

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 544 446

61 Int. Cl.:

B64C 11/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 29.04.2012 E 12166092 (2)
 (97) Fecha y número de publicación de la concesión europea: 22.07.2015 EP 2520489

(54) Título: Pista de retención de pala con chaflanes interior y exterior

(30) Prioridad:

06.05.2011 US 201113102845

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 31.08.2015

(73) Titular/es:

HAMILTON SUNDSTRAND CORPORATION (100.0%)
One Hamilton Road
Windsor Locks, CT 06096-1010, US

(72) Inventor/es:

VENTURA, PETER y SOULE, MATTHEW

74 Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Pista de retención de pala con chaflanes interior y exterior

Campo de la invención

5

10

25

La materia objetivo descrita en la presente memoria se refiere de manera general al campo de una pista de retención de pala dividida para una pala de hélice de aeronave.

Descripción de la técnica relacionada

Una hélice para uso en una aeronave incluye un buje de rotación central que tiene una pluralidad de zócalos de recepción de pala dispuestos alrededor del buje. Las palas de hélice cada una tiene una espiga situada en la base de cada pala de hélice y cada espiga está dispuesta en un zócalo de recepción de pala respectivo. Los zócalos de recepción de pala y las espigas de la pala están dotados con superficies de pista de rodamiento de bolas separadas, opuestas y una pluralidad de bolas se sostiene entre el zócalo de recepción de pala y la espiga de la pala en las superficies de pista, permitiendo el ajuste del paso de la pala. La pista de rodamiento de bolas en la espiga de la pala puede ser un componente separado, conocido como una pista de retención de pala, que rodea la espiga de la pala. Actualmente, las palas se envían con una pista de pala de una pieza.

Debido al movimiento y carga de las bolas en la superficie de la pista y el daño resultante que ocurre a la pista, las pistas de una pieza se pueden sustituir por pistas divididas en una revisión. Tal pista de retención de pala multisección se puede conocer como una pista de retención de pala dividida. Una vez que la pista de una pieza se sustituye por pistas divididas, el movimiento y carga de las bolas en los bordes de las pistas divididas tiene una tendencia a dañar la espiga de la pala sin posibilidad de reparación. Una pista dividida ejemplar se describe en la GB 204.864.

Breve compendio

La presente invención proporciona una pista de retención de pala dividida para un conjunto de espiga de la pala para una pala de hélice de aeronave según la reivindicación 1.

Otros aspectos, rasgos y técnicas de la invención llegarán a ser más evidentes a partir de la siguiente descripción tomada en conjunto con los dibujos.

Breve descripción de las diversas vistas de los dibujos

Con referencia ahora a los dibujos en donde elementos iguales se numeran igual en las diversas FIGURAS:

- La FIG. 1 ilustra una realización de un conjunto de espiga de la pala para una pala de hélice de aeronave que incluye una pista de retención de pala dividida.
- 30 La FIG. 2 ilustra una vista en planta de una realización de una pista de retención de pala dividida.
 - La FIG. 3 ilustra una vista lateral de una realización de una espiga de la pala con una pista de retención de pala dividida en una división.
 - La FIG. 4 ilustra una vista lateral de una realización de una pista de retención de pala dividida.
- La FIG. 5 ilustra una vista lateral de una realización de una pista de retención de pala dividida sobre una espiga de la pala.
 - La FIG. 6 ilustra una vista detallada de una realización de los chaflanes interiores y exteriores y los radios interiores y exteriores asociados.
 - La FIG. 7 ilustra una vista detallada de una deflexión de compresión de una bola en una superficie de pista.

Descripción detallada

Se proporcionan realizaciones de una pista de retención de pala dividida con chaflanes interiores y exteriores, con las realizaciones ejemplares que se tratan más adelante en detalle. Las pistas de pala divididas actuales pueden tener una vida útil limitada debido a la carga de las bolas que se sostienen en la pista que carga la pista de retención de pala dividida y la geometría de la pista en la división. La inclusión de chaflanes (definidos como un borde biselado recto que conecta dos superficies) en la división tanto en la superficie interior de la pista de retención de pala dividida (adyacente a la espiga de la pala) como la superficie exterior de la pista de retención de pala dividida (adyacente a la superficie de la pista que sujeta las bolas) evita a las bolas cargar la parte no soportada en el borde de la pista de retención de pala dividida en la división. Un radio que conecta el chaflán con la superficie adyacente proporciona una transición de pista suave para las bolas encima de la división para evitar daño a la espiga de la

pala. Esto extiende la vida de la pista de retención de pala dividida y reduce el número de palas de hélice que necesitan ser desguazadas debido a daño a la espiga de la pala. Como se señaló anteriormente, los chaflanes además incluyen radios asociados, que son superficies curvadas que combinan los chaflanes con superficies adyacentes en la pista de retención de pala dividida. Los radios proporcionan una transición suave entre los chaflanes y las superficies adyacentes.

La FIG. 1 muestra una realización de un conjunto de espiga de la pala 100 para inserción en un zócalo de recepción de pala (no mostrado) de una hélice de aeronave. El conjunto de espiga de la pala 100 incluye una espiga de la pala 101, bolas 102 y pistas de retención de pala divididas 103. La divisiones 104 se sitúan entre las secciones de la pista de retención de pala dividida 103. Los bordes de la pista de pala dividida 103 en las divisiones 104 incluyen cada uno un chaflán en el lado interior, adyacente a la espiga 101 y en el lado exterior, adyacente a la superficie de pista de las pistas de retención de pala divididas 103 en las que se sitúan las bolas 102. Las proporciones de los chaflanes interior y exterior aseguran que la pista no se carga sobre la parte no soportada en los bordes de las pistas de retención de pala divididas 103 interiores. Los radios interior y exterior proporcionan una transición suave de las bolas 102 entre los chaflanes y las superficies de pista adyacentes en la pista de retención de pala dividida 103 a fin de evitar el daño a la espiga de la pala 101 según pasan las bolas 102 sobre las divisiones 104. Esto ayuda a reducir el daño a la pista de retención de pala dividida 103 y la espiga de la pala 101 de las bolas según pasan sobre las divisiones 104. La anchura de las divisiones 104 es una resultante del proceso de fabricación. La pista de retención de pala dividida 103 se fabrica como un anillo completo y entonces se corta por la mitad para formar las divisiones 104. Fabricar la pista de retención de pala dividida 103 como un anillo completo antes de dividirlo asegura que las curvaturas de pista de ambas mitades de la pista de retención de pala dividida 103 sean idénticas.

La FIG. 2 muestra una vista en planta de la pista de retención de pala dividida 103 de la FIG. 1. Las bolas 102 se mueven sobre la superficie de pista de la pista de pala dividida 103 y pasan por encima de las divisiones 104. Las divisiones 104 se sitúan entre las secciones de la pista de retención de pala dividida 103. La pista de retención de pala dividida 103 incluye los chaflanes interiores 201, en el borde de cada una de las divisiones 104 en la superficie interior de la pista de retención de pala dividida 103 que se coloca adyacente a la espiga de la pala 101. La pista de retención de pala dividida 103 también incluye chaflanes exteriores 202, situados en el borde de las divisiones 104 en la superficie de pista de la pista de retención de pala dividida 103 adyacentes a las bolas 102. Los chaflanes exteriores 202 evitan que la carga de las bolas 102 sea transferida a la sección no soportada de la pista de retención de pala dividida 103. Por lo tanto, una bola que se sitúa en una parte del radio o chaflán donde la distancia debajo de la superficie de pista es igual la deflexión de compresión de la bola en la pista está completamente descargada. La configuración dividida de la pista de retención de pala dividida 103 es tal que solamente una bola de las bolas 102 no está cargada en un momento dado; el resto de las bolas 102 comparten la carga. Esto ayuda a minimizar la cantidad de carga llevada por cada bola.

La FIG. 3 muestra una vista lateral de una espiga de la pala 101 y una pista de retención de pala dividida 103 en una división 104. La superficie de pista 301 es la superficie en la cual se sostienen las bolas 102. La superficie de división 302 de la pista de retención de pala dividida 103 se sitúa dentro de una división 104 directamente frente a una superficie de división correspondiente en otra sección de la pista de retención de pala dividida 103 en el otro lado de la división 104. El chaflán interior 201 está angulado hacia atrás de la superficie de división 302 a una superficie interior de la pista de retención de pala dividida que es adyacente a la espiga de la pala 101. Un radio interior curvado (tratado con más detalle con respecto a la FIG. 6) está asociado con el chaflán interior 201 para proporcionar una combinación suave entre el chaflán interior 201 y la superficie de la pista de retención de pala dividida 103 que es adyacente a la espiga de la pala 101. El chaflán exterior 202 está angulado hacia atrás desde la superficie de división 302 a la superficie de pista 301 de manera que hay una depresión en la pista que sostiene las bolas adyacente a la división 104. Un radio exterior curvado 303 (tratado con más detalle con respecto a la FIG. 6) está asociado con el chaflán exterior 202 para proporcionar una combinación suave entre el chaflán exterior 202 y la superficie de pista 301 adyacente. Los radios interior y exterior aseguran que no hay bordes agudos entre los chaflanes 201/202 y las superficies adyacentes, ya que los bordes agudos tienden a causar daño tanto a la espiga de la pala 101 como a la pista 103.

La FIG. 4 muestra una vista lateral de una pista de retención de pala dividida 103 en una división 104. También se muestran los chaflanes interiores 201, los chaflanes exteriores 202 y la superficie de pista 301. Las líneas de carga 401a-b, situadas en los bordes de los radios exteriores asociados con los chaflanes exteriores 202, muestran los puntos en los que una bola de las bolas 102 está completamente cargada en la superficie de pista 301 de la pista de retención de pala dividida 103. Entre las líneas de carga 401a y 401b, los chaflanes interiores 201, los chaflanes exteriores 202 y los radios aseguran que una bola se descarga y llega a estar completamente descargada sobre la sección no soportada interior de la pista. Los chaflanes 201/202 están dimensionados de manera que solamente una bola de las bolas 102 está descargada en un momento y los chaflanes exteriores 202 son más grandes que los chaflanes interiores 201.

La FIG. 5 muestra una vista lateral de una espiga de la pala 101 con una pista de retención de pala dividida 103 en una división 104. Los chaflanes interiores 201 y los chaflanes exteriores 202 están situados en la pista de retención de pala dividida 103 en los bordes de la división 104. Las líneas de carga 401a-b, situadas en los bordes de los

ES 2 544 446 T3

radios exteriores asociados con los chaflanes exteriores 202, muestran el punto en el que una bola está completamente cargada en la superficie de pista 301 de la pista de retención de pala dividida 103. Según pasa una bola entre las líneas de carga 401a y 401b, la bola llega a estar descargada en cualquiera de las pistas de retención de pala divididas 103 debido a la presencia de los chaflanes exteriores 202 y los radios exteriores asociados, evitando la carga de la sección no soportada de la pista de retención de pala dividida 103. Los chaflanes interiores 201 y los radios asociados se sitúan en el lado de la pista de retención de pala dividida 103 que es adyacente a la espiga de la pala 101.

La FIG. 6 ilustra una vista detallada de una realización de los chaflanes interiores y exteriores y los radios interiores y exteriores asociados. Se muestra la pista de retención de pala dividida 103, con la superficie de pista 301 y las bolas 102 situadas en la superficie de pista 301; la pista de retención de pala dividida 103 está situada en la espiga de la pala 101. La vista detallada 600a muestra un chaflán interior 201 y un radio interior asociado 601. El chaflán interior 201 es una superficie recta y el radio interior 601 es una superficie curvada que une el chaflán interior 201 a la superficie de la pista de retención de pala dividida 103 que es adyacente a la espiga de la pala 101. La curva del radio 601 evita el daño a la espiga de la pala 101. La vista detallada 600b muestra un chaflán exterior 202 y un radio exterior asociado 303. El chaflán exterior 202 es una superficie recta y el radio exterior 303 es una superficie curvada que une el chaflán exterior 202 a la superficie de pista 301, asegurando una transición suave para las bolas 102 según pasan las bolas 102 sobre los chaflanes exteriores 202 y los radios exteriores 303. Las líneas de carga 401a-b se sitúan en los bordes exteriores de los radios exteriores 303. La línea 603 ilustra la línea de carga central 603 de una bola 102. Cuando la línea de carga central 603 de una bola 102 está entre las líneas de carga 401a-b, la bola comienza a descargarse entonces llega a estar completamente descargada cuando la profundidad debajo de la superficie de pista 301 es igual a la deflexión de compresión de la bola 102. Esto se muestra con más detalle con respecto a la FIG. 7. La deflexión de compresión 701 de la bola 102 se muestra con respecto a la sección transversal 702 a lo largo de la línea A-A'. En la vista de detalle 703 de la FIG. 7, cuando la profundidad debajo de la superficie de pista 301 (en el radio o chaflán), indicada por las líneas 704, es igual a la deflexión de compresión 702 de la bola 102, la bola 102 está completamente descargada.

10

15

20

25

30

35

Los efectos y beneficios técnicos de las realizaciones ejemplares incluyen reducción del daño de la espiga de la pala debido a una configuración de división de pista de pala así como la reducción del desgaste en los bordes de pista divididos.

La terminología usada en la presente memoria es para el propósito de describir realizaciones particulares solamente y no se pretende que sea limitante de la invención. Aunque la descripción de la presente invención se ha presentado para propósitos de ilustración y descripción, no se pretende que sea exhaustiva o esté limitada a la invención en la forma descrita. Muchas modificaciones, variaciones, alteraciones, sustituciones o disposición equivalente no descritas para la presente memoria serán evidentes a los expertos habituales en la técnica sin apartarse del alcance de la invención, que se define por las reivindicaciones. Adicionalmente, aunque se han descrito diversas realizaciones de la invención, se tiene que entender que aspectos de la invención pueden incluir solamente algunas de las realizaciones descritas. Por consiguiente, la invención no tiene que ser vista como limitada por la descripción precedente, sino que solamente se limita por el alcance de las reivindicaciones adjuntas.

REIVINDICACIONES

- 1. Una pista de retención de pala dividida (103) en forma de anillo para un conjunto de espiga de la pala (101) para una pala de hélice de aeronave, que comprende:
 - una superficie radialmente interior, la superficie interior que está configurada para ser situada adyacente a una espiga de la pala en el conjunto de espiga de la pala;
 - una superficie de pista radialmente exterior (301), la superficie de pista que está configurada para sostener una pluralidad de bolas (102); y
 - una superficie dividida (104), la superficie dividida que está configurada para estar situada dentro de una división radial que separa una primera sección de la pista de retención de pala dividida de una segunda sección de la pista de retención de pala dividida;

caracterizada por:

5

10

15

35

un chaflán interior (201), en donde el chaflán interior está angulado hacia atrás a lo largo de una interfaz entre la superficie dividida a la superficie interior; y

- un chaflán exterior (202), en donde el chaflán exterior está angulado hacia atrás a lo largo de una interfaz entre la superficie dividida y la superficie de pista.
- 2. La pista de retención de pala dividida de la reivindicación 1, en donde el chaflán interior comprende una superficie recta.
- 3. La pista de retención de pala dividida de la reivindicación 2, que además comprende un radio interior (601) que comprende una superficie curvada que se sitúa entre el chaflán interior y la superficie interior de la pista de retención de pala dividida.
 - 4. La pista de retención de pala dividida de la reivindicación 1, 2 o 3, en donde el chaflán exterior comprende una superficie recta.
- 5. La pista de retención de pala dividida de la reivindicación 4, que además comprende un radio exterior (303) que comprende una superficie curvada que se sitúa entre el chaflán exterior y la superficie de pista de la pista de retención de pala dividida.
 - 6. La pista de retención de pala dividida de cualquier reivindicación precedente, en donde el chaflán exterior es mayor que el chaflán interior.
 - 7. Un conjunto de espiga de la pala (101) para una pala de hélice de aeronave, que comprende:

una espiga de la pala;

- una pista de retención de pala dividida (103) como se reivindica en cualquier reivindicación precedente que rodea la espiga de la pala, la pista de retención de pala dividida que incluye dos divisiones; y
 - una pluralidad de bolas (102) situadas sobre la superficie de pista de la pista de retención de pala dividida.
 - 8. El conjunto de espiga de la pala de la reivindicación 7, en donde la pista de retención de pala dividida está configurada de manera que una bola de la pluralidad de bolas está completamente descargada cuando una línea de carga central (603) de la bola está situada en uno de un radio exterior, un chaflán exterior o una división.
 - 9. El conjunto de espiga de la pala de la reivindicación 7 u 8, en donde la pista de retención de pala dividida está configurada de manera que solamente una bola de la pluralidad de bolas está descargada en un momento.

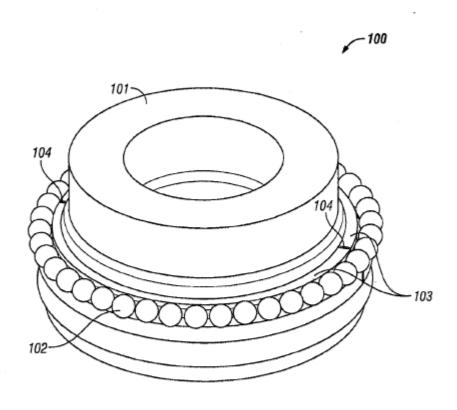
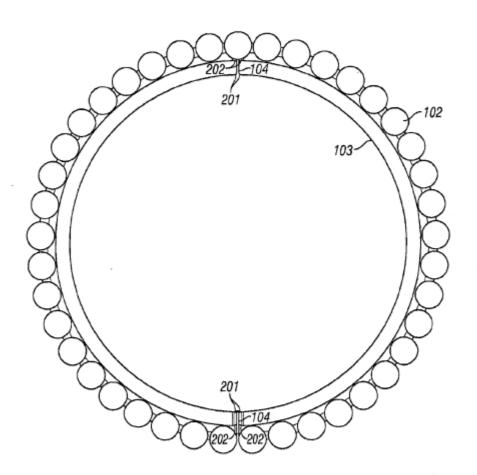
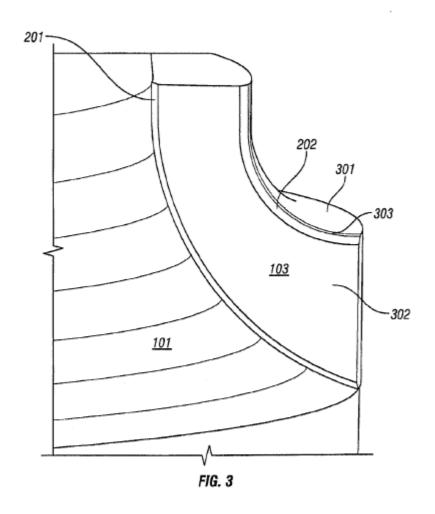
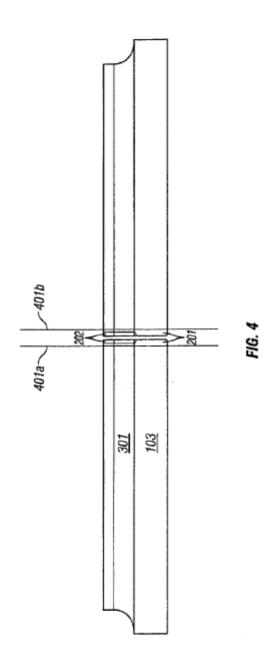
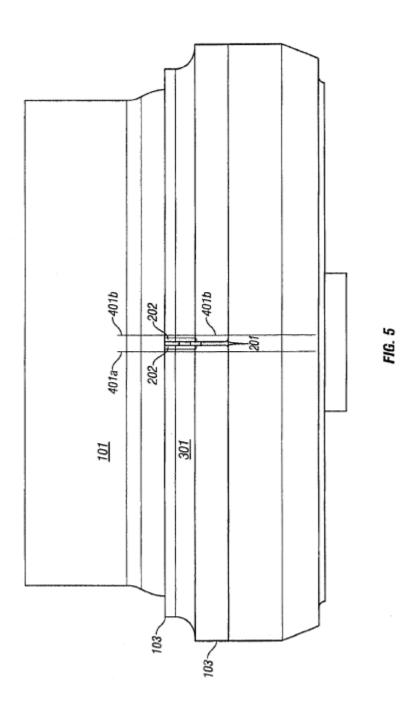
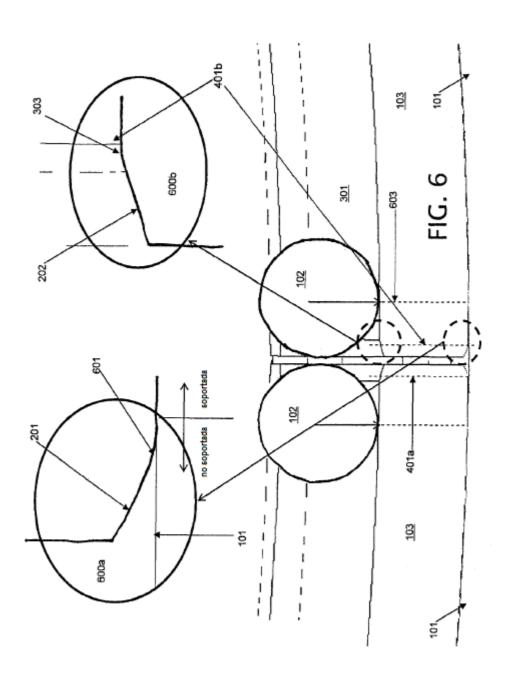
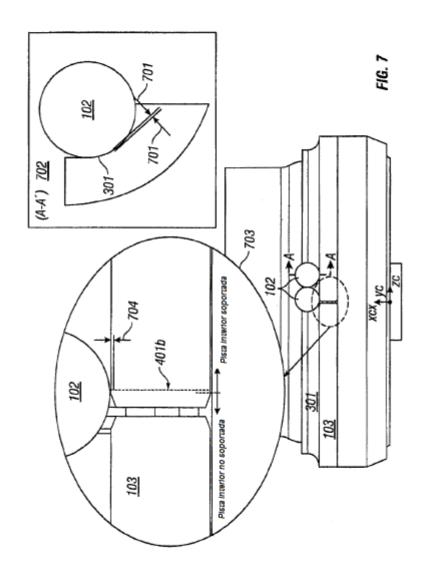


FIG. 1


FIG. 2

