



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

**ESPAÑA** 



11 Número de publicación: 2 546 867

51 Int. Cl.:

**A61F 9/007** (2006.01) **A61B 17/32** (2006.01)

(12)

# TRADUCCIÓN DE PATENTE EUROPEA

**T3** 

(96) Fecha de presentación y número de la solicitud europea: 07.06.2010 E 10727254 (4)
(97) Fecha y número de publicación de la concesión europea: 22.07.2015 EP 2448535

(54) Título: Punta de gancho de facoemulsificación

(30) Prioridad:

01.07.2009 US 496220

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 29.09.2015

(73) Titular/es:

ALCON RESEARCH, LTD. (100.0%) 6201 South Freeway, Mail Code TB4-8 Fort Worth TX 76134, US

(72) Inventor/es:

ARTSYUKHOVICH, ALEXANDER; DIMALANTA, RAMON, JR.; BOUKHNY, MIKHAIL y CHON, JAMES Y.

(74) Agente/Representante:

CURELL AGUILÁ, Mireia

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

# **DESCRIPCIÓN**

Punta de gancho de facoemulsificación.

#### 5 Campo de la invención

15

20

25

35

50

55

La presente invención se refiere en general a la facoemulsificación. Más particularmente, la presente invención se refiere a las puntas de corte de facoemulsificación.

## 10 Descripción de la técnica relacionada

El ojo humano en sus términos más simples funciona para proporcionar visión transmitiendo luz a través de una parte exterior transparente denominada córnea y enfocando la imagen por medio del cristalino sobre la retina. La calidad de la imagen enfocada depende de muchos factores, incluyendo el tamaño y la forma del ojo y la transparencia de la córnea y el cristalino.

Cuando la edad o una enfermedad hace que el cristalino llegue a ser menos transparente, se deteriora la visión debida a la luz disminuida que puede transmitirse a la retina. Esta deficiencia en el cristalino del ojo es conocida médicamente como catarata. Un tratamiento aceptado para esta afección es la retirada quirúrgica del cristalino y la sustitución de la función del cristalino por una lente intraocular (IOL).

Los cristalinos cataratosos pueden eliminarse por una técnica quirúrgica denominada facoemulsificación. Durante esta intervención, una punta de facoemulsificación delgada puede insertarse en el cristalino enfermo y hacerse vibrar ultrasónicamente. La punta de corte vibrante puede licuar o emulsificar el cristalino, de modo que el cristalino pueda aspirarse fuera del ojo. El cristalino enfermo, una vez retirado, puede ser sustituido por un cristalino artificial.

El estado relevante de la técnica está representado por los documentos US 2004/127887, US 6.458.143, WO 86/02257 A1, que describen disposiciones de puntas de corte con un extremo distal angulado o en forma de gancho.

#### 30 Sumario de la invención

La presente invención proporciona una pieza de mano quirúrgica de facoemulsificación de acuerdo con las reivindicaciones que siguen, una punta de facoemulsificación con un vástago recto y una parte angulada con respecto al vástago recto que puede incluir un gancho en la parte angulada para mover un eje de rotación de la punta acercándolo más a una posición de alineación con una línea central del vástago. La punta puede configurarse para girar torsionalmente en vaivén sobre un eje perpendicular a una línea central del vástago (por ejemplo, rotación alrededor de un eje en y).

Las vibraciones laterales (por ejemplo, lado con lado a lo largo de un eje x o un eje z perpendicular al eje y) que resultan de la rotación torsional alrededor del eje y en una punta sin el gancho pueden reducirse por el uso del gancho para equilibrar el gancho que, por lo demás, esta excéntricamente compensado.

## Breve descripción de los dibujos

Para una comprensión más completa de la presente invención, se hace referencia a la siguiente descripción considerada junto con los dibujos adjuntos, en los cuales:

Las figuras 1a-b ilustran una punta de facoemulsificación con un extremo distal que está angulado con relación a la línea central del vástago de la punta;

La figura 2a ilustra una consola quirúrgica de facoemulsificación conectada a una pieza de mano a través de un conducto de irrigación y un conducto de aspiración, según una realización;

La figura 2b ilustra un cuerno ultrasónico sujeto a la punta en forma de gancho, según una realización;

Las figuras 3a-3b ilustran una forma de realización de la punta en forma de gancho;

La figura 4 ilustra el movimiento de la punta en forma de gancho, según una forma de realización;

60 La figura 5 ilustra una punta en forma de gancho insertada en una incisión del ojo, según una forma de realización; y

Las figuras 6a-c ilustran formas de realización adicionales de la punta en forma de gancho.

Debe entenderse que tanto la descripción general anterior como la descripción detallada siguiente son a modo de ejemplo y explicación solamente y están destinadas a proporcionar una explicación adicional de la presente invención según se reivindica.

#### Descripción detallada de las formas de realización

5

10

15

20

25

30

35

40

45

50

55

60

65

Las figuras 1a-b ilustran una punta de corte de facoemulsificación 100 con un extremo distal que está angulado con relación a un vástago 108 de la punta. La punta de corte 100 puede incluir un vástago 108 predominantemente recto, con la parte distal lejana doblada en un ángulo 102 (por ejemplo, aproximadamente un codo de 20 grados). Se contemplan también otros ángulos (por ejemplo, codo de 5 grados, codo de 35 grados, etc.). La parte distal puede tener un extremo distal acampanado y/o biselado. La punta de corte 100 puede utilizarse en conjunción con una pieza de mano de facoemulsificación 204 (por ejemplo, véase la figura 2). Cuando se utiliza con la pieza de mano 204, la punta de corte 100 puede utilizar un movimiento longitudinal y/o un movimiento transversal. La punta de corte 100 puede ser excéntricamente compensada con el material de la punta en solamente un lado de la línea central extendida 104 del vástago (debido al ángulo 102). Tal como aquí se utiliza, la expresión "línea central extendida del vástago" se refiere a una línea que incluye y es colineal con la línea central del vástago (como se ilustra en, por ejemplo, las figuras 1a y 3a). Por tanto, la punta de corte excéntricamente compensada puede tener un eje de rotación 106 que está desplazado respecto de la línea central extendida 104 del vástago 108 a lo largo de por lo menos una parte de la punta de corte 100 (por ejemplo, por lo menos a lo largo del 10% inferior de la longitud de la punta de corte 100). Se contemplan también otras partes de la longitud (por ejemplo, el eje de rotación 106 puede estar desplazado respecto de la línea central extendida 104 del vástago a lo largo de un 50% de la longitud o bien gradualmente sobre toda la longitud de la punta de corte 100). Por ejemplo, como se ve en la figura 3a, el eje de rotación 106 puede seguir un ángulo de aproximadamente 0 a 10 grados respecto del paralelismo con la línea central extendida 104 del vástago. Se contemplan también otros ángulos y configuraciones del eje de rotación 106 (por ejemplo, el eje de rotación 106 puede estar desplazada respecto de la línea central extendida 104 del vástago y ser paralelo a ésta). La rotación de la punta excéntricamente compensada y/o la resistencia del fluido contra la punta de corte móvil 100 pueden provocar vibraciones laterales en la punta de corte excéntricamente compensada 100 cuando se hace vibrar dicha punta de corte 100 (por ejemplo, rotacional y/o longitudinalmente) a través del vástago

La figura 2a ilustra una consola quirúrgica de facoemulsificación 214 conectada a una pieza de mano 204 a través de un conducto de irrigación 206 y un conducto de aspiración 208. En algunas formas de realización, puede suministrarse potencia a la pieza de mano 204 a través de un cable eléctrico 210 y el flujo a través de los conductos 206 y 208 puede ser controlado por un usuario (por ejemplo, a través de un interruptor de pedal 212) para realizar una intervención de facoemulsificación. Un ejemplo de una pieza de mano para una intervención de facoemulsificación se describe en la publicación de solicitud de patente U.S. titulada "Ultrasound handpiece", Nº. de publicación 2006/0041220, Nº. de serie 11/183.591 de Mikhail Boukhny, James Y. Chon y Ahmad Salehi, presentada el 18 de julio de 2005.

En algunas formas de realización, la pieza de mano 204 puede incluir por lo menos un conjunto de elementos piezoeléctricos 227 polarizados para producir un movimiento longitudinal cuando se le excita a una frecuencia resonante relevante. Como se ve en la figura 2b, los cristales piezoeléctricos 227 pueden conectarse a un cuerno ultrasónico 216 al que se sujeta una punta de corte 202. El cuerno 216 y/o la punta de corte 202 pueden incluir una pluralidad de ranuras o surcos diagonales 224. Las ranuras o surcos 224 pueden producir un movimiento torsional en la punta de corte 202 cuando los cristales piezoeléctricos se excitan a una frecuencia resonante. El movimiento de la punta de corte 202 provocado por el acoplamiento de los surcos 224 con elementos fijos de la pieza de mano 204 puede incluir una componente rotacional torsional con relación a un eje de rotación colineal con una línea central del cuerno 216.

En algunas formas de realización, la pieza de mano 204 puede acoplarse a una punta de corte de facoemulsificación 202. Como se ve en la figura 3a, la punta de corte de facoemulsificación 202 puede incluir un gancho 310 situado cerca de un ángulo 312 en un vástago 304 de la punta de corte 202. En algunas formas de realización, el gancho 310 puede incluir una curva, una protuberancia o una geometría de codo que puede actuar como contrapeso colocando material de la punta en un lado de la línea central extendida 316 del vástago opuesto al material de la punta angulada hacia fuera de la línea central extendida del vástago por debajo del ángulo 312. En algunas formas de realización, la punta de corte puede tener un diámetro en un rango de aproximadamente 0,5 mm a 2 mm (por ejemplo, 1,5 mm). En algunas formas de realización, la punta de corte puede tener una punta acampanada con un diámetro en la parte superior de la punta de aproximadamente 1,5 mm y un diámetro cerca de un extremo distal de la punta de 0,5 mm (se contemplan también otros diámetros y configuraciones). En una realización, la punta de corte 202 puede tener una longitud de aproximadamente 3,49 cm (1 y 3/8 pulgadas) con una longitud de la parte de gancho de aproximadamente 3,97 mm (5/32 pulgadas). Se contemplan también otras dimensiones. El gancho 310 puede actuar para mover un centro de rotación 306 a fin de colocarlo cerca (por ejemplo, dentro de una distancia 314 de 0,25 veces el diámetro del vástago) de una línea central extendida 316 del vástago o sobre la misma. Se contemplan también otras distancias entre el centro de rotación 306 y la línea central extendida 316 del vástago (por ejemplo, dentro de una distancia de 0,5 veces el diámetro del vástago, dentro de una distancia igual al diámetro del vástago, etc.). En algunas formas de realización, el movimiento de una parte superior de la punta de corte 100 puede constreñirse debido a su estrecha proximidad al cuerno que agarra la punta de corte 100 de tal manera que un eje de rotación de la parte superior de la punta de corte 100 pueda estar a lo largo de la línea central extendida 316 del vástago, mientras que un extremo distal de la punta de corte 100 (por ejemplo, a lo largo de

# ES 2 546 867 T3

aproximadamente un 10% de la longitud inferior de la punta de corte 100) puede estar distanciado de la línea central extendida 316 del vástago. En algunas formas de realización, puede haber un desplazamiento gradual del centro de rotación 306 con relación a la línea central extendida 316 del vástago desde la parte superior de la punta de corte 100 hasta la parte inferior de la punta de corte 100. Como se hace notar anteriormente, el gancho 310 puede mover de manera eficaz el centro de rotación 306 para que esté situado en la proximidad (por ejemplo, dentro de una distancia de 314 de 0,25 veces el diámetro del vástago) de la línea central extendida 316 del vástago en la parte inferior de la punta de corte 100 o sobre dicha línea central.

- El gancho 310 puede incluir diversas geometrías de ángulo, longitud o profundidad de codo variables, etc. (por ejemplo, véanse las figuras 3a y 6a-6c). La geometría del gancho 310 puede configurarse también para mover una línea a través del centro de masa de la punta y paralelamente a la línea central extendida de vástago de la punta de corte 202 acercándolo más a la línea central extendida 316 del vástago a fin de reducir el movimiento excéntrico (incluyendo las vibraciones laterales) en la punta de corte 202 durante los movimientos rotacional y/o longitudinal.
- En algunas formas de realización, la punta de corte 202 puede hacerse vibrar torsionalmente de forma ultrasónica a lo largo de un pequeño arco (por ejemplo, +/- 5 grados). Las vibraciones torsionales de la punta de corte 202 pueden dar como resultado movimientos laterales en el vástago 304 y la punta de corte 202. El movimiento de latigazo puede incluir un movimiento torsional lado a lado de la punta de corte 202 perpendicular a la línea central extendida 316 del vástago (por ejemplo, rotación alrededor del eje y como se ve en la figura 3a). En algunas formas de realización, las vibraciones laterales (por ejemplo, lado a lado a lo largo del eje x o el eje z como se ve en la figura 3a) que resultan de la punta de corte excéntricamente compensada y/o la resistencia del fluido contra la rotación torsional de vaivén alrededor del eje y (por ejemplo, la punta de corte 100 en la figura 1a) pueden reducirse mediante el uso del gancho 310 para equilibrar el gancho que, por lo demás, está excéntricamente compensado.
- Como se ve en la figura 4, en algunas formas de realización la punta de corte 202 puede girar torsionalmente en vaivén a lo largo de aproximadamente un arco de 10 grados (por ejemplo, más o menos 5 grados con respecto al centro (véase el diagrama central 2)). En algunas formas de realización, la punta de corte 202 puede girar en vaivén a un ritmo de aproximadamente 31 kHz. Se contemplan también otros arcos y ritmos. Por ejemplo, puede utilizarse un arco de más o menos 20 grados y/o un ritmo de 10-60 kHz. El arco mostrado en la figura 4 ha sido exagerado para mostrar el movimiento (es decir, el arco total mostrado es de 180 grados, mientras que la punta de corte puede tener una rotación en vaivén limitada en un arco de 10 grados).

35

40

45

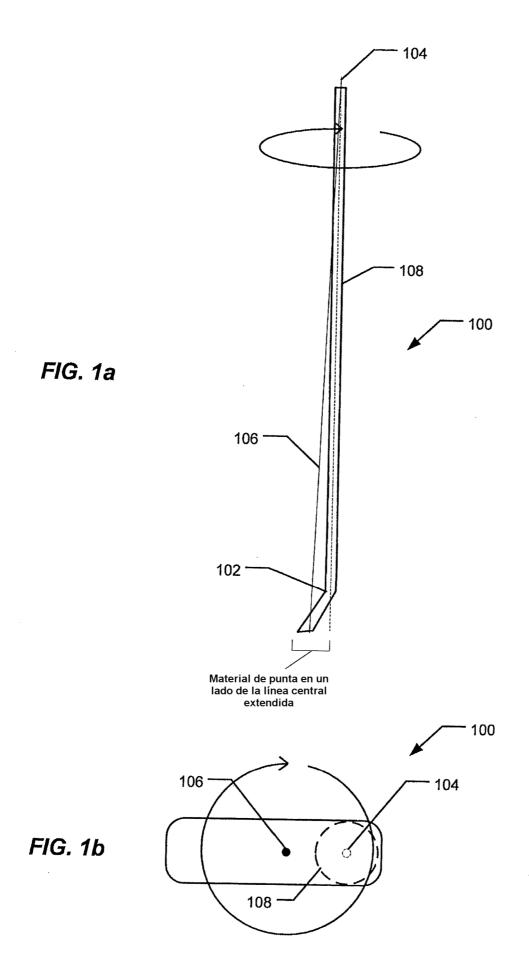
50

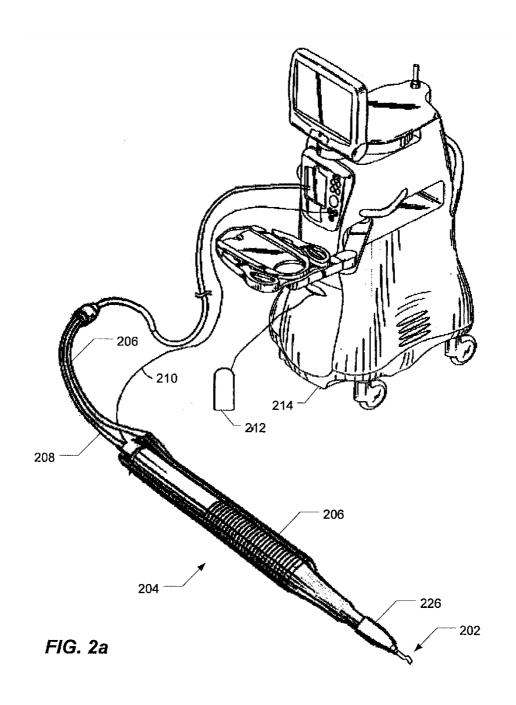
55

60

- Como se ve en la figura 5, cuando se utiliza la punta de corte para realizar una facoemulsificación, los extremos de la punta de corte 202 y un manguito de irrigación 226 pueden insertarse en una pequeña incisión en la córnea 501, la esclerótica 507 u otra localización en el tejido ocular para tener acceso a, por ejemplo, la cámara anterior 503 del ojo 509. En diversas formas de realización, una parte de la punta de corte 202 o la totalidad de ésta pueden estar dentro del manguito de irrigación 226. La punta de corte 202 puede hacerse vibrar ultrasónicamente de manera torsional a lo largo de su eje longitudinal dentro del manguito de irrigación 226 por un cuerno ultrasónico 216 accionado por cristal, emulsificando así por contacto el tejido seleccionado in situ. El ánima hueca de la punta de corte 202 puede comunicarse con el ánima del cuerno que, a su vez, puede comunicarse con el conducto de aspiración que va de la pieza de mano 204 a la consola 214 (por ejemplo, véase la figura 2a). Una fuente de presión o vacío reducido en la consola 214 puede extraer o aspirar el tejido emulsificado del ojo 509 a través de un extremo abierto de la punta de corte 202, el ánima de la punta de corte 202, el ánima del cuerno y el conducto de aspiración 208 y hacia un dispositivo de recogida. La aspiración de tejido emulsificado puede ser ayudada por una solución o irrigante de lavado salino que puede inyectarse en el sitio quirúrgico a través del pequeño intersticio anular entre la superficie interior del manguito irrigante 226 y una superficie exterior de la punta de corte 202.
  - La punta de corte 202 puede hacerse de acero inoxidable o titanio (pueden utilizarse también otros materiales). La punta de corte 202 puede tener una longitud total de entre 1,27 cm (0,50 pulgadas) y 3,81 cm (por ejemplo, 3,05 cm) (1,50 pulgadas (por ejemplo, 1,20 pulgadas)). Se contemplan también otras longitudes. La punta de corte 202 puede formarse utilizando una tecnología de metalurgia convencional y puede electropulirse. El vástago 304 puede ser generalmente tubular con un diámetro exterior de entre 0,013 cm y 0,25 cm (0,005 pulgadas y 0,100 pulgadas) y un diámetro interior de entre 0,0025 cm y 0,2286 cm (0,001 pulgadas y 0,090 pulgadas) (se contemplan también otros diámetros).

Pueden realizarse diversas modificaciones a las formas de realización presentadas por un experto ordinario en la materia. Otras formas de realización de la presente invención serán también evidentes para los expertos en la materia a partir de la consideración de la presente memoria y la práctica de la presente invención aquí descrita. Se pretende que la presente memoria y los ejemplos sean considerados únicamente como una ejemplificación, indicándose el verdadero alcance de la invención por las siguientes reivindicaciones.


## REIVINDICACIONES


- 1. Pieza de mano quirúrgica de facoemulsificación (204), que comprende:
- 5 una punta de corte;

15

un cuerno configurado para hacer vibrar torsionalmente la punta de corte a un ritmo de entre aproximadamente 10 y 60 kHz; comprendiendo la punta de corte (202):

- una primera parte que comprende un vástago recto (304), que comprende una parte proximal de la longitud de la punta de corte fijada en el cuerno de la pieza de mano quirúrgica, presentando el vástago recto una línea central;
  - una segunda parte que forma un ángulo (312) con la primera parte;
  - una tercera parte distal que forma un gancho (310), que define un extremo distal de la punta;
  - estando la primera parte, la segunda parte y la tercera parte comprendidas en una única pieza;
- estando el movimiento de la parte proximal de la punta de corte constreñido debido a su estrecha proximidad con el cuerno que agarra la punta de corte de tal manera que un eje de rotación de la parte proximal esté situado a lo largo de la línea central extendida (316) del vástago;
- caracterizada por que el extremo distal del gancho (310) está enteramente dispuesto en un lado de la línea central extendida del vástago y por lo menos una parte del gancho está dispuesta en un lado opuesto de la línea central, estando el gancho (310) configurado para mover de manera eficaz una línea a través del centro de masa de la punta de corte y paralelamente a la línea central extendida del vástago con el fin de que se sitúe en la proximidad de la línea central extendida (316) del vástago para reducir el movimiento excéntrico en la punta de corte durante los movimientos rotacional y/o longitudinal.
  - 2. Punta de corte según la reivindicación 1, en la que la línea a través del centro de masa de la punta y paralela a la línea central extendida del vástago en el extremo distal de la punta está decalada con respecto a la línea central extendida (316) del vástago en una distancia (314) inferior a 0,25 veces el diámetro del vástago.
- 35 3. Punta de corte según la reivindicación 1, en la que la línea a través del centro de masa de la punta y paralela a la línea central extendida del vástago en el extremo distal de la punta está decalada con respecto a la línea central extendida (316) del vástago en una distancia (314) inferior a 0,5 veces el diámetro del vástago.
- 4. Punta de corte según la reivindicación 1, en la que la punta de corte (202) está configurada para hacerla vibrar torsionalmente en vaivén entre aproximadamente más 5 grados y menos 5 grados.
  - 5. Punta de corte (202) según la reivindicación 1, en la que la punta de corte está configurada para hacerla girar torsionalmente en vaivén sobre un eje que es paralelo a la línea central extendida del vástago.
- 45 6. Punta de corte según la reivindicación 1, en la que el ángulo entre la línea central extendida (316) del vástago y la línea (306) que conecta el extremo proximal de la punta de corte y su centro de masa está en un intervalo comprendido entre 0 y 5 grados.
- 7. Punta de corte según la reivindicación 1, en la que la segunda parte y la tercera parte de la punta de corte (202) son aproximadamente un 10% de una longitud de la punta de corte.
  - 8. Punta de corte según la reivindicación 5, en la que el gancho (310) tiene una configuración en "W".





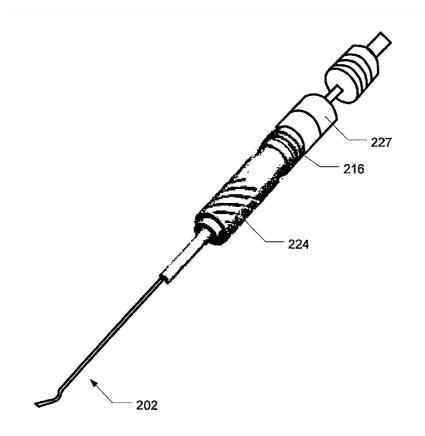
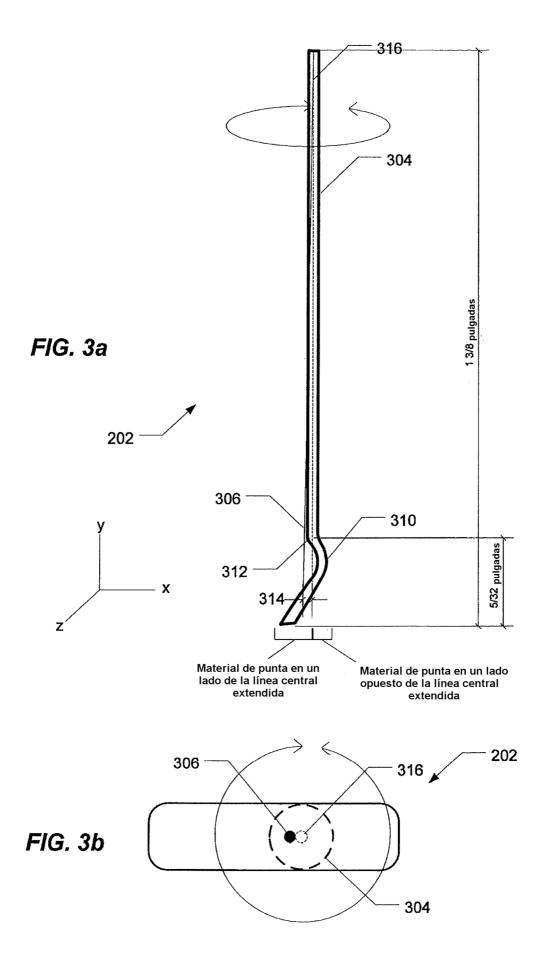
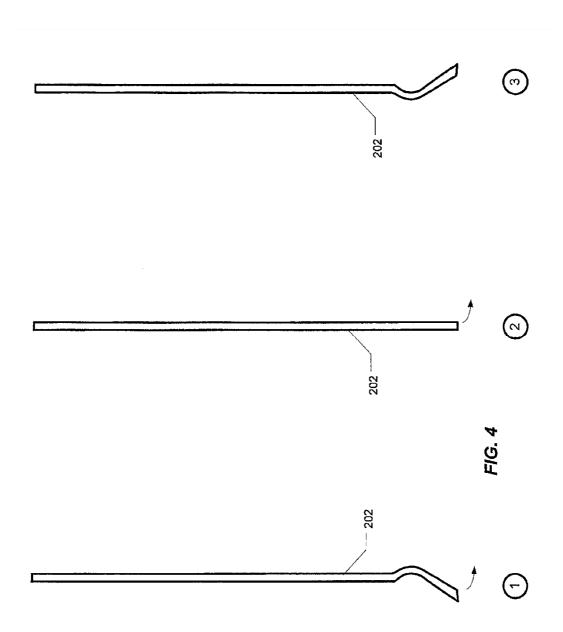





FIG. 2b





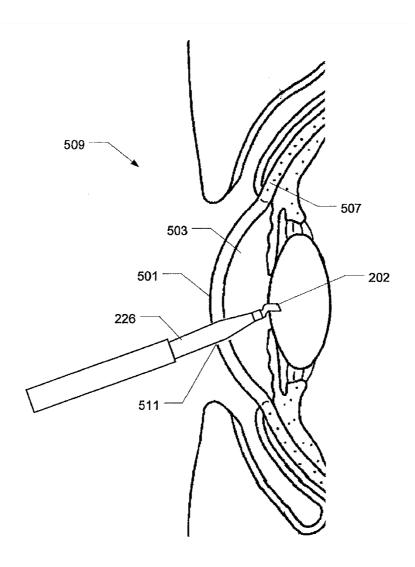
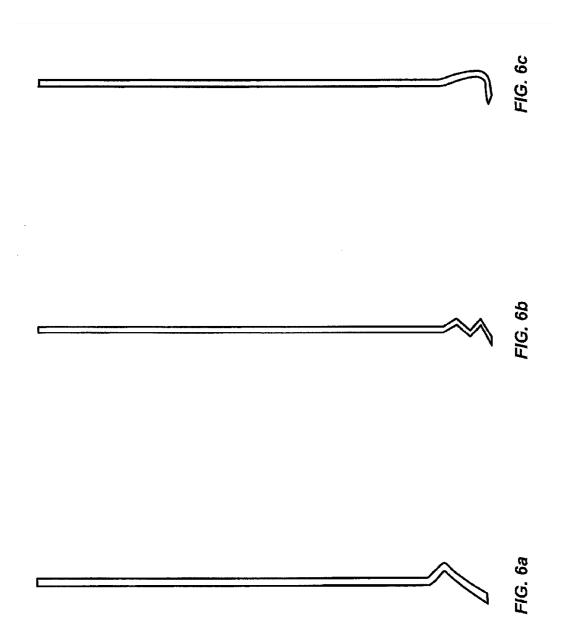




FIG. 5

