



OFICINA ESPAÑOLA DE PATENTES Y MARCAS

**ESPAÑA** 



11) Número de publicación: 2 537 803

61 Int. Cl.:

| C07D 217/04  | (2006.01) | A61P 25/06  | (2006.01) | C07D 401/12 |
|--------------|-----------|-------------|-----------|-------------|
| A61K 31/4355 | (2006.01) | A61P 25/10  | (2006.01) |             |
| A61K 31/472  | (2006.01) | A61P 25/22  | (2006.01) |             |
| A61K 31/4725 | (2006.01) | A61P 25/24  | (2006.01) |             |
| A61K 31/4747 | (2006.01) | A61P 43/00  | (2006.01) |             |
| A61K 31/496  | (2006.01) | C07D 217/14 | (2006.01) |             |
| A61P 1/00    | (2006.01) | C07D 217/16 | (2006.01) |             |
| A61P 9/00    | (2006.01) | C07D 221/20 | (2006.01) |             |
| A61P 13/10   | (2006.01) | C07D 401/04 | (2006.01) |             |
| A61P 25/04   | (2006.01) | C07D 401/06 | (2006.01) |             |
|              |           |             |           |             |

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

(2006.01)

(96) Fecha de presentación y número de la solicitud europea: 20.05.2008 E 08764424 (1)
 (97) Fecha y número de publicación de la concesión europea: 13.05.2015 EP 2149560

(54) Título: Compuesto de tetrahidroisoquinolina 1-sustituida

(30) Prioridad:

22.05.2007 JP 2007135452

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 12.06.2015

(73) Titular/es:

ASTELLAS PHARMA INC. (100.0%) 3-11, NIHONBASHI-HONCHO 2-CHOME CHUO-KU, TOKYO 103-8411, JP

(72) Inventor/es:

SHISHIKURA, JUN-ICHI; INOUE, MAKOTO; OGIYAMA, TAKASHI; YONEZAWA, KOICHI; YAMAKI, SUSUMU; YOKOYAMA, KAZUHIRO; KAKIMOTO, SHUICHIROU y OKADA, HIDETSUGU

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

S 2 537 803 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

## **DESCRIPCIÓN**

Compuesto de tetrahidroisoquinolina 1-sustituida

#### Campo técnico

5

10

15

20

25

30

35

40

45

50

55

60

65

La presente invención se refiere a un medicamento y a un compuesto especificado de tetrahidroisoquinolina 1-sustituida que es útil como ingrediente activo de una composición farmacéutica para prevenir y/o tratar el dolor, los síntomas abdominales, el estreñimiento espástico y el síndrome del intestino irritable.

#### Técnica anterior

El dolor es un importante mecanismo biológico de defensa que refleja la adición de cualquier invasión a organismos. Cuando el dolor o la disestesia permanecen todavía incluso después de que se han curado los daños tisulares o enfermedades responsables del inicio del dolor, dicha afección se reconoce como una enfermedad. El dolor se clasifica en general como dolor nociceptivo y dolor neuropático. El como dolor nociceptivo incluye el dolor causado por la inflamación tisular, compresión neural inducida por cáncer o similares (dolor inflamatorio, dolor por cáncer etc.). Los fármacos antiinflamatorios no esteroideos (AINE) o los opioides son terapéuticamente eficaces para el tratamiento del dolor nociceptivo.

Por otro lado, el dolor neuropático es un dolor crónico causado por daños o compresión del tejido nervioso o similares. Entre los síntomas del dolor neuropático se incluyen disestesia desagradable, tal como el dolor espontáneo continuo o repentino, entumecimiento, sensación de ardor, dolor de ser cortado en pedazos pequeños y dolor punzante; una afección que es una respuesta dolorosa a un estímulo débil que normalmente no es doloroso (hiperalgesia); dolor debido a un estímulo que normalmente no provoca dolor (alodinia), tal como el causado por el contacto con ropas o cambios de temperatura; y similares. Enfermedades específicas de dolor neuropático incluyen neuralgia del trigémino; síndrome del dolor regional complejo, síndrome de la cirugía postespinal, dolor por el miembro fantasma, dolor por lesión en el plexo braquial, dolor por lesión en la médula espinal, dolor postictus,

neuropatía diabética dolorosa, neuralgia postherpética, neuropatía inducida por el VIH y algunos casos adicionales de dolor por cáncer y lumbalgia sobre los que los efectos analgésicos de los opioides no se ejercen suficientemente, además de la neuropatía inducida por fármacos anticancerosos y por fármacos anti-VIH.

El dolor neuropático se conoce como dolor sobre el cual los AINE o los opioides que son eficaces sobre el dolor nociceptivo exhiben dificultades para ser terapéuticamente eficaces. En la práctica de la terapia con fármacos, el alivio del dolor se efectúa mediante cánnabis, crema de capsaicina o administración intraespinal de opioides, así como mediante la administración de antidepresivos (duloxetina, amtriptilina etc.), fármacos antiepilépticos (pregabalina, carbamazepina etc.) o analgésicos locales (mexiletina, etc.). Por desgracia, los efectos de estos fármacos son limitados, ya que muchos dolores neuropáticos se desarrollan por un solapamiento de múltiples causas patogénicas y cada paciente individual tiene diferentes antecedentes de enfermedades. Adicionalmente también existen problemas asociados con efectos secundarios inherentes de fármacos individuales. Con este fin, existe una fuerte necesidad de un agente contra el dolor neuropático que tiene un espectro analgésico más potente y más amplio y menos efectos secundarios.

El síndrome del intestino irritable (SII) es un síndrome que produce síntomas abdominales tales como dolor abdominal y distensión abdominal y anomalías en las heces, tales como diarrea y urgencia en la defecación, y estreñimiento o dificultades para defecar, debido a la disfunción del tracto digestivo inferior alrededor del intestino grueso, a pesar de que no se ha producido ninguna alteración orgánica tal como inflamación y tumor. Dependiendo de los hábitos intestinales predominantes, el SII se subclasifica en general en SII de tipo diarrea (SII-D), SII de tipo estreñimiento (SII-E) y SII de tipo mixto (SII-M) con diarrea alterna con estreñimiento (Gastroenterology 130: 1377 - 90, 1480 - 91 (2006)). Como terapia de medicación para el SII se pueden mencionar los fármacos anticolinérgicos para el dolor abdominal, los antidepresivos tricíclicos (ATC) para mejorar el umbral del dolor disminuido del tracto digestivo y, en el caso de alteraciones de los movimientos intestinales, antidiarreicos o remedios intestinales para la diarrea y sales catárticas para el estreñimiento, que simplemente son terapias alopáticas y, también, sus efectos son inciertos (síndrome del intestino irritable ~ Comunicación entre el cerebro y los intestinos (ISBN4 - 521 - 67671 - 5, 2006)).

Como fármacos que están atrayendo recientemente la atención, alosetrón, que es un antagonista del receptor 5-HT<sub>3</sub> y tegaserod, que es un agonista del receptor 5-HT<sub>4</sub>, se usan para el SII-D y el SII-E, respectivamente. No obstante, el uso de alosetrón está limitado debido a la incidencia de estreñimiento en del 30 % al 35 % de los pacientes, junto con efectos secundarios graves de colitis isquémica (incluida la muerte), aunque exhibe una tasa de mejora comparativamente alta del 40 % al 60 % para los síntomas abdominales y la diarrea (Drug Today 36: 595 - 607 (2000), información de la FDA sobre lotronex, nota de prensa de GlaxoSmithKline). Además, se dice que tegaserod tiene poco efecto sobre los síntomas abdominales debido a que tiene pocos efectos de alivio del estreñimiento, lo que puede dar lugar al riesgo de taquifilaxia (fenómeno de producir resistencia a un fármaco tras varias dosis durante un periodo de tiempo corto) (Clinical Therapeutics 25: 1952 - 1974 (2003)). Además, una aplicación de tegaserod también está fuertemente limitada en términos de efectos secundarios debido a tener efectos secundarios

sobre el sistema circulatorio (información de la FDA sobre zelnorm, nota de prensa de Novartis).

Se sabe que los opioides, como la morfina, que se han usado habitualmente como fármacos para aliviar el dolor, producen una disfunción grave del tracto digestivo, incluyendo estreñimiento, que se denomina disfunción intestinal por opioides (DIO). Entre los síntomas de la DIO, el inicio del estreñimiento es muy alto sin crear resistencia al fármaco, al contrario que otros efectos secundarios en el sistema nervioso central inducidos por opioides, por lo que es necesario adoptar las medidas adecuadas para tratar con la situación (American J. Surgery 182: 11S-18S (2001), Jpn. Cancer Chemother. 32: 1377 - 1383 (2005)). Por estas razones, en el tratamiento con opioides en particular con pacientes con dolor por cáncer, es esencial un tratamiento profiláctico combinado con un agente laxante desde el principio de la administración de un fármaco opioide, pero no es fácil controlar la defecación por medio del agente laxante (Drugs 63: 649 - 671 (2003), Pharmacotherapy 22: 240 - 250 (2002)).

El tracto digestivo está provisto de una red nerviosa independiente denominada el sistema nervioso entérico. En el sistema nervioso entérico hay varios tipos de beironas y son responsables de dirigir las respectivas funciones del tracto digestivo. Entre estas neuronas, las neuronas aferentes primarias intrínsecas (NAPI) son neuronas que reciben principalmente los cambios en la luz del tracto digestivo. Las NAPI detectan cambios físicos o químicos en la luz del tracto digestivo y transmiten la información a las neuronas motoras o neuronas sensoriales. Por tanto, los fármacos que alteran la actividad de las NAPI producen cambios en la función del tracto digestivo, denominado movimiento peristáltico o percepción visceral (Progress in Neurobiol. 54: 1 - 18 (1998)). Adicionalmente, a partir del hecho de que el canal de Ca<sup>2+</sup> de tipo N expresado en las NAPI contribuye a la actividad de las NAPI (J. Comp. Neurol. 409: 85 - 104 (1999)), se puede considerar que un compuesto que bloquea los canales de Ca<sup>2+</sup> de tipo N sería útil para enfermedades funcionales del tracto digestivo alterando las funciones del tracto digestivo.

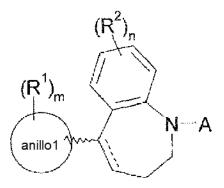
Además, se sabe que las señales de dolor abdominal, como el dolor somático, viajan al cerebro a través del ganglio de la raíz posterior (GRP) y la médula espinal (Neurogastroentel. Motil. 16: 113 - 124 (2004)). Esta vía de señalización está hipersensibilizada en los pacientes de SII, lo que sugiere apariciones significativas de síntomas abdominales (Gut 53: 1465 - 1470 (2004)). Por tanto, se ha previsto que un bloqueante de los canales de Ca<sup>2+</sup> de tipo N implicados en esta vía de señalización del dolor sería un agente terapéutico eficaz contra los síntomas abdominales del SII. De hecho, se ha notificado que la gabapentina o la pregabalina, que es un ligando de la subunidad α2δ de los canales de Ca<sup>2+</sup>, ejerce efectos analgésicos en modelos animales de hipersensibilización del dolor abdominal (J. Pharmacol. Exp. Ther. 295: 162 - 167 (2000), Anesthesiology 98: 729 - 733 (2003)).

Existen muchos tipos de proteínas funcionales dependientes de  $Ca^{2^+}$  en las células y los cambios en la concentración de  $Ca^{2^+}$  intracelular desempeñan un papel importante en la expresión o regulación de varias funciones fisiológicas, tal como viabilidad neuronal, plasticidad sináptica y expresión génica. Entre los canales de  $Ca^{2^+}$  presentes en la membrana celular, un canal que usa un potencial de membrana como desencadenante en la abertura de los canales se denomina canal de  $Ca^{2^+}$  dependiente de voltaje (CCDV), que consiste principalmente en una subunidad  $\alpha$ 1 que forma el cuerpo del canal, una subunidad  $\beta$  que controla un nivel de expresión de la subunidad  $\alpha$ 1 o las funciones del canal, y una subunidad  $\alpha$ 2 $\delta$  (Trends Neurosci. 21 148 - 154 (1998)). Los canales de  $Ca^{2^+}$  se clasifican en canales de  $Ca^{2^+}$  de umbral alto tal como de tipo L (( $\alpha$ 1S, C, D, y F), de tipo P/Q ( $\alpha$ 1A), de tipo N ( $\alpha$ 1B) y de tipo R ( $\alpha$ 1E); y canales de  $Ca^{2^+}$  de umbral bajo tal como de tipo T ( $\alpha$ 1G, H, I), dependiendo del tipo de subunidad  $\alpha$ 1 y el potencial del umbral de activación (Rev. Physiol. Biochem. Pharmacol. 139: 33 - 87 (1999)).

Entre los canales de Ca<sup>2+</sup> de umbral alto, los canales de Ca<sup>2+</sup> de tipo P/Q-, N y R están presentes en los terminales sinápticos de las neuronas y sirven de desencadenante de la liberación de neurotransmisores. En particular, los canales de Ca<sup>2+</sup> de tipo N se expresan considerablemente en el ganglión de la raíz posterior (GRP) (J. Neurosci. 15: 4315 - 4327 (1995)) que es un conjunto de cuerpos celulares de las neuronas sensoriales del asta posterior espinal (J. Neurosci. 18: 6319 - 6330 (1998)) que es una región de proyección sináptica de las neuronas sensoriales. Adicionalmente, el asta posterior espinal del modelo de dolor neuropático en ratas exhibió una mayor expresión de los canales de Ca<sup>2+</sup> de tipo N en la sincronización con la progresión de la hiperalgesia (Exp. Brain Res. 147: 456 - 463 (2002)). A partir de estos hechos se cree que los canales de Ca<sup>2+</sup> de tipo N desempeñan un papel como desencadenantes que transmiten un exceso de señales de dolor al cerebro.

Con las recientes observaciones que muestran que un péptido bloqueante selectivo de los canales de  $Ca^{2^+}$  de tipo N,  $\omega$ -conotoxina ( $\omega$ -CTx), exhibe amplios efectos analgésicos en modelos animales de dolor nociceptivo, inflamatorio y neuropático, respectivamente (J. Pharmacol. Exp. Ther. 279: 1243 - 1249 (1996), J. Pharmacol. Exp. Ther. 287: 232 - 237 (1998), J. Pharmacol. Exp. Ther. 269: 1117 - 1123 (1994)), y no se produce dolor neuropático en ratones deficientes en  $\alpha$ 1B (EMBO J. 20: 2349 - 2356 (2001)), se ha sugerido que los canales de  $Ca^{2^+}$  de tipo N están profundamente implicados en la patogenia del dolor neuropático. De hecho, se ha notificado que la administración espinal crónica de ziconotida ( $\omega$ -conotoxina MVIIA:  $\omega$ -CTxMVIIA) por medio de una bomba implantable mejora la hiperalgesia y la alodinia en pacientes con dolor neuropático no respondedor a la morfina (Clin. J. Pain 13: 256 - 259 (1997)). Adicionalmente, se ha demostrado que la gabapentina o la pregabalina, de uso frecuente como agente antidolor neuropático, se une con una afinidad elevada a la subunidad a2 $\delta$  de los canales de  $Ca^{2^+}$  para ejercer de este modo los efectos analgésicos (J. Pharm. Sci. 100: 471 - 486 (2006)). En base a los hallazgos mencionados anteriormente, cabe esperar que el bloqueante de los canales de  $Ca^{2^+}$  de tipo N sea un excelente agente terapéutico para el dolor, en particular el dolor neuropático. Adicionalmente, a partir del hecho de que los canales de  $Ca^{2^+}$  de tipo

N están implicados en la hiperactividad de las neuronas, la muerte celular y similares, en consecuencia, cabe esperar que el bloqueante de los canales de Ca<sup>2+</sup> de tipo N sea útil para la prevención o tratamiento de afecciones o enfermedades asociadas con la activación de los canales de Ca2+ de tipo N, además del dolor mencionado anteriormente. En conjunto, se cree que un compuesto que tiene acción bloqueante de los canales de Ca<sup>2+</sup> de tipo N sería útil para varios dolores, tales como dolor neuropático y dolor nociceptivo, cefaleas tales como migrañas y cefaleas en racimo, enfermedades del sistema nervioso central tales como ansiedad, depresión, epilepsia, ictus cerebral y síndrome de las piernas inquietas, enfermedades del sistema digestivo tales como dolor abdominal y síndrome del intestino irritable, y enfermedades del sistema urinario, tales como vejiga hiperactiva y cistitis intersticial.


10

15

5

Hasta ahora se han notificado compuestos bloqueantes de los canales de Ca2+ de tipo N. Por ejemplo, se ha descrito que los siguientes derivados de benzacepinas tienen una acción de bloqueo de los canales de Ca<sup>2-</sup> N y son útiles como agente para prevenir y/o ara tratar el infarto cerebral, ataque isquémico cerebral transitorio, encefalomielopatía tras ciruqía cardiaca, trastornos vasculares de la médula espinal, hipertensión inducida por estrés, neurosis, epilepsia, asma, micción frecuente y enfermedades oftálmicas, o como fármacos analgésicos (documento patente 1).

[Quim.]



20

(Véase el documento citado anteriormente para los símbolos en la fórmula)

No obstante, no existe una divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención.

Adicionalmente, se ha descrito que los siguientes derivados de diarilalqueno o de diarilalcano tienen una acción de 25 bloqueo de los canales de Ca<sup>2+</sup> de tipo N y son útiles para tratar el dolor, el infarto cerebral, los trastornos cerebrales causados por isquemia aguda tras el inicio de hemorragia cerebral, la enfermedad de Alzheimer, la demencia asociada con el SIDA, la enfermedad de Parkinson, enfermedades degenerativas progresivas del cerebro, trastornos neurológicos causados por lesiones cerebrales, asma bronquial, angina inestable, enfermedades inflamatorias del 30 colon irritable y síntomas de abstinencia por drogadicción (documento patente 2).

(Véase el documento citado anteriormente para los símbolos en la fórmula)

- 5 No obstante, no existe una divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención.
- Adicionalmente, se ha descrito que los siguientes compuestos heteroaromáticos tricíclicos tienen una acción de bloqueo de los canales de Ca<sup>2+</sup> de tipo N y son útiles como medicamento, en particular un agente analgésico (Documento patente 3).

[Quim. 3]

$$R^1$$
  $X$   $Y$ 

(Véase el documento citado anteriormente para los símbolos en la fórmula)

- No obstante, no existe una divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención.
- Adicionalmente se ha descrito que los siguientes compuestos de piperazina sustituidos tienen una acción de bloqueo de los canales de Ca<sup>2+</sup> de tipo N y son útiles para tratar el ictus cerebral, el dolor, la ansiedad, la depresión, los trastornos gastrointestinales, las alteraciones genitourinarias, las alteraciones cardiovasculares, la epilepsia, la diabetes y el cáncer (documento patente 4).

# [Quim. 4]

$$X-N$$
 $R_{n1}^{1}$ 
 $R_{n2}^{2}$ 

(Véase el documento citado anteriormente para los símbolos en la fórmula)

- 5 No obstante, no existe una divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención.
- Adicionalmente, se ha notificado que los siguientes compuestos azaciclo son útiles para tratar o prevenir enfermedades asociadas con un flujo de iones de sodio de los canales de neuronas sensoriales, por ejemplo dolor tal como dolor crónico y agudo, enfermedades de hipersensibilidad tales como enfermedades de la vejiga urinaria y el síndrome del intestino irritable, y enfermedades desmielinizantes (documento patente 5).

# [Quim. 5]

$$(R_1)_n$$
 $(R_1')_p$ 
 $(R_1')_p$ 
 $(R_1')_p$ 

- 15 (Véase el documento citado anteriormente para los símbolos en la fórmula)
  - No obstante, no existe una divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención.
- Adicionalmente, se ha notificado que los siguientes compuestos tienen una actividad inhibidora de la farnesil proteína transferasa y son útiles como fármaco anticanceroso (documento patente 6).

# [Quim. 6]

(Véase el documento citado anteriormente para los símbolos en la fórmula)

5

10

30

No obstante, no existe una divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención. Además, no hay divulgación o sugerencia de sus efectos sobre la acción de bloqueo de los canales de Ca<sup>2+</sup> de tipo N, el dolor, incluido el dolor neuropático, y enfermedades del sistema digestivo, incluido el síndrome del intestino irritable.

Adicionalmente, se ha notificado que los siguientes compuestos tienen una acción antiarrítmica (documento no patente 1).

[Quim. 7]

N
NR<sub>2</sub>

(Véase el documento citado anteriormente para los símbolos en la fórmula)

- No obstante, un resumen en inglés adjunto al documento citado anteriormente no contiene divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención. Además, no hay divulgación o sugerencia de sus efectos sobre la acción de bloqueo de los canales de Ca<sup>2+</sup> de tipo N, el dolor, incluido el dolor neuropático, y enfermedades del sistema digestivo, incluido el síndrome del intestino irritable.
- Adicionalmente, se ha notificado que los siguientes compuestos tienen una acción antiarrítmica (documento no patente 2).

[Quim. 8]

25 (Véase el documento citado anteriormente para los símbolos en la fórmula)

No obstante, un resumen en inglés adjunto al documento citado anteriormente no contiene divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención. Además, no hay divulgación o sugerencia de sus efectos sobre la acción de bloqueo de los canales de Ca<sup>2+</sup> de tipo N, el dolor, incluido el dolor neuropático, y enfermedades del sistema digestivo, incluido el síndrome del intestino irritable.

Adicionalmente, se ha notificado que los compuestos siguientes tienen una acción de bloqueo de canales de Ca<sup>2+</sup> y son útiles como agente hipotensor y un agente antiarrítmico (documento no patente 3).

[Quim. 9]

(Véase el documento citado anteriormente para los símbolos en la fórmula)

- No obstante, un resumen en inglés adjunto al documento citado anteriormente no contiene divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención. Además, no hay divulgación o sugerencia de sus efectos sobre la acción de bloqueo de los canales de Ca<sup>2+</sup> de tipo N, el dolor, incluido el dolor neuropático, y enfermedades del sistema digestivo, incluido el síndrome del intestino irritable.
- Adicionalmente, se ha notificado que los siguientes compuestos tienen una acción de bloqueo de canales de Ca<sup>2+</sup>, una acción de bloqueo de canales de Na<sup>+</sup> y una actividad inhibidora de la calmodulina y posiblemente son útiles en terapia neuroprotectora (documentos no patente 4 y 5).

[Quim. 10]

$$R$$
 $R$ 
 $N$ 
 $R^2$ 

(Véase el documento citado anteriormente para los símbolos en la fórmula)

No obstante, no existe una divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención.

Adicionalmente, se han notificado los siguientes compuestos como un antagonista del receptor de orexina 1 (documento no patente 6). Adicionalmente, también se ha sugerido que un receptor de orexina 2 está implicado en la transmisión de estímulos nociceptivos.

[Quim. 11]

(Me en la fórmula representa metilo)

15

20

25

30 No obstante, no existe una divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención.

Como otras referencias que divulgan compuestos que tienen un esqueleto de tetrahidroisoquinolina, están los documentos patente 7 a 9. No obstante, estos documentos no contienen divulgación específica de un compuesto de tetrahidroisoquinolina 1-sustituida que pertenece a la presente invención.

```
5
          [Documento de patente 1] JP-A-2002 - 363163
          [Documento patente 2] Panfleto de publicación internacional Nº WO 03/018538
          [Documento patente 3] Panfleto de publicación internacional Nº WO 2004/089950
          [Documento patente 4] Panfleto de publicación internacional Nº WO 2005/021523
          [Documento patente 5] Panfleto de publicación internacional Nº WO 2005/005392
10
          [Documento patente 6] Solicitud de patente europea abierta a consulta por el público Nº EP 0 696 593
          [Documento patente 7] Panfleto de publicación internacional Nº WO 01/85693
          [Documento patente 8] Panfleto de publicación internacional Nº WO 02/079189
          [Documento patente 9] Panfleto de publicación internacional Nº WO 03/082828
          [Documento no patente 1] Fudan University Journal of Medical Science, 1987, 14 (1), 15 - 20
          [Documento no patente 2] Fudan University Journal of Medical Science, 1989, 16 (1), 71 - 74
15
          [Documento no patente 3] Journal of China Pharmaceutical University, 1993, 24 (4), 193 - 201
          [Documento no patente 4] Biological & Pharmaceutical Bulletin, 2000, 23 (3), 375 - 378
          [Documento no patente 5] Neurochemical Research, 2003, 28 (12), 1813 - 1818
          [Documento no patente 6] Bioorganic & Medicinal Chemistry Letters, 2003, 13 (24), 4497 - 4499
20
```

El documento WO 2006/040181 divulga compuestos de piperidinilo que tienen una fórmula específica como moduladores o bloqueantes de los canales de calcio de tipo N y estos compuestos son útiles para tratar el dolor. Zhang et al notifican en Biol. Pharm. Bull. 23 (3) 375 - 378 (2000) que los derivados de tetrahidroisoquinolina semisintéticos preparados a partir de alcaloides naturales poseen propiedades antagonistas de Ca<sup>2+</sup>.

#### Divulgación de la invención

25

35

45

#### Problema que ha de resolver la invención

30 Es un objeto de la presente invención proporcionar un medicamento que tiene una acción de bloqueo selectivo sobre los canales de Ca<sup>2+</sup> de tipo N y, específicamente, un compuesto útil como ingrediente activo de una composición farmacéutica para prevenir y/o tratar el dolor y el síndrome del intestino irritable.

El compuesto de la presente invención se selecciona de un grupo específico de compuestos como se define en la reivindicación 1. El compuesto de la presente invención tiene propiedades farmacológicas en cuanto a que tiene una acción de bloqueo de los canales de Ca<sup>2+</sup> de tipo N, una acción contra el dolor nociceptivo, una acción contra el dolor neuropático, una acción de inhibición del dolor abdominal y una acción de mejora del estreñimiento inducidos por opioides.

## 40 Medios para resolver el problema

Como resultado de estudios exhaustivos sobre compuestos que tienen una acción de bloqueo selectivo sobre los canales de Ca<sup>2+</sup> de tipo N, los presentes inventores han descubierto que un compuesto de tetrahidroisoquinolina 1-sustituida de la presente invención tiene una acción de bloqueo sobre los canales de Ca<sup>2+</sup> de tipo N, una acción contra el dolor nociceptivo, una acción contra el dolor neuropático, una acción de inhibición del dolor abdominal y una acción de mejora del estreñimiento inducidos por opioides. La presente invención se ha realizado sobre la base de estos hallazgos.

El compuesto se selecciona del grupo que consiste en:

```
50
           1-[{2-[(1S)-1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol,
           (2S)-1-((2-[(S)-1-ciclohexil-3,4-dihidroisoguinolin-2(1H)-il]-2-oxoetil}amino)-3-metoxi propan-2-ol,
           1-({[2-(1 (1S)-isopropil-6-metoxi-3.4-dihidroisoguinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol,
           (2R)-1-({2-[(1S)-8-metoxi-1-fenil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)propan-2-ol,
           1-[({2-[(1R)-7-etil-1-(metoximetil)-3,4-dihidroisoquinolin-2 (H)-il]-2-oxoetil}amino)metil]ciclohexanol,
55
           (2S)-1-metoxi-3-[(2-oxo-2-{1 (1S)-[2-(trifluorometil)bencil]-3,4-dihidroisoguinolin-2(1H)-il}etil)amino]propan-2-ol,
           1-({[3-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-3-oxo propil]amino}metil)ciclohexanol,
           (2R)-1-{[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(H)-il)-2-oxoetil]amino}propan-2-ol,
           (2R)-1-[(2-oxo-2-{1-[2-(trifluorometil)fenil]-3,4-dihidroisoquinolin-2(1H)-il}etil)amino]propan-2-ol,
           (2S)-1-{[2-(1-ciclohexil-7-metil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}-3-metoxi propan-2-ol,
60
           (2R)-1-({2-oxo-2-[(1S)-1-fenil-3,4-dihidroisoquinolin-2(1H)-il]etil}amino)propan-2-ol,
           1-[({2-[7-fluoro-1-(metoximetil)-3,4-dihidroisoguinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol,
           1-[({2-[7-etil-1-(metoximetil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol,
           1-({[2-(1-isopropil-6-metoxi-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol,
           1-[({2-[5-metoxi-1-(metoximetil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol,
65
           1-[({2-[1-(metoximetil)-6-metil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol,
```

# ES 2 537 803 T3

(1S,2S)-2-{[2-(1-ciclohexil-3,4-dihidroisaquinolin-2(1H)-il)-2-oxoetil]amino}-1-fenil propano-1,3-diol, 1-({(2R)-2-[(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)carbonil]pirrolidin-1-il}metil)ciclohexanol, (2R)-1-{[2-(1-ciclohexil-1-metil-3,4-dihidroisoquinalin-2(1H)-il)-2-oxoetil]amino}-propan-2-ol, 1-({[2-(3',4'-dihidro-2'H-espiro [ciclohexano-1,1'-isoquinolin]-2'-il)-2-oxoetil]amino}metil)ciclohexanol, 5 (2R)-1-[(2-oxo-2-{1-[2-(trifluorometoxi)fenil]-3,4-dihidroisoquinolin-2(1H)-il}etil)amino]propan-2-ol, (2R)-1-{[2-(1-ciclohexil-7-etil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}-propan-2-ol, 1-({[2-(6-fluoro-1-isopropil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, 1,1-diciclopropil-2-({2-[6-fluoro-1-(metoximetil)-3,4-dihidroisoguinolin-2(1H)-il]-2-oxoetil}amino)etanol, 1-({[2-(1-terc-butil-8-metoxi-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, 10 1-({[2-(1-isopropil-6-metil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, 1-({[2-(6-fluoro-1-propil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, 1-[({2-[1-(metoximetil)-7-metil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 1-({[2-(5-fluoro-1-propil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, 1-[((2-[5-fluoro-1-(metoximetil)-3.4-dihidroisoguinolin-2(1H)-ill-2-oxoetil)amino)metillciclohexanol. 1-[({2-[8-metoxi-1-(metoximetil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 15 1-[((2-[1-(etoximetil)-7-metil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, o (1R,2S)-2-({2-[(1R)-1-(2-metoxifenil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)ciclopentanol; o una sal farmacéuticamente aceptable de los mismos.

20 Una composición farmacéutica que comprende un compuesto como se ha definido anteriormente o una sal farmacéuticamente aceptable del mismo y un excipiente farmacéuticamente aceptable del mismo.

Un compuesto como se ha definido anteriormente o una sal farmacéuticamente aceptable del mismo para su uso como bloqueante de los canales de Ca<sup>2+</sup> de tipo N.

Una composición farmacéutica para su uso en un procedimiento de prevención o tratamiento del dolor, dolor neuropático, síntomas abdominales, estreñimiento inducido por opioides, síndrome del intestino irritable, que comprende un compuesto como se ha definido anteriormente o una sal farmacéuticamente aceptable del mismo

30 Una composición farmacéutica que comprende un compuesto como se ha definido anteriormente o una sal farmacéuticamente aceptable del mismo y un opioide como ingredientes activos.

Una composición farmacéutica que comprende un compuesto definido anteriormente o una sal farmacéuticamente aceptable del mismo como ingrediente activo para su uso en combinación con un opioide.

El compuesto definido anteriormente o una sal farmacéuticamente aceptable del mismo para su uso en un procedimiento de prevención o tratamiento del dolor, dolor neuropático, síntomas abdominales, estreñimiento inducido por opioides o síndrome del intestino irritable.

## 40 Efecto de la invención

El compuesto de la presente invención se puede usar como composición farmacéutica para prevenir y/o tratar varios dolores tales como el dolor neuropático y el dolor nociceptivo, cefaleas tales como migrañas y cefaleas en racimo, enfermedades del sistema nervioso central tales como ansiedad, depresión, Epilepsia, ictus cerebral y síndrome de las piernas inquietas, síntomas abdominales tales como dolor abdominal y distensión abdominal, anomalías de las heces tales como diarrea y estreñimiento, enfermedades del sistema digestivo tales como síndrome del intestino irritable, enfermedades del sistema urinario tales como vejiga hiperactiva y cistitis intersticial etc.

## Mejor modo para llevar a cabo la invención

A continuación, la presente invención se describirá con mayor detalle.

El "dolor" significa diversos dolores, incluyendo el dolor nociceptivo y dolor neuropático.

El "dolor nociceptivo" es un dolor causado por la adición de estímulos nociceptivos a través de nociceptores y ejemplos de los mismos incluyen dolor causado por daños tisulares, dolor causado por inflamación de tejidos (dolor inflamatorio), dolor causado por compresión neural inducida por cáncer (dolor por cáncer).

El "dolor neuropático" es un dolor crónico que está causado por daños o compresión del tejido nervioso o similares y ejemplos incluyen neuralgia del trigémino; síndrome del dolor regional complejo, síndrome de la cirugía postespinal, dolor por el miembro fantasma, dolor por lesión en el plexo braquial, dolor por lesión en la médula espinal, dolor postictus, neuropatía diabética dolorosa, neuralgia postherpética, neuropatía inducida por el VIH y algunos casos adicionales de dolor por cáncer y lumbalgia sobre los que los efectos analgésicos de los opioides no son suficientes, además de la neuropatía inducida por fármacos anticancerosos y por fármacos anti-VIH.

65

25

35

45

# ES 2 537 803 T3

El "estreñimiento inducido por opioides" significa estreñimiento causado por opioides tales como la morfina.

El "síndrome del intestino irritable" es una enfermedad que produce síntomas abdominales tales como dolor abdominal y distensión abdominal y anomalías de las heces tales como diarrea o urgencia de la defecación y estreñimiento o dificultades en la defecación, debido a la disfunción del tracto digestivo inferior alrededor del intestino grueso, a pesar de la ausencia de alteraciones orgánicas tales como inflamación y tumor o similares, y es una enfermedad que se clasifica en SII de tipo diarrea (SII-D), SII de tipo estreñimiento (SII-E) y SII de tipo mixto (SII-M) con alternancia entre diarrea y estreñimiento, dependiendo de las condiciones del intestino.

- El compuesto de la presente invención puede existir, en algunos casos, en forma de otros tautómeros o isómeros geométricos, en función del tipo de los sustituyentes. En la presente memoria descriptiva, el compuesto solo se puede describir en una forma de isómeros y la presente invención incluye estos isómeros, así como formas aisladas o mezclas de los mismos.
- Adicionalmente, el compuesto puede tener átomos de carbono asimétricos o asimetrías axiales en algunos casos y, de forma correspondiente, puede existir en forma de isómeros ópticos tales como las formas R y S. Todas las mezclas y aislados de estos isómeros ópticos están incluidas en la presente invención.
- Adicionalmente, también está incluido en la presente invención un profármaco farmacéuticamente aceptable del compuesto. El "profármaco farmacéuticamente aceptable" es un compuesto que tiene un grupo que se puede convertir en un grupo amino, un grupo hidroxilo, un grupo carboxilo o similares de la presente invención mediante solvolisis o en una condición fisiológica. Ejemplos del grupo para formar un profármaco incluyen los descritos en, por ejemplo, Prog. Med., 5.2157 2161 (1985) o "lyakuhin no Kaihatsu (Development of Pharmaceuticals)" (Hirokawa Shoten Ltd., 1990), Vol. 7, "Bunshi Sekkei (Molecular Design)", pág. 163 198.

Adicionalmente, el compuesto de la presente invención puede formar una sal de adición de ácido o una sal con una base, en función del tipo de sustituyentes, y esta sal está incluida en la presente invención, siempre que sea una sal farmacéuticamente aceptable. Específicamente, ejemplos de dichas sales incluyen sales de adición de ácido con ácidos inorgánicos tales como ácido clorhídrico, ácido bromhídrico, ácido yodhídrico, ácido sulfúrico, ácido nítrico y ácido fosfórico, y con ácidos orgánicos tales como ácido fórmico, ácido acético, ácido propiónico, oxálico ácido, ácido malónico, ácido succínico, ácido fumárico, ácido maleico, ácido láctico, ácido málico, ácido mandélico, ácido tartárico, ácido dibenzoiltartárico, ácido ditoluoiltartárico, ácido cítrico, ácido metanosulfónico, ácido etanosulfónico, ácido bencenosulfónico, ácido p-toluenosulfónico, ácido aspártico, ácido glutámico, sales con bases inorgánicas tales como de sodio, potasio, magnesio, calcio, y aluminio, o con bases orgánicas tales como metilamina, etilamina, etanolamina, lisina, y ornitina, sales con varios aminoácidos y derivados de aminoácidos tales como acetilleucina, sales de amonio, y similares.

Además, la presente invención también incluye varios hidratos o solvatos, y polimorfos cristalinos del compuesto de la presente invención y una sal farmacéuticamente aceptable del mismo. Adicionalmente, los compuestos marcados con varios isótopos radioactivos y no radioactivos también están incluidos en la presente invención.

(Procedimientos de producción)

El compuesto de la presente invención y una sal farmacéuticamente aceptable del mismo se pueden preparar aplicando varios métodos sintéticos conocidos, haciendo uso de las características basadas en su esqueleto básico o tipo de sustituyentes. En ese caso, en función del tipo de grupos funcionales, existe un caso eficaz desde el punto de vista de la tecnología de producción de reemplazar el grupo funcional con un grupo protector adecuado (un grupo que se puede convertir fácilmente en el grupo funcional), en la etapa des materiales de partida a intermedios. Ejemplos de dicho grupo protector incluyen los descritos en, por ejemplo, "Protective Groups in Organic Synthesis (3ª edición, 1999)", editado por Greene y Wuts, y similares, que se puede seleccionar y usar adecuadamente en función de las condiciones de reacción. De acuerdo con dicho método se puede obtener un compuesto deseado introduciendo el grupo protector y llevando a cabo la reacción, y eliminando después el grupo protector, si se desea.

Además, el profármaco del compuesto se puede producir del mismo modo que el caso de los grupos protectores mencionados anteriormente llevando a cabo la reacción después de introducir un grupo específico en la etapa de materiales de partida a intermedios o usando el compuesto obtenido de la presente invención. La reacción se puede llevar a cabo usando métodos conocidos por los expertos en la técnica, tales como esterificación habitual, amidación, deshidratación y similares.

A continuación en el presente documento se describirán los procesos de producción representativos para el compuesto de la presente invención. Cada uno de los procesos de producción también se puede llevar a cabo con referencia a las Referencias adjuntas a la descripción correspondiente. Adicionalmente, los procesos de producción de la presente invención no se limitan a los ejemplos como se muestran a continuación.

65

5

25

30

35

#### (Proceso de producción 1)

[Quim. 13]

$$R^{5}$$
 $R^{4b}$ 
 $R^{3a}$ 
 $R^{11}$ 
 $R^{12}$ 
 $R^{15}$ 
 $R^{16}$ 
 $R^{16}$ 
 $R^{15}$ 
 $R^{16}$ 
 $R^{15}$ 
 $R^{16}$ 
 $R^{15}$ 
 $R^{16}$ 
 $R^{16}$ 
 $R^{16}$ 
 $R^{15}$ 
 $R^{16}$ 
 $R^{$ 

5 (En la formula, X representa un grupo saliente y otros símbolos tienen los significados que llevan a los compuestos de la presente invención. Lo mismo se aplicará en lo sucesivo en el presente documento).

Este proceso de producción es un método en el que el compuesto de la presente invención se produce mediante la reacción de un compuesto (1a) que tiene un grupo saliente con un derivado de amina (1b).

En este caso, los ejemplos del grupo saliente incluyen halógeno, metanosulfoniloxi y p-toluenosulfoniloxi.

La reacción se puede llevar a cabo usando el compuesto (1a) y el compuesto (1b) en cantidades equivalentes o uno de ellos en una cantidad excesiva, desde con refrigeración a con calentamiento, por ejemplo a de 0 °C a 80 °C, normalmente con agitación durante de 0,1 horas a 5 días, en un disolvente inerte en la reacción o sin disolvente. No hay un límite concreto al disolvente que se puede usar en el presente documento. Los ejemplos de dicho disolvente incluyen hidrocarburos aromáticos tales como benceno, tolueno y xileno; éteres tales como éter dietílico, tetrahidrofurano (THF), dioxano y dimetoxietano (DME); hidrocarburos halogenados tales como diclorometano (DCM), 1,2-dicloroetano (DCE) y cloroformo; N,N-dimetilformamida (DMF), dimetilsulfóxido (DMSO), acetato de etilo, acetonitrilo y una mezcla de los mismos. En algunos casos, puede ser ventajoso para una progresión suave de la reacción llevar a cabo la reacción en presencia de una base orgánica tal como trietilamina, N,N-diisopropiletilamina (DIPEA), 1,8-diazabiciclo[5,4.0]-7-undeceno o N-metilmorfolina, o una base inorgánica tal como carbonato potásico, carbonato sódico, carbonato de cesio o hidróxido potásico o, por otro lado, en presencia conjunta de un catalizador de transferencia de fases tal como yoduro de tetrabutilamonio o 16-corona-6-éter.

[Bibliografía de referencia]

10

15

20

25

S.R. S y ler y W. Karo, Editors, Organic Functional Group Preparations, 2ª edición. Vol. 1, Academic Press Inc., 1991

30 Courses in Experimental Chemistry, 5ª edición, editado por The Chemical Society of Japan, Vol. 14 (2005), Maruzen Co., Ltd.

# (Proceso de producción 2)

# [Quim. 14]

5 (los símbolos en la fórmula son como se ha definido anteriormente)

Este proceso de producción es un método en el que el compuesto (1 - 2) de la presente invención se produce mediante la reacción de un derivado acrílico (2a) con el derivado de amina (1b).

La reacción se puede llevar a cabo usando el compuesto (2a) y el compuesto (1b) en cantidades equivalentes o uno de ellos en una cantidad excesiva, desde con refrigeración a con calentamiento, por ejemplo a de 0 °C a 120 °C, normalmente con agitación durante de 0,1 horas a 5 días, en un disolvente inerte en la reacción o sin disolvente. No hay un límite concreto al disolvente que se puede usar en el presente documento. Los ejemplos de dicho disolvente incluyen hidrocarburos aromáticos, éteres, hidrocarburos halogenados, alcoholes tales como metanol, etanol y 2-propanol, N,N-dimetilformamida (DMF), dimetilsulfóxido (DMSO), acetato de etilo, acetonitrilo y una mezcla de los mismos. Cuando el derivado de amina está en forma de una sal, puede ser ventajoso, en algunos casos, para la progresión suave de la reacción, llevar a cabo la desalación en presencia de una base orgánica tal como trietilamina, N,N-diisopropiletilamina (DIPEA), 1,8-diazabiclclo[4,5.0]-7-undeceno o N-metilmorfolina, o un base inorgánica tal como carbonato potásico, carbonato sódico o hidróxido potásico.

## (Proceso de producción 3)

## [Quim. 15]

5 (los símbolos en la fórmula son como se ha definido anteriormente)

Este proceso de producción es un método en el que el compuesto de la presente invención se produce mediante la reacción de un derivado de tetrahidroisoquinolina (3a) con un derivado de aminoácido (3b).

La reacción se puede llevar a cabo usando el compuesto (3b) y el compuesto (1b) en cantidades equivalentes o uno de ellos en una cantidad excesiva en presencia de un agente condensador, desde con refrigeración a con calentamiento, por ejemplo a de -20 °C a 60 °C, normalmente con agitación durante de 0,1 horas a 5 días, en un disolvente inerte en la reacción. No hay un límite concreto al disolvente que se puede usar en el presente documento. Los ejemplos de dicho disolvente incluyen hidrocarburos aromáticos, hidrocarburos halogenados, éteres, N,N-dimetilformamida (DMF), N-metilpirrolidona, acetato de etilo, acetonitrilo, agua y una mezcla de los mismos. Los ejemplos del agente condensador incluyen, entre otros, 1-(3-dimetilaminopropil)-3-etilcarbodiimida (WSC), diciclohexilcarbodiimida (DCC), 1,1'-carbonildiimidazol (CDI), difenilfosforil azida y oxicloruro de fósforo. En algunos casos, puede ser ventajoso para la progresión suave de la reacción, llevar a cabo la reacción usando, por ejemplo, un aditivo tal como 1-hidroxibenzotriazol (HOBt).

Adicionalmente se puede usar un método en el que el derivado de aminoácido (3b) (con respecto a un grupo carboxilo que sirve como sitio de reacción) se convierte en un derivado reactivo del mismo y, después, el derivado reactivo se hace reaccionar con el derivado tetrahidroisoquinolina (3a). En este caso, los ejemplos del derivado reactivo incluyen haluros ácidos obtenidos mediante reacción con un agente de halogenación tal como oxicloruro de fósforo o cloruro de tionilo, anhídridos de ácido mixto obtenidos mediante reacción con cloroformiato de isobutilo y ésteres activos obtenidos mediante la condensación con HOBt o similares. La reacción entre el derivado reactivo del compuesto (3b) y el compuesto (3a) se puede llevar a cabo desde con refrigeración a con calentamiento, por ejemplo a de - 20 °C a 60 °C, en un disolvente inerte en la reacción tal como hidrocarburos halogenados, hidrocarburos aromáticos o éteres.

Bibliografía de referencia

25

30

S.R. S y ler y W. Karo, Editors, Organic Functional Group Preparations, 2ª edición. Vol. 1, Academic Press Inc., 1991

Courses in Experimental Chemistry, 5ª edición, editado por The Chemical Society of Japan, Vol. 16 (2005), Maruzen Co., Ltd.

#### (Proceso de producción 4)

[Quim. 16]

5

(En la fórmula, Y representa un grupo saliente y los otros símbolos son como se ha definido anteriormente. Lo mismo se aplicará en lo sucesivo en el presente documento).

10 Este proceso de producción es un método en el que el compuesto de la presente invención se produce mediante la reacción de un derivado de amina (4a) con un compuesto (4b) y/o (4c) que tiene un grupo saliente.

La reacción se puede llevar a cabo del mismo modo que en el proceso de producción 1. Cuando R<sup>21</sup> representa -H, la etapa A que usa el compuesto (4b) se puede omitir. Adicionalmente, el orden de realización de la etapa A usando el compuesto (4b) y la etapa B usando el compuesto (4c) no es crucial.

Además de la N-alquilación usándole compuesto (4b) o (4c) que tiene un grupo saliente, este proceso de producción también puede usar la N-alquilación usando un derivado epoxi correspondiente al compuesto (4b) o (4c) y aminación reductora usando un derivado aldehído correspondiente al compuesto (4b) o (4c).

20

40

45

15

La N-alquilación usando el derivado epoxi correspondiente al compuesto (4b) o (4c) se puede llevar a cabo del mismo modo que en el proceso de producción 1.

La aminación reductora usando el derivado aldehído correspondiente al compuesto (4b) o (4c) se puede llevar a

cabo usando el compuesto (4a) y el derivado aldehído correspondiente al compuesto (4b) o (4c) en cantidades 25 equivalentes o uno de ellos en una cantidad excesiva a -45 °C con calentamiento a reflujo en presencia de un agente reductor en un disolvente inerte en la reacción, por ejemplo a de 0 °C a temperatura ambiente, normalmente con agitación durante de 0,1 horas a 5 días. No hay un límite concreto al disolvente que se puede usar en el presente documento. Los ejemplos de dicho disolvente incluyen alcoholes, éteres y una mezcla de los mismos. Los ejemplos 30 del agente redactor incluyen cianoborohidruro sódico, triacetoxi borohidruro sódico, borohidruro sódico y similares. Puede ser ventajoso, en algunos casos, para la progresión suave de la reacción, llevar a cabo la reacción en presencia de un agente de deshidratación tal como tamices moleculares o un ácido tal como ácido acético, ácido clorhídrico o complejo de isopropóxido de titanio (IV). Dependiendo de la reacción existe un caso en el que se puede formar un compuesto imina mediante condensación del compuesto (4a) con el derivado de aldehído correspondiente 35 al compuesto (4b) o (4c) y, después, se puede aislar como intermedio estable. Adicionalmente, la reacción se puede llevar a cabo en un disolvente tal como alcoholes o acetato de etilo en presencia o ausencia de un ácido tal como ácido acético o ácido clorhídrico, usando un catalizador de reacción (tal como carbono soportado en Pd (Pd/C), hidróxido de paladio o níquel Raney), en lugar de tratamiento con agente reductor. En este caso, la reacción se puede llevar a cabo desde con refrigeración a con calentamiento, en atmósfera de hidrógeno a de presión normal a

[Bibliografía de referencia]

50 atmósferas.

A.R. Katritzky y R.J.K. Taylor, Editors, Comprehensive Organic Functional Group Transformation II, Vol. 2, Elsevier Pergamon, 2005

Courses in Experimental Chemistry, 5th edition, editado por The Chemical Society of Japan, Vol. 14 (2005),

Maruzen Co., Ltd.

Adicionalmente, el compuesto de partida (4a) de este proceso de producción se puede preparar mediante desprotección de la amina a través de la reacción del compuesto (1a) con el derivado de amina protegido del mismo modo que en el proceso de producción 1 o mediante desprotección del grupo amino a través de la reacción del compuesto (3a) con el derivado de aminoácido protegido con amino del mismo modo que en el proceso de producción 3.

(Síntesis del material de partida)

(1) Producción de los compuestos (1a) y (2a)

(En la fórmula, Hal representa halógeno y los otros símbolos son como se ha definido anteriormente. Lo mismo se aplicará en lo sucesivo en el presente documento).

Este proceso de producción es un método en el que el compuesto (2a) o (1a) se produce mediante la reacción del derivado de tetrahidroisoquinolina (3a) con un haluro ácido (5a) o (5b).

La reacción se puede llevar a cabo usando el compuesto (3a) y el compuesto (5a) o (5b) en cantidades equivalentes o uno de ellos en una cantidad excesiva, desde con refrigeración a con calentamiento, por ejemplo a de 0 °C a 80 °C, normalmente con agitación durante de 0,1 horas a 5 días, en un disolvente inerte en la reacción o sin disolvente. No hay un límite concreto al disolvente que se puede usar en el presente documento. Los ejemplos de dicho disolvente incluyen hidrocarburos aromáticos, éteres, hidrocarburos halogenados, acetato de etilo, acetonitrilo y una mezcla de los mismos. Puede ser ventajoso, en algunos casos para la progresión suave de la reacción, llevar a cabo la reacción en presencia de una base orgánica tal como trietilamina, N,N-diisopropiletilamina (DIPEA), piridina o N-metilmorfolina, o una base inorgánica tal como carbonato potásico, carbonato sódico, hidrógeno carbonato sódico o hidróxido potásico, o una solución acuosa de los mismos, o en presencia de 0,01 a 0,2 cantidades equivalentes, preferentemente de 0,05 a 0,15 cantidades equivalentes de un catalizador tal como N,N-dimetilaminopiridina.

20

25

30

5

## (2) Producción del compuesto (3a) - 1

15

30

- 5 (3a)
  (En la formula, M es un metal alcalino o metal alcalino térreo y representa una sal de metal aniónico de R¹b que muestra nucleofilia en forma de R¹b-M, y otros símbolos son como se ha definido anteriormente. Lo mismo se aplicará en lo sucesivo en el presente documento).
- Este proceso de producción es un método en el que el compuesto (3a) se produce sometiendo un derivado de fenetilamida (6b) obtenido mediante amidación de un derivado de fenetilamina (6a) a una reacción de cierre del anillo usando un derivado de ácido fosfórico o a una reacción de condensación usando cloruro de oxalilo, seguido de una escisión del anillo catalizada por ácido para obtener un derivado de dihidroisoquinolina (6d) y reducción del compuesto (6d) o adición de un reactivo nucleófilo al compuesto (6d).
  - La etapa de amidación del compuesto (6a) se puede llevar a cabo del mismo modo que en el proceso de producción 3
- La etapa de cierre del anillo del compuesto (6b) se puede llevar a cabo mediante agitación del compuesto (6b) en un disolvente inerte en reacción o sin un disolvente, en presencia de un derivado de ácido fosfórico, normalmente de 1 hora a 5 días. La reacción normalmente se lleva a cabo desde con refrigeración a con calentamiento, por ejemplo desde la temperatura ambiente a calentamiento a reflujo. En algunos casos, puede ser ventajoso llevar a cabo la reacción en ausencia de un disolvente. El disolvente, si se usa, no está particularmente limitado, pero los ejemplos de los mismos incluyen hidrocarburos aromáticos de alto punto de ebullición tales como tolueno y xileno. Los ejemplos del derivado de ácido fosfórico incluyen pentóxido de difósforo, una mezcla de pentóxido de difósforo y oxicloruro de fósforo, ácido polifosfórico, polifosfato de etilo y similares.

Como alternativa, esta etapa se lleva a cabo de un modo tal que un cloruro de oxalilo se hace reaccionar con la amida (6b) para construir un anillo de 2-clorooxazolona, el producto resultante se somete a condensación de cierre del anillo en presencia de un catalizador de ácido de Lewis tal como cloruro de hierro para obtener un derivado de a 6,10b-dihidro-5H-[1,3]isoxazolo[2,3-a]isoquinolina-2,3-diona (6c), seguido de solvolisis del derivado (6c) en

presencia de un ácido fuerte tal como ácido sulfúrico o usando un alcóxido de metal alcalino tal como metóxido sódico para dar lugar a un compuesto (6d).

Cuando R<sup>1b</sup> es hidrógeno, el compuesto (3a) en el que R<sup>1b</sup> es hidrógeno se puede obtener mediante la reducción del compuesto (6d). La reacción se lleva a cabo tratando el compuesto (6d) con una cantidad equivalente o excesiva de un agente reductor desde con refrigeración a con calentamiento, por ejemplo a -20 °C a 80 °C normalmente durante de 0,1 horas a 3 días, en un disolvente inerte en la reacción. No hay un límite concreto al disolvente que se puede usar en el presente documento. Los ejemplos de dicho disolvente incluyen éteres, alcoholes, hidrocarburos aromáticos, N,N-dimetilformamida (DMF), dimetilsulfóxido (DMSO), acetato de etilo y una mezcla de los mismos. Los ejemplos del agente reductor incluyen agentes reductores de hidruro tales como borohidruro sódico, hidruro de diisobutilaluminio e hidruro de litio aluminio, agentes reductores de metales tales como sodio, cinc y hierro, y otros agentes reductores como se describe en la siguiente bibliografía.

#### [Bibliografía de referencia]

15

20

25

30

10

5

M. Hulicky, Reductions in Organic Chemistry, 2<sup>a</sup> ed (ACS Monograph: 188), ACS, 1996

R.C. Larock, Comprehensive Organic Transformations, 2ª ed, VCH Publishers, Inc., 1999

T.J. Donohoe, Oxidation and Reduction in Organic Synthesis (Oxford Chemistry Primers 6), Oxford Science Publications, 2000

Courses in Experimental Chemistry, 5ª edición, editado por The Chemical Society of Japan, Vol. 14 (2005), Maruzen Co., Ltd.

Cuando R<sup>1b</sup> representa un grupo distinto a hidrógeno, es posible usar la adición aniónica por medio de un reactivo nucleófilo (6e) para el compuesto (6d). La reacción se puede llevar a cabo usando el compuesto (6d) y el compuesto (6e) en cantidades equivalentes o uno de ellos en una cantidad excesiva, desde con refrigeración a con calentamiento, por ejemplo a de -78 °C a 0 °C, normalmente con agitación durante de 0,1 horas a 5 días, en un disolvente inerte en la reacción. No hay un límite concreto al disolvente que se puede usar en el presente documento. Los ejemplos de dicho disolvente incluyen éteres, hidrocarburos aromáticos, N,N-dimetilformamida (DMF), dimetilsulfóxido (DMSO) y una mezcla de los mismos. Para ajustar el compuesto (6e), haluro de R<sup>1b</sup>-magnesio, adecuadamente se usa R<sup>1b</sup>-litio producido por la reacción del correspondiente haluro con magnesio.

Además, las posiciones de of R<sup>1a</sup> y R<sup>1b</sup> en la fórmula se pueden cambiar entre sí.

## (3) Producción del compuesto (3a) - 2

35

45

50

[Quim. 19]

$$R^{5}$$
 $R^{4b}$ 
 $R^{4a}$ 
 $R^{7}$ 
 $R^{7}$ 
 $R^{8}$ 
 $R^{1a}$ 
 $R^{1a}$ 
 $R^{7}$ 
 $R^{7}$ 
 $R^{8}$ 
 $R^{1a}$ 
 $R^{1a}$ 
 $R^{7}$ 
 $R^{8}$ 
 $R^{1a}$ 
 $R^{1a}$ 
 $R^{1a}$ 
 $R^{1a}$ 
 $R^{1a}$ 
 $R^{1a}$ 

(los símbolos en la fórmula son como se ha definido anteriormente)

40 Este proceso de producción es un método en el que el compuesto (3a-2) se produce reduciendo un derivado de acetonitrilo (7a).

La reacción se puede llevar a cabo mediante agitación del compuesto (7a) en un disolvente inerte en la reacción en una atmósfera de hidrógeno, en presencia de un catalizador metálico, normalmente de 1 hora a 5 días. La reacción normalmente se lleva a cabo desde con refrigeración a con calentamiento, por ejemplo desde la temperatura ambiente. No hay un límite concreto al disolvente que se puede usar en el presente documento. Los ejemplos de dicho disolvente incluyen alcoholes, éteres, agua, acetato de etilo, N,N-dimetilformamida (DMF), dimetilsulfóxido (DMSO), y una mezcla de los mismos. Los ejemplos del catalizador metálico que se pueden usar preferentemente incluyen catalizadores de paladio tales como carbono soportado en Pd (Pd/C), negro de paladio e hidróxido de paladio, catalizadores de polatino tales como óxido de platino, catalizadores de rodio tales como tetraquis

trifenilfosfona cloro rodio, níquel Raney, catalizadores de hierro tales como hierro reducido, y similares. En lugar de usar gas hidrógeno, se puede usar una cantidad equivalente o excesiva de ácido fórmico o formiato amónico con respecto al compuesto (7a) como fuente de hidrógeno.

#### 5 [Bibliografía de referencia]

M. Hudlicky, Reductions in Organic Chemistry, 2<sup>a</sup> ed (ACS Monograph: 188), ACS, 1996 Courses in Experimental Chemistry, 5th edition, editado por The Chemical Society of Japan, Vol. 19 (2005), Maruzen Co., Ltd.

Adicionalmente, R<sup>1a</sup> en la fórmula también puede ser R<sup>1b</sup>.

## (4) Producción del compuesto (3a) - 3

[Quim. 20]

15

10

(los símbolos en la fórmula son como se ha definido anteriormente)

Este proceso de producción es un método en el que el compuesto (3a) se produce mediante condensación del derivado de amina (6a) con una cetona (8a).

20

25

30

35

La reacción se puede llevar a cabo usando el compuesto (6a) y el compuesto (8a) en cantidades equivalentes de uno de ellos en una cantidad excesiva en un disolvente inerte en la reacción o sin disolvente, en presencia de un agente de deshidratación o un catalizador de ácido de Lewis, desde con refrigeración a con calentamiento, por ejemplo desde temperatura ambiente a calentamiento a reflujo normalmente con agitación durante de 0,1 horas a 5 días. No hay un límite concreto al disolvente que se puede usar en el presente documento. Los ejemplos de dicho disolvente incluyen hidrocarburos halogenados, éteres y similares. En algunos casos, puede ser ventajoso para la progresión suave de la reacción, llevar a cabo la reacción en presencia de un ácido fuerte tal como ácido fórmico-anhídrido acético, y ácido trifluoroacético. Los ejemplos del agente deshidratante incluyen anhídridos ácido tales como ácido polifosfórico, anhídrido acético y anhídrido trifluoroacético. Los ejemplos del catalizador de ácido de Lewis incluyen tetraisopropóxido de titanio y similares.

El compuesto de la presente invención se aísla y purifica como su compuesto libre o la sal, hidrato, solvato o polimorfo cristalino farmacéuticamente aceptable del mismos. La sal farmacéuticamente aceptable del compuesto de la fórmula (I) también se puede preparar de acuerdo con un método convencional para una reacción de formación de sal.

El aislamiento y la purificación se llevan a cabo aplicando operaciones químicas habituales tales como extracción, cristalización fraccionada y varios tipos de cromatografía fraccionada.

Se pueden preparar varios isómeros seleccionando un compuesto de partida adecuado o se pueden separar haciendo uso de la diferencia en las propiedades fisicoquímicas entre isómeros. Por ejemplo, el isómero óptico puede derivar en un isómero ópticamente puro por medio de métodos de resolución óptica generales (por ejemplo, cristalización fraccionada para inducir diaestereómeros con bases o ácidos ópticamente activos, cromatografía usando una columna quiral etc., y similares). Además, los isómeros también se pueden preparar a partir de un compuesto de partida ópticamente activo adecuado.

La actividad farmacológica del compuesto de la presente invención se confirmó mediante las pruebas siguientes.

# Ejemplo de ensayo 1: Análisis de compuestos sobre el bloqueo de los canales de Ca<sup>2+</sup> de tipo N

50

El cultivo de fibroblastos humanos (células IMR-32) y la inducción de diferenciación se llevaron a cabo mediante una modificación del método descrito en la bibliografía [Carbone et al., Pflugers Arch. Eur. J. Physiol., 416, 170 - 179 (1990)]. Las células IMR-32 se subcultivaron en MEM (Invitrogen Corporation, USA) que contiene 10 % de suero

bovino fetal (FBS), 1 % de aminoácidos no esenciales, 1 % de piruvato sódico, 100  $\mu$ g/ml de estreptomicina y 100 U/ml de penicilina. Tras la inducción de diferenciación celular, se añadieron dibutiril adenina monofosfato cíclico (dbcAMP) 1 mM y 5-dbromodesoxiuridina (BrdU) 2,5  $\mu$ M al medio de cultivo y las células se cultivaron durante de 10 a 11 días para dar lugar a la expresión de los canales de Ca²+ de tipo N.

Las células IMR-32 con diferenciación inducida de 10 - 11 días se sembraron a una densidad de 6×10<sup>5</sup> células/pocillo en una placa de 96 pocillos revestidas con poli-D-lisina. Después de cultivar las células en el medio de cultivo durante 3 horas o más se añadió Fluo-3 AM, seguido de incubación a 37 °C durante 60 minutos. El cultivo se lavó en tampón de ensayo (HBSS, HEPES 20 mM, probenecida 2,5 mM, pH 7,4), al que después se añadió la solución del compuesto de ensayo en presencia de nitrendipina 1 µM. Tras 10 minutos, la elevación de una concentración de Ca<sup>2+</sup> intracelular inducida mediante estimulación alta con K<sup>+</sup> con una solución de KCl 50 mM se analizó usando un kit de ensayo FLIPR Calcium Assay Kit (Molecular Devices Corporation, EE.UU.). La actividad de bloqueo de un compuesto de ensayo sobre los canales de Ca<sup>2+</sup> de tipo N se calculó como un valor relativo tomando un incremento máximo de una concentración de Ca<sup>2+</sup> intracelular en el grupo control como 100 %. Después, mediante análisis de regresión no lineal se calculó una concentración del compuesto (valor de Cl<sub>50</sub>) que se requiere para la inhibición del 50 % de un incremento de la concentración de Ca<sup>2+</sup> intracelular.

Como resultado, los compuestos de la presente invención exhibieron una acción de bloqueo sobre los canales de de Ca<sup>2+</sup> de tipo N. Los valores de Cl<sub>50</sub> para varios compuestos de la presente invención se proporcionan en la Tabla 1 siguiente. La abreviatura "Ej." en la tabla representa el número de ejemplo.

| [Tabla 1] |                       |     |                       |     |                       |
|-----------|-----------------------|-----|-----------------------|-----|-----------------------|
| Ej.       | CI <sub>50</sub> (µM) | Ej. | CI <sub>50</sub> (µM) | Ej. | Cl <sub>50</sub> (µM) |
| 1         | 1,0                   | 292 | 0,89                  | 435 | 1,4                   |
| 2         | 0,75                  | 296 | 2,4                   | 436 | 1,4                   |
| 117       | 1,4                   | 316 | 0,89                  | 449 | 0,85                  |
| 121       | 0,87                  | 319 | 1,3                   | 461 | 1,2                   |
| 134       | 2,0                   | 330 | 1,4                   | 473 | 1,9                   |
| 157       | 2,1                   | 379 | 1,2                   | 474 | 1,6                   |
| 174       | 2,1                   | 386 | 1,9                   | 476 | 1,0                   |
| 199       | 1,1                   | 409 | 1,3                   | 478 | 2,0                   |
| 202       | 0,78                  | 415 | 2,1                   | 480 | 2,0                   |
| 236       | 2,0                   | 429 | 1,1                   | 490 | 1,0                   |
| 274       | 1,5                   | 433 | 2,0                   | 504 | 0,62                  |

# Ejemplo de ensayo 2: Efectos de los compuestos sobre el modelo de dolor nociceptivo (ensayo de formalina)

Se llevó a cabo un ensayo de formalina en ratón mediante una modificación del método como se describe en la bibliografía [Murakami et al., Eur. J. Pharmacol. 419: 175 - 181 (2001)]. Cuando se administraron 20 µl de formalina al 2,0 % por vía subcutánea en las almohadillas de las patas de ratones (ddY, machos, de 5 semanas de edad) se indujeron comportamientos de dolor (retirada de la pata y comportamientos de lamido) en las extremidades de los animales tratados. De 15 a 25 minutos después de la administración de formalina se midió el tiempo transcurrido desde el inicio de los comportamientos de dolor para evaluar de este modo la acción inhibidora del compuesto de ensayo sobre los comportamientos de dolor de los animales. El compuesto de ensayo se administró por vía oral 3 minutos antes de la administración de formalina. La evaluación del compuesto de ensayo se realizó a partir del cálculo de una tasa de inhibición (%) en el grupo tratado con el compuesto de ensayo tomando el tiempo transcurrido para el inicio de los comportamientos de dolor en el grupo tratado con vehículo como 100 %.

Tasa de inhibición (%)= 100 – (tiempo medio de inicio de los comportamientos de dolor en el grupo tratado con compuesto de ensayo)/ (tiempo medio de inicio de los comportamientos de dolor en el grupo tratado con vehículo) x 100

Como resultado, los compuestos de la presente invención exhibieron una acción analgésica sobre el dolor inducido por formalina. Las tasas de inhibición (%) de varios compuestos de la presente invención a una dosis de 100 mg/kg se proporcionan en la Tabla 2 siguiente.

45

5

10

15

20

25

30

35

[Tabla 2]

| Ej. | Tasa de inhibición (%) |
|-----|------------------------|
| 1   | 52                     |
| 157 | 52                     |
| 415 | 95                     |
| 433 | 60                     |
| 436 | 55                     |

Ejemplo de ensayo 3: Efectos de los compuestos sobre el modelo de dolor neuropático (efectos antialodínicos en ratas con ligadura del nervio espinal L5/L6)

5

10

15

20

25

30

35

40

45

Uno de los síntomas principales del dolor neuropático es un umbral de respuesta significativamente reducida a la estimulación táctil (alodinia). Los efectos antialodínicos de los compuestos de la presente invención se confirmaron evaluando la acción analgésica en las ratas con ligadura del nervio espinal L5/L6. La evaluación se llevó a cabo mediante el método de Kim y Chung (Pain 50, 355 - 363, 1992) con algunas modificaciones.

Con anestesia con pentobarbital, los nervios espinales L5 y L6 izquierdos de ratas SD macho (5 - 6 semanas de edad) se ligaron fuertemente con hilo de seda. Para la evaluación de la acción analgésica se adoptó el ensayo del pelo de von Frey. Es decir, se pinchó la almohadilla de la pata trasera del animal con pelo y la menor resistencia del pelo para la respuesta de retirada de la pata se designó como un umbral de respuesta (log de gramos) a la estimulación mecánica. Dado que en los ensayos preliminares se confirmó que el umbral de respuesta de la pata trasera del animal ipsolateral al lado de la cirugía de ligadura era significativamente baja durante los días 7 a 14 después de la cirugía (en estado de alodinia mecánica), los efectos antialodínicos del compuesto de ensayo se evaluaron cualquier día entre los días 7 y 14 tras la cirugía. El día antes de la evaluación del compuesto de ensayo se midió el umbral de la respuesta antes de la administración del compuesto de ensayo. Los animales se dividieron en de 4 a 5 grupos de forma que el valor medio de las diferencias de los umbrales de respuesta entre los grupos antes de la administración del compuesto de ensayo y la variación dentro del grupo se hicieron pequeños. En la evaluación del compuesto de ensayo se midió el umbral de la respuesta después de la administración del compuesto de ensavo. El compuesto de ensavo se administró por vía oral de 30 a 60 minutos antes de la medición del umbral de respuesta. La potencia antialodínica del compuesto de ensayo se evaluó como una tasa de recuperación (%) en el grupo tratado con el compuesto de ensayo, tomando los umbrales de respuesta de las patas ipsolateral y contralateral del grupo tratado con vehículo como 0 % y 100 %, respectivamente.

Tasa de recuperación (%) {(media del umbral de respuesta en el grupo tratado con el compuesto de ensayo) – (media del umbral de respuesta de la pata ipsolateral en el grupo tratado con vehículo)} / {(media del umbral de respuesta de la pata contralateral en el grupo tratado con vehículo)-(media del umbral de respuesta de la pata ipsolateral en el grupo tratado con vehículo) x 100

Como resultado, los compuestos de la presente invención exhibieron una acción analgésica sobre la alodinia mecánica en el modelo de dolor neuropático. Tasas de recuperación (%) para los grupos con administración de varios compuestos de la presente invención se proporcionan en la Tabla 3 a continuación.

|     | [Tabla 3]                        |
|-----|----------------------------------|
| Ej. | Tasa de recuperación (%) (dosis) |
| 1   | 95 (30 mg/kg)                    |
| 157 | 97 (30 mg/kg)                    |
| 415 | 100 (10 mg/kg)                   |
| 433 | 80 (10 mg/kg)                    |
| 436 | 156 (10 mg/kg)                   |

Ejemplo de ensayo 4: Efectos de los compuestos sobre el modelo de dolor abdominal (ensayo de dolor abdominal inducido por DCR en ratas)

En respuesta a la estimulación con presión causada por la distensión colorrectal (DCR), se sabe que los pacientes de SII exhiben una reducción del umbral de percepción digestiva (alodinia) que da lugar a molestias contra el estímulo débil que no es percibido por una persona normal e hiperalgesia que condice a una respuesta subjetiva más fuerte a la percepción digestiva que en una persona normal (Gastroenterol. 130: 1377 - 1390 (2006)), y se cree que dichas afecciones son responsables de los síntomas abdominales. La mejora de los efectos de los compuestos de la presente invención sobre el dolor del tracto digestivo se confirmó mediante ensayo del dolor abdominal inducido por DCR en ratas. El ensayo del dolor abdominal inducido por DCR en ratas se llevó a cabo mediante una modificación del método descrito en la bibliografía [Neurogastroenterol. Motil. 15: 363 - 369 (2003)]. Cuando se

aplica estimulación de presión interna constante en la región colorrectal de un animal hinchando un globo de 6 cm de largo insertado en el ano de la rata (Wistar, machos, 250 - 350 g), se inducen comportamientos de reflejo de flexión abdominal debido al dolor abdominal. Se contó una frecuencia de los comportamientos de reflejo que se producían durante la estimulación de la distensión de 5 minutos para estimar una acción inhibidora del dolor abdominal del compuesto de ensayo. El compuesto de ensayo se administró por vía oral 30 minutos antes del inicio de la estimulación de la distensión. La estimación del compuesto de ensayo se realizó calculando una tasa de inhibición (%) de los comportamientos del reflejo de flexión abdominal sobre el grupo tratado con vehículo.

Como resultado, los compuestos de la presente invención exhibieron una acción inhibidora del dolor abdominal.

Para varios compuestos de la presente invención a una dosis de 10 mg/kg, las tasas de inhibición (%) de los comportamientos del reflejo de flexión abdominal tras la distensión a una presión interna de 45 mmHg se proporcionan en la Tabla 4 a continuación.

| [Tabla 4] |                        |  |
|-----------|------------------------|--|
| Ej.       | Tasa de inhibición (%) |  |
| 157       | 59                     |  |
| 415       | 60                     |  |
| 433       | 43                     |  |
| 435       | 46                     |  |
| 436       | 56                     |  |

Ejemplo de ensayo 5: Efectos de los compuestos sobre el modelo de estreñimiento espástico

(ensayo de retraso del transporte de esferas en colon inducido con loperamida)

20 Generalmente, se sabe que el inicio del estreñimiento en SII-E se debe a alteración de la movilidad espástica del tracto digestivo y es similar al estreñimiento inducido por opioides en términos de la fisiopatología de la enfermedad (Eur. J. Pharmacol. 75: 239 - 245 (1981), American J. Physiol. 96: 667 - 676 (1931), Nippon Rinsho 64: 1461 - 1466 (2006)). Una acción mejorada de los compuestos de la presente invención sobre el estreñimiento espástico se confirmó mediante un ensayo de retraso del tránsito de esferas en la región colorrectal inducido con loperamida en ratones. El ensayo del retraso del tránsito de esferas en la región colorrectal inducido con loperamida en ratones se 25 llevó a cabo mediante una modificación del método descrito en la bibliografía [J. Smooth Muscle Res. 29: 47 - 53 (1993)]. Una esfera de vidrio de 3 mm de diámetro se inserta profundamente a una profundidad de 2 cm en el ano del ratón (ddY, machos, 6 semanas de edad) y se mide el tiempo transcurrido para la excreción de la esfera. Cuando se administran por vía subcutánea 0,3 mg/kg de loperamida 30 minutos antes de la inserción de la esfera, se induce 30 el retraso de la excreción de la esfera. Con efectos de mejora sobre el retraso en el tránsito de las esferas inducido con loperamida se evaluó una acción de mejora del movimiento intestinal del compuesto de ensayo sobre el estreñimiento espástico. El compuesto de ensayo se administró por vía oral junto con la administración de loperamida (30 minutos antes de la inserción de la esfera), La evaluación del compuesto de ensayo se realizó a partir del cálculo de una tasa de mejora en el tiempo de excreción de la esfera del grupo tratado con el compuesto 35 de ensayo/grupo tratado con loperamida, tomando el tiempo de excreción de la esfera del grupo no tratado con el compuesto de ensayo/no tratado con loperamida (tratado con vehículo/tratado con vehículo) como del 100 % y tomando el tiempo de excreción de la esfera del grupo no tratado con el compuesto de ensayo/tratado con loperamida (tratado on vehículo/tratado con loperamida) como del 0 %.

40 Como resultado, los compuestos de la presente invención exhibieron una acción de mejora del estreñimiento inducido por opioides. Para varios compuestos de la presente invención a una dosis de 3 mg/kg, las tasas de mejora (%) en el tiempo de excreción de la esfera se proporcionan en la Tabla 5 a continuación.

| [Tabla 5] |                        |  |
|-----------|------------------------|--|
| Ej.       | Tasa de inhibición (%) |  |
| 157       | 40                     |  |
| 415       | 88                     |  |
| 433       | 73                     |  |
| 435       | 67                     |  |
| 436       | 59                     |  |

Ejemplo de ensayo 6: Efectos de los compuestos en el uso combinado con morfina (1)

La morfina tiene potentes efectos analgésicos sobre el dolor nociceptivo a través de los receptores de opioides μ. Por ejemplo, la morfina exhibe efectos analgésicos dependientes de la dosis en un ensayo de formalina que es un modelo de dolor nociceptivo Pharmacol. Biochem. Behav. 84: 479 - 486 (2006)). Entretanto, se sabe que un péptido

15

5

45

bloqueante selectivo de los canales de Ca<sup>2+</sup> de tipo N, ω-conotoxina (ω-CTx), también exhibe de forma independiente efectos analgésicos dependientes de la dosis en el ensayo de formalina y su uso combinado con morfina potencia los efectos analgésicos sobre los obtenidos mediante el uso único de morfina (efectos acumulativos) (Pain 84: 271 - 281 (2000)). Por tanto, se puede confirmar que cuando se usaron los compuestos de la presente invención que tienen una acción bloqueante de los canales de Ca<sup>2+</sup> de tipo N en combinación con morfina en el ensayo de formalina se logra una potente acción sobre el dolor nociceptivo comparable o más alta a la de la administración única de morfina o la administración única del compuesto de la presente invención.

#### Ejemplo de ensayo 7: Efectos de los compuestos en el uso combinado con morfina (2)

5

10

15

20

25

30

35

40

60

65

Se sabe que la alodinia mecánica observada en ratas con ligadura del nervio espinal L5/L6 exhibe solo una recuperación parcial con el tratamiento de morfina. Por otro lado, como se ha descrito anteriormente en el presente documento, los compuestos de la presente invención exhiben efectos de recuperación de casi el 100 % sobre la alodinia mecánica en las ratas con ligadura del nervio espinal L5/L6. Por tanto, cuando los compuestos de la presente invención se usaron en combinación con morfina, se puede confirmar una potente acción sobre el dolor neuropático comprable o mayor que la administración única de morfina o la administración única de los compuestos de la presente invención analizando sus efectos antialodínicos en las ratas con ligadura del nervio espinal L5/L6.

## Ejemplo de ensayo 8: Efectos de los compuestos en el uso combinado con morfina (3)

La morfina es un agonista de los receptores de opioides de tipo µ que tiene el mismo mecanismo de acción que la loperamida y tiene una acción de retraso sobre el transporte de las esferas en el colon de ratones, similar a la loperamida. Tras la administración de una dosis de morfina que exhibe una acción inhibidora del dolor abdominal en el ensayo de dolor abdominal inducido por DCR en ratas y exhibe una acción de retraso del tránsito en el ensayo de retraso del tránsito de esferas en la región colorrectal de ratones y una dosis del compuesto de ensayo que mejora el retraso del tránsito de la esfera causado por la dosis de morfina definida anteriormente, se puede confirmar que dicho uso combinado exhibe un potente acción inhibidora del dolor abdominal comparable o superior a la de la administración única de morfina en el ensayo de dolor abdominal inducido por DCR en ratas y también tiene una acción inhibidora sobre el retraso del tránsito inducido por morfina en el ensayo del tránsito de esferas.

Como alternativa, tras la administración del compuesto de ensayo con una dosis baja de morfina a la que una acción inhibidora del dolor abdominal es insuficiente en el ensayo de dolor abdominal inducido por DCR en ratas pero una acción de retraso no se reconocen en el ensayo de tránsito de esferas en el colon de ratón se puede confirmar una acción inhibidora del dolor abdominal suficiente que no se obtuvo con una dosis baja de morfina sola.

A partir de los resultados experimentales como se ha descrito anteriormente, se confirmó que los compuestos de la presente invención tienen una acción bloqueante de los canales de Ca<sup>2+</sup> de tipo N. Por tanto, está claro que los compuestos de la presente invención son útiles como ingrediente activo de una composición farmacéutica para la prevención y/o tratamiento de varios dolores tales como dolor neuropático y dolor nociceptivo, cefaleas tales como migrañas y cefaleas en racimo, enfermedades del sistema nervioso central tales como ansiedad, depresión, epilepsia, ictus cerebral y síndrome de las piernas inquietas, enfermedades del sistema digestivo tales como dolor abdominal y síndrome del intestino irritable, y enfermedades del sistema urinario, tales como vejiga hiperactiva y cistitis intersticial.

A partir de los resultados de el ensayo de formalina como se ha descrito anteriormente se confirmó que los compuestos de la presente invención tienen una acción contra el dolor nociceptivo. Además, a partir de los resultados de los efectos antialodínicos en ratas con ligadura del nervio espinal L5/L6, se confirmó que los compuestos de la presente invención tienen una acción contra el dolor neuropático. Tras considerar estos hechos, está claro que los compuestos de la presente invención son útiles como ingrediente activo de una composición farmacéutica para prevenir y/o tratar varios dolores, incluyendo el dolor neuropático y el dolor nociceptivo. Adicionalmente, está clínicamente demostrado que la pregabalina, que es un ligando de la subunidad α2δ de los canales de Ca<sup>2+</sup> y e usa como agente contra el dolor neuropático, exhibe efectos terapéuticos sobre el síndrome de fibromialgia, que tiene mucho en común con el dolor neuropático, en términos de afección clínica. Según este punto, se puede considerar que los compuestos de la presente invención también son útiles como ingrediente activo de una composición farmacéutica para prevenir y/o tratar el síndrome de fibromialgia.

A partir de los resultados del ensayo de dolor abdominal inducido por DCR en ratas como se ha descrito anteriormente se demostró que los compuestos de la presente invención tienen una acción inhibidora del dolor abdominal. Por tanto, está claro que los compuestos de la presente invención son útiles como ingrediente activo de una composición farmacéutica para prevenir y/o tratar los síntomas abdominales, en particular los síntomas abdominales del SII.

A partir de los resultados del ensayo del retraso del tránsito de esferas en la región colorrectal inducido por loperamida en ratones se demostró que los compuestos de la presente invención tienen una acción de mejora del estreñimiento inducido con opioides. Según este hecho, está claro que los compuestos de la presente invención son útiles como ingrediente activo de una composición farmacéutica para prevenir y/o tratar el estreñimiento espástico,

# ES 2 537 803 T3

en particular el estreñimiento en la DIO. Además, a partir del hecho de que el estreñimiento en el SII-E es un estreñimiento espástico, similar al estreñimiento causado por los opioides, está claro que los compuestos de la presente invención también son útiles como ingrediente activo de una composición farmacéutica para prevenir y/o tratar el estreñimiento en el SII-E.

5

A partir del hecho que demuestra que los compuestos de la presente invención son eficaces en el ensayo de dolor abdominal inducido por DCR en ratas y el ensayo de retraso del tránsito de esferas en la región colorrectal inducido por loperamida en ratones, está claro que los compuestos de la presente invención también son útiles como ingrediente activo de una excelente composición farmacéutica para prevenir y/o tratar el SII-E, con una combinación de una acción de mejora de los síntomas abdominales y una acción de mejora del estreñimiento.

15

10

Se sabe que el uso de un péptido bloqueante de los canales de  $Ca^{2^+}$  de tipo N,  $\omega$ -conotoxina ( $\omega$ -CTx), en combinación con morfina potencia los efectos analgésicos sobre los obtenidos mediante el uso de morfina sola (efectos acumulativos) ((Pain 84: 271 - 281 (2000), Life Science 73: 2873 - 2881 (2003)). Por tanto, cabe esperar que el uso combinado de los compuestos de la presente invención y opioides tenga como resultado una excelente composición farmacéutica para prevenir y/o tratar el dolor, que ejerce efectos analgésicos más potentes que el uso individual de opioides.

20

25

Los opioides se usan como agente terapéutico para el dolor intenso, tal como el dolor por cáncer, pero sufren problemas clínicos asociados con efectos secundarios dependientes de la dosis sobre el sistema digestivo, tales como vómitos o estreñimiento (Eur. J. Pharmaceutical Sci. 20: 357 - 363 (2003)). Los compuestos de la presente invención exhiben excelentes efectos de mejora sobre el estreñimiento inducido por opioides (EIO). Según este hecho, cabe esperar que los compuestos de la presente invención en uso combinado con los opioides tengan como resultado una composición farmacéutica para prevenir y/o tratar el dolor, que inhibe el estreñimiento inducido pr opioides con menos efectos secundarios. Además, cabe esperar que el uso combinado de los compuestos de la presente invención y una dosis baja de opioides tenga como resultado una composición farmacéutica excelente para prevenir y/o tratar el dolor, que sea capaz de ejercer suficientes efectos analgésicos al tiempo que se reduce una dosis de opioides y que también sea capaz de disminuir el inicio del estreñimiento a partir de una reducción de la dosis de opioides.

30

Una preparación que contiene uno o dos o más tipos del compuesto de la fórmula o una sal farmacéuticamente aceptable del mismo como ingrediente activo se puede preparar de acuerdo con un método usado generalmente, usando un vehículo, excipiente o similar farmacéuticamente aceptable, que normalmente se usa en la técnica.

35

La administración se puede llevar a cabo mediante administración oral con comprimidos, píldoras, cápsulas, gránulos, polvos, preparados líquidos o similares, o administración parenteral mediante inyecciones tales como inyección intraarticular, inyección intravenosa, inyección intramuscular o similares, sí como supositorios, gotas oculares, pomadas oculares, preparados líquidos percutáneos, ungüentos, parches percutáneos, preparados líquidos transmucosos, parches transmucosos, inhalaciones y similares.

40

Como composiciones sólidas para administración oral de acuerdo con la presente invención se utilizan tabletas, polvos, gránulos, o similares. En dicha composición sólida, uno, o dos o más tipos de ingredientes activos se mezclan con al menos un excipiente inerte tal como lactosa, manitol, glucosa, hidroxipropilcelulosa, celulosa microcristalina, almidón, polivinilpirrolidona, y / o aluminometasilicato de magnesio. De acuerdo con un procedimiento convencional, la composición puede contener aditivos inertes tal como un lubricante tal como estearato de magnesio, un disgregante tal como carboximetilalmidón de sodio, un agente estabilizador y un auxiliar de solubilización. Según lo requiera la ocasión, los comprimidos o píldoras pueden estar recubiertos con una película de un recubrimiento de azúcar o un agente de recubrimiento gástrico o entérico.

50

45

Las composiciones líquidas para administración oral incluyen emulsiones, soluciones, suspensiones, jarabes, elixires, o similares farmacéuticamente aceptables y contienen un diluyente inerte de uso habitual, tal como agua purificada o etanol. Además del diluyente inerte, la composición líquida puede contener un adyuvante tal como un agente solubilizante, un agente hidratante y un agente de suspensión, un edulcorante, un sabor, un aroma, y un conservante.

55

60

Inyecciones para la administración parenteral incluyen soluciones, suspensiones y emulsiones acuosas o no acuosas estériles. El disolvente acuoso incluye, por ejemplo, agua destilada para inyección y solución salina fisiológica. Ejemplos del disolvente no acuoso incluyen propilenglicol, polietilenglicol, aceites vegetales tales como aceite de oliva, alcoholes tales como etanol y polisorbato 80 (Farmacopea Japonesa) y similares. Tal composición puede contener además un agente de tonicidad, un conservante, un agente hidratante, un agente emulsionante, un agente dispersante, un agente estabilizador o un auxiliar de la solubilización. Estos se esterilizan, por ejemplo, mediante filtración a través de un filtro de retención de bacterias, la incorporación de un agente esterilizante o irradiación. Además, estos también pueden usarse preparando una composición sólida estéril, y disolviéndola o suspendiéndola en agua estéril o un disolvente estéril para inyección antes de su uso.

Las preparaciones externas incluyen incluye pomadas, yesos, cremas, gelatinas, parches cutáneos adhesivos, aerosoles, lociones, gotas oculares, pomadas oculares y similares. La preparación externa contiene bases de pomadas de uso habitual, bases de loción acuosa, líquidos acuosos o no acuosos, suspensiones, emulsiones, y similares Ejemplos de las bases de pomada o bases de loción incluyen polietilenglicol, propilenglicol, vaselina blanca, cera de abeja blanqueada, aceite de ricino hidrogenado de polioxietileno, monoestearato de glicerilo, alcohol estearílico, alcohol cetílico, lauromacrogol, sesquioleato de sorbitán y similares.

Las preparaciones transmucosas tales como inhalaciones y preparaciones transnasales se usan en forma sólida, líquida o semisólida y pueden prepararse de acuerdo con un método conocido convencionalmente. Por ejemplo, un excipiente conocido, y también un agente de ajuste del pH, un conservante, un tensioactivo, un lubricante, un agente estabilizador, un agente espesante o similares se pueden añadir adecuadamente. Para su administración, se puede utilizar un dispositivo adecuado para la inhalación o soplado. Por ejemplo, un compuesto puede administrarse solo o como un polvo de una mezcla formulada, o como una solución o suspensión en combinación con un vehículo farmacéuticamente aceptable usando un dispositivo o pulverizador conocido convencionalmente, tal como un dispositivo de inhalación de administración medida. El inhalador de polvo seco o similar puede ser para uso de administración única o múltiple, y se puede polvo seco o una cápsula que contiene polvo. Como alternativa, este puede estar en una forma tal como un pulverizador de aerosol presurizado o similar que utiliza un propelente adecuado, por ejemplo, un gas adecuado tal como clorofluoroalcano, hidrofluoroalcano o dióxido de carbono.

En la administración oral, la dosis diaria es, generalmente, de aproximadamente 0,001 a 100 mg/kg, preferentemente de 0,1 a 30 mg/kg, y más preferentemente de 0,1 a 10 mg/kg, por peso corporal, administrada en una porción o en de 2 a 4 porciones divididas. En el caso de la administración intravenosa, la dosis diaria se administra adecuadamente de aproximadamente 0,0001 a 10 mg/kg por peso corporal, una vez al día o dos o más veces al día. Además, un agente transmucoso se administra a una dosis de aproximadamente 0,001 a 100 mg/kg por peso corporal, una vez al día o dos o más veces al día. La dosis se decide adecuadamente en respuesta al caso individual teniendo en cuenta los síntomas, la edad y el sexo, y similares.

Los compuestos de la presente invención se pueden usar en combinación con varios agentes para tratar o prevenir las enfermedades para las que los compuestos de la presente invención se consideran eficaces. Ejemplos de los fármacos que se pueden usar en combinación con los compuestos de la presente invención incluyen opioides tales como morfina, antidepresivos tales como duloxetina y amitriptilina, fármacos antiepilépticos tales como pregabalina y mexiletina, fármacos antiinflamatorios no esteroideos tales como diclofenaco y similares. Para este uso combinado, los compuestos de la presente invención se formulan en formas de dosificación adecuadas tales como preparaciones líquidas, cápsulas, gránulos, píldoras, polvos, comprimidos, preparaciones externas, gelatinas, pulverizadores, parches, supositorios y bombas implantables autocontenidas y la preparación combinada se puede administrar de forma simultánea o por separado y continuamente o a un intervalo de tiempo deseado, por vía oral, transvenosa, percutánea, transnasal, enteral, epidural espinal o subaracnoidea espinal. Las preparaciones para coadministrar pueden ser una mezcla o pueden prepararse individualmente.

# 40 Ejemplos

5

10

15

30

35

45

55

60

65

En lo sucesivo en el presente documento, los procesos de producción del compuesto de la presente invención se describirán con más detalle con referencia a los ejemplos. La presente invención no está limitada a los ejemplos siguientes. Además, los procesos de producción de los compuestos de partida se muestran en los ejemplos de producción. Los procesos de producción del compuesto de la presente invención no están limitados a los procesos de producción de los ejemplos específicos como se describe más adelante. El compuesto de la presente invención se puede producir de acuerdo con una combinación de estos procesos de producción de acuerdo con un método obvio para un experto en la técnica.

50 Con respecto a los ejemplos, los ejemplos de producción y las tablas descritos más adelante se usarán las siguientes abreviaturas.

Rex: número de ejemplo de producción; Ej.: Número de ejemplo, Nº: número de compuesto, ESRUCTURA: fórmula estructural, Dat.: datos fisicoquímicos (FAB: FAB-MS[M+H]<sup>†</sup>, FAN: FAB-MS[M-H]<sup>¯</sup>, FA1: FAB-MS[M]<sup>†</sup>, FA2: FAB-MS[M+2H]<sup>†</sup>, ES: ESI-MS[M+H]<sup>†</sup>, ES1: ESI-MS[M]<sup>†</sup>, ES2: ESI-MS[M+2H]<sup>†</sup>, ESNa: FSI-MS[M+Na]<sup>†</sup>, AP: APCI-MS[M+H]<sup>†</sup>, AP1: APCI-MS[M]<sup>†</sup>, CI: CI[M+H]<sup>†</sup>, CIN: CI[M-H]<sup>¯</sup>, CI1: CI[M]<sup>†</sup>, EI: EI[M+H]<sup>†</sup>, EIN: EI[M-H]<sup>¯</sup>, EI1: EI[M]<sup>†</sup>, EIR: EI[M-Br]<sup>¯</sup> RMN: δ (ppm) del pico de RMN de <sup>1</sup>H en DMSO-d<sub>6</sub>), N/D: no determinado, sal: sal (con la columna en blanco o sin columna: representa que el compuesto es una forma libre), CL: clorhidrato, BR: Bromhidrato, OX: oxalato, FM: fumarato, MD: D-m y elato, ML: L-m y ácido élico, LL: sal de N-acetil-L-leucina, T1: L-tartrato, T2: D-tartrato, TX: dibenzoil-D-tartrato, TY: dibenzoil-L-tartrato, TP: diparataluil-D-tartrato, TQ: diparatoluoil-L-tartrato, MA: ácido L-málico, MB: ácido D-málico), Me: metilo; Et: etilo, nPr: propilo normal, iPr: isopropilo, tBu: terc-butilo, cPr: ciclopropilo, cBu: ciclobutilo, cPen: ciclopentilo, cHex: ciclohexilo, Admt: adamantilo, Ph: fenilo; Bn: bencilo, Thp: tetrahidropiranilo, pipe: piperidinilo, pipa: piperadinilo, CN: ciano, boc: terc-butiloxicarbonilo, Ac: acetilo, MOM: metoximetilo, TMS: trimetilsililo, di: di, THF: tetrahidrofurano, DMF: N, N-dimetilformamida; DMSO: dimetilsulfóxido. El numeral antes del sustituyente representa una posición de sustitución y, por ejemplo, 6-Cl-2-Py representa 6-cloropiridin-2-ilo y 3,3-diF-cHex representa 3,3-difluorociclohexilo. Rsyn y Syn: Método de producción (los numerales

indican que los compuestos se han producido usando los correspondientes materiales de partida con el método similar al caso de los compuestos que tienen, respectivamente, los numerales como los números del ejemplo de producción o los números de ejemplo). Además, entre los compuestos de los ejemplos de producción o los ejemplos en las tablas, para el compuesto en el que una configuración de un sustituyente en la posición 1 de la tetrahidroisoquinolina no está determinada pero se muestra una única configuración en todos los lados, la configuración en todos los lados está marcada y, después, se da el número de ejemplo de producción o el número de ejemplo\*. Por otro lado, para el compuesto en el que una configuración de un sustituyente en la posición 1 de la tetrahidroisoquinolina está determinada o el compuesto en el que la configuración está razonablemente analogizada en base al comportamiento en la cromatografía en columna quiral o el comportamiento de la actividad en el ensayo de bloqueo de los canales de Ca²+ de tipo N, la configuración solo está marcada.

Además, el compuesto en el que se da el mismo número después del \* representa que el compuesto se produce usando un compuesto al que se le da el mismo número y en el que una configuración de un sustituyente en la posición 1 de la tetrahidroisoquinolina no está determinada pero una configuración única está marcada en todos los lados, como material de partida.

#### Ejemplo de producción 1

10

15

50

65

N-(2-ciclohexa-1-en-1-iletil)-2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetanamina (431 mg) se disolvió en cloroformo (12 ml) y se añadió anhídrido trifluoroacético (0,3 ml) en enfriamiento con hielo, seguido de agitación a temperatura ambiente durante 10 horas y después agitación a 60 °C durante 2 horas. El disolvente se evaporó y se añadió bicarbonato sódico acuoso saturado al líquido de reacción que después se extrajo con cloroformo. El líquido de reacción se lavó una vez con salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo) para obtener N-(2-ciclohexa-1-en-1-iletil)-N-[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]-2,2,2-trifluoroacetamida (419 mg).

#### Ejemplo de producción 2

N-(2-ciclohexa-1-en-1-iletil)-N-[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]-2,2,2-trifluoroacetamida

(408 mg) se disolvió en una mezcla de 3: 1 (8 ml) de acetona-agua. Al líquido de reacción se añadió 4-óxido de 4-metilmorfolina (200 mg) y una solución de 2,5 % de teróxido de osmio en alcohol terc-butílico (2,68 ml), seguido de agitación a temperatura ambiente durante 18 horas. Después, el disolvente de reacción se evaporó a presión reducida y se añadió agua al líquido de reacción, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener N-(2-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]-N-{2-[cis-1,2-dihidroxiciclohexil]etil}-2,2,2-trifluoroacetamida (276 mg).

#### Ejemplo de producción 3

2-(cloroacetil)-1-ciclohexil-7-metoxi-1,2,3,4-tetrahidroisoquinolina (700 mg) se disolvió en acetonitrilo (15 ml), a la que después se añadieron carbonato potásico (2,1 g), clorhidrato de 2-ciclopenta-1-en-1-iletanamina (1,6 g), y yoduro de tetra-n-butilamonio (80 mg), seguido de agitación a 70 °C durante 5 horas. A continuación, el disolvente se evaporó y se añadió agua al líquido de reacción, seguido de extracción con EtOAc. El extracto se lavó una vez con salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH).

El compuesto resultante se disolvió en cloroformo (10 ml) y se añadió anhídrido trifluoroacético 0,34 ml), seguido de agitación a temperatura ambiente durante 14 horas. Después, el disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-EtOAc) para obtener N-(2-ciclohexil-7-metoxi-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]-N-(2-ciclopenta-1-en-1-iletil)-2,2,2-trifluoroacetamida (450 mg).

#### Ejemplo de producción 4

(L)-tartrato de (1R)-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (520 mg) se disolvió en EtOAc (10 ml) y se añadió bicarbonato sódico acuoso (10 ml). Con enfriamiento con hielo, gota a gota se añadió al líquido de reacción una solución de cloruro de cloroacetilo ((0,14 ml) en EtOAc (5 ml) durante 5 minutos, seguido de agitación a temperatura ambiente durante 1 hora. El líquido de reacción se extrajo con EtOAc y se secó sobre sulfato magnésico para obtener (1R)-2-(cloroacetil)-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (415 mg).

#### 60 Ejemplo de producción 5

Se añadió clorhidrato de 7-cloro-1-ciclohexil-1,2,3,4-tetrahidroisoquinolano (899 mg) a bicarbonato sódico acuoso saturado (15 ml), al que después se añadió EtOAc (10 ml) adicional. Gota a gota se añadió una solución de cloruro de cloroacetilo (390 mg) en EtOAc (5 ml) al líquido de reacción durante 5 minutos. El líquido de reacción se agitó durante 1 hora, se extrajo con EtOAc y se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-EtOAc) para obtener 7-cloro-2-

(cloroacetil)-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (888 mg).

# Ejemplo de producción 6

Gota a gota se añadió una mezcla de cloruro de cloroacetilo (1,03 g) y EtOAc (5 ml) con agitación a una mezcla de (1S)-1-fenil-1,2,3,4-tetrahidroisoquinolina (1,58 g), hidrógenocarbonato sódico (960 mg), agua (25 ml) y EtOAc (25 ml), seguido de agitación a temperatura ambiente durante 2 horas. El líquido de reacción se extrajo con EtOA, y el extracto se lavó secuencialmente con bicarbonato sódico acuoso saturado y salmuera saturada, se secó sobre sulfato de magnesio, y se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano- cOEt, 4: 1) para obtener (1S)-2-(cloroacetil)-1-fenil-1,2,3,4-tetrahidroisoquinolina (2,14 g).

## Ejemplo de producción 7

El clorhidrato de 1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (800 mg) se disolvió en cloruro de metileno (12 ml), a lo que después se añadieron trietilamina (1,1 ml) y cloruro de acriloílo (0,28 ml) con enfriamiento en hielo, seguido de agitación con enfriamiento en hielo durante 30 minutos y después agitación a temperatura ambiente durante 14 horas. Al líquido de reacción se añadió agua, que después se extrajo con cloroformo. El extracto se lavó una vez con salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó para obtener 2-acriloil-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (856 mg).

# Ejemplo de producción 8

El ácido 1-bencil-4-hidroxipiperidin-4-carboxílico (951 mg) se disolvió en DMF (25 ml) y a ello se añadió N,N'carbonildiimidazol (720 mg), seguido de agitación a temperatura ambiente durante 18 horas. Después, N,Ndiisopropiletilamina (784 mg) y clorhidrato de 1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (1,22 g) se añadieron al
líquido de reacción, seguido de agitación a 60 °C durante 18 horas. El disolvente se evaporó y se añadieron agua y
EtOAc al líquido de reacción. Los materiales insolubles resultantes se separaron a través de celite, se extrajeron con
EtOAc y se secaron sobre sulfato de magnesio y el disolvente se evaporó. El residuo resultante se purificó mediante
cromatografía en columna en gel de sílice (cloroformo-MeOH) y se disolvió en 1,4-dioxano (12 ml) y a ello se añadió
dicarbonato de di-terc-butilo (1,3 g), seguido de agitación a temperatura ambiente durante 1 hora. El disolvente se
evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-EtOAc y
después cloroformo-MeOH) para obtener 1-bencil-4-[(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)carbonil]piperidin-4ol (115 mg).

## Ejemplo de producción 9

1-bencil-4-[(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)carbonil]piperidin-4-ol (220 mg) se disolvió en MeOH (12 ml) y se añadió 20 % de carbón activado soportado con hidróxido de paladio (360 mg), seguido de agitación en atmósfera de nitrógeno, a temperatura ambiente y presión normal durante 15 horas. Después, el catalizador se separó a través de celite. El disolvente se evaporó para obtener 4-[(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)carbonil]piperidin-4-ol (154 mg).

#### Ejemplo de producción 10

A una solución de 1-(terc-butoxicarbonil)-L-prolina (1,28 g) en 1,2-dicloroetano (10 ml) se añadió N-metilmorfolina (0,873 ml), seguido de la posterior adición de cloruro de pivaloílo (0,734 ml). El líquido de reacción se agitó durante 1 hora y se añadió N-metilmorfolina (1,09 ml) y clorhidrato de 1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (1,00 g). La mezcla se agitó a temperatura ambiente durante 15 horas. A la solución de reacción se añadieron EtOAc y una solución acuosa 1 M de HCl. La capa orgánica se lavó con agua, una solución acuosa saturada de hidrógeno carbonato de sodio y salmuera saturada, se secó sobre sulfato de magnesio, y se filtró. El filtrado se concentró a presión reducida para obtener (2S)--2-[(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)carbonil]pirrolidin-1-carboxilato de terc-butilo (1,79 g).

# Ejemplo de producción 11

El clorhidrato de 1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (1,00 g) se disolvió en cloruro de metileno (20 ml), y cloruro se añadió cloruro de pivaloílo (0,98 ml) y 4-metilmorfolina (2,2 ml) en enfriamiento con hielo. El líquido de reacción se agitó a temperatura ambiente durante 30 minutos y después se enfrió con hielo y a ello se añadió ácido [(terc-butoxicarbonil) amino] acético (1,54 g). El líquido de reacción se agitó a temperatura ambiente durante 14 horas y después se añadió agua al mismo, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener [2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]carbamato de terc-butilo (1,49 g).

65

35

40

45

50

55

5

10

15

20

25

30

35

45

50

55

60

A una solución de (2S)-2-[(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)carbonil]pirrolidin-1-carboxilato de terc-butilo (1,79 g) en EtOAc (4 ml) se añadió HCl/EtOAc (4 ml) 4 M. La mezcla se agitó a temperatura ambiente durante 5 horas. El disolvente se evaporó a presión reducida y al residuo se añadieron cloroformo y una solución de hidrógeno carbonato de sodio acuoso saturado. La capa orgánica se lavó con salmuera saturada, se secó sobre sulfato de magnesio, se filtró y se concentró para obtener 1-ciclohexil-2-L-prolil-1,2,3,4-tetrahidroisoquinolina (1,26 g).

#### Ejemplo de producción 13

El [2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]carbamato de terc-butilo (1,5 g) se disolvió en EtOAc (20 ml) y al mismo se añadió HCl/EtOAc 4 M (3 ml) en enfriamiento con hielo, seguido de agitación a 50 °C durante 5 horas. Después, el disolvente de reacción se evaporó. Al líquido de reacción se añadió bicarbonato sódico acuoso saturado, que después se extrajo con cloroformo. El extracto se lavó una vez con salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener [2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetanamina (1,09 g).

## Ejemplo de producción 14

La [2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetanamina (695 mg) se disolvió en cloruro de metileno (12 ml) y a ello se añadió tetraisopropóxido de titanio (1,1 ml) y 1-ciclohexeno-1-carbaldehído (309 mg), seguido de agitación a temperatura ambiente durante 3 horas. A continuación, el disolvente se evaporó y a la mezcla se añadieron MeOH (15 ml) y después cianotrihidroborato de sodio (190 mg), seguido de agitación durante 14 horas. El disolvente se evaporó y a la mezcla se añadieron agua y EtOAc. La mezcla se filtró a través de celite y se extrajo con EtOAc. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener N-(ciclohexa-1-en-1-ilmetil)-2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetanamina (585 mg).

El compuesto resultante (525 mg) se disolvió en 1,4-dioxano (10 ml) y se añadió dicarbonato de di-terc-butilo (312 mg), seguido de agitación a temperatura ambiente durante 4 horas. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-EtOAc) para obtener N-(ciclohexa-1-en-1-ilmetil)-N-[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]carbamato de terc-butilo (564 mg).

#### Ejemplo de producción 15

A una solución de 1,1-difenil-1,2,3,4-tetrahidroisoquinolina (339 mg), monohidrato de p-toluenosulfonato (11,3 mg) en tolueno (5 ml) se añadió cloruro de cloroacetilo (0,151 ml). La mezcla se calentó a reflujo durante 3 horas. El disolvente se evaporó a presión reducida y al residuo se añadieron EtOAc y una solución de HCl 1 M acuoso. La capa orgánica se lavó con agua, una solución acuosa saturada de hidrógeno carbonato de sodio y salmuera saturada, se secó sobre sulfato de magnesio, y se filtró. El filtrado se concentró a presión reducida para obtener 2-(cloroacetil)-1,1-difenil-1,2,3,4-tetrahidroisoquinolina (452 mg).

# Ejemplo de producción 16

Se añadió 10 % carbono en soporte de Pd (900 mg) se añadió a una solución de 2-bencil-1,1-difenil-1,2,3,4-tetrahidroisoquinolina (1,81 g) en una mezcla de 2: 1 THF-MeOH (30 ml). La mezcla se agitó en atmósfera de hidrógeno a temperatura ambiente durante 16 horas. Además, a la mezcla se añadió carbono soportado en 10 % de Pd (900 mg), seguido de agitación durante 8 horas. La mezcla de reacción se filtró a través de celite y el filtrado se concentró a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 1,1-difenil-1,2,3,4-tetrahidroisoquinolina (339 mg).

# Ejemplo de producción 17

En un baño de hielo en corriente de argón, gota a gota se añadió una solución 1,07 M de bromuro de fenilmagnesio en THF (33,2 ml) a una solución de hidrobromato de 2-bencil-1-fenil-3,4-dihidroisoquinolina (8,95 g) en THF (80 ml) durante 1 hora. La mezcla se agitó a temperatura ambiente durante 1 hora. Una solución de cloruro de amonio acuoso saturado se añadió a la mezcla, que después se extrajo con EtOAc. El extracto se lavó con agua y salmuera, se secó sobre sulfato de magnesio y se evaporó. El filtrado se concentró a presión reducida, y el residuo resultante se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 2-bencil-1,1-difenil-1,2,3,4-tetrahidrolsoquinolina (1,81 g).

5

10

15

25

30

A una solución de 6,8-dimetoxi-1-fenil-3,4-dihidroisoquinolina (1,96 g) en EtOH (50 ml) se añadió borohidruro sódico (450 mg) con agitación durante 5 minutos. La mezcla de reacción se agitó a temperatura ambiente durante 2 horas y luego se agitó adicionalmente a 60 °C durante 1,5 horas. La mezcla de reacción se enfrió hasta la temperatura ambiente y se concentró a presión reducida. Al residuo resultante se añadió una solución acuosa de HCl 3 M (60 ml), seguido de calentamiento a reflujo durante 3 minutos. Después de enfriar, se añadió a la mezcla una solución acuosa al 20 % de NaOH para que tuviera una fuerte alcalinidad, seguido de extracción con cloroformo. La capa orgánica se lavó con salmuera saturada, se secó sobre sulfato de magnesio, se filtró y se concentró a presión reducida para obtener 6,8-dimetoxi-1-fenil-1,2,3,4-tetrahidroisoquinolina (1,88 g).

#### Ejemplo de producción 19

La 1-ciclohexil-6-metil-3,4-dihidroisoquinolina (4,84 g) se disolvió en MeOH (100 ml) y a ella se añadió borohidruro sódico (966 mg), seguido de agitación a temperatura ambiente durante 3 horas. El disolvente se evaporó a presión reducida. A la mezcla de reacción se añadió agua, que después se extrajo con cloroformo. El extracto se secó sobre sulfato de magnesio y el disolvente se evaporó a presión reducida.

El residuo resultante se disolvió en EtOAc (100 ml) y al mismo se añadió una solución 4 M de HCI / EtOAc (8 ml) en enfriamiento con hielo, seguido de agitación a temperatura ambiente. Los materiales insolubles resultantes se recogieron y se lavaron con EtOAc para obtener clorhidrato de 1-ciclohexil-6-metil-1,2,3,4-tetrahidroisoquinolina (3,6 g).

## Ejemplo de producción 20

A clorhidrato de 1-isopropil-6-metoxi-1,2,3,4-tetrahidroisoquinolina (86 g) se añadieron carbonato potásico (92 g) y agua (500 ml). La mezcla de reacción se extrajo con EtOAc y se secó sobre sulfato de magnesio y después se evaporó el disolvente. Al residuo resultante se añadieron iPrOH (1,100 ml) y (+)-m y ácido eólico (50 g), seguido de agitación con calentamiento a 95 ° C para la disolución. La mezcla se dejó enfriar y se agitó a temperatura ambiente durante la noche. El sólido resultante se recogió y se recristalizó repetidamente tres veces usando iPrOH para obtener 1-isopropil-6-metoxi-1,2,3,4-tetrahidroisoquinolina (+) - m y elato (43 g) como un solo enantiómero.

#### Eiemplo de producción 21

La 1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (31,1 g) se disolvió en EtOH (1,26 l) a 80 °C y a la misma se añadió ácido (D)-tartárico (10,83 g). La mezcla de reacción se dejó enfriar y se agitó a temperatura ambiente durante la noche. Los materiales insolubles resultantes (16,64 g) se recogieron y se secaron.

El sólido se mezcló con un sólido obtenido de la misma manera como se ha mencionado anteriormente y la mezcla (33,26 g) se disolvió en EtOH (1 l), seguido de agitación con calentamiento a reflujo durante 2 horas y después agitación a 80 °C durante 5 horas. La mezcla se agitó a temperatura ambiente durante la noche y después se recogieron los materiales insolubles para obtener ((D)-tartrato de 1S)-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (30,8 g).

## 45 Ejemplo de producción 22

En una atmósfera de argón, a una mezcla de (1R, 2S)-1-amino-2-indanol (8,17 g) y éter dietílico (200 ml) se añadió una solución del complejo borano-THF 1,0 M (110 ml) en agitación a una temperatura interna de 5 °C o inferior. La mezcla se agitó adicionalmente a temperatura ambiente durante 1,5 horas. La mezcla se enfrió hasta una temperatura interna de 4 °C. Gradualmente se añadió 1-(2-metoxifenil)-3,4-dihidroisoquinolina (10 g) a la mezcla a una temperatura interna de 5 °C o inferior, seguido de agitación a la misma temperatura durante 30 minutos. La mezcla se agitó a temperatura ambiente durante 3 días. A la mezcla de reacción se añadió ácido trifluoroacético (61 ml) para descomponer un exceso de reactivo, seguido de calentamiento a reflujo durante 3 horas. Después de enfriar, el éter dietílico se evaporó a presión reducida y la mezcla se calentó a reflujo durante 10 minutos. El residuo se diluyó con cloroformo y se extrajo con amoniaco acuoso concentrado para que fuera alcalina. La capa orgánica se lavó con salmuera saturada, se secó sobre sulfato magnésico y se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (cloroformo-EtOAc-amoniaco acuoso) para obtener 1-(2-metoxifenil)-1,2,3,4-tetrahidroisoquinolina (8,23 g).

1-(2-metoxifenil)-1,2,3,4-tetrahidroisoquinolina (8,227 g) y ácido (2S, 3S)-2,3-bis [(4-metilbenzoil)oxi]succínico (13,282 g) se disolvieron con agitación en acetonitrilo (246 ml) a 70 °C. La mezcla se enfrió lentamente con agitación. El cristal resultante se recogió mediante filtración, se lavó con acetonitrilo y se secó a presión reducida para obtener (2S, 3S) -2,3 bis [(4-metilbenzoil) oxi] succinato de (1S)-1-(2-metoxifenil)-1,2,3,4-tetrahidroisoquinolina (16,193 g).

65

50

Con enfriamiento en un baño de hielo seco-acetona, se añadió hidruro de litio y aluminio (1,03 g) a THF (30 ml) para hacer una suspensión. Gota a gota se añadió una solución de 1-[2 (trifluorometil)fenil]-3,4-dihidroisoquinolina (6,22 g) en THF (30 ml) a la suspensión en atmósfera de argón. La solución de reacción se agitó a temperatura ambiente durante 15 horas. El líquido de reacción se enfrió en hielo y después se añadió una solución de sal de Rochelle acuosa saturada (1,5 ml) para detener la reacción. El líquido se agitó a temperatura ambiente durante 1 hora y al mismo se añadió sulfato de magnesio y celite. La mezcla se filtró a través de celite y el filtrado se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 1-[2-(trifluorometil)fenil]-1,2,3,4-tetrahidroisoquinolina (5,42 g).

#### Ejemplo de producción 24

10

15

20

25

30

35

La N-[2-(4-clorofenil)etil]ciclohexanocarboxamida (2,03 g) se disolvió en 1,2-dicloroetano (15 ml) y se añadió cloruro de oxalilo (0,8 ml) en enfriamiento con hielo. La mezcla de reacción se agitó a temperatura ambiente durante 1 hora y después se enfrió a -20 °C. A la mezcla, se añadió cloruro férrico (1,49 g), seguido de agitación a temperatura ambiente durante 16 horas. Una solución de HCl 1 M acuoso se añadió a la mezcla, que después se agitó a temperatura ambiente durante 30 minutos, seguido de extracción con cloroformo. El extracto se lavó con agua y salmuera saturada y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se secó para obtener 9-cloro-10b-ciclohexil-6,10b-dihidro-5H-[1,3] oxazolo [2,3-a] isoquinolina-2,3-diona (2, 38 g).

#### Ejemplo de producción 25

La 9-cloro-10b-ciclohexil-6,10b-dihidro-5H-[1,3]oxazolo [2,3-a] isoquinolina-2,3-diona (2,37 g) se disolvió en MeOH (16 ml) y a la misma se añadió una solución de ácido sulfúrico (8 ml) en MeOH (24 ml), seguido de agitación con calentamiento a reflujo durante 18 horas. La mezcla de reacción se dejó enfriar y después evaporó el disolvente. La mezcla de reacción se neutralizó mediante una solución acuosa de hidróxido sódico 1 M, se extrajo con cloroformo, se lavó con salmuera saturada y después se secó sobre sulfato de magnesio. El disolvente se evaporó y después el residuo resultante se secó para obtener 7-cloro-1-ciclohexil-3,4-dihidroisoquinolina (1,78 g).

#### Ejemplo de producción 26

La N-[2-(2-clorofenil)etil]ciclohexanocarboxamida (2,55 g) se disolvió en 1,2-dicloroetano (25 ml) y se añadió cloruro de oxalilo (1,0 ml) en enfriamiento con hielo. La mezcla de reacción se agitó a temperatura ambiente durante 1 hora y después se enfrió a -20 °C. A la mezcla, se añadió cloruro de hierro (1,87 g), seguido de agitación a temperatura ambiente durante 16 horas. Una solución de HCl 1 M acuoso se añadió a la mezcla, seguido de agitación a temperatura ambiente durante 30 minutos y de extracción con cloroformo. El extracto se lavó con agua y salmuera saturada y se secó sobre sulfato de magnesio. Después, el disolvente se evaporó.

El residuo resultante (2,55 g) se disolvió en 1,2-dicloroetano (25 ml) y se añadió cloruro de oxalilo (1,0 ml) en enfriamiento con hielo. La mezcla de reacción se agitó a temperatura ambiente durante 1 hora y después se enfrió a -20 °C. A la mezcla, se añadió cloruro de hierro (1,87 g), seguido de agitación a temperatura ambiente durante 16 horas. Una solución de HCl 1 M acuoso se añadió a la mezcla, que después se agitó a temperatura ambiente durante 30 minutos, seguido de extracción con cloroformo. El extracto se lavó con agua y salmuera saturada y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se disolvió en MeOH (16 ml) y al mismo se añadió una solución de ácido sulfúrico (8 ml) en MeOH (24 ml), seguido de agitación con calentamiento a reflujo durante 18 horas. La mezcla de reacción se dejó enfriar y después evaporó el disolvente. La mezcla de reacción se neutralizó mediante una solución acuosa de hidróxido sódico 1 M, se extrajo con cloroformo, se lavó con salmuera saturada y después se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se secó para obtener 5-cloro-1-ciclohexil-3,4-dihidroisoquinolina (2,22 g).

#### Ejemplo de producción 27

La N-[2-(4-metoxifenil)etil]ciclohexanocarboxamida (5,56 g) se disolvió en tolueno (120 ml) y a ella se añadieron secuencialmente pentóxido de difósforo (3,0 g) y oxicloruro de fósforo (6,0 ml), seguido de agitación con calentamiento a reflujo durante 5,5 horas. La mezcla de reacción se dejó enfriar y después evaporó el disolvente. Al residuo resultante se añadió una solución acuosa de hidróxido de potasio 8 M, agua y cloroformo para disolver completamente los materiales insolubles para alcanzar un pH de aproximadamente pH 8, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener 1-ciclohexil-7-metoxi-3,4-dihidroisoquinolina (1,87 g).

#### Ejemplo de producción 28

Al pentóxido de difósforo (20,0 g) se añadió ácido fosfórico (11,9 ml) durante 5 minutos. La mezcla se agitó a 150 ° C durante 0,5 horas. A la mezcla se añadió 3-fluoro-N-(2-feniletil)benzamida (5,00 g), seguido de agitación a 160 °C

durante 2,5 horas. Después de enfriar, a la solución de reacción se añadió agua, a lo que después se añadió amoniaco acuoso al 28 % para que fuera alcalina. La solución de reacción se extrajo con EtOAc, se lavó una vez con salmuera saturada y se secó sobre sulfato magnésico. Después de la filtración, el filtrado se concentró a presión reducida para obtener 1-(3-fluorofenil)-3,4-dihidroisoquinona (4,87 g).

#### Ejemplo de producción 29

5

10

45

50

55

60

A 3,3-difluoro-N-(2-feniletil)ciclohexanocarboxamida (6,4 g) se añadió ácido etilfosfórico (50 ml), seguido de agitación con calentamiento a 120 °C durante 2 horas. El líquido de reacción se añadió a agua con hielo (150 ml), se extrajo con cloroformo y se secó sobre sulfato de magnesio. El disolvente se evaporó para obtener 1-(3,3-difluorociclohexil)-3,4-dihidroisoquinolina (4,1 g).

## Ejemplo de producción 30

A trans-4-metil-N-(2-feniletil)ciclohexanocarboxamida (2 g) se añadió ácido etilfosfórico (10 ml), seguido de agitación con calentamiento a 120 °C durante 2 horas. Al líquido de reacción se añadió agua, que después se extrajo con EtOAc. La capa orgánica se lavó con agua y salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó. Al residuo resultante se añadieron EtOH (10 ml) y después borohidruro sódico (0,31 g) en enfriamiento con hielo, seguido directamente de agitación durante 2 horas. Al líquido de reacción se añadió agua, seguido de extracción con EtOAc. La capa orgánica se lavó con agua y salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó para obtener 1-(trans-4-metilciclohexil)-1,2,3,4-tetrahidroisoquinolina (2 g).

#### Ejemplo de producción 31

La N-[2- 2-metilfenil)etil]butanamida (4,58 g) se disolvió en xileno (30 ml) y después se añadió a la misma pentóxido de difósforo (10 g), seguido de agitación a 140 ° C durante 4 horas . La mezcla de reacción se dejó enfriar y después evaporó el disolvente. Se usó una solución acuosa 8 M de hidróxido potásico, agua y cloroformo para disolver completamente los materiales insolubles. La mezcla de reacción se ajustó a un pH de aproximadamente 8 y se extrajo con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó a presión reducida y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-MeOH) para obtener 5-metil-1-propil-3,4-dihidroisoquinolina (2,14 g).

#### Eiemplo de producción 32

La N-[2-(2-bromo-5-metoxifenil)etil]-2-metoxiacetamida (7,8 g) se disolvió en xileno (80 ml) y a la misma se añadió pentóxido de difósforo (11 g), seguido de agitación a 140 °C durante 4 horas. Después, el disolvente se evaporó y a la mezcla de reacción se añadió una solución acuosa de hidróxido sódico 6 M para obtener un pH de aproximadamente 8. La mezcla de reacción se extrajo con cloroformo, se lavó con salmuera saturada y después se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-EtOAc).

El compuesto resultante se disolvió en EtOH (30 ml), y al mismo se añadió N, N-diisopropiletilamina y carbón activado soportado con paladio al 20 % (400 mg), seguido de agitación en atmósfera de hidrógeno, a presión normal y a temperatura ambiente, durante 3 horas. Después, la mezcla de reacción se filtró a través de celite para separar el catalizador y se evaporó el disolvente.

Al residuo resultante se añadieron bicarbonato sódico acuoso saturado (30 ml) y después EtOAc (20 ml). Gota a gota se añadió una solución de cloruro de cloroacetilo (1,17 ml) en EtOAc (10 ml) al líquido de reacción durante 5 minutos, seguido de agitación durante 5 horas. Después, el líquido de reacción se extrajo con EtOAc y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-EtOAc) para obtener 2-(cloroacetil)-8-metoxi-1-(metoximetil)-1,2,3,4-tetrahidroisoguinolina (367 mg).

# Ejemplo de producción 33

[2-(4-clorofenil)etil]amina (3,5 g) se disolvió en una solución mixta de 1: 2 (45 ml) de bicarbonato sódico acuoso saturado-EtOAc. Gota a gota se añadió una solución de cloruro ciclohexanocarbonilo (3,35 ml) en EtOAc (18 ml) al líquido de reacción durante 5 minutos. Después de agitar durante 1,5 horas, el líquido de reacción se extrajo con EtOAc, se lavó con una solución 1 M de hidróxido sódico acuoso y agua, y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se secó para obtener N-[2-(4-clorofenil)etil]ciclohexanocarboxamida (5,69 g).

## Ejemplo de producción 34

El ácido 4,4-difluorociclohexanocarboxílico (1,48 g) se disolvió en cloruro de metileno (20 ml) y se añadieron secuencialmente 1-(3-dimetilaminopropil)-3-etilcarbodiimida (1,68 g), 1-hidroxibenzotriazol (1,21 g) y (2-

feniletil)amina (1,2 ml), seguido de agitación a temperatura ambiente durante 18 horas. Después, al líquido de reacción se añadió bicarbonato sódico acuoso saturado, que después se extrajo con cloroformo. El extracto se lavó con agua y salmuera saturada adicional y después se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-EtOAc) para obtener 4,4-difluoro-N-(2-feniletil)ciclohexanocarboxamida (1,96 g).

#### Ejemplo de producción 35

5

25

30

40

45

50

55

60

Una solución 1,64 M de terc-butil-litio en n-pentano (12 ml) se añadió a una mezcla de 2-(2,2-dimetilpropanail)1,2,3,4-tetrahidroisoquinolina (3,0 g), tetrametiletilendiamina (2,2 ml) y THF (40 ml) a -78 ° C. El líquido de reacción se agitó a -78 ° C durante 10 minutos. Después, al líquido se añadió adicionalmente acetona (1,8 ml) a -78 ° C, seguido de agitación a -78 ° C durante 1 hora. Al líquido de reacción se añadió ácido acético (2 ml) y la temperatura se elevó hasta la temperatura ambiente. El líquido de reacción se evaporó a presión reducida. Al mismo se añadieron EtOAc y agua, seguido de separación de líquidos. La capa orgánica se lavó secuencialmente con una solución acuosa al 5 % de ácido cítrico, una solución de hidrógenocarbonato de sodio acuoso saturado y salmuera saturada, se secó sobre sulfato de magnesio y se evaporó a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 2-[2-(2,2-dimetilpropanoil)-1,2,3,4-tetrahidroisoguinolin-1-illpropan-2-ol (2,62 g).

## 20 Ejemplo de producción 36

A 2-[2-(2,2-dimetilpropanoil)-1,2,3,4-tetrahidroisoquinolin-1-il]propan-2-ol (2,79 g) se añadió ácido trifluoroacético (27 ml), seguido de de agitar a temperatura ambiente durante 4 horas. A continuación, el disolvente se evaporó y al residuo resultante se añadió bicarbonato sódico acuoso saturado, seguido de extracción con EtOAc. El extracto se lavó con agua y después se secó sobre sulfato de magnesio. El disolvente se evaporó para obtener 1-metil-1-(1,2,3,4-tetrahidroisoquinolin-1-il) pivalato.

El 1-metil-1- se disolvió (1,2,3,4-tetahidroisoquinolin-1-il) pivalato (2,79 g) en disolvente mixto 1: 4 (30 ml) de bicarbonato sódico acuoso saturado-EtOAc. Gota a gota se añadió al líquido de reacción una solución de cloruro de cloroacetilo (0,9 ml) en EtOAc (6 ml) con enfriamiento en hielo, seguido de agitación a temperatura ambiente durante 2 horas. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-EtOAc) para obtener 1-[2-(cloroacetil)-1,2,3,4-tetrahidroisoguinolin-1-il]-1-metiletilpivalato (3,01 g).

# 35 Ejemplo de producción 37

A una solución de clorhidrato de 6-bromo-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (1,00 g) en 1,2-dicloroetano (5 ml) se añadieron agua (5 ml) y carbonato potásico (1,04 g) A la mezcla de reacción se añadieron dicarbonato de diterc-butilo (726 mg) y dimetilaminopiridina adicional (36,9 mg). La mezcla se agitó a temperatura ambiente durante 4 horas y se extrajo con cloroformo. El extracto se lavó con una solución de hidrógeno carbonato sódico acuoso saturado y salmuera saturada, se secó sobre sulfato de magnesio, se filtró y después se concentró a presión reducida para obtener 6-bromo-1-ciclohexil-3,4-dihidroisoquinolina-2 (1H)-carboxilato de terc-butilo (1,11 g).

#### Ejemplo de producción 38

A una mezcla de terc-butil 6-bromo-1-ciclohexil-3,4-dihidroisoquinolina-2 (1H) -carboxilato de terc-butilo (1,41 g), cianuro de zinc (848 mg) y cloruro de [1,1'-bis (difenilfosfino)ferroceno]paladio (535 mg), que después se purgó con gas argón, se añadió DMF (20 ml). Posteriormente, se añadió tris (dibencilidenacetona)dipaladio (458 mg) a la mezcla, que después se agitó a 120 °C en atmósfera de argón durante 10 horas. Además, se añadió tris(dibencilidenacetona)dipaladio (200 mg), seguido de agitación durante 10 horas. El material de reacción se filtró a través de celite y al filtrado se añadieron EtOAc y agua. La capa orgánica se recogió, se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio y se filtró. El filtrado se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 6-ciano-1-ciclohexil-3,4-dihidroisoquinolina-2(1H)-carboxilato de terc-butilo (361 mg).

# Ejemplo de producción 39

A una solución de 6(-ciano-1-ciclohexil-3,4-dihidroisoquinolina-2(1H)-carboxilato de terc-butilo (361 mg) en EtOAc (2 ml) se añadió HCl/EtOAc 4 M (2 ml). La mezcla se agitó a temperatura ambiente durante 1 hora. La mezcla de reacción junto con el cristal precipitado se diluyó con éter dietílico (5 ml). El cristal se recogió por filtración, se lavó con éter dietílico y se secó en aire para obtener clorhidrato de 1-ciclohexil-1,2,3,4-tetrahidroisoquinolina-6-carbonitrilo (259 mg).

5

10

35

40

50

55

60

65

El 7-(acetamidemetil)-1-ciclohexil-3,4-dihidroisoquinolina-2 (1H)-carboxilato de terc-metilo (861 mg) se disolvió en una solución mixta 1: 1 (8 ml) de EtOAc-MeOH, a la que después se añadió HCl/EtOAc 4 M (2,8 ml). La mezcla de reacción se agitó a 50 °C durante 6 horas y después el disolvente se evaporó.

Al residuo resultante se añadieron bicarbonato sódico acuoso saturado (15 ml) y después EtOAc (10 ml). Gota a gota se añadió una solución de cloruro de cloroacetilo (0,2 ml) en EtOAc (5 ml) al líquido de reacción durante 5 minutos, seguido de agitación durante 1 hora. El líquido de reacción se extrajo con EtOAc y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se secó para obtener N-{[2-(cloroacetil)-1-ciclohexil-1,2,3,4-tetrahidroisoquinolin-7-il] metil} acetamida (655 mg).

#### Ejemplo de producción 41

La 7-bromo-1-ciclohexil-3,4-dihidroisoquinolina (9,47 g) se disolvió en N-metil-2-pirrolidona (150 ml) a la que después se añadieron tris(dibencilidenacetona)dipaladio (2,97 g), 1,1'-bis(difenilfosfino)ferroceno (7,19 g) y cianuro de zinc (11,5 g), seguido de agitación a 120 °C durante 18 horas. A continuación se añadió agua al líquido de reacción, que después se filtró a través de celite para separar los materiales insolubles. Los materiales insolubles se extrajeron con EtOAc, se lavó una vez con salmuera saturada y después se secaron sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-MeOH) para obtener 1-ciclohexil-3,4-dihidroisoquinolina-7-carbonitrilo (7,19 g).

#### Ejemplo de producción 42

La 7-bromo-1-ciclohexil-3,4-dihidroisoquinolina (4,01 g) se disolvió en 1,4-dioxano (100 ml), a la que después se añadieron tributil(1-etoxivinil)estaño (7,43 g), fluoruro potásico (2,39 g), y tetraquis(trifenilfosfina)paladio (1,58 g), seguido de agitación a 80 °C durante 5 horas. Después, al líquido de reacción se añadieron tributil(1-etoxivinil)estaño (2,47 g) y tetraquis(trifenilfosfina)paladio (1,58 g), seguido de agitación durante 14 horas. Después, el líquido de reacción se filtró a través de celite y se separaron los materiales insolubles. A los materiales insolubles se añadió HCl/dioxano 4 M (20 ml), seguido de agitación a 60 °C durante 30 minutos. El disolvente se evaporó y se añadió agua a la mezcla, que después se extrajo con EtOAc. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener 11-(1-ciclohexil-3,4-dihidroisoquinolin-7-il)etanona (2,24 g).

## Ejemplo de producción 43

La 1- (1-ciclohexil-3,4-dihidroisoquinolin-7-il)etanona (600 mg) se disolvió en THF (6 ml). Una solución 0,5 M de reactivo de Tebbe en tolueno (4,7 ml) se añadió al líquido de reacción en enfriamiento con hielo, seguido de agitación a temperatura ambiente durante 45 minutos. A continuación, al líquido de reacción se añadieron secuencialmente éter dietílico y 10 gotas de una solución acuosa 1 M de NaOH. El líquido de reacción se secó sobre sulfato de sodio y se filtró a través de celite.

A la solución resultante se añadieron EtOH (8 ml) y carbón activado soportado en hidróxido de paladio al 20 % (900 mg). La solución se agitó en atmósfera de hidrógeno a temperatura ambiente y presión normal durante 13 horas. Después, el catalizador se separó por filtración a través de celite y a continuación se evaporó el disolvente.

Al residuo resultante se añadieron bicarbonato sódico acuoso saturado (15 ml) y después EtOAc (10 ml). Gota a gota se añadió una solución de cloruro de cloroacetilo (265 mg) en EtOAc (5 ml) al líquido de reacción durante 5 minutos, seguido de agitación durante 1 hora. El líquido de reacción se extrajo con EtOAc y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-EtOAc) para obtener 2-(cloroacetil)-1-ciclohexil-7-isopropil-1,2,3,4-tetrahidroisoguinolina (186 mg).

# Ejemplo de producción 44

El clorhidrato de 6-bromo-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (1,0 g) se disolvió en THF (20 ml). Una solución 1,6 M e n-butil-litio en n-hexano (6 ml) se añadió al líquido de reacción a -78 ° C, seguido de agitación a -78 ° C durante 0,5 horas. A continuación, se añadió acetona (20 ml) al líquido de reacción, seguido de agitación adicional durante 2 horas. El disolvente se evaporó y se añadió agua al líquido de reacción, seguido de extracción con cloroformo. El extracto se lavó con una solución de cloruro sódico acuoso saturado y después se secó sobre sulfato magnésico. El disolvente se evaporó.

Al residuo resultante se añadieron bicarbonato sódico acuoso saturado (15 ml) y después EtOAc (10 ml). Gota a gota se añadió una solución de cloruro de cloroacetilo (0,24 ml) en EtOAc (5 ml) al líquido de reacción durante 5 minutos, seguido de agitación durante 18 horas. El líquido de reacción se extrajo con EtOAc y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel

de sílice (hexano-EtOAc) para obtener 2-(cloroacetil)-1-ciclohexil-1,2,3,4-tetrahidroisoquinolin-6-il]propan-2-ol (646 mg).

#### Ejemplo de producción 45

5

10

15

20

35

40

45

A clorhidrato de 5-bromo-1-isopropil-8-metoxi-1,2,3,4-tetrahidroisoquinolina (3,0 g) se añadieron EtOH (30 ml), trietilamina (1,3 ml), y carbón soportado en paladio al 10 % (0,30 g), seguido de agitación en atmósfera de hidrógeno durante 2 horas. El líquido reacción se filtró a través de Celite y se evaporó el disolvente. Una solución acuosa 1 M de NaOH se añadió al líquido de reacción, seguido de extracción con EtOAc. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se disolvió en EtOAc (30 ml). A la mezcla se añadió HCl/EtOAc 4 M (5 ml) y el sólido precipitado se recogió para obtener clorhidrato de 1-isopropil-8-metoxi-1,2,3,4-tetrahidroisoquinolina (2,2 g).

#### Ejemplo de producción 46

El (2-bromo-5-metilfenil)acetonitrilo (8,2 g) se disolvió en THF (60 ml), al que después se añadió un complejo de borano-sulfuro de dimetilo (5 ml), seguido de agitación a 80 °C durante 4 horas. El líquido de reacción se enfrió en hielo y al mismo se añadió MeOH (15 ml), seguido de agitación durante un tiempo. Después, el disolvente se evaporó. Al residuo se añadió HCI / dioxano 4 M (30 ml), que después se agitó con calentamiento a 50 °C durante 1 hora. Después dejar enfriar, se añadió tolueno (100 ml) a la mezcla y el sólido precipitado se recogió para obtener clorhidrato de 2-(2-bromo-5-metilfenil)etanamina (5,5 g).

#### Ejemplo de producción 47

- A una mezcla de (2-bromo-5-metilfenil)metanol (9,2 g), diclorometano (100 ml) y trietilamina (8 ml) se añadió cloruro de metanosulfonilo (3,9 ml) en enfriamiento con hielo, seguido de agitación a temperatura ambiente durante 5 horas. Al líquido de reacción se añadió una solución acuosa de HCl 1 M, que después se extrajo con cloroformo. La capa orgánica se secó sobre sulfato magnésico y se filtró. Después, el disolvente se evaporó.
- Al residuo resultante (11 g) se añadieron EtOH (60 ml), agua (40 ml) y cianuro de sodio (2,1 g), seguido de agitación a 80 °C durante 5 horas. Al líquido de reacción se añadió agua, seguido de extracción con EtOAc. La capa orgánica se secó sobre sulfato magnésico. El disolvente se evaporó para obtener (2-bromo-5-metilfenil)acetonitrilo (8,3 g).

# Ejemplo de producción 48

Se añadió cloruro de aluminio (30 g) a benceno (60 ml). A la mezcla se añadió gradualmente 2,6-dimetilbenzoico (10 g) con agitación bajo enfriamiento con hielo, seguido de agitación durante 30 minutes. La temperatura se volvió a la temperatura ambiente y la mezcla se agitó adicionalmente durante 1 hora, seguido de agitación con calentamiento a reflujo durante 4 horas. El líquido de reacción se vertió en agua con hielo (300 ml), se filtró a través de celite y se extrajo con cloroformo. El extracto se lavó con una solución de NaOH 1 M acuoso y después se secó sobre sulfato magnésico. El disolvente se evaporó.

El residuo resultante (13 g) se disolvió en tetracloruro de carbono (150 ml). Con agitación con calentamiento a reflujo, se añadieron N-bromosuccinimida (10 g) y 2,2'-azobis(isobutilonitrilo) (0,20 g), seguido de agitación con calentamiento a reflujo durante 7 horas. El líquido de reacción se dejó enfriar y se filtró. El líquido resultante se lavó con una solución acuosa saturada de hidrógeno carbonato de sodio y una solución acuosa de tiosulfato de sodio, y se secó sobre sulfato de magnesio. El disolvente se evaporó.

Al residuo resultante (15 g) se añadieron EtOH (60 ml), agua (40 ml) y cianuro de sodio (1,5 g), seguido de agitación con calentamiento a 80 °C durante 5 horas. Al líquido de reacción se añadió agua (200 ml), que después se extrajo con EtOAc y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano: cloroformo) para obtener (2-benzoil-3-metilfenil)acetonitrilo (4,7 g).

# Ejemplo de producción 49

A (2-benzoil-3-metilfenil)acetonitrilo (3,3 g) se añadieron EtOH (40 ml), HCI / EtOAc 4 M (5 ml) y óxido de platino (IV) (0,53 g), seguido de agitación en atmósfera de hidrógeno durante 5 horas. El líquido de reacción se filtró a través de celite y después se concentró. Se añadió tolueno al concentrado, seguido de extracción con una solución acuosa de HCI 1 M. A la capa acuosa se añadió una solución de amoníaco acuoso al 28 %, que después se extrajo con tolueno y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo se disolvió en tolueno al que después se añadió HCI / EtOAc 4 M (5 ml), seguido de concentración. Se añadieron iPrOH y éter de diisopropilo al residuo resultante y el sólido precipitado se recogió para obtener clorhidrato de 8-metil-1-fenil-3,4-dihidroisoquinolina (1,5 g).

65

60

A (2-benzoil-3-metilfenil)acetonitrilo (4,6 g) se añadieron EtOH (70 ml), HCI / EtOAc 4 M (15 ml) y óxido de platino (IV) (0,40 g), seguido de agitación en atmósfera de hidrógeno durante 3 días. El líquido de reacción se filtró a través de celite y después se concentró. Se añadió tolueno al concentrado, seguido de extracción con una solución acuosa de HCl 1 M. A la capa acuosa se añadió una solución de amoníaco acuoso al 28 %, que después se extrajo con tolueno y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo se disolvió en tolueno (30 ml). A la mezcla se añadió HCl / EtOAc 4 M (7 ml), seguido de concentración a presión reducida. Al residuo resultante se añadieron iPrOH y éter de diisopropilo y el sólido precipitado se recogió para obtener clorhidrato de 1-ciclohexil-8-metil-3,4-dihidroisoquinolina (2,2 g).

#### Ejemplo de producción 51

10

15

20

25

30

35

50

55

60

65

Una mezcla de tetralona (1,50 g), 3-metoxifenetilamina (1,86 g) y tetraisopropóxido de titanio (4,55 ml) se agitó en atmósfera de argón a 80 °C durante 1 hora. La mezcla de reacción se enfrió en un baño de hielo-MeOH. Una mezcla de ácido fórmico (39 ml) y anhídrido acético (97 ml) se añadió a la mezcla de reacción en agitación a una temperatura interna de 0 °C o inferior. Una vez completada la adición, la mezcla de reacción se agitó a 80 °C durante 2 horas y a la misma se añadió ácido trifluoroacético (158 ml), seguido de agitación a una temperatura interna de 70 °C durante 3 horas. Una vez completada la adición, la mezcla se enfrió hasta la temperatura ambiente y se concentró a presión reducida. El residuo se hizo alcalino débil mediante el uso de una solución de hidrógenocarbonato de sodio acuoso saturado y se extrajo con EtOAc. La capa orgánica se lavó con salmuera saturada, se secó sobre sulfato magnésico y se concentró a presión reducida. El residuo se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 6-metoxi-3,3',4,4'-tetrahidro-2H, 2'H-espiro [isoquinolina-1,1'-naftaleno] - 2-carbaldehído (1,86 g).

Una mezcla del compuesto resultante (1,86 g), dioxano (15 ml) y ácido clorhídrico concentrado (3 ml) se calentó a reflujo durante 2 horas. Después de enfriar, el líquido de reacción se concentró a presión reducida y el residuo resultante se hizo alcalino mediante la adición de bicarbonato sódico acuoso saturado y se extrajo con cloroformo. La capa orgánica se lavó con agua y salmuera saturada, se secó sobre sulfato magnésico y se concentró a presión reducida. El residuo resultante se disolvió en EtOAc (40 ml) y se añadió bicarbonato sódico acuoso saturado (40 ml). Gota a gota se añadió a la mezcla una solución de cloruro de cloroacetilo (700 mg) en EtOAc (10 ml) con agitación, seguido de agitación durante 1 hora a temperatura ambiente. La mezcla de reacción se diluyó con EtOA y la capa orgánica se lavó con bicarbonato sódico acuoso saturado y salmuera saturada, se secó sobre sulfato de magnesio, y se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 2-(cloroacetil)-6-metoxi-3,3',4,4'-tetrahidro-2H, 2'H-espiro [isoquinolina-1,1'-naftaleno] (1,28 g).

#### Ejemplo de producción 52

Al ácido polifosfórico producido a partir de ácido fosfórico al 80 % (25 g) y pentóxido de difósforo (25 g) se añadió una mezcla de 3-metoxifenetilamina (5,2 g) y tetrahidro-4H-4-pirona (4,13 g) a una temperatura interna de 90 °C durante 5 minutos. Adicionalmente, la mezcla de reacción se agitó durante 40 minutos, se enfrió a temperatura ambiente y se vertió en agua con hielo (500 ml). A la mezcla de reacción se añadió amoniaco acuoso concentrado para que sea fuertemente alcalina, seguido de extracción con EtOAc. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato magnésico y se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (cloroformo-EtOAc-amoniaco acuoso) para obtener 6-metoxi-2',3,3',4,5',6'-hexahidro-2H-espiro[isoquinolona-1,4'-pirano] (2,36 g).

## Ejemplo de producción 53

Con enfriamiento en un baño de hielo-MeOH se añadió THF (80 ml) a hidruro de litio (3,03 g) para hacer una suspensión.

A la suspensión se añadió diciclopropil[(trimetilsilil)oxi]acetonitrilo (8,36 g). La mezcla se agitó a temperatura ambiente durante 20 horas y se enfrió en un baño de hielo. A la mezcla se añadieron fluoruro sódico (3,35 g) y agua adicional (4,23 ml), seguido de agitación a temperatura ambiente durante 1 hora. Después, la mezcla se filtró a través de celite. El filtrado se concentró a presión reducida para obtener un material oleoso (4,38 g). Al material oleoso se añadió EtOAc (80 ml), que después se enfrió en hielo. A la mezcla se añadió HCl / EtOAc 4 M (8 ml), que después se agitó junto con el sólido precipitado a temperatura ambiente durante 1 hora. A continuación, el sólido se recogió por filtración, se lavó con EtOAc y se secó a presión reducida a 90 °C para obtener clorhidrato de 2-amino-1,1-diciclopropiletanol (3,68 g).

# Ejemplo de producción 54

En un baño de hielo en atmósfera de argón, se añadió yoduro de cinc (290 mg) a una solución de diciclopropilmetanona (5,00 g) en 1,2-dicloroetano (50 ml). Posteriormente, gota a gota se añadió cianuro de trimetilsililo (6,84 ml) a la mezcla durante 10 minutos. La mezcla se agitó a temperatura ambiente durante 4 horas y

se añadió adicionalmente cianuro de trimetilsililo (1,71 ml), seguido de agitación a temperatura ambiente durante 20 horas. La mezcla de reacción se vertió en una solución de hidrógenocarbonato de sodio acuoso saturado y se extrajo con EtOAc. El extracto se lavó con una solución de cloruro sódico acuoso saturado y salmuera saturada y se secó sobre sulfato magnésico. El carbón activado se añadió a la mezcla, que después se filtró a través de celite. El filtrado se concentró a presión reducida para obtener diciclopropil[(trimetilsilil)oxi]acetonitrilo (8,36 g).

## Ejemplo de producción 55

10

15

20

25

30

35

40

45

50

55

60

Se añadió 10 % carbono en soporte de Paladio (300 mg) se añadió a una solución de 2-bencil-1-(1-metoxi-1-metiletil)-1,2,3,4-tetrahidroisoquinolina (1,17 g) en MeOH (12 ml). El material de reacción se agitó en atmósfera de hidrógeno a temperatura ambiente durante 8 horas. El líquido de reacción se filtró a través de celite y el filtrado se concentró a presión reducida para obtener 1-(1-metoxi-1-metiletil)-1,2,3,4-tetrahidroisoquinolina (770 mg).

## Ejemplo de producción 56

Con enfriamiento en un baño de hielo-MeOH en atmósfera de argón, gota a gota se añadió una solución de 2-(2-bencil-1,2,3,4-tetrahidroisoquinolin-1-il) propan-2-ol (1,27 g) en THF (7 ml) a una solución de hidruro sódico (60 %, 199 mg) en THF (5 ml), seguido de agitación a temperatura ambiente durante 0,5 horas. Después, el líquido de reacción se enfrió en hielo y al mismo se añadió yoduro de metilo (0,42 ml). La mezcla se agitó a temperatura ambiente durante 8 horas. A la mezcla se añadieron hidruro sódico (60 %, 199 mg) y yoduro de metilo (0,42 ml), seguido de agitación a temperatura ambiente durante 12 horas. A la solución de reacción se añadió agua, seguido de extracción con EtOAc. El extracto se lavó con salmuera saturada, se secó sobre sulfato magnésico, se filtró y después se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 2-bencil-1-(1-metoxi-1-metiletil)-1,2,3,4-tetrahidroisoquinolina (1,17 g).

## Ejemplo de producción 57

En un baño de hielo seco-acetona en atmósfera de argón, se añadió una solución de 1,0 M de metil-litio en éter dietílico (16,2 ml) gota a gota a una solución de 2-bencil-1,2,3,4-tetrahidroisoquinolina -1-carboxilato de etilo (1,99 g) en THF (20 ml) durante 15 minutos. El líquido de reacción se agitó en un baño de hielo seco-acetona durante 0,5 horas y después se agitó adicionalmente en un baño de hielo durante 1 hora. El líquido de reacción se enfrió de nuevo en el baño de hielo seco-acetona y al mismo se añadió una solución de metillitio 1,04 M en éter dietílico (3,24 ml). El líquido de reacción se agitó en un baño de hielo seco-acetona durante 0,5 horas y después se agitó en un baño de hielo durante 1 hora. Al líquido de reacción se añadió agua, seguido de extracción con EtOAc. El extracto se lavó con salmuera saturada, se secó sobre sulfato magnésico, se filtró y se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 2-(2-bencil-1,2,3,4-tetrahidroisoquinolin-1-il]propan-2-ol (1,27 g).

#### Ejemplo de producción 58

En un baño de hielo, a una solución de clorhidrato de 1,2,3,4-tetrahidroisoquinolina-1-carboxilato de etilo (4,98 g) y benzaldehído (2,72 g) en ácido acético ácido (50 ml) se añadió triacetoxiborohidruro de sodio (6,11 g). La mezcla se agitó a temperatura ambiente durante 15 horas. Al líquido de reacción se añadió una solución acuosa de NaOH 1 M, que después se extrajo con cloroformo. El extracto se lavó con agua y salmuera saturada, se secó sobre sulfato magnésico, se filtró y se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 2-bencil-1,2,3,4-tetrahidroisoquinolin-1-carboxilato de etilo (1,99 g).

# Ejemplo de producción 59

Una solución 5-bromo-7,8-dimetoxi-1-fenil-3,4-dihidroisoquinolina (450 mg), EtOH (30 ml de carbón soportado por paladio al 10 % (80 mg) y 28 % de metóxido sódico en MeOH (0,1 ml) se agitó en atmósfera de hidrógeno a temperatura ambiente durante la noche. Los materiales insolubles se sometieron a filtración y el filtrado se concentró para obtener 7,8-dimetoxi-1-fenil-1,2,3,4-tetrahidroisoquinolina (350 mg).

A una mezcla de 7,8-dimetoxi-1-fenil-1,2,3,4-tetrahidroisoquinolina (350 mg), una solución de hidrógenocarbonato de sodio acuoso saturado (50 ml) y EtOAc (50 ml), gota a gota se añadió una solución de cloruro de cloroacetilo (177 mg) en EtOAc (12 ml). Una vez completada la adición gota a gota, la mezcla se agitó durante 2 horas y se extrajo con EtOAc. El extracto se lavó secuencialmente con una solución de cloruro sódico acuoso saturado y salmuera saturada y se secó sobre sulfato magnésico y se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (cloroformo-EtOAc) para obtener 2-(cloroacetil)-7,8-dimetoxi-1-fenil-1,2,3,4-tetrahidroisoquinolina (349 mg).

## Ejemplo de producción 60

La 1-ciclohexil-N-isobutil-3,4-dihidroisoquinolin-7-carboxamida (689 mg) se disolvió en MeOH (12 ml). A la mezcla de reacción se añadió borohidruro de sodio (100 mg), seguido de agitación a temperatura ambiente durante 5 horas. El disolvente se evaporó. Al residuo resultante se añadieron agua y cloroformo. El residuo se extrajo con cloroformo y se secó sobre sulfato de magnesio- Después, el disolvente se evaporó a presión reducida para obtener 1-ciclohexil-N-isobutil-1,2,3,4-tetrahidroisoquinolina-7-carboxamida.

Al residuo resultante se añadieron bicarbonato sódico acuoso saturado (10 ml) y después EtOAc (5 ml). Gota a gota se añadió una solución de cloruro de cloroacetilo (0,19 ml) en EtOAc (5 ml) al líquido de reacción durante 5 minutos, seguido de agitación durante 1 hora. Después, el líquido de reacción se extrajo con EtOAc y se secó sobre sulfato de magnesio. El disolvente se evaporó para obtener 2-(cloroacetil-1)-1-ciclohexil-N-isobutil-1,2,3,4-tetrahidroisoguinolin-1-carboxamida (410 mg).

#### 15 Ejemplo de producción 61

20

25

40

55

La 5-metoxi-1(metoximetil)-3,4-dihidroisoquinolina (1,7 g) se disolvió en MeOH (15 ml) y a ella se añadió borohidruro sódico (376 mg), seguido de agitación a temperatura ambiente durante 5 horas. El disolvente se evaporó a presión reducida y a la mezcla se añadieron agua y cloroformo. La mezcla se extrajo con cloroformo y se secó sobre sulfato de magnesio. El disolvente se evaporó.

Al residuo resultante se añadieron bicarbonato sódico acuoso saturado (20 ml) y después EtOAc (15 ml). Gota a gota se añadió una solución de cloruro de cloroacetilo (0,66 ml) en EtOAc (5 ml) al líquido de reacción durante 5 minutos, seguido de agitación durante 1 hora. El líquido de reacción se extrajo con EtOAc y se secó sobre sulfato de magnesio. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-EtOAc) para obtener 2-(cloroacetil)-5-metoxi-1-(metoximetil)-1,2,3,4-tetrahidroisoguinolina (550 mg).

#### Ejemplo de producción 62

La 5-bromo-8-metoxi-1-propil-1,2,3,4-dihidroisoquinolina (5,5 g) se disolvió en EtOH (30 ml). A la mezcla de reacción se añadieron DMF (3,4 ml) y carbono soportado sobre paladio al 10 % (500 mg), seguido de agitación en atmósfera de hidrógeno, a presión normal y temperatura ambiente, durante 3 horas. A continuación, el catalizador se separó mediante filtración a través de celite y a la mezcla de reacción se añadió borohidruro de sodio (740 mg), seguido de agitación a temperatura ambiente durante 2 horas. El disolvente se evaporó a presión reducida y al residuo resultante se añadieron agua y cloroformo. La mezcla se extrajo con cloroformo y se secó sobre sulfato de magnesio. El disolvente se evaporó a presión reducida.

El residuo resultante se disolvió en EtOAc (10 ml) y después se añadió una solución 4 M de HCl/EtOAc (15 ml) en enfriamiento con hielo, seguido de agitación a temperatura ambiente. Los materiales insolubles resultantes se recogieron y se lavaron con EtOAc para obtener clorhidrato de 8-metoxi-1-propil-1,2,3,4-tetrahidroisoquinolina (3,67 g).

## Ejemplo de producción 63

La 7-bromo-7-ciclohexil-3,4-dihidroisoquinolina (24,45 g) se disolvió en MeOH (400 ml). La solución se enfrió hasta 0 °C y a ella se añadió borohidruro sódico (4,8 g), seguido de agitación a temperatura ambiente durante 2 horas. Por tanto, el disolvente se evaporó a presión reducida. Se añadió agua al residuo, seguido de extracción con cloroformo. La capa orgánica se secó sobre sulfato de magnesio y después el disolvente se evaporó a presión reducida. El residuo resultante se disolvió en EtOAc (200 ml), al que después se añadió HCI/EtOAc 4 M (21 ml). Se recogió el sólido resultante.

El residuo resultante (1 g) se disolvió en THF (30 ml), seguido de enfriamiento a -78 °C. A la mezcla de reacción se le añadió una solución de n-butil-litio 2,6 M en n-hexano (3,7 ml), seguido de agitación durante 30 minutos. Se añadió acetona (30 ml) a la mezcla a -78 °C y la temperatura se elevó a temperatura ambiente, seguido de agitación durante 1 hora. Por tanto, el disolvente se evaporó a presión reducida. Al residuo resultante se le añadió agua y la mezcla se extrajo con cloroformo. La capa orgánica se secó sobre sulfato de magnesio y después el disolvente se evaporó a presión reducida.

El residuo resultante se disolvió en una solución mixta de EtOAc (10 ml) y bicarbonato de sodio acuoso saturado (15 ml). Gota a gota se añadió a la mezcla de reacción una solución de cloruro de cloroacetilo (683 mg) en EtOAc (5 ml) con agitación, seguido de agitación a temperatura ambiente durante dos días. Después se añadió agua a la mezcla, seguido de extracción con EtOAc. La capa orgánica se lavó una vez con salmuera saturada y se secó sobre sulfato magnésico. Después, el disolvente se evaporó a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 2-2-[2-(cloroacetil)-1-ciclohexil-1,2,3,4-tetrahidroisoquinolin-1-il]propan-2-ol (606 mg).

## Ejemplo de producción 64

5

10

15

20

25

35

40

45

50

55

65

El 1-ciclohexil-3,4-dihidroisoquinolina-7-carbonitrilo (1,01 g) se disolvió en EtOH (15 ml), al que después se añadió una solución acuosa de NaOH 6 M (7,0 ml), seguido de agitación con calentamiento a reflujo durante 6 horas. A la mezcla se añadió agua, que después se lavó con EtOAc. A la mezcla se añadió una solución acuosa de HCl 1 M para que tuviera un pH de aproximadamente 3 y después se añadió una solución acuosa saturada de sulfato sódico. La mezcla se extrajo con una solución mixta de 4: 1 de cloroformo-iPrOH, se lavó con salmuera saturada y después se secó sobre sulfato de magnesio. El disolvente se evaporó para obtener acido 1-(ciclohexil-3,4-dihidroisoquinolin-7-carboxílico (1,09 g).

#### Ejemplo de producción 65

El acido 1-ciclohexil-3,4-dihidroisoquinolin-7-carboxílico (1,15 g) se disolvió en cloruro de metileno (15 ml). A ello se añadieron hexafluorofosfato de O-(benzotriazol-1-il)-N,N,N,N'-tetrametiluronio (2,03 g), N,N-diisopropiletilamina (1,55 ml), y 2-metil-1-propanamina (0,87 ml), seguido de agitación a temperatura ambiente durante 18 horas. Después se añadió agua a la mezcla, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener 1-ciclohexil-N-isobutil-3,4-dihidroisoquinolin-7-carboxamida (700 mg).

#### Ejemplo de producción 66

A una suspensión de 10b-(clorometil) -9-etil-6,10b-dihidro-5H-[1,3] oxazolo[2,3-a] isoquinolina-2,3 diona (14,0 ml) en MeOH (140 ml) se añadió metóxido de sodio (9,46 g) en enfriamiento con hielo. La mezcla se agitó a temperatura ambiente durante 0,5 horas y después se calentó a reflujo durante 3 horas. A la mezcla se añadió EtOAc y agua seguido de filtración. La capa orgánica del filtrado se recogió, se lavó con salmuera saturada y se secó sobre sulfato magnésico. A ello se añadió carbón activado y gel sílice, seguido de filtración. El filtrado se concentró a presión reducida para obtener 7-etil-1-(metoximetil)-3,4-dihidroisoquinolina (4,75 g).

#### 30 Ejemplo de producción 67

A una solución mixta de 5,8-dimetoxi-1-fenil-2-trifluoroacetil-1,2,3,4-tetrahidroisoquinolina (4,21 g) en THF (30 ml) y EtOH (100 ml) se añadió borohidruro de sodio (900 mg) a temperatura ambiente en agitación. La mezcla de reacción se agitó a temperatura ambiente durante 3 horas y después se agitó a 40 C durante 30 minutos, y se concentró a presión reducida. Al residuo resultante se añadió una solución acuosa de HCl 3 M (30 ml), seguido de calentamiento a reflujo durante 5 minutos. Después de enfriar, la mezcla se hizo alcalina fuerte mediante el uso de una solución acuosa de NaOH al 20 % y se extrajo con cloroformo. La capa orgánica se lavó con salmuera saturada, se secó sobre sulfato de magnesio, se filtró y se concentró a presión reducida para obtener 5,8-dimetoxi-1-fenil-1,2,3,4-tetrahidroisoquinolina (3,05 g).

## Ejemplo de producción 68

En atmósfera de argón se añadió una solución de 2,5-dimetoxifenetilamina (3,175 g) en benceno (4 ml) con agitación a una suspensión de benzaldehído (1,86 g) y sulfato de magnesio (3,89 g) en benceno (10 ml). Se produjo una reacción exotérmica, seguido de agitación adicional durante la noche. Una vez completada la reacción, el líquido de reacción se filtró y el filtrado se concentró a presión reducida para obtener 2-(2,5-dimetoxifenil)-N-[(1E) -fenilmetilen]etanamina (4,72 g).

## Ejemplo de producción 69

La 2- (2,5-dimetoxifenil) -N-[(1E)-fenilmetilen]etanamina (4,719 g) se disolvió en ácido trifluoroacético (140 ml), seguido de reflujo durante 2 días. La mezcla de reacción se enfrió a temperatura ambiente y gradualmente se añadió anhídrido trifluoroacético (55 ml). La mezcla se sometió a reflujo durante 3 días, se enfrió hasta la temperatura ambiente y se concentró a presión reducida. El residuo resultante se extrajo con una solución de hidrógeno carbonato sódico acuoso saturado y cloroformo. La capa orgánica se lavó con una solución de cloruro sódico acuoso saturado y salmuera saturada y se secó sobre sulfato magnésico y se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (hexano-EtOAc) para obtener 5,8-dimetoxifenil-2-(trifluoroacetil)-1,2,3,4-tetrahidroisoquinolina (4.168 g).

## 60 Ejemplo de producción 70

El 7-ciano-1-ciclohexil-3,4-dihidroisoquinolina-2 (1H)-carboxilato de terc-metilo (2,38 g) se disolvió en cloruro de metileno (40 ml). Se añadió una solución de hidruro de isobutilaluminio 0,99 M en n-hexano (7,8 ml), seguido de agitación a -78 ° C durante 4 horas. Después, a la mezcla de reacción se añadió además una solución de hidruro de isobutilaluminio 0,99 M en n-hexano (28 ml). Se añadió una solución de sal de Rochelle saturada acuosa para detener la reacción, seguido de agitación durante la noche. La mezcla se extrajo con EtOAc. El extracto se lavó una

vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (benceno-EtOAc).

El residuo resultante se disolvió en un disolvente mixto 8: 1 (90 ml) de EtOH-agua. Se añadieron clorhidrato de hidroxilamina (812 mg) y acetato de sodio (930 mg), seguido de agitación a temperatura ambiente durante 28 horas. Después, el disolvente se evaporó. A la mezcla se añadió agua, que después se extrajo con cloroformo, se lavó con salmuera saturada y después se secó sobre sulfato de magnesio. El disolvente se evaporó para obtener 1-ciclohexil-7-[(hidroxiimino)metil]-3,4-dihidroisoquinolina-2(1H)-carboxilato de terc-butilo (2,03 g).

## 10 Ejemplo de producción 71

5

15

20

25

30

45

55

60

El 1-ciclohexil-7-[(hidroxiimino)metil]-3,4-dihidroisoquinolina-2(1H)-carboxilato de terc-metilo (1,04 g) se disolvió en un disolvente mixto 8: 1: 1 (20 ml) de EtOH-ácido acético-agua. Se añadió 10 % de carbón activado soportado en paladio al 10 % (500 mg), seguido de agitación en atmósfera de hidrógeno, a temperatura ambiente y presión normal, durante 4 horas. Después, la mezcla de reacción se filtró a través de celite y se evaporó el disolvente.

El residuo resultante se disolvió en cloruro de metileno (12 ml), al que después se añadió trietilamina (880 mg), anhídrido acético (385 mg) y 4-dimetilaminopiridina (70 mg), seguido de agitación a temperatura ambiente durante 16 horas. Después, a la mezcla se añadió agua, que después se extrajo con cloroformo. El extracto se lavó una vez con salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener 7-(acetamidametil)-1-ciclohexil-3,4-dihidroisoguinolin-2(1H)-carboxilato de terc-butilo (875 mg).

## Ejemplo de producción 72

El 1-ciclohexil-7-[(hidroxiimino)metil]-3,4-dihidroisoquinolina-2(1H)-carboxilato de terc-metilo (995 mg) se disolvió en EtOH-ácido acético-agua (8: 1: 1, 20 ml). A la mezcla de reacción se añadió carbono soportado sobre paladio al 10 % (480 mg), seguido de agitación en atmósfera de hidrógeno, a presión normal y temperatura ambiente, durante 4 horas. Después, la mezcla de reacción se filtró a través de celite y el disolvente se evaporó para obtener 7-(aminometil) -1-ciclohexil-3,4-dihidroisoquinolina-2 (1H) -carboxilato de terc-butilo (956 mg).

#### Ejemplo de producción 73

El 7-(aminometil)-1-ciclohexil-3,4-dihidroisoquinolina-2 (1H)-carboxilato de terc-metilo (999 mg) se disolvió en cloruro de metileno. A ello se añadieron ácido isobutírico (0,33 ml), trietilamina (1,2 ml) hexafluorofosfato de O-(benzotriazol-1-il)-N,N,N,N'-tetrametiluronio (1,32 ml), seguido de agitación a temperatura ambiente durante 18 horas. A la mezcla se añadió agua, que después se extrajo con cloroformo. El extracto se lavó con una solución de NaOH acuoso 1 M y salmuera saturada y se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener 1-ciclohexil-7-[(isobutilamino)metil]-3,4-dihidroisoquinolin-2(1H)-carboxilato de terc-butilo (468 mg).

## Ejemplo de producción 74

El 1-ciclohexil-3,4-dihidroisoquinolin-7-ol (2 g) se disolvió en MeOH (40 ml), al que se añadió después borohidruro sódico (396 mg), seguido de agitación a temperatura ambiente durante 4 horas. Después, el disolvente se evaporó. A la mezcla se añadió agua, que después se extrajo con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó.

El residuo resultante se disolvió en dioxano (40 ml). A ello se añadió dicarbonato de di-terc-butilo (2,28 g), seguido de agitación a temperatura ambiente durante 2 días. Después, el disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-MeOH) para obtener 1-ciclohexil-7-hidroxi-3,4-dihidroisoquinolin-2(1H)-carboxilato de terc-butilo (2,66 g).

## Ejemplo de producción 75

El 1-ciclohexil-7-hidroxi-3,4-dihidroisoquinolina-2 (1H)-carboxilato de terc-metilo (700 mg) se disolvió en acetonitrilo (12 ml). A ello se añadieron 1-cloroacetona (0,2 ml), carbonato de potasio (438 mg) y yoduro de tetra-n-butilamonio (78 mg), seguido de agitación a 60 °C durante 16 horas. Después, a la mezcla se añadió agua, que después se extrajo con EtOAc. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-MeOH) para obtener 1-ciclohexil-7-(2-oxopropoxi)-3,4-dihidroisoquinolin-2(1H)-carboxilato de terc-butilo (818 mg).

#### Ejemplo de producción 76

El 7-ciclohexil-7-(2-oxopropoxi)-3,4-dihidroisoquinolina-2 (1H)-carboxilato de terc-metilo (808 mg) se disolvió en cloruro de metileno (15 ml). A -78 ° C, una solución de trifluoruro de bis(2-metoxietil)aminosulfuro (0,65 ml) en cloruro de metileno (5 ml) se añadió gota a gota a la mezcla de reacción, seguido de agitación a temperatura ambiente durante 14 horas. A la mezcla de reacción se añadió bicarbonato sódico acuoso saturado, que después se extrajo con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano-MeOH) para obtener 1-ciclohexil-7-(2,2-difluoropropoxi)-3,4-dihidroisoquinolin-2(1H)-carboxilato de tercbutilo (747 mg).

## Ejemplo de producción 77

10

15

20

25

30

35

40

45

50

55

Una solución acuosa de NaOH 1 M se añadió a clorhidrato de (1S)-1-isopropil-8-metoxi-1,2,3,4-tetrahidroisoquinolina (808 mg). La mezcla de reacción se extrajo con cloroformo y la capa orgánica se secó tres veces sobre sulfato magnésico. El disolvente se evaporó a presión reducida. Una solución mixta de una solución de tribromuro de boro 1 M en diclorometano (13,4 ml) y diclorometano (10 ml) se enfrió a -78 ° C y se añadió gota a gota una solución del residuo de extracción en diclorometano (10 ml). La temperatura se elevó gradualmente y la mezcla de reacción se agitó a temperatura ambiente durante 24 horas. Después, a la mezcla de reacción se añadieron bicarbonato de sodio acuoso saturado y cloroformo. Una vez completada la separación de líquido, se utilizó la capa acuosa en la reacción posterior.

A la capa acuosa resultante se añadió dicarbonato de di-terc-butilo, seguido de agitación a temperatura ambiente durante 5 horas. La mezcla se neutralizó mediante una solución acuosa de HCl 1 M y se extrajo con cloroformo. La capa orgánica se lavó con agua y se secó sobre sulfato magnésico. Después, el disolvente se evaporó a presión reducida para obtener (1S)-8-hidroxi-1-isopropil-3,4-dihidroisoquinolina-dihidroisoquinolin-2(1H)-carboxilato de tercbutilo (973 mg).

#### Ejemplo de producción 78

El (1S)-8-hidroxi-1-isopropil-3,4-dihidroisoquinolina-2 (1H) -carboxilato de terc-butilo (973 mg) se disolvió en una solución mixta de iPrOH (6 ml) y una solución de hidróxido potásico acuoso al 30 % (3 ml). A la mezcla de reacción se añadió clorodifluorometano mediante ventilación, seguido de agitación a 70 °C durante 20 horas. A la mezcla se añadió agua, que después se extrajo con cloroformo. La capa orgánica se secó sobre sulfato magnésico. El disolvente se evaporó a presión reducida y, después, el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-EtOAc).

El residuo resultante (790 mg) se disolvió en EtOAc. Al mismo se añadió HCI / EtOAc 4 M(5,8 ml), seguido de agitación a 60 °C durante 18 horas. Después, el disolvente se evaporó a presión reducida para obtener clorhidrato de (1S)-8-(difluorometoxi)-1-isopropil-1,2,3,4-tetrahidroisoquinolina (642 mg).

## Ejemplo de producción 79

Una solución acuosa de NaOH 1 M se añadió a clorhidrato de (1S)-8-metoxi-1-fenil-1,2,3,4-tetrahidroisoquinolina (1,81 g). La mezcla de reacción se extrajo con cloroformo. La capa orgánica se secó sobre sulfato de magnesio y el disolvente se evaporó a presión reducida. Una solución mixta de una solución de tribromuro de boro 1 M en diclorometano (26,3 ml) y diclorometano (30 ml) se enfrió a -78 ° C y se añadió gota a gota una solución del residuo de extracción en diclorometano (10 ml). La temperatura se elevó gradualmente y la mezcla de reacción se agitó a temperatura ambiente durante 24 horas. Después, a la mezcla de reacción se añadieron bicarbonato de sodio acuoso saturado y cloroformo. Una vez completada la separación de líquido, la capa orgánica se secó sobre sulfato de magnesio. El disolvente se evaporó a presión reducida.

El residuo resultante (1,48 g) se disolvió en THF (50 ml). Al mismo se añadió una solución acuosa de NaOH 1 M (8 ml) y dicarbonato de di-terc-butilo (2,87 g), seguido de agitación a temperatura ambiente durante 5 horas. Por tanto, el disolvente se evaporó a presión reducida. Al residuo resultante se añadieron agua y una solución acuosa 1 M DE HCl, y la mezcla se extrajo con cloroformo. La capa orgánica se lavó con agua y se secó sobre sulfato magnésico. Después, el disolvente se evaporó a presión reducida y, a continuación, el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-EtOAc).

60 El residuo resultante (1,24 g) se disolvió en una solución mixta de iPrOH (20 ml) y una solución de hidróxido de potasio acuoso al 50 % (10 ml). A la mezcla de reacción se añadió clorodifluorometano mediante ventilación, seguido de agitación a 704 °C durante 14 horas. A la mezcla se añadió agua, que después se extrajo con cloroformo. La capa orgánica se secó sobre sulfato magnésico. El disolvente se evaporó a presión reducida y, después, el residuo se purificó mediante cromatografía en columna en gel de sílice (cloroformo-EtOAc).

El residuo resultante (927 mg) se disolvió en EtOAc (25 ml) y después se añadió una solución 4 M de HCl/EtOAc (6,2 ml), seguido de agitación a 60 °C durante 18 horas. Después, el disolvente se evaporó a presión reducida para obtener clorhidrato de (1S)-8-(difluorometoxi)-1-fenil-1,2,3,4-tetrahidroisoquinolina (770 mg).

## 5 Ejemplo de producción 80

A 1-oxiran-1-ilciclohexanol se añadió amoniaco acuoso al 28 %, seguido de agitación durante 11 horas. El disolvente se evaporó a presión reducida y después se eliminó el agua azeotrópicamente con tolueno.

El residuo resultante se disolvió en una solución mixta de EtOH-éter dietílico. Al mismo se añadió ácido oxálico, seguido de agitación durante un tiempo. Se recogieron los materiales insolubles resultantes para obtener 1-(2-amino-1-hidroxietil)ciclohexanol oxalato (853 mg).

#### Ejemplo de producción 81

15

20

25

30

35

40

50

55

60

El (1R, 2S) -1-amino-2-indanol (511 mg) se disolvió en tolueno (60 ml). En enfriamiento con hielo se añadió una solución de un complejo de borano 1 M-THF en THF (8,16 ml), seguido de agitación a temperatura ambiente durante 1 hora. Después, a la mezcla se añadió 7-bromo-1-ciclohexil-3,4-dihidroisoquinolina (1 g), seguido de agitación a temperatura ambiente durante 3 días. La reacción se detuvo mediante la adición de ácido trifluoroacético, seguido de agitación adicional a 60 °C durante 1 hora. El disolvente se evaporó. A la mezcla se añadió una solución 1 M de hidróxido sódico acuoso, que después se extrajo con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener (1S)-7-bromo-1-ciclohexil-3,4-dihidroisoquinolina bruto (1,06 g). El producto bruto resultante (203 mg) se disolvió en EtOH (9 ml). A la mezcla se añadió ácido D-(-)-tartárico (104 mg) a 80 °C. La mezcla se enfrió gradualmente a temperatura ambiente, seguido de agitación durante 12 horas. Se recogieron los materiales insolubles resultantes para obtener (1S)-7-bromo-1-ciclohexil-3,4-tetrahidroisoquinolina ((72 mg).

#### Ejemplo de producción 82

En atmósfera de argón, se añadió una solución 1,09 M de borano-THF (18,7 ml) a una suspensión de (1R, 2S) -1-aminoindano-2-ol (3,04 g) en tolueno (60 ml) en enfriamiento con hielo, seguido de agitación a temperatura ambiente durante 1 hora. Después, a la mezcla de reacción se añadió una solución de 1- [2 [(trifluorometil) bencil]-3,4-dihidroisoquinolina (4,00 g) en tolueno (20 ml) en enfriamiento con hielo. La mezcla se agitó a 4 ° C durante 45 horas. Se añadió ácido trifluoroacético (20 ml) para detener la reacción. La mezcla se calentó a reflujo durante 1 hora y después se enfrió. A la mezcla se añadió amoníaco acuoso al 28 % (30 ml) para que fuera alcalina. La mezcla se extrajo con EtOAc. El extracto se lavó 3 veces con agua y después se lavó con salmuera saturada, se secó sobre sulfato de magnesio y después se filtró. El filtrado se concentró para obtener un material oleoso amarillo (4,11 g). El material oleoso se disolvió en acetonitrilo (80 ml). A la mezcla se añadió N-acetil-L-leucina (2,39 g) a 80 °C. La mezcla se enfrió gradualmente, seguido de agitación a 60 °C durante 2 horas y a temperatura ambiente durante 12 horas. Cuando se precipitó el cristal, el cristal se recogió mediante filtración, se enfrió en hielo, se lavó con acetonitrilo y se secó al aire para obtener un cristal (2,48 g). El cristal se recristalizó en acetonitrilo (50 ml) para obtener la sal de N-acetil-L-leucina de 1- [2- (trifluorometil)bencil]-1,2,3,4-tetrahidroisoquinolina (1,72 g).

## 45 Ejemplo de producción 83

En atmósfera de argón, se añadió una solución 1,09 M de borano-THF (48,8 ml) a una suspensión de (1R, 2S) -1-aminoindano-2-ol (3,79 g) en tolueno (60 ml) en enfriamiento con hielo, seguido de agitación a temperatura ambiente durante 1 hora. Después, a la mezcla de reacción se añadió una solución de 7-etil-1-(metoximetil)-3,4-dihidroisoquinolina (4,70 g) en THF (40 ml) en enfriamiento con hielo. La mezcla se agitó a 4 ° C durante 8 horas. Se añadió ácido trifluoroacético (15 ml) para detener la reacción. La mezcla se calentó a reflujo durante 1 hora. A la mezcla se añadieron cloroformo y amoniaco acuoso al 28 %. La capa orgánica se lavó 3 veces con agua y se extrajo con una solución de ácido acético acuoso al 5 %. El extracto se ajustó para que tuviera alcalinidad mediante la adición de amoníaco acuoso al 28 % y se extrajo con EtOAc. El extracto se lavó dos veces con agua y después se lavó con salmuera saturada, se secó sobre sulfato de magnesio y después se filtró. El filtrado se concentró a presión reducida para obtener un material oleoso amarillo (3,15 g). El material oleoso se disolvió en iPrOH (63 ml), al que gradualmente se añadió ácido (2S, 3S)-2,3-bis(benzoiloxi)succínico (4,14 g) se a 90 °C. La mezcla se calentó a reflujo durante 1 hora y se enfrió gradualmente hasta la temperatura ambiente, seguido de agitación a temperatura ambiente durante 3 horas. Cuando se precipitó el cristal, el cristal se recogió mediante filtración, se lavó con iPrOH y éter, y se secó a presión reducida para obtener (2S,3S)-2,3-bis(benzoiloxi)succinato de (7-etil-1-(metoximetil)-1,2,3,4-tetrahidroisoquinolina (5,54 g).

#### Ejemplo de producción 84

A una solución de 2-cloro-N-[2-(4-etilfenil)etil]acetamida (7,87 g) en xileno (140 ml) se añadió pentóxido de fósforo (15,85 g) en agitación a 90 °C durante 5 minutos. La mezcla de reacción se calentó hasta 120 °C y se agitó durante

2 horas. La mezcla de reacción se enfrió hasta la temperatura ambiente. El sobrenadante se eliminó y el residuo se lavó secuencialmente con tolueno y éter. Al residuo se añadió hielo triturado (150 g), seguido de agitación. Después, a la mezcla se añadió una solución de hidróxido sódico acuoso al 20 % para que el pH fuera de 10 o superior y la mezcla se extrajo con cloroformo. La capa orgánica se recogió, se lavó con agua y salmuera saturada, se secó sobre sulfato de magnesio anhidro. A la capa orgánica se añadió una solución 4 M de HCI / EtOAc (15 ml) y la mezcla se concentró a presión reducida para obtener clorhidrato de 1-(clorometil)-7-etil-3,4-dihidroisoquinolina (8,5 g).

#### Ejemplo de producción 85

5

10

15

20

25

30

35

60

65

El (1S)-8-hidroxi-1-fenil-3,4-dihidroisoquinolina-2(1H)-carboxilato de terc-metilo (1,53 g) se disolvió en diclorometano (20 ml). Al mismo se añadió 2,6-lutidina (1,1 ml) y anhídrido trifluorometanosulfónico (0,9 ml) a -78 ° C, seguido de agitación a temperatura ambiente durante 16 horas. Después, a la mezcla se añadió bicarbonato sódico acuoso saturado, que después se extrajo con cloroformo. El extracto se lavó con una solución de cloruro sódico acuoso saturado y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (acetato de etilo: hexano) para obtener (1S)-1-fenil-8{[(trifluorometil)sulfonil]oxi}-3,4-dihidroisoquinolina-2 (1H) -carboxilato de terc-butilo (2,08 g).

## Ejemplo de producción 86

A N-[2-(2-bromo-5-metilfenil)etil]-2-metoxiacetamida (3,9 g) se añadió xileno (50 ml), seguido de agitación con calentamiento a 60 °C. A la mezcla de reacción se añadió pentóxido de difósforo (7,0 g) con agitación, seguido de agitación a 140 °C durante 3 horas. Después de dejar enfriar la mezcla de reacción, se descartó el sobrenadante de la mezcla de reacción. La mezcla se disolvió en agua, tolueno, y una solución acuosa de hidróxido sódico y se extrajo con tolueno El extracto se extrajo adicionalmente con una solución acuosa de HCl 1 M. La capa acuosa recuperada se neutralizó, se extrajo con tolueno y se secó sobre sulfato de magnesio. Una vez completada la filtración, a la capa se añadió una solución 4 M de HCI / EtOAc (5 ml) y el disolvente se evaporó a presión reducida. Al residuo resultante se añadieron EtOH (50 ml), tolueno (10 ml) y borohidruro de sodio (1,0 g), seguido de agitación durante 4 días. A la mezcla de reacción se añadió una solución acuosa de HCl 1 M, seguido de agitación durante 5 horas. Después, a la mezcla se añadió una solución 1 M de hidróxido sódico acuoso, que después se extraio con cloroformo. El disolvente se evaporó. Al residuo resultante se añadieron carbonato sódico (1,0 g), agua (30 ml), tolueno (30 ml) y cloruro de cloroacetilo (0,3 ml) en enfriamiento con hielo, seguido de agitación a temperatura ambiente durante 17 horas. Al líquido de reacción se añadió agua, que después se extrajo con cloroformo. El extracto se lavó con una solución de HCl 1 M acuoso y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (para obtener 5bromo-2-(cloroacetil)-1-(metoximetil)-8-metil-1,2,3,4-tetrahidroisoguinolina (0,323 g).

#### Ejemplo de producción 87

40 El clorhidrato de 8-etil-5-metoxi-1-fenil-1,2,3,4-tetrahidroisoquinolina (2,06 g) se disolvió en cloruro de metileno (40 ml). A la mezcla de reacción se añadió una solución de tribromuro de boro en diclorometano (13,6 ml) a -78 ° C, seguido de agitación a temperatura ambiente durante 16 horas. A continuación, a la mezcla de reacción se añadió una solución de hidrógeno carbonato de sodio acuoso saturado para hacerla alcalina. Después, a la solución de reacción se añadió dicarbonato de di-terc-butilo (2,96 g), seguido de agitación a temperatura ambiente durante 3 45 horas. El líquido de reacción se extrajo con cloroformo, se lavó con una solución de cloruro sódico acuoso saturado y se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se disolvió en diclorometano (20 ml). A la mezcla se añadieron 2,6-lutidina (1,8 ml) y anhídrido trifluorometanosulfónico (1,55 ml), seguido de agitación a temperatura ambiente durante 18 horas. A continuación, a la mezcla se añadió agua, que después se extrajo con cloroformo. El extracto se lavó con una solución de cloruro sódico acuoso saturado y después se secó 50 sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (EtOAc: hexano). El residuo resultante se disolvió en DMF (30 ml). A la mezcla se añadieron acetato de paladio (II) (305 mg), trietilsilano (5,4 ml) y 1,1'-bis (difenilfosfino) ferroceno (750 mg), seguido de agitación a 70 °C durante 20 horas. Después, se añadió agua a la mezcla que después se filtró a través de celite y se extrajo con éter dietílico. El extracto se lavó con una solución de cloruro sódico acuoso saturado y se secó 55 sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (EtOAc: hexano) para obtener 8-etil-1-fenil-3,4-dihidroisoquinolina- (1H) -carboxilato de tercbutilo (2,29 g).

## Ejemplo de producción 88

Con enfriamiento en un baño de hielo, una mezcla de hidruro sódico (la suspensión de 8 g de hidruro sódico en aceite mineral (60 %) se lavó con hexano) en THF (10 ml) se añadió a metoxietanol (100 ml) con agitación durante 20 minutos para producir 2-metoxietóxido sódico, seguido de agitación adicional durante 2 horas. Una solución de 2-metoxietóxido sódico en 2-metoxietanol (55 ml) se añadió con agitación a una solución de clorhidrato de 1-(clorometil)-7-etil-3,4-dihidroisoquinolina (8,5 g) en metoxietanol (50 ml) con enfriamiento en un baño de hielo, durante 5 minutos. La mezcla de reacción se calentó a 60 °C, seguido de agitación durante 3 horas en atmósfera de

argón. La mezcla de reacción se enfrió hasta la temperatura ambiente y se diluyó con THF (150 ml), seguido de filtración. El filtrado se concentró a presión reducida. Al residuo resultante se añadió una solución de cloruro amónico acuoso saturado y el residuo se extrajo con EtOAc. La capa orgánica se lavó con agua y una solución de cloruro sódico acuoso saturado, se secó sobre sulfato magnésico y después se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano: EtOAc) para obtener 7-etil-1-[(2-metoxietil) metil]-3,4-dihidroisoquinolina (2,13 g).

#### Ejemplo de producción 89

5

25

30

45

50

55

El (1S)-1-fenil-8-{[(trifluorometil)sulfonil]oxi}-3,4-dihidroisoquinolina-2(1H)-carboxilato de terc-metilo (3,75 g) se disolvió en N,N-dimetilacetamida (40 ml). A la mezcla de reacción se añadieron Cinc (537 mg), cianuro de Cinc (1,15 g), paladio trifluoroacético (II) (682 mg), y bifenil-2-ilo(di-terc-butil)fosfina (1,22 g). La temperatura se incrementó desde la temperatura ambiente hasta 95 °C durante 45 minutos y después la mezcla se agitó a 95 °C durante 18 horas. A la mezcla que después se filtró a través de celite se añadió agua. Posteriormente, la mezcla se extrajo con éter dietílico. El extracto se lavó con una solución de cloruro sódico acuoso saturado y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (EtOAc: hexano) para obtener (1S)-8-ciano-1-fenil-3,4-dihidroisoquinolina- (1H) -carboxilato de terc-butilo (796 mg).

## 20 Ejemplo de producción 90

Una solución de n-butil-litio 1,55 M en hexano (10,94 ml) se añadió con agitación a una solución de 1-(metoximetil)-5-metil-1,2,3,4-tetrahidroisoquinolina (3,07 g) en THF (60 ml) en atmósfera de argón, durante aproximadamente 8 minutos, a -70 °C o menor, seguido de agitación adicional durante 30 minutos. A la mezcla de reacción se añadió con agitación una solución de 4-metilbencenosulfinato de (1R,2S,5R)-2-isopropil-5-metilciclohexilo (3,375 g) en THF (25 ml) durante 5 minutos a -70 °C o inferior, seguido de agitación adicional durante 1 hora. Después, a la mezcla se añadió fosfato disódico saturado a la misma temperatura y la temperatura se aumentó hasta la temperatura ambiente. La mezcla se extrajo con éter. La capa orgánica se lavó con una solución de cloruro sódico acuoso saturado, después se secó sobre sulfato magnésico y se evaporó el disolvente. El residuo resultante se purificó mediante cromatografía en columna en gel de sílice (hexano: EtOAc) para obtener (1R)-1-(metoximetil)-5-metil-2-[(R)-(4-metilfenil)sulfinil]-1,2,3,4-tetrahidroisoquinolina (2,144 g) (valor de Rf = 0,14).

#### Eiemplo de producción 91

A una solución mixta de (1R)-1-(metoximetil)-5-metil-2-[(R)-(4-metilfenil)sulfinil]-1,2,3,4-tetrahidroisoquinolina (2,47 g) en EtOH (45 ml) y THF (10 ml) se añadió ácido clorhídrico concentrado (3,1 ml) CON agitación a 0 °C, seguido de agitación adicional durante 10 minutos. A la mezcla se añadió agua saturada de carbonato sódico (50 ml), seguido de extracción con EtOAc. La capa orgánica se lavó con una solución de hidróxido sódico 1 M acuoso saturado y una solución de cloruro sódico acuoso saturado, se secó sobre sulfato magnésico y después se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo: EtOH: amoníaco acuoso) para obtener (1R)-1-(metoximetil) -5-metil-1,2,3,4-tetrahidroisoquinolina (1,276 g).

Las estructuras químicas de los compuestos producidos mediante Ejemplos de Producción anteriormente mencionados se muestran en las Tablas 6 a 12. Además, de la misma manera que en los métodos en los Ejemplos de Producción anteriormente mencionados, los compuestos de los Ejemplos de Producción que se muestran en las Tablas 13 a 35 se producen utilizando los respectivos materiales de partida correspondientes. Los datos del análisis instrumental de estos compuestos de los Ejemplos de producción se muestran en las Tablas 36 a 42.

## Ejemplo 1

La (1S)-2-(cloroacetil)-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (4.496 g) se disolvió en acetonitrilo (100 ml). A la mezcla se añadieron carbonato potásico (6,25 g), yoduro de tetra-n-butilamonio (679 mg) y clorhidrato de 1-(aminometil)ciclohexanol (4,50 g), seguido de agitación a 60 °C durante 6 horas. A continuación, el disolvente se evaporó y se añadió agua a la mezcla de reacción, seguido de extracción con EtOAc. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice para obtener 1-[({2-[(1S)-1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil}amino)metil[ciclohexanol (3,02 g).

El compuesto resultante (3,02 g) se disolvió en EtOH, al que se añadió ácido oxálico (777 mg). Una vez alcanzada la disolución completa, la mezcla se agitó durante un rato y se recogieron los materiales insolubles resultantes para obtener 1-[({2-(1S)-1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil] ciclohexanol (2,985 g).

#### Ejemplo 2

La 2-acriloil-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (516 mg) se disolvió en iPrOH (15 ml). A la mezcla de reacción se añadieron clorhidrato de 1-(aminometil)ciclohexanol (635 mg) y trietilamina (0,59 ml), seguido de agitación con

calentamiento a reflujo durante 16 horas. A continuación, el disolvente se evaporó y se añadió agua a la mezcla, seguido de extracción con EtOAc. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) y después se purificó mediante cromatografía en columna en gel de sílice alcalina (cloroformo) para obtener 11-({[3-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-3-oxopropil]amino}metil)ciclohexanol (214 mg).

El compuesto resultante (214 mg) se disolvió en EtOH (8 ml). Se añadió ácido oxálico (51 mg) a la mezcla de reacción para obtener oxalato de 1-({[3-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-3-oxopropil]amino}metil)ciclohexanol (229 mg).

## Ejemplo 3 (Referencia)

5

10

15

25

35

40

45

50

60

65

La 1-ciclohexil-7-isopropóxido-3,4-dihidroisoquinolina (245 mg) se disolvió en MeOH (6 ml). Después, al líquido de reacción se añadió borohidruro de sodio (40 mg), seguido de agitación a temperatura ambiente durante 4 horas. El disolvente se evaporó a presión reducida y a la mezcla se añadieron agua y cloroformo. El líquido de reacción se extrajo con cloroformo y se secó sobre sulfato de magnesio. Después, el disolvente se evaporó a presión reducida.

Al residuo resultante al que se añadió (3 ml) EtOAc se añadió bicarbonato sódico acuoso saturado (6 ml). Gota a gota se añadió una solución de cloruro de cloroacetilo (102 mg) en EtOAc (3 ml) al líquido de reacción durante 5 minutos, seguido de agitación durante 1 hora. A continuación, el líquido reacción se extrajo con EtOAc y se secó sobre sulfato de magnesio y después se evaporó el disolvente.

El residuo resultante se disolvió en 1,4-dioxano (8 ml). Al mismo se añadieron (2R)-1-amino-2-propanol (180 mg) y 1,8-diazabiciclo[5,4,0]undeca-7-eno (146 mg), seguido de agitación a 50 °C durante 3 horas. A continuación, el disolvente se evaporó y se añadió agua al líquido de reacción, seguido de extracción con EtOAc. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH).

30 El residuo resultante (211 mg) se disolvió en una solución mixta 1: 4 de iPrOH-éter dietílico. Se añadió ácido oxálico (49 mg) al líquido de reacción para obtener oxalato de (2R)-1-2 {[1-(1-ciclohexil-7-isopropóxido-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}propan-2-ol (223 mg).

## Ejemplo 4 (Referencia)

N-(2-ciclohexa-1-en-1-iletil)-N-[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]-2,2,2-trifluoroacetamida (210 mg) se disolvió en cloruro de metileno (5 ml). Al mismo se añadió ácido 3-cloroperbenzoico al 75 %, seguido de agitación a temperatura ambiente durante 18 horas. Después, al líquido de reacción se añadió una solución de sulfito sódico acuoso saturado, seguido de agitación durante un tiempo. El líquido de reacción se extrajo con cloroformo y el extracto se lavó con una solución acuosa de NaOH 1 M y salmuera saturada, y después se secó sobre sulfato de magnesio.

El disolvente se evaporó y el residuo resultante se disolvió en un disolvente mixto 4: 1 (7,5 ml) de solución acuosa de THF-1,5 % de ácido sulfúrico, seguido de agitación con calentamiento a reflujo durante 5 horas. Al líquido de reacción se añadió agua, que después se extrajo con EtOAc. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico.

El disolvente se evaporó y el residuo resultante se disolvió en MeOH(6 ml). Al líquido de reacción se añadió carbonato de potasio (304 mg), seguido de agitación a 60 °C durante 5 horas. A continuación, el disolvente se evaporó y se añadió agua al líquido reacción, que después se extrajo on cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener trans-[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}etil)ciclohexano-1,2-diol (93 mg).

El compuesto resultante (93 mg) se disolvió en un disolvente mixto de cloroformo-EtOH. Se añadió ácido oxálico (22 mg) al líquido de reacción para obtener oxalato de trans-1-(2{[2-(1-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}etil)ciclohexano-1,2-diol (66 mg).

## Ejemplo 5 (Referencia)

La 2-(1-ciclohexil-3,4-dihidroisoquinolin-2-i(1H)-il)-N-(ciclohexilmetil)-2-oxoetanamina (296 mg) se disolvió en THF (10 ml). Al líquido de reacción se añadieron 2-bromoetanol (400 mg), carbonato potásico (555 mg) y yoduro potásico (133 mg), seguido de agitación con calentamiento a reflujo durante 16 horas. A continuación, el disolvente se evaporó y se añadió agua al líquido de reacción, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener 2-{[2-(1-ciclohexil-

3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil](ciclohexilmetil)amino}etanol (155 mg).

El compuesto resultante (155 mg) se disolvió en EtOH. Se añadió ácido oxálico (36 mg) al líquido de reacción para obtener oxalato de 1-(2{[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil](ciclohexilmetil)amino}etanol (159 mg).

## Ejemplo 6 (Referencia)

5

20

25

45

60

65

Una mezcla de 1-({[2-(5-bromo-1-isopropil-8-metil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol (0,14 g), EtOH (10 ml), trietilamina (0,05 ml) y 10 % de carbono soportado sobre paladio al 10 % (10 mg) se agitó en atmósfera de hidrógeno durante 6 horas. El líquido reacción se filtró y se evaporó el disolvente. Una solución acuosa 1 M de NaOH se añadió al residuo resultante, seguido de extracción con cloroformo. La capa orgánica se secó sobre sulfato de magnesio y después se evaporó el disolvente. El residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH). El residuo resultante se disolvió en 2-propanol (0,8 ml). Al líquido de reacción se añadió ácido oxálico (23 mg) y éter dietílico (5 ml) y el sólido precipitado se recogió mediante filtración y se secó para obtener oxalato de 1-({[2-(1-isopropil-8-metil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino} metil)ciclohexanol (0,066 g).

## Ejemplo 7 (Referencia)

La 2-(1-ciclohexil-3,4-dihidroisoquinolin-2-(1H)-il)-2-oxoetanamina (400 mg) se disolvió en EtOH (10 ml). Al líquido de reacción se añadieron 2-metil-1-oxaespiro[2,5]octano (555 mg) y agua (5 ml), seguido de agitación con calentamiento a reflujo durante 2 días El disolvente se evaporó y se añadió agua al líquido de reacción, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener 1-(1-{[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}etil)ciclohexanol (585 mg).

El compuesto resultante (325 mg) se disolvió en una solución mixta de EtOH-acetonitrilo. Se añadió ácido oxálico (80 mg) al líquido de reacción para obtener oxalato de 1-(1-{[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}etil)ciclohexanol (292 mg).

## Ejemplo 8 (Referencia)

La 2-{[2-(1-ciclohexil-3,4-dihidroisoquinolin-2-(1H)-il)-2-oxoetil]amino}etanol (342 mg) se disolvió en EtOH (5 ml). Al mismo se añadieron 1-oxaespiro[2,5]octano (363 mg) y agua (5 ml), seguido de agitación con calentamiento a reflujo durante 2 días. El disolvente se evaporó y se añadió agua al líquido de reacción, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener 1-({[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil](2-hidroxietil)amino}metil)ciclohexanol (346 mg).

El compuesto resultante (346 mg) se disolvió en EtOH (10 ml). Se añadió ácido oxálico (76 mg) al líquido de reacción para obtener oxalato de 1-({[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil](2-hidroxietil)amino}metil)ciclohexanol (210 mg).

## Ejemplo 9 (Referencia)

La N-[2-(1-ciclohexil-3,4-dihidroisoquinolin-2-(1H)-il)-2-oxoetil]-N-(2-[cis-1,2-dihidroxiciclohexil]etil}-2,2,2-50 trifluoroacetamida (255 mg) se disolvió en MeOH (10 ml). A la misma se añadió carbonato potásico (345 mg), seguido de agitación a 60 °C durante 4 horas. El disolvente se evaporó y se añadió agua al líquido de reacción, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener cis-[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}etil)ciclohexano-1,2-diol (212 mg).

El compuesto resultante (212 mg) se disolvió en EtOH. Se añadió ácido oxálico (46 mg) al líquido de reacción para obtener oxalato de cis-1-(2{[2-(1-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}etil)ciclohexano-1,2-diol (170 mg).

## Ejemplo 10 (Referencia)

El [2-(1-ciclohexil-3,4-dihidroisoquinolin-2-(1H)-il)-2-oxoetil] {[cis-1,2-dihidroxiciclohexil]metil}carbamato de terc-butilo (92 mg) se disolvió en EtOAc (4 ml). Al mismo se añadió HCl / EtOAc 4 M (0,45 ml), seguido de agitación a temperatura ambiente durante 14 horas. El disolvente se evaporó y se añadió una solución acuosa 1 M de NaOH acuosa al residuo resultante, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera

saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo) para obtener cis-[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexano-1,2-diol (174 mg).

5 El compuesto resultante (174 mg) se disolvió en iPrOH. Se añadió ácido oxálico (43 mg) al líquido de reacción para obtener oxalato de cis-1-({[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexano-1,2-diol (88 mg).

## Ejemplo 11 (Referencia)

10

15

35

40

45

50

55

65

El [2-(6-carbamoil-1-ciclohexil-3,4-dihidroisoquinolin-2-(1H)-il)-2-oxoetil][(1-hidroxiciclohexil)metil]carbamato de tercbutilo (357 mg) se disolvió en EtOAc (8 ml). Al líquido de reacción se añadió HCI / EtOAc 4 M (0,85 ml) en enfriamiento con hielo, seguido de agitación a 60 °C durante 5 horas. El disolvente se evaporó y al residuo resultante se añadió agua, seguido de extracción con cloroformo. A la capa acuosa se añadió bicarbonato sódico acuoso saturado, que después se ajustó a un pH de aproximadamente 8, seguido de extracción con cloroformo. El extracto se lavó con salmuera saturada y después se secó sobre sulfato de magnesio para obtener 1-ciclohexil-2- {N-[(1-hidroxiciclohexil)metil]glicil)-1,2,3,4-tetrahidroisoquinolina-6-carboxamida (116 mg).

El compuesto resultante (116 mg) se disolvió en una solución mixta de iPrOH-éter dietílico. Se añadió ácido oxálico (24 mg) al líquido de reacción para obtener oxalato de 1-ciclohexil-2-{N[(1-hidroxiciclohexil)metil]glicil}-1,2,3,4-tetrahidroisoquinolin-6-carboxamida (70 mg).

#### Ejemplo 12 (Referencia)

El pivalato de 1-[2 (cloroacetil)-1,2,3,4-tetrahidroisoquinolin-1-il]-1-metiletil (1,2 g) se disolvió en acetonitrilo (20 ml). A ello se añadieron carbonato potásico (2,36 g), clorhidrato de 1-(aminometil)ciclohexanol (2,26 g) y yoduro de tetra-n-butilamonio (126 mg), seguido de agitación a 60 °C durante 5 horas. Al líquido de reacción se añadió agua, seguido de extracción con EtOAc. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH).

El residuo resultante (1,43 g) se disolvió en cloruro de metileno (20 ml). Al líquido de reacción se añadió una solución 1,01 M de hidruro de diisobutilaluminio / n-hexano (9,55 ml) a -78 ° C, seguido de agitación a -78 ° C durante 5 horas. A partir de entonces, la temperatura se aumentó a 0 °C durante 2 horas. Al liquido de reacción se añadió una solución acuosa saturada de sal de Rochelle, seguido de agitación durante 20 minutos. Después, se añadió celite al líquido de reacción, que después se sometió a separación por filtración, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener 1-[({2-[1-(1-hidroxi-1-metiletil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil} amino)metil]ciclohexanol (118 mg).

El compuesto resultante (150 mg) se disolvió en acetonitrilo. Se añadió ácido oxálico (41 mg) al líquido de reacción para obtener oxalato de 1-[({2-[1-(1-hidroxi-1-metiletil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol (151 mg).

#### Ejemplo 13 (Referencia)

La 2-(1-ciclohexil-7-metoxi-3,4-dihidroisoquinolin-2-(1H)-il)-N-(2-{[cis-2-(metoximetoxi)ciclopentil]oxi}etil)-2-oxoetanamina 2(500 mg) se disolvió en MeOH (8 ml). Al líquido de reacción se añadió HCI / EtOAc 4 M (0,8 ml) en enfriamiento con hielo, seguido de agitación a 60 °C durante 5 horas. El disolvente se evaporó y al residuo resultante se añadió bicarbonato sódico acuoso saturado, seguido de extracción con cloroformo. El extracto se lavó una vez con salmuera saturada y después se secó sobre sulfato magnésico. El disolvente se evaporó y el residuo resultante se purificó mediante cromatografía en columna en gel de sílice (cloroformo-MeOH) para obtener cis-2-(2-{[2-(1-ciclohexil-7-metoxi-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}etoxi)ciclopentanol (380 mg).

El compuesto resultante (380 mg) se disolvió en iPrOH. Se añadió ácido oxálico (80 mg) al líquido de reacción para obtener oxalato de cis-2-(2-{[2-(1-ciclohexil-7-metoxi-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}etoxi)ciclopentanol (384 mg).

## 60 Ejemplo 14 (Referencia)

El clorhidrato de 1-(4-cloropiridin-2-il)-1,2,3,4-tetrahidroisoquinolina (200 mg) y carbonato de potasio (344 mg) se disolvieron en EtOAc-agua (1: 1, 4 ml) en enfriamiento con hielo. Se añadieron cloruro de cloroacetilo (0,85 ml) y hidroboromato de benciltrietilamina (9,2 mg), seguido de agitación a temperatura ambiente durante 1 hora. A la mezcla se añadieron clorhidrato de de 2-amino-1,1-diciclopropiletanol (190 mg) y carbonato de potasio (246 mg). La mezcla se agitó a 50 ° C durante 8 horas. La capa orgánica se recogió, se lavó con salmuera saturada, se secó

sobre sulfato magnésico, se filtró y después se concentró a presión reducida. El residuo resultante se purificó mediante cromatografía en columna de gel de sílice (cloroformo-MeOH) para obtener 2-({2-[1-(4-cloropiridin-2-il)-3,4-dihidroisoquinolin-2(1H)-il-2-oxoetil]amino}-1,1-diciclopropiletanol (143 mg) como un material oleoso de color amarillo. El material oleoso se disolvió en un líquido mixto 3: 1 (4 ml) de éter dietílico-iPrOH. Se añadió ácido oxálico (30,2 mg) a la mezcla de reacción para obtener oxalato de 2-({2-[1-(4-cloropiridin-2-il)-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}-1,1-diciclopropiletanol (128 mg).

#### Ejemplo 15 (Referencia)

5

20

30

35

40

A una solución de 8-({[2-(1-ciclohexil-3,4-dihidro-2(1H)-isoquinolinil)-2-oxoetil]amino}metil)-1,4-dioxaespiro[4,5]decan-8-ol (324 mg) en THF (2 ml) se añadieron agua (1 ml) y ácido clorhídrico concentrado (1 ml). La mezcla de reacción se sometió a reflujo durante 5 horas. La temperatura se enfrió hasta la temperatura ambiente y a la mezcla se añadió hidrógeno carbonato de sodio para hacerla alcalina, seguido de extracción con cloroformo. El extracto se purificó mediante cromatografía en columna de gel de sílice (cloroformo-MeOH) para obtener una amina objetivo (176 mg).

La amina se disolvió en iPrOH (3 ml), a la que se añadió ácido oxálico (41,7 mg), seguido de agitación a temperatura ambiente durante 2 horas. El cristal resultante se recogió por filtración, se lavó con éter, y se secó a 90 °C a presión reducida para obtener 4-({[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)-4-hidroxiciclohexanona oxalato (139 mg).

## Ejemplo 16 (Referencia)

A una solución de 2-(cloroacetil)-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (12 mg) en acetonitrilo (0,5 ml) se añadieron carbonato de potasio (3 mg) y clorhidrato de (S)-(+)-2-amino-3-ciclohexil-1-propanol (15 mg), seguido de agitación a 80 °C durante 4 horas. Después, al líquido de reacción se añadió una solución de cloruro amónico acuoso saturado, seguido de extracción con cloroformo. El disolvente se evaporó y el residuo resultante se purificó mediante HPLC preparativa para obtener (2S)-3-ciclohexil-2{[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1h)-il)-2-oxoeti]amino}propan-1-ol (4,1 mg).

#### Ejemplo 17 (Referencia)

A una solución de 2-acriloil-1-ciclohexil-1,2,3,4-tetrahidroisoquinolina (7 mg) en iPrOH (0,1 ml) se añadió 2-(isopentilamino)etanol (26 mg), seguido de agitación a 90 °C durante 10 horas. Después, el líquido de reacción se purificó mediante HPLC preparativa para obtener 2-[3-(1-ciclohexil-3,4-dihidroisoquinolin-2 (1H)-il)-3-oxopropil](3-metilbutil) amino]etanol (3 mg).

Las estructuras químicas de los compuestos producidos mediante los Ejemplos anteriormente mencionados se muestran en las Tablas 43 y 44. Además, de la misma manera que en los métodos en los Ejemplos anteriormente mencionados, los compuestos de los Ejemplos que se muestran en las Tablas 45 a 110 se produjeron utilizando los respectivos materiales de partida correspondientes. Los datos del análisis instrumental de estos compuestos de los Ejemplos se muestran en las Tablas 111 a 125.

En las Tablas "R" significa "de Referencia".

| [Tabla 6] |                        |
|-----------|------------------------|
| Rex /sal  | ESTRUCTURA             |
| 1         | N N N                  |
|           | OF CF <sub>3</sub>     |
| 2         | HO. HO. NO CF.         |
| 3         |                        |
|           | MeO NO CF <sub>3</sub> |

| Rex /sal | ESTRUCTURA                     |
|----------|--------------------------------|
| 4*       |                                |
|          | O                              |
| 5        | CI N CI                        |
|          | 5                              |
| 6        | N <sub>1</sub> CI              |
|          | 5                              |
| 7        | N <sub>Y</sub> CH <sub>2</sub> |
|          | l o                            |
| 8        | N.Bn                           |
|          | J OH                           |
| 9        | NH NH                          |
|          | Ç Ç Ç Ç Ç                      |
| 10       | (N, N)                         |
|          | o boc                          |
| 11       | N <sub>N</sub> -boc            |
|          | A M                            |
| 12       | HN                             |
|          |                                |
| 13       | N. A.                          |
|          | NH <sub>2</sub>                |
| 14       |                                |
|          | o poc                          |
|          |                                |

[Tabla 7]

| Rex /sal | ESTRUCTURA |
|----------|------------|
| 15       | N-O        |

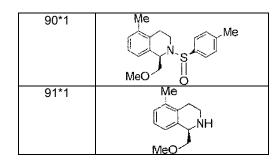
| Rex /sal   | ESTRUCTURA             |
|------------|------------------------|
| 15         | NH                     |
|            |                        |
| 17         |                        |
|            | N-Bn                   |
|            |                        |
| 18         | MeO                    |
|            | NH<br>MeO              |
|            |                        |
| 19 /CL     | H.C.                   |
|            | 141                    |
|            |                        |
| 20* /MD    | MeO NH                 |
| 0.41- (770 | iPr                    |
| 21* /T2    | NH                     |
|            |                        |
| 22 /TP     |                        |
|            | NH                     |
|            | MeO                    |
| 23         |                        |
|            | NH<br>F <sub>3</sub> C |
|            | 73-0                   |
| 24         | N. a                   |
|            | CI                     |
| 25         |                        |
|            | CI N                   |
|            |                        |
| 26         | ~ □                    |
|            | L N                    |
|            |                        |
| 27         |                        |
|            | MeO N                  |
|            |                        |
| 28         | C N                    |
|            | l v                    |
|            |                        |
|            |                        |

|          | [Tabla 8]                                  |
|----------|--------------------------------------------|
| Rex /sal | ESTRUCTURA                                 |
| 29       |                                            |
|          |                                            |
|          |                                            |
|          | \F                                         |
| 30       |                                            |
|          | NH                                         |
|          |                                            |
|          |                                            |
|          | ĆH₃                                        |
| 31       | CH₃ .                                      |
|          |                                            |
|          | N                                          |
| 32       | nPr                                        |
| 02       |                                            |
|          | MeO O                                      |
| 33       | MeO                                        |
| 33       | CI                                         |
|          |                                            |
|          | ⇒ > N O                                    |
| 34       | π<br>————————————————————————————————————  |
|          |                                            |
|          |                                            |
| 35       |                                            |
|          | ₩ \N \ tBu                                 |
|          | HO-Y                                       |
| 26       | H³C CH³                                    |
| 36       | N-CI                                       |
|          |                                            |
|          | O—CH <sub>3</sub> O<br>tBu—CH <sub>3</sub> |
| 37       | Br. 🔝 🔿                                    |
|          | N. boc                                     |
|          | ) boc                                      |
|          |                                            |
| 38       | N=                                         |
|          |                                            |
|          | N. boc                                     |
|          |                                            |
| 39 /CL   | N <sub>N</sub>                             |
|          | NH                                         |
|          | NM                                         |
|          |                                            |
| 40       |                                            |
| 40       | ACHN N C                                   |
|          | ACTIN                                      |
|          |                                            |
|          | $\overline{}$                              |

| Rex /sal | ESTRUCTURA         |
|----------|--------------------|
| 41       |                    |
| 42       | H <sub>3</sub> C N |

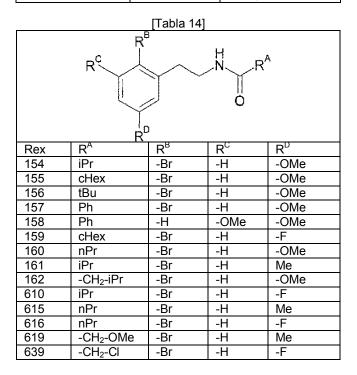
|          | [Tabla 9]                           |
|----------|-------------------------------------|
| Rex /sal | ESTRUCTURA                          |
| 43       | iPr N CI                            |
| 44       | HO CH <sub>3</sub> H <sub>3</sub> C |
| 45 /CL   | NH<br>MeO iPr<br>Br                 |
| 46 /CL   | Br<br>NH <sub>2</sub><br>Me<br>Br   |
| 47       | Br<br>N<br>Me                       |
| 48       | H <sub>3</sub> C                    |
| 49 /CL   | H <sub>3</sub> C                    |
| 50 /CL   | H <sub>3</sub> C                    |
| 51       | MeO CI                              |
| 52       | MeO NH                              |

| Rex /sal | ESTRUCTURA                             |
|----------|----------------------------------------|
| 53 /CL   | OH/                                    |
|          | H <sub>2</sub> N                       |
| 54       | TMSO 🛆                                 |
|          | N                                      |
| 55       | H₃C OMe                                |
|          | H <sub>3</sub> C-Y                     |
|          | NH                                     |
| 56       |                                        |
|          | N. Bn                                  |
|          | H <sub>3</sub> CCH <sub>3</sub><br>OMe |


|          | [Tabla 10]                          |
|----------|-------------------------------------|
| Rex /sal | ESTRUCTURA                          |
| 57       | N. Bn                               |
|          | H <sub>3</sub> C+CH <sub>3</sub> OH |
| 58       | N. Bn<br>O OEt                      |
| 59       | MeO N CI                            |
| 60       | iPr<br>HN CI                        |
| 61       | MeO N Cl                            |
| 62 /CL   | NH<br>MeO nPr                       |
| 63       | H <sub>3</sub> C N CI               |
| 64       | HONN                                |
| 65       | iPr N                               |

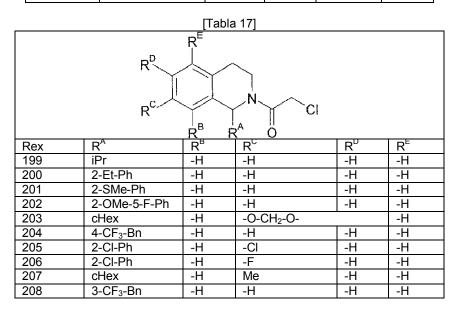
| Rex /sal | ESTRUCTURA                      |
|----------|---------------------------------|
| 66       | Et                              |
| 67       | MeO NH                          |
| 68       | OMe N                           |
| 69       | OMe<br>MeO<br>N_CF <sub>3</sub> |
| 70       | MeO O                           |
| 70       | OH N. boc                       |

| [Tabla 11] |                          |
|------------|--------------------------|
| Rex /sal   | ESTRUCTURA               |
| 71         | AcHN N. boc              |
| 72         | H <sub>2</sub> N.boc     |
| 73         | iPr O N. boc             |
| 74         | HO N.boc                 |
| 75         | O CH <sub>3</sub> N. boc |
| 76         | F CH <sub>3</sub> N-boc  |
| 77*        | N. boc                   |


| Rex /sal | ESTRUCTURA               |
|----------|--------------------------|
| 78* /CL  | NH<br>F <sub>O</sub> iPr |
|          | <u> </u>                 |
| 79* /CL  | F O F                    |
| 80 /OX   |                          |
|          | H <sub>2</sub> N OH      |
| 81* /T2  | Br NH                    |
| 82* /LL  | ±                        |
| 83 /TX   | Et NH                    |
| 84 /CL   | Et N                     |

|          | [Tabla 12]                |
|----------|---------------------------|
| Rex /sal | ESTRUCTURA                |
| 85*      |                           |
| 86       | Br<br>N<br>Me<br>O<br>MeO |
| 87       | boc<br>Et                 |
| 88       | Et O Me                   |
| 89*      | CN boc                    |




| [Tabla 13]        |                   |                            |  |  |  |  |
|-------------------|-------------------|----------------------------|--|--|--|--|
|                   | 2 H _B            |                            |  |  |  |  |
| 3                 |                   | N R <sup>B</sup>           |  |  |  |  |
| R <sup>A</sup> —∰ |                   |                            |  |  |  |  |
| l Ľ               |                   | Ö                          |  |  |  |  |
| 4                 | 6                 | J                          |  |  |  |  |
| _                 | 5                 |                            |  |  |  |  |
| Rex               | R <sup>A</sup>    | R <sub>R</sub>             |  |  |  |  |
| 101               | -H                | 2-OMe-Bn                   |  |  |  |  |
| 102               | -H                | 4-Thp                      |  |  |  |  |
| 103               | 3-Br              | cHex                       |  |  |  |  |
| 104               | 2-OMe             | cHex                       |  |  |  |  |
| 105               | 3-CI              | cHex                       |  |  |  |  |
| 106               | 3-F               | cHex                       |  |  |  |  |
| 107               | -H                | 2-CF <sub>3</sub> -Ph      |  |  |  |  |
| 108               | -H                | 3-F-Ph                     |  |  |  |  |
| 109               | -H                | 3-CF <sub>3</sub> -Ph      |  |  |  |  |
| 110               | -H                | ciclohexen-4-ilo           |  |  |  |  |
| 111               | -H                | 2-F-Ph                     |  |  |  |  |
| 112               | 4-OMe             | cHex                       |  |  |  |  |
| 113               | 2-Cl              | cHex                       |  |  |  |  |
| 114               | 2-Me              | cHex                       |  |  |  |  |
| 115               | 4-F               | cHex                       |  |  |  |  |
| 116               | 2-F               | cHex                       |  |  |  |  |
| 117               | -H                | 2-CF <sub>3</sub> - 5-F-Ph |  |  |  |  |
| 118               | -H<br>-H          | 2-OCF <sub>3</sub> -Ph     |  |  |  |  |
| 119               | -H                | 2-Et-Ph                    |  |  |  |  |
| 120               | -H                | 2-Cl-3-Py                  |  |  |  |  |
| 121               | -H                | 3-CF <sub>3</sub> -Bn      |  |  |  |  |
| 122               | 4-Me              | cHex                       |  |  |  |  |
| 123               | 4-CF <sub>3</sub> | cHex                       |  |  |  |  |
| 124               | 4-F               | iPr                        |  |  |  |  |
| 125               | -H                | -(CH <sub>2</sub> )2-OMe   |  |  |  |  |
| 126               | 3-F               | -CH <sub>2</sub> -OMe      |  |  |  |  |
| 127               | 4-F               | -CH <sub>2</sub> -OMe      |  |  |  |  |
| 128               | 4-Et              | -CH <sub>2</sub> -OMe      |  |  |  |  |
| 129               | -H                | 2-Me-Bn                    |  |  |  |  |
| 130               | 4-Et              | -CH <sub>2</sub> -Cl       |  |  |  |  |
| 131               | 2-Me              | nPr                        |  |  |  |  |
| 132               | 3-F               | nPr                        |  |  |  |  |
| 133               | 2-F               | -CH <sub>2</sub> -OMe      |  |  |  |  |
| 134               | 2-Me              | -CH <sub>2</sub> -OMe      |  |  |  |  |
| 135               | 4-Me              | -CH <sub>2</sub> -OMe      |  |  |  |  |
| 136               | 2-F               | nPr                        |  |  |  |  |
| 137               | 4-Me              | nPr                        |  |  |  |  |
| 138               | 2-Me              | iPr                        |  |  |  |  |
| 139               | 2-F               | Ph                         |  |  |  |  |
| 140               | 4-Me              | Ph                         |  |  |  |  |
| 141               | 4-Me              | iPr                        |  |  |  |  |
| 142               | 3-Me              | cHex                       |  |  |  |  |
| 143               | 3-Me              | iPr                        |  |  |  |  |
| 144               | 3-Me              | nPr                        |  |  |  |  |

| Rex  | R <sup>A</sup> | R <sup>B</sup>                                  |
|------|----------------|-------------------------------------------------|
| 145  | 3-Me           | -CH <sub>2</sub> -OMe                           |
| 146  | -H             | 3,3-diF-cHex                                    |
| 147  | -H             | 6-Me-2-Py                                       |
| 148  | -H             | 6-Br-2-Py                                       |
| 149  | -H             | 6-Cl-2-Py                                       |
| 150  | -H             | 4-Cl-2-Py                                       |
| 151  | -H             | —← Me                                           |
| 152  | 4-Me           | -CH <sub>2</sub> -OEt                           |
| 153  | 4-Me           | -CH <sub>2</sub> -O-(CH <sub>2</sub> )2-<br>OMe |
| 153A | 3-F            | iPr                                             |
| 609  | 4-Et           | -CH <sub>2</sub> -CI                            |
| 624  | 4-Et           | nPr                                             |
| 641  | 4-Et           | Me                                              |
| 661  | -H             | 2-OMe-5-F-Ph                                    |
| 662  | -H             | 4-CF <sub>3</sub> -Bn                           |



| [Tabla 15] |                  |                                              |  |  |
|------------|------------------|----------------------------------------------|--|--|
|            | R <sup>B</sup> O |                                              |  |  |
| Rex        | R <sup>A</sup>   | R <sup>B</sup>                               |  |  |
| 163        | Me               | -F                                           |  |  |
| 164        | -F               | -CH <sub>2</sub> -Br<br>-CH <sub>2</sub> -CN |  |  |
| 165        | -F               | -CH <sub>2</sub> -CN                         |  |  |

|     |                           | [Tabla 16]                             |        |                    |                |  |  |
|-----|---------------------------|----------------------------------------|--------|--------------------|----------------|--|--|
|     | RE                        |                                        |        |                    |                |  |  |
|     | " I "                     |                                        |        |                    |                |  |  |
|     | R <sup>D</sup>            |                                        |        |                    |                |  |  |
|     | Y Y                       |                                        |        |                    |                |  |  |
|     |                           | 人 N.                                   | $\sim$ |                    |                |  |  |
|     | RC                        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Y `C   | :]                 |                |  |  |
|     | R <sup>!</sup> B          | R <sup>A</sup>                         |        |                    |                |  |  |
| Rex | I R <sup>A</sup>          | L <sub>R</sub>                         | R°     | R <sup>D</sup>     | R <sup>E</sup> |  |  |
| 166 | cPen                      | -H                                     | -H     | -H                 | -H             |  |  |
| 167 | cHex                      | -H                                     | -Br    | -H                 | -H             |  |  |
| 168 | cHex                      | -H                                     | -H     | -H                 | -Br            |  |  |
| 169 | cHex                      | -H                                     | -H     | -H                 | -H             |  |  |
| 170 | -CHEt <sub>2</sub>        | -H                                     | -H     | -H                 | -H             |  |  |
| 171 | cHex                      | -H                                     | -H     | -Br                | -H             |  |  |
| 172 | cHex                      | -H                                     | -H     | CN                 | -H             |  |  |
| 173 | cHex                      | -H                                     | -H     | -H                 | -OMe           |  |  |
| 174 | cHex                      | -H                                     | -H     | -F                 | -H             |  |  |
| 175 | cHex                      | -H                                     | -H     | -CI                | -H             |  |  |
| 176 | iPr                       | -H                                     | -F     | -H                 | -H             |  |  |
| 177 | 4-F-Ph                    | -H                                     | -H     | -H                 | -H             |  |  |
| 178 | 4-CN-Ph                   | -H                                     | -H     | -H                 | -H             |  |  |
| 179 | ciclohexen-4-ilo          | -H                                     | -H     | -H                 | -H             |  |  |
| 180 | 3-CF <sub>3</sub> -Ph     | -H                                     | -H     | -H                 | -H             |  |  |
| 181 | 2-CF <sub>3</sub> -Ph     | -H                                     | -H     | -H                 | -H             |  |  |
| 182 | 2-F-Ph                    | -H                                     | -H     | -H                 | -H             |  |  |
| 183 | cHex                      | -H                                     | -H     | -H                 | -CI            |  |  |
| 184 | cHex                      | -H                                     | -OMe   | -OMe               | -H             |  |  |
| 185 | cHex                      | -H                                     | -OMe   | -H                 | -H             |  |  |
| 186 | cHex                      | -H                                     | -H     | -OMe               | -H             |  |  |
| 187 | 2-Cl-Ph                   | -H                                     | -H     | -H                 | -H             |  |  |
| 188 | 3-F-Ph                    | -H                                     | -H     | -H                 | -H             |  |  |
| 189 | 3-CI-Ph                   | -H                                     | -H     | -H                 | -H             |  |  |
| 190 | cHex                      | -H                                     | -H     | -H                 | -F             |  |  |
| 191 | cHex                      | -H                                     | -F     | -H                 | -H             |  |  |
| 192 | 1-OH-cHex                 | -H                                     | -H     | -H                 | -H             |  |  |
| 193 | 2-OMe-Ph                  | -H                                     | -H     | -H                 | -H             |  |  |
| 194 | 2-OCF <sub>3</sub> -Ph    | -H                                     | -H     | -H                 | -H             |  |  |
| 195 | cHex                      | -H                                     | -H     | -CONH <sub>2</sub> | -H             |  |  |
| 196 | 2-CF <sub>3-</sub> 5-F-Ph | -H                                     | -H     | -H                 | -H             |  |  |
| 197 | 2-OEt-Ph                  | -H                                     | -H     | -H                 | -H             |  |  |
| 198 | tBu                       | -H                                     | -H     | -H                 | -H             |  |  |



| Rex | R <sup>A</sup>                        | $R_{\scriptscriptstyleR}$ | R <sup>c</sup>                        | R <sup>D</sup> | R <sup>⊧</sup> |
|-----|---------------------------------------|---------------------------|---------------------------------------|----------------|----------------|
| 209 | cHex                                  | -H                        | -CF <sub>3</sub>                      | -H             | -H             |
| 210 | 4-Me-Ph                               | -H                        | -H                                    | -H             | -H             |
| 211 | cHex                                  | -H                        | Et                                    | -H             | -H             |
| 212 | cHex                                  | Ţ                         | -CH <sub>2</sub> NHCO-iPr             | -H             | -H             |
| 213 | iPr                                   | Ţ                         | -H                                    | -OMe           | -H             |
| 214 | cBu                                   | Ţ                         | -H                                    | -H             | -H             |
| 215 | -CH <sub>2</sub> -OMe                 | -H                        | -H                                    | -H             | -H             |
| 216 | -CH(Et)Me                             | -H                        | -H                                    | -H             | -H             |
| 217 | cHex                                  | -H                        | -OCH <sub>2</sub> CHF <sub>2</sub>    | -H             | -H             |
| 218 | cHex                                  | -H                        | -OCH <sub>2</sub> CF <sub>2</sub> -Me | -H             | -H             |
| 219 | -(CH <sub>2</sub> ) <sub>2</sub> -OMe | -H                        | -H                                    | -H             | -H             |
| 220 | iPr                                   | -H                        | -OMe                                  | -OMe           | -H             |
| 221 | iPr                                   | -H                        | -OMe                                  | -H             | -H             |
| 222 | tBu                                   | -H                        | -OMe                                  | -H             | -H             |
| 223 | iPr                                   | -H                        | -F                                    | -H             | -H             |
| 224 | -CH <sub>2</sub> -OMe                 | -H                        | -F                                    | -H             | -H             |
| 225 | -CMe <sub>2</sub> -OMe                | -H                        | -H                                    | -H             | -H             |
| 226 | -CH <sub>2</sub> -OMe                 | -H                        | Et                                    | -H             | -H             |
| 227 | 2-F-Bn                                | -H                        | -H                                    | -H             | -H             |
| 228 | cHex                                  | -OMe                      | -H                                    | -H             | -H             |
| 229 | cHex                                  | -OMe                      | -H                                    | -H             | -Br            |

| [Tabla 18]     |                       |                |                |                       |                |  |
|----------------|-----------------------|----------------|----------------|-----------------------|----------------|--|
| ŖĒ             |                       |                |                |                       |                |  |
| n Î            |                       |                |                |                       |                |  |
| R <sup>0</sup> |                       |                |                |                       |                |  |
|                |                       | Y Y            | ]              |                       |                |  |
|                | _                     | 丿 人            | , N.           | ^                     |                |  |
|                | R <sup>C</sup> /      |                | \\'\\          | ĭ `CI                 |                |  |
|                | • •                   | R <sup>B</sup> | _A             |                       |                |  |
| D              | R <sup>A</sup>        | <u> </u>       | R <sup>C</sup> | O<br>I R <sup>D</sup> | R <sup>⊨</sup> |  |
| Rex            |                       | K              |                |                       |                |  |
| 232            | 2-OMe-Bn              | -H             | -H             | -H                    | -H             |  |
| 233            | 2-Me-Bn               | -H             | -H             | -H                    | -H             |  |
| 234            | iPr                   | -OMe           | -H             | -H                    | -H             |  |
| 235            | tBu                   | -OMe           | -H             | -H                    | -H             |  |
| 236A           | 2-CF <sub>3</sub> -Bn | -H             | -H             | -H                    | -H             |  |
| 237            | Ph                    | -OMe           | -H             | -H                    | -OMe           |  |
| 238            | Ph                    | -H             | -OMe           | -H                    | -H             |  |
| 241            | Ph                    | -H             | -H             | Me                    | -H             |  |
| 242            | iPr                   | -H             | -H             | Me                    | -H             |  |
| 243            | cHex                  | -H             | -H             | Me                    | -H             |  |
| 244            | iPr                   | -H             | Me             | -H                    | -H             |  |
| 245            | -CH <sub>2</sub> -OMe | -H             | -H             | -OMe                  | -H             |  |
| 246            | Ph                    |                | -H             | -H                    | Me             |  |
| 247            | iPr                   | -H             | -H             | -H                    | Me             |  |
| 248            | cHex                  | -H             | -H             | -H                    | Me             |  |
| 249            | nPr                   | -H             | -H             | -F                    | -H             |  |
| 250            | Ph                    | -H             | -H             | -F                    | -H             |  |
| 251            | nPr                   | -H             | -H             | -H                    | Me             |  |
| 252            | nPr                   | -H             | -H             | -H                    | -OMe           |  |
| 253            | nPr                   | -H             | -F             | -H                    | -H             |  |
| 254            | nPr                   | -H             | -H             | -H                    | -F             |  |
| 255            | -CH <sub>2</sub> -OMe | -H             | Me             | -H                    | -H             |  |
| 256            | -CH <sub>2</sub> -OMe | -H             | -OMe           | -H                    | -H             |  |
| 257            | nPr                   | -H             | Ме             | -H                    | -H             |  |
| 258            | Ph                    | -OMe           | -H             | -OMe                  | -H             |  |
| 259            | -CH <sub>2</sub> -OMe | -H             | -H             | -H                    | Me             |  |
| 260            | -CH <sub>2</sub> -OMe | -H             | -H             | -H                    | -F             |  |
| 261            | nPr                   | -OMe           | -H             | -H                    | -H             |  |
| 262            | -CH <sub>2</sub> -OMe | -H             | -H             | Me                    | -H             |  |
|                | 3112 31110            |                |                | 1 .410                |                |  |

| Rex | R <sup>A</sup> | R <sub>B</sub> | R <sup>C</sup> | R <sup>D</sup> | R <sup>⊧</sup> |
|-----|----------------|----------------|----------------|----------------|----------------|
| 263 | nPr            | -H             | -H             | Me             | -H             |
| 264 | cHex           | Me             | -H             | -H             | -H             |
| 265 | cHex           | -F             | -H             | -H             | -H             |

| [Tabla 19]          |                                                          |                          |                |                |                |  |
|---------------------|----------------------------------------------------------|--------------------------|----------------|----------------|----------------|--|
| R <sup>D</sup> N CI |                                                          |                          |                |                |                |  |
| Rex                 | R <sup>A</sup>                                           | _R^ O<br>IR <sup>B</sup> | R <sup>c</sup> | R <sup>D</sup> | R <sup>⊨</sup> |  |
| 266                 | Ph                                                       | Me                       | -H             | -H             | -H             |  |
| 267                 | Ph                                                       | -F                       | -H             | -H             | -H             |  |
| 268                 | nPr                                                      | -H                       | -H             | -OMe           | -H             |  |
| 269                 | Ph                                                       | -H                       | -H             | -OMe           | -H             |  |
| 270                 | 4,4-diF-cHex                                             | -H                       | -H             | -H             | -H             |  |
| 271                 | 3,3-diF-cHex                                             | -H                       | -H             | -H             | -H             |  |
| 272                 | 4-Thp                                                    | -H                       | -H             | -H             | -H             |  |
| 273                 | 2-Cl-3-Py                                                | -H                       | -H             | -H             | -H             |  |
| 274                 | 6-Cl-2-Py                                                | -H                       | -H             | -H             | -H             |  |
| 275                 | 6-Br-2-Py                                                | -H                       | -H             | -H             | -H             |  |
| 276                 | 6-Me-2-Py                                                | -H                       | -H             | -H             | -H             |  |
| 277                 | 4-Cl-2-Py                                                | -H                       | -H             | -H             | -H             |  |
| 278                 | 2-Py                                                     | -H                       | -H             | -H             | -H             |  |
| 279                 | 2-Me-Ph                                                  | -H                       | -H             | -H             | -H             |  |
| 280                 | iPr                                                      | Me                       | -H             | -H             | -Br            |  |
| 281                 | -CH <sub>2</sub> -OEt                                    | -H                       | Me             | -H             | -H             |  |
| 282                 | -CH <sub>2</sub> -iPr                                    | -H                       | -OMe           | -H             | -H             |  |
| 283                 | -CH <sub>2</sub> -iPr                                    | -OMe                     | -H             | -H             | -H             |  |
| 284                 | -CH <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -OMe | -H                       | Me             | -H             | -H             |  |
| 285                 | <b>─</b> Me                                              | -H                       | -H             | -H             | -H             |  |
| 286                 | 1-Admt                                                   | -H                       | -H             | -H             | -H             |  |
| 614                 | iPr                                                      | -F                       | -H             | -H             | -Br            |  |
| 628                 | Ph                                                       | Et                       | -H             | -H             | -H             |  |
| 629                 | Me                                                       | -H                       | Et             | -H             | -H             |  |
| 633                 | Me                                                       | -H                       | Me             | -H             | -H             |  |
| 635                 | nPr                                                      | Me                       | -H             | -H             | -Br            |  |
| 638                 | nPr                                                      | -F                       | -H             | -H             | -Br            |  |
| 655                 | -CH <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>3</sub> -OMe | -H                       | Et             | -H             | -H             |  |
| 648                 | -CH <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -OMe | -H                       | Et             | -H             | -H             |  |
| 656                 | -CH <sub>2</sub> -OMe                                    | -F                       | -H             | -H             | -Br            |  |

|      | [Tabla 20]            |                |                       |                |                |  |
|------|-----------------------|----------------|-----------------------|----------------|----------------|--|
|      | R <sup>D</sup>        | RERB           | N<br>R<br>R           | `cı            |                |  |
| Rex  | R <sup>A</sup>        | R <sup>B</sup> | R <sup>C</sup>        | R <sup>D</sup> | R <sup>E</sup> |  |
| 230* | iPr                   | -H             | -H                    | -OMe           | -H             |  |
| 240  | -CH <sub>2</sub> -OMe | -H             | Et                    | -H             | -H             |  |
| 287  | 2-OMe-Ph              | -H             | -H                    | -H             | -H             |  |
| 288  | Ph                    | -H             | -H                    | -H             | -H             |  |
| 289* | cHex                  | -H             | -CMe <sub>2</sub> -OH | -H             | -H             |  |

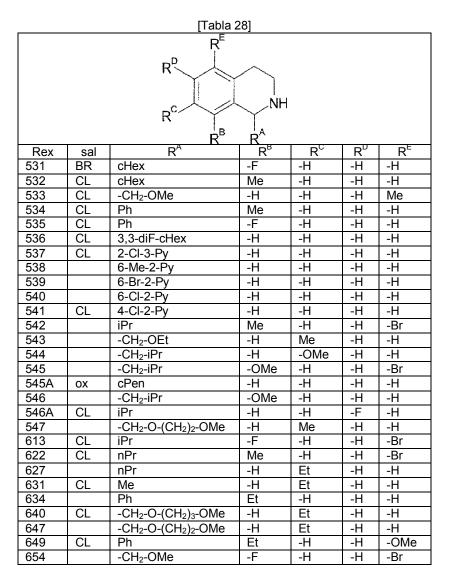
| Rex               | R <sup>A</sup>        | R <sup>B</sup> | R <sup>c</sup> | $R^{D}$ | R <sup>E</sup> |
|-------------------|-----------------------|----------------|----------------|---------|----------------|
| 290*              | Ph                    | -OMe           | -H             | -H      | -H             |
| 653*              | Ph                    | -H             | -H             | -F      | -H             |
| 660* <sup>2</sup> | -CH <sub>2</sub> -OMe | -H             | -H             | -H      | Me             |

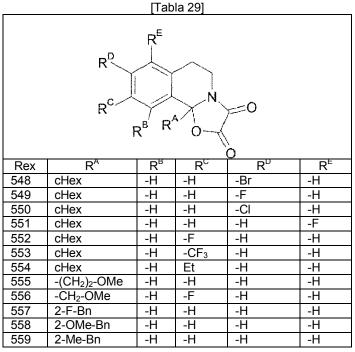
| [Tabla 21]          |                       |                     |                       |                |    |  |
|---------------------|-----------------------|---------------------|-----------------------|----------------|----|--|
| R <sup>D</sup> N CI |                       |                     |                       |                |    |  |
| Rex                 | R <sup>A</sup>        | R <sup>B</sup>      | R                     | R <sup>□</sup> | R⁵ |  |
| 231*                | iPr                   | -H                  | -H                    | -OMe           | -H |  |
| 236*                | 2-CF <sub>3</sub> -Bn | -H                  | -H                    | -H             | -H |  |
| 239                 | -CH <sub>2</sub> -OMe | -H                  | Et                    | -H             | -H |  |
| 291                 | 2-OMe-Ph              | -H                  | -H                    | -H             | -H |  |
| 292*                | cHex                  | -H                  | -CMe <sub>2</sub> -OH | -H             | -H |  |
| 293*                | cHex                  | -H                  | -OMe                  | -H             | -H |  |
| 294*                | Ph                    | -H                  | -OMe                  | -H             | -H |  |
| 295*                | Ph                    | -OMe                | -H                    | -H             | -H |  |
| 296*                | iPr                   | -O-CHF <sub>2</sub> | -H                    | -H             | -H |  |
| 297*                | Ph                    | -O-CHF <sub>2</sub> | -H                    | -H             | -H |  |
| 644*                | Ph                    | -CN                 | -H                    | -H             | -H |  |
| 651*                | Ph                    | -H                  | -H                    | -F             | -H |  |
| 659* <sup>1</sup>   | -CH <sub>2</sub> -OMe | -H                  | -H                    | -H             | Me |  |

| [Tabla 23]                           |     |                    |                  |                |                |                |  |  |
|--------------------------------------|-----|--------------------|------------------|----------------|----------------|----------------|--|--|
| R <sup>D</sup> N<br>R <sup>C</sup> N |     |                    |                  |                |                |                |  |  |
| Rex                                  | sal | R <sup>A</sup>     | R <sub>R</sub> , | R <sup>C</sup> | R <sup>□</sup> | R <sup>⊨</sup> |  |  |
| 303                                  |     | Ph                 | -H               | Me             | -H             | -H             |  |  |
| 304                                  |     | -CHEt <sub>2</sub> | -H               | -H             | -H             | -H             |  |  |
| 305                                  |     | cHex               | -H               | -H             | -Br            | -H             |  |  |
| 306                                  |     | iPr                | -OMe             | -H             | -H             | -Br            |  |  |
| 307                                  |     | iPr                | -H               | -OMe           | -H             | -H             |  |  |
| 308                                  |     | cHex               | -H               | -OH            | -H             | -H             |  |  |
| 309                                  |     | cHex               | -H               | -H             | -H             | -OMe           |  |  |
| 310                                  |     | cHex               | -H               | -H             | -F             | -H             |  |  |

| Rex | sal | l R <sup>A</sup>                      | R <sub>B</sub> | R <sup>c</sup>   | R <sup>□</sup> | R <sup>E</sup> |
|-----|-----|---------------------------------------|----------------|------------------|----------------|----------------|
| 311 |     | cHex                                  | -H             | -H               | -CI            | -H             |
| 312 |     | 2-CF <sub>3</sub> -Ph                 | -H             | -H               | -H             | -H             |
| 313 |     | ciclohexen-4-ilo                      | -H             | -H               | -H             | -H             |
| 314 |     | 3-CF <sub>3</sub> -Ph                 | -H             | -H               | -H             | -H             |
| 315 |     | 2-F-Ph                                | -H             | -H               | -H             | -H             |
| 316 |     | 4,4-diF-cHex                          | -H             | -H               | -H             | -H             |
| 317 |     | cHex                                  | -H             | -H               | -H             | -F             |
| 318 |     | cHex                                  | -H             | -F               | -H             | -H             |
| 319 |     | 2-CF <sub>3-</sub> 5-F-Ph             | -H             | -H               | -H             | -H             |
| 320 |     | 2-COCF <sub>3</sub> -Ph               | -H             | -H               | -H             | -H             |
| 321 |     | 2-OEt-Ph                              | -H             | -H               | -H             | -H             |
| 322 |     | 2-Et-Ph                               | -H             | -H               | -H             | -H             |
| 323 |     | 2-SMe-Ph                              | -H             | -H               | -H             | -H             |
| 324 |     | 2-Cl-Ph                               | -H             | -CI              | -H             | -H             |
| 325 | CL  | 2-Cl-Ph                               | -H             | -F               | -H             | -H             |
| 326 |     | 2-OMe-5-F-Ph                          | -H             | -H               | -H             | -H             |
| 327 |     | 4-CF <sub>3</sub> -Bn                 | -H             | -H               | -H             | Ţ.             |
| 328 |     | 3-CF <sub>3</sub> -Bn                 | -H             | -H               | -H             | -H             |
| 329 |     | cHex                                  | -H             | -CF <sub>3</sub> | -H             | -H             |
| 330 |     | cHex                                  | -H             | Et               | -H             | Ţ.             |
| 331 |     | -CH(Et)-Me                            | -H             | -H               | -H             | Ŧ,             |
| 332 |     | cHex                                  | -H             | -OiPr            | -H             | -H             |
| 333 |     | iPr                                   | -H             | -F               | -H             | -H             |
| 334 |     | -(CH <sub>2</sub> ) <sub>2</sub> -OMe | -H             | -H               | -H             | Ţ              |
| 335 |     | -CH <sub>2</sub> -OMe                 | -H             | -F               | -H             | -H             |

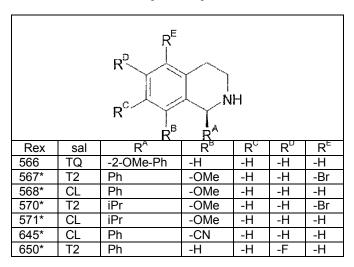
|     | [Tabla 24] |                       |                |                 |                 |                |  |  |  |
|-----|------------|-----------------------|----------------|-----------------|-----------------|----------------|--|--|--|
|     |            |                       | Ŗ <sup>E</sup> |                 |                 |                |  |  |  |
|     |            |                       |                |                 |                 |                |  |  |  |
|     | RD         |                       |                |                 |                 |                |  |  |  |
|     |            | Ĭ                     |                |                 |                 |                |  |  |  |
|     |            |                       |                | ∠.Ń             |                 |                |  |  |  |
|     |            | R <sup>c</sup>        |                | Ý               |                 |                |  |  |  |
|     |            |                       | R <sup>B</sup> | R <sup>A</sup>  |                 |                |  |  |  |
| Rex | sal        | l R <sup>a</sup>      | R <sup>B</sup> | R <sup>c</sup>  | R <sup>D</sup>  | R <sup>E</sup> |  |  |  |
| 336 | Sai        |                       | -OMe           | -H              | -H              | -Br            |  |  |  |
| 337 |            | cHex<br>2-F-Bn        | -H             | -⊓<br>-H        | -⊓<br>-H        | -ы<br>-Н       |  |  |  |
| 338 |            | 2-OMe-Bn              | -H             | -H              | -H              | -H             |  |  |  |
| 339 |            | 2-Me-Bn               | -H             | -H              | -H              | -H             |  |  |  |
| 340 |            | Ph                    | -OMe           | -H              | -H              | Br             |  |  |  |
| 341 |            | iPr                   | -H             | -H              | -OMe            | -H             |  |  |  |
| 342 |            | -CH <sub>2</sub> -OMe | -11<br>-H      | Me              | -H              | -H             |  |  |  |
| 343 |            | Ph                    | -OMe           | -H              | -OMe            | -H             |  |  |  |
| 344 |            | Ph                    | -H             | -H              | -H              | -F             |  |  |  |
| 345 |            | -CH <sub>2</sub> -OMe | -n<br>-H       | -⊓<br>-H        | -OMe            | -r<br>-H       |  |  |  |
| 346 |            | iPr                   | -H             | -H              | -H              | Me             |  |  |  |
| 347 |            | cHex                  | -H             | -H              | -H              | Me             |  |  |  |
| 348 |            | -iPr                  | -H             | Me              | -H              | -H             |  |  |  |
| 349 |            | cHex                  | -H             | -H              | Me              | -H             |  |  |  |
| 350 |            | iPr                   | -H             | -H              | Me              | -H             |  |  |  |
| 351 |            | Ph                    |                | -F              | -H              | -11<br>-H      |  |  |  |
| 352 |            | nPr                   | -n<br>-H       | -г<br>-Н        | -⊓<br>-H        | -OMe           |  |  |  |
| 353 |            | nPr                   | -n<br>-H       | Me              | -⊓<br>-H        | -H             |  |  |  |
| 354 |            | nPr                   | -n<br>-H       | -H              | -n<br>-H        | -n<br>-F       |  |  |  |
| 355 |            | nPr                   | -n<br>-H       | -OMe            | -⊓<br>-H        | -г<br>-Н       |  |  |  |
| 356 |            | -CH <sub>2</sub> -OMe | -n<br>-H       | -OMe            | -⊓<br>-H        | -n<br>-H       |  |  |  |
| 357 |            | -CH <sub>2</sub> -OMe | -n<br>-H       | -H              | -⊓<br>-H        | Me             |  |  |  |
| 358 |            | nPr                   | -n<br>-H       | -⊓<br>-H        | Me              | -H             |  |  |  |
| 359 |            | nPr                   | -OMe           | -⊓<br>-H        | -H              | -n<br>-Br      |  |  |  |
| 360 |            | cHex                  | -Givie         | <u>-⊓</u><br>-H | <u>-⊓</u><br>-H | -Br            |  |  |  |
| 300 |            | UTEX                  | <b>-</b> F     | -П              | -П              | -DI            |  |  |  |


| Rex | sal | R <sup>A</sup>        | R <sup>B</sup> | R <sup>c</sup> | R <sup>□</sup> | R <sup>⊧</sup> |
|-----|-----|-----------------------|----------------|----------------|----------------|----------------|
| 361 |     | -CH <sub>2</sub> -OMe | -H             | -H             | -H             | -OMe           |
| 362 | CL  | Ph                    | -F             | -H             | -H             | -H             |
| 363 |     | -CH <sub>2</sub> -OMe | -H             | -H             | -H             | -F             |
| 364 |     | 4-Thp                 | -H             | -H             | -H             | -H             |
| 365 |     | 2-Cl-3-Py             | -H             | -H             | -H             | -H             |
| 366 |     | 6-Me-2-Py             | -H             | -H             | -H             | -H             |
| 367 |     | 6-Br-2-Py             | -H             | -H             | -H             | -H             |
| 368 |     | 6-Cl-2-Py             | -H             | -H             | -H             | -H             |
| 369 |     | 4-Cl-2-Py             | -H             | -H             | -H             | -H             |


|                                              | [Tabla 25]                                               |                  |                |                |                |  |  |  |
|----------------------------------------------|----------------------------------------------------------|------------------|----------------|----------------|----------------|--|--|--|
| R <sup>c</sup> R <sup>B</sup> R <sup>A</sup> |                                                          |                  |                |                |                |  |  |  |
| Rex                                          | R <sup>A</sup>                                           | , R <sub>R</sub> | R <sup>c</sup> | R <sup>υ</sup> | R <sup>⊧</sup> |  |  |  |
| 370                                          | tBu                                                      | -OMe             | -H             | -H             | -Br            |  |  |  |
| 371                                          | iPr                                                      | Me               | -H             | -H             | -Br            |  |  |  |
| 372                                          | -CH <sub>2</sub> -OEt                                    | -H               | Me             | -H             | -H             |  |  |  |
| 373                                          | -CH <sub>2</sub> -iPr                                    | -H               | -OMe           | -H             | -H             |  |  |  |
| 374                                          | -CH <sub>2</sub> -iPr                                    | -OMe             | -H             | -H             | -Br            |  |  |  |
| 375                                          | -CH <sub>2</sub> -O-(CH <sub>2</sub> ) <sub>2</sub> -OMe | -H               | Me             | -H             | -H             |  |  |  |
| 375A                                         | iPr                                                      | -H               | -H             | -F             | -H             |  |  |  |
| 612                                          | iPr                                                      | -F               | -H             | -H             | -Br            |  |  |  |
| 620                                          | nPr                                                      | Me               | -H             | -H             | -Br            |  |  |  |
| 621                                          | nPr                                                      | -F               | -H             | -H             | -Br            |  |  |  |
| 625                                          | Ph                                                       | Et               | -H             | -H             | -OMe           |  |  |  |
| 626                                          | nPr                                                      | -H               | Et             | -H             | -H             |  |  |  |
| 637                                          | -CH <sub>2</sub> -OMe                                    | -F               | -H             | -H             | -Br            |  |  |  |
| 643                                          | Me                                                       | -H               | Et             | -H             | -H             |  |  |  |

|     | [Tabla 26]                                      |                       |                |                |                |                |  |  |  |
|-----|-------------------------------------------------|-----------------------|----------------|----------------|----------------|----------------|--|--|--|
|     | R <sup>D</sup> NH R <sup>B</sup> R <sup>A</sup> |                       |                |                |                |                |  |  |  |
| Rex | sal                                             | R <sup>A</sup>        | R <sub>B</sub> | R <sup>c</sup> | R <sup>D</sup> | R <sup>E</sup> |  |  |  |
| 376 | CL                                              | iPr                   | -H             | -H             | -OMe           | -H             |  |  |  |
| 377 |                                                 | cHex                  | -H             | -H             | -H             | -H             |  |  |  |
| 378 | CL                                              | cHex                  | -H             | -H             | -H             | -Br            |  |  |  |
| 379 |                                                 | -CHEt <sub>2</sub>    | -H             | -H             | -H             | -H             |  |  |  |
| 380 | CL                                              | cHex                  | -H             | -H             | -Br            | -H             |  |  |  |
| 381 | CL                                              | iPr                   | -OMe           | -H             | -H             | -Br            |  |  |  |
| 382 | CL                                              | cHex                  | -H             | -H             | -F             | -H             |  |  |  |
| 383 | CL                                              | cHex                  | -H             | -H             | -CI            | -H             |  |  |  |
| 384 |                                                 | ciclohexen-4-ilo      | -H             | -H             | -H             | -H             |  |  |  |
| 385 |                                                 | 3-CF <sub>3</sub> -Ph | -H             | -H             | -H             | -H             |  |  |  |
| 386 |                                                 | 2-F-Ph                | -H             | -H             | -H             | -H             |  |  |  |
| 387 | CL                                              | cHex                  | -H             | -H             | -H             | -OMe           |  |  |  |
| 388 | CL                                              | 4,4-diF-cHex          | -H             | -H             | -H             | -H             |  |  |  |
| 389 | CL                                              | cHex                  | -H             | -H             | -H             | -Cl            |  |  |  |
| 390 | CL                                              | cHex                  | -H             | -OMe           | -H             | -H             |  |  |  |

| Rex | sal | R <sup>A</sup>             | R <sup>B</sup> | R <sup>c</sup>   | R <sup>D</sup> | R⁵ |
|-----|-----|----------------------------|----------------|------------------|----------------|----|
| 391 | CL  | cHex                       | -H             | -H               | -OMe           | -H |
| 392 |     | 3-F-Ph                     | -H             | -H               | -H             | -H |
| 393 | CL  | cHex                       | -H             | -H               | -H             | -F |
| 394 | CL  | 2-OCF <sub>3</sub> -Ph     | -H             | -H               | -H             | -H |
| 395 |     | 2-CF <sub>3</sub> - 5-F-Ph | -H             | -H               | -H             | -H |
| 396 | CL  | 2-OEt-Ph                   | -H             | -H               | -H             | -H |
| 397 | CL  | 2-Et-Ph                    | -H             | -H               | -H             | -H |
| 398 |     | 2-SMe-Ph                   | -H             | -H               | -H             | -H |
| 399 | CL  | 2-OMe-5-F-Ph               | -H             | -H               | -H             | -H |
| 400 |     | 4-Thp                      | -H             | -H               | -H             | -H |
| 401 | CL  | 2-Cl-Ph                    | -H             | -Cl              | -H             | -H |
| 402 | CL  | 2-Cl-Ph                    | -H             | -F               | -H             | -H |
| 403 |     | 4-CF <sub>3</sub> -Bn      | -H             | -H               | -H             | -H |
| 404 | CL  | cHex                       | -H             | CN               | -H             | -H |
| 405 |     | 3-CF <sub>3</sub> -Bn      | -H             | -H               | -H             | -H |
| 406 | CL  | cHex                       | -H             | -CF <sub>3</sub> | -H             | -H |
| 407 | CL  | cHex                       | -H             | -CH2NHCO-iPr     | -H             | -H |
| 408 | CL  | -CH(Et)-Me                 | -H             | -H               | -H             | -H |


|     | [Tabla 27]       |                                       |                               |                |                |                |  |  |  |  |
|-----|------------------|---------------------------------------|-------------------------------|----------------|----------------|----------------|--|--|--|--|
|     | $\mathbb{R}^{E}$ |                                       |                               |                |                |                |  |  |  |  |
|     |                  | _c                                    |                               | .NH            |                |                |  |  |  |  |
|     |                  | R `                                   | R <sup>B</sup> R <sup>A</sup> |                |                |                |  |  |  |  |
| Rex | sal              | l R <sup>A</sup>                      | R <sup>B</sup>                | R <sup>C</sup> | R <sup>D</sup> | R <sup>E</sup> |  |  |  |  |
| 409 | CL               | iPr                                   | -H                            | -OMe           | -H             | -H             |  |  |  |  |
| 500 | CL               | iPr                                   | -H                            | -F             | -H             | -H             |  |  |  |  |
| 501 |                  | -(CH <sub>2</sub> ) <sub>2</sub> -OMe | -H                            | -H             | -H             | -H             |  |  |  |  |
| 502 |                  | -CH <sub>2</sub> -OMe                 | -H                            | -F             | -H             | -H             |  |  |  |  |
| 503 | CL               | cHex                                  | -OMe                          | -H             | -H             | -Br            |  |  |  |  |
| 504 | CL               | cHex                                  | -OMe                          | -H             | -H             | -H             |  |  |  |  |
| 505 |                  | -CH <sub>2</sub> -OMe                 | -H                            | Et             | -H             | -H             |  |  |  |  |
| 506 | CL               | 2-F-Bn                                | -H                            | -H             | -H             | -H             |  |  |  |  |
| 507 |                  | 2-OMe-Bn                              | -H                            | -H             | -H             | -H             |  |  |  |  |
| 508 |                  | 2-Me-Bn                               | -H                            | -H             | -H             | -H             |  |  |  |  |
| 509 | CL               | tBu                                   | -OMe                          | -H             | -H             | -Br            |  |  |  |  |
| 510 | CL               | tBu                                   | -OMe                          | -H             | -H             | -H             |  |  |  |  |
| 514 | CL               | Ph                                    | -H                            | -H             | -H             | -F             |  |  |  |  |
| 515 | CL               | Ph                                    | -H                            | -H             | -H             | Me             |  |  |  |  |
| 516 | CL               | iPr                                   | -H                            | -H             | -H             | Me             |  |  |  |  |
| 517 | CL               | cHex                                  | -H                            | -H             | -H             | Me             |  |  |  |  |
| 518 |                  | -CH <sub>2</sub> -OMe                 | -H                            | -H             | -OMe           | -H             |  |  |  |  |
| 519 |                  | nPr                                   | -H                            | -H             | -F             | -H             |  |  |  |  |
| 520 | CL               | iPr                                   | -H                            | Me             | -H             | -H             |  |  |  |  |
| 521 | CL               | Ph                                    | -H                            | Me             | -H             | -H             |  |  |  |  |
| 522 | CL               | iPr                                   | -H                            | -H             | Me             | -H             |  |  |  |  |
| 523 | CL               | Ph                                    | -H                            | -F             | -H             | -H             |  |  |  |  |
| 524 | CL               | nPr                                   | -H                            | -H             | -H             | Ме             |  |  |  |  |
| 525 | CL               | nPr                                   | -H                            | Ме             | -H             | -H             |  |  |  |  |
| 526 | CL               | nPr                                   | -H                            | -H             | -H             | -F             |  |  |  |  |
| 527 | CL               | nPr                                   | -H                            | -OMe           | -H             | -H             |  |  |  |  |
| 528 | CL               | -CH <sub>2</sub> -OMe                 | -H                            | Ме             | -H             | -H             |  |  |  |  |
| 529 |                  | nPr                                   | -H                            | -H             | Ме             | -H             |  |  |  |  |
| 530 | CL               | cHex                                  | -F                            | -H             | -H             | -Br            |  |  |  |  |





| Rex | R <sup>A</sup>        | R <sup>B</sup> | $R^{c}$ | R <sup>D</sup> | R <sup>⊨</sup> |
|-----|-----------------------|----------------|---------|----------------|----------------|
| 560 | -CH <sub>2</sub> -Cl  | -H             | Et      | -H             | -H             |
| 561 | iPr                   | -H             | Ţ,      | -H             | Me             |
| 562 | cHex                  | -H             | Ţ,      | -H             | Me             |
| 563 | Ph                    | -H             | Ţ,      | -H             | -F             |
| 564 | cHex                  | -F             | Ţ,      | -H             | -Br            |
| 565 | -CH <sub>2</sub> -iPr | -H             | -OMe    | -H             | Н              |
| 611 | iPr                   | -F             | Ţ,      | -H             | -Br            |
| 617 | nPr                   | Me             | -H      | -H             | -Br            |
| 618 | nPr                   | -F             | -H      | -H             | -Br            |
| 623 | Ph                    | Et             | -H      | -H             | -OMe           |
| 636 | -CH <sub>2</sub> -Cl  | -F             | -H      | -H             | -Br            |
| 642 | Me                    | -H             | Et      | -H             | -H             |

[Tabla 30]



[Tabla 31] R<sup>E</sup>  $R^{D}$ ΝH R<sup>C</sup> Ŗ<sub>B</sub>  $R^{A}$  $R^{B}$  $R^{c}$  $R^{D}$  $R^{E}$ Rex sal 513 TY -CH<sub>2</sub>-OMe -H Et -H -H 547A\* ML iPr -H -H -OMe -H 572\* T1 cHex -H -H -H -H 575\* T1 cHex -H -Br -H -H 576\* T1 Ph -OMe -H -H -Br Ph -OMe 577\* CL -H -H -H T1 Ph -H -H -F -H 652\* 658\* -CH<sub>2</sub>-OMe -H -H -H Me

| [Tabla 32]                      |                                  |                                      |  |  |  |  |
|---------------------------------|----------------------------------|--------------------------------------|--|--|--|--|
| R <sup>B</sup> N R <sup>A</sup> |                                  |                                      |  |  |  |  |
| Rex                             | R <sup>A</sup>                   | R <sup>B</sup>                       |  |  |  |  |
| 578                             | N<br>boc                         | -H                                   |  |  |  |  |
| 579                             |                                  | -H                                   |  |  |  |  |
| 580                             | 1-boc-4-pipe                     | -H                                   |  |  |  |  |
| 581                             | -CH <sub>2</sub> -(1-boc-4-pipa) | -H                                   |  |  |  |  |
| 582                             | 4-pipe                           | -H                                   |  |  |  |  |
| 583                             | -CH₂-1-pipa                      | -H                                   |  |  |  |  |
| 584                             | boc                              | CN                                   |  |  |  |  |
| 585                             | boc                              | -O-CH <sub>2</sub> -CHF <sub>2</sub> |  |  |  |  |

| [Tabla 33]     |                |                |  |  |  |  |  |
|----------------|----------------|----------------|--|--|--|--|--|
| R <sup>B</sup> | N. RA          |                |  |  |  |  |  |
| Rex            | R <sup>A</sup> | R <sub>R</sub> |  |  |  |  |  |
| 586            | MeO            | -H             |  |  |  |  |  |
| 587            | -              | -H             |  |  |  |  |  |
| 588            | ou)            | -H             |  |  |  |  |  |
| 630            | Me             | Et             |  |  |  |  |  |
| 632            | Me             | Me             |  |  |  |  |  |
| 646            | OMe            | Et             |  |  |  |  |  |

[Tabla 34] 0 R<sup>A</sup>
-(CH<sub>2</sub>)<sub>2</sub>-OMe
OH Rex 589 590 R<sub>B</sub> R<sup>D</sup>  $R^{c}$ -H -H -H -H -H 591 592 593 cPr -CH<sub>2</sub>-cHex -(CH<sub>2</sub>)<sub>2</sub>-OH -H -H -H -H -H -H -H -H

| Rex | R <sup>A</sup>                | R <sub>R</sub>     | $R^{c}$ | R <sup>□</sup>     |
|-----|-------------------------------|--------------------|---------|--------------------|
| 594 | $\langle$                     | -H                 | -H      | -H                 |
| 595 | Ğ. (                          | boc                | Ţ       | -H                 |
| 596 | -CH <sub>2</sub> -(1-OH-cHex) | boc                | -H      | -CONH <sub>2</sub> |
| 597 | HO,                           | -COCF <sub>3</sub> | -OMe    | -H                 |
| 598 | $\sim$                        | -COCF <sub>3</sub> | -OMe    | -H                 |
| 599 | $\sim$                        | -H                 | -OMe    | -H                 |
| 600 | P.O.                          | -COCF <sub>3</sub> | -OMe    | -H                 |
| 601 | MOMO, L                       | -H                 | -OMe    | -H                 |
| 602 | -CH <sub>2</sub> -(1-OH-cHex) | -H                 | -H      | -CONH <sub>2</sub> |

| [   | Tabla 35]                        |
|-----|----------------------------------|
| Rex | ESTRUCTURA                       |
| 603 |                                  |
| 604 | CI NO HOH                        |
| 605 | H <sub>3</sub> C CH <sub>3</sub> |
| 606 | H <sub>3</sub> C CH <sub>3</sub> |
| 607 | H <sub>3</sub> C CH <sub>3</sub> |

| Rex               | ESTRUCTURA              |
|-------------------|-------------------------|
| 608               | H <sub>2</sub> N OMe    |
| 657* <sup>2</sup> | Me<br>N. S. Me<br>MeO O |

[Tabla 36]

|          | [Tabla 36]           |
|----------|----------------------|
| Rex      | Datos                |
| 1        | FAB: 477             |
| 2        | FAB: 511             |
| 3        | ES: 493              |
| 4        | CI: 292              |
| 5        | FAB: 326             |
| 6        | AP1: 285,87          |
| 7        | FAB: 270             |
| 8        | FAB: 433             |
| 9        | FAB: 343             |
| 10       | APN: 411             |
| 11       | FAB: 373             |
| 12       | ES: 313              |
| 13       | ES: 273              |
| 14       | FAB: 467             |
| 15       | ES: 362              |
| 16       | ES: 286              |
| 17       | ES: 376              |
| 18       | AP1: 269,96          |
| 19       | CI: 230              |
| 20       | FAB: 206             |
| 21       | ES: 216              |
| 22       | ES: 240              |
| 23       | AP: 278              |
| 24       | FAB: 320             |
| 25       | FAB: 248             |
| 26       | FAB: 248             |
| 27       | FAB: 244             |
| 28       | ES: 226              |
| 29       | FAB: 250             |
| 30       | AP: 230              |
| 31       | FAB: 188             |
| 32       | CI: 284              |
| 33       | FAB: 266             |
| 34       | FAB: 268             |
| 35       | FAB: 276             |
| 36       | ESNa: 374<br>ES: 418 |
| 37       |                      |
| 38       | ES: 285<br>ES: 241   |
| 39<br>40 | ES: 241<br>FAB: 363  |
|          |                      |
| 41       | EI: 238<br>FAB: 256  |
| 43       | ES: 334              |
| 44       | FAB: 350             |
| 45       | FAB: 350             |
| 46       | FAB: 206             |
| 47       | EI1: 209             |
| 48       | CI: 236              |
| 40       | OI. 200              |

# ES 2 537 803 T3

| Rex | Datos                                                                                                                                                                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 49  | FAB: 222                                                                                                                                                                                           |
| 50  | FAB: 228                                                                                                                                                                                           |
| 51  | FA1: 355,98                                                                                                                                                                                        |
| 52  | FAB: 234,13                                                                                                                                                                                        |
| 53  | ES: 142                                                                                                                                                                                            |
| 54  | ES: 183                                                                                                                                                                                            |
| 55  | ES: 206                                                                                                                                                                                            |
| 56  | ES: 297                                                                                                                                                                                            |
| 57  | ES: 283                                                                                                                                                                                            |
| 58  | RMN (CDCl <sub>3</sub> ): 1,28 (3 H, t, J = 7Hz), 2,73 - 2,95 (3H, m), 3,45 (1H, m), 3,80 (1H, d, J = 13,4H z), 3,87 (1H, d, J = 13,4H z), 4,16 - 4,24 (2H, m), 4,52 (1H, s), 7,11 - 7,39 (9H, s). |
| 59  | ES: 346,05                                                                                                                                                                                         |
| 60  | FAB: 391                                                                                                                                                                                           |
| 61  | ES: 284                                                                                                                                                                                            |
| 62  | CI: 206                                                                                                                                                                                            |
| 63  | ESNa: 372                                                                                                                                                                                          |
| 64  | ES: 258                                                                                                                                                                                            |
| 65  | FAB: 313                                                                                                                                                                                           |
| 66  | ES: 205                                                                                                                                                                                            |
| 67  | FAB: 270,98                                                                                                                                                                                        |
| 68  | N/D                                                                                                                                                                                                |
| 69  | ES: 366,4                                                                                                                                                                                          |
| 70  | FAB: 359                                                                                                                                                                                           |
| 71  | FAN: 385                                                                                                                                                                                           |
| 72  | N/D                                                                                                                                                                                                |
| 73  | FAB: 413                                                                                                                                                                                           |
| 74  | FA1: 331                                                                                                                                                                                           |
| 75  | FAB: 388                                                                                                                                                                                           |
| 76  | FAB: 410                                                                                                                                                                                           |
| 77  | ESNa: 314                                                                                                                                                                                          |
| 78  | ES: 242                                                                                                                                                                                            |
| 79  | ES2: 277                                                                                                                                                                                           |
| 80  | ES: 160                                                                                                                                                                                            |
| 81  | ES1: 294                                                                                                                                                                                           |
| 82  | ES: 292                                                                                                                                                                                            |
| 83  | ES: 207                                                                                                                                                                                            |
| 84  | N/D                                                                                                                                                                                                |
| 85  | FAB: 458                                                                                                                                                                                           |
| 86  | CI: 348                                                                                                                                                                                            |
| 87  | FAB: 338                                                                                                                                                                                           |
| 88  | AP: 248,00                                                                                                                                                                                         |
| 89  | ES: 357                                                                                                                                                                                            |
| 90  | ES: 330,13                                                                                                                                                                                         |
| 91  | ES: 192,18                                                                                                                                                                                         |

## [Tabla 37]

| Rex | Rsyn | Datos       |
|-----|------|-------------|
| 101 | 34   | ES: 270     |
| 102 | 34   | AP: 234     |
| 103 | 34   | ES: 310.312 |
| 104 | 33   | FAB: 262    |
| 105 | 34   | ES: 266.268 |
| 106 | 34   | ES: 250     |
| 107 | 33   | ES: 294     |
| 108 | 33   | ES: 244     |
| 109 | 33   | ES: 294     |
| 110 | 33   | FAB: 230,16 |
| 111 | 33   | ES: 244     |
| 112 | 33   | FAB: 262    |
| 113 | 33   | FAB: 266    |
| 114 | 33   | FAB: 246    |
| 115 | 33   | FAB: 250    |
|     |      |             |

| Day  | Day #2 | Detec        |
|------|--------|--------------|
| Rex  | Rsyn   | Datos        |
| 116  | 33     | FAB: 250     |
| 117  | 33     | ES: 312      |
| 118  | 34     | ES: 310      |
|      |        | E0. 010      |
| 119  | 34     | ES: 254      |
| 120  | 34     | ES: 261      |
| 121  | 34     | ES: 308      |
|      |        |              |
| 122  | 33     | FAB: 246     |
| 123  | 33     | FAB: 300     |
| 124  | 33     | FAB: 210     |
| 125  | 34     | ES: 208      |
|      |        |              |
| 126  | 33     | ES: 212,0    |
| 127  | 33     | ES: 212      |
| 128  | 33     | ES: 222,18   |
|      |        |              |
| 129  | 34     | ES: 254      |
| 130  | 33     | ES: 226      |
| 131  | 33     | ES: 206,19   |
|      |        |              |
| 132  | 33     | ES: 210,08   |
| 133  | 33     | ES: 212,11   |
| 134  | 33     | AP: 208,00   |
|      | 33     | ES: 208,1    |
| 135  |        |              |
| 136  | 33     | AP: 210,06   |
| 137  | 33     | ES: 206,18   |
|      |        |              |
| 138  | 33     | E11: 204     |
| 139  | 33     | ES: 244      |
| 140  | 33     | FAB: 240     |
| 141  | 33     | FAB: 206     |
|      |        |              |
| 142  | 33     | FAB: 246     |
| 143  | 33     | FAB: 206     |
| 144  | 33     | ES: 206,97   |
|      |        |              |
| 145  | 33     | ES: 208,17   |
| 146  | 34     | FAB: 268     |
| 147  | 34     | ES: 241      |
| 148  |        |              |
|      | 34     | ES: 305      |
| 149  | 34     | ES: 261      |
| 150  | 34     | ES: 261      |
| 151  | 34     | AP: 246      |
|      |        |              |
| 152  | 34     | ES: 222      |
| 153  | 34     | CI: 252      |
| 153A | 33     | FAB: 210     |
|      |        | TAD: 200     |
| 154  | 33     | FAB: 302     |
| 155  | 33     | FAB: 340     |
| 156  | 33     | FAB: 314     |
|      |        | FAB: 334     |
| 157  | 33     |              |
| 158  | 33     | ES: 286,79   |
| 159  | 33     | FAB: 328     |
| 160  | 33     | CI1: 300     |
|      |        |              |
| 161  | 33     | CI: 284      |
| 162  | 34     | CI1: 314     |
| 163  | 48     | EIN: 213     |
|      |        |              |
| 164  | 48     | EIBr: 213    |
| 165  | 48     | EI1: 239     |
| 166  | 4      | FAB: 278     |
|      | 4      |              |
| 167  |        | ES: 372      |
| 168  | 4      | ES: 371      |
| 169  | 4      | FAB: 292,1   |
| 170  | 4      | ES: 280      |
|      |        |              |
| 171  | 4      | ES: 370, 372 |
| 172  | 4      | ES: 317      |
| 173  | 4      | FAB: 322     |
| 173  |        |              |
| 174  | 4      | ES: 310      |
| 175  | 4      | AP: 326.328  |
| 176  | 4      | FAB: 270     |
| 170  |        | 1 AD. 210    |
|      |        |              |

| Rex | Rsyn | Datos       |
|-----|------|-------------|
| 177 | 4    | ES: 304     |
| 178 | 4    | ES: 311     |
| 179 | 4    | FA2: 291,93 |
| 180 | 4    | ES: 354     |

[Tabla 38]

| Rex | Rsyn    | Datos                |
|-----|---------|----------------------|
| 181 | 4       | ES: 354              |
| 182 | 4       | ES: 304              |
|     | 4       | ES1: 326             |
| 183 | -       |                      |
| 184 | 4       | FAB: 352,07          |
| 185 | 4       | FAB: 322             |
| 186 | 4       | FA1: 322             |
| 187 | 4       | ES: 322              |
| 188 | 4       | ES: 304              |
| 189 | 4       | ES: 320              |
| 190 | 4       | FAB: 310             |
| 191 | 4       | ES: 310              |
| 192 | 4       | FAB: 308             |
| 193 | 4       | ES: 316              |
| 194 | 4       | ES: 370              |
| 195 | Syn: 14 | N/D                  |
| 196 | 4       | ES: 372              |
| 197 | 4       | ES: 330              |
| 198 | 4       | FAB: 266             |
| 199 | 4       | FAB: 252             |
| 200 | 4       | ES: 314              |
| 201 | 4       | ES: 332              |
| 202 | 4       | ES: 334              |
| 203 | 4       | FAB: 336,07          |
| 204 | 4       | ES: 368              |
| 205 | 4       | FAB: 354             |
| 206 | 4       | FAB: 338             |
| 207 | 4       | FAB: 306             |
| 208 | 4       | ES: 368              |
| 209 | 4       | FAB: 360             |
| 210 | 4       | FAB: 300,02          |
| 211 | 60      | FAB: 320             |
| 212 |         |                      |
| 213 | 4       | FAB: 391<br>FAB: 282 |
|     | 4       |                      |
| 214 | 4       | FAB: 264             |
| 215 | 4       | ES: 276              |
| 216 | 4       | FAB: 266             |
| 217 | 40      | FAB: 372             |
| 218 | 40      | FAB: 386             |
| 219 | 4       | ES: 268              |
| 220 | 4       | EI1: 311             |
| 221 | 4       | CI: 282              |
| 222 | 4       | FAB: 296             |
| 223 | 4       | FAB: 270             |
| 224 | 4       | ES: 272              |
| 225 | 4       | ES: 282              |
| 226 | 4       | ES: 282              |
| 227 | 4       | ES: 318              |
| 228 | 4       | FAB: 322             |
| 229 | 4       | FAB: 402             |
| 230 | 4       | FAB: 282             |
| 231 | 4       | CI: 282              |
| 232 | 4       | ES: 330              |
| 233 | 4       | ES: 314              |
| 234 | 4       | FAB: 282             |
| 235 | 4       | FAB: 296             |
| 200 | ı '     | . 710. 200           |

| Rex  | Rsyn | Datos       |
|------|------|-------------|
| 236  | 4    | ES: 368     |
| 236A | 4    | ES: 368,08  |
| 237  | 4    | FAB: 346,11 |
| 238  | 4    | FAB: 316,02 |
| 239  | 4    | ES: 282     |
| 240  | 4    | ES: 282     |
| 241  | 4    | FAB: 300    |
| 242  | 4    | FAB: 266    |
| 243  | 4    | ES: 306     |
| 244  | 4    | FAB: 266    |
| 245  | 4    | ES: 284,08  |
| 246  | 4    | FAB: 300    |
| 247  | 4    | FAB: 266    |
| 248  | 4    | FAB: 306    |
| 249  | 4    | ES: 270,03  |
| 250  | 4    | ES: 304     |
| 251  | 4    | FAB: 266    |
| 252  | 4    | FAB: 282    |
| 253  | 60   | ES2: 271,70 |
| 254  | 4    | CI: 270     |
| 255  | 4    | FAB: 268    |
| 256  | 60   | FAB: 284    |
| 257  | 4    | FAB: 266    |
| 258  | 4    | ES2: 347,82 |
| 259  | 4    | CI: 268     |

## [Tabla 39]

| Rex | Rsyn | Datos              |
|-----|------|--------------------|
| 260 | 60   | ESNa: 294          |
| 261 | 4    | CI: 282            |
| 262 | 4    | ES2: 269,73        |
| 263 | 4    | ES1: 265,98        |
| 264 | 4    | CI: 306            |
| 265 | 4    | CI: 310            |
| 266 | 4    | CI: 300<br>CI: 304 |
| 267 | 4    | CI: 304            |
| 268 | 4    | ES: 282,07         |
| 269 | 4    | ES: 316            |
| 270 | 4    | FAB: 328           |
| 271 | 4    | FAB: 328           |
| 272 | 4    | FAB: 294           |
| 273 | 4    | ES: 321            |
| 274 | 4    | ES: 321            |
| 275 | 4    | ES: 365            |
| 276 | 4    | ES: 301            |
| 277 | 4    | ES: 321            |
| 278 | 4    | ES: 287            |
| 279 | 4    | FAB: 00            |
| 280 | 4    | FAB: 346           |
| 281 | 4    | CI: 282            |
| 282 | 4    | ES: 296            |
| 283 | 4    | CI: 296            |
| 284 | 60   | CI: 312            |
| 285 | 4    | AP: 306            |
| 286 | 4    | FAB: 344           |
| 287 | 4    | ES: 316            |
| 288 | 4    | FAB: 286,35        |
| 289 | 44   | ESNa: 372          |
| 290 | 4    | EII: 315           |
| 291 | 4    | ES: 316            |
| 292 | 44   | CI: 350            |
| 293 | 4    | EI: 321            |

| Rex | Rsyn | Datos       |
|-----|------|-------------|
| 294 | 4    | FAB: 316    |
| 295 | 4    | FAB: 316    |
| 296 | 4    | ES: 318     |
| 297 | 4    | ES: 352     |
| 298 | 4    | FAB: 306    |
| 299 | 4    | FAB: 320,0  |
| 300 | 4    | FAB: 306,06 |
| 301 | 4    | FAB: 310,12 |
| 302 | 4    | FAB: 238    |
| 303 | 27   | CI: 222     |
| 304 | 28   | ES: 202     |
| 305 | 25   | ES: 292.294 |
| 306 | 27   | FAB: 282    |
| 307 | 26   | EIN: 202    |
| 308 | 26   | FAB: 230    |
| 309 | 27   | FAB: 244    |
| 310 | 25   | ES: 232     |
| 311 | 25   | ES: 248     |
| 312 | 27   | ES: 276     |
| 313 | 27   | FA2: 213,28 |
| 314 | 27   | ES: 276     |
| 315 | 27   | ES: 226     |
| 316 | 27   | FAB: 250    |
| 317 | 25   | ES: 232     |
| 318 | 25   | FAB: 232    |
| 319 | 28   | ES: 294     |
| 320 | 27   | ES: 292     |
| 321 | 27   | ES: 252     |
| 322 | 27   | ES: 236     |
| 323 | 27   | ES: 254     |
| 324 | 26   | FAB: 276    |
| 325 | 26   | ES: 260     |
| 326 | 27   | ES: 256     |
| 327 | 29   | ES: 290     |
| 328 | 29   | ES: 291     |
| 329 | 25   | FAB: 282    |
| 330 | 25   | FAB: 242    |
| 331 | 28   | EIN: 186    |
| 332 | 27   | FAB: 272    |
| 333 | 27   | FAB: 192    |
| 334 | 25   | ES: 190     |
| 335 | 25   | ES: 194,22  |
|     |      | (M+H)       |
| 336 | 27   | FAB: 322    |
| 337 | 25   | ES: 241     |
| 338 | 25   | ES: 252     |
| 339 | 25   | ES: 236     |

### [Tabla 40]

| Rex | Rsyn | Datos       |
|-----|------|-------------|
| 340 | 27   | FAB: 318    |
| 341 | 27   | EIN: 202    |
| 342 | 31   | CI: 190     |
| 343 | 31   | ES2: 269,20 |
| 344 | 25   | ES: 226     |
| 345 | 31   | ES: 206,23  |
| 346 | 25   | FAB: 188    |
| 347 | 25   | FAB: 228    |
| 348 | 27   | CI: 188     |
| 349 | 26   | CI: 228     |
| 350 | 27   | CI: 188     |
| 351 | 26   | ES: 226     |

| Rex                                                                                                                                                                         |                                                                                        |                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                             | Rsyn                                                                                   | Datos                                                                                                                                                                                                               |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 352                                                                                                                                                                         | 31                                                                                     | FAB: 204                                                                                                                                                                                                            |
| 353                                                                                                                                                                         | 31                                                                                     | FAB: 188                                                                                                                                                                                                            |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 354                                                                                                                                                                         | 31                                                                                     | FAB: 192                                                                                                                                                                                                            |
| 355                                                                                                                                                                         | 29                                                                                     | FAB: 204                                                                                                                                                                                                            |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 356                                                                                                                                                                         | 29                                                                                     | CI: 206                                                                                                                                                                                                             |
| 357                                                                                                                                                                         | 31                                                                                     | CI: 190                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 358                                                                                                                                                                         | 31                                                                                     | AP: 188,15                                                                                                                                                                                                          |
|                                                                                                                                                                             | 31                                                                                     | C14: 202                                                                                                                                                                                                            |
| 359                                                                                                                                                                         |                                                                                        | CI1: 282                                                                                                                                                                                                            |
| 360                                                                                                                                                                         | 25                                                                                     | EI1: 311                                                                                                                                                                                                            |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 361                                                                                                                                                                         | 29                                                                                     | ES: 206                                                                                                                                                                                                             |
| 362                                                                                                                                                                         | 49                                                                                     | EIN: 224                                                                                                                                                                                                            |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 363                                                                                                                                                                         | 31                                                                                     | CIN: 192                                                                                                                                                                                                            |
| 364                                                                                                                                                                         | 29                                                                                     | AP: 216                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 365                                                                                                                                                                         | 28                                                                                     | ES: 245                                                                                                                                                                                                             |
| 366                                                                                                                                                                         | 28                                                                                     | ES: 223                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        | LO. 225                                                                                                                                                                                                             |
| 367                                                                                                                                                                         | 28                                                                                     | ES: 287                                                                                                                                                                                                             |
| 368                                                                                                                                                                         | 28                                                                                     | ES: 243                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 369                                                                                                                                                                         | 28                                                                                     | ES: 243                                                                                                                                                                                                             |
| 370                                                                                                                                                                         | 27                                                                                     | FAB: 296                                                                                                                                                                                                            |
|                                                                                                                                                                             |                                                                                        | FAD. 290                                                                                                                                                                                                            |
| 371                                                                                                                                                                         | 27                                                                                     | EI1: 265                                                                                                                                                                                                            |
| 372                                                                                                                                                                         |                                                                                        |                                                                                                                                                                                                                     |
|                                                                                                                                                                             | 31                                                                                     | ES: 204                                                                                                                                                                                                             |
| 373                                                                                                                                                                         | 26                                                                                     | ES: 218                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 374                                                                                                                                                                         | 31                                                                                     | CI1: 296                                                                                                                                                                                                            |
| 375                                                                                                                                                                         | 31                                                                                     | CI: 234                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 375A                                                                                                                                                                        | 27                                                                                     | FAB: 192                                                                                                                                                                                                            |
| 376                                                                                                                                                                         | 18                                                                                     | FAB: 206                                                                                                                                                                                                            |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 377                                                                                                                                                                         | 18                                                                                     | FA2: 217,3                                                                                                                                                                                                          |
| 378                                                                                                                                                                         | 18                                                                                     | ES: 294.296                                                                                                                                                                                                         |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 379                                                                                                                                                                         | 18                                                                                     | ES: 204                                                                                                                                                                                                             |
| 380                                                                                                                                                                         | 18                                                                                     | ES: 296                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 381                                                                                                                                                                         | 18                                                                                     | FAB: 284                                                                                                                                                                                                            |
| 382                                                                                                                                                                         |                                                                                        | ES: 234                                                                                                                                                                                                             |
|                                                                                                                                                                             | 18                                                                                     |                                                                                                                                                                                                                     |
| 383                                                                                                                                                                         | 18                                                                                     | ES: 250                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 384                                                                                                                                                                         | 18                                                                                     | AP: 214,08                                                                                                                                                                                                          |
| 385                                                                                                                                                                         | 18                                                                                     | ES: 278                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        | ES: 228                                                                                                                                                                                                             |
|                                                                                                                                                                             |                                                                                        | I ES. 778                                                                                                                                                                                                           |
| 386                                                                                                                                                                         | 18                                                                                     |                                                                                                                                                                                                                     |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 387                                                                                                                                                                         | 18                                                                                     | FAB: 246                                                                                                                                                                                                            |
|                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                     |
| 387<br>388                                                                                                                                                                  | 18<br>18                                                                               | FAB: 246<br>FAB: 252                                                                                                                                                                                                |
| 387<br>388<br>389                                                                                                                                                           | 18<br>18<br>18                                                                         | FAB: 246<br>FAB: 252<br>ES: 250                                                                                                                                                                                     |
| 387<br>388                                                                                                                                                                  | 18<br>18                                                                               | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246                                                                                                                                                                         |
| 387<br>388<br>389<br>390                                                                                                                                                    | 18<br>18<br>18<br>18                                                                   | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246                                                                                                                                                                         |
| 387<br>388<br>389<br>390<br>391                                                                                                                                             | 18<br>18<br>18<br>18                                                                   | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246                                                                                                                                                             |
| 387<br>388<br>389<br>390                                                                                                                                                    | 18<br>18<br>18<br>18                                                                   | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246                                                                                                                                                                         |
| 387<br>388<br>389<br>390<br>391<br>392                                                                                                                                      | 18<br>18<br>18<br>18<br>18<br>18                                                       | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228                                                                                                                                                  |
| 387<br>388<br>389<br>390<br>391<br>392<br>393                                                                                                                               | 18<br>18<br>18<br>18<br>18<br>18<br>18                                                 | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243                                                                                                                                      |
| 387<br>388<br>389<br>390<br>391<br>392                                                                                                                                      | 18<br>18<br>18<br>18<br>18<br>18                                                       | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243                                                                                                                                      |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394                                                                                                                        | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                           | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243<br>AP: 294                                                                                                                           |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395                                                                                                                 | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>23                                     | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243<br>AP: 294<br>ES: 296                                                                                                                |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394                                                                                                                        | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                           | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243<br>AP: 294                                                                                                                           |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396                                                                                                          | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18                               | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243<br>AP: 294<br>ES: 296<br>ES: 254                                                                                                     |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397                                                                                                   | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18                               | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243<br>AP: 294<br>ES: 296<br>ES: 254<br>ES: 238                                                                                          |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396                                                                                                          | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18                               | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243<br>AP: 294<br>ES: 296<br>ES: 254                                                                                                     |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398                                                                                            | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18<br>18                         | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243<br>AP: 294<br>ES: 296<br>ES: 254<br>ES: 238<br>ES: 256                                                                               |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399                                                                                     | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18<br>18<br>18                         | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243<br>AP: 294<br>ES: 296<br>ES: 254<br>ES: 238<br>ES: 256<br>ES: 258                                                                    |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398                                                                                            | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18<br>18<br>18                         | FAB: 246<br>FAB: 252<br>ES: 250<br>FAB: 246<br>FAB: 246<br>ES: 228<br>FAB: 243<br>AP: 294<br>ES: 296<br>ES: 254<br>ES: 238<br>ES: 256<br>ES: 258                                                                    |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400                                                                              | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18<br>18<br>18<br>18<br>18             | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218                                                                                                |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401                                                                       | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18<br>18<br>18<br>18<br>18<br>18       | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278                                                                                       |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401                                                                       | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18<br>18<br>18<br>18<br>18<br>18       | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278                                                                                       |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402                                                                | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>23<br>18<br>18<br>18<br>18<br>18<br>18 | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262                                                                              |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403                                                         | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292                                                                      |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403                                                         | 18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292                                                                      |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404                                                  | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292 FAB: 241                                                             |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405                                           | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292 FAB: 241 ES: 292                                                     |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405                                           | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292 FAB: 241 ES: 292                                                     |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406                                    | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292 FAB: 241 ES: 292 FAB: 284                                            |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405                                           | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292 FAB: 241 ES: 292                                                     |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407                             | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292 FAB: 241 ES: 292 FAB: 284 FAB: 315                                   |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>408                      | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292 FAB: 241 ES: 292 FAB: 284 FAB: 315 ES: 190                           |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407                             | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 278 FAB: 262 ES: 292 FAB: 241 ES: 292 FAB: 284 FAB: 315                                   |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>408<br>409               | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 262 ES: 292 FAB: 241 ES: 292 FAB: 284 FAB: 315 ES: 190 FAB: 206                           |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>408<br>409<br>500        | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 262 ES: 292 FAB: 241 ES: 292 FAB: 284 FAB: 315 ES: 190 FAB: 206 FAB: 194                  |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>408<br>409               | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 262 ES: 292 FAB: 241 ES: 292 FAB: 284 FAB: 315 ES: 190 FAB: 206                           |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>408<br>409<br>500<br>501 | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 256 ES: 258 AP: 218 FAB: 241 ES: 292 FAB: 241 ES: 292 FAB: 241 ES: 292 FAB: 284 FAB: 315 ES: 190 FAB: 206 FAB: 194 ES: 192 |
| 387<br>388<br>389<br>390<br>391<br>392<br>393<br>394<br>395<br>396<br>397<br>398<br>399<br>400<br>401<br>402<br>403<br>404<br>405<br>406<br>407<br>408<br>409<br>500        | 18 18 18 18 18 18 18 18 18 18 18 18 18 1                                               | FAB: 246 FAB: 252 ES: 250 FAB: 246 FAB: 246 ES: 228 FAB: 243 AP: 294 ES: 296 ES: 254 ES: 238 ES: 256 ES: 258 AP: 218 FAB: 262 ES: 292 FAB: 241 ES: 292 FAB: 284 FAB: 315 ES: 190 FAB: 206 FAB: 194                  |

| Rex | Rsyn | Datos    |
|-----|------|----------|
| 503 | 18   | FAB: 324 |
| 504 | 45   | FAB: 246 |
| 505 | 18   | ES: 206  |
| 506 | 18   | ES: 242  |
| 507 | 18   | ES: 254  |
| 508 | 18   | ES: 238  |
| 509 | 18   | FAB: 298 |

### [Tabla 41]

| _   | [Tabla |             |
|-----|--------|-------------|
| Rex | Rsyn   | Datos       |
| 510 | 45     | FAB: 220    |
| 513 | 83     | ES: 206     |
| 514 | 18     | ES: 228     |
| 515 | 18     | FAB: 224    |
| 516 | 18     | FAB: 190    |
| 517 | 18     | FAB: 230    |
| 518 | 18     | ES: 208,15  |
| 519 | 18     |             |
|     |        | ES2: 195,05 |
| 520 | 18     | CI: 190     |
| 521 | 18     | CI: 224     |
| 522 | 18     | CI: 190     |
| 523 | 18     | ES: 228     |
| 524 | 18     | FAB: 190    |
| 525 | 18     | FAB: 190    |
| 526 | 18     | FAB: 194    |
| 527 | 18     | FAB: 206    |
| 528 | 18     | CI: 192     |
| 529 | 18     | AP: 190,19  |
| 530 | 18     | FAB: 312    |
| 531 | 45     | FAB: 234    |
|     |        |             |
| 532 | 18     | FAB: 230    |
| 533 | 18     | ES: 192     |
| 534 | 18     | ES: 224     |
| 535 | 18     | CI: 228     |
| 536 | 18     | FAB: 252    |
| 537 | 18     | ES: 245     |
| 538 | 18     | ES: 225     |
| 539 | 18     | ES: 289     |
| 540 | 18     | ES: 245     |
| 541 | 18     | ES: 245     |
| 542 | 18     | CI: 268     |
| 543 | 18     | ES: 206     |
|     |        |             |
| 544 | 18     | ES: 220     |
| 545 | 18     | CI1: 298    |
| 546 | 45     | ES: 220     |
| 547 | 60     | CI: 312     |
| 548 | 24     | ES: 364.366 |
| 549 | 24     | ES: 304     |
| 550 | 24     | ES: 320     |
| 551 | 24     | FAB: 304    |
| 552 | 24     | FAB: 304    |
| 553 | 24     | FAB: 354    |
| 554 | 24     | FAB: 314    |
| 555 | 25     | ESNa: 284   |
| 556 | 24     | ES: 266     |
|     | 24     | ES: 312     |
| 557 |        |             |
| 558 | 24     | ES: 324     |
| 559 | 24     | ES: 308     |
| 560 | 24     | ES: 280     |
| 561 | 24     | FAB: 260    |
| 562 | 24     | FAB: 300    |
| 563 | 24     | ES: 298     |
|     |        |             |

| Rex | Rsyn    | Datos       |
|-----|---------|-------------|
| 564 | 24      | FAB: 382    |
| 565 | 26      | N/D         |
| 566 | 22      | ES: 240     |
| 567 | 81      | EI1: 317    |
| 568 | 45      | CI: 240     |
| 570 | 81      | ES: 286     |
| 571 | 45      | ES: 206     |
| 572 | 21      | ES: 216     |
| 575 | 81      | FAB: 294    |
| 576 | 81      | EI1: 317    |
| 577 | 45      | CI: 240     |
| 578 | 10      | ES: 413     |
| 579 | 12      | ES: 313     |
| 580 | 10      | ES: 427     |
| 581 | syn: 1  | ES: 442     |
| 582 | 12      | ES: 327     |
| 583 | Syn: 10 | ES: 342     |
| 584 | 37      | FAB: 341    |
| 585 | 75      | FAB: 396    |
| 586 | 7       | FAB: 294,01 |
| 587 | 7       | FAB: 264,01 |
| 588 | 7       | FAB: 264,03 |
| 589 | Syn: 1  | ES: 331     |
| 590 | Syn: 1  | N/D         |
| 591 | Syn: 1  | ES: 313     |
| 592 | Syn: 1  | FAB: 369    |
| 593 | Syn: 1  | FAB: 317    |
| 594 | Syn: 1  | ES: 381     |

[Tabla 42]

| Rex | Rsyn    | Datos      |
|-----|---------|------------|
| 595 | 2 14    | ES: 501    |
| 596 |         | FAB: 528   |
| 597 | 1       | FAN: 541   |
| 598 |         | FAB: 507   |
| 599 | Syn: 1  | FAB: 411   |
| 600 | 2       | ES: 526    |
| 601 | Syn: 1  | FAB: 475   |
| 602 | Syn: 10 | N/D        |
| 603 | Rsyn: 1 | FAB: 360   |
| 604 | Syn: 1  | FAB: 437   |
| 605 | 33      | FA2: 261,2 |
| 606 | 27      | FA2: 243,5 |
| 607 | 18      | FA2: 245,4 |
| 608 | 80      | AP: 106,0  |
| 609 | 33      | ES: 255,99 |
| 610 | 33      | CI: 288    |
| 611 | 24      | CI: 344    |
| 612 | 25      | ES: 270    |
| 613 | 18      | ES: 272    |
| 614 | 4       | CI: 350    |
| 615 | 33      | CI: 284    |
| 616 | 33      | CI: 288    |
| 617 | 24      | FAB: 338   |
| 618 | 24      | FAB: 342   |
| 619 | 33      | CI: 286    |
| 620 | 25      | EIN: 264   |
| 621 | 25      | EIN: 268   |
| 622 | 18      | ES: 268    |
| 623 | 24      | ES: 338    |
| 624 | 33      | AP: 220,03 |
| 625 | 25      | CI: 266    |

| Rex | Rsyn | Datos      |
|-----|------|------------|
| 626 | 84   | AP: 202,06 |
| 627 | 18   | AP: 204,00 |
| 628 | 40   | EI1: 313   |
| 629 | 4    | CI: 252    |
| 630 | 7    | CI: 230    |
| 631 | 18   | ES: 176    |
| 632 | 7    | EI1: 215   |
| 633 | 4    | CI: 238    |
| 634 | 40   | EI1: 237   |
| 635 | 4    | CI: 344    |
| 636 | 24   | FAB: 350   |
| 637 | 66   | N/D        |
| 638 | 4    | CI: 350    |
| 639 | 33   | ES: 296    |
| 640 | 88   | CI: 264    |
| 641 | 33   | EI: 192    |
| 642 | 24   | ES: 246    |
| 643 | 25   | EI1: 173   |
| 644 | 40   | FAB: 311   |
| 645 | 40   | ES: 235    |
| 646 | 7    | CI: 260    |
| 647 | 18   | ES: 250,25 |
| 648 | 4    | ES: 326    |
| 649 | 18   | ES: 268    |
| 650 | 21   | FAB: 228   |
| 651 | 4    | CI: 304    |
| 652 | 21   | FAB: 228   |
| 653 | 4    | FAB: 304   |
| 654 | 18   | CI: 274    |
| 655 | 4    | CI: 340    |
| 656 | 4    | CI: 352    |
| 657 | 90   | ES: 330,14 |
| 658 | 91   | ES: 192,13 |
| 659 | 4    | ES: 268,09 |
| 660 | 4    | ES: 268,09 |
| 661 | 34   | ES: 274    |
| 662 | 34   | ES: 308    |

| Г | Га | h | la | 431 |
|---|----|---|----|-----|
|   |    |   |    |     |

| Ej. /sal | ESTRUCTURA             |
|----------|------------------------|
| 1 /OX    | ĕ                      |
| 2 /OX    |                        |
| 3 /OX R  | iPrO N CH <sub>3</sub> |
| 4 /OX R  | HO NH                  |

| Ej. /sal | ESTRUCTURA                                                                                        |
|----------|---------------------------------------------------------------------------------------------------|
| 5 /OX R  | OH OH                                                                                             |
| 6 /OX R  | H <sub>3</sub> C iPr OH                                                                           |
| 7 /OX R  | H <sub>3</sub> NH                                                                                 |
| 8 /OX R  | OH OH                                                                                             |
| 9 /OX R  | N HO                                                           |
| 10 /OX R | OH NH HO                                                                                          |
| 11 /OX R | OH<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N |
| 12 /OX R | H <sub>3</sub> C OH                                                                               |

|          | [Tabla 44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ej. /sal | ESTRUCTURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13 /OX R | MeO N N N HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 /OX R | OHA<br>NAME OF THE |
| 15 /OX R | OH OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Ej. /sal | ESTRUCTURA                       |
|----------|----------------------------------|
| 16 R     | HAZ OH                           |
| 17 R     | H <sub>3</sub> C CH <sub>3</sub> |

| [Tabla 45] |     |                                                 |  |
|------------|-----|-------------------------------------------------|--|
| Ej.        | sal | ESTRUCTURA HO.                                  |  |
| 117        | ox  | HO N OH                                         |  |
| 121        | OX  | HO N N N N N N N N N N N N N N N N N N N        |  |
| 134        | OX  | N OH OH                                         |  |
| 157        | CL  | N N OMe                                         |  |
| 174        | OX  | F <sub>3</sub> C OH OH                          |  |
| 199        | FM  | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> |  |
| 202        | FM  | N N OH                                          |  |
| 236        | OX  | F <sub>3</sub> CO O H OH                        |  |

|     | [Tabla 46]                   |                        |  |  |
|-----|------------------------------|------------------------|--|--|
| Ej. | Ej. sal ESTRUCTURA<br>274 OX |                        |  |  |
| 274 | OX                           | H <sub>3</sub> C N OMe |  |  |
| 292 | OX                           | Et N OH OH             |  |  |
| 296 | OX                           | N OH OH                |  |  |
| 316 | OX                           | F N N OH               |  |  |
| 319 | OX                           | MeO OH OH              |  |  |
| 330 | OX                           | MeO N OH               |  |  |
| 379 | OX                           | F N OH OH              |  |  |
| 386 | OX                           | F N OH OH              |  |  |
| 409 | OX                           | Et N OH N OH           |  |  |
| 415 | FM                           | MeO OH OH              |  |  |

|     | [Tabla 47] |                   |  |  |  |
|-----|------------|-------------------|--|--|--|
| Ej. | sal        | ESTRUCTURA        |  |  |  |
| 429 | OX         | N OH OH MeO tBu O |  |  |  |
| 433 | OX         | N OH OH OH        |  |  |  |
| 435 | FM         | MeO OH OH         |  |  |  |

| Ej. | sal | ESTRUCTURA             |
|-----|-----|------------------------|
| 436 | T2  | Et N OH N              |
| 449 | OX  | H <sub>3</sub> C OH OH |
| 461 | OX  | F N OH NH              |
| 473 | OX  | H³C N OH               |
| 474 | OX  | MeO O                  |
| 476 | OX  | N OH NH OH             |
| 478 | OX  | F OH OH                |

| [Tabla 48] |     |                       |  |
|------------|-----|-----------------------|--|
| Ej.        | sal | ESTRUCTURA            |  |
| 480        | OX  | MeO N OH              |  |
| 504        | OX  | H <sub>3</sub> C N OH |  |
| 573        | T1  | Et NeO OH             |  |

| [Tabla 49] |          |  |
|------------|----------|--|
| Ej.        | Datos    |  |
| 1          | FAB: 385 |  |
| 2          | FAB: 399 |  |
| 3 R        | FAB: 389 |  |
| 4 R        | FAB: 415 |  |
| 5 R        | FAB: 413 |  |
| 6 R        | ES: 359  |  |
| 7 R        | FAB: 399 |  |
| 8 R        | FAB: 429 |  |
| 9 R        | FAB: 415 |  |
| 10 R       | FAB: 401 |  |
| 11 R       | FAB: 428 |  |
| 12 R       | FAB: 361 |  |
| 13 R       | FAB: 431 |  |
| 14 R       | FAB: 426 |  |
| 15 R       | FAB: 399 |  |

| Ej.  | Datos   |
|------|---------|
| 16 R | ES: 413 |
| 17 R | ES: 401 |

[Tabla 50]

| Ej. | Syn | Datos    |
|-----|-----|----------|
| 117 | 1   | FAB: 423 |
| 121 | 7   | FAB: 425 |
| 134 | 1   | FAB: 331 |
| 157 | 1   | FAB: 361 |
| 174 | 1   | FAB: 393 |

[Tabla 51]

| Ej. | Syn | Datos      |
|-----|-----|------------|
| 199 | 1   | FAB: 345,2 |
| 202 | 1   | FAB: 371,2 |
| 236 | 1   | FAB: 409   |

[Tabla 52]

| [   |     |          |  |
|-----|-----|----------|--|
| Ej. | Syn | Datos    |  |
| 274 | 1   | FAB: 375 |  |
| 292 | 1   | ES: 359  |  |
| 296 | 1   | ES: 325  |  |
| 316 | 1   | FAB: 363 |  |
| 319 | 1   | FAB: 375 |  |
| 330 | 1   | FAB: 381 |  |

[Tabla 53]

| Ej. | Syn | Datos    |
|-----|-----|----------|
| 379 | 1   | FAB: 377 |
| 386 | 1   | FAB: 365 |
| 409 | 1   | FAB: 375 |
| 415 | 1   | ES: 375  |

[Tabla 54]

| [Tabla 34] |     |            |  |  |
|------------|-----|------------|--|--|
| Ej.        | Syn | Datos      |  |  |
| 429        | 1   | FAB: 389   |  |  |
| 433        | 1   | FAB: 407   |  |  |
| 435        | 1   | FAB: 355   |  |  |
| 436        | 1   | FAB: 375   |  |  |
| 449        | 1   | FAB: 359   |  |  |
| 461        | 1   | FAB: 363,2 |  |  |
| 473        | 1   | FAB: 361   |  |  |
| 474        | 1   | FAB: 361   |  |  |
| 476        | 1   | ES: 363    |  |  |
| 478        | 1   | ES: 365    |  |  |
| 480        | 1   | ES: 377    |  |  |

[Tabla 55]

| [   |     |           |  |  |
|-----|-----|-----------|--|--|
| Ej. | Syn | Datos     |  |  |
| 504 | 1   | ES: 375   |  |  |
| 573 | 1   | FS: 375 3 |  |  |

5

## Tabla 56]

| 岀   | Datos                                                                                                                                                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 117 | RMN: 1,01 - 1,72 (11H, m), 2,95 (2H, m), 3,26 (2H, m), 3,46 - 3,67 (3H, m), 4,03 (1H, m), 4,17 (1H, m), 4,75 (1H, m), 5,12 (1H, m), 7,16 - 7,22 (4H, m), 7,32 -         |
|     | 7,38 (5H, m).                                                                                                                                                           |
| 121 | RMN: 1,03 - 4,77 (34H, m), 5,14 y 5,18 (1H, d, J = 8,8Hz), 7,16 - 7,21 (4H, m).                                                                                         |
| 134 | RMN: 1,01 - 1,70 (14H, m), 2,74 - 2,97 (4H, m), 3,34 - 4,19 (5H, m), 5,10 (1H, d, J = 9,6Hz), 7,16 - 7,22 (4H, m).                                                      |
| 157 | RMN: 1,03 - 1,71 (11H, m), 2,86 - 3,05 (4H, m), 3,25 - 3,37 (5H, m), 3,57 - 3,68 (2H, m), 4,01 (1H, m), 4,08 (1H, d, J = 16,0Hz), 4,19 (1H, d, J = 16,0Hz), 5,10        |
|     | (1H, d, J = 9,2Hz),5,58 (1H, m), 7,16 - 7,22 (4H, m), 8,75 (1H, a).                                                                                                     |
| 174 | RMN: 1,07 (6H, d, J = 76,4Hz), 2,72 (1H, m), 2,87 (1H, m), 2,96 - 3,12 (2H, m), 3,54 (1H, m), 3,84 - 3,94 (2H, m), 4,04 - 4,19 (2H, m), 6,80 - 6,83 (2H, m), 7,14 -     |
|     | 7,31 (4H, m), 7,50 - 7,60 (2H, m), 7,80 (1H, d, J = 7,6Hz).                                                                                                             |
| 236 | RMN: 1,08 (3H, d, $J = 6.4$ Hz), $2.73 - 3.07$ (4H, m), $3.58$ (1H, m), $3.73$ (1H, m), $3.95$ (1H, m), $4.13$ (2H, m), $6.82$ y $6.83$ (1H, s), $7.01 - 7.46$ (8H, m). |
| 330 | RMN: 1,47 - 1,93 (6H, m), 2,87 - 3,79 (4H, m), 3,79 y 3,93 (3H, s), 4,01 - 4,36 (4H, m), 6,29 y 6,74 (1H, s), 6,65 - 7,33 (8H, m).                                      |
| 379 | RMN: 0,30 - 0,43 (8H, m), 0,87 - 0,90 (2H, m), 2,77 - 4,52 (13H, m), 5,07 y 5,58 (1H, m), 7,04 - 7,11 (2H, m), 7,34 - 7,40 (1H, m).                                     |
| 386 | RMN: 1,27 - 1,55 (10H, m), 2,68 - 4,48 (13H, m), 5,08 y 5,59 (1H, m), 7,04 - 7,12 (1H, m), 7,19 - 7,25 (2H, m).                                                         |
| 409 | RMN: 1,14 - 1,57 (13H, m), 2,53 - 4,50 (15H, m), 5,06 y 5,55 (1H, m), 7,05 - 7,12 (4H, m).                                                                              |
| 415 | RMN: 0,86 - 0,94 (6H, m), 1,15 - 1,62 (10H, m), 1,88 - 2,04 (1H, m), 2,60 - 5,04 (12H, m), 6,52 (2H, s), 6,72 - 6,79 (2H, m), 7,06 - 7,12 (1H, m).                      |
| 433 | RMN: 0,99 - 1,11 (3H, m), 2,12 - 4,53 (13H, m), 4,94 y 5,72 (1H, m), 7,03 - 7,80 (8H, m).                                                                               |
| 436 | RMN: 1,14 - 1,55 (13H, m), 2,49 - 4,50 (15H, m), 5,08 y 5,56 (1H, m), 7,05 - 7,12 (3H, m).                                                                              |

Los resultados del análisis de varios compuestos de los Ejemplos de Producción mediante cromatografía en columna quiral se muestran en las Tablas 57 y 58.

Además, en las Tablas, TR representa un tiempo de retención (min) y PO representa una pureza óptica (% ee).

5

[Tabla 57]

|     | [Tabla 57]                                                                                                                                                                |       |       |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Rex | Condición                                                                                                                                                                 | TR    | PO    |
| 20  | Columna: DAICEL CHIRALPAK AD-RH 4,6 x 150 mm Detección: UV: 230 nm Caudal: 0,5 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 60/40 Temperatura de la columna: 40 °C | 18,22 | >99,5 |
| 21  | Columna: DAICEL CHRALPAK AS-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 50/50 Temperatura de la columna: 40 °C       | 24,11 | >99,5 |
| 22  | Columna: DAICEL CHRALCEL OJ-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 70/30 Temperatura de la columna: 40 °C       | 9,24  | 99,20 |
| 81  | Columna: DAICEL CHRALPAK AS-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 45/55 Temperatura de la columna: 40 °C       | 15,95 | >99   |
| 82  | Columna: DAICEL CHRALCEL OJ-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 70/30 Temperatura de la columna: 40 °C       | 43,39 | 92    |
| 83  | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 20/80 Temperatura de la columna: 40 °C       | 52,48 | 98    |
| 513 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 20/80 Temperatura de la columna: 40 °C       | 60,99 | 97,40 |

[Tabla 58]

|      | [าสมส 50]                                                                                                                                                              |    |    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| Rex  | Condición                                                                                                                                                              | TR | PO |
| 547A | Columna: DAICEL CHIRALPAK AD-RH 4,6x150mm Detección: UV: 230 nm Caudal: 0,5 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 60/40 Temperatura de la columna: 40 °C | 15 | 95 |

| Rex | Condición                                                                                                                                                           | TR    | PO    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 566 | Columna: DAICEL CHRALCEL OJ-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 70/30 Temperatura de la columna: 40 °C | 11,28 | 98,30 |
| 567 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV230 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 45/55 Temperatura de la columna: 40 °C | 28,60 | >99   |
| 570 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 60/40 Temperatura de la columna: 40 °C | 36,76 | >99   |
| 572 | Columna: DAICEL CHRALPAK AS-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 50/50 Temperatura de la columna: 40 °C | 20,86 | >99,5 |
| 575 | Columna: DAICEL CHRALPAK AS-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 45/55 Temperatura de la columna: 40 °C | 17,02 | >99   |
| 576 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV230 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 45/55 Temperatura de la columna: 40 °C | 22,72 | >99   |
| 650 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 65/35 Temperatura de la columna: 40 °C | 25,06 | >99   |
| 652 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 65/35 Temperatura de la columna: 40 °C | 26,7  | >99   |

### Aplicabilidad industrial

El compuesto de la presente invención se puede usar como composición farmacéutica para prevenir y/o tratar varios dolores incluidos el dolor neuropático y el dolor nociceptivo, cefaleas tales como migrañas y cefaleas en racimo, enfermedades del sistema nervioso central tales como ansiedad, depresión, Epilepsia, ictus cerebral y síndrome de las piernas inquietas, síntomas abdominales tales como dolor abdominal y distensión abdominal, anomalías de las heces tales como diarrea y estreñimiento, enfermedades del sistema digestivo tales como síndrome del intestino irritable, enfermedades del sistema urinario tales como vejiga hiperactiva y cistitis intersticial etc.

|     |     | [Tabla 55]             |
|-----|-----|------------------------|
| Ej. | sal | ESTRUCTURA             |
| 168 | FM  | O N OH                 |
| 169 | FM  | CH <sub>3</sub>        |
| 170 | OX  | CH <sub>3</sub> OH OH  |
| 171 | OX  | $F_3C$ OMe             |
| 172 | OX  | F O H OH               |
| 173 | OX  | OH NH OH               |
| 174 | OX  | F <sub>3</sub> C OH OH |

|     |     | [Tabla 59]        |
|-----|-----|-------------------|
| Ej. | sal | ESTRUCTURA        |
| 195 | OX  | OMe               |
|     |     | O H OH            |
| 196 | OX  | OH<br>NH<br>NH    |
| 197 | OX  | E E O H OH CH3    |
| 198 | OX  | N N OMe<br>O H OH |

| Ej. | sal | ESTRUCTURA            |
|-----|-----|-----------------------|
| 199 | FM  | CH <sub>3</sub> N OH  |
| 200 | FM  | MeO OH OH OH          |
| 201 | FM  | MeO N CH <sub>3</sub> |

|            |     | [Tabla 60]           |
|------------|-----|----------------------|
| Ej.        | sal | ESTRUCTURA           |
| Ej.<br>202 | FM  | OH OH                |
| 203        | OX  | MeO N CH,            |
| 204        | FM  | NH OH                |
| 205        | OX  | OH<br>NH<br>NH<br>NH |
| 206        | OX  | CI OH OH OH          |
| 207        | OX  | OMe<br>ZH<br>ZH<br>C |
| 208        | OX  |                      |

|     |     | [Tabla 64] |
|-----|-----|------------|
| Ej. | sal | ESTRUCTURA |
| 230 | OX  | P OH NH    |

| Ej.        | sal | ESTRUCTURA                                     |
|------------|-----|------------------------------------------------|
| Ej.<br>231 | OX  | D-<br>ZII<br>ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ |
| 232        | OX  | CH, OH                                         |
| 233        | OX  | OH OH OH OH                                    |
| 234        | OX  | NO H OH                                        |
| 235        | OX  | OH<br>NE<br>NE<br>CI                           |
| 236        | OX  | F <sub>3</sub> CO O H OH                       |

|     |     | [Tabla 70]                       |
|-----|-----|----------------------------------|
| Ej. | sal | ESTRUCTURA                       |
| 273 | OX  | H <sub>3</sub> C N OH OH         |
| 274 | OX  | H3C N OH OH                      |
| 275 | OX  | F <sub>3</sub> C CH <sub>3</sub> |
| 276 | OX  | F <sub>3</sub> C N OH OH         |
| 277 | OX  | CI NO H                          |

278

FM

| Ej. | sal | ESTRUCTURA               |
|-----|-----|--------------------------|
| 279 | OX  | N OMe<br>CF <sub>3</sub> |

|     |     | [Tabla 72]           |
|-----|-----|----------------------|
| Ej. | sal | ESTRUCTURA           |
| 288 | OX  | F CI O H OH          |
| 289 | OX  | F CI O OH OH         |
| 290 | FM  | CH<br>CH<br>CH<br>CH |
| 291 | FM  | OMe                  |
| 292 | OX  | Et N OH OH           |
| 293 | OX  | Et NOH OH            |
| 294 | OX  | AcHN CH <sub>3</sub> |
| 295 | OX  |                      |

|     |     | [Tabla 73] |
|-----|-----|------------|
| Ej. | sal | ESTRUCTURA |
| 296 | OX  | CH CH      |
| 297 | OX  | N OH OH    |

| Ej. | sal | ESTRUCTURA                              |
|-----|-----|-----------------------------------------|
| 298 | OX  | Z O O O O O O O O O O O O O O O O O O O |
| 299 | OX  | OH OH OH                                |
| 300 | OX  | OH OH                                   |
| 301 | OX  | O H OH                                  |
| 302 | OX  | ACNH N OH                               |
| 303 | OX  | iPr N N N CH <sub>3</sub>               |

|            |     | [Tabla 75]                        |
|------------|-----|-----------------------------------|
| Ej.<br>311 | sal | ESTRUCTURA                        |
|            | OX  | MeO CH <sub>3</sub>               |
| 312        | OX  | MeO O H OH                        |
| 313        | OX  | OH<br>NO<br>NO<br>CH <sub>3</sub> |
| 314        | OX  | N CH <sub>3</sub>                 |
| 315        | OX  | N O N OMe<br>CH <sub>3</sub>      |
| 316        | OX  | F OH OH OH                        |

| Ej. | sal | ESTRUCTURA              |
|-----|-----|-------------------------|
| 317 | OX  | F CH <sub>3</sub> OH    |
| 318 | OX  | F<br>N<br>N<br>N<br>OMe |

|     |     | [Tabla 76]                                |
|-----|-----|-------------------------------------------|
| Ej. | sal | ESTRUCTURA                                |
| 319 | OX  | MeO OH NH OH                              |
| 320 | OX  | MeO CH <sub>3</sub>                       |
| 321 | OX  | MeO N OMe                                 |
| 322 | OX  |                                           |
| 323 | OX  | N CH <sub>3</sub>                         |
| 324 | OX  | N OH OH                                   |
| 325 | OX  | DH NH |
| 326 | OX  | F <sub>3</sub> C N OH CH <sub>3</sub>     |

|     |     | [Tabla 77] |
|-----|-----|------------|
| Ej. | sal | ESTRUCTURA |
| 327 | OX  | MeO S C H  |
| 328 | OX  | MeO HOHOH  |
| 329 | OX  | MeO O H OH |

| Ej. | sal | ESTRUCTURA |
|-----|-----|------------|
| 330 | OX  | MeO OH     |
| 331 | OX  | MeO OH OH  |
| 332 | BR  | MeO O OH   |
| 333 | FM  | MeO iPr OH |

|            |     | [Tabla 83]                               |
|------------|-----|------------------------------------------|
| Ej.        | sal | ESTRUCTURA                               |
| Ej.<br>373 | OX  | N N N OH                                 |
| 374        | OX  | NO N |
| 375        | OX  | O H OH                                   |
| 376        | OX  | N CH <sub>3</sub> OH                     |
| 377        | OX  | N O H OH                                 |
| 378        | OX  | N O iPr                                  |
| 379        | OX  | F N OH OH                                |
| 380        | OX  | N OH iPr<br>MeO H iPr                    |

|     |     | [Tabla 84]          |
|-----|-----|---------------------|
| Ej. | sal | ESTRUCTURA          |
| 381 | OX  | F OH OH OH OH OH OH |
| 382 | OX  | H,C H OH OH         |
| 383 | OX  | F N N HO            |
| 384 | OX  | F NO NOH            |
| 385 | OX  | F OH OH iPr         |
| 386 | OX  | F N OH N OH         |
| 387 | OX  | F N N HO            |
| 388 | OX  | MeO N N N nPr       |

|     |     | [Tabla 87]                            |
|-----|-----|---------------------------------------|
| Ej. | sal | ESTRUCTURA                            |
| 403 | OX  | MeO N CH <sub>3</sub>                 |
| 404 | OX  | Br OH NHO OH                          |
| 405 | OX  | Br<br>N CH <sub>3</sub><br>MeO O H OH |
| 406 | OX  | MeO OH                                |
| 407 | OX  | MeO O H OH                            |

| Ej. | sal | ESTRUCTURA             |
|-----|-----|------------------------|
| 408 | OX  | HO CH <sub>3</sub> N N |
| 409 | OX  | Et NOH NOH             |

|            |     | [Tabla 88]                           |
|------------|-----|--------------------------------------|
| Ej.        | sal | ESTRUCTURA                           |
| Ej.<br>410 | OX  | N OH OH                              |
| 411        | OX  | N OH OH                              |
| 412        | OX  | H <sub>3</sub> C N CH <sub>3</sub>   |
| 413        | OX  | H <sub>3</sub> C CH <sub>3</sub> O H |
| 414        | OX  | MeO OH NOH                           |
| 415        | FM  | MeO OH NOH                           |
| 416        | OX  | H <sub>3</sub> C N OH N OH           |
| 417        | OX  | MeO NH OH                            |

|     |     | [Tabla 90] |
|-----|-----|------------|
| Ej. | sal | ESTRUCTURA |
| 425 | OX  |            |
| 426 | OX  | N OH       |

| Ej.<br>427 | sal | ESTRUCTURA                                   |
|------------|-----|----------------------------------------------|
|            | OX  | MeO iPr O                                    |
| 428        | OX  | N CH <sub>3</sub> MeO iPr O H OH             |
| 429        | OX  | NeO tBu O                                    |
| 430        | OX  | N CH <sub>3</sub> MeO tBy O H OH             |
| 431        | OX  | H <sub>3</sub> C OH OH OO HO CH <sub>3</sub> |
| 432        | OX  | MeO N OH                                     |

|            |     | [Tabla 91]     |
|------------|-----|----------------|
| Ej.        | sal | ESTRUCTURA     |
| Ej.<br>433 | OX  | N OMe<br>OH OH |
| 434        | OX  |                |
| 435        | FM  | MeO O H OH     |
| 436        | T2  | Et NOH NOH     |
| 437        | OX  | MeO N OH OH    |
| 438        | OX  | MeO N OH OH    |
| 439        | T1  | Et NON NOH     |

|     |     | [Tabla 93]                               |
|-----|-----|------------------------------------------|
| Ej. | sal | ESTRUCTURA                               |
| 448 | FM  | MeO OH OH                                |
| 449 | OX  | HZ C C C C C C C C C C C C C C C C C C C |
| 450 | OX  | N CH <sub>3</sub>                        |
| 451 | OX  | H <sub>3</sub> C N OH OH                 |
| 452 | OX  | H <sub>3</sub> C N OH                    |
| 453 | OX  | H <sub>3</sub> C N OH OH                 |
| 454 | OX  | Z O O CH <sub>3</sub>                    |
| 455 | OX  | OMe CH <sub>3</sub>                      |

|     |     | [Tabla 94]            |
|-----|-----|-----------------------|
| Ej. | sal | ESTRUCTURA            |
| 456 | OX  |                       |
| 457 | OX  | F N N CH <sub>3</sub> |
| 458 |     | MeO OH OH NEO OH      |
| 459 | OX  | MeO OH OH             |
| 460 |     |                       |

| Ej. | sal | ESTRUCTURA                           |
|-----|-----|--------------------------------------|
| 461 | OX  | P OH OH N OH N OH N OH               |
| 462 | ox  | CH <sub>3</sub><br>N CH <sub>3</sub> |
| 463 | OX  | CH <sub>3</sub> OH iPr O             |

|            |     | [Tabla 96]            |
|------------|-----|-----------------------|
| Ej.        | sal | ESTRUCTURA            |
| Ej.<br>472 | OX  | MeO NOH               |
| 473        | OX  | H,c N OH              |
| 474        | OX  | MeO O H               |
| 475        | OX  | MeO OH OH MeO OH      |
| 476        | OX  | # -                   |
| 477        | OX  | MeO O CH <sub>3</sub> |
| 478        | OX  | F OH OH OH OH OH      |
| 479        | OX  | MeO nPr O H           |

|     |     | [Tabla 97]              |
|-----|-----|-------------------------|
| Ej. | sal | ESTRUCTURA              |
| 480 | OX  | MeO OH NHO              |
| 481 | OX  |                         |
| 482 | OX  | CH OH                   |
| 483 | OX  | HZ OH OH                |
| 484 | OX  | P OH OH                 |
| 485 | OX  | P O H OH                |
| 486 | OX  | H <sub>3</sub> C        |
| 487 | OX  | H <sub>3</sub> C O H OH |

|     |     | [Tabla 100]                        |
|-----|-----|------------------------------------|
| Ej. | sal | ESTRUCTURA                         |
| 504 | OX  | H <sub>3</sub> C N OH              |
| 505 | OX  | MeO N OH                           |
| 506 | OX  | H <sub>3</sub> C N CH <sub>3</sub> |
| 507 | OX  | MeO NOH OH                         |
| 508 | OX  | MeO NOH OH                         |

| Ej. | sal | ESTRUCTURA                                              |
|-----|-----|---------------------------------------------------------|
| 509 | OX  | MeO N CF <sub>3</sub>                                   |
| 510 | OX  | H <sub>3</sub> C OH |

|     | [Tabla 110] |                                                   |  |  |  |
|-----|-------------|---------------------------------------------------|--|--|--|
| Ej. | sal         | ESTRUCTURA                                        |  |  |  |
| 573 | T1          | Et NOH NOH                                        |  |  |  |
| 574 | MA          | Et NO         |  |  |  |
| 575 | OX          | MeO O H OH                                        |  |  |  |
| 576 | T2          | MeO N OH N H                                      |  |  |  |
| 577 | T1          | MeO<br>Z<br>D<br>T<br>T<br>T                      |  |  |  |
| 578 | MB          | MeO OH OH NOT |  |  |  |
| 579 | MA          | MeO OH                                            |  |  |  |

| [Tabla 111] |          |  |  |
|-------------|----------|--|--|
| Ej.         | Datos    |  |  |
| 1           | FAB: 385 |  |  |
| 2           | FAB: 399 |  |  |
| 3           | FAB: 389 |  |  |
| 4           | FAB: 415 |  |  |
| 5           | FAB: 413 |  |  |
| 6           | ES: 359  |  |  |
| 7           | FAB: 399 |  |  |
| 8           | FAB: 429 |  |  |
| 9           | FAB: 415 |  |  |
| 10          | FAB: 401 |  |  |
| 11          | FAB: 428 |  |  |
| 12          | FAB: 361 |  |  |
| 13          | FAB: 431 |  |  |
| 14          | FAB: 426 |  |  |
| 15          | FAB: 399 |  |  |
| 16          | ES: 413  |  |  |
| 17          | ES.401   |  |  |

| [Tabla 1 | 12] |
|----------|-----|
|          |     |

|       | [Tabla I |             |
|-------|----------|-------------|
| l Ej. | Syn      | Datos       |
| 101   | 1        | FAB: 385    |
|       |          |             |
| 102   | 1        | FAB: 385    |
| 103   | 1        | FAB: 385    |
| 104   | 1        | FAB: 385    |
|       |          |             |
| 105   | 1        | FAB: 423    |
| 106   | 1        | FAB: 371    |
| 107   | 1        | FAB: 393    |
|       | 1        |             |
| 108   |          | FAB: 393    |
| 109   | 1        | FAB: 407    |
| 110   | 1        | FAB: 407    |
|       |          |             |
| 111   | 1        | FAB: 465    |
| 112   | 1        | FAB: 410    |
| 113   | 1        | FAB: 403    |
|       |          |             |
| 114   | 1        | FAB: 469    |
| 115   | 1        | FAB: 469    |
| 116   | 1        | FAB: 419    |
|       |          |             |
| 117   | 1        | FAB: 423    |
| 118   | 1        | FAB: 423    |
| 119   | 1        | FAB: 449    |
|       |          |             |
| 120   | 1        | FAB: 371    |
| 121   | 7        | FAB: 425    |
|       |          |             |
| 122   | 1        | FAB: 425    |
| 123   | 1        | FAB: 441    |
| 124   | 1        | FAB: 373    |
|       |          |             |
| 125   | 1        | FAB: 373    |
| 126   | 1        | FAB: 443    |
| 127   | 1        | FAB: 373    |
|       |          |             |
| 128   | 7        | FAB: 425    |
| 129   | 5        | FAB: 399    |
| 130   | 7        | FAB: 399    |
|       |          |             |
| 131   | 1        | FAB: 385    |
| 132   | 1        | FAB: 371    |
| 133   | 1        | FAB: 331    |
|       |          |             |
| 134   | 1        | FAB: 331    |
| 135   | 1        | FAB: 334    |
| 136   | 1        | FAB: 347    |
|       |          |             |
| 137   | 1        | FAB: 343    |
| 138   | 7        | FAB: 425    |
| 139   | 7        | FAB: 443    |
|       |          |             |
| 140   | 1        | FAB: 387    |
| 141   | 7        | FAB: 439    |
| 143   | 1        | FAB: 317,2  |
|       |          | 1 AD. 311,Z |
| 144   | 1        | FAB: 359    |
| 145   | 1        | FAB: 345    |
| 146   | 1        | FAB: 361    |
|       |          |             |
| 147   | 1        | FAB: 345    |
| 148   | 1        | FAB: 399    |
| 149   | 2        | FAB: 345    |
|       |          |             |
| 150   | 1        | FAB: 415    |
| 151   | 1        | FAB: 400,5  |
|       |          |             |
| 152   | 1        | FAB: 345    |
| 153   | 1        | FAB: 331    |
| 154   | 1        | FAB: 413,3  |
|       | 1        |             |
| 155   |          | FAB: 359,3  |
| 156   | 7        | FAB: 447    |
| 157   | 1        | FAB: 361    |
|       |          |             |
| 158   | 1        | FAB: 423    |
| 159   | 1        | FAB: 397    |
| 160   | 1        | FAB: 343    |
|       |          |             |
| 161   | 1        | FAB: 373    |
| 162   | 7        | FAB: 455    |
|       | •        |             |

| Ej. | Syn | Datos      |
|-----|-----|------------|
| 163 | 1   | FAB: 404   |
| 164 | 1   | FAB: 350   |
| 165 | 1   | FAB: 447   |
| 166 | 1   | FAB: 393   |
| 167 | 1   | FAB: 447   |
| 168 | 1   | FAB: 383,0 |
| 169 | 1   | FAB: 329,1 |
| 170 | 7   | ES: 401    |
| 171 | 1   | FAB: 423   |
| 172 | 1   | FAB: 343   |
| 173 | 1   | FAB: 397   |
| 174 | 1   | FAB: 393   |
| 175 | 1   | FAB: 373   |
| 176 | 1   | FAB: 409   |
| 177 | 1   | FAB: 439   |
| 178 | 1   | FAB: 365   |
| 179 | 1   | FAB: 395   |
| 180 | 1   | FAB: 439   |

[Tabla 113]

| Ej. | Syn | Datos      |
|-----|-----|------------|
| 181 | 1   | FAB: 409   |
| 182 | 1   | FAB: 411   |
| 183 | 1   | FAB: 439   |
| 184 | 1   | FAB: 415   |
| 185 | 1   | FAB: 391   |
| 186 | 1   | FAB: 419   |
| 187 | 1   | FAB: 365   |
| 188 | 1   | FAB: 395   |
| 189 | 1   | FAB: 419   |
| 190 | 1   | FAB: 361   |
| 191 | 1   | FAB: 391   |
| 192 | 1   | FAB: 415   |
| 193 | 1   | FAB: 365   |
| 194 | 1   | FAB: 395   |
| 195 | 1   | FAB: 391   |
| 196 | 1   | FAB: 421   |
| 197 | 1   | FAB: 367   |
| 198 | 1   | FAB: 397   |
| 199 | 1   | FAB: 345,2 |
| 200 | 1   | FAB: 445,2 |
| 201 | 1   | FAB: 391,2 |
| 202 | 1   | FAB: 371,2 |
| 203 | 1   | FAB: 361   |
| 204 | 1   | FAB: 387   |
| 205 | 1   | FAB: 413   |
| 206 | 1   | FAB: 359   |
| 207 | 1   | FAB: 389   |
| 209 | 1   | FAB: 399,2 |
| 210 | 1   | FAB: 317,1 |
| 212 | 1   | FAB: 397   |
| 213 | 1   | FAB: 361   |
| 214 | 1   | FAB: 415   |
| 215 | 1   | FAB: 349   |
| 216 | 1   | FAB: 379   |
| 217 | 1   | FAB: 403   |
| 218 | 1   | FAB: 349   |
| 219 | 1   | FA1: 378   |
| 220 | 1   | FAB: 413   |
| 221 | 1   | FAB: 359   |
| 222 | 1   | FAB: 373   |
| 223 | 1   | ES: 389    |

| Ej. | Syn | Datos    |
|-----|-----|----------|
| 224 | 1   | ES: 373  |
| 225 | 1   | FAB: 347 |
| 226 | 1   | FAB: 319 |
| 227 | 1   | ES: 349  |
| 228 | 1   | FAB: 349 |
| 229 | 1   | FAB: 379 |
| 230 | 1   | FAB: 403 |
| 231 | 1   | FAB: 380 |
| 232 | 1   | FAB: 404 |
| 233 | 1   | FAB: 458 |
| 234 | 1   | FAB: 360 |
| 235 | 1   | FAB: 414 |
| 236 | 1   | FAB: 409 |
| 237 | 1   | FAB: 439 |
| 238 | 1   | FAB: 355 |
| 239 | 1   | FAB: 385 |
| 240 | 1   | FAB: 411 |
| 241 | 1   | FAB: 441 |
| 242 | 1   | ES: 369  |
| 243 | 1   | FAB: 399 |
| 244 | 1   | FAB: 414 |
| 245 | 1   | FAB: 360 |
| 246 | 1   | FAB: 353 |
| 247 | 1   | FAB: 383 |
| 249 | 1   | FAB: 386 |
| 250 | 1   | FAB: 356 |
| 252 | 1   | FAB: 371 |
| 253 | 1   | ES: 401  |
| 254 | 1   | FAB: 373 |
| 255 | 1   | FAB: 403 |
| 256 | 1   | FAB: 359 |
| 257 | 1   | FAB: 305 |
| 258 | 1   | FAB: 335 |
| 259 | 1   | FAB: 345 |
| 260 | 1   | FAB: 291 |

[Tabla 114]

| Ej. | Syn | Datos       |
|-----|-----|-------------|
| 261 | 1   | FAB: 321    |
| 262 | 1   | FAB: 403,3  |
| 263 | 1   | FAB: 375,2  |
| 264 | 1   | FAB: 387    |
| 265 | 1   | FAB: 333    |
| 266 | 1   | FAB: 363    |
| 267 | 10  | FAB: 374    |
| 268 | 10  | N/D         |
| 269 | 10  | FAB: 404    |
| 270 | 1   | FAB: 416    |
| 271 | 1   | FAB: 356    |
| 272 | 1   | FAB: 386    |
| 273 | 1   | FAB: 345    |
| 274 | 1   | FAB: 375    |
| 275 | 1   | FAB: 407    |
| 276 | 1   | FAB: 437    |
| 277 | 1   | FAB: 414    |
| 278 | 1   | FAB: 349,14 |
| 279 | 1   | FAB: 437    |
| 280 | 1   | FAB: 405,2  |
| 281 | 1   | FAB: 430    |
| 282 | 1   | FAB: 399    |
| 283 | 1   | FAB: 429    |
| 284 | 1   | FAB: 447    |

| Ej. | Syn | Datos       |
|-----|-----|-------------|
| 285 | 1   | ES: 393     |
| 286 | 1   | FAB: 423    |
| 287 | 1   | FAB: 431    |
|     |     |             |
| 288 | 1   | FAB: 377    |
| 289 | 1   | FAB: 407    |
| 290 | 1   | FAB: 355,24 |
| 291 | 1   | FAB: 411,22 |
| 292 | 1   | ES: 359     |
| 293 | 1   | ES: 389     |
| 294 | 1   | FAB: 402    |
|     |     |             |
| 295 | 1   | ES: 379     |
| 296 | 1   | ES: 325     |
| 297 | 1   | ES: 355     |
| 298 | 1   | FAB: 371    |
| 299 | 1   | FAB: 317    |
| 300 | 1   | FAB: 347    |
| 301 | 1   | FAB: 383    |
| 302 | 1   |             |
|     |     | FAB: 456    |
| 303 | 1   | FAB: 430    |
| 304 | 1   | FAB: 407    |
| 305 | 1   | FAB: 437    |
| 306 | 1   | FAB: 385    |
| 307 | 1   | FAB: 385    |
| 308 | 1   | FAB: 389    |
| 309 | 1   | FAB: 373    |
|     |     |             |
| 310 | 1   | FAB: 399,2  |
| 311 | 1   | FAB: 355    |
| 312 | 1   | FAB: 417    |
| 313 | 1   | FAB: 399    |
| 314 | 1   | FAB: 345    |
| 315 | 1   | FAB: 375    |
| 316 | 1   | FAB: 363    |
| 317 | 1   |             |
|     |     | FAB: 309    |
| 318 | 1   | FAB: 339    |
| 319 | 1   | FAB: 375    |
| 320 | 1   | FAB: 321    |
| 321 | 1   | FAB: 351    |
| 322 | 1   | FAB: 357    |
| 323 | 1   | FAB: 303    |
| 324 | 1   | FAB: 333    |
|     | -   | FAB: 409    |
| 325 | 1   |             |
| 326 | 1   | FAB: 413    |
| 327 | 2   | ES: 369     |
| 328 | 1   | ES: 417     |
| 329 | 1   | FAB: 255    |
| 330 | 1   | FAB: 381    |
| 331 | 1   | FAB: 381    |
|     |     |             |
| 332 | 2   | FAB: 355,1  |
| 333 | 2   | FAB: 411,2  |
| 334 | 2   | FAB: 381,2  |
| 335 | 2   | FAB: 381,3  |
| 336 | 2   | FAB: 325,2  |
| 337 | 1   | FAB: 355    |
| 338 | 1   | FAB: 381,31 |
|     |     |             |
| 339 | 9   | FAB: 445    |
| 340 | 1   | FAB: 373    |
|     |     |             |

### [Tabla 115]

|     |     | - 3      |
|-----|-----|----------|
| Ej. | Syn | Datos    |
| 341 | 1   | FAB: 359 |
| 342 | 1   | FAB: 305 |
| 343 | 1   | FAB: 335 |

| 344 1 FAB: 317 345 1 FAB: 263 346 1 FAB: 347 347 1 FAB: 411 348 1 FAB: 425 349 1 FAB: 355 350 2 FAB: 339. 351 2 FAB: 367,2 352 1 FAB: 415 353 9 FAB: 431 354 1 ES: 385 355 1 FAB: 311,2 356 1 FAB: 325,2 357 1 FAB: 367,2 358 1 FAB: 359 359 1 FAB: 359 360 1 FAB: 359 361 FAB: 367 363 1 FAB: 367 363 1 FAB: 367 364 1 FAB: 367 365 1 FAB: 367 366 2 FA: 325,2 367 1 FAB: 363 368 1 FAB: 363 368 1 FAB: 363 370 1 FAB: 363 370 1 FAB: 363 370 1 FAB: 363 371 14 FAB: 363 372 1 FAB: 349 373 1 FAB: 349 375 2 FAB: 339,4 375 2 FAB: 339,4 375 2 FAB: 339,2 376 2 FAB: 3377 380 1 FAB: 365 381 1 FAB: 365 382 1 FAB: 365 381 1 FAB: 365 382 1 FAB: 363 381 1 FAB: 365 382 1 FAB: 339,3 394 1 FAB: 377 388 1 FAB: 349 389 1 FAB: 377 388 1 FAB: 349 389 1 FAB: 347 389 1 FAB: 347 389 1 FAB: 347 389 1 FAB: 347 399 1 FAB: 375 397 1 ES: 339,3 399 1 FAB: 375 397 1 ES: 347 398 1 ES: 355,3 400 1 FAB: 375 401 1 FAB: 427 396 1 FAB: 375 397 1 ES: 347 398 1 ES: 339,3 399 1 ES: 339,3 399 1 ES: 339,3 399 1 FAB: 375 390 1 FAB: 375 397 1 FAB: 375 397 1 FAB: 375 398 1 FAB: 349 399 1 FAB: 375 399 1 FAB: 375 399 1 FAB: 375 399 1 FAB: 375 399 1 FAB: 347 398 1 FAB: 349 399 1 FAB: 375 | Ej.  | Syn | Datos      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------------|
| 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/1/ |     |            |
| 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | -   | TAD: 317   |
| 347         1         FAB: 411           348         1         FAB: 425           349         1         FAB: 355           350         2         FAB: 339.           351         2         FAB: 367,2           352         1         FAB: 415           353         9         FAB: 431           354         1         ES: 385           355         1         FAB: 311,2           356         1         FAB: 325,2           357         1         FAB: 359           358         1         FAB: 399           359         1         FAB: 359           360         1         FAB: 359           360         1         FAB: 357           361         1         FAB: 359           362         1         FAB: 357           363         1         FAB: 357           364         1         FAB: 351           365         1         FAB: 351           366         2         FA: 325,2           367         1         FAB: 335           366         2         FA: 325,2           367         1         FAB: 363 </td <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |     |            |
| 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 349  | 1   | FAB: 355   |
| 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 2   |            |
| 352         1         FAB: 415           353         9         FAB: 431           354         1         ES: 385           355         1         FAB: 311,2           356         1         FAB: 325,2           357         1         FAB: 367,2           358         1         FAB: 399           359         1         FAB: 359           360         1         FAB: 359           360         1         FAB: 359           360         1         FAB: 359           361         1         FAB: 359           362         1         FAB: 367           363         1         FAB: 367           364         1         FAB: 351           365         1         FAB: 353           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 363           369         1         FAB: 353           370         1         FAB: 3421           371         14         FAB: 349           373         1         FAB: 349           375         2         FAB: 339,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     | FAB: 367.2 |
| 353         9         FAB: 431           354         1         ES: 385           355         1         FAB: 311,2           356         1         FAB: 325,2           357         1         FAB: 367,2           358         1         FAB: 399           359         1         FAB: 359           360         1         FAB: 359           360         1         FAB: 359           360         1         FAB: 359           360         1         FAB: 359           361         1         FAB: 359           362         1         FAB: 367           363         1         FAB: 367           364         1         FAB: 351           365         1         FAB: 353           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 363           369         1         FAB: 353           370         1         FAB: 3421           371         14         FAB: 349           373         1         FAB: 349           375         2         FAB: 387,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |            |
| 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 355         1         FAB: 311,2           356         1         FAB: 325,2           357         1         FAB: 367,2           358         1         FAB: 399           359         1         FAB: 359           360         1         FAB: 359           360         1         FAB: 359           360         1         FAB: 373           361         1         FAB: 373           362         1         FAB: 367           363         1         FAB: 367           364         1         FAB: 351           365         1         FAB: 353           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 363           369         1         FAB: 363           370         1         FAB: 349           371         14         FAB: 349           372         1         FAB: 385           374         2         FAB: 339,28           376         2         FAB: 381,2           377         2         FAB: 381,3           379         1         FAB: 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |            |
| 356         1         FAB: 325,2           357         1         FAB: 367,2           358         1         FAB: 399           359         1         FAB: 359           360         1         FAB: 413           361         1         FAB: 373           362         1         FAB: 367           363         1         FAB: 365           364         1         FAB: 351           365         1         FAB: 353           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 363           369         1         FAB: 363           370         1         FAB: 342           371         14         FAB: 349           373         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 387,2           377         2         FAB: 381,2           377         2         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     | ES: 385    |
| 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 358         1         FAB: 359           359         1         FAB: 359           360         1         FAB: 413           361         1         FAB: 373           362         1         FAB: 367           363         1         FAB: 365           364         1         FAB: 351           365         1         FAB: 363           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 363           369         1         FAB: 363           369         1         FAB: 342           370         1         FAB: 342           371         14         FAB: 349           372         1         FAB: 349           373         1         FAB: 389,28           376         2         FAB: 339,28           377         2         FAB: 381,2           378         2         FAB: 381,2           377         2         FAB: 381,3           379         1         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |            |
| 358         1         FAB: 359           359         1         FAB: 359           360         1         FAB: 413           361         1         FAB: 373           362         1         FAB: 367           363         1         FAB: 365           364         1         FAB: 351           365         1         FAB: 363           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 363           369         1         FAB: 363           369         1         FAB: 342           370         1         FAB: 342           371         14         FAB: 349           372         1         FAB: 349           373         1         FAB: 389,28           376         2         FAB: 339,28           377         2         FAB: 381,2           378         2         FAB: 381,2           377         2         FAB: 381,3           379         1         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365 <td>357</td> <td>1</td> <td>FAB: 367,2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                              | 357  | 1   | FAB: 367,2 |
| 359         1         FAB: 359           360         1         FAB: 413           361         1         FAB: 373           362         1         FAB: 367           363         1         FAB: 367           364         1         FAB: 351           365         1         FAB: 353           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 363           369         1         FAB: 353           370         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 381,2           377         2         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 1   |            |
| 360         1         FAB: 413           361         1         FAB: 373           362         1         FAB: 367           363         1         FAB: 405           364         1         FAB: 351           365         1         FAB: 355           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 309           369         1         FAB: 353           370         1         FAB: 3421           371         14         FAB: 421           371         14         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,3           379         1         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 3417           384         1         FAB: 347 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |            |
| 361         1         FAB: 373           362         1         FAB: 367           363         1         FAB: 405           364         1         FAB: 351           365         1         FAB: 355           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 309           369         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 3417           384         1         FAB: 347           385         1         FAB: 347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |            |
| 362         1         FAB: 367           363         1         FAB: 405           364         1         FAB: 351           365         1         FAB: 335           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 309           369         1         FAB: 353           370         1         FAB: 3421           371         14         FAB: 349           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,3           379         1         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 389           382         1         FAB: 389           383         1         FAB: 381           384         1         FAB: 347           385         1         FAB: 347           386         1         FAB: 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |            |
| 363         1         FAB: 405           364         1         FAB: 351           365         1         FAB: 335           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 309           369         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,3           379         1         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 389           384         1         FAB: 3417           385         1         FAB: 347           386         1         FAB: 349           389         1         FAB: 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |            |
| 364         1         FAB: 351           365         1         FAB: 335           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 309           369         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 381           384         1         FAB: 381           385         1         FAB: 347           386         1         FAB: 347           388         1         FAB: 349           389         1         FAB: 339,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |            |
| 365         1         FAB: 335           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 367,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 381           384         1         FAB: 381           385         1         FAB: 347           384         1         FAB: 347           385         1         FAB: 349           389         1         FAB: 349           389         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 363  | 1   | FAB: 405   |
| 365         1         FAB: 335           366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 367,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 381           384         1         FAB: 381           385         1         FAB: 347           384         1         FAB: 347           385         1         FAB: 349           389         1         FAB: 349           389         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 364  | 1   | FAB: 351   |
| 366         2         FA: 325,2           367         1         FAB: 363           368         1         FAB: 309           369         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 349           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 367,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 381           384         1         FAB: 381           385         1         FAB: 347           384         1         FAB: 347           385         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 347           391         1         FAB: 339,3           392         1         ES: 339,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 1   |            |
| 367         1         FAB: 363           368         1         FAB: 309           369         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 349           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 381           384         1         FAB: 381           385         1         FAB: 381           386         1         FAB: 347           388         1         FAB: 347           389         1         FAB: 347           390         1         FAB: 347           391         1         FAB: 339,3           392         1         ES: 339,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |            |
| 368         1         FAB: 309           369         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 349           372         1         FAB: 385           373         1         FAB: 389,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 381           384         1         FAB: 381           385         1         FAB: 381           386         1         FAB: 347           388         1         FAB: 349           389         1         FAB: 349           389         1         FAB: 339,3           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 355,4 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |            |
| 369         1         FAB: 353           370         1         FAB: 421           371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 367,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 377           384         1         FAB: 381           385         1         FAB: 381           386         1         FAB: 347           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 347           396         1         FAB: 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |            |
| 370         1         FAB: 421           371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 377           384         1         FAB: 381           386         1         FAB: 381           386         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 347           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 335,4           395         1         FAB: 375           397         1         ES: 355,4 <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |            |
| 371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 367,2           376         2         FAB: 381,2           377         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 377           384         1         FAB: 381           386         1         FAB: 381           386         1         FAB: 347           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 347           398         1         ES: 355,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |            |
| 371         14         FAB: 402           372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 367,2           376         2         FAB: 381,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 417           384         1         FAB: 377           385         1         FAB: 341           386         1         FAB: 341           387         1         FAB: 347           388         1         FAB: 347           390         1         FAB: 347           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 375 <td>370</td> <td>1</td> <td>FAB: 421</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370  | 1   | FAB: 421   |
| 372         1         FAB: 349           373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 417           384         1         FAB: 365           387         1         FAB: 365           387         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 335,4           399         1         ES: 355,4           399         1         ES: 355,4           399         1         ES: 355,3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 14  | FAB: 402   |
| 373         1         FAB: 385           374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 417           384         1         FAB: 377           385         1         FAB: 365           387         1         FAB: 349           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 335,4           395         1         FAB: 375           396         1         FAB: 375           397         1         ES: 355,4 <td></td> <td></td> <td>FAB: 349</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     | FAB: 349   |
| 374         2         FAB: 339,4           375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 417           384         1         FAB: 377           385         1         FAB: 381           386         1         FAB: 349           389         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 375           396         1         FAB: 375           397         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |            |
| 375         2         FAB: 339,28           376         2         FAB: 367,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 363           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 377           384         1         FAB: 377           385         1         FAB: 365           387         1         FAB: 349           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 347           396         1         FAB: 347           396         1         FAB: 375           397         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 355,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |            |
| 376         2         FAB: 367,2           377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 389           382         1         FAB: 389           383         1         FAB: 377           384         1         FAB: 377           385         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 349           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 347           396         1         FAB: 375           397         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |            |
| 377         2         FAB: 381,2           378         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 377           384         1         FAB: 377           385         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 347           396         1         FAB: 375           397         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 321           403         1         FAB: 321           404         1         FAB: 495 </td <td></td> <td>2</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 2   |            |
| 378         2         FAB: 381,3           379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 389           382         1         FAB: 389           383         1         FAB: 417           384         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 349           388         1         FAB: 349           389         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 347           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |            |
| 379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 417           384         1         FAB: 377           385         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 349           388         1         FAB: 349           389         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     | FAB: 381,2 |
| 379         1         FAB: 377           380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 387           384         1         FAB: 377           385         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 349           388         1         FAB: 349           389         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 378  | 2   | FAB: 381,3 |
| 380         1         FAB: 363           381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 381           384         1         FAB: 377           385         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 349           388         1         FAB: 349           389         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 379  | 1   |            |
| 381         1         FAB: 365           382         1         FAB: 389           383         1         FAB: 417           384         1         FAB: 377           385         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 349           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |     |            |
| 382         1         FAB: 389           383         1         FAB: 417           384         1         FAB: 377           385         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 417           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |            |
| 383         1         FAB: 417           384         1         FAB: 377           385         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 417           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 357           401         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |     |            |
| 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 385         1         FAB: 381           386         1         FAB: 365           387         1         FAB: 417           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 357           401         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 386         1         FAB: 365           387         1         FAB: 417           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 357           401         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |     |            |
| 387         1         FAB: 417           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 385  | 1   | FAB: 381   |
| 387         1         FAB: 417           388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 386  | 1   | FAB: 365   |
| 388         1         FAB: 349           389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 355,3           400         1         ES: 387           401         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 1   |            |
| 389         1         FAB: 347           390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 357           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |            |
| 390         1         FAB: 375           391         1         FAB: 339,3           392         1         ES: 339,3           393         1         ES: 339,3           394         1         ES: 339,3           395         1         FAB: 427           396         1         FAB: 375           397         1         ES: 347           398         1         ES: 355,4           399         1         ES: 357           400         1         ES: 383           402         1         FAB: 375           403         1         FAB: 321           404         1         FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |     |            |
| 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 394 1 ES: 339,3 395 1 FAB: 427 396 1 FAB: 375 397 1 ES: 347 398 1 ES: 355,4 399 1 ES: 355,3 400 1 ES: 383 400 1 ES: 383 402 1 FAB: 375 403 1 FAB: 321 404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     | ES: 339,3  |
| 394 1 ES: 339,3 395 1 FAB: 427 396 1 FAB: 375 397 1 ES: 347 398 1 ES: 355,4 399 1 ES: 355,3 400 1 ES: 383 400 1 ES: 383 402 1 FAB: 375 403 1 FAB: 321 404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 393  | 1   | ES: 339,3  |
| 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 1   |            |
| 396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 397 1 ES: 347<br>398 1 ES: 355,4<br>399 1 ES: 355,3<br>400 1 ES: 357<br>401 1 ES: 383<br>402 1 FAB: 375<br>403 1 FAB: 321<br>404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |     |            |
| 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |            |
| 399 1 ES: 355,3<br>400 1 ES: 357<br>401 1 ES: 383<br>402 1 FAB: 375<br>403 1 FAB: 321<br>404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |     |            |
| 400 1 ES: 357<br>401 1 ES: 383<br>402 1 FAB: 375<br>403 1 FAB: 321<br>404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |            |
| 401 1 ES: 383<br>402 1 FAB: 375<br>403 1 FAB: 321<br>404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 399  | 1   |            |
| 401 1 ES: 383<br>402 1 FAB: 375<br>403 1 FAB: 321<br>404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400  | 1   | ES: 357    |
| 402 1 FAB: 375<br>403 1 FAB: 321<br>404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 401  |     |            |
| 403 1 FAB: 321<br>404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |            |
| 404 1 FAB: 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |            |
| 405   1   FAB: 441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 405  | 1   | FAB: 441   |

| Ej. | Syn | Datos    |
|-----|-----|----------|
| 406 | 1   | FAB: 415 |
| 407 | 1   | FAB: 361 |
| 408 | 1   | FAB: 415 |
| 409 | 1   | FAB: 375 |
| 410 | 1   | ES: 395  |
| 411 | 1   | FAB: 369 |
| 412 | 1   | FAB: 389 |
| 413 | 1   | FAB: 331 |
| 414 | 1   | FAB: 375 |
| 415 | 1   | ES: 375  |
| 416 | 1   | FAB: 429 |
| 417 | 1   | FAB: 401 |
| 418 | 1   | FAB: 443 |
| 419 | 1   | FAB: 415 |
| 420 | 1   | FAB: 353 |

[Tabla 116]

|     |     | 10]                  |
|-----|-----|----------------------|
| Ej. | Syn | Datos                |
| 421 | 1   | FAB: 401             |
| 422 | 1   | FAB: 387             |
| 423 | 1   | FAB: 401             |
| 424 | 1   | FAB: 455             |
| 425 | 1   | FAB: 407,2           |
| 426 | 1   | FAB: 407,2           |
| 427 | 1   | FAB: 375             |
| 428 | 1   | FAB: 321             |
| 429 | 1   | FAB: 389             |
| 430 | 1   | FAB: 335             |
| 431 | 1   | FAB: 429             |
| 432 | 1   | FAB: 401             |
| 433 | 1   | FAB: 407             |
| 434 | 1   | FAB: 427             |
| 435 | 1   | FAB: 355             |
| 436 | 1   | FAB: 375             |
| 437 | 1   | FAB: 355             |
| 438 | 1   | ES: 361              |
| 439 | 1   | FAB: 375             |
| 440 | 1   | FAB: 385,4           |
| 441 | 1   | FAB: 411             |
| 442 | 1   | FAB: 357             |
| 443 | 1   | FAB: 385,3           |
| 444 | 1   | FAB: 391             |
| 445 | 1   | ES: 355              |
| 446 | 1   | ES: 355              |
| 447 | 1   | FAB: 339             |
| 448 | 1   |                      |
| 449 | 1   | FAB: 355<br>FAB: 359 |
| _   | 1   |                      |
| 450 |     | ES: 305              |
| 451 | 1   | FAB: 345             |
| 452 |     | FAB: 359             |
| 453 | 14  | FAB: 339             |
| 454 | 14  | FAB: 343             |
| 455 | 14  | FAB: 355             |
| 456 | 1   | ES: 343              |
| 457 | 14  | FAB: 343             |
| 458 | 1   | ES: 377,86           |
| 459 | 1   | FAB: 377,2           |
| 460 | 1   | ES: 363,81           |
| 461 | 1   | FAB: 363,2           |
| 462 | 1   | FAB: 345             |
| 463 | 1   | FAB: 359             |
| 464 | 1   | FAB: 339             |
|     |     |                      |

| Ej. | Syn | Datos      |
|-----|-----|------------|
| 465 | 1   | FAB: 409   |
| 466 | 1   | FAB: 359   |
| 467 | 1   | FAB: 375   |
| 468 | 1   | ES: 364,31 |
| 469 | 1   | FAB: 363,2 |
| 470 | 1   | FAB: 359   |
| 471 | 1   | FAB: 377   |
| 472 | 1   | FAB: 375   |
| 473 | 1   | FAB: 361   |
| 474 | 1   | FAB: 361   |
| 475 | 1   | ES: 377    |
| 476 | 1   | ES: 363    |
| 477 | 1   | FAB: 385,4 |
| 478 | 1   | ES: 365    |
| 479 | 1   | ES: 375    |
| 480 | 1   | ES: 377    |
| 481 | 1   | ES: 403    |
| 482 | 1   | ES: 349    |
| 483 | 1   | ES: 345    |
| 484 | 1   | ES: 397    |
| 485 | 1   | ES: 343    |
| 486 | 1   | ES: 393    |
| 487 | 1   | ES: 339    |
| 488 | 1   | ES: 399    |
| 489 | 1   | ES: 362,13 |
| 490 | 1   | FAB: 361,3 |
| 491 | 1   | ES: 360,29 |
| 492 | 1   | FAB: 359,3 |
| 493 | 1   | FAB: 355   |
| 494 | 1   | AP: 375,08 |
| 495 | 1   | FAB: 375,2 |
| 496 | 1   | ES: 367,3  |
| 497 | 1   | FAB: 326   |
| 498 | 1   | Flab: 432  |
| 499 | 1   | ES: 448    |
| 500 | 1   | FAB: 393   |

[Tabla 117]

| Ej. | Syn | Datos   |
|-----|-----|---------|
| 501 | 1   | ES: 389 |
| 502 | 14  | ES: 409 |
| 503 | 1   | ES: 409 |
| 504 | 1   | ES: 375 |
| 505 | 1   | ES: 389 |
| 506 | 1   | ES: 321 |
| 507 | 1   | ES: 335 |
| 508 | 1   | ES: 415 |
| 509 | 1   | ES: 409 |
| 510 | 1   | ES: 405 |
| 511 | 16  | ES: 407 |
| 512 | 16  | ES: 399 |
| 513 | 16  | ES: 413 |
| 514 | 16  | ES: 423 |
| 515 | 17  | ES: 331 |
| 516 | 17  | ES: 387 |
| 517 | 17  | ES387   |
| 518 | 17  | ES: 464 |
| 519 | 17  | ES: 435 |
| 520 | 17  | ES: 435 |
| 521 | 17  | ES: 401 |
| 522 | 17  | ES: 421 |
| 523 | 17  | ES: 481 |

| Ej. | Syn | Datos                |
|-----|-----|----------------------|
| 524 | 17  | ES: 387              |
| 525 | 17  | ES: 407              |
| 526 | 17  | ES: 421              |
| 527 | 16  | ES: 419              |
| 528 | 17  | ES: 371              |
| 529 | 17  | ES: 371              |
| 530 | 17  | ES: 371              |
| 531 | 17  | ES: 385              |
| 532 | 17  | ES: 399              |
| 533 | 17  | ES: 399              |
| 534 | 17  | ES: 399              |
| 535 | 17  | ES: 371              |
| 536 | 17  | ES: 385              |
| 537 | 6   | ES: 363              |
| 538 | 6   | ES: 359              |
| 539 | 6   | ES: 363              |
| 540 | 1   | FAB: 407             |
| 541 | 1   | FAB: 345             |
| 542 | 2   | FAB: 359             |
| 543 | 1   | ES: 353              |
| 544 |     |                      |
| 545 | 2   | FAB: 345<br>FAB: 331 |
| 546 | 1   | APCI: 319,08         |
|     | 1   |                      |
| 547 |     | ES: 374,08           |
| 548 | 6   | ES: 361              |
| 549 | 1   | ES: 357              |
| 550 | 1   | ES: 433              |
| 551 | 6   | ES: 365              |
| 552 | 1   | ES: 350              |
| 553 | 1   | ES: 404              |
| 554 | 1   | ES: 389              |
| 555 | 11  | FAB: 419,3           |
| 556 | 1   | FAB: 365,2           |
| 557 | 1   | ES: 343              |
| 558 | 1   | ES: 343              |
| 559 | 1   | ES: 405              |
| 560 | 1   | ES: 357              |
| 561 | 1   | ES: 361,3            |
| 562 | 1   | ES: 361,3            |
| 563 | 1   | ES: 437              |
| 564 | 1   | ES: 439              |
| 565 | 1   | ES: 443              |
| 566 | 1   | ES: 441              |
| 567 | 1   | ES: 441              |
| 568 | 1   | ES: 385,3            |
| 569 | 1   | ES: 385,2            |
| 570 | 1   | ES: 385,3            |
| 571 | 1   | ES: 385,3            |
| 572 | 1   | ES: 385,3            |
| 573 | 1   | ES: 375,3            |
| 574 | 1   | FAB: 375,2           |
| 575 | 1   | FAB: 355             |
| 576 | 1   | ES: 375,2            |
| 577 | 1   | ES: 375,2            |
| 578 | 1   | ES: 375,2            |
| 579 | 1   | ES: 375,2            |
|     |     |                      |

## [Tabla 118]

| ΙĪ  | Dathe                                                                                                                                                                                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | RMN: 0.29 - 0.42 (8H. m.). 0.85 - 0.88 (2H. m.). 2.88 - 4.41 (8H. m.). 6.24 v 6.49 (1H. s.). 7.20 - 7.74 (6H. m.). 8.43 v 8.56 (1H. m.).                                             |
| 15  | RMN: 1,03 - 2,53 (19H, m), 2,93 - 3,01 (4H, m), 3,57 - 3,72 (2H, m), 3,99 (1H, d, J = 16,2Hz), 4,13 (1H, d, J = 16,2Hz), 5,11 (1H, d, J = 9,6Hz), 7,16 - 7,23 (4H, m).               |
| 101 | RMN: 1,01 - 1,73 (11H, m), 2,86 (2H, m), 3,58 (1H, m), 3,67 (1H, m), 3,97 (1H, m), 4,12 (1H, m), 5,11 (1H, d, $J = 6,9$ Hz), 7,14 - 7,22 (4H, m).                                    |
| 102 | RMN: 1,03 - 1,72 (16H, m), 2,79 - 3,01 (4H, m), 3,59 (1H, m), 3,68 (1H, m), 3,78 (1H, m), 4,03 (1H, m), 4,16 (1H, d, J = 12,0Hz), 5,10 (1H, d, J = 6,9Hz), 7,16 - 7,22               |
|     | (4H, m).                                                                                                                                                                             |
| 103 | RMN: $1,03 - 1,83 (16H, m)$ , $2,81 - 3,01 (4H, m)$ , $3,24 (1H, m)$ , $3,60 (1H, m)$ , $3,66 (1H, m)$ , $3,97 - 4,19 (2H, m)$ , $5,10 (1H, d, J = 6,9Hz)$ , $7,15 - 7,23 (4H, m)$ . |
| 104 | RMN: 0,88 - 1,72 (19H, m), 2,10 (1H, m), 2,51 - 2,99 (4H, m), 3,42 (1H, m), 3,58 (1H, m), 3,66 (1H, m), 3,95 (1H, d, J = 11,8Hz), 4,11 (1H, s), 4,28 (1. H, d, J =                   |
|     | 11,8Hz), 5,07 (1H, m), 7,15 - 7,23 (4H, m).                                                                                                                                          |
| 105 | RMN: 1,00 - 1,76 (25H, m), 2,22 (1H, s, a), 298 (2H, m), 3,72 (2H, m), 3,94 (1H, d, J = 12,0Hz), 4,10 (1H, d, J = 12,0Hz), 5,11 (1H, d, J = 6,9Hz), 7,14 - 7,23 (4H,                 |
|     | m).                                                                                                                                                                                  |
| 106 | RMN: 1,00 - 2,03 (19H, m), 2,87 - 2,99 (4H, m), 3,34 (1H, m), 3,66 (1H, m), 4,04 (1H, d, J = 12,1Hz), 4,19 (1H, d, J = 12,1Hz), 5,10 (1 H, d, J = 7,5Hz), 7,14 - 7,23                |
|     | (4H, m).                                                                                                                                                                             |
| 107 | RMN: 0,97 - 1,66 (11H, m), 2,85 (2H, m), 3,46 (2H, m), 3,67 - 3,77 (3H, m), 4,27 (2H, m), 5,10 (1H, m), 7,13 - 7,21 (4H,M), 7,34 - 7,43 (5H, m).                                     |
| 108 | RMN: 0,97 - 1,66 (11H, m), 2,85 (2H, m), 3,46 (2H, m), 3,67 - 3,77 (3H, m), 4,27 (2H, m), 5,14 (1H, m), 7,13 - 7,21 (4H,M), 7,34 - 7,43 (5H, m).                                     |
| 109 | RMN: 1,04 - 1,70 (11H, m), 2,77 - 4,24 (7H, m), 5,12 (1H, d, J = 6,9Hz), 7,17 - 7,34 (9H, m).                                                                                        |
| 110 | RMN: 1,04 - 1,70 (11H, m), 2,77 - 4,24 (7H, m), 5,12 (1H, d, J = 6,9Hz), 7,17 - 7,34 (9H, m).                                                                                        |
| 111 | RMN: 1,02 - 1,68 (21H, m), 2,82 (2H, m), 2,98 (2H, m), 3,56 - 3,67 (2H, m), 3,97 (1H, d, J = 16,4Hz), 4,11 (1H, d, J = 16,0Hz), 5,11 (1H, d, J = 9,2Hz), 7,13 (1H, d, J = 16,0Hz)    |
|     | m), 7, 36 (1H, $m$ ), 7, 42 (1H, $m$ ), 7, 47 (1H, $d$ , $J = 1$ , 6Hz).                                                                                                             |
| 112 | RMN: 1,00 - 1,68 (21H, m), 2,85 (2H, m), 3,03 (2H, m), 3,64 (2H, m), 3,98 (1H, d, J = 16,4Hz), 4,12 (1H, d, J = 16.0Hz), 5,22 (1H, d, J = 9,2Hz), 7,41 (1H, d, J = 16.0Hz)           |
|     | 8,0Hz), 7,64 (1H, m), 7,69 (1H, m), 7,74 (1H, s).                                                                                                                                    |
| 113 | RMN: 1,02 - 1,67 (21H, m), 2,86 (2H, m), 2,98 (2H, m), 3,56 - 3,68 (2H, m), 3,98 (1H, d, J = 16,0Hz), 4,10 (1H, d, J = 16,0Hz), 5,12 (1H, d, J = 9,6Hz), 7,01 (1H, d, J = 16,0Hz)    |
|     | m),7,09 (1H, m), 7,21 (1H, m).                                                                                                                                                       |
| 114 | RMN: 1,03 - 1,64 (11H, m), 2,77 (2H, m), 3,17 (2H, m), 3,20 - 4,11 (2H, m), 4,64 - 4,70 (1H, m), 5,05 (1H, m), 5,28 - 5,34 (1H, m), 7,07 - 7,23 (14H, m).                            |
| 115 | RMN: 1,03 - 1,64 (11H, m), 2,77 (2H, m), 3,17 (2H, m), 3,20 - 4,11 (2H, m), 4,64 - 4,70 (1H, m), 5,05 (1H, m), 5,28 - 5,34 (1H, m), 7,07 - 7,23 (14H, m).                            |
| 116 | RMN: 0,99,1.68 (21H, m), 2,85 (1H, m), 2,98 (1H, m), 3,56 - 3,67 (1H, m), 3,98 (1H, d, J = 16,2Hz), 4,12 (1H, d, J = 16,2Hz), 5,12 (1H, d, J = 9,2Hz), 7,19 - 7,33                   |
|     | (3H, m).                                                                                                                                                                             |
| 117 | RMN: 1,01 - 1,72 (11H, m), 2,95 (2H, m), 3,26 (2H, m), 3,46 - 3,67 (3H, m), 4,03 (1H, m), 4,17 (1H, m), 4,75 (1H, m), 5,12 (1H, m), 7,16 - 7,22 (4H, m), 7,32 - 7,38                 |
|     | (5H, m).                                                                                                                                                                             |

## [Tabla 119]

| į   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 立   | Datos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 118 | RMN: 1,01 - 1,72 (11H, m), 2,95 (2H, m), 3,26 (2H, m), 3,46 - 3,67 (3H, m), 4,03 (1H, m), 4,17 (1H, m), 4,75 (1H, m), 5,12 (1H, m), 7,16 - 722 (4H, m), 7,32 - 7,38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | (5H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 119 | RMN: 0,98 - 1,67 (17H, m), 1,88 (1H, m), 2,05 (1H, m), 2,75 (1H, m), 2,97 (2H, m), 3,49 - 4,20 (5H, m), 5,11 (1H, d, $J = 9,2Hz$ ), 7,12 (1H, d, $J = 8,4Hz$ ), 7,36 (1H, d, $J = 8,4Hz$ ), 7,37 (1H, d, $J = 8,4Hz$ ), 7,37 (1H, d, $J = 8,4Hz$ ), 7,37 (1H, d, $J = 8,4Hz$ ), 7,38 (1H, d, $J = 8,4Hz$ ), 7,48 (1H, d, $J = 8,4Hz$ |
|     | m), 7,47 (1H, s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 120 | RMN: 1,03 - 1,68 (17H, m), 1,88 (1H, m), 2,05 (1H, m), 2,77 (1H, m), 2,97 (2H, m), 3,48 - 4,21 (5H, m), 5,11 (1H, d, $J = 9,2Hz$ ), 7,16 - 7,22 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 121 | RMN: 1,03 - 4,77 (34H, m), 5,14 y 5,18 (1H, d, J = 8,8Hz), 7,16 - 7,21 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 122 | RMN: 1,03 - 1,68 (11H, m), 2,77 - 4,25 (11H, m), 5,14 (1H, d, J = 10,0Hz), 7,01 - 7,35 (8H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 123 | RMN: 1,03 - 171 (11H, m), 2,78 - 4,25 (11H, m), 5,14 (1H, d, J = 9,2Hz), 7,20 - 7,34 (8H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 124 | RMN: 0,97 - 1,69 (20H, m), 2,77 - 4,29 (9H, m), 5,12 (1H, d, J = 9,2Hz), 7,16 - 7,22 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 125 | RMN: 0,84 - 1,70 (24H, m), 2,97 - 4,18 (9H, m), 5,12 (1H, d, J = 9,2Hz), 7,16 - 7,23 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 126 | RMN: 1,07 - 1,81 (17H, m), 2,86 - 2,98 (4H, m), 3,38 - 3,70 (2H, m), 3,85 (4H, s), 4,00 (1H, d, J = 16,0Hz), 4,14 (1H, d, J = 16,0Hz), 5,11 (1H, d, J = 9,6Hz), 7,14 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 7,23 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 127 | RMN: 0,85 - 1,70 (20H, m), 2,51 - 3,04 (3H, m), 3,56 - 4,22 (6H, m), 5,12 (1H, d, J = 9,2Hz), 7,16 - 7,22 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 128 | RMN: 1,03 - 4,77 (34H, m), 5,14 y 5,18 (1H, d, J = 8,8Hz), 7,16 - 7,21 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 129 | RMN: $10,1-1,68$ (21H, m), $2,68-2,99$ (7H, m), $3,65$ (2H, m), $4,10$ (1H, d, $J=16,2Hz$ ), $4,22$ (1H, d, $J=16,2Hz$ ), $5,11$ (1H, dm $J=9,6Hz$ ), $7,11-7,22$ (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 130 | RMN: 1,05 - 1,73 (23H, m), 2,86 - 2,99 (4H, m), 3,55 - 3,67 (2H, m), 4,01 (1H, d, J = 16,4Hz), 4,14 (1H, d, J = 16,4Hz), 5,11 (1H, d, J = 9,2Hz), 7,16 - 7,23 (4H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 132 | RMN: 1,01 - 1,71 (19H, m), 2,95 - 3,10 (4H, m), 3,54 (1H, m), 3,66 (1H, m), 4,00 (1H, d, J = 16,0Hz), 4,14 (1H, d, J = 16,0Hz), 5,11 (1 H, d, J = 9,2Hz), 7,14 - 7,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 133 | RMN: 1,01 - 1,70 (4H, m), 2,74 - 2,97 (4H, m), 3,34 - 4,19 (5H, m), 5,10 (1H, d, J = 9,6Hz), 7,16 - 7,22 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 134 | RMN: 1,01 - 1,70 (14H, m), 2,74 - 2,97 (4H, m), 3,34 - 4,19 (5H, m), 5,10 (1H, d, J = 9,6Hz), 7,16 - 7,22 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 135 | RMN: 1,01 - 2,20 (15H, m), 2,56 - 3,81 (6H, m), 4,32 (1H, d, $J = 16,0$ Hz), 4,40 (1H, m), 4,49 (1H, d, $J = 16,0$ Hz), 5,10 (1H, d, $J = 9,2$ Hz),7,15 - 7,23 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 136 | RMN: 1,02 - 1,70 (11H, m), 2,95 - 3,77 (9H, m), 4,05 (1H, d, J = 16,2Hz), 4,17 (1H, d, J = 16,2Hz), 5,11 (1H, d, J = 9,2Hz), 7,14 - 7,22 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 137 | RMN: $1,03 - 1,60 (11H, m)$ , $1,69 (1H, m)$ , $1,85 (1H, m)$ , $2,96 - 4,47 (11H, m)$ , $5,10 (1H, d, J = 9,6Hz)$ , $7,14 - 7,22 (4H, m)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 138 | RMN: 0,31 (2H, m), 0,96 - 1,70 (23H, m), 2,49 - 4,19 (9H, m), 5,11 (1H, m), 7,12 - 7,22 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 139 | RMN: 1,06 - 1,69 (21H, m), 2,83 - 2,96 (4H, m), 3,19 (3H, s), 3,49 - 4,20 (.12H, m), 5,11 (1H, d, J = 9,2Hz), 7,14 - 7,21 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 140 | RMN: 1,03 - 1,70 (15H, m), 2,86 - 2,99 (4H, m), 3,34 - 3,72 (6H, m), 3,98 (1H, d, J = 16,4Hz), 4,11 (1H, d, J = 16,4Hz), 5,11 (1H, d, J = 9,2Hz)m7,14 - 7,22 (4H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|         | [Tabla 120]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u></u> | Datos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 141     | RMN: 0,99 - 1,97 (25H, m), 2,84 - 3,89 (11H, m), 5,18 (1H, d, J = 9,6Hz), 7,10 - 7,18 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 145     | RMN: 1,00 - 1,67 (17H, m), 2,84 - 2,97 (4H, m), 3,24 - 3,67 (6H, m), 5,13 (1H, d, J = 9,6Hz), 7,11 - 7,18 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 146     | RMN: 1,03 - 1,67 (11H, m), 2,83 - 3,97 (11H, m), 4,02 (1H, d, $J = 16,2Hz$ ), 4,14 (1H, d, $J = 16,2Hz$ ), 5,11 (1H, d, $J = 9,6Hz$ ), 7,16 - 7,22 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 147     | RMN: 0,87 (3H, t, J = 7,2Hz), 1,04 - 1,70 (10H, m), 2,78 (1H, m), 2,94 - 3,00 (4H, m), 3,56 - 4,02 (4H, m), 4,04 (1H, d, J = 16,0Hz), 4,17 (1H, d, J = 16,0Hz), 5,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | (1H, d, J = 9,6Hz), 7,16 - 7,23 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 152     | RMN: 0,86 (3H, t, J = 7,4Hz), 1,00 - 1,70 (13H, m), 2,50 (1H, m), 2,92 - 3,71 (6H, m), 4,01 (1H, d, J = 16,0Hz), 4,15 (1H, d, J = 16,0Hz), 5,11 (1H, d, J = 9,2Hz),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 7,14 - 7,22 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 153     | RMN: 1,00 - 1,67 (14H, m), 2,50 - 3,75 (9H, m), 5,12 (1H, d, J = 9,2Hz), 6,53 (2H, s), 7,14 - 7,19 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 156     | RMN: 1,07 - 1,96 (15H, m), 2,85 - 5,19 (13H, m), 7,10 - 7,47 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 157     | RMN: 1,03 - 1,71 (11H, m), 2,85 - 3,05 (4H, m), 3,25 - 3,37 (5H, m), 3,57 - 3,68 (2H, m), 4,01 (1H, m), 4,08 (1H, d, J = 16,0Hz), 4,19 (1H, d, J = 16,0Hz), 5,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | (1H, d, J = 9,2Hz),5,58 (1H, m), 7,16 - 7,22 (4H, m), 8,75 (1H, a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 158     | RMN: 1,01 - 1,70 (11H, m), 2,68 - 3,00 (4H, m), 3,20 (1H, m), 3,40 (1H, m), 3,54 (1H, m), 3,66 (1H, m), 4,05 (1H, d, J = 16,2Hz), 4,22 (1H, d, J = 16,2Hz), 5,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | (1H, d, J = 9, 2Hz), 6, 69 (2H, d, J = 8, 0Hz), 7, 03 (2H, d, J = 8, 4Hz), 7, 16 - 7, 23 (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 159     | RMN: $1,24 - 1,56 (10H, m)$ , $2,78 - 3,04 (4H, m)$ , $3,55 (1H, m)$ , $3,64 (1H, m)$ , $4,05 (1H, d, J = 16,3Hz)$ , $4,16 (1H, d, J = 16,3Hz)$ , $6,65 (1H, s)$ , $7,13 - 7,28 (8H, m)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 160     | RMN: 1,09 (3H, m), 2,74 - 2,82 (2H, m), 2,90 - 3,01 (2H, m), 3,52 (1H, m), 3,65 (1H, m), 3,96 (1H, m), 4,09 (1H, d, $J = 16,0$ Hz), 4,18 (1H, m), 6,65 (1H, s), 7,13 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 7,28 (8H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 161     | RMN: $2,84$ (1H, m), $6,98$ (1H, m), $3,27 - 3,37$ (5H, m), $3,98$ (1H, m), $4,10$ (1H, d, $J = 16,1$ Hz), $4,19$ (1H, m), $6,65$ (1H, s), $7,13 - 7,28$ (4H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 163     | RMN: 1,15 - 1,55 (10H, m), 2,67 - 3,04 (4H, m), 3,63 (2H, m), 4,04 (1H, d, J = 16Hz), 4,20 (1H, d, J = 16Hz), 6,66 (1H, s), 7,26 - 7,37 (4H, m), 7,43 (2H, m), 7,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | (2H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 164     | RMN: 1,10 (6H, d, $J = 6Hz$ ), 2,67 - 3,03 (4H, m), 3,62 (2H, m), 3,96 (1H, m), 4,09 (1H, d, $J = 16,8Hz$ ), 4,23 (1H, m), 6,66 (1H, s), 7,27 - 7,37 (4H, m), 7,41 (2H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | m), 7,80(2H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 165     | RMN: 1,23 - 1,57 (10H, m), 2,72 - 3,02 (4H, m), 3,56 (1H, m), 3,69 (1H, m), 3,92 (1H, d, $J = 16,4$ Hz), 4,06 (1H, d, $J = 16,4$ Hz), 6,73 (1H, s), 7,24 - 7,31 (4H, m), 1,00 (1H, d, $J = 16,4$ Hz), 6,73 (1H, s), 7,24 - 7,31 (4H, m), 1,00 (1H, |
|         | 7,47 (1H, m), 7,55 - 7,58 (2H, m), 7,64 (1H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 166     | RMN: 1,10 (6H, m), 2,73 - 3,03 (4H, m), 3,58 (1H, m), 3,66 (1H, m), 3,97 (1H, m), 4,11 (1H, d, J16,4Hz), 4,24 (1H, m), 6,72 (1 H, s), 7,25 - 7,30 (4H, m), 7,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | (1H, m), 7,55 - 7,59 (2H, m), 7,65 (1H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 167     | RMN: $1,22 - 1,56$ (10H, m), $2,96 - 3,12$ (4H, m), $3,54$ (1H, m), $3,85$ (1H, m), $4,06$ (1H, d, $J = 16,6$ Hz), $4,13$ (1H, d, $J = 16,6$ Hz), $6,82$ (1 H, s), $7,14 - 7,31$ (5H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 7,50 - 7,60 (2H, m), 7,80 (1H, m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# [Tabla 121]

| ίĪ  | Datos                                                                                                                                                                                                                                                                            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| į į | DMN: 3 80 (14 m) 3 05 3 00 (24 m) 3 05 (14 m) 3 05 (14 m) 3 05 (14 m) 3 05 (14 m) 4 05 4 10 (24 m) 6 80 (24 m) 7 34 7 34                                                                                                                                                         |
| -   | NMM. 2,50 (TH, III), 2,50 - 2,50 (ZH, III), 3,07 (TH, III), 3,50 (TH, III), 3,50 (TH, III), 3,50 - 4, 19 (ZH, III), 3,00 (ZH, III), 7,14 - 7,51 (4H, III), 7,50 (TH, III), 7,50 (TH, III), 7,79 (TH, III), 0,00 (ZH, IIII), 7,14 - 7,51 (ZH, IIII), 3,50 (ZH, IIII), 7,14 - 7,51 |
| 172 | RMN: 1,08 (6H, d, J = 6,4Hz), 2,74 - 4,21 (9H, m), 6,73 (1H, s), 7,11 - 7,34 (7H, m).                                                                                                                                                                                            |
| 173 | RMN: 1,09 - 1,57 (10H, m), 2,81 - 3,05 (4H, m), 3,67 - 3,72 (2H, m), 4,07 (1H, d, $J = 16,2$ Hz), 4,15 (1H, d, $J = 16,2$ Hz), 6,73 (1H, s), 7,11 - 7,34 (7H, m).                                                                                                                |
| 174 | RMN: 1,07 (6H, d, J = 76,4Hz), 2,72 (1H, m), 2,87 (1H, m), 2,96 - 312 (2H, m), 3,54 (1H, m), 3,84 - 3,94 (2H, m), 4,04 - 4,19 (2H, m), 6,80 - 6,83 (2H, m), 7,14 -                                                                                                               |
|     | 7,31 (4H, m), 7,50 - 7,60 (2H, m), 7,80 (1H, d, J = 7,6Hz).                                                                                                                                                                                                                      |
| 175 | RMN: 2,83 - 3,07 (4H, m), 3,24 - 3,38 (5H, m), 3,64 - 3,72 (2H, m), 396 (1H, m), 4,11 - 4,21 (2H, m), 6,74 (1H, s), 7,11 - 7,34 (7H, m).                                                                                                                                         |
| 176 | RMN: 0,98 - 1,70 (14H, m), 2,72 - 2,99 (4H, m), 3,61 (2H, m), 3,96 (1H, m), 4,01 (1H, d, J = 16Hz), 4,13 (1H, d, J = 16Hz), 5,0 1 (1H, d, J = 9,6Hz), 7,14 (1H, d, J                                                                                                             |
|     | = 8,4Hz), 7,35 - 7,47 (2H, m).                                                                                                                                                                                                                                                   |
| 177 | RMN: 1,01,70 (11H, m), 2,82 - 3,04 (4H, m), 3,24 - 3,36 (5H, m), 3,61 (2H, m), 3,98 (1H, m), 4,02 (1H, d, J = 16Hz), 4,14 (1H, d, J = 16Hz), 5,11 (1H, d, J =                                                                                                                    |
|     | 9,2Hz), 7,14 (1H, d, J = 8,4Hz), 7,35 - 7,47 (2H, m).                                                                                                                                                                                                                            |
| 180 | RMN: 1,97 - 1,68 (11H, m), 2,86 (2H, m), 2,99 (2H, m), 3,26 - 3,41 (5H, m), 3,62 (1H, m), 3,73 (1H, m), 3,98 (1H, m), 4,09 (1H, d, J = 16,2Hz), 4,18 (1H, d, J =                                                                                                                 |
|     | 16,2 Hz), 5,13 (1H, d, J = 9,6Hz), 7,12 - 7,23 (2H, m), 7,54 (1H, d, J = 8Hz).                                                                                                                                                                                                   |
| 181 | RMN: 0,99 - 1,68 (14H, m), 2,72 - 3,00 (4H, m), 3,62 (1H, m), 3,74 (1H, m), 3,95 (1H, m), 4,08 (1H, d, J = 16Hz), 4,17 (1H, d, J = 16Hz), 5,13 (1H, d, J = 9,6Hz),                                                                                                               |
|     | 7,12 - 7,23 (2H, m), 7,54 (1H, m).                                                                                                                                                                                                                                               |
| 182 | RMN: 0,99 - 1,67 (14H, m), 2,72 - 2,95 (4H, m), 3,61 (2H, m), 3,95 (1H, m), 4,01 (1H, d, J = 16Hz), 4,13 (1H, d, J = 16Hz), 5,14 (1H, d, J = 9,6Hz), 7,19 (1H, m),                                                                                                               |
|     | 7,39 - 7,43 (2H, m).                                                                                                                                                                                                                                                             |
| 183 | RMN: 1,0.95 - 1,68 (11H, m), 2,80 - 3,04 (4H, m), 3,24 - 3,36 (5H, m), 3,61 (2H, m), 3,98 (1H, m), 4,02 (1H, d, J = 16Hz), 4,14 (1H, d, J = 16Hz), 5,14 (1H, d, J =                                                                                                              |
|     | 9,6Hz), 7,19 (1H, m), 7,38 - 7,42 (2H, m).                                                                                                                                                                                                                                       |
| 204 | RMN: 1,03 - 1,66 (15H, m), 2,87 - 2,95 (4H, m), 3,54 - 3,80 (8H, m), 5,13 (1H, d, J = 9,2Hz), 6,56 (2H, s), 7,12 - 7,19 (4H, m).                                                                                                                                                 |
| 205 | RMN: 1,21 - 1,54 (10H, m), 2,80 - 3,07 (4H, m), 3,59 (1H, m), 3,78 (1H, m), 4,10 (2H, m), 6,76 (1H, s), 7,06 - 7,32 (7H, m), 7,49 (1H, d, $J = 7,2Hz$ ).                                                                                                                         |
| 206 | RMN: 1,08 (3H, d, J = 6,4Hz), 2,70 - 3,07 (4H, m), 3,58 (1H, m), 3,79 (1H, m), 3,94 (1H, m), 4,14 (2H, m), 6,76 (1H, m), 7,04 - 7,32 (7H, m), 7,49 (1H, d, J =                                                                                                                   |
|     |                                                                                                                                                                                                                                                                                  |
| 207 | RMN: $2.81 - 3.04$ (4H, m), $3.24 - 3.35$ (5H, m), $3.57$ (1H, m), $3.78$ (1H, m), $3.95$ (1H, m), $4.15$ (2H, m), $6.76$ (1H, m), $7.05 - 7.32$ (7H, m), $7.49$ (1H, d, J = 8Hz).                                                                                               |
| 208 | RMN: 1,23 - 1,54 (10H, m), 2,38 y 2,48 (3H, s), 2,81 - 4,41 (8H, m), 6,15 y 6,43 (1H, s), 6,83 y 7,10 (1H, d, $J = 7,6$ Hz), 7,18 - 7,32 (5H, m), 7,62 - 7,68 (1H, m).                                                                                                           |
| 211 | RMN: 1,10 (3H, d, $J = 7$ ,2Hz), $2$ ,74 - 2,99 (4H, m), $3$ ,59 - 3,64 (4H, m), $3$ ,97 (1H, m), 4,10 (1H, d, $J = 16$ ,4Hz), 4,23 (1H, m), 6,63 (1H, s), 7,00 - 7,38 (4H, m).                                                                                                  |

# [Tabla 122]

| 峃   | Datos                                                                                                                                                                               |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 212 | RMN: 1,240 - 1,58 (10H, m), $2,77 - 3,02 (4H, m)$ , $3,63 (2H, m)$ , $4,06 (1H, d, J = 16Hz)$ , $4,22 (1H, d, J = 16Hz)$ , $6,63 (1H, s)$ , $7,01 - 7,38 (8H, m)$ .                 |
| 220 | RMN: 1,24 - 1,58 (10H, m), 2,77 - 3,05 (4H, m), 3,57 - 3,66 (2H, m), 4,06 (1H, d, J = 16,2Hz), 4,22 (1H, d, J = 16,2Hz), 6,63 (1H, s), 7,13 - 7,41 (8H, m).                         |
| 221 | RMN: .10 (3H, d, $J = 6.4$ Hz), $2.74 - 3.04$ (4H, m), $3.56 - 3.66$ (2H, m), $3.97$ (1H, m), $4.10$ (1H, d, $J = 16.4$ Hz), $4.23$ (1H, m), $6.63$ (1H, s), $7.11 - 7.39$ (8H, m). |
| 222 | RMN: $2,78 - 3,09$ (4H, m), $3,27 - 3,37$ (7H, m), $3,58 - 3,63$ (2H, m), $3,99$ (1H, m), $4,10$ (1H, d, $J = 16,4$ Hz), $4,23$ (1H, m), $6,63$ (1H, s), $699 - 7,37$ (8H, m).      |
| 223 | RMN: $2,78 - 3,09$ (4H, m), $3,27 - 3,37$ (7H, m), $3,56 - 3,66$ (2H, m), $3,99$ (1H, m), $4,11$ (1H, d, $J = 16,4$ Hz), $4,24$ (1H, m), $6,64$ (1H, s), $7,11 - 7,39$ (8H, m).     |
| 224 | RMN: 0,79 - 1,67 (21H, m), 2,82 - 2,99 (4H, m), 3,58 - 3,69 (2H, m), 3,99 (1H, d, J = 16,4Hz), 4,12 (1H, d, J = 16,4Hz), 5,32 (1H, d, J = 9,6Hz), 7,15 - 7,23 (4H,                  |
|     | m).                                                                                                                                                                                 |
| 226 | RMN: 0,81 - 0,89 (6H, m), 1,09 (3H, m), 1,24 - 1,41 (1H, m), 1,67 (1H, m), 2,72 - 2,99 (4H, m), 3,60 - 3,66 (2H, m), 3,95 (1H, m), 4,02 (1H, d, J = 16,2Hz), 4,14                   |
|     | (1H, d, J = 16,2Hz), 5,32 (1H, d, J = 8,8Hz),7,17 - 7,23 (4H, m).                                                                                                                   |
| 227 | RMN: 0,80 - 0,88 (6H, m), 1,24 - 1,41 (4H, m), 1,66 (1H, m), 2,79 - 3,02 (4H, m), 3,24 - 3,35 (7H, m), 3,95 (1H, m), 3,99 (1H, d, J = 16,4Hz), 4,10 (1H, d, J =                     |
|     | 16,4Hz), 5,32 (1H, d, J = 8,8Hz),7,15 - 7,23 (4H, m).                                                                                                                               |
| 231 | RMN: 1,23 - 1,54 (10H, m), 2,81 - 3,01 (4H, m), 3,33 - 4,46 (4H, m), 6,22 y 6,50 (1H, s), 7,13 - 8,58 (8H, m).                                                                      |
| 232 | RMN: 1,07 - 1,10 (3H, m), 2,75 - 3,02 (4H, m), 3,69 (1H, m), 3,92 - 3,98 (2H, m), 4,12 (1H, m), 4,23 (1H, m), 6,43 (1H, s), 7,20 - 7,34 (4H, m), 7,52 (1H, d, J =                   |
|     | 7,6Hz), 7,60 (1H, m), 7,74 (1H, m).                                                                                                                                                 |
| 233 | RMN: 1,24 - 155 (10H, m), 2,79 - 3,01 (4H, m), 3,68 (1H, m), 3,94 (1H, m), 4,06 (1H, d, $J = 16,2Hz$ ), 4,18 (1H, d, $J = 16,2Hz$ ), 6,43 (1 H, s), 7,20 - 7,34 (4H, m),            |
|     | 7,51 (1H, d, J = 8Hz), 7,59 (1H, d, J = 7,6Hz), 7,74 (1H, m).                                                                                                                       |
| 234 | RMN: 1,08 - 1,11 (3H, m), 2,75 - 3,02 (4H, m), 3,69 (1H, m), 3,92 - 3,98 (2H, m), 4,12 (1H, d, J = 16Hz), 4,23 (1H, m), 6,44 (1H, s), 7,20 - 7,40 (4H, m), 7,56 (m,                 |
|     | d, J = 7,6Hz), 7,83 - 7,87 (2H, m).                                                                                                                                                 |
| 235 | RMN: 1,23 - 1,55 (10H, m), 2,82 - 3,02 (4H, m), 3,68 (10H, m), 3,95 (1H, m), 4,09 (1H, d, $J = 16,6Hz$ ), 4,22 (1H, d, $J = 16,6Hz$ ), 6,45 (1H, s), 7,21 - 7,40 (5H, m),           |
|     | 7,57 (1H, d, J = 7,2Hz), 7,85 (1H, m).                                                                                                                                              |
| 236 | RMN: 1,08 (3H, d, $J = 6,4$ Hz), 2,73 - 3,07 (4H, m), 3,58 (1H, m), 3,73 (1H, m), 3,95 (1H, m), 4,13 (2H, m), 6,82 y 6,83 (1H, s), 7,01 - 7,46 (8H, m).                             |
| 237 | RMN: 2,81 - 3,07 (4H, m), 3,23 - 3,35 (5H, m), 3,58 (1H, m), 3,72 (1H, m), 3,97 (1H, m), 4,14 (2H, m), 6,82 y 6,83 (1H, s), 7,00 - 7,46 (8H, m).                                    |
| 238 | RMN: 1,08 - 1,11 (3H, m), 2,76 - 3,00 (4H, m), 3,68 - 4,35 (8H, m), 6,23 - 7,33 (9H, m).                                                                                            |
| 239 | RMN: 2,86 - 3,10 (4H, m), 3,26 - 3,35 (5H, m), 3,35 - 4,33 (8H, m), 6,23 - 7,32 (8H, m).                                                                                            |
| 240 | RMN: 1,09 (3H, d, J = 6,4Hz), 2,68 - 3,06 (4H, m), 3,60 (1H, m), 3,87 - 3,95 (2H, m), 4,06 - 4,21 (2H, m), 6,63 y 6,65 (1H, s), 6,79 (1H, m), 7,02 (1H, m), 7,18 (1                 |
|     | H, m), 7,25 - 7,39 (3H, m), 7,89 (1H, m).                                                                                                                                           |
|     |                                                                                                                                                                                     |

## [Tabla 124

| 峃   | Datos                                                                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 311 | RMN: 1,08 - 1,10 (3H, m), 2,73 - 4,35 (12H, m), 6,23 y 6,74 (1H, s), 6,64 - 733 (8H, m).                                                                            |
| 312 | RMN: 2,88 - 4,35 (11H, m), 4,93 - 4,95 (1H, m), 6,22 y 6,75 (1H, s), 6,64 - 7,38 (13H, m).                                                                          |
| 325 | RMN: 1,40 - 1,54 (10H, m), 2,84 - 2,99 (3H, m), 3,62 - 3,76 (1H, m), 3,80 y 3,93 (3H, s), 4,06 - 4,35 (4H, m), 6,23 y 6,73 (1H, s), 6,66 - 7,33 (8H, m).            |
| 327 | RMN: 1,03 - 1,11 (3H, m), 2,72 - 3,21 (8H, m), 3,74 - 4,30 (6H, m), 6,33 y 6,76 (1H, s), 6,86 - 7,30 (8H, m).                                                       |
| 328 | RMN: 2,87 - 4,35 (11H, m), 4,93 (1H, m), 6,26 y 6,74 (1H, s), 6,64 - 7,38 (13H, m).                                                                                 |
| 329 | RMN: 1,08 - 1,11 (3H, m), 2,74 - 3,01 (4H, m), 3,63 - 4,34 (8H, m), 6,25 y 6,73 (1H, s), 6,63 - 7,32 (8H, m).                                                       |
| 330 | RMN: 1,47 - 1,93 (6H, m), 2,87 - 3,79 (4H, m), 3,79 y 3,93 (3H, s), 4,01 - 4,36 (4H, m), 6,29 y 6,74 (1H, s), 6,65 - 7,33 (8H, m).                                  |
| 331 | RMN: 1,45 - 2,00 (6H, m), 2,88 - 3,76 (4H, m), 3,79 y 3,92 (3H, s), 3,96 - 4,35 (4H, m), 6,29 y 6,74 (1H, s), 6,69 - 7,32 (8H, m).                                  |
| 337 | RMN: 2,80 - 3,21 (4H, m), 3,24 y 3,31 (3H, s), 3,54 - 5,58 (8H, m), 7,19 - 7,37 (9H, m).                                                                            |
| 346 | RMN: 1,23 - 1,55 (10H, m), 2,79 - 3,22 (4H, m), 3,25 y 3,32 (3H, s), 3,55 - 4,52 (6H, m), 5,06 y 5,58 (1H, m), 7,18 - 7,32 (4H, m).                                 |
| 349 | RMN: 1,08 - 1,10 (3H, m), 2,72 - 4,35 (12H, m), 6,23 y 6,74 (1H, s), 6,64 - 7,33 (8H, m).                                                                           |
| 354 | RMN: 1,35 - 4,56 (24H, m), 5,15 y 5,60 (1H, m), 7,20 - 7,33 (4H, m).                                                                                                |
| 358 | RMN: 1,44 - 1,47 (2H, m), 1,64 - 1,79 (10H, m), 2,17 - 2,20 (2H, m), 2,81 - 4,52 (13H, m), 5,06 y 5,58 (1H, m), 7,18 - 7,31 (4H, m).                                |
| 328 | RMN: 0,30 - 0,43 (8H, m), 0,85 - 0,88 (2H, m), 2,82 - 4,52 (13H, m), 5,08 y 5,59 (1H, m), 7,19 - 7,31 (4H, m).                                                      |
| 360 | RMN: 1,44 - 2,20 (1,4H, m), 2,79 - 4,43 (15H, m), 4,82 y 5,54 (1H, m), 7,16 - 7,22 (4H, m).                                                                         |
| 361 | RMN: 0,29 - 0,43 (8H, m), 0,85 - 0,90 (2H, m), 1,90 - 4,42 (15H, m), 4,83 y 5,53 (1H, m), 7,16 - 7,22 (4H, m).                                                      |
| 370 | RMN: 0,28 - 0,42 (8H, m), 0,85 - 0,88 (2H, m), 2,89 - 3,16 (4H, m), 3,63 - 4,35 (7H, m), 6,24 y 6,74 (1H, s), 6,69 - 7,33 (8H, m).                                  |
| 371 | RMN: 0,77 - 0,82 (6H, m), 1,41 - 1,48 (4H, m), 2,78 - 3,01 (4H, m), 5,47 y 3,65 (1H, m), 3,97 - 4,39 (3H, m), 6,25 y 6,48 (1H, s), 7,21 - 7,73 (6H, m), 8,43 y 8,55 |
|     | (1H, m).                                                                                                                                                            |
| 372 | RMN: 0,78 - 0,83 (6H, m), 1,44 - 1,50 (4H, m), 1,89 - 2,06 (2H, m), 2,79 - 4,42 (13H, m), 4,83 y 5,53 (1H, m), 7,16 - 7,22 (4H, m).                                 |
| 373 | RMN: 1,45 - 4,85 (25H, m), 5,26 y 5,57 (1H, m), 7,21 - 7,32 (4H, m).                                                                                                |
| 379 | RMN: 0,30 - 0,43 (8H, m), 0,87 - 0,90 (2H, m), 2,77 - 4,52 (13H, m), 5,07 y 5,58 (1H, m), 7,04 - 7,11 (2H, m), 7,34 - 7,40 (1H, m).                                 |
| 380 | RMN: 0,86 - 0,94 (12H, m), 1,84 - 1,88 (2H, m), 2,80 - 4,52 (13H, m), 5,05 y 5,58 (1H, m), 7,18 - 7,32 (4H, m).                                                     |
| 381 | RMN: 1,24 - 1,55 (10H, m), 2,83 - 4,51 (13H, m), 5,07 y 5,57 (1H, m), 7,05 - 7,08 (2H, m), 7,34 - 7,39 (1H, m).                                                     |
| 383 | RMN: 1,44 - 1,77 (12H, m), 2,17 - 2,20 (2H, m), 2,78 - 4,52 (13H, m), 5,07 y 5,58 (1H, m), 7,05 - 7,09 (2H, m), 7,35 - 7,38 (1H, m).                                |

### Fabla 125

Además, las estructuras de otros compuestos de la presente invención se muestran en las Tablas 126 y 127. Es posible producir fácilmente estos compuestos de acuerdo con los métodos mencionados anteriormente descritos en los procesos de producción y en los ejemplos y métodos evidentes para un experto en la arte, o modificaciones de los mismos.

Adicionalmente, en las Tablas, Nº representa un número del compuesto.

|    | [Tabla 127]                   |  |  |
|----|-------------------------------|--|--|
| N° | Estructura                    |  |  |
| 15 | QMe                           |  |  |
|    | Et NOH OH                     |  |  |
| 16 | Et NOH NOH MeO NHO            |  |  |
| 17 | MeO OH OH CH <sub>3</sub> O H |  |  |
| 18 | MeO NOH OH                    |  |  |
| 19 | Et N N P OH                   |  |  |
| 20 | Et N N F OH                   |  |  |
| 21 | Et N OH CF <sub>3</sub> O H   |  |  |
| 22 | N OH OH                       |  |  |
| 23 | O H OH CH <sub>3</sub>        |  |  |
| 24 | Et NON CH <sub>3</sub>        |  |  |
| 25 | Et N N CH <sub>3</sub>        |  |  |

10

5

Los resultados del análisis de varios compuestos de los Ejemplos de Producción mediante cromatografía en columna quiral se muestran en las Tablas 128 y 129.

Además, en las Tablas, TR representa un tiempo de retención (min) y PO representa una pureza óptica (% ee).

### ES 2 537 803 T3

[Tabla 128]

|      | [Tabla 128]                                                                                                                                                               |       | ,     |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Rex  | Condición                                                                                                                                                                 | TR    | PO    |
| 20   | Columna: DAICEL CHIRALPAK AD-RH 4,6 x 150 mm Detección: UV: 230 nm Caudal: 0,5 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 60/40 Temperatura de la columna: 40 °C | 18,22 | >99,5 |
| 21   | Columna: DAICEL CHRALPAK AS-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 50/50 Temperatura de la columna: 40 °C       | 24,11 | >99,5 |
| 22   | Columna: DAICEL CHRALCEL OJ-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 70/30 Temperatura de la columna: 40 °C       | 9,24  | 99,20 |
| 81   | Columna: DAICEL CHRALPAK AS-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 45/55 Temperatura de la columna: 40 °C       | 15,95 | >99   |
| 82   | Columna: DAICEL CHRALCEL OJ-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 70/30 Temperatura de la columna: 40 °C       | 43,39 | 92    |
| 83   | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 20/80 Temperatura de la columna: 40 °C       | 52,48 | 98    |
| 513  | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 20/80 Temperatura de la columna: 40 °C       | 60,99 | 97,40 |
| 547A | Columna: DAICEL CHIRALPAK AD-RH 4,6x150mm Detección: UV: 230 nm Caudal: 0,5 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 60/40 Temperatura de la columna: 40 °C    | 15    | 95    |

[Tabla 129]

| [   |                                                    |       |       |  |  |
|-----|----------------------------------------------------|-------|-------|--|--|
| Rex | Condición                                          | TR    | PO    |  |  |
| 566 | Columna: DAICEL CHRALCEL OJ-RH 4,6x150mm           | 11,28 | 98,30 |  |  |
|     | Detección: UV210 nm                                |       |       |  |  |
|     | Caudal: 0,8 ml/min                                 |       |       |  |  |
|     | Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 70/30 |       |       |  |  |
|     | Temperatura de la columna: 40 °C                   |       |       |  |  |
|     | -                                                  |       |       |  |  |
| 1   |                                                    | ĺ     |       |  |  |

| Rex | Condición                                                                                                                                                           | TR    | PO    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 567 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV230 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 45/55 Temperatura de la columna: 40 °C | 28,60 | >99   |
| 570 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 60/40 Temperatura de la columna: 40 °C | 36,76 | >99   |
| 572 | Columna: DAICEL CHRALPAK AS-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 50/50 Temperatura de la columna: 40 °C | 20,86 | >99,5 |
| 575 | Columna: DAICEL CHRALPAK AS-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 45/55 Temperatura de la columna: 40 °C | 17,02 | >99   |
| 576 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV230 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 45/55 Temperatura de la columna: 40 °C | 22,72 | >99   |
| 650 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 65/35 Temperatura de la columna: 40 °C | 25,06 | >99   |
| 652 | Columna: DAICEL CHRALCEL OD-RH 4,6x150mm Detección: UV210 nm Caudal: 0,8 ml/min Eluyente: Tampón fosfato 20 mM (pH 9)/MeCN = 65/35 Temperatura de la columna: 40 °C | 26,7  | >99   |

### Aplicabilidad industrial

El compuesto de la presente invención se puede usar como composición farmacéutica para prevenir y/o tratar varios dolores incluidos el dolor neuropático y el dolor nociceptivo, cefaleas tales como migrañas y cefaleas en racimo, enfermedades del sistema nervioso central tales como ansiedad, depresión, Epilepsia, ictus cerebral y síndrome de las piernas inquietas, síntomas abdominales tales como dolor abdominal y distensión abdominal, anomalías de las heces tales como diarrea y estreñimiento, enfermedades del sistema digestivo tales como síndrome del intestino irritable, enfermedades del sistema urinario tales como vejiga hiperactiva y cistitis intersticial etc.

10

#### **REIVINDICACIONES**

1. Un compuesto seleccionado del grupo constituido por:

- 5 1-[({2-[(1S)-1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, (2S)-1-({2-[(1S)-1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)-3-metoxi propan-2-ol, 1-({[2-(1 (1S)-isopropil-6-metoxi-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, (2R)-1-({2-[(1S)-8-metoxi-1-fenil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)propan-2-ol, 1-[({2-[(1R)-7-etil-1-(metoximetil)-3,4-dihidroisoquinolin-2 (1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 10 (2S)-1-metoxi-3-[(2-oxo-2-{1 (1S)-[2-(trifluorometil)bencil]-3,4-dihidroisoquinolin-2(1H)-il}etil)amino]propan-2-ol, 1-({[3-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-3-oxo propil]amino}metil)ciclohexanol, (2R)-1-{[2-(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}propan-2-ol, (2R)-1-[(2-oxo-2-{1-[2-(trifluorometil)fenil]-3,4-dihidroisoquinolin-2(1H)-il}etil)amino]propan-2-ol, (2S)-1-{[2-(1-ciclohexil-7-metil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}-3-metoxi propan-2-ol. (2R)-1-({2-oxo-2-[(1S)-1-fenil-3,4-dihidroisoquinolin-2(1H)-il]etil}amino)propan-2-ol, 15 1-[({2-[7-fluoro-1-(metoximetil)-3,4-dihidroisoguinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 1-[((2-[7-etil-1-(metoximetil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 1-({[2-(1-isopropil-6-metoxi-3,4-dihidroisoguinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol. 1-[({2-[5-metoxi-1-(metoximetil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 1-[({2-[1-(metoximetil)-6-metil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 20 (1S,2S)-2-{[2-(1-ciclohexil-3,4-dihidroisaguinolin-2(1H)-il)-2-oxoetil]amino}-1-fenil propano-1,3-diol, 1-({(2R)-2-[(1-ciclohexil-3,4-dihidroisoquinolin-2(1H)-il)carbonil]pirrolidin-1-il}metil)ciclohexanol, (2R)-1-{[2-(1-ciclohexil-1-metil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}-propan-2-ol, 1-({[2-(3',4'-dihidro-2'H-espiro [ciclohexano-1,1'-isoquinolin]-2'-il)-2-oxoetil]amino}metil)ciclohexanol, (2R)-1-[(2-oxo-2-{1-[2-(trifluorometoxi)fenil]-3,4-dihidroisoquinolin-2(1H)-il}etil)amino]propan-2-ol, 25 (2R)-1-{[2-(1-ciclohexil-7-etil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}-propan-2-ol, 1-({[2-(6-fluoro-1-isopropil-3,4-dihidroisoguinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, 1,1-diciclopropil-2-({2-[6-fluoro-1-(metoximetil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)etanol, 1-({[2-(1-terc-butil-8-metoxi-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, 30 1-({[2-(1-isopropil-6-metil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, 1-([[2-(6-fluoro-1-propil-3,4-dihidroisoquinolin-2(1H)-il)-2-oxoetil]amino}metil)ciclohexanol, 1-[({2-[1-(metoximetil)-7-metil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 1-({|2-(5-fluoro-1-propil-3,4-dihidroisoguinolin-2(H)-il)-2-oxoetillamino}metil)ciclohexanol, 1-[((2-[5-fluoro-1-(metoximetil)-3,4-dihidroisoguinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 1-[((2-18-metoxi-1-(metoximetil)-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, 35 1-[((2-[1-(etoximetil)-7-metil-3,4-dihidroisoquinolin-2(1H)-il]-2-oxoetil}amino)metil]ciclohexanol, y (1R,2S)-2-((2-[(1R)-1-(2-metoxifenil)-3,4-dihidroisoguinolin-2(1H)-il]-2-oxoetil}amino)ciclopentanol; una sal farmacéuticamente aceptable de los mismos.
- 40 2. El compuesto de acuerdo con la reivindicación 1, que es

o una sal farmacéuticamente aceptable del mismo.

45

- 3. Una composición farmacéutica que comprende un compuesto de la reivindicación 1, o una sal farmacéuticamente aceptable del mismo, y un excipiente farmacéuticamente aceptable.
- 4. Un compuesto de la reivindicación 1 o una sal farmacéuticamente aceptable del mismo para su uso como bloqueante de los canales de Ca<sup>2+</sup> de tipo N.
  - 5. Una composición farmacéutica para su uso en un procedimiento de prevención o tratamiento del dolor, dolor neuropático, dolor abdominal, estreñimiento inducido por opioides o síndrome del intestino irritable, que comprende un compuesto de la reivindicación 1 como se ha definido anteriormente o una sal farmacéuticamente aceptable del mismo
  - 6. Una composición farmacéutica que comprende un compuesto de la reivindicación 1 o una sal farmacéuticamente aceptable del mismo y un opioide como ingredientes activos.
- 7. Una composición farmacéutica que comprende un compuesto de la reivindicación 1 o una sal farmacéuticamente aceptable del mismo como ingrediente activo para su uso en combinación con un opioide.

### ES 2 537 803 T3

8. Un compuesto de la reivindicación 1 o una sal farmacéuticamente aceptable del mismo para su uso en un procedimiento de prevención o tratamiento del dolor, dolor neuropático, dolor abdominal, estreñimiento inducido por opioides o síndrome del intestino irritable.