

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 545 360

51 Int. Cl.:

C12Q 1/68 (2006.01) G01N 33/574 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 03.01.2007 E 12154321 (9)
 97 Fecha y número de publicación de la concesión europea: 24.06.2015 EP 2487253

(54) Título: Métodos basados en microARN y composiciones para el diagnóstico y tratamiento de cánceres sólidos

(30) Prioridad:

05.01.2006 US 756585 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 10.09.2015

(73) Titular/es:

THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION (100.0%) 1524 North High Street Columbus, OH 43201, US

(72) Inventor/es:

CROCE, CARLO M.; CALIN, GEORGE A. y VOLINIA, STEFANO

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Métodos basados en microARN y composiciones para el diagnóstico y tratamiento de cánceres sólidos

Antecedentes de la invención

10

45

El cáncer, el crecimiento incontrolado de células malignas, es un problema de salud importante de la era médica moderna y es una de las principales causas de muerte en los países desarrollados. En los Estados Unidos, una de cada cuatro muertes está provocada por cáncer (Jemal, A. et al., CA Cancer J. Clin. 52: 23-47 (2002)). Entre los cánceres, los que surgen de órganos y tejidos sólidos, conocidos como cánceres sólidos, conocidos como cánceres sólidos (por ejemplo, cáncer de colon, cáncer de pulmón, cáncer de mama, cáncer de estómago, cáncer de próstata, cáncer pancreático) están entre los cánceres humanos más habitualmente identificados.

Por ejemplo, el cáncer de próstata es el tumor maligno no cutáneo diagnosticado más frecuentemente entre 15 hombres en países industrializados y, en los Estados Unidos, 1 de cada 8 hombres desarrollarán cáncer de próstata durante su vida (Simard, J. et al., Endocrinoloy 143(6): 2029-40 (2002)). La incidencia del cáncer de próstata ha aumentado drásticamente durante las últimas décadas y el cáncer de próstata es ahora una causa principal de muerte en los Estados Unidos y en Europa Occidental (Peschel, R. E. y J. W. Colberg, Lancet 4: 233-41 (2003); Nelson, W. G. et al., N. Engl. J. Med 349(4): 366-81 (2003)). Los hombres con cáncer de próstata están afectados 20 por una reducción media de 40 % en la esperanza de vida. Si se detecta de forma temprana, antes de la metástasis y propagación local más allá de la cápsula, el cáncer de próstata puede con frecuencia curarse (por ejemplo, usando cirugía). Sin embargo, si se diagnostica después de su propagación y metábasis de la próstata, el cáncer de próstata es normalmente una enfermedad letal con tasas de curación bajas. Aunque la exploración basada en antígeno específico de próstata (PSA) ha ayudado al diagnóstico temprano del cáncer de próstata, no es ni altamente sensible ni específico (Punglia et al., N. Engl. J. Med 349(4): 335-42 (2003)). Esto significa que se asocia con el 25 ensayo un alto porcentaje de diagnósticos de falso negativo y falso positivo. Las consecuencias son tanto muchos casos de cánceres pasados por alto como biopsias de seguimiento innecesarias para las personas sin cáncer.

El cáncer de mama sigue siendo la segunda causa principal de muertes relacionadas con cáncer en mujeres, afectando a más de 180.000 mujeres en los Estados Unidos cada año. Para las mujeres en Norteamérica, las probabilidades en tiempo de vida de tener cáncer de mama son ahora de una de cada ocho. Aunque el descubrimiento de BRCA1 y BRCA2 fueron etapas importantes en la identificación de factores genéticos clave implicados en cáncer de mama, se ha hecho evidente que las mutaciones en BRCA1 y BRCA2 representan solamente una fracción de la susceptibilidad heredada a cáncer de mama (Nathanson, K. L., *et al.*, Human Mol. Gen. 10(7): 715-720 (2001); Anglican Breast Cancer Study Group. Br. J. Cancer 83(10): 1301-08 (2000); y Syrjakoski, K., *et al.*, J. Natl. Cancer Inst. 92: 1529-31 (2000)). A pesar de investigación considerable sobre terapias para cáncer de mama, el cáncer de mama sigue siendo difícil de diagnosticar y tratar eficazmente, y la alta mortalidad observada en pacientes con cáncer de mama indica que se necesitan mejoras en el diagnóstico, tratamiento y prevención de la enfermedad.

Excluyendo cáncer de piel, el cáncer colorrectal, es el tercer cáncer diagnosticado con más frecuencia en los Estados Unidos y Canadá (después de pulmón y mama en mujeres, y pulmón y próstata en hombres). La Sociedad Americana del Cáncer estima que habrá aproximadamente 145.000 casos nuevos de cáncer colorrectal diagnosticados en los Estados Unidos en 2005 (Cancer Facts and Figures 2005. Atlanta, GA: American Cancer Society, 2005. Disponibles en www.cancer.org/docroot/STT/stt_0.asp, accedida el 19 de diciembre de 2005). El cáncer colorrectal es la segunda causa principal de muerte por cáncer entre hombres y mujeres en los Estados Unidos y Canadá (después del cáncer de pulmón).

La incidencia anual del cáncer pancreático es casi equivalente a la mortalidad anual, que se estima que es de 31.860 y 31.270, respectivamente, en los Estados Unidos en 2004 (Cancer Facts and Figures 2004. Atlanta, GA: American Cancer Society, 2004. Disponible en www.cancer.org/docroot/STT/stt_0_2004.asp, accedida el 21 de agosto de 2005). Los pacientes con cáncer pancreático localmente avanzado y metastásico tienen diagnósticos negativos, y el diagnóstico generalmente se realiza demasiado tarde para que la cirugía o la radioterapia sea curativa (Burr, H. A., et al., The Oncologist 10(3): 183-190, (2005)). La quimioterapia puede proporcionar alivio de los síntomas para algunos pacientes con cáncer pancreático avanzado, pero su impacto en la supervivencia ha sido moderado hasta la fecha.

En los Estados Unidos, se diagnostica a más de 20.000 individuos cáncer de estómago (gástrico) cada año. La Sociedad Americana del Cáncer estima que habrá 22.710 casos nuevos de cáncer colorrectal diagnosticados en los Estados Unidos en 2004 (Cancer Facts and Figures 2004. Atlanta, GA: American Cancer Society, 2004. Disponible en www.cancer.org/ docroot/ STT/stt_0_2004.asp, accedida el 21 de agosto de 2005). Debido a que el cáncer de estómago puede aparecer sin síntomas, puede estar en estadios avanzados en el momento en que se realice el diagnóstico. Después el tratamiento se dirige a aumentar la comodidad del paciente y mejorar su calidad de vida.

El cáncer de pulmón provoca más muertes en todo el mundo que cualquier otra forma de cáncer (Goodman, G. E., Thorax 57: 994-999 (2002)). En los Estados Unidos, el cáncer de pulmón es la causa principal de muerte por cáncer

tanto en hombres como en mujeres. En 2002, la tasa de muerte de cáncer de pulmón fue una estimación de 134.900 muertes, que excede el total combinado de cáncer de mama, próstata y colon. Misma referencia. El cáncer de pulmón también es la causa principal de muerte por cáncer en todos los países Europeos, y los números de muertes relacionadas con cáncer de pulmón están aumentando rápidamente también en los países en desarrollo.

La tasa de supervivencia a cinco años entre todos los pacientes de cáncer de pulmón, independientemente del estadio de la enfermedad en el momento de diagnóstico, es solo de aproximadamente 13 %. Esto se diferencia de una tasa de supervivencia a los cinco años de 46 % entre casos detectados cuando la enfermedad aún está localizada. Sin embargo, solamente 16 % de los cánceres de pulmón se descubren antes de que la enfermedad se haya propagado. La detección temprana es difícil ya que los síntomas clínicos con frecuencia no se observan hasta que la enfermedad ha alcanzado un estadio avanzado. A pesar de la investigación sobre terapias para este y otros cánceres, el cáncer de pulmón sigue siendo difícil de diagnosticar y tratar eficazmente.

Claramente, la identificación de marcadores y genes que son responsables de la susceptibilidad a formas particulares de cáncer sólido (por ejemplo, cáncer de próstata, cáncer de mama, cáncer de pulmón, cáncer de estómago, cáncer de colon, cáncer pancreático) es uno de los principales retos a los que se enfrenta la oncología en la actualidad. Existe la necesidad de identificar medios para la detección temprana de individuos que tengan una susceptibilidad genética al cáncer de modo que puedan instituirse regímenes de exploración e intervención más agresivos para la detección y tratamiento temprano del cáncer. Los genes de cáncer también pueden revelar rutas moleculares clave que pueden manipularse (por ejemplo, usando fármacos de peso molecular grande o pequeño) y pueden conducir a tratamientos más eficaces independientemente del estadio de cáncer cuando se diagnostique por primera vez un cáncer particular.

Los microARN son una clase de ARN no codificantes, pequeños que controlan la expresión génica hibridando con y desencadenando la represión de la traducción o, menos frecuentemente, la degradación de una diana de ARN mensajero (ARNm). El descubrimiento y estudio de los miARN ha revelado mecanismos reguladores de genes mediados por miARN que desempeñan papeles importantes en el desarrollo de los organismos y diversos procesos celulares, tales como diferenciación celular, crecimiento celular y muerte celular (Cheng, A. M., *et al.*, Nucleic Acids Res. 33: 1290-1297 (2005)). Estudios recientes sugieren que la expresión aberrante de los miARN particulares puede estar implicada en enfermedades humanas, tales como trastornos neurológicos (Ishizuka, A., *et al.*, Genes Dev. 16: 2497-2508 (2002)) y cáncer. En particular, se ha descubierto expresión errónea de miR-16-1 y/o miR-15a en leucemias linfocíticas crónicas humanas (Calin, G. A., *et al.*, Proc. Natl. Acad. Sci. U.S.A. 99: 15524-15529 (2002)).

- El documento WO 2005/118806 desvela métodos y composiciones para aislar, enriquecer y/o marcar moléculas de miARN y para preparar y usar matrices u otras técnicas de detección para análisis de miARN. Además el documento WO 2005/118806 se refiere a métodos y composiciones para generar perfiles de miARN y emplear dichos perfiles para aplicaciones terapéuticos, de diagnóstico y pronóstico.
- 40 Claramente, existe una gran necesidad en la técnica de métodos mejorados para detectar y tratar cánceres sólidos (por ejemplo, cáncer de próstata, cáncer de mama, cáncer de pulmón, cáncer de estómago, cáncer de colon, cáncer pancreático). La presente invención proporciona nuevos métodos para el diagnóstico y tratamiento de cánceres sólidos. También se desvelan composiciones para el diagnóstico y tratamiento de cánceres sólidos.

45 Compendio de la invención

60

10

La presente invención se basa, en parte, en la identificación de miARN específicos que tienen niveles de expresión alterados en cánceres sólidos particulares.

En consecuencia, la invención abarca métodos para diagnosticar si un sujeto tiene un cáncer sólido. De acuerdo con los métodos de la invención, el nivel de al menos un primer producto génico de miR-24-2 en una muestra de ensayo del sujeto se compara con el nivel del producto génico de miR correspondiente en una muestra de control. Una alteración (por ejemplo, un aumento, una reducción) en el nivel del producto génico de miR en la muestra de ensayo, en relación con el nivel del producto génico de miR correspondiente en una muestra de control, es indicativa de que el sujeto tiene un cáncer sólido. El cáncer sólido puede ser cáncer de estómago, cáncer pancreático o cáncer de colon.

También se desvelan métodos en los que el al menos un producto génico de miR medido en la muestra de ensayo se selecciona del grupo que consiste en miR-21, miR-191, miR-17-5p y combinaciones de los mismos. Como alternativa, el al menos un producto génico de miR medido en la muestra de ensayo se selecciona del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos.

También se desvelan métodos en los que el cáncer sólido es cáncer de mama o cáncer de pulmón y el al menos un producto génico de miR medido en la muestra de ensayo se selecciona del grupo que consiste en miR-210, miR-213

y una combinación de los mismos.

10

30

35

50

55

60

65

También se desvelan métodos en los que el cáncer sólido es cáncer de colon, cáncer de estómago, cáncer de próstata o cáncer de páncreas y el al menos un producto génico de miR medido en la muestra de ensayo es miR-218-2.

También se desvelan métodos en los que el cáncer sólido es cáncer de mama y el al menos un producto génico de miR medido en la muestra de ensayo se selecciona del grupo que consiste en miR-125b-1, miR-125b-2, miR-145, miR-21 y combinaciones de los mismos. Como alternativa, el cáncer sólido es cáncer de mama y el al menos un producto génico de miR en la muestra de ensayo se selecciona del grupo que consiste en miR-21, miR-29b-2, miR-146, miR-125b-2, miR-125b-1, miR-10b, miR-145, miR-181a, miR-140, miR-213, miR-29a prec, miR-181b-1, miR-199b, miR-29b-1, miR-130a, miR-155, let-7a-2, miR-205, miR-29c, miR-224, miR-100, miR-31, miR-30c, miR-17-5p, miR-210, miR-122a, miR-16-2 y combinaciones de los mismos.

- En una realización el miR-24-2 y al menos un producto génico de miR adicional se selecciona del grupo que consiste en miR-24-1, miR-29b-2, miR-20a, miR-10a, miR-32, miR-203, miR-106a, miR-17-5p, miR-30c, miR-223, miR-126*, miR-128b, miR-21, miR-9b prec, miR-155, miR-213, miR-150, miR-107, miR-191, miR-221, miR-9-3 y combinaciones de los mismos se usan para diagnosticar cáncer de colon.
- También se desvelan métodos en los que el cáncer sólido es cáncer de pulmón y el producto génico de miR en la muestra de ensayo se selecciona del grupo que consiste en miR-21, miR-205, miR-200b, miR-9-1, miR-210, miR-148, miR-141, miR-132, miR-125, miR-128b, let-7g, miR-16-2, miR-129-1/2 prec, miR-126*, miR-142-as, miR-30d, miR-30a-5p, miR-7-2, miR-199a-1, miR-127, miR-34a prec, miR-34a, miR-136, miR-202, miR-196-2, miR-199a-2, let-7a-2, miR-124a-1, miR-149, miR-17-5p, miR-196-1 prec, miR-10a, miR-99b prec, miR-196-1, miR-199b, miR-191, miR-195, miR-155 y combinaciones de los mismos se usa para diagnosticar cáncer de pulmón.

También se desvelan métodos en los que el cáncer sólido es cáncer pancreático y el al menos un producto génico de miR medido en la muestra de ensayo se selecciona del grupo que consiste en miR-103-1, miR-103-2, miR-155, miR-204 y combinaciones de los mismos.

En otra realización, el miR-24-2 y al menos un producto génico de miR adicional seleccionado del grupo que consiste en miR-103-2, miR-103-1, miR-107, miR-100, miR-125b-2, miR-125b-1, miR-24-1, miR-191, miR-23a, miR-26a-1, miR-125a, miR-130a, miR-26b, miR-145, miR-221, miR-126*, miR-16-2, miR-146, miR-214, miR-99b, miR-128b, miR-155, miR-29b-2, miR-29a, miR-25, miR-16-1, miR-99a, miR-224, miR-30d, miR-92-2, miR-199a-1, miR-223, miR-29c, miR-30b, miR-129-1/2, miR-197, miR-17-5p, miR-30c, miR-7-1, miR-93-1, miR-140, miR-30a-5p, miR-132, miR-181b-1, miR-152 prec, miR-23b, miR-20a, miR-222, miR-27a, miR-92-1, miR-21, miR-129-1/2 prec, miR-150, miR-32, miR-106a, miR-29b-1 y combinaciones de los mismos se usan para diagnosticar cáncer pancreático.

También se desvelan métodos en los que el cáncer sólido es cáncer de próstata y el producto génico de miR en la muestra de ensayo se selecciona del grupo que consiste en let-7d, miR-128a prec, miR-195, miR-203, let-7a-2 prec, miR-34a, miR-20a, miR-218-2, miR-29a, miR-25, miR-95, miR-197, miR-135-2, miR-187, miR-196-1, miR-148, miR-191, miR-21, let-7i, miR-198, miR-199a-2, miR-30c, miR-17-5p, miR-92-2, miR-146, miR-181b-1 prec, miR-32, miR-206, miR-184 prec, miR-29a prec, miR-29b-2, miR-149, miR-181b-1, miR-196-1 prec, miR-93-1, miR-223, miR-16-1, miR-101-1, miR-124a-1, miR-26a-1, miR-214, miR-27a, miR-24-1, miR-106a, miR-199a-1 y combinaciones de los mismos.

En una realización adicional, el miR-24-2 y al menos un producto génico de miR adicional se selecciona del grupo que consiste en miR-223, miR-21, miR-218-2, miR-103-2, miR-92-2, miR-25, miR-136, miR-191, miR-221, miR-125b-2, miR-103-1, miR-214, miR-222, miR-212 prec, miR-125b-1, miR-100, miR-107, miR-92-1, miR-96, miR-192, miR-23a, miR-215, miR-7-2, miR-138-2, miR-24-1, miR-99b, miR-33b y combinaciones de los mismos.

El nivel del al menos un producto génico de miR puede medirse usando diversas técnicas que conocen bien los expertos en la materia (por ejemplo, RT-PCR cuantitativa o semicuantitativa, análisis de transferencia de Northern, detección de hibridación en solución). En una realización particular, el nivel de al menos un primer miR- miR-24-2 se mide por transcripción inversa de al menos ARN de miR-24-2 de una muestra de ensayo obtenida del sujeto para proporcionar al menos un oligodesoxinucleótido diana de miR-24-2, hibridando el oligodesoxinucleótido diana con una micromatriz que comprende oligonucleótidos sonda específicos de miARN para proporcionar un perfil de hibridación para la muestra de ensayo, y comparando el perfil de hibridación de la muestra de ensayo con un perfil de hibridación de una muestra de control. Una alteración en la señal de al menos un primer producto génico de miR-24-2 en la muestra de ensayo en relación con la muestra de control es indicativa de que el sujeto tiene un cáncer sólido. Los oligonucleótidos diana pueden hibridarse con una micromatriz que comprende oligonucleótidos sonda específicos de miARN para uno o más miARN seleccionados del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-22-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos.

La presente divulgación también abarca métodos para inhibir tumorogénesis en un sujeto que tiene, o se sospecha

que tiene, un cáncer sólido (por ejemplo, cáncer de próstata, cáncer de estómago, cáncer pancreático, cáncer de pulmón, cáncer de mama, cáncer de colon), en el que al menos un producto génico de miR está desregulado (por ejemplo, regulado negativamente, regulado positivamente) en las células de cáncer del sujeto. Cuando el al menos un producto génico de miR aislado está regulado negativamente en las células de cáncer, el método comprende administrar una cantidad eficaz de un producto génico de miR aislado, una variante aislada o un fragmento biológicamente activo del producto génico de miR o variante, de modo que se inhiba la proliferación de células cancerosas en el sujeto. El al menos un producto génico de miR aislado puede seleccionarse del grupo que consiste en miR-145, miR-155, miR-218-2 y combinaciones de los mismos. El producto génico de miR no puede ser miR-15a o miR-16-1. Cuando el al menos un producto génico de miR aislado está regulado positivamente en las células cancerosas, el método puede comprender administrar al sujeto una cantidad eficaz de al menos un compuesto para inhibir la expresión del al menos un producto génico de miR (denominado en la presente memoria un "compuesto de inhibición de la expresión de miR"), de modo que se inhibe la proliferación de células cancerosas en el sujeto. El al menos un compuesto de inhibición de la expresión de miR puede ser específico para un producto génico de miR seleccionado del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1. miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos.

10

15

20

25

30

35

55

60

65

Los métodos para inhibir la tumorogénesis en un sujeto pueden comprender adicionalmente la etapa de determinar la cantidad de al menos un producto génico de miR en células cancerosas del sujeto, y comparar ese nivel del producto génico de miR en las células con el nivel de un producto génico de miR correspondiente en células de control. Si la expresión del producto génico de miR está desregulada (por ejemplo, regulada negativamente, regulada positivamente) en células cancerosas, los métodos comprenden además alterar la cantidad del al menos un producto génico de miR expresado en las células cancerosas. La cantidad del producto génico de miR expresado en las células cancerosas puede ser menor que la cantidad de producto génico de miR expresado en una célula de control (por ejemplo, células de control), y se administra al sujeto una cantidad eficaz del producto génico de miR regulado negativamente, variante aislada o fragmento biológicamente activo del producto génico de miR o variante. Los productos génicos de miR adecuados incluyen miR-145, miR-155, miR-218-2 y combinaciones de los mismos, entre otros. El producto génico de miR puede no ser miR-15a o miR-16-1. La cantidad del producto génico de miR expresado en las células cancerosas puede ser mayor que la cantidad del producto génico de miR expresado en la célula de control (por ejemplo, células de control), y puede administrarse al sujeto una cantidad eficaz de al menos un compuesto para inhibir la expresión del al menos un producto génico de miR regulado positivamente. Los compuestos adecuados para inhibir la expresión del al menos un producto génico de miR incluyen, pero sin limitación, compuestos que inhiben la expresión de miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos.

La presente divulgación proporciona además composiciones farmacéuticas para tratar cánceres sólidos (por ejemplo, cáncer de próstata, cáncer de estómago, cáncer pancreático, cáncer de pulmón, cáncer de mama, cáncer de colon). Las composiciones farmacéuticas pueden comprender al menos un producto génico de miR aislado y un vehículo farmacéuticamente aceptable. El al menos un producto génico de miR puede corresponder a un producto génico de miR que tenga una nivel reducido de expresión en células cancerosas en relación con las células de control. El producto génico de miR aislado puede seleccionarse del grupo que consiste en miR-145, miR-155, miR-218-2 y combinaciones de los mismos.

Las composiciones farmacéuticas pueden comprender al menos un compuesto de inhibición de la expresión de miR y un vehículo farmacéuticamente aceptable. El al menos un compuesto de inhibición de la expresión de miR puede ser específico de un producto génico de miR cuya expresión es mayor en células cancerosas que en células de control. El compuesto de inhibición de la expresión de miR puede ser específico para uno o más productos génicos de miR seleccionados del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos.

También se desvelan métodos para identificar un inhibidor de tumorogénesis, que comprenden proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR en la célula. El método puede comprender proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR asociado con niveles de expresión reducidos en cánceres sólidos (por ejemplo, cáncer de próstata, cáncer de estómago, cáncer pancreático, cáncer de pulmón, cáncer de mama, cáncer de colon). Un aumento en el nivel del producto génico de miR en la célula, en relación con una célula de control adecuada, es indicativo de que el agente de ensayo es un inhibidor de tumorogénesis. El al menos un producto génico de miR asociado con niveles de expresión reducidos en células de cáncer sólido pueden seleccionarse del grupo que consiste en miR-145, miR-155, miR-218-2 y combinaciones de los mismos.

El método puede comprender proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR asociado con aumento de los niveles de expresión en cánceres sólidos. Una reducción en el nivel del producto génico de miR en la célula, en relación con una célula de control adecuada, es indicativa de que el agente de ensayo es un inhibidor de tumorogénesis. El al menos un producto génico de miR asociado con niveles de

expresión aumentados en células de cáncer sólido puede seleccionarse del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos.

Breve descripción de los dibujos

5

10

15

20

25

30

50

55

60

65

La FIGURA 1 representa un análisis de agrupamiento de 540 muestras, que representan 6 cánceres sólidos (parte superior) y los tejidos normales respectivos. Los miARN incluidos en el árbol (n=137) representan aquellos cuyo nivel de expresión (intensidad con fondo restado) fue mayor que el valor umbral (256) en al menos 50 % de las muestras analizadas. Las series se centraron en la mediana y se normalizaron usando Gene Cluster 2.0. Se realizó agrupamiento de enlace medio usando métrica de correlación no centrada. Los colores indican la diferencia en el nivel de expresión de la mediana para los microARN de cada muestra.

La FIGURA 2 representa un análisis no supervisado de los datos de expresión de microARN. Los perfiles de microARN de 540 muestras (indicadas en la parte superior del panel) que abarcaban mama, colon, pulmón, páncreas, próstata y estómago (tejidos normales y tumores) se filtraron, centraron y normalizaron para cada característica. Los datos se sometieron a agrupamiento jerárquico tanto en las muestras (orientadas horizontalmente) como en las características (orientadas verticalmente) con enlace medio y correlación de Pearson como una medida de similitud. Los nombres de las muestras se indican en la parte superior de la figura y los nombres de los miARN a la izquierda. El ID de la sonda se indica entre paréntesis, ya que el mismo microARN puede medirse por diferentes oligonucleótidos. Los colores indican la diferencia en los niveles de expresión de la mediana para los microARN en cada muestra.

La FIGURA 3 representa la expresión de miARN regulados diferencialmente entre cánceres sólidos (parte superior). Se representan sesenta y un microARN, que están presentes en al menos 90 % de los cánceres sólidos tisulares (derecha del panel). El árbol presenta los valores de expresión absolutos medios para cada uno de los microARN enumerados después de transformación log₂. La media se calculó sobre todas las muestras del mismo histotipo tumoral o tejido. Los genes se centraron en la media y se normalizaron usando Gene Cluster 2.0. Se realizó agrupamiento de enlace medio usando la distancia Euclídea.

La FIGURA 4 representa el factor de cambio en la expresión de miARN presentes en al menos 75 % de los tumores sólidos con al menos un valor absoluto de tumor mayor que 2 en diferentes muestras de cáncer (parte superior), en relación con muestras normales. El árbol presenta la transformación log² del factor de cambio medio (cáncer frente a normal). La media se calculó sobre todas las muestras del mismo histotipo tumoral o tejido. Las matrices se centraron en la media y se normalizaron usando Gene Cluster 2.0. Se realizó agrupamiento de enlaces medio usando métrica de correlación no centrada.

La FIGURA 5 representa el factor de cambio en la expresión de miARN presentes en los distintivos de al menos 50 % de los tumores sólidos en muestras de cáncer frente a normales. El árbol representa la transformación log² del factor de cambio medio (cáncer frente a normal). La media se calculó sobre todas las muestras del mismo histotipo tumoral o tejido. Las matrices se centraron en la media y se normalizaron usando Gene Cluster 2.0. Se realizó agrupamiento de enlace medio usando métrica de correlación no centrada.

La FIGURA 6A representa gráficas de barra que indican que las UTR 3' de diferentes genes que codifican proteína de cáncer permiten la regulación del cáncer por microARN. La represión relativa de expresión de luciferasa de luciérnaga (Factor de Cambio) se normalizó a un control de luciferasa de renilla. PLAG1, gen de adenoma pleiomórfico 1; TGFBR2, receptor de factor de crecimiento transformante beta II; Rb, gen de retinoblastoma. Se usó pGL-3 (Promega) como el vector vacío. Se usaron oligoARN miR-20a, miR-26a-1 y miR-106 (con sentido y mezclados) para transfecciones. Se muestra en el panel inferior un segundo experimento que usa versiones mutadas de cada ARNm diana que carecen del sitio de complementariedad del extremo de miARN 5' (MUT). Todos los experimentos se realizaron dos veces por triplicado (n=6).

La FIGURA 6B representa transferencias de Western que indican que, en ciertos cánceres (por ejemplo, pulmón, mama, colon, gástrico), los niveles de proteína RB1 (Rb) presentan una correlación inversa con el nivel de expresión de *miR-106a*. Se usó β actina como un control para normalización. N1, muestra normal; T1 y T2, muestra tumoral.

La FIGURA 7 representa transferencias de Northern que muestran regulación negativa de la expresión de miR-145 (parte superior) y regulación positiva de la expresión de miR-21 (parte inferior) en muestras de cáncer de mama (serie P y serie numerada) en relación con muestras normales. Se realizó normalización con una sonda específica de U6.

La FIGURA 8 representa transferencias de Northern que muestran regulación positiva de la expresión de miR-103 y regulación negativa de la expresión de miR-155 (parte superior) en diferentes muestras de cáncer pancreático endocrino (WDET, tumores endocrinos pancreáticos bien diferenciados, WDEC, carcinomas endocrinos pancreáticos bien diferenciados y ACC, carcinomas de células de acinos pancreáticos) en relación con muestras normales (serie K), así como regulación positiva de la expresión de miR-204 (parte inferior) en insulinomas (serie F) en relación con muestras normales (serie K) y muestras no secretoras/no actuantes (serie NF). Se realizó normalización con una sonda específica para ARN 5S.

Descripción detallada

La presente divulgación se basa, en parte, en la identificación de microARN particulares cuya expresión está

alterada en células cancerosas asociadas con diferentes cánceres sólidos, tales como cáncer de colon, de estómago, pancreático, de pulmón, de mama y de próstata, en relación con células de control normales.

Como se usa en la presente memoria de forma intercambiable un "producto génico de miR", "microARN", "miR" o "miARN" se refiere al transcrito de ARN no procesado (por ejemplo, precursor) o procesado (por ejemplo, maduro) de un gen de miR. Ya que los productos génicos de miR no se traducen a proteína, la expresión "productos génicos de miR" no incluye proteínas. El transcrito génico de miR no procesado también se denomina un "precursor de miR" o "miR prec" y normalmente comprende un transcrito de ARN de aproximadamente 70-100 nucleótidos de longitud. El precursor de miR puede procesarse por digestión con una RNAsa (por ejemplo, Dicer, Argonaut o RNAsa III (por ejemplo RNAsa III de *E. coli*)) en una molécula de ARN de 19-25 nucleótidos activa. Esta molécula de ARN de 19-25 nucleótidos activa también se denomina el transcrito génico de miR "procesado" o miARN "maduro".

10

15

20

La molécula de ARN de 19-25 nucleótidos activa puede obtenerse del precursor de miR mediante vías de procesamiento naturales (por ejemplo, usando células intactas o lisados celulares) o mediante vías de procesamiento sintéticas (por ejemplo, usando enzimas de procesamiento aisladas, tales como Dicer, Argonaut o RNAsa III aislada). Se entiende que la molécula de ARN de 19-25 nucleótidos activa también puede producirse directamente por síntesis biológica o química, sin haberse procesado a partir del precursor de miR. Cuando se hace referencia a un microARN en la presente memoria por nombre, el nombre corresponde a las formas tanto precursoras como maduras, a no ser que se indique de otro modo.

Las Tablas 1a y 1b representan las secuencias de nucleótidos de microARN humanos maduros y precursores particulares.

Tabla 1a- Secuencias precursoras de microARN humano

	Tabla 1a- Secuencias precursoras de microARN humano	
Nombre del Precursor	Secuencia (5' a 3')	SEC ID №
let-7a-1	CACUGUGGGA <u>UGAGGUAGGUUGUAUAGUU</u> UUAGGGUCAC ACCCACCACUGGGAGAUAACUAUACAAUCUACUGUCUUUCCU AACGUG	1
let-7a-2	AGGU <u>UGAGGUAGUAGGUUGUAUAGUU</u> UAGAAUUACAUCAAG GGAGAUAACUGUACAGCCUCCUAGCUUUCCU	2
let-7a-3	GGG <u>UGAGGUAGGUUGUAUAGUU</u> UGGGGCUCUGCCUGCU AUGGGAUAACUAUACAAUCUACUGUCUUUCCU	3
let-7a-4	GUGACUGCAUGCUCCCAGGU <u>UGAGGUAGUAGGUUGUAUAGUU</u> UAGAAUUACACAAGGGAGAUAACUGUACAGCCUCCUAGCUUU CCUUGGGUCUUGCACUAAACAAC	4
let-7b	GGCGGG <u>UGAGGUAGUAGGUUGUGUU</u> UCAGGGCAGUGA UGUUGCCCCUCGGAAGAUAACUAUACAACCUACUGCCUUCCC UG	5
let-7c	GCAUCCGGGU <u>UGAGGUAGGUUGUAUGGUU</u> UAGAGUUACA CCCUGGGAGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGC	6
let-7d	CCUAGGA <u>AGAGGUAGUAGGUUGCAUAGU</u> UUUAGGGCAGGGAU UUUGCCCACAAGGAGGUAACUAUACGACCUGCUGCCUUUCUU AGG	7
let-7d-v1	CUAGGA <u>AGAGGUAGUAGUUUGCAUAGU</u> UUUAGGGCAAAGAU UUUGCCCACAAGUAGUUAGCUAUACGACCUGCAGCCUUUUGU AG	8
let-7d-v2	CUGGCU <u>GAGGUAGUAGUUUGUGCUGU</u> UGGUCGGGUUGUGACA UUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUA G	9

let-7e	CCCGGGC <u>UGAGGUAGGAGGUUGUAUAGU</u> UGAGGAGGACACCC	10
	AAGGAGAUCACUAUACGGCCUCCUAGCUUUCCCCAGG	
let-7f-1	UCAGAG <u>UGAGGUAGUAGAUUGUAUAGUU</u> GUGGGGUAGUGAU	11
	UUUACCCUGUUCAGGAGAUAACUAUACAAUCUAUUGCCUUCC	
	CUGA	
let-7f-2-1	CUGUGGGA <u>UGAGGUAGUAGAUUGUAUAGUU</u> GUGGGGUAGUG	12
	AUUUUACCCUGUUCAGGAGAUAACUAUACAAUCUAUUGCCUU	
	CCCUGA	
let-7f-2-2	CUGUGGGA <u>UGAGGUAGAUUGUAUAGUU</u> UUAGGGUCAUA	13
	CCCCAUCUUGGAGAUAACUAUACAGUCUACUGUCUUUCCCAC	
	GG	
let-7g	UUGCCUGAUUCCAGGC <u>UGAGGUAGUAGUUUGUACAGU</u> UUGAG	14
	GGUCUAUGAUACCACCCGGUACAGGAGAUAACUGUACAGGCC	
	ACUGCCUUGCCAGGAACAGCGCGC	
let-7i	CUGGC <u>UGAGGUAGUUUGUGCU</u> GUUGGUCGGGUUGUGACA	15
	UUGCCCGCUGUGGAGAUAACUGCGCAAGCUACUGCCUUGCUA	
	G ·	
miR-1b-1-1	ACCUACUCAGAGUACAUACUUCUUUAUGUACCCAUAUGAACA	16
	UACAAUGCUA <u>UGGAAUGUAAAGAAGUAUGUAU</u> UUUUGGUAG	
	GC	
miR-1b-1-2	CAGCUAACAACUUAGUAAUACCUACUCAGAGUACAUACUUCU	17
	UUAUGUACCCAUAUGAACAUACAAUGCUA <u>UGGAAUGUAAAGA</u>	
	AGUAUGUAUUUUUGGUAGGCAAUA	
miR-1b-2	GCCUGCUUGGGAAACAUACUUCUUUAUAUGCCCAUAUGGACC	18
	UGCUAAGCUA <u>UGGAAUGUAAAGAAGUAUGUA</u> UCUCAGGCCGG	
	G	
miR-1b	UGGGAAACAUACUUCUUUAUAUGCCCAUAUGGACCUGCUAAG	19
	CUA <u>UGGAAUGUAAAGAAGUAUGUA</u> UCUCA	
miR-1d	ACCUACUCAGAGUACAUACUUCUUUAUGUACCCAUAUGAACA	20
	UACAAUGCUA <u>UGGAAUGUAAAGAAGUAUGUAUU</u> UUUGGUAG	
	GC	
miR-7-1a	UGGAUGUUGGCCUAGUUCUGUG <u>UGGAAGACUAGUGAUUUUGU</u>	21
	<u>U</u> GUUUUUAGAUAACUAAAUCGACAACAAAUCACAGUCUGCCA	
	UAUGGCACAGGCCAUGCCUCUACA	
miR-7-1b	UUGGAUGUUGGCCUAGUUCUGUG <u>UGGAAGACUAGUGAUUUUG</u>	22
	<u>UU</u> GUUUUUAGAUAACUAAAUCGACAACAAAUCACAGUCUGCC	
	AUAUGGCACAGGCCAUGCCUCUACAG	
miR-7-2	CUGGAUACAGAGUGGACCGGCUGGCCCCAUC <u>UGGAAGACUAG</u>	23
	<u>UGAUUUUGUU</u> GUUGUCUUACUGCGCUCAACAACAAAUCCCAG	
	UCUACCUAAUGGUGCCAGCCAUCGCA	

miR-7-3	AGAUUAGAGUGGCUGUGGUCUAGUGCUGUG <u>UGGAAGACUAGU</u>	24
	<u>GAUUUUGUU</u> GUUCUGAUGUACUACGACAACAAGUCACAGCCG	
	GCCUCAUAGCGCAGACUCCCUUCGAC	
miR-9-1	CGGGGUUGGUUA <u>UCUUUGGUUAUCUAGCUGUAUGA</u> GUGG	25
	UGUGGAGUCUUCA <u>UAAAGCUAGAUAACCGAAAGU</u> AAAAAUAA	
	CCCCA	
miR-9-2	GGAAGCGAGUUGUUA <u>UCUUUGGUUAUCUAGCUGUAUGA</u> GUGU	26
	AUUGGUCUUCA <u>UAAAGCUAGAUAACCGAAAGU</u> AAAAACUCCU	
'D 0 0	UCA	07
miR-9-3	GGAGGCCCGUUUCUC <u>UCUUUGGUUAUCUAGCUGUAUGA</u> GUGC	27
	CACAGAGCCGUCA <u>UAAAGCUAGAUAACCGAAAGU</u> AGAAAUGA	
	UUCUCA	
miR-10a	GAUCUGUCUGUCUGUAUA <u>UACCCUGUAGAUCCGAAUUUG</u>	28
	<u>UG</u> UAAGGAAUUUUGUGGUCACAAAUUCGUAUCUAGGGGAAUA	
	UGUAGUUGACAUAAACACUCCGCUCU	
miR-10b	CCAGAGGUUGUAACGUUGUCUAUAUAUAUACCCUGUAGAACCGA	29
	<u>AUUUGU</u> GUGGUAUCCGUAUAGUCACAGAUUCGAUUCUAGGGG	
	AAUAUAUGGUCGAUGCAAAAACUUCA	
miR-15a-2	GCGCGAAUGUGUGUUUAAAAAAAAAAAAAACCUUGGAGUAAAG	30
	<u>UAGCAGCACAUAAUGGUUUGUG</u> GAUUUUGAAAAGGUGCAGGC	
	CAUAUUGUGCUCAAAAAUAC	
miR-15a	CCUUGGAGUAAAG <u>UAGCAGCACAUAAUGGUUUGUG</u> GAUUUUG	31
	AAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAAUACAAGG	
miR-15b-1	CUG <u>UAGCAGCACAUCAUGGUUUACA</u> UGCUACAGUCAAGAUGC	32
	GAAUCAUUAUUUGCUGCUCUAG	
miR-15b-2	UUGAGGCCUUAAAGUACUG <u>UAGCAGCACAUCAUGGUUUACA</u> U	33
	GCUACAGUCAAGAUGCGAAUCAUUAUUUGCUGCUCUAGAAAU	
	UUAAGGAAAUUCAU	
miR-16-1	GUCAGCAGUGCCU <u>UAGCAGCACGUAAAUAUUGGCG</u> UUAAGAU	34
	UCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGG	
	UUGAC	
miR-16-2	GUUCCACUC <u>UAGCAGCACGUAAAUAUUGGCG</u> UAGUGAAAUAU	35
	AUAUUAAACACCAAUAUUACUGUGCUGCUUUAGUGUGAC	
miR-16-13	GCAGUGCCU <u>UAGCAGCACGUAAAUAUUGGCG</u> UUAAGAUUCUA	36
	AAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGUAAGGU	
miR-17	GUCAGAAUAAUGU <u>CAAAGUGCUUACAGUGCAGGUAGU</u> GAUAU	37
'D 45	GUGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGAC	
miR-18	UGUUC <u>UAAGGUGCAUCUAGUGCAGAUA</u> GUGAAGUAGAUUAGC	38
	AUCUACUGCCCUAAGUGCUCCUUCUGGCA	

miR-18-13	UUUUUGUUC <u>UAAGGUGCAUCUAGUGCAGAUA</u> GUGAAGUAGAU	39
	UAGCAUCUACUGCCCUAAGUGCUCCUUCUGGCAUAAGAA	
miR-19a	GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAA	40
'D 40 40	UGUAGUUGUGCAAAUCUAUGCAAAACUGAUGGUGGCCUGC CAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAAGAAGAAU	4.4
miR-19a-13		41
miR-19b-1	GUAGU <u>UGUGCAAAUCUAUGCAAAACUGA</u> UGGUGGCCUG	42
111111-130-1	CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUG	42
	UGAUAUUCUGC <u>UGUGCAAAUCCAUGCAAAACUGA</u> CUGUGGUA	
'D 40' 0	GUG	40
miR-19b-2	ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCAUUUCAGC	43
	GUAUAUAUGUAUAUGUGGC <u>UGUGCAAAUCCAUGCAAAACUGA</u>	
	UUGUGAUAAUGU	
miR-19b-13	UUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUGUGUGAUA	44
miR-19b-X	UUCUGCUGUGCAAAUCCAUGCAAAACUGACUGUGGUAG UUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUAUAUAUGU	45
111111-190-7		45
miR-20 (miR-	AUAUGUGGCUGUGCAAAUCCAUGCAAAACUGAUUGUGAU GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUUAGUUAUC	46
20a)		
miR-21	UACUGCAUUAUGAGCACUUAAAGUACUGC UGUCGGGUAGCUUAUCAGACUGAUGUUGAAUCUCA	47
miR-21-17	UGGCAACACCAGUCGAUGGGCUGUCUGACA ACCUUGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUGAAU	48
	CUCAUGGCAACACCAGUCGAUGGGCUGUCUGACAUUUUG	
miR-22	GCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUUAUGUCCU	49
	GACCCAGCUAAAGCUGCCAGUUGAAGAACUGUUGCCCUCUGC	
miR-23a	C GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUGUCAC	50
	AA <u>AUCACAUUGCCAGGGAUUUCC</u> AACCGACC	
miR-23b	CUCAGGUGCUCUGGCUUGGGUUCCUGGCAUGCUGAUUUG	51
	UGACUUAAGAUUAAAAUCACAUUGCCAGGGAUUACCACGCAA	
	CCACGACCUUGGC	
miR-23-19	CCACGGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUCCUG	52
	UCACAA <u>AUCACAUUGCCAGGGAUUUC</u> CAACCGACCCUGA	
miR-24-1	CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUUACACA	53
	CUGGCUCAGUUCAGCAGGAACAGGAG	
miR-24-2	CUCUGCCUCCGUGCCUACUGAGCUGAAACACAGUUGGUUUG	54
miR-24-19	UGUACACUGGCUCAGUUCAGCAGGAACAGGG CCCUGGGCUCUGCCUCCGUGCCUACUGAGCUGAAACACAGU	55
11111111-24-19		55
miR-24-9	UGGUUUGUGUACAC <u>UGGCUCAGUUCAGCAGGAACAG</u> GG CCCUCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUUUUACA	56
miR-25	CAC <u>UGGCUCAGUUCAGCAGGAACAG</u> CAUC GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGCUGGACGC	57
	UGCCCUGGGCAUUGCACUUGUCUCGGUCUGACAGUGCCGGCC	

miR-26a	AGGCCGUGGCCUCG <u>UUCAAGUAAUCCAGGAUAGGCU</u> GUGCAG	58
	GUCCCAAUGGCCUAUCUUGGUUACUUGCACGGGGACGCGGGC	
	CU	
miR-26a-1	GUGGCCUCG <u>UUCAAGUAAUCCAGGAUAGGCU</u> GUGCAGGUCCC	59
	AAUGGGCCUAUUCUUGGUUACUUGCACGGGGACGC	
miR-26a-2	GGCUGUGGCUGGA <u>UUCAAGUAAUCCAGGAUAGGCU</u> GUUUCCA	60
	UCUGUGAGGCCUAUUCUUGAUUACUUGUUUCUGGAGGCAGCU	
miR-26b	CCGGGACCCAG <u>UUCAAGUAAUUCAGGAUAGGU</u> UGUGUGCUGU	61
miR-27a	CCAGCCUGUUCUCCAUUACUUGGCUCGGGGACCGG CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACC	62
	AAGUCGUGUUCACAGUGGCUAAGUUCCGCCCCCAG	
miR-27b-1	AGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAUUGGUUUCC	63
	GCUUUG <u>UUCACAGUGGCUAAGUUCUG</u> CACCU	
miR-27b-2	ACCUCUCUAACAAGGUGCAGAGCUUAGCUGAUUGGUGAACAG	64
	UGAUUGGUUUCCGCUUUG <u>UUCACAGUGGCUAAGUUCUG</u> CACC	
	UGAAGAGAGGUG	
miR-27-19	CCUGAGGAGCAGGCUUAGCUGCUUGUGAGCAGGGUCCACAC	65
	CAAGUCGUG <u>UUCACAGUGGCUAAGUUCCG</u> CCCCCAGG	
miR-28	GGUCCUUGCCCUC <u>AAGGAGCUCACAGUCUAUUG</u> AGUUACCUU	66
	UCUGACUUUCCCACUAGAUUGUGAGCUCCUGGAGGGCAGGCA	
	CU	
miR-29a-2	CCUUCUGUGACCCCUUAGAGGAUGACUGAUUUCUUUUGGUGU	67
	UCAGAGUCAAUAUAAUUUU <u>CUAGCACCAUCUGAAAUCGGUU</u> A	
'D 00	UAAUGAUUGGGGAAGAGCACCAUG	
miR-29a	AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUAAUUUU <u>CU</u>	68
miR-29b-1	AGCACCAUCUGAAAUCGGUUAU CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAG	69
111111 230 1	UGAUTUGUCUAGCACCAUUTUGAAAUCAGUGUTUCUTUGGGGG	00
miR-29b-2	CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAU	70
	<u>CUUUGUAUCUAGCACCAUUUGAAAUCAGU</u> GUUUUAGGAG	
miR-29c	ACCACUGGCCCAUCUCUUACACAGGCUGACCGAUUUCUCCUG	71
	GUGUUCAGAGUCUGUUUUUGU <u>CUAGCACCAUUUGAAAUCGGU</u>	
	<u>U</u> AUGAUGUAGGGGAAAAGCAGCAGC	
miR-30a	GCGAC <u>UGUAAACAUCCUCGACUGGAAGC</u> UGUGAAGCCACAGA	72
	UGGGCUUUCAGUCGGAUGUUUGCAGCUGC	
miR-30b-1	A <u>UGUAAACAUCCUACACUCAGC</u> UGUAAUACAUGGAUUGGCUG	73
	GGAGGUGGAUGUUUACGU	
miR-30b-2	ACCAAGUUUCAGUUCA <u>UGUAAACAUCCUACACUCAGC</u> UGUAA	74
	UACAUGGAUUGGCUGGGAGGUGGAUGUUUACUUCAGCUGACU	
	UGGA	

miR-30c	AGAUAC <u>UGUAAACAUCCUACACUCUCAGC</u> UGUGGAAAGUAAG	75
	AAAGCUGGGAGAAGGCUGUUUACUCUUUCU	
miR-30d	GUUGU <u>UGUAAACAUCCCCGACUGGAAG</u> CUGUAAGACACAGCU	76
	AAGCUUUCAGUCAGAUGUUUGCUGCUAC	
miR-30e	C <u>UGUAAACAUCCUUGACUGGAA</u> GCUGUAAGGUGUUCAGAGGA	77
	GCUUUCAGUCGGAUGUUUACAG	
miR-31	GGAGAGGAGGCAAGAUGCUGGCAUAGCUGUUGAACUGGGAAC	78
	CUGCUAUGCCAACAUAUUGCCAUCUUUCC	
miR-32	GGAGA <u>UAUUGCACAUUACUAAGUUGC</u> AUGUUGUCACGGCCUC	79
	AAUGCAAUUUAGUGUGUGUGAUAUUUUC	
miR-33b	GGGGCCGAGAGAGGCGGCGCGCGCGGGGCAUUGCUGUU	80
	<u>GCAUUG</u> CACGUGUGUGAGGCGGGUGCAGUGCCUCGGCAGUGC	
	AGCCCGGAGCCGCCCCUGGCACCAC	
miR-33b-2	ACCAAGUUUCAGUUCA <u>UGUAAACAUCCUACACUCAGC</u> UGUAA	81
	UACAUGGAUUGGCUGGGAGGUGGAUGUUUACUUCAGCUGACU	
	UGGA	
miR-33	CUGUG <u>GUGCAUUGUAGUUGCAUUG</u> CAUGUUCUGGUGGUACCC	82
	AUGCAAUGUUUCCACAGUGCAUCACAG	
miR-34-a	GGCCAGCUGUGAGUGUUUCUU <u>UGGCAGUGUCUUAGCUGGUUG</u>	83
	<u>U</u> UGUGAGCAAUAGUAAGGAAGCAAUCAGCAAGUAUACUGCCC	
	UAGAAGUGCUGCACGUUGUGGGGCCC	
miR-34-b	GUGCUCGGUUUGU <u>AGGCAGUGUCAUUAGCUGAUUG</u> UACUGUG	84
	GUGGUUACAAUCACUAACUCCACUGCCAUCAAAACAAGGCAC	
miR-34-c	AGUCUAGUUACU <u>AGGCAGUGUAGUUAGCUGAUUG</u> CUAAUAGU	85
	ACCAAUCACUAACCACACGGCCAGGUAAAAAGAUU	
miR-91-13	UCAGAAUAAUGU <u>CAAAGUGCUUACAGUGCAGGUAGU</u> GAUAUG	86
	UGCAUCUACUGCAGUGAAGGCACUUGUAGCAUUAUGGUGA	
miR-92-1	CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGUGUUUCUG	87
miD 00 0	UAUGG <u>UAUUGCACUUGUCCCGGCCUGU</u> UGAGUUUGG UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUGUUCUAUA	00
miR-92-2		88
miR-93-1	UAAAG <u>UAUUGCACUUGUCCCGGCCUGU</u> GGAAGA CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUAC	89
(miR-93-2)		
miR-95-4	CCAACCUACUGCUGAGCUAGCACUUCCCGAGCCCCCGG AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUUGAAAUGC	90
	GUUACAUUCAACGGGUAUUUAUUGAGCACCCACUCUGUG	
miR-96-7	UGGCCGAU <u>UUUGGCACUAGCACAUUUUUGC</u> UUGUGUCUCCC	91
	GCUCUGAGCAAUCAUGUGCAGUGCCAAUAUGGGAAA	
miR-97-6 (miR-30*)	GUGAGCGAC <u>UGUAAACAUCCUCGACUGGAAGC</u> UGUGAAGCCA	92
, ,	CAGAUGGGCUUUCAGUCGGAUGUUUGCAGCUGCCUACU	
miR-98	G <u>UGAGGUAGUAGUUGUAUUGUU</u> GUGGGGUAGGGAUAUUAG	93
	GCCCCAAUUAGAAGAUAACUAUACAACUUACUACUUUCC	

miR-99b	GGCACC <u>CACCCGUAGAACCGACCUUGCG</u> GGGCCUUCGCCGCAC	94
	ACAAGCUCGUGUCUGUGGGUCCGUGUC	
miR-99a	CCCAUUGGCAUA <u>AACCCGUAGAUCCGAUCUUGUG</u> GUGAAGUG	95
	GACCGCACAAGCUCGCUUCUAUGGGUCUGUGUCAGUGUG	
miR-100-1/2	AAGAGAGAAGAUAUUGAGGCCUGUUGCCACA <u>AACCCGUAGAU</u>	96
	<u>CCGAACUUGUG</u> GUAUUAGUCCGCACAAGCUUGUAUCUAUAGG	
	UAUGUGUCUGUUAGGCAAUCUCAC	
miR-100-11	CCUGUUGCCACA <u>AACCCGUAGAUCCGAACUUGUG</u> GUAUUAGU	97
_	CCGCACAAGCUUGUAUCUAUAGGUAUGUGUCUGUUAGG	
miR-101-1/2	AGGCUGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCUAU	98
	UCUAAAGG <u>UACAGUACUGUGAUAACUGA</u> AGGAUGGCAGCCAU	
	CUUACCUUCCAUCAGAGGAGCCUCAC	
miR-101	UCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAAGG <u>UACAG</u>	99
	<u>UACUGUGAUAACUGA</u>	
miR-101-1	UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUCUAUUCUA	100
miR-101-2	AAGGUACAGUACUGUGAUAACUGAAGGAUGGCA ACUGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUGUAUAUCU	101
MIH-101-2		101
miR-101-9	GAAAGG <u>UACAGUACUGUGAUAACUGA</u> AGAAUGGUGGU UGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUGUAUAUCUGA	102
	AAGGUACAGUACUGUGAUAACUGAAGAAUGGUG	
miR-102-1	CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUUUUUCCAU	103
	CUUUGUAUCUAGCACCAUUUGAAAUCAGUGUUUUAGGAG	
miR-102-7.1 (miR-102-	CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUUUAAAUAG	104
7.2)	UGAUUGUC <u>UAGCACCAUUUGAAAUCAGU</u> GUUCUUGGGGG	
miR-103-2	UUGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUAGCAUUCA	105
	GGUCAA <u>GCAACAUUGUACAGGGCUAUGA</u> AAGAACCA	
miR-103-1	UACUGCCCUCGGCUUCUUUACAGUGCUGCCUUGUUGCAUAUG	106
	GAUCAAGCAGCAUUGUACAGGGCUAUGAAGGCAUUG	
miR-104-17	AAAUGUCAGACAGCCCAUCGACUGGUGUUGCCAUGAGAUUCA	107
	ACAG <u>UCAACAUCAGUCUGAUAAGCUA</u> CCCGACAAGG	
miR-105-1	UGUGCAUCGUGG <u>UCAAAUGCUCAGACUCCUGU</u> GGUGGCUGCU	108
	CAUGCACCACGGAUGUUUGAGCAUGUGCUACGGUGUCUA	
miR-105-2	UGUGCAUCGUGG <u>UCAAAUGCUCAGACUCCUGU</u> GGUGGCUGCU	109
	UAUGCACCACGGAUGUUUGAGCAUGUGCUAUGGUGUCUA	
miR-106-a	CCUUGGCCAUGU <u>AAAAGUGCUUACAGUGCAGGUAGC</u> UUUUUG	110
	AGAUCUACUGCAAUGUAAGCACUUCUUACAUUACCAUGG	
miR-106-b	CCUGCCGGGGC <u>UAAAGUGCUGACAGUGCAGAU</u> AGUGGUCCUC	111
	UCCGUGCUACCGCACUGUGGGUACUUGCUGCUCCAGCAGG CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUG	
miR-107	CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUGUGGCAUG	112
	GAGUUCAAGCAGCAUUGUACAGGGCUAUCAAAGCACAGA	

miR-108-1-	ACACUGCAAGAACAAUAAGGAUUUUUUAGGGGCAUUAUGACUG	113
pequeño	AGUCAGAAAACACAGCUGCCCCUGAAAGUCCCUCAUUUUUCU	
	UGCUGU	
miR-108-2-	ACUGCAAGAGCAAUAAGGAUUUUUAGGGGCAUUAUGAUAGUG	114
pequeño	GAAUGGAAACACAUCUGCCCCCAAAAGUCCCUCAUUUU	
miR-122a-1	CCUUAGCAGAGCUG <u>UGGAGUGUGACAAUGGUGUUUUGU</u> GUCUA	115
	AACUAUCAAACGCCAUUAUCACACUAAAUAGCUACUGCUAGG	
	C	
miR-122a-2	AGCUG <u>UGGAGUGUGACAAUGGUGUUUGU</u> GUCCAAACUAUCAA	116
	ACGCCAUUAUCACACUAAAUAGCU	
miR-123	A <u>CAUUAUUACUUUUGGUACGCG</u> CUGUGACACUUCAAACUCGU	117
	ACCGUGAGUAAUAAUGCGC	
miR-124a-1	AGGCCUCUCUCCGUGUUCACAGCGGACCUUGAUUUAAAUG	118
	UCCAUACAA <u>UUAAGGCACGCGGUGAAUGCC</u> AAGAAUGGGGCU	
	G	
miR-124a-2	AUCAAGAUUAGAGGCUCUGCUCUCCGUGUUCACAGCGGACCU	119
	UGAUUUAAUGUCAUACAA <u>UUAAGGCACGCGGUGAAUGCC</u> AAG	
	AGCGGAGCCUACGGCUGCACUUGAAG	
miR-124a-3	UGAGGGCCCCUCUGCGUGUUCACAGCGGACCUUGAUUUAAUG	120
	UCUAUACAA <u>UUAAGGCACGCGGUGAAUGCC</u> AAGAGAGGCGCC	
	UCC	
miR-124a	CUCUGCGUGUUCACAGCGGACCUUGAUUUAAUGUCUAUACAA	121
	UUAAGGCACGCGGUGAAUGCCAAGAG	
miR-124b	CUCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUCAUACAA <u>U</u>	122
	<u>UAAGGCACGCGGUGAAUGCCA</u> AGAG	
miR-125a-1	UGCCAGUCUCUAGG <u>UCCCUGAGACCCUUUAACCUGUG</u> AGGAC	123
	AUCCAGGGUCACAGGUGAGGUUCUUGGGAGCCUGGCGUCUGG	
	CC	
miR-125a-2	GG <u>UCCCUGAGACCCUUUAACCUGUG</u> AGGACAUCCAGGGUCAC	124
	AGGUGAGGUUCUUGGGAGCCUGG	
miR-125b-1	UGCGCUCCUCAG <u>UCCCUGAGACCCUAACUUGUG</u> AUGUUUA	125
	CCGUUUAAAUCCACGGGUUAGGCUCUUGGGAGCUGCGAGUCG	
	UGCU	
miR-125b-2	ACCAGACUUUUCCUAG <u>UCCCUGAGACCCUAACUUGUGA</u> GGUA	126
	UUUUAGUAACAUCACAAGUCAGGCUCUUGGGACCUAGGCGGA	
	GGGGA	
miR-126-1	CGCUGGCGACGGGA <u>CAUUAUUACUUUUGGUACGCG</u> CUGUGAC	127
	ACUUCAAAC <u>UCGUACCGUGAGUAAUAAUGCG</u> CCGUCCACGGC	
	A	

miR-126-2	A <u>CAUUAUUACUUUUGGUACGCGC</u> UGUGACACUUCAAAC <u>UCGU</u>	128
	<u>ACCGUGAGUAAUAAUGCG</u> C	
miR-127-1	UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAGGGCUCUG	129
	AUUCAGAAAGAUCA <u>UCGGAUCCGUCUGAGCUUGGCU</u> GGUCGG	
	AAGUCUCAUCAUC	
miR-127-2	CCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGAAAGAUCA	130
miR-128a	UCGGAUCCGUCUGAGCUUGGCUGGUCGG UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUU	131
111111-120a	ACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGCUGCUUC	101
miR-128b	GCCGGCAGCCACUGUGCAGUGGGAAGGGGGCCGAUACACU	132
	GUACGAGAGUGAGUAGCAGGUCUCACAGUGAACCGGUCUCUU	
	UCCCUACUGUGUCACACUCCUAAUGG	
miR-128	GUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUUUACAUUU	133
	CUCACAGUGAACCGGUCUCUUUUUCAGC	
miR-129-1	UGGAU <u>CUUUUUGCGGUCUGGGCUUGC</u> UGUUCCUCUCAACAGU	134
	AGUCAGGAAGCCCUUACCCCAAAAAGUAUCUA	
miR-129-2	UGCCCUUCGCGAAU <u>CUUUUUGCGGUCUGGGCUUGC</u> UGUACAU	135
	AACUCAAUAGCCGGAAGCCCUUACCCCAAAAAGCAUUUGCGG	
	AGGGCG	
miR-130a	UGCUGCUGGCCAGAGCUCUUUUCACAUUGUGCUACUGUCUGC	136
	ACCUGUCACUAG <u>CAGUGCAAUGUUAAAAGGGC</u> AUUGGCCGUG	
	UAGUG	
miR-131-1	GCCAGGAGGCGGGUUGGUUGUUAUCUUUGGUUAUCUAGCUG	137
	UAUGAGUGGUGUGGAGUCUUCA <u>UAAAGCUAGAUAACCGAAAG</u>	
	<u>U</u> AAAAAUAACCCCAUACACUGCGCAG	
miR-131-3	CACGGCGCGCAGCGGCACUGGCUAAGGGAGGCCCGUUUCUC	138
	UCUUUGGUUAUCUAGCUGUAUGAGUGCCACAGAGCCGUCA <u>UA</u>	
(D 404	AAGCUAGAUAACCGAAAGUAGAAAUG GUUGUUAUCUUUGGUUAUCUAGCUGUAUGAGUGUAUUGGUCU	100
miR-131		139
miR-132-1	UCA <u>UAAAGCUAGAUAACCGAAAGU</u> AAAAAC CCGCCCCGCGUCUCCAGGGCAACCGUGGCUUUCGAUUGUUAC	140
	UGUGGGAACUGGAGGUAACAGUCUACAGCCAUGGUCGCCCCG	
miR-132-2	CAGCACGCCCACGCGC GGGCAACCGUGGCUUUCGAUUGUUACUGUGGGAACUGGAGGU	141
	AACAGUCUACAGCCAUGGUCGCCC	
miR-133a-1	ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAAUCGCCU	142
	CUUCAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGCUAUGCA	
	UUGA	
miR-133a-2	GGGAGCCAAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAAA	143
	UCGACUGUCCAAUGGAU <u>UUGGUCCCCUUCAACCAGCUG</u> UAGC	
	UGUGCAUUGAUGGCGCCG	

miR-133	GCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUUCAAUGGA	144
	UUUGGUCCCUUCAACCAGCUGUAGC	
miR-133b	CCUCAGAAGAAGAUGCCCCCUGCUCUGGCUGGUCAAACGGA	145
	ACCAAGUCCGUCUUCCUGAGAGGU <u>UUGGUCCCCUUCAACCAG</u>	
	CUACAGCAGGCUGGCAAUGCCCAGUCCUUGGAGA	
miR-133b- pequeño	GCCCCCUGCUCUGGCUGGUCAAACGGAACCAAGUCCGUCUUCC	146
poquono	UGAGAGGUUUGGUCCCCUUCAACCAGCUACAGCAGGG	
miR-134-1	CAGGGUG <u>UGUGACUGGUUGACCAGAGGG</u> GCAUGCACUGUGUU	147
	CACCCUGUGGGCCACCUAGUCACCAACCCUC	
miR-134-2	AGGGUG <u>UGUGACUGGUUGACCAGAGGG</u> GCAUGCACUGUGUUC	148
	ACCCUGUGGGCCACCUAGUCACCAACCCU	
miR-135a-1	AGGCCUCGCUGUUCUC <u>UAUGGCUUUUUUAUUCCUAUGUGAU</u> UC	149
	UACUGCUCACUCAUAUAGGGAUUGGAGCCGUGGCGCACGGCG	
	GGGACA	
miR-13a-2 (miR-135-2)	AGAUAAAUUCACUCUAGUGCUU <u>UAUGGCUUUUUAUUCCUAUG</u>	150
(111111-100-2)	<u>UGA</u> UAGUAAUAAAGUCUCAUGUAGGGAUGGAAGCCAUGAAAU	
	ACAUUGUGAAAAUCA	
miR-135	C <u>UAUGGCUUUUUAUUCCUAUGUGAU</u> UCUACUGCUCACUCAUA	151
	UAGGGAUUGGAGCCGUGG	
miR-135b	CACUCUGCUGUGGCC <u>UAUGGCUUUUCAUUCCUAUGUG</u> AUUGC	152
	UGUCCCAAACUCAUGUAGGGCUAAAAGCCAUGGGCUACAGUG	
	AGGGGCGAGCUCC	
miR-136-1	UGAGCCCUCGGAGG <u>ACUCCAUUUGUUUUGAUGAUGGA</u> UUCUU	153
	AUGCUCCAUCAUCGUCUCAAAUGAGUCUUCAGAGGGUUCU	
miR-136-2	GAGG <u>ACUCCAUUUGUUUUGAUGAUGGA</u> UUCUUAUGCUCCAUC	154
	AUCGUCUCAAAUGAGUCUUC	
miR-137	CUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGGAUUACGU	155
/D / 00 /	UGUUAUUGCUUAAGAAUACGCGUAGUCGAGG	
miR-138-1	CCCUGGCAUGGUGUGGGGGCAGCUGGUGUUGUGAAUCAGG	156
	CCGUUGCCAAUCAGAGAACGGCUACUUCACAACACCAGGGCC	
	ACACCACACUACAGG	
miR-138-2	CGUUGCUGC <u>AGCUGGUGUUGUGAAUC</u> AGGCCGACGAGCAGCG	157
	CAUCCUCUUACCCGGCUAUUUCACGACACCAGGGUUGCAUCA	
miR-138	C <u>AGCUGGUGUUGUGAAUC</u> AGGCCGACGAGCAGCGCAUCCUCU	158
	UACCCGGCUAUUUCACGACACCAGGGUUG	
miR-139	GUGUAU <u>UCUACAGUGCACGUGUCU</u> CCAGUGUGGCUCGGAGGC	159
	UGGAGACGCGGCCCUGUUGGAGUAAC	
miR-140	UGUGUCUCUCUGUGUCCUGCCAGUGGUUUUACCCUAUGGU	160
	<u>AG</u> GUUACGUCAUGCUGUUC <u>UACCACAGGGUAGAACCACGGA</u> C	
	AGGAUACCGGGGCACC .	

miR-140as	UCCUGCC <u>AGUGGUUUUACCCUAUGGUAG</u> GUUACGUCAUGCUG	161
	UUCUACCACAGGGUAGAACCACGGACAGGA	
miR-140s	CCUGCC <u>AGUGGUUUUACCCUAUGGUAG</u> GUUACGUCAUGCUGU	162
	UCUACCACAGGGUAGAACCACGGACAGG	
miR-141-1	CGGCCGGCCCUGGGUCCAUCUUCCAGUACAGUGUUGGAUGGU	163
	CUAAUUGUGAAGCUCCU <u>AACACUGUCUGGUAAAGAUGG</u> CUCC	
	CGGGUGGGUUC	
miR-141-2	GGGUCCAUCUUCCAGUACAGUGUUGGAUGGUCUAAUUGUGAA	164
	GCUCCU <u>AACACUGUCUGGUAAAGAUGG</u> CCC	
miR-142	ACC <u>CAUAAAGUAGAAAGCACUAC</u> UAACAGCACUGGAGGG <u>UGU</u>	165
	<u>AGUGUUUCCUACUUUAUGGA</u> UG	
miR-143-1	GCGCAGCCCUGUCUCCCAGCCUGAGGUGCAGUGCUGCAUC	166
	UCUGGUCAGUUGGGAGUC <u>UGAGAUGAAGCACUGUAGCUCA</u> GG	
	AAGAGAGAGUUGUUCUGCAGC	
miR-143-2	CCUGAGGUGCAGUGCAUCUCUGGUCAGUUGGGAGUC <u>UGA</u>	167
·D · · · · ·	GAUGAAGCACUGUAGCUCAGG	400
miR-144-1	UGGGGCCCUGGCUGGGAUAUCAUCAUAUACUGUAAGUUUGCG	168
	AUGAGACAC <u>UACAGUAUAGAUGAUGUACUAG</u> UCCGGGCACCC	
	CC	
miR-144-2	GGCUGGGAUAUCAUCAUAUACUGUAAGUUUGCGAUGAGACAC	169
·D 445.4	<u>UACAGUAUAGAUGAUGUACUAG</u> UC	470
miR-145-1	CACCUUGUCCUCACG <u>GUCCAGUUUUUCCCAGGAAUCCCUU</u> AGA	170
	UGCUAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAGGUCAU	
15.445.5	GGUU	
miR-145-2	CUCACG <u>GUCCAGUUUUCCCAGGAAUCCCUU</u> AGAUGCUAAGAU	171
	GGGGAUUCCUGGAAAUACUGUUCUUGAG	
miR-146-1	CCGAUGUGUAUCCUCAGCUU <u>UGAGAACUGAAUUCCAUGGGUU</u>	172
	GUGUCAGUGUCAGACCUCUGAAAUUCAGUUCUUCAGCUGGGA	
	UAUCUCUGUCAUCGU	
miR-146-2	AGCUU <u>UGAGAACUGAAUUCCAUGGGUU</u> GUGUCAGUGUCAGAC	173
	CUGUGAAAUUCAGUUCUUCAGCU	
miR-147	AAUCUAAAGACAACAUUUCUGCACACACACCAGACUAUGGAA	174
	GCCA <u>GUGUGUGGAAAUGCUUCUGC</u> UAGAUU	
miR-148a	GAGGCAAAGUUCUGAGACACUCCGACUCUGAGUAUGAUAGAA	175
(miR-148)	<u>GUCAGUGCACUACAGAACUUUGU</u> CUC	
miR-148b	CAAGCACGAUUAGCAUUUGAGGUGAAGUUCUGUUAUACACUC	176
	AGGCUGUGGCUCUCUGAAAG <u>UCAGUGCAUCACAGAACUUUGU</u>	
	CUCGAAAGCUUUCUA .	
miR-148b- pequeño	AAGCACGAUUAGCAUUUGAGGUGAAGUUCUGUUAUACACUCA	177
poquerio	GGCUGUGGCUCUCUGAAAGUCAGUGCAU	

miR-149-1		178
111111-143-1	GCCGGCGCCCGAGC <u>UCUGGCUCCGUGUCUUCACUCC</u> CGUGCUU	170
	GUCCGAGGAGGGAGGGACGGGGCUGUGCUGGGGCAGC	
'D 440 0	UGGA	470
miR-149-2	GC <u>UCUGGCUCCGUGUCUUCACUCC</u> CGUGCUUGUCCGAGGAGG	179
miR-150-1	GAGGGAGGAC	100
IIIIH-150-1	CUCCCAUGGCCCUG <u>UCUCCCAACCCUUGUACCAGUG</u> CUGGGC	180
miR-150-2	UCAGACCCUGGUACAGGCCUGGGGGACAGGGACCUGGGGAC	181
IIIIn-130-2	CCCUGUCUCCCAACCCUUGUACCAGUGCUGGGCUCAGACCCUG	101
miR-151	GUACAGGCCUGGGGACAGGG UUUCCUGCCCUCGAGGAGCUCACAGUCUAGUAUGUCUCAUCC	182
111111-131		102
miR-151-2	CCUACUAGACUGAAGCUCCUUGAGGACAGG CCUGUCCUCAAGGAGCUUCAGUCUAGUAGGGGAUGAGACAUA	183
	CUAGACUGUGAGCUCCUCGAGGGCAGG	
miR-152-1	UGUCCCCCGGCCCAGGUUCUGUGAUACACUCCGACUCGGC	184
-		
	UCUGGAGCAG <u>UCAGUGCAUGACAGAACUUGG</u> GCCCGGAAGGA	
miR-152-2	CC GGCCCAGGUUCUGUGAUACACUCCGACUCGGGCUCUGGAGCA	185
111111-132-2		103
miR-153-1-1	GUCAGUGCAUGACAGAACUUGGGCCCCGG	186
111111-133-1-1	CUCACAGCUGCCAGUGUCAUUUUUGUGAUCUGCAGCUAGUAU	100
	UCUCACUCCAG <u>UUGCAUAGUCACAAAAGUGA</u> UCAUUGGCAGG	
	UGUGGC	107
miR-153-1-2	UCUCUCUCCCUCACAGCUGCCAGUGUCA <u>UUGUCACAAAAG</u>	187
	<u>UGA</u> UCAUUGGCAGGUGUGGCUGCAUG	
miR-153-2-1	AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAU	188
	AUGAGCCCAG <u>UUGCAUAGUCACAAAAGUGA</u> UCAUUGGAAACU	
/D / TO 0	GUG	
miR-153-2-2	CAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAUGAGCCCA	189
miR-154-1	G <u>UUGCAUAGUCACAAAAGUGA</u> UCAUUG GUGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUUCGCUÚUAU	190
1111n-154-1		190
miR-154-2	UUGUGACGAAUCAUACACGGUUGACCUAUUUUUCAGUACCAA GAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUUGUGACGA	191
	AUCAUACACGGUUGACCUAUUUUU	
miR-155	CUGUUAAUGCUAAUCGUGAUAGGGGUUUUUUGCCUCCAACUGA	192
miR-156 =	CUCCUACAUAUUAGCAUUAACAG CCUAACACUGUCUGGUAAAGAUGGCUCCCGGGUGGGUUCUCU	193
miR-157 =		
solapamiento con miR-141	CGGCAGUAACCUUCAGGGAGCCCUGAAGACCAUGGAGGAC	
miR-158- pequeño =	GCCGAGACCGAGUGCACAGGGCU <u>CUGACCUAUGAAUUGACAG</u>	194
ipoquono =		
miR-192	<u>CC</u> AGUGCUCUCGUCUCCCCUCUGGCUGCCAAUUCCAUAGGUCA	

miR-159-1- pequeño	UCCCGCCCCUGUAACAGCAACUCCAUGUGGAAGUGCCCACUG	195
	GUUCCAGUGGGCUGCUGUUAUCUGGGGCGAGGCCA	
miR-161- pequeño	AAAGCUGGGUUGAGAGGGCGAAAAAGGAUGAGGUGACUGGUC	196
	UGGGCUACGCUAUGCUGCGGCGCUCGGG	
miR-163-1b- pequeño	CAUUGGCCUCCUAAGCCAGGAUUGUGGGUUCGAGUCCCACC	197
'D 100 0	CGGGGUAAAGAAGGCCGAAUU	100
miR-163-3- pequeño	CCUAAGCCAGGGAUUGUGGGUUCGAGUCCCACCUGGGGUAGA	198
	GGUGAAAGUUCCUUUUACGGAAUUUUUU	
miR-162	CAAUGUCAGCAGUGECU <u>UAGCAGCACGUAAAUAUUGGCG</u> UUA	199
	AGAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGCUGAAGU	
	AAGGUUGACCAUACUCUACAGUUG	
miR-175- pequeño =	GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGAUGAUUGU	200
miR-224	GCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC	
miR-177-	ACGCAAGUGUCCUAAGGUGAGCUCAGGGAGCACAGAAACCUC	201
pequeño	CAGUGGAACAGAAGGCAAAAGCUCAUU	
miR-180-	CAUGUGUCACUUUCAGGUGGAGUUUCAAGAGUCCCUUCCUGG	202
pequeño	UUCACCGUCUCCUUUGCUCUUCCACAAC	
miR-181a	AGAAGGCUAUCAGGCCAGCCUUCAGAGGACUCCAAGG <u>AACA</u>	203
	<u>UUCAACGCUGUCGGUGAGU</u> UUGGGAUUUGAAAAAACCACUGA	
	CCGUUGACUGUACCUUGGGGUCCUUA	
miR-181b-1	CCUGUGCAGAGAUUAUUUUUAAAAGGUCACAAUC <u>AACAUUC</u>	204
	<u>AUUGCUGUCGGUGGGUU</u> GAACUGUGUGGACAAGCUCACUGAA	
	CAAUGAAUGCAACUGUGGCCCCGCUU	
miR-181b-2	CUGAUGGCUGCACUC <u>AACAUUCAUUGCUGUCGGUGGGUU</u> UGA	205
	GUCUGAAUCAACUCACUGAUCAAUGAAUGCAAACUGCGGACC	
	AAACA	
miR-181c	CGGAAAAUUUGCCAAGGGUUUGGGGG <u>AACAUUCAACCUGUCG</u>	206
	<u>GUGAGU</u> UUGGGCAGCUCAGGCAAACCAUCGACCGUUGAGUGG	
	ACCCUGAGGCCUGGAAUUGCCAUCCU	
miR-182-as	GAGCUGCUUGCCUCCCCCGUUU <u>UUGGCAAUGGUAGAACUCA</u>	207
	<u>CA</u> CUGGUGAGGUAACAGGAUCCGG <u>UGGUUCUAGACUUGCCAA</u>	
	<u>CUA</u> UGGGGCGAGGACUCAGCCGGCAC	
miR-182	UUU <u>UUGGCAAUGGUAGAACUCACA</u> CUGGUGAGGUAACAGGAU	208
'D 465	CCGGUGGUUCUAGACUUGCCAACUAUGG	
miR-183	CCGCAGAGUGUGACUCCUGUUCUGUG <u>UAUGGCACUGGUAGAA</u>	209
	<u>UUCACUG</u> UGAACAGUCUCAGUCAGUGAAUUACCGAAGGGCCA	
	UAAACAGAGCAGAGACAGAUCCACGA	
miR-184-1	CCAGUCACGUCCCUUAUCACUUUUCCAGCCCAGCUUUGUGAC	210
	UGUAAGUGU <u>UGGACGGAGAACUGAUAAGGGU</u> AGGUGAUUGA	

miR-184-2	CCUUAUCACUUUUCCAGCCCAGCUUUGUGACUGUAAGUGU <u>UG</u>	211
	<u>GACGGAGAACUGAUAAGGGU</u> AGG	
miR-185-1	AGGGGGCGAGGAU <u>UGGAGAGAAAGGCAGUUC</u> CUGAUGGUCC	212
	CCUCCCAGGGGCUGGCUUUCCUCGGUCCUUCCCUCCCA	
miR-185-2	AGGGAU <u>UGGAGAGAAAGGCAGUUC</u> CUGAUGGUCCCCUCCCCA	213
	GGGGCUGGCUUUCCUCUGGUCCUU	
miR-186-1	UGCUUGUAACUUUC <u>CAAAGAAUUCUCCUUUUGGGCUU</u> UCUGG	214
	UUUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGAAGUUUGA	
	GCU .	
miR-186-2	ACUUUC <u>CAAAGAAUUCUCCUUUUGGGCUU</u> UCUGGUUUUAUUU	215
	UAAGCCCAAAGGUGAAUUUUUUGGGAAGU	
miR-187	GGUCGGGCUCACCAUGACACAGUGUGAGACUCGGGCUACAAC	216
	ACAGGACCCGGGGCGCUGCUCUGACCCCUCGUGUCUUGUGUU	
	<u>GCAGCCGG</u> AGGGACGCAGGUCCGCA	
miR-188-1	UGCUCCCUCUCACAUCCCUUGCAUGGUGGAGGGUGAGCUU	217
	UCUGAAAACCCCUCCCACAUGCAGGGUUUGCAGGAUGGCGAG	
	cc	
miR-188-2	UCUCA <u>CAUCCCUUGCAUGGUGGAGGGU</u> GAGCUUUCUGAAAAC	218
	CCCUCCCACAUGCAGGGUUUGCAGGA	
miR-189-1	CUGUCGAUUGGACCCGCCCUCCGGUGCCUACUGAGCUGAUAU	219
	<u>CAGU</u> UCUCAUUUUACACACUGGCUCAGUUCAGCAGGAACAGG	
	AGUCGAGCCCUUGAGCAA	
miR-189-2	CUCCG <u>GUGCCUACUGAGCUGAUAUCAGU</u> UCUCAUUUUACACA	220
	CUGGCUCAGUUCAGCAGGAACAGGAG	
miR-190-1	UGCAGGCCUCUGUG <u>UGAUAUGUUUGAUAUAUUAGGUU</u> GUUAU	221
	UUAAUCCAACUAUAUAUCAAACAUAUUCCUACAGUGUCUUGC	
	C	
miR-190-2	CUGUG <u>UGAUAUGUUUGAUAUAUGGUU</u> GUUAUUUAAUCCA	222
	ACUAUAUAUCAAACAUAUUCCUACAG	
miR-191-1	CGGCUGGACAGCGGCAACGGAAUCCCAAAAGCAGCUGUUGU	223
	CUCCAGAGCAUUCCAGCUGCGCUUGGAUUUCGUCCCCUGCUC	
	UCCUGCCU	
miR-191-2	AGCGGG <u>CAACGGAAUCCCAAAAGCAGCU</u> GUUGUCUCCAGAGC	224
	AUUCCAGCUGCGCUUGGAUUUCGUCCCCUGCU	
miR-192-2/3	CCGAGACCGAGUGCACAGGGCU <u>CUGACCUAUGAAUUGACAGC</u>	225
	<u>C</u> AGUGCUCUCGUCUCCCUCUGGCUGCCAAUUCCAUAGGUCAC	
	AGGUAUGUUCGCCUCAAUGCCAG	<u> </u>
miR-192	GCCGAGACCGAGUGCACAGGGCU <u>CUGACCUAUGAAUUGACAG</u>	226
	<u>CC</u> AGUGCUCUCGUCUCCCUCUGGCUGCCAAUUCCAUAGGUCA	
	CAGGUAUGUUCGCCUCAAUGCCAGC	

miR-193-1	CGAGGAUGGGCUGAGGCUGGGUCUUUGCGGGCGAGAUGA	227
	GGGUGUCGGAUC <u>AACUGGCCUACAAAGUCCCAG</u> UUCUCGGCC	
	CCCG	
miR-193-2	GCUGGGUCUUUGCGGGCGAGAUGAGGGUGUCGGAUC <u>AACUGG</u>	228
	CCUACAAAGUCCCAGU	
miR-194-1	AUGGUGUUAUCAAGUGUAACAGCAACUCCAUGUGGACUGUGU	229
	ACCAAUUUCCAGUGGAGAUGCUGUUACUUUUGAUGGUUACCA	
	A	
miR-194-2	G <u>UGUAACAGCAACUCCAUGUGGA</u> CUGUGUACCAAUUUCCAGU	230
	GGAGAUGCUGUUACUUUUGAU	
miR-195-1	AGCUUCCCUGGCUC <u>UAGCAGCACAGAAAUAUUGGC</u> ACAGGGA	231
	AGCGAGUCUGCCAAUAUUGGCUGUGCUGCUCCAGGCAGGGUG	
	GUG	
miR-195-2	<u>UAGCAGCACAGAAAUAUUGGCACAGGGAAGCGAGUCUGCCAA</u>	232
	<u>UAUUGGCUGUGCU</u>	
miR-196-1	CUAGAGCUUGAAUUGGAACUGCUGAGUGAAU <u>UAGGUAGUUUC</u>	233
	<u>AUGUUGUUGG</u> GCCUGGGUUUCUGAACACAACAACAUUAAACC	
	ACCCGAUUCACGGCAGUUACUGCUCC	
miR-196a-1	GUGAAU <u>UAGGUAGUUUCAUGUUGUUGG</u> GCCUGGGUUUCUGAA	234
	CACAACAACAUUAAACCACCCGAUUCAC	
miR-196a-2 (miR-196-2)	UGCUCGCUCAGCUGAUCUGUGGCU <u>UAGGUAGUUUCAUGUUGU</u>	235
(11111 130 2)	<u>UGG</u> GAUUGAGUUUUGAACUCGGCAACAAGAAACUGCCUGAGU	
	UACAUCAGUCGGUUUUCGUCGAGGGC	
miR-196	GUGAAU <u>UAGGUAGUUUCAUGUUGUUGG</u> GCCUGGGUUUCUGAA	236
	CACAACAACAUUAAACCACCCGAUUCAC	
miR-196b	ACUGGUCGGUGAUU <u>UAGGUAGUUUCCUGUUGUUGG</u> GAUCCAC	237
	CUUUCUCUCGACAGCACGACACUGCCUUCAUUACUUCAGUUG	
miR-197	GGCUGUGCCGGGUAGAGAGGCAGUGGGAGGUAAGAGCUCUU	238
	CACCC <u>UUCACCACCUUCUCCACCCAGC</u> AUGGCC	
miR-197-2	GUGCAUGUGUAUGUGUGCAUGUGCAUGUGUAUGUGUA	239
17. (22	UGAGUGCAUGCGUGUGC	
miR-198	UCAUU <u>GGUCCAGAGGGGAGAUAGG</u> UUCCUGUGAUUUUUCCUU	240
	CUUCUCUAUAGAAUAAAUGA	
miR-199a-1	GCCAA <u>CCCAGUGUUCAGACUACCUGUU</u> CAGGAGGCUCUCAAU	241
	GUGUACAGUAGUCUGCACAUUGGUUAGGC	
miR-199a-2	AGGAAGCUUCUGGAGAUCCUGCUCCGUCGC <u>CCCAGUGUUCAG</u>	242
	<u>ACUACCUGUU</u> CAGGACAAUGCCGUUG <u>UACAGUAGUCUGCACA</u>	
	<u>UUGGUU</u> AGACUGGGCAAGGGAGAGCA	

miR-199b	CCAGAGGACACCUCCACUCCGUCUA <u>CCCAGUGUUUUAGACUAU</u>	243
	<u>CUGUUC</u> AGGACUCCCAAAUUG <u>UACAGUAGUCUGCACAUUGGU</u>	
	<u>U</u> AGGCUGGGCUGGGUUAGACCCUCGG	
miR-199s	GCCAACCCAGUGUUCAGACUACCUGUUCAGGAGGCUCUCAAU	244
	GUG <u>UACAGUAGUCUGCACAUUGGUU</u> AGGC	
miR-200a	GCCGUGGCCAUCUUACUGGGCAGCAUUGGAUGGAGUCAGGU <u>C</u>	245
	<u>UCUAAUACUGCCUGGUAAUGAUG</u> ACGGC	
miR-200b	CCAGCUCGGGCAGCCGUGGCCAUCUUACUGGGCAGCAUUGGA	246
	UGGAGUCAGGU <u>CUCUAAUACUGCCUGGUAAUGAUG</u> ACGGCGG	
	AGCCCUGCACG	
miR-200c	CCCUCGUCUUACCCAGCAGUGUUUGGGUGCGGUUGGGAGUCU	247
	<u>CUAAUACUGCCGGGUAAUGAUGGA</u> GG	
miR-202	GUUCCUUUUUCCUAUGCAUAUACUUCUUUGAGGAUCUGGCCU	248
15.000	AA <u>AGAGGUAUAGGGCAUGGGAAGA</u> UGGAGC	2.12
miR-203	GUGUUGGGGACUCGCGCGCUGGGUCCAGUGGUUCUUAACAGU	249
	UCAACAGUUCUGUAGCGCAAUU <u>GUGAAAUGUUUAGGACCACU</u>	
	<u>AG</u> ACCCGGCGGCGCGACAGCGA	
miR-204	GGCUACAGUCUUUCUUCAUGUGACUCGUGGAC <u>UUCCCUUUGU</u>	250
	<u>CAUCCUAUGCCU</u> GAGAAUAUAUGAAGGAGGCUGGGAAGGCAA	
	AGGGACGUUCAAUUGUCAUCACUGGC	
miR-205	AAAGAUCCUCAGACAAUCCAUGUGCUUCUUUG <u>UCCUUCAUU</u>	251
	<u>CCACCGGAGUCUG</u> UCUCAUACCCAACCAGAUUUCAGUGGAGU	
	GAAGUUCAGGAGGCAUGGAGCUGACA	
miR-206-1	UGCUUCCCGAGGCCACAUGCUUCUUUAUAUCCCCAUAUGGAU	252
	UACUUUGCUA <u>UGGAAUGUAAGGAAGUGUGUGG</u> UUUCGGCAAG	
	UG	
miR-206-2	AGGCCACAUGCUUCUUUAUAUCCCCAUAUGGAUUACUUUGCU	253
	AUGGAAUGUAAGGAAGUGUGUGGUUUU	
miR-208	UGACGGCGAGCUUUUGGCCCGGGUUAUACCUGAUGCUCACG	254
15.010	<u>UAUAAGACGAGCAAAAAGCUUGU</u> UGGUCA	
miR-210	ACCCGGCAGUGCCUCCAGGCGCAGGGCAGCCCCUGCCCACCGC	255
	ACACUGCGCUGCCCAGACCCA <u>CUGUGCGUGUGACAGCGGCU</u>	
	<u>G</u> AUCUGUGCCUGGGCAGCGCGACCC	
miR-211	UCACCUGGCCAUGUGACUUGUGGGC <u>UUCCCUUUGUCAUCCUU</u>	256
	<u>CGCCU</u> AGGGCUCUGAGCAGGGCAGGGACAGCAAAGGGGUGCU	
	CAGUUGUCACUUCCCACAGCACGGAG	
miR-212	CGGGGCACCCGGCCGGACAGCGCGCGCCCGGCACCUUGGCUCUAG	257
	ACUGCUUACUGCCCGGGCCGCCCUCAG <u>UAACAGUCUCCAGUCA</u>	
	<u>CGGCC</u> ACCGACGCCUGGCCCCGCC	

miR-213-2	CCUGUGCAGAGAUUAUUUUUAAAAGGUCACAAUC <u>AACAUUC</u>	258
	<u>AUUGCUGUCGGUGGGUU</u> GAACUGUGUGGACAAGCUCACUGAA	
	CAAUGAAUGCAACUGUGGCCCCGCUU	
miR-213	GAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCUGUCGGUG	259
	AGUUUGGAAUUAAAAUCAAA <u>ACCAUCGACCGUUGAUUGUACC</u>	
	CUAUGGCUAACCAUCAUCUACUCC	
miR-214	GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUGUCUACAC	260
	UUGCUGUGCAGAACAUCCGCUCACCUGU <u>ACAGCAGGCACAGA</u>	
	<u>CAGGCAG</u> UCACAUGACAACCCAGCCU	
miR-215	AUCAUUCAGAAAUGGUAUACAGGAAA <u>AUGACCUAUGAAUUGA</u>	261
	<u>CAGAC</u> AAUAUAGCUGAGUUUGUCUGUCAUUUCUUUAGGCCAA	
	UAUUCUGUAUGACUGUGCUACUUCAA	
miR-216	GAUGGCUGUGAGUUGGCU <u>UAAUCUCAGCUGGCAACUGUG</u> AGA	262
	UGUUCAUACAAUCCCUCACAGUGGUCUCUGGGAUUAUGCUAA	
	ACAGAGCAAUUUCCUAGCCCUCACGA	
miR-217	AGUAUAAUUAUUACAUAGUUUUUGAUGUCGCAGA <u>UACUGCAU</u>	263
	<u>CAGGAACUGAUUGGAU</u> AAGAAUCAGUCACCAUCAGUUCCUAA	
	UGCAUUGCCUUCAGCAUCUAAACAAG	
miR-218-1	GUGAUAAUGUAGCGAGAUUUUCUG <u>UUGUGCUUGAUCUAACCA</u>	264
	<u>UGU</u> GGUUGCGAGGUAUGAGUAAAACAUGGUUCCGUCAAGCAC	
	CAUGGAACGUCACGCAGCUUUCUACA	
miR-218-2	GACCAGUCGCUGCGGGGCUUUCCU <u>UUGUGCUUGAUCUAACCA</u>	265
	<u>UGU</u> GGUGGAACGAUGGAAACGGAACAUGGUUCUGUCAAGCAC	
	CGCGGAAAGCACCGUGCUCCCUGCA	
miR-219	CCGCCCGGGCCGCGCUCC <u>UGAUUGUCCAAACGCAAUUCU</u> CG	266
	AGUCUAUGGCUCCGGCCGAGAGUUGAGUCUGGACGUCCCGAG	
	CCGCCGCCCCAAACCUCGAGCGGG	
miR-219-1	CCGCCCGGGCCGCGCUCC <u>UGAUUGUCCAAACGCAAUUCU</u> CG	267
	AGUCUAUGGCUCCGGCCGAGAGUUGAGUCUGGACGUCCCGAG	
	CCGCCGCCCCAAACCUCGAGCGGG	
miR-219-2	ACUCAGGGGCUUCGCCAC <u>UGAUUGUCCAAACGCAAUUCU</u> UGU	268
	ACGAGUCUGCGGCCAACCGAGAAUUGUGGCUGGACAUCUGUG	
	GCUGAGCUCCGGG	
miR-220	GACAGUGUGGCAUUGUAGGGCU <u>CCACACCGUAUCUGACACUU</u>	269
	<u>U</u> GGGCGAGGCACCAUGCUGAAGGUGUUCAUGAUGCGGUCUG	
	GGAACUCCUCACGGAUCUUACUGAUG	
miR-221	UGAACAUCCAGGUCUGGGGCAUGAACCUGGCAUACAAUGUAG	270
	AUUUCUGUGUUCGUUAGGCAAC <u>AGCUACAUUGUCUGCUGGGU</u>	
	<u>UUC</u> AGGCUACCUGGAAACAUGUUCUC	

miR-222	GCUGCUGGAAGGUGUAGGUACCCUCAAUGGCUCAGUAGCCAG	271
	UGUAGAUCCUGUCUUUCGUAAUCAGC <u>AGCUACAUCUGGCUAC</u>	
	<u>UGGGUCUC</u> UGAUGGCAUCUUCUAGCU	
miR-223	CCUGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUGACAAGCU	272
	GAGUUGGACACUCCAUGUGGUAGAG <u>UGUCAGUUUGUCAAAUA</u>	
	<u>CCCC</u> AAGUGCGGCACAUGCUUACCAG	
miR-224	GGGCUUU <u>CAAGUCACUAGUGGUUCCGUUUA</u> GUAGAUGAUUGU	273
	GCAUUGUUUCAAAAUGGUGCCCUAGUGACUACAAAGCCC	
miR-294-1 (chr16)	CAAUCUUCCUUUAUCAUGGUAUUGAUUUUUCAGUGCUUCCCU	274
, ,	UUUGUGUGAGAGAAGAUA	
miR-296	AGGACCCUUCCAGAGGCCCCCCCUCAAUCCUGUUGUGCCUAA	275
	UUCAGAGGGUUGGGUGGAGGCUCUCCUGAAGGGCUCU	
miR-299	AAGAAAUGGUUUACCGUCCCACAUACAUUUUGAAUAUGUAUG	276
	UGGGAUGGUAAACCGCUUCUU	
miR-301	ACUGCUAACGAAUGCUCUGACUUUAUUGCACUACUGUACUUU	277
	ACAGCUAGCAGUGCAAUAGUAUUGUCAAAGCAUCUGAAAGCA	
	GG	
miR-302a	CCACCACUUAAACGUGGAUGUACUUGCUUUGAAACUAAAGAA	278
'D 000'	GUAAGUGĊUUCCAUGUUUUGGUGAUGG	
miR-302b	GCUCCCUUCA <u>ACUUUAACAUGGAAGUGCUUUCU</u> GUGACUUUA	279
miR-302c	AAAGUAAGUGCUUCCAUGUUUUAGUAGGAGU CCUUUGCUUUAACAUGGGGGUACCUGCUGUGUAAACAAAAG	280
77777 0020	UAAGUGCUUCCAUGUUUCAGUGGAGG	200
miR-302d	CCUCUACUUUAACAUGGAGGCACUUGCUGUGACAUGACA	281
	A <u>UAAGUGCUUCCAUGUUUGAGUGU</u> GG	
miR-320	GCUUCGCUCCCCCUCCGCCUUCUCUCCCGGUUCUUCCCGGAGU	282
;D 004	CGGGAAAAGCUGGGUUGAGAGGCGAAAAAGGAUGAGGU	000
miR-321	UUGGCCUCC <u>UAAGCCAGGGAUUGUGGGUUCGAGUCC</u> CACCCG	283
.=	GGGUAAAGAAGGCCGA	
miR-323	UUGGUACUUGGAGAGAGGUGGUCCGUGGCGCUUCGCUUUAU	284
	UUAUGGCGCACAUUACACGGUCGACCUCUUUGCAGUAUCUAA	
	UC	
miR-324	CUGACUAUGCCUCCC <u>CGCAUCCCCUAGGGCAUUGGUGU</u> AAAG	285
15.005	CUGGAGACCCACUGCCCCAGGUGCUGCUGGGGGUUGUAGUC	
miR-325	AUACAGUGCUUGGUUCCUAGUAGGUGUCCAGUAAGUGUUUGU	286
	GACAUAAUUUGUUUAUUGAGGACCUCCUAUCAAUCAAGCACU	
	GUGCUAGGCUCUGG	
miR-326	CUCAUCUGUCUGUUGGGCUGGAGGCCGGCCUUUGUGAAGGC	287
	GGGUGGUGCUCAGAUCGCCUCUGGGCCCUUCCUCCAGCCCCGA	
	GGCGGAUUCA	
miR-328	UGGAGUGGGGGCAGAGGGGCUCAGGGAGAAAGUGCAUAC	288
	AGCCCCUGGCCCUCUCGCCCUUCCGUCCCCUG	

miR-330	CUUUGGCGAUCACUGCCUCUGGGCCUGUGUCUUAGGCUCU	289
	GCAAGAUCAACCGA <u>GCAAAGCACACGGCCUGCAGAGA</u> GGCAG	
	CGCUCUGCCC	
miR-331	GAGUUUGGUUUUGGGUUUGUUCUAGGUAUGGUCCCAGG	290
	GAUCCCAGAUCAAACCAG <u>GCCCCUGGGCCUAUCCUAGAA</u> CCAA	
	CCUAAGCUC	
miR-335	UGUUUUGAGCGGGG <u>UCAAGAGCAAUAACGAAAAAUGU</u> UUGU	291
	CAUAAACCGUUUUUCAUUAUUGCUCCUGACCUCCUCUCAUUU	
	GCUAUAUUCA	
miR-337	GUAGUCAGUAGUUGGGGGGGGGGGGAACGGCUUCAUACAGGAGU	292
	UGAUGCACAGUUA <u>UCCAGCUCCUAUAUGAUGCCUUU</u> CUUCAU	
	CCCCUUCAA	
miR-338	UCUCCAACAAUAUCCUGGUGCUGAGUGAUGACUCAGGCGAC <u>U</u>	293
miR-339	<u>CCAGCAUCAGUGAUUUUGUUGA</u> AGA	294
111111-339	CGGGGCGCCCCUCUCCCUGUCCUCAGGAGCUCACGUGUGCC	294
	UGCCUGUGAGCGCCUCGACGACAGAGCCGGCGCCUGCCCCAGU	
miR-340	GUCUGCGC	295
111111-340	UUGUACCUGGUGAUUAUAAAGCAAUGAGACUGAUUGUCAU	293
	AUGUCGUUUGUGGGA <u>UCCGUCUCAGUUACUUUAUAGCC</u> AUAC	
miR-342	CUGGUAUCUUA GAAACUGGGCUCAAGGUGAGGGGUGCUAUCUGUGAUUGAGGG	296
111111-042		290
	ACAUGGUUAAUGGAAUUG <u>UCUCACACAGAAAUCGCACCCGUC</u>	
miR-345	ACCUUGGCCUACUUA	297
111111 040	ACCCAAACCCUAGGUC <u>UGCUGACUCCUAGUCCAGGGC</u> UCGUG	207
	AUGGCUGGUGGCCCUGAACGAGGGUCUGGAGGCCUGGGUU	
miR-346	UGAAUAUCGACAGC GUCUGUCUGCCCGCAUGCCUCUCUGUUGCUCUGAAGGA	298
	GGCAGGGGCUGGGCCUGCAGCUGCCUGGGCAGAGCGGCUCCU	
miR-367	GC CCAUUACUGUUGCUAAUAUGCAACUCUGUUGAAUAUAAAUUG	299
	GAAUUGCACUUUAGCAAUGGUGAUGG	
miR-368	AAAAGGUGGAUAUUCCUUCUAUGUUUAUGUUAUUUAUGGUUA	300
	A <u>ACAUAGAGGAAAUUCCACGUUU</u> U	
miR-369	UUGAAGGGAGAUCGACCGUGUUAÚAUUCGCUUUAUUGACUUC	301
	GAAUAAUACAUGGUUGAUCUUUUCUCAG	000
miR-370	AGACAGAGAAGCCAGGUCACGUCUCUGCAGUUACACAGCUCA	302
miR-371	CGAGUGCCUGCUGGGGGGGAACCUGGUCUGUCUGGUGAA GUGGCACUCAAACUGUGGGGGGCACUUUCUGCUCUCUGGUGAA	303
	AGUGCCGCCAUCUUUUGAGUGUUAC	
miR-372	GUGGGCCUCAAAUGUGGAGCACUAUUCUGAUGUCCAAGUGGA	304
	<u>AAGUGCUGCGACAUUUGAGCGU</u> CAC	

miR-373	GGGAUACUCAAAAUGGGGGCGCUUUCCUUUUUGUCUGUACUG	305
	GGAAGUGCUUCGAUUUUGGGGUGUCCC	
miR-374	UACAUCGGCCA <u>UUAUAAUACAACCUGAUAAGUG</u> UUAUAGCAC	306
	UUAUCAGAUUGUAUUGUAAUUGUCUGUGUA	
miR-hes1	AUGGAGCUGCUCACCCUGUGGGCCUCAAAUGUGGAGGAACUA	307
	UUCUGAUGUCCAAGUGGAAAGUGCUGCGACAUUUGAGCGUCA	
	CCGGUGACGCCCAUAUCA	
miR-hes2	GCAUCCCCUCAGCCUGUGGCACUCAAACUGUGGGGGCACUUU	308
	CUGCUCUCGGUGAAAGUGCCGCCAUCUUUUGAGUGUUACCG	
	CUUGAGAAGACUCAACC	
miR-hes3	CGAGGAGCUCAUACUGGGAUACUCAAAAUGGGGGCGCUUUCC	309
	UUUUUGUCUGUUACUGGGAAGUGCUUCGAUUUUGGGGUGUCC	
	CUGUUUGAGUAGGCAUC	

^{*} Una secuencia subrayada dentro de una secuencia precursora corresponde a un transcrito de miR procesado maduro (véase Tabla 1b). Algunas secuencias precursoras tienen dos secuencias subrayadas que indican dos miR maduros diferentes que derivan del mismo precursor. Todas las secuencias son humanas.

Tabla 1b- Secuencias de microARN maduro humano.

Nombre de miARN	Secuencia de miARN Maduro (5' a	SEC ID Nº	microARN precursor correspondiente;
Maduro	3')		véase Tabla 1a
let-7a	ugagguaguagguuguauaguu	310	let-7a-1; let-7a-2; let-7a-3; let-7a-4
let-7b	ugagguaguagguugugguu	311	let-7b
let-7c	ugagguaguagguuguaugguu	312	let-7c
let-7d	agagguaguagguugcauagu	313	let-7d; let-7d-v1
let-7e	ugagguaggagguuguauagu	314	let-7e
let-7f	ugagguaguagauuguauaguu	315	let-7f-1; let-7f-2-1; let-7f-2-2
let-7g	ugagguaguaguuuguacagu	316	let-7g
let-7i	ugagguaguaguuugugcu	317	let-7i
miR-1	uggaauguaaagaaguaugua	318	miR-1b; miR-1b-1; miR-1b-2
miR-7	uggaagacuagugauuuuguu	319	miR-7-1; miR-7-1a; miR-7-2; miR-7-3
miR-9	ucuuugguuaucuagcuguauga	320	miR-9-1; miR-9-2; miR-9-3
miR-9*	uaaagcuagauaaccgaaagu	321	miR-9-1; miR-9-2; miR-9-3
miR-10a	uacccuguagauccgaauuugug	322	miR-10a
miR-10b	uacccuguagaaccgaauuugu	323	miR-10b
miR-15a	uagcagcacauaaugguuugug	324	miR-15a; miR-15a-2
miR-15b	uagcagcacaucaugguuuaca	325	miR-15b
miR-16	uagcagcacguaaauauuggcg	326	miR-16-1; miR-16-2; miR-16-13
miR-17-5p	caaagugcuuacagugcagguagu	327	miR-17
miR-17-3p	acugcagugaaggcacuugu	328	miR-17
miR-18	uaaggugcaucuagugcagaua	329	miR-18; miR-18-13
miR-19a	ugugcaaaucuaugcaaaacuga	330	miR-19a; miR-19a-13
miR-19b	ugugcaaauccaugcaaaacuga	331	miR-19b-1; miR-19b-2
miR-20	uaaagugcuuauagugcaggua	332	miR-20 (miR-20a)
miR-21	uagcuuaucagacugauguuga	333	miR-21; miR-21-17
miR-22	aagcugccaguugaagaacugu	334	miR-22
miR-23a	aucacauugccagggauuucc	335	miR-23a
miR-23b	aucacauugccagggauuaccac	336	miR-23b
miR-24	uggcucaguucagcaggaacag	337	miR-24-1; miR-24-2; miR-24-19; miR-
			24-9
miR-25	cauugcacuugucucggucuga	338	miR-25
miR-26a	uucaaguaauccaggauaggcu	339	miR-26a; miR-26a-1; miR-26a-2
miR-26b	uucaaguaauucaggauaggu	340	miR-26b
miR-27a	uucacaguggcuaaguuccgcc	341	miR-27a
miR-27b	uucacaguggcuaaguucug	342	miR-27b-1; miR-27b-2

miR-28	aaddadciicacadiiciiaiiiidad	343	miR-28
miR-29a	aaggagcucacagucuauugag	344	miR-29a-2; miR-29a
miR-29b	cuagcaccaucugaaaucgguu	345	miR-29b-1; miR-29b-2
	uagcaccauuugaaaucagu	346	· · · · · · · · · · · · · · · · · · ·
miR-29c	uagcaccauuugaaaucgguua		miR-29c
miR-30a-5p	uguaaacauccucgacuggaagc	347	miR-30a
miR-30a-3p	cuuucagucggauguuugcagc	348	miR-30a
miR-30b	uguaaacauccuacacucagc	349	miR-30b-1; miR-30b-2
miR-30c	uguaaacauccuacacucucagc	350	miR-30c
miR-30d	uguaaacauccccgacuggaag	351	miR-30d
miR-30e	uguaaacauccuugacugga	352	miR-30e
miR-31	ggcaagaugcuggcauagcug	353	miR-31
miR-32	uauugcacauuacuaaguugc	354	miR-32
miR-33	gugcauuguaguugcauug	355	miR-33; miR-33b
miR-34a	uggcagugucuuagcugguugu	356	miR-34a
miR-34b	aggcagugucauuagcugauug	357	miR-34b
miR-34c	aggcaguguaguuagcugauug	358	miR-34c
miR-92	uauugcacuugucccggccugu	359	miR-92-2; miR-92-1
miR-93	aaagugcuguucgugcagguag	360	miR-93-1; miR-93-2
miR-95	uucaacggguauuuauugagca	361	miR-95
miR-96	uuuggcacuagcacauuuuugc	362	miR-96
miR-98	ugagguaguaaguuguauuguu	363	miR-98
miR-99a	aacccguagauccgaucuugug	364	miR-99a
miR-99b		365	miR-99b
	cacccguagaaccgaccuugcg		
miR-100	uacaguacugugauaacugaag	366	miR-100
miR-101	uacaguacugugauaacugaag	367	miR-101-1; miR-101-2
miR-103	agcagcauuguacagggcuauga	368	miR-103-1
miR-105	ucaaaugcucagacuccugu	369	miR-105
miR-106-a	aaaagugcuuacagugcagguagc	370	miR-106-a
miR-106-b	uaaagugcugacagugcagau	371	miR-106-b
miR-107	agcagcauuguacagggcuauca	372	miR-107
miR-122a	uggagugugacaaugguguuugu	373	miR-122a-1; miR-122a-2
miR-124a	uuaaggcacgcggugaaugcca	374	miR-124a-1; miR-124a-2; miR-124a-3
miR-125a	ucccugagacccuuuaaccugug	375	miR-125a-1; miR-125a-2
miR-125b	ucccugagacccuaacuuguga	376	miR-125b-1; miR-125b-2
miR-126*	cauuauuacuuuugguacgcg	377	miR-126-1; miR-126-2
miR-126	ucguaccgugaguaauaaugc	378	miR-126-1; miR-126-2
miR-127	ucggauccgucugagcuuggcu	379	miR-127-1; miR-127-2
miR-128a	ucacagugaaccggucucuuuu	380	miR-128; miR-128a
miR-128b	ucacagugaaccggucucuuuc	381	miR-128b
miR-129	cuuuuugcggucugggcuugc	382	miR-129-1; miR-129-2
miR-130a	cagugcaauguuaaaagggc	383	miR-130a
miR-130b	cagugcaaugaugaaagggcau	384	miR-130b
miR-132	uaacagucuacagccauggucg	385	miR-132-1
miR-133a	uugguccccuucaaccagcugu	386	miR-133a-1; miR-133a-2
			miR-133b
miR-133b	uugguccccuucaaccagcua	387	miR-1330 miR-134-1; miR-134-2
miR-134	ugugacugguugaccagaggg	388	,
miR-135a	uauggcuuuuuauuccuauguga	389	miR-135a; miR-135a-2 (miR-135-2)
miR-135b	uauggcuuuucauuccuaugug	390	miR-135b
miR-136	acuccauuuguuuugaugaugga	391	miR-136-1; miR-136-2
miR-137	uauugcuuaagaauacgcguag	392	miR-137
miR-138	agcugguguugugaauc	393	miR-138-1; miR-138-2
miR-139	ucuacagugcacgugucu	394	miR-139
miR-140	agugguuuuacccuaugguag	395	miR-140; miR-140as; miR-140s
miR-141	aacacugucugguaaagaugg	396	miR-141-1; miR-141-2
miR-142-3p	uguaguguuuccuacuuuaugga	397	miR-142
miR-142-5p	cauaaaguagaaagcacuac	398	miR-142
miR-143	ugagaugaagcacuguagcuca	399	miR-143-1
miR-144	uacaguauagaugauguacuag	400	miR-144-1; miR-144-2
miR-145	guccaguuuucccaggaaucccuu	401	miR-145-1; miR-145-2
miR-146	ugagaacugaauuccauggguu	402	miR-146-1; miR-146-2
miR-147	guguguggaaaugcuucugc	403	miR-147
	134343434444490440490	.00	1

miR-148a	ucagugcacuacagaacuuugu	404	miR-148a (miR-148)
miR-148b	ucagugcaucacagaacuuugu	405	miR-148b
miR-149	ucuggcuccgugucuucacucc	406	miR-149
miR-150	ucucccaacccuuguaccagug	407	miR-150-1; miR-150-2
miR-151	acuagacugaagcuccuugagg	408	miR-151
miR-152	ucagugcaugacagaacuugg	409	miR-152-1; miR-152-2
miR-153	uugcauagucacaaaaguga	410	miR-153-1-1; miR-153-1-2; miR-153-2-
111111100	uugeaaagueaeaaaaguga	1410	1; miR-153-2-2
miR-154	uagguuauccguguugccuucg	411	miR-154-1; miR-154-2
miR-154*	aaucauacacgguugaccuauu	412	miR-154-1; miR-154-2
miR-155	uuaaugcuaaucgugauagggg	413	miR-155
miR-181a	aacauucaacgcugucggugagu	414	miR-181a
miR-181b	aacauucauugcugucgguggguu	415	miR-181b-1; miR-181b-2
miR-181c	aacauucaaccugucggugagu	416	miR-181c
miR-182	uuuggcaaugguagaacucaca	417	miR-182; miR-182as
miR-182*	ugguucuagacuugccaacua	418	miR-182; miR-182as
miR-183	uauggcacugguagaauucacug	419	miR-183
miR-184	uggacggagaacugauaagggu	420	miR-184-1; miR-184-2
miR-185	uggagagaaaggcaguuc	421	miR-185-1; miR-185-2
miR-186	caaagaauucuccuuuugggcuu	422	miR-186-1; miR-186-2
miR-187	ucgugucuuguguugcagccg	423	miR-187
miR-188	caucccuugcaugguggagggu	424	miR-188
miR-189	gugccuacugagcugauaucagu	425	miR-189-1; miR-189-2
miR-190	ugauauguuugauauauuaggu	426	miR-190-1; miR-190-2
miR-191	caacggaaucccaaaagcagcu	427	miR-191-1; miR-191-2
miR-192	cugaccuaugaauugacagcc	428	miR-192
miR-193	aacuggccuacaaagucccag	429	miR-193-1; miR-193-2
miR-194	uguaacagcaacuccaugugga	430	miR-194-1; miR-194-2
miR-195	uagcagcacagaaauauuggc	431	miR-195-1; miR-195-2
miR-196a	uagguaguuucauguuguugg	432	miR-196a; miR-196a-2 (miR196-2)
miR-196b	uagguaguuuccuguugg	433	miR-196b
miR-197	uucaccaccuucuccacccagc	434	miR-197
miR-198	gguccagaggggagauagg	435	miR-198
miR-199a	cccaguguucagacuaccuguuc	436	miR-199a-1; miR-199a-2
miR-199a*	uacaguagucugcacauugguu	437	miR-199a-1; miR-199a-2; miR-199s; miR-199b
miR-199b	cccaguguuuagacuaucuguuc	438	miR-199b
miR-200a	uaacacugucugguaacgaugu	439	miR-200a
miR-200b	cucuaauacugccugguaaugaug	440	miR-200b
miR-200c	aauacugccggguaaugaugga	441	miR-200c
miR-202	agagguauagggcaugggaaga	442	miR-202
miR-203	gugaaauguuuaggaccacuag	443	miR-203
miR-204	uucccuuugucauccuaugccu	444	miR-204
miR-205	uccuucauuccaccggagucug	445	miR-205
miR-206	uggaauguaaggaagugugugg	446	miR-206-1; miR-206-2
miR-208	auaagacgagcaaaaagcuugu	447	miR-208
miR-210	cugugcgugugacagcggcug	448	miR-210
miR-211	uucccuuugucauccuucgccu	449	miR-211
miR-212	uaacagucuccagucacggcc	450	miR-212
miR-213	accaucgaccguugauuguacc	451	miR-213
miR-214	acagcaggcacagacaggcag	452	miR-214
miR-215	augaccuaugaauugacagac	453	miR-215
miR-216	uaaucucagcuggcaacugug	454	miR-216
miR-217	uacugcaucaggaacugauuggau	455	miR-217
miR-218	uugugcuugaucuaaccaugu	456	miR-218-1; miR-278-2
miR-219	ugauuguccaaacgcaauucu	457	miR-219; miR-219-1; miR-219-2
miR-220		458	miR-220
111IM-22U	ccacaccguaucugacacuuu	730	111111-220
miR-221	ccacaccguaucugacacuuu agcuacauugucugcuggguuuc	459	miR-221
	<u> </u>		*
miR-221	agcuacauugucugcuggguuuc	459	miR-221

miR-296	agggccccccucaauccugu	463	miR-296
miR-299	ugguuuaccgucccacauacau	464	miR-299
miR-301	cagugcaauaguauugucaaagc	465	miR-301
miR-302a	uaagugcuuccauguuuugguga	466	miR-302a
miR-302b*	acuuuaacauggaagugcuuucu	467	miR-302b
miR-302b	uaagugcuuccauguuuuaguag	468	miR-302b
miR-302c*	uuuaacauggggguaccugcug	469	miR-302c
miR-302c	uaagugcuuccauguuucagugg	470	miR-302c
miR-302d	uaagugcuuccauguuugagugu	471	miR-302d
miR-320	aaaagcuggguugagagggcgaa	472	miR-320
miR-321	uaagccagggauuguggguuc	473	miR-321
miR-323	gcacauuacacggucgaccucu	474	miR-323
miR-324-5p	cgcauccccuagggcauuggugu	475	miR-324
miR-324-3p	ccacugccccaggugcugcugg	476	miR-324
miR-325	ccuaguagguguccaguaagu	477	miR-325
miR-326	ccucugggcccuuccuccag	478	miR-326
miR-328	cuggcccucucugcccuuccgu	479	miR-328
miR-330	gcaaagcacacggccugcagaga	480	miR-330
miR-331	gccccugggccuauccuagaa	481	miR-331
miR-335	ucaagagcaauaacgaaaaaugu	482	miR-335
miR-337	uccagcuccuauaugaugccuuu	483	miR-337
miR-338	uccagcaucagugauuuuguuga	484	miR-338
miR-339	ucccuguccuccaggagcuca	485	miR-339
miR-340	uccgucucaguuacuuuauagcc	486	miR-340
miR-342	ucucacacagaaaucgcacccguc	487	miR-342
miR-345	ugcugacuccuaguccagggc	488	miR-345
miR-346	ugucugcccgcaugccugccucu	489	miR-346
miR-367	aauugcacuuuagcaaugguga	490	miR-367
miR-368	acauagaggaaauuccacguuu	491	miR-368
miR-369	aauaauacaugguugaucuuu	492	miR-369
miR-370	gccugcugggguggaaccugg	493	miR-370
miR-371	gugccgccaucuuuugagugu	494	miR-371
miR-372	aaagugcugcgacauuugagcgu	495	miR-372
miR-373*	acucaaaaugggggcgcuuucc	496	miR-373
miR-373	gaagugcuucgauuuuggggugu	497	miR-373
miR-374	uuauaauacaaccugauaagug	498	miR-374

La presente invención abarca métodos para diagnosticar si un sujeto tiene un cáncer sólido, que comprenden medir el nivel de al menos un primer producto génico de miR-24-2 en una muestra de ensayo del sujeto y comparar el nivel del producto génico de miR en la muestra de ensayo con el nivel del producto génico de miR correspondiente en una muestra de control. Como se usa en la presente memoria un "sujeto" puede ser cualquier mamífero que tenga, o se sospeche que tiene, un cáncer sólido. En una realización preferida, el sujeto es un ser humano que tiene, o se sospecha que tiene, un cáncer sólido.

También se desvelan en la presente memoria métodos en los que el al menos un producto génico de miR medido en 10 la muestra de ensavo se selecciona del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos. También se desvelan en la presente memoria métodos en los que el producto génico de miR es miR-21, miR-191 o miR-17-5p. También se desvelan en la presente memoria métodos en los que el producto génico de miR no es miR-15a o miR-16-1. 15 También se desvelan en la presente memoria métodos en los que el producto génico de miR no es miR 159-1 o miR-192. También se desvelan en la presente memoria métodos en los que el producto génico de miR no es miR-186, miR-101-1, miR-194, miR-215, miR-106b, miR-25, miR-93, miR-29b, miR-29a, miR-96, miR-182s, miR-182as, miR-183, miR-129-1, let-7a-1, let-7d, let-7f-1, miR-23b, miR-24-1, miR-27b, miR-32, miR-159-1, miR-192, miR-125b-1, let-7a-2, miR-100, miR-196-2, miR-148b, miR-190, miR-21, miR-301, miR-142s, miR-142as, miR-105-1 o miR-20 175. También se desvelan en la presente memoria métodos en los que el producto génico de miR no es miR-21, miR-301, miR-142as, miR-142s, miR-194, miR-215 o miR-32. También se desvelan en la presente memoria métodos en los que el producto génico de miR no es miR-148, miR-10a, miR-196-1, miR-152, miR-196-2, miR-148b, miR-10b, miR-129-1, miR-153-2, miR-202, miR-139, let-7a, let-7f o let-7d. También se desvelan en la presente memoria métodos en los que el producto génico de miR no es miR-15a, miR-16-1, miR-182, miR-181, miR-30, miR-15a, miR-15a, miR-16-1, miR-182, miR-181, miR-30, miR-15a, miR-16-1, miR-182, miR-181, miR-1 25 16-1, miR-15b, miR-16-2, miR-195, miR-34, miR-153, miR-21, miR-217, miR-205, miR-204, miR-211, miR-143, miR-96, miR-103, miR-107, miR-129, miR-9, miR-137, miR-217, miR-186.

Los cánceres sólidos pueden ser cualquier cáncer que surja de órganos y tejidos sólidos. Dichos cánceres se asocian normalmente con la formación y/o presencia de masas tumorales y pueden ser carcinomas, sarcomas y linfomas. Los ejemplos específicos de cánceres sólidos que pueden diagnosticarse por los métodos desvelados en la presente memoria incluyen, pero sin limitación, cáncer de colon, cáncer rectal, cáncer de estómago (gástrico), cáncer pancreático, cáncer de mama, cáncer de pulmón, cáncer de próstata, cáncer bronquial, cáncer testicular, cáncer ovárico, cáncer uterino, cáncer peniano, melanoma y otros cánceres de la piel, cáncer de hígado, cáncer esofágico, cánceres de la cavidad oral y faringe (por ejemplo, cáncer de lengua, cáncer de boca), cánceres del sistema digestivo (por ejemplo, cáncer intestinal, cáncer de la vesícula biliar), cánceres de huesos y articulaciones, cánceres del sistema endocrino (por ejemplo, cáncer tiroideo), cáncer de cerebro, cáncer de ojo, cánceres del sistema urinario (por ejemplo, cáncer de riñón, cáncer de la vejiga urinaria), enfermedad de Hodgkin y linfoma no de Hodgkin. Los cánceres sólidos pueden no ser uno o más de cáncer de mama, cáncer de pulmón, cáncer de próstata, cáncer pancreático o cáncer gastrointestinal.

También se desvelan en la presente memoria métodos en los que el cáncer sólido es cáncer de mama o cáncer de pulmón y el al menos un producto génico de miR medido en la muestra de ensayo se selecciona del grupo que consiste en miR-210, miR=213 y una combinación de los mismos.

10

20

También se desvelan en la presente memoria métodos en los que el cáncer sólido es cáncer de colon, cáncer de estómago, cáncer de próstata o cáncer de páncreas y el al menos un producto génico de miR medido en la muestra de ensayo es miR-218-2.

También se desvelan en la presente memoria métodos en los que el cáncer sólido es cáncer de mama y el al menos un producto génico de miR medido en la muestra de ensayo se selecciona del grupo que consiste en miR-125b-1, miR-125b-2, miR-145, miR-21 y combinaciones de los mismos. Como alternativa, el cáncer sólido es cáncer de 25 mama y el al menos un producto génico de miR en la muestra de ensayo se puede seleccionar del grupo que consiste en miR-21, miR-29b-2, miR-146, miR-125b-2, miR-125b-1, miR-10b, miR-145, miR-181a, miR-140, miR-213, miR-29a prec, miR-181b-1, miR-199b, miR-29b-1, miR-130a, miR-155, let-7a-2, miR-205, miR-29c, miR-224, miR-100, miR-31, miR-30c, miR-17-5p, miR-210, miR-122a, miR-16-2 y combinaciones de los mismos. Como alternativa, el cáncer sólido puede ser cáncer de mama y el al menos un producto génico de miR puede no ser miR-30 15a o miR-16-1. Como alternativa, el cáncer sólido puede ser cáncer de mama y el al menos un producto génico de miR puede no ser miR-145, miR-21, miR-155, miR-10b, miR-125b-1, miR-125b-2, let7a-2, let7a-3, let-7d, miR-122a, miR-191, miR-206, miR-210, let-7i, miR-009-1 (miR131-1), miR-34 (miR-170), miR-102 (miR-29b), miR-123 (miR-126), miR-140-as, miR-125a, miR-194, miR-204, miR-213, let-7f-2, miR-101, miR-128b, miR-136, miR-143, miR-149, miR-191, miR-196-1, miR-196-2, miR-202, miR-103-1, o miR-30c. Como alternativa, el cáncer sólido puede ser cáncer de mama y el producto génico de miR puede no ser miR-21, miR-125b-1, let-7a-2, let-7i, miR-100, let-7g, 35 miR-31, miR-32a-1, miR-33b, miR-34a-2, miR-101-1, miR-135-1, miR-142as, miR-142s, miR-144, miR-301, miR-29c, miR-30c, miR-106a, o miR-29b-1. Como alternativa, el cáncer sólido puede ser cáncer de mama y el producto génico de miR puede no ser miR-159-1 o miR-192. Como alternativa, el cáncer sólido puede ser cáncer de mama y el producto génico de miR puede no ser miR-186, miR-101-1, miR-194, miR-215, miR-106b, miR-25, miR-93, miR-29b, miR-29a, miR-96, miR-182s, miR-182as, miR-183, miR-129-1, let-7a-1, let-7d, let-7f-1, miR-23b, miR-24-1, miR-24 27b, miR-32, miR-159-1, miR-192, miR-125b-1, let-7a-2, miR-100, miR-196-2, miR-148b, miR-190, miR-21, miR-301, miR-142s, miR-142as, miR-105-1 o miR-175. Como alternativa, el cáncer sólido puede ser cáncer de mama y el producto génico de miR puede no ser miR-21, miR-301, miR-142as, miR-142as, miR-194, miR-215 o miR-32. Como alternativa, el cáncer sólido puede ser cáncer de mama y el producto génico de miR puede no ser miR-148, miR-45 10a, miR-196-1, miR-152, miR-196-2, miR-148b, miR-10b, miR-129-1, miR-153-2, miR-202, miR-139, let-7a, let-7f o let-7d. Como alternativa, el cáncer sólido puede ser cáncer de mama y el producto génico de miR puede no ser miR-181b, miR-181c, miR-181d, miR-30, miR-15b, miR-16-2, miR-153-1, miR-217, miR-205, miR-204, miR-103, miR-107, miR-129-2, miR-9 o miR-137.

En una realización de la presente invención, el miR-24-2 y al menos un producto génico de miR adicional seleccionado del grupo que consiste en miR-24-1, miR-29b-2, miR-20a, miR-32, miR-10a, miR-203, miR-106a, miR-17-5p, miR-30c, miR-223, miR-126*, miR-128b, miR-21, miR-99b prec, miR-155, miR-213, miR-150, miR-107, miR-191, miR-9-3 y combinaciones de los mismos se usan para diagnosticar cáncer de colon.

También se desvelan métodos en los que el cáncer sólido puede ser cáncer de colon y el producto génico de miR puede no ser miR 159-1 o miR-192. Como alternativa, el cáncer sólido puede ser cáncer de colon y el producto génico de miR puede no ser miR-186, miR-101-1, miR-194, miR-215, miR-106b, miR-25, miR-93, miR-29b, miR-29a, miR-96, miR-182s, miR-182as, miR-183, miR-129-1, let-7a-1, let-7d, let-7f-1, miR-23b, miR-24-1, miR-27b, miR-32, miR-159-1, miR-192, miR-125b-1, let-7a-2, miR-100, miR-196-2, miR-148b, miR-190, miR-21, miR-301, miR-142s, miR-142as, miR-194, miR-215 o miR-32. Como alternativa, el cáncer sólido puede ser cáncer de colon y el producto génico de miR puede no ser miR-148, miR-10a, miR-196-1, miR-152, miR-196-2, miR-148b, miR-10b, miR-129-1, miR-153-2, miR-202, miR-139, let-7a, let-7f o let-7d. Como alternativa, el cáncer sólido puede ser cáncer de colon y el producto génico de miR puede no ser miR-181b, miR-181d, miR-30, miR-15b, miR-16-2, miR-153-1, miR-217, miR-205, miR-204, miR-103, miR-107, miR-129-2, miR-9 o miR-137.

También se desvelan métodos en los que el cáncer sólido es cáncer de pulmón y el producto génico de miR en la muestra de ensayo se selecciona del grupo que consiste en miR-21, miR-205, miR-200b, miR-9-1, miR-210, miR-148, miR-141, miR-132, miR-215, miR-128b, let-7g, miR-16-2, miR-129-1/2 prec, miR-126*, miR-142-as, miR-30d, miR-30a-5p, miR-7-2, miR-199a-1, miR-127, miR-34a prec, miR-34a, miR-136, miR-202, miR-196-2; miR-199a-2, let-7a-2, miR-149, miR-149, miR-17-5p, miR-196-1 prec, miR-10a, miR-99b prec, miR-196-1, miR-199b, miR-191, miR-195, miR-155 y combinaciones de los mismos.

10

15

20

25

30

35

También se desvelan métodos en los que el cáncer sólido puede ser cáncer de pulmón y el al menos un producto génico de miR puede no ser miR-15a o miR-16-1. Como alternativa, el cáncer sólido puede ser cáncer de pulmón y el al menos un producto génico de miR puede no ser miR-21, miR-191, miR-126*, miR-210, miR-155, miR-143, miR-205, miR-126, miR-30a-5p, miR-140, miR-214, miR-218-2, miR-145, miR-106a, miR-192, miR-203, miR-150, miR-220, miR-192, miR-224, miR-24-2, miR-212, miR-9, miR-17, miR-124a-1, miR-95, miR-198, miR-216, miR-219-1, miR-197, miR-125a, miR-26a-1, miR-146, miR-199b, let7a-2, miR-27b, miR-32, miR-29b-2, miR-33, miR-181c, miR-101-1. miR-124a-3, miR-125b-1 o let7f-1. Como alternativa, el cáncer sólido puede ser cáncer de pulmón y el al menos un producto génico de miR puede no ser miR-21, miR-182, miR-181, miR-30, miR-15a, miR-143, miR-205, miR-96, miR-103, miR-107, miR-129, miR-137, miR-186, miR-15b, miR-16-2, miR-195, miR-34, miR-153, miR-217, miR-204, miR-211, miR-9, miR-217, let-7a-2 o miR-32. Como alternativa, el cáncer sólido puede ser cáncer de pulmón y el producto génico de miR puede no ser let-7c, let-7g, miR-7-3, miR-210, miR-31, miR-34a-1, miR-a-2, miR-99a, miR-100, miR-125b-2, miR-132, miR-135-1, miR-195, miR-34, miR-123, miR-203. Como alternativa, el cáncer sólido puede ser cáncer de pulmón y el producto génico de miR puede no ser miR 159-1 o miR-192. Como alternativa, el cáncer sólido puede ser cáncer de pulmón y el producto génico de miR puede no ser miR-186, miR-101-1, miR-194, miR-215, miR-106b, miR-25, miR-93, miR-29b, miR-29a, miR-96, miR-182s, miR-182as, miR-183, miR-129-1, let-7a-1, let-7d, let-7f-1, miR-23b, miR-24-1, miR-27b, miR-32, miR-159-1, miR-192, miR-125b-1, let-7a-2, miR-100, miR-196-2, miR-148b, miR-190, miR-21, miR-301, miR-142s, miR-142as, miR-105-1 o miR-175. Como alternativa, el cáncer sólido puede ser cáncer de pulmón y el producto génico de miR puede no ser miR-21, miR-301, miR-142as, miR-142s, miR-194, miR-215 o miR-32. Como alternativa, el cáncer sólido puede ser cáncer de pulmón y el producto génico de miR puede no ser miR-148, miR-10a, miR-196-1, miR-152, miR-196-2, miR-148b, miR-10b, miR-129-1, miR-153-2, miR-202, miR-139, let-7a, let-7f o let-7d. Como alternativa, el cáncer sólido puede ser cáncer de pulmón y el producto génico de miR puede no ser miR-181b, miR-181c, miR-181d, miR-18b, miR-16-2, miR-153-1, miR-217, miR-205, miR-204, miR-103, miR-107, miR-129-2, miR-9 o miR-137.

También se desvelan métodos en los que el cáncer sólido puede ser cáncer pancreático y el al menos un producto génico de miR medido en la muestra de ensayo se puede seleccionar del grupo que consiste en miR-103-1, miR-103-2, miR-155, miR-204 y combinaciones de los mismos.

En otra realización más de la presente invención, el miR-24-2 y al menos un producto génico de miR adicional seleccionado del grupo que consiste en miR-103-2, miR-103-1, miR-107, miR-100, miR-125b-2, miR-125b-1, miR-24-1, miR-191, miR-23a, miR-26a-1, miR-125a, miR-130a, miR-26b, miR-145, miR-221, miR-126*, miR-16-2, miR-146, miR-214, miR-99b, miR-128b, miR-155, miR-29b-2, miR-29a, miR-25, miR-16-1, miR-99a, miR-224, miR-30d, miR-92-2, miR-199a-1, miR-223, miR-29c, miR-30b, miR-129-1/2, miR-197, miR-17-5p, miR-30c, miR-7-1, miR-93-1, miR-140, miR-30a-5p, miR-132, miR-181b-1, miR-152 prec, miR-23b, miR-20a, miR-222, miR-27a, miR-92-1, miR-21, miR-129-1/2 prec, miR-150, miR-32, miR-106a, miR-29b-1 y combinaciones de los mismos se usan para diagnosticar cáncer pancreático.

45 También se desvelan métodos en los que el cáncer sólido puede ser cáncer pancreático y el producto génico de miR puede no ser miR-15a o miR-16-1. Como alternativa, el cáncer sólido puede ser cáncer pancreático y el producto génico de miR puede no ser miR 159-1 o miR-192. Como alternativa, el cáncer sólido puede ser cáncer pancreático y el producto génico de miR puede no ser miR-186, miR-101-1, miR-194, miR-215, miR-106b, miR-25, miR-93, miR-29b, miR-29a, miR-96, miR-182s, miR-182as, miR-183, miR-129-1, let-7a-1, let-7d, let-7f-1, miR-23b, miR-24-1, miR-50 27b, miR-32, miR-159-1, miR-192, miR-125b-1, let-7a-2, miR-100, miR-196-2, miR-148b, miR-190, miR-21, miR-301, miR-142s, miR-142as, miR-105-1 o miR-175. Como alternativa, el cáncer sólido puede ser cáncer pancreático y el producto génico de miR puede no ser miR-21, miR-301, miR-142as, miR-142as, miR-194, miR-215 o miR-32. Como alternativa, el cáncer sólido puede ser cáncer pancreático y el producto génico de miR puede no ser miR-148, miR-10a, miR-196-1, miR-152, miR-196-2, miR-148b, miR-10b, miR-129-1, miR-153-2, miR-202, miR-139, let-7a, let-7f o 55 let-7d. Como alternativa, el cáncer sólido puede ser cáncer pancreático y el producto génico de miR puede no ser miR-181b, miR-181c, miR-181d, miR-30, miR-15b, miR-16-2, miR-153-1, miR-217, miR-205, miR-204, miR-103, miR-107, miR-129-2, miR-9 o miR-137.

También se desvelan métodos en los que el cáncer sólido es cáncer de próstata y el producto génico de miR en la muestra de ensayo se selecciona del grupo que consiste en let-7d, miR-128a prec, miR-195, miR-203, let-7a-2 prec, miR-34a, miR-20a, miR-218-2, miR-29a, miR-25, miR-95, miR-197, miR-135-2, miR-187, miR-196-1, miR-148, miR-191, miR-21, let-7i, miR-198, miR-199a-2, miR-30c, miR-17-5p, miR-92-2, miR-146, miR-181b-1 prec, miR-32, miR-206, miR-184 prec, miR-29a prec, miR-29b-2, miR-149, miR-181b-1, miR-196-1 prec, miR-93-1, miR-223, miR-16-1, miR-101-1, miR-124a-1, miR-26a-1, miR-214, miR-27a, miR-24-1, miR-106a, miR-199a-1 y combinaciones de los mismos.

También se desvela un método en el que el cáncer sólido puede ser cáncer de próstata y el producto génico de miR puede no ser miR-15a o miR-16-1. Como alternativa, el cáncer sólido puede ser cáncer de próstata y el producto génico de miR puede no ser miR 159-1 o miR-192. Como alternativa, el cáncer sólido puede ser cáncer de próstata y el producto génico de miR puede no ser miR-186, miR-101-1, miR-194, miR-215, miR-106b, miR-25, miR-93, miR-29b, miR-29a, miR-96, miR-182s, miR-182as, miR-183, miR-129-1, let-7a-1, let-7d, let-7f-1, miR-23b, miR-24-1, miR-27b, miR-32, miR-159-1, miR-192, miR-125b-1, let-7a-2, miR-100, miR-196-2, miR-148b, miR-190, miR-21, miR-301, miR=142s, miR-142as, miR-142as, miR-105-1 o miR-175. Como alternativa, el cáncer sólido puede ser cáncer de próstata y el producto génico de miR puede no ser miR-21, miR-301, miR-142as, miR-142s, miR-194, miR-215 o miR-32. Como alternativa, el cáncer sólido puede ser cáncer de próstata y el producto génico de miR puede no ser miR-148, miR-10a, miR-196-1, miR-152, miR-196-2, miR-148b, miR-10b, miR-129-1, miR-153-2, miR-202, miR-139, let-7a, let-7f o let-7d. Como alternativa, el cáncer sólido puede ser cáncer de próstata y el producto génico de miR puede no ser miR-181b, miR-181c, miR-181d, miR-30, miR-15b, miR-16-2, miR-153-1, miR-217, miR-205, miR-204, miR-103, miR-107, miR-129-2, miR-9 o miR-137.

En una realización adicional de la presente invención, el miR-24-2 y al menos un producto génico de miR adicional seleccionado del grupo que consiste en miR-223, miR-21, miR-218-2, miR-103-2, miR-92-2, miR-92-3, miR-136, miR-191, miR-221, miR-125b-2, miR-103-1, miR-214, miR-222, miR-212 prec, miR-125b-1, miR-100, miR-107, miR-92-1, miR-96, miR-192, miR-23a, miR-215, miR-7-2, miR-138-2, miR-24-1, miR-99b, miR-33b y combinaciones de los mismos se usa para diagnosticar cáncer de estómago.

10

20

25

30

50

55

60

65

También se desvela un método en el que el cáncer sólido puede ser cáncer de estómago y el producto génico de miR puede no ser miR-15a o miR-16-1. Como alternativa, el cáncer sólido puede ser cáncer de estómago y el producto génico de miR puede no ser miR 159-1 o miR-192. Como alternativa, el cáncer sólido puede ser cáncer de estómago y el producto génico de miR puede no ser miR-186, miR-101-1, miR-194, miR-215, miR-106b, miR-25, miR-93, miR-29b, miR-29a, miR-96, miR-182s, miR-182as, miR-183, miR-129-1, let-7a-1, let-7d, let-7f-1, miR-23b, miR-24-1, miR-27b, miR-32, miR-159-1, miR-192, miR-125b-1, let-7a-2, miR-100, miR-196-2, miR-148b, miR-190, miR-21, miR-301, miR-142s, miR-142as, miR-105-1 o miR-175. Como alternativa, el cáncer sólido puede ser cáncer de estómago y el producto génico de miR puede no ser miR-21, miR-301, miR-142as, miR-142s, miR-194, miR-215, o miR-32. Como alternativa, el cáncer sólido puede ser cáncer de estómago y el producto génico de miR puede no ser miR-148, miR-10a, miR-196-1, miR-152, miR-196-2, miR-148b, miR-10b, miR-129-1, miR-153-2, miR-202, miR-139, let-7a, let-7f o let-7d. Como alternativa, el cáncer sólido puede ser cáncer de estómago y el producto génico de miR puede no ser miR-181b, miR-181c, miR-181d, miR-30, miR-15b, miR-16-2, miR-153-1, miR-217, miR-205, miR-204, miR-103, miR-107, miR-129-2, miR-9 o miR-137.

35 El nivel de al menos un producto génico de miR puede medirse en una muestra biológica (por ejemplo, células, tejidos) obtenida del sujeto. Por ejemplo, puede retirarse una muestra tisular (por ejemplo, de un tumor) de un sujeto que se sospecha que tiene un cáncer sólido por técnicas de biopsia convencionales. Como alternativa, puede retirarse una muestra sanguínea del sujeto, y pueden aislarse células sanguíneas (por ejemplo, glóbulos blancos) para extracción de ADN por técnicas convencionales. La muestra de sangre o tejido se obtiene preferentemente del 40 sujeto antes del inicio de la radioterapia, quimioterapia u otro tratamiento terapéutico. Puede obtenerse una muestra de tejido o sangre de control correspondiente de tejidos no afectos del sujeto, de un individuo humano normal o población de individuos normales, o de células cultivadas correspondientes a la mayoría de las células en la muestra del sujeto. La muestra de tejido o sangre de control se procesa después junto con la muestra del sujeto, de modo que los niveles de producto génico de miR producido a partir de un gen de miR dado en células de la muestra del 45 sujeto puede compararse con los niveles de producto génico de miR correspondientes de células de la muestra de control. Puede usarse también un patrón de expresión de miR de referencia para la muestra biológica como un control.

Una alteración (por ejemplo, un aumento o reducción) del nivel de un producto génico de miR en la muestra obtenida del sujeto, en relación con el nivel de un producto génico de miR correspondiente en una muestra de control, es indicativa de la presencia de un cáncer sólido en el sujeto. El nivel del al menos un producto génico de miR en la muestra de ensayo puede ser mayor que el nivel del producto génico de miR correspondiente en la muestra de control (es decir, la expresión del producto génico de miR está "regulada positivamente"). Como se usa en la presente memoria, la expresión de un producto génico de miR está "regulada positivamente" cuando la cantidad de producto génico de miR en una muestra celular o tisular de un sujeto es mayor que la cantidad del mismo producto génico en una muestra celular o tisular de control. El nivel del al menos un producto génico de miR en la muestra de ensayo puede ser menor que el nivel del producto génico de miR correspondiente en la muestra de control (es decir, la expresión del producto génico de miR está "regulada negativamente"). Como se usa en la presente memoria, la expresión de un gen de miR está "regulada negativamente" cuando la cantidad de producto génico de miR producida de ese gen en una muestra celular o tisular de un sujeto es menor que la cantidad producida del mismo gen en una muestra celular o tisular de control. La expresión génica de miR relativa en las muestras de control y normales puede determinarse con respecto a uno o más patrones de expresión de ARN. Los patrones pueden comprender, por ejemplo, un nivel de expresión génica de miR cero, el nivel de expresión génica de miR en una línea celular convencional, el nivel de expresión génica de miR en tejidos no afectados del sujeto, o el nivel medio de expresión génica de miR previamente obtenido para una población de controles humanos normales.

El nivel de un producto génico de miR en una muestra puede medirse usando cualquier técnica que sea adecuada para detectar los niveles de expresión de ARN en una muestra biológica. Se conocen bien por los expertos en la materia técnicas adecuadas (por ejemplo, análisis de transferencia de Northern, RT-PCR, hibridación *in situ*) para determinar los niveles de expresión de ARN en una muestra biológica (por ejemplo, células, tejidos). El nivel de al menos un producto génico de miR puede detectarse usando análisis de transferencia de Northern. Por ejemplo, puede purificarse ARN celular total de células por homogeneización en presencia de tampón de extracción de ácidos nucleicos, seguido de centrifugación. Los ácidos nucleicos se precipitan, y el ADN se retira por tratamiento con DNasa y precipitación. Las moléculas de ARN se separan después por electroforesis en gel en geles de agarosa de acuerdo con técnicas convencionales, y se transfieren a filtros de nitrocelulosa. Después se inmoviliza el ARN en los filtros por calentamiento. Se consigue detección y cuantificación de ARN específico usando sondas de ADN o ARN marcadas de forma apropiada complementarias del ARN en cuestión. Véase, por ejemplo, Molecular Cloning: A Laboratory Manual, J. Sambrook *et al.*, eds., 2ª edición, Cold Spring Harbor Laboratory Press, 1989, Capítulo 7.

10

25

30

35

60

Pueden producirse sondas adecuadas para hibridación de transferencia de Northern de un producto génico de miR dado a partir de las secuencias de ácido nucleico proporcionadas en la Tabla 1a y Tabla 1b e incluyen, pero sin limitación, sondas que tienen complementariedad de al menos aproximadamente 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 98 %, 99 % o completa con un producto génico de miR de interés. Se describen métodos para preparación de sondas de ADN y ARN marcadas, y las condiciones para hibridación de las mismas con secuencias de nucleótidos diana en Molecular Cloning: A Laboratory Manual, J. Sambrook *et al.*, eds., 2ª edición, Cold Spring Harbor Laboratory Press, 1989, Capítulos 10 y 11.

Por ejemplo, la sonda de ácido nucleico puede marcarse con, por ejemplo, un radionúclido, tal como ³H, ³²P, ³³P, ¹⁴C o ³⁵S; un metal pesado; un ligando capaz de actuar como un miembro de par de unión específico para un ligando marcado (por ejemplo, biotina, avidina o un anticuerpo); una molécula fluorescente; una molécula quimioluminiscente; una enzima o similares.

Las sondas pueden marcarse a alta actividad específica por el método de traslación de muesca de Rigby *et al.* (1977), J. Mol. Biol. 113: 237-251 o por el método de cebadores aleatorios de Fienberg *et al.* (1983), Anal. Biochem. 132: 6-13. Este último es el método elegido para sintetizar sondas marcadas con ³²P de alta actividad específica a partir de ADN monocatenario o de moldes de ARN. Por ejemplo, reemplazando nucleótidos preexistentes con nucleótidos altamente radiactivos de acuerdo con el método de traslación de muescas, es posible preparar sondas de ácido nucleico marcadas con ³²P con una actividad específica bastante mayor de 10⁸ cpm/microgramo. Después puede realizarse detección autorradiográfica de la hibridación exponiendo los filtros hibridados a película fotográfica. La exploración densitométrica de las películas fotográficas expuestas a los filtros hibridados proporciona una medición precisa de los niveles de transcrito génico de miR. Usando otro enfoque, los niveles de transcrito génico de miR pueden cuantificarse por sistemas de formación de imágenes computarizada, tales como el Phosphorimager Molecular Dynamics 400-B 2D disponible de Amersham Biosciences. Piscataway, NJ.

Cuando el marcaje con radionúclidos de sondas de ADN o ARN no es práctico, puede usarse el método de cebadores aleatorios para incorporar un análogo, por ejemplo, el análogo de dTTP 5-(N-(N-biotinil-épsilon-aminocaproil)-3-aminoalil)desoxiuridina trifosfato, en la molécula sonda. El oligonucleótido sonda biotinilado puede detectarse por reacción con proteínas de unión a biotina, tales como avidina, estreptavidina y anticuerpos (por ejemplo, anticuerpos antibiotina) acoplados a colorantes fluorescentes o enzimas que producen reacciones de color.

Además de Northern y otras técnicas de hibridación de ARN, la determinación de los niveles de transcritos de ARN puede conseguirse usando la técnica de hibridación *in situ*. Esta técnica requiere menos células que la técnica de transferencia de Northern, e implica depositar células completas en un cubreobjetos de microscopio y explorar el contenido de ácido nucleico de la célula con una solución que contenga sondas de ácido nucleico radiactivas o marcadas de otro modo (por ejemplo, ADNc o ARN). Esta técnica es particularmente adecuada para analizar muestras de biopsia tisular de sujetos. La práctica de la técnica de hibridación *in situ* se describe en más detalle en la Patente de Estados Unidos Nº 5.427.916. Pueden producirse sondas adecuadas para hibridación *in situ* de un producto génico de miR dado a partir de las secuencias de ácido nucleico proporcionadas en la Tabla 1a y Tabla 1b, e incluyen, pero sin limitación, sondas que tienen complementariedad de al menos aproximadamente 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 98 %, 99 % o completa con un producto génico de miR de interés, como se ha descrito anteriormente.

El número relativo de transcritos génicos de miR en células también puede determinarse por transcripción inversa de transcritos génicos de miR, seguido de amplificación de los transcritos de transcripción inversa por reacción en cadena de la polimerasa (RT-PCR). Los niveles de los transcritos génicos de miR pueden cuantificarse en comparación con un patrón interno, por ejemplo, el nivel de ARNm de un gen "constitutivo" presente en la misma muestra. Un gen "constitutivo" adecuado para su uso como un patrón interno incluye, por ejemplo, miosina y gliceraldehído-3-fosfato deshidrogenasa (G3PDH). Se conocen bien por los expertos en la materia métodos para realizar RT-PCR cuantitativa y semicuantitativa, y variaciones de la misma.

65 En algunos casos, puede ser deseable determinar simultáneamente el nivel de expresión de una pluralidad de productos génicos de miR diferentes en una muestra. En otros casos, puede ser deseable determinar el nivel de

expresión de los transcritos de todos los genes de miR conocidos correlacionados con cáncer. La evaluación de los niveles de expresión específicos de cáncer para cientos de genes o productos génicos de miR consume tiempo y requiere una gran cantidad de ARN total (por ejemplo, al menos 20 µg para cada transferencia de Northern) y técnicas autorradiográficas que requieren isótopos radiactivos.

5

10

Para superar estas limitaciones, puede construirse una oligobiblioteca, en formato de microplaca (es decir, una micromatriz), que contenga un conjunto de sondas oligonucleotídicas (por ejemplo, oligodesoxinucleótidos) que son específicas para un conjunto de genes de miR. Usando dicha micromatriz, puede determinarse el nivel de expresión de múltiples microARN en una muestra biológica por transcripción inversa de los ARN para generar un conjunto de oligodesoxinucleótidos diana, e hibridarlos para explorar los oligonucleótidos de la micromatriz para generar un perfil de hibridación, o expresión. El perfil de hibridación de la muestra de ensayo puede después compararse con el de una muestra de control para determinar qué microARN tienen un nivel de expresión alterado en células de cáncer sólido. Como se usa en la presente memoria, "oligonucleótido sonda" u "oligodesoxinucleótido sonda" se refiere a un oligonucleótido que es capaz de hibridar con un oligonucleótido diana. "Oligonucleótido diana" u "oligodesoxinucleótido diana" se refiere a una molécula para detectar (por ejemplo, mediante hibridación). Por "oligonucleótido sonda específico de miR" u "oligonucleótido sonda específico para un miR" se entiende un oligonucleótido sonda que tiene una secuencia seleccionada para hibridar con un producto génico de miR específico, o con un transcrito inverso del producto génico de miR específico.

20

Un "perfil de expresión" o "perfil de hibridación" de una muestra particular es esencialmente una identificación del estado de la muestra; aunque dos estados pueden tener cualquier gen particular expresado de forma similar, la evaluación de varios genes permite simultáneamente la generación de un perfil de expresión génica que es único para el estado de la célula. Es decir, el tejido normal puede distinguirse del tejido canceroso (por ejemplo, tumoral), y dentro del tejido canceroso, pueden determinarse diferentes estados de pronóstico (por ejemplo, buenas o malas perspectivas de supervivencia a largo plazo). Comparando los perfiles de expresión de tejido de cáncer sólido en diferentes estados, se obtiene información con respecto a qué genes son importantes (incluyendo regulación tanto positiva como negativa de los genes) en cada uno de estos estados. La identificación de secuencias que se expresan diferencialmente en tejido de cáncer sólido, así como la expresión diferencial que da como resultado diferentes resultados de pronóstico, permiten el uso de esta información de varias maneras. Por ejemplo, puede evaluarse un régimen de tratamiento particular (por ejemplo, para determinar si un fármaco quimioterapéutico actúa para mejorar el pronóstico a largo plazo en un paciente particular). De forma similar, el diagnóstico puede realizarse o confirmarse comparando muestras de pacientes con perfiles de expresión conocidos. Además, estos perfiles de expresión génica (o genes individuales) permiten la exploración de candidatos farmacológicos que suprimen el perfil de expresión de cáncer sólido o convierten un perfil de pronóstico malo en un perfil de pronóstico mejor.

35

30

En consecuencia, la invención proporciona métodos para diagnosticar si un sujeto tiene un cáncer sólido, que comprenden transcribir de forma inversa al menos ARN de miR-24-2 de una muestra de ensayo obtenida del sujeto para proporcionar al menos un oligodesoxinucleótido diana de miR-24-2, hibridar el oligodesoxinucleótido diana con una micromatriz que comprende oligonucleótidos sonda específico de miARN que incluyen al menos un oligonucleótido sonda específico de ARN de miR-24-2 para proporcionar un perfil de hibridación para la muestra de ensayo, y comparar el perfil de hibridación de la muestra de ensayo con un perfil de hibridación generado a partir de una muestra de control o patrón de referencia, en el que una alteración de la señal del primer ARN de miR-24-2 es indicativa de que el sujeto tiene un cáncer sólido. También se desvelan micromatrices que comprenden oligonucleótidos sonda específicos de miARN para una parte sustancial de todos los miARN humanos conocidos. La micromatriz puede comprender oligonucleótidos sonda específicos de miARN para uno o más miARN seleccionados del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos.

50

55

45

La micromatriz puede prepararse a partir de sondas oligonucleotídicas específicas de genes generadas de secuencias de miARN conocidas. La serie puede contener dos sondas oligonucleotídicas diferentes para cada miARN, una que contiene la secuencia activa, madura y la otra que es específica para el precursor del miARN. La serie también puede contener controles, tales como una o más secuencias de ratón que difieren de ortólogos humanos en solamente algunas bases, que pueden actuar como controles para las condiciones de rigurosidad de hibridación. También pueden imprimirse ARNt u otros ARN (por ejemplo, ARNr, ARNm) de ambas especies en la microplaca, proporcionando un control positivo interno, relativamente estable, para hibridación específica. También pueden incluirse en la microplaca uno o más controles apropiados para hibridación no específica. Para este fin, las secuencias se seleccionan basándose en la ausencia de cualquier homología con cualquier miARN conocido. La micromatriz puede fabricarse usando técnicas conocidas en este campo. Por ejemplo, los oligonucleótidos sonda

60 d

65

de una longitud apropiada, por ejemplo, 40 nucleótidos, se modifican con amina 5' en la posición C6 y se imprimen usando sistemas de micromatrices disponibles en el mercado, por ejemplo, el Microarrayer GeneMachine OmniGrid™ 100 y portaobjetos activados Amersham CodeLink™. El oligómero de ADNc marcado correspondiente a los ARN diana se prepara por transcripción inversa del ARN diana con cebador marcado. Después de la síntesis de primera cadena, los híbridos de ARN/ADN se desnaturalizan para degradar los moldes de ARN. Los ADNc diana marcados preparados de este modo se hibridan después con la microplaca de micromatriz en condiciones de hibridación, por ejemplo, SSPE 6X/formamida 30 % a 25 ºC durante 18 horas, seguido de lavado en TNT 0,75X (Tris

HCI/NaCI/Tween 20) a 37 °C durante 40 minutos. En las posiciones de la serie en las que el ADN sonda inmovilizado reconoce un ADNc diana complementario en la muestra, se produce hibridación. El ADNc diana marcado marca la posición exacta en la serie donde se produce unión, permitiendo la detección y cuantificación automática. El resultado consiste en una lista de acontecimientos de hibridación, que indican la abundancia relativa de secuencias de ADNc específicas, y por lo tanto la abundancia relativa de los miR complementarios correspondientes, en la muestra del paciente. El oligómero de ADNc marcado puede ser un ADNc marcado con biotina, preparado a partir de un cebador marcado con biotina. La micromatriz se procesa después por dirección directa de los transcritos que contienen biotina usando, por ejemplo, conjugado de estreptavidina-Alexa 647, y se explora utilizando métodos de exploración convencionales. Las intensidades de la imagen de cada punto en la serie son proporcionales a la abundancia del miR correspondiente en la muestra del paciente.

10

15

20

25

30

35

45

55

60

El uso de la serie tiene varias ventajas para la detección de expresión de miARN. En primer lugar, la expresión global de varios cientos de genes puede identificarse en la misma muestra en un punto temporal. En segundo lugar, mediante el diseño cuidadoso de las sondas oligonucleotídicas, puede identificarse la expresión de moléculas tanto maduras como precursoras. En tercer lugar, en comparación con análisis de transferencia de Northern, la microplaca requiere una cantidad pequeña de ARN, y proporciona resultados reproducibles usando 2,5 µg de ARN total. El número relativamente limitado de miARN (algunos cientos por especie) permite la construcción de una micromatriz común para varias especies, con sondas oligonucleotídicas distintas para cada una. Dicha herramienta permitiría el análisis de expresión entre especies para cada miR conocido en diversas condiciones.

Además del uso para los ensayos de nivel de expresión cuantitativa de miR específicos, una microplaca que contiene oligonucleótidos sonda específicos de miARN correspondientes a una parte sustancial del miRNoma, preferentemente el miRNoma completo, puede emplearse para llevar a cabo la determinación de perfiles de expresión génica de miR, para análisis de patrones de expresión de miR. Las identificaciones de miR distintas pueden asociarse con marcadores de enfermedad establecidos, o directamente con una patología.

De acuerdo con los métodos de realizaciones de perfiles de expresión descritos en la presente memoria, el ARN total de una muestra de un sujeto que se sospecha que tiene un cáncer (por ejemplo, un cáncer sólido) se transcribe de forma inversa cuantitativamente para proporcionar un conjunto de oligodesoxinucleótidos diana marcados complementarios del ARN en la muestra. Los oligodesoxinucleótidos diana se hibridan después con una micromatriz que comprende oligonucleótidos sonda específicos de miARN para proporcionar un perfil de hibridación para la muestra. El resultado es un perfil de hibridación para la muestra que representa el patrón de expresión de miARN en la muestra. El perfil de hibridación comprende la señal de la unión de los oligodesoxinucleótidos diana de la muestra con los oligonucleótidos sonda específicos de miARN en la micromatriz. El perfil puede registrarse como la presencia o ausencia de unión (señal frente a señal cero). Más preferentemente, el perfil registrado incluye la intensidad de la señal de cada hibridación. El perfil se compara con el perfil de hibridación generado de una muestra de control normal, es decir, no cancerosa. Una alteración en la señal es indicativa de la presencia de, o propensión a desarrollar, cáncer en el sujeto.

40 Otras técnicas para medir la expresión génica de miR también están dentro de la experiencia de este campo, e incluyen diversas técnicas para medir las tasas de transcripción y degradación de ARN.

La presente divulgación también proporciona métodos para determinar el pronóstico de un sujeto con un cáncer sólido, que comprenden medir el nivel de al menos un producto génico de miR que está asociado con un pronóstico particular en un cáncer sólido (por ejemplo, un pronóstico bueno o positivo, un pronóstico malo a adverso), en una muestra de ensayo del sujeto. De acuerdo con estos métodos, una alteración del nivel de un producto génico de miR que está asociado con un pronóstico particular en la muestra de ensayo, en comparación con el nivel de un producto génico de miR correspondiente en una muestra de control, es indicativa de que el sujeto tiene un cáncer sólido con un pronóstico particular. El producto génico de miR puede asociarse con un pronóstico adverso (es decir, negativo). Los ejemplos de un pronóstico adverso incluyen, pero sin limitación, baja tasa de supervivencia y rápida progresión de enfermedad. El nivel del al menos un producto génico de miR puede medirse por ARN de transcripción inversa a partir de una muestra de ensayo obtenida del sujeto para proporcionar un conjunto de oligodesoxinucleótidos diana, hibridando los oligodesoxinucleótidos diana con una micromatriz que comprende oligonucleótidos sonda específicos de miARN para proporcionar un perfil de hibridación para la muestra de ensayo, y comparando el perfil de hibridación de la muestra de ensayo con un perfil de hibridación generado a partir de una muestra de control.

Sin desear quedar ligado a ninguna teoría, se cree que las alteraciones en el nivel de uno o más productos génicos de miR en células pueden dar como resultado la desregulación de una o más dianas pretendidas para estos miR, lo que puede conducir a la formación de cánceres sólidos. Por lo tanto, la alteración del nivel del producto génico de miR (por ejemplo, reduciendo el nivel de un producto génico de miR que está regulado positivamente en células de cáncer sólido, aumentando el nivel de un producto génico de miR que está regulado negativamente en células de cáncer sólido) puede tratar exitosamente el cáncer sólido.

En consecuencia, la presente divulgación abarca métodos para inhibir la tumorogénesis en un sujeto que tiene, o se sospecha que tiene, un cáncer sólido en el que al menos un producto génico de miR está desregulado (por ejemplo, regulado positivamente, regulado negativamente) en las células cancerosas del sujeto. Cuando el al menos un

producto génico de miR aislado está regulado negativamente en las células cancerosas (por ejemplo, miR-145, miR-155, miR-218-2), el método comprende administrar una cantidad eficaz del al menos un producto génico de miR aislado o una variante aislada o fragmento biológicamente activo de los mismos, de modo que se inhiba la proliferación de células cancerosas en el sujeto. El producto génico de miR aislado que se administra puede no ser miR-15a o miR-16-1. Como alternativa, el producto génico de miR puede no ser miR 159-1 o miR-192. Como alternativa, el producto génico de miR puede no ser miR-186, miR-101-1, miR-194, miR-215, miR-106b, miR-25, miR-93, miR-29b, miR-29a, miR-96, miR-182s, miR=182as, miR-183, miR-129-1, let-7a-1, let-7d, let-7f-1, miR-23b, miR-24-1, miR-27b, miR-32, miR-159-1, miR-192, miR-125b-1, let-7a-2, miR-100, miR-196-2, miR-148b, miR-190, miR-21, miR-301, miR-142s, miR-142as, miR-105-1 o miR-175. Como alternativa, el producto génico de miR puede no ser miR-21, miR-301, miR-142as, miR-142s, miR-194, miR-215 o miR-32. Como alternativa, el producto génico de miR puede no ser miR-148, miR-10a, miR-196-1, miR-152, miR-196-2, miR-148b, miR-10b, miR-129-1, miR-153-2, miR-202, miR-139, let-7a, let-7f o let-7d. Como alternativa, el producto génico de miR puede no ser miR-30, miR-15b, miR-16-2, miR-217, miR-205, miR-204, miR-103, miR-107, miR-9 y miR-137. Como alternativa, el producto génico de miR puede no ser miR-145, miR-21, miR-155, miR-10b, miR-125b-1, miR-125b-2, let7a-2, let7a-3, let-7d, miR-122a, miR-191, miR-206, miR-210, let-7i, miR-009-1 (miR131-1), miR-34 (miR-170), miR-102 (miR-29b), miR-123 (miR-126), miR-140-as, miR-125a, miR-194, miR-204, miR-213, let-7f-2, miR-101, miR-128b, miR-136, miR-143, miR-149, miR-191, miR-196-1, miR-196-2, miR-202, miR-103-1 o miR-30c. Como alternativa, el producto génico de miR puede no ser miR-21, miR-125b-1, let-7a-2, let-7i, miR-100, let-7g, miR-31, miR-32a-1, miR-33b, miR-34a-2, miR-101-1, miR-135-1, miR-142as, miR-142s, miR-144, miR-301, miR-29c, miR-30c, miR-106a o miR-29b-1.

20

25

30

35

40

45

50

55

60

65

10

15

Por ejemplo, cuando un producto génico de miR está regulado negativamente en una célula cancerosa en un sujeto, la administración de una cantidad eficaz de un producto génico de miR aislado al sujeto puede inhibir la proliferación de la célula cancerosa. El producto génico de miR aislado que se administra al sujeto puede ser idéntico al producto génico de miR natural endógeno (por ejemplo, un producto génico de miR mostrado en la Tabla 1a o Tabla 1b) que está regulado negativamente en la célula cancerosa o puede ser una variante o fragmento biológicamente activo del mismo. Como se define en la presente memoria una "variante" de un producto génico de miR se refiere a un miARN que tiene menos de 100 % de identidad con un producto génico de miR natural correspondiente y posee una o más actividades biológicas del producto génico de miR natural correspondiente. Los ejemplos de dichas actividades biológicas incluyen, pero sin limitación, inhibición de la expresión de la molécula de ARN diana (por ejemplo, inhibiendo la traducción de una molécula de ARN diana, modulando la estabilidad de una molécula de ARN diana, inhibiendo el procesamiento de una molécula de ARN diana) e inhibición de un proceso celular asociado con cáncer sólido (por ejemplo, diferenciación celular, crecimiento celular, muerte celular). Estas variantes incluyen variantes de especie y variantes que son la consecuencia de una o más mutaciones (por ejemplo, una sustitución, una deleción, una inserción) en un gen de miR. La variante puede ser al menos aproximadamente 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 98 % o 99 % idéntica a un producto génico de miR natural correspondiente.

Como se define en la presente memoria, un "fragmento biológicamente activo" de un producto génico de miR se refiere a un fragmento de ARN de un producto génico de miR que posee una o más actividades biológicas de un producto génico de miR natural correspondiente. Como se ha descrito anteriormente, los ejemplos de dichas actividades biológicas incluyen, pero sin limitación, inhibición de la expresión de una molécula de ARN diana e inhibición de un proceso celular asociado con cáncer sólido. El fragmento biológicamente activo puede ser de al menos aproximadamente 5, 7, 10, 12, 15 o 17 nucleótidos de longitud. Un producto génico de miR aislado puede administrarse a un sujeto en combinación con uno o más tratamientos antineoplásicos adicionales. Los tratamientos antineoplásicos adecuados incluyen, pero sin limitación, quimioterapia, radioterapia y combinaciones de las mismas (por ejemplo, quimiorradiación).

Cuando el al menos un producto génico de miR aislado está regulado positivamente en las células cancerosas, el método comprende administrar al sujeto una cantidad eficaz de al menos un compuesto para inhibir la expresión del al menos un producto génico de miR, denominado en la presente memoria compuesto de inhibición de la expresión génica de miR, de modo que se inhiba la proliferación de células de cáncer sólido. El al menos un compuesto de inhibición de la expresión de miR es específico para un producto génico de miR seleccionado del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos. Un compuesto de inhibición de la expresión génica de miR puede administrarse a un sujeto en combinación con uno o más tratamientos antineoplásicos adicionales. Los tratamientos antineoplásicos adecuados incluyen, pero sin limitación, quimioterapia, radioterapia y combinaciones de los mismos (por ejemplo, quimiorradiación).

Los términos "tratar", "tratando" y "tratamiento", como se usan en la presente memoria, se refieren a aliviar síntomas asociados con una enfermedad o afección, por ejemplo, un cáncer sólido, incluyendo prevenir o retardar la aparición de los síntomas de la enfermedad, y/o reducir la gravedad o frecuencia de los síntomas de la enfermedad o afección. Se define que los términos "sujeto", "paciente" e "individuo" en la presente memoria incluyen animales, tales como mamíferos, incluyendo, pero sin limitación, primates, vacas, ovejas, cabras, caballos, perros, gatos, conejos, cobayas, ratas, ratones u otras especies bovinas, ovinas, equinas, caninas, felinas, roedoras o murinas. Preferentemente el animal es un ser humano.

Como se usa en la presente memoria, una "cantidad eficaz" de un producto génico de miR aislado es una cantidad suficiente para inhibir la proliferación de una célula cancerosa en un sujeto que padece cáncer sólido. Un experto en la materia puede determinar fácilmente una cantidad eficaz de un producto génico de miR para administrar a un sujeto dado, teniendo en cuenta factores tales como la talla y peso del sujeto; el alcance de la penetración de la enfermedad; la edad, salud y sexo del sujeto; la vía de administración; y si la administración es regional o sistémica.

Por ejemplo, una cantidad eficaz de un producto génico de miR aislado puede basarse en el peso aproximado de una masa tumoral para tratar. El peso aproximado de una masa tumoral puede determinarse calculando el volumen aproximado de la masa, en la que un centímetro cúbico de volumen es aproximadamente equivalente a un gramo. Una cantidad eficaz del producto génico de miR aislado basándose en el peso de una masa tumoral puede estar en el intervalo de aproximadamente 10-500 microgramos/gramo de masa tumoral. La masa tumoral puede ser de al menos aproximadamente 10 microgramos/gramo de masa tumoral, al menos aproximadamente 60 microgramos/gramo de masa tumoral o al menos aproximadamente 100 microgramos/gramo de masa tumoral.

10

25

30

35

40

45

50

55

Una cantidad eficaz de un producto génico de miR aislado también puede basarse en el peso corporal aproximado o estimado de un sujeto para tratar. Preferentemente, dichas cantidades eficaces se administran por vía parenteral o por vía entérica, como se describe en la presente memoria. Por ejemplo, una cantidad eficaz del producto génico de miR aislado que se administra a un sujeto puede variar de aproximadamente 53.000 microgramos/kilogramo de peso corporal, de aproximadamente 700-1000 microgramos/kg de peso corporal o más de aproximadamente 1000 microgramos/kg de peso corporal.

Un experto en la materia también puede determinar fácilmente un régimen de dosificación apropiado para la administración de un producto génico de miR aislado a un sujeto dado. Por ejemplo, puede administrarse un producto génico de miR al sujeto una vez (por ejemplo, como una única inyección o deposición). Como alternativa, puede administrarse un producto génico de miR una vez o dos veces al día a un sujeto durante un periodo de aproximadamente tres a aproximadamente veintiocho días, más particularmente de aproximadamente siete a aproximadamente diez días. En un régimen de dosificación particular, se administra un producto génico de miR una vez al día durante siete días. Cuando un régimen de dosificación comprende múltiples administraciones, se entiende que la cantidad eficaz del producto génico de miR administrado al sujeto puede comprender la cantidad total de producto génico administrado durante el régimen de dosificación completo.

Como se usa en la presente memoria, un producto génico de miR "aislado" es uno que se sintetiza, o se altera o retira del estado natural mediante intervención humana. Por ejemplo, un producto génico de miR sintético, o un producto génico de miR parcial o completamente separado de los materiales coexistentes de su estado natural, se considera que está "aislado". Un producto génico de miR aislado puede existir en forma sustancialmente purificada, o puede existir en una célula en la que se ha suministrado el producto génico de miR. Por lo tanto, un producto génico de miR que se suministra deliberadamente a, o se expresa en, una célula se considera un producto génico de miR "aislado". También se considera que un producto génico de miR producido dentro de una célula a partir de una molécula precursora de miR es una molécula "aislada". Los productos génicos de miR aislados descritos en la presente memoria pueden usarse para la fabricación de un medicamento para tratar un cáncer sólido en un sujeto (por ejemplo, un ser humano).

Pueden obtenerse productos génicos de miR aislados usando varias técnicas convencionales. Por ejemplo, los productos génicos de miR pueden sintetizarse químicamente o producirse recombinantemente usando métodos conocidos en este campo. Los productos génicos de miR pueden sintetizarse químicamente usando fosforamiditas ribonucleosídicas protegidas apropiadamente y un sintetizador de ADN/ARN convencional. Los proveedores comerciales de moléculas de ARN sintéticas o reactivos de síntesis incluyen, por ejemplo, Proligo (Hamburgo, Alemania), Dharmacon Research (Lafayette, CO, Estados Unidos), Pierce Chemical (parte de Perbio Science, Rockford, IL, Estados Unidos), Glen Research (Sterling, VA, Estados Unidos), ChemGenes (Ashland, MA, Estados Unidos) y Cruachem (Glasgow, Reino Unido).

Como alternativa, los productos génicos de miR pueden expresarse a partir de plásmidos de ADN circulares o lineales recombinantes usando cualquier promotor adecuado. Los promotores adecuados para expresar ARN a partir de un plásmido incluyen, por ejemplo, las secuencias promotoras de pol III de ARN U6 o H1, o los promotores de citomegalovirus. La selección de otros promotores adecuados está dentro de la experiencia de la técnica. Los plásmidos recombinantes también pueden comprender promotores inducibles o regulables para expresión de los productos génicos de miR en células cancerosas.

Los productos génicos de miR que se expresan a partir de plásmidos recombinantes pueden aislarse de sistemas de expresión de células cultivadas por técnicas convencionales. Los productos génicos de miR que se expresan a partir de plásmidos recombinantes también pueden suministrarse a, y expresarse directamente en, las células cancerosas. El uso de plásmidos recombinantes para suministrar los productos génicos de miR a células cancerosas se analiza en más detalle posteriormente.

65 Los productos génicos de miR pueden expresarse a partir de un plásmido recombinante separado, o pueden expresarse a partir del mismo plásmido recombinante. Los productos génicos de miR pueden expresarse como

moléculas precursoras de ARN a partir de un único plásmido, y las moléculas precursoras se procesan en el producto génico de miR funcional por un sistema de procesamiento adecuado, incluyendo, pero sin limitación, sistemas de procesamiento existentes dentro de una célula cancerosa. Otros sistemas de procesamiento adecuados incluyen, por ejemplo, el sistema de lisado celular de *Drosophila in vitro* (por ejemplo, como se describe en la Solicitud de Patente Publicada en Estados Unidos N 2002/0086356 de Tuschl *et al.*) y el sistema de RNAsa III de *E. coli* (por ejemplo, como se describe en la Solicitud de Patente Publicada de Estados Unidos Nº 2004/0014113 de Yang *et al.*).

La selección de plásmidos adecuados para expresar los productos génicos de miR, métodos para insertar secuencias de ácido nucleico en el plásmido para expresar los productos génicos, y métodos para suministrar el plásmido recombinante a las células de interés están dentro de la experiencia de la técnica. Véase, por ejemplo, Zeng et al. (2002), Molecular Cell 9: 1327-1333; Tuschl (2002), Nat. Biotechnol, 20: 446-448; Brummelkamp et al. (2002), Science 296: 550-553; Miyagishi et al. (2002), Nat. Biotechnol. 20: 497-500; Paddison et al. (2002), Genes Dev. 16: 948-958; Lee et al. (2002), Nat. Biotechnol. 20: 500-505; y Paul et al. (2002), Nat. Biotechnol. 20: 505-508.

15

20

25

35

40

45

50

55

60

65

Un plásmido que expresa los productos génicos de miR puede comprender una secuencia que codifica un ARN precursor de miR bajo el control del promotor intermedio-temprano de CMV. Como se usa en la presente memoria, "bajo el control" de un promotor significa que las secuencias de ácido nucleico que codifican el producto génico de miR se localizan 3' del promotor, de modo que el promotor puede iniciar la transcripción de las secuencias codificantes del producto génico de miR.

Los productos génicos de miR también pueden expresarse a partir de vectores virales recombinantes. Se contempla que los productos génicos de miR pueden expresarse a partir de dos vectores virales recombinantes separados, o del mismo vector viral. El ARN expresado a partir de dos vectores virales recombinantes puede aislarse de sistemas de expresión de células cultivadas por técnicas convencionales, o puede expresarse directamente en células cancerosas. El uso de vectores virales recombinantes para suministrar los productos génicos de miR a células cancerosas se analiza en más detalle posteriormente.

Los vectores virales recombinantes comprenden secuencias que codifican los productos génicos de miR y cualquier promotor adecuado para expresar las secuencias de ARN. Los promotores adecuados incluyen, pero sin limitación, las secuencias promotoras de pol III de ARN U6 o H1, o los promotores de citomegalovirus. La selección de otros promotores adecuados está dentro de la experiencia de la técnica. Los vectores virales recombinantes también pueden comprender promotores inducibles o regulables para la expresión de los productos génicos de miR en una célula cancerosa.

Puede usarse cualquier vector viral capaz de aceptar las secuencias codificantes para los productos génicos de miR; por ejemplo, vectores derivados de adenovirus (AV); virus adenoasociados (AAV); retrovirus (por ejemplo, lentivirus (LV), Rhabdovirus, virus de leucemia murina); virus del herpes y similares. El tropismo de los vectores virales pueden modificarse por seudotipación de los vectores con proteínas de envoltura u otros antígenos superficiales de otros virus, o sustituyendo diferentes proteínas de cápsida viral, según sea apropiado.

Por ejemplo, los vectores lentivirales pueden seudotiparse con proteínas de superficie de virus de estomatitis vesicular (VSV), rabia, Ébola, Mokola y similares. Pueden realizarse vectores de AAV para dirigirse a células diferentes modificando por ingeniería genética los vectores para expresar diferentes serotipos de proteínas de la cápsida. Por ejemplo, un vector de AAV que expresa una cápsida de serotipo 2 en un genoma de serotipo 2 se denomina AAV 2/2. Este gen de cápsida de serotipo 2 en el vector de AAV 2/2 puede reemplazarse por un gen de cápsida de serotipo 5 para producir un vector de AAV 2/5. Las técnicas para construir vectores de AAV que expresan diferentes serotipos de proteínas de la cápsida están dentro de la experiencia de la técnica; véase, por ejemplo, Rabinowitz, J. E., et al. (2002), J. Virol. 76: 791-801.

La selección de vectores virales recombinantes, métodos para insertar secuencias de ácido nucleico para expresar ARN en el vector, métodos para suministrar el vector viral a las células de interés y recuperación de los productos de ARN expresados están dentro de la experiencia de la técnica. Véase, por ejemplo, Domburg (1995), Gene Therapy 2: 301-310; Eglitis (1988), Biotechniques 6: 608-614; Miller (1990), Hum. Gene Therapy 1: 5-14; y Anderson (1998), Nature 392: 25-30.

Son vectores virales particularmente adecuados los derivados de AV y AAV. Se describen un vector de AV adecuado para expresar los productos génicos de miR, un método para construir el vector de AV recombinante y un método para suministrar el vector a células diana, en Xia *et al.* (2002), Nat. Biotech. 20: 1006-1010. Se describen vectores de AAV adecuados para expresar los productos génicos de miR, métodos para construir el vector de AAV recombinante y métodos para suministrar los vectores a células diana en Samulski *et al.* (1987), J. Virol. 61: 3096-3101; Fisher *et al.* (1996), J. Virol., 70: 520-532; Samulski *et al.* (1989), J. Virol. 63: 3822-3826; Patente de Estados Unidos Nº 5.252.479; Patente de Estados Unidos Nº 5.139.941; Solicitud de Patente Internacional Nº WO 93/24641. En una realización, los productos génicos de miR se expresan a partir de un único vector de AAV recombinante que comprende el promotor intermedio temprano de CMV.

Un vector viral de AAV recombinante puede comprender una secuencia de ácido nucleico que codifique un ARN precursor de miR en conexión operativa con una secuencia de terminación poliT bajo el control de un promotor de ARN U6 humano. Como se usa en la presente memoria, "en conexión operativa con una secuencia de terminación poliT" significa que las secuencias de ácido nucleico que codifican las cadenas con sentido o antisentido están inmediatamente adyacentes a la señal de terminación poliT en la dirección 5'. Durante la transcripción de las secuencias de miR del vector, las señales de terminación poliT actúan para terminar la transcripción.

Como alternativa, puede administrarse al sujeto una cantidad eficaz de al menos un compuesto que inhibe la expresión de miR. Como se usa en la presente memoria, "inhibir la expresión de miR" significa que la producción del precursor y/o la forma madura, activa del producto génico de miR después del tratamiento es menor que la cantidad producida antes del tratamiento. Un experto en la materia puede determinar fácilmente si se ha inhibido la expresión de miR en una célula cancerosa, usando, por ejemplo, las técnicas para determinar el nivel de transcrito de miR analizadas anteriormente para el método de diagnóstico. La inhibición puede producirse al nivel de la expresión génica (es decir, inhibiendo la transcripción de un gen de miR que codifica el producto génico de miR) o el nivel de procesamiento (por ejemplo, inhibiendo el procesamiento de un precursor de miR en un miR activo, maduro).

10

15

20

35

40

45

60

65

Como se usa en la presente memoria, una "cantidad eficaz" de un compuesto que inhibe la expresión de miR es una cantidad suficiente para inhibir la proliferación de una célula cancerosa en un sujeto que padece un cáncer (por ejemplo, un cáncer sólido). Un experto en la materia puede determinar fácilmente una cantidad eficaz de un compuesto de inhibición de la expresión de miR para administrar a un sujeto dado, teniendo en cuenta factores tales como la talla y el peso del sujeto; el alcance de la penetración de la enfermedad; la edad, salud y sexo del sujeto; la vía de administración; y si la administración es regional o sistémica.

Por ejemplo, una cantidad eficaz del compuesto de inhibición de la expresión puede basarse en el peso aproximado de una masa tumoral para tratar, como se describe en la presente memoria. Una cantidad eficaz de un compuesto que inhibe la expresión de miR también puede basarse en el peso corporal aproximado o estimado de un sujeto para tratar, como se describen en la presente memoria.

Un experto en la materia también puede determinar fácilmente un régimen de dosificación apropiado para administrar un compuesto que inhibe la expresión de miR a un sujeto dado.

Los compuestos adecuados para inhibir la expresión génica de miR incluyen ARN bicatenario (tal como ARN de interferencia corto o pequeño o "ARNip"), ácidos nucleicos antisentido y moléculas de ARN enzimático, tales como ribozimas. Cada uno de estos compuestos puede dirigirse a un producto génico de miR dado e interferir con la expresión (por ejemplo, inhibir la traducción, inducir la escisión o destrucción) del producto génico de miR diana.

Por ejemplo, la expresión de un gen de miR dado puede inhibirse induciendo la interferencia de ARN del gen de miR con una molécula de ARN bicatenario ("ARNbc") aislada que tiene al menos 90 %, por ejemplo al menos 95 %, al menos 98 %, al menos 99 % o 100 % de homología de secuencia con al menos una parte del producto génico de miR. La molécula de ARNbc puede ser un "ARN de interferencia corto o pequeño" o "ARNip".

El ARNip útil en los presentes métodos comprende ARN bicatenario corto de aproximadamente 17 nucleótidos a aproximadamente 29 nucleótidos de longitud, preferentemente de aproximadamente 19 a aproximadamente 25 nucleótidos de longitud. El ARNip comprende una cadena de ARN con sentido y una cadena de ARN antisentido complementaria hibridadas entre sí por interacción de formación de pares de bases de Watson-Crick convencionales (en lo sucesivo en la presente memoria "con formación de pares de bases"). La cadena con sentido comprende una secuencia de ácido nucleico que es sustancialmente idéntica a una secuencia de ácido nucleico contenida dentro del producto génico de miR diana.

Como se usa en la presente memoria, una secuencia de ácido nucleico en un ARNip que es "sustancialmente idéntico" a una secuencia diana contenida dentro del ARNm diana es una secuencia de ácido nucleico que es idéntica a la secuencia diana, o que difiere de la secuencia diana en uno o dos nucleótidos. Las cadenas con sentido y antisentido del ARNip pueden comprender dos moléculas de ARN monocatenarias, complementarias, o pueden comprender una única molécula en la que dos partes complementarias forman pares de bases y están ligadas covalentemente por un área de "horquilla" monocatenaria.

El ARNip también puede ser ARN alterado que difiere del ARN de origen natural por la adición, deleción, sustitución y/o alteración de uno o más nucleótidos. Dichas alteraciones pueden incluir la adición de material no nucleotídico, tal como en el extremo o los extremos del ARNip o en uno o más nucleótidos internos del ARNip, o modificaciones que hacen al ARNip resistente a la digestión por nucleasa, o la sustitución de uno o más nucleótidos en el ARNip con desoxirribonucleótidos.

Una o ambas cadenas del ARNip también puede comprender un saliente 3'. Como se usa en la presente memoria, un "saliente 3'" se refiere a al menos un nucleótido no emparejado que se extiende desde el extremo 3' de una cadena de ARN bicatenaria. Por lo tanto, el ARNip puede comprender al menos un saliente 3' de 1 a aproximadamente 6 nucleótidos (que incluye ribonucleótidos o desoxirribonucleótidos) de longitud, de 1 a

aproximadamente 5 nucleótidos de longitud, de 1 a aproximadamente 4 nucleótidos de longitud, o de aproximadamente 2 a aproximadamente 4 nucleótidos de longitud. El saliente 3' puede estar presente en ambas cadenas del ARNip, y es de 2 nucleótidos de longitud. Por ejemplo, cada cadena del ARNip puede comprender salientes 3' de ácido ditimidílico ("TT") o ácido diuridílico ("uu").

El ARNip puede producirse de forma química o biológica, o puede expresarse a partir de un plásmido recombinante o vector viral, como se ha descrito anteriormente para los productos génicos de miR aislados. Se describen métodos ejemplares para producir y ensayar moléculas de ARNbc o ARNip en la Solicitud de Patente Publicada de Estados Unidos Nº 2002/0173478 de Gewirtz y en la Solicitud de Patente Publicada de Estados Unidos Nº 2004/0018176 de Reich *et al.*

10

15

20

La expresión de un gen de miR dado también puede inhibirse por un ácido nucleico antisentido. Como se usa en la presente memoria, un "ácido nucleico antisentido" se refiere a una molécula de ácido nucleico que se une a ARN diana por medio de interacciones de ARN-ARN, ARN-ADN o ARN-ácido peptidonucleico, que alteran la actividad del ARN diana. Son ácidos nucleicos antisentido adecuados para su uso en los presentes métodos ácidos nucleicos monocatenarios (por ejemplo, ARN, ADN, quimeras de ARN-ADN, ácido peptidonucleico (PNA)) que generalmente comprenden una secuencia de ácido nucleico complementaria de una secuencia de ácido nucleico contigua en un producto génico de miR. El ácido nucleico antisentido puede comprender una secuencia de ácido nucleico que es 50-100 % complementaria, 75-100 % complementaria o 95-100 % complementaria de una secuencia de ácido nucleico contigua en un producto génico de miR. Se proporcionan secuencias de ácido nucleico para los productos génicos de miR en las Tablas 1a y 1b. Sin desear quedar ligado a ninguna teoría, se cree que los ácidos nucleicos antisentido activan RNasa H u otra nucleasa celular que digiere la doble cadena de producto génico de miR/ácido nucleico antisentido.

- Los ácidos nucleicos antisentido también pueden contener modificaciones de la cadena principal de ácido nucleico o de los restos de azúcar y base (o su equivalente) para potenciar la especificidad diana, resistencia a nucleasa, suministro u otras propiedades relacionadas con la eficacia de la molécula. Dichas modificaciones incluyen restos de colesterol, intercaladores bicatenarios, tales como acridina, o uno o más grupos resistentes a nucleasa.
- Pueden producirse ácidos nucleicos antisentido de forma química o biológica, o pueden expresarse a partir de un plásmido o vector viral recombinante, como se ha descrito anteriormente para los productos génicos de miR aislados. Están dentro de la experiencia de la técnica métodos ejemplares para producir y ensayar; véase, por ejemplo, Stein y Cheng (1993), Science 261: 1004 y Patente de Estados Unidos Nº 5.849.902 de Woolf *et al.*
- La expresión de un gen de miR dado también puede inhibirse por un ácido nucleico enzimático. Como se usa en la presente memoria, un "ácido nucleico enzimático" se refiere a un ácido nucleico que comprende una región de unión a sustrato que tiene complementariedad con una secuencia de ácido nucleico contigua de un producto génico de miR, y que es capaz de escindir específicamente el producto génico de miR. La región de unión al sustrato de ácido nucleico enzimático puede ser, por ejemplo, 50-100 % complementaria, 75-100 % complementaria o 95-100 % complementaria de una secuencia de ácido nucleico contigua en un producto génico de miR. Los ácidos nucleicos enzimáticos también pueden comprender modificaciones en los grupos de base, azúcar y/o fosfato. Un ácido nucleico enzimático ejemplar para su uso en los presentes métodos es una ribozima.
- Los ácidos nucleicos enzimáticos pueden producirse de forma química o biológica, o pueden expresarse a partir de un plásmido o vector viral recombinante, como se ha descrito anteriormente para los productos génicos de miR aislados. Se describen métodos ejemplares para producir y ensayar moléculas de ARNbc o ARNip en Werner y Uhlenbeck (1995), Nucl. Acids Res. 23: 2092-96; Hammann *et al.* (1999), Antisense and Nucleic Acid Drug Dev. 9: 25-31; y Patente de Estados Unidos Nº 4.987.071 de Cech *et al.*
- La administración de al menos un producto génico de miR, o al menos un compuesto para inhibir la expresión de miR, inhibirá la proliferación de células cancerosas en un sujeto que tiene un cáncer sólido. Como se usa en la presente memoria, "inhibir la proliferación de una célula cancerosa" significa destruir la célula, o detener permanente o temporalmente o ralentizar el crecimiento de la célula. La inhibición de la proliferación de células cancerosas puede inferirse si el número de dichas células en el sujeto permanece constante o se reduce después de la administración de los productos génicos de miR o los compuestos de inhibición de la expresión del gen de miR. Una inhibición de la proliferación de células cancerosas puede también inferirse si el número absoluto de dichas células aumenta, pero la tasa de crecimiento tumoral disminuye.
- El número de células cancerosas en el cuerpo de un sujeto puede determinarse por medición directa, o mediante estimación del tamaño de las masas tumorales primaras o metastásicas. Por ejemplo, el número de células cancerosas en un sujeto puede medirse por métodos inmunohistológicos, citometría de flujo, u otras técnicas diseñadas para detectar marcadores de superficie característicos de células cancerosas.
- El tamaño de una masa tumoral puede determinarse por observación visual directa, o por métodos de formación de imágenes de diagnóstico, tales como rayos X, formación de imágenes por resonancia magnética, ultrasonidos y escintigrafía. Pueden emplearse métodos de formación de imágenes de diagnóstico usados para determinar el

tamaño de la masa tumoral con o sin agentes de contraste, como se conoce en la técnica. El tamaño de una masa tumoral también puede determinare por medios físicos, tales como palpación de la masa tisular o medición de la masa tisular con un instrumento de medición, tal como un calibrador.

Los productos génicos de miR o compuestos de inhibición de la expresión génica de miR pueden administrarse a un sujeto por cualquier medio adecuado para suministrar estos compuestos a células cancerosas del sujeto. Por ejemplo, los productos génicos de miR o compuestos de inhibición de la expresión de miR pueden administrarse por métodos adecuados para transfectar células del sujeto con estos compuestos, o con ácidos nucleicos que comprenden secuencias que codifican estos compuestos. Las células se transfectan con un vector plasmídico o viral que comprende secuencias que codifican al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR.

Se conocen bien en la técnica métodos de transfección para células eucariotas e incluyen, por ejemplo, inyección directa del ácido nucleico en el núcleo o pronúcleo de una célula; electroporación; transferencia de liposomas o transferencia mediada por materiales lipófilos; suministro de ácidos nucleicos mediado por receptor, biobalística o aceleración de partículas; precipitación con fosfato cálcico y transfección mediada por vectores virales.

Por ejemplo, las células pueden transfectarse con un compuesto de transferencia liposómico, por ejemplo, DOTAP (N-[1-(2,3-dioleoiloxi)propil]-N,N,N-trimetil-amonio metilsulfato, Boehringer-Mannheim) o un equivalente, tal como LIPOFECTINA. La cantidad de ácido nucleico usada no es crítica; pueden conseguirse resultados aceptables con 0,1-100 microgramos de ácido nucleico/10⁵ células. Por ejemplo, puede usarse una relación de aproximadamente 0,5 microgramos de vector plasmídico en 3 microgramos de DOTAP por cada 10⁵ células.

También puede administrarse un producto génico de miR o compuesto de inhibición de la expresión génica de miR a un sujeto por cualquier vía de administración entérica o parenteral adecuada. Las vías de administración entéricas adecuadas para los presentes métodos incluyen, por ejemplo, suministro oral, rectal o intranasal. Las vías de administración parenterales adecuadas incluyen, por ejemplo, administración intravascular (por ejemplo, inyección de embolada intravenosa, infusión intravenosa, inyección de embolada intravenial, infusión intraverial e instilación por catéter en la vasculatura); inyección peri e intratisular (por ejemplo, inyección peritumoral e intratumoral, inyección intrarretinal o inyección subretinal); inyección o deposición subcutánea, incluyendo infusión subcutánea (tal como por bombas osmóticas); aplicación directa al tejido de interés, por ejemplo por un catéter y otro dispositivo de colocación (por ejemplo, un gránulo retinal o un supositorio o un implante que comprenda un material poroso, no poroso o gelatinoso); e inhalación. Son vías de administración particularmente adecuadas inyección, infusión e inyección directa en el tumor.

En los presentes métodos, puede administrarse un producto génico de miR o compuesto de inhibición de la expresión de producto génico de miR al sujeto como ARN desnudo, en combinación con un reactivo de suministro, o como un ácido nucleico (por ejemplo, un plásmido recombinante o vector viral) que comprende secuencias que expresan el producto génico de miR o compuesto de inhibición de la expresión del producto génico de miR. Los reactivos de suministro adecuados incluyen, por ejemplo, el reactivo lipófilo Mirus Transit TKO; lipofectina; lipofectamina; celfectina; policationes (por ejemplo, polilisina) y liposomas.

Se analizan en la presente memoria y/o se conocen bien en la técnica plásmidos recombinantes y vectores virales que comprenden secuencias que expresan los productos génicos de miR o compuestos de inhibición de la expresión génica de miR, y técnicas para suministrar dichos plásmidos y vectores a células cancerosas.

Se usan liposomas para suministrar un producto génico de miR o compuestos de inhibición de la expresión génica de miR (o ácidos nucleicos que comprenden secuencias que los codifican) a un sujeto. Los liposomas también pueden aumentar la semivida en sangre de los productos génicos o ácidos nucleicos. Pueden formarse liposomas adecuados a partir de lípidos formadores de vesículas convencionales, que generalmente incluyen fosfolípidos neutros o cargados negativamente y un esterol, tal como colesterol. La selección de lípidos generalmente se guía por la consideración de factores, tales como el tamaño de liposoma deseado y la semivida de los liposomas en el torrente sanguíneo. Se conocen diversos métodos para preparar liposomas, por ejemplo, como se describe en Szoka *et al.* (1980), Ann. Rev. Biophys. Bioeng. 9: 467; y Patentes de Estados Unidos Nº 4.235.871, 4.501.728, 4.837.028 y 5.019.369.

Los liposomas para su uso en los presentes métodos pueden comprender una molécula ligando que dirige el liposoma a células cancerosas. Se prefieren ligandos que se unan a receptores prevalentes en células cancerosas, tales como anticuerpos monoclonales que se unen a antígenos celulares tumorales.

Los liposomas para su uso en los presentes métodos también pueden modificarse para evitar la eliminación por el sistema de macrófagos mononucleares ("MMS") y el sistema reticuloendotelial ("RES"). Dichos liposomas modificados tienen restos de inhibición de la opsonización en la superficie o incorporados en la estructura del liposoma. Un liposoma puede comprender tanto un resto de inhibición de la opsonización como un ligando.

Los restos inhibidores de la opsonización para su uso en la preparación de los liposomas son normalmente

65

15

20

35

40

45

50

55

60

polímeros hidrófilos grandes que se unen a la membrana del liposoma. Como se usa en la presente memoria, un resto inhibidor de opsonización está "unido" a una membrana del liposoma cuando está química o físicamente unido a la membrana, por ejemplo, por la intercalación de un anclaje soluble en lípidos en la membrana en sí misma, o por unión directamente con grupos activos de lípidos de membrana. Estos polímeros hidrófilos inhibidores de opsonización forman una capa superficial protectora que reduce significativamente la captación de los liposomas por el MMS y RES; por ejemplo, como se describe en la Patente de Estados Unidos Nº 4.920.016.

Los restos inhibidores de opsonización adecuados para modificar liposomas son preferentemente polímeros solubles en agua con un peso molecular medio en número de aproximadamente 500 a aproximadamente 40.000 Dalton, y más preferentemente de aproximadamente 2.000 a aproximadamente 20.000 Dalton. Dichos polímeros incluyen derivados de polietilenglicol (PEG) o polipropilenglicol (PPG); por ejemplo, metoxi PEG o PPG y estearato de PEG o PPG; polímeros sintéticos, tales como poliacrilamida o poli N-vinil pirrolidona; poliamidoaminas lineales, ramificadas o dendriméricas; ácidos poliacrílicos; polialcoholes, por ejemplo, polivinilalcohol y polivilitol a los que se unen químicamente grupos carboxílicos o amino, así como gangliósidos, tales como gangliósido GM1. También son adecuados copolímeros de PEG, metoxi PEG o metoxi PPG o derivados de los mismos. Además, el polímero inhibidor de opsonización puede ser un copolímero en bloque de PEG y un poliamino ácido, polisacárido, poliamidoamina, polietilenamina o polinucleótido. Los polímeros inhibidores de opsonización también pueden ser polisacáridos naturales que contienen aminoácidos o ácidos carboxílicos, por ejemplo, ácido galacturónico, ácido glucurónico, ácido manurónico, ácido hialurónico, ácido péctico, ácido neuramínico, ácido algínico, carragenina; polisacáridos u oligosacáridos aminados (lineales o ramificados); o polisacáridos u oligosacáridos carboxilados, por ejemplo, que han reaccionado con derivados de ácidos carbónicos con enlace resultante de grupos carboxílicos. Preferentemente, el resto de inhibición de la opsonización es un PEG, PPG o un derivado de los mismos. Los liposomas modificados con PEG o derivados de PEG se denominan en ocasiones "liposomas PEGilados".

10

15

20

30

35

40

45

50

55

El resto inhibidor de la opsonización puede estar unido a la membrana del liposoma por una cualquiera de numerosas técnicas bien conocidas. Por ejemplo, un éster de N-hidroxisuccinimida de PEG puede estar unido a un anclaje soluble en lípidos de fosfatidiletanolamina, y después unido a una membrana. De forma similar, un polímero de dextrano puede derivatizarse con un anclaje soluble en lípidos de estearilamina mediante aminación reductora usando Na(CN)BH₃ y una mezcla de disolvente, tal como tetrahidrofurano y agua en una relación 30:12 a 60 °C.

Los liposomas modificados con restos inhibidores de opsonización permanecen en la circulación durante mucho más tiempo que los liposomas no modificados. Por esta razón, dichos liposomas se denominan en ocasiones liposomas "sigilosos". Se sabe que los liposomas sigilosos se acumulan en tejidos alimentados por microvasculatura porosa o "filtrante". Por lo tanto, el tejido caracterizado por dichos defectos de microvasculatura, por ejemplo, tumores sólidos, acumularán eficazmente estos liposomas; véase Gabizon, *et al.* (1988), Proc. Natl. Acad. Sci., U.S.A., 18: 6949-53. Además, la captación reducida por el RES reduce la toxicidad de los liposomas sigilosos evitando la acumulación significativa de los liposomas en el hígado y el bazo. Por lo tanto, los liposomas que se modifican con restos inhibidores de la opsonización son particularmente adecuados para suministrar los productos génicos de miR o compuestos de inhibición de la expresión génica de miR (o ácidos nucleicos que comprenden secuencias que los codifican) a células tumorales.

Los productos génicos de miR o compuestos de inhibición de la expresión génica de miR pueden formularse como composiciones farmacéuticas, denominadas en ocasiones "medicamentos", antes de administrarlos a un sujeto, de acuerdo con técnicas conocidas en este campo. En consecuencia, la presente divulgación abarca composiciones farmacéuticas para tratar un cáncer sólido. La composición farmacéutica puede comprender al menos un producto génico de miR aislado, o una variante aislada o fragmento biológicamente activo del mismo, y un vehículo farmacéuticamente aceptable. El al menos un producto génico de miR puede corresponder a un producto génico de miR que tiene un nivel reducido de expresión en células de cáncer sólido en relación con células de control adecuadas, El producto génico de miR aislado puede seleccionarse del grupo que consiste en miR-145, miR-155, miR-218-2 o combinaciones de los mismos.

Las composiciones farmacéuticas pueden comprender al menos un compuesto de inhibición de la expresión de miR. El al menos un compuesto de inhibición de la expresión génica de miR puede ser específico para un gen de miR cuya expresión es mayor en células de cáncer sólido que en células de control. El compuesto de inhibición de la expresión génica de miR es específico para uno o más productos génicos de miR seleccionados del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a y combinaciones de los mismos.

60 Las composiciones farmacéuticas se caracterizan como al menos estériles y sin pirógenos. Como se usa en la presente memoria, las "composiciones farmacéuticas" incluyen formulaciones para uso humano y veterinario. Los métodos para preparar las composiciones farmacéuticas están dentro de la experiencia de la técnica, por ejemplo como se describe en Remington's Pharmaceutical Science, 17ª ed., Mack Publishing Company, Easton, Pa. (1985).

65 Las presentes composiciones farmacéuticas comprenden al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende secuencias que los

codifican) (por ejemplo, de 0,1 a 90 % en peso), o una sal fisiológicamente aceptable de los mismos, mezclados con un vehículo farmacéuticamente aceptable. Las composiciones farmacéuticas pueden comprender adicionalmente uno o más agentes antineoplásicos (por ejemplo, agentes quimioterapéuticos). Las formulaciones farmacéuticas también pueden comprender al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende secuencias que los codifican), que están encapsulados por liposomas y un vehículos farmacéuticamente aceptable. La composición farmacéutica puede comprender un gen o producto génico de miR que no es miR-15 y/o miR-16.

Son vehículos farmacéuticamente aceptables especialmente adecuados agua, agua tamponada, solución salina 10 normal, solución salina 0,4 %, glicina 0,3 %, ácido hialurónico y similares.

Las composiciones farmacéuticas pueden comprender al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende secuencias que los codifican) que es resistente a la degradación por nucleasas. Un experto en la materia puede sintetizar fácilmente ácidos nucleicos que son resistentes a nucleasa, por ejemplo, incorporando uno o más ribonucleótidos que se modifican en la posición 2' en el producto génico de miR. Los ribonucleótidos modificados 2' adecuados incluyen los modificados en la posición 2' con fluoro, amino, alquilo, alcoxi y O-alilo.

Las composiciones farmacéuticas pueden comprender también excipientes y/o aditivos farmacéuticos convencionales. Los excipientes farmacéuticos adecuados incluyen estabilizadores, antioxidantes, agentes de ajuste de la osmolalidad, tampones y agentes de ajuste de pH. Los aditivos adecuados incluyen, por ejemplo, tampones fisiológicamente biocompatibles (por ejemplo, clorhidrato de trometamina), adiciones de quelantes (tales como, por ejemplo, DTPA o DTPA-bisamida) o complejos de quelado de calcio (tales como, por ejemplo, DTPA de calcio, CaNaDTPA-bisamida) u, opcionalmente, adiciones de sales de calcio o sodio (por ejemplo cloruro cálcico, ascorbato cálcico, gluconato cálcico o lactato cálcico). Las composiciones farmacéuticas pueden envasarse para su uso en forma líquida, o pueden liofilizarse.

Para composiciones farmacéuticas sólidas, pueden usarse vehículos farmacéuticamente aceptables sólidos no tóxicos convencionales; por ejemplo, usos farmacéuticos de manitol, lactosa, almidón, estearato de magnesio, sacarina sódica, talco, celulosa, glucosa, sacarosa, carbonato de magnesio y similares.

Por ejemplo, una composición farmacéutica sólida para administración oral puede comprender cualquiera de los vehículos y excipientes enumerados anteriormente y 10-95 %, preferentemente 25 %-75 %, del al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende secuencias que los codifican). Una composición farmacéutica para administración por aerosol (de inhalación) puede comprender 0,01-20 % en peso, preferentemente 1 %-10 % en peso, del al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende secuencias que los codifican) encapsulado en un liposoma como se ha descrito anteriormente, y un propulsor. También puede incluirse un vehículo según se desee; por ejemplo, lecitina para suministro intranasal.

Las composiciones farmacéuticas pueden comprender además uno o más agentes antineoplásicos. Las composiciones comprenden al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende secuencias que los codifican) y al menos un agente quimoterapéutico. Los agentes quimioterapéuticos que son adecuados para los métodos desvelados en la presente memoria incluyen, pero sin limitación, agentes alquilantes de ADN, agentes antibióticos antitumorales, agentes antimetabólicos, agentes estabilizadores de tubulina, agentes desestabilizadores de tubulina, agentes antagonistas de hormonas, inhibidores de topoisomerasa, inhibidores de proteína quinasa, inhibidores de HMG-CoA, inhibidores de CDK, inhibidores de ciclina, inhibidores de caspasa, inhibidores de metaloproteinasa, ácidos nucleicos antisentido, ADN de triple hélice, aptámeros de ácidos nucleicos y agentes virales, bacterianos y exotóxicos modificados molecularmente. Los ejemplos de agentes adecuados para las composiciones incluyen, pero sin limitación, arabinósido de citidina, metotrexato, vincristina, etopósido (VP-16), doxorrubicina (adriamicina), cisplatino (CDDP), dexametasona, arglabina, ciclofosfamida, sarcolisina, metilnitrosourea, fluorouracilo, 5-fluorouracilo (5FU), vinblastina, camptotecina, actinomicina-D, mitomicina C, peróxido de hidrógeno, oxaliplatino, irinotecán, topotecán, leucovorina, carmustina, estreptozocina, CPT-11, taxol, tamoxifeno, dacarbacina, rituximab, daunorrubicina, 1-β-D-arabinofuranosilcitosina, imatinib, fludarabina, docetaxel, FOLFOX4.

También se desvelan métodos para identificar un inhibidor de tumorogénesis, que comprenden proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR en la célula. El método comprende proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR asociado con niveles de expresión reducidos en células cancerosas. Un aumento del nivel del producto génico de miR de la célula después de que se proporcione el agente, en relación con una célula de control adecuada (por ejemplo, no se proporciona agente), es indicativo de que el agente de ensayo es un inhibidor de tumorogénesis. Al menos un producto génico de miR asociado con los niveles de expresión reducidos en células cancerosas puede seleccionarse del grupo que consiste en miR-145, miR-155, miR-218-2 y combinaciones de los mismos.

Como alternativa, el método puede comprender proporcionar un agente de ensayo a una célula y medir el nivel de al

65

15

30

35

40

45

50

55

menos un producto génico de miR asociado con niveles de expresión aumentados en células cancerosas. Una reducción del nivel del producto génico de miR en la célula después de que se proporciones el agente, en relación con una célula de control adecuada (por ejemplo, no se proporciona agente) es indicativa de que el agente de ensayo es un inhibidor de tumorogénesis. Al menos un producto génico de miR que puede estar asociado con niveles de expresión aumentados en células cancerosas se selecciona del grupo que consiste en miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-24-2, miR-146, miR-155, miR-181b-1, miR-20a, miR-32, miR-92-2, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a.

Los agentes adecuados incluyen, pero sin limitación fármacos (por ejemplo, moléculas pequeñas, péptidos) y macromoléculas biológicas (por ejemplo, proteínas, ácidos nucleicos). El agente puede producirse de forma recombinante, sintética o puede aislarse (es decir purificarse) de una fuente natural. Se conocen bien en la técnica diversos métodos para proporcionar dichos agentes a una célula (por ejemplo, transfección), y varios de dichos métodos se han descrito anteriormente en la presente memoria. También se conocen bien en la técnica métodos para detectar la expresión de al menos un producto génico de miR (por ejemplo, transferencia de Northern, hibridación *in situ*, RT-PCR, perfiles de expresión). Varios de estos métodos también se han descrito anteriormente en la presente memoria.

La invención se ilustrará ahora por los siguientes ejemplos no limitantes.

20 Ejemplificación

Los siguientes Materiales y Métodos se usaron en los Ejemplos:

Muestras

25

30

10

15

Se usaron un total de 540 muestras, incluyendo 363 muestras de tumores primarios y 177 tejidos normales, en este estudio (Tabla 2). Se representaron los siguientes cánceres sólidos: carcinoma de pulmón, carcinoma de mama, carcinoma de próstata, carcinoma de estómago, carcinoma de colon y tumores endocrinos pancreáticos. Todas las muestras se obtuvieron con el consentimiento informado de cada paciente y se confirmaron histológicamente. Las muestras normales se emparejaron con muestras de individuos aquejados de carcinoma de pulmón y estómago, y de individuos normales para el resto de los tejidos. Todas las muestras de mama normales se obtuvieron agrupando 5 tejidos normales no relacionados. El ARN total se aisló de tejidos usando reactivo TRIzol™ (Invitrogen), de acuerdo con las instrucciones de fabricante.

35 Micromatrices de microARN

Se realizó análisis de micromatrices como se ha descrito previamente (Liu, C.-G., *et al.*, Proc. Natl. Acad. Sci. USA 101: 11755-11760 (2004)). Brevemente, se usaron 5 μg de ARN total para la hibridación en microplacas de micromatrices de miARN. Estas microplacas contienen sondas oligonucleotídicas de 40 unidades específicas de gen, aplicadas puntualmente por tecnologías de contacto y unidas covalentemente a una matriz polimérica. Las micromatrices se hibridaron en SSPE 6x (NaCl 0,9 M/NaH₂PO₄ 60 mM · H₂O/EDTA 8 mM, pH 7,4)/formamida 30 % a 25 °C durante 18 h, se lavaron en TNT 0,75x (Tris·HCl/NaCl/Tween 20) a 37 °C durante 40 minutos, y se procesaron usando detección directa en los transcritos marcados con biotina por conjugado de estreptavidina-Alexa647 (Molecular Probes). Los portaobjetos procesados se exploraron usando un explorador de micromatrices (GenePix Pro, Axon), con el láser ajustado a 635 nm, a ajustes de PMT fijos y una resolución de exploración de 10 mm. Los datos se confirmaron por transferencia de Northern como se describe (Calin, G. A., *et al.*, Proc. Natl. Acad. Sci. USA 101: 11755-11760 (2004); lorio, M. V., *et al.*, Cancer Res. 65: 7065-7070 (2005)).

Tabla 2. Muestras usadas en el estudio (tumores y normales correspondientes).

Tipo de tumor	Muestras de cáncer	Muestras Normales
Carcinoma de pulmón	123	123
Carcinoma de mama	79	6*
Carcinoma de colon	46	8
Carcinoma gástrico	20	21
Tumores pancreáticos endocrinos	39	12
Cáncer de próstata	56	7
Todos los tejidos (527)	363	177

^{*} Grupos de 5 tejidos de mama normales no relacionados por muestra (para un total de 30 individuos no relacionados).

50

Análisis computacional

Se analizaron imágenes de micromatrices usando GenePix Pro (Axon). De los valores medios de los puntos repetidos de cada miARN se restó el fondo, se normalizaron y se sometieron a análisis adicional. Se realizó normalización usando un método de normalización de mediana por microplaca, usando la mediana de la serie como una referencia. Finalmente, se seleccionaron los miARN medidos como presentes en al menos la menor de la dos clases en un conjunto de datos. Las ausencias tuvieron un umbral de 4,5 antes del análisis estadístico. Este nivel es el nivel de intensidad mínimo medio detectado en los experimentos. La nomenclatura de microARN fue de acuerdo con el Buscador del Genoma (www.genome.ucsc.edu) y la base de datos de microARN en el Centro Sanger (Griffiths-Jones, S., Nucleic Acids Res 32: D109-11(2004)); en caso de discrepancias los inventores siguieron la base de datos de microARN. Se identificaron microARN expresados diferencialmente usando el procedimiento de ensayo de t dentro de análisis significativo de micromatrices (SAM) (Tusher, V. G., et al., Proc Natl Acad Sci USA 98: 5116-21 (2001). SAM calcula una puntuación para cada gen basándose en el cambio de la expresión en relación con la desviación típica de todas las mediciones. Dentro de SAM, se usó el ensayo de t. Los distintivos de microARN se determinaron aplicando el método de centroides hundidos más cercanos. Este método identifica un subgrupo de genes que caracteriza mejor cada cáncer sólido de su homólogo normal respectivo. Se calculó el error de predicción por medio de validación cruzada 10 veces, y para cada cáncer se obtuvo el distintivo de miR que daba como resultado el error mínimo de predicción. Se realizó un ensayo de nueva toma de muestras por análisis de permutación aleatoria para calcular el p valor del distintivo compartido.

Ejemplo 1: Identificación de un distintivo de expresión de microARN en cánceres sólidos humanos

Estadística

10

15

20

25

30

35

40

45

50

55

60

La comparación de cánceres combinados/tejido normal se realizó usando un número reducido de muestras de pulmón (80 muestras de cáncer y 40 normales), para equilibrar los diferentes tejidos numéricamente, produciendo un total de 404 muestras. Para análisis estadístico, se retuvieron 137 miR, cuyos valores de expresión estaban por encima de 256 (valor umbral) en al menos 50 % de las muestras, de las 228 que se midieron. Se usó un ensayo de T para identificar microARN expresados diferencialmente (Tabla 3). Los p valores del ensayo de T se corrigieron para múltiples procedimientos de ensayo y para controlar las tasas de error de Tipo I. Se obtuvieron p valores ajustados realizando una nueva toma de muestras con 500.000 permutaciones (Jung, S. H., *et al.* Biostatistics 6: 157-69 (2005)). Este análisis se realizó para evaluar los resultados usando el mismo método que Lu y colaboradores (Lu, J., *et al.*, Nature 435: 834-8(2005)).

Como una alternativa al ensayo de T, se usó análisis de significación de micromatrices (SAM) para identificar microARN expresados diferencialmente. Este procedimiento permite el control de la tasa de detección falsa (FDR). El delta se eligió para dar como resultado una FDR menor de o igual a 0,01. Después se identificaron los subconjuntos de microARN que daban como resultado la mejor clasificación tumoral, es decir, que predecían mejor las dos clases (cáncer y normal), usando el método de los centroides hundidos más cercanos, como se implementa en PAM (análisis de predicción de micromatrices). Se calculó el error de predicción por medio de validación cruzada 10 veces. Los microARN se seleccionaron produciendo el error de clasificación equivocada mínimo después de validación cruzada.

Resultados

Por el ensayo de T, se obtuvieron 43 miR expresados diferencialmente con un p valor ajustado por debajo de 0,05 (Tabla 3). Se sobreexpresaron 26 miR y 17 se infraexpresaron en relación con tejidos normales correspondientes cuando los seis cánceres sólidos se agruparon entre sí (mama, colon, pulmón, páncreas, próstata, estómago). Estos resultados indicaron que el espectro de miARN expresados en cánceres sólidos es muy diferente del de células normales (43 de 137 miARN, 31 %). Usando SAM, se identificaron 49 miARN expresados diferencialmente, de los cuales 34 estaban regulados positivamente (Tabla 4). Usando PAM, se identificaron 36 miARN sobreexpresados en cáncer (indicado por puntuaciones de cáncer positivas) y 21 miR regulados negativamente (indicados por puntuaciones de cáncer negativas) como expresados diferencialmente (Tabla 5). Sin embargo, estos análisis no están adaptados para identificar alteraciones en la expresión de miR que da como resultado uniformemente transformación, debido a que la expresión de miR es muy específica de tejido (He, L., *et al.* Nature 435: 828-833 (2005); véase también FIG. 1 y FIG. 2).

El agrupamiento de miR basado en perfiles de expresión derivados de 363 muestras de cáncer sólido y 177 normales usando 228 miR se muestra en la FIGURA 1. El árbol, que muestra una muy buena separación entre los diferentes tejidos, se construyó usando 137 miARN diferentes que se expresaron en al menos 50 % de las muestras usadas en el estudio.

Tabla 3. miR regulados diferencialmente en 6 tipos de cáncer sólido frente a tejidos normales (estadística de ensayo de T)*.

miR	ID	Media de Cáncer	Media Normal	Estadística de ensayo	p sin procesar	р Ај
miR-21	Nº 17	11,538663	9,648338	7,861136	2,00E-06	2,00E-06
miR-141	Nº 137	9,024091	7.905398	6,238014	2,00E-06	2,00E-06

45

miR	ID	Media de Cáncer	Media Normal	Estadística de ensayo	p sin procesar	р Ај
miR-212	Nº 208	13,540651	14,33617	-6-57942	2,00E-06	2,00E-06
miR-128a prec	Nº 113	12,32588	13,522675	-6,76388	2,00E-06	2,00E-06
miR-138-2	Nº 133	11,739557	13,144746	-7,01204	2,00E-06	2,00E-06
miR-218-2	Nº 221	11,279787	12,539366	-7,40557	2,00E-06	2,00E-06
miR-23b	Nº 51	14,169748	15,949736	-8,37744	2,00E-06	2,00E-06
miR-195	Nº 184	10,343991	9,172985	5,763262	2,00E-06	1,00E-05
miR-213 prec	Nº 209	12,686966	13,661763	-5,83132	4,00E-06	1,00E-05
miR-29b-2	№ 95	11,27556	9,940731	5,660854	2,00E-06	1,40E-05
miR-199a-1	Nº 191	10,032008	8,920183	5,528849	2,00E-06	3,00E-05
miR-9-3	№ 28	11,461922	12,570412	-5,43006	2,00E-06	4,60E-05
miR-128a	Nº 114	13,024235	13,856624	-5,35102	6,00E-06	7,20E-05
let-7a-1	Nº 1	12,616569	13,455246	-5,35346	2,00E-06	7,20E-05
let-7b	№ 5	13,42636	14,068521	-5,17701	1,00E-05	0,000146
miR-16-2	№ 39	10,460707	9,305895	5,048375	4,00E-06	0,000224
miR-199a-2	Nº 192	9,714225	8,759237	4,862553	1,00E-05	0,000494
miR-152 prec	Nº 151	11,388676	12,357529	-4,83716	2,00E-06	0,00053
miR-16-1	№ 38	10,443169	9,338182	4,755258	1,00E-05	0,00071
miR-30d	№ 72	13,982017	14,775206	-4,5707	1,20E-05	0,001476
miR-34n	№ 78	10,675566	9,63769	4,467301	2,60E-05	0,00217
miR-17-5p	Nº 41	11,567244	10,281468	4,341834	3,80E-05	0,0034
miR-128b	Nº 115	10,930395	9,947746	4,304764	3,80E-05	0,003912
miR-20a	Nº 46	11,409852	10,19284	4,304678	3,20E-05	0,003912
miR-181b-1 prec	Nº 211	9,577504	8,804394	4,285968	4,80E-05	0,004126
miR-132	Nº 131	9,599947	8,775966	4,284737	5,60E-05	0,004126
miR-200b		9,475221	8,527243	4,221511	4,00E-05	0,0052
let-7a-3	Nº 4	10,436089	9,511546	4,08952	0,000104	0,008242
miR-138-1	Nº 132	8,299613	9,200253	-4,05204	5,60E-05	0,00931
miR-29c	Nº 65	11,291005	10,326912	4,019385	0,000144	0,010312
miR-29a	Nº 62	11,381359	10,461075	4,013697	0,00015	0,010398
miR-96	Nº 86	11,37218	12,136636	-3,94825	0,000138	0,012962
miR-191	Nº 177	13,498207	12,729872	3,817228	0,000158	0,02015
miR-37a	Nº 59	10,399338	9,548582	3,715048	0,000344	0,038096
let-7g	Nº 15	10,819688	10,01157	3,653239	0,000426	0,033874
miR-9-1	Nº 24	10,102819	9,213988	3,651886	0,000388	0,033874
miR-125a	Nº 107	10,960998	10,005312	3,651356	0,000452	0,033874
miR-95	Nº 84	9,435733	8,751331	3,59406	0,000478	0,039594
miR-155	Nº 157	12,505359	13,231221	-3,58369	0,000614	0,040394
miR-199b		9,755066	9,082751	3,55934	0,000588	0,04314
miR-24-2	Nº 54	12,611696	11,612557	3,518774	0,00087	0,048278
let-7e	Nº 11	12,497795	13,055093	-3,51589	0,00054	0,048354
miR-92-1	Nº 81	16,081074	16,592426	-3,50446	0,000928	0,49828
			-,		.= .,	,

^{* -} Cuarenta y tres miR tienen un p valor ajustado menor de 0,05. Veintiséis miR están sobreexpresados y 17 regulados negativamente en carcinomas de mama, colon, pulmón, páncreas, próstata, estómago.

Tabla 4. miR regulados diferencialmente en 6 tipos de cáncer sólido frente a tejidos normales (SAM, análisis de

significación de micromatrices)*.						
miR	ID	Valor d.	devtip	Valor p	Valor q	Factor de R
miR-21	Nº 47	3,156	0,24	0	0	2,593
miR-23b	№ 51	-3,117	0,212	0	0	0,443
miR-138-2	№ 133	-2,514	0,2	0	0	0,402
miR-218-2	Nº 221	-2,383	0,17	0	0	0,384
miR-29b-2	№ 95	2,246	0,236	0	0	1,868

miR-128a	Nº 113	-2,235	0,177	0	0	0,368
prec						
miR-195	Nº 184	2,095	0,203	0	0	1,695
miR-141	Nº 137	2,08	0,179	0	0	2,459
miR-199a-1	№ 191	1,987	0,201	0	0	1,945
miR-9-3	Nº 28	-1,97	0,204	0	Ö	0,433
miR-16-2	Nº 39	1,966	0,229	0	0	1,788
miR-17-Sp	Nº 41	1,964	0,296	0	0	0,725
miR-10a	Nº 46	1,898	0,283	0	0	0,969
miR-16-1	Nº 38	1,87	0,232	0	0	1,447
miR-212	Nº 209	-1,854	0,167	0	0	0,509
prec						
miR-34a	№ 78	1,756	0,232	0	0	1,219
miR-152	Nº 151	-1734	0,2	0	0	0,46
prec	-	_	-,	_	-	-, -
miR-199a-2	Nº 192	1,721	0,196	0	0	1,838
miR-128b	Nº 115	1,674	0,238	0	0	1,266
	Nº 208	1,659	0,230	0	0	0,627
miR-212				-		,
let-7a-1	Nº 1	-1,628	0,157	0	0	0,461
miR-200b	№ 195	1,626	0,225	0	0	1,432
miR-128a	Nº 114	-1,619	0,156	0	0	0,511
miR-29e	Nº 65	1,611	0,24	0	0	1,225
let-7a-3	Nº 4	1,581	0,226	0	0	1,109
miR-29a	Nº 62	1,565	0,229	0	0	1,706
miR-24-2	Nº 54	1,555	0,284	0	0	0,831
miR-138-1	Nº 132	1,551	0,222	0	0	0,432
miR-125a	Nº 107	1,541	0,262	0	0	1,164
miR-106a	Nº 99	1,514	0,275	0	0	0,952
miR-132	Nº 121	1,496	0,192	Ö	Ö	2,158
miR-30d	Nº 72	-1,491	0,174	0	Ö	0,424
miR-9-1	Nº 24	1,478	0,174	0	0	0,763
miR-27a	Nº 59	1,448	0,244	0	0	1,174
miR-181b-1	N° 211	1,435	,	0	0	1,525
	IN- 211	1,433	0,18	U	U	1,323
prec	NIO 4 E	1 004	0.001	0	0	1.070
let-7g	Nº 15	1,394	0,221	0	0	1,072
miR-96	Nº 86	-1,384	0,194	0	0	0,519
miR-191	Nº 177	1,372	0,201	0	0	1,165
miR-93-1	Nº 83	1,363	0,266	0	0	0,775
miR-136	№ 130	-1,355	0,267	0	0	0,364
miR-205	Nº 201	1,343	0,309	0	0	1,281
miR-185	Nº 170	1,287	0,222	0,001	0,001	0,609
miR-125b-1	Nº 109	1,262	0,283	0,001	0,001	1,215
miR-10a	№ 30	1,252	0,327	0,001	0,001	1,643
miR-95	Nº 84	1,247	0,19	0,001	0,001	1,509
miR-199b	№ 194	1,228	0,189	0,001	0,001	1,246
miR-10b	Nº 32	1,219	0,232	0,002	0,001	1,342
let-7i	Nº 10	1,216	0,203	0,002	0,001	1,026
miR-210	Nº 205	1,213	0,203	0,002	0,001	1,088
* -Treinta v cinco miR es						

^{* -}Treinta y cinco miR están sobreexpresados y 14 están regulados negativamente en carcinomas de mama, colon, pulmón, páncreas, próstata, estómago (Delta = 0,9, FDR=0,001).

Tabla 5. MicroARN seleccionados por PAM (análisis de predicción de micromatriz) en 6 tipos de cáncer sólido frente a tejidos normales

miR	ID	Puntuación de cáncer sólido	Puntuación de tejidos normales
miR-21	Nº 47	0,0801	-0,2643
miR-138-2	№ 133	-0,055	0,1815
miR-218-2	Nº 221	-0,0535	0,1765
miR-23b	Nº 51	-0,0516	0,17
miR-128a prec	Nº 113	-0,0498	0,1642
miR-29b-2	№ 95	0,0457	-0,1508
miR-195	Nº 184	0,0404	-0,1333

miR-17-5p	Nº 41	0,0383	-0,1263
miR-9-3	Nº 28	-0,0357	0,1176
miR-212 prec	Nº 209	-0,0342	0,1129
miR-20a	Nº 46	0,0322	-0,1061
miR-141	Nº 137	0,0322	-0,1061
miR-199a-1	Nº 191	0,0319	-0,1053
miR-16-2	Nº 39	0,0315	-0,1037
miR-152 prec	№ 151	-0,0283	0,0933
miR-16-1	№ 38	0,0277	-0,0913
miR-34a	№ 78	0,0269	-0,0886
miR-212	Nº 208	-0,0265	0,0875
let-7a-1	Nº 1	-0,0264	0,0872
miR-128a	Nº 114	-0,0259	0,0855
miR-128b	Nº 115	0,0254	-0,0839
miR-24-2	Nº 54	0,0244	-0,0803
miR-29e	Nº 65	0,0224	-0,0738
miR-199a-2	№ 192	0,0223	-0,0736
let-7a-3	Nº 4	0,0221	-0,073
miR-191	Nº 177	0,0188	-0,062
miR-125a	Nº 107	0,0186	-0,0613
miR-30d	Nº 72	-0,0185	0,061
miR-29a	Nº 62	0,0184	-0,0608
miR-106a	Nº 99	0,0177	-0,0384
miR-93-1	№ 83	0,0163	-0,0537
miR-200b	Nº 195	0,0159	-0,0524
let-7g	Nº 15	0,0158	-0,0521
miR-27a	Nº 59	0,0157	-0,0518
miR-96	Nº 86	-0,0156	0,0514
let-7b	Nº 5	-0,0152	0,0501
miR-138-1	№ 132	-0,0151	0,0499
miR-9-1	Nº 24	0,0136	-0,0448
miR-181b-1 prec	Nº 211	0,0134	-0,0442
miR-155	Nº 157	-0,0128	0,0423
miR-132	Nº 121	0,0127	-0,0418
miR-136	Nº 130	-0,0112	0,037
let-7i	Nº 10	0,0103	-0,034
miR-210	Nº 205	0,0074	-0,0245
miR-205	Nº 201	0,0073	-0,024
*. miR-185	Nº 170	0,0071	-0,0234
miR-24-1	Nº 52	0,007	-0,023
miR-199b	Nº 194	0,0064	-0,021
miR-125b-1	Nº 109	0,006	-0,0199
miR-206 prec	Nº 203	-0,005	0,0166
miR-10a	Nº 30	0,0045	-0,015
miR-95	Nº 84	0,0045	-0,0149
let-7c	Nº 11	-0,0039	0,013
miR-124a-3	Nº 106	-0,0028	0,0091
miR-10b	№ 32	0,002	-0,0066
miR-185 prec.	Nº 171	-0,0014	0,0047
miR-92-1	Nº 81	-2,00E-04	5,00E-04
+ T 4 5 1 1	oificación car	ivecede 0.176 Trainte v.	

^{* -} T=1.5 y error de clasificación equivocada = 0,176. Treinta y seis miR sobreexpresados en cáncer están indicados por puntuaciones de cáncer positivas; 21 miR regulados negativamente están indicados por

puntuaciones de cáncer negativas.

Ejemplo 2: Identificación de distintivos de expresión de microARN asociados con diversos cánceres sólidos humanos.

5 Resultados

10

Para identificar microARN que son pronóstico de estado de cáncer asociado con tumores sólidos, sin incurrir en una desviación debido a la especificidad de tejido, se usó un enfoque alternativo. En primer lugar, se obtuvieron seis distintivos específicos de tejido, uno para cada histotipo de cáncer, realizando ensayos de PAM independientes (resumidos en las Tablas 6 y 7). Se muestran distintivos específicos para cada cáncer en las Tablas 8-13: por ejemplo, mama-Tabla 8; colon-Tabla 9; pulmón-Tabla 10; páncreas-Tabla 11; próstata-Tabla 12; estómago-Tabla 13. Usando estos datos, se identificaron microARN desregulados que se compartían entre los distintivos de miARN de diferentes histotipos (Tabla 14). Para calcular los p valores para este análisis comparativo, se realizó un ensayo de nueva toma de muestras con 1.000.000 de permutaciones aleatorias sobre la identidad del miARN. El p valor se definió como la frecuencia relativa de puntuaciones de simulación que sobrepasaban la puntuación real. Se identificaron 21 microARN regulados erróneamente que eran comunes de al menos 3 tipos de cánceres sólidos (p valor = 2,5x10-3) (Tabla 14).

Tabla 6. MicroARN usados para clasificar cánceres humanos y tejidos normales*.

Cáncer	miR regulados positivamente	miR regulados negativamente	Error de clasificación equivocada después de validación cruzada 10 veces
Mama	15	12	0,08
Colon	21	1	0,09
Pulmón	35	3	0,31
Páncreas	55	2	0,02
Próstata	39	6	0,11
Estómago	22	6	0,19

^{* -} Se realizó normalización de la mediana y se usó el método de los centroides hundidos más cercanos para seleccionar miARN predictivos.

Tabla 7. microARN desregulados en cánceres comunes sólidos*.

Cáncer	Regulados	Regulados	Regulados	Regulados
	positivamente por PAM	positivamente por SAM	negativamente por PAM	negativamente por SAM
Mama	15	3 (FDR=0,33)	12	47
Colon	21	42 (FDR<=0,06)	1	5
Pulmón	35	38 (FDR<=0,01)	3	3
Páncreas	55	50 (FDR<=0,01)	2	8
Estómago	22	22 (FDR=0,06)	6	4
Próstata	39	49 (FDR=0,06)	6	3

^{* -} El análisis de predicción de micromatrices (PAM) identifica los genes que caracterizan mejor cánceres y tejidos normales, mientras que el análisis de significación de micromatrices (SAM) identifica los que tienen expresión diferencial en las dos clases. Las tasas de detección falsa (FDR) calculadas en SAM se indican entre paréntesis.

Tabla 8. MicroARN seleccionados por análisis de predicción de micromatriz (PAM) en cáncer de mama (cáncer frente a tejidos normales)*.

miR	Puntuación de cáncer	Puntuación norn	nal
miR-21 (Nº 47)		0,0331	-0,4364
miR-29b-2 (Nº 95)		0,0263	-0,3467
miR-146 (Nº 144)		0,0182	-0,2391
miR-125b-2 (№ 111)		-0,0174	0,2286
miR-125b-1 (Nº 109)		-0,0169	0,222
miR-10b (Nº 32)		-0,0164	0,2166
miR-145 (Nº 143)		-0,0158	0,2076
miR-181a (Nº 158)		0,0153	-0,201
miR-140 (Nº 136)		-0,0122	0,1613
miR-213 (Nº 160)		0,0116	-0,1527
miR-29a prec (Nº 63)		0,0109	-0,1441

20

miR	Puntuación de cáncer	Puntuación normal
miR-181b-1 (Nº 210)	0,0098	-0,1284
miR-199b (Nº 194)	0,0089	-0,1172
miR-29b-1 (Nº 64)	0,0084	-0,1111
miR-130a (Nº 120)	-0,0076	0,1001
miR-155 (№ 157)	0,0072	-0,0951
let-7a-2 (Nº 3)	-0,0042	0,0554
miR-205 (Nº 201)	-0,004	0,0533
miR-29c (Nº 65)	0,0032	-0,0423
miR-224 (Nº 228)	-0,003	0,0399
miR-100 (№ 91)	-0,0021	0,0283
miR-31 (№ 73)	0,0017	-0,022
miR-30c (Nº 70)	-7,00E-04	0,009
miR-17-5p (№ 41)	7,00E-04	-0,0089
miR-210 (Nº 205)	4,00E-04	-0,0057
miR-122a (Nº 101)	4,00E-04	-0,005
miR-16-2 (Nº 39)	-1,00E-04	0,0013

^{* 27} miR seleccionados, error de clasificación equivocada después de validación cruzada de 0,008. Diecisiete miR sobreexpresados en cáncer se indican por puntuaciones de cáncer positivas; 12 miR regulados negativamente se indican por puntuaciones de cáncer negativas.

Tabla 9. MicroARN seleccionados por análisis de predicción de micromatriz (PAM) en colon (cáncer frente a tejidos normales)*.

miR	Puntuación de cáncer	Puntuación normal
miR-24-1 (Nº 52)	0,09	72 -0,5589
miR-29b-2 (Nº 95)	0,06	69 -0,3845
miR-20a (Nº 46)	0,05	96 -0,3424
miR-10a (Nº 30)	0,05	11 -0,2938
miR-32 (№ 75)	0,04	01 -0,2306
miR-203 (№ 197)	0,03	91 -0,2251
miR-106a (Nº 99)	0,03	64 -0,2094
miR-17-5p (Nº 41)	0,03	49 -0,2005
miR-30c (Nº 70)	0,03	28 -0,1888
miR-223 (Nº 227)	0,03	02 -0,1736
miR-126* (Nº 102)	0,01	99 -0,1144
miR-128b (№ 115)	0,01	77 -0,102
miR-21 (Nº 47)	0,01	62 -0,0929
miR-24-2 (Nº 54)	0,01	45 -0,0835
miR-99b prec (Nº 88)	0,01	25 -0,0721
miR-155 (Nº 157)	0,00	92 -0,0528
miR-213 (Nº 160)	0,00	91 -0,0522
miR-150 (Nº 148)	0,00	42 -0,0243
miR-107 (Nº 100)	0,0	03 -0,0173
miR-191 (№ 177)	0,00	28 -0,0159
miR-221 (Nº 224)	0,0	02 -0,0116
miR-9-3 (Nº 28)	-0,00	14 0,0083

^{* 22} miR seleccionados, error de clasificación equivocada después de validación cruzada de 0,09. Veintiún miR sobreexpresados en cáncer se indican por puntuaciones de cáncer positivas; 1 miR regulado negativamente se indica por una puntuación de cáncer negativa

⁵ Tabla 10. MicroARN seleccionados por análisis de predicción de micromatriz (PAM) en cáncer de pulmón (cáncer frente a tejidos normales)*.

miR	Puntuación de cáncer	Puntuación normal	
miR-21 (Nº 47)		0,175	-0,175

miR-205 (Nº 201)	0,1317	-0,1317
miR-200b (Nº 195)	0,1127	-0,1127
miR-9-1 (Nº 24)	0,1014	-0,1014
miR-210 (Nº 205)	0,0994	-0,0994
miR-148 (Nº 146)	0,0737	-0,0737
miR-141 (Nº 137)	0,0631	-0,0631
miR-132 (№ 121)	0,0586	-0,0586
miR-128b (Nº 115)	0,0559	-0,0559
let-7g (Nº 15)	0,0557	-0,0557
miR-16-2 (Nº 39)	0,0547	-0,0547
miR-129-1/2 prec (Nº 118)	0,0515	-0,0515
miR-126* (Nº 102)	-0,0406	0,0406
miR-142-as (Nº 139)	0,0366	-0,0366
miR-30d (Nº 72)	-0,0313	0,0313
miR-30a-5p (Nº 66)	-0,0297	0,0297
miR-7-2 (Nº 21)	0,0273	-0,0273
miR-199a-1 (№ 191)	0,0256	-0,0256
miR-127 (№ 112)	0,0254	-0,0254
miR-34a prec (Nº 79)	0,0214	-0,0214
miR-34a (Nº 78)	0,0188	-0,0188
miR-136 (Nº 130)	0,0174	-0,0174
miR-202 (Nº 196)	0,0165	-0,0165
miR-196-2 (Nº 188)	0,0134	-0,0134
miR-199a-2 (№ 192)	0,0126	-0,0126
let-7a-2 (Nº 3)	0,0109	-0,0109
miR-124a-1 (№ 104)	0,0081	-0,0081
miR-149 (№ 147)	0,0079	-0,0079
miR-17-5p (№ 41)	0,0061	-0,0061
miR-196-1 prec (Nº 186)	0,0053	-0,0053
miR-10a (№ 30)	0,0049	-0,0049
miR-99b prec (Nº 88)	0,0045	-0,0045
miR-196-1 (№ 185)	0,0044	-0,0044
miR-199b (Nº 194)	0,0039	-0,0039
miR-191 (№ 177)	0,0032	-0,0032
miR-195 (Nº 184)	7,00E-04	-7,00E-04
miR-155 (№ 157)	7,00E-04	-7,00E-04
* 20 miD cologgianados, arror do clasificación equivação	la después de validación eruzada de	o 0.21 Trointo v

^{* 38} miR seleccionados, error de clasificación equivocada después de validación cruzada de 0,31. Treinta y cinco miR sobreexpresados en cáncer se indican por puntuaciones de cáncer positivas; 3 miR regulados negativamente se indican por una puntuaciones de cáncer negativas.

Tabla 11. MicroARN seleccionados por análisis de predicción de micromatriz (PAM) en cáncer pancreático (cáncer frente a tejidos normales)*.

miR	Puntuación de cáncer	Puntuación normal	
miR-103-2 (№ 96)	0,4746	3	-1,582
miR-103-1 (№ 97)	0,4089)	-1,3631
miR-24-2 (Nº 54)	0,4059)	-1,3529
miR-107 (№ 100)	0,370		-1,2336
miR-100 (№ 91)	0,3546	6	-1,182
miR-125b-2 (Nº 111)	0,3147	7	-1,0489
miR-125b-1 (Nº 109)	0,307		-1,0237
miR-24-1 (Nº 52)	0,2846	3	-0,9488
miR-191 (№ 177)	0,266		-0,887
miR-23a (№ 50)	0,2586	3	-0,8619
miR-26a-1 (Nº 56)	0,208		-0,6937

miRs-222 (Nº 225) miR-21a (Nº 59) miRs-92-1 (Nº 81) miRs-21 (Nº 47)	0,0405 0,0332 0,0288	-0,1351 -0,1106 -0,0959
miR-21a (№ 59)		
·	0,0405	-0,1351
MIRS-222 (N° 225)		
·	0,0416	-0,1385
miR-20a (№ 46)	0,0452	-0,1507
miR-23b (Nº 51)	0,0469	-0,1562
miR-152 prec (№ 151)	-0,0477	0,1591
miR-181b-1 (Nº 210)	0,0576	-0,1918
miRs-132 (№ 121)	0,0654	-0,2179
miR-30a-5p (Nº 66)	0,077	-0,2568
miR-140 (№ 136)	0,0904	-0,3015
miRs-93-1 (Nº 83)	0,0918	-0,3061
miR-7-1 (№ 19)	0,0933	-0,311
miR-30c (№ 70)	0,0948	-0,316
miR-17-5p (Nº 41)	0,0955	-0,3185
miR-197 (№ 189)	0,0975	-0,325
miR-129-1/2 (Nº 117)	0,1001	-0,3337
miR-30b (Nº 68)	0,1008	-0,3361
miR-29c (Nº 65)	0,113	-0,3768
miR-223 (Nº 227)	0,1141	-0,3803
miR-199a-1 (Nº 191)	0,1158	-0,3861
miR-92-2 (Nº 82)	0,116	-0,3865
miR-30d (№ 72)	0,1301	-0,4336
miR-224 (№ 228)	0,165	-0,4549
miR-99a (Nº 90)	0,1374	-0,4581
miR-16-1 (Nº 38)	0,1424	-0,4746
miR-25 (Nº 55)	0,1432	-0,4775
miR-29a (Nº 62)	0,1454	-0,4848
miR-29b-2 (Nº 95)	0,1487	-0,4956
miR-155 (№ 157)	-0,1529	0,5098
miR-128b (Nº 115)	0,1536	-0,512
miR-99b (№ 89)	0,1636	-0,5454
miR-214 (Nº 212)	0,1642	-0,5472
miR-146 (Nº 144)	0,1656	-0,552
miR-16-2 (Nº 39)	0,1698	-0,5659
miR-126* (Nº 102)	0,1732	-0,5772
miR-221 (№ 224)	0,177	-0,59
miR-145 (№ 143)	0,1847	-0,6158
miR-26b (Nº 58)	0,1861	-0,6203
miR-130a (Nº 120)	0,1891	-0,6303
miR-125a (Nº 107)	0,1932	-0,644

^{* 57} miR seleccionados, error de clasificación equivocada después de validación cruzada de 0,02. Cincuenta y siete miR se sobreexpresan y 2 se regulan negativamente en cáncer (indicado por puntuaciones positivas y negativas, respectivamente).

Tabla 12. MicroARN seleccionados por análisis de predicción de micromatriz (PAM) en cáncer de próstata (cáncer frente a tejidos normales)*.

miR	frente a tejidos normales)*. Puntuación de cáncer P	untuación normal
let-7d (Nº 8)	0,0528	-0,4227
miR-128a prec (Nº 113)	-0,0412	0,3298
miR-195 (Nº 184)	0,04	-0,3199
miR-203 (Nº 197)	0,0356	-0,2851
let-7a-2 prec (Nº 2)	-0,0313	0,2504
miR-34a (Nº 78)	0,0303	-0,2428
miR-20a (Nº 46)	0,029	-0,2319
miR-218-2 (Nº 221)	-0,0252	0,2018
miR-29a (Nº 62)	0,0247	-0,1978
miR-25 (№ 55)	0,0233	-0,1861
miR-95 (№ 84)	0,0233	-0,1861
miR-197 (№ 189)	0,0198	-0,1587
miR-135-2 (№ 128)	0,0198	-0,1582
miR-187 (№ 173)	0,0192	-0,1535
miR-196-1 (№ 185)	0,0176	-0,1411
miR-148 (№ 146)	0,0175	-0,1401
miR-191 (№ 177)	0,017	-0,136
miR-21 (Nº 47)	0,0169	-0,1351
let-7i (Nº 10)	0,0163	-0,1303
miR-198 (№ 190)	0,0145	-0,1161
miR-199a-2 (Nº 192)	0,0136	-0,1088
miR-30c (Nº 70)	0,0133	-0,1062
miR-11-5p (№ 41)	0,0132	-0,1053
miR-92-2 (Nº 82)	0,012	-0,0961
miR-146 (Nº 144)	0,0113	-0,0908
miR-181b-1 prec (Nº 211)	0,011	-0,0878
miR-32 (№ 75)	0,0109	-0,0873
miR-206 (Nº 202)	0,0104	-0,083
miR-184 prec (Nº 169)	0,0096	-0,0764
miR-29a prec (Nº 63)	-0,0095	0,076
miR-29b-2 (Nº 95)	0,0092	-0,0739
miR-149 (№ 147)	-0,0084	0,0676
miR-181b-1 (Nº 210)	0,0049	-0,0392
miR-196-1 prec (Nº 186)	0,0042	-0,0335
miR-93-1 (Nº 83)	0,0039	-0,0312
miR-223 (Nº 227)	0,0038	-0,0308
miR-16-1 (Nº 38)	0,0028	-0,0226
miR-101-1 prec (Nº 92)	0,0015	-0,0123
miR-124a-1 (Nº 104)	0,0015	-0,0119
miR-26a-1 (Nº 56)	0,0015	-0,0119
miR-214 (№ 212)	0,0013	-0,0105
miR-27a (№ 59)	0,0011	-0,0091
miR-24-1 (Nº 53)	-8,00E-04	0,0067
miR-106a (Nº 99)	7,00E-04	-0,0057
miR-199a-1 (Nº 191)	4,00E-04	-0,0029

^{* -} T=1, 45 miR seleccionados, error de clasificación equivocada después de validación cruzada de 0,11. Treinta y nueve miR sobreexpresados en cáncer se indican por puntuaciones de cáncer positivas; 6 miR regulados negativamente se indican por puntuaciones de cáncer negativas.

Tabla 13. MicroARN seleccionados por análisis de predicción de micromatriz (PAM) en cáncer de estómago (cáncer

miR	Puntua	Puntuación normal	
miR-223 (Nº 227)		0,1896	-0,1806
miR-21 (Nº 47)		0,1872	-0,1783
miR-218-2 (Nº 221)		-0,1552	0,1478
miR-103-2 (Nº 96)		0,1206	-0,1148
miR-92-2 (Nº 82)		0,1142	-0,1088
miR-25 (№ 55)		0,1097	-0,1045
miR-136 (№ 130)		-0,1097	0,1045
miR-191 (Nº 177)		0,0946	-0,0901
miR-221 (Nº 224)		0,0919	-0,0876
miR-125b-2 (Nº 111)		0,0913	-0,0869
miR-103-1 (Nº 97)		0,0837	-0,0797
miR-214 (Nº 212)		0,0749	-0,0713
miR-222 (Nº 225)		0,0749	-0,0713
miR-212 prec (Nº 209)		-0,054	0,0514
miR-125b-1 (Nº 109)		0,0528	-0,0503
miR-100 (Nº 91)		0,0526	-0,0501
miR-107 (Nº 100)		0,0388	-0,0369
miR-92-1 (Nº 81)		0,0369	-0,0351
miR-96 (Nº 86)		-0,0306	0,0291
miR-192 (Nº 178)		0,0236	-0,0224
miR-23a (Nº 50)		0,022	-0,021
miR-215 (Nº 213)		0,0204	-0,0194
miR-7-2 (Nº 21)		0,0189	-0,018
miR-138-2 (Nº 133)		-0,0185	0,0176
miR-24-1 (Nº 52)		0,0151	-0,0144
miR-99b (Nº 89)		0,0098	-0,0093
miR-33b (Nº 76)		-0,0049	0,0046
miR-24-2 (Nº 54)		0,0041	-0,0039

^{* -} T=1, 28 miR seleccionados, error de clasificación equivocada después de validación cruzada de 0,19. Veintidós miR sobreexpresados en cáncer se indican por puntuaciones de cáncer positivas; 6 miR regulados negativamente se indican por puntuaciones de cáncer negativas.

Tabla 14. Los microARN compartidos por los distintivos de los 6 cánceres sólidos*.

miR	N	Tipo de Tumor
miR-21	6	Mama Colon Pulmón Páncreas Próstata Estómago
miR-17-5p	5	Mama Colon Pulmón Páncreas Próstata
miR-191	5	Colon Pulmón Páncreas Próstata Estómago
miR-29b-2	4	Mama Colon Páncreas Próstata
miR-223	4	Colon Páncreas Próstata Estómago
miR-128b	3	Colon Pulmón Páncreas
miR-199a-1	3	Pulmón Páncreas Próstata
miR-24-1	3	Colon Páncreas Estómago
miR-24-2	3	Colon Páncreas Estómago
miR-146	3	Mama Páncreas Próstata
miR-155	3	Mama Colon Pulmón

miR-181b-1	3	Mama Páncreas Próstata
miR-20a	3	Colon Páncreas Próstata
miR-107	3	Colon Páncreas Estómago
miR-32	3	Colon Páncreas Próstata
miR-92-2	3	Páncreas Próstata Estómago
miR-214	3	Páncreas Próstata Estómago
miR-30c	3	Colon Páncreas Próstata
miR-25	3	Páncreas Próstata Estómago
miR-221	3	Colon Páncreas Estómago
miR-106a	3	Colon Páncreas Próstata

^{* -} La lista incluye 21 microARN regulados positivamente habitualmente en 3 o más (N) tipos de cánceres sólidos (p valor = 2,5x10⁻³).

Para maximizar la concisión, se calcularon los niveles de expresión absolutos medios de los miR desregulados para los 6 pares de cáncer/normal. Usando el nivel de expresión de los miR en el subconjunto exhaustivo, los diferentes tejidos se clasificaron correctamente independientemente de su estado de enfermedad (FIGURA 3).

La FIGURA 4 muestra la expresión diferencial de los microARN comunes entre los diferentes tejidos tumorales, en relación con los tejidos normales. El árbol presenta los diferentes tipos de cáncer según el factor de cambio en el subconjunto de miARN. Los tejidos de próstata, colon, estómago y pancreático son más similares entre ellos, mientras que los tejidos de pulmón y de mama se representaron por un distintivo bastante diferente (FIGURA 4). Este árbol claramente muestra qué miARN están asociados con un histotipo de cáncer particular.

Sorprendentemente, miR-21, miR-191 y miR-17-5p están significativamente sobreexpresados en todos, o en 5 de 6, de los tipos tumorales que se consideraron. Se indicó que miR-21 estaba sobreexpresado en glioblastoma y que tenía propiedades antiapoptóticas (Chan, J. A., et al., Cancer Res. 65: 6029-6033 (2005)). El cáncer de pulmón comparte una parte de su distintivo con el cáncer de mama y una parte con los otros tumores sólidos, incluyendo miR-17/20/92, los tres de los cuales son miembros del grupo de microARN que coopera activamente con c-Myc para acelerar la linfomagénesis (He, L., et al., Nature 435: 828-833 (2005)). La identificación de estos microARN como sobreexpresados es una excelente confirmación del enfoque de los inventores. Un segundo grupo de miARN que está activado incluye miR-210 y miR-213, junto con miR-155, que ya se había indicado que estaba amplificado en linfomas de células grandes (Eis, P. S., et al., Proc. Natl. Acad Sci. USA 102: 3627-3632 (2005)), niños con linfoma de Burkitt (Metzler, M., et al., Genes Chromosomes Cancer 39: 117-169 (2004)) y diversos linfomas de linfocitos B (Kluiver, J, et al., J. Pathol., publicado digitalmente en línea, 22 de julio de 2005). Estos microARN son los únicos regulados positivamente en cáncer de mama y pulmón. miR-218-2 está uniformemente regulado negativamente en cánceres de colon, estómago, próstata y páncreas, pero no en carcinomas de pulmón y mama.

Varias observaciones refuerzan estos resultados. En primer lugar, en el presente estudio, los niveles de expresión tanto del pre-miARN precursor como del miARN maduro se determinaron para la mayoría de los genes. Debe observarse que con la excepción de miR-212 y miR-128a, en todos los otros casos, la región expresada de forma anómala era la correspondiente al producto génico activo. En segundo lugar, como se muestra en la FIGURA 3, la variación de expresión de los miARN en el subconjunto exhaustivo era con frecuencia unívoca (concretamente regulación positiva o negativa) entre los diferentes tipos de cánceres, lo que sugiere un mecanismo común en la tumorogénesis humana. En tercer lugar, los datos de micromatrices se validaron por hibridación de solución para 12 muestras de mama (miR-125b, miR-145 y miR-21; lorio, M. V., et al., Cancer Res. 65: 7065-7070 (2005)) y 17 muestras normales y pancreáticas endocrinas (miR-103, miR-155 y miR-204; datos no mostrados), lo que confirma fuertemente la precisión de los datos de micromatrices.

Eiemplo 3: Identificación de dianas predichas para microARN que están desregulados en tumores sólidos.

Materiales y métodos:

10

20

25

30

35

40

45

Predicciones de diana de oncogén y supresor de tumores

Se usaron las predicciones de TargetScan más recientes (Abril de 2005) para identificar dianas de microARN potenciales. Estas incluyen esencialmente las dianas de UTR 3' indicadas por Lewis *et al.* (Lewis, B. P., *et al.*, Cell 120: 15-20 (2005)), con algunos cambios que surgen de las definiciones de límite génico actualizadas del mapeo del Buscador de Genoma de UCSC de Abril de 2005 de los ARNm RefSeq para el ensamblaje de genoma humano

hg17. Entre las dianas potenciales, se especificaron genes de cáncer conocidos (supresores de tumores y oncogenes) de acuerdo con su identificación en el Censo Génico del Cáncer, al que puede accederse en el sitio de Internet www.sanger.ac.uk/genetics/CGP/Census/, o como se indica por OMIM en www.ncbi.nlm.nih.gov.

5 Ensayos in vitro de diana

Para experimentos de indicador de luciferasa, se amplificaron segmentos UTR 3' de Rb1, TGFBR2 y Plag1 que se predice que interaccionarán con microARN asociados con cáncer específico por PCR a partir de ADN genómico humano y se insertaron en el vector de control pGL3 (Promega) usando el sitio Xbal inmediatamente cadena abajo del codón de terminación de la luciferasa. La línea celular megacariocítica humana, MEG-01, se cultivó en FBS 10 % en medio RPMI 1640, complementado con aminoácido no esencial 1x y 1 mmol de piruvato sódico a 37 °C en una atmósfera humidificada de CO2 5 %. Las células se cotransfectaron en placas de 12 pocillos usando siPORT neoFX (Ambion, Austin, TX), de acuerdo con el protocolo del fabricante, con 0,4 μg del vector indicador de luciferasa de luciérnaga y 0,08 μg del vector de control que contiene luciferasa de Renilla, pRL-TK (Promega). Para cada pocillo, se usaron oligonucleótidos de microARN (Dharmacon Research, Lafayette, CO) y oligonucleótidos antisentido o mezclados (Ambion) a una concentración de 10 nM. Las actividades de luciferasa de luciérnaga y Renilla se midieron consecutivas a las 24 horas después de la transfección usando ensayos de luciferasa dobles (Promega).

Transferencia de Western para RB1

Los niveles de proteína RB1 se cuantificaron usando un anticuerpo anti-RB1 monoclonal de ratón (Santa Cruz, CA) usando procedimientos convencionales para transferencia de Western. La normalización se realizó con anticuerpo anti Actina monoclonal de ratón (Sigma).

25 Resultados

10

15

20

30

35

40

60

65

Es necesario entender la importancia funcional de la desregulación del microARN en cáncer. En tumores sólidos, parece que el acontecimiento de microARN más habitual es la ganancia de expresión, mientras que la pérdida de expresión en cáncer es un acontecimiento más limitado, y más específico de tejido. Los inventores usaron un enfoque consecuente de tres etapas en el siguiente orden: en primer lugar, predicción informática de dianas, después ensayo de luciferasa para la primera validación de dianas relevantes para cáncer y, finalmente, correlación de tumor ex vivo entre la expresión del miARN (por micromatriz) y expresión de proteína diana (por transferencia de Western) para un par de interacción miARN:ARNm específico. Las dianas relevantes para miARN de cáncer podrían ser genes de cáncer recesivos (por ejemplo, supresores de tumores) o dominantes (por ejemplo, oncogenes). Para ensayar la hipótesis de que los microARN que se desregulan en tumores sólidos se dirigen a oncogenes o supresores de tumores conocidos, las dianas predichas para estos miARN se determinaron usando Target-Scan, una base de datos de dianas de microARN de UTR 3' conservadas (Lewis, B. P., et al, Cell 120: 15-20 (2005)). TargetScan contenía 5.121 predicciones para 18 miARN que están desregulados en tumores sólidos, en las 22.402 predicciones totales (26,5 %). Se predijeron ciento quince de 263 (44 %) genes de cáncer bien conocidos como dianas para estos 18 miARN (Tabla 15). Debido a que un alto porcentaje de genes de cáncer son dianas de miR que están desregulados en tumores sólidos, es poco probable que estas predicciones se deban a la casualidad (P<0,0001 en ensayo exacto de Fisher).

Las predicciones informáticas para tres genes de cáncer diferentes, Retinoblastoma (Rb), receptor de TGF-beta-2 45 (TGFBR2) y gen de adenoma pleiomórfico 1 (PLAG1), se confirmaron experimentalmente por ensayos in vitro. Usando un ensayo de indicador de luciferasa, tres microARN ensayados (miR-106a, miR-20a y miR-26a-1) provocaron una reducción significativa de la traducción de proteínas en relación con los oligoARN de control mezclados en células MEG-01 transfectadas (FIGURA 6). Se descubrió, por ejemplo, que las UTR 3' de retinoblastoma interaccionaban funcionalmente con miR-106a. La importancia biológica de esta interacción 50 miARN:ARNm se refuerza por informes previos que muestran que el gen de Rb1 se transcribe de forma normal en cánceres de colon, mientras que diversas fracciones de células no expresan proteína Rb1 (Ali, A.A., et al., FASEB J. 7: 931-937 (1993)). Este hallazgo sugiere la existencia de un mecanismo postranscripcional para regular Rb1 que podría explicarse por sobreexpresión de miR-106a conjunta en carcinoma de colon (FIGURA 4). Además, mir-20a está regulado negativamente en cáncer de mama (FIGURA 4) y la proteína TFGBR2 se expresa en el epitelio de 55 células de cáncer de mama (Buck, M. B., et al., Clin. Cancer Res. 10: 491-498 (2004)). Por el contrario, la sobreexpresión de mir-20a en cáncer de colon puede representar un mecanismo nuevo para regular negativamente TGFBR2, además de inactivación mutacional (Biswas, S., et al., Cancer Res. 64: 687-692 (2004)).

Finalmente, se ensayó un conjunto de muestras de paciente para verificar si la expresión de la proteína RB1 se correlacionaba con la expresión de *miR-106a* (FIGURA 5 y FIGURA 6B). Como se esperaba, en muestras de tumor gástrico, de próstata y de pulmón RB1 estaba regulado negativamente (con respecto al normal emparejado) y se descubrió que *miR-106a* estaba sobreexpresado, mientras que en muestras de tumor de mama, donde *miR-106a* está ligeramente regulado negativamente (FIGURA 5 y FIGURA 6B), RB1 se expresa a niveles ligeramente mayores que en el control normal emparejado.

Estas pruebas experimentales refuerzan la hipótesis de que genes clave del cáncer están regulados por expresión

aberrante en miR en cánceres sólidos. Estos datos añaden nuevos ejemplos a la lista de microARN con importantes dianas de genes de cáncer, como se ha mostrado previamente por Johnsson *et al.* (Johnson, S. M., *et al.*, Cell 120: 635-647 (2005)) para la interacción let-7:Ras, O'Donnell *et al.* (O'Donnell, K. A., *et al.*, Nature 435: 839-843 (2005)) para la interacción miR-17-5p:cMyc, y Cimmino *et al.* (Cimmino, A., *et al.*, Proc. Natl. Acad. Sci. USA 102: 13944-13949 (2005)) para la interacción mir-16:Bcl2. Notablemente, miR-17-5p y miR-16 son miembros del distintivo de cáncer sólido de miARN descrito en la presente memoria.

Tabla 15. Oncogenes y genes supresores de tumores predichos por TargetScanS como dianas de microARN del subconjunto de cáncer exhaustivo.*

		njunto de cáncer exhaustivo.*
Gen de miARN	Nombre del gen	Descripción del gen
		homólogo de oncogén viral de leucemia murina de Abelson v-abl 2
miR-26a, miR-146	ABL2	(arg, gen relacionado con Abelson)
miR-107	AF5q31	gen fusionado con ALL1 de 5q31
miR-20, miR-125b	AKT3	homólogo de oncogén viral de timoma murino v-akt 3
miR-26a, miR-155 miR-	APC	poliposis adenomatosa de colon
125b		
miD 06a miD 010	ADUCEE10	factor de intercambio de nucleótidos de guanina de RHO (GEF) 12
miR-26a, miR-218	ARHGEF12	(LARG)
miR-107, miR-221	ARNT	translocador nuclear de receptores de hidrocarburos de arilo
miR-192	ATF1	factor de transcripción activador 1
miR-26a	ATM	ataxia telangiectasia mutada (incluye grupos de complementación
		A, C y D)
miR-24	AXL	tirosina quinasa receptora de AXL
miR-26a, miR-107, miR-		
146, miR-155 miR-138,		
miR-92	BCL11A	CLL de linfocitos B/linfoma 11A
miR-20	BCL11B	CLL de linfocitos B/linfoma 11B (CTIP2)
miR-21	BCL2	CLL de linfocitos B/linfoma 2
miR-26a, miR-26a miR-	BCL6	CLL de linfocitos B/linfoma 6 (proteína de dedo de cinc 51)
20,		
miR-92	BCL9	CLL de linfocitos B/linfoma 9
miR-26a, miR-223 miR-	CBFB	subunidad beta del factor de unión al núcleo
221, miR-125b		
miR-218	CCDC6	Dominio superenrollado que contiene 6 ciclinas D1
miD 00	CCND1	(PRAD1:adenomatosis paratiroidea 1)
miR-20	CCND1	
miR-26a, miR-20	CCND2	ciclina D2
miR-26a, miR-107, miR-	CDK6	quinasa dependiente de ciclina 6
92	ODIANA	
miR-20	CDKN1A	inhibidor de quinasa dependiente de ciclina 1A (p21, Cip1)
miR-221, miR-92	CDKN1C	inhibidor de quinasa dependiente de ciclina 1C (p57, Kip2)
miR-24	CDX2	factor de transcripción de caja homeótica de tipo caudal 2
miR-92	CEBPA	CCAAT/proteína de unión potenciadora (C/EBP), alfa
miR-26a	CLTC	clatrina, polipéptido pesado (He)
miR-218	COL1A1	colágeno, tipo I, alfa 1
miR-26a	CREBBP	proteína de unión a CREB (CBP)
miR-20	CRK	homólogo del oncogén CT10 del virus del sarcoma aviar v-crk
miR-20	CSF1	factor estimulante de colonias 1 (macrófagos)
miR-221, miR-192	DDX6	polipéptido 6 de la caja DEAD/H (Asp-Glu-Ala-Asp/His) (helicasa
miD 100	DEK	de ARN, 54 kD)
miR-138	DEK	unión)
miR-20	E2F1	factor de transcripción 1
miR-20	ELK3	ELK3, proteína de dominio ETS (proteína accesoria de SRF 2)
miR-24	ELL	gen de ELL (gen de leucemia rica en lisina 11-19)
miR-26a, miR-138	ERBB4	tipo homólogo de oncogén viral de leucemia eritroblástica aviar v-
miD 001 miD 155 miD		erb-a 4
miR-221, miR-155, miR- 125b	ETS1	homólogo 1 del oncogén E26 de virus de eritroblastosis aviar v-ets
miR-20	ETV1	gen variante 1
miR-125b	ETV6	gen variante i gen variante de ets 6 (oncogén TEL)
miR-223	FAT	homólogo de supresor de tumores FAT (<i>Drosophila</i>)
miR-223, miR-125b, miR-	FGFR2	receptor de factor de crecimiento de fibroblastos 2
218	I GI IIZ	receptor de lactor de crecimiento de libroblastos 2
miR-92	FLI1	integración de virus de leucemia de Friend 1
02		

miR-24, miR-20	FLT1	tirosina quinasa 1 relacionada con fins (factor de crecimiento endotelial vascular/receptor de factor de permeabilidad vascular)
miR-221	FOS	homólogo del oncogén viral de osteosarcoma murino v-fos FBJ
miR-92	FOXG1B	G1B de caja forkhead
miR-223	FOXO3A	O3A de caja forkhead box
miR-125b	GOLGA5	autoantígeno de golgi, subfamilia a de golgina, 5 (PTC5)
miR-138	GPHN	gefirina (GPH)
miR-107, miR-223, miR-	HLF	factor de leucemia hepática
20, miR-218		
miR-26a, miR-107	HMGA1	gancho AT de grupo de alta movilidad 1
miR-20	HOXA13	A13 de caja homeótica
miR-92	HOXA9	A9 de caja homeótica
miR-125b	IRF4	factor regulador de interferón 4
miR-146, miR-20, miR-	JAZF1	yuxtapuesto con otro gen de dedo de cinc 1
138		
miR-92	JUN	homólogo del oncogén 17 del virus de sarcoma aviar v-jun
miR-155	KRAS	homólogo del oncogén viral de sarcoma de rata de Kirsten 2 v-Ki-
:D 040	L A O D 4	ras 2
miR-218	LASP1	proteína LIM y SH3 1
miR-218	LHFP	compañero de fusión de HMGIC de lipoma
miR-125b, miR-218 miR-223	LIFR LMO2	receptor de factor inhibidor de leucemia dominio de LIM solamente 2 (tipo rombotina 1) (RBTN2)
	MAF	
miR-223, miR-155, miR- 125b, miR-92	IVIAF	homólogo del oncogén de fibrosarcoma musculoaponeurótico (aviar) v-maf
miR-92	MAP2K4	proteína quinasa quinasa activada por mitógeno 4
miR-146, miR-20	MAP3K8	proteína quinasa quinasa activada por mitógeno 8
miR-125b	MAX	proteína MAX
miR-218	MCC	mutada en cánceres colorrectales
miR-24	MEN1	
		neoplasia endocrina múltiple I
miR-138	MLLT6	leucemia mieloide/linfoide o de linaje mixto (homólogo de trithorax, Drosophila) translocado a 6 (AF17)
miR-192	MSN	moesina
miR-24	MYB	homólogo del oncogén viral de mieloblastosis aviar v-myb
miR-107, miR-223, miR- 146, miR-221, miR-155,	MYBL1	tipo homólogo de oncogén viral de mieloblastosis aviar v-myb 1
miR-218		
miR-107, miR-20	MYCN	derivado de neuroblastoma de oncogén relacionado con virus de
IIIIA-107, IIIIA-20	IVITON	mielocistomatosis aviar v-myc
'D 407 'D 00	111/110	-
miR-107, miR-92	MYH9	miosina, polipéptido pesado 9, no muscular
:D 04	MVCTA	history postilary reference MVCT (leves mis managities) 4 (MODE)
miR-24	MYST4	histona acetiltransferasa MYST (leucemia monocítica) 4 (MORF)
miR-20	NBL1	neuroblastoma, supresión de tumorogenicidad 1
miR-125b	NIN	nineína (proteína que interacciona con GSK3B)
miR-26a, miR-107	NKTR	secuencia de reconocimiento de tumor de citolítica natural
miR-92	NOTCH1	homólogo de Notch 1, asociado a translocación (<i>Drosophila</i>)
·D 04	NITDICO	(TAN1)
miR-24	NTRK3	tirosina quinasa neurotrófica, receptor, tipo 3
miR-125b	PCSK7	subtilisina de proproteína convertasa/quexina tipo 7
miR-24, miR-146	PER1	homólogo de periodo 1 (<i>Drosophila</i>)
miR-146, miR-125b. miR-	PHOX2B	homeocaja de tipo emparejado 2b
138, miP 155	DICALM	protoína do apcamblaio de eletrina de unión e feofetidilinasital
miR-155	PICALM	proteína de ensamblaje de clatrina de unión a fosfatidilinositol (CALM)
miR-24, miR-26a	PIM1	oncogén pim-1
		- '
miR-24, miR-26a, miR-21, miR-107, miR-20, miR-	FLAGI	gen de adenoma pleiomórfico 1
155		
miR-218	RAB8A	RAB8A, miembro de la familia de oncogén RAS
miR-24, miR-221	RALA	homólogo A del oncogén viral de leucemia de simio v-ral
,		<u> </u>

		(relacionado con ras)
miR-138	RARA	receptor de ácido retinoico, alfa
miR-20, miR-192	RB1	retinoblastoma 1 (incluyendo osteosarcoma)
miR-20,	RBL1	tipo retinoblastoma 1 (p107)
miR-20	RBL2	tipo retinoblastoma 2 (p130)
miR-155, miR-138	REL	homólogo de oncogén viral de reticuloendoteliosis aviar v-rel
miR-20, miR-138 miR-20, miR-192	RHOC RUNX1	familia del gen homólogo de ras, miembro C factor de transcripción relacionado con runt 1 (AML1)
miR-107, miR-223	SEPT6	septina 6
miR-146, miR-20, miR-	SET	translocación de SET
125b	SLI	translocación de SE1
miR-21, miR-20, miR-155, miR-218	SKI	homólogo de oncogén viral de sarcoma aviar v-ski
miR-26a, miR-146	SMADA	SMAD, homólogo 4 de madres contra DPP (Drosophila)
miR-155	SPI1	oncogén de integración proviral de virus formador de focos de bazo (SFFV) spi1
miR-125b	SS18	translocación de sarcoma sinovial, cromosoma 18
miR-107, miR-155	SUFU	supresor de homólogo fusionado (<i>Drosophila</i>)
miR-92	TAF15	ARN polimerasa II TAF15, factor asociado a proteína de unión a caja TATA (TBP), 68 kDa
miR-26a, miR-221, miR- 138	TCF12	factor de transcripción 12 (HTF4, factores de transcripción de hélice-bucle-hélice 4)
miR-21, miR-20	TGFBR2	factor de crecimiento transformante, receptor beta II (70-80 kD)
miR-24, miR-26a, miR-92	TOP1	topoisomerasa (ADN) I
miR-138	TPM4	tropomiosina 4
miR-120	TRIP11	factor de interacción con el receptor de hormona tiroidea 11
miR-92	TSC1	esclerosis tuberosa 1
miR-20	TSG101	gen de susceptibilidad tumoral 101
miR-20	TUSC2	candidato supresor de tumores 2
miR-24	VAV1	oncogén vav 1
miR-125b	VAV2	oncogén vav 2
miR-107	WHSC1	candidato de síndrome de Wolf-Hirschhorn 1 (MMSET)
miR-138	WHSC1L1	tipo candidato 1 de síndrome de Wolf-Hirschhorn 1 (NSD3)
miR-26a	WNT5A	familia del sitio de integración de MNDTV de tipo wingless, miembro 5A
miR-26a, miR-20, miR- 125b	YES1	homólogo del oncogén viral de sarcoma de Yamaguchi 1 v-yes-1
miR-107, miR-221	ZNF198	proteína de dedo de cinc 198
miR-218	ZNFN1A1	proteína de dedo de cinc, subfamilia 1A, 1 (Ikaros)

^{* -} Los genes de cáncer conocidos (por ejemplo, supresores de tumores, oncogenes) comprenden los identificados en el Censo de Genes de Cáncer en www.sanger.ac.uk/genetics/CGP/Census o presentados por OMIM en www.ncbi.nlm.nih.gov.

Aunque la presente invención se ha mostrado particularmente y se ha descrito con referencia a realizaciones preferidas de la misma, se entenderá por los expertos en la materia que pueden realizarse diversos cambios en la forma y detalles de la misma sin alejarse de la invención abarcada por las reivindicaciones adjuntas.

LISTADO DE SECUENCIAS

<110> CROCE, CARLO M. CALIN, GEORGE A. VOLINIA, STEFANO

<120> MÉTODOS BASADOS EN MICRO ARN Y COMPOSICIONES PARA EL DIAGNÓSTICO Y TRATAMIENTO DE CÁNCERES SÓLIDOS

15 <130> 1-28349

10

<140> 12/160.061 <141> 03-01-2008

	<150> PCT/US07/000159 <151> 03-01-2007	
5	<150> 60/756.585 <151> 05-01-2006	
	<160> 498	
	<170> PatentIn versión 3.5	
10	<210> 1 <211> 90 <212> ARN <213> Homo sapiens	
15	<400> 1	
	cacuguggga ugagguagua gguuguauag uuuuaggguc acacccacca cugggagaua	60
	acuajuacaau cuacugucuu uccuaacgug	90
20	<210> 2 <211> 72 <212> ARN <213> Homo sapiens	
25	<400> 2	
	agguugaggu aguagguugu auaguuuaga auuacaucaa gggagauaac uguacagccu 60	
	ccuagcuuuc cu 72	
30	<210> 3 <211> 74 <212> ARN <213> Homo sapiens	
35	<400> 3	
00	gggugaggua guagguugua uaguuugggg cucugcccug cuaugggaua acuauacaau	60
	cuacugucuu uccu	74
40	<210> 4 <211> 107 <212> ARN <213> Homo sapiens	
	<400> 4	
	gugacugcau gcucccaggu ugagguagua gguuguauag uuuagaauua cacaagggag	60
45	avaacuguac agecuccuag cuuvccuugg gucuugcacu aaacaac	107
50	<210> 5 <211> 85 <212> ARN <213> Homo sapiens	
	<400> 5	

	ddcddddnda	gguaguaggu	ugugugguuu	cagggcagug	auguugeeee	ucggaagaua	60
	acuauacaac	cuacugecuu	cccug				85
5	<210> 6 <211> 84 <212> ARN <213> Homo sapid	ens					
	<400> 6						
	gcauccgggu	ugagguagua	gguuguaugg	uuuagaguua	cacccuggga	guuaacugua	60
10	caaccuucua	gcuuuccuug	gage				84
15	<210> 7 <211> 87 <212> ARN <213> Homo sapie	ens					
	<400> 7						
	ccuaggaaga	gguaguaggu	ugcauaguuu	uagggcaggg	auuuugccca	caaggaggua	60
20	acuauacgac	cugcugccuu	ucuuagg				87
20	<210> 8 <211> 85 <212> ARN						
25	<213> Homo sapie	eris					
	<400> 8						60
				agggcaaaga	uuuugeeeae	aaguaguuag	60
		ugcagccuuu	uguag				85
30	<210> 9 <211> 85 <212> ARN <213> Homo sapie	ens					
35	<400> 9						
	cuggcugagg	uaguaguuug	ugcuguuggu	cggguuguga	cauugcccgc	uguggagaua	60
	acugcgcaag	cuacugccuu	geuag				85
40	<210> 10 <211> 79 <212> ARN <213> Homo sapie	ens					
45	<400> 10						
45	cccgggcuga	gguaggaggu	uguauaguug	aggaggacac	ccaaggagau	cacuauacgg	60
	ccuccuagcu	uuccccagg					79
	<210> 11 <211> 87						

	<212> ARN <213> Homo sapiens	
5	<400> 11	
-	ucagagugag guaguagauu guauaguugu gggguaguga uuuuacccug uucaggagau	60
	aacuauacaa ucuauugecu ueccuga	87
10	<210> 12 <211> 89 <212> ARN <213> Homo sapiens	
	<400> 12	
	cugugggaug agguaguaga uuguauaguu gugggguagu gauuuuaccc uguucaggag	60
15	auaacuauac aaucuauuge cuuceeuga	89
20	<210> 13 <211> 85 <212> ARN <213> Homo sapiens	
	<400> 13	
	cugugggaug agguaguaga uuguauaguu uuagggucau accccaucuu ggagauaacu	60
	auacagucua cugucuuucc cacgg	85
25	<210> 14 <211> 108 <212> ARN <213> Homo sapiens	
30	<400> 14	
	uugccugauu ccaggcugag guaguaguuu guacaguuug agggucuaug auaccacccg	60
	guacaggaga uaacuguaca ggccacugcc uugccaggaa cagcgcgc	108
35	<210> 15 <211> 85 <212> ARN <213> Homo sapiens	
40	<400> 15	
	cuggeugagg uaguaguuug ugeuguuggu eggguuguga eauugeeege uguggagaua	60
	acugegeaag cuacugecuu geuag	85
45	<210> 16 <211> 85 <212> ARN <213> Homo sapiens	
5 0	<400> 16	
50		

	accuacucag	aguacauacu	ucuuuaugua	cccauaugaa	cauacasugc	uauggaaugu	60
	aaagaaguau	guauuuuugg	uaggc				85
5	<210> 17 <211> 108 <212> ARN <213> Homo sapid	ens					
	<400> 17						
	cagcuaacaa	cuuaguaaua	ccuacucaga	guacauacuu	cuuuauguac	ccauaugaac	60
10	auacaaugcu	auggaaugua	aagaaguaug	uauuuuggu	aggcaaua		108
15	<210> 18 <211> 85 <212> ARN <213> Homo sapid	ens					
	<400> 18						
	deendenndd	gaaacauacu	ucuuuauaug	cccauaugga	ccugcuaagc	uauggaaugu	60
	aaagaaguau	guaucucagg	ccggg		•		85
20	<210> 19 <211> 71 <212> ARN <213> Homo sapid	ens					
25	<400> 19						
	ugggaaacau	acuucuuuau	augcccauau	ggaccugcua	agcuauggaa	ນຕາເລລລດລລດ	60
	uauguaucuc			,	-,,,		71
30	<210> 20 <211> 85 <212> ARN <213> Homo sapid						
35	<400> 20						
	accuacucag	aguacauacu	ucuuuaugua	cccauaugaa	cauacaaugc	uauggaaugu	60
	aaagaaguau	guauuuuugg	uaggc				85
40	<210> 21 <211> 108 <212> ARN <213> Homo sapid	ens					
	<400> 21						
45	uggauguugg	ccuaguucug	uguggaagac	uagugauuuu	guuguuuuua	gauaacuaaa	60
	ucgacaacaa	aucacagucu	gccauauggc	acaggccaug	ccucuaca		108
50	<210> 22 <211> 110 <212> ARN						

	<213> Homo sapid	ens					
	<400> 22						
	uuggauguug	gccuaguucu	guguggaaga	cuagugauuu	uguuguuuuu	agauaacuaa	60
5	aucgacaaca	aaucacaguc	ugccauaugg	cacaggccau	gccucuacag		110
10	<210> 23 <211> 110 <212> ARN <213> Homo sapid	ens					
	<400> 23						
	Cuggauacag	aguggaccgg	cuggececau	cuggaagacu	agugauuuug	uuguugucuu	60
	acugegeuca	acaacaaauc	ccagucuacc	uaauggugee	agccaucgca		110
20	<210> 24 <211> 110 <212> ARN <213> Homo sapid	ens					
	agauuagagu	ggcugugguc	uagugcugug	uggaagacua	gugauuuugu	uguucugaug	60
	uacuacgaca	acaagucaca	geeggeeuca	uagegeagae	ucccuucgac		110
25	<210> 25 <211> 89 <212> ARN <213> Homo sapid	ens					
30	<400> 25						
	cgggguuggu	uguuaucuuu	gguuaucuag	cuguaugagu	gguguggagu	cuucauaaag	60
	cuagauaacc	gaaaguaaaa	auaacccca				89
35	<210> 26 <211> 87 <212> ARN <213> Homo sapid	ens					
40	<400> 26						
40	ggaagcgagu	uguuaucuuu	gguuaucuag	cuguaugagu	guauuggucu	ucauaaagcu	60
	agauaaccga	aaguaaaaac	uccuuca				87
45	<210> 27 <211> 90 <212> ARN <213> Homo sapid	ens					
	<400> 27						
	ggaggecegu	uucucucuuu	gguuaucuag	cuguaugagu	gccacagagc	cgucauaaag	60
50	cuagauaacc	gaaaguagaa	augauucuca				90

5	<210> 28 <211> 110 <212> ARN <213> Homo sapid	ens					
	<400> 28						
	gaucugucug	ucuucuguau	auacccugua	gauccgaauu	uguguaagga	auuuuguggu	60
10	cacaaauucg	uauçuagggg	aauauguagu	ugacauaaac	acuccgcucu		110
10	<210> 29 <211> 110 <212> ARN <213> Homo sapid	ens					
15	<400> 29						
	ccagagguug	uaacguuguc	uauauauacc	cuguagaacc	gaauuugugu	gguauccgua	60
	uagucacaga	uucgauucua	ggggaauaua	uggucgaugc	aaaaacuuca		110
20	<210> 30 <211> 108 <212> ARN <213> Homo sapid	ens					
25	<400> 30						
	gcgcgaaugu	guguuuaaaa	aaaauaaaac	cuuggaguaa	aguagcagca	cauaaugguu	60
	uguggauuuu	gaaaaggugc	aggccauauu	gugeugeeue	aaaaauac		108
30	<210> 31 <211> 83 <212> ARN <213> Homo sapid	ens					
35	<400> 31						
	ccuuggagua	aaguagcagc	acauaauggu	uuguggauuu	ugaaaaggug	caggccauau	60
	ugugcug ccu	çaaaaauaca	agg				83
40	<210> 32 <211> 64 <212> ARN <213> Homo sapid	ens					
	<400> 32						
	cuguagcagc	acaucauggu	uuacaugcua	cagucaagau	gcgaaucauu	auuugeugeu	60
45	cuag						64
50	<210> 33 <211> 98 <212> ARN <213> Homo sapid	ens					

	uugaggeeuu	aaaguacugu	agcagcacau	caugguuuac	augcuacagu	caagaugcga	60
	aucauuauuu	gcugcucuag	aaauuuaagg	aaauucau			98
5	<210> 34 <211> 89 <212> ARN <213> Homo sapie	ens					
	<400> 34						
	gucagcagug	ccunagcagc	acguaaauau	uggcguuaag	auucuaaaau	uaucuccagu	60
10	auuaacugug	cugcugaagu	aagguugac				89
15	<210> 35 <211> 81 <212> ARN <213> Homo sapie	ens					
	<400> 35						
	guuccacucu	agcagcacgu	aaauauuggc	guagugaaau	auauauuaaa	caccaauauu	60
	acugu gcug e	uuuaguguga	c				81
20	<210> 36 <211> 81 <212> ARN <213> Homo sapie	one					
25	<400> 36	3113					
		200200200		~			60
		agcagcacgu		guuzagauuc	uaaaauuauc	uccayuauua	81
		ugaaguaagg	•				91
30	<210> 37 <211> 84 <212> ARN <213> Homo sapie	ens					
35	<400> 37						
	gucagaauaa	ugucaaagug	cuuacagugc	agguagugau	augugcaucu	acugcaguga	60
	aggcacuugu	agcauuaugg	ugac				84
40	<210> 38 <211> 71 <212> ARN <213> Homo sapie	ens					
	<400> 38						
45	uğuucuaagg	ugcaucuagu	gcagauagug	aaguagauua	gcaucuacug	cccuaagugc	60
	uccuucugge	a					71
	<210>39						
50	<211> 81 <212> ARN						

	<213> Homo sapie	ens					
	<400> 39						
	uuuuuguucu	aaggugcauc	uagugcagau	agugaaguag	auuagcaucu	acugeccuaa	60
_		uggcauaaga			-	-	81
5			_				-
	<210> 40 <211> 82						
10	<212> ARN <213> Homo sapie	ane					
10		5115					
	<400> 40						
	gcaguccucu	guuaguuuug	cauaguugca	cuacaagaag	aauguaguug	ugcaaaucua	60
15	ugcaaaacug	augguggccu	gc				82
15	<210> 41						
	<211>80						
	<212> ARN <213> Homo sapie	ans					
20	<400> 41	5110					
							60
	caguccucug	uuaguuuugc	auaguugcac	uacaagaaga	auguaguugu	gcaaaucuau	60
	gcaaaacuga	ugguggccug					80
25	<210> 42						
	<211> 87						
	<212> ARN <213> Homo sapie	ane					
		2110					
30	<400> 42						
	cacuguucua	ugguuaguuu	ugcagguuug	cauccageug	ugugauauuc	ugcugugcaa	60
	auccaugcaa	aacugacugu	gguagug				87
	<210> 43						
35	<211>96						
	<212> ARN <213> Homo sapie	ens					
		57.10					
40	<400> 43						
	acauugcuac	uuacaauuag	uuuugcaggu	uugcauuuca	gcguauauau	guauaugugg	60
	cugugcaaau	ccaugcaaaa	cugauuguga	uaaugu			96
	<210> 44						
	<211> 80 <212> ARN						
45	<212> ARN <213> <i>Homo sapie</i>	ens					
-	<400> 44						
		2000000000		200100100100		11 775 \$011 7 75	60
	uucuaugguu	aguuuugcag	guuugcaucc	agenguguga	uauucuycug	uycaaaucca	
5 0	идсаавасид	acugugguag					80
50							

5	<210> 45 <211> 81 <212> ARN <213> Homo sapie	ens					
	<400> 45						60
	_		uugcauuuca	geguauauau	guauaugugg	cugugcaaau	
	ccaugcaaaa	cugauuguga	u				81
10	<210> 46 <211> 71 <212> ARN <213> Homo sapie	ens					
15	<400> 46						
	guagcacuaa	agugcuuaua	gugcagguag	uguuuaguua	ucuacugcau	uaugagcacu	60
	uaaaguacug	c					71
20	<210> 47 <211> 72 <212> ARN <213> Homo sapie	ens					
25	<400> 47						
25	ndncdddnad	cuuaucagac	ugauguugac	uguugaaucu	cauggcaaca	ccagucgaug	60
	ggcugucuga	ca					72
30	<210> 48 <211> 81 <212> ARN <213> Homo sapie	ens					
	<400> 48						
	accuugucgg	guageuuaue	agacugaugu	ugacuguuga	aucucauggo	aacaccaguc	60
35	dandddendn	cugacauuuu	đ				81
40	<210> 49 <211> 85 <212> ARN <213> Homo sapie	ens					
	<400> 49						
	ggeugageeg	caguaguucu	ucaguggcaa	gcuuuauguc	cugacccagc	uaaagcugcc	60
	aguug a agaa	cugu ugeceu	cugee				85
45	<210> 50 <211> 73						
	<212> ARN <213> <i>Homo sapie</i>	ens					

	ggccggcugg	ddnncanddd	gaugggauuu	gcuuccuguc	acaaaucaca	uugccaggga	60
	uuuccaaccg	acc					73
5	<210> 51 <211> 97 <212> ARN <213> Homo sapie	ens					
	<400> 51						
	cucaggugcu	cuggcugcuu	ggguuccugg	caugcugauu	ugugacuuaa	gauuaaaauc	60
10	acauugccag	ggauuaccac	gcaaccacga	ccuugge			97
15	<210> 52 <211> 81 <212> ARN <213> Homo sapie	ens					
	<400> 52						
	ccacggccgg	cnäääänncc	nddddanddd	auuugcuucc	ugucacaaau	cacauugcca	60
	gggauuucca	accgacccug	a				81
20	<210> 53 <211> 68 <212> ARN						
25	<213> Homo sapie	ens					
	<400> 53						
	cuccggugcc	uacugagcug	auaucaguuc	ucauuuuaca	cacuggcuca	guucagcagg	60
	aacaggag						68
30	<210> 54 <211> 73 <212> ARN <213> Homo sapie	one					
35	<400> 54	7115					
	cucugecuce	cgugecuacu	gagcugaaac	acaguugguu	uguguacacu	ggcucaguuc	60
	agcaggaaca	ggg					73
40	<210> 55 <211> 81 <212> ARN <213> Homo sapie	ens					
45	<400>55 cccugggcuc	ugecuccegu	gccuacugag	cugaaacaca	guugguuugu	guacacugge	60
	ucaguucage	aggaacaggg	g				81
50	<210> 56 <211> 71 <212> ARN						

	<213> Homo sapie	ens					
	<400> 56						
	cccuccggug	ccuacugage	ugauaucagu	uçucauuuua	cacacuggcu	caguucagca	60
5	ggaacagcau	c					71
10	<210> 57 <211> 84 <212> ARN <213> Homo sapid	ens					
	<400> 57						
	ggccaguguu	gagaggcgga	gacuugggca	auugcuggac	geugeceugg	gcauugcacu	60
	ugucucgguc	ugacagugce	ggee				84
15 20	<210> 58 <211> 86 <212> ARN <213> Homo sapid	ens					
20	<400> 58						
	aggeegugge	cucguucaag	uaauccagga	uaggcugugc	aggucccaau	ggccuaucuu	60
	gguuācuugc	acggggacgc	gggccu				86
25	<210> 59 <211> 77 <212> ARN <213> Homo sapid	ens					
30	<400> 59						
	guggecuegu	ucaaguaauc	caggauaggc	ugugcagguc	ccaaugggcc	uauucuuggu	60
	uacuugeaeg	gggacgc					77
35	<210> 60 <211> 84 <212> ARN <213> Homo sapid	ens					
40	<400> 60						
40	ggeuguggeu	ggauucaagu	aauccaggau	aggcuguuuc	caucugugag	gccuauucuu	60
	gauuacuugu	uucuggaggc	agcu				84
45	<210> 61 <211> 77 <212> ARN <213> Homo sapid	ens					
	<400> 61						
	ccgggaccca	guucaaguaa	uucaggauag	guugugugeu	guccagecug	uucuccauua	60
50	cuuggcucgg	ggaccgg					77

5	<210> 62 <211> 78 <212> ARN <213> Homo sapie	ens					
	<400> 62						
	cugaggagca	gggcuuagcu	gcuugugagc	aggguccaca	ccaagucgug	uucacagugg	60
	cuaaguuccg	cccccag					78
10	<210> 63 <211> 73 <212> ARN						
15	<213> Homo sapie	ens					
	aggugcagag	cuuagcugau	uggugaacag	ugauugguuu	ccgcuuuguu	cacaguggcu	60
	aaguucugca	ccu					73
20	<210> 64 <211> 97 <212> ARN <213> Homo sapie	ens					
25	<400> 64						
	accucucuaa	caaggugcag	agcuuagcug	auuggugaac	agugauuggu	uuccgcuuug	60
	uucacagugg	cuaaguucug	caccugaaga	gaaggug			97
30	<210> 65 <211> 80 <212> ARN <213> Homo sapie	ens					
ΩE	<400> 65						
35	ccugaggagc	agggcuuagc	ugcuugugag	caggguccac	accaagucgu	guucacagug	60
	gcuaaguucc	gcccccagg					80
40	<210> 66 <211> 86 <212> ARN <213> Homo sapie	ens					
	<400> 66						
	gguccuugcc	cucaaggagc	ucacagucua	uugaguuacc	uuucugacuu	ucccacuaga	60
45	uugugagcuc <210> 67 <211> 108 <212> ARN <213> <i>Homo sapie</i>	cuggagggca ens	ggcacu				86
50	<400> 67						

	ccuucuguga	ccccuuagag	gaugacugau	uucuuuuggu	guucagaguc	aauauaauuu	60
	ucuagcacca	ucugaaaucg	guuauaauga	uuggggaaga	gcaccaug		108
	<210> 68						
	<211> 64						
5	<212> ARN						
	<213> Homo sapi	ens					
	<400> 68						
	augacugauu	սշսսսսցցսց	uucagaguca	auauaauuuu	cuagcaccau	cugaaaucgg	60
10	uuau						64
	<210> 69						
	<211> 81						
	<212> ARN						
15	<213> Homo sapie	ens					
	<400> 69						
	cuucaggaag	cugguuucau	auggugguuu	agauuuaaau	ag ugauuguc	uagcaccauu	60
20	ugaaaucagu	guncundddd	g				81
20	<210> 70						
	<211> 81						
	<212> ARN						
	<213> Homo sapie	ens					
25	<400> 70						
			h				60
	Cuucuggaag	cugguuucac	augguggcuu	agauuuuucc	aucuuuguau	cuaycaccau	00
	uugaaaucag	uguuuuagga	g				81
30	<210> 71						
	<211> 110						
	<212> ARN						
	<213> Homo sapi	ens					
35	<400> 71						
	accacuggec	caucucuuac	acaggcugac	cgauuucucc	ugguguucag	agucuguuuu	60
	ugucuagcac	cauuugaaau	cgguuaugau	guagggggaa	aagcagcagc		110
	<210> 72						
	<211>71						
40	<212> ARN						
	<213> Homo sapid	ens					
	<400> 72						
	gegaeuguaa	acauccucga	cuggaagcug	ugaagecaca	gaugggcuuu	cagucggaug	60
45	uuugcagcug	c					71
	<210> 73						
	<211>60						
	<212> ARN						
50	213 Homo cania	one					

	<400> 73 auguaaacau ccuacacuca gcuguaauac auggauuggc ugggaggugg auguuuacgu 60									
5	<210> 74 <211> 88 <212> ARN <213> Homo sapiens									
10	· <400> 74									
	accaaguuuc aguucaugua aacauccuac acucagcugu aauacaugga uuggcuggga	60								
	gguggauguu uacuucagcu gacuugga	88								
15	<210> 75 <211> 72 <212> ARN <213> Homo sapiens									
20	<400> 75									
20	agauacugua aacauccuac acucucagcu guggaaagua agaaagcugg gagaaggcug	60								
	uuuacucuuu cu	72								
25	<210> 76 <211> 70 <212> ARN <213> Homo sapiens <400> 76									
	quuquuquaa acauccccga cuggaagcug uaagacacag cuaagcuuuc agucagaugu	60								
30	uugcugcuac	70								
35	<210> 77 <211> 64 <212> ARN <213> Homo sapiens									
	<400> 77 cuguaaacau ccuugacugg aagcuguaag guguucagag gagcuuucag ucggauguuu	60								
		64								
40	<pre></pre>	94								
45	<400> 78									
	ggagaggagg caagaugcug gcauagcugu ugaacuggga accugcuaug ccaacauauu	60								
	gecaueuuuc e	71								
50	<210> 79 <211> 70 <212> ARN <213> Homo sapiens									

	<400> 79						
	ggagauauug	cacauuacua	aguugcaugu	ugucacggcc	ucaaugcaau	uuagugugug	60
	ugauauuuuc						70
5	010 00						
	<210> 80 <211> 110						
	<212> ARN	ono					
10	<213> Homo sapid	eris					
	<400> 80						
	gggggccgag	agaggcgggc	ggeceegegg	ugcauugcug	uugcauugca	cgugugugag	60
	gcgggugcag	ugccucggca	gugcagcccg	gageeggeee	cuggcaccac		110
15	<210> 81						
	<211>88						
	<212> ARN <213> <i>Homo sapie</i>	ens					
20	<400> 81						
20							
	accaaguuuc	aguucaugua	aacauccuac	acucageugu	aauacaugga	uuggcuggga	60
	gguggauguu	uacuucagcu	gacuugga				88
	23-333		9				
	<210> 82						
25	<211> 69 <212> ARN						
	<213> Homo sapie	ens					
	<400> 82						
30							
	endnädnäca	uuguaguuge	auugcauguu	cuggugguac	ccaugcaaug	uuuccacagu	60
	gcaucacag						69
	<210> 83						
0.5	<211> 110						
35	<212> ARN <213> Homo sapid	ens					
	<400> 83						
		gaguguuucu	uuggcagugu	cuuagcuggu	uguugugagc	aauaguaagg	60
	aagcaaucag	caaguauacu	gcccuagaag	ugeugeaegu	uguggggccc		110
40							
	<210> 84						
	<211> 84 <212> ARN						
45	<213> Homo sapie	ens					
45	<400> 84						
	gugeuegguu	uguaggcagu	gucauuagcu	gauuguacug	uggugguuac	aauçaçuaaç	60
	uccacuqcca	ucaaaacaag	gcac				84

	<210> 85 <211> 77						
5	<212> ARN <213> <i>Homo sapi</i>	one					
5	<213> Homo Sapio	<i>5115</i>					
	<400> 85						
	agucuaguua	cuaggcagug	uaguuagcug	auugcuaaua	guaccaauca	cuaaccacac	60
10	ggccagguaa	aaagauu					77
	<210> 86						
	<211> 82						
	<212> ARN	ono					
15	<213> Homo sapi	eris					
10	<400> 86						
	ucaqaauaau	gucaaagugc	uuacagugca	gguagugaua	ugugcaucua	cugcagugaa	60
		gcauuauggu					82
		goesseaggs	3-				
20	<210> 87 <211> 78						
	<211>70						
	<213> Homo sapi	ens					
25	<400> 87						
	cuuucuacac	agguugggau	cgguugcaau	gcuguguuuc	uguaugguau	ugcacuuguc	60
	ceggeeuguu	gaguuugg					78
	<210> 88						
30	<211> 75						
	<212> ARN <213> Homo sapid	one					
	<400> 88	CIIS					
35	(1002 00						
	ucaucccugg	guggggauuu	guugcauuac	uuguguucua	uauaaaguau	ugcacuuguc	60
	ccggccugug	gaaga					75
	<210> 89						
	<211> 80						
40	<212> ARN						
	<213> Homo sapi	ens					
	<400> 89						
	cndadadana	caaagugcug	nncāndcadā	uagugugauu	acccaaccua	cugcugagcu	60
45		gageceeegg	ſ				80
	<210> 90						
	<211>81						
50	<212> ARN <213> Homo sania	one					
. 11.7	57 1.35 HUHHU SANII	EU3					

	<400> 90						
	aacacagugg	gcacucaaua	aaugucuguu	gaauugaaau	gcguuacauu	caacggguau	60
	uuauugagca	cccacucugu	g				81
5	<210> 91 <211> 78 <212> ARN <213> Homo sapie	ens					
10	<400> 91						
	uggccgauuu	uggcacuage	acauuuuugc	uugugucucu	ccgcucugag	caaucaugug	60
	cagugccaau	augggaaa					78
15	<210> 92 <211> 80 <212> ARN <213> Homo sapie	ens					
20	<400> 92						
20	gugagcgacu	guaaacaucc	ucgacuggaa	gcugugaagc	cacagauggg	cuuucagucg	60
	ga uguuugca	gcugccuacu					80
25	<210> 93 <211> 80 <212> ARN <213> Homo sapie	ens					
	<400> 93						
	gugagguagu	aaguuguauu	guugugggu	agggauauua	ggccccaauu	agaagauaac	60
30	uauacaacuu	acuacuuucc					80
35	<210> 94 <211> 70 <212> ARN <213> Homo sapie	one.					
33	<400> 94	5115					
		0000000000	3.00W.00000	acameacca	cacacaagcu	conmonana	60
		cydayaaccy	accaageggg	geedaegeeg	cacacaagea	cyayacayay	70
40	gguccguguc						,,
	<210> 95 <211> 81 <212> ARN <213> Homo sapie	ens					
45	<400> 95						
	cccauuggca	uaaacccgua	gauccgaucu	uguggugaag	uggaccgcac	aagcucgcuu	60
	cuaugggucu	gugucagugu	g				81
50	<210> 96						

	<211> 108 <212> ARN <213> Homo sapie	ens					
5	<400> 96						
	aagagagaag	auauugaggc	cuguugeeae	aaacccguag	auccgaacuu	gugguauuag	60
	uccgcacaag	cuuguaucua	uagguaugug	ucuguuaggc	aaucucac		108
10	<210> 97 <211> 80 <212> ARN <213> Homo sapie	ens					
15	<400> 97						
15	ccuguugcca	caaacccgua	gauccgaacu	ugugguauua	guccgcacaa	gcuuguaucu	60
	auagguaugu	gucuguuagg					80
20	<210> 98 <211> 110 <212> ARN <213> Homo sapie	ens					
	<400> 98						
	aggeugeeeu	ggcucaguua	ucacagugcu	gaugeugueu	auucuaaagg	uacaguacug	60
25	ugauaacuga	aggauggcag	ccaucuuacc	uuccaucaga	ggagccucac		110
30	<210> 99 <211> 57 <212> ARN <213> Homo sapie	ens					
	<400> 99 ucaguuauca cagug	cugau gcugucca	auu cuaaagguac	aguacuguga uaa	cuga 57		
35	<210> 100 <211> 75 <212> ARN <213> Homo sapie	ens					
40	<400> 100						
	ugcccuggcu	caguuaucac	agugcugaug	cugucuauuc	uaaagguaca	guacugugau	60
	aacugaagga	uggca					75
45	<210> 101 <211> 79 <212> ARN <213> Homo sapie	ens					
50	<400> 101						
50	acuguccuuu	uucgguuauc	augguaccga	ugçuguauau	cugaaaggua	caguacugug	60
	auaacugaag	aaugguggu					79

<210> 102

	<211> 75 <212> ARN <213> Homo sapiens	
5	<400> 102	
	uguccuuuuu cgguuaucau gguaccgaug cuguauaucu gaaagguaca guacugugau	60
	aacugaagaa uggug	75
10	<210> 103 <211> 81 <212> ARN <213> Homo sapiens	
15	<400> 103	
	cuucuggaag cugguuucac augguggcuu agauuuuucc aucuuuguau cuagcaccau	60
	uugaaaucag uguuuuagga g	81
20	<210> 104 <211> 81 <212> ARN <213> Homo sapiens	
	<400> 104	
	cuucaggaag cugguuucau auggugguuu agauuuaaau agugauuguc uagcaccauu	60
25	ugaaaucagu guucuugggg g	81
30	<210> 105 <211> 78 <212> ARN <213> Homo sapiens	
	<400> 105	
	uugugeuuue ageuueuuua eagugeugee uuguageauu eaggueaage aacauuguae	60
35	agggcuauga aagaacca	78
33	<210> 106 <211> 78 <212> ARN	
40	<213> Homo sapiens <400> 106	
		60
	uacugecene ggenneunua cagngengee ungungeana ngganeaage ageannguae	60 78
		. •
45	<210> 107 <211> 78 <212> ARN <213> Homo sapiens	
50	<400> 107	

	aaaug	ncaga	cagcccaucg	acugguguug	ccaugagauu	caacagucaa	caucagucug	60
	auaag	cuacc	cgacaagg					78
5	<210> 108 <211> 81 <212> AR <213> Hol	N	ens					
	<400> 108	3						
	ugugca	ucgu	ggucaaaugc	ucagacuccu	gugguggeug	cucaugcacc	acggauguuu	60
10	gagca	ıgugc	uacggugucu	a				81
15	<210> 109 <211> 81 <212> AR <213> Hol	N	ens					
	<400> 109)						
	uguge	aucgu	ggucaaaugc	ucagacuccu	gugguggcug	cuuaugcacc	acggauguuu	60
	gagca	ugugc	uaugguguçu	a .				81
20	<210> 110 <211> 81 <212> AR	N						
25	<213> Hoi	-	ens					
	<400> 110)						
	ccuug	gccau	guaaaagugc	uuacagugca	gguagcuuuu	ugagauçuaç	ugcaauguaa	60
	gcacu	ucuua	cauuaccaug	g				81
30	<210> 111 <211> 82 <212> AR <213> Hol	N	ens					
35	<400> 111							
	ccugc	cgggg	cuaaagugcu	gacagugcag	auaguggucc	ucuccgugcu	accgcacugu	60
	gggua	cuugc	ugcuccagca	gg				82
40	<210> 112 <211> 81 <212> AR <213> Hol	N	ens					
4-	<400> 112	2						
45	cucuc	ugcuu	ucagcuucuu	uacaguguug	ccuuguggca	uggaguucaa	gcagcauugu	60
	acagg	gcuau	caaagcacag	a				81
50	<210> 113 <211> 90 <212> AR							

	<213> Homo sapie	ens					
	<400> 113						
	acacugcaag	aacaauaagg	auuuuuaggg	gcauuaugac	ugagucagaa	aacacagcug	60
		ucccucauuu		_			90
5			--				
	<210> 114 <211> 80						
10	<212> ARN <213> Homo sapid	ens					
	<400> 114						
	acugcaagag	caauaaggau	uuuuaggggc	auuaugauag	uggaauggaa	acacaucugc	60
	ccccaaaagu	cccucauuuu					80
15	040 445						
	<210> 115 <211> 85						
	<212> ARN <213> Homo sapid	ane					
20	<213> Homo sapie	5115					
	<400> 115						
	ccuuagcaga	gcuguggagu	gugacaaugg	ndanndadac	uaaacuauca	aacgccauua	60
	ucacacuaaa	uagcuacugc	uaggc				85
25	<210> 116						
	<211> 66 <212> ARN						
	<213> Homo sapie	ens					
30	<400> 116						
	agcuguggag	ugugacaaug	guguuugugu	ccaaacuauc	aaacgccauu	aucacacuaa	60
	auagcu						66
	<210> 117						
35	<211> 61						
	<212> ARN <213> Homo sapid	ens					
	<400> 117						
40	202111211120			C111C\$25C1C	guaccgugag		60
		uuuugguacg	cycayagaca	Cuucaaacuc	guaccyugag	assassageg	
	C						61
	<210> 118						
45	<211> 85 <212> ARN						
45	<213> Homo sapie	ens					
	<400> 118						
	aggccucucu	cuccguguuc	acagoggaco	uugauuuaaa	uguccauaca	auuaaggcac	60
50	gcggugaaug	ccaagaaugg	ggcug				85

5	<210> 119 <211> 110 <212> ARN <213> Homo sapie	ens					
	<400> 119						
	aucaagauua	gaggeueuge	ucuccguguu	cacagoggao	cuugauuuaa	ugucauacaa	60
	uvaaggcacg	cggugaaugc	Caagagegga	gccuacggcu	gcacuugaag		110
10	<210> 120 <211> 87 <212> ARN <213> Homo sapie	ens					
15	<400> 120						
	ndadddcccc	ucugcguguu	cacagoggac	cuugauuuaa	ugucuauaca	auuaaggcac	60
	gcggugaaug	ccaagagagg	egecuce				87
20	<210> 121 <211> 68 <212> ARN <213> Homo sapie	ens					
25	<400> 121						
	cucugegugu	ucacagcgga	ccuugauuua	augucuauac	aauuaaggca	cgcggugaau	. 60
	gccaagag						68
30	<210> 122 <211> 67 <212> ARN <213> Homo sapie	ens					
35	<400> 122						
	cucuccgugu	ucacagogga	ccuugauuua	auguçauaca	auuaaggcac	gcggug aaug	60
	ccaagag						67
40	<210> 123 <211> 86 <212> ARN <213> Homo sapie	ens					
	<400> 123						
	ugecagueue	uaggucccug	agacccuuua	accugugagg	acauccaggg	ncacaddnda	60
45	gguucuuggg	agccuggcgu	cuggee				86
50	<210> 124 <211> 65 <212> ARN <213> Homo sapie	ens					
	<400> 124						

	ggucccugag	acccuuuaac	cugugaggac	auccaggguc	acaggugagg	nncnndddad	60
	ccugg						65
5	<210> 125 <211> 88 <212> ARN <213> Homo sapi	ens					
	<400> 125						
	ugegeueeue	ucagucccug	agacccuaac	uugugauguu	uaccguuuaa	auccacgggu	60
10	uaggcucuug	ggagcugcga	gucgugeu				88
15	<210> 126 <211> 89 <212> ARN <213> Homo sapi	ens					
	<400> 126						
	accagacuuu	uccuaguece	ugagacccua	acuugugagg	uauuuuagua	acaucacaag	60
	ucaggcucuu	gggaccuagg	cggagggga				89
20	<210> 127 <211> 85 <212> ARN						
25	<213> Homo sapi <400> 127						
	egeuggegae	gggacauuau	uacuuuuggu	acgegeugug	açaçuucaaa	cucguaccgu	60
	gaguaauaau	gegeegueea	cggca				85
30	<210> 128 <211> 61 <212> ARN <213> <i>Homo sapi</i> <400> 128	ens					
35		uuuugguacg	cgcugugaca	cuucaaacuc	guaccgugag	uaauaaugcg	60
	c						61
40	<210> 129 <211> 97 <212> ARN <213> Homo sapi	ens					
	<400> 129						
	ugugaucacu	gueuecagee	ugcugaagcu	cagagggeue	ugauucagaa	agaucaucgg	60
45	auccgucuga	gcuuggcugg	ucggaagucu	caucauc			97
50	<210> 130 <211> 70 <212> ARN						
50	<213> Homo sapi	ens					

	<400> 130							
	ccage	cugcu	gaagcucaga	gggcucugau	ucagaaagau	caucggaucc	gucugagcuu	60
	ggcugg	guegg						70
5								
	<210> 131							
	<211> 82							
	<212> ARN							
10	<213> Hon	по ѕаріє	ens					
10	<400> 131							
	ugagcu	guug	gauucggggc	cguagcacug	ucugagaggu	uuacauuucu	cacagugaac	60
	eggueu	cuuu	uucagcugcu	uc				82
15	<210> 132							
	<211> 110							
	<212> ARN	1						
	<213> Hon	no sapie	ens					
20	<400> 132							
	gacago	rcage	cacugugcag	ugggaagggg	ggccgauaca	cuguacgaga	gugaguagca	60
				ucuuucccua				110
			agaaceggac	4044400044	ouguguoucu	occountage		110
0.5	<210> 133							
25	<211> 70							
	<212> ARN <213> Hon		one					
	\Z10> 11011	ιο σαριο	,,,,,					
	<400> 133							
30	amaas	mea	aaaccansac	acugucugag	accommecan	meneacam	(faaccom)cu	60
			3334434-34	~+-3-+-3-3	-9944444	adoucacaga	gaaceggaca	
	cuuuuu	cagc						70
	<210> 134							
	<211> 74							
35	<212> ARN	-						
	<213> Hon	no sapie	ens					
	<400> 134							
	uggaud	יטעטעי	ugeggueugg	geuugeuguu	ccucucaaca	guagucagga	ageccuuace	60
40	ccaaaa	agua	ucua					74
	<210> 135							
	<211>90							
45	<212> ARN							
45	<213> Hon	no sapie	eris					
	<400> 135							
	ugeceu	ncgc	gaaucuuuuu	geggueuggg	cuugcuguac	auaacucaau	agccggaagc	60
	ccuuac	ccca	aaaagcauuu	geggagggeg				90

	<210> 136 <211> 89 <212> ARN <213> <i>Homo sapi</i>	ens					
5	<400> 136						
	ugcugcugge	cagageueuu	uucacauugu	gcuacugucu	gcaccuguca	cuagcagugc	60
	aauguuaaaa	gggcauuggc	cguguagug				89
10	<210> 137 <211> 110 <212> ARN <213> Homo sapid	ens					
15	<400> 137						
	gccaggaggc	gggguugguu	guuaucuuug	guuaucuage	uguaugagug	guguggaguc	60
	uucauaaagc	uagauaaccg	aaaguaaaaa	uaaccccaua	cacugegeag		110
20	<210> 138 <211> 110 <212> ARN <213> Homo sapid	ens					
25	<400> 138						
20	cacggcgcgg	cageggeacu	ggcuaaggga	ggcc cguuuc	ucucuuuggu	uaucuagcug	60
	uaugagugee	acagagccgu	cauaaagcua	gauaaccgaa	aguagaaaug		110
30	<210> 139 <211> 72 <212> ARN <213> Homo sapi	ens					
	<400> 139						
	guuguuaucu	uugguuaucu	agcuguauga	guguauuggu	cuucauaaag	cuagauaacc	60
35	gaaaguaaaa	ac					72
40	<210> 140 <211> 101 <212> ARN <213> Homo sapid	ens					
	<400> 140						
	ccgccccgc	gucuccaggg	caaccguggc	uuucgauugu	uacuguggga	acuggaggua	60
	acagucuaca	gccauggucg	ccccgcagca	cgcccacgcg	c		101
45 50	<210> 141 <211> 66 <212> ARN <213> Homo sapid	ens					
	<400> 141						

	gggcaaccgu	ggcuuucgau	uguuacugug	ggaacuggag	guaacagucu	acagccaugg	60
	ucgccc						66
	<210> 142						
5	<211> 88 <212> ARN						
5	<212> ARN <213> Homo sapie	ens					
	<400> 142						
	acaaugcuuu	gcuagagcug	guaaaaugga	accaaaucgc	cucuucaaug	gauuuggucc	60
10	ccuucaacca	geuguageua	ugcauuga				88
	<210> 143						
	<211> 102						
15	<212> ARN <213> Homo sapie	ens					
	<400> 143						
	gggagccaaa	ugcuuugcua	gagcugguaa	aauggaacca	aaucgacugu	ccaauggauu	60
	ugguecceuu	caaccagcug	uagcugugca	uugauggcgc	cg		102
20	040 444						
	<210> 144 <211> 68						
	<212> ARN						
	<213> Homo sapie	ens					
25							
	<400> 144						
	gcuagagcug (guaaaaugga	accaaaucgc	cucuucaaug	gauuuggucc	ccuucaacca	60
	gcuguagc					•	68
30	<210> 145						
	<211> 119						
	<212> ARN						
	<213> Homo sapie	ens					
35	<400> 145						
						cgucuuccug	60
	agagguuugg	uccccuucaa	ccagcuacag	cagggcuggc	aaugcccagu	ccuuggaga	119
	<210> 146						
	<211> 80						
40	<212> ARN						
	<213> Homo sapie	ens					
	<400> 146						
	geeceeugeu	cuggcugguc	aaacggaacc	aaguccgucu	uccugagagg	uuugguceee	60
45	uucaaccagc	uacagcaggg					80
	<210> 147						
	<211> 73						
	<212> ARN						

	<213> Homo sapiens	
	<400> 147	
	cagggugugu gacugguuga ccagaggggc augcacugug uucacceugu gggccaccua	60
5	gucaccaacc cuc	73
	<210> 148	
	<211>71	
	<212> ARN	
10	<213> Homo sapiens	
	<400> 148	
	agggugugug acugguugac cagaggggca ugcacugugu ucacccugug ggccaccuag	60
	uçaccaacce u	71
15		
	<210> 149	
	<211>90	
	<212> ARN	
	<213> Homo sapiens	
20	<400> 149	
		60
	aggecuegeu guucucuaug geuuunuaun eenaugugan ucuacugeue acucananag	-
	ggauuggagc cguggcgcac ggcggggaca	90
25	<210> 150	
	<211> 100	
	<212> ARN	
	<213> Homo sapiens	
30	<400> 150	
	agauaaauuc acucuaguge uuuauggeuu uuuauuccua ugugauagua auaaagucuc	60
	auguagggau ggaagecaug aaauacauug ugaaaaauca	100
	<210> 151	
35	<211>60	
	<212> ARN	
	<213> Homo sapiens	
	<400> 151	
40	cuauggcuuu uuauuccuau gugauucuac ugcucacuca uauagggauu ggagccgugg 60	
	<210> 152	
	<211> 97	
	<212> ARN	
45	<213> Homo sapiens	
	<400> 152	
	cacucugeug uggecuaugg cuuuucauuc cuaugugauu geugucecaa acucauguag	60
	ggcuaaaagc caugggcuac agugaggggc gagcucc	97
50		
50	<210> 153	
	·=·•· ·••	

	<211> 82 <212> ARN <213> Homo sapie	ens					
5	<400> 153						
	ugageceueg	gaggacucca	uuuguuuuga	ugauggauuc	uuaugcucca	ucaucgucuc	60
	aaaugagucu	ucagaggguu	cu				82
10	<210> 154 <211> 62						
10	<211> 62 <212> ARN						
	<213> Homo sapie	ens					
	<400> 154						
15	gaggacucca	uuuguuuuga	ugauggauuc	uuaugcucca	ucaucgucuc	aaauqaqucu	60
	uc			•	-		62
							QZ.
	<210> 155						
20	<211> 73 <212> ARN						
_0	<213> Homo sapie	ens					
	<400> 155						
	cuucggugac	ggguauucuu	ggguggauaa	uacggauuac	guuguuauug	cuuaagaaua	60
	cgcguagucg	800					73
25	ogoguaguog	~99					, ,
	<210> 156						
	<211> 99 <212> ARN						
30	<212> Ann <213> Homo sapie	ens					
	·						
	<400> 156						
	cccuggcaug	drdrddrddd	gcagcuggug	uugugaauca	ddccdnndcc	aaucagagaa	60
	cggcuacuuc	acaacaccag	ggccacacca	cacuacagg			99
35	<210> 157						
	<211> 84						
	<212> ARN						
40	<213> Homo sapie	ens					
40	<400> 157						
	cguugcugca	geugguguug	ugaaucaggc	cgacgagcag	cgcauccucu	uacceggeua	60
	uuucacgaca	ccaggguugc	auca				84
45	<210> 158						
=	<211>71						
	<212> ARN						
	<213> Homo sapie	HIS					
50	<400> 158						

	cagcuggugu	ugugaaucag	gccgacgagc	agegeauceu	cuuacccggc	uauuucacga	60
	caccaggguu	g					71
5	<210> 159 <211> 68 <212> ARN						
	<213> Homo sapi	ens					
		cagugcacgu	ancuccama	naachcaaaa	genggagaeg	caacccuann	60
	ggaguaac		3		333-33		68
10	ggagaaac						•
	<210> 160 <211> 100 <212> ARN						
15	<213> Homo sapi	ens					
	<400> 160						
	ugugucucuc	ucuguguccu	gecagugguu	uuacccuaug	guagguuacg	ucaugcuguu	60
	cuaccacagg	guagaaccac	ggacaggaua	ccggggcacc			100
20	<210> 161 <211> 72 <212> ARN <213> Homo sapi	ens					
25	<400> 161						
	uccugccagu	gguuuuaccc	uaugguaggu	uacgucaugc	uguucuacca	caggguagaa	60
30	<pre>ccacggacag <210> 162 <211> 70 <212> ARN <213> Homo sapin</pre>						72
	<400> 162						
	ccugccagug	guuuuaeeeu	augguagguu	acgucaugcu	guucuaccac	agggua gaac	60
35	cacggacagg						70
40	<210> 163 <211> 95 <212> ARN <213> Homo sapid	ens					
	<400> 163						
	eggeeggeee	uggguccauc	uuccaguaca	guguuggaug	guc uaauugu	gaagcuccua	60
	acacugucug	guaaagaugg	cucccgggug	gguuc			95
45	<210> 164						

	<212> ARN <213> Homo sapid	ens					
_	<400> 164						
5	ggguccaucu	uccaguacag	uguuggaugg	ucuaauugug	aagcuccuaa	cacugucugg	60
	uaaagauggc	cc					72
10	<210> 165 <211> 64 <212> ARN <213> Homo sapid	ens					
	<400> 165						
	acccauaaag	uagaaagcac	uacuaacagc	acuggagggu	guaguguuuc	cuacuuuaug	60
15	gaug						64
20	<210> 166 <211> 106 <212> ARN <213> Homo sapid	ens					
	<400> 166						
	gcgcagcgcc	cugucuccca	gccugaggug	cagugeugea	ucucugguca	guugggaguc	60
	ugagaugaag	cacuguagcu	caggaagaga	gaaguuguuc	ugcagc		106
2530	<210> 167 <211> 63 <212> ARN <213> Homo sapid	ens					
	<400> 167	agugcugcau	cucuamicaa	unaggaguen	gagaugaagg	acumiaccuc	60
		agageagesa	cucugguoug		3-333-		63
35	<pre><210> 168 <211> 86 <212> ARN <213> Homo sapid</pre>	070					03
40	<400> 168	Elis					
40		gcugggauau	caucauauac	uguaaguuug	cgaugagaca	cuacaquaua	60
		uaguccgggc					86
	<210> 169		******				
45	<210> 169 <211> 66 <212> ARN <213> Homo sapie	ens					
50	<400> 169						
50	ggcugggaua	ucaucauaua	cuguaaguuu	gcgaugagac	acuacaguau	agaugaugua	60
	cuamic						66

_	<210> 170 <211> 88 <212> ARN	
5	<213> Homo sapiens <400> 170	
	caccuuguce ucacggucca guuuucccag gaaucccuua gaugcuaaga uggggauucc	60
	uggaaauacu guucuugagg ucaugguu	88
10		
	<210> 171 <211> 70	
	<212> ARN	
15	<213> Homo sapiens	
	<400> 171	
	cucacgguec aguuuuccea ggaaucecuu agaugcuaag auggggauuc cuggaaauac	60
	uguucuugag	70
20	<210> 172	
	<211> 99	
	<212> ARN <213> Homo sapiens	
25	<400> 172	
	ccgaugugua uccucagcuu ugagaacuga auuccauggg uugugucagu gucagaccuc	60
	ugaaauucag uucuucageu gggauaucuc ugucaucgu	99
30	<210> 173 <211> 65	
30	<212> ARN	
	<213> Homo sapiens	
35	<400> 173	
33	agcuuugaga acugaauucc auggguugug ucagugucag accugugaaa uucaguucuu	60
	cageu	65
	<210> 174	
	<211> 72	
40	<212> ARN <213> Homo sapiens	
	<400> 174	
	aaucuaaaga caacauuucu gcacacacac cagacuaugg aagccagugu guggaaaugc	60
4-	uucugcuaga uu	72
45		
	<210> 175 <211> 68	
	<212> ARN	
50	<213> Homo sapiens	

	<400> 175						
	gaggcaaa	gu ucugagacac	uccgacucug	aguaugauag	aagucaguge	acuacagaac	60
	uuugucuc						68
5	<210> 176 <211> 99 <212> ARN <213> Homo s	apiens					
10	<400> 176						
	caagcacga	au uagcauuuga	ggugaaguuc	uguuauacac	ucaggcugug	gcucucugaa	60
	agucagugo	ca ucacagaacu	uugucucgaa	agcuuucua			9 9
15	<210> 177 <211> 70 <212> ARN <213> Homo s	apiens					
20	<400> 177						
	aagcacga	uu agcauuugag	gugaaguucu	guuauacacu	caggcugugg	cucucugaaa	60
	gucagugo	au			·		70
25	<210> 178 <211> 89 <212> ARN <213> Homo s	apiens					
	<400> 178						
	gccggcgc	cc gagcucuggc	necdndnenn	cacucccgug	cuuguccgag	gagggaggga	60
30	gggacggg	gg cugugcuggg	gcagcugga				89
35	<210> 179 <211> 53 <212> ARN <213> Homo s	apiens					
	<400> 179 gcucuggcuc cg	jugucuuca cucccguç	gcu uguccgagga (gggagggagg gac	53		
40	<210> 180 <211> 84 <212> ARN <213> Homo s	apiens					
45	<400> 180						
	cuccccau	igg cccugucucc	caacccuugu	accagugeug	ggcucagacc	cugguacagg	60
	ccuggggg	ac agggaceugg	ggac				84
50	<210> 181 <211> 64 <212> ARN						

	<213> Homo sapiens	
	<400> 181	
	cccuqucuce caacccuugu accagugcug ggcucagace cugguacagg ccugggggac	60
5	aggg	64
	<210> 182	
	<211> 72 <212> ARN	
10	<213> Homo sapiens	
	<400> 182	
	uuuccugeee uegaggageu cacagucuag uaugucucau eeecuacuag acugaageue	60
	cuugaggaca gg	72
15	<210> 183	
	<211> 69	
	<212> ARN	
20	<213> Homo sapiens	
20	<400> 183	
	ccuguccuca ağğağcuuca gucuağuagg ggaugagaca uacuagacug ugagcuccuc	60
	gagggcagg	69
25	<210> 184	
	<211>87	
	<212> ARN	
	<213> Homo sapiens	
30	<400> 184	
	uquececee ggeceagguu cugugauaca eucegacueg ggeucuggag cagueaguge	66
	augacagaac uugggceegg aaggace	87
	<210> 185	
35	<211>71	
	<212> ARN	
	<213> Homo sapiens	
	<400> 185	
40	ggcccagguu cugugauaca cuccgacucg ggcucuggag cagucagugc augacagaac	60
	uugggeeeg g	71
	aagggcccag g	, ,
	<210> 186	
45	<211> 90 <212> ARN	
70	<213> Homo sapiens	
	<400> 186	

	cucacagcug	ccagugucau	uuuugugauc	ugcagcuagu	auucucacuc	caguugcaua	60
	gucacaaaag	ugaucauugg	cagguguggc				90
5	<210> 187 <211> 71 <212> ARN <213> Homo sapid	ens					
	<400> 187						
	ucucucucuc	ccucacagcu	gccaguguca	uugucacaaa	agugaucauu	ggcaggugug	60
10	gcugcugcau	g					71
	<210> 188						
	<211> 87						
	<212> ARN						
15	<213> Homo sapi	ens					
	<400> 188						
	agegguggee	agugucauuu	uugugauguu	gcagcuagua	au augagece	aguugcauag	60
	ucacaaaagu	gaucauugga	aacuquq				87
20	-	-					
20	<210> 189						
	<211> 69						
	<211> 03 <212> ARN						
	<213> Homo sapi	one					
25	<213> 1101110 Sapit	G113					
25	<400> 189						
	cagugucauu	uuugugaugu	ugcagcuagu	aauaugagcc	caguugcaua	gucacaaaag	60
	ugaucauug						69
30	<210> 190						
00	<211> 84						
	<212> ARN						
	<213> Homo sapi	ens					
	in the second cape.						
35	<400> 190						
	gugguacuug	aagauagguu	auceguguug	ccuucgcuuu	auuugugacg	aaucauacac	60
	gguugaccua	uuuuucagua	ccaa				84
	<210> 191						
40	<211> 66						
40	<212> ARN						
	<213> Homo sapi	ens					
	·						
45	<400> 191						
45	gaagauaggu	uauccououu	accuucacuu	uauuugugac	qaaucauaca	cgguugaccu	60
	aucuuu		<u>.</u> – – – – – – – – – – – – – – – – –	3-3- -	• 	,,,	66
							00
	<210> 192						

	<211> 65 <212> ARN <213> Homo sapie	ens					
5	<400> 192						
	cuguuaaugc	uaaucgugau	agggguuuuu	gccuccaacu	gacuccuaca	uauuagcauu	60
	aacag						65
10	<210> 193 <211> 82 <212> ARN <213> Homo sapie	ens					
15	<400> 193						
	ccuaacacug	ucugguaaag	auggcucccg	gguggguucu	cucggcagua	accuucaggg	60
	agcccugaag	accauggagg	ac				82
20	<210> 194 <211> 110 <212> ARN <213> Homo sapie	ens					
	<400> 194						
	gccgagaccg	agugcacagg	gcucugaccu	augaauugac	agccagugcu	cucgueuccc	60
25	cucuggeuge	caauuccaua	ggucacaggu	auguucgccu	caaugccagc		110
30	<210> 195 <211> 80 <212> ARN <213> Homo sapie	ens					
	<400> 195						
	ucccgccccc	uguaacagca	acuccaugug	gaagugccca	cugguuccag	uggggeugeu	60
35	guuaucuggg	gcgaggcca					80
	<210> 196 <211> 70 <212> ARN <213> Homo sapie	ens					
40	<400> 196						
	aaagcugggu	ugagagggcg	aaaaaggaug	aggugacugg	ucugggcuac	gcuaugcugc	60
	ggegeueggg						70
45	<210> 197 <211> 64 <212> ARN <213> Homo sapie	ens					
50	<400> 197						

	cauuggccu	c cuaagccagg	gauugugggu	ucgaguccca	cccgggguaa	agaaaggeeg	60
	aauu						64
5	<210> 198 <211> 70 <212> ARN <213> Homo sap	piens					
	<400> 198						
	ccuaagcca	g ggauuguggg	uucgaguccc	accuggggua	gaggugaaag	uuccuuuuac	60
10	ggaauuuuu	u					70
15	<210> 199 <211> 108 <212> ARN <213> Homo sap	piens					
	<400> 199						
	caaugucago	agugecuuag	cagcacguaa	auauuggcgu	uaagauucua	aaauuaucuc	60
20	caguauuaac	ugugcugcug	aaguaagguu	gaccauacuc	uacaguug		108
20	<210> 200 <211> 81 <212> ARN <213> Homo sap	piens					
25	<400> 200						
	gggcuuucaa	gucacuagug	guuccguuua	guagaugauu	drācen rdr n	ucaaaauggu	60
	gcccuaguga	cuacaaagcc	C				81
30	<210> 201 <211> 70 <212> ARN <213> Homo sap	piens					
35	<400> 201						
	acgcaagugu	ccuaagguga	gcucagggag	cacagaaacc	uccaguggaa	cagaagggca	60
	aaagcucau	1					70
40	<210> 202 <211> 70 <212> ARN <213> Homo sap	piens					
45	<400> 202						
	cauguguca	c uuucaggugg	aguuucaaga	gucceuuccu	gguucaccgu	cuccuuugcu	60
	cuuccacaa	c					70
50	<210> 203 <211> 110						

	<213> Homo sapi	ens					
	<400> 203						
	agaagggcua	ucaggccagc	cuucagagga	cuccaaggaa	cauucaacgc	ugucggugag	60
5	uuugggauuu	gaaaaaacca	cugaccguug	acuguaccuu	gggguccuua		110
10	<210> 204 <211> 110 <212> ARN <213> Homo sapi	ens					
	<400> 204						
	ccugugcaga	gauuauuuuu	uaaaaggu ca	caaucaacau	ucauugcugu	cgguggguug	60
	äacugugugg	acaagcucac	ugaacaauga	augcaacugu	ggeceegeuu		110
15 20	<210> 205 <211> 89 <212> ARN <213> Homo sapi	ens					
20	<400> 205						
	cugauggcug	cacucaacau	ucauugcugu	cādnāddnnn	gagucugaau	caacucacug	60
	aucaaugaau	gcaaacugcg	gaccaaaca				89
25	<210> 206 <211> 110 <212> ARN <213> Homo sapi	ens					
30	<400> 206						
	cggaaaauuu	gccaaggguu	ugggggaaca	uucaaccugu	cggugaguuu	gggcagcuca	60
	ggcaaaccau	cgaccguuga	guggacccug	aggccuggaa	uugccauccu		110
35	<210> 207 <211> 110 <212> ARN <213> Homo sapi	ens					
40	<400> 207						
10	gageugeuug	ceuccecccg	uuuuuggcaa	ugguagaacu	cacacuggug	agguaacagg	60
	auccgguggu	ucuagacuug	ccaacuaugg	ggcgaggacu	cageeggeae		110
45	<210> 208 <211> 70 <212> ARN <213> Homo sapi	ens					
	<400> 208						

	uuuuuggcaa	ugguagaacu	cacacuggug	agguaacagg	auccgguggu	ucuagacuug	60
	ccaacuaugg						70
5	<210> 209 <211> 110 <212> ARN <213> Homo sapi	iens					
	<400> 209						
	ccgcagagug	ugacuccugu	ucuguguaug	gcacugguag	aauucacugu	gaacagucuc	60
10	agucagugaa	uuaccgaagg	gccauaaaca	gagcagagac	agauccacga		110
	<210> 210 <211> 84 <212> ARN						
15	<213> Homo sapi	iens					
	<400> 210						
	ccagucacgu	ccccuuauca	cuuuuccagc	ccagcuuugu	gacuguaagu	guuggacgga	60
00	gaacugauaa	ggguagguga	uuga				84
20	<210> 211						
	<211>65						
	<212> ARN	:					
25	<213> Homo sapi	eris					
23	<400> 211						
	ccuuaucacu	uuuccagccc	agcuuuguga	cuguaagugu	uggacggaga	acugauaagg	60
	guagg						. 65
30	<210> 212						
	<211> 82						
	<212> ARN	iono					
	<213> Homo sapi	ieris					
35	<400> 212						
	agggggegag	ggauuggaga	gaaaggcagu	uccugauggu	cccccccca	ggggcuggcu	60
	uuccucuggu	ccuucccucc	ca				82
	<210> 213						
40	<211>66						
	<212> ARN	iono					
	<213> Homo sapi	ieris					
45	<400> 213						
	agggauugga	gagaaaggca	guuccugaug	guccccuccc	caggggcugg	cuuuccucug	60
	<u> gaccan</u>						66
	<210> 214						
	<211> 86						
50	<212> ARN						

	<213> Homo sapi	ens					
	<400> 214						
	ugcuuguaac	uuuccaaaga	auucuccuuu	ugggeuuueu	gguuuuauuu	uaagcccaaa	60
5	ggugaauuuu	uugggaaguu	ugageu				86
	<210> 215 <211> 71 <212> ARN						
10	<213> Homo sapi	ens					
	<400> 215						
	acuuuccaaa	gaauucuccu	uuugggcuuu	cugguuuuau	uuuaagccca	aaggu gaauu	60
45	uuuugggaag	u					71
15	<210> 216 <211> 109 <212> ARN <213> Homo sapid	ens					
20	<400> 216						
	ġġúčġg gcuc	accaugacac	agugugagac	ucgggcuaca	acacaggacc	cagaacacna	60
	cucugacccc	ucgugucuug	uguugcagcc	ggagggacgc	aggucegea		109
25 30	<210> 217 <211> 86 <212> ARN <213> Homo sapid	ens					
		cucacaucec	uugcauggug	gagggugage	uuucugaaaa	cccccccc	60
35		ugcaggaugg					86
	<400> 218						
	ucucacaucc	cuugcauggu	ggagggugag	cuuucugaaa	accccuccca	caugcagggu	60
40	uugcagga	₹ y					68
45	<210> 219 <211> 102 <212> ARN <213> Homo sapid	ens					
	<400> 219						
	cugucgauug	gaccegeccu	ceggugeeua	cugagcugau	aucaguucuc	auuuuacaca	60
50	cuggcucagu	ucagcaggaa	caggagucga	gcccuugagc	aa		102

	<210> 220 <211> 68 <212> ARN <213> Homo sapie	ens					
5	<400> 220						
	cuccggugce	uacugagcug	auaucaguuc	ucauuuuaca	cacuggcuca	guucagcagg	60
	aacaggag						68
10	<210> 221 <211> 85 <212> ARN <213> Homo sapie	ens					
15	<400> 221						
	ugcaggccuc	ugugugauau	guuugauaua	uuagguuguu	auuuaaucca	acuauauauc	60
	aaacauauuc	cuacaguguc	uugee				85
20	<210> 222 <211> 67 <212> ARN <213> Homo sapie	ens					
25	<400> 222						
23	cugugugaua	uguuugauau	auuagguugu	uauuuaaucc	aacuauauau	caaacauauu	60
	ccuacag						67
30	<210> 223 <211> 92 <212> ARN <213> Homo sapie	ens					
	<400> 223						
	cggcuggaca	gcgggcaacg	gaaucccaaa	agcagcuguu	gucuccagag	cauuccageu	60
35	gcgcuuggau	uucguccccu	gcucuccugc	cu			92
40	<210> 224 <211> 74 <212> ARN <213> Homo sapie	ens					
	<400> 224						
	agcgggcaac	ggaaucccaa	aagcagcugu	ugucuccaga	gcauuccagc	ugegeuugga	60
	uuucgucccc	ugeu					74
45	<210> 225 <211> 108 <212> ARN <213> Homo sapie	ens					
50	<400> 225						

	cogagacega gugeacaggg cueugaceua ugaauugaca gecagugeue uegueueece	60
	ucuggeugee aauuccauag gucacaggua uguucgeeue aaugeeag	108
5	<210> 226 <211> 110 <212> ARN <213> Homo sapiens	
	<400> 226	
	geogagaceg agugeacagg genengacen augaanngae agecagngen enegneneee	60
10	cucuggeuge caauuccaua ggucacaggu auguucgeeu caaugecage	110
15	<210> 227 <211> 88 <212> ARN <213> Homo sapiens	
	<400> 227	
	cgaggauggg agcugagggc ugggucuuug cgggcgagau gagggugucg gaucaacugg	60
	ccuacaaagu cccaguucuc ggcccccg	88
20	<210> 228 <211> 58 <212> ARN	
25	<213> Homo sapiens <400> 228 gcugggucuu ugcgggcgag augagggugu cggaucaacu ggccuacaaa gucccagu 58	
30	<210> 229 <211> 85 <212> ARN <213> Homo sapiens	
	<400> 229 augguguuau caaguguaac agcaacucca uguggacugu guaccaauuu ccaguggaga	60
35	ugcuguuacu uuugaugguu accaa	85
	<210> 230 <211> 63 <212> ARN <213> Homo sapiens	
40	<400> 230	
	guguaacage aacuccaugu ggacugugua ecaauuueca guggagauge uguuacuuuu	60
	gau	63
45	<210> 231 <211> 87 <212> ARN <213> Homo sapiens	
50	<400> 231	

	agenuccend deno	uagcag	cacagaaaua	uuggcacagg	gaagcgaguc	ugccaauauu	60
	ddendndend enec	aggcag	gguggug				87
5	<210> 232 <211> 58 <212> ARN <213> Homo sapiens						
10	<400> 232 uagcagcaca gaaauauug	g cacaggga	aag cgagucugcc	aauauuggcu gug	gcugcu 58		
	<210> 233 <211> 110 <212> ARN <213> Homo sapiens						
15	<400> 233						
	cuagagcuug aau	uggaacu	gcugagugaa	uuagguaguu	ucauguuguu	gggccugggu	60
	uucugaacac aac	aacauua	aaccacccga	иисасддсад	uuacugcucc		110
20	<210> 234 <211> 70 <212> ARN <213> Homo sapiens						
25	<400> 234						
	gugaauuagg uag	uuucaug	uuguugggcc	uggguuucug	aacacaacaa	cauuaaacca	60
	cccgauucac						70
30	<210> 235 <211> 110 <212> ARN <213> Homo sapiens						
35	<400> 235						
	ugcucgcuca gcuq	Jaucugu	ggcuuaggua	guuucauguu	guugggauug	aguuuugaac	60
	ueggeaacaa gaas	acugecu	gaguuacauc	agucgguuuu	cgucgagggc		110
40	<210> 236 <211> 70 <212> ARN <213> Homo sapiens						
	<400> 236						
	gugaauuagg uagu	uucaug	ппдплдддсс	ndddinnacad	aacacaacaa	cauuaaacca	60
45	cccgauucac						70
50	<210> 237 <211> 84 <212> ARN <213> Homo sapiens						
	<400> 237						

	scriddreddr dannraddra drineendun drindddanee seennnenen edaeadeaed	60
	acacugccuu cauuacuuca guug	84
5	<210> 238 <211> 75 <212> ARN <213> Homo sapiens	
10	<400> 238	
10	ggeugugeeg gguagagagg geagugggag guaagageue uucacccuuc accaccuucu	60
	ccacccagca uggcc	75
15	<210> 239 <211> 60 <212> ARN <213> Homo sapiens	
20	<400> 239 gugcaugugu auguaugugu gcaugugcau guguaugugu augagugcau gcgugugugc 60	
	<210> 240 <211> 62 <212> ARN <213> Homo sapiens	
25	<400> 240	
	ucauugguce agaggggaga uagguuccug ugauuuuuce uucuucua uagaauaaau	60
	ģá	62
30	<210> 241 <211> 71 <212> ARN <213> Homo sapiens	
35	<400> 241 gccaacccag uguucagacu accuguucag gaggcucuca auguguacag uagucugcac	60
	auugguuagg c	71
40	<210> 242 <211> 110 <212> ARN <213> Homo sapiens	
	<400> 242	
	aggaageuue uggagaueeu geueeguege eecaguguue agacuaeeug uucaggacaa	60
	ugccguugua caguagucug cacauugguu agacugggca agggagagca	110
45	040, 040	
	<210> 243 <211> 110	
50	<212> ARN <213> Homo sapiens	
50	<400> 243	

	ccagaggaca	ccuccacucc	gucuacccag	uguuuagacu	aucuguucag	gacucccaaa	60
	uuguacagua	gucugcacau	ugguuaggcu	gggcuggguu	agacccucgg		110
	<210> 244 <211> 71						
5	<212> ARN <213> Homo sapi	ens					
	<400> 244						
	gccaacccag	uguucagacu	accuguucag	gaggcucuca	auguguacag	uagucugcac	60
10	auugguuagg	c					71
	<210> 245 <211> 70						
	<211>70 <212> ARN						
15	<213> Homo sapi	ens					
	<400> 245						
	gccguggcca	ucuuacuggg	cagcauugga	uggagucagg	ucucuaauac	ugccugguaa	60
	ugaugaegge						70
20							
	<210> 246						
	<211> 95						
	<212> ARN						
0.5	<213> Homo sapi	ens					
25	<400> 246						
	ccagcucggg	cageegugge	caucuuacug	ggcagcauug	gauggaguca	ggucucuaau	60
	acugecuggu	aaugaugacg	geggageecu	gcacg			95
30	<210> 247						
	<211> 68						
	<212> ARN						
	<213> Homo sapi	ens					
35	<400> 247						
	cccucgucuu	acccagcagu	annnadande	gguugggagu	cucuaauacu	gccggguaau	60
	gauggagg						68
	<210> 248						
40	<211> 72						
	<212> ARN						
	<213> Homo sapi	ens					
45	<400> 248						
70	guuccuuuuu	ccuaugcaua	uacuucuuug	aggaucugge	cuaaagaggu	auagggcaug	60
	ggaagaugga	gc					72
	<210> 249						
	<211> 110						
50	<212> ARN						

	<213> Homo sapiens	
	<400> 249	
	guguugggga cucgcgcgcu ggguccagug guucuuaaca guucaacagu ucuguagcgc	60
	aauugugaaa uguuuaggac cacuagaccc ggcgggcgcg gcgacagcga	110
5	Educadadron nanosadan enemalanen 22022224242 242444244	
	<210> 250 <211> 110	
	<212> ARN	
10	<213> Homo sapiens	
	<400> 250	
	ggenacague unneuncang ngaenegngg acunecennn gneaneenan geengagaan	60
4.5	auaugaagga ggeugggaag gcaaagggae guucaauugu caucacugge	110
15	.010. 0E1	
	<210> 251	
	<211> 110 <212> ARN	
20	<213> Homo sapiens	
20	<400> 251	
	aaagauccuc agacaaucca ugugcuucuc uuguccuuca uuccaccgga gucugucuca	60
	uacccaacca gauuucagug gagugaaguu caggaggcau ggagcugaca	110
25	<210> 252	
	<211> 86	
	<212> ARN	
	<213> Homo sapiens	
30	<400> 252	
	ugcuuccega ggccacauge uucuuuauau eeecauaugg auuacuuuge uauggaaugu	60
		86
	aaggaagugu gugguuucgg caagug	
	<210> 253	
0.5	<211>69	
35	<212> ARN <213> Homo sapiens	
	<400> 253	
	aggecaeaug cuucuuuaua ueeeeauaug gauuaeuuug euauggaaug uaaggaagug	60
	սցսցցսսսս	69
40	-3-33	**
	<210> 254	
	<210> 254 <211> 71	
	<211> / 1 <212> ARN	
45	<213> Homo sapiens	
-		
	<400> 254	
	ugacgggcga gcuuuuggcc cggguuauac cuqaugcuca cguauaagac gagcaaaaag	60
	annama a	71

5	<210> 255 <211> 110 <212> ARN <213> Homo sapid	ens					
	<400> 255						
	acccggcagu	gccuccaggc	gcagggcagc	cccugcccac	cgcacacugc	geugeeceag	60
	acccacugug	cgugugacag	cggcugaucu	gugccugggc	agcgcgaccc		110
10 15	<210> 256 <211> 110 <212> ARN <213> Homo sapid	ens					
13	<400> 256						
	ucaccuggee	augugacuug	ugggcuucce	uuugucaucc	uucgccuagg	gcucugagca	60
	gggcagggac	agcaaagggg	ugcucaguug	ucacuuccca	cagcacggag		110
20	<210> 257 <211> 110 <212> ARN <213> Homo sapid	ens					
25	<400> 257						
	cggggcaccc	cgcccggaca	gegegeegge	accuuggcuc	uagacugcuu	acugeceggg	60
	ccgcccucag	uaacagucuc	cagucacggc	cacegaegee	uggeceegee		110
30	<210> 258 <211> 110 <212> ARN <213> Homo sapid	ens					
35	<400> 258						
00	ccugugcaga	gauuauuuuu	uaaaagguca	caaucaacau	ucauugcugu	cgguggguug	60
	aacugugugg	acaagcucac	ugaacaauga	augcaacugu	ggeeeegeuu		110
40	<210> 259 <211> 108 <212> ARN <213> Homo sapid	ens					
	<400> 259						
	gaguuu uga g	guugcuucag	ugaacauuca	acgcugucgg	ugaguuugga	auusaaauca	60
45	aaaccaucga	ccguugauug	uacccuaugg	cuaaccauca	ucuacucc		108
50	<210> 260 <211> 110 <212> ARN	one					
50	<213> Homo sapid	zi is					

	ggccuggcug	gacagaguug	ucaugugucu	gccugucuac	acuugcugug	cagaacaucc	60
	gcucaccugu	acagcaggca	cagacaggca	gucacaugac	aacccagccu		110
5	<210> 261 <211> 110 <212> ARN <213> Homo sapid	ens					
10	<400> 261						
10	aucauucaga	aaugguauac	aggaaaauga	ccuaugaauu	gacagacaau	auagcugagu	60
	uugucuguca	uuucuuuagg	ccaauauucu	guaugacugu	gcuacuucaa		110
15	<210> 262 <211> 110 <212> ARN <213> Homo sapid	ens					
	<400> 262						
	gauggcugug	aguuggcuua	aucucagcug	gcaacuguga	gauguucaua	caaucccuca	60
20	caguggucuc	ugggauuaug	cuaaacagag	caauuuccua	gcccucacga		110
25	<210> 263 <211> 110 <212> ARN <213> Homo sapid	ens					
	<400> 263						
	aguauaauua v	uacauaguu (uuugaugucg (cagauacugc a	aucaggaacu	gauuggauaa	60
00	gaaucaguca (ccaucaguuc o	cuaaug cauu	gccuucagca 1	ucuaaacaag		110
30	<210> 264 <211> 110 <212> ARN <213> Homo sapi	ens					
35	<400> 264						
	gugauaaugu	agcgagauuu	ncndnndndc	uugaucuaac	caugugguug	cgagguauga	60
	guaaaacaug	guuccgucaa	gcaccaugga	acgucacgca	gcuuucuaca		110
40	<210> 265 <211> 110 <212> ARN <213> Homo sapi	ens					
45	<400> 265						
	gaccagucgc	ugeggggeuu	uccuuugugc	uugaucuaac	cauguggugg	aacgauggaa	60
	acggaacaug	guucugucaa	gcaccgcgga	aagcaccgug	cucuccugca		110
	-210× 266						

	<211> 110 <212> ARN <213> Homo sapie	ens					
5	<400> 266						
	cegeceeggg	ccgcggcuce	ugauugucca	aacgcaauuc	ucgagucuau	ggcuceggce	60
	gagaguugag	ucuggacguc	ccgagccgcc	gcccccaaac	cucgagcggg		110
10	<210> 267 <211> 110 <212> ARN <213> Homo sapid	ens					
15	<400> 267						
13	cegeceeggg	cegeggeuee	ugauugucca	aacgcaauuc	ucgagucuau	ggeueeggee	60
	gagaguugag	ucuggacguc	cegageegee	gececcaaac	cucgageggg		110
20	<210> 268 <211> 97 <212> ARN <213> Homo sapie	ens					
	<400> 268						
	acucaggggc	uucgccacug	auuguccaaa	cgcaauucuu	guacgaguçu	geggeeaace	60
25	gagaauugug	geuggaeaue	uguggeugag	cuceggg			97
30	<210> 269 <211> 110 <212> ARN <213> Homo sapie	ens					
	<400> 269						
	gacagugugg	cauuguaggg	cuccacacco	uaucugacac	uuugggegag	ggcaccaugc	60
35	ugaagguguu	caugaugegg	ucugggaacu	ccucacggau	cuuacugaug	Г	110
40	<210> 270 <211> 110 <212> ARN <213> Homo sapie	ens					
	<400> 270						
	ugaacaucca	ggucuggggc	augaaccugg	cauacaaugu	agauuucugu	guucguuagg	60
	caacagcuac	auugucugcu	ggguuuca gg	cuaccuggaa	acauguucuc		110
4550	<210> 271 <211> 110 <212> ARN <213> Homo sapie	ens					
	<400> 271						

	gcugcuggaa	gguguaggua	cccucaaugg	cucaguagee	aguguagauc	cugucuuucg	60
	uaaucagcag	cuacaucugg	cuacuggguc	ucugauggca	ucuucuagcu		110
5	<210> 272 <211> 110 <212> ARN <213> Homo sapi	ens					
40	<400> 272						
10	cenddeenee	ugcagugcca	cgcuccgugu	auuugacaag	cugaguugga	cacuccaugu	. 60
	dansdadnan	caguuüğuca	aauaccccaa	gugeggeaca	ugcuuaccag		110
15	<210> 273 <211> 81 <212> ARN <213> Homo sapi	ens					
	<400> 273						
	gggcuuucaa	gucacuagug	guuccguuua	guagaugauu	gugcauuguu	ucaaaauggu	60
20	gcccuaguga	cuacaaagcc	c				81
25	<210> 274 <211> 60 <212> ARN	ione.					
23	<213> Homo sapi <400> 274 caaucuuccu uuau		uuu cagugcuucc	cuuuugugug aga	agaagaua	60	
30	<210> 275 <211> 80 <212> ARN <213> Homo sapi	ens					
35	<400> 275 aggacccuuc	cagagggccc (eccucaauc c	cuguugugcc ı	ıaauucagag ç	gguugggugg	60
	aggcucuccu	gaagggcucu					80
40	<210> 276 <211> 63 <212> ARN <213> Homo sapi	ens					
	<400> 276						
	aagaaauggu	uuaccgucco	acauacauuu	ı ugaavaugva	ugugggaugg	uaaaccgcuu	60
45	cuu						63
	<210> 277 <211> 86 <212> ARN						
50	<213> Homo sapi	ens					
	<400> 277						

	acugcuaacg	aaugcucuga	cuuuauugca	cuacuguacu	uuacagcuag	cagugcaaua	60
	guauugucaa	agcaucugaa	agcagg				86
5	<210> 278 <211> 69 <212> ARN <213> Homo sapie	ens					
	<400> 278						
	ccaccacuua	aacguggaug	uacuugcuuu	gaaacuaaag	aaguaagugc	uuccauguuu	60
10	uggugaugg						69
15	<210> 279 <211> 73 <212> ARN <213> Homo sapie	ens					
	<400> 279						
	gcucccuuca	acuuuaacau	ggaagugcuu	ucugugacuu	uaaaaguaag	ugcuuccaug	60
	uuuuaguagg	agu					73
20	<210> 280 <211> 68 <212> ARN						
25	<213> Homo sapie <400> 280	ens					
	ccuuugcuuu	aacauggggg	uaccugcugu	gugaaacaaa	aguaagugcu	uccauguuuc	60
	aguggagg		•				68
30	<210> 281 <211> 68 <212> ARN <213> Homo sapid	ens					
35	<400> 281						
	ccucuacuuu a	acauggagg c	acuugcugu g	acaugacaa a	aauaaguge u	uccauguuu	60
	gagugugg						68
40	<210> 282 <211> 82 <212> ARN <213> Homo sapie	ens					
45	<400> 282						
+5	gcuucgcucc	ccuccgccuu	cucuucccgg	uucuucccgg	agucgggaaa	agcuggguug	60
	agagggcgaa	aaaggaugag	gu				82
50	<210> 283 <211> 59 <212> ARN						

	<213> Homo sapier	าร					
F	<400> 283 uuggccuccu aagcca	ggga uugugggu	iuc gagucccacc	ogggguaaag aaa	ggccga 59		
5	<210> 284 <211> 86 <212> ARN <213> Homo sapier	ns					
10	<400> 284						
	uugguacuug	gagagaggug	dnccdnddcd	cguucgcuuu	auuuauggcg	cacauuacac	60
	gguegaceue	uuugcaguau	cuaauc				86
15	<210> 285 <211> 83 <212> ARN <213> Homo sapier	ns					
20	<400> 285						
	cugaçuauge d	cueccegeau	ccceuagggc	auugguguaa	agcuggagac	ccacugecec	60
	aggugeugeu ç	gggguugua	guc				83
25	<210> 286 <211> 98 <212> ARN <213> Homo sapier	ns					
30	<400> 286						
	auacagugcu u	ıgguuccuag	uaggugucca	guaaguguuu	gugacauaau	uuguuuauug	60
	aggaccuccu a	ucaaucaag	cacugugcua	ggcucugg			98
35	<210> 287 <211> 95 <212> ARN <213> Homo sapier	าร					
	<400> 287						
	cucaucuguc u	ıguugggcug	gaggcagggc	cuuugugaag	geggguggug	cucagauege	60
40	cucugggccc v	nuccuccage	cccgaggcgg	auuca			95
45	<210> 288 <211> 75 <212> ARN <213> Homo sapier	ns					
	<400> 288	.0					
	uggagugggg (gggcaggagg	ggcucaggga	gaaagugcau	acagececug	gcccucucug	60
	cccuuccguc (cccug					75
50	<210> 289 <211> 94						

	<212> ARN <213> Homo sapid	ens					
5	<400> 289						
J	cuuuggcgau	cacugccucu	cugggccugu	gucuuaggcu	cugcaagauc	aaccgagcaa	60
	agcacacggc	cugcagagag	gcagegeueu	gece			94
10	<210> 290 <211> 94 <212> ARN <213> Homo sapid	ens					
	<400> 290						
	gaguuugguu	uuguuugggu	uuguucuagg	uaugguccca	gggaucccag	aucaaaccag	. 60
15	deceendade	cuauccuaga	accaaccuaa	geue			94
20	<210> 291 <211> 94 <212> ARN <213> Homo sapid	ens					
	<400> 291						
	uguuuugagc	gggggucaag	agcaauaacg	aaaaauguuu	gucauaaacc	guuuuucauu	60
25	auugcuccug	accuccucuc	auuugcuaua	uuca			94
	<210> 292 <211> 93 <212> ARN <213> Homo sapid	ens					
30	<400> 292						
	guagucagua	guugggggu	gggaacggcu	ucauacagga	guugaugcac	aguuauccag	60
	cuccuauaug	augccuuucu	ucauceceuu	caa	•		93
35	<210> 293 <211> 67 <212> ARN <213> Homo sapid	ens					
40	<400> 293						
	ucuccaacaa	uauccuggug	cugagugaug	acucaggega	cuccagcauc	agugauuuug	60
	uugaaga						67
45	<210> 294 <211> 94 <212> ARN <213> Homo sapid	ens					
50	<400> 294						

	eddddeddee	gcucucccug	uccuccagga	gcucacgugu	deendeendn	gagegeeueg	60
	acgacagagc	cddcdccndc	cccagugucu	gege			94
	<210> 295						
_	<211>95						
5	<212> ARN <213> Homo sap	iens					
	<400> 295						
	uuguaccugg	ı ugugauuaua	aagcaaugag	acugauuguc	: auaugucguu	ugugggaucc	60
10	gucucaguus	cuuuauagco	auaccuggua	ucuua			95
	<210> 296						
	<211> 99						
15	<212> ARN <213> Homo sap	iens					
	<400> 296						
	gaaacugggc	ucaaggugag	gggugcuauc	ugugauugag	ggaçaugguu	aauggaauug	60
	ucucăcacag	aaaucgcacc	cgucaccuug	gccuacuua			99
20							
	<210> 297						
	<211> 98						
	<212> ARN						
	<213> Homo sapi	iens					
25	.400007						
	<400> 297						
	acccaaacco	uaggucugcu	ı gacuccuagu	ccagggcucg	ı ugauggeugg	ugggcccuga	60
	acgagggguc	uggaggccug	r gguuugaaua	ucgacage			98
30	<210> 298						
	<211> 86						
	<212> ARN						
	<213> Homo sap	iens					
35	<400> 298						
	gucugucugo	cegeaugeeu	geeueueugu	ugcucugaag	gaggcagggg	cugggccugc	60
	agcugccugg	gcaga gcggc	uccugc				86
	<210> 299						
40	<211> 68						
	<212> ARN						
	<213> Homo sapi	iens					
45	<400> 299						
7 0	ccauuacugu	ugcuaauaug	caacucuguu	gaauauaaau	uggaauugca	cuuuagcaau	60
	ggugaugg						68
	<210> 300						
	<211> 66						
50	<211> 00 <212\ ΔRN						

	<213> Homo sapie	ens					
	<400> 300						
	aaaaggugga	uauuccuucu	auguuuaugu	uauuuauggu	uaaacauaga	ggaaauucca	60
5	cguuuu						66
	<210> 301 <211> 70 <212> ARN						
10	<213> Homo sapie	ens					
	<400> 301						
	uugaagggag	aucgaccgug	uuauauucgc	uuuauugacu	ucgaauaaua	caugguugau	60
15	cuuuucucag						70
15	<210> 302 <211> 75 <212> ARN <213> Homo sapie	ens					
20	<400> 302						
	agacagagaa	gecaggueae	gucucugcag	uuacacagcu	cacgagugce	ugeuggggug	60
	gaaccugguc	ugucu					75
25	<210> 303 <211> 67 <212> ARN <213> Homo sapie	ens					
30	<400> 303						
	guggcacuca	aacugugggg	gcacuuucug	cucucuggug	aaagugccgc	caucuuuuga	60
	guguuac						67
35	<210> 304 <211> 67 <212> ARN <213> Homo sapie	ens					
40	<400> 304						
	gugggccuca	aauguggagc	acuauucuga	uguccaagug	gaaagugcug	cgacauuuga	60
	gegueae						67
45	<210> 305 <211> 69 <212> ARN <213> Homo sapie	ens					
50	<400> 305						

	gggauacuca	aaaugggggc	gcuuuccuuu	uugucuguac	ugggaagugc	uucgauuuug	60
	ggguguece						69
5	<210> 306 <211> 72 <212> ARN <213> Homo sapie	ens					
	<400> 306						
	uacaucggcc	auuauaauac	aaccugauaa	guguuauagc	acuuaucaga	uuguauugua	60
10	auugucugug	ua					72
15	<210> 307 <211> 102 <212> ARN <213> Homo sapie	ens					
	<400> 307						
	auggagcugc	ucacccugug	ggccucaaau	guggaggaac	uauucugaug	uccaagugga	60
	aagugcugcg	acauuugagc	gucaccggug	acgeceauau	ca		102
20	<210> 308 <211> 101 <212> ARN <213> Homo sapie	one					
25	<400> 308	5115					
	gcauccccuc	agceugugge	acucaaacug	ugggggcacu	uucugcucuc	uggugaaagu	60
		uuugaguguu					101
30	<210> 309 <211> 102 <212> ARN <213> Homo sapie			•			
35	<400> 309						
	cgaggagcuc	auacugggau	acucaaaaug	ggggcgcuuu	ccuuuuuguc	uguua cuggg	60
	aagugcuucg	annnnddddn	gucccuguuu	gaguagggca	nc		102
40	<210> 310 <211> 22 <212> ARN <213> Homo sapie	ens					
45	<400> 310 ugagguagua gguu	guauag uu 22					
50	<210> 311 <211> 22 <212> ARN <213> Homo sapie	ens					
	<400> 311						

	ugagguagua gguugugugg uu	22	
5	<210> 312 <211> 22 <212> ARN <213> Homo sapiens		
10	<400> 312 ugagguagua gguuguaugg uu	22	
15	<210> 313 <211> 21 <212> ARN <213> Homo sapiens		
.0	<400> 313 agagguagua gguugcauag u		21
20	<210> 314 <211> 21 <212> ARN <213> Homo sapiens		
25	<400> 314 ugagguagga gguuguauag u		21
30	<210> 315 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 315		
35	ugagguagua gauuguauag uu	22	
	<210> 316 <211> 21 <212> ARN <213> Homo sapiens		
40	<400> 316 ugagguagua guuuguacag u <210> 317		21
45	<211> 19 <212> ARN <213> Homo sapiens		
50	<400> 317 ugagguagua guuugugcu	19	
	<210> 318 <211> 21 <212> ARN <213> Homo sapiens		
55	<400> 318 uggaauguaa agaaguaugu a		21
60	<210> 319 <211> 21 <212> ARN <213> Homo sapiens		
65	<400> 319 uggaagacua gugauuuugu u		21

_	<210> 320 <211> 23 <212> ARN <213> Homo sapiens		
5	<400> 320 ucuuugguua ucuagcugua uga	23	
10	<210> 321 <211> 21 <212> ARN <213> Homo sapiens		
15	<400> 321 uaaagcuaga uaaccgaaag u		21
20	<210> 322 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 322 uacccuguag auccgaauuu gug	23	
25	<210> 323 <211> 22 <212> ARN <213> Homo sapiens		
30	<400> 323 uacccuguag aaccgaauuu gu		22
35	<210> 324 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 324 uagcagcaca uaaugguuug ug		22
	<210> 325 <211> 22 <212> ARN <213> Homo sapiens		
45	<400> 325 uagcagcaca ucaugguuua ca		22
50	<210> 326 <211> 22 <212> ARN <213> Homo sapiens		
55	<400> 326 uagcagcacg uaaauauugg cg		22
60	<210> 327 <211> 24 <212> ARN <213> Homo sapiens		
	<400> 327 caaagugcuu acagugcagg uagu	24	
65	<210> 328 <211> 20		

	<212> ARN <213> Homo sapiens		
5	<400> 328 acugcaguga aggcacuugu		20
10	<210> 329 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 329 uaaggugcau cuagugcaga ua		22
15	<210> 330 <211> 23 <212> ARN <213> Homo sapiens		
20	<400> 330 ugugcaaauc uaugcaaaac uga	23	
25	<210> 331 <211> 23 <212> ARN <213> Homo sapiens		
30	<400> 331 ugugcaaauc caugcaaaac uga	23	
	<210> 332 <211> 22 <212> ARN <213> Homo sapiens		
35	<400> 332 uaaagugcuu auagugcagg ua		22
40	<210> 333 <211> 22 <212> ARN <213> Homo sapiens <400> 333		
45	<pre><authorized color="1"><210> 334 <211> 22 <212> ARN</authorized></pre>		22
50	<213> Homo sapiens <400> 334		
	aagcugccag uugaagaacu gu <210> 335		22
55	<211> 21 <212> ARN <213> Homo sapiens		
60	<400> 335 aucacauugc cagggauuuc c		21
65	<210> 336 <211> 23 <212> ARN <213> Homo sapiens		

	<400> 336 aucacauugc cagggauuac cac	23	
5	<210> 337 <211> 22 <212> ARN <213> Homo sapiens		
10	<400> 337 uggcucaguu cagcaggaac ag	2	22
15	<210> 338 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 338 cauugcacuu gucucggucu ga	2	22
20	<210> 339 <211> 22 <212> ARN <213> Homo sapiens		
25	<400> 339 uucaaguaau ccaggauagg cu	2	22
30	<210> 340 <211> 21 <212> ARN <213> Homo sapiens		
35	<400> 340 uucaaguaau ucaggauagg u	2	21
	<210> 341 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 341 uucacagugg cuaaguuccg cc <210> 342	2	22
45	<211> 20 <212> ARN <213> Homo sapiens		
50	<400> 342 uucacagugg cuaaguucug	2	20
	<210> 343 <211> 22 <212> ARN <213> Homo sapiens		
55	<400> 343 aaggagcuca cagucuauug ag	2	22
60	<210> 344 <211> 22 <212> ARN <213> Homo sapiens		
65	<400> 344 cuagcaccau cugaaaucgg uu	2	22

F	<210> 345 <211> 20 <212> ARN <213> Homo sapiens		
5	<400> 345 uagcaccauu ugaaaucagu	20	
10	<210> 346 <211> 22 <212> ARN <213> Homo sapiens		
15	<400> 346 uagcaccauu ugaaaucggu ua		22
20	<210> 347 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 347 uguaaacauc cucgacugga agc	23	
25	<210> 348 <211> 22 <212> ARN <213> Homo sapiens		
30	<400> 348 cuuucagucg gauguuugca gc		22
35	<210> 349 <211> 21 <212> ARN <213> Homo sapiens		
40	<400> 349 uguaaacauc cuacacucag c	21	
	<210> 350 <211> 23 <212> ARN <213> Homo sapiens		
45	<400> 350 uguaaacauc cuacacucuc agc	23	
50	<210> 351 <211> 22 <212> ARN <213> Homo sapiens		
55	<400> 351 uguaaacauc cccgacugga ag		22
60	<210> 352 <211> 20 <212> ARN <213> Homo sapiens		
	<400> 352 uguaaacauc cuugacugga	20	
65	<210> 353 <211> 21		

	<212> ARN <213> Homo sapiens		
5	<400> 353 ggcaagaugc uggcauagcu g	21	
10	<210> 354 <211> 21 <212> ARN <213> Homo sapiens		
	<400> 354 uauugcacau uacuaaguug c	21	
15	<210> 355 <211> 19 <212> ARN <213> Homo sapiens		
20	<400> 355 gugcauugua guugcauug	19	
25	<210> 356 <211> 22 <212> ARN <213> Homo sapiens		
30	<400> 356 uggcaguguc uuagcugguu gu		22
30	<210> 357 <211> 22 <212> ARN <213> Homo sapiens		
35	<400> 357 aggcaguguc auuagcugau ug		22
40	<210> 358 <211> 22 <212> ARN <213> Homo sapiens <400> 358		
45	aggcagugua guuagcugau ug <210> 359		22
50	<211> 22 <212> ARN <213> Homo sapiens <400> 359		
	uauugcacuu gucccggccu gu		22
55	<210> 360 <211> 22 <212> ARN <213> Homo sapiens		
60	<400> 360 aaagugcugu ucgugcaggu ag		22
65	<210> 361 <211> 22 <212> ARN <213> Homo sapiens		

	<400> 361 uucaacgggu auuuauugag ca		22
5	<210> 362 <211> 22 <212> ARN <213> Homo sapiens		
10	<400> 362 uuuggcacua gcacauuuuu gc		22
15	<210> 363 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 363 ugagguagua aguuguauug uu	22	
20	<210> 364 <211> 22 <212> ARN <213> Homo sapiens		
25	<400> 364 aacccguaga uccgaucuug ug		22
30	<210> 365 <211> 22 <212> ARN <213> Homo sapiens		
35	<400> 365 cacccguaga accgaccuug cg		22
	<210> 366 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 366 uacaguacug ugauaacuga ag <210> 367		22
45	<211> 22 <212> ARN <213> Homo sapiens		
50	<400> 367 uacaguacug ugauaacuga ag		22
	<210> 368 <211> 23 <212> ARN <213> Homo sapiens		
55	<400> 368 agcagcauug uacagggcua uga	23	
60	<210> 369 <211> 20 <212> ARN <213> Homo sapiens		
65	<400> 369 ucaaaugcuc agacuccugu	20	

5	<210> 370 <211> 24 <212> ARN <213> Homo sapiens		
5	<400> 370 aaaagugcuu acagugcagg uagc	24	
10	<210> 371 <211> 21 <212> ARN <213> Homo sapiens		
15	<400> 371 uaaagugcug acagugcaga u		21
20	<210> 372 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 372 agcagcauug uacagggcua uca	23	
25	<210> 373 <211> 23 <212> ARN <213> Homo sapiens		
30	<400> 373 uggaguguga caaugguguu ugu	23	
35	<210> 374 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 374 uuaaggcacg cggugaaugc ca		22
	<210> 375 <211> 23 <212> ARN <213> Homo sapiens		
45	<400> 375 ucccugagac ccuuuaaccu gug	23	
50	<210> 376 <211> 22 <212> ARN <213> Homo sapiens		
55	<400> 376 ucccugagac ccuaacuugu ga		22
60	<210> 377 <211> 21 <212> ARN <213> Homo sapiens		
	<400> 377 cauuauuacu uuugguacgc g		21
65	<210> 378 <211> 21		

	<212> ARN <213> Homo sapiens		
5	<400> 378 ucguaccgug aguaauaaug c		21
10	<210> 379 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 379 ucggauccgu cugagcuugg cu		22
15	<210> 380 <211> 22 <212> ARN <213> Homo sapiens		
20	<400> 380 ucacagugaa ccggucucuu uu		22
25	<210> 381 <211> 22 <212> ARN <213> Homo sapiens		
20	<400> 381 ucacagugaa ccggucucuu uc		22
30	<210> 382 <211> 21 <212> ARN <213> Homo sapiens		
35	<400> 382 cuuuuugcgg ucugggcuug c		21
40	<210> 383 <211> 20 <212> ARN <213> <i>Homo sapiens</i> <400> 383 cagugcaaug uuaaaagggc	20	
45	<210> 384 <211> 22 <212> ARN <213> Homo sapiens		
50	<400> 384 cagugcaaug augaaagggc au		22
55	<210> 385 <211> 22 <212> ARN <213> Homo sapiens		
60	<400> 385 uaacagucua cagccauggu cg		22
65	<210> 386 <211> 22 <212> ARN		

	<400> 386 uugguccccu ucaaccagcu gu		22
5	<210> 387 <211> 21 <212> ARN <213> Homo sapiens		
10	<400> 387 uugguccccu ucaaccagcu a	21	
15	<210> 388 <211> 21 <212> ARN <213> Homo sapiens		
	<400> 388 ugugacuggu ugaccagagg g	21	
20	<210> 389 <211> 23 <212> ARN <213> Homo sapiens		
25	<400> 389 uauggcuuuu uauuccuaug uga	23	
30	<210> 390 <211> 22 <212> ARN <213> Homo sapiens		
35	<400> 390 uauggcuuuu cauuccuaug ug		22
40	<210> 391 <211> 23 <212> ARN <213> <i>Homo sapiens</i> <400> 391 acuccauuug uuuugaugau gga	23	
45	<210> 392 <211> 22 <212> ARN <213> Homo sapiens		
50	<400> 392 uauugcuuaa gaauacgcgu ag		22
	<210> 393 <211> 17 <212> ARN <213> Homo sapiens		
55	<400> 393 agcugguguu gugaauc 17		
60	<210> 394 <211> 18 <212> ARN <213> Homo sapiens		
65	<400> 394 ucuacagugc acgugucu 18		

5	<210> 395 <211> 21 <212> ARN <213> Homo sapiens		
	<400> 395 agugguuuua cccuauggua g		21
10	<210> 396 <211> 21 <212> ARN <213> Homo sapiens		
15	<400> 396 aacacugucu gguaaagaug g	21	
20	<210> 397 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 397 uguaguguuu ccuacuuuau gga	23	
25	<210> 398 <211> 20 <212> ARN <213> Homo sapiens		
30	<400> 398 cauaaaguag aaagcacuac	20	
35	<210> 399 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 399 ugagaugaag cacuguagcu ca <210> 400 <211> 22 <212> ARN <213> Homo sapiens		22
45	<400> 400 uacaguauag augauguacu ag		22
50	<210> 401 <211> 24 <212> ARN <213> Homo sapiens		
55	<400> 401 guccaguuuu cccaggaauc ccuu	24	
60	<210> 402 <211> 22 <212> ARN <213> Homo sapiens		
60	<400> 402 ugagaacuga auuccauggg uu		22
65	<210> 403 <211> 20 <212> ARN		

	<213> Homo sapiens		
5	<400> 403 guguguggaa augcuucugc	20	
3	<210> 404 <211> 22 <212> ARN <213> Homo sapiens		
10	<400> 404 ucagugcacu acagaacuuu gu		22
15	<210> 405 <211> 22 <212> ARN <213> Homo sapiens		
20	<400> 405 ucagugcauc acagaacuuu gu		22
25	<210> 406 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 406 ucuggcuccg ugucuucacu cc		22
30	<210> 407 <211> 22 <212> ARN <213> Homo sapiens		
35	<400> 407 ucucccaacc cuuguaccag ug		22
40	<210> 408 <211> 22 <212> ARN <213> Homo sapiens		
45	<400> 408 acuagacuga agcuccuuga gg		22
	<210> 409 <211> 21 <212> ARN <213> Homo sapiens		
50	<400> 409 ucagugcaug acagaacuug g		21
55	<210> 410 <211> 20 <212> ARN <213> Homo sapiens		
60	<400> 410 uugcauaguc acaaaaguga		20
65	<210> 411 <211> 22 <212> ARN <213> Homo sapiens		

	<400> 411 uagguuaucc guguugccuu cg	22
5	<210> 412 <211> 22 <212> ARN <213> Homo sapiens	
10	<400> 412 aaucauacac gguugaccua uu	22
15	<210> 413 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 413 uuaaugcuaa ucgugauagg gg	22
20	<210> 414 <211> 23 <212> ARN <213> Homo sapiens	
25	<400> 414 aacauucaac gcugucggug agu 23	
30	<210> 415 <211> 24 <212> ARN <213> Homo sapiens	
35	<400> 415 aacauucauu gcugucggug gguu 24	
40	<210> 416 <211> 22 <212> ARN <213> <i>Homo sapiens</i> <400> 416 aacauucaac cugucgguga gu	22
45	<210> 417 <211> 22 <212> ARN <213> Homo sapiens	
50	<400> 417 uuuggcaaug guagaacuca ca	22
	<210> 418 <211> 21 <212> ARN <213> Homo sapiens	
55	<400> 418 ugguucuaga cuugccaacu a	21
60	<210> 419 <211> 23 <212> ARN <213> Homo sapiens	
65	<400> 419 uauggcacug guagaauuca cug	23

5	<210> 420 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 420 uggacggaga acugauaagg gu		22
10	<210> 421 <211> 18 <212> ARN <213> Homo sapiens		
15	<400> 421 uggagagaaa ggcaguuc	18	
20	<210> 422 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 422 caaagaauuc uccuuuuggg cuu	23	
25	<210> 423 <211> 21 <212> ARN <213> Homo sapiens		
30	<400> 423 ucgugucuug uguugcagcc g		21
35	<210> 424 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 424 caucceuuge augguggagg gu <210> 425 <211> 23 <212> ARN <213> Homo sapiens		22
45	<400> 425 gugccuacug agcugauauc agu	23	
50	<210> 426 <211> 22 <212> ARN <213> Homo sapiens		
55	<400> 426 ugauauguuu gauauauuag gu	22	
00	<210> 427 <211> 22 <212> ARN <213> Homo sapiens		
60	<400> 427 caacggaauc ccaaaagcag cu		22
65	<210> 428 <211> 21 <212> ARN		

	<213> Homo sapiens		
5	<400> 428 cugaccuaug aauugacagc c		21
Ü	<210> 429 <211> 21 <212> ARN <213> Homo sapiens		
10	<400> 429 aacuggccua caaaguccca g		21
15	<210> 430 <211> 22 <212> ARN <213> Homo sapiens		
20	<400> 430 uguaacagca acuccaugug ga		22
25	<210> 431 <211> 21 <212> ARN <213> Homo sapiens		
	<400> 431 uagcagcaca gaaauauugg c		21
30	<210> 432 <211> 21 <212> ARN <213> Homo sapiens		
35	<400> 432 uagguaguuu cauguuguug g		21
40	<210> 433 <211> 21 <212> ARN <213> Homo sapiens <400> 433 uagguaguuu ccuguuguug g		21
45	<210> 434 <211> 22 <212> ARN		
50	<213> Homo sapiens <400> 434 uucaccaccu ucuccaccca gc		22
55	<210> 435 <211> 19 <212> ARN <213> Homo sapiens		
60	<400> 435 gguccagagg ggagauagg	19	
65	<210> 436 <211> 23 <212> ARN <213> Homo sapiens		

	<400> 436 cccaguguuc agacuaccug uuc	23	
5	<210> 437 <211> 22 <212> ARN <213> Homo sapiens		
10	<400> 437 uacaguaguc ugcacauugg uu		22
15	<210> 438 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 438 cccaguguuu agacuaucug uuc	23	
20	<210> 439 <211> 22 <212> ARN <213> Homo sapiens		
25	<400> 439 uaacacuguc ugguaacgau gu		22
30	<210> 440 <211> 24 <212> ARN <213> Homo sapiens		
35	<400> 440 cucuaauacu gccugguaau gaug	24	
	<210> 441 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 441 aauacugccg gguaaugaug ga		22
45	<210> 442 <211> 22 <212> ARN <213> Homo sapiens		
50	<400> 442 agagguauag ggcaugggaa ga	22	
	<210> 443 <211> 22 <212> ARN <213> Homo sapiens		
55	<400> 443 gugaaauguu uaggaccacu ag		22
60	<210> 444 <211> 22 <212> ARN <213> Homo sapiens		
65	<400> 444 uucccuuugu cauccuaugc cu		22

5	<210> 445 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 445 uccuucauuc caccggaguc ug		22
10	<210> 446 <211> 22 <212> ARN <213> Homo sapiens		
15	<400> 446 uggaauguaa ggaagugugu gg	22	
20	<210> 447 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 447 auaagacgag caaaaagcuu gu		22
25	<210> 448 <211> 21 <212> ARN <213> Homo sapiens		
30	<400> 448 cugugcgugu gacagcggcu g		21
35	<210> 449 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 449 uucccuuugu cauccuucgc cu <210> 450		22
45	<211> 450 <211> 21 <212> ARN <213> Homo sapiens		
43	<400> 450 uaacagucuc cagucacggc c		21
50	<210> 451 <211> 22 <212> ARN <213> Homo sapiens		
55	<400> 451 accaucgacc guugauugua cc		22
60	<210> 452 <211> 21 <212> ARN <213> Homo sapiens		
	<400> 452 acagcaggca cagacaggca g		21
65	<210> 453 <211> 21		

	<212> ARN <213> Homo sapiens		
5	<400> 453 augaccuaug aauugacaga c		21
10	<210> 454 <211> 21 <212> ARN <213> Homo sapiens		
	<400> 454 uaaucucagc uggcaacugu g		21
15	<210> 455 <211> 24 <212> ARN <213> Homo sapiens		
20	<400> 455 uacugcauca ggaacugauu ggau	24	
25	<210> 456 <211> 21 <212> ARN <213> Homo sapiens		
30	<400> 456 uugugcuuga ucuaaccaug u		21
	<210> 457 <211> 21 <212> ARN <213> Homo sapiens		
35	<400> 457 ugauugucca aacgcaauuc u <210> 458		21
40	<211> 21 <212> ARN <213> Homo sapiens		
45	<400> 458 ccacaccgua ucugacacuu u		21
	<210> 459 <211> 23 <212> ARN <213> Homo sapiens		
50	<400> 459 agcuacauug ucugcugggu uuc	23	
55	<210> 460 <211> 24 <212> ARN <213> Homo sapiens		
60	<400> 460 agcuacaucu ggcuacuggg ucuc	24	
65	<210> 461 <211> 21 <212> ARN <213> Homo sapiens		

	<400> 461 ugucaguuug ucaaauaccc c		21
5	<210> 462 <211> 23 <212> ARN <213> Homo sapiens		
10	<400> 462 caagucacua gugguuccgu uua	23	
15	<210> 463 <211> 21 <212> ARN <213> Homo sapiens		
	<400> 463 agggcccccc cucaauccug u		21
20	<210> 464 <211> 22 <212> ARN <213> Homo sapiens		
25	<400> 464 ugguuuaccg ucccacauac au		22
30	<210> 465 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 465 cagugcaaua guauugucaa agc	23	
35	<210> 466 <211> 23 <212> ARN <213> Homo sapiens		
40	<400> 466 uaagugcuuc cauguuuugg uga <210> 467	23	
45	<211> 23 <212> ARN <213> Homo sapiens		
50	<400> 467 acuuuaacau ggaagugcuu ucu	23	
	<210> 468 <211> 23 <212> ARN <213> Homo sapiens		
55	<400> 468 uaagugcuuc cauguuuuag uag	23	
60	<210> 469 <211> 22 <212> ARN <213> Homo sapiens		
65	<400> 469 uuuaacaugg ggguaccugc ug		22

5	<210> 470 <211> 23 <212> ARN <213> Homo sapiens		
3	<400> 470 uaagugcuuc cauguuucag ugg	23	
10	<210> 471 <211> 23 <212> ARN <213> Homo sapiens		
15	<400> 471 uaagugcuuc cauguuugag ugu	23	
20	<210> 472 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 472 aaaagcuggg uugagagggc gaa	23	
25	<210> 473 <211> 21 <212> ARN <213> Homo sapiens		
30	<400> 473 uaagccaggg auuguggguu c		21
35	<210> 474 <211> 22 <212> ARN <213> Homo sapiens <400> 474 gcacauuaca cggucgaccu cu		22
40	<210> 475 <211> 23 <212> ARN <213> Homo sapiens		
45	<400> 475 cgcauccccu agggcauugg ugu	23	
50	<210> 476 <211> 22 <212> ARN <213> Homo sapiens		
55	<400> 476 ccacugcccc aggugcugcu gg <210> 477		22
	<211> 21 <212> ARN <213> Homo sapiens		
60	<400> 477 ccuaguaggu guccaguaag u		21
65	<210> 478 <211> 20 <212> ARN		

	<213> Homo sapiens		
5	<400> 478 ccucugggcc cuuccuccag		20
3	<210> 479 <211> 22 <212> ARN <213> Homo sapiens		
10	<400> 479 cuggcccucc gu		22
15	<210> 480 <211> 23 <212> ARN <213> Homo sapiens		
20	<400> 480 gcaaagcaca cggccugcag aga	23	
25	<210> 481 <211> 21 <212> ARN <213> Homo sapiens		
	<400> 481 gccccugggc cuauccuaga a	21	
30	<210> 482 <211> 23 <212> ARN <213> Homo sapiens		
35	<400> 482 ucaagagcaa uaacgaaaaa ugu	23	
40	<210> 483 <211> 23 <212> ARN <213> Homo sapiens		
45	<400> 483 uccagcuccu auaugaugcc uuu	23	
	<210> 484 <211> 23 <212> ARN		
50	<213> Homo sapiens		
	<400> 484 uccagcauca gugauuuugu uga	23	
55	<210> 485 <211> 21 <212> ARN <213> Homo sapiens		
60	<400> 485 ucccuguccu ccaggagcuc a		21
65	<210> 486 <211> 23 <212> ARN <213> Homo sapiens		

	<400> 486 uccgucucag uuacuuuaua gcc	23	
5	<210> 487 <211> 24 <212> ARN <213> Homo sapiens		
10	<400> 487 ucucacacag aaaucgcacc cguc	24	
15	<210> 488 <211> 21 <212> ARN <213> Homo sapiens		
20	<400> 488 ugcugacucc uaguccaggg e		21
	<210> 489 <211> 23 <212> ARN <213> Homo sapiens		
25	<400> 489 ugucugcccg caugccugcc ucu	23	
30	<210> 490 <211> 22 <212> ARN <213> Homo sapiens		
35	<400> 490 aauugcacuu uagcaauggu ga		22
40	<210> 491 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 491 acauagagga aauuccacgu uu		22
45	<210> 492 <211> 21 <212> ARN <213> Homo sapiens		
50	<400> 492 aauaauacau gguugaucuu u		21
55	<210> 493 <211> 21 <212> ARN <213> Homo sapiens		
60	<400> 493 gccugcuggg guggaaccug g		21
	<210> 494 <211> 21 <212> ARN		
65	<213> Homo sapiens <400> 494		

	gugccgccau cuuuugagug u		21
5	<210> 495 <211> 23 <212> ARN <213> Homo sapiens		
10	<400> 495 aaagugcugc gacauuugag cgu	23	
10	<210> 496 <211> 22 <212> ARN		
15	<213> Homo sapiens		
	<400> 496 acucaaaaug ggggcgcuuu cc		22
20	<210> 497 <211> 23 <212> ARN <213> Homo sapiens		
05	<400> 497	00	
25	gaagugcuuc gauuuugggg ugu	23	
30	<210> 498 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 498 uuauaauaca accugauaag ug		22
35			

137

REIVINDICACIONES

- 1. Un método para diagnosticar si un sujeto tiene cáncer de colon, de páncreas o de estómago, que comprende:
- 5 medir el nivel de al menos un primer producto génico de miR-24-2 en una muestra de tejido de colon, de páncreas o de estómago del sujeto,
 - en el que una alteración en el nivel del primer producto génico de miR-24-2 en la muestra, en relación con el nivel del primer producto génico de miR-24-2 en una muestra de control,

es indicativa de que el sujeto tiene cáncer de colon, de páncreas o de próstata.

10

20

- 2. El método de la reivindicación 1, en el que un aumento en el nivel del primer producto génico de miR-24-2 se usa para diagnosticar cáncer de colon.
- 3. El método de las reivindicaciones 1 o 2, en el que el primer producto génico de miR y al menos un producto génico de miR adicional se usan para diagnosticar cáncer de colon, seleccionándose el al menos un producto génico de miR adicional del grupo que consiste en:

miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-24-1, miR-155, miR-20a, miR-107, miR-32, miR-30c, miR-221, miR-106a, miR-10a, miR-203, miR-126*, miR-24-2, miR-99b prec, miR-213, miR-150, miR-9-3 y combinaciones de los mismos.

- 4. El método de la reivindicación 1, en el que un aumento en el nivel del primer producto génico de miR-24-2 se usa para diagnosticar cáncer pancreático.
- 5. El método de las reivindicaciones 1 o 4, en el que el primer producto génico de miR y al menos un producto génico de miR adicional se usan para diagnosticar cáncer pancreático, seleccionándose el al menos un producto génico de miR adicional del grupo que consiste en:
- miR-21, miR-17-5p, miR-191, miR-29b-2, miR-223, miR-128b, miR-199a-1, miR-24-1, miR-146, miR-181b-1, miR-20a, miR-107, miR-32, miR-92-2, miR-214, miR-30c, miR-25, miR-221, miR-106a, miR-103-2, miR-103-1, miR-100, miR-125b-2, miR-125b-1, miR-23a, miR-26a-1, miR-125a, miR-130a, miR-26b, miR-145, miR-126*, miR-16-2, miR-99b, miR-155, miR-29a, miR-16-1, miR-99a, miR-224, miR-30d, miR-29c, miR-30b, miR-129-1/2, miR-197, miR-7-1, miR-93-1, miR-140, miR-30a-5p, miR-132, miR-152 prec, miR-23b, miR-222, miR-27a, miR-92-1, miR-129-1/2 prec, miR-150, miR-29b-1 y combinaciones de los mismos.

35

45

- 6. El método de la reivindicación 1, en el que un aumento en el nivel del primer producto génico de miR-24-2 se usa para diagnosticar cáncer de estómago.
- 7. El método de las reivindicaciones 1 o 6, en el que el primer producto génico de miR y al menos un producto génico de miR adicional se usan para diagnosticar cáncer de estómago, seleccionándose el al menos un producto génico de miR adicional del grupo que consiste en:

miR-21, miR-191, miR-223, miR-24-1, miR-107, miR-92-2, miR-214, miR-25 and miR-221, miR-218-2, miR-103-2, miR-136, miR-125b-2, miR-103-1, miR-222, miR-212 prec, miR-125b-1, miR-100, miR-92-1, miR-96, miR-192, miR-23a, miR-215, miR-7-2, miR-138-2, miR-99b, miR-33b y combinaciones de los mismos.

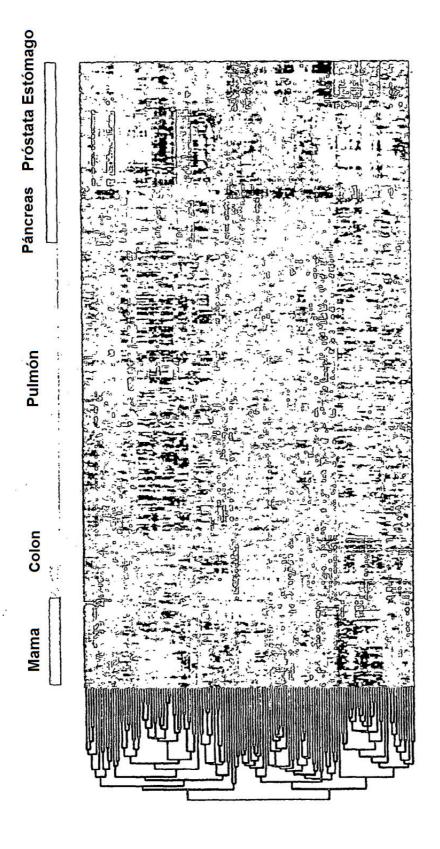
- 8. Un método para diagnosticar si un sujeto tiene cáncer de colon, de páncreas o de estómago de acuerdo con la reivindicación 1, en el que la medición del nivel del al menos un producto génico de miR-24-2 comprende:
- 50 (1) transcribir de forma inversa:

al menos ARN de miR-24-2 de la muestra obtenida del sujeto para proporcionar al menos un oligodesoxinucleótido diana de miR-24-2; y

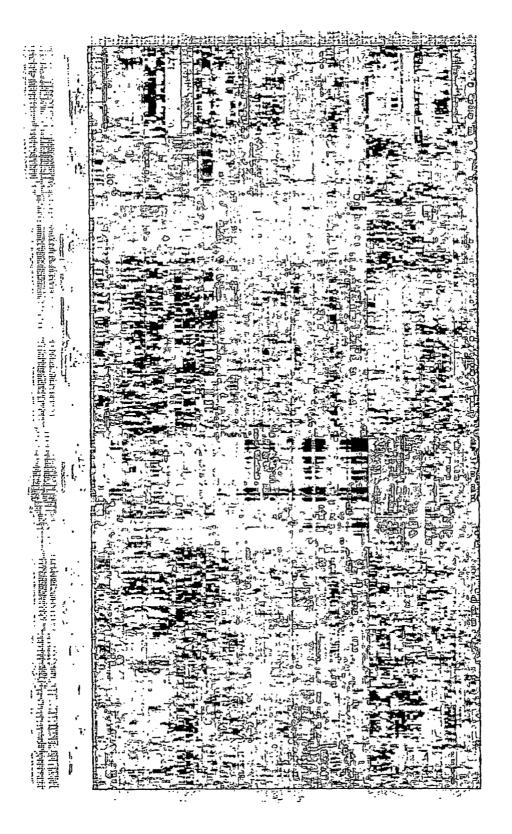
55 (2) hibridar:

el al menos un oligodesoxinucleótido diana de ARN de miR-24-2 con una micromatriz que comprende oligonucleótidos sonda específicos de miARN que incluyen al menos un oligonucleótido sonda específico de ARN de miR-24-2 para proporcionar un perfil de hibridación para la muestra;

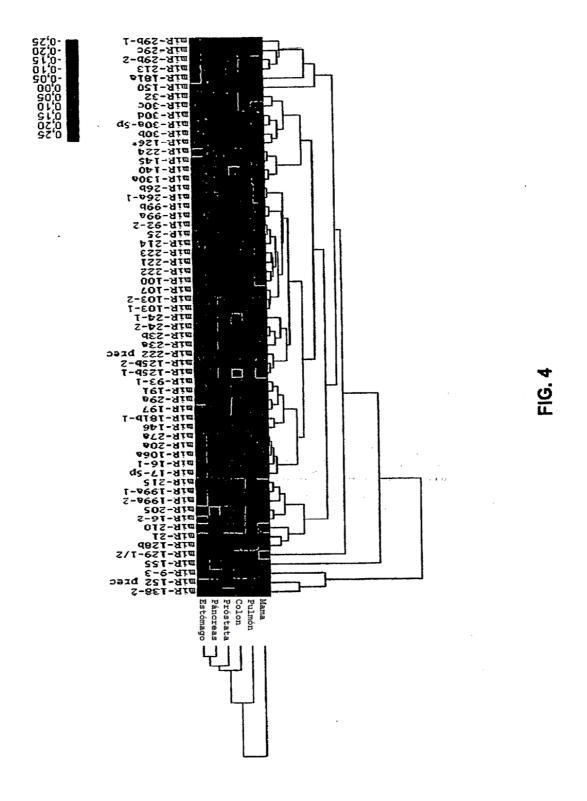
y en el que la determinación de si hay una alteración en el nivel del primer producto génico de miR-24-2 en la muestra, en relación con el nivel del primer producto génico de miR-24-2 en una muestra de control comprende:

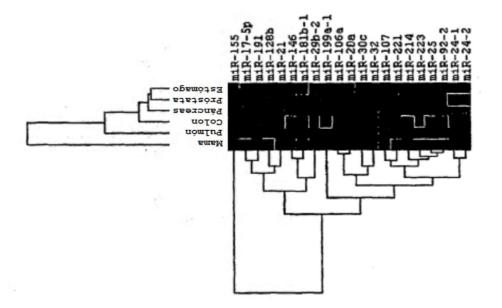

(3) comparar:

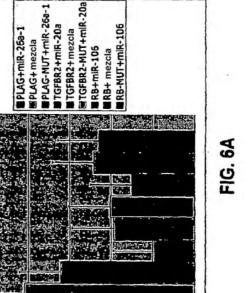
65

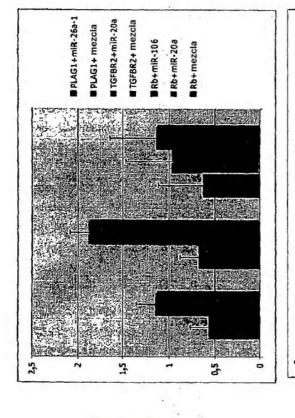

60

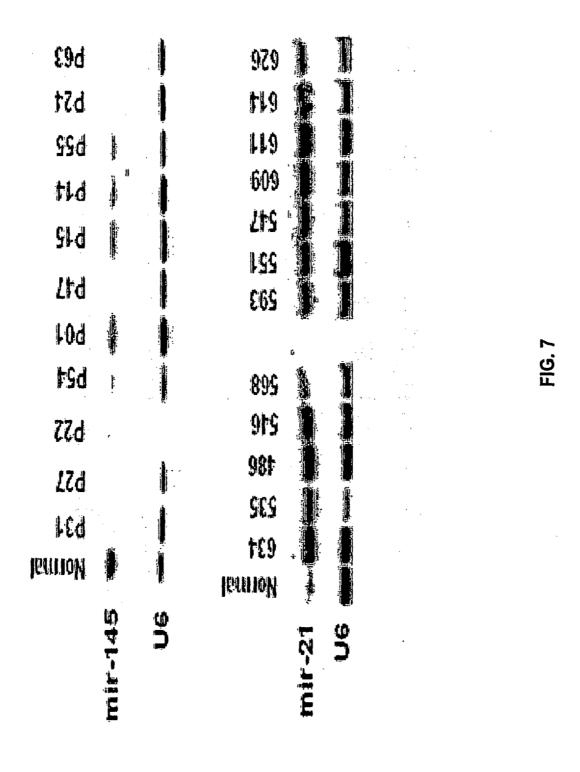
el perfil de hibridación de la muestra con un perfil de hibridación generado a partir de una muestra de control,


en donde una alteración en la señal de miR-24-2 es indicativa de que el sujeto tiene un cáncer de colon, de páncreas o de estómago.


(C)






factor de cambio

factor de cambio

1,5

FIG. 6B

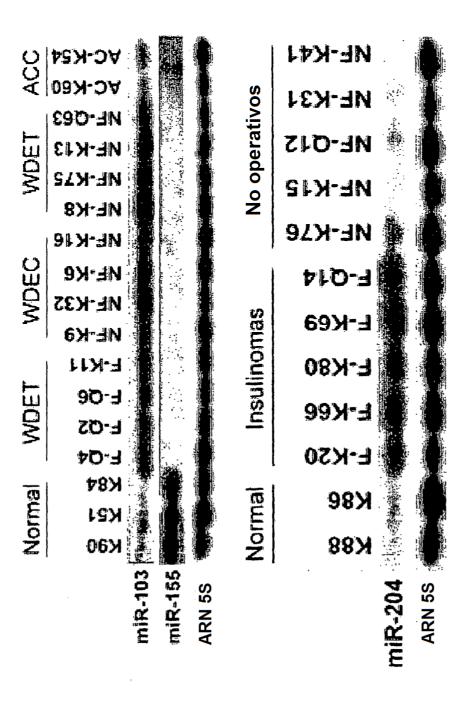


FIG. 8