

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 542 147

51 Int. Cl.:

B41F 9/18 (2006.01) **B41F 13/20** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 29.08.2007 E 07803019 (4)
 (97) Fecha y número de publicación de la concesión europea: 22.04.2015 EP 2057017
- (54) Título: Grupo impresor de una máquina de impresión por huecograbado
- (30) Prioridad:

01.09.2006 DE 102006041314

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 31.07.2015

(73) Titular/es:

WINDMÖLLER & HÖLSCHER KG (100.0%) MÜNSTERSTRASSE 50 49525 LENGERICH, DE

- (72) Inventor/es:
 - **BRINKMANN, CLEMENS**
- 74 Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Grupo impresor de una máquina de impresión por huecograbado

10

15

20

25

35

40

45

50

La invención se refiere a un sistema para la impresión de bandas de material a imprimir.

Para la impresión de bandas de material a imprimir son conocidos diversos sistemas, que operan según diferentes principios de impresión. La presente invención se refiere a tales sistemas, que operan según el principio de impresión por huecograbado.

Con este principio de impresión, se emplean cilindros de impresión dotados la mayoría de las veces de una superficie metálica, en la que que está grabado el motivo de impresión. Actualmente, para ello se realizan mediante rayos láser cavidades, que transportan luego la tinta, en las superficies de los cilindros. Estos cilindros son denominados cilindros de forma.

Durante el proceso de impresión, estos cilindros de forma son sumergidos en una cubeta de tinta y recogen así la tinta a aplicar sobre el material a imprimir. La tinta sobre las zonas del cilindro no formadoras de imagen es retirada entonces mediante un dispositivo de rasqueta. El material a imprimir, que se desplaza sobre un contrasoporte denominado cilindro compresor, toma la tinta entonces directamente del cilindro de forma. Por regla general, en una máquina de impresión por huecograbado están previstos varios grupos impresores por huecograbado individuales, para hacer posible una impresión multicolor.

Si tras la finalización de un encargo de impresión hay que cambiar el motivo de impresión, es conocido a partir de la solicitud de patente DE 100 21 398 A1 extraer del grupo impresor por huecograbado en dirección radial el cilindro de forma, que durante el proceso de impresión se apoya sobre rodillos de cojinete. El bastidor de máquina del grupo impresor por huecograbado tiene para ello huecos correspondientes. En sentido inverso, puede suministrarse al grupo impresor un nuevo cilindro de forma.

Como cilindros de forma de este tipo, que se proporcionan como un todo para diferentes encargos de impresión, son muy caros, últimamente se han desarrollado tendencias para realizar los cilindros de forma en varias piezas y estructurar de forma fácilmente separable los distintos componentes. Así, tales cilindros de forma constan a menudo de un mandril de cilindro, sobre el que puede colocarse una camisa de cilindro, en que esta última lleva el motivo de impresión propiamente dicho. Por ello, para los diferentes motivos de impresión sólo hay que proporcionar las camisas de cilindro, mientras que un mandril de cilindro puede emplearse para diferentes encargos de impresión. Las camisas de cilindro y los mandriles de cilindro deben ser montados antes del equipamiento del grupo impresor formando un cilindro de forma, para poder ser introducidos en el grupo impresor por huecograbado.

30 Los documentos EP 0 485 913 A y US 3 098 433 A forman también parte del estado de la técnica.

Constituye la tarea de la presente invención proponer un sistema con el que pueda llevarse a cabo más sencillamente el cambio de motivo.

La tarea es resuelta mediante las características de la reivindicación 1.

Según ella, un sistema conforme a la invención comprende al menos un cilindro de forma con muñones de cojinete extremos, que puede ser insertado en dirección radial en el grupo impresor por huecograbado. Además, el sistema comprende sin embargo también al menos un mandril de cilindro, que puede ser introducido en el grupo impresor en vez del cilindro de forma. Sobre este mandril, dispuesto en el grupo impresor, pueden ser colocadas entonces diferentes camisas de cilindro en la dirección axial del mandril de cilindro, sin que el mandril de cilindro tenga que ser extraído del grupo impresor. Con ello, mediante una simple sustitución de las camisas de cilindro puede modificarse por lo tanto el motivo de impresión, u opcionalmente, cuando el motivo de impresión está realizado en un cilindro de forma con muñones de cojinete extremos, mediante el reemplazo del cilindro de forma o del mandril de cilindro por el nuevo cilindro de forma. De este modo, el grupo impresor ofrece la posibilidad de organizar el cambio de motivo de la forma más sencilla posible, existiendo la posibilidad de seguir empleando cilindros de forma conocidos, que son mantenidos durante años para encargos de impresión recurrentes. El cilindro de forma o el mandril de cilindro, introducido en vez de aquél en el grupo impresor, pueden ser unidos entonces de forma solidaria en rotación a un accionamiento del grupo impresor por huecograbado, de modo que el accionamiento puede transferir al cilindro el momento de giro necesario para la rotación. El accionamiento, que sirve por lo tanto como accionamiento de giro para el cilindro de forma o para el mandril de cilindro, comprende aquí un rotor y un estátor, en que los cilindros están unidos de forma solidaria en rotación al rotor y el estátor se apoya mediante apoyos de momento de giro apropiados por ejemplo en al menos un bastidor lateral del grupo impresor por huecograbado. Con la presente invención se genera también la posibilidad de aplicar de forma flexible la máquina de impresión por huecograbado. Para productos de alto valor cualitativo se emplean a menudo cilindros de forma frecuentemente usuales, que tienen por regla general una elevada estabilidad. Para productos que deben ser fabricados de la forma más económica posible, se ofrecen mandriles de cilindro con camisas de cilindro. Ambos tipos de cilindros pueden ser aplicados

conforme a la invención en un grupo impresor por huecograbado. Este grupo impresor por huecograbado está conformado correspondientemente en lo relativo a sus propiedades técnicas, como se expone a continuación.

Es ventajoso aquí que el accionamiento del grupo impresor por huecograbado sea desplazable en la dirección axial del cilindro en cuestión. Para ello, el estátor puede estar guiado sobre carriles, que pueden estar unidos al bastidor lateral. El rotor, que está soportado mediante cojinetes de giro apropiados de forma giratoria dentro de o junto al estátor, pero de forma axialmente no desplazable, está unido mediante un acoplamiento apropiado a los muñones del cilindro de forma o del mandril de cilindro. Para la sustitución del cilindro de forma o del mandril de cilindro, sólo tiene que ser soltado el acoplamiento y ser desplazado el accionamiento en dirección axial hasta que el muñón del cilindro queda libre, de modo que el cilindro de forma o el mandril de cilindro puede ser extraído del grupo impresor en dirección radial. Alternativamente, el rotor puede ser desplazable axialmente dentro del estátor. El estátor no tiene entonces que ser desplazable, sino que puede estar unido de forma fija, por ejemplo al bastidor del grupo impresor por huecograbado. Para acoplar o respectivamente desacoplar el cilindro de forma o el mandril de cilindro simplemente hay que desplazar entonces el rotor.

Por el extremo, opuesto al accionamiento, del cilindro de forma o del mandril de cilindro puede estar dispuesto, en una forma de realización ventajosa, un cojinete de sostenimiento, que es desplazable igualmente en dirección axial. Con este cojinete de sostenimiento, desplazable sobre un muñón de cojinete y que comprende un cojinete de giro, puede ser apoyado el cilindro durante el proceso de impresión. Este cojinete de sostenimiento puede ser desplazado o hecho bascular además en la dirección radial del cilindro, para hacer posible una retirada axial de la camisa de cilindro respecto al mandril de cilindro.

En una forma de realización ventajosa de la invención están previstos medios de sujeción, que sujetan el cilindro de forma o el mandril de cilindro en una posición, en la que su eje está alineado con los ejes del cojinete de sostenimiento y/o del accionamiento, cuando el cojinete de sostenimiento y/o el accionamiento todavía no están o ya no están en contacto con el cilindro de forma o con el mandril de cilindro o todavía no sujetan o ya no sujetan fijamente el cilindro de forma o el mandril de cilindro. Éste es en particular el caso cuando un dispositivo de transporte transfiere el cilindro en cuestión al grupo impresor para el montaje o poco antes el dispositivo de transporte recoge el cilindro. Por supuesto, la posición de transferencia o recogida puede diferenciarse de la posición alineada con el cojinete de sostenimiento o con el accionamiento. Es importante aquí que los medios de sujeción puedan llevar el cilindro a una posición alineada. Por posición alineada se entiende aquella posición, en la que los ejes de giro del accionamiento, en particular el eje de giro del rotor, está alineado con el eje de giro del cilindro de forma o del mandril de cilindro.

Otras formas de realización de la invención se deducen de la descripción concreta y de las reivindicaciones.

Las distintas figuras muestran:

10

	la figura 1a	una vista lateral sobre un grupo impresor durante el montaje de un cilindro de forma,
	la figura 1b	una vista del corte A-A de la figura 1a,
35	la figura 2a	una vista lateral sobre un grupo impresor tras el montaje de un cilindro de forma,
	la figura 2b	una vista del corte B-B de la figura 1a,
	la figura 3a	una vista lateral sobre un grupo impresor durante el montaje de un mandril de cilindro,
	la figura 3b	una vista del corte C-C de la figura 3a,
	la figura 4a	una vista lateral sobre un grupo impresor durante el montaje de una camisa de cilindro,
40	la figura 4b	una vista del corte D-D de la figura 4a,
	la figura 5a	una vista lateral sobre un grupo impresor tras la colocación completa de una camisa de cilindro,
	la figura 5b	una vista del corte E-E de la figura 5a,
	la figura 6a	una vista lateral sobre un grupo impresor, en el que el brazo de sujeción y la palanca de fijación están aplicados a la camisa de cilindro,
45	la figura 6b	una vista del corte F-F de la figura 6a,
	la figura 7a	una vista lateral sobre un grupo impresor, en el que el brazo de sujeción y la palanca de fijación están aplicados a la camisa de cilindro y el cojinete de sostenimiento está desplazado,
	la figura 7b	una vista del corte G-G de la figura 7a.

la figura 7c una vista del corte H-H de la figura 7a,

15

20

50

55

la figura 8 una vista lateral sobre un grupo impresor, en el que el mandril de cilindro está desplazado,

la figura 9 una vista lateral sobre un grupo impresor, en el que el mandril de cilindro ha sido llevado

nuevamente a la posición de partida según la figura 7,

5 la figura 8 una vista lateral sobre un grupo impresor, del que ha sido retirada la camisa de cilindro.

Las figuras 1a y 1b muestran un cilindro de forma 2, que es sujetado de cara al montaje en el grupo impresor 1. El cilindro de forma 2 comprende aquí una zona de impresión cilíndrica 3, en cuya superficie metálica está grabado el motivo de impresión. A través de uno o varios escalones anulares, el cilindro de forma 2 tiene continuación en e los muñones de cojinete 4 y 5. Los muñones de cojinete 4 y 5 sobresalen lateralmente más allá de las paredes de bastidor lateral 6 y 7 del grupo impresor 1, el cual dispone por esta razón de escotaduras 8 a modo de ranura, de modo que el cilindro de forma 2 puede ser introducido en dirección radial, que está indicada por la flecha doble R, en el grupo impresor 1. La escotadura 8 realizada en la pared de bastidor lateral 7 tiene mayores dimensiones que la de la pared de bastidor lateral 6. La introducción del cilindro de forma 2 o también del mandril de cilindro puede producirse mediante un dispositivo de transporte y/o transferencia adecuado, con el que el cilindro de forma 2 o el mandril de cilindro puede ser transportado hacia el grupo impresor por huecograbado y/o el cilindro 2 o el mandril pueden ser suministrados al grupo impresor. Si el cilindro de forma ha sido introducido en la dirección R en el grupo impresor por huecograbado, entonces, en la zona de los extremos del cilindro de forma, respectivamente un brazo de sujeción 9 puede ser puesto en contacto con el cilindro de forma. Cada brazo de sujeción 9 es aplicado para ello desde abajo al cilindro de forma. Cuando se ha producido esto, el dispositivo de transporte y/o de transferencia puede liberar el cilindro de forma, ya que es sujetado ahora por los brazos de sujeción.

En la situación representada en la figura 1a, el cilindro de forma 2 es sujetado por los medios de sujeción, conformados como brazos de sujeción 9, dentro del grupo impresor 1, en que los ejes del cilindro de forma 2, del cojinete de giro 11 que se encuentra dentro del alojamiento de cojinete 10 y del accionamiento 12 están alineados. Los brazos de sujeción 9 tienen cavidades 13, en las que están insertados segmentos del cilindro de forma 2, de 25 modo que éste no se puede caer rodando de los brazos de sujeción 9. Para este fin están previstas también palancas de fijación 14, que tienen igualmente cavidades 15. Los brazos de sujeción 9 y la palanca de fijación 14, en el ejemplo de realización representado, están soportados de forma basculante en torno a puntos de giro aplicados a las paredes de bastidor lateral 6 y 7. Los brazos de sujeción 9 y la palanca de fijación 14 pueden estar colocados sin embargo por principio en otros componentes del grupo impresor 1 o incluso en un dispositivo que no está unido al 30 grupo impresor. Así es imaginable que el dispositivo de transporte v/o transferencia no mostrado, pero anteriormente citado, comprenda elementos de sujeción tales como por ejemplo brazos de sujeción 9 y palancas de fijación 14. En el marco de la invención es imaginable además otra posibilidad de movimiento de los brazos de sujeción y de las palancas de fijación, aparte del movimiento de basculación. Así, es imaginable una posibilidad de desplazamiento lateral sencilla.

Respectivamente un brazo de sujeción 9 y una palanca de fijación 14 son hechas bascular por un accionamiento. Un accionamiento así, que está representado en las figuras como unidad de émbolo y cilindro 17, actúa de modo no representado más detalladamente sobre los componentes previamente citados. El movimiento de un brazo de sujeción 9 y de la palanca de fijación 14 asociada a él pueden estar acoplados entre sí por medios apropiados, por ejemplo medios de engranajes, para hacer posible una captura uniforme del cilindro de forma.

Los brazos de sujeción 9 y las palancas de fijación 14 están articulados a los lados, orientados uno hacia otro, de las paredes de bastidor lateral, pero están posicionados de tal modo que capturan el cilindro de forma fuera de la zona de impresión 3 sensible a la presión. Al menos una combinación de un brazo de sujeción 9 y de una palanca de fijación 14 tiene unas dimensiones tales que se oponen de forma duradera al movimiento de volcado del cilindro de forma, cuando éste sólo es sujetado por una combinación de brazo de sujeción/palanca de fijación y por el accionamiento o cojinete dispuesto en el mismo bastidor de pared lateral.

En la situación representada en la figura 1a, sólo hay que colocar el cojinete 11 y el accionamiento 12 axialmente en dirección a los muñones de cojinete 4 y 5 sobre ellos.

Tras la colocación del cojinete 11 y del accionamiento, los brazos de sujeción 9 y los medios de fijación 14 pueden ser soltados y retirados del cilindro de forma. Entonces se hace posible el proceso de impresión. Esta situación está representada en las figuras 2a y 2b.

Las figuras 3a y 3b muestran una situación análoga a las figuras 1a y 1b, en la que sin embargo en vez de un cilindro de forma ha sido dispuesto en el grupo impresor un mandril de cilindro 18. El mandril de cilindro 18 es sujetado por los brazos de sujeción 9 y las palancas de fijación 14 ya descritos anteriormente. A diferencia de la situación representada en la figura 1a, el alojamiento de cojinete 10 ha sido movido no sólo en dirección axial, sino también en dirección radial. De este modo, el alojamiento de cojinete deja libre el camino, para poder colocar la camisa de cilindro de impresión 19 con posterioridad sobre el mandril de cilindro 18. Es posible por supuesto equipar

el mandril de cilindro ya con una camisa, que es necesario que sea incluida en el grupo impresor para el primer encargo de impresión. Para el montaje de la camisa 19, para un mandril ya introducido en el grupo impresor son sin embargo necesarios varios pasos, que son explicados con ayuda de las figuras 4a y 4b.

En las figuras 4a y 4b puede reconocerse que el accionamiento 12 ya ha sido colocado sobre el muñón de cojinete 4 y ha sido acoplado a éste. Tras ello, los brazos de sujeción 9 y las palancas de fijación 14 pueden ser soltados del mandril de cilindro 18, de modo que la camisa de cilindro 19 puede ser colocada atravesando la pared de bastidor lateral 7 sobre el mandril de cilindro 18. Entre la superficie interior de la camisa de cilindro 19 y la superficie exterior del mandril de cilindro 18 puede ser insuflado aire comprimido, que estira ligeramente el mandril de cilindro para reducir las fuerzas de de fricción. El rotor del accionamiento 12 se apoya aquí con al menos dos cojinetes de giro sobre el estátor o respectivamente el alojamiento de accionamiento, para que puedan ser absorbidas fuerzas de palanca provocadas por el mandril de cilindro sujetado sólo por un extremo en esta situación. Alternativamente a ello, por principio también el brazo de sujeción 9 asociado al bastidor lateral 6 puede sujetar el mandril de cilindro 18. En este caso, el motor de accionamiento operar también con un único cojinete de giro.

Las figuras 5a y 5b muestran el mandril de cilindro 18 con una camisa de cilindro 19 completamente colocada sobre él. La zona del mandril de cilindro 18 que recibe la camisa de cilindro 19 es denominada a continuación segmento de recepción de camisa 20. El mandril de cilindro 18 puede estar equipado con denominadas camisas de ajuste por alargamiento, que hacen posible una fijación de la camisa de cilindro sobre el mandril 18. En la situación representada, el brazo de sujeción 9 y la palanca de fijación 14 asociados a la pared de bastidor lateral 7 han capturado nuevamente el extremo, orientado hacia el cojinete de sostenimiento 11, del mandril de cilindro 18 y han levantado éste hasta el punto en que el eje del mandril 18 está nuevamente alineado con el eje del cojinete 11. Este paso es necesario, ya que no se puede evitar que el mandril 18, sujetado sólo por un extremo, baje un poco por su extremo libre. El brazo de sujeción 9 está por lo tanto en disposición de levantar nuevamente el extremo correspondiente del mandril de cilindro 18. También el alojamiento de cojinete 10 ha sido movido nuevamente de forma radial, de modo que los ejes del mandril de cilindro 18 y del cojinete 11 quedan nuevamente alineados. Tras ello, el alojamiento de cojinete puede ser nuevamente desplazado axialmente, de modo que el cojinete 11 rodea el muñón de cojinete 5 y el brazo de sujeción 9 y la palanca de fijación 14 pueden ser retirados. Esta situación que se produce con ello está representada en las figuras 6a y 6b. El cilindro, que consta de mandril 18 y camisa 19, está ahora preparado para imprimir.

Las figuras 7a, 7b y 7c muestran un alojamiento de cojinete 10 desplazado en dirección axial y radial. El brazo de sujeción 9 y la palanca de fijación 14 asociados a la pared de bastidor lateral 6 están juntadas hasta el punto en que entre ellos queda todavía una separación, que es mayor que el diámetro exterior del segmento de recepción de cilindro 20, pero menor que el diámetro exterior de la camisa de cilindro 19 (véase la figura 7c). De este modo, el brazo de sujeción 9 y la palanca de fijación 14 son llevados a las zonas del lado frontal 21 de la camisa de cilindro 21. Si ahora el accionamiento 12 es desplazado en dirección axial A, sin que el muñón de cojinete 4 sea desacoplado, el mandril de cilindro 18 es extraído parcialmente de la camisa 19, que permanece en su posición debido al brazo de sujeción 9 y la palanca de fijación 14. Esta situación está representada en la figura 8. El brazo de sujeción 9 y la palanca de fijación están equipados para ello con piezas amortiguadoras 22, que evitan que la camisa de cilindro 19 sea dañada. Si ahora el accionamiento 12 es desplazado nuevamente en la dirección opuesta, el mandril de cilindro 18 retorna nuevamente a su posición de partida, pero la camisa de cilindro 19 está desplazada hacia la pared de bastidor lateral 7 respecto a la posición de partida (véase la figura 9). En esta posición, la camisa puede ser agarrada por el personal de servicio y retirada del grupo impresor en dirección axial (figura 10).

Lista de símbolos de referencia		
1	Grupo impresor	
2	Cilindro de forma	
3	Zona de impresión cilíndrica	
4	Muñón de cojinete	
5	Muñón de cojinete	
6	Pared de bastidor lateral	
7	Pared de bastidor lateral	
8	Escotadura a modo de ranura	
9	Brazo de sujeción	

15

20

25

30

35

40

Lista de símbolos de referencia		
10	Alojamiento de cojinete	
11	Cojinete de giro	
12	Accionamiento	
13	Cavidad	
14	Palanca de fijación	
15	Cavidad	
16	Perno	
17	Unidad de pistón y cilindro	
18	Mandril de cilindro	
19	Camisa	
20	Segmento de recepción de cilindro	
21	Lado frontal de la camisa de cilindro	
22	Pieza de amortiguación	
Α	Dirección axial	
R	Flecha doble para la indicación de la dirección radial	

REIVINDICACIONES

- 1. Sistema para la impresión de una banda de material a imprimir, que comprende:
 - al menos un grupo impresor por huecograbado (1),
 - al menos un cilindro de forma (2) con muñones de cojinete extremos (4, 5),
 - al menos un mandril de cilindro (18), que está conformado para recibir camisas de cilindro (19), que llevan motivos de impresión, sin que el mandril de cilindro (18) tenga que ser retirado del grupo impresor por huecograbado (1),
- en que el cilindro de forma (2) o el mandril de cilindro (18) puede ser introducido en el grupo impresor por huecograbado y puede ser unido de forma solidaria en rotación a un accionamiento del grupo impresor por huecograbado,
 - en que el cilindro de forma o el mandril de cilindro puede ser sujetado mediante brazos de sujeción (9) y palancas de fijación (14) en posición alineada con el accionamiento,
 - en que los brazos de sujeción (9) y las palancas de fijación (14) están articulados a los lados, orientados uno hacia otro, de las paredes de bastidor lateral (6, 7).
 - 2. Sistema según la reivindicación 1,

caracterizado porque

5

15

25

30

el accionamiento (12) del grupo impresor por huecograbado (1) es desplazable en la dirección axial del cilindro de forma (2) o respectivamente del mandril de cilindro (18).

20 3. Sistema según una de las reivindicaciones precedentes,

caracterizado porque

en el grupo impresor por huecograbado (1) está previsto un cojinete de sostenimiento (10), con el que puede ser soportado un muñón de cojinete extremo (4, 5) del cilindro de forma (2) o un extremo axial del mandril de cilindro (18) y el cual (18) puede ser movido tanto en la dirección axial como también en la dirección radial del cilindro (2) o respectivamente del mandril (18).

4. Sistema según una de las reivindicaciones precedentes,

caracterizado porque

están previstos medios de sujeción (9), con los cuales pueden ser sujetados el cilindro de forma (2) o respectivamente el mandril de cilindro (18) en una posición alineada con los ejes del accionamiento (12) y/o del cojinete de sostenimiento (10).

5. Sistema según una de las reivindicaciones precedentes,

caracterizado porque

cada medio de sujeción (9) lleva asociado un medio de fijación (14) basculante, con el que puede ser apretado contra el medio de sujeción (9) el cilindro de forma (2) o el mandril de cilindro (18).

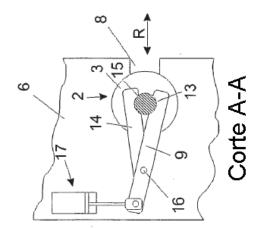
35 6. Sistema según una de las reivindicaciones precedentes,

caracterizado porque

cada medio de sujeción (9) y/o cada medio de fijación (14) puede ser movido mediante una unidad de accionamiento (12).

7. Sistema según una de las reivindicaciones precedentes,

40 caracterizado

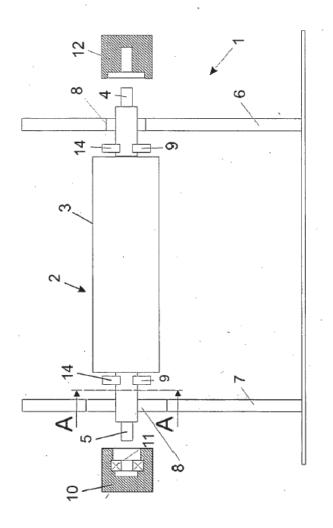
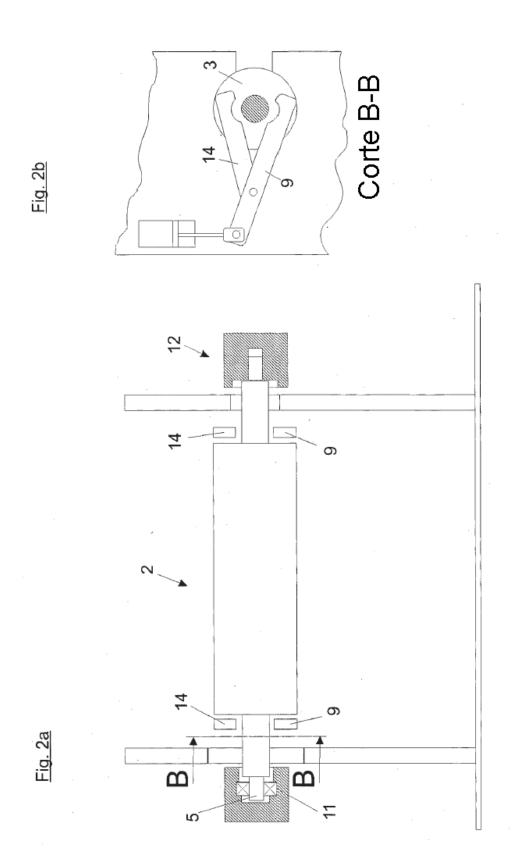

porque el mandril de cilindro (18) está fijado también al accionamiento (12) de modo axialmente no desplazable, y

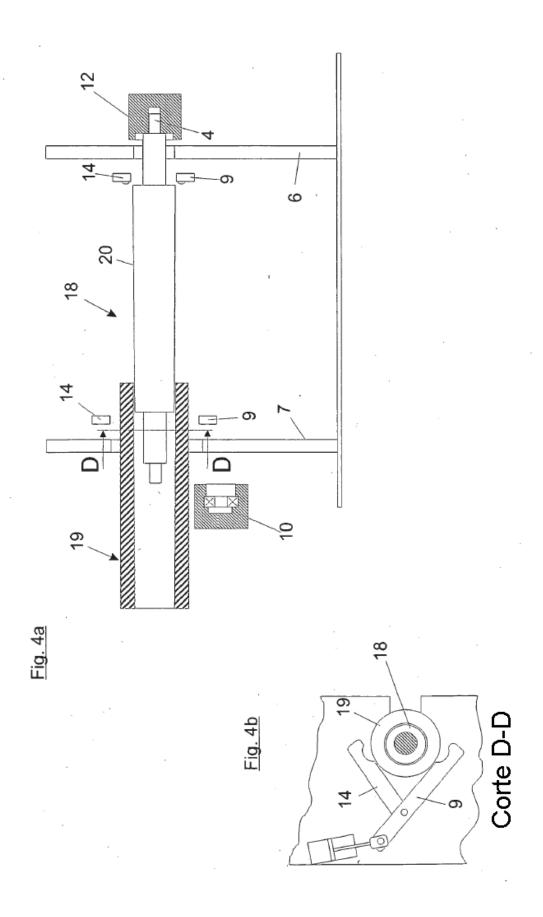
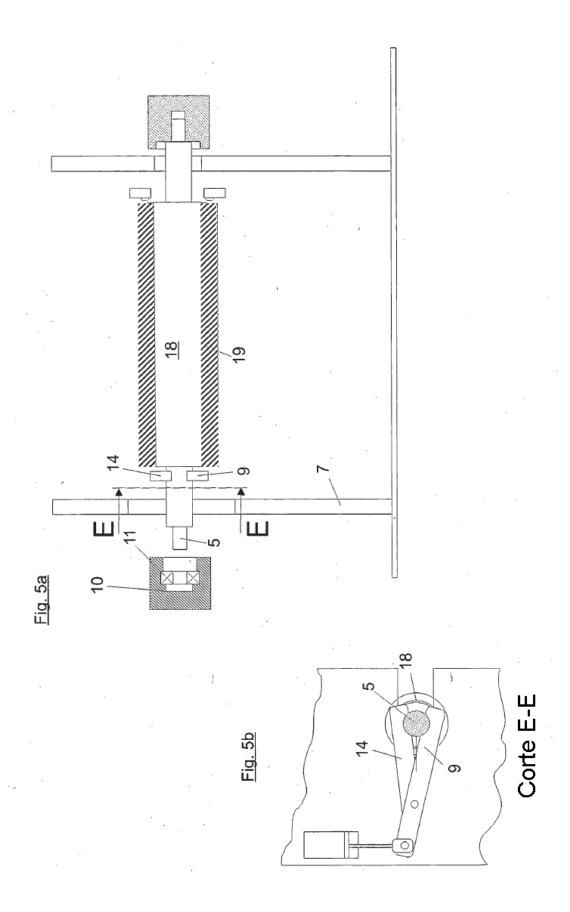
porque uno de los medios de sujeción (9) es aplicable al lado frontal de una camisa de cilindro (19) montada sobre el mandril de cilindro, de modo que en caso de desplazamiento axial del mandril de cilindro (18) la camisa de cilindro (19) es desplazable con relación al mandril de cilindro (18).

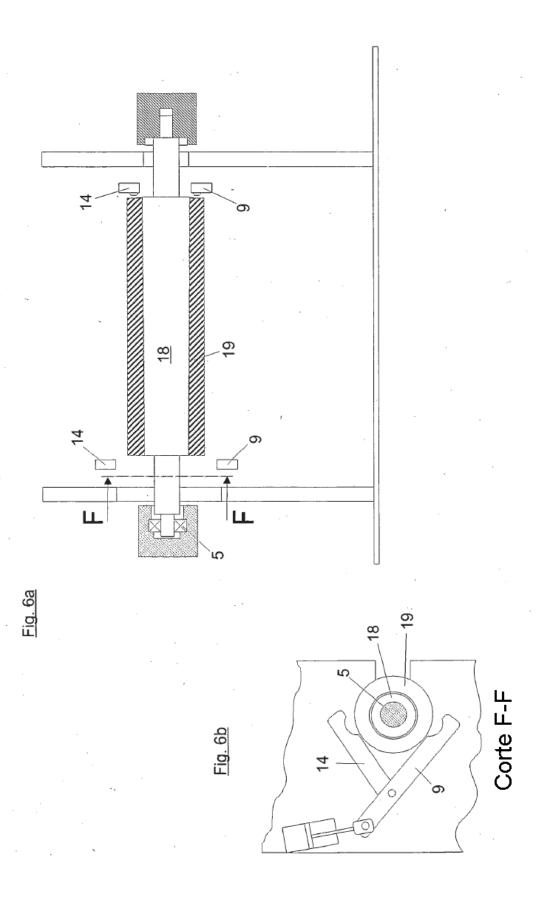
- 8. Procedimiento para equipar un grupo impresor por huecograbado (1) con un motivo de impresión, que es aplicado sobre una banda de material a imprimir, en cuyo procedimiento
 - un mandril de cilindro (18), que está estructurado para recibir camisas de cilindro (19) que llevan motivos de impresión, sin que el mandril de cilindro (18) tenga que ser retirado del grupo impresor por huecograbado (1),
- en que un cilindro de forma (2) con un muñón extremo o el mandril de cilindro (18) es introducido en el grupo impresor por huecograbado y es unido de forma solidaria en rotación a un accionamiento de rotación del grupo impresor por huecograbado,
 - en que el cilindro de forma o el mandril de cilindro son sujetados en posición alineada con el accionamiento de rotación mediante brazos de sujeción (9) y palancas de fijación (14), los cuales (9, 14) están articulados a los lados, orientados uno hacia otro, de las paredes de bastidor lateral (6, 7).

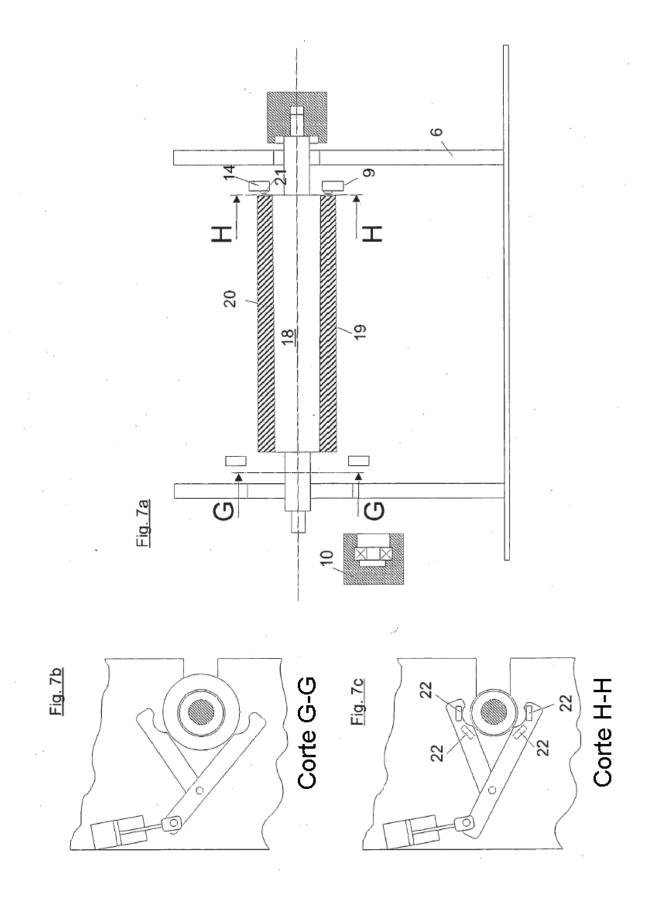
15

5


Fig. 1a



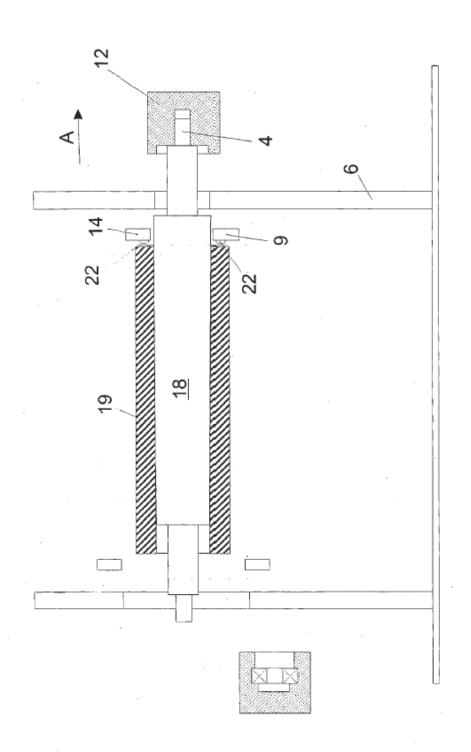


Fig. 8

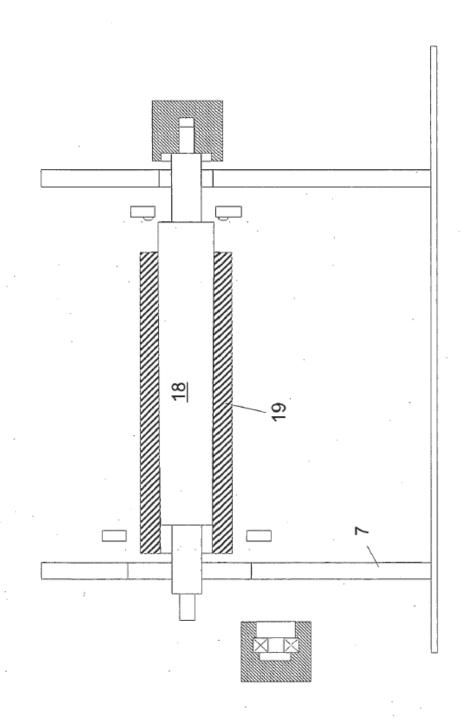


Fig. 9

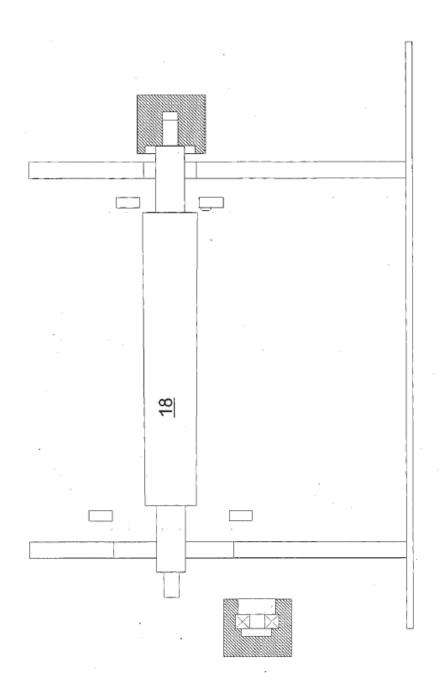


Fig. 10