

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 543 056

51 Int. Cl.:

A61K 39/145 (2006.01) C12N 7/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 18.10.2006 E 06826264 (1)
 (97) Fecha y número de publicación de la concesión europea: 22.04.2015 EP 1937301
- (54) Título: Partículas funcionales similares al virus de la gripe (VPL)
- (30) Prioridad:

18.10.2005 US 727513 P 10.03.2006 US 780847 P 15.05.2006 US 800006 P 17.07.2006 US 831196 P 21.07.2006 US 832116 P 19.09.2006 US 845495 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 14.08.2015

(73) Titular/es:

NOVAVAX, INC. (100.0%) 9920 BELWARD CAMPUS DRIVE ROCKVILLE MD 20850, US

(72) Inventor/es:

SMITH, GALE; BRIGHT, RICK; PUSHKO, PETER; ZHANG, JINYOU y MAHMOOD, KUTUB

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

Observaciones:

Véase nota informativa (Remarks) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Partículas funcionales similares al virus de la gripe (VPL)

Antecedentes de la invención

10

15

45

50

55

60

65

El virus de la gripe es un miembro de la familia Orthomyxoviridae (para una revisión, véase Murphy y Webster, 1996). Hay tres subtipos de virus de gripe que se han designado A, B, y C. El virión de la gripe contiene un genoma ARN segmentado en sentido negativo. El virión de la gripe incluye las siguientes proteínas: hemaglutinina (HA), neuraminidasa (NA), matriz (M1), proteína del canal ion protón (M2), nucleoproteína (NP), proteína 1 básica polimerasa (PB1), proteína 2 básica polimerasa (PB2), proteína ácida polimerasa (PA), y proteína 2 no estructural (NS2). Las HA, NA, M1 y M2 están asociadas a la membrana, mientras que NP, PB1, PB2, PA, y NS2 son proteínas asociadas a la nucleocápside. La NS1 es la única proteína no estructural que no se asocia con partículas de virión sino que es específica de las células infectadas con gripe. La proteína M1 es la proteína más abundante en las partículas de gripe. Las proteínas HA y NA son glucoproteínas de la envoltura, responsables de la unión y penetración de las partículas víricas en la células, y fuentes de los epítopos inmunodominantes principales para la neutralización vírica y la inmunidad protectora. Tanto las proteínas HA como NA se consideran los componentes más importantes para las vacunas profilácticas de gripe.

La infección por virus de la gripe se inicia por la unión de la proteína HA de la superficie del virión a un receptor celular que contiene ácido siálico (glucoproteínas y glucolípidos). La proteína NA interviene en el proceso del receptor de ácido siálico, y la penetración del virus en la célula depende de la endocitosis mediada por receptor dependiente de HA. En los confines ácidos de los endosomas internalizados que contienen un virión de gripe, la proteína HA se somete a cambios conformacionales que dan lugar a la fusión de las membranas de la células huésped y vírica seguidos por la pérdida de recubrimiento y la liberación mediada por M2 de las proteínas M1 de las ribonucleoproteínas asociadas con la nucleocápside (RNP), que migra en el núcleo de la célula para la síntesis vírica. Los anticuerpos contra la molécula HA evita la infección vírica neutralizando la infectividad del virus, mientras que los anticuerpos contra las proteínas NA producen su efecto en las etapas tempranas de la replicación vírica.

Las vacunas de virus de gripe A y B tienen licencia actualmente como vacunas trivalentes para administración 30 parenteral. Estas vacunas trivalentes se producen como volumen monovalente en la cavidad alantoidea de embriones de pollo, se purifican por tasa de centrifugación zonal o cromatografía en columna, se inactivan con formalina o β-propiolactona, y se formulan como una mezcla de las dos cepas de tipo A y la cepa de tipo B de los virus de gripe en circulación entre la población humana en un año determinado. Las vacunas comerciales 35 disponibles de gripe son vacunas víricas de virus entero (WV) o subviriones (SV; antígeno de superficie fraccionado o purificado). La vacuna de WV contiene viriones intactos, inactivados. Las vacunas SV que se tratan con disolventes tales como tri-n-butil-fosfato (Flu-Shield, Wyeth-Lederle) contienen casi todas las proteínas víricas estructurales y algunas de las envolturas víricas. Las vacunas SV solubilizadas con Triton X-100 (Fluzone, Sanofi-Aventis; Fluvirin, Novartis) contienen principalmente agregados de monómeros HA, NA, y NP, aunque están presentes cantidades residuales de otras proteínas víricas estructurales. Recientemente se concedió la aprobación de comercialización de una vacuna vírica atenuada adaptada al frío por la FDA para su uso comercial como una vacuna de suministro intranasal indicada para la inmunización activa y la prevención de la enfermedad producida por los virus de gripe A y B en niños sanos y adolescentes, de 5-17 años de edad y adultos sanos de 18-49 años de

Se han desarrollado varios productos recombinantes como candidatos de vacunas de gripe recombinantes. Estas estrategias se dirigen a la expresión, producción y purificación de proteínas HA y NA de virus gripe tipo A, incluyendo la expresión de estas proteínas utilizando células de insecto infectadas por baculovirus (Crawford et al., 1999; Johansson, 1999; Treanor *et al.*, 1996), vectores víricos (Pushko *et al.*, 1997; Berglund *et al.*, 1999), y construcciones de vacuna ADN (Olsen *et al.*, 1997).

Crawford *et al.* (1999) han demostrado que la HA de gripe expresada en células de insecto infectadas con baculovirus es capaz de evitar la enfermedad de gripe letal causada por los subtipos de gripe aviar H5 y H7. Al mismo tiempo, otro grupo ha demostrado que las proteínas HA y NA de gripe expresada por baculovirus inducen respuestas inmunitarias superiores en animales que las inducidas por una vacuna convencional (Johansson *et al.*, 1999).La inmunogenicidad y eficacia de la hemaglutinina del virus de gripe equina que se expresa por baculovirus se comparó con un candidato de vacuna ADN homóloga (Olsen *et al.*, 1997). En conjunto, los datos demostraban que se puede inducir un alto grado de protección contra la exposición al virus de gripe con proteínas HA y NA recombinantes, utilizando varias estrategias experimentales y en diferentes modelos animales.

Lakey et al. (1996) demostraron que una vacuna de HA de virus de gripe derivada de baculovirus era bien tolerada e inmunogénica en voluntarios humanos en un estudio de seguridad de dosis escalada en Fase I. Sin embargo, los resultados de los estudios en Fase II realizados en varios sitios clínicos en voluntarios vacunados con varias dosis de vacunas de gripe que comprendían proteínas HA y/o NA indicaban que las vacunas de subunidades proteicas recombinantes no producían una inmunidad protectora [G. Smith, Protein Sciences; M. Perdue, USDA, Personal Communications]. Estos resultados indicaban que los epítopos conformacionales presentados en la superficie de

peplómeros HA y NA de viriones infecciosos eran importantes en la producción de anticuerpos neutralizantes e inmunidad protectora.

Con respecto a la inclusión de otras proteínas del virus de la gripe en los candidatos de vacunas recombinantes de gripe, se llevaron a cabo varios estudios, incluyendo los experimentos que implicaban la nucleoproteína del virus de la gripe, NP, sola o en combinación con proteína M1 (Ulmer et al., 1993; Ulmer et al., 1998; Zhou et al., 1995; Tsui et al., 1998). Estos candidatos de vacunas, que estaba compuestos de proteínas internas de virión casi invariables, producían una inmunidad de amplio espectro que era primariamente celular (tanto células T CD4+ como CD8+ de memoria) Estos experimentos implicaban el uso de los vectores genéticos víricos o ADN. Se necesitaban cantidades relativamente grandes de ADN inyectado, ya que los resultados de los experimentos con dosis bajas de ADN indicaban poca o ninguna protección (Chen et al., 1998). Además, se pueden necesitar más investigaciones preclínicas y clínicas para evaluar si tales estrategias basadas en ADN que implican la NP y M1 de la gripe son seguras, eficaces, y persistentes.

Recientemente, en un intento para desarrollar vacunas más eficaces para la gripe, se utilizaron proteínas particuladas como vehículos de epítopos de proteína M2. El razonamiento para el desarrollo de una vacuna basada en M2 era que en estudios animales la inmunidad protectora contra la gripe se producía por proteínas M2 (Slepushkin *et al.*, 1995). Neirynck *et al.* (1999) utilizaron un dominio transmembrana de 23 aa como pareja de fusión aminoterminal con el antígeno central del virus de la hepatitis B (HBcAg) para exponer el epítopo M2 en la superficie de partículas tipo cápside de HBcAg. Sin embargo, a pesar del hecho de que tanto la proteína M2 de longitud completa como VLP M2-HBcAg inducían anticuerpos detectables y protección en ratones, era improbable que se basaran vacunas de gripe en el futuro basadas exclusivamente en la proteína M2, ya que la proteína M2 estaba presente en un bajo número de copias por virión, era débilmente antigénica, era incapaz de producir anticuerpos que se unieran a los viriones de gripe libres, y era incapaz de bloquear la unión del virus a los receptores celulares (es decir, neutralización del virus).

Aunque la investigación previa ha demostrado que las glucoproteínas de superficie del virus de gripe, HA y NA, son las primeras dianas para la producción de inmunidad protectora contra el virus de la gripe y que M1 proporciona una diana conservada par inmunidad células contra la gripe, un nuevo candidato puede incluir estos antígenos víricos como una partícula proteica macromolecular, tal como partículas similares a virus (VLP). Además, la partícula con estos antígenos de gripe pueden presentar epítopos conformacionales que produzcan anticuerpos neutralizantes contra múltiples cepas de virus de gripe.

Varios estudios han demostrado que las proteínas de virus de la gripe recombinantes podrían auto ensamblarse en VLP en cultivo celular utilizando plásmidos de expresión en mamíferos o vectores de baculovirus (Gomez-Puertas *et al.*, 1999; Neumann *et al.*, 2000; Latham y Galarza, 2001). Gomez-Puertas *et al.* (1999) demostraron que la formación eficaz de VLP de gripe depende de los niveles de expresión de las proteínas víricas. Neumann *et al.* (2000) estableció un sistema basado en plásmido de expresión en mamíferos para generar partículas similares a virus de gripe infecciosas totalmente de ADNc clonados. Latham y Galarza (2001) comunicaron de la formación de VPL de gripe en células de insecto infectadas con baculovirus recombinante que co-expresaba genes HA, NA, M1 y M2. Estos estudios demostraban que las proteínas del virión de gripe puede auto ensamblarse en la co-expresión en células eucariotas.

Sumario de la invención

45

10

30

50

55

65

La presente invención proporciona una partícula similar a virus (VLP) que comprende una proteína M1 del virus de la gripe y proteínas hemaglutininas (HA) y neuraminidasa (NA) del virus de gripe. La secuencia de aminoácidos de dicha proteína M1 es al menos idéntica en un 98 % a la SEC ID Nº 49, y la VLP se expresa a partir de una célula de insecto. Opcionalmente, dichas HA y NA son H5 y N1 respectivamente. En una realización, la proteína M1 se deriva de una cepa de virus de gripe diferente en comparación con proteínas H5 y N1. En otra realización, dicha H5 o N1 es del clado 1 del virus de gripe H5N1.

Dicha VLP puede producir anticuerpos neutralizantes en un ser humano o un animal que sean protectores contra la infección de gripe cuando se administra la VLP a dicho ser humano o animal.

La presente invención también proporciona una composición inmunógena que comprende una dosis eficaz de una VLP de la invención. En una realización, dicha composición comprende un adyuvante.

La presente invención también proporciona una vacuna que comprende una dosis eficaz de una VLP e la invención.

En una realización, dicha vacuna comprende al menos una segunda VLP que comprende HA y NA de diferentes cepas de gripe. En otra realización, dicha vacuna comprende un adyuvante.

La presente invención también proporciona dicha vacuna para su uso en un método para inducir inmunidad sustancial contra la infección por virus de gripe en un animal, que comprende la administración de al menos una dosis eficaz de una vacuna que comprende la VLP de la invención. En una realización, dicha vacuna se administra a un animal por vía oral, intradérmica, intranasal, intramuscular, intraperitoneal, intravenosa, o subcutánea.

La presente invención también proporciona el uso de una VLP de la invención para la preparación de una vacuna para un animal, en que la vacuna induce una inmunidad sustancial contra la infección por el virus de gripe en dicho animal.

La presente invención también proporciona un método para fabricar una VLP de la invención, que comprende la expresión de dichas proteínas M1, HA y NA en una célula de insecto.

La presente solicitud también describe una estructura proteica macromolecular que contiene (a) una primera proteína M1 del virus de gripe y (b) una proteína estructural adicional, que puede incluir una segunda o más proteínas M1 del virus de gripe; una primera, segunda o más proteína HA de virus de gripe; una primera, segunda o más proteína M2 de virus de gripe. Si la proteína estructural adicional no es de una segunda o más proteína M1 de virus de gripe, entonces ambos o todos los miembros del grupo, por ejemplo, la primera y segunda proteínas M2 de virus de gripe están incluidas. Por tanto, se proporciona una estructura proteica funcional, que incluye una partícula subvírica, VLP, o estructura de capsómero, o una parte de los mismos, una vacuna, una vacuna multivalente, y mezclas de los mismos que consisten esencialmente en proteínas estructurales del virus de gripe que se producen por el método de la invención. En una realización particularmente preferida, la estructura proteica macromolecular de gripe incluye proteínas HA, NA y M1 de virus de gripe que son los productos de expresión de genes del virus de gripe clonados como fragmentos sintéticos a partir de un virus tipo silvestre.

20

25

30

35

10

15

La estructura proteica macromolecular también puede incluir también puede incluir una proteína estructural adicional, por ejemplo, una nucleoproteína (NP), proteínas de membrana de especies distintas de virus no de gripe y una proteína de membrana de una fuente no de gripe, que se derivan de orígenes aviares o mamíferos y diferentes subtipos de virus de gripe, que incluye los virus de gripe subtipos A y B. La estructura proteica macromolecular puede incluir una estructura proteica macromolecular quimérica, que incluye una parte de al menos una proteína que tiene un resto no producido por el virus de gripe.

Se puede conseguir la prevención de la gripe proporcionando una estructura proteica macromolecular que se pueden auto-ensamblar en una célula huésped a partir de una construcción recombinante. La estructura proteica macromolecular de la invención tiene la capacidad de auto-ensamblarse en partículas similares a virus (VLP) homotípicas o heterotípicas que presentan epítopos conformacionales en proteínas HA y NA, que producen anticuerpos neutralizantes que son protectores. La composición puede ser una composición vacunal, que también contienen un vehículo o diluyente y/o un adyuvante. Las VLP de gripe funcionales producen anticuerpos neutralizantes contra una o más cepas o tipos de virus de gripe dependiendo de si las VLP de gripe funcionales contienen proteínas HA y/o NA de una o más cepas o tipos víricos. La vacuna puede incluir proteínas del virus de gripe que son proteínas del virus de gripe tipo silvestre. Preferentemente, las proteínas estructurales que contienen la VLP de gripe, o una parte de las mismas, se pueden derivar de varias cepas o de virus de gripe tipo silvestre. Las vacunas de gripe pueden administrarse a seres humanos o animales para producir inmunidad protectora contra una o más cepas o tipos de virus de gripe.

40

45

50

55

60

Las estructuras proteicas macromoleculares de la invención pueden mostrar actividad hemaglutinina y/o actividad neuraminidasa.

La solicitud describe un método para producir una VLP que se deriva de la gripe construyendo una construcción recombinante que codifica genes estructurales de gripe, incluyendo M1,

HA, y al menos una proteína estructural derivada del virus de la gripe. Una construcción recombinante que se utiliza para transfectar, infectar, o transformar una célula huésped adecuada con el baculovirus recombinante. La células huésped se cultiva bajo condiciones que permiten la expresión de M1, HA y al menos una proteína estructural deriva del virus de gripe y la VLP se forma en la célula huésped. Los medios celulares infectados que contienen una VLP de gripe funcional se recolectan y se purifica la VLP. El método también presenta una etapa adicional de cotransfección, co-infección o co-transformación de la célula huésped con una segunda construcción recombinante que codifica una segunda proteína de gripe, incorporando de esta manera una segunda proteína de gripe en la VLP. Tales proteínas estructurales se pueden derivar del virus de gripe, incluyendo NA, M2 y NP, y al menos una proteína estructural que se deriva de orígenes aviares o de mamífero. La proteína estructural puede ser un virus de gripe de subtipo A y B. La célula huésped puede ser una célula eucariota. Además, la VLP puede ser una VLP quimérica.

La solicitud también describe un método para formular una sustancia farmacológica que contiene un VPL de gripe introduciendo construcciones recombinantes que codifican genes víricos de gripe en células huésped y permitiendo el auto-ensamblaje de las proteínas vírica recombinantes de gripe en una VLP homotípica o heterotípica en las células. La VLP de gripe se aísla y se purifica y se formula una sustancia farmacológica que contiene la VLP de gripe. La sustancia farmacológica puede incluir además un adyuvante. Además, la solicitud proporciona un método para formular un producto farmacológico, mezclando tal sustancia farmacológica que contiene una VLP de gripe con una vesícula lipídica, es decir, una vesícula lipídica no iónica. Por lo tanto, las VLP homotípicas y heterotípicas pueden aparecer como partículas envueltas a partir de las células infectadas. Las VLP de gripe que surgen se pueden aislar y purificar por ultracentrifugación o cromatografía en columna como sustancias farmacológicas y se

formulan solas o con adyuvantes tales como Novasomes®, un producto de Novavax, Inc., como productos farmacológicos tales como vacunas. Novasomes®, que proporciona un aumento del efecto inmunológico, se describe además en la Pat. de EE. UU. № 4.911.928.

- La solicitud describe un método para detectar la inmunidad humoral contra la infección por el virus de la gripe en un vertebrado proporcionando un reactivo de ensayo que incluye una cantidad eficaz de detección de anticuerpo de proteína de virus de gripe que tiene al menos un epítopo conformacional de una estructura macromolecular del virus de gripe. El reactivo de ensayo se pone en contacto con una muestra de fluido corporal de un vertebrado que se va a examinar en cuanto a infección por virus de la gripe. Se permite que los anticuerpos específicos del virus de gripe que contiene la muestra se unan al epítopo conformacional de una estructura macromolecular del virus de gripe para que formen complejos antígeno-anticuerpo. Los complejos se separan de complejos no unidos y se ponen en contacto con un agente de unión de inmunoglobulinas marcado detectablemente. Se determina la cantidad de agente de unión de inmunoglobulinas marcado detectablemente que está unido a los complejos.
- El virus de gripe se puede detectar en un especimen de un animal o ser humano sospechoso de estar infectado con el virus proporcionando anticuerpos, que tengan un marcador que produzca una señal detectable, o que estén unidos a un reactivo marcado detectablemente, que tienen especificidad contra al menos un epítopo conformacional de la partícula de virus de gripe. El especimen se pone en contacto con anticuerpos y se permite que los anticuerpos se unan al virus de gripe. La presencia del virus de la gripe en el especimen se determina por medio del marcador detectable.
 - La solicitud proporciona métodos para el tratamiento, prevención, y generación de una respuesta inmunitaria protectora administrando a un vertebrado una cantidad eficaz de la composición de la invención.
- De manera alternativa, la sustancia farmacológica de VLP de gripe se puede formular como reactivos de laboratorio para estudios de la estructura del virus de gripe y ensayos de diagnóstico clínico. La solicitud también describe un kit para el tratamiento del virus de gripe administrando una cantidad eficaz de una composición de la invención e instrucciones para su uso.
- La solicitud también describe una VLP que comprende proteínas HA, NA y M1 que se derivan del virus de gripe aviar que puede producir morbilidad y mortalidad en un vertebrado.
 Dichas proteína HA, NA y M1 se pueden derivar de un virus de gripe aviar tipo A. La HA se puede seleccionar de entre el grupo que consiste en H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15 y H16 y la NA se puede seleccionar de entre el grupo que consiste en N1, N2, N3, N4, N5, N6, N7, N8 y N9. Opcionalmente, dichas proteínas HA y NA son H5 y N1, respectivamente. De manera alternativa, dichas proteínas HA y NA son H9 y N2, respectivamente. Dicha HA y/o NA pueden mostrar actividad hemaglutinina y/o actividad neuraminidasa, respectivamente.
- La VLP puede consistir esencialmente en proteínas HA, NA y M1, es decir, son sustancialmente las únicas proteínas de gripe en la VLP.
 - La solicitud también describe un método para producir una VLP, que comprende la transfección de vectores que codifican proteínas del virus de gripe aviar en células huésped adecuadas y la expresión de dichas proteínas de virus de gripe bajo condiciones que permitan que se formen las VLP.
 - Este método puede implicar la transfección de una célula huésped con moléculas de ADN recombinante que codifican solo las proteínas HA, NA y M1.
- La solicitud también describe una formulación antigénica que comprende una VLP que comprende proteína HA, NA y M1 derivadas del virus de gripe aviar que puede producir morbilidad y mortalidad en un vertebrado. La HA se puede seleccionar de entre el grupo que consiste en H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15 y H16 y la NA se puede seleccionar de entre el grupo que consiste en N1, N2, N3, N4, N5, N6, N7, N8 y N9. Opcionalmente, dichas proteínas HA y NA son H5 y N1, respectivamente.
- 55 De manera alternativa, dichas proteínas HA y NA son H9 y N2, respectivamente.

45

- Dicha formulación antigénica se puede administrar al sujeto por vía oral, intradérmica, intranasal, intramuscular, intraperitoneal, intravenosa, o subcutánea.
- La solicitud proporciona además un método de vacunación de un vertebrado contra el virus de la gripe aviar que comprende la administración a dicho vertebrado una cantidad que induce protección de una VLP que comprende proteínas HA, NA y M1 derivadas de un virus de gripe aviar.
- La presente solicitud también describe un método para inducir una inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto, que comprende la administración al menos de una dosis eficaz de una VLP de gripe. Dicha VLP puede consistir esencialmente en HA, NA y M1. De manera alternativa

dicha VLP comprende proteínas de gripe, en que dichas proteínas de gripe consisten en HA, NA y M1. Dicha HA y/o NA puede mostrar actividad hemaglutinina y/o actividad neuraminidasa, respectivamente.

La presente solicitud también describe un método para inducir una inmunidad sustancial contra la infección por virus de la gripe o al menos un síntoma de la misma en un sujeto, que comprende la administración de al menos una dosis eficaz de una VLP de gripe aviar. Dicha VLP de gripe puede consistir esencialmente en HA, NA y M1 aviar.

La presente solicitud describe además un método para inducir una inmunidad sustancial contra la infección por un virus de gripe o al menos un síntoma de la misma en un sujeto, que comprende la administración de al menos una dosis eficaz de una VLP de gripe estacional. Dicha VLP de gripe puede consistir esencialmente en HA, NA y M1 estacionales.

La presente solicitud describe además un método para inducir una inmunidad sustancial contra la infección del virus de la gripe o al menos un síntoma de la misma en un sujeto, que comprende la administración de al menos una dosis eficaz de al menos una VLP de gripe estacional.

Dicha VLP de gripe puede comprender HA, NA y M1 de gripe estacional. De manera alternativa, dicha VLP de gripe puede consistir esencialmente en HA, NA y M1 de gripe estacional.

20 La presente solicitud describe además un método para inducir una respuesta de anticuerpos sustancialmente protectora contra la infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto, que comprende la administración de al menos una dosis eficaz de una VLP de gripe.

La presente solicitud describe un método para inducir una respuesta inmunitaria celular sustancialmente protectora contra la infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto, que comprende la administración de al menos una dosis eficaz de una VLP de gripe.

La presente solicitud describe además un método para formular una vacuna que induce inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma a un sujeto, que comprende la adición a dicha formulación de una dosis eficaz de VLP de gripe.

Dicha inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma se puede suministrar en una dosis. De manera alternativa, dicha inmunidad sustancial contra la infección por virus de gripe o al menos un síntoma de la misma se suministra en múltiples dosis.

La presente solicitud describe además una vacuna que comprende una VLP de gripe, en que dicha vacuna induce una inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma cuando se administra a un sujeto. Opcionalmente, dicha VLP de gripe es una VLP de gripe aviar. De manera alternativa, dicha VLP de gripe es una VLP de gripe estacional.

La presente solicitud describe además una formulación antigénica que comprende una VLP de gripe, en que dicha vacuna induce una inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma cuando se administra a un sujeto. Opcionalmente, dicha VLP de gripe es una VLP de gripe aviar. De manera alternativa, dicha VLP de gripe es una VLP de gripe estacional.

Breve descripción de los dibujos

10

15

30

35

40

45

55

60

65

La FIG. 1 representa la secuencia de nucleótidos del gen de la neuraminidasa (NA) del virus de gripe aviar A/Hong Kong/1073/99 (H9N2) (SEC ID Nº 1).

La FIG. 2 representa la secuencia de nucleótidos del gen de la hemaglutinina (HA) del virus de gripe aviar A/Hong Kong/1073/99 (H9N2) (SEC ID Nº 2).

La FIG. 3 representa la secuencia de nucleótidos del gen de la proteína de matriz M1 (M1) (SEC ID № 3).

La FIG. 4 representa los vectores de transferencia para la construcción de baculovirus recombinantes para la expresión de las proteínas HA, NA y M1 del virus de gripe aviar A/Hong Kong/1073/99 (H9N2). La FIG. 4A representa un vector de transferencia para la expresión de genes individuales y la FIG.4B describe el vector de transferencia para la multi-expresión de genes.

La FIG. 5 describe la expresión de las proteínas HA, NA y M1 del virus de gripe A/Hong Kong/1073/99 (H9N2) en células Sf-9S.

La FIG. 6 describe la purificación de VLP de gripe aviar A/Hong Kong/1073/99 (H9N2) por el método de gradiente de densidad en sacarosa.

La FIG. 7 representa la detección de la proteína del virus de gripe por cromatografía de filtración en gel. Los anticuerpos que se utilizan en los análisis de transferencia de Western son los siguientes: (A) anti-H9N2 de conejo; (B) anti-M1 mAb murino; y (C) anti-BACgp64 murino.

La FIG. 8 representa la detección de las proteínas de gripe aviar A/Hong Kong/1073/99 (H9N2) incluyendo partículas sub-víricas, VLP, y complejos VLP, por microscopía electrónica.

La FIG. 9 representa la actividad de hemaglutinación de VLP de gripe aviar A/Hong Kong/1073/99 (H9N2)

6

purificadas.

5

10

25

30

35

- La FIG. 10 representa la actividad neuraminidasa de VLP de gripe aviar A/Hong Kong/1073/99 (H9N2) purificadas.
- La FIG. 11 representa la inmunización y el programa de extracción de sangre para el estudio de inmunogenicidad de gripe recombinante con VLP de gripe aviar A/Hong Kong/1073/99 (H9N2) purificadas en ratones.
 - La FIG. 12 representa los resultados de un estudio de inmunogenicidad en ratones inmunizados con VLP de H9N2 recombinante de gripe. La FIG. 12A representa los sueros de ratones BALB/c inmunizados con VLP recombinante que comprende proteínas HA, NA y M1 del virus de gripe aviar tipo A/Hong Kong/1073/99. La FIG.12B representa los sueros de ratones blancos Nueva Zelanda inmunizados con un virus de gripe aviar inactivado tipo A H9N2 que se hicieron reaccionar con transferencias de Western que contenían virus de gripe aviar tipo A H9N2 inactivado (calles 1 y 3) o virus de gripe aviar adaptado al frío tipo A H9N2 (calles 2 y 4).
 - La FIG. 13 representa la media geométrica de las respuestas de anticuerpos en ratones BALB/c tras una inmunización primaria y secundaria.
- La FIG. 14 representa las respuestas de inhibición de la aglutinación en el suero (HI) en ratones BALB/c.
- 15 La FIG. 15 representa la pérdida de peso (%) de los ratones BALB/c desafiados con gripe H9N2.
 - La FIG. 16 representa los títulos de virus pulmonares a los 3 y 5 días tras la exposición con H9N2.
 - Las FIG. 17A, 17B y 17C representan la respuesta de anticuerpo de los ratones al A/Fujian/411/2002 cuando se inmunizan con una VLP de H3N2.
 - Las FIG. 18A y B representan los isotipos de anticuerpo IgG en ratones.
- La FIG. 19 respuestas de anticuerpos de inhibición de hemaglutinación (HI) en Ratas SD inmunizadas con vacuna VLP de H9N2.
 - Las FIG. 20A y 20B representan las respuestas de anticuerpo de inhibición de hemaglutinación (HI) a diferentes dosis de VLP de H9N2 con y sin adyuvante en ratones BALB/c.
 - La FIG. 21 representa las respuestas de inhibición de la hemaglutinación (HI) en suero de ratones BALB/c entre diferentes dosis de VLP.
 - La FIG. 22 representa las respuestas de inhibición de la hemaglutinación (HI) en hurones.
 - La FIG. 23 representa las respuestas de inhibición de la hemaglutinación del suero extraído los días 21 y 42 de hurones tras la administración de diferentes cepas de VLP de H3N2.
 - La FIG. 24 representa el anticuerpo anti-HA (título de punto final de dilución) de ratones inoculados por vía intramuscular con VLP de H5N1 (Vietnam/1203/2003) a bajas dosis.
 - La FIG. 25 representa el anticuerpo anti-HA (título de punto final de dilución) de ratones inoculados por vía intranasal con VLP de H5N1 (Vietnam/1203/2003) a bajas dosis.
 - La FIG. 26 representa un ejemplo de fabricación, aislamiento y purificación de las VPL de la invención.
 - La FIG. 27 representa ratones inoculados con VLP de H3N2 por vía intramuscular y desafiados posteriormente por vía intranasal con virus A/Aichi/2/68x31 (H3N2).
 - La FIG. 28 representa ratones inoculados con VLP de H3N2 por vía intranasal y desafiados posteriormente por vía intranasal con virus A/Aichi/2/68x31 (H3N2).
 - La FIG. 29 representa la dispersión vírica en lavados nasales de hurones inoculados con una vacuna VLP de H9N2 y desafiados posteriormente por vía intranasal con virus H9N2.
- Las FIG. 30A, 30B, 30C, 30D, 30E, 30F, 30G, 30H representan las respuestas de anticuerpos de inhibición de la hemaglutinación (HI) en ratones tras la inoculación con diferentes dosis de VLP de A/Fujian/411/2002 (H3N2) por vía intramuscular o intranasal ensayadas contra diferentes cepas H3N2 de virus de gripe.

Descripción detallada de la invención

- Como se utiliza en el presente documento, el término "baculovirus" también conocido como baculoviridae, se refiere a una familia de virus ADN encapsulados de los artrópodos, algunos de cuyos miembros se pueden utilizar como vectores de expresión para producir proteínas recombinantes insertándose en cultivos celulares. El virión contienen una o más nucleocápsides en forma de barra que contienen una molécula de ADN bicatenaria superenrrollada circular (Mr 54 x 10⁶ 154 x 10⁶). El virus que se utiliza como vector es el virus de poliedrosis nuclear de *Autographa califórnica* (NVP). La expresión de genes introducidos está bajo el control del fuerte promotor que regula normalmente la expresión del componente poliédrico de proteína de la gran inclusión nuclear en la que se embeben los virus en las células infectadas.
- Como se utiliza en el presente documento, la expresión "derivado de" se refiere al origen o fuente, y puede incluir moléculas de origen natural, recombinantes, no purificadas o purificadas. Las proteínas y moléculas de la presente invención se pueden derivar de moléculas de gripe y de no gripe.
- Como se utiliza en el presente documento el término "primer" proteína del virus de la gripe, es decir, una primera proteína M1 del virus de gripe, se refiere a una proteína, tal como M1, HA, NA, y M2, que se deriva de una cepa particular del virus de la gripe. La cepa o tipo del primer virus de gripe se diferencia de la cepa o tipo de la segunda proteína del virus de gripe, que es una cepa o tipo diferente de la primera proteína del virus de gripe.
- Como se utiliza en el presente documento, la expresión "actividad hemaglutinina" se refiere a la capacidad de proteínas que contienen HA, VLP, o partes de las mismas que se unen y aglutinan glóbulos rojos (eritrocitos).

Como se utiliza en el presente documento, la expresión "actividad neuraminidasa" se refiere a la actividad enzimática de proteínas que contienen NA, VLP, o partes de las mismas para escindir restos e ácido siálico de sustratos que incluyen proteínas tales como la fetuina.

5 Como se utiliza en el presente documento, el término "heterotípico" se refiere a uno o más tipos o cepas diferentes de virus.

Como se utiliza en el presente documento, el término "homotípico" se refiere a un tipo o cepa de virus.

15

20

25

30

35

45

50

55

65

10 Como se utiliza en el presente documento, la expresión "estructura proteica macromolecular" se refiere a una construcción o disposición de una o más proteínas.

Como se utiliza en el presente documento, el término vacuna "multivalente" se refiere a una vacuna contra múltiples tipos de cepas de virus de gripe.

Como se utiliza en el presente documento, la expresión "no gripe" se refiere a una proteína o molécula que no se deriva del virus de gripe.

Como se utiliza en el presente documento, el término "vacuna" se refiere a una preparación de agentes patógenos muertos o debilitados, o de derivados de determinantes antigénicos, que se utilizan para inducir la formación de anticuerpos o inmunidad contra el agente patógeno. Una vacuna se da para proporcionar inmunidad contra la enfermedad, por ejemplo, gripe, que está producida por virus de gripe. La presente invención proporciona composiciones vacunales que son inmunogénicas y proporcionan protección. Además, el término "vacuna" se refiere también a una suspensión o solución de un inmunógeno (por ejemplo una VLP) que se administra a un vertebrado para producir inmunidad protectora, es decir, una inmunidad que reduce la gravedad de una enfermedad asociada con la infección.

Como se utiliza en el presente documento, la expresión "inmunidad sustancial" se refiere a una respuesta inmunitaria en la que cuando se administra las VLP de la invención a un vertebrado hay una inducción del sistema inmunitario en dicho vertebrado que da como resultado en la prevención de la infección de gripe, la mejoría de la infección de gripe o la reducción de al menos un síntoma relacionado con la infección del virus de gripe en dicho vertebrado. La sustancial inmunidad también se puede referir a un título de inhibición de la hemaglutinación (HI) de ≥ 40 en un mamífero en que se le ha administrado la VLP de la invención y se le ha inducido una respuesta inmunitaria.

Como se utiliza en el presente documento el término "adyuvante" se refiere a un compuesto que, cuando se utiliza en combinación con un inmunógeno específico (por ejemplo, una VLP) en una formulación, aumenta o altera o modifica de otra manera la respuesta inmunitaria resultante. La modificación de la respuesta inmunitaria incluye intensificación o amplificación de la especificidad de una o ambas respuestas inmunitarias de anticuerpos o celular. La modificación de la respuesta inmunitaria también puede significar el descenso o supresión de ciertas respuestas inmunitarias específicas de antígeno.

Como se utiliza en el presente documento la expresión "estimulador inmunitario" se refiere a un compuesto que aumenta una respuesta inmunitaria por medio de los propios mensajeros químicos (citoquinas) del cuerpo. Estas moléculas comprenden varias citoquinas, linfoquinas y quimioquinas con actividades inmunoestimulantes, inmunopotenciación, y pro-inflamatorias, tales como interleucinas (por ejemplo, IL-1, IL-2, IL-3, IL-4, IL-12, IL-13); factores de crecimiento (por ejemplo, factor estimulante de colonias de granulocitos macrófagos (GM) (CSF)); y otras moléculas inmunoestimulantes, tales como factor inflamatorio de macrófagos, ligando Flt3, B7.1; B7.2, etc. Las moléculas inmunoestimulantes se pueden administrar en la misma formulación que las VLP de gripe, o se pueden administrar por separado. O la proteína o el vector de expresión que codifica la proteína se puede administrar para producir un efecto inmunoestimulante.

Como se utiliza en el presente documento una "dosis eficaz" se refiere en general a una cantidad de la VLP de la invención suficiente para inducir inmunidad, para prevenir y/o mejorar la infección por el virus de la gripe o para reducir al menos un síntoma de infección por gripe y/o aumentar la eficacia de otra dosis de una VLP. Una dosis eficaz se puede referir a la cantidad de la VLP suficiente para retrasar o minimizar la aparición de una infección de gripe. Una dosis eficaz puede referirse también a la cantidad de la VLP que proporciona un beneficio terapéutico en el tratamiento o manejo de la infección de gripe. Además, una dosis eficaz es la cantidad con respecto a las VLP solas de la invención, o en combinación con otras terapias, que proporciona un beneficio terapéutico en el tratamiento o manejo de una infección vírica de gripe. Una dosis eficaz puede ser también la cantidad suficiente para aumentar la respuesta inmunitaria propia de un sujeto (por ejemplo, de un ser humano) contra una posterior exposición al virus de gripe. Se pueden controlar los niveles de inmunidad, por ejemplo, midiendo cantidades de anticuerpos neutralizantes segregados y/o del suero, por ejemplo, por neutralización de placas, fijación del complemento, inmunoabsorción ligado a enzimas, o ensayo de microneutralización. En el caso de una vacuna, una "dosis eficaz" es la que previene la enfermedad o reduce la gravedad de los síntomas.

Como se utiliza en el presente documento la expresión "virus de gripe aviar" se refiere a virus de gripe que se encuentran principalmente en aves pero que también pueden infectar seres humanos u otros animales. En algunos casos, los virus de gripe aviar se pueden transmitir o diseminar de un ser humano a otro. Un virus de gripe aviar que infecta seres humanos tiene el potencial de producir una gripe pandémica, es decir, morbilidad y/o mortalidad en seres humanos. Una pandemia se produce cuando emerge una nueva cepa de virus de gripe (un virus para el que el ser humano no tiene inmunidad natural), diseminándose más allá de localidades individuales, posiblemente alrededor del globo, e infectando a muchos seres humanos al mismo tiempo.

Como se utiliza en el presente documento, la expresión "virus de gripe estacional" se refiere a cepas del virus de gripe que se ha determinado que pasan por la población humana durante una determinada estación de gripe, que se basa en la vigilancia epidemiológica que llevan a cabo los Centros Nacionales de Gripe por todo el mundo. Estos estudios epidemiológicos, y algunos virus de gripe aislados, se envían a uno de los cuatro laboratorios de referencia de la Organización Mundial de la Salud (OMS), uno de los cuales está en el Centro para el Control y Prevención de Enfermedades (CDC) en Atlanta para los ensayos detallados. Estos laboratorios ensayan cómo los anticuerpos hacen a la presente vacuna que reaccione con el virus circulante y los nuevos virus de gripe. Esta información, junto con la información, sobre la actividad de la gripe, se resume y se presenta a un comité consultivo de la Administración de Alimentos y Fármacos de EE. UU (FDA) y en una reunión de la OMS. Estas reuniones da como resultado la selección de tres virus (dos subtipos de virus de gripe A y uno virus de gripe B) para introducirlos en las vacunas de gripe del siguiente otoño e invierno. La selección se produce en febrero para el hemisferio norte y en septiembre para el hemisferio sur. Habitualmente, uno o dos de las tres cepas de virus de la vacuna cambian cada

Como se utiliza en el presente documento, la expresión "respuesta de anticuerpos sustancialmente protectora" se refiere a una respuesta inmunitaria mediada por los anticuerpos contra un virus de gripe, que muestra un vertebrado (por ejemplo, un ser humano), que previene o mejora la infección de gripe o reduce al menos un síntoma de la misma. Las VLP de la invención pueden estimular la producción de anticuerpo, por ejemplo, anticuerpos neutralizantes, que bloquean la entrada de los virus de gripe en las células, bloquean la replicación de dichos virus de gripe uniéndose a los virus, y/o protegen las células huésped de la infección y destrucción.

25

50

Como se utiliza en el presente documento "respuesta celular sustancialmente protectora" se refiere a una sustancia inmunitaria que está mediada por linfocitos T y/u otros glóbulos blancos sanguíneos contra el virus de gripe, que muestra un vertebrado (por ejemplo, un ser humano), que previene o mejora una infección de gripe o reduce al menos un síntoma de la misma. Un aspecto importante de la inmunidad celular implica una respuesta específica al antígeno por células T citolíticas ("CTL"). Las CTL tienen especificidad por antígenos peptídicos que están presentes en asociación con proteínas codificadas por el Complejo Mayor de Histocompatibilidad (MHC) y que se expresan en la superficie de las células. Las CTL ayudan a la inducción y promoción de la destrucción de microbios intracelulares, o la lisis las células infectadas con tales microbios. Otro aspecto de la inmunidad celular implica una respuesta específica de antígeno por las células T auxiliares. Las células T auxiliares actúan ayudando a estimular la función, y el foco de actividad de células efectoras no específicas contra las células presentadoras de antígenos peptídicos en asociación con moléculas del MHC en su superficie. Una "respuesta inmunitaria celular" también se refiere a la producción de citoquinas, quimioquinas y otras de tales moléculas que se producen por células T activadas y/u otros glóbulos blancos sanguíneos, incluyendo las que se derivan de células T CD4+ y CD8+.

Como se utiliza en el presente documento la expresión "inmunidad sustancial con una base poblacional amplia" se refiere a la inmunidad como resultado de las VLP de la invención que se administran a individuos de una población. La inmunidad en dicho individuo en dicha población da como resultado la prevención, mejora de la infección de gripe, o la reducción de al menos un síntoma relacionado con la infección por el virus de la gripe en dicho individuo, y previene la diseminación de dicho virus de gripe a otros de la población. El término población se define como un grupo de individuos (por ejemplo, escolares, ancianos, un país, un estado, etc.).

Como se utiliza en el presente documento, la expresión "formulación antigénica" o "composición antigénica" se refiere a una preparación que, cuando se administra a un vertebrado, especialmente un ave o un mamífero, inducirá una respuesta inmunitaria.

Como se utiliza en el presente documento, el término "vertebrado" o "sujeto" o "paciente" se refiere a cualquier miembro de un subphylum cordata, incluyendo, sin limitación, seres humanos y otros primates, incluyendo primates no humanos tales como chimpancés y otras especies de simios y monos. Animales de granja tales como el ganado bovino, ovejas, cerdos, cabras y caballos; animales domésticos tales como perros y gatos; animales de laboratorio que incluyen roedores como los ratones, ratas y cobayas; aves, incluyendo las aves domésticas, silvestres y de caza tales como pollos, pavos y otras aves gallináceas, patos, gansos, y similares, como ejemplos no limitantes. Los términos "mamíferos" y "animales" están incluidos en esta definición. Se pretende incluir tanto los individuos adultos como los recién nacidos.

La gripe sigue siendo un problema de salud pública generalizado a pesar de la disponibilidad de vacunas específicas de virus inactivados que tienen una efectividad del 60-80 % bajo condiciones óptimas. Cuando estas vacunas son eficaces, habitualmente se evita la enfermedad previniendo la infección vírica. Puede producirse un fallo vacunal

como resultado de la acumulación de diferencias antigénicas (cambio antigénico y deriva antigénica). Por ejemplo, el virus de gripe aviar tipo A H9N2 co-circula con el virus de gripe humana tipo A Sydney/97 (H3N2) en cerdos y da lugar a una reordenación genética y la emergencia de nuevas cepas de virus de gripe humana con un potencial pandémico (Peiris et al., 2001). En el caso de tal cambio antigénico, es improbable que las vacunas actuales proporcionen una protección adecuada.

Otra razón para la insuficiencia de los programas de vacunación de gripe es la relativamente corta persistencia de la inmunidad producida por las vacunas actuales. Otra deficiencia de las medidas de control de gripe se refleja en el uso restringido de las vacunas actuales debido a la reactogenicidad de la vacuna y los efectos secundarios en niños menores, ancianos y personas con alergias a los componentes del huevo, que se usa en la fabricación de las vacunas de virus de gripe inactivado que tienen la licencia comercial.

De manera adicional, las vacunas de virus de gripe inactivado carecen a menudo o contienen epítopos conformacionales HA y NA alterados, que son los que producen anticuerpos neutralizantes y tienen un papel principal en la protección contra la enfermedad. Por lo tanto, las vacunas víricas inactivadas, así como algunas vacunas de subunidades proteicas de gripe monoméricas recombinantes, suministran una protección inadecuada. Por otro lado, las estructuras proteicas macromoleculares, tales como los capsómeros, partículas sub-víricas, y/o VLP, incluyen múltiples copias de proteínas nativas que muestran epítopos conformacionales, que son ventajosos para una inmunogenicidad vacunal óptima.

La presente solicitud describe la clonación de los genes HA, NA y M1 del virus de gripe aviar A/Hong Kong/1073/99 (H9N2) en un vector de expresión único de baculovirus solo o en tándem y la producción de candidatos o reactivos vacunales de gripe que comprenden proteínas estructurales recombinantes de gripe que se auto-ensamblan en estructuras proteícas macromoleculares homotípicas funcionales e inmunogénicas, incluyendo partículas sub-víricas de gripe y VLP de gripe, en células de insecto infectadas con baculovirus.

La presente solicitud describe la clonación de los genes HA, NA, M1, M2 y NP de los virus de gripe humana A/Sydney/5/97 y A/Fujian/411/2002 (H3N2) en vectores de expresión de baculovirus y la producción de candidatos o reactivos que comprenden proteínas estructurales de gripe que se auto-ensamblan en estructuras proteicas macromoleculares homotípicas inmunogénicas y funcionales, que incluyen partículas sub-víricas de gripe y VLP de gripe, en células de insecto infectadas con baculovirus.

Además la presente solicitud describe la clonación del gen HA del virus de la gripe humana A/Sydney/5/97 and A/Fujian/411/2002 (H3N2) y los genes HA, NA y M1 de la gripe aviar A/Hong Kong/1073/99 (H9N2) en un único vector de expresión de baculovirus en tándem y la producción de candidatos o reactivos de vacuna de gripe que comprende proteínas estructurales de gripe que se auto-ensamblan en estructuras macromoleculares heterotípicas inmunogénicas y funcionales, que incluyen partículas de gripe sub-víricas y VLP de gripe, en células de insecto infectadas con baculovirus.

40 VLP de la invención

10

15

20

25

30

35

45

50

55

60

Las VLP de gripe de la invención son útiles para preparar vacunas contra los virus de gripe. Una característica importante de este sistema es la capacidad para remplazar las glucoproteínas de superficie con diferentes subtipos de HA y/o NA u otras proteínas víricas, permitiendo así, la actualización de nuevas variantes antigénicas de gripe cada año o para prepararlas frente a una gripe pandémica. Una vez que se identifican las variantes antigénicas de estas glucoproteínas, se pueden actualizar las VLP para incluir estas nuevas variantes (pro9 ejemplo, para vacunas de gripe estacional). Además, las glucoproteínas de superficie de los virus potencialmente pandémicos tales como H5N1, u otras combinaciones de HA, NA con el potencial pandémico se podrían incorporar en VLP sin el problema de liberar genes que no habían circulado en humanos durante varias décadas. Esto es debido a que las VLP no son infecciosas, no se replican y no pueden producir la enfermedad. Por lo tanto, este sistema permite crear un nuevo candidato de vacuna de gripe cada año y/o una vacuna para gripe pandémica siempre que sea necesaria.

Hay 16 hemaglutininas (HA) diferentes y 9 neuraminidasas (NA) diferentes encontrándose todas ellas entre aves silvestres. Las aves silvestres son el reservorio natural primario para todos los tipos de virus de gripe A y se cree que son la fuente de todos los tipos de virus de gripe A en los demás vertebrados. Estos subtipos se diferencias por los cambios en la hemaglutinina (HA) y neuraminidasa (NA) en su superficie. Son posibles muchas combinaciones diferentes de proteínas HA y NA. Cada combinación representa un tipo diferente de virus de gripe A. Además, cada tipo se puede clasificar en cepas basándose en las diferentes mutaciones que se encuentran en cada uno de sus 8 genes.

Todos los tipos conocidos de virus de gripe A se pueden encontrar en aves. Habitualmente los virus de gripe aviar no infectan a los seres humanos. Sin embargo, algunos virus de gripe aviar desarrollan variaciones genéticas asociadas con la capacidad de cruzar las barreras interespecíficas. Tal virus es capaz de producir una pandemia debido a que los seres humanos no tienen inmunidad natural contra el virus y puede diseminarse fácilmente de persona a persona. En 1997, el virus de gripe aviar saltó de un ave a un ser humano en Hong Kong durante un brote de gripe aviar en una granja. Este virus se identificó como un virus de gripe H5N1. El virus produjo enfermedad

respiratoria grave en 18 personas, seis de los cuales murieron. Desde entonces, se han producido muchos más casos de infecciones por H5N1 conocidas entre seres humanos por todo el mundo; aproximadamente la mitad de estas personas murieron.

Por lo tanto, la presente solicitud describe la clonación de nucleótidos HA, NA y M1 de los virus de gripe aviar, virus de gripe con potencial pandémico y/o virus de gripe estacional en vectores de expresión. La presente solicitud describe también la producción de candidatos o reactivos de vacuna de gripe compuestos por proteínas que se autoensamblan en VLP funcionales. Todas las combinaciones de proteínas víricas se deben co-expresar con un nucleótido M1.

Las VLP descritas en el presente documento consisten o comprenden proteínas HA, NA y M1.

10

15

20

50

55

Dicha VLP puede comprender una HA de un virus de gripe aviar, pandémico y/o estacional y una NA de un virus de gripe aviar, pandémico y/o estacional, en que dicha HA se selecciona de entre el grupo que consiste en H1, H2, H3, H4, H5, H6, H,7 H8, H9, H10, H11, H12, H13, H14, H15 y H16 y dicha NA se selecciona de entre el grupo que consiste en N1, N2, N3, N4, N5, N6, N7, N8 y N9. De manera alternativa, la VLP puede consistir esencialmente en HA, NA y M1. Dicha HA y NA puede ser de la lista anterior de HA y NA. Estas VLP pueden comprender proteínas de gripe adicionales y/o proteínas contaminantes en concentraciones despreciables. De manera alternativa, dicha VLP de gripe comprende proteínas de gripe, en que dichas proteínas de gripe consisten en las proteínas HA, NA y M1. Estas VLP contienen HA, NA y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, HA y/o NA).

La HA y/o NA pueden mostrar actividad de hemaglutinina y7o actividad neuraminidasa, respectivamente, cuando se expresan en la superficie de las VLP.

Dicha VLP puede comprender HA y NA del virus H5N1 y una proteína M1 (la proteína M1 puede ser o no de la misma cepa vírica).

De manera alternativa, dicha VLP puede consistir esencialmente en HA, NA del virus H5N1 y una proteína M1. Estas VLP pueden comprender proteínas de gripe adicionales y/o proteínas contaminantes en concentraciones despreciables. De manera alternativa, dicha VLP puede consistir en HA, NA del virus H5N1 y una proteína M1. Dicha VLP puede comprender proteínas de gripe, en que dichas proteínas de gripe consisten en proteínas H5, N1 y M1. Estas VLP contienen H5, N9 y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, H5 y/o N1). La H5 y/o N1 pueden mostrar actividad hemaglutinina y/o actividad neuraminidasa, respectivamente, cuando se expresan en la superficie de las VLP.

Dicha VLP puede comprender la HA y NA del virus H9N2, y una proteína M1. De manera alternativa, dicha VLP puede consistir esencialmente en HA y NA del virus H9N2 y una proteína M1. Estas VLP pueden comprender proteínas de gripe adicionales y/o proteínas contaminantes en concentraciones despreciables. De manera alternativa, dicha VLP puede consistir en la HA y NA del virus H9N2 y una proteína M1. Dicha VLP de gripe puede comprender proteínas de gripe, en que dichas proteínas de gripe consisten en H0, N2 y proteínas M1. Estas VLP contienen H9, N2 y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, H9 y/o N2). En otra realización la H9 y/o N2 pueden mostrar actividad hemaglutinina y/o actividad neuraminidasa, respectivamente, cuando se expresan en la superficie de las VLP.

También se describe en el presente documento una VLP que comprende la HA y NA del virus de la gripe B, y una proteína M1. Los virus de gripe B se encuentran habitualmente solo en seres humanos. A diferencia de los virus de gripe A, estos virus no se clasifican según un subtipo. Los virus de gripe B pueden causar morbilidad y mortalidad en seres humanos, pero se asocian en general con epidemias menos graves que con los virus de gripe A. Dicha VLP puede consistir esencialmente en la HA y NA del virus de gripe B, y una proteína M1. Estas VLP pueden comprender proteínas de gripe adicionales y7o proteínas contaminantes en concentraciones despreciables. De manera alternativa, dicha VLP de gripe puede comprender proteínas de gripe, en que dichas proteínas de gripe consisten en proteínas HA, NA y M1. Estas VLP contienen HA, NA y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, HA y/o NA). De manera alternativa, dicha VLP consiste en HA y NA del virus de gripe B, y una proteína M1.

60 La HA y/o NA pueden mostrar actividad hemaglutinina y/o actividad neuraminidasa, respectivamente, cuando se expresan en la superficie de las VLP.

También se describen en el presente documento variantes de dichas proteínas de gripe que se expresan sobre o en las VLP de la invención. Las variantes pueden contener alteraciones en las secuencias de aminoácidos de las proteínas que las constituyen. El término "variante" con respecto a un polipéptido se refiere a una secuencia de aminoácidos que se ha alterado en uno o más aminoácidos con respecto a una secuencia de referencia. La variante

puede tener cambios "conservadores", en que un aminoácido que se sustituye tiene propiedades estructurales o químicas similares, por ejemplo, el remplazo de leucina por isoleucina. De manera alternativa, una variante puede tener cambios "no conservadores", por ejemplo, el remplazo de una glicina por un triptófano. Variaciones menores análogas pueden incluir también eliminaciones o inserciones de aminoácidos, o ambas. Las directrices de la determinación de los restos de aminoácidos que se pueden sustituir, insertar o eliminar sin eliminar la actividad biológica o inmunológica se puede encontrar utilizando programas de computadora bien conocidos en la técnica, por ejemplo, el software DNASTAR.

Se pueden producir variantes naturales debido a la deriva antigénica. La deriva antigénica son pequeños cambios en las proteínas víricas que ocurren continuamente a lo largo del tiempo. Por lo tanto, una persona infectada con una cepa de virus de gripe particular desarrolla anticuerpos contra ese virus, si aparecen cepas nuevas de virus, los anticuerpos contra las cepas antiguas no reconocen más el virus más reciente y se puede producir una reinfección. Este es el porqué de una nueva vacuna para la gripe en cada estación. Además, algunos cambios en un virus de gripe puede producir que el virus de gripe cruce entre especies. Por ejemplo, algunos virus de gripe aviar desarrollaron variaciones genéticas asociadas con la capacidad de cruzar la barrera interespecies. Tal virus es capaz de producir una pandemia porque la población no tiene inmunidad natural contra el virus y el virus puede diseminarse fácilmente de persona a persona. Estas variaciones que se producen naturalmente de las proteínas de gripe se contemplan para su uso en la invención.

20 Los textos generales que describen las técnicas de biología molecular, que se aplican en la presente invención, tal como clonación, mutación, cultivo celular y similares, incluyen Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volumen 152 Academic Press, Inc., San Diego, Calif. (Berger); Sambrook et al., Molecular Cloning--A Laboratory Manual (3rd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 2000 ("Sambrook") and Current Protocols in Molecular Biology, F. M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., ("Ausubel"). Estos textos 25 describen la mutagénesis, el uso de vectores, promotores y muchos otros asuntos relevantes relacionados con estos, por ejemplo, la clonación y mutación de moléculas de HA y/o NA, etc. Por lo tanto, la invención también engloba la utilización de métodos conocidos de modificación proteína y tecnología de ADN recombinante para mejorar o alterar las características de las proteínas de gripe expresadas sobre o en las VLP de la invención. Se 30 pueden utilizar varios tipos de mutagénesis para producir y/o aislar la variante de las moléculas de HA, NA y/o M1 y/o para modificar/mutar además los polipéptidos de la invención. Estas incluyen, pero no se limitan a estas, la dirigida al sitio, la mutagénesis de punto aleatorio, recombinación homóloga (mezclado de ADN), mutagénesis utilizando matrices que contienen uracilo, mutagénesis dirigida a oligonucleótidos, mutagénesis de ADN modificada con fosforotioato, mutagénesis utilizando ADN doble con huecos o similares. Métodos adicionales adecuados incluyen reparación de punto de falta de coincidencia, mutagénesis utilizando cepas huésped deficientes de 35 reparación, restricción-selección y restricción-purificación, mutagénesis de eliminación, mutagénesis por síntesis genética total, reparación de doble cadena rota, y similares. La mutagénesis, por ejemplo, la que implica construcciones quiméricas, está incluida también en la presente invención. En una realización, la mutagénesis se puede dirigir por la información que se conoce de la molécula de origen natural o bien alterada o la molécula mutada 40 de origen natural, por ejemplo, secuencia, comparaciones de secuencia, propiedades físicas, estructura cristalina o similares.

La solicitud también describe variantes de proteínas de gripe que muestran actividad biológica sustancial, por ejemplo, que sea capaz de producir una respuesta de anticuerpos eficaz cuando se expresa sobre o en una VLP. Tales variantes incluyen eliminaciones, inserciones, inversiones, repeticiones, y sustituciones que se seleccionan de acuerdo con las reglas generales que se conocen en la técnica de forma que tengan poco efecto en la actividad.

45

50

55

Los métodos de clonación de dichas proteínas de gripe se conocen en la técnica. Por ejemplo, el gen de gripe que codifica una proteína de gripe específica ase puede aislar por RT-PCR a partir del ARNm poliadenilado extraído de las células que se han infectado con virus de gripe. El producto genético resultante se puede clonar como una inserción de ADN en un vector. El término "vector" se refiere al medio por el que se puede propagar y/o transferir un ácido nucleico entre organismos, células, o componentes celulares. Los vectores incluyen plásmidos, virus, bacteriófagos, pro-virus, fagémidos, transposones, cromosomas artificiales, y similares, que se replican autónomamente o se pueden integrar en un cromosoma de una célula huésped. Un vector puede también ser un polinucleótido ARN desnudo, un polinucleótido ADN desnudo, un polinucleótido compuesto tanto e ADN como ARN en la misma cadena, una ADN o ARN conjugado con poli-lisina, un ADN o ARN conjugado con un péptido, un ADN conjugado con liposomas, o similares, que no se replican autónomamente. En muchas, pero no todas de las realizaciones comunes, los vectores útiles en la presente invención son plásmidos o bácmidos.

Por lo tanto, la solicitud describe nucleótidos que codifican proteínas de gripe HA, NA y M1 que se clonan en un vector de expresión que se pueden expresar en una célula que induce la formación de VLP. Un "vector de expresión" es un vector, tal como un plásmido que es capaz de promocionar la expresión, así como la replicación de un ácido nucleico incorporado en el mismo. Normalmente, el ácido nucleico que se va a expresar está "unido operativamente" a un promotor y/o amplificador, y está sometido a un control regulador de la transcripción por el promotor y/o amplificador.

Opcionalmente, dichos nucleótidos que codifican HA de virus de gripe aviar, pandémico y/o estacional se selecciona de entre el grupo que consiste en H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15 y H16. Opcionalmente dichos nucleótidos que codifican NA de un virus de gripe aviar, pandémico y/o estacional, se selecciona de entre el grupo que consiste en N1, N2, N3, N4, N5, N6, N7, N8 y N9.

5

10

15

Dicho vector puede comprender nucleótidos que codifican proteína de gripa HA, NA y/o M1. De manera alternativa, dicho vector puede consistir en nucleótidos que codifican proteína HA, NA y M1. Un vector de expresión preferido es un vector baculovirus. Después de que se clonen los nucleótidos que codifican dichas proteínas de gripe, dichos nucleótidos se pueden modificar más. Por ejemplo, un experto en la técnica puede mutar bases específicas en la región codificante para producir variantes. Las variantes pueden contener alteraciones en las regiones codificantes, no codificantes o ambas. Tales variantes pueden aumentar la inmunogenicidad de una proteína de gripe o eliminar el sitio de corte y empalme de una proteína o ARN. Por ejemplo, en una realización los sitios de corte y empalme donante y receptor de la proteína M de gripe (de longitud completa) se mutan para evitar el corte y empalme del ARNm M en transcripciones M1 y M2. En otra realización, se modifica HA para eliminar o mutar el sitio de escisión. Por ejemplo, la HA H5 de tipo silvestre tiene un sitio de escisión que contiene múltiples aminoácidos básicos (RRRKR). Esta secuencia de tipo silvestre hace a la HA más susceptible a múltiples proteasas ubicuas que pueden estar presentes en el huésped o el sistema de expresión de estas HA. En una realización, la eliminación de estos aminoácidos puede reducir la susceptibilidad de la HA a varias proteasas. En otra realización, el sitio de escisión se puede mutar para eliminar el sitio de escisión (por ejemplo, mutar a RESR).

20

La solicitud describe también ácidos nucleicos y polipéptidos que codifican NA, HA y M1. Un ácido nucleico o proteína NA de gripe ejemplar es idéntica en al menos un 85 %, 90 %, 95 %, 96 %, 97 %, 98 % o 99 % a las SEC ID N^{os} 11, 31, 32, 39, 38, 46, 47, 54 o 55.

25 Un á

Un ácido nucleico o proteína HA ejemplar es idéntica en al menos un 85 %, 90 %, 95 %, 96 %, 97 %, 98 % o 99 % a las SEC ID N^{os} 2, 10, 56, 57, 58, 27, 28, 29, 30, 37, 36, 33, 34, 35, 42, 43, 44, 45, 50, 51, 52, o 53. La proteína M1 de gripe que se utiliza en la presente invención es idéntica en al menos un 98 % o 99 % a la SEC ID N^{o} 49.

30

En algunas realizaciones, las mutaciones que contienen alteraciones que producen sustituciones, adiciones, o eliminaciones silentes, que no alteran las propiedades o actividades de la proteína codificada o como se fabrican las proteínas. Las variantes de nucleótidos se pueden producir por varias razones, por ejemplo, para optimizar la expresión del codón para un huésped particular (cambio de codones en el ARNm humano por los preferidos por las células de insecto tales como las células Sf9). Véase la publicación de patente de EE. UU. 2005/0118191. Se desvelan ejemplos de secuencias de codón optimizado posteriormente (por ejemplo, las SEC ID 42, 44, 46, 48, 50, 52, y 54).

35

40

Además, los nucleótidos se pueden secuenciar para asegurarse de que se clonaron las regiones codificantes correctas y no contengan cualquier mutación no deseada. Los nucleótidos se pueden subclonar en un vector de expresión (por ejemplo, un baculovirus) para la expresión en cualquier célula. Lo anterior es solo un ejemplo de cómo se pueden clonar proteínas del virus de gripe. Un experto en la técnica entiende que hay disponibles y son posibles métodos adicionales.

45

50

La solicitud describe también construcciones y7o vectores que comprenden nucleótidos aviares, pandémicos y/o estacionales que codifican genes estructurales del virus de gripe, que incluyen NA, M1 y/o HA. El vector puede ser, por ejemplo, un fago, plásmido, vector vírico, o retrovírico. Las construcciones y/o vectores que codifican genes estructurales del virus de gripe aviar, pandémico y/o estacional, que incluyen NA, M1 y/o HA deberían estar unidos operativamente a un promotor apropiado, tal como el promotor polihedrina AcMNPV (u otro baculovirus), promotor PL de fago lambda, el lac, poa y tac de E. coli, los promotores tempranos y tardíos de SV40, y promotores de LTR retrovíricos, como ejemplos no limitantes. Otros promotores adecuados los conocerán los expertos en la técnica dependiendo de la célula huésped y/o la tasa de expresión deseada. Las construcciones de expresión contendrán además sitios para el inicio y terminación de la transcripción, y, en la región transcrita, un sitio de unión al ribosoma para la traducción. La porción codificante de las transcripciones que se expresan por las construcciones preferentemente incluirán un codón de inicio de la traducción al principio y un codón de terminación posicionado apropiadamente el final del péptido que se va a traducir.

55

60

Los vectores de expresión preferentemente incluirán al menos un marcador genético. Tales marcadores incluyen la dihidrofolato reductasa, resistencia a G418 o neomicina para cultivos celulares de eucariotas y genes de resistencia a tetraciclina, kanamicina o ampicilina para el cultivo de E. coli y otras bacterias. Entre los vectores preferidos están los vectores víricos, tales como baculovirus, poxvirus (por ejemplo, virus vacunal, virus de viruela aviar, virus de viruela del canario, virus de viruela aviar, virus de viruela del mapache, virus de viruela porcina, etc.), adenovirus (por ejemplo, adenovirus canino), herpesvirus, y retrovirus. Otros vectores que se pueden utilizar comprenden vectores para su uso en bacterias que comprenden pQE70, pQE60 y pQE-9, pBluescript, vectores Fagoscript, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5. Entre los vectores para eucariotas preferidos están pFastBac1 pWINEO, pSV2CAT, pOG44, pXT1 y pSG, pSVK3, pBPV, pMSG, y pSVL. Otros vectores adecuados serán fácilmente aparentes para el experto en la técnica. Opcionalmente, dicho vector que comprende nucleótidos que codifican genes estructurales del virus de gripe aviar, pandémica o estacional,

incluyendo HA, M1 y/o NA, es pFastBac. De manera alternativa, dicho vector que comprende una inserción que consiste en nucleótidos que codifican genes estructurales de virus de gripe aviar, pandémica o estacional, comprende HA, M1 y NA, pFastBac

- A continuación, el vector recombinante puede transfectarse, infectarse, o transformarse en una célula huésped adecuada. Por lo tanto, la solicitud proporciona células huésped que comprenden un vector (o vectores) que contienen ácidos nucleicos que codifican HA, M1 y/o NA y permiten la expresión de HA, M1 y/o NA en dicha célula huésped bajo condiciones que permitan la formación de VLP.
- Las construcciones recombinantes mencionadas anteriormente se podrían utilizar para transfectar, infectar, o transformar y puedan expresar proteínas de gripe HA, NA y M1 en células eucariotas y/o células procariotas. Entre las células huésped eucariotas están las células huésped de levadura, insecto, aviares, vegetales, C. elegans (o nematodo) y de mamífero. Ejemplos no limitantes de células de insecto son, células de *Spodoptera frugiperda* (Sf), por ejemplo Sf9, Sf21, células de Trichoplusia ni, por ejemplo células High Five y células de Drosophila S2. Ejemplos de células huésped de hongos (que incluyen levaduras) son *S. cerevisiae, Kluyveromyces lactis* (*K. lactis*), especies de Candida incluyendo *C. albicans* y *C. glabrata, Aspergillus nidulans, Schizosaccharomyces pombe* (S. pombe), *Pichia pastoris*, y *Yarrowia lipolytica*. Ejemplos de células de mamífero son células COS, células de riñón de cría de hámster, células L de ratón, células LNCaP, células de ovario de hámster chino (CHO), células embrionarias de riñón humanas (HEK), y células de mono africano verde, células CV1, células HeLa, células MDCK, células Vero y
 Hep-2. También se pueden utilizar oocitos de Xenopus laevis, u otras células de origen anfibio. Las células huésped procariotas incluyen células bacterianas, por ejemplo, E. coli, B. subtilis, y micobacterias.

Los vectores, por ejemplo, los vectores que comprenden polinucleótidos HA, NA y M1, se pueden transfectar en las células huésped de acuerdo con métodos bien conocidos en la técnica. Por ejemplo, la introducción ácidos nucleicos en células eucariotas se puede realizar por co-precipitación en fosfato cálcico, electroporación, microinyección, lipofección, y transfección empleando reactivos de transfección poliamina. En una realización, dicho vector es un baculovirus recombinante.

De acuerdo con la presente invención, la VLP se expresa a partir de una célula de insecto. En otra realización, dicha célula de insecto es una célula Sf9.

También se describe en el presente documento un vector y/o una células huésped que comprenden nucleótidos que codifican una proteína HA del virus de la gripe aviar, pandémica y/o estacional que se selecciona de entre el grupo que consiste en H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15 y H16. También se describe un vector y células huésped que comprenden nucleótidos que codifican una proteínas NA que se selecciona de entre el grupo que consiste en N1, N2, N3, N4, N5, N6, N7, N8 y N9. Dicho vector y/o célula huésped puede comprender HA, M1 y/o NA de gripe. Dicho vector y/o células huésped puede consistir en proteína de gripe que comprende HA, M1 y NA. Estos vectores y/o células huésped contienen HA, NA y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, HA y/o NA). Dichos nucleótidos pueden codificar una HA y/o la NA que muestran actividad hemaglutinina y/o actividad neuraminidasa, respectivamente, cuando se expresan en la superficie de las VLP.

35

60

Esta solicitud también describe construcciones y métodos que aumentarán la eficacia de la producción de VLP. Por ejemplo, eliminando sitios de escisión de las proteínas con el fin de aumentar la expresión proteica (véase anteriormente). Otro método comprende la adición de secuencias directoras para la proteína HA, NA y/o M1 para un transporte más eficaz. Por ejemplo, se puede fusionar una secuencia de señal heteróloga a la proteína de gripe HA, NA y/o M1. En una realización la secuencia de señal se puede derivar del gen de una célula de insecto y fusionarse a la proteína HA de gripe (para la expresión en células de insecto). En otra realización, el péptido de señal es la secuencia de señal de Quitinasa, que funciona eficazmente en los sistemas de expresión de baculovirus. En otra realización, el intercambio de secuencias directoras entre las proteínas de gripe puede proporcionar un mejor transporte proteico. Por ejemplo, se ha demostrado que la hemaglutinina H5 es menos eficaz a la hora de transportarse a la superficie de partículas. Las hemaglutininas H9, sin embargo, se dirige a la superficie y se integra en la superficie más eficazmente. Por lo tanto, en una realización, se fusiona la secuencia directora H9 a la proteína H5.

Otro método para aumentar la eficacia de la producción de VLP es en el codón optimizar los nucleótidos que codifican proteínas HA, NA y/o M1 para un tipo celular específico. Por ejemplo, el codón que optimiza ácidos nucleicos para la expresión en células Sf9 (véase la publicación de patente de EE. UU. 2005/0118191). Se desvelan posteriormente ejemplos de secuencias de codón optimizado para células Sf9 (por ejemplo, las SEC ID Nºs 42, 44, 46, 48, 50, 52, y 54). La secuencia de ácido nucleico del codón optimizado de proteína de gripe puede ser al menos un 85 %, 90 %, 95 %, 96, 97, 98, o 99 % de cualquiera de las SEC ID Nºs 42, 44, 46, 48, 50, 52, y 54.

La solicitud también describe métodos de producción de VLP, comprendiendo dichos métodos la expresión de proteínas de gripe aviares, pandémicas y/o estacionales bajo condiciones que permiten la formación de VLP. Dependiendo del sistema de expresión y célula huésped seleccionada, las VLP se producen cultivando las células

huésped transformadas por un vector de expresión bajo condiciones por las que se expresan proteínas recombinantes y se forman las VLP. La selección de las condiciones de cultivo adecuadas están en la técnica o un experto con la técnica de alguien experto habitual en la técnica.

- Los métodos para cultivar células modificadas para producir VLP de la invención incluyen, pero no se limitan a técnicas de cultivo celular discontinuo, semicontinuo, continuo y de perfusión. Cultivo celular significa el cultivo y propagación de células en un biorreactor (una cámara de fermentación) donde se propagan las células y expresan la proteína (por ejemplo, proteínas recombinantes) para la purificación y aislamiento. Normalmente, el cultivo celular se lleva a cabo bajo condiciones de esterilidad, temperatura y atmosféricas controladas en un biorreactor. Un biorreactor es una cámara que se utiliza para cultivar células en el que las condiciones ambientales tales como la temperatura, atmósfera, agitado y/o pH se pueden controlar. En una realización, dicho biorreactor es una cámara de acero inoxidable. En otra realización, dicho biorreactor es una bolsa de plástico pre-esterilizada (por ejemplo Celbag®, Wave Biotech, Bridgewater, NJ). En otra realización, dichas bolsas de plástico pre-esterilizadas son bolsas de aproximadamente 50 l a 100 l.
 - Las VLP se aíslan entonces utilizando métodos que conserven la integridad de las mismas, tal como por centrifugación en gradiente, por ejemplo, de cloruro de cesio, sacarosa, y yodixanol, así como técnicas de purificación de referencia que incluyen, por ejemplo, cromatografía de intercambio iónico y filtración en gel.
- Lo siguiente es un ejemplo de cómo las VLP de la invención se pueden fabricar, aislar y purificar. Habitualmente las VLP se producen a partir de líneas celulares recombinantes modificadas para crear VLP cuando dichas células se cultivan en un cultivo celular (véase anteriormente). La producción de VLP se puede conseguir por el esquema que se ilustra en la Figura 26. Un experto en la técnica entendería que hay métodos adicionales que se pueden utilizar para fabricar y purificar las VLP de la invención, por lo tanto, la invención no se limita al método descrito.
- La producción de VLP de la invención puede iniciarse sembrando células Sf9 (no infectadas) en matraces con agitado, permitiendo a las células expandirse y aumentando según crecen y se multiplican (por ejemplo, de un matraz de 125 ml a una bolsa Wave de 50 l). El medio que se usa para cultivar las células se formula para la línea celular apropiada (preferentemente medio libre de suero, por ejemplo el medio para insecto ExCell-420, JRH).

 Después, dichas células se infectan con baculovirus recombinante a la multiplicidad más eficaz de infección (por ejemplo, desde aproximadamente 1 a aproximadamente 3 unidades formadoras de placas por célula). Una vez que se produce la infección, las proteínas de gripe HA, NA y M1 se expresan a partir del genoma vírico, se autoensamblan en VLP y se segregan de las células aproximadamente a las 24 a 72 horas tras la infección. Habitualmente, la infecciones más eficaz cuando las células están en fase medio logarítmica de crecimiento (4-8 x 10⁶ células/ml) y son al menos viables en un 90 %.
 - Las VLP de la invención se pueden recolectar aproximadamente a las 48 a 96 horas tras la infección, cuando los niveles de VLP en el medio de cultivo están cerca del máximo, pero antes de la lisis celular extensa. La densidad y viabilidad celular Sf9 en el momento de la recolección puede ser aproximadamente de 0,5 x 10⁶ células/ml a aproximadamente 1,5 x 10⁶ células/ml con al menos una viabilidad del 20 %, como se muestra por el ensayo de exclusión por tinción. Después, el medio se retira y se clarifica. Se puede añadir NaCl al medio a una concentración de aproximadamente 0,4 a aproximadamente 1,0 M, preferentemente a aproximadamente 0,5 M, para evitar la agregación de VLP. La retirada de las células y restos celulares del medio de cultivo celular que contiene las VLP de la invención se puede conseguir por filtración de flujo tangencial (TFF) con un cartucho de filtro pre-esterilizado desechable de fibras huecas de 0,5 a 1,00 μm o un dispositivo similar.
 - Después, las VLP en el medio de cultivo clarificado se puede concentrar por ultracentrifugación utilizando un cartucho de fibra hueca pre-esterilizado, desechable, con el corte a un peso molecular de 500.000. Las VLP concentradas se pueden diafiltrar contra 10 volúmenes de solución salina fosfato tamponada (PBS) pH 7,0 a 8,0 que contiene 0,5 M de NaCl para eliminar los componentes residuales del medio.

45

50

55

- Las VLP concentradas, diafiltradas se pueden purificar más en un gradiente discontinuo de sacarosa del 20 % al 60 % en tampón PBS a pH 7,2 con un 0,5 M de NaCl por centrifugación a 6.500 x g durante 18 horas a aproximadamente 4 °C a aproximadamente 10 °C. Habitualmente, las VLP formarán una banda distintiva visible entre aproximadamente el 30 % y aproximadamente el 40 % de sacarosa o en la interfase (en un gradiente en etapas del 20 % y 60 %) que se puede recolectar del gradiente y se puede almacenar. Este producto se puede diluir para que comprenda 200 mM de NaCl en la preparación para la nueva etapa del proceso de purificación. Este producto contiene VLP y puede contener partículas de baculovirus intactas.
- Se puede conseguir purificar más las VLP por cromatografía de intercambio aniónico, o centrifugación en colchón de sacarosa isopícnica al 44 %. En la cromatografía de intercambio aniónico, la muestra del gradiente de sacarosa (véase anteriormente) se carga en la columna que contiene un medio con un anión (por ejemplo, Matrix Fractogel EMD TMAE) y se eluye por medio de un gradiente de sal (desde aproximadamente 0,2 M a aproximadamente 1,0 M de NaCl) que puede separar las VLP de otros contaminantes (por ejemplo, baculovirus y ADN/ARN). En el método del cojín de sacarosa, la muestra que comprende las VLP se añade a un colchón de sacarosa al 44 % y se centrifuga durante aproximadamente 18 horas a 30.000 g. Las VLP forman una banda en la parte superior de la

sacarosa al 44 %, mientras que el baculovirus precipita en el fondo y otras proteínas contaminantes permanecen en la capa del 0 % de sacarosa en la superficie. El pico de VLP o la banda, se recolecta.

El baculovirus intacto se puede inactivar, si se desea. La inactivación se puede conseguir por métodos químicos, por ejemplo, formalina o β-propil lactona (BPL). La eliminación o inactivación del baculovirus intacto también se puede conseguir en gran medida utilizando precipitación selectiva y métodos cromatográficos que se conocen en la técnica, como se ha ejemplificado anteriormente. Los métodos de inactivación comprenden la incubación de la muestra que contiene VLP en un 0,2 % de BPL durante 3 horas a aproximadamente 25 °C a aproximadamente 27 °C. El baculovirus también se puede inactivar incubando la muestra que contiene las VLP a 0,05 % a 4 °C durante 3 días, y luego a 37 °C durante una hora.

Tras la etapa de inactivación/eliminación, el producto que comprende las VLP se puede someter a otra etapa de diafiltración para eliminar cualquier reactivo de la etapa de inactivación y/o cualquier sacarosa residual, y para colocar las VLP en el tampón deseado (por ejemplo, PBS). La solución que comprende las VLP se puede esterilizar por métodos conocidos en la técnica (por ejemplo, filtración estéril) y almacenarse en el refrigerador o congelador.

Las técnicas anteriores se pueden practicar a lo largo de varias escalas. Por ejemplo, matraces-T, matraces con agitado, matraz de agitación, hasta biorreactores de tamaño industrial. Los biorreactores pueden comprender o depósitos de acero inoxidable o una bolsa de plástico pre-esterilizada (por ejemplo, el sistema que vende Wave Biotech, Bridgewater, NJ). Un experto en la técnica sabrá la que es más deseable para estos fines.

La expansión y producción de vectores de expresión de baculovirus y la infección de las células con baculovirus recombinantes para producir VLP recombinantes de gripe se puede conseguir en células de insecto, por ejemplo, en células de insecto Sf9 como se ha descrito previamente. En una realización preferida, las células que se infectan con baculovirus modificado para producir VLP de gripe son SF9.

Formulaciones farmacéuticas o vacunas y su administración

10

15

20

25

40

45

50

55

60

65

Las composiciones farmacéuticas útiles en el presente documento contienen un vehículo farmacéuticamente aceptable, incluyendo cualquier diluyente o excipiente adecuado, que incluye cualquier agente farmacéutico que no induce por sí mismo la producción de una respuesta inmunitaria perjudicial para el vertebrado que recibe la composición, y que se puede administrar sin toxicidad innecesaria y una VLP de la invención. Como se utiliza en el presente documento, la expresión "farmacéuticamente aceptable" significa que está aprobado por una agencia reguladora del gobierno estatal o federal o que se enumere en la Farmacopea de EE. UU., Farmacopea Europea u otra farmacopea reconocida generalmente para su uso en vertebrados, y más particularmente en seres humanos. Estas composiciones pueden ser útiles como una vacuna y/o como composiciones antigénicas para inducir una respuesta inmunitaria protectora en un vertebrado.

Dichas formulaciones farmacéuticas de la invención comprenden VLP que comprenden una proteína M1, HA y/o NA y un vehículo o excipiente farmacéuticamente aceptable. Los vehículos farmacéuticamente aceptables incluyen pero no se limitan a solución salina, solución salina tamponada, dextrosa, agua, glicerol, tampón acuoso isotónico estéril, y combinaciones de los mismos. Una exposición más profunda de los vehículos, diluyentes, y otros excipientes farmacéuticamente aceptables se presenta en Remington's Pharmaceutical Sciences (Mack Pub. Co. N.J. última edición). La formulación debería adecuarse al modo de administración. En una realización preferida, la formulación es adecuada para su administración a seres humanos, preferentemente es estéril, no particulada, y/o no pirogénica.

La composición, si se desea, también puede contener cantidades menos importantes de agentes humectantes o emulsionantes, o agentes tamponantes del pH. La composición puede estar en forma sólida, tal como un polvo liofilizado adecuado para su reconstitución, una solución líquida, suspensión, emulsión, comprimido, píldora, cápsula, formulación de liberación sostenida, o polvo. La formulación oral puede incluir vehículos de referencia tales como calidades farmacéuticas de manitol, lactosa, almidón, estearato magnésico, sacarina sódica, celulosa, carbonato magnésico, etc.

La invención también proporciona un paquete o kit farmacéutico que comprende uno o más envases llenos con uno o más de los ingredientes de las formulaciones vacunales de la invención. En una realización preferida, el kit comprende dos envases, uno que contiene las VLP y el otro que contiene un adyuvante. Junto con tales envases puede haber un prospecto en la forma que prescriba la agencia gubernamental que regule la fabricación, uso o venta de productos farmacéuticos o biológicos, cuyo prospecto refleja la aprobación por la agencia de la fabricación, uso o vena para la administración humana.

La invención también proporciona que la formulación VLP se envasa en un envase sellado herméticamente tal como una ampolla o papelillo que indica la cantidad de composición. En una realización, la composición VLP se suministra como un líquido, en otra realización, como un polvo seco liofilizado estéril o concentrado libre de agua en un envase sellado herméticamente y se puede reconstituir, por ejemplo, con agua o solución salina hasta la concentración adecuada para la administración a un sujeto. Preferentemente, la composición de VLP se suministra como un polvo liofilizado estéril en un envase sellado herméticamente como una unidad de dosificación de preferentemente,

aproximadamente 1 μ g, aproximadamente 5 μ g, aproximadamente 10 μ g, aproximadamente 20 μ g, aproximadamente 25 μ g, aproximadamente 30 μ g, aproximadamente 50 μ g, aproximadamente 100 μ g, aproximadamente 125 μ g, aproximadamente 150 μ g, o aproximadamente 200 μ g. De manera alternativa, la unidad de dosificación de la composición de VLP es menor de aproximadamente 1 μ g, (por ejemplo, aproximadamente 0,08 μ g, aproximadamente 0,04 μ g; aproximadamente 0,2 μ g, aproximadamente 0,4 μ g, aproximadamente 0,5 μ g o menos, aproximadamente 0,25 μ g o menos, o aproximadamente 0,1 μ g o menos), o más de aproximadamente 125 μ g, (por ejemplo, aproximadamente 150 μ g o más, aproximadamente 250 μ g o más). Estas dosis se pueden medir como VLP totales o como μ g de HA. La composición de VLP debería administrarse en aproximadamente 12 horas, preferentemente en aproximadamente 6 horas, en aproximadamente 5 horas, en aproximadamente 3 horas, o en aproximadamente 1 hora después de reconstituirse a partir del polvo liofilizado.

10

20

30

50

55

65

En una realización alternativa, una composición VLP se suministra en forma líquida en un envase sellado herméticamente que indica la cantidad y concentración de la composición DE VPL. Preferentemente, la forma líquida de la composición VLP se suministra en un envase sellado herméticamente al menos aproximadamente a 50 μg/ml, más preferentemente al menos a aproximadamente 100 μg/ml, al menos a aproximadamente 200 μg/ml, o al menos 1 mg/ml.

En general, las VLP de gripe de la invención se administran en una cantidad eficaz o cantidad (como se define anteriormente) suficiente para estimular una respuesta inmunitaria contra una o más cepas del virus de la gripe. Preferentemente la administración de la VLP de la invención produce una inmunidad sustancial contra al menos un virus de gripe. Normalmente, la dosis se ajustará en este intervalo basándose en, por ejemplo, la edad, estado físico, peso corporal, sexo, dieta, tiempo de administración, y otros factores clínicos. La formulación vacunal profiláctica se administra sistémicamente, por ejemplo, por inyección subcutánea o intramuscular utilizando una jeringa y una aguja, o un dispositivo de inyección sin aguja. De manera alternativa, la formulación vacunal se administra por vía intranasal, sea en gotas, aerosol de grandes partículas (mayores de aproximadamente 10 micras), o pulverizador en el tracto respiratorio superior. Aun que cualquiera de las vías de suministro anteriores da como resultado una respuesta inmunitaria, la administración intranasal confiere el beneficio añadido de provocar inmunidad mucosa en el sitio de entrada del virus de la gripe.

Por lo tanto, la solicitud también describe un método de formulación de una vacuna o composición antigénica que induce una inmunidad sustancial contra la infección del virus de la gripe o al menos un síntoma de la misma a un su jeto, que comprende la adición de dicha formulación una dosis eficaz de una VLP de gripe.

Aunque se prefiere la estimulación de una inmunidad sustancial con una única dosis, se pueden administrar dosis adicionales, por la misma vía o diferente, para conseguir el efecto deseado. En neonatos y niños, por ejemplo, se pueden necesitar múltiples administraciones para provocar suficientes niveles de inmunidad. La administración puede continuar a intervalos durante la infancia, según se necesite para mantener niveles de protección suficientes contra la infección de gripe. De manera similar, los adultos que son particularmente susceptibles de repetir o de infección de gripe grave, tal como, por ejemplo, trabajadores de salud pública, trabajadores de salud primaria, miembros de la familia de niños pequeños, los ancianos, y los individuos con una función cardiopulmonar comprometida pueden necesitar múltiples inmunizaciones para establecer y/o mantener respuestas inmunitarias protectoras. Los niveles de inmunidad que se inducen se pueden controlar, por ejemplo, midiendo las cantidades de anticuerpos neutralizantes secretores y del suero, y se ajustan las dosificaciones o se repiten las vacunaciones según se necesite para provocar o mantener los niveles de protección que se deseen.

Por lo tanto, en una realización, un método para inducir inmunidad sustancial contra la infección del virus de la gripe o al menos un síntoma de la misma en un sujeto, comprende la administración de al menos una dosis eficaz de una VLP de gripe, en que dicha VLP comprende proteínas HA, NA y M1. En otra realización, un método de inducción de inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma en un sujeto, comprende la administración de al menos una dosis eficaz de una VLP de gripe, en que dicha VLP consiste esencialmente en HA, NA y M1 de gripe. Dichas VLP pueden comprender proteínas de gripe adicionales y/o proteínas contaminantes en concentraciones despreciables. En otra realización, un método de inducción de inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto, comprende la administración al menos de una dosis eficaz de una VLP de gripe, en que dicha VLP consisten en HA, NA y M1 de influenza. En otra realización, dichas HA, NA y M1 de gripe se derivan del virus de la gripe estacional y/o la gripe aviar. En otra realización, un método de inducción de inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma en un su jeto, comprende la administración de al menos una dosis eficaz de una VLP de gripe que comprende proteínas de gripe en que dichas proteínas de gripe consisten en proteínas HA, NA y M1. Estas VLP contienen HA, NA y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, HA y/o NA). En otra realización, dicha HA y/o NA muestran actividad hemaglutinina y/o actividad neuraminidasa, respectivamente. En otra realización, dicho sujeto es un mamífero. En otra realización dicho mamífero es un ser humano. En otra realización, el método comprende la inducción de inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma administrando dicha formulación en una dosis. En otra realización, el método comprende la inducción de inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma administrando dicha formulación en dosis múltiples.

Los métodos de administración de una composición que comprende VLP (vacuna y/o formulaciones antigénicas) incluyen, pero no se limitan a, administración parenteral (por ejemplo, intradérmica, intramuscular, intravenosa o subcutánea), epidural y mucosa (por ejemplo, vía intranasal y oral o pulmonar o por supositorios). En una realización específica, las composiciones de la presente invención se administran por vía intramuscular, intravenosa, transdérmica, o intradérmica. Las composiciones se pueden administrar por cualquier vía conveniente, por ejemplo por infusión o infección en embolada, por absorción a través de los revestimientos epiteliales o mucocutáneos (por ejemplo, mucosa oral, de colon, conjuntiva, nasofaringe, orofaringe, vagina, uretra, vejiga urinaria y mucosa intestinal, etc.) y se puede administrar junto con otros agentes biológicamente activos. En algunas realizaciones, la vía intranasal u otras vías mucosas de administración de la composición que comprende VLP de la invención puede inducir un anticuerpo u otra respuesta inmunitaria que es sustancialmente más alta que otras vías de administración.

En otra realización, la vía intranasal u otras vías mucosas de administración de una composición que comprenden VLP de la invención puede inducir un anticuerpo u otra respuesta inmunitaria que inducirá una protección cruzada contra otras cepas de virus de gripe. La administración puede ser sistémica o local.

En otra realización más, la vacuna y/o formulación antigénica se administra de tal manera que se dirige a los tejidos mucosos con el fin de provocar una respuesta inmunitaria en el sitio de la inmunización. Por ejemplo, se puede dirigir a los tejidos mucosos tales como el tejido linfoide asociado al intestino (GALT) para inmunizarlo utilizando la administración oral de composiciones que contienen adyuvantes con propiedades que se dirigen a una mucosa en particular. También se pueden dirigir a tejidos mucosos adicionales, tales como el tejido linfoide nasofaríngeo (NALT) y el tejido linfoide asociado a bronquios (BALT).

20

25

30

35

40

Las vacunas y/o formulaciones antigénicas de la invención también se pueden administrar con una dosificación programada, por ejemplo, una administración inicial de la composición vacunal con posteriores administraciones de refuerzo. En realizaciones particulares, se administra una segunda dosis de la composición en cualquier momento de entre dos semanas y un año, preferentemente desde aproximadamente 1, aproximadamente 2, aproximadamente 3, aproximadamente 4, aproximadamente 5 a aproximadamente 6 meses, tras la administración inicial. Adicionalmente, se puede administrar una tercera dosis tras la segunda dosis y desde aproximadamente 3 meses a aproximadamente dos años, o incluso más, preferentemente aproximadamente 4, aproximadamente 5, or aproximadamente 6 meses, o aproximadamente 7 meses a aproximadamente un año tras la administración inicial. La tercera dosis se puede administrar opcionalmente cuando no se detectan o están bajos los niveles de inmunoglobulinas específicas en el suero y/u orina o secreciones mucosas del sujeto tras la segunda dosis. En una realización preferida, se administra una segunda dosis aproximadamente un mes después de la primera administración. En otra realización, la segunda dosis se administra aproximadamente seis meses después de la primera administración.

En otra realización, dicha VLP de la invención se puede administrar como parte de una terapia de combinación. Por ejemplo, las VLP de la invención se pueden formular con otras composiciones inmunogénicas y/o antivíricos (por ejemplo, Amantadina, Rimantadina, Zanamivir Y Osteltamivir).

La dosificación de la formulación farmacéutica puede determinarla fácilmente por un experto en la técnica, por 45 ejemplo, identificando primero las dosis eficaces para provocar una respuesta inmunitaria profiláctica o terapéutica, por ejemplo, midiendo el título en el suero de las inmunoglobulinas específicas del virus o midiendo la relación inhibidora de anticuerpo en las muestras de suero, o muestras de orina, o secreciones mucosas. Dichas dosificaciones se pueden determinar a partir de los estudios con animales. Una lista no limitante de animales que se utilizan para estudiar el virus de gripe incluyen cobayas, hámster sirio, chichilla, erizo, pollo, rata, ratón y hurón. La 50 mayoría de los animales no son huéspedes naturales del virus de gripe pero siguen sirviendo para los estudios de varios aspectos de la enfermedad. Por ejemplo, cualquiera de los animales anteriores, se puede dosificar con un candidato a vacuna, por ejemplo, con VLP de la invención, para caracterizar parcialmente la respuesta inmunitaria que se induce, y/o determinar si se ha producido algún anticuerpo neutralizante. Por ejemplo, se han llevado a cabo 55 muchos estudios en modelo de ratón que debido a su pequeño tamaño y su bajo coste permite a los investigadores llevar a cabo estudios a gran escala. Sin embargo, el tamaño pequeño del ratón también aumenta la dificultad para observar fácilmente cualquier signo clínico de la enfermedad y el ratón no es un modelo predictivo para la enfermedad en los seres humanos.

Se ha hecho extensivo el uso de hurones para estudiar varios aspectos de la infección por virus de gripe y su curso de acción. El desarrollo de muchos conceptos contemporáneos de inmunidad contra el virus de gripe sería imposible sin el uso del hurón. (Maher, et al. 2004). Los hurones han demostrado ser un buen modelo para estudiar la gripe por varias razones: la infección de gripe en el hurón se parece estrechamente a la de los seres humanos con respecto a los signos clínicos, patogénesis, e inmunidad; Los tipos A y B del virus de la gripe humana infectan al hurón, proporcionando así una oportunidad para estudiar una población completamente controlada en la observar la interacción de la transmisión de la infección, la enfermedad, y la variación de secuencia de los aminoácidos en las

glucoproteínas del virus de gripe; y los hurones tienen otras características físicas que lo hacen un modelo ideal para descifrar las manifestaciones de la enfermedad. Por ejemplo, los hurones y los seres humanos muestran signos clínicos muy similares de infección de gripe que parecen depender de la edad del huésped, la cepa del virus, las condiciones ambientales, el grado de infección bacteriana secundaria, y muchas otras variables. Por lo tanto un experto en la técnica puede correlacionar más fácilmente la eficacia de una vacuna de gripe y los regímenes de dosificación a partir del modelo de hurón a seres humanos en comparación con el de ratón o cualquier otro modelo descrito anteriormente.

Además, se pueden llevar a cabo estudios clínicos en humanos para que un experto determine la dosis eficaz preferida para humanos. Tales estudios clínicos son rutinarios y bien conocidos en la técnica. La dosis precisa que se va emplear dependerá también de la vía de administración. Las dosis eficaces se pueden extrapolar a partir de las curvas de respuesta a la dosis derivadas de los sistemas de ensayo in vitro y con animales.

Como también se conoce bien en la técnica, la inmunogenicidad de una composición en particular se puede aumentar con el uso de estimulantes no específicos de la respuesta inmunitaria, conocidos como adyuvantes. Los adyuvantes se han utilizado experimentalmente para promover un aumento generalizado de la inmunidad contra antígenos desconocidos (por ejemplo, Pat. de EE. UU. Nº 4.877.611). Los protocolos de inmunización se han utilizado durante muchos años para estimular las respuestas, y como tales, los adyuvantes se conocen bien por los expertos en la técnica. Algunos adyuvantes afectan la manera en la que se presentan los antígenos. Por ejemplo, la respuesta inmunitaria se aumenta cuando los antígenos proteicos se precipitan con alúmina. La emulsificación de antígenos también prolongan la duración de la presentación del antígeno. La inclusión de cualquier adyuvante descrita en Vogel et al., "A Compendium of Vaccine Adjuvants and Excipients (2ª Edición)," se incluye en el ámbito de la presente invención.

Ejemplarmente, los adyuvantes incluyen el adyuvante completo de Freund (un estimulante no específico de la respuesta inmunitaria que contiene Mycobacterium tuberculosis muertos), adyuvante incompleto de Freund y adyuvante de hidróxido de aluminio. Otros adyuvantes incluyen GMCSP, BCG, hidróxido de aluminio, compuestos MDP, tales como tur-MDP y nor-MDP, CGP (MPT-PE), lípido A, y lípido A monofosforilo (MPL). También se contemplan el RIBI, que contiene tres componentes extraídos de bacterias, MPL, dimicolato de trehalosa (TDM) y esqueleto de la pared celular (CWS) en una emulsión del 2 % de escualeno/Tween 80. También se pueden utilizar MF-59, Novasomes®, antígenos MHC.

35

40

45

50

55

60

En una realización de la invención el adyuvante es una vesícula de lípido paucilamelar que tiene aproximadamente de dos a diez bicapas dispuestas de forma de conchas sustancialmente esféricas separadas por capas acuosas rodeadas de una gran cavidad central amorfa libre de bicapas lipídicas. Las vesículas lipídicas paucilamelares pueden actuar para estimular la respuesta inmunitaria de varias maneras, como estimulantes no específicos, como vehículos para el antígeno, como vehículos para adyuvantes adicionales, y combinaciones de las mismas. Las vesículas lipídicas paucilamelares actúan como estimuladores no específicos cuando, por ejemplo, se prepara una vacuna entremezclando el antígeno con las vesículas pre-formadas tal que el antígeno permanece extracelular a las vesículas. Encapsulando un antígeno en la cavidad central de la vesícula, la vesícula actúa tanto como estimulante inmunitario y como vehículo para el antígeno. En otra realización, las vesículas se fabrican primariamente de vesículas no fosfolípidos. En otra realización las vesículas son Novasomes. Las Novasomes® son vesículas paucilamelares no fosfolipídicas que varían desde aproximadamente 100 nm a aproximadamente 500 nm. Comprenden Brij 72, colesterol, ácido oleico y escualeno. Las Novasomes han demostrado que son adyuvantes eficaces para los antígenos de gripe (véase las Patentes de EE. UU. 5.629.021. 6.387.373. and 4.911.928).

En un aspecto el efecto adyuvante se consigue por el uso de un agente, tal como la alúmina, que se utiliza en una solución aproximadamente del 0,05 a aproximadamente el 0,1 % en solución salina fosfato tamponada. De manera alternativa, las VLP se pueden hacer como una mezcla con polímeros sintéticos de azúcares (Carbopol®) que se utiliza como una solución de aproximadamente el 0,25 %. Algunos adyuvantes, por ejemplo, ciertas moléculas orgánicas que se obtienen a partir de bacterias; actúan sobre el huésped más que sobre el antígeno. Un ejemplo es el dipéptido muramilo (N-acetilmurlmil-L-alanil-D-isoglutamina [MDP]), un peptidoglucano bacteriano. En otras realizaciones, se pueden utilizar también hemocianinas y hemoeritrinas con las VLP de la invención. El uso de hemocianina de la lapa californiana (KLH) se prefiere en ciertas realizaciones, aunque se pueden emplear hemocianinas y hemoeritrinas de otros moluscos y artrópodos.

También se pueden utilizar varios adyuvantes polisacáridos. Por ejemplo, se ha descrito el uso de varios adyuvantes polisacáridos de neumococos sobre las respuestas de anticuerpo de ratones (Yin *et al.*, 1989). Las dosis que producen respuestas óptimas, o de otra manera que no producen supresión, se deberían emplear como se indica (Yin et al., 1989). Se prefieren particularmente las variedades poliamina de polisacáridos, tales como la quitina y el quitosano, incluyendo la quitina desacetilada. En otra realización, se utiliza un derivado tripéptido-disacárido del dipéptido muramilo que se ha descrito para su uso en liposomas artificiales formados de fosfatidil colina y fosfatidil glicerol.

65 Los agentes anfipáticos y tensioactivos, por ejemplo, la saponina y derivados tales como QS21 (Cambridge Biotech), forman otro grupo más de adyuvantes para su uso con las VLP de la invención. También se pueden

emplear tensioactivos copolímeros bloqueantes no iónicos (Rabinovich *et al.*, 1994). Los oligonucleótidos son otro grupo de adyuvantes útiles (Yamamoto *et al.*, 1988). Otros adyuvantes que se pueden utilizar en ciertas realizaciones de la presente invención son QuilA y lentineno.

Otro grupo de adyuvantes son las endotoxinas detoxificadas, tales como la endotoxina detoxificada refinada de la Pat de EE. UU. Nº 4.435.386. También se contemplan las combinaciones de endotoxinas detoxificadas con dimicolato de trehalosa y los glucolípidos endotóxicos (Pat. de EE. UU. Nº 4.505.899), como la combinación de endotoxinas con esqueleto de la pared celular (CWS) o CWS y dimicolato de trehalosa, como se describe en las Pat. de EE. UU. Nº 4.436.727, 4.436.728 y 4.505.900. Las combinaciones de solo CWS y dimicolato de trehalosa, sin endotoxinas detoxificadas, también se ha visto que son útiles, como describen en la Pat. de EE. UU. Nº 4.520.019.

Los expertos en la técnica sabrán los diferentes tipos de adyuvantes que se pueden conjugar con las vacunas de acuerdo con la presente invención y estas incluyen alquil lisofosfolípidos (ALP); BCG; y biotina (incluyendo los derivados biotinilados) entre otros. Ciertos adyuvantes particularmente contemplados para su uso son los ácidos teicoicos de las células Gram -. Estos incluyen los ácidos lipoteicoicos (LTA), ácidos ribitol teicoicos (RTA) y ácido glicerol teicoico (GTA). Las formas activas de sus equivalentes sintéticos también se pueden emplear en conexión con la invención (Takada *et al.*, 1995).

Varios adyuvantes, incluso los que no se utilizan habitualmente en seres humanos, se pueden emplear en otros vertebrados, en los que, por ejemplo, se desea producir anticuerpos o para obtener posteriormente células T activadas. La toxicidad u otros efectos secundarios que pueden resultar de los adyuvantes o de las células, por ejemplo, como se puede producir utilizando células tumorales no irradiadas, es irrelevante en tales circunstancias.

Otro método para inducir una respuesta inmunitaria se puede conseguir formulando las VLP de la invención con "estimulantes inmunitarios". Estos son mensajeros químicos propios del cuerpo (citoquinas) para aumentar la respuesta del sistema inmunitario. Los estimulantes inmunitarios incluyen, pero no se limitan a estos, varias citoquinas, linfoquinas y quimioquinas con actividades inmunoestimulantes, inmunopotenciadoras, y pro-inflamatorias, tales como las interleucinas (por ejemplo, IL-1, IL-2, IL-3, IL-4, IL-12, IL-13); factores de crecimiento (por ejemplo, factor estimulante de colonias de granulocitos-macrófagos (GM) (CSF)); y otras moléculas inmunoestimulantes, tales como el factor inflamatorio de macrófagos, ligando Flt3, B7.1; B7.2, etc. Las moléculas inmunoestimulantes se pueden administrar en la misma formulación que las VLP de gripe, o se pueden administrar por separado. Se puede administrar o la proteína o un vector de expresión que codifica la proteína para producir un efecto inmunoestimulante.

35 Método de estimulación de una respuesta inmunitaria anti-gripe

15

40

45

50

Las VLP de la invención son útiles para preparar composiciones que estimulan la respuesta inmunitaria que confiere inmunidad o inmunidad sustancial contra los virus de gripe. Tanto la inmunidad mucosa como celular pueden contribuir a la inmunidad contra la infección de gripe y la enfermedad. Los anticuerpos segregados localmente en el tracto respiratorio superior son el factor más importante en la resistencia a la infección natural. La inmunoglobulina A segregada (slgA) está implicada en la protección del tracto respiratorio superior y la lgG sérica en la protección del tracto respiratorio inferior. La respuesta inmunitaria inducida por una infección protege contra la re-infección con el mismo virus o una cepa vírica antigénicamente similar. El virus de gripe se somete a cambios frecuentes e impredecibles; por lo tanto, tras la infección natural, el periodo de protección que se proporciona por la inmunidad del huésped puede ser de solo unos pocos años contra las nuevas cepas de virus que circulan en la comunidad.

Las VLP de la invención pueden inducir inmunidad sustancial en un vertebrado (por ejemplo, un ser humano) cuando se administran a dicho vertebrado. La inmunidad sustancial resulta de una respuesta inmunitaria contra la VLP de gripe de la invención que protege o mejora la infección de gripe o al menos reduce un síntoma de la infección del virus de la gripe en dicho vertebrado. En algunos casos, si dicho vertebrado se infecta, dicha infección será asintomático. La respuesta puede ser una respuesta no completamente protectora. En este caso, si dicho vertebrado se infecta con in virus de gripe, el vertebrado experimentará síntomas reducidos o de duración más corta de los síntomas en comparación con un vertebrado no inmunizado.

En una realización, la invención comprende un método de inducción de inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma en un su jeto, que comprende la administración de al menos una dosis eficaz de una VLP de gripe. En otra realización, dicha inducción de inmunidad sustancial reduce la duración de los síntomas de gripe. En otra realización, un método de inducción de inmunidad sustancial contra la infección por virus de gripe o al menos un síntoma de la misma en un su jeto, comprende la administración de al menos una dosis eficaz de una VLP de gripe, en que dicha VLP comprende las proteínas HA, NA y M1 de gripe. En otra realización, dicha VLP de gripe comprende proteínas de gripe, en que dichas proteínas de gripe consisten en las proteínas HA, NA y M1. Estas VLP contienen HA, NA y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintos de fragmentos de M1, HA y/o NA). En otra realización, el método de inducción de inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto, comprende la administración de al menos una dosis eficaz de una VLP de tripe, en que dicha VLP

consiste esencialmente en HA, NA y M1 de gripe. Dichas VLP pueden comprender proteínas de gripe adicionales y/o proteínas contaminantes en concentraciones despreciables. En otra realización, un método de inducción de inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto, comprende la administración de al menos una dosis eficaz de una VLP de gripe, en que dicha VLP consiste en HA, NA y M1 de gripe. En otra realización, dicha HA y/o NA muestran actividad hemaglutinina y/o actividad neuraminidasa, respectivamente. En otra realización, dicho sujeto es un mamífero. En otra realización, dicho mamífero es un ser humano. En otra realización, dicha VLP se formula como un adyuvante o estimulante inmunitario.

Recientemente se ha coordinado un esfuerzo para crear una vacuna contra el virus de la gripe aviar que tiene el potencial de crear una pandemia. Esto es debido a varios virus de gripe aviar que han cruzado la barrera interespecies y han infectado seres humanos directamente dando lugar a enfermedad, y en algunos casos, la muerte. Estos virus eran H5N1, H9N2 y H7N7 (Cox *et al.*, 2004). Un reciente estudio examinaba el potencial de utilizar el virus de gripe H5N1 inactivado como una vacuna. La formulación de la vacuna era similar a las vacunas inactivadas con licencia que se aprueban actualmente para su comercialización. El estudio concluyó que el uso del virus H5N1 inactivado inducía una respuesta inmunitaria en seres humanos, sin embargo la dosis que se daba era muy alta (90 μg de gripe aviar en comparación con los 15 μg de la vacuna aprobada) (Treanor *et al.*, 2006). Esta alta cantidad de antígeno de gripe aviar es impracticable para una campaña de vacunación mundial. Como se ilustra posteriormente, las VLP de la invención inducen una respuesta inmunitaria en un vertebrado cuando se administra a dicho vertebrado.

Por lo tanto, la invención engloba una VLP para su uso en un método de inducción de una inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma en un su jeto, que comprende la administración de al menos una dosis eficaz de una VLP DE GRIPE AVIAR, En otra realización, dicha inducción de inmunidad sustancial reduce la duración de los síntomas de gripe. En otra realización, dicha inducción de inmunidad es por la administración de al menos 0,2 µg de HA aviar en las VLP de la invención. En otra realización, dicha inducción de la inmunidad es por la administración de aproximadamente 0,2 µg de HA aviar a aproximadamente 15 µg de HA aviar en las VLP de la invención. La administración puede ser en una o más dosis, peros puede ser ventajosamente en una única dosis. En otra realización, dicha VLP aviar se deriva del H5N1 de gripe aviar.

30

35

En otra realización, la invención comprende una VLP para su uso en un método de inducción de inmunidad sustancial contra la infección por el virus de gripe aviar o al menos un síntomas de la misma en un sujeto que comprende la administración de al menos una dosis eficaz de una VLP de gripe aviar, en que dicha VLP comprende HA, NA y M1 de gripe aviar. En otra realización dicha VLP de gripe aviar comprende proteínas de gripe aviar, en que dichas proteínas de gripe aviar consisten en las proteínas HA, NA y M1. Estas VLP contienen HA, NA y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, HA y/o NA). En otra realización, dicho método de inducción de inmunidad sustancial contra la infección por el virus de la gripe aviar o al menos un síntoma de la misma en un su jeto comprende la administración de al menos una dosis eficaz de una VLP de gripe aviar, en que dicha VLP consiste esencialmente en HA, NA y M1 de gripe aviar. Dichas VLP pueden comprender proteínas de gripe adicionales y/o proteínas contaminantes en concentraciones despreciables. En otra realización, un método de inducción de inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma en un sujeto, comprende la administración de al menos una dosis eficaz de una VLP de gripe, en que dicha VLP consiste en HA, NA y M1 de gripe aviar. En otra realización dichas HA y NA de gripe aviar son H5N1, respectivamente. En otra realización dichas HA y NA son H9N2, respectivamente. En otra realización, dichas HA y NA de gripe aviar son H7N7, respectivamente. En otra realización, dichas HA y NA muestran actividad hemaglutinina y/o actividad neuraminidasa, respectivamente. En otra realización, dicho sujeto es un mamífero. En otra realización, dicho mamífero es un ser humano. En una realización más, dicha VLP se formula con un adyuvante o estimulante inmunitario.

50

60

45

En otra realización, dichas VLP de gripe aviar inducirán una respuesta inmunitaria en un vertebrado que es aproximadamente de 2 veces, aproximadamente de 4 veces, aproximadamente de 16 veces, aproximadamente de 32 veces, aproximadamente de 64 veces, aproximadamente de 128 veces más (o más alta) potente que antígenos de gripe aviar similares formulados similarmente a las vacunas inactivadas aprobadas, que tienen licencia comercial actualmente. Las formulaciones actuales comprenden vacunas de virus inactivados completos (por ejemplo, tratados con formaldehido), virus fraccionados (destruidos químicamente), y subunidades (glucoproteínas purificadas). Los métodos para determinar la potencia de una vacuna se conocen y son rutinarios en la técnica. Por ejemplo, los ensayos de microneutralización y los ensayos de inhibición de la hemaglutinación se pueden llevar a cabo para determinar la potencia de una vacuna de VLP aviar en comparación con los antígenos de gripe aviar formulados de forma similar a las vacunas inactivadas con licencia aprobadas actualmente para su comercialización. En una realización, dicho aumente en la potencia se nota cuando aproximadamente 6 μg, aproximadamente 7 μg, aproximadamente 9 μg, aproximadamente 10 μg, aproximadamente 15 μg, aproximadamente 20 μg, aproximadamente 25 μg, aproximadamente 30 μg, aproximadamente 35 μg, 40 μg, aproximadamente 45 μg, aproximadamente 9 μg, o más de las VLP y el antígeno formulado de forma similar de las vacunas inactivadas aprobadas actualmente para su comercialización se administran a un vertebrado (es decir, cantidades equivalentes

de HA y/o NA en una VLP con cantidades similares de HA y/o NA formuladas similarmente a las acunas inactivadas con licencia y/o cualquier otro antígeno). Las cantidades se pueden medir de acuerdo con el contenido de HA. Por ejemplo, 1 μg de una VLP de la invención es aproximadamente 1 μg de HA en una solución de VLP que comprende HA o se puede medir por el peso de VLP.

Las vacunas de gripe estacional se administran a seres humanos cada año para reducir la incidencia de casos de gripe cada año. Hoy en día, hay dos subtipos de gripe A y gripe B circulando en los Estados Unidos. Las vacunas actuales son, por lo tanto, trivalentes, para proporcionar protección contra las cepas que circulan actualmente. Cada año una cepa o variación diferente de una gripe vírica cambia. Por lo tanto, para la mayoría de los años se fabrica una nueva composición vacunal y se administra. Las vacunas inactivadas se producen por propagación del virus en huevos de gallina embrionados. El líquido alantoideo se recolecta, y el virus se concentra y purifica, luego se inactiva. Por lo tanto, las vacunas del virus de gripe con licencia actualmente pueden contener cantidades traza de proteínas de huevo residuales y, por lo tanto, no deberían administrarse a personas que tienen hipersensibilidad anafiláctica a los huevos. Además, se tienen que organizar los suministros de huevos y se deben seleccionar las cepas para la producción de vacunas con meses de adelanto de la próxima estación de gripe, limitando así la flexibilidad de esta estrategia y resultando a menudo en retrasos y acortamientos de la producción y la distribución. Además, algunas cepas de gripe no se replican bien en huevos embrionados de pollo lo que puede limitar las cepas de gripe que se pueden cultivar y formular en las vacunas.

10

45

20 Como se ha mencionado anteriormente, la VLP de la invención no necesita huevos para su producción. Estas VLP se hacen por media de un sistema de cultivo celular. Por lo tanto, la solicitud describe un método de inducción de una inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma en un su jeto, que comprende la administración de al menos una dosis eficaz de una VLP de gripe estacional. Como se expuso anteriormente, virus de gripe estacional se refiere a las cepas víricas de gripe que se ha determinado que pasan por la población humana durante una determinada estación de gripe basándose en las vigilancias epidemiológicas por los centros nacionales de gripe por todo el mundo. Dichos estudios y algunos virus de gripe asilados se envían a uno de los cuatro laboratorios de referencia de la Organización Mundial de la Salud (OMS), uno de los cuales se localiza en los Centros para el control y prevención de enfermedades (CDC) en Atlanta, para su ensayo detallado. Estos laboratorios ensayan qué tal reaccionan los anticuerpos producidos por la vacuna actual frente al virus circulante y 30 nuevos virus de gripe. Esta información, junto con la información sobre la actividad de la gripe, se resume y se presenta a un comité consultivo de la Administración de alimentos y fármacos de EE. UU (FDA) y en la reunión de la OMS. Estas reuniones dan como resultado la selección de tres virus (dos subtipos de virus de gripe A y uno de virus de gripe B) para integrarse en las vacunas de gripe para el siguiente otoño e invierno. La selección se produce en febrero para el hemisferio norte y en septiembre para el hemisferio sur. Habitualmente, una o dos de las tres cepas 35 de virus de la vacuna cambian cada año. En otra realización, dicha inducción de inmunidad sustancial reduce la duración de los síntomas de gripe.

La presente solicitud describe un método de inducción de una inmunidad sustancial contra una infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto que comprende la administración al menos de una dosis eficaz de una VLP de gripe estacional, en que dicha VLP comprende una HA, NA y M1 de gripe estacional. Dicha VLP de gripe estacional Puede comprender proteínas de gripe estacional, en que dichas proteínas consisten en proteínas HA, NA y M1. Estas VLP contienen HA, NA y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, HA y/o NA). Dicho método de inducción de una inmunidad sustancial contra la infección por el virus de la gripe estacional o al menos un síntoma de la misma en un sujeto puede comprender la administración de al menos una dosis eficaz de una VLP de gripe estacional, en que dicha VLP consiste esencialmente en HA, NA y M1 de gripe estacional. Dichos VLP pueden comprender proteínas de gripe adicionales y7o proteínas contaminantes en concentraciones despreciables.

Un método de inducción de una inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto puede comprender la administración de al menos una dosis eficaz de una VLP de gripe, en que dicha VLP consiste en HA, NA y M1 de gripe estacional.

Dicha HA y/o NA de gripe aviar puede mostrar actividad hemaglutinina y/o actividad neuraminidasa, respectivamente. Dicho sujeto puede ser un mamífero. Dicho mamífero puede ser un ser humano. Opcionalmente dicha VLP se formula con un adyuvante o estimulante inmunitario.

En general, las VLP de gripe estacional se administran en una cantidad suficiente para estimular una inmunidad sustancial para una o más cepas del virus de gripe estacional. Las VLP se pueden mezclar con otras VLP que comprenden diferentes subtipos de proteínas de gripe (como se enumeran anteriormente). La formulación puede ser una formulación trivalente que comprende una mezcla de VLP con proteínas HA y/o NA de gripe estacional de al menos dos de gripe A y/o uno al menos uno del subtipo B. Dicho subtipo B se puede producir por el mismo método que se ha descrito anteriormente.

Opcionalmente, las VLP (VLP estacionales o aviares) pueden provocar una respuesta inmunitaria que proporcionará protección contra más de una cepa de virus de gripe. Esta protección cruzada de un vertebrado con una VLP de

gripe construida a partir de una cepa particular, de un subgrupo particular, puede inducir protección cruzada contra virus de gripe de diferentes cepas y/o subgrupo. Los ejemplos posteriores muestran que las VLP son capaces de inducir reactividad cruzada con diferentes cepas y/o subgrupos.

El sistema inmunitario humoral produce anticuerpos contra diferentes antígenos de gripe, de los que el anticuerpo específico de HA es el más importante para la neutralización del virus y por tanto la prevención de la enfermedad. Los anticuerpos específicos de NA son menos eficaces en la prevención de la infección, pero disminuyen la liberación de virus de las células infectadas. Los tejidos mucosos son el principal portal de entrada de muchos patógenos, incluyendo la gripe, y el sistema inmunitario mucoso proporciona la primera línea de defensa contra la 10 infección aparte de la inmunidad innata. La SIgA y, hasta cierto punto, la IgM son los anticuerpos neutralizantes principales que se dirigen contra los patógenos mucosos previniendo la entrada de agentes patógenos y pueden funcionar intracelularmente para inhibir la replicación del virus. Las secreciones nasales contienen anticuerpos neutralizantes particularmente para HA y NA de gripe, que son primariamente del isotipo IgA y se producen localmente, Durante la infección primaria, las tres clases de lg principales (IgG, IgA e IgM) específicas contra HA se 15 pueden detectar por ensayo de inmunoabsorción ligado a enzimas en lavados nasales, aunque se detectan más frecuentemente la IgA e IgM que la IgG. Tanto la IgA como, hasta cierto punto la IgM se segregan localmente activamente, mientras que la IgG se deriva como una secreción sérica. En sujetos que tienen una respuesta de IgA local, también se observa una respuesta de IgA sérica. La respuesta de IgA local estimulada por la infección natural dura durante al menos 3-5 meses, y las células de memoria encargadas de IgA específica de gripe se pueden 20 detectar localmente. La IgA también es el isotipo predominante de Ig en las secreciones locales tras la infección secundaria, las células de memoria se pueden detectar localmente. La IgA también es el isotipo Ig predominante en las secreciones locales tras la infección secundaria, y se detecta una respuesta de IgA en el suero en la infección posterior. La presencia de anticuerpos neutralizantes producidos localmente que se inducen por la vacuna de virus vivos se correlaciona con la resistencia a la infección y enfermedad tras la exposición al virus de tipo silvestre.

La resistencia a la infección de gripe o enfermedad se correlaciona con el nivel local y/o sérico de anticuerpos contra HA y NA. Los anticuerpos anti-HA son los más medidos comúnmente que se correlacionan con la protección contra la gripe (Cox *et al.*, 1999). Una respuesta protectora de anticuerpo sérico (con un título de inhibición de la hemaglutinación (HI) ≥ 40) se puede detectar en aproximadamente el 80 % de los sujetos tras la infección de gripe natural. Las células B que producen las tres clases de lg principales están presentes en la sangre periférica de sujetos normales (Cox et al., 1994) y los individuos que padecen la infección de gripe. En los seres humanos, los anticuerpos séricos tienen un papel tanto en la resistencia a la enfermedad tras la infección experimental y la infección natural. Durante la infección primaria, las tres clases de lg principales se pueden detectar en 10-14 días. Los niveles de IgA e IgM tienen un pico tras 2 semanas y luego comienzan a declinar, mientras que el nivel de IgG tiene el pico a las 4-6 semanas. Mientras que la IgG e IgM son dominantes en la respuesta primaria, la IgG e IgA predominan en la segunda respuesta inmunitaria.

25

30

35

45

55

Por lo tanto, la invención engloba una VLP de acuerdo con la invención para su uso en un método de inducción de una respuesta de anticuerpo sustancialmente protectora contra la infección por el virus de gripe o al menos de un síntoma de la misma en un su jeto, que comprenden la administración de al menos una dosis eficaz de dicha VLP de gripe. En otra realización, dicha inducción de respuesta de anticuerpo sustancialmente protectora reduce la duración de los síntomas de gripe. En otra realización, un método de inducción de una respuesta de anticuerpos sustancialmente protectora contra la infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto, comprende la administración de al menos una dosis eficaz de una VLP de gripe, en que dicha VLP comprende proteínas HA, NA y M1, de acuerdo con las reivindicaciones.

En otra realización, la invención comprende una VLP de acuerdo con la invención para su uso en un método de inducción de una respuesta de anticuerpos sustancialmente protectora contra la infección por el virus de la gripe o al menos una síntoma de la misma en un sujeto, que comprende la administración de al menos una dosis eficaz de dicha VLP de gripe, en que dicha VLP consiste esencialmente en HA, NA y M1 de acuerdo con las reivindicaciones. Dichas VLP pueden comprender proteínas de gripe adicionales y/o proteínas contaminantes en concentraciones despreciables. En otra realización, dicha VLP de gripe comprende proteínas de gripe, en que dichas proteínas de gripe consisten en proteínas HA, NA y M1 de acuerdo con las reivindicaciones. Estas VLP contienen HA, NA y M1 y pueden contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, HA y/o NA). En otra realización, un método de inducción de inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma en un sujeto, comprende la administración de al menos una dosis eficaz de una VLP de gripe, en que dicha VLP consiste en HA, NA y M1 de gripe de acuerdo con las reivindicaciones.

60 En otra realización, dicha HA y/o NA muestran actividad hemaglutinina y/o actividad neuraminidasa, respectivamente. En otra realización, dicho sujeto es un mamífero. En otra realización, dicho mamífero es un ser humano. En una realización más, dicha VLP se formula con una adyuvante o un estimulante inmunitario.

Como se utiliza en el presente documento, un "anticuerpo" es una proteína que comprende uno o más polipéptidos sustancialmente o parcialmente codificado por genes de inmunoglobulina o fragmentos de genes de inmunoglobulina. Los genes de inmunoglobulina reconocidos incluyen las regiones genéticas de inmunoglobulina

constantes kappa, lambda, alfa, gamma, delta, épsilon y mu, así como miríadas de regiones genéticas de inmunoglobulina variables. Las cadenas ligeras se clasifican o bien en kappa o en lambda. Las cadenas pesadas se clasifican como gamma, mu, alfa, delta o épsilon, que a su vez definen las clases de inmunoglobulinas, IgG, IgM, IgA, IgD e IgE, respectivamente. Una unidad estructural de inmunoglobulinas (anticuerpos) comprende un tetrámero. Cada tetrámero está compuesto por dos pares idénticos de cadenas polipeptídicas, teniendo cada par una cadena "ligera" (aproximadamente de 25 kD) y una cadena "pesada" (aproximadamente 50-70 kD). El extremo N de cada cadena define una región variable de aproximadamente 100 a 110 o más aminoácidos responsables primariamente del reconocimiento antigénico. Los anticuerpos se encuentran como inmunoglobulinas intactas o como varios fragmentos bien caracterizados que se producen por digestión con varias peptidasas.

La inmunidad mediada por células también tiene un papel en la recuperación de la infección de gripe y puede prevenir las complicaciones asociadas a la gripe. Los linfocitos celulares específicos de gripe se han detectado en la sangre y las secreciones del tracto respiratorio inferior de sujetos infectados. La citólisis de las células infectadas de gripe está mediada por los CTL en concierto con los anticuerpos específicos de gripe y el complemento. La respuesta citotóxica primaria es detectable en la sangre tras 6-14 días y desaparece el día 21 en individuos infectados o vacunados (Ennis *et al.*, 1981). Los CTL específicos de gripe muestran especificidades de reacción cruzada en cultivos in vitro; así, lisan células infectadas con el mismo tipo de gripe pero no con otros tipos (por ejemplo virus de gripe A pero no de gripe B). La respuesta de CTL tiene reacción cruzada entre cepas de gripe A (Gerhard *et al.*, 2001) y es importante para minimizar la diseminación vírica en combinación con los anticuerpos (Nguyen *et al.*, 2001).

La inmunidad mediada por células también tiene un papel en la recuperación de la infección de gripe y puede prevenir las complicaciones asociadas a la gripe. Los linfocitos celulares específicos de gripe se han detectado en la sangre y las secreciones del tracto respiratorio inferior de sujetos infectados. La citólisis de las células infectadas de gripe está mediada por los CTL en concierto con los anticuerpos específicos de gripe y el complemento. La respuesta citotóxica primaria es detectable en la sangre tras 6-14 días y desaparece el día 21 en individuos infectados o vacunados (Ennis et al., 1981). Los CTL específicos de gripe muestran especificidades de reacción cruzada en cultivos in vitro; así, lisan células infectadas con el mismo tipo de gripe pero no con otros tipos (por ejemplo virus de gripe A pero no de gripe B). La respuesta de CTL tiene reacción cruzada entre cepas de gripe A (Gerhard et al., 2001) y es importante para minimizar la diseminación vírica en combinación con los anticuerpos (Nguyen et al., 2001).

Por lo tanto, la invención engloba una VLP de la invención para s uso en un método de inducción de una respuesta inmunitaria celular sustancialmente protectora contra la infección por el virus de gripe o al menos un síntoma de la misma en un sujeto, que comprende la administración de al menos una dosis eficaz de una VLP de gripe de acuerdo con las reivindicaciones. En otra realización, un método de inducción de inmunidad sustancial contra la infección por el virus de la gripe o al menos un síntoma de la misma en un sujeto, comprende la administración de al menos una dosis eficaz de una VLP de gripe, en que dicha VLP consiste en HA, NA y M1 de gripe de acuerdo con las reivindicaciones. Estas VLP contienen HA, NA y M1 y puede contener constituyentes celulares adicionales tales como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc. pero no contienen proteínas de gripe adicionales (distintas de fragmentos de M1, HA y/o NA).

En otra realización, dicha M1, HA y/o NA muestra actividad hemaglutinina y/o actividad neuraminidasa, respectivamente. En otra realización dicho sujeto es un mamífero. En otra realización, dicho mamífero es un ser humano. En otra realización más, dicha VLP se formula con un adyuvante o estimulante inmunitario.

Como se ha mencionado anteriormente, las VLP de la invención previene o reduce al menos un síntoma de la infección de gripe en un sujeto. Los síntomas de gripe se conocen bien en la técnica. Incluyen fiebre, mialgia, dolor de cabeza, malestar general grave, tos no productiva, irritación de garganta, pérdida de peso y rinitis. Por lo tanto, el tratamiento de la invención comprende la prevención o reducción de al menos un síntoma asociado con la infección vírica de gripe. Una reducción de un síntoma se puede determinar subjetiva u objetivamente, por ejemplo, por la auto-evaluación por un sujeto, por una evaluación del médico o por la realización de una medición o ensayo apropiado (por ejemplo, temperatura corporal), que incluyen, por ejemplo, una evaluación de la calidad de vida, una progresión ralentizada de una infección de gripe o síntomas adicionales, una gravedad reducida de síntomas de gripe o ensayos adecuados (por ejemplo, el título de anticuerpos y/o un ensayo de activación de células T). La evaluación objetiva comprende tanto evaluaciones animales y humanas.

La estrategia principal que aboga el Comité Consultivo en Prácticas de Inmunización (ACIP) para el control de gripe ha sido la vacunación de personas con riesgo de complicaciones de gripe serias, en particular, las personas de ≥ 65 años de edad. Las epidemias de gripe anuales, sin embargo, siguen sin reducirse y son responsables de una carga sanitaria y financiera significativa a nuestra sociedad (Glaser *et al.*, 1996). En los últimos 20 años (1976-1999), se ha producido un significativo aumento en muertes en exceso por todas las causas asociadas a la gripe. Desde 1990 a 1999, el número anual de muertes de toda causa asociada a gripe superaba los 50.000 (Thompson *et al.*, 2003). A pesar del aumento en la cobertura de vacunación de personas de ≥ 65 años al 65 % durante la última década, no se ha observado una reducción correspondiente en las muertes en exceso de toda causa asociadas a gripe.

Por lo tanto, otra estrategia para la prevención y el control de la gripe es la vacunación universal de niños e individuos sanos. Los niños tienen altas tasas de infección, enfermedad atendida médicamente y hospitalización por gripe (Neuzil et al., 2000). Los niños tienen un papel importante en la transmisión de la gripe en las escuelas, familias y comunidades. La vacunación con la gripe actual, vacunas de aproximadamente el 80 % de los escolares de una comunidad disminuyó la enfermedad respiratoria en adultos y las muertes en exceso en los ancianos (Reichert et al., 2001). Este concepto se conoce como inmunidad comunitaria o "inmunidad de manada" y se cree que supone una parte importante de la protección de la comunidad contra la enfermedad. Debido a que la gente que se vacuna tiene anticuerpos que neutralizan el virus de gripe, hay mucha menos probabilidad de transmitir el virus de gripe a otras personas. Por lo tanto, incluso la gente que no se ha vacunado (y aquellos en los que se han debilitado las vacunaciones o cuyas vacunas no son totalmente eficaces) a menudo pueden protegerse por la inmunidad de manada debido a la gente vacunada a su alrededor no enferman. La inmunidad de manada es más eficaz según aumenta el porcentaje de gente vacunada. Se cree que aproximadamente el 95 % de la gente de la comunidad debe protegerse con una vacuna para conseguir la inmunidad de manada. La gente que no se inmuniza aumenta la probabilidad de que ellos y otros se pongan enfermos.

15

20

25

10

Por lo tanto, la invención engloba una VLP de acuerdo con la invención para su uso en un método de inducción de una inmunidad sustancialmente protectora contra la infección por el virus de gripe en una población o una comunidad con el fin de reducir la incidencia de las infecciones por el virus de gripe entre los individuos inmunocomprometidos o individuos no vacunados por la administración de VLP de la invención a una población de una comunidad. En una realización, la mayoría de los individuos sanos de una comunidad se inmunizan contra el virus de gripe administrando las VLP de la invención. En otra realización, las VLP de la invención son parte de una estrategia de "vacunación dinámica", La vacunación dinámica es la producción estable de una vacuna de baja eficacia que está relacionada con una cepa pandémica emergente, pero que debido a una deriva antigénica no proporciona una protección completa en un mamífero (véase, Germann et al., 2006). Debido a la incertidumbre sobre la identidad futura de una cepa pandémica, es casi imposible acopiar una cepa pandémica con buena coincidencia. Sin embargo, la vacunación con una vacuna de coincidencia baja pero potencialmente eficaz puede ralentizar la diseminación del virus pandémico y/o reducir la gravedad de los síntomas de una cepa pandémica del virus de la gripe.

30 La invención también engloba una vacuna que comprende una VLP de gripe de acuerdo con las reivindicaciones, en que dicha vacuna induce una inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma cuando se administra a un su jeto. En otra realización, dicha inducción de inmunidad sustancial reduce la duración de los síntomas de gripe. En otra realización, dicha vacuna induce inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma en un sujeto, comprende una VLP que comprende proteínas 35 HA, NA y M1 de gripe de acuerdo con las reivindicaciones. En otra realización, dicha vacuna induce inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma en un su jet, comprende una VLP que consiste esencialmente n proteínas HA, NA y M1 de gripe de acuerdo con las reivindicaciones. Dichas VLP pueden comprender proteínas de gripe adicionales y/o proteínas contaminantes en concentraciones despreciables. En otra realización, dicha vacuna induce inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma en un su jeto, comprende una VLP que consiste en las proteínas HA, NA y M1 de gripe de acuerdo con las reivindicaciones. En otra realización, dicha vacuna induce inmunidad sustancial contra la infección por el virus de gripe o al menos un síntoma de la misma en un sujeto, comprende una VLP que comprende proteínas de gripe, en que dichas proteínas de gripe consisten en las proteínas HA, NA y M1 de acuerdo con las reivindicaciones. Estas VLP contienen HA, NA y M1 y pueden contener constituyentes celulares adicionales tales 45 como proteínas celulares, proteínas de baculovirus, lípidos, carbohidratos, etc., pero no contienen proteínas de gripe adicionales (distintas de fragmentos de HA y/o NA).

En otra realización, dicha HA y/o NA muestra actividad hemaglutinina y/o actividad neuraminidasa, respectivamente. En otra realización, dicho sujeto es un mamífero. En otra realización, dicho mamífero es un ser humano. En otra realización más, dicha VLP se formula con un adyuvante o estimulante inmunitario. En otra realización dicha vacuna se administra a una mamífero. En otra realización más, dicho mamífero es un ser humano.

La presente invención se ilustra además por los siguientes ejemplos que no se deben considerar como limitantes.

55 **Ejemplos**

Ejemplo de referencia 1

Materiales y métodos

60

50

Se expresaron genes de HA, NA y M1 del virus de gripe aviar A/Hong Kong/1073/99 (H9N2) en células de Spodoptera frugiperda (línea celular Sf-9S; ATCC PTA-4047) utilizando el sistema de expresión de bácmido de baculovirus. Los genes HA, NA y M1 se sintetizaron por transcripción inversa y la reacción en cadena de la polimerasa (PCR) utilizando el ARN aislado del virus de gripe aviar A/Hong Kong/1073/99 (H9N2) (FIG. 1, 2 y 3). Para la transcripción inversa y la PCR, se utilizaron los oligonucleótidos cebadores específicos para los genes HA, NA y M1 del virus de gripe aviar A/Hong Kong/1073/99 (H9N2) (Tabla 1). Las copias ADNc de estos genes se

clonaron inicialmente en el vector de subclonación bacteriano, pCR2.1TOPO. A partir de los tres plásmidos basado en el pCR2.1TOPO, los genes HA, NA y M1 se insertaron corriente abajo de los promotores AcMNPV polihedrina en el vector de transferencia de baculovirus, pFastBac1 (InVitrogen), dando como resultado tres plásmidos basados en pFastBac1: pHA, pNA y pM1 que expresan estos genes del virus de gripe, respectivamente. Luego se construyó un único plásmido pHAM basado en pFastBac1 que codificaba tanto los genes HA como M1, cada uno corriente abajo de un promotor polihedrina separado (FIG.4). La secuencia de nucleótidos del gen NA con las regiones adyacentes 5' y 3' en el plásmido pNA se determinó (SEC ID Nº 1) (FIG. 1). Al mismo tiempo se determinaron también las secuencias de nucleótidos de los genes HA y M1 con las regiones adyacentes utilizando el plásmido pHAM (SEC ID Nº 2 y 3) (FIG. 2 y 3).

Finalmente, se clonó un fragmento de restricción ADN del plásmido pHAM que codifica los casetes de expresión tanto HA como M1 en el plásmido pNA. Esto daba como resultado el plásmido pNAHAM que codifica los genes HA, NA y M1 del virus de gripe aviar A/Hong Kong/1073/99 (H9N2) (FIG. 4).

Se utilizó el plásmido pNAHAM para construir un baculovirus recombinante que contenía genes HA, NA y M1 del virus de gripe integrado en el genoma, cada uno corriente abajo de un promotor polihedrina de baculovirus separado. La infección de las células de insecto Sf-9S que lo permiten con el baculovirus recombinante resultante daba como resultado la co-expresión de estos tres genes de gripe en cada célula Sf-9S infectada con tal baculovirus recombinante.

Los productos de expresión en las células Sf-9S se caracterizaron a las 72 h tras la infección (p.i. por análisis SDS-PAGE, tinción con proteína Coomasie azul, y análisis de inmunotransferencia de Western utilizando anticuerpos específicos de HA y M1 (FIG. 5), El análisis de inmunotransferencia de Western se llevó a cabo utilizando anticuerpos de conejo producidos contra el virus de gripe tipo A/Hong Kong/1073/99 (H9N2) (CDC, Atlanta, Ga, EE. UU.), o anticuerpos monoclonales de ratón contra la proteína M1 de gripe (Serotec, RU). Las proteínas HA, NA y M1 de los pesos moleculares esperados (64 kD, 60 kD, y 31 kD, respectivamente) se detectaron por análisis de inmunotransferencia de Western. En comparación con la cantidad de proteína HA detectada en este ensayo, la proteína NA mostró una reactividad más baja con el suero de ratón contra el virus de gripe A/Hong Kong/1073/99 (H9N2). La explicación de la cantidad de proteína NA detectable incluye, niveles más bajos de expresión de la proteína NA a partir de las células Sf-9S infectadas con el baculovirus recombinante en comparación con la proteína HA, reactividad más baja de la NA con este suero bajo condiciones de desnaturalización en el ensayo de inmunotransferencia de Western (debido a la eliminación de epítopos NA importantes durante la electroforesis en gel de unión a membrana), avidez más baja de los anticuerpos NA en comparación con los anticuerpos HA, o una abundancia más baja de anticuerpos NA en el suero.

El medio de cultivo de las células Sf-9S infectadas con baculovirus recombinante que expresan proteínas HA, NA y M1 del A/Hong Kong/1073/99 (H9N2) también se sondeó en cuanto a proteínas de gripe. Los sobrenadantes del cultivo clarificado se sometieron a ultracentrifugación a 27.000 rpm con el fin de concentrar los complejos proteicos altos moleculares de virus de gripe, tal como partículas subvíricas, VLP, complejos de VLP, y posiblemente, otros particulados auto-ensamblados que comprenden proteínas HA, NA y M1 de gripe. Los productos proteicos aglomerados se resuspendieron en solución salina fosfato tamponada (PBS, pH 7,2) y luego se purificaron por ultracentrifugación en gradientes discontinuos en etapas de sacarosa al 20-60 %. Las fracciones de los gradientes de sacarosa se recolectaron y se analizaron por análisis SDS-PAGE, análisis de inmunotransferencia de Western, y microscopía electrónica.

Las proteínas de gripe HA y M1 de los pesos moleculares esperados se detectaron en múltiples fracciones del gradiente de densidad de sacarosa por tinción en Coomasie azul y análisis de inmunotransferencia de Western (FIG. 6, Tabla 1). Esto sugiere que las proteínas víricas de gripe de las células Sf-9S se agregan en complejos de alto peso molecular, tales como capsómeros, partículas subvíricas, VLP, y/o complejos de VLP. Las proteínas NA aunque se detectan inconstantemente por tinción con Coomasie azul y análisis de inmunotransferencia de Western, que era debido probablemente a la incapacidad del suero anti-gripe de conejo para reconocer la proteína NA desnaturalizada en el ensayo de inmunotransferencia de Western, se detectaba constantemente en el ensayo de actividad enzimática de neuraminidasa (FIG 10).

TABLA 1	
Fracción nº*	Título
1	<1:5001
3	<1:500
5	1:500
7	1:1000
9	1:2000
11	1:2000
12	1:4000

14	1:500
16	<1:500
PBS**	<1:500
A/Shangdong/9/93	<1:1000

^{*}Fracción del gradiente de sacarosa al 20-60 %

^{**} Control Negativo *** Control Positivo

Cebador RT-PCR
Directo 5'-A GGATCCATG AAGACTATCATTGCTTTGAG-3'
Inverso 5'-A GGTACC TCAAATGCAAATGTTGCACCTAATG-3'
Directo 5'-GGGGACAAGTTTGTACAAAAAGCAGGCTTAGAAG GAGATAGAACC ATG AATCCAAATCAAAAGATAATAAC-3'
Inverso 5'-GGGACCACTTTGTACAAGAAAGCTGGGTCCTATAT AGGCATGAGATTGATGTCCGC-3'
Directo 5'-AAA GAATTC ATG AGTCTTCTAACCGAGGTCGAAACGTA-3'
Inverso 5'-AAA TTCGAA TTACTCCAGCTCTATGCTGACAAAATGAC-3'
Directo 5'-A GAATC ATG AGTCTTCTAACCGAGGTCGAAACGCCT ATCAGAAACGAATGGGGGTGC-3'
Inverso 5'-AAA TTCGAA TTACTCCAGCTCTATGCTGACAAATGAC-3'
Directo 5'-A GAATTC ATG GCGTCCCAAGGCACCAAACG-3'
Inverso 5'-A GCGGCGGTTAATTGTCGTACTCCTCTGCAGTCTCCGAA GAAATAAG-3'
Directo 5'-A GAATTC ATG AAGGCAATAATTGTACTACTCATGG-3'
Inverso 5'-GCGCCCGCTTATAGACAGATGGAGCAAGAAACATTGTCTCTGGAGA-3'
Directo 5'-A GAATT CATG CTACCTTCAACTATACAAACG-3'
Inverso 5'-AGCGGCCGCTTACAGAGCCATATCAACACCCTGTGACAGTG-3'

La presencia de VLP de alto peso molecular se confirmó por cromatografía de filtración en gel. Se cargó una alícuota de las fracciones de gradiente de densidad de sacarosa que contenía las proteínas víricas de gripe en una columna de Sepharosa CL-4B para el fraccionamiento basándose en la masa. La columna se calibró con dextrano azul 2000, dextrano amarillo, y vitamina B12 (Amersham Pharmacia) con pesos moleculares aparentes de 2.000.000; 20.000; y 1.357 daltons, respectivamente, y se determinó el volumen de hueco de la columna. Como se esperaba las proteínas víricas de gripe de alto peso molecular migraron en el volumen de hueco de la columna, que era característico de proteínas macromoleculares, tales como las partículas víricas. Las fracciones se analizaron por análisis de inmunotransferencia de Western para detectar las proteínas de gripe y de baculovirus. Por ejemplo, se detectaron las proteínas M1 en las fracciones de volumen de hueco, que también contenían proteínas de baculovirus (FIG. 7).

10

15

20

25

45

50

55

60

La morfología de las VLP de gripe y las proteínas de las fracciones del gradiente de sacarosa se esclarecieron por microscopía electrónica. Para la tinción negativa en el microscopio electrónico, las proteínas de gripe de dos fracciones del gradiente de densidad de sacarosa se fijaron un un 2 % de glutaraldehído en PBS pH 7,2. El examen en el microscopio electrónico de las muestras teñidas negativamente revelaron la presencia de complejos proteicos macromoleculares o VLP en ambas fracciones. Estas VLP presentaban diferentes tamaños que incluían diámetros de aproximadamente 60 y 80 nM y morfologías (esferas). También se detectaron complejos mayores de ambos tipos de partículas, como 53 pozos como partículas en forma de barra (FIG. 8). Todas las estructuras macromoleculares observadas tenían espinas (peplómeros) en sus superficies, lo que es característico de los virus de gripe. Como el tamaño y apariencia de las partículas de 80 nm eran similares a las partículas del virus de gripe tipo silvestre, estas estructuras probablemente representaban VLP, que tiene distintas similitudes con los viriones de gripe de tipo silvestre, incluyendo una geometría de partícula, arquitectura, número de triangulación, simetría y otras características similares. Las partículas más pequeñas de aproximadamente 60 nm pueden representar partículas subvíricas que se diferencia de las VLP tanto morfológica como estructuralmente. Un fenómeno similar de proteínas macromoleculares recombinantes de diferentes tamaños y morfologías se ha comunicado también en otros virus. Por ejemplo, el antígeno central recombinante (HBcAg) del virus de la hepatitis B forma partículas de diferentes tamaños que tienen diferente arquitectura y número de triangulación T = 4 y T = 3, respectivamente (Crowther et al., 1994).

Para caracterizar las propiedades funcionales de las VLP de gripe A/Hong Kong/1073/99 (H9N2), se ensayaron las muestras en un ensayo de hemaglutinación (FIG. 9) y un ensayo enzimático de neuraminidasa (FIG. 10). Para el análisis de hemaglutinación se mezclaron diluciones de 2 veces de VLP de gripe purificadas con 0,6 % de glóbulos rojos de cobaya y se incubaron a 4 ºC durante 1 h o 16 h. Se inspeccionó la extensión de la hemaglutinación visualmente y se determinó y registró la dilución más alta de proteínas de gripe recombinantes capaz de aglutinar glóbulos rojos (FIG. 9). DE nuevo, muchas fracciones del gradiente de densidad de sacarosa mostraban actividad de hemaglutinación, sugiriendo que estaban presentes múltiples formas macromoleculares y monoméricas de proteínas de gripe. El título más alto que se detectó era de 1:4000. En un experimento de control, el virus de gripe A/Shangdong tipo silvestre demostró un título de 1:2000. El ensayo de hemaglutinación revelaba que la VLP recombinante consistía en proteínas HA, NA y M1 de virus de gripe A/Hong Kong/1073/99 (H9N2) era funcionalmente activa. Esto sugiere que el ensamblaje, conformación y plegado de las subunidades proteicas HA en las VLP eran similares o idénticas a las del virus de gripe tipo silvestre.

De manera adicional, se llevó a cabo un ensayo enzimático de neuraminidasa en las muestras de VLP de H9N2 purificadas. La cantidad de actividad neuraminidasa en las fracciones de gradiente de densidad de sacarosa se determinaron utilizando fetuina como sustrato. En el ensayo de neuraminidasa, la neuraminidasa escindía el ácido siálico de las moléculas de sustrato y liberaban ácido siálico para su medición. Se añadió el reactivo arsenito para parar la actividad enzimática. Se determinó químicamente la cantidad de ácido siálico liberado con ácido tiobarbitúrico que produce un color rosa que era proporcional a la cantidad de ácido siálico libre. La cantidad de color (cromofor) se midió espectrofotométricamente a una longitud de onda de 549 nm. Utilizando este método, se observó actividad neuraminidasa en las fracciones de gradiente de sacarosa que contenían VLP de gripe (FIG. 10). Como se esperaba, la actividad se observaba en varias fracciones, con dos fracciones pico. Como control positivo, se utilizó un virus de gripe de tipo silvestre. El virus de gripe de tipo silvestre mostraba actividad enzimática neuraminidasa comparable a la de las VLP purificadas de gripe. Estos hallazgos corroboraban los resultados de HA con respeto a la conformación y sugería que las VLP purificadas de virus de gripe A/Hong Kong/1073/99 (H9N2) eran funcionalmente similares al virus de gripe tipo silvestre.

Los resultados de los análisis y los ensayos anteriores indicaban que la expresión de proteínas HA, NA y M1 de gripe A/Hong Kong/1073/99 (H9N2) era suficiente para el auto-ensamblaje y transporte de VLP funcionales de las células de insecto infectadas por baculovirus. Como estas VLP de gripe representaban proteínas estructurales de gripe auto-ensambladas y demostraban propiedades funcionales y bioquímicas similares a las del virus de gripe tipo silvestre, estas VLP de gripe conservaban conformaciones estructurales importantes incluyendo los epítopos de superficie necesarios para vacunas de gripe eficaces.

Ejemplo de referencia 2

Clonación por RT-PCR de genes víricos de gripe aviar de A/Hong Kong/1073/99

Un objetivo de la presente invención es proporcionar secuencias de ácido nucleico sintéticas capaces de dirigir la producción de proteínas víricas de gripe recombinantes. Tales secuencias de ácido nucleico sintéticas se obtienen por transcripción inversa y métodos de reacción en cadena de polimerasa (PCR) utilizando el ARN genómico natural del virus de gripe aislado del virus. Para los fines de la presente solicitud, secuencia de ácido nucleico se refiere a ARN, ADN, ADNc o cualquier variante sintética de los mismos que codifica la proteína.

El virus de gripe aviar A/Hong Kong/1073/99 (H9N2) fue proporcionado por el Dr. K. Subbarao (Centro de Control de Enfermedades, Atlanta, Ga., EE. UU.). El ARN genómico vírico se aisló por extracción de ARN ácido fenol bajo condiciones de contención de Bioseguridad Nivel 3 (BSL3) en el CDC utilizando el reactivo Trizol LS (Invitrogen, Carlsbad, Calif. EE. UU.). Las moléculas de ADNc de los ARN víricos se obtuvieron por transcripción inversa utilizando la transcriptasa inversa MuLV (InVitrogen) y la PCR utilizaba cebadores oligonucleótidos específicos para las proteínas HA, NA y M1 y Taq I ADN polimerasa (InVitrogen) (Tabla 1). Los fragmentos de PCR se clonaron en el vector de subclonación bacteriano, pCR2.1TOPO. (InVitrogen), entre los sitios EcoRI lo que daba como resultado tres plásmidos recombinantes, que contienen clones ADNc de HA, NA y M1.

20 Ejemplo de referencia 3

15

35

55

60

65

Clonación por RT-PCR de genes víricos de gripe humana A/Sydney/5/94 (H3N2)

El virus de gripe A/Sydney/5/94 (H3N2) se obtuvo del Dr. M. Massare (Novavax, Inc., Rocleville, Md.). El ARN genómico vírico se aisló por el método de extracción ácido fenol bajo condiciones de contención BSL2 en Novavax, Inc. utilizando el reactivo Trizol LS (Invitrogen). Las moléculas de ADNc de los ARN víricos se obtuvieron por transcripción inversa y PCR utilizando cebadores oligonucleótidos específicos para las proteínas HA, NA, M1, M2 y NP (Tabla 1). Los fragmentos PCR se clonaron en el vector de subclonación bacteriano pCR2.1TOPO., entre los sitios EcoRI que daban como resultado cinco plásmidos recombinantes, que contenían los clones ADNc de HA, NA, M1, M2, y NP.

Ejemplo de referencia 4

Clonación de los ADNc víricos del A/Hong Kong/1073/99 (H9N2) en vectores de transferencia de baculovirus

A partir de los plásmidos basados en pCR2.1TOPO, se subclonaron los genes de HA, NA o M1 en el vector de transferencia de baculovirus pFastBac1 (InVitrogen) en los sitios locus poliedro y Tn7 att y corriente abajo del promotor polihedrina de baculovirus y corriente arriba de la secuencia de señal de poliadenilación. Los genes víricos se ligaron con T4 ADN ligasa. Para el gen HA, se insertó un fragmento ADN HI-Kpn I del pCR2.1TOPO-HA en el plásmido ADN pFastBac1 digerido en BamHI-Kpnl. Para el gen NA, un fragmento ADN EcoRl del pCR2.1TOPO-NA se insertó en el plásmido ADN pFastBac1 digerido en EcoRI. Para el gen M1, un fragmento de ADN EcoRI del pCR2.1TOPO-M1 se insertó en el plásmido ADN pFastBac1 digerido en EcoRI. Se transformaron las bacterias competentes de E. coli DH5α (InVitrogen) con estas reacciones de ligadura de ADN, que dieron como resultado colonias transformadas, y los clones bacterianos se aislaron. Los plásmidos basados en pFastBac1 resultantes, pFastBac1-HA, pFastBac1-NA, y pFastBac1-M1 se caracterizaron por mapeo enzimático de restricción en geles de 45 agarosa (FIG. 4A). Las secuencias de nucleótidos de los genes clonados como se muestran en las FIG. 1-3 se determinaron por secuenciación de ADN automática. Los análisis de secuencia de ADN mostraban que los genes de gripe clonados HA, NA y M1 eran idénticas a las secuencias de nucleótidos de estos genes que se habían publicado anteriormente [genes HA, NA, y M1 de gripe A/Hong Kong/1073/99 (H9N2) (Números de registro GenBank AJ404629, AJ404626, y AJ278646, respectivamente)]. 50

Ejemplo de referencia 5

Clonación de ADNc víricos de gripe humana A/Sydney/5/94 (H3N2) en vectores de transferencia de baculovirus

A partir de los plásmidos basados en pCR2.1TOPO, se subclonaron los genes de HA, NA, M1, M2, y NP en el vector de transferencia de baculovirus pFastBac1en los sitios locus poliedro y Tn7 att y corriente abajo del promotor polihedrina de baculovirus y corriente arriba de la secuencia de señal de poliadenilación. Para el gen HA, se insertó un fragmento ADN HI-Kpn I del pCR2.1TOPO-hHA3 en el plásmido ADN pFastBac1 digerido en *BamHI-Kpn*I. Para el gen NA, un fragmento ADN *EcoR*I del pCR2.1TOPO-hNA se insertó en el plásmido ADN pFastBac1 digerido en EcoRI. Para el gen M1, un fragmento de ADN EcoRI del pCR2.1TOPO-hM1 se insertó en el plásmido ADN pFastBac1 digerido en EcoRI. Para el gen M2, un fragmento de ADN EcoRI del pCR2.1TOPO-hM2 se insertó en el plásmido ADN pFastBac1 digerido en EcoRI. Para el gen NP, un fragmento de ADN EcoRI del pCR2.1TOPO-hNP se insertó en el plásmido ADN pFastBac1 digerido en EcoRI. Se transformaron las bacterias competentes de E. coli DH5α (InVitrogen) con estas reacciones de ligadura de ADN, que dieron como resultado colonias transformadas, y

los clones bacterianos se aislaron. Los plásmidos basados en pFastBac1 resultantes, pFastBac1-hHA3, pFastBac1-hNA, pFastBac1-hM1, pFastBac1-hM2, pFastBac1-hNP se caracterizaron por mapeo enzimático de restricción en geles de agarosa. Las secuencias de nucleótidos de los genes clonados se determinaron por secuenciación de ADN automática. Los análisis de secuencia de ADN mostraban que los genes de gripe clonados HA, NA, M1, M2 y NP eran idénticas a las secuencias de nucleótidos de estos genes que se habían publicado anteriormente.

Ejemplo de referencia 6

15

20

25

30

35

40

45

50

55

Construcción de vectores de transferencia de baculovirus que codifican múltiples genes víricos de gripe aviar A/Hong Kong/1073/99

Con el fin de construir los bácmidos vectores de transferencia basados en pFastBac1 que expresan múltiples genes de virus de gripe A/Hong Kong/1073/99 (H9N2), inicialmente un fragmento de ADN *Sna* BI-*Hpa* I del plásmido pFastBac1-M1 que contenía el gen M1 se clonó en el sitio Hpa I del pFastBac1-HA. Esto daba como resultado el plásmido pFastBac1-HAM que codifica los genes HA y M1 en casetes de expresión independientes y que se expresan bajo el control de promotores polihedrina separados.

Finalmente, un fragmento de ADN *SnaBl-Avr*II del pFastBac1-HAM que contenía los casetes de expresión HA y M1, se transfirió el plásmido ADN pFastBac1-NA digerido con *Hpa* I-*Avr* II. Esto daba como resultado el plásmido pFastBac1-NAHAM que codifica tres casetes de expresión independientes para la expresión de genes de gripe HA, NA y M1 y que se expresan bajo el control de promotores de polihedrina separados (FIG. 4B).

En otro ejemplo, el gen H3 del pFastBac1-hHA3 (véase el ejemplo 5) se clonó en el pFastBac1-NAHAM como un cuarto gen vírico de gripe para la expresión y producción de VLP heterotípicas de gripe.

Ejemplo de referencia 7

Generación de baculovirus recombinante multigénico que codifica genes NA, HA y M1 del virus gripe aviar A/Hong Kong/1073/99 en células de insecto

El vector bácmido de transferencia multigénico pFastBac1-NAHAM se utilizó para generar un baculovirus recombinante multigénico que codificara los genes HA, NA y M1 de gripe aviar A/Hong Kong/1073/99 (H9N2) para la expresión en células de insecto. Los bácmidos ADN recombinantes se produjeron por recombinación específica del sitio en las secuencias polihedrina y Tn7 att ADN entre el ADN pFastBac1-NAHAM y el genoma de baculovirus AcMNPC albergado en las células de E. coli DH10BAC (InVitrogen) (FIG. 4B). El bácmido ADN recombinante se aisló por el método de plásmido ADN mini-prep y se transfectó a las células Sf-9S utilizando el lípido catiónico CELLFECTIN (InVitrogen). Tras la transfección, se aislaron los baculovirus recombinantes, se purificaron las placas, y se amplificaron en células de insecto Sf-9S. Las bases de virus se prepararon en células de insecto Sf-9S y se caracterizaron por la expresión de productos genéticos víricos HA, NA y M1 de gripe aviar. El baculovirus recombinante resultante se designó bNAHAM-H9N2.

Ejemplo de referencia 8

Expresión de proteínas recombinantes de gripe aviar A/Hong Kong/1073/99 en células de insecto

Las células de insecto Sf-9S se mantenían como cultivos en suspensión en matraces con agitado a 28 ºC. Se infectaron en medio libre de suero (HyQ SFM, HyClone, Ogden, Utah) a una densidad celular de 2 x 10⁶ células/ml con el baculovirus recombinante, bNAHAM-H9N2, a una multiplicidad de infección (MOI) de 3 ufp/célula. La infección vírica trascurrió durante 72 h para permitir la expresión de las proteínas de gripe. La expresión de las proteínas HA y M1 de gripe aviar A/Hong Kong/1073/99 (H9N2) en las células de insecto infectadas se confirmó por SDS-PAGE y análisis de inmunotransferencia de Western. El análisis SDS-PAGE se llevó a cabo en geles de gradiente lineal del 4-12 % NuPAGE (Invitrogen) bajo condiciones reducidas y desnaturalizantes. Los anticuerpos primarios en el análisis de inmunotransferencia de Western eran policlonales de antisuero de conejo contra la gripe aviar A/Hong Kong/1073/99 (H9N2) obtenidos del CDC y monoclonales de antisuero murino contra la proteína M1 de gripe (Serotec, RU). Los anticuerpos secundarios para el análisis de inmunotransferencia de Western era fosfatasa alcalina conjugada con antisuero IgG de cabra producidos contra IgG de conejo o ratón (H + L) (Kirkegaard and Perry Laboratories, Gaithersburg, Md., EE. UU.). Los resultados de estos análisis (FIG. 5) indican que las proteínas HA y M1 se expresaban en las células de insecto infectadas con baculovirus.

60 Ejemplo de referencia 9

Purificación de Partículas recombinantes tipo virus de gripe aviar H9N2 y complejos proteicos macromoleculares

65 Los sobrenadantes de los cultivos (200 ml) de las células de insecto Sf-9S infectadas con el baculovirus recombinante bNAHAM-H9N2 que expresa productos genéticos HA, NA y M1 de gripe aviar A/Hong Kong/1073/99

(H9N2) se recolectaron por centrifugación a baja velocidad. Los sobrenadantes del cultivo se clarificaron por centrifugación en una centrifuga superspeed Sorval RC-5B durante 1 h a 10.000 x g y 4 °C utilizando un rotor GS-3. Los virus y las VLP se aislaron de los sobrenadantes de los cultivos clarificados por centrifugación en una ultracentrífuga Sorval OTD-65 durante 3 h a 27.000 rpm a 4 °C. utilizando un rotor de cubeta oscilante Sorval TH-641. El aglomerado de virus se resuspendió en 1 ml de PBS (pH 7,2) que se cargó en un 20-60 % (p/v) de gradiente en etapas discontinuo de sacarosa, y se re-disolvió por centrifugación en una ultracentrífuga Sorval OTD-65 durante 16 h a 27.000 rpm a 4 °C utilizando un rotor Sorval TH-641. Se recolectaron fracciones (0,5 ml) desde la parte superior del gradiente de sacarosa.

Las proteínas de gripe en las fracciones del gradiente de sacarosa se analizaron por SDS-PAGE y análisis de inmunotransferencia de Western como se ha descrito anteriormente en el Ejemplo 6. Las proteínas HA y M1 se encontraron en las mismas fracciones del gradiente de sacarosa (FIG. 6) como se mostró por análisis de inmunotransferencia de Western y sugiere que las proteínas HA y M1 se asociaban como complejos proteicos macromoleculares. También se encontraban las proteínas HA y M1 en fracciones a lo largo del gradiente de sacarosa los que sugiere que estas proteínas víricas recombinantes estaban asociadas con complejos proteicos macromoleculares de diferentes densidades y composiciones.

Ejemplo de referencia 10

25

30

35

40

45

50

55

65

20 Análisis de VLP y proteínas recombinantes de gripe aviar H9N2 por cromatografía de filtración en gel

Las macromoléculas proteicas tales como las VLP y las proteínas monoméricas migran de manera diferente en las columnas cromatográficas de exclusión por tamaño y filtración en gel basándose en su tamaño de masa y forma. Para determinar si las proteínas de gripe recombinantes de las fracciones del gradiente de sacarosa eran proteínas monoméricas o complejos proteicos macromoleculares tales como VLP, se preparó una columna de cromatografía (7 mm x 140 mm) con un volumen de cama de resina de 14 ml de Sepharosa CL-4B (Amersham). La columna de exclusión por tamaño se equilibró con PBS y se calibró con Dextrano azul 2000, Dextrano amarillo, y vitamina B 12 (Amersham Pharmacia) con pesos moleculares aparentes de 2.000.000; 20.000; y 1.357, respectivamente, para determinar el volumen vacío de la columna. El Dextrano Azul 2000 se eluía de la columna en el volumen vacío (fracción de 6 ml) también. Como se esperaba, los complejos proteicos recombinantes de gripe se eluían de la columna en el volumen vacío (fracción de 6 ml). Este resultado era característico de un complejo proteico macromolecular de alto peso molecular tal como las VLP. Las proteínas víricas en las fracciones de la columna se detectaban por análisis de inmunotransferencia de Western como se ha descrito anteriormente en el Ejemplo 6. Las proteínas M1 se detectaron en las fracciones de volumen vacío (FIG. 7). Como se esperaba las proteínas de baculovirus también estaban en el volumen vacío.

Ejemplo de referencia 11

Microscopía electrónica de VLP recombinantes de gripe

Para determinar si los complejos proteicos macromoleculares aislados en gradientes de sacarosa y que contienen las proteínas recombinantes de gripe aviar tenían morfologías similares a los viriones de gripe, se llevó a cabo el examen con microscopio electrónico de las muestras con tinción negativa. Los complejos proteicos recombinantes de gripe aviar A/Hong Kong/1073/99 (H9N2) se concentraron y purificaron de los sobrenadantes de los cultivos por ultracentrifugación en gradientes de sacarosa discontinuos como se describe en el Ejemplo 7. Se trataron alícuotas de las fracciones de gradiente de sacarosa con un 2 % de glutaraldehido en PBS, pH 7,2., absorbida en rejillas recubiertas con plástico/carbono recién desechado, y lavados en agua destilada. Las muestras se tiñeron con un 2 % de fosfotungstato sódico, pH 6,5, y se observaron utilizando el microscopio electrónico de transmisión (Phillips). Las micrografías electrónicas de las muestras teñidas negativamente de complejos proteicos recombinantes de gripe aviar H9N2 de dos fracciones de gradiente de sacarosa mostraban partículas esféricas y en forma de barra (FIG. 8) a partir de dos fracciones de gradiente de sacarosa. Las partículas tenían diferentes tamaños (60 y 80 nm) y morfologías. Los complejos más grandes de ambos tipos de partículas también se detectaban, así como las partículas con forma de barra (FIG. 8). Todas las estructuras de los compleios proteicos observados mostraban espículas como proyecciones de superficie que se parecen a los peplómeros HA y NA del virus de gripe. Aunque el tamaño y apariencia de las partículas de 80 nm era similar a las partículas de virus de gripe tipo silvestre, estas estructuras probablemente representaban VLP de gripe recubiertas. Las partículas más pequeñas de aproximadamente 60 nm representaban probablemente partículas subvíricas que se diferencian de las VLP anteriores tanto morfológica como estructuralmente.

60 Ejemplo de referencia 12

Análisis de las características funcionales de las proteínas de gripe por el ensayo de hemaglutinación

Para determinar si las VLP y las proteínas de gripe purificadas poseían actividades funcionales, tales como la actividad de hemaglutinación y neuraminidasa, que eran características del virus de gripe, las VLP y proteínas de gripe purificadas se ensayaron en ensayos de hemaglutinación y neuraminidasa.

Para el ensayo de hemaglutinación, se prepararon una serie de diluciones de 2 veces de fracciones de gradiente de sacarosa que contenían las VLP de gripe o el control positivo de virus de gripe tipo A de tipo silvestre. Luego, se mezclaron con un 0,6 % de glóbulos rojos de cobaya en PBS (pH 7,2) y se incubó a 4 ºC durante 1 a 16 h. Como control negativo se utilizó PBS. Se determinó la extensión de la hemaglutinación visualmente, y se determinó la dilución más alta de la fracción que era capaz de la aglutinación de los glóbulos rojos de cobaya (FIG. 9). El título de hemaglutinación más alto que se observó para las VLP y proteínas de gripe purificadas era de 1:4000, que era más alto que el título mostrado por el control de gripe tipo silvestre, que era de 1:2000.

Ejemplo de referencia 13

10

15

Análisis de las características funcionales de las proteínas de gripe por el ensayo de neuraminidasa

Se determinó la cantidad de actividad neuraminidasa en las fracciones de gradiente de sacarosa que contenían VLP de gripe por el ensayo de neuraminidasa. En este ensayo la NA (una enzima) actuaba sobre el sustrato (fetuina) y liberaba ácido siálico. El reactivo arsenito se añadía para parar la actividad enzimática. La cantidad de ácido siálico liberado se determinaba químicamente con el ácido tiobarbitúrico que producía un color rosa en proporción al ácido siálico libre. La cantidad de color (cromofor) se medía en un espectrofotómetro a una longitud de onda de 594 nm. Los datos, que se presentan en la FIG. 8, mostraban que se producía una cantidad significativa de ácido siálico por las fracciones que contenían VLP en los gradientes de sacarosa y que estas fracciones correspondían con las fracciones que mostraban actividad de hemaglutinación.

Ejemplo de referencia 14

Inmunización de ratones BALB/c con VLP funcionales homotípicas recombinantes de gripe H8N2

25

30

20

Se determinó la inmunogenicidad de las VLP recombinantes de gripe por inmunización de ratones seguida por el análisis de transferencia de Western de los sueros inmunes. Las VLP recombinantes (1 pg/inyección) que comprendían proteínas HA, NA y M1 víricas del virus de gripe aviar tipo A/Hong Kong/1073/99 (H9N2) y purificadas en gradientes de sacarosa se inocularon por vía subcutánea en la región deltoides de diez (10) ratones BLAG/c hembras el día 0 y el día 28 (FIG. 11). Se administró PBS (pH 7,2) similarmente como control negativo en cinco (5) ratones. Los ratones se sangraron de la cavidad supraorbitaria el día -1 (pre-sangrado), el día 27 (sangrado primario), y el día 54 (sangrado secundario). Los sueros se recolectaron a partir de las muestras de sangre tras una noche de coagulación y centrifugación,

Para los análisis de transferencia de Western, 200 ng de virus tipo A H9N2 de gripe aviar inactivado o virus tipo A 35 H9N2 de gripe aviar adaptado al frío, así como proteínas de referencia pre-teñidas See Blue Plus 2 (Invitrogen), se desnaturalizaron (95 °C, 5 minutos) y se sometieron a electroforesis bajo condiciones reducidas (19 mM de βmercapto etanol) en un 4-12 % de geles NuPAGE en gradiente de poliacrilamida (InVitrogen) en tampón MES a 172 voltios hasta que desaparecía el rastro azul de colorante bromofenol. Para los geles de proteínas, las electroforesis de proteínas se visualizaban por tinción con reactivo Coomasie azul coloidal (InVitrogen). Las proteínas se transfirieron desde el gel a membranas de nitrocelulosa en metanol por el procedimiento de transferencia de Western de referencia. Los sueros de los ratones inmunizados con VLP y conejos inmunizados con virus H9N2 de gripe aviar inactivado (sueros de control positivo) se diluyeron a 1:25 y 1:100, respectivamente, en solución PBS (pH 7,2) y se utilizaron como anticuerpo primario. Las membranas unidas a las proteínas, que se habían bloqueado con 45 un 5 % de caseína, se hicieron reaccionar con los antisueros primarios durante 60 minutos a temperatura ambiente y agitado constante. Tras el lavado de las membranas de anticuerpo primario con solución salina fosfato tamponada que contenía Tween 20, se hizo reaccionar le antisuero secundario [anti-lgG murina de cabra --conjugado con fosfatasa alcalina (1:10.000) o anti-IgG de conejo de cabra--conjugada con fosfatasa alcalina (1:10.000)] durante 60 minutos con la membrana. Tras el lavado de las membranas del anticuerpo secundario con solución salina fosfato tamponada que contenía Tween 20, las proteínas unidas al anticuerpo en las membranas se visualizaron por el 50 desarrollo con el sustrato cromogénico tal como NBT/BCIP (InVitrogen).

Los resultados del análisis de transferencia de Western (FIG. 12) eran las proteínas con pesos moleculares similares a las proteínas HA y M1 víricas (75 y 30 kD, respectivamente) unidas a los sueros de control positivos (FIG. 12B) y los sueros de los ratones inmunizados con las VLP recombinantes de gripe H9N2 (FIG. 12A). Estos resultados indicaban que las VLP recombinantes de gripe H9N2 solas eran inmunogénicas en los ratones por esta vía de administración.

Ejemplo de referencia 15

60

65

55

Inmunogenicidad de VLP de A/Hong Kong/1073/99 (H9N2) y estudio de exposición en ratones BALB/c

Se inmunizaron los ratones BALB/c con VLP de H9N2 (1 μg de HA o 10 μg de HA/dosis), con o sin 100 μg de adyuvante Novasome, el día 0 y el día 21 y se desafiaron con virus infeccioso homólogo IN el día 57. Los ratones se sangraron los días 0, 27 y 57 y se ensayó el suero para detectar anticuerpos anti-HA por el ensayo de inhibición de la hemaglutinación (HI) utilizando RBC de pavo, y gripe por ELISA. Los resultados de este estudios se muestran

desde la Figura 13 hasta la Figura 16.

Se inducían altos títulos de anticuerpos H9N2 tras una única inmunización (primaria) con vacuna VLP de H9N2 sin o con Novasomes y una dosis de 10 μg de VLP que contenía 1 μg de HA (Figura 13). Los títulos de anticuerpos específicos aumentaban aproximadamente medio a un log después de la inmunización de refuerzo.

Tras la inmunización y un refuerzo con 1 μg de HA en forma de VLP de H9N2 los niveles de HI del suero eran al nivel o por encima que en general se considera protector (log2 = 5) en todos los animales (Figura 14, panel inferior izquierdo). Las VLP de H9N2 formuladas con adyuvante Novasome aumentaban las respuestas de HI aproximadamente 2 veces tras la inmunización primaria y aproximadamente 4 veces tras el refuerzo (Figura 14, panel inferior derecho). La subunidad hemaglutinina de H9N2 purificada también inducía niveles protectores de anticuerpos HI tras el refuerzo y los Novasomes de nuevo aumentaban las respuestas de anticuerpos en la HI aproximadamente 2 veces tras la inmunización primaria y 4 veces tras el refuerzo (Figura 14, paneles superiores). El nivel de anticuerpos HI que se inducía con 10 μg de HA que se daba como subunidad vacunal era equivalente a 1 μg de HA que se presenta en forma de una VLP.

Además, la pérdida de peso era significativamente menor en los ratones inmunizados con VLP de H9N2 o con VLP más adyuvante, al compararse con los animales de control sin vacunar (Figura 15). No había una diferencia estadística en la pérdida de peso en los grupos inmunizados con VLP de H9N2 y con VLP de H9N2 más adyuvante Novasome.

Igualmente, los títulos de virus en pulmón a los 3 y 5 días tras la exposición al virus H9N2 se reducían significativamente en los ratones inmunizados con VLP de H9N2 (Figura 16). El día 3 cuando los títulos de virus de gripe alcanzan el pico en los tejidos pulmonares, los ratones inmunizados con VLP de H9N2 más Novasomes® tenían una reducción mayor del título vírico comparado con los ratones inmunizados con las VLP solas y los ratones de control sin vacunar.

Ejemplo de referencia 16

10

15

20

25

35

30 Inmunogenicidad de VLP A/Fujian/411/2002 (H3N2) y reacción cruzada entre varias cepas de gripe

Se inmunizaron ratones BALB/c con VLP A/Fujian/411/2002 (H3N2) (3,0, 0,6, 0,12 y 0,24 µg HA/dosis), dos veces IM e IN. Los ratones se sangraron los días 0 y 35. El suero se ensayó para detectar anticuerpos anti-HA por el ensayo de inhibición de la hemaglutinación (HI) utilizando RBC de pavo, y en cuanto a anticuerpos antigripe por ELISA. Los resultados de este estudio se muestran en las Figuras 17A, 17B y 17C. Estos resultados indican que se montó una respuesta inmunitaria tanto por vía IM como IN contra HA y NA.

Ejemplo de referencia 17

40 Determinación de los isotipos IgG en ratón tras la inoculación de VLP de H3N2

Se inocularon ratones con VLP por vía intramuscular e intranasal. A la semana 5 se recolectaron los sueros y se ensayaron para distinguir entre los isotipos IgG.

Los sueros se ensayaron en placas recubiertas con HA purificada (Protein Sciences) de A/Wyoming/3/2003 utilizando un ensayo ELISA. Se añadieron diluciones de cinco veces del suero en los pocillos y se incubaron las placas. A continuación, se añadieron anti-lg de ratón biotinilado de cabra, o anti-lgG1 de ratón, anti-lgG2a de ratón, anti-lgG2b de ratón y anti-lgG3 de ratón. Luego se añadió a los pocillos estreptavidina-peroxidasa. Se detectaron los conjugados unidos. Los resultados se ilustran en las Figuras 18A y B. Estos resultados ilustran que la lgG2a era el isotipo más abundante en una respuesta inmunitaria contra VLP en el ratón.

Ejemplo de referencia 18

Estudio de intervalo de dosis de VLP A/Hong Kong/1073/99 (H9N2) en ratas SD

Se inmunizaron ratas SD (n = 6 por dosis) el día 0 y el día 21 con VLP purificadas de A/Hong Kong/1073/99 (H9N2) diluidas con PBS a pH neutro hasta 0.12, 0.6, 3.0 y 15.0 μg de HA o con PBS solo. Se tomaron muestras de sangre de los animales el día 0, día 21, día 35 y día 49 y se ensayó el suero por el ensayo de inhibición de la hemaglutinación (HI) para detectar los anticuerpos funcionales capaces de inhibir la función de unión de la HA. La dosificación se basaba en el contenido de HA que se midió utilizando SDS-PAGE y densitometría de exploración de las VLP de H9N2. Los resultados de los títulos del ensayo de inhibición de la hemaglutinación se representan en la Figura 19. Una única dosis de 0.6 μ g de VLP de H9N2 o dos dosis de 0.12 μ g de HA producían niveles protectores de anticuerpos HI en ratas. Estos datos indican que una cantidad menor de HA puede inducir una respuesta protectora cuando dicha HA es parte de una VLP.

65

55

Ejemplo de referencia 19

Inmunogenicidad de la VLP A/Hong Kong/1073/99 (H9N2)

Se inmunizaron ratones BALB/c con VLP de H9N2 (0,12, 0,6 μg HA/dosis), con o sin 100 μg de adyuvante Novasome y alúmina, el día 0 y el día 21 y se desafiaron con el virus homólogo infeccioso por vía IN el día 57. Los ratones también se inmunizaron con 3,0 y 15,0 μg de HA/dosis (sin adyuvante). Los ratones se sangraron los días 0, 21, 35 y 49 con el suero ensayado respecto a anticuerpos anti-HA por el ensayo de inhibición de la hemaglutinación (HI) utilizando RBC de pavo, y respecto a gripe por ELISA. Los resultados de este estudio se muestran en las Figuras 20A y B.

Los resultados indican que se observó una respuesta inmunitaria total más robusta cuando se administraban las VLP con un adyuvante. Sin embargo, se provocaba una respuesta protectora con 0,12 µg de HA/dosis la semana 3 cuando se comparaba con la formulación de VLP con alúmina y la VLP sin adyuvante. También la semana 7, las VLP que comprendían Novasomes tenían un aumento de aproximadamente 2 log en el título HI en comparación de la VLP con alúmina. La robustez de la respuesta era similar a las VLP administradas a 3,0 y 15,0 µg de HA/dosis sin un adyuvante. Estos resultados indican que los Novasomes provocan una respuesta más robusta en comparación con la alúmina. Además, se puede conseguir una respuesta inmunitaria protectora con 25 x menos VLP cuando dichas VLP se administran en una formulación que comprende Novasomes.

20

15

También, en los datos de la dosis de 0,6 μg de HA/dosis, la formulación con Novasome tenía una respuesta aproximadamente 1,5 log mayor comparada con la alúmina. Las respuestas inmunitarias eran similares en magnitud a las VLP administradas en 3,0 y 15,0 μg de HA/dosis sin adyuvante. Estos resultados indican que con un adyuvante, se necesita administrar aproximadamente 5 x menos de VLP para conseguir una respuesta protectora.

25

También, la Figura 20B representa el título de HI de VLP de H9N2 utilizando diferentes formulaciones de Novasomes. Las siguientes son las fórmulas que se utilizaron en el experimento:

```
Grupo 1: VLP de H9N2 (0,1 µg) (n=5)
30
         Grupo 2: VLP de H9N2 (0,1 µg) c/ DCW neto) (n=5)
         Grupo 3: VLP de H9N2 (0,1 μg) c/ DCW 1:3) (n=5)
         Grupo 4: VLP de H9N2 (0,1 µg) c/ DCW 1:9) (n=5)
         Grupo 5: VLP de H9N2 (0,1 μg) c/ DCW 1:27) (n=5)
         Grupo 6: VLP de H9N2 (0,1 μg) c/ NVAX 1) (n=5)
35
         Grupo 7: VLP de H9N2 (0,1 µg) c/ NVAX 2) (n=5)
         Grupo 8: VLP de H9N2 (0,1 μg) c/ NVAX 3) (n=5)
         Grupo 9: VLP de H9N2 (0,1 μg) c/ NVAX 4) (n=5)
         Grupo 10: VLP de H9N2 (0,1 μg) c/ NVAX 5) (n=5)
         Grupo 11: VLP de H9N2 (0,1 μg) c/ Alum-OH) (n=5)
40
         Grupo 12: VLP de H9N2 (0,1 μg) c/ CpG) (n=5)
         Grupo 13: PBS (0,6 μg) (n=5)
         Grupo 14: VLP de H3 (0,6 μg) (n=5)
         Grupo 15: VLP de H5 (0,6 µg) (n=8)
```

45

- H9: (Lote nº 11005)
- DCW: Novasomes (Lote nº 121505-2, Polioxietileno-2-cetil éter, Colesterol, aceite de soja Superfmed, y Cloruro de Cetilpiridinio)
- NVAX 1: B35P83, MF-59 replica (Escualeno, Polisorbato, y Span)
- NVAX 2: B35P87 (Aceite de soja, Brij, Colesterol, Pluronic F-68)
- NVAX 3: B35P88 (Aceite de soja, Brij, Colesterol, Pluronic F-68, and Polietilenimina)
- NVAX 4: B31P60 (Escualeno, Brij, Colesterol, Ácido oleico)
- NVAX 5: B31P63 (Aceite de soja, monoestearato de Glicerilo, Colesterol, Polisorbato)
- CpG: (Lote nº1026004)
- H5: (Lote nº22406)

55

50

La Figura 21 representa la curva de respuesta a la dosis de las VLP de H9N2. Estos datos indican que una dosis de VLP de 0,6 µg de HA/dosis es la mínima para provocar una respuesta inmunitaria protectora en ratones tras 3 semanas.

60

Ejemplo de referencia 20

Materiales y métodos de los estudios en Hurones

Los hurones se obtuvieron en Triple F Farms (FFF, Sayre, PA). Todos los hurones obtenidos tienen un título HAI de menos de 10 unidades de hemaglutinación. Aproximadamente dos días antes de la vacunación, se les implantó a los animales un transponder de temperatura (BioMedic Data Systems, Inc.). Los animales (6 animales por grupo) se vacunaron el día 0 o con (1) PBS (control negativo, grupo uno), (2) VLP de H3N2 de gripe @ 15 μg de H3 (grupo 2), (3) VLP de H3N2 de gripe @ 0,6 μg de H3 (grupo 3), (5) VLP de H3N2 de gripe @ 0,12 μg de H3 (grupo 5), ο (6) rH3HA @ 15 μg (grupo 6). El día 21 los animales se reforzaron con vacuna. Los animales se sangraron los días 0 (antes de la vacunación), día 21 (antes del refuerzo vacunal), y el día 42. Los animales se evaluaron en cuanto a signos clínicos de efectos adversos de la vacuna una vez a la semana durante el periodo de estudio. Se llevaron a cabo estudios similares con otras VLP de gripe.

15 Niveles de HAI en sueros de hurón

Se obtuvieron sueros de hurón en FFF, que se trataron con la Enzima destructora del receptor (RDE) y ensayados en cuanto al ensayo de inhibición de la hemaglutinación (HAI) por procedimientos de referencia (Kendal *et al.* (1982)). Todos los hurones que se eligieron para el estudio tenían un ensayo negativo (HAI = 10) para anticuerpos pre-existentes a los virus circulantes actualmente de gripe humana (A/New Caledonia/20/99 (H1N1), A panamá/2007/99 (H3N2), A/Wellington/01/04 (H2N3) y B/Sichuan/379/99 y H5N1).

Hurones

20

30

35

45

60

65

Se obtuvieron de FFF, hurones Fitch machos (*Mustela putorius furo*), castrados y desodorizados, no expuestos previamente a la gripe de aproximadamente 8 meses de edad. Los animales se alojaron en jaulas de conejo de acero inoxidable (Shor-line, KS) que contenían una cama de animales de laboratorio SAni chips (P.J. Murphy Forest Products, NJ). Los hurones se alimentaron con Dieta para hurones Global Teklad (Harlan Teklad, WI) y agua dulce ad libitum. Los paneles se cambiaban tres veces a la semana, y se limpiaban las jaulas dos veces a la semana.

Vacunaciones y recolección de sangre de los hurones

La vacuna, VLP de H3N2 de gripe o VLP de H9N2 de gripe y los controles, por ejemplo, rH3NA (A/Wyoming/3/2003) y PBS (control negativo) se guardaron a 4 °C antes de su uso. Para las mayorías de los estudios, se vacunaron por vía intramuscular 6 grupos de hurones (N-6/grupo) con la concentración de vacuna o de control con un volumen de 0,5 ml.

Antes de la recolección de sangre y la vacunación, los animales se anestesiaron con una inyección intramuscular en el interior del muslo con una solución de Ketamina (25 mg/kg, Atropina (0,05 mg/kg) y Xylacina (2,0 mg/kg) "KAX". Una vez anestesiados, los hurones se posicionaron en decúbito dorsal y se recolectó la sangre (con un volumen entre 0,5 y 1,0 ml) de la vena cava anterior utilizando una aguja de 23 gauge de 1" conectada a una jeringa de tuberculina. La sangre se transfirió a un tubo que contenía un separador de suero y activación del coágulo y se permitió coagular a temperatura ambiente. Los tubos se centrifugaron y se retiró el suero y se congeló a -80 °C. La sangre se recolectó antes de la vacunación (día 0), antes del refuerzo (día 21) y el día 42 y se ensayaron por el ensayo HAI.

Seguimiento de los hurones

Se midieron las temperaturas semanalmente aproximadamente a la misma hora durante el periodo de estudio. Los valores pre-vacunales se promediaron para obtener una línea base de temperaturas para cada hurón. El cambio de temperatura (en grados Fahrenheit) se calculó en cada punto de tiempo para cada animal. Los hurones se examinaron semanalmente en cuanto a signos clínicos de efectos vacunales adversos, que incluían la temperatura, pérdida de peso, pérdida de actividad, descarga nasal, estornudos y diarrea. Se utilizó un sistema de puntuación basado en el descrito por Reuman *et al.* (1989) para evaluar el nivel de actividad donde 0 = alerta y activo; 1 = alerta pero activo solo cuando se estimula; 2 = alerta pero no activo cuando se estimula. Basándose en las puntuaciones para cada animal de un grupo, se calculó un índice de inactividad relativa como Σ(día 0-día 42) [puntuación de actividad + 1] / Σ (día 0-día 42), donde n es igual al número total de observaciones. Un valor de 1 se añadió a cada puntuación de base de forma que se pudiera dividir la puntuación de "0" or un denominador, resultando un valor del índice de 1,0.

Preparaciones del suero

Los sueros en general tenían bajos niveles de inhibidores no específicos de hemaglutinación. Para inactivar estos inhibidores no específicos, los sueros se trataron con (RDE) antes de ensayarse. En resumen, se añadieron tres partes de RDE a una parte de suero y se incubaron una noche a 37 °C. El RDE se inactivó por incubación a 56 °C

durante aproximadamente 30 minutos. Después de la inactivación de RDE, se añadió PBS a la muestra para obtener una dilución del suero final de 1:10 (RDE-Tx). El suero diluido RDE-Tx se almacenó a 4 °C antes de ensayarlo (durante 7 días) o se almacenó a -20 °C.

5 Preparación de eritrocitos de pavo:

Los virus de gripe humana se une a los receptores del ácido siálico que contienen enlaces ácido N-acetilneuramínico α 2,6-galactosa. Los virus de gripe aviar se unen a los receptores de ácido siálico que contienen enlaces ácido N-acetilneuramínico α 2,3-galactosa (enlaces α 2,3) y expresan tanto enlaces α 2,3 como α 2,6. Los eritrocitos de pavo (TRBC) se utilizan para el ensayo HAI ya que el A/Fujian es un virus de gripe humana. Los TRBC se ajustan con PBS para alcanzar un volumen del 0,5 %/ volumen de suspensión. Las células se mantienen a 4 $^{\circ}$ C y se utilizan en las 72 h de la preparación.

Ensayo HAI

15

10

- El ensayo HAI se adaptó del manual de vigilancia de gripe basando en el laboratorio CDC (Kendal et al. (1982) Concepts and procedures for laboratory based influenza surveillance, U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control, Atlanta, Georgia.).
- Los sueros RDE-Tx se diluyeron 2 veces seriadamente en placas microtiter con fondo en V. Se ajustó un volumen igual de virus, aproximadamente a 8 HAU/50 ul y se añadió a cada pocillo. Las placas se cubrieron y se incubaron a temperatura ambiente durante 15 minutos seguido por la adición de TRBC al 0,5 %. Las placas se mezclaron por agitación, se cubrieron, y se permitió que los TRBC se asentaran durante 30 minutos a temperatura ambiente. Se determinó el título HAI por dilución recíproca de la última fila que contenía TRBC no aglutinados. Se incluyeron en cada placa controles de suero positivo y negativo.

Ejemplo de referencia 21

Estudio de intervalo de dosificación de VLP A/Hong Kong/1073/99 (H9N2) en hurones

30

45

Los hurones, serológicamente negativos por inhibición de la hemaglutinación para virus de gripe, se utilizaron para evaluar el título de anticuerpos e HI tras la inoculación con VLP de H9N2. Los hurones se sangraron los días 0, y 21 con el suero ensayado en cuanto a anticuerpos anti-HA por el ensayo de inhibición de la hemaglutinación (HI) utilizando RBC de pavo, y en cuento a anticuerpos anti-gripe por ELISA. Los resultados se ilustran en la Figura 22. Estos resultados muestran títulos de HI que corresponden a los niveles de anticuerpos protectores a dosis de VLP de 1.5 y 15 µg.

Ejemplo de referencia 21

40 Vacunación con VLP de H3N2 en hurones

Se vacunaron los hurones el día 0, y se les puso un refuerzo el día 21 con diferentes cepas de VLP de H3N2 a diferentes dosificaciones (dosificaciones de HA 0,12, 0,6, 3,0, 15,0 μg). El control positivo era rH3N2 a 15 μg y el control negativo es PBS solo. Los sueros, como se ha descrito anteriormente, se tomaron de los hurones el día 0 antes de la vacunación, el día 21 (antes del refuerzo) y el día 42. Se llevó a cabo un ensayo de HI en las muestras de suero para determinar si había una respuesta inmunitaria contra las VLP. Estos datos se ilustran en la Figura 23. Estos datos indican que las VLP de H3N2, cuando se introducen en los hurones, inducen una respuesta inmunitaria. Por lo tanto, las VLP de H3N2 son inmunogénicas en hurones.

50 **Ejemplo 22**

RT-PCR y clonación de genes HA, NA y M1 del virus de gripe A/Indonesia/5/05 (H5N1)

Se extrajo el ARN vírico del clado 2 del virus de gripe, cepa A/Indonesia/5/05 (H5N1) utilizando Trizol LS (Invitrogen, Carlsbad, CA) bajo condiciones de contención BSL-3. La transcripción inversa (RT) y PCR se llevaron a cabo en el ARN vírico extraído utilizando un sistema RT-PCR de una etapa (Invitrogen) con cebadores oligonucleótidos específicos del gen. Se utilizaron los siguientes pares de cebadores para la síntesis de la hemaglutinina (HA), neuraminidasa (NA), genes de matriz (M1) del H5N1, respectivamente:

- 60 5'-AACGGTCCGATGGAGAAAATAGTGCTTCTTC-3' (SEC ID 4) v
 - 5'-AAAGCTTTTAAATGCAAATTCTGCATTGTAACG-3' (SEC ID 5) (HA);
 - 5'-AACGGTCCGATGAATCCAAATCAGAAGATAAT-3' (SEC ID 6) y
 - 5'-AAAGCTTCTACTTGTCAATGGTGAATGGCAAC-3' (SEC ID 7) (NA); y
 - 5'-AACGGTCCGATGAGTCTTCTAACCGAGGTC-3' (SEC ID 8) y
- 65 5'-AAAGCTTTCACTTGAATCGCTGCATCTGCAC-3' (SEC ID 9) (M1) (los codones ATG están subrayados).

A continuación de la RT-PCR, se clonaron los fragmentos de ADNc que contenían los genes de gripe HA, NA y M1 con pesos moleculares de 1,7, 1,4, y 0,7 kB, respectivamente, en el vector pCR2.1-TOPO (Invitrogen). Las secuencias de nucleótidos de los genes HA, NA, y M1 se determinaron por secuenciación de ADN. Una estrategia similar se siguió para clonar un clado 1 H5N1 del virus de gripe a partir de Vietnam/1203/2003.

Ejemplo 23

5

Generación de baculovirus recombinantes que comprenden H5N1

El gen HA se clonó como un fragmento de ADN *RsrII-HindIII* (1,7 kb) corriente abajo del promotor polihedrina *Ac*MNPV con el vector bácmido de transferencia pFastBac1 (Invitrogen) digerido con *RsrII* y *HindIII*. De manera similar, los genes NA y M1 se clonaron como fragmentos de ADN *Eco*RI-*HindIII* (1,4 y 0,8 kb, respectivamente) en el plásmido ADN pFastBac1 digerido con *Eco*RI-*HindIII*. Los tres plásmidos de transferencia de baculovirus pHA, pNA, y pMI que contenían los genes HA, NA y M1 del virus de gripe A/Indonesia/5/05 (H5N1), respectivamente, se utilizaron para generar bácmidos recombinantes.

Los bácmidos se produjeron por recombinación homóloga específica del sitio siguiendo la transformación de plásmidos bácmidos de transferencia que contienen genes de gripe en células competentes E. coli DH10Bac, que contenían el genoma de baculovirus *Ac*MNPV (Invitrogen). El bácmido ADN recombinante se transfectó en células de insecto Sf9.

Secuencias de nucleótidos de los genes HA, NA y M1 del Indonesia/5/05.

HA (SEC ID 10)

25

20

ATGGAGAAAATAGTGCTTCTTCTTGCAATAGTCAGTCTTGTTAAAAGTGATCAGATTTGC ATTGGTTACCATGCAAACAATTCAACAGAGCAGGTTGACACAATCATGGAAAAGAACGTT ACTGTTACACATGCCCAAGACATACTGGAAAAGACACACAACGGGAAGCTCTGCGATCTA GATGGAGTGAAGCCTCTAATTTTAAGAGATTGTAGTGTAGCTGGATGGCTCCTCGGGAAC CCAATGTGTGACGAATTCATCAATGTACCGGAATGGTCTTACATAGTGGAGAAGGCCAAT CCAACCAATGACCTCTGTTACCCAGGGAGTTTCAACGACTATGAAGAACTGAAACACCTA TTGAGCAGAATAAACCATTTTGAGAAAATTCAAATCATCCCCAAAAGTTCTTGGTCCGAT CATGAAGCCTCATCAGGAGTGAGCTCAGCATGTCCATACCTGGGAAGTCCCTCCTTTTTT AGAAATGTGGTATGGCTTATCAAAAAGAACAGTACATACCCAACAATAAAGAAAAGCTAC AATAATACCAACCAAGAAGATCTTTTGGTACTGTGGGGAATTCACCATCCTAATGATGCG GCAGAGCAGACAAGGCTATATCAAAACCCAACCACCTATATTTCCATTGGGACATCAACA CTAAACCAGAGATTGGTACCAAAAATAGCTACTAGATCCAAAGTAAACGGGCAAAGTGGA AGGATGGAGTTCTTCTGGACAATTTTAAAACCTAATGATGCAATCAACTTCGAGAGTAAT GGAAATTTCATTGCTCCAGAATATGCATACAAAATTGTCAAGAAAGGGGACTCAGCAATT ATGAAAAGTGAATTGGAATATGGTAACTGCAACACCAAGTGTCAAACTCCAATGGGGGCG ATAAACTCTAGTATGCCATTCCACAACATACACCCTCTCACCATCGGGGAATGCCCCAAA TATGTGAAATCAAACAGATTAGTCCTTGCAACAGGGCTCAGAAATAGCCCTCAAAGAGAG CAGGGAATGGTAGATGGTAGGGTACCACCATAGCAATGAGCAGGGGAGTGGGTAC GCTGCAGACAAAGAATCCACTCAAAAAGGCAATAGATGGAGTCACCAATAAGGTCAACTCA ATCATTGACAAAATGAACACTCAGTTTGAGGCCGTTGGAAGGGAATTTAATAACTTAGAA AGGAGAATAGAGAATTTAAACAAGAAGATGGAAGACGGGTTTCTAGATGTCTGGACTTAT AATGCCGAACTTCTGGTTCTCATGGAAAATGAGAGAACTCTAGACTTTCATGACTCAAAT GTTAAGAACCTCTACGACAAGGTCCGACTACAGCTTAGGGATAATGCAAAGGAGCTGGGT GGAACGTACAACTATCCGCAGTATTCAGAAGAAGCAAGATTAAAAAGAGAGGAAATAAGT GGGGTAAAATTGGAATCAATAGGAACTTACCAAATACTGTCAATTTATTCAACAGTGGCG AGTTCCCTAGCACTGGCAATCATGATGGCTGGTCTATCTTTATGGATGTGCTCCAATGGA TCGTTACAATGCAGAATTTGCATTTAA

NA (SEC ID 11)

ATGAATCCAAATCAGAAGATAATAACCATTGGATCAATCTGTATGGTAATTGGAATAGTT GGGAATCAACACCAAGCTGAATCAATCAGCAATACTAACCCTCTTACTGAGAAAGCTGTG GCTTCAGTAACATTAGCGGGCAATTCATCTCTTTGCCCCCATTAGAGGATGGGCTGTACAC TTCATCTCATGCTCCCACCTGGAATGCAGAACTTTCTTCTTGACTCAGGGAGCCTTGCTG AATGACAAGCACTCCAACGGGACTGTCAAAGACAGAAGCCCTCACAGAACATTAATGAGT TGTCCTGTGGGTGAGGCTCCCTCTCCATATAACTCAAGGTTTGAGTCTGTTGCTTGGTCA GCAAGTGCTTGCCATGATGGCACCAGTTGGTTGACAATTGGAATTTCTGGCCCAGACAAT GAGGCTGTGGCTGTATTGAAATACAATGGCATAATAACAGACACTATCAAGAGTTGGAGG AACAACATACTGAGAACTCAAGAGTCTGAATGTGCATGTGTAAATGGCTCTTGCTTTACT GTAATGACTGATGGACCAAGTGATGGGCAGGCATCATATAAGATCTTCAAAATGGAAAAA GGAAAAGTGGTCAAATCAGTCGAATTGGATGCTCCTAATTATCACTATGAGGAATGCTCC TGTTATCCTGATGCCGGCGAAATCACATGTGTTTTGCAGGGATAATTGGCATGGCTCAAAT GTTTTCGGAGACAATCCACGCCCCAATGATGGAACAGGTAGTTGTGGCCCGATGTCCCCT AACGGGGCATATGGGGTAAAAGGGTTTTCATTTAAATACGGCAATGGTGTTTGGATCGGG AGAACCAAAAGCACTAATTCCAGGAGCGGCTTTGAAATGATTTGGGATCCAAATGGGTGG ACTGGAACGGACAGTAGCTTTTCAGTGAAACAAGATATAGTAGCAATAACTGATTGGTCA GGATATAGCGGGAGTTTTGTCCAGCATCCAGAACTGACAGGATTAGATTGCATAAGACCT TGTTTCTGGGTTGAGTTAATCAGAGGGCGGCCCAAAGAGAGCACAATTTGGACTAGTGGG AGCAGCATATCTTTTTGTGGTGTAAATAGTGACACTGTGAGTTGGTCTTGGCCAGACGGT GCTGAGTTGCCATTCACCATTGACAAGTAG

5

M1 (SEC ID 12)

10 Un gen clonado HA, pHA5, contenía dos cambios de nucleótidos, nt nº 1172 y nt nº 1508 (en el wt), cuando se comparaba con la secuencia del gen HA de tipo silvestre. Se siguió una estrategia similar para construir y crear el clado 1 del virus de gripe H5N1 de las VLP Vietnam/1203/2003 (véase posteriormente). Los alineamientos de nucleótidos del pHA5 y las secuencias de aminoácidos son los siguientes.

wt	1	ATGGAGAAAATAGTGCTTCTTGCAATAG	31	sec	id 10
pHA5	51	ATTCGCCCTTAACGGTCCGATGGAGAAATAGTGCTTCTTCTTGCAATAG	100	sec	id 56
	32	TCAGTCTTGTTAAAAGTGATCAGATTTGCATTGGTTACCATGCAAACAAT	81		
	101	TCAGTCTTGTTAAAAGTGATCAGATTTGCATTGGTTACCATGCAAACAAT	150		
	82	${\tt TCAACAGAGCAGGTTGACACAATCATGGAAAAGAACGTTACTGTTACACA}$	131		
	151	${\tt TCAACAGAGCAGGTTGACACAATCATGGAAAAGAACGTTACTGTTACACA}$	200		
	132	${\tt TGCCCAAGACATACTGGAAAAGACACACAACGGGAAGCTCTGCGATCTAG}$	181		
	201	THE COURT A CALL AND A CALL A CALL A CALL A COURT A CALL A	250		

182	ATGGAGTGAAGCCTCTAATTTTAAGAGATTGTAGTGTAG	231
251	ATGGAGTGAAGCCTCTAATTTTAAGAGATTGTAGTGTAG	300
232	CTCGGGAACCCAATGTGTGACGAATTCATCAATGTACCGGAATGGTCTTA	281
301	CTCGGGAACCCAATGTGTGACGAATTCATCAATGTACCGGAATGGTCTTA	350
282	CATAGTGGAGAGGCCAATCCAACCAATGACCTCTGTTACCCAGGGAGTT	331
351	CATAGTGGAGAAGGCCAATCCAACCAATGACCTCTGTTACCCAGGGAGTT	400
332	TCAACGACTATGAAGAACTGAAACACCTATTGAGCAGAATAAACCATTTT	381
401	TCAACGACTATGAAGAACTGAAACACCTATTGAGCAGAATAAACCATTTT	450
382	GAGAAAATCAAATCATCCCCAAAAGTTCTTGGTCCGATCATGAAGCCTC	431
451		500
432	ATCAGGAGTGAGCTCAGCATGTCCATACCTGGGAAGTCCCTCCTTTTTTA	481
501		550
482	GAAATGTGGTATGGCTTATCAAAAAGAACAGTACATACCCAACAATAAAG	531
551		600
532	$\hbox{\tt AAAAGCTACAATAATACCAACCAAGAAGATCTTTTGGTACTGTGGGGAAT}$	581
601		650
582	TCACCATCCTAATGATGCGGCAGAGCAGACAAGGCTATATCAAAACCCAA	631
651		700
632	$\tt CCACCTATATTTCCATTGGGACATCAACACTAAACCAGAGATTGGTACCA$	681
701		750
682	${\tt AAAATAGCTACTAGATCCAAAGTAAACGGGCAAAGTGGAAGGATGGAGTT}$	731
751		800
732	. CTTCTGGACAATTTTAAAACCTAATGATGCAATCAACTTCGAGAGTAATG	781
801		850
782	GAAATTTCATTGCTCCAGAATATGCATACAAAATTGTCAAGAAAGGGGAC	831
851		900
832	TCAGCAATTATGAAAAGTGAATTGGAATATGGTAACTGCAACACCAAGTG	881
901		950
882		931
951		1000

932	ACCCTCTCACCATCGGGGAATGCCCCAAATATGTGAAATCAAACAGATTA	981
1001	ACCCTCTCACCATCGGGGAATGCCCCCAAATATGTGAAATCAAACAGATTA	1050
982	GTCCTTGCAACAGGGCTCAGAAATAGCCCTCAAAGAGAGAG	1031
1051	GTCCTTGCAACAGGGCTCAGAAATAGCCCTCAAAGAGAGAG	1100
1032	AAAGAGAGGACTATTTGGAGCTATAGCAGGTTTTATAGAGGGAGG	1081
1101	AAAGAGAGGACTATTTGGAGCTATAGCAGGTTTTATAGAGGGAGG	1150
1082	AGGGAATGGTAGATGGTATGGGTACCACCATAGCAATGAGCAGGGG	1131
1151	AGGGAATGGTAGGTATGGGTACCACCATAGCAATGAGCAGGGG	1200
1132	AGTGGGTACGCTGCAGACAAAGAATCCACTCAAAAGGCAATAGATGGAGT	1181
	AGTGGGTACGCTGCAGACAAAGAATCCACTCAAAAGGCAATGGATGG	1250
1182	CACCAATAAGGTCAACTCAATCATTGACAAAATGAACACTCAGTTTGAGG	1231
1251	CACCAATAAGGTCAACTCAATCATTGACAAAATGAACACTCAGTTTGAGG	1300
	CCGTTGGAAGGAATTTAATAACTTAGAAAGGAGAATAGAGAATTTAAAC	1281
	CCGTTGGAAGGGAATTTAATAACTTAGAAAGGAGAATAGAGAATTTAAAC	1350
	AAGAAGATGGAAGACGGGTTTCTAGATGTCTGGACTTATAATGCCGAACT	1331
	AAGAAGATGGAAGACGGGTTTCTAGATGTCTGGACTTATAATGCCGAACT	1400
1332	TCTGGTTCTCATGGAAAATGAGAGAACTCTAGACTTTCATGACTCAAATG	1381
1401	TCTGGTTCTCATGGAAAATGAGAGAACTCTAGACTTTCATGACTCAAATG	1450
1382 1451	TTAAGAACCTCTACGACAAGGTCCGACTACAGCTTAGGGATAATGCAAAG	1431
	GAGCTGGGTAACGGTTGTTTCGAGTTCTATCACAAATGTGATAATGAATG	1500
	TATGGAAAGTATAAGAAACGGAACGTACAACTATCCGCAGTATTCAGAAG	
	. AAGCAAGATTAAAAAGAGAGGAAATAAGTGGGGTAAAATTGGAATCAATA	1581
		1650
		1631
		1700
1632		1681
1701		1750

1682		170	7	
	la secuencia de aminoácidos de Hemaglutinina	GCA 100		
				
-	MEKIVLLAIVSLVKSDQICIGYHANNSTEQVDTIMEKNVTVTHAQDILE			
wt 1	MEKIVLLAIVSLVKSDQICIGYHANNSTEQVDTIMEKNVTVTHAQDILE	50 sec	id	58
51	KTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEWSYIVEKAN	100		
51	KTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEWSYIVEKAN	100		
101	PTNDLCYPGSFNDYEELKHLLSRINHFEKIQIIPKSSWSDHEASSGVSSA	150		
101	PTNDLCYPGSFNDYEELKHLLSRINHFEKIQIIPKSSWSDHEASSGVSSA	150		
.151	CPYLGSPSFFRNVVWLIKKNSTYPTIKKSYNNTNQEDLLVLWGIHHPNDA	200		
151	CPYLGSPSFFRNVVWLIKKNSTYPTIKKSYNNTNQEDLLVLWGIHHPNDA	200		
201	AEQTRLYQNPTTYISIGTSTLNQRLVPKIATRSKVNGQSGRMEFFWTILK	250		
201	AEQTRLYQNPTTYISIGTSTLNQRLVPKIATRSKVNGQSGRMEFFWTILK	250		
251	PNDAINFESNGNFIAPEYAYKIVKKGDSAIMKSELEYGNCNTKCQTPMGA	300		
251	PNDAINFESNGNFIAPEYAYKIVKKGDSAIMKSELEYGNCNTKCQTPMGA	300		
301	INSSMPFHNIHPLTIGECPKYVKSNRLVLATGLRNSPQRESRRKKRGLFG	350		
301	INSSMPFHNIHPLTIGECPKYVKSNRLVLATGLRNSPQRESRRKKRGLFG	350		
. 351	AIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAMDGVTNKVNS	400		
351	AIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAIDGVTNKVNS	400		
401	IIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMEN	450		
401	IIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMEN	450		
451	ERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMESIRN	500		
451	ERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMESIRN	500		
501	GTCNYPQYSEEARLKREEISGVKLESIGTYQILSIYSTVASSLALAIMMA	550		
501	GTYNYPQYSEEARLKREEISGVKLESIGTYQILSIYSTVASSLALAIMMA	550		
551	GLSLWMCSNGSLQCRICI. 568			
551				

Ejemplo 26

5

Generación de genes HA, NA, y M1 optimizados de A/Indonesia/5/05 para la expresión eficaz en células Sf9.

Se derivaron los siguientes polipéptidos de los nucleótidos de codón optimizado que correspondían al gen HA de Indonesia/5/05 (véase el ejemplo 31). Los nucleótidos de codón optimizado se diseñaron y produjeron (Geneart GMBH, Regensburg, FRG) de acuerdo con los métodos desvelados en la publicación de patente de EE. UU. 2005/0118191. Véase el Ejemplo 31 para las secuencias de ácidos nucleicos.

Vac2-hac-opt (secuencias de aa sin modificar) (SEC ID 27)

```
MEKIVLLAI VSLVKSDQIC IGYHANNSTE QVDTIMEKNV TVTHAQDILE KTHNGKLCDL DGVKPLILRD CSVAGWLLGN PMCDEFINVP EWSYIVEKAN PTNDLCYPGS FNDYEELKHL LSRINHFEKI QIIPKSSWSD HEASSGVSSA CPYLGSPSFF RNVVWLIKKN STYPTIKKSY NNTNQEDLLV LWGIHHPNDA AEQTRLYQNP TTYISIGTST LNQRLVPKIA TRSKVNGQSG RMEFFWTILK PNDAINFESN GNFIAPEYAY KIVKKGDSAI MKSELEYGNC NTKCQTPMGA INSSMPFHNI HPLTIGECPK YVKSNRLVLA TGLRNSPQRE SRRKKRGLFG AIAGFIEGGW QGMVDGWYGY HHSNEQGSGY AADKESTQKA IDGVTNKVNS IIDKMNTQFE AVGREFNNLE RRIENLNKKM EDGFLDVWTY NAELLVLMEN ERTLDFHDSN VKNLYDKVRL QLRDNAKELG NGCFEFYHKC DNECMESIRN GTYNYPQYSE EARLKREEIS GVKLESIGTY QILSIYSTVA SSLALAIMMA GLSLWMCSNG SLQCRICI*
```

5 Vac2-hac-spc-opt (modificado, péptido de señal de Quitinasa, subrayado) (SEC ID 28)

```
Mplykllnvlwlvavsnaip DQICIGYHANNSTE QVDTIMEKNV TVTHAQDILE KTHNGKLCDL DGVKPLILRD CSVAGWLLGN PMCDEFINVP EWSYIVEKAN PTNDLCYPGS FNDYEELKHL LSRINHFEKI QIIPKSSWSD HEASSGVSSA CPYLGSPSFF RNVVWLIKKN STYPTIKKSY NNTNQEDLLV LWGIHHPNDA AEQTRLYQNP TTYISIGTST LNQRLVPKIA TRSKVNGQSG RMEFFWTILK PNDAINFESN GNFIAPEYAY KIVKKGDSAI MKSELEYGNC NTKCQTPMGA INSSMPFHNI HPLTIGECPK YVKSNRLVLA TGLRNSPQRE SRRKKRGLFG AIAGFIEGGW QGMVDGWYGY HHSNEQGSGY AADKESTQKA IDGVTNKVNS IIDKMNTQFE AVGREFNNLE RRIENLNKKM EDGFLDVWTY NAELLVLMEN ERTLDFHDSN VKNLYDKVRL QLRDNAKELG NGCFEFYHKC DNECMESIRN GTYNYPQYSE EARLKREEIS GVKLESIGTY QILSIYSTVA SSLALAIMMA GLSLWMCSNG SLOCRICI*
```

Vac2-hac-sph9-opt (modificado, péptido de señal de H9, subrayado)

10

```
METISLITIL LVVTASNA DQICIGYHANNSTE QVDTIMEKNV TVTHAQDILE KTHNGKLCDL DGVKPLILRD CSVAGWLLGN PMCDEFINVP EWSYIVEKAN PTNDLCYPGS FNDYEELKHL LSRINHFEKI QIIPKSSWSD HEASSGVSSA CPYLGSPSFF RNVVWLIKKN STYPTIKKSY NNTNQEDLLV LWGIHHPNDA AEQTRLYQNP TTYISIGTST LNQRLVPKIA TRSKVNGQSG RMEFFWTILK PNDAINFESN GNFIAPEYAY KIVKKGDSAI MKSELEYGNC NTKCQTPMGA INSSMPFHNI HPLTIGECPK YVKSNRLVLA TGLRNSPQRE SRRKKRGLFG AIAGFIEGGW QGMVDGWYGY HHSNEQGSGY AADKESTQKA IDGVTNKVNS IIDKMNTQFE AVGREFNNLE RRIENLNKKM EDGFLDVWTY NAELLVLMEN
```

ERTLDFHDSN VKNLYDKVRL QLRDNAKELG NGCFEFYHKC DNECMESIRN GTYNYPQYSE EARLKREEIS GVKLESIGTY QILSIYSTVA SSLALAIMMA GLSLWMCSNG SLQCRICI*

15 Vac2-hac-cs-opt (-es el sitio de escisión modificado) (SEC ID 30)

```
MEKIVLLAI VSLVKSDQIC IGYHANNSTE QVDTIMEKNV TVTHAQDILE KTHNGKLCDL DGVKPLIRD CSVAGWLLGN PMCDEFINVP EWSYIVEKAN PTNDLCYPGS FNDYEELKHL LSRINHFEKI QIIPKSSWSD HEASSGVSSA CPYLGSPSFF RNVVWLIKKN STYPTIKKSY NNTNQEDLLV LWGIHHPNDA AEQTRLYQNP TTYISIGTST LNQRLVPKIA TRSKVNGQSG RMEFFWTILK PNDAINFESN GNFIAPEYAY KIVKKGDSAI MKSELEYGNC NTKCQTPMGA INSSMPFHNI HPLTIGECPK YVKSNRLVLA TGLRNSPQRE S----RGLFG AIAGFIEGGW QGMVDGWYGY HHSNEQGSGY AADKESTQKA IDGVTNKVNS IIDKMNTQFE AVGREFNNLE RRIENLNKKM EDGFLDVWTY NAELLVLMEN ERTLDFHDSN VKNLYDKVRL QLRDNAKELG NGCFEFYHKC DNECMESIRN GTYNYPQYSE EARLKREEIS GVKLESIGTY QILSIYSTVA SSLALAIMMA GLSLWMCSNG SLQCRICI*
```

Los siguientes polipéptidos que corresponden a los genes NA y M1 de codón optimizado, sin modificar también se sintetizaron.

Vac2-naj-opt (neuraminidasa) (SEC ID 31)

```
MNPNQKIITI GSICMVIGIV SLMLQIGNMI SIWVSHSIQT GNQHQAESIS NTNPLTEKAV ASVTLAGNSS LCPIRGWAVH SKDNNIRIGS KGDVFVIREP FISCSHLECR TFFLTQGALL NDKHSNGTVK DRSPHRTLMS CPVGEAPSPY NSRFESVAWS ASACHDGTSW LTIGISGPDN EAVAVLKYNG IITDTIKSWR NNILRTQESE CACVNGSCFT VMTDGPSDGQ ASYKIFKMEK GKVVKSVELD APNYHYEECS CYPDAGEITC VCRDNWHGSN RPWVSFNQNL EYQIGYICSG VFGDNPRPND GTGSCGPMSP NGAYGVKGFS FKYGNGVWIG RTKSTNSRSG FEMIWDPNGW TGTDSSFSVK QDIVAITDWS GYSGSFVQHP ELTGLDCIRP CFWVELIRGR PKESTIWTSG SSISFCGVNS DTVSWSWPDG AELPFTIDK*
```

Vac2-mc-opt (matriz) (SEC ID 32)

10

5

```
MSLLTEVETY VLSIIPSGPL KAEIAQKLED VFAGKNTDLE ALMEWLKTRP ILSPLTKGIL GFVFTLTVPS ERGLQRRRFV QNALNGNGDP NNMDRAVKLY KKLKREITFH GAKEVSLSYS TGALASCMGL IYNRMGTVTT EVAFGLVCAT CEQIADSQHR SHRQMATITN PLIRHENRMV LASTTAKAME QMAGSSEQAA EAMEVANQAR QMVQAMRTIG THPNSSAGLR DNLLENLQAY QKRMGVQMQR FK*
```

Los genes HA, NA y M1 de codón optimizado, sintéticos se subclonaron en el plásmido de transferencia pFastBac1 utilizando los sitios *BamHI* and *HindIII*, como se ha descrito anteriormente. Los bácmidos recombinantes para la expresión en células Sf9 de los genes sintéticos HA, NA y M1 se generaron como se ha descrito anteriormente, utilizando la cepa de E. coli DH10Bac (Invitrogen).

Ejemplo de referencia 24

20 Clonación del clado 1 del virus de gripe A/Vietnam/1203/04 (H5N1) por RT-PCR

Los genes HA, NA y M1 se clonaron por RT-PCR de acuerdo con el método descrito anteriormente. Las secuencias posteriores son comparaciones entre el gen publicado comparado con los genes clonados.

25 El gen HA para el clado 1 del A/Vietnam/1203/04 (H5N1) Calle superior: Gen HA Reg. nº AY818135 (SEC ID 36)

Calle inferior: Gen HA de Novavax A/Vietnam/1203/2009 (H5N1) (SEC ID 37)

1	ATGGAGAAAA	10
301		350
11 351	TAGTGCTTCTTTTGCAATAGTCAGTCTTGTTAAAAGTGATCAGATTTGC	60 400
61	ATTGGTTACCATGCAAACAACTCGACAGAGCAGGTTGACACAATAATGGA	110
401	ATTGGTTACCATGCAAACAACTCGACAGAGCAGGTTGACACAATAATGGA	450
111	AAAGAACGTTACTGTTACACATGCCCAAGACATACTGGAAAAGAAACACA	160
451	AAAGAACGTTACTGTTACACATGCCCAAGACATACTGGAAAAGAAACACA	500
161		210
501		550
211	TGTAGCGTAGCTGGATGGCTCCTCGGAAACCCAATGTGTGACGAATTCAT	260
551		600
261	CAATGTGCCGGAATGGTCTTACATAGTGGAGAAGGCCAATCCAGTCAATG	310
601		650
311	ACCTCTGTTACCCAGGGGATTTCAATGACTATGAAGAATTGAAACACCTA	360
651		700
361	TTGAGCAGAATAAACCATTTTGAGAAAATTCAGATCATCCCCAAAAGTTC	410
701		750
411	TTGGTCCAGTCATGAAGCCTCATTAGGGGTGAGCTCAGCATGTCCATACC	460
751	TTGGTCCAGTCATGAAGCCTCATTAGGGGTGAGCTCAGCATGTCCATACC	800
461	. AGGGAAAGTCCTCCTTTTTCAGAAATGTGGTATGGCTTATCAAAAAGAAC	510
801		850
511		560

851	${\tt AGTACATACCCAACAATAAAGAGGAGCTACAATAATACCAACCA$	900
561	TCTTTTGGTACTGTGGGGGATTCACCATCTAATGATGCGGCAGAGCAGA	610
901	TCTTTTGGTACTGTGGGGGATTCACCATCCTAATGATGCGGCAGAGCAGA	950
611	CAAAGCTCTATCAAAACCCAACCACCTATATTTCCGTTGGGACATCAACA	660
951	CAAAGCTCTATCAAAACCCAACCACCTATATTTCCGTTGGGACATCAACA	1000
661	CTAAACCAGAGATTGGTACCAAGAATAGCTACTAGATCCAAAGTAAACGG	710
1001	CTAAACCAGAGATTGGTACCAAGAATAGCTACTAGATCCAAAGTAAACGG	1050
711	GCAAAGTGGAAGGATGGAGTTCTTCTGGACAATTTTAAAGCCGAATGATG	760
1051	GCAAAGTGGAAGGATGGAGTTCTTCTGGACAATTTTAAAGCCGAATGATG	1100
761	CAATCAACTTCGAGAGTAATGGAAATTTCATTGCTCCAGAATATGCATAC	810
1101	${\tt CAATCAACTTCGAGAGTAATGGAAATTTCATTGCTCCAGAATATGCATAC}$	1150
	AAAATTGTCAAGAAAGGGGACTCAACAATTATGAAAAGTGAATTGGAATA	860
1151	AAAATTGTCAAGAAAGGGGACTCAACAATTATGAAAAGTGAATTGGAATA	1200
861	TGGTAACTGCAACACCAAGTGTCAAACTCCAATGGGGGCGATAAACTCTA	910
1201	TGGTAACTGCAACACCAAGTGTCAAACTCCAATGGGGGCGATAAACTCTA	1250
911	GCATGCCATTCCACAATATACACCCTCTCACCATTGGGGAATGCCCCAAA	960
1251		1300
961	TATGTGAAATCAAACAGATTAGTCCTTGCGACTGGGCTCAGAAATAGCCC	1010
1301		1350
1011	TCAAAGAGAGAAGAAGAAAAAAGAGAGGATTATTTGGAGCTATAGCAG	1060
1351		1400
1061	GTTTTATAGAGGGAGGATGGCAGGGAATGGTAGATGGTATGGGTAC	1110
1401		1450
1111	CACCATAGCAATGAGCAGGGGAGTGGGTACGCTGCAGACAAAGAATCCAC	1160
1451		1500
1161	TCAAAAGGCAATAGATGGAGTCACCAATAAGGTCAACTCGATCATTGACA	1210
1501		1550
1211		1260
1551		1600
1261	AGGAGAATAGAGAATTTAAACAAGAAGATGGAAGACGGGTTCCTAGATGT	1310

1601	${\tt AGGAGAATAGAGAATTTAAACAAGAAGATGGAAGACGGGTTCCTAGATGT}$	1650
1311	CTGGACTTATAATGCTGAACTTCTGGTTCTCATGGAAAATGAGAGAACTC	1360
1651	CTGGACTTATAATGCTGAACTTCTGGTTCTCATGGAAAATGAGAGAACTC	1700
1361	TAGACTTTCATGACTCAAATGTCAAGAACCTTTACGACAAGGTCCGACTA	1410
1701	TAGACTTTCATGACTCAAATGTCAAGAACCTTTACGACAAGGTCCGACTA	1750
1411	CAGCTTAGGGATAATGCAAAGGAGCTGGGTAACGGTTGTTTCGAGTTCTA	1460
1751	CAGCTTAGGGATAATGCAAAGGAGCTGGGTAACGGTTGTTTCGAGTTCTA	1800
1461	TCATAAATGTATAATGAATGTATGGAAGTGTAAGAAATGGAACGTATG	1510
1801	TCATAAATGTAATGAATGTATGGAAAGTGTAAGAAATGGAACGTATG	1850
1511	ACTACCCGCAGTATTCAGAAGAAGCGAGACTAAAAAGAGAGGAAATAAGT	1560
1851	ACTACCCGCAGTATTCAGAAGAAGCGAGACTAAAAAGAGAGGAAATAAGT	1900
1561	GGAGTAAAATTGGAATCAATAGGAATTTACCAAATACTGTCAATTTATTC	1610
1901	GGAGTAAAATTGGAATCAATAGGAATTTACCAAATACTGTCAATTTATTC	1950
1611	TACAGTGGCGAGTTCCCTAGCACTGGCAATCATGGTAGCTGGTCTATCCT	1660
1951	TACAGTGGCGAGTTCCCTAGCACTGGCAATCATGGTAGCTGGTCTATCCT	2000
	TATGGATGTGCTCCAATGGATCGTTACAATGCAGAATTTGCATTTAA	
Comparación de genes	NA	
El gen NA para el NA_Viet1203_Lark(NV/	clado 1 del A/Vietnam/1203/04 (H5N1) (SEC ID 39) H5N1naLAN AX) (SEC ID 38)	NL ISDN 38704 x
1 .	ATGAATCCAAATCAGAAGATAATAACCATCGGATCAATCTGTATG	45
451 C		500
	PAACTGGAATAGTTAGCTTAATGTTACAAATTGGGAACATGATCTCAAT	95
		550
	rgggtcagtcattcaattcacacagggaatcaacaccaatctgaaccaa	145
•		600
	CAGCAATACTAATTTTCTTACTGAGAAAGCTGTGGCTTCAGTAAAATTA	195
		650
196 G		245

651		700
246	GGACAACAGTATAAGGATCGGTTCCAAGGGGGATGTGTTTGTT	295
701	GGACAACAGTATAAGGATCGGTTCCAAGGGGGATGTGTTTGTT	750
296	AGCCGTTCATCTCATGCTCCCACTTGGAATGCAGAACTTTCTTT	345
751	AGCCGTTCATCTCATGCTCCCACTTGGAATGCAGAACTTTCTTT	800
346	CAGGGAGCCTTGCTGAATGACAAGCACTCCAATGGGACTGTCAAAGACAG	395
801	CAGGGAGCCTCGCTGAATGACAAGCACTCCAATGGGACTGTCAAAGACAG	850
396	AAGCCCTCACAGAACATTAATGAGTTGTCCTGTGGGTGAGGCTCCCTCC	445
851	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	900
	CATATAACTCAAGGTTTGAGTCTGTTGCTTGGTCAGCAAGTGCTTGCCAT	495
	CATATAACTCAAGGTTTGAGTCTGTTGCTTGGTCAGCAAGTGCTTGCCAT	950
	GATGGCACCAGTTGGTTGACGATTGGAATTTCTGGCCCAGACAATGGGGC	545
951	GATGGCACCAGTTGGTTGACGATTGGAATTTCTGGCCCAGACAATGGGGC	1000
	TGTGGCTGTATTGAAATACAATGGCATAATAACAGACACTATCAAGAGTT	595
1001	TGTGGCTGTATTGAAATACAATGGCATAATAACAGACACTATCAAGAGTT	1050 645
	GGAGGAACAACATACTGAGAACTCAAGAGTCTGAATGTGCATGTGTAAAT	1100
	GGCTCTTGCTTTACTGTAATGACTGACGGACCAAGTAATGGTCAGGCATC	695
		1150
696	ACATAAGATCTTCAAAATGGAAAAAGGGAAAGTGGTTAAATCAGTCGAAT	745
1151	ACATAAGATCTTCAAAATGGAAAAAGGGAAAGTGGTTAAATCAGTCGAAT	1200
746	TGGATGCTCCTAATTATCACTATGAGGAATGCTCCTGTTATCCTAATGCC	795
1201	TGGATGCTCCTAATTATCACTATGAGGAATGCTCCTGTTATCCTAATGCC	1250
796	GGAGAAATCACATGTGTGTGCAGGGATAATTGGCATGGCTCAAATCGGCC	845
1251		1300
846	ATGGGTATCTTCAATCAAAATTTGGAGTATCAAATAGGATATATAT	895
1301	ATGGGTATCTTTCAATCAAAATTTGGAGTATCAAATAGGATATATAT	1350
896	GTGGAGTTTTCGGAGACAATCCACGCCCCAATGATGGAACAGGTAGTTGT	945
1351	GTGGAGTTTTCGGAGACAATCCACGCCCCAATGATGGAACAGGTAGTTGT	1400
946	GGTCCGGTGTCCTCTAACGGGGCATATGGGGTAAAAGGGTTTTCATTTAA	995

	1401	
	996	ATACGGCAATGGTGTCTGGATCGGGAGAACCAAAAGCACTAATTCCAGGA 1045
	1451	ATACGGCAATGGTGTCTGGATCGGGAGAACCAAAAGCACTAATTCCAGGA 1500
	1046	GCGGCTTTGAAATGATTTGGGATCCAAATGGGTGGACTGAAACGGACAGT 1095
	1501	GCGGCTTTGAAATGATTTGGGATCCAAATGGGTGGACTGAAACGGACAGT 1550
		AGCTTTTCAGTGAAACAAGATATCGTAGCAATAACTGATTGGTCAGGATA 1145
	1551	AGCTTTTCAGTGAAACAAGATATCGTAGCAATAACTGATTGGTCAGGATA 1600
		TAGCGGGAGTTTTGTCCAGCATCCAGAACTGACAGGACTAGATTGCATAA 1195
		TAGCGGGAGTTTTGTCCAGCATCCAGAACTGACAGGACTAGATTGCATAA 1650
		GACCTTGTTTCTGGGTTGAGTTGATCAGAGGGCCGGCCCAAAGAGAGCACA 1245
		GACCTTGTTTCTGGGTTGAGTTGATCAGAGGGCCGCCCAAAGAGAGCACA 1700
	1246	ATTTGGACTAGTGGGAGCAGCATATCTTTTTGTGGTGTAAATAGTGACAC 1295
	1701	ATTTGGACTAGTGGGAGCAGCATATCTTTTTGTGGTGTAAATAGTGACAC 1750
	1296	TGTGGGTTGGTCTTGGCCAGACGGTGCCGAGTTGCCATTCACCATTGACA 1345
	1751	TGTGGGTTGGTCTTGGCCAGACGGTGCTGAGTTGCCATTCACCATTGACA 1800
	1346	AGTAG
	1801	AGTAGGGGCCCTCGAGTAAGGGCGAATTCCAGCACACTGGCGGCCGTTAC 1850
	Comparaciones de lo	os genes M1
5	El gen para el M1_Viet1203_Lark(N	clado 1 de A/Vietnam/1203/04 (H5N1) (SEC ID 40) H5N1m1Lan1 ISDN39958 x IVAX) (SEC ID 41)
		17 AGGTCGAAACGTACGTTCTCTATCATCCCGTCAGGCCCCCTCAAAGCC 66
	-	351 AGGTCGAAACGTACGTTCTCTATCATCCCGTCAGGCCCCCTCAAAGCC 400
		67 GAGATCGCACAGAAACTTGAAGATGTCTTTGCAGGAAAGAACACCGATCT 116
		401 GAGATCGCACAGAAACTTGAAGATGTCTTTGCAGGAAAGAACACCGATCT 450
		117 CGAGGCTCTCATGGAGTGGCTAAAGACAAGACCAATCCTGTCACCTCTGA 166
		451 CGAGGCTCTCATGGAGTGGCTAAAGACAAGACCAATCCTGTCACCTCTGA 500
		167 CTAAAGGGATTTTGGGATTTGTATTCACGCTCACCGTGCCCAGTGAGCGA 216

501	${\tt CTAAAGGGATTTGGGATTTGTATTCACGCTCACCGTGCCCAGTGAGCGA}$	550
217	GGACTGCAGCGTAGACGCTTTGTCCAGAATGCCCTAAATGGAAATGGAGA	266
551	GGACTGCAGCGTAGACGCTTTGTCCAGAATGCCCTAAATGGAAATGGAGA	600
267	TCCAAATAATATGGATAGGGCAGTTAAGCTATATAAGAAGCTGAAAAGAG	316
601	TCCAAATAATATGGATAGGGCAGTTAAGCTATATAAGAAGCTGAAAAGAG	650
317	AAATAACATTCCATGGGGCTAAGGAGGTCGCACTCAGCTACTCAACCGGT	366
651	AAATAACATTCCATGGGGCTAAGGAGGTCGCACTCAGCTACTCAACCGGT	700
367	GCACTTGCCAGTTGCATGGGTCTCATATACAACAGGATGGGAACGGTGAC	416
701	GCACTTGCCAGTTGCATGGGTCTCATATACAACAGGATGGGAACGGTGAC	750
417	TACGGAAGTGGCTTTTGGCCTAGTGTGTGCCACTTGTGAGCAGATTGCAG	466
751	TACGGAAGTGGCTTTTGGCCTAGTGTGTGCCACTTGTGAGCAGATTGCAG	800
467	ATTCACAGCATCGGTCTCACAGACAGATGGCAACTATCACCAACCCACTA	516
	ATTCACAGCATCGGTCTCACAGACAGATGGCAACTATCACCAACCCACTA	850
	ATCAGACATGAGAACAGAATGGTGCTGGCCAGCACTACAGCTAAGGCTAT	566
	ATCAGACATGAGAACAGAATGGTGCTGGCCAGCACTACAGCTAAGGCTAT	900
	GGAGCAGATGGCGGGATCAAGTGAGCAGGCAGCGGAAGCCATGGAGATCG	616
	GGAGCAGATGGCGGGATCAAGTGAGCAGCCAGGGAAGCCATGGAGATCG	950
	CTAATCAGGCTAGGCAGATGGTGCAGGCAATGAGGACAATTGGGACTCAT	666
951	CTAATCAGGCTAGGCAGTGGTGCAGGCAATGAGGACAATTGGGACTCAT	1000
	CCTAACTCTAGTGCTGGTCTGAGAGATAATCTTCTTGAAAATTTGCAGGC	716
_	CCTAACTCTAGTGCTGGTCTGAGAGATAATCTTCTTGAAAATTTGCAGGC	1050
. –	CTACCAGAAACGAATGGGAGTGCAGATGCAGCGATTCAAGTGA	
1051	CTACCAGAAACGAATGGGAGTGCAGATGCAGCGATTCAAGTGA	

Todas las secuencias se clonaron y analizaron de acuerdo con los métodos desvelados anteriormente.

5 Ejemplo de referencia 25

Generación de los genes HA, NA y M1 optimizados del clado 1 de A/Vietnam/1203/04 (H5N1) para la expresión eficaz en células Sf9

Los siguientes polipéptidos se derivaron de los nucleótidos de codón optimizado que corresponden al A/Vietnam/1203/04 (H5N1). Los nucleótidos se diseñaron y sintetizaron (Geneart GMBH, Regensburg, FRG) como se ha desvelado anteriormente (véase el Ejemplo 24).

VN1203-ha-cs-opt (sitio de escisión modificado, subrayado) (SEC ID 33)

MEKIVLLFAIVSLVKSDQICIGYHANNSTEQVDTIMEKNVTVTH

AQDILEKTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEWSYIVEKANPA
NDLCYPGDFNDYEELKHLLSRINHFEKIQIIPKNSWSSHEASLGVSSACPYQGKSSFF
RNVVWLIKKNNAYPTIKRSYNNTNQEDLLVLWGIHHPNDAAEQTRLYQNPTTYISVGT
STLNQRLVPKIATRSKVNGQNGRMEFFWTILKPNDAINFESNGNFIAPEYAYKIVKKG
DSAIMKSELEYGNCNTKCQTPMGAINSSMPFHNIHPLTIGECPKYVKSNRLVLATGLR
NSPQRET----RGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAID
GVTNKVNSIIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMEN
ERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMESVRNGTYDYPQY
SEEARLKREEISGVKLESIGTYQILSIYSTVASSLALAIMVAGLSLWMCSNGSLQCRI
CI*

5 VN1203-ha-spc-opt (péptido de señal modificado, subrayado) (SEC ID 34)

Mplykllnvlwlvavsnaip DQICIGYHANNSTEQVDTIMEKNVTVTH
AQDILEKTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEWSYIVEKANPA
NDLCYPGDFNDYEELKHLLSRINHFEKIQIIPKNSWSSHEASLGVSSACPYQGKSSFF
RNVVWLIKKNNAYPTIKRSYNNTNQEDLLVLWGIHHPNDAAEQTRLYQNPTTYISVGT
STLNQRLVPKIATRSKVNGQNGRMEFFWTILKPNDAINFESNGNFIAPEYAYKIVKKG
DSAIMKSELEYGNCNTKCQTPMGAINSSMPFHNIHPLTIGECPKYVKSNRLVLATGLR
NSPQRERRRKKRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAID
GVTNKVNSIIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMEN
ERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMESVRNGTYDYPQY
SEEARLKREEISGVKLESIGTYQILSIYSTVASSLALAIMVAGLSLWMCSNGSLQCRI

VN1203-ha-sph9-opt (El péptido de señal y el sitio de señal están sombreados) (SEC ID 35)

METISLITIL LVVTASNA DQICIGYHANNSTEQVDTIMEKNVTVTH
AQDILEKTHNGKLCDLDGVKPLILRDCSVAGWLLGNPMCDEFINVPEWSYIVEKANPA
NDLCYPGDFNDYEELKHLLSRINHFEKIQIIPKNSWSSHEASLGVSSACPYQGKSSFF
RNVVWLIKKNNAYPTIKRSYNNTNQEDLLVLWGIHHPNDAAEQTRLYQNPTTYISVGT
STLNQRLVPKIATRSKVNGQNGRMEFFWTILKPNDAINFESNGNFIAPEYAYKIVKKG
DSAIMKSELEYGNCNTKCQTPMGAINSSMPFHNIHPLTIGECPKYVKSNRLVLATGLR
NSPQRERRKKRGLFGAIAGFIEGGWQGMVDGWYGYHHSNEQGSGYAADKESTQKAID
GVTNKVNSIIDKMNTQFEAVGREFNNLERRIENLNKKMEDGFLDVWTYNAELLVLMEN
ERTLDFHDSNVKNLYDKVRLQLRDNAKELGNGCFEFYHKCDNECMESVRNGTYDYPQY
SEEARLKREEISGVKLESIGTYQILSIYSTVASSLALAIMVAGLSLWMCSNGSLQCRI
CI*

Ejemplo de referencia 26

15 Inmunogenicidad de VLP de H5N1 del Vietnam/1203/2003 (Ahorro de dosis extrema)

Se inmunizaron ratones BALB/c por vía intramuscular e intranasal con VLP de H5N1 a dosis muy bajas de VLP (0,2, 0,04, 0,008, 0,0016 μg de HA/dosis). Los ratones se sangraron los días 0, 21 y 35. Se les puso un refuerzo a los ratones el día 21. El suero se ensayó en cuanto a anticuerpos anti-HA por el ensayo de inhibición de la hemaglutinación (HI) utilizando RBC de pavo y virus de gripe utilizando un ELISA. Los resultados de este estudio se muestran en las Figuras 24 y 25.

Los resultados indican que se observaba una respuesta inmunitaria total robusta cuando se administraban VLP por vía intramuscular a dosis muy bajas. La robustez de la respuesta era similar al control a 3,0 y 0,6 μg de HA/dosis. Estos datos muestran que se aprecia una respuesta a la dosis verdadera y que la respuesta de anticuerpos a 0,2 μg de VLP es mayor que 3,0 μg de proteína rHA. Aunque la respuesta no era tan robusta en la administración intranasal, una dosis de VLP a 0,2 μg de HA/dosis inducía una respuesta robusta. El título de ELISA con 0,2 μg de dosis en este experimento es similar a la dosis de 0,12 de la vacuna con VLP de H3N2 en los experimentos previos, véase anteriormente.

30

20

25

Ejemplo de referencia 27

Estudios de exposición

Tras la inoculación a ratones BALB/c con VLP a concentraciones de 3 μg, 0,6 μg, 0,12 μg y 0,02 μg de VLP de H3N2 por vía intramuscular e intranasal (dosis de HA total), los ratones se desafiaron con virus de gripe A/Aichi/268x31. Los resultados de este estudio se muestran en las Figuras 27 y 28. Estos datos muestras que hay un descenso de peso en todos los animales vacunados, sin embargo, los animales que se vacunaron con 3,0 μg y 0,12 μg de VLP se recuperaban más rápido que los otros animales tanto en las vacunaciones intramuscular como intranasal. Las dosis intranasales proporcionaban una protección mayor.

Ejemplo de referencia 29

Estudios de exposición (hurones)

20 |

15

En este estudio, los hurones se vacunaron con VLP de H9N2. Había un total de 18 hurones en el estudio de exposición: 6 vacunados falsamente, 6 vacunados con media dosis $(1,5 \,\mu\text{g})$, y 6 vacunados con una dosis alta $(15,0 \,\mu\text{g})$ por vía intramuscular. Luego se desafiaron los hurones con $10^6 \, \text{EID}_{50}$ de A/HK/1073/99 por vía intranasal. Los lavados nasales se recolectaron los días 1, 3, 5, y 7. Los virus en los lavados nasales se titularon los días 3, 5, y 7 para todos los animales. Estos datos se representan en la Tabla 2 y la Figura 29. Estos datos muestras que en el día 7, todos los animales vacunados no tenían virus detectables en los lavados nasales mientras que el grupo falso tenía títulos víricos detectables.

TABLA 2. Títulos de virus tipo silvestre (log10/ml) en hurones tras la exposición vírica

25

Grupo: Placebo control falso (n = 6) Día 5 Día 7 Hurón Día 3 4512 7 5,5 3,5 4524 6,5 6.75 1.98 4525 7,5 6,5 6,75 4526 7,5 7,25 3,5 4527 6,75 7,25 2,5 4528 7,5 6,25 2,75 7,125 6,583333 3,496667 Media Desv. Estánd. 0,44017 0.66458 1,699137

Grupo: Dosis baja

Hurón	Día 3	Día 5	Día 7
3916	6,75	2,75	1,5
3917	7,5	5,5	1,5
3918	7,5	6,5	1,5
3919	5,5	3	1,5
3920	6,75	2,25	1,5
3921	6,5	3,5	1,5
Media	6,75	3,916667	1,5
Desv. Estánd.	0,74162	1,693123	0

30 Grupo: Dosis alta

Hurón	Día 3	Día 5	Día 7
3922	6,5	2,75	1,5
3923	6,25	3,75	1,5
3924	5,75	1,5	1,5
3925	6,5	4,75	1,5
3926	6,25	3,5	1,5

3927	5,75	1,5	1,5
Media	6,166667	2,958333	1,5
Desv. Estánd.	0,341565	1,298236	0

Ejemplo de referencia 30

Estudios de inoculación intramuscular e intranasal en ratones

Se inocularon los ratones con VLP A/Fujian/411/2002 (H3N2) a concentraciones de 3 μg, 0,6 μg, 0,12 μg o 0,024 μg (dosis total HA) por vía intramuscular o intranasal el día 0 y se reforzaron 3 semanas más tarde. Los ratones de control se inocularon con A/Wyoming (cepa vacunal similar a Fujian) inactivado con formalina o PBS. Los sueros se recolectaron de los ratones inoculados las semanas 0, 3, 5, y 8. Los sueros recolectados se ensayaron para detectar anticuerpos anti-HA por el ensayo de inhibición de hemaglutinación (HI) y anticuerpos anti-gripe por ELISA. El ensayo se llevó a cabo utilizando cepas de virus de gripe A/Fujian/411/2002, A/Panama/2007/99, A/Wyoming/3/03 y A/New York/55/2004 H3N2. Los resultados de estos estudios se muestran en las Figuras 30A-H. Estos datos indican que las VLP de H3N2 inducen anticuerpos contra las cepas parentales de A/Fujian/411/2002 de virus de gripe y contra otras cepas de H3N2. Estos datos también indican que los títulos en los ratones inoculados por vía intranasal aparecen más tarde que en los ratones inoculados por vía intranuscular. Sin embargo, los antígenos inactivados no parece ser tan inmunogénico después de la inoculación intranasal, ni es ampliamente protector después de la inoculación intranasal.

Ejemplo 31

5

10

15

20

25

30

Generación de los genes HA, NA y M1 del clado 2 de gripe H5N1 optimizado para la expresión eficaz en células Sf9

Los siguientes nucleótidos y polipéptidos optimizados que corresponden a HA, NA y M1 del clado 2 de los virus H5N1 A A/Indonesia/5/05, A/Bar headed goose/Qinghai/1A/2005 y A/Anhui/1/2005, fueron diseñados y sintetizados (Geneart GMBH, Regensburg, FRG) como se ha desvelado anteriormente. Los nucleótidos y polipéptidos optimizados se enumeran posteriormente. Con el fin de fabricar VLP, la HA de A/Anhui se pueden expresar con NA y M1 de A/Indonesia. Para las VLP que comprenden HA y NA de A/Quinghai, el gen M1 de A/Indonesia se puede co-expresar con HA y NA de A/Quinhai.

A/INDONESIA/5/05

HA optimizada de A/INDONESIA (los codones de inicio y parada están subrayados) (SEC ID 42)

GGTACCGGATCCGCCACCATGGAGAAGATCGTGCTGCTGCTGCTATCGTGTCCCTGGTG AAGTCCGACCAGATCTGCATCGGTTACCACGCTAACAACTCCACCGAGCAGGTGGACACC ATCATGGAGAAGAACGTCACCGTGACCCACGCTCAGGACATCCTCGAAAAGACCCACAAC GGCAAGCTGTGCGACCTGGACGGTGTCAAGCCCCTGATCCTGCGTGACTGCTCCGTGGCT GGTTGGCTGCTGGGTAACCCCATGTGCGACGAGTTCATCAACGTGCCCGAGTGGTCCTAC ATCGTGGAGAAGGCTAACCCCACCAACGACCTGTGCTACCCCGGTTCCTTCAACGACTAC GAGGAGCTGAAGCACCTGCTGTCCCGTATCAACCACTTCGAGAAGATCCAGATCATCCCC AAGTCCTCTTGGTCCGACCACGAGGCTTCCTCCGGTGTCTCCTCCGCTTGCCCCTACCTG GGTTCCCCTCCTTCTTCCGTAACGTGGTGTGGCTGATCAAGAAGAACTCCACCTACCCC ACCATCAAGAAGTCCTACAACAACACCAACCAGGAGGACCTGCTGGTCCTGTGGGGTATC CACCACCCAACGACGCTGCCGAGCAGACCCGTCTGTACCAGAACCCCACCCTACATC TCCATCGGCACCTCCACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCGTTCCAAG GTGAACGGCCAGTCCGGTCGTATGGAGTTCTTCTGGACCATCCTGAAGCCTAACGACGCT ATCAACTTCGAGTCCAACGGCAACTTCATCGCTCCCGAGTACGCTTACAAGATCGTGAAG AAGGGCGACTCCGCTATCATGAAGTCCGAGCTGGAGTACGGTAACTGCAACACCAAGTGC CAGACCCCATGGGTGCTATCAACTCCTCCATGCCCTTCCACAACATCCACCCCCTGACC ATCGGCGAGTGCCCCAAGTACGTGAAGTCCAACCGTCTGGTGCTGCCTACCGGTCTGCGT

Secuencia de proteína HA de A/INDONESIA (SEC ID 43)

5

```
MEKIVLLAI VSLVKSDQIC IGYHANNSTE QVDTIMEKNV TVTHAQDILE KTHNGKLCDL DGVKPLILRD CSVAGWLLGN PMCDEFINVP EWSYIVEKAN PTNDLCYPGS FNDYEELKHL LSRINHFEKI QIIPKSSWSD HEASSGVSSA CPYLGSPSFF RNVVWLIKKN STYPTIKKSY NNTNQEDLLV LWGIHHPNDA AEQTRLYQNP TTYISIGTST LNQRLVPKIA TRSKVNGQSG RMEFFWTILK PNDAINFESN GNFIAPEYAY KIVKKGDSAI MKSELEYGNC NTKCQTPMGA INSSMPFHNI HPLTIGECPK YVKSNRLVLA TGLRNSPQRE SRRKKRGLFG AIAGFIEGGW QGMVDGWYGY HHSNEQGSGY AADKESTQKA IDGVTNKVNS IIDKMNTQFE AVGREFNNLE RRIENLNKKM EDGFLDVWTY NAELLVLMEN ERTLDFHDSN VKNLYDKVRL QLRDNAKELG NGCFEFYHKC DNECMESIRN GTYNYPQYSE EARLKREEIS GVKLESIGTY QILSIYSTVA SSLALAIMMA GLSLWMCSNG SLQCRICI
```

HA optimizada de A/INDONESIA (sitio de escisión eliminado) (los codones de inicio y de parada están subrayados) (SEC ID 44)

10

GGATCCGCCACCATGGAGAAGATCGTGCTGCTGCTGGCTATCGTGTCCCTGGTGAAGTCC GACCAGATCTGCATCGGTTACCACGCTAACAACTCCACCGAGCAGGTGGACACCATCATG GAGAAGAACGTCACCGTGACCCACGCTCAGGACATCCTCGAAAAGACCCACAACGGCAAG CTGTGCGACCTGGACGGTGTCAAGCCCCTGATCCTGCGTGACTGCTCCGTGGCTGGTTGG CTGCTGGGTAACCCCATGTGCGACGAGTTCATCAACGTGCCCGAGTGGTCCTACATCGTG GAGAAGGCTAACCCCACCAACGACCTGTGCTACCCCGGTTCCTTCAACGACTACGAGGAG CTGAAGCACCTGCTGTCCCGTATCAACCACTTCGAGAAGATCCAGATCATCCCCAAGTCC TCTTGGTCCGACCACGAGGCTTCCTCCGGTGTCTCCTCCGCTTGCCCCTACCTGGGTTCC CCCTCCTTCTTCCGTAACGTGGTGTGGCTGATCAAGAAGAACTCCACCTACCCCACCATC AAGAAGTCCTACAACAACACCAACCAGGAGGACCTGCTGGTCCTGTGGGGTATCCACCAC CCCAACGACGCTGCCGAGCAGACCCGTCTGTACCAGAACCCCACCCTACATCTCCATC GGCACCTCCACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCGTTCCAAGGTGAAC GGCCAGTCCGGTCGTATGGAGTTCTTCTGGACCATCCTGAAGCCTAACGACGCTATCAAC TTCGAGTCCAACGGCAACTTCATCGCTCCCGAGTACGCTTACAAGATCGTGAAGAAGGGC GACTCCGCTATCATGAAGTCCGAGCTGGAGTACGGTAACTGCAACACCAAGTGCCAGACC CCCATGGGTGCTATCAACTCCTCCATGCCCTTCCACAACATCCACCCCTGACCATCGGC GAGTGCCCCAAGTACGTGAAGTCCAACCGTCTGGTGCTGGCTACCGGTCTGCGTAACTCC CCCCAGCGCGAGTCCCGTGGTCTGTTCGGCGCTATCGCTGGTTTCATCGAGGGCGGTTGG CAGGGCATGGTGGACGGATGGTACGGTTACCACCACTCTAACGAGCAGGGTTCCGGTTAC GCTGCTGACAAGGAGTCCACCCAGAAGGCTATCGACGGCGTCACCAACAAGGTGAACTCC ATCATCGACAAGATGAACACCCAGTTCGAGGCTGTGGGTCGTGAGTTCAACAACCTCGAG CGTCGTATCGAGAACCTGAACAAGAAGATGGAGGACGGTTTCCTGGACGTGTGGACCTAC AACGCCGAGCTGCTGGTGCTGATGGAGAACGAGCGTACCCTGGACTTCCACGACTCCAAC GTGAAGAACCTGTACGACAAGGTCCGCCTGCAGCTGCGTGACAACGCTAAGGAGCTGGGT AACGGTTGCTTCGAGTTCTACCACAAGTGCGACAACGAGTGCATGGAGTCCATCCGTAAC GGCACCTACAACTACCCCCAGTACTCCGAGGAGGCTCGTCTGAAGCGTGAGGAGATCTCC GGCGTGAAGCTCGAGTCCATCGGAACCTACCAGATCCTGTCCATCTACTCCACCGTGGCT TCCTCCCTGGCTCTGGCTATCATGATGGCTGGTCTGTCCCTGTGGATGTGCTCCAACGGT

TCCCTGCAGTGCCGTATCTGCATCTAATGAAAGCTT

Secuencia de la proteína HA de A/INDONESIA (SEC ID 45)

```
MEKIVLLAI VSLVKSDQIC IGYHANNSTE QVDTIMEKNV TVTHAQDILE KTHNGKLCDL DGVKPLILRD CSVAGWLLGN PMCDEFINVP EWSYIVEKAN PTNDLCYPGS FNDYEELKHL LSRINHFEKI QIIPKSSWSD HEASSGVSSA CPYLGSPSFF RNVVWLIKKN STYPTIKKSY NNTNQEDLLV LWGIHHPNDA AEQTRLYQNP TTYISIGTST LNQRLVPKIA TRSKVNGQSG RMEFFWTILK PNDAINFESN GNFIAPEYAY KIVKKGDSAI MKSELEYGNC NTKCQTPMGA INSSMPFHNI HPLTIGECPK YVKSNRLVLA TGLRNSPQRE SRGLFGAIAG FIEGGWQGMV DGWYGYHHSN EQGSGYAADK ESTQKAIDGV TNKVNSIIDK MNTQFEAVGR EFNNLERRIE NLNKKMEDGF LDVWTYNAEL LVLMENERTL DFHDSNVKNL YDKVRLQLRD NAKELGNGCF EFYHKCDNEC MESIRNGTYN YPQYSEEARL KREEISGVKL ESIGTYQILS IYSTVASSLA LAIMMAGLSL WMCSNGSLQC RICI
```

NA optimizada de A/INDONESIA (los codones de inicio y de parada están subrayados) (SEC ID 46)

GGTACCGGATCCGCCACCATGAACCCCAACCAGAAGATCATCACCATCGGCTCCATCTGC ATGGTGATCGGTATCGTGTCCCTGATGCTGCAGATCGGTAACATGATCTCCATCTGGGTG TCCCACTCCATCCAGACCGGTAACCAGCACCAGGCTGAGTCCATCTCCAACACCAACCCC CTGACCGAGAAGGCTGTGGCTTCCGTGACCCTGGCTGGTAACTCCTCCCTGTGCCCCATC CGTGGTTGGGCTGTGCACTCCAAGGACAACAACATCCGCATCGGTTCCAAGGGTGACGTG ${\tt TTCGTGATCCGTGAGCCCTTCATCTCCTGCTCCCACCTCGAGTGCCGTACCTTCTTCCTG}$ ACCCAAGGTGCTCTGCTGAACGACAAGCACTCCAACGGCACCGTGAAGGACCGTTCCCCC GAGTCCGTGGCTTGGTCCGCTTCCGCTTGCCACGACGCACCTCTTGGCTGACCATCGGT ATCTCCGGTCCCGACAACGAGGCTGTCGCTGTGCTGAAGTACAACGGCATCATCACCGAC ${\tt ACCATCAAGTCCTGGCGTAACAACATCCTGCGTACCCAGGAGTCCGAGTGCGCTTGCGTG}$ AACGGTTCCTGCTTCACCGTGATGACCGACGGTCCCTCCGACGGCCAGGCTTCCTACAAG ATCTTCAAGATGGAGAAGGGCAAGGTGGTGAAGTCCGTGGAGCTGGACGCTCCCAACTAC ${\tt CACTACGAGGAGTGCTCTTGCTACCCCGACGCTGGCGAGATCACCTGCGTGTGCCGTGAC}$ AACTGGCACGGTTCCAACCGTCCCTGGGTGTCCTTCAACCAGAACCTCGAGTACCAGATC GGTTACATCTGCTCCGGCGTGTTCGGTGACAACCCCCGTCCCAACGACGGAACCGGTTCC ${\tt TGCGGTCCCATGTCCCCCAACGGTGCTTACGGTGTCAAGGGCTTCTCCTTCAAGTACGGT}$ AACGGTGTCTGGATCGGTCCTACCAAGTCCACCAACTCCCGCTCCGGTTTCGAGATGATC TGGGACCCCAACGGTTGGACCGGCACCGACTCTTCCTCTCCGTGAAGCAGGACATCGTG GCTATCACCGACTGGTCCGGTTACTCCGGTTCCTTCGTGCAGCACCCCGAGCTGACCGGT $\tt CTGGACTGCATTCGTCCCTGCTTCTGGGTGGAGCTGATCCGTGGTCGTCCCAAGGAGTCC$ ACCATCTGGACCTCCGGCTCCTCCATCTCTTTCTGCGGTGTGAACTCCGACACCGTGTCC ${\tt TGGTCCTGGCCCGACGGTGCCGAGCTGCCCTTCACCATCGACAAG} {\tt TAA} {\tt TGAAAGCTTGAG}$

Secuencia de la proteínas NA de A/INDONESIA (SEC ID 47)

```
MNPNQKIITI GSICMVIGIV SLMLQIGNMI SIWVSHSIQT GNQHQAESIS NTNPLTEKAV ASVTLAGNSS LCPIRGWAVH SKDNNIRIGS KGDVFVIREP FISCSHLECR TFFLTQGALL NDKHSNGTVK DRSPHRTLMS CPVGEAPSPY NSRFESVAWS ASACHDGTSW LTIGISGPDN EAVAVLKYNG IITDTIKSWR NNILRTQESE CACVNGSCFT VMTDGPSDGQ ASYKIFKMEK GKVVKSVELD APNYHYEECS CYPDAGEITC VCRDNWHGSN RPWVSFNQNL EYQIGYICSG VFGDNPRPND GTGSCGPMSP NGAYGVKGFS FKYGNGVWIG RTKSTNSRSG FEMIWDPNGW TGTDSSFSVK QDIVAITDWS GYSGSFVQHP ELTGLDCIRP CFWVELIRGR PKESTIWTSG SSISFCGVNS DTVSWSWPDG AELPFTIDK
```

15

10

M1 optimizada de A/INDONESIA (SEC ID 48)

5 Secuencia de la proteínas M1 de A/INDONESIA (SEC ID 49)

MSLLTEVETY VLSIIPSGPL KAEIAQKLED VFAGKNTDLE ALMEWLKTRP ILSPLTKGIL GFVFTLTVPS ERGLQRRRFV QNALNGNGDP NNMDRAVKLY KKLKREITFH GAKEVSLSYS TGALASCMGL IYNRMGTVTT EVAFGLVCAT CEQIADSQHR SHRQMATITN PLIRHENRMV LASTTAKAME QMAGSSEQAA EAMEVANQAR QMVQAMRTIG THPNSSAGLR DNLLENLQAY QKRMGVQMQR FK

A/Anhui/1/2005

10 HA optimizada de A/Anhui (los codones de inicio y de parada están subrayados) (SEC ID 50)

GGTACCGGATCCCTCGAGATGGAGAAGATCGTGCTGCTGCTGCTATCGTGTCCCTGGTG AAGTCCGACCAGATCTGCATCGGTTACCACGCTAACAACTCCACCGAGCAGGTGGACACC ATCATGGAGAAGAACGTCACCGTGACCCACGCTCAGGACATCCTGGAAAAGACCCACAAC GGCAAGCTGTGCGACCTGGACGGTGTCAAGCCCCTGATCCTGCGTGACTGCTCCGTGGCT GGTTGGCTGCTGGGTAACCCCATGTGCGACGAGTTCATCAACGTGCCCGAGTGGTCCTAC ATCGTGGAGAAGGCTAACCCCGCTAACGACCTGTGCTACCCCGGTAACTTCAACGACTAC GAGGAGCTGAAGCACCTGCTGTCCCGTATCAACCACTTCGAGAAGATCCAGATCATCCCC AAGTCCTCTTGGTCCGACCACGAGGCTTCCTCCGGTGTCTCCTCCGCTTGCCCATACCAG GGCACCCCATCTTCCTTCCGTAACGTGGTGTGGCTGATCAAGAAGAACAACACCTACCCC ACCATCAAGCGTTCCTACAACAACACCAACCAGGAGGACCTGCTGATCCTGTGGGGTATC CACCACTCCAACGACGCTGCCGAGCAGACCAAGCTGTACCAGAACCCCACCACCTACATC TCCGTGGGCACCTCCACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCGTTCCAAG GTGAACGGCCAGTCCGGTCGTATGGACTTCTTCTGGACCATCCTGAAGCCTAACGACGCT ATCAACTTCGAGTCCAACGGCAACTTCATCGCTCCCGAGTACGCTTACAAGATCGTGAAG AAGGGCGACTCCGCTATCGTCAAGTCCGAGGTGGAGTACGGTAACTGCAACACCAAGTGC CAGACCCCCATCGGTGCTATCAACTCCTCCATGCCCTTCCACAACATCCACCCCCTGACC ATCGGCGAGTGCCCCAAGTACGTGAAGTCCAACAAGCTGGTGCTGCCTACCGGTCTGCGT AACTCCCCCTGCGTGAGCGTGGTCTGTTCGGCGCTATCGCTGGTTTCATCGAGGGCGGT TGGCAGGGCATGGTGGACGGTTGGTACCACCACACCACCACGAGCAGGGTTCCGGT TACGCTGCTGACAAGGAGTCCACCCAGAAGGCTATCGACGGCGTCACCAACAAGGTGAAC TCCATCATCGACAAGATGAACACCCAGTTCGAGGCTGTGGGTCGTGAGTTCAACAACCTG GAGCGTCGTATCGAGAACCTGAACAAGAAGATGGAGGACGGTTTCCTGGACGTGTGGACC TACAACGCCGAGCTGCTGGTGCTGATGGAGAACGAGCGTACCCTGGACTTCCACGACTCT AACGTGAAGAACCTGTACGACAAGGTCCGCCTGCAGCTGCGTGACAACGCTAAGGAGCTG GGTAACGGTTGCTTCGAGTTCTACCACAAGTGCGACAACGAGTGCATGGAGTCCGTGCGT AACGGCACCTACGACTACCCCCAGTACTCCGAGGAGGCTCGTCTGAAGCGTGAGGAGATC TCCGGCGTGAAGCTGGAGTCCATCGGCACCTACCAGATCCTGTCCATCTACTCCACCGTG GCTTCCTCCCTGGCTCTGGCTATCATGGTGGCTGGTCTGTCCCTGTGGATGTGCTCCAAC GGTTCCCTGCAGTGCCGTATCTGCATCTAATAATGAGGCGCGCCAAGCTTGAGCTC

Secuencia de la proteína HA de A/Anhui (SEC ID 51)

```
MEKIVLLIAI VSLVKSDQIC IGYHANNSTE QVDTIMEKNV TVTHAQDILE KTHNGKLCDL DGVKPLILRD CSVAGWLLGN PMCDEFINVP EWSYIVEKAN PANDLCYPGN FNDYEELKHL LSRINHFEKI QIIPKSSWSD HEASSGVSSA CPYQGTPSFF RNVVWLIKKN NTYPTIKRSY NNTNQEDLLI LWGIHHSNDA AEQTKLYQNP TTYISVGTST LNQRLVPKIA TRSKVNGQSG RMDFFWTILK PNDAINFESN GNFIAPEYAY KIVKKGDSAI VKSEVEYGNC NTKCQTPIGA INSSMPFHNI HPLTIGECPK YVKSNKLVLA TGLRNSPLRE RGLFGAIAGF IEGGWQGMVD GWYGYHHSNE QGSGYAADKE STQKAIDGVT NKVNSIIDKM NTQFEAVGRE FNNLERRIEN LNKKMEDGFL DVWTYNAELL VLMENERTLD FHDSNVKNLY DKVRLQLRDN AKELGNGCFE FYHKCDNECM ESVRNGTYDY PQYSEEARLK REEISGVKLE SIGTYQILSI YSTVASSLAL AIMVAGLSLW MCSNGSLQCR ICI
```

5 A/Bar headed goose/Qinghai/1A/2005 HA optimizada de A/Qinghai (los codones de inicio y de parada están subrayados) (SEC ID 52)

CGGGCGCGGAGCGGCCGCATGGAGAAGATCGTGCTGCTGCTATCGTGTCTCTGGTCAAGTCCGACCAGATCTGCA TCGGTTACCACGCTAACAACTCCACCGAGCAGGTGGACACCATCATGGAGAAGAACGTCACCGTGACCCACGCTCAGGA CATCCTCGAAAAGACCCACAACGGCAAGCTGTGCGACCTGGACGCGTGAAGCCCCTGATCCTGCGTGACTGCTCCGTG GCTGGTTGGCTGCTGGGTAACCCCATGTGCGACGAGTTCCTCAACGTGCCCGAGTGGTCCTACATCGTGGAGAAGATCA ACCCCGCTAACGACCTGTGCTACCCCGGTAACTTCAACGACTACGAGGAGCTGAAGCACCTGCTGTCCCGTATCAACCA $\verb|CTTCGAGAAGATCCAGATCCTCTTGGTCCGACCACGAGGCTTCCTCCGGTGTCTCCTCCGCTTGCCCA|\\$ TACCAGGGCCGTTCTTCCTTCTCCGCAACGTGGTGTGGCTGATCAAGAAGAACAACGCCTACCCCACCATCAAGCGTT CCTACAACAACACCAACCAGGAGGACCTGCTGGTCCTGTGGGGTATCCACCACCCCAACGACGCTGCCGAGCAGACCCG ${\tt TCTGTACCAGAACCCCACCACCTACATCTCCGTGGGCACCTCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCTACAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCGTCTGGTGCCCAAGATCGCTACCCTGAACCAGCTACAGATCGCTACCCTGAACCAGCTACAGATCGCTACACAGATCAG$ CGTTCCAAGGTGAACGGCCAGTCCGGTCGTATGGAGTTCTTCTGGACCATCCTGAAGCCTAACGACGCTATCAACTTCG AGTCCAACGGCAACTTCATCGCTCCCGAGAACGCTTACAAGATCGTGAAGAAGGGCGACTCCACCATCATGAAGTCCGA GCTGGAGTACGGCAACTGCAACACTAAGTGCCAGACCCCCATCGGTGCTATCAACTCCTCCATGCCCTTCCACAACATC CCCAGATCGAGACTCGTGGTCTGTTCGGCGCTATCGCTGGTTTCATCGAGGGCGGTTGGCAGGGCATGGTGGACGGTTG GTACGGTTACCACCACTCTAACGAGCAGGGTTCCGGTTACGCTGCTGACAAGGAGTCTACCCAGAAGGCTATCGACGGC GTCACCAACAAGGTGAACTCCATCATCGACAAGATGAACACCCAGTTCGAGGCTGTGGGTCGTGAGTTCAACAACCTCG AACGTCGTATCGAGAACCTGAACAAGAAGATGGAGGACGGTTTCCTGGACGTGTGGACCTACAACGCCGAGCTGCTGGT GCTGATGGAGACGAGCGTACCCTGGACTTCCACGACTCCAACGTGAAGAACCTGTACGACAAGGTCCGCCTGCAGCTG CGTGACAACGCTAAGGAGCTGGGTAACGGTTGCTTCGAGTTCTACCACCGTTGCGACAACGAGTGCATGGAGTCCGTGC GTAACGGCACCTACGACTACCCCCAGTACTCCGAGGAGGCTCGTCTGAAGCGTGAGGAGATCTCCGGTGTCAAGCTCGA ATCCATCGGAACCTACCAGATCCTGTCCATCTACTCCACCGTGGCTTCCTCCCTGGCTCTGGCTATCATGGTGGCTGGT $\tt CTGTCCCTGTGGATGTCCCAACGGTTCCCTGCAGTGCCGTATCTGCATC\underline{TAA}TAATGAGGCGCGCCAAGCTTGTCGA$

10 Secuencia de la proteína HA de A /Qinghai (SEC ID 53)

```
MEKIVLLAI VSLVKSDQIC IGYHANNSTE QVDTIMEKNV TVTHAQDILE KTHNGKLCDL DGVKPLIRD CSVAGWLLGN PMCDEFLNVP EWSYIVEKIN PANDLCYPGN FNDYEELKHL LSRINHFEKI QIIPKSSWSD HEASSGVSSA CPYQGRSSFF RNVVWLIKKN NAYPTIKRSY NNTNQEDLLV LWGIHHPNDA AEQTRLYQNP TTYISVGTST LNQRLVPKIA TRSKVNGQSG RMEFFWTILK PNDAINFESN GNFIAPENAY KIVKKGDSTI MKSELEYGNC NTKCQTPIGA INSSMPFHNI HPLTIGECPK YVKSNRLVLA TGLRNSPQIE TRGLFGAIAG FIEGGWQGMV DGWYGYHHSN EQGSGYAADK ESTQKAIDGV TNKVNSIIDK MNTQFEAVGR EFNNLERRIE NLNKKMEDGF LDVWTYNAEL LVLMENERTL DFHDSNVKNL YDKVRLQLRD NAKELGNGCF EFYHRCDNEC MESVRNGTYD YPQYSEEARL KREEISGVKL ESIGTYQILS IYSTVASSLA LAIMVAGLSL WMCSNGSLQC RICI
```

NA optimizada de A/Qinghai (los codones de inicio y de parada están subrayados) (SEC ID 54)

ACCGTCCCACCATCGGGCGCGGATCCCTCGAGATGAACCCCAACCAGAAGATCATCACCATCGGCTCCATCTGCATGGT CAGCGTCAGGCCGAGCCCATCTCCAACACCAAGTTCCTCACCGAGAAGGCTGTGGCTTCCGTGACCCTGGCTGATAACT $\verb|CCTCCCTGTGCCCCATCTCCGGTTGGGCTGTGTACTCCAAGGACAACTCCATCCGTATCGGTTCCCGTGGTGACGTGTT|\\$ CGTGATCCGTGAGCCCTTCATCTCCTGCTCCCACCTCGAATGCCGTACCTTCTTCCTGACCCAGGGTGCTCTGCTGAAC GACAAGCACTCCAACGGCACCGTGAAGGACCGTTCCCCCCACCGTACCCTGATGTCCTGCCCCGTGGGCGAGGCTCCCT $\tt CCCCCTACAACTCCCGTTTCGAGTCCGTTGGCTTGGTCCGCTTGCCACGACGGCACCTCTTGGCTGACCATCGG$ TATCTCCGGTCCCGACAACGGTGCTGTGCTGAAGTACAACGGCATCATCACCGACACCATCAAGTCCTGGCGT AACAACATCCTGCGTACCCAAGAGTCCGAGTGCGCTTGCGTGAACGGTTCCTGCTTCACCGTGATGACCGACGGTCCCT CCAACGGCCAGGCTTCCTACAAGATCTTCAAGATGGAGAAGGGCAAGGTGGTGAAGTCCGTGGAGCTGGACGCTCCCAA $\tt CTACCACTACGAGGAGTGCTCTTGCTACCCCGACGCTGGCGAGATCACCTGCGTGTGCCGTGACAACTGGCACGGTTCC$ AACCGTCCTGGGTGTCCTTCAACCAGAACCTCGAATACCAGATCGGTTACATCTGCTCCGGCGTGTTCGGTGACAACC CCCGTCCCAACGGCGGAACCGGTTCCTGCGGTCCCGTGTCCCCCAACGGTGCTTACGGTGTCAAGGGCTTCTCCTTCAA GTACGGTAACGGTGTCTGGATCGGTCCTACCAAGTCCACCACCTCCGGTTTCGAGATGATCTGGGACCCCAAC GGTTGGACCGGCACCGACTCTTCCCTTCTCCGTGAAGCAGGACATCGTGGCTATCACCGACTGGTCCGGTTACTCCGGTT $\verb|CCTTCGTGCAGCACCCCGAGCTGACCGGTCTGGACTGTATCCGTCCCTGCTTCTGGGTGGAGCTGATCCGTGGTCGTCC| \\$ CAAGGAGTCCACCATCTGGACCTCCGGCTCCTCCATCTCTTTCTGCGGTTGTAACTCCGACACCGTGTCCTGGTCCTGG ${\tt CCCGACGGTGCCGAGCTGCCCTTCACCATCGACAAGT}{\tt AATGAATCGATTTGTCGAGAAGTACTAGAGGATCATAAT$

5 Secuencia de proteína NA A/Qinghai (SEC ID 55)

```
MNPNQKIITI GSICMVIGIV SLMLQIGNMI SIWVSHSIQT GNQRQAEPIS
NTKFLTEKAV ASVTLAGNSS LCPISGWAVY SKDNSIRIGS RGDVFVIREP
FISCSHLECR TFFLTQGALL NDKHSNGTVK DRSPHRTLMS CPVGEAPSPY
NSRFESVAWS ASACHDGTSW LTIGISGPDN GAVAVLKYNG IITDTIKSWR
NNILRTQESE CACVNGSCFT VMTDGPSNGQ ASYKIFKMEK GKVVKSVELD
APNYHYEECS CYPDAGEITC VCRDNWHGSN RPWVSFNQNL EYQIGYICSG
VFGDNPRPND GTGSCGPVSP NGAYGVKGFS FKYGNGVWIG RTKSTNSRSG
FEMIWDPNGW TGTDSSFSVK QDIVAITDWS GYSGSFVQHP ELTGLDCIRP
CFWVELIRGR PKESTIWTSG SSISFCGVNS DTVSWSWPDG AELPFTIDK
```

Se proporcionan las siguientes referencias:

10

- Berglund, P., Fleeton, M. N., Smerdou, C., and Liljestrom, P. (1999). Immunization with recombinant Semliki Forest virus induces protection against influenza challenge in mice. Vaccine 17, 497-507.
- Cox, J. C., and Coulter, A. R.(1997). Adjuvants--a classification and review of their modes of action. Vaccine 15, 248-256.
 - Crawford, J., Wilkinson, B., Vosnesensky, A., Smith, G., Garcia, M., Stone, H., and Perdue, M. L. (1999). Baculovirusderived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes. Vaccine 17, 2265-2274.

20

- Crowther R A, Kiselev N A, Bottcher B, Berriman J A, Borisova G P, Ose V, Pumpens P. (1994). Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 17, 943-50.
- Goinez-Puertas, P., Mena, I., Castillo, M., Vivo, A., Perez-Pastrana, E., and Portela, A. (1999). Efficient formation of influenza virus-like particles: dependence on the expression levels of viral proteins. J. Gen. Virol. 80, 1635-1645.
 - Johansson, B. E. (1999). Immunization with influenza A virus hemagglutinin and neuraminidase produced in recombinant baculovirus results in a balanced and broadened immune response superior to conventional vaccine. Vaccine 17, 2073-2080.
 - Lakey, D. L., Treanor, J. J., Betts, B. F., Smith, G. E., Thompson, J., Sannella, E., Reed, G., Wilkinson, B. E., and Wright, P. E. (1996) Recombinant baculovirus influenza A hemagglutinin vaccines are well tolerated and immunogenic in healthy adults. J. Infect. Dis. 174, 83 8-841.

35

- Latham, T., and Galarza, J. M. (2001). Formation of wild-type and chimeric influenza virus-like particles followingsimultaneous expression of only four structural proteins. J. Virol. 75, 6154-6165.
- Mena, I., Vivo, A., Perez, E., and Portela, A (1996). Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza-like particles obtained from recombinant plasmids. J. Virol. 70, 5016-5024.

- Murphy, B. R., and Webster, R. G. (1996). Orthomyxoviruses. In "Virology" (D. M. K. B. N. Fields, P. M. Howley, Eds.) Vol. 1, pp. 1397-1445. Lippincott-Raven, Philadelphia.
- Neumann, G., Watanabe, T., and Kawaoka, Y. (2000). Plasmid-driven formation of influenza virus-like particles. J. Virol. 74, 547-551.
 - Olsen, C. W., McGregor, M. W., Dybdahl-Sissoko, N., Schram, B. R., Nelson, K. M., Lunn, D. P., Macklin, M. D., and Swain, W. F. (1997). Immunogenicity and efficacy of baculovirus-expressed and DNA-based equine influenza virus hemagglutinin vaccines in mice. Vaccine 15, 1149-1156.
- Peiris, J. S., Guan, Y., Markwell, D., Ghose, P., Webster, R. G., and Shortridge, K. F. (2001). Cocirculation of avian H9N2 and contemporary "human" H3N2 influenza A viruses in pigs in southwestern China: potential for genetic reassortment? J. Virol. 75, 9679-9686.
- Pumpens, P., and Grens, E. (2003). Artificial genes for chimeric virus-like particles. In: "Artificial DNA" (Khudyakov, Y. E, and Fields, H. A., Eds.) pp. 249-327. CRC Press, New York.
- Pushko, P., Parker, M., Ludwig, G. V., Davis, N. L., Johnston, R. E., and Smith, J. F. (1997). Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239, 389-401.
 - Slepushkin, V. A., Katz, J. M., Black, R. A., Gamble, W. C., Rota, P. A., and Cox, N. J. (1995). Protection of mice against influenza A virus challenged by vaccination with baculovirus-expressed M2 protein. Vaccine 13, 1399-1402.
- Treanor, J. J., Betts, R. F., Smith, G. E., Anderson, E. L., Hackett, C. S., Wilkinson, B. E., Belshe, R. B., and Powers, D. C. (1996). Evaluation of a recombinant hemagglutinin expressed in insect cells as an influenza vaccine in Young and elderly adults. J. Infect. Dis. 173, 1467-1470.
- Tsuji, M., et al. (1998). Recombinant Sindbis viruses expressing a cytotoxic T-lymphocyte epitope of a malaria parasite or of influenza virus elicit protection against the corresponding pathogen in mice. J. Virol. 72, 6907-6910.
 - Ulmer, J. B., et al. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745-1749.
- 35 Ulmer, J. B., et al. (1998). Protective CD4+ and CD8+T cells against influenza virus induced by vaccination with nucleoprotein DNA. J. Virol. 72, 5648-5653.
- Watanabe, T., Watanabe, S., Neumann, G., and Kawaoka, Y. (2002) Immunogenicity and protective efficacy of replication-incompetent influenza virus-like particles. J. Virol. 76, 767-773.
 - Zhou, X., et al. (1995). Generation of cytotoxic and humoral immune responses by non-replicative recombinant Semliki Forest virus. Proc. Natl. Acad. Sci. USA 92, 3009-3013.
- 45 Otras realizaciones

Los expertos en la técnica reconocerán, o serán capaces de aclarar utilizando no más que experimentación rutinaria, muchos equivalentes de las realizaciones específicas de la invención que se describen en el presente documento.

- 50 LISTADO DE SECUENCIAS
 - <110> Novavax, Inc.
 - <120> Partículas funcionales similares al virus de la gripe (VPL)
- 55 <130> RXT/FP6537419
 - <140> 06826264.1
 - <141> 18-10-2006
 - <150> PCT/US2006/040862 <151> 18-10-2006
 - <150> US 60/727.513
- 65 <151> 18-10-2005

	<150> US 60/780.8 <151> 10-03-2006	347					
5	<150> US 60/800.0 <151> 15-05-2006	006					
	<150> US 60/831.1 <151> 17-07-2006	196					
10	<150> US 60/832.1 <151> 21-07-2006	-					
15	<150> US 60/845.4 <151> 19-06-2006	195					
13	<160> 58						
	<170> Patentln ver	sión 3.3					
20	<210> 1 <211> 1404 <212> ADN <213> Virus de la g	gripe					
25	<400> 1						
	atgaatccaa	atcaaaagat	aatagcactt	ggetetgttt	ctataactat	tgcgacaata	60
	tgtttactca	tgcagattgc	catcttagca	acgactatga	cactacattt	caatgaatgt	120
	accaacccat	cgaacaatca	agcagtgcca	tgtgaaccaa	tcataataga	aaggaacata	180
	acagagatag	tgcatttgaa	taatactacc	atagagaagg	aaagttgtcc	taaagtagca	240
	gaatacaaga	attggtcaaa	accgcaatgt	caaattacag	ggttegeece	tttctccaag	300
	gacaactcaa	ttaggctttc	tgcaggcggg	gatatttggg	tgacaagaga	accttatgta	360
	tegtgeggte	ttggtaaatg	ttaccaattt	gcacttgggc	agggaaccac	tttgaacaac	420
	aaacactcaa	atggcacaat	acatgatagg	agtccccata	gaaccctttt	aatgaacgag	480
	ttgggtgttc	catttcattt	gggaaccaaa	caagtgtgca	tagcatggtc	cagctcaagc	540
	tgccatgatg	ggaaggcatg	gttacatgtt	tgtgtcactg	gggatgatag	aaatgegact	600

qctagcatca tttatgatgg gatgcttacc gacagtattg gttcatggtc taagaacatc 660 ctcagaactc aggagtcaga atgcgtttgc atcaatggaa cttgtacagt agtaatgact 720 gatggaagtg catcaggaag ggctgatact aaaatactat tcattagaga agggaaaatt 780 gtocacattg gtocactgtc aggaagtgct cagcatgtgg aggaatgctc ctgttacccc **B40** eggtatecag aagttagatg tgtttgeaga gacaattgga agggetecaa tagaceegtg 900 960 ctatatataa atgtggcaga ttatagtgtt gattctagtt atgtgtgctc aggacttgtt ggcgacacac caagaaatga cgatagctcc agcagcagta actgcaggga tcctaataac 1020 gagagagggg gcccaggagt gaaagggtgg gcctttgaca atggaaatga tgtttggatg 1080 ggacgaacaa tcaagaaaga ttcgcgctct ggttatgaga ctttcagggt cgttggtggt 1140 tggactacgg Ctaattccaa gtcacaaata aataggcaag tcatagttga cagtgataac 1200 tggtctgggt attctggtat attctctgtt gaaggaaaaa cctgcatcaa caggtgtttt 1260 tatgtggagt tgataagagg gagaccacag gagaccagag tatggtggac ttcaaatagc 1320 atcattgtat tttgtggaac ttcaggtacc tatggaacag gctcatggcc cgatggagcg 1380 aatatcaatt tcatgtctat ataa 1404

5

<211> 1683 <212> ADN

<210> 2

<213> Virus de la gripe

<400> 2

60 atggaaacaa tatcactaat aactatacta ctagtagtaa cagcaagcaa tgcagataaa 120 atotgcatcg gocaccagte aacaaactee acagaaactg tggacacget aacagaaace 180 aatgtteetg tgacacatge caaagaattg etecacacag agcataatgg aatgetgtgt gcaacaagcc tgggacatcc cctcattcta gacacatgca ctattgaagg actagtctat 240 ggcaaccett cttgtgacct gctgttggga ggaagagaat ggtcctacat cgtcgaaaga 300 tcatcagctg taaatggaac gtgttaccct gggaatgtag aaaacctaga ggaactcagg 360 420 acacttttta gttccgctag ttcctaccaa agaatccaaa tcttcccaga cacaacctgg aatgtgactt acactggaac aagcagagca tgttcaggtt cattctacag gagtatgaga 480 tggctgactc aaaagagcgg tttttaccct gttcaagacg cccaatacac aaataacagg 540 600 ggaaagagca ttcttttcgt gtggggcata catcacccac ccacctatac cgagcaaaca aatttgtaca taagaaacga cacaacaaca agcgtgacaa cagaagattt qaataggacc 660 720 ttcaaaccag tgatagggcc aaggcccctt gtcaatggtc tgcagggaag aattgattat tattggtcgg tactaaaacc aggccaaaca ttgcgagtac gatccaatgg gaatctaatt 780

gctccatggt atggacacgt	tctttcagga	gggagccatg	gaagaatcct	gaagactgat	840
ttaaaaggtg gtaattgtgt	agtgcaatgt	cagactgaaa	aaggtggctt	aaacagtaca	900
ttgccattcc acaatatcag	taaatatgca	tttggaacct	gccccaaata	tgtaagagtt	960
aatagtotoa aactggcagt	cggtctgagg	aacgtgcctg	ctagatcaag	tagaggacta	1020
tttggagcca tagctggatt	catagaagga	ggttggccag	gactagtcgc	tggctggtat	1080
ggtttccage attcaaatga	tcaaggggtt	ggtatggctg	cagataggga	ttcaactcaa	1140
aaggcaattg ataaaataac	atccaaggtg	aataatatag	tcgacaagat	gaacaagcaa	1200
tatgaaataa ttgatcatga	attcagtgag	gttgaaacta	gactcaatat	gatcaataat	1260
aagattgatg accaaataca	agacgtatgg	gcatataatg	cagaattgct	agtactactt	1320
gaaaatcaaa aaacactcga	tgagcatgat	gcgaacgtga	acaatctata	taacaaggtg	1380
aagagggcac tgggctccaa	tgctatggaa	gatgggaaag	gctgtttcga	gctataccat	1440
aaatgtgatg atcagtgcat	ggaaacaatt	cggaacggga	cctataatag	gagaaagtat	1500
agagaggaat caagactaga	aaggcagaaa	atagaggggg	ttaagctgga	atctgaggga	1560
acttacaaaa teeteaceat	ttattcgact	gtcgcctcat	ctcttgtgct	tgcaatgggg	1620
tttgctgcct tcctgttctg	ggccatgtcc	aatggatctt	gcagatgcaa	catttgtata	1680
taa					1683

5

<210> 3 <211> 759

<212> ADN

<213> Virus de la gripe

<400>3

atgagtette taacegaggt egaaaegtae gtteteteta teateceate aggeeecete 60 aaagccgaga tcgcgcagag acttgaggat gtttttgcag ggaagaacac agatcttgag 120 180 gctctcatgg aatggctaaa gacaagacca atcctgtcac ctctgactaa ggggatttta 240 gggtttgtgt teacgeteac egtgeecagt gagegaggae tgeagegtag aegatttgte 300 caaaatgccc taaatgggaa tggagaccca aacaacatgg acagggcagt taaactatac 360 aagaagetga agagggaaat gacattecat ggagcaaagg aagttgcact cagttactca actggtgcgc ttgccagttg catgggtctc atatacaacc ggatgggaac agtgaccaca 420 480 gaagtggctc ttggcctagt atgtgccact tgtgaacaga ttgctgatgc ccaacategg toccacaggo agatggogac taccaccaac coactaatca ggcatgagaa cagaatggta 540 600 ctagccagca ctacggctaa ggccatggag cagatggctg gatcaagtga gcaggcagca 660 gaagccatgg aagtcgcaag tcaggctagg caaatggtgc aggctatgag gacaattggg

	acteacecta	gttccagtgc	aggtctaaaa	gatgatctta	ttgaaaattt	gcaggcttac	720
	cagaaacgga	tgggagtgca	aatgcagaga	ttcaagtga	·		759
5	<210> 4 <211> 31 <212> ADN <213> Virus de	la gripe					
10		agaaaat agtgcttc	tt c	31			
	<210> 5 <211> 33 <212> ADN <213> Virus de	la gripe					
15	<400> 5	caaatt ctgcattgta	acg	33			
20	<210> 6 <211> 32 <212> ADN <213> Virus de	la gripe					
25	<400> 6 aacggtccga tgaa	atccaaa tcagaag	ata at	32			
30	<210> 7 <211> 32 <212> ADN <213> Virus de	la gripe					
	<400> 7 aaagcttcta cttgto	caatg gtgaatggca	a ac	32			
35	<210> 8 <211> 30 <212> ADN <213> Virus de	la gripe					
40	<400> 8 aacggtccga tgag	gtcttct aaccgagg	tc	30			
45	<210> 9 <211> 31 <212> ADN <213> Virus de	la gripe					
50	<400> 9 aaagctttca cttga	aatege tgeatetgea	. c	31			
	<210> 10 <211> 1707 <212> ADN <213> Virus de	la gripe					
55	<400> 10						

atggagaaaa	tagtgcttct	tcttgcaata	gtcagtcttg	ttaaaagtga	tcagatttgc	60
attggttacc	atgcaaacaa	ttcaacagag	caggttgaca	caatcatgga	aaagaacgtt	120
actgttacac	atgeccaaga	catactggaa	aagacacaca	acgggaagct	ctgcgatcta	180
gatggagtga	agcctctaat	tttaagagat	tgtagtgtag	ctggatggct	cctcgggaac	240
ccaatgtgtg	acgaattcat	caatgtaccg	gaatggtctt	acatagtgga	gaaggccaat	300
ccaaccaatg	acctctgtta	cccagggagt	ttcaacgact	atgaagaact	gaaacaccta	360
ttgagcagaa	taaaccattt	tgagaaaatt	caaatcatcc	ccaaaagttc	ttggtccgat	420
catgaagcct	catcaggagt	gagctcagca	tgtccatacc	tgggaagtcc	ctccttttt	480
agaaatgtgg	tatggcttat	caaaaagaac	agtacatacc	caacaataaa	gaaaagctac	540
aataatacca	accaagaaga	tcttttggta	ctgtggggaa	ttcaccatcc	taatgatgcg	600
gcagagcaga	caaggctata	tcaaaaccca	accacctata	tttccattgg	gacatcaaca	660
ctaaaccaga	gattggtacc	aaaaatagct	actagatcca	aagtaaacgg	gcaaagtgga	720
aggatggagt	tcttctggac	aattttaaaa	cctaatgatg	caatcaactt	cgagagtaat	780
ggaaatttca	ttgctccaga	atatgcatac	aaaattgtca	agaaagggga	ctcagcaatt	840
atgaaaagtg	aattggaata	tggtaactgc	aacaccaagt	gtcaaactcc	aatgggggcg	900
ataaactcta	gtatgccatt	ccacaacata	caccetetea	ccatcgggga	atgccccaaa	960
tatgtgaaat	caaacagatt	agtecttgca	acagggetca	gaaatageee	tcaaagagag	1020
agcagaagaa	aaaagagagg	actatttgga	gctatagcag	gttttataga	gggaggatgg	1080
cagggaatgg	tagatggttg	gtatgggtac	caccatagca	atgagcaggg	gagtgggtac	1140
gctgcagaca	aagaatccac	tcaaaaggca	atagatggag	tcaccaataa	ggtcaactca	1200
atcattgaca	aaatgaacac	tcagtttgag	gccgttggaa	gggaatttaa	taacttagaa	1260
aggagaatag	agaatttaaa	caagaagatg	gaagacgggt	ttctagatgt	ctggacttat	1320
aatgccgaac	ttctggttct	catggaaaat	gagagaactc	tagactttca	tgactcaaat	1380
gttaagaacc	tctacgacaa	ggtccgacta	cagcttaggg	ataatgcaaa	ggagctgggt	1440
aacggttgtt	tcgagttcta	tcacaaatgt	gataatgaat	gtatggaaag	tataagaaac	1500
ggaacgtaca	actateegea	gtattcagaa	gaagcaagat	taaaaagaga	ggaaataagt	1560
ggggtaaaat	tggaatcaat	aggaacttac	caaatactgt	caatttattc	aacagtggcg	1620
agttccctag	cactggcaat	catgatggct	ggtctatctt	tatggatgtg	ctccaatgga	1680
tcgttacaat	gcagaatttg	catttaa				1707

<210>11 5

<211> 1350 <212> ADN

<213> Virus de la gripe

<400> 11

atgaatccaa atcagaagat	aataaccatt	ggatcaatct	gtatggtaat	tggaatagtt	60
agcttaatgt tacaaattgg	gaacatgatc	tcaatatggg	tcagtcattc	aattcagaca	120
gggaatcaac accaagctga	atcaatcagc	aatactaacc	ctcttactga	gaaagctgtg	180
gcttcagtaa cattagcggg	caattcatct	ctttgcccca	ttagaggatg	ggctgtacac	240
agtaaggaca acaatataag	gatcggttcc	aagggggatg	tgtttgttat	tagagagccg	300
ttcatctcat gctcccacct	ggaatgcaga	actttcttct	tgactcaggg	agccttgctg	360
aatgacaagc actccaacgg	gactgtcaaa	gacagaagcc	ctcacagaac	attaatgagt	420
tgtcctgtgg gtgaggctcc	ctctccatat	aactcaaggt	ttgagtctgt	tgcttggtca	480
gcaagtgctt gccatgatgg	caccagttgg	ttgacaattg	gaatttctgg	cccagacaat	540
gaggetgtgg etgtattgaa	atacaatggc	ataataacag	acactatcaa	gagttggagg	600
aacaacatac tgagaactca	agagtetgaa	tgtgcatgtg	taaatggctc	ttgctttact	660
gtaatgactg atggaccaag	tgatgggcag	gcatcatata	agatetteaa	aatggaaaaa	720
ggaaaagtgg tcaaatcagt	cgäattggat	gctcctaatt	atcactatga	ggaatgctcc	780
tgttatcctg atgccggcga	aatcacatgt	gtttgcaggg	ataattggca	tggctcaaat	840
aggccatggg tatctttcaa	tcaaaatttg	gagtatcaaa	taggatatat	atgcagtgga	900
gttttcggag acaatccacg	ccccaatgat	ggaacaggta	gttgtggccc	gatgtcccct	960
aacggggcat atggggtaaa	agggttttca	tttaaatacg	gcaatggtgt	ttggatcggg	1020
agaaccaaaa gcactaattc	caggagcggc	tttgaaatga	tttgggatcc	aaatgggtgg	1080
actggaacgg acagtagett	ttcagtgaaa	caagatatag	tagcaataac	tgattggtca	1140
ggatatagcg ggagttttgt	ccagcatcca	gaactgacag	gattagattg	cataagacct	1200
tgtttctggg ttgagttaat	cagagggcgg	cccaaagaga	gcacaatttg	gactagtggg	1260
agcagcatat ctttttgtgg	tgtaaatagt	gacactgtga	gttggtcttg	gccagacggt	1320
gctgagttgc cattcaccat	tgacaagtag				1350

<210> 12 <211> 759 <212> ADN

5

<213> Virus de la gripe

<400> 12

	atgagtette	taaccgaggt	cgaaacgtac	gtteteteta	tcatecegte	aggccccctc	60
	aaagccgaga	tegegeagaa	acttgaagat	gtctttgcag	gaaagaacac	cgatctcgag	120
	gctctcatgg	agtggctgaa	gacaagacca	atcctgtcac	ctctgactaa	a g gga t tttg	180
	ggatttgtat	tcacgctcac	cgtgcccagt	gagcgaggac	tgcagcgtag	acgctttgtc	240
	cagaatgccc	taaatggaaa	tggagatcca	aataatatgg	atagggcagt	taagctatat	300
	aagaagctga	aaagagaaat	aacattccat	ggggctaaag	aggtttcact	cagctactca	360
	accggtgcac	ttgccagttg	catgggtctc	atatacaaca	ggatgggaac	ggtgactacg	420
	gaagtggctt	ttggcctagt	gtgtgccact	tgtgagcaga	ttgcagattc	acagcatcgg	480
	tctcacaggc	agatggcaac	tatcaccaac	ccactaatca	ggcatgaaaa	cagaatggtg	540
	ctggccagca	ctacagctaa	ggctatggag	cagatggcgg	gatcaagtga	gcaggcagcg	600
	gaagccatgg	aggtcgctaa	tcaggctagg	cagatggtgc	aggcaatgag	gacaattgga	660
	actcatccta	actctagtgc	tggtctgaga	gataatcttc	ttgaaaattt	gcaggcctac	720
	cagaaacgaa	tgggagtgca	gatgcagcga	ttcaagtga			759
5	<210> 13 <211> 30 <212> ADN <213> Virus de la	a gripe					
10	<400> 13 aggatccatg aagad	ctatca ttgctttgag	:	30			
10	<210> 14 <211> 32 <212> ADN <213> Virus de la	a gripe					
15	<400> 14 aggtacctca aatgc	aaatg ttgcacctaa	tg	32			
20	<210> 15 <211> 72 <212> ADN <213> Virus de la	a gripe					
	<400> 15						
25	ggggacaagt	ttgtacaaaa	aagcaggctt	agaaggagat	agaaccatga	atccaaatca	60
	aaagataata	ac					72
30	<210> 16 <211> 57 <212> ADN <213> Virus de la	a gripe					
35	<400> 16 ggggaccact ttgtac	caaga aagctgggt	c ctatataggc atga	agattga tgtccgc	57		
,,	<210> 17 <211> 38 <212> ADN						

	<213> Virus de la gripe		
5	<400> 17 aaagaattca tgagtcttct aaccgaggtc gaaacgta	38	
	<210> 18 <211> 38 <212> ADN <213> Virus de la gripe		
10	<400> 18 aaattcgaat tactccagct ctatgctgac aaaatgac	38	
15	<210> 19 <211> 57 <212> ADN <213> Virus de la gripe		
20	<400> 19 agaatcatga gtcttctaac cgaggtcgaa acgcctatca gaaacgaatg	ggggtgc	57
25	<210> 20 <211> 38 <212> ADN <213> Virus de la gripe		
	<400> 20 aaattcgaat tactccagct ctatgctgac aaaatgac	38	
30	<210> 21 <211> 30 <212> ADN «213> Virus de la gripe		
35	<400> 21 agaattcatg gcgtcccaag gcaccaaacg 30		
40	<210> 22 <211> 50 <212> ADN <213> Virus de la gripe		
45	<400> 22 agcggccgct taattgtcgt actcctctgc attgtctccg aagaaataag		50
70	<210> 23 <211> 35 <212> ADN <213> Virus de la gripe		
50	<400> 23 agaattcatg aaggcaataa ttgtactact catgg 35		
55	<210> 24 <211> 47 <212> ADN <213> Virus de la gripe		
60	<400> 24 agcggccgct tatagacaga tggagcaaga aacattgtct ctggaga		47
65	<210> 25 <211> 31 <212> ADN <213> Virus de la gripe		

	<400 agaat	> 25 tcatg c	tacctto	caa ct	atacaa	ac g			31							
5			de la	gripe												
10	<400 agcgg	> 26 accgct	tacaga	agcca	tatcaa	.cacc t	gtgaca	agtg		4	0					
15	<210: <211: <212: <213:	> 568	onocio	do												
	<220: <223:	> > Vac2	-hac-c	pt												
20	<400	> 27														
	Met 1	Glu	Lys	Ile	Val 5	Leu	Leu	Leu	Ala	Ile 10	Val	Ser	Leu	Val	Lys 15	Ser
	Asp	Gln	Ile	Суs 20	Ile	Gly	Tyr	His	Ala 25	Asn	Asn	Ser	Thr	Glu 30	Gln	Val
	Asp	Thr	Ile 35	Met	Glu	Lys	Asn	Val 40	Thr	Val	Thr	His	Ala 45	Gln	Asp	Ile
	Leu	Glu 50	Lys	Thr	His	Asn	Gly 55	Lys	Leu	Cys	Asp	Leu 60	Asp	Gly	Val	Lys
	Pro	Leu	Ile	Leu	Arg	Asp	Cys	Ser	Va:1	Ala	Gly	Trp	Leu	Leu	Gly	Asn

65					70	•				75					80
Pro	Met	Cys	Asp	Glu 85	Phe	Ile	Asn	Val	Pro 90	Glu	Trp	Ser	Tyr	Ile 95	Val
Glu	Lys	Ala	Asn 100	Pro	Thr	Asn	Asp	Leu 105	Сув	Tyr	Pro	Gly	Ser 110	Phe	Asn
Asp	Tyr	Glu 115	Glu	Leu	Lys	His	Leu 120	Leu	Ser	Arg	Ile	Asn 125	His	Phe	Glu
Lys	Ile 130	Gln	Ile	Ile	Pro	Lys 135	Ser	Ser	Trp	Ser	Asp 140	His	Glu	Ala	Ser
Ser 145	Gly	Val	Ser	Ser	Ala 150	Cys	Pro	Tyr	Leu	Gly 155	Ser	Pro	Ser	Phe	Phe 160
Arg	Asn	Val	Val	Trp 165	Leu	Ile	Lys	Lys	Asn 170	Ser	Thr	туг	Pro	Thr 175	Ile
ГЛЗ	Lys	Ser	Tyr 180	Asn	Asn	Thr	Asn	Gln 185	Glu	Asp	Leu	Leu	Val 190	Leu	Trp
Gly	Ile	His 195	His	Pro	Asn	Asp	Ala 200	Ala	Glu	Gln	Thr	Arg 205	Leu	Tyr	Gln
Asn	Pro 210	Thr	Thr	Туг	Ile	Ser 215	Ile	Gly	Thr	Ser	Thr 220	Leu	Asn	Gln	Arg
Leu 225	Val	Pro	Lys	Ile	Ala 230	Thr	Arg	Ser	Lys	Val 235	Asn	Gly	Gln	Ser	Gly 240
Arg	Met	Glu	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asn
Phe	Glu	Ser	Asn 260	Gly	Asn	Phe	Ile	Ala 265	Pro	Glu	Tyr	Ala	Tyr 270	Lys	Ile
Val	Lys	Lys 275	Gly	Asp	Ser	Ala	Ile 280	Met	Lys	Ser	Glu	Leu 285	Glu	Tyr	Glγ
Asn	Cys 290	Asn	Thr	Lys	Cys	Gln 295	Thr	Pro	Met	Gly	Ala 300	Ile	Asn	Ser	Ser
Met 305	Pro	Phe	His	Asn	Ile 310	His	Pro	Leu	Thr	Ile 315	Gly	Glu	Cys	Pro	Lys 320

Tyr	Val	Lys	Ser	Asn 325	Arg	Leu	Val	Leu	Ala 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Gln	Arg	Glu 340	Ser	Arg	Arg	Lys	Lys 345	Arg	Gly	Leu	Phe	Gly 350	Ala	Ile
Ala	Gly	Phe 355	Ile	Glu	Gly	Gly	Trp 360	Gln	Gly	Met	Val	Asp 365	Gly	Trp	Tyr
Gly	Туr 370	His	His	Ser	Asn	Glu 375	Gln	Gly	Ser	Gly	Tyr 380	Ala	Ala	Asp	Lys
Glu 385	Ser	Thr	Gln	Lys	Ala 390	Ile	Asp	Gly	Val	Thr 395	Asn	Lys	Val	Asn	Ser 400
İle	Ile	Asp	Lys	Met 405	Asn	Thr	Gln	Phe	Glu 410	Ala	Val	Gly	Arg	Glu 415	Phe
Asn	Asn	Leu	Glu 420	Arg	Arg	Ile	Glu	Asn 425	Leu	Asn	Lys	Lys	Met 430	Glu	Asp
Ġly	Phe	Leu 435	Asp	Val	Trp	Thr	Tyr 440	Asn	Ala	Glu	Leu	Leu 445	Val	Leu	Met
Glu	Asn 450	Glu	Arg	Thr	Leu	Asp 455	Phe	His	Asp	Ser	Asn 460	Val	Lys	Asn	Leu
Tyr 465	Asp	Lys	Val	Arg	Leu 470	Gln	Leu	Arg	Asp	Asn 475	Ala	Lys	Glu	Leu	Gly 480
Asn	Gly	Cys	Phe	Glu 485	Phe	Tyr	His	Lys	Суs 490	Asp	Asn	Glu	Cys	Met 495	Glu
Ser	Ile	Arg	Asn 500	Gly	Thr	Tyr	Asn	Tyr 505	Pro	Gln	туг	Ser	Glu 510	Glu	Ala
Arg	Leu	Lys 515	Arg	Glu	Glu	Ile	Ser 520	Gly	Val	Lys	Leu	Glu 525	Ser	Ile	Gly
Thr	Туr 530	Gln	Ile	Leu	Ser	Ile 535	Tyr	Ser	Thr	Val	Ala 540	Ser	Ser	Leu	Ala
Leu 545		Ile	Met	Met	Ala 550	Gly	Leu	Ser	Leu	Trp 555	Met	Cys	Ser	Asn	Gly 560

71

Ser Leu Gln Cys Arg Ile Cys Ile 565

<210><211><211><212><213>	572 PRT	onocio	do												
<220> <223>		-hac-s	spc-op	ot											
<400>	28														
Met 1	Pro	Leu	Туг	Lys S	Leu	Leu	Asn	Val	Leu 10	Тгр	Leu	Val	Ala	Val 15	Ser
Asn	Ala	Ile	Pro 20	Asp	Gln	Ile	Cys	Ile 25	Gly	туг	His	Ala	Asn 30	Asn	Ser
Thr	Glu	Gln 35	Val	Asp	Thr	Ile	Met 40	Glu	Lys	Asn	Val	Thr 45	Val	Thr	His
Ala	Gln 50	Asp	Ile	Leu	Glu	Lys 55	Thr	His	Asn	Gly	Lys 60	Leu	Cys	Asp	Leu
Asp 65	Gly	Val	Lys	Pro	Le u 70	Ile	Leu	Arg	Asp	Cys 75	Ser	Val	Ala	Gly	Trp 80
Leu	Leu	Gly	Asn	Pro 85	Met	Cys	Asp	Glu	Phe 90	Ile	Asn	Val	Pro	Glu 95	Trp
Ser	Tyr	Ile	Val 100	Glu	Lys	Ala	Asn	Pro 105	Thr	Asn	Asp	Leu	Cys 110	туг	Pro
Gly	Ser	Phe 115	Asn	Asp	Tyr	Glu	Glu 120	Leu	Lys	His	Leu	Leu 125	Ser	Arg	Ile
Asn	His 130	Phe	G1u	Lys	Ile	Gln 135	Ile	Ile	Pro	Lys	Ser 140	Ser	Trp	Ser	Asp
His 145	Glu	Ala	Ser	Ser	Gly 150	Val	Ser	Ser	Ala	Cys 155	Pro	Tyr	Leu	Gly	Ser 160
Pro	Ser	Phe	Phe	Arg 165	Asn	Val	Val	Trp	Leu 170	Ile	Lys	Lys	Asn	Ser 175	Thr
Tyr	Pro	Thr	Ile 180	Lys	Lys	Ser	Туг	Asn 185	Asn	Thr	Asn	Gln	Glu 190	Asp	Leu

Leu	Val	Leu 195	Trp	Gly	Ile	His	His 200	Pro	Asn	Asp	Ala	Ala 205	Glu	Gln	Thr
Arg	Leu 210	Tyr	Gln	Asn	Pro	Thr 215	Thr	Туr	Ile	Ser	Ile 220	Gly	Thr	Ser	Thr
Leu 225	Asn	Gln	Arg	Leu	Val 230	Pro	Lys	Ile	Ala	Thr 235	Arg	Ser	Lys	Val	Asn 240
Gly	Gln	Ser	Gly	Arg 245	Met	Glu	Phe	Phe	Trp 250	Thr	Ile	Leu	Lys	Pro 255	Asn
Asp	Ala	Ile	Asn 260	Phę	Glu	Ser	Asn	Gly 265	Asn	Phe	Ile	Ala	Pro 270	Glu	Tyr
Ala	Tyr	Lys 275	Ile	Val	Lys	Lys	Gly 280	Asp	Ser	Ala	Ile	Met 285	Lys	Ser	Glu
Leu	Glu 290	Tyr	Gly	Asn	Суз	As n 295	Thr	Lys	Суз	Gln	Thr 300	Pro	Met	Gly	Ala
Ile 305	Asn	Ser	Ser	Met	Pro 310	Phe	His	Asn	Ile	His 315	Pro	Leu	Thr	Ile	Gly 320
Glu	Cys	Pro	Lys	Tyr 325	Val	Lys	Ser	Asn	Arg 330	Leu	Val	Leu	Ala	Thr 335	Gly
Leu	Arg	Asn	Ser 340	Pro	Gln	Arg	Glu	Ser 345	Arg	Arg	Lys	Lys	Arg 350	Gly	Leu
Phe	Gly	Ala 355	Ile	Ala	Gly	Phe	Ile 360	Glu	Gly	Gly	Trp	Gln 365	Gly	Met	Val
Asp	Gly 370	Trp	Tyr	Gly	Туr	His 375	His	Ser	Asn	Glu	Gln 380	Gly	Ser	Gly	туг
Ala 385	Ala	Asp	Lys	Glu	Ser 390	Thr	Gln	Lys	Ala	Ile 395	Asp	Gly	Val	Thr	Asn 400
Lys	Val	Asn	Ser	Ile 405	Ile	Asp	Lys	Met	Asn 410	Thr	Gln	Phe	Glu	Ala 415	Val
Gly	Arg	Glu	Phe 420	Asn	Asn	Leu	Glu	Arg 425	Arg	Ile	Glu	Asn	Leu 430	Asn	Lys

Lys	Met	Glu 435	Asp	Gly	Phe	Leu	Asp 440	Val	Trp	Thr	Tyr	Asn 445	Ala	Glu	Le
Leu	Val 450	Leu	Met	Glu	Asn	Glu 455	Arg	Thr	Leu	Asp	Phe 460	His	Asp	Ser	Ası
Val 465	Lys	Asn	Leu	Tyr	Asp 470		Val	Arg	Leu	Gln 475	Leu	Arg	Asp	Asn	Ala 480
Lys	Glu	Leu	Gly	Asn 485	Gly	Cys	Phe	Glu	Phe 490	туг	His	Lys	Cys	Asp 495	Ası
Glu	Сув	Met	Glu 500	Ser	Ile	Arg	Asn	Gly 505	Thr	Tyr	Asn	Tyr	Pro 510	Gln	Ту
Ser	Glu	Glu 515	Ala	Arg	Leu	Lys	Arg 520	Glu	Glu	Ile	Ser	Gly 525	Val	Lys	Lei
Glu	Ser 530	Ile	Gly	Thr	Tyr	Gln 535	Ile	Leu	Ser	Ile	Tyr 540	Ser	Thr	Val	Ala
Ser 545	Ser	Leu	Ala	Leu	Ala 550	Ile	Met	Met	Ala	Gly 555	Leu	Ser	Leu	Trp	Me1
Cyś	Ser	Asn	Gly	Ser 565	Leu	Gln	Cys	Arg	Ile 570		Ile				
<210><211><211><212><213>	570 PRT	onocio	do												
<220> <223>		-hac-s	ph9-oi	ot											
<400>															
Met 1	Glu	Thr	Ile	Ser 5	Leu	Ile	Thr	Ile	Leu 10	Leu	Val	Val	Thr	Ala 15	Sei
Asn	Ala	Asp	Gln 20	Ile	Cys	Ile	Gly	Tyr 25	His	Ala	Asn	Asn	Ser 30	Thr	Glu
Gln	Val	Asp 35	Thr	Ile	Met	Glu	Lys 40	Asn	Val	Thr	Val	Thr 45	His	Ala	Gl
Asp	Ile 50	Leu	Glu	Lys	Thr	His 55	Asn	Gly	Lys	Leu	Cys 60	Asp	Leu	Asp	Gly

Val 65	Lys	Pro	Leu	Ile	Leu 70	Arg	Asp	Cys	Ser	Val 75	Ala	Gly	Trp	Leu	Leu 80
Gly	Asn	Pro	Met	Cys 85	Asp	Glu	Phe	Ile	Asn 90	Val	Pro	Glu	Trp	Ser 95	Туг
Ile	Val	Glu	Lys 100	Ala	Asn	Pro	Thr	Asn 105	Asp	Leu	Cys	Туг	Pro 110	Gly	Ser
Phe	Asn	Asp 115	Tyr	Glu	Glu	Leu	Lys 120	His	Leu	Leu	Ser	Arg 125	Ile	Asn	His
Phe	Glu 130	Lys	Ile	Gln	Ile	Ile 135	Pro	Lys	Ser	Ser	Trp 140	Ser	Asp	His	Glu
Ala 145	Ser	Ser	Gly	Val	Ser 150	Ser	Ala	Cys	Pro	Туг 155	Leu	Gly	Ser	Pro	Ser 160
Phe	Phe	Arg	Asn	Val 165	Val	Trp	Leu	Ile	Lys 170	Lys	Asn	Ser	Thr	Tyr 175	Pro
Thr	Ile	Lys	Lys 180	Ser	туг	Asn	Asn	Thr 185	Asn	Gln	G l u	Asp	Leu 190	Leu	Val
Leu	Trp	Gly 195	Ile	His	His	Pro	Asn 200	Asp	Ala	Ala	Glu	Gln 205	Thr	Arg	Leu
Tyr	Gln 210	Aşn	Pro	Thr	Thr	Tyr 215	Ile	Ser	Ile	Gly	Thr 220	Ser	Thr	Leu	Asn
Gln 225	Arg	Leu	Val	Pro	Lys 230	Ile	Ala	Thr	Arg	Ser 235	Lys	Val	Asn	Gly	Gln 240
Ser	Gly	Arg	Met	Gl u 245	Phe	Phe	Trp	Thr	Ile 250	Leu	Lys	Pro	Asn	Asp 255	Ala
Ile	Asn	Phe	Glu 260	Ser	Asn	Gly	Asn	Phe 265	Ile	Ala	Pro	Glu	Tyr 270	Ala	Tyr
Lys	Ile	Val 275	Lys	ŗ'na	Gly	Asp	Ser 280	Ala	Ile	Met	Lys	Ser 285	Glu	Leu	Glu
Tyr	Gly 290	Asn	Сув	Asn	Thr	Lys 295	Суз	Gln	Thr	Pro	Met 300	Gly	Ala	Ile	Asn

Ser 305	Ser	Met	Pro	Phe	His 310	Asn	Ile	His	Pro	Leu 315	Thr	Ile	Gly	Glu	Cys 320
pro	Lys	туг	Val	Lys 325	Ser	Asn	Arg	Leu	Val 330	Leu	Ala	Thr	Gly	Leu 335	Arg
Asn	Ser	Pro	Gln 340	Arg	Glu	Ser	Arg	Arg 345	Lys	Lys	Arg	Gly	Leu 350	Phe	Gly
Ala	Ile	Ala 355	Gly	Phe	Ile	Glu	Gly 360	Gly	Trp	Gln	Gly	Met 365	Val	Asp	Gly
Trp	Tyr 370	Gly	Tyr	His	His	Ser 375	Asn	Glu	Gln	Gly	Ser 380	Gly	Tyr	Ala	Ala
Asp 385	Lys	Glu	Ser	Thr	Gln 390	Lys	Ala	Ile	Asp	Gly 395	Va]	Thr	Asn	Lys	Val 400
Asn	Ser	Ile	Ile	Asp 405	Lys	Met	Aşn	Thr	Gln 410	Phe	Glu	Ala	val	Gly 415	Arg
Glu	Phe	Asn	Asn 420	Leu	Glu	Arg	Arg	Ile 425	Glu	Asn	Leu	Asn	Lys 430	Lys	Met
Glu	Asp	Gly 435	Phe	Leu	Asp	Val	Trp 440	Thr	Tyr	Asn	Ala	Glu 445	Leu	Leu	Val
Leu	Met 450	Glu	Asn	Glu	Arg	Thr 455	Leu	Asp	Phe	His	Asp 460	Ser	Asn	Val	Lys
Asn 465	Leu	Tyr	Asp	Lys	Val 470	Arg	Leu	Gln	Leu	Arg 475	Asp	Asn	Ala	Lys	Glu 480
Leu	Gly	Asn	Gly	Cys 485	Phe	Glu	Phe	Tyr	His 490	Lys	Cys	Asp	Asn	Glu 495	Cys
Met	Glu	Ser	Ile 500	Arg	Asn	Gly	Thr	Tyr 505	Asn	Tyr	Pro	Gln	Туг 510	Ser	Glu
Glu	Ala	Arg 515	Leu	Lys	Arg	Ģlu	Glu 520	Ile	Ser	Gly	Val	Lys 525	Leu	Glu	Ser
Ile	Gly 530	Thr	Tyr	Gln	Ile	Leu 535	Ser	Ile	Tyr	Ser	Thr 540	Val	Ala	Ser	Ser

Leu Ala Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser

5

10

545 Asn Gly Ser Leu Gln Cys Arg Ile Cys Ile 565 <210> 30 <211>564 <212> PRT <213> Desconocido <220> <223> Vac2-hac-cs-opt <400>30 Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val 20 25 30 Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile . 40 Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn 70 Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val Glu Lys Ala Asn Pro Thr Asn Asp Leu Cys Tyr Pro Gly Ser Phe Asn , 100 105 Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu 115 120 Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Asp His Glu Ala Ser 135 Ser Gly Val Ser Ser Ala Cys Pro Tyr Leu Gly Ser Pro Ser Phe Phe 150 155 Arg Asn Val Val Trp Leu Ile Lys Lys Asn Ser Thr Tyr Pro Thr Ile 170

Lys	Lys	Ser	Туг 180	Asn	Asn	Thr	Asn	Gln 185	Glu	Asp	Leu	Leu	Val 190	Leu	Trp
Gly	Ile	His 195	His	Pro	Asn	Asp	Ala 200	Ala	Glu	Gln	Thr	Arg 205	Leu	Tyr	Gln
Asn	Pro 210	Thr	Thr	Tyr	Ile	Ser 215	Ile	Gly	Thr	Ser	Thr 220	Leu	Asn	Gln	Arg
Leu 225	Val	Pro	Lys	Ile	Ala 230	Thr	Arg	Ser	•	Val 235	Asn	Gly	Gln	Ser	Gly 240
Arg	Met	Glu	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asn
Phe	Glu	Ser	Asn 260	Gly	Asn	Phe	Ile	Ala 265	Pro	Glu	Tyr	Ala	Tyr 270	Lys	Ile
Val	Lys	Lys 275	Gly	Asp	Ser	Ala	Ile 280	Met	Lys	Ser	Glu	Leu 285	Glu	Tyr	Gly
Aşn	Cys 290	Asn	Thr	Lys	Cys	Gln 295	Thr	Pro	Met	Gly	Ala 300	Ile	Asn	Ser	Ser
Met 305	Pro	Phe	His	Asn	Ile 310	His	Pro	Leu	Thr	Ile 315	Gly	Glu	Cys	Pro	Lys 320
Tyr	Val	Lys	Ser	Asn 325	Arg	Leu	Val	Leu	Ala 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Gln	Arg	Glu 340	Ser	Arg	Gly	Leu	Phe 345	Gly	Ala	Ile	Ala	Gly 350	Phe	Ile
Glu	Gly	Gly 355	Trp	Gln	Gly	Met	Val 360	Asp	Gly	Trp	Tyr	Gly 365	Tyr	His	His
Ser	Asn 370	Glu	Gln	Gly	Ser	Gly 375	туг	Ala	Ala	Asp	Lys 380	Glu	Ser	Thr	Gln
Lys 385	Ala	Ile	Asp	Gly	Val 390	Thr	Asn	Lys	Val	Asn 395	Ser	Ile ·	Ile	Asp	Lys 400
Met	Asn	Thr	Gln	Phe 405	Glu	Ala	Val	Gly	Arg 410	Glu	Phe	Asn	Asn	Leu 415	Glu

A~~	Arg	Tle	Gl v	Aen	Lev	Den	lare	Tav≈	Met	G111	Aen	G1v	Dhe	T.eu	Acn
ura	urā	116	420	UĐII	PER	nau	nys	425	·	υz.u	vaħ	GIÀ	430	Ten	wah
Val	Trp	Thr 435	Tyr	Asn	Ala	Glu	Leu 440	Leu	Val	Leu	Met	Glu 445	Asn	Glu	Arg
Thr	Leu 450	Asp	Phe	His	Asp	Ser 455	Asn	Val	Ъуз	Asn	Leu 460	Tyr	Asp	Lys	Val
Arg 465	Leu	Gln	Leu	Arg	Asp 470	Asn	Ala	Lys	Glu	Leu 475	Gly	Asn	Gly	Cys	Phe 480
Glu	Phe	Tyr	His	Lys 485	Cys	Asp	Asn	Glu	Cys 490	Met	Glu	Ser	Ile	Arg 495	Asn
Gly	Thr	Tyr	Asn 500	Туг	Pro	Gln	Tyr	Ser 505	Glu	Glu	Ala	Arg	Leu 510	Lys	Arg
Glu	Glu	Ile 515	Ser	Gly	Val	Lys	Leu 520	Glu	Ser	Ile	Gly	Thr 525	Tyr	Gln	Ile
Leu	Ser 530	Ile	Tyr	Ser	Thr	Val 535	Ala	Ser	Ser	Leu	Ala 540	Leu	Ala	Ile	Met
Met 545	Ala	Gly	Leu	Ser	Leu 550	Trp	Met	Cys	Ser	Asn 555	Gly	Ser	Leu	Gln	Cys 560
Arg	Ile	Cys	Ile												
<210> <211> <212> <213>	449 PRT	nocid	0												
<220> <223>	Vac2-	naj-op	t												
<400>	31														
Met 1	Asn	Pro	Asn	Gln 5	Lys	Ile	Ile	Thr	Ile 10	Gly	Ser	Ile	Cys	Met 15	Val
Ile	Gly	Ile	Val 20	Ser	Leu	Met	Leu	Gln 25	Ile	Gly	Asn	Met	Ile 30	Ser	Ile
Trp	Val	Ser 35	His	Ser	Ile	Gln	Thr 40	Gly	Asn	Gln	His	Gln 45	Ala	Glu	Ser

Ile	Ser 50	Asn	Thr	Asn	Pro	Leu 55	Thr	Glu	Lys	Ala	Val 60	Ala	Ser	Val	Thr
Leu 65	Ala	Gly	Asn	Ser	Ser 70	Leu	Суѕ	Pro	Ile	Arg 75	Gly	Trp	Ala	Val	His 80
Ser	Lys	Asp	Asn	Asn 85	Ile	Arg	Ile	Gly	Ser 90	Lys	Gly	Asp	Val	Phe 95	Val
Ile	Arg	Glu	Pro 100	Phe	Ile	Ser	Cys	Ser 105	His	Leu	Glu	Cys	Arg 110	Thr	Phe
Phe	Leu	Thr 115	Gln	Gly	Ala	Leu	Leu 120	Asn	Asp	Lys	His	Ser 125	Asn	Gly	Thr
Val	Lys 130	Asp	Arg	Ser	Pro	His 135	Arg	Thr	Leu	Met	Ser 140	Cys	Pro	Val	Gly
Glu 145	Ala	Pro	Ser	Pro	Tyr 150	Asn	Ser	Arg	Phe	Glu 155	Ser	Val	Ala	Trp	Ser 160
Ala	Ser	Ala	Cys	His 165	Asp	Gly	Thr	Ser	Trp 170	Leu	Thr	Ile	Gly	Ile 175	Ser
Gly	Pro	Asp	Asn 180	Glu	Ala	Val	Ala	Val 185	Leu	Lys	туг	Asn	Gly 190	Ile	Ile
Thr	Asp	Thr 195	Ile	Lys	Ser	Trp	Arg 200	Asn	Asn	Ile	Leu	Arg 205	Thr	Gln	Glu
Ser	Glu 210	Cys	Ala	Cys	Val	Asn 215	Gly	Ser	Сув	Phe	Thr 220	Val	Met	Thr	Asp
Gly 225	Pro	Ser	Asp	Gly	Gln 230	Ala	Ser	Туг	Lys	Ile 235	Phe	Lys	Met	Glu	Lys 240
Glγ	Lys	Val	Val	Lys 245	Ser	Val	Glu	Leu	Asp 250	Ala	Pro	Asn	Tyr	His 255	Tyr
Glu	Glu	Cys	Ser 260	Cys	Tyr	Pro	Asp	Ala 265	Gly	Glu	Ile	Thr	Сув 270	Val	Cys
Arg	Asp	Asn 275	Trp	His	Gly	Ser	Asn 280	Arg	Pro	Trp	Val	Ser 285	Phe	Asn	Gln

Ser	Gly	Pro	Leu 20	Lys	Ala	Glu	Ile	Ala 25	Gln	Lys	Leu	Glu	Asp	Val	Phe
Met 1	Ser	Leu	Leu	Thr 5	Glu	Val	Glu	Thr	Tyr 10	Val	Leu	Ser	Ile	11e 15	Pro
<400>	32														
<220> <223>		-mc-o	pt												
<210> <211> <212> <213>	252 PRT	onocio	do												
Lys															
Val	Ser	Trp 435	Ser	Trp	Pro	Asp	Gly 440	Ala	Glu	Leu	Pro	Phe 445	Thr	Ile	Asp
Trp	Thr	Ser	Gly 420	Ser	Ser	Ile	Ser	Phe 425	Cys	Gly	Val	Asn	Ser 430	Ąsp	Thr
Сув	Phe	Trp	Val	Glu 405	Leu	Ile	Arg	Gly	Arg 410	Pro	Lys	Glu	Ser	Thr 415	Ile
Ser 385	Phe	Val	Gln	His	Pro 390	Glu	Leu	Thr	Gly	Leu 395	Asp	Cys	Ile	Arg	Pro 400
Val	Lys 370	Gln	Asp	Ile	Val	Ala 375	Ile	Thr	Asp	Trp	Ser 380	Gly	Tyr	Ser	Gly
Met	Ile	Trp 355	Asp	Pro	Asn	Gly	Trp 360	Thr	Gly	Thr	Asp	Ser 365	Ser	Phe	Ser
Val	Trp	Ile	Gly 340	Arg	Thr	Lys	Ser	Thr 345	Asn	Ser	Arg	Ser	Gly 350	Phe	Glu
Asn	Gly	Ala	туr	Gly 325	Val	Lys	Gly	Phe	Ser 330	Phe	Lys	Tyr	Gly	Asn 335	Gly
Asn 305	Pro	Arg	Pro	Asn	Asp 310	Gly	Thr	Gly	Ser	Cys 315	Gly	Pro	Met	Ser	Pro 320
Asn	Leu 290	Glu	Tyr	Gln	Ile	G1y 295	Tyr	Ile	Суз	Ser	Gly 300	Val	Phe	Gly	Asp

Ala	Gly	Lys 35	Asn	Thr	Asp	Leu	Glu 40	Ala	Leu	Met	Glu	Trp 45	Leu	Lys	Thr
Arg	Pro 50	Ile	Leu	Ser	Pro	Leu 55	Thr	Lys	Gly	Ile	Leu 60	Gly	Phe	Val	Phe
Thr 65	Leu	Thr	Val	Pro	Ser 70	Glu	Arg	Gly	Leu	Gln 75	Arg	Arg	Arg	Phe	Val 80
Gln	Asn	Ala	Leu	Asn 05	Gly	Asn	Gly	Asp	Pro 90	Asn	Asn	Met	Asp	Arg 95	Ala
Val	Lys	Leu	Tyr 100	Lys	Lys	Leu	Lys	Arg 105	Glu	Ile	Thr	Phe	His 110	Gly	Ala
Lys	Glu	Val 115	Ser	Leu	Ser	Tyr	Ser 120	Thr	Gly	Ala	Leu	Ala 125	Ser	Суѕ	Met
Gly	Leu 130	Ile	Туг	Asn	Arg	Met 135	Gly	Thr	Val	Thr	Thr 140	Glu	Val	Ala	Phe
Gly 145	Leu	Val	Cys	Ala	Thr 150	Сув	Glu	Gln	Ile	Ala 155	Asp	Ser	Gln	His	Arg 160
				165					170		Leu			175	
			180					185		-	Ala		190		
		195					200				Glu	205			
	210					215					Gly 220				
225					230					235	Asn	Leu.	G1n	Ala ·	Tyr 240
GIN	Lys	Arg	met	G1y 245	vaı	GIN	Met	GTU	Arg 250	rne	гÀз				

<210> 33

<211> 564 <212> PRT

<213> Desconocido

5

<220> <223> VN1203-ha-CS-opt

<400>33

- Met Glu Lys Ile Val Leu Leu Phe Ala Ile Val Ser Leu Val Lys Ser 1 5 10 15
- Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val 20 25 30
- Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile 35 40 45
- Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys 50 55 60
- Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn 65 70 75 80
- Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val 85 90 95
- Glu Lys Ala Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asp Phe Asn 100 105 110
- Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu 115 120 125
- Lys Ile Gln Ile Ile Pro Lys Asn Ser Trp Ser Ser His Glu Ala Ser 130 135 140
- Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Lys Ser Ser Phe Phe 145 150 155 160
- Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Ala Tyr Pro Thr Ile 165 170 175
- Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val Leu Trp 180 185 190
- Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu Tyr Gln 195 200 205
- Asn Pro Thr Thr Tyr Ile Ser Val Gly Thr Ser Thr Leu Asn Gln Arg 210 215 220

Leu 225	Val	Pro	Lys	Ile	Ala 230	Thr	Arg	Ser	Lys	Val 235	Asn	Gly	Gln	Asn	Gly 240
Arg	Met	Glu	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asn
Phe	Glu	Ser	Asn 260	Gly	Asn	Phe	Ile	Ala 265	Pro	Glu	Туr	Ala	Tyr 270	Lys	Ile
Val	Lys	Lys 275	Gly	Asp	Ser	Ala	Ile 280	Met	Lys	Ser	Glu	Leu 285	Glu	Tyr	Gly
Asn	Cys 290	Asn	Thr	Lys	Cys	Gln 295	Thr	Pro	Met	Gly	Ala 300	Ile	Asn	Ser-	Ser
Met 305	Pro	Phe	His	Asn	Ile 310	His	Pro	Leu	Thr	Ile 315	Gly	Glu	Cys	Pro	Lys 320
Tyr	Val	Lys	Ser	Asn 325	Arg	Leu	Val	Leu	Äla 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Gln	Arg	Glu 340	Thr	Arg	Gly	Leu	Phe 345	Gly	Ala	Ile	Ala	Gly 350	Phe	Ile
Glu	Gly	Gly 355	Trp	Gln	Gly	Met	Val 360	Asp	Gly	Trp	Туr	Gly 365	Tyr	His	His
Ser	Asn 370	Glu	Gln	Gly	Ser	Gly 375	Tyr	Ala	Ala	Asp	Lys 380	Glu	Ser	Thr	Gln
185 385	Ala	Ile	Asp	Gly	Val 390	Thr	Asn	Lys	Val	Aen 395	Ser	Ile	Ile	Asp	Lys 400
Met	Asn	Thr	Gln	Phe 405	Glu	Ala	Val	Gly	Arg 410	Glu	Phe	Asn	Asn	Leu 415	Glu
Arg	Arg	Ile	Glu 420	Asn	Leu	Asn	Lys'	Lys 425	Met	Glu	Asp	Gly	Phe 430	Leu	Asp
Val	Trp	Thr 435	Tyr	Asn	Ala	Glu	Leu 440	Leu	Val	Leu	Met	Glu 445	Asn	Glu	Arg
Thr	Leu 450	Asp	Phe	His	Asp	Ser 455	Asn	Val	Lys	Asn	Leu 460	Tyr	Asp	Lys	Va1

Arg 465	Leu	Gln	Leu	Arg	Asp 470	Asn	Ala	Lys	Glu	Leu 475	Gly	Asn	Gly	Cys	Phe 480
Glu	Phe	Tyr	His	Lys 485	Cys	Asp	Asn	Glu	Cys 490	Met	Glu	Ser	Val	Arg 495	Asn
Gly	Thr	Tyr	Asp 500	Tyr	Pro	Gln	Tyr	Ser 505	Glu	Glu	Ala	Arg	Leu 510	Lys	Arg
Glu	Glu	Ile 515	Ser	Gly	Val	Lys	Le u 520	Glu	Ser	Ile	Gly	Thr 525	Tyr	Gln	Ile
Leu	Ser 530	Ile	Tyr	Ser	Thr	Val 535	Ala	Ser	Ser	Leu	Ala 540	Leu	Ala	Ile	Met
Val 545	Ala	Gly	Leu	Ser	Leu 550	Trp	Met	Сув	Ser	Asn 555	Gly	Ser	Leu	Gln	Cys 560
Arg	Ile	Сув	Ile			-									
<210> <211> <212> <213>	572 PRT	nocid	0												
		n loola	J												
<220> <223>				ot											
<220>	VN120			ot											
<220> <223> <400>	VN120	03-ha-	spc-op		Leu	Leu	Asn	Val	Leu 10	Trp	Leu	Val	Ala	Val 15	Ser
<220> <223> <400> Met 1	VN120 34	03-ha- Leu	spc-op	Lys 5					10	_				15	
<220> <223> <400> Met 1	VN120 34 Pro)3-ha- Leu Ile	Tyr Pro	Lys 5 Asp	Gln	Ile	Cys	11e 25	Gly	Tyr	His	Ala	Asn 30	15 Asn	Ser
<220><223><400> Met 1 Asn Thr	VN120 34 Pro Ala	Leu Ile Gln 35	Tyr Pro 20 Val	Lys 5 Asp	Gln Thr	Ile Ile	Cys Met 40	Ile 25 Glu	10 Gly Lys	Tyr	His Val	Ala Thr 45	Asn 30 Val	15 Asn Thr	Ser His
<220><223><400> Met 1 Asn Thr	VN120 34 Pro Ala Glu Gln	Leu Ile Gln 35	Tyr Pro 20 Val	Lys 5 Asp Asp	Gln Thr	Ile Ile Lys 55	Cys Met 40	Ile 25 Glu His	Gly Lys Asn	Tyr Asn Gly	His Val Lys 60	Ala Thr 45 Leu	Asn 30 Val Cys	Asn Thr Asp	Ser His Leu

Ser	туг	Ile	Val 100	Glu	Lys	Ala	Asn	Pro 105	Ala	Asn	Asp	Leu	Cys 110	Tyr	Pro
Gly	Asp	Phe 115	Asn	Asp	туг	Glu	Glu 120	Leu	Lys	His	Leu	Leu 125	Ser	Arg	lle
Asn	His 130	Phe	Glu	Lys	Ile	Gln 135	Ile	Ile	Pro	Lys	As n 140	Ser	Trp	Ser	Ser
His 145	Glu	Ala	Ser	Leu	Gly 150	Val	Ser	Ser	Ala	Cys 155	Pro	Tyr	Gln	Gly	Lys 160
Ser	Ser	Phe	Phe	Arg 165	Asn	Val	Val	Trp	Leu 170	Ile	Lys	Lys	Asn	Asn 175	Ala
Tyr	Pro	Thr	Ile 180	Lys	Arg	Ser	Туг	Asn 185	Asn	Thr	Asn	Gln	Glu 190	Asp	Leu
Leu	Val	Leu 195	Trp	Gly	Ile	His	His 200	Pro	Asn	Asp	Ala	Ala 205	Glu	Gln	Thr
Arg	Leu 210	Tyr	Gln	Asn	Pro	Thr 215	Thr	Туг	Ile	Ser	Val 220	Gly	Thr	Ser	Thr
Leu 225	Asn	Gln	Arg	Leu	Val 230	Pro	Lys	Ile	Ala	Thr 235	Arg	Ser	Lys	Val	Asn 240
Gly	Gln	Asn	Gly	Arg 245	Met	Glu	Phe	Phe	Trp 250	Thr	Ile	Leu	Lys	Pro 255	Asn
Asp	Ala	Ile	Asn 260	Phe	Glu	Ser	Asn	Gly 265	Asn	Phe	Ile	Ala	Pro 270	Glu	туг
Ala	Tyr	Lys 275	Ile	Val	Lys	Lys	Gly 280	Asp	Ser	Ala	Ile	Met 285	Lys	Ser	Glu
Leu	Glu 290	Tyr	Gly	Asn	Сув	Asn 295	Thr	Lys	Cys	Gln	Thr 300	Pro	Met	Gly	Ala
Ile 305	Asn	Ser	Ser	Met	Pro 310	Phe	His	Asn	Ile	His 315	Pro	Leu	Thr	Ile	Gly 320
Glu	Cys	Pro	Lys	Tyr 325	Val	Lys	Ser	Asn	Arg 330	Leu	Val	Leu	Ala	Thr	Gly

Leu	Arg	Asn	Ser 340	Pro	Gln	Arg	Glu	Arg 345	Arg	Arg	Lys	Lys	Arg 350	Gly	Leu
Phe	Gly	Ala 355	Ile	Ala	Gly	Phe	Ile 360	Glu	Gly	Gly	Trp	Gln 365	Gly	Met	Val
Asp	Gly 370	Trp	Tyr	Gly	туг	His 375	His	Ser	Asn	Glu	Gln 380	Gly	Ser	Gly	туr
Ala 385	Ala	Asp	Lys	Glu	Ser 390	Thr	Gln	Lys	Ala	Ile 395	Asp	Gly	Val	Thr	Asn 400
Lys	Val	Asn	Ser	Ile 405	Ile	Asp	Lys	Met	Asn 410	Thr	Gln	Phe	Glu	Ala 415	Val
Gly	Arg	Glu	Phe 420	Asn	Asn	Leu	Glu	Arg 425	Arg	Ile	Glu	Asn	Leu 430	Asn	Lys
Lys	Met	Glu 435	Asp	Gly	Phe	Leu	Asp 440	Val	Trp	Thr	Туг	Asn 445	Ala	Glu	Leu
Leu	Val 450	Leu	Met	Glu	Asn	Glu 455	Arg	Thr	Leu	Asp	Phe 460	His	Asp	Ser	Asn
Val 465	Lys	Asn	Leu	Tyr	Asp 470	Lys	Val	Arg	Leu	Gln 475	Leu	Arg	Asp	Asn	Ala 480
Lys	Glu	Leu	Gly	Asn 485	Gly	Cys	Phe	Glu	Phe 490	Tyr	His	Lys	Cys	Asp 495	Asn
Glu	Cys	Met	Glu 500	Ser	Val	Arg	Asn	Gly 505	Thr	Tyr	Asp	Tyr	Pro 510	Gln	Tyr
Ser	Glu	Glu 515	Ala	Arg	Leu	Lys	Arg 520	Glu	Glu	Ile	Ser	Gly 525	Val	Lys	Leu
	Ser 530	Ile	Gly	Thr	Tyr	Gln 535	Ile	Leu	Ser	Ile	Tyr 540	Ser	Thr	Val	Ala
Ser 545	Ser	Leu	Ala	Leu	Ala 550	Ile	Met	Val	Ala	Gly 555	Leu	Ser	Leu	Trp	Met 560
Сув	Ser	Asn	Gly	Ser 565	Leu	Gln	Cys	Arg	Ile 570	Cys	Ile				

<210> 35 <211> 570 <212> PRT

_	_	_	
n	n	n	

5

<223> VN1203-ha-sph9-opt

<400>35

Met Glu Thr Ile Ser Leu Ile Thr Ile Leu Leu Val Val Thr Ala Ser

1 10 15

Asn Ala Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu 20 25 30

Gln Val Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln 35 40 45

Asp Ile Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly 50 60

Val Lys Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu 65 70 75 80

Gly Asn Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr 85 90 95

Ile Val Glu Lys Ala Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asp 100 105 110

Phe Asn Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His 115 120 125

Phe Glu Lys Ile Gln Ile Ile Pro Lys Asn Ser Trp Ser Ser His Glu 130 135 140

Ala Ser Leu Gly Val Ser Ser Ala Cys Pro Tyr Gln Gly Lys Ser Ser 145 150 155 160

Phe Phe Arg Asn Val Val Trp Leu Ile Lys Lys Asn Asn Ala Tyr Pro 165 170 175

Thr Ile Lys Arg Ser Tyr Asn Asn Thr Asn Gln Glu Asp Leu Leu Val 180 185 190

Leu Trp Gly Ile His His Pro Asn Asp Ala Ala Glu Gln Thr Arg Leu 195 200 205

Tyr	Gln 210	Asn	Pro	Thr	Thr	Tyr 215	Ile	Ser	Val	Gly	Thr 220	Ser	Thr	Leu	Asn
Gln 225	Arg	Leu	Val	Pro	Lys 230	Ile	Ala	Thr	Arg	Ser 235	Lys	Val	Asn	Gly	Gln 240
Asn	Gly	Arg	Met	Glu 245	Phe	Phe	Trp	Thr	Ile 250	Leu	Lys	Pro	Asn	Asp 255	Ala
Ile	Asn	Phe	Glu 260	Ser	Asn	Gly	Asn	Phe 265	Ile	Ala	Pro	Glu	Tyr 270	Ala	Tyr
Lys	Ile	Val 275	Lys	Lys	Gly	Asp	Ser 280	Ala	Ile	Met	Lys	ser 285	Glu	Leu	Glu
Tyr	Gly 290	Asn	Сув	Asn	Thr	Lys 295	Суз	Gln	Thr	Pro	Met 300	Gly	Ala	Ile	Asn
Ser 305	Ser	Met	Pro	Phe	His 310	Asn	Ile	His	Pro	Leu 315	Thr	Ile	Gly	Glu	Cys 320
Pro	Lys	Tyr	Val	Lys 325	Ser	Asn	Arg	Leu	Val 330	Leu	Ala	Thr	Gly	Leu 335	Arg
Asn	Ser	Pro	Gln 340	Arg	Glu	Arg	Arg	Arg 345	Lys	Lys	Arg	Gly	Leu 350	Phe	Gly
Ala	Ile	Ala 355	Gly	Phe	Ile	Glu	Gly 360	Gly	Trp	Gln	Gly	Met 365	Val	Asp	Glγ
Trp	Tyr 370	Gly	Tyr	His	His	Ser 375	Asn	Glu	Gln	Gly	Ser 380	Gly	туг	Ala	Ala
Asp 385	Lys	Glu	Ser	Thr	Gln 390	Lys	Ala	Ile	Asp	Gly 395	Val	Thr	Asn	Lys	Val 400
Asn	Ser	Ile	Ile	Asp 405	Lys	Met	Asn	Thr	Gln 410	Phe	Glu	Ala	Val	Gly 415	Arg
Glu	Phe	Asn	Asn 420	Leu	Glu	Arg	Arg	Ile 425	Glu	Asn	Leu	Asn	Lys 430	Lys	Met
Glu	Asp	Gly 435	Phe	Leu	Asp	Val	Trp 440	Thr	Tyr	Asn	Ala	Glu 445	Leu	Leu	Val
Leu	Met	Glu	Asn	Glu	Arg	Thr	Leu	Asp	Phe	His	Asp	Ser	Asn	Val	Lys

	450					455					460					
Asn 465	Leu	туг	Asp	Lys	Val 470	Arg	Leu	Gln	Leu	Arg 475	Asp	Asn	Ala	Lys	Glu 480	
Leu	Gly	Asn	Gly	Cys 485	Phe	Glu	Phe	Туг	His 490	Lys	Cys	Asp	Asn	Glu 495	Cys	
Met	Glu	Ser	Val 500	Arg	Asn	Gly	Thr	Tyr 505	Asp	Tyr	Pro	Gln	Туг 510	Ser	Glu	
Glu	Ala	Arg 515		Lys	Arg	Glu	Glu 520	Ile	Ser	Gly	Val	Lys 525	Leu	Glu	Ser	
Ile	Gly 530	Thr	Tyr	Gln	Ile	Leu 535	Ser	Ile	Туг	Ser	Thr 540	Val	Ala	Ser	Ser	
Leu 545	Ala	Leu	Ala	Ile	Met 550	Val	Ala	Gly	Leu	Ser 555	Leu	Trp	Met	Суз	Ser 560	
Asn	Gly	Ser	Leu	Gln 565	Çys	Arg	Ile	Суѕ	Ile 570							
<210><211><211><212><213>	1707 ADN	de la	gripe													
<400>	36															
atgg	jagaa	aa t	agtg	cttc	t tt	ttgc	aata	gtça	gtct	tg t	taaa	agtg.	a tc	agati	ttgc	60
attg	gtta	icc a	tgca	.aaca	a ct	cgac	agag	cago	jttga	ıca c	aata	atgg	a aa	agaa	egtt	120
acto	jttac	ac a	tgcc	caag	a ca	tact	ggaa	aaga	aaca	ıca a	cggg	aagc	t ct	gcgai	tcta	180
gate	gagt	ga a	gcct	ctaa	t tt	tgag	agat	tgta	gegt	ag c	tgga	tggc	t cc	tegga	aaac	240
ccaa	tgtg	jtg a	cgaa	ttca	t ca	atgt	gccg	gaat	ggto	tt a	cata	gtgg.	a ga	aggc	caat	300
ccag	jtcaa	itg a	cctc	tgtt	a cc	cagg	ggat	ttca	atga	ict a	tgaa	gaat	t ga	aaca	ccta	360

10

5

ttgagcagaa taaaccattt tgagaaaatt cagatcatcc ccaaaagttc ttggtccagt

catgaagcct cattaggggt gagctcagca tgtccatacc agggaaagtc ctccttttc

agaaatgtgg tatggcttat caaaaagaac agtacatacc caacaataaa gaggagctac

aataatacca accaagaaga tottttggta ctgtggggga ttcaccatcc taatgatgcg

gcagagcaga caaagctcta tcaaaaccca accacctata tttccgttgg gacatcaaca

ctaaaccaga gattggtacc aagaatagct actagatcca aagtaaacgg gcaaagtgga

420

480

540

600

660

aggatggagt	tcttctggac	aattttaaag	ccgaatgatg	caatcaactt	cgagagtaat	780
ggaaatttca	ttgctccaga	atatgcatac	aaaattgtca	agaaagggga	ctcaacaatt	840
atgaaaagtg	aattggaata	tggtaactgc	aacaccaagt	gtcaaactcc	aatgggggcg	900
ataaactcta	gcatgccatt	ccacaatata	.caccetetca	ccattgggga	atgececaaa	960
tatgtgaaat	caaacagatt	agtecttgeg	actgggctca	gaaatagccc	tcaaagagag	1020
agaagaagaa	aaaagagagg	attatttgga	gctatagcag	gttttataga	gggaggatgg	1080
caġggaatgg	tagatggttg	gtatgggtac	caccatagca	atgagcaggg	gagtgggtac	1140
gctgcagaca	aagaatccac	tcaaaaggca	atagatggag	tcaccaataa	ggtcaactcg	1200
atcattgaca	aaatgaacac	tcagtttgag	gccgttggaa	gggaatttaa	caacttagaa	1260
aggagaatag	agaatttaaa	caagaagatg	gaagacgggt	tcctagatgt	ctggacttat	1320
aatgctgaac	tte tg gttet	catggaaaat	gagagaactc	tagactttca	tgactcaaat	1380
gtcaagaacc	tttacgacaa	ggtccgacta	cagettaggg	ataatgcaaa	ggagctgggt	1440
aacggttgtt	tcgagttcta	tcataaatgt	gataatgaat	gtatggaaag	tgtaagaaat	1500
ggaacgtatg	actacccgca	gtattcagaa	gaagcgagac	taaaaagaga	ggaaataagt	1560
ggagtaaaat	tggaatcaat	aggaatttac	caaatactgt	caatttattc	tacagtggcg	1620
agttccctag	cactggcaat	catggtagct	ggtctatcct	tatggatgtg	ctccaatgga	1680
tcgttacaat	gcagaatttg	catttaa				1707

5

<210> 37 <211> 1750

<212> ADN

<213> Virus de la gripe

<400>37

60 agtgtgatgg atatetgeag aattegeeet taggegegee atggagaaaa tagtgettet ttttgcaata gtcagtcttg ttaaaagtga tcagatttgc attggttacc atgcaaacaa. 120 ctcgacagag caggttgaca caataatgga aaagaacgtt actgttacac atgcccaaga 180 catactggaa aagaaacaca acgggaagct ctgcgatcta gatggagtga agcctctaat 240 300 tttgagagat tgtagcgtag ctggatggct cctcggaaac ccaatgtgtg acgaattcat 360 caatgtgccg gaatggtctt acatagtgga gaaggccaat ccagtcaatg acctctgtta 420 cccaggggat ttcaatgact atgaagaatt gaaacaccta ttgagcagaa taaaccattt tgagaaaatt cagatcatcc ccaaaagttc ttggtccagt catgaagcct cattaggggt 480 540 gageteagea tgtecatace agggaaagte etcettttte agaaatgtgg tatggettat 600 caaaaagaac agtacatacc caacaataaa gaggagctac aataatacca accaagaaga

tcttttggta	ctgtggggga	ttcaccatcc	taatgatgcg	gcagagcaga	caaagctcta	660
tcaaaaccca	accacctata	tttccgttgg	gacatcaaca	ctaaaccaga	gattggtacc	720
aagaatagct	actagatcca	aagtaaacgg	gcaaagtgga	aggatggagt	tcttctggac	780
aattttaaag	ccgaatgatg	caatcaactt	cgagagtaat	ggaaatttca	ttgctccaga	840
atatgcatac	aaaattgtca	agaaagggga	ctcaacaatt	atgaaaagtg	aattggaata	900
tggtaactgc	aacaccaagt	gtcaaactcc	aatgggggcg	ataaactcta	gcatgccatt	960
ccacaatata	caccctctca	ccattgggga	atgecceaaa	tatgtgaaat	caaacagatt	1020
agteettgeg	actgggctca	gaaatagccc	tcaaagagag	agaagaagaa	aaaagagagg	1080
attatttgga	gctatagcag	gttttataga	gggaggatgg	cagggaatgg	tagatggttg	1140
gtatgggtac	caccatagca	atgagcaggg	gagtgggtac	gctgcagaca	aagaatccac	1200
tcaaaaggca	atagatggag	tcaccaataa	ggtcaactcg	atcattgaca	aaatgaacac	1260
tcagtttgag	gccgttggaa	gggaatttaa	caacttagaa	aggagaatag	agaatttaaa	1320
caagaagatg	gaagacgggt	tcctagatgt	ctggacttat	aatgctgaac	ttetggttet	1380
catggaaaat	gagagaaçtc	tagactttca	tgactcaaat	gtcaagaacc	tttacgacaa	1440
ggtccgacta	cagettaggg	ataatgcaaa	ggagctgggt	aacggttgtt	tcgagttcta	1500
tcataaatgt	gataatgaat	gtatggaaag	tgtaagaaat	ggaacgtatg	actacccgca	1560
gtattcagaa	gaagcgagac	taaaaagaga	ggaaataagt	ggagtaaaat	tggaatcaat	1620
aggaatttac	caaatactgt	caatttattc	tacagtggcg	agttccctag	cactggcaat	1680
catggtagct	ggtctatcct	tatggatgtg	ctccaatggg	tcgttacaat	gcagaatttg	1740
catttaagcg						1750

5

<210> 38 <211> 1350 <212> ADN <213> Virus de la gripe

<400> 38

atgaatccaa atcagaagat aataaccatc ggatcaatct gtatggtaac tggaatagtt 60
agcttaatgt tacaaattgg gaacatgatc tcaatatggg tcagtcattc aattcacaca 120
gggaatcaac accaatctga accaatcagc aatactaatt ttcttactga gaaagctgtg 180
gcttcagtaa aattagcggg caattcatct ctttgcccca ttaacggatg ggctgtatac 240
agtaaggaca acagtataag gatcggttcc aagggggatg tgtttgttat aagagagccg 300
ttcatctcat gctcccactt ggaatgcaga actttcttt tgactcaggg agccttgctg 360
aatgacaagc actccaatgg gactgtcaaa gacagaagcc ctcacagaac attaatgagt 420

tgtcctgtgg	gtgaggetee	ctccccatat	aactcaaggt	ttgagtctgt	tgcttggtca	480
gcaagtgctt	gccatgatgg	caccagttgg	ttgacgattg	gaatttctgg	cccagacaat	540
ggggctgtgg	ctgtattgaa	atacaatggc	ataataacag	acactatcaa	gagttggagg	600
aacaacatac	tgagaactca	agagtetgaa	tgtgcatgtg	taaatggctc	ttgctttact	660
gtaatgactg	acggaccaag	taatggtcag	gcatcacata	agatetteaa	aatggaaaaa	720
gggaaagtgg	ttaaatcagt	cgaattggat	gctcctaatt	atcactatga	ggaatgetee	780
tgttatccta	atgccggaga	aatcacatgt	gtgtgcaggg	ataa tt ggca	tggctcaaat	840
cggccatggg	tatctttcaa	tcaaaatttg	gagtatcaaa	taggatatat	atgcagtgga	900
gttttcggag	acaatccacg	ccccaatgat	ggaacaggta	gttgtggtcc	ggtgtcctct	960
aacggggcat	atggggtaaa	agggttttca	tttaaatacg	gcaatggtgt	ctggatcggg	1020
agaaccaaaa	gcactaattc	caggagcggc	tttgaaatga	tttgggatcc	aaatgggtgg	1080
actgaaacgg	acagtagett	ttcagtgaaa	caagatatcg	tagcaataac	tgattggtca	1140
ggatatagcg	ggagttttgt	ccagcatcca	gaactgacag	gactagattg	cataagacct	1200
tgtttetggg	ttgagttgat	cagagggcgg	cccaaagaga	gcacaatttg	gactagtggg	1260
agcagcatat	ctttttgtgg	tgtaaatagt	gacactgtgg	gttggtcttg	gccagacggt	1320
geegagttge	cattcaccat	tgacaagtag				1350

5

<210> 39 <211> 1400

<212> ADN

<213> Virus de la gripe

<400>39

ccgggatgaa tccaaatcag aagataataa ccatcggatc aatctgtatg gtaactggaa 60 tagttagctt aatgttacaa attgggaaca tgatctcaat atgggtcagt cattcaattc 120 acacagggaa tcaacaccaa tctgaaccaa tcagcaatac taattttctt actgagaaag 180 ctgtggcttc agtaaaatta gcgggcaatt catctctttg ccccattaac ggatgggctg 240 tatacagtaa ggacaacagt ataaggatcg gttccaaggg ggatgtgttt gttataagag 300 ageogtteat eteatgetee eacttggaat geagaacttt etttttgaet eagggageet 360 cgctgaatga caagcactcc aatgggactg tcaaagacag aagccctcac agaacattaa 420 tgagttgtcc tgtgggtgag gctccctccc catataactc aaggtttgag tctgttgctt 480 ggtcagcaag tgcttgccat gatggcacca gttggttgac gattggaatt tctggcccag 540 acaatggggc tgtggctgta ttgaaataca atggcataat aacagacact atcaagagtt 600 660 ggaggaacaa catactgaga actcaagagt ctgaatgtgc atgtgtaaat ggctcttgct

ttactgtaat	gactgacgga	ccaagtaatg	gtcaggcatc	acataagatc	ttcaaaatgg	720
aaaaagggaa	agtggttaaa	tcagtcgaat	tggatgctcc	taattatcac	tatgaggaat	780
gctcctgtta	tcctaatgcc	ggagaaatca	catgtgtgtg	cagggataat	tggcatggct	840
caaatcggcc	atgggtatct	ttcaatcaaa	atttggagta	tcaaatagga	tatatatgca	900
gtggagtttt	cggagacaat	ccacgcccca	atgatggaac	aggtagttgt	ggtccggtgt	960
cctctaacgg	ggcatatggg	gtaaaagggt	tttcatttaa	atacggcaat	ggtgtctgga	1020
tcgggagaac	caaaagcact	aattccagga	gcggctttga	aatgatttgg	gatccaaatg	1080
ggtggactga	aacggacagt	agcttttcag	tgaaacaaga	tatcgtagca	ataactgatt	1140
ggtcaggata	tagcgggagt	tttgtccagc	atccagaact	gacaggacta	gattgcataa	1200
gaccttgttt	ctgggttgag	ttgatcagag	ggcggcccaa	agagagcaca	atttggacta	1260
gtgggagcag	catatetttt	tgtggtgtaa	atagtgacac	tgtgggttgg	tcttggcc ag	1320
acggtgctga	gttgccattc	accattgaca	agtaggggcc	ctcgagtaag	ggcgaattcc	1380
agcacactgg	cggccgttac					1400

<210> 40 <211> 759 5

<212> ADN

<213> Virus de la gripe

<400> 40

60	aggccccctc	tcatcccgtc	gttctctcta	cgaaacgtac	taaccgaggt	atgagtcttc
120	cgatctcgag	gaaagaacac	gtctttgcag	acttgaagat	tegeacagaa	aaagccgaga
180	agggattttg	ctctgactaa	atcctgtcac	gacaagacca	agtggctaaa	gctctcatgg
240	acgctttgtc	tgcagcgtag	gagogaggac	cgtgcccagt	tcacgctcac	ggatttgtat
300	taagctatat	atagggcagt	aataatatgg	tggagatcca	taaatggaaa	cagaatgeee
360	cagctactca	aggtcgcact	ggggctaagg	aacattccat	aaagagaaat	aagaagctga
420	ggtgactacg	ggatgggaac	atatacaaca	catgggtctc	ttgccagttg	accggtgcac
480	acagcatcgg	ttgcagattc	tgtgagcaga	gtgtgccact	ttggcctagt	gaagtggctt
540	cagaatggtg	gacatgagaa	ccactaatca	tatcaccaac	agatggcaac	tctcacagac
600	gcaggcagcg	gatcaagtga	cagatggcgg	ggctatggag	ctacagetaa	ctggccagca
660	gacaattggg	aggcaatgag	cagatggtgc	tcaggctagg	agategetaa	gaagecatgg
720	gcaggcctac	ttgaaaattt	gataatcttc	tggtctgaga	actctagtgc	actcatccta
759			ttcaagtga	gatgcagcga	tgggagtgca	садааасдаа

10

<210>41

<211> 793 <212> ADN

<213> Virus de la gripe 15

<400> 41

atatctgcag	aattcgccct	tagaattcga	cgtcatgagt	cttctaaccg	aggtcgaaac	60
gtacgttctc	tctatcatcc	cgtcaggccc	cctcaaagcc	gagatcgcac	agaaacttga	120
agatgtettt	gcaggaaaga	acaccgatct	cgaggctctc	atggagtggc	taaagacaag	180
accaatectg	tcacctctga	ctaaagggat	tttgggattt	gtattcacgc	tcaccgtgcc	240
cagtgagcga	ggactgcagc	gtagacgctt	tgtccagaat	gecetaaatg	gaaatggaga	300
tccaaataat	atggataggg	cagttaagct	atataagaag	ctgaaaagag	aaataacatt	360
ccatggggct	aaggaggteg	cactcagcta	ctcaaccggt	gcacttgcca	gttgcatggg	420
tctcatatac	aacaggatgg	gaacggtgac	tacggaagtg	gcttttggcc	tagtgtgtgc	480
cacttgtgag	cagattgcag	attcacagca	teggteteae	agacagatgg	caactatcac	540
caacccacta	atcagacatg	agaacagaat	ggtgctggcc	agcactacag	ctaäggctat	600
ggagcagatg	gcgggatcaa	gtgagcaggc	ageggaagee	atggagatcg	ctaatcaggc	660
taggcagatg	gtgcaggcaa	tgaggacaat	tgggactcat	cctaactcta	gtgctggtct	720
gagagataat	cttcttgaaa	atttgcaggc	ctaccagaaa	cgaatgggag	tgcagatgca	780
gcgattcaag	tga					793

5 <210> 42

<211> 1740

<212> ADN

<213> Secuencia artificial

10 <220>

<223> Gen HA de la gripe optimizado para la expresión en sistemas de expresión de células de insecto

<400> 42

ggtaccggat ccgccaccat ggagaagatc gtgctgctgc tggctatcgt gtccctggtg 60 aagtccgacc agatctgcat cggttaccac gctaacaact ccaccgagca ggtggacacc 120 atcatggaga agaacgtcac cgtgacccac gctcaggaca tcctcgaaaa gacccacaac 180 ggcaagetgt gegacetgga eggtgteaag eccetgatee tgegtgaetg etcegtgget 240 ggttggctgc tgggtaaccc catgtgcgac gagttcatca acgtgcccga gtggtcctac 300 360 atogtggaga aggctaaccc caccaacgac ctgtgctacc ccggttcctt caacgactac gaggagetga ageacctgct gtecegtate aaccaetteg agaagateea gateateece 420 asgreerett ggreegacea egaggettee teeggreete eeteegettg eecetaeetg 480 540 ggttccccct ccttcttccg taacgtggtg tggctgatca agaagaactc cacctacccc

accatcaaga	agtoctacaa	caacaccaac	caggaggacc	tgctggtcct	gtggggtatc	600
caccacccca	acgacgctgc	cgagcagacc	cgtctgtacc	agaaccccac	cacctacatc	660
tccatcggca	ectecaecct	gaaccagcgt	ctggtgccca	agatogotac	ccgttccaag	720
gtgaacggcc	agtccggtcg	tatggagttc	ttctggacca	tcctgaagcc	taacgacgct	780
atcaacttcg	agtccaacgg	caacttcatc	getecegagt	acgcttacaa	gatcgtgaag	840
aagggcgact	ccgctatcat	gaagtccgag	ctggagtacg	gtaactgcaa	caccaagtgc	900
cagaccccca	tgggtgctat	caactcctcc	atgecettee	acaacatcca	cccctgacc	960
atcggcgagt	gccccaagta	cgtgaagtcc	aaccgtctgg	tgctggctac	cggtctgcgt	1020
aactcccccc	agcgcgagtc	ccgtcgtaag	aagegtggte	tgttcggcgc	tatogotggt	1080
ttcatcgagg	gcggttggca	gggcatggtg	gacggatggt	acggttacca	ccactctaac	1140
gagcagggtt	ccggttacgc	tgctgacaag	gagtccaccc	agaaggctat	cgacggcgtc	1200
accaacaagg	tgaactccat	catcgacaag	atgaacaccc	agttcgaggc	tgtgggtcgt	1260
gagttcaaca	acctcgagcg	tcgtatcgag	aacctgaaca	agaagatgga	ggacggtttc	1320
ctggacgtgt	ggacctacaa	cgccgagctg	ctggtgctga	tggagaacga	gcgtaccctg	1380
gacttccacg	actccaacgt	gaagaacctg	tacgacaagg	teegeetgea	gctgcgtgac	1440
aacgctaagg	agctgggtaa	cggttgcttc	gagttctacc	acaagtgcga	caacgagtgc	1500
atggagtcca	tccgtaacgg	cacctacaac	tacccccagt	actccgagga	ggctcgtctg	1560
aagcgtgagg	agateteegg	cgtgaagctc	gagtccatcg	gaacctacca	gatcctgtcc	1620
atctactcca	ccgtggcttc	ctccctggct	ctggctatca	tgatggctgg	tetgteeetg	1680
tggatgtgct	ccaacggttc	cctgcagtgc	cgtatctgca	tctaatgaaa	gcttgagctc	1740

<210> 43 <211> 568

<212> PRT

<213> Virus de la gripe

<400> 43

Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile 35 40 45

10

Leu ,	Glu 50	Lys	Thr	His	Asn	Gly 55	Lys	Leu	Cys	Asp	Leu 60	Asp	Gly	Val	Lys
Pro 65	Leu	Ile	Leu	Arg	Asp 70	Cys	Ser	Val	Ala	Gly 75	Trp	Leu	Leu	Gly	Asn 80
pro	Met	Cys	Asp	Glu 85	Phe	Ile	Asn	Val	Pro 90	Glu	Trp	Ser	Tyr	Ile 95	Val
Glu	Lys	Ala	Asn 100	Pro	Thr	Aşn	Asp	Leu 105	Суѕ	Tyr	Pro	Gly	Ser 110	Phe	Asn
Asp	Tyr	Glu 115	Glu	Leu	Lys	His	Leu 120	Leu	Ser	Arg	Ile	Asn 125	His	Phe	Glu
Lys	Ile 130	Gln	Ile	Ile	Pro	Lys 135	Ser	Ser	Trp	Ser	Asp 140	His	Glu	Ala	Ser
Ser 145	Gly	Val	Ser	Ser	Ala 150	Cys	Pro	Tyr	Leu	Gly 155	Ser	Pro	Ser	Phe	Phe 160
Arg	Asn	Val	Val	Trp 165	Leu	Ile	Lys	Lys	Asn 170	Ser	Thr	Tyr	Pro	Thr 175	Ile
Lys	Lys	Ser	Tyr 180	Asn	Asn	Thr	Asn	Gln 185	Glu	Asp	Leu	Leu	Val 190	Leu	Trp
Gly	Ile	His 195	His	Pro	Asn	Asp	Ala 200	Ala	Glu	Gln	Thr	Arg 205	Leu	Tyr	Gln
Asn	Pro 210	Thr	Thr	Tyr	Ile	Ser 215	Ile	Gly	Thr	Ser	Thr 220	Leu	Asn	Gln	Arg
Leu 225	Val	Pro	Lys	Ile	Ala 230	Thr	Arg	Ser	Lys	Val 235	Asn	Gly	Gln	Ser	Gly 240
Arg	Met	Glu	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asn
Phe	Glu	Ser	Asn 260	Gly	Asn	Phe	Ile	Ala 265	Pro	Glu	Tyr	Ala	Tyr 270	Lys	Ile
Val	Lys	Lys 275	Gly	Asp	Ser	Ala	Ile 280	Met	Lys	Ser	Glu	Leu 285	Glu	Tyr	Gly
h en	CVC	7.00	The	T	A	G1 -	~ ⊢		***	G1	27-	-1-	T		G

	290					295					300				
Met 305	Pro	Phe	His	Asn	Ile 310	His	Pro	Leu	Thr	Ile 315	Gly	Glu	Cys	Pro	Lys 320
Tyr	Val	Lys	Ser	Asn 325	Arg	Leu	Val	Leu	Ala 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Gln	Arg	Glu 340	Ser	Arg	Arg	Lys	Lys 345	Arg	Gly	Leu	Phe	Gly 350	Ala	Ile
Ala	Gly	Phe 355	Ile	Glu	Gly	Gly	Trp 360	Gln	Gly	Met	Val	Asp 365	Gly	Trp	Tyr
Gly	Tyr 370	His	His	Ser	Asn	Glu 375	Gln	Gly	Ser	Gly	Tyr 380	Ala	Ala	Asp	Lys
Glu 385	Ser	Thr	Gln	ГЛЗ	Ala 390	Ile	Asp	Gly	Val	Thr 395	Aşn	Lys	Val	Asn	Ser 400
Ile	Ile	Asp	Lys	Met 405	Asn	Thr	Gln	Phe	Glu 410	Ala	Val	Gly	Arg	Glu 415	Phe
Asn	Asn	Leu	Glu 420	Arg	Arg	Ile	Glu	Asn 425	Leu	Asn	Lys	Lys	Met 430	Glu	Asp
Gly	Phe	Leu 435	Asp	Val	Trp	Thr	Tyr 440	Asn	Ala	Glu	Leu	Leu 445	Val	Leu	Met
Glu	Asn 450	Glu	Arg	Thr	Leu	Asp 455	Phe	His	Asp	Ser	Asn 460	Val _,	Lys	Asn	Leu
Tyr 465	Asp	Lys	Val	Arg	Leu 470	Gln	Leu	Arg	Asp	Asn 475	Ala	Lys	Glu	Leu	Gly 480
Asn	Gly	Cys	Phe	Glu 485	Phe	Tyr	His	Lys	Cys 490	Asp	Asn	Glu	Cys	Met 495	Glu
Ser	Ile	Arg	Asn 500	Gly	Thr	Tyr	Asn	Tyr 505	Pro	Gln	туг	Ser	Glu 510	Glu	Ala
Arg	Leu	Lys 515	Arg	Glu	Glu	Ile	Ser 520	Gly	Val	Lys	Leu	Glu 525	Ser	Ile	Gly
Thr	Tyr 530	Gln	Ile	Leu	Ser	Ile 535	Туг	Ser	Thr	Val	Ala 540	Ser	Ser	Leu	Ala

Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly 545 550 555 560

Ser Leu Gln Cys Arg Ile Cys Ile 565

<210>44

<211> 1716

<212> ADN

<213> Secuencia artificial

<220>

5

10

<223> Gen HA de la gripe optimizado para la expresión en sistemas de expresión de células de insecto

<400> 44

ggateegeca ecatggagaa gategtgetg etgetggeta tegtgteeet ggtgaagtee 60 gaccagatCt gcatcggtta ccacgctaac aactccaccg agcaggtgga caccatcatg 120 gagaagaacg tcaccgtgac ccacgctcag gacatcctcg aaaagaccca caacggcaag 180 ctgtgcgacc tggacggtgt caaqcccctg atcctgcgtg actgctccgt gqctgqttqq 240 ctgctgggta accccatgtg cgacgagttc atcaacgtgc ccgagtggtc ctacatcgtg 300 gagaaggcta accccaccaa cgacctgtgc taccccggtt ccttcaacga ctacgaggag 360 ctgaagcacc tgctgtcccg tatcaaccac ttcgagaaga tccagatcat ccccaagtcc 420 tottggtoog accaegagge tteeteeggt gteteeteeg ettgeeeeta cetgggttee 480 coctcettet teegtaacgt ggtgtggetg atcaagaaga actecaceta ceccaceate 540 aagaagteet acaacaacac caaccaggag gacctgetgg teetgtgggg tatecaccac 600 cccaacgacg ctgccgagca gacccgtctg taccagaacc ccaccaccta catctccatc 660 ggcacctcca ccctgaacca gcgtctggtg cccaagatcg ctacccgttc caaggtgaac 720 ggccagtccg gtcgtatgga gttcttctgg accatcctga agcctaacga cgctatcaac 780 ttcgagtcca acggcaactt catcgctccc gagtacgctt acaagatcgt gaagaagggc 840 gacteegeta teatgaagte egagetggag taeggtaaet geaacaceaa gtgeeagaee 900 cccatgggtg ctatcaactc ctccatgccc ttccacaca tccacccct gaccatcgqc 960 gagtgcccca agtacgtgaa gtccaaccgt ctggtgctgg ctaccggtct gcgtaactcc 1020 ccccagcgcg agteccgtgg tetgttegge getategetg gtttcatega gggcggttgg 1080 cagggcatgg tggacggatg gtacggttac caccactcta acgagcaggg ttccggttac 1140 gctgctgaca aggagtccac ccagaaggct atcgacggcg tcaccaacaa ggtgaactcc 1200 atcategaca agatgaacae ecagttegag getgtgggte gtgagtteaa caacetegag 1260

cgtcgtatcg	agaacctgaa	caagaagatg	gaggacggtt	tcctggacgt	gtggacctac	1320
aacgccgagc	tgctggtgct	gatggagaac	gagcgtaccc	tggacttcca	cgactccaac	1380
gtgaagaacc	tgtacgacaa	ggtccgcctg	cagctgcgtg	acaacgctaa	ggagctgggt	1440
aacggttgct	tcgagttcta	ccacaagtgc	gacaacgagt	gcatggagtc	catccgtaac	1500
ggcacctaca	actaccccca	gtactccgag	gaggctcgtc	tgaagcgtga	ggagatetee	1560
ggcgtgaagc	tegagtecat	cggaacctac	cagatectgt	ccatctactc	caccgtggct	1620
tectecetgg	ctctggctat	catgatggct	ggtctgtccc	tgtggatgtg	ctccaacggt	1680
tccctgcagt	gccgtatctg	catctaatga	aagctt			1716

5

<210> 45

<211>564

<212> PRT

<213> Virus de la gripe

<400>45

Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile
35 40 45

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys 50 55 60

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn 65 70 75 80

Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val 85 90 95

Glu Lys Ala Asn Pro Thr Asn Asp Leu Cys Tyr Pro Gly Ser Phe Asn 100 105 110

Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu 115 120 125

Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Asp His Glu Ala Ser 130 135 140

Ser 145	Gly	Val	Ser	Ser	Ala 150	Сув	Pro	Tyr	Leu	Gly 155	Ser	Pro	Ser	Phe	Phe 160
Arg	Asn	Val	Val	Trp 165	Leu	Ile	Lys	Lys	Asn 170	Ser	Thr	Tyr	Pro	Thr 175	Ile
<u>r</u> ys	Lys	Ser	Tyr 180	Asn	Asn	Thr	Asn	Gln 185	Glu	Asp	Leu	Leu	Val 190	Leu	Trp
Gly	Ile	His 195	His	Pro	Asn	Asp	Ala 200	Ala	Glu	Gln	Thr	Arg 205	Leu	Tyr	Gln
Asn	Pro 210	Thr	Thr	Tyr	Ile	Ser 215	Ile	Gly	Thr	Ser	Thr 220	Leu	Asn	Gln	Arg
Leu 225	Val	Pro	Lys	Ile	Ala 230	Thr	Arg	Ser	Lys	Val 235	Asn	Gly	Gln	Ser	Gly 240
Arg	Met	Glu	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asn
Phe	Glu	Ser	Asn 260	Gly	Aşn	Phe	Ile	Ala 265	Pro	Glu	Tyr	Ala	Tyr 270	Lys	Ile
Val	Lys	Lys 275	Gly	Asp	Ser	Ala	Ile 280	Met	Lys	Ser	Glu	Leu 285	Glu	Tyr	Gly
Asn	Cys 290	Asn	Thr	Lys	Cys	Gln 295	Thr	Pro	Met	Gly	Ala 300	Ile	Asn	Ser	Ser
Met 305	Pro	Phe	His	Asn	Ile 310	His	Pro	Leu	Thr	11e 315	Gly	Glu	Cys	Pro	Lys 320
Tyr	·Val	Lys	Ser	Asn 325	Arg	Leu	Val	Leu	Ala 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Gln	Arg	Glu 340	Ser	Arg	Gly	Leu	Phe 345	Gly	Ala	Ile	Ala	Gly 350	Phe	Ile
Glu	Gly	Gly 355	Trp	Gln	Gly	Met	Val 360	Asp	Gly	Trp	Туг	Gly 365	Tyr	His	His
	370					Gly 375					380				
Lys	Ala	Ile	Asp	Gly	Val	Thr	Asn	Lys	Val	Asn	Ser	Ile	Ile	Asp	Lys

385					390					395					400	
Met	Asn	Thr	Gln	Phe 405	Glu	Ala	Val	Glγ	Arg 410	Glu	Phe	Asn	Asn	Leu 415	Glu	
Arg	Arg	Ile	Glu 420	Asn	Leu	Asn	Lys	Lys 425	Met	Glu	Asp	Gly	Phe 430	Leu	Asp	
Val	Trp	Thr 435	Tyr	Asn	Ala		Leu 440	Leu	Val	Leu	Met	Glu 445	Asn	Glu	Arg	
Thr	Leu 450	Asp	Phe	His	Asp	Ser 455	Asn	Val	Lys	Asn	Leu 460	Tyr	Asp	Lys	Val	
Arg 465	Leu	Gln	Leu	Arg	Asp 470	Asn	Ala	Lys	Glu	Leu 475	Gly	Asn	Gly	Cys	Phe 480	
Glu	Phe	Tyr	His	Lys 485	Суѕ	Asp	Asn	Glu	Cys 490	Met	Glu	Ser	Ile	Arg 495	Asn	
Gly	Thr	Tyr	Asn 500	Tyr	Pro	Gln	Туг	Ser 505	Glu	Glu	Ala	Arg	Leu 510	Lys	Arg	
Glu	Glu	Ile 515	Ser	Gly	Val	Lys	Leu 520	Glu	Ser	Ile	Gly	Thr 525	Tyr	Gln	Ile	
	530		_			535					540			Ile		
545				Ser	Leu 550	Trp	Met	Cys	Ser	Asn 555	Gly	Ser	Leu	Glń	Cys 560	
Arg	Ile	Cys	Ile													
<210> <211> <212> <213>	1383 ADN	encia a	artificia	al												
<220> <223> <400>		NA de	la grip	e opti	mizad	o para	ı la ex	presić	n en s	sistem	as de	expres	sión d	e célul	as de insecto	
		gat o	cgcc	acca	at ga	acco	caac	c cas	gaaga	atca	tca	cat	egg (ctcca	atotgo	60
atgg	tgat	cg g	gtato	gtgt	:c c (tgal	gct	g ca	gatos	gta	acat	tgato	etc (catc	gggtg	120

teccaeteca	tccagaccgg	taaccagcac	caggctgagt	ccatctccaa	caccaacccc	180
ctgaccgaga	aggetgtgge	ttccgtgacc	ctggctggta	actcctccct	gtgccccatc	240
cgtggttggg	ctgtgcactc	caaggacaac	aacatccgca	teggttecaa	gggtgacgtg	300
ttcgtgatcc	gtgagccctt	catctcctgc	teccaceteg	agtgccgtac	cttcttcctg	360
acccaaggtg	ctctgctgaa	cgacaagcac	tccaacggca	ccgtgaagga	ccgttccccc	420
caccgtaccc	tgatgtcctg	ccccgtgggc	gaggeteect	cccctacaa	ctcccgtttc	480
gagtccgtgg	cttggtccgc	ttccgcttgc	cacgacggca	cctcttggct	gaccatcggt	540
atctccggtc	ccgacaacga	ggctgtcgct	gtgctgaagt	acaacggcat	catcaccgac	600
accatcaagt	cctggcgtaa	caacateetg	cgtacccagg	agtccgagtg	cgcttgcgtg	660
aacggttcct	gcttcaccgt	gatgaccgac	ggtccctccg	acggccaggc	ttectacaag	720
atcttcaaga	tggagaaggg	caaggtggtg	aagtccgtgg	agctggacgc	tcccaactac	780
cactacgagg	agtgctcttg	ctaccccgac	gctggcgaga	tcacctgcgt	gtgccgtgac	840
aactggcacg	gttccaaccg	tecetgggtg	tccttcaacc	agaacctcga	gtaccagatc	900
ggttacatct	gctccggcgt	gttcggtgac	aacccccgtc	ccaacgacgg	aaccggttcc	960
tgcggtccca	tgtcccccaa	cggtgcttac	ggtgtcaagg	gcttctcctt	caagtacggt	1020
aacggtgtct	ggatcggtcg	taccaagtcc	accaactccc	gctccggttt	cgagatgatc	1080
tgggacccca	acggttggac	cggcaccgac	tetteettet	ccgtgaagca	ggacatcgtg	1140
gctatcaccg	actggtccgg	ttactccggt	teettegtge	agcaccccga	gctgaccggt	1200
ctggactgca	ttcgtccctg	cttctgggtg	gagctgatcc	gtggtegtee	caaggagtee	1260
accatctgga	cctccggctc	ctccatctct	ttctgcggtg	tgaactccga	caccgtgtcc	1320
tggtcctggc	ccgacggtgc	cgagctgccc	ttcaccatcg	acaagtaatg	aaagcttgag	1380
ctc						1383

<210> 47

<211> 449

<212> PRT

<213> Virus de la gripe

<400> 47

Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Ile Cys Met Val 1 5 10 15

Ile Gly Ile Val Ser Leu Met Leu Gln Ile Gly Asn Met Ile Ser Ile 20 25 30

Trp Val Ser His Ser Ile Gln Thr Gly Asn Gln His Gln Ala Glu Ser

10

		35					40					45			
Ile	Ser 50	Asn	Thr	Asn	Pro	L eu 55	Thr	Glu	Lys	Ala	Val 60	Ala	Ser	Val	Thr
Leu 65	Ala	Gly	Asn	Ser	Ser 70	Leu	Cys	Pro	Ile	Arg 75	Gly	Trp	Ala	Val	His 80
Ser	Lys	Asp	Asn	Asn 85	Ile	Arg	Ile	Gly	Ser 90	Lys	Gly	Asp	Val	Phe 95	Val
Ile	Arg	Glu	Pro 100	Phe	Ile	Ser	Суз	Ser 105	His	Leu	Glu	Сув	Arg 110	Thr	Phe
Phe	Leu	Thr 115	Gln	Gly	Ala	Leu	Leu 120	Asn	Asp	Lys	His	Ser 125	Asn	Gly	Thr
Val	Lys 130	Asp	Arg	Ser	Pro	His 135	Arg	Thr	Leu	Met	Ser 140	Cys	Pro	Val	Gly
Glu 145	Ala	Pro	Ser	Pro	Tyr 150	Asn	Ser	Arg	Phe	Glu 155	Ser	Val	Ala	Trp	Ser 160
Ala	Ser	Ala	Суѕ	His 165	Asp	Gly	Thr	Ser	Trp 170	Leu	Thr	Ile	Gly	Ile 175	Ser
Gly	Pro	Asp	Asn 180	Glu	Ala	Val	Ala	Val 185	Leu	Lys	Туr	Asn	Gly 190	Ile	Ile
Thr	Asp	Thr 195	Ile	Lys	Ser	Trp	Arg 200	Asn	Asn	Ile	Leu	Arg 205	Thr	Gln	Glu
Ser	Glu 210	Cys	Ala	Сув	Val	As n 215	Gly	Ser	Сув	Phe	Thr 220	Val	Met	Thr	Asp
Gly 225	Pro	Ser	Asp	Gly	Gln 230	Ala	Ser	Tyr	Lys	Ile 235	Phe	Lys	Met	Glu	Lys 240
Gly	Lys	Val	Val	Lys 245	Ser	Val	Glu	Leu	Asp 250	Ala	Pro	Asn	туг	His 255	Tyr
Glu	Glu	Cys	Ser 260	Cys	Tyr	Pro	Asp	Ala 265	Gly	Glu	Ile	Thr	Cys 270	Val	Cys
Arg	Ąsp	Asn 275	Trp	His	Gly	Ser	Asn 280	_	Pro	Trp	Val	Ser 285		Asn	Gln

Asn	Leu 290	Glu	Tyr	Gln	Ile	Gly 295	Tyr	Ile	Суѕ	Ser	Gly 300	Val	Phe	Gly	Asp	
Asn 305	Pro	Arg	Pro	Asn	Asp 310	Gly	Thr	Gly	Ser	Cys 315	Gly	Pro	Met	Ser	Pro 320	
Asn	Gly	Ala	Tyr	Gly 325	Val	Lys	Gly	Phe	Ser 330	Phe	Lys	Туг	Gly	Asn 335	Gly	
Val	Trp	Ile	Gly 340	Arg	Thr	Lys	Ser	Thr 345	Asn	Ser	Arg	Ser	Gly 350	Phe	Glu	
Met	Ile	Trp 355	Asp	Pro	Asn	G1y	Trp 360	Thr	Gly	Thr	Asp	Ser 365	Ser	Phe	Ser	
Val	Lys 370	Gln	Asp	Ile	Val	Ala 375	lle	Thr	Asp	Trp	Ser 380	Gly	Tyr	Ser	Gly	
Ser 385	Phe	Val	Gln	His	Pro 390	Glu	Leu	Thr	Gly	Leu 395	Asp	Суз	Ile	Arg	Pro 400	
Cys	Phe	Trp	Val	Glu 405	Leu	Ile	Arg	Gly	Arg 410	Pro	Lys	Glu	Ser	Thr 415	Ile	
Trp	Thr	Ser	Gly 420	Ser	Ser	Ile	Ser	Phe 425	Cys	Gly	Val	Asn	Ser 430	Asp	Thr	
Val	Ser	Trp 435	Ser	Trp	Pro	Asp	Gly 440	Ala	Glu	Leu	Pro	Phe 445	Thr	Ile	Asp	
Lys																
:210> 4 :211> 7 :212> 7 :213> 8	792 ADN	ncia ai	rtificial													
:220> :223> (Gen M	1 de la	a gripe	optim	izado	para I	a expr	esión	en sist	temas	de ex	presió	n de c	élulas	de ins	ecto
:400> ⁴	18															
ggta	ccgg	at c	egeca	ccat	gtc	cctg	ctg a	accga	ggtg	g aga	accta	cgt	gctg	tccai	tc	60
				tgaa												120
aaga	acac	cg a	cctcg	jagge	tct	gatg	gag t	gget	caag	a cc	egte	cat	cctg	tece	cc	180

ctgaccaagg	gtatcctggg	tttcgtgttc	accctgaccg	tgccctccga	gcgtggtctg	240
cagcgtcgtc	gtttcgtgca	gaacgctctg	aacggtaacg	gtgaccccaa	caacatggac	300
cgtgctgtga	agctgtacaa	gaagctgaag	cgcgagatca	ccttccacgg	tgctaaggag	360
gtgtccctgt	cctactccac	cggtgctctg	gctagctgca	tgggcctgat	ctacaaccgt	420
atgggcaccg	tgaccaccga	ggtggccttc	ggtctggtct	gegetacetg	cgagcagatc	480
gctgactccc	agcacegtte	ccaccgtcag	atggctacca	tcaccaaccc	cctgatecgt	540
cacgagaacc	gtatggtgct	ggcttccacc	accgctaagg	ctatggagca	gatggctggt	600
tectecgage	aggctgctga	ggccatggag	gtggccaacc	aggetegtea	gatggtgcag	660
gctatgcgta	ccatcggcac	ccaccccaac	tecteegetg	gtctgcgtga	caacctgctc	720
gagaacctgc	aggcttacca	gaagcgtatg	ggagtccaga	tgcagcgctt	caagtaatga	780
aagcttgagc	tc					792

_

<210>49

<211> 252

<212> PRT

<213> Virus de la gripe

<400>49

Met Ser Leu Leu Thr Glu Val Glu Thr Tyr Val Leu Ser Ile Ile Pro 1 5 10 15

Ser Gly Pro Leu Lys Ala Glu Ile Ala Gln Lys Leu Glu Asp Val Phe 20 25 30

Ala Gly Lys Asn Thr Asp Leu Glu Ala Leu Met Glu Trp Leu Lys Thr 35 40 45

Arg Pro Ile Leu Ser Pro Leu Thr Lys Gly Ile Leu Gly Phe Val Phe 50 55 60

Thr Leu Thr Val Pro Ser Glu Arg Gly Leu Gln Arg Arg Arg Phe Val 65 70 75 80

Gln Asn Ala Leu Asn Gly Asn Gly Asp Pro Asn Asn Met Asp Arg Ala 85 90 95

Val Lys Leu Tyr Lys Lys Leu Lys Arg Glu Ile Thr Phe His Gly Ala 100 105 110

Lys Glu Val Ser Leu Ser Tyr Ser Thr Gly Ala Leu Ala Ser Cys Met 115 120 125

Gly	130	Ile	Tyr	Asn	Arg	Met 135	Gly	Thr	Val	Thr	Thr 140	Glu	Val	Ala	Phe		
Gly 145	Leu	Val	Суз	Ala	Thr 150	Cys	Glu	Gln	Ile	Ala 155	Asp	Ser	Gln	His	Arg 160		
Ser	His	Arg	Gln	Met 165	Ala	Thr	Ile	Thr	Asn 170		Leu	Ile	Arg	His 175	Glu		
Asn	Arg	Met	Val 180	Leu	Ala	Ser	Thr	Thr 185	Ala	Lys	Ala	Met	Glu 190	Gln	Met		
Ala	Gly	Ser 195	Ser	Glu	Gln	Ala	Ala 200	Glu	Ala	Met	Glu	Val 205		Asn	Gln		
Ala	Arg 210	Gln	Met	Val	Gln	Ala 215	Met	Arg	Thr	Ile	Gly 220	Thr	His	Pro	Asn		
Ser 225	Ser	Ala	Gly	Leu	Arg 230	Asp	Asn	Leu	Leu	Glu 235	Asn	Leu	Gln	Ala	Tyr 240		
Gln	Lys	Arg	Met	Gly 245	Val	Gln	Met	Gln	Arg 250	Phe	Lys						
<210> <211> <212> <213>	1736 ADN	encia a	artificia	al													
<220> <223>		HA de	la grip	e optir	nizado	o para	la exp	resiór	ı en sis	stema	s de e	xpresi	ón de	célula:	s de in	secto	
<400>	50																
ggta	ccgg	at c	cate	gagat	gga	agaag	gatc	gtgo	tgct	gc t	ggct	atcg	t gt	ccct	gtg		60
aagt	ccga	cc a	gate	tgcai	cg(gttad	ccac	gcta	ácaa	ct c	cacc	gagc	a gg	tggad	cacc	3	120
atca	tgga	ga a	gaac	gtcad	cg ¹	tgaco	Cac	gcto	agga	.ca t	cctg	gaaa	a ga	cccac	caac	1	180
•														ccgtg			240
														ggtco			300
														acgad			360
														cata			120 180
														ccta			540
				•		- -		33									

accatcaagc	gttcctacaa	caacaccaac	caggaggacc	tgctgatcct	gtggggtatc	600
caccactcca	acgacgctgc	cgagcagacc	aagctgtacc	agaaccccac	cacctacatc	660
tccgtgggca	cctccaccct	gaaccagcgt	ctggtgccca	agatcgctac	ccgttccaag	720
gtgaacggcc	agtccggtcg	tatggacttc	ttctggacca	tcctgaagcc	taacgacgct	780
atcaacttcg	agtccaacgg	caacttcatc	gctcccgagt	acgcttacaa	gatcgtgaag	840
aagggcgact	ccgctatcgt	caagtccgag	gtggagtacg	gtaactgcaa	caccaagtge	900
cagaccccca	tcggtgctat	caactcctcc	atgcccttcc	acaacatcca	cccctgacc	960
atcggcgagt	gccccaagta	cgtgaagtcc	aacaagctgg	tgctggctac	cggtctgcgt	1020
aactccccc	tgcgtgagcg	tggtctgttc	ggcgctatcg	ctggtttcat	cgagggcggt	1080
tggcagggca	tggtggacgg	ttggtacggt	taccaccaca	gcaacgagca	gggttccggt	1140
tacgctgctg	acaaggagtc	cacccagaag	gctatcgacg	gcgtcaccaa	caaggtgaac	1200
tccatcatcg	acaagatgaa	cacccagttc	gaggctgtgg	gtcgtgagtt	caacaacctg	1260
gagegtegta	tcgagaacct	gaacaagaag	atggaggacg	gtttcctgga	cgtgtggacc	1320
tacaacgccg	agctgctggt	gctgatggag	aacgagcgta	ccctggactt	ccacgactct	1380
aacgtgaaga	acctgtacga	caaggtccgc	ctgcagctgc	gtgacaacgc	taaggagctg	1440
ggtaacggtt	gcttcgagtt	ctaccacaag	tgcgacaacg	agtgcatgga	gtccgtgcgt	1500
aacggcacct	acgactaccc	ccagtactcc	gaggaggete	gtctgaagcg	tgaggagatc	1560
tccggcgtga	agctggagtc	categgeace	taccagatcc	tgtccatcta	ctccaccgtg	1620
gcttcctccc	tggctctggc	tatcatggtg	gctggtctgt	ccctgtggat	gtgctccaac	1680
ggttccctgc	agtgccgtat	ctgcatctaa	taatgaggcg	cgccaagctt	gagete	1736

<210> 51

<211>563

<212> PRT

<213> Virus de la gripe

<400> 51

Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile 35 40 45

Leu	Gl u 50	Lys	Thr	His	Asn	Gly 55	Lys	Leu	Cys	Asp	Leu 60	Asp	Gly	Va l	Lys
Pro 65	Leu	Ile	Leu	Arg	Asp 70	Cys	Ser	Val	Ala	Gly 75	Trp	Leu	Leu	Gly	Asn 80
Pro	Met	Суз	Asp	Glu 85	Phe	Ile	Asn	Val	Pro 90	Glu	Trp	Ser	туг	Ile 95	Va1
Glu	Lys	Ala	Asn 100	Pro	Ala	Asn	Asp	Leu 105	Cys	Tyr	Pro	Gly	Asn 110	Phe	Asn
Asp	Tyr	Glu 115	Glu	Leu	Lys	His	Leu 120	Leu	Ser	Arg	Ile	Asn 125	His	Phe	Glu
Lys	Ile 130	Gln	Ile	Ile	Pro	Lys 135	Ser	Ser	Trp	Ser	Asp 140	His	Glu	Ala	Ser
Ser 145	Gly	Val	Ser	Ser	Ala 150	Cys	Pro	Tyr	Gln	Gly 155	Thr	Pro	Ser	Phe	Phe 160
Arg	Aşn	Val	Val	Trp 165	Leu	Ile	Lys	Lys	Asn 170	Asn	Thr	Tyr	Pro	Thr 175	Ile
Lys	Arg	Ser	Tyr 180	Asn	Asn	Thr	Asn	Gln 185	Glu	Asp	Leu	Leu	Ile 190	Leu	Trp
Gly	Ile	His 195	His	Ser	Asn	Asp	Ala 200	Ala	Glu	Gln	Thr	Lys 205	Leu	Tyr	Gln
Asn	Pro 210	Thr	Thr	Tyr	lle	Ser 215	Val	Gly	Thr	Ser	Thr 220	Leu	Asn	Gln	Arg
Leu 225	Val	Pro	Lys	Ile	Ala 230	Thr	Arg	Ser	Lys	Val 235	Asn	Gly	Gln	Ser	Gly 240
Arg	Met	Asp	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asn
Phe	Glu	Ser	Asn 260	Gly	Asn	Phe	Ile	Ala 265	Pro	Glu	Tyr	Ala	T yr 270	Lys	Ile
Val	Lys	Lys 275	Gly	Asp	Ser	Ala	Ile 280	Val	Lys	Ser	Glu	Val 285	Glu	Tyr	Gly
Asn	Cvs	Asn	Thr	Lvs	Cvs	Gln	Thr	Pro	Ile	Glv	Ala	Ile	Asn	Ser	Ser

	290					295					300				
Met 305	Pro	Phe	His	Asn	Ile 310	His	Pro	Leu	Thr	Ile 315	Gly	Glu	Ċys	Pro	Lys 320
Ţуr	Val	Lys	Ser	Asn 325	Lys	Leu	Val	Leu	Ala 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Leu	Arg	Glu 340	Arg	Gly	Leu	Phe	Gly 345	Ala	Ile	Ala	Gly	Phe 350	Ile	Glu
Gly	Gly	Trp 355	Gln	Gly	Met	Val	Asp 360	Gly	Trp	туг	Gly	Tyr 365	His	His	Ser
Asn	Glu 370	Gln	Gly	Ser	Gly	Tyr 375	Ala	Ala	Asp	Lys	Glu 380	Ser	Thr	Gln	Lys
Ala 385	Ile	Asp	Gly	Val	Thr 390	Asn	Lys	Val	Asn	Ser 395	Ile	Ile	Asp	Lys	Met 400
Asn	Thr	Gln	Phe	Glu 405	Ala	Val	Gly	Arg	Glu 410	Phe	Asn	Asn	Leu	Glu 415	Arg
Arg	Ile	Glu	Asn 420	Leu	Asn	Lys	Lys	Met 425	Glu	Asp	Gly	Phe	Leu 430	Asp	Val
Trp	Thr	Tyr 435	Asn	Ala	Glu	Leu	Leu 440	Val	Leu	Met	Gl u	Asn 445	Glu	Arg	Thr
Leu	Asp 450	Phe	His	Asp	Ser	Asn 455	Val	Lys	Asn	Leu	Tyr 460	Asp	Lys	Val	Arg
Leu 465	Gln	Leu	Arg	Asp	Asn 470	Ala	Lys	Glu	Leu	Gly 475	Asn	Gly	Суѕ	Phe	Glu 480
Phe	Tyr	His	Lys	Cys 485	Asp	Asn	Glu	Cys	Met 490	Glu	Ser	Val	Arg	Asn 495	Gly
Thr	Tyr	Asp	Tyr 500	Pro	Gln	Tyr	Ser	Glu 505	Glu	Ala	Arg	Leu	Lys 510	Arg	Glu
Glu	Ile	Ser 515	Gly	Val	Lys	Leu	Glu 520	Ser	Ile	Gly	Thr	Tyr 525	Gln	Ile	Leu
Ser	Ile 530	Tyr	Ser	Thr	Val	Ala 535	Ser	Ser	Leu	Ala	Leu 540	Ala	Ile	Met	Val

Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly Ser Leu Gln Cys Arg 545 550 555 560

Ile Cys Ile

<210>52

<211> 1738

<212> ADN

<213> Secuencia artificial

<220>

<223> Gen HA de la gripe optimizado para la expresión en sistemas de expresión de células de insecto

<400> 52

5

10

egggegegga geggeegeat ggagaagate gtgetgetge tqgetateqt gtetetggte 60 aagtocgace agatotgoat oggttaccac gotaacaact ccacogagca ggtggacace 120 atcatggaga agaacgtcac cgtgacccac gctcaggaca tcctcgaaaa gacccacaac 180 ggcaagetgt gegacetgga eggegtgaag eccetgatee tgegtgaetg eteegtgget 240 ggttggctgc tgggtaaccc catgtgcgac gagttcctca acgtgcccqa gtqqtcctac 300 atcqtqqaqa agatcaaccc cqctaacqac ctqtqctacc ccqqtaactt caacqactac 360 gaggagetga ageacetget gtecegtate aaceaetteg agaagateea gateateece 420 aagtoctott ggtoogacca ogaggottoo tooggtgtot octoogottg occataccag 480 ggccgttCtt ccttcttccg caacgtggtg tggctgatca agaagaacaa cgcctacccc 540 accatcaage gttectacaa caacaccaae caggaggaee tgetggteet gtggggtate 600 caccacccca acgacgetge egageagace egtetgtace agaaccccae cacctacate 660 teegtgggea cetetaceet gaaceagegt etggtgeeea agategetae eegtteeaag 720 gtgaacggcc agtccggtcg tatggagttc ttctggacca tcctgaagcc taacgacgct 780 atcaacttcg agtccaacgg caacttcatc gctcccgaga acgcttacaa gatcgtgaag 840 aagggcgact ccaccatcat gaagtccgag ctggagtacg gcaactgcaa cactaagtgc 900 cagacececa teggtqctat caactectec atgecettee acaacateca ceceetgact 960 ateggegagt geoccaagta egtgaagtee aacegtetgg tgetggetae eggtetgegt 1020 aacteecece agategagae tegtggtetg tteggegeta tegetggttt categaggge 1080 ggttggcagg gcatggtgga cggttggtac ggttaccacc actctaacga gcagggttcc 1140 1200 ggttacgctg ctgacaagga gtctacccaq aaggctatcg acggcgtcac caacaaggtg aactccatca togacaagat gaacacccag ttogaggotg tgggtogtga gttcaacaac 1260

ctcgaacgtc	gtatcgagaa	cctgaacaag	aagatggagg	acggtttcct	ggacgtgtgg	1320
acctacaacg	ccgagctgct	ggtgctgatg	gagaacgagc	gtaccctgga	cttccacgac	1380
tccaacgtga	agaacctgta	cgacaaggtc	egcetgeage	tgcgtgacaa	cgctaaggag	1440
ctgggtaacg	gttgcttcga	gttctaccac	egttgegaca	acgagtgcat	ggagtccgtg	1500
cgtaacggca	cctacgacta	cccccagtac	teegaggagg	ctcgtctgaa	gcgtgaggag	1560
atctccggtg	tcaagctcga	atccatcgga	acctaccaga	tcctgtccat	ctactccacc	1620
gtggcttcct	ccctggctct	ggctatcatg	gtggctggtc	tgtccctgtg	gatgtgctcc	1680
aacggttccc	tgcagtgccg	tatctgcatc	taataatgag	gcgcgccaag	cttgtcga	1738

<210> 53

5

<211> 564

<212> PRT

<213> Virus de la gripe

<400>53

Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile 35 40 45

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys 50 60

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn 65 70 75 80

Pro Met Cys Asp Glu Phe Leu Asn Val Pro Glu Trp Ser Tyr Ile Val 85 90 95

Glu Lys Ile Asn Pro Ala Asn Asp Leu Cys Tyr Pro Gly Asn Phe Asn 100 105 110

Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu 115 120 125

Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Asp His Glu Ala Ser 130 135 140

Ser 145	Gly	Val	Ser	Ser	Ala 150	Cys	Pro	Tyr	Gln	Gly 155	Arg	Ser	Ser	Phe	Phe 160
Arg	Asn	Val	Val	Trp 165	Leu	Ile	Lys	Lys	Asn 170	Asn	Ala	Tyr	Pro	Thr 175	Ile
Lys	Arg	Ser	Tyr 180	Asn	Asn	Thr	Asn	Gln 185	Glu	Asp	Leu	Leu	Val 190	Leu	Trp
Gly	Ile	His 195	His	Pro	Asn	Asp	Ala 200	Ala	Glu	Gln	Thr	Arg 205	Leu	туг	Gln
Asn	Pro 210	Thr	Thr	туг	Ile	Ser 215	Val	Gly	Thr	Ser	Thr 220	Leu	Asn	Gln	Arg
Leu 225	Val	Pro	Lys	Ile	Ala 230	Thr	Arg	Ser	Lys	Val 235	Asn	Gly	Gln	Ser	Gly 240
Arg	Met	Glu	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asn
Phe	Glu	Ser	Asn 260	Gly	Asn	Phe	Ile	Ala 265	Pro	Glu	Asn	Ala	Tyr 270	Lys	Ile
Val	Lys	Lys 275	Gly	Asp	Ser	Thr	11e 280	Met	Lys	Ser	Glu	Leu 285	Glu	Tyr	Gly
Asn	Суs 290	Asn	Thr	Lys	Суз	Gln 295	Thr	Pro	lle	Gly	Ala 300	Ile	Asn	Ser	Ser
Met 305	Pro	Phe	His		Ile 310	His	Pro	Leu	Thr	Ile 315	Gly	Glu	Cys	Pro	Lys 320
Туг	Val	Lys	Ser	Asn 325	Arg	Leu	Val	Leu	Ala 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Gln	Ile	Glu 340	Thr	Arg	Gly	Leu	Phe 345	Gly	Ala	Ile	Ala	Gly 350	Phe	Ile
Glu	Gly	Gly 355	Trp	Gln	Gly	Met	Val 360	Asp	Gly	Trp	Tyr	Gly 365	Tyr	His	His
Ser	Asn 370	Glu	Gln	Gly	Ser	Gly 375	Tyr	Ala	Ala	Asp	Lys 380	Glu	Ser	Thr	Gln
Lys	Ala	Ile	Asp	Gly	Val	Thr	Asn	Lys	Val	Asn	Ser	Ile	Ile	Asp	Lys

	385					390					395					400	
	Met	Asn	Thr	Gln	Phe 405	Glu	Ala	Val	Gly	Arg 410	Glu	Phe	Asn	Asn	Leu 415	Glu	
	Arg	Arg	Ile	Glu 420	Asn	Leu	Asn	Lys	Lys 425	Met	Glu	Asp	Gly	Phe 430	Leu	Asp	
	Val	Trp	Thr 435	Tyr	Asn	Ala	Glu	Leu 440	Leu	Val	Leu	Met	Glu 445	Asn	Glu	Arg	
	Thr	Leu 450	Asp	Phe	His	Asp	Ser 455	Asn	Val	Lys	Asn	Leu 460	Tyr	Asp	Lys	Val	
	Arg 465	Leu	Gln	Leu	Arg	Asp 470	Asn	Ala	Lys	Glu	Leu 475	Gly	Asn	Gly	Cys	Phe 480	
	Glu	Phe	Tyr	His	Arg 485	Cys	Asp	Asn	Glu	Cys 490	Met	Glu	Ser	Val	Arg 495	Asn	
	Gly	Thr	Tyr	Asp 500	Tyr	Pro	Gln	Tyr	Ser 505	Glu	Glu	Ala	Arg	Leu 510	Lys	Arg	
	Glu	Glu	Ile 515	Ser	Gly	Val	Lys	Leu 520	Glu	Ser	Ile	Gly	Thr 525	Tyr	Gln	Ile	
	Leu	Ser 530	Ile	Tyr	Ser	Thr	Val 535	Ala	Ser	Ser	Leu	Ala 540	Leu	Ala	Ile	Met	
	Val 545	Ala	Gly	Leu	Ser				Cys			Gly			Gln	Cys 560	
	Arg	Ile	Cys	Ile													
<2 <2	210> 5 211> 1 212> <i>F</i> 213> 5	1422 ADN	ncia a	rtificial													
	220> 223> (Gen N	A de la	a gripe	optim	izado	para l	a expr	esión (en sist	emas	de exp	oresió	n de c	élulas	de inse	cto
	100> 5						_										
									agatg				,				60
	rcgg	CECC	at ct	gcat	ggtg	atc	ggta	ccg t	gtco	ctga	t gc	cgcag	JACC	ggta	acat	ga	120

tctccat	ecg	ggtgtcccae	tecatecaga	ccggtaacca	gcgtcaggcc	gageceatet	18(
ccaacac	caa	gttcctcacc	gagaaggctg	tggcttccgt	gaccctggct	ggtaactcct	240
ccctgtg	ccc	catctccggt	tgggctgtgt	actccaagga	caactccatc	cgtatcggtt	300
cccgtgg	tga	cgtgttcgtg	atccgtgagc	cettcatete	ctgctcccac	ctcgaatgcc	360
gtacctt	ctt	cctgacccag	ggtgctctgc	tgaacgacaa	gcactccaac	ggcaccgtga	420
aggaccg	ttc	ccccaccgt	accctgatgt	cctgccccgt	gggcgaggct	ccctccccct	480
acaactc	ccg	tttcgagtcc	gtggcttggt	cegetteege	ttgccacgac	ggcacctctt	540
ggctgac	cat	cggtatctcc	ggtcccgaca	acggtgctgt	ggctgtgctg	aagtacaacg	600
gcatcat	cac	cgacaccatc	aagtcctggc	gtaacaacat	cctgcgtacc	caagagtccg	660
agtgcgc	ttg	cgtgaacggt	tectgettea	ccgtgatgac	cgacggtccc	tccaacggcc	720
aggcttc	cta	caagatcttc	aagatggaga	agggcaaggt	ggtgaagtcc	gtggagctgg	780
acgctcc	caa	ctaccactac	gaggagtgct	cttgctaccc	cgacgctggc	gagatcacct	840
gcgtgtg	ccg	tgacaactgg	cacggttcca	accgtccctg	ggtgtccttc	aaccagaacc	900
tcgaata	cca	gatcggttac	atctgctccg	gcgtgttcgg	tgacaacccc	cgtcccaacg	960
acggaac	cgg	ttcctgcggt	cccgtgtccc	ccaacggtgc	ttacggtgtc	aagggcttct	1020
ccttcaa	gta	cggtaacggt	gtctggatcg	gtcgtaccaa	gtccaccaac	tecegeteeg	1080
gtttcga	gat	gatctgggac	cccaacggtt	ggaccggcac	cgactettee	ttctccgtga	1140
agcagga	cat	cgtggctatc	accgactggt	ccggttactc	cggttccttc	gtgcagcacc	1200
ccgaget	gac	cggtctggac	tgtatccgtc	cctgcttctg	ggtggagctg	atccgtggtc	1260
gtcccaa	gga	gtccaccatc	tggacctccg	gctcctccat	ctctttctgc	ggtgtgaact	1320
ccgacac	cgt	gtcctggtcc	tggcccgacg	gtgccgagct	gcccttcacc	atcgacaagt	1380
aataatg	aat	cgatttgtcg	agaagtacta	qaqqatcata	at		1422

<210> 55

<211> 449

<212> PRT

<213> Virus de la gripe

<400> 55

Met Asn Pro Asn Gln Lys Ile Ile Thr Ile Gly Ser Ile Cys Met Val 1 5 10 15

Ile Gly Ile Val Ser Leu Met Leu Gln Ile Gly Asn Met Ile Ser Ile 20 25 30

Trp Val Ser His Ser Ile Gln Thr Gly Asn Gln Arg Gln Ala Glu Pro

		35					40					45			
Ile	Ser 50	Asn	Thr	Lys	Phe	Leu 55	Thr	Glu	Lys	Ala	Val 60	Ala	Ser	Val	Thr
Leu 65	Ala	Gly	Asn	Ser	Ser 70	Leu	Cys	Pro	Ile	Ser 75	Gly	Trp	Ala	Val	Tyr 80
Ser	Lys	Asp	Asn	Ser 85	Ile	Arg	Ile	Gly	Ser 90	Arg	Gly	Asp	Val	Phe 95	Val
Ile	Arg	Glu	Pro 100	Phe	Ile	Ser	Cys	Ser 105	His	Leu	Glu	Cys	Arg 110	Thr	Phe
Phe	Leu	Thr 115	Gln	Gly	Ala		Leu 120	Asn	Asp	Lys	His	Ser 125	Asn	Gly	Thr
Val	Lys 130	Asp	Arg	Ser	Pro	His 135	Arg	Thr	Leu	Met	Ser 140	Сув	Pro	Val	Gly
Glu 145	Ala	Pro	Ser	Pro	Tyr 150	Asn	Ser	Arg	Phe	Glu 155	Ser	Val	Ala	Trp	Ser 160
Ala	Ser	Ala	Сув	His 165	Asp	Gly	Thr	Ser	Trp 170	Leu	Thr	Ile	Gly	Ile 175	Ser
Gly	Pro	Asp	Asn 180	Gly	Ala	Val	Ala	Val 185	Leu	Lys	Tyr	Asn	Gly 190	Ile	Ile
Thr	Asp	Thr 195	Ile	Lys	Ser	Trp	Arg 200	Asn	Asn	Ile	Leu	Arg 205	Thr	Gln	Glu
Ser	Glu 210	Сув	Ala	Cys	Val	Asn 215	Gly	Ser	Сув	Phe	Thr 220	Val	Met	Thr	Asp
Gly 225	Pro	Ser	Asn	Gly	Gln 230	Ala	Ser	Tyr	Lys	Ile 235	Phe	Lys	Met	Glu	Lys 240
	-			245					250					His 255	·
Glu	Glu	Cys	Ser 260	Сув	Tyr	Pro	Asp	Ala 265	Gly	Glu	Ile	Thr	Сув 270	Val	Сув
Arg	Asp	Asn 275	Trp	His	Gly	Ser	Asn 280		Pro	Trp	Val	Ser 285	Phe	Asn	Gln

Asn	290	GIu	Tyr	GIN	ııe	295	ıyr	IIe	Сув	ser	300	vaı	Pne	GIA	Asp	
Asn 305	Pro	Arg	Pro	Asn	Asp 310	Gly	Thr	Gly	Ser	Cys 315	Gly	Pro	Val	Ser	Pro 320	
Asn	Gly	Ala	Туг	Gly 325	Val	Lys	Gly	Phe	Ser 330	Phe	Lys	Tyr	Gly	Asn 335	Gly	
Val	Trp	Ile	Gly 340	Arg	Thr	Lys	Ser	Thr 345	Asn	Ser	Arg	Ser	Gly 350	Phe	Glu	
Met	Ile	Trp 355	Asp	Pro	Asn	Gly	Trp 360	Thr	Gly	Thr	Asp	Ser 365	Ser	Phe	Ser	
Val	Lys 370	Gln	Asp	Ile	Val	Ala 375	Ile	Thr	Asp	Trp	Ser 380	Gly	туг	Ser	Gly	
Ser 385	Phe	Val	Gln	His	Pro 390	Glu	Leu	Thr	Gly	Leu 395	Asp	Cys	Ile	Arg	Pro 400	
Суз	Phe	Trp	Val	Glu 405	Leu	Ile	Arg	Gly	Arg 410	Pro	Lys	Glu	Ser	Thr 415	Ile	
Trp	Thr	Ser	Gly 420	Ser	Ser	Ile	Ser	Phe 425	Cys	Gly	Val	Asn	Ser 430	Asp	Thr	
Val	Ser	Trp 435	Ser	Trp	Pro	Asp	Gly 440	Ala	Glu	Leu	Pro	Phe 445	Thr	Ile	Asp	
Lys																
<212	> 56 > 1750 > ADN > Virus	de la	gripe													
<400	> 56															
att	egec	tt a	acgg	tccg	a tg	gaga	aaat	agt	gctt	ett (cttgo	aata	g tc	agtc	ttgt	6
taa	aagtg	gat o	agat	ttgc	a tt	ggtt	acca	tgc	aaaca	aat i	tcaac	agag	c ag	gttg	acac	12
	catg															
	gaago															
-99	atggo	ec (ccgg	gaac	c ca	atgt	gtga	cgaa	at EC&	itC a	aatgt	accg	g aa	tggt	ctta	30

```
catagtggag aaggccaatc caaccaatga cctctgttac ccagggagtt tcaacgacta
                                                                      360
tgaaqaactg aaacacctat tgagcagaat aaaccatttt gagaaaattc aaatcatccc
                                                                      420
caaaaqttct tgqtccgatc atgaagcctc atcaggagtg agctcagcat gtccatacct
                                                                      480
qqqaaqtccc tcctttttta gaaatgtggt atggcttatc aaaaagaaca gtacataccc
                                                                      540
aacaataaag aaaagctaca ataataccaa ccaagaagat cttttggtac tgtggggaat
                                                                      600
teaceatect aatgatgegg cagageagae aaggetatat caaaaeceaa eeacetatat
                                                                     660
ttccattggg acatcaacac taaaccagag attggtacca aaaatagcta ctagatccaa
                                                                      720
agtaaacggg caaagtggaa ggatggagtt cttctggaca attttaaaac ctaatgatgc
                                                                      780
aatcaacttc gagagtaatg gaaatttcat tgctccagaa tatgcataca aaattgtcaa
                                                                     840
gaaaggggac tcagcaatta tgaaaagtga attggaatat ggtaactgca acaccaagtg
                                                                      900
tcaaactcca atgggggcga taaactctag tatgccattc cacaacatac accctctcac
                                                                      960
catcggggaa tgccccaaat atgtgaaatc aaacagatta gtccttgcaa cagggctcag
                                                                    1020
aaatagccct caaagagaga gcagaagaaa aaagagagga ctatttggag ctatagcagg
                                                                    1080
ttttatagag ggaggatggc agggaatggt agatggttgg tatgggtacc accatagcaa
                                                                    1140
tgagcagggg agtgggtacg ctgcagacaa agaatccact caaaaggcaa tggatggaqt
                                                                    1200
caccaataag gtcaactcaa tcattgacaa aatgaacact cagtttgaqq ccgttggaag
                                                                    1260
ggaatttaat aacttagaaa ggaqaataga gaatttaaac aagaagatgg aagacgggtt
                                                                    1320
totagatgto tggacttata atgcogaact totggttoto atggaaaatg agagaactot
                                                                    1380
agactttcat gactcaaatg ttaagaacct ctacgacaag gtccgactac agcttaggga
                                                                   1440
taatgcaaag gagctgggta acggttgttt cgagttctat cacaaatgtg ataatgaatg
                                                                    1500
tatggaaagt ataagaaacg gaacgtgcaa ctatccgcag tattcagaag aagcaagatt
                                                                    1560
aaaaagagag gaaataagtg gggtaaaatt ggaatcaata ggaacttacc aaatactgtc
                                                                    1620
aatttattca acagtggcga gttccctagc actggcaatc atgatggctg gtctatcttt
                                                                     1680
                                                                    1740
atggatgtgc tccaatggat cgttacaatg cagaatttgc atttaaaagc tttaagggcg
aattccagca
                                                                    1750
```

5

<210> 57

<211> 568 <212> PRT

<213> Virus de la gripe

<400:> 57

Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser 1 5 10 15

Asp	Gln	Ile	Cys 20	Ile	Gly	Tyr	His	Ala 25	Asn	Aşn	Ser	Thr	Glu 30	Gln	Val
Asp	Thr	Ile 35	Met	Glu	Lys	Asn	Val 40	Thr	Val	Thr	His	Ala 45	Gln	Asp	Ile
Leu	Glu 50	Lys	Thr	His	Asn	Gly 55	Lys	Leu	Cys	Asp	Leu 60	Asp	Gly	Val	Lys
Pro 65	Leu	Ile	Leu	Arg	Asp 70	Cys	Ser	Val	Ala	Gly 75	Trp	Leu	Leu	Gly	Asn 80
Pro	Met	Cys	Asp	Glu 85	Phe	Ile	Asn	Val	Pro 90	Glu	Trp	Ser	туr	Ile 95	Val
Glu	Lys	Ala	Asn 100	Pro	Thr	Asn	Asp	Leu 105	Cys	Tyr	Pro	Gly	Ser 110	Phe	Asn
Asp	Tyr	Glu 115	Glu	Leu	Lys	His	Leu 120	Leu	Ser	Arg	Ile	Asn 125	His	Phe	Glu
Lys	Ile 130	Gln	Ile	Ile	Pro	Lys 135	Ser	Ser	Trp	Ser	Asp 140	His	Glu	Ala	Ser
Ser 145	Gly	Val	Ser	Ser	Ala 150	Cys	Pro	Tyr	Leu	Gly 155	Ser	Pro	Ser	Phe	Phe 160
Arg	Asn	Val	Val	Trp 165	Leu	Ile	Lys	Lys	Asn 170	Ser	Thr	Tyr	Pro	Thr 175	Ile
Lys	Lys	Ser	Tyr 180	Asn	Asn	Thr	Asn	Gln 185	Glu	Asp	Leu	Leu	Val 190	Leu	Trp
Gly	Ile	His 195	His	Pro	Asn	Asp	Ala 200	Ala	Glu	Gln	Thr	Arg 205	Leu	Tyr	Gln
Asn	Pro 210	Thr	Thr	Туг	Ile	Ser 215	lle	Gly	Thr	Ser	Thr 220	Leu	Asn	Gln	Arg
Leu 225	Val	Pro	Lys	Ile	Ala 230	Thr	Arg	Ser	Lys	Val 235	Asn	Gly	Gln	Ser	Gly 240
Arg	Met	Glu	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asn

Phe	Glu	Ser	Asn 260	Gly	Asn	Phe	Ile	Ala 265	Pro	Glu	Tyr	Ala	Tyr 270	Lys	Ile
Val	Lys	Lys 275	Gly	Asp	Ser	Ala	Ile 280	Met	Lys	Ser	Glu	Leu 285	Glu	Tyr	Gly
Asn	Cys 290	Asn	Thr	Lys	Cys	Gln 295	Thr	Pro	Met	Gly	Ala 300	Ile	Asn	Ser	Ser
Met 305	Pro	Phe	His	Asn	Ile 310	His	Pro	Leu	Thr	Ile 315	Gly	Glu	Cys	Pro	Lys 320
Tyr	Val	Lys	Ser	Asn 325	Arg	Leu	Val	Lėu	Ala 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Gln	Arg	Glu 340	Ser	Arg	Arg	Lys	Lys 345	Arg	Gly	Leu	Phe	Gly 350	Ala	Ile
Ala	Gly	Phe 355	Ile	Glu	Gly	Gly	Trp 360	Gln	Gly	Met	Val	Asp 365	Gly	Trp	Tyr
Gly	Tyr 370	His	His	Ser	Asn	Glu 375	Gln	Gly	Ser	Gly	Tyr 380	Ala	Ala	Asp	Lys
Glu 385	Ser	Thr	Gln	Lys	Ala 390	Met	Asp	Gly	Val	Thr 395	Asn	Lys	Val	Asn	Ser 400
Ile	Ile	Asp	Lys	Met 405	Asn	Thr	Gln	Phe	Glu 410	Ala	Val	Gly	Arg	Glu 415	Phe
Asn	Asn	Leu	Glu 420	Arg	Arg	Ile	Glu	Asn 425	Leu	Asn	Lys	Lys	Met 430	Glu	Asp
Gly	Phe	Leu 435	Asp	Val	Trp	Thr	Tyr 440	Asn	Ala	Glu	Leu	Leu 445	Val	Leu	Met
Glu	Asn 450	Glu	Arg	Thr	Leu	Asp 455	Phe	His	Asp	Ser	Asn 460	Val	Lys	Asn	Leu
Tyr 465	Asp	Lys	Val	Arg	Leu 470	Gln	Leu	Arg	Asp	Asn 475	Ala	Lys	Glu	Leu	Gly 480
Asn	Gly	Суз	Phe	Glu 485	Phe	Tyr	His	Lys	Cys 490	Asp	Asn	Glu	Cys	Met 495	Glu

Ser Ile Arg Asn Gly Thr Cys Asn Tyr Pro Gln Tyr Ser Glu Glu Ala 500 505 510

Arg Leu Lys Arg Glu Glu Ile Ser Gly Val Lys Leu Glu Ser Ile Gly
515 520 525

Thr Tyr Gln Ile Leu Ser Ile Tyr Ser Thr Val Ala Ser Ser Leu Ala 530 540

Leu Ala Ile Met Met Ala Gly Leu Ser Leu Trp Met Cys Ser Asn Gly 545 550 555 560

Ser Leu Gln Cys Arg Ile Cys Ile 565

<210> 58

<211>568

5

<212> PRT

<213> Virus de la gripe

<400>58

Met Glu Lys Ile Val Leu Leu Leu Ala Ile Val Ser Leu Val Lys Ser 1 5 10 15

Asp Gln Ile Cys Ile Gly Tyr His Ala Asn Asn Ser Thr Glu Gln Val 20 25 30

Asp Thr Ile Met Glu Lys Asn Val Thr Val Thr His Ala Gln Asp Ile 35 40 45

Leu Glu Lys Thr His Asn Gly Lys Leu Cys Asp Leu Asp Gly Val Lys
50 55 60

Pro Leu Ile Leu Arg Asp Cys Ser Val Ala Gly Trp Leu Leu Gly Asn 65 70 75 80

Pro Met Cys Asp Glu Phe Ile Asn Val Pro Glu Trp Ser Tyr Ile Val 85 90 95

Glu Lys Ala Asn Pro Thr Asn Asp Leu Cys Tyr Pro Gly Ser Phe Asn 100 105 110

Asp Tyr Glu Glu Leu Lys His Leu Leu Ser Arg Ile Asn His Phe Glu 115 120 125

Lys Ile Gln Ile Ile Pro Lys Ser Ser Trp Ser Asp His Glu Ala Ser 130 135 140

Ser 145	Gly	Val	Ser	Ser	Ala 150	Cys	Pro	Tyr	Leu	Gly 155	Ser	Pro	Ser	Phe	Phe 160
Arg	Asn	Val	Val	Trp 165	Leu	Ile	Lys	Lys	Asn 170	Ser	Thr	Tyr	Pro	Thr 175	Ile
Lys	Lys	Ser	Tyr 180	Asn	Asn	Thr	Asn	Gln 185	Glu	Asp	Leu	Leu	Val 190	Leu	Trp
Gly	Ile	His 195	His	Pro	Asn	Asp	Ala 200	Ala	Glu	Gln	Thr	Arg 205	Leu	Tyr	Gln
Asn	Pro 210	Thr	Thr	Tyr	Ile	Ser 215	Ile	Gly	Thr	Ser	Thr 220	Leu	Asn	Gln	Arg
Leu 225	Val	Pro	Lys	Ile	Ala 230	Thr	Arg	Ser	Lys	Val 235	Asn	Gly	Gln	Ser	Gly 240
Arg	Met	Glu	Phe	Phe 245	Trp	Thr	Ile	Leu	Lys 250	Pro	Asn	Asp	Ala	Ile 255	Asn
Phe	Glu	Ser	Asn 260	Gly	Asn	Phe	Ile	Ala 265	Prọ	Glu	Туг	Ala	Туг 270	Lys	Ile
Val	Lys	Lys 275	Gly	Asp	Ser	Ala	Ile 280	Met	Lys	Ser	Glu	Leu 285	Glu	Tyr	Gly
Asn	Суз 290	Asn	Thr	Lys	Cys	Gln 295	Thr	Pro	Met	Gly	Ala 300	Ile	Asn	Ser	Ser
Met 305	Pro	Phe	His	Asn	Ile 310	His	Pro	Leu	Thr	Ile 315	Gly	Glu	Cys	Pro	Lys 320
Tyr	Val	Lys	Ser	Asn 325	Arg	Leu	Val	Leu	Ala 330	Thr	Gly	Leu	Arg	Asn 335	Ser
Pro	Gln	Arg	Glu 340	Ser	Arg	Arg	Lys	Lys 345	Arg	Gly	Leu	Phe	Gly 350	Ala	Ile
Ala	Gly	Phe 355	Ile	Glu	Gly	Gly	Trp 360	Gln	Gly	Met	Val	Asp 365	Gly	Trp	Tyr
Gly	Tyr 370	His	His	Ser	Asn	Glu 375	Gln	Gly	Ser	Gly	Tyr 380	Ala	Ala	Asp	Lys

Glu 385	Ser	Thr	Gln	,Lys	Ala 390	Ile	Asp	Gly	Val	Thr 395	Asn	Lys	Val	Asn	Ser 400
Ile	Ile	Asp	Lys	Met 405	Asn	Thr	Gln	Phe	Glu 410	Ala	Val	Gly	Arg	Glu 415	Phe
Asn	Asn	Leu	Glu 420	Arg	Arg	Ile	Glu	Asn 425	Leu	Asn	Lys	Lys	Met 430	Glu	Asp
Gly	Phe	Leu 435	Asp	Val	Trp	Thr	Tyr 440	Asn	Ala	Glu	Leu	Leu 445	Val	Leu	Met
Glu	Asn 450	Glu	Arg	Thr	Leu	Asp 455	Phe	His	Asp	Ser	Asn 460	Val	Lys	Asn	Leu
Tyr 465	Asp	Lys	Val	Arg	Leu 470	Gln	Leu	Arg	Asp	Asn 475	Ala	Lys	Glu	Le u	Gly 480
Asn	Gly	Cys	Phe	Glu 485	Phe	Tyr	His	Lys	Cys 490	Asp	Asn	Glu	Cys	Met 495	Glu
Ser	Ile	Arg	Asn 500	Gly	Thr	Tyr	Asn	Tyr 505	Pro	Gln	Tyr	Ser	Glu 510	Glu	Ala
Arg	Leu	Lys 515	Arg	Glu	Glu	Ile	Ser 520	Gly	Val	Lys	Leu	Glu 525	Ser	Ile	Gly
Thr	Tyr 530	Gln	Ile	Leu	Ser	11e 535	Tyr	Ser	Thr	Val	Ala 540	Ser	Ser	Leu	Ala
Leu 545	Ala	Ile	Met	Met	Ala 550	Gly	Leu	Ser	Leu	Trp 555	Met	Cys	Ser	Asn.	Gly 560
Ser _.	Leu	Gln	Суз	Arg 565	Ile	Cys	Ile						•		

REIVINDICACIONES

- 1. Una partícula similar a un virus (VLP) que comprende una proteína M1 del virus de la gripe, una proteína hemaglutinina (HA) de la gripe y una proteína neuraminidasa (NA) de la gripe, en que la secuencia de aminoácidos de dicha proteína M1 es idéntica al menos en el 98 % a la SEC ID Nº 49 y en donde la VLP se expresa en una célula de insecto.
 - 2. La VLP de la reivindicación 1, en la que dicha proteína M1 comprende la SEC ID Nº 49.
- 10 3. La VLP de la reivindicación 1, en la que dicha HA y NA son H5 y N1, respectivamente.
 - 4. La VLP de la reivindicación 3, en la que dicha H5 o N1 son de un clado 1 del virus de la gripe H5N1, o en la que dichas H5 y N1 son de un clado 2 del virus de la gripe H5N1.
- 5. La VLP de la reivindicación 4, en la que a) dichas proteínas H5 y N1 comprenden las SEC ID Nºs 53 y 55, respectivamente, o una secuencia que comprende al menos una identidad de secuencia del 90 % con dichas secuencias, o b) dichas proteínas H5 y N1 comprenden las SEC ID Nºs 43 y 47, respectivamente, o una secuencia que comprende una identidad de secuencia de al menos el 90 % con dichas secuencias.
- 20 6. La VLP de la reivindicación 3, en la que dichas H5 y N1 son de un virus de la gripe que se ha aislado de un animal infectado.
 - 7. La VLP de la reivindicación 6, en la que dicho animal infectado es un ser humano.
- 8. La VLP de la reivindicación 1, en la que dicha célula de insecto es Sf9.

5

- 9. La VLP de la reivindicación 1, en la que dicha VLP provoca anticuerpos neutralizantes en un ser humano o un animal que son protectores contra la infección de gripe cuando se administra a dichos ser humano o animal.
- 30 10. Una composición inmunogénica que comprende una dosis eficaz de una VLP de una cualquiera de las reivindicaciones 1-9.
 - 11. La composición de la reivindicación 10, en la que dicha composición comprende un adyuvante.
- 12. Una vacuna que comprende una dosis eficaz de una VLP de una cualquiera de las reivindicaciones 1-9.
 - 13. La vacuna de la reivindicación 12, en la que dicha vacuna comprende al menos dos VLP diferentes con diferentes proteínas de la gripe.
- 40 14. La vacuna de las reivindicaciones 12 o 13, en la que dicha vacuna comprende un adyuvante.
 - 15. Una vacuna de una cualquiera de las reivindicaciones 12-14, en la que dicha vacuna se ha tratado para inactivar baculovirus.
- 45 16. La vacuna de la reivindicación 15, en la que dicho tratamiento de inactivación comprende la incubación de una muestra que comprende VLP en aproximadamente un 0,2 % de β-propil lactona (BPL) durante aproximadamente 3 horas a aproximadamente 25 °C.
- 17. La composición inmunogénica o la vacuna de las reivindicaciones 11 o 14 en que la dicho adyuvante comprende Novasomes®.
 - 18. El uso de una VLP de una cualquiera de las reivindicaciones 1-9 para la preparación de una vacuna para un animal, en donde la vacuna induce inmunidad sustancial contra la infección por el virus de la gripe en dicho animal.
 - 19. Una vacuna de una cualquiera de las reivindicaciones 12-17 para su uso en un método de tratamiento en donde la vacuna induce inmunidad sustancial contra la infección por el virus de la gripe en un animal.
- 20. La vacuna para el uso de la reivindicación 19 o el uso de la reivindicación 18, en donde la vacuna se administra al animal por vía oral, intradérmica, intranasal, intramuscular, intraperitoneal, intravenosa o subcutánea.
- 21. Un método de elaboración de una VLP de una cualquiera de las reivindicaciones 1-9, que comprende la expresión de una proteína MI, una proteína hemaglutinina (HA) de la gripe y una proteína neuraminidasa (NA) de la gripe en una célula de insecto en donde la secuencia de aminoácidos de dicha proteína MI es idéntica al menos en un 98 % a la SEC ID Nº 49.

22. El método de la reivindicación 21, en el que dicha célula de insecto es Sf9.

ATGAATCCAAATCAAAAGATAATAGCACTTGGCTCTGTTTCTATAACTATTGCGACAATATG ACCCATCGAACAATCAAGCAGTGCCATGTGAACCAATCATAATAGAAAGGAACATAACAGAG **ATAGTGCATTTGAATAATACTACCATAGAGAAGGAAAGTTGTCCTAAAGTAGCAGAATACAA** GANTTGGTCAAAACCGCAATGTCAAATTACAGGGTTCGCCCCTTTCTCCAAGGACAACTCAA TTAGGCTTTCTGCAGGCGGGGATATTTGGGTGACAAGAGAACCTTATGTATCGTGCGGTCTT GGTAAATGTTACCAATTTGCACTTGGGCAGGGAACCACTTTGAACAACAACACTCAAATGG CACAATACATGATAGGAGTCCCCATAGAACCCTTTTAATGAACGAGTTGGGTGTTCCATTTC ATTTGGGAACCAAACAAGTGTGCATAGCATGGTCCAGCTCAAGCTGCCATGATGGGAAGGCA TGGTTACATGTTTGTGTCACTGGGGATGATACAAATGCGACTGCTAGCATCATTTATGATGG GATGCTTACCGACAGTATTGGTTCATGGTCTAAGAACATCCTCAGAACTCAGGAGTCAGAAT GCGTTTGCATCAATGGAACTTGTACAGTAGTAATGACTGATGGAAGTGCATCAGGAAGGGCT GATACTAAAATACTATTCATTAGAGAAGGGAAAATTGTCCACATTGGTCCACTGTCAGGAAG TGCTCAGCATGTGGAGGAATGCTCCTGTTACCCCCGGTATCCAGAAGTTAGATGTGTTTGCA GATTCTAGTTATGTGTGCTCAGGACTTGTTGGCGACACCAAGAAATGACGATAGCTCCAG CAGCAGTAACTGCAGGGATCCTAATAACGAGAGGGGGCCCCAGGAGTGAAAGGGTGGGCCT AGTCATAGTTGACAGTGATAACTGGTCTGGGTATTCTGGTATATTCTCTGTTGAAGGAAAAA CCTGCATCAACAGGTGTTTTTATGTGGAGTTGATAAGAGGGAGACCACAGGAGACCAGAGTA TGGTGGACTTCAAATAGCATCATTGTATTTTGTGGAACTTCAGGTACCTATGGAACAGGCTC ATGGCCCGATGGAGCGAATATCAATTTCATGTCTATATAA

CTGCATCGGCCACCAGTCAACAAACTCCACAGAAACTGTGGACACGCTAACAGAAACCAATG TTCCTGTGACACATGCCAAAGAATTGCTCCACACAGAGCATAATGGAATGCTGTGTGCAACA AGCCTGGGACATCCCCTCATTCTAGACACATGCACTATTGAAGGACTAGTCTATGGCAACCC TTCTTGTGACCTGCTGTTGGGAGGAAGAGAATGGTCCTACATCGTCGAAAGATCATCAGCTG TAAATGGAACGTGTTACCCTGGGAATGTAGAAAACCTAGAGGAACTCAGGACACTTTTTAGT TCCGCTAGTTCCTACCAAAGAATCCAAATCTTCCCAGACACAACCTGGAATGTGACTTACAC TGGAACAAGCAGAGCATGTTCAGGTTCATTCTACAGGAGTATGAGATGGCTGACTCAAAAGA GCGGTTTTTACCCTGTTCAAGACGCCCAATACACAAATAACAGGGGAAAGAGCATTCTTTTC CACAACAACAAGCGTGACAACAGAAGATTTGAATAGGACCTTCAAACCAGTGATAGGGCCAA GGCCCCTTGTCAATGGTCTGCAGGGAAGAATTGATTATTATTGGTCGGTACTAAAACCAGGC CAAACATTGCGAGTACGATCCAATGGGAATCTAATTGCTCCATGGTATGGACACGTTCTTTC AGGAGGGAGCCATGGAAGAATCCTGAAGACTGATTTAAAAGGTGGTAATTGTGTAGTGCAAT GTCAGACTGAAAAAGGTGGCTTAAACAGTACATTGCCACTTCCACAATATCAGTAAATATGCA TTTGGAACCTGCCCCAAATATGTAAGAGTTAATAGTCTCAAACTGGCAGTCGGTCTGAGGAA CGTGCCTGCTAGATCAAGTAGAGGACTATTTGGAGCCATAGCTGGATTCATAGAAGGAGGTT GGCCAGGACTAGTCGCTGGCTGGTATGGTTTCCAGCATTCAAATGATCAAGGGGTTGGTATG GCTGCAGATAGGGATTCAACTCAAAAGGCAATTGATAAAATAACATCCAAGGTGAATAATAT AGTCGACAAGATGAACAAGCAATATGAAATAATTGATCATGAATTCAGTGAGGTTGAAACTA GACTCAATATGATCAATAATAAGATTGATGACCAAATACAAGACGTATGGGCATATAATGCA GAATTGCTAGTACTTGAAAATCAAAAAACACTCGATGAGCATGATGCGAACGTGAACAA TCTATATAACAAGGTGAAGAGGGCACTGGGCTCCAATGCTATGGAAGATGGGAAAGGCTGTT TCGAGCTATACCATAAATGTGATGATCAGTGCATGGAAACAATTCGGAACGGGACCTATAAT AGGAGAAAGTATAGAGAGGAATCAAGACTAGAAAGGCAGAAAATAGAGGGGGGTTAAGCTGGA ATCTGAGGGAACTTACAAAATCCTCACCATTTATTCGACTGTCGCCTCATCTCTTGTGCTTG CAATGGGGTTTGCTGCCTTCCTGTTCTGGGCCATGTCCAATGGATCTTGCAGATGCAACATT TGTATATAA

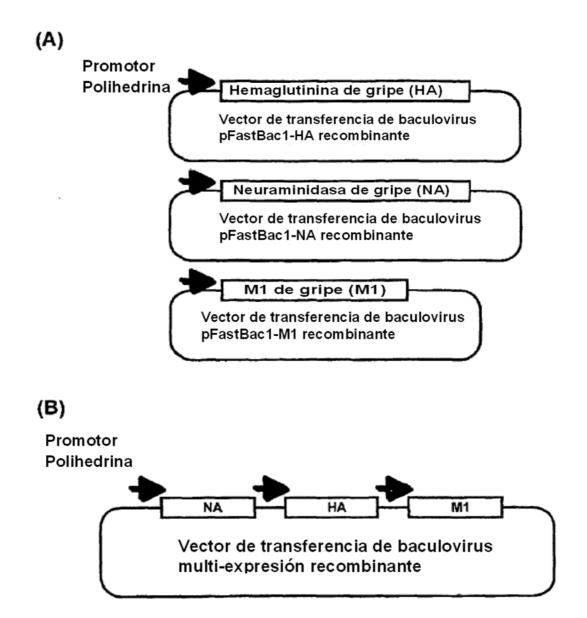
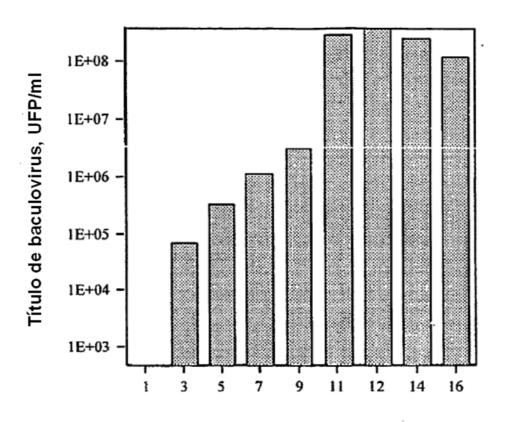



FIGURA 4

Fracción nº

FIGURA 6

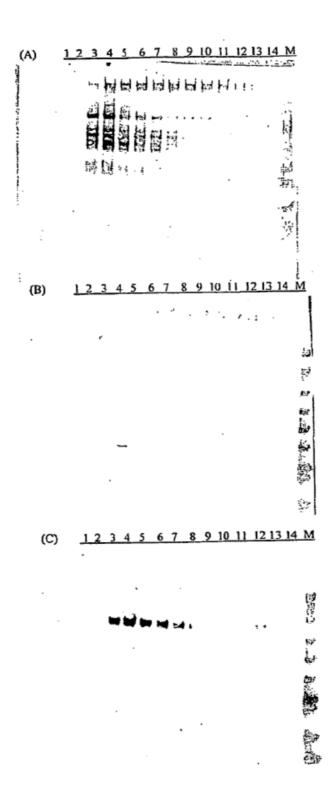


FIGURA 7

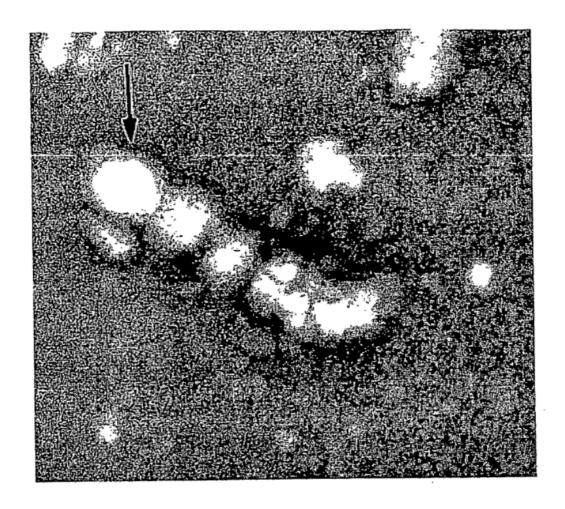
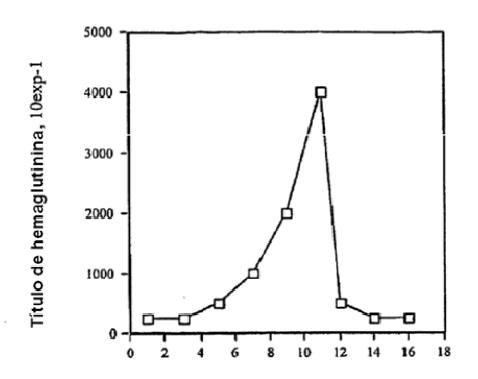



FIGURA 8

Fracción nº

FIGURA 9

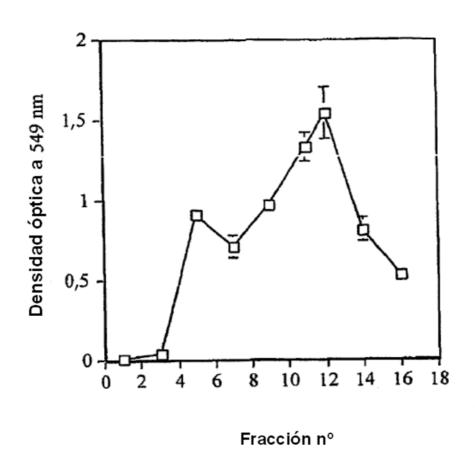


FIGURA 10

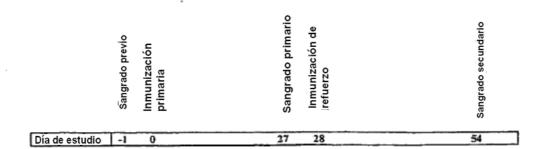


FIGURA 11

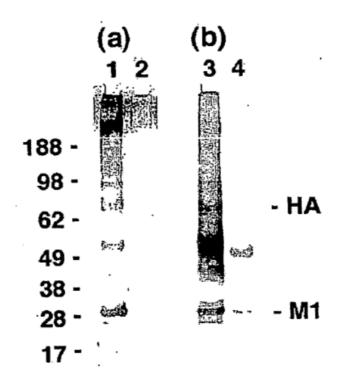


FIGURA 12

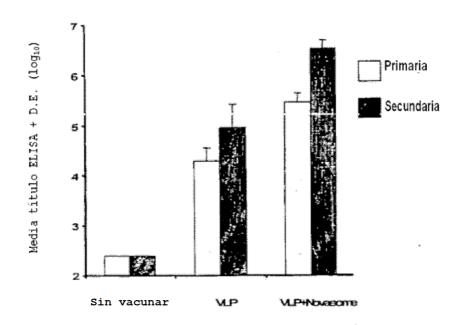


FIGURA 13

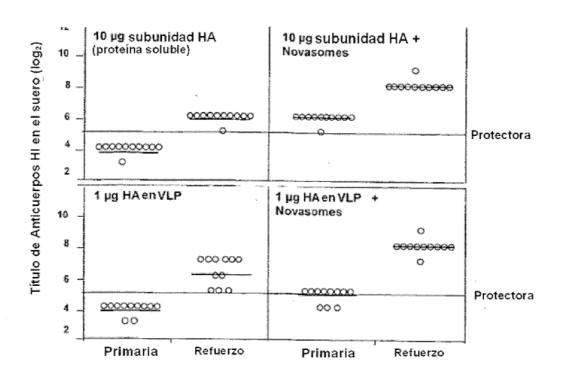


FIGURA 14

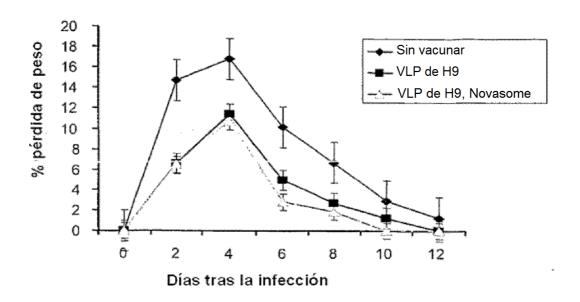


Figura 15

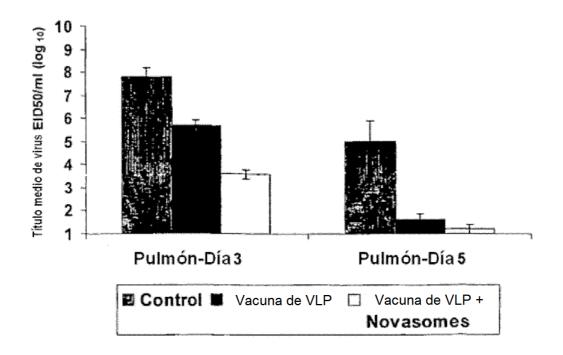


FIGURA 16

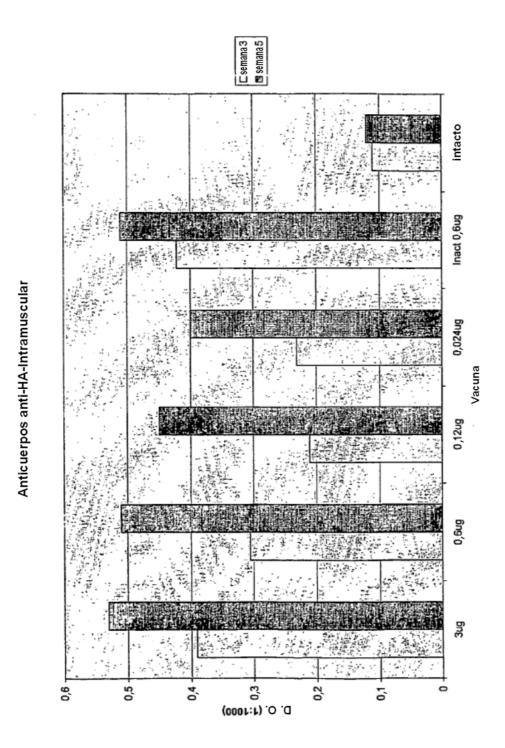
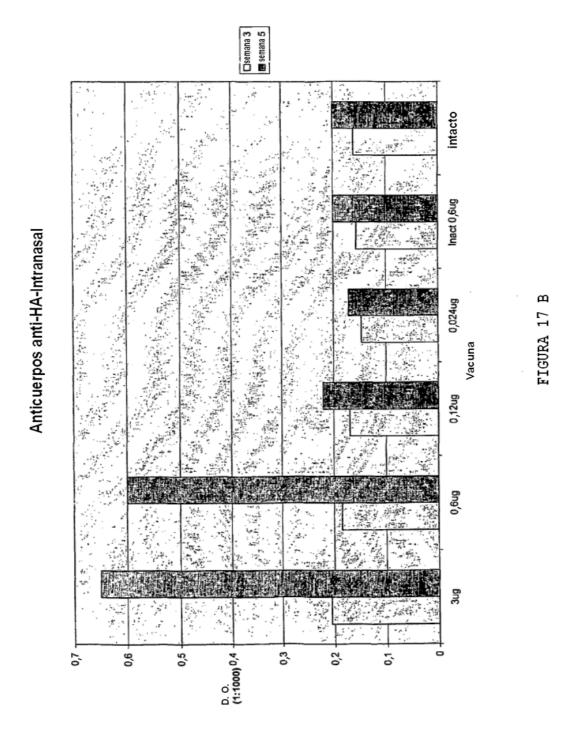
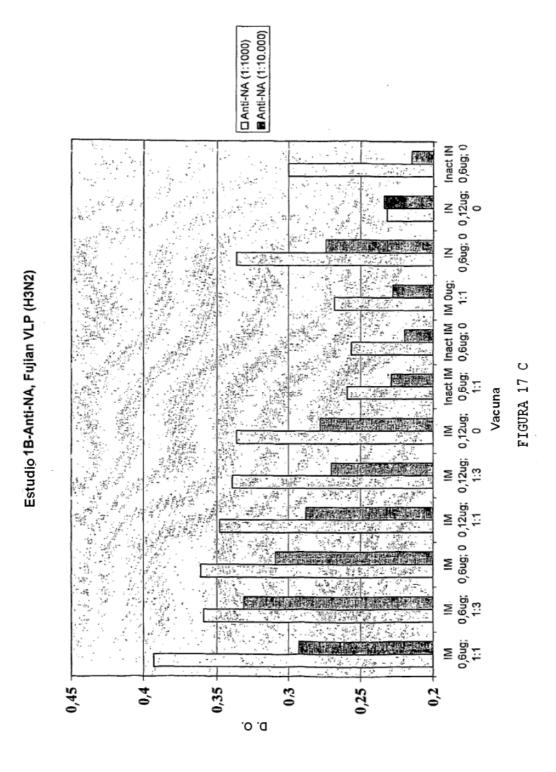




FIGURA 17 A

144

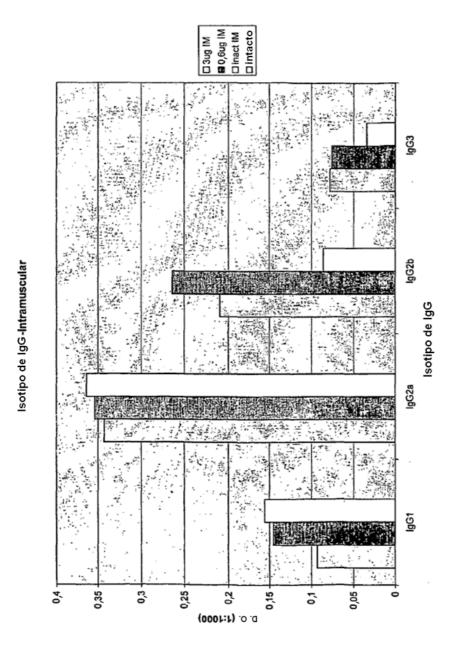


FIGURA 18 A

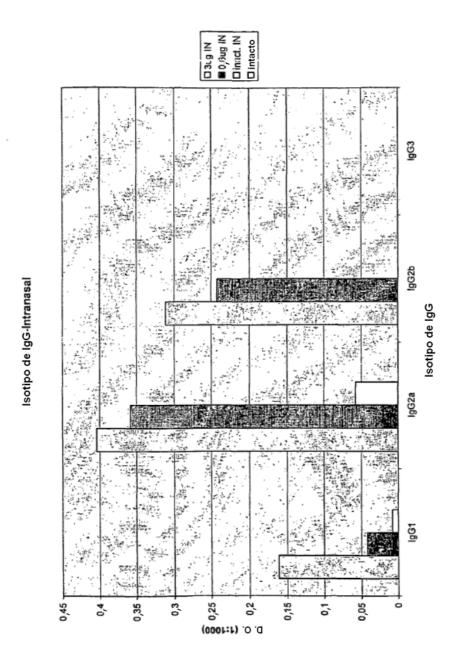


FIGURA 18 B

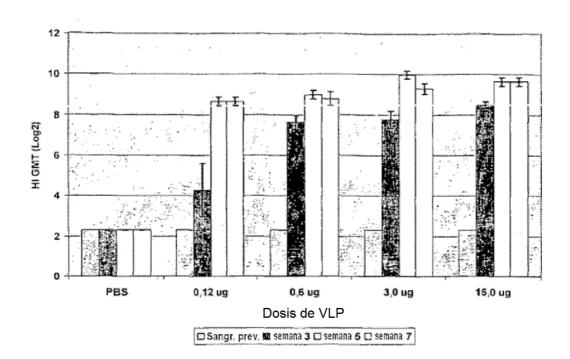


FIGURA 19

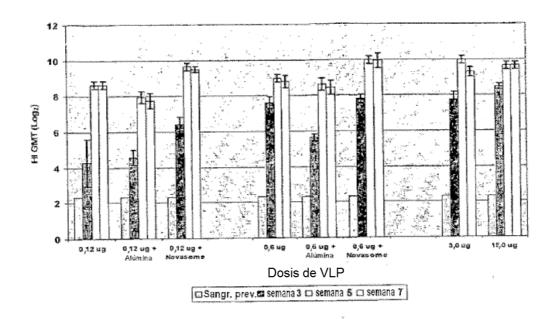


FIGURA 20 A

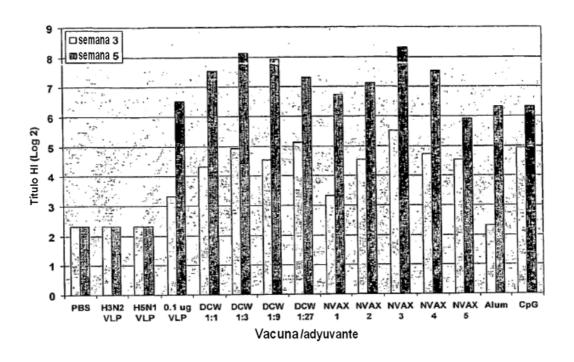


FIGURA 20 B

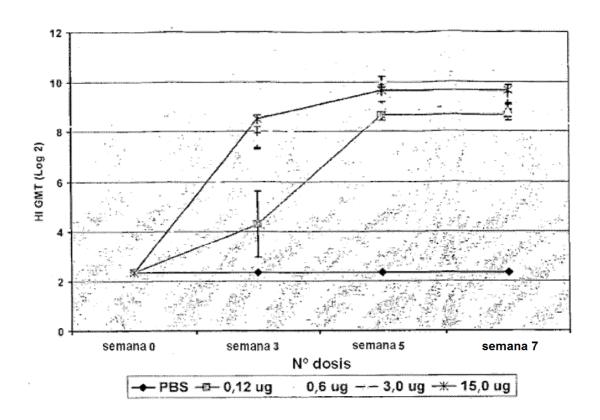
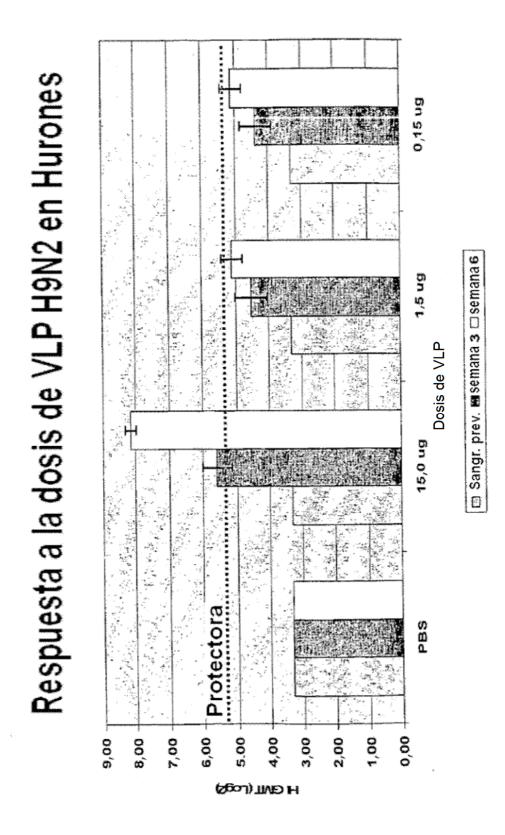
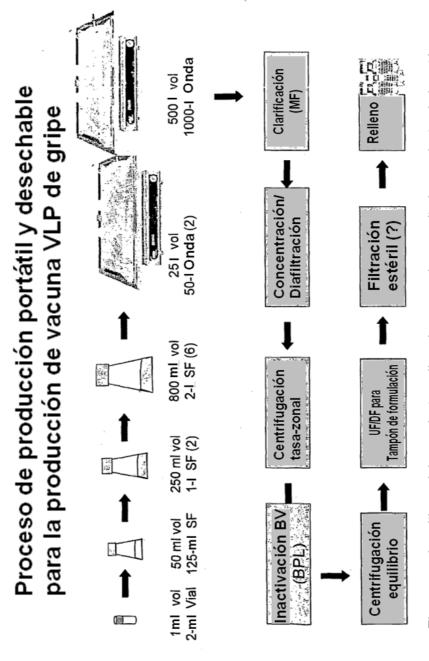



FIGURA 21

IGURA 22

Tabla X. Títulos de Inhibición de la Hemaglutinina - Hurones

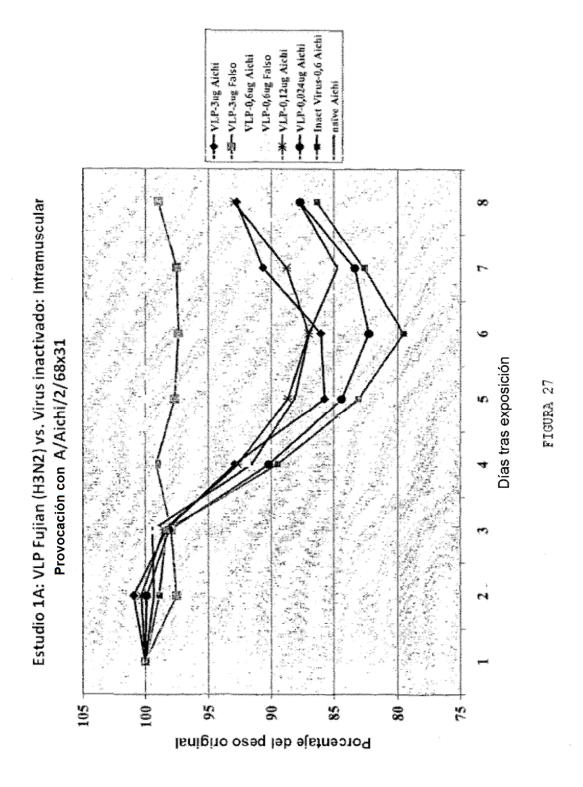
		H3N2	611		HINI
Vacuna	CA/04	Fuj/02	Well/01	Pan/99	NC/99
Intramuscular					
VLP (15ug)	640	506	208	40	10
VLP (3 ug)	160	640	226	57	10
VLP (0,6ug)	50	320	143	57	10
VLP (0,12 ug)	10	184	70	50	10
rHA (15 ug)	08	254	143	99	10
Falso	10	10	10	10	10

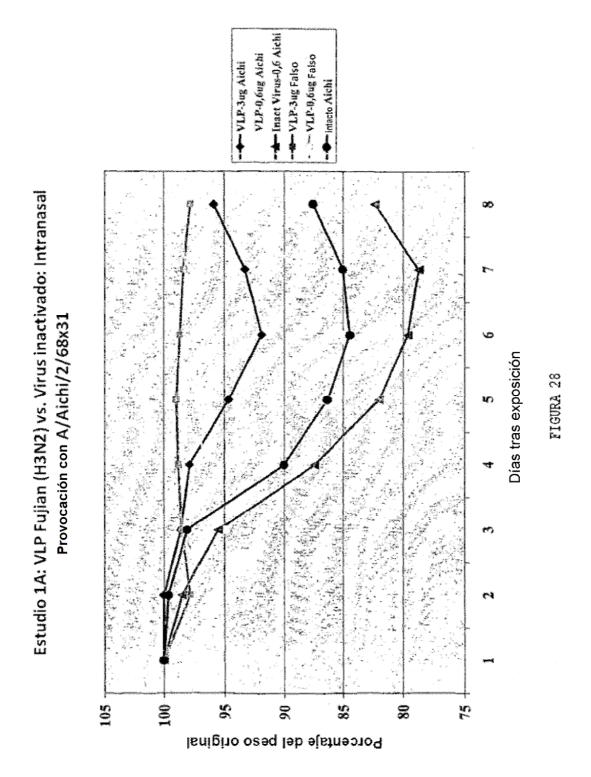

TGURA 23

☐ semana 0 ■ semana 3 ☐ semana 5 intacto rHA (0,6 ug) VLP (0,2 ug) VLP (0,04 ug) VLP (0,008 ug)VLP (0,0016 ug) rHA (3 ug) FIGURA 24 Vacuna 10000 100 1000 (Título de punto final de dilución) Anticuerpo anti-HA

Dosis reducida extrema VLP H5N1 Vietnam/1203/2003-Intramuscular

153


intacto rHA (0,6 ug) Estudio 2A-Dosis reducida extrema VLP H5N1 Vietnam/1203/2005 rHA (3 ug) VLP (0,0016 ug) FIGURA 25 VLP (0,008 ug) VLP (0,04 ug) VLP (0,2 ug) 1000 Anticuerpo anti-HA (Título de punto final de dilución)



El proceso de cultivo celular corriente arriba y las operaciones unitarias corriente abajo están dirigidos a ser portátil, desechable, y escalable, con capacidad de aumento.

40321 V2/UC

FIGURA 26

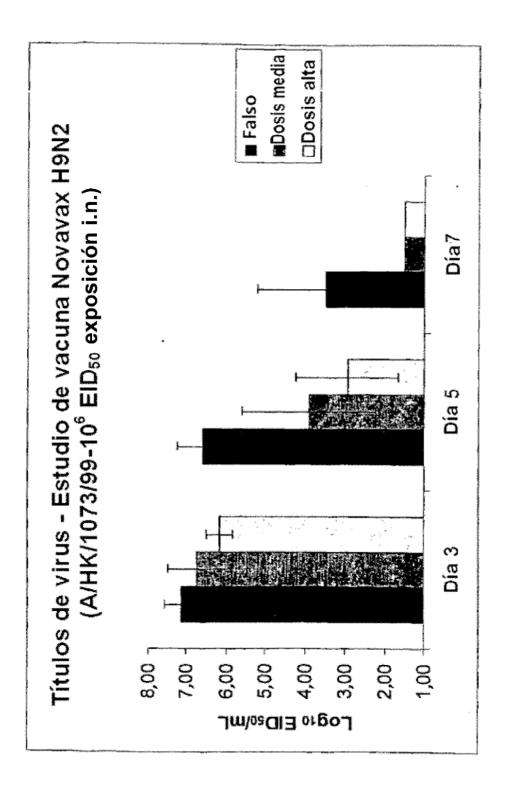
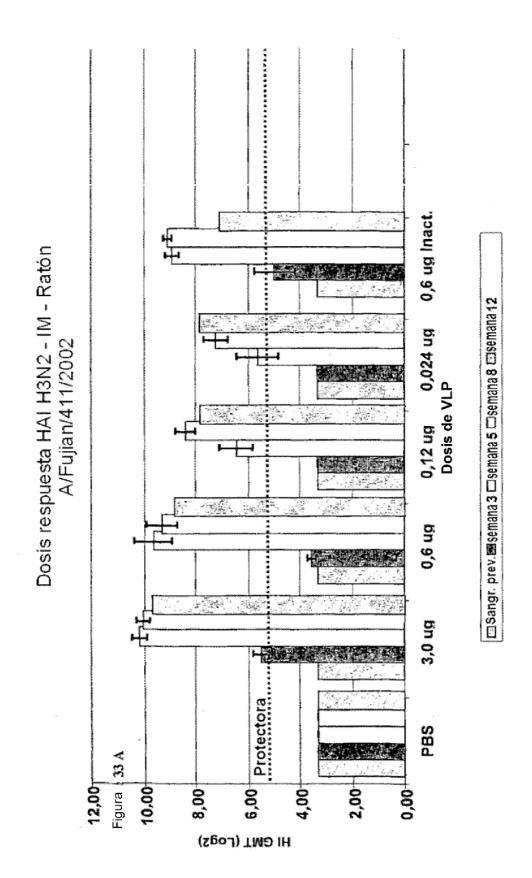
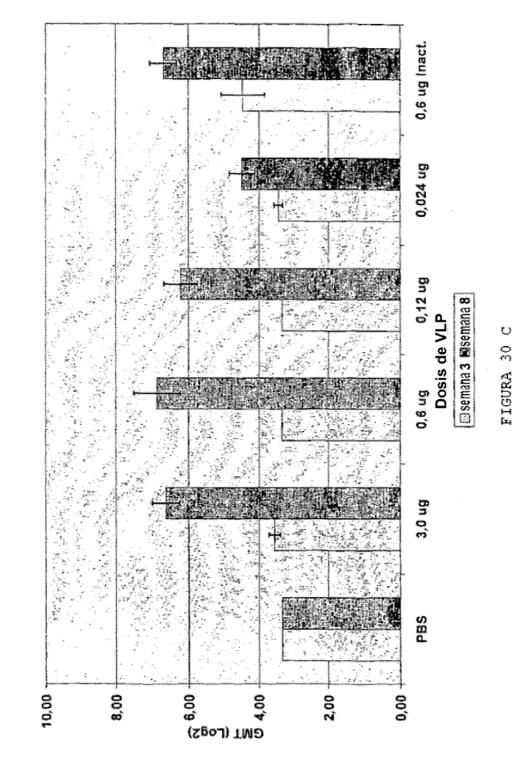



FIGURA 29

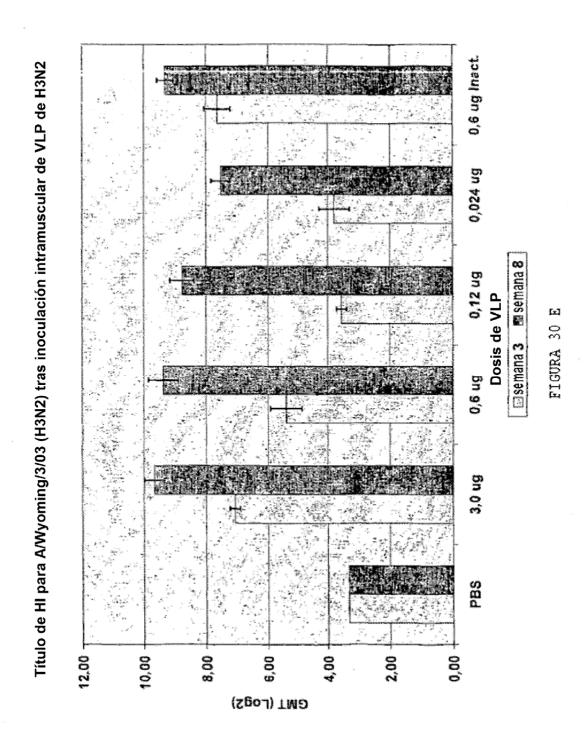
TIGURA 30 A


0,6 ug Inact. Título de HI para A/Fujian/411/2002 (H3N2) tras inoculación intranasal de VLP de H3N2 0,024 ug 国Sangr. prev.圖semana 3 □semana 5 □semana 8 0,12 ug Dosis de VLP 0,6 ug 3,0 ug PBS 14,00 12,00 0,00 10,00 8,00 6,00 4,00 2,00 HI GWL (Log2)

മ

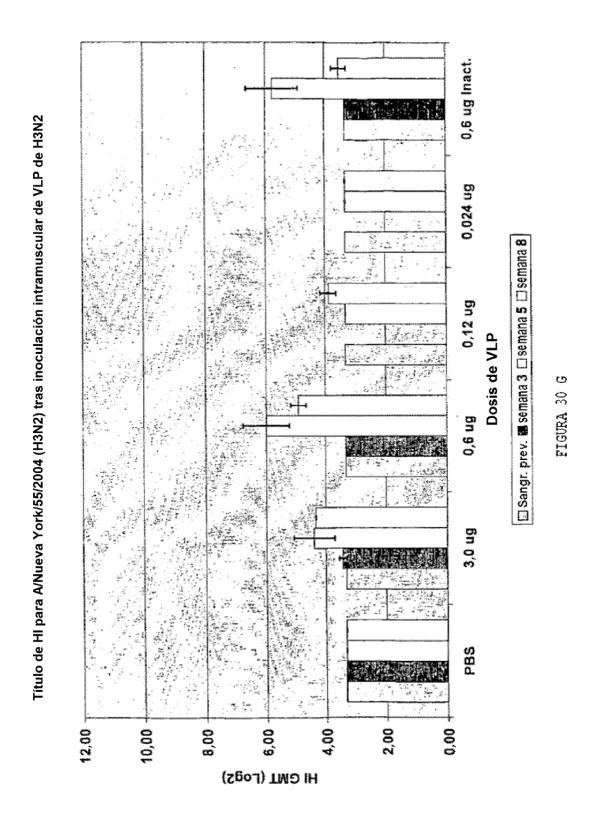
FIGURA 30

160


Título de HI para A/Panamá/2007/99 (H3N2) tras inoculación intramuscular de VLP de H3N2

0,6 ug Inact. Título de HI para A/Panamá/2007/99 (H3N2) tras inoculación intranasal de VLP de H3N2 0,024 ug semana 3 Esemana 8 Dosis de VLP 0,6 ug 3,0 ug PBS 2,00 000 8,00 GMT (Log2)

FIGURA 30 D


162

0,6 ug Inact. Título de HI para A/Wyoming/3/03 (H3N2) tras inoculación intranasal de VLP de H3N2 0,024 ug 0,12 ug □semana3 Tasemana8 Dosis de VLP 9'0 g PBS (Log2) TMĐ 12,00 10,00 00'0 2,00

FIGURA 30 F

164

0,6 ug Inact. Título de HI para A/Nueva York/55/2004 (H3N2) tras inoculación intranasal de VLP de H3N2 0,12 ug Semana 3 Ensemana 8 Dosis de VLP 0,6 ug 3,0 ug 10,00 8,00 000 2,00 GWT (Log2)

ㅁ

FIGURA 30

166