

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 538 504

51 Int. Cl.:

C12Q 1/68 (2006.01) G01N 33/574 (2006.01) C07K 14/47 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 22.07.2005 E 11188990 (3)
- (97) Fecha y número de publicación de la concesión europea: 25.02.2015 EP 2434023
- (54) Título: Marcadores en la orina para la detección del cáncer de vejiga
- (30) Prioridad:

23.07.2004 NZ 53428904 04.04.2005 NZ 53921905 20.06.2005 US 692619 P

45) Fecha de publicación y mención en BOPI de la traducción de la patente: 22.06.2015

(73) Titular/es:

PACIFIC EDGE LIMITED (100.0%) Level 13, Otago House 481 Moray Place Dunedin, 9016, NZ

(72) Inventor/es:

GUILFORD, PARRY JOHN; KERR, NATALIE JANE y POLLOCK, ROBERT

(74) Agente/Representante:

ZEA CHECA, Bernabé

DESCRIPCIÓN

Marcadores en la orina para la detección del cáncer de vejiga

Campo de la invención

Esta invención se refiere al uso de marcadores en la orina para la detección del cáncer de vejiga.

5 Antecedentes

10

15

35

50

55

Introducción

La supervivencia de los pacientes oncológicos mejora en gran medida cuando el cáncer se trata precozmente. En el caso del cáncer de vejiga, los pacientes diagnosticados en una fase precoz de la enfermedad tienen unas tasas de supervivencia a los 5 años de > 90 %, en comparación con aproximadamente el 15 - 30 % para los pacientes diagnosticados con la enfermedad avanzada. Por lo tanto, los desarrollos que permitan un diagnóstico precoz del cáncer de vejiga pueden dar lugar a un pronóstico mejorado para los pacientes. El método establecido para la detección del cáncer de vejiga mediante el uso de muestras de orina es una citología. Sin embargo, se sabe que la citología sólo es sensible en aproximadamente un 75 % para la detección del cáncer de vejiga invasivo, y sólo es sensible en aproximadamente un 25 % para la detección del cáncer de vejiga superficial (Lotan y Roehrborn, Urology 61, 109 - 118 (2003)).

El cáncer de vejiga se divide ampliamente en dos clases, invasivo y superficial. El tipo invasivo penetra en las capas de tejido subyacente, mientras que el tipo superficial tiende a desarrollarse principalmente en forma de un pólipo que crece en la luz de la vejiga.

La identificación de marcadores específicos para el cáncer en la orina puede proporcionar una metodología valiosa para el diagnóstico precoz del cáncer, dando lugar a un tratamiento precoz y a un pronóstico mejorado. Los marcadores específicos del cáncer también proporcionan un medio para monitorizar la progresión de la enfermedad, permitiendo monitorizar la eficacia de los tratamientos quirúrgicos, radioterapéuticos y quimioterapéuticos. Sin embargo, para diversos cánceres importantes, los marcadores disponibles adolecen de una sensibilidad y una especificidad insuficientes.

Actualmente el método más fiable para la detección del cáncer de vejiga es la cistoscopia acompañada por una histología de las lesiones biopsiadas. Sin embargo, esta técnica es larga, invasiva y su sensibilidad es sólo de aproximadamente el 90 %, lo que significa que aproximadamente el 10 por ciento de los cánceres no son detectados mediante el uso de estos métodos. De entre las metodologías no invasivas, la citología en orina, que detecta las células malignas exfoliadas microscópicamente, es el método preferido actualmente. Aunque la citología tiene una especificidad de aproximadamente el 95 %, tiene una baja sensibilidad (del 9 - 25 %) para las lesiones de bajo grado, es extremadamente dependiente de la calidad de la muestra y adolece de una elevada variabilidad entre observadores.

Más recientemente se han realizado intentos para detectar marcadores genéticos en las biopsias de vejiga. El método usado más habitualmente es el análisis con micromatriz, en el que se expone una matriz que contiene oligonucleótidos complementarios a las porciones de un posible marcador genético, a una muestra de ARNm o de ADNc obtenida a partir de la muestra del paciente. Mediante el uso de estos métodos, numerosos informes recientes han identificado diversos posibles marcadores para el cáncer de vejiga. Sin embargo, la tecnología de matriz es relativamente no cuantitativa y es muy variable.

La detección de marcadores en sangre o en orina que indiquen la presencia de cáncer de vejiga proporciona un potencial método para la detección mejorada de esta enfermedad. Aunque se han realizado pocos progresos en el desarrollo de marcadores sanguíneos para el cáncer de vejiga, hay disponibles varios marcadores de proteínas en orina. Los ensayos de estos marcadores ofrecen una mejor sensibilidad que la citología pero tienden a adolecer de una especificidad subóptima debido a que los elevados niveles de estos marcadores también se observan habitualmente en los pacientes con enfermedades no malignas, que incluyen inflamación, urolitiasis e hiperplasia prostática benigna. Por ejemplo, NMP22, que detecta una proteína de la matriz nuclear específica, tiene una sensibilidad del 47 - 87 % y una especificidad del 58 - 91 %. La elevada variabilidad del NMP22 significa que no es ideal para una detección fácil y rápida del cáncer de vejiga.

Otros ensayos en orina incluyen la amplificación mediante una RT-PCR de los transcritos génicos, tales como la enzima telomerasa hTERT a partir de sedimentos celulares de muestras de orina. Los ensayos de RT-PCR ofrecen el potencial de una elevada sensibilidad, aunque la especificidad de los marcadores existentes para la RT-PCR sigue sin estar clara.

El documento US2004/0076955 y el documento US 2004/0043436 divulgan métodos para la detección del cáncer de vejiga mediante el análisis de los niveles de expresión de marcadores, por ejemplo, en muestras de orina. Hay una necesidad de herramientas adicionales para la detección y el diagnóstico precoz del cáncer. Esta divulgación proporciona métodos, composiciones, kits y dispositivos basados en marcadores del cáncer, específicamente en

marcadores del cáncer de vejiga, para ayudar a realizar tanto la detección como el diagnóstico precoz del cáncer.

Resumen de la invención

5

10

15

20

25

30

35

40

45

50

55

Mediante el uso de una combinación de un análisis con micromatriz y una reacción en cadena de la polimerasa cuantitativa (qPCR), hemos sido capaces de identificar marcadores genéticos específicos que son selectivos para el cáncer de vejiga. En algunas formas de realización, hemos averiguado los marcadores que pueden usarse para diferenciar la fase de un tumor de vejiga, y en otras formas de realización, hemos identificado los marcadores que pueden distinguir los tipos de tumores. En otras formas de realización, hemos averiguado inesperadamente que las combinaciones de dos o más marcadores pueden proporcionar una detección altamente fiable y sensible del cáncer de vejiga. En otras formas de realización adicionales más, hemos identificado marcadores que son muy expresados por las células del cáncer de vejiga pero no por las células sanguíneas. Por lo tanto, en muchas formas de realización, los ensayos del cáncer de vejiga son inesperadamente mejores que los ensayos de la técnica anterior.

En ciertas formas de realización, se usa un análisis con micromatriz para identificar los genes que son altamente expresados en el tejido tumoral de vejiga en comparación con un tejido de vejiga no maligno. Estos genes, y las proteínas codificadas por esos genes, se denominan en el presente documento marcadores tumorales de vejiga (BTM). Debe apreciarse que el término BTM no requiere que el marcador sea específico únicamente para los tumores de vejiga. Más bien, la expresión de los BTM puede estar aumentada en otros tipos de tumores, incluyendo los tumores malignos. También debe entenderse que los BTM incluyen marcadores que no son altamente expresados en las células sanguíneas. En virtud de la toma de muestras de la orina, la expresión de otros tipos de células habitualmente presentes en las muestras de biopsias de la técnica anterior no están presentes. El término BTM también incluye combinaciones de marcadores individuales que son útiles para la detección del cáncer de vejiga.

En otras formas de realización, se proporcionan métodos para la identificación de la presencia de marcadores en muestras, que incluyen una inmunohistoquímica y una reacción en cadena de la polimerasa cuantitativa (qPCR). Los métodos de qPCR tienen una menor tendencia a los artefactos que son habituales en los análisis con micromatriz. Dichos artefactos incluyen diferencias en el número de oligonucleótidos del ligando colocados en los puntos de la matriz, una unión no uniforme e impredecible de los colorantes a los oligonucleótidos hibridados en un punto de la matriz, un lavado no uniforme de los materiales no específicos de los puntos de la matriz, y otros problemas.

Algunos de los genes divulgados en el presente documento codifican proteínas que son secretadas por la célula, escindidas de la célula o liberadas desde una célula tras la muerte celular. Estos transcritos de ARNm y sus proteínas tienen la utilidad añadida como marcadores para el diagnóstico del cáncer de vejiga, o como marcadores para la monitorización de la progresión de una enfermedad establecida. Estos marcadores pueden usarse solos o combinados entre sí. Además, otros genes, transcritos de ARN y las proteínas codificadas permanecen dentro o asociadas a la célula, y pueden usarse solos o junto con los demás como marcadores en la orina.

Las estrategias para el tratamiento del cáncer de vejiga superficial y del invasivo pueden ser diferentes. El cáncer de vejiga invasivo requiere una extirpación quirúrgica más urgente, y permite menos alternativas de tratamiento de lo que lo hace el cáncer de vejiga de tipo superficial. Por el contrario, el cáncer de vejiga superficial puede ser tratado con éxito con una quimioterapia intravesical o con una inmunoterapia intravesical con el BCG.

Sin embargo, actualmente no hay ningún método que pueda distinguir fácilmente y de forma fiable entre las clases de cáncer de vejiga superficial e invasivo sin realizar una cistoscopia. La capacidad para distinguir entre estas clases mediante el uso de un método no invasivo, tal como un ensayo en orina, permitiría a los profesionales clínicos seleccionar las estrategias de tratamiento apropiadas sin basarse en la cistoscopia, que es cara, incómoda y a menudo poco aceptada por los pacientes.

Inesperadamente hemos averiguado que ciertos marcadores en la orina, en particular aquellos no se encuentran en la sangre a elevados niveles, cuando se usan en combinación o solos, pueden proporcionar un diagnóstico muy fiable, sensible y específico del cáncer de vejiga.

Breve descripción de las figuras

Esta invención se describe con referencia a las formas de realización específicas de la misma y con referencia a las Figuras, en las que:

La Figura 1 representa una tabla que representa el número y el origen de las muestras usadas en el análisis mediante qPCR.

La Figura 2 representa una tabla de marcadores y de sondas oligonucleotídicas de marcadores para el análisis mediante qPCR del cáncer de vejiga de esta invención.

La Figura 3 representa una tabla de los BTM identificados mediante el uso de los métodos con micromatriz con muestras de cáncer de vejiga invasivo.

La Figura 4 representa una tabla de los BTM identificados mediante el uso de los métodos con micromatriz con muestras de cáncer de vejiga superficial.

La Figura 5 representa una tabla de los resultados obtenidos en los estudios llevados a cabo mediante el uso de

un análisis mediante una PCR cuantitativa para BTM específicos.

5

10

15

20

30

40

45

50

55

60

65

Las Figuras 6a - 6af representan histogramas que muestran la frecuencia relativa frente al log2 de los datos del nº de veces de cambio obtenidos a partir de estudios mediante una PCR cuantitativa de varios marcadores tumorales de tumores de vejiga invasivos y superficiales. La Figura 6a: SPAG5, invasivo; la Figura 6b: SPAG5, superficial; la Figura 6c: TOP2a, invasivo; la Figura 6d: TOP2a, superficial; la Figura 6e: CDC2, invasivo; la Figura 6f: CDC2, superficial; la Figura 6 g: ENG, invasivo; la Figura 6h: ENG, superficial; la Figura 6i: IGFBP5, superficial; la Figura 6j: NOV, superficial; la Figura 6k: NRP1, invasivo; la Figura 6l: NRP1, superficial; la Figura 6m: SEMA3F, superficial; la Figura 6n: EGFL6, invasivo; la Figura 6o: EGFL6, superficial; la Figura 6p: MGP, invasivo; la Figura 6q: SEM2, invasivo; la Figura 6s: CHGA, invasivo; y Figura 6t: CHGA, superficial; la Figura 6u: BIRC5, invasivo; la Figura 6v: BIRC5, superficial; la Figura 6w: UBE2C, invasivo; la Figura 6x: UBE2C, superficial; la Figura 6y: HoxA13, invasivo; la Figura 6z: HoxA13, superficial; la Figura 6aa: MDK, invasivo; la Figura 6ab: MDK, superficial; la Figura 6ac: Thilo, invasivo; la Figura 6ad, Thy1, superficial; la Figura 6ae: SMC4L1, invasivo; 6af: SMC4L1, superficial.

La Figura 7 representa una tabla de los resultados obtenidos en los estudios llevados a cabo mediante el uso de un análisis mediante una PCR cuantitativa para BTM específicos mediante el uso de muestras de orina.

La Figura 8 representa gráficas de cajas y bigotes que muestran la acumulación relativa de los marcadores de cáncer de vejiga en la orina de pacientes y de controles sanos. Los datos se muestran emparejados para cada uno de los doce BTM; la caja superior de cada par representa las muestras de orina de pacientes de control sanos, y la caja inferior representa las muestras de orina de los pacientes con cáncer de vejiga. Las cajas definen los percentiles 25°, 50° y 75°. Todos los datos son el log2 del n° de veces de cambio con respecto a la mediana del control sano. Los puntos representan los valores atípicos.

La Figura 9 representa un gráfico de barras de un análisis mediante una PCR cuantitativa del ARN total extraído a partir de sangre completa en comparación con el ARN de tejido de cáncer de vejiga.

La Figura 10 representa la mediana de la sobreacumulación de los transcritos de los marcadores en la orina de los pacientes con cáncer de vejiga. Los log2 de la diferencia entre los pacientes y los controles sanos, y los pacientes y los controles no malignos, se muestran por separado.

La Figura 11 representa gráficas de cajas y bigotes que muestran la sobrerrepresentación de los transcritos de los marcadores en la orina de pacientes con cáncer en comparación con los controles sanos y no malignos. Las cajas definen los percentiles 25°, 50° y 75°. Todos los datos son relativos a la mediana de los controles sanos. Las cajas con un relleno de puntos se corresponden con las muestras de los sujetos sanos. Las cajas con un

relleno sombreado se corresponden con las muestras de los pacientes con una enfermedad urológica no maligna, y las cajas rellenas de trazos discontinuos se corresponden con las muestras de pacientes con cáncer de vejiga. a. HOXA13; b. IGFBP5; c. MDK; d. MGP; e NRP1; f. SEMA3F; g. SMC4L1; h. TOP2A; i. UBE2C. Los puntos representan los valores atípicos.

Las Figuras 12a - 12b representan histogramas que muestran el número de marcadores con una mayor expresión que el percentil 95º de la expresión mediana normal para tumores del tipo invasivo y superficial, respectivamente. Los resultados se basan en los datos de la qPCR para 12 marcadores, y se muestran por separado para cada muestra tumoral.

Las Figuras 13a - 13b representan las tablas que muestran el efecto de múltiples marcadores sobre la capacidad para discriminar de forma precisa entre tejido tumoral y tejido no maligno. La tabla se ha construido a partir de las distribuciones normales derivadas de los datos de la qPCR. La Figura 13a representa el efecto de múltiples marcadores sobre la capacidad para discriminar de forma precisa entre tejido de cáncer de vejiga invasivo y tejido no maligno con una especificidad del 95 %. La Figura 13b representa el efecto de múltiples marcadores sobre la capacidad para discriminar de forma precisa entre tejido de cáncer de vejiga superficial y tejido no maligno con una especificidad del 95 %.

Las Figuras 14a - 14b representan tablas que muestran la sensibilidad de las combinaciones de marcadores para el carcinoma invasivo de células de transición (TCC) con una especificidad del 95 %, calculada a partir de las distribuciones normales de los datos de la qPCR. La Figura 14a: carcinoma invasivo de células de transición (TCC). La Figura 14b: TCC superficial.

Las Figuras 15 representa una tabla que muestra el efecto de múltiples marcadores sobre la capacidad para discriminar de forma precisa entre muestras de orina obtenidas a partir de pacientes con cáncer de vejiga (TCC) y muestras de orina de pacientes con enfermedades urológicas no malignas. La tabla se ha construido a partir de la distribución normal de los datos obtenidos a partir de un análisis de la orina mediante una qPCR.

La Figura 16 representa una tabla que muestra la sensibilidad de una combinación de marcadores en orina para la detección del TCC con una especificidad del 95 %, calculada a partir de distribución normal de los datos de la qPCR de la orina.

La Figura 17 representa gráficas de cajas y bigotes que muestran las proporciones de los BTM en el ARN extraído de la orina de pacientes con ambos cánceres de vejiga superficial e invasivo. Las cajas definen los percentiles 25°, 50° y 75°. Las cajas sombreadas en gris representan las muestras de pacientes con un cáncer de vejiga superficial, y las cajas rayadas representan las muestras de pacientes con un cáncer de vejiga invasivo. a. combinación TOP2A / HOXA13; b. combinación TOP2A / IGFBP5; y c. combinación TOP2A / SEMA3F. Los puntos representan los valores atípicos.

La Figura 18 representa gráficas de cajas y bigotes que muestran las proporciones de los BTM en la orina de pacientes con cáncer de vejiga en diferentes estadios. Las cajas definen los percentiles 25°, 50° y 75°. Las cajas con el relleno de puntos se corresponden con las manchas de los pacientes con tumores superficiales, y las cajas sombreadas en gris se corresponden con las muestras de los pacientes con tumores invasivos en fase 1 y

las cajas rayadas se corresponden con las muestras de pacientes con tumores en fase 2 - 3: a. combinación TOP2A / HOXA13; b. combinación TOP2A / IGFBP5; y c. combinación TOP2A / SEMA3F. Los puntos representan los valores atípicos.

La Figura 19 representa gráficas de cajas y bigotes que muestran las proporciones de los BTM en el ARN extraído de ambos tumores de vejiga superficial e invasivo. Las cajas definen los percentiles 25°, 50° y 75°. Las cajas sombreadas en gris representan las muestras de tumores de vejiga superficiales, y las cajas rayadas representan las muestras de tumores de vejiga invasivos: a. combinación TOP2A / HOXA13, b. combinación TOP2A / IGFBP5, y c. combinación TOP2A / SEMA3F. Los puntos representan los valores atípicos.

La Figura 20 representa gráficas de cajas y bigotes que muestran una combinación de marcadores para su aplicación en la detección del cáncer de vejiga. Las gráficas muestran la sobrerrepresentación de un grupo de cuatro marcadores en la orina de pacientes con cáncer en comparación con los controles sanos y no malignos. Las cajas definen los percentiles 25°, 50° y 75°. Todos los datos son relativos a la mediana del control sano. Las cajas con el relleno de puntos se corresponden con las muestras de los sujetos sanos. Las cajas con un relleno sombreado en gris se corresponden con las muestras de pacientes con una enfermedad urológica no maligna, y las cajas con un relleno rayado se corresponden con las muestras de pacientes con un cáncer de vejiga: a. HOXA13, b. MGP: c. SEMA3F, y d. TOP2A. Los puntos representan los valores atípicos.

La Figura 21 representa gráficas de cajas y bigotes que muestran una combinación de marcadores para la determinación del tipo histológico del cáncer de vejiga. Las representaciones muestran las proporciones de los BTM en el ARN extraído de de la orina de pacientes con ambos cánceres de vejiga superficial e invasivo. Las cajas definen los percentiles 25°, 50° y 75°. Las cajas sombreadas en gris representan las muestras de pacientes con un cáncer de vejiga superficial, y las cajas rayadas representan las muestras de pacientes con un cáncer de vejiga invasivo: a. combinación TOP2A / SEMA3F, b. combinación TOP2A / HOXA13. Los puntos representan los valores atípicos.

Descripción detallada

25 **Definiciones**

5

10

15

20

30

40

45

50

55

Antes de describir con detalle las formas de realización de la invención, será útil proporcionar algunas definiciones de los términos según se usan en el presente documento.

El término "marcador" significa una molécula que está asociada cuantitativamente o cualitativamente con la presencia de un fenómeno biológico. Algunos ejemplos de "marcadores" incluyen un gen, un fragmento de gen, un ARN, un fragmento de ARN, una proteína o un fragmento de proteína, los metabolitos relacionados, los subproductos u otras moléculas identificadoras, tanto si están directamente como indirectamente relacionadas con el mecanismo subyacente de un fenómeno.

El término "sensibilidad" significa la proporción de individuos con una enfermedad que dan positivo en el ensayo. Por lo tanto, un aumento en la sensibilidad significa menos resultados falsos negativos en el ensayo.

El término "especificidad" significa la proporción de individuos sin la enfermedad que dan negativo en el ensayo. Por lo tanto, un aumento en la especificidad significa menos resultados falsos positivos en el ensayo.

El término "BTM" o "marcador tumoral de vejiga" o "miembro de la familia de BTM" significa un marcador que está asociado con el cáncer de vejiga. El término BTM también incluye combinaciones de marcadores individuales, cuya combinación mejora la sensibilidad y la especificidad en la detección del cáncer de vejiga. En algunas secciones de esta solicitud, el término BTM puede incluir UBTM (definido en el presente documento) por conveniencia. Algunos ejemplos no limitantes de BTM están incluidos en las Figuras 3 y 4 del presente documento.

Un BTM puede ser identificado mediante la extracción del ARN de una muestra de tejido de un paciente sospechoso de padecer cáncer de vejiga, la aplicación del ARN a una micromatriz que tiene varios oligonucleótidos en la misma, permitiendo que el ARN de la muestra hibride con los oligonucleótidos de la matriz, y cuantificando después el nivel del ARN unido en cada punto de la matriz. Se considera que un marcador es un BTM si su presencia está por encima del umbral de al menos aproximadamente 1,2 veces el que se encuentra en el tejido normal no maligno mediante el uso de métodos con micromatrices. Como alternativa, el umbral puede estar por encima de aproximadamente 2 veces lo normal, de aproximadamente 3 veces más de lo normal, de 4 veces o incluso de aproximadamente 5 veces más de lo normal. Por "normal" queremos significar más del percentil 90° de la población normal. En otros casos, normal puede significar un nivel de presencia del percentil 95° (es decir, aproximadamente 2 desviaciones típicas (DT) de la media), y en otros casos, mayor de aproximadamente del percentil 97,5° (es decir, aproximadamente 3 DT) o del percentil 99°.

En otros casos adicionales más, puede elegirse un BTM que esté presente en un tejido tumoral pero que no esté presente en la sangre en un grado sustancial. Por "grado sustancial" queremos significar que la cantidad de tejido tumoral es de al menos aproximadamente 5 ciclos más, medida mediante una qPCR, que la cantidad que se encuentra en la sangre.

El término "UBTM" o "marcador tumoral de la vejiga urinaria" o "miembro de la familia de UBTM" significa un marcador BTM que se encuentra en la orina que está asociado con el cáncer de vejiga pero que no incluye TOP2A,

MDK ni BIRC5. El término UBTM también incluye combinaciones de dos marcadores y combinaciones de tres marcadores, cuya combinación mejora la sensibilidad y la selectividad en la detección del cáncer de vejiga en muestras de orina. Algunos ejemplos no limitantes de UBTM están incluidos en las Figuras 14a y 14b del presente documento.

En otros casos, un UBTM puede ser identificado en la orina mediante el uso de métodos con micromatrices o mediante el uso de métodos de qPCR mediante el uso de un cebador directo, un cebador inverso y una sonda elegidos según el marcador que se va a evaluar. El umbral para la detección del cáncer de vejiga en la orina puede ser mayor que el nivel del marcador en la orina de sujetos normales que tienen cáncer de vejiga en aproximadamente 1 ciclo (2 veces), 2 ciclos (4 veces), 3 ciclos (8 veces), 4 ciclos (16 veces), 5 ciclos (32 veces) o más.

El término "qPCR" significa una reacción en cadena de la polimerasa cuantitativa.

15

20

25

40

45

El término "expresión" incluye la producción del ARNm a partir de un gen o de una porción de un gen, e incluye la producción de una proteína codificada por un ARN o por un gen o una porción de un gen, e incluye la aparición de un material detectable asociado con la expresión. Por ejemplo, la unión de un ligando de unión, tal como un anticuerpo, a un gen u otro oligonucleótido, de una proteína o de un fragmento de proteína, y la visualización del ligando de unión, están incluidas en el ámbito del término "expresión." Por lo tanto, el aumento en la densidad de un punto en la membrana, tal como de una inmunotransferencia Western, está incluido en el término "expresión" de la molécula biológica subyacente.

El término "tasa de expresión" significa un cambio dependiente del tiempo en la cantidad de un transcrito o de una proteína.

El término "sobreexpresión" se usa cuando la tasa de expresión de un marcador en una célula o en un tipo celular es mayor de que el de otra célula o tipo celular para un periodo de tiempo definido.

El término "acumulación" significa un aumento en la cantidad de un marcador en una muestra en comparación con un valor medio normal. Por "aumento en la cantidad" queremos significar que la cantidad de marcador es mayor que el percentil 90°, 95°, 97,5° 99°, o mayor que el percentil del intervalo normal en al menos aproximadamente 1,2 veces, 2 veces, 3 veces, 4 veces o 5 veces cuando se mide mediante el uso de métodos con micromatrices. Cuando se mide mediante el uso de una qPCR, un "aumento en la cantidad" significa la cantidad de marcador que es mayor que el percentil 90°, 95°, 97,5° o 99° del intervalo normal en al menos aproximadamente 1 ciclo (2 veces), 2 ciclos (4 veces), 3 ciclos (8 veces), 4 ciclos (16 veces), 5 ciclos (32 veces) o más.

Una acumulación incluye un aumento en la cantidad de marcador en una célula (en una base por célula) o puede significar un aumento en el número de células de una muestra que tienen el marcador en particular. Por lo tanto, una acumulación puede significar un aumento en la cantidad total de un marcador en la orina (en una base por volumen) en comparación con una afección no caracterizada por el cáncer de vejiga. Una acumulación también puede reflejar un aumento en la tasa de expresión de un BTM en un tipo celular dado, y/o un aumento en el número de células que expresan un BTM a la tasa de expresión normal. Además, una acumulación también puede reflejar el ARNm libre presente debido a la pérdida de la integridad de la membrana celular o a la muerte y la destrucción de células.

Descripción de las formas de realización de la invención

Se proporcionan marcadores para la detección y la evaluación de tumores, incluyendo el de vejiga. Se ha averiguado que numerosos genes y proteínas están asociados con los tumores de vejiga. Los análisis con micromatrices de las muestras tomadas de pacientes con tumores de vejiga y de muestras no malignas de urotelio normal han conducido al sorprendente descubrimiento de que en muchos tumores de vejiga, los patrones específicos de sobreexpresión de ciertos genes, o la acumulación de los productos de los genes en la orina, están asociados con la enfermedad. Lo más sorprendente es que estos marcadores que se han aislado están presentes a unos niveles elevados en las muestras de orina de pacientes con cáncer de vejiga, pero están presentes a unos niveles bajos en los individuos sanos y, en particular, en los individuos con enfermedades urológicas no malignas, incluyendo aquellos que muestran hematuria. La detección de los marcadores, por ejemplo, de los productos génicos (por ejemplo, de oligonucleótidos tales como el ARNm) y de las proteínas y los péptidos traducidos a partir de los oligonucleótidos, son por lo tanto indicativos de la presencia de un tumor, especialmente de un tumor de vejiga.

Puede apreciarse que el nivel de un marcador en particular o de un conjunto de marcadores puede depender de la cantidad de orina producida en comparación con la cantidad del marcador presente. Por lo tanto, en unas condiciones caracterizadas por una producción de orina reducida (por ejemplo, un volumen de orina reducido), la concentración del marcador puede estar aumentada, pero puede no reflejar el cáncer de vejiga. Por lo tanto, en algunas formas de realización, la cantidad de un marcador puede ser corregida según la producción total de orina durante un tiempo dado. Como alternativa, la concentración del marcador puede ser corregida según el número total de células en la muestra de orina, y en otras formas de realización puede ser corregida según las proteínas totales presentes en la orina. Por otro lado, un aumento en la producción de la orina puede diluir un marcador tumoral, y por lo tanto tiende a enmascarar la presencia del cáncer de vejiga. Dichas situaciones pueden estar asociadas con un

aumento en la ingesta de agua, una disminución en la ingesta de sal, un aumento en el uso de diuréticos o la supresión en la producción o en la actividad de la hormona antidiurética.

En algunas formas de realización se puede medir la función renal mediante el uso de métodos conocidos en la materia. Estos incluyen, a modo de ejemplo, la medición del aclaramiento de creatinina. Sin embargo, puede apreciarse que existen muchos métodos adecuados para la medición de la función renal. En las afecciones en las que se encuentra una función renal anormal, puede ajustarse la acumulación medida de un marcador mediante el uso de las correcciones apropiadas. Por lo tanto, el cáncer de vejiga puede ser diagnosticado de forma más precisa.

Los marcadores del cáncer pueden ser detectados en una muestra mediante el uso de cualquier técnica adecuada, y puede incluir, pero no se limita a, sondas oligonucleotídicas, una qPCR o anticuerpos creados contra los marcadores del cáncer.

Se apreciará que la muestra que va a ser ensayada no está restringida a una muestra del tejido sospechoso de ser un tumor. El marcador puede ser secretado en el suero, descamado de las membranas celulares o estar asociado con células perdidas en la orina. Por lo tanto, una muestra puede incluir cualquier muestra corporal, e incluye sangre, suero, lavados peritoneales, líquido cefalorraquídeo, muestras de orina y de heces. En los métodos de la invención según se definen en las reivindicaciones anexas, la muestra ensayada es una muestra de orina.

La detección de un marcador de cáncer en una muestra será indicativa de la presencia de un tumor en ese sujeto. Sin embargo, se apreciará que mediante el análisis de la presencia y de las cantidades de expresión de una pluralidad de marcadores de cáncer, la sensibilidad del diagnóstico aumentará y disminuirá la frecuencia de resultados falsos positivos y/o falsos negativos. Por lo tanto, de acuerdo con la presente invención, para aumentar tanto la detección como el diagnóstico precoz del cáncer pueden usarse múltiples marcadores.

Metodologías generales para la detección del cáncer

Las siguientes metodologías son métodos no limitantes que pueden usarse para la detección del cáncer, incluyendo el cáncer de vejiga, mediante el uso de miembros de la familia de BTM o de UBTM.

Métodos de hibridación que usan sondas de ácidos nucleicos selectivas para un marcador

25 Estos métodos implican la unión de la sonda de ácido nucleico a un soporte y la hibridación, en condiciones apropiadas, con un ARN o con un ADNc derivado de la muestra de prueba (Sambrook, J., E Fritsch, E. y T Maniatis, Molecular Cloning: A Laboratory Manual 3a. Cold Spring Harbor Laboratory Press: Cold Spring Harbor (2001)). Estos métodos pueden ser aplicados a un BTM o a un UBTM según sea apropiado, derivado de un tejido tumoral o de una muestra de fluido. Las preparaciones de ARN o de ADNc normalmente se marcan con una molécula fluorescente o 30 radiactiva para permitir la detección y la cuantificación. En algunas aplicaciones, el ADN hibridante puede ser marcado con una estructura de marcaje ramificada fluorescente para mejorar la intensidad de la señal (Nolte, F. S., Branched DNA signal amplification for direct quantitation of acid nucleic sequences in clinical specimens. Adv. Clin. Chem. 33, 201 - 35 (1998)). El marcaje no hibridado se elimina mediante un lavado intensivo con soluciones baias en sal tales como 0,1 x SSC, 0,5 % de SDS antes de cuantificar la cantidad de hibridación mediante una detección 35 por fluorescencia o una densitometría de las imágenes del gel. Los soportes pueden ser sólidos, tales como membranas de nailon o de nitrocelulosa, o consistir en microesferas que se hibridan cuando están en una suspensión líquida. Para permitir el lavado y la purificación, las microesferas pueden ser magnéticas (Haukanes, B-I y Kvam, C., Application of magnetic beads in bioassays. Bio/Technology 11, 60 - 63 (1993)) o estar marcadas con fluorescencia para permitir una citometría de flujo (véase, por ejemplo: Spiro, A., Lowe, M. y Brown, D., A Bead-Based Method for Multiplexed Identification and Quantitation of DNA Sequences Using Flow Cytometry, Appl. Env. 40 Micro. 66, 4258 - 4265 (2000)).

Una variación de la tecnología de hibridación es el ensayo QuantiGene PI ex® (Genospectra, Fremont) que combina un soporte con microesferas fluorescentes con una amplificación de la señal del ADN ramificado. Otra variación más de la tecnología de hibridación es el ensayo Quantikine® mRNA (R&D Systems, Minneapolis). La metodología es según se describe en las instrucciones del fabricante. En resumen, el ensayo usa sondas de hibridación oligonucleotídicas conjugadas con Digoxigenina. La hibridación se detecta mediante el uso de anticuerpos anti-Digoxigenina acoplados a fosfatasa alcalina en ensayos colorimétricos.

Otros métodos adicionales son bien conocidos en la materia y no necesitan describirse adicionalmente en el presente documento.

50 PCR cuantitativa (qPCR)

5

10

15

20

45

55

La PCR cuantitativa (qPCR) puede llevarse a cabo en muestras tumorales, en muestras de suero, de plasma y de orina, mediante el uso de cebadores y de sondas específicos para los BTM. En unas reacciones controladas, la cantidad de producto formado en una reacción de PCR (Sambrook, J., E Fritsch, E. y T Maniatis, Molecular Cloning: A Laboratory Manual 3ª. Cold Spring Harbor Laboratory Press: Cold Spring Harbor (2001)) se correlaciona con la cantidad del molde de partida. La cuantificación del producto de la PCR puede realizarse deteniendo la reacción de PCR cuando está en una fase logarítmica, antes de que los reactivos se vuelvan limitantes. Entonces los productos

de la PCR se someten a electroforesis en geles de agarosa o de poliacrilamida, teñidos con bromuro de etidio o una tinción del ADN comparable, y la intensidad de la tinción se mide mediante una densitometría. Como alternativa,, la progresión de una reacción de PCR puede medirse mediante el uso de máquinas de PCR tales como la Prism 7000 de Applied Biosystems o el Roche LightCicler, que miden la acumulación de producto en tiempo real. La PCR en tiempo real mide la fluorescencia de los colorantes intercalados en el ADN, tales como Sybr Green en el producto sintetizado en la PCR, o la fluorescencia liberada por una molécula indicadora cuando es escindida de una molécula inactivadora; la molécula indicadora y la inactivadora están incorporadas en una sonda oligonucleotídica que hibrida con la molécula de ADN diana después de la extensión de la hebra de ADN a partir de los oligonucleotídios cebadores. La sonda oligonucleotídica es desplazada y degradada por la acción enzimática de la polimerasa Taq en el siguiente ciclo de la PCR, liberando la molécula indicadora de la inactivadora.

En algunas formas de realización, un conjunto de cebador directo, cebador inverso y sonda incluye la ID. SEC. Nº: 1, la ID. SEC. Nº: 14 y la ID. SEC. Nº: 27 respectivamente. Como alternativa, algunos conjuntos incluyen la ID. SEC. Nº: 2, la ID. SEC. Nº: 15 y la ID. SEC. Nº: 28, respectivamente. En otras formas de realización, algunos conjuntos incluyen la ID. SEC. Nº: 3, la ID. SEC. Nº: 16 y la ID. SEC. Nº: 29 respectivamente, la ID. SEC. Nº: 4, la ID. SEC. Nº: 4, la ID. SEC. Nº: 17 y la ID. SEC. Nº: 30 respectivamente, la ID. SEC. Nº: 5, la ID. SEC. Nº: 18 y la ID. SEC. Nº: 31 respectivamente, la ID. SEC. Nº: 32 respectivamente, la ID. SEC. Nº: 7, la ID. SEC. Nº: 20 y la ID. SEC. Nº: 33 respectivamente, la ID. SEC. Nº: 8, la ID. SEC. Nº: 21 y la ID. SEC. Nº: 34 respectivamente, la ID. SEC. Nº: 9, la ID. SEC. Nº: 22 y la ID. SEC. Nº: 35 respectivamente, la ID. SEC. Nº: 10, la ID. SEC. Nº: 23 y la ID. SEC. Nº: 36 respectivamente, la ID. SEC. Nº: 11, la ID. SEC. Nº: 24 y la ID. SEC. Nº: 37 respectivamente, la ID. SEC. Nº: 12, la ID. SEC. Nº: 25 y la ID. SEC. Nº: 38 respectivamente y la ID. SEC. Nº: 13, la ID. SEC. Nº: 26 y la ID. SEC. Nº: 39 respectivamente.

Ensayos de inmunoadsorción enzimática (ELISA)

De forma resumida, en los ensayos de ELISA en sándwich se une un anticuerpo policional o monocional contra el BTM / UBTM a un soporte sólido (Crowther, J. R. The ELISA guidebook. Human Press: Nueva Jersey (2000); Harlow, E. y Lane, D., Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor (1999)) o a microesferas en suspensión. Otros métodos son conocidos en la materia y no necesitan ser descritos adicionalmente en el presente documento. Los anticuerpos monocionales pueden derivar de un hibridoma o elegirse de entre genotecas de anticuerpos de fagos (Hust M. y Dubel S., Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol Biol. 295: 71 - 96 (2005)). Los sitios de unión no específica se bloquean con preparaciones de proteína no diana y detergentes. El anticuerpo de captura se incuba después con una preparación de la orina o del tejido que contiene el antígeno BTM / UBTM. La mezcla se lava antes de incubar el complejo anticuerpo / antígeno con un segundo anticuerpo que detecta el BTM / UBTM diana. El segundo anticuerpo normalmente está conjugado con una molécula fluorescente u otra molécula indicadora que puede detectarse con una reacción enzimática, o con un tercer anticuerpo conjugado con un indicador (Crowther, Id.). Como alternativa, en los ensayos ELISA directos, la preparación que contiene el BTM / UBTM puede unirse al soporte o a la microesfera, y el antígeno diana puede detectarse directamente con un conjugado de anticuerpo-marcador (Crowther, Id.).

En la materia se conocen bien métodos para la producción de anticuerpos monoclonales y de antisueros policionales y en el presente documento no es preciso que se describan adicionalmente.

Inmunohistoquímica

10

15

20

25

30

35

45

50

55

La identificación y localización de los marcadores tumorales pueden realizarse mediante el uso de anticuerpos antimarcador en tumores de vejiga, nódulos linfáticos o metástasis distantes. Dichos métodos también pueden usarse para detectar, por ejemplo, cáncer colorrectal, pancreático, ovárico, melanoma, de hígado, de esófago, de estómago, de endometrio y de cerebro.

En general, los BTM pueden detectarse en los tejidos mediante el uso de inmunohistoquímica (Harlow, E. y Lane, D., Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor (1999)). En resumen, las muestras de tejido incluidas en parafina o incluidas en OCT congeladas se cortan en secciones de 4 - 8 µm en portas de vidrio, se fijan y se permeabilizan, después se incuban con un anticuerpo primario monoclonal o policlonal contra el BTM. El anticuerpo primario puede conjugarse con una molécula de detección o indicadora para la detección directa del antígeno, o como alternativa, el propio anticuerpo primario puede ser detectado con un segundo anticuerpo conjugado con una molécula indicadora o de detección. Después del lavado y de la activación de cualquier molécula indicadora, la presencia del BTM puede visualizarse al microscopio.

Los métodos también pueden usarse para la inmunodetección de miembros de la familia del marcador en el suero o en el plasma de pacientes con cáncer de vejiga, tomados antes y después de la cirugía para eliminar el tumor, para la inmunodetección de miembros de la familia del marcador en pacientes con otros cánceres que incluyen, pero no se limitan a, colorrectal, pancreático, ovárico, melanoma, de hígado, de estómago, de endometrio y de cerebro, y para la inmunodetección de miembros de la familia del marcador en la orina y en las heces de pacientes con cáncer de vejiga.

Los BTM y los UBTM también pueden ser detectados en los tejidos o en la orina mediante el uso de otras técnicas

de inmunodetección habituales tales como la inmunotransferencia o la inmunoprecipitación (Harlow, E. y Lane, D., Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor (1999)). En la inmunotransferencia preparaciones de proteínas procedentes de tejidos o de fluidos que contienen el BTM / UBTM se someten a electroforesis en geles de poliacrilamida en condiciones desnaturalizantes o no desnaturalizantes. Después, las proteínas se transfieren a un soporte de membrana tal como de nailon. Después el BTM / UBTM se hace reaccionar directa o indirectamente con anticuerpos monoclonales o policlonales según se describió para la inmunohistoquímica. Como alternativa, en algunas preparaciones, las proteínas pueden ser manchadas directamente sobre las membranas sin una separación electroforética previa. La señal puede ser cuantificada mediante una densitometría.

En la inmunoprecipitación se incuba una preparación soluble que contiene el BTM o el UBTM con un anticuerpo monoclonal o policlonal contra el BTM / UBTM. La reacción se incuba entonces con microesferas inertes hechas de agarosa o de poliacrilamida con proteína A o proteína G unida covalentemente. Las microesferas de proteína A o G interactúan específicamente con los anticuerpos que forman un complejo inmovilizado de anticuerpo-BTM / UBTM-antígeno unido a la microesfera. Después de un lavado, el BTM / UBTM unido puede ser detectado y cuantificado mediante una inmunotransferencia o un ELISA.

Análisis de los datos de la matriz o de la qPCR mediante el uso de ordenadores

Se recogen los datos primarios y el análisis del nº de veces de cambio se realiza mediante la comparación de los niveles de expresión génica del tumor de vejiga con la expresión de los mismos genes en tejido no tumoral. Se proporciona un umbral para concluir que la expresión está aumentada (por ejemplo, un aumento de 1,5 x, un aumento de 2 veces, y en formas de realización alternativas, un aumento de 3 veces, un aumento de 4 veces o un aumento de 5 veces). Puede apreciarse que pueden elegirse otros umbrales para concluir que se ha producido un aumento en la expresión sin desviarse del ámbito de esta invención. Un análisis adicional de la expresión génica del tumor incluye el emparejamiento de aquellos genes que muestran un aumento en la expresión con los perfiles de expresión de tumores de vejiga conocidos, para proporcionar un diagnóstico de los tumores.

25 Uso de BTM y de UBTM para monitorizar la progresión de las terapias del TCC

Además de un diagnóstico rápido y una detección precoz del TCC, los marcadores BTM y UBTM detectados en tejido, suero u orina pueden usarse para monitorizar la respuesta de un paciente a la terapia. En estas aplicaciones pueden tomarse muestras de orina y/o de suero a unos intervalos después del inicio de la quimioterapia, de la radioterapia o de la inmunoterapia sistémica, intravesical o intravascular. Un descenso en la acumulación del marcador puede indicar una reducción en el tamaño del tumor, indicativa de un tratamiento eficaz. La tasa de descenso puede usarse para predecir las dosis terapéuticas óptimas para cada paciente o tratamiento.

Los marcadores evaluados se eligen de entre genes humanos conocidos. Los genes evaluados están indicados en las Figuras 3 y 4. En las Figuras 3 y 4 están incluidos en nombre del gen, el identificador HUGO, el número del oligo MWG, el número de la secuencia de referencia del ARNm NCBI y el número de referencia de la proteína. Las secuencias completas pueden encontrarse en http://www.ncbi.nlm.nih.gov/entrez/.

Los marcadores identificados como útiles para el diagnóstico y la evaluación del cáncer de vejiga están identificados en la Figura 2 y en la Lista de Secuencias anexa a esta solicitud.

Aspectos de la invención

5

20

30

35

40

45

50

Por lo tanto, en ciertos aspectos, esta invención incluye métodos para la detección del cáncer de vejiga, que comprenden la detección de la acumulación de un miembro de la familia de UBTM en la orina según se define en las reivindicaciones anexas.

En otros aspectos, el miembro de la familia de UBTM no está asociado a la sangre en un grado sustancial.

En algunos aspectos adicionales, el UBTM se elige de entre el grupo mostrado en las Figuras 3 o 4.

Adicionalmente, en ciertos aspectos, la etapa de detección se realiza mediante la detección de la acumulación del ARNm del BTM o del UBTM.

En algunos aspectos, la etapa de detección se realiza mediante el uso de una micromatriz.

En otros aspectos, la etapa de detección se realiza mediante el uso de una reacción en cadena de la polimerasa cuantitativa o métodos de hibridación.

En algunos aspectos adicionales, la etapa de detección se realiza mediante la detección de la acumulación de una proteína del UBTM.

En algunos aspectos adicionales más, la etapa de detección se realiza mediante la detección de la acumulación de un péptido del UBTM.

En algunos de estos aspectos, la etapa de detección se realiza mediante el uso de un anticuerpo UBTM que puede ser policional o monocional.

En algunos aspectos adicionales, un método incluye la detección de la acumulación de dos o más miembros de la familia de UBTM en dicha muestra.

5 En ciertos de estos aspectos adicionales, un método implica la detección de TOP2A, de MDK o de BIRC5.

Algunos aspectos adicionales más incluyen la detección de uno o más pares de marcadores elegidos de entre el grupo que consiste en TOP2A-HOXA13, TOP2A-IGFBP5 y TOP2A-SEMA3F.

En otros aspectos de esta invención, un método para la detección del cáncer de vejiga comprende la detección de la acumulación de una combinación de dos o más miembros de la familia de BTM elegidos de entre las Figuras 14a o 14b en una muestra biológica de un paciente sospechoso de padecer cáncer de vejiga.

En algunos de estos aspectos, la muestra biológica se elige de entre el grupo que consiste en sangre, suero, plasma, tejido, orina, heces, líquido cefalorraquídeo y lavado peritoneal.

Algunos aspectos adicionales más incluyen anticuerpos específicos para un BTM o para un UBTM, y métodos para su producción, bien como anticuerpos policionales o monoclonales.

15 En ciertos de estos aspectos puede dirigirse un anticuerpo monoclonal hacia un BTM o un UBTM y se elige del grupo mostrado en las Figuras 3 o 4.

En otro de estos aspectos, un método comprende adicionalmente otro anticuerpo dirigido contra otro BTM o UBTM.

Algunos aspectos adicionales de esta invención incluyen dispositivos para la detección de un BTM, que comprenden un sustrato que tiene una combinación de reactivos de captura del BTM o del UBTM en el mismo, eligiéndose la combinación de las Figuras 14a o 14b; y un detector asociado a dicho sustrato, siendo el detector capaz de detectar dicha combinación de BTM o UBTM asociada a dichos reactivos de captura.

En ciertos de estos aspectos, un reactivo de captura comprende un oligonucleótido.

10

20

35

40

En algunos aspectos adicionales, un reactivo de captura comprende un anticuerpo.

En algunos aspectos, un BTM o un UBTM se elige del grupo especificado en las Figuras 3 o 4.

Esta divulgación también incluye un kit para la detección del cáncer, que comprende un sustrato; una combinación de, al menos, dos reactivos de captura de BTM o de UBTM en el mismo, eligiéndose la combinación de las Figuras 14a o 14b; e instrucciones para su uso.

Algunos kits incluyen reactivos de captura que son oligonucleótidos específicos para el BTM o para el UBTM, o anticuerpos específicos para el BTM.

30 En algunos kits, los BTM o los UBTM se eligen de entre el grupo representado en las Figuras 3 o 4.

En ciertos kits, un marcador se elige de entre el grupo que consiste en IGFBP5, MGP, SEMA3F y HOXA13.

Algunos aspectos adicionales incluyen métodos para la detección de la presencia del cáncer de vejiga, que comprenden la determinación de la presencia en una muestra de orina de uno o más marcadores elegidos de entre el grupo que consiste en BIRC2, CDC2, HOXA13, IGFBP5, MDK, MGP, NOV, NRP1, SEMA3F, SPAG5, TOP2A, y en el que dicho marcador no está sustancialmente presente en la sangre.

Otros aspectos de esta divulgación incluyen métodos para distinguir una enfermedad de vejiga maligna de una enfermedad de vejiga no maligna, que comprenden la determinación de la acumulación en dicha orina del paciente de uno o más marcadores elegidos de entre el grupo que consiste en HOXA13, IGFBP5, MDK, MGP, NRP1, SEMA3F, SMC4L1, TOP2A y UBE2C; y la determinación de las proporciones de dichos marcadores en dicha muestra, estando la proporción asociada con la presencia del cáncer de vejiga.

En ciertos de estos aspectos, los métodos comprenden la medición de la acumulación de al menos un segundo BTM en la orina.

En algunas de estas formas de realización, un primer marcador es TOP2A y un segundo marcador se elige de entre el grupo que consiste en HOXA13, IGFBP5 y SEMA3F.

45 En algunos aspectos adicionales, los métodos incluyen la correlación de una proporción de la acumulación de los marcadores como indicativo del cáncer de vejiga superficial, del cáncer de vejiga invasivo en fase 1 o del cáncer de vejiga invasivo en fase 2 - 3.

En algunos aspectos adicionales más, esta divulgación incluye métodos para la determinación de la eficacia de la terapia para el cáncer de vejiga, que comprenden la comparación de la presencia de uno o más marcadores elegidos de las Figuras 3 o 4 en una primera muestra de un paciente, con la presencia de uno o más marcadores elegidos de las Figuras 3 o 4 en una segunda muestra de un paciente después de un periodo de tratamiento.

Según se describe en el presente documento, la detección de los tumores puede llevarse a cabo mediante la medición de la expresión de uno o más marcadores tumorales. Inesperadamente se ha averiguado que la asociación entre un aumento en la expresión de cualquiera de una pluralidad de BTM o de UBTM y la presencia de un cáncer de vejiga diagnosticado es extremadamente alta. La mínima asociación significativa detectada tenía un valor de p de aproximadamente 0,018. Muchas de las asociaciones eran significativas a unos valores de p de menos de 10⁻¹⁰. Con dicha elevada significación, puede no ser necesario detectar un aumento en la expresión o en la acumulación en más de un BTM o UBTM. Sin embargo, la redundancia en los BTM de esta invención puede permitir la detección de los cánceres de vejiga con una fiabilidad aumentada.

Los métodos proporcionados en el presente documento también incluyen ensayos de alta sensibilidad. La qPCR es extremadamente sensible y puede usarse para detectar los productos génicos en un número de copias muy bajo (por ejemplo, 1 - 100) en una muestra. Con dicha sensibilidad se posibilita una detección muy precoz de los acontecimientos que están asociados con el cáncer de vejiga.

Métodos

15

40

45

50

Recolección de los tumores

Las muestras de tumores de vejiga y de urotelio no maligno se recogieron a partir de especímenes quirúrgicos extirpados en el Kyoto University Hospital, Japón, y en otros hospitales japoneses colaboradores.

Recolección de la orina

Las muestras de orina de los controles no malignos y de los pacientes con cáncer de vejiga se obtuvieron en el Kyoto University Hospital, Japón (Fig. 1). Las muestras de los controles sanos se obtuvieron a partir de voluntarios caucásicos y japoneses.

25 Extracción del ARN

Los tejidos tumorales se homogenizaron en una mezcla TriReagent:agua (3:1), después se extrajeron con cloroformo. El ARN total se purificó entonces a partir de la fase acuosa mediante el uso del procedimiento RNeasy™ (Qiagen). También se extrajo el ARN de 16 líneas celulares oncológicas y se agrupó para que sirviera como ARN de referencia.

- Se extrajo el ARN de la orina mezclando la muestra de orina con un volumen igual de tampón de lisis (guanidina-HCl 5,64 M, sarcosilo al 0,5 %, acetato de sodio 50 mM (pH 6,5) y β-mercaptoetanol 1 mM; el pH se ajustó a 7,0 con Hepes 1,5 M a pH 8). Después se extrajo el ARN total mediante el uso de Trizol y el procedimiento RNeasy™. Las preparaciones de ARN fueron purificadas adicionalmente antes de la síntesis del ADNc mediante el uso del un kit de purificación de PCR Qiagen QIAquick™.
- 35 Se extrajo el ARN de la sangre de tres voluntarios sanos mediante la realización de una extracción Trizol/RNeasy™ en células enriquecidas a partir de sangre completa mediante el uso de una sedimentación en dextrano al 3,6 %.

Preparación de micromatriz en porta

Se imprimieron portas de vidrio recubiertos con epoxi (MWG Biotech) con ~ 30.000 oligonucleótidos 50mer (MWG Biotech) mediante el uso de un robot de micromatrización Gene Machines, de acuerdo con el protocolo del fabricante.

Marcaje del ARN e hibridación

El ADNc se transcribió a partir de 5 μg de ARN total mediante el uso de la transcriptasa inversa Superscript IITM (Invitrogen) en reacciones que contienen 5-(3-aminoalil)-2'desoxiuridina-5'-trifosfato. La reacción fue a continuación desionizada en una columna Microcon antes de ser incubada con Cy3 o Cy5 en tampón de bicarbonato durante 1 hora a la temperatura ambiente. Los colorantes no incorporados se eliminaron mediante el uso de una columna Qiaquick (Qiagen) y la muestra se concentró hasta 15 μl en una SpeedVac. Los ADNcs marcados con Cy3 y Cy5 se mezclaron entonces con tampón Ambion ULTRAhybTM, se desnaturalizaron a 100 °C durante 2 min y se hibridaron en los portas de micromatrices en cámaras de hibridación a 42 °C durante 16 horas. Después los portas se lavaron y se escanearon dos veces en un escáner Axon 4000ATM con dos configuraciones de potencia.

Análisis con micromatriz de los genes marcadores del cáncer

Se marcó el ARN de 53 tumores de vejiga y 20 muestras de tejido de vejiga no maligno ("normal") con Cy5 y se hibridaron por duplicado o por triplicado con un ARN de referencia marcado con Cy3. Después de la normalización,

se estimó entonces el cambio en la expresión de cada uno de los 29.718 genes mediante el nº de veces de cambio y la probabilidad estadística.

Procedimiento de normalización

Las intensidades de fluorescencia mediana detectadas por el programa informático Genepix™ fueron corregidas mediante la sustracción de las intensidades de fondo locales. Se excluyeron los puntos con una intensidad de fondo corregida menor de cero. Para facilitar la normalización, las proporciones de intensidad y las intensidades de los puntos globales fueron transformadas logarítmicamente. Las proporciones de la intensidad registradas fueron corregidas según el colorante y el sesgo espacial mediante el uso de una regresión local implementada en el paquete LOCFIT™. Las proporciones de la intensidad registradas se regresionaron simultáneamente con respecto a la intensidad global y a la localización del punto. Los residuales de la regresión local proporcionaron el registro corregido del nº de veces de cambios. Para el control de calidad se representaron las proporciones de cada micromatriz normalizada con respecto a la intensidad y a la localización del punto. Las gráficas fueron a continuación inspeccionadas visualmente para comprobar cualquier artefacto remanente. Adicionalmente, se aplicó un modelo de ANOVA para la detección del sesgo de pin-tip. Todos los resultados y los parámetros de la normalización fueron insertados en una base de datos Postgres para su análisis estadístico.

Análisis estadístico

10

15

20

25

30

35

50

55

Para mejorar la comparación del nº de veces de cambio medidos entre las matrices, se escalaron los log2 (proporciones) para que tuvieran la misma desviación típica global por matriz. Esta estandarización redujo la variabilidad promedio dentro de la clase de tejido. Los log2 (proporciones) se modificaron adicionalmente para que tuvieran un valor mediano de cero para cada oligonucleótido, para facilitar la inspección visual de los resultados. Después se usó una prueba de rangos basada en el nº de veces de cambio para mejorar la fortaleza del ruido. Esta prueba consiste en dos etapas: (i) cálculo del rango del nº de veces de cambio (Rfc) en las matrices, y ii) sustracción de la mediana (Rfc) para el tejido normal de la mediana (Rfc) para el tejido tumoral. La diferencia entre ambos rangos medianos define la puntuación del rango del nº de veces de cambio. También se realizaron tres ensayos estadísticos adicionales sobre los datos estandarizados: 1) dos muestras de la prueba de la t de Student, 2) la prueba de Wilcoxon y 3) el análisis estadístico de las micromatrices (SAM). A los 300 genes más significativamente regulados por aumento determinados por cada uno de los métodos estadísticos (rango del nº de veces de cambio, prueba de la t, prueba de Wilcoxon y SAM) se les asignó una puntuación del rango para cada prueba. Si un gen aparecía en una lista, pero no en una o más de las otras, se añadió un factor de ponderación de 500 a su puntuación. Todas las puntuaciones de rango fueron después añadidas a una puntuación de rango sumada.

Análisis estadístico de las combinaciones de marcadores

Para determinar el valor del uso de combinaciones de dos o tres de los marcadores para discriminar entre muestras tumorales y no malignas, se sometieron los datos de la qPCR de las muestras tumorales y de las no malignas al siguiente análisis. Se generaron las distribuciones normales para las muestras no malignas y para las tumorales mediante el uso de las medias y de las desviaciones típicas de las muestras. Entonces se determinó la probabilidad de que los valores tomados de los datos de expresión tumoral excedan un umbral definido (por ejemplo, mayor del 50 %, del 70 %, del 75 %, del 80 %, del 90 %, del 95 % o del 99 %) en la distribución no maligna (es decir, la sensibilidad). Para las combinaciones de marcadores, se determinó la probabilidad de que al menos un marcador exceda el umbral.

Para demostrar el valor del análisis de la combinación de marcadores en muestras de orina, así como en muestras tumorales, también se llevó a cabo el análisis de la distribución normal sobre los datos de la qPCR obtenidos mediante el uso de las muestras de orina procedentes de pacientes con TCC y de controles no malignos descritas en la Figura 1, serie 2. Se determinó la probabilidad de que los valores de los datos de la qPCR del paciente con TCC excedan un umbral definido (por ejemplo, mayor del 50 %, del 70 %, del 75 %, del 80 %, del 90 %, del 95 % o del 99 %) en la distribución de muestras no malignas.

Métodos para la detección de marcadores del cáncer de vejiga en la orina

En varias formas de realización, pueden llevarse a cabo deseablemente ensayos para los BTM en muestras de orina. En general, los métodos para el ensayo de oligonucleótidos, proteínas y péptidos en estos fluidos son conocidos en la materia. Sin embargo, con fines ilustrativos, los niveles de un BTM en orina pueden cuantificarse mediante el uso de ensayo de tipo sándwich de inmunoadsorción enzimática (ELISA). Para los ensayos con plasma o con suero se añade una alícuota de 5 μ l de una muestra diluida apropiadamente o diluida sucesivamente de BTM estándar, y 75 μ l de un anticuerpo antiBTM humano conjugado con peroxidasa a los pocillos de una placa de microtitulación. Después de un periodo de incubación de 30 minutos a 30 °C, los pocillos se lavan con un 0,05 % de Tween 20 en solución salina tamponada con fosfato (PBS) para eliminar el anticuerpo no unido. Los complejos unidos de BTM y de anticuerpo anti-BTM se incuban entonces con o-fenilendiamina que contiene H_2O_2 durante 15 minutos a 30 °C. La reacción se detiene mediante la adición de H_2SO_4 1 M, y se mide la absorbancia a 492 nm con un lector de placas de microtitulación. Puede apreciarse que los anticuerpos anti-BTM pueden ser anticuerpos monoclonales o antisueros policlonales.

Debido a que muchas proteínas (1) son secretadas por células, (2) son escindidas de las membranas celulares, (3) se pierden de las células tras la muerte celular, o (4) están contenidas en células descamadas, se apreciará que los BTM también pueden ser detectados en la orina. Adicionalmente, el diagnóstico del cáncer de vejiga puede ser determinado mediante la medición bien de la expresión de los BTM en una muestra, o bien de la acumulación de los BTM en una muestra. Los métodos de diagnóstico de la técnica anterior incluyen una cistoscopia, una citología y un examen de las células extraídas durante estos procedimientos. Dichos métodos se han basado en la identificación de las células tumorales en la orina o en una muestra de raspado de urotelio, o en otros casos, en especímenes de biopsias de la pared de la vejiga. Estos métodos adolecen de diversos tipos de errores, incluyendo el error en la toma de muestra, errores en la identificación entre observadores, y similares.

10 PCR cuantitativa en tiempo real

15

20

45

50

55

Una PCR en tiempo real, o cuantitativa (qPCR), se usa para la cuantificación absoluta o relativa del número de copias del molde de la PCR. Se diseñaron conjuntos de sonda y cebador de Taqman™ mediante el uso de Primer Express V 2.0™ (Applied Biosystems). Cuando fue posible se incluyeron todas las potenciales variantes de corte en el amplicón resultante, dándose preferencia en el amplicón a las regiones cubiertas por el oligonucleótido de la micromatriz derivada de MWG-Biotech. Las secuencias de cebado y de la sonda se muestran en la Figura 2. Como alternativa, si el gen diana estaba representado por un ensayo de expresión Assay-on-Demand™ (Applied Biosystems) que cubría los amplicones deseados, se usaron éstos. En los ensayos diseñados internamente se tituló la concentración del cebador mediante el uso de un protocolo de marcaje SYBR green y un ADNc creado a partir del ARN de referencia. La amplificación se llevó a cabo en un sistema de detección de secuencias ABI Prism™ 7000 en unas condiciones de ciclación estándar. Cuando se observaron productos de amplificación individuales en las curvas de disociación, se generaron las curvas estándar a lo largo de un intervalo de concentraciones de 625 veces mediante el uso de las concentraciones óptimas de cebador y sondas de fosfato de 5'FAM - 3'TAMRA Taqman™ (Proligo) a una concentración final de 250 nM. Los ensayos que proporcionaban unas curvas estándar con unos coeficientes de regresión superiores a 0,98 se usaron en los ensayos posteriores.

Los ensayos pueden llevarse a cabo en dos placas de 96 pocillos con cada muestra de ARN representada por un único ADNc. Cada placa contenía una curva estándar del ADNc de referencia, a lo largo de un intervalo de concentración de 625 veces por duplicado. El análisis consistía en el cálculo de la ΔCT (CT del gen diana - CT media del ADNc de referencia). La ΔCT es directamente proporcional al log2 negativo del nº de veces de cambio. Entonces se calcularon los log2 del nº de veces de cambio con respecto a la mediana del log2 del nº de veces de cambio no maligno (log2 del nº de veces de cambio - mediana del log2 del nº de veces de cambio normal). Entonces pueden agruparse los nº de veces de cambio en clases de frecuencia y representarse gráficamente o en gráficas de caja y bigote.

Selección de los marcadores en suero y en orina para el cáncer de vejiga

Los supuestos marcadores séricos pueden seleccionarse a partir de los datos de la matriz basándose en (i) la probabilidad de que la proteína codificada sea secretada desde la célula o escindida desde la membrana; la probabilidad de secreción se basaba en el análisis con TargetP™ (Emanuelsson et al; J. Mol. Biol. 300, 1005 - 1006 (2000)) y (ii) su puntuación de la suma de rangos emparejados. Sin embargo, una variación en el grado de sobreexpresión en las muestras tumorales no sólo refleja la heterogeneidad del tumor, sino también variaciones en el grado de contaminación de las muestras tumorales con tejido "normal", incluyendo células de músculo liso, de tejido conectivo y de submucosa (véase la Patente de EE.UU. 6.335.170), células estromales y epitelio no maligno. En muchas situaciones, la contaminación "normal" variaba desde el 5 hasta el 70 %, con una mediana de aproximadamente el 25 %.

Por lo tanto, hemos sido capaces de disminuir estos resultados "falsos positivos" mediante el análisis de los BTM en las muestras de orina, que están muy contaminadas por células normales de la vejiga. Además, mediante el uso de métodos de qPCR, hemos sido capaces de determinar de forma más precisa los niveles de ARNm en una muestra de orina en comparación con el uso de métodos con micromatrices, como en la técnica anterior. Por lo tanto, hemos sido capaces de evitar una contaminación importante con otros tipos celulares de la vejiga, y por lo tanto hemos evitado uno de los problemas más intratables en la materia del análisis con micromatrices de muestras clínicas.

Mediante la medición de la acumulación de marcadores en la orina, y no basándonos en la tasa de expresión en tumores, hemos encontrado inesperadamente varios BTM que son útiles en la detección del cáncer de vejiga y en la determinación de su fase y/o de su tipo. Además, debido a que uno de los principales signos que puede hacer que un paciente visite a su médico sobre un posible cáncer de vejiga es la presencia de sangre en la orina, hemos determinado que los BTM que no son muy expresados en la sangre pueden ser de gran valor en el diagnóstico. Estos marcadores incluyen IGFBP5, MGP, SEMA3F y HOXA13 (véase la Figura 9).

La medición de la acumulación proporciona ventajas sobre la definición de "sobreexpresión." Como se ha mencionado anteriormente, un aumento en la acumulación puede reflejar una verdadera sobreexpresión o un aumento en la tasa de expresión en un sentido de biología molecular (es decir, un aumento en las cifras de las moléculas de ARN heteronuclear (hnARN), en las moléculas de ARNm o en las proteínas por célula por unidad de tiempo. Sin embargo, la acumulación también puede significar un aumento en la cantidad de marcador en un

volumen dado, tal como en orina, incluso si la tasa de expresión no está aumentada. Por ejemplo, incluso si una célula tumoral produce una cantidad normal de un marcador, la observación de un aumento en el número de dichas células en la muestra puede indicar la presencia de cáncer. Además, la acumulación puede reflejar ARN libre o soluble en una muestra. En algunos casos, las células tumorales que produjeron un marcador pueden haber muerto y el contenido celular haber sido liberado en el tejido circundante. Si el contenido celular puede alcanzar la orina, entonces podrá detectarse en ella el marcador de ARN libre. Estos fenómenos pueden ser particularmente útiles en el diagnóstico del cáncer de vejiga superficial, lo que normalmente ha sido difícil de conseguir con selectividad y especificidad. La medición de una acumulación del marcador en la orina puede ser uno de los primeros signos del cáncer de vejiga superficial. Por lo tanto, mediante el uso de los métodos y los dispositivos de esta invención, puede ser posible detectar el cáncer de vejiga en una fase precoz.

También hemos apreciado que al medir la acumulación debe tenerse cuidado en la corrección de los cambios en el volumen de la muestra. Por ejemplo, en orina, la cantidad de un marcador por unidad de volumen puede depender de la función renal del sujeto. Por lo tanto, en unas condiciones de disminución en la producción de orina, las células de la orina (incluyendo las células tumorales) pueden estar concentradas, dando así una medición artificialmente elevada de acumulación (por unidad de volumen). Dichos artefactos pueden disminuirse mediante la realización de mediciones independientes de la producción de orina (por ejemplo, la producción de orina por unidad de tiempo), el aclaramiento urinario (por ejemplo, la medición de la creatinina o del BUN). Por el contrario, en las situaciones en las que está aumentada la producción de orina, tal como en la diuresis, las células que contienen los marcadores pueden estar diluidas y producir una medición artificialmente baja de la acumulación. Sin embargo, se puede controlar el uso de diuréticos, la ingesta de agua y otros factores que pueden producir variaciones en la acumulación del marcador que no están relacionadas con la verdadera acumulación o masa del marcador en una muestra. En estas situaciones se puede corregir la cantidad de un marcador según la tasa de producción de orina.

Por lo tanto, mediante la medición de los BTM en la orina, hemos sido capaces de reducir la incidencia de resultados falsos positivos en comparación con los métodos de la técnica anterior, lo que indica que estos métodos son superiores a los métodos de la técnica anterior.

Se seleccionaron marcadores en la orina a partir de los datos de la matriz, como se ha descrito anteriormente, excepto porque no se aplicaron los criterios de secreción o de escisión desde la membrana. Por lo tanto, como marcadores en la orina se incluyen los marcadores intracelulares y unidos a la membrana que no se predecía que fueran marcadores séricos útiles.

30 Ejemplos

10

15

20

25

40

45

50

55

Los ejemplos descritos en el presente documento tienen el fin de ilustrar las formas de realización de la invención y no pretenden limitar el ámbito de la invención. Otras formas de realización, métodos y tipos de análisis están en el ámbito de las personas expertas habituales en las técnicas diagnósticas moleculares, y no necesitan ser descritas con detalle en el presente documento.

35 Ejemplo 1: identificación de marcadores del cáncer de vejiga superficial e invasivo

La agrupación jerárquica de los datos de la micromatriz procedentes de los patrones de expresión génica del cáncer de vejiga invasivo y superficial mostró un gran número de diferencias significativas. Como resultado, estos tipos de cáncer se trataron por separado en los siguientes análisis. No obstante, una elevada proporción de genes están sobreexpresados en ambos tipos de cáncer. La Figura 3 representa una tabla que muestra los resultados de los estudios con micromatrices para marcadores de un cáncer de vejiga invasivo. Treinta y uno de los 199 marcadores invasivos cumplían los criterios establecidos anteriormente para marcadores séricos (indicados como "S" en la figura). La Figura 4 representa una tabla que muestra los resultados de los estudios con micromatrices para marcadores de un cáncer de vejiga superficial. Treinta y cuatro de los 170 marcadores superficiales cumplían los criterios anteriores para marcadores séricos. Las Figuras 3 y 4 incluyen el símbolo HUGO para el gen ("símbolo"), el número del oligonucleótido MWG Biotech, el número de la secuencia de referencia del ARNm NCBI, el número de la secuencia de referencia de la proteína, la media del nº de veces de cambio entre la expresión génica tumoral y no maligna, el máximo del nº de veces de cambio entre la expresión en muestras individuales y la mediana de la expresión en muestras no malignas, los resultados de una prueba original no ajustada de la t de Student, los resultados de la prueba de Wilcoxon de 2 muestras y la puntuación de los rangos sumados.

La media del nº de veces de cambio (tumor:tejido no maligno) para los 199 genes en el análisis del marcador del cáncer de vejiga invasivo variaban desde 1,3 hasta 5,3, y el análisis del máximo del nº de veces de cambio variaba desde 2,1 hasta 60,9. Para los análisis del cáncer de vejiga superficial, los 170 marcadores variaban desde una sobreexpresión media de desde 1,1,3 hasta 3,0, y la sobreexpresión máxima variaba desde 1,9 hasta 144. Para cada uno de los marcadores mostrados, se encontró que la significación estadística de su especificidad como marcadores del cáncer era extremadamente alta. Los valores de la prueba de la t de Student estaban todos, con pocas excepciones, por debajo de 10⁻³, lo que indica que el diagnóstico mediante el uso de estos marcadores está muy asociado con el cáncer de vejiga. Debería apreciarse que los nos de veces de cambio generados por los estudios con micromatrices tienden a subestimar los cambios en la expresión real observados mediante el uso de técnicas más precisas tales como una qPCR. Sin embargo, por las razones descritas en otro sitio, los análisis con

micromatrices pueden adolecer de uno o más artefactos graves. Por lo tanto, hemos desarrollado un método basado en una gPCR para detectar de forma más precisa la presencia y la fase del cáncer de vejiga.

Ejemplo 2: análisis mediante qPCR

10

15

20

25

30

45

50

55

60

Se obtuvo una cuantificación más sensible y precisa de la expresión génica para un subconjunto de los genes mostrados en las Figuras 3 y 4 mediante el uso de una qPCR. Se analizó el ARN mensajero de hasta 30 tumores de vejiga invasivos, de 25 tumores de vejiga superficiales y de 18 muestras de urotelio normal para 18 genes identificados mediante el análisis con micromatriz (Figuras 3 y 4), estando los resultados mostrados en la Figura 5. Se muestran los datos de ambos tipos de cánceres de vejiga invasivo y superficial para los marcadores SPAG5, TOP2a, CDC2, ENG, NRP1, EGFL6, SEM2, CHGA, UBE2C, HOXA13, MDK, THY1, BIRC5 y SMC4L1. Los marcadores SEMA3F, IGFBP5, y NOV sólo estaban sobreexpresados en comparación con el urotelio normal en el tipo superficial solo, y MGP sólo estaba sobreexpresado en el tipo invasivo solo; estos marcadores mantenían una expresión similar a la del urotelio normal en las muestras tumorales que no estaban sobreexpresadas. La Figura 5 incluye el nombre del gen, los alias de gen, el símbolo del gen, la mediana del nº de veces de cambio entre tejido tumoral (T) y no maligno (N), el máximo del nº de veces de cambio entre las muestras tumorales individuales y la expresión mediana de tejido no maligno y el % de muestras tumorales con unos niveles de expresión mayores del percentil 95º de los niveles de expresión de las muestras no malignas.

La mediana del nº de veces de cambio (teiidos tumorales comparados con la mediana de la expresión en teiido no maligno) para los marcadores de la Figura 5, excepto para CHGA, variaba entre 2 y 128 veces para los tumores de vejiga invasivos, y entre 2 y 39 veces para los tumores de vejiga superficiales. El máximo del nº de veces de cambio para los tumores invasivos variaba entre 24 y 2526 veces, y para los tumores superficiales desde 6 veces hasta 619 veces. El patrón de expresión de CHGA era notable debido a que tenía una expresión muy alta en una proporción de los tumores (Fig. 6s - 6t), pero una expresión indetectable en el resto. La expresión era indetectable en 15 / 25 tumores superficiales, en 15 / 29 tumores invasivos y en 9 / 10 muestras normales. La baja expresión en muestras normales descarta una cuantificación precisa del nivel de sobreexpresión en tumores como una proporción en comparación con la normal, pero cuando la acumulación del ARNm del BTM puede ser medida y cuantificada, y usada como una base para el diagnóstico del cáncer de vejiga. Para los tumores invasivos, el nivel de expresión de los genes SPAG5, TOP2A y CDC2 era mayor en los tumores que en el percentil 95º del intervalo 'normal' para el > 90 % de los casos. Con la excepción de BIRC5, el resto de los genes de la Figura 5 que fueron examinados en tumores invasivos tenían una expresión mayor del percentil 95° de lo normal en > 45 % de las muestras. En los tumores superficiales, el nivel de expresión de los genes SPAG5, TOP2A, CDC2, ENG y NRP1 era mayor en los tumores que en el percentil 95º del intervalo no maligno para el > 80 % de los casos. Con la excepción de CHGA, UBE2C y BIRC5, el resto de los genes de la Figura 5 que fueron examinados en tumores superficiales tenían una expresión mayor del percentil 95º de lo normal en > 40 % de las muestras.

Las Figuras 6a - 6af representan los histogramas que comparan la frecuencia de observación de la expresión de cada uno de una serie de 18 genes (eje vertical) y el log2 del nº de veces de cambio en la expresión para ese gen (eje horizontal), tanto para el tejido normal (barras claras) como para los tejidos tumorales superficiales o invasivos (barras oscuras). Sorprendentemente averiguamos que para cada uno de estos 18 genes, había una separación sustancial en las distribuciones de frecuencia entre el tejido normal y el tumoral. Por ejemplo, la Figura 6c representa los resultados para la expresión de TOP2a en tumores invasivos. Sólo se observaron dos muestras tumorales con un nivel de expresión en el intervalo normal.

La acumulación de 18 BTM, SPAG5, TOP2A, CDC2, ENG, IGFBP5, NOV, NRP1, SEMA3F, EGFL6, MGP, SEM2, CHGA, UBE2C, HOXA13, MDK, THY1, BIRC5 y SMC4L1, en la orina de los pacientes y de los controles (Figura 1: serie de muestras 1) se determinó mediante el uso de una qPCR sobre el ARN total extraído a partir de volúmenes iguales de orina. 17 de los BTM mostraron una mayor acumulación en la orina de los pacientes en comparación con las muestras de orina de control, siendo EGFL6 la excepción (Figura 7). La mediana del número de veces de diferencia para los 17 BTM variaba entre 2 veces y 265 veces. La diferencia máxima entre la muestra de un único paciente y el nivel mediano en los controles variaba entre 26 veces y > 10.000 veces.

La Figura 8 muestra las diferencias en la acumulación del BTM transcrito para 13 BTM representadas como gráficas de caja y bigote, y estandarizada a la expresión mediana en las muestras de control. La Figura 8 muestra que MDK, SEMA3F y TOP2A no se solapan en la orina de los pacientes con cáncer y de los controles. Adicionalmente, los altos niveles de acumulación de los transcritos para IGFBP5, HOXA13, MGP, NRP1, SMC4L1, SPAG4 y UBE2C están casi siempre asociados con el cáncer de vejiga. Para el resto de los BTM representados en la Figura 8, BIRC5, NOV y CDC2, su expresión en la orina de los pacientes con cáncer de vejiga está aumentada en al menos aproximadamente 3 veces en comparación con las muestras de control normales.

El principal síntoma clínico que provoca la realización del ensayo para comprobar la presencia de cáncer de vejiga es la hematuria (es decir, la presencia de niveles macroscópicos o microscópicos de sangre en la orina). La sangre se detecta normalmente visualmente o mediante la detección química de la hemoglobina mediante el uso de tiras reactivas de orina. Sólo aproximadamente el 15 % y el 4 % de los casos de hematuria macroscópica y microscópica, respectivamente, están asociados con el cáncer de vejiga. Consecuentemente, para que un ensayo de cáncer de vejiga tenga una elevada especificidad, es importante que los niveles de expresión del marcador en la sangre

completa sean bajos, o en algunos casos, indetectables. Por lo tanto, para mejorar la identificación de los marcadores que tienen una alta especificidad, se determinó la expresión de entre doce y trece marcadores de la Figura 8 en ARN sanguíneo mediante el uso de una qPCR. La qPCR se realizó sobre 5 µg de ARN total extraído de sangre y de tejido tumoral de vejiga mediante el uso de los cebadores y las sondas descritos en la Figura 2. La Figura 9 muestra el número de ciclos por encima del fondo para cada uno de los marcadores. Para los marcadores MGP, IGFBP5, SEMA3F y HoxA13, no pudieron detectarse los transcritos en sangre, pero los marcadores SMC4L1 y UBE2c, en particular, se expresaban en la sangre. Apreciamos que los datos, que mostraban el número de ciclos de la PCR, son inherentemente una gráfica en log2, por lo que un aumento de 1 en el número de ciclos indica una duplicación de la señal. Por lo tanto, en la evaluación de las diferencias entre la presencia del marcador en tejido tumoral y en sangre, una diferencia de dos (2) ciclos indica una diferencia en la expresión de 4 veces. De forma análoga, una diferencia de 5 ciclos (por ejemplo, para TOP2A) indica una diferencia de 2⁵, o de 32 veces. Otros marcadores tales como TOP2A y MDK tienen una expresión en sangre detectable, pero siguen siendo unos marcadores razonables debido a la gran diferencia entre la expresión en sangre y la expresión en los tumores de vejiga.

Para examinar adicionalmente la expresión diferencial de un marcador entre la sangre y los tumores de vejiga, y para refinar la selección de los marcadores en orina del cáncer de vejiga, se seleccionaron nueve marcadores para un análisis adicional mediante el uso del ARN de la orina de 20 pacientes adicionales, 13 controles normales y 26 controles no malignos (Figura 1: serie de muestras 2). Los controles no malignos incluían 20 muestras bien con sangre oculta o bien con glóbulos blancos detectados en la orina mediante una citología. Los nueve marcadores mostraron una diferenciación entre las muestras de los controles y las de los pacientes con cáncer, con una sobrerrepresentación de la mediana del log2 en las muestras de los pacientes con cáncer que variaba entre 5,4 y 10,4, y entre 4,0 y 10,1 en comparación con las muestras sanas y las muestras no malignas, respectivamente (Figura 10). Las gráficas de cajas y bigotes que ilustran estos datos se muestran en la Figura 11.

Como se predijo por los datos de la qPCR sanguínea, los marcadores UBE2C y SMC4L1 mostraron unos notables aumentos en la acumulación en la orina de los controles no malignos en comparación con los controles sanos. El NRP1 también estaba significativamente elevado en las muestras de orina de las muestras no malignas en comparación con las muestras de orina de los controles sanos, y mostró un solapamiento considerable entre las muestras de los pacientes con cáncer y las muestras de los pacientes no malignos, TOP2A y MDK también mostraron aumentos, pero debido a su expresión muy alta en las células de TCC, mantuvieron una fuerte diferencia entre la acumulación del ARN en las muestras de orina de los pacientes no malignos y la de los pacientes con cáncer. Por el contrario, HOXA13, IGFBP5, SEMA3F y MGP sólo mostraron unos pequeños aumentos en las muestras de orina no maligna en comparación con las muestras de los controles sanos.

Globalmente, seis marcadores (SEMA3F, HOXA13, MDK, IGFBP5, MGP y TOP2A) mostraron un solapamiento mínimo entre las muestras de los pacientes con cáncer y los controles no malignos. El resto de los tres marcadores (NRP1, UBE2C, SMC4L1) mostró un aumento significativo en un subconjunto de los controles no malignos y un solapamiento con las muestras de los pacientes con cáncer. El aumento en la acumulación de los marcadores de ARN en la orina de los controles no malignos en comparación con los controles sanos es coherente con la expresión de estos marcadores en las células de origen hematopoyético o endotelial que están presentes en la orina de los pacientes con una enfermedad no maligna. Por lo tanto, el uso de marcadores individuales para el diagnóstico del cáncer de vejiga mediante el uso de muestras de orina muestra un aumento en la sensibilidad y en la especificidad en comparación con los métodos de la técnica anterior, que no tienen en cuenta la expresión del marcador en sangre. Este resultado era completamente inesperado basándose en la técnica anterior.

Los datos ilustran el sorprendente hallazgo de que la utilidad del uso de los marcadores en orina para el cáncer de vejiga que muestra una elevada sensibilidad y especificidad no puede ser predicha de forma precisa mediante el uso de un análisis con micromatriz de los datos de la expresión génica tumoral solos. Es necesario tener en cuenta la expresión de posibles marcadores en células de origen hematopoyético y/o endotelial. Esto puede conseguirse mediante: (i) un análisis mediante una qPCR del ARN sanguíneo, (ii) un análisis de las bases de datos de la expresión (por ejemplo, genotecas EST de ARN sanguíneo de células vasculares / endoteliales) y/o (iii) un análisis mediante una qPCR del ARN extraído a partir de orina no fraccionada.

50 Sensibilidad y especificidad

10

25

30

35

40

45

Tomando como base las dos series de muestras analizadas y divulgadas en el presente documento, la sensibilidad para la detección del cáncer de vejiga excede el 95 %. La especificidad en la serie 2, que incluía las muestras de pacientes con una enfermedad no maligna, también excede el 95 %.

Ejemplo 3: uso de múltiples marcadores en la detección del cáncer de vejiga

Las Figuras 12a - 12b representan histogramas del número de genes que muestran una expresión significativamente aumentada ("sobreexpresión") en muestras tumorales individuales en comparación con las muestras normales. Los histogramas se basaban en los datos de la qPCR obtenidos de los doce primeros marcadores mostrados en la Figura 5. De los 30 tumores invasivos en el análisis de la PCR, 27 (el 90 %) sobreexpresaban al menos cuatro genes por encima del percentil 95° (Figura 12a). De los 25 tumores superficiales del análisis, 23 (92 %)

sobreexpresaban al menos cuatro genes por encima del percentil 95° (Figura 12b). Estos hallazgos indican que, en las situaciones en las que hay múltiples genes sobreexpresados con respecto al tejido normal, la fiabilidad de la detección del cáncer puede ser muy alta, haciendo que el diagnóstico del cáncer sea más inequívoco. Sin embargo, en algunos casos, la elevación de la expresión de un único gen marcador es suficiente para dar lugar a un diagnóstico de cáncer.

5

10

55

La fiabilidad de la discriminación con éxito entre muestras tumorales y no tumorales mediante el uso de combinaciones de marcadores se ilustra adicionalmente mediante el análisis estadístico representado en la Figura 13. Este análisis comparaba las distribuciones normales de los datos de la expresión génica de la qPCR de muestras tumorales y no malignas. Los datos de la qPCR se han resumido en la Figura 5. El análisis muestra el efecto del aumento del número de marcadores usados para discriminar entre muestras tumorales y no malignas sobre la sensibilidad del ensayo (con una especificidad fija del 95 %). Aunque pocos de los 18 marcadores tienen una sensibilidad de más del 90, del 95 o del 99 % cuando se usan solos en este análisis, la combinación de dos o tres marcadores permitió alcanzar una elevada sensibilidad con grandes cifras, de combinaciones de dos o tres marcadores (Figuras 14a y 14b).

- Las Figuras 14a y 14b muestran la sensibilidad de los marcadores y las combinaciones de marcadores específicas para la detección del carcinoma de células de transición invasivo y superficial (TCC), cuando la especificidad se ha fijado en el 95 %. Únicamente se han mostrado las combinaciones con una sensibilidad de > 90 %. De los 15 marcadores mostrados en la Figura 14a, el cáncer de vejiga invasivo puede ser detectado con una sensibilidad de aproximadamente el 95 % para TOP2A, SPAG5 y CDC2 de forma individual. Otros marcadores mostrados tienen una sensibilidad menor cuando se usan de forma individual.
 - Sin embargo, las combinaciones de dos de los anteriores marcadores mejoraron drásticamente la sensibilidad de la detección del cáncer de vejiga invasivo (Figura 13a y Figura 14a). Una sensibilidad mayor del 95 % puede conseguirse mediante el uso de 13 de las 105 combinaciones de dos marcadores. De hecho, mediante el uso de dos marcadores se obtiene una sensibilidad mínima del 90 % en 42 de las 105 combinaciones de marcadores.
- Para el cáncer de vejiga superficial (Figura 13b y Figura 14b), no puede conseguirse una sensibilidad mayor del 90 % con ninguno de los marcadores de forma individual, sin embargo, este umbral se alcanzó con 11 de las 136 combinaciones de dos marcadores. Una sensibilidad del > 95 % se alcanzó con 22 combinaciones de tres marcadores.
- El uso de combinaciones de marcadores también puede mejorar drásticamente la sensibilidad de la detección del cáncer de vejiga mediante el uso de muestras de orina. Las Figuras15 y 16 muestran la sensibilidad de la detección de los marcadores individuales y de las combinaciones de marcadores mediante el uso de los datos de la qPCR de la orina.

Como se observa en la Figura 16, aunque únicamente el IGFBP5 solo tenía una sensibilidad del > 95 %, ocho combinaciones de dos marcadores y 37 combinaciones de tres marcadores alcanzaron este umbral.

35 Ejemplo 4: acumulación diferencial de transcritos en pacientes con cáncer de vejiga superficial e invasivo

A partir de la Figura 5 puede observarse que varios BTM, incluyendo SEMA3F, HOXA13, TOP2A y SPAG5, muestran una expresión diferencial entre los cánceres de vejiga invasivos y los cánceres de vejiga superficiales. Para ampliar esta observación se comparó la acumulación de estos transcritos en la orina de pacientes con cáncer de vejiga invasivo y superficial.

- Se extrajo ARN a partir de volúmenes iguales de orina procedentes de los pacientes descritos en la Figura 1 y se determinó la acumulación de los BTM mediante una qPCR. La acumulación de las combinaciones específicas de BTM se expresó entonces en forma de proporciones. Las combinaciones de BTM consistían en un BTM con una mayor sobreexpresión en los tumores de vejiga invasivos en comparación con los tumores de vejiga superficiales, y un BTM con una mayor sobreexpresión en los tumores superficiales en comparación con los tumores invasivos.
- La Figura 17 muestra una combinación de tres marcadores analizados en muestras de orina de 20 pacientes con TCC superficial y 14 con invasivo. Las tres combinaciones mostradas son: (i) TOP2A y HOXA13, (ii) TOP2A e IGFBP5, y (iii) TOP2A y SEMA3F. Puede observarse que estas combinaciones de marcadores son capaces de diferenciar entre las muestras de orina de los pacientes con un TCC superficial y con uno invasivo. Otros marcadores de la Figura 5 que muestran una diferencia en la expresión entre los tipos superficial e invasivo de TCC también son capaces de determinar el tipo de TCC, basándose en el análisis de una muestra de orina.

Además, la Figura 18 muestra que el uso de la combinación de dos marcadores que incluyen TOP2A puede usarse para distinguir entre el cáncer de vejiga invasivo en fase 1 - 2 y los tumores en fase 3.

Estas observaciones muestran que la determinación de la acumulación de varios transcritos de BTM en la orina permite la distinción entre las formas invasiva y superficial del cáncer de vejiga. Lo que es más, las proporciones de los BTM determinadas mediante una qPCR de las muestras de orina de pacientes con cáncer de vejiga permite una diferenciación más potente entre los tipos invasivo y superficial que los mismos análisis realizados sobre el ARN

tumoral. Esto está ilustrado en la Figura 19, que muestra una representación de cajas y bigotes para: (i) TOP2A y HOXA13, (ii) TOP2A y IGFBP5, y (iii) TOP2A y SEMA3F, mediante el uso de los datos de la qPCR de aproximadamente 23 preparaciones de ARN tumoral de vejiga superficial y 28 de invasivo; aunque las proporciones de estos BTM todavía permiten una distinción entre los tipos superficial e invasivo del cáncer de vejiga, existe un mayor solapamiento entre las proporciones del superficial y del invasivo. Este hallazgo puede reflejar la contaminación de las preparaciones de ARN tumoral con tipos celulares tales como muscular y fibroblastos, que no tienen la misma proporción de BTM que las células malignas. Como alternativa, puede reflejar una expresión diferencial más potente de los BTM en las células malignas, que están descamadas en la orina, que aquellas células que permanecen en el cuerpo del tumor. Independientemente de la razón de esta observación, hemos concluido que la detección de la acumulación de los BTM en la orina presenta unas ventajas sustanciales sobre los análisis convencionales con micromatriz de muestras de tejido.

Ejemplo 5: anticuerpos contra los marcadores tumorales de vejiga

En algunos aspectos adicionales, esta invención incluye la elaboración de anticuerpos contra los BTM. Mediante el uso de los métodos descritos en el presente documento, pueden identificarse nuevos BTM mediante el uso de un análisis con micromatriz y/o de una qPCR. Una vez identificado un supuesto marcador, puede ser producido en una cantidad suficiente para que sea adecuado para desencadenar una respuesta inmunitaria. En algunos casos puede usarse un BTM completo, y en otros puede ser suficiente un fragmento peptídico de un BTM como inmunógeno. El inmunógeno puede ser inyectado en un hospedador adecuado (por ejemplo, un ratón, un conejo, etc.) y si se desea, puede inyectarse un coadyuvante, tal como el coadyuvante completo de Freund, el coadyuvante incompleto de Freund, para aumentar la respuesta inmunitaria. Puede apreciarse que la elaboración de anticuerpos es rutinaria en las técnicas inmunológicas y no necesita ser descrita adicionalmente en el presente documento. Como resultado pueden producirse anticuerpos contra los BTM o los UBTM identificados mediante el uso de los métodos descritos en el presente documento.

En algunas formas de realización adicionales más, pueden elaborarse anticuerpos contra la proteína o el núcleo de la proteína de los marcadores tumorales identificados en el presente documento, o contra una secuencia oligonucleotídica única de un BTM. Aunque algunas proteínas pueden estar glucosiladas, las variaciones en el patrón de glucosilación pueden dar lugar, en ciertas circunstancias, a una incorrecta detección de las formas de los BTM que carezcan de los patrones de glucosilación habituales. Por lo tanto, en algunos aspectos de esta invención, los inmunógenos de BTM pueden incluir BTM desglucosilados o fragmentos de BTM desglucosilados. La desglucosilación puede llevarse a cabo mediante el uso de una o más glucosidasas conocidas en la materia. Como alternativa, puede expresarse el ADNc del BTM en líneas celulares deficientes en glucosilación, tales como líneas celulares procariotas, incluyendo E. coli y similares.

Pueden elaborarse vectores con oligonucleótidos que codifican el BTM en los mismos. Muchos de dichos vectores pueden basarse en los vectores habituales conocidos en la materia. Los vectores pueden usarse para transfectar diversas líneas celulares para producir líneas celulares productoras de BTM, que pueden usarse para producir las cantidades deseadas de BTM para el desarrollo de anticuerpos específicos o de otros reactivos para la detección de los BTM o para el desarrollo de ensayos estandarizados para los BTM o los UBTM.

Ejemplo 6: kits

10

15

20

35

40

45

50

55

Tomando como base los descubrimientos de esta invención pueden contemplarse y producirse varios tipos de kits de ensayo. En primer lugar pueden elaborarse kits que tienen un dispositivo de detección precargado con una molécula de detección (o "reactivo de captura"). En las formas de realización para la detección del ARNm de los BTM, dichos dispositivos pueden comprender un sustrato (por ejemplo, vidrio, sílice, cuarzo, metal, etc.) sobre el que se unen los oligonucleótidos como reactivos de captura que hibridan con el ARNm que se va a detectar. En algunas formas de realización, puede realizarse la detección directa del ARNm mediante la hibridación del ARNm (marcado con cy3, cy5, radiomarcado o con otro marcaje) con los oligonucleótidos del sustrato. En otras formas de realización, la detección del ARNm puede realizarse creando en primer lugar un ADN complementario (ADNc) del ARNm deseado. Después puede hibridarse el ADNc marcado con los oligonucleótidos del sustrato, y ser detectado.

Independientemente del método de detección empleado, es deseable la comparación de la expresión del BTM del ensayo con una medición estándar. Por ejemplo, puede estandarizarse la expresión del ARN al ADN celular total, a la expresión de los ARN expresados constitutivamente (por ejemplo, ARN ribosómico) o a otros marcadores relativamente constantes. En las formas de realización que miden los BTM en los fluidos corporales, tales como la orina, el estándar puede ser un volumen igual de orina obtenido a partir de sujetos sin enfermedad maligna, según se muestra en el presente documento.

También pueden usarse anticuerpos en los kits como reactivos de captura. En algunas formas de realización, un sustrato (por ejemplo, una placa multipocillo) puede tener unido al mismo un reactivo de captura específico para un BTM o un UBTM. En algunas formas de realización, un kit puede tener incluido un reactivo de bloqueo. Los reactivos de bloqueo pueden usarse para reducir la unión no específica. Por ejemplo, la unión de oligonucleótidos no específicos puede reducirse mediante el uso de un exceso de ADN de cualquier fuente conveniente que no contenga oligonucleótidos del BTM, tal como ADN de esperma de salmón. La unión no específica del anticuerpo

puede reducirse mediante el uso de un exceso de una proteína de bloqueo tal como la albúmina sérica. Puede apreciarse que en la materia se conocen numerosos métodos para la detección de oligonucleótidos y de proteínas, y cualquier estrategia que pueda detectar específicamente las moléculas asociadas a los BTM puede ser usada y considerada en el ámbito de esta invención.

En las formas de realización que se basan en la detección con anticuerpos, las proteínas o los péptidos del BTM pueden ser expresados en una base por célula, o en una base de células totales, de tejido o de proteínas en el fluido, de volumen de fluido, de masa de tejido (peso). Adicionalmente, el BTM del suero puede ser expresado sobre la base de una proteína sérica con una abundancia relativamente alta, tal como la albúmina.

Además de un sustrato, un kit de ensayo puede comprender reactivos de captura (tales como sondas), soluciones de lavado (por ejemplo, SSC, otras sales, tampones, detergentes y similares), así como fracciones de detección (por ejemplo, cy3, cy5, radio marcajes, y similares). Los kits pueden incluir también instrucciones para su uso y un envase.

Ejemplo 7: combinaciones de BTM usadas para la detección del cáncer de vejiga I

25

30

35

50

En una serie de formas de realización, los reactivos para el ensayo de los BTM HOXA13, MGP, SEMA3F y TOP2A, solos o en combinación, pueden ser incorporados en un kit para el ensayo de orina no fraccionada o de sedimentos celulares de la orina para la detección del cáncer de vejiga. El intervalo de acumulación de estos BTM en los pacientes con cáncer y en los controles se muestra en la Figura 20. Las muestras de orina se recogieron de pacientes con un cáncer de vejiga diagnosticado que requerían monitorización para comprobar la progresión de la enfermedad o la respuesta al tratamiento, de individuos con síntomas urológicos que incluyen hematuria macroscópica y microscópica, o de individuos asintomáticos. Para los pacientes o los individuos que se van a ensayar con un kit que mide los BTM en orina no fraccionada, pueden tomarse aproximadamente 2 ml de la orina para el ensayo. Para los ensayos con el sedimento de la orina pueden recogerse > 20 ml de orina.

Un kit adecuado incluye: (i) instrucciones para su uso y la interpretación de los resultados, (ii) reactivos para la estabilización y la purificación del ARN a partir de orina no fraccionada o de sedimentos de orina, (iii) reactivos para la síntesis de ADNc que incluyen los dNTP y la transcriptasa inversa, y (iv) reactivos para la cuantificación del ADNc del BTM. En una forma, estos reactivos se usarían para una PCR cuantitativa e incluirían cebadores oligonucleotídicos específicos que abarcan el exón, un tercer oligonucleótido marcado con una sonda para su detección, polimerasa Taq y los demás tampones, sales y dNTP necesarios para la PCR. El kit también puede usar otros métodos para la detección de los transcritos, tales como la hibridación directa del ARN del BTM con sondas marcadas, o una tecnología de ADN ramificado; (v) oligonucleótidos y una sonda para la detección de los transcritos a partir de un gen altamente transcrito, tal como β-action, para que sirva como una medida de control de calidad; y (vi) muestras cuantificadas de la secuencia del BTM diana para que actúen como un patrón de calibración interno y como referencia del límite superior de acumulación del transcrito de BTM en los controles sanos y no malignos. El límite superior puede definirse como el percentil 95° o 99° del intervalo de control, aunque podrían aplicarse otros límites. En particular, para el diagnóstico del cáncer de vejiga superficial, un umbral conveniente es por encima de aproximadamente el 50 %, en otros casos por encima de aproximadamente el 60 %, el 70 % o el 80 %.

Por lo tanto, mediante el uso de los métodos de esta invención, se puede detectar el cáncer de vejiga, así como la fase y el tipo, con un aumento en la sensibilidad y en la especificidad en comparación con los métodos de la técnica anterior.

40 En algunas formas de realización, la función renal puede determinarse mediante el uso de métodos convencionales (por ejemplo, mediciones de la creatinina). En algunas de estas formas de realización, la acumulación del marcador puede ser corregida según una medición de la función renal (por ejemplo, volumen de orina, volumen de células, número de células o proteínas celulares totales en la muestra de orina).

Para los ensayos que implican una qPCR, las muestras de ensayo que exceden el límite superior predeterminado se puntuarían como positivas si la acumulación del BTM en la muestra de ensayo fuera mayor de un ciclo de PCR mayor que el límite superior. Para otros métodos de detección, unos resultados mayores de 2 veces por encima del límite superior (por ejemplo, del percentil 90°, 95° o 97,5°) de lo normal se puntuarían como positivos.

Ejemplo 8: combinaciones de BTM usadas para la detección del cáncer de vejiga II

En otra serie de formas de realización, puede usarse la acumulación en la orina de cualquiera o ambas de las combinaciones de marcadores TOP2A / SEMA3F y TOP2A / HOXA13 para proporcionar una potente predicción del tipo histológico del cáncer de vejiga que está presente en un paciente con un diagnóstico de cáncer de vejiga realizado mediante el uso de un ensayo en orina o en sangre de cualquier tipo. Por lo tanto, puede no ser necesaria una cistoscopia ni un examen histológico para el diagnóstico del tipo de cáncer de vejiga.

Los kits usados para el ensayo de estas proporciones contienen desde (i) hasta (iv) de los componentes descritos en el Ejemplo 7. Después de la cuantificación de la acumulación de los BTM de acuerdo con la práctica estándar de la qPCR, se calcularon las proporciones de TOP2A / SEMA3F y de TOP2A / HOXA13. Los intervalos de estas proporciones en la orina de los pacientes con cáncer de vejiga superficial e invasivo se muestran en la Figura 21.

Mediante el uso de un ensayo de qPCR, una diferencia menor de cinco ciclos entre TOP2A y SEMA3F, siendo SEMA3F el transcrito más abundante, puede predecir un cáncer de vejiga invasivo, y si es mayor de cinco ciclos, puede predecir un cáncer de vejiga superficial. Para TOP2A y HOXA13, una diferencia menor de ocho ciclos, siendo HOXA13 el transcrito más abundante, puede predecir un cáncer de vejiga invasivo, y si es mayor de ocho ciclos puede predecir un cáncer de vejiga superficial.

Ejemplo 9: evaluación de la progresión del cáncer de vejiga mediante el uso de los BTM

Para evaluar la progresión de los tumores de vejiga, se obtienen muestras de tejido mediante una biopsia de la pared de la vejiga o se recogen muestras de orina con el tiempo a partir de un paciente que padece cáncer de vejiga. Se realiza una evaluación de la acumulación de los BTM, de los UBTM o de combinaciones de los mismos para las muestras tomadas en diferentes momentos. Un aumento en la acumulación de los BTM o de los UBTM individuales, o de las combinaciones, es indicativa de la progresión del cáncer de vejiga.

Ejemplo 10: evaluación de la terapia del cáncer de vejiga mediante el uso de los BTM

Para evaluar la eficacia de la terapia de los tumores de vejiga, se obtienen muestras de tejido y/o de orina antes de iniciar el tratamiento. Se determinan los niveles en el momento inicial de uno o más de los BTM o de los UBTM, al igual que las proporciones de los diversos BTM y UBTM entre sí. Se inicia el tratamiento, y puede incluir cualquier terapia conocida en la materia, incluyendo cirugía, radioterapia o quimioterapia, según sea apropiado para el tipo y la fase de la enfermedad. Durante el transcurso de la terapia se recogen muestras de tejido y/o de orina y se analizan para evaluar la presencia y la cantidad de los BTM y/o UBTM. Se determinan las proporciones de los diversos BTM y UBTM y los resultados se comparan con: (1) los niveles en el momento inicial del paciente antes del tratamiento, o (2) los valores normales obtenidos a partir de una población de individuos que no padecen cáncer de vejiga.

Algunos métodos para la detección de los miembros de la familia de BTM y de UBTM incluyen la detección de ácidos nucleicos, proteínas y péptidos mediante el uso de métodos con micromatrices y/o una PCR en tiempo real. Las composiciones y los métodos de esta divulgación son útiles en el diagnóstico de la enfermedad, en la evaluación de la eficacia de la terapia y en la producción de reactivos y de kits de ensayo adecuados para la medición de la expresión de los miembros de la familia de BTM o de los miembros de la familia de UBTM.

Lista de secuencias

5

10

15

20

25

```
<110> Pacific Edge Biotechnology Ltd.
         <120> Marcadores en la orina para la detección del cáncer de vejiga
30
         <130> GL226181EP
         <150> NZ534289
         <151> 23-07-2004
         <150> NZ539219
35
         <151> 04-04-2005
         <150> US 60/692619
          <151> 20-06-2005
40
         <160> 39
          <170> PatentIn versión 3.3
45
         <210> 1
          <211> 22
          <212> ADN
          <213> Homo sapiens
50
         <400> 1
         aattcagagg ccttctgaag ga 22
          <210> 2
         <211> 20
          <212> ADN
55
          <213> Homo sapiens
          <400> 2
         ccgcccagac acctacattg 20
60
```

5	<210> 3 <211> 16 <212> ADN <213> Homo sapiens <400> 3 gccgccgcgg aataat 16
10	<210> 4 <211> 23 <212> ADN <213> Homo sapiens
15	<400> 4 gcaggtgtca gcaagtatga tca 23 <210> 5
•	<210> 3 <211> 22 <212> ADN <213> Homo sapiens
20	<400> 5 aattgtgacc gcaaaggatt ct 22
25	<210> 6 <211> 16 <212> ADN <213> Homo sapiens
30	<400> 6 cggaccccag caacca 16
35	<210> 7 <211> 22 <212> ADN <213> Homo sapiens
	<400> 7 ggagtgtgtt gaccagcaag ac 22
40	<210> 8 <211> 25 <212> ADN <213> Homo sapiens
45	<400> 8 cctgtcattt acgctgtctt tacct 25
50	<210> 9 <211> 18 <212> ADN <213> Homo sapiens <400> 9 tgctctcctg ggtggcag 18
55	<210> 10 <211> 23 <212> ADN <213> Homo sapiens
60	<400> 10 ttcatatccc ctcagcagag atg 23
65	<210> 11 <211> 19 <212> ADN <213> Homo sapiens

	<400> 11 ctcgaggtgt acgcgctgt 19
5	<210> 12 <211> 21 <212> ADN <213> Homo sapiens
10	<400> 12 tacaaggaga tccggaaagg c 21
15	<210> 13 <211> 19 <212> ADN <213> Homo sapiens
	<400> 13 tgaacctggc catcagcat 19
20	<210> 14 <211> 22 <212> ADN <213> Homo sapiens
25	<400> 14 tctgctgaac cagctcttct tg 22
30	<210> 15 <211> 26 <212> ADN <213> Homo sapiens
35	<400> 15 ccctatagtt aatgccaaca tcttca 26
	<210> 16 <211> 26 <212> ADN <213> Homo sapiens
40	<400> 16 accttctcca attttctcta ttttgg 26 <210> 17
45	<211>21 <212> ADN <213> Homo sapiens
50	<400> 17 atgttgaggc agtgcacctt t 21
	<210> 18 <211> 18 <212> ADN <213> Homo sapiens
55	<400> 18 cagcagatgc cacgcttg 18
60	<210> 19 <211> 23 <212> ADN <213> Homo sapiens
65	<400> 19 ccccatcgaa cacacagtta tct 23

E	<210> 20 <211> 23 <212> ADN <213> Homo sapiens	
5	<400> 20 cgtcagcttg ggaatagatg aag	23
10	<210> 21 <211> 23 <212> ADN <213> Homo sapiens	
15	<400> 21 gcgaatatca gccatggagt aga	23
20	<210> 22 <211> 21 <212> ADN <213> Homo sapiens	
	<400> 22 tagtgacaga ccccaggctg a 21	
25	<210> 23 <211> 21 <212> ADN <213> Homo sapiens	
30	<400> 23 ttgagctcgt ggacaggctt a 21	
35	<210> 24 <211> 18 <212> ADN <213> Homo sapiens	
40	<400> 24 gcccgttgaa aacctccc 18	
	<210> 25 <211> 19 <212> ADN	
45	<213> Homo sapiens <400> 25 caggettece ageteeate 19	
50	<210> 26 <211> 21 <212> ADN <213> Homo sapiens	
55	<400> 26 cgttaggctg gtcaccttct g 21	
60	<210> 27 <211> 25 <212> ADN <213> Homo sapiens	
	<400> 27 acccaactgg tagggcttca tgcca 25	;
65	<210> 28 <211> 30	

	<212> ADN <213> Homo sapiens
5	<400> 28 ttctgtggaa ttagtgaccc agcaaatgtg 30
10	<210> 29 <211> 31 <212> ADN <213> Homo sapiens
	<400> 29 agccgggate taccatacce attgactaac t 31
15	<210> 30 <211> 27 <212> ADN <213> Homo sapiens
20	<400> 30 aatgaggcgg tggtcaatat cctgtcg 27
25	<210> 31 <211> 27 <212> ADN <213> Homo sapiens
30	<400>31 aagagaaagc agtgcaaacc ttcccgt 27 <210> 32 <211> 22 <212> ADN <213> Homo sapiens
35	<400> 32 tggcatctgc acggcggtag ag 22
40	<210> 33 <211> 27 <212> ADN <213> Homo sapiens
45	<400> 33 cccattcagg atcacacagg agatggc 27
	<210> 34 <211> 22 <212> ADN <213> Homo sapiens
50	<400> 34 ctctggctcc gtgttccgag gc 22
55	<210> 35 <211> 20 <212> ADN <213> Homo sapiens
60	<400> 35 acgcggccag tgcaaggcat 20
65	<210> 36 <211> 32 <212> ADN <213> Homo saniens

	<400> 36 agagctaaag tccaagagag gatccgagaa cg 32
5	<210> 37 <211> 23 <212> ADN <213> Homo sapiens
10	<400> 37 caccgtcagt gccgtgttcc agg 23
15	<210> 38 <211> 24 <212> ADN <213> Homo sapiens
	<400> 38 agagtcggtc ggaggctctg gctg 24
20	<210> 39 <211> 27 <212> ADN <213> Homo sapiens <400> 39
25	tgctaacagt cttgcaggtc tcccgag 27

REIVINDICACIONES

1. Un método para la detección del cáncer de vejiga en un sujeto, que comprende:

5

detectar en la orina la acumulación de un ácido nucleico que codifica un marcador tumoral de vejiga urinaria ("UBTM"), siendo dicha acumulación en dicho sujeto mayor de aproximadamente 1,2 veces la acumulación de dicho UBTM en la orina de un grupo de sujetos normales que no padecen un cáncer de vejiga maligno, característico porque el UBTM es Homeocaja A13 (HOXA13).

3. El método de acuerdo con la reivindicación 1 o la reivindicación 2, que comprende la detección de la acumulación

- 2. El método de la reivindicación 1, en el que dicho UBTM no está presente en la sangre en un grado sustancial.
- de al menos un UBTM adicional, en el que el UBTM se elige de entre el grupo que consiste en GGH, SPP1, NRN1, 10 SPARC, ADAMTS10, CNTN1, TLL2, PDIR, FBN1, el producto del gen KĪAA0100, CALR, ITGBL1, ELA3B, SMOC2, HEXA, IGFBP7, MFAP2, CILP, OLFM1, LUM, SEM2, PRSS11, SULF1, SERPINH1, MGP, TIMP1, EGFL6, SPAG11, IGFBP5, SEMA3F, CDC2, TOP2A, UBE2C, MDK, STMN1, TU B A4, HIST1H1B, HMGB2, CCNA2, CDCA1, la proteína hipotética MGC5576, DEK, MLFLIP, CDCA8, la proteína hipotética FLJ20647, TYMS, SMC4L1, LYN, HMGB3, PTGIR, DONSON, HMMR, CLDN6, HIST1H1D, C10orf3, KNTC1, CKS1B, RRM2, HIST1H2BH, STK6, MPHOSPH1, CCNB2, GPR32, ENG, MFHAS1, HIST1H1C, AVPR2, CENPF, , el miembro g de la familia de histonas 15 h4, el gen MGC27121, NP, ASPM, la proteína hipotética FLJ11871, LBH, NUDT1, HELLS, ASB9, MCM5, IMP-2, DKFZP566M1046, TUBA2, GAS2L3, la proteína hipotética FLJ12442, MCM6, DOK3, WDR18, CKAP2, KIF20A, la posible proteína fap, C6orf32, NEK2, CRY1, TGM2, DLG7, EIF2C2, DEPDC1, HIST2H4, MCM7, MTAP, KNTC2, HSPC150, SMC6L1, HIST1H2BC, ASF1B, ARH, LMNB1, la proteína hipotética FLJ10719, la proteína hipotética FLJ 10706, MAD2L1, SLC22A2, la proteína hipotética MGC34923, SPAG5, ACVRL1, DSCR1, PRSS15, S100A9, MCM4, 20 ST7L, PLEKHA4, EPHB1, CALD1, SMC1L1, el co-transcrito Thy-1, RAMP, FKBP11, C20orf129, HIST1H4H, CDKN3, MCAM, SNCAIP, NIPSNAP1, AP1M1, ANLN, C6orf69, TORC3, MAZ, TXNRD1, la proteína hipotética xp 096695, C22orf4, VSNL1, similar a la cadena N de 83 kDa de la carboxipeptidasa, KIAA1598, la proteína hipotética FLJ13501, DKFZP4340047, la proteína hipotética FLJ38716, similar a la proteína hipotética (región L1H3), la proteína hipotética KIAA1875, PRIM1, la proteína hipotética BC001096, MCM2, GJA3, C11orf30, similar a la 25 proteína hipotética FLJ30672, THY1, LRP3, LASS2, C18orf8, ZNF81, NARF, MTHFD2, D6T, SIAT7D, MMPL1, KLK11, KPNA2, FGFR10P2, VIM, la proteína FLJ44108, PAPOLG, FHOD1, RASL12, HMGN2, PITPNM2, DER1, EPHA4, VSIG1, RGS5, la proteína KIAA1639, SH2B, PGLYRP4, CDC45L, MLSTD1, la proteína hipotética MGC11266, TNFRSF13B, NET1, LHFPL5, MX2, SPHK1, ABCG4, SERPINB2, GALNT10, LEPR, MXD4, FAPP2, 30 NUP210, CSK, NRP1, MGAT1, el producto del gen KIAA0100, LCN7, BMP7, ADAMTS10, PM5, NOMO3, CPA6, NPPC, la proteína hipotética FLJ23221, ERP70, GALNT14, ITIH3, PAPPA2, LOXL1, TNFRSF6B, SPARC, MSMB, CLDN6, PT-MA, AVPR2, similar al transportador de creatina dependiente de sodio y de cloruro, TMEM19, la proteína hipotética xp 047287, la proteína hipotética FLJ11871, PROSC, el gen MGC27121, NQO1, CKAP4, la
- proteína hipotética BC001096, PDPK1, el regulador del ensamblaje del huso mitótico 1, MIRAB13, PORCN, SIX6, GJB2, la proteína FLJ35784, SLC37A3, SPRY4, LHX3, C7orf27, SLC39A1, ZNF307, MIF, BST2, PSTPIP1, SOX4, NCOA5, la proteína hipotética FLJ31438, ODD, SLC23A2, SHFM1, SRPK2, RAMP2, BPGM, RGS5, CXADR, MEIS2, TENS1, SNAI2, CHST2, HCA127, el co-transcrito Thy-1 (LOC94105), LRFN3, la proteína hipotética FLJ22390, TRIB2, KRTHA3B, KIF21A, ANKRD17, RAG1, NUBP2, la proteína hipotética FLJ20489, CASK, HIP1, PRKCD-BP, TIE, C5orf15, CGI-72. ENTPD8, SH3BGRL3, el homólogo de la subunidad MLRQ de la óxidorreductasa de NADH:ubiquinona, VG5Q, BG1, BCL2L11, ARK5, TLE3, ITIH5, RGS11, TM7SF3, SCRN3, PLXNA1, GJA4, la
 - de NADH:ubiquinona, VG5Q, BG1, BCL2L11, ARK5, TLE3, ITIH5, RGS11, TM7SF3, SCRN3, PLXNA1, GJA4, la proteína hipotética DKFZp434G1415, WSB2. CDA, GART, ZMPSTE24, TMEM33, GPI, la proteína hipotética FLJ11000, CAMK1D, PTPN21 y TNS.
 - 4. El método de cualquiera de las reivindicaciones 1-3, en el que dicha etapa de detección se lleva a cabo mediante la detección de la acumulación del ARNm de un marcador tumoral de la vejiga urinaria ("UBTM") o UBTM.
- 45 5. El método de cualquiera de las reivindicaciones 1-4, en el que dicha detección se lleva a cabo mediante el uso de una micromatriz.
 - 6. El método de cualquiera de las reivindicaciones 1-4, en el que dicha detección se lleva a cabo mediante el uso de una reacción en cadena de la polimerasa cuantitativa o de métodos de hibridación.
- 7. El método de cualquiera de las reivindicaciones 1-6, en el que el método incluye la detección de la acumulación de dos o más UBTM en dicha muestra.
 - 8. El método de cualquiera de las reivindicaciones 1-7, que comprende la detección de uno o más pares de marcadores seleccionados del grupo que consiste en TOP2A-HOXA13 y CDC2- HOXA13.
 - 9. Un método para la detección del cáncer de vejiga, que comprende:

detectar la acumulación de ácidos nucleicos que codifican una combinación de dos o más UBTM elegidos de entre el grupo que consiste en, TOP2a- HOXA13, SPAG5-HOXA13, CDC2-HOXA13, SPAG5-TOP2a-HOXA13, TOP2a-CDC2-HOXA13, SPAG5-CDC2-HOXA13, TOP2a-NRP1-HOXA13, TOP2a-CHGA-HOXA13, CDC2-NRP1-HOXA13, SPAG5-CHGA-HOXA13, TOP2a-SEM2-HOXA13, CDC2-CHGA-HOXA13, TOP2a-TOP2a-SEM2-HOXA13, CDC2-CHGA-HOXA13, TOP2a-SEM2-HOXA13, TOP2A-SEM2-TOP2A-SEM2-TOP2A-SEM2-TOP2A-SEM2-TOP2A-SEM2-TOP2A-SEM2-TOP2A-SEM2-TOP2A-SEM2-TOP2A-

HOXA13-THY1, TOP2a-HOXA13-SMC4L1, SPAG5-SEM2-HOXA13, TOP2a-MGP-HOXA13, TOP2a-HOXA13-MDK, TOP2a-ENG-HOXA13, SPAG5-HOXA13-THY1, TOP2a-UBE2c- HOXA13, SPAG5-HXOA13-SMC4L1, SPAG5-MGP-HOXA13, SPAG5-HOXA13-MDK,SPAG5-ENG-HOXA13, TOP2a-EGFL6-HOXA13, UBE2c-HOXA13, TOP2a- BIRC5-HOXA13, SPAG5-EGFL6-HOXA13, CDC2-SEM2-HOXA13, SPAG5-BIRC5-5 HOXA13, CDC2-HOXA13-THY 1, CDC2-HOXA13-SMC4L1, CDC2-MGP-HOXA13, CDC2-HOXA13-MDK, CDC2-ENG-HOXA13, CDC2-UBE2c-HOXA13, CDC2-EGFL6-HOXA13, CDC2-BIRC5-HOXA13, NRP1- CHGA-HOXA13, HOXA13-CDC2-TOP2a, HOXA13-TOP2a-CHGA, HOXA13-CDC2-CHGA, HOXA13-TOP2a-NRP1, HOXA13- CDC2-NRP1, HOXA13-TOP2a-SPAG5, HOXA13-TOP2a-ENG, HOXA13-CDC2- SPAG5, HOXA13-CDC2-ENG, HOXA13- TOP2a-SEM2, HOXA13-CDC2-SEM2, HOXA13-TOP2a-MDK, HOXA13-TOP2a- IGFBP5, HOXA13-CDC2-MDK, HOXA13-CDC2-IGFBP5HOXA13-TOP2a-SEMA3F, HOXA13-NRP1-CHGA, HOXA13-10 CDC2-SEMA3F y HOXA13-TOP2a-EGFL6, en una muestra de orina de un paciente que se sospecha que padece cáncer de vejiga, siendo dicha acumulación de cada uno de dichos marcadores mayor de aproximadamente 1,2 veces la acumulación de cada uno de dichos marcadores en un grupo de sujetos normales que no padecen cáncer de vejiga maligno.

15 10. Un método para la detección de la presencia de cáncer de vejiga en un sujeto, que comprende:

30

60

determinar, en una muestra de orina, la cantidad de un ácido nucleico que codifica HOXA13 junto con uno o más primeros marcadores seleccionados del grupo que consiste en BIRC2, IGFBP5, MGP, NOV, NRP1, SEMA3F, SPAG5, TOP2A, y en el que dicho primer marcador no está sustancialmente presente en la sangre de dicho sujeto.

20 11. Un método para distinguir la enfermedad maligna de vejiga de la enfermedad no maligna de vejiga, que comprende:

determinar, en la orina de dicho paciente, la acumulación de un ácido nucleico que codifica HOXA13 junto con uno o más marcadores seleccionados del grupo que consiste en IGFBP5, MDK, MGP, NRP1, SEMA3F, SMC4L1, TOP2A y UBE2C; y

- determinar en dicha muestra las proporciones de la expresión de HOXA13 con respecto a dicho uno o más marcadores, estando la proporción asociada con la presencia del cáncer de vejiga.
 - 12. Un método para la determinación de la eficacia de la terapia para el cáncer de vejiga que comprende la detección de la acumulación de un ácido nucleico que codifica Homeocaja A13 (HOXA13) en una primera muestra de orina de un paciente, y la comparación con la cantidad de dicho HOXA13 en una segunda muestra de orina de un paciente después de un periodo de tratamiento, siendo la cantidad de dicho marcador después de dicho periodo de tratamiento menor que la cantidad de dicho marcador antes del tratamiento.
- 13. Un método de acuerdo con la reivindicación 12, que comprende la detección de la cantidad de al menos un marcador adicional elegido de entre el grupo que consiste en GGH, SPP1, NRN1, SPARC, ADAMTS10, CNTN1, TLL2, PDIR, FBN1, el producto del gen KIAA0100, CALR, ITGBL1, ELA3B, SMOC2, HEXA, IGFBP7, MFAP2, CILP, OLFM1, LUM, SEM2, PRSS11, SULF1, SERPINH1, MGP, TIMP1, EGFL6, SPAG11, IGFBP5, SEMA3F, CDC2, 35 TOP2A, UBE2C, STMN1, TUBA4, HIST1H1B, HMGB2, CCNA2, CDCA1, la proteína hipotética MGC5576, DEK, MLF1IP, CDCA8, la proteína hipotética FLJ20647, TYMS, SMC4L1, LYN, HMGB3, PTGIR, DONSON, HMMR, CLDN6, HIST1H1D, C10orf3, KNTC1, CKS1B, RRM2, HIST1H2BH, STK6, MPHOSPH1, CCNB2, GPR32, ENG, MFHAS1, HIST1H1C, AVPR2, CENPF, el miembro g de la familia de histonas h4, MGC27121 el gen, NP, ASPM, la 40 proteína hipotética FLJ11871, LBH, NUDT1, HELLS, ASB9, MCM5, IMP-2, DKFZP566M1046, TUBA2, GAS2L3, la proteína hipotética FLJ12442, MCM6, DOK3, WDR18, CKAP2, KIF20A, la posible proteína fap, C6orf32, NEK2, CRY1, TGM2, DLG7, EIF2C2, DEPDC1, HIST2H4, MCM7, MTAP, KNTC2, HSPC150, SMC6L1, HIST1H2BC, ASF1B, ARH, LMNB1, la proteína hipotética FLJ10719, la proteína hipotética FLJ 10706, MAD2L1, SLC22A2, la proteína hipotética MGC34923, SPAG5, ACVRL1, DSCR1, PRSS15, S100A9, MCM4, ST7L, PLEKHA4, EPHB1, CALD1, SMC1L1, el co-transcrito Thy-1, RAMP, FKBP11, C20orf129, HIST1H4H, CDKN3, MCAM, SNCAIP, 45 NIPSNAP1, AP1M1, ANLN, C6orf69, TORC3, MAZ, TXNRD1, la proteína hipotética xp 096695, C22orf4, VSNL1, similar a la cadena N de 83 kDa de la carboxipeptidasa, KIAA1598, la proteína hipotética FLJ13501, DKFZP4340047, la proteína hipotética FLJ38716, similar a la proteína hipotética (región L1H3), la proteína hipotética KIAA1875, PRIM1, la proteína hipotética BC001096, MCM2, GJA3, C11orf30, similar a la proteína hipotética FLJ30672, THY1, LRP3, LASS2, C18orf8, ZNF81, NARF, MTHFD2, D6T, SIAT7D, MMPL1, KLK11, KPNA2, 50 FGFR1OP2, VIM, la proteína FLJ44108, PAPOLG, FHOD1, RASL12, HMGN2, PITPNM2, DER1, EPHA4, VSIG1, RGS5. la proteína KIAA1639, SH2B, PGLYRP4, CDC45L, MLSTD1, la proteína hipotética MGC11266, TNFRSF13B, NET1, LHFPL5, MX2, SPHK1, ABCG4, SERPINB2, GALNT10, LEPR, MXD4, FAPP2, NUP210, CSK, NRP1, MGAT1, el producto del gen KIAA0100, LCN7, BMP7, ADAMTS10, PM5, NOMO3, CPA6, NPPC, la proteína hipotética FLJ23221, ERP70, GALNT14, ITIH3, PAPPA2, LOXL1, TNFRSF6B, SPARC, MSMB, CLDN6, PT- MA, 55 AVPR2, similar al transportador de creatina dependiente de sodio y de cloruro, TMEM19, la proteína hipotética xp 047287, la proteína hipotética FLJ11871, PROSC, MGC27121 el gen, NQO1, CKAP4, la proteína hipotética

CHST2, HCA127, el co-transcrito Thy-1 (LOC94105), LRFN3, la proteína hipotética FLJ22390, TRIB2, KRTHA3B,

BC001096, PDPK1, el regulador del ensamblaje del huso mitótico 1, MIRAB13, PORCN, SIX6, GJB2, la proteína FLJ35784, SLC37A3, SPRY4, LHX3, C7orf27, SLC39A1, ZNF307, MIF, BST2, PSTPIP1, SOX4, NCOA5, la proteína hipotética FLJ31438, ODD, SLC23A2, SHFM1, SRPK2, RAMP2, BPGM, RGS5, CXADR, MEIS2, TENS1, SNAI2,

KIF21A, ANKRD17, RAG1, NUBP2, la proteína hipotética FLJ20489, CASK, HIP1, PRKCD- BP, TIE, C5orf15, CGI-72. ENTPD8, SH3BGRL3, el homólogo de la subunidad MLRQ de la óxidorreductasa de NADH:ubiquinona, VG5Q, BG1, BCL2L11, ARK5, TLE3, ITIH5, RGS11, TM7SF3, SCRN3, PLXNA1, GJA4, la proteína hipotética DKFZp434G1415, WSB2. CDA, GART, ZMPSTE24, TMEM33, GPI, la proteína hipotética FLJ11000, CAMK1D, PTPN21 y TNS, en una primera muestra de un paciente, y compararla con la cantidad de dicho uno o más marcadores en una segunda muestra de un paciente después de un periodo de tratamiento, siendo la cantidad de dicho marcador después de dicho periodo de tratamiento menor que la cantidad de dicho marcador antes del tratamiento.

Muestra	Serie 1	Serie 2
Pacientes con TCC		
Superficial	7	13
Invasivo	10	4
Carcinoma in situ	2	1
Estadio desconocido	2	2
Controles no malignos		
Vejiga neurógena		6
Hiperplasia prostática		9
Urolitiasis		9
Infección		2
Controles sanos	10	13

Figura 1

Nombre	Alias	Símbolo	Cebador directo	# DEC #	ID SEC # Cebador inverso	ID SEC # Sonda	Sonda	ID SEC #
	MAP126; DEEPEST;			,		:		
antígeno asociado al esperma 5	hMAP126	SPAG5	AATTCAGAGGCCTTCTGAAGGA	_	TCTGCTGAACCAGCTCTTCTTG	14	ACCCAACTGGTAGGGCTTCATGCCA	27
topoisomerasa (ADN) II alfa de 170 kDa	TOP2: TP2A	TOP2A	CCGCCCAGACACCTACATTG	2	CCCTATAGTTAATGCCAACATCTTC	15	TTCTGTGGAATTAGTGACCCAGCAAATGTG	28
ciclo de división celular 2, desde G1 hasta S y desde G2 hasta M	CDK1	CDC2	GCCGCCGCGAATAAT	8	ACCTTCTCCAATTTTCTCTATTTTG	16	AGCCGGGATCTACCATACCCATTGACTAACT	29
	END; ORW; HHT1;	Ç	(-	TTT(() < () T () < () () < () T () T ()	Ĺ	() H () H () H () () () () () () H () H	ç
endugima (simulonne de Osiel-Rendu-Webel I)		CING	CTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	† 4	AIGHIGAGGCAGHACACHTI	- 0	2416466661661C441A1CC161C6	31
לוסופווומ מפ מוויסון מו ומכוסן מפ כו פכווווים וויסמווויסומפ כ	6 101	5 5			000001000000000000000000000000000000000	2 9	100001001001001001001001001001001001001	- 6
gen de nerroblastoma sobreexpresado	CCN3: NOVH; IGFBF9 NOV	NOV	COGACCCAGCAACCA	٥	CCCCAICGAACACACAGIIAICI	6.		25
neuropilina 1	NRP: VEGF165R	NRP1	GGAGTGTTGACCAGCAGAC	7	CGTCAGCTTGGGAATAGATGAAG	20	CCCATTCAGGATCACAGGGGGGAGATGGC	33
dominio de sema, dominio de inmunoglobulina (Ig), dominio básico	SEMA4; SEMAK;							
corto, secretado, (semaforina) 3F	SEMA- IV: sema IV	SEMA3F	CCTGTCATTTACGCTGTCTTTACC	00	GCGAATATCAGCCATGGAGTAGA	21	CTCTGGCTCCGTGTTCCGAGGC	34
	W8Q; MAEG; DKFZP564P2063;							
dominio similar a EGF, múltiple 6	DKFZp564P2063	EGFL6	TECTCTCCTGGGTGGCAG	6	TAGTGACAGCCCAGGCTGA	22	ACCCGCCAGTGCAAGGCAT	35
proteína de la matriz Gla	NTI; MGLAP	MGP	TTCATATCCCCTCAGCAGATG	10	TTGAGCTCGTGGACAGGCTTA	23	AGAGCTAAAGTCCAAGAGGAGGATCCGAGAAC	36
semaforina sem2	LOC56920: FU00014	SEM2	CTCGAGGTGTACG CGCTGT	11	GCCCGTTGAAAACCTCCC	24	CACCGTCAGTGCCGTGTTCCAG	37
cromogranina A (proteína secretora paratiroidea 1)	CGA	CHGA	TACAAGGAGATCCGGAAAGGC	12	CAGGCTTCCCAGCTCCATC	25	AGAGTCGGTCGGAGCTCTGGCTG	38
antigeno superficial celular Thv-1	CD90	THY1	TGAACCTGGCCATCAGCAT	13	CGTTAGGCTGGTCACCTTCTG	26	TGCTAACAGT CTTGCAG GT CT CCCGAG	39
enzima de conjugación con ubiguitina E2C	UBCH10; dJ447F3.2	UBE2C	Ensayo de expresión del gen Taqman (R) Hs00964100 g1	1 (R) Hs0096	4100 g1			
homeo caja A13	HOX1: HOX1J	HOXA13	Ensayo de expresión del gen Taqman (R Hs00426284 m1	1 (R Hs00426	284 m1			
midcina (factor promotor del crecimiento de las neuritas 2)	NEGF2	MDK	Ensayo de expresión del gen Taqman (R) Hs00171064 m1	(R) Hs0017	1064 m1			
IAP de baculovirus que contiene repeticiones 5 (survivina)	AP14; EPR-1	BIRC5	Ensayo de expresión del gen Taqman (R) Hs00153353 m1	(R) Hs0015	3353 m1			
SMC4 de tipo 1 de mantenimiento estructural de los cromosomas 4 (siCAPC: hCAR-C	SICAPC: hCAR-C	SMC4L1	Ensayo de expresión del gen Taqman (R) Hs00909709 g1	л (R) Hs0090	9709 g1			

Figura 2

Figura 3

Nombre del gen	HUGO	oliqo# MWG	sec. de ref. del ARNm de NCBI	sec. de ref. de la proteína	n° de veces de cambio medio de cambio máx. Prueba de la T	n° de veces le cambio máx.	Prueba de la T	Prueba de Wilcoxon	Rango sumado Sue	Suero, Nuevo?
hidrolasa de gamma-glutamilo	ВЭЭ	mwghuman3UK#K: 036 01	NM 003878.1	NP 003869,1	2.7	7.5	2,8E-08	3,63 E.09	102 S	
fosfoproteina secretada 1	SPP1	mwghuman30K#k: 094 41	NM 0005822	NP 000573.1	5.1	28.6	3 E-08	0.00000625	143.5 S	
neuritina 1	NRN1	mwghuman30K4#K,006 58	NM 016588.2	NP 067672,1	6,6	54,8	1,9E:07	0,000000265	<u> </u>	
proteína secretada, ácida, rica en cisteína (osteonectina)	SPARC	mwghuman3DK#MDBD 92	NM 003118.2	NP 003109,1	2,5	6,9	2,9E:07	0,00000013		
un motivo de tipo desintegrina y metaloproteasa (de tipo reprofisina) con trombospondina de tipo 1	ADAMTS10	mwghuman30K#B: 135 5	NM 030957.1	NP 112219,2	2.7	25,8	2,3E.06	958000000'0	_	
contaclina 1	CNTN1	mwghuman30K#k: 015 91	NM 175038.1	NP 778203,1	1,9	5,3	2,6E-06	0,00000196	S 906	
toloideo 2	7771	mwghuman30K#k: 029 32	NM 0124655	NP 036597,1	6,6	925,6	2,1 E:05	0,0000466	\vdash	
relacionado con la iscrnerasa del disulfuro de proteínas	PDIR	mwghuman3DK#K: D35 06	NM 006810.1	NP 006S01,1	1,6	8,8	2,3E.05	98200000'0	1044,5 S	
fibrilina 1	FBN1	mwghuman30K#K;071 05	NM 0001382	NP 0001295	2,1	7.9	2,8E.06	1,37393 E-06	1072,5 S	nuevo
producto del gen KJAA0100		mwghuman30K4M; 107 62	NM 014680.2	NP 065495.2	1.5	23	17E-06	0,00000187	1100.5	\vdash
calreticulina	CALR	mwghuman30K#k: 103 60	NM 004343.2	NP 004334,1	17	3,4	5,4E:06	0,00000518		
de tipo integrina beta 1	1TGBL1	mwghuman30K#k: 079 33	NM 004791.1	NP 004782,1	6,1	10,5	2,9E:05	0,0000224		
elastasa 3B, pancreditica unión al cabin modular relanimada con SPARC 2	ELA30	mwghuman30K#B: 399 mwmhuman31K#B: 026	NM 0073521 NM 0721381	NP 031378,1 NP 0714711	4.5	2,1	1.7 E-06 6.9 E-06	0,00000785	1239,5 S 1780 S	
hexosaminidasa A (polipépido alfa)	HEXA	mwahuman30k/lB: 977	NM 000520.2	NP 000511,1	er	14,6	1,8E-05	0,0000325		
proteína de unión al factor de crecimiento insulinoide 7	IGFBP7	mwghuman3OK#K: 033 86	NM 001553.1	NP 001544,1	2,0	6,5	6,1 E:05	690000'0	1664,5 S	
proteina asociada microfibrilar 2 proteina de la capa intermedia del cantilago, pirofosfohidrolasa	MFAP2	mwghuman30k#6: 305 mwghuman30k#k: 000	NM 017459.1	NP 069453,1	g' :	Ø 1	3,9 E-05	0,0000466		
de nucleatido olfatomedina 1	OLFM1	19 mwghuman30K#B: 355	NM 0581995	NP 0036045 NP 478106.1	2,1	2,7	35 E-05	0,0000254	1582 S	
lumicano	MOT	mwghuman30kSA: 091	NM 002345.2	NP 002336.1	2.5	25.0	0.00025	6.62502 E-05	-	
midcina (factor promotor del crecimiento de las neuritas 2)	MDK	mwghuman30K#K: 018 50	NM 002391.2	NP 002382.1	. 41	- 68	0.00029	5.24719 E-05	2897	
semaforina (LOC56920)	SEM2	mwghumen30K#k.060	NM 0201631	NP 064548,1	4.	22	75 E 05	0,000116474	S 0767	
professa, serna, 11 sulfatasa 1	SULF1	mwghuman3UK#8: 12/ mwahuman3UK#8: 877	NM 015170.1	NP 065985.1	3,5	60.9	0.00257	0.000797894	010	I
inhibidor de la proteinasa de serina (o cisteína), subtipo H (proteína de choque térmico 47), miembro 1	SERPINHI	mwghuman30K#K: 086 15	NM 001235.2	NP 001226.2	1.5	27	55 E-05	0.000221711		
proteina Gla de la matriz	MGP	mwghuman3UK#B: 400	NM 0009002	NP 0008915	2,5	47.9	0,00116	0,001781907	5134 S	
inhibidor tisular de la metaloproteinasa 1	TIMP1	mwghuman3UK#K: U8U 48	NM 003254.1	NP 003245,1	1,8	4,4	0,00108	0,005400169	7533 S	
dominio de tipo EGF, mútiple 6	EGFLB	mwghuman3UKSA: D76 88	NM 016607.2	NP 056322,2	1,5	3,4	0,0042	0,00857023		
antigeno asociado al esperma 11 profetos de unión al factor de crecimiento insultante 5	SPAG11	mwghuman30K#8: 137 mwehuman30K#0: 107	NM 058203.1 NM 000599.2	NP 478110,1 NP 000590 1	5,1	42	0,00157	0,001050446 0,0356716	10950 S	
dominio de sema, dominio de inmunoglobulina (Ig), ciclo de	SEMASE	mwghuman30K#K- 072	NM 004186.2	NP 004177,2	1,1	17,2	0,43286	0,5041839		
división celular conto 2, desde G1 hasta Sy desde G2 hasta M	CDCZ	mwghuman3DK#k: 053 82	NM 033379.2	NP 203698,1	5,3	16,5	1,7E:12	6,12E-11	80	
topoisomerasa (ADN) II alfa	TOP2A	mwghuman30K#B: 714	NM 001067.2	NP 0010585	G,	7,5	5,3E:11	1,32 E-09	28,5	
enzima de conjugación con ubiquitina E2C	UBE2C	mwghuman3UK#4U17	NM 181803.1	NP 861519,1	4,6	34,3	6,8 E·10	1,01 E-09	29,5	
estatmina 1	STMN1	mwghuman30K#k; 009 25	NM 203401.1	NP 981946,1	3,2	11,4	7,7 E-10	3,63 E.09	44	
tubulina, alfa 4	TUBA4	mwahuman30K#6: 246 mwahuman30K#4: 057	NM 025019.1	NP 079295,1	2,5	4,5	3,1E:09	1,32 E-09	82,5	
histona 1, H1b	HISTIHIB	16	NM 0053222	NP 005313,1	2,3	5,7	1,8E-11	4,42E-12	88	
caja dei grupo de ata moniidad Z	CCNA7	mwghuman30K#k: 042	NM U02129.2	NP 002120,1	0,7	o o	13503	1,44 E-05	0, 1	
ciclo de división celular aconiado 1	CDCA1	55 manufalman3flk#B: 947	NM 001237.2	NP 001228,1	2,3	4,0	19508	5,85 F.US	153.5	_
proteina hipotética MSC5576		mwghuman30K/#K: 067	NIM 024066.2	ND 0769611	2.1	4 4	8.4 E.0a	97	121	
oncogén DEK	DEK	mwehuman30K#B: 596	NM 0034722	NP 003463,1	2,4	8	1,1E-07	1,44 E.08	173,5	
proteina de interacción con MLF1 ciclo de división celular asociado 8	CDCA8	mwghuman3UK#K: 079	NM 024629.2	NP 0789055	2,3	4,6	25 E-07	6,07 E:08	209,5	
2 DOC 12 milestation of 100 17		Ue mwghuman3OK#K: 035	NM UIBIUI.I	I,I \Zebau \u2014N	5,7	4	Z/8 E-U/	4,59 E-U8	717	
profession inputession to 2004	9	66 mwahuman30K4#k: 100	NM0179183	NP 060388,1	22	4,6	1,5E:07	0,00000109	216	
sintetasa de tirridilato	SMYT	45	NM 001071.1	NP 001062,1	52	6,0	1,5E-07	2,72 E:08	232,5	
SMC4 de tipo 1 de mantenimiento estructural de los cromosomas 4 (levadura)	SMC4L1	mwgnumandKiffic Ubb	NM_UUTUUZ798.	NP 001002799,1	2,4	5,7	5,7 E:07	0,000000525	264,5	
homólogo del oncogén relacionado con el sarcoma vírico v-y es-1 Yamaguchi	LYN	mwgnumanoukæc. 265	NM 002350.1	NP 002341,1	6,1	4,5	8,1 E.08	0,000000266	267	
caja del grupo de alta monilidad 3	HMC83	mwgnumandukæk. U lb	NM 0053421	NP 005333,1	1,9	5,0	2,1E:10	6,12E-11	388	

Figura 3 (cont.)

Nombre del qen	OSH	oligo # MWG	sec. de ref. sec. de ref. del ARNm de NCBI de la proteína	sec. de ref. de la proteína	n° de veces de cambio medio	n° de veces de cambio máx.	Prueba de la	n° de veces Rango esta la liPrueba de Wilcoxon Samado Sueno, Muevo?	ngo nado Suero 2	Nuevo?
receptor de prostaglandina 12 (prostaciclina)	PTGIR	mwghuman30K#A: 002 68	NM 000960.3	NP 000951.1	3,2	31,5	3,6 E-07	4,09 E-08 27	270,5	
vecino secuencia abajo de SON (DONSON)	DONSON	mwghuman30K#A: 058 83	NM 145795.1	NP 665738.1	1,8	3,3	2,7 E-08	4,09 E-08	279,5	
receptor de motilidad mediada por hialuronano	HMMR	mwghuman30I<#4: 027 02	NM 012485.1	NP 036617.1	2,7	6,8	1,8 E-06	0,00000729	291	
claudina6 historna 1 H1d	CLDN8 H1ST1H1D	mwghuman3UK#A: 063 57 mwohuman3UK#C: 189NM 0053012	NM 0211S5.3 NM 005320.2	NP 067018.1 NP 005311.1	32	39,1	7.9E-07	8,07 E-08	296.5	
marco abierto de lectura 3 del cromosoma 10	C10orf3	mwghuman30K#A: 016 78	NM 018131.3	NP 060601.2	2,1	4,3	9 E-06	6,07 E-08	308,5	
cinetocoro asociado 1	KNTC1	mwghuman30K#A; 053 91	NM 014708.3	NP 055523.1	2,2	4,2	2,3 E-07	0,000000265	52	
subunidad reguladora 1B de la cinasa de proteínas CDC28 polipéptido de la reductasa de ribonucledtido M2	CKS1B RRM2	mwghuman30K#C: 054NM 001826.1 mwghuman30K#B: 350NM 001034.1	NM 001626.1 NM 001034.1	NP 001817.1 NP 001025.1	2,1	3,4	1,7 E-08 1,5 E-06	4,99 E-06 0,000000856	332	
histona 1, H2bh	HISTTHZBH	mwghuman30K#B: 297 mwghuman30K#A: 046	NM 0035242	NP 003515.1	3,1	15,3	1,15-06	0,000000794	349 349 E	
frefinition 1 deface M	MPHOSPH1	mwghuman30K#A: 098 86		NP 057279.2	0, 6	38	335.07	0.0000137	369.5	
ciclina B2	CCNB2	mwghuman30K#A: 036 06		NP 004692.1	2,0	3,4	6,2 E-07	7,37 E-09	373,5	
receptor acoplado a proteínas G 32	GPR32	mwghuman30K#A: 032 97		NP 001497.1	3,4	42,0	1,3 E-06	0,000000856	390	
endoglina	ENG	mwghuman30K#A: 056 68	NM 000118.1	NP 000109.1	1,9	5,3	4,5 E-07	0,000000525	418,5	
secuencia 1 amplificada del histiocitoma fibroso maligno MFHAS1	MFHAS1	mwghuman30K#A: 046 39	NM 004226.1	NP 004216.1	2,4	11,0	2,2 E-07	0,000000243	426	
histona 1, H1c	HIST1H1C	mwghuman30K#A: 077 73	NM 005319.3	NP 005310.1	2,3	10,01	3,7 E-07	0,000000375	425	
receptor de vasopresina arginina 2	AVPR2	mwghuman30K#A: 012 19	NM 000054.2	NP 000045.1	2,3	22,3	8,9 E-07	6,07 E-08	427,5	
proteína del centrómero F	CENPF	mwghuman3UK#A: U64 71	NM 015343.2	NP 057427.3	1,7	2,6	2,5 E-07	1,17564 E-06	435,5 n	nuevo
homeocaja A13	HOXA13	mwghuman30k#A: 089 71	NM 0005222	NP 000513.2	1,7	3,5	2,6 E-07	0,000000019	439,5	
familia de histonas h4, miembro g		mwghuman30l<#4013 29	XM 030144		3,0	13,2	2,3 E-06	0,00000179	463	
gen MGC27121		mwghuman30K#C. 395 3	NMJ301001343. 1	NP 001001343.1	3,6	46,3	1,9 E-06	5,18452 E-06	481,5 n	nuevo
fosforilasa de nucleósidos	M	mwghuman30K#A: 037 62	NM 000270.1	NP 000261.1	1,9	4,2	2,7 E-07	0,000000375	497	
de tipo asp (huso anormal), asociado a microcefalia	ASPM	mwghuman30K#A: 013 67	NM 018136.2	NP 060606.2	2,4	14,5	7,6 E-07	0,00000187	504,5	
proteína hipotética (11.1871 norbalipopada ortálopa da las uemas de Jas aviramidadas y al cruzofo da satón	ā	mwghuman30K#A: 108 82 NM 025117 mwahuman30K#B: 778 NM 030015	NM 025117	1 77 1C11 DN	2,0	13,2	2 E-06	0,000001	511	Т
producements onough to as yetnes be as extreminados y el corazón de rator motivo de tipo nudix (fracción X unida a difosfato de nucleósido) 1	NUDIT	mwghuman30K#A: 059	NM 1989541	NP 945192.1	. 61	3.7	5.1 E-08	0.000000444	546.5	
helicasa especifica linfuide	HELLS	mwghuman30K#A: 003		NP 060533.2		43	59E-07	3.74678 E-07		DILIBWO
caja que contiene repetición de apquirina y SOCS 9	ASB9	mwghuman30K#A; 011 31	NM 024087.1	NP 076992.1	1,7	6,3	1,3E-06	0,000016		
deficiente en el minicromosoma de mantenimiento MCM55	MCM5	mwghuman30K#A: 077 A/	NM 006739.2	NP 006730.2	1,7	3,3	7,6 E-08	1,55499 E-07	n 557,5	ovanu
1GF-11 proteina de unión al ARNm 2	IMP-2	mwghuman30K#A; 097 84	NM 006548.3	NP 006539.2	2,1	4,9	4 E-06	1,17464 E-05	n 575	owan
	DKPZP568M104 THRA2	mwghuman30K#B: 875 NM 032127.1		NP 115503.1 NP 524575.1	00.00	5,7	2.2 E-06 6.7 E-07	1,37393 E-06		nuevo
especific and deterner el crecimiento 2 de tipo 3	GAS2L3	mwghuman30K#C 366NM 1749421	Ш	NP 777602.1	20.2	99	7,6E-07	2,91943 E.06	109	ovenu
proteina ripuetica F.D.I.2442 deficiente en el minicromosoma de mantenimiento MCMB	MCMB	mwghuman30K#B: 814	Ш	NP 005906.2	2,2	5,7	5,4 E-07	0,000000232	3,5	
proteína de anclaje 3 dominio de repetición W/D 18	DOK3 WDR18	mwghuman30K#B: 263 NM 024872 1 mwghuman30K#B: 354 NM 024100.2	NM 0248721 NM 024100.2	NP 079148.1 NP 077005.2	2,2	12,6 8,7	1,8 E-06 9,9 E-07	4,99 E-08 4,99 E-08	7.25	
proteína asociada al citoesqueleto 2	CKAP2	mwghuman30K#A: 006 70	NM 018204.2	NP 060674.2	1,8	4,3	3,1E-06	1,93626 E-05	701,5 n	nuevo
miembro de la familia de cinesinas 20A, supuesta profeína fao	KIF20A	mwghuman30K#A: 079 89 mwghuman30K#B: 529 U63542	NM 005733.1 U63542	NP 005724.1	1,9	2,8	15.06	1,07593 E-07 0.0000045	707,5	
32 marce abierto de lectura 32 del cromosema 6	C6orf32	mwghuman30K#A: 046 43	NM 015864.2	NP 056948.2	1,8	11,4	1,5 E-07	1,29514 E-07	721,5 ni	nuevo
cinasa relacionada con el NMA (gen a nurca en la mitosis) 2	NEK2	mwghuman30K#A: 008 47	NM 002497.2	NP 002488.1	2,0	3,5	1 E-06	3,37794 E-06	732 ni	nuevo
criptocromo 1 (de tipo fotoliasa)	CRY1	mwghuman30kSA: 062 19	NM 004075.2	NP 004086.1	1,8	3,0	6 E-06	0,000001	744	
transgutaminasa 2	TGM2	71 NM 0046132		NP 004604.2	2.0	6,3	1,5E-06	3,37794 E-06	747 n	ovenu
factor de inicio de la traducción eucariota 2C	EIF2C2	mwghuman30K#C: 228	Ш	NP 036286.2	1.7	2,7	1,7 E-08	9,25 E-09	Ц	0640
dominio que contiene DEP 1	DEPDC1	mwghuman30K#B: 733		NP 060249.2	2,0	4,6	1,7 E-06	3,15648 E-07		nuevo

Figura 3 (cont.)

1860-650	Nombre del gen	HUGO		sec. de ref. del ARNm de NCBI	sec. de ref. de la proteína	n° de veces de cambio medio	n° de veces de cambio máx.		Rango	Suero 2 Nuevo?
Higher Comparison Compari	historia 2, H4 AD de hacultainine aus contions reneticiones 5 (cursivine)	HSIZH		NM 003548.2	NP 003539.1	7,1	77	3,3 E.00	2,91943 E-U6 823	oneno
150 150	deficiente en el minicado soma de martenimiento MCM7	MCMZ		NM 182776.1	NP 877677.1	19	4,0	1,1608		
Height Miles Mil	USIOTII ASA UE MEULIU A GETTOSTI A	MIAP		AF 103234.1	WWD13041.	6,2	0,0	B ú	0,0307.9 E-03 044,0	nan
Hebrits Hebr	cinetocoro asociado 2	KNTC2	53 200 - William Control of the Control	NM 006101.1	NP 006092.1	1,6	2,9	1,2 E-06	2,17032 E-06 848	nuevo
HSTH FREE HSTH FREE HSTH FREE HSTH FREE HSTH FREE		HSPC150	55 55	NM 014176.1	NP 054695.1	1,9	3,4	1,8 E-05	1,73622 E-05 849,5	nuevo
HEINERSE PROPRIATES HEINERS	SMC6 de mantenimiento estructural de los cromosomas 6 de tipo 1	SMC6L1	mwghuman3OK#A: 053 63	NM 024624.2	NP 078900.1	1,7	4,0	6,1 E.06	128219 E-05 852	nuevo
Act Bright Act Bright Bright	histona 1, H2bc	H1ST1H2BC	mwghuman3UK#B: 959	NM 003526.2	NP 003517.2	1.9	5,3	7.9 E·06	8	nuevo
JARRITH PROCESSES 19 34 14.00 JARRITH PROCESSES 17 34 20 14.00 4.00 MADCAL PROGRAMINATION ON MODERNI STATE OF THE CORREST 17 34 2.00 2.00 SECTION PROCESSES PROCESSES 15 3.2 2.00 17.00 SACKELL PROGRAM ON MODERNI STATE OF THE CORREST STATE OF THE CORREST STATE STAT	función 1 de antisilenciamiento ASF1 homologo B	ASF1 B	mwghuman3U<#,044	NM 018154.1	NP 060624.1	1.7	4,1	1 E-05	0,0000016 872	
UMMET Brightman3/CMR DR MA 1006523 PE 000523 15 23 24 25 25 25 25 25 25 25	proteíns adaptadora al receptor de LDL	ARH	mwghuman30K#B: 249	NM 015627.1	NP 056442.1	2,0	14,0	4 E.06		
SICONO Proprietti	lemina B1	LMNB1	69 50 50 50 50 50 50 50 50 50 50 50 50 50	NM 005573.2	NP 005564.1	1,8	3,4	2,9 E.05	1,52615 E-05 891,5	nuevo
Hardward Hardward	proteina hipotetica FLJ10/19		mwghuman3UK#5: 221	NM U18193.1	NP USUBBS:1	1',	5,5	4,7 E:U6	8,99315 E-U6 894,5	nuevo
HACQL	proteína hipotética FLJ10706		11	NM 018186.2	NP 060656.2	1,5	2,8	1,5 E-06	1,00418 E-06 913	nuevo
Str. Charles	MAD2 deficiente en la detención mitáctica de tipo 1	MAD2L1	mwgnumandUK#A: Ub3 87	NM 002358.2	NP 002349.1	1,8	9,9	1,1 E.05	2,87228 E-05 913,5	nuevo
PRESISTED PRODUCTION PROD	familia pataranta da antida CC	CACCOLE	mwghuman3OK#A: D27	NM 1531011	ND COASC1 1	3.3	21.3	1.7 E.O.E.	3 310 5200000	
SPAGE Providemental State May 10 Proprietz 2.9 Comparison of the company of the compan	proteína hipotélica MGC34923	2000000	mwghuman30K#C: 447	NM 144717.2	NP 653318.2) t-	87.8	6,7 E.07	0,000000526 937,5	
ACVR,11 TOMORDIMINATION NATION N	antígeno asociado al esperma 5	SPAG5	mwghuman30K##: 076 91	NM 006461.2	NP 006452.2	2.8	99	4,8 E-05	0.0000171 947	
Discreti	renentor de activirs A de tino II de tino 1	ACVR 1	mwghuman3OK#A: 004	NM OCOUCY 1	NP 000011 1	15	2.4	80,88	_	
PRESSIGN Complement	and the second s	2000	mwghuman3OK#A: 098	NA DOMANA E	ND 00440F 3	12	7.0	17	Ь.	9
PESSIS EST			mwghuman30K#A: 033		200	2	/"	3	Щ.	2
STOCK STOC	proteasa, serina, 15	PRSS16	53 mwohuman30k/#A : 07.4	NM 004793.2	NP 004784.2	9	15,2	1,4 E.05	0,00000292 969	
Fig. 14	proteína A9 de unión al calcio S100	S100A9	36 36	NM 002965.2	NP 002956.1	4.1	44,0	7.1 E.06	- 1	
STOCK STOC	deficiente en el minicramosoma de mantenimiento MCM4	MCM4	mwghuman3DK#K: 013	NM 1827.46.1	NP 877423.1	Q.	R.	90.10.00	- 1	
EPHE1 EMPHRIMANA WAY DAY MN 02090.1 MP 050656.1 1.4 3.9 1.3 E.O.	supresión de la oncogenia de tipo 7	ST7L	91	NM 138728.2	NP 620056.1	2,0	13,4	7,6 E.06	0,00000292 1001	
EPHEIT TIMENDIAMENTAL STARK, DOTA MN 0044012 NP 044201 22 7.D 1.1E-05 CALDT TIMENDIAMENTAL STARK, DOTA NM 005302.2 NP 149131.1 2.2 7.D 1.1E-05 SMCLLI. TIMENDIAMENTAL STARK, DOTA NM 005302.2 NP 149131.1 2.2 7.D 1.1E-05 FAAPP TIMENDIAMENTAL STARK, DOTA NM 005302.2 NP 148902.1 1.6 2.9 5.D 1.2E-05 FAAPP TIMENDIAMENTAL STARK, DOTA NM 01824.1 NP 02622.1 1.6 2.4 2.1E-05 FAAPP TIMENDIAMENTAL STARK, DOTA NM 01824.1 NP 02622.1 1.6 2.A 2.1E-05 FAAPP TIMENDIAMENTAL STARK, DOTA NM 01824.1 NP 01822.2 1.6 2.A 2.1E-05 FAAPITAL TIMENDIAMENTAL STARK, DOTA NM 01824.1 NP 01822.1 1.6 2.A 2.1E-05 SNICAR MOSPANA NM 01826.2 NP 01822.2 1.7 2.7 1.6 2.A ANIA TORIO STARTA NM 01826.2 NM 01822.2 1.6	contiene el del dominio de nomología con la pleckstrina, familia A (específico de la unión a fosfoinosítido), miembro 4	PLEKHA4	mwgnumanguk#6: 344	NM 020904.1	NP 065955.1	1,4	3,0	1,3 E.07	0,000000444 1030,5	
CALCIT Imaginuman3DC4W-D57 MN 023140.2 PP 005-922 16 2.9 5 E-05	EphB1	EPHB1	mwghuman30K#A: 004 65	NM 004441.2	NP 004432.1	2,2	ದ್ದರ	2,3 E.05	1,52615 E-06 1042,5	nuevo
SMC1L1 SMCHUL SMCHUL SMCHUL SMCHUL SMCHUL SMCHUL SMCHUL SMCHUL SMCHUL SMCHUCK SMCH	raidaemona 1	CALD1	mwghuman30K#A: D77	NM D3314D 2	ND 149131 1	2.2	7.0	115.05	8 32958 E.06 1067	CVGIIC
SMC1L1 269 PROBLEM	Caldestrota	1000	mwghuman30K4MA057	NO. 000 140.K		7:7	2	3	2001 000200	200
or RA, FAMAPP PROMINITARIZACIAR LODS INM ORGANIZATION INP OFFICERAL 15 2.1 4.2 E-OF FLGED11 TITMINITARIZACIARE ALSO INM ORGANIZATION TO CONTRACT AND INFORMATION TO CONTRACT AND INM ORGANIZATION TO CONTRACT AND INFORMATION TO CONTRACT AN	mantenimiento estructural de los cromosomas SMC1 de tipo 1 co-transcrito de Thy-1	SMC1L1	98 mwghuman30k#C: 067	NM 006306.2 NM 033209.2	NP 006297.2 NP 149986.1	1,8	2.9	1,2E.08	0,00000134 1061,5	
FHEPH	proteína asociada a la matriz nuclear regulada por RA.	RAMP	mwghuman30K#A: 039 35	NM 016448.1	NP 067632.1	15	2.1	42E:07	728584 E-07 1076	nuevo
COOKING Part Part		1,0011	mwghuman30K#A: 072	NM 04CEGA 4	ND 067670 4			20 11 12 11 11 11 11 11 11 11 11 11 11 11	7 0001 10000	
HISTITIAH Immylluman3CK4K-US	proteina 11 de union a FKSUB marco abierto de lectura 129 del cromosoma 20	C20orf129	44 mwahuman30KMB: 365	NM 030919.1	NP 112181.1	108	2,4	2.4 E.05	2,91943 E-06 1106	nuevo
Maintained by Civing Figure Figur	histona 1, H4h	HIST/H4H	mwghuman30K#B: 459	NM 003543.3	NP 003534.1	2.1	6,4	3,4 E.05	0,000069 1117	
National Control of Particles National Control of Particle	inhibidor 3 de la cinasa dependiente de ciclina	CDKN3	mwgnumanguk#A,U5/ 99	NM 005192.2	NP 005183.2	2,1	4.7	7,9 E:05	1,93626 E-05 1117,5	nuevo
Processor Proc	molécula de adhesión celular a melanoma	MCAM	mwghuman3OK#A;105 99	NM 006500.1	NP 006491.1	1,6	3,0	1,8 E-06	0,00000045 1135,5	
NPSNAF1	sinucleína, proteína de interacción alfa	SNCAIP	mwghuman30K#A;081 03	NM 005480.1	NP 005451.1	1.7	2.7	1,5 E-05	0,0000236 1151,5	
Backing	homólogo 1 de nipsnap	NIPSNAP1	mwghuman30K#A: 106 99	NM 003634.1	NP 003625.1	2.4	21,5	1,9 E-05		
Leading	complejo de proteínas relacionadas con el adaptador 1, subunidad mu 1.	AP1M1	mwahuman30K#B: 155	NM 032493.2	NP 115882.1	15	4.1	6.7 E.06		DURNO
Activities Coores Coores		14 4	mwghuman30K#M: 052	NA 04000F.7	ND 064465.0	. c		0000		
Trop	marco ableto de lectura 69 del cromosoma 6	Ceorfee	mwghuman30K#C: 085	NM 173562.3	NP 775833.2	1,6	3,6	3,6E-07		
No. No.	transductor del elemento de respuesta al AMPc proteína de unión	TORC3	mwghuman30K#A; 040 08	NM 022769.1	NP 073608.2	16	2.8	1.5 E-05	1,73622 E-05 1187,5	nuevo
TANED Transplantaria TANED TRANSPORT TRANSPORT TRANSPORT TANED T	omteína con dedo de circ asociada al MYC	MA7	mwghuman3OK#A: 043	NM 002383.1	NP 002374.1	16	in on	1.2 E.05		
Commonwealth	and or or or the second or	TVNDD1	mwghuman3DK#AD29	1 CV 1 CO 1 MM	1 UC 727.700 II	, C	0.31	000		
Main	proteina hipotetica xp 095695	I WRD I	mwahuman30K#B: 596	XM 096695	MP 077 420.1	15	3.2	5.4E.06	3.2.51921 E-0 1211.5	nuevo
VSNU Implimination-would Impliminat	marco abierto de lectura 4 del cromosoma 22	C22orf4	mwghuman301<#8: 984	NM 014346.1	NP 055161.1	1,5	2,3	1,1 E.05	5 1,33979 E-0, 1234	nuevo
Machine Mach	de tipo 1 de visinina alceitos a la codesca budo E3 UDo de la confeccionacidade	NSN	mwgnumanouwe. 002 27	NM 003385.3	NP 003378.2	2,2	8,0	2,2E.05	0,0000254 1243,5	
Min Ubs3.43	Official and causing to do to the do to the control proprietion of	004400	mwghuman30K#A: 101	AW 200000.0	// 2000000.4	> 0	2 0) i		
19 NM 025007 2,0 5,7 3,2 E.05	KIAATS98	KIAA1598	mwghuman3OK#A: 063	NM U1633U.3	NP UBUBUU.2	D.	6,01	000	_	Unexo
	proteína hipotética flj 13501		19 ~	NM 025007		2,0	2,2	3,2 E.05	2,23862 E:05 1285	nuevo

Figura 3 (cont.)

Nombre del gen	HUGO	oligo# MWG	sec. de ref. del ARNm de NCBI	sec. de ref. de la proteína	n° de veces de cambio medio	n° de veces de cambio máx.	Prueba de la TP	n° de veces de cambio mediode cambio máx. Prueba de la T Prueba de Wilcoxan	Rango sumado Suero	Nuevo?
	DKFZP4340047	mwghuman30K#X: 087	NM 015594.1	NP 056409.1	8,0	6,5	9,6 E-06	4,13751 E-05	1290,5	nuevo
proteina hipotetica FUGS/16		mwgnuman30k#k: 027	NM 152357.1	NP 669550.1	D. C	0, 0	90-11-05		4,1%1,5 7,30C.6	onenu
smilar a la proeina ripotetta (regori Lino) proteína hipotética KIAA1875		mwghuman30K#8: 574	XM 291269.3	XP 291269.2	v 61	2,4	2,7 E-05	1,33979 E-05	1313,5	OAANU
primasa, polipégido 1	PRIMI	mwgnumanJUK#N U/B	NM 000946.2	NP 000937.1	1,6	2,9	3,3 E-05	5,24719 E-05	1315	nuevo
proteina ripotetica bulo lubo deficiente en el minicromosoma de mantenimiento 2 MCM2	MCM2	mwghuman30k#k: 088	NM 130309.1	NP 012330.1	- 4	5,5	18 F.06	/gcmm/n	1332	
proteína de unión comunicante, alfa 3	GUA3	mwghuman30K#X: 045 69	NM 021954.2	NP 068773.2	9,1	2.7	1 E-06	0,00000252	1332.5	
marco abierto de lectura 30 del cromosoma 11	C11orB0	mwgbuman30k/#\lambda: 108 32	NM 020193.2	NP 064578.2	1.4	3.4	66 E-07	1.00418 E-06	1339	nuevo
similar a la proteina hipotética FLIJ0672	THY1	mwgbuman30K#B: 957	XM 376318.1 NM 033209.2	XP 376318.1 NP 149985.1	9 4	2,3	3505	2,53726 E-05	1349	nuevo
proteina relacionada con el receptor de ipoproteínas de baja percinal	- EB3	mwghuman30K#k. 050	NM 0023331	NP OID324.1	i t	2, 2	115.06	1 9727 E.05	1358	Chaile
bounding of a general to do bounding A C 4	1 4000	mwghuman30k/#A: 008	NM 013304.3	ND 037515.3	, ,		17 00	*CO0000	1365	
TOTTIOLOGO Z DE GATATITA DE TOTIGENOAU CASO	D4007	wghuman30K#A: 073	NW 013304.3	NP US/510.3	<u>`</u>	0	000 /-	47700070	2000	
marco ablento de lectura d del cromosoma 16 proteína con dedo de cinc 81	ZNF81	/ I mwohuman30K#B: 106	NM 007137.1	NP 03/458.2 NP 009068.1	บี ณี	2,2	2,6 E-06	1,8667 E-06	1387,5	nuevo
factor de reconocimiento de la prelamina Anuclear	NARF	mwghuman30K#A: 023 01	NM 031968.1	NP 114174.1	1,5	2,5	8,8 E-06	1,73622 E-06	1391,5	nuevo
	MTHFD2	mwghuman30K#A: 016 88	NM 006636.2	NP 006627.1	2,4	8,4	8,6 E.05	0,00013	1392,5	
transactiasa de dinidrolipoamida de cabena ramilicada	SIATZD	mwghuman30K#\.032	NM 175040 1	NP 001909.1	0,1	5,3	3.2 F.06	0,33315 E-00	1390,5	DAADU
de tino metalonoro einasa de la matriz 1	MMPL1	mwghuman30k#A: 026 74	NM 0041421	NP 004133.1	. 40	3.4	14 E-06	2.91943 E-06	1403	DURVO
calicrefua 11	KLK11	mwghuman30K#N: 097 21	NM 144947.1	NP 659196.1	- t	2,3	1,6 E-05	0,0000153	1415,5	
carioferina alfa 2 processor compañano 2 de ESERI	KPNA2	mwghuman30K#B: 403	NM 002266.1	NP 002257.1 NP 055448.1			98 505	5,89923 E-05 1 33979 E-05	1426,5	nuevo
umantina umantina	W	mwghuman30K#A: 028	NM 003380.1	NP ORBS71 1	- c	5 5	0,000		1451	
proteína FU44108		mwghuman30K#B: 093	XM 379827.1	XP 379827.1	1,7	2,9	7,7 E-06	2,53726 E-05	1474	nuevo
polimerasa gamma de poli(A)	PAPOLG	mwghuman3Uk#N: U38 36	NM 022894.2	NP 075045.2	2,7	36,2	7,6 E-05	0,0000932	1474,5	
que contiene un dominio de homología 2 con la formamina 1	FH0D1	mwghuman30K#A: 050 58	NM 013241.1	NP 037373.1	1,6	4,0	9,5 E-06	0,00000187	1483,5	
familia 12, de tipo RAS (RASL12) dominio de unión nucleosómico del grupo de alta movilidad	RASL12 HMGN2	mwghuman30k4#k; 072 21 mwghuman30k4#B: 911	NM 016563.2 NM 0055172	NP 057647.1 NP 005508.1	1,4	2,1	1,2 E-05 8,3 E-05	2,23862 E-05 0,0000367	1490,5 1495,5	nuevo
proteína de transferencia de fosfatidilinositol, asociada a la membrana 2	PITPNM2	mwghuman30K#B: 848 4	NM 020845	NP 06589	2,3	26,2	7,1 E-05	0,0000224	1497	
derlina-1	DER1	mwghuman30K#A: 016 54	NM 024295.3	NP 077271.1	1,5	3,3	4,9 E-05	5,24719 E-05	1527	nuevo
EphA4	EPHA4		NM 004438.3	NP 004429.1	1.5	3,1	1,1 E-05	0,0000743	1527,5	
que contiene el dominio del conjunto en V y de inmunoglobulina 1 regulador de la señalización por proteínas G 5	VSIG1 RGS5		NM 182607.3 NM 003617.2	NP 872413.1 NP 003608.1	2,0	യ്യ	7,8 E-05	3,24766 E-05	1532,5	nuevo
proteina KIAA1639	SHOR	mwghuman30k4#B: 493	XM 290923.2 NM 015503.1	XP 290923.3 NP 045318.1	1,0 C,C	11,5	2,7 E-06	1,9727 E-05	1540,5	nuevo
proteína de reconocimiento de peptidoglucanos 4	PGLYRP4		NM 020393.1	NP 065126.1	1,5	32	3 E-06	4,50136 E-06	1566	nuevo
CDC45 de tipo ciclo de división celular 45	CDC45L	mwghuman30k#k: 093 31	NM 003504.3	NP 003495.1	1,8	2,9	6,3 E-05	0,000129985	1567,5	unevo
dominio que cortiene la esterilidad masculina 1	MLSTD1	mwghuman30K#X: 046 00	NM 018099.3	NP 060569.3	1,9	0,01	6,3 E-05	3,66781 E-05	1585,5	nuevo
proteína hiputética MGC11266		mwghuman30K#A: 105 95	NM 024322.1	NP 077298.1	1,5	3,4	5,2 E-05	6,62502 E-05	1608	nuevo
superfamilia de los receptores del factor de necrosis tumoral, miembro 138	TNFRSF13B	mwghuman3UK#X: 009 22	NM 012452.2	NP 036584.1	1,7	3,8	2,7 E-05	6,62502 E-05	1643	nuevo
gen transformantes celular neuroepitelial 1 compañero de fusión de lipoma HMGIC de tipo 5	NET1 LHFPL5	mwghuman30K#8: 512 mwghuman30K#0: 921	S82401.1 NM 182548.2	AAB37683.1 NP 872354.1	1,4	2,1 9,5	8,7 E-06 5,4 E-05	4,50136 E-06 4,66206 E-05	1657 1561	nuevo
resistencia a micovirus (virus de la gripe) 2	MX2 SDIJ/1	mwghuman30k#k: 103 46	NM 002463.1	NP 002454.1	9,1	6,0	7,4 E.05	0,00001	1680	Green Control
Cinasa de esimplesna i	NEW SON	mwghuman30K#X: 020	NIM 102300.1	NP 692010.1		7, 0	4.0 00	0,10492 E-00	1707	OAADU
casete de union al ATP, subtamilia G (WHILE), miembro 4 inhibidor de la proteinasa de serina (o cisteina), subtipo B	ABCC4	44 mwghuman30K#A: 100	NM U22169.3	NP U/1452.2	,'.	n 'n	1,2 = 05	esnonn'n	1/02	
(ovalbūmina), miembro 2	SERPINB2	76 mwghuman30K#A: 100	NM 002575.1	NP 002566.1	8,	e,	3,1 E-06	2,50475 E-05	1705,5	nnevo
UDP-N-acetil-alfa-D-galactosamina: polipéptido N-	GALNT10	48 mwahuman30K#B: 526	NM 017540.3	NP 060010.3	1,6	7.1	6,4E-06	2,23862 E-05	1711	nuevo
receptor de leptina	LEPR	<u>, 0</u>	NM 001003680.1	NP 001003680.1	1,6	2,8	2,2 E-05	7,87228 E-05	1715,5	nuevo

			sec. de ref.	sec. de ref.	sec. de ref. sec. de ref. n° de veces	n° de veces			Rango	
Nombre del gen	HUGO	oligo # MMG	del ARNm de NCBI	de la proteína	de cambio medio	de cambio máx. F	rueba de la TF	del ARNm de NCBide la proteínalde cambio medio de cambio máx. Prueba de la Tiprueba de Wilcoxon su	sumado Sue	ro ¿Nuev
		mwghuman30K#A: 082								
proteína de dimerización de MAX 4	MXD 4	_ 96	NM 006454.2	NP 006445.1	1,7	1,1	1,1 E-05	0,0000134 1719,5	1719,5	
		mwghuman30K#A: 069								
proteína-2 adaptadora al 4-fosfato de fosfoinositol FAPP2	IIFAPP2	_ 70	NM 032639.2	NP 116028.1	1,5	က်	1,6 E-05	3,66781 E-05 1725,5	1725,5	unevo
nucieoporina 210	NUP210	1UP210 mwahuman30K#B: 741 NM 024923.2	NM 024923.2	NP 079199.2	1,6	2,8	6,5 E-05	0,000104262 1728,5	1728,5	unevo
		mwghuman30K#A; 016								
cinasa de tirosina c-src	Š	29	NM 004383.1	NP 004374.1	1,5	5,1	7,3 E-06	8,56146 E-07 3601	3601	
		mwghuman30K#A: 030								
neuropilina 1	NP 1	91	NM 003873.2	NP 003864.2	2.3	17.2	0.00276	0.004728544 6356	9356	

Figura 3 (cont.)

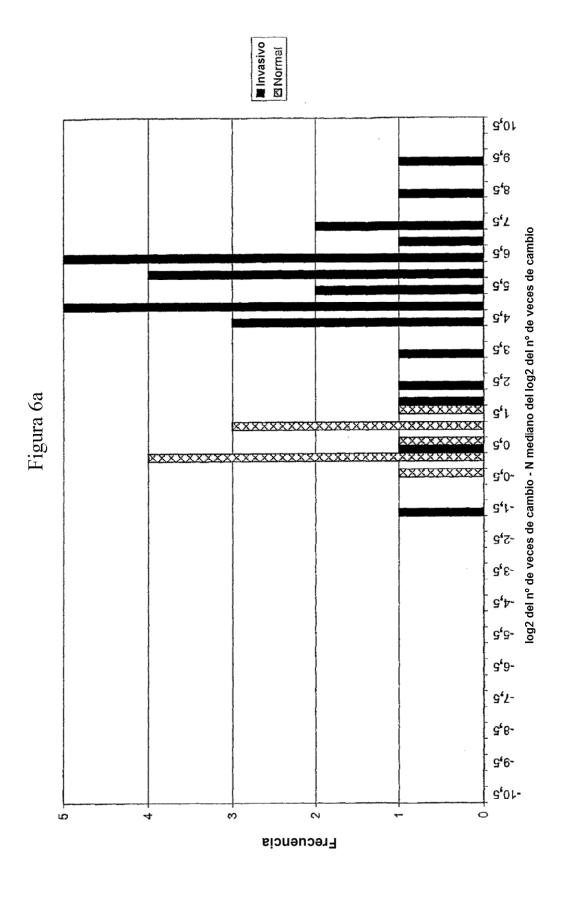
igura 4

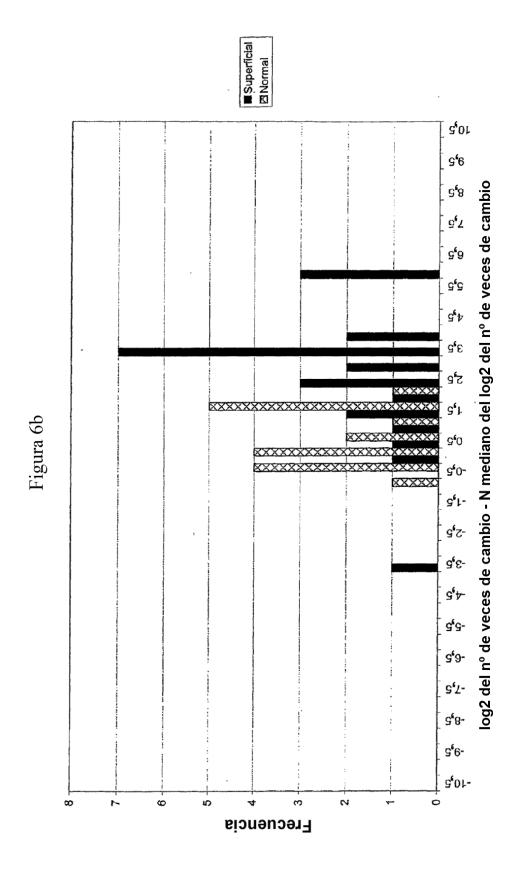
Suero Muevo?		Unevo nuevo		oveun nuevo	
Stem			ω		
Rango sumado (2) 165,5 241 436,5 455 473 492,5	569,5 568,5 611,5 632 712 712 869,5 963,5 963,5 1008,5 1134 1134	1277,5 1419 1419 1504 1586,5 1789 1789 1891,5 2581 2581 6739,5 10677	23988,5 37 59 77,6 92,5 92,5 92,5 120 1120 116,5	240,5 270 270 322 323 362,5 362,5 384 448 448 448 448 448 448 448 448 448	5.24.5 5.34.5 5.34.5 5.38.5 5.80.5 5.
loxon 1 E-07 5 E-06 5 E-06 9 E-06 4 E-07	0,000359 0,000389 0,0000003 0,000003 0,00003 0	0.0002/5.77/5 0.0002/1.14/9 0.0003/2.140/5 0.0003/2.160/1.0003/2.160/5 0.0003/2.160/2.160/5 0.0003/2.160/2.160/5 0.0003/2.20/1.20/1.20/1.20/1.20/1.20/1.20/1.20	0,38901722 1,75 E-07 8,11 E-07 3,52 E-07 2,27 E-07 2,27 E-07 2,27 E-07 2,27 E-07 2,27 E-07 2,27 E-07 2,27 E-07 2,27 E-07 4,21 E-07 6,39 E-06 4,49 E-06	102 E-06 2 33 E-06 1,17 E-08 1,17 E-08 0,0000243 0,0000243 4,21 E-09 4,21 E-06 5,70 E-06 5,70 E-06 0,0000274	0,000001 2,86,807 9,46,807 0,000034 117,806 1,00001
Prueha de la TPrueha de MA 42 48 E07 42 35 E07 15 E08 1 75 E08 0 000 15 E08 17 E08 17 5 E08 5 5 E09 5 E09 15 E09 17 5 E08 5 E09 5 E0	4,4 E.05 1,7 E.05 0,0001 7,5 E.05 1,7 E.05 3,9 E.05 4,8 E.05 1,5 E.05 1,5 E.05 1,5 E.05 1,5 E.05 1,5 E.05 1,00034	0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0	0.206 2.8E-07 1.2E-07 3.1E-07 1.7E-08 1.8E-06	2.2 E-07 2.2 E-07 2.2 E-08 2.2 E-08 3.1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	6.9 2.55 2.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	228 229 230 230 255 455 455 455 118 118 118 118	19.5 5.7 6.0 7.7 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	2388334 7074 721 721 721 721 730 730	44841487 8 8 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
de cambie medio de cambie máx de veces de cambie medio de cambie máx de 176 176 176 186 186 186 187 187 187 187 187 187 187 187 187 187	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	₹ 100 10	17 12 12 12 12 13 18 18 13 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15		2
sec. de ref. de la proteína NP 067672.1 NP 002397.1 NP 07147.1 NP 477.1 NP 001710.1 NP 001710.1	NP 112219.2 NP 002346.1 NP 002336.1 NP 775685.1 NP 775685.1 NP 000590.1 NP 000590.1 NP 000590.1 NP 000590.1 NP 000590.1 NP 000590.1 NP 000590.1 NP 000590.1 NP 000590.1	NP 078856.1 P 004902.1 A-4110689.1 NP 002208.2 NP 005687.1 NP 005687.1 NP 005985.1 NP 002434.1 NP 002434.1 NP 002434.1 NP 002434.1 NP 005686.1	NP 004177.2 NP 000108.1 NP 005018.1 NP 0036.25.1 NP 00045.1 NP 00045.1 NP 002454.1 NP 002454.1 NP 002454.1 NP 002454.1 NP 060745.2 NP 060748.2	NP 0091291 NP 00112971 NP 001101343.1 NP 001001343.1 NP 000804.1 NP 102804.1 NP 102804.1 NP 102804.1 NP 102804.1 NP 102804.1 NP 102804.1 NP 202804.1 NP 202804.1	NP 05/2027 NP 112/77 NP 103/66 NP 203/66 NP 203/66 NP 203/66 NP 203/66 NP 203/66 NP 203/66 NP 203/66 NP 203/67 NP 20
sec. de ref. del ARNen de NCBI NM D165882 NM 00241682 NM 00241682 NM 002164.1 NM 0081992 NM 001793.1	NM 030957.1 NM 014287.2 NM 015284.1 NM 002346.2 NM 01526.7 NM 01526.2 NM 01526.2 NM 01256.2	NM 0245791 NM 024513 EQUIGES 1 NM 002771 NM 00382 NM 00582 NM 00582 NM 005182 NM 005182 NM 005182 NM 005182 NM 005182 NM 005182 NM 005183	NM 004186.2 NM 000118.1 NM 003634.2 NM 003634.1 NM 004225.1 NM 004225.1 NM 004227.1 NM 00463.2 NM 00463.2 NM 00463.3 NM 00463.3 NM 00463.3 NM 00463.3 NM 00463.3	NW 005134 NW 0051862 NW 0051862 NW 104772 NW 0050331 NW 1056252 NW 138381 NW 1056323 NW 138381 NW 138381 NW 138381 NW 138381 NW 138381 NW 138381 NW 138381	NN 2034 5.1 NN 2034 5.1 NN 030915.1 NN 196534.1 NN 196534.1 NN 196534.1 NN 103379.2 NN 178138.2 NN 178138.2 NN 178138.2 NN 178138.2 NN 178137.3 NN 191910.3 NN 191910.3
000000 000000 000000000000000000000000	1365 N 00008 N 09199 N 00199 N 00071 N 00071 N 00005 N 00005 N 00005 N	06273 N 09379 N 09379 N 09379 N 09379 N 09379 N 09370	07562 N 08357 N 08357 N 001219 N 004539 N 004539 N 004539 N 004539 N 004539 N 004539 N	00000 N 0000 N 0000 N 0000 N 00000 N 0	00520 N 7280 N 10145N 1
aligo # MMG del merghunan 2014/4/, 10562 N merghunan 3014/4/, 10762 N merghunan 3014/4/, 10762 N merghunan 3014/4/, 3455 N merghunan 3014/4/, 10563 N merghunan 3014/4/	mwghunaa.20x46. 1356 mwghunaa.31x4x (00.080) mwghunaa.31x4x (00.080) mwghunaa.31x4x (00.081)	Investment 31.4% (18.07.3) Nitrograms 31.4% (18.07.3)	monghuman31c44c, 0725.N monghuman31c44c, 0825.N monghuman31c44c, 0835.N monghuman31c4c, 0339.N monghuman31c4c, 0639.N monghuman31c4c, 0639.N monghuman31c4c, 1036.N monghuman31c4c, 1036.N	Immyllunia M. Mee Beeb. M. mmyllunia M. Mee Beeb. M. mmyllunia 200-46 (2041 N. mmyllunia 200-46 (2041 N. mmyllunia 200-46 (2041 N. mmyllunia 200-46 (2042 N. mmyllunia 200-46 (2043 N. mmyllunia 200-46 (2044 N. mmyllunia 200-46 (2044 N. mmyllunia 200-46 (2044 N. myllunia 2	Implination (1997)
HUGO NRN1 MGA11 CLCN7 OLEM1 BMP7 MDK	ADAMTSIO PNE TIMPI LUM EGRE ROMO3 NOMO3 GFBFS HEXA SERPINH CORP NPPC NPPC NPPC NPPC NPPC NPPC NPPC NP	ERP70 GAUT14 ITHA ITHA PAPPA2 LOXLI SPARC SPARC SPARC SPARC SULFI MSMB TILL2 SEMZ	SBMA3F ENG CLDNB PTAAA NIPSINAPT AVPR2 MAHAS1 HOXA13 MX2 TMEMB PTGIR	PROSC GPR32 GPR32 NOO! CKAP4 SIAT7D PDPK1 PDPK1 PDPK1 PDPK1 PDPK1	CODE SING CABS CABS CABS SLC37A3 SCPR14 CART ARH SLC38A1 ARH SLC38A1 MF
Nombre del gen neurtina 1 Deta-1,2-N- acettique ceanunitransferasa de manosil (alfe-1,3-)-güu oprotaina producto del gen 14,240,100 en carana 1 elfatomedina mode acetti del ceanunitransferasa de manosil (alfe-1,3-)-güu oprotaina 1 elfatomedina mode acetti del creamiento de neurtas 2) motema (facto promotor del creamiento de neurtas 2)	un mato a perio obestragama y metaoprotasas (de tpo represens) con tromoseponana of the control	Patrellera herditera EULZGZT. Patrellera herditera EULZGZT. Patrellera berottera EULZGZT. Patrellera berottera EULZGZT. Patrellera	domnios services, demnino de innumoglobulina (Ig), dominio básico cotto, secretado, entrodorno 35 entrodorno 35 entrodorno 35 entrodorno 36 en	proferia profet as pud. 261 homologo Charlessiz to & la sinificas de prolina homologo Charlessiz to & la sinificas de prolina proteina prodetica MCG34523 proteina prodetica MCG34523 deshidogenesa de NAD(P)H, quinena 1 proteina aprodeta e BOMD(P)H, quinena 1 proteina aprodeta e BOMD(P)H, quinena 1 proteina proteina de prodeta e BOMD(P)H, quinena 1 proteina de proteina de Control a Libracycletic de 3-losolinoshido proteina de transferoncia de Pofficialinostici, asociada a la membrana 2 proteina de transferoncia de Pofficialinostici, asociada a la membrana 2 monicula de transcribige del uso mitotico 1 monicula de transcribige del uso mitotico 1 monicula de transcribige del uso mitotico 1 monicula del mescación con Rabij3	hornigog le pocupina probabilitation en carterina de la extremidades y al corazón de ratón probabilimente en cartego de gen de las yernas de las extremidades y al corazón de ratón hornigog de la funtecaja de sine coulis 6 proteín de unido de la funtecaja de sine coulis 6 proteín de de indirecada de soludos 37 (transportados de glocot-3-fortido) hornidogo de egotod y 4 hornecada (La femilia paradera de soludos 37 (transportados de glocot-6 las Corasonana 7 marco abeleto de la cucha 27 del cromacoama 7 marco abeleto de la cucha 27 del cromacoama 7 proteín a adejancidos al freegoto de las CUP (2017 307) proteín a control de la cucha 39 (transportados de cinc), miembro 1 proteín a control de la cucha 29 (transportados de cinc), miembro 1 factor inhididos de la magador de los magados de las comparados de la funtación de las comparados de la funtación de las funtación de la funtación de

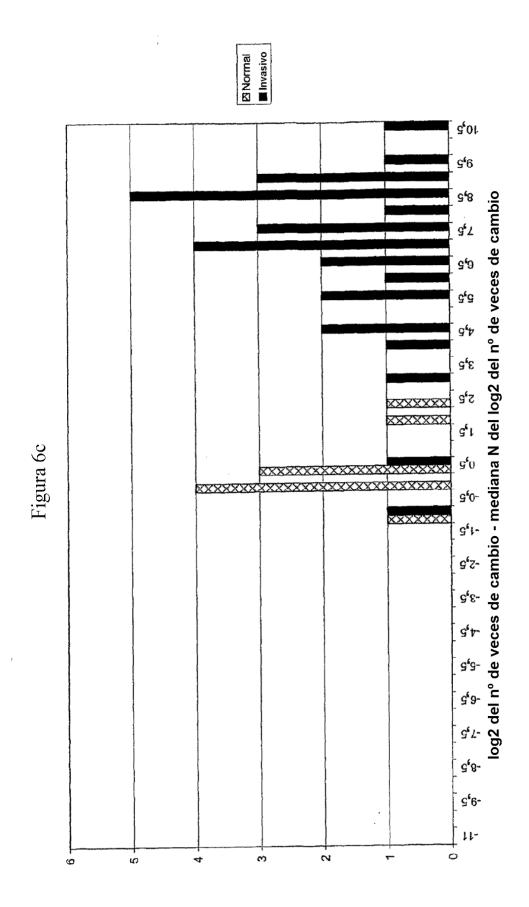
Figura 4 (cont.)

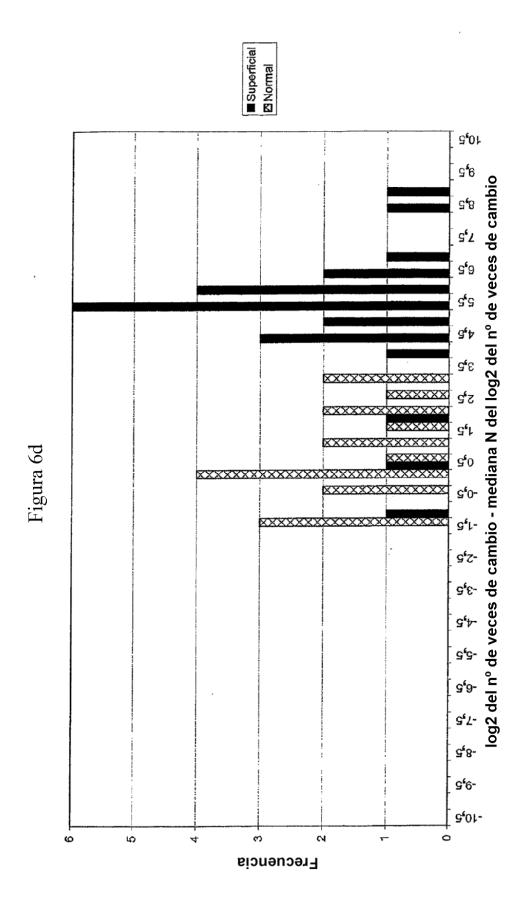
Sro 2 Nuevo?				T		nuevo		I			1	I	nuevo		unevo		Cherron	O A S										I	nuevo	T			nuevo	I	nuevo	nuevo											nuevo			0.00	OAAD!	010114	DARNI	nuevo	Unevo	nuevo	nuevo	Ovenu
rango rangoSue 737,5	755	5.09.5	7.4,5	268	793,5	804	813	323.5	848,5	928	9835	g'990	300	922.5	332,5	935,5	S41	360.5	5,736	283	1013	1013,6	1017	1021	1032.5	1032,5	1036,5	1045.5	1068	1071.5	1075	9'6801	1090	1100.5	104,5	1110	123,5	1126,5	1154	1160,5	1120	1179,5	1186.5	138	1226,5	1250	1271	1273,5	1278.5	1332	382,5	387,5	418,5	1436	1457	467,5	1474	1479,5
e la TPrueba de Wilcoxon sumado Suero ¿Nuevo? E-05 0,000236 737,5	3,47 E-06	0,000161		2 22 E DE		0,0000121	0,0000523	0.0000647	0,0000339	3,47 E-06	0,0000153	2/100000	_	0,000177	0,0000647	0,000177	0,000,083	0.0000339	4,9 E-07	1,55 E-06	0,00002/1	0,000108	2620000'0	9690000	0.0000153	1,53 E-05	0,0000419	2/100000		0,0000271	0.00083		0,0000797				1,94 E-07	0,000312	0.000332	100				0,000249	i.	0,000342			5 0,000010	0,000047	0,000084	0,000269 1387,5	0,000146	0,000196	0,00035	0,000259	0,000106	6,59 E-U/
Prueba d	2,2 E-06	8 5.09	4,2 E-UB	1 2 1 2	6.5 E-05	3,3 E-05	0,00013	3.1 E-05	2 E-05	1,5 E-06	1.1 E-05	2,1 E-05	4.8 E-05	3 E-05	1,9 E-05	0,00017	0.7 E-U5	5.2 E-06	7,6 E-06	9.9 E-07	1,9 E-05	6.9 E-06	4,4 E-05	00000	3.1 E.05	3,1 E-05	0,00025	3.7 E-06	6,2 E-05	7,9 E-06	0,0002	1,3 E-05	0,00011	3.5 E-06	5,7 E-05	1,9 E-05	7 E-07	0,00027	0,00014	0,00012	4,7 E-05	1,2 E-05	6.2 E-05	0,00012	2,5 E-05	0000	6,9 E-05	90000'0	6.7 E-06	0,00024	1 E-06	0,00021	0,00013	7,4 E.06	9.8 E-05	0,00038	0,00011	4,4 E-UD
n' de veces de cambio máx 5,3	E, E	ro ro	2,2	φ. C.	5.1	2,9	υ, «	- E	6.4	2,1	2,3	4,4	6.7	12.8	2,3	4,7	2,8	17.9	4,8	5.2	4.6) E0	2,0	12,5	200	2,0	2,4	2.4	4,1	2.1	50.0	2,6	2,7	2.7	3,5	4 0	3,5	4 (ກູເວ	3,1	9,0	22	2,5	17.8	2,8	9 5	5 10	3,1	2,6	m o	21.2	2,4	12,6	2,7	3,0	3,7	3,2	7,0
de cambio medio de cambio máx.	1,6	2,0	0 4	ūα	19	1,5	9 0	19	16	1,4	13.	9 9	17	18	1,4	0,1 0,1	C 4	0.00	1,6	1.7	1,5	16	Ε,	2,3	1 4	1.4	9,0	212	1,7	13	7.42	15	1,4	4 4	1,5	1,4	- - -	1.7	22	1.4	4.4	1.4	1,5	22	1,4	2) u	1.4	1,5	1.4	1,4	u m	4 4	<u>7</u>	1,4	1,6	1,5	1.4	4.1
sec. de ret. de la proteína IP 004326.1	NP 003969.2	NP 001058.2	NF 004517.2	ND DEED 18 1	NP 079295.1	NP 689598.1	NP 660303.1	NP 0062951	NP 872634.1	NP 037458.2	NP 037373 1	NP UU5645.1	NP 056318.1	NP 003608.1	NP 116028.1	NP 001329.1	NP 0023901	NP 003059.1	NP 079148.1	NP 004258.2	NP UUU261.1	NP 002341.1	NP 061154.1	NP 694861.1	NP 149986.1	NP 149986.1	NP 078785.1	NP 0735832	NP 067675.1	NP 002270.1	NP 005508.1	NP 942592.1	NP 000439.1	NP 050312.1	NP 003679.1	NP 005329.3	NP 6594772	NP 005415.1	NP 0611552	NP 077271.1	NP 05/1023	NP 620143.1	NP 112576.1	NP 064527.1	NP 0505162	NP 981946.1	NP 996886.1	NP 055655.1	NP 065955.1	NP 659196.1	NP 005069.1	NP 1162062	NP 076992.1	NP 7758332	NP 05/635.1	NP 004066.1	NP 115618.2	NF 060010.3
E NG	NM 003978.2	NM 0010672	, I	NM DOSTUZZ	L	П			M 1825921	M 013326.2	M 013241.1	NM U05854.1	NM 015503.1	M 003617.2	M 032639.2	M 001338.3			M 0248721	M 004267.2	NM UUCZ/U.1	NM 002350.1	NM 018684.1	M 153191.1	NM 0332092	3.2		E∣≥	M 021543.1	M 0022793	M 0055172	П			Ш				NM 0.20199.1	П		VM 138793.2	NM 0312862	NM 0201423	M 018046.3	NM 203401.1	NM 207003.1	M 0148402	M 020904.1	M 144947.1	M 0050781	NM 0328172			NM 0245832	Ш	Ш	
oligo # MWG d mwghuman30K#8 4758 N		mwghuman3UK#B: 7144 N	nwgnuman3Uk#A U8634 N	mwgnumanguk#4 u/ 4 luliv	mwghuman30K#B: 2461	mwghuman30K#C 8001	mwghuman30K#C 8737 NM 145260.1	mwgnuman30K#A 05669N	mwghuman30K#A 00606N	mwghuman30K#A; 07371 N	mwghuman30K#A 05058N	mwgnuman3Uk#N U25U5N	mwahuman30K#B: 8571 N	mwahuman30K#B: 0128 N	mwghuman30K#4. 06904N	mwghuman30K#A, 0011BNM 001338.3	mwgnuman3UK#A UBUU6N	mwghuman30K#A 10656N	mwghuman30K#B: 2635 N	mwghuman30K#A: 06174NM 004267.2	mwghuman3UK#A U3/62N	mwghuman30K#C 2653 N	mwghuman30K#B: 7758 N	mwghuman30K#A: 02704N	mwghuman30K#A 07498 NM 033209	mwghuman30K#A, 07498h	mwghuman30K#A 00147 N	mwgnuman30k#6 (B789)	mwghuman30K#A: 05272N	mwghuman30K#A 02682N	mwgnuman30K#8. 9113 N	mwghuman30K#B: 0250 N	mwghuman30K#A 09856N	mwgnuman3UK4A, U7462INM 0178421	mwghuman3UK#A: 0176BN	mwghuman30K4M 0590BN	mwghuman30K#B: 4639 N	mwghuman30K#A 0588Bh	mwgnuman3Uk#A: 10834 N mwghuman3Ok#A: 05280 N	mwghuman30K#A; 01654N	mwghuman3UK#C 2137 N	mwghuman3DK#C 1422 N	mwghuman30K#B: 1593 N	mwgnuman3UK#8: 1359 N	mwghuman30K#B; 2180 N	mwghuman30k#K 00925N		mwghuman30K#B: 9070 N	mwghuman3DK#B: 3447	mwghuman30K#A: 09721	mwghuman30K#A: 09092 N	mwghuman30K#A: 10163N	mwghuman30K#A 01131	mwghuman30K#C 0854 N	mwghuman3UK#A U9465 N	mwahuman30K4M 06219 NM 0040752	mwghuman30K#6 8/39 N	mwghuman3UK#B: 6489 N
HUGO BST2	PSTPIP1	TOP2A	-			П	ODD	Т	П	ш	FHODI					CXADR			Ш	CHST2			HCA127	- 1		THY1	LRFN3		1 1	KRTHA3B	- 1		RAG1				PRKCDBP		- 1			ENTPD8			VGEG	SIMNI	BCL2L11	ARKS				THS 00044	ASB9	CEorles		П	PLXNA1	
Nombre del gen antigeno de las células estromales de la médula 5sea 2	proteína de interacción de la fosfatasa de prolina-serina-treonina 1	topoisomerasa (ADN) II alfa	deficiente en el minicromosoma de mantenimiento 2 MUM2	Caja OKT (Fegior Determinatora del Sexo 1) Z	tubulina, alfa 4	proteína hipotética FLJ31436	homologo de odd-skipped	malformación de mano / pie dividido (edrodadilla) de tipo 1	cinasa de proteínas SFRS 2	marco abiento de lectura 8 del cromosoma 18	que contiene un dominio 1 de homología con la formina 2	proteina modificadora de la actividad del receptor (calctonna) 2	homólogo de SHZ-B	regulador de la señalización por proteínas G5	proteína adaptadora de 4-fosfato de fosfoinostol 2	receptor del virus de corsackie y de adenovirus	Meist, homologo Zidel sito de megración vinco ecotropico mieloide 1	homólogo snail 2	proteína de anciaje 3	sulfotransferasa de carbohidrato (Nacetilglucosamina-6-0) 2	tostorilase de nucleosido	hamólogo del oncogén relacionado con el sarcoma virico v yes-1 Yamaguchi	antígeno asociado al carcinoma hepatocelular 127	familia portadora de solutos 22 (transportador de cationes orgánicos), miembro 2	proteina de diriteiración MAA 4 co-transcrito de Tru-1 (LOC94105)	co-transcrite de Try-1 (LOC94105)	dominio de tipo 3 que contiene repeticiones ricas en leucina y fibronectina 3	oroteina binoritica FLI22390	hamólogo de tribbles, 2	queratina, pelo, ácida, 3B	dominio de unión nucleosómica del grupo de alta movilidad 2	dominio de repetición de ankynna 17	gen adivador de la recombinación 1	proteina de union a nucleotidos z proteína hipotética FL/20489	cinasa de proteína senna dependiente de de calcio / calmodulina (MAGUK	proteína de interacción con huntingtina		dominios de homología de la cinasa detirosina con la inmunogiobulina y el factor de crecimiento epidérmico	marco abiento de lectura 15 del cromosoma 5 anilina, proteína de unión a actina	derlina-1	proteina CGI-72 Ad ino 1 de l'occardor de tino II de la activina &	disfosfohidrolasa de trifosfato de ectonucleósido 8	proteina rica en ácido gutámico del dominio de unión SH3 de tipo 3	Smy4 de tipo I de martenimiente estructural de los cromosomas 4 lleradura) homólogo de la subunidad MLRQ de la oxidomeductasa de NADH ubiquinona	factor angiogénico VOSQ	estatmina 1 Inidoeina	de tipo BCL2	ωI.	contiene el del dominio de homología con la pieckstrina, familia A (especifico de la union a fostoinostido). miembro 4	calicrefina 11	ue tipt supresion de la división de tipo transducina 3	inhibidor de inter-alfa (globulina) H5	regulator de la serialización de las proentas S 11 caja que contiene repetición de ankyrina y SOCS 9	marco abiento de lectura 69 del cromosoma 6	miembro 3 de la superfamilia transmembranal /	criptocromo 1		acetigalactosaminitransferasa 14 de UDP-N-acetil-alfa-D-galactosamina: polipéptido N-10 (GalNAc-T10)

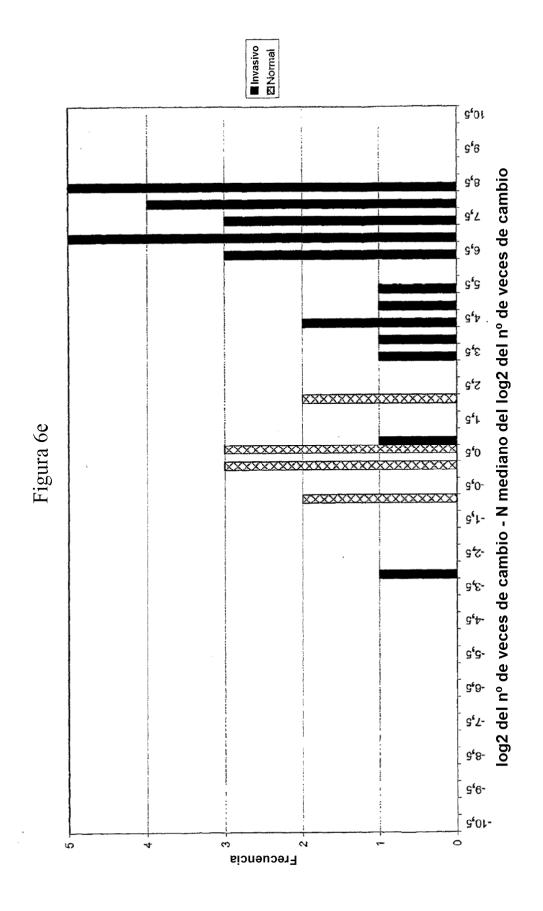
		_	sec. de ref.	sec. de ref.	n° de veces	n° de veces	Prueba	Prueba	Rango		
Nombre del gen	HUGO	oligo # MWG	del ARNm de NCB de la proteínalde cambio medio de cambio máx. de la T de Wilcoxon sumado Suero/¿Nuevo?	de la proteínac	le cambio medio	de cambio máx.	de la T	de Wilcoxon	umado St	ero ¿Nu	9.00
proteína hipotética DKFZp434G1415		mwghuman30K#C: 3525	NM 031292.2	NP 112582.2	1,4	2,9	6,3 E-05	0,000156	1501	ā	nuevo
caja que contiene repetición de W/D y SOCS 2A	WSB2	mwghuman30K#B: 1353	NM 018639.3	NP 081109.1	1,4	2,5	6,5 E-05	0,0000523	1505		
desaminasa de citidina	CDA	mwghuman30K#A: 07490 NM 001785.	NM 001785.1	NP 001776.1	1,8	3,0	4,8 E-05	0,0000271	1538,5		
formitransferasa de fosforribosliglicinamida	GART	mwghuman30K#A; 10142NM 000819;3	NM 000819.3	NP 000810.1	1.4	22	4,3 E-05	0,000146	1560		
histona 1, H1b	HIST1H1B	HIST1H1B mwghuman30K#A: 05718 NM 005322.2	NNM 0053222	NP 005313.1	1,5	4,0	£0-∃ £'6	0,000236 1578,5	1578,5		
metaloproteinasa de cinc (homólogo STE24, levadura)	ZMPSTE24	ZMPSTE24 mwghuman30K#A; 09568 NM 005857.2	3NM 005857.2	NP 005848.2	1,5	9,9	71000'0	0,000236 1653,5	1653,5	2	nuevo
proteína transmembranal 33	TMEM33	mwghuman30K#A; 01542 NM 018126.	NM 018126.1	NP 060596.1	2,9	31,9	28000'0	0,002513 1689,5	1689,5		
isomerasa de fosfato de glucosa	GPI	mwghuman30K#B: 1465 NM 000175.2	NM 000175.2	NP 000166.2	1,4	2,6	0,00015	0,000236 1670,5	1670,5	2	nuevo
proteína hipotética FIJ11000		mwghuman30K#B: 4538 NM 018295.	NM 018295.1	NP 060765	1,6	5,1	0,0002	0,000448 1687,5	1687,5	2	nuevo
proteína hipotética MGC5576		mwghuman30K#A; 06786 NM 024056.2	NM 024056.2	NP 076961.1	1,6	11,7	0,00074	0,000312	1710	2	nuevo
cinasa de proteínas dependiente de calcio / calmodulina ID	CAMK1D	mwghuman30K#A: 00327NM 020397	NM 020397.1	NP 065130.1	1,4	2,6	0,00034	0,000423	1719	2	nuevo
fosfatasa de proteína tirosina, no receptor de tipo 21	PTPN21	mwghuman30K#A: 09269NM 0070392	NM 0070392	NP 008970.1	1,4	2,4	0,000671	0,000259 1723,5	1723,5	2	nuevo
factor de inicio de la traducción eucariota 2C	EIF2C2	mwghuman30K#C: 2287 NM 012154.2	NM 012154.2	NP 0382862	1,4	2,5	0,00011	0,0000243	1730		
dominio de repetición de W/D 18	WDR18	mwghuman30K#B: 3546 NM 024100.2	NM 024100.2	NP 0770052	1,4	3,2	5,1 E-05	0,0000582 1748,5	1748,5		
tensina	INS	mwghuman30K#B: 8493 NM 022648.2	NM 022648.2	NP 0721742	1,3	2,0	90-3 6'E	0,000177 1753,5	1753,5	2	nuevo
cinasa de tirosina c-src	CSK	mwghuman30K#A; 01629NM 004383.	NM 004383.1	NP 004374.1	1,4	1,9	1,1 E-A6	7010000,0	1935,5		
enzima de conjugación conubiquitina E2C	UBE2C	mwghuman30K#A: 01776 NM 181803.1	NM 181803.1	NP 861519.1	2,1	6,8	0,00115	806800'0	2155		
neuropilina 1	NRP1	mwghnman30K#A; 03091 NM 003873.2	NM 003873.2	NP 003864.2	1,9	6,0	0,00329	0,003636 2941	2941		

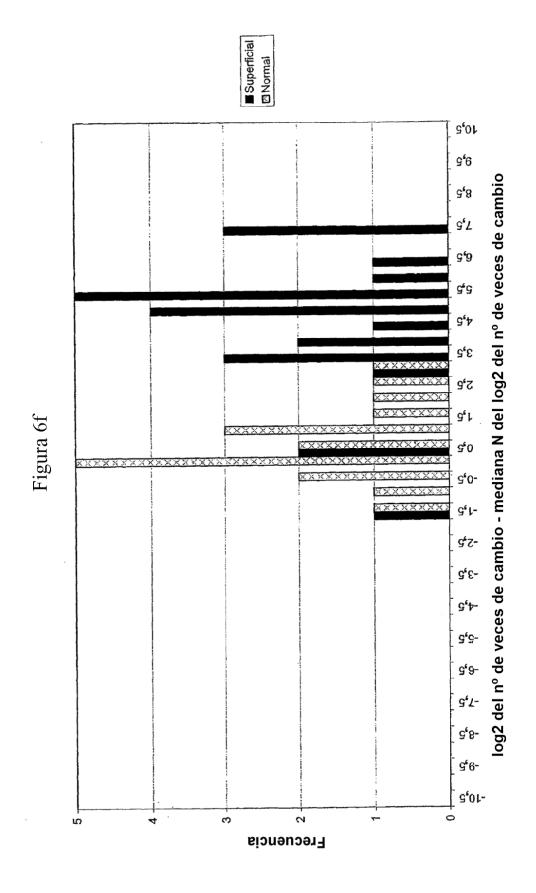

Figura 4 (cont.)

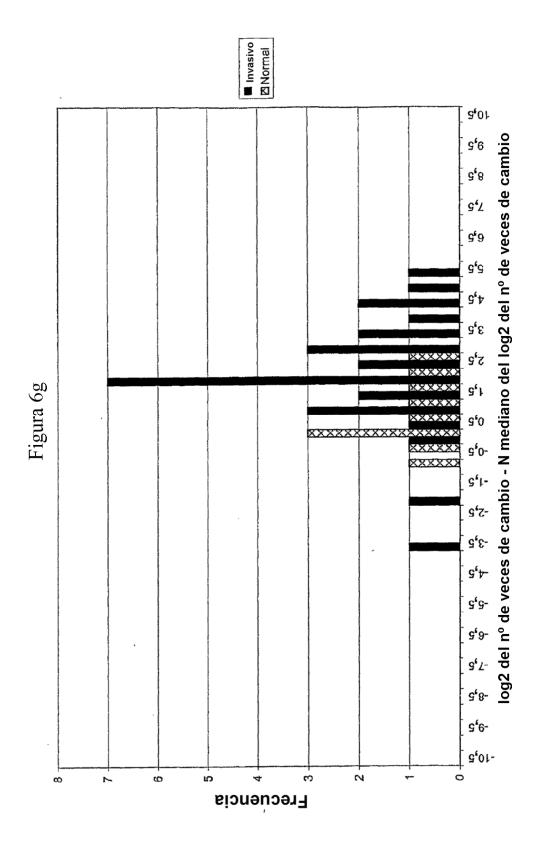

				INVASIVO			SUPERFICIAL	
Nombre	Alias	Símbolo	Mediana T:N del nº de veces de cambio	Máx T:N del n° de veces de cambio	% de T > 95° percentil del Normal	Mediana T:N del n° de veces de cambio	Máx T:N del nº de veces de cambio	% de T > 95° percentil del Normal
antígeno asociado al esperma 5	MAPI 26; DEEPEST; hMAP 126	SPAG5	40	516	93	8	09	83
topoisomerasa (ADN) II alfa 170 kDa	ТОР2; ТР2А	TOP2A	128	1136	93	38	417	88
ciclo de división celular 2, desde G1 hasta S y desde G2 hasta M	CDK1	CDC2	121	2526	63	27	152	88
endoglina (síndrome de Osler- Rendu-Weber 1)	END; ORW; HHT1; ORW1; CD105	ENG	4	32	57	80	35	84
proteína de unión al factor de crecimiento insulinoide 5	IBP5	IGFBP5				7	164	09
gen del nefroblastoma sobreexpresado	CCN3; NOVH; IGFBP9	NOV				4	16	65
neuropilina 1	NRP; VEGF165R	NRP1	7	195	89	10	37	80
dominio sema, dominio de inmunoglobulina (Ig), dominio básico corto, secretado, (semaforina) 3F	SEMA4; SEMAK; SEMA-IV; sema IV	SEMA3F				2	9	89
dominio de tipo EGF, múltiple 6	W80; MAEG; DKFZP564P2063; DKFZp564P2063	EGFL6	4	37	55	4	59	29
proteína de la matriz Gla	NTI; MGLAP	MGP	3	1303	59			
semaforina sem2	LOC56920; FLJ00014	SEM2	9	54	72	6	38	75
cromogranina A (proteína secretora paratiroidea 1)	CGA	CHGA	0	4096	48	5	>10.000	36
enzima de conjugación con ubiquitina E2C	UBCH10; dJ447F3.2	UBE2C	44	219	47	11	619	14
Homeo caja AI 3	HOX1; HOX1J	HOXA13	4	58	46	11	117	29
midcina (factor promotor del crecimiento de las neuritas 2)	NEGF2	MDK	2	99	59	2	8	89
antígeno de la superficie celular Thy-1	CD90	THY1	48	481	89	21	62	98

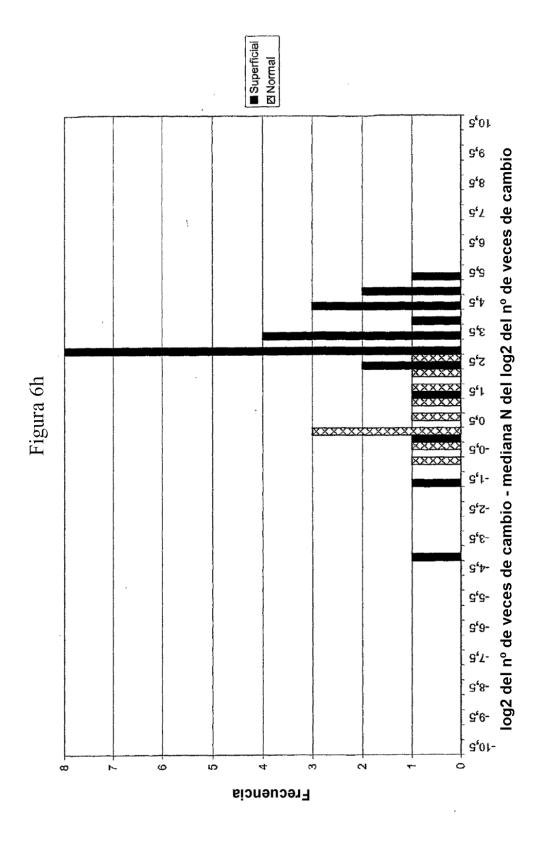

Figura 5

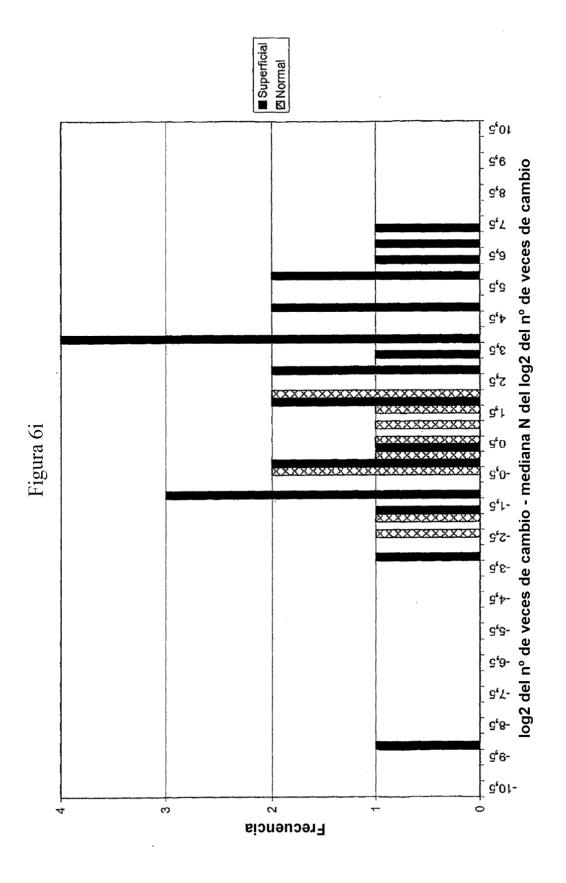

	% de T > 95° percentil del Normal	14	43
SUPERFICIAL	Máx T:N del nº de veces de cambio	293	16
	Mediana T:N del n° de veces de cambio	6	င
	% de T > 95° percentil del Normal	12	59
INVASIVO	del n° de veces de cambio	140	24
	Mediana T:N del n° de veces de veces cambio de cambio	28	Q
	Símbolo	BIRC5	SMC4L1
	Alias	API4; EPR-1	CAPC; hCAP-C
	Nombre	AP de baculovirus que contiene repeticiones 5 (survivina)	SMC4 de tipo 1 de mantenimiento estructural de los cromosomas 4 (levadura)
		IAP	SMC estru (leva

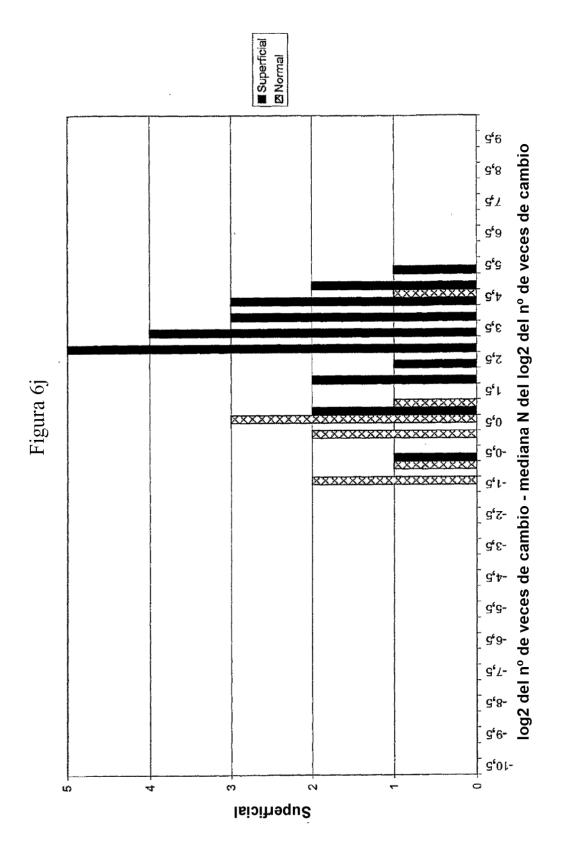

Figura 5 (cont.)

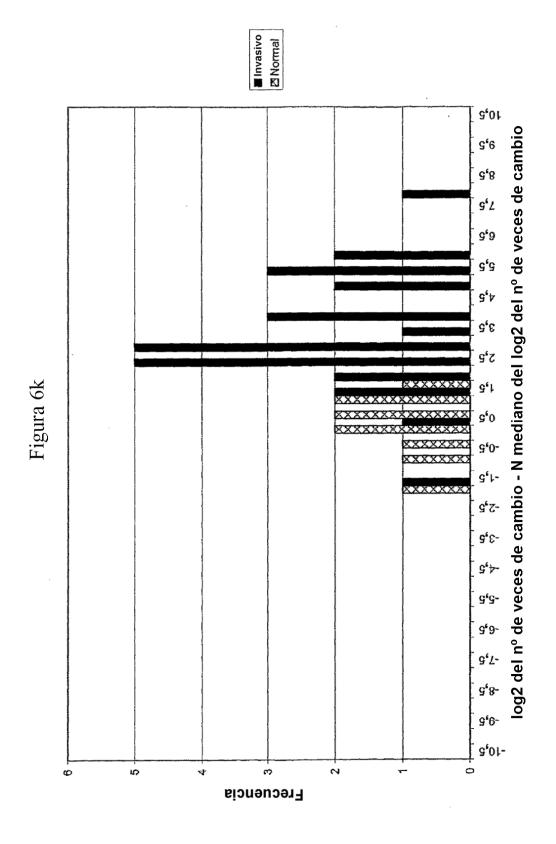


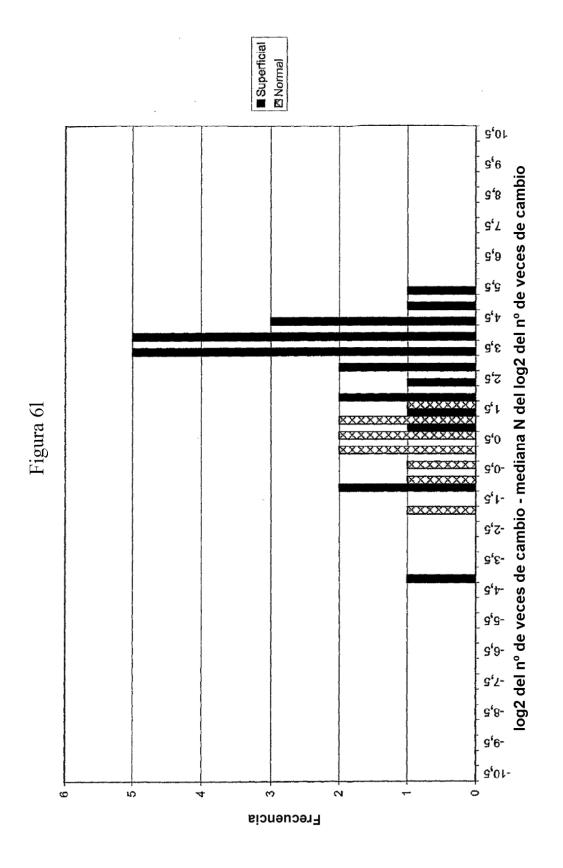


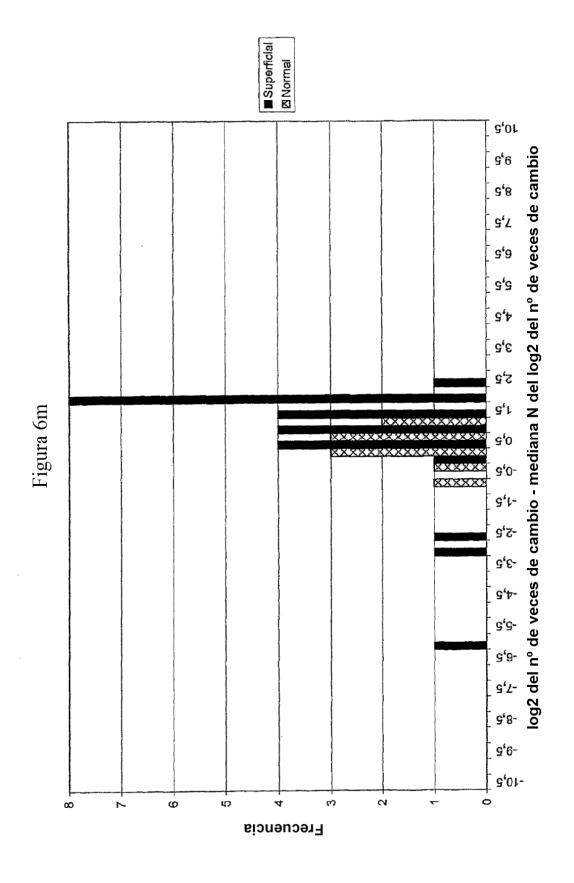


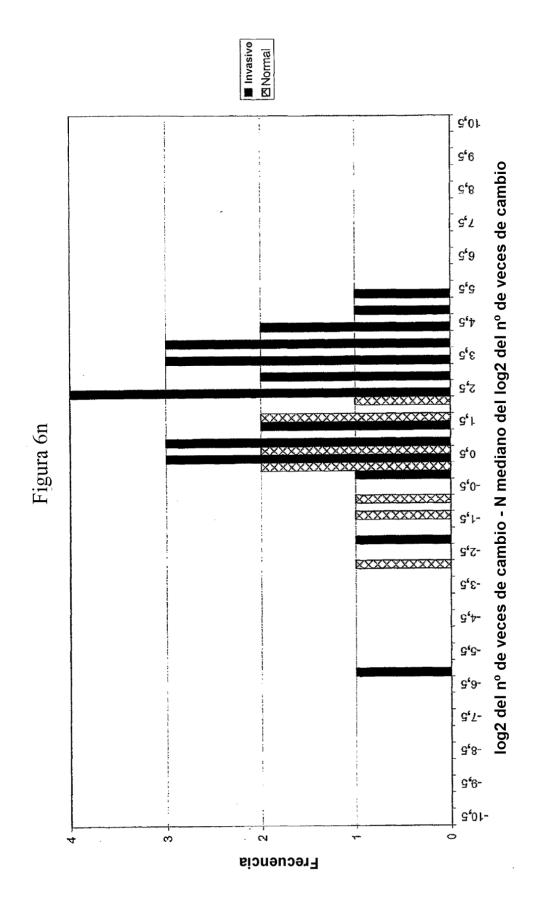


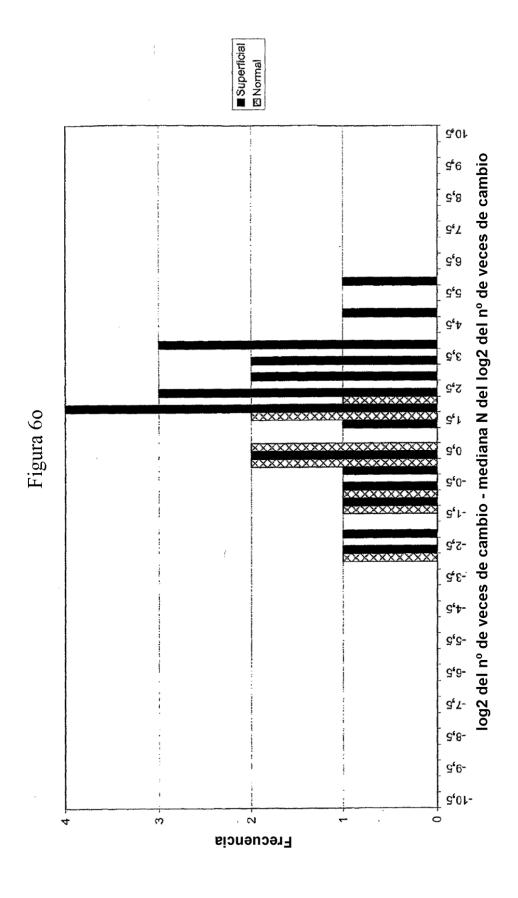


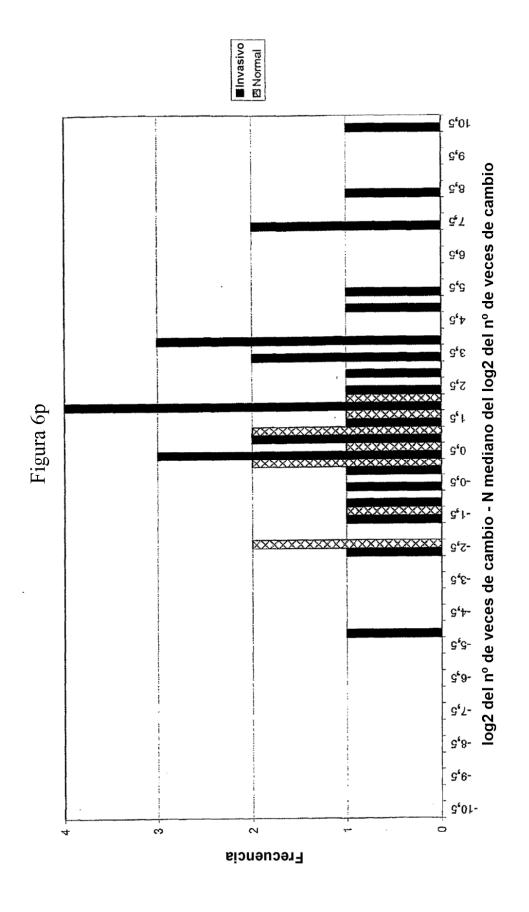


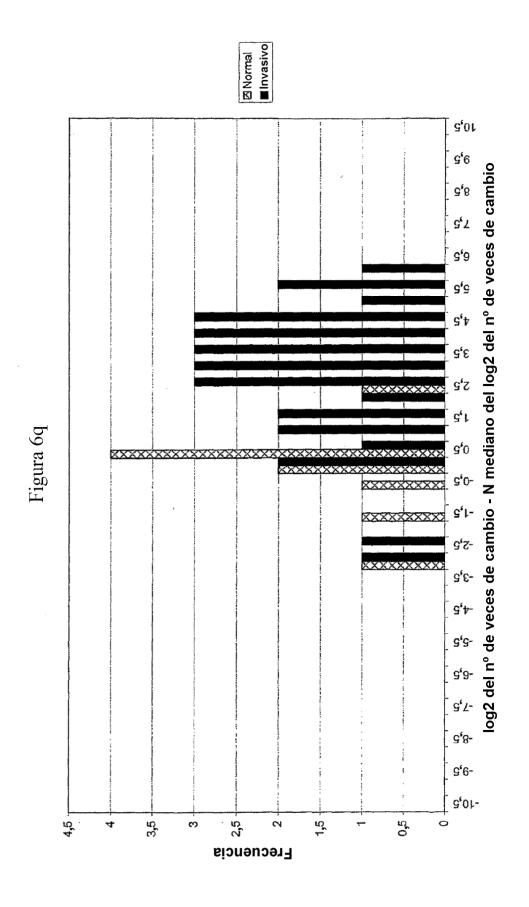


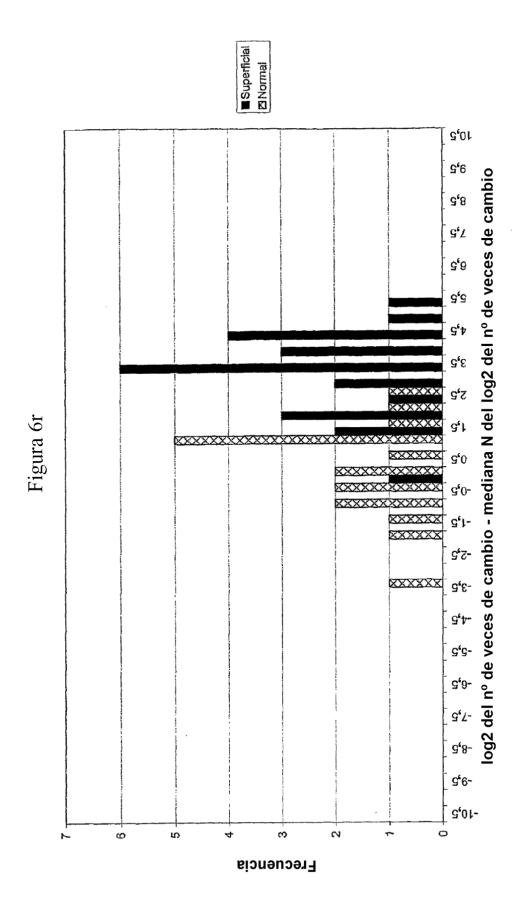


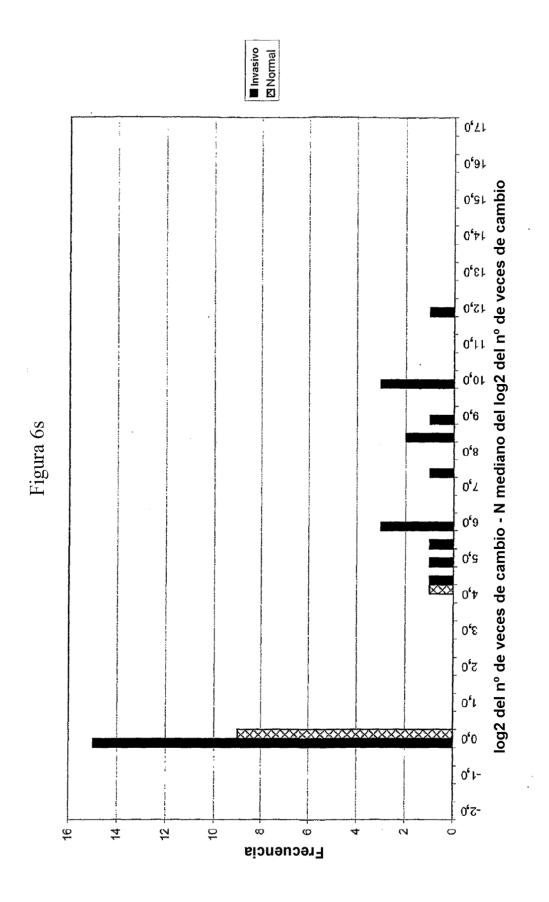


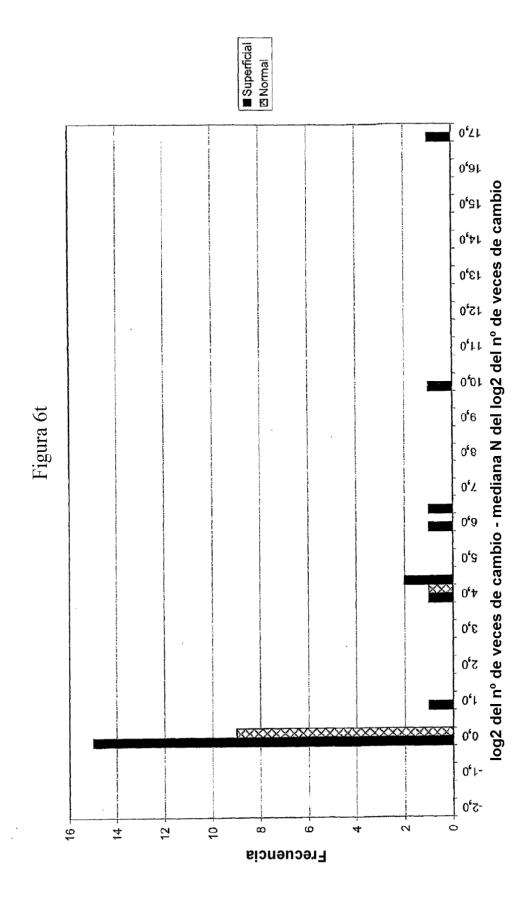


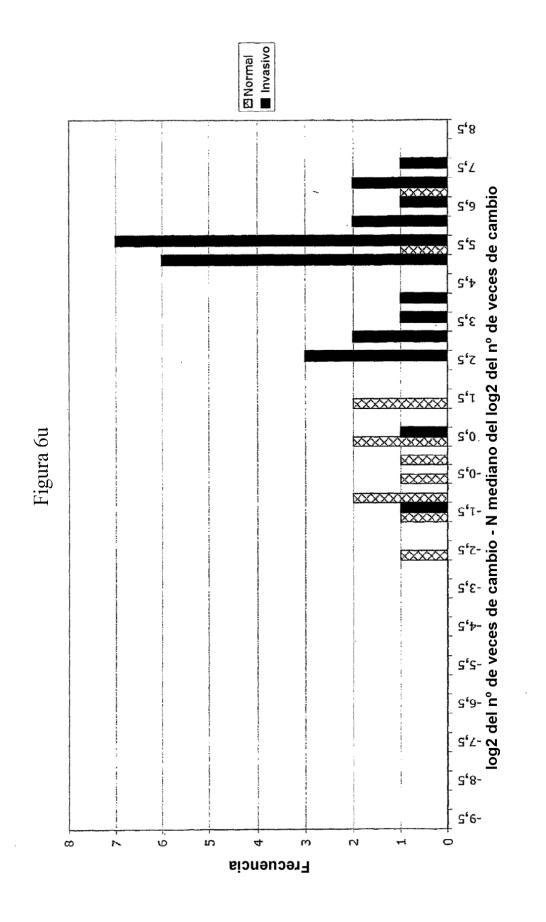


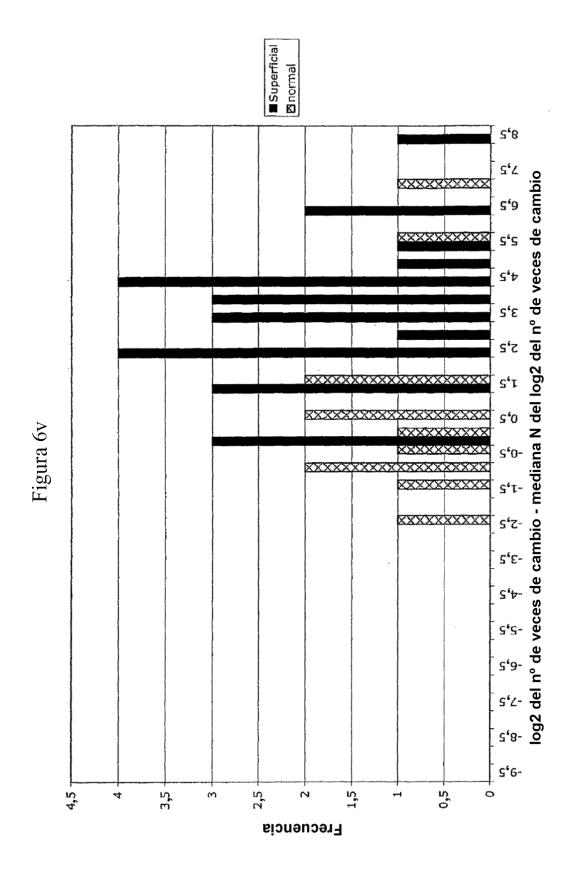


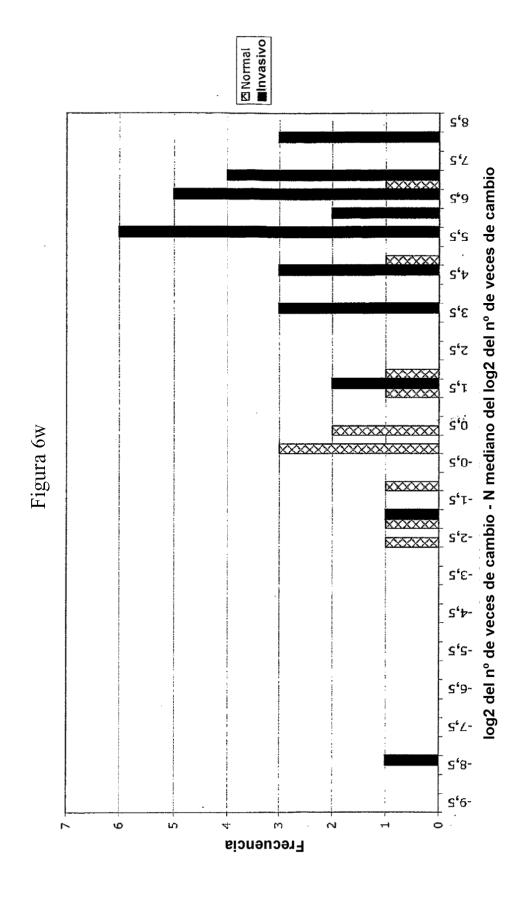


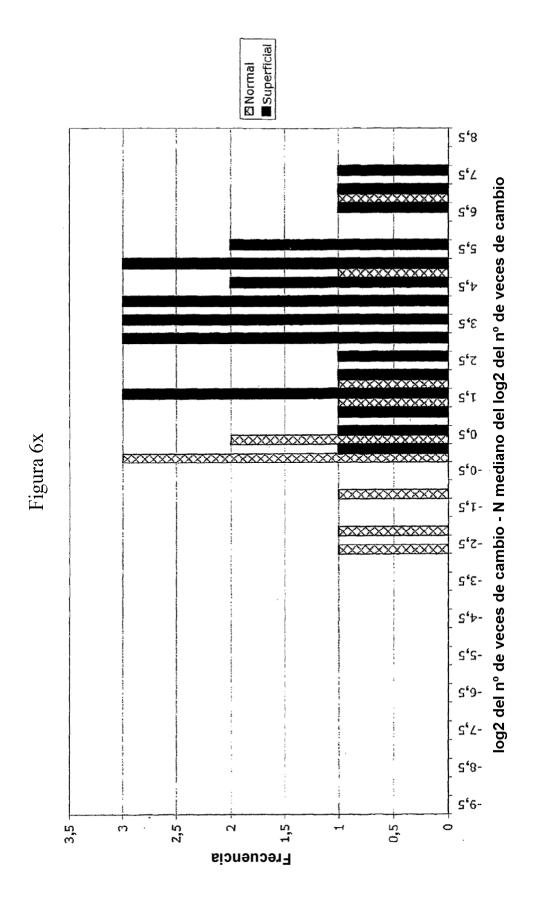


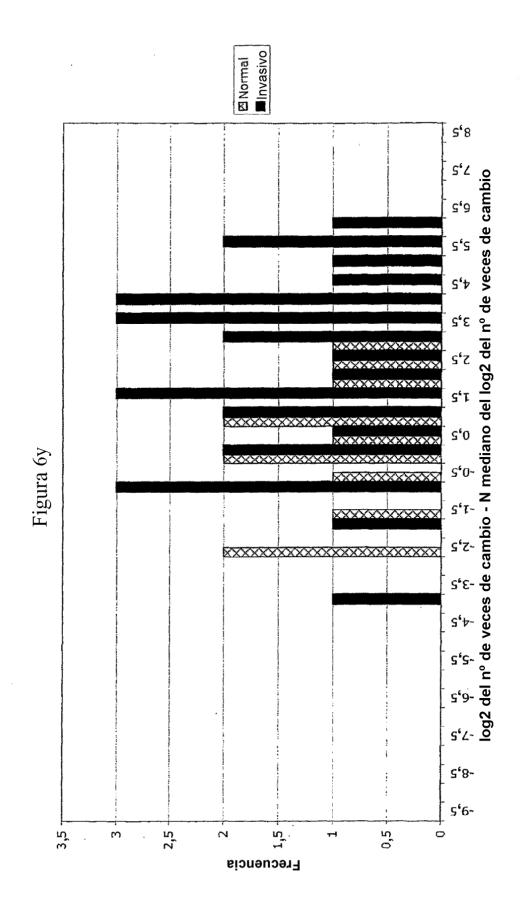


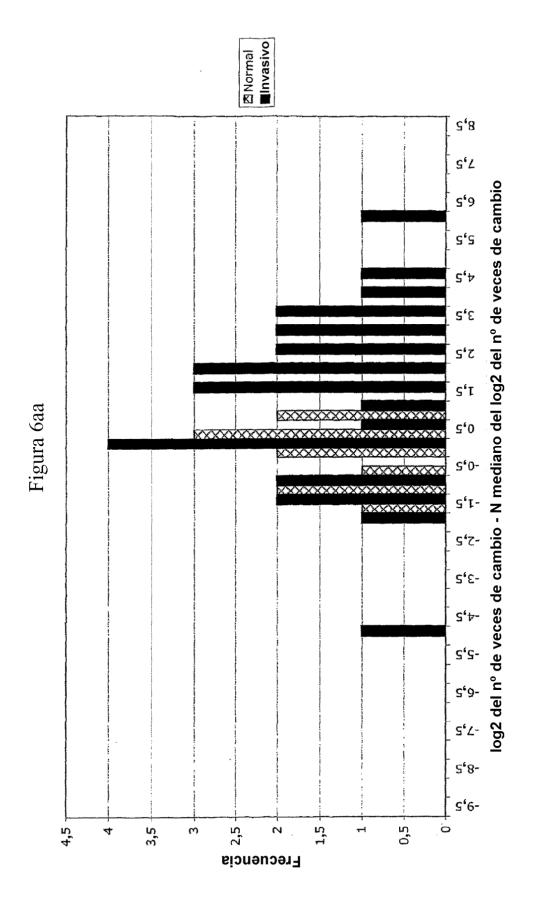


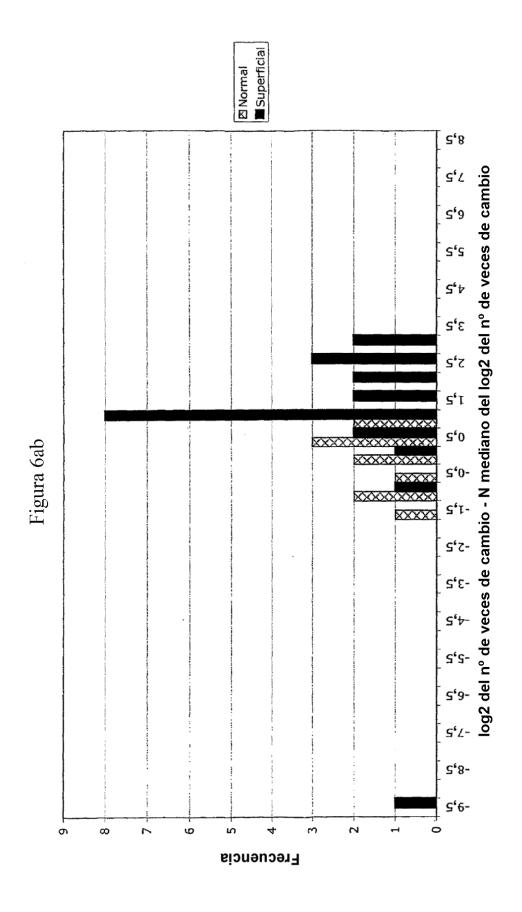


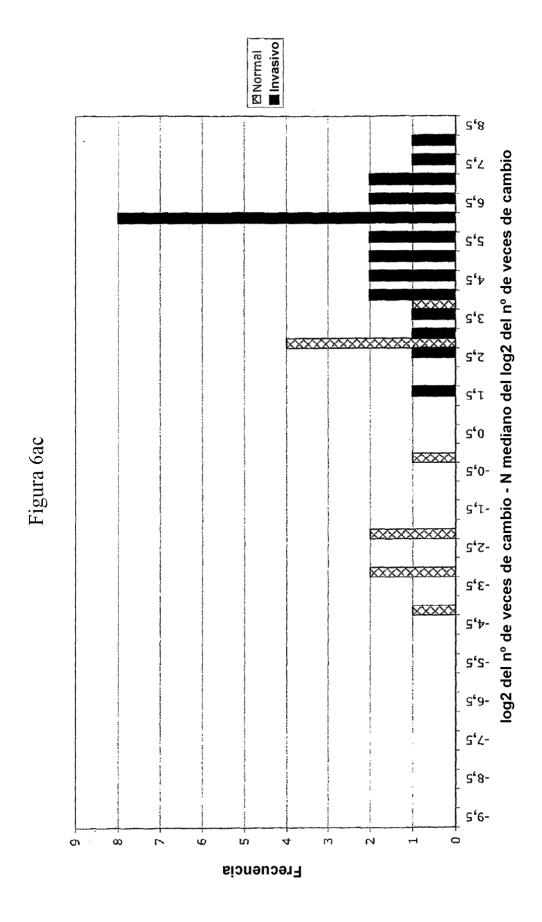


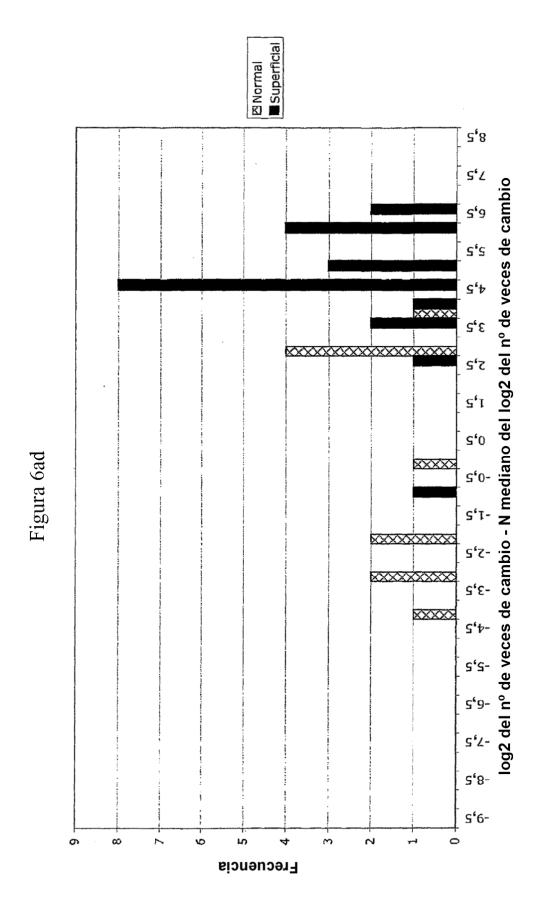


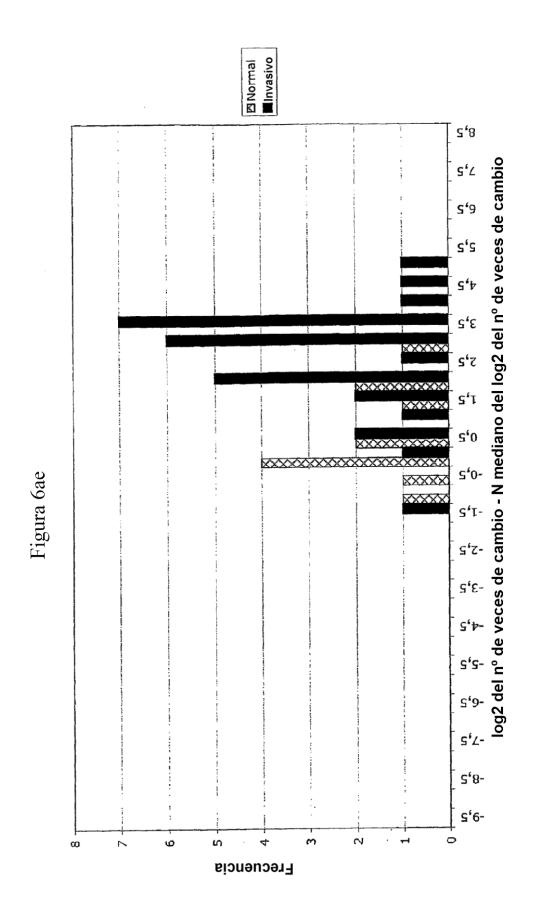


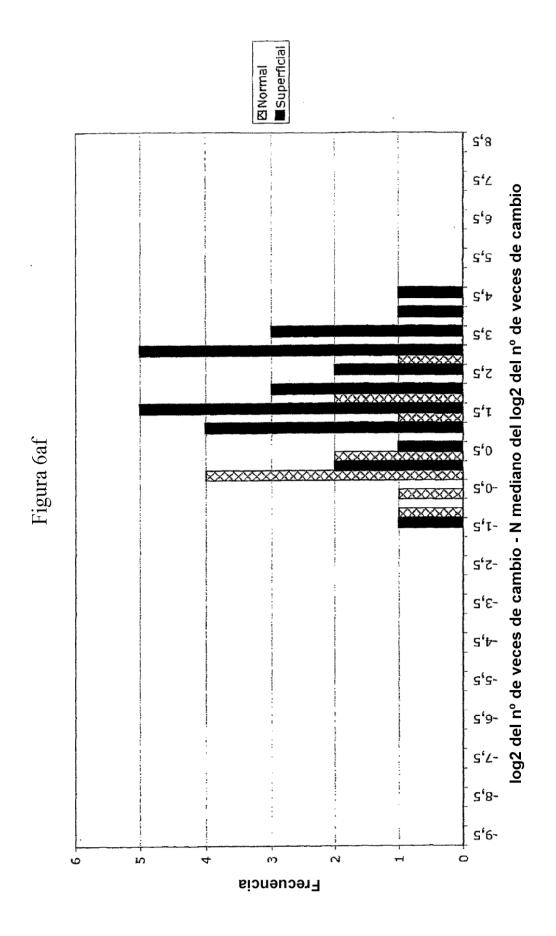








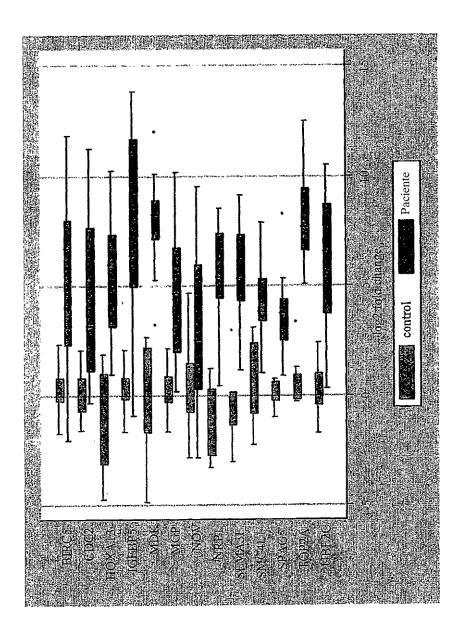
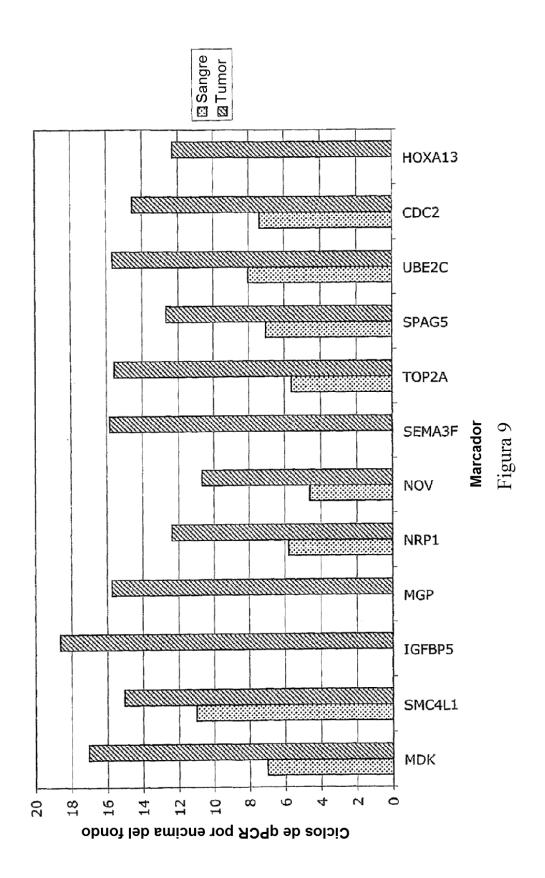
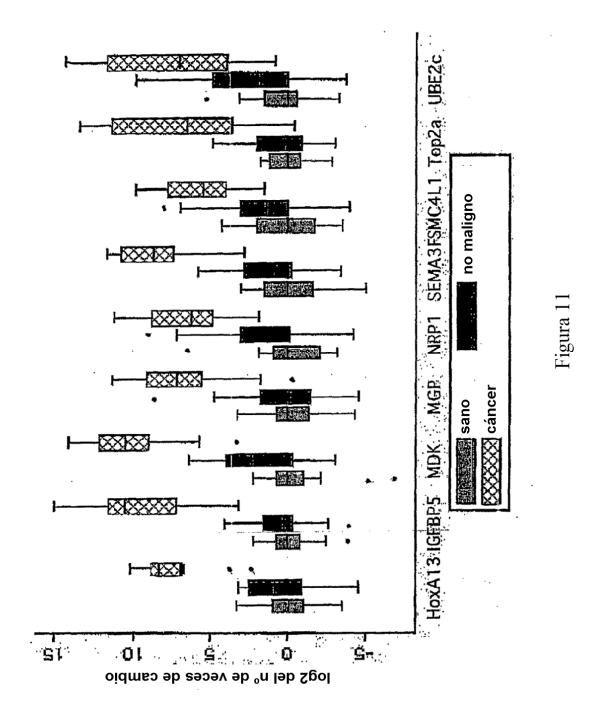


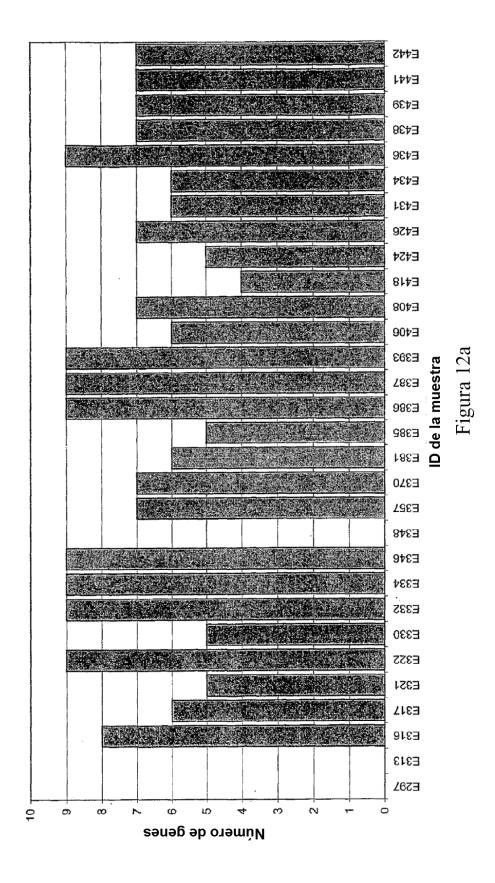


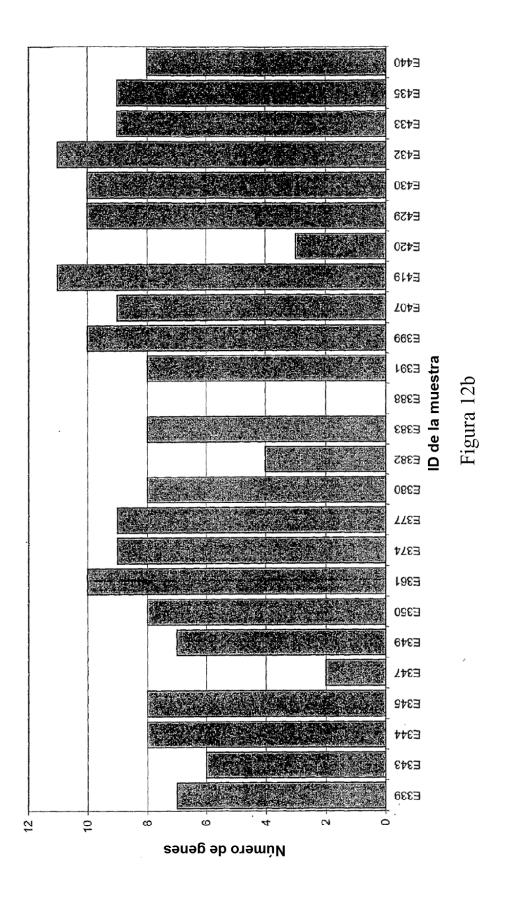
ES 2 538 504 T3

Nombre	Símbolo	Mediana de pacientes: control del nº de veces de cambio	Máximo de pacientes: control del nº de veces de cambio
antígeno asociado al esperma 5	SPAG5	8	304
topoisomerasa (ADN) Il alfa 170 kDa	TOP2A	165	5716
ciclo de división celular 2, desde G1 hasta S y desde G2 hasta M	GDC2	5	2370
endoglina (síndrome de Osler-Rendu-Weber 1)	ENG	12	240
proteína de unión al factor de crecimiento insulinoide 5	IGFBP5	85	14,862
gen del nefroblastoma sobreexpresado	NOV	6	730
neuropilina 1	NRP1	43	380
dominio sema, dominio de inmunoglobulina (lg), dominio básico corto, secretado, (semaforina) 3F	SEMA3F	35	567
dominio de tipo EGF, múltiple 6	EGFL6	1	1
proteína de la matriz Gla	MGP	17	1147
semaforina sem2	SEM2	5	501
cromogranina A (proteína secretora paratiroidea 1)	CHGA	NT	NT
enzima de conjugación con ubiquitina E2C	UBE2C	63	1461
homeocaja Al 3	H0XA13	20	1221
midcina (factor promotor del crecimiento de las neuritas 2)	MDK	265	4188
antígeno de la superficie celular Thy-1	THY1	2	26
IAP de baculovirus que contiene repeticiones 5 (survivina)	BIRC5	81	3524
SMC4 de tipo 1 de mantenimiento estructural de los cromosomas 4-l	SMC4L1	13	232

Figura 7


Figura 8



Marcador		Mediana del log2 de la diferencia
	control de paciente:	control de paciente:
	sano	no maligno
HoxA13	8	7,2
IGFBP5	10,4	10,1
NRP1	6,2	4,9
Sema3F	8,3	7,4
Тор2а	6,3	6
UBE2c	6,4	4,6
SMC4L1	5,4	4
MDK	10,1	7,7
MGP	7,1	7,2

Figura 10

Número de marcadores en la prueba	Total de pruebas posibles	Número de pruebas con sensibilidad	ruebas		Proporción de pruebas con sensibilidad	e pruebas dad	
		% 06 =<	% 66 =< % 56 =<	% 66 =<	% 06 =<	% 56 =<	% 66 =<
1	15	3	2	0	20 %	13 %	% 0
2	105	42	13	3	40 %	13 %	3%
3	455	247	233	62	54 %	51 %	14 %

Figura 13a

Número Total Número de pruebas de marcadores de pruebas con sensibilidad en la prueba posibles	Total s de pruebas posibles	Número de pi con sensibili	ruebas dad		Proporción de pruebas con sensibilidad	e pruebas dad	
		% 06 =<	% 66 =< % 56 =<		% 06 =<	% 56 =<	% 66 =<
_	17	0	0	0	% 0	% 0	%0
2	136	11	-	0	8 %	1 %	% 0
3	089	136	22	0	20 %	3%	%0

Figura 13b

Marcador único

Marcador	Sensibilidad
TOP2a	<u>96,6 %</u>
SPAG5	<u>96,2 %</u>
CDC2	<u>94,8 %</u>
NRP1	<u>79,2 %</u>
CHGA	<u>70,6 %</u>
SEM2	<u>55,2 %</u>
THY1	<u>52,9 %</u>
SMC4L1	<u>50,3 %</u>
MGP	<u>49,4 %</u>
MDK	<u>48,7 %</u>
ENG	<u>47,7 %</u>
UBE2c	<u>45,3 %</u>
EGFL6	<u>39,2 %</u>
BIRC5	<u>36,1 %</u>
HOXA13	<u>32,6 %</u>

Combinación de dos marcadores

Marcador 1	Marcador 2	Sensibilidad
TOP2a	CDC2	<u>99,4 %</u>
SPAG5	TOP2A	<u>99,3 %</u>
SPAG5	CDC2	<u>99,3 %</u>
NRP1	UBE2c	<u>98,1 %</u>
SPAG5	MDK	<u>96,8 %</u>
TOP2a	THY1	<u>96,7 %</u>
SPAG5	CHGA	<u>96,6 %</u>
TOP2a	CHGA	<u>96,5 %</u>
SPAG5	THY1	<u>96,5 %</u>
TOP2a	MDK	<u>96,2 %</u>
CDC2	CHGA	<u>95,4 %</u>
TOP2a	ENG	<u>95,3 %</u>
TOP2a	MGP	<u>95,1 %</u>
SPAG5	NRP1	<u>95,0 %</u>
SPAG5	BIRC5	94,9 %
TOP2a	NRP1	<u>94,9 %</u>
SPAG5	MGP	<u>94,8 %</u>
SPAG5	EGFL6	<u>94,8 %</u>
TOP2a	HOXA13	<u>94,7 %</u>
TOP2a	EGFL6	<u>94,7 %</u>

Figura 14a

Combinación de dos marcadores (cont.) Marcador 1 Marcador 2 Sensibilidad

Marcador 1	Marcador 2	Sensibilidad
TOP2a	BIRC5	<u>94,7 %</u>
SPAG5	ENG	<u>94,6 %</u>
SPAG5	HOXA13	<u>94,4 %</u>
CDC2	THY1	<u>94,4 %</u>
CDC2	MDK	<u>93,9 %</u>
SPAG5	SEM2	<u>93,8 %</u>
TOP2a	SMC4L1	<u>93,7 %</u>
TOP2a	SEM2	<u>93,6 %</u>
CDC2	NRP1	<u>93,6 %</u>
CDC2	MGP	<u>93,3 %</u>
CDC2	ENG	<u>93,1 %</u>
TOP2a	UBE2c	<u>92,8 %</u>
SPAG5	UBE2c	<u>92,7 %</u>
CDC2	EGFL6	<u>92,4 %</u>
CDC2	BIRC5	<u>92,4 %</u>
SPAG5	SMC4L1	<u>92,4 %</u>
CDC2	HOXA13	<u>92,3 %</u>
CDC2	SEM2	<u>91,2 %</u>
NRP1	MDK	<u>91,2 %</u>
NRP1	THY1	<u>90,6 %</u>
CDC2	SMC4L1	<u>90,6 %</u>
CDC2	UBE2c	<u>90,0 %</u>

Combinación de tres marcadores

Marcador 1	Marcador 2	Marcador 3	Sensibilidad
SPAG5	TOP2a	CDC2	<u>100,0 %</u>
SPAG5	TOP2a	NRP1	<u>99,9 %</u>
TOP2a	CDC2	NRP1	<u>99,9 %</u>
SPAG5	TOP2a	CHGA	<u>99,9 %</u>
SPAG5	CDC2	NRP1	<u>99,9 %</u>
TOP2a	CDC2	CHGA	<u>99,9 %</u>
SPAG5	TOP2a	SEM2	<u>99,9 %</u>
SPAG5	CDC2	CHGA	<u>99,9 %</u>
SPAG5	TOP2a	THY1	<u>99,8 %</u>
SPAG5	TOP2a	SMC4L1	<u>99,8 %</u>
SPAG5	TOP2a	MGP	<u>99,9 %</u>
SPAG5	TOP2a	MDK	<u>99,9 %</u>
SPAG5	TOP2a	ENG	<u>99,9 %</u>
SPAG5	TOP2a	UBE2c	<u>99,8 %</u>
SPAG5	TOP2a	EGFL6	<u>99,8 %</u>
TOP2a	CDC2	SEM2	<u>99,8 %</u>

Figura 14a (cont.)

	de tres marcadore		
Marcador 1	Marcador 2	Marcador 3	Sensibilidad
SPAG5	TOP2a	BIRC5	<u>99,8 %</u>
TOP2a	CDC2	THY1	<u>99,7 %</u>
SPAG5	TOP2a	HOXA13	<u>99,8 %</u>
TOP2a	CDC2	SMC4L1	<u>99,8 %</u>
SPAG5	CDC2	SEM2	<u>99,8 %</u>
TOP2a	CDC2	MGP	<u>99,8 %</u>
TOP2a	CDC2	MDK	<u>99,8 %</u>
TOP2a	CDC2	ENG	<u>99,8 %</u>
SPAG5	CDC2	THY1	<u>99,7 %</u>
TOP2a	CDC2	UBE2c	<u>99,7 %</u>
SPAG5	CDC2	SMC4L1	<u>99,8 %</u>
SPAG5	CDC2	MGP	<u>99,8 %</u>
SPAG5	CDC2	MDK	<u>99,8 %</u>
SPAG5	CDC2	ENG	<u>99,8 %</u>
TOP2a	CDC2	EGFL6	<u>99,7 %</u>
SPAG5	CDC2	UBE2c	<u>99,7 %</u>
TOP2a	CDC2	BIRC5	<u>99,7 %</u>
TOP2a	CDC2	HOXA13	<u>99,7 %</u>
SPAG5	CDC2	EGFL6	<u>99,7 %</u>
SPAG5	CDC2	BIRC5	<u>99,7 %</u>
SPAG5	CDC2	HOXA13	<u>99,7 %</u>
TOP2a	NRP1	CHGA	<u>99,5 %</u>
SPAG5	NRP1	CHGA	<u>99,5 %</u>
TOP2a	NRP1	SEM2	<u>99,2 %</u>
CDC2	NRP1	CHGA	<u>99,3 %</u>
TOP2a	NRP1	THY1	<u>98,9 %</u>
TOP2a	NRP1	SMC4L1	<u>99,1 %</u>
SPAG5	NRP1	SEM2	99,2 %
TOP2a	NRP1	MGP	99,2 %
TOP2a	NRP1	MDK	99,2 %
TOP2a	ENG	NRP1	<u>99,1 %</u>
SPAG5	NRP1	THY1	98,9 %
TOP2a	NRP1	UBE2c	99,0 %
SPAG5	NRP1	SMC4L1	99,1 %
SPAG5	NRP1	MGP	99,2 %
SPAG5	NRP1	MDK	99,2 %
SPAG5	ENG	NRP1	99,1 %
TOP2a	NRP1	EGFL6	99,0 %
SPAG5	NRP1	UBE2c	99,0 %
TOP2a	SEM2	CHGA	99,1 %
TOP2a	NRP1	BIRC5	98,8 %
			==,3 70

Figura 14a (cont.)

Combinación	de tres marcado	res (cont.)	
Marcador 1	Marcador 2	Marcador 3	Sensibilidad
TOP2a	CHGA	THY1	<u>98,8 %</u>
TOP2a	NRP1	HOXA13	<u>98,9 %</u>
SPAG5	NRP1	EGFL6	<u>99,0 %</u>
CDC2	NRP1	SEM2	<u>98,7 %</u>
TOP2a	CHGA	SMC4L1	<u>99,0 %</u>
SPAG5	SEM2	CHGA	<u>99,1 %</u>
SPAG5	NRP1	BIRC5	<u>98,8 %</u>
TOP2a	MGP	CHGA	<u>99,1 %</u>
CDC2	NRP1	THY1	<u>98,3 %</u>
TOP2a	CHGA	MDK	<u>99,1 %</u>
TOP2a	ENG	CHGA	<u>99,0 %</u>
SPAG5	CHGA	THY1	<u>98,8 %</u>
SPAG5	NRP1	HOXA13	<u>98,9 %</u>
CDC2	NRP1	SMC4L1	<u>98,6 %</u>
TOP2a	CHGA	UBE2c	<u>98,9 %</u>
CDC2	NRP1	MGP	<u>98,7 %</u>
SPAG5	CHGA	SMC4L1	<u>99,0 %</u>
CDC2	NRP1	MDK	<u>98,7 %</u>
SPAG5	MGP	CHGA	<u>99,1 %</u>
CDC2	ENG	NRP1	<u>98,6 %</u>
SPAG5	CHGA	MDK	<u>99,1 %</u>
SPAG5	ENG	CHGA	<u>99,0 %</u>
CDC2	NRP1	UBE2c	<u>98,5 %</u>
TOP2a	EGFL6	CHGA	<u>98,9 %</u>
SPAG5	CHGA	UBE2c	<u>98,9 %</u>
TOP2a	CHGA	BIRC5	<u>98,7 %</u>
CDC2	NRP1	EGFL6	<u>98,4 %</u>
TOP2a	CHGA	HOXA13	<u>98,8 %</u>
SPAG5	EGFL6	CHGA	<u>98,9 %</u>
CDC2	SEM2	CHGA	<u>98,6 %</u>
CDC2	NRP1	BIRC5	<u>98,1 %</u>
SPAG5	CHGA	BIRC5	<u>98,7 %</u>
TOP2a	SEM2	THY1	<u>97,8 %</u>
CDC2	CHGA	THY1	<u>98,1 %</u>
CDC2	NRP1	HOXA13	<u>98,3 %</u>
SPAG5	CHGA	HOXA13	<u>98,8 %</u>
TOP2a	SEM2	SMC4L1	<u>98,2 %</u>
CDC2	CHGA	SMC4L1	<u>98,4 %</u>
TOP2a	MGP	SEM2	<u>98,3 %</u>
CDC2	MGP	CHGA	<u>98,5 %</u>
TOP2a	SEM2	MDK	<u>98,4 %</u>

Figura 14a (cont.)

Combinación	de tres marcado	res (cont.)	
Marcador 1	Marcador 2	Marcador 3	Sensibilidad
CDC2	CHGA	MDK	<u>98,6 %</u>
TOP2a	THY1	SMC4L1	<u>97,5 %</u>
TOP2a	ENG	SEM2	<u>98,3 %</u>
SPAG5	SEM2	THY1	<u>97,8 %</u>
CDC2	ENG	CHGA	<u>98,5 %</u>
TOP2a	MGP	THY1	<u>97,7 %</u>
TOP2a	MDK	THY1	<u>97,8 %</u>
TOP2a	SEM2	UBE2c	<u>98,1 %</u>
TOP2a	ENG	THY1	<u>97,6 %</u>
CDC2	CHGA	UBE2c	<u>98,3 %</u>
SPAG5	SEM2	SMC4L1	<u>98,2 %</u>
TOP2a	MGP	SMC4L1	<u>98,2 %</u>
SPAG5	MGP	SEM2	<u>98,3 %</u>
TOP2a	MDK	SMC4L1	<u>98,2 %</u>
SPAG5	SEM2	MDK	<u>98,4 %</u>
TOP2a	UBE2c	THY1	<u>97,4 %</u>
TOP2a	MGP	MDK	<u>98,3 %</u>
TOP2a	ENG	SMC4L1	<u>98,1 %</u>
SPAG5	THY1	SMC4L1	<u>97,5 %</u>
SPAG5	ENG	SEM2	<u>98,3 %</u>
TOP2a	ENG	MGP	<u>98,2 %</u>
SPAG5	MGP'	THY1	<u>97,7 %</u>
TOP2a	ENG	MDK	<u>98,2 %</u>
SPAG5	MDK	THY1	<u>97,8 %</u>
TOP2a	UBE2c	SMC4L1	<u>97,8 %</u>
TOP2a	EGFL6	SEM2	<u>98,0 %</u>
SPAG5	SEM2	UBE2c	<u>98,1 %</u>
SPAG5	ENG	THY1	<u>97,6 %</u>
CDC2	EGFL6	CHGA	<u>98,3 %</u>
TOP2a	MGP	UBE2c	<u>98,0 %</u>
SPAG5	MGP	SMC4L1	<u>98,1 %</u>
TOP2a	UBE2c	MDK	<u>98,1 %</u>
SPAG5	MDK	SMC4L1	<u>98,2 %</u>
TOP2a	EGFL6	THY1	<u>97,3 %</u>
TOP2a	ENG	UBE2c	<u>97,9 %</u>
TOP2a	SEM2	BIRC5	<u>97,7 %</u>
SPAG5	UBE2c	THY1	<u>97,3 %</u>
CDC2	CHGA	BIRC5	<u>97,9 %</u>
SPAG5	MGP	MDK	<u>98,3 %</u>
SPAG5	ENG	SMC4L1	<u>98,1 %</u>
SPAG5	ENG	MGP	<u>98,2 %</u>

Figura 14a (cont.)

Combinación	de tres marcado	res (cont.)	
Marcador 1	Marcador 2	Marcador 3	Sensibilidad
SPAG5	ENG	MDK	<u>98,2 %</u>
TOP2a	BIRC5	THY1	<u>96,8 %</u>
TOP2a	SEM2	HOXA13	<u>97,8 %</u>
TOP2a	EGF L6	SMC4L1	<u>97,8 %</u>
SPAG5	UBE2c	SMC4L1	<u>97,8 %</u>
SPAG5	EGFL6	SEM2	<u>98,0 %</u>
CDC2	CHGA	HOXA13	<u>98,1 %</u>
TOP2a	EGFL6	MGP	<u>98,0 %</u>
SPAG5	MGP	UBE2c	<u>98,0 %</u>
TOP2a	EGFL6	MDK	<u>98,0 %</u>
SPAG5	UBE2c	MDK	<u>98,1 %</u>
TOP2a	HOXA13	THY1	<u>97,0 %</u>
TOP2a	BIRC5	SMC4L1	<u>97,4 %</u>
TOP2a	ENG	EGFL6	<u>97,9 %</u>
SPAG5	EGFL6	THY1	<u>97,3 %</u>
SPAG5	ENG	UBE2c	<u>97,9 %</u>
SPAG5	SEM2	BIRC5	<u>97,6 %</u>
TOP2a	MGP	BIRC5	<u>97,6 %</u>
CDC2	SEM2	THY1	<u>96,6 %</u>
TOP2a	BIRC5	MDK	<u>97,6 %</u>
TOP2a	EGFL6	UBE2c	<u>97,6 %</u>
TOP2a	ENG	BIRC5	<u>97,4 %</u>
TOP2a	HOXA13	SMC4L1	<u>97,5 %</u>
SPAG5	BIRC5	THY1	<u>96,8 %</u>
SPAG5	SEM2	HOXA13	<u>97,8 %</u>
SPAG5	EGFL6	SMC4L1	<u>97,8 %</u>
TOP2a	MGP	HOXA13	<u>97,7 %</u>
CDC2	SEM2	SMC4L1	<u>97,2 %</u>
SPAG5	EGFL6	MGP	<u>98,0 %</u>
TOP2a	HOXA13	MDK	<u>97,8 %</u>
SPAG5	EGFL6	MDK	<u>98,0 %</u>
CDC2	MGP	SEM2	<u>97,4 %</u>
TOP2a	BIRC5	UBE2c	<u>97,2 %</u>
TOP2a	ENG	HOXA13	<u>97,6 %</u>
SPAG5	HOXA13	THY1	<u>97,0 %</u>
CDC2	SEM2	MDK	<u>97,5 %</u>
SPAG5	BIRC5	SMC4L1	<u>97,4 %</u>
SPAG5	ENG	EGFL6	<u>97,9 %</u>
CDC2	THY1	SMC4L1	<u>96,2 %</u>
CDC2	ENG	SEM2	<u>97,3 %</u>
SPAG5	MGP	BIRC5	<u>97,6 %</u>

Figura 14a (cont.)

Combinación	de tres marcado	res (cont.)	
Marcador 1	Marcador 2	Marcador 3	Sensibilidad
SPAG5	BIRC5	MDK	<u>97,6 %</u>
CDC2	MGP	THY1	<u>96,4 %</u>
TOP2a	UBE2c	HOXA13	<u>97,4 %</u>
CDC2	MDK	THY1	<u>96,5 %</u>
SPAG5	EGFL6	UBE2c	<u>97,6 %</u>
SPAG5	ENG	BIRC5	<u>97,4 %</u>
SPAG5	HOXA13	SMC4L1	<u>97,5 %</u>
CDC2	SEM2	UBE2c	<u>97,0 %</u>
CDC2	ENG	THY1	<u>96,3 %</u>
SPAG5	MGP	HOXA13	<u>97,7 %</u>
SPAG5	HOXA13	MDK	<u>97,8 %</u>
CDC2	MGP	SMC4L1	<u>97,1 %</u>
TOP2a	EGFL6	BIRC5	<u>97,1 %</u>
SPAG5	BIRC5	UBE2c	<u>97,2 %</u>
CDC2	MDK	SMC4L1	<u>97,2 %</u>
SPAG5	ENG	HOXA13	<u>97,6 %</u>
CDC2	UBE2c	THY1	<u>95,9 %</u>
CDC2	MGP	MDK	<u>97,4 %</u>
CDC2	ENG	SMC4L1	<u>97,0 %</u>
CDC2	ENG	MGP	<u>97,2 %</u>
TOP2a	EGFL6	HOXA13	<u>97,3 %</u>
SPAG5	UBE2c	HOXA13	<u>97,3 %</u>
CDC2	ENG	MDK	<u>97,3 %</u>
CDC2	UBE2c	SMC4L1	<u>96,6 %</u>
CDC2	EGFL6	SEM2	<u>96,9 %</u>
CDC2	MGP	UBE2c	<u>96,9 %</u>
TOP2a	BIRC5	HOXA13	<u>96,8 %</u>
CDC2	UBE2c	MDK	<u>97,0 %</u>
SPAG5	EGFL6	BIRC5	<u>97,1 %</u>
CDC2	EGFL6	THY1	<u>95,8 %</u>
CDC2	ENG	UBE2c	<u>96,7 %</u>
CDC2	SEM2	BIRC5	<u>96,3 %</u>
SPAG5	EGFL6	HOXA13	<u>97,3 %</u>
CDC2	BIRC5	THY1	<u>95,0 %</u>
CDC2	SEM2	HOXA13	<u>96,6 %</u>
CDC2	EGFL6	SMC4L1	<u>96,6 %</u>
CDC2	EGFL6	MGP	<u>96,8 %</u>
CDC2	EGFL6	MDK	<u>96,9 %</u>
SPAG5	BIRC5	HOXA13	<u>96,8 %</u>
CDC2	HOXA13	THY1	<u>95,3 %</u>
CDC2	BIRC5	SMC4L1	<u>95,9 %</u>

Figura 14a (cont.)

Marcador único

Marcador	Sensibilidad
TOP2a	<u>84,5 %</u>
CHGA	<u>63,7 %</u>
NRP1	<u>66,9 %</u>
ENG	<u>62,2 %</u>
SPAG5	<u>64,8 %</u>
SEM2	<u>71,0 %</u>
MDK	<u>43,4 %</u>
HOXA13	<u>56,8 %</u>
IGFBP5	<u>44,4 %</u>
SEMA3F	<u>39,7 %</u>
EGFL6	<u>40,6 %</u>
SMC4L1	<u>35,8 %</u>
NOV	<u>26,6 %</u>
UBE2c	<u>26,8 %</u>
BIRC5	<u>18,8 %</u>
THY1	<u>30,9 %</u>

Combinación de dos marcadores Sensibilidad

Marcador 2	
TOP2a	<u>95,4 %</u>
SEM2	<u>91,2 %</u>
SEM2	<u>90,7 %</u>
NRP1	<u>91,9 %</u>
SPAG5	<u>91,2 %</u>
CHGA	<u>92,2 %</u>
NRP1	<u>91,5 %</u>
ENG	<u>90,9 %</u>
SPAG5	<u>90,7 %</u>
CHGA	<u>91,8 %</u>
ENG	<u>90,4 %</u>
	TOP2a SEM2 SEM2 NRP1 SPAG5 CHGA NRP1 ENG SPAG5 CHGA

Combinación de tres marcadores

Marcador 1	Marcador 2	Marcador 1	Sensibilidad
CDC2	TOP2a	CHGA	<u>97,8 %</u>
CDC2	TOP2a	NRP1	<u>97,5 %</u>
CDC2	TOP2a	SPAG5	<u>97,3 %</u>
CDC2	TOP2a	ENG	<u>97,2 %</u>
CDC2	TOP2a	SEM2	<u>97,0 %</u>
HOXA13	CDC2	TOP2a	<u>96,6 %</u>

Figura 14b

Combinación de tres marcadores (cont.)

Odilibii	lacion de tres marce	• •		
Marcador 1	Marcador 2	Marcador 3	Sensibilidad	
CDC2	ENG	EGFL6		<u>96,7 %</u>
CDC2	MGP	BIRC5		<u>96,2 %</u>
CDC2	BIRC5	MDK		<u>96,3 %</u>
CDC2	EGFL6	UBE2c		<u>96,3 %</u>
CDC2	ENG	BIRC5		<u>96,0 %</u>
CDC2	HOXA13	SMC4L1		<u>96,2 %</u>
CDC2	MGP	HOXA13		<u>96,4 %</u>
CDC2	HOXA13	MDK		<u>96,5 %</u>
CDC2	BIRC5	UBE2c		<u>95,6 %</u>
CDC2	ENG	HOXA13		<u>96,3 %</u>
CDC2	UBE2c	HOXA13		<u>95,9 %</u>
CDC2	EGFL6	BIRC5		<u>95,5 %</u>
CDC2	EGFL6	HOXA13		<u>95,8 %</u>
CDC2	BIRC5	HOXA13		<u>95,0 %</u>
NRP1	SEM2	CHGA		<u>94,6 %</u>
NRP1	CHGA	THY1		92,6 %
NRP1	CHGA	SMC4L1		<u>94,0 %</u>
NRP1	MGP	CHGA		<u>94,4 %</u>
NRP1	CHGA	MDK		94,6 %
ENG	NRP1	CHGA		94,1 %
NRP1	CHGA	UBE2c		<u>93,5 %</u>
NRP1	EGFL6	CHGA		93,4 %
NRP1	CHGA	BIRC5		<u>92,1 %</u>
NRP1	CHGA	HOXA13		<u>92,6 %</u>
NRP1	SEM2	THY1		<u>86,8 %</u>
NRP1	SEM2	SMC4L1		<u>89,3 %</u>
NRP1	MGP	SEM2		90,0 %
NRP1	SEM2	MDK		<u>90,3 %</u>

Figura 14a (cont.)

Combinación	ı de tres marcado	res (cont.)	
Marcador 1	Marcador 2	Marcador 3	Sensibilidad
CDC2	TOP2a	MDK	<u>96,4 %</u>
CDC2	TOP2a	IGFBP5	<u>96,3 %</u>
TOP2a	NRP1	CHGA	<u>96,2 %</u>
CDC2	TOP2a	SEMA3F	<u>96,1 %</u>
CDC2	NRP1	CHGA	<u>96,1 %</u>
CDC2	TOP2a	EGFL6	<u>95,8 %</u>
TOP2a	SPAG5	CHGA	<u>95,8 %</u>
TOP2a	ENG	CHGA	<u>95,7 %</u>
CDC2	SPAG5	CHGA	<u>95,6 %</u>
CDC2	ENG	CHGA	<u>95,6 %</u>
CDC2	TOP2a	SMC4L1	<u>95,4 %</u>
TOP2a	SEM2	CHGA	<u>95,4 %</u>
TOP2a	NRP1	SPAG5	<u>95,3 %</u>
CDC2	SEM2	CHGA	<u>95,3 %</u>
TOP2a	NRP1	ENG	<u>95,2 %</u>
CDC2	NRP1	SPAG5	<u>95,2 %</u>
CDC2	NRP1	ENG	<u>95,1 %</u>
TOP2a	NRP1	SEM2	<u>94,9 %</u>
CDC2	TOP2a	NOV	<u>94,9 %</u>
CDC2	NRP1	SEM2	94,8 %
UBE2c	CDC2	TOP2a	94,8 %
TOP2a	ENG	SPAG5	<u>94,7 %</u>
HOXA13	TOP2a	CHGA	<u>94,7 %</u>
CDC2	ENG	SPAG5	<u>94,6 %</u>
CDC2	TOP2a	THY1	<u>94,6 %</u>
HOXA13	CDC2	CHGA	<u>94,5 %</u>
BIRC5	CDC2	TOP2a	<u>94,5 %</u>
TOP2a	SPAG5	SEM2	94,4 %
TOP2a	MDK	CHGA	<u>94,4 %</u>
TOP2a	ENG	SEM2	<u>94,3 %</u>
CDC2	SPAG5	SEM2	<u>94,3 %</u>
TOP2a	IGFBP5	CHGA	94,2 %
CDC2	MDK	CHGA	94,2 %
CDC2	ENG	SEM2	94,2 %
HOXA13	TOP2a	NRP1	94,1 %
CDC2	IGFBP5	CHGA	94,1 %
HOXA13	CDC2	NRP1	94,0 %
TOP2a	SEMA3F	CHGA	93,9 %
TOP2a	NRP1	MDK	93,8 %
CDC2	SEMA3F	CHGA	93,7 %
TOP2a	NRP1	IGFBP5	93,6 %

Figura 14b (cont.)

Combinación	de tres marcado	res (cont.)	
Marcador 1	Marcador 2	Marcador 3	Sensibilidad
CDC2	NRP1	MDK	<u>93,6 %</u>
HOXA13	TOP2a	SPAG5	<u>93,5 %</u>
TOP2a	EGFL6	CHGA	<u>93,5 %</u>
CDC2	NRP1	IGFBP5	<u>93,4 %</u>
HOXA13	TOP2a	ENG	<u>93,4 %</u>
HOXA13	CDC2	SPAG5	<u>93,3 %</u>
CDC2	EGFL6	CHGA	<u>93,3 %</u>
TOP2a	NRP1	SEMA3F	<u>93,3 %</u>
HOXA13	CDC2	ENG	<u>93,3 %</u>
TOP2a	SPAG5	MDK	<u>93,1 %</u>
CDC2	NRP1	SEMA3F	<u>93,1 %</u>
TOP2a	ENG	MDK	<u>93,0 %</u>
HOXA13	TOP2a	SEM2	<u>93,0 %</u>
TOP2a	SPAG5	IGFBP5	<u>92,9 %</u>
TOP2a	SMC4L1	CHGA	<u>92,9 %</u>
CDC2	SPAG5	MDK	<u>92,9 %</u>
TOP2a	ENG	IGFBP5	<u>92,9 %</u>
CDC2	ENG	MDK	<u>92,8 %</u>
HOXA13	CDC2	SEM2	<u>92,8 %</u>
TOP2a	NRP1	EGFL6	<u>92,8 %</u>
CDC2	SPAG5	IGFBP5	<u>92,7 %</u>
CDC2	SMC4L1	CHGA	<u>92,7 %</u>
CDC2	ENG	IGFBP5	<u>92,7 %</u>
CDC2	NRP1	EGFL6	<u>92,6 %</u>
TOP2a	SEM2	MDK	<u>92,6 %</u>
TOP2a	SPAG5	SEMA3F	<u>92,6 %</u>
NRP1	SPAG5	CHGA	<u>92,5 %</u>
TOP2a	ENG	SEMA3F	<u>92,5 %</u>
NRP1	ENG	CHGA	<u>92,5 %</u>
TOP2a	SEM2	IGFBP5	<u>92,4 %</u>
CDC2	SEM2	MDK	<u>92,4 %</u>
CDC2	SPAG5	SEMA3F	<u>92,4 %</u>
CDC2	ENG	SEMA3F	<u>92,3 %</u>
TOP2a	NRP1	SMC4L1	<u>92,2 %</u>
CDC2	SEM2	IGFBP5	<u>92,2 %</u>
TOP2a	NOV	CHGA	<u>92,1 %</u>
TOP2a	SPAG5	EGFL6	<u>92,0 %</u>
TOP2a	SEM2	SEMA3F	<u>92,0 %</u>
CDC2	NRP1	SMC4L1	<u>92,0 %</u>
NRP1	SEM2	CHGA	<u>92,0 %</u>
UBE2c	TOP2a	CHGA	<u>91,9 %</u>

Figura 14b (cont.)

Combinación	ı de tres marcado	eres (cont.)	
Marcador 1	Marcador 2	Marcador 3	Sensibilidad
TOP2a	ENG	EGFL6	<u>91,9 %</u>
CDC2	NOV	CHGA	91,9 %
CDC2	SPAG5	EGFL6	91,8 %
CDC2	SEM2	SEMA3F	<u>91,8 %</u>
UBE2c	CDC2	CHGA	<u>91,7 %</u>
CDC2	ENG	EGFL6	<u>91,7 %</u>
ENG	SPAG5	CHGA	<u>91,7 %</u>
TOP2a	THY1	CHGA	<u>91,6 %</u>
BIRC5	THY1	CHGA	<u>91,5 %</u>
TOP2a	EGFL6	SEM2	<u>91,4 %</u>
HOXA13	TOP2a	MDK	<u>91,4 %</u>
TOP2a	SPAG5	SMC4L1	<u>91,4 %</u>
CDC2	THY1	CHGA	<u>91,3 %</u>
TOP2a	NRP1	NOV	<u>91,3 %</u>
TOP2a	ENG	SMC4L1	<u>91,3 %</u>
BIRC5	CDC2	CHGA	<u>91,2 %</u>
HOXA13	TOP2a	IGFBP5	<u>91,2 %</u>
CDC2	EGFL6	SEM2	<u>91,2 %</u>
HOXA13	CDC2	MDK	<u>91,2 %</u>
CDC2	SPAG5	SMC4L1	<u>91,1 %</u>
SPAG5	SEM2	CHGA	<u>91,1 %</u>
UBE2c	TOP2a	NRP1	<u>91,1 %</u>
CDC2	NRP1	NOV	<u>91,0 %</u>
CDC2	ENG	SMC4L1	<u>91,0 %</u>
ENG	SEM2	CHGA	<u>91,0 %</u>
HOXA13	CDC2	IGFBP5	<u>90,9 %</u>
UBE2c	CDC2	NRP1	<u>90,9 %</u>
NRP1	ENG	SPAG5	<u>90,8 %</u>
HOXA13	TOP2a	SEMA3F	<u>90,7 %</u>
TOP2a	SEM2	SMC4L1	<u>90,7 %</u>
TOP2a	NRP1	THY1	<u>90,7 %</u>
HOXA13	NRP1	CHGA	<u>90,7 %</u>
TOP2a	MDK	IGFBP5	<u>90,6 %</u>
BIRC5	TOP2a	NRP1	<u>90,6 %</u>
HOXA13	CDC2	SEMA3F	<u>90,5 %</u>
CDC2	SEM2	SMC4L1	<u>90,4 %</u>
CDC2	NRP1	THY1	90,4 %
CDC2	MDK	IGFBP5	<u>90,4 %</u>
TOP2a	NOV	SPAG5	<u>90,4 %</u>
BIRC5	CDC2	NRP1	90,3 %
TODO	ENIO	11017	22.2.4

Figura 14b (cont.)

NOV

<u>90,2 %</u>

ENG

TOP2a

Combinación de tres marcadores (cont.)

Marcador 1	Marcador 2	Marcador 3	Sensibilidad	
NRP1	SPAG5	SEM2		<u>90,2 %</u>
UBE2c	TOP2a	SPAG5		<u>90,2 %</u>
TOP2a	MDK	SEMA3F		<u>90,1 %</u>
NRP1	MDK	CHGA		<u>90,1 %</u>
CDC2	NOV	SPAG5		<u>90,1 %</u>
NRP1	ENG	SEM2		<u>90,1 %</u>
HOXA13	TOP2a	EGFL6		90,0 %
UBE2c	TOP2a	ENG		<u>90,0 %</u>
CDC2	ENG	NOV		90,0 <u>%</u>

Figura 14b (cont.)

Número de marcadores en la prueba	Total de pruebas posibles	Número de prueba	ro de pruebas con sensibilidad	g	Proporción de pru	Proporción de pruebas con sensibilidad	dad
	,,	% 06 =<	>= 95 %	% 66 =<	% 06 =<	>= 95 %	% 66 =<
	0	_	_		11 %	11 %	% 0
(N	36	15	8		2 42 %	22 %	% 9
(1)	3 84	69	37	13	% 0.2	% 44 %	16 %

Figura 15

Marcador único

Marcador	Sensibilidad (%)
IGFBP5	98
HoxA13	85
Sema3F	80
UBE2c	42
NRP1	37
Top2a	74
SMC4L1	34
MDK	79
MGP	70

Combinaciones de dos marcadores

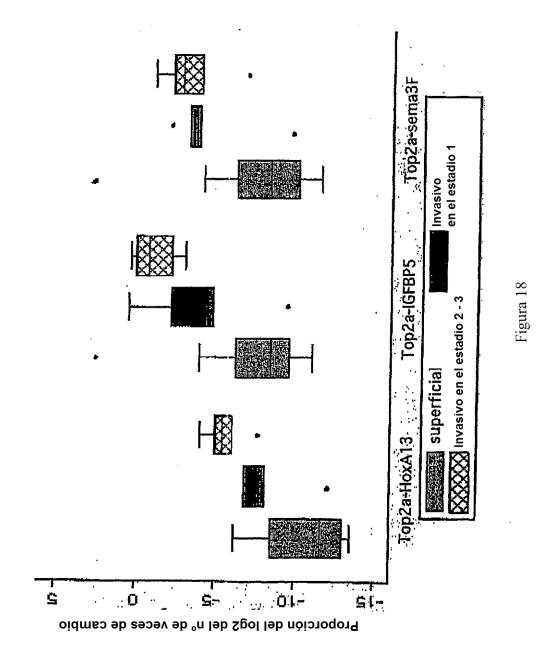
Marcador 1	Marcador 2	Sensibilidad (%)
IGFBP5	HoxA13	99,2
IGFBP5	Sema3F	99,0
IGFBP5	MDK	98,9
IGFBP5	Top2a	98,9
IGFBP5	MGP	98,6
IGFBP5	UBE2c	97,5
IGFBP5	NRP1	97,3
IGFBP5	SMC4L1	97,2
HoxA13	Sema3F	94,0
HoxA13	MDK	93,5
HoxA13	Top2a	93,1
Sema3F	MDK	92,2
Sema3F	Top2a	91,7
HoxA13	MGP	91,3
Тор2а	MDK	91,0

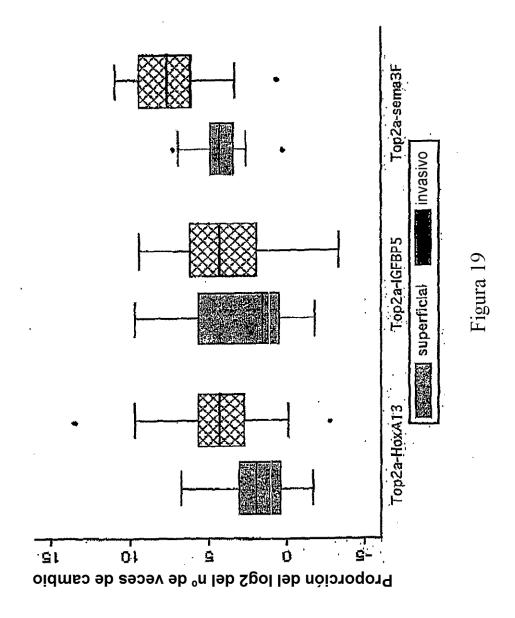
Combinaciones de tres marcadores

Marcador 1	Marcador 2	Marcador 3	Sensibilidad (%)
IGFBP5	HoxA13	Sema3F	99,6
IGFBP5	HoxA13	Top2a	99,6
IGFBP5	HoxA13	MDK	99,6
IGFBP5	Sema3F	Top2a	99,5
IGFBP5	Sema3F	MDK	99,5

Figura 16

Combinaciones de tres marcadores (cont.)


Marcador 1	Marcador 1	Marcador 1	Sensibilidad (%)
IGFBP5	Top2a	MDK	99,5
IGFBP5	HoxA13	MGP	99,5
IGFBP5	Sema3F	MGP	99,4
IGFBP5	Top2a	MGP	99,3
IGFBP5	MDK	MGP	99,3
IGFBP5	HoxA13	UBE2c	99,1
IGFBP5	HoxA13	NRP1	99,0
IGFBP5	HoxA13	SMC4L1	99,0
IGFBP5	Sema3F	UBE2c	99,0
IGFBP5	UBE2c	Top2a	98,9
IGFBP5	Sema3F	NRP1	98,9
IGFBP5	UBE2c	MDK	98,9
IGFBP5	Sema3F	SMC4L1	98,9
IGFBP5	NRP1	Top2a	98,8
IGFBP5	NRP1	MDK	98,8
IGFBP5	Top2a	SMC4L1	98,8
IGFBP5	SMC4L1	MDK	98,8
IGFBP5	UBE2c	MGP	98,5
IGFBP5	NRP1	MGP	98,4
IGFBP5	SMC4L1	MGP	98,4
IGFBP5	UBE2c	NRP1	97,3
IGFBP5	UBE2c	SMC4L1	97,3
HoxA13	Sema3F	Top2a	97,2
HoxA13	Sema3F	MDK	97,2
IGFBP5	NRP1	SMC4L1	97,1
HoxA13	Top2a	MDK	97,0
Sema3F	Top2a	MDK	96,5
HoxA13	Sema3F	MGP	96,3
HoxA13	Top2a	MGP	96,0
HoxA13	MDK	MGP	96,0
Sema3F	Top2a	MGP	95,3
Sema3F	MDK	MGP	95,3
Тор2а	MDK	MGP	94,9
HoxA13	Sema3F	UBE2c	93,9
HoxA13	UBE2c	Top2a	93,4
HoxA13	Sema3F	NRP1	93,4
HoxA13	UBE2c	MDK	93,3
HoxA13	Sema3F	SMC4L1	93,3
HoxA13	NRP1	Top2a	92,8


Figura 16 (cont.)

ES 2 538 504 T3

HoxA13	NRP1	MDK	92,7
HoxA13	Top2a	SMC4L1	92,7
HoxA13	SMC4L1	MDK	92,7
Sema3F	UBE2c	Top2a	92,3
Sema3F	UBE2c	MDK	92,3
Sema3F	NRP1	Top2a	91,6
UBE2c	Top2a	MDK	91,6
Sema3F	NRP1	MDK	91,6
Sema3F	Top2a	SMC4L1	91,6
Sema3F	SMC4L1	MDK	91,6
HoxA13	UBE2c	MGP	91,2
NRP1	Top2a	MDK	90,9
Top2a	SMC4L1	MDK	90,8
HpxAl 3	NRP1	MGP	90,4
HoxA13	SMC4L1	MGP	90,4

Niveles del marcador en la orina de pacientes con TCC y de controles

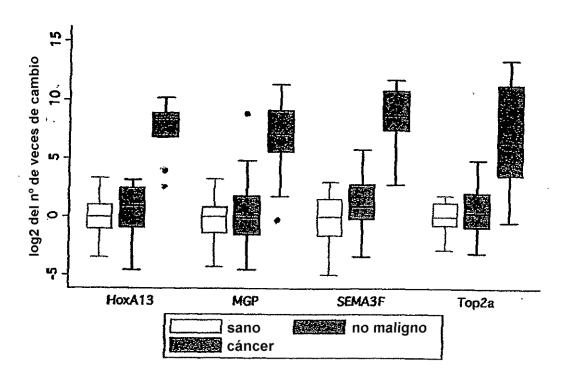
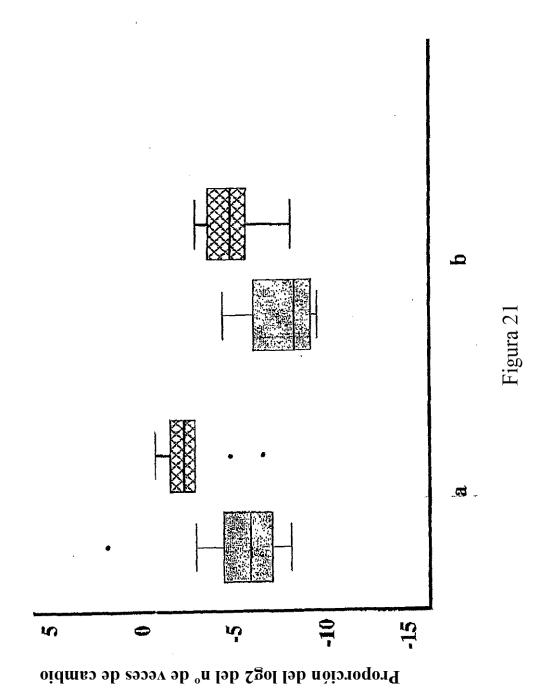



Figura 20

101

REFERENCIAS CITADAS EN LA DESCRIPCIÓN

Esta lista de referencias citadas por el solicitante es únicamente para la comodidad del lector. No forma parte del documento de la patente europea. A pesar del cuidado tenido en la recopilación de las referencias, no se pueden excluir errores u omisiones y la EPO niega toda responsabilidad en este sentido.

Documentos de patentes citados en la descripción

- US 20040076955 A [0009]
- US 20040043436 A [0009]
- US 6335170 B [0105]

- NZ 534289 [0156]
- NZ 539219 [0156]
- US 60692619 B [0156]

Literatura diferente de patentes citada en la descripción

- LOTAN; ROEHRBORN. Urology, 2003, vol. 61, 109-118 [0002]
- SAMBROOK, J.; EFRITSCH, E.; TMANIATIS. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 2001 [0040] [0043]
- NOLTE, F.S. Branched DNA signal amplification for direct quantitation of nucleic acid sequences in clinical specimens. Adv. Clin. Chem., 1998, vol. 33, 201-35 [0040]
- HAUKANES, B-I; KVAM, C. Application of magnetic beads in bioassays. *Biol Technology*, 1993, vol. 11, 60-63 [0040]
- SPIRO, A.; LOWE, M.; BROWN, D. A Bead-Based Method for Multiplexed Identification and Quantitation of DNA Sequences Using Flow Cytometry. Appl. Env. Micro., 2000, vol. 66, 4258-4265 [0040]
- CROWTHER, J.R. The ELISA guidebook. Humana Press, 2000 [0045]
- HARLOW, E.; LANE, D. Using antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, 1999 [0045] [0048] [0050]
- HUST M.; DUBEL S. Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol Biol., 2005, vol. 295, 71-96 [0045]
- EMANUELSSON et al. J. Mol. Biol., 2000, vol. 300, 1005-1006 [0105]