

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 538 794

(51) Int. CI.:

C07K 14/755 (2006.01) C12N 15/85 (2006.01) C07K 14/81 (2006.01) C12N 5/00 (2006.01) C12P 21/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 16.03.2004 E 10013146 (5)

(97) Fecha y número de publicación de la concesión europea: 06.05.2015 EP 2338911

(54) Título: Uso de chaperonas moleculares para aumentar la producción de proteínas recombinantes secretadas en células de mamífero

(30) Prioridad:

27.06.2003 US 483505 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 24.06.2015

(73) Titular/es:

BAYER HEALTHCARE LLC (100.0%) 100 Bayer Boulevard, PO Box 915 Whippany, NJ 07981, US

(72) Inventor/es:

CHAN, SHAM-YUEN; TANG, HSINYJ YVETTE; TAO, YIWEN; WU, YONGJIAN y **KELLY, RUTH**

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

Observaciones:

Véase nota informativa (Remarks) en el folleto original publicado por la Oficina Europea de Patentes

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Uso de chaperonas moleculares para aumentar la producción de proteínas recombinantes secretadas en células de mamífero

Campo de la invención

La presente invención se refiere al campo general de la producción de proteínas recombinantes en una célula hospedadora de mamífero. Específicamente, la presente invención se refiere a aumentar la producción de bikunina recombinante o proteína Factor VIII mediante la coexpresión de al menos una proteína chaperona Erp57 en la célula hospedadora de mamífero.

Antecedentes de la invención

- En las células procariotas y eucariotas, las proteínas chaperonas moleculares catalizan el intercambio de enlaces disulfuro y ayudan en el plegamiento correcto de proteínas recién sintetizadas. Esta observación ha conducido a una gran cantidad de estudios y se han propuesto usos para estas proteínas de control de calidad. Por ejemplo, el aumento de la actividad pDI (proteína disulfuro isomerasa) en sistemas de expresión de células bacterianas, de insecto y de levadura puede tener efectos beneficiosos sobre la solubilidad de la proteína y el plegamiento y, en algunos casos, puede conducir a un aumento de la secreción de proteínas heterólogas (1-7). Además, otros estudios han mostrado que la chaperona molecular, proteína de unión a la cadena pesada de la inmunoglobulina (BiP, también conocida como proteína regulada por glucosa) y la proteína de choque térmico 70 humana (Hsp 70), tienen un efecto beneficioso sobre la expresión de proteínas recombinantes en sistemas de células de insectos (5, 8-12).
- Las chaperonas moleculares no han tenido el mismo nivel de éxito sobre la expresión y la secreción de proteínas recombinantes en sistemas de células de mamífero. Por ejemplo, la hiperexpresión de la chaperona pDI en células de ovario de hámster chino (CHO) no solo no tuvo efecto sobre los niveles de secreción de IL-15, sino que además causó una disminución en la secreción, y un aumento de la retención celular de una proteína de fusión receptor de factor de necrosis tumoral-Fc (TNFR: Fc) (13). Otros estudios han mostrado que la hiperexpresión de la chaperona BiP en células de mamífero puede conducir a una mayor retención celular y a una disminución de la secreción de proteínas recombinantes (14-15 y el documento de Patente de EE.UU. nº 4.912.040). Los mecanismos reguladores implicados en el procesamiento de proteínas dentro de la célula de mamífero son complejos y probablemente implican la cooperación de muchas de estas proteínas chaperonas. Por lo tanto, no se puede predecir si una chaperona particular producirá un aumento de la producción de una determinada proteína recombinante.
- Debido a las teorías contradictorias en este tema, el efecto de las proteínas chaperonas sobre la producción de un 30 producto proteico recombinante secretado no se entiende ni se aprecia. El documento de Patente de EE.UU. nº 6.451.597 (la patente 597) describe un método para mejorar la producción de partículas víricas, y especula sobre el efecto de las chaperonas en la mejora del rendimiento de una proteína recombinante en células eucariotas. Sin embargo, no se describe ninguna expresión real de una proteína recombinante. Sin embargo, otros estudios han encontrado que la hiperexpresión de chaperonas en líneas de células eucariotas o bien no tuvo efecto sobre los 35 rendimientos del producto o había una reducción de la secreción de las proteínas recombinantes (14, 15). Véase también el documento de Patente de EE.UU. nº 4.912.040. Teniendo en cuenta las teorías contradictorias en este tema, la patente 597 no permite que un experto en la técnica utilice chaperonas para mejorar la producción y la secreción de una proteína recombinante en células eucariotas. El estado de la técnica no explica cómo predecir qué efecto va a tener una chaperona particular sobre la producción y la secreción de una proteína recombinante dada en 40 modelos de cultivos celulares, tales como los descritos en el presente documento. Los solicitantes se sorprendieron en consecuencia, por encontrar que cuando las chaperonas descritas en este estudio se transfectaban en líneas celulares de mamífero que expresaban una proteína recombinante secretada, el efecto resultante era un aumento general en la producción de la proteína secretada.

Compendio de la invención

- 45 En un primer aspecto de la invención, se proporciona una célula hospedadora CHO de mamífero para mejorar la expresión de una proteína bikunina recombinante, teniendo dicha célula CHO de mamífero un material genético que codifica para la expresión de dicha proteína bikunina recombinante y estando transformada con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona Erp57.
 - En una realización del primer aspecto de la invención, el producto proteico recombinante se secreta.
- 50 En otra realización de la invención, el material genético que codifica para la expresión de dicho producto proteico recombinante está integrado en el ADN de la célula hospedadora.
 - En otra realización de la invención, la célula hospedadora de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - En otro aspecto de la invención, se proporciona un método para producir una célula hospedadora CHO de mamífero para mejorar la expresión de una proteína bikunina recombinante, en donde el método comprende proporcionar una

célula CHO de mamífero que tiene material genético que codifica para la expresión de una proteína bikunina recombinante; y transformar la célula CHO de mamífero con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona Erp57.

En una realización de este aspecto de la invención, el producto proteico recombinante se secreta.

5 En otra realización de la invención, el material genético que codifica para la expresión de dicho producto proteico recombinante está integrado en el ADN de la célula hospedadora.

En otra realización de la invención, la célula hospedadora de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.

En otro aspecto de la invención, se proporciona un método para producir un producto proteico recombinante secretado, en donde el método comprende las etapas de: cultivar una célula hospedadora de mamífero de la reivindicación 1 o la reivindicación 2; y recuperar a partir del medio de cultivo la proteína recombinante así producida y secretada de esta manera.

En una realización de este aspecto de la invención, el producto proteico recombinante es secretado.

En otra realización de la invención, el material genético que codifica para la expresión de dicho producto proteico recombinante está integrado en el ADN de la célula hospedadora.

En otra realización de la invención, la célula hospedadora de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.

En otro aspecto de la invención, se proporciona un método para mejorar el rendimiento de una proteína bikunina recombinante en donde el material genético que codifica para la expresión de dicha proteína recombinante se ha introducido previamente en la línea celular para formar la primera línea celular, comprendiendo dicho método las etapas de: insertar al menos un vector de expresión de la proteína chaperona que comprende ADN que codifica una proteína chaperona Erp57 en dicha primera línea celular para formar de este modo una línea celular modificada; y seleccionar a partir de dicha línea celular modificada al menos una segunda línea celular que muestra un rendimiento mejorado de la proteína recombinante.

25 En una realización de este aspecto de la invención, el producto proteico recombinante es secretado.

En otra realización de la invención, el material genético que codifica para la expresión de dicho producto proteico recombinante está integrado en el ADN de la primera línea celular.

En otra realización de la invención, la segunda línea celular se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.

En otra realización de la invención, se produce al menos una segunda línea celular a partir de dicha primera línea celular seleccionando una porción de dicha primera línea celular que muestra integración del vector de expresión de la proteína chaperona dentro del ADN del hospedador.

También se describe un método para mejorar el rendimiento de una proteína recombinante o de un fragmento de la misma en una célula de mamífero, en donde el método comprende introducir material genético que codifica una proteína recombinante o un fragmento de la misma en una línea celular que muestra una expresión mejorada de la proteína chaperona.

En una realización, el producto proteico recombinante es secretado.

En otra realización, el material genético que codifica para la expresión de dicho producto proteico recombinante se integra en el ADN de la célula hospedadora.

40 En otra realización, la célula se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.

En otra realización, el producto proteico recombinante comprende bikunina, Factor VIII, IL2SA o un fragmento de los mismos.

En otra realización, la proteína chaperona comprende calnexina, calreticulina, Erp57, Hsp40 o Hsp70.

45 En otra realización, la proteína chaperona comprende calreticulina y Erp57.

Breve descripción de los dibujos

20

35

La invención se entenderá mejor tomando en cuenta la siguiente descripción detallada y las reivindicaciones, junto con los dibujos, en los cuales:

la Figura 1 muestra las secuencias de cebadores de RT-PCR usados para amplificar el ADNc de chaperonas del RE procedentes de una genoteca de ADNc humano. La parte subrayada indica un sitio de restricción construido para EcoRI (cebador 5') o XbaI (cebador 3'). CNX: calnexina; CRT: calreticulina;

la Figura 2A representa las secuencias de nucleótidos y de aminoácidos completas de calnexina clonadas mediante RT-PCR. Los sitios 5' EcoRI y 3' Xbal dentro de los cebadores están subrayados. El codón de inicio y el codón de parada se muestran en negrita;

la Figura 2B representa las secuencias de nucleótidos y de aminoácidos completas de calreticulina clonadas mediante RT-PCR. Los sitios 5' EcoRI y 3' Xbal están subrayados. El codón de inicio y el codón de parada se muestran en negrita;

10 la Figura 2C representa las secuencias de nucleótidos y de aminoácidos completas de Erp57 clonadas mediante RT-PCR. Los sitios 5' EcoRI y 3' Xbal están subrayados. El codón de inicio y el codón de parada se muestran en negrita;

la Figura 2D representa las secuencias de nucleótidos y de aminoácidos completas de la región que codifica el gen de Hsp70 humana;

la Figura 2E representa las secuencias de nucleótidos y de aminoácidos completas de la región que codifica el gen de Hsp40 humana. El codón de inicio se muestra en negrita y subrayado;

la Figura 2F representa las secuencias de nucleótidos y de aminoácidos completas de la región que codifica el gen de la sintetasa de glutamina. El codón de inicio se muestra en negrita y subrayado;

la Figura 3 es una ilustración de la hiperexpresión de bikunina en clones supertransfectados con calnexina (X4.14:5, X4/14:30), Hsp70 (7-3) o Erp57 (X4/19:62). La tasa de producción específica de bikunina para todas las líneas celulares se expresa como pg de bikunina/célula/día (SPR). Cada día se recogieron células y se transfirieron a medio de nuevo aporte y se incubaron durante 24 horas a 37°C en matraces de agitación. Al día siguiente, las células se recogieron de nuevo, se contaron y resuspendieron en medio de nuevo aporte del mismo volumen y se incubaron de manera similar durante otras 24 horas. Las mediciones de la actividad de bikunina (pg/célula/día) se realizaron sobre muestras de medios agotados. El mismo procedimiento se repitió cada día hasta que el número de células y la viabilidad empezaron a disminuir. La línea celular testigo (CF 9-20) expresa bikunina pero no expresa ninguna de las proteínas chaperonas;

la Figura 4 es una ilustración de la hiperexpresión de bikunina en clones supertransfectadas con Hsp70. Todos los clones, excepto CF9-20 (células testigo) están supertransfectados con Hsp70. El procedimiento del experimento es el mismo que el descrito en la Figura 3; y

la Figura 5 representa la secuencia de aminoácidos de bikunina.

Descripción detallada de la invención

30

45

La presente invención se refiere a un método y a reactivos para el mismo, para mejorar la expresión de un producto proteico recombinante secretado en una célula hospedadora de mamífero.

En una realización de la invención, se proporciona una célula hospedadora CHO de mamífero para mejorar la expresión de una proteína bikunina recombinante, en donde dicha célula CHO de mamífero comprende material genético que codifica para la expresión de dicha proteína bikunina recombinante y se transforma con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona Erp57.

En otra realización de la invención, la célula hospedadora de mamífero se transforma de manera estable con el material genético que codifica para la expresión de dicho producto proteico recombinante.

La expresión "célula hospedadora de mamífero" se utiliza para referirse a una célula de mamífero que ha sido transfectada, o que es capaz de ser transfectada con una secuencia de ácido nucleico y a continuación expresar un gen seleccionado de interés. La expresión incluye la progenie de la célula progenitora, sea la progenie idéntica o no en la morfología o en la composición genética, frente a la progenitora original, siempre que el gen seleccionado esté presente.

Las células de mamífero adecuadas para uso en la presente invención incluyen, pero no se limitan a células de ovario de hámster chino (CHO) y células de riñón de cría de hámster (BHK). Las líneas celulares se pueden adquirir fácilmente en la ATCC.

El término "transfección" se utiliza para referirse a la captación de ADN extraño o exógeno en una célula, y una célula ha sido "transfectada" cuando el ADN exógeno se ha introducido al interior de la membrana celular. Se conocen bien en la técnica una variedad de técnicas de transfección y se describen en el presente documento. Véanse, por ejemplo, Graham et al., 1973, Virology 52:456; Sambrook et al., Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratories, 1989); Davis et al., Basic Methods in Molecular Biology (Elsevier, 1986); y

Chu et al., 1981, *Gene* 13:197. Tales técnicas se pueden utilizar para introducir uno o varios restos de ADN exógeno en células hospedadoras adecuadas.

Técnicas adecuadas de transfección para uso en la presente invención incluyen, pero no se limitan a transfección mediada con fosfato de calcio, transfección mediada con DEAE-dextrano y electroporación. La transfección con lípidos catiónicos que emplea reactivos disponibles comercialmente, incluyendo el reactivo de transfección de Boehringer Mannheim (amoniometilsulfato de N->1-(2,3-dioleoiloxi)propil-N,N,N-trimetilo, Boehringer Mannheim, Indianapolis, Ind.) o también se puede utilizar el reactivo LIPOFECTINA o LIPOFECTAMINA o DMRIE (GIBCO-BRL, Gaithersburg, MD).

5

15

30

35

40

45

50

55

Tal como se utiliza en esta memoria, el término "supertransfección" se refiere a transfectar más de un vector de expresión a una célula hospedadora que ya expresa un gen recombinante.

El término "transformación" tal como se utiliza en esta memoria, se refiere a un cambio en una característica genética de una célula, y una célula se ha transformado cuando se modifica para contener un nuevo ADN. Por ejemplo, una célula se transforma cuando se modifica genéticamente a partir de su estado natural. Después de la transfección, el ADN transformante se puede recombinar con el de la célula mediante integración física en un cromosoma de la célula, se puede conservar de forma temporal como un elemento episomal sin replicarlo, o se puede replicar independientemente como un plásmido. Una célula se considera que se ha transformado de manera estable cuando el ADN se replica con la división de la célula.

Tal como se utiliza en esta memoria, la expresión "línea celular modificada" se refiere a una línea celular, ya sea transformada de forma temporal o estable, con una o varias estructuras artificiales de ADN.

Los polinucleótidos, el material genético, las moléculas de ADN recombinante, los vectores de expresión y semejantes, utilizados en la puesta en práctica de la presente invención, se pueden aislar utilizando métodos de clonación convencionales tales como los descritos por Sambrook et al. (Molecular Cloning: A Laboratory Manual, Segunda Edición, Cold Spring Harbor, NY, 1989). Alternativamente, los polinucleótidos que codifican un producto proteico recombinante de la presente invención se pueden sintetizar usando métodos convencionales que son bien conocidos en la técnica, tales como la síntesis en un sintetizador de ADN automatizado. Por ejemplo, las secuencias de ADN que codifican la proteína calnexina son sintetizadas mediante RT-PCR usando cebadores descritos en la Figura 1.

Tal como se usa en el presente documento un "vector de expresión" se refiere a una molécula de ADN, o a un clon de una molécula de ese tipo, que se ha modificado gracias a la intervención humana para contener segmentos de ADN, combinados y yuxtapuestos de una manera que de lo contrario no existiría en la naturaleza. Las estructuras artificiales de ADN se pueden producir mediante ingeniería genética para incluir un primer segmento de ADN que codifica un polipéptido de la presente invención ligado funcionalmente a segmentos de ADN adicionales requeridos para la expresión del primer segmento de ADN. En el contexto de la presente invención, los segmentos adicionales de ADN incluirán generalmente promotores y terminadores de la transcripción y puede incluir, además, potenciadores y otros elementos. Uno o varios marcadores seleccionables también pueden estar incluidos. Las estructuras artificiales de ADN útiles para expresar segmentos de ADN clonados en una variedad de células hospedadoras procariotas y eucariotas, se pueden preparar a partir de componentes fáciles de conseguir o se pueden adquirir a partir de proveedores comerciales.

Las estructuras artificiales de ADN también pueden contener segmentos de ADN necesarios para dirigir la secreción de un polipéptido o una proteína de interés. Tales segmentos de ADN pueden incluir al menos una secuencia señal secretora. Las secuencias señal secretoras, también llamadas secuencias líder, secuencias prepro y/o secuencias pre, son secuencias de aminoácidos que actúan para dirigir la secreción de polipéptidos o proteínas maduras a partir de una célula. Tales secuencias se caracterizan por un núcleo de aminoácidos hidrófobos y se encuentran típicamente (pero no exclusivamente) en los extremos amino de las proteínas recién sintetizadas. Muy frecuentemente, el péptido secretor se escinde de la proteína madura durante la secreción. Tales péptidos secretores contienen sitios de procesamiento que permiten la escisión del péptido secretor a partir de la proteína madura, a medida que pasa a través de la vía secretora. Una proteína recombinante puede contener una secuencia señal secretora en su secuencia de aminoácidos original, o se puede modificar genéticamente para convertirse en una proteína secretada mediante la inserción de una secuencia señal secretora modificada genéticamente en su secuencia de aminoácidos original. La elección de promotores, terminadores y señales secretoras adecuadas pertenece al nivel de experiencia normal en la técnica. La expresión de genes clonados en células de mamífero cultivadas y en *E. coli*, por ejemplo, se describe detalladamente en Sambrook et al. (Molecular Cloning: A Laboratory Manual, Segunda Edición, Cold Spring Harbor, NY, 1989).

Tal como se utiliza en esta memoria, la expresión "producto proteico recombinante" se refiere a una proteína recombinante o a un fragmento de la misma, expresados a partir del material genético introducido en la célula hospedadora de mamífero.

Después de la transfección, la célula se puede mantener transformada de forma temporal o transformada de forma estable con dicha estructura artificial de ADN. La introducción de estructuras artificiales múltiples de ADN, y la

selección de las células que contienen las estructuras artificiales múltiples de ADN se puede hacer de forma simultánea o, más preferiblemente, secuencialmente. El método para establecer una línea celular transformada de forma estable con un material genético o un vector de expresión es bien conocido en la técnica (Current Protocols in Molecular Biology). En general, después de la transfección, el medio de crecimiento seleccionará las células que contienen la estructura artificial de ADN mediante, por ejemplo, selección con fármacos o carencia de un nutriente esencial, que se complementa con un marcador seleccionable en la estructura artificial de ADN o que se ha cotransfectado con la estructura artificial de ADN. Las células de mamífero se cultivan generalmente en medio que contiene suero o que está exento de suero, disponible comercialmente. La selección de un medio apropiado para la célula hospedadora particular empleada, está dentro del nivel de experiencia ordinaria en la técnica.

5

15

20

35

40

50

Los marcadores seleccionables adecuados para la selección con fármacos empleados en esta invención, incluyen, pero no se limitan a neomicina (G418), higromicina, puromicina, zeocina, colchicina, metotrexato y metionina sulfoximina.

Una vez que se estable una población de células resistentes a un fármaco, los clones individuales se pueden seleccionar y escrutar en busca de clones con expresión elevada. Los métodos para establecer una línea celular clonada son bien conocidos en la técnica, incluyendo, pero no limitados a, el uso de un cilindro de clonación o por dilución limitante. La expresión del producto recombinante de interés a partir de cada clon se puede medir por métodos tales como, pero no limitados a, inmunoensayo, ensayo enzimático o ensayo cromogénico.

La línea celular transformada de forma estable con una primera estructura artificial de ADN se puede utilizar a continuación como célula hospedadora para la transfección con una segunda estructura artificial de ADN o varias, y se pueden someter a diferentes selecciones con fármacos.

En una realización de la invención se proporciona una célula hospedadora CHO de mamífero para mejorar la expresión de una proteína bikunina, en donde la célula hospedadora CHO de mamífero se transforma adicionalmente con al menos un vector de expresión que comprende ADN que codifica para la proteína chaperona Erp57.

Tal como se utiliza en esta memoria, el término "bikunina" se refiere a cualquier proteína, que tiene al menos un dominio Kunitz. Los dominios de tipo Kunitz se han descrito en referencias tales como Laskowsld et al., 1980, Ann Rev Biochem. 49:593-626; y el documento de Patente de EE.UU. nº 5.914.315 (22 de junio, 1999). En una realización preferida, el término bikunina empleado en esta memoria se refiere a la secuencia de aminoácidos mostrada en la Figura 5. Otras proteínas bikuninas y fragmentos de las mismas se describen en los documentos de Solicitud de EE.UU. con números de serie 09/144.428, 09/974.026, 09/218.913 y 09/441.966, y las solicitudes PCT con números de serie US97/03894, publicada como WO 97/33996, y US99/04381, publicada como WO 00/37099.

En otra realización de la invención, la invención proporciona una célula hospedadora BHK de mamífero que potencia la expresión y la secreción de proteína del Factor VIII y la célula hospedadora BHK de mamífero se transforma adicionalmente con al menos un vector de expresión que comprende ADN que codifica la proteína chaperona Erp57 y al menos un vector de expresión que comprende calreticulina.

En una realización preferida, la proteína Factor VIII tiene la secuencia representada en el documento de Patente de EE.UU. nº 4.965.199.

También se describe en esta memoria una célula hospedadora de mamífero con una expresión y secreción potenciadas de la proteína IL2SA o de un fragmento de la misma, y la célula hospedadora de mamífero se transforma adicionalmente con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada entre el grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 o Hsp70.

En una realización preferida, la proteína IL2SA tiene la secuencia descrita en el documento de patente de EE.UU. nº 6.348.192.

En otra realización preferida, la célula hospedadora de mamífero con aumento de la expresión y la secreción de IL2SA, es una célula CHO.

En otra realización más de la invención, la célula hospedadora de mamífero se transforma adicionalmente con un vector de expresión que codifica una proteína sintetasa de glutamina.

La presente invención también proporciona un método para producir una célula hospedadora de mamífero como se define en la reivindicación 1 ó 2, para mejorar la expresión de dicha proteína recombinante diana que comprende: proporcionar una célula de mamífero que tiene material genético que codifica para la expresión de dicha proteína recombinante diana; y transformar la célula de mamífero con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona Erp57.

En una realización de la invención, el material genético que codifica para la expresión de dicho producto proteico recombinante está integrado en el ADN de la célula hospedadora.

En otra realización de la invención, la célula hospedadora de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.

En una realización preferida de la invención, el producto proteico recombinante es bikunina y la transformación tiene lugar con un vector de expresión que comprende el ADN que codifica Erp57.

5 En otra realización preferida de la invención, el producto proteico recombinante es Factor VIII y la transformación tiene lugar con un primer vector de expresión que comprende ADN que codifica calreticulina y un segundo vector de expresión que comprende ADN que codifica Erp57.

10

15

25

30

40

50

También se describe en esta memoria un producto proteico recombinante que es el Factor VIII o un fragmento del mismo, y la transformación tiene lugar con un vector de expresión que comprende ADN que codifica calnexina o Hsp70.

También se describe en esta memoria un producto proteico recombinante que es IL2SA o un fragmento de la misma, y la transformación tiene lugar con un vector de expresión que comprende ADN que codifica Hsp70.

La presente invención también proporciona un método para producir un producto proteico recombinante secretado que comprende cultivar una célula hospedadora de mamífero de la reivindicación 1 o la reivindicación 2, y recuperar a partir del medio de cultivo la proteína recombinante producida y secretada de esta forma.

En una realización de la invención, el método para producir un producto proteico recombinante secretado comprende cultivar una célula hospedadora de mamífero, en donde la célula hospedadora de mamífero se transforma de manera estable con un material genético que codifica para la expresión de dicho producto recombinante.

20 En otra realización de la invención, el método para producir un producto proteico recombinante secretado comprende además transfectar la célula hospedadora de mamífero con un vector de expresión que codifica una proteína sintetasa de glutamina.

Una realización de la invención proporciona un método para producir una proteína bikunina que comprende cultivar una célula hospedadora CHO de mamífero que expresa bikunina y al menos una proteína chaperona Erp57; y recuperar a partir del medio de cultivo la proteína bikunina producida y secretada de este modo.

En una realización de la invención, se proporciona un método para mejorar la producción de una proteína bikunina recombinante en una célula CHO, en donde un material genético que codifica para la expresión de dicho bikunina recombinante se ha introducido previamente en una primera línea celular CHO (como se describe en el documento de Solicitud de Patente de EE.UU. nº de serie 09/441654 de Chan, presentada el 12 de noviembre 1999), comprendiendo las etapas de: insertar al menos un vector de expresión de proteína chaperona, que comprende un ADN que codifica proteína chaperona Erp57, en dicha primera línea celular CHO para formar una línea celular CHO modificada; y seleccionar a partir de dicha línea celular CHO modificada al menos una segunda célula que presenta un mayor rendimiento de la proteína bikunina recombinante.

En otra realización, el método para mejorar el rendimiento de bikunina recombinante en una línea celular CHO comprende introducir un material genético para tal bikunina en una línea celular CHO, en donde la línea celular CHO muestra una expresión mejorada de la proteína chaperona.

En otra realización más de la invención, se proporciona un método para mejorar la producción de proteína Factor VIII recombinante en una célula BHK, en donde un material genético que codifica para la expresión de dicho Factor VIII recombinante se ha introducido previamente en una primera línea celular BHK, que comprende las etapas de: insertar al menos un vector de expresión de proteína chaperona que comprende un ADN que codifica proteína chaperona Erp57 y un ADN que codifica proteína chaperona CRT en dicha primera línea celular BHK a fin de formar una línea celular BHK modificada; y seleccionar a partir de dicha línea celular BHK modificada al menos una segunda célula que presenta mayor rendimiento de la proteína Factor VIII recombinante.

En aún otra realización, el método para mejorar el rendimiento del Factor VIII recombinante en una línea celular BHK comprende introducir un material genético para tal Factor VIII en una línea celular BHK, en donde la línea celular BHK muestra una expresión mejorada de la proteína chaperona.

También se describe en esta memoria un método para mejorar la producción de una proteína IL2SA recombinante en una célula CHO, en donde un material genético que codifica para la expresión de dicha IL2SA recombinante se ha introducido previamente en una primera línea celular CHO, que comprende las etapas de: insertar al menos un vector de expresión de proteína chaperona en dicha primera línea celular CHO para formar una línea celular CHO modificada; y seleccionar a partir de dicha línea celular CHO modificada al menos una segunda célula que presenta mayor rendimiento de la proteína recombinante IL2SA.

En otra realización, el método para mejorar el rendimiento de IL2SA recombinante en una línea celular CHO comprende introducir un material genético para tal IL2SA en un línea celular CHO, en donde la línea celular CHO

muestra una expresión mejorada de la proteína chaperona.

Los siguientes ejemplos tienen únicamente fines de ilustración, y no se deben interpretar de ningún modo como limitantes del alcance de la invención.

Eiemplos

10

15

20

25

30

35

40

45

50

5 Ejemplo 1 Clonación del ADNc de chaperona.

Todas las secuencias de chaperonas se clonaron a partir de genotecas de ADNc humano, seguido por la verificación de las secuencias de nucleótidos. Las secuencias de ADN que representaban las tres chaperonas del RE se clonaron mediante RT-PCR a partir de una genoteca de ADNc humano. Los cebadores de RT-PCR utilizados en estas reacciones se diseñaron para amplificar la región codificadora completa usando las secuencias apropiadas, obtenidas a partir de Genbank. Cada pareja de cebadores 5' y 3' incluye un sitio de restricción EcoRI (cebador 5') o XbaI (cebador 3') (Figura 1) para facilitar la clonación del producto de la PCR en el vector de expresión, pCl-neo (Promega).

Las reacciones de PCR se realizaron empleando enzima PFU de alta fidelidad (Stratagene). Las bandas del tamaño esperado se purificaron, se digirieron con EcoRI y XbaI y se clonaron en el vector pCI-neo digerido de manera similar. Los vectores recombinantes procedentes de esta etapa se propagaron en *E. coli* seguido por el aislamiento y la purificación de las secuencias del vector. Las inserciones de secuencias que representaban las chaperonas se secuenciaron usando cebadores que se unían justo fuera de los sitios de clonación múltiple del vector, así como dentro de la secuencia de la chaperona. La secuenciación se realizó utilizando el método de terminador Big Dye en un ciclador térmico de MJ Research y se analizó usando un analizador genético ABI 310. Las secuencias de ADNc de calnexina, calreticulina y Erp57 humana se muestran en las Figuras 2A-2C.

El fragmento de ADNc de longitud completa de Hsp70 humana se obtuvo por RT-PCR usando ARN poliA⁺ de cerebro humano (Clontech Cat: 6516-1) y dos cebadores denominados F-Hsp70 = 5' AGG GAA CCG CAT GGC CAA AG y R-Hsp70 = 5' GAA AGG CCCCTA ATC TAC CTC CTC A. Las secuencias de los cebadores de Hsp 70 se obtuvieron a partir de la secuencia publicada anteriormente para el gen de la proteína de choque térmico humana (Hsp70) [9]. Los cebadores F-Hsp70 y R-Hsp70 incluían o bien una secuencia de EcoRl o de Xbal, respectivamente. El fragmento de PCR deseado se purificó mediante electroforesis en gel de agarosa y se confirmó por secuenciación de los nucleótidos. El fragmento de ADNc de Hsp70 humana de longitud completa se insertó a continuación en los sitios de clonación EcoRl y Xbal del vector pCl-neo, para formar el vector pCl-neo-Hsp70. El vector pCl-neo-Hsp70 se propagó en *E. coli* seguido de aislamiento y purificación de las secuencias del vector. El ADN del plásmido pCl-neo-Hsp70 se secuenció con un analizador genético ABI PRISM 310. La secuencia de Hsp70 humana se muestra en la Figura 2D.

Ejemplo 2. La producción de bikunina se incrementa en células CHO después de la transfección de una chaperona del RE tal como calnexina, calreticulina, Erp57 o Hsp70.

Una línea celular CHO que secretaba la proteína recombinante bikunina (documento de Solicitud de Patente de EE.UU. con nº de serie 09/441654) se supertransfectó con diversas combinaciones de chaperonas del RE, calnexina (CNX), calreticulina (CRT), ERp57 o Hsp70, seguido de selección con G418. Se obtuvieron poblaciones y se escrutaron mediante el ensayo de calicreína (documento de Solicitud de Patente de EE.UU. con nº de serie 09/441654). Brevemente, bikunina convencional o fluido del cultivo se diluyó en serie y se incubó con un volumen igual de calicreína a 37°C durante 30 minutos, después de lo cual se añadió un sustrato cromogénico, N-benzoil-Pro-Phe-Arg-pNA. La reacción se incubó durante 15 minutos antes de la adición de ácido acético al 50%. La cantidad de p-nitroanilida liberada se midió a 405 nM. Las poblaciones que mostraban los títulos más altos de bikunina, se clonaron a continuación a partir de una sola célula y se cultivaron durante un período de varias semanas. Los clones que mostraban constantemente los títulos más elevados de bikunina (2-4 veces) con respecto a las células testigo CF9-20, se conservaron y se cultivaron en matraces de agitación para su posterior análisis. Estos clones se redujeron aún más basándose en títulos de bikunina y características del crecimiento, mostrados durante el crecimiento en el entorno de matraz de agitación. Los clones candidatos finales se seleccionaron después de varias rondas y análisis exhaustivos en la etapa de matraz de agitación.

La tasa de producción específica de bikunina para todas las líneas celulares se expresa como pg de bikunina/célula/día (SPR). Cada día las células se recogieron y se transfirieron a un medio de nuevo aporte y se incubaron durante 24 horas a 37°C en matraces de agitación. Al día siguiente, las células se recogieron de nuevo, se contaron y se resuspendieron en medio de nuevo aporte con el mismo volumen y se incubaron de forma similar durante otras 24 horas. Las mediciones de la actividad bikunina (pg/célula/día) se realizaron en muestras de medios agotados. El mismo procedimiento se repitió cada día hasta que el número de células y la viabilidad empezaron a disminuir.

El efecto de las proteínas chaperonas sobre la expresión de bikunina se muestra en las Figuras 3 y 4. La línea celular testigo (CF9-20) expresa bikunina pero no expresa ninguna de las proteínas chaperonas. El efecto de la calnexina, calreticulina y Erp57 sobre la expresión de bikunina se resume con más detalle en la Tabla 1.

Tabla 1. Los niveles de producción general de bikunina son 2-4 veces superiores en clones que se han supertransfectado con una chaperona

Clon	Incremento de bikunina en relación con el testigo	<u>Chaperona</u>
X4/14:5	2-4	CNX
X4/14:30	2-4	CNX
X4/19:62	2-4	ERp57
T4/13:22	1.5-2	CRT

Las mediciones de la actividad de plegamiento se realizan en relación con una línea celular testigo que expresa bikunina pero no expresa ninguna de las proteínas chaperonas. Las células se cultivaron en medio exento de suero en cultivos en matraz de agitación.

Ejemplo 3. La producción de Factor VIII recombinante se incrementa en células BHK después de la transfección con chaperonas RE.

Las células estables productoras de Factor VIII (MWCB1) (documento de Patente de EE.UU. nº 4.965.199; ATCC nº CRL 8544) se transfectaron con vectores de expresión de chaperonas además de pPUR, un vector que contenía el gen de resistencia a la puromicina, en una proporción de 10:1. Aproximadamente 4 x 10⁶ células MWCB1 se transfectaron con un total de 5 µg de ADN utilizando el reactivo DMRIE-C y medio OPTI-MEM (Life Technology, MD) en placas de 6 pocillos. Tres días después de la transfección, se sembraron 100.000 células en placas de 6 pocillos y después se seleccionaron en presencia de 1 - 2 µg/ml de puromicina con medio OPTI-MEM que contenía FBS al 2%, durante 2 semanas. Las colonias resistentes a la puromicina se seleccionaron manualmente y se sembraron en placas de 96 pocillos y se cultivaron sin la presencia de fármaco. Las poblaciones de clones individuales se escrutaron en busca de producción de Factor VIII, utilizando un kit COATEST (Chromogenix, Italia) de acuerdo con las instrucciones del fabricante. Los clones con producción elevada se cultivaron de forma secuencial desde la placa con 6 pocillos, a un matraz T75, seguido de la etapa en matraz de agitación para las pruebas de estabilidad y productividad. Las chaperonas Calnexina (CNX), Calreticulina (CRT), Erp57, Hsp40 y Hsp70 se transfectaron a continuación en células, individualmente o de dos en dos. Se observó un aumento significativo de 2 a 3 veces en la productividad de Factor VIII en los clones transfectados con CNX, CRT y Erp57, Hsp70 y Hsp40, mientras que el testigo con vector vacío (PCI-Neo) no mostró ninguna diferencia en comparación con las células progenitoras MWCB1 (Tabla 2).

Tabla 2. Productividad del Factor VIII recombinante en clones

	Factor VIII (U/ml)	Plegamiento de Inc (SPR)
MWCB1 (27000JC)	0,11	1,00
PCI-Neo + pPUR	0,09	1,00
CNX + pPUR	0,31	2,88
CRT + pPUR	0,13	1,25
Erp57 + pPUR	0,05	0,91
CRT, Erp57 + pPUR	0,29	2,50
Hsp70 + pPUR	0,37	2,50
Hsp40 + pPUR	0,11	1,00
Hsp70, 40 + pPUR	0,28	1,66

25

30

35

5

10

15

20

Las células se sembraron a 1 x 10⁶ por ml, en un total de 15 ml en matraz de agitación, durante 2 días

Ejemplo 4. La coexpresión de BiP y PDI no aumenta la expresión del Factor VIII y anticuerpo anti-TNF en células BHK y CHO.

Las células CHO recombinantes (tal y como se han descrito en el Ejemplo 2) que expresaban niveles elevados de bikunina, y las células BHK recombinantes (tal y como se han descrito en el Ejemplo 3) que expresaban niveles elevados de Factor VIII recombinante (rFVIII) se supertransfectaron con pHyg (plásmido que confiere resistencia a la higromicina) y pBiP. Las condiciones de la transfección y las condiciones de la selección fueron las mismas que en el Ejemplo 2. Después de una selección en higromicina y clonación por dilución limitante, los clones se evaluaron para estudiar la productividad de bikunina y la actividad de rFVIII. No se observó una diferencia significativa en la productividad específica de los clones obtenidos a partir de células transfectadas solo con el vector testigo (pHyg) y

de los clones obtenidos a partir de células transfectadas con pBiP.

Ejemplo 5. Transfección de un clon que produce IL2SA con sintetasa de glutamina (GS) y Hsp70.

La línea celular CHO que produce IL2SA (agonista selectivo de IL2; documento de Patente de EE.UU. nº 6.348.192), 49-19-H42 (una variante clónica del depósito de ATCC PTA-8), se cotransfectó con PCI-GS y PCI-neo-Hsp70. Se transfectaron 4 x 10⁶ células con 2,5 µg de ADN plasmídico utilizando reactivos DMRIE-C y medio OPTI-MEM (Life Technology, MD) en placas de 6 pocillos, de acuerdo con las instrucciones del fabricante. Tres días después de la transfección, las células se sembraron en placas de 150 mm y 96 pocillos y luego se seleccionaron en presencia de MSX 10 µM (metionina sulfoximina) y 250 µg/ml de G418 con medio DME:F12 (1:1) carente de glutamina que contenía 2% de FBS dializado, durante 2 semanas. Las colonias de células individuales se recogieron y se sembraron de nuevo en placas de 96 pocillos. Los clones se seleccionaron durante otra semana con aumento de las concentraciones de MSX (20 µM) y G418 (400 µg/ml). Se generó un grupo a partir de una placa de 150 mm después de la selección durante 3 semanas. El grupo y los clones se cultivaron pasándolos gradualmente a matraces de agitación y se examinaron para estudiar la productividad de IL2 utilizando ELISA. La expresión de las proteínas GS y Hsp70 se confirmó mediante análisis FACS usando un citómetro de flujo. Las células "positivas para GS" se cultivaron en un medio exento de glutamina complementado con glutamato 5,6 mM y 4 g/L de glucosa. El tiempo de duplicación de estos clones variaba de 24 a 48 h. Una comparación de la productividad del progenitor y los clones se muestra en la Tabla 3. Se observó un incremento de 2-4 veces en el título total y un incremento de 2-3 veces en la productividad específica en todos los clones de células individuales cuando se compararon con el grupo o la línea progenitora.

Tabla 3. Productividad de células productoras de IL2SA

	Título (µg/ml)	Densidad celular (10 ⁶ /ml)	SPR (pg/c/d)	GS	Hsp70
Línea progenitora 49-19H42	18,78	3,51	2,67	(-)	(-)
49-19H42 GShsp70-SC nº 12	33,87	2,63	6,44	+++	+++
49-19H42 GShsp70-SC nº 14	22,08	1,83	6,03	+++	+++
49-19H42 GShsp70-SC nº 17	64,00	3,05	10,50	+++	+++
49-19H42 GShsp70-grupo	10,59	1,74	3,04	+++	+

Las células se sembraron a 1 millón por ml el día 0 en 15 ml de medio completo (para la línea progenitora) o medio exento de glutamina. Se tomaron muestras 2 días después de la siembra y se analizaron mediante ELISA. Para la expresión de GS y de Hsp70, las células se fijaron con 70% de EtOH, se marcaron con los anticuerpos apropiados y se analizaron por FACS.

+++ = todas las células expresaron GS o Hsp70; + = 30% de las células expresó GS o Hsp70; (-) = sin expresión.

Referencias

5

10

15

20

25

- (1) Wunderlich, M.; Glockshuber, R. In vivo control of redox potential during protein folding catalyzed by bacterial protein disulfide-isomerase (DsbA). J. Biol. Chem. 1993, 268, 24547-24550.
- (2) Glockshuber, R.; Wunderlich, M.; Skerra, A.; Rudolph, R. Increasing the yield of disulfide-bridged heterologous proteins secreted from transgenic microorganisms. Eur. Pat. No. 92-106978 920423 1995.
 - (3) Tuite, M. F.; Freedman, R. B.; Schultz, L. D.; Ellis, R. W.; Markus, H. Z.; Montgomery, D. L. Method for increasing production of disulfide bonded recombinant proteins by saccharomyces cerevisiae. Aust. Pat. No. AU679448B2 1997.
- (4) Ostermeier, M.; De Sutter, K.; Georgiou, G. Eukaryotic protein disulfide isomerase complements Escherichia coli dsbA mutants and increases the yield of a heterologous secreted protein with disulfide bonds. J. Biol. Chem. 1996,271, 10616-10622.
 - (5) Shusta, E. V.; Raines, R. T.; Pluckthun, A.; Wittrup, K. D. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat. Bio-technol. 1998, 16, 773-777.
 - (6) Robinson, A. S.; Hines, V.; Wittrup, K. D. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology (N. Y.) 1994,12, 381-384.
 - (7) Dunn, A.; Luz, J. M.; Natalia, D.; Gamble, J. A.; Freedman, R. B.; Tuite, M. F. Protein disulphide isomerase (PDI) is required for the secretion of a native disulphide-bonded protein from Saccharomyces cerevisiae. Biochem. Soc. Trans. 1995, 23, 78S.
 - (8) Hsu, T. A.; Watson, S.; Eiden, J. J.; Betenbaugh, M. J. Rescue of immunoglobulins from insolubility is facilitated by PDI in the baculovirus expression system. Protein Expr. Purif. 1996, 7, 281-288.
- (9) Hsu, T. A.; Betenbaugh, M. J. Co-expression of molecular chaperone BiP improves immunoglobulin solubility and IgG secretion from Trichoplusia in insect cells. Biotechnol. Prog. 1997, 13,96-104.
 - (10) Hsu, T. A.; Eiden, J. J.; Bourgarel, P.; Meo, T.; Betenbaugh, M. J. Effects of coexpressing chaperone BiP on functional antibody production in the baculovirus system. Protein Expr. Purif. 1994, 5, 595-603.
- (11) Ailor, E.; Betenbaugh, M. J. Overexpression of a cytosolic chaperone to improve solubility and secretion of a recombinant IgG protein in insect cells. Biotechnol. Bioeng. 1998, 58, 196-203.
 - (12) Ailor, E.; Betenbaugh, M. J. Modifying secretion and post-translational processing in insect cells. Curr. Opin. Biotechnol. 1999, 10, 142-145.
 - (13) Davis, R., Schooley, K., Rasmussen, B., Thomas, J., Reddy, P. Effect of PDI Overexpression on Recombinant Protein Secretion in CHO Cells. Biotechnol. Prog. 2000, 16, 736-743.
 - (14) Dorner, A. J.; Wasley, L. C.; Raney, P.; Haugejorden, S.; Green, M.; Kaufman, R. J. The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J. Biol. Chem. 1990, 265, 22029-22034.
- 40 (15) Dorner, A. J.; Wasley, L. C.; Kaufman, R. J. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 1992, 11, 1563-1571.
 - (16) Current Protocols in Molecular Biology, 2003, John Wiley & Sons, Inc.

45

35

15

En la presente memoria también se describe lo siguiente:

5

15

- 1. Una célula hospedadora de mamífero para mejorar la expresión de un producto proteico recombinante, teniendo dicha célula de mamífero un material genético que codifica para la expresión de dicho producto proteico recombinante y se transforma con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada del grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
- 2. La célula hospedadora de mamífero según la realización 1, en la que el producto proteico recombinante es secretado.
- 3. La célula hospedadora de mamífero según la realización 2, en la que el material genético que codifica para la expresión de dicho producto proteico recombinante está integrado en el ADN de la célula hospedadora.
- 4. La célula hospedadora de mamífero según la realización 3, transformada adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 5. La célula hospedadora de mamífero según la realización 2, en donde el producto proteico recombinante es bikunina o un fragmento de la misma.
 - 6. La célula hospedadora de mamífero según la realización 5, en donde la transformación tiene lugar con un vector de expresión que comprende ADN que codifica calnexina.
 - 7. La célula hospedadora de mamífero según la realización 5, en donde la transformación tiene lugar con un vector de expresión que comprende ADN que codifica Erp57.
 - 8. La célula hospedadora de mamífero según la realización 5, en donde la transformación tiene lugar con un vector de expresión que comprende ADN que codifica calreticulina.
- 20 9. La célula hospedadora de mamífero según la realización 5, en donde la transformación tiene lugar con un vector de expresión que comprende ADN que codifica Hsp70.
 - 10. La célula hospedadora de mamífero según la realización 2, en donde el producto proteico recombinante es Factor VIII o un fragmento del mismo.
- 11. La célula hospedadora de mamífero según la realización 10, en donde dicha transformación tiene lugar con un primer vector de expresión que comprende ADN que codifica calreticulina y un segundo vector de expresión que comprende ADN que codifica Erp57.
 - 12. La célula hospedadora de mamífero según la realización 10, en donde dicha transformación tiene lugar con un vector de expresión que comprende ADN que codifica calnexina.
- 13. La célula hospedadora de mamífero según la realización 10, en donde dicha transformación tiene lugar con un vector de expresión que comprende ADN que codifica Hsp70.
 - 14. La célula hospedadora de mamífero según la realización 2, en donde el producto proteico recombinante es IL2SA o un fragmento de la misma.
 - 15. La célula hospedadora de mamífero según la realización 14, en donde dicha transformación tiene lugar con un vector de expresión que comprende ADN que codifica Hsp70.
- 35 16. Una célula hospedadora de mamífero para mejorar la expresión de bikunina o de un fragmento de la misma, en donde dicha célula de mamífero tiene un material genético que codifica para la expresión de bikunina o de un fragmento de la misma y se transforma con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada entre el grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
- 17. La célula hospedadora de mamífero según la realización 16, en donde el material genético que codifica para la expresión de bikunina o de un fragmento de la misma está integrado en el ADN de la célula hospedadora.
 - 18. La célula hospedadora de mamífero según la realización 16, que se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 19. Una célula hospedadora de mamífero para mejorar la expresión del Factor VIII o de un fragmento del mismo, en donde dicha célula de mamífero tiene un material genético que codifica para la expresión del Factor VIII o de un fragmento del mismo y se transforma con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada a partir del grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
 - 20. La célula hospedadora de mamífero según la realización 19, en donde el material genético que codifica para la expresión del Factor VIII o de un fragmento del mismo está integrado en el ADN de la célula hospedadora.
 - 21. La célula hospedadora de mamífero según la realización 20, transformada además con un vector de expresión

que comprende ADN que codifica una proteína sintetasa de glutamina.

5

- 22. Una célula hospedadora de mamífero para la expresión mejorada de IL2SA o de un fragmento de la misma, en donde dicha célula de mamífero tiene un material genético que codifica para la expresión de IL2SA o de un fragmento de la misma y se transforma con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada entre el grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
- 23. La célula hospedadora de mamífero según la realización 22, en donde el material genético que codifica para la expresión de IL2SA o de un fragmento de la misma está integrado en el ADN de la célula hospedadora.
- 24. La célula hospedadora de mamífero según la realización 23, que se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
- 10 25. Un método para producir una célula hospedadora de mamífero para mejorar la expresión de una proteína recombinante diana o un fragmento de la misma que comprende
 - proporcionar una célula de mamífero que tiene material genético que codifica para la expresión de una proteína recombinante diana o de un fragmento de la misma; y
- transformar la célula de mamífero con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada entre el grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
 - 26. El método según la realización 25, en el que el producto proteico recombinante se secreta.
 - 27. El método según la realización 26, en el que el material genético que codifica para la expresión de dicho producto proteico recombinante se integra en el ADN de la célula hospedadora.
- 28. El método según la realización 28, que se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 29. El método según la realización 26, en el que el producto proteico recombinante es bikunina o un fragmento de la misma.
 - 30. El método 1 según la realización 29, en el que la transformación se produce con un vector de expresión que comprende ADN que codifica calnexina.
- 25 31. El método según la realización 29, en el que la transformación se produce con un vector de expresión que comprende ADN que codifica Erp57.
 - 32. El método según la realización 29, en el que se produce la transformación con un vector de expresión que comprende ADN que codifica calreticulina.
- 33. El método según la realización 29, en el que se produce la transformación con un vector de expresión que comprende ADN que codifica Hsp70.
 - 34. El método según la realización 26, en el que el producto proteico recombinante es el Factor VIII o un fragmento del mismo.
 - 35. El método según la realización 34, en el que dicha transformación se produce con un primer vector de expresión que comprende ADN que codifica calreticulina y un segundo vector de expresión que comprende ADN que codifica Erp57.
 - 36. El método según la realización 34, en el que dicha transformación se produce con un vector de expresión que comprende ADN que codifica calnexina.
 - 37. El método según la realización 34, en el que dicha transformación se produce con un vector de expresión que comprende ADN que codifica Hsp70.
- 40 38. El método según la realización 26, en el que el producto proteico recombinante es IL2SA o un fragmento de la misma.
 - 39. El método según la realización 38, en el que dicha transformación se produce con un vector de expresión que comprende ADN que codifica Hsp70.
 - 40. Un método para producir un producto proteico recombinante secretado que comprende las etapas de:
- cultivar una célula hospedadora de mamífero, en donde dicha célula hospedadora de mamífero tiene un material genético que codifica para la expresión de dicho producto proteico recombinante y se transforma con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona seleccionada entre el grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70; y

recuperar a partir del medio de cultivo el producto proteico recombinante producido y secretado de este modo.

- 41. El método según la realización 40, en el que el material genético que codifica para la expresión de dicho producto proteico recombinante se integra en el ADN de la célula hospedadora.
- 42. El método según la realización 41, en el que dicha célula hospedadora de mamífero se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 43. Un método para producir una proteína bikunina o un fragmento de la misma que comprende cultivar la célula hospedadora de mamífero según la realización 5 y recuperar a partir del medio de cultivo la proteína bikunina o un fragmento de la misma producido y secretado de este modo.
- 44. El método según la realización 43, en el que dicha célula hospedadora de mamífero se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 45. Un método para producir una proteína del Factor VIII o un fragmento de la misma que comprende cultivar la célula hospedadora de mamífero según la realización 10 y recuperar a partir del medio de cultivo la proteína del Factor VIII o un fragmento de la misma producido y secretado de este modo.
- 46. El método según la realización 45, en el que dicha célula hospedadora de mamífero se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 47. Un método para producir una proteína IL2SA o un fragmento de la misma que comprende cultivar la célula hospedadora de mamífero según la realización 14 y recuperar a partir del medio de cultivo la proteína IL2SA o un fragmento de la misma producido y secretado de este modo.
- 48. El método según la realización 47, en el que dicha célula hospedadora de mamífero se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 49. Un método para mejorar el rendimiento de proteína recombinante bikunina en una línea celular CHO, en el que un material genético que codifica para la expresión de dicha bikunina recombinante se ha introducido previamente en una primera línea celular CHO, comprendiendo dicho método las etapas de:
- insertar al menos un vector de expresión de la proteína chaperona en dicha primera línea celular CHO a fin de formar una línea celular CHO modificada; y
 - seleccionar a partir de dicha línea celular CHO modificada al menos una segunda línea celular que muestra un rendimiento mejorado de la proteína bikunina recombinante.
 - 50. El método según la realización 49, en el que el material genético que codifica para la expresión de dicha bikunina recombinante se integra en el ADN de la primera célula CHO.
- 30 51. El método según la realización 50, en el que la segunda línea celular se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 52. El método según la realización 49, en el que se produce al menos una segunda línea celular a partir de dicha primera línea celular mediante la selección de una porción de dicha primera línea celular que presenta la integración del vector de expresión de la proteína chaperona en el ADN del hospedador.
- 35 53. El método según la realización 49, en donde dicho vector de expresión de la proteína chaperona comprende ADN que codifica una proteína chaperona seleccionada entre el grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
 - 54. El método según la realización 49, en el que dicha selección se produce en presencia de G418.
- 55. Un método para mejorar el rendimiento del Factor VIII recombinante en una línea celular de riñón de cría de hámster (BHK), en el que un material genético que codifica para la expresión de dicho Factor VIII recombinante se ha introducido previamente en una primera línea celular BHK, comprendiendo dicho método las etapas de:
 - insertar al menos un vector de expresión de la proteína chaperona en dicha primera línea celular BHK a fin de formar una línea celular BHK modificada; y
- seleccionar a partir de dicha línea celular BHK modificada al menos una segunda línea celular que muestra un rendimiento mejorado del producto del Factor VIII recombinante.
 - 56. El método según la realización 55, en el que el material genético que codifica para la expresión de dicho Factor VIII recombinante se integra en el ADN de la primera célula BHK.
 - 57. El método según la realización 55, en el que la segunda línea celular se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.

- 58. El método según la realización 55, en el que se produce al menos una segunda línea celular a partir de dicha primera línea celular mediante la selección de una porción de dicha primera línea celular que presenta la integración del vector de expresión de la proteína chaperona en el ADN del hospedador.
- 59. El método según la realización 55, en donde dicho vector de expresión de la proteína chaperona comprende ADN que codifica una proteína chaperona seleccionada a partir del grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 o Hsp70.
 - 60. El método según la realización 55, en el que dicha célula BHK se transfecta adicionalmente con un vector que incluye un gen de resistencia a la puromicina.
 - 61. El método según la realización 55, en el que la selección se produce en presencia de puromicina.

5

- 10 62. Un método para mejorar el rendimiento de la proteína IL2SA recombinante en una línea celular CHO, en el que el material genético que codifica para la expresión de dicha IL2SA recombinante se ha introducido previamente en una primera línea celular CHO, comprendiendo dicho método las etapas de:
 - insertar al menos un vector de expresión de la proteína chaperona en dicha primera línea celular CHO a fin de formar una línea celular CHO modificada; y
- seleccionar a partir de dicha línea celular CHO modificada al menos una segunda línea celular que muestra un rendimiento mejorado de la proteína IL2SA recombinante.
 - 63. El método según la realización 62, en el que el material genético que codifica para la expresión de dicha IL2SA recombinante está integrado en el ADN de la primera célula CHO.
- 64. El método según la realización 63, en el que la segunda línea celular se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 65. El método según la realización 62, en donde dicho vector de expresión de la proteína chaperona comprende ADN que codifica una proteína chaperona seleccionada entre el grupo que consiste en calnexina, calreticulina, Erp57, Hsp40 y Hsp70.
 - 66. Un método para mejorar el rendimiento de una bikunina recombinante o de un fragmento en una línea celular CHO que comprende introducir material genético que codifica bikunina o un fragmento de la misma en una línea celular CHO que muestra una expresión mejorada de la proteína chaperona.
 - 67. El método según la realización 66, en el que la línea celular CHO se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
- 68. Un método para mejorar el rendimiento de un Factor VIII recombinante o de un fragmento del mismo en una línea celular BHK que comprende introducir material genético que codifica tal Factor VIII o un fragmento del mismo en una línea celular BHK que muestra una expresión mejorada de la proteína chaperona.
 - 69. El método según la realización 68, en el que la línea celular BHK se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
- 70. Un método para mejorar el rendimiento de una IL2SA recombinante o de un fragmento de la misma en una línea celular CHO que comprende introducir material genético que codifica tal IL2SA en una línea celular CHO que muestra una expresión mejorada de la proteína chaperona.
 - 71. El método según la realización 70, en el que la línea celular CHO se transforma además con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.

LISTA DE SECUENCIAS

```
<110> Chan, Sham-Yuen Tang, Hsinyi Y Tao, Yiwen Wu, Yongjian Kelly, Ruth
      <120> Uso de chaperonas moleculares para aumentar la producción de proteínas recombinantes secretadas en
 5
      células de mamífero
      <130> 03-302-A
      <140> 10/792,571
      <141> 04-03-2004
10
      <150> 60/483,505
      <151> 27-06-2003
15
      <160> 22
      <170> PatentIn versión 3.3
      <210> 1
20
      <211> 28
      <212> ADN
      <213> Secuencia Artificial
      <220>
25
      <223> oligonucleótido sintético
                                                        28
      atgaattccg ggaggctaga gatcatgg
30
      <210> 2
      <211> 28
      <212> ADN
      <213> Secuencia Artificial
35
      <220>
      <223> oligonucleótido sintético
      <400> 2
                                                        28
      attctagatg caggggagga gggagaag
40
      <210> 3
      <211> 28
      <212> ADN
      <213> Secuencia Artificial
45
      <220>
      <223> oligonucleótido sintético
      <400> 3
50
      atgaattccc gccatgctgc tatccgtg
                                                        28
      <210> 4
      <211> 28
      <212> ADN
55
      <213> Secuencia Artificial
      <220>
      <223> oligonucleótido sintético
60
      <400> 4
                                                        28
      attctagact ggaggcaggc ctctctac
      <210> 5
```

<211> 28

	<212> ADN <213> Secuencia Artificial		
5	<220> <223> oligonucleótido sintético		
	<400> 5 atgaatteet eegeagteee ageegage	28	
10	<210> 6 <211> 28 <212> ADN <213> Secuencia Artificial		
15	<220> <223> oligonucleótido sintético		
20	<400> 6 attctagact ctcggccctg agaggtaa	28	
	<210> 7 <211> 1856 <212> ADN <213> Homo sapiens		
25	<220>		
	<221> CDS <222> (23)(1801)		
30		g gaa ggg aag tgg ttg ctg tgt atg tta t Glu Gly Lys Trp Leu Leu Cys Met Leu 5 10	52
		gtt gag gct cat gat gga cat gat gat Val Glu Ala His Asp Gly His Asp Asp	100

				15					20				25			
											att Ile					148
											tct Ser 55					196
			-		_				_	_	ttt Phe	_	-		;	244
	_	_			_						aaa Lys	_				292
_	_		-	_	_		_			_	 aag Lys			_	;	340
	_	_	_			_				_	gga Gly			_	;	388
											ctg Leu 135				•	436
	_		-		_				_		gag Glu	-			•	484
_											ctg Leu					532
											acc Thr				į	580
			-	Pro						-	aaa Lys	_			6	528
		_						_			gaa Glu 215	_			(576
	_										act Thr	-			7	724
							_			_	agt Ser		-		-	772

235	240	245		250
ctg gtt gac caa Leu Val Asp Gln				
act cct cct gta of Thr Pro Pro Pro 270				
aag ccc gag gat Lys Pro Glu Asp ' 285	Trp Asp Glu A	-	-	_
gtc aag cca gat (Val Lys Pro Asp 2 300		_ _	-	-
gaa gag gcc aca a Glu Glu Ala Thr 1 315				
gta cct gat cca (Val Pro Asp Pro	•			
gat gga gaa tgg (Asp Gly Glu Trp (350				
gct cct gga tgt (Ala Pro Gly Cys (365	Gly Val Trp Gl		-	
tat aaa ggc aaa 1 Tyr Lys Gly Lys 5 380	-			
gga atc tgg aaa o Gly Ile Trp Lys 1 395				_
ctg gaa cct ttc a				
tgg tcc atg acc t Trp Ser Met Thr S 430				
gat cga aga ata g Asp Arg Arg Ile V 445	/al Asp Asp Tr			
aaa gct gct gat g Lys Ala Ala Asp G				

460	465	470	
gag gca gct gaa gag cg Glu Ala Ala Glu Glu Ar 475 48	g Pro Trp Leu Trp Val	•	1492
gta gcc ctt cct gtg tt. Val Ala Leu Pro Val Ph 495			1540
aaa cag acc agt ggt at Lys Gln Thr Ser Gly Me 510			1588
gat gtg aag gaa gag ga Asp Val Lys Glu Glu Gl 525			1636
gat gag gag gag gaa gg Asp Glu Glu Glu Glu 540			1684
gat gct gaa gaa gat gg Asp Ala Glu Glu Asp Gly 555 56	Gly Thr Val Ser Gln		1732
aaa cct aaa gca gag gag Lys Pro Lys Ala Glu Glu 575			1780
aga aag cca cga aga gaq Arg Lys Pro Arg Arg Glo 590		ettgat etgtgattte	1831
ttotccctcc tcccctgcat o	ctaga		1856
<210> 8 <211> 592 <212> PRT <213> Homo sapiens			
<400>8 Met Glu Gly Lys Trp 1 5	Leu Leu Cys Met Leu 10	Leu Val Leu Gly Thr 15	Ala
Ile Val Glu Ala His 20	Asp Gly His Asp Asp 25	Asp Val Ile Asp Ile 30	Glu
Asp Asp Leu Asp Asp 35	Val Ile Glu Glu Val 40	Glu Asp Ser Lys Pro 45	Asp

Thr	Thr 50	Ala	Pro	Pro	Ser	Ser 55	Pro	Lys	Val	Thr	Туr 60	Lys	Ala	Pro	Val
Pro 65	Thr	Gly	Glu	Val	Tyr 70	Phe	Ala	Asp	Ser	Phe 75	Asp	Arg	Gly	Thr	Leu 80
Ser	Gly	Trp	Ile	Leu 85	Ser	Lys	Ala	Lys	Lys 90	Asp	Asp	Thr	Asp	Asp 95	Glu
Ile	Ala	Lys	Тут 100	Asp	Gly	Lys	Trp	Glu 105	Val	Glu	Glu	Met	Lys 110	Glu	Ser
Lys	Leu	Pro 115	Gly	Asp	Lys	Gly	Leu 120	Val	Leu	Met	Ser	Arg 125	Ala	Lys	His
His	Ala 130	Ile	Ser	Ala	Lys	Leu 135	Asn	Lys	Pro	Phe	Leu 140	Phe	Asp	Thr	Lys
Pro 14 5	Leu	Ile	Val	Gln	Туг 150	Glu	Val	Asn	Phe	Gln 155	Asn	Gly	Ile	Glu	Суs 160
Gly	Gly	Ala	Tyr	Val 165	Lys	Leu	Leu	Ser	Lys 170	Thr	Pro	Glu	Leu	Asn 175	Leu
Asp	Gln	Phe	His 180	Asp	Lys	Thr	Pro	Туг 185	Thr	Ile	Met	Phe	Gly 190	Pro	Asp
Lys	Cys	Gly 195	Glu	Asp	Туr	Lys	Leu 200	His	Phe	Ile	Phe	Arg 205	His	Lys	Asn
Pro	Lys 210	Thr	Gly	Ile	туг	Glu 215	Glu	Lys	His	Ala	Lys 220	Arg	Pro	Asp	Ala
Asp 225	Leu	Lys	Thr	Tyr	Phe 230	Thr	Asp	Lys	Lys	Thr 235	His	Leu	Tyr	Thr	Leu 240
Ile	Leu	Asn	Pro	Asp 245	Asn	Ser	Phe	Glu	Ile 250	Leu	Val	Asp	Gln	Ser 255	Val
Val	Asn	Ser	Gly 260	Asn	Leu	Leu	Asn	Asp 265	Met	Thr	Pro	Pro	Val 270	Asn	Pro

Ser	Arg	Glu 275	Ile	Glu	Asp	Pro	Glu 280	Asp	Arg	Lys	Pro	Glu 285	Asp	Trp	Asp
Glu	Arg 290	Pro	Lys	Ile	Pro	Asp 295	Pro	Glu	Ala	Val	Lys 300	Pro	qsA	Asp	Trp
Asp 305	Glu	Asp	Ala	Pro	Ala 310	Lys	Ile	Pro	Asp	Glu 315	Glu	Ala	Thr	Lys	Pro 320
Glu	Gly	Trp	Leu	Asp 325	Asp	Glu	Pro	Glu	Туr 330	Val	Pro	Asp	Pro	Asp 335	Ala
Glu	Lys	Pro	Glu 340	Asp	Trp	Asp	Glu	Asp 345	Met	Asp	Gly	Glu	Trp 350	Glu	Ala
Pro	Gln	Ile 355	Ala	Asn	Pro	Arg	Cys 360	Glu	Ser	Ala	Pro	Gly 365	Cys	Gly	Val
Trp	Gln 370	Arg	Pro	Val	Ile	Asp 375	Asn	Pro	Asn	Tyr	Lys 380	Gly	Lys	Trp	Lys
Pro 385	Pro	Met	Ile	Asp	Asn 390	Pro	Ser	Tyr	Gln	Gly 395	Ile	Trp	Lys	Pro	Arg 400
Lys	Ile	Pro	Asn	Pro 405	Asp	Phe	Phe	Glu	Asp 410	Leu	Glu	Pro	Phe	Arg 415	Met
Thr	Pro	Phe	Ser 420	Ala	Ile	G1y	Leu	Glu 425	Leu	Trp	Ser	Met	Thr 430	Ser	Asp
Ile	Phe	Phe 435	Asp	Asn	Phe	Ile	Ile 440	Суѕ	Ala	Asp	Arg	Arg 445	Ile	Val	Asp
Asp	Trp 450	Ala	Asn	Asp	Gly	Trp 455	Gly	Leu	Lys		Ala 460	Ala	Asp	Gly	Ala
Ala 465	Glu	Pro	Gly	Val	Val 470	Gly	Gln	Met	Ile	Glu 475	Ala	Ala	Glu	Glu	Arg 480
Pro	Trp	Leu	Trp	Va1 485	Val	Tyr	Ile	Leu	Thr 490	Val	Ala	Leu	Pro	Va1 495	Phe

	Val	lle	Le u 500	Pne	Cys	Cys	Ser	Gly 505		Lys	Gln	Thr	Ser 510		Met	
Glu	Tyr	Lys 515		Thr	Asp	Ala	Pro 520		Pro	Asp	Val	Lys 525	Glu	Glu	Glu	
Glu	Glu 530	Lys	Glu	Glu	Glu	Lys 535		Lys	Gly	Asp	Glu 540	Glu	Glu	Glu	Gly	
Glu 545	Glu	Lys	Leu	Glu	Glu 550	Lys	Gln	Lys	Ser	Asp 555	Ala	Glu	Glu	Asp	Gly 560	
Gly	Thr	Val	Ser	Gln 565	Glu	Glu	Glu	Asp	Arg 570		Pro	Lys	Ala	Glu 575	Glu	
Asp	Glu	Ile	Leu 580	Asn	Arg	Ser	Pro	Arg 585		Arg	Lys	Pro	Arg 590	Arg	Glu	
<212	> 9 > 1287 > ADN > Hom		ens													
	> > CDS > (12).		5)													
<400	-															
gaat	tccc	ge c								ctg Leu	Leu					50
ctg	gcc	gtc	Met 1 gcc	Lev gag	cct Pro	Ser gcc	Val 5 gtc	Pro tac	Leu ttc	Leu aag g Lys (Leu jag c	Gly 10 ag t	Leu tt c	Leu tg g	Gly jac	50 98
ctg Leu gga	gcc Ala 15	gtc Val ggg	Met 1 gcc Ala tgg	gag Glu act	cct Pro tcc	Ser gcc Ala 20 cgc	Val 5 gtc Val	Pro tac Tyr :	Leu ttc Phe gaa Glu	Leu aag g Lys (Leu gag c Glu G 25	Gly 10 ag t ln P	Leu tt c he L ag t	Leu tg g eu A	Gly sac ssp	
ctg Leu gga Gly 30	gcc Ala 15 gac Asp	gtc Val ggg Gly	Met 1 gcc Ala tgg Trp	gag Glu act Thr	cct Pro tcc Ser 35	gcc Ala 20 cgc Arg	Val 5 gtc Val tgg Trp	Pro tac Tyr atc Gle Gly	Leu ttc Phe gaa Glu	Leu aag g Lys (2 tcc a Ser I	Jag c Glu G 25 aaa c Lys H	Gly 10 ag t ln P ac a is L	tt che Lag tys Sac g	Leu tg g eu A ca g er A	Gly Jac Jac Jac Jat Jap Jac Jac Jac Jac Jac Jac Jac	98
ctg Leu gga Gly 30 ttt Phe	gcc Ala 15 gac Asp ggc Gly	gtc Val ggg Gly aaa Lys	Met 1 gcc Ala tgg Trp ttc Phe	gag Glu act Thr gtt Val 50	cct Pro tcc Ser 35 ctc Leu	gcc Ala 20 cgc Arg agt Ser	Val 5 gtc Val tgg Trp tcc ser	tac Tyr: atc: Ile: ggc: Gly:	ttc Phe gaa Glu aag Lys	aag c Lys (tcc a Ser I 40	Jag column Galler Grand Galler Galle	Gly 10 ag t ln P ac a is L gt g ly A	tt che Lag tys Sac gsp 6	tg gen Aca gen	Gly gac asp gat asp gat asp gat sp	98 146

Ser	Ala	Ser 80	Phe	Glu	Pro	Phe	Ser 85	Asn	Lys	Gly	Gln	Thr 90	Leu	Val	Val		
-					cat His					-	_					3	338
	_	-			aat Asn 115	-	_	_	_		_	_			-	3	386
					atg Met											4	434
_	_	_		-	atc Ile				_							4	182
	_	_		_	tgc Cys	_	_	_					_			5	530
_					gac Asp						_		_		_	Ş	578
_					tcc Ser 195	_	_	-	_		_		_			. €	526
_	_		_	-	cct Pro	_	_			_	_	_		-		6	574
					gat Asp											7	722
_					cct Pro	_		_	-	_	_			_		7	770
_	_		_	_	gga Gly			_					_			8	318
				-	tgg Trp 275	_			_		-			_		8	366
_					cac His		_		_							9	14
gat	ccc	agt	atc	tat	gcc	tat	gat	aac	ttt	ggc	gtg	ctg	ggc	ctg	gac	9	62

qzA	Pro	Ser	Ile 305	Tyr	Ala	Tyr	Asp	Asn 310	Phe	Gly	Val	Leu	Gly 315	Leu	As	р	
								atc Ile									1010
								ttt Phe									1058
								aag Lys								n	1106
								aag Lys									1154
gca Ala	gag Glu	gac Asp	aag Lys 385	gag Glu	gat Asp	gat Asp	gag Glu	gac Asp 390	aaa Lys	gat Asp	gag Glu	gat Asp	gag Glu 395	gag Glu	ga As	t p	1202
gag Glu	gag Glu	gac Asp 400	aag Lys	gag Glu	gaa Glu	gat Asp	gag Glu 405	gag Glu	gaa Glu	gat Asp	gtc Val	ccc Pro 410	ggc Gly	cag Gln	gc Al	C a	1250
	gac Asp 415			tag	agaq	ggec1	i g c (ctcca	agtct	a ga	3						1287
			iens														
<400 Met 1		ı Le	u Se	er Va 5	al P	ro I	ieu	Leu	Leu	Gly 10	Leu	ı Le	u Gl	у L	eu	Ala 15	Val
Ala	Glu	ı Pro	o Al 20		al T	yr E	Phe	Lys	Glu 25	Gln	Phe	. Le	u As	p G 3	_	Asp	Gly
Trp	Thr	: Se: 35	r Ar	g T	rp I	le (Ser 40	Lys	His	Lys	s Se:	r As 45		he	Gly	Lys
Phe	Val 50	. Le	u Se	er So	er G		ys 55	Phe	Tyr	Gly	Asp	Gl1 60	u G1	u L	ys	Asp	L y s
Gly	Lev	ı Glı	n Th	ır Se	er G	ln A	qz	Ala	Arg	Phe	Туг	Ala	a Le	eu S	er	Ala	Ser

65					70					75					80
Phe	Glu	Pro	Phe	Ser 85	Asn	Lys	Gly	Gln	Thr 90	Leu	Val	Val	Gln	Phe 95	Thr
Val	Lys	His	Glu 100	Gln	Asn	Ile	Asp	Cys 105	Gly	Gly	Gly	Tyr	Val 110	Lys	Leu
Phe	Pro	Asn 115	Ser	Leu	Asp	Gln	Thr 120	Asp	Met	His	Gly	Asp 125	Ser	Glu	Туr
Asn	Ile 130	Met	Phe	Gly	Pro	Asp 135	Ile	Cys	Gly	Pro	Gly 140	Thr	Lys	Lys	Val
His 145	Val	Ile	Phe	Asn	Tyr 150	Lys	Gly	Lys	Asn	Val 155	Leu	Ile	, Asn	Lys	Asp 160
Ile	Arg	Cys	Lys	Asp 165	Asp	Glu	Phe	Thr	His 170	Leu	туr	Thr	Leu	Ile 175	Val
Arg	Pro	Asp	Asn 180	Thr	туг	Glu	Val	Lys 185	Ile	Asp	Asn	Ser	Gln 190	Val	Glu
Ser	Gly	Ser 195	Leu	Glu	Asp	Asp	Trp 200	Asp	Phe	Leu	Pro	Pro 205	Lys	Lys	Ile
Lys	Asp 210	Pro	Asp	Ala	Ser	Lys 215	Pro	G1u	Asp	Trp	Asp 220	Glu	Arg	Ala	Lys
Ile 225	Asp	Asp	Pro	Thr	Asp 230	Ser	Lys	Pro	Gl u	Asp 235	Trp	Asp	Lys	Pro	Glu 240
His	Ile	Pro	Asp	Pro 245	Asp	Ala	Lys	Lys	Pro 250	Glu	Asp	Trp	Asp	Glu 255	Glu
Met	Asp	Gly	Glu 260	Trp	Glu	Pro	Pro	Val 265	Ile	Gln	Asn	Pro	Glu 270	Tyr	Lys
Gly	Glu	Trp 275	Lys	Pro	Arg	Gln	Ile 280	Asp	Asn	Pro	Asp	Tyr 285	Lys	Gly	Thr
Trp	Ile	His	Pro	Glu	Ile	Asp	Asn	Pro	Glu	Туr	Ser	Pro	Asp	Pro	Ser

	290					295					300					
Ile 305	Tyr	Ala	Tyr	Asp	Asn 310	Phe	Gly	Val	Leu	Gly 315	Leu	Asp	Leu	Trp	Gln 320	
Val	Lys	Ser	Gly	Thr 325	Ile	Phe	Asp	Asn	Phe 330	Leu	Ile	Thr	Asn	Asp 335	Glu	
Ala	Tyr	Ala	Glu 340	Glu	Phe	Gly	Asn	Glu 345	Thr	Trp	Gly	Val	Thr 350	Lys	Ala	
Ala	Gl u	Lys 355	Gln	Met	Lys	Asp	Lys 360	G1n	Asp	Glu	Glu	Gln 365	Arg	Leu	Lys	
Glu	Glu 370	Glu	Glu	Asp	Lys	Lys 375	Arg	Lys	Glu	Glu	Glu 380	Glu	Ala	Glu	Asp	
Lys 385	Glu	Asp	Asp	Glu	Asp 390	Lys	Asp	Glu	Asp	Glu 395	Glu	Asp	Glu	Glu	Asp 400	
Lys	Glu	Glu	Asp	Glu 405	Glu	Glu	Asp	Val	Pro 410	Gly	Gln	Ala	Lys	Asp 415	Glu	
Leu																
<212	> 1696 > ADN		iens													
	> CDS	; .(1582	2)													
<400 gaat		cc g	cagt	.ccca	g cc	gagc	cgcg	acco	ettec	gg c	cgtc	ccca	c cc	cacc	tcgc	60
cgcd				cgc Arg										Leu 1		109
				cgc Arg 20				Ala S						eu T		157

									gac Asp							205
-		_				_			tgt Cys							253
									aga Arg							301
									act Thr							349
									ata Ile 105							397
Ala	Gly	Ala	Tyr 115	Asp	Gly	Pro	Arg	Thr 120	gct Ala	Asp	Gly	Ile	Val 125	Ser	His	445
Leu	Lys	Lys 130	Gln	Ala	Gly	Pro	Ala 135	Ser	gtg Val	Pro	Leu	Arg 140	Thr	Glu	Glu	493
Glu	Phe 145	Lys	Lys	Phe	Ile	Ser 150	Asp	Lys	gat Asp	Ala	Ser 155	Ile	Val	Gly	Phe	541
									tcc Ser							589
									gca Ala 185							637
Leu	Val	Asn	Glu 195	Tyr	Asp	Asp	Asn	Gly 200	gag Glu	Gly	Ile	Ile	Leu 205	Phe	Arg	685
									gac Asp							733
									aaa Lys							781
att Ile	ttt	ggt	atc	tgc	cct	cac	atg	aca	gaa	gac	aat	aaa	gat	ttg	ata	829

_		_	_							-	gtg Val	-				877
	_										gta Val					925
_			_	_							ttt Phe	_	-	-	_	973
_				_		-			_		ggc Gly 315	_		_		1021
-					_	_	_		_		gct Ala				_	1069
											aag Lys					1117
	_	_	-			-			_	_	aga Arg		_	_		1165
_					_		_				aag Lys	_	_	-	_	1213
			_	_					_		aaa Lys 395	-		_		1261
_			_			_			_	_	aac Asn	_			_	1309
											cca Pro					1357
											tct Ser					1405
_										_	aac Asn	_	_			1453
											gat Asp 475					1501
	caa					aac					caa Gln			Lys		1549
		aag Lys								taa	agca	gtag	cc a	aaca	ccact	1602
ttgi	caaaa	agg a	ctct	tcca	ıt ca	gaga	tggg	r aaa	acca	ttg	ggga	ggac	ta g	gacc	catat	1662
ggga	aatta	att a	cctc	tcag	la ac	cgag	agto	tag	ra							1696
<210	> 12															

<210> 12 <211> 505

<212><213>			iens												
<400> Met 1		Leu	Arg	Arg 5	Leu	Ala	Leu	Phe	Pro 10	Gly	Val	Ala	Leu	Leu 15	Leu
Ala	Ala	Ala	Arg 20	Leu	Ala	Ala	Ala	Ser 25	Asp	Val	Leu	Glu	Leu 30	Thr	Asp
qsA	Asn	Phe 35	Glu	Ser	Arg	Ile	Ser 40	Asp	Thr	Gly	Ser	Ala 45	Gly	Leu	Met
Leu	Val 50	Glu	Phe	Phe	Ala	Pro 55	Trp	Cys	Gly	His	Суs 60	Lys	Arg	Leu	Ala
Pro 65	Glu	Туr	Glu	Ala	Ala 70	Ala	Thr	Arg	Leu	Lys 75	Gly	Ile	Val	Pro	Leu 80
Ala	Lys	Val	Asp	Cys 85	Thr	Ala	Asn	Thr	Asn 90	Thr	Суѕ	Asn	Lys	Туr 95	Gly
Val	Ser	Gly	Туг 100	Pro	Thr	Leu	Lys	Ile 105	Phe	Arg	Asp	Gly	Glu 110	Glu	Ala
Gly	Ala	Tyr 115	Asp	Gly	Pro	Arg	Thr 120	Ala	Asp	Gly	Ile	Val 125	Ser	His	Leu
Lys	Lys 130	Gln	Ala	Gly	Pro	Ala 135	Ser	Val	Pro	Leu	Arg 140	Thr	Glu	Glu	Glu

Phe 145	Lys	Lys	Phe	Ile	Ser 150	Asp	Lys	Asp	Ala	Ser 155	Ile	Va1	Gly	Phe	Phe 160
Asp	Asp	Ser	Phe	Ser 165	Glu	Ala	His	Ser	Glu 170	Phe	Leu	Lys	Ala	Ala 175	Ser
Asn	Leu	Arg	Asp 180	Asn	Tyr	Arg	Phe	Ala 185	His	Thr	Asn	Val	Glu 190	Ser	Leu
Val	Asn	Glu 195	Tyr	Asp	Asp	Asn	Gly 200	Glu	Gly	Ile	Ile	Leu 205	Phe	Arg	Pro
Ser	His 210	Leu	Thr	Asn	Lys	Phe 215	Glu	Asp	Lys	Thr	Val 220	Ala	Tyr	Thr	Glu
Gln 225	Lys	Met	Thr	Ser	Gly 230	Lys	Ile	Lys	Lys	Phe 235	Ile	Gln	Glu	Asn	Ile 240
Phe	Gly	Ile	Cys	Pro 245	His	Met	Thr	Glu	Asp 250	Asn	Lys	Asp	Leu	Ile 255	Gln
Gly	Lys	Asp	Leu 260	Leu	Ile	Ala	Tyr	Туг 265	Asp	Val	Asp	Tyr	Glu 270	Lys	Asn
Ala	Lys	Gly 275	Ser	Asn	Tyr	Trp	Arg 280	Asn	Arg	Val	Met	Met 285	Val	Ala	Lys
Lys	Phe 290	Leu	Asp	Ala	Gly	His 295	Lys	Leu	Asn	Phe	Ala 300	Val	Ala	Ser	Arg
Lys 305	Thr	Phe	Ser	His	Glu 310	Leu	Ser	Asp	Phe	Gly 315	Leu	Glu	Ser	Thr	Ala 320
Gly	Glu	Ile	Pro	Val 325	Val	Ala	Ile	Arg	Thr 330	Ala	Lys	G1y	Glu	Lys 335	Phe
Val	Met	Gln	Glu 340	Glu	Phe	Ser	Arg	Asp 345	Gly	Lys	Ala	Leu	Glu 350	Arg	Phe
Leu	Gln	Asp 355	Tyr	Phe	Asp	Gly	Asn 360	Leu	Lys	Arg	Tyr	Leu 365	Lys	Ser	G1u

Pro	Ile 370	Pro	Glu	Ser	Asn	Asp 375	Gly	Pro	Val	Lys	Val 380	Val	Val	Ala	Glu	
Asn 385	Phe	Asp	Glu	Ile	Val 390	Asn	Asn	Glu	Asn	Lys 395	Asp	Val	Leu	Ile	Glu 400	
Phe	Tyr	Ala	Pro	Trp 405	Cys	Gly	His	Суѕ	Lys 410	Asn	Leu	Glu	Pro	Lys 415	Tyr	
Lys	Glu	Leu	Gly 420	Glu	Lys	Leu	Ser	Lys 425	Asp	Pro	Asn	Ile	Val 430	Ile	Ala	
Lys	Met	Asp 435	Ala	Thr	Ala	Asn	Asp 440	Val	Pro	Ser	Pro	Туг 445	Glu	Val	Arg	
Gly	Phe 450	Pro	Thr	Ile	Tyr	Phe 455	Ser	Pro	Ala	Asn	Lys 460	L ys	Leu	Aşn	Pro	
Lys 465	Lys	Tyr	Glu	Gly	Gly 470	Arg	Glu	Leu	Ser	Asp 475	Phe	Ile	Ser	Tyr	Leu 480	
Gln	Arg	Glu	Ala	Thr 485	Asn	Pro	Pro	Val	Ile 490	Gln	Glu	Glu	Lys	Pro 495	Lys	
Lys	Lys	Lys	Lуs 500	Ala	Gln	Glu	Asp	Leu 505								
<210> <211> <212> <213>	> 1926 > ADN	I	iens													
<220> <221> <222>	> CDS)													
	gcc							atc Ile								48
								aag Lys 25								96
cag	ggc	aac	cgc	acc	acc	ccc	agc	tac	gtg	gcc	ttc	acg	gac	acc	gag	144

Gln	Gly	Asn 35	Arg	Thr	Thr	Pro	Ser 40	Tyr	Val	Ala	Phe	Thr 45	Asp	Thr	Glu		
										gtg Val						•	192
										ggc Gly 75		_				:	240
_				-	_	-	-			cct Pro		_				:	288
_		_	-		_		_		_	tac Tyr	_		-			:	336
_							_		_	gtg Val	-		_	_	-	:	384
		•				_			-	gtg Val						•	432
										cgc Arg 155						4	480
									_	cgg Arg						;	528
_	-	-	-		-			-	-	aga Arg	_						576
						-	_			ggc			_			•	624
										gtg Val						6	572
										aac Asn 235						7	720
										aag Lys						7	768
aag	cga	gcc	gtg	agg	cgg	ctg	cgc	acc	gcc	tgc	gag	agg	gcc	aag	agg	8	316

Lys	Arg	Ala	Val 260	Arg	Arg	Leu	Arg	Thr 265	Ala	Cys	Glu	Arg	Ala 270	Lys	Arg	
	_	_		_	acc Thr	_	_	-	_			_				864
			_		tac Tyr	_					-					912
_	Cys		-	_	ttc Phe 310	_	-		-						_	960
_	_	-	_	_	ctg Leu	_	_	_	_			-	_		_	1008
					cgc Arg											1056
			~ ~ ~	_	gac Asp	_		_	_				_	-	_	1104
					gcg Ala				_		-	_				1152
					gac Asp 390											1200
					gcc Ala		-		_			-				1248
					acc Thr	_	•		_							1296
_					gtg Val	_			-						-	1344
					aat Asn											1392
					ggc Gly 470											1440
gat	gcc	aac	ggc	atc	ctg	aac	gtc	acg	gcc	acg	gac	aag	agc	acc	ggc	1488

Asp	Ala	Asn	Gly	Ile 485	Leu	Asn	Val	Thr	Ala 490	Thr	Asp	Lys	Ser	Thr 495	Gly	
_	_		_						_	_	ggc Gly	-	_	_	_	1536
			-	_	_		_				aag Lys			_	-	1584
_			_	_					_	_	aac Asn 540	_	_			1632
	_			_	_	_	_			_	gag Glu			_		1680
											gac Asp					1728
_		_		_	-	_			_	_	gag Glu	_	_	-		1776
		_		-		_		-		-	aac Asn				_	1824
	_		_		_						ggg Gly 620				_	1872
_			_								acc Thr				-	1920
gat Asp	tag															1926
<210><211><211><212><213>	> 641 > PRT		iens													
<400> Met		ı Ly	s Al	.a A	la 2	Ala	Ile	Gly	Ile	9 As	-	eu G	ly '	Fhr	Thr	Tyr Ser

Cys Val Gly Val Phe Gln His Gly Lys Val Glu Ile Ile Ala Asn Asp

			20					25					30		
Gln	Gly	Asn 35	Arg	Thr	Thr	Pro	Ser 40	Tyr	Val	Ala	Phe	Thr 45	Asp	Thr	Glu
Arg	Leu 50	Ile	Gly	Asp	Ala	Ala 55	Lys	Asn	Gln	Val	Ala 60	Leu	Asn	Pro	Glr
Asn 65	Thr	Val	Phe	Asp	Ala 70	Lys	Arg	Leu	Ile	Gly 75	Arg	Lys	Phe	Gly	Asp 80
Pro	Val	Val	Gln	Ser 85	Asp	Met	Lys	His	Trp 90	Pro	Phe	Gln	Val	Ile 95	Asr
Asp	Gly	Asp	Lys 100	Pro	Lys	Val	Gln	Val 105	Ser	Tyr	Lys	Gly	Glu 110	Thr	Lys
Ala	Phe	Tyr 115	Pro	Glu	Glu	Ile	Ser 120	Ser	Met	Val	Leu	Thr 125	Lys	Met	Lys
Glu	Ile 130	Ala	Glu	Ala	Tyr	Leu 135	Gly	Tyr	Pro	Val	Thr 140	Asn	Ala	Val	Ile
Thr 145	Val	Pro	Ala	Tyr	Phe 150	Asn	Asp	Ser	Gln	Arg 155	Gln	Ala	Thr	Lys	Asp 160
Ala	Gly	Val	Ile	Ala 165	Gly	Leu	Asn	Val	Leu 170	Arg	Ile	Ile	Asn	Glu 175	Pro
Thr	Ala	Ala	Ala 180	Ile	Ala	Tyr	Gly	Leu 185	Asp	Arg	Thr	Gly	Lys 190	Gly	Glu
Arg	Asn	Val 195	Leu	Ile	Phe	Asp	Leu 200	Gly	Gly	Gly	Thr	Phe 205	Asp	Val	Ser
Ile	Leu 210	Thr	Ile	Asp	Asp	Gly 215	Ile	Phe	Glu	Val	Lys 220	Ala	Thr	Ala	Gly
Asp 225	Thr	His	Leu	Gly	Gly 230	Glu	Asp	Phe	Asp	Asn 235	Arg	Leu	Val	Asn	His 240
Phe	Val	Glu	Glu	Phe	Lys	Arg	Lys	His	Lys	Lys	Asp	Ile	Ser	Gln	Asn

				245					250					255	
Lys	Arg	Ala	Val 260	Arg	Arg	Leu	Arg	Thr 265	Ala	Суз	Glu	Arg	Ala 270	Lys	Arg
Thr	Leu	Ser 275	Ser	Ser	Thr	Gln	Ala 280	Ser	Leu	Glu	Ile	Asp 285	Ser	Leu	Phe
Glu	Gly 290	Ile	Asp	Phe	Tyr	Thr 295	Ser	Ile	Thr	Arg	Ala 300	Arg	Phe	Glu	Glu
Leu 305	Cys	Ser	Asp	Leu	Phe 310	Arg	Ser	Thr	Leu	Glu 315	Pro	Val	Glu	Lys	Ala 320
Leu	Arg	Asp	Ala	Lys 325	Leu	Asp	Lys	Ala	Gln 330	Ile	His	Asp	Leu	Val 335	Leu
Val	Gly	Gly	Ser 340	Thr	Arg	Ile	Pro	Lys 345	Va1	Gln	Lys	Leu	Leu 350	Gln	Asp
Phe	Phe	Asn 355	Gly	Arg	Asp	Leu	Asn 360	Lys	Ser	Ile	Asn	Pro 365	Asp	Glu	Ala
Val	Ala 370	Tyr	Gly	Ala	Ala	Val 375	Gln	Ala	Ala	Ile	Leu 380	Met	Gly	Asp	Lys
Ser 385	Glu	Asn	Val	Gln	Asp 390	Leu	Leu	Leu	Leu	Asp 395	Val	Ala	Pro	Leu	Ser 400
Leu	Gly	Leu	Glu	Thr 405	Ala	Gly	Gly	Val	Met 410	Thr	Ala	Leu	Ile	Lys 415	Arg
Asn	Ser	Thr	Ile 420	Pro	Thr	Lys	Gln	Thr 425	Gln	Ile	Phe	Thr	Thr 430	Туг	Ser
Asp	Asn	Gln 435	Pro	Gly	Val	Leu	Ile 440	Gln	Val	Tyr	G1u	Gly 445	Glu	Arg	Ala
Met	Thr 450	Lys	Asp	Asn	Asn	Leu 455	Leu	Gly	Arg	Phe	Glu 460	Leu	Ser	Gly	Ile
Pro	Pro	Ala	Pro	Arg	Gly	Val	Pro	Gln	Ile	Glu	Val	Thr	Phe	Asp	Ile

465					470					475					480
Asp	Ala	Asn	Gly	Ile 485	Leu	Asn	Val	Thr	Ala 490	Thr	Asp	Lys	Ser	Thr 495	Gly
Lys	Ala	Asn	Lys 500	Ile	Thr	Ile	Thr	Asn 505	Asp	Lys	Gly	Arg	Leu 510	Ser	Lys
Glu	Glu	Ile 515	Glu	Arg	Met	Val	Gln 520	Glu	Ala	Glu	Lys	Туг 525	Lys	Ala	Glu
Asp	Glu 530	Val	Gln	Arg	Glu	Arg 535	Val	Ser	Ala	Lys	Asn 540	Ala	Leu	Glu	Ser
Tyr 545	Ala	Phe	Asn	Met	Lys 550	Ser	Ala	Val	Glu	Asp 555	Glu	Gly	Leu	Lys	Gly 560
Lys	Ile	Ser	Glu	Ala 565	Asp	Lys	Lys	Lys	Val 570	Leu	Asp	Lys	Cys	Gln 575	Glu
Val	Ile	Ser	Trp 580	Leu	Asp	Ala	Asn	Thr 585	Leu	Ala	Glu	Lys	Asp 590	Glu	Phe
Glu	His	Lys 595	Arg	Lys	Glu	Leu	Glu 600	Gln	Val	Cys	Asn	Pro 605	Ile	Ile	Ser
Gly	Le u 610	Туг	Gln	Gly	Ala	Gly 615	Glу	Pro	Gly	Pro	Gly 620	Gly	Phe	Gly	Ala
Gln 625	Gly	Pro	Lys	Gly	Gly 630	Ser	Gly	Ser	Gly	Pro 635	Thr	Ile	Glu	Glu	Val 640
Asp															
<212	> 1023 > ADN	-	iens												
	> CDS	S (1023))												
<400	> 15														

	ggt Gly															48
	gag Glu															96
	gac Asp															144
	gag Glu 50	-					_	_								192
	cgc Arg															240
_	ggc Gly			_						_						288
	cct Pro															336
	acc Thr															384
	cca Pro 130															432
	ttt Phe		-		-		-				_	_	_	_		480
-	Pro					-										528
Ser	ggc Gly	Cys	Thr 180	Lys	Lys	Met	ГÃЗ	Ile 185	Ser	His	Lys	Arg	Leu 190	Asn	Pro	576
Asp	gga Gly	Lys 195	Ser	Ile	Arg	Asn	Glu 200	Asp	Lys	Ile	Leu	Thr 205	Ile	Glu	Val	624
	aag Lys															672

210	2	215		220	
gac cag acc t Asp Gln Thr S 225		_	_		
gac aag ccc c Asp Lys Pro H				Ser Asp Val	
cct gcc agg a Pro Ala Arg I 2	_				= =
gtc ccc act c Val Pro Thr L 275			-	_	
atc agg cct g Ile Arg Pro G 290	Sly Met Arg A		Pro Gly	-	
ccc aaa aca c Pro Lys Thr P 305					
atc ttc ccc g Ile Phe Pro G		_	_	Thr Val Leu (= = -
gtt ctt cca a Val Leu Pro I 3	-				1023
<210> 16 <211> 340 <212> PRT <213> Homo sapie	ens				
<400> 16 Met Gly Lys 1	Asp Tyr Ty 5	r Gln Thr	Leu Gly	Leu Ala Ai	rg Gly Ala Ser 15
Asp Glu Glu	Ile Lys Ar 20	g Ala Tyr	Arg Arg 25	Gln Ala Le	eu Arg Tyr His 30
Pro Asp Lys 35	Asn Lys Gl	u Pro Gly 40	Ala Glu	Glu Lys Pl 45	ne Lys Glu Ile
Ala Glu Ala 50	Tyr Asp Va	al Leu Ser 55	Asp Pro	Arg Lys Ar 60	g Glu Ile Phe

Asp 65	Arg	Tyr	Gly	Glu	Glu 70	Gly	Leu	Lys	Gly	Ser 75	Gly	Pro	Ser	Gly	Gly 80
Ser	Gly	Gly	Gly	Ala 85	Asn	Gly	Thr	Ser	Phe 90	Ser	Tyr	Thr	Phe	His 95	Gly
Asp	Pro	His	Ala 100	Met	Phe	Ala	Glu	Phe 105	Phe	Gly	Gly	Arg	Asn 110	Pro	Phe
Asp	Thr	Phe 115	Phe	Gly	Gln	Arg	Asn 120	Gly	Glu	Glu	Gly	Met 125	Asp	Ile	Asp
Asp	Pro 130	Phe	Ser	Gly	Phe	Pro 135	Met	Gly	Met	Gly	Gly 140	Phe	Thr	Asn	Val
Asn 145	Phe	Gly	Arg	Ser	Arg 150	Ser	Ala	Gĺn	Glu	Pro 155	Ala	Arg	Lys	Lys	Gl n 160
Asp	Pro	Pro	Val	Thr 165	His	Asp	Leu	Arg	Va1 170	Ser	Leu	Glu	G1u	Ile 175	Туг
Ser	Gly	Cys	Thr 180	Lys	Lys	Met	Lys	Ile 185	Ser	His	Lys	Arg	Leu 190	Asn	Pro
Asp	Gly	Lys 195	Ser	Ile	Arg	Asn	Glu 200	Asp	Lys	Ile	Leu	Thr 205	Ile	Glu	Val
Lys	Lys 210	Gly	Trp	Lys	Glu	Gly 215	Thr	Lys	Ile	Thr	Phe 220	Pro	Lys	Glu	Gly
Asp 225	Gln	Thr	Ser	Asn	Asn 230	Ile	Pro	Ala	Asp	Ile 235	Val	Phe	Val	Leu	Lys 240
Asp	Lys	Pro	His	Asn 245	Ile	Phe	Lys	Arg	Asp 250	Gly	Ser	Asp	Val	Ile 255	Туr
Pro	Ala	Arg	Ile 260	Ser	Leu	Arg	Glu	Ala 265	Leu	Сув	Gly	Cys	Thr 270	Val	Asn
Val	Pro	Thr 275	Leu	Asp	Gly	Arg	Thr 280	Ile	Pro	Val	Val	Phe 285	Lys	Asp	Val

	Ile	Arg 290	Pro	Gly	Met	Arg	Arg 295	Lys	Val	Pro	Gly	Glu 300		' Let	ı Pr	o Leu	
	Pro 305	Lys	Thr	Pro	Glu	Lys 310	Arg	Gly	Asp	Leu	Ile 315		Glu	Phe	e Gli	u Val 320	
	Ile	Phe	Pro	Glu	Arg 325	Ile	Pro	Gln	Thr	Ser 330		Thr	Val	. Leu	33!	u Gln 5	
	Val	Leu	Pro	Ile 340													
5	<212	> 112: > ADN	_	oiens													
10	<220 <221 <222	> CDS)													
	_	acc			_	-				aat Asn 10				_	_		48
										gtc Val							96
										tgc Cys		Thr					144
	_			_	_		_		_	cct Pro	Glu				-		192
		_								aac Asn	-	-	_				240
										egt Arg 90							288
										cga Arg							336

_				_				_	_	_		_		cag Gln		384
				_		_					_			gat Asp		432
														ggt Gly		480
		_				-	-	-			_			atc Ile 175	_	528
	_				-	_	_		_		-	_		gcg Ala		576
		_		_	_					_		-		gga Gly		624
_	-			_	_		-					_	_	ttc Phe		672
														gat Asp		720
											_			aac Asn 255		768
		-	-	_	_						_			gag Glu		816
-					-	_			~				~	gcc Ala		864
														ttc Phe		912
_						_			_		_	_		cgt Arg	_	960
-			_					-			_	_	_	ggt Gly 335		1008
	-	_	_	cgc			_		tgc	-			-	gtg Val		1056
-	-			-	_	_				_			_	gag Glu		1104
			aaa Lys		taa											1122

<210><211><211><212><213>	373 PRT	sapie	ns												
<400> Met 1	-	Thr	Ser	Ala 5	Ser	Ser	His	Leu	Asn 10	Lys	Gly	Ile	Lys	Gln 15	Val
Tyr	Met	Ser	Leu 20	Pro	Gln	Gly	Glu	Lys 25	Val	Gln	Ala	Met	Tyr 30	Ile	Trp
Ile	Asp	Gly 35	Thr	Gly	Glu	Gly	Leu 40	Arg	Cys	Lys	Thr	Arg 45	Thr	Leu	Asp
Ser	Glu 50	Pro	Lys	Cys	Val	Glu 55	Glu	Leu	Pro	Glu	Trp 60	Asn	Phe	Asp	Gly
Ser 65	Ser	Thr	Leu	Gln	Ser 70	Gl u	Gly	Ser	Asn	Ser 75	Asp	Met	Tyr	Leu	Val 80
Pro	Ala	Ala	Met	Phe 85	Arg	Asp	Pro	Phe	Arg 90	Lys	Asp	Pro	Asn	Lys 95	Leu
Val	Leu	Суѕ	Glu 100	Val	Phe	Lys	Туr	Asn 105	Arg	Arg	Pro	Ala	Glu 110	Thr	Asn
Leu	Arg	His 115	Thr	Cys	Lys	Arg	Ile 120	Met	Asp	Met	Va1	Ser 125	Asn	G1n	His
Pro	Trp 130	Phe	Gly	Met	G1u	Gln 135	Glu	Tyr	Thr	Leu	Met 140	Gly	Thr	qaA	Gly

His 145	Pro	Phe	Gly	Trp	Pro 150	Ser	Asn	Gly	Phe	Pro 155	Gly	Pro	Gln	Gly	160
Tyr	Tyr	Суѕ	Gly	Va1 165	Gly	Ala	Asp	Arg	Ala 170	Tyr	Gly	Arg	Asp	Ile 175	Val
Glu	Ala	His	Tyr 180	Arg	Ala	Cys	Leu	Tyr 185	Ala	Gly	Val	Lys	Ile 190	Ala	Gly
Thr	Asn	Ala 195	Glu	Val	Met	Pro	Ala 200	Gln	Trp	Glu	Phe	Gln 205	Ile	Gly	Pro
Cys	Glu 210	Gly	Ile	Ser	Met	Gly 215	Asp	His	Leu	Trp	Val 220	Ala	Arg	Phe	Ile
Leu 225	His	Arg	Val	Cys	Glu 230	Asp	Phe	Gly	Val	Ile 235	Ala	Thr	Phe	Asp	Pro 240
Lys	Pro	Ile	Pro	Gly 245	Asn	Тrр	Asn	Gly	Ala 250	Gly	Cys	His	Thr	Asn 255	Phe
Ser	Thr	Lys	Ala 260	Met	Arg	Glu	Glu	Asn 265	Gly	Leu	Lys	Tyr	Ile 270	Glu	Glu
Ala	Ile	Glu 275	Lys	Leu	Ser	Lys	Arg 280	His	Gln	Tyr	His	Ile 285	Arg	Ala	Tyr
Asp	Pro 290	Lys	Gly	Gly	Leu	Asp 295	Asn	Ala	Arg	Arg	Leu 300	Thr	Gly	Phe	His
Glu 305	Thr	Ser	Asn	Ile	Asn 310	Asp	Phe	Ser	Ala	Gly 315	Val	Ala	Asn	Arg	Ser 320
Ala	Ser	Ile	Arg	Ile 325	Pro	Arg	Thr	Val	Gly 330	Gln	G lu	Lys	Lys	Gly 335	Tyr
Phe	Glu	Asp	Arg 340	Arg	Pro	Ser	Ala	Asn 345	Cys	Asp	Pro	Phe	Ser 350	Val	Thr
Glu	Ala	Leu 355	Ile	Arg	Thr	Cys	Leu 360	Leu	Asn	Glu	Thr	Gly 365	Asp	Glu	Pro
Phe	Gln 370		Lys	Asr	ı		500					505			
<210><211><211><212><213>	170 PRT	o sapie	ens												

	<400	> 19														
	Ala 1	Asp	Arg	Glu	Arg 5	Ser	Ile	His	Asp	Phe 10	Cys	Leu	Val	Ser	Lys 15	Val
	Val	Gly	Arg	Cys 20	Arg	Ala	Ser	Met	Pro 25	Arg	Trp	Trp	Tyr	Asn 30	Val	Thr
	Asp	Gly	Ser 35	Cys	Gln	Leu	Phe	Val 40	Tyr	Gly	Gly	Cys	Asp 45	Gly	Asn	Ser
	Asn	Asn 50	Туг	Leu	Thr	Lys	Glu 55	Glu	Cys	Leu	Lys	Lys 60	Cys	Ala	Thr	Val
	Thr 65	Glu	Asn	Ala	Thr	Gly 70	Asp	Leu	Ala	Thr	Ser 75	Arg	Asn	Ala	Ala	Asp 80
	Ser	Ser	Val	Pro	Ser 85	Ala	Pro	Arg	Arg	G1n 90	Asp	Ser	G1u	Asp	His 95	Ser
	Ser	Asp	Met	Phe 100	Asn	Tyr	Glu	Glu	Tyr 105	Cys	Thr	Ala	Asn	Ala 110	Val	Thr
	Gly	Pro	Cys 115	Arg	Ala	Ser	Phe	Pro 120	Arg	Trp	Tyr	Phe	Asp 125	Val	G1u	Arg
	Asn	Ser 130	Cys	Asn	Asn	Phe	11e 135	Туr	Gly	Gly	Cys	Arg 140	Gly	Asn	Lys	Asn
	Ser 145	Туr	Arg	Ser	Glu	Glu 150	Ala	Cys	Met	Leu	Arg 155	Cys	Phe	Arg	Gl n	Gln 160
	Glu	Asn	Pro	Pro	Leu 165	Pro	Leu	Gly	Ser	Lys 170						
5	<2102 <2112 <2122 <2132	> 20 > ADN	N uencia	a Artifi	icial											
10	<220 <223		onucle	ótido	sintét	ico										
	<400 aggga		c atgg	ccaaa	ag					20						
15	<2102 <2112 <2122 <2132	> 25 > ADN	N uencia	a Artifi	icial											
20	<220 <223		onucle	eótido	sintét	ico										
25	<400 gaaaq		c taato	ctacct	cctca			:	25							

```
<210> 22
      <211> 3
      <212> PRT
      <213> Secuencia Artificial
 5
      <220>
      <223> péptido sintético
      <220>
10
      <221> CARACTERÍSTICA MISCELÁNEA
     <222> (1)..(1)
<223> N-benzoilo
      <220>
      <221> CARACTERÍSTICA MISCELÁNEA
15
      <222> (3)..(3)
      <223> Xaa es Arg-pNA
      <400> 22
      Pro Phe Xaa
20
      1
```

REIVINDICACIONES

- 1. Una célula hospedadora CHO de mamífero para mejorar la expresión de una proteína bikunina recombinante, teniendo dicha célula CHO de mamífero material genético que codifica para la expresión de dicha proteína bikunina recombinante y estando transformada con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona Erp57.
- 2. Una célula hospedadora BHK de mamífero para mejorar la expresión de una proteína del Factor VIII recombinante, teniendo dicha célula BHK de mamífero material genético que codifica para la expresión de dicho Factor VIII recombinante y estando transformada con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona Erp57 y al menos un vector de expresión que comprende calreticulina.
- 10 3. La célula hospedadora de mamífero según la reivindicación 1 o la reivindicación 2, en la que la proteína recombinante es secretada.

5

- 4. La célula hospedadora de mamífero según la reivindicación 3, en la que el material genético que codifica para la expresión de dicha proteína recombinante está integrado en el ADN de la célula hospedadora.
- 5. La célula hospedadora de mamífero según la reivindicación 4, transformada adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 6. Un método para producir una célula hospedadora CHO de mamífero según la reivindicación 1, en donde el método comprende:

proporcionar una célula CHO de mamífero que tiene material genético que codifica para la expresión de una proteína bikunina recombinante; y

- transformar la célula CHO de mamífero con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona Erp57.
 - 7. Un método para producir una célula hospedadora BHK de mamífero según la reivindicación 2, en donde el método comprende:
- proporcionar una célula BHK de mamífero que tiene material genético que codifica para la expresión de una proteína del Factor VIII recombinante; y

transformar la célula de mamífero con al menos un vector de expresión que comprende ADN que codifica una proteína chaperona Erp57 y al menos un vector de expresión que comprende ADN que codifica la proteína chaperona calreticulina.

- 8. El método según la reivindicación 6 o la reivindicación 7, en el que el producto proteico recombinante es secretado.
 - 9. El método según la reivindicación 8, en el que el material genético que codifica para la expresión de dicho producto proteico recombinante está integrado en el ADN de la célula hospedadora.
 - 10. El método según una la reivindicación 6 o la reivindicación 7, transformado adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
- 35 11. Un método para producir un producto proteico recombinante secretado que comprende las etapas de:

cultivar una célula hospedadora de mamífero según la reivindicación 1 o la reivindicación 2; y

recuperar a partir del medio de cultivo la proteína recombinante producida y secretada de este modo.

- 12. El método según la reivindicación 11, en el que el material genético que codifica para la expresión de dicha proteína recombinante está integrado en el ADN de la célula hospedadora.
- 40 13. El método según la reivindicación 11, en el que dicha célula hospedadora de mamífero se transforma adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 14. Un método para mejorar el rendimiento de proteína bikunina recombinante, en el que el material genético que codifica para la expresión de dicha proteína recombinante se ha introducido previamente en la línea celular para formar la primera línea celular, comprendiendo dicho método las etapas de:
- insertar al menos un vector de expresión de proteína chaperona que comprende ADN que codifica la proteína chaperona Erp57 en dicha primera línea celular para formar de este modo una línea celular modificada; y

seleccionar a partir de dicha línea celular modificada al menos una segunda línea celular que muestra un mayor rendimiento de la proteína recombinante.

- 15. Un método para mejorar el rendimiento de proteína del Factor VIII recombinante, en donde el material genético que codifica para la expresión de dicha proteína recombinante se ha introducido previamente en una línea celular BHK para formar una primera línea celular, comprendiendo dicho método las etapas de:
- insertar al menos un vector de expresión de la proteína chaperona que comprende ADN que codifica la proteína chaperona Erp57 y ADN que codifica la proteína chaperona CRT en dicha primera línea celular de modo que se forma una línea celular modificada; y
 - seleccionar a partir de dicha línea celular modificada al menos una segunda línea celular que muestra un mayor rendimiento de la proteína recombinante.
- 16. El método según la reivindicación 14 o la reivindicación 15, en el que el material genético que codifica para la expresión de dicha proteína recombinante está integrado en el ADN de la primera línea celular.
 - 17. El método según la reivindicación 16, en el que la segunda línea celular se transfecta adicionalmente con un vector de expresión que comprende ADN que codifica una proteína sintetasa de glutamina.
 - 18. El método según la reivindicación 14 o la reivindicación 15, en el que se produce al menos una segunda línea celular a partir de dicha primera línea celular mediante la selección de una porción de dicha primera línea celular que muestra la integración del vector de expresión de la proteína chaperona en el ADN del hospedador.

15

CNX: cebador 5': ATGAATTCCGGGAGGCTAGAGATCATGG

cebador 3': ATTCTAGATGCAGGGGAGGAGGAGAAG

CRT: cebador 5': ATGAATTCCCGCCATGCTGCTATCCGTG

cebador 3': ATTCTAGACTGGAGGCAGGCCTCTCTAC

Erp57: cebador 5': ATGAATTCCTCCGCAGTCCCAGCCGAGC

cebador 3': ATTCTAGACTCTCGGCCCTGAGAGGTAA

FIG. 1

MEGKWL 1 GAATTCCGGG AGGCTAGAGA TCATGGAAGG GAAGTGGTTG L V L G T A L C M L I V E A · 41 CTGTGTATGT TACTGGTGCT TGGAACTGCT ATTGTTGAGG · H D G H D D D V I D I E D · 81 CTCATGATGG ACATGATGAT GATGTGATTG ATATTGAGGA · D L D D V I E E V E D S 121 TGACCTTGAC GATGTCATTG AAGAGGTAGA AGACTCAAAA P D T T A P P S S P K V T Y · 161 CCAGATACCA CTGCTCCTCC TTCATCTCCC AAGGTTACTT KAP V P T G E V Y F A D · 201 ACAAAGCTCC AGTTCCAACA GGGGAAGTAT ATTTTGCTGA R G T L S G W ·SFD I L S 241 TTCTTTTGAC AGAGGAACTC TGTCAGGGTG GATTTTATCC K A K K D D T D D E I A K Y · 281 AAAGCCAAGA AAGACGATAC CGATGATGAA ATTGCCAAAT · D G K WEV \mathbf{E} M K E S K · 321 ATGATGGAAA GTGGGAGGTA GAGGAAATGA AGGAGTCAAA ·LPG D K G L V L M S R A 361 GCTTCCAGGT GATAAAGGAC TTGTGTTGAT GTCTCGGGCC K H H A I S A K L N K P F 401 AAGCATCATG CCATCTCTGC TAAACTGAAC AAGCCCTTCC · F D T K P L I V O Y $E \quad \Lambda \quad M \quad \cdot$ 441 TGTTTGACAC CAAGCCTCTC ATTGTTCAGT ATGAGGTTAA · F O N G I E C G G A Y V K 481 TTTCCAAAAT GGAATAGAAT GTGGTGGTGC CTATGTGAAA LLSKTPELNL D O F H · 521 CTGCTTTCTA AAACACCAGA ACTCAACCTG GATCAGTTCC · D K T P Y T I M F G P D K · 561 ATGACAAGAC CCCTTATACG ATTATGTTTG GTCCAGATAA · C G E D Y K L H F I F R H 601 ATGTGGAGAG GACTATAAAC TGCACTTCAT CTTCCGACAC K N P K TGIYEE K H A K · 641 AAAAACCCCA AAACGGGTAT CTATGAAGAA AAACATGCTA · R P D A D L K T Y F T D K · 681 AGAGGCCAGA TGCAGATCTG AAGACCTATT TTACTGATAA · K T H L Y T L I L N P D N

FIG. 2A

```
721 GAAAACACAT CTTTACACAC TAATCTTGAA TCCAGATAAT
     SFEILVD Q S V V N S G ·
761 AGTTTTGAAA TACTGGTTGA CCAATCTGTG GTGAATAGTG
    · N L L N D M T P P V N P S ·
801 GAAATCTGCT CAATGACATG ACTCCTCCTG TAAATCCTTC
    · R E I E D P E D R K P E D
841 ACGTGAAATT GAGGACCCAG AAGACCGGAA GCCCGAGGAT
    W D E R P K I P D P E A V K ·
881 TGGGATGAAA GACCAAAAAT CCCAGATCCA GAAGCTGTCA
    · P D D W D E D A P A K I P ·
921 AGCCAGATGA CTGGGATGAA GATGCCCCTG CTAAGATTCC
    · D E E A T K P E G W L D D
961 AGATGAAGAG GCCACAAAAC CCGAAGGCTG GTTAGATGAT
    EPEY VPD PDA EKPE.
1001 GAGCCTGAGT ACGTACCTGA TCCAGACGCA GAGAAACCTG
    · D W D E D M D G E W E A P ·
1041 AGGATTGGGA TGAAGACATG GATGGAGAAT GGGAGGCTCC
    · Q I A N P R C E S A P G C
1081 TCAGATTGCC AACCCTAGAT GTGAGTCAGC TCCTGGATGT
    G V W O R P V I D N P N Y K ·
1121 GGTGTCTGGC AGCGACCTGT GATTGACAAC CCCAATTATA
    · G K W K P P M I D N P S Y ·
1161 AAGGCAAATG GAAGCCTCCT ATGATTGACA ATCCCAGTTA
    · Q G I W K P R K I P N P D
1201 CCAGGGAATC TGGAAACCCA GGAAAATACC AAATCCAGAT
    FFED LEP FRM TPFS.
1241 TTCTTTGAAG ATCTGGAACC TTTCAGAATG ACTCCTTTTA
    · AIGLEL WSMT SDI
1281 GTGCTATTGG TTTGGAGCTG TGGTCCATGA CCTCTGACAT
    · F F D N F I I C A D R R I
1321 TTTTTTGAC AACTTTATCA TTTGTGCTGA TCGAAGAATA
    V D D W A N D G W G L K K A ·
1361 GTTGATGATT GGGCCAATGA TGGATGGGGC CTGAAGAAAG
    · ADG AAE PGVV GQM·
1401 CTGCTGATGG GGCTGCTGAG CCAGGCGTTG TGGGGCAGAT
    · I E A A E E R P W L W V V
1441 GATCGAGGCA GCTGAAGAGC GCCCGTGGCT GTGGGTAGTC
    YILT VAL PVF LVIL.
1481 TATATTCTAA CTGTAGCCCT TCCTGTGTTC CTGGTTATCC
    · FCCSGKKQTSGME·
```

FIG. 2A (Continuación)

1521 TCTTCTGCTG TTCTGGAAAG AAACAGACCA GTGGTATGGA \cdot Y K K T D A P Q P D V K E 1561 GTATAAGAAA ACTGATGCAC CTCAACCGGA TGTGAAGGAA EEEE K E EE K D K G D 1601 GAGGAAGAAG AGAAGGAAGA GGAAAAGGAC AAGGGAGATG E E E G E EKLEE K Q K · 1641 AGGAGGAGA AGGAGAAGAG AAACTTGAAG AGAAACAGAA ·SDA E E D G G T V S Q E 1681 AAGTGATGCT GAAGAAGATG GTGGCACTGT CAGTCAAGAG E E D R K P K AEE D E I L· 1721 GAGGAAGACA GAAAACCTAA AGCAGAGGAG GATGAAATTT · N R S P R N RKPR R E * • 1761 TGAACAGATC ACCAAGAAAC AGAAAGCCAC GAAGAGAGTG 1801 AAACAATCTT AAGAGCTTGA TCTGTGATTT CTTCTCCCTC 1841 CTCCCCTGCA TCTAGA

FIG. 2A (Continuación)

M L L S V P L L L G · 1 GAATTCCCGC CATGCTGCTA TCCGTGCCGC TGCTGCTCGG · L L G L A V A E P A V Y F 41 CCTCCTCGGC CTGGCCGTCG CCGAGCCTGC CGTCTACTTC KEQFLDG DGW TSRW· 81 AAGGAGCAGT TTCTGGACGG AGACGGGTGG ACTTCCCGCT · I E S K H K S D F G K F V · 121 GGATCGAATC CAAACACAAG TCAGATTTTG GCAAATTCGT · L S S G K F Y G D E E K D 161 TCTCAGTTCC GGCAAGTTCT ACGGTGACGA GGAGAAAGAT TSODAR FYAL. KGLO 201 AAAGGTTTGC AGACAAGCCA GGATGCACGC TTTTATGCTC · S A S F E P F S N K G O T 241 TGTCGGCCAG TTTCGAGCCT TTCAGCAACA AAGGCCAGAC Q F T V K H E \cdot L \wedge \wedge ONI 281 GCTGGTGGTG CAGTTCACGG TGAAACATGA GCAGAACATC D C G G G Y V K L F PNS321 GACTGTGGGG GCGGCTATGT GAAGCTGTTT CCTAATAGTT D Q T D M H G D S E Y N I · 361 TGGACCAGAC AGACATGCAC GGAGACTCAG AATACAACAT · M F G P D I C G P G T K K 401 CATGTTTGGT CCCGACATCT GTGGCCCTGG CACCAAGAAG V H V I F N Y K G K N V L I · 441 GTTCATGTCA TCTTCAACTA CAAGGGCAAG AACGTGCTGA · N K D I R C K D D E F T H · 481 TCAACAAGGA CATCCGTTGC AAGGATGATG AGTTTACACA ·LYTLIVRPDN TYE 521 CCTGTACACA CTGATTGTGC GGCCAGACAA CACCTATGAG V K I D N S Q V E S G S L E · 561 GTGAAGATTG ACAACAGCCA GGTGGAGTCC GGCTCCTTGG · D D W D F L P P K K I K D · 601 AAGACGATTG GGACTTCCTG CCACCCAAGA AGATAAAGGA · P D A S K P E D W D E R A 641 TCCTGATGCT TCAAAACCGG AAGACTGGGA TGAGCGGGCC K I D D P T D S K P E D W D · 681 AAGATCGATG ATCCCACAGA CTCCAAGCCT GAGGACTGGG K P E H I P D P D A 721 ACAAGCCCGA GCATATCCCT GACCCTGATG CTAAGAAGCC · E D W D E E M D G E W E P

FIG. 2B

761	CGAGGACTGG	GATGAAGAGA	TGGACGGAGA	GTGGGAACCC
	PVI	Q N P E	Y K G	E W K P
801	CCAGTGATTC	AGAACCCTGA	GTACAAGGGT	GAGTGGAAGC
	· R Q I	D N P	D Y K C	G T W I ·
841	CCCGGCAGAT	CGACAACCCA	GATTACAAGG	GCACTTGGAT
	· H P E	I D N F	P E Y S	P D P
881	CCACCCAGAA	ATTGACAACC	CCGAGTATTC	TCCCGATCCC
	SIY	A Y D N	F G V	L G L D
921	AGTATCTATG	CCTATGATAA	CTTTGGCGTG	CTGGGCCTGG
	· L W Q	V K S	G T I F	F D N F ·
961	ACCTCTGGCA	GGTCAAGTCT	GGCACCATCT	TTGACAACTT
	· L I T	N D E A	Y A E	E F G
1001	CCTCATCACC	AACGATGAGG	CATACGCTGA	GGAGTTTGGC
	NETI	W G V T	K A A	E K Q M
1041	AACGAGACGT	GGGGCGTAAC	AAAGGCAGCA	GAGAAACAAA
	· K D K	Q D E	E Q R I	K E E ·
1081	TGAAGGACAA	ACAGGACGAG	GAGCAGAGGC	TTAAGGAGGA
	\cdot E E D	KKRF	C E E E	E A E
1121	GGAAGAAGAC	AAGAAACGCA	AAGAGGAGGA	GGAGGCAGAG
	D K E 1	D D E D	K D E	DEED
1161	GACAAGGAGG	ATGATGAGGA	CAAAGATGAG	GATGAGGAGG
	· E E D	KEE		E D V P ·
1201		CAAGGAGGAA		AAGATGTCCC
	5.E	K D E I		
		AAGGACGAGC	TGTAGAGAGG	CCTGCCTCCA
1281	GTCTAGA			

FIG. 2B(Continuación)

GAATTCCTCC GCAGTCCCAG CCGAGCCGCG ACCCTTCCGG M R L R R L · 41 CCGTCCCCAC CCCACCTCGC CGCCATGCGC CTCCGCCGCC · A L F P G V A L L L A A A · 81 TAGCGCTGTT CCCGGGTGTG GCGCTGCTTC TTGCCGCGGC · R L A A A S D V L E 121 CCGCCTCGCC GCTGCCTCCG ACGTGCTAGA ACTCACGGAC DNFE S R I S D T G S A G · 161 GACAACTTCG AGAGTCGCAT CTCCGACACG GGCTCTGCGG L M L V E F F A P W C G H · 201 GCCTCATGCT CGTCGAGTTC TTCGCTCCCT GGTGTGGACA L A P E Y E A A A T · C K R 241 CTGCAAGAGA CTTGCACCTG AGTATGAAGC TGCAGCTACC R L K G I V P L A K V D C T · 281 AGATTAAAAG GAATAGTCCC ATTAGCAAAG GTTGATTGCA ANT NTCNKYG VSG. 321 CTGCCAACAC TAACACCTGT AATAAATATG GAGTCAGTGG \cdot Y P T L K I F R D G E E A 361 ATATCCAACC CTGAAGATAT TTAGAGATGG TGAAGAAGCA GAYD GPR TAD GIVS. 401 GGTGCTTATG ATGGACCTAG GACTGCTGAT GGAATTGTCA · H L K K Q A G P A S V P L · 441 GCCACTTGAA GAAGCAGGCA GGACCAGCTT CAGTGCCTCT · R T E E E F K K F I S D K 481 CAGGACTGAG GAAGAATTTA AGAAATTCAT TAGTGATAAA DASI VGF FDD SFSE. 521 GATGCCTCTA TAGTAGGTTT TTTCGATGAT TCATTCAGTG · A H S E F L K A A S N L R · 561 AGGCTCACTC CGAGTTCCTA AAAGCAGCCA GCAACTTGAG R F A H T N V \cdot D N Y E S L 601 GGATAACTAC CGATTTGCAC ATACGAATGT TGAGTCTCTG V N E Y D D N G E G I I L F · 641 GTGAACGAGT ATGATGATAA TGGAGAGGGT ATCATCTTAT H L T N K F E D K T · · R P S 681 TTCGTCCTTC ACATCTCACT AACAAGTTTG AGGACAAGAC · V A Y T E Q K M T S GKI 721 TGTGGCATAT ACAGAGCAAA AAATGACCAG TGGCAAAATT K K F I O E N I F G I C P H · 761 AAAAAGTTTA TCCAGGAAAA CATTTTTGGT ATCTGCCCTC · M T E D N K D L I Q G K Ď ·

FIG. 2C

```
801 ACATGACAGA AGACAATAAA GATTTGATAC AGGGCAAGGA
    \cdot L L I
              A Y Y D
                         V D
                              Y
                                  EKN
841 CTTACTTATT GCTTACTATG ATGTGGACTA TGAAAAGAAC
     A K G S N Y W
                        R N R
                                 V M M
881 GCTAAAGGTT CCAACTACTG GAGAAACAGG GTAATGATGG
      A K K
              F L D
                       A G H K
                                        F
921 TGGCAAAGAA ATTCCTGGAT GCTGGGCACA AACTCAACTT
    · A V A
             SRKT
                         F S H
                                  E L S
961 TGCTGTAGCT AGCCGCAAAA CCTTTAGCCA TGAACTTTCT
     D F G L E S T
                        A G E
                                I P V V ·
1001 GATTTTGGCT TGGAGAGCAC TGCTGGAGAG ATTCCTGTTG
      A I R
               T A K
                       GEKF
                                 V M O
1041 TTGCTATCAG AACTGCTAAA GGAGAGAGT TTGTCATGCA
    \cdot E E F
             S R D G
                         K A L
1081 GGAGGAGTTC TCGCGTGATG GGAAGGCTCT GGAGAGGTTC
     LODYFDG
                        N L K
                                 R Y L
1121 CTGCAGGATT ACTTTGATGG CAATCTGAAG AGATACCTGA
    · S E P
             I P E
                       S N D G
                                 P V K ·
1161 AGTCTGAACC TATCCCAGAG AGCAATGATG GGCCTGTGAA
    · V V V A E N F D E I
                                  V N N
1201 GGTAGTGGTA GCAGAGAATT TTGATGAAAT AGTGAATAAT
     ENKDVLI
                       E F Y
                                 A P W
                                         C
1241 GAAAATAAAG ATGTGCTGAT TGAATTTTAT GCCCCTTGGT
    · G H C K N L E P K Y
1281 GTGGTCATTG TAAGAACCTG GAGCCCAAGT ATAAAGAACT
    · G E K
             L S K D P N I
1321 TGGCGAGAAG CTCAGCAAAG ACCCAAATAT CGTCATAGCC
    K M D A T A N D V P
                                 S P Y
1361 AAGATGGATG CCACAGCCAA TGATGTGCCT TCTCCATATG
    · V R G
               FPT
                       I Y F S
1401 AAGTCAGAGG TTTTCCTACC ATATACTTCT CTCCAGCCAA
    \cdot K K L
             N P K K Y E G
1441 CAAGAAGCTA AATCCAAAGA AATATGAAGG TGGCCGTGAA
    LSDF
              I S Y
                       L O R
                                E A T N ·
1481 TTAAGTGATT TTATTAGCTA TCTACAAAGA GAAGCTACAA
                                 K K K ·
      PPV
               I Q E
                       EKPK
```

FIG. 2C (Continuación)

1521	ACCCCCTGT	AATTCAAGAA GAAAAACCCA	AGAAGAAGAA
	· K A Q	EDL*	
1561	GAAGGCACAG	GAGGATCTCT AAAGCAGTAG	CCAAACACCA
1601	CTTTGTAAAA	GGACTCTTCC ATCAGAGATG	GGAAAACCAT
		TAGGACCCAT ATGGGAATTA	
	GGGCCGAGAG		

FIG. 2C (Continuación)

```
MAKAAAI GID L G T T Y S C
     ATGGCCAAAG CCGCGGCGAT CGGCATCGAC CTGGGCACCA CCTACTCCTG
     · V G V F Q H G K V E I I A N D Q G
     CGTGGGGGTG TTCCAACACG GCAAGGTGGA GATCATCGCC AACGACCAGG
     · N R T T P S Y V A F T D T E R L
     GCAACCGCAC CACCCCAGC TACGTGGCCT TCACGGACAC CGAGCGGCTC
101
     I G D A A K N Q V A L N P Q N T V ·
     ATCGGGGATG CGGCCAAGAA CCAGGTGGCG CTGAACCCGC AGAACACCGT
151
     · F D A K R L I G R K F G D P V V Q
     GTTTGACGCG AAGCGCTGA TCGGCCGCAA GTTCGGCGAC CCGGTGGTGC
201
     · S D M K H W P F Q V I N D G D K
    AGTCGGACAT GAAGCACTGG CCTTTCCAGG TGATCAACGA CGGAGACAAG
251
     PKVQVSYKGETKAFYPE·
     CCCAAGGTGC AGGTGAGCTA CAAGGGGAG ACCAAGGCAT TCTACCCCGA
301
     · E I S S M V L T K M K E I A E A Y
351
     GGAGATCTCG TCCATGGTGC TGACCAAGAT GAAGGAGATC GCCGAGGCGT
     · L G Y P V T N A V I T V P A Y F
     ACCTGGGCTA CCCGGTGACC AACGCGGTGA TCACCGTGCC GGCCTACTTC
401
     N D S Q R Q A T K D A G V I A G L ·
     AACGACTCGC AGCGCCAGGC CACCAAGGAT GCGGGTGTGA TCGCGGGGCT
451
     ·N V L R I I N E P T A A A I A Y G
     CAACGTGCTG CGGATCATCA ACGAGCCCAC GGCCGCCGCC ATCGCCTACG
501
     · L D R T G K G E R N V L I F D L
551
     GCCTGGACAG AACGGGCAAG GGGGAGCGCA ACGTGCTCAT CTTTGACCTG
     G G G T F D V S I L T I D D G I F ·
601
     GGCGGGGGCA CCTTCGACGT GTCCATCCTG ACGATCGACG ACGGCATCTT
     · E V K A T A G D T H L G G E D F D
651
     CGAGGTGAAG GCCACGGCCG GGGACACCCA CCTGGGTGGG GAGGACTTTG
     - N R L V N H F V E E F K R K H K
701
    ACAACAGGCT GGTGAACCAC TTCGTGGAGG AGTTCAAGAG AAAACACAAG
     751
    AAGGACATCA GCCAGAACAA GCGAGCCGTG AGGCGGCTGC GCACCGCCTG
     · E R A K R T L S S S T O A S L E I
801
     CGAGAGGCC AAGAGGACCC TGTCGTCCAG CACCCAGGCC AGCCTGGAGA
     · D S L F E G I D F Y T S I T R A
851
    TCGACTCCCT GTTTGAGGGC ATCGACTTCT ACACGTCCAT CACCAGGGCG
     R F E E L C S D L F R S T L E P V ·
    AGGTTCGAGG AGCTGTGCTC CGACCTGTTC CGAAGCACCC TGGAGCCCCGT
901
     · E K A L R D A K L D K A Q
                                        IHDL
951
    GGAGAAGGCT CTGCGCGACG CCAAGCTGGA CAAGGCCCAG ATTCACGACC
     · V L V G G S T R I P K V O K L L
1001
    TGGTCCTGGT CGGGGGCTCC ACCCGCATCC CCAAGGTGCA GAAGCTGCTG
     Q D F F N G R D L N K S I N P D E ·
     CAGGACTTCT TCAACGGGCG CGACCTGAAC AAGAGCATCA ACCCCGACGA
1051
     · A V A Y G A A V Q A A I L M G D K ·
    GGCTGTGGCC TACGGGGCGG CGGTGCAGGC GGCCATCCTG ATGGGGGACA
1101
     · S E N V O D L L L D V A P L S
    AGTCCGAGAA CGTGCAGGAC CTGCTGCTGC TGGACGTGGC TCCCCTGTCG
1151
```

FIG. 2D

```
LGLE
               T A G G V M
                                TALI KRN.
     CTGGGGCTGG AGACGGCCGG AGGCGTGATG ACTGCCCTGA TCAAGCGCAA
     · S T I P T K Q T Q I F T T
                                        Y S D N ·
     CTCCACCATC CCCACCAAGC AGACGCAGAT CTTCACCACC TACTCCGACA
1251
     · Q P G
              V L I Q V Y E
                                 G E R
                                          A M T
    ACCAACCCGG GGTGCTGATC CAGGTGTACG AGGGCGAGAG GGCCATGACG
     K D N N L L G R F E L S G I
     AAAGACAACA ATCTGTTGGG GCGCTTCGAG CTGAGCGGCA TCCCTCCGGC
     · P R G V P Q I
                        E V T
                               F D I D A N G ·
     CCCCAGGGGC GTGCCCCAGA TCGAGGTGAC CTTCGACATC GATGCCAACG
               V T A T D K S T G K
     GCATCCTGAA CGTCACGGCC ACGGACAAGA GCACCGGCAA GGCCAACAAG
               N D K G R L
                                SKEĒ
    ATCACCATCA CCAACGACAA GGGCCGCCTG AGCAAGGAGG AGATCGAGCG
     ·MVQEAEK
                        YKAEDE
                                        V Q R E ·
1551
     CATGGTGCAG GAGGCGGAGA AGTACAAAGC GGAGGACGAG GTGCAGCGCG
     \cdot R V S A K N A L E S Y A F N M K
    AGAGGGTGTC AGCCAAGAAC GCCCTGGAGT CCTACGCCTT CAACATGAAG
     SAVE DEG L K G K I SE A D K ·
    AGCGCCGTGG AGGATGAGGG GCTCAAGGGC AAGATCAGCG AGGCCGACAA
     · K K V L D K C Q E V I S W L D A N ·
    GAAGAAGGTG CTGGACAAGT GTCAAGAGGT CATCTCGTGG CTGGACGCCA
     · T L A E K D E F E H K R K E L E
    ACACCTTGGC CGAGAAGGAC GAGTTTGAGC ACAAGAGGAA GGAGCTGGAG
1751
     Q V C N P I I S G L Y Q G A G G P ·
     CAGGTGTGTA ACCCCATCAT CAGCGGACTG TACCAGGGTG CCGGTGGTCC
1801
     · G P G G F G A Q G P K G G S G S G ·
     CGGGCCTGGG GGCTTCGGGG CTCAGGGTCC CAAGGGAGGG TCTGGGTCAG
       PTIEEVD*
1901
     GCCCCACCAT TGAGGAGGTA GATTAG
```

FIG. 2D (Continuación)

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
1	ATGGTAAAG ACTACTACCA GACGTTGGGC CTGGCCCGCG GCGCGTCGGA	
	· E E I K R A Y R R Q A L R Y H P D	
51	CGAGGAGATC AAGCGGGCCT ACCGCCGCCA GGCGCTGCGC TACCACCCGG	
	· KNK EPG AEEK FKE I AE	
101	ACAAGAACAA GGAGCCCGGC GCCGAGGAGA AGTTCAAGGA GATCGCTGAG	
	A Y D V L S D P R K R E I F D R Y	
151	GCCTACGACG TGCTCAGCGA CCCGCGCAAG CGCGAGATCT TCGACCGCTA	
	· G E E G L K G S G P S G G S G G	
201	CGGGGAGGAA GGCCTAAAGG GGAGTGGCCC CAGTGGCGGT AGCGGCGGTG	
	· A N G T S F S Y T F H G D P H A	
251	GTGCCAATGG TACCTCTTTC AGCTACACAT TCCATGGAGA CCCTCATGCC	
	M F A E F F G G R N P F D T F F G	•
301	ATGTTTGCTG AGTTCTTCGG TGGCAGAAAT CCCTTTGACA CCTTTTTTGG	
-	· Q R N G E E G M D I D D P F S G F	_
351	GCAGCGGAAC GGGGAGGAAG GCATGGACAT TGATGACCCA TTCTCTGGCT	
	· P M G M G G F T N V N F G R S R	
401	TCCCTATGGG CATGGGTGGC TTCACCAACG TGAACTTTGG CCGCTCCCGC	
	SAQE PAR KKQ D P P V T H D ·	,
451	TCTGCCCAAG AGCCCGCCCG AAAGAAGCAA GATCCCCCAG TCACCCACGA	
	· L R V S L E E I Y S G C T K K M K	
501	CCTTCGAGTC TCCCTTGAAG AGATCTACAG CGGCTGTACC AAGAAGATGA	
	· I S H K R L N P D G K S I R N E	
551	AAATCTCCCA CAAGCGGCTA AACCCCGACG GAAAGAGCAT TCGAAACGAA	
	DKILTIEVKKGWKEGTK	1
601	GACAAAATAT TGACCATCGA AGTGAAGAAG GGGTGGAAAG AAGGAACCAA	
	· I T F P K E G D Q T S N N I P A D	
65I	AATCACTTTC CCCAAGGAAG GAGACCAGAC CTCCAACAAC ATTCCAGCTG	
707	· I V F V L K D K P H N I F K R D	
10T	ATATCGTCTT TGTTTTAAAG GACAAGCCCC ACAATATCTT TAAGAGAGAT	

FIG. 2E

	G S	D .	v i	Y P	A	R I	S L	R :	E A	L	C ·
751	GGCTCT	GATG	TCATT	TATCC	TGCC	AGGATC	AGCCT	CCGGG	AGGCT	CTGT	ſĠ
	• G C	T	V N	V I	T 9	L D	G F	T	I F	V	V
801	TGGCTG	CACA	GTGAA	CGTCC	CCAC	ICTGGA	CGGCAC	GACG	ATACC	CGT	2G
	· F	K D	V	I R	P (G M 1	R R	K V	P	G E	3
851	TATTCA	AAGA	TGTTA	TCAGG	CCTG	GCATGC	GGCGAZ	AAAGT	TCCTG	GAG	4A
	G L	Р :	L P	K T	P	E K	R G	D :	L I	I	E·
901	GGCCTC	:cccc	TCCCC	AAAAC	ACCC	GAGAAA	CGTGGC	GACC	TCATT	'ATTC	łA.
	·FE	v	I F	P I	E R	I P	Q	S	R I	' V	L
951	GTTTGA	AGTG	ATCTT	CCCCG	AAAG	GATTCC	CCAGAC	CATCA	AGAAC	CGTA	4C
	· E	Q V	L	P I	*						
1001	TT	GAGCA	GGT TC	TTCCA	ATA T.	AG					

FIG. 2E (Continuación)

	M T T S A S S H L N K G I K Q V Y	•
1	ATGACCACCT CAGCAAGTTC CCACTTAAAT AAAGGCATCA AGCAGGTGTA	
	\cdot M S L P Q G E K V Q A M Y I W I D	
51	CATGTCCCTG CCTCAGGGTG AGAAAGTCCA GGCCATGTAT ATCTGGATCG	
	· G T G E G L R C K T R T L D S E	
101	ATGGTACTGG AGAAGGACTG CGCTGCAAGA CCCGGACCCT GGACAGTGAG	
	PKCVEELPEWNFDGSST	
151	CCCAAGTGTG TGGAAGAGTT GCCTGAGTGG AATTTCGATG GCTCCAGTAC	
	\cdot L Q S E G S N S D M Y L V P A A M	
201	TTTACAGTCT GAGGGTTCCA ACAGTGACAT GTATCTCGTG CCTGCTGCCA	
	· FRD PFR KDPN KLV LCE	
251	TGTTTCGGGA CCCCTTCCGT AAGGACCCTA ACAAGCTGGT GTTATGTGAA	
	V F K Y N R R P A E T N L R H T C	
301	GTTTTCAAGT ACAATCGAAG GCCTGCAGAG ACCAATTTGA GGCACACCTG.	
	· K R I M D M V S N Q H P W F G M E	•
351	TAAACGGATA ATGGACATGG TGAGCAACCA GCACCCCTGG TTTGGCATGG	
	· Q E Y T L M G T D G H P F G W P	
401	AGCAGGAGTA TACCCTCATG GGGACAGATG GGCACCCCTT TGGTTGGCCT	
	SNGF PGP QGP YYCG VGA	
451	TCCAACGGCT TCCCAGGGCC CCAGGGTCCA TATTACTGTG GTGTGGGAGC	
	· D R A Y G R D I V E A H Y R A C L	
501	AGACAGAGCC TATGGCAGGG ACATCGTGGA GGCCCATTAC CGGGCCTGCT	
	· Y A G V K I A G T N A E V M P A	
551	TGTATGCTGG AGTCAAGATT GCGGGGACTA ATGCCGAGGT CATGCCTGCC	
	Q W E F Q I G P C E G I S M G D H	
601	CAGTGGGAAT TTCAGATTGG ACCTTGTGAA GGAATCAGCA TGGGAGATCA	
	· L W V A R F I L H R V C E D F G V	•
651	TCTCTGGGTG GCCCGTTTCA TCTTGCATCG TGTGTGTGAA GACTTTGGAG	
	· I A T F D P K P I P G N W N G A	
701	TGATAGCAAC CTTTGATCCT AAGCCCATTC CTGGGAACTG GAATGGTGCA	

FIG. 2F

	G C	H	T N	F S	T	K A	M F	S E	E 1	1 G	L·
751	GGCTG	CCATA	CCAAC	TTCAG	CACC	AAGGCC	ATGC	GGAGG	AGA	ATGGT	CT
	· K 7	Z I	E E	A :	I E	K L	S	K R	H	Q Y	·H
801	GAAGTA	ACATC	GAGGA	.GGCCA	TTGA	GAAACT	AAGC	AGCGG	CACC	CAGTA	CC
	· I	R A	Y	D P	K	G G :	L D	N A	Ŕ	R	L
851	ACATCO	CGTGC	CTATG	ATCCC	AAGG	GAGGCC	TGGA	CAATGO	CCGP	ACGTC	TA
	T G	F	H E	T S	N	I N	D F	S	A (3 V	A -
901	ACTGG	ATTCC	ATGAA	ACCTC	CAAC	ATCAAC	GACT	TTCTG	CTGG	STGTA	GC
	- N F	R S	A S	I I	R I	P R	T	V G	Q	E K	K
951	CAATC	STAGC	GCCAG	CATAC	GCAT	TCCCCG	GACTO	STTGGC	CAGG	GAGAA	GA
	· G	Y F	E	D R	R	P S A	A N	C D	P	F	S
1001	AGGGTT	ACTT	TGAAG	ATCGT	CGCC	CCTCTG	CCAAC	CTGCGA	. CCCC	CTTTT	CG ·
• 1	V T	Ε.	A L	I R	${f T}$	C Ė	L N	I E	T G	D	E .
1051	GTGACA	GAAG	CCCTC	ATCCG	CACG	TGTCTT	CTCAA	TGAAA	CCGG	CGAT	GA .
	· P F	7 Q	Y K	И	*						
1101	GCCCTT	CCAG	TACAA	AAATT	AA						

FIG. 2F (Continuación)

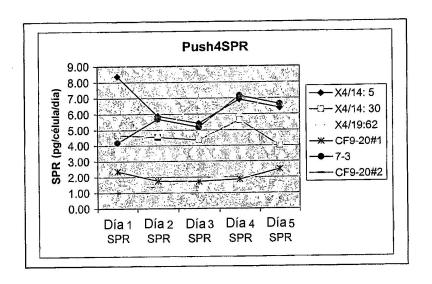


FIG. 3

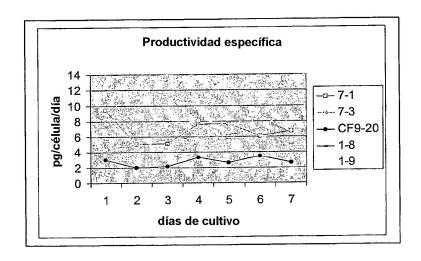


FIG. 4

ADRERSIHDF	CLVSKVVGRC	RASMPRWWYN	30
VTDGSCQLFV	YGGCDGNSNN	YLTKEECLKK	60
CATVTENATG	DLATSRNAAD	SSVPSAPRRQ	90
DSEDHSSDMF	NYEEYCTANA	VTGPCRASFP	120
RWYFDVERNS	CNNFIYGGCR	GNKNSYRSEE	150
ACMLRCFRQQ	ENPPLPLGSK		170

FIG. 5