

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 541 668

51 Int. Cl.:

C07D 453/02 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 22.05.2009 E 09750841 (0)
(97) Fecha y número de publicación de la concesión europea: 15.04.2015 EP 2291374

(54) Título: Proceso para preparación de solifenacina y/o de sus sales farmacéuticamente aceptables de

(30) Prioridad:

23.05.2008 PL 38526508

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 23.07.2015

alta pureza farmacéutica

(73) Titular/es:

ZAKLADY FARMACEUTYCZNE "POLPHARMA" S.A. (100.0%) UI. Pelplinska 19 83-200 Starogard Gdanski, PL

(72) Inventor/es:

ZEGROCKA-STENDEL, OLIWIA; ZAGRODZKA, JOANNA y LASZCZ, MARTA

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

S 2 541 668 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Proceso para preparación de solifenacina y/o de sus sales farmacéuticamente aceptables de alta pureza farmacéutica

Campo de la invención

La invención se refiere al proceso para preparación de solifenacina y/o de sus sales farmacéuticamente aceptables de alta pureza farmacéutica.

La solifenacina, (*R*)-3-quinuclidinol-(1*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolin-2-carboxilato (denominación IUPAC: 1-azabiciclo[2.2.2]oct-8-il(1*S*)-1-fenil-3,4-dihidroisoquinolina-2-carboxilato), es un antagonista selectivo competitivo del receptor muscarínico M3. El succinato de solifenacina es la sustancia activa de Vesicare®, autorizado para el tratamiento de los síntomas de vejiga urinaria hiperactiva de incontinencia urinaria apremiante, urgencia y frecuencia urinaria

15

5

Antecedentes de la invención

En general, existen dos enfoques de síntesis concernientes a la preparación de solifenacina, sea como una mezcla racémica o como isómero biológicamente activo puro (1S, 3'R). Uno de ellos está basado en la reacción de quinuclidinol y el derivado 1-fenil-1,2,3,4-tetrahidroisoquinolina-carbamoílo con un grupo lábil satisfactorio. Otro enfoque contempla la condensación de 1-fenil-1,2,3,4-tetrahidroisoquinolina y un derivado activo de quinuclidinol, tal como cloroformiato o carbonato por ejemplo. En EP 0.801.067 B1 y WO 2005/105.795 se mencionaban grupos cloruro, alcóxidos inferiores y fenóxido así como 1*H*-imidazol-1-ilo, 2,5-dioxopirrolidin-1-iloxilo y 3-metil-1*H*-imidazol-3-io-1-ilo como grupos lábiles satisfactorios en este proceso.

- En la patente europea EP 0 801.067 B1, la transesterificación del derivado carbamoil-etil-éster de la mezcla racémica de 1-fenil-1,2,3,4-tetrahidroisoquinolina transcurría en suspensión toluénica en presencia de hidruro de sodio; la mezcla de productos diastereoisómeros obtenida se resolvía gracias a la técnica de cromatografía líquida quiral a alta presión.
- 30 En J. Med. Chem., 2005,48 (21), 6597-6606, en lugar de la mezcla racémica, se utilizaba (S)-1-fenil-1,2,3,4-tetrahidroisoquinolina-2-carboxilato de etilo como enantiómero puro. Este semiproducto ópticamente activo se obtenía en el paso previo, en la reacción de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolina y cloroformiato de etilo en presencia de carbonato de potasio.
- Los métodos arriba mencionados requieren el uso de hidruro de sodio así como (R)-quinuclidinol costoso, ópticamente activo, en gran exceso. Adicionalmente, esta reacción transcurre con rendimiento moderado de aproximadamente 50%, lo que hace que el proceso no sea adecuado en un proceso de fabricación a escala industrial.
- 40 En EP 0.801.067 B1, se mencionaba también la posibilidad de preparación de solifenacina en la reacción de condensación de cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolina-2-carbamoílo y (R)-3-quinuclidinol; sin embargo, no se daba ejemplo preparativo alguno de este proceso.
- La ruta de síntesis de solifenacina dada a conocer en WO 2005/105.795 comprende la reacción de cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo y (R)-quinuclidinol en presencia de base. En el ejemplo, (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolina se trata con fosgeno en tolueno en presencia de trietilamina. Después de la adición de metanol y agua a la mezcla de reacción, seguida por evaporación de disolventes orgánicos, el producto de reacción se aísla como un aceite. El compuesto intermedio obtenido en solución toluénica se añade luego a la mezcla de (*R*)-3-quinuclidinol e hidruro de sodio en tolueno a reflujo. La reacción se lleva a cabo en algunas condiciones durante una noche. Los autores de esta publicación reivindican que 'la formación de solifenacina se había confirmado', pero no se revelaban el rendimiento ni la pureza del producto así obtenido. Siguiendo el procedimiento indicado en dicho documento, los presentes inventores obtuvieron solifenacina de pureza inferior a 43% conforme al análisis HPLC.
- La ruta de síntesis que comprende la reacción de 1-fenil-1,2,3,4-tetrahidroisoquinolina y 3-quinuclidinol en dimetilformamida, descrita en EP 0 801.067, se reproducía en WO 2007/147.374. Se observó la formación de una cantidad sustancial de derivado de urea disustituido simétricamente, lo que reducía significativamente el rendimiento del producto principal. Esta formación de subproducto se adscribía a la acilación en el átomo de nitrógeno de 3-quinuclidinol con formación de una sal de amonio cuaternario, la hidrólisis de la sal con descarboxilación ulterior del ácido formado, seguido por la reacción de la 1-fenil-1,2,3,4-tetrahidroisoquinolina así obtenida con el residuo del agente de acilación.

Excepto por consideraciones detalladas del mecanismo de reacción, los autores de esta invención han comprobado que el subproducto uretano con dos átomos de carbono quirales se obtiene en condiciones muy similares también en el caso de utilización de los reactivos ópticamente activos. Debido a la baja solubilidad en disolventes orgánicos,

este derivado de uretano disustituido es difícil de eliminar del producto final, utilizando métodos de purificación estándar, por ejemplo, cristalización. Por tanto, para obtener solifenacina de pureza farmacéutica, la formación del subproducto uretano debería reducirse significativamente antes de convertir la solifenacina en su sal farmacéuticamente aceptable.

5

10

30

35

40

50

Las sustancias farmacéuticas autorizadas para uso humano tienen que cumplir los requisitos establecidos por la Conferencia Internacional sobre Armonización de los Requerimientos Técnicos para Registro de Productos Farmacéuticos para Uso Humano (ICH). Estos standards imponen la necesidad de desarrollar nuevos métodos más eficaces de síntesis de solifenacina y las sales de la misma, en comparación con los procesos conocidos en la técnica anterior. Siempre que se hace referencia en lo sucesivo a 'solifenacina de pureza farmacéutica', debe entenderse solifenacina o sus sales con ácidos farmacéuticamente aceptables, que incluyen menos de 0,1% de impurezas individuales o menos de 0,4% de impurezas no identificadas en total.

Los intentos realizados para obtener solifenacina de pureza farmacéutica en la reacción de cloruro de (*S*)-1-fenil-1,2,3,4- tetrahidroisoquinolinacarbonilo y (R)-quinuclidinol han demostrado que la pureza del producto final depende acusadamente de la pureza del cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo utilizado en esta reacción. Es generalmente conocido que el cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo puede sintetizarse a partir de 1-(*S*)-fenil-1,2,3,4-tetrahidroisoquinolina quiral por tratamiento con un reactivo de carbonilación, tal como oxicloruro de carbono (fosgeno) gaseoso, cloroformiato de triclorometilo (difosgeno) líquido, carbonato de bis-(triclorometilo) (trifosgeno) sólido, urea y otros. Algunas impurezas que acompañan al cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo, especialmente los residuos de 1-(*S*)-fenil-1,2,3,4-tetrahidroisoquinolina y la solifenacina base, la sal succinato de la primera co-cristaliza con el succinato de solifenacina final. Como se ha dicho anteriormente, la 1-(*S*)-fenil-1,2,3,4-tetrahidroisoquinolina reacciona con la solifenacina obtenida en el paso siguiente, formándose acto seguido el subproducto uretano no deseado.

Inesperadamente, un proceso eficaz para síntesis de solifenacina y sus sales exentas de subproductos indeseables, ha sido desarrollado por los presentes inventores. Este proceso, útil para ser implementado en producción a escala industrial, está basado en proporcionar cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo de pureza no inferior a 98% y su uso en la reacción de acilación de 3-(R)-quinuclidinol.

Sumario de la invención

La presente invención proporciona el proceso que se define en la reivindicación 1 para la preparación de solifenacina y/o de sus sales farmacéuticamente aceptables de alta pureza farmacéutica, caracterizado porque el anión 3-(R)-quinuclidinoloxi generado in situ a partir de 3-(R)-quinuclidinol en presencia de una base fuerte en disolvente orgánico polar se somete a acilación con cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo de pureza química 98% como mínimo, mientras se mantiene constante el exceso de anión en una mezcla de reacción, y después de completarse la reacción la solifenacina base se transforma opcionalmente en sal de solifenacina conforme a procedimientos estándar.

Breve descripción de las figuras

Fig. 1 representa la proyección de cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo a lo largo del eje c.

45 Fig. 2 representa el patrón de difracción en polvo de rayos X de cloruro de (S)-1-fenil-1,2,3,4-tetrahidroiso-quinolinacarbonilo.

Descripción detallada de la invención

El cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo de pureza química adecuada para ser empleado en la síntesis de solifenacina conforme a la presente invención, se obtiene preferiblemente en la reacción de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolina y un exceso molar de trifosgeno, en presencia de una amina terciaria aromática, como agente de barrido de hidrocloruro. El uso de amina aromática impide la formación de impurezas adicionales, que pueden formarse debido a desmetilación de aminas alifáticas en presencia de fosgeno.

Preferiblemente, la cantidad de trifosgeno utilizada conforme a la invención representa 5-15% de exceso molar, con respecto a la cantidad estequiométrica de fosgeno, que es el agente de carbonilación apropiado.

Una amina aromática adecuada es piridina.

60 La reacción se lleva a cabo a 70-90°C en un disolvente inerte, preferiblemente un hidrocarburo aromático, tal como por ejemplo tolueno. La reacción transcurre con rendimiento prácticamente cuantitativo. El hidrocloruro de piridina precipitado se elimina de la mezcla de post-reacción, y la mezcla se evapora para dar un residuo aceitoso. El cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo obtenido en estas condiciones se caracteriza por una pureza química elevada. Cuando se disuelve en un disolvente no polar aprótico, preferiblemente heptano, opcionalmente

con adición de cierta cantidad de disolvente polar (por ejemplo tetrahidrofurano), que evita la cristalización, aquél puede utilizarse directamente en la síntesis de solifenacina farmacéuticamente pura.

Se observó que la pureza química del cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo puede aumentarse utilizando en la reacción un disolvente adecuado, en el cual las impurezas no son solubles y el compuesto intermedio se aísla en forma cristalina. Se obtiene cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo de pureza química 98-99% sin necesidad de recristalizacion, cuando se utiliza un disolvente no polar aprótico, muy preferiblemente heptano.

5

20

- En la realización preferida de la invención, el cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo obtenido en forma aceitosa se disuelve a reflujo en un disolvente no polar aprótico, muy preferiblemente en heptano. La solución se filtra y se deja a 5-10°C para cristalización, y el sólido cristalino se aísla por filtración o decantación.
- El cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo cristalino obtenido se caracteriza por una pureza de 98-99% (analizada por HPLC).

La estructura cristalina del cloruro de (S-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo, que no ha sido publicada hasta ahora en la bibliografía, ha sido resuelta por análisis de rayos X de cristales simples. La densidad calculada, así como los parámetros medidos se recogen en la Tabla 1.

Tabla 1. Datos del cristal y refino de la estructura

Fórmula molecular	C ₁₆ H ₁₄ CINO	
Peso molecular	271,73	
Temperatura de medida	100 K	
Longitud de onda	0,71073 Å	
Sistema cristalino	Monoclínico	
Grupo espacial	P 2(1)	
Dimensiones de la celda unitaria	[Å]: a=7,5153(2), b=7,3857(3), c=12,4080(4)	
	[°]: α=90, β=104, 172(3), γ=90	
Volumen de la celda unitaria	667,75(4) Å ³	
Número de moléculas en la celda unitaria, Z	2	
Densidad (calculada)	1,351 g/cm ³	
Coeficiente de absorción	0,276 mm ⁻¹	
F (000)	284	
Dimensiones del cristal	0,72 x 0,40 x 0,09 mm	
Intervalo theta para recogida de datos	2,80 - 28,67°	
Índices limitantes hkl	-10 ≤ h ≤ 10, -9 ≤ k ≤ 9, -16 ≤ 1 ≤ 16	
Reflexiones recogidas / últimas	12305 / 3200 [R(int) = 0,0157]	
Método de refinamiento	Mínimos cuadrados de matriz completa en F ²	
Datos/restricciones	3200 / 1 / 172	
Bondad de ajuste	1,077	
R [I > 2 sigma (I)]	R1 = 0,0239, wR2 = 0,0629	
R (todos los datos)	R1 = 0,0266, wR2 = 0,0637	
Diferencia máxima de pico y hueco	0,219 y -0,181 eÅ ⁻³	

El empaquetamiento de las moléculas en la red del cristal se representa en Fig. 1.

El cloruro de (*S*)-1-fenil-1, 2, 3,4-tetrahidroisoquinolinacarbonilo cristalino aislado en el proceso de la invención se caracteriza por un patrón de difracción en polvo de rayos X (*XR*PD) sustancialmente como se presenta en Fig. 2.

4

En el patrón de difracción de rayos X, los picos característicos se presentan como distancias interlineares d (A), ángulos de difracción 2θ (°), e intensidades relativas, con respecto al pico de difracción más intenso, I/I₀, como se representa en la Tabla 2:

Tabla 2. Difracción en polvo de rayos X de cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo

d [Å]	2θ [°]	I/I ₀ [%]
12,203	7,24	2
7,317	12,09	20
7,090	12,47	65
6,362	13,91	23
6,128	14,44	10
5,219	16,98	49
4,536	19,55	100
4,374	20,29	34
4,228	20,99	21
4,090	21,71	44
3,776	23,54	69
3,672	24,21	62
3,586	24,81	43
3,301	26,99	53
3,066	29,10	16

5

En el paso crucial de la preparación de solifenacina conforme a la invención, el anión (*R*)-3-quinuclidinoloxi, generado *in situ*, se hace reaccionar con cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo. El último puede añadirse como una solución de la forma cristalina disuelta en un disolvente polar aprótico o aceite bruto disuelto en una mezcla de disolventes apróticos polares y no polares.

10

Los métodos de generación de aniones orgánicos son conocidos por los expertos en la técnica y comprenden el tratamiento con bases fuertes, tales como por ejemplo hidruros de metales alcalinos, especialmente hidruro de sodio; alcóxidos de metales alcalinos, por ejemplo ter-butóxido de potasio; hidróxidos y carbonatos de metales alcalinos, como por ejemplo hidróxido de sodio o carbonato de sodio. La reacción puede llevarse a cabo en sistemas monofásicos o bifásicos.

15

La reacción en un sistema bifásico se realiza utilizando solución acuosa de hidróxido de sodio en un disolvente polar, tal como tetrahidrofurano, dioxano, dimetilsulfóxido, dimetilformamida, dimetil-acetamida, N-metilpirrolidona, en presencia de un catalizador de transferencia de fase, especialmente sales de amonio cuaternario, tales como cloruro de bencil-trietilamonio, bromuro de tetrabutilamonio o hidrosulfato de tetrabutilamonio.

20

En la realización preferida de la invención, se genera el anión (*R*)-3-quinuclidinoloxi con el uso de hidróxido de sodio en un disolvente polar aprótico, tal como tetrahidrofurano, dioxano, dimetilsulfóxido, dimetilformamida, dimetilacetamida, N-metilpirrolidona, o sus mezclas.

25

En esta realización, la reacción de acilación se lleva a cabo en un sistema monofásico, en disolvente aprótico polar, opcionalmente con adición de un disolvente no polar, tal como pentano, heptano, hexano, ciclohexano, metilciclohexano, que se utiliza para disolver el cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo.

30

Preferiblemente, la reacción de acilación se lleva a cabo en tetrahidrofurano, opcionalmente en una mezcla con heptano.

35

El modo óptimo de realización de la invención es como sigue. Se añade lentamente la solución de cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo a la suspensión de anión (R)-3-quinuclidinoloxi generado *in situ*. La adición gota a gota transcurre a una temperatura comprendida entre la temperatura ambiente y la de reflujo de la mezcla de reacción, después de lo cual la solución se calienta a reflujo hasta que se consumen totalmente los sustratos, monitorizándose el progreso de la reacción por cromatografía en capa fina (TLC).

La presente invención proporciona un proceso para la preparación de solifenacina de pureza química adecuada para su utilización directa en la formación de sales ácidas de solifenacina farmacéuticamente aceptables, especialmente succinato de solifenacina, sin purificación adicional.

El succinato de solifenacina se obtiene siguiendo procedimientos estándar, por reacción de cantidades equimolares de solifenacina base y succínico en cualquier disolvente orgánico o en una mezcla en de disolventes, en la cual se forma la sal de solifenacina. Disolventes adecuados incluyen alcoholes alifáticos, tales como etanol, butan-1-ol, alcohol 2-metil-butílico, isopropanol; cetonas como acetona, metil-isobutil-cetona; ésteres tales como acetato de etilo, acetato de n-butilo, propionato de etilo; hidrocarburos aromáticos tales como tolueno; o hidrocarburos alifáticos polares tales como heptano. El producto cristalino puede someterse a cristalización adicional en el mismo disolvente en el que se formó la sal, preferiblemente en isopropanol.

Con indiferencia del disolvente utilizado, se obtiene el producto cristalino caracterizado por el mismo patrón de difractograma en polvo de rayos X. Este hecho prueba que el succinato de solifenacina cristaliza como una sola forma cristalina.

La realización preferida de la invención comprende el proceso para la preparación de solifenacina, en el cual se hace reaccionar (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolina con trifosgeno en presencia de una amina terciaria aromática, preferiblemente piridina, en hidrocarburo aromático, después de lo cual la mezcla de post-reacción se evapora y se trata con un disolvente no polar aprótico a reflujo, se deja a 5-15°C para cristalización, se aísla el cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo como un sólido cristalino de pureza 98%, preferiblemente mayor que 99%, se disuelve en un disolvente polar aprótico y se añade a una suspensión de anión (*R*-3-quinuclidinol-óxido *generado in situ* en el mismo disolvente.

La presente invención proporciona un proceso simple y eficiente para la preparación de solifenacina y/o sus sales farmacéuticamente aceptables, especialmente succinato de solifenacina caracterizado por una pureza farmacéutica alta

La invención se ilustra por los ejemplos que siguen, que no deben interpretarse como limitación alguna de su alcance de la alcance.

Ejemplos

15

20

30

35

40

45

50

55

60

Métodos de medida

El punto de fusión se midió por calorimetría de barrido diferencial con un aparato Mettler Toledo DSC 822, utilizando un crisol de aluminio, con velocidad de calentamiento 10°C/min. El valor del punto de fusión se designa como 'comienzo', que se determina como la sección transversal de las tangentes de la línea base y la curva.

Las medidas de cristales simples se realizaron con un difractómetro de cristales simples tipo eje κ KM4CCD, para la radiación MoK α .

Los datos de difracción en polvo de rayos X se obtuvieron utilizando un difractómetro de polvo de rayos X Rigaku tipo MiniFlex, equipado con detector CuKα, λ = 1,54056 Å, utilizando los parámetros de medida siguientes: intervalo de escaneo 2θ desde 3º a 40º

velocidad de escaneo $\Delta\omega$ 0,5°/mon.

paso de escaneo 0,03º

detector - contador de centelleo

Los datos obtenidos se elaboraron y se analizaron utilizando el programa DHN_PDS.

Ejemplo 1

A. Cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo

En un matraz de 3 bocas, se prepara la solución de trifosgeno (10,87 g, 36,63 mmol) en tolueno (60 mL) a la temperatura ambiente (23°C), y se pone luego el reactor en un baño de refrigeración hielo-agua. En un matraz separado, se ponen (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolina (20,0 g, 25,55 mmol, pureza 99% (HPLC) y piridina (3,26 mL, 40,30 mmol) en tolueno (80 mL), mientras se calienta a 50-70°C hasta que se disuelve la cantidad total de sólidos. Después de enfriar a la temperatura ambiente, la solución toluénica clara se transfiere a un embudo de goteo. Se añade gota a gota la solución en el transcurso de aproximadamente 10 min a trifosgeno en solución toluénica. Cuando se ha completado la adición, se retira el baño de enfriamiento y el reactor se sumerge en un baño de aceite. La mezcla de reacción se calienta a 70-80°C, y mientras tanto se disuelve lentamente el sólido amarillo denso. Una vez que la temperatura de reacción alcanza 50°C, se continúan el calentamiento y la agitación durante 45 min, hasta que se observa la desaparición de la señal de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolina (control por TLC en CH₂Cl₂-MeOH 95:5, v/v contra la muestra de sustrato). Una vez completada la reacción, la mezcla se enfría a la temperatura ambiente (20-24°C), y se filtra a través de Celita para eliminar el hidrocloruro de piridinio precipitado. La capa de Celita se lava con tolueno (20 mL). Se retira el tolueno (145 mL) a presión reducida (0,1-0,15 mmHg) de la mezcla de post-reacción, mientras se calienta el matraz de condensación en un baño de agua a 60-

 65° C. El residuo /aceitoso se disuelve en heptano (200 mL) a reflujo y la solución caliente se filtra a través de Celita (20 g), y se lava con heptano antes de filtración. La capa de Celita se lava con heptano caliente (2 × 50 mL) después de filtración. El exceso de disolvente (170 mL) se elimina a presión reducida; la solución concentrada a aproximadamente la mitad de su volumen se deja a 5°C durante 12 horas. Se separa por filtración un sólido cristalino incoloro y se lava con heptano (2 × 15 mL). Se obtiene cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo en 23,3 g, con rendimiento de 90%; pureza (HPLC) 98,4%; $T_{\text{(comienzo)}}$ = 62,7°C.

B. Solifenacina

10

15

20

25

30

35

40

50

55

Se suspenden (*R*)-3-quinuclidinol (11,0 g, 96,50 mmol) y NaH (3,80 g, 95,10 mmol) en THF seco (70 mL), y la mezcla resultante se calienta a reflujo durante 45 min. A la suspensión espesa de color blanco obtenida, se añade gota a gota cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo (23,30 g, 86,0 mmol) en THF (50 mL) en el transcurso de una hora a reflujo. Una vez completada la adición, se continúan la agitación y el calentamiento durante 30 min. El progreso de la reacción y el consumo total de cloruro de (*S*-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo se monitorizan por TLC. La señal del producto en formación se observa en CH₂Cl₂-MeOH (9:1, v/v). Una vez completada la reacción, se interrumpe el calentamiento y la mezcla de reacción se enfría a la temperatura ambiente (20-24°C). La solución se vierte en agua (100 mL). Se separan las capas, se extrae la fase acuosa con tolueno (3 × 50 mL), se lavan con agua las fases orgánicas combinadas (1 × 60 mL), se secan (Na₂SO₄), se filtran y se concentran a presión reducida hasta sequedad. Se obtiene un aceite cremoso espeso, que se utiliza subsiguientemente en el paso siguiente. Pureza (HPLC) 97,19%.

Ejemplo comparativo

A. Cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo

En un matraz de 3 bocas se prepara la solución de trifosgeno (10,87 g, 36,63 mmol) en tolueno (60 mL) a la temperatura ambiente (23°C), y se pone luego el reactor en un baño de refrigeración hielo-agua. En un matraz separado se ponen (S)-1-fenil-1,2,3,4-tetrahidroisoquinolina (20,0 g, 95,55 mmol, pureza 99% (HPLC)) y piridina (3,26 mL, 40,30 mmol) en tolueno (80 mL), mientras se calienta a 50-70°C hasta que se disuelve la cantidad total de sólidos. Después de enfriar de nuevo a la temperatura ambiente, la solución toluénica clara se transfiere a un embudo de goteo. La solución se añade gota a gota en el transcurso de aproximadamente 10 min a la solución de trifosgeno en tolueno. Una vez completada la adición, se retira el baño de enfriamiento y el reactor se sumerge en un baño de aceite. La mezcla de reacción se calienta a 70-80°C, y entre tanto el sólido amarillo denso se disuelve lentamente. Una vez que la temperatura de reacción alcanza 50°C, se continúan el calentamiento y la agitación durante 45 min, hasta que se observa la desaparición de la señal de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolina (control por TLC en CH₂Cl₂-MeOH 9:5, v/v contra una muestra de sustrato). Una vez completada la reacción, la mezcla se enfría a la temperatura ambiente (20-24°C), y se filtra a través de Celita para separar el hidrocloruro de piridinio precipitado. La capa de Celita se lava con tolueno (20 mL). El tolueno (145 mL) se separa a presión reducida (0,1-0.15 mmHq) de la mezcla de post-reacción, mientras se calienta el matraz de condensación en un baño de aqua a 60-65°C. El residuo aceitoso se disuelve en heptano (200 mL) a reflujo y a solución caliente se filtra a través de Celita (20 g), y se lava con heptano antes de filtración. Después de la filtración, la capa de Celita se lava con heptano caliente (2 × 50 mL). Se retira el exceso de disolvente (170 mL a presión reducida; la solución concentrada a aproximadamente la mitad de su volumen, se diluye con THF (20 mL) para proporcionar la cristalización del compuesto intermedio. La solución se utiliza subsiguientemente en el paso siguiente. La muestra de la solución se somete a análisis HPLC; la pureza de esta muestra es 97,91%.

45 B. Solifenacina

Se suspenden (*R*)-3-quinuclidinol (12,15 g, 95,55 mmol) y NaH al 60% (4,20 g, 105,0 mmol) en THF seco (90 mL), y la solución resultante se calienta a reflujo durante 45 min. A la suspensión blanca espesa se añade gota a gota cloruro de (*S*-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo en la solución de THF-heptano obtenida en el paso anterior, en el transcurso de una hora a reflujo. Una vez completada la adición, se continúan la agitación y el calentamiento durante 30 min. El progreso de la reacción y el consumo total de cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo se monitorizan por TLC. La señal del producto en formación se observa en CH₂Cl₂-MeOH (9:1, v/v). Una vez completada la reacción, se interrumpe el calentamiento y la mezcla de reacción se enfría a la temperatura ambiente (20-24°C). La solución se vierte en agua (100 mL). Se separan las capas, se extrae la fase acuosa con tolueno (3 × 50 mL), las fases orgánicas combinadas se lavan con agua (1 × 60 mL), se secan (Na₂SO₄), se filtran y se concentran a presión reducida hasta sequedad. Se obtiene un aceite espeso de color crema, que se utiliza subsiguientemente en el paso siguiente. Pureza (HPLC) 96,09%.

Ejemplo 2

Succinato de solifenacina

La solifenacina aceitosa bruta (35 g) obtenida en el Ejemplo 1 se disuelve en isopropanol (100 mL) a la temperatura ambiente (20-24°C). En un matraz separado, se prepara la solución de ácido succínico (11,30 g, 95,55 mmol) en isopropanol (130 mL) a reflujo durante 5 min. La solución de ácido succínico caliente se añade lentamente a la solución de solifenacina en isopropanol. Se deja que la mezcla resultante alcance la temperatura ambiente. A aproximadamente 45°C, la mezcla se vuelve turbia y comienza a precipitar un sólido blanco cristalino. La solución se

ES 2 541 668 T3

deja a la temperatura ambiente durante 2 horas y 30 min. El sólido cristalino se separa por filtración y se lava en isopropanol frío (10°C) (3 × 40 mL), secándose a continuación a presión reducida (0,1-0,15 mmHg, temperatura ambiente, 2 horas) para dar una masa seca. Después de dos pasos, se obtiene succinato de solifenacina en 38,9 g, (rendimiento 84,8%), de pureza (HPLC) 99,39%. El producto final (38 g) se recristaliza en isopropanol (150 mL), obteniéndose 34,4 g (90,7%) de succinato de solifenacina de pureza (HPLC) 99,71%; $T_{\text{(comienzo)}} \approx 150^{\circ}\text{C}$.

5

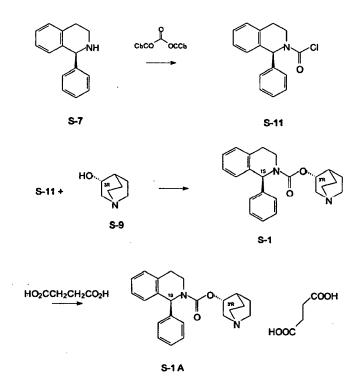
REIVINDICACIONES

1. Un proceso para la preparación de solifenacina y/o sus sales farmacéuticamente aceptables de pureza farmacéutica elevada, caracterizado por que

5

10

15


30

- a) se hace reaccionar (S)-1-fenil-1,2,3,4-tetrahidroisoquinolina con trifosgeno en presencia de una amina terciaria aromática en hidrocarburo aromático,
- b) la mezcla de post-reacción se evapora y se trata un disolvente no polar aprótico a reflujo, y se deja a 5-15°C para cristalización,
- c) el cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo resultante se aísla como sólido cristalino de pureza 98% como mínimo,
- d) el producto obtenido en el paso c) se disuelve en un disolvente polar aprótico y se añade a una suspensión de anión (R)-3-quinuclidinoloxi generado *in situ* a partir de 3-(R)-quinuclidinol en presencia de una base fuerte en el mismo disolvente.
- e) la reacción de acilación del anión (*R*)-3-quinuclidinoloxi con cloruro de (*S*)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo se lleva a cabo en un disolvente polar aprótico, opcionalmente en mezcla con un disolvente no polar, mientras se mantiene un exceso constante de anión en la mezcla de reacción, f) una vez completada la reacción, la solifenacina base se transforma opcionalmente en sal de solifenacina conforme a procedimientos estándar.
- 20 2. El proceso conforme a la reivindicación 1, **caracterizado por que** el disolvente polar aprótico se selecciona del grupo de disolventes constituido por tetrahidrofurano, dioxano, dimetilsulfóxido, dimetil-acetamida, dimetilformamida, N-metilpirrolidona o mezclas de los mismos.
- 3. El proceso conforme a las reivindicaciones 1 a 2 **caracterizado por que** el disolvente no polar aprótico se selecciona del grupo constituido por pentano, heptano, hexano, ciclohexano, metilciclohexano o mezclas de los mismos.
 - 4. El proceso conforme a las reivindicaciones 1 a 3 **caracterizado por que** el disolvente polar aprótico es tetrahidrofurano y el disolvente no polar aprótico es heptano.
 - 5. El proceso conforme a las reivindicaciones 1 a 4 **caracterizado por que** la amina terciaria aromática es piridina.
- 6. El proceso conforme a las reivindicaciones 1 a 5 **caracterizado por que** la solución de cloruro de (*S*)-1-35 fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo se añade a la mezcla de reacción a una temperatura comprendida entre la temperatura ambiente y la de reflujo, y la mezcla de reacción se calienta a reflujo.
- El proceso conforme a las reivindicaciones 1 a 6 caracterizado por que el cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo se aísla en forma cristalina, caracterizada por el patrón de difracción de rayos X siguiente, obtenido con radiación CuKα (λ = 1,54056 Å), presentado como distancias interplanares d (Å), ángulos de difracción 2θ (°) e intensidades relativas con respecto al pico de difracción más intenso, I/I₀ (%):

d [Å]	2q [°]	I/I ₀ [%]	
12,203	7,24	2	
7,317	12,09	20	
7,090	12,47	65	
6,362	13,91	23	
6,128	14,44	10	
5,219	16,98	49	
4,536	19,55	100	
4,374	20,29	34	
4,228	20,99	21	
4,090	21,71	44	
3,776	23,54	69	
3,672	24,21	62	
3,586	24,81	43	

ES 2 541 668 T3

d [Å]	2q [°]	I/I ₀ [%]
3,301	26,99	53
3,066	29,10	16

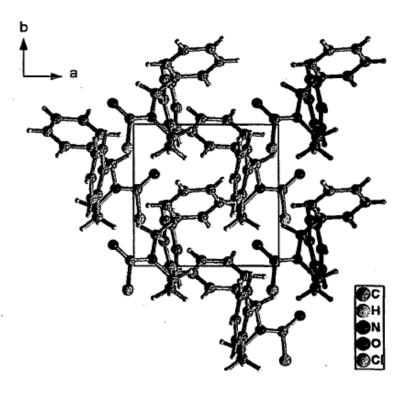


Fig. 1. Proyección de cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonil a lo largo del eje c.

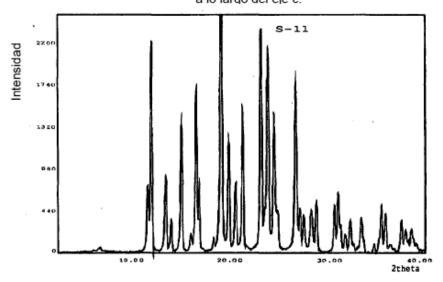


Fig. 2. Difractograma en polvo de rayos X de cloruro de (S)-1-fenil-1,2,3,4-tetrahidroisoquinolinacarbonilo.