val Tyr Arg Gln Lys Ser Arg Lys Leu Ile Ser Asp Met Gly Lys
                                  170
              165
Asn Val Ser Ala Thr Asp Ile Glu Tyr Leu Ala Lys Val Thr Phe Glu
           180
                               185
                                                  190
Glu Ser Ala Lys Ala Phe Met Lys Glu Thr Ile Lys Leu Gly Ile Lys
      195
                          200
                                              205
Ser Arg Pro Lys Gly Leu Trp Gly Tyr Tyr Leu Tyr Pro Asp Cys His
                     215
                                         220
Asn Tyr Asn Val Tyr Ala Pro Asn Tyr Ser Gly Ser Cys Pro Glu Asp
225 230 235 240
                  230
                                   235
Glu Val Leu Arg Asn Asn Glu Leu Ser Trp Leu Trp Asn Ser Ser Ala
                                250 255
             245
Ala Leu Tyr Pro Ser Ile Gly Val Trp. Lys Ser Leu Gly Asp Ser Glu
          260
                              265
                                                  270
Asn Ile Leu Arg Phe Ser Lys Phe Arg Val His Glu Ser Met Arg Ile
     275
                        280
                                              285
Ser Thr Met Thr Ser His Asp Tyr Ala Leu Pro Val Phe Val Tyr Thr
290 295 300
                                         300
                     295
Arg Leu Gly Tyr Arg Asp Glu Pro Leu Phe Phe Leu Ser Lys Gln Asp
                   310
Leu Val Ser Thr Ile Gly Glu Ser Ala Ala Leu Gly Ala Ala Gly Ile
                                   330
               325
Val Ile Trp Gly Asp Met Asn Leu Thr Ala Ser Lys Ala Asn Cys Thr
           340
                              345
Lys Val Lys Gln Phe Val Ser Ser Asp Leu Gly Ser Tyr Ile Ala Asn
       355
                           360
                                               365
Val Thr Arg Ala Ala Glu Val Cys Ser Leu His Leu Cys Arg Asn Asn
 370
                    375
                                          380
Gly Arg Cys Ile Arg Lys Met Trp Asn Ala Pro Ser Tyr Leu His Leu
                   390
                                       395
Asn Pro Ala Ser Tyr His Ile Glu Ala Ser Glu Asp Gly Glu Phe Thr
             405
                                  410
Val Lys Gly Lys Ala Ser Asp Thr Asp Leu Ala Val Met Ala Asp Thr
420
430
                               425
           420
Phe Ser Cys His Cys Tyr Gln Gly Tyr Glu Gly Ala Asp Cys Arg Glu
435 440 445
                       440
Ile Lys Thr Ala Asp Gly Cys Ser Gly Val Ser Pro Ser Pro Gly Ser
                       455
                                        460
Leu Met Thr Leu Cys Leu Leu Leu Leu Ala Ser Tyr Arg Ser Ile Gln
                   470
                                       475
Leu
<210> 38
<211> 467
```

<212> PRT

<213> Homo sapiens <220> <223> precursor de sHuPH20 1-467 <400> 38 Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys 1.0 Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys 25 . 20 Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro 40 45 35 Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe 55 60 Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg 75 70 Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu 85 90 Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly 100 105 110 Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys 120 115 Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val 135 130 Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro 150 155 Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Gln Asn 165 170 175 Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe 185 1.90 180 Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys 200 205 195 Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys

```
215
Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn
                230
                                   235
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
             245 250
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
260 265 270
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
                        280
                                             285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
                    295
  290
                                         300
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu
                310
                                    315
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile 325 330 335
                                330
            325
                                           335
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu
          340
                            345 350
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
                                             365
       355
                           360
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
                   375
 370
                                         380
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu
385 390 395 400
385
                   390
                                   395
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr
                                410
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
           420
                              425
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
                          440
                                           445
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
  450
                      455
                                          460
Ile Asp Ala
465
<210> 39
<211> 477
<212> PRT
<213> Homo sapiens
<220>
<223> precursor de sHuPH20 1-477
<400> 39
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
                                  10
                                                  15
Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
                              25
Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro
                          40
                                            45
Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
                      55
                                         60
Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg
                                      75
                   70
Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
85 90 95
              85
                                  90
Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly
                              105
                                                 110
Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys
                           120
```

10

```
Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val
                      135
                                         140
Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro
                 150
                                     155
Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn
              165
                                 1-70
                                                     175
Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe
           180
                              185
                                                 190
Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys
       195
                       200
                                             205
Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
                      215
                                         220
Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn
225
                  230
                                     235
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
               245
                               250
                                                    255
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
                             265
                                                270
           260
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
      275
                       280
                                            285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
                   295
                                       300
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu
                 310
                                    315
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
               325
                                  330
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu
                              345
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
                          360
                                              365
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
                                         380
                      375
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu
                  390
                                      395
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr
            405
                               410
                                                    415
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
         420 425
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
                       440
      435
                                            445
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
                   455
                                       460
Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu
465
                   470
<210> 40
<211> 478
<212> PRT
<213> Homo sapiens
<223> precursor de sHuPH20 1-478
<400> 40
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
                                10
Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
                              25
           20
```

Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro

```
40
Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
                    55
Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg
                   70
                                      75
Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
              85
                                   90
Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly
                            105
          100
Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys
                           120
                                             125
      115
Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val
                    135
                                         140
Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro
                150
                                      155
Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn
                                 ` 170
             165
Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe
           180
                               185
Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys
                       200
                                             205
 195
Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
                    215
                                          220
Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn
                 230
                                      235
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
                                250
              245
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
260 265 270
                              265
           260
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
     275
                 280
                                            285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
                    295
                                          300
 290
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu
                  310
                                      315
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
                                   330
                                                      335
               325
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu
          340
                              345
                                                 350
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
        355
                          360
                                              365
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln 370 380
                    375
                                       380
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu 385
                   390
                                     395
385
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr
              405
                                410
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
                             425
           420
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
435 440 445
                          440
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
                     455
Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro
<210> 41
<211> 479
<212> PRT
<213> Homo sapiens
<220>
<223> precursor de sHuPH20 1-479
<400> 41
```

```
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
                                  10
Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
                             25
           20
Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro
                          40
                                           4.5
Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
                  55
                                       60
Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg
                  70
                                      75
Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
             85
                               90
Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly
                           105
          100
Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys
     115
                 120
                                            125
Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val
                      135
                                         140
  130
Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro
                150
                                     155
Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Gln Asn
               165
                                  170
Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe
          180
                             185
                                                190
Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys
       195
                      200
Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
               215
                                         220
Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn 225 230 235 240
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
              245
                                250
                                                    255
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
                             265
          260
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
                          280
                                             285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
                                         300
                     295
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu
                   310
                                      315
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
               325
                                 330
                                                    335
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu
           340
                             345
                                               350
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
                       360
                                             365
       355
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
                    375
                                       380
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu 385 390 395 400
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr
                               410
             405
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
           420
                              425
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
                          440
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
                      455
                                         460
Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln
                 470
465
<210> 42
<211> 480
<212> PRT
<213> Homo sapiens
```

<223> precursor de sHuPH20 1-480

<400> 42

```
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
                             10 15
Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
                            25
Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro
                       40
Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
 50
                    55
                                      60
Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg
                  70
                                 75
Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
85 90 95
              85
Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly
          100
                          105
                                              110
Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys
       115
                  120
                                       125
Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val 130 135 140
Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro
         150
                                155
145
Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Gln Asn
                               170
              165
                                                 175
Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe
         180
                           185
Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys
       195
                       200
                                          205
Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
                   215
                                      220
Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn
                 230
                                   235
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
             245
                      250
                                         255
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
          260
                            265
                                             270
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
                        280
      275
                                          285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
 290
                  295
                                     300
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu 305 310 315 320
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
            325
                             330 335
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu
          340
                            345 350
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
      355
                        360
                                           365
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
                     375
                                        380
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu
                 390
                                   395
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr
              405
                                410
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
                            425
          420
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
      435
                         440
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
           455
                                  460
Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile
465
                 470
<210> 43
```

\210> 43

<211> 481

<213> Homo sapiens <220> <223> precursor de sHuPH20 1-481 <400> 43 Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys 2.5 Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys 115 120 125 Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn 225 230 240 Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser 245 250 255 Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys

Phe

Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp

Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys

Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile

```
<210> 44
<211> 483
<212> PRT
<213> Homo sapiens
<220>
<223> precursor de sHuPH20 1-483
<400> 44
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
            20
                                25
Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro
  35
                           40
Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
                    55
                                           60
Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg
                    70
                                        75
Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
          · 85
Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly
                               105
                                                    110
            100
Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys
        115
                            120
                                                125
Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val
                       135
Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro
                    150
                                        155
```

```
Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn
              165
                                 170
Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe
           180
                             185
                                                190
Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys
                        200
       195
                                           205
Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
                   215
                                        220
Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn
                230
                                   235
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
             245
                               250
                                                   255
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
         260
                   265
                                      270
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
   275
                  280
                                            285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
 290
                   295
                               300
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu
                310
                                    315
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
            325
                               330
                                                 335
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu
          340
                            345
                                              350
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
                       360
                                          365
      355
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
 370
                     375
                                        380
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu
                 390
                                   395
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr
                                 410
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
                           425
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
       435
                         440
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
                   455
                                      460
Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile
                 470
Phe Tyr Asn
<210> 45
<211> 432
<212> PRT
<213> Homo sapiens
<223> sHuPH20 madura 36-467
<400> 45
Léu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp
                               10
Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro
          20
                             25
Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala
                        40
Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr
```

```
55
Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro
                  70
Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys Lys Asp Ile
                               90
Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp
                            105
         100
Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val
     115
                         120
                                            125
Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn Val Gln Leu
  130
                    135
                                        140
Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala
145 150
                                  155
Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg
165 170 175
            165
                                 170
Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His
        180
                            185
His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn Val Glu Ile
     195
                         200
Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser Thr Ala Leu 210 215 220
             215
Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr
                 230
Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile
              245
                                 250
                                                    255
Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val
                             265
                                              270
          260
Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr 275 280 285
      275
                         280
Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp
                   295 300
Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp
                                  315
                310
Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu
            325
                               330
Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys
                                                350
                              345
Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp
                       360
Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly
                       375
                                         380
Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys Phe Tyr Cys
                  390
                                     395
Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp Val Lys Asp
            405
                                410
Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys Ile Asp Ala
<210> 46
<211> 448
<212> PRT
<213> Homo sapiens
<220>
<223> sHuPH20 madura 36-483
<400> 46
Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro Phe Leu Trp
                                  10
```

10

```
Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe Asp Glu Pro
           20
                               25
Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg Ile Asn Ala
        35
                           40
Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu Gly Tyr Tyr
                     55
                                          60
Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly Gly Ile Pro
                   70
                                      75
Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys Lys Asp Ile
              85
                                  90
Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val Ile Asp Trp
                               105
                                                   110
Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro Lys Asp Val
                          120
     115
                                              125
Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Gln Asn Val Gln Leu
                       135
Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe Glu Lys Ala
                  150
                                      155
Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys Leu Leu Arg
              165
                                  170
Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys Tyr Asn His
180 185 190
          180
                               185
His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn Val Glu Ile
       195
                          200
                                             205
Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser Thr Ala Leu
                      215
    210
                                          220
Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val Ala Ala Thr
                 230
                                     235
Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val Ser Lys Ile
                                   250
               245
Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr Arg Ile Val
         260
                             265
Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu Leu Val Tyr
      275
                          280
                                               285
Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile Val Ile Trp
                      295
                                          300
Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu Leu Leu Asp
                   310
                                       315
Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn Val Thr Leu
               325
                                   330
Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln Gly Val Cys
                              345
                                                350
            340
Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu Asn Pro Asp
        355
Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr Val Arg Gly
                     375
                                          380
Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys Phe Tyr Cys
                  390
                                       395
Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp Val Lys Asp
              405
                                  410
Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys Ile Asp Ala
                              425
                                                   430
Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile Phe Tyr Asn
                           440
<210> 47
<211> 1446
<212> DNA
<213> Homo sapiens
<220>
<223> ADN que codifica "precursor" de rHuPH20 soluble
```

```
atgggagtgc taaaattcaa gcacatcttt ttcagaagct ttgttaaatc aagtggagta 60
toccagatag ttttcacctt ccttctgatt ccatgttgct tgactctgaa tttcagagca 120
cctcctgtta ttccaaatgt gcctttcctc tgggcctgga atgccccaag tgaattttgt 180
cttggaaaat ttgatgagcc actagatatg agcctcttct ctttcatagg aagcccccga 240
ataaacgcca ccgggcaagg tgttacaata ttttatgttg atagacttgg ctactatcct 300
tacatagatt caatcacagg agtaactgtg aatggaggaa toccccagaa gatttoctta 360
caagaccatc tggacaaagc taagaaagac attacatttt atatgccagt agacaatttg 420
ggaatggctg ttattgactg ggaagaatgg agacccactt gggcaagaaa ctggaaacct 480
aaagatgttt acaagaatag gtctattgaa ttggttcagc aacaaaatgt acaacttagt 540
ctcacagagg ccactgagaa agcaaaacaa gaatttgaaa aggcagggaa ggatttcctg 600
gtagagacta taaaattggg aaaattactt cggccaaatc acttgtgggg ttattatctt 660
tttccggatt gttacaacca tcactataag aaacccggtt acaatggaag ttgcttcaat 720
gtagaaataa aaagaaatga tgatctcagc tggttgtgga atgaaagcac tgctctttac 780
ccatccattt atttgaacac tcagcagtct cctgtagctg ctacactcta tgtgcgcaat 840
cgagttcggg aagccatcag agtttccaaa atacctgatg caaaaagtcc acttccggtt 900
tttgcatata cccgcatagt ttttactgat caagttttga aattcctttc tcaagatgaa 960
cttgtgtata catttggcga aactgttgct ctgggtgctt ctggaattgt aatatgggga 1020
acceteagta taatgegaag tatgaaatet tgettgetee tagacaatta catggagaet 1080
atactgaatc cttacataat caacgtcaca ctagcagcca aaatgtgtag ccaagtgctt 1140
tgccaggagc aaggagtgtg tataaggaaa aactggaatt caagtgacta tcttcacctc 1200
aacccagata attitigctat tcaacttgag aaaggtggaa agttcacagt acgtggaaaa 1260
ccgacacttg aagacctgga gcaattttct gaaaaatttt attgcagctg ttatagcacc 1320
ttgagttgta aggagaaagc tgatgtaaaa gacactgatg ctgttgatgt gtgtattgct 1380
gatggtgtct gtatagatgc ttttctaaaa cctcccatgg agacagaaga acctcaaatt 1440
ttctac
<210> 48
<211> 509
<212> PRT
<213> Homo sapiens
<220>
<223> variante P48A de PH20
<400> 48
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
                                    10
Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
                                25
                                                    30
Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Ala
        35
                            40
                                                45
Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
                        55
                                            60
Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg
                                        75
                    70
Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
                85
                                    90
Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly
                                105
                                                    110
            100
Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys
                            120
        115
Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val
                                            140
    130
                        135
Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro
                    150
                                        155
Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn
```

10

```
165
                                  170
Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe
                              185
           180
Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys
                200
Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys
                   215
Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn
                                    235
                230
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
              245
                                  250
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
                            265
          260 ·
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
                          280
                                              285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
                     295
                                         300
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu
                   310
                                      315
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
              325
                                  330
                                                     335
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu
           340
                              345
                                        350
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
       355
                           360
                                              365
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
   370
                      375
                                          380
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu
                  390
                                      395
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr
            405
                               410
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
           420
                              425
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
                          440
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
                    455
                                          460
Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile
                  470
                             475
Phe Tyr Asn Ala Ser Pro Ser Thr Leu Ser Ala Thr Met Phe Ile Val
               485
                                490
                                                      495
Ser Ile Leu Phe Leu Ile Ile Ser Ser Val Ala Ser Leu
           500
                               505
<210> 49
<211> 509
<212> PRT
<213> Homo sapiens
<220>
<223> precursor de variante L499W de PH20
<400> 49
Met Gly Val Leu Lys Phe Lys His Ile Phe Phe Arg Ser Phe Val Lys
                                  10
Ser Ser Gly Val Ser Gln Ile Val Phe Thr Phe Leu Leu Ile Pro Cys
          20
                              25
Cys Leu Thr Leu Asn Phe Arg Ala Pro Pro Val Ile Pro Asn Val Pro
```

```
Phe Leu Trp Ala Trp Asn Ala Pro Ser Glu Phe Cys Leu Gly Lys Phe
                      55
                                          60
Asp Glu Pro Leu Asp Met Ser Leu Phe Ser Phe Ile Gly Ser Pro Arg
                   70
                                      75
Ile Asn Ala Thr Gly Gln Gly Val Thr Ile Phe Tyr Val Asp Arg Leu
              85
                                  90
Gly Tyr Tyr Pro Tyr Ile Asp Ser Ile Thr Gly Val Thr Val Asn Gly
           100
                      105
                                                  110
Gly Ile Pro Gln Lys Ile Ser Leu Gln Asp His Leu Asp Lys Ala Lys
       115
                          120
                                              125
Lys Asp Ile Thr Phe Tyr Met Pro Val Asp Asn Leu Gly Met Ala Val
                       135
                                          140
Ile Asp Trp Glu Glu Trp Arg Pro Thr Trp Ala Arg Asn Trp Lys Pro
                  150
                                     155
Lys Asp Val Tyr Lys Asn Arg Ser Ile Glu Leu Val Gln Gln Asn
               165
                                  170
                                                      175
Val Gln Leu Ser Leu Thr Glu Ala Thr Glu Lys Ala Lys Gln Glu Phe
           180
                              185
                                                190
Glu Lys Ala Gly Lys Asp Phe Leu Val Glu Thr Ile Lys Leu Gly Lys
       195
                       200
                                             205
Leu Leu Arg Pro Asn His Leu Trp Gly Tyr Tyr Leu Phe Pro Asp Cys 210 220
               215
Tyr Asn His His Tyr Lys Lys Pro Gly Tyr Asn Gly Ser Cys Phe Asn 225 230 235 240
Val Glu Ile Lys Arg Asn Asp Asp Leu Ser Trp Leu Trp Asn Glu Ser
               245
                                 250
                                                   255
Thr Ala Leu Tyr Pro Ser Ile Tyr Leu Asn Thr Gln Gln Ser Pro Val
         260
                            265
Ala Ala Thr Leu Tyr Val Arg Asn Arg Val Arg Glu Ala Ile Arg Val
                          280
     275
                                              285
Ser Lys Ile Pro Asp Ala Lys Ser Pro Leu Pro Val Phe Ala Tyr Thr
                    295
Arg Ile Val Phe Thr Asp Gln Val Leu Lys Phe Leu Ser Gln Asp Glu
                   310
                                      315
Leu Val Tyr Thr Phe Gly Glu Thr Val Ala Leu Gly Ala Ser Gly Ile
               325
                                  330
                                                     335
Val Ile Trp Gly Thr Leu Ser Ile Met Arg Ser Met Lys Ser Cys Leu
          340
                             345
                                              350
Leu Leu Asp Asn Tyr Met Glu Thr Ile Leu Asn Pro Tyr Ile Ile Asn
       355
                       360
                                             365
Val Thr Leu Ala Ala Lys Met Cys Ser Gln Val Leu Cys Gln Glu Gln
                      375
                                          380
   370
Gly Val Cys Ile Arg Lys Asn Trp Asn Ser Ser Asp Tyr Leu His Leu
385 390 395 400
                                     395
Asn Pro Asp Asn Phe Ala Ile Gln Leu Glu Lys Gly Gly Lys Phe Thr
             405
                                410
                                                     415
Val Arg Gly Lys Pro Thr Leu Glu Asp Leu Glu Gln Phe Ser Glu Lys
           420
                              425
                                                 430
Phe Tyr Cys Ser Cys Tyr Ser Thr Leu Ser Cys Lys Glu Lys Ala Asp
      435
                          440
Val Lys Asp Thr Asp Ala Val Asp Val Cys Ile Ala Asp Gly Val Cys
                     455
                                          460
Ile Asp Ala Phe Leu Lys Pro Pro Met Glu Thr Glu Glu Pro Gln Ile
                  470
                                    475
Phe Tyr Asn Ala Ser Pro Ser Thr Leu Ser Ala Thr Met Phe Ile Val
                                  490
               485
Ser Ile Trp Phe Leu Ile Ile Ser Ser Val Ala Ser Leu
                               505
<210> 50
<211> 6630
<212> ADN
<213> Secuencia artificial
<220>
```

<223> vector HZ24

<400> 50

tcaatattgg ccattagcca tattattcat tggttatata gcataaatca atattggcta 60 ttggccattg catacgttgt atctatatca taatatgtac atttatattg gctcatgtcc 120 aatatqaccq ccatqttqqc attqattatt qactaqttat taataqtaat caattacqqq 180 gtcattagtt catagcccat atatggagtt ccgcgttaca taacttacgg taaatggccc 240 gcctggctga ccgcccaacg accccgccc attgacgtca ataatgacgt atgttcccat 300 agtaacgcca atagggactt tccattgacg tcaatgggtg gagtatttac ggtaaactgc 360 ccacttggca gtacatcaag tgtatcatat gccaagtccg cccctattg acgtcaatga 420 cggtaaatgg cccgcctggc attatgccca gtacatgacc ttacgggact ttcctacttg 480 gcagtacatc tacgtattag tcatcgctat taccatggtg atgcggtttt ggcagtacac 540 caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc ccattgacgt 600 caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc gtaataaccc 660 cgccccgttg acgcaaatgg gcggtaggcg tgtacggtgg gaggtctata taagcagagc 720 togtttagtg aaccgtcaga tcactagaag ctttattgcg gtagtttatc acagttaaat 780 tgctaacgca gtcagtgctt ctgacacaac agtctcgaac ttaagctgca gaagttggtc 840 gtgaggcact gggcaggtaa gtatcaaggt tacaagacag gtttaaggag accaatagaa 900 actgggcttg tcgagacaga gaagactctt gcgtttctga taggcaccta ttggtcttac 960 tgacatccac tttgcctttc tctccacagg tgtccactcc cagttcaatt acagctctta 1020 aggctagagt acttaatacg actcactata ggctagcatg ggagtgctaa aattcaagca 1080 catctttttc agaagctttg ttaaatcaag tggagtatcc cagatagttt tcaccttcct 1140 totgattoca tgttgcttga ctctgaattt cagagcacct cctgttattc caaatgtgcc 1200 tttcctctgg gcctggaatg ccccaagtga attttgtctt ggaaaatttg atgagccact 1260 agatatgago ctottotot toataggaag coccegaata aacgccaccg ggcaaggtgt 1320 tacaatattt tatgttgata gacttggcta ctatccttac atagattcaa tcacaggagt 1380 aactgtgaat ggaggaatcc cccagaagat ttccttacaa gaccatctgg acaaagctaa 1440 qaaaqacatt acattttata tqccaqtaqa caatttggga atggctgtta ttgactggga 1500 agaatggaga-cccacttggg caagaaactg gaaacctaaa gatgtttaca agaataggtc 1560 tattgaattg gttcagcaac aaaatgtaca acttagtctc acagaggcca ctgagaaagc 1620 aaaacaagaa tttgaaaagg cagggaagga tttcctggta gagactataa aattgggaaa 1680 attacttcqq ccaaatcact tgtggggtta ttatcttttt ccggattgtt acaaccatca 1740 ctataagaaa cccggttaca atggaagttg cttcaatgta gaaataaaaa gaaatgatga 1800 tctcagctgg ttgtggaatg aaagcactgc tctttaccca tccatttatt tgaacactca 1860 gcagtetect gtagetgeta caetetatgt gegeaatega gttegggaag ceateagagt 1920 ttccaaaata cctgatgcaa aaagtccact tccggttttt gcatataccc gcatagtttt 1980 tactgatcaa gttttgaaat tootttotca agatgaactt gtgtatacat ttggcgaaac 2040 tgttgctctg ggtgcttctg gaattgtaat atggggaacc ctcagtataa tgcgaagtat 2100 qaaatcttqc ttqctcctaq acaattacat ggagactata ctgaatcctt acataatcaa 2160 cgtcacacta gcagccaaaa tgtgtagcca agtgctttgc caggagcaag gagtgtgtat 2220 aaggaaaaac tggaattcaa gtgactatct tcacctcaac ccagataatt ttgctattca 2280 acttgagaaa ggtggaaagt tcacagtacg tggaaaaccg acacttgaag acctggagca 2340 attttctgaa aaattttatt gcagctgtta tagcaccttg agttgtaagg agaaagctga 2400 tgtaaaagac actgatgctg ttgatgtgtg tattgctgat ggtgtctgta tagatgcttt 2460 tctaaaacct cccatggaga cagaagaacc tcaaattttc tactgaggat ccatagctaa 2520 cgcccctctc cctcccccc ccctaacgtt actggccgaa gccgcttgga ataaggccgg 2580 tgtgcgtttg tctatatgtt attttccacc atattgccgt cttttggcaa tgtgagggcc 2640 cggaaacctg gccctgtctt cttgacgagc attcctaggg gtctttcccc tctcgccaaa 2700 ggaatgcaag gtctgttgaa tgtcgtgaag gaagcagttc ctctggaagc ttcttgaaga 2760 caaacaacgt ctgtagcgac cctttgcagg cagcggaacc ccccacctgg cgacaggtgc 2820 ctctgcggcc aaaagccacg tgtataagat acacctgcaa aggcggcaca accccagtgc 2880 cacgttgtga gttggatagt tgtggaaaga gtcaaatggc tctcctcaag cgtattcaac 2940 tgcacatgct ttacatgtgt ttagtcgagg ttaaaaaaac gtctaggccc cccgaaccac 3060 ggggacgtgg ttttcctttg aaaaacacga tgataagctt gccacaaccc acagcggccg 3120 ctgccatcat ggttcgacca ttgaactgca tcgtcgccgt gtcccaaaat atggggattg 3180

```
gcaagaacgg agacctaccc tggcctccgc tcaggaacga gttcaagtac ttccaaagaa 3240
tgaccacaac ctcttcagtg gaaggtaaac agaatctggt gattatgggt aggaaaacct 3300
qqttctccat tcctgagaag aatcgacctt taaaggacag aattaatata gttctcagta 3360
qaqaactcaa agaaccacca cgaggagctc attttcttgc caaaagtttg gatgatgcct 3420
taaqacttat tgaacaaccg gaattggcaa gtaaagtaga catggtttgg atagtcggag 3480
gcagttctgt ttaccaggaa gccatgaatc aaccaggcca cctcagactc tttgtgacaa 3540
qqatcatqca qqaatttqaa aqtqacacqt ttttcccaqa aattqatttq qqqaaatata 3600
aactteteee agaataeeea ggegteetet etgaggteea ggaggaaaaa ggeateaagt 3660
ataagtttga agtctacgag aagaaagact aaacgcgtgg tacctctaga gtcgacccgg 3720
qcqqccqctt cqaqcaqaca tqataaqata cattqatqaq tttqqacaaa ccacaactag 3780
aatgcagtga aaaaaatgct ttatttgtga aatttgtgat gctattgctt tatttgtaac 3840
cattataagc tgcaataaac aagttaacaa caacaattgc attcatttta tgtttcaggt 3900
tcagggggag atgtgggagg ttttttaaag caagtaaaac ctctacaaat gtggtaaaat 3960
cgataaggat ccgggctggc gtaatagcga agaggcccgc accgatcgcc cttcccaaca 4020
qttgcgcagc ctgaatggcg aatggacgcg ccctgtagcg gcgcattaag cgcggcgggt 4080
gtggtggtta cgcgcagcgt gaccgctaca cttgccagcg ccctagcgcc cgctcctttc 4140
getttettee etteettet egecaegtte geeggettte eeegteaage tetaaategg 4200
gggctccctt tagggttccg atttagtgct ttacggcacc tcgaccccaa aaaacttgat 4260
tagggtgatg gttcacgtag tgggccatcg ccctgataga cggtttttcg ccctttgacg 4320
ttggagtcca cgttctttaa tagtggactc ttgttccaaa ctggaacaac actcaaccct 4380
atctcggtct attcttttga tttataaggg attttgccga tttcggccta ttggttaaaa 4440
aatgagctga tttaacaaaa atttaacgcg aattttaaca aaatattaac gcttacaatt 4500
tectgatgeg gtattttete ettacgeate tgtgeggtat tteacacege atatggtgea 4560
ctctcagtac aatctgctct gatgccgcat agttaagcca gccccgacac ccgccaacac 4620
cogotgacgo gocotgacgg gottgtotgo tocoggoato ogottacaga caagotgtga 4680
ccqtctccqq qaqctqcatq tqtcaqaqqt tttcaccqtc atcaccqaaa cqcqcqaqac 4740
gaaagggcct cgtgatacgc ctatttttat aggttaatgt catgataata atggtttctt 4800
agacgtcagg tggcactttt cggggaaatg tgcgcggaac ccctatttgt ttatttttct 4860
aaatacattc aaatatgtat ccgctcatga gacaataacc ctgataaatg cttcaataat 4920
attgaaaaag gaagagtatg agtattcaac atttccgtgt cgcccttatt cccttttttg 4980
cggcattttg ccttcctgtt tttgctcacc cagaaacgct ggtgaaagta aaagatgctg 5040
aagatcagtt gggtgcacga gtgggttaca tcgaactgga tctcaacagc ggtaagatcc 5100
ttgagagttt tcgccccgaa gaacgttttc caatgatgag cacttttaaa gttctgctat 5160
gtggcgcggt attatcccgt attgacgccg ggcaagagca actcggtcgc cgcatacact 5220
atteteagaa tgaettggtt gagtaeteae eagteaeaga aaageatett aeggatggea 5280
tgacagtaag agaattatgc agtgctgcca taaccatgag tgataacact gcggccaact 5340
tacttctgac aacgatcgga ggaccgaagg agctaaccgc ttttttgcac aacatggggg 5400
atcatgtaac tegeettgat egttgggaac eggagetgaa tgaagecata ceaaacgaeg 5460
agcgtgacac cacgatgcct gtagcaatgg caacaacgtt gcgcaaacta ttaactggcg 5520
aactacttac totagcitcc eggeaacaat taatagactg gatggaggeg gataaagitg 5580 caggaccact totgegeteg gecetteegg etggetggtt tattgetgat aaatetggag 5640
ccqqtqaqcq tqqqtctcqc qqtatcattq cagcactqqq qccaqatqqt aagccctccc 5700
gtatcgtagt tatctacacg acggggagtc aggcaactat ggatgaacga aatagacaga 5760
togotgagat aggtgootca otgattaago attggtaact gtoagaccaa gtttactoat 5820
tttttgataa tctcatgacc aaaatcctt aacgtgagtt ttcgttccac tgagcgtcag 5940
accccgtaga aaagatcaaa ggatcttctt gagatccttt ttttctgcgc gtaatctgct 6000
gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg tttgccggat caagagctac 6060
caactetttt teegaaggta aetggettea geagagegea gataceaaat aetgttette 6120
tagtgtagcc gtagttaggc caccacttca agaactctgt agcaccgcct acatacctcg 6180
ctctqctaat cctqttacca qtqqctqctq ccaqtqqcqa taaqtcqtqt cttaccqqqt 6240
tggactcaag acgatagtta coggataagg cgcagcggtc gggctgaacg gggggttcgt 6300
qcacacaqcc caqcttqqaq cqaacqacct acaccqaact gagataccta caqcqtqagc 6360
tatgagaaag cgccacgctt cccgaaggga gaaaggcgga caggtatccg gtaagcggca 6420
gggtcggaac aggagagcgc acgagggagc ttccaggggg aaacgcctgg tatctttata 6480
gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt tttgtgatgc tcgtcagggg 6540
ggcggagcct atggaaaaac gccagcaacg cggccttttt acggttcctg gccttttgct 6600
ggccttttgc tcacatggct cgacagatct
<210> 51
<211> 186
<212> PRT
<213> Mus musculus
```

5

<220>

<223> dihidrofolato reductasa

	<400> 51
	Val Arg Pro Leu Asn Cys Ile Val Ala Val Ser Gln Asn Met Gly I 1 5 10
	Gly Lys Asn Gly Asp Leu Pro Trp Pro Pro Leu Arg Asn Glu Phe Ly 20 25 30
	Tyr Phe Gln Arg Met Thr Thr Thr Ser Ser Val Glu Gly Lys Gln A:
	Leu Val Ile Met Gly Arg Lys Thr Trp Phe Ser Ile Pro Glu Lys A: 50 60
	Arg Pro Leu Lys Asp Arg Ile Asn Ile Val Leu Ser Arg Glu Leu L 65 70 75
	Glu Pro Pro Arg Gly Ala His Phe Leu Ala Lys Ser Leu Asp Asp A 85 90 95
	Leu Arg Leu Ile Glu Gln Pro Glu Leu Ala Ser Lys Val Asp Met Va 100 105 110
	Trp Ile Val Gly Gly Ser Ser Val Tyr Gln Glu Ala Met Asn Gln P: 115 120 125
	Gly His Leu Arg Leu Phe Val Thr Arg Ile Met Gln Glu Phe Glu Se 130 135 140
	Asp Thr Phe Phe Pro Glu Ile Asp Leu Gly Lys Tyr Lys Leu Leu P: 145 150 155 16
	Glu Tyr Pro Gly Val Leu Ser Glu Val Gln Glu Glu Lys Gly Ile L 165 170 175
	Tyr Lys Phe Glu Val Tyr Glu Lys Lys Asp 180 185
	<210> 52
	<211> 23
5	<212> ADN
	<213> Secuencia artificial
	<220>
	<223> cebador directo HZM3.P1
	<400> 52
10	tttgaacact cagcagtctc ctg 23
	<210> 53
	<211> 20
	<212> ADN
	<213> Secuencia artificial
15	<220>
	<223> cebador inverso HZM3.P2
	<400> 53
	aactctgatg gcttcccgaa 20
	<210> 54
20	<211> 28
	<212> ADN
	<213> Secuencia artificial
	<220>
	<223> sonda HZM3
25	<400> 54
	agctgctaca ctctatgtgc gcaatcga 28
	<210> 55
	<211> 1449
	<212> ADN

```
<213> Homo sapiens
            <220>
             <223> secuencia de ARNm de PH20 de células 3D35M
             <400> 55
             atgggagtgc taaaattcaa gcacatcttt ttcagaagct ttgttaaatc aagtggagta 60
             tcccagatag ttttcacctt ccttctgatt ccatgttgct tgactctgaa tttcagagca 120
             cctcctgtta ttccaaatgt gcctttcctc tgggcctgga atgccccaag tgaattttgt 180
             cttqqaaaat ttqatqaqcc actaqatatq agcctcttct ctttcatagq aagcccccqa 240
             ataaacgcca ccgggcaagg tgttacaata ttttatgttg atagacttgg ctactatcct 300
             tacatagatt caatcacagg agtaactgtg aatggaggaa tcccccagaa gatttcctta 360
             caagaccatc tggacaaagc taagaaagac attacatttt atatgccagt agacaatttg 420
             ggaatggctg ttattgactg ggaagaatgg agacccactt gggcaagaaa ctggaaacct 480
             aaagatgttt acaagaatag gtctattgaa ttggttcagc aacaaaatgt acaacttagt 540
             ctcacagagg ccactgagaa agcaaaacaa gaatttgaaa aggcagggaa ggatttcctg 600
             qtagagacta taaaattggg aaaattactt cggccaaatc acttgtgggg ttattatctt 660
             tttccggatt gttacaacca tcactataag aaacccggtt acaatggaag ttgcttcaat 720
             gtagaaataa aaagaaatga tgatctcagc tggttgtgga atgaaagcac tgctctttac 780
             ccatccattt atttgaacac tcagcagtct cctgtagctg ctacactcta tgtgcgcaat 840
             cgagttcggg aagccatcag agtttccaaa atacctgatg caaaaagtcc acttccggtt 900
             tttgcatata cccgcatagt ttttactgat caagttttga aattcctttc tcaagatgaa 960
             cttgtgtata catttggcga aactgttgct ctgggtgctt ctggaattgt aatatgggga 1020
             acceteagta taatgegaag tatgaaatet tgettgetee tagacaatta catggagaet 1080
             atactgaatc cttacataat caacgtcaca ctagcagcca aaatgtgtag tcaagtgctt 1140
             tgccaggagc aaggagtgtg tataaggaaa aactggaatt caagtgacta tcttcacctc 1200
             aacccagata attttgctat tcaacttgag aaaggtggaa agttcacagt acgtggaaaa
             ccgacacttg aagacctgga gcaattttct gaaaaatttt attgcagctg ttatagcacc 1320
             ttgagttgta aggagaaagc tgatgtaaaa gacactgatg ctgttgatgt gtgtattgct 1380
             gatggtgtct gtatagatgc ttttctaaaa cctcccatgg agacagaaga acctcaaatt 1440
             ttctactga
 5
             <210> 56
            <211> 17
             <212> ADN
            <213> Secuencia artificial
10
            <220>
            <223> AP01
            <400> 56
                                                            17
            ttctctccac aggtgtc
            <210> 57
            <211> 18
15
            <212> ADN
             <213> Secuencia artificial
            <220>
            <223> AP02
20
            <400> 57
                                                           18
            aagatttcct tacaagac
            <210> 58
             <211> 18
            <212> ADN
25
            <213> Secuencia artificial
            <220>
            <223> AP03
            <400> 58
```

	tggcgagagg ggaaagac	18
	<210> 59	
	<211> 18	
	<212> ADN	
5	<213> Secuencia artificial	
	<220>	
	<223> AP04	
	<400> 59	
	ccatttattt gaacactc	18
10	<210> 60	
	<211> 18	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
15	<223> AP06	
	<400> 60	
	ccgaactcga ttgcgcac	18
	<210> 61	
	<211> 18	
20	<212> ADN	
	<213> Secuencia artificial	
	<220>	
	<223> AP07	
	<400> 61	
25	agccattccc aaattgtc	18
	<210> 62	
	<211> 18	
	<212> ADN	
	<213> Secuencia artificial	
30	<220>	
	<223> AP08	
	<400> 62	
	ctcccagttc aattacag	18
	<210> 63	
35	<211> 18	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
	<223> AP09	
40	<400> 63	
	cgttagctat ggatcctc	18
	<210> 64	
	<211> 22	

```
<212> ADN
              <213> Secuencia artificial
              <220>
              <223> AP10
 5
              <400> 64
                                                                22
              cgagacagag aagactcttg cg
              <210> 65
              <211> 22
              <212> ADN
              <213> Secuencia artificial
10
              <220>
              <223> AP12
              <400> 65
              cattcaacag accttgcatt cc
                                                                 22
15
              <210> 66
              <211> 17
              <212> PRT
              <213> Homo sapiens
              <220>
20
              <223> péptido C-terminal escindido de rHuPH20 soluble aa 431-447
              <400> 66
              Asp Ala Phe Lys Leu Pro Pro Met Glu Thr Glu Glu Pro Gln Ile Phe
                                                       10
              Tyr
              <210> 67
              <211> 16
25
              <212> PRT
              <213> Homo sapiens
              <220>
              <223> péptido C-terminal escindido de rHuPH20 soluble aa 431-446
              <400> 67
              Asp Ala Phe Lys Leu Pro Pro Met Glu Thr Glu Glu Pro Gln Ile Phe
                                 5
30
                                                                              15
              <210> 68
              <211> 15
              <212> PRT
              <213> Homo sapiens
              <220>
35
              <223> péptido C-terminal escindido de rHuPH20 soluble aa 431-445
              Asp Ala Phe Lys Leu Pro Pro Met Glu Thr Glu Glu Pro Gln Ile
                                5
                                                       10
                                                                              15
              <210> 69
              <211> 14
40
```

	<212> PRT
	<213> Homo sapiens
	<220>
	<223> péptido C-terminal escindido de rHuPH20 soluble aa 431-444
5	<400> 69
	Asp Ala Phe Lys Leu Pro Pro Met Glu Thr Glu Glu Pro Gln 1 5 10
	<210> 70
	<211> 13
	<212> PRT
10	<213> Homo sapiens
	<220>
	<223> péptido C-terminal escindido de rHuPH20 soluble aa 431-443
	<400> 70
	Asp Ala Phe Lys Leu Pro Pro Met Glu Thr Glu Glu Pro 1 5 10
15	<210> 71
	<211> 12
	<212> PRT
	<213> Homo sapiens
	<220>
20	<223> péptido C-terminal escindido de rHuPH20 soluble aa 431-442
	<400> 71
	Asp Ala Phe Lys Leu Pro Pro Met Glu Thr Glu Glu 1 5 10

REIVINDICACIONES

- 1. Un método para producir rHuPH20 soluble, en donde rHuPH20 soluble hace referencia a una forma soluble de PH20 humana (también conocida como proteína de superficie de espermatozoides PH20) que es expresada recombinantemente, por ejemplo, en células de Ovario de Hámster Chino (CHO), comprendiendo el método:
 - a) inocular medio celular en un biorreactor con un inóculo de células que codifican rHuPH20 soluble para producir un cultivo celular, en donde:
 - las células comprenden entre 150 y 300 copias de ácido nucleico que codifica rHuPH20 soluble;
 - el biorreactor contiene al menos 100 litros de cultivo celular;
 - se inoculan 10¹⁰ 10¹¹ células por 100 litros de cultivo celular; y
 - las células se cultivan a una temperatura de ajuste:

5

10

15

25

40

45

- b) alimentar las células con un primer medio de alimentación que contiene glucosa, L-alanil-L-glutamina, insulina humana y extracto de levadura en cantidades suficientes para incrementar el crecimiento celular y la densidad celular máxima, y para incrementar la síntesis de rHuPH20 soluble, en donde el medio de alimentación se añade al cultivo a un volumen de 0,5% a 20% del volumen de cultivo celular;
- c) alimentar las células con un segundo medio de alimentación que contiene glucosa, L-alanil-L-glutamina, extracto de levadura y butirato de sodio en cantidades suficientes para incrementar la síntesis de rHuPH20 soluble e inducir la detención del ciclo celular; y
- disminuir la temperatura en comparación con la temperatura de la etapa a) a una temperatura suficiente para incrementar la detección del ciclo celular, aumentar la viabilidad celular y estabilizar la hialuronidasa soluble; en donde:
 - la cantidad de L-alanil-L-glutamina se reduce en comparación con la cantidad de L-alanil-L-glutamina de la etapa b):
 - la cantidad de extracto de levadura se incrementa en comparación con la cantidad de extracto de levadura de la etapa b); y
 - el medio de alimentación se añade al cultivo a un volumen de 0,5% a 20% del volumen de cultivo celular;
 - d) alimentar las células con un tercer medio de alimentación que contiene glucosa, L-alanil-L-glutamina, extracto de levadura y butirato de sodio en cantidades suficientes para incrementar la síntesis de rHuPH20 soluble e incrementar la detención del ciclo celular, y
- reducir la temperatura en comparación con la temperatura de la etapa c) a una temperatura suficiente para incrementar la detención del ciclo celular, aumentar la viabilidad celular y estabilizar la hialuronidasa soluble; en donde:
 - la cantidad de L-alanil-L-glutamina se reduce en comparación con la cantidad de L-alanil-L-glutamina en la etapa c);
- las cantidades de extracto de levadura, glucosa y butirato de sodio se incrementan en comparación con las cantidades de extracto de levadura, glucosa y butirato de sodio en la etapa c); y
 - el medio de alimentación se añade al cultivo a un volumen de 0,5% a 20% del volumen del cultivo celular;
 - e) alimentar la células con un cuarto medio de alimentación que contiene glucosa, L-alanil-L-glutamina, extracto de levadura y butirato de sodio en cantidades suficientes para incrementar la síntesis de rHuPH20 soluble e incrementar la detención del ciclo celular, y
 - disminuir la temperatura en comparación con la temperatura en la etapa d) a una temperatura suficiente para incrementar la detención del ciclo celular, incrementar la viabilidad celular y estabilizar la hialuronidasa soluble; en donde:
 - la cantidad de L-alanil-L-glutamina y glucosa se reducen en comparación con la cantidad de L-alanil-Lglutamina y glucosa de la etapa d);
 - la cantidad de butirato de sodio se reduce en comparación con la cantidad de butirato de sodio en la etapa d); v
 - el medio de alimentación se añade al cultivo a un volumen de 0,5% a 20% del volumen de cultivo celular;
 - f) continuar cultivando las células hasta que la viabilidad cae por debajo de al menos 50%;
- g) obtener el líquido de cultivo de la cosecha; y
 - h) purificar la rHuPH20 del líquido de cultivo celular de la cosecha.
 - 2. El método de la reivindicación 1, en donde la temperatura en la etapa a) es de 37°C.
- 3. El método de la reivindicación 1 o la reivindicación 2, en donde la temperatura en la etapa c) es de 36,5°C.
 - 4. El método de una cualquiera de las reivindicaciones 1-3, en donde la temperatura en la etapa d) es de 36°C.
 - 5. El método de una cualquiera de las reivindicaciones 1-4, en donde la temperatura en la etapa e) es de 35,5°C.
 - 6. El método de una cualquiera de las reivindicaciones 1-5, en donde el líquido de cultivo celular de la cosecha se filtra antes de la purificación.

- 7. El método de una cualquiera de las reivindicaciones 1-6, en donde la purificación de rHuPH20 soluble se lleva a cabo mediante cromatografía en columna.
- 8. El método de la reivindicación 7, en donde la cromatografía en columna comprende cromatografía en columna de cuentas de agarosa entrecruzada, cromatografía en columna de cuentas de agarosa sustituida con fenilo entrecruzada, cromatografía en columna de amino fenil boronato o cromatografía en columna de hidroxiapatita.
 - 9. El método de una cualquiera de las reivindicaciones 1-8, en donde el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular.
 - 10. El método de la reivindicación 1, en donde:

5

10

15

20

25

30

35

45

50

55

60

en la etapa a) las células se cultivan a 37°C;

en la etapa b) el primer medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 32 mM, 16,6 g/L de extracto de levadura y 33 mg/L de insulina, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular;

en la etapa c) el segundo medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 16 mM, 33,4 g/L de extracto de levadura y 0,92 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 36,5°C;

en la etapa d) el tercer medio de alimentación contiene 50 g/L de glucosa, L-alanil-L-glutamina 10 mM, 50 g/L de extracto de levadura y 1,8 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 36°C;

en la etapa e) el cuarto medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 6,6 mM, 50 g/L de extracto de levadura y 0,92 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 35,5°C; comprendiendo adicionalmente filtrar el líquido de cultivo celular de la cosecha obtenido en la etapa g) y

en la etapa h) purificar la rHuPH20 del líquido de cultivo de la cosecha utilizando cromatografía en columna de cuentas de agarosa entrecruzada, cromatografía en columna de cuentas de agarosa sustituida con fenilo entrecruzada, cromatografía en columna de amino fenil boronato o cromatografía en columna de hidroxiapatita.

- 11. El método de la reivindicación 1, en donde:
 - en la etapa a) las células se inoculan a una densidad celular de 4 x 10⁵ células/mL; y

las células se cultivan a 37°C;

en la etapa b) el primer medio de cultivo contiene 33 g/L de glucosa, L-alanil-L-glutamina 32 mM, 83,3 g/L de extracto de levadura y 33 mg/L de insulina, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular;

en la etapa c) el segundo medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 13 mM, 166,7 g/L de extracto de levadura y 0,92 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 36,5°C;

en la etapa d) el tercer medio de alimentación contiene 50 g/L de glucosa, L-alanil-L-glutamina 10 mM, 250 g/L de extracto de levadura y 1,8 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 36°C;

en la etapa e) el cuarto medio de alimentación contiene 33 g/L de glucosa, L-alanil-L-glutamina 6,7 mM, 250 g/L de extracto de levadura y 0,92 g/L de butirato de sodio, y el medio de alimentación se añade al cultivo a un volumen de 4% del volumen de cultivo celular; y

la temperatura se reduce a 35,5 °C; que comprende adicionalmente

filtrar el líquido de cultivo celular de la cosecha obtenido en la etapa q) y

en la etapa h) purificar la rHuPH20 del líquido de cultivo de la cosecha utilizando cromatografía en columna de cuentas de agarosa entrecruzada, cromatografía en columna de cuentas de agarosa sustituida con fenilo entrecruzada, cromatografía en columna de amino fenil boronato o cromatografía en columna de hidroxiapatita.

- 12. El método de una cualquiera de las reivindicaciones 1-11, en donde se producen al menos 0,5, 1, 5, 10, 15, 20, 25, 30, 35 o 40 gramos de rHuPH20 soluble por 100 L de cultivo celular.
- 13. El método de una cualquiera de las reivindicaciones 1-12, en donde la actividad específica de la rHuPH20 soluble es de al menos 80.000, 100.000, 120.000, 140.000, 160.000 o 180.000 unidades/mg.

- 14. El método de una cualquiera de las reivindicaciones 1-13, en donde el volumen de cultivo celular en el biorreactor es de 200, 300, 400, 500, 1.000, 1.500, 2.000, 2.500, 3.000 o 3.500 litros.
- 15. El método de una cualquiera de las reivindicaciones 1-14, en donde las células que codifican la rHuPH20 soluble son células CHO DG44.
 - 16. El método de una cualquiera de las reivindicaciones 1-15, en donde la rHuPH20 está codificada por el ácido nucleico mostrado en el SEQ ID NO: 47.
- 17. El método de una cualquiera de las reivindicaciones 1-16, en donde la secuencia de la rHuPH20 codificada por las células comprende un polipéptido cuya secuencia se muestra en cualquiera de los SEQ ID NO 4-9 o variantes del mismo que tienen una identidad de secuencia de 60%, 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o más con cualquiera de los SEQ NO. 4-9 y que conservan una actividad hialuronidasa y son solubles.