

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 546 190

51 Int. Cl.:

C12Q 1/70 (2006.01) C12Q 1/68 (2006.01) C07K 14/18 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 06.10.2009 E 09740083 (2)
 (97) Fecha y número de publicación de la concesión europea: 10.06.2015 EP 2342363
- (54) Título: Método para determinar mutaciones de resistencia a fármacos en cualquiera de las regiones de proteína no estructural NS3 a NS5B del virus de la hepatitis C (HCV) para los genotipos 1
- (30) Prioridad:

06.10.2008 EP 08165949

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 21.09.2015

(73) Titular/es:

JANSSEN DIAGNOSTICS BVBA (100.0%) Turnhoutseweg 30 2340 Beerse, BE

(72) Inventor/es:

STUYVER, LIEVEN JOZEF; KOLETZKI, DIANA; BERKE, JAN MARTIN; VANDENBROUCKE, INA ISABEL y VIJGEN, LEEN ROGER

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Método para determinar mutaciones de resistencia a fármacos en cualquiera de las regiones de proteína no estructural NS3 a NS5B del virus de la hepatitis C (HCV) para los genotipos 1 a 6

5

- La presente invención se refiere a un método para determinar mutaciones de resistencia a fármacos en cualquiera de las regiones de proteína no estructural NS3 a NS5B del virus de la hepatitis C (HCV) para los genotipos 1 a 6, más en particular para los genotipos específicos de subtipo 1a, 1b, 2a, 2b, 3a, 4a y 4d.
- El HCV es un virus de ARN de cadena positiva monocatenario, con un genoma de aproximadamente 9.600 bases que pertenece a la familia *Flaviviridae* de virus del género hepacivirus. La región NS5B del poligen de ARN codifica un ARN de 65 kDa dependiente de ARN polimerasa (RdRp), que es esencial para la replicación viral. Después de la infección aguda inicial, la mayoría de los individuos infectados desarrolla hepatitis crónica porque HCV se replica preferentemente en hepatocitos pero no es directamente citopático. En particular, la ausencia de una respuesta vigorosa de linfocitos T y la alta propensión del virus a mutar parecen promover una alta tasa de infección crónica. La hepatitis crónica puede progresar hasta fibrosis hepática, conduciendo a cirrosis, enfermedad hepática de fase final, y HCC (carcinoma hepatocelular), haciendo que sea la causa principal de trasplantes de hígado.
- La transmisión de HCV puede suceder a través de contacto con sangre o productos sanguíneos contaminados, por ejemplo después de transfusión sanguínea o uso de fármacos intravenosos. La introducción de ensayos de diagnóstico usados en exploración de sangre ha conducido a una tendencia descendente en la incidencia de HCV post-transfusión. Sin embargo, dada la lenta progresión hasta la enfermedad hepática de fase final, las infecciones existentes continuarán presentando una carga médica y económica importante durante décadas.
- Existen seis genotipos principales de HCV y más de 50 subtipos, que están distribuidos geográficamente de forma diferente. El HCV de genotipo 1 es el genotipo predominante en Europa y los Estados Unidos. La extensiva heterogeneidad genética de HCV tiene implicaciones clínicas y de diagnóstico importantes, que quizá explican las dificultades en el desarrollo de vacunas y la ausencia de respuesta a las terapias actuales.
- 30 La variabilidad genética de HCV complica los procesos de amplificación, secuenciación y genotipado. Estos procesos dependen del uso de los llamados cebadores complementarios a y capaces de hibridar con secuencias correspondientes de ácido nucleico del genoma de HCV. Debido al alto grado de variabilidad del genoma de HCV, los cebadores complementarios a una especie de HCV pueden no ser complementarios para otra especie.
- Para determinar el subtipo de un aislado clínico de HCV un método preciso y directo es secuenciar el genoma viral en una región que es suficientemente divergente entre diversas especies para distinguir entre genotipos y subtipos de HCV consecuentemente. Se usa el análisis filogenético de las secuencias generadas a partir de estas regiones para determinar el subtipo de aislados clínicos.
- 40 Actualmente se están evaluando varios fármacos antivirales selectivos y potentes contra infección por virus de la hepatitis C crónica (HCV) en ensayos clínicos. La aparición de mutaciones de resistencia a fármacos se demostró en ensayos previos, creando una necesidad de controlar a los pacientes para el desarrollo de dichas mutaciones de resistencia a fármacos.
- Para mejorar la identificación de los tipos y subtipos de HCV con fines de análisis clínico y la toma de decisiones terapéuticas por un médico asistente, sigue existiendo una necesidad continuada de mejorar los ensayos de HCV basados en secuenciación.
- El virus de la hepatitis C está clasificado actualmente, como se ha mencionado anteriormente, en al menos 6 genotipos principales (Fig. 1). Cada genotipo difiere de los otros en un 30% a un 35% a nivel de nucleótidos y puede dividirse adicionalmente en varios subtipos con diversidad de secuencia típicamente entre el 20% y el 25% (Simmonds et al., Hepatology 2005; 42(4), 962-973).
- La presente invención se refiere al desarrollo de ensayos específicos de subtipo para el análisis de resistencia del genotipo de HCV adecuado para ensayos clínicos y documentos reguladores.
 - En más detalle, la invención se refiere a ensayos de genotipado que cubren la región codificante completa desde NS3 hasta NS5B desarrollados en un gran panel de muestras clínicas incluyendo protocolos para los subtipos 1a, 1b, 2a, 2b, 3a, 4a y 4d.

- La presente invención se refiere a un ensayo de subtipado basado en secuencia de NS5B que detecta los seis genotipos de HCV y discrimina entre los diferentes subtipos.
- Un aspecto de la invención se refiere a un método para determinar mutaciones de resistencia a fármacos en cualquiera de las regiones de proteína no estructural NS3 a NS5B del virus de la hepatitis C (HCV) para los genotipos 1 a 6, más en particular para los genotipos específicos de subtipo 1a, 1b, 2a, 2b, 3a, 4a y 4d, presentes en

una muestra que comprende:

5

15

30

35

40

45

50

55

60

- a) obtener dicha muestra de un paciente,
- b) extraer el material genético viral de dicha muestra,
- c) amplificar la región NS5B de HCV para generar un amplicón de ADN de 388 pares de bases usando cebadores que tienen las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 1-5,
- d) secuenciar el amplicón para obtener una secuencia de 329 pares de bases usando las secuencias seleccionadas entre el grupo que consiste en las SEC ID N° 3-5.
- e) realizar análisis de árboles filogenéticos usando la información de secuencia de 329 pares de bases de NS5B para obtener información del subtipo de HCV en dicha muestra del paciente,
- f 1) usar cebadores específicos de subtipo que tienen las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 6-9, 42-45, 104-107. 120-123, 145-148 ó 180-183 para la generación de un amplicón de ADN que comprende la proteína no estructural NS3 (181 aminoácidos N-terminales),
 - g 1) secuenciar el amplicón de NS3 para obtener una secuencia de 543 pares de bases usando las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 8 y 9; 43 y 45-46; 104 y 106; 120 y 122; 146 y 148 ó 180 y 182
 - f 2) usar cebadores específicos de subtipo que tienen las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 13-16, 54 y 59-66, 124-133, 158 y 160-168 ó 194-197 para la generación de un amplicón de ADN que comprende la polimerasa NS5B,
- g 2) secuenciar el amplicón de la polimerasa NS5B para obtener una secuencia de 1776 pares de bases usando las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 15-16 y 87-92; 54, 59 y 61-66; 124 y 127-133; 158-159, 161 y 163-168 ó 197-204
- f 3) usar cebadores específicos de subtipo que tienen las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 30-33, 67-70, 93-96, 108-111, 134-137 ó 169-172 para la generación de un amplicón de ADN que comprende NS3/4A.
 - g 3) secuenciar el amplicón de la proteasa NS3/4A para obtener una secuencia de 2055 pares de bases usando las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 34-41; 68 y 71-77; 95 y 97-103; 112-119; 136 y 138-144 ó 171 y 173-179
 - f 4) usar cebadores específicos de subtipo que tienen las secuencias seleccionadas entre el grupo que consiste en las SEC ID N° 47-50, 78-81, 149-151 y 159 ó 184-187 para la generación de un amplicón de ADN que comprende NS4B/5A,
 - g 4) secuenciar el amplicón de NS4B/5A para obtener una secuencia de los dos genes NS4B y NS5A usando las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 51-57; 79 y 81-87; 152-159 ó 185 y 187
 - h) alinear la secuencia obtenida en la etapa (g 1), (g 2), (g 3) o (g 4) con una secuencia de HCV de referencia o de tipo silvestre.
 - i) determinar una o más mutaciones de resistencia a fármacos en el material genético viral presente en la muestra del paciente.

Otra realización de la presente invención es que el método anterior comprende adicionalmente las etapas de realizar un ensayo de fenotipado de NS3 por

- j) generación de un amplicón de NS3 partiendo del amplicón de ADN que comprende el NS3 (181 aminoácidos N-terminales) obtenido en la etapa (f 1) de la reivindicación 1 usando cebadores que tienen la secuencia de las SEC ID Nº 11 v 12.
 - k) inserción, por clonación mediante InFusion™ o recombinación in vitro, de dicho amplicón obtenido en la etapa j) en un vector lanzadera que contiene marcador de replicación incompetente con NS3 delecionado que tiene la secuencia de las SEC ID Nº 10 para obtener un replicón de HCV recombinante competente en replicación de NS3.
 - I) generación de ARN, por transcripción in vitro, a partir de dicho replicón de HCV obtenido en la etapa (k) m) transfección de dicho ARN en células adecuadas.
 - n) determinación, en base a la expresión del gen marcador, del valor de CE₅₀ y/o el cambio factorial como una medida para la presencia de mutaciones de resistencia a fármacos en una muestra.

En otra realización, la invención se refiere al método mencionado anteriormente que comprende adicionalmente las etapas de realizar un ensayo de fenotipado de NS5B por

- o) generación de un amplicón de NS5B partiendo del amplicón de ADN que comprende el NS5B obtenido en la etapa (f 2) de la reivindicación 1 usando cebadores que tienen la secuencia de las SEC ID N° 28 y 29,
- p) inserción, por recombinación in vitro, de dicho amplicón obtenido en la etapa (o) en un vector lanzadera que contiene marcador de replicación incompetente con NS5B delecionado que tiene la secuencia de las SEC ID Nº 21 o SEC ID Nº 27 para obtener un replicón de HCV recombinante competente en replicación de NS5B.
- q) generación de ARN, por transcripción in vitro, a partir de dicho replicón de HCV obtenido en la etapa (p) r) transfección de dicho ARN en células adecuadas,
- s) determinación, en base a la expresión del gen marcador, del valor de CE₅₀ y/o el cambio factorial como una medida para la presencia de mutaciones de resistencia a fármacos en una muestra.

También se describe un vector que comprende el genoma de HCV y una deleción que abarca la región de 181 aminoácidos N-terminal de NS3 de HCV, en particular el vector pFK l341 Pl luc ΔNS3 7-192_ET (SEC ID N° 10) y un vector que comprende el genoma de HCV y una deleción que abarca la región NS5B de HCV, en particular el vector pFK_l341_Pl_NS3-3_ET_dNS5a/b_5a440-5b591-Scal (SEC ID N° 21) y el vector que comprende el genoma de HCV y una deleción que abarca la región NS5B de HCV, en particular el vector pFK_l341_Pl_NS3-3_ET_dNS5a/b_5a440-5b591-Xbal (SEC ID N° 27).

Además del uso de cualquiera de los vectores anteriores en cualquiera de los métodos mencionados, se describen los cebadores con las SEC ID Nº 1-5 para la amplificación de la región NS5B de HCV, obtenida de una muestra de un paciente infectado con HCV.

También se describe el uso de los cebadores con las SEC ID Nº 1-5 para la preparación de un ensayo para subtipado de HCV basado en secuencia para detectar los genotipos de HCV 1, 2, 3 y 4 y para discriminar entre los subtipos 1a, 1b, 2a, 2b, 3a, 4a y 4d.

Explicación de las Figuras.

5

10

15

20

30

35

40

45

60

65

Figura 1: Árbol filogenético de las secuencias completas de fase de lectura abierta de HCV que muestra los 6 genotipos principales y sus subtipos más comunes. (Simmonds et al. 2005 Hepatology 2005; 42(4), 962-973)

Figura 2: Sinopsis de amplicones para la plataforma HCV integrada.

<u>Figura 3</u>: Estado del desarrollo de los ensayos de subtipado y genotipado específico de subtipo de HCV y sus características de rendimiento.

Los números en paréntesis muestran la cantidad de muestras ensayadas.

25 Figura 4: Vector pFK I341 PI luc ΔNS3 7-192 ET (SEC ID N° 10)

Figura 5: Sinopsis del proceso.

Se recogió un panel de 603 muestras clínicas que cubren los seis genotipos (G). Se desarrollaron dos sistemas de ensayo: un ensayo de subtipado basado en secuencia de NS5B y una serie de ensayos de genotipado específico de subtipo para determinar mutaciones de resistencia a fármacos en las siguientes regiones diana: (1) inhibidores de proteasa (NS3/4A completo y los 181aa N-terminales de NS3), (2) inhibidores de polimerasa (NS5B completo), y (3) otros (región NS4B/5A completa). Todas las series de cebadores se han optimizado para la especificidad de subtipo y para permitir el uso del mimo protocolo de PCR para una región diana independiente del subtipo (Figura 2). Todos los métodos y protocolos se optimizaron y validaron para soportar un procesamiento de alto rendimiento de los ensayos de resistencia genotípica en un entorno operativo rutinario.

El ensayo de subtipado basado en secuencia de NS5B ser ensayó en una serie de 603 muestra clínicas que contenían los seis genotipos con una sensibilidad clínica (tasa de éxito de amplificación de muestras de alta carga viral) del 91%.

Para los ensayos de genotipado específico de subtipo, se ensayaron series de muestras clínicas de, en promedio, n=94 para G1a/b, n=16 para G2a/b, n=76 para G3a, y n=83 para G4a/d en los diferentes ensayos para evaluar la sensibilidad clínica. Se consiguieron tasas de éxito de amplificación de entre el 90% y el 100%, y tasas se éxito de secuenciación de entre el 95% y el 100% (Figura 3).

Sección de ejemplos

Resumen general:

El flujo general del proceso se visualiza en la Figura 5. Comienza con la determinación del subtipo de HCV de una muestra clínica (Subtipado). Esta información de subtipo se usa después en el posterior proceso de genotipado para seleccionar los cebadores específicos de subtipo apropiados para la amplificación y secuenciación de la región diana de interés. El resultado final del proceso de genotipado es la información de la secuencia de nucleótidos y aminoácidos de esa región. Por comparación con una secuencia viral de tipo silvestre o de referencia se proporciona información acerca de la existencia de cambios de aminoácidos. Se usarán los productos de PCR del proceso de genotipado en el proceso de fenotipado para generar replicones subgenómicos quiméricos para la evaluación de susceptibilidad a fármacos. Los resultados del fenotipado son valores de CE₅₀ que pueden usarse para la interpretación de la susceptibilidad a fármacos (es decir, calculando los valores de cambio factorial de CE₅₀) del aislado clínico. Puede compararse la información de secuencia de la región diana y la susceptibilidad a fármacos.

1. Subtipado

Se generó un amplicón a partir del ARN plasmático viral derivado de pacientes por RT-PCR de una etapa seguido por PCR anidada. Este amplicón, mencionado adicionalmente como el amplicón de subtipado de NS5B, contiene una secuencia de 329 pb del dominio de polimerasa NS5B, que se usa para el análisis de árboles filogenéticos para obtener información del subtipo del aislado clínico. El ensayo se llama el *ensayo de subtipado basado en*

secuencia de NS5B. La información de subtipo del aislado clínico se usará en una siguiente etapa para seleccionar los cebadores apropiados de amplificación específica de subtipo y secuenciación para obtener información de secuencia de la región de interés en el ensayo de genotipado.

2. Genotipado

10

15

20

35

40

50

60

Usando cebadores específicos de subtipo, se genera un amplicón del dominio de proteasa NS3 del ARN plasmático viral derivado del paciente por RT-PCR de una etapa seguido por PCR anidada. Este amplicón, mencionado adicionalmente como el amplicón de NS3, contiene el dominio catalítico de la proteasa NS3. Este amplicón va a ser secuenciado con cebadores de secuenciación específicos de subtipo en el ensayo genotípico de proteasa NS3 de HCV.

Usando cebadores específicos de subtipo, también puede generarse un amplicón de la polimerasa completa NS5B a partir del ARN plasmático viral derivado del paciente por RT-PCR de una etapa seguido por PCR anidada. Este amplicón, mencionado adicionalmente como el amplicón de NS5B, contiene el gen completo de NS5B. Este amplicón va a ser secuenciado con cebadores de secuenciación específicos de subtipo en el ensayo genotípico de polimerasa NS5B de HCV.

Puede conseguirse lo mismo usando cebadores específicos de subtipo para otras regiones HCV específicas como NS3/NS4A o NS4B/NS5A y similares.

3. Fenotipado

Se ha generado un vector lanzadera incompetente en replicación con NS3 delecionado, mencionado adicionalmente 25 como la estructura delta[NS3], basado en la secuencia con 1b del replicón subgenómico. Se genera el amplicón de NS3, a partir del material derivado del paciente, el ADN plasmídico del replicón, genes sintéticos o productos de PCR del ARN de replicón, por PCR usando el producto de RT-PCR de una etapa del ensayo genotípico de proteasa NS3 de HCV. La clonación por In-Fusion™ (Clontech) del amplicón de NS3 generado por PCR y la estructura delta[NS3] produjo un replicón de HCV recombinante competente en replicación que se usó en experimentos para 30 evaluar la resistencia fenotípica a fármacos de NS3 de HCV.

Se ha generado un vector lanzadera incompetente en replicación con NS5B delecionado, mencionado adicionalmente como la estructura delta[NS5B], basado en la secuencia con 1b del replicón subgenómico. Se genera el amplicón de NS5B, a partir del material derivado del paciente, el ADN plasmídico del replicón, genes sintéticos o productos de PCR del ARN de replicón, por PCR usando el producto de RT-PCR de una etapa del ensayo genotípico de polimerasa NS5B de HCV. La clonación in vitro (usando BD In-Fusion™, Clontech Laboratories Inc.) del amplicón de NS5B generado por PCR y la estructura delta[NS5B] produjo un replicón de HCV recombinante competente en replicación que se usó en experimentos para evaluar la resistencia fenotípica a fármacos de NS5B de HCV.

Ejemplo 1

Ensayo de subtipado basado en secuencia de NS5B

45 A. Extracción de ARN

A partir de un total de 500 µl de plasma, se extrajo el ARN total usando la plataforma de extracción de ARN EasyMAG™ (BioMerieux). Después de elución en 60 µl de tampón de elución, el ARN se almacenó a -80°C hasta su uso para la generación del amplicón.

B. RT-PCR de una etapa

Se mezclaron 5 µl de ARN con tampón de reacción 2x, 120 ng/ml de ARNt de levadura (Ambion Inc., Woodward, EE.UU.), cebador NS5Bsubtype_A (TGGGGTTCGCGTATGATACCCGCTGCTTTGA) (SEC ID N° 1) 0,2 μM, cebador NS5Bsubtype_B (TGGGGTTTTCTTACGACACCAGGTGCTTTGA) (SEC ID № 2) 0,2 µM, cebador Pr2 0,2 55 µM (publicado en Sandres-Saunes et al. 2003) y 0,5 µl de la mezcla enzimática Superscript™ III RT/Platinum Taq High Fidelity del sistema de RT-PCR de una etapa Superscript™ III (Invitrogen) en un volumen total de 25 μl. La síntesis del ADNc se realizó durante 30 min a 52°C seguido por una etapa de desnaturalización a 94°C durante 2 min. El ciclado térmico consistía en 50 ciclos de desnaturalización a 94°C durante 15 seg, hibridación a 63°C durante 30 seg y elongación a 72°C durante 30 seg. La extensión final tuvo lugar a 72°C durante 5 min. Se usó una alícuota del producto de amplificación resultante para una etapa de PCR anidada.

C. PCR interna

Para una PCR anidada, se mezclaron 2,5 µl del producto de RT-PCR de una etapa con tampón 2 10x del kit 65 Expand™ High Fidelity (Roche), dNTP 0,35 mM (Promega), cebador NS5Bsubtype C

(CCGTATGATACCCGCTGCTTTGACTCAAC) (SEC ID NO: 3) 0,3 μM, cebador (TCCTAGGACACCAGGTGCTTTGATTCAAC) Ν° (SEC ID 4) 0,4 μM, cebador (AATTCCTGGTCATAGCCTCCGTGAAGACTC) (SEC ID N° 5) 0,4 µM y 0,075 U/µI de ADN polimerasa (Roche, Basilea, Suiza) para dar un volumen total de 50 µl. La desnaturalización inicial fue a 94°C durante 2 min y el ciclado térmico consistió en 30 ciclos de desnaturalización a 94°C durante 15 seg, hibridación a 56°C durante 30 seg y elongación a 72°C durante 30 seg. La extensión final tuvo lugar a 72°C durante 5 min. Los amplicones se purificaron usando el kit de purificación de PCR QIAQuick 96 (Qiagen). El volumen final de los amplicones purificados fue de

10 D. Análisis de secuencia sin procesar

La reacción de secuenciación se realizó de acuerdo con procedimientos convencionales usando los cebadores de la PCR anidada para secuenciar ambas direcciones, directa e inversa. Se recuperaron los electroferogramas del secuenciador capilar ABI3730 y se importaron a Seqscape v2.5 (Applied Biosystems). Los extremos de las secuencias se recortaron en base a valores de calidad y la longitud de 329 pb de la secuencia de referencia de subtipado; abarcando la última las regiones entre los cebadores de amplificación. No se permitió que aparecieran inserciones, deleciones o codones de parada en las secuencias.

E. Análisis de árboles filogenéticos

Se combinaron las secuencias de muestra con una longitud de 329 pb con secuencias de referencia de subtipo en BioEdit (Ibis Therapeutics; fuente pública, internet: www.mbio.ncsu.edu/BioEdit/bioedit.html) y posteriormente se analizaron en MEGA v3.1 (fuente pública, internet: http://www.megasoftware.net/) usando el árbol de Neighbour-Joining y el modelo de distancia de Jukes-Cantor.

Resultados:

5

15

20

25

35

50

55

Secuencias de subtipado de NS5B de pacientes infectados con HCV-1b:

30 >Subtipado de NS5B Pt 1

AGTCACCGAGAATGATATCCGTGTTGAGGAGTCAATTTACCAATGCTGTGACTTGGCCCCCGAAGCCAAACAGG CCATAAGGTCGCTCACAGAGCGGCTTTAYATCGGGGGTCCCCTGACTAATTCAAAAGGGCAGAACTGCGGTTAT CGCCGGTGCCGCGAGCGGCGTGCTGACGACCAGCTGCGGTAATACCCTCACCTGTTACTTGAAGGCCACC GCGGCCTGTCGAGCTGCAAAGCTCCAGGACTGCACGATGCTCGTGTGCGGGGACCCTTGTCGTTATCTGTG AAAGCGCGGGAACCCAAGAGGACGCGGCGAACCTAC

> Subtipado de NS5B Pt 2

TGTCACYGAGAGTGACATCCGYGTTGAGGAGTCAATCTACCAATGTTGTGACTTGGCCCCCGAAGCCAGACAGG CCATAAAGTCGCTCACAGAGCGGCTTTAYATCGGGGGTCCCGTGACTAAYTCAAAAGGRCAGAACTGCGGYTAT 40 CGCCGGTGCCGCGCGAGCGGCGTGCTGACGACTAGGTGCGGYAACACCCTCACMTGTTACYTGAAGGCCTCT GCAGCCTGTCGAGCTGCRAAGCTCCAGGACTGCACGATGCTCGTGTGCGGGGACGACCTTGTCGTTATCTGCG AGAGTGCTGGGACCCAGGAGGACGYGGCGAGCCTAC

> Subtipado de NS5B Pt 3

45 GGTCÁCTGAGAATGACATTCGTGTCGAGGAGTCGATCTACCAATGCTGTGACTTGGCCCCCGAAGCCAGACARG CCATAAGGTCGCTCACGGAGCGGCTTTATATCGGGGGTCCCCTGACTAATTCAAAAGGGCAGAACTGCGGTTAT CGCCGGTGCCGCGCGAGCGGTACTGACGACCAGCTGTGGTAATACCCTCACATGTTACTTGAAGGCCTCTG CGGCCTGTCGAGCTGCCAAGCTCCAGGACTGCACGATGCTCGTGAACGGAGACCTTGTCGTTATCTGTGA GAGCGCGGGAACCCAARAGGACGCAGCGAACCTAC

> Subtipado de NS5B Pt 4

RGTCAGCGAGAGKGACATCCGTGTTGAGGAGTCRATYTACCAATGTTGTGACTTGGCCCCCGAAGCCAGACAGGCCATAAAGTCGCTCACRGAGCGGCTCTATATCGGGGGCCCCCTGACTAATTCAAAAGGGCAGAACTGCGGTTATCGCCGGTGCCGCGCCAGGGGCGTRCTGACGACCAGCTGCGGTAATACCCTCACATGTTACTTGAAGGCCTCTGCGGCCTGTCGAGCTGCAAAGCTCCAGGACTGCACGATGCTTGTGTGYGGAGACCGACCTYGTCGTTATCTGTGAGGCCCGGGGGGCCCAGGAGGACCCAGGAGCCCTAC

> Subtipado de NS5B Pt 5

GGTCÁCTGAGAGTGAYATCCGTGTYGAGGAGTCAATATACCAATGTTGTGACTTGGCCCCCGAAGCCAGACAGG
60 CCATAAAGTCGCTCACAGAGCGGCTCTATGTTGGGGGTCCCCTGACTAAYTCAAAAGGGCAGAACTGCGGTTAT
CGCCGGTGCCGCGCAGCGCGCGTGCTGACGACCAGCTGCGGTAATACCCTCACTTGTTACTTGAAAGCCTCTG
CRGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACGATGCTCGTGTGTGGAGACCACCTTGTCGTTATCTGCGA
AAGCGCGGGAACCCAGGAGGACGCGGCGAGCCTAC

> Subtipado de NS5B Pt 12

AGTCÁCTGAGAGTGACATCCGCGTTGAGGAGTCAATCTACCAATGTTGTGACTTGGCCCCCGAAGCCAAACAGG CCATAAAGTCGCTCACAGAGCGGCTTTACATCGGGGGTCCCCTGACTAATTCAAAAGGGCAGAACTGCGGCTAT CGCCGGTGCCGCGCCAGCGGCGTACTGACGACCAGCTGTGGTAATACCCTCACATGTTACTTGAAAGCCTCTG CGGCCTGTCGAGCTGCAAAGCTCCAGGACTGCACGATGCTCGTGTGCGGAGACGACCTTGTCGTTATCTGTGA GAGCGCGGGAACCCAGGAGGACGCGGCGAGCCTAC

> Subtipado de NS5B Pt 13

5

20

25

35

GGTCACTGAGAGTGATATCCGTACTGAGGAGTCTATTTACCAATGTTGTGACCTGGCCCCCGAAGCTAGACAAG

10 TCATAAGGTCGCTCACAGAGCGGCTTTAYATYGGGGGCCCCCTGACYAATTCAAAAGGGCAGAACTGCGGTTAT
GGCCGGTGCCGYGCGAGCGGCGTGCTGACGACTAGCTGCGGTAATACCCTCACATGTTACTTGAAGGCCTCTG
CGGCCTGTCGAGCTGCAAAGCTCCGGGACTGCACGATGCTCGTGTGCGGAGACGACCTCGTCGTTATCTGTGA
AAGCGCGGGGACCCAGGAGGACGCGGCTAGCCTAC

15 > Subtipado de NS5B Pt 14

> Subtipado de NS5B Pt 15

> Subtipado de NS5B Pt 16

30 GGTCÁCTGAGAATGACATYCGTGTTGAGGAGTCAATTTACCAATGTTGTGACTTGGCYCCCGAAGCCAGACAGG YCATAAGGTCGCTCACAGAGCGGCTTTAYATCGGGGGTCCYCTAACCAATTCAAAAGGGCAAAACTGCGGTTAT CGCCGGTGTCGCGCRAGCGGCGTGCTGACGACTAGCTGCGGCAAYACCCTTACATGTTACTTGAARGCCTCTG CRGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACGATGCTCGTGTGCGGAGACGACCTCGTCGTTATCTGTGA GAGCGCGGGGACCCACGAGGATGCGGCGAGCCTAC

Estas secuencias se subtiparon usando análisis filogenético. La Tabla 1 muestra el resultado.

Tabla 1

ID de muestra	Secuencia de NS5B basada en información de subtipo después de análisis filogenético
Pt 1	1b
Pt 2	1b
Pt 3	1b
Pt 4	1b
Pt 5	1b
Pt 12	1b
Pt 13	1b
Pt 14	1b
Pt 15	1b
Pt 16	1b

40 En base a la información de subtipo basada en secuencia de NS5B, se seleccionaron los cebadores específicos de subtipo apropiados para la amplificación del dominio de proteasa NS3.

Ejemplo 2

45 Ensayo de genotipado de NS3 de HCV

A. RT-PCR de una etapa

Se mezclaron cinco μl de ARN con tampón de reacción 2x, 120 ng/ml de ARNt de levadura, cebador directo 1b-NS3_out_F (GCGTGTGGGGACATCATCTTAGG) (SEC ID N° 6) 0,2 μM, cebador 1b_NS3_out_R (GCTGCCAGTGGGAGCGTG) (SEC ID N° 7) y 0,5 μl de la mezcla de enzimas Superscript™ III RT/Platinum Taq High Fidelity del sistema de RT-PCR de una etapa Superscript™ III (Invitrogen) en un volumen total de 25 μl. La síntesis de ADNc se realiza durante 30 min a 52°C seguido de una etapa de desnaturalización a 94°C durante 2 min.

El ciclado térmico consistió en 50 ciclos de desnaturalización a 94°C durante 15 s, hibridación a 58°C durante 30 s y elongación a 72°C durante 1 min. La extensión final tuvo lugar a 72°C durante 5 min. Se usó una alícuota del producto de amplificación resultante para una etapa de PCR anidada.

5 B. PCR interna

10

15

20

25

Para la PCR anidada, se mezclaron 2,5 µl del producto de RT-PCR de una etapa con tampón 2 10x del kit Expand™ High Fidelity (Roche), dNTP 0,35 mM (Promega), cebador 1b_NS3_in_F (TCATCTTAGGCCTGCCCGTCTC) (SEC ID N° 8) 0,4 µM, cebador 1 b_NS3_in_R (GGGAGCGTGTAGATGGGCCAC) (SEC ID N° 9) 0,4 µM y 0,075 U/µl de ADN polimerasa Expand™ High Fidelity (Roche) para dar un volumen total de 50 µl. La desnaturalización inicial fue a 94°C durante 2 min y el ciclado térmico consistió en 30 ciclos de desnaturalización a 94°C durante 15 s, hibridación a 58°C durante 30 s y elongación a 72°C durante 1 min. La extensión final tuvo lugar a 72°C durante 5 min. Los amplicones se purificaron usando el kit de purificación de QIAQuick 96 PCR (Qiagen). El volumen final de los amplicones purificados fue 100 μl.

C. Análisis de secuencia sin procesar

La reacción de secuenciación se realizó de acuerdo con procedimientos convencionales usando los cebadores de la PCR anidada para secuenciar en ambas direcciones, directa e inversa (SEC ID Nº 8-9). Se recuperaron los electroferogramas del secuenciador capilar ABI3730 y se importaron en Seqscape v2.5 (Applied Biosystems). Los extremos de las secuencias se recortaron en base a valores de calidad y la longitud de 543 pb (secuencia codificante para los 181 aa N-terminales de NS3) de la secuencia de referencia de subtipado; abarcando la última las regiones entre los cebadores de amplificación. No se permitió que aparecieran inserciones, deleciones o codones de PARADA en las secuencias.

Resultado:

Secuencias de proteasa NS3 de cinco (5) aislados de HCV-1b de pacientes

- - ACGCTGTGGGCGTCTTCCGGGCTGCTGTGTGCACCCGGGGGGGTCGCGA AGGCGGTGGACTTTGTACCCGTAGAGTCTATGGAGACTACCATGCGGTCC
- >NS3 Pt 2
 GCGCCATCACGGCCTACGCCCAACARACGAGGGGCCTACTTGGCTGTA

 TCATCACCAGCCTCACAGGCCGGGACAAGAACCAGGTYGAGGGGGAGGT
 TCAGGTGGTCTCCACTGCAACACAGTCCTTCCTGGCRACTTGCATCAACG
 GCGTGTGTTGGACTGTCTTTCATGGAGCCGGCTCTAAGACCCTAGCCGGC
 CCAAAGGGGCCGATCACCCAGATGTACACCAATGTAGACCAGGACCTCGT
 CGGCTGGCAAGCGCCCCCYGGGGCGCGTTCCTTGACACCGTGCAGCTGC
 GGCAGCTCGGACCTTTACTTGGTCACGAGGCATGCGGATGTCATTCCGGT
 GCGCCGGCGAGGTGACAGCAGGGGGAGCTTGCTCTCCCCCCGGCCCAT
 TTCYTACTTRAAAGGCTCTTCGGGTGGTGCRYTGCTCTGCCCCTCGGGGC
 ACGCYGTGGGCATCTTCCGGGCTGCCGTGTGCACYCGGGGGGTTGCCAA
 GGCRGTGGATTTTGTACCCGTTGAGTCTATGGAAACTACYATGCGGTCC

NS3 Pt 3
 GCGCCTATTACGGCCTACGCCCAACAGACGAGGGGCCTATTAGGCTGCA
 TCATCACTAGCCTCACAGGCCGAGACAAGAACCAGGTCGAGGGGGAGGT
 TCAGGTGGTTCTACCGCAACACACTCCTTCCTAGCGACTTGCGTCAACG
 GCGTGTGTTGGACTGTCTATCATGGCGCCGGCTCTAAGACCTTAGCCGGC
 CCAAAGGGGCCTGTCACCCAAATGTACACCAATGTAGACCAAGACCTCGT
 CGGCTGGCCAGCGCCCCCCGGGGCGCGTTCCTTGACACCATGTACTTGC
 GGCAGTTCGGACCTTTACTTGGTCACGAGACATGCCGATGTCATTCCGGT
 GCGCCGGCGGGGCGACAGCAGGGGGAGCCTGCTCTCCCCCAGGCCTGT
 CTCCTATTTGAAGGGCTCTTCCGGGTGGTCCACTGCTCTCCCCTTCAGGGC
 ACGCCGTGGGCATCTTCCGGGCTGCCGTGTGCACCCGAGGGGTTGCCAA

GGCGGTGGACTTTGTGCCCGTCGAGTCCATGGAAACTACTATGCGGTCT

>NS3 Pt4

GCGCCTATCACGGCTTACTCCCAACAGACGCGGGGCCTGCTTGGCTGCA TCATCACYAGCCTCACAGGCAGRGACAAGAACCAGGTCGAGGGGGAAGT CCAAGTGGTTTCCACCGCAACACACATCTTTTCTAGCGACCTGTGTCAACG GCGTGTGTTGGACTGTTTTCCATGGCGCCGGCTCAAAAACCTTAGCGGGG CCAAAGGGCCCGGTCACCCAAATGTACACCAATGTAGACCAGGACCTCGT CGGCTGGCAGGCGCCTACCGGGGCGCGTTCTTTAACACCATGCACGTGC GGCAGCTCGGACCTTTATTTGGTCACGAGGCATGCTGATGTCATTCCGGT GCGCCGGCGGGCGACAGCCGGGGGGAGTCTACTCTCCCCCAGGCCCGT CTCCTACTTGAAGGGCTCCTCGGGTGGTCCGCTGCTCTGCCCCTCGGGG CATGCAGTGGGCATCTTCCGGGCTGCCGTGTGCACCCGGGGGGTCGCAA AGGCAGTGGACTTGATACCCGTTGAGTCTATGGAAACTACTATGCGGTGC

15 >NS3 Pt5

5

10

20

25

GCGCCTATCACAGCCTACTCCCAACAGACGCGGGGCCTGCTTGGCTGCA TCATCACTAGCCTCACAGGCCGGGACAAGAACCAGGTCGAGGGGGAGGT TCAAGTGGTTTCCACCGCGACACAATCTTTCCTGGCGACCTGCGTCAACG GCGTGTGTTGGACTGTCTACCATGGTGCCGGCTCGAAGACCCTAGCGGG CCCAAAGGGCCCGATGACCCAAATGTACACCAATGTAGACCAGGACCTCG TCGGCTGGCCGCCCCTCCGGAGCGCGCTCCTTGACACCGTGCACCTG CGGCAGCTCAGACCTYTACTTGGTCACGAGGCATGCTGATGTTGTTCCGG TGCGCCGGCGGGCGACAGCAGGGGAAGCCTACTCTCCCCCAGGCCCA TTTCCTACTTGAAGGGCTCTTCGGGTGGCCCGCTGCTTTGCCCCTCGGGG CACGCGGTGGGCATCTTCCGGGCTGCTGTATGCACCCGGGGGGTCGCGA AGGCGGTGGACTTTGTACCCGTTGAGTCTATGGAAACCACCATGCGGTCT

D. Alineación de secuencias con la secuencia de referencia

30

La alineación muestra la secuencia de nucleótidos del dominio proteasa NS3 de un aislado de HCV-1b de un paciente no tratado. Las secuencias se alinearon frente a una secuencia de referencia. Las homologías entre las dos secuencias se representan como puntos.

	10	28	30	40	1	60		80	90	100
conlb referencia	gegeet-at-t-seggeet									
Pt 5										
	118	170	130	140	130	160	170	180	150	(
conlb referencia	aagt ggt ct ccaccgo									
Pt 5	· · · · · · · · · · · · · · · · · · ·	G			.c	• • • • • • • • •	C			• • • • •
	210	220	* 230, · · · · · · · · · ·	240	250	260	270	220	296	300
conlb referencia Pt 5	aaagggccsstcac									
ř	210	340	338	240	350 	360	370 · · · · I · · · · I	380	390 	1
conlb referencia Pt 5	aget eggacetttaet									
	410	420	•30 · · · · I · · · · I		450	460 I I	670 · · · · 1 · · · · 1	420	480	500
conlb referencia Pt 5	secongaagggenenne									
	510	520	530	540					*.	
conlb referencia	ggsetttgt secegt									
Pt 5							٠,			

35

Los siguiente muestra la secuencia de aminoácidos del dominio proteasa NS3 de un aislado de HCV-1b de un paciente no tratado. Las secuencias se alinearon frente a una secuencia de referencia. Las homologías entre las dos secuencias se representan como puntos.

		1 1			1	1 1	1	$\cdots, \cdots \vdash 1 \cdots \cdots \vdash 1$	
conlb referencia	ANYYAYAQQ7ROWNO								
	110 	(130	140 	150	160		180	
conlb referencia Pt 5	SIDE THYERRADVIP								

Los amplicones de NS3 de estos cinco aislados de HCV-1b se usaron adicionalmente en el ensayo de fenotipado del replicón de NS3.

Ensayo de genotipado de la polimerasa NS5B de HCV

RT-PCR de una etapa:

5

10

15

Se mezclaron cinco μl de ARN con tampón de reacción 2x, 120 ng/ml de ARNt de levadura (Ambion Inc.), cebador 1b_NS5B_out_F (TAGAGTCCTGGAAGGACCCGG) (SEC ID № 13) 0,2 μM, cebador 1 b_NS5B_out_R (GGCCTGGAGTGGTTAGCTCCCC) (SEC ID № 14) 0,2 μM y 0,5 μl de la mezcla de enzimas Superscript™ III RT/Platinum Taq High Fidelity del sistema de RT-PCR de una etapa Superscript™ III (Invitrogen) en un volumen total de 25 μl. La síntesis de ADNc se realiza durante 30 min a 47°C seguido de una etapa de desnaturalización a 94°C durante 2 min. El ciclado térmico consistió en 50 ciclos de desnaturalización a 94°C durante 15 s, hibridación a 59°C durante 30 s y elongación a 68°C durante 2 min 30 s. La extensión final tuvo lugar a 68°C durante 5 min. Se usó una alícuota del producto de amplificación resultante para una etapa de PCR anidada.

PCR interna:

Para la PCR anidada, se mezclaron 2,5 μl del producto de RT-PCR de una etapa con tampón 1 10x del kit Expand™
Long Template High Fidelity (Roche, Basilea, Suiza), dNTP 0,35 mM (Promega), cebador 1b_NS5B_in_F
(TGGAAGGACCCGGACTACG) (SEC ID № 15) 0,4 μM, cebador 1b_NS5B_in_R (GAGTGGTTAGCTCCCCGTTCA)
(SEC ID № 16) 0,4 μM y 0,075 U/μl de ADN polimerasa Expand™ High Fidelity (Roche,) para dar un volumen total
de 50 μl. La desnaturalización inicial fue a 94°C durante 2 min y el ciclado térmico consistió en 30 ciclos de
desnaturalización a 94°C durante 15 s, hibridación a 59°C durante 30 s y elongación a 68°C durante 2 min 30 s. La
extensión final tuvo lugar a 68°C durante 5 min. Los amplicones se purificaron usando el kit de purificación de PCR
QIAQuick 96 (Qiagen). El volumen final de los amplicones purificados fue 100 μl.

Análisis de secuencia sin procesar

La reacción de secuenciación se realizó de acuerdo con procedimientos convencionales usando 8 cebadores de secuenciación (SEC ID Nº 15-16 y 87-92) para cubrir ambas direcciones, directa e inversa. Se recuperaron los electroferogramas del secuenciador capilar ABI3730 y se importaron en Seqscape v2.5 (Applied Biosystems). Los extremos de las secuencias se recortaron en base a valores de calidad y la longitud de 1776 pb (secuencia codificante de la polimerasa NS5B) de la secuencia de referencia específica de subtipo; abarcando la última las regiones entre los cebadores de amplificación. No se permitió que aparecieran inserciones, deleciones o codones de PARADA en las secuencias.

Resultado:

Secuencias de polimerasa NS5B de cinco aislados clínicos de HCV-1b

>NS5B Pt12

40

45

50

55

60

65

TCGATGTCCTACACGTGGACGGGCGCCCTGATCACGCCGTGCGCCGCGG AGGAAAGCAAGCTGCCTATCAATGCATTGAGCAACTCACTGCTGCGTCAC CACAATATGGTTTATGCTACAACATCCCGCAGCGCAAGCCAGCGGCAGAA GAAGGTCACTTTTGACAGACTGCAAGTCCTGGACGACCACTACCGGGACG TGCTCAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAAGCTTCTA TCTGTAGAGGAAGCCTGTAAACTGACGCCCCCACATTCGGCCAGATCCAA ATTTGGCTAYGGGGCAAAGGACGTCCGGAACCTATCCAGCAAGGCCGTTA ACCACATCCGCTCCGTGTGGAAGGACTTGCTGGAAGACACTGAGACACCA ATTGACACCACCATCATGGCAAAAAACGAGGTYTTCTGCGTCCAACCAGA GAAAGGAGGCCGCAAGCCAGCTCGCCTTATCGTGTTCCCAGACTTGGGA GTTCGTGTGCGAGAAAATGGCCCTTTACGACGTGGTCTCCACTCTTCC TCAAGCCGTGATGGGCTCCTCATATGGATTCCAGTACTGTCCTGGACAGC GGGTTGAATTCCTGGTGAATGCCTGGAAGTCGAAGAAGAACCCTATGGGC TTCGCATATGACACCCGCTGTTTTGACTCAACAGTCACTGAGAGTGACATC CGCGTTGAGGAGTCAATCTACCAATGTTGTGACTTGGCCCCCGAAGCCAA ACAGGCCATAAAGTCGCTCACAGAGCGGCTTTACATCGGGGGTCCCCTG ACTAATTCAAAAGGGCAGAACTGCGGCTATCGCCGGTGCCGCCCAGCG GCGTACTGACGACCAGCTGTGGTAATACCCTCACATGTTACTTGAAAGCC TCTGCGGCCTGTCGAGCTGCAAAGCTCCAGGACTGCACGATGCTCGTGT GCGGAGACGACCTTGTCGTTATCTGTGAGAGCGCGGGAACCCAGGAGGA CGGGGCGAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTACTCCGGC CCCCCGGGGACCCGCCCAGCCAGAGTACGACTTGGAGTTGATAACAT CATGCTCCTCCAACGTGTCGGTCGCGCACGATGCATCCGGCAAACGGGT

GTATTACCTCACCCGTGACCCCACCACCCCCCTCGCGAGGGCTGCGTGG

GAAACAGCTAGACACTCCAGTTAATTCTTGGCTAGGCAACATCATTATG
TATGCGCCCACCCTGTGGGCAAGGATGATTTTGATGACTCACTTCTTCTCC
ATCCTTCTAGCTCAAGAACAACTTGAAAAAGCCCTGGATTGTCAGATCTAC
GGGGCCTGCTACTCCATTGAGCCACTTGACCTACCTCAGATCATTCARCG
ACTCCATGGTCTTAGCGCATTTTCACTCCACAGTTACTCTCCAGGTGAGAT
CAATAGGGTGGCTTCATGCCTCAGGAAACTTGGGGTACCGCCCTTGCGA
GTCTGGAGACATCGGGCCAGAAGTGTCCGCGCTAAGCTACTGTCCCAGG
GGGGAGGGCTGCCATTTGTGGCAAGTACCTCTTCAACTGGGCRGTAAG
GACCAAGCTCAAACTCACTCCAATCCCGGCAGCGTCCCAGTTGGACTTGT
CCGACTGGTTCGTTGCCGGCTACAGCGGGGAGACATATATCACAGCCT
GTCTCGTGCCCGACCCCGCTGGTTCCTGTGGTGCCTACTCCTGCTTTCTG
CGGGGGTAGGCATCTACTTGCTCCCCAACCGATGA

>NS5B Pt13

- 15 TCGATGTCCTACACATGGACAGGCGCTTTAATCACACCATGCGCTGCGGA GGAAAGCAAGCTGCCCATCAACGCGCTGAGCAACTCCCTGCTGCGYCAC CACAATATGGTGTATGCCACAACATCCCGCAGCGCAAGCCARCGGCAGAA GAARGTCACTTTTGACAGACTGCAAGTCCTGGACGAYCATTACCGGGACG TRCTCAAGGAGGTGAAGGCGAAGGCGTCCACAGTTAAGGCYAAACTTCTA
- 20 TCCGTAGAAGAGGCCTGCAAACTSACGCCCCACACTCAGCCAAATCCAA RTTTGGCTATGGGGCRAAGGACGTCCGGAACCTATCCAGCAAGGCCGTY AACCACATCCACTCCGTGTGGAAGGACTTGCTGGAGGACACTGAAACACC AATTGACACTACCATCATGGCAAAAAATGAGGTTTTCTGCGTTCAACCGGA AAAGGGAGGCCGCAAGCCAGCTCGCCTTATCGTGTTCCCAGACCTGGGG
- 25 GTTCGTGTGCGAGAAAATGGCCCTCTACGACGTGGTYTCYACCCTTCC TCAGGCCGTGATGGGCCCCTCATACGGGTTCCAGTACTCCTGGACAG CGGGTCGAGTTCCTGGTGAATGCCTGGAAATCAAAGAAATGCCCTATGGG CTTCGCATATGACACCGCTGTTTTGACTCAACGGTCACTGAGAGTGATAT CCGTACTGAGGAGTCTATTTACCAATGTTGTGACCTGGCCCCCGAAGCTA
- 30 GACAAGTCATAAGGTCGCTCACAGAGCGGCTTTAYATYGGGGGCCCCCT GACYAATTCAAAAGGGCAGAACTGCGGTTATCGCCGGTGCCGYGCGAGC GGCGTGCTGACGACTAGCTGCGGTAATACCCTCACATGTTACTTGAAGGC CTCTGCGGCCTGTCGAGCTGCAAAGCTCCGGGACTGCACGATGCTCGTG TGCGGAGACGACCTCGTCGTTATCTGTGAAAGCGCGGGGACCCAGGAGG
- 35 ACGCGCTAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTACTCAGCC CCCCCGGGGACCCGCCCCAACCAGAGTACGACTTGGAGTTGATAACAT CATGCTCCTCCAACGTGTCGGTCGCGCACGACGCATMTGGCAAGAGGGT GTACTACCTCACCCGTGACCCCACCACCCCCCTCGCGCGGGCTGCGTGG GAGACAGCTAGACACACTCCAATTAACTCCTGGCTAGGCAACATCATCAT
- 40 GTATGCGCCCACYYTATGGGCAAGGATGATTCTGATGACTCACTTCTTCTC CATCCTTCTRGCYCAGGAACAACTTGAAAAAGCCCTAGATTGCCARATCTA YGGGGCCTGTTACTCCATTGAACGACTTGACCTACCTCAGATCATTCAGC GACTCCATGGTCTYAGCGCATTTTCACTCCATAGTTACTGTCCAGGTGAGA TCAATAGGGTGGCTTCAAGCCTCAGGAAACTTGGGGTGCCRCCCTTGCGA
- 45 GTCTGGAGACATCGGGCCAGGAGYGTCCGCGCTAAGCTACTGTCCCARG
 GAGGGAGGGCYGCCACGTGTGGTAAGTACCTCTTCAACTGGGCAGTAAG
 GACCAAGCTYAAACTCACTCCAATCCCGGCTGCGTCCCAGCTGGACTTGT
 CCAGCTGGTTCGTYGCTGGTTACAGCGGGGGAGACATATATCACAGCCTG
 TCTCGTGCCCGRCCCCGCTGGTTCATGTGGTGCCTACTCCTACTCTCTGT
- 50 AGGGGTAGGCATCTAYCTGCTCCCCAAYCGATGA

>NS5B Pt14

- TCGATGTCCTACACAfGGACAGGCGCCCTGATCACGCCATGCGCTGCGG
 AGGAAAGCAAGCTGCCCATCAACCCGTTGAGCAACTCTTTGCTGCGTCAC
- 55 CATAAYATGGTATACGCTACAACATCCCGCAGCGCAAGCCTACGGCAGAA GAAGGTCACTTTTGACAGACTGCAAGTCCTGGACGACCACTACCGGGACG TGCTTAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAAGCTTCTA TCTGTAGAAGAAGCCTGCAAACTGACACCCCCACACTCGGCCAGATCCAA ATTTGGCTATGGGGCAAAGGACGTCCGGAGCCTATCCAGCAAGGCCGTC
- 60 AACCACATCAACTCCGTGTGGAAGGACTTGCTGGAAGACACTGAGACACC
 AATTGACACCACCATCATGGCAAAAAATGAGGTTTTCTGCGTCCAACCAGA
 GAAAGGAGGCCGCAAGCCAGCCCGCCTTATCGTGTTCCCAGACTTAGGG
 GTTCGCGTGTGCGAGAAGATGGCCCTTTATGACGTGGTCTCCACCCTTCC
 TCAGGCCGTGATGGGCTCCTCGTACGGATTCCAATACTCTCCTGGACAGC
- 65 GGGTCGAGTTCCTGGTGAATGCCTGGAAATCAAAGAAATGCCCTATGGGC TTCTCATATGACACCCGCTGTTTTGACTCAACAGTCACCGAGAATGATATC

- CGTGTTGAGGAGTCAATTTACCAATGCTGTGACTTGGCCCCCGAAGCCAA
 ACAGGCCATAAGGTCGCTCACAGAGCGGCTTTAYATCGGGGGTCCCCTG
 ACTAATTCAAAAGGGCAGAACTGCGGTTATCGCCGGTGCCGCGAGCG
 GCGTGCTGACGACCAGCTGCGGTAATACCCTCACCTGTTACTTGAAGGCC
 5 ACCGCGGCCTGTCGAGCTGCAAAGCTCCAGGACTGCACGATGCTCGTGT
 GCGGGGACGACCTTGTCGTTATCTGTGAAAGCGCGGGAACCCAAGAGGA
 CGCGGCGAACCTACGAGTCTTCACGGAGGCTATGACTAGGTATTCTGGCC
 CCCCCGGGGACCCCCAACCAGAATACGACTTGGARTTGATAACATCA
 TGCTCCTCCAACGTGTCGGTCGCGCACGATGCATCTGGCAAGCGGGTGT
 0 AYTACCTCACCCGCGACCCCACCCCCCCTYGCACGGGCTGCGTAGGA
- 10 AYTACCTCACCGGGACCCCACCACCCCCTYGCACGGGCTGCGGA
 RACAGCTAGACACACTCCAGTTAACTCCTGGCTAGGCAACATTATCATGTA
 TGCGCCCACCTTATGGGCAAGGATGATCCTGATGACTCACTTCTTCTCCAT
 CCTTCTAGCTCAGGAAGAACTTGAAAAAGCCCTGGATTGYCAAATCTACG
 GGGCCTGTTACTCCATTGAGCCACTTGACGTACCTCAGATCATTCAGGGA
- 15 CTCCATGGCCTTAGCGCATTTTCACTCCACAGTTACTCTCCAGGTGAGATC
 AATAGGGTGGCTTCATGCCTCAGGAAACTTGGGGTACCACCCTTGCGAGT
 CTGGAGACATCGGGCCAGAAGTGTCCGCGCTAAGCTACTGTGCCAGGGA
 GGGAGGGCCGCCACTTGTGGCAGGTACCTCTTCAATTGGGCAGTAAGGA
 CCAAGCTTAAACTCACTCCAATCCCGGCTGCGTCCCAGTTGGACTTGTCC
- 20 GGCTGGTTCGTTGCTGGGTACAGCGGGGGAGACATATATCACAGCCTGT CTCGTGCCCGACCCGCTGGTTCCTGTGGTGCCTACTCCTACTTTCTGTA GGGGTAGGCATCTACCTGCTCCCCAACCGATGA

>NS5B Pt15

- 25 TCGATGTCCTAYACATGGACAGGCGCCCTGATCACGCCATGCGCCGCGG
 ARGAAGCAAGCTGCCCATCAATGCGTTGAGCAACTCTTTGCTGCGTCAC
 GATAAYATGGTCTACGCCACAACATCCCGCAGCGCAAGCCAGCGGCAGA
 AGAAGGTCACCTTTGAGAGACTGCAGGTCCTGGACGACCACTACCGGGA
 CGTGCTTAAGGAGATGAAGGCGAAGGCGTCCACAGTTAAGGCTAGACTTC
- 30 TATCYGTAGAAGAAGCCTGCAAGCTGACGCCCCCACACTCAGCCAGATCC AAATTTGGCTATGGGGCGAAGGACGTCCGGAACCTATCTAGCAAGGCCGT TAACCACATCCGCTCCGTGTGGAAGGACTTGCTGGAAGACACTGAAACAC CAATCGACGCTACCATCATGGCAAAAAATGAGGTTTTCTGCGTCCAACCA GAGAAAGGAGGTCGCAAGCCRGCTCGCCTTATCGTGTTCCCAGATTTGG
- 35 GAGTCCGTGTGCGAGAAAATGGCCCTTTACGACGTGGTCTCCACCCTT CCTCAGGCCGTGATGGGCCCCTCATACGGATTCCAATACTCTCCTGGACA GCGGGTCGAGTTCCTGGTGAATGCGTGGAAATCAAAGAAAAACCCTATGG GCTTCTCATATGACACCCGCTGYTTTGACTCTACGGTCACYGAGAGYGAC ATCCGTACTGAGGAGTCAATTTACCAATGTTGTGACTTGGCCCCCGAAGC
- 40 CAGACAGGTTATAAGGTCGCTCACAGAGCGGCTTTATATCGGGGGTCCTY
 TGACTAATTCAAAAGGGCAGAACTGCGGCTATCGCCGGTGTCGCGCAAG
 CGGCGTGCTGACGACCAGCTGCGGCAATACCCTCACATGTTACCTGAAG
 GCCACTGCAGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACAATGCTTG
 TGTGTGGGGACGACCTTGTCGTYATCTGTGAGAGCGCGGGGACCCAAGA
- 45 GGACGCAGCGAGCCTACGAGTCTTCACGGAGGCTATGACTAGGTACTCT
 GCTCCCCCGGGGACCCGCCCGGCCGGAATACGACTTGGARTTAATAA
 CATCATGCTCCTCCAACGTGTCGGTCGCGCACGACGCACAYGGCAAAAG
 GGTGTACTACCTCACCCGTGACCCCACCACCCCCTTGCGCGGGCYGCA
 TGGGAGACAGCTAGACACACTCCAGTCAACTCCTGGCTAGGCAACATCAT
- 55 GAGTCTGGAGACATCGGGCCAGAAGTGTCCGCGCTAAGCTGCTGTCCCG GGGGGGAGGGCTGCCACTTGTGGCAAGTACCTCTTCAACTGGGCRGTA AGGACCAAGCTCAAACTCACTCCAATCCCGGCTGCGTTCAAGCTGGACTT GTCCGGCTGGTTCGTTGCTGGTTACAGCGGGGGAGACATATATCACAGC CTGTCTCGTGCCCGACCCCGCTGGTTYRTGTGGTGCCTACTCCTACTTTC
- 60 TGTAGGGGTAGGCATCTACCTGCTCCCCAACCGATGA

>NS5B Pt16

TCGATGTCCTACACATGGACAGGCGCCTTGATCACACCGTGCGCTGCGG ARGAGAGCAAGCTGCCCATCAAYGCGCTGAGCAAGTCTTTGYTGCGYCAC

65 CATAACATGRTCTATGCCACAACATCCCGCAGCGCYAGCCAAMGGCAGAR GAAGGTCACTTTTGAYAGACTGCARGTCCTGGACGACCACTACCGGGACG

TGCTYAAGGAGATGAAGGCGAAGGCGTCCACAGTCAAGGCTAAACTTCTA TCCGTAGARGAAGCCTGYAAGCTGACRCCCCCACACTCGGCCAGATCYAA ATTTGGCTATGGGGCAAAGGACGTCCGGAACCTATCCAGCAAGGCCGTTA ACCACATCCACTGCGTGTGGAAGGACTTGCTGGAAGACACTGACACACCA 5 ATTGACACCACCATCATGGCAAAAAATGAGGTTTTCTGYATCCAACCAGAG AAAGGAGGCCGCAAGCCAGCTCGCCTTATCGTRTACCCAGACCTGGGGG TCCGRGTGTGCGAGAAGATGGCTCTTTAYGATGTGGTCTCCACYCTTCCT CAGGCCGTGATGGGCCCCTCRTACGGATTTCAGTACTCTCCTGGACAGC GGGTTGAGTTCCTGGTGAAWGCCTGGAARTCAAAGAAATGGCCTATGGG CTTCGCRTATGACACCCGCTGCTTYGACTCRACGGTCACTGAGAATGACA 10 TYCGTGTTGAGGAGTCAATTTACCAATGTTGTGACTTGGCYCCCGAAGCC AGACAGGYCATAAGGTCGCTCACAGAGCGGCTTTAYATCGGGGGTCCYCT AACCAATTCAAAAGGGCAAAACTGCGGTTATCGCCGGTGTCGCGCRAGC GGCGTGCTGACGACTAGCTGCGGCAAYACCCTTACATGTTACTTGAARGC CTCTGCRGCCTGTCGAGCTGCGAAGCTCCAGGACTGCACGATGOTCGTG 15 TGCGGAGACGACCTCGTCGTTATCTGTGAGAGCGCGGGGACCCACGAGG ATGCGGCGAGCCTACGAGTCTTYACGGAGGCTATGACTAGGTACTCCGG CCCCCYGGGGACCCGCCTCAGCCAGAATACGACTTAGAGCTGATAACAT CATGCTCTTCCAAYGTGTCRGTCGCGCACGATGCATCYGGCAAAAGGGTR TACTACCTCACCCGTGACCCCACCACCCCCTTGCRCGGGCTGCGTQGG 20 ARACAGCTAGACACCTCCAGTYAACTCCTGGCTAGGCAACATCATCATG TAYGCGCCCACCYTATGGGCAAGGATGATCCTGATGACTCATTTCTTGtCC ATCCTTCTAGCTCAGGAGCAACTTGAAAAAGCCCTAGATTGTCAGATCTAY GGGGCCTGTTACTCCATTGAACCACTTGACCTACCTCAAATCATTCARGGA CTCCATGGTATTAGCGCGTTTTCACTCCAYAGTTACTCTCCAGGWGAGAT 25 CAATAGGGTGGCTTCATGCCTCAGGAAACTTGGGGTACCRCCCTTGCGAG TCTGGAGACATCGGGCCAGGAGTGTCCGCGCTAAGYTACTGTCCCAGGG GGGGAGGCTGCCACTTGTGGCAARTACCTCTTCAACTGGGCAGTAARAA CCAAGCTTAATCTCACTCCAATTCCGGCTGCGTCCAAGCTGGATTTATCCR 30 GCTGGTTGCCGGYTACAGCGGGGGAGACATATATCACAGCGTGTCT CMTGCCCGACCCGCTGGTTCATGTGGTGCCTRCTGCTACTKTCTGTAGG RGTAGGCATCTACCTGCTYCCCAACCGATGA

D. Alineación de secuencias con la secuencia de referencia

35

La alineación muestra la secuencia de nucleótidos del dominio polimerasa NS5B de un aislado de HCV-1b de un paciente no tratado. La secuencia se alineación frente a una secuencia de referencia. Las homologías entre las dos secuencias se representan como puntos.

	10 20 50 45 50 65 70 80 50 100
Pt 12 NSSB	tcgstgtectscscstggscsggcgccetgstescgccstgcgctgcggsggsssccsasgctgcccstcsstgsgcastgsgcastctttgctccgtcscc
-	1/3 128 138 142 138 169 179 188 199 299
conlb referencia Pt 12 MS5B	acasettgytetatgetacaseaeetegeagegeasgeetgeggeagaagaaggteaeetttgacagaetgcaggteetggaegaeeactacegggaegtTATA
con1b referencia	213 225 238 205 239 247 278 283 282 325;;;;;;;
conlb referencia Pt 12 NSSB	118 229 318 343 313 348 373 355 393 433 tttggctatgggaaggacttgctggaagacactgagacacaa tttggctatggggaaaggacttgctggaagacactgagacaccaa . Y
conlb referencia Pt 12 NS5B	413 423 439 643 458 478 643 483 533 ttgacaccaccatcatggcasaaaatgaggttttctgcgtccaaccagaggaggggcgcaagccagctcgcttatcctagatttgggggt C Y A.A. G. C. A.
conlb referencia Pt 12 NS5B	togtgtgtgcgagaaaatggccctttacgatgtggtctccaacctccctc
conlb referencia Pt 12 NSSB	\$13 \$24 \$13 \$48 \$55 \$60 \$72 \$18 \$10 725 gtcqaqttcctqqtqaatgcctqqaaqqaaqaaqqacatcc T. A. GT GAA
con1b referencia Pt 12 NS5B	7:3 7:8 7:3 7:5 7:5 7:5 7:3 7:3 7:3 1:3 7:3 1:3 1:3 1:3 1:3 1:3 1:3 1:3 1:3 1:3 1
con1b referencia NS5B Pt 12	#13 #28 #33 #45 #35 #59 #78 #33 #39 tag taattetaaagggcsgaactgcgggtateggeggtgeggtgtactgacgactgcggtaataccetcacatgttatttgaaggccgct A
conib referencia NS5B Pt 12	sid 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.
con1b referencia NS5B Pt 12	1913 1929 1949 1949 1949 1949 1949 1949 1949
conlb referencia	1122 1129 1129 1129 1129 1129 1129 1129
NS5B Pt 12	C
con1b referencia NS5B Pt 12	1213 1228 1238 1248 1258 1268 1278 1218 1293 1393 1393 1393 1393 1393 1393 1393
con1b referencia NS5B Pt 12	1913 1329 1318 1349 1398 1398 1399 1319 1328 1439 tagctcaggascacttgassasgccctsgattgtcaggtctactggttactccattgagccacttgacctactcagattstcaacgactccs C R.
con1b referencia NS5B Pt 12	1418 1425 1430 1430 1430 1440 1478 1478 1478 1479 1533 tggccttagcgattttcactccatagttactctcaggtagatcaatagggtggctcatgcctcaggaaacttgggtaccgccttgcgagtctgg
con1b referencia NS5B Pt 12	1916 1923 1939 1943 1930 1944 1977 1944 1956 1944 1979 1944 1944 1944 1944 1944 1944
con1h referencia NS5B Pt 12	1610 1421 1430 1442 1520 1442 1670 2443 1693 2703 tcasactcoctccastcccggctgcgtcccagttggatttatccagctggttcgttgctggttacagcgggggagacatatatcacagcctgtctcgtgc
conlb referencia NS5B Pt 12	1715 1718 2718 1743 1753 1768 1770 ccgaccccgctggttcatgcgctattactactacttattatgragggdaggatctattatatacccaaccgatga C

Ejemplo 3

Ensayo de fenotipado de NS3

Construcción de vector lanzadera Delta [NS3]

El plásmido 11pFK l341 PI luc NS3-3'_ET se basa en la construcción descrita en Krieger et al. 2001 y la proporcionó amablemente el Prof. Bartenschlager (Heidelberg, Alemania). Para generar un vector lanzadera para el fenotipado de NS3, se modificó por mutagénesis dirigida al sitio para introducir dos sitios de restricción Sacll en la posición 3338 y 3899. En una siguiente etapa, el plásmido modificado se digirió con Sacll y posteriormente se religó para dar el

10

vector lanzadera delta[NS3] pFK I341 PI luc ΔNS3 7-192 ET (SEC ID Nº 10).

Para la clonación InFusion, se linealizó la estructura delta[NS3] pFK I341 PI luc ΔNS3 7-192_ET (**SEC ID Nº 10**) por digestión con SacII.

Ejemplo 4

5

15

25

40

45

50

Clonación de los amplicones de PCR de NS3 de pacientes infectados en el vector lanzadera delta[NS3]

10 A. Generación del amplicón de NS3 a partir de aislados de pacientes infectados con HCV

Para la PCR, se mezcló 1 μl del producto de RT-PCR de una etapa del ensayo de genotipado de NS3 con cebador 1b_InFu_NS3_F (SEC ID N° 11) 0,2 μM, cebador 1b_InFu_NS3_R (SEC ID N° 12) 0,2 μM y mezcla maestra HerculaseTM Hotstart (Stratagene) 2x para dar un volumen total de 50 μl. La desnaturalización inicial fue a 95°C durante 2 min y el ciclado térmico consistió en 10 ciclos seguidos de otros 20 ciclos que consistían en desnaturalización a 95°C durante 30 s, hibridación a 60°C durante 30 s y elongación a 72°C durante 1 min (más 10 s por ciclo). La extensión final tuvo lugar a 72°C durante 10 min. Los amplicones se purificaron usando el kit de purificación de gel QIAQuick (Qiagen).

20 B. Preparación del vector lanzadera delta [NS3]

Se digirió la estructura lanzadera subgenómica de NS3 con un exceso de la endonucleasa de restricción SacII (NEB) y tampón 4 de enzima de restricción (NEB) 1x a 37°C durante una noche. En una siguiente etapa, se añadió fosfatasa intestinal de ternera y la mezcla se incubó durante 40 min a 37°C para desfosforilar la estructura lanzadera linealizada. El vector desfosforilado se purificó mediante electroforesis en gel de agarosa (violeta cristal) seguido de extracción del gel usando el kit de QIAGEN. El vector linealizado se almacenó a -20°C hasta uso adicional.

C. Clonación de NS3 derivado de aislados de pacientes en el vector lanzadera delta [NS3] linealizado

30 Los productos de PCR y el vector linealizado se descongelaron y el producto de PCR se almacenó en hielo hasta la clonación. Inmediatamente antes de la clonación por In-Fusion™, el vector linealizado se desnaturalizó durante 5 min a 60°C y posteriormente se puso en hielo. Para la reacción de clonación, se añadió 1 μl del producto de PCR y 1 μl de la preparación de vector a 8 μl de agua libre de Dnasa/Rnasa. La mezcla completa (10 μl) se añadió en un tubo que contenía mezcla de reacción Dry-Down In-Fusion™ (Clontech) y se pipeteó cuidadosamente arriba y abajo. Las etapas de pipeteo se realizaron en hielo. Los tubos de PCR que contenían la mezcla de clonación In-Fusion™ se transfirieron posteriormente a un termociclador y se incubaron durante 30 min a 42°C. Después de la incubación los tubos se transfirieron inmediatamente a hielo.

D. Transformación del ADN de replicón recombinante

La transformación de células de *Escherichia coli* se realizó inmediatamente después de la etapa de clonación por In-Fusion™. Se usaron células Ultracompetentes XL10-Gold® (Stratagene) para la transformación. Se transformaron 50 μl de las células con 5 μl de la mezcla de clonación In-Fusion™ de acuerdo con el protocolo de Stratagene. La mezcla de transformación completa se sembró en placas LB Petri que contenían ampicilina y se incubaron durante una noche a 37°C. Las colonias se combinaron aplicando 1 ml de medio LB que contenía ampicilina a las placas Petri y retirando las colonias por raspado. La suspensión bacteriana se transfirió a un tubo Falcon de 15 ml. Las placas Petri se lavaron una segunda vez con 1 ml del medio LB que contenía ampicilina y la solución se transfirió de nuevo al tubo Falcon. Se añadieron 2 ml de medio LB que contenía ampicilina y las células se cultivaron a 37°C hasta que alcanzaron la fase logarítmica (aproximadamente 4-5 horas). Se usaron 1,5 ml del cultivo celular para la inoculación de 200 ml de medio LB que contenía ampicilina. Las células se cultivaron durante una noche a 37°C para la preparación de ADN. El ADN se preparó usando el kit de purificación de ADN Maxiprep de QIAGEN.

Ejemplo 5

55 Ensayo fenotípico de replicón de NS3

A. Linealización del ADN plasmídico del replicón recombinante

El ADN plasmídico del replicón (10 μg por muestra) se linealizó usando 1,5 μl de Asel (NEB) y 3 μl de Seal (NEB) junto con 4 μl de tampón 3 de NEB para dar un volumen total de 40 μl. La mezcla de reacción se incubó durante 4 horas a 37°C. El vector linealizado se separó de los fragmentos resultantes mediante electroforesis en gel de agarosa y se purificó usando el kit de extracción de gel de QIAGEN. La concentración de ADN se midió usando el espectrofotómetro Nanodrop® (proporción DO260 nm/DO280 nm). El ADN purificado se almacenó a -20°C hasta su uso adicional.

B. Preparación de ARN de replicón transcrito in vitro

La transcripción in vitro se realizó usando el kit de transcripción de alto rendimiento MEGAscript (Ambion) de acuerdo con el protocolo HCV_SP_038.vs2 en la Laboratory Operation Unit en Tibotec. En resumen, se usó 1 μg del ADN de replicón linealizado y purificado por reacción para transcripción in vitro y se añadió a una mezcla que contenía 44 μl de agua sin nucleasa, 4 μl de solución de ATP, 4 μl de solución de CTP, 4 μl de solución de GTP, 4 μl de solución de UTP y tampón de reacción 10x. Se añadieron posteriormente cuatro μl de la mezcla de enzimas. El pipeteo se realizó a temperatura ambiente. La mezcla de reacción se incubó durante 4 horas a 37°C. Se añadieron posteriormente dos μl de DNasa TURBO (Ambion) y la mezcla se incubó durante 15 min a 37°C para destruir el modelo de ADN. El ARN se purificó usando el kit MEGAclear™ (Ambion). El ARN se cuantificó usando el espectrofotómetro Nanodrop® (proporción DO260 nm/DO280 nm). El ARN purificado se almacenó en alícuotas de 10 μg a -80°C hasta su uso adicional.

C. Línea celular de hepatoma

15

25

30

40

45

50

5

10

Se cultivó la línea celular de hepatoma curada Huh7 a 37° C en una atmósfera humidificada con CO_2 al 5% en medio de Eagle modificado por Dulbecco (DMEM, Biowhittaker, Cat n° BE12-917F) suplementado con L-Glutamina y FCS al 10%.

20 <u>D. Determinación de replicación transitoria del replicón</u>

Se transfectaron $4x10^6$ células con $10~\mu g$ de ARN de replicón transcrito in vitro mediante electroporación. Para la determinación de la CE₅₀, se sembraron 4.000 células/pocillo en un volumen de $30~\mu l$ de medio en placas blancas de compuesto de 384 pocillos. Las placas de compuesto contenían $10~\mu l$ /pocillo de la dilución respectiva de compuesto en medio (que contenía DMSO al 2%), lo que conduce a un volumen total de $40~\mu l$ por pocillo con una concentración final de DMSO al 0.5%. Las diluciones de compuesto se prepararon por cuadruplicado. Las placas de cultivo celular se incubaron durante 48~h a $37^{\circ}C~y~CO_2$ al 5%. Los experimentos se realizaron por triplicado. La lectura de quimioluminiscencia de luciferasa de luciérnaga se realizó usando el reactivo Steady-Lite (PerkinElmer). Los valores de CE₅₀ se evaluaron como la concentración inhibidora a la que se observó una reducción del 50% en el nivel de indicador luciferasa de luciérnaga en comparación con el nivel de señal de luciferasa de luciérnaga sin la adición de compuestos. Los resultados de los estudios que ensayan el efecto inhibidor de un inhibidor de proteasa ejemplar, SCH 503034, sobre la replicación de replicón WT y replicones con secuencias de NS3 derivadas de pacientes se muestran en la Tabla 2.

La Tabla 2 muestra que el vector lanzadera con NS3 restablecido se replica. GND sirve como control de replicón sin replicación.

La Tabla 3 muestra los valores de CE_{50} de un inhibidor de proteasa de HCV ensayado en el sistema lanzadera de replicón de NS3 con 5 aislados de pacientes.

Resultados:

Tabla 2: Nivel de replicación de replicones (formato de 96 pocillos*)

Plásmido	Estructura del vector	Nivel RLU ¹	Nivel de replicación ²
rep PI-luc/ET (WT)	rep PI-luc/ET (WT)	1637 ±348	
rep PI-luc/ET NS3 7-192 InFu restablecido	Rep PI-luc/ET delta [NS3 7-192] Sacil	1047 ± 151	Nivel WT
GND		17 ±2	Sin replicación

Se sembraron 15000 células por pocillo en placas de 96 pocillos.

Tabla 3: Valores de CE₅₀ (formato de 384 pocillos)

Secuencia de NS3	SCH 503034 CE ₅₀ [μM]*
rep PI-luc/ET (WT)	0,140 ± 0,069
Aislado clínico Pt 1	0,341 ± 0,130
Aislado clínico Pt 2	0,090 ± 0,046
Aislado clínico Pt 3	0,124 ± 0,023
Aislado clínico Pt 4	0,126 ± 0,018
Aislado clínico Pt 5	0,120 ± 0,068

* Inhibición por SCH 503034 de la replicación transitoria de ARN del replicón de HCV que contiene NS3 de aislados clínicos del genotipo 1b insertado en el vector lanzadera pFK Pl-luc delta[NS3 7-192]_ET; valor medio de EC₅₀ de al menos n=3 experimentos.

¹ RLU representa el nivel de señal de luciferasa de luciérnaga observado después de 48 horas post-transfección.

² El nivel de replicación es comparado con el vector de tipo silvestre (WT).

Ejemplo 6

10

15

Ensayo de fenotipado de NS5B

5 Construcción de estructura delta[NS5B]

El plásmido 11pFK I341 PI luc NS3-3'_ET se basa en la construcción descrita en Krieger et al. 2001 y la proporcionó amablemente el Prof. Bartenschlager (Heidelberg, Alemania). Para generar un vector lanzadera, se modificó por mutagénesis dirigida al sitio para introducir dos sitios de restricción AfIII en la posición 7481 y 9287. Primero, se introdujo un sitio de restricción AfIII por mutagénesis dirigida al sitio en el 3' NCR directamente después del codón de parada de NS5B en Medigenomix (Múnich, Alemania) produciendo el plásmido pFKi341 luc_NS3-3'-ET-AfIII (SEC ID Nº 17). A continuación, se introdujo un segundo sitio de restricción AfIII 8 aa cadena arriba del sitio de escisión de NS5A/NS5B usando el kit de mutagénesis dirigida al sitio Quick Change (Stratagene La Jolla, CA, EEUU) de acuerdo con las recomendaciones del fabricante con el par de cebadores SDM AfIII-5A-fwd (5'-accgtaagcgaggagcttaaggctagtgaggagcgtc-3') (SEC ID Nº 18) y AfIII-5A-rev (5'-gacgtcctcactagccttaagctcctcgcttacggt-3') (SEC ID Nº 19) produciendo el plásmido pFKi341 luc_NS3-3'-ET-2xAfIII (SEC ID Nº 20). En una siguiente etapa, el plásmido modificado se digirió con AfIII y posteriormente se religó produciendo la estructura delta[NS5B] pFK I341 PI NS3-3 ET dNS5a/b 5a440-5b591-Scal (SEC ID Nº 21).

En paralelo, se generó una construcción de fenotipado de NS5B con un sitio de restricción Xbal en el extremo 3' usando el plásmido pFKi341 luc_NS3-3'-ET-2xAfIII (SEC ID Nº 20) como molde. Primero, se mutó un sitio Xbal en el gen de la luciferasa de luciérnaga mediante un enfoque de mutagénesis dirigida al sitio, produciendo una mutación silenciosa, usando el par de cebadores Xbal-mut-fwd (5'-ggcgccattctatccactagaggatggaacc-3') (SEC ID Nº 22) y Xbal-mut-rev (5'-ggttccatcctctagtggatagaatggcgcc-3') (SEC ID Nº 23). En una segunda reacción SDM, se introdujo un sitio de restricción Xbal en el extremo 3' del 3' NCR de HCV en lugar del sitio Scal usando el par de cebadores Xbal-add-fwd (5'-gagtgctgatactggcctctctgcagatcagatcagaagtccctttagtgagggttaattc-3') (SEC ID Nº 24) y Xbal-add-rev (5'-gaattaaccctcactaaagggactttctagacttgatctgcagagaggccagtatcagcactc-3') (SEC ID Nº 25) produciendo el plásmido pFKi341 luc_NS3-3'-ET-2xAfIII-Xbal (SEC ID Nº 26). En una siguiente etapa, el plásmido modificado se digirió con AfIII y posteriormente se religó produciendo la estructura delta[NS5B] pFK_I341_PI_NS3-3_ET_dNS5a/b_5a440-5b591-Xbal (SEC ID Nº 27).

La linealización con Xbal produce un extremo 3' de HCV auténtico y ofreció la posibilidad de amplicones lanzadera de aislados clínicos que albergan un sitio Scal en la secuencia codificante de NS5B.

Para la clonación por InFusion, se linealizó la estructura delta[NS5B] pFK_l341_Pl_NS3-3_ET_dNS5a/b_5a440-5b591-Scal (SEC ID N° 21) o pFK_l341_Pl_NS3-3_ET_dNS5a/b_5a440-5b591-Xbal (SEC ID N° 27) por digestión con AfIII.

Ejemplo 7

40

60

Clonación de los amplicones de PCR de NS5B de pacientes infectados con HCV en el vector lanzadera delta [NS5B]

A. Generación de amplicón de NS5B a partir de aislados de pacientes infectados con HCV

45 Para la PCR InFusion™, se mezcló 1 μl del producto de RT-PCR de una etapa del ensayo de genotipado de NS5B con cebador 1b_NS5B_F_AfIII-Infusion (5'-AAGCGAGGAGCTTAAGGCYRGTGAGGACGT-3') (SEC ID N° 28) 0,2 μM, cebador 1b_NS5B_R_AfIII-Infusion (5'-AGCTCCCCGTCTTAAGTCAYCGGTTGGGG-3') (SEC ID N° 29) 0,2 μM y mezcla maestra Herculase™ Hotstart (Stratagene La Jolla, CA, EEUU) 2x para dar un volumen total de 50 μl. La desnaturalización inicial fue a 95°C durante 2 min y el ciclado térmico consistió en 10 ciclos seguidos de otros 20 ciclos que consistían en desnaturalización a 95°C durante 30 s, hibridación a 60°C durante 30 s y elongación a 72°C durante 1 min 30 s (más 10 s por ciclo). La extensión final tuvo lugar a 72°C durante 10 min. Los amplicones se purificaron usando el kit de purificación de gel QIAQuick (Qiagen, Hilden, Alemania). El volumen final de los amplicones purificados fue 30 μl.

55 <u>B. Preparación de vector lanzadera delta [NS5B]</u>

Se digirió la estructura lanzadera subgenómica de NS5B con un exceso de la endonucleasa de restricción AfIIII (NEB) y tampón 4 de enzima de restricción (NEB) 1x a 37°C durante una noche. En una siguiente etapa, se añadió fosfatasa intestinal de ternera y la mezcla se incubó durante 1 h a 37°C para desfosforilar la estructura lanzadera linealizada. El vector desfosforilado se purificó mediante electroforesis en gel de agarosa (violeta cristal) seguido de extracción del gel usando el kit de QIAGEN. El vector linealizado se almacenó a -20°C hasta su uso adicional.

C. Clonación de NS5B derivado de aislados de pacientes en el vector lanzadera delta [NS5B] linealizado

65 Los productos de PCR y el vector linealizado se descongelaron y el producto de PCR se almacenó en hielo hasta la clonación. Inmediatamente antes de la clonación por In-Fusion™, el vector linealizado se desnaturalizó durante 5

min a 60°C y posteriormente se puso en hielo. Para la reacción de clonación, se añadieron 2 μl del producto de PCR y 1-3 μl de la preparación de vector a 5-8 μl de agua sin Dnasa/Rnasa. La mezcla completa (10 μl) se añadió en un tubo que contenía la mezcla de reacción Dry-Down In-Fusion™ (Clontech) y se pipeteó cuidadosamente arriba y abajo. Las etapas de pipeteo se realizaron en hielo. Los tubos de PCR que contenían la mezcla de clonación In-Fusion™ se transfirieron posteriormente a un termociclador y se incubaron durante 30 min a 42°C. Después de la incubación los tubos se transfirieron inmediatamente a hielo.

D. Transformación de ADN de replicón recombinante

La transformación de células de *Escherichia coli* se realizó inmediatamente después de la etapa de clonación por In-Fusion™. Se usaron las células Ultracompetentes XL10-Gold® (Stratagene) para la transformación. Se transformaron 50 μl de las células con 5 μl de la mezcla de clonación In-Fusion™ de acuerdo con el protocolo de Stratagene. La mezcla de transformación completa se sembró en placas LB Petri que contenían ampicilina y se incubaron durante una noche a 37°C. Las colonias se combinaron aplicando 1 ml de medio LB que contenía ampicilina a las placas Petri y retirando las colonias por raspado. La suspensión bacteriana se transfirió a un tubo Falcon de 15 ml. Las placas Petri se lavaron una segunda vez con 1 ml del medio LB que contenía ampicilina y la solución se transfirió de nuevo al tubo Falcon. Se añadieron 2 ml de medio LB que contenía ampicilina y las células se cultivaron a 37°C hasta que alcanzaron la fase logarítmica (aproximadamente 4-5 horas). Se usaron 1,5 ml del cultivo celular para la inoculación de 200 ml de medio LB que contenía ampicilina. Las células se cultivaron durante una noche a 37°C para la preparación de ADN. El ADN se preparó usando el kit de purificación de ADN Maxiprep de QIAGEN.

Ejemplo 8

5

35

40

45

50

60

65

25 Ensayo fenotípico de replicón de NS5B

A. Linealización del ADN plasmídico del replicón recombinante

El ADN plasmídico del replicón (10 μg por muestra) se linealizó usando 3 μl de Xbal (NEB) junto con 10 μl de tampón NEB 4 y 1 μl de una solución madre de BSA concentrada 100x (NEB) para dar un volumen total de 100 μl. La mezcla reacción se incubó durante 4 horas a 37°C. El vector linealizado se separó de los fragmentos resultantes mediante electroforesis en gel de agarosa y se purificó usando el kit de extracción de gel de QIAGEN. La concentración de ADN se midió usando el espectrofotómetro Nanodrop® (proporción DO260 nm/DO280 nm). El ADN purificado se almacenó a -20°C hasta su uso adicional.

B. Preparación de ARN de replicón transcrito in vitro

La transcripción in vitro se realizó usando el kit de transcripción de alto rendimiento MEGAscript (Ambion) de acuerdo con el protocolo HCV_SP_038.vs2 en la Laboratory Operation Unit en Tibotec. En resumen, se usó 1 μg del ADN de replicón linealizado y purificado por reacción para la transcripción in vitro y se añadió a una mezcla que contenía 44 μl de agua sin nucleasa, 4 μl de solución de ATP, 4 μl de solución de CTP, 4 μl de solución de GTP, 4 μl de solución de UTP y tampón de reacción 10x. Posteriormente se añadieron cuatro μl de la mezcla de enzimas. El pipeteo se realizó a temperatura ambiente. La mezcla de reacción se incubó durante 4 horas a 37°C. Posteriormente se añadieron dos μl de DNasa TURBO (Ambion) y la mezcla se incubó durante 15 min a 37°C para destruir el molde de ADN. El ARN se purificó usando el kit MEGAclearTM (Ambion). El ARN se cuantificó usando el espectrofotómetro Nanodrop® (proporción DO260 nm/DO280 nm). El ARN purificado se almacenó en alícuotas de 10 μg a -80°C hasta su uso adicional.

C. Línea celular de hepatoma

Se cultivó la línea celular de hepatoma curada Huh7 a 37°C en una atmósfera humidificada con CO₂ al 5% en medio de Eagle modificado por Dulbecco (DMEM, Biowhittaker, Cat n° BE12-917F) suplementado con L-Glutamina y FCS al 10%.

55 <u>D. Determinación de replicación transitoria del replicón</u>

Se transfectaron 4x10⁶ células con 10 μg de ARN de replicón transcrito in vitro mediante electroporación. Para la determinación de CE₅₀ se sembraron 4.000 células/pocillo en un volumen de 30 μl de medio en placas blancas de compuesto de 384 pocillos. Las placas de compuesto contenían 10 μl/pocillo de la dilución respectiva de compuesto en medio (que contenía DMSO al 2%), lo que conduce a un volumen total de 40 μl por pocillo con una concentración final de DMSO al 0,5%. Las diluciones del compuesto se prepararon por cuadruplicado. Las placas de cultivo celular se incubaron durante 48 h a 37°C y CO₂ al 5%. Los experimentos se realizaron al menos por duplicado. La lectura de quimioluminiscencia de luciferasa de luciérnaga se realizó usando el reactivo Steady-Lite (PerkinElmer). Los valores de CE₅₀ se evaluaron como la concentración inhibidora a la que se observó una reducción del 50% en el nivel de indicador de luciferasa de luciérnaga sin la

adición de compuestos. Los resultados de estudios que ensayan el efecto inhibidor de un inhibidor de polimerasa ejemplar, ácido tiofene-2-carboxílico, sobre la replicación de replicón WT y replicones con secuencias NS5B derivadas del paciente se muestran en la Tabla 4.

5 La Tabla 4 muestra los valores de CE₅₀ de un inhibidor de polimerasa de HCV ensayado en el sistema lanzadera de replicón de NS5B con 5 aislados de pacientes.

Resultados:

10 Tabla 4: Valores de CE₅₀ (formato de 384 pocillos)

Secuencia de NS5B	Ácido tiofeno-2-carboxílico CE ₅₀ [μΜ]*
Rep PI-luc/ET (WT)	0,58
Aislado clínico Pt 12	0,28
Aislado clínico Pt 13	0,59
Aislado clínico Pt 14	1,0**
Aislado clínico Pt 15	0,63
Aislado clínico Pt 16	3,96

^{*} Inhibición por ácido tiofeno-2-carboxílico de replicación transitoria de ARN del replicón de HCV que contiene NS5B de aislados clínicos de genotipo 1b insertado en el vector lanzadera pFK PI-luc delta[NS5B]_ET; valor medio de CE₅₀ de al menos n=2 experimentos.

15 Tabla 5

SEC ID Nº	Nombre de cebador	Secuencia (5' a 3')	Observación	Amplificación/ Secuenciación
1	NS5Bsubtype_A	TGGGGTTCGCGTA TGATACCCGCTGC TTTGA	ensayo de subtipado basado en secuencia de NS5B	Amplificación
2	NS5Bsubtype_B	TGGGGTTTTCTTA CGACACCAGGTG CTTTGA	ensayo de subtipado basado en secuencia de NS5B	Amplificación
3	NS5Bsubtype_C	CCGTATGATACCC GCTGCTTTGACTC AAC	ensayo de subtipado basado en secuencia de NS5B	Amplificación y secuenciación
4	NS5Bsubtype_D	TCCTACGACACCA GGTGCTTTGATTC AAC	ensayo de subtipado basado en secuencia de NS5B	Amplificación y secuenciación
5	NS5Bsubtype_E	AATTCCTGGTCAT AGCCTCCGTGAA GACTC	ensayo de subtipado basado en secuencia de NS5B	Amplificación y secuenciación
6	1b_NS3_out_F	GCGTGTGGGGAC ATCATCTTAGG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
7	1b_NS3_out_R	GCTGCCAGTGGG AGCGTG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
8	1b_NS3_in_F	TCATCTTAGGCCT GCCCGTCTC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
9	1b_NS3_in_R	GGGAGCGTGTAG ATGGGCCAC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
10	pFK I341 PI luc deltaNS3 7-192 ET	Secuencia plasmídica de estructura delta[NS3]	Fenotipado de estructura lanzadera	NA
11	1b_InFu_NS3_F	ATGGCGCCTATTA CCGCCTACTCCCA ACAGACG	Fenotipado de cebador de amplificación	Amplificación
12	1b_InFu_NS3_R	AATGTCTGCGGTA CCGCCGGGGGGG ATGAGTTGTC	Fenotipado de cebador de amplificación	Amplificación
13	1b_NS5B_out_F	TAGAGTCCTGGA AGGACCCGG	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
14	1b_NS5B_out_R	GGCCTGGAGTGG TTAGCTCCCC	Ensayo de genotipado de polimerasa (NS5B)	Amplificación

^{**} medido una vez

SEC ID Nº	Nombre de cebador	Secuencia (5' a 3')	Observación	Amplificación/ Secuenciación
15	1b_NS5B_in_F	TGGAAGGACCCG GACTACG	Ensayo de genotipado de polimerasa (NS5B)	Amplificación y secuenciación
16	1b NS5B in R	GAGTGGTTAGCTC	Ensayo de genotipado	Amplificación y
		CCCGTTCA	de polimerasa (NS5B)	secuenciación
17	pFKi341 luc NS 3-3'- ET-AfIII	plásmido con 1er sitio AfIII (plásmido intermedio)	Fenotipado de estructura lanzadera	NA
18	AfIII-5A-fwd	(5'-accgtaagcgaggag cttaaggctagtgaggacgtc -3') cebador SDM	Fenotipado para clonación	
19	AfIII-5A-rev	(5'-gacgtcctcactagcctt aagctcctcgcttacggt-3' cebador SDM	Fenotipado para clonación	
20	pFKi341 luc NS 3-3'- ET-2xAfIII	plásmido con 2o sitio AfIII (plásmido intermedio)	Fenotipado de estructura lanzadera	NA
21	pFK_I341 PI NS 3-3 ET dNS5A/b_5a440- 5b591-Scal	Secuencia plasmídica de estrcutura delta[NS5B] Scal	Fenotipado de estructura lanzadera	NA
22	Xbal-mut-fwd	(5'-ggcgccattctatccac tagaggatggaacc-3') cebador SDM	Fenotipado para clonación	
23	Xbal-mut-rev	(5'-ggttccatcctctagtg gatagaatggcgcc-3') cebador SDM	Fenotipado para clonación	
24	Xbal-add-fwd	(5'-gagtgctgatactggcc tctctgcagatcaagtctaga aagtccctttagtgagggtta attc-3')	Fenotipado para clonación	
25	Xbal-add-rev	(5-gaattaaccctcactaaa gggactttctagacttgatctg cagagaggccagtatcagc actc-3')	Fenotipado para clonación	
26	pFKi341 luc NS 3-3'- ET-2xAfl II-Xbal	Plásmido intermedio	Fenotipado de estructura lanzadera	NA
27	pFK_I341 PI NS 3- 3_ET dNS5A/b_5a440- 5b591-Xbal	Secuencia plasmídica de estructura delta[NS5B] Xbal	Fenotipado de estructura lanzadera	NA
28	1b_NS5B_F_AfII I- Infusion	AAGCGAGGAGCT TAAGGCYRGTGA GGACGT	Fenotipado de cebador de amplificación	Amplificación
29	1b_NS5B_R_AfII I- Infusion	AGCTCCCCGTCTT AAGTCAYCGGTT GGGG	Fenotipado de cebador de amplificación	Amplificación
30	1a_NS3/4A_out_R	GGGACCTCACCG CTCATGAT	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
31	1a_NS3/4A_in_R	CTCACCGCTCATG ATCTTGAATGC	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
32	1a_NS3/4A_out_F	CGGAGGTCATTA CGTGCAAATG	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
33	1a_NS3/4A_in_F	CGTGCAAATGGC CATCATCAAG	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
34	1a_NS2_F1sb	GCGCTTACTGGCA CCTATG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
35	1a_NS3_F1s	AGGCACGCCGAT GTCAT	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
36	1a_NS3_R2s	CGGGACCTTGGT GCTCTT	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
37	1a_NS3_F2s	CGGCACTGTCCTT GACCA	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
38	1a_NS3_R3s	GAGTCGAAGTCG CCGGTA	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
39	1a_NS3_F3s	CC GAGACTACAG TTAGGCTACG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación

SEC ID N°	Nombre de cebador	Secuencia (5' a 3')	Observación	Amplificación/ Secuenciación
40	1a_NS3_R4s	GCATGTCATGATG TATTTGGTG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
41	1a_NS4B_R1s	ACGAGGACCTTC CCCAGT	Ensayo de genotipado de proteasa (NS3/4A) y NS4B/5A	
42	1a_NS3_out_R	GCTGCCGGTGGG AGCATG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
43	1a_NS3_in_R	GAGCATGCAGGT GGGCCAC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
44	1a_NS3_out_F	GCGGCGACATCA TCAACGG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
45	1a_NS3_in_F	CATCAACGGCTTG CCCGTCTC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
46	1a_NS3_Fs_BU	GACCTTTACCTGG TCACGAG	181 aa N-terminales del ensayo de genotipado de NS3	Secuenciación
47	1a_NS4B/5A_out_R	GCTGTCCAGAACT TGCAGTCTGTC	Ensayo de genotipado de NS4B/5A	Amplificación
48	1a_NS4B/5A_in_R	CCTTTGGCAAGCA CTGCGTG	Ensayo de genotipado de NS4B/5A	Amplificación
49	1a_NS4B/5A_out_F	CTGCGTGGTCATA GTGGGCAG	Ensayo de genotipado de NS4B/5A	Amplificación
50	1a_NS4B/5A_in_F	TGTCTTGTCCGGG AAGCCGG	Ensayo de genotipado de NS4B/5A	Amplificación
51	1a_NS4B_F2s	CGTCACTGCCATA CTCAGCA	Ensayo de genotipado de NS4B/5A	Secuenciación
52	1a_NS5A_R1s	CGTCCCGTTTTTG ACATG	Ensayo de genotipado de NS4B/5A	Secuenciación
53	1a_NS5A_R2s	TGACTCAACCCTG GTGATGTT	Ensayo de genotipado de NS4B/5A	Secuenciación
54	1a_NS5A_F2s	CGGTGGTCCTCAC CGAA	Ensayo de genotipado de NS4B/5A y polimerasa (NS5B)	Secuenciación
55	1a_NS4A_F1s	TTGTCCGGGAAGCCG	Ensayo de genotipado de NS4B/5A	Secuenciación
56	1a_NS5B_R1s	TGGCAAGCACTGCGTG	Ensayo de genotipado de NS4B/5A	Secuenciación
57	1a_NS5A_F1s	TTGACGTCCATGC TCACTG	Ensayo de genotipado de NS4B/5A	Secuenciación
58	1a_NS5B_out_R	AGGCC GGAGTGT TTACCCCAAC	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
59	1a_NS5B_in_R	GGAGTGTTTACCC CAACCTTCA	Ensayo de genotipado de polimerasa (NS5B)	Amplificación y secuenciación
60	1a_NS5B_out_F	TGACTATGAACC ACCTGTGGTCC	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
61	1a_NS5B_in_F	CACCTGTGGTCCA TGGCTG	Ensayo de genotipado de polimerasa (NS5B)	Amplificación y secuenciación
62	1a_NS5B_F1s	CATCAACTCCGTG TGGAAAG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
63	1a_NS5B_R1s	CAGCGGGTATGA TAGGAGAA	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
64	1a_NS5B_F2s	GCACCATGCTCGT GTGTG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
65	1a_NS5B_R2s	GTCATCAGTATCA TCCTCGCC	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
66	1a_NS5B_F3s	CGACTC CATGGTC TTAGCG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación

SEC ID Nº	Nombre de cebador	Secuencia (5' a 3')	Observación	Amplificación/ Secuenciación
67	1b NS3/4A out R	GAGCGCCTTCTGT TTGAATTG	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
68	1b_NS3/4A_in_R	CTGTTTGAATTGC	Ensayo de genotipado	Amplificación y
		TCGGCGAG	de proteasa (NS3/4A)	secuenciación
69	1b_NS3/4A_out_F	ATGCATGCTGGTG CGGAA	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
70	1b_NS3/4A_in_F	TGGTGCGGAAAG TCGCTGG	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
71	1b_NS2_F1s	GGTCATTATGTCC AAATGGC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
72	1b_NS3_F1s	CGGCAGCTCGGA CCTTTA	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
73	1b_NS3_R2s	CACTTGGAATGTC TGCGGTAC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
74	1b_NS3_F2s	GATGAGTGCCAC TCAACTGACT	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
75	1b_NS3_R3s	CGTCTGTTGCCAC GACAA	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
76	1b_NS3_F3s	CTATGACGCGGG CTGTG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
77	1b_NS3_R4s	AGCCGTATGAGA CACTTCCAC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
78	1b_NS4B/5A_out_R	GCATAGACCATG TTGTGGTGACG	Ensayo de genotipado de NS4B/5A	Amplificación
79	1b_NS4B/5A_in_R	GTGACGCAGCAA AGAGTTGCTCA	Ensayo de genotipado de NS4B/5A	Amplificación y secuenciación
80	1b_NS4B/5A_out_F	AGCGTGGTCATTG TGGGCAG	Ensayo de genotipado de NS4B/5A	Amplificación
81	1b_NS4B/5A_in_F	GGGC AGG ATC AT CTTGTGCGG	Ensayo de genotipado de NS4B/5A	Amplificación y secuenciación
82	1b_NS4B_R1s	TTCCCAAGGCCTA TGCTG	Ensayo de genotipado de NS4B/5A	Secuenciación
83	1b_NS4B_F2s	GGATGAACCGGC TGATAGC	Ensayo de genotipado de NS4B/5A	Secuenciación
84	1b_NS5A_R1s	ATGGAACCGTTTT TGACATGT	Ensayo de genotipado de NS4B/5A	Secuenciación
85	1b_NS5A_F1s	GGGCATGACCAC TGACAAC	Ensayo de genotipado de NS4B/5A	Secuenciación
86	1b_NS5A_R2s	CCACAGGAGGTT GGCCT	Ensayo de genotipado de NS4B/5A	Secuenciación
87	1b_NS5A_F2s	CACGGGTGCCCA TTGC	Ensayo de genotipado de NS4B/5A y polimerasa (NS5B)	Secuenciación
88	1b_NS5B_F1s	AAGGAGATGAAG GCGAAGG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
89	1b_NS5B_R1s	CATCACGGCCTG AGGAAG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
90	1b_NS5B_F2s	TCGCTCACAGAG CGGCT	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
91	1b_NS5B_R2s	TGGAGGAGCATG ATGTTATCA	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
92	1b_NS5B_F3s	CGACTCCATGGTC TTAGCG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
93	2a_NS3/4A in_F	GTAGGTGGACTG GCACTTACATCTA TGA	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
94	2a_NS3/4A out_F	CGCTATTAGCCCT TGGTAGGTGG	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
95	2a_NS3/4A in_R	AAATGCCCGCAC CATACCC	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación y secuenciación

SEC ID Nº	Nombre de cebador	Secuencia (5' a 3')	Observación	Amplificación/ Secuenciación
96	2a_NS3/4A out_R	GGCTTCTCGCCAG ACATGATCTT	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
97	2a_NS2_F2sb	CACGGACTTCCCG TGTC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
98	2a_NS3_R1sb	TGCCAGTTGGGG CATG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
99	2a_NS3_F1s	TCCGGGCAGCTGT GTG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
100	2a_NS3_R2s	CGTCTTGAGGGA CAGTCTGTG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
101	2a_NS3_F2s	GGAGGGTGAGAT CCCCTTCTA	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
102	2a_NS4B_R1s	GAAGTTCCACAT GTGTTTGGC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
103	2a_NS3_F3s	GTAGTGCTCTGTG AGTGCTACG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
104	2a_NS3_in_F	ATCTTAGACGGAC TCCCCGTGTC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
105	2a_NS3_out_F	ATGCGGGGACAT CTTACACGG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
106	2a_NS3_in_R	TGGGGCATGCAA GTACCCGAC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
107	2a_NS3_out_R	CACTGCCAGTTGG GGCATG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
108	2b_NS3/4A_in_F	TACGGATACCAT AGTTTGTGAGGGC	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
109	2b NS3/4A out F	TCTCTGCT AC GG A TACCATACTTTG	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
110	2b_NS3/4A_in_R	TCCACCAGTATCT TACCCAGGCCTA	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
111	2b NS3/4A_out_R	ACGTCCACCAGT ATCTTACCCA	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
112	2b_NS2_F1s	ACGAGTGTGTAC CCTGGTGA	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
113	2b_NS3_F1s	GACCCCTGTACCT GCGG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
114	2b_NS3_R2s	GCAAGTAGCCCA CCTGGTAAG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
115	2b_NS3_F2s	GCCATTCAGTGG ACGCCAC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
116	2b_NS3_R3s	CCTTGAGTTGGTA TAACGGAGAC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
117	2b_NS3_F3s	GCTCTGTGAGTGC TATGATGC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
118	2b_NS3_R4s	GGTAGGACCAGT CAGTGTAGGTTT	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
119	2b_NS4B_R1s	CAACGAAGCCAG TGGCTC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
120	2b_NS3_in_F	TGCATGGCCTCCC GGTTTC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
121	2b_NS3_out_F	CATGTGGAGACA TCCTGCATGG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
122	2b_NS3_in_R	TTGGTGCATGCAA GTAGCCCAC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación

SEC ID Nº	Nombre de cebador	Secuencia (5' a 3')	Observación	Amplificación/ Secuenciación
123	2b_NS3_out_R	CGCTGCCTGTTGG TGCATG	181 aa N-terminales del ensayo de	Amplificación
			genotipado de NS3	
124	2b_NS5B_in_F	CTTCTGTACCATC AGAGTACCTGAT CA	Ensayo de genotipado de polimerasa (NS5B)	Amplificación y secuenciación
125	2b_NS5B_out_F	GTGAGCCTTCTGT ACCATCAGAGTA C	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
126	2b_NS5B_out_R	ATGGAGTGTAGC TAGGGTTTGCC	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
127	2b_NS5B_R_in	TGTAGCTAGGGTT TGCCGCTCTA	Ensayo de genotipado de polimerasa (NS5B)	Amplificación y secuenciación
128	2b_NS5A_F2s	GAACCACCCACT GTCCTAGG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
129	2b_NS5B_F1s	GCACACTATGACT CAGTCTTGCA	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
130	2b_NS5B_R1s	CATCTTTTCGCAC ACCCTG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
131	2b_NS5B_F2s	TAG GTAGG AGGG CCCATG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
132	2b_NS5B_R2s	AGCGCTACCGAT ACGTTTG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
133	2b_NS5B_F3s	CCGGGCATAATTG AAAGG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
134	3a_NS3/4A_in_F	ATGCTCGTGCGCT CCGTGAT	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación '
135	3a NS3/4A_out F	CTTTGCATGCTCG TGCGCTC	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
136	3a_NS3/4A_in_R	TACTATGGGCTCA ATGACAGC TTGTT G	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación y secuenciación
137	3a NS3/4A_out_R	GGTAGCTACTATG GGCTCAATGACA GC	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
138	3a_NS2_F1s	TACTTCCAGATGA TCATACTGAGC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
139	3a_NS3_F1s	ACTTATACTTGGT TACGCGCG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
140	3a_NS3_R2s	TCTTACCGCTGCC GGTC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
141	3a_NS3_F2s	TCTTAGATCAGGC TGAGACGG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
142	3a_NS3_R3s	CTGTTGTTGGTAT GACGGACA	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
143	3a_NS3_F3s	AGCCCGCTGAGA CCACA	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
144	3a_NS3_R4s	ATGTAGTGTTGGC TTAAGCCG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
145	3a_NS3_out_R	CTGCCGGTCGGG GCATG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
146	3a_NS3_in_R	GGTCGGGGCATG AAGGTATCCTAC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
147	3a_NS3_out_F	CTTGCGGAGATAT TCTTTGCGG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
148	3a_NS3_in_F	TTGCGGGCTGCCC GTCTC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación

SEC ID Nº	Nombre de cebador	Secuencia (5' a 3')	Observación	Amplificación/ Secuenciación
149	3a NS4B/5A_out _R	CGACGTTGAATA GACTAGGTTATG ATGTCT	Ensayo de genotipado de NS4B/5A	Amplificación
150	3a NS4B/5A_out_F	CCCTAGCGGCCTA CTGCTTG	Ensayo de genotipado de NS4B/5A	Amplificación
151	3a NS4B/5A_in_F	GGCCTACTGCTTG TCAGTCGG	Ensayo de genotipado de NS4B/5A	Amplificación
152	3a_NS4A_F1s	GCCTACTGCTTGT CAGTCGG	Ensayo de genotipado de NS4B/5A	Secuenciación
153	3a_NS4B_R1s	ATACCCCCTATGG CAGCG	Ensayo de genotipado de NS4B/5A	Secuenciación
154	3a_NS4B_F2s	ACAGTGGATGAA CAGGCTCAT	Ensayo de genotipado de NS4B/5A	Secuenciación
155	3a_NS5A_R1s	TGACAGGAAATG AAGGGCAG	Ensayo de genotipado de NS4B/5A	Secuenciación
156	3a_NS5A_Fls	TGAAGTGGATGG GGTGAGA	Ensayo de genotipado de NS4B/5A	Secuenciación
157	3a_NS5A_R2s	TGAGGCCTATGC GTCTGG	Ensayo de genotipado de NS4B/5A	Secuenciación
158	3a_NS5A_F2s	CACCAACTGTCG ATGGATG	Ensayo de genotipado de NS4B/5A y polimerasa (NS5B)	Secuenciación
159	3a NS4B/5A_in_R	TTATGATGTCTCA ACAAGGAGTTGC TGA	Ensayo de genotipado de NS4B/5A	Amplificación y secuenciación
160	3a_NS5B_out_R	AGTGTTATCTTAC CAGCTCACCGAG C	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
161	3a_NS5B_in_R	ATCTTACCAGCTC ACCGAGCTGGC	Ensayo de genotipado de polimerasa (NS5B)	Amplificación y secuenciación
162	3a_NS5B_out_F	GTATCCTCCAGCC CTTCCTATCTG	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
163	3a_NS5B_in_F	CAGCCCTTCCTAT CTGGGCTAG	Ensayo de genotipado de polimerasa (NS5B)	Amplificación y secuenciación
164	3a_NS5B_F1s	TCGGGTATAGTGC GAAGGA	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
165	3a_NS5B_R1s	CTTCAGCAGACGT TCGACC	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
166	3a_NS5B_F2s	TACATCAAGGCC ACAGCG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
167	3a_NS5B_R2s	CTGGAGTGTGAC GAGCTGTT	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
168	3a_NS5B_F3s	CTTGGAGACATC GGGCAC	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
169	4a/d NS3/4A_in_F	GCGCGTCCCTTAC TTCGTGAG	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
170	4a/d NS3/4A_out_F	GCTCCTGCGCGTC CCTTAC	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
171	4a/d NS3/4A_in_R	GTAGCCAGCGAG GATGTCCACTAG	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación y secuenciación
172	4a/d NS3/4A_out_R	CATCTCGCCGCTC ATGATCTT	Ensayo de genotipado de proteasa (NS3/4A)	Amplificación
173	4a/d_NS2_F1s	GCGTCC CTTACTT CGTGAG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
174	4a/d_NS3_F1s	CCGTGCGCAGGA GAGG	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
175	4a/d_NS3_F2s	C AC GGTCTTGG AC CAAGC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
176	4a/d_NS3_F3s	GCCTGGTACGAA CTGACACC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
177	4a/d_NS3_R2s	GCCACTTCCTGTT GGTGC	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación

SEC ID Nº	Nombre de cebador	Secuencia (5' a 3')	Observación	Amplificación/ Secuenciación
178	4a/d_NS3_R3s	CTGAGTCAAAGT CGCCGGT	Ensayo de genotipado de proteasa (NS3/4A)	Secuenciación
179	4a/d_NS3_R4s	GACATGCAGGCC	Ensayo de genotipado	Secuenciación
100		ATGATGTA	de proteasa (NS3/4A)	4 115 17
180	4a/d_NS3_in_F	TAAGGGGATTAC CTGTCTCGGC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
181	4a/d_NS3_out_F	AGTTGTGTTCACG CCCATGGAG	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
182	4a/d_NS3_in_R	GGGACTTTGGTGC TCTTGCC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación y secuenciación
183	4a/d_NS3_out_R	TCGATGCCATATG CCTTGGAC	181 aa N-terminales del ensayo de genotipado de NS3	Amplificación
184	4a/d_NS4B/5A_out_F	TTTCAGTGGGCAG CGTGGT	Ensayo de genotipado de NS4B/5A	Amplificación
185	4a/d NS4B/5A_in_F	AGCGTGGTGATC GTCGGGAG	Ensayo de genotipado de NS4B/5A	Amplificación y secuenciación
186	4a/d_NS4B/5A_out_R	CCTGCAGGCGGT CGAAGG	Ensayo de genotipado de NS4B/5A	Amplificación
187	4a/d NS4B/5A_in_R	CGAAGGTCACCTT CTTCTGCCG	Ensayo de genotipado de NS4B/5A	Amplificación y secuenciación
188	4a/d_NS4B_R1s	AGACATGAGGGA AGCAATGG	Ensayo de genotipado de NS4B/5A	Secuenciación
189	4a/d_NS4B_F1sb	TGTGCAGTGGAT GAACCG	Ensayo de genotipado de NS4B/5A	Secuenciación
190	4a/d_NS5A_R1s	ACTCTGCGAACCT CCACG	Ensayo de genotipado de NS4B/5A	Secuenciación
191	4a/d_NS5A_F1s	GTTGACAGACCC ATCACACAT	Ensayo de genotipado de NS4B/5A	Secuenciación
192	4a/d_NS5A_R2s	TCGTCTGTCTCAA CCCTGGT	Ensayo de genotipado de NS4B/5A	Secuenciación
193	4a/d_NS5A_F2sb	TCTTACTCGTCAA TGCCTCC	Ensayo de genotipado de NS4B/5A	Secuenciación
194	4a/d NS5B_out_F	CGGGGTAACACA AGATAACATCAA G	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
195	4a/d NS5B_out_R	ACCCTAAGGTCG GAGTGTTAAGCT	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
196	4a/d_NS5B_in_F	ACAAGATAACAT CAAGTGCCCCTG	Ensayo de genotipado de polimerasa (NS5B)	Amplificación
197	4a/d_NS5B_in_R	AAGGTCGGAGTG TTAAGCTGCCTA	Ensayo de genotipado de polimerasa (NS5B)	Amplificación y secuenciación
198	4a/d_NS5A_F2sc	CTTATTCGTCAAT GCCTCCAC	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
199	4a/d_NS5B_F1s	ATCATGGCCAAA AATGAGGT	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
200	4a/d_NS5B_F2s	GCCTTCACGGAG GCTATGAC	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
201	4a/d_NS5B_F3bs	TGTGGCATATACC TCTTTAACTGG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
202	4a/d_NS5B_R2s	GGAGTCAAAGCA GCGGG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
203	4a/d_NS5B_R3s	CAGGAATTGACT GGAGTGTGTC	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación
204	4a/d_NS5B_R4s	GCACAGGAGTAA ATAGCGGG	Ensayo de genotipado de polimerasa (NS5B)	Secuenciación

LISTADO DE SECUENCIAS

	<110> Virco BVBA	
5	<120> Método para determinar mutaciones de resistencia proteínas no estructurales NS3 a NS5B del virus de la he	a a fármacos en cualquiera de las regiones de las patitis C (VHC) para los genotipos 1 a 6
	<130> VIP 030 PCT	
10	<150> EP08165949 <151> 06-10-2008	
	<160> 204	
15	<170> Patentln versión 3.3	
20	<210> 1 <211> 31 <212> ADN <213> Virus de la hepatitis C	
	<400> 1 tggggttcgc gtatgatacc cgctgctttg a	31
25	<210> 2 <211> 31 <212> ADN <213> Virus de la hepatitis C	
30	<400> 2 tggggttttc ttacgacacc aggtgctttg a	31
35	<210> 3 <211> 29 <212> ADN <213> Virus de la hepatitis C	
40	<400> 3 ccgtatgata cccgctgctt tgactcaac	29
	<210> 4 <211> 29 <212> ADN <213> Virus de la hepatitis C	
45	<400> 4 tcctacgaca ccaggtgctt tgattcaac	29
50	<210> 5 <211> 30 <212> ADN <213> Virus de la hepatitis C	
55	<400> 5 aatteetggt catageetee gtgaagaete	30
60	<210> 6 <211> 23 <212> ADN <213> Virus de la hepatitis C	
	<400> 6 gcgtgtgggg acatcatctt agg	23
65	<210> 7 <211> 18	

	<212> ADN <213> Virus de l	a hepatitis C					
5	<400> 7 gctgccagtg ggag	ıcgtg		18			
10	<210> 8 <211> 22 <212> ADN <213> Virus de I	a hepatitis C					
	<400> 8 tcatcttagg cctgcc	cegte te		22			
15	<210> 9 <211> 21 <212> ADN <213> Virus de I	a hepatitis C					
20	<400> 9 gggagcgtgt agat	gggcca c		21			
25	<210> 10 <211> 12003 <212> ADN <213> Virus de I	a hepatitis C					
	<400> 10						
	ctccaccata	gatcactccc	ctgtgaggaa	ctactgtctt	cacgcagaaa	gegtetagee	60
	atggcgttag	tatgagtgtc	gtgcagcctc	caggaccccc	cctcccggga	gagccatagt	120
	ggtctgcgga	accggtgagt	acaccggaat	tgccaggacg	accgggtcct	ttcttggatc	180
	aacccgctca	atgcctggag	atttgggcgt	gcccccgcga	gactgctagc	cgagtagtgt	240
	tgggtcgcga	aaggccttgt	ggtactgcct	gatagggtgc	ttgcgagtgc	cccgggaggt	300
	ctcgtagacc	gtgcaccgtt	taaacccccg	tgctgctgga	agtcgatttc	gcttagggta	360
	accgtggacc	tegaaaacag	acgcacaaaa	ccaagttcaa	tagaaggggg	tacaaaccag	420
	taccaccacg	aacaagcact	tetgttteee	cggtgatgtc	gtatagactg	cttgcgtggt	480
	tgaaagcgac	ggatccgtta	teceettate	tacttcgaga	ageceagtac	cacctcggaa	540

						500
tcttcgatgc	gttgcgctca	gcactcaacc	ccagagtgta	gcttaggctg	atgagtctgg	600
acatccctca	ccggtgacgg	tggtccaggc	tgcgttggcg	gcctacctat	ggctaacgcc	660
atgggacgct	agttgtgaac	aaggtgtgaa	gagcctattg	agctacataa	gaatcctccg	720
gcccctgaat	gcggctaatc	ccaacctcgg	agcaggtggt	cacaaaccag	tgattggcct	780
gtcgtaacgc	gcaagtccgt	ggcggaaccg	actactttgg	gtgtccgtgt	ttccttttat	840
tttattgtgg	ctgcttatgg	tgacaatcac	agattgttat	cataaagcga	attggattgg	900
ccatccggtg	aaagtgagac	tcattatcta	tctgtttgct	ggatccgctc	cattgagtgt	960
gtttactcta	agtacaattt	caacagttat	ttcaatcaga	caattgtatc	ataatggcgg	1020
gcccagaaga	cgccaaaaac	ataaaggaag	gcccggcgcc	attctatcct	ctagaggatg	1080
gaacegetgg	agagcaactg	cataaggcta	tgaagagata	cgccctggtt	cctggaacaa	1140
ttgcttttac	agatgcacat	atcgaggtga	acatcacgta	cgcggaatac	ttcgaaatgt	1200
ccgttcggtt	ggcagaagct	atgaaacgat	atgggctgaa	tacaaatcac	agaatcgtcg	1260
tatgcagtga	aaactctctt	caattcttta	tgccggtgtt	gggcgcgtta	tttatcggag	1320
ttgcagttgc	gcccgcgaac	gacatttata	atgaacgtga	attgctcaac	agtatgaaca	1380
tttcgcagcc	taccgtagtg	tttgtttcca	aaaaggggtt	gcaaaaaatt	ttgaacgtgc	1440
aaaaaaaatt	accaataatc	cagaaaatta	ttatcatgga	ttctaaaacg	gattaccagg	1500
gatttcagtc	gatgtacacg	ttcgtcacat	ctcatctacc	tcccggtttt	aatgaatacg	1560
attttgtacc	agagtccttt	gatcgtgaca	aaacaattgc	actgataatg	aattcctctg	1620
gatctactgg	gttacctaag	ggtgtggccc	ttccgcatag	aactgcctgc	gtcagattct	1680
cgcatgccag	agatcctatt	tttggcaatc	aaatcattcc	ggatactgcg	attttaagtg	1740
ttgttccatt	ccatcacggt	tttggaatgt	ttactacact	cggatatttg	atatgtggat	1800
ttcgagtcgt	cttaatgtat	agatttgaag	aagagctgtt	tttacgatcc	cttcaggatt	1860
acaaaattca	aagtgcgttg	ctagtaccaa	ccctattttc	attcttcgcc	aaaagcactc	1920
tgattgacaa	atacgattta	tctaatttac	acgaaattgc	ttctgggggc	gcacctcttt	1980
cgaaagaagt	cggggaagcg	gttgcaaaac	gcttccatct	tccagggata	cgacaaggat	2040
atgggctcac	tgagactaca	tcagctattc	tgattacacc	cgagggggat	gataaaccgg	2100
gegeggtegg	taaagttgtt	ccattttttg	aagcgaaggt	tgtggatctg	gataccggga	2160
aaacgctggg	cgttaatcag	agaggcgaat	tatgtgtcag	aggacctatg	attatgtccg	2220
gttatgtaaa	caatccggaa	gcgaccaacg	ccttgattga	caaggatgga	tggctacatt	2280
ctggagacat	agcttactgg	gacgaagacg	aacacttctt	catagttgac	cgcttgaagt	2340
ctttaattaa	atacaaagga	tatcaggtgg	cccccgctga	attggaatcg	atattgttac	2400

aacaccccaa	catcttcgac	gcgggcgtgg	caggtettee	cgacgatgac	gccggtgaac	2460
ttcccgccgc	cgttgttgtt	ttggagcacg	gaaagacgat	gacggaaaaa	gagategtgg	2520
attacgtcgc	cagtcaagta	acaaccgcga	aaaagttgcg	cggaggagtt	gtgtttgtgg	2580
acgaagtacc	gaaaggtctt	accggaaaac	togacgcaag	aaaaatcaga	gagateetea	2640
taaaggccaa	gaagggcgga	aagtccaaat	tgtaagcggc	cgcgttgtta	aacagaccac	2700
aacggtttcc	ctctagcggg	atcaattccg	cececece	ctaacgttac	tageegaage	2760
cgcttggaat	aaggccggtg	tgcgtttgtc	tatatgttat	tttccaccat	attgccgtct	2820
tttggcaatg	tgagggcccg	gaaacctggc	cctgtcttct	tgacgagcat	tcctaggggt	2880
ctttcccctc	tegecaaagg	aatgcaaggt	ctgttgaatg	tcgtgaagga	agcagttcct	2940
ctggaagctt	cttgaagaca	aacaacgtct	gtagcgaccc	tttgcaggca	gcggaacccc	3000
ccacctggcg	acaggtgcct	ctgcggccaa	aagccacgtg	tataagatac	acctgcaaag	3060
gcggcacaac	cccagtgcca	cgttgtgagt	tggatagttg	tggaaagagt	caaatggctc	3120
tectcaageg	tattcaacaa	ggggctgaag	gatgcccaga	aggtacccca	ttgtatggga	3180
tctgatctgg	ggcctcggtg	cacatgcttt	acatgtgttt	agtcgaggtt	aaaaaaacgt	3240
ctaggccccc	cgaaccacgg	ggacgtggtt	ttcctttgaa	aaacacgata	ataccatggc	3300
gcctattacc	geggtaeege	agacattcca	ggtggcccat	ctacacgccc	ctactggtag	3360
cggcaagagc	actaaggtgc	cggctgcgta	tgcagcccaa	gggtataagg	tgcttgtcct	3420
gaacccgtcc	gtegeegeea	ccctaggttt	cggggcgtat	atgtctaagg	cacatggtat	3480
cgaccctaac	atcagaatcg	gggtaaggac	catcaccacg	ggtgccccca	tcacgtactc	3540
cacctatggc	aagtttcttg	ccgacggtgg	ttgctctggg	ggcgcctatg	acatcataat	3600
atgtgatgag	tgccactcaa	ctgactcgac	cactatcctg	ggcatcggca	cagtcctgga	3660
ccaagcggag	acggctggag	cgcgactcgt	cgtgctcgcc	accgctacgc	ctccgggatc	3720
ggtcaccgtg	ccacatccaa	acatcgagga	ggtggctctg	tecageactg	gagaaatccc	3780
cttttatggc	aaagccatcc	ccatcgagac	catcaagggg	gggaggcacc	tcattttctg	3840
ccattccaag	aagaaatgtg	atgagetege	cgcgaagctg	tccggcctcg	gactcaatgc	3900
tgtagcatat	taccggggcc	ttgatgtatc	cgtcatacca	actagcggag	acgtcattgt	3960
cgtagcaacg	gacgetetaa	tgacgggctt	taccggcgat	ttcgactcag	tgatcgactg	4020
caatacatgt	gtcacccaga	cagtcgactt	cageetggae	ccgaccttca	ccattgagac	4080
gacgaccgtg	ccacaagacg	cggtgtcacg	ctcgcagcgg	cgaggcagga	ctggtagggg	4140
caggatgggc	atttacaggt	ttgtgactcc	aggagaacgg	ccctcgggca	tgttcgattc	4200

ctcggttctg tgcga	gtget atgaegeggg	ctgtgcttgg	tacgagetea	cgcccgccga	4260
gacctcagtt aggtte	gcggg cttacctaaa	. cacaccaggg	ttgcccgtct	gccaggacca	4320
tctggagttc tggga	gagog totttacagg	cctcacccac	atagacgccc	atttcttgtc	4380
ccagactaag caggo	aggag acaacttccc	ctacctggta	gcataccagg	ctacggtgtg	4440
cgccagggct caggc	tecae etecategtg	ggaccaaatg	tggaagtgtc	tcatacggct	4500
aaagcctacg ctgca	eggge caaegeeeet	gctgtatagg	ctgggageeg	ttcaaaacga	4560
ggttactacc acaca	cccca taaccaaata	. catcatggca	tgcatgtcgg	ctgacctgga	4620
ggtcgtcacg agcac	ctggg tgctggtagg	cggagtccta	gcagetetgg	ccgcgtattg	4680
cctgacaaca ggcag	cgtgg tcattgtggg	caggatcatc	ttgtccggaa	agccggccat	4740
cattcccgac aggga	agtee tttaeeggga	gttcgatgag	atggaagagt	gegeeteaea	4800
cetecettae atega	acagg gaatgcagct	cgccgaacaa	ttcaaacaga	aggcaatcgg	4860
gttgctgcaa acagc	cacca agcaagcgga	. ggctgctgct	cccgtggtgg	aatccaagtg	4920
geggaeeete gaage	cttct gggcgaagca	. tatgtggaat	ttcatcagcg	ggatacaata	4980
tttagcaggc ttgtc	cacto tgcctggcaa	. ccccgcgata	gcatcactga	tggcattcac	5040
ageetetate accag	ceege teaccaceca	acatacecte	ctgtttaaca	tcctgggggg	5100
atgggtggcc gccca	acttg ctcctcccag	egetgettet	getttegtag	gcgccggcat	5160
cgctggagcg gctgt	tggca gcataggcct	tgggacggtg	cttgtggata	ttttggcagg	5220
ttatggagca ggggt	ggcag gcgcgctcgt	ggcctttaag	gtcatgagcg	gcgagatgcc	5280
ctccaccgag gacct	ggtta acctactccc	tgctatcctc	tcccctggcg	ccctagtcgt	5340
eggggtegtg tgege	agega taetgegteg	gcacgtgggc	ccaggggagg	gggctgtgca	5400
gtggatgaac cggct	gatag cgttcgcttc	gcggggtaac	cacgtetece	ccacgcacta	5460
tgtgcctgag agcga	cgctg cagcacgtgt	cactcagatc	ctctctagtc	ttaccatcac	5520
tcagctgctg aagag	gette accagtggat	caacgaggac	tgetecaege	catgctccgg	5580
ctcgtggcta agaga	tgttt gggattggat	atgcacggtg	ttgactgatt	tcaagacctg	5640
getecagtee aaget	cetge egegattgee	gggagtecec	ttcttctcat	gtcaacgtgg	5700
gtacaaggga gtctg	geggg gegaeggeat	catgcaaacc	acctgcccat	gtggagcaca	5760
gatcaccgga catgt	gaaaa acggttccat	gaggatcgtg	gggcctagga	cctgtagtaa	5820
cacgtggcat ggaac	attoo ocattaacgo	gtacaccacg	ggcccctgca	cgccctcccc	5880
ggegecaaat tatte	taggg cgctgtggcg	ggtggctgct	gaggagtacg	tggaggttac	5940
gcgggtgggg gattt	ccact acgtgacggg	catgaccact	gacaacgtaa	agtgcccgtg	6000
tcaggttccg gcccc	cgaat tottcacaga	. agtggatggg	gtgcggttgc	acaggtacgc	6060

tccagcgtgc	aaacccctcc	tacgggagga	ggtcacattc	ctggtcgggc	tcaatcaata	6120
cctggttggg	tcacagetee	catgcgagcc	cgaaccggac	gtagcagtgc	tcacttccat	6180
gctcaccgac	ccctcccaca	ttacggcgga	gacggctaag	cgtaggctgg	ccaggggatc	6240
teccecetee	ttggccagct	catcagctag	ccagctgtct	gcgccttcct	tgaaggcaac	6300
atgcactacc	cgtcatgact	ccccggacgc	tgacctcatc	gaggecaaec	tectgtggcg	6360
gcaggagatg	ggcgggaaca	tcacccgcgt	ggagtcagaa	aataaggtag	taattttgga	6420
ctctttcgag	ccgctccaag	cggaggagga	tgagagggaa	gtatccgttc	cggcggagat	6480
cctgcggagg	tccaggaaat	tecetegage	gatgcccata	tgggcacgcc	cggattacaa	6540
ccctccactg	ttagagteet	ggaaggaccc	ggactacgtc	cctccagtgg	tacacgggtg	6600
tccattgccg	cctgccaagg	cccctccgat	accacctcca	cggaggaaga	ggacggttgt	6660
cctgtcagaa	tctaccgtgt	cttctgcctt	ggcggagete	gccacaaaga	ccttcggcag	6720
ctccgaatcg	teggeegteg	acagcggcac	ggcaacggcc	tetectgace	agccctccga	6780
cgacggcgac	gcgggatccg	acgttgagtc	gtactcctcc	atgececece	ttgaggggga	6840
gccgggggat	cecgatetea	gcgacgggtc	ttggtctacc	gtaagcgagg	aggctagtga	6900
ggacgtcgtc	tgctgctcga	tgtcctacac	atggacaggc	gccctgatca	cgccatgcgc	6960
tgcggaggaa	accaagctgc	ccatcaatgc	actgagcaac	tctttgctcc	gtcaccacaa	7020
cttggtctat	gctacaacat	ctcgcagcgc	aagcctgcgg	cagaagaagg	tcacctttga	7080
cagactgcag	gtcctggacg	accactaccg	ggacgtgctc	aaggagatga	aggcgaaggc	7140
gtccacagtt	aaggctaaac	ttctatccgt	ggaggaagcc	tgtaagetga	cgccccaca	7200
tteggeeaga	tctaaatttg	gctatggggc	aaaggacgtc	cggaacctat	ccagcaaggc	7260
cgttaaccac	atcegetecg	tgtggaagga	cttgctggaa	gacactgaga	caccaattga	7320
caccaccatc	atggcaaaaa	atgaggtttt	ctgcgtccaa	ccagagaagg	ggggccgcaa	7380
gccagetege	cttatcgtat	teccagattt	gggggttcgt	gtgtgcgaga	aaatggccct	7440
ttacgatgtg	gtctccaccc	tccctcaggc	cgtgatgggc	tcttcatacg	gattccaata	7500
ctctcctgga	cagegggteg	agttcctggt	gaatgeetgg	aaagcgaaga	aatgccctat	7560
gggcttcgca	tatgacaccc	gctgttttga	ctcaacggtc	actgagaatg	acatccgtgt	7620
tgaggagtca	atctaccaat	gttgtgactt	ggcccccgaa	gccagacagg	ccataaggtc	7680
gctcacagag	cggctttaca	tegggggeee	cctgactaat	tctaaagggc	agaactgcgg	7740
ctatcgccgg	t g eegegega	geggtgtaet	gacgaccagc	tgcggtaata	ccctcacatg	7800
ttacttgaag	gccgctgcgg	cctgtcgagc	tgcgaagctc	caggactgca	cgatgctcgt	7860

atgeggagae gaeettgteg	ttatctgtga	aagcgcgggg	acccaagagg	acgaggcgag	7920
ectaegggee tteaeggagg	ctatgactag	atactetgee	ccccctgggg	accegeceaa	7980
accagaatac gacttggagt	tgataacatc	atgetectee	aatgtgtcag	tegegeaega	8040
tgcatctggc aaaagggtgt	actatctcac	cegtgacece	accacccccc	ttgegeggge	8100
tgcgtgggag acagctagac	acactccagt	caattcctgg	ctaggcaaca	tcatcatgta	8160
tgcgcccacc ttgtgggcaa	ggatgatcct	gatgactcat	ttcttctcca	tccttctagc	8220
tcaggaacaa cttgaaaaag	ccctagattg	teagatetae	ggggcctgtt	actecattga	8280
gccacttgac ctacctcaga	tcattcaacg	actecatgge	cttagcgcat	ttteacteca	8340
tagttactct ccaggtgaga	tcaatagggt	ggcttcatgc	ctcaggaaac	ttggggtacc	8400
gecettgega gtetggagae	atcgggccag	aagtgteege	gctaggctac	tgtcccaggg	8460
ggggagggct gccacttgtg	gcaagtacct	cttcaactgg	gcagtaagga	ccaagctcaa	8520
actcactcca atcccggctg	cgtcccagtt	ggatttatcc	agctggttcg	ttgctggtta	8580
cagcggggga gacatatatc	acagectgte	tegtgecega	ccccgctggt	tcatgtggtg	8640
cctactccta ctttctgtag	gggtaggcat	ctatctactc	cccaaccgat	gaacggggag	8700
ctaaacactc caggccaata	ggccatcctg	ttttttccc	tttttttt	tcttttttt	8760
ttttttttt ttttttt	ttttttctcc	ttttttttc	ctctttttt	ccttttcttt	8820
cctttggtgg ctccatctta	gccctagtca	cggctagctg	tgaaaggtcc	gtgagccgct	8880
tgactgcaga gagtgctgat	actggcctct	ctgcagatca	agtactacta	gtccctttag	8940
tgagggttaa ttcaattctt	gaagacgaaa	gggeetegtg	atacgcctat	ttttataggt	9000
taatgtcatg ataataatgg	tttcttagac	gtcaggtggc	acttttcggg	gaaatgtgcg	9060
cggaacccct atttgtttat	ttttctaaat	acattcaaat	atgtatccgc	tcatgagaca	9120
ataaccetga taaatgette	aataatattg	aaaaaggaag	agtatgagta	ttcaacattt	9180
ecgtgtegee ettatteeet	tttttgcggc	attttgcctt	cctgtttttg	ctcacccaga	9240
aacgctggtg aaagtaaaag	atgctgaaga	tcagttgggt	gcacgagtgg	gttacatcga	9300
actggatete aacageggta	agatccttga	gagttttcgc	cccgaagaac	gttttccaat	9360
gatgagcact tttaaagttc	tgctatgtgg	cgcggtatta	tcccgtgttg	acgccgggca	9420
agageaacte ggtegeegea	tacactattc	tcagaatgac	ttggttgagt	actcaccagt	9480
cacagaaaag catettaegg	atggcatgac	agtaagagaa	ttatgcagtg	ctgccataac	9540
catgagtgat aacactgcgg	ccaacttact	tctgacaacg	atcggaggac	cgaaggagct	9600
aaccgctttt ttgcacaaca	tgggggatca	tgtaactcgc	cttgatcgtt	gggaaccgga	9660
gctgaatgaa gccataccaa	acgacgagcg	tgacaccacg	atgcctgcag	caatggcaac	9720

aacgttgcgc	aaactattaa	ctggcgaact	acttactcta	gcttcccggc	aacaattaat	9780
agactggatg	gaggcggata	aagttgcagg	accacttetg	egeteggeee	ttccggctgg	9840
ctggtttatt	gctgataaat	ctggageegg	tgagcgtggg	tetegeggta	tcattgcagc	9900
actggggcca	gatggtaagc	cctcccgtat	cgtagttatc	tacacgacgg	ggagtcaggc	9960
aactatggat	gaacgaaata	gacagatcgc	tgagataggt	gcctcactga	ttaagcattg	10020
gtaactgtca	gaccaagttt	actcatatat	actttagatt	gatttaaaac	ttcattttta	10080
atttaaaagg	atctaggtga	agateetttt	tgataatete	atgaccaaaa	tecettaacg	10140
tgagttttcg	ttccactgag	cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	10200
tcctttttt	ctgcgcgtaa	tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	10260
ggtttgtttg	ccggatcaag	agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	10320
agcgcagata	ccaaatactg	tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	10380
ctctgtagca	ccgcctacat	acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	10440
tggcgataag	tcgtgtctta	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	10500
gcggtcgggc	tgaacggggg	gttcgtgcac	acageceage	ttggagcgaa	cgacctacac	10560
cgaactgaga	tacctacagc	gtgagctatg	agaaagcgcc	acgcttcccg	aagggagaaa	10620
ggcggacagg	tatccggtaa	gcggcagggc	ggaacaggag	agcgcacgag	ggagetteca	10680
gggggaaacg	cctggtatct	ttatagtcct	gtcgggtttc	gccacctctg	acttgagcgt	10740
cgatttttgt	gatgetegte	aggggggcgg	agcetatgga	aaaacgccag	caacgeggee	10800
tttttacggt	tcctggcctt	ttgctggcct	tttgctcaca	tgttctttcc	tgcgttatcc	10860
cctgattctg	tggataaccg	tattaccgcc	tttgagtgag	ctgataccgc	tcgccgcagc	10920
cgaacgaccg	agcgcagcga	gtcagtgagc	gaggaagcgg	aagagcgcct	gatgcggtat	10980
tttctcctta	cgcatctgtg	cggtatttca	caccgcatat	ggtgcactct	cagtacaatc	11040
tgctctgatg	ccgcatagtt	aagccagtat	acactccgct	ategetaegt	gactgggtca	11100
tggctgcgcc	ccgacacccg	ccaacacccg	ctgacgcgcc	ctgacgggct	tgtctgctcc	11160
cggcatccgc	ttacagacaa	gctgtgaccg	tctccgggag	ctgcatgtgt	cagaggtttt	11220
caccgtcatc	accgaaacgc	gcgaggcagc	tgcggtaaag	ctcatcagcg	tggtcgtgaa	11280
gcgattcaca	gatgtetgee	tgttcatccg	cgtccagctc	gttgagtttc	tecagaageg	11340
ttaatgtctg	gcttctgata	aagcgggcca	tgttaagggc	ggttttttcc	tgtttggtca	11400
ctgatgcctc	cgtgtaaggg	ggatttctgt	tcatgggggt	aatgataccg	atgaaacgag	11460
agaggatgct	cacgatacgg	gttactgatg	atgaacatgc	ccggttactg	gaacgttgtg	11520

	agggtaaaca actggcggta tgg	gatgegge	gggaccagag	aaaaatcact	cagggtcaat	11580
	gccagcgctt cgttaataca gat	tgtaggtg	ttccacaggg	tagccagcag	catcctgcga	11640
	tgcagateeg gaacataatg gtg	gcagggcg	ctgacttccg	cgtttccaga	ctttacgaaa	11700
	cacggaaacc gaagaccatt cat	tgttgttg	ctcaggtcgc	agacgttttg	cagcagcagt	11760
	cgcttcacgt tcgctcgcgt atc	cggtgatt	cattctgcta	accagtaagg	caaccccgcc	11820
	agectageeg ggteeteaae gae	caggagca	cgatcatgcg	cacccgtggc	caggacccaa	11880
	cgctgcccga gatgcgccgc gtg	geggetge	tggagatggc	ggacgcgatg	gatatgttct	11940
	gecaagetaa getgeetgea ggt	taatacga	ctcactatag	ccagcccccg	attgggggcg	12000
	aca					12003
5	<210> 11 <211> 33 <212> ADN <213> Virus de la hepatitis C					
10	<400> 11 atggcgccta ttaccgccta ctcccaacag acg	I	33			
4-	<210> 12 <211> 35 <212> ADN <213> Virus de la hepatitis C					
15	<400> 12 aatgtctgcg gtaccgccgg gggggatgag ttg	gtc	35			
20	<210> 13 <211> 21 <212> ADN <213> Virus de la hepatitis C					
25	<400> 13 tagagtcctg gaaggacccg g		21			
30	<210> 14 <211> 22 <212> ADN <213> Virus de la hepatitis C					
	<400> 14 ggcctggagt ggttagctcc cc		22			
35	<210> 15 <211> 19 <212> ADN <213> Virus de la hepatitis C					
40	<400> 15 tggaaggacc cggactacg		19			
45	<210> 16 <211> 21 <212> ADN <213> Virus de la hepatitis C					
	<400> 16					

gagtggttag ctccccgttc a 21

<210> 17 <211> 12573 <212> ADN

<213> Virus de la hepatitis C

<400> 17

5

gecagecece gattggggge gacactecae catagateae teceetgtga ggaactaetg 60 120 tetteaegea gaaagegtet ageeatggeg ttagtatgag tgtegtgeag eeteeaggae 180 coccecteee gggagageea tagtggtetg eggaaceggt gagtacaceg gaattgeeag 240 gacgacoggg tectttettg gateaacceg etcaatgeet ggagatttgg gegtgeecce 300 gogagactgo tagoogagta gtgttgggto gogaaaggoo ttgtggtact gootgatagg gtgettgega gtgeeceggg aggtetegta gaeegtgeac egtttaaace eeegtgetge 360 420 tggaagtega tttcaggett agggtaaceg tggacetega aaacagaege acaaaaccaa gttcaataga agggggtaca aaccagtacc accacgaaca agcacttctg tttccccggt 480 540 gatgtcgtat agactgcttg cgtggttgaa agcgacggat ccgttatccg cttatgtact togagaagee cagtaccace toggaatett cgatgogttg cgctcagcac toaaccccag 600 660 agtgtagett aggetgatga gtetggaeat eeeteaeegg tgaeggtggt eeaggetgeg 720 ttggcggcct acctatggct aacgccatgg gacgctagtt gtgaacaagg tgtgaagagc 780 ctattqaqct acataaqaat cctccqqccc ctqaatqcqq ctaatcccaa cctcqqaqca 840 ggtggtcaca aaccagtgat tggcctgtcg taacgcgcaa gtccgtggcg gaaccgacta 900 ctttgggtgt ccgtgtttcc ttttatttta ttgtggctgc ttatggtgac aatcacagat tgttatcata aagcgaattg gattggccat ccggtgaaag tgagactcat tatctatctg 960 tttgctggat ccgctccatt gagtgtgttt actctaagta caatttcaac agttatttca 1020 atcagacaat tgtatcataa tggcgggccc agaagacgcc aaaaacataa agaaaggccc 1080 ggogocatto tatoototag aggatggaac ogotggagag caactgcata aggotatgaa 1140 gagatacgcc ctggttcctg gaacaattgc ttttacagat gcacatatcg aggtgaacat 1200 cacgtacgcg gaatacttcg aaatgtccgt tcggttggca gaagctatga aacgatatgg 1260 gotgaataca aatcacagaa togtogtatg cagtgaaaac totottoaat totttatgoo 1320

ggtgttgggc	gcgttattta	tcggagttgc	agttgcgccc	gcgaacgaca	tttataatga	1380
acgtgaattg	ctcaacagta	tgaacatttc	gcagcctacc	gtagtgtttg	tttccaaaaa	1440
ggggttgcaa	aaaattttga	acgtgcaaaa	aaaattacca	ataatccaga	aaattattat	1500
catggattct	aaaacggatt	accagggatt	tcagtcgatg	tacacgttcg	tcacatctca	1560
tctacctccc	ggttttaatg	aatacgattt	tgtaccagag	tcctttgatc	gtgacaaaac	1620
aattgcactg	ataatgaatt	cctctggatc	tactgggtta	cctaagggtg	tggcccttcc	1680
gcatagaact	gcctgcgtca	gattetegea	tgccagagat	cctatttttg	gcaatcaaat	1740
cattccggat	actgcgattt	taagtgttgt	tccattccat	cacggttttg	gaatgtttac	1800
tacactcgga	tatttgatat	gtggatttcg	agtcgtctta	atgtatagat	ttgaagaaga	1860
gctgttttta	cgatcccttc	aggattacaa	aattcaaagt	gcgttgctag	taccaaccct	1920
attttcattc	ttcgccaaaa	gcactctgat	tgacaaatac	gatttatcta	atttacacga	1980
aattgcttct	gggggcgcac	ctctttcgaa	agaagtcggg	gaagcggttg	caaaacgctt	2040
ccatcttcca	gggatacgac	aaggatatgg	gctcactgag	actacatcag	ctattctgat	2100
tacacccgag	ggggatgata	aaccgggcgc	ggtcggtaaa	gttgttccat	tttttgaagc	2160
gaaggttgtg	gatctggata	ccgggaaaac	gctgggcgtt	aatcagagag	gcgaattatg	2220
tgtcagagga	cctatgatta	tgtccggtta	tgtaaacaat	ccggaagcga	ccaacgcctt	2280
gattgacaag	gatggatggc	tacattctgg	agacatagct	tactgggacg	aagacgaaca	2340
cttcttcata	gttgaccgct	tgaagtcttt	aattaaatac	aaaggatatc	aggtggcccc	2400
cgctgaattg	gaatcgatat	tgttacaaca	ccccaacatc	ttcgacgcgg	gcgtggcagg	2460
tcttcccgac	gatgacgccg	gtgaacttcc	cgccgccgtt	gttgttttgg	agcacggaaa	2520
gacgatgacg	gaaaaagaga	togtggatta	cgtcgccagt	caagtaacaa	ccgcgaaaaa	2580
gttgegegga	ggagttgtgt	ttgtggacga	agtaccgaaa	ggtcttaccg	gaaaactcga	2640
cgcaagaaaa	atcagagaga	tcctcataaa	ggccaagaag	ggcggaaagt	ccaaattgta	2700
agcggccgcg	ttgttaaaca	gaccacaacg	gtttccctct	agcgggatca	attccgcccc	2760
cccccctaa	cgttactggc	cgaageeget	tggaataagg	ccggtgtgcg	tttgtctata	2820
tgttattttc	caccatattg	ccgtcttttg	gcaatgtgag	ggcccggaaa	cctggccctg	2880
tcttcttgac	gagcattect	aggggtettt	cecetetege	caaaggaatg	caaggtctgt	2940
tgaatgtcgt	gaaggaagca	gttcctctgg	aagettettg	aagacaaaca	acgtctgtag	3000
cgaccctttg	caggcagcgg	aaccccccac	ctggcgacag	gtgeetetge	ggccaaaagc	3060
cacgtgtata	agatacacct	gcaaaggcgg	cacaacccca	gtgccacgtt	gtgagttgga	3120

tagttgtgga	aagagtcaaa	tggctctcct	caagcgtatt	caacaagggg	ctgaaggatg	3180
cccagaaggt	accccattgt	atgggatctg	atctggggcc	teggtgeaca	tgctttacat	3240
gtgtttagtc	gaggttaaaa	aaacgtctag	gccccccgaa	ccacggggac	gtggttttcc	3300
tttgaaaaac	acgataatac	catggcgcct	attacggcct	actcccaaca	gacgcgaggc	3360
ctacttggct	gcatcatcac	tagcctcaca	ggccgggaca	ggaaccaggt	cgagggggag	3420
gtccaagtgg	tctccaccgc	aacacaatct	ttcctggcga	cctgcgtcaa	tggcgtgtgt	3480
tggactgtct	atcatggtgc	cggctcaaag	acccttgccg	gcccaaaggg	cccaatcacc	3540
caaatgtaca	ccaatgtgga	ccaggacete	gtcggctggc	aagegeeece	cggggcgcgt	3600
tecttgacac	catgcacctg	cggcagctcg	gacctttact	tggtcacgag	gcatgccgat	3660
gtcattccgg	tgcgccggcg	gggcgacagc	agggggagcc	tactctcccc	caggcccgtc	3720
tcctacttga	agggctcttc	gggcggtcca	ctgctctgcc	cctcggggca	cgctgtgggc	3780
atctttcggg	ctgccgtgtg	cacccgaggg	gttgcgaagg	cggtggactt	tgtacccgtc	3840
gagtctatgg	gaaccactat	geggteeeeg	gtcttcacgg	acaactcgtc	ccctccggcc	3900
gtaccgcaga	cattccaggt	ggcccatcta	cacgccccta	ctggtagegg	caagagcact	3960
aaggtgccgg	ctgcgtatgc	agcccaaggg	tataaggtgc	ttgtcctgaa	cccgtccgtc	4020
gccgccaccc	taggtttcgg	ggcgtatatg	tctaaggcac	atggtatcga	ccctaacatc	4080
agaategggg	taaggaccat	caccacgggt	gcccccatca	cgtactccac	ctatggcaag	4140
tttettgeeg	acggtggttg	ctctgggggc	gcctatgaca	tcataatatg	tgatgagtgc	4200
cactcaactg	actcgaccac	tatectggge	ateggeaeag	tectggaeca	ageggagaeg	4260
gctggagcgc	gactcgtcgt	gctcgccacc	gctacgcctc	cgggatcggt	caccgtgcca	4320
catccaaaca	togaggaggt	ggetetgtee	agcactggag	aaatcccctt	ttatggcaaa	4380
gecatececa	tegagaecat	caaggggggg	aggcacetea	ttttctgcca	ttccaagaag	4440
aaatgtgatg	agetegeege	gaagctgtcc	ggeeteggae	tcaatgctgt	agcatattac	4500
cggggccttg	atgtatccgt	cataccaact	ageggagaeg	tcattgtcgt	agcaacggac	4560
gctctaatga	cgggctttac	cggcgatttc	gactcagtga	tcgactgcaa	tacatgtgtc	4620
acccagacag	togacttcag	cctggacccg	accttcacca	ttgagacgac	gaccgtgcca	4680
caagacgcgg	tgtcacgctc	gcagcggcga	ggcaggactg	gtaggggcag	gatgggcatt	4740
tacaggtttg	tgactccagg	agaacggece	tegggeatgt	tegatteete	ggttetgtge	4800
gagtgctatg	acgcgggctg	tgcttggtac	gageteaege	cegeegagae	ctcagttagg	4860
ttgcgggctt	acctaaacac	accagggttg	cccgtctgcc	aggaccatct	ggagttetgg	4920
gagagcgtct	ttacaggcct	cacccacata	gacgcccatt	tettgteeca	gactaagcag	4980

gcaggagaca	acttccccta	cctggtagca	taccaggeta	cggtgtgcgc	cagggeteag	5040
gctccacctc	catcgtggga	ccaaatgtgg	aagtgtctca	tacggctaaa	gcctacgctg	5100
cacgggccaa	cgcccctgct	gtataggctg	ggageegtte	aaaacgaggt	tactaccaca	5160
caccccataa	ccaaatacat	catggcatgc	atgtcggctg	acctggaggt	cgtcacgage	5220
acctgggtgc	tggtaggegg	agtcctagca	getetggeeg	egtattgeet	gacaacagge	5280
agegtggtea	ttgtgggcag	gatcatcttg	teeggaaage	cggccatcat	tecegacagg	5340
gaagteettt	accgggagtt	cgatgagatg	gaagagtgcg	cctcacacct	cccttacatc	5400
gaacagggaa	tgcagctcgc	cgaacaattc	aaacagaagg	caatcgggtt	gctgcaaaca	5460
gccaccaagc	aageggagge	tgetgeteec	gtggtggaat	ccaagtggcg	gaccctcgaa	5520
gccttctggg	cgaagcatat	gtggaatttc	atcageggga	tacaatattt	agcaggcttg	5580
tccactctgc	ctggcaaccc	cgcgatagca	tcactgatgg	cattcacage	ctctatcacc	5640
agcccgctca	ccacccaaca	taccctcctg	tttaacatcc	tggggggatg	ggtggccgcc	5700
caacttgctc	ctcccagcgc	tgcttctgct	ttcgtaggcg	ccggcatcgc	tggagcggct	5760
gttggcagca	taggccttgg	gacggtgctt	gtggatattt	tggcaggtta	tggagcaggg	5820
gtggcaggcg	cgctcgtggc	ctttaaggtc	atgageggeg	agatgccctc	cacegaggae	5880
ctggttaacc	tactccctgc	tatcetetec	cetggegece	tagtegtegg	ggtcgtgtgc	5940
gcagcgatac	tgcgtcggca	cgtgggccca	ggggaggggg	ctgtgcagtg	gatgaaccgg	6000
ctgatagcgt	tegettegeg	gggtaaccac	gtetececea	cgcactatgt	gcctgagagc	6060
gacgetgeag	cacgtgtcac	tcagatecte	tctagtctta	ccatcactca	gctgctgaag	6120
aggetteace	agtggatcaa	cgaggactgc	tecaegeeat	gctccggctc	gtggctaaga	6180
gatgtttggg	attggatatg	cacggtgttg	actgatttca	agacetgget	ccagtccaag	6240
ctcctgccgc	gattgccggg	agteceette	ttctcatgtc	aacgtgggta	caagggagtc	6300
tggcggggcg	acggcatcat	gcaaaccacc	tgcccatgtg	gagcacagat	caccggacat	6360
gtgaaaaacg	gttccatgag	gategtgggg	cctaggacct	gtagtaacac	gtggcatgga	6420
acattcccca	ttaacgcgta	caccacgggc	cectgeaege	cctccccggc	gccaaattat	6480
tctagggcgc	tgtggcgggt	ggctgctgag	gagtacgtgg	aggttacgcg	ggtgggggat	6540
ttccactacg	tgacgggcat	gaccactgac	aacgtaaagt	gcccgtgtca	ggttccggcc	6600
cccgaattct	tcacagaagt	ggatggggtg	cggttgcaca	ggtacgctcc	agcgtgcaaa	6660
cccctcctac	g g gag gag gt	cacatteetg	gtcgggctca	atcaatacct	ggttgggtca	6720
cageteceat	gcgagcccga	accggacgta	gcagtgctca	cttccatgct	caccgacccc	6780

teccacatta eggeggagae	ggctaagcgt	aggetggeea	ggggatetee	cccctccttg	6840
gccagctcat cagctagcca	gctgtctgcg	ccttccttga	aggcaacatg	cactacccgt	6900
catgactece eggaegetga	cctcatcgag	gccaacetee	tgtggcggca	ggagatgggc	6960
gggaacatca cccgcgtgga	gtcagaaaat	aaggtagtaa	ttttggactc	tttcgagccg	7020
ctccaagcgg aggaggatga	gagggaagta	tecgttccgg	cggagatcct	geggaggtee	7080
aggaaattee etegagegat	gcccatatgg	geaegeeegg	attacaaccc	tccactgtta	7140
gagtootgga aggaccogga	ctacgtccct	ccagtggtac	acgggtgtcc	attgccgcct	7200
gccaaggccc ctccgatacc	acctccacgg	aggaagagga	cggttgtcct	gtcagaatct	7260
accgtgtctt ctgccttggc	ggagetegee	acaaagacct	teggeagete	cgaatcgtcg	7320
geegtegaea geggeaegge	aacggcctct	cctgaccagc	cctccgacga	cggcgacgcg	7380
ggateegaeg ttgagtegta	ctcctccatg	cecececttg	agggggagcc	gggggatece	7440
gateteageg aegggtettg	gtctaccgta	agcgaggagg	ctagtgagga	cgtcgtctgc	7500
tgctcgatgt cctacacatg	gacaggcgcc	ctgatcacgc	catgcgctgc	ggaggaaacc	7560
aagetgeeca teaatgeact	gagcaactct	ttgctccgtc	accacaactt	ggtctatgct	7620
acaacatctc gcagcgcaag	cctgcggcag	aagaaggtca	cctttgacag	actgcaggtc	7680
etggacgacc actaccggga	cgtgctcaag	gagatgaagg	egaaggegte	cacagttaag	7740
gctaaacttc tatccgtgga	ggaagcctgt	aagctgacgc	ccccacattc	ggccagatct	7800
aaatttggct atggggcaaa	ggacgtccgg	aacctatcca	gcaaggccgt	taaccacatc	7860
cgctccgtgt ggaaggactt	gctggaagac	actgagacac	caattgacac	caccatcatg	7920
gcaaaaaatg aggttttctg	cgtccaacca	gagaaggggg	gccgcaagcc	agctcgcctt	7980
ategtattee cagatttggg	ggttcgtgtg	tgcgagaaaa	tggcccttta	cgatgtggtc	8040
tecacectee eteaggeegt	gatgggctct	tcatacggat	tecaataete	tcctggacag	8100
cgggtcgagt tcctggtgaa	tgcctggaaa	gcgaagaaat	gccctatggg	cttcgcatat	8160
gacacccgct gttttgactc	aacggtcact	gagaatgaca	tccgtgttga	ggagtcaatc	8220
taccaatgtt gtgacttggc	ccccgaagec	agacaggeca	taaggteget	cacagagegg	8280
etttacateg ggggeeeect	gactaattct	aaagggcaga	actgeggeta	tegeeggtge	8340
cgcgcgagcg gtgtactgac	gaccagetge	ggtaataccc	tcacatgtta	cttgaaggcc	8400
getgeggeet gtegagetge	gaagctccag	gactgcacga	tgctcgtatg	cggagacgac	8460
cttgtcgtta tctgtgaaag	cgcggggacc	caagaggacg	aggegageet	acgggccttc	8520
acggaggeta tgactagata	ctctgccccc	cctggggacc	cgcccaaacc	agaatacgac	8580
ttggagttga taacatcatg	ctcctccaat	gtgtcagtcg	cgcacgatgc	atctggcaaa	8640

agggtgtact	atctcacccg	tgaccccacc	acccccttg	cgcgggctgc	gtgggagaca	8700
gctagacaca	ctccagtcaa	ttcctggcta	ggcaacatca	tcatgtatgc	gcccaccttg	8760
tgggcaagga	tgatcctgat	gactcatttc	ttctccatcc	ttctagctca	ggaacaactt	8820
gaaaaagccc	tagattgtca	gatctacggg	gcctgttact	ccattgagcc	acttgaccta	8880
cctcagatca	ttcaacgact	ccatggcctt	agcgcatttt	cactccatag	ttactctcca	8940
ggtgagatca	atagggtggc	ttcatgcctc	aggaaacttg	gggtaccgcc	cttgcgagtc	9000
tggagacatc	gggccagaag	tgtccgcgct	aggctactgt	cccagggggg	gagggctgcc	9060
acttgtggca	agtacctctt	caactgggca	gtaaggacca	agctcaaact	cactccaatc	9120
ccggctgcgt	cccagttgga	tttatccagc	tggttcgttg	ctggttacag	cgggggagac	9180
atatatcaca	gcctgtctcg	tgcccgaccc	cgctggttca	tgtggtgcct	actcctactt	9240
tctgtagggg	taggcatcta	tctactcccc	aaccgatgac	ttaagacggg	gagctaaaca	9300
ctccaggcca	ataggccatc	ctgtttttt	ccctttttt	ttttcttttt	ttttttttt	9360
tttttttt	tttttttc	tcctttttt	ttcctctttt	tttccttttc	tttcctttgg	9420
tggctccatc	ttagccctag	tcacggctag	ctgtgaaagg	tecgtgagee	gcttgactgc	9480
agagagtgct	gatactggcc	tctctgcaga	tcaagtacta	ctagtccctt	tagtgagggt	9540
taattcaatt	cttgaagacg	aaagggcctc	gtgatacgcc	tatttttata	ggttaatgtc	9600
atgataataa	tggtttctta	gacgtcaggt	ggcacttttc	ggggaaatgt	gcgcggaacc	9660
cctatttgtt	tatttttcta	aatacattca	aatatgtatc	cgctcatgag	acaataaccc	9720
tgataaatgc	ttcaataata	ttgaaaaagg	aagagtatga	gtattcaaca	tttccgtgtc	9780
gcccttattc	ccttttttgc	ggcattttgc	cttcctgttt	ttgctcaccc	agaaacgctg	9840
gtgaaagtaa	aagatgctga	agatcagttg	ggtgcacgag	tgggttacat	cgaactggat	9900
ctcaacagcg	gtaagatcct	tgagagtttt	cgccccgaag	aacgttttcc	aatgatgagc	9960
acttttaaag	ttctgctatg	tggcgcggta	ttatcccgtg	ttgacgccgg	gcaagagcaa	10020
ctcggtcgcc	gcatacacta	ttctcagaat	gacttggttg	agtactcacc	agtcacagaa	10080
aagcatctta	cggatggcat	gacagtaaga	gaattatgca	gtgctgccat	aaccatgagt	10140
gataacactg	cggccaactt	acttctgaca	acgatcggag	gaccgaagga	gctaaccgct	10200
tttttgcaca	acatggggga	tcatgtaact	cgccttgatc	gttgggaacc	ggagctgaat	10260
gaagccatac	caaacgacga	gcgtgacacc	acgatgcctg	cagcaatggc	aacaacgttg	10320
cgcaaactat	taactggcga	actacttact	ctagetteee	ggcaacaatt	aatagactgg	10380
atggaggcgg	ataaagttgc	aggaccactt	ctgcgctcgg	cccttccggc	tggctggttt	10440

attgctgata	aatctggagc	cggtgagcgt	gggtctcgcg	gtatcattgc	agcactgggg	10500
ccagatggta	agccctcccg	tatcgtagtt	atctacacga	cggggagtca	ggcaactatg	10560
gatgaacgaa	atagacagat	cgctgagata	ggtgcctcac	tgattaagca	ttggtaactg	10620
tcagaccaag	tttactcata	tatactttag	attgatttaa	aacttcattt	ttaatttaaa	10680
aggatctagg	tgaagatcct	ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	10740
togttocact	gagcgtcaga	ccccgtagaa	aagatcaaag	gatcttcttg	agatcctttt	10800
tttctgcgcg	taatctgctg	cttgcaaaca	aaaaaaccac	cgctaccagc	ggtggtttgt	10860
ttgccggatc	aagagetace	aactcttttt	ccgaaggtaa	ctggcttcag	cagagegeag	10920
ataccaaata	ctgtccttct	agtgtagccg	tagttaggcc	accacttcaa	gaactetgta	10980
gcaccgccta	catacctcgc	totgotaato	ctgttaccag	tggctgctgc	cagtggcgat	11040
aagtcgtgtc	ttaccgggtt	ggactcaaga	cgatagttac	cggataaggc	gcagcggtcg	11100
ggctgaacgg	ggggttcgtg	cacacageee	agcttggagc	gaacgaccta	caccgaactg	11160
agatacctac	agcgtgagct	atgagaaagc	gccacgcttc	ccgaagggag	aaaggeggae	11220
aggtatccgg	taagcggcag	ggtcggaaca	ggagagcgca	cgagggagct	tccaggggga	11280
aacgcctggt	atctttatag	tectgteggg	tttcgccacc	tetgaettga	gcgtcgattt	11340
ttgtgatgct	cgtcaggggg	geggageeta	tggaaaaacg	ccagcaacgc	ggccttttta	11400
cggttcctgg	cettttgetg	gccttttgct	cacatgttct	ttectgegtt	atcccctgat	11460
tctgtggata	accgtattac	cgcctttgag	tgagctgata	ccgctcgccg	cageegaaeg	11520
accgagcgca	gcgagtcagt	gagcgaggaa	gcggaagagc	gcctgatgcg	gtattttctc	11580
cttacgcatc	tgtgcggtat	ttcacaccgc	atatggtgca	ctctcagtac	aatctgctct	11640
gatgccgcat	agttaagcca	gtatacactc	cgctatcgct	acgtgactgg	gtcatggctg	11700
cgccccgaca	ceegeeaaca	cccgctgacg	cgccctgacg	ggcttgtctg	ctcccggcat	11760
ccgcttacag	acaagctgtg	accgtctccg	ggagctgcat	gtgtcagagg	ttttcaccgt	11820
catcaccgaa	acgcgcgagg	cagctgcggt	aaagctcatc	agcgtggtcg	tgaagcgatt	11880
cacagatgtc	tgcctgttca	teegegteea	gctcgttgag	tttctccaga	agcgttaatg	11940
totggottot	gataaagcgg	gccatgttaa	gggcggtttt	ttcctgtttg	gtcactgatg	12000
cctccgtgta	agggggattt	ctgttcatgg	gggtaatgat	accgatgaaa	cgagagagga	12060
tgctcacgat	acgggttact	gatgatgaac	atgeceggtt	actggaacgt	tgtgagggta	12120
aacaactggc	ggtatggatg	cggcgggacc	agagaaaaat	cactcagggt	caatgccagc	12180
gcttcgttaa	tacagatgta	ggtgttccac	a gggtageca	gcagcatcct	gcgatgcaga	12240
tccggaacat	aatggtgcag	ggegetgaet	teegegttte	cagactttac	gaaacacgga	12300

	aaccgaagac	cattcatgtt	gttgctcagg	tegeagaegt	tttgcagcag	cagtcgcttc	12360	
	acgttcgctc	gcgtatcggt	gattcattct	gctaaccagt	aaggcaaccc	cgccagecta	12420	
	geegggteet	caacgacagg	agcacgatca	tgcgcacccg	tggccaggac	ccaacgctgc	12480	
	ccgagatgcg	ccgcgtgcgg	ctgctggaga	tggcggacgc	gatggatatg	ttctgccaag	12540	
	ctaagctgcc	tgcaggtaat	acgactcact	ata			12573	
5	<210> 18 <211> 36 <212> ADN <213> Virus de I	a hepatitis C						
10	<400> 18 accgtaagcg agga	agcttaa ggctagtga	ag gacgtc	3	36			
	<210> 19 <211> 36 <212> ADN <213> Virus de I	a hepatitis C						
15	<400> 19 gacgtcctca ctago		tacggt	3	36			
20	<210> 20 <211> 12579 <212> ADN <213> Virus de la hepatitis C							
25	<400> 20							
25	gccagccccc	gattgggggc	gacactecac	catagatcac	tcccctgtga	ggaactactg	60	
	tcttcacgca	gaaagcgtct	agccatggcg	ttagtatgag	tgtcgtgcag	cctccaggac	120	
	ccccctccc	gggagagcca	tagtggtctg	cggaaccggt	gagtacaccg	gaattgccag	180	
	gacgaccggg	tectttettg	gatcaacccg	ctcaatgcct	ggagatttgg	gegtgeeece	240	
	gcgagactgc	tageegagta	gtgttgggtc	gcgaaaggcc	ttgtggtact	gcctgatagg	300	
	gtgcttgcga	gtgccccggg	aggtetegta	gaccgtgcac	cgtttaaacc	cecgtgctgc	360	
	tggaagtcga	tttcaggctt	agggtaaccg	tggacctcga	aaacagacgc	acaaaaccaa	420	
	gttcaataga	agggggtaca	aaccagtacc	accacgaaca	agcacttctg	tttccccggt	480	
	gatgtcgtat	agactgcttg	cgtggttgaa	agcgacggat	ecgttateeg	cttatgtact	540	
	tcgagaagcc	cagtaccacc	tcggaatctt	cgatgcgttg	egeteageae	teaaceceag	600	
	agtgtagctt	aggetgatga	gtctggacat	ccctcaccgg	tgacggtggt	ccaggetgcg	660	
	ttggeggeet	acctatggct	aacgccatgg	gacgctagtt	gtgaacaagg	tgtgaagagc	720	
	ctattgagct	acataagaat	ectceaacec	ctgaatgcgg	ctaatcccaa	ceteggagea	780	

ggtggtcaca	aaccagtgat	tggcctgtcg	taacgcgcaa	gtccgtggcg	gaaccgacta	840
ctttgggtgt	ccgtgtttcc	ttttatttta	ttgtggctgc	ttatggtgac	aatcacagat	900
tgttatcata	aagcgaattg	gattggccat	ccggtgaaag	tgagactcat	tatctatctg	960
tttgctggat	ccgctccatt	gagtgtgttt	actctaagta	caatttcaac	agttatttca	1020
atcagacaat	tgtatcataa	tggcgggccc	agaagacgcc	aaaaacataa	agaaaggccc	1080
ggcgccattc	tatcctctag	aggatggaac	cgctggagag	caactgcata	aggctatgaa	1140
gagatacgcc	ctggttcctg	gaacaattgc	ttttacagat	gcacatatcg	aggtgaacat	1200
cacgtacgcg	gaatacttcg	aaatgtccgt	tcggttggca	gaagctatga	aacgatatgg	1260
gctgaataca	aatcacagaa	tcgtcgtatg	cagtgaaaac	tctcttcaat	tctttatgcc	1320
ggtgttgggc	gcgttattta	tcggagttgc	agttgcgccc	gcgaacgaca	tttataatga	1380
acgtgaattg	ctcaacagta	tgaacatttc	gcagcctacc	gtagtgtttg	tttccaaaaa	1440
ggggttgcaa	aaaattttga	acgtgcaaaa	aaaattacca	ataatccaga	aaattattat	1500
catggattct	aaaacggatt	accagggatt	tcagtcgatg	tacacgttcg	tcacatctca	1560
tctacctccc	ggttttaatg	aatacgattt	tgtaccagag	tcctttgatc	gtgacaaaac	1620
aattgcactg	ataatgaatt	cctctggatc	tactgggtta	cctaagggtg	tggcccttcc	1680
gcatagaact	gcctgcgtca	gattctcgca	tgccagagat	cctatttttg	gcaatcaaat	1740
cattccggat	actgcgattt	taagtgttgt	tccattccat	cacggttttg	gaatgtttac	1800
tacactcgga	tatttgatat	gtggatttcg	agtcgtctta	atgtatagat	ttgaagaaga	1860
gctgttttta	cgatcccttc	aggattacaa	aattcaaagt	gcgttgctag	taccaaccct	1920
attttcattc	ttcgccaaaa	gcactctgat	tgacaaatac	gatttatcta	atttacacga	1980
aattgcttct	gggggcgcac	ctctttcgaa	agaagtcggg	gaagcggttg	caaaacgctt	2040
ccatcttcca	gggatacgac	aaggatatgg	gctcactgag	actacatcag	ctattctgat	2100
tacacccgag	ggggatgata	aaccgggcgc	ggtcggtaaa	gttgttccat	tttttgaagc	2160
gaaggttgtg	gatctggata	ccgggaaaac	gctgggcgtt	aatcagagag	gcgaattatg	2220
tgtcagagga	cctatgatta	tgtccggtta	tgtaaacaat	ccggaagcga	ccaacgcctt	2280
gattgacaag	gatggatggc	tacattctgg	agacatagct	tactgggacg	aagacgaaca	2340
cttcttcata	gttgaccgct	tgaagtcttt	aattaaatac	aaaggatatc	aggtggcccc	2400
cgctgaattg	gaatcgatat	tgttacaaca	ccccaacatc	ttcgacgcgg	gcgtggcagg	2 460
tetteeegae	gatgacgccg	gtgaacttcc	cgccgccgtt	gttgttttgg	agcacggaaa	2520
gacgatgacg	gaaaaagaga	tcgtggatta	cgtcgccagt	caagtaacaa	ccgcgaaaaa	2580

gttgcgcgga	ggagttgtgt	ttgtggacga	agtaccgaaa	ggtcttaccg	gaaaactcga	2640
cgcaagaaaa	atcagagaga	tcctcataaa	ggccaagaag	ggcggaaagt	ccaaattgta	2700
ageggeegeg	ttgttaaaca	gaccacaacg	gtttccctct	agegggatea	atteegeeee	2760
cccccctaa	cgttactggc	cgaagccgct	tggaataagg	ccggtgtgcg	tttgtctata	2820
tgttattttc	caccatattg	ccgtcttttg	gcaatgtgag	ggcccggaaa	cctggccctg	2880
tcttcttgac	gagcattcct	aggggtcttt	cccctctcgc	caaaggaatg	caaggtctgt	2940
tgaatgtcgt	gaaggaagca	gttcctctgg	aagcttcttg	aagacaaaca	acgtctgtag	3000
cgaccctttg	caggcagegg	aaccccccac	ctggcgacag	gtgcctctgc	ggccaaaagc	3060
cacgtgtata	agatacacct	gcaaaggcgg	cacaacccca	gtgccacgtt	gtgagttgga	3120
tagttgtgga	aagagtcaaa	tggctctcct	caagcgtatt	caacaagggg	ctgaaggatg	3180
cccagaaggt	accccattgt	atgggatctg	atctggggcc	toggtgcaca	tgctttacat	3240
gtgtttagtc	gaggttaaaa	aaacgtctag	gecececgaa	ccacggggac	gtggttttcc	3300
tttgaaaaac	acgataatac	catggcgcct	attacggcct	actcccaaca	gacgcgaggc	3360
ctacttggct	gcatcatcac	tagceteaca	ggccgggaca	ggaaccaggt	cgaggggag	3420
gtccaagtgg	tctccaccgc	aacacaatct	ttcctggcga	cctgcgtcaa	tggcgtgtgt	3480
tggactgtct	atcatggtgc	cggctcaaag	accettgeeg	gcccaaaggg	cccaatcacc	3540
caaatgtaca	ccaatgtgga	ccaggacctc	gtcggctggc	aagcgccccc	cggggcgcgt	3600
tccttgacac	catgcacetg	eggeageteg	gacctttact	tggtcacgag	gcatgccgat	3660
gtcattccgg	tgcgccggcg	gggcgacagc	agggggagcc	tactctcccc	caggcccgtc	3720
tectacttga	agggetette	gggcggtcca	ctgctctgcc	cctcggggca	cgctgtgggc	3780
atctttcggg	ctgccgtgtg	cacccgaggg	gttgcgaagg	cggtggactt	tgtacccgtc	3840
gagtetatgg	gaaccactat	gcggtccccg	gtcttcacgg	acaactcgtc	cectceggee	3900
gtaccgcaga	cattccaggt	ggcccatcta	cacgccccta	ctggtagcgg	caagagcact	3960
aaggtgeegg	ctgcgtatgc	agcccaaggg	tataaggtgc	ttgtcctgaa	cccgtccgtc	4020
geegeeaeee	taggtttcgg	ggcgtatatg	tctaaggcac	atggtatcga	ccctaacatc	4080
agaatcgggg	taaggaccat	caccacgggt	gcccccatca	cgtactccac	ctatggcaag	4140
tttcttgccg	acggtggttg	ctctgggggc	gcctatgaca	tcataatatg	t gatgagtgc	4 200
cactcaactg	actegaceae	tatcctgggc	atcggcacag	tcctggacca	agcggagacg	4260
gctggagcgc	gactcgtcgt	gctcgccacc	getacgeete	cgggatcggt	caccgtgcca	4320
catccaaaca	tcgaggaggt	ggetetgtee	agcactggag	aaatcccctt	ttatggcaaa	4380
gccatcccca	tegagaceat	caaggggggg	aggcacctca	ttttctgcca	ttccaagaag	4440

a a a toto a to	agetagaaga	assactates	gaaatagass	tasstaatat	aggatattag	4500
			ggceteggae			4500
cggggccttg	atgtatccgt	cataccaact	agcggagacg	tcattgtcgt	agcaacggac	4560
gctctaatga	cgggctttac	cggcgatttc	gactcagtga	tegaetgeaa	tacatgtgtc	4620
acccagacag	tegaetteag	cctggacccg	accttcacca	ttgagacgac	gaccgtgcca	4680
caagacgcgg	tgtcacgctc	gcagcggcga	ggcaggactg	gtaggggcag	gatgggcatt	4740
tacaggtttg	tgactccagg	agaacggccc	tegggeatgt	tegatteete	ggttctgtgc	4800
gagtgctatg	acgcgggctg	tgcttggtac	gageteaege	ccgccgagac	ctcagttagg	4860
ttgcgggctt	acctaaacac	accagggttg	cccgtctgcc	aggaccatct	ggagttctgg	4920
gagagegtet	ttacaggcct	cacccacata	gacgcccatt	tcttgtccca	gactaagcag	4980
gcaggagaca	acttccccta	cctggtagca	taccaggeta	cggtgtgcgc	cagggeteag	5040
gctccacctc	catcgtggga	ccaaatgtgg	a agtgtctca	tacggctaaa	gectaegetg	5100
cacgggccaa	cgcccctgct	gtataggctg	ggagccgttc	aaaacgaggt	tactaccaca	5160
caccccataa	ccaaatacat	catggcatgc	atgtcggctg	acctggaggt	cgtcacgagc	5220
acctgggtgc	tggtaggcgg	agtcctagca	getetggeeg	cgtattgcct	gacaacaggc	5280
agcgtggtca	ttgtgggcag	gatcatcttg	teeggaaage	cggccatcat	tecegacagg	5340
gaagtccttt	accgggagtt	cgatgagatg	gaagagtgcg	cctcacacct	cccttacatc	5400
gaacagggaa	tgcagctcgc	cgaacaattc	aaacagaagg	caatcgggtt	gctgcaaaca	5460
gccaccaagc	aagcggaggc	tgctgctccc	gtggtggaat	ccaagtggcg	gaccetegaa	5520
gccttctggg	cgaagcatat	gtggaatttc	atcagcggga	tacaatattt	agcaggcttg	5580
tccactctgc	ctggcaaccc	cgcgatagca	tcactgatgg	cattcacagc	ctctatcacc	5640
agecegetea	ccacccaaca	taccetectg	tttaacatcc	tggggggatg	ggtggccgcc	5700
caacttgctc	ctcccagcgc	tgcttctgct	ttcgtaggcg	ceggeatege	tggagcggct	5760
gttggcagca	taggccttgg	gacggtgctt	gtggatattt	tggcaggtta	tggagcaggg	5820
gtggcaggcg	cgctcgtggc	ctttaaggtc	atgageggeg	agatgccctc	caccgaggac	5880
ctggttaacc	tactccctgc	tatcctctcc	cetggegece	tagtcgtcgg	ggtcgtgtgc	5940
gcagcgatac	tgcgtcggca	cgtgggccca	ggggagggg	ctgtgcagtg	gatgaaccgg	6000
ctgatagcgt	tegettegeg	gggtaaccac	gtctccccca	cgcactatgt	gcctgagagc	6060
gacgctgcag	cacgtgtcac	tcagatcctc	tctagtctta	ccatcactca	gctgctgaag	6120
aggetteace	agtggatcaa	cgaggactgc	tccacgccat	geteeggete	gtggctaaga	6180
gatgtttggg	attggatatg	cacggtgttg	actgatttca	agacctggct	ccagtccaag	6240

ctcctgccgc gattgccggg	agtccccttc	ttctcatgtc	aacgtgggta	caagggagtc	6300
tggcggggcg acggcatcat	gcaaaccacc	tgcccatgtg	gagcacagat	caceggaeat	6360
gtgaaaaacg gttccatgag	gatcgtgggg	cctaggacct	gtagtaacac	gtggcatgga	6420
acattcccca ttaacgcgta	caccacgggc	ccctgcacgc	cctccccggc	gccaaattat	6480
tetagggege tgtggegggt	ggctgctgag	gagtacgtgg	aggttacgcg	ggtgggggat	6540
ttccactacg tgacgggcat	gaccactgac	aacgtaaagt	gcccgtgtca	ggttccggcc	6600
cccgaattct tcacagaagt	ggatggggtg	cggttgcaca	ggtacgctcc	agcgtgcaaa	6660
ccctcctac gggaggaggt	cacatteetg	gtcgggctca	atcaatacct	ggttgggtca	6720
cageteceat gegageeega	accggacgta	gcagtgctca	cttccatgct	caccgacccc	6780
teccacatta eggeggagae	ggctaagcgt	aggctggcca	ggggatctcc	cccctccttg	6840
gccagctcat cagctagcca	gctgtctgcg	ccttccttga	aggcaacatg	cactacccgt	6900
catgactece eggaegetga	cctcatcgag	gecaaectce	tgtggcggca	ggagatgggc	6960
gggaacatca cccgcgtgga	gtcagaaaat	aaggtagtaa	ttttggactc	tttcgagccg	7020
ctccaagcgg aggaggatga	gagggaagta	teegtteegg	cggagatcct	geggaggtee	7080
aggaaattcc ctcgagcgat	gcccatatgg	gcacgcccgg	attacaaccc	tccactgtta	7140
gagtootgga aggaccogga	ctacgtccct	ccagtggtac	acgggtgtcc	attgccgcct	7200
gccaaggccc ctccgatacc	acctccacgg	aggaagagga	cggttgtcct	gtcagaatct	7260
accgtgtctt ctgccttggc	ggagetegee	acaaagacct	teggeagete	cgaatcgtcg	7320
geegtegaea geggeaegge	aacggcctct	cctgaccagc	cctccgacga	cggcgacgcg	7380
ggatccgacg ttgagtcgta	ctcctccatg	ccccccttg	agggggagcc	gggggatccc	7440
gateteageg aegggtettg	gtctaccgta	agcgaggagc	ttaaggctag	tgaggacgtc	7500
gtetgetget egatgteeta	cacatggaca	ggcgccctga	tcacgccatg	cgctgcggag	7560
gaaaccaagc tgcccatcaa	tgcactgagc	aactctttgc	tccgtcacca	caacttggtc	7620
tatgetacaa catetegeag	cgcaagcctg	cggcagaaga	aggtcacctt	tgacagactg	7680
caggteetgg acgaecacta	ccgggacgtg	ctcaaggaga	tgaaggcgaa	ggcgtccaca	7740
gttaaggeta aacttetate	cgtggaggaa	gcctgtaagc	tgacgccccc	acattcggcc	7800
agatetaaat ttggetatgg	ggcaaaggac	gtccggaacc	tatccagcaa	ggccgttaac	7860
cacateeget eegtgtggaa	ggacttgctg	gaagacactg	agacaccaat	tgacaccacc	7920
atcatggcaa aaaatgaggt	tttctgcgtc	caaccagaga	aggggggccg	caagccagct	7980
egeettateg tatteeeaga	tttgggggtt	cgtgtgtgcg	agaaaatggc	cctttacgat	8040
gtggtctcca ccctccctca	ggccgtgatg	ggctcttcat	acggattcca	atactctcct	8100

ggacagcggg	tcgagttcct	ggtgaatgcc	tggaaagcga	agaaatgccc	tatgggcttc	8160
gcatatgaca	cccgctgttt	tgactcaacg	gtcactgaga	atgacatccg	tgttgaggag	8220
tcaatctacc	aatgttgtga	cttggccccc	gaagccagac	aggccataag	gtcgctcaca	8280
gageggettt	acatcggggg	ccccctgact	aattctaaag	ggcagaactg	cggctatcgc	8340
cggtgccgcg	cgagcggtgt	actgacgacc	agctgcggta	atacceteae	atgttacttg	8400
aaggccgctg	cggcctgtcg	agctgcgaag	ctccaggact	gcacgatgct	cgtatgcgga	8460
gacgaccttg	togttatotg	tgaaagcgcg	gggacccaag	aggacgaggc	gagectaegg	8520
gccttcacgg	aggctatgac	tagatactct	gacacacatg	gggacccgcc	caaaccagaa	8580
tacgacttgg	agttgataac	atcatgctcc	tccaatgtgt	cagtcgcgca	cgatgcatct	8640
ggcaaaaggg	tgtactatct	cacccgtgac	cccaccaccc	cccttgcgcg	ggctgcgtgg	8700
gagacageta	gacacactcc	agtcaattcc	tggctaggca	acatcatcat	gtatgcgccc	8760
accttgtggg	caaggatgat	cctgatgact	catttcttct	ccatccttct	agctcaggaa	8820
caacttgaaa	aagccctaga	ttgtcagatc	tacggggcct	gttactccat	tgagccactt	8880
gacctacctc	agatcattca	acgactccat	ggccttagcg	cattttcact	ccatagttac	8940
tctccaggtg	agatcaatag	ggtggcttca	tgcctcagga	aacttggggt	accgcccttg	9000
cgagtctgga	gacatcgggc	cagaagtgtc	cgcgctaggc	tactgtccca	gggggggagg	9060
gctgccactt	gtggcaagta	cctcttcaac	tgggcagtaa	ggaccaagct	caaactcact	9120
ccaatcccgg	ctgcgtccca	gttggattta	tccagctggt	tcgttgctgg	ttacagcggg	9180
ggagacatat	atcacagcct	gtctcgtgcc	cgaccccgct	ggttcatgtg	gtgcctactc	9240
ctactttctg	taggggtagg	catctatcta	ctccccaacc	gatgacttaa	gacggggagc	9300
taaacactcc	aggccaatag	gccatcctgt	ttttttccct	tttttttt	ctttttttt	9360
tttttttt	tttttttt	tttttctcct	tttttttcc	tcttttttc	cttttctttc	9420
ctttggtggc	tccatcttag	ccctagtcac	ggctagctgt	gaaaggtccg	tgagccgctt	9480
gactgcagag	agtgctgata	ctggcctctc	tgcagatcaa	gtactactag	tccctttagt	9540
gagggttaat	tcaattcttg	aagacgaaag	ggcctcgtga	tacgcctatt	tttataggtt	9600
aatgtcatga	taataatggt	ttcttagacg	tcaggtggca	cttttcgggg	aaatgtgcgc	9660
ggaaccccta	tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	9720
taaccctgat	aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	9780
cgtgtcgccc	ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	tcacccagaa	9840
acgctggtga	aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	9900

ctggatctca	acagcggtaa	gatecttgag	agttttcgcc	ccgaagaacg	ttttccaatg	9960
atgagcactt	ttaaagttct	gctatgtggc	gcggtattat	cccgtgttga	cgccgggcaa	10020
gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tggttgagta	ctcaccagtc	10080
acagaaaagc	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	10140
atgagtgata	acactgcggc	caacttactt	ctgacaacga	teggaggace	gaaggagcta	10200
accgcttttt	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	10260
ctgaatgaag	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgcagc	aatggcaaca	10320
acgttgcgca	aactattaac	tggcgaacta	cttactctag	cttcccggca	acaattaata	10380
gactggatgg	aggeggataa	agttgcagga	ccacttctgc	geteggeeet	teeggetgge	10440
tggtttattg	ctgataaatc	tggagccggt	gagcgtg g gt	ctcgcggtat	cattgcagca	10500
ctggggccag	atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	10560
actatggatg	aacgaaatag	acagateget	gagataggtg	cctcactgat	taagcattgg	10620
taactgtcag	accaagttta	ctcatatata	ctttagattg	atttaaaact	tcatttttaa	10680
tttaaaagga	tctaggtgaa	gatcettttt	gataatctca	tgaccaaaat	cccttaacgt	10740
gagttttcgt	tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	ttcttgagat	10800
ccttttttc	tgcgcgtaat	ctgctgcttg	caaacaaaaa	aaccaccgct	accagoggtg	10860
gtttgtttgc	cggatcaaga	gctaccaact	ctttttccga	aggtaactgg	cttcagcaga	10920
gcgcagatac	caaatactgt	ccttctagtg	tagecgtagt	taggecacea	cttcaagaac	10980
tctgtagcac	cgcctacata	cctcgctctg	ctaatcctgt	taccagtggc	tgctgccagt	11040
ggcgataagt	cgtgtcttac	cgggttggac	tcaagacgat	agttaccgga	taaggcgcag	11100
cggtcgggct	gaacgggggg	ttcgtgcaca	cageceaget	tggagcgaac	gacctacacc	11160
gaactgagat	acctacagcg	tgagctatga	gaaagcgcca	egetteeega	agggagaaag	11220
gcggacaggt	atccggtaag	cggcagggtc	ggaacaggag	agegeaegag	ggagcttcca	11280
gggggaaacg	cctggtatct	ttatagtcct	gtcgggtttc	gccacctctg	acttgagcgt	11340
cgatttttgt	gatgctcgtc	aggggggcgg	agcctatgga	aaaacgccag	caacgcggcc	11400
tttttacggt	tcctggcctt	ttgctggcct	tttgctcaca	tgttctttcc	tgcgttatcc	11460
cctgattctg	tggataaccg	tattaccgcc	tttgagtgag	ctgataccgc	tegeegeage	11520
cgaacgaccg	agcgcagcga	gtcagtgagc	gaggaagcgg	aagagcgcct	gatgcggtat	11580
tttctcctta	cgcatctgtg	cggtatttca	caccgcatat	ggtgcactct	cagtacaatc	11640
tgctctgatg	ccgcatagtt	aagccagtat	acactccgct	atcgctacgt	gactgggtca	11700
tggctgcgcc	ccgacacccg	ccaacacccg	ctgacgcgcc	ctgacgggct	tgtctgctcc	11760

11820 eggeateege ttacagacaa getgtgaceg teteegggag etgcatgtgt cagaggtttt caccyticate accyanacyc gegaggicage tycgytanag cticatenycy tygticytyan 11880 gegatteaca gatgtetgee tgtteateeg egteeagete gttgagttte teeagaageg 11940 ttaatgtetg gettetgata aagegggeea tgttaaggge ggttttttee tgtttggtea 12000 etgatgeete egtgtaaggg ggatttetgt teatgggggt aatgataceg atgaaacgag 12060 12120 agaggatget cacgataegg gttaetgatg atgaacatge eeggttaetg gaaegttgtg 12180 agggtaaaca actggcggta tggatgcggc gggaccagag aaaaatcact cagggtcaat gecagegett egitaataca gatgtaggtg ttecacaggg tagecageag cateetgega 12240 tgcagatccg gaacataatg gtgcagggcg ctgacttccg cgtttccaga ctttacgaaa 12300 12360 caeggaaaee gaagaeeatt catgttgttg eteaggtege agaegttttg cageageagt egetteaegt tegetegegt ateggtgatt cattetgeta accagtaagg caacceegee 12420 agoctagoog ggtootoaac gacaggagoa ogatoatgog caccogtggo caggacocaa 12480 12540 cgctgcccga gatgcgccgc gtgcggctgc tggagatggc ggacgcgatg gatatgttct 12579 gecaagetaa getgeetgea ggtaataega eteaetata

<210> 21

5

<211> 10773

<212> ADN

<213> Virus de la hepatitis C

<400> 21

60 gocagococo gattgggggc gacactocac catagateac teccetgtga ggaactactg tetteaegea gaaagegtet agecatggeg ttagtatgag tgtegtgeag cetecaggae 120 ecceecteec gggagageea tagtggtetg eggaaceggt gagtacaceg gaattgeeag 180 gacgaccggg teetttettg gateaacccg eteaatgeet ggagatttgg gegtgeecce 240 gegagaetge tageegagta gtgttgggte gegaaaggee ttgtggtaet geetgatagg 300 360 gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac cgtttaaacc cccgtgctgc tggaagtega ttteaggett agggtaaceg tggacetega aaacagaege acaaaaceaa 420 gttcaataga agggggtaca aaccagtacc accacgaaca agcacttctg tttccccggt 480 540 gatgtcgtat agactgcttg cgtggttgaa agcgacggat ccgttatccg cttatgtact 600 tegagaagee cagtaceace teggaatett egatgegttg egeteageae teaaceecag 660 agtgtagett aggetgatga gtetggaeat eeeteaeegg tgaeggtggt eeaggetgeg 720 ttggcggcct acctatggct aacgccatgg gacgctagtt gtgaacaagg tgtgaagagc 780 ctattgaget acataagaat ceteeggeee etgaatgegg etaateeeaa eeteggagea

10

ggtggtcaca	aaccagtgat	tggcctgtcg	taacgcgcaa	gtccgtggcg	gaaccgacta	840
ctttgggtgt	ccgtgtttcc	ttttatttta	ttgtggctgc	ttatggtgac	aatcacagat	900
tgttatcata	aagcgaattg	gattggccat	ccggtgaaag	tgagactcat	tatctatctg	960
tttgctggat	ccgctccatt	gagtgtgttt	actctaagta	caatttcaac	agttatttca	1020
atcagacaat	tgtatcataa	tggcgggccc	agaagacgcc	aaaaacataa	agaaaggccc	1080
ggcgccattc	tatcctctag	aggatggaac	cgctggagag	caactgcata	aggctatgaa	1140
gagatacgcc	ctggttcctg	gaacaattgc	ttttacagat	gcacatatcg	aggtgaacat	1200
cacgtacgcg	gaatacttcg	aaatgtccgt	tcggttggca	gaagctatga	aacgatatgg	1260
gctgaataca	aatcacagaa	tegtegtatg	cagtgaaaac	tctcttcaat	tctttatgcc	1320
ggtgttgggc	gcgttattta	tcggagttgc	agttgcgccc	gcgaacgaca	tttataatga	1380
acgtgaattg	ctcaacagta	tgaacatttc	gcagcctacc	gtagtgtttg	tttccaaaaa	1440
ggggttgcaa	aaaattttga	acgtgcaaaa	aaaattacca	ataatccaga	aaattattat	1500
catggattct	aaaacggatt	accagggatt	tcagtcgatg	tacacgttcg	tcacatctca	1560
tctacctccc	ggttttaatg	aatacgattt	tgtaccagag	tcctttgatc	gtgacaaaac	1620
aattgcactg	ataatgaatt	cctctggatc	tactgggtta	cctaagggtg	tggcccttcc	1680
gcatagaact	gcctgcgtca	gattctcgca	tgccagagat	cctatttttg	gcaatcaaat	1740
cattccggat	actgcgattt	taagtgttgt	tccattccat	cacggttttg	gaatgtttac	1800
tacactcgga	tatttgatat	gtggatttcg	agtcgtctta	atgtatagat	ttgaagaaga	1860
gctgttttta	cgatcccttc	aggattacaa	aattcaaagt	gcgttgctag	taccaaccct	1920
attttcattc	ttcgccaaaa	gcactctgat	tgacaaatac	gatttatcta	atttacacga	1980
aattgcttct	gggggcgcac	ctctttcgaa	agaagtcggg	gaagcggttg	caaaacgctt	2040
ccatcttcca	gggatacgac	aaggatatgg	gctcactgag	actacatcag	ctattctgat	2100
tacacccgag	ggggatgata	aaccgggcgc	ggtcggtaaa	gttgttccat	tttttgaagc	2160
gaaggttgtg	gatctggata	ccgggaaaac	gctgggcgtt	aatcagagag	gcgaattatg	2220
tgtcagagga	cctatgatta	tgtccggtta	tgtaaacaat	ccggaagcga	ccaacgcctt	2280
gattgacaag	gatggatggc	tacattctgg	agacatagct	tactgggacg	aagacgaaca	2340
cttcttcata	gttgaccgct	tgaagtcttt	aattaaatac	aaaggatatc	aggtggcccc	2400
cgctgaattg	gaatcgatat	tgttacaaca	ccccaacatc	ttcgacgcgg	gcgtggcagg	2460
tetteeegae	gatgacgccg	gtgaacttcc	cgccgccgtt	gttgttttgg	agcacggaaa	2520
gacgatgacg	gaaaaagaga	tcgtggatta	cgtcgccagt	caagtaacaa	ccgcgaaaaa	2580

gttgcgcgga ggagttgtgt	ttgtggacga	agtaccgaaa	ggtettaeeg	gaaaactcga	2640
cgcaagaaaa atcagagaga	tcctcataaa	ggccaagaag	ggcggaaagt	ccaaattgta	2700
ageggeegeg ttgttaaaca	gaccacaacg	gtttccctct	agegggatea	attecgeece	2760
cccccctaa cgttactggc	cgaagccgct	tggaataagg	ccggtgtgcg	tttgtctata	2820
tgttattttc caccatattg	ccgtcttttg	gcaatgtgag	ggcccggaaa	cctggccctg	2880
tettettgae gageatteet	aggggtcttt	ecectetege	caaaggaatg	caaggtctgt	2940
tgaatgtcgt gaaggaagca	gttcctctgg	aagcttcttg	aagacaaaca	acgtctgtag	3000
cgaccetttg caggeagegg	aaccccccac	ctggcgacag	gtgcctctgc	ggccaaaagc	3060
cacgtgtata agatacacct	gcaaaggcgg	cacaacccca	gtgccacgtt	gtgagttgga	3120
tagttgtgga aagagtcaaa	tggctctcct	caagcgtatt	caacaagggg	ctgaaggatg	3180
cccagaaggt accccattgt	atgggatctg	atctggggcc	teggtgcaca	tgctttacat	3240
gtgtttagtc gaggttaaaa	aaacgtctag	gccccccgaa	ccacggggac	gtggttttcc	3300
tttgaaaaac acgataatac	catggcgcct	attacggcct	actcccaaca	gacgcgaggc	3360
ctacttggct gcatcatcac	tagcctcaca	ggccgggaca	ggaaccaggt	cgaggggag	3420
gtccaagtgg tctccaccgc	aacacaatct	tteetggega	cctgcgtcaa	tggcgtgtgt	3480
tggactgtct atcatggtgc	cggctcaaag	accettgeeg	geceaaaggg	eccaateaec	3540
caaatgtaca ccaatgtgga	ccaggacctc	gtcggctggc	aagcgccccc	cggggcgcgt	3600
teettgacae catgeacetg	cggcageteg	gacctttact	tggtcacgag	gcatgccgat	3660
gtcattccgg tgcgccggcg	gggcgacagc	agggggagcc	tactctcccc	caggcccgtc	3720
tectaettga agggetette	gggcggtcca	etgetetgee	ceteggggca	egetgtggge	3780
atctttcggg ctgccgtgtg	cacecgaggg	gttgcgaagg	cggtggactt	tgtacccgtc	3840
gagtetatgg gaaccactat	gcggtccccg	gtcttcacgg	acaactcgtc	ccctccggcc	3900
gtaccgcaga cattccaggt	ggcccatcta	cacgccccta	ctggtagcgg	caagagcact	3960
aaggtgccgg ctgcgtatgc	agcccaaggg	tataaggtgc	ttgtcctgaa	cacgtacgta	4020
geogecaece taggtttegg	ggcgtatatg	tctaaggcac	atggtatcga	ccctaacatc	4080
agaategggg taaggaecat	caccacgggt	geececatea	cgtactccac	ctatggcaag	4140
tttcttgccg acggtggttg	ctctgggggc	gcctatgaca	tcataatatg	tgatgagtgc	4200
cactcaactg actcgaccac	tatcctgggc	atcggcacag	tcctggacca	agcggagacg	4260
getggagege gaetegtegt	gctcgccacc	gctacgcctc	cgggatcggt	caccgtgcca	4320
catccaaaca tcgaggaggt	ggctctgtcc	agcactggag	aaatcccctt	ttatggcaaa	4380
gccatcccca tegagaccat	caaggggggg	aggcacctca	ttttctgcca	ttccaagaag	4440

aaatgtgatg agetegeege gaagetgtee ggeeteggae teaatget	gt agcatattac 4500
eggggeettg atgtateegt cataceaact ageggagaeg teattgte	gt agcaacggac 4560
gctctaatga cgggctttac cggcgatttc gactcagtga tcgactgc	aa tacatgtgtc 4620
acceagacag tegaetteag eetggaeeeg acetteacea ttgagaeg	ac gaccgtgcca 4680
caagacgegg tgtcacgete geageggega ggeaggactg gtagggge	ag gatgggcatt 4740
tacaggtttg tgactccagg agaacggccc tcgggcatgt tcgattcc	te ggttetgtge 4800
gagtgctatg acgcgggctg tgcttggtac gagctcacgc ccgccgag	ac ctcagttagg 4860
ttgcgggctt acctaaacac accagggttg cccgtctgcc aggaccat	ct ggagttctgg 4920
gagagegtet ttacaggeet cacecacata gaegeeeatt tettgtee	ca gactaagcag 4980
gcaggagaca acttececta cetggtagea taccaggeta eggtgtge	ege cagggeteag 5040
getecacete categtggga ceaaatgtgg aagtgtetea taeggeta	aa geetaegetg 5100
cacgggccaa cgcccctgct gtataggctg ggagccgttc aaaacgag	gt tactaccaca 5160
caccecataa ccaaatacat catggcatgc atgteggetg acetggag	gt cgtcacgage 5220
acctgggtgc tggtaggcgg agtcctagca gctctggccg cgtattgc	ect gacaacagge 5280
agegtggtea ttgtgggeag gateatettg teeggaaage eggeeate	at teeegacagg 5340
gaagteettt acegggagtt egatgagatg gaagagtgeg eeteacae	ect ecettacate 5400
gaacagggaa tgcagctcgc cgaacaattc aaacagaagg caatcggg	rtt getgeaaaca 5460
gccaccaagc aagcggaggc tgctgctccc gtggtggaat ccaagtgg	jeg gaeeetegaa 5520
geettetggg egaageatat gtggaattte ateageggga tacaatat	tt ageaggettg 5580
tecaetetge etggeaacee egegatagea teaetgatgg catteaca	ge etetateace 5640
agecegetea ecacecaaca taceeteetg tttaacatee tgggggga	tg ggtggccgcc 5700
caacttgete eteccagege tgettetget ttegtaggeg eeggeate	gc tggagegget 5760
gttggcagca taggccttgg gacggtgctt gtggatattt tggcaggt	ta tggagcaggg 5820
gtggcaggcg cgctcgtggc ctttaaggtc atgagcggcg agatgccc	tc caccgaggac 5880
ctggttaacc tactecetge tatectetee eetggegeee tagtegte	gg ggtcgtgtgc 5940
gcagcgatac tgcgtcggca cgtgggccca ggggaggggg ctgtgcag	rtg gatgaaccgg 6000
ctgatagcgt tegettegeg gggtaaceae gteteecea egeactat	gt geetgagage 6060
gacgotgcag cacgtgtcac toagatooto totagtotta coatcact	ca getgetgaag 6120
aggetteace agtggateaa egaggaetge teeacgeeat geteegge	etc gtggctaaga 6180
gatgtttggg attggatatg cacggtgttg actgatttca agacctgg	ct ccagtccaag 6240

ctcctgccgc gattgccggg	agteceette	tteteatgte	aacgtgggta	caagggagtc	6300
tggcggggcg acggcatcat					6360
gtgaaaaacg gttccatgag					6420
acattoccca ttaacgogta					6480
tetagggege tgtggegggt					6540
ttccactacg tgacgggcat	gaccactgac	aacgtaaagt	gecegtgtca	ggtteeggee	6600
cccgaattct tcacagaagt	ggatggggtg	cggttgcaca	ggtacgctcc	agcgtgcaaa	6660
cccctcctac gggaggaggt					6720
cageteceat gegageeega					6780
teccaeatta eggeggagae					6840
gecageteat eagetageea					6900
catgactoco oggaogotga	cctcatcgag	gecaaeetee	tgtggcggca	ggagatgggc	6960
gggaacatca ceegegtgga					7020
ctccaagcgg aggaggatga	gagggaagta	tecgttccgg	cggagatcct	geggaggtee	7080
aggaaattcc ctcgagcgat	geceatatgg	gcacgcccgg	attacaaccc	tccactgtta	7140
gagteetgga aggaeeegga	ctacgtccct	ccagtggtac	acgggtgtcc	attgeegeet	7200
gccaaggccc cttcgatacc	acctccacgg	aggaagagga	cggttgtcct	gtcagaatct	7260
accgtgtctt ctgccttggc	ggagetegee	acaaagacct	teggeagete	cgaatcgtcg	7320
geegtegaea geggeaegge	aacggcctct	cctgaccagc	cctccgacga	cggcgacgcg	7380
ggatccgacg ttgagtcgta	ctcctccatg	ccccccttg	agggggagce	gggggateee	7440
gateteageg aegggtettg	gtctaccgta	agegaggage	ttaagacggg	gagctaaaca	7500
ctccaggcca ataggccatc	ctgtttttt	ccctttttt	ttttctttt	tttttttt	7560
ttttttttt tttttttc	tcctttttt	ttcctctttt	tttccttttc	tttcctttgg	7620
tggctccatc ttagccctag	tcacggctag	ctgtgaaagg	tccgtgagcc	gcttgactgc	7680
agagagtget gataetggee	tetetgeaga	tcaagtacta	ctagtecett	tagtgagggt	7740
taattcaatt ettgaagaeg	aaagggcctc	gtgatacgcc	tatttttata	ggttaatgtc	7800
atgataataa tggtttctta	gacgtcaggt	ggcacttttc	ggggaaatgt	gcgcggaacc	7860
cctatttgtt tatttttcta	aatacattca	aatatgtatc	cgctcatgag	acaataaccc	7920
tgataaatgo ttoaataata	ttgaaaaagg	aagagtatga	gtattcaaca	tttccgtgtc	7980
gcccttattc ccttttttgc	ggcattttgc	cttcctgttt	ttgctcaccc	agaaacgctg	8040
gtgaaagtaa aagatgctga	agatcagttg	ggtgcacgag	tgggttacat	cgaactggat	8100

ctcaacagcg	gtaagatcct	tgagagtttt	cgccccgaag	aacgttttcc	aatgatgagc	8160
acttttaaag	ttctgctatg	tggcgcggta	ttatcccgtg	ttgacgccgg	gcaagagcaa	8220
ctcggtcgcc	gcatacacta	ttctcagaat	gacttggttg	agtactcacc	agtcacagaa	8280
aagcatctta	cggatggcat	gacagtaaga	gaattatgca	gtgctgccat	aaccatgagt	8340
gataacactg	cggccaactt	acttctgaca	acgatcggag	gaccgaagga	gctaaccgct	8400
tttttgcaca	acatggggga	tcatgtaact	cgccttgatc	gttgggaacc	ggagctgaat	8460
gaagccatac	caaacgacga	gcgtgacacc	acgatgcctg	cagcaatggc	aacaacgttg	8520
cgcaaactat	taactggcga	actacttact	ctagcttccc	ggcaacaatt	aatagactgg	8580
atggaggcgg	ataaagttgc	aggaccactt	ctgcgctcgg	cccttccggc	tggctggttt	8640
attgctgata	aatctggagc	cggtgagcgt	gggtctcgcg	gtatcattgc	agcactgggg	8700
ccagatggta	ageceteceg	tatcgtagtt	atctacacga	cggggagtca	ggcaactatg	8760
gatgaacgaa	atagacagat	cgctgagata	ggtgcctcac	tgattaagca	ttggtaactg	8820
tcagaccaag	tttactcata	tatactttag	attgatttaa	aacttcattt	ttaatttaaa	8880
aggatctagg	tgaagatcct	ttttgataat	ctcatgacca	aaatccctta	acgtgagttt	8940
togttocact	gagcgtcaga	ccccgtagaa	aagatcaaag	gatcttcttg	agatootttt	9000
tttctgcgcg	taatctgctg	cttgcaaaca	aaaaaaccac	cgctaccagc	ggtggtttgt	9060
ttgccggatc	aagagetace	aactcttttt	ccgaaggtaa	ctggcttcag	cagagegeag	9120
ataccaaata	ctgtccttct	agtgtagccg	tagttaggcc	accacttcaa	gaactctgta	9180
gcaccgccta	catacctcgc	tctgctaatc	ctgttaccag	tggctgctgc	cagtggcgat	9240
aagtcgtgtc	ttaccgggtt	ggactcaaga	cgatagttac	cggataaggc	gcagcggtcg	9300
ggctgaacgg	ggggttcgtg	cacacagece	agcttggagc	gaacgaccta	caccgaactg	9360
agatacctac	agcgtgagct	atgagaaagc	gccacgcttc	ccgaagggag	aaaggeggae	9420
aggtatccgg	taagcggcag	ggtcggaaca	ggagagcgca	cgagggagct	tecaggggga	9480
aacgcctggt	atctttatag	tectgteggg	tttcgccacc	tctgacttga	gcgtcgattt	9540
ttgtgatgct	cgtcaggggg	geggageeta	tggaaaaacg	ccagcaacgc	ggccttttta	9600
cggttcctgg	ccttttgctg	gccttttgct	cacatgttct	ttcctgcgtt	atecectgat	9660
tctgtggata	accgtattac	cgcctttgag	tgagctgata	ccgctcgccg	cageegaaeg	9720
accgagcgca	gcgagtcagt	gagcgaggaa	gcggaagagc	gcctgatgcg	gtattttete	9780
cttacgcatc	tgtgcggtat	ttcacaccgc	atatggtgca	ctctcagtac	aatetgetet	9840
gatgeegeat	agttaagcca	gtatacactc	cgctatcgct	acgtgactgg	gtcatggctg	9900

	cgccccgaca	cccgccaaca	cccgctgacg	cgccctgacg	ggettgtetg	ctcccggcat	9960
	ccgcttacag	acaagctgtg	accgtctccg	ggagctgcat	gtgtcagagg	ttttcaccgt	10020
	catcaccgaa	acgcgcgagg	cagetgeggt	aaagctcatc	agcgtggtcg	tgaagcgatt	10080
	cacagatgtc	tgcctgttca	teegegteea	gctcgttgag	tttctccaga	agcgttaatg	10140
	tctggcttct	gataaagcgg	gccatgttaa	gggcggtttt	ttcctgtttg	gtcactgatg	10200
	cctccgtgta	agggggattt	ctgttcatgg	gggtaatgat	accgatgaaa	cgagagagga	10260
	tgctcacgat	acgggttact	gatgatgaac	atgcccggtt	actggaacgt	tgtgagggta	10320
	aacaactggc	ggtatggatg	cggcgggacc	agagaaaaat	cactcagggt	caatgccagc	10380
	gcttcgttaa	tacagatgta	ggtgttccac	agggtagcca	gcagcatcct	gcgatgcaga	10440
	tccggaacat	aatggtgcag	ggegetgaet	tecgcgttte	cagaetttae	gaaacacgga	10500
	aaccgaagac	cattcatgtt	gttgctcagg	tegeagaegt	tttgcagcag	cagtcgcttc	10560
	acgttcgctc	gcgtatcggt	gattcattct	gctaaccagt	aaggcaaccc	cgccagccta	10620
	geegggteet	caacgacagg	agcacgatca	tgcgcacccg	tggccaggac	ccaacgetge	10680
	cegagatgeg	ccgcgtgcgg	ctgctggaga	tggcggacgc	gatggatatg	ttctgccaag	10740
	ctaagctgcc	tgcaggtaat	acgactcact	ata			10773
5	<210> 22 <211> 31 <212> ADN <213> Virus de la	a hepatitis C					
10	<400> 22 ggcgccattc tatcca	actag aggatggaa	сс	31			
10	<210> 23 <211> 31 <212> ADN <213> Virus de la	a hepatitis C					
15	<400> 23 ggttccatcc tctagto	·	: c	31			
20	<210> 24 <211> 63 <212> ADN <213> Virus de la	a hepatitis C					
	<400> 24						
25	gagtgctgat	actggcctct	ctgcagatca	agtctagaaa	gtccctttag	tgagggttaa	60
	ttc						63
30	<210> 25 <211> 63 <212> ADN <213> Virus de la	a henatitis C					

	<400> 25						
	gaattaaccc	tcactaaagg	gactttctag	acttgatctg	cagagaggcc	agtatcagca	60
	ctc						63
5	<210> 26 <211> 12579 <212> ADN <213> Virus de la	a hepatitis C					
10	<400> 26						
	gccagccccc	gattgggggc	gacactccac	catagatcac	tcccctgtga	ggaactactg	60
	tcttcacgca	gaaagcgtct	agccatggcg	ttagtatgag	tgtcgtgcag	cctccaggac	120
	ccccctccc	gggagagcca	tagtggtctg	cggaaccggt	gagtacaccg	gaattgccag	180
	gacgaccggg	tectttettg	gatcaacccg	ctcaatgcct	ggagatttgg	gcgtgccccc	240
	gcgagactgc	tageegagta	gtgttgggtc	gcgaaaggcc	ttgtggtact	gcctgatagg	300
	gtgcttgcga	gtgccccggg	aggtctcgta	gaccgtgcac	cgtttaaacc	cccgtgctgc	360
	tggaagtcga	tttcaggctt	agggtaaccg	tggacctcga	aaacagacgc	acaaaaccaa	4 20
	gttcaataga	agggggtaca	aaccagtacc	accacgaaca	agcacttctg	tttccccggt	480
	gatgtcgtat	agactgcttg	cgtggttgaa	agcgacggat	ccgttatccg	cttatgtact	540
	tcgagaagcc	cagtaccacc	tcggaatctt	cgatgcgttg	cgctcagcac	tcaaccccag	600
	agtgtagctt	aggctgatga	gtctggacat	ccctcaccgg	tgacggtggt	ccaggctgcg	660
	ttggcggcct	acctatggct	aacgccatgg	gacgctagtt	gtgaacaagg	tgtgaagagc	720
	ctattgagct	acataagaat	cetecggece	ctgaatgcgg	ctaatcccaa	cctcggagca	780
	ggtggtcaca	aaccagtgat	tggcctgtcg	taacgcgcaa	gteegtggeg	gaaccgacta	840
	ctttgggtgt	ccgtgtttcc	ttttatttta	ttgtggctgc	ttatggtgac	aatcacagat	900
	tgttatcata	aagcgaattg	gattggccat	ccggtgaaag	tgagactcat	tatctatctg	960
	tttgctggat	ccgctccatt	gagtgtgttt	actctaagta	caatttcaac	agttatttca	1020
	atcagacaat	tgtatcataa	tggcgggccc	agaagacgcc	aaaaacataa	agaaaggccc	1080
	ggcgccattc	tatccactag	aggatggaac	cgctggagag	caactgcata	aggctatgaa	1140
	gagatacgcc	ctggttcctg	gaacaattgc	ttttacagat	gcacatatcg	aggtgaacat	1200
	cacgtacgcg	gaatacttcg	aaatgtccgt	teggttggea	gaagctatga	aacgatatgg	1260
	gctgaataca	aatcacagaa	tcgtcgtatg	cagtgaaaac	tctcttcaat	tctttatgcc	1320

ggtgttgggc gcgttattta tcggagttgc agttgcgccc gcgaacgaca tttataatga 1380

acgtgaattg	ctcaacagta	tgaacatttc	gcagectaec	gtagtgtttg	tttccaaaaa	1440
ggggttgcaa	aaaattttga	acgtgcaaaa	aaaattacca	ataatccaga	aaattattat	1500
catggattct	aaaacggatt	accagggatt	tcagtcgatg	tacacgttcg	tcacatctca	1560
tctacctccc	ggttttaatg	aatacgattt	tgtaccagag	tectttgate	gtgacaaaac	1620
aattgcactg	ataatgaatt	cctctggatc	tactgggtta	cctaagggtg	tggcccttcc	1680
gcatagaact	gcctgcgtca	gattctcgca	tgccagagat	cctatttttg	gcaatcaaat	1740
cattccggat	actgcgattt	taagtgttgt	tccattccat	cacggttttg	gaatgtttac	1800
tacactcgga	tatttgatat	gtggatttcg	agtcgtctta	atgtatagat	ttgaagaaga	1860
gctgttttta	cgatecette	aggattacaa	aattcaaagt	gegttgetag	taccaaccet	1 9 20
attttcattc	ttegecaaaa	gcactctgat	tgacaaatac	gatttatcta	atttacacga	1980
aattgcttct	gggggcgcac	ctctttcgaa	agaagtcggg	gaagcggttg	caaaacgctt	2040
ccatcttcca	gggatacgac	aaggatatgg	gctcactgag	actacatcag	ctattctgat	2100
tacacccgag	ggggatgata	aaccgggcgc	ggtcggtaaa	gttgttccat	tttttgaagc	2160
gaaggttgtg	gatctggata	ccgggaaaac	gctgggcgtt	aatcagagag	gcgaattatg	2220
tgtcagagga	cctatgatta	tgtccggtta	tgtaaacaat	ccggaagcga	ccaacgeett	2280
gattgacaag	gatggatggc	tacattctgg	agacatagct	tactgggacg	aagacgaaca	2340
cttcttcata	gttgaccgct	tgaagtcttt	aattaaatac	aaaggatatc	aggtggcccc	2400
cgctgaattg	gaatcgatat	tgttacaaca	ccccaacatc	ttcgacgcgg	gcgtggcagg	2460
tetteeegae	gatgacgccg	gtgaacttcc	egecgcegtt	gttgttttgg	agcacggaaa	2520
gacgatgacg	gaaaaagaga	tegtggatta	cgtcgccagt	caagtaacaa	ccgcgaaaaa	2580
gttgcgcgga	ggagttgtgt	ttgtggacga	agtaccgaaa	ggtcttaccg	gaaaactcga	2640
cgcaagaaaa	atcagagaga	tcctcataaa	ggccaagaag	ggcggaaagt	ccaaattgta	2700
agcggccgcg	ttgttaaaca	gaccacaacg	gtttccctct	agcgggatca	attocgcccc	2760
cccccctaa	cgttactggc	cgaagecget	tggaataagg	ceggtgtgcg	tttgtctata	2820
tgttattttc	caccatattg	cegtettttg	gcaatgtgag	ggcccggaaa	cctggccctg	2880
tcttcttgac	gagcattcct	aggggtcttt	cccctctcgc	caaaggaatg	caaggtctgt	2940
tgaatgtcgt	gaaggaagca	gttcctctgg	aagcttcttg	aagacaaaca	acgtctgtag	3000
cgaccctttg	caggcagcgg	aaccccccac	ctggcgacag	gtgcctctgc	ggccaaaagc	3060
cacgtgtata	agatacacct	gcaaaggcgg	cacaacccca	gtgccacgtt	gtgagttgga	3120
tagttgtgga	aagagtcaaa	tggctctcct	caagcgtatt	caacaagggg	ctgaaggatg	3180

cccagaaggt	accccattgt	atgggatctg	atctggggcc	teggtgeaca	tgctttacat	3240
gtgtttagtc	gaggttaaaa	aaacgtctag	gccccccgaa	ccacggggac	gtggttttcc	3300
tttgaaaaac	acgataatac	catggcgcct	attacggcct	actcccaaca	gacgcgaggc	3360
ctacttggct	gcatcatcac	tageeteaca	ggccgggaca	ggaaccaggt	cgaggggag	3420
gtccaagtgg	tetecacege	aacacaatct	ttcctggcga	cctgcgtcaa	tggcgtgtgt	3480
tggactgtct	atcatggtgc	cggctcaaag	accettgeeg	gcccaaaggg	cccaatcacc	3540
caaatgtaca	ccaatgtgga	ccaggacete	gtcggctggc	aagegeeece	cggggcgcgt	3600
tecttgacac	catgcacctg	cggcagctcg	gacctttact	tggtcacgag	gcatgccgat	3660
gtcattccgg	tgcgccggcg	gggcgacagc	agggggagcc	tactctcccc	caggecegte	3720
tcctacttga	agggetette	gggcggtcca	ctgctctgcc	cctcggggca	cgctgtgggc	3780
atettteggg	ctgccgtgtg	cacccgaggg	gttgcgaagg	eggtggaett	tgtacccgtc	3840
gagtctatgg	gaaccactat	geggteeeeg	gtcttcacgg	acaactcgtc	ccctccggcc	3900
gtaccgcaga	cattccaggt	ggcccatcta	cacgccccta	ctggtagcgg	caagagcact	3960
aaggtgccgg	ctgcgtatgc	agcccaaggg	tataaggtgc	ttgtcctgaa	cccgtccgtc	4020
gccgccaccc	taggtttcgg	ggcgtatatg	tetaaggeae	atggtatcga	ccctaacate	4080
agaatcgggg	taaggaccat	caccacgggt	gececeatca	egtaetecae	ctatggcaag	4140
tttcttgccg	acggtggttg	ctctgggggc	gcctatgaca	tcataatatg	tgatgagtgc	4200
cactcaactg	actcgaccac	tatectggge	ateggeaeag	tectggacca	agcggagacg	4260
gctggagcgc	gactcgtcgt	gctcgccacc	gctacgcctc	cgggatcggt	caccgtgcca	4320
catccaaaca	tegaggaggt	ggetetgtee	agcactggag	aaateceett	ttatggcaaa	4380
gccatcccca	tegagaceat	caaggggggg	aggeaectea	ttttctgcca	ttccaagaag	4440
aaatgtgatg	agetegeege	gaagctgtcc	ggcctcggac	tcaatgctgt	agcatattac	4500
cggggccttg	atgtateegt	cataccaact	ageggagaeg	tcattgtcgt	agcaacggac	4560
gctctaatga	cgggctttac	cggcgatttc	gactcagtga	tegaetgeaa	tacatgtgtc	4620
acccagacag	tegaetteag	cctggacccg	accttcacca	ttgagacgac	gaccgtgcca	4680
caagacgcgg	tgtcacgete	gcageggega	ggcaggactg	gtaggggcag	gatgggcatt	4740
tacaggtttg	tgactccagg	agaacggccc	tegggeatgt	tegatteete	ggttctgtgc	4800
gagtgctatg	acgcgggctg	tgcttggtac	gageteaege	ccgccgagac	ctcagttagg	4860
ttgcgggctt	acctaaacac	accagggttg	cccgtctgcc	aggaccatct	ggagttctgg	4920
gagagcgtct	ttacaggcct	cacccacata	gacgcccatt	tcttgtccca	gactaagcag	4980
gcaggagaca	acttccccta	cctggtagca	taccaggcta	cggtgtgcgc	cagggctcag	5040

getecacete categragga coaaatgrag aagtgetea tacggetaaa geetacgetg 5100 caceggeesa ogeceetget gtataggetg ggageegte aasacgaggt tactaceaca 5160 caceccataa coaaatacat catggeatge atgteggetg acetggaggt ogteacgage 5220 acetgggtge tggtaggegg agteetagea getetggeeg egtattgeet gacaacaagge 5280 agegtggtea ttgtggggagg agteetagea getetggeeg egtattgeet gacaacaagge 5340 gaacgggaa tgeagetege egaacaatte aaacagaagg catecaggtt getgeaacac 5460 gecaceaage aageggagge tgetgeteee gtggtggaa coaagtgggg gacetegaaca 5520 geettetggg ogaageatat gtggaatte atcacgggga tacaatattt ageagggttg 5580 tecactetge etggeaacec egeatagea teactgatgg catecagae cetetacace 5640 agecegetea ceacecaaca taceteetg tttaacatee tggggggatg ggtggeegee 5700 caacttgete eteccagege tgettetget ttegtaggeg ogggatge tgggaggggg 5820 gttgggagge ggetegtgg etttaaggte atgagattt tggaaggggg 394ggeege 5700 gttggcaggea tacgeettgg gaeggtgett gtggaattt tggaagggggggggg							
caccccataa ccaaatacat catggcatgc atgteggetg acctggaggt cgtcacgagc 5220 acctgggtgc tggtaggcgg agtcctagca gctctggccg cgtattgcct gacaacaggc 5280 agcgtggtca ttgtgggcag gatcatcttg teeggaaage eggecatcat teeegacagg 5340 gaagtcettt accgggagtt cgatgagatg gaagagtgcg cctcacacct ceettacate 5400 gaacagggaa tgcagetege egaacaatte aaacagaagg caategggtt getgcaacaa 5400 gecaccaage aageggagge tgetgeteee gtggtggaat ecaagtggeg gaccetegaa 5520 gecttetggg egaagcatat gtggaattte atcaggegga tacaatattt agcaggettg 5580 tecactetge etggeaacce egegatagca teactgatgg cattcacage etetatcace 5640 agecegetea ecaccaaca tacceteetg tttaacatee tggggggatg ggtggeegee 5700 caacttgete etecacgege tgettetget ttegtaggeg eeggaatge tggaggagg 5820 gttggcagga taggeettg gacggtett gtggatattt tggcaggtta tggagcagg 5820 gttggcagge egetegtgge etttaaggte atgagegga gatgecete caccgaggae 5880 etggttaace tactceetge tatcetetee eetggegeee tagteggeg ggtggtgge 5940 geagegatac tggetggge eggtageca ggggaggggg etgtgeagg ggtggtgge 6000 etgatagegt tegettegge gggtaaccae gteteeceea egeactatgt geetgaaga 6120 aggetgeag cacgtgteae teagateete teaggecat geteeggete gtggetaaga 6120 aggetgteae agtggateaa egaggaetge teeaegecat geteeggete gtggetaaga 6240 eteetgeege gattgeeggg agteeeette tteteatgete aacetgggta eacaggagat 6300 tggeggggg aeggetatat geaaaccace tgeceatgtg gagcacagat caccggaata 6300 tggeggggg aeggetatat geaaaccace tgeceatgtg gagcacagat caccggacat 6300 tggeggggg aeggetatat geaaaccace tgeceatgtg gagcacagat caccggacat 6300 tggeggggg aeggetatat geaaaccace tgeceatgtg gagcacagat caccggacat 6360 gtgaaaaacg gttecatgag gatgetgggg cetagagec ecteceegge gecaaattat 6480 tetagggege tgtggeggat gaccactgaa aagtaaagtg gagttaaceg ggtgggggat 6540 tecactacg tgagcggat gaccactgaa aacgtaaagt gecegtgea ggtgggggat 6540 tecactacg tgagcggat gaccactgaa aacgtaaatg gecegtgea ggtgggggat 6540 eccacatact teacagaagt gacgagggg eggtgegea atcacactgac aacgtacac ggtgggggat 6540 eccacactac tgaagggat aacaatgaa aacgtaaatg gacgteea agcgtgcaa 6600 eccatacta tgaaggagg aacgaggag aacgatggat aacgatgacta accactacac gggaggagg aacgatg	gctccacctc	catcgtggga	ccaaatgtgg	aagtgtctca	tacggctaaa	gcctacgctg	5100
acctgggtge tggtaggegg agtectagea getetggeeg egtattgeet gacaacagge 5280 agegtggtea ttgtgggeag gateatettg teeggaaage eggecateat teeegacagg 5340 gaagteettt accgggagtt egatggagtg gaagagtgeg ecteacacet ecettacate 5400 gaacagggaa tgeagetege egaacaatte aaacagaagg caategggtt getgcaacac 5460 gecaccaage aageggagge tgetgeteee gtggtggaat ecaagtggeg gaceetegaa 5520 geettetggg egaageatat gtggaatte ateaetgatgg catteacage etetateace 5640 agecegetea ecacceaaca tacceteetg tttaacatee tggggggatg ggtggeegee 5700 eaacttgee etecacacaca tacceteetg tttaacatee tggggggatg ggtggeegee 5700 gttgggaaga taggeettgg gacggttg gttggagget 5760 gttgggaaga taggeettgg gacggttgtgggggggggggggggggggggggggg	cacgggccaa	cgcccctgct	gtataggctg	ggagccgttc	aaaacgaggt	tactaccaca	5160
agogtggtca ttgtgggcag gatcatcttg tccggaaagc cggccatcat tcccgacagg 5340 gaagtccttt accggagtt cgatgagatg gaagagtgcg cctcacacct cccttacatc 5400 gaacagggaa tgcagctcgc cgaacaattc aaacagaagg caatcgggtt gctgcaaca 5460 gccaccaagc aagcggagge tgctgctccc gtggtggaat ccaagtggcg gaccctcgaa 5520 gccttctggg cgaagcatat gtggaattc atcatgatgg catcaatattt agcaggcttg 5580 tccactctgc ctggcaaccc cgcgatagca tcactgatgg cattcacagc ctctatcacc 5640 agcccgctca ccaccaaca taccctcctg tttaacatcc tggggggatg ggtggccgcc 5700 caacttgctc ctcccagege tgcttctgct ttcgtaggcg ccggcatcgc tggaagcagct 5760 gttggcagca taggcettgg gacggtgtt gtggatatt tggcaggta tggagcaggc 5820 gtggcaggcg cgctctgtgg ccttaaggtc atgagcagga taggcaggcg cgctcgtggc ctttaaggtc atgagcggg agatgccctc caccgaggac 5880 ctggttaacc tactcctcgc tatcctccc cctggcgccc tagtcgtcgg ggtcgtgtgc 5940 gcagcgatac tgcgtcggca cgtgggccca gggggagggg ctgtgcagtg ggtcgtgtgc 5940 gcagcgatac tgcgtcggc cgggaaccac gtcccccca cgcactatgt gcctgagagc 6000 ctgatagcgt tcgcttcgcg gggtaaccac gtctccccca cgcactatgt gcctgagagc 6000 gacgctgca cacgtgtcac tcagatcct tctagtctta ccatcactca gctgggaca 6180 gatgtttggg attggatat cacgggattg accggtttg actgattca agcgctgcac gatggcaga 6240 ctcctgccgc gattgccgga gatcccttc ttctcatgtc aacgtggtt caagggagt 6300 tggcggggg acggcatcat gcacggtgtt gcaaccac gcccatgtg gagcacagat caccggacat 6300 tggcgggggg acggcatcat gcacacccc tgcccatgtg gagcacagat caccggacat 6300 tggcgggggg acggcatcat gcacacccc tgcccatgtg gagcacagat caccggacat 6300 gtgaaaaaca gttcccttc ttctcatgtc aacgtggtta caagggagtc 6300 tggcgggggg acggcatcat gcacacccc tgcccatgtg gagcacagat caccggacat 6420 acattcccca ttaaccgga gaccactga caccacggc cctcccccac ccccccgc gccaaattat 6480 tccaggacc tgtggcggg ggctgctgag gagtacgtg aggtacgcg ggtggggat 6540 tccaccac tgacgggat gaccactga aaccaccac ggcaatcat gacgaggat accactgac ggatggggat accactcac accaccac ggagggggat gggtggcaa accaccacc ggagggggat gagatgcgcc aaccaccac ggagggggat gagatgcccc accaccacac ggaggggat gaccaccac accaccaca ggaggggat gagatgcccc accaccacac ggaggggat accactcacac ggagggggat accactcacac ggaggggat a	caccccataa	ccaaatacat	catggcatgc	atgtcggctg	acctggaggt	cgtcacgagc	5220
gaagteettt accgggagtt egatgagatg gaagagtgeg eeteaacet eeettacate 5400 gaacagggaa tgeagetege egaacaatte aaacagaagg eastegggtt getgeaacaa 5460 gecaccaage aageggagge tgetgeteee gtggtggaat eeaagtgggg gaecetegaa 5520 geettetegg egaagcatat gtggaattte atcageggga tacaatattt ageaggettg 5580 tecactetge etggeaacee egegatagea teatgatgg catteacage etetateace 5640 agecegetea eeacecaaca tacceteetg tttaacatee tggggggatg ggtggeegee 5700 eaacttgete eteecagege tgettetget ttegtaggeg eeggeatege tggagegggt 5820 gttgggaagg gacegttgg gaeggtgett gtggatattt tggeaggtta tggageaggg 5820 gttgggaagge egetegtgg eetttaaggte atgageggeg agatgeeete eacegaggae 5880 etggttaace tacteeetge tateetetee eetggegeee tagtegtgg ggtegtgtge 5940 geagegtatae tgegteggea egtgggeeea ggggaagggg etgtgeagtg gatgaacegg 6000 etgatagegt tegetteege teagtgeee agggaggggg etgtgagagg 6000 etgatagegt tegetteege teagtgeee agggagaggg etgtgagagg 6000 gaegettgag eacgtgteae teagateete tetagtetta eeateactea getgetgaag 6120 aggetteace agtggataa eacgggatgt actgatette agaeetgget etggetaaga 6180 gatgtttggg attggatat geaggatgte tecacgeeat geteeggete gtggetaaga 6300 tggeggggg aeggetata geaggatgt actgattea agaeetgget eacggaate 6300 tggeggggg aeggetata geaaceace tgeeeatgtg gageacagat eaceggaat 6300 tggeggggg aeggetata geaaceace tgeeeatgtg gageacagat eaceggaat 6300 tggeggggg aeggetata gaaceacee tgeeeatgtg gageacagat eaceggaat 6300 tggeggggg aeggetata gaaceacee tgeeeatgtg gageacagat eaceggaat 6300 tggeggggge aeggeateat gaaceaceace tgeeeatgtg gageacagat eaceggaat 6420 acatteecea ttaacgegta eaceacggge eetaggacet gtagtaacac gtgggaggat 6540 tecacgaace tgtggeggg aggtgggggg aggtgggggg aggtgggggg eetaggace gagtaacac gtgggaggat 6540 tecacgaace tgaggggat gaceactgaa aacgtaaatg geeggtata ggtteeggee 6600 eeegaattet teacagaagt gaceactgaa aacgtaaagt geeggtee aggtggggat 6540 tecacgaattet teacagaagt gaceactgaa aacgtaaatg geeggtee aggtggggaa 6600 eeegaattet teacagaagt gaceactga aacgtaacac ggtaegetee aggtggaaa 6600 eeecteetac gggaggagg aacgggagaacaacac ggaggetee aacgtaecac aggaggecaa accgtaecacac eeecteetac	acctgggtgc	tggtaggcgg	agtoctagoa	gctctggccg	cgtattgcct	gacaacaggc	5280
gaacagggaa tgcagctcge egaacaatte aaacagaagg caategggtt getgeaaca 5460 gecaceaage aageggagge tgetgeteee gtggtggaat ecaagtggeg gaceetegaa 5520 geettetggg egaagcatat gtggaattte ateageggga tacaatattt ageaggettg 5580 tecactotge etggeaacee egegatagea teactgatgg catteacage etetateace 5640 ageeegetea ecaceaaca taceeteetg tttaacatee tggggggatg ggtggeegee 5700 eaacttgete etecacagea tgettetget ttegtagge eeggeatege tggagegggt 5760 gttggeagea taggeettgg gaeggtgtt gtggatattt tggeaggtta tggageaggg 5820 gtgggaagge egetegtgg eettaaggte atgagegge agatgeeete eacegaggae 5880 etggtaace tacteeetge tateeteete eetggegeee tagtegtgg ggtegtgtge 5940 geageggatae tgegtegge egtgggeeea ggggagggg etgtgagg ggtegtgtge 5940 geageggatae tgegtegge egtgggeeea ggggagggg etgtgaagt gatgaacegg 6000 etgatagegt tegettegge gggtaaceae gteteeeca egeactatgt geetgagage 6000 gaegetgeag eacgtgteae teagateete tetagtetta ecateactea getgetgaag 6120 aggetteace agtggateae eacgggttg actgattea eacaceaea geteeggete gtggetaaga 6180 gatgtttggg attggatat geagaceae tecaceae tecaceaea geteeggete gtggetaaga 6240 eteetgeeg gattgeeggg agteeette tetetatgte aacetgggta eaagggate 6300 tggeggggg aeggeateat geaaaceae tgeeeatgg gageaeagat eaceggaat 6360 gtgaaaaaca gtteeatgg gategtggg eetagaaceae gtgegggga eggagaggg getgegggg eetagagaee 6300 tggeggggg aeggeateat geaaaceae tgeeeatgg gageaeagat eaceggaat 6420 acatteeea taaceggaa eaceaeggge eetagaace eeteeegge geeaaattat 6480 tetagggege tgtggeggg ggetgetgag gagtacegge eeteeegge ggtgggggat 6540 tecaceaeg tgacggggt ggetgetgag gagtacegte ggtgggggat 6600 eeegaattet teacagaagt ggatggggt eggttgeae ggttegaa ggtteeggee 6600 eeegaattet teacagaagt ggatggggt eggttgeae aggtaegetee agegtgeaa 6600 eeegaattet teacagaagt ggatggggt eggttgeae aggtaegetee agegtgeaa 6600 eeecteetae gggaggaggt aacatteetg gtegggeta ateaatacet ggttgggtea 6720 eeecteetae gggaggagg aacggaga aceggatea aceggaaceae 6720 eeecteetae gggaggagga aceggaaceaeae 6720 eeecteetae gggaggagga aceggaaceaeae 6720 eeecteetae gggaggagaaceaeae aceggagetae aceggageea aceggageeaaaceae 6720 eeecteeta	agcgtggtca	ttgtgggcag	gatcatcttg	tccggaaagc	cggccatcat	tcccgacagg	5340
gecaccaage aageggagge tgetgeteec gtggtggaat ecaagtggeg gaceetegaa 5520 geettetggg egaageatat gtggaattte ateageggga tacaatattt ageaggettg 5580 teeactetge etggeaacce egegatagea teactgatgg cateacage etetateace 5640 ageeegetea ecaccaaca taceeteetg tttaacatee tggggggatg ggtggeegee 5700 caacttgete eteecagege tgettetget ttegtaggeg eeggeatege tggagegget 5760 gttggeagea taggeettgg gaeggtgett gtggatattt tggeaggtta tggageaggg 5820 gtgggaagge egetegtgg etttaaggte atgagegge agatgeeete eacegaggae 5880 etggttaacc tacteeetge tateetetee eetgggggee tagtggtgg ggtegtgtg 5940 geagegatae tgegteggea egtgggeea ggggagggg etgtgeagtg gatgaaccgg 6000 etgatagegt tegettegeg gggtaaccae gteteecea egeactatgt geetgaage 6000 gaegetgeag eacgtgteae teagateete tetagtetta eeateactea getggtgaag 6120 aggetteace agtggateaa egaggateg teeateete etagetetta eeateactea getggetaaga 6180 gatgtttggg attggataa eaggggtgg agteeette teteagtetta agaeetgget eaggetaaga 6240 eteetgeegg agteeetet geaaaccaee tgeecatgtg gageacagat eaceggaate 6300 tggeggggg aeggeateat geaaaccaee tgeecatgtg gageacagat eaceggaate 6360 gtgaaaaaca gtteeetea teeteetee tteteatgte aacgtgggta eaagggagte 6300 tggeggggg aeggeateat geaaaccaee tgeecatgtg gageacagat eaceggaate 6360 gtgaaaaacg gtteecatgag gategtggg eetaggace gtgagaacag 6420 acatteeca ttaacgegta eaceacggge eeteggaace gtgagaacag gegaaatat 6480 tetagggege tgtggegggt ggetgetgag gagtaegtga aggtaeggg ggtgggggat 6540 tetagggege tgtggegggt ggetgetgaa gagtaegtga aggttaege ggtgggggat 6540 tetagggege tgtggegggt gaetgetgaa gagtaegtga aggttaege ggttggggaa 6660 eeegaattet teacagaag ggatggggt eggttgeaca ggtaegetee agegtgeaaa 6660 eeecteetac gggaggggt eacatteetg gtegggetea ateaataeet ggttgggtea 6720 eageteecat gegaggggg aeeggatea aeeggaegeta aeeggaegeta aeeggaegeta aeeggaegeta aeeggaegeta aeeggaegeta aeeggaegeta 6720 eageteecat gegaggegaa aeeggaegaa aeeggaegaa aeeggaegae 6720 eageteecat gegaggegaa aeeggaegaa aeeggaegaa aeeggaegaa aeeggaegae 6720 eageteecat gegaggeagaa aeeggaegaa aeeggaegaa aeeggaegae 6720 eageteecat gegaggegaa aeeggaegaa aeeggaegaa ae	gaagtccttt	accgggagtt	cgatgagatg	gaagagtgcg	cctcacacct	cccttacatc	5400
goettetggg egaageatat gtggaattte ateageggga tacaatattt ageaggettg 5580 tecaetetge etggeaacee egegatagea teaetgatgg catteacage etetateace 5640 ageeegetea ecaeceaaca taceeteetg titaacatee tggggggatg ggtggeegee 5700 caactigete eteceagege tgettetget titegtaggeg eeggeatege tggagegget 5760 gittggeagea taggeetigg gaeggtett gtggatatti tggeaggtta tggageaggg 5820 gitggeagge egetegtgg etitaaggte atgageggeg agatgeeete eacegaggae 5880 etggitaace tacteeetig tateetetee eetggegeee tagtegtegg ggtegtgige 5940 geagegatae tgegteggea egitggeeag gggagagggg etggeaggg etggitgeg 5940 geagegatae tgegteggea egitggeeag gggagagggg etggeaggg gatgaacegg 6000 etgatagegi tegettegeg gggaaceae ggegagagggg etggeaggg gatgaacegg 6000 gaegetgeag eacgiteea teagateete tetagtetta ecateactea getgetgaag 6120 aggetteace agtggateae teagateete tetagtetta ecateactea getgetgaag 6120 aggetteace agtggataa egaggattg actgatitea agacetgget ecagteeaag 6240 eteetgeeg gattgeegga agteeetite titeteatgie aacgiggga eacggatee 6300 tggegggge aeggeateat geaaaceaee tgeeeatgig gageacagat eaceggacat 6360 gitgaaaaacg giteeatgag gategtggg eetaggaeet gageacagat eaceggacat 6360 gitgaaaaacg giteeatgag gategtggg eetaggaeet gageacagae 6540 tetaggegge tggggggit ggetgetgag gagtacegee eeteeegge geeaaattat 6480 tetaggege tggggggit ggetgetgag gagtacegga eetegeagg eeteeegge ggtgggggat 6540 tecacacac tgaegggea gaecactgaa gagtacegga ggtgggggat 6540 tecacacac tgaegggat gaecactgaa gagtacegee ggtgggggat 6600 eeegaattet teacagaag gaacactgaa aacgtaaagt gaeggteea aggteegge 6600 eeegaattet teacagaag ggatggggg eggttgeaa ggtaegetee aggtgeaaa 6600 eeegaattet teacagaagt gaacactga geggtgeaa aceateeeg ggtggggat 6720 eeecteetac gggaggagg aceacatteetg gtegggetea ateaatacet ggttgggtea 6720 eacecteeat gegageega aceatteetg gtegggetea ateaatacet ggttgggtea 6720 eageteecaat gegageega aceatteetg gtegggetea ateaatacet ggttggtea 6720 eageteecaat gegageega aceggaegaa aceggaegae aceatteetg gtegggetea etteeatget eacegaecee 6780	gaacagggaa	tgcagetege	cgaacaattc	aaacagaagg	caatcgggtt	gctgcaaaca	5460
tocactotge etggeaacce egegatagea teactgatgg catteacage etetateace 5640 ageoegetea ceacceaaca tacceteetg tttaacatee tggggggatg ggtggeegee 5700 caacttgete etecacageg tgettetget ttegtaggeg eeggeatege tggagegget 5760 gttggeagea taggeettgg gaeggtgett gtggatattt tggeaggtta tggageaggg 5820 gtgggeagge geetegtgge etttaaggte atgageggeg agatgeeete cacegaggae 5880 etggttaace tacteeetge tateetetee eetggegeee tagtegtegg ggtegtgtge 5940 geagegatae tggetegge egtgggeea ggggagggg etgtgeagtg gatgaaccgg 6000 etgatagegt tegettegg gggtaaccae ggegaagggg etgtgeagtg gatgaaccgg 6000 gaegetgeag eacgtgeae teagateete tetagetta ecateactea getgetgaag 6120 aggetteace agtggatea etgaggatge tecacgeat geteeggete gtggetaaga 6180 gatgtttggg attggatag eacggtgtg actgattea agaeetgget ecagteeag 6300 tggeggggg acggtateat geaaccace teecacgeat geteeggete gtggetaaga 6300 tggeggggg acggataat geaaccace tgeeatgtg gageacagat caceggacat 6300 tggeggggg acggateat geaaccace tgeeatgtg gageacagat caceggacat 6360 gtgaaaaaca gttecatgag gategtggg cetaggace gtagtaacac gtggcatgga 6420 acatteecea ttaacggat caceaggge ecetgacge eeteecegge geaaattat 6480 tetagggeg tgtggeggt ggetgetgag gagtacgtg aggtaacgg ggtgggggat 6540 tteeactacg tgacgggat gaceactgac aacgtaagt gagtacggg ggtgggggat 6600 ecegaattet teacagaagt gacactgac aacgtaaagt geeegtgtea ggtteeggee 6600 ecectectac gggagggat eacatteetg gtegggetea ateaatacet ggttgggtaa 6600 ecectectac gggaggaggt eacatteetg gtegggetea ateaatacet ggttgggtea 6720 eageteecat gegaggaggt aacggacga gaaggegta geagteeca ateaatacet ggttgggtea 6720 eageteecat gegaggaggat acceggacga acceggacea accegg	gccaccaagc	aageggagge	tgetgeteee	gtggtggaat	ccaagtggcg	gaccctcgaa	5520
agcecgetea ceacecaaca taccetecty titaacatee tiggggggaty ggtggeegee 5700 caactigete eteccagege tigetietiget tiegtaggeg eeggeatege tiggagegget 5760 gttggcagea taggeetigg gaeggtett gtggatatit tiggeaggtia tiggageaggg 5820 gtggeagge egetegtigg etitaaggte atgagegge agatgeete eacegaggae 5880 ctggitaace tactecetig tateetetee eetiggegee tagtegtegg ggtegitge 5940 geagegatae tiggeggea egitggeea ggggagggg etigtgagg gatgatgee 6000 etigatagegi tegetiege gggtaaceae ggegaggggg etigtgaggi gatgaacegg 6000 gaegetigeag eacigtigeae teagateete tetagetia eeateaetea getgetgaag 6120 aggeticace agtggateae teagateete tetagetia eeateaetea getgetaaga 6180 gatgittigg attggatag eacigtigtig actgatitea agaeetigget eagteeaga 6240 eteetigeege gattgeeggg agteeetie titeteatige aacgtggia eaagggate 6300 tiggegggge aeggeateat geaaaceae tigeeatigtig gageacagat eaceggaeat 6360 gtgaaaaacg giteeatiga gaeeggge eetaggaeet gtagtaacae gitgeatiga 6420 acatteecea tiaacgega gaeeggege eetaggaeet gtagtaacae gitgeatiga 6420 acatteecea tiaacgega gaeeggege eetaggaeet gtagtaacae gitgeggga 6540 teeaggee tigtggeggg geetigeggg eetaggaeet gagtaacae gitgeggga 6540 teeagaacae tigtgeggg eetaggaga 6540 teeagaacae tigtgegggit ggetgetiga gagtaegtig aggtaegge ggtggggaa 6600 eeegaattet teacagaag gaeeaetiga aacgtaaagt geeegtigea ggtteeggee 6600 eeegaattet teacagaagt gaegagggit eggttgeaea ggtaegetee agegtgeaaa 6600 eeecteetae gggaggggit eacatteetig gtegggetea ateaataeet ggttiggtea 6720 eageteeeat gegagggag aeegageaa aeeggaeeta geagateee aeegageeee 6720 eageteeeat gegaggggat aeegateeta geaggeeea aeegageeea aeegageeea aeegageeea eeteeeatee eteeeatee 6780	gccttctggg	cgaagcatat	gtggaatttc	atcagcggga	tacaatattt	agcaggcttg	5580
caacttgctc ctcccagege tgettetget ttegtaggeg eeggeatege tggagegget 5760 gttggeagea taggeettgg gaeggtgett gtggatattt tggeaggtta tggageaggg 5820 gtgggeagge egetegtgge etttaaggte atgageggeg agatgeete eacegaggae 5880 etggttaace tactccetge tateetetee eetggegeee tagtegtegg ggtegtgtge 5940 geagegatae tgggtegge eggtggeea gggggaggggg etgtgeagtg gatgaacegg 6000 etgatagegt tegettegeg gggtaaceae gteteeceea egeaetatgt geetgaagae 6060 gaegetgeag eacgtgteae teagateete tetagtetta eeateaatea getgetgaag 6120 aggetteaee agtggateae teagateete tetagtetta eeateaetea getgetgaag 6180 gatgtttggg attggatatg eacggtgttg actgattea agaeetgget eeagteeaag 6240 eteetgeeg gattgeeggg agteeette tteteatgte aacgtgggta eaagggagte 6300 tggeggggg aeggeateat geaaaceaee tgeeeatgtg gageaeagat eaceggaeat 6360 gtgaaaaaeg gtteeatgag gategtggg eetaggaeet gtagtaacae gtggeatgaa 6420 acatteecea ttaaegegta eaceaeggge eetaggaeet gtagtaaeae gtggeatga 6420 acatteecea ttaaegegta eaceaeggge eetaggaeet gtagtaaeae gtggeggga 6540 teteaggege tgtggegggt ggetgetgag gagtaegtgg aggttaegeg ggtgggggat 6540 teteaggege tgtggegggt ggetgetgag gagtaegtgg aggttaegeg ggtgggggat 6540 teteactaeg tgaegggat gaecaetgae aacgtaaagt gecegtgtea ggtteeggee 6600 eeegaattet teaeagaagt ggatggggt eggttgeaea ggtaegetee agegtgeaaa 6660 eeegaattet teaeagaagt ggatggggt eggtggeetea ateaataeet ggttgggtea 6720 eageteeeat gegaggegaa aeeggaegaa aeeggaegta geagtgeeea aeeggaegte 6720 eageteeeat gegaggeega aeeggaegaa aeeggaegta geagtgeeea etteeatget eacegaeee 6780	tccactctgc	ctggcaaccc	cgcgatagca	tcactgatgg	cattcacage	ctctatcacc	5640
gttggcagca taggcettgg gaeggtgett gtggatattt tggcaggtta tggagcaggg 5820 gtggcaggcg egetegtgge etttaaggte atgagegge agatgecete caeeggagae 5880 etggttaace taeteeetge tateetetee eetggegeee tagtegtegg ggtegtgtge 5940 geagegatae tggetgegea egtgggeeea ggggaggggg etgtgeagtg gatgaacegg 6000 etgatagegt tegettegeg gggtaaceae gteteeceea egeaetatgt geetgagage 6060 gaegetgeag eaegtgteae teagateete tetagtetta eeateaetea getgetgaag 6120 aggetteace agtggateaa egaggaetge teeaegeeat geteeggete gtggetaaga 6180 gatgtttggg attggatatg eaegggttg actgattea agaeetgget eeaggeete gattgeegg agteeette tteteatgte aaegtgggta eaaggaggte 6300 tggeggggg aeggeateat geaaaceae tgeeeatgtg gagcacagat eaegggagte 6300 tggeggggge aeggeateat geaaaceaec tgeeeatgtg gagcacagat eaegggagte 6300 gtgaaaaaeg gtteeatgag gategtgggg eetaggaeet gtagtaacae gtggeatgga 6420 acatteecea ttaaegggta eaecacggge eetaggaeet gtagtaacae gtggeatgga 6420 acatteecea ttaaegggta gaeeagtggag gagtaegtgg aggttaegeg ggtgggggat 6540 teeaggege tgtggegggt ggetgetgaa gagtaegtgg aggttaegeg ggtgggggat 6540 teeagaage tgaeggggat gaeeaetgae aaegtaaagt geeegtgtea ggtteeggee 6600 eeegaattet teaeagaagt ggatggggt eggttgeaea ggtaegetee agegtgeaaa 6660 eeeeteetae gggaggaggt eaeatteetg gtegggetea ateaataeet ggttgggtea 6720 eageteecat gegageega aeeggaegta geagtgetea geagtgetea etteeatget eaeegaeeec 6780	agcccgctca	ccacccaaca	taccctcctg	tttaacatcc	tggggggatg	ggtggccgcc	5700
gtggcaggcg cgctcgtggc ctttaaggtc atgagcggcg agatgccctc caccgaggac 5880 ctggttaacc tactccctgc tatcctctcc cctggcgccc tagtcgtcgg ggtcgtgtgc 5940 gcagcgatac tgcgtcggca cgtgggccca ggggaggggg ctgtgcagtg gatgaaccgg 6000 ctgatagcgt tcgcttcgcg gggtaaccac gtctccccca cgcactatgt gcctgagagc 6000 gacgctgcag cacgtgtcac tcagatcctc tctagtctta ccatcactca gctgctgaag 6120 aggcttcacc agtggatcaa cgaggactgc tccacgccat gctccggctc gtggctaaga 6180 gatgtttggg attggatatg cacggtgttg actgattca agacctggct ccagtccaag 6240 ctcctgccgc gattgccggg agtccccttc ttctcatgtc aacgtgggta caagggagtc 6300 tggcggggg acggcatcat gcaaaccacc tgcccatgtg gagcacagat caccggacat 6360 gtgaaaaacg gttccatgag gatcgtgggc cctaggacct gtagtaacac gtggcatgga 6420 acattcccca ttaacgcgta caccacgggc cctaggacct gtagtaacac gtggcatgga 6440 tccactacg tgagcgggt ggctgctgag gagtacgtgg aggttacgcg ggtgggggat 6540 ttccactacg tgacgggat gaccactgac aacgtaaagt gcccgtgtca ggttccggc 6600 cccgaattet tcacagaagt ggatggggt cggttgcaca ggtacgctcc agcgtgcaa 6600 cccctcctac gggaggaggt cacattcctg gtcgggctca atcaatacct ggttgggtca 6720 cagctcccat gcgagccga accggacga accggacga accggacgac accattcctg gtcgggctca atcaatacct ggttgggtca 6780	caacttgctc	ctcccagege	tgettetget	ttcgtaggcg	eeggeatege	tggagegget	5760
ctggttaacc tactccctgc tatcctctcc cctggcgccc tagtcgtcgg ggtcgtgtgc 5940 gcagcgatac tgcgtcggca cgtgggccca ggggaggggg ctgtgcagtg gatgaaccgg 6000 ctgatagcgt tcgcttcgcg gggtaaccac gtctccccca cgcactatgt gcctgagagc 6060 gacgctgcag cacgtgtcac tcagatectc tctagtctta ccatcactca gctgctgaag 6120 aggcttcacc agtggatcaa cgaggactgc tccacgccat gctccggctc gtggctaaga 6180 gatgtttggg attggatatg cacgggtttg actgattca agacctggct ccagtccaag 6240 ctcctgccgc gattgccggg agtccccttc ttctcatgtc aacgtgggta caagggagtc 6300 tggcggggcg acggcatcat gcaaaccacc tgcccatgtg gagcacagat caccggacat 6360 gtgaaaaacg gttccatgag gatcgtgggg cctaggacct gtagtaacac gtggcatgga 6420 acattccca ttaacggat caccacgggc ccctgcacgc cctccccggc gccaaattat 6480 tctagggcgc tgtggcggt ggctgctgag gagtacgtgg aggttacgcg ggtgggggat 6540 ttccactacg tgacgggcat gaccactgac aacgtaaagt gcccgtgtca ggttccggcc 6600 cccgaattet tcacagaagt ggatggggtg cggttgcaca ggtacgctcc agcgtgcaaa 6660 cccctcctac gggaggaggt cacattcctg gtcgggcta accatcact ggtggggcta accatcact gcaggccca accatcact gcaggcccact accatcact gcaggcccactact gcaggcccactact gcaggcccactactactact gcaggcccactactactactactactactactactactactacta	gttggcagca	taggcettgg	gaeggtgett	gtggatattt	tggcaggtta	tggagcaggg	5820
geagegatac tgegteggea egtgggeeca ggggaggggg etgtgeagtg gatgaacegg 6000 etgatagegt tegettegeg gggtaaceae gtetececea egeactatgt geetgagage 6060 gaegetgeag caegtgteae teagateete tetagtetta ecateaetea getgetgaag 6120 aggetteaee agtggateaa egaggaetge teeaegeeat geteeggete gtggetaaga 6180 gatgtttggg attggatatg caegtgttg actgattea agaeetgget eeagteeaag 6240 eteetgeege gattgeeggg agteecette tteteatgte aaegtgggta eaagggagte 6300 tggegggggg aeggeateat geaaaceaee tgeecatgtg gageacagat eaegggagte 6300 gtgaaaaaeg gtteeatgag gategtgggg eetaggaeet gtagtaaeae gtggeatgga 6420 aeatteecea ttaaegggta eaecaeggge eeetgeaege eeteecegge geeaaattat 6480 teeagggege tgtggegggt ggetgetgag gagtaegtgg aggttaeggg ggtgggggat 6540 tteeaetaeg tgaegggat gaeeaetgae aaegtaaagt geeegtgtea ggtteeggee 6600 eeegaattet teaeagaagt ggatggggtg eggttgeaea ggtaegetee agegtgeaaa 6660 eeeeteetae gggaggaggt eaeatteetg gtegggetea ateaataeet ggttgggtea 6720 eageteeeat gegageeega aeeggaegta geagtgetea etteeatget eaeegaeeee 6780	gtggcaggcg	cgctcgtggc	ctttaaggtc	atgageggeg	agatgecete	caccgaggac	5880
ctgatagegt tegettegeg gggtaaceae gteteeceea egeactatgt geetgagage 6060 gaegetgeag caegtgteae teagateete tetagtetta eeateaetea getgetgaag 6120 aggetteaee agtggateaa egaggaetge teeaegeeat geteeggete gtggetaaga 6180 gatgtttggg attggatatg eaegggtgtg actgattea agaeetgget eeagteeaag 6240 eteetgeege gattgeeggg agteeeette tteteatgte aaegtgggta eaagggagte 6300 tggeggggeg aeggeateat geaaaceaee tgeeeatgtg gageacagat eaeeggaeat 6360 gtgaaaaaeg gtteeatgag gategtgggg eetaggaeet gtagtaacae gtggeatgga 6420 acatteeea ttaacgegta eaceaeggge eeetgeaege eeteeeegge geeaaattat 6480 tetagggege tgtggegggt ggetgetgag gagtaegtgg aggttaegeg ggtgggggat 6540 tteeaetaeg tgaegggat gaeeaetgae aaegtaaagt geeegtgtea ggtteeggee 6600 eeegaattet teaeagaagt ggatggggt eggttgeaea ggtaegetee agegtgeaaa 6660 eeeeteetae gggaggaggt eaeatteetg gtegggetea ateaataeet ggttgggtea 6720 eageteeeat gegageeega aeeggaegta geagtgetea etteeatget eaeegaeeee 6780	ctggttaacc	tactccctgc	tatectetee	cctggcgccc	tagtcgtcgg	ggtcgtgtgc	5940
gaegetgeag caegtgteae teagateete tetagtetta eeateaetea getgetgaag 6120 aggetteaee agtggateaa egaggaetge teeaegeeat geteeggete gtggetaaga 6180 gatgtttggg attggatatg caeggtgttg aetgatttea agaeetgget eeagteeaag 6240 eteetgeege gattgeeggg agteeeette tteteatgte aaegtgggta eaagggagte 6300 tggeggggeg aeggeateat geaaaceaee tgeeeatgtg gageacagat eaceggaeat 6360 gtgaaaaaeg gtteeatgag gategtgggg eetaggaeet gtagtaacae gtggeatgga 6420 acatteeea ttaaegegta eaceaeggge eeetgeaege eeteeeegge geeaaattat 6480 tetagggege tgtggeggt ggetgetgag gagtaegtgg aggttaegeg ggtgggggat 6540 tteeaetaeg tgaegggeat gaeeaetgae aaegtaaagt geeegtgtea ggtteeggee 6600 eeegaattet teaeagaagt ggatggggtg eggttgeaea ggtaegetee agegtgeaaa 6660 eeeeteetae gggaggaggt eacatteetg gtegggetea ateaataeet ggttgggtea 6720 eageteeeat gegageega aeeggaegta geagtgetea etteeatget eacegaeeee 6780	gcagcgatac	tgcgtcggca	cgtgggccca	ggggaggggg	ctgtgcagtg	gatgaaccgg	6000
aggettcace agtggatcaa egaggactge tecaegecat geteeggete gtggetaaga 6180 gatgtttggg attggatatg caeggtgttg actgatttea agaeetgget eeagteeaag 6240 eteetgeege gattgeeggg agteeeette tteteatgte aaegtgggta eaagggagte 6300 tggeggggeg aeggeateat geaaaceaee tgeeeatgtg gageaeagat eaceggaeat 6360 gtgaaaaaeg gtteeatgag gategtgggg eetaggaeet gtagtaaeae gtggeatgga 6420 acatteeea ttaaegegta eaceaeggge eeetgeaege eeteeeegge geeaaattat 6480 tetagggege tgtggeggt ggetgetgag gagtaegtgg aggttaegeg ggtgggggat 6540 tteeaetaeg tgaeeggeat gaeeaetgae aaegtaaagt geeegtgtea ggtteeggee 6600 eeegaattet teaeagaagt ggatggggt eggttgeaea ggtaegetee agegtgeaaa 6660 eeeeteetae gggaggaggt eacatteetg gtegggetea ateaataeet ggttgggtea 6720 eageteeeat gegageega aeeggaegta geagtgetea etteeatget eacegaeeee 6780	ctgatagcgt	tegettegeg	gggtaaccac	gtctccccca	cgcactatgt	gcctgagagc	6060
gatgtttggg attggatatg cacggtgttg actgatttca agacctggct ccagtccaag 6240 ctcctgccgc gattgccggg agtccccttc ttctcatgtc aacgtgggta caagggagtc 6300 tggcggggcg acggcatcat gcaaaccacc tgcccatgtg gagcacagat caccggacat 6360 gtgaaaaacg gttccatgag gatcgtgggg cctaggacct gtagtaacac gtggcatgga 6420 acattcccca ttaacgcgta caccacgggc ccctgcacgc cctccccggc gccaaattat 6480 tctagggcgc tgtggcgggt ggctgctgag gagtacgtgg aggttacgcg ggtgggggat 6540 ttccactacg tgacgggcat gaccactgac aacgtaaagt gcccgtgtca ggttccggcc 6600 cccgaattet tcacagaagt ggatggggt cggttgcaca ggtacgctcc agcgtgcaaa 6660 cccctcctac gggaggaggt cacattcctg gtcgggctca atcaatacct ggttgggtca 6720 cagctcccat gcgagccga accggacgta geagtgctca cttccatgct caccgacccc 6780	gacgetgeag	cacgtgtcac	tcagatecte	tctagtctta	ccatcactca	gctgctgaag	6120
ctcctgccgc gattgccggg agteccette tteteatgte aacgtgggta caagggagte 6300 tggcggggcg acggcateat gcaaaceaec tgcccatgtg gagcacagat caceggacat 6360 gtgaaaaacg gttccatgag gatcgtgggg cetaggacet gtagtaacac gtggcatgga 6420 acatteccca ttaacgcgta caceaeggge ecetgcacge ecteceegge gccaaattat 6480 tetagggege tgtggcgggt ggctgctgag gagtacgtgg aggttacgeg ggtgggggat 6540 ttccactacg tgacgggcat gaceaetgae aacgtaaagt gecegtgtea ggttecggee 6600 ecegaattet teacagaagt ggatggggtg eggttgcaca ggtacgetee agegtgcaaa 6660 ecectectae gggaggaggt cacattectg gtegggetea ateaatacet ggttgggtca 6720 eageteecat gegagecega aceggacgta geagtgetea ettecatget cacegacece 6780	aggetteace	agtggatcaa	cgaggactgc	tccacgccat	gctccggctc	gtggctaaga	6180
tggcgggggg acggcatcat gcaaaccacc tgcccatgtg gagcacagat caccggacat 6360 gtgaaaaacg gttccatgag gatcgtgggg cetaggacct gtagtaacac gtggcatgga 6420 acattcccca ttaacgcgta caccacgggc ccctgcacgc cctccccggc gccaaattat 6480 tctagggcgc tgtggcgggt ggctgctgag gagtacgtgg aggttacgcg ggtgggggat 6540 ttccactacg tgacgggcat gaccactgac aacgtaaagt gcccgtgtca ggttccggcc 6600 cccgaattet tcacagaagt ggatggggtg cggttgcaca ggtacgctcc agcgtgcaaa 6660 cccctcctac gggaggaggt cacattcctg gtcgggctca atcaatacct ggttgggtca 6720 cagctcccat gcgagcccga accggacgta gcagtgctca cttccatgct caccgacccc 6780	gatgtttggg	attggatatg	cacggtgttg	actgatttca	agacctggct	ccagtccaag	6240
gtgaaaaacg gttccatgag gatcgtgggg cetaggacct gtagtaacac gtggcatgga 6420 acattcccca ttaacgcgta caccacgggc ccctgcacgc cctccccggc gccaaattat 6480 tctagggcgc tgtggcgggt ggctgctgag gagtacgtgg aggttacgcg ggtgggggat 6540 ttccactacg tgacgggcat gaccactgac aacgtaaagt gcccgtgtca ggttccggcc 6600 cccgaattet tcacagaagt ggatggggtg cggttgcaca ggtacgctcc agcgtgcaaa 6660 cccctcctac gggaggaggt cacattcctg gtcgggctca atcaatacct ggttgggtca 6720 cagctcccat gcgagccga accggacgta gcagtgctca cttccatgct caccgacccc 6780	ctcctgccgc	gattgccggg	agteceette	ttctcatgtc	aacgtgggta	caagggagtc	6300
acatteccca ttaacgegta caccaeggge ecetgcaege ceteceegge gecaaattat 6480 tetagggege tgtggeggt ggetgetgag gagtaegtgg aggttaegeg ggtgggggat 6540 ttecaetaeg tgaegggeat gaccaetgae aacgtaaagt gecegtgtea ggtteeggee 6600 ecegaattet teacagaagt ggatggggtg eggttgeaca ggtaegetee agegtgeaaa 6660 eceeteetae gggaggaggt eacatteetg gtegggetea ateaataeet ggttgggtea 6720 eageteecat gegageeega aceggaegta geagtgetea etteeatget eacegaeeee 6780	tggcggggcg	acggcatcat	gcaaaccacc	tgcccatgtg	gagcacagat	caceggaeat	6360
totaggege tgtggeggt ggetgetgag gagtaegtgg aggttaegeg ggtgggggat 6540 tteeactaeg tgaegggeat gaceaetgae aaegtaaagt geeegtgtea ggtteeggee 6600 eegaattet teacagaagt ggatggggtg eggttgeaca ggtaegetee agegtgeaaa 6660 eeeeteetae gggaggaggt eaeatteetg gtegggetea ateaataeet ggttgggtea 6720 eageteecat gegageeega aeeggaegta geagtgetea etteeatget eaeegaeeee 6780	gtgaaaaacg	gttccatgag	gatcgtgggg	cctaggacct	gtagtaacac	gtggcatgga	6420
ttecactacg tgacggcat gaccactgae aacgtaaagt gecegtgtea ggtteeggee 6600 eeegaattet teacagaagt ggatggggtg eggttgcaca ggtacgetee agegtgcaaa 6660 eeecteetae gggaggaggt eacatteetg gtegggetea ateaatacet ggttgggtea 6720 eageteecat gegageeega aceggaegta geagtgetea etteeatget eacegaeeee 6780	acattcccca	ttaacgcgta	caccacgggc	ccctgcacgc	cctccccggc	gccaaattat	6480
cccgaattet teacagaagt ggatggggtg eggttgeaca ggtaegetee agegtgeaaa 6660 ecceteetae gggaggaggt eacatteetg gtegggetea ateaatacet ggttgggtea 6720 eageteecat gegageeega aceggaegta geagtgetea etteeatget eacegaeeee 6780	tetagggege	tgtggcgggt	ggctgctgag	gagtacgtgg	aggttacgcg	ggtgggggat	6540
coectectac gggaggaggt cacattectg gtegggetea ateaatacet ggttgggtea 6720 cageteecat gegageeega aceggaegta geagtgetea etteeatget cacegaeeee 6780	ttccactacg	tgacgggcat	gaccactgac	aacgtaaagt	gcccgtgtca	ggtteeggee	6600
cageteecat gegageeega aceggaegta geagtgetea etteeatget caeegaeeee 6780	cccgaattct	tcacagaagt	ggatggggtg	cggttgcaca	ggtacgctcc	agcgtgcaaa	6660
	cccctcctac	gggaggaggt	cacattectg	gtcgggctca	atcaatacct	ggttgggtca	6720
tcccacatta cggcggagac ggctaagcgt aggctggcca ggggatetec cccetecttg 6840	cageteecat	gegagecega	accggacgta	gcagtgctca	cttccatgct	cacegacece	6780
	tcccacatta	cggcggagac	ggetaagegt	aggetggeca	ggggatetee	cccctccttg	6840

gccagctcat	cagetageea	getgtetgeg	ccttccttga	aggcaacatg	cactacccgt	6900
catgactccc	cggacgctga	cctcatcgag	gccaacctcc	tgtggcggca	ggagatgggc	6960
gggaacatca	cccgcgtgga	gtcagaaaat	aaggtagtaa	ttttggactc	tttcgagccg	7020
ctccaagcgg	aggaggatga	gagggaagta	teegtteegg	cggagatcct	gcggaggtcc	7080
aggaaattcc	ctcgagcgat	gcccatatgg	gcacgcccgg	attacaaccc	tccactgtta	7140
gagtcctgga	aggacccgga	ctacgtccct	ccagtggtac	acgggtgtcc	attgccgcct	7200
gccaaggccc	ctccgatacc	acctccacgg	aggaagagga	cggttgtcct	gtcagaatct	7260
accgtgtctt	ctgccttggc	ggagetegee	acaaagacct	teggeagete	cgaatcgtcg	7320
gccgtcgaca	geggeaegge	aacggcctct	cctgaccagc	cctccgacga	cggcgacgcg	7380
ggatccgacg	ttgagtcgta	ctcctccatg	ccccccttg	agggggagcc	gggggatccc	7440
gateteageg	acgggtcttg	gtctaccgta	agegaggage	ttaaggctag	tgaggacgtc	7500
gtctgctgct	cgatgtccta	cacatggaca	ggcgccctga	tcacgccatg	cgctgcggag	7560
gaaaccaagc	tgcccatcaa	tgcactgagc	aactctttgc	tccgtcacca	caacttggtc	7620
tatgctacaa	catctcgcag	cgcaagcctg	cggcagaaga	aggtcacctt	tgacagactg	7680
caggtectgg	acgaccacta	cegggacgtg	ctcaaggaga	tgaaggcgaa	ggcgtccaca	7740
gttaaggeta	aacttctatc	cgtggaggaa	gcctgtaagc	tgacgccccc	acattcggcc	7800
agatctaaat	ttggctatgg	ggcaaaggac	gtccggaacc	tatccagcaa	ggccgttaac	7860
cacatccgct	ccgtgtggaa	ggacttgctg	gaagacactg	agacaccaat	tgacaccacc	7920
atcatggcaa	aaaatgaggt	tttctgcgtc	caaccagaga	aggggggccg	caagccagct	7980
cgccttatcg	tatteceaga	tttgggggtt	cgtgtgtgcg	agaaaatggc	cctttacgat	8040
gtggtctcca	ecetecetea	ggccgtgatg	ggctcttcat	acggattcca	atactctcct	8100
ggacagcggg	tegagtteet	ggtgaatgcc	tggaaagcga	agaaatgccc	tatgggcttc	8160
gcatatgaca	cccgctgttt	tgactcaacg	gtcactgaga	atgacatccg	tgttgaggag	8220
tcaatctacc	aatgttgtga	cttggccccc	gaagccagac	aggccataag	gtcgctcaca	8280
gageggettt	acateggggg	cecectgact	aattctaaag	ggcagaactg	eggetatege	8340
cggtgccgcg	cgagcggtgt	actgacgacc	agetgeggta	atacceteae	atgttacttg	8400
aaggccgctg	cggcctgtcg	agetgegaag	ctccaggact	gcacgatgct	cgtatgcgga	8460
gacgaccttg	tegttatetg	tgaaagcgcg	gggacccaag	aggacgaggc	gagectaegg	8520
gccttcacgg	aggetatgae	tagatactct	gccccccctg	gggacccgcc	caaaccagaa	8580
tacgacttgg	agttgataac	atcatgetee	tccaatgtgt	cagtegegea	cgatgcatct	8640
ggcaaaaggg	tgtactatct	cacccgtgac	cccaccaccc	cccttgcgcg	ggctgcgtgg	8700

gagacagcta	gacacactcc	agtcaattcc	tggctaggca	acatcatcat	gtatgcgccc	8760
accttgtggg	caaggatgat	cctgatgact	catttcttct	ccatccttct	agctcaggaa	8820
caacttgaaa	aagccctaga	ttgtcagatc	tacggggcct	gttactccat	tgagccactt	8880
gacctacctc	agatcattca	acgactccat	ggccttagcg	cattttcact	ccatagttac	8940
tctccaggtg	agatcaatag	ggtggcttca	tgcctcagga	aacttggggt	accgcccttg	9000
cgagtctgga	gacateggge	cagaagtgtc	cgcgctaggc	tactgtccca	ggggggagg	9060
gctgccactt	gtggcaagta	cctcttcaac	tgggcagtaa	ggaccaagct	caaactcact	9120
ccaatcccgg	ctgcgtccca	gttggattta	tccagctggt	tegttgetgg	ttacagcggg	9180
ggagacatat	atcacageet	gtctcgtgcc	cgaccccgct	ggttcatgtg	gtgcctactc	9240
ctactttctg	taggggtagg	catctatcta	ctccccaacc	gatgacttaa	gacggggagc	9300
taaacactcc	aggccaatag	gccatcctgt	ttttttccct	tttttttt	ctttttttt	9360
tttttttt	tttttttt	tttttctcct	tttttttcc	tcttttttc	cttttctttc	9420
ctttggtggc	tccatcttag	ccctagtcac	ggctagctgt	gaaaggtccg	tgagccgctt	9480
gactgcagag	agtgctgata	ctggcctctc	tgcagatcaa	gtctagaaag	tccctttagt	9540
gagggttaat	tcaattcttg	aagacgaaag	ggcctcgtga	tacgcctatt	tttataggtt	9600
aatgtcatga	taataatggt	ttcttagacg	tcaggtggca	cttttcgggg	aaatgtgcgc	9660
ggaaccccta	tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	9720
taaccctgat	aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	9780
cgtgtcgccc	ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	tcacccagaa	9840
acgctggtga	aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	9900
ctggatctca	acagcggtaa	gatccttgag	agttttcgcc	ccgaagaacg	ttttccaatg	9960
atgagcactt	ttaaagttct	gctatgtggc	gcggtattat	cccgtgttga	cgccgggcaa	10020
gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tggttgagta	ctcaccagtc	10080
acagaaaagc	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	10140
atgagtgata	acactgcggc	caacttactt	ctgacaacga	tcggaggacc	gaaggagcta	10200
accgcttttt	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	10260
ctgaatgaag	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgcagc	aatggcaaca	10320
acgttgcgca	aactattaac	tggcgaacta	cttactctag	cttcccggca	acaattaata	10380
gactggatgg	aggeggataa	agttgcagga	ccacttctgc	gctcggccct	tccggctggc	10440
tggtttattg	ctgataaatc	tggagccggt	gagcgtgggt	ctcgcggtat	cattgcagca	10500

ctggggccag	atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	10560
actatggatg	aacgaaatag	acagatcgct	gagataggtg	cctcactgat	taagcattgg	10620
taactgtcag	accaagttta	ctcatatata	ctttagattg	atttaaaact	tcatttttaa	10680
tttaaaagga	tctaggtgaa	gatccttttt	gataatctca	tgaccaaaat	cccttaacgt	10740
gagttttcgt	tecactgage	gtcagacccc	gtagaaaaga	tcaaaggatc	ttcttgagat	10800
ccttttttc	tgcgcgtaat	ctgctgcttg	caaacaaaaa	aaccaccgct	accageggtg	10860
gtttgtttgc	cggatcaaga	gctaccaact	ctttttccga	aggtaactgg	cttcagcaga	10920
gcgcagatac	caaatactgt	ccttctagtg	tagccgtagt	taggccacca	cttcaagaac	10980
tctgtagcac	cgcctacata	cctcgctctg	ctaatcctgt	taccagtggc	tgctgccagt	11040
ggcgataagt	cgtgtcttac	egggttggac	tcaagacgat	agttaccgga	taaggegeag	11100
eggteggget	gaacgggggg	ttegtgeaca	cageceaget	tggagcgaac	gacetacace	11160
gaactgagat	acctacagcg	tgagctatga	gaaagcgcca	cgcttcccga	agggagaaag	11220
gcggacaggt	atccggtaag	cggcagggtc	ggaacaggag	agcgcacgag	ggagetteca	11280
gggggaaacg	cctggtatct	ttatagtcct	gtcgggtttc	gecacetetg	acttgagcgt	11340
cgatttttgt	gatgctcgtc	aggggggcgg	agcctatgga	aaaacgccag	caacgeggee	11400
tttttacggt	tectggcett	ttgctggcct	tttgctcaca	tgttctttcc	tgcgttatcc	11460
cctgattctg	tggataaccg	tattaccgcc	tttgagtgag	ctgataccgc	togoogoago	11520
cgaacgaccg	agcgcagcga	gtcagtgagc	gaggaagcgg	aagagcgcct	gatgcggtat	11580
tttctcctta	cgcatctgtg	cggtatttca	caccgcatat	ggtgcactct	cagtacaatc	11640
tgctctgatg	cegeatagtt	aagccagtat	acactecget	atcgctacgt	gactgggtca	11700
tggctgcgcc	ccgacacccg	ccaacacccg	ctgacgcgcc	ctgacgggct	tgtctgctcc	11760
cggcatccgc	ttacagacaa	gctgtgaccg	tctccgggag	ctgcatgtgt	cagaggtttt	11820
caccgtcatc	accgaaacgc	gcgaggcagc	tgcggtaaag	ctcatcagcg	tggtcgtgaa	11880
gcgattcaca	gatgtctgcc	tgttcatccg	cgtccagctc	gttgagtttc	tccagaagcg	11940
ttaatgtctg	gcttctgata	aagcgggcca	tgttaagggc	ggttttttcc	tgtttggtca	12000
ctgatgcctc	cgtgtaaggg	ggatttctgt	tcatgggggt	aatgataccg	atgaaacgag	12060
agaggatgct	cacgatacgg	gttactgatg	atgaacatgc	ccggttactg	gaacgttgtg	12120
agggtaaaca	actggcggta	tggatgcggc	gggaccagag	aaaaatcact	cagggtcaat	12180
gccagcgctt	cgttaataca	gatgtaggtg	ttccacaggg	tagecageag	catcctgcga	12240
tgcagatccg	gaacataatg	gtgcagggcg	ctgacttccg	cgtttccaga	ctttacgaaa	12300
cacggaaacc	gaagaccatt	catgttgttg	ctcaggtcgc	agacgttttg	cagcagcagt	12360

egetteaegt tegetegegt ateggtgatt cattetgeta accagtaagg caaccecgee 12420 ageetageeg ggteeteaac gacaggagea egateatgeg caccegtgge eaggaceeaa 12480 egetgeeega gatgegeege gtgeggetge tggagatgge ggacgegatg gatatgttet 12540 geeaagetaa getgeetgea ggtaatacga etcactata 12579

5

<210> 27 <211> 12579 <212> ADN

<213> Virus de la hepatitis C

<400> 27

gccagccccc gattgggggc gacactccac catagatcac tcccctgtga ggaactactg 60 120 tettcacgca gaaagcgtct agccatggcg ttagtatgag tgtcgtgcag cctccaggac cececetece gggagageea tagtggtetg eggaaceggt gagtaeaeeg gaattgeeag 180 240 gacgaccggg tectttettg gateaacccg etcaatgeet ggagatttgg gegtgeecce 300 gegagaetge tageegagta gtgttgggte gegaaaggee ttgtggtaet geetgatagg 360 gtgcttgcga gtgccccggg aggtctcgta gaccgtgcac cgtttaaacc cccgtgctgc tggaagtega tttcaggett agggtaaceg tggaeetega aaacagaege acaaaaceaa 420 gttcaataga agggggtaca aaccagtace accaegaaca agcaettetg tttceceggt 480 gatgtogtat agactgottg ogtggttgaa agogaoggat oogttatoog ottatgtact 540 tegagaagee cagtaceace teggaatett egatgegttg egeteageac teaaceceag 600 660 agtgtagett aggetgatga gtetggaeat eeeteacegg tgaeggtggt ceaggetgeg 720 ttggcggcct acctatggct aacgccatgg gacgctagtt gtgaacaagg tgtgaagagc 780 ctattgaget acataagaat ceteeggeee etgaatgegg etaateeeaa eeteggagea ggtggtcaca aaccagtgat tggcctgtcg taacgcgcaa gtccgtggcg gaaccgacta 840 ctttgggtgt ccgtgtttcc ttttatttta ttgtggctgc ttatggtgac aatcacagat 900 960 tgttatcata aagogaattg gattggccat coggtgaaag tgagactcat tatctatctg tttgctggat ccgctccatt gagtgtgttt actctaagta caatttcaac agttatttca 1020 atcagacaat tgtatcataa tggcgggccc agaagacgcc aaaaacataa agaaaggccc 1080 1140 ggogocatto tatocactag aggatggaac cgctggagag caactgcata aggctatgaa 1200 gagatacgcc ctggttcctg gaacaattgc ttttacagat gcacatatcg aggtgaacat cacgtacgcg gaatacttcg aaatgtccgt tcggttggca gaagctatga aacgatatgg 1260 1320 gotgaatada aatdadagaa togtogtatg dagtgaaaad totottdaat totttatgod 1380 ggtgttgggc gcgttattta tcggagttgc agttgcgccc gcgaacgaca tttataatga

acgtgaattg	ctcaacagta	tgaacatttc	gcagcctacc	gtagtgtttg	tttccaaaaa	1440
ggggttgcaa	aaaattttga	acgtgcaaaa	aaaattacca	ataatccaga	aaattattat	1500
catggattct	aaaacggatt	accagggatt	tcagtcgatg	tacacgttcg	tcacatctca	1560
tctacctccc	ggttttaatg	aatacgattt	tgtaccagag	tcctttgatc	gtgacaaaac	1620
aattgcactg	ataatgaatt	cctctggatc	tactgggtta	cctaagggtg	tggcccttcc	1680
gcatagaact	gcctgcgtca	gattctcgca	tgccagagat	cctatttttg	gcaatcaaat	1740
cattccggat	actgcgattt	taagtgttgt	tccattccat	cacggttttg	gaatgtttac	1800
tacactcgga	tatttgatat	gtggatttcg	agtcgtctta	atgtatagat	ttgaagaaga	1860
gctgttttta	cgatcccttc	aggattacaa	aattcaaagt	gegttgetag	taccaaccct	1 9 20
attttcattc	ttcgccaaaa	gcactctgat	tgacaaatac	gatttatcta	atttacacga	1980
aattgcttct	gggggcgcac	ctctttcgaa	agaagtcggg	gaagcggttg	caaaacgctt	2040
ccatcttcca	gggatacgac	aaggatatgg	gctcactgag	actacatcag	ctattctgat	2100
tacacccgag	ggggatgata	aaccgggcgc	ggtcggtaaa	gttgttccat	tttttgaagc	2160
gaaggttgtg	gatctggata	ccgggaaaac	gctgggcgtt	aatcagagag	gcgaattatg	2220
tgtcagagga	cctatgatta	tgtccggtta	tgtaaacaat	ceggaagega	ccaacgcctt	2280
gattgacaag	gatggatggc	tacattctgg	agacatagct	tactgggacg	aagacgaaca	2340
cttcttcata	gttgaccgct	tgaagtcttt	aattaaatac	aaaggatatc	aggtggcccc	2400
cgctgaattg	gaatcgatat	tgttacaaca	ccccaacatc	ttcgacgcgg	gcgtggcagg	2460
tetteeegae	gatgacgccg	gtgaacttcc	cgccgccgtt	gttgttttgg	agcacggaaa	2520
gacgatgacg	gaaaaagaga	tcgtggatta	cgtcgccagt	caagtaacaa	ccgcgaaaaa	2580
gttgcgcgga	ggagttgtgt	ttgtggacga	agtaccgaaa	ggtcttaccg	gaaaactcga	2640
cgcaagaaaa	atcagagaga	tcctcataaa	ggccaagaag	ggcggaaagt	ccaaattgta	2700
ageggeegeg	ttgttaaaca	gaccacaacg	gtttccctct	agegggatea	attecgcece	2760
cccccctaa	cgttactggc	cgaagecget	tggaataagg	ceggtgtgeg	tttgtctata	2820
tgttattttc	caccatattg	ccgtcttttg	gcaatgtgag	ggcccggaaa	cctggccctg	2880
tettettgae	gagcattcct	aggggtcttt	ecectetege	caaaggaatg	caaggtctgt	2940
tgaatgtcgt	gaaggaagca	gttcctctgg	aagcttcttg	aagacaaaca	acgtctgtag	3000
cgaccctttg	caggcagcgg	aaccccccac	ctggcgacag	gtgcctctgc	ggccaaaagc	3060
cacgtgtata	agatacacct	gcaaaggcgg	cacaacccca	gtgccacgtt	gtgagttgga	3120
tagttgtgga	aagagtcaaa	tggctctcct	caagcgtatt	caacaagggg	ctgaaggatg	3180

cccagaaggt	accccattgt	atgggatctg	atctggggcc	tcggtgcaca	tgctttacat	3240
gtgtttagtc	gaggttaaaa	aaacgtctag	gccccccgaa	ccacggggac	gtggttttcc	3300
tttgaaaaac	acgataatac	catggegeet	attacggcct	acteceaaca	gacgegagge	3360
ctacttggct	gcatcatcac	tagectcaca	ggccgggaca	ggaaccaggt	cgaggggag	3420
gtccaagtgg	tetecacege	aacacaatct	ttcctggcga	cctgcgtcaa	tggcgtgtgt	3480
tggactgtct	atcatggtgc	cggctcaaag	accettgeeg	gcccaaaggg	cccaatcacc	3540
caaatgtaca	ccaatgtgga	ccaggacete	gtcggctggc	aagegeeece	eggggegegt	3600
tecttgacac	catgcacctg	cggcagctcg	gacctttact	tggtcacgag	gcatgccgat	3660
gtcattccgg	tgegeeggeg	gggcgacagc	agggggagcc	tactctcccc	caggecegte	3720
tcctacttga	agggctcttc	gggcggtcca	ctgctctgcc	cctcggggca	cgctgtgggc	3780
atctttcggg	ctgccgtgtg	cacccgaggg	gttgcgaagg	cggtggactt	tgtacccgtc	3840
gagtctatgg	gaaccactat	geggteeeeg	gtetteaegg	acaactcgtc	ccctccggcc	3900
gtaccgcaga	cattccaggt	ggcccatcta	cacgececta	ctggtagegg	caagagcact	3960
aaggtgccgg	ctgcgtatgc	agcccaaggg	tataaggtgc	ttgtcctgaa	cccgtccgtc	4020
gccgccaccc	taggtttcgg	ggcgtatatg	tctaaggcac	atggtatcga	ccctaacatc	4080
agaatcgggg	taaggaccat	caccacgggt	gcccccatca	cgtactccac	ctatggcaag	4140
tttcttgccg	acggtggttg	ctctgggggc	gcctatgaca	tcataatatg	tgatgagtgc	4200
cactcaactg	actcgaccac	tatcctgggc	atcggcacag	tectggaeca	ageggagaeg	4260
getggagege	gactcgtcgt	getegecace	gctacgcctc	cgggatcggt	caccgtgcca	4320
catccaaaca	tcgaggaggt	ggatatgtaa	agcactggag	aaatcccctt	ttatggcaaa	4380
gccatcccca	togagaccat	caaggggggg	aggcacctca	ttttctgcca	ttccaagaag	4440
aaatgtgatg	agetegeege	gaagctgtcc	ggcctcggac	tcaatgctgt	agcatattac	4500
cggggccttg	atgtatccgt	cataccaact	ageggagaeg	tcattgtcgt	agcaacggac	4560
gctctaatga	cgggctttac	cggcgatttc	gactcagtga	tegaetgeaa	tacatgtgtc	4620
acccagacag	tegaetteag	cctggacccg	accttcacca	ttgagacgac	gaccgtgcca	4680
caagacgcgg	tgtcacgctc	gcagcggcga	ggcaggactg	gtaggggcag	gatgggcatt	4740
tacaggtttg	tgactccagg	agaacggccc	tcgggcatgt	tegatteete	ggttctgtgc	4800
gagtgctatg	acgcgggctg	tgcttggtac	gageteaege	cegeegagae	ctcagttagg	4860
ttgcgggctt	acctaaacac	accagggttg	cccgtctgcc	aggaccatct	ggagttctgg	4920
gagagegtet	ttacaggcct	cacccacata	gacgcccatt	tcttgtccca	gactaagcag	4980
gcaggagaca	acttececta	cctggtagca	taccaggcta	cggtgtgcgc	cagggctcag	5040

gctccacctc	catcgtggga	ccaaatgtgg	aagtgtctca	tacggctaaa	gcctacgctg	5100
cacgggccaa	cgcccctgct	gtataggctg	ggageegtte	aaaacgaggt	tactaccaca	5160
caccccataa	ccaaatacat	catggcatgc	atgtcggctg	acctggaggt	cgtcacgagc	5220
acctgggtgc	tggtaggcgg	agtcctagca	gctctggccg	cgtattgcct	gacaacaggc	5280
agcgtggtca	ttgtgggcag	gatcatcttg	teeggaaage	cggccatcat	tocogacagg	5340
gaagtccttt	accgggagtt	cgatgagatg	gaagagtgcg	cctcacacct	cccttacatc	5400
gaacagggaa	tgcagctcgc	cgaacaattc	aaacagaagg	caatcgggtt	gctgcaaaca	5460
gccaccaagc	aagcggaggc	tgctgctccc	gtggtggaat	ccaagtggcg	gaccetegaa	5520
gccttctggg	cgaagcatat	gtggaatttc	atcagcggga	tacaatattt	agcaggcttg	5580
tccactctgc	ctggcaaccc	cgcgatagca	tcactgatgg	cattcacagc	ctctatcacc	5640
agcccgctca	ccacccaaca	taccetectg	tttaacatcc	tggggggatg	ggtggccgcc	5700
caacttgctc	ctcccagcgc	tgcttctgct	ttcgtaggcg	ceggcatege	tggagcggct	5760
gttggcagca	taggccttgg	gacggtgctt	gtggatattt	tggcaggtta	tggagcaggg	5820
gtggcaggcg	cgctcgtggc	ctttaaggtc	atgagcggcg	agatgccctc	caccgaggac	5880
ctggttaacc	tactccctgc	tatcctctcc	cctggcgccc	tagtcgtcgg	ggtcgtgtgc	5940
gcagcgatac	tgcgtcggca	cgtgggccca	ggggagggg	ctgtgcagtg	gatgaaccgg	6000
ctgatagcgt	tegettegeg	gggtaaccac	gtetececea	cgcactatgt	gcctgagagc	6060
gacgctgcag	cacgtgtcac	teagateete	tctagtctta	ccatcactca	gctgctgaag	6120
aggetteace	agtggatcaa	cgaggactgc	tecaegeeat	gctccggctc	gtggctaaga	6180
gatgtttggg	attggatatg	cacggtgttg	actgatttca	agacctggct	ccagtccaag	6240
ctcctgccgc	gattgccggg	agtccccttc	ttctcatgtc	aacgtgggta	caagggagtc	6300
tggcggggcg	acggcatcat	gcaaaccacc	tgcccatgtg	gagcacagat	caccggacat	6360
gtgaaaaacg	gttccatgag	gategtgggg	cctaggacct	gtagtaacac	gtggcatgga	6420
acattcccca	ttaacgcgta	caccacgggc	ccctgcacgc	cctccccggc	gccaaattat	6480
tctagggcgc	tgtggcgggt	ggctgctgag	gagtacgtgg	aggttacgcg	ggtgggggat	6540
ttccactacg	tgacgggcat	gaccactgac	aacgtaaagt	gcccgtgtca	ggttccggcc	6600
cccgaattct	tcacagaagt	ggatggggtg	cggttgcaca	ggtacgctcc	agcgtgcaaa	6660
cccctcctac	gggaggat	cacattcctg	gtegggetea	atcaatacct	ggttgggtca	6720
cageteceat	gegageeega	accggacgta	gcagtgctca	cttccatgct	caccgacccc	6780
toccacatta	cggcggagac	ggctaagcgt	aggetggeea	ggggatetee	cccctccttg	6840

gccagctcat	cagetageca	gctgtctgcg	ccttccttga	aggcaacatg	cactacccgt	6900
catgactccc	cggacgctga	cctcatcgag	gccaacctcc	tgtggcggca	ggagatgggc	6960
gggaacatca	cccgcgtgga	gtcagaaaat	aaggtagtaa	ttttggactc	tttcgagccg	7020
ctccaagcgg	aggaggatga	gagggaagta	tccgttccgg	cggagatect	geggaggtee	7080
aggaaattcc	ctcgagcgat	gcccatatgg	gcacgcccgg	attacaaccc	tccactgtta	7140
gagteetgga	aggacccgga	ctacgtccct	ccagtggtac	acgggtgtcc	attgccgcct	7200
gccaaggccc	ctccgatacc	acctccacgg	aggaagagga	cggttgtcct	gtcagaatct	7260
accgtgtctt	ctgccttggc	ggagetegee	acaaagacct	teggeagete	cgaatcgtcg	7320
gccgtcgaca	gcggcacggc	aacggcctct	cctgaccagc	cctccgacga	cggcgacgcg	7380
ggateegaeg	ttgagtcgta	ctcctccatg	ccccccttg	agggggagcc	gggggatece	7440
gatctcagcg	acgggtcttg	gtctaccgta	agcgaggagc	ttaaggctag	tgaggacgtc	7500
gtctgctgct	cgatgtccta	cacatggaca	ggcgccctga	tcacgccatg	cgctgcggag	7560
gaaaccaagc	tgcccatcaa	tgcactgagc	aactctttgc	teegteacea	caacttggtc	7620
tatgctacaa	catctcgcag	cgcaagcctg	cggcagaaga	aggtcacctt	tgacagactg	7680
caggtcctgg	acgaccacta	ccgggacgtg	ctcaaggaga	tgaaggcgaa	ggcgtccaca	7740
gttaaggcta	aacttetate	cgtggaggaa	gectgtaage	tgacgccccc	acatteggee	7800
agatctaaat	ttggctatgg	ggcaaaggac	gtccggaacc	tatccagcaa	ggccgttaac	7860
cacatecget	ccgtgtggaa	ggacttgctg	gaagacactg	agacaccaat	tgacaccacc	7920
atcatggcaa	aaaatgaggt	tttctgcgtc	caaccagaga	aggggggccg	caagccagct	7980
cgccttatcg	tattcccaga	tttgggggtt	cgtgtgtgcg	agaaaatggc	cctttacgat	8040
gtggtctcca	ccctccctca	ggccgtgatg	ggctcttcat	acggattcca	atactctcct	8100
ggacagcggg	tcgagttcct	ggtgaatgcc	tggaaagcga	agaaatgccc	tatgggcttc	8160
gcatatgaca	cccgctgttt	tgactcaacg	gtcactgaga	atgacatccg	tgttgaggag	8220
tcaatctacc	aatgttgtga	cttggccccc	gaagccagac	aggccataag	gtcgctcaca	8280
gagcggcttt	acatcggggg	ccccctgact	aattctaaag	ggcagaactg	cggctatcgc	8340
cggtgccgcg	cgagcggtgt	actgacgacc	agctgcggta	ataccctcac	atgttacttg	8400
aaggccgctg	cggcctgtcg	agctgcgaag	ctccaggact	gcacgatgct	cgtatgcgga	8460
gacgaccttg	tcgttatctg	tgaaagcgcg	gggacccaag	aggacgaggc	gagcctacgg	8520
gccttcacgg	aggctatgac	tagatactct	gcccccctg	gggacccgcc	caaaccagaa	8580
tacgacttgg	agttgataac	atcatgctcc	tccaatgtgt	cagtcgcgca	cgatgcatct	8640
ggcaaaaggg	tgtactatct	cacccgtgac	cccaccaccc	cccttgcgcg	ggctgcgtgg	8700

gagacagcta	gacacactcc	agtcaattcc	tggctaggca	acatcatcat	gtatgcgccc	8760
accttgtggg	caaggatgat	cctgatgact	catttcttct	ccatccttct	agctcaggaa	8820
caacttgaaa	aagccctaga	ttgtcagatc	tacggggcct	gttactccat	tgagccactt	8880
gacctacctc	agatcattca	acgactccat	ggccttagcg	cattttcact	ccatagttac	8940
tctccaggtg	agatcaatag	ggtggcttca	tgcctcagga	aacttggggt	accgcccttg	9000
cgagtctgga	gacatcgggc	cagaagtgtc	cgcgctaggc	tactgtccca	ggggggagg	9060
gctgccactt	gtggcaagta	cctcttcaac	tgggcagtaa	ggaccaagct	caaactcact	9120
ccaatcccgg	ctgcgtccca	gttggattta	tccagctggt	tcgttgctgg	ttacagcggg	9180
ggagacatat	atcacagcct	gtctcgtgcc	cgaccccgct	ggttcatgtg	gtgcctactc	9240
ctactttctg	taggggtagg	catctatcta	ctccccaacc	gatgacttaa	gacggggagc	9300
taaacactcc	aggccaatag	gccatcctgt	ttttttccct	tttttttt	ctttttttt	9360
tttttttt	tttttttt	tttttctcct	tttttttcc	tcttttttc	cttttctttc	9420
ctttggtggc	tccatcttag	ccctagtcac	ggctagctgt	gaaaggtccg	tgagccgctt	9480
gactgcagag	agtgctgata	ctggcctctc	tgcagatcaa	gtctagaaag	tccctttagt	9540
gagggttaat	tcaattcttg	aagacgaaag	ggcctcgtga	tacgcctatt	tttataggtt	9600
aatgtcatga	taataatggt	ttcttagacg	tcaggtggca	cttttcgggg	aaatgtgcgc	9660
ggaaccccta	tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	9720
taaccctgat	aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	9780
cgtgtcgccc	ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	tcacccagaa	9840
acgctggtga	aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	9900
ctggatctca	acageggtaa	gatccttgag	agttttcgcc	ccgaagaacg	ttttccaatg	9960
atgagcactt	ttaaagttct	gctatgtggc	gcggtattat	cccgtgttga	cgccgggcaa	10020
gagcaactcg	gtcgccgcat	acactattct	cagaatgact	tggttgagta	ctcaccagtc	10080
acagaaaagc	atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	10140
atgagtgata	acactgcggc	caacttactt	ctgacaacga	teggaggace	gaaggagcta	10200
accgcttttt	tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	10260
ctgaatgaag	ccataccaaa	cgacgagcgt	gacaccacga	tgcctgcagc	aatggcaaca	10320
acgttgcgca	aactattaac	tggcgaacta	cttactctag	cttcccggca	acaattaata	10380
gactggatgg	aggcggataa	agttgcagga	ccacttctgc	gctcggccct	tacggatgga	10440
tggtttattg	ctgataaatc	tggagccggt	gagcgtgggt	ctcgcggtat	cattgcagca	10500

ctggggccag atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	10560
actatggatg aacgaaatag	acagatcgct	gagataggtg	ceteaetgat	taagcattgg	10620
taactgtcag accaagttta	ctcatatata	ctttagattg	atttaaaact	tcatttttaa	10680
tttaaaagga tctaggtgaa	gatccttttt	gataatetea	tgaccaaaat	cccttaacgt	10740
gagttttcgt tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	ttcttgagat	10800
cctttttttc tgcgcgtaat	ctgctgcttg	caaacaaaaa	aaccaccgct	accageggtg	10860
gtttgtttgc cggatcaaga	gctaccaact	ctttttccga	aggtaactgg	cttcagcaga	10920
gegeagatae caaataetgt	ccttctagtg	tagccgtagt	taggccacca	cttcaagaac	10980
tetgtageae egectacata	cctcgctctg	ctaatcctgt	taccagtggc	tgctgccagt	11040
ggcgataagt cgtgtcttac	cgggttggac	tcaagacgat	agttaccgga	taaggcgcag	11100
cggtcgggct gaacgggggg	ttcgtgcaca	cageceaget	tggagcgaac	gacctacacc	11160
gaactgagat acctacageg	tgagctatga	gaaagcgcca	cgcttcccga	agggagaaag	11220
geggaeaggt ateeggtaag	cggcagggtc	ggaacaggag	agcgcacgag	ggagetteca	11280
gggggaaacg cctggtatct	ttatagteet	gtegggttte	gccacctctg	acttgagcgt	11340
cgatttttgt gatgctcgtc	aggggggcgg	agcctatgga	aaaacgccag	caacgcggcc	11400
tttttacggt tcctggcctt	ttgctggcct	tttgctcaca	tgttctttcc	tgcgttatcc	11460
cetgattetg tggataaceg	tattaccgcc	tttgagtgag	ctgataccgc	tegeegeage	1 1520
cgaacgaccg agegeagega	gtcagtgagc	gaggaagegg	aagagegeet	gatgcggtat	11580
ttteteetta egeatetgtg	cggtatttca	caccgcatat	ggtgcactct	cagtacaatc	11640
tgctctgatg ccgcatagtt	aagccagtat	acactecget	ategetaegt	gactgggtca	11700
tggctgcgcc ccgacacccg	ccaacacccg	ctgacgcgcc	ctgacgggct	tgtctgctcc	11760
cggcatccgc ttacagacaa	gctgtgaccg	tctccgggag	ctgcatgtgt	cagaggtttt	1 1820
cacegicate acegaaacge	gcgaggcagc	tgcggtaaag	ctcatcagcg	tggtcgtgaa	11880
gegatteaca gatgtetgee	tgttcatccg	cgtccagctc	gttgagtttc	tccagaagcg	11940
ttaatgtotg gottotgata	aagcgggcca	tgttaagggc	ggttttttcc	tgtttggtca	12000
ctgatgcctc cgtgtaaggg	ggatttctgt	tcatgggggt	aatgataccg	atgaaacgag	12060
agaggatget cacgatacgg	gttactgatg	atgaacatgc	ceggttaetg	gaacgttgtg	12120
agggtaaaca actggcggta	tggatgcggc	gggaccagag	aaaaatcact	cagggtcaat	12180
gecagegett egttaataea	gatgtaggtg	ttccacaggg	tagecageag	catcctgcga	12240
tgcagatecg gaacataatg	gtgcagggcg	etgaetteeg	cgtttccaga	ctttacgaaa	12300
cacggaaacc gaagaccatt	catgttgttg	ctcaggtcgc	agacgttttg	cagcagcagt	12360

	cgcttcacgt tcgctcgcgt atcggtgatt	cattctgcta	accagtaagg	caaccccgcc	12420
	agectageeg ggteeteaae gacaggagea	cgatcatgcg	cacccgtggc	caggaeceaa	12480
	egetgeeega gatgegeege gtgeggetge	tggagatggc	ggacgcgatg	gatatgttct	12540
	gocaagotaa gotgootgoa ggtaataoga	ctcactata			12579
5	<210> 28 <211> 30 <212> ADN <213> Virus de la hepatitis C				
10	<400> 28 aagcgaggag cttaaggcyr gtgaggacgt	30			
10	<210> 29 <211> 29 <212> ADN <213> Virus de la hepatitis C				
15	<400> 29 agctccccgt cttaagtcay cggttgggg	29			
20	<210> 30 <211> 20 <212> ADN <213> Virus de la hepatitis C				
25	<400> 30 gggacctcac cgctcatgat	20			
30	<210> 31 <211> 24 <212> ADN <213> Virus de la hepatitis C				
	<400> 31 ctcaccgctc atgatcttga atgc	24			
35	<210> 32 <211> 22 <212> ADN <213> Virus de la hepatitis C				
40	<400> 32 cggaggtcat tacgtgcaaa tg	22			
45	<210> 33 <211> 22 <212> ADN <213> Virus de la hepatitis C				
50	<400> 33 cgtgcaaatg gccatcatca ag	22			
	<210> 34 <211> 19 <212> ADN <213> Virus de la hepatitis C				
55	<400> 34 gcgcttactg gcacctatg	19			

5	<210> 35 <211> 17 <212> ADN <213> Virus de la hepatitis C	
5	<400> 35 aggcacgccg atgtcat	17
10	<210> 36 <211> 18 <212> ADN <213> Virus de la hepatitis C	
15	<400> 36 cgggaccttg gtgctctt	18
20	<210> 37 <211> 18 <212> ADN <213> Virus de la hepatitis C	
	<400> 37 cggcactgtc cttgacca	18
25	<210> 38 <211> 18 <212> ADN <213> Virus de la hepatitis C	
30	<400> 38 gagtcgaagt cgccggta	18
35	<210> 39 <211> 22 <212> ADN <213> Virus de la hepatitis C	
40	<400> 39 ccgagactac agttaggcta cg	22
	<210> 40 <211> 22 <212> ADN <213> Virus de la hepatitis C	
45	<400> 40 gcatgtcatg atgtatttgg tg	22
50	<210> 41 <211> 18 <212> ADN <213> Virus de la hepatitis C	
55	<400> 41 acgaggacct tccccagt	18
60	<210> 42 <211> 18 <212> ADN <213> Virus de la hepatitis C	
	<400> 42 gctgccggtg ggagcatg	18
65	<210> 43 <211> 19	

	<212> ADN <213> Virus de la hepatitis C	
5	<400> 43 gagcatgcag gtgggccac	19
10	<210> 44 <211> 19 <212> ADN <213> Virus de la hepatitis C	
	<400> 44 gcggcgacat catcaacgg	19
15	<210> 45 <211> 21 <212> ADN <213> Virus de la hepatitis C	
20	<400> 45 catcaacggc ttgcccgtct c	21
25	<210> 46 <211> 20 <212> ADN <213> Virus de la hepatitis C	
30	<400> 46 gacctttacc tggtcacgag <210> 47	20
35	<211> 24 <212> ADN <213> Virus de la hepatitis C	
	<400> 47 gctgtccaga acttgcagtc tgtc	24
40	<210> 48 <211> 20 <212> ADN <213> Virus de la hepatitis C	
45	<400> 48 cctttggcaa gcactgcgtg	20
50	<210> 49 <211> 21 <212> ADN <213> Virus de la hepatitis C	
	<400> 49 ctgcgtggtc atagtgggca g	21
55	<210> 50 <211> 20 <212> ADN <213> Virus de la hepatitis C	
60	<400> 50 tgtcttgtcc gggaagccgg	20
65	<210> 51 <211> 20 <212> ADN <213> Virus de la hepatitis C	

	cgtcactgcc atactcagca	20
5	<210> 52 <211> 18 <212> ADN <213> Virus de la hepatitis C	
10	<400> 52 cgtcccgttt ttgacatg	18
15	<210> 53 <211> 21 <212> ADN <213> Virus de la hepatitis C	
20	<400> 53 tgactcaacc ctggtgatgt t	21
	<210> 54 <211> 17 <212> ADN <213> Virus de la hepatitis C	
25	<400> 54 cggtggtcct caccgaa	17
30	<210> 55 <211> 15 <212> ADN <213> Virus de la hepatitis C	
35	<400> 55 ttgtccggga agccg	15
40	<210> 56 <211> 16 <212> ADN <213> Virus de la hepatitis C	
	<400> 56 tggcaagcac tgcgtg	16
45	<210> 57 <211> 19 <212> ADN <213> Virus de la hepatitis C	
50	<400> 57 ttgacgtcca tgctcactg	19
55	<210> 58 <211> 22 <212> ADN <213> Virus de la hepatitis C	
60	<400> 58 aggccggagt gtttacccca ac	22
	<210> 59 <211> 22 <212> ADN <213> Virus de la hepatitis C	
65	<400> 59	

	ggagtgttta ccccaacctt ca	22
5	<210> 60 <211> 23 <212> ADN <213> Virus de la hepatitis C	
10	<400> 60 tgactatgaa ccacctgtgg tcc	23
15	<210> 61 <211> 19 <212> ADN <213> Virus de la hepatitis C	
10	<400> 61 cacctgtggt ccatggctg	19
20	<210> 62 <211> 20 <212> ADN <213> Virus de la hepatitis C	
25	<400> 62 catcaactcc gtgtggaaag	20
30	<210> 63 <211> 20 <212> ADN <213> Virus de la hepatitis C	
	<400> 63 cagcgggtat catacgagaa	20
35	<210> 64 <211> 18 <212> ADN <213> Virus de la hepatitis C	
40	<400> 64 gcaccatgct cgtgtgtg	18
45	<210> 65 <211> 21 <212> ADN <213> Virus de la hepatitis C	
50	<400> 65 gtcatcagta tcatcctcgc c	21
30	<210> 66 <211> 19 <212> ADN <213> Virus de la hepatitis C	
55	<400> 66 cgactccatg gtcttagcg	19
60	<210> 67 <211> 21 <212> ADN <213> Virus de la hepatitis C	
65	<400> 67 gagcgccttc tgtttgaatt g	21

_	<210> 68 <211> 21 <212> ADN <213> Virus de la hepatitis C	
5	<400> 68 ctgtttgaat tgctcggcga g	21
10	<210> 69 <211> 18 <212> ADN <213> Virus de la hepatitis C	
15	<400> 69 atgcatgctg gtgcggaa	18
20	<210> 70 <211> 19 <212> ADN <213> Virus de la hepatitis C	
	<400> 70 tggtgcggaa agtcgctgg	19
25	<210> 71 <211> 20 <212> ADN <213> Virus de la hepatitis C	
30	<400> 71 ggtcattatg tccaaatggc	20
35	<210> 72 <211> 18 <212> ADN <213> Virus de la hepatitis C	
40	<400> 72 cggcagctcg gaccttta	18
	<210> 73 <211> 21 <212> ADN <213> Virus de la hepatitis C	
45	<400> 73 cacttggaat gtctgcggta c	21
50	<210> 74 <211> 22 <212> ADN <213> Virus de la hepatitis C	
55	<400> 74 gatgagtgcc actcaactga ct	22
60	<210> 75 <211> 18 <212> ADN <213> Virus de la hepatitis C	
	<400> 75 cgtctgttgc cacgacaa	18
65	<210> 76 <211> 17	

	<212> ADN <213> Virus de la hepatitis C	
5	<400> 76 ctatgacgcg ggctgtg	17
10	<210> 77 <211> 21 <212> ADN <213> Virus de la hepatitis C	
	<400> 77 agccgtatga gacacttcca c	21
15	<210> 78 <211> 23 <212> ADN <213> Virus de la hepatitis C	
20	<400> 78 gcatagacca tgttgtggtg acg	23
25	<210> 79 <211> 23 <212> ADN <213> Virus de la hepatitis C	
30	<400> 79 gtgacgcagc aaagagttgc tca	23
	<210> 80 <211> 20 <212> ADN <213> Virus de la hepatitis C	
35	<400> 80 agcgtggtca ttgtgggcag	20
40	<210> 81 <211> 21 <212> ADN <213> Virus de la hepatitis C	
45	<400> 81 gggcaggatc atcttgtccg g	21
50	<210> 82 <211> 18 <212> ADN <213> Virus de la hepatitis C	
	<400> 82 ttcccaaggc ctatgctg	18
55	<210> 83 <211> 19 <212> ADN <213> Virus de la hepatitis C	
60	<400> 83 ggatgaaccg gctgatagc	19
65	<210> 84 <211> 21 <212> ADN <213> Virus de la hepatitis C	

	<400> 84 atggaaccgt ttttgacatg t	21
5	<210> 85 <211> 19 <212> ADN <213> Virus de la hepatitis C	
10	<400> 85 gggcatgacc actgacaac	19
15	<210> 86 <211> 17 <212> ADN <213> Virus de la hepatitis C	
20	<400> 86 ccacaggagg ttggcct <210> 87	17
25	<211> 16 <212> ADN <213> Virus de la hepatitis C	
25	<400> 87 cacgggtgcc cattgc	16
30	<210> 88 <211> 19 <212> ADN <213> Virus de la hepatitis C	
35	<400> 88 aaggagatga aggcgaagg	19
40	<210> 89 <211> 18 <212> ADN <213> Virus de la hepatitis C	
	<400> 89 catcacggcc tgaggaag	18
45	<210> 90 <211> 17 <212> ADN <213> Virus de la hepatitis C	
50	<400> 90 tcgctcacag agcggct	17
55	<210> 91 <211> 21 <212> ADN <213> Virus de la hepatitis C	
60	<400> 91 tggaggagca tgatgttatc a	21
	<210> 92 <211> 19 <212> ADN <213> Virus de la hepatitis C	
65	<400> 92	

	cgactccatg gtcttagcg	19
5	<210> 93 <211> 28 <212> ADN <213> Virus de la hepatitis C	
10	<400> 93 gtaggtggac tggcacttac atctatga	28
15	<210> 94 <211> 23 <212> ADN <213> Virus de la hepatitis C	
10	<400> 94 cgctattagc ccttggtagg tgg	23
20	<210> 95 <211> 19 <212> ADN <213> Virus de la hepatitis C	
25	<400> 95 aaatgcccgc accataccc	19
30	<210> 96 <211> 23 <212> ADN <213> Virus de la hepatitis C	
	<400> 96 ggcttctcgc cagacatgat ctt	23
35	<210> 97 <211> 17 <212> ADN <213> Virus de la hepatitis C	
40	<400> 97 cacggacttc ccgtgtc	17
45	<210> 98 <211> 16 <212> ADN <213> Virus de la hepatitis C	
50	<400> 98 tgccagttgg ggcatg	16
	<210> 99 <211> 16 <212> ADN <213> Virus de la hepatitis C	
55	<400> 99 tccgggcagc tgtgtg	16
60	<210> 100 <211> 21 <212> ADN <213> Virus de la hepatitis C	
65	<400> 100 cgtcttgagg gacagtctgt g	21

5	<210> 101 <211> 21 <212> ADN <213> Virus de la hepatitis C	
5	<400> 101 ggagggtgag atccccttct a	21
10	<210> 102 <211> 21 <212> ADN <213> Virus de la hepatitis C	
15	<400> 102 gaagttccac atgtgtttgg c	21
20	<210> 103 <211> 22 <212> ADN <213> Virus de la hepatitis C	
	<400> 103 gtagtgctct gtgagtgcta cg	22
25	<210> 104 <211> 23 <212> ADN <213> Virus de la hepatitis C	
30	<400> 104 atcttacacg gactccccgt gtc	23
35	<210> 105 <211> 21 <212> ADN <213> Virus de la hepatitis C	
40	<400> 105 atgcggggac atcttacacg g	21
	<210> 106 <211> 21 <212> ADN <213> Virus de la hepatitis C	
45	<400> 106 tggggcatgc aagtacccga c	21
50	<210> 107 <211> 19 <212> ADN <213> Virus de la hepatitis C	
55	<400> 107 cactgccagt tggggcatg	19
60	<210> 108 <211> 25 <212> ADN <213> Virus de la hepatitis C	
	<400> 108 tacggatacc atactttgtg agggc	25
65	<210> 109 <211> 25	

	<212> ADN <213> Virus de la hepatitis C	
5	<400> 109 tctctgctac ggataccata ctttg	25
10	<210> 110 <211> 25 <212> ADN <213> Virus de la hepatitis C	
	<400> 110 tccaccagta tcttacccag gccta	25
15	<210> 111 <211> 22 <212> ADN <213> Virus de la hepatitis C	
20	<400> 111 acgtccacca gtatcttacc ca	22
25	<210> 112 <211> 20 <212> ADN <213> Virus de la hepatitis C	
20	<400> 112 acgagtgtgt accctggtga	20
30	<210> 113 <211> 17 <212> ADN <213> Virus de la hepatitis C	
35	<400> 113 gacccctgta cctgcgg	17
40	<210> 114 <211> 21 <212> ADN <213> Virus de la hepatitis C	
45	<400> 114 gcaagtagcc cacctggtaa g	21
50	<210> 115 <211> 19 <212> ADN <213> Virus de la hepatitis C	
	<400> 115 gccattcagt ggacgccac	19
55	<210> 116 <211> 23 <212> ADN <213> Virus de la hepatitis C	
60	<400> 116 ccttgagttg gtataacgga gac	23
65	<210> 117 <211> 21 <212> ADN <213> Virus de la hepatitis C	

	<400> 117 gctctgtgag tgctatgatg c	21
5	<210> 118 <211> 24 <212> ADN <213> Virus de la hepatitis C	
10	<400> 118 ggtaggacca gtcagtgtag gttt	24
15	<210> 119 <211> 18 <212> ADN <213> Virus de la hepatitis C	
20	<400> 119 caacgaagcc agtggctc	18
25	<210> 120 <211> 19 <212> ADN <213> Virus de la hepatitis C	
25	<400> 120 tgcatggcct cccggtttc	19
30	<210> 121 <211> 22 <212> ADN <213> Virus de la hepatitis C	
35	<400> 121 catgtggaga catcctgcat gg	22
40	<210> 122 <211> 22 <212> ADN <213> Virus de la hepatitis C	
	<400> 122 ttggtgcatg caagtagccc ac	22
45	<210> 123 <211> 19 <212> ADN <213> Virus de la hepatitis C	
50	<400> 123 cgctgcctgt tggtgcatg	19
55	<210> 124 <211> 27 <212> ADN <213> Virus de la hepatitis C	
60	<400> 124 cttctgtacc atcagagtac ctgatca	27
00	<210> 125 <211> 26 <212> ADN <213> Virus de la hepatitis C	
65	<400> 125	

	gtgagccttc tgtaccatca gagtac	26
5	<210> 126 <211> 23 <212> ADN <213> Virus de la hepatitis C	
10	<400> 126 atggagtgta gctagggttt gcc	23
15	<210> 127 <211> 23 <212> ADN <213> Virus de la hepatitis C	
15	<400> 127 tgtagctagg gtttgccgct cta	23
20	<210> 128 <211> 20 <212> ADN <213> Virus de la hepatitis C	
25	<400> 128 gaaccaccca ctgtcctagg	20
30	<210> 129 <211> 23 <212> ADN <213> Virus de la hepatitis C	
	<400> 129 gcacactatg actcagtctt gca	23
35	<210> 130 <211> 19 <212> ADN <213> Virus de la hepatitis C	
40	<400> 130 catcttttcg cacaccctg	19
45	<210> 131 <211> 18 <212> ADN <213> Virus de la hepatitis C	
50	<400> 131 tacgtaggag ggcccatg	18
	<210> 132 <211> 19 <212> ADN	
55	<213> Virus de la hepatitis C <400> 132 agcgctaccg atacgtttg	19
60	<210> 133 <211> 18 <212> ADN <213> Virus de la hepatitis C	
65	<400> 133 ccggccataa ttgaaagg	18

5	<210> 134 <211> 20 <212> ADN <213> Virus de la hepatitis C	
5	<400> 134 atgctcgtgc gctccgtgat	20
10	<210> 135 <211> 20 <212> ADN <213> Virus de la hepatitis C	
15	<400> 135 ctttgcatgc tcgtgcgctc	20
20	<210> 136 <211> 27 <212> ADN <213> Virus de la hepatitis C	
	<400> 136 tactatgggc tcaatgacag cttgttg	27
25	<210> 137 <211> 27 <212> ADN <213> Virus de la hepatitis C	
30	<400> 137 ggtagctact atgggctcaa tgacagc	27
35	<210> 138 <211> 24 <212> ADN <213> Virus de la hepatitis C	
40	<400> 138 tacttccaga tgatcatact gagc	24
	<210> 139 <211> 21 <212> ADN	
45	<213> Virus de la hepatitis C <400> 139 acttatactt ggttacccgc g	21
50	<210> 140 <211> 17 <212> ADN <213> Virus de la hepatitis C	
55	<400> 140 tcttaccgct gccggtc	17
60	<210> 141 <211> 21 <212> ADN <213> Virus de la hepatitis C	
	<400> 141 tcttagatca ggctgagacg g	21
65	<210> 142 <211> 21	

	<212> ADN <213> Virus de la hepatitis C	
5	<400> 142 ctgttgttgg tatgacggac a	21
10	<210> 143 <211> 17 <212> ADN <213> Virus de la hepatitis C	
	<400> 143 agcccgctga gaccaca	17
15	<210> 144 <211> 21 <212> ADN <213> Virus de la hepatitis C	
20	<400> 144 atgtagtgtt ggcttaagcc g	21
25	<210> 145 <211> 17 <212> ADN <213> Virus de la hepatitis C	
30	<400> 145 ctgccggtcg gggcatg	17
35	<210> 146 <211> 24 <212> ADN <213> Virus de la hepatitis C <400> 146 ggtcggggca tgaaggtatc ctac	24
40	<210> 147 <211> 22 <212> ADN <213> Virus de la hepatitis C	
45	<400> 147 cttgcggaga tattctttgc gg	22
50	<210> 148 <211> 18 <212> ADN <213> Virus de la hepatitis C	
	<400> 148 ttgcgggctg cccgtctc	18
55	<210> 149 <211> 30 <212> ADN <213> Virus de la hepatitis C	
60	<400> 149 cgacgttgaa tagactaggt tatgatgtct	30
65	<210> 150 <211> 20 <212> ADN <213> Virus de la hepatitis C	

	ccctagcggc ctactgcttg	20
5	<210> 151 <211> 21 <212> ADN <213> Virus de la hepatitis C	
10	<400> 151 ggcctactgc ttgtcagtcg g	21
15	<210> 152 <211> 20 <212> ADN <213> Virus de la hepatitis C	
20	<400> 152 gcctactgct tgtcagtcgg <210> 153	20
25	<211> 18 <212> ADN <213> Virus de la hepatitis C	
25	<400> 153 atacccccta tggcagcg	18
30	<210> 154 <211> 21 <212> ADN <213> Virus de la hepatitis C	
35	<400> 154 acagtggatg aacaggctca t	21
40	<210> 155 <211> 20 <212> ADN <213> Virus de la hepatitis C	
	<400> 155 tgacaggaaa tgaagggcag	20
45	<210> 156 <211> 19 <212> ADN <213> Virus de la hepatitis C	
50	<400> 156 tgaagtggat ggggtgaga	19
55	<210> 157 <211> 18 <212> ADN <213> Virus de la hepatitis C	
60	<400> 157 tgaggcctat gcgtctgg	18
	<210> 158 <211> 19 <212> ADN <213> Virus de la hepatitis C	
65	<400> 158	

	caccaactgt cgatggatg	19
5	<210> 159 <211> 28 <212> ADN <213> Virus de la hepatitis C	
10	<400> 159 ttatgatgtc tcaacaagga gttgctga	28
15	<210> 160 <211> 26 <212> ADN <213> Virus de la hepatitis C	
.0	<400> 160 agtgttatct taccagctca ccgagc	26
20	<210> 161 <211> 24 <212> ADN <213> Virus de la hepatitis C	
25	<400> 161 atcttaccag ctcaccgagc tggc	24
30	<210> 162 <211> 24 <212> ADN <213> Virus de la hepatitis C	
	<400> 162 gtatcctcca gcccttccta tctg	24
35	<210> 163 <211> 22 <212> ADN <213> Virus de la hepatitis C	
40	<400> 163 cagecettee tatetggget ag	22
45	<210> 164 <211> 19 <212> ADN <213> Virus de la hepatitis C	
50	<400> 164 tcgggtatag tgcgaagga	19
	<210> 165 <211> 19 <212> ADN <213> Virus de la hepatitis C	
55	<400> 165 cttcagcaga cgttcgacc	19
60	<210> 166 <211> 18 <212> ADN <213> Virus de la hepatitis C	
65	<400> 166 tacatcaagg ccacagcg	18

E	<210> 167 <211> 20 <212> ADN <213> Virus de la hepatitis C	
5	<400> 167 ctggagtgtg acgagctgtt	20
10	<210> 168 <211> 18 <212> ADN <213> Virus de la hepatitis C	
15	<400> 168 cttggagaca tcgggcac	18
20	<210> 169 <211> 21 <212> ADN <213> Virus de la hepatitis C	
	<400> 169 gcgcgtccct tacttcgtga g	21
25	<210> 170 <211> 19 <212> ADN <213> Virus de la hepatitis C	
30	<400> 170 gctcctgcgc gtcccttac	19
35	<210> 171 <211> 24 <212> ADN <213> Virus de la hepatitis C	
40	<400> 171 gtagccagcg aggatgtcca ctag	24
	<210> 172 <211> 21 <212> ADN <213> Virus de la hepatitis C	
45	<400> 172 catctcgccg ctcatgatct t	21
50	<210> 173 <211> 19 <212> ADN <213> Virus de la hepatitis C	
55	<400> 173 gcgtccctta cttcgtgag	19
60	<210> 174 <211> 16 <212> ADN <213> Virus de la hepatitis C	
	<400> 174 ccgtgcgcag gagagg	16
65	<210> 175 <211> 18	

	<212> ADN <213> Virus de la hepatitis C	
5	<400> 175 cacggtcttg gaccaagc	18
10	<210> 176 <211> 20 <212> ADN <213> Virus de la hepatitis C	
	<400> 176 gcctggtacg aactgacacc	20
15	<210> 177 <211> 18 <212> ADN <213> Virus de la hepatitis C	
20	<400> 177 gccacttcct gttggtgc	18
25	<210> 178 <211> 19 <212> ADN <213> Virus de la hepatitis C	
30	<400> 178 ctgagtcaaa gtcgccggt	19
	<210> 179 <211> 20 <212> ADN <213> Virus de la hepatitis C	
35	<400> 179 gacatgcagg ccatgatgta	20
40	<210> 180 <211> 22 <212> ADN <213> Virus de la hepatitis C	
45	<400> 180 taaggggatt acctgtctcg gc	22
50	<210> 181 <211> 22 <212> ADN <213> Virus de la hepatitis C	
	<400> 181 agttgtgttc acgcccatgg ag	22
55	<210> 182 <211> 20 <212> ADN <213> Virus de la hepatitis C	
60	<400> 182 gggactttgg tgctcttgcc	20
65	<210> 183 <211> 21 <212> ADN <213> Virus de la hepatitis C	

	<400> 183 tcgatgccat atgccttgga c	21
5	<210> 184 <211> 19 <212> ADN <213> Virus de la hepatitis C	
10	<400> 184 tttcagtggg cagcgtggt	19
15	<210> 185 <211> 20 <212> ADN <213> Virus de la hepatitis C	
20	<400> 185 agcgtggtga tcgtcgggag <210> 186	20
0.5	<211> 18 <211> 18 <212> ADN <213> Virus de la hepatitis C	
25	<400> 186 cctgcaggcg gtcgaagg	18
30	<210> 187 <211> 22 <212> ADN <213> Virus de la hepatitis C	
35	<400> 187 cgaaggtcac cttcttctgc cg	22
40	<210> 188 <211> 20 <212> ADN <213> Virus de la hepatitis C	
	<400> 188 agacatgagg gaagcaatgg	20
45	<210> 189 <211> 18 <212> ADN <213> Virus de la hepatitis C	
50	<400> 189 tgtgcagtgg atgaaccg	18
55	<210> 190 <211> 18 <212> ADN <213> Virus de la hepatitis C	
60	<400> 190 actctgcgaa cctccacg	18
	<210> 191 <211> 21 <212> ADN <213> Virus de la hepatitis C	
65	<400> 191	

	gttgacagac ccatcacaca t	21
5	<210> 192 <211> 20 <212> ADN <213> Virus de la hepatitis C	
10	<400> 192 tcgtctgtct caaccctggt	20
15	<210> 193 <211> 20 <212> ADN <213> Virus de la hepatitis C	
10	<400> 193 tottactcgt caatgcctcc	20
20	<210> 194 <211> 25 <212> ADN <213> Virus de la hepatitis C	
25	<400> 194 cggggtaaca caagataaca tcaag	25
30	<210> 195 <211> 24 <212> ADN <213> Virus de la hepatitis C	
	<400> 195 accctaaggt cggagtgtta agct	24
35	<210> 196 <211> 24 <212> ADN <213> Virus de la hepatitis C	
40	<400> 196 acaagataac atcaagtgcc cctg	24
45	<210> 197 <211> 24 <212> ADN <213> Virus de la hepatitis C	
50	<400> 197 aaggtcggag tgttaagctg ccta	24
	<210> 198 <211> 21 <212> ADN	
55	<213> Virus de la hepatitis C <400> 198 cttattegte aatgeeteea c	21
60	<210> 199 <211> 20 <212> ADN <213> Virus de la hepatitis C	
65	<400> 199 atcatggcca aaaatgaggt	20

5	<210> 200 <211> 20 <212> ADN <213> Virus de la hepatitis C	
J	<400> 200 gccttcacgg aggctatgac	20
10	<210> 201 <211> 24 <212> ADN <213> Virus de la hepatitis C	
15	<400> 201 tgtggcatat acctctttaa ctgg	24
20	<210> 202 <211> 17 <212> ADN <213> Virus de la hepatitis C	
	<400> 202 ggagtcaaag cagcggg	17
25	<210> 203 <211> 22 <212> ADN <213> Virus de la hepatitis C	
30	<400> 203 caggaattga ctggagtgtg tc	22
35	<210> 204 <211> 20 <212> ADN <213> Virus de la hepatitis C	
40	<400> 204 gcacaggagt aaatagcggg	20

REIVINDICACIONES

- 1. Métodos para determinar mutaciones resistencia a fármacos en cualquiera de las regiones de proteína no estructural NS3 a NS5B del virus de la Hepatitis C (HCV) para los genotipos 1 a 6, más en particular para los genotipos específicos de subtipo 1a, 1b, 2a, 2b, 3a, 4a y 4d, presentes en una muestra que comprende:
 - a) obtener dicha muestra de un paciente.

5

10

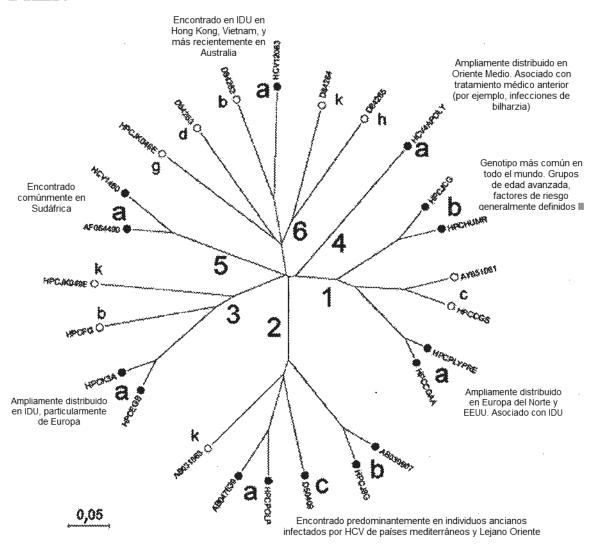
20

30

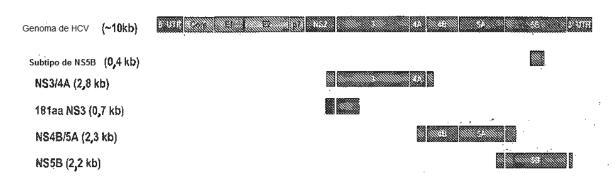
35

55

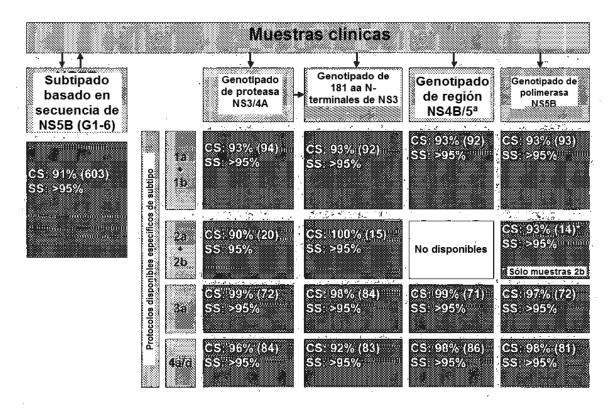
60


- b) extraer material genético viral de dicha muestra,
- c) amplificar la región NS5B de HCV para generar un amplicón de ADN de 388 pares de bases usando cebadores que tienen secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 1-5, d) secuenciar el amplicón para obtener una secuencia de 329 pares de bases usando las secuencias
- seleccionadas entre el grupo que consiste en las SEC ID Nº 3-5.
- e) realizar análisis de árboles filogenéticos usando la información de secuencia de 329 pares de bases de NS5B para obtener información de subtipo de HCV en dicha muestra del paciente.
- f 1) usar cebadores específicos de subtipo que tienen las secuencias seleccionadas entre el grupo que consiste 15 en las SEC ID № 6-9, 42-45, 104-107, 120-123, 145-148 o 180-183 para la generación de un amplicón de ADN que comprende la proteína no estructural NS3 (181 aminoácidos N-terminales),
 - q 1) secuencia el amplicón de NS3 para obtener una secuencia de 543 pares de bases usando las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 8 y 9; 43 y 45-46; 104 y 106; 120 y 122; 146 y 148 o 180 y 182
 - f2) usar cebadores específicos de subtipo que tienen las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 13-16, 54 y 59-66, 124-133, 158 y 160-168 o 194-197 para la generación de un amplicón de ADN que comprende la polimerasa NS5B,
- g 2) secuenciar el amplicón de la polimerasa NS5B para obtener una secuencia de 1776 pares de bases usando 25 las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 15-16 y 87-92; 54, 59 y 61-66; 124 y 127-133; 158-159, 161 v 163-168 o 197-204
 - f 3) usar cebadores específicos de subtipo que tienen las secuencias seleccionadas entre el grupo que consiste en las SEC ID № 30-33, 67-70, 93-96, 108-111, 134-137 o 169-172 para la generación de un amplicón de ADN que comprende NS3/4A.
 - g 3) secuenciar el amplicón de la proteasa NS3/4A para obtener una secuencia de 2055 pares de bases usando las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 34-41; 68 y 71-77; 95 y 97-103; 112-119; 136 v 138-144 o 171 v 173-179
 - O f4) usar cebadores específicos de subtipo que tienen las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 47-50, 78-81,149-151 y 159 o 184-187 para la generación de un amplicón de ADN que comprende NS4B/5A,
- g 4) secuenciar el amplicón de NS4B y NS5A para obtener una secuencia de los dos genes NS4B y NS5A 40 usando las secuencias seleccionadas entre el grupo que consiste en las SEC ID Nº 51-57; 79 y 81-87; 152-159 o 185 y 187-193;
 - h) alinear la secuencia obtenida en la etapa (g1), (g2), (g3) o (g4) con una secuencia de HCV de referencia o de tipo silvestre.
- i) determinar una o más mutaciones de resistencia a fármacos en el material genético viral presente en la 45 muestra del paciente.
 - 2. Método de acuerdo con la reivindicación 1 que comprende adicionalmente las etapas para realizar un ensayo de fenotipado de NS3 por
- j) generación de un amplicón de NS3 partiendo del amplicón de ADN que comprende NS3 (181 aminoácidos N-50 terminales) obtenido en la etapa (f1) de la reivindicación 1 usando cebadores que tienen la secuencia de la SEC ID Nº 11 y 12,
 - k) inserción, por clonación InFusion™ o recombinación in vitro, de dicho amplicón obtenido en la etapa (j) en un vector lanzadera que contiene marcador incompetente en replicación con NS3 delecionado que tiene la secuencia de la SEC ID Nº 10 para obtener un replicón de HCV recombinante competente en replicación de NS3.
 - I) generación de ARN, por transcripción in vitro, a partir de dicho replicón de HCV obtenido en la etapa (k) m) transfección de dicho ARN en células adecuadas,
 - n) determinación, en base a la expresión del gen marcador, del valor de CE₅₀ y/o el cambio factorial como una medida para la presencia de mutaciones de resistencia a fármacos en una muestra.
 - 3. Método de acuerdo con la reivindicación 1 que comprende adicionalmente las etapas para realizar un ensayo de fenotipado de NS5B por
- o) generación de un amplicón de NS5B partiendo del amplicón de ADN que comprende NS5B obtenido en la 65 etapa (f2) de la reivindicación 1 usando cebadores que tienen la secuencia de la SEC ID Nº 28 y 29,

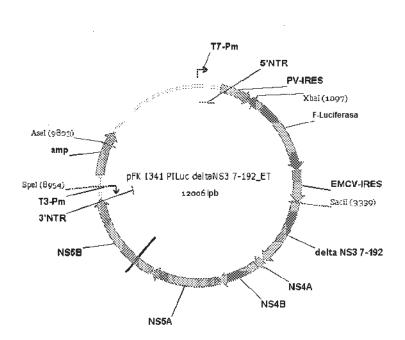
- p) inserción, por recombinación in vitro, de dicho amplicón obtenido en la etapa (o) en un vector lanzadera incompetente en replicación con NS5B delecionado que tiene la secuencia de la SEC ID N° 21 o SEC ID N° 27 para obtener un replicón de HCV recombinante competente en replicación de NS5B,
- q) generación de ARN, por transcripción in vitro, de dicho replicón de HCV obtenido en la etapa (p)
- r) transfección de dicho ARN en células adecuadas,

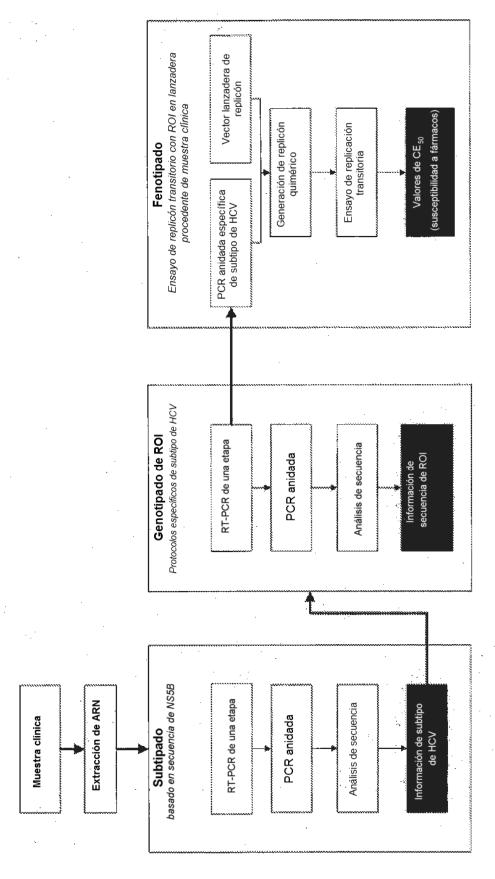

5

- s) determinación, en base a la expresión del gen marcador, del valor de CE50 y/o el cambio factorial como una medida para la presencia de mutaciones de resistencia a fármacos en una muestra.
- 4. Uso del vector pFK I341 PI luc ΔNS3 7-192_ET (SEC ID Nº 10) que comprende el genoma de HCV con una deleción que abarca la región de 181 aminoácidos N-terminales de NS3 HCV en el método de acuerdo con la reivindicación 2.
- 5. Uso del vector pFK_I341_PI_NS3-3_ET_dNS5a/b_5a440-5b591-Scal (SEC ID N° 21) que comprende el genoma de HCV con una deleción que abarca la región de NS5B de HCV o el vector pFK_I341_PI_NS3-3_ET_dNS5a/b_5a440-5b591-Xbal (SEC ID N° 27) que comprende el genoma de HCV con una deleción que abarca la región de NS5B de HCV en el método de acuerdo con la reivindicación 3.


Figura 1.

<u>Figura 2:</u> Sinopsis de amplicones generados para ensayos de subtipado y genotipado


Figura 3



C.S: Sensibilidad clínica (tasa de aciertos de amplificación a alta carga en %;

S.S: Sensibilidad clínica (tasa de aciertos de secuenciación de amplicones generados) en %; números en paréntesis = cantidad total de muestras HCV-positivas ensayadas

Figura 4

<u>Figura 5:</u> Sinopsis del proceso ROI, región de interés.