

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 547 230

51 Int. Cl.:

C07K 16/18 (2006.01) A61K 39/00 (2006.01) C07K 16/28 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 17.10.2008 E 08839961 (3)
 (97) Fecha y número de publicación de la concesión europea: 22.04.2015 EP 2207565
- (54) Título: Régimen dependiente de inmunoterapia en estado ApoE
- (30) Prioridad:

17.10.2007 US 999423 P 25.07.2008 US 83827 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **02.10.2015**

73) Titular/es:

JANSSEN SCIENCES IRELAND UC (50.0%) Eastgate Village, Eastgate Little Island, County Cork, IE y WYETH LLC (50.0%)

(72) Inventor/es:

BLACK, RONALD; EKMAN, LARS; LIEBERBURG, IVAN; GRUNDMAN, MICHAEL; CALLAWAY, JAMES; GREGG, KEITH M.; JACOBSEN, JACK STEVEN; GILL, DAVINDER; TCHISTIAKOVA, LIOUDMILA Y WIDOM, ANGELA

(74) Agente/Representante:

IZQUIERDO BLANCO, María Alicia

Régimen dependiente de inmunoterapia en estado ApoE

Descripción

35

40

45

50

55

60

65

5 ANTECEDENTES DEL INVENTO

General

[0001] La enfermedad de Alzheimer (AD - Alzheimer's disease) es una enfermedad progresiva que resulta en 10 demencia senil. Refiérase, en general, a Selkoe, TINS 16:403 (1993); Hardy et al., WO 92/13069; Selkoe, J. Neuropathol. Exp. Neurol. 53:438 (1994); Duff et al., Nature (Naturaleza) 373:476 (1995); Games et al., Nature (Naturaleza) 373:523 (1995). En general, la enfermedad es clasificada dentro de dos categorías: de inicio tardío, que ocurre en edades avanzadas (65 años o más) y de inicio temprano, que se desarrolla mucho antes del periodo senil, es decir, entre 35 y 60 años. En ambos tipos de enfermedad, la patología es la misma pero las anormalidades 15 tienden a ser más severas y amplias en los casos que empiezan en una edad temprana. La enfermedad es caracterizada por al menos 2 tipos de lesiones en el cerebro, ovillos neurofibrilares y placas seniles. Ovillos neurofibrilares son depósitos intracelulares de proteínas tau asociadas con micro túbulos que consisten de dos filamentos torcidos entre sí en parejas. Las placas seniles (es decir, placas amiloides) son áreas de neuropilas desorganizadas de hasta 150 µm de largo con depósitos amiloides extracelulares en el centro que son visibles por 20 medio del análisis microscópico de secciones del tejido cerebral. La acumulación de placas amiloides dentro del cerebro también se asocia con el síndrome de Down y otros desórdenes cognitivos.

[0002] El constituyente principal de las placas es un péptido denominado Aβ o péptido amiloide β. El péptido Aβ es un fragmento interno 4-kDa de 39-43 aminoácidos de una glicoproteína transmembranosa denominada proteína precursora amiloide (APP - amyloid precursor protein). Como un resultado del procesamiento proteolítico de APP por diferentes enzimas secretasas, Aβ es encontrada principalmente en una forma corta, con una longitud de 40 aminoácidos, y en una forma larga, variando desde 42 a 43 aminoácidos de largo. Parte del dominio de transmembranas hidrofóbicas de APP se encuentra en el extremo carboxi de Aβ, y podría explicar la capacidad de Aβ para aglutinarse en placas, particularmente en el caso de la forma larga. La acumulación de placas amiloides en el cerebro, eventualmente conlleva a la muerte de las células neuronales. Los síntomas físicos asociados con este tipo de deterioración neural caracterizan a la enfermedad de Alzheimer.

[0003] Algunas mutaciones dentro de la proteína APP han sido correlacionadas con la presencia de la enfermedad de Azlheimer. Refiérase, por ejemplo, a Goate et al., Nature (Naturaleza) 349:704 (1991) (valina717 a isoleucina); Chartier Harlan et al., Nature (Naturaleza) 353:844 (1991)) (valina717 a glicina); Murrell et al., Science (Ciencia) 254:97 (1991) (valina717 a fenilalanina); Mullan et al., Nature Genet. 1:345 (1992) (un cambio de mutación doble lisina596-metionina596 a asparagina595-leucina596). Se piensa que tales mutaciones causan la enfermedad de Alzheimer por medio de un procesamiento incrementado o alterado de APP a Aß, particularmente el procesamiento de APP a montos incrementados de la forma larga de Aβ (es decir, Aβ1-42 y Aβ1-43). Se piensa que las mutaciones en otros genes, tales como los genes de presenilina, PS1 y PS2, afectan indirectamente al procesamiento de APP para generar montos incrementados de la forma larga de Aβ (refiérase a Hardy, TINS 20: 154 (1997)). WO-A-2006/083689 describe formulaciones para mantener la estabilidad de los polipéptidos que enlazan a Aβ, por ejemplo, anticuerpos Aß. Ejemplos de formulaciones incluyen un agente de tonicidad tal como manitol y un agente amortiguador o aminoácido tal como la histidina. Otros ejemplos de formulaciones incluyen a antioxidantes en un monto suficiente para inhibir la formación de productos derivados, por ejemplo, la formación de aglutinaciones de polipéptidos de masa molecular alta, fragmentos de degradaciones de polipéptidos de masa molecular baja y sus mezclas. El anticuerpo 3D6 depositado en el ATCC con el número de depósito PTA-5130 es presentado. WO-A-2006-034653 presenta anticuerpos anti-5T4 quiméricos y humanizados y conjugaciones anticuerpo / medicamento y los métodos para preparar y usarlos. US5,624,821 describe un anticuerpo modificado de la clase IqG en la cual por lo menos un residuo de aminoácidos en la porción constante es reemplazado por un residuo diferente, alterando una función ejecutora del anticuerpo en comparación de un anticuerpo no modificado.

[0004] La Apolipoproteína E (ApoE) codifica una proteína de procesamiento del colesterol. El gen, que mapea a 19q13.2, tienen tres variantes alélicas: ApoE4, ApoE3, y ApoE2. La frecuencia de la versión apoE4 del gen en la población general varía, pero siempre es inferior al 30% y frecuentemente es del 8%-15%. ApoE3 es la forma más común y ApoE2 es la forma menos común. Personas con un alelo E4 usualmente tienen alrededor de dos o tres veces más el riesgo de desarrollar la enfermedad de Alzheimer. Las personas con dos alelos E4 (usualmente alrededor del 1% de la población) tienen un riesgo de alrededor de nueve veces más. Sin embargo, hasta personas con dos alelos E4 no siempre tienen la enfermedad de Alzheimer. Por lo menos un alelo E4 se encuentra en alrededor del 40% de los pacientes con la enfermedad de Alzheimer de inicio tardío. La examinación genética para E4 no se ha realizado rutinariamente, porque no se ha conocido como utilizar esta información para un régimen terapéutico.

RESUMEN DEL INVENTO DECLARADO

[0005] El invento suministra un anticuerpo tal como se definió en la declaración 1. En una sección, este anticuerpo

es para el uso en un método para tratar la enfermedad de Alzheimer, que comprende la administración a un paciente que tiene cero alelos ApoE4 ("paciente no portador de ApoE4") y la enfermedad de Alzheimer con un régimen efectivo del anticuerpo. Opcionalmente, las dosis son administradas cada cuatro a 16 semanas. Opcionalmente, las dosis son administradas cada 10 a 14 semanas. Opcionalmente, las dosis son administradas cada 13 semanas. Opcionalmente, las dosis son de alrededor de 0.5 miligramos/kilogramo a 2 mg/kilogramo. Opcionalmente, la dosis es de alrededor de 2 mg/kilogramo. Opcionalmente, el método también involucra el monitoreo de enemas vasogénicos, y opcionalmente la administración de un corticosteroide al paciente para tratar el edema vasogénico detectado por el monitoreo.

- 10 [0006] El anticuerpo de la declaración uno también es para el uso en un método para tratar la enfermedad de Alzheimer, que comprende la administración subcutánea a un paciente que tiene la enfermedad y una o dos copias de un alelo ApoE4 de un régimen efectivo del anticuerpo. Opcionalmente, el método también comprende el monitoreo de enemas vasogénicos. Opcionalmente, el anticuerpo es administrado con una dosis de 0.15-1 mg/kilogramo.
 - [0007] El número de copias de ApoE4 puede ser utilizado en la selección de diferentes regímenes para el tratamiento o la profilaxis de una enfermedad caracterizada por depósitos amiloides en el cerebro del paciente.
- [0008] El invento suministra una forma humanizada de un anticuerpo 3D6 que comprende una región constante de una cadena pesada humana con mutaciones L234A, L235A y G237A, donde las posiciones son enumeradas por medio de un sistema de numeración EU. Él hibridoma 3D6 fue depositado con el ATCC el 8 de abril de 2003 y se le asignó el número de acceso PTA-5130. El ATCC está ubicado en 10801 University Blvd., Manassas, VA 20110. Opcionalmente, el isótopo es IgG1, IgG2 o IgG4 humano, preferiblemente IgG1. Él hibridoma 3D6 fue depositado con el ATCC el 8 de abril de 2003.
 - [0009] Este invento suministra además un anticuerpo humanizado aislado que comprende una secuencia de una región variable de una cadena ligera de la IDENTIFICACIÓN SECUENCIAL NÚMERO: 2 y una secuencia de una región variable de una cadena pesada madura de la IDENTIFICACIÓN SECUENCIAL NÚMERO: 3, y una región constante de una cadena pesada humana del isotipo IgG con las mutaciones L234A, L235A, y G237A, donde las posiciones son numeradas por el sistema de numeración EU. Opcionalmente, el isotipo es el isotipo IgG1 humano.
- [0010] El invento también suministra un método de tratamiento o para ejecutar una profilaxis de una enfermedad caracterizada por depósitos Aβ en el cerebro del paciente que comprende la administración de un régimen efectivo del anticuerpo humanizado al paciente; donde el anticuerpo humanizado opcionalmente comprende una secuencia de una región variable de una cadena ligera madura de la IDENTIFICACIÓN SECUENCIAL NÚMERO: 2 y una secuencia de una región variable de una cadena pesada madura de la IDENTIFICACIÓN SECUENCIAL NÚMERO: 3, y una constante de una cadena pesada humana del isotipo IgG1. Opcionalmente, el paciente tiene por lo menos un alelo ApoE4. Opcionalmente la dosis es de 0.15-1 mg/kilogramo. Opcionalmente, la dosis es de 0.15-2 mg/kilogramo. Opcionalmente el método también comprende el monitoreo del paciente por medio de MRI para detectar edemas vasogénicos.
- [0011] El anticuerpo opcionalmente comprende una región constante de cadena pesada humana del isotipo IgG1, donde los aminoácidos en las posiciones 234, 235 y 237 (numeración EU) son todos alanina. Opcionalmente, ningún otro aminoácido de las posiciones 230-240 o 315-325 en la región constante de cadena pesada humana son ocupadas por ningún aminoácido no natural encontrado en esa posición en una región constante IgG1 humana. Opcionalmente, ningún aminoácido en la región constante de cadena pesada humana aparte de los ubicados en las posiciones 234, 235 y 237 es ocupado por un aminoácido que no se encuentra naturalmente en esa posición en una región humana IgG1. Opcionalmente, la región constante de cadena pesada humana comprende las regiones CH1, charnela, CH2 y CH3. Opcionalmente, la región constante de cadena pesada humana tiene una secuencia de aminoácidos que comprende a la IDENTIFICACIÓN SECUENCIAL NÚMERO: 66 o a la IDENTIFICACIÓN SECUENCIAL NÚMERO: 67 o un alotipo de cualquiera de estas secuencias. Opcionalmente, la región constante de cadena pesada humana tiene una secuencia de aminoácidos que comprende a la IDENTIFICACIÓN SECUENCIAL NÚMERO: 66 o a la IDENTIFICACIÓN SECUENCIAL NÚMERO: 67.

55 DESCRIPCIÓN BREVE DE LAS FIGURAS

[0012]

5

15

- La figura 1 muestra cambios en ADAS-Cog, DAD, NTB y CDR-SB en pacientes tratados en relación a los pacientes placebo utilizando un modelo estadístico de medidas repetidas sin la premisa de linealidad. Las barras sobre cero indican una mejora relativa en comparación con el placebo. MITT (modified intent to treat) = intención modificada para tratar.
- La figura 2 muestra cambios en ADAS-Cog, DAD, NTB y CDR-SB en pacientes que fueron tratados que completaron los ensayos ("terminadores") en relación a los pacientes placebo utilizando un modelo estadístico de medidas repetidas sin la premisa de linealidad. Las barras sobre cero indican una mejora

	relativa en comparación con el placebo.
5	La figura 3 muestra cambios en ADAS-Cog, DAD, NTB y CDR-SB en pacientes tratados portadores de ApoE4 en relación a los pacientes placebo utilizando un modelo estadístico de medidas repetidas sin la premisa de linealidad. Las barras sobre cero indican una mejora relativa en comparación con el placebo.
10	La figura 4 muestra cambios en ADAS-Cog, DAD, NTB y CDR-SB en pacientes tratados portadores de ApoE4 quienes completaron el ensayo relativo a los pacientes placebo utilizando un modelo estadístico con medidas repetidas sin la premisa de linealidad. Las barras sobre cero indican la mejora relativa en comparación del placebo.
15	La figura 5 muestra cambios en ADAS-Cog, DAD, NTB y CDR-SB en pacientes tratados no portadores de ApoE4 en comparación con pacientes placebo utilizando un modelo estadístico con medidas repetidas sin la premisa de linealidad. Las barras sobre cero indican la mejora relativa en comparación del placebo.
15	La figura 6 suministra información similar a la figura 5 excepto que la figura 6 muestra cambios basados en la escala MMSE en comparación del placebo.
20	La figura 7 muestra cambios en ADAS-Cog, DAD, NTB y CDR-SB en pacientes tratados no portadores de ApoE4 que completaron el ensayo en relación con los pacientes placebo utilizando un modelo estadístico con medidas repetidas sin la premisa de linealidad. Las barras sobre cero indican las mejoras en relación al placebo.
25	La figura 8 muestra una información similar a la figura 7 excepto que la figura ocho muestra cambios basados en la escala MMSE en relación al placebo.
	La figura 9 muestra cambios en ADAS-cog, DAS, NTB y CDR-SB durante el paso del tiempo en pacientes tratados en comparación con el placebo en una población no portadora de ApoE4.
30	Las figuras 10, 11 y 12 muestran cambios en BBSI en la población general (portadores y no portadores de ApoE4), los portadores ApoE4 y los no portadores de ApoE4 respectivamente en comparación con las poblaciones placebo.
35	La figura 13 muestra la concentración CSF de fosfo-tau en pacientes tratados en comparación con los pacientes placebo (sin distinguir entre los genotipos ApoE4).
	La figura 14 muestra cambios en la concentración sérica de bapineuzuab en el suero durante el tiempo (izquierda) y la concentración de $A\beta$ en el plasma durante el tiempo.
40	La figura 15 muestra una alineación de los dominios CH2 del IgG1 humano (IDENTIFICACIÓN SECUENCIAL NÚMERO: 95), IgG2 (IDENTIFICACIÓN SECUENCIAL NÚMERO: 96) e IgG4 (IDENTIFICACIÓN SECUENCIAL NÚMERO: 97) con IgG1 de ratón (IDENTIFICACIÓN SECUENCIAL NÚMERO: 98) e IgG2a (IDENTIFICACIÓN SECUENCIAL NÚMERO: 99).
45	La figura 16 muestra una clarificación de placa Aβ por microglía de ratón de los derivados IgG2a de 3D6 murinos. MsIgG1 y MsIgG2a son anticuerpos murinos en contra de antígenos irrelevantes. Los anticuerpos 3D6 tienen la región variable aquí descrita. 3D6/FcγR1 indica la mutación E233P individual en la región de vinculación Fc de la región constante IgG1. 3D6/C1q indica a la mutación triple en la región de vinculación C1q. Refiérase, por ejemplo, al ejemplo seis y a la tabla 10.
50	La figura 17 muestra una clarificación de placa Aβ por microglía de ratón de los derivados IgG2a de 3D6 murinos. IgG2a es un anticuerpo murino en contra de un antígeno irrelevante. Los anticuerpos restantes y las condiciones son descritas, por ejemplo, en el ejemplo seis y la tabla 10.
55	La figura 18 muestra una clarificación de placa Aβ por microglía de ratón de los derivados 3D6 humanizados (AAB). Los anticuerpos y las condiciones se describen por ejemplo, en el ejemplo seis y en la tabla 10.
60	La figura 19 muestra los resultados de un ensayo in vitro que mide la inmersión de esferas cubiertas con IgG murino por células microgliales de ratón. Las condiciones son descritas en el ejemplo seis.
	La figura 20 muestra un ensayo similar utilizando los anticuerpos humanizados indicados. Las condiciones son descritas en el ejemplo seis.
65	La figura 21 muestra los resultados de un ensayo ELISA midiendo la vinculación C1q por los anticuerpos humanizados indicados. Refiérase al ejemplo siete.

La figura 22 muestra los resultados de un ensayo de citotoxicidad de complemento dependiente de un anticuerpo utilizando los anticuerpos humanizados indicados. Los resultados son expresados tal como se describe en el ejemplo siete.

5

La figura 23 muestra los resultados de un ensayo ELISA que mide la vinculación C1q por los anticuerpos murinos indicados. Refiérase al ejemplo ocho.

10

Las figuras 24-25 muestran los resultados de un ensayo de miedo contextual en ratones tratados con los anticuerpos humanizados indicados. Los resultados son comparados entre ratones de tipo silvestre y Tg2576, tal como se describe en el ejemplo nueve.

1

La figura 26 muestra los resultados de las actividades ADCC de anticuerpos anti – Lewis Y Ab02. Refiérase al ejemplo 15.

15

La figura 27 muestra los resultados de las actividades CDC (citotoxicidad dependiente complementaria) de los anticuerpos anti-Lewis Y Ab02. Refiérase al ejemplo 15.

DEFINICIONES

20

25

30

35

[0013] El término "inmunoglobulina" o "anticuerpos" (utilizado intercambiablemente en este documento) se refiere a una proteína que vincula a un antígeno que tiene una estructura básica de cadena de cuatro polipéptidos que consiste de dos cadenas pesadas y dos ligeras, siendo las cadenas mencionadas estabilizadas, por ejemplo, por enlaces de bisulfuro intercatenarios, que tiene la habilidad de vincular específicamente a un antígeno. Cadenas pesadas y ligeras son plegadas en dominios. El término "dominio" se refiere a una región globular de un polipéptido de cadenas pesadas o ligeras que comprende circuitos de péptidos (por ejemplo, que contienen entre tres a cuatro circuitos péptidos) estabilizados, por ejemplo, por un enlace de una lámina plisada y / o disulfato Intercatenario. Los dominios son denominados en este documento como "constantes" o "variables", basándose en la falta relativa de variación secuencial dentro de los dominios de varios miembros de la clase en el caso de un dominio "constante", o variación importante dentro de los dominios de varios miembros de la clase en el caso de un dominio "variable". Los dominios "constantes" en la cadena ligera son denominados intercambiablemente cómo "regiones constantes de cadenas ligeras", "dominios constantes de cadenas ligeras", regiones "CL" o dominios "CL"). Los dominios "constantes" en la cadena pesada se denominan intercambiablemente cómo "regiones constantes de cadenas pesadas", "dominios constantes de cadenas pesadas", regiones "CH" o dominios "CH"). Una región constante de cadenas pesadas también se entiende que se refiere colectivamente a los dominios presentes en una región constante de longitud completa, que son dominios CH1, charmela, CH2 y CH3 en el caso de anticuerpos del isotipo IgG. Los dominios "variables" en las cadenas ligeras se denominan intercambiablemente como "regiones variables de cadenas ligeras", "dominios variables de cadenas ligeras", regiones "VL" o dominios "VL"). Los dominios "variables" en la cadena pesada son denominados intercambiablemente como "regiones constantes de cadenas pesadas", "dominios constantes de cadenas pesadas", regiones "CH" o dominios "CH").

40

[0014] El término "región" se refiere a una parte o porción de una cadena de anticuerpos e incluye dominios constantes o variables tal como se define en este documento, así como partes o porciones más discretas de aquellos. Por ejemplo, los dominios o regiones variables de cadenas ligeras incluyen "regiones determinantes complementarias" o "CDRs (complementarity determining regions)" intercaladas entre "regiones del marco de trabajo" o "FRs (framework regions)" tal como se define en este documento.

50

45

[0015] Las referencias a un anticuerpo o inmunoglobulina incluyen anticuerpos intactos y sus fragmentos de enlace. Típicamente, los fragmentos compiten con los anticuerpos intactos de los cuales estos se derivaron para un enlace específico a un antígeno. Los fragmentos incluyen cadenas separadas pesadas y ligeras, Fab, Fab' F(ab')2, Fabc, y Fv. Las cadenas separadas incluyen NANOBODIES™ (es decir, fragmentos VH aislados de las cadenas pesadas de anticuerpos de camellos o llamas, humanizados opcionalmente). Los fragmentos VH aislados también pueden ser obtenidos de otras fuentes, tales como anticuerpos humanos. Los fragmentos son producidos por medio de técnicas recombinantes de ADN, o por separación enzimática o química de inmunoglobulinas intactas. El término "anticuerpos" también incluye una o más cadenas de inmunoglobulinas que están conjugadas químicamente a, o están expresadas como, proteínas de fusión con otras proteínas. El término "anticuerpo" también incluye anticuerpos biespecíficos. Un anticuerpo biespecífico o bifuncional es un anticuerpo híbrido artificial que tiene dos parejas diferentes de cadenas pesadas/ligeras y dos lugares de vinculación diferentes. Los anticuerpos biespecíficos pueden ser producidos por una variedad de métodos incluyendo la fusión de hibridomas o el enlace de fragmentos Fab'. (Referirse a, por ejemplo, Songsivilai & Lachmann, Clin. Exp. Immunol. 79:315-321 (1990); Kostelny et al., J. Immunol. 148, 1547-1553 (1992).).

60

65

55

[0016] El "enlace específico" de un anticuerpo significa que el anticuerpo exhibe una afinidad apreciable para un antígeno o un epítope preferido y, preferiblemente, no exhibe una reactividad transversal significativa. Un enlace apreciable o preferido incluye el enlace con una afinidad de por lo menos 106, 107, 108, 109 M-1, o 1010 M-1. Afinidades mayores a 107 M-1, preferiblemente mayores a 108 M-1. Valores intermedios de aquellos aquí

establecidos tiene la intención de estar dentro del alcance de este invento y una afinidad de enlace preferida puede ser indicada homo un rango de afinidades, por ejemplo, 106 a 1010 M-1, preferiblemente 107 a 1010 M-1, más preferiblemente 108 a 1010 M-1. Un anticuerpo que "no exhibe reactividad transversal significativa" es uno que no se enlaza apreciablemente a una entidad no deseable (por ejemplo, una entidad proteínica no deseable). Por ejemplo, un anticuerpo que enlaza específicamente a $A\beta$ enlazará apreciablemente a $A\beta$ pero no reaccionara significativamente con proteínas o péptidos que no sean $A\beta$ (por ejemplo, las proteínas o péptidos no $A\beta$ incluidos en placas). Un anticuerpo específico para un epítope preferido, por ejemplo, no reaccionara de una forma significativa transversalmente con epítopes remotos en la misma proteína o péptido. Un enlace específico puede ser determinado de acuerdo a cualquier medio reconocido en la industria para determinar aquel enlace. Preferiblemente, el enlace específico es determinado de acuerdo al análisis Scatchard y/o ensayos de enlaces competitivos.

5

10

15

20

25

45

50

55

60

65

[0017] El término "inmunoglobulina humanizada" o "anticuerpo humanizado" se refiere a una inmunoglobulina o anticuerpo que incluye por lo menos una cadena de inmunoglobulina o anticuerpo humanizada (es decir, por lo menos una cadena humanizada ligera o pesada). El término "cadena de inmunoglobulina humanizada" o "cadena de anticuerpos humanizada" (es decir, una "cadena ligera de inmunoglobulina humanizada" o "cadena pesada de inmunoglobulina humanizada") se refiere a una cadena de inmunoglobulina o anticuerpo (es decir, una cadena ligera o pesada, respectivamente) que tiene una región variable que incluye una región variable de marco de trabajo (también conocida como un marco de trabajo de región variable (sustancialmente de una inmunoglobulina o anticuerpo humano y regiones de determinación complementarias (CDRs - complementarity determining regions) (es decir, por lo menos un CDR, preferiblemente por lo menos dos CDRs, y más preferiblemente por lo menos 3 CDRs) sustancialmente de una inmunoglobulina o anticuerpo no humano (por ejemplo, roedor y opcionalmente, un ratón), y además incluye regiones constantes (por ejemplo, por lo menos una región constante o su porción, en el caso de una cadena ligera, y preferiblemente tres regiones constantes en el caso de una cadena pesada. El término "región variable humanizada" (por ejemplo, "región variable de cadenas ligeras humanizada" o "región variable de cadenas pesadas humanizada") se refiere a una región variable que incluye una región de marco de trabajo variable (también denominado como un marco de trabajo de región variable) sustancialmente de una inmunoglobulina o anticuerpo humano y regiones determinantes complementarias (CDRs) sustancialmente de una inmunoglobulina o anticuerpo no humano.

[0018] La frase "sustancialmente de una inmunoglobulina o anticuerpo humanos" o "sustancialmente humano" significa que, cuando se alinea a una inmunoglobulina o secuencia de aminoácidos de anticuerpos humanos para propósitos de comparación, la región comparte por lo menos de un 80-90% (por ejemplo, por lo menos el 90%), preferiblemente de un 90-95%, más preferiblemente de un 95-99% de identidad (es decir, la identidad secuencial local) con la secuencia del marco de trabajo o región constante humanas, permitiendo, por ejemplo, sustituciones conservadoras, sustituciones de consenso, sustituciones germinales, retro mutaciones, y similares. La introducción de sustituciones conservadoras, sustituciones secuenciales de consenso, sustituciones germinales, retro mutaciones y similares, se denomina a menudo como "optimización" de un anticuerpo o cadena humanizados. La frase "sustancialmente de una inmunoglobulina o anticuerpos no humanos" o "sustancialmente no humano" significa el tener una secuencia de inmunoglobulina o anticuerpos de por lo -80-95%, preferiblemente 90-95%, y más preferiblemente, 96%, 97%, 98% o 99% idéntica a aquella de un organismo no humano, por ejemplo, un mamífero no humano.

[0019] Asimismo, todas las regiones o residuos de una inmunoglobulina o anticuerpo humanizados, o de una cadena de inmunoglobulina o anticuerpo humanizados, excepto posiblemente los CDRs, son sustancialmente idénticos a las regiones o residuos correspondientes de una o más secuencias de inmunoglobulinas humanas naturales. El término "región correspondiente" o "residuos correspondientes" se refiere a una región o residuo en una segunda secuencia de aminoácidos o nucleótidos que ocupa la misma (es decir, equivalente) posición que una región o residuo en una primera secuencia de aminoácidos o nucleótidos, cuando la primera y segunda secuencias son alineadas óptimamente para propósitos de comparación.

[0020] Los términos "inmunoglobulina humanizada" o "anticuerpo humanizado" no tienen el propósito de abarcar inmunoglobulinas o anticuerpos genéricos, tal como se define más adelante. Aunque las inmunoglobulinas o anticuerpos humanizados son quiméricos en su construcción (es decir, comprenden regiones para más de una especie de proteína), estas incluyen características adicionales (es decir, regiones variables que comprenden residuos CDR donantes y residuos del marco de trabajo aceptadores) que no se encuentran en las inmunoglobulinas o anticuerpos quiméricos, tal como se define en este documento.

[0021] El término "inmunoglobulina quimérica" o anticuerpo se refiere a una uno globulina o anticuerpo cuyas regiones variables se derivan de una primera especie y cuyas regiones constantes se derivan de una segunda especie. Las inmunoglobulinas o anticuerpos quiméricos pueden ser construidos, por ejemplo por medio de ingeniería genética, de segmentos genéticos de inmunoglobulina que pertenecen a diferentes especies.

[0022] Un "antígeno" es una entidad (por ejemplo, una entidad o péptido proteínico) a la cual un anticuerpo se enlaza específicamente.

[0023] El término "epítope" o "determinante antigénico" se refiere a un lugar en un antígeno al cual una

inmunoglobulina o anticuerpo (o su fragmento que se vincula con un antígeno) se enlaza específicamente. Los epítopes pueden ser formados de aminoácidos contiguos o aminoácidos no contiguos yuxtapuestos por el pliegue terciario de una proteína. Los epítopes formados de aminoácidos contiguos son retenidos comúnmente cuando se exponen a solventes desnaturalizantes donde los epítopes formados por un pliegue terciario se pierden típicamente en el tratamiento con solventes desnaturalizantes. Un epítope incluye típicamente por lo menos 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 o 15 aminoácidos en una conformación espacial única. Métodos para determinar la conformación espacial de epítopes incluyen, por ejemplo, cristalografía de rayos X y resonancia magnética nuclear de dos dimensiones. Refiérase, por ejemplo, a Epitope Mapping Protocols in Methods in Molecular Biology (Protocolos de Elaboración de Mapas de Epítopes en Métodos de Biología Molecular), Vol. 66, G. E. Morris, Ed. (1996).

10

15

20

25

30

35

5

[0024] Los anticuerpos que reconocen el mismo epítope pueden identificarse en un inmuno ensayo simple que muestra la capacidad de un anticuerpo para bloquear el enlace de otro anticuerpo a un antígeno objetivo, es decir, un ensayo de enlace competitivo. Enlaces competitivos son determinados en un ensayo en el cual la inmunoglobulina que está siendo probada inhibe enlaces específicos de un anticuerpo referencial a un antígeno común, tal como Aβ. Muchos tipos de ensayos de enlaces competitivos son conocidos, por ejemplo: ensayos radioinmunológicos directos o indirectos de fase sólida (RIA - radioimmunoassay), ensayos inmunológicos enzimáticos directos o indirectos de fase sólida (EIA - enzyme immunoassay), ensayos competitivos tipo emparedado (refiérase a Stahli et al., Methods in Enzymology (Métodos en Enzimología) 9:242 (1983));EIA de biotina-avidina directo en fase sólida (refiérase a Kirkland et al., J. Immunol. 137:3614 (1986)); ensayo marcado directo de fase sólida, ensayo tipo emparedado marcado directo de fase sólida (refiérase a Harlow y Lane, Antibodies: A Laboratory Manual (Anticuerpos: Un Manual de Laboratorio), Cold Spring Harbor Press (1988));RIA de marcación directa de fase sólida utilizando la marcación I-125 (refiérase a Morel et al., Mol. Immunol. 25(1):7 (1988));EIA de biotina-avidina directo de fase sólida (Cheung et al., Virology (Virología) 176:546 (1990)); y RIA marcada directa (Moldenhauer et al., Scand. J. Immunol. 32:77 (1990). Comúnmente, un ensayo como esos involucra la utilización de un antígeno purificado enlazado a una superficie sólida o células que tengan uno de estos, una inmunoglobulina de prueba no marcada y una inmunoglobulina referencial marcada. La inhibición competitiva es medida al determinar el monto de enlaces marcados a la superficie sólida o las células en la presencia de la inmunoglobulina de prueba. Usualmente la inmunoglobulina de prueba está presente en exceso. Usualmente, cuando un anticuerpo competitivo está presente en exceso, inhibirá enlaces específicos de un anticuerpo referencial a un antígeno común por al menos 50-55%, 55-60%, 60-65%, 65-70% 70-75% o más.

[0025] Un epítope también es reconocido por células inmunológicas, por ejemplo, células B y/o T. El reconocimiento celular de un epítope puede determinarse por medio de ensayos in vitro que miden la proliferación dependiente de antígenos, tal como se determina por la incorporación de 3H-timidina, por medio de la secreción de citoquinas, por medio de la secreción de anticuerpos o por medio de la eliminación dependiente de antigenos (ensayo de linfocitos citotóxicos T).

40

[0026] Ejemplos de epítopes o determinantes antígenos pueden encontrarse dentro de la proteína precursora de amiloides humana (APP), pero se encuentra preferiblemente dentro del péptido Aβ de APP. Varias isoformas de APP existen, por ejemplo, APP695, APP751 y APP770. Aminoácidos dentro de APP son asignados números de acuerdo a la secuencia de la isoforma APP770 (refiérase a, por ejemplo, el Acceso del Banco Genético Número P05067). Las secuencias de péptidos de Aβ y su relación al precursor de APP se ilustran por medio de la figura 1 de Hardy et al., TINS 20, 155-158 (1997). Por ejemplo, Aβ42 tiene la secuencia:

45

50

H₂N-Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-Val-Gly-Gly-Val-Val-Ile-Ala-OH (SEC ID NO: 1)

55

[0027] A menos que sea aparente lo contrario a partir del contexto, cualquier referencia a Aß también incluye variaciones alélicas naturales de la secuencia que se acaba de mostrar, particularmente aquellas asociadas con enfermedades hereditarias, tales como la mutación ártica, numeración E693G, APP 770. Aβ41, Aβ40 y Aβ39 se diferencian de Aβ42 por la presencia de un residuo de treonina en la terminal C. Epítopes o determinantes antígenos preferidos, tal como se describen aquí, están ubicados dentro de la terminal N del péptido Aβ e incluyen residuos dentro de los aminoácidos 1-11 de Aβ, preferiblemente de los residuos 1-10, 1-3, 1-4, 1-5, 1-6, 1-7 o 3-7 de Aβ42. Epítopes o determinantes antígenos preferidos adicionales incluyen a los residuos 2-4, 5, 6, 7 u 8 de Aβ, o a los residuos 3-5, 6, 7, 8 o 9 de Aβ, o a los residuos 4-7, 8, 9 o 10 de Aβ42. Otros epítopes preferidos ocurren dentro de las regiones central o de la terminal de C tal como se describe más adelante.

60

65

[0028] Un epítope o de la terminal N de Aβ significa un epítope con residuos 1 – 11. Un epítope dentro de una región de la terminal C significa un epítope dentro de los residuos 29-43, y un epítope dentro de una región central significa un epítope con los residuos 12-28.

[0029] Aβ "soluble" o "disociado" se refiere a un polipéptido Aβ no aglutinado o desglosado.

5

50

55

- [0030] Aβ "insoluble" se refiere a un polipéptido Aβ de aglutinamiento, por ejemplo, Aβ que se mantiene junto por enlaces no covalentes. Se cree que Aβ (por ejemplo, Aβ 42) aglutina, por lo menos en parte, debido a la presencia de residuos hidrofóbicos en la terminal C del péptido (parte del dominio de la transmembrana de la APP). Un método para preparar un Aβ soluble es disolver un péptido liofilizado en un DMSO ordenado con sonicación. La solución resultante es centrifugada para remover cualquier partícula insoluble.
- [0031] El término "región Fc" se refiere a una región del terminal C en un anticuerpo IgG, en particular, la región de la terminal C de la cadena o cadenas pesadas de aquel anticuerpo IgG. Aunque los límites de la región Fc de una cadena pesada IgG puede variar ligeramente, una región Fc es definida típicamente como que abarca desde cerca del residuo de aminoácidos Cys226 al terminal de carboxílicos de una cadena o cadenas pesadas de IgG.
- [0032] El término "función ejecutora" se refiere a una actividad que reside en la región Fc de un anticuerpo (por ejemplo, un anticuerpo IgG) e incluye, por ejemplo, la habilidad del anticuerpo para enlazar moléculas ejecutoras tales como receptores complementarios y/o Fc, que pueden controlar varias funciones inmunológicas del anticuerpo tales como una actividad celular del ejecutor, la lisis, la actividad mediada por un complemento, el despeje de anticuerpos y la vida media del anticuerpo. La función ejecutora también puede ser influenciada por mutaciones de la región de la charnela.
 - [0033] El término "molécula ejecutora" se refiere a una molécula que es capaz de enlazarse a la región Fc de un anticuerpo (por ejemplo, un anticuerpo IgG) incluyendo una proteína complementaria de un receptor Fc.
- [0034] El término "célula ejecutora" se refiere a una célula capaz de enlazarse a la porción Fc de un anticuerpo (por ejemplo, un anticuerpo IgG) comúnmente por medio de un receptor Fc en la superficie de la célula ejecutora incluyendo, pero sin limitarse a, linfocitos, por ejemplo, células que tienen antígenos y células T.
- [0035] El término "numeración Kabat" a menos que se mencione de otra forma, se define como la numeración de residuos tal como se menciona en Kabat et al. (Sequences of Proteins of Immunological Interest-Secuencias de Proteínas de Interés Inmunológico, 5ta Ed. Public Health Service, National Institutes of Health (Servicio de Salud Pública, Institutos Nacionales de Salud), Bethesda, Md. (1991)).
- [0036] El término "receptor Fc" o "FcR (Fc receptor)" se refiere a un receptor que se enlaza a la región Fc de un anticuerpo. Los receptores típicos Fc que se enlazan a una región Fc de un anticuerpo (por ejemplo, un anticuerpo lgG) incluyen, pero no se limitan a, receptores de las sub clases FcγRI, FcγRII, y FcγRIII, incluyendo variantes alélicas y formas divididas alternamente de estos receptores. Los receptores Fc son revisados en Ravetch y Kinet, Annu. Rev. Immunol 9:457-92 (1991); Capel et al., Immunomethods (Métodos inmunológicos) 4:25-34 (1994); y de Haas et al., J. Lab. Clin. Med. 126:330-41 (1995).
- 40 [0037] El término "auxiliar" se refiere a un compuesto que cuando se administra en conjunto con un antígeno aumenta y/o redirecciona la respuesta inmunológica del antígeno, pero cuando se lo administra sólo no genera una respuesta inmunológica del antígeno. Los auxiliares pueden aumentar una respuesta inmunológica mediante algunos mecanismos que incluyen reclutamiento de linfocitos, estimulación de células B y/o T y la estimulación de macrófagos.
 45
 - [0038] El área bajo la curva (AUC area under the curve) es el área bajo la curva en un gráfico de la concentración de un medicamento en el plasma al paso del tiempo. En un paciente individual, el área bajo la curva representa la el área bajo la curva basándose en ese paciente. En una población de pacientes, el área bajo la curva representa el área bajo la curva media para el intervalo de tiempo comparable de pacientes diferentes en la población.
 - [0039] La concentración sérica media en un paciente individual representa la concentración media de un anticuerpo (o anticuerpos inducidos para reactivos) durante un período de tiempo. La concentración sérica media en una población de pacientes representa la media de las concentraciones séricas medias de los pacientes individuales durante períodos comparables de tiempo.
 - [0040] La concentración sérica máxima en un paciente individual representa la concentración máxima de un anticuerpo (o anticuerpos inducidos para un reactivo) durante el transcurso del tratamiento. La concentración sérica máxima en una población de individuos representa la media de las concentraciones máximas del anticuerpo o anticuerpos inducidos entre los individuos en la población.
 - [0041] Por brevedad, el terminó "portador ApoE4" es utilizado a veces para referirse a pacientes que tienen uno o dos alelos ApoE4 y "no portador de ApoE4", "no-portador de ApoE4" o "portador no-ApoE4" para referirse a pacientes que tienen cero alelos ApoE4.
- 65 DESCRIPCIÓN DETALLADA DEL INVENTO

I. General

5

10

15

20

[0042] La presentación suministra métodos de inmunoterapia de la enfermedad de Alzheimer y otras enfermedades similares en los cuales el régimen administrado a un paciente depende del genotipo de ApoE del paciente. Los métodos se basan en parte en (1) la observación que ciertos regímenes de inmunoterapia conllevan a instancias más altas en la aparición de edemas vasogénicos (VE - vasogenic edema) en pacientes que tienen un alelo ApoE4 (E4) que en los pacientes que no tienen un alelo E4, y más frecuentemente todavía en pacientes que tienen dos alelos E4 y/o (2) la observación inicial de eficacia diferencial en pacientes portadores de ApoE4 en comparación con pacientes que no son portadores de ApoE4 o pacientes que reciben por lo menos 6 dosis en comparación a pacientes que reciben menos de seis dosis. Los resultados también muestran que la frecuencia de casos de edemas vasogénicos se incrementa con la frecuencia y monto de las dosis.

[0043] Aunque la práctica del invento no depende de la comprensión del mecanismo, se tiene la hipótesis que la asociación del edema vasogénico con un genotipo ApoE4 podría resultar de una disposición más grande de depósitos Aβ y por lo tanto una inducción a una respuesta de despeje mayor cuando anticuerpos se enlazan a los depósitos. El despeje de depósitos de amiloides puede conllevar a un edema vasogénico por cualquier otro o varios mecanismos. La remoción de amiloides de las paredes de los vasos sanguíneos (amiloides vasculares) podrían causar fugas de los vasos sanguíneos; más amiloides en el espacio perivascular podrían causar un drenaje más lento del fluido intersticial, y/o un flujo neto incrementado de amiloides de compartimientos intravasculares a la parénquima cerebral podría conllevar agraviantes osmóticos. Aunque el efecto de edema vasogénico usualmente es asintomático y reversible y no imposibilita más tratamientos, es deseable, sin embargo, ajustar el régimen terapéutico para reducir el riesgo de que ocurran edemas vasogénicos.

25 [0044] La presentación suministra por lo tanto métodos en los cuales el régimen de terapia inmunológica es variado, por ejemplo, para ajustar la respuesta fagocítica, dependiendo en el estado ApoE del paciente. Aunque la respuesta fagocítica es útil para despejar depósitos de amiloides, la respuesta, puede ser controlada opcionalmente para evitar edemas vasogénicos. En general, los pacientes que tienen dos alelos E4, son más susceptibles para un endemia vasogénico se les administra una dosis más baja o menos frecuentemente el mismo reactivo que para pacientes que tienen cero alelos E4, o se les administra un reactivo diferente que es menos propenso para inducir una respuesta fagocítica o recibir el reactivo por medio de una modalidad diferente de administración, tal como, por ejemplo, una administración subcutánea. Los pacientes con un alelo E4 pueden ser tratados de igual forma que los pacientes con cero o dos alelos E4 o el tratamiento puede ser personalizado para ellos en el cual la dosis y/o frecuencia de administración es intermedia entre aquella administrada a pacientes con cero o dos alelos ApoE4.

35 II. APOE

55

60

65

[0045] ApoE humano tiene el acceso de registro de UniProtKB/Swiss-Prot P02649. Las variantes E2, E3 y E4 se describen en Genomics (Genómica) 3:373-379(1988), J. Biol. Chem. 259:5495-5499 (1984); y Proc. Natl. Acad. Sci. Estados Unidos 82:3445-3449(1985). La asociación de la forma de E4 con un inicio tardío de la enfermedad de Alzheimer ha sido reportada por, por ejemplo, Corder, Science (Ciencia) 261, 921-3 (1993); Farrer, JAMA, 278, 1349-56 (1997); y Saunders, Neurology 43 (Neurología 43), 1467-72 (1993). Las formas alélicas presentes en cualquier individuo pueden determinarse por medio de muchas técnicas convencionales, tales como secuenciaciones directas, el uso de agrupaciones de GeneChip® o similares, sondas específicas de alelos, métodos de extensión de base sencilla, extensión específica alélica. Las formas alélicas también puede determinarse a nivel proteínico por medio de ELISA usando anticuerpos específicos para diferentes productos de expresión alélica. Botiquines para análisis genéticos e inmunológicos están disponibles comercialmente (por ejemplo, Innogenetics, Inc.; Graceful Earth, Inc.). La determinación de formas alélicas son hechas usualmente in vitro, eso es, en muestras removidas y nunca regresadas a un paciente.

III. Diferentes estrategias para tratar o monitorear dependiendo de los ApoE.

A. Diferentes regímenes de tratamiento

[0046] Algunos regímenes de inmunoterapia para enfermedades de Alzheimer y otras han sido asociadas con edemas vasogénicos (VE - vasogenic edema) en el cerebro de algunos pacientes. Generalmente, la incidencia de VE es mayor en portadores ApoE4 que en no portadores ApoE4 y en pacientes que reciben dosis más altas de ciertos reactivos en ciertos regímenes de inmunoterapia. VE ha sido observado en la toma de imágenes con resonancias magnéticas (MRI - magnetic resonance imaging) como intensidades de señales altas en la secuencia de recuperación de inversión atenuada por fluidos (FLAIR - fluid-attenuated inversion recovery) que involucra anormalidades cerebrales e hinchazón de giros cerebrales. Se observa generalmente a VE después de la primera o segunda administración del reactivo inmuno terapéutico, aunque también ha sido observada después de la tercera o cuarta administración. La mayoría de pacientes a los que se les descubrió VE son asintomáticos. VE tiene una presentación heterogénea, y los hallazgos de MRI en un paciente en particular pueden variar al pasar el tiempo. La hinchazón de giros cerebrales y en cierta magnitud, los cambios de resonancia magnética (MR - magnetic resonance) más grandes vistos en FLAIR diferencian al VE de los cambios de la materia blanca que se observa comúnmente en FLAIR en pacientes con enfermedades normales seniles y de Alzheimer (Hentschel et al., 2005; de

Leeuw et al. 2001).

5

10

15

20

30

35

40

45

50

55

60

65

[0047] El edema vascogénico (VE) es caracterizado por un incremento en el volumen de fluido extracelular debido a la permeabilidad incrementada de las células endoteliales capilares proteínicas séricas macro moleculares (por ejemplo, albúmina). VE puede ser el resultado de una permeabilidad capilar cerebral incrementada. Los síntomas clínicos observados en pacientes con VE, cuando éstos existen, son variados y a la fecha han sido de una naturaleza muy moderada. De los casos de VE observados en MRIs programados regularmente, la mayoría de pacientes son asintomáticos. Las observaciones clínicas asociadas con los casos sintomáticos de VE han incluido estados mentales alterados (por ejemplo, una confusión incrementada, letargia, desorientación y alucinaciones) vómitos, dolores de cabeza, dificultades para andar, perturbaciones visuales, fatiga, irritabilidad, ataxia, un apetito reducido y diarrea.

[0048] Tal como se resumió anteriormente, la presentación suministra regímenes de tratamiento diferentes dependiendo si el paciente tiene 0, 1 o dos alelos E4. Por lo tanto, en una población de individuos tratados, aquellos que tienen cero alelos E4 pueden ser tratados de forma diferente a los que tienen dos alelos. Aquellos que tienen un alelo E4 pueden ser tratados de forma diferente (en una forma en media) a aquellos con cero o dos alelos E4 o pueden ser agrupados con individuos que tienen cero o dos alelos E4 en cualquiera de los regímenes que se explican más adelante. Los individuos que tienen un alelo E4 pueden ser tratados diferentemente que los individuos con cero alelos y/o los individuos con dos alelos ApoE4 pueden ser tratados muy diferentemente que los individuos con un alelo ApoE4. Experiencia actual con algunos agentes inmunoterapéuticos sugiere que VEs tienen más posibilidad de ocurrir con dosis mucho mayores a los 5 mg/kilogramo (refiérase a PCT/US07/09499).

[0049] En algunos métodos, el estado de ApoE4 es el único marcador genético que determina los diferentes regímenes de tratamiento en diferentes pacientes. En otros métodos, los regímenes de tratamiento diferenciales pueden basarse en ApoE4 en combinación con otros marcadores genéticos asociados con la susceptibilidad o resistencia de la enfermedad de Alzheimer.

[0050] Una población de individuos tratados opcionalmente tiene un número total suficiente de pacientes y números suficientes de su poblaciones con números diferentes de alelos ApoE4 que una asociación entre diferentes regímenes de tratamiento y diferentes alelos ApoE4 pueden ser vistos en relación a una asignación aleatoria de los diferentes regímenes con una coincidencia estadística de por lo menos un 95%. Por ejemplo, la población tratada puede consistir de por lo menos 100, 500 o 1000 individuos de los cuales el 10-70% y más típicamente del 30-50% tienen por lo menos un alelo ApoE4. Una población tratada también puede (es decir, opcionalmente) ser reconocida como la población total tratada con un medicamento particular producido por un fabricante particular.

[0051] En algunos métodos, como se menciona en mayor detalle más adelante, individuos que tienen cero alelos ApoE4 se les administra un reactivo en un régimen diseñado para lograr eficacia tal como se evaluó desde uno o más puntos finales clínicos, tal como, por ejemplo, medidas cognitivas (por ejemplo, ADAS-cog, NTB, DAD, MMSE, CDR-SB, NPI), biomarcadores (por ejemplo, CSF tau) y volumen cerebral (por ejemplo, BBSI, VBSI), así como otros parámetros, tales como por ejemplo seguridad, farmacocinética y farmacodinámica deseadas. En algunos métodos, uno o dos alelos E4 son administrados con una dosis y/o frecuencia reducidas del mismo reactivo que los individuos con cero alelos E4. Un objetivo de tal método es el entregar una concentración sérica media reducida del reactivo durante un período de tiempo (un área reducida bajo la curva) y/o para reducir la concentración pico máxima. Esto puede ser logrado, por ejemplo, al reducir la dosis y administrar con la misma frecuencia, o reducir la frecuencia y administrar la misma dosis o administrando una dosis y frecuencia reducidas. Si la dosis es reducida pero la frecuencia se mantiene constante, la dosis es usualmente reducida entre el 10-90%, a menudo alrededor del 30-75% o 40-60%. Si la frecuencia es reducida, pero la dosis se mantiene constante, entonces la frecuencia es reducida típicamente entre 2 y 5 veces. A veces, la frecuencia es reducida al omitir simplemente una dosis ocasional o dos dosis consecutivas del régimen administrado al paciente con cero alelos ApoE4. Aquellas dosis, pueden, por ejemplo, ser omitidas durante el período en el que un paciente está experimentando edema vasogénica.

[0052] En otros métodos, individuos que tienen uno o dos alelos E4 se les administra una dosis reducida del reactivo con una frecuencia incrementada en relación con los individuos que tienen cero alelos E4. Por ejemplo, la dosis puede ser reducida a la mitad y la frecuencia puede ser doblada. En aquellos métodos, el medicamento total entregado a las dos sub poblaciones a lo largo del tiempo (es decir, el área bajo la curva) puede ser la misma que dentro del error experimental, pero la concentración máxima de plasma es menor en individuos que tienen dos alelos E4. Por ejemplo, en pacientes que tienen uno o dos alelos E4 la concentración sérica máxima de anticuerpos es preferiblemente por debajo de los 14 µg/mililitros y para los pacientes que llenen cero alelos, la concentración sérica máxima de anticuerpos es preferiblemente por debajo de los 28 µg/mililitros.

[0053] En otros métodos, el tratamiento es administrado durante diferentes etapas en relación a la progresión de la enfermedad dependiendo del estado de ApoE4. En aquellos métodos, el tratamiento es administrado en una forma más temprana en pacientes que tienen dos alelos ApoE4 en relación a los pacientes que tienen cero alelos ApoE4 o en pacientes que tienen un alelo ApoE4 en relación a los pacientes que tienen cero alelos ApoE4 y/o en pacientes que tienen dos alelos ApoE4 en relación a los pacientes que tienen un alelo ApoE4. El progreso de la enfermedad puede ser medido por, por ejemplo, la escala MMS en la cual un puntaje de 27 a 20 es considerado normal, y de 20-

26 es considerado moderado de Alzheimer. Por lo tanto, por ejemplo, el puntaje MMSE medio en no portadores de ApoE4 al inicio del tratamiento puede ser más alto que para los portadores de ApoE4 (pacientes con uno o dos alelos ApoE4). Opcionalmente, el tratamiento de los portadores ApoE4 puede ser iniciado profilácticamente antes de que los síntomas clínicos sean evidentes. Aquellos pacientes pueden ser identificados por medio de examinaciones de las poblaciones en búsqueda del estado de ApoE4. El tratamiento puede ser iniciado al detectar aquel estado o subsiguientemente cuando el paciente alcanza cierta edad (por ejemplo, 55, 60 o 65 años) cuando existe un riesgo alto de desarrollar Alzheimer. Aunque la comprensión del mecanismo no es requerida para practicar aquellos métodos, se cree que un tratamiento temprano de los portadores de ApoE4 puede ser beneficioso porque los alelos ApoE4 que reducen la capacidad para reparar daños neuronales y/o porque la deposición de Aβ es mayor en aquellos pacientes.

5

10

15

30

45

50

55

60

65

[0054] En algunos métodos, el tratamiento es administrado por medio de una ruta diferente en pacientes que tienen cero alelos ApoE4 y pacientes que tienen un alelo ApoE4 y/o pacientes que tienen dos alelos ApoE4. Por ejemplo, el tratamiento puede ser administrado en forma intravenosa en pacientes que tienen cero alelos ApoE4 y en forma subcutánea en pacientes que tienen uno o dos alelos. La dosis es típicamente mayor y/o la frecuencia de administración es menor en aquellos pacientes no portadores de ApoE4 en relación a los pacientes portadores de ApoE4.

[0055] En algunos métodos, una respuesta positiva de tratamiento (es decir, la inhibición de la declinación cognitiva o la inhibición de la declinación del volumen cerebral) toma más tiempo para desarrollarse en portadores ApoE4 que en no portadores. El tiempo mayor podría reflejar una capacidad reducida para la reparación neuronal y/o una mayor carga de amiloides en aquellos pacientes; y/o el uso de un régimen de tratamiento menos potente. En aquellos métodos, el tratamiento puede ser administrado durante por lo menos un año y opcionalmente durante por lo menos 2, 3 o cuatro años antes de detener el tratamiento por una falta de efecto. En algunos métodos, el tratamiento es administrado durante por lo menos 6 administraciones trimestrales.

[0056] Tal como se mencionó, los reactivos son suministrados a veces con un marcador que contraindica a su utilización en portadores ApoE4. Tales reactivos pueden ser utilizados en métodos de tratamientos en los cuales solamente los no portadores de ApoE4 reciben un reactivo del invento (es decir, un anticuerpo que enlaza a $A\beta$ o un reactivo que induce a aquel anticuerpo). En aquellos métodos los portadores ApoE4 no reciben un anticuerpo que enlaza a $A\beta$ o un reactivo que induce a aquel anticuerpo pero pueden recibir otros tratamientos tales como memantina.

[0057] Los métodos en los cuales la dosis y/o la frecuencia de administración son reducidos dependiendo en ApoE4 son más útiles para reactivos que inician una respuesta de despeje en contra de los depósitos de amiloides. En general, aquellos agentes son anticuerpos que se enlazan a un epítope dentro de Aβ1-11, y que tienen una región Fc, o fragmentos de Aβ, que inducen a aquellos anticuerpos (es decir, contienen un epítope dentro de Aβ1-11,). Los anticuerpos que enlazan a epítopes dentro de las regiones central o de la terminal C de Aβ usualmente se enlazan predominantemente a formas solubles de Aβ en vez de depósitos de amiloides, y por lo tanto inician una pequeña o inexistente respuesta de despeje en contra de los depósitos amiloides, particularmente en los depósitos densos o vasculares.

[0058] Ejemplos de rangos y frecuencias de dosis adecuadas para la administración se suministran más adelante. Diferentes dosis y/o frecuencias de administración para pacientes con estados E4 diferentes pueden seleccionarse dentro de aquellos rangos de dosis y frecuencia. Por ejemplo, los pacientes con uno o dos alelos E4 se les puede administrar una dosis de 0.1 a 1 miligramo/kilogramo de anticuerpos por medio de infusión intravenosa cada 13 semanas, y pacientes con cero alelos E4 se les puede administrar una dosis de 1 a 2 miligramos/kilogramos cada 13 semanas. Opcionalmente, los pacientes con dos alelos E4 se les puede administrar una dosis de 0.15 a 0.5 mg/kilogramos, los pacientes con un alelo E4 se les puede administrar una dosis de 0.15 a 1 miligramo/kilogramo (por ejemplo, 0.5 a 1 miligramo/kilogramo) y pacientes con cero alelos E4 se les administra una dosis de 0.15-2 miligramos/kilogramos (por ejemplo, 1-2 miligramos/kilogramos) cada 13 semanas. En un régimen importante, los pacientes con uno o dos alelos E4 se les administra una dosis de 0.5 miligramos/kilogramos de un anticuerpo que se enlaza con un epítope dentro de los residuos 1-11 de Aß (por ejemplo, bapineuzumab) y pacientes con cero alelos E4 una dosis de 2 miligramos/kilogramo. Las dosis se administran de forma intravenosa en intervalos de cuartos hasta que aparezca el edema vasogénico (si apareciese). Después de que aparezca el edema vasogénico, la siguiente dosis no se administra y después de eso, los pacientes regresan a la programación de dosis en cuartos a una dosis más baja de 0.15 miligramos/kilogramo. Si el edema vasogénico aparece nuevamente el tratamiento puede ser terminado. Los pacientes con cero alelos E4 se les administra una dosis de 0.5-2 miligramos/kilogramos, con pacientes individuales con cero alelos E4 que reciban opcionalmente dosis de 0.5 miligramos/kilogramos, 1.0 miligramos/kilogramos, 1.5 miligramos/kilogramos y 2.0 miligramos/kilogramo.

[0059] En otro ejemplo, los pacientes con dos alelos E4 se les da una primera dosis de 0.5 miligramos/kilogramos, y dosis subsiguientes de 1 mg/kilogramo. Alternamente, los pacientes con dos alelos E4 se les da una primera dosis de 0.5 miligramos/kilogramo, segunda y tercera dosis de 1 mg/kilogramo y dosis subsiguientes de 2.0 miligramos/kilogramo.

[0060] En otro ejemplo, pacientes con cero alelos E4 se les puede administrar una dosis de 0.015-0.2 miligramos/kilogramo de anticuerpos en forma subcutánea una vez a la semana y los pacientes con dos alelos E4 se les puede administrar la misma dosis cada dos semanas. Regímenes equivalentes a lo que se acaba de mencionar pueden ser ideados variando el monto, la frecuencia o la ruta de administración para entregar la misma área bajo la curva (es decir, la dosis media integrada con el tiempo) de anticuerpos al suero.

5

10

15

45

50

55

[0061] En algunos métodos, a los pacientes con uno o dos alelos E4 se les administra un reactivo para lograr concentraciones séricas con medias más bajas del anticuerpo a lo largo del tiempo que a los pacientes con cero alelos E4. La concentración sérica media más baja se mantiene durante un período de tiempo de por lo menos uno a tres meses, y usualmente tres meses a un año, o indefinidamente. La concentración sérica media de todos aquellos pacientes esta preferiblemente dentro del rango de 2-7 microgramos anticuerpos/mililitros del suero con aquella para los pacientes con uno o dos alelos E4 siendo más baja que aquella para los pacientes con cero alelos E4. Por ejemplo, pacientes con cero alelos E4 se les puede administrar para lograr una concentración sérica media de anticuerpos dentro de un rango de 4.5-7 microgramos de anticuerpo/mililitro y pacientes con uno o dos alelos E4 se les puede administrar un reactivo para alcanzar una concentración sérica media en el rango de 2-4.5 microgramos de anticuerpo/mililitro.

[0062] En aquellos métodos, los individuos dentro de cualquier sub población definida por la presencia de 2, 1 o cero alelos E4 se les administra usualmente el mismo régimen. Sin embargo, el régimen también puede ser personalizado para individuos dentro de una sub población. En este caso, la dosis media y/o frecuencia y/o concentración sérica promedio y/o concentración máxima de reactivos o anticuerpos inducidos por el reactivo en una sub concentración de individuos con dos alelos E4 es menor que aquella de individuos que tienen cero alelos E4.

[0063] En algunos métodos, un reactivo diferente es administrado a individuos con dos alelos E4 que a individuos 25 con cero alelos E4. Los reactivos diferentes usualmente difieren en su capacidad para inducir una respuesta de despeje en contra de los depósitos de amiloides (es decir, los depósitos preexistentes). Tal capacidad puede ser probada, por ejemplo, mediante un ensavo de despeje ex vivo tal como se describe por US 6,750,324. En breve, un anticuerpo y células micro gliales son incubadas con un depósito de alelos y los de un paciente de Alzheimer fallecido o un modelo de ratón transgénico, y la reacción de despeje es monitoreada utilizando un anticuerpo 30 marcado a Aβ. La capacidad de despeje de reactivos puede ser probada asimismo utilizando sueros inducidos por el reactivo como una fuente de anticuerpos para el ensayo. La capacidad de despeje de reactivos pasivos y activos también puede ser evaluada en un modelo de ratón transgénico tal como se describe en US 6,750,324 o en un paciente humano por medio de un monitoreo MRI. Opcionalmente, la respuesta de despeje es medida en un ensayo que distingue entre depósitos de amiloides compactos y difusos. Las diferencias en la capacidad de despeie de 35 algunos anticuerpos es más evidente o es únicamente evidente cuando la comparación es hecha en referencia a la capacidad de despeie de depósitos de amiloides compactos. Opcionalmente, la respuesta de despeie es evaluada a partir de una reducción en el despeje de amiloides vasculares de un anticuerpo dado en relación a un anticuerpo emparejado que de otra forma sería idéntico con un isotipo. Un despeje de amiloides vasculares puede ser evaluado por medio de diferencias significativas estadísticas entre poblaciones de modelos animales o de pacientes humanos 40 tratados con un anticuerpo mutado y un anticuerpo emparejado que de otra forma (sin las mutaciones) sería idéntico con un isotipo.

[0064] Adicionalmente o alternamente a los ensayos que miden una respuesta de despeje, algunos anticuerpos adecuados para su utilización en los métodos del invento pueden ser reconocidos por un enlace reducido a los receptores C1q y/o Fcγ. La capacidad de enlazar a los receptores C1q y/o Fcγ puede ser reducida por mutaciones cerca de la región de charnela de una cadena pesada tal como se menciona en mayor detalle más adelante. La capacidad reducida puede ser determinada, por ejemplo, al comparar un anticuerpo mutado con un anticuerpo que de otra forma sería idéntico con isotipos emparejados que no tienen las mutaciones presentes en el anticuerpo mutado (es decir, que tienen residuos de una región constante humana de tipo silvestre (por ejemplo, bapineuzumab vs. AAB-003), o al comparar anticuerpos que de otra forma serían idénticos que tienen isotipo diferentes (por ejemplo, IgG1 humana versus IgG4 humana).

[0065] Algunos anticuerpos que tienen una capacidad reducida para enlazar a los receptores C1q y/o Fcγ reducen micro-hemorragias en relación con controles de isotipos emparejados pero retienen por lo menos alguna actividad inhibidora del declive cognitivo y/o de despeje de los depósitos amiloides. En algunos anticuerpos, la capacidad reducida de despeje de amiloides está asociada principalmente con la capacidad reducida de despeje de depósitos de amiloides vasculares y/o compactos y no con depósitos de amiloides difusos. Aquellos anticuerpos ofrecen una eficacia potencialmente mejorada: perfil de efectos colaterales, particularmente para su uso en portadores ApoE4.

60 [0066] Los anticuerpos que tienen enlaces reducidos a los receptores C1q y/o Fcγ pueden ser utilizados en métodos diferenciales de tratamiento tal como se describió anteriormente. Por ejemplo, un anticuerpo con un enlace reducido a los receptores C1q y/o Fcγ pueden ser administrados a pacientes que tienen uno o dos alelos ApoE4 y un anticuerpo que de otra forma sería idéntico sin las mutaciones a los pacientes con cero alelos ApoE4. Alternamente, un anticuerpo con un enlace reducido a receptores C1q y/o Fcγ puede administrarse a pacientes sin importar el número de alelos ApoE4.

[0067] Anticuerpos con regiones constantes mutadas para reducir el enlace de los receptores C1q y/o Fcγ son suministrados a veces con dosis más altas que anticuerpos que de otra forma serían idénticos sin la mutación. Para algunos de aquellos anticuerpos, la dosis puede ser ajustada hacia arriba para lograr un efecto terapéutico equivalente con efectos colaterales reducidos.

[0068] La capacidad de despeje es afectada por la especificidad del epítope de un anticuerpo (o anticuerpos inducidos por un fragmento para su administración activa) y en la presencia de, y tipo de función ejecutora del anticuerpo, en particular por la capacidad de la región Fc si está presente para enlazarse a los receptores Fcγ. Aunque despejar a los depósitos de amiloides es un mecanismo de acción útil, reactivos que no tienen la capacidad de despejar depósitos pueden ser útiles por medio de otros mecanismos, tales como enlaces a Aβ solubles y/o formas oligoméricas solubles de Aβ. Aquellos enlaces podrían reducir la toxicidad de aquellas especies y/o inhibir su aglutinamiento para formar depósitos entre otros mecanismos posibles.

- 100691 Los reactivos que son propensos para inducir aquella respuesta de despeie incluyen enlaces de anticuerpos a 15 un epítope dentro de los residuos 1-11 y particularmente 1-7 de Aβ, particularmente aquellos anticuerpos que tienen un isotipo IgG1, que interactúa en una forma más fuerte con los receptores Fcy. Fragmentos de Aβ que contienen epítopes dentro de los residuos 1-11 y particularmente 1-7 son similarmente efectivos para inducir una respuesta de despeie. Opcionalmente, los reactivos que inician una respuesta de despeie, pueden ser provistos con una etiqueta que contraindica el uso para pacientes con uno o dos alelos ApoE4. Los reactivos con menos o no tendencia a 20 inducir una respuesta de despeje incluyen anticuerpos para Aβ que tienen isotipos que no son IgG1 humanos, los anticuerpos que no tienen una región Fc (por ejemplo, fragmentos Fab, fragmentos Fv o nano cuerpos), o anticuerpos con regiones Fc mutadas por medio de ingeniería genética para reducir las interacciones con los receptores Fcγ. Aquellos agentes también incluyen anticuerpos que se enlazan específicamente a un epítope o dentro de una región de Aβ fuera de los residuos 1-11, (es decir, un epítope medio o un epítope de la terminal C, tal 25 como se describió anteriormente) y anticuerpos que se enlazan específicamente a formas solubles u oligoméricas de Aβ sin enlazarse con los depósitos de amiloides. Aquellos reactivos también incluyen fragmentos de Aβ que no tienen epítopes dentro de los residuos 1-11 de Aß. En aquellos métodos, individuos que tienen dos alelos E4 son administrados un reactivo con una tendencia más baja para inducir una respuesta de despeje fagocítica que los individuos que tienen cero alelos. Por ejemplo, a individuos que tienen cero alelos E4 se les puede administrar un 30 anticuerpo que se enlaza a un epítope dentro de los residuos 1-11 de Aß y tienen un isotipo IgG1 humano e individuos que tienen dos alelos E4 también se les puede administrar el mismo anticuerpo excepto que el anticuerpo es un fragmento Fab o tiene un isotipo aparte del IgG1 humano o tiene una región Fc diseñada para reducir los enlaces a los receptores Fcy. El agente administrado a individuos que tienen dos alelos E4 también puede ser un anticuerpo a un epítope medio o de la terminal C de Aß o de un fragmento de Aß de una región media o de la 35 terminal C (es decir, que no tiene un epítope adentro de Aß 1-11).
- [0070] En algunos métodos, pacientes con dos alelos E4 se les administra un anticuerpo que tiene un epítope dentro de una región media o de la terminal C para uno o más dosis iniciales y un anticuerpo que tiene un epítope dentro de una región terminal N para dosis subsiguientes. Aquel anticuerpo puede ser un anticuerpo 266 humanizado, un anticuerpo 2H6 humanizado desglicosilado o RN1219. Aquel anticuerpo también puede ser un anticuerpo humanizado que se enlaza específicamente a un epítope dentro de Aβ28-40 o Aβ33-40. Las dosis iniciales consisten preferiblemente de 1, 2 o tres dosis. Los pacientes que tienen cero alelos se les puede administrar un anticuerpo que tenga un epítope dentro de la región de la terminal N.
- 45 [0071] Los diferentes regímenes administrados a pacientes diferentes dependen de que su estado de E4 pueda ser mantenido indefinidamente. Sin embargo, aquello no es usualmente necesario. Se ha encontrado que el efecto colateral de edema vasogénico se asocia con el alelo E4 y usualmente ocurre para la tercera dosis, si es que sucede. Por lo tanto, una vez que los pacientes han recibido alrededor de dos-tres dosis del tratamiento, los pacientes que tienen uno o dos alelos ApoE4 que no han desarrollado un edema vasogénico probablemente no desarrollarán uno, y pueden desde entonces, si se desease, ser tratados en una forma similar a los pacientes que tienen cero alelos E4. Así mismo, los pacientes con uno o 2 alelos ApoE4 que desarrollan un edema vasogénico, sin importar el régimen de tratamiento diferencial de este documento, usualmente resuelven esta condición y después, si lo deseasen, podrían ser tratados en una forma similar a los pacientes que tienen 0 alelos E4. Opcionalmente, la dosis es incrementada después de recuperarse de un edema vasogénico a aquella utilizada por los no portadores.
 - [0072] El edema vasogénico típicamente se resuelve por sí mismo. Sin embargo, la resolución puede ser facilitada si se desease por medio de la administración de un corticosteroide.
- [0073] Los reactivos pueden ser empacados con etiquetas indicando los procedimientos de tratamiento diferenciales que dependen del estado de ApoE4 consistentes con cualquiera de los regímenes ya mencionados o sus combinaciones.
 - B. Diferentes Regímenes de Monitoreo

5

10

55

[0074] Alternamente o adicionalmente, la presentación suministra diferentes regímenes de monitoreo para pacientes dependiendo en su Estado E4. Un edema vasogénico es un incremento en el volumen del cerebro por una fuga de

plasma en el espacio intersticial. Una vez extravasado, el fluido es retenido afuera de la vasculatura, principalmente en la materia blanca del cerebro. Un edema vasogénico puede monitorearse por medio de tomas de imágenes cerebrales particularmente por medio de MRI, tomografía de emisión de positrones (toma de imágenes PET - Positron Emission Tomography) o imágenes secuenciales de Recuperación de Inversión Atenuada de Fluidos (FLAIR - Fluid Attenuated Inversion Recovery) (refiérase a Pediatric Neurology (Neurología Pediátrica), 20(3):241-243; AJNR, 26:825-830; NEJM, 334(8):494-500; Pediatr Nephrol, 18:1161-1166; Internal Medicine Journal (Revista de Medicina Interna), 35:83-90; JNNP, 68:790-79 1; AJNR, 23:1038-1048; Pak JMed Sci, 21(2):149-154 y, AJNR, 21:1199-1209). El edema vasogénico presenta una intensidad de señal alta en la materia blanca. El edema vasogénico observado es a menudo asintomático pero también puede ser acompañado por dolores de cabeza, náuseas, vómitos, confusión, ataques epilépticos, anormalidades visuales, funcionamiento mental alterado, ataxia, síntomas frontales, síntomas parietales, estupor y señales neurológicas focales.

[0075] De acuerdo a estos métodos, los pacientes con dos alelos E4 pueden estar sujetos a tomas de imágenes del cerebro más frecuentemente que los pacientes que tienen cero alelos E4. Por ejemplo, los pacientes con dos copias de E4 se les puede tomar imágenes antes de empezar el tratamiento y después de eso trimestralmente, mientras que los pacientes con cero alelos E4 se les puede tomar imágenes antes del inicio de tratamiento y después de eso anualmente o cada dos años. Alternamente, las tomas de imágenes cerebrales pueden ser omitidas en pacientes que tienen cero alelos E4. A pacientes que tienen un alelo E4 se les puede tomar imágenes con una frecuencia intermedia entre los pacientes que tienen 0 y 2 alelos E4, o se los puede agrupar con pacientes que tienen cero o dos alelos E4. Después de eso los pacientes con un alelo E4 pueden ser monitoreados de una forma diferente (por ejemplo, más frecuentemente) que los pacientes con cero alelos E4 y pacientes con un alelo E4.

[0076] En pacientes que desarrollan un edema vasogénico, el monitoreo puede ser continuado durante el edema vasogénico y por alrededor de un año después de que se resuelvan los síntomas. Después de eso, asumiendo que no hay hallazgos neurológicos, el monitoreo puede ser realizado opcionalmente cada seis meses o anualmente.

[0077] Los agentes pueden empacarse con marcaciones indicando los procedimientos de monitoreo diferenciales dependiendo del estado ApoE4 consistentes con cualquiera de los regímenes ya mencionados o sus combinaciones.

C. Tratamiento universal o regímenes de monitoreo

[0078] Aunque los portadores y los no portadores ApoE4 tienen respuestas diferentes al tratamiento tal como ya se mencionó, y algunos regímenes de tratamientos que son seguros y efectivos en los portadores de ApoE4 también son seguros y efectivos, aunque no necesariamente óptimos, en los no portadores de ApoE4 y pueden utilizarse en ambos tipos de pacientes sin importar su estado ApoE de los pacientes. En algunos regímenes, el reactivo es un anticuerpo que se enlaza a un epítope terminal N de Aβ que tienen mutaciones en su región constante que reducen los enlaces a un receptor Fcγ y/o C1q. AAB-003 es un ejemplo de uno de esos anticuerpos. En otros regímenes, la dosis y/o frecuencia y/o la concentración sérica máxima y/o la concentración sérica media de un anticuerpo administrado o inducido son restringidas dentro de sus límites tal como se describe en PCT/US2007/009499 y se resume aún más adelante para reducir el riesgo de un edema vasogénico.

IV. Reactivos

45 A. Anticuerpos

5

10

30

50

55

60

65

[0079] Una variedad de anticuerpos a Aβ han sido descritos en la literatura de patentes y científica para su uso en la inmunoterapia de la enfermedad de Alzheimer, alguna de la cual se refiere a ensayos clínicos (refiérase, por ejemplo, a US 6,750,324).). Aquellos anticuerpos pueden enlazarse específicamente a un epítope de la terminal N, un epítope medio (es decir, central) o un epítope de la terminal C tal como se definió anteriormente. Algunas secciones son específicas de la terminal N (es decir, aquellos anticuerpos que se enlazan específicamente a la terminal N de Aβ sin enlazarse a APP). Tal como ya se mencionó los anticuerpos que se enlazan a epítopes dentro de los residuos 1-10, 1-3, 1-4, 1-5, 1-6, 1-7 o 3-7 de Aβ42 o dentro de los residuos 2-4, 5, 6, 7 u 8 de Aβ, o dentro de los residuos 3-5, 6, 7, 8 o 9 de Aβ, o dentro de los residuos 4-7, 8, 9 o 10 de Aβ42 pueden ser utilizados. Algunos anticuerpos específicos de la terminal C (es decir, se enlazan específicamente a una terminal C de Aß sin enlazarse a los anticuerpos APP). Los anticuerpos pueden ser policiónicos o monociónicos. Los sueros policiónicos contienen típicamente poblaciones mezcladas de anticuerpos que se enlazan específicamente a algunos epítopes a lo largo de la extensión de la APP. Sin embargo, sueros policiónicos puede ser específicos a un segmento particular de Ăβ tal como Aβ1-11) sin enlazarse específicamente a otros segmentos de Aβ. Anticuerpos importantes son quiméricos, humanizados (incluyendo los anticuerpos chapeados) (refiérase a Queen et al., Proc. Natl. Acad. Sci. Estados Unidos 86:10029-10033 (1989) y WO 90/07861, US 5,693,762, US 5,693,761, US 5,585,089, US 5,530,101 y Winter, US 5,225,539), o humanos (Lonberg et al., WO 93/12227 (1993); US 5,877,397, US 5,874,299, US 5,814,318, US 5,789,650, US 5,770,429, US 5,661,016, US 5,633,425, US 5,625,126, US 5,569,825, US 5,545,806, Nature (Naturaleza) 148, 1547-1553 (1994), Nature Biotechnology (Biotecnología Natural) 14, 826 (1996), Kucherlapati, WO 91/10741 (1991)) EP1481008, Bleck, Bioprocessing Journal 1 (Revista de Bioprocesamiento 1) (Sept/Oct. 2005), US 2004132066, US 2005008625, WO 04/072266, WO 05/065348, WO 05/069970, y WO 06/055778.

[0080] El anticuerpo 3D6, 10D5 y sus variantes son ejemplos de anticuerpos que pueden ser utilizados. Ambos son descritos en US 20030165496, US 20040087777, WO 02/46237, y WO 04/080419, WO 02/088306 y WO 02/088307. Los anticuerpos 10D5 también son descritos en US 20050142131. Anticuerpos 3D6 adicionales son descritos en US 20060198851 y PCT/US05/45614. 3D6 es un anticuerpo monoclonal (mAb - monoclonal antibody) que se enlaza específicamente a un epítope de la terminal N ubicada en el péptido humano amiloide β, específicamente, en los residuos 1-5. Por comparación, 10D5 es un mAb que se enlaza específicamente a un epítope de la terminal N ubicado en el péptido humano de amiloide β, específicamente en los residuos 3-6. Una línea celular que produce el anticuerpo monoclonal 3D6 (RB96 3D6.32.2.4) fue depositado con la Colección Americana de Tipos de Cultivos (ATCC - American Type Culture Collection), Manassas, VA 20108, Estados Unidos el 8 de abril de 2003 bajo los términos del tratado de Budapest y se le asignó el número de acceso PTA-5130. Una línea celular que produce el anticuerpo monoclonal 10D5 (RB44 10D5.19.21) fue depositado con la ATCC el 8 de abril de 2003 bajo los términos del tratado de Budapest y se le asignó el número de acceso PTA-5129.

15 [0081] Bapineuzumab (nombre internacional sin propietario designado por la organización mundial de la salud) significa un anticuerpo 3D6 humanizado que comprende una cadena ligera que tiene una región variable madura que tiene una secuencia de aminoácidos designada como IDENTIFICACIÓN SECUENCIAL NÚMERO: 2 y una cadena pesada que tiene una región variable madura que contiene a la secuencia de aminoácidos diseñada IDENTIFICACIÓN SECUENCIAL NÚMERO: 3 (las regiones constantes de cadenas pesadas y ligeras del anticuerpo diseñado bapineuzumab por QUIENES son IgG1 humano y kappa humana respectivamente). Una cadena ligera humanizada que incluye regiones variables y constantes se la designa la IDENTIFICACIÓN SECUENCIAL NÚMERO: 48 más adelante, y una cadena pesada humanizada que incluye regiones variables y constantes fue designada como la IDENTIFICACIÓN SECUENCIAL NÚMERO 66 o 67 (la IDENTIFICACIÓN SECUENCIAL NÚMERO: 66 tiene una lisina adicional de la terminal C relacionada con la IDENTIFICACIÓN SECUENCIAL NÚMERO: 67).

Región variable de cadena ligera de 3D6 humanizado

[0082]

Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser

Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Asp Ser Asp Gly Lys Thr Tyr Leu Asn Trp

Leu Leu Gln Lys Pro Gly Gln Ser Pro Gln Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp

Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Trp Gln Gly Thr His Phe Pro

Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys (SEC ID NO: 2)

45

30

Región variable de cadena pesada de 3D6 humanizado

[0083]

Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Ser Ile Arg Ser Gly Gly Gly Arg Thr Tyr Tyr Ser Asp Asn Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg Tyr Asp His Tyr Ser Gly Ser Ser Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser (SEC ID NO: 3)

[0084] Una segunda versión del anticuerpo 3D6 humanizado que comprende una cadena ligera que tiene una región madura variable que tiene la secuencia de aminoácidos designada IDENTIFICACIÓN SECUENCIAL NÚMERO: 4 y

	una cadena pesada que tiene una región variable madura que tiene la secuencia de aminoácidos designada IDENTIFICACIÓN SECUENCIAL NÚMERO: 5 se muestran más adelante.
_	La región variable de la cadena ligera de 3D6 humanizada
5	[0085]
	Tyr Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly Glu Pro Ala Ser
10	Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Asp Ser Asp Gly Lys Thr Tyr Leu Asn Trp
	Leu Leu Gln Lys Pro Gly Gln Ser Pro Gln Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp
15	Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
	Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cvs Trp Gln Gly Thr His Phe Pro
	Arg Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys (SEC ID NO: 4)
20	Región Variable de Cadena Pesada 3D6 humanizada
	[0086]
25	Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu
	Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met Ser Trp Val Arg Gln Ala
30	Pro Gly Lys Gly Leu Glu Trp Val Ala Ser Ile Arg Ser Gly Gly Gly Arg Thr Tyr Tyr
30	Ser Asp Asn Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Leu Tyr Tyr Cys Val Arg Tyr
35	Asp His Tyr Ser Gly Ser Ser Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
	(SEC ID NO: 5)
40	[0087] Una tercera versión del anticuerpo 3D6 humanizado comprende una cadena ligera que tiene la secuencia de aminoácidos designada IDENTIFICACIÓN SECUENCIAL NÚMERO: 6 y una cadena pesada que tiene la secuencia de aminoácidos designada IDENTIFICACIÓN SECUENCIAL NÚMERO: 7 se describe en US 2005/0090648 A1 publicada el 28 de abril de 2005 emitida como US 7,318,923.
45	Cadena ligera de 3D6 humanizada
	[8800]
50	
50	
55	

Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Leu Gly Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Asp Ser Asp Gly Lys Thr Tyr Leu Asn Trp Leu Gln Gln Arg Pro Gly Gln Ser Pro Arg Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Trp Gln Gly Thr His Phe Pro Arg Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys (SEC ID NO: 6)

Cadena pesada 3D6 humanizada [0089]

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Ser Ile Arg Ser Gly Gly Gly Arg Thr Tyr Tyr Ser Asp Asn Val Lys Gly Arg Phe Thr Ile Ser Arg Glu Asn Ala Lys Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg Tyr Asp His Tyr Ser Gly Ser Ser Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser

65

60

5

10

15

20

25

30

35

40

45

50

Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu
Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr
Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys (SEC ID NO: 7)

[0090] El anticuerpo adicional que puede ser utilizado de acuerdo al invento es una cuarta versión del 3D6 humanizado, tal como se presentó en US 7,318,923. Este anticuerpo se enlaza a la terminal N del péptido Aβ, tal como se explicó anteriormente. El 3D6 humanizado (versión cuatro) comprende la secuencia de la región variable de cadena ligera de la IDENTIFICACIÓN SECUENCIAL NÚMERO: 71 y la secuencia de la región variable de cadena pesada de la IDENTIFICACIÓN SECUENCIAL NÚMERO: 72.

Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Leu GlyGln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Asp Ser Asp Gly Lys Thr Tyr Leu Asn Trp Leu Gln Gln Arg Pro Gly Gln Ser Pro Arg Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Trp Gln Gly Thr His Phe Pro Arg Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg (SEC ID NO: 71)

20

25

30

35

40

45

50

55

60

65

Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Gly Ser Gly Phe Thr Phe Ser Asn Tyr Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala Ser Ile Arg Ser Gly Gly Gly Arg Thr Tyr Tyr Ser Asp Asn Val Lys Gly Arg Phe Thr Ile Ser Arg Glu Asn Ala Lys Asn Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Val Arg Tyr Asp His Tyr Ser Gly Ser Ser Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser (SEC ID NO: 72)

[0091] Cualquiera de los anticuerpos o fragmentos de anticuerpos aquí descritos pueden ser diseñados o preparados utilizando métodos estándar, tal como se describe en, por ejemplo, US 20040038304, US 20070020685, US 200601660184, US 20060134098, US 20050255552, US 20050130266, US 2004025363, US 20040038317, US 20030157579, y US 7,335,478.

[0092] Cualquiera de los anticuerpos descritos anteriormente pueden ser producidos con isotipos diferentes o isotipos mutantes para controlar la magnitud de los enlaces a los diferentes receptores Fcy. Los anticuerpos que no tienen la región Fc (por ejemplo, los fragmentos Fab) no tienen enlaces a los receptores Fcy. La selección del isotipo también afecta a los enlaces de los receptores Fcy. Las afinidades respectivas de varios isotipos IgG humanos para los tres receptores Fcy. FcyRI, y FcyRIII, han sido determinadas (refiérase a Ravetch & Kinet, Annu. Rev. Immunol. 9, 457 (1991)). FcyRI es un receptor de alta afinidad que enlaza a los IgGs en una forma monomérica, y los dos posteriores son receptores de baja afinidad que se enlazan a IgGs solamente en una forma multimérica. En general, IgG1 e IgG3 tienen una actividad de enlaces significativa para todos los tres receptores, IgG4 a FcyRI, e IgG2 a sólo un tipo de FcyRII llamado IlaLR (refiérase a Parren et al., J. Immunol. 148, 695 (1992). Por lo tanto, el IgG1 de isotipo humano es seleccionado usualmente por sus enlaces más fuertes a los receptores Fcy e IgG2 es seleccionado usualmente por sus enlaces más débiles.

[0093] Las mutaciones, adyacentes, o cercanas a los lugares en la región de vinculación de charnela (por ejemplo, residuos de reemplazo 234, 235, 236 y/o 237 con otro residuo) en todos los isotipos reduce la afinidad para los receptores Fcy, particularmente el receptor FcyRI (refiérase, por ejemplo, a US 6,624,821). Opcionalmente, las

posiciones 234, 236 y/o 237 son sustituidas con alanina y la posición 235 con glutamina. (Refiérase, por ejemplo, a US 5,624,821). La posición 236 falta en el isotipo IgG2 humano. Ejemplos de segmentos de aminoácidos para las posiciones 234, 235 y 237 para IgG2 humano son Ala Gly, Val Ala, Ala, Val Glu Ala, y Ala Glu Ala. Una combinación preferida de mutaciones es L234A, L235A, y G237A para el IgG1 de isotipo humano. Un anticuerpo particular preferido es el bapineuzumab que tiene un IgG de isotipo humano y estas tres mutaciones de la región Fc. Otras sustituciones que reducen los enlaces a los receptores Fcγ son una mutación E233p (particularmente en IgG1 de ratón) y D265A (particularmente de IgG2a de ratón) otros ejemplos de mutaciones y combinaciones de mutaciones que reducen los enlaces a Fc y/o Clq se describen en los ejemplos (E318A/K320A/R322A (particularmente en IgG1 de ratón), L235A/E318A/K320A/K322A (particularmente en IgG2a de ratón). Asimismo, el residuo 241 (Ser) en IgG4 humano puede ser reemplazado, por ejemplo, con prolina para interrumpir los enlaces a Fc.

[0094] Mutaciones adicionales pueden ser hechas a la región constante para modular la actividad ejecutora. Por ejemplo, se puede realizar mutaciones a la región constante de IgG2a en A330S, P331S, o en ambas. En lo que se refiere a las mutaciones para IgG4 éstas se pueden realizar en E233P, F234V y L235A, con G236 eliminado, o cualquiera de sus combinaciones. IgG4 también puede tener una o ambas de las siguientes mutaciones S228P y L235E. El uso de secuencias de la región constante interrumpida para modular la función ejecutora se cubre en mayor detalle, por ejemplo, en WO 06/118,959 y WO 06/036291.

- [0095] Mutaciones adicionales pueden ser hechas a la región constante del IgG humano para modular la actividad ejecutora (refiérase, por ejemplo, a WO 06/03291). Estos incluyen las siguientes sustituciones: (i) A327G, A330S, P331S; (ii) E233P, L234V, L235A, G236 eliminada; (iii) E233P, L234V, L235A; (iv) E233P, L234V, L235A, G236 eliminada, A327G, A330S, P331S; y (v) E233P, L234V, L235A, A327G, A330S, P331S a un IgG1 humano.
- [0096] La afinidad de un anticuerpo con el FcR puede alterarse al mutar ciertos residuos de la región constante de la cadena pesada. Por ejemplo, la interrupción del lugar de glicosilación del IgG1 humano puede reducir los enlaces FcR, y por lo tanto la función ejecutora, del anticuerpo (refiérase, por ejemplo, a WO 06/036291). Las secuencias tripéptidas NXS, NXT, y NXC, donde X es cualquier aminoácido que no sea prolina, son los lugares de reconocimiento enzimático para la glicosilación del residuo N. La interrupción de cualquiera de los aminoácidos tripéptidos particularmente en la región CH2 de IgG1 evita la glicosilación en ese lugar. Por ejemplo, la mutación de N97 del IgG1 humano evíta la glicosilación y reduce los enlaces FcR al anticuerpo.

[0097] Las secuencias de algunos ejemplos de anticuerpos 3D6 humanizados y sus partes de los componentes se muestran más adelante. Las regiones constantes humanas muestran variaciones alotípicas y variaciones isoalotípicas entre individuos diferentes, eso es, las regiones constantes pueden diferir en diferentes individuos en una o más posiciones polimórficas. Isoalotipos se diferencian de los alotipos en que el reconocimiento sérico en un isoalotipo se enlaza a una región no polimórfica o a uno o más isotipos adicionales. El alotipo de la región constante de IgG1 que se muestra más adelante es 3D6 (AAB-001) que es Glmz que tiene a Glu en la posición 356 y Met en la posición de 158. El alotipo de la región constante de kappa que se muestra más adelante es Km3, que tiene un Ala en la posición 153 y a Val en la posición 191. Un alotipo diferente Km(1) tiene Val y Leu en las posiciones 153 y 191 respectivas. Las variantes alotípicas son revisadas por J Immunogen 3: 357-362 (1976) y Loghem,. Monogr Allergy 19: 40-51 (1986). Otras variantes alotípicas e isoalotípicas de las regiones constantes ilustradas son incluidas. También están incluidas las regiones constantes que tienen cualquier permutación de los residuos que ocupan posiciones polimórficas en alotipos naturales. Ejemplos de otros alotipos IgG1 de cadenas pesadas incluyen a: Glm(f), Glm(a) y Glm(x). Glm(f) se diferencia de Glm(z) en que tiene a Arg en vez de a un Lys en la posición 214. Glm(a) tiene aminoácidos Arg, Asp, Glu, Leu en las posiciones 355-358.

Cadena ligera de longitud completa de 3D6 humanizada (secuencia de señalización subrayada) (bapineuzumab y AAB-003)

50 [0098]

5

10

15

35

40

45

55

60

65

MDMRVPAQLLGLLMLWVSGSSGDVVMTQSPLSLPVTPGEPASISCKSSQSLLDSDGKTYLNWLLQKPGQSPQRLIYLVSKLDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCWQGTHFPRTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEC ID NO: 47)

Cadena ligera de longitud completa de 3D6 humanizada, sin incluir la secuencia de señalización (bapineuzumab y AAB-003)

[0099]

DVVMTQSPLSLPVTPGEPASISCKSSQSLLDSDGKTYLNWLLQKPGQSPQRLI
YLVSKLDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCWQGTHFPRTFGQ
GTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDN
ALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSP

10 VTKSFNRGEC (SEC ID NO: 48)

ADN que codifica a la secuencia de codificación de la cadena ligera de 3D6 humanizada (secuencia de señalización subrayada) (bapineuzumab y AAB-003)

15 **[0100]**

ATGGACATGCGCGTGCCCGCCCAGCTGCTGGGCCTGCTGATGCTGTGGGT GTCCGGCTCCTCCGGCGACGTGGTGATGACCCAGTCCCCCTGTCCCTGCC 20 CGTGACCCCGGCGAGCCCGCCTCCATCTCCTGCAAGTCCTCCCAGTCCCT GCTGGACTCCGACGCAAGACCTACCTGAACTGGCTGCTGCAGAAGCCCG 25 GCCAGTCCCCCAGCGCCTGATCTACCTGGTGTCCAAGCTGGACTCCGGC GTGCCCGACCGCTTCTCCGGCTCCGGCTCCGGCACCGACTTCACCCTGAAG ATCTCCCGCGTGGAGGCCGAGGACGTGGGCGTGTACTACTGCTGGCAGGG 30 CACCCACTTCCCCCGCACCTTCGGCCAGGGCACCAAGGTGGAGATCAAGC GTACTGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGT 35 TGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCCA GAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAA CTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAG 40 TCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACAAAG AGCTTCAACAGGGGAGAGTGTTAG (SEC ID NO: 49)

45
Región constante de la cadena pesada humana, isotipo IgG1, L234A/G237A
[0101]

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF
PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKT
HTCPPCPAPEALGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK
ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA
LHNHYTQKSLSLSPGK (SEC ID NO: 50)

	[0102] El residuo K de la terminal C puede estar ausente, tal como se indica a continuación.
	ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF
5	PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKT
	HTCPPCPAPEALGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
10	WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK
	ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
15	WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWOQGNVFSCSVMHEA
	LHNHYTQKSLSLSPG (SEC ID NO: 51)
20	Cadena pesada de longitud completa de 3D6 humana (isotipo IgG1, L234A/G237A) incluyendo la secuencia de señalización (subrayada)
20	[0103]
	MEFGLSWLFLVAILKGVQCEVQLLESGGGLVQPGGSLRLSCAASGFTFSNYG
25	MSWVRQAPGKGLEWVASIRSGGGRTYYSDNVKGRFTISRDNSKNTLYLQMN
	SLRAEDTAVYYCVRYDHYSGSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKS
30	TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV
30	TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEALGAPS
	VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP
35	REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP
	REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP
40	VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
40	(SEC ID NO: 52)
45	[0104] El residuo K de la terminal C puede estar ausente, tal como se indica a continuación MEFGLSWLFLVAILKGVQCEVQLLESGGGLVQPGGSLRLSCAASGFTFSNYG
	MSWVRQAPGKGLEWVASIRSGGGRTYYSDNVKGRFTISRDNSKNTLYLQMN
50	SLRAEDTAVYYCVRYDHYSGSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKS
	TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV
55	TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEALGAPS
	VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP
	REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP

65

(SEC ID NO: 53)

60

REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP

VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG

Cadena pesada de longitud completa de 3D6 humanizada sin incluir la secuencia de señalización (Isotipo IgGI, L234A/G237A)

ΓΛ	4	UE1
ΙU	1	บอเ

- EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASIR
 SGGGRTYYSDNVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRYDHYS

 GSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV
 TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS
 NTKVDKKVEPKSCDKTHTCPPCPAPEALGAPSVFLFPPKPKDTLMISRTPEVT
 CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH
 QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ
 VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
 RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEC ID NO: 54)
- 25 [0106] El residuo K de la terminal C puede estar ausente, como se indica a continuación.

 EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASIR

 SGGGRTYYSDNVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRYDHYS

 30 GSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV

 TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS

 NTKVDKKVEPKSCDKTHTCPPCPAPEALGAPSVFLFPPKPKDTLMISRTPEVT

 CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH

 QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ

 VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS

 RWQQGNVFSCSVMHEALHNHYTQKSLSLSPG (SEC ID NO: 55)
- Región constante de la cadena pesada humana, isotipo IgG4, S241P (numeración Kabat); S228P (numeración EU).

 [0107]
- ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF
 PAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPC
 PPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV
 DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPS
 SIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES
 NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWOEGNVFSCSVMHEALHN
 HYTQKSLSLSLGK (SEC ID NO: 56)

	[0108] El residuo K de la terminal C puede estar ausente, tal como se indica más adelante.
5	ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF
	PAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPC
	PPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV
10	DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPS
	SIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES
15	NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHN
	HYTQKSLSLSLG (SEC ID NO: 57)
20	Cadena pesada de longitud completa de 3D6 humanizada (Isotipo IgG4, S241P), incluyendo la secuencia de señalización (subrayada)
	[0109]
	MEFGLSWLFLVAILKGVQCEVQLLESGGGLVQPGGSLRLSCAASGFTFSNYG
25	MSWVRQAPGKGLEWVASIRSGGGRTYYSDNVKGRFTISRDNSKNTLYLQMN
	SLRAEDTAVYYCVRYDHYSGSSDYWGQGTLVTVSSASTKGPSVFPLAPCSRS
30	TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT
00	VPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFP
	PKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQ
35	FNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ
	VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD
40	SDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK (SEC ID NO: 58)
	[0110] El residuo K de la terminal C puede estar ausente, tal como se indica a continuación.
	$\underline{MEFGLSWLFLVAILKGVQC} \mathbf{EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYG}$
45	MSWVRQAPGKGLEWVASIRSGGGRTYYSDNVKGRFTISRDNSKNTLYLQMN
	SLRAEDTAVYYCVRYDHYSGSSDYWGQGTLVTVSSASTKGPSVFPLAPCSRS
50	TSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT
	VPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFP
55	PKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQ
33	FNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ
60	VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD
	SDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG (SEC ID NO: 59)
	Cadena pesada de 3D6 humanizada, sin incluir a la secuencia de señalización (isotipo IgG4, S24
65	[0111]

	EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASIR
5	SGGGRTYYSDNVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRYDHYS
J	GSSDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPV
	TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS
10	NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVV
	DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWL
15	NGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTC
	LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE
20	GNVFSCSVMHEALHNHYTQKSLSLSLGK (SEC ID NO: 60)
	[0112] El residuo K de la terminal C puede estar ausente, tal como se indica a continuación.
	EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASIR
25	SGGGRTYYSDNVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRYDHYS
	GSSDYWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPV
30	TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPS
	NTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVV
	DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWL
35	NGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTC
	LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQE
40	GNVFSCSVMHEALHNHYTQKSLSLSLG (SEC ID NO: 61)
	La región constante de cadenas pesadas humanas, Isotipo IgG1 (AAB-003), L234A/L235A/G237A
45	[0113]
40	ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF
	PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKT
50	HTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
	WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK
55	ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
	WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA
60	LHNHYTQKSLSLSPGK (SEC NO ID: 62)

[0114] El residuo K de la terminal C puede estar ausente, tal como se indica a continuación.

- ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF
 PAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKT
 HTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN
 WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK
 ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE
 WESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA
 LHNHYTQKSLSLSPG (SEC ID NO: 63)
- Cadena pesada de longitud completa de 3D6 humanizada incluyendo la secuencia de señalización (isotipo IgG1, L234A/L235A/G237A): AAB-003
 [0115]
- MEFGLSWLFLVAILKGVQCEVQLLESGGGLVQPGGSLRLSCAASGFTFSNYG
 MSWVRQAPGKGLEWVASIRSGGGRTYYSDNVKGRFTISRDNSKNTLYLQMN
 SLRAEDTAVYYCVRYDHYSGSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKS
 TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV
 TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGAPS
 VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP
 REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP
 REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP
 VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

(SEC ID NO: 64)

- [0116] El residuo K de la terminal C puede estar ausente, tal como se indica a continuación.
- MEFGLSWLFLVAILKGVQCEVQLLESGGGLVQPGGSLRLSCAASGFTFSNYG

 MSWVRQAPGKGLEWVASIRSGGGRTYYSDNVKGRFTISRDNSKNTLYLQMN
 SLRAEDTAVYYCVRYDHYSGSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKS

 TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV
 TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGAPS
 VFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP

 REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP
 REPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP
 VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG
 (SED ID NO: 65)

	Cadena pesada de 3D6 humanizada, sin incluir la secuencia de señalización (isotipo IgG1, L234A/L235A/G237A): AAB-003
5	[0117]
	EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASIR
	SGGGRTYYSDNVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRYDHYS
10	GSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV
	TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS
15	NTKVDKKVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVT
	CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH
	QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ
20	VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
	RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEC ID NO: 66)
25	[0118] El residuo K de la terminal C puede estar ausente, tal como se indica a continuación.
	EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASIR
30	SGGGRTYYSDNVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRYDHYS
50	GSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV
	TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS
35	NTKVDKKVEPKSCDKTHTCPPCPAPEAAGAPSVFLFPPKPKDTLMISRTPEVT
	CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH
40	QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQ
	VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS
45	RWQQGNVFSCSVMHEALHNHYTQKSLSLSPG (SEC ID NO: 67)
40	ADN que codifica una región de codificación de cadena pesada de 3D6 humanizada incluyendo la secuencia de señalización (subrayada) (isotipo de IgG1, L234A/L235A/G237A): AAB-003
50	[0119]
55	
00	
60	

ATGGAGTTTGGGCTGAGCTGGCTTTTTCTTGTGGCTATTTTAAAAGGTGTC CAGTGTGAGGTGCAGCTGCTGGAGTCCGGCGGCGGCCTGGTGCAGCCCGG 5 CGGCTCCCTGCGCCTGTCCTGCGCCGCCTCCGGCTTCACCTTCTCCAACTA 10 CCTCCATCCGCTCCGGCGGCGGCCGCACCTACTACTCCGACAACGTGAAG GGCCGCTTCACCATCTCCCGCGACAACTCCAAGAACACCCTGTACCTGCA 15 ACGACCACTACTCCGGCTCCTCCGACTACTGGGGCCAGGGCACCCTGGTG ACCGTGTCCTCCGCGTCGACCAAGGGCCCATCGGTCTTCCCCCTGGCACCC 20 TCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAA GGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGA 25 CCAGCGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACT CCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACC 30 TACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGA AAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCA GCACCTGAAGCCGCTGGGGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCC 35 AAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGT GGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG 40 GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAA CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGC 45 TGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCC CCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC AGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTC 50 AGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGA GTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC 55 GTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCGTGGAC AAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGA 60 GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCCCCGGGTA AATGA (SEC ID NO: 68)

⁶⁵ Cadena pesada de longitud completa de bapineuzumab, sin incluir la secuencia de señalización, isotipo de lgG1, sin mutaciones Fc.

[0120]

EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASIR
SGGGRTYYSDNVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRYDHYS
GSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV
TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC
VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ
DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQV
SLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEC ID NO: 69)

[0121] El residuo K de la terminal C puede estar ausente, tal como se muestra a continuación.

EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYGMSWVRQAPGKGLEWVASIR
SGGGRTYYSDNVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRYDHYS

GSSDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPV
TVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPS
NTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC
VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ
DWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQV

SLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR
WQQGNVFSCSVMHEALHNHYTQKSLSLSPG (SEC ID NO: 70)

45 [0122] En algunos anticuerpos, las posiciones 234, 235, y 237 de una región constante de cadenas pesadas de IgG humana puede ser AAA respectivamente, LLA respectivamente, LAG respectivamente, ALG respectivamente, AAB-003 es una variante L234A, L235A, y G237A de bapineuzumab (es decir, tiene secuencias de aminoácidos idénticas a bapineuzumab excepto por las mutaciones L234A, L235A, y G237A, siendo alanina (A) el aminoácido variante). Tal como la bapineuzumab, AAB-003 tiene una región constante de cadena ligera kappa humana de longitud completa y una región constante de cadena pesada de IgG1 humana de longitud completa (en bapineuzumab o AAB-003, un residuo de lisina de la terminal C es dividido intracelularmente a veces y a veces no aparece en el producto final).

[0123] Aunque las tres mutaciones en AAB-003 son cercanas a la región de charnela en vez de a la región de enlace complementario, AAB-003 tiene enlaces reducidos para los receptores Fcγ y para C1q, en relación con bapineuzumab. Por lo tanto, el anticuerpo AAB-003 tiene una capacidad reducida para inducir la fagocitosis y la cascada complementaria. Además, AAB-003 muestra menos enlaces al FcγRII humano que un anticuerpo que de otra forma es idéntico con menos de tres mutaciones presentes en AAB-003 (por ejemplo, una con sustituciones en los residuos 234 y 237), indicando que todas las tres mutaciones en la región Fc de AAB-003 contribuyen para reducir la función ejecutora. Una mutación de la región constante de cadena pesada para reducir la interacción con los receptores Fcγ y/o C1q puede reducir las microhemorragias en un modelo de ratones sin eliminar actividades útiles. Las microhemorragias en ratones son un factor que puede contribuir a que ocurran edemas vasogénicos en humanos. Los anticuerpos que portan aquellas mutaciones retienen la habilidad para inhibir el declive cognitivo así como la habilidad para despejar depósitos de amiloides.

65

55

[0124] Asimismo, las votaciones de la región constante de la cadena pesada también pueden combinarse con las secuencias de región variables ya descritas. La siguiente tabla muestra ejemplos de combinaciones de regiones variables de cadenas pesadas y regiones constantes de cadenas pesadas con mutaciones para los anticuerpos descritos anteriormente. Las cadenas pesadas mostradas en la tabla para un anticuerpo en particular, pueden ser emparejadas con cualquiera de las regiones variables de cadenas ligeras ya descritas para aquel anticuerpo enlazado a una región constante de cadenas ligeras (por ejemplo, una región constante de cadenas ligeras kappa humana a continuación:

RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNS QESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRG

EC (SEC ID NO: 85)

5

10

15

20

25

30

45

50

55

60

65

O uno de sus alotipos o isoalotipos.

Tabla 1

Correlación de los números de identificación secuencial de cadenas pesadas de longitud completa con las variables respectivas y los números de identificación secuenciales de las regiones constantes Región variable de cadenas pesadas **Anticuerpos** Región constante de cadenas pesadas 72 3D6 (versión 4) 50 72 51 72 56 72 57 72 62 72 63

[0125] Los aminoácidos en la región constante están enumerados por la alineación con el anticuerpo humano EU (refiérase a, Cunningham et al., J. Biol. Chem., 9, 3161 (1970)). Eso es, cadenas pesadas y ligeras de un anticuerpo se alivian con las cadenas pesadas y ligeras de EU para maximizar la identidad secuencial de los aminoácidos y cada aminoácido en el anticuerpo se le asigna el mismo número de aminoácido correspondiente en EU. El sistema de numeración EU es convencional (refiérase, generalmente a Kabat et al. Sequences of Protein of Immunological Interest (Secuencias de Proteínas de Interés Inmunológico), NIH publicación No. 91-3242, US, Department of Health and Human Services (Departamento de Salud y Servicios Humanos de Estados Unidos) (1991)).

[0126] La afinidad de un anticuerpo para complementar al componente C1q puede alterarse al mutar por lo menos uno de los residuos de aminoácidos 318, 320, y 322 de la cadena pesada a un residuo que tiene una cadena lateral diferente. Otras alteraciones adecuadas son, por ejemplo, para reducir o abolir, enlaces de Clq específicos a un anticuerpo incluyen el cambio de cualquiera de los residuos 318 (Glu), 320 (Lys) y 322 (Lys), a Ala. La actividad de enlace de C1q puede ser abolida al reemplazar cualquiera de los tres residuos especificados con un residuo que tiene una funcionalidad inapropiada en su cadena lateral. No es necesario reemplazar los residuos iónicos solamente con Ala para abolir los enlaces C1q. También es posible el utilizar otros residuos no iónicos sustituidos por alquilos, tales como Gly, lle, Leu, o Val, o aquellos residuos aromáticos no polares tales como Phe, Tyr, Trp y Pro en lugar de cualquiera de los tres residuos para abolir enlaces C1q. Adicionalmente, también es posible utilizar aquellos residuos polares no iónicos tales como Ser, Thr, Cys, y Met en el lugar de los residuos 320 y 322, pero no 318, para abolir la actividad de enlaces de C1q. El reemplazo del residuo 318 (Glu) por un residuo polar podría modificar pero no abolir la actividad de enlaces de C1q. Al reemplazar el residuo 297 (Asn) con Ala esto resulta en la remoción de la actividad lítica mientras se reduce ligeramente (alrededor de tres veces más débil) la afinidad para C1q. Esta alteración destruye el lugar de glicosilación y la presencia del carbohidrato que es requerida para la activación complementaria. Cualquier otra sustitución en este lugar también destruye el lugar de glicosilación.

[0127] Mutaciones adicionales que pueden afectar los enlaces de C1q a la región constante del IgG1 humano incluyen aquellas descritas, por ejemplo, en WO 06/036291. En este caso, por lo menos una de las siguientes sustituciones puede realizarse para reducir los enlaces C1q: D270A, K322A, P329A, y P311S. Cada una de estas mutaciones, incluyendo a aquellos residuos 297, 318, y 320 pueden ser hechas individualmente o en una combinación.

[0128] Los anticuerpos con mutaciones en la región constante de cadenas pesadas que reducen los enlaces de los receptores Fcγ y/o C1q pueden ser utilizados en cualquiera de los métodos del invento. Preferiblemente, aquellos

anticuerpos tienen enlaces reducidos en relación a un anticuerpo que de otra forma sería idéntico que no tiene la mutación de por lo menos el 50% a por lo menos un receptor Fcy y/o a C1q.

V. Pacientes susceptibles al tratamiento

5

10

15

20

25

30

35

40

45

[0129] Los regímenes presentados son útiles para el tratamiento de cualquier enfermedad caracterizada por depósitos de amiloides de Aβ en el cerebro. En la misma forma que en la enfermedad de Alzheimer, aquellas enfermedades incluyen al síndrome de Down, la enfermedad de Parkinson, discapacidad cognitiva moderada y enfermedad de amiloides vasculares. Pacientes susceptibles al tratamiento incluyen individuos con el riesgo de enfermedad pero que no muestran síntomas, así como pacientes que en la actualidad presentan síntomas. En el caso de la enfermedad de Alzheimer, virtualmente cualquier persona tiene el riesgo de sufrir de la enfermedad de Alzheimer si es que él o ella viven lo suficiente. Por lo tanto, estos métodos pueden ser administrados profilácticamente a la población en general sin la necesidad de cualquier evaluación del riesgo del paciente sujeto. Estos métodos pueden ser útiles para individuos que tienen un riesgo genético conocido de la enfermedad de Alzheimer. Aquellos individuos incluyen personas que tienen parientes que han experimentado esta enfermedad, y aquellos cuyo riesgo es determinado por medio del análisis de marcadores genéticos o bioquímicos. Los marcadores genéticos de riesgo para contraer la enfermedad de Alzheimer incluyen mutaciones del gen de la APP. particularmente mutaciones en la posición 717 y las posiciones 670 y 671 denominadas las mutaciones Hardy (Robusta) y Swedish (Sueca) respectivamente (refiérase a Hardy, mencionado anteriormente). Otros marcadores de riesgo son las mutaciones en los genes de Presenilina, PS1 y PS2 y ApoE4, la historia familiar de AD, hipercolesterolemia o ateroesclerosis. Los individuos que actualmente sufren de la enfermedad de Alzheimer pueden ser reconocidos por la demencia característica, así como la presencia de los factores de riesgo ya descritos. Adicionalmente, un número de pruebas de diagnóstico son disponibles para identificar individuos que tienen AD. Estos incluyen la medición de los niveles de CSF tau y A\u03c42. Niveles elevados de tau y reducidos de A\u03c42 significa la presencia de AD. Individuos que sufren de la enfermedad de Alzheimer también pueden ser diagnosticados por los criterios ADRDA tal como se menciona en la sección de ejemplos.

[0130] En pacientes asintomáticos, el tratamiento puede empezar a cualquier edad (por ejemplo, 10, 20, 30). Usualmente, sin embargo, no es necesario empezar el tratamiento hasta que un paciente alcanza los 40, 50, 60 o 70 años de edad. El tratamiento típicamente de abarca varias dosis durante un periodo de tiempo. El tratamiento puede ser monitoreado mediante ensayos de los niveles de anticuerpos a lo largo del tiempo. Si la respuesta cae, se indica una dosis de refuerzo. En el caso de pacientes potenciales de síndrome de Down, el tratamiento puede empezar antes del nacimiento por medio de la administración del reactivo terapéutico a la madre o justo después del nacimiento.

[0131] Los pacientes susceptibles al tratamiento incluyen personas de 50 a 87 años de edad, pacientes que sufren de la enfermedad de Alzheimer en una forma ligera a moderada, pacientes que tienen un puntaje MMSE de 14-26, pacientes que tienen una diagnosis de probable enfermedad de Alzheimer que se basa en los criterios de Enfermedades y Traumas Neurológicos y Comunicativos - las Enfermedades Relacionadas a la Enfermedad de Alzheimer (NINCDS-ADRDA - Neurological and Communicative Disorders and Stroke-Alzheimer's disease Related Disorders), y/o pacientes que tienen un puntaje isquémico de Hachinski modificado por Rosen de por lo menos o igual a 4. Pacientes con MRI, una detección consistente de los diagnósticos de la enfermedad de Alzheimer, es decir, que no existen otras anormalidades presentes en el MRI que pudiesen ser atribuidas a otras enfermedades, por ejemplo, infarto, lesión cerebral traumática, quistes aracnoideos, tumores, etc. también son susceptibles al tratamiento.

VI. Regímenes de tratamiento

[0132] En aplicaciones, reactivos, composiciones farmacéuticos profilácticos o medicamentos que los contienen son administrados a un paciente sujeto libre, o con el riesgo de la enfermedad de Alzheimer en un monto suficiente para eliminar o reducir el riesgo, reducir la severidad o retrasar el inicio de la enfermedad, incluyendo los síntomas bioquímicos, histológicos y/o de comportamiento de la enfermedad, sus complicaciones y fenotipos patológicos intermedios que se presentan durante el desarrollo de la enfermedad. Las aplicaciones, composiciones o medicamentos terapéuticos son administrados a un paciente que se sospecha o que ya sufre de aquella enfermedad en un monto suficiente para curar, o por lo menos neutralizar parcialmente, los síntomas de la enfermedad (bioquímicos, histológicos y/o de comportamiento), incluyendo sus complicaciones y fenotipos patológicos intermedios en el desarrollo de la enfermedad.

- [0133] Las dosis efectivas de las composiciones de este invento, para el tratamiento de las condiciones ya descritas varían dependiendo de muchos factores diferentes, incluyendo los medios de administración, el lugar objetivo, el estado fisiológico del paciente, si es que el paciente es un humano o un animal, otras medicaciones administradas y si es que el tratamiento es profiláctico o terapéutico.
- [0134] Opcionalmente, los anticuerpos son administrados para lograr una concentración sérica media de los anticuerpos administrados de 0.1-60, 0.4-20, o 1-15 mg/ml en un paciente. Estos rangos dan soporte a las concentraciones efectivas demostradas en ratones y humanos dando un margen de error en las medidas y en la

variación de los pacientes individuales. La concentración sérica puede determinarse por una medición real o pronosticada a partir de farmacocinética estándar (por ejemplo, WinNonline Versión 4.0.1 (Pharsight Corporation, Cary, EE.UU.)) que se basa en el monto de anticuerpos administrado, la frecuencia de administración, la ruta de administración y la vida media de los anticuerpos.

5

10

[0135] La concentración media de anticuerpos en el suero está opcionalmente dentro de un rango de 1-10, 1-5 o 2-4 μg /ml. También es opcional el mantener una concentración sérica máxima de los anticuerpos en el paciente que sea menor a alrededor de 28 μg de anticuerpos por mililitro de suero para maximizar el beneficio terapéutico en relación a la ocurrencia de posibles efectos colaterales, particularmente edema vascular. Una concentración sérica máxima preferida está dentro de un rango de alrededor de 4-28 μg de anticuerpos/mililitro de suero. La combinación de suero máximo menor a alrededor de 28 μg de anticuerpos/mililitros de suero y una concentración sérica media del anticuerpo en el paciente es por debajo de alrededor de 7 μg de anticuerpos/mililitro de suero es particularmente beneficiosa. Opcionalmente, la concentración media está dentro de un rango de alrededor de 2-7 microgramos de anticuerpos/mililitros de suero.

15

[0136] La concentración de $A\beta$ en plasma seguida por la administración de anticuerpos cambia dramáticamente en paralelo con los cambios de la concentración sérica de anticuerpos. Es decir, la concentración de plasma de $A\beta$ está a niveles más altos después de una dosis de anticuerpos y luego se reduce cuando la concentración de anticuerpos se reduce entre dosis. La dosis y el régimen de administración de anticuerpos puede ser variada para obtener un nivel deseado de $A\beta$ en el plasma. En aquellos métodos, la concentración media de plasma de anticuerpos puede ser por lo menos 450 pg/ml o, por ejemplo, dentro del rango de 600-30,000 pg/ml o 700-2000 pg/ml u 800-1000 pg/ml.

20

25

[0137] Los rangos de dosis preferidos para anticuerpos son de alrededor de 0.01 a 5 miligramos/kilogramo, y más usualmente 0.1 a 3 miligramos/kilogramo o 0.15-2 miligramos/kilogramo o 0.15-1.5 miligramos/kilogramo, de la masa corporal anfitriona. A sujetos se les puede administrar aquellas dosis diariamente, saltando un día, semanalmente, cada dos semanas, mensualmente, cada trimestre o de acuerdo a cualquier otro cronograma determinado por un análisis empírico. Un ejemplo de tratamiento abarca la administración en varias dosis durante un período prolongado de tiempo, por ejemplo, de por lo menos 6 meses. Ejemplos adicionales de regímenes de tratamiento abarcan la administración una vez cada dos semanas o una vez al mes o una vez cada tres a seis meses.

30

[0138] Para la administración intravenosa, las dosis de 0.1 miligramos/kilogramo a 2 miligramos/kilogramo, y preferiblemente 0.5 miligramos/kilogramo o 1.5 miligramos/kilogramo administradas intravenosamente trimestralmente son adecuadas. Dosis preferidas de anticuerpos para una administración intravenosa mensualmente o curren en el rango de 0.1-1.0 miligramos/kilogramos de anticuerpos o preferiblemente 0.5-1.0 miligramos/kilogramos de anticuerpos.

35

40

45

[0139] Para dosis más frecuentes, por ejemplo, desde dosis semanales a mensuales, la administración subcutánea es preferida. Dosis subcutáneas son más fáciles de administrar y pueden reducir las concentraciones séricas máximas en relación a dosis intravenosas. Las dosis utilizadas para dosis subcutáneas están usualmente en el rango de 0.01 a 0.6 miligramos/kilogramos o 0.01-0.35 miligramos/kilogramos, preferiblemente, 0.05-0.25 miligramos/kilogramos. Para dosis semanales o de cada dos semanas, la dosis es preferiblemente en el rango de 0.015-0.2 miligramos/kilogramos, o 0.05-0.15 miligramos/kilogramos. Para dosis semanales, la dosis es preferiblemente 0.05 a 0.07 miligramos/kilogramos, por ejemplo, alrededor de 0.06 miligramos/kilogramos. Para dosis cada dos semanas, la dosis es preferiblemente 0.1 a 0.15 miligramos/kilogramos. Para dosis mensuales, la dosis es preferible entre 0.1 a 0.3 miligramos/kilogramos o alrededor de 0.2 miligramos/kilogramos. Las dosis mensuales incluyen dosis por medio de un mes calendario o un mes lunar (es decir, cada cuatro semanas). Aquí, como en otras secciones de la aplicación, las dosis expresadas en miligramos/kilogramos pueden ser convertidas a dosis de masa absolutas al multiplicar por la masa de un paciente típico (por ejemplo, 70 a 75 kg) redondeando típicamente un número entero. Otros regímenes son descritos por, por ejemplo, PCT/US2007/009499. La dosis y frecuencia pueden variar dentro de estas guías basándose en el Estado ApoE del paciente tal como ya se mencionó.

50

VII. Ejemplos de regímenes que dependen del estado del portador

55

[0140] La presentación suministra métodos para el tratamiento de pacientes no portadores que tienen la enfermedad de Alzheimer (por ejemplo, leves o moderados) en los cuales un régimen efectivo de un anticuerpo que se enlaza específicamente a un epítope de la terminal N de Aβ es administrado a un paciente. El anticuerpo puede, por ejemplo, enlazarse a un epítope dentro de los residuos 1-11, 1-7, 1-5, o 3-7 de Aβ. Opcionalmente, el anticuerpo es bapineuzumab. La dosis del anticuerpo puede ser dentro del rango de alrededor de 0.15 miligramos/kilogramos a 2 miligramos/kilogramos administrados por infusión intravenosa. Opcionalmente, la dosis es de alrededor de 0.5 miligramos/kilogramos a alrededor de 1 mg/kilogramos. La dosis puede ser administrada, por ejemplo, cada 8-16 semanas, cada 1-14 semanas o cada 13 semanas.

65

60

[0141] La presentación también suministra métodos para reducir el declive cognitiva en un paciente no portador que ha sido diagnosticado con la enfermedad de Alzheimer en una forma leve o moderada. El método abarca la administración de un régimen efectivo de anticuerpos que se enlazan específicamente a un epítope de la terminal N

de Aβ a aquel paciente. El anticuerpo puede, por ejemplo, enlazarse a un epítope dentro de los residuos 1-11, 1-7, 1-5, o 3-7 de Aβ. Opcionalmente, el anticuerpo es bapineuzumab. La dosis del anticuerpo puede estar dentro de un rango de alrededor de 0.15 miligramos/kilogramos a 2 miligramos/kilogramos administrados por medio de una infusión intravenosa. Opcionalmente, la dosis es de alrededor de 0.5 miligramos/kilogramos a alrededor de 1 miligramos/kilogramos. Las dosis pueden ser administradas, por ejemplo, cada 8-16 semanas, cada 1-14 semanas o cada 13 semanas. La reducción cognitiva puede ser medida al comparar al paciente que está siendo tratado con la reducción cognitiva en una población de pacientes de control también de estado de no portadores y que tienen la enfermedad de Alzheimer en una forma leve o moderada (por ejemplo, una población de control en un ensayo clínico). La capacidad cognitiva puede ser medida por medio de escalas tales como ADAS-COG, NTB, MMSE o CDRSB. La tasa de cambio en una escala como esas (puntos al pasar del tiempo) en un paciente pueden compararse con la reducción media en una población de pacientes de control tal como ya se mencionó.

[0142] La presentación también suministra métodos para reducir el declive del volumen cerebral en un paciente no portador que ha sido diagnosticado con la enfermedad de Alzheimer en una forma leve o moderada. El método abarca la administración de un régimen efectivo de un anticuerpo que se enlaza específicamente a un epítope de la terminal N de Aβ a aquel paciente. El anticuerpo puede, por ejemplo, enlazarse a un epítope dentro de los residuos 1-11, 1-7, 1-5, o 3-7 de Aβ. Opcionalmente, el anticuerpo puede ser bapineuzumab. La dosis del anticuerpo puede estar dentro de un rango de alrededor de 0.15 miligramos/kilogramos a 2 miligramos/kilogramos administrados por medio de una infusión intravenosa. Opcionalmente, la dosis es de alrededor de 0.5 miligramos/kilogramos a alrededor de 1 miligramo/kilogramos. La dosis puede ser administrada, por ejemplo, cada 8-16 semanas, cada 1-14 semanas o cada 13 semanas. El volumen cerebral puede ser medido por medio de MRIs. Cambios en el volumen cerebral en un paciente pueden compararse con la media de reducción en volúmenes cerebrales en una población de pacientes de control que también tengan el estado de no portadores y que tengan la enfermedad de Alzheimer en una forma leve o moderada (por ejemplo, una población de control en un ensayo clínico).

[0143] La presentación también suministra métodos para el tratamiento de pacientes no portadores que tienen la enfermedad de Alzheimer (por ejemplo, en una forma leve o moderada) en los cuales un régimen de un anticuerpo que se enlaza específicamente aún epítope de la terminal N de Aβ es administrado a aquel paciente. El régimen es efectivo para mantener una concentración sérica media del anticuerpo en el rango de alrededor de 0.1 μg/mililitros alrededor de 60 μg/mililitros, opcionalmente 0.4-20 o 1-5 microgramos/mililitros. Adicionalmente o alternamente, el régimen es administrado para mantener una concentración media de plasma de Aβ de 600-3000 pg/mililitros, 700-2000 pg/ml o 800-100 pg/ml. Opcionalmente, el anticuerpo en aquellos métodos puede ser bapineuzumab.

[0144] La presentación también suministra métodos para el tratamiento de un paciente que es un portador ApoE4 y tiene enfermedad de Alzheimer donde el anticuerpo administrado tiene una mutación de la región constante que reduce los enlaces a C1q y/o los receptores Fcγ. Opcionalmente, el anticuerpo es uno que se enlaza a un epítope dentro de una región de la terminal N de Aβ. Opcionalmente, el anticuerpo puede ser AAB-003. Opcionalmente, el paciente puede ser monitoreado, por ejemplo, trimestralmente, por medio de MRIs para detectar edemas vasogénicos. Si se desarrolla un edema vasogénico la frecuencia o la dosis pueden ser reducidas o eliminadas. El edema vasogénico puede ser tratado opcionalmente con un corticosteroide. Después de la resolución del edema vasogénico, la administración del tratamiento puede ser reanudada. Opcionalmente, la dosis se incrementa al pasar del tiempo.

[0145] La presentación también suministra métodos para el tratamiento de un paciente diagnosticado con una probable enfermedad de Alzheimer, sin importar el estado ApoE4. En aquellos métodos, se administra un régimen efectivo de un anticuerpo que se enlaza específicamente a una región de la terminal N de Aβ. El anticuerpo tiene una mutación de la región constante que reduce los enlaces a C1q y/o los receptores Fcγ en comparación aún anticuerpo que de otra forma sería idéntico pero sin la mutación. Opcionalmente, el anticuerpo es uno que se enlaza a un epítope dentro de una región de la terminal N de Aβ. Opcionalmente, el anticuerpo es AAB-003. Opcionalmente, los pacientes son monitoreados, por ejemplo, trimestralmente, por medio de MRI para detectar edemas vasogénicos. Si se desarrolla el edema vasogénico la frecuencia o dosis puede ser reducida o eliminada. El edema vasogénico puede ser tratado opcionalmente con un corticosteroide. Después de la resolución el edema vasogénico, la administración del tratamiento puede ser reanudada. Opcionalmente, la dosis es incrementada durante el tiempo después de la resolución del edema vasogénico.

[0146] La presentación suministra métodos para tratar un paciente portador de ApoE con la enfermedad de Alzheimer que comprende la administración subcutánea a un paciente que tiene la enfermedad con un anticuerpo que se enlaza a un epítope de la terminal N de Aβ. Opcionalmente, el anticuerpo es administrado a una dosis de 0.01-0.6 miligramos/kilogramos y una frecuencia semanal o mensual. Opcionalmente, el anticuerpo es administrado en una dosis de 0.05-0.5 miligramos/kilogramos. Opcionalmente el anticuerpo es administrado en una dosis de 0.015-0.2 miligramos/kilogramos. Opcionalmente, el anticuerpo es administrado en una dosis de 0.015-0.2 miligramos/kilogramos semanalmente o cada dos semanas. Opcionalmente, el anticuerpo es administrado en una dosis de 0.05-0.07 miligramos/kilogramos semanalmente. Opcionalmente, el anticuerpo es administrado en una dosis de 0.05-0.07 miligramos/kilogramos semanalmente. Opcionalmente, el anticuerpo es administrado en una dosis de 0.06 miligramos/kilogramos semanalmente. Opcionalmente el anticuerpo es administrado en una dosis de 0.01 a 0.15 miligramos/kilogramos cada dos semanas. Opcionalmente, el anticuerpo es administrado en una dosis de 0.1 a 0.15 miligramos/kilogramos cada dos semanas. Opcionalmente, el anticuerpo es administrado en una dosis de 0.1 a 0.15 miligramos/kilogramos cada dos semanas. Opcionalmente, el anticuerpo es

administrado en una dosis de 0.1 a 0.3 miligramos/kilogramos mensualmente. Opcionalmente, el anticuerpo es administrado en una dosis de 0.2 mg/kilogramos mensualmente.

- [0147] La presentación también suministra métodos para el tratamiento de un paciente portador de ApoE4 que tiene la enfermedad de Alzheimer que comprende la administración subcutánea a un paciente que tiene la enfermedad, un anticuerpo que se enlaza específicamente a un fragmento de la terminal N de Aβ, donde el anticuerpo es administrado a una dosis de 1-40 mg y una frecuencia semanal o mensual. Opcionalmente, el anticuerpo es administrado en una dosis de 5-25 mg. Opcionalmente, el anticuerpo es administrado en una dosis de 2.5-15 mg. Opcionalmente, el anticuerpo es administrado en una dosis de 1-12 mg semanalmente o cada dos semanas.
 10 Opcionalmente, el anticuerpo es administrado en una dosis de 2.5-10 mg. Opcionalmente, el anticuerpo es administrado en una dosis de 2.5-5 mg semanalmente. Opcionalmente, el anticuerpo es administrado en una dosis de 4-5 miligramos semanalmente. Opcionalmente, el anticuerpo es administrado en una dosis de 7-10 miligramos cada dos semanas.
- 15 VIII. Composiciones farmacéuticas
- [0148] Los reactivos del invento son administrados a menudo como composiciones farmacéuticas que comprenden un reactivo terapéutico, es decir, y una variedad de otros componentes farmacéuticamente aceptables. Refiérase a, Remington's Pharmaceutical Science (Ciencia Farmacéutica de Remington) (15ta ed., Mack Publishing Company, Easton, Pennsylvania (1980)). La forma preferida depende de la modalidad que se tenga en mente para la administración y la aplicación terapéutica. Las composiciones también pueden incluir, dependiendo de la formulación deseada, portadores o diluyentes farmacéuticamente aceptables no tóxicos que son definidos como vehículos usados comúnmente para formular composiciones farmacéuticas para la administración animal o humana. El diluyente es seleccionado para no afectar la actividad biológica de la combinación. Ejemplos de aquellos diluyentes son agua destilada, tampón de fosfato salino fisiológico, soluciones de Ringer, solución de dextrosa, y la solución de Hank. Adicionalmente, la composición o formulación farmacéutica podría incluir también otros portadores, adyuvantes o estabilizadores no tóxicos, no terapéuticos y no inmunogénicos y similares.
- [0149] Las composiciones farmacéuticas también suelen incluir moléculas grandes de lenta metabolización tales como proteínas, polisacáridos tales como quitosano, ácidos polilácticos, ácidos poliglicólicos y copolímeros (tales como Sepharose(TM), agarosa, celulosa y similares), aminoácidos poliméricos, aminoácidos copolímeros, y aglutinamientos de lípidos (tales como gotas o liposomas). Adicionalmente, estos portadores pueden funcionar como agentes inmunoestimuladores (es decir adyuvantes).
- 35 [0150] Los reactivos son administrados típicamente parenteralmente. Los anticuerpos son administrados usualmente intravenosamente o subcutáneamente. Los reactivos para inducir una respuesta inmunoactiva son administrados usualmente subcutáneamente o intramuscularmente. Para la administración parenteral los reactivos del invento pueden ser administrados como dosis inyectables de una solución o suspensión de la sustancia en un diluyente fisiológicamente aceptable con un portador farmacéutico que puede ser un líquido estéril tal como aceites de agua, 40 soluciones salinas, glicerol o etanol. Adicionalmente, sustancias auxiliares, tales como reactivos humectantes o, emulsionantes, surfactantes, sustancias amortiguadoras del pH y similares pueden estar presentes en las composiciones. Otros componentes de composiciones farmacéuticas son aquellos de origen del petróleo, animales, vegetales o sintéticos, por ejemplo, aceite de nueces, aceite de soya y aceite mineral. En general, los glicoles tales como propilenglicol o polietilenglicol son los portadores líquidos preferidos, particularmente para soluciones 45 inyectables. Los anticuerpos pueden ser administrados en la forma de una inyección de depósito o una preparación de implante, que puede ser formulada en una manera tal que permita la liberación sostenida de un ingrediente activo.
- [0151] Algunas formulaciones preferidas son descritas en US 20060193850. Una formulación preferida tiene un pH 50 de alrededor de 5.5 a 6.5, que comprende i. Por lo menos un anticuerpo Aβ a una concentración de alrededor de 1 miligramo/mililitro a 20 mg/mililitros; ii. Manitol a una concentración de alrededor de 4% masa/volumen o NaCl a una concentración de alrededor de 150 mM; iii. Alrededor de 5mM a alrededor de 10 mM de histidina o succinato; e iv. 10 mM de tiamina. Opcionalmente, la formulación también incluye polisorbato 80 a una concentración de alrededor de 0.001 por ciento masa/volumen a 0.01 por ciento masa/volumen. Opcionalmente, la formulación tiene un pH de 55 alrededor de 6.0 a alrededor de 6.5 y comprende alrededor de 10 mg/mililitros de anticuerpos Aβ, alrededor de 10 mM de histidina y alrededor de 4% masa/volumen de manitol y alrededor de 0.005 por ciento masa/volumen de polisorbato 80. Opcionalmente, la formulación tiene un pH de alrededor de 6.0 a 6.2 y comprende alrededor de 20 mg/mililitros de anticuerpos Aβ, alrededor de 10 mM de histidina, alrededor de 4% masa/volumen de manitol y alrededor de 0.005 por ciento masa/volumen de polisorbato 80. Opcionalmente, la formulación tiene un pH de 60 alrededor de 6.0 a 6.2 y comprende alrededor de 30 mg/mililitros de anticuerpos Aβ, alrededor de 10 mM de histidina, alrededor de 4% masa/volumen de manitol y alrededor de 0.005 por ciento masa/volumen de polisorbato
- [0152] Comúnmente, las composiciones o preparadas como inyectables, ya sea en soluciones o suspensiones líquidas; formas sólidas adecuadas para mezclarse con soluciones o suspensiones en vehículos líquidos previo a su inyección también pueden ser preparados. La preparación también puede ser emulsionada o encapsulada en

liposomas o micropartículas tales como polilactidas, poliglicólidos, o copolímeros para un efecto ayudante mejorado, como ya se mencionó (referirse a, Langer, Science (Ciencia) 249: 1527 (1990) y Hanes, Advanced Drug Delivery Reviews (Revisiones Avanzadas de Entrega de Medicamentos) 28:97 (1997)). Los reactivos de este invento pueden ser administrados en la forma de una inyección de depósito o una preparación de implante, que pueden ser formuladas de tal forma que permitan una liberación sostenida o pulsátil del ingrediente activo.

[0153] Formulaciones adicionales adecuadas para otras modalidades de administración incluyen formulaciones orales, intranasales y pulmonares, supositorios y aplicaciones transdérmicas. Para supositorios, aglutinantes y portadores, por ejemplo, polialquilenglicoles o triglicéridos; aquellos supositorios pueden ser formados de mezclas que contienen el ingrediente activo en el rango de 0.5 por ciento al 10%, preferiblemente 1% - 2%. Las formulaciones orales incluyen excipientes, tales como grados farmacéuticos de manitol, lactosa, almidón, estearato de magnesio, sacarina de sodio, celulosa y carbonato de magnesio. Estas composiciones toman la forma de soluciones, suspensiones, tabletas, pastillas, cápsulas, formulaciones de liberación sostenida o polvos y contienen 10%-95% de ingredientes activos, preferiblemente del 25%-70%.

X. Anticuerpos con la región constante de IgG1 mutada

5

10

15

50

55

60

65

[0154] La presentación suministra una región constante de IgG1 humana, en la cual los aminoácidos en las posiciones 234, 235, y 237 (numeración EU) son cada una alanina y anticuerpos aislados o proteínas de fusión que contienen una de esas regiones constantes. Aquellos anticuerpos incluyen anticuerpos humanizados y anticuerpos quiméricos tal como ya se describió. Ejemplos de aquellos anticuerpos incluyen anticuerpos a Aβ, anticuerpos al antígeno Lewis Y y el antígeno tumoral 5T4, tal como es descrito en los ejemplos. Las proteínas de fusión incluyen los dominios extracelulares de los receptores (por ejemplo, el receptor TNF- alfa) enlazados a una región constante. Los métodos para fusionar o conjugar polipéptidos a las regiones constantes de anticuerpos son descritas por, por ejemplo, las patentes de Estados Unidos números 5,336,603, 5,622,929, 5,359,046, 5,349,053, 5,447,851, 5,723,125, 5,783,181, 5,908,626, 5,844,095, 5,112,946; EP 0 307 434; EP 0 367 166; EP 0 394 827).

[0155] Los anticuerpos o proteínas de fusión que incorporan a estas mutaciones pueden ofrecer ventajas del isotipo IgG1 incluyendo farmacocinética y facilidad de manufactura, pero también tienen una función ejecutora reducida o eliminada en relación a un anticuerpo que de otra forma sería idéntico que no tiene estas mutaciones. La función ejecutora es deshabitada comúnmente en lo que se refiere a enlaces a uno o más receptores Fc gamma, enlaces a C1Q, citotoxicidad celular dependiente de anticuerpos y/o actividad complementaria dependiente de anticuerpos. En algunos anticuerpos, todas estas actividades son reducidas o eliminadas. Una actividad es considerada eliminada si no existe una diferencia detectable entre errores experimentales en esa actividad entre un anticuerpo que tiene las tres mutaciones mencionadas anteriormente y un anticuerpo de control que de otra forma sería idéntico sin las mutaciones.

[0156] Comúnmente, una región constante mutada incluye a los dominios CH1, de charnela, CH2 y CH3. Sin embargo, el dominio CH1 es reemplazado a veces particularmente en las proteínas de fusión con un enlazador sintético. Algunas regiones constantes contienen una región constante de IgG1 de tamaño completo con la posible excepción de un residuo de lisina de la terminal C. Ejemplos de secuencias de una región constante mutada son suministrados por las identificaciones secuenciales números: 62 y 63. Estas secuencias difieren en que las 62 contiene una lisina en la terminal C que no está presente en la 63.

[0157] Las secuencias 62 y 63 representan el alotipo Glmz de IgG1 humano. Otros ejemplos de alotipos ya fueron suministrados anteriormente. Los alotipos son variaciones polimórficas naturales en la región constante de IgG1 humana que varía entre individuos diferentes en la posición polimórfica. El alotipo G1mz tiene Glu en la posición 356 y Met en la posición 358.

[0158] Otras variantes alotípicas de las identificaciones secuenciales números: 62 y 63 están incluidas. También incluidas están las regiones constantes de IgG1 humanas que tienen residuos de alanina en las posiciones 234, 235 y 237 y cualquier permutación de residuos que ocupan las posiciones polimórficas en los alotipos naturales.

[0159] Las regiones constantes de IgG1 mutadas que tienen alanina en las posiciones 234, 235 y 237 pueden tener mutaciones adicionales presentes en relación a una región constante IgG1 humana. Como un ejemplo, en el cual mutaciones adicionales pueden estar presentes, mutaciones de alanina en las posiciones 234, 235 y 237 pueden ser combinadas con mutaciones en las posiciones 428 y/o 250 tal como se describe en US 7,365,168. Las mutaciones en las posiciones 428 y 250 pueden resultar en un incremento en la vida media. Mutaciones adicionales que pueden ser combinadas con mutaciones en las posiciones 234, 235 y 237 han sido descritas en la sección IV A en conexión con anticuerpos que enlazan a Aβ. Algunas de aquellas regiones constantes no tienen mutaciones adicionales presentes. Algunas de aquellas regiones no tienen mutaciones adicionales presentes en y alrededor de las regiones de la región constante de IgG1 que afecta al receptor gama Fc y/o los enlaces complementarios (por ejemplo, los residuos 230-240 y 325-325 con la numeración EU). La misión de un residuo de lisina de la terminal C por medio de procesamiento intracelular no es considerado una mutación. Asimismo, aminoácidos que ocurren naturalmente que

ocupan lugares polimórficos que se diferencian entre alotipos son considerados naturales y no aminoácidos mutantes.

XI. Modelos experimentales, ensayos y diagnósticos

A. Modelos animales

5

10

15

20

25

30

50

55

[0160] Aquellos modelos incluyen, por ejemplo, ratones portadores de la mutación 717 (numeración APP770) de APP descrita por Games et al., mencionada anteriormente, y ratones portadores de una mutación sueca 670/671 (numeración APP770) de APP tal como la descrita por McConlogue et al., US 5,612,486 y Hsiao et al., Science (Ciencia), 274, 99 (1996); Staufenbiel et al., Proc. Natl. Acad. Sci. Estados Unidos, 94:13287-13292 (1997); Sturchler-Pierrat et al., Proc. Natl. Acad. Sci. Estados unidos, 94:13287-13292 (1997); Borchelt et al., Neuron (Neurona), 19:939-945 (1997)); Richards et al., J. Neurosci. 23:8989-9003, 2003; Cheng, Nat Med. 10(11): 1190-2, 2004 Hwang et al., Exp Neurol. 2004 Mar.. Mutaciones de APP apropiadas para su inclusión en animales transgénicos incluyen la conversión del codón Val717 de tipo silvestre (numeración APP770) a un codón para lle, Phe, Gly, Tyr, Leu, Ala, Pro, Trp, Met, Ser, Thr, Asn, o Gln. Una sustitución preferida para Val717 es Phe. Otra mutación adecuada es la mutación ártica E693G (numeración APP770). El ratón PSAPP, que tiene una proteína precursora y transgenes de presenilina, descrita por Takeuchi et al., American Journal of Pathology (Revista Americana de Patología). 2000;157:331-339. Un ratón transgénico triple que tiene una proteína precursora amiloide, presenilina y transgenes tau es descrita por LaFerla, (2003), Neuron (Neurona) 39, 409-421. Otro ratón transgénico útil tiene transgenes APP y TGF-β. Las secuencias codificantes proteínicas en los transgenes tienen un enlace operacional con uno o más elementos regulatorios adecuados para la expresión neural. Aquellos elementos incluyen al PDGF, proteína priónica y los promotores Thy-1. Otro ratón transgénico útil tiene un transgen APP con las votaciones sueca y 717. Otro ratón transgénico útil tiene un transgén APP con una mutación ártica (E693G).

B. Ensayos para detectar patologías relacionadas de amiloides

[0161] Ensayos de acondicionamiento de temor contextual. El acondicionamiento o de temor contextual (CFC - Contextual fear conditioning) es una forma de aprendizaje que es excepcionalmente confiable y rápidamente adquirida en la mayoría animales, por ejemplo, los mamíferos. Los animales de nueva aprenden a tener un estímulo y/o entorno neutral previo por su asociación con una experiencia significativa. (Refiérase, por ejemplo, a Fanselow, Anim. Learn. Behav. 18:264-270 (1990); Wehner et al., Nature Genet. 17:331-334. (1997); Caldarone et al., Nature Genet. 17:335-337 (1997)).

35 [0162] El acondicionamiento de temor contextual es especialmente útil para determinar la función o disfunción cognitiva, por ejemplo, como un resultado de una enfermedad o de un trastorno, tal como una enfermedad o trastorno neurodegenerativo, una enfermedad o trastorno relacionado con Aβ, una enfermedad o trastorno amiloidogénico, la presencia de una alteración genética no favorable que tiene efectos en la función cognitiva (por ejemplo, mutación genética, ruptura genética o un genotipo no deseado) y/o la eficacia de un reactivo, por ejemplo, un reactivo de conjugación Aβ, en la habilidad cognitiva. Asimismo, el ensayo CFC suministra un método para pruebas independientes y/o la validación del efecto terapéutico de reactivos para prevenir o tratar enfermedades o trastornos cognitivos, y en particular, una enfermedad o trastorno que afecta a una o más regiones del cerebro, por ejemplo, el hipocampo, el subículo, corteza cingulada, corteza prefrontal, corteza perirrinal, corteza sensorial y el lóbulo temporal medio (refiérase a US 2008145373).

C. Ensayos de fagocitosis para determinar la función ejecutora de los anticuerpos

[0163] Los anticuerpos pueden ser examinados para despejar un depósito de amiloides en un ensayo ex vivo. Una muestra de tejidos de un cerebro de un paciente con la enfermedad de Alzheimer o un modelo animal que tiene la patología característica de Alzheimer es contactada con células fagocíticas portadoras de un receptor Fcγ, tal como células microgliales y el anticuerpo que está siendo probado en un medio in vitro. Las células fagocíticas pueden ser un cultivo primario o una línea celular, tal como BV-2, C8-B4, o THP-1. Una serie de medidas son hechas del monto del depósito de amiloides en la mezcla de reacción, que empieza de un valor de línea base antes que la reacción haya procedido, y uno o más valores de prueba durante la reacción. El antígeno puede ser detectado al colorar, por ejemplo, con un anticuerpo marcado fluorescentemente a Aβ u otro componente de las placas de amiloides. Una reducción relativa a la línea base durante la reacción de los depósitos de amiloides indica que el anticuerpo que está siendo probado tiene una actividad de despeje.

- [0164] Generalmente, controles de isotipos son agregados para asegurar que la interacción apropiada de los receptores Fc-Fcγ está siendo observada. Controles adicionales incluyen el uso de anticuerpos no específicos y anticuerpos con una afinidad conocida para los receptores Fγc en las células fagocíticas. Aquellos ensayos pueden ser ejecutados con tejidos humanos o no humanos y células fagocíticas, y anticuerpos humanos, no humanos o humanizados.
- 65 **[0165]** Una variación en el ensayo de fagocitosis ex vivo elimina la necesidad de un tejido que contiene Aβ, aunque todavía permite la detección de las interacciones entre un anticuerpo particular y los receptores Fcγ. En este caso, el

ensayo se basa en una matriz sólida que es cubierta con anticuerpos. La matriz sólida está generalmente en una forma que puede ser sumergida por una célula fagocítica, por ejemplo, una esfera o una partícula que podría variar desde nanómetros hasta algunos micrones de tamaño. La matriz sólida puede ser conjugada con una partícula detectable, por ejemplo, un fluoróforo, para que la partícula pueda ser rastreada. Equipos y materiales para los ensayos de fagocitosis de este tipo son comercialmente disponibles, por ejemplo, de Beckman Coulter (Fullerton, CA) y Molecular Probes (Eugene, OR). Un ejemplo de un análisis como éste está suministrado en la sección de ejemplos.

D. Ensayos de enlaces de complemento

[0166] La función ejecutora de anticuerpos también puede ser determinada al detectar la habilidad de un anticuerpo para interactuar con complementos, en particular, el polipéptido de C1q (refiérase a, por ejemplo, Mansouri et al. (1999) Infect. Immun. 67:1461). En el caso del anticuerpo específico de Aβ, una matriz sólida (por ejemplo, un plato de varios pozos) puede ser cubierta con Aβ, y expuesta a anticuerpos, y, a su vez, expuesta a C1q marcada. Alternamente, la C1q puede ser adherida a la matriz, y se le puede agregar anticuerpos marcados. Alternamente, el anticuerpo puede ser adherido a la matriz y expuesto a C1q, seguido de una detección de C1q. Aquel ensayo de enlaces in vitro son comunes en la industria y son sensibles a modificaciones e iniciaciones tal como sea necesario.

E. Métodos de diagnóstico

5

10

15

20

25

30

45

50

55

60

[0167] Herramientas de evaluación de la función cognitiva. Varias herramientas existen para cuantificar la cognición y la función mental de pacientes con demencia. Estas incluyen los criterios NTB, DAD, ADAS, MMSE, CDR-SOB, NINCDS-ADRDA, y el puntaje RMHI (isquémico de Hachinski modificado por Rosen - Rosen Modified Hachinski Ischemic). Estas herramientas son conocidas generalmente en la industria.

[0168] La NTB (Batería de Pruebas Neuropsicológicas - Neuropsychological Test Battery) es compuesta de nueve pruebas bien aceptadas de la memoria y de la función ejecutiva. La batería de pruebas es aceptable en la más reciente guía EMEA. Los pacientes son evaluados generalmente en las siguientes pruebas de memoria periódicamente: asociaciones emparejadas visuales de escala de memoria de Weschsler; asociaciones emparejadas verbales de escala de memoria de Weschsler; y la prueba de aprendizaje verbal y auditoria de Rey. Las pruebas de la función ejecutiva incluyen: lapso de dígitos de escala de memoria de Wechsler; prueba de asociación de palabras controladas; y prueba de nombres de categorías. Esta prueba es sensible a cambios en pacientes de AD leve y efectos clínicos de reactivos que reducen los amiloides.

[0169] La prueba DAD (Evaluación de Discapacidad por Demencia - Disability Assessment for Dementia) fue desarrollada y validada para medir la discapacidad funcional de pacientes con la enfermedad de Alzheimer (Gelinas et al. (1999) Am J Occup Ther 53:471-81.) Los proveedores de cuidados responden preguntas acerca de la capacidad de los pacientes para realizar actividades instrumentales y básicas del día a día que han sido intentadas en las dos semanas precedentes. La proporción de actividades DAD completadas exitosamente en comparación con aquellas intentadas se determina y se reporta como un porcentaje.

[0170] ADAS-Cog se refiere a la porción cognitiva de la escala de evaluación de la enfermedad de Alzheimer (refiérase a Rosen, et al. (1984) Am J Psychiatry 141:1356-64.). La prueba consiste de 11 tareas que miden las perturbaciones en memoria, lenguaje, práctica, atención y otras habilidades cognitivas.

[0171] La NINCDS-ADRDA (Evaluación de Enfermedades e Impactos Neurológicos y Comunicativos-y Trastornos Relacionados con la Enfermedad de Alzheimer (Neurological and Communicative Disorders and Stroke-Alzheimer's disease Related Disorders Assessment)) mide ocho criterios afectados con Alzheimer: la memoria, el lenguaje, las destrezas perceptivas, la atención, las habilidades constructivas, la orientación, la solución de problemas y capacidades funcionales (McKhann et al. (1984) Neurology (Neurología) 34: 939-44).

[0172] El MMSE (Mini Examen del Estado Mental - Mini Mental State Exam), las CDR-SOB (Calificación de Demencia Clínica-Suma de Cuadros (Clinical Dementia Rating- Sum of Boxes)) y el puntaje RMHI (isquémico de Hachinki modificado por Rosen) también son conocidos en la industria (refiérase, por ejemplo, a Folstein et al. (1975) J Psych Res 12: 189-198; Morris (1993) Neurology (Neurología) 43: 2412-2414; y Rosen et al. (1980) Ann Neurol. 17:486-488).

[0173] Biomarcadores. Biomarcadores para la sintomatología de Alzheimer en humanos puede medirse utilizando volumétrica de MRI, niveles proteínicos de sangre y CSF, y PET (topografía de emisión positrónica - positron emission topography). Por ejemplo, los biomarcadores compatibles con interacción con anticuerpos Aβ incluyen a Aβ40 y Aβ42 en el CSF y plasma, y la toma de imágenes de placas de amiloides, por ejemplo, por medio de PET. Los biomarcadores que señalan la modificación de la enfermedad incluyen a morfología cerebral (MRI), CSF tau y niveles de fosfotau, y nuevamente, toma de imágenes de placas amiloides.

65 XII. EJEMPLOS

Ejemplo 1: Ensayo Fase 1

[0174] 111 pacientes con una diagnosis de una enfermedad probable de Alzheimer (ligera a moderada) se les administró el anticuerpo humanizado bapineuzumab con dosis que variaban desde 0.15 a 2.0 mg/kilogramo en un estudio de múltiples dosis ascendentes (MAD - multiple ascending dose). El anticuerpo fue administrado por infusión intravenosa cada 13 semanas hasta que el régimen de dosis estuvo completo. Los pacientes también fueron clasificados de acuerdo a su estado de ApoE4. La tabla dos muestra que 11 pacientes en el estudio experimentaron edema vazogénica detectada por MRI. La tabla 2 también muestra los síntomas experimentados en algunos de los pacientes; en otros pacientes el edema vasogénico asintomático. La tabla 3 muestra el riesgo de edema vasogénico estratificado por genotipo sin importar la dosis. El riesgo es solamente del 2% en pacientes que no tienen un alelo E4 pero es 35% en pacientes que tienen dos alelos E4. La tabla 4 muestra el riesgo de edema vasogénico en solamente el grupo con la dosis más alta (2 mg/kilogramos). El riesgo de edema vasogénico para pacientes con dos alelos E4 es del 60% y aquel para pacientes con un alelo es del 35%.

15 [0175] La tabla 5 muestra el riesgo de edema vasogénico con diferentes dosis. El riesgo de edema vasogénico es muy bajo para todos los genotipos para dosis entre 0.15-0.5 miligramos/mililitros pero empieza a volverse significativo para pacientes con dos alelos E4 a una dosis de 1 mg/kilogramo y para pacientes con un alelo E4 a 2 mg/kilogramos. Esta información indica que el riesgo de un edema vasogénico depende del genotipo ApoE, la dosis y los pacientes.

TABLA 2

TADLA 2									
Estudio	Dosis (mg/kg)	Dosis #	Estado E4	Síntomas					
SAD	5	1	ND	-					
SAD	5	1	ND	-					
SAD	5	1	ND	mareos, confusión					
MAD	0.15	2	4/4	abn al andar, confusión					
MAD	1	1	4/4	visual					
MAD	1	1	4/4	-					
MAD	1	2	3/4	-					
MAD	2	1	4/4	-					
MAD	2	1	3/4	-					
MAD	2	1	4/4	confusión					
MAD	2	1	3/4	-					
MAD	2	1	3/4	HA, letargia, confusión					
MAD	2	2	3/4	-					
PET	2	1	3/4	-					
MAD	2	3	4/4	-					

TABLA 3

Genotipo ApoE4 (alelos)	Genotipo casos VE / total de casos VE	% de casos VE	Casos VE / pacientes expuestos	% de pacientes expuestos
2	6/11	55%	6/17	35%
1	4/11	36%	4/52	8%
0	1/11	9%	1/42	2%

TABLA 4

Genotipo ApoE4 (alelos)	Genotipo casos VE / total de casos VE	% de casos VE	Casos VE / pacientes expuestos	% de pacientes expuestos
2	3/7	43%	3/5	60%
1	3/7	43%	3/9	33%
0	1/7	14%	1/14	7%

TABLA 5

Número de pacientes (número que desarrollaron edemas vasogénicos)								
Número de copia de ApoE4	Número de copia de ApoE4 0.15 mg/kg 0.5 mg/kg 1.0 mg/kg 2.0 mg/kg							
0	13(0)	11(0)	9(0)	14(1)				
1	15(0)	14(0)	14 (1)	9(3)				
2	3(1)	4(0)	5(2)	5 (3)				

Ejemplo 2: fase 2 del ensayo

5

10

15

20

25

30

35

40

45

50

55

[0176] Un estudio aleatorio de dosis ascendentes múltiple controladas con placebos doblemente ciegas fue realizado en una población de 234 pacientes en forma aleatoria desde una población inicial de 317 pacientes examinados. Los pacientes fueron evaluados en lo que se refiere a su estado de portadores de ApoE4, pero los portadores (homocigotos y heterocigotos) y los no portadores recibieron el mismo tratamiento. Los criterios de inclusión fueron los diagnósticos probables de AD; con edades entre los 50-85 años; puntaje NNSE 16-26, puntaje isquémico de Hachinski modificado por Rosen ≤4; viviendo en su hogar o en una vivienda comunitaria proveedora de cuidados capaz; MRI consistente del diagnóstico de AD; detección MRI de suficiente calidad para un análisis genético; dosis estables de medicación para el tratamiento de condiciones no excluidas; dosis estables de AchEls y/o memantina durante 120 días antes de la extracción. Los criterios principales de exclusión fueron la manifestación dual de un trastorno psiquiátrico importante (por ejemplo, un trastorno de depresión importante); enfermedad actual sistémica que resultaría muy posiblemente en la deterioración de la condición del paciente; historia o evidencia de una enfermedad o trastorno autoinmune importante del sistema inmunológico; historia de cualquiera de los siguientes cuadros clínicamente evidentes, estenosis / placa carótida o vertebro basilar clínicamente importante, epilepsia, cáncer en los últimos cinco años, dependencia del alcohol/drogas en los últimos dos años, infarto de miocardio en los últimos dos años, una enfermedad neurológica significativa (aparte de AD) que pudiese afectar la cognición. Los equipos del invento y sus marcadores acompañantes, inserciones de paquete que pueden suministrar exclusiones para pacientes que cumplen cualquiera de los criterios de exclusión ya mencionados y cualquiera de sus sub combinaciones.

[0177] Cuatro niveles de dosis fueron utilizados (0.15, 0.5, 1.0 y 2.0 mg/kg) juntos con un placebo. 124 pacientes recibieron bapineuzumab y 110 recibieron un placebo. De aquellos pacientes, 122 y 107, respectivamente, fueron analizados en cuanto a su eficacia. Bapineuzumab fue suplementado como una solución acuosa estéril en 5 ml cordiales que contenía: 100 mg de Bapineuzumab (20 mg/mililitro), 10 mM de histidina, 10 mM de metionina, 4% de manitol, 0.005% de polisorbato 80 (derivado de vegetales), un pH de 6.0. El placebo fue suplementado en viales correspondientes que contenían los mismos constituyentes excepto por bapineuzumab. La medicación del estudio fue diluida en una solución salina normal y administrada en forma de una infusión intravenosa (IV) de 100 ml durante alrededor de una hora.

[0178] El periodo de tratamiento fue de 18 meses con seis infusiones intravenosas en intervalos de 13 semanas. Visitas de seguimiento de seguridad, incluyendo detecciones MRI ocurrieron seis semanas después de cada dosis. Después del período de tratamiento los pacientes fueron monitoreados con un seguimiento de seguridad de un año para un tratamiento continuo en una extensión denominada abierta. El objetivo principal del ensayo fue el evaluar la seguridad y tolerabilidad de bapineuzumab en pacientes con la enfermedad de Alzheimer en un nivel ligero o moderado. Los puntos finales principales del estudio fueron (Escala de Evaluación de la Enfermedad de Alzheimer - Subescala Cognitiva (ADAS-Cog (Alzheimer Disease Assessment Scale-Cognitive Subscale)), Escala de Evaluación de Discapacidad debido a Demencia (DAD - Disability Assessment Scale for Dementia) junto con la seguridad y la tolerabilidad). La ADAS-Cog 12 contiene una prueba adicional que involucra el recordar en una forma retrasada una lista de palabras de 10 elementos para la ADAS-Cog 11. El objetivo secundario del estudio fue el evaluar la eficacia de bapineuzumab en pacientes con enfermedad de Alzheimer leve a moderada. Otros puntos finales fueron la batería de pruebas neuropsicológica (NTB - neuropsychological test battery), el inventario neuropsiquiátrico (NPI - neuropsychiatric inventory), la suma de cuadros de la clasificación de demencia clínica (CDR-SB - clinical dementia rating sum of boxes), volúmenes cerebrales por MRI y medidas CSF.

[0179] Un resumen de la población total, desglosadas por grupos de dosis y por estados de portación se suministra en las siguientes tablas.

60

TABLA 6

Demográfica y características de los pacientes **Todo Bapineuzumab** Todo placebo n=107 N=122 Edad 70.1 67.9 Género (% F) 59.8 50.0 Etnicidad (% caucásico) 95.3 96.7 Años desde el inicio 3.7 3.5 ApoE4 (% portador) 69.8 60.5 Detección MMSE 20.7 20.9 % utilización de Colinesterasa o 95.1 96.3 memantina

TABLA 7

•	11
_	u
_	_

5

10

15

25 30 35

Paninauzumah	MMSE Edad		Duración de la		Severidad de la Enfermedad		Con Alz	# de pacientes	
Bapineuzumab	Prom.	Prom.	Enfermedad	Ligera	Moderada	Portador de APOE	Meds	Linea Base	Wk 78
0.15 mg/kg	20	70	4	29%	71%	64%	100%	31	24
Placebo	20	64	4	33%	65%	46%	96%	26	17
0.5 mg/kg	21	71	4	48%	51%	58%	91%	33	17
Placebo	21	69	4	43%	57%	86%	93%	28	21
1.0 mg/kg	21	69	3	43%	55%	69%	97%	29	25
Placebo	21	69	4	36%	69%	75%	93%	26	21
2.0 mg/kg	2	70	3	63%	34%	53%	90%	29	17
Placebo	21	69	3	56%	44%	70%	100%	27	22
Todo Bapineuzumab	21	70	4	46%	53%	61%	95%	122	83
Todo Placebo	21	68	4	42%	59%	69%	96%	107	81

TABLA 8

50	

55

40

45

	Portador		N	o Portador
	Placebo Bapineuzumab		Placebo	Bapineuzumab
	N=74	N=72	N=32	N=47
Edad	68.6	71.2	66.1	69.1
Género (% F)	59.5	48.6	62.5	51.1
Etnicidad (% Caucásico)	97.3	97.2	90.6	95.7
Años Desde el Inicio	3.8	3.7	3.5	3.0
Detección MMSE	21.0	20.6	19.8	21.4
% Utilización de Colinesterasa o Memantina	95.9	98.6	96.9	89.4

60

[0180] La comparación de los varios cohortes de dosis con placebo utilizando un modelo lineal de reducción cognitiva en las escalas ADAS-COG y DAD no alcanzó una significancia estadística para cualquiera de los cohortes de dosis o la población de cohortes de dosis combinadas.

[0181] La información fue analizada usando un modelo estadístico sin asumir un declive lineal (a) basándose en todos los pacientes en quienes se determinó una eficacia y (b) basándose sólo en los pacientes que recibieron todas las seis dosis ("terminadores") y sin incluir a pacientes que salieron por varios motivos. El modelo no lineal se lo

considera más preciso debido a que las habilidades cognitivas no necesariamente se reducen en forma lineal con el tiempo.

[0182] Los resultados utilizando el modelo de declive no lineal para todos los pacientes en los cuales se determinó una eficacia (portadores y no portadores de ApoE4 combinados) se muestran en la figura 1. Un análisis MITT (intención modificada para tratar - modified intent to treat) fue hecha utilizando el modelo de medidas repetidas sin asumir una linealidad. Las barras sobre el eje X representan un resultado favorable (es decir, un declive inhibido) en relación al placebo. Aunque no se obtuvo una significancia estadística, se observó una tendencia para los cohortes de dosis combinadas utilizando las escalas ADAS-cog y NTB (0.1 ≥ p≥0.05).

5

10

15

30

35

40

45

50

55

60

65

[0183] Los resultados de las poblaciones terminadoras (portadores y no portadores de ApoE4 combinados) se muestran en la figura 2. Los terminadores fueron definidos como pacientes que recibieron las seis infusiones y una evaluación de eficacia en la semana 78. Las barras sobre el eje indican una mejora relativa al placebo. La significancia estadística fue obtenida para los cohortes de dosis combinados para las medidas ADAS-cog y DAD y una tendencia positiva (0.1≥p≥0.05) fue encontrada para las medidas NTB.

[0184] Análisis separados fueron realizados para los portadores y no portadores ApoE4 usando el modelo lineal y (a) todos los pacientes tratados en los cuales la eficacia fue determinada y (b) los terminadores.

20 [0185] La figura 3 muestra los resultados para todos los pacientes portadores de ApoE4 en los cuales se midió la eficacia. No se encontró significancia estadística para ninguna de las escalas cognitivas. Nuevamente, el análisis MITT utilizó el modelo de medidas repetidas sin la premisa de linealidad. La figura 4 muestra el análisis para los terminadores portadores de ApoE4, tal como ya se definió. Nuevamente, no se encontró significancia estadística para ninguna de las escalas (ADAS-cog, DAD, NTB, y CDR-SB). Sin embargo, cambios direccionales favorables (barras sobre el eje) fueron encontradas particularmente para las medidas ADAS-cog y DAD.

[0186] Las figuras 5 y 6 muestran los resultados para todos los pacientes no portadores de ApoE4 en quienes se midió la eficacia. La significancia estadística fue obtenida para las medidas ADAS-cog, NTB, CDR-SB y MMSE para los cohortes de dosis combinados. Las barras sobre el eje indican una mejora relativa en comparación del placebo. La figura 9 muestra un análisis tomado durante el transcurso de tiempo de estos parámetros (ADAS-cog, superior izquierda, DAD, superior derecha, NTB, inferior izquierda, CDR-SB, inferior derecha). El declive de rendimiento cognitivo para pacientes tratados fue menor que aquel para los pacientes con placebo en todos los puntos de tiempo en las escalas ADAS-cog, NTB y CDR-SB. Las figuras 7 y 8 muestran el análisis para terminadores no portadores de ApoE4, tal como ya se definió. La significancia estadística fue obtenida nuevamente para las medidas ADAS-cog, NTB, CDR-SB y MMSE. Otra vez, las barras sobre el eje indican una mejora relativa en comparación del placebo.

[0187] Se realizaron MRIs hasta siete veces por paciente durante las seis semanas de estudio después de cada infusión. Los cambios en el cerebro fueron evaluados por medio del volumen cerebral, volumen ventricular, cambio integral de límites cerebrales y cambio integral de límites ventriculares. El cambio integral de límites (BSI - boundary shift integral) como una medida derivada de cambios de volúmenes cerebrales a partir de escaneos de resonancia magnética tridimensionales repetidos. El BSI determina el volumen total a través del cual los límites de una estructura cerebral particular se han movido y, por lo tanto, el cambio de volumen, directamente de las intensidades vóxel. El cambio integral ventricular es una medida similar de los cambios de espacios ventriculares. Ambos de estos parámetros crecen en la medida que la enfermedad de Alzheimer progresa. Por lo tanto, la inhibición del crecimiento de estos parámetros en relación al placebo muestra un efecto positivo (es decir, deseado) del tratamiento.

[0188] En la población tratada total (portadores y no portadores) no se encontraron diferencias significativas para cambios en el volumen cerebral medido por los cambios integrales de límites cerebrales o el volumen ventricular medido por los cambios integrales de límites ventriculares durante 78 semanas en comparación con la población placebo.

[0189] En la población de no portadores de ApoE4 tratados el declive de volumen cerebral fue significativamente más bajo que aquel para la población placebo no portadora de ApoE4 (media -10.7 cc; 95% CI: -18.0 a -3.4; p=0.004). El incremento en volumen ventricular en comparación al placebo también fue reducido pero el cambio no alcanzó significancia estadística. No existió un cambio significativo en el volumen cerebral en comparación con la población placebo portadora de ApoE4. Sin embargo, el volumen ventricular fue incrementado significativamente en comparación con la población placebo (media 2.5 cc; 95% CI: 0.1 a 5.1; p=0.037).

[0190] Los cambios en BBSI en la población total, en la población portadora de ApoE4 y en la población no portadora de ApoE4 se muestran en las figuras 10-12. La figura 12 (los no portadores de ApoE4) muestra una separación estadísticamente significativa entre las líneas para los pacientes tratados y los pacientes placebo. El cambio en volumen cerebral fue reducido en la población tratada en comparación a la población placebo durante todos los puntos de tiempo medidos. La figura 10 (portadores y no portadores de ApoE4) muestra una separación de las líneas para los pacientes tratados y los pacientes placebo pero los resultados no alcanzaron ninguna significancia estadística. La figura 11 (portadores de ApoE4) muestra las líneas para los pacientes tratados y los pacientes placebo que están virtualmente superpuestas. El análisis utilizó el modelo de medidas repetidas con

tiempo como una categoría, ajustando para el estado de portación de ApoE4. La línea base fue el volumen cerebral y el estrato MMSE.

[0191] Una tendencia fue observada para la reducción en fosfo-tau de CSF en la población de pacientes tratados con bapineuzumab en comparación con la población tratada con el placebo a 52 semanas en los ensayos (figura 13). Fosfo-tau es un marcador biológico asociado con la enfermedad de Alzheimer. No se encontraron diferencias significativas entre los niveles de CSF de tau y Aβ42 entre todos los pacientes tratados y los pacientes de control. La figura se basa en un análisis ANCOVA, ajustado para el valor de la línea base. Un dato atípico fue excluido en el cohorte de dosis de placebo de 0.15 miligramos/kilogramo.

[0192] El tratamiento fue generalmente seguro y bien tolerado. Edemas vasogénicos (VE - Vasogenic edema) ocurrieron solamente en pacientes tratados con bapineuzumab. VE ocurrió con mayor frecuencia en portadores de ApoE4 (10) que en no portadores (2) y con mayor frecuencia con dosis crecientes, existiendo 8, 3, 0 y 1 episodios con las dosis 2.0, 1.0, 0.5 y 0.15 miligramos/kilogramo respectivamente. Todos los episodios de VE ocurrieron después de la primera o segunda dosis. La mayoría de episodios de VE fueron detectados sólo por medio de MRI y no hubieron síntomas clínicos detectados. Los episodios de VE fueron resueltos después de semanas o meses. En un paciente, el VE fue tratado con esteroides. Excluyendo el VE, y excluyendo el cohorte de 0.15 miligramos/kilogramo (que pacientes contenían con la enfermedad más avanzada que otros cohortes), eventos adversos serios fueron similares entre los grupos tratados y los grupos placebo. Eventos adversos fueron generalmente ligeros a moderados, transitorios, considerados no relacionados a la droga del estudio, ocurridos en una proporción relativamente pequeña de pacientes y no parecía tener una relación con la dosis.

[0193] La concentración sérica de bapineuzumab y la concentración de plasma de $A\beta$ fueron medidas en pacientes tratados a lo largo del tiempo para los diferentes cohortes de dosis tal como se muestra en la figura 14. El Cmax del bapineuzumab sérico varió desde alrededor de 3.5-50 μg/mililitros en los diferentes cohortes de dosis desde 0.1 miligramos/kilogramos a 2.0 miligramos/kilogramos. El perfil de la concentración media de plasma de $A\beta$ que crecía de acuerdo a las dosis con bapineuzumab y que declinaba cuando la concentración de bapineuzumab se reducía. La concentración de $A\beta$ en el plasma varió desde alrededor de 500-3000 pg/ml. Por ejemplo, incrementando la dosis desde 0.15 miligramos/kilogramos hasta 2 miligramos/kilogramos incremento el $A\beta$ del plasma por un factor de alrededor de 2.

[0194] Los parámetros PK después de la primera infusión de bapineuzumab se resumen en la tabla 9 a continuación:

TARI A 9

Dosis (mg/kg)	Cmax (µg/mL)	Cavg (µg/mL)	Cmin (µg/mL)	Tmax (days)	AUCinf (μg•h/mL)	CL/F (mL/hr/kg)	Vz/F (mL/kg)	T1/2 (días)
0.2	4.6	0.7	0.1‡	0.1	1794	0.09	76.2	26.7
0.5*	17.7	3.0	1.1‡	0.4	7165	0.07	63.7	26.4
1.0	28.0	5.5	1.8‡	0.1	13499	0.08	75.4	28.4
2.0	56.3	9.5*	1.7‡	0.1	21802	0.09*	65.08*	20.5*

N=6 a menos que se especifique de otra forma; *n=5

‡ - valores de vaguada de la segunda infusión; todos los valores por debajo del límite de cuantificación para la vaguada de la primera infusión.

Abreviaciones: Cavg - concentración promedio durante 13 semanas; Cmin - concentración mínima ("vaguada"); Tmax - tiempo de concentración máxima; AUC inf - área bajo la concentración vs. curva de tiempo extrapolada a la infinidad; CLss/F - tasa de despeje extravascular a un estado constante (CLss) y la magnitud de la biodisponibilidad (F);Vz/F - tasa de volumen aparente de distribución en un estado constante (Vz) y F; t ½ - vida media de eliminación (o terminal) en días.

Conclusiones

[0195]

- 1. El ensayo suministra evidencia de que los portadores y los no portadores de ApoE4 reaccionan diferentemente a la terapia inmunológica.
- 2. El ensayo suministra evidencia de que el edema vasogénico ocurre más frecuentemente de en portadores de ApoE4 y en dosis más altas.
- 3. El ensayo suministra evidencia estadísticamente significativa de la eficacia en los no portadores ApoE4 y en pacientes que reciben por lo menos 6 dosis de bapineuzumab (portadores y no portadores de ApoE4).
- 4. El ensayo suministra evidencia de tendencias o cambios direccionalmente favorables en una población total (portadores y no portadores de ApoE4) y la población portadora de ApoE4 de acuerdo a algunas medidas. La significancia estadística puede ser mostrada con poblaciones más grandes. Regímenes alternativos de

41

10

15

5

25

20

30

40

35

45

50

55

60

- -

tratamiento en estos pacientes tal como ya se mencionó podrían mejorar la eficacia tal como se mencionó anteriormente.

5. El ensayo suministra evidencia que el tratamiento es generalmente seguro y bien tolerado.

5 Ejemplo 3: Estudio clínico de la administración subcutánea de Bapineuzumab en pacientes de Alzheimer.

[0196] Las inyecciones subcutáneas son generalmente más fáciles de administrar, lo que puede ser una consideración para pacientes con una función o coordinación mental discapacitada, o para proveedores de cuidados que administra la medicina a un paciente que no coopera. También es más fácil para hacerlo en la casa, lo cual es menos irritante para el paciente, así como menos caro. Finalmente, la administración subcutánea usualmente resulta en una concentración pico más baja de la composición (Cmax) en el sistema del paciente que en una forma intravenosa. El pico reducido puede bajar la posibilidad de un edema vasogénico.

[0197] Por estas razones, un estudio clínico fue diseñado para la administración subcutánea de bapineuzumab. Los puntos finales primarios del estudio inicial son la seguridad y la biodisponibilidad. Una vez que estos fueron establecidos para la administración subcutánea, las pruebas cognitivas descritas anteriormente serán administradas para determinar su eficacia.

[0198] Bajo el régimen inicial, bapineuzumab es administrado subcutáneamente a pacientes cada 13 semanas durante 24 meses, con nueve dosis totales. Todos los pacientes reciben una dosis de 0.5 miligramos/kilogramos. Se examina a los pacientes y se les monitorea periódicamente tal como se describió en los ejemplos anteriores, por ejemplo, para los niveles sanguíneos del anticuerpo, de la función del corazón y para edemas vasogénicos.

Ejemplo 4: Diseño de anticuerpos específicos de ratón y humanos

[0199] Variantes de anticuerpos humanizados y de ratón 3D6 que difieren en isotipos y/o mutaciones de regiones constantes fueron construidas para probar los efectos de la reducción de la función ejecutora en el despeje de depósitos de amiloides, la función cognitiva y microhemorragias. Los ratones tratados con anticuerpos a proteínas Aβ muestran a menudo señales de microhemorragias en los vasos cerebrales, lo cual es un factor que podría relacionarse al edema vasogénico observado en pacientes humanos que tienen un tratamiento similar.

[0200] Una alineación de los dominios CH2 de IgG1, IgG2, e IgG4 humanos con IgG1 e IgG2a de ratón se muestran en la figura 15. La alineación resalta a los residuos responsables de los enlaces con FcR y C1q. El motivo de enlace C1q es conservado en varias especies e isotipos. El motivo de enlace de FcR es conservado en los IgG1, IgG4 humanos y en el IgG2a murino.

[0201] La siguiente tabla presenta las modificaciones particulares hechas a la región CH2 de la cadena pesada. La numeración de aminoácidos es de acuerdo al sistema EU. El formato es un residuo, posición, resido mutante de tipo silvestre.

Tabla 10

Anticuerpos derivados de 3D6						
Anticuerpo Derivado de 3D6	Isotipo (especie)	Residuos Mutados				
Control de Bapineuzumab AAB-001	IgG1 (humano)					
2m de 3D6 Humanizada (FcγR)	IgG1 (humano)	L234A/G237A (numeración EU)				
3m de 3D6 Humanizada (FcγR) AAB-003	IgG1 (humano)	L234A/L235A/G237A ((numeración EU)				
1m de 3D6 Humanizada (región de charnela)	IgG4 (humano)	S241P (Numeración Kabat)				
Control de 3D6	IgG1 (ratón)					
1m de 3D6 (FcγR)	IgG1 (ratón)	E233P				
3m de 3D6 (C1q)	IgG1 (ratón)	E318A/K320A/R322A				
4m de 3D6 (C1q)	IgG1 (ratón)	E318A/K320A/R322A/E233P				
Control de 3D6	IgG2a (ratón)					
1m de 3D6 (FcγR)	IgG2a (ratón)	D265A				
4m de 3D6 (FcγR, C1q)	IgG2a (ratón)	L235A/E318A/K320A/K322A				

[0202] Las regiones de enlaces de epítopes de los anticuerpos derivados de 3D6 son los mismos, y la cinética de los enlaces de $A\beta$ son comparables. La tabla 11 presenta la cinética del receptor Fc que se enlaza a los anticuerpos derivados de 3D6 listados en la tabla 10. Estos valores fueron generados de la siguiente forma.

42

50

45

10

25

30

35

40

55

60

[0203] Para los anticuerpos derivados de 3D6 humanizados, las siguientes condiciones de ensayo fueron utilizadas. Biacore 3000 y el chip CM5 cubierto con el anticuerpo (Qiagen, número de catálogo 34660) penta-His (IDENTIFICACIÓN SECUENCIAL NÚMERO: 93) fue utilizado en combinación con dominios marcados con His de FcγRI, FcγRII, y FcγRIII humanos (R&D Systems, número de catálogo 1257-Fc, 1330-CD, 1597-Fc). Cada receptor fue capturado por separado en una célula de flujo del chip sensor por el anticuerpo penta-His (IDENTIFICACIÓN SECUENCIAL NÚMERO: 93). Una solución del anticuerpo que estaba siendo probado fue inyectada para permitir las medidas de las tasas de asociación y disociación para el receptor capturado. Después de que se realizaron las mediciones, los receptores y los anticuerpos experimentales fueron removidos por medio de la inyección de un amortiguador de pH: 2.5. La célula de flujo estaba lista entonces para el siguiente ciclo. Cada ciclo fue ejecutado por duplicado, y las mismas condiciones (por ejemplo, concentraciones, tasas de flujo y tiempos) fueron utilizadas para cada muestra.

[0204] Tal como se indicó por los valores en la tabla 11, el bapineuzumab (región Fc no modificada) se enlazó a todos los receptores FcyR humanos con una afinidad relativamente alta. KD para FcyRI estuvo en el rango de nm, mientras que el KD para FcyRII y III estuvieron en el rango de micrómetros. Para los dos posteriores, los sensogramas mostraron una cinética típica de rápida activación y desactivación. El isotipo IgG4 tuvo enlaces similares a FcyRI, pero no se enlazó con FcyRIII, tal como se esperaba. Los dos derivados IgG1, 2m y 3m de 3D6 de Hu, no mostraron enlaces detectables a FcyRI o FcyRIII.

20 [0205] Para los anticuerpos derivados de 3D6 de ratón, métodos similares fueron utilizados para determinar los enlaces a los FcγRI, II, y III de ratón. FcγRI y III son receptores de activación, mientras que FcγRII es considerado generalmente como inhibitorio. Los anticuerpos probados fueron IgG2a de 3D6, IgG1 de 3D6, y las mutaciones de IgG1, 1m, 3m y 4m de 3D6. Los resultados son expresados como un porcentaje relativo de los enlaces IgG2a de 3D6. Tal como se mostró en la tabla 11, el IgG2a de 3D6 fue el único anticuerpo con la capacidad detectable de enlaces FcγRI. El IgG1 de 3D6 y el IgG1 3m de 3D6 tuvo perfiles de enlaces similares a FcγRII y III.

TABLA 11

Habilidad de enlaces d	con el receptor Fc d	e los anticuerpos 3D	06			
Derivados de 3D6	Capacidad de enlaces relativa* (%)					
Derivados de 306	FcγRI Humana**	FcγRII Humana **	FcγRIII Humana**			
Control de Bapineuzumab	100	100	100			
1m de 3D6 Humanizado	85-95	40-50	0			
2m de 3D6 Humanizado	0	40-50	0			
3m de 3D6 Humanizado en AAB-003	0	8-12	0			
IgG2a de Control de 3D6	100***	100	100			
IgG1a de Control de 3D6	0	180	70			
IgG1 de 1m de 3D6	0	15	10			
IgG1 de 3m de 3D6	0	180	70			
Derivados de 3D6	Capaci	Capacidad de enlaces relativa* (%)				
	FcγRI Humana**	FcγRII Humana **	FcγRIII Humana**			
IgG1 de 4m de 3D6	0	25	15			

*Definido como el monto de enlaces en (RU) relación a aquel del control de IgG2a en un estado continuo. **Los mFcyRI y mFcyRIII son receptores activadores, mFcyRII es un receptor inhibidor. Otro receptor activador potente, mFcyRIV, no es comercialmente disponible.

***Un enlace de estado continuo no fue obtenido. Un acoplamiento cinético conllevó a un estimado de K_D en el rango nano molar.

[0206] Los resultados del cuadro anterior muestran que el anticuerpo 3m de 3D6 de Hu (AAB-003) tiene el enlace al receptor gama Fc más reducido de los tres que fueron probados. De aquellos probados, el anticuerpo mutante de ratón IgG1 de 1m de 3D fue el más similar a AAB-003, en que sus enlaces con FcγR fueron reducidos a hasta el 10% de lo normal.

Ejemplo 5: Estudios de ratones de anticuerpos derivados de 3D6

Diseño del estudio

5

10

15

30

35

40

45

50

55

60

[0207] Ratones PDAPP de un año de edad fueron expuestos a un paradigma de tratamiento de seis meses con control con los anticuerpos derivados de 3D6 descritos en la tabla 10. El control negativo fue un anticuerpo IgG2a de

ratón a un epítope irrelevante no amiloide. Los ratones fueron inyectados con IP con 3 mg/kilogramos del anticuerpo indicado cada semana.

[0208] Las concentraciones de anticuerpos en el suero fueron probadas durante el transcurso del estudio por medio de ELISA. Los niveles fueron comparables en todos los grupos. Después de seis meses, los ratones fueron sacrificados y perfundidos. Las secciones y tejidos cerebrales fueron preparados de acuerdo a métodos conocidos (1997) Proc. Natl. Acad. Sci., EE.UU. 94:1550-55).

[0209] La carga de amiloides fue medida en la corteza y en el hipocampo de los ratones transgénicos. Los resultados en la tabla 12A y en la tabla 12B son indicados como una reducción porcentual del área con amiloides (valores p indican una diferencia significativa comparada al anticuerpo de control IgG2a).

TABLA 12A

15

20

25

30

Carga de amiloides corticales (% de reducción)								
	lgG2a de Control	IgG2a de Control de 3D6	lgG1 de Control de 3D6	lgG1 de 1m de 3D6 (FcγR)	IgG1 de 3m de 3D6 (C1q)			
Área de % Media	6.25076	0.757259	1.24205	2.06056	1.50084			
Rango	0.069- 17.073	0-9.646	0-17.799	0-24.531	0-17.069			
Control de Cambio % IgG2a		88 p<0.0001	80 p<0.0001	67 p<0.003	76 p<0.0001			
Cambio % 3D6 IgG1				165.9	120.8			
Número	32	34	36	36	34			

35

TABLA 12B

40
45

Carga de amiloides del hipocampo (% de reducción)													
	IgG2a de Control	IgG2a de Control de 3D6	IgG1 de Control de 3D6	lgG1 de 1m de 3D6 (FcγR)	IgG1 de 3m de 3D6 (C1q)								
Área de % Media	20.36	8.462	12.29	12.18	8.435								
Rango	4.707- 35.79	1.467-17.59	0.2449-18.61	0-26.99	0.8445-18.61								
Control de Cambio % IgG2a		58 p<0. 0001	40 p<0. 0001	40 p<0. 0001	59 p<0. 0001								
Cambio % 3D6 IgG1				0.895	31.4								
Número	34	34	37	37	34								

55

50

[0210] Los resultados que se acaban demostrar indican que todos los anticuerpos de 3D6 (IgG2a, IgG1 y mutantes) redujeron significativamente la carga de amiloides en relación a los controles negativos. Las diferencias entre los anticuerpos probados no fueron significativas estadísticamente.

60

[0211] El efecto de los anticuerpos derivados de 3D6 fue aprobado entonces en calificaciones de amiloides vasculares. La tabla 13 muestra el número de ratones con la clasificación de amiloides vasculares indicada y el porcentaje de animales con una clasificación de cuatro o más (los valores p indican una diferencia significativa en comparación con los anticuerpos de IgG2 de 3D6).

TABLA 13

Porcentaje de ratones que tienen amiloides vasculares Porcentaje con una Nada - poco (0-3) Moderado (4+) calificación moderada IgG2a de control 11 24 69 p<0.0001 IgG2a de control de 3D6 27 7 21 IgG1 de control de 3D6 12 25 68 p<0.0001 15 21 58 IgG1 de 1m (FcyR) de 3D6 p<0.0016 20 17 IgG1 de 3m (C1q) de 3D6 46 < 0.0434

15 [0212] La información que se acaba de presentar muestra que el IgG2a de 3D6 de control positivo redujo significativamente a los amiloides vasculares en comparación con el anticuerpo irrelevante IgG2a. La reducción con IgG2a de 3D6 también fue estadísticamente significativa en relación a aquella con IgG1 de 3D6, IgG1 de 1m de 3D6 e IgG1 de 3m de 3D6. Las diferencias entre el IgG1 de 3D6, IgG1 de 1m de 3D6, IgG1 de 3m de 3D6 y el IgG2a de control no fueron estadísticamente significativas.

[0213] Para determinar si los derivados del anticuerpo de 3D6 causan micro hemorragias en ratones, los niveles de hemosiderina, un marcador para micro hemorragias, fueron examinados en secciones cerebrales de los ratones tratados con 3 mg/kilogramos de anticuerpos. La marcación fue ejecutada con un 2% de ferrocianuro potásico en un 2% de ácido hidroclórico, seguido por una descoloración en un 1% de solución neutral roja. La tabla 14 indica el porcentaje en un número absoluto de ratones con el nivel indicado de coloración de hemosiderina. Los resultados demuestran que el IgG1 de 1m de 3D6 (FcγR) y el IgG1 de 3m de 3D6 (C1q), que se acabaron demostrar son efectivos en el despeje de placas de amiloides, reduciendo los niveles de micro hemorragias en relación a IgG2a de 3D6. Diferencias entre el IgG1 de 3D6, el IgG1 de 1m de 3D6 y el IgG1 de 3m de 3D6 no alcanzaron una significancia estadística, aunque la diferencia entre el IgG1 de 1m de 3D6 y el IgG1 de 3D6 mostraron una tendencia. (Los valores p indican una diferencia significativa en comparación con el anticuerpo IgG2a de 3D6).

TABLA 14

Nivel de micro hemorragias:	0	1	2	3
IgG2a de Control	68% (23)	32% (11)	0% (0)	0% (0)
p<0.0001				
IgG2a de Control de 3D6	9% (3)	42% (14)	27% (9)	21% (7)
IgG1 de Control de 3D6	38% (14)	46%(17)	3%(1)	13% (5)
p<0.0023				
IgG1 de 1m de 3D6 (FcγR)	51% (19)	49% (18)	0% (0)	0% (0)
p<0.0001		, ,	, ,	. ,
IgG1 de 3m de 3D6 (C1q)	53% (19)	42% (15)	0% (0)	5% (2)
p<0.0001				, ,

Ejemplo 6: Ensayos de fagocitosis

Materiales y métodos

5

10

25

30

35

40

45

50

55

60

65

[0214] Ensayos de fagocitosis de placas ex vivo: secciones cerebrales congeladas de ratones PDAPP fueron preincubadas con IgG1 de 3D6 y los mutantes de función ejecutora descritos en la tabla 10 (1m de 3D6 (FcγR1) y 3m de 3D6 (C1q), ambos del isotipo de IgG1 de ratón). El IgG2a de 3D6 fue utilizado como un control positivo y los anticuerpos irrelevantes IgG1 e IgG2 fueron utilizados como controles de isotipos. Las secciones fueron tratadas con 0.3 o 3 μg/mililitros de anticuerpos durante 30 minutos antes de la adición de micro glía de ratón, a 5% de CO₂ a 37 °C. Los co-cultivos fueron extraídos el día siguiente. El Aβ remanente fue medido por medio de ELISA (anticuerpo 266 para captura, y 3D6-B cómo reportador) para evaluar el despeje de Aβ.

[0215] La fagocitosis de los derivados de IgG2a murinos fueron probados. Estos experimentos incluyeron a: anticuerpos IgG2a de 3D6 (control positivo); IgG2a no específicos (control negativo); 1m de 3D6 (FcγR1, isotipo IgG2a); y 4m de 3D6 (FcγR1/C1q). Las condiciones fueron similares a aquellas que se acaban de describir.

[0216] La fagocitosis que no es de placa, fue determinada adicionalmente por medio del 3D6 humanizado (IgG1 de 3D6 deHu) y los mutantes ejecutores descritos en la tabla 10 (IgG1 de 2m de 3D6 de Hu, IgG1 de 3m de 3D6 de Hu e IgG4 de 1m de 3D6 de Hu). El control negativo fue un anticuerpo IgG1 humano irrelevante. Las condiciones de ensayo y de detección fueron, aparte de eso, las mismas.

[0217] Ensayos in vitro: para los ensayos de anticuerpos de ratón de fagocitosis de esferas conjugadas fluorescentemente, 10 μM de partículas de fluoresferas (5x106) fueron opsonizadas con 1 mg/mililitro de F(ab'2), lgG2a de 3D6, lgG1 de 3D6, o FcγR de 3D6 mutantes de ratón durante dos horas a la temperatura del cuarto con rotación. Después de dos horas, las esferas fueron lavadas con 1 ml de PBS tres veces para remover el lgG no enlazado. Las partículas opsonizadas fueron añadidas (1:10) a la microglía del ratón para los experimentos lg2a de 3D6 (3D62a) murinos. Las esferas fueron incubadas con las células durante 90 minutos a 37 °C. Las partículas no enlazadas fueron lavadas y desprendidas con PBS. Las células fueron coloradas con DiffQuick durante 30 segundos para cada coloración y la fagocitosis fue visualizada por medio de un microscopio de luz. Controles para este ensayo fueron esferas no opsonizadas (sin marcar) (para detectar una sumersión no específica) y un pre-tratamiento con fragmentos Fc humanos (3D62a + FC) (para bloquear a FcγR1).

[0218] Para ensayos de anticuerpos humanizados, las condiciones y detección fueron las mismas. Sin embargo, los anticuerpos fueron no anticuerpos (no marcados; control negativo), lgG1 humano irrelevante (lgG1 humano; control positivo), lgG1 de 3D6 de Hu, lgG1 de 2m de 3D6 de Hu, lgG1 de 3m de 3D6 de Hu e lgG4 de 1m de 3D6 de Hu. Las células fagocíticas fueron células THP-1 humanas (diferenciadas con PMA).

Resultados

5

10

15

20

35

40

45

50

55

25 [0219] Ensayos de fagocitosis de placas ex vivo: El anticuerpo IgG1 de 3D6 y sus mutaciones ejecutadoras (1m de 3D6 (FcγR1) y 3D6 de 3m (C1q)) fueron ensayados para evaluar su capacidad para facilitar el despeje de amiloides (referirse a la figura 16). El anticuerpo IgG2a de 3D6 estimuló un despeje más robusto que el IgG1 de 3D6, 1m de 3D6 (FcγR1) y 3m de 3D6 (C1q). La estimulación de fagocitosis por IgG1 de 3D6, 1m de 3D6 (FcγR1) y 3m de 3D6 (C1q) fue mayor que en el control negativo. Las mutaciones de los dominios Fc de IgG1 de 3D6 no pareció amortiguar significativamente su habilidad para estimular el despeje en el ensayo de despeje ex vivo.

[0220] Para los derivados de 3D6 de IgG2a, las mutaciones estimularon un despeje equivalente al IgG2 de 3D6 de tipo silvestre y en una mayor magnitud en relación a un control emparejado de un isotipo IgG2 irrelevante (refiérase a la figura 17). Por lo tanto, ninguna de las mutaciones inhibieron completamente a la fagocitosis de Aß.

[0221] En los ensayos de anticuerpos humanizados, las mutaciones de la región ejecutora del IgG1 de 3D6 de Hu retuvieron una actividad despeje significativa en relación al control negativo. El IgG1 de 3D6 de Hu estimuló el despeje en el ensayo de despeje de placas Aβ ex vivo, y las mutaciones de la región ejecutora tuvieron una función moderadamente discapacitada. El IgG4 de 3D6 de Hu indujo fagocitosis en la misma magnitud que el IgG1 de 3D6 de Hu, y la mutación a la región de charnela de IgG4 de 3D6 no apareció para cambiar su función ejecutora (refiérase a la figura 18).

[0222] Ensayos de fagocitosis de esferas in vitro: Para determinar si los resultados ex vivo fueron específicos para el despeje de Aβ y ver si es que la mutación Fc en el IgG1 de 3D6 alteraba su función ejecutora, ensayos de fagocitosis de esferas mediadas por Fc no específicas fueron realizadas. En el ensayo de fagocitosis de esferas de anticuerpos de ratón, el anticuerpo del isotipo de IgG2a de 3D6 midió la fagocitosis más eficientemente que el IgG1 de 3D6 (referirse a la figura 19). La mutación de Fc en el IgG1 de 3D6 no disminuyó significativamente la capacidad para estimular la fagocitosis, en comparación al IgG2a de 3D6 del control positivo, indicando que la mutación Fc en el IgG1 de 3D6 fue moderadamente efectiva para reducir la fagocitosis.

[0223] En el ensayo de anticuerpos humanizados, el efecto de la mutación de Fc visto en el ensayo de fagocitosis de placas ex vivo fue verificado en la fagocitosis de esferas mediada por Fc. Nuevamente, las mutaciones en la porción Fc del 3D6 humanizado disminuyeron su capacidad para mediar la fagocitosis de las esferas fluorescentes y no hubo una diferencia significativa entre las mutaciones de 2m y de 3m. Nuevamente, la remoción mediada del isotipo lgG4 teóricamente inefectiva tuvo la misma magnitud que el isotipo lgG1 (refiérase a la figura 20). La mutación de la región de charnela de lgG4 de 3D6 no pareció cambiar su función ejecutora.

Ejemplo 7: Capacidad de enlace con C1q de los derivados de 3D6 humanizados

- [0224] Los derivados de 3D6 humanizados fueron probados para su habilidad de enlazarse con C1q e inducir una respuesta complementaria. Un protocolo de series de dilución de C1q estándar fue seguido, tal como se describe más adelante. Protocolos similares son descritos, por ejemplo, en Idusogie et al. (2000) J. Immunol. 164: 4178-4184.
- [0225] Un Aβ purificado fue cubierto en placas ELISA y expuesto a uno de los siguientes anticuerpos 3D6 humanizados en las concentraciones indicadas en la figura 21: 2m de 3D6 de Hu (IgG1), 3m de 3D6 de Hu (IgG4), 1m de 3D6 de Hu (IgG4), y 3D6 de Hu no modificado (IgG1). Las placas ELISA fueron lavadas y bloqueadas con

0.02 por ciento de solución caseína en un PBS durante 3 a 24 horas con una agitación lenta. La solución de bloqueo fue removida con otro paso de lavado.

- [0226] Después, C1q humano purificado (191391, MP Biomedicals) fue agregado a las placas ELISA, con un amortiguador del ensayo de 2ug de C1q/mililitros empezando las series de dilución 2X. A C1q se le permitió enlazarse durante dos horas sin ninguna agitación. Después de eso se hizo otro paso de lavado, 100 µl / pozo de anticuerpos anti C1q (Rb antihumano conjugación FITC de C1q número de catálogo F010 DBS (dbiosys.com)) utilizado a 1:200 fue agregado durante una hora con agitación. Los resultados fueron comparados a un blanco que no contenía anticuerpos anti-C1q.
 - [0227] Tal como se muestra en la figura 21, los anticuerpos derivados de 3D6 humanizados no interactuarán significativamente con C1q. Esto es diferente a lo que pasó con bapineuzumab, que no tiene mutaciones en la región de Fc.
- 15 **[0228]** Los anticuerpos derivados fueron probados para su habilidad de inducir lisis mediada por complementos de las células HEK 293 que expresan a Aβ en la superficie. Un ensayo de liberación de ⁵¹Cr estándar fue utilizado, tal como se describe en Phillips et al. (2000) Cancer Res. (Investigación del cáncer) 60:6977-84; Aprile et al. (1981) Clin. Exp. Immunol. 46:565-76.
- 20 [0229] Las células objetivo fueron las células HEK293 (ATCC, CRL-1573) que expresaron una proteína de fusión con el epítope Aβ detectado por 3D6 (DAEFR (IDENTIFICACIÓN SECUENCIAL NÚMERO: 94)) en la superficie. La secuencia que contenía a Aβ fue insertada en el vector pDisplay (Invitrogen). El vector pDisplay fue alterado para remover la marcación HA y en vez de eso empezar con el péptido que contiene a Aβ después de la secuencia líder. Una agrupación estable de HEK 293 fue movida hacia delante al ensayo ADCC.
- [0230] Para marcaciones, 10⁷ células fueron suspendidas en 2 ml de RPMI con un 10% de FCS y se les agregó 250uCi de ⁵¹Cr (NEN número de catálogo NEZ-030; ⁵¹cromato de sodio en solución salina). Las células fueron incubadas durante una hora a 37 °C con una agitación ocasional. Al final de la incubación, 10 ml de RPMI con 10% de FCS fueron agregados. Las células fueron centrifugadas para poder remover el material flotante, y resuspendidas en 10 ml de RPMI que contenían 10% de FCS. Las células fueron incubadas nuevamente, a la temperatura del cuarto durante 1.5 horas con una agitación ocasional, para permitir que el exceso de ⁵¹Cr salga de las células. Las células objetivo fueron lavadas tres veces con 10 ml de RPMI, y una última vez en 10 ml de RPMI que contenía un 10% de FCS. Las células fueron re suspendidas en RPMI con un 10% de FCS a una concentración de 10⁶ células/mililitro.
 - **[0231]** Las células ejecutoras fueron recolectadas de la sangre humana. Brevemente, la sangre fue diluida 1:1 con PBS y puestas en forma de una capa sobre Ficol (Sigma Histopaque 1077). La columna fue centrifugada durante 20 minutos, 1200 x g, sin ningún freno a 20 °C. Las células fueron recaudadas en el interfaz; se lavaron una vez con 2-3 volúmenes de PBS, y dos veces con RPMI que contenía un 10% de FCS. Se detectó un enriquecimiento de NK con anticuerpos a CD3 y CD56.
 - [0232] Las células ejecutoras y las células objetivo fueron añadidas a platos de 96 pozos a una tasa de 25:1 (ejecutor: objetivo) en un volumen total de 200 μl. Las siguientes muestras de control fueron incluidas: lisis espontánea (que contenía células objetivo sin ejecutores) y lisis total (deja los pozos vacíos) fue incluido. Las células fueron incubadas durante cinco horas a 37 °C. Justo antes de la cosecha, 100 μl con 0.1 por ciento de Tritón X-100 fueron añadidos a la muestra de lisis total para la liberación de ⁵¹Cr. Las reacciones fueron cultivadas en unidades de filtración con un cultivador Skatron (Molecular Devices) y se detectó el total de ⁵¹Cr.
- [0233] Para calcular el porcentaje de lisis, se determinó el promedio cpm y la desviación estándar para cada muestra. El porcentaje de liberación máxima de ⁵¹Cr se determinó con la siguiente fórmula:

(Experimental-espontánea) x 100 (total-espontánea)

- [0234] Consistentemente con los resultados del ensayo de enlaces C1q, los anticuerpos derivados mutantes de la función ejecutora de 3D6 humanizados no fueron efectivos para inducir una lisis complementaria de las células HEK 293 que expresan a Aβ. (Refiérase a la Fig. 22).
 - Ejemplo 8: Ensayo Elisa que mide a la capacidad de enlaces de C1q de derivados de 3D6 murinos

Materiales y métodos

10

40

45

60

65

[0235] Un plato fluorescente de 96 pozos fue cubierto con 1, 3 o 6 μ g/mililitros de varios anticuerpos en 100 μ l de un amortiguador que cubría a los pozos durante la noche a 4 °C. Después de la cobertura, los platos fueron lavados y bloqueados con 200 μ l de bloqueador de Elisa de caseína durante una hora a temperatura del cuarto. Los platos fueron lavados y 100 μ l de 2 μ g/mililitros de C1q humano en un amortiguador diluyente fueron agregados durante

dos horas a la temperatura del cuarto. Después de dos horas, los platos fueron lavados y se agregó C1q anti ratón marcado con FITC (1:1000) durante una hora. Los platos fueron lavados dos veces y leídos a 494/517 en el lector del plato fluorescente en PBS. Los siguientes anticuerpos de ratón fueron probados: IgG2a, IgG2b, IgG2a de 3D6, IgG1, de IgG13D6, y la mutación de C1q de IgG1 de 3D6.

Resultados

5

10

40

45

55

60

65

[0236] El nivel más alto de enlaces C1q fue observado para IgG2 e IgG2a de 3D6 (refiérase a la figura 23). Los enlaces de C1q a IgG1 e IgG1 de 3D6 fueron significativamente más bajos que los de IgG2a. La mutación en el dominio de enlaces de C1q de IgG1 de 3D6 suprimió más enlaces.

Ejemplo 9: Ensayo de Acondicionamiento de Miedo Contextual (CFC - Contextual Fear Conditioning)

- [0237] Los ratones transgénicos Tg2576 y los de controles de tipo silvestre de cámaras fueron albergados durante por lo menos 2 semanas antes de cualquier prueba y se les permitió acceso a comida y agua ad libitum. CFC ocurrió en cámaras operantes (Med Associates, Inc.) construidas de paredes laterales de aluminio y techos, puertas y pared trasera de plexiglás. Cada Cámara fue equipada con un piso a través del cual una corriente eléctrica de pies podía ser administrada. Adicionalmente, cada cámara tenía dos luces de estímulo, una luz de caja y un solenoide. La iluminación, la corriente eléctrica de pies (US) y el solenoide (CS) fueron controlados por un software MED-PC ejecutado por una computadora. Las cámaras fueron ubicadas en un cuarto con aislamiento de sonido en presencia de una luz roja.
- [0238] Los ratones (n = 8-12/genotipo/tratamiento) fueron entrenados y probados en dos días consecutivos. La fase de entrenamiento consistió en colocar a los ratones en las cámaras operantes, iluminando las luces de estímulo y de casa y permitiéndoles explorar durante dos minutos. Al final de los dos minutos, una corriente eléctrica de pies (US 1.5 miliamperios) se administró durante dos segundos. Éste procedimiento fue repetido. 30 segundos después de la segunda corriente eléctrica de pies los ratones fueron removidos de las cámaras y se los regresó a sus jaulas.
- [0239] 20 horas después del entrenamiento, los animales fueron regresados a las cámaras en las cuales fueron entrenados previamente. Comportamiento de congelamiento, en el mismo entorno en el cual recibieron la corriente eléctrica ("contexto"), entonces se grabó, utilizando la misma muestra de tiempo en lapsos de 10 segundos durante cinco minutos (30 puntos de muestra). Congelamiento se definió como la falta de movimiento excepto aquella requerida para la respiración. Al final del contexto de cinco minutos los ratones de prueba fueron regresados a sus jaulas.
 - [0240] Ratones de tipo silvestre de aproximadamente 20 semanas de edad y ratones transgénicos Tg2576 se les administró una sola dosis de anticuerpos de tratamiento por medio de una inyección intraperitoneal a 24 horas antes de la fase de entrenamiento del CFC. Los anticuerpos de tratamiento fueron: (i) anticuerpos lgG1 no específicos; (ii) 3m de 3D6 de Hu (FcγR) (también conocido como AAB-003); y (iii) bapineuzumab (también conocido como AAB-001).
 - **[0241]** La figura 24 demuestran los resultados. Ratones de tipo silvestre tratados con la sustancia de control mostraron alrededor de un 40% de congelamiento, mientras que en comparación, los ratones transgénicos tratados de control exhibieron un déficit severo en memoria contextual. Cuando se les administró 30 mg/kilogramos, el anticuerpo de 3m de 3D6 de Hu restauró la función cognitiva a los niveles de tipo silvestre. Además, la mutación de la función ejecutora tuvo el mismo efecto en la memoria contextual que el anticuerpo paterno, bapineuzumab.
- [0242] El efecto del anticuerpo 3m de 3D6 de Hu en la memoria contextual fue observado al pasar del tiempo. La figura 25 ilustra que el tratamiento con 30 mg/kilogramos de anticuerpos 3m de 3D6 de Hu suministró niveles de tipo silvestre de cognición después de por lo menos 5 días después de su administración.
 - **[0243]** En resumen, los ejemplos que se acaban de mencionar muestran que 3m de 3D6 de Hu resulta en mejoras similares de cognición que bapineuzumab. Esto es a pesar de que el anticuerpo derivado no se enlaza significativamente a los receptores Fc o C1g, o induce fagocitosis o una actividad ADCC.
 - Ejemplo 10: Estudios de ratones con IgG2 de 4m ($Fc\gamma R/C1q$) de 4m de 3D6 e IgG1 de 3m de 3D6 de Hu (AAB-003)

Diseño del estudio

[0244] Ratones PDAPP de un año de edad son expuestos a un paradigma de tratamiento de seis meses con control; lgG2a de 4m (FcγR/ C1q) de 3D6; o lgG1 (refiérase a la tabla 10) de 3m de 3D6 de Hu. Controles negativos incluyen un anticuerpo lgG2a de ratón y un anticuerpo lgG1 humano a un epítope irrelevante no amiloide. Los controles positivos incluyen a lgG2 de 3D6 y a lgG1 de 3D6 de Hu. Los ratones son divididos en cohortes de dosis e inyectados IP en intervalos semanales con 3, 30, o 300 mg/kg del anticuerpo indicado. Las condiciones experimentales son descritas en el ejemplo 5.

[0245] Después de seis meses, los ratones son sacrificados y se cultiva el tejido cerebral tal como se describió anteriormente. Los tejidos son examinados por cargas corticales, Ab del hipocampo, de amiloides, de amiloides vasculares y micro hemorragias.

Ejemplo 11: Estudios de monos Cynomolgus con IgG1 de 3m de 3D6 de Hu (AAB-003)

Diseño del estudio

5

25

30

60

- 10 [0246] Los monos Cynomolgus son tratados con el IgG1 de 3m de 3D6 de Hu (AAB-003). El control negativo incluye un anticuerpo IgG1 humano a un epítope no amiloide irrelevante. El control positivo incluye un IgG1 de 3D6 de Hu (Bapineuzumab). Los monos son divididos en cohortes de dosis recibiendo ya sea, 15, 50, o 150 mg/kg del anticuerpo indicado. Cada cohorte es dividido aún más en grupos de administración IV y SC.
- 15 **[0247]** Los monos son inyectados semanalmente durante 13 semanas, con un periodo de observación de dos meses. Al final del estudio, los monos son sacrificados y los tejidos cerebrales son cosechados. Los tejidos son examinados por cargas corticales, de hipocampo de Aβ y de amiloides, amiloides vasculares y micro hemorragias.
- Ejemplo 12: Estudio de Una Sola Dosis Ascendente (SAD Single Ascending Dose) en humanos del anticuerpo 3m de 3D6 de Hu (AAB-003)
 - [0248] Pacientes de Alzheimer ligero a moderado, incluyendo portadores y no portadores de ApoE4, se dividieron en cohortes para inyecciones intravenosas (IV) o subcutáneas con el anticuerpo AAB-003. A los cohortes se les da una sola dosis con un seguimiento de 12 meses y se los monitorea durante ese tiempo por un comité de monitoreo de seguridad independiente.
 - **[0249]** El objetivo del estudio es el incrementar la exposición equivalente a por lo menos 5 mg/kilogramos de Bapineuzumab intravenoso (a menos que se observen señales de edemas vasogénicos). Con esta dosis de Bapineuzumab, se observó VE en tres de 10 pacientes.
 - **[0250]** Los cohortes SC incluyen por lo menos 2 niveles de dosis subcutáneas. Estos pacientes son observados en cuanto a su biodisponibilidad del anticuerpo y su linealidad.
- [0251] Todos los pacientes son examinados (por ejemplo, en referencia a su estado ApoE) y monitoreados tal como se describió en el ejemplo 1. Para todos los cohortes, el monitoreo de seguridad incluye monitoreos de MRI. Los resultados MRI son comparados a aquellos del estudio Bapineuzumab descritos en los ejemplos anteriores. La eficacia es medida por mediciones cognitivas (por ejemplo, NTB, DAD, ADAS-Cog,); niveles Aβ en el plasma; niveles CSF de amiloides, tau y fosfotau; y toma de imágenes de amiloides.
- 40 [0252] Ciertos marcadores biológicos son rastreados en cada paciente durante el estudio. Los biomarcadores para dar apoyo a los enlaces de Aβ por el anticuerpo incluyen a Aβ40 y Aβ42 en la toma de imágenes de CSF, plasma y placas de amiloides, por ejemplo, por medio de PET. Los biomarcadores que señalan a la modificación de la enfermedad incluyen a la toma de imágenes de MRI, tau de CSF y niveles de fosfotau, y nuevamente, de placas de amiloides.
 - Ejemplo 13: Perfiles farmacocinéticos del 3m de 3D6 de Hu (AAB-003) en ratones Tg2576 y de tipo silvestre
- [0253] Los ratones de control transgénicos Tg2576 y de tipo silvestre se les dio una dosis subcutánea (SC) con AAB-003 o intraperitonalmente (IP) para determinar la biodisponibilidad del anticuerpo. El perfil fue típico para el anticuerpo terapéutico.
 - **[0254]** El AAB-003 fue eliminado lentamente, con un T1/2 de 66-160 horas. Hubo distribución de bajo volumen (71-96) y buena exposición (tal como se midió por AUC).
- [0255] Algunas diferencias entre los ratones de tipo silvestre y transgénicos fueron aparentes. Por ejemplo, ratones de tipo silvestre tuvieron un AUC t T1/2 más alto. Los ratones transgénicos tuvieron niveles ligeramente más altos de anticuerpos anti-AAB-003.
 - Ejemplo 14: Perfiles farmacocinéticos del 3m de 3D6 de Hu (AAB-003) en monos cynomolgus
 - [0256] 10 mg/kilogramos de 3m de 3D6 de Hu o bapineuzumab fueron administrados intravenosamente (IV) a monos cynomolgus (tres animales/tratamiento de anticuerpos) para comparar los perfiles farmacocinéticos y determinar si la mutación de la función ejecutora tuvo algún efecto. Los resultados fueron comparables entre los dos anticuerpos típicos y terapéuticos en general. Hubo un bajo despeje (0.16 6 0.06 ml/hr/kg), un bajo volumen de distribución (-62 ml/kg), y una vida media de larga eliminación (309 ± 226 horas). Uno de los tres animales examinados resultó positivo para anticuerpos en contra de AAB-003.

[0257] Las mismas dosis de anticuerpos fueron administradas subcutáneamente (SC). La biodisponibilidad fue buena, aproximándose a 69%, y la vida media varió desde 21-445 horas. Dos de los tres animales examinados resultaron positivos para anticuerpos en contra de AAB-003.

Ejemplo 15: El efecto de las mutaciones Fc en la función ejecutora de un anticuerpo Y anti-Lewis

[0258] Para determinar el efecto de mutaciones en la región de charnela baja del IgG1 en la función ejecutora de anticuerpos con diferentes especificidades antigenas, diseñamos anticuerpos para el antígeno Lewis Y (LeY). LeY es un oligosacárido difucoosilado relacionado con el grupo sanguíneo tipo II que es expresado principalmente en cánceres epiteliales, incluyendo cáncer de mama, de páncreas, de colon, de ovario, grástico y pulmonar. LeY no parece ser expresado en tumores de origen neuroectodérmico o mesodérmico.

- [0259] El anticuerpo Ab02 anti-LeY fue generado con una de les regiones constantes de cadenas pesadas: (i)lgG1 humana de tipo silvestre; (ii) lgG4 humana de tipo silvestre; y (iii) lgG1 humana con dos mutaciones de regiones ejecutoras, L234A y G237A (refiérase a las IDENTIFICACIONES SECUENCIALES NÚMEROS: 50 y 51). lgG4 ha demostrado tener una función ejecutora en otros sistemas.
- [0260] Para el ensayo de ADCC (citotoxicidad de complementos dependientes de anticuerpos antibody-dependent complement cytotoxicity), células de adenocarcinoma gástricas humanas N87 que sobreexpresan LeY fueron utilizadas como células objetivo, y PBMC humanas recién aisladas fueron utilizadas como células ejecutoras. Las células ejecutoras y objetivas fueron puestas en platos a una tasa de 50:1 en platos de 96 pozos. Se aplicaron anticuerpos a varias concentraciones (0.1, 1 y 10 μg/mililitros) en triplicado con un medio, los controles celulares ejecutores y de objetivo, y controles de anticuerpos. Las actividades ADCC de las versiones de Ab02 de anti Lewis Y son presentadas en la figura 26.
 - [0261] Para el ensayo CDC (citotoxicidad dependiente del complemento complement dependent cytotoxicity), células tumorales positivas LeY (A431 LeY) fueron colocadas en platos de 96 pozos con varios puntos de anticuerpos (0.1, 1 y 10 μg/mililitros). Complemento humano diluido (1:100), fue agregado a cada pozo. Se realizaron pruebas en triplicado a un volumen final de 100 μl/mililitros con un medio, células solas, anticuerpos y controles complementarios. Después de cuatro horas de incubación a 37 °C, las placas fueron removidas y equilibradas a 22 °C.
- [0262] Un volumen igual de CytoTox-One™ fue agregado en cada pozo, e incubado durante 10 minutos a 22 °C. Como control positivo, 2 µl de amortiguador de lisis por pozo (en triplicado) fue agregado para generar una liberación máxima de LDH (lactato deshidrogenasa) en los pozos de control. La reacción enzimática fue detenida al agregar 50 µl de solución detenedora. La fluorescencia resultante fue registrada con una longitud de onda de excitación de 560 nm y una longitud de onda de emisión de 590 nm. El porcentaje de lisis celular relacionada con el complemento fue calculada como un porcentaje de la liberación de LDH total (figura 27).
 - **[0263]** A pesar de las mutaciones L234A y G237A en IgG1, los anticuerpos mutantes retuvieron completamente su capacidad para mediar a ADCC y CDC en contra de las células tumorales que expresan a Lewis Y, en comparación del IgG1 de tipo silvestre.

45 Ejemplo 16: Efecto de mutaciones Fc en la función ejecutora del anticuerpo anti-5T4

[0264] Para investigar más el efecto de las mutaciones Fc en el IgG1 humano en la función ejecutora de anticuerpos con diferente especificidad de antígenos, diseñamos anticuerpos para la proteína oncofetal 5T4. 5T4 es una proteína asociada con tumores que se muestra en la membrana celular de varios carcinomas, y es un blanco prometedor para el desarrollo de vacunas antitumorales y para terapias dirigidas por anticuerpos.

[0265] El anticuerpo anti-5T4 fue generado con diferentes combinaciones de mutaciones en la región constante de cadenas pesadas. Las cadenas pesadas utilizadas fueron: (i) IgG1 humanas de tipo silvestre; (ii) IgG4 humanas de tipo silvestre; (iii) IgG1 humana, L234A y L235A; (iv) IgG1 humana, L234A y G237A; (v) IgG1 humana, L235A y G237A; y (vi) IgG1 humana con tres mutaciones de regiones ejecutoras, L234A, L235A, y G237A (refiérase a las IDENTIFICACIONES SECUENCIALES NÚMEROS: 62 y 63).

[0266] La línea celular de carcinoma de mama humana MDAMB435, transfectada establemente con el antígeno 5T4, fue utilizada para los ensayos ADCC y CDC. El ensayo ADCC de anticuerpos anti-5T4 fue descrito en el ejemplo 15, utilizando PBMC humanas recién aisladas como células ejecutoras en una tasa de células ejecutoras:objetivo de 50:1. Las células transfectadas MDAMB435-Neo fueron utilizadas como un control negativo. Los resultados de la actividad ADCC (citotoxicidad específica máxima a la concentración de anticuerpos de 10 μg/mililitros) son resumidas en la tabla 15.

65

50

55

5

10

TABLA 15

Actividad ADCC de anticuerpos anti-5T4 en contra de la línea celular MDAMB435 de carcinoma de mama humano positivo y negativo 5T4											
anticuerpo	% de citotoxicidad específica MDAMB345-5T4	% de citotoxicidad específica MDAMB-Neo									
5T4-lgG1wt 81 3	81	3									
ST4-lgG1 L234A/G237A	78	2									
5T4-lgG1 L234A/L235A	15	2									
ST4-lgG1 L235A/G237A	27	2									
5T4-lgG1 L234A/L235A/G237A	2	2									
5T4-lgG1 N297A	5	3									
5T4-lgG4	2	2									

[0267] Para evaluar un efecto de las mutaciones Fc en la citotoxicidad inducida de los complementos, células MDAMB435-5T4 de carcinoma de mama humanas fueron incubadas con un complemento humano diluido tal como se describió en el ejemplo 15. Los resultados de los ensayos CDC fueron presentados en la tabla 16.

TABLA 16

25		TABLA 10				
20	Actividad CDC de anticuerpos anti	ti-5T4 en contra de la línea celular MD humano positivo y negativo 5T4	AMB435 de carcinoma de mama			
30	anticuerpo	% de citotoxicidad específica MDAMB345-5T4	% de citotoxicidad específica MDAMB-Neo			
	5T4-lgG1wt	90	2			
	5T4-lgG1 L234A/G237A	72	2			
35	5T4-lgG1 L3234A/L235A	5	2			
	5T4-lgG1 L235A/G237A	19	2			
	5T4-lgG1 L234A/L235A/G237A	1	1			
40	5T4-lgG1 N297A	1	1			
	5T4-lgG4	1	1			

[0268] La introducción de dos mutaciones en la región de charnela baja de IgG1 humano en cualquiera de las combinaciones intentadas (L234A/L235; L234A/G237A; L235A/G237A) sólo redujo parcialmente las actividades ADCC y CDC con L235A/G237A mostrando capacidades funcionales ejecutoras residuales más altas. Sin embargo, el anticuerpo anti-5T4 con tres mutaciones en la región de charnela baja del IgG1 (L234A/ L235A/G237A) demostró actividades ADCC y CDC completamente abolidas.

50 Conclusiones

55

5

10

15

[0269] Los ejemplos suministraron varias comparaciones de los anticuerpos mutantes de la región Fc con diferentes especificidades de antígenos. El ejemplo 6 describe un ensayo ADCC utilizando anticuerpos específicos A con mutaciones IgG1 Fc en L234A y G237A (mutaciones dobles), o L234, L235A, y G237A (mutaciones triples). Las mutaciones dobles y triples redujeron funciones reducidas significativamente (refiérase a la figura 22). El ejemplo 15 describe ensayos ADCC y CDC usando anticuerpos específicos LeY con mutaciones IgG1 en L234A y G237A. en este caso, el anticuerpo mutante retuvo la función ejecutora (refiérase a las figuras 6 y 27). Finalmente, el ejemplo 16 compara las mutaciones IgG1 Fc de los anticuerpos específicos 5T4. Cada uno de las mutaciones dobles (L234A/L235;

- L234A/G237A; L235A/G237A) retuvieron más actividad ejecutora que las mutaciones triples (L234A/ L235A/G237A) (refiérase a las tablas 15 y 16). La actividad ejecutora de la mutación doble L234A/L235, sin embargo, fue reducida a casi el mismo nivel que aquella de las mutaciones triples.
- [270] Los resultados anteriores demuestran que el efecto de las mutaciones de las regiones de charnela pueden depender de varios factores, incluyendo la densidad del antígeno objetivo en la superficie celular. Sin embargo, la información indica que interrupciones en las tres posiciones son necesarias para eliminar la actividad ejecutora.

```
[0271] Los ejemplos anteriores son solamente ilustrativos. El alcance del invento está cubierto por las declaraciones.
     LISTAS DE SECUENCIAS
 5
     [0272]
      <110> BLACK, RONALD EKMAN, LARS LIEBERBURG, IVAN GRUNDMAN, MICHAEL CALLAWAY, JIM GREGG,
     KEITH M. JACOBSEN, JACK STEVEN GILL, DAVINDER TCHISTIAKOVA, LIOUDMILA WIDOM, ANGELA
10
      <120> REGÍMENES DE INMUNOTERAPIA QUE DEPENDEN DEL ESTADO APOE
     <130> 15270C-000420US
15
     <140>
      <141>
      <150> 61/083,827 <151> 2008-07-25
      <150> 60/999,423 <151> 2007-10-17
20
      <160> 99
     <170> Versión de patente 3.5
      <210> 1
25
      <211> 42
      <212> PRT
      <213> Homo sapiens
      <400> 1
30
          Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys
                               5
                                                          10
                                                                                    15
35
          Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile
                          20
                                                    25
                                                                               30
40
          Gly Leu Met Val Gly Gly Val Val Ile Ala
                    35
45
      <210> 2
      <211> 112
      <212> PRT
      <213> Secuencia Artificial
50
      <223> Descripción de la Secuencia Artificial: Polipéptido Sintético
      <400> 2
55
60
```

	Asp 1	Val	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
5	Glu	Pro	Ala	Ser 20	Ile	Ser	Cys	Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Asp	Ser
10	Asp	Gly	Lys 35	Thr	Tyr	Leu	Asn	Trp 40	Leu	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
15	Pro	Gln 50	Arg	Leu	Ile	Tyr	Leu 55	Val	Ser	Lys	Leu	Asp 60	Ser	Gly	Val	Pro
20	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
25	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Trp	Gln 95	Gly
30	Thr	His	Phe	Pro 100	Arg	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Val	Glu 110	Ile	Lys
35	<210> 3 <211> 1 <212> F <213> S	19 PRT	cia Artifi													
40	<220> <223> D	•	ción de l	la Secu	encia A	rtificial:	Polipép	otido Sir	ntético							
45	<400> 3															
50																
55																
60																
65																

	Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5	Sar	Leu	λκα	Lou	Sor	Cue	Λla	7\1 ɔ	Sar	Gly	Pho	Thr	Pho	Sar	Zαn	Туг
10	Ser	цец	AIG	20	ser	Cys	ALG	AIa	25	GIY	rne	1111	rne	30	ASII	ı yı
10	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ala	Ser	Ile	Ara	Ser	Glv	Glv	Glv	Ara	Thr	Tvr	Tvr	Ser	Asp	Asn	Val
20		50		5		1	55	1	5		-1-	60				
25	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
30	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Val	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly
35				Thr	Let	ı Val		r Va	l Se	r Se	er					
40	<210> 4 <211> 11: <212> PR <213> Se	T.	a Artifici	al												
45	<220> <223> De	scripcić	in de la	Secue	ncia Arl	tificial: I	Polipép	tido Sir	ıtético							
	<400> 4															
50																
55																
60																
65																

5	Tyr 1	Val	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
10	Glu	Pro	Ala	Ser 20	Ile	Ser	Cys	Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Asp	Ser
15	Asp	Gly	Lys 35	Thr	Tyr	Leu	Asn	Trp 40	Leu	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
20	Pro	Gln 50	Arg	Leu	Ile	Tyr	Leu 55	Val	Ser	Lys	Leu	Asp 60	Ser	Gly	Val	Pro
25	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
30	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Trp	Gln 95	Gly
35	Thr	His	Phe	Pro 100	Arg	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Val	Glu 110	Ile	Lys
40	<210><211><211><212><213>	119	ıcia Arti	ficial												
45	<220> <223>	Descrip	oción de	e la Sec	uencia <i>i</i>	Artificia	l: Polipe	éptido S	intético							
45	<400> Glu 1		Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
50	C	Tour	7	T 0	C	C	71-	77-	0	C1	Dh.a	Th	Dha	C	7. ~ ~	Т
55	ser	Leu	Arg	20	ser	Cys	Ala	АІА	Ser 25	GTÀ	rne	ınr	Pne	ser 30	ASN	ıyr
60	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val

	Ala	Ser 50	: Ile	e Arg	Se:	r Gl	_	Gly 55	G1	у.	Arg	Thi	r Ty	ŗr	Tyr 60	Se.	r Asp	Asn	Val
5	Lvs	Gly	, Arc	y Phe	Th:	r Il	Le	Ser	Ar	a .	Asp	Asr	n Al	La	Lvs	Ası	n Ser	Leu	Tyr
10	65	1		,		70							75		-1 -				80
	Leu	Gln	ı Met	. Asn	Se:	r Le	eu .	Arg	Al	.a +	Glu	Asp 90	o Th	ır	Ala	Lei	u Tyr	Tyr 95	Cys
15																			
20	Val	Arg	Tyr	Asp 100		з Ту	r	Ser	G1	_	Ser 105	Ser	As	sp	Tyr	Tr	o Gly 110	Gln	Gly
25	Thr	Leu	val 115	Thr	Va.	l Se	er	Ser											
30	<210> <211> <212> <213>	219 PRT	encia Aı	tificial															
	<220> <223>	Descr	ipción (de la Sed	cuenci	a Artifi	cial:	Polip	éptido	o Sir	ntético								
35	<400>	6																	
			Asp V 1	al Val	Met	Thr (Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Leu 15	Gly		
40			Gln P	ro Ala	Ser 20	Ile S	Ser	Cys	Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Asp	Ser		
45			Asp G	ly Lys 35	Thr	Tyr I	Leu	Asn	Trp 40	Leu	Gln	Gln		Pro 45	Gly	Gln	Ser		
50			Pro A 5	rg Arg 0	Leu	Ile 1	ſyr	Leu 55	Val	Ser	Lys	Leu	Asp 60	Ser	Gly	Val	Pro		
			Asp A 65	rg Phe	Ser	_	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	_	Ile 80		
55			Ser A	rg Val		Ala 0 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Trp	Gln 95	Gly		
60			Thr H	is Phe	Pro 100	Arg I	ſhr	Phe	G1y	Gly 105		Thr	Lys	Val	Glu 110	Ile	Lys		
65			Arg T	hr Val 115	Ala	Ala F	?ro		Val 120	Phe	Ile	Phe		Pro 125	Ser	Asp	Glu		

		G.	ln Lei 130	_	Ser	Gly Th	nr Ala 135		Val V	al Cys	Leu 140	Leu A	sn As	n Phe		
5			yr Pro 45	Arg	Glu 2	Ala Ly 15		Gln	Trp I	ys Val 155	_	Asn A	ala Le	u Gln 160		
10		Se	er Gly	/ Asn		Gln Gl 165	u Ser	Val		lu Glr 70	a Asp	Ser I	ys As 17			
15		Tì	nr Tyi	s Ser	Leu :	Ser Se	er Thr	Leu	Thr I 185	eu Sei	Lys		sp Ty 90	r Glu		
		Ly	ys His	Lys 195	Val 7	Tyr Al	a Cys	Glu 200	Val T	hr His	Gln	Gly L 205	eu Se	r Ser		
20		Pi	ro Val 210		Lys S	Ser Ph	ie Asn 215	Arg	Gly G	lu Cys						
25	<210> 7 <211> 44 <212> PF <213> Se	₹T	ia Artifi	cial												
30	<220> <223> De	escripc	ión de	la Sec	uencia	Artificia	al: Polip	oéptido	o Sinté	tico						
00	<400> 7															
35	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
40	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Gly	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
45	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
50	Ala	Ser 50	Ile	Arg	Ser	Gly	Gly 55	Gly	Arg	Thr	Tyr	Tyr 60	Ser	Asp	Asn	Val
55	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Glu	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80
60	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
65	Val	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly

	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
5	Pro	Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
10	Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
15	Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
20	Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
25	Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
30	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Lys	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
35	Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240
40	Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
.0	Arg	Thr	Pro				Cys			Val	_			His 270	Glu	Asp
45	Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
50	Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
55	Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
60	Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
65	Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr

	Leu	Pro	9 Pr 35		r Ar	g A	sp G		Leu 360	Thi	r L	ys 2	Asn	Gln	Val 365	Ser	Leu	Thr
5	Cys	Leu 370		l Ly	s Gl	y Pl		yr 75	Pro	Sei	c A	sp :	Ile	Ala 380	Val	Glu	Trp	Glu
10	Ser 385	Asr	n Gl	y Gl	n Pr		lu A 90	sn	Asn	Туі	r L		Thr 395	Thr	Pro	Pro	Val	Leu 400
15	Asp	Ser	As	p Gl	y Se 40		ne P	he	Leu	Туг		er 1	Lys	Leu	Thr	Val	Asp 415	Lys
20	Ser	Arg	g Tr	p Gl 42		n GI	ly A	sn	Val	Phe 425		er (Cys	Ser	Val	Met 430	His	Glu
25	Ala	Leu	ні 43		n Hi	s Ty	r T		Gln 440	Lys	s Se	er 1	Leu	Ser	Leu 445	Ser	Pro	Gly
30	Lys																	
35	<210> 8 <211> 11 <212> PF <213> Se	RT	cia Ar	tificial														
	<220> <223> De				ecuen	cia Ar	tificial:	Poli	péptid	lo Sir	ntétic	ю						
40	<400> 8																	
45	1		Val	Leu	Met	Thr 5	Gln	Th	ır Pi	ro I	Leu	Ser 10	c Le	u Pr	o Va	l Se	r Le 15	u Gly
1 0	2	Asp	Gln	Ala	Ser 20	Ile	Ser	Cy	rs Ai		Ser 25	Ser	GI:	n As	n Il	e Il 30	e Hi	s Ser
50	P	Asn	Gly	Asn 35	Thr	Tyr	Leu	Gl	u Tı 4(Cyr	Leu	ı Gl	n Ly	s Pr 45		y Gl	n Ser
55	F		Lys 50	Leu	Leu	Ile	Tyr	Ly 55		al S	Ser	Asr	n Ar	g Ph 60		r Gl	y Va	l Pro
30		sp . 55	Arg	Phe	Ser	Gly	Ser 70	Gl	y Se	er G	Sly	Thr	As _]	o Ph	e Th	r Le	u Ly	s Ile 80
65	I	ıys i	Lys	Val	Glu	Ala 85	Glu	As	p Le	eu G	Sly	I1∈ 90	е Ту:	r Ty	r Cy	s Ph	e Gl: 95	n Gly

Ser His Val Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Glu 5 <210>9 <211> 123 <212> PRT <213> Secuencia Artificial 10 <223> Descripción de la Secuencia Artificial: Polipéptido Sintético <400> 9 Gln Ala Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Ser Ser Gln 15 5 10 Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 20 25 30 Gly Met Gly Val Ser Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu 25 35 40 45 Trp Leu Ala His Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser 30 50 55 60 Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Arg Lys Gln Val 35 Phe Leu Lys Ile Thr Ser Val Asp Pro Ala Asp Thr Ala Thr Tyr Tyr 40 85 90 95 Cys Val Arg Arg Pro Ile Thr Pro Val Leu Val Asp Ala Met Asp Tyr 45 100 105 110 Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 115 120 50 <210> 10 <211> 112 <212> PRT 55 <213> Secuencia Artificial <223> Descripción de la Secuencia Artificial: Polipéptido Sintético 60 <400> 10

	A: 1	sp	Val	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
5	G.	lu	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser
10	A	sn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
15	P	ro	Gln 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
20	A: 6!		Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
25	Se	er	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Ser
30	Se	er	His	Val	Pro 100	Leu	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys
	<210> 1 <211> 1 <212> F <213> S	20 PRT	encia	Artifici	al												
35	<220> <223> D					encia A	Artificia	ıl: Polip	oéptido	Sinté	tico						
40	<400> 1	1															
45																	
50																	
55																	
60																	
65																	

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
5	Ser	Leu	Ara	Leu	Ser	Cvs	Ala	Phe	Ser	Glv	Phe	Ser	Leu	Ser	Thr	Ser
40	302	200	9	20	501	010	1114	2110	25	017	20	501	200	30		201
10	Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15	Trp	Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Val 80
25	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
30	Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
35	Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120								
40	<210> 12 <211> 120 <212> PRT <213> Secuen	ncia Ar	tificial													
45	<220> <223> Descrip <400> 12	oción d	e la Se	ecuenc	ia Arti	ficial: F	Polipép	otido S	intético)						
50																
55																
60																
65																

	Gln 1	Val	. Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Thr	Leu	Ser 30	Thr	Ser
10	Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15	Trp	Val	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Phe	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Leu 80
25	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
30	Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
35	Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120								
40	<210> 13 <211> 120 <212> PRT <213> Sec		Artificia	al												
45	<220> <223> Des <400> 13				icia Art	ificial: F	Polipép	tido Sir	ntético							
50		ln V	al Gl	n Lei	u Val	l Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln		Gly <i>F</i> 15	Arg
55	S	er L	eu Ar	g Lei 20	u Sei	c Cys	Ala	Phe	Ser 25	Gly	Phe	Thr		Ser ' 30	Thr S	Ger
60	G	ly M	et Se 35		l Gly	y Trp	Ile	Arg 40	Gln	Ala	Pro		Lys 45	Gly :	Leu (Slu

		Trp	Val 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
5		Leu 65	Lys	Ser	Arg	Phe	Thr 70	Ile	Ser	Lys	Asp	Asn 75	Ser	Lys	Asn	Thr	Leu 80
10		Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
15		Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
20		Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120								
25	<210><211><211><212><213>	120	encia /	Artificia	al												
	<220> <223>		ripción	de la	Secue	ncia A	rtificial	: Polipe	éptido	Sintéti	со						
30	<400>	• 14															
35		Gln 1	val	. Gln	. Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
40		Ser	Leu	ı Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Thr	Leu	Ser 30	Thr	Ser
40		Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
45		Trp	Val 50	Ala	His	Ile	Trp	Trp	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
50		Leu 65	Lys	Ser	Arg	Phe	Thr 70	Ile	Ser	Arg	Asp	Asn 75	Ser	Lys	Asn	Thr	Leu 80
55		Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
60		Cys	Ala	Arg	Arg		Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
65		Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120								

-	<210><211><211><212><213>	120 PRT	ncia A	rtificial													
5	<220> <223>	Descri	pción (de la S	ecuen	cia Art	ificial:	Polipé	otido S	intétic	0						
10	<400>	15															
10		Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
15		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Thr	Leu	Ser 30	Thr	Ser
20		Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
25		Trp	Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
30		Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Val 80
35		Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
40		Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
45	<210><211><211><212><213>	16 120 PRT		Thr 115		Thr	Val	Ser	Ser 120								
50	<220> <223>					cia Art	ificial:	Polipé _l	otido S	intétic	0						
55	<400>	16															
60																	

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	/ Gly 10	y Val	. Va	1 G]	ln P		Gly 15	Arg
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	y Ph∈	e Se	r L∈	eu So 3		Ihr	Ser
10	Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg	r Glr	n Alá	a Pro	Gl	у L _У 45	78 G	ly 1	Leu	Glu
15	Trp	Val 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	o Se	er
20	Leu 65 _.	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Th	r Va 80	
25	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Ту: 95	r Ty	r'
30	Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	y Gl	.n
35	Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120									
40	<210> 17 <211> 120 <212> PRT <213> Secu		Artificia	al													
45	<220> <223> Desc	cripciór	n de la	Secue	ncia Ar	tificial:	Polipé	eptido s	Sintétic	ю							
50																	
55																	
60																	
65																	

		Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
5																	
		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
10									_			_		_		_	~-
		Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15		Trn	T. 11	Δla	His	Tlo	Trn	Trn	Asn	Asn	Asn	T.vs	Tur	Tur	Asn	Pro	Ser
		115	50	2110	1125	110	115	55	7100	чор	1100	БуС	60	- y -	11011	110	001
20																	
		Leu 65	Lys	Ser	Arg	Phe	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Val 80
25																	
		Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
						0.5					50					55	
30		Cys	Ala	Arg	Arg	Thr	Thr	Thr	Ala	Asp	Tyr	Phe	Ala	Tyr	Trp	Gly	Gln
					100					105					110		
35		Gly	Thr	Thr	Val	Thr	Val	Ser	Ser								
						11	5				1	20					
40											_	20					
45	<210> <211> <212>	120 PRT															
45	<213> <220>	Secue	ncia Ai	rtificial													
	<220> <223>	Descri	pción o	de la Se	ecuenc	ia Artifi	cial: Po	olipépti	do Sint	ético							
50	<400>	18															
55																	
60																	
00																	
65																	

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	v Val	. Val	Glr	n Pro	o Gly 15	Arg
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	, Ph∈	e Ser	Lei	ı Se: 30	r Thr	Ser
10	Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	ı Pro	Gly	Lys 45	s Gly	y Leu	Glu
15	Trp	Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp) Lys	Tyr	Туз	r Ası	n Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	75	Ser	Lys	s Ası	n Thr	Leu 80
25	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	ı Asp) Thr	Ala	a Vai	l Tyr 95	Tyr
30	Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105		: Phe	e Ala	Туз	r Trp 110	o Gly	Gln
35	Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120								
40	<210> 19 <211> 120 <212> PR <213> Se	tT.	Artifici	al												
45	<220> <223> De				ncia Ar	tificial:	Polipé	otido S	intético)						
50	<400> 19															
00	Glı 1	n Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val (Gln :		Gly A 15	rg
55	Se	r Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Thr 1		Ser ' 30	Thr S	er
60																

	Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
5	Trp	Val 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
10		30					55									
	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Val 80
15	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
20	Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
25	Gly	Thr		Val	Thr	Val	Ser									
30	<210> 20 <211> 120 <212> PRT <213> Sec	Γ	115 Artificia	al				120								
35	<220> <223> Des	cripció	n de la	Secue	ncia Ar	tificial:	Polipé	otido S	intético)						
	<400> 20															
40																
45																
50																
55																
60																
65																

		Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
5				•													
		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Thr	Leu	Ser 30	Thr	Ser
10		C1	Mak	0	170 1	G1	TT	т? -	7) 0	C1 ~	777	Dava	C1	T 0	C1	Т о	C1
		GTÀ	мес	35	vai	СТА	1rp	ile	Arg 40	GIII	Ата	Pro	GTĀ	Lys 45	Gly	ьеи	GIU
15		Trp	T. C 11	Ala	His	Tle	Trp	Tro	Asp	Asp	Asp	Lvs	Tur	Tur	Asn	Pro	Ser
			50	1114		110	110	55	1101	nop	пор	2,0	60	- y -	11011	110	501
20		Leu	Lys	Ser	Arg	Phe	Thr	Ile	Ser	Lys	Asp	Thr	Ser	Lys	Asn	Thr	Val
		65					70					75					80
25		Tyr	Leu	Gln	Met		Ser	Leu	Arg	Ala		Asp	Thr	Ala	Val	_	Tyr
						85					90					95	
30		Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
35						G1	y Th	r Th:		l Thi	r Val	. Ser	Ser 120				
40	<210><211><211><212><213>	121 PRT	ncia Ar	tificial													
	<220> <223>	Descri	pción c	de la Se	ecuenc	ia Artif	icial: P	olipépt	ido Sin	tético							
45	<400>		,														
50																	
55																	
60																	
65																	

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Thr	Leu	Ser 30	Thr	Ser
10	Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15	Trp	Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Leu 80
25	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	~ =	Tyr
30	Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
35	Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120	Val							
40	<210> 22 <211> 121 <212> PRT <213> Secu		Artificia	ıl												
45	<220> <223> Desc <400> 22	cripción	n de la :	Secuer	ncia Art	tificial:	Polipér	otido S	intético	•						
50	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln		Gly 15	Arg
55	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
60																
65																

	G:	ly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
5	Tı		Val 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
10	Le 65		Lys	Ser	Arg	Phe	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Val 80
15	T	yr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
20	CΣ	/S	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
25	G]	Ly		Thr 115	Val	Thr	Val	Ser	Ser 120	Val							
30	<210> 23 <211> 13 <212> P <213> S	20 RT	encia <i>F</i>	Artificia	ıl												
35	<220> <223> D <400> 2		ripción	de la	Secuer	ncia Ar	tificial:	Polipé	ptido S	Sintétic	os						
40																	
45																	
50																	
55																	
60																	
65																	

	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arç
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
10	Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15	Trp	Val 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Leu 80
25	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
30	Cys	Ala	Arg	Arg		Thr	Thr	Ala			Phe	Ala	Tyr			Gln
35	Gly	Thr	Thr 115	100 Val	Thr	: Val	l Se:	r Se 12						110		
40	<210> 24 <211> 12 <212> PF <213> Se	:0 RT	ia Artifi	cial												
	<220> <223> De				uencia .	Artificia	al: Polip	oéptido	Sintét	ico						
45	<400> 24															
50																
55																
60																
65																

		Gln 1	Val	Gln	Leu	Val 5	Glu	. Ser	Gl	y Gl	y Gl 10		l Val	l Glr	n Pro	Gly 15	Arg
5		Ser	Leu	Arg	Leu	Ser	Cys	: Ala	ı Phe	e Se	r Gl	y Ph	e Sei	r Lei	ı Ser	Thr	Ser
10					20		-			25		- ,			30		
10		Gly	Met	Ser 35	Val	Gly	Trp) Ile	Arç 40	g Gl	n Al	a Pr	o Gly	y Lys 45	s Gly	Leu	Glu
15		Trp	Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	o Ası	o As	p Ly	s Tyr 60	туг	Asn	Pro	Ser
20		Leu 65	Lys	Ser	Arg	Phe	Thr 70	Ile	Sei	c Ly:	s As	p Th .75	r Ser	: Lys	s Asn	Thr	Leu 80
25	,	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arç	y Ala	90	u Asj	p Thr	Ala	ı Val	Tyr 95	Tyr
30	1	Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	a Asr 10!	_	r Ph	e Al <i>a</i>	ı Tyr	Trp 110	Gly	Gln
35	(Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120								
40	<210> <211> <212> <213>	120 PRT	encia /	Artificia	al												
45	<220> <223>		ripción	de la	Secuer	ncia Ar	tificial:	: Polipe	éptido	Sintéti	со						
	<400>	25															
50	G 1		/al (Gln I		√al (ō	Glu	Ser	Gly	Gly	Gly 10	Val	Val (Gln 1	Pro G 1		rg
55	S	er I	Leu <i>P</i>		Leu S 20	Ser (Cys :	Ala :	Phe	Ser 25	Gly	Phe	Thr 1		Ser _, T 30	hr S∈	er
60																	
65																	

	Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
5	Trp	Val 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
10	Leu 65	Lys	Ser	Arg	Phe	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Val
15	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
20	Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
25	Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120								
30	<210> 26 <211> 120 <212> PRT <213> Sec		Artificia	al												
35	<220> <223> Des <400> 26	cripciói	n de la	Secue	ncia Aı	tificial:	Polipé	ptido S	Sintétic	0						
40	X4002 20															
45																
50																
55																
60																
65																

		Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Thr	Leu	Ser 30	Thr	Ser
10		Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15		Trp	Val 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
20		Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Leu 80
25		Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
30		Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
35					Gly	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120					
40	<210><211><211><212><213>	• 120 • PRT	encia A	Artificial	I												
45	<220> <223> <400>	Desci	ripción	de la S	Secuen	cia Arti	ficial: F	Polipép	tido Sir	ntético							
50																	
55																	
60																	
65																	

		Gln 1	Val	Gln	Leu	Val	. Glu	Ser	Gly	gly	Gly	Val	Val	Glr	Pro	Gly 15	Arc
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	ı Phe	s Ser 25	Gly	Phe	Thr	Leu	ı Ser 30	Thr	Ser
10	1	Gly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	ß Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15		Trp	Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
20		Leu 65	Lys	Ser	Arg	Phe	Thr 70	Ile	Ser	. Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Leu 80
25		Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
30	(Cys	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	_	Phe	Ala	Tyr	Trp 110	_	Gln
35	<210> 20 <211> 10 <212> P0 <213> S0	8 20 PRT		115		Thr	Val	Ser	Ser 120								
40	<220> <223> D					ncia Ar	tificial:	Polipé	éptido	Sintétio	co						
45	<400> 2		al (Gln :		Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
50		er I	₁eu <i>I</i>	Arg :			Cys .	Ala	Phe	Ser		Phe	Ser	Leu	Ser		Ser
55																	
60																	
65																	

					20					25					30		
5	G:	ly	Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
10	T	rp	Val 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
15	Le 65		Lys	Ser	Arg	Phe	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Leu 80
20	T	yr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
25	CZ	/S	Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
30	G]	Lу	Thr	Thr 115	Val	Thr	Val	Ser	Ser 120								
35	<210> 29 <211> 13 <212> P <213> S	20 RT	encia .	Artificia	al												
	<220> <223> D	esc	ripciór	n de la	Secue	ncia A	rtificial	: Polip	éptido	Sintétio	со						
40	<400> 29	9															
45																	
50																	
55																	
60																	
65																	

	Glņ 1	. Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Phe	Ser 25	Gly	Phe	Thr	Leu	Ser 30	Thr	Ser
10	Gly	Met	Ser 35	Val	Gly	Trp	Val	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15	Trp	Leu 50		His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Thr	Val 80
25	Tyr	Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
30	Cys	Ala	Arg	Arg	Thr	Thr	Thr	Ala	Asp	Tyr 105	Phe	Ala	Tyr	Trp	Gly	Gln
35		Gly	Thr	Thr 115		Thr	Val	Ser	Ser 120	100						
40	<210> 30 <211> 120 <212> PR <213> Sec	Т	a Artific	ial												
45	<220> <223> Des				encia <i>l</i>	Artificia	ıl: Polir	péptido	Sintét	ico						
	<400> 30	о						, op 1. 4.6	S							
50																
55																
60																
65																

	Gl 1	n Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg
5	Se	r Leu	Arg	Leu 20	Ser	, Cys	Ala	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
10	G.1	y Met	Ser 35	Val	Gly	Trp	Ile	Arg 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15	Tr	o Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
20	Le [.] 65	ı Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Asn 75	Ser	Lys	Asn	Thr	Val 80
25	Ty	r Leu	Gln	Met	Asn 85	Ser	Leu	Arg	Ala	Glu 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
30	Суя	s Ala	Arg	Arg 100	Thr	Thr	Thr	Ala	Asp 105	Tyr	Phe	Ala	Tyr	Trp 110	Gly	Gln
35	G1 ₂	y Thr	Thr 115	Val	Thr	Val	Ser	Ser 120								
40	<210> 31 <211> 112 <212> PR <213> Sec	Τ	Artificia	al												
	<220> <223> Des	cripció	n de la	Secue	ncia A	rtificial	: Polip	éptido	Sintét	ico						
45	<400> 31															
50	As: 1	p Val	. Leu	Met	Thr 5	Gln	Thr	Pro	Leu	ser 10	: Lei	ı Pro	o Vai	l Se:	r Le	u Gly
55																
60																
65																

		Asp	Gln	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Asn	Ile	Val 30	His	Ser
5		Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
10		Pro	Lys 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
15		Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile
20		Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Gly
25		Ser	His	Val	Pro 100	Leu	Thr	Phe	Gly	Ala 105	Gly	Thr	Lys	Leu	Glu 110	Leu	Lys
30	<210> <211> <212> <213>	123 PRT	encia A	ırtificial													
35	<220> <223> <400>	Descr	ipción	de la S	Secuen	cia Art	ificial:	Polipép	otido S	intético)						
40	100	02															
45																	
50																	
55																	
60																	
65																	

	Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Ile	Leu	Gln	Pro	Ser 15	Gln
5	Thr	Leu	Ser	Leu 20	Thr	Cys	Ser	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Asn
10	Gly	Met	Gly 35	Val	Ser	Trp	Ile	Arg 40	Gln	Pro	Ser	Gly	Lys 45	Gly	Leu	Glu
15	Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Glu	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Asn	Asn	Gln	Val 80
25	Phe	Leu	Lys	Ile	Thr 85	Asn	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
30	Cys	Ala	Arg	Arg 100	Arg	Ile	Ile	Tyr	Asp 105	Val	Glu	Asp	Tyr	Phe 110	Asp	Tyr
35			T	rp G		ln (Gly	Thr	Thr	Leu	Thr 120	Val	Ser	: Se:	r	
40	<210> 33 <211> 113 <212> PR <213> Sec	T	a Artific	ial												
45	<220> <223> Des	scripció	ón de la	a Secu	encia <i>A</i>	Artificial	l: Polip	éptido	Sintéti	со						
50	<220> <221> MO <222> (2). <223> Val	.(2)	S													
55	<220> <221> MO <222> (7). <223> Ser	.(7)	S													
60	<220> <221> MO <222> (14 <223> Thr)(14)	S													
65	<220> <221> MO <222> (15) <223> Leu <220>) (15)														

```
<221> MOD RES
     <222> (30)..(30)
     <223> Île o Val
 5
     <220>
     <221> MOD_RES
     <222> (50)..(50)
     <223> Arg, Gln o Lys
10
     <220>
     <221> MOD RES
     <222> (88)..(88)
     <223> Val o Leú
15
     <220>
     <221> MOD RES
     <222> (105)..(105)
     <223> Gln o Gly
20
     <220>
     <221> MOD RES
     <222> (108)..(108)
     <223> Lys o Arg
25
     <220>
     <221> MOD_RES
     <222> (109)..(109)
     <223> Val o Leu
     <400> 33
30
           Asp Xaa Val Met Thr Gln Xaa Pro Leu Ser Leu Pro Val Xaa Xaa Gly
                              5
                                                                             15
                                                     10
35
           Gln Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Xaa Tyr Ser
                         20
                                                 25
                                                                        30
40
           Asp Gly Asn Ala Tyr Leu His Trp Phe Leu Gln Lys Pro Gly Gln Ser
                                            40
45
           Pro Xaa Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
                                       55
           Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
50
                                   70
           65
                                                          75
                                                                                 80
           Ser Arg Val Glu Ala Glu Asp Xaa Gly Val Tyr Tyr Cys Ser Gln Ser
55
                              85
                                                     90
                                                                             95
           Thr His Val Pro Trp Thr Phe Gly Xaa Gly Thr Xaa Xaa Glu Ile Lys
60
                         100
                                                105
                                                                        110
           Arg
65
```

```
<210> 34
      <211> 112
      <212> PRT
      <213> Secuencia Artificial
 5
      <223> Descripción de la Secuencia Artificial: Polipéptido Sintético
      <220>
10
      <221> MOD_RES
      <222> (1)..(1)
      <223> Glu o Gln
      <220>
15
      <221> MOD RES
      <222> (7)..(7)
      <223> Ser o Leu
      <220>
20
      <221> MOD_RES
      <222> (46)..(46)
      <223> Glu, Val, Asp o Ser
      <220>
25
      <221> MOD_RES
      <222> (63)..(63)
      <223> Thr o Ser
      <220>
30
      <221> MOD_RES
      <222> (75)..(75)
      <223> Ala, Ser, Val o Thr
      <220>
35
      <221> MOD_RES
      <222> (76)..(76)
      <223> Lys o Arg
      <220>
40
      <221> MOD_RES
      <222> (89)..(89)
      <223> Glu o Asp
      <220>
45
      <221> MOD_RES
      <222> (107)..(107)
      <223> Leu o Thr
      <400> 34
50
55
60
```

65

84

		Xaa 1	Val	Gln	Leu	Val 5	Glu	Xaa	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Arg	Tyr
10		Ser	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Xaa	Leu	Val
15		Ala	Gln 50	Ile	Asn	Ser	Val	Gly 55	Asn	Ser	Thr	Tyr	Tyr 60	Pro	Asp	Xaa	Val
20		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Xaa 75	Xaa	Asn	Thr	Leu	Tyr 80
25		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Xaa	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
30	<210> <211> <212>	35 219	Ser	Gly	Asp 100	Tyr	Trp	Gly	Gln	Gly 105	Thr	Xaa	Val	Thr	Val 110	Ser	Ser
35	<213> <220> <223>	Secue				cia Art	ificial: l	Polipé	otido S	intético)						
40	<400>																
45																	
50																	
55																	
60																	
65																	

5	Asr 1	Val	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Leu 15	Gly
3	Glr	ı Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Ile 30	Tyr	Ser
10	Asp	Gly	Asn 35	Ala	Tyr	Leu	His	Trp 40	Phe	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
15	Pro	Arg 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
20	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
25	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Ser	Gln 95	Ser
30	Thr	His	Val	Pro 100	Trp	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Val	Glu 110	Ile	Lys
35	Arg	Thr	Val 115	Ala	Ala	Pro	Ser	Val 120	Phe	Ile	Phe	Pro	Pro 125	Ser	Asp	Glu
40	Gln	Leu 130	Lys	Ser	Gly	Thr	Ala 135	Ser	Val	Val	Cys	Leu 140	Leu	Asn	Asn	Phe
40	Tyr 145	Pro	Arg	Glu	Ala	Lys 150	Val	Gln	Trp	Lys	Val 155	Asp	Asn	Ala	Leu	Gln 160
45	Ser	Gly	Asn	Ser	Gln 165	Glu	Ser	Val	Thr	Glu 170	Gln	Asp	Ser	Lys	Asp 175	Ser
50	Thr	Tyr	Ser	Leu 180	Ser	Ser	Thr	Leu	Thr 185	Leu	Ser	Lys	Ala	Asp 190	Tyr	Glu
55	Lys	His	Lys 195	Val	Tyr	Ala	Cys	Glu 200	Val	Thr	His	Gln	Gly 205	Leu	Ser	Ser
60	Pro	Val 210	Thr	Lys	Ser	Phe	Asn 215	Arg	Gly	Glu	Cys					
65	<210> 36 <211> 447 <212> PRT <213> Secu		Artificia	al												

	<220> <223> Descripción de la Secuencia Artificial: Polipéptido Sintético
5	<400> 36
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	
60	
65	

	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Arg	Tyr
10	Ser	Met	Ser 35	Trp	Val	Дlа	Arg	Tyr 40	Gln	Ala	Pro	Gly	Lys 45	Gly	Leu	Glu
15	Leu	Val 50	Ala	Gln	Ile	Asn	Ser 55	Val	Gly	Asn	Ser	Thr 60	Tyr	Tyr	Pro	Asp
20	Thr 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asn	Ala	Lys	Asn	Thr 80
25	Leu	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Arg	Ala 90	Glu	Asp	Thr	Ala	Val 95	Tyr
30	Tyr	Cys	Ala	Ser 100	Gly	Asp	Tyr	Trp	Gly 105	Gln	Gly	Thr	Leu	Val 110	Thr	Val
35	Ser	Ser	Ala 115	Ser	Thr	Lys	Gly	Pro 120	Ser	Val	Phe	Pro	Leu 125	Ala	Pro	Ser
40	Ser	Lys 130	Ser	Thr	Ser	Gly	Gly 135	Thr	Ala	Ala	Leu	Gly 140	Cys	Leu	Val	Lys
45	Asp 145	Tyr	Phe	Pro	Glu	Pro 150	Val	Thr	Val	Ser	Trp 155	Asn	Ser	Gly	Ala	Leu 160
50	Thr	Ser	Gly	Val	His 165	Thr	Phe	Pro	Ala	Val 170	Leu	Gln	Ser	Ser	Gly 175	Leu
	Tyr	Ser	Leu	Ser 180	Ser	Val	Ala	Val	Thr 185	Val	Pro	Ser	Ser	Ser 190	Leu	Gly
55	Thr	Gln	Thr 195	Tyr	Ile	Cys	Asn	Val 200	Asn	His	Lys	Pro	Ser 205	Asn	Thr	Lys
60	Val	Asp 210	Lys	Lys	Val	Glu	Pro 215	Lys	Ser	Cys	Asp	Lys 220	Thr	His	Thr	Cys
65	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu

	225					230					235					240
5	Phe	Pro	Pro	Lys	Pro 245	Lys	Asp	Thr	Leu	Met 250	Ile	Ser	Arg	Thr	Pro 255	Glu
10	Val	Thr	Cys	Val 260	Val	Val	Asp	Val	Ser 265	His	Glu	Asp	Pro	Glu 270	Val	Lys
15	Phe	Asn	Trp 275	Tyr	Val	Asp	Gly	Val 280	Glu	Val	His	Asn	Ala 285	Lys	Thr	Lys
20	Pro	Arg 290	Glu	Glu	Gln	Tyr	Asn 295	Ser	Thr	Tyr	Arg	Val 300	Val	Ser	Val	Leu
25	Thr 305	Val	Leu	His	Gln	Asp 310	Trp	Leu	Asn	Gly	Lys 315	Glu	Tyr	Lys	Cys	Lys 320
30	Val	Ser	Asn	Lys	Ala 325	Leu	Pro	Ala	Pro	Ile 330	Glu	Lys	Thr	Ile	Ser 335	Lys
25	Ala	Lys	Gly	Gln 340	Pro	Ala	Arg	Tyr	Glu 345	Pro	Gln	Val	Tyr	Thr 350	Leu	Pro
35	Pro	Ser	Arg 355	Asp	Glu	Leu	Thr	Lys 360	Asn	Gln	Val	Ser	Leu 365	Thr	Cys	Leu
40	Val	Lys 370	Gly	Phe	Tyr	Pro	Ser 375	Asp	Ile	Ala	Val	Glu 380	Trp	Glu	Ser	Asn
45	Gly 385	Gln	Pro	Glu	Asn	Asn 390	Tyr	Lys	Thr	Thr	Pro 395	Pro	Val	Leu	Asp	Ser 400
50	Asp	Gly	Ser	Phe	Phe 405	Leu	Tyr	Ser	Lys	Leu 410	Thr	Val	Asp	Lys	Ser 415	Arg
55	Trp	Gln	Gln	Gly 420	Asn	Val	Phe	Ser	Cys 425	Ser	Val	Met	His	Glu 430	Ala	Leu
60	His	Asn	His 435	Tyr	Thr	Gln	Lys	Ser 440	Leu	Ser	Leu	Ser	Pro 445	Gly	Lys	
65	<210> 37 <211> 112 <212> PRT <213> Secu	encia /	Artificia	al												

	<220 <223		ripciór	n de la	secuer	ncia Ari	tificial:	Polipé	otido S	intético)						
5	<400	> 37															
		Asp 1	Val	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
10		Glu	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Leu 30	His	Ser
15		Asn	Gly	Asn 35	Thr	Tyr	Leu		Trp	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
20		Pro			Leu	Ile	Tyr	Lys		Ser	Asn	Arg			Gly	Val	Pro
0.5			50					55					60				
25		Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
30		Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Gly
35		Ser	Leu	Val	Pro 100	Leu	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys
40		> 123 > PRT	encia i	Artificia	al												
45	<220 <223		ripciór	n de la	Secue	ncia Ar	tificial:	Polipé	ptido S	Sintétic	0						
	<400>	> 38															
50																	
55																	
60																	
65																	

5	Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Ala 10	Leu	Val	Lys	Pro	Thr 15	Gln
40	Thr	Leu	Thr	Leu 20	Thr	Cys	Thr	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
10	Gly	Met	Gly 35	Val	Gly	Trp	Ile	Arg 40	Gln	Pro	Pro	Gly	Lys 45	Ala	Leu	Glu
15	Trp	Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Ser 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Gln	Val 80
25		Leu	Thr	Met	Thr		Met	Asp	Pro	Val		Thr	Ala	Thr	Tyr	
30					85	-				90				g	95	
35	Суз	Ala	Arg	Arg 100	Gln	Leu	Gly	Leu	Arg 105	Ser	Ile Z	Asp A		Met A 110	Asp T	yr
40	Trp	Gly	Gln 115	Gly	Thr	Thr	Val	Thr 120	Val	Ser	Ser					
	<210> 39 <211> 122 <212> PRT <213> Sec		Artifici	al												
45	<220> <223> Des	cripció	n de la	Secue	ncia Ar	tificial:	Polipé	ptido S	Sintético	0						
50	<400> 39															
55																
60																
65																

	Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Ala 10	Leu	Val	Lys	Pro	Thr 15	Gln
5	Thr	Leu	Thr	Leu 20	Thr	Cys	Thr	Leu	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
10	Gly	Met	Gly		Gly	Trp	Ile	Arq		Pro	Pro	Glv	Lvs		Leu	Glu
15	-		35		-	-		40				1	45			
	Trp	Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Ser 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Gln	Val 80
25	Val	Leu	Thr	Met	Thr 85	Asn	Met	Asp	Pro	Val 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
30	Cys	Ala	Arg	Arg 100	Gln	Leu	Gly	Leu	Arg 105	Ser	Ile	Asp	Ala	Met 110	Asp	Tyr
35			Gln 115	Gly	Thr	Thr	Val	Thr 120	Val	Ser						
40	<210> 40 <211> 13 <212> PF <213> Se	32 RT	ia Artifi	icial												
45	<220> <223> De	escripc	ión de	la Secı	uencia	Artificia	al: Poli _l	oéptido	Sintét	ico						
	<400> 40)														
50																
55																
60																
65																

5	Met 1	Lys	Leu	Pro	Val 5	Arg	Leu	Leu	Val	Leu 10	Met	Phe	Trp	Ile	Pro 15	Gly
40	Ser	Ser	Ser	Asp 20	Val	Met	Met	Thr	Gln 25	Thr	Pro	Leu	Ser	Leu 30	Pro	Val
10	Ser	Leu	Gly 35	Asp	Gln	Ala	Ser	Ile 40	Ser	Cys	Arg	Ser	Ser 45	Gln	Ser	Leu
15	Val	His 50	Ser	Asn	Gly	Asn	Thr 55	Tyr	Leu	Glu	Trp	Tyr 60	Met	Gln	Lys	Pro
20			Q -			_		,		_			_			•
25	65 65	Gln	Ser	Pro	Met	Leu 70	Leu	Ile	Tyr	Lys	Val 75	Ser	Asn	Arg	Phe	Ser 80
30	Gly	Val	Pro	Asp	Arg 85	Phe	Ser	Gly	Ser	Gly 90	Ser	Gly	Thr	Asp	Phe 95	Thr
35	Leu	Lys	Ile	Ser 100	Ser	Val	Glu	Ala	Glu 105	Asp	Leu	Gly	Val	Phe 110	Tyr	Cys
40	Phe	Gln	Gly 115	Ser	Arg	Val	Pro	Leu 120	Thr	Phe	Gly	Ala	Gly 125	Thr	Lys	Leu
	Glu	Leu 130	Lys	Arg												
45	<210> 41 <211> 142 <212> PR	T	A.com	-1												
50	<213> Sec <220> <223> Des				ncia Ar	tificial:	Polipép	otido Si	ntético							
55	<400> 41	·														
60																

	Met 1	. Asp	Arg	Leu	Thr 5	Ser	Ser	Phe	Leu	Leu 10	Leu	Ile	Val	Pro	Ala 15	Tyr
5	Val	l Leu	Ser		Val	Thr	Leu	Lys		Ser	Gly	Pro	Gly		Leu	Gln
10				20					25					30		
	Pro	Ser	Gln 35	Thr	Leu	Ser	Leu	Thr 40	Cys	Ser	Phe	Ser	Gly 45	Phe	Ser	Leu
15	Sei	Thr	Ser	Gly	Met	Gly	Val 55	Ser	Trp	Ile	Arg	Gln 60	Pro	Ser	Gly	Lys
20	Gl ₃ 65	y Leu	Glu	Trp	Leu	Ala 70	His	Ile	Tyr	Trp	Asp 75	Asp	Asp	Lys	Arg	Tyr 80
25	Ası	n Pro	Ser	Leu	Lys 85	Ser	Arg	Leu	Thr	Ile 90	Ser	Lys	Asp	Thr	Ser 95	Arg
30	Ası	n Gln	Val	Phe 100	Leu	Lys	Ile	Thr	Ser 105	Val	Asp	Thr	Thr	Asp 110	Thr	Ala
35	Thi	Tyr	Tyr 115	Cys	Thr	Arg	Ser	Ser 120	Gly	Ser	Ile	Val	Ile 125	Ala	Thr	Gly
40	Phe	Ala 130	Tyr	Trp	Gly	Gln	Gly 135	Thr	Leu	Val	Thr	Val 140	Ser	Ala		
45	<210> 42 <211> 128 <212> PRT <213> Secu		Artificial													
	<220> <223> Desc	cripción	de la S	Secuen	ıcia Arl	tificial:	Polipé	ptido S	Sintétic	0						
50	<400> 42															
55																
60																
65																

	Met 1	Asp	Phe	Gln	Val 5	Gln	Ile	Phe	Ser	Phe 10	Leu	Leu	Ile	Ser	Ala 15	Ser
5	Val	Ile	Ile	Ser 20	Arg	Gly	Gln	Ile	Val 25	Leu	Thr	Gln	Ser	Pro 30	Ala	Ile
10	Met	Ser	Ala 35	Ser	Pro	Gly	Glu	Lys 40	Val	Thr	Met	Thr	Cys 45	Ser	Ala	Ser
15	Ser	Ser 50	Val	Ser	Tyr	Met	His 55	Trp	Tyr	Gln	Gln	Lys 60	Ser	Gly	Thr	Ser
20	Pro 65	Lys	Arg	Trp	Ile	Tyr 70	Asp	Ser	Ser	Arg	Leu 75	Ala	Ser	Gly	Val	Pro 80
25	Ser	Arg	Phe	Ser	Gly 85	Gly	Gly	Ser	Gly	Thr 90	Ser	Tyr	Ser	Pro	Thr 95	Ile
30	Ser	Asn	Met	Glu 100	Ala	Glu	Asp	Ala	Ala 105	Thr	Tyr	Phe	Cys	Gln 110	Asn	Trp
35		Ser	Ser 115	Pro	Thr	Phe	Gly	Ala 120	Gly	Thr	Lys	Leu	Glu 125	Leu	Lys	Arg
40	<210> 43 <211> 138 <212> PR <213> Sec	Τ	a Artific	cial												
	<220> <223> Des	scripció	ón de la	a Secu	iencia .	Artificia	al: Poli	péptid	o Sinté	ético						
45	<400> 43															
50																
55																
60																
65																

	Ме 1	et G	Glu	Trp	Thr	Trp 5	Val	Phe	Leu	Phe	Leu 10	Leu	Ser	Val	Thr	Ala 15	Gly
5	Va	ıl F	lis	Ser	Gln 20	Val	Gln	Leu	Gln	Gln 25	Ser	Gly	Pro	Glu	Leu 30	Met	Lys
10	Pr	:0 0	Sly			Val	Lys	Ile			Lys	Ala	Thr	_		Thr	Phe
15	Se	r T	'hr	35 Ser	Trp	Tle	G111	Tro	40 Tle	Lvs	Gln	Ara	Pro	45 Glv	His	Glv	T.e.u
20			50	561		110	O14	55		270	0111	1119	60	Cly	1140		100
	G1 65		rp	Ile	Gly	Glu	Val 70	Leu	Pro	Gly	Ser	Gly 75	Lys	Ser	Asn	His	Asn 80
25	Al	a A	sn	Phe	Lys	Gly 85	Arg	Ala	Thr	Phe	Thr 90	Ala	Asp	Thr	Ala	Ser 95	Asn
30	Th	r A	la	Tyr	Met 100	Gln	Leu	Ser	Ser	Leu 105	Thr	Ser	Glu	Asp	Ser 110	Ala	Val
35	Ту	r T	yr	Cys 115	Ala	Arg	Glu	Gly	Ser 120	Asn	Asn	Asn	Ala	Leu 125	Ala	Tyr	Trp
40	Gl		1n 30	Gly	Thr	Leu	Val	Thr 135	Val	Ser	Ala						
45	<210> 4 <211> 1 <212> 1 <213> 3	108 PRT	encia	a Artific	cial												
50	<220> <223>, <400>		cripci	ón de l	a Secı	ıencia	Artificia	al: Poli _l	oéptido	Sintét	iico						
55		Asp 1	Il	e Glı	n Met	Thr 5	Gln	. Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
60		Asp	Ar	g Vai	1 Th: 20	r Ile	e Thr	Cys	Ser	Ala 25	Ser	Gln	Gly	Ile	Ser 30	Asn	Tyr

		Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
5		Tyr	Tyr 50	Thr	Ser	Ser	Leu	His 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
10		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Phe	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
15		Glu	Asp	Ile	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Arg	Lys	Leu	Pro 95	Tyr
20		Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg				
25	<210> <211> <212> <213>	113 PRT	ncia A	rtificial													
30	<220> <223> <400>		pción (de la S	ecuen	ıcia Ar	tificial:	Polipé	eptido (Sintétio	co						
35			ı Val	l Gln	ı Leı	ı Val 5	l Glu	ı Sei	Gly	gly	7 Gly 10	, Leu	ı Val	. Glr	n Pro	Gly 15	Gly
		Sei	r Leu	ı Arç	Leu 20	ı Ser	c Cys	s Alá	a Ala	Ser 25	Gly	7 Ph∈	e Asp	Phe	Ser 30	: Arg	Tyr
40		Trŗ) Met	Asn 35	Trp	o Val	Arg	g Glr	1 Ala 40	ı Pro	Gly	, Lys	s Gly	Leu 45	ı Glü	Trp	Val
45		Ser	Glu 50	ı Ile	. Asr	n Pro) Asp	Ser 55	Ser	Thr	: Ile	e Asr	Tyr 60	Thr	Pro	Ser	Leu
50		Lys 65	s Asp	Arg	Phe	e Thr	: Ile 70	e Ser	: Arg	ı Asp) Asn	Ala 75	Lys	Asn	Thr	Leu	Tyr 80
55		Leu	ı Gln	n Met	Asn	ı Ser 85	: Leu	ı Arg	, Ala	ı Glu	ı Asp 90) Thr	` Ala	Val	Tyr	Tyr 95	Cys
60		Ala	ı Arg	g Gln	Met 100		Tyr	Trp	Gly	Gln 105		Thr	Thr	Leu	110		Ser
65		Ser	:													•	

5	<210> 46 <211> 11: <212> PR <213> Se	3 RT	ia Artii	ficial													
5	<220> <223> De	scripc	ión de	la Se	cuenci	a Artif	icial: F	Polipép	otido S	intético)						
10	<400> 46				_			_		_		_			_		~-
		GIN 1	vai	GIN	ьeu	GIN 5	GIU	ser	. GIĀ	Pro	Gly 10	Leu	vai	гàг	Pro	ser 15	Glu
15		Thr	Leu	Ser	Leu 20	Thr	Cys	Thr	Val	Ser 25	Gly	Phe	Asp	Phe	Ser 30	Arg	Tyr
20		Trp	Met	Asn 35	Trp	Ile	Arg	Gln	Pro 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Ile
25		_	Glu 50	Ile	Asn	Pro	Asp	Ser 55	Ser	Thr	Ile	Asn	Tyr 60	Thr	Pro	Ser	Leu
30		Lys 65	Asp	Arg	Val	Thr	Ile 70	Ser	Lys	Asp	Thr	Ser 75	Lys	Asn	Gln	Phe	Ser 80
35	<u>:</u>	Leu	Lys	Leu	Ser	Ser 85	Val	Thr	Ala	Ala	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
40	ì	Ala	Arg	Gln	Met 100	Gly	Tyr	Trp	Gly	Gln 105	Gly	Thr	Leu	Val	Thr 110	Val	Ser
		Ser															
45	<210> 47 <211> 24 <212> PR <213> Se	1 RT	ia Artii	ficial													
50	<220> <223> De	scripc	ión de	la Se	cuenci	a Artif	icial: F	Polipép	otido S	intético	o						
55	<400> 47 Met 1		o Me	t Aı	ng V	al P	ro A	Ala	Gln	Leu	Leu 10	Gly	Leu	Leu	Met	Leu 15	Trp
60	Val	. Sei	r Gl	у Se 20		er G	ly A	Asp	Val	Val 25	Met	Thr	Gln	Ser	Pro 30	Leu	Ser
65	Leu	Pro	o Va 35		nr P	ro G	ly (Pro 40	Ala	Ser	Ile	Ser	Cys 45	Lys	Ser	Ser

E	Gln	Ser 50	Leu	Leu	Asp	Ser	Asp 55	Gly	Lys	Thr	Tyr	Leu 60	Asn	Trp	Leu	Leu
5	Gln 65	Lys	Pro	Gly	Gln	Ser 70	Pro	Gln	Arg	Leu	Ile 75	Tyr	Leu	Val	Ser	Lys 80
10	Leu	Asp	Ser	Gly	Val 85	Pro	Asp	Arg	Phe	Ser 90	Gly	Ser	Gly	Ser	Gly 95	Thr
15	Asp	Phe	Thr	Leu 100	Lys	ılle	Ser	Arg	Val 105	Glu	Ala	Glu	Asp	Val 110	Gly	Val
20	Tyr	Tyr	Cys 115	Trp	Gln	Gly	Thr	His 120	Phe	Pro	Arg	Thr	Phe 125	Gly	Gln	Gly
25	Thr	Lys 130	Val	Glu	Ile	Lys	Arg 135	Thr	Val	Ala	Ala	Pro 140	Ser	Val	Phe	Ile
30	Phe 145		Pro	Ser	Asp	Glu 150		Leu	Lys		Gly 155		Ala	Ser	Val	Val 160
35		Leu	Leu	Asn	Asn		Tyr	Pro	Arg	Glu		Lys	Val	Gln		
40	Val	Asp	Asn		165 Leu	Gln	Ser	Gly		170 Ser	Gln	Glu	Ser		175 Thr	Glu
45	Gln	Asp	Ser	180 Lvs	Asp	Ser	Thr	Tvr	185 Ser	Leu	Ser	Ser	Thr	190 Leu	Thr	Leu
50			195					200					205			
55		210		-	Tyr		215		-		_	220	-			
	His 225	Gln	Gly	Leu	Ser	Ser 230	Pro	Val	Thr	Lys	Ser 235	Phe	Asn	Arg	Gly	Glu 240
60	Cys															
65	<210> 48 <211> 219 <212> PR <213> Sec	T	a Artific	ial												

	<220> <223> Desc	cripció	n de la	a Secu	encia	Artifici	al: Po	lipépti	do Sin	tético						
5	<400> 48															
	Asp 1	Val	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
10	Glu	Pro	Ala	Ser 20	Ile	Ser	Cys	Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Asp	Ser
15	Asp	Gly	Lys 35	Thr	Tyr	Leu	Asn	Trp 40	Leu	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
20	Pro	Gln 50	Arg	Leu	Ile	Tyr	Leu 55	Val	Ser	Lys	Leu	Asp 60	Ser	Gly	Val	Pro
25	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
30	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Trp	Gln 95	Gly
35	Thr	His	Phe	Pro 100	Arg	Thr	Phe	Gly	Gln 105	Gly	Thr	Lys	Val	Glu 110	Ile	Lys
40	Arg	Thr	Val 115	Ala	Ala	Pro	Ser	Val 120	Phe	Ile	Phe	Pro	Pro 125	Ser	Asp	Glu
	Gln	Leu 130	Lys	Ser	Gly	Thr	Ala 135	Ser	Val	Val	Cys	Leu 140	Leu	Asn	Asn	Phe
45	Tyr 145	Pro	Arg	Glu	Ala	Lys 150	Val	Gln	Trp	Lys	Val 155	Asp	Asn	Ala	Leu	Gln 160
50	Ser	Gly	Asn	Ser	Gln 165	Glu	Ser	Val	Thr	Glu 170	Gln	Asp	Ser	Lys	Asp 175	Ser
55	Thr	Tyr	Ser	Leu 180	Ser	Ser	Thr	Leu	Thr 185	Leu	Ser	Lys	Ala	Asp 190	Tyr	Glu
60	Lys	His	Lys 195	Val	Tyr	Ala	Cys	Glu 200	Val	Thr	His	Gln	Gly 205	Leu	Ser	Ser
65	Pro	Val 210	Thr	Lys	Ser	Phe	Asn 215	Arg	Gly	Glu	Cys					

E	<210> 49 <211> 726 <212> ADN <213> Secuencia	Artificial					
5	<220> <223> Descripció	n de la Secuencia	a Artificial: Polinuc	leótido Sintético			
10	<400> 49						
10	atggacatgc	gcgtgcccgc	ccagctgctg	ggcctgctga	tgctgtgggt	gtccggctcc	60
	tccggcgacg	tggtgatgac	ccagtccccc	ctgtccctgc	ccgtgacccc	cggcgagccc	120
15	gcctccatct	cctgcaagtc	ctcccagtcc	ctgctggact	ccgacggcaa	gacctacctg	180
	aactggctgc	tgcagaagcc	cggccagtcc	ccccagcgcc	tgatctacct	ggtgtccaag	240
20	ctggactccg	gcgtgcccga	ccgcttctcc	ggctccggct	ccggcaccga	cttcaccctg	300
	aagatctccc	gcgtggaggc	cgaggacgtg	ggcgtgtact	actgctggca	gggcacccac	360
25	ttcccccgca	ccttcggcca	gggcaccaag	gtggagatca	agcgtactgt	ggctgcacca	420
	tctgtcttca	tcttcccgcc	atctgatgag	cagttgaaat	ctggaactgc	ctctgttgtg	480
30	tgcctgctga	ataacttcta	tcccagagag	gccaaagtac	agtggaaggt	ggataacgcc	540
	ctccaatcgg	gtaactccca	ggagagtgtc	acagagcagg	acagcaagga	cagcacctac	600
35	agcctcagca	gcaccctgac	gctgagcaaa	gcagactacg	agaaacacaa	agtctacgcc	660
00	tgcgaagtca	cccatcaggg	cctgagctcg	cccgtcacaa	agagcttcaa	caggggagag	720
40	tgttag						726
40	<210> 50 <211> 330 <212> PRT <213> Homo sap	iens					
45	<400> 50						
50							
55							

	Ala 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Ser	Ser 15	Lys
5	Ser	Thr	Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
10	Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
15	Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
20	Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
25	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys
30																
35																
40																
45																
50																
55																
60																
65																

	10				85					90					95	
5	Lys	Val	Glu	Pro 100	Lys	Ser	Cys	Asp	Lys 105	Thr	His	Thr	Cys	Pro 110	Pro	Cys
10	Pro	Ala	Pro 115	Glu	Ala	Leu	Gly	Ala 120	Pro	Ser	Val	Phe	Leu 125	Phe	Pro	Pro
15	Lys	Pro 130	Lys	Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Cys
20	Val 145	Val	Val	Asp	Val	Ser 150	His	Glu	Asp	Pro	Glu 155	Val	Lys	Phe	Asn	Trp 160
	Tyr	Val	Asp	Gly	Val 165	Glu	Val	His	Asn	Ala 170	Lys	Thr	Lys	Pro	Arg 175	Glu
25	Glu	Gln	Tyr	Asn 180	Ser	Thr	Tyr	Arg	Val 185	Val	Ser	Val	Leu	Thr 190	Val	Leu
30	His	Gln	Asp 195	Trp	Leu	Asn	Gly	Lys 200	Glu	Tyr	Lys	Cys	Lys 205	Val	Ser	Asn
35	Lys	Ala 210	Leu	Pro	Ala	Pro	Ile 215	Glu	Lys	Thr	Ile	Ser 220	Lys	Ala	Lys	Gly
40	Gln 225	Pro	Arg	Glu	Pro	Gln 230	Val	Tyr	Thr	Leu	Pro 235	Pro	Ser	Arg	Glu	Glu 240
45	Met	Thr	Lys	Asn	Gln 245	Val	Ser	Leu	Thr	Cys 250	Leu	Val	Lys	Gly	Phe 255	Tyr
	Pro	Ser	Asp	Ile 260	Ala	Val	Glu	Trp	Glu 265	Ser	Asn	Gly	Gln	Pro 270	Glu	Asn
50	Asn	Tyr	Lys 275	Thr	Thr	Pro	Pro	Val 280	Leu	Asp	Ser	Asp	Gly 285	Ser	Phe	Phe
55	Leu	Tyr 290	Ser	Lys	Leu	Thr	Val 295	Asp	Lys	Ser	Arg	Trp 300	Gln	Gln	Gly	Asn
60	Val 305	Phe	Ser	Cys	Ser	Val 310	Met	His	Glu	Ala	Leu 315	His	Asn	His	Tyr	Thr 320
65	Gln	Lys	Ser	Leu	Ser 325	Leu	Ser	Pro	Gly	Lys 330						

5	<210> 51 <211> 329 <212> PRT <213> Homo s	sapiens	3													
J	<400> 51															
	Ala 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Ser	Ser 15	Lys
10																
	Ser	Thr	Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
15	Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
20	Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
25	Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
30	Tyr	Ile	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
35	Lys	Val	Glu	Pro 100	Lys	Ser	Cys	Asp	Lys 105	Thr	His	Thr	Cys	Pro 110	Pro	Cys
40	Pro	Ala	Pro 115	Glu	Ala	Leu	Gly	Ala 120	Pro	Ser	Val	Phe	Leu 125	Phe	Pro	Pro
45	Lys	Pro 130	Lys	Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Cys
40	Val 145	Val	Val	Asp	Val	Ser 150	His	Glu	Asp	Pro	Glu 155	Val	Lys	Phe	Asn	Trp 160
50	Tyr	Val	Asp	Gly	Val 165	Glu	Val	His	Asn	Ala 170	Lys	Thr	Lys	Pro	Arg 175	Glu
55	Glu	Gln	Tyr	Asn 180	Ser	Thr	Tyr	Arg	Val 185	Val	Ser	Val	Leu	Thr 190	Val	Leu
60	His	Gln	Asp 195	Trp	Leu	Asn	Gly	Lys 200	Glu	Tyr	Lys	Cys	Lys 205	Val	Ser	Asn
65	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly

		2	10					215					220)			
5	G1 22		ro P	Arg	Glu	Pro	Gln 230	Val	Tyr	Thr	Leu	Pro 235	Pro	se.	r Ar	g Gl	u Glu 240
10	M∈	et Tl	nr I	Lys .	Asn	Gln 245	Val	Ser	Leu	Thr	Cys 250	Leu	Val	. Ly	s Gl	y Ph 25	ne Tyr 55
15	Pr	o Se	er A		Ile 260	Ala	Val	Glu	Trp	Glu 265	Ser	Asn	Gly	Gl:	n Pr 27		u Asn
20	As	sn Ty	_	Lys 275	Thr	Thr	Pro	Pro	Val 280	Leu	Asp	Ser	Asp	0 G1 ₃		r Ph	ie Phe
25	Le		yr S 90	Ger :	Lys	Leu	Thr	Val 295	Asp	Lys	Ser	Arg	Trp 300		n Gl	n Gl	y Asn
30	Va 30		ne S	Ser (Cys	Ser	Val 310	Met	His	Glu	Ala	Leu 315	His	a Ası	n Hi	s Ty	r Thr 320
	G1	n Ly	ys S	Ger :	Leu	Ser 325	Leu	Ser	Pro	Gly							
35	<210> 52 <211> 468 <212> PRT <213> Sec	Γ	a Artif	ficial													
40	<220> <223> Des	cripcio	ón de	la Se	ecuenc	cia Arti	ficial:	Polipé	ptido S	Sintétio	co						
45	<400> 52	Met 1	Glu	ı Ph∈	e Gly	y Leu 5	ı Ser	Trp	Leu	Phe	Leu 10	Val	Ala	Ile	Leu	Lys 15	Gly
50		Val	Gln	Cys	5 Glu 20	ı Val	. Gln	Leu	Leu	Glu 25	Ser	Gly	Gly	Gly	Leu 30	Val	Gln
55		Pro	Gly	Gl _y 35	y Sei	r Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe
		Ser	Asn 50	Туг	c Gly	y Met	Ser	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu
60		Glu 65	Trp	Va]	L Alʾā	a Ser	11e 70	Arg	Ser	Gly	Gly	Gly 75	Arg	Thr	Tyr	Tyr	Ser 80
65		Asp	Asn	. Val	L Lys	s Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn

					85					90					95	
5	Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val
10	Tyr	Tyr	Cys 115	Val	Arg	Tyr	Asp	His 120	Tyr	Ser	Gly	Ser	Ser 125	Asp	Tyr	Trp
15	Gly	Gln 130	Gly	Thr	Leu	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	Lys	Gly	Pro
20	Ser 145		Phe	Pro	Leu	Ala 150	Pro	Ser	Ser	Lys	Ser 155	Thr	Ser	Gly	Gly	Thr 160
25	Ala	Ala	Leu	Gly	Cys 165	Leu	Val	Lys	Asp	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
20	Val	Ser	Trp	Asn 180	Ser	Gly	Ala	Leu	Thr 185	Ser	Gly	,Val	His	Thr 190	Phe	Pro
30	Ala	Val	Leu 195	Gln	Ser	Ser	Gly	Leu 200	Tyr	Ser	Leu	Ser	Ser 205	Val	Val	Thr
35	Val	Pro 210	Ser	Ser	Ser	Leu	Gly 215	Thr	Gln	Thr	Tyr	Ile 220	Cys	Asn	Val	Asn
40	His 225	Lys	Pro	Ser	Asn	Thr 230	Lys	Val	Asp	Lys	Lys 235	Val	Glu	Pro	Lys	Ser 240
45	Cys	Asp	Lys	Thr						-		Ala			Ala 255	
50	Gly	Ala	Pro	Ser 260	Val	Phe	Leu	Phe	Pro 265	Pro	Lys	Pro	Lys	Asp 270	Thr	Leu
50	Met	Ile	Ser 275	Arg	Thr	Pro	Glu	Val 280	Thr	Cys	Val	Val	Val 285	Asp	Val	Ser
55	His	Glu 290	Asp	Pro	Glu	Val	Lys 295	Phe	Asn	Trp	Tyr	Val 300	Asp	Gly	Val	Glu
60	Val 305	His	Asn	Ala	Lys	Thr 310	Lys	Pro	Arg	Glu	Glu 315	Gln	Tyr	Asn	Ser	Thr 320
65	Tyr	Arg	Val	Val	Ser 325	Val	Leu	Thr	Val	Leu 330	His	Gln	Aṣp	Trp	Leu 335	Asn

	Gly	Lys	Glu	Tyr 340	Lys	Cys	Lys	Val	Ser 345		Lys	s Ala	Leu	Pro 350	Ala	Pro
5	Ile	Glu	Lys 355	Thr	Ile	Ser	Lys	Ala 360		Gly	Glr	ı Pro	Arg 365		Pro	Gln
10	Val	Tyr 370	Thr	Leu	Pro	Pro	Ser 375	Arg	Glu	Glu	Met	Thr 380	_	Asn	Gln	Val
15	Ser 385	Leu	Thr	Cys	Leu	Val 390	Lys	Gly	Phe	Tyr	Pro 395	Ser	Asp	Ile	Ala	Val 400
20		Trp	.Glu	Ser	Asn 405	Gly	Gln	Pro	Glu	Asn 410		Tyr	Lys	Thr	Thr 415	
25	Pro	Val	Leu	~		Asp	Gly	Ser		Phe		Tyr	Ser	-		Thr
20	Val	Asp		420 Ser	Arg	Trp	Gln		_		Val	Phe		430 Cys	Ser	Val
30	Met	His	435 Glu	Ala	Leu	His	Asn	440 His		Thr	Gln	Lys	445 Ser	Leu	Ser	Leu
35	Ser	450 Pro	Glv	Lvs			455					460				
40	465 <210> 53 <211> 467	110	Cly	цуб												
45	<212> PRT <213> Secuel	ncia Aı	rtificial													
	<223> Descri	pción d	de la S	ecuen	cia Art	ificial:	Polipé	ptido	Sintétio	00						
50	<400> 53 Met 1	Glu	Phe	Gly	Leu 5	Ser	Trp	Leu		Leu \ 10	Val A	Ala I	le L	eu Ly 15		У
55	Val	Gln	Cys	Glu 20	Val	Gln	Leu	Leu	Glu 25	Ser (Gly (Gly G	ly Le		1 G1	n
60	Pro	Gly	Gly 35	Ser	Leu	Arg	Leu	Ser 40	Cys .	Ala A	Ala S	Ser G 4	ly Pl 5	he Th	ır Ph	e
65	Ser	Asn 50	Tyr	Gly	Met	Ser	Trp 55	Val	Arg	Gln <i>I</i>		Pro G 50	ly Ly	ys Gl	y Le	u

	Glu 65	Trp	Val	Ala	Ser	Ile 70	Arg	Ser	Gly	Gly	Gly 75	Arg	Thr	Tyr	Tyr	Ser 80
5						, 0					, 5					00
3	Asp	Asn	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn
10	Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val
15	Tyr	Tyr	Cys 115	Val	Arg	Tyr	Asp	His 120		Ser	Gly	Ser	Ser 125	Asp	Tyr	Trp
20	Gly	Gln 130	Gly	Thr	Leu	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	Lys	Gly	Pro
25	Ser 145	Val	Phe	Pro	Leu	Ala 150	Pro	Ser	Ser	Lys	Ser 155	Thr	Ser	Gly	Gly	Thr 160
30	Ala	Ala	Leu	Gly	Cys 165	Lėu	Val	Lys	Asp	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
35	Val	Ser	Trp	Asn 180	Ser	Gly	Ala	Leu	Thr 185	Ser	Gly	Val	His	Thr 190	Phe	Pro
	Ala	Val	Leu 195	Gln	Ser	Ser	Gly	Leu 200	Tyr	Ser	Leu	Ser	Ser 205	Val	Val	Thr
40	Val	Pro 210	Ser	Ser	Ser	Leu	Gly 215	Thr	Gln	Thr	Tyr	Ile 220	Cys	Asn	Val	Asn
45	His 225	Lys	Pro	Ser	Asn	Thr 230	Lys	Val	Asp	Lys	Lys 235	Val	Glu	Pro	Lys	Ser 240
50	Cys	Asp	Lys	Thr	His 245	Thr	Cys	Pro	Pro	Cys 250	Pro	Ala	Pro	Glu	Ala 255	Leu
55	Gly	Ala	Pro	Ser 260	Val	Phe	Leu	Phe	Pro 265	Pro	Lys	Pro	Lys	Asp 270	Thr	Leu
60	Met	Ile	Ser 275	Arg	Thr	Pro	Glu	Val 280	Thr	Cys	Val	Val	Val 285	Asp	Val	Ser
65	His	Glu 290	Asp	Pro	Glu	Val	Lys 295	Phe	Asn	Trp	Tyr	Val 300	Asp	Gly	Val	Glu

	Va: 30:	His 5	Asn	Ala	Lys	Thr 310		Pro	Arg	ß Glu	Glu 315	Gln	Tyr	Asn	Ser	Thr 320
5	Тул	r Arg	Val	Val	Ser 325		Leu	Thr	· Val	. Leu 330		Gln	Asp	Trp	Leu 335	
10	Gly	, Lys	Glu	Tyr 340	Lys	Cys	Lys	Val	Ser 345		Lys	Ala	Leu	Pro 350		Pro
15	Ile	e Glu	Lys 355	Thr	Ile	Ser	Lys	Ala 360	_	Gly	Gln	Pro	Arg 365		Pro	Gln
20	Val	. Tyr 370	Thr	Leu	Pro	Pro	Ser 375	Arg	Glu	Glu	Met	Thr 380		Asn	Gln	Val
25	Se1 385	Leu i	Thr	Cys	Leu	Val 390	_	Gly	Phe	Tyr	Pro 395	Ser	Asp	Íle	Ala	Val 400
30	Glu	ı Trp	Glu	Ser	Asn 405	Gly	Gln	Pro	Glu	Asn 410	Asn	Tyr	Lys	Thr	Thr 415	Pro
35	Pro) Val	Leu	Asp 420	Ser	Asp	Gly	Ser	Phe 425		Leu	Tyr	Ser	Lys 430	Leu	Thr
40	Val	. Asp	Lys 435	Ser	Arg	Trp	Gln	Gln 440	_	Asn	Val	Phe	Ser 445	_	Ser	Val
45		His 450							_	Thr		_		Leu	Ser	Leu
	Ser 465	Pro	Gly													
50	<210> 54 <211> 449 <212> PRT <213> Security		rtificial													
55	<220> <223> Desc	ripción	de la S	Secuen	cia Ar	tificial:	Polipé	ptido	Sintétio	co						
	<400> 54															
60	Glu 1	Val	Gln :		Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu '	Val	Gln		Gly 15	Gly
65	Ser	Leu .		Leu : 20	Ser	Cys	Ala .		Ser 25	Gly :	Phe '	Thr	Phe	Ser 30	Asn	Tyr

	Gly	Met	Ser 35	Trp	Val	Arg	Gĺn	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
5	Ala	Ser 50	Ile	Arg	Ser	Gly	Gly 55	Gly	Arg	Thr	Tyr	Tyr 60	Ser	Asp	Asn	Val
10	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
15	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
20	Val	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly
25	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
30	Pro	Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
	Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
35	Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
40	Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
45	Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
50	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Lys	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
55	Thr 225	His	Thr	Cys	Pro	Pro 230	Суз	Pro	Ala	Pro	Glu 235	Ala	Leu	Gly	Ala	Pro 240
	Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
60	Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
65																

	Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
5	Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
10	Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
15	Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
20	Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
25	Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
30	Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu
35	Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400
40	Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys
45	Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu
50	Ala	Leu	His 435	Asn	His	Tyr	Thr	Gln 440	Lys	Ser	Leu	Ser	Leu 445	Ser	Pro	Gly
50	Lys															
55	<210> 55 <211> 448 <212> PRT <213> Secue	encia A	Artificia	I												
60	<220> <223> Descr	ripción	de la S	Secuer	ncia Ar	tificial:	Polipe	éptido	Sintéti	со						
	<400> 55	. 1 . 0 .	1 - 7	-		17	~ -	<i>~</i> 1	01	<i>α</i> 2	.	T.7 .7	<i>C</i> 3	- 7	- 03	03
65	Glu Va 1	a⊥ Gl	ın L	eu L 5		ilu S	ser	Gly	Gly	Gly 10	Leu	Val	. Glı	n Pr	o Gl 15	

	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
5	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
10	Ala	Ser 50	Ile	Arg	Ser	Gly	Gly 55	Gly	Arg	Thr	Tyr	Tyr 60	Ser	Asp	Asn	Val
15	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
20	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25	Val	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly
	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
30		Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
35	Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
40	Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
45	Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
50	Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
55	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Lys	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
30	Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Ala	Leu	Gly	Ala	Pro 240
60	Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
65	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	His	Glu	Asp

				260					265					270		
5	Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
10	Ala	Lys 290		Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
15	Va] 305	. Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
20	Туг	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
25	Thr	lle	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
	Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
30	Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu
35	Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400
40	Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys
45	Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu
50	Ala	Leu	His 435	Asn	His	Tyr	Thr	Gln 440	Lys	Ser	Leu	Ser	Leu 445	Ser	Pro	Gly
55	<210> 56 <211> 327 <212> PRT <213> Homo s	apiens														
	<400> 56															
60	Ala 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Cys	Ser 15	Arg
65	Ser	Thr	Ser	Glu 20	Ser	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr

	Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
5	Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
10	Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Lys	Thr 80
15	Tyr	Thr	Cys	Asn	Val 85	Asp	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
20	Arg	Val	Glu	Ser 100	Lys	Tyr	Gly	Pro	Pro 105	Cys	Pro	Pro	Cys	Pro 110	Ala	Pro
0.5	Glu	Phe	Leu 115	Gly	Gly	Pro	Ser	Val 120	Phe	Leu	Phe	Pro	Pro 125	Lys	Pro	Lys
25	Asp	Thr 130	Leu	Met	Ile	Ser	Arg 135	Thr	Pro	Glu	Val	Thr 140	Cys	Val	Val	Val
30	Asp 145	Val	Ser	Gln	Glu	Asp 150	Pro	Glu	Val	Gln	Phe 155	Asn	Trp	Tyr	Val	Asp 160
35	Gly	Val	Glu	Val	His 165	Asn	Ala	Lys	Thr	Lys 170	Pro	Arg	Glu	Glu	Gln 175	Phe
40	Asn	Ser	Thr	Tyr 180	Arg	Val	Val	Ser	Val 185	Leu	Thr	Val	Leu	His 190	Gln	Asp
45	Trp	Leu	Asn 195	Gly	Lys	Glu	Tyr	Lys 200	Cys	Lys	Val	Ser	Asn 205	Lys	Gly	Leu
	Pro	Ser 210	Ser	Ile	Glu	Lys	Thr 215	Ile	Ser	Lys	Ala	Lys 220	Gly	Gln	Pro	Arg
50	Glu 225	Pro	Gln	Val	Tyr	Thr 230	Leu	Pro	Pro	Ser	Gln 235	Glu	Glu	Met	Thṛ	Lys 240
55	Asn	Gln	Val	Ser	Leu 245	Thr	Cys	Leu	Val	Lys 250	Gly	Phe	Tyr	Pro	Ser 255	Asp
60	Ile	Ala	Val	Glu 260	Trp	Glu	Ser	Asn	Gly 265	Gln	Pro	Glu	Asn	Asn 270	Tyr	Lys
65	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr	Ser

				275	ı				280					285			
5	A	arg	Leu 290		Val	Asp	Lys	Ser 295	Arg	Trp	Gln	Glu	Gly 300	Asn	Val	Phe	Ser
10		Cys 805	Ser	Val	Met	His	Glu 310	Ala	Leu	His	Asn	His 315	Tyr	Thr	Gln	_	Ser 320
15	<210> 57 <211> 326 <212> PRT <213> Homo				Ser	Leu 325	Gly	Lys									
20	<400> 57																
25	A1 1	a i	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Cys	Ser 15	Arg
30	Se	r :	Thr	Ser	Glu 20	Ser	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
	Ph	.e I		Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
35	Gl		Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
40	Le 65		Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Lys	Thr 80
45	Ту	r:	Thr	Cys	Asn	Val 85	Asp	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
50	Ar	g V	Val	Glu	Ser 100	Lys	Tyr	Gly	Pro	Pro 105	Cys	Pro	Pro	Суѕ	Pro 110	Ala	Pro
55	G1	u E		Leu 115	Gly	Gly	Pro	Ser	Val 120	Phe	Leu	Phe	Pro	Pro 125	Lys	Pro	Lys
60	As		Thr :	Leu	Met	Ile	Ser	Arg 135	Thr	Pro	Glu	Val	Thr 140	Cys	Val	Val	Val
65	As ₁		Jal :	Ser	Gln		Asp 150	Pro	Glu	Val	Gln	Phe 155	Asn	Trp	Tyr	Val	Asp 160

	Gl	y Val	Glu	Val	His 165	Asn	Ala	Lys	Thr	Lys 170	Pro	Arg	Glu	Glu	Gln 175	Phe
5	Ası	n Ser	Thr	Tyr 180	Arg	Val	Val	Ser	Val 185	Leu	Thr	Val	Leu	His 190	Gln	Asp
10	Tr) Leu	Asn 195	Gly	Lys	Glu	Tyr	Lys 200	Cys	Lys	Val	Ser	Asn 205	Lys	Gly	Leu
15	Pro	Ser 210	Ser	Ile	Glu	Lys	Thr 215	Ile	Ser	Lys	Ala	Lys 220	Gly	Gln	Pro	Arg
20	G1: 225	ı Pro	Gln	Val	Tyr	Thr 230	Leu	Pro	Pro	Ser	Gln 235	Glu	Glu	Met	Thr	Lys 240
25	Asr	n Gln	Val	Ser	Leu 245	Thr	Cys	Leu	Val	Lys 250	Gly	Phe	Tyr	Pro	Ser 255	Asp
30	Ile	e Ala	Val	Glu 260	Trp	Glu	Ser	Asn	Gly 265	Gln	Pro	Glu	Asn	Asn 270	Tyr	Lys
35	Thr	Thr	Pro 275	Pro	Val	Leu	Asp	Ser 280	Asp	Gly	Ser	Phe	Phe 285	Leu	Tyr	Ser
40	Arg	1 Leu 290	Thr	Val	Asp	Lys	Ser 295	Arg	Trp	Gln	Glu	Gly 300	Asn	Val	Phe	Ser
45	Cys 305	Ser	Val	Met		Glu 310		Leu	His		His 315	_	Thr	Gln	Lys	Ser 320
	Leu	Ser	Leu	Ser	Leu 325	Gly										
50	<210> 58 <211> 465 <212> PRT <213> Secu	encia A	ırtificial													
55	<220> <223> Desc	ripción	de la S	ecuen	cia Art	ificial:	Polipé	ptido (Sintétio	ю						
	<400> 58															
60	M 1	et Gl	u Phe	e Gly	Leu 5	Ser	Trp	Leu	Phe	Leu 10	Val A	Ala I	le L	eu Ly 1		-У
65	V	al Gl	n Cys	3 Glu 20	ı Val	Gln	Leu	Leu	Glu 25	Ser	Gly (Gly G	ly L 3		al Gl	.n

	Pro	Gly	Gly 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe
5	Ser	Asn 50	Tyr	Gly	Met	Ser	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu
10	Glu 65	Trp	Val	Ala	Ser	Ile 70	Arg	Ser	Gly	Gly	Gly 75	Arg	Thr	Tyr	Tyr	Ser 80
15	Asp	Asn	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	
20	Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val
	Tyr	Tyr	Cys 115	Val	Arg	Tyr	Asp	His 120	Tyr	Ser	Gly	Ser	Ser 125	Asp	Tyr	Trp
25	Gly	Gln 130	Gly	Thr	Leu	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	Lys	Gly	Pro
30	Ser 145	Val	Phe	Pro	Leu	Ala 150	Pro	Cys	Ser	Arg	Ser 155	Thr	Ser	Glu	Ser	Thr 160
35	Ala	Ala	Leu	Gly	Cys 165	Leu	Val	Lys	Asp	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
40	Val	Ser	Trp	Asn 180	Ser	Gly	Ala	Leu	Thr 185	Ser	Gly	Val	His	Thr 190	Phe	Pro
45	Ala	Val	Leu 195	Gln	Ser	Ser	_		Tyr				Ser 205	Val	Val	Thr
45	Val	Pro 210	Ser	Ser	Ser	Leu	Gly 215	Thr	Lys	Thr	Tyr	Thr 220	Cys	Asn	Val	Asp
50	His 225	Lys	Pro	Ser	Asn	Thr 230	Lys	Val	Asp	Lys	Arg 235	Val	Glu	Ser	Lys	Tyr 240
55	Gly	Pro	Pro	Cys	Pro 245	Pro	Cys	Pro	Ala	Pro 250	Glu	Phe	Leu	Gly	Gly 255	Pro
60	Ser	Val	Phe	Leu 260	Phe	Pro	Pro	Lys	Pro 265	Lys	Asp	Thr	Leu	Met 270	Ile	Ser
	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	Gln	Glu	Asp
65																

			275					280					285			
5	Pro	Glu 290	Val	Gln	Phe	Asn	Trp 295	Tyr	Val	Asp	Gly	Val 300	Glu	Val	His	Asn
10	Ala 305	Lys	Thr	Lys	Pro	Arg 310	Glu	Glu	Gln	Phe	Asn 315	Ser	Thr	Tyr	Arg	Val 320
15	Val	Ser	Val	Leu	Thr 325	Val	Leu	His	Gln	Asp 330	Trp	Leu	Asn	Gly	Lys 335	Glu
20	Tyr	Lys	Cys	Lys 340	Val	Ser	Asn	Lys	Gly 345	Leu	Pro	Ser	Ser	Ile 350	Glu	Lys
25	Thr	Ile	Ser 355	Lys	Ala	Lys	Gly	Gln 360	Pro	Arg	Glu	Pro	Gln 365	Val	Tyr	Thr
	Leu	Pro 370	Pro	Ser	Gln	Glu	Glu 375	Met	Thr	Lys	Asn	Gln 380	Val	Ser	Leu	Thr
30	Cys 385	Leu	Val	Lys	Gly	Phe 390	Tyr	Pro	Ser	Asp	Ile 395	Ala	Val	Glu	Trp	Glu 400
35	Ser	Asn	Gly	Gln	Pro 405	Glu	Asn	Asn	Tyr	Lys 410	Thr	Thr	Pro	Pro	Val 415	Leu
40	Asp	Ser	Asp	Gly 420	Ser	Phe	Phe	Leu	Tyr 425	Ser	Arg	Leu	Thr	Val 430	Asp	Lys
45	Ser	Arg	Trp 435	Gln	Glu	Gly	Asn	Val 440	Phe	Ser	Cys	Ser	Val 445	Met	His	Glu
50	Ala	Leu 450	His	Asn	His	Tyr	Thr 455	Gln	Lys	Ser	Leu	Ser 460	Leu	Ser	Leu	Gly
55	Lys 465															
60	<210> 59 <211> 464 <212> PRT <213> Secue	ncia A	rtificia	I												
	<220> <223> Descri	pción (de la S	Secue	ncia A	rtificia	l: Polip	oéptido	o Sinté	ético						
65	<400> 59															

	Met 1	Glu	Phe	Gly	Leu 5	Ser	Trp	Leu	Phe	Leu 10	Val	Ala	Ile	Leu	Lys 15	Gly
5	Val	. Gln	Cys	Glu 20	Val	Gln	Leu	Leu	G1u 25	Ser	Gly	Gly	Gly	Leu 30	Val	Gln
10	Pro	Gly	G1y 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe
15	Ser	Asn 50	Tyr	Gly	Met	Ser	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu
20	Glu 65	Trp	Val	Ala	Ser	Ile 70	Arg	Ser	Gly	Gly	Gly 75	Arg	Thr	Tyr	Tyr	Ser 80
25	Asp	Asn	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn
25	Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val
30	Tyr	Tyr	Cys 115	Val	Arg	Tyr	Asp	His 120	Tyr	Ser	Gly	Ser	Ser 125	Asp	Tyr	Trp
35	Gly	Gln 130	Gly	Thr	Leu	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	Lys	Gly	Pro
40	Ser 145		Phe	Pro	Leu	Ala 150	Pro	Cys	Ser	Arg	Ser 155	Thr	Ser	Glu	Ser	Thr 160
45	Ala	Ala	Leu	Gly	Cys 165	Leu	Val	Lys	Asp	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
50	Val	Ser	Trp	Asn 180	Ser	Gly	Ala	Leu	Thr 185	Ser	Gly	Val	His	Thr 190	Phe	Pro
	Ala	Val	Leu 195	Gln	Ser	Ser	Gly	Leu 200	Ţyr	Ser	Leu	Ser	Ser 205	Val	Val	Thr
55		Pro 210	Ser	Ser	Ser	Leu	Gly 215	Thr	Lys	Thr	Tyr	Thr 220	Cys	Asn	Val	Asp
60	His 225	Lys	Pro	Ser	Asn	Thr 230	Lys	Val	Asp	Lys	Arg 235	Val	Glu	Ser	Lys	Tyr 240
65	Gly	Pro	Pro	Cys	Pro 245	Pro	Cys	Pro	Ala	Pro 250	Glu	Phe	Leu	Gly	Gly 255	Pro

	Ser	Val	Phe	Leu 260	Phe	Pro	Pro	Lys	Pro 265	Lys	Asp	Thr	Leu	Met 270	Ile	Ser
5	Arg	Thr	Pro 275	Glu	Val	Thr	Cys	Val 280	Val	Val	Asp	Val	Ser 285	Gln	Glu	Asp
10	Pro	Glu 290	Val	Gln	Phe	Asn	Trp 295	Tyr	Val	Asp	Gly	Val 300	Glu	Val	His	Asn
15	Ala 305	Lys	Thr	Lys	Pro	Arg 310	Glu	Glu	Gln	Phe	Asn 315	Ser	Thr	Tyr	Arg	Val 320
20	Val	Ser	Val	Leu	Thr 325	Val	Leu	His	Gln	Asp 330	Trp	Leu	Asn	Gly	Lys 335	Glu
25	Tyr	Lys	Cys	Lys 340	Val	Ser	Asn	Lys	Gly 345	Leu	Pro	Ser	Ser	Ile 350	Glu	Lys
30	Thr	Ile	Ser 355	Lys	Ala	Lys	Gly	Gln 360	Pro	Arg	Glu	Pro	Gln 365	Val	Tyr	Thr
35	Leu	Pro 370	Pro	Ser	Gln	Glu	Glu 375	Met	Thr	Lys	Asn	Gln 380	Val	Ser	Leu	Thr
00	Cys 385	Leu	Val	Lys	Gly	Phe 390	Tyr	Pro	Ser	Asp	Ile 395	Ala	Val	Glu	Trp	Glu 400
40	Ser	Asn	Gly	Gln	Pro 405	Glu	Asn	Asn	Tyr	Lys 410	Thr	Thr	Pro	Pro	Val 415	Leu
45	Asp	Ser	Asp	Gly 420	Ser	Phe	Phe	Leu	Tyr 425	Ser	Arg	Leu	Thr	Val 430	Asp	Lys
50	Ser	Arg	Trp 435	Gln	Glu	Gly	Asn	Val 440	Phe	Ser	Cys	Ser	Val 445	Met	His	Glu
55	Ala	Leu 450	His	Asn	His	Tyr	Thr 455	Gln	Lys	Ser	Leu	Ser 460	Leu	Ser	Leu	Gly
60	<210> 60 <211> 446 <212> PRT <213> Secuence	cia Arti	ficial													
65	<220> <223> Descripe	ción de	la Se	cuenci	a Artifi	icial: P	olipép	tido S	intético	o						
00	<400> 60															

5	Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
	Ser	Leu	Arg	Leu 20	Ser	Суѕ	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
10	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ala	Ser 50	Ile	Arg	Ser	Gly	Gly 55	Gly	Arg	Thr	Tyr	Tyr 60	Ser	Asp	Asn	Val
20	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
25	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
30	Val	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly
35	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
40	Pro	Leu 130	Ala	Pro	Cys	Ser	Arg 135	Ser	Thr	Ser	Glu	Ser 140	Thr	Ala	Ala	Leu
	Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
45	Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
50	Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
55	Ser	Ser	Leu 195	Gly	Thr	Lys	Thr	Tyr 200	Thr	Cys	Asn	Val	Asp 205	His	Lys	Pro
60	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Ser	Lys 220	Tyr	Gly	Pro	Pro
65	Cys 225	Pro	Pro	Cys	Pro	Ala 230	Pro	Glu	Phe	Leu	Gly 235	Gly	Pro	Ser	Val	Phe 240

5	Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
Ü	Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	Gln	Glu	Asp	Pro 270	Glu	Val
10	Gln	Phe	Asn 275	Trp	Tyr	Val	Asp	Gly 280	Val	Glu	Val	His	Asn 285	Ala	Lys	Thr
15	Lys	Pro 290	Arg	Glu	Glu	Gln	Phe 295	Asn	Ser	Thr	Tyr	Arg 300	Val	Val	Ser	Val
20	Leu 305		Val	Leu	His	Gln 310		Trp	Leu	Asn	Gly 315		Glu	Tyr	Lys	Cys 320
25		Val	Ser	Asn			Leu	Pro	Ser			Glu	Lys	Thr		
					325					330			·		335	
30	Lys	Ala	Lys	Gly 340	Gln	Pro	Arg	Glu	Pro 345	Gln	Val	Tyr	Thr	Leu 350	Pro	Pro
35	Ser	Gln	Glu 355	Glu	Met	Thr	Lys	Asn 360	Gln	Val	Ser	Leu	Thr 365	Cys	Leu	Val
40	Lys	Gly 370	Phe	Tyr	Pro	Ser	Asp 375	Ile	Ala	Val	Glu	Trp 380	Glu	Ser	Asn	Gly
45	Gln 385	Pro	Glu	Asn	Asn	Tyr 390	Lys	Thr	Thr	Pro	Pro 395	Val	Leu	Asp	Ser	Asp 400
50	Gly	Ser	Phe	Phe	Leu 405	Tyr	Ser	Arg	Leu	Thr 410	Val	Asp	Lys	Ser	Arg 415	Trp
50	Gln	Glu	Gly	Asn 420	Val	Phe	Ser	Cys	Ser 425	Val	Met	His	Glu	Ala 430	Leu	His
55	Asn	His	Tyr 435	Thr	Gln	Lys	Ser	Leu 440	Ser	Leu	Ser	Leu	Gly 445	Lys		
60	<210> 61 <211> 445 <212> PRT <213> Secue	ncia A	rtificial													
65	<220> <223> Descri	pción (de la S	Secuen	ıcia Ar	tificial:	Polipe	éptido	Sintéti	со						

<400> 61 Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 10 5 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 25 10 Gly Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 15 Ala Ser Ile Arg Ser Gly Gly Gly Arg Thr Tyr Tyr Ser Asp Asn Val 20 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 25 Val Arg Tyr Asp His Tyr Ser Gly Ser Ser Asp Tyr Trp Gly Gln Gly 100 105 30 Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 35 Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu 135 40 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 150 45 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 50 Ser Ser Leu Gly Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys Pro 200 205 55 Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro 215 60 Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe

235

230

225

65

	Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
5	Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	Gln	Glu	Asp	Pro 270	Glu	Val
10	Gln	Phe	Asn 275	Trp	Tyr	Val	Asp	Gly 280	Val	Glu	Val	His	Asn 285	Ala	Lys	Thr
15	Lys	Pro 290	Arg	Glu	Glu	Gln	Phe 295	Asn	Ser	Thr	Tyr	Arg 300	Val	Val	Ser	Val
20	Leu 305	Thr	Val	Leu	His	Gln 310	Asp	Trp	Leu	Asn	Gly 315	Lys	Glu	Tyr	Lys	Cys 320
25	Lys	Val	Ser	Asn	Lys 325	Gly	Leu	Pro	Ser	Ser 330	Ile	Glu	Lys	Thr	Ile 335	Ser
30	Lys	Ala	Lys	Gly 340	Gln	Pro	Arg	Glu	Pro 345	Gln	Val	Tyr	Thr	Leu 350	Pro	Pro
35	Ser	Gln	Glu 355	Glu	Met	Thr	Lys	Asn 360	Gln	Val	Ser	Leu	Thr 365	Cys	Leu	Val
40	Lys	Gly 370	Phe	Tyr	Pro	Ser	Asp 375	Ile	Ala	Val	Glu	Trp 380	Glu	Ser	Asn	Gly
45	Gln 385	Pro	Glu	Asn	Asn	Tyr 390	Lys	Thr	Thr	Pro	Pro 395	Val	Leu	Asp	Ser	Asp 400
50	Gly	Ser	Phe	Phe	Leu 405	Tyr	Ser	Arg	Leu	Thr 410	Val	Asp	Lys	Ser	Arg 415	Trp
55	Gln	Glu	Gly	Asn 420	Val	Phe	Ser	Cys	Ser 425	Val	Met	His	Glu	Ala 430	Leu	His
	Asn	His	Tyr 435	Thr	Gln	Lys	Ser	Leu 440	Ser	Leu	Ser	Leu	Gly 445			
60	<210> 62 <211> 330 <212> PRT <213> Homo	sapier	ns													
65	<400> 62															

	Ala 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Ser	Ser 15	Lys
5	Ser	Thr	Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
10	Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
15	Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
	Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
20	Tyr	Ile	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
25	Lys	Val	Glu	Pro 100	Lys	Ser	Cys	Asp	Lys 105	Thr	His	Thr	Cys	Pro 110	Pro	Cys
30	Pro	Ala	Pro 115	Glu	Ala	Ala	Gly	Ala 120	Pro	Ser	Val	Phe	Leu 125	Phe	Pro	Pro
35	Lys	Pro 130	Lys	Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Cys
40	Val 145	Val	Val	Asp	Val	Ser 150	His	Glu	Asp	Pro	Glu 155	Val	Lys	Phe	Asn	Trp 160
45	Tyr	Val	Asp	Gly	Val 165	Glu	Val	His	Asn	Ala 170	Lys	Thr	Lys	Pro	Arg 175	Glu
40	Glu	Gln	Tyr	Asn 180	Ser	Thr	Tyr	Arg	Val 185	Val	Ser	Val	Leu	Thr 190	Val	Leu
50	His	Gln	Asp 195	Trp	Leu	Asn	Gly	Lys 200	Glu	Tyr	Lys	Cys	Lys 205	Val	Ser	Asn
55	Lys	Ala 210	Leu	Pro	Ala	Pro	Ile 215	Glụ	Lys	Thr	Ile	Ser 220	Lys	Ala	Lys	Gly
60	Gln 225	Pro	Arg	Glu	Pro	Gln 230	Val	Tyr	Thr	Leu	Pro 235	Pro	Ser	Arg	Glu	Glu 240
65	Met	Thr	Lys	Asn	Gln 245	Val	Ser	Leu	Thr	Cys 250	Leu	Val	Lys	Gly	Phe 255	Tyr

	Pro	Ser	Asp	Ile 260	Ala	Val	Glu	Trp	Glu 265	Ser	Asn	Gly	Gln	Pro 270	Glu	Asn
5	Asn	Tyr	Lys 275	Thr	Thr	Pro	Pro	Val 280	Leu	Asp	Ser	Asp	Gly 285	Ser	Phe	Phe
10	Leu	Tyr 290	Ser	Lys	Leu	Thr	Val 295	Asp	Lys	Ser	Arg	Trp 300	Gln	Gln	Gly	Asn
15	Val 305	Phe	Ser	Cys	Ser	Val 310	Met	His	Glu	Ala	Leu 315	His	Asn	His	Tyr	Thr 320
20	Gln	Lys	Ser	Leu	Ser 325	Leu	Ser	Pro	Gly	Lys 330						
25	<210> 63 <211> 329 <212> PRT <213> Homo sa	apiens														
	<400> 63															
30	Ala 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Ser	Ser 15	Lys
35	Ser	Thr	Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Суз	Leu	Val	Lys 30	Asp	
40	Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
	Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
45	Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
50	Tyr	Ile	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
55	Lys	Val	Glu	Pro 100	Lys	Ser	Cys	Asp	Lys 105	Thr	His	Thr	Cys	Pro 110	Pro	Cys
60	Pro	Ala	Pro 115	Glu	Ala	Ala	Gly	Ala 120	Pro	Ser	Val	Phe	Leu 125	Phe	Pro	Pro
65	Lys	Pro 130	Lys	Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Cys

	Val 145		Val	Asp	Val	Ser 150	His	Glu	Asp	Pro	Glu 155	Val	Lys	Phe	Asn	Trp 160
5	Tyr	Val	Asp	Gly	Val 165	Glu	Val	His	Asn	Ala 170	Lys	Thr	Lys	Pro	Arg 175	Glu
10	Glu	Gln	Tyr	Asn 180	Ser	Thr	Tyr	Arg	Val 185	Val	Ser	Val	Leu	Thr 190	Val	Leu
15	His	Gln	Asp 195	Trp	Leu	Asn	Gly	Lys 200	Glu	Tyr	Lys	Cys	Lys 205	Val	Ser	Asn
20	Lys	Ala 210	Leu	Pro	Ala	Pro	Ile 215	Glu	Lys	Thr	Ile	Ser 220	Lys	Ala	Lys	Gly
25	Gln 225	Pro	Arg	Glu	Pro	Gln 230	Val	Tyr	Thr	Leu	Pro 235	Pro	Ser	Arg	Glu	Glu 240
30	Met	Thr	Lys	Asn	Gln 245	Val	Ser	Leu	Thr	Cys 250	Leu	Val	Lys	Gly	Phe 255	Tyr
35	Pro	Ser	Asp	Ile 260	Ala	Val	Glu	Trp	Glu 265	Ser	Asn	Gly	Gln	Pro 270	Glu	Asn
40	Asn	Tyr	Lys 275	Thr	Thr	Pro	Pro	Val 280	Leu	Asp	Ser	Asp	Gly 285	Ser	Phe	Phe
	Leu	Tyr 290	Ser	Lys	Leu	Thr	Val 295	Asp	Lys	Ser	Arg	Trp 300	Gln	Gln	Gly	Asn
45	Val 305	Phe	Ser	Cys	Ser	Val 310	Met	His	Glu	Ala	Leu 315	His	Asn	His	Tyr	Thr 320
50	Gln	Lys	Ser	Leu		Leu	Ser	Pro	Gly							
55	<210> 64 <211> 468 <212> PRT <213> Secue	encia A	rtificial		325											
60	<220> <223> Descri	ipción (de la S	ecuen	cia Art	ificial: I	Polipér	otido S	intético)						
	<400> 64															
65	Met 1	Glu	Phe	_	Leu S	er Tı	p Le	u Phe	Leu 10	Val	Ala	Ile I	Leu L 1		-У	

	Val	Gln	Cys	Glu 20	Val	Gln	Leu	Leu	Glu 25	Ser	Gly	Gly	Gly	Leu 30	Val	Gln
5	Pro	Gly	Gly 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe
10	Ser	Asn 50	Tyr	Gly	Met	Ser	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu
15	Glu 65	Trp	Val	Ala	Ser	Ile 70	Arg	Ser	Gly	Gly	Gly 75	Arg	Thr	Tyr	Tyr	Ser 80
20	Asp	Asn	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn
25	Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val
30	Tyr	Tyr	Cys 115	Val	Arg	Tyr	Asp	His 120	Tyr	Ser	Gly	Ser	Ser 125	Asp	Tyr	Trp
35	Gly	Gln 130	Gly	Thr	Leu	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	Lys	Gly	Pro
40	Ser 145	Val	Phe	Pro	Leu	Ala 150	Pro	Ser	Ser	Lys	Ser 155	Thr	Ser	Gly	Gly	Thr 160
40	Ala	Ala	Leu	Gly	Cys 165	Leu	Val	Lys	Asp	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
45	Val	Ser	Trp	Asn 180	Ser	Gly	Ala	Leu	Thr 185	Ser	Gly	Val	His	Thr 190	Phe	Pro
50	Ala	Val	Leu 195	Gln	Ser	Ser	Gly	Leu. 200	Tyr	Ser	Leu	Ser	Ser 205	Val	Val	Thr
55	Val	Pro 210	Ser	Ser	Ser	Leu	Gly 215	Thr	Gln	Thr	Tyr	Ile 220	Cys	Asn	Val	Asn
60	His 225	Lys	Pro	Ser	Asn	Thr 230	Lys	Val	Asp	Lys	Lys 235	Val	Glu	Pro	Lys	Ser 240
65	Cys	Asp	Lys	Thr	His 245	Thr	Cys	Pro	Pro	Cys 250	Pro	Ala	Pro	Glu	Ala 255	Ala

	Gly	Ala	Pro	Ser 260	Val	Phe	Leu	Phe	Pro 265	Pro	Lys	Pro	Lys	Asp 270	Thr	Leu
5	Met	Ile	Ser 275	Arg	Thr	Pro	Glu	Val 280	Thr	Cys	Val	Val	Val 285	Asp	Val	Ser
10	His	Glu 290	Asp	Pro	Glu	Val	Lys 295	Phe	Asn	Trp	Tyr	Val 300	Asp	Gly	Val	Glu
15	Val 305	His	Asn	Ala	Lys	Thr 310	Lys	Pro	Arg	Glu	Glu 315	Gln	Tyr	Asn	Ser	Thr 320
20	Tyr	Arg	Val	Val	Ser 325	Val	Leu	Thr	Val	Leu 330	His	Gln	Asp	Trp	Leu 335	Asn
25	Gly	Lys	Glu	Tyr 340	Lys	Cys	Lys	Val	Ser 345	Asn	Lys	Ala	Leu	Pro 350	Ala	Pro
30	Ile	Glu	Lys 355	Thr	Ile	Ser	Lys	Ala 360	Lys	Gly	Gln	Pro	Arg 365	Glu	Pro	Gln
35	Val	Tyr 370	Thr	Leu	Pro	Pro	Ser 375	Arg	Glu	Glu	Met	Thr 380	Lys	Asn	Gln	Val
40	Ser 385	Leu	Thr	Cys	Leu	Val 390	Lys	Gly	Phe	Tyr	Pro 395	Ser	Asp	Ile	Ala	Val 400
	Glu	Trp	Glu						Glu			_	_		Thr 415	
45	Pro	Val	Leu	Asp 420	Ser	Asp	Gly	Ser	Phe 425	Phe	Leu	Tyr	Ser	Lys 430	Leu	Thr
50	Val	Asp	Lys 435	Ser	Arg	Trp	Gln	Gln 440	Gly	Asn	Val	Phe	Ser 445	Cys	Ser	Val
55	Met	His 450	Glu	Ala	Leu	His	Asn 455	His	Tyr	Thr	Gln	Lys 460	Ser	Leu	Ser	Leu
60	Ser 465	Pro	Gly	Lys						•						
65	<210> 65 <211> 467 <212> PRT <213> Secu		Artificia	al												

<220>

	<220> <223> Desc	cripció	n de la	a Seci	uencia	Artifi	cial: P	olipép	tido S	intétic	ю						
5	<400> 65																
		Met 1	Glu	Phe	Gly	Leu 5	Ser	Trp	Leu	Phe	Leu 10	Val	Ala	Ile	Leu	Lys 15	Gly
10		Val	Gln	Cys	Glu 20	Val	Gln	Leu	Leu	G1u 25	Ser	Gly	Gly	Gly	Leu 30	Val	Gln
15		Pro	Gly	Gly 35	Ser	Leu	Arg	Leu	Ser 40	Cys	Ala	Ala	Ser	Gly 45	Phe	Thr	Phe
20		Ser	Asn 50	Tyr	Gly	Met	Ser	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Lys	Gly	Leu
25		Glu 65	Trp	Val	Ala	Ser	Ile 70	Arg	Ser	Gly	Gly	Gly 75	Arg	Thr	Tyr	Tyr	Ser 80
00		Asp	Asn	Val	Lys	Gly 85	Arg	Phe	Thr	Ile	Ser 90	Arg	Asp	Asn	Ser	Lys 95	Asn
30		Thr	Leu	Tyr	Leu 100	Gln	Met	Asn	Ser	Leu 105	Arg	Ala	Glu	Asp	Thr 110	Ala	Val
35		Tyr	Tyr	Cys 115	Val	Arg	Tyr	Asp	His 120	Tyr	Ser	Gly	Ser	Ser 125	Asp	Tyr	Trp
40		Gly	Gln 130	Gly	Thr	Leu	Val	Thr 135	Val	Ser	Ser	Ala	Ser 140	Thr	Lys	Gly	Pro
45		Ser 145	Val	Phe	Pro	Leu	Ala 150	Pro	Ser	Ser	Lys	Ser 155	Thr	Ser	Gly	Gly	Thr 160
50		Ala	Ala	Leu	Gly	Cys 165	Leu	Val	Lys	Asp	Tyr 170	Phe	Pro	Glu	Pro	Val 175	Thr
		Val	Ser	Trp	Asn 180	Ser	Gly	Ala	Leu	Thr 185	Ser	Gly	Val	His	Thr 190	Phe	Pro
55		Ala	Val	Leu 195	Gln	Ser	Ser	Gly	Leu 200	Tyr	Ser	Leu	Ser	Ser 205	Val	Val	Thr
60		Val	Pro 210	Ser	Ser	Ser	Leu	Gly 215	Thr	Gln	Thr	Tyr	Ile 220	Cys	Asn	Val	Asn
65		His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser

	225					230					235					240
5	Cys	Asp	Lys	Thr	His 245	Thr	Cys	Pro	Pro	Cys 250	Pro	Ala	Pro	Glu	Ala 255	Ala
10	Gly	Ala	Pro	Ser 260	Val	Phe	Leu	Phe	Pro 265	Pro	Lys	Pro	Lys	Asp 270	Thr	Leu
15	Met	Ile	Ser 275	Arg	Thr	Pro	Glu	Val 280	Thr	Cys	Val	Val	Val 285	Asp	Val	Ser
	His	Glu 290	Asp	Pro	Glu	Val	Lys 295	Phe	Asn	Trp	Tyr	Val 300	Asp	Gly	Val	Glu
20	Val 305	His	Asn	Ala	Lys	Thr 310	Lys	Pro	Arg	Glu	Glu 315	Gln	Tyr	Asn	Ser	Thr 320
25	Tyr	Arg	Val	Val	Ser 325	Val	Leu	Thr	Val	Leu 330	His	Gln	Asp	Trp	Leu 335	Asn
30	Gly	Lys	Glu	Tyr 340	Lys	Cys	Lys	Val	Ser 345	Asn	Lys	Ala	Leu	Pro 350	Ala	Pro
35	Ile	Glu	Lys 355	Thr	Ile	Ser	Lys	Ala 360	Lys	Gly	Gln	Pro	Arg 365	Glu	Pro	Gln
40	Val	Tyr 370	Thr	Leu	Pro	Pro	Ser 375	Arg	Glu	Glu	Met	Thr 380	Lys	Asn	Gln	Val
45	Ser 385	Leu	Thr	Cys	Leu	Val 390	Lys	Gly	Phe	Tyr	Pro 395	Ser	Asp	Ile	Ala	Val 400
45	Glu	Trp	Glu	Ser	Asn 405	Gly	Gln	Pro	Glu	Asn 410	Asn	Tyr	Lys	Thr	Thr 415	Pro
50	Pro	Val	Leu	Asp 420	Ser	Asp	Gly	Ser	Phe 425	Phe	Leu	Tyr	Ser	Lys 430	Leu	Thr
55	Val	Asp	Lys 435	Ser	Arg	Trp	Gln	Gln 440	Gly	Asn	Val	Phe	Ser 445	Cys	Ser	Val
60	Met	His 450	Glu	Ala	Leu	His	Asn 455	His	Tyr	Thr	Gln	Lys 460	Ser	Leu	Ser	Leu
65	Ser 465	Pro	Gly,													

5	<210> 66 <211> 449 <212> PR <213> Sec	Т	cia Ar	tificial													
J	<220> <223> Des	scrip	ción d	e la S	ecuen	cia Art	ificial:	Polipé	eptido (Sintéti	со						
10	<400> 66 G		Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
15	S	er	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
20	G	ly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
25	A		Ser 50	Ile	Arg	Ser	Gly	Gly 55	Gly	Arg	Thr	Tyr	Tyr 60	Ser	Asp	Asn	Val
30		ys 5	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
35	L	eu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
40	V	al	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly
40	Т	hr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
45	P		Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
50		ly 45	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
55	A	sn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
60	G.	ln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
65	Se	er :		Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro

	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Lys	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
5	Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Ala	Ala	Gly	Ala	Pro 240
10	Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
15	Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
20	Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
25	Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
30	Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
35	Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
40	Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
40	Leu	Pro	Pro 355		Arg	Glu		Met 360	Thr	Lys			Val 365		Leu	Thr
45	Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu
50	Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400
55	Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys
60	Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu
65	Ala	Leu	His 435	Asn	His	Tyr	Thr	Gln 440	Lys	Ser	Leu	Ser	Leu 445	Ser	Pro	Gly

_	<210><211><211><212><213>	• 448 • PRT	encia /	Artificia	I												
5	<220> <223>		ripción	de la S	Secuen	ıcia Art	ificial: I	Polipér	otido Si	intético	ı						
10	<400>	- 67															
. •		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
15		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
20		Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
25		Ala	Ser 50	Ile	Arg	Ser	Gly	Gly 55	Gly	Arg	Thr	Tyr	Tyr 60	Ser	Asp	Asn	Val
30		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
35		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
40		Val	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly
45		Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
50		Pro	Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
55		Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
60		Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
65		Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser

	Ser	Ser	Leu 195		Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
5	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Lys	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
10	Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Ala	Ala	Gly	Ala	Pro 240
15	Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
20	Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
25	Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
30	Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
35	Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
40	Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
40	Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	_	Glu		Gln	Val 350	Tyr	Thr
45	Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
50	Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu
55	Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400
60	Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys
65	Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445

5 <210> 68 <211> 1407 <212> ADN <213> Secuencia Artificial

10 <220>

<223> Descripción de la Secuencia Artificial: Polinucleótido Sintético

<400> 68

15	atggagtttg	ggctgagctg	gctttttctt	gtggctattt	taaaaggtgt	ccagtgtgag	60
	gtgcagctgc	tggagtccgg	cggcggcctg	gtgcagcccg	geggeteeet	gcgcctgtcc	120
20	tgcgccgcct	ccggcttcac	cttctccaac	tacggcatgt	cctgggtgcg	ccaggccccc	180
20	ggcaagggcc	tggagtgggt	ggcctccatc	cgctccggcg	gcggccgcac	ctactactcc	240
	gacaacgtga	agggccgctt	caccatctcc	cgcgacaact	ccaagaacac	cctgtacctg	300
25	cagatgaact	ccctgcgcgc	cgaggacacc	gccgtgtact	actgcgtgcg	ctacgaccac	360
	tactccggct	cctccgacta	ctggggccag	ggcaccctgg	tgaccgtgtc	ctccgcgtcg	420
30	accaagggcc	catcggtctt	ccccctggca	ccctcctcca	agagcacctc	tgggggcaca	480
	gcggccctgg	gctgcctggt	caaggactac	ttccccgaac	cggtgacggt	gtcgtggaac	540
25	tcaggcgccc	tgaccagcgg	cgtgcacacc	ttcccggctg	tcctacagtc	ctcaggactc	600
35	tactccctca	gcagcgtggt	gaccgtgccc	tccagcagct	tgggcaccca	gacctacatc	660
	tgcaacgtga	atcacaagcc	cagcaacacc	aaggtggaca	agaaagttga	gcccaaatct	720
40	tgtgacaaaa	ctcacacatg	cccaccgtgc	ccagcacctg	aagccgctgg	ggcaccgtca	780
	gtcttcctct	tccccccaaa	acccaaggac	accctcatga	tctcccggac	ccctgaggtc	840
45	acatgcgtgg	tggtggacgt	gagccacgaa	gaccctgagg	tcaagttcaa	ctggtacgtg	900
	gacggcgtgg	aggtgcataa	tgccaagaca	aagccgcggg	aggagcagta	caacagcacg	960
50	taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	ggctgaatgg	caaggagtac	1020
50	aagtgcaagg	tctccaacaa	agccctccca	gcccccatcg	agaaaaccat	ctccaaagcc	1080
	aaagggcagc	cccgagaacc	acaggtgtac	accctgcccc	catcccggga	ggagatgacc	1140
55	aagaaccagg	tcagcctgac	ctgcctggtc	aaaggcttct	atcccagcga	catcgccgtg	1200
	gagtgggaga	gcaatgggca	gccggagaac	aactacaaga	ccacgcctcc	cgtgctggac	1260
60	tccgacggct	ccttcttcct	ctatagcaag	ctcaccgtgg	acaagagcag	gtggcagcag	1320
	gggaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	acaaccacta	cacgcagaag	1380
65	agcetetece	tgtccccggg	taaatga				1407

5	<210> 69 <211> 44 <212> PF <213> Ho	9 RT	apiens	;													
3	<400> 69																
		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
10																	
		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
15		Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
20		Ala	Ser 50	Ile	Arg	Ser	Gly	Gly 55	Gly	Arg	Thr	Tyr	Tyr 60	Ser	Asp	Asn	Val
25		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
30		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
35		Val	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly
40		Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
40		Pro	Leu 130	Ala	Pro	Ser		Lys 135		Thr	Ser	_	Gly 140		Ala	Ala	Leu
45																	
40		Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
50		Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
55		Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
60		Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
65		Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Cys	Asp	Lys

		210					215					220				
5	Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240
10	Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
15	Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
	Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
20	Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
25	Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
30	Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
35	Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
40	Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
45	Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu
	Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400
50	Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys
55	Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu
60	Ala	Leu	His 435	Asn	His	Tyr	Thr	Gln 440	Lys	Ser	Leu	Ser	Leu 445	Ser	Pro	Gly
65	Lys															

-	<210> 70 <211> 448 <212> PRT <213> Homo s	sapien	s													
5	<400> 70															
10	Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
15	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Týr
	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
20	Ala	Ser 50	Ile	Arg	Ser	Gly	Gly 55	Gly	Arg	Thr	Tyr	Tyr 60	Ser	Asp	Asn	Val
25	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
30	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
35	Val	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly
40	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
45	Pro	Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
50	Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
	Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
55	Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
60	Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
65	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Cys	Asp	Lys

		210					215					220				
5	Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240
10	Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
15	Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
20	Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
25	Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
	Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
30	Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
35	Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
40	Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
45	Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu
50	Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400
55	Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys
60	Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu
	Ala	Leu	His 435	Asn	His	Tyr	Thr	Gln 440	Lys	Ser	Leu	Ser	Leu 445	Ser	Pro	Gly
65																

5	<210><211><211><212><213>	113 PRT	ncia A	rtificial													
5	<220> <223>	Descri	pción	de la S	Secuen	cia Art	ificial: I	Polipép	otido S	intético)						
10	<400>	71															
10		Asp 1	Val	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Leu 15	Gly
15		Gln	Pro	Ala	Ser 20	Ile	Ser	Cys	Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Asp	Ser
20		Asp	Gly	Lys 35	Thr	Tyr	Leu	Asn	Trp 40	Leu	Gln	Gln	Arg	Pro 45	Gly	Gln	Ser
25		Pro	Arg 50	Arg	Leu	Ile	Tyr	Leu 55	Val	Ser	Lys	Leu	Asp 60	Ser	Gly	Val	Pro
30		Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
35		Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Trp	Gln 95	Gly
40		Thr	His	Phe	Pro 100	Arg	Thr	Phe	Gly	Gly 105	Gly	Thr	Lys	Val	Glu 110	Ile	Lys
45	<210>																
50	<211> <212> <213>	PRT	ncia A	rtificial													
	<220> <223>	Descri	pción	de la S	Secuen	cia Art	ificial: I	Polipép	otido S	intético)						
55	<400>	72															
60																	

	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5																
40	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Gly	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
10	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	7.1	0	7 1-	7 0 -	Q -	C 1	01	01	3	m1-			Q -	3	3	TT - 1
	Ala	5er	ire	Arg	ser	GTÀ	55	GTÀ	Arg	Inr	Tyr	fyr 60	ser	Asp	Asn	vai
20		Gly	Arg	Phe	Thr		Ser	Arg	Glu	Asn		Lys	Asn	Ser	Leu	
25	65					70					75					80
25	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
30	Val	Arg	Tyr	Asp 100	His	Tyr	Ser	Gly	Ser 105	Ser	Asp	Tyr	Trp	Gly 110	Gln	Gly
35	Thr	Leu	Val 115	Thr	Val	Ser	Ser									
40	<210> 73 <211> 113 <212> PRT <213> Secuel	ncia Ar	rtificial													
45	<220> <223> Descri	pción c	de la S	ecueno	cia Arti	ficial: F	Polipén	itido Si	intético)						
	<400> 73															
50																
55																
60																
65																

	Asp 1	Val	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Leu 15	Gly
5	Gln	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Asn	Ile	Ile 30	His	Ser
10	Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
15	Pro	Arg 50	Leu	Leu	Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
20	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
25	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Phe	G1n 95	Gly
30	Ser	His	Val	Pro 100	Leu	Thr	Phe	Gly	Gly 105	Gly	Thr	Lys	Val	Glu 110	Ile	Lys
	Arg															
35	<210> 74 <211> 123 <212> PRT <213> Secue	noia A	rtificial													
40	<220> <223> Descri				cia Art	ificial:	Polipé	ptido S	Sintétio	co						
45	<400> 74															
50																
55																
60																
65																

		1	vaı	1111	Leu	Lys 5	Glu	Ser	Gly	Pro	Val 10	Leu	Val	Lys	Pro	Thr 15	Glu
5		Thr	Leu	Thr	Leu 20	Thr	Cys	Thr	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
10		Gly	Met	Gly 35	Val	Ser	Trp	Ile	Arg 40	Gln	Pro	Pro	Gly	Lys 45	Ala	Leu	Glu
15		Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser
20		Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Ser	Gln	Val 80
25		Val	Leu	Thr	Met	Thr 85	Asn	Met	Asp	Pro	Val 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
30		Cys	V _, al	Arg	Arg 100	Pro	Ile	Thr	Pro	Val 105	Leu	Val	Asp	Ala	Met 110	Asp	Tyr
35		Trp	Gly	Gln 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser	•				
40	<210> <211> <212> <213>	112 PRT	ncia Aı	rtificial													
	<220> <223>	Descri	pción d	de la S	ecuen	cia Arti	ficial: I	Polipér	otido S	intético)						
45	<400>		•														
50		Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
55		Glu	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Val 25	Ser	Gln	Ser	Leu	Leu 30	His	Ser
60		Asn	Gly	Tyr 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser

	Pr	o G1 50	n Lei	ı Lev	ı Ile	Tyr	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
5	As 65		g Phe	e Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	-	Phe	Thr	Leu	Lys	
10				. ~ .							75					80
	Se	r Ar	g Val	L Glu	Ala 85	Glu	Asp	Val	Gly	Val- 90	Tyr	Tyr	Cys	Ser	G1n 95	Thr
15	Ar	g Hi	s Val	l Pro		Thr	Phe	Gly	Gly 105	Gly	Thr	Lys	Val	Glu 110	ile	Lys
20	<210> 76 <211> 11 <212> PF <213> Se	5 RT	a Artific	cial												
25	<220> <223> De	escripci	ón de la	a Secu	encia A	ırtificial	l: Polip	éptido	Sintétio	co						
	<400> 76															
30	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
35	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asp	Asn
40	Gly	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
45	Ser	Phe 50	Ile	Ser	Asn	Leu	Ala 55	Tyr	Ser	Ile	Asp	Tyr 60	Ala	Asp	Thr	Val
50	Thr 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80
55	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
60	Val	Ser	Gly	Thr 100	Trp	Phe	Ala	Tyr	Trp 105	Gly	Gln	Gly	Thr	Leu 110		Thr
65	Val	Ser	Ser 115													

F	<210><211><211><212><213>	115 PRT	encia A	Artificia	I												
5	<220> <223>		ipción	de la S	Secuer	ncia Ar	tificial:	Polipé	ptido S	Sintético	o						
	<400>	77															
10		Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
15		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Val	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asp	Asn
20		Gly	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
25		Ser	Phe 50	Ile	Ser	Asn	Leu	Ala 55	Tyr	Ser	Ile	Asp	Tyr 60	Ala	Asp	Thr	Val
30		Thr 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80
35		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
40		Val	Ser	Gly	Thr 100	Trp	Phe	Ala	Tyr	Trp 105	Gly	Gln	Gly	Thr	Leu 110	Val	Thr
45		Val	Ser	Ser 115													
50	<210><211><211><212><213>	115 PRT	encia A	Artificia	I												
	<220> <223>		ipción	de la S	Secuer	ncia Ar	tificial:	Polipé	ptido S	Sintético	o						
55	<400>	78															
60																	

	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asp	Asn
10	Gly	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Ile
15	Ser	Phe 50	Ile	Ser	Asn	Leu	Ala 55	Tyr	Ser	Ile	Asp	Tyr 60	Ala	Asp	Thr	Val
20	Thr 65	Gly	Arg	Phe		Ile ·70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80
25	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
30	Val	Ser	Gly	Thr 100	Trp	Phe	Ala	Tyr	Trp 105	Gly	Gln	Gly	Thr	Leu 110	Val	Thr
35	Val	Ser	Ser 115													
40	<210> 79 <211> 116 <212> PR <213> Sec	Т	a Artific	ial												
	<220> <223> Des	scripció	ón de la	a Secue	encia A	rtificial	: Polipé	éptido s	Sintétic	:0						
45	<400> 79															
50																
55																
60																
65																

	Gln	Val	Gln	Leu	Val	Gln	Ser	Ġly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
5	1				5					10					15	
5	Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Tyr	Thr	Glu 30	Ala	Tyr
10	Tyr	Ile	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15	Gly	Arg 50	Ile	Asp	Pro	Ala	Thr 55	Gly	Asn	Thr	Lys	Tyr 60	Ala	Pro	Arg	Leu
20	Gln 65	Asp	Arg	Val	Thr	Met 70	Thr	Arg	Asp	Thr	Ser 75	Thr	Ser	Thr	Val	Tyr 80
25	Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
30	Ala	Ser	Leu	Tyr 100	Ser	Leu	Pro	Val	Tyr 105	Trp	Gly	Gln	Gly	Thr 110	Thr	Val
35	Thr	Val	Ser 115	Ser												
40	<210> 80 <211> 114 <212> PR <213> Sec	Т	a Artific	ial												
15	<220>	- anin ai 4	ا ماما	- Casu		\	l. Dalin	ماء نام ک	C:~!							
45	<223> Des	scripcic	on de la	a Secu	encia <i>i</i>	Aruncia	ii: Polip	ериао	Sinteti	CO						
50																
55																
60																
65																

5	Asp 1	Val	Val	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Leu 15	Gly
10	Glr	Pro	Ala	Ser 20	Ile	Ser	Cys	Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Tyr	Ser
	Asp	Ala	Lys 35	Thr	Tyr	Leu	Asn	Trp 40	Phe	Gln	Gln	Arg	Pro 45	Gly	Gln	Ser
15	Pro	Arg 50	Arg	Leu	Ile	Tyr	Gln 55	Ile	Ser	Arg	Leu	Asp 60	Pro	Gly	Val	Pro
20	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
25	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Leu	Gln 95	Gly
30	Thr	His	Tyr	Pro 100	Val	Leu	Phe	Gly	Gln 105	Gly	Thr	Arg	Leu	Glu 110	Ile	Lys
35	Arg	Thr										,				
40	<210> 81 <211> 11 <212> PF <213> Se	RT	a Artific	ial												
45	<220> <223> De	escripcio	ón de la	s Secue	encia A	rtificial	: Polipé	eptido S	Sintétic	0						
	<400> 81															
50	G1 1	n Vai	l Gln	ı Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
55	Se	r Val	l Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Thr	Tyr
60	Al	a Ile	e His	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
65	G1	y Phe 50		Ser	Pro	Tyr	Ser 55	Gly	Val	Ser	Asn	Tyr 60	Asn	Gln	Lys	Phe

5	Lys 65	Gly	y Ar	g Va	al T		Met 70	Thr	Arg	Asp	Thr	Ser 75	Thr	Ser	Thr	Val	Tyr 80
10	Met	Glu	ı Le	eu Se	er S		Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
10	Ala	Arg	g Ph		sp A:	sn I	Cyr	Asp	Arg	Gly 105	Tyr	Val	Arg	Asp	Tyr 110		Gly
15	Gln	Gly	7 Th 11		eu Va	al	,										
20	<210> 82 <211> 114 <212> PR <213> See	T	cia Ar	tificial													
25	<220> <223> De				ecuen	cia Ar	tificial	: Polip	éptido	Sintéti	со						
	<400> 82																
30	A 1		Ile	Val	Met	Thr 5	Glr	n Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
35	G	ilu /	Arg	Ala	Thr 20	Ile	Asr	n Cys	a Arg	Ala 25	Ser	Glu	Ser	Val	Asp 30	Asn	Asp
40	Α	rg	Ile	Ser 35	Phe	Leu	Asr	Trp	Tyr 40	Gln	Gln	Lys	Pro	Gly 45	Gln	Pro	Pro
45	L		Leu 50	Leu	Ile	Tyr	Ala	a Ala 55	Thr	Lys	Gln	Gly	Thr 60	Gly	Val	Pro	Asp
50		.rg 1	Phe	Ser	Gly	Ser	Gly 70	7 Ser	Gly	Thr	Asp	Phe 75	Thr	Leu	Thr	Ile	Ser 80
55	S	er 1	Leu	Gln	Ala	Glu 85	Asp	Val	Ala	Val	Tyr 90	Tyr	Cys	Gln	Gln	Ser 95	Lys
55	G	lu I	Phe	Pro	Trp 100	Ser	Phe	e Gly	Gly	Gly 105	Thr	Lys	Val	Glu	Ile 110	Lys	Arg
60			_														
65	T <210> 83 <211> 12 <212> PR <213> Sec	T		tificial													

	<220> <223> Descrip	ción de	e la Se	cuenc	ia Artif	icial: F	Polipép	otido S	Sintétic	:0						
5	<400> 83															
		Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Ala 10	Leu	Val	Lys	s Pro	Th:	r Gln
10	Thr	Leu	Thr	Leu 20	Thr	Cys	Thr	Phe	Ser 25	Gly	Phe	Ser	Leu	a Arç 30	y Th:	r Ser
15	Gly	Met	Gly 35	Val	Gly	Trp	Ile	Arg 40	. Gln	Pro	Pro	Gly	Lys 45	s Ala	a Lei	ı Glu
20	Trp	Leu 50	Ala	His	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Ser 60	Туг	: Asr	n Pro	Ser
25	Leu 65	Lys	Ser	Gln	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asr	n Gli	n Val ·80
30	Val	Leu	Thr	Met	Thr 85	Asn	Met	Asp	Pro	Val 90	Asp	Thr	Ala	Thr	ту: 95	r Tyr
35	Cys	Ala	Arg	Arg 100	Asn	Tyr	Tyr	Tyr	Asp 105		Tyr	Phe	Ala	Тур 110		Gly
40	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120								
	<210> 84 <211> 112 <212> PRT <213> Secuen	cia Art	ificial													
45	<220> <223> Descrip	ción de	e la Se	cuenc	ia Artif	ficial: F	Polipép	otido S	Sintétic	:O						
	<400> 84															
50	Asp 1	Val	Leu	Met	Thr 5	Gln	Ser	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Leu 15	Gly
55	Gln	Pro	Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Ile	Val 30	His	Ser
60	Asn	Gly	Asn 35	Thr	Tyr	Leu	Glu	Trp 40	Tyr	Leu	Gln	_	Pro 45	Gly	Gln	Ser
65	Pro	Lys	Leu	Leu	Ile	Tyr	Lys	Val	Ser	Asn	Arg	Phe	Ser	Gly	Val	Pro

		50					55					60				
5	Asp 65	Arg	Phe	Ser	Gly	Ser 70	Gly	Ser	Gly	Thr	Asp 75	Phe	Thr	Leu	Lys	Ile 80
10	Ser	Arg	Val	Glu	Ala 85	Glu	Asp	Val	Gly	Val 90	Tyr	Tyr	Cys	Phe	Gln 95	Gly
15	Ser	His	Val	Pro 100	Leu	Thr	Phe	Gly	Ala 105	Gly	Thr	Lys	Leu	Glu 110	Ile	Lys
20	<210> 85 <211> 9 <212> PRT <213> Homo sa	apiens														
	<400> 85															
25				Ala 1	Glı	ı Ph	e Ar	g Hi 5	s As	sp S	er G	ly T	ſyr			
30	<210> 86 <211> 6 <212> PRT <213> Homo sa	apiens														
	<400> 86															
35					Ala 1	a Gl	.u P	he A	Arg	His 5	Ası	Þ				
40	<210> 87 <211> 7 <212> PRT <213> Homo sa	apiens														
45	<400> 87				Glu 1	Phe	a Ar	g Hi	is A		Ser	Gly	•			
50	<210> 88 <211> 5 <212> PRT <213> Homo sa	apiens														
55	<400> 88															
55						Gl 1	u Ph	e Ar	g H	is A 5	sp					
60	<210> 89 <211> 16 <212> PRT <213> Homo sa	apiens														
65	<400> 89															

```
Tyr Glu Val His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly
                                                                                     15
 5
      <210> 90
      <211> 4
      <212> PRT
      <213> Homo sapiens
10
      <400> 90
                                           Val Phe Phe Ala
15
      <210> 91
      <211> 9
      <212> PRT
      <213> Homo sapiens
20
      <400> 91
                                     Gln Lys Leu Phe Phe Ala Glu Asp Val
                                                         5
25
      <210> 92
      <211>9
      <212> PRT
      <213> Secuencia Artificial
30
      <223> Descripción de la Secuencia Artificial: Péptido Sintético
      <400> 92
35
                                  Lys Leu Val Phe Phe Ala Gly Asp Val
                                                        5
      <210> 93
40
      <211> 5
      <212> PRT
      <213> Secuencia Artificial
      <220>
45
      <223> Descripción de la Secuencia Artificial: Marcador Sintético 5xHis
      <400> 93
                                           His His His His
50
                                           1
                                                                  5
      <210> 94
      <211> 5
      <212> PRT
55
      <213> Secuencia Artificial
      <220>
      <223> Descripción de la Secuencia Artificial: Polipéptido Sintético
60
      <400> 94
                                          Asp Ala Glu Phe Arg
65
      <210> 95
      <211> 110
```

	<212> PRT <213> Homo s	sapien	s														
5	<400> 95																
J	Ala 1	Pro	Glu	Leu	Leu 5	Gly	Gly	Pro	Ser	Val 10	Phe	Leu	Phe	e Pro) Pro 15	Lys	
10	Pro	Lys	Asp	Thr 20	Leu	Met	Ile	Ser	Arg 25	Thr	Pro	Glu	. Va.	l Thi	Cys	Val	
15	Val	Val	Asp 35	Val	Ser	His	Glu	Asp 40	Pro	Glu	Val	Lys	Phe 45	e Asr	ı Trp	Tyr	
20	Val	Asp 50	Gly	Val	Glu	Val	His 55	Asn	Ala	Lys	Thr	Lys 60	Pro	Arg	, Glu	Glu	
25	Gln 65	Tyr	Asn	Ser	Thr	Tyr 70	Arg	Val	Val	Ser	Val 75	Leu	Thi	. Val	. Leu	His 80	
30	Gln	Asp	Trp	Leu	Asn 85	Gly	Lys	Glu	Tyr	Lys 90	Cys	Lys	Val	. Ser	Asn 95	Lys	
	Ala	Leu	Pro	Ala 100	Pro	Ile	Glu	Lys	Thr 105	Ile	Ser	Lys	Alá	Lys			
35	<210> 96 <211> 109 <212> PRT																
40	<213> Homo s	sapien	S														
		D.	_			~ 3	_	~				_		_	_		_
45	Ala 1	Pro	Pro	vai	Ala 5	GIŸ	Pro	se se	r Va	11 P		eu 1	ne	Pro	Pro	Lys 15	Pro
50	Lys	Asp	Thr	Leu 20	Met	Ile	Ser	r Ar	g Th 25		ro G	lu V	/al	Thr	Cys 30	Val	Val
55	Val	Asp	Val 35	Ser	His	Glu	Asp	9 Pr 40	o Gl	u V	al G	ln I	Phe	Asn 45	Trp	Tyr	Val
60	Asp	Gly 50	Val	Glu	Val	His	Asr 55	n Al	a Ly	s T	hr L		Pro 50	Arg	Glu	Glu	Gln
	Phe	Asn	Ser	Thr	Phe	Arg 70	Val	. Va	l Se	r V	al L 7		hr	Val	Val	His	Gln 80
65																	

		Asp	Trp	Leu	Asn	Gly 85	Lys	Glu	Tyr]		Cys I 90	Lys V	al Se	er As	n Ly: 95	s Gly	7
5		Leu	Pro	Ala	Pro 100	Ile	Glu	Lys		Ile 105	Ser I	ys T	nr Ly	'S			
10	<210><211><211><212><213>	110	sapie	ns													
15	<400>	97															
10		Ala 1	Pro	Glu	Phe	Leu 5	Gly	Gly	Pro	Sei	val	Phe	Leu	Phe	Pro	Pro 15	Lys
20		Pro	Lys	Asp	Thr 20	Leu	Met	Ile	Ser	Arc 25	g Thr	Pro	Glu	Val	Thr 30	Cys	Val
25		Val	Val	Asp 35	Val	Ser	Gln	Glu	Asp 40	Pro) Glu	Val	Gln	Phe 45	Asn	Trp	Tyr
30		Val	Asp 50	Gly	Val	Glu	Val	His 55	Asn	Ala	ı Lys	Thr	Lys 60	Pro	Arg	Glu	Glu
35		Gln 65	Phe	Asn	Ser	Thr	Tyr 70	Arg	Val	Val	Ser	Val 75	Leu	Thr	Val	Leu	His
40		Gln	Asp	Trp	Leu	Asn 85	Gly	Lys	Glu	Tyr	Lys 90	Cys	Lys	Val	Ser	Asn 95	Lys
45		Gly	Leu	Pro	Ser 100	Ser	Ile	Glu	Lys	Thr		Ser	Lys	Ala	Lys 110		
50	<210><211><211><212><213>	107	sp.														
	<400>	98															
55																	
60																	

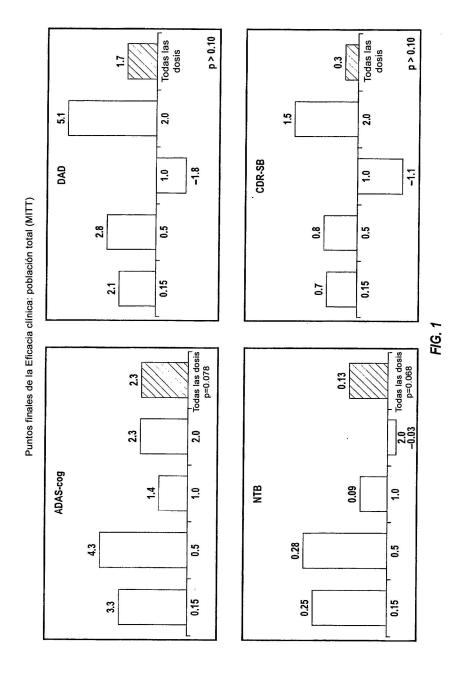
	Val 1	Pro	Glu	Val	Ser 5	Ser	Val	Phe	Ile	Phe 10	Pro	Pro	Ly:	s Pro	D Ly 15	rs Asp
5	Val	Leu	Thr	Ile 20	Thr	Leu	Thr	Pro	Lys 25	Val	Thr	Cys	s Val	l Vai	l Va	al Asp
10	Ile	Ser	Lys 35	Asp	Asp	Pro	Glu	Val 40	Gln	Phe	Ser	Trp	Phe 45	e Val	L As	sp Asp
15	Val	Glu 50	Val	His	Thr	Ala	Gln 55	Thr	Gln	Pro	Arg	G1u 60	ı Glı	ı Glı	n Ph	ne Asn
20	Ser 65	Thr	Phe	Arg	Ser	Val 70	Ser	Glu	Leu	Pro	Ile 75	Met	: His	s Glr	n As	sp Trp 80
25	Leu	Asn	Gly	Lys	Glu 85	Phe	Lys	Cys	Arg	Val 90	Asn	Ser	Ala	a Ala	a Ph 95	e Pro
30	Ala <210> 99 <211> 110	Pro	Ile	Glu 100	Lys	Thr	Ile	Ser	Lys 105	Thr	Lys					
35	<212> PRT <213> Mus <400> 99															
40	A 1		ro As	sn Le	u Lei 5	ı Gly	Gly	Pro	Ser	Val 10	Phe	Ile	Phe		Pro 15	Lys
45	I	le L	ys As	sp Va. 20	l Lei	ı Met	. Ile	Ser	Leu 25	Ser	Pro	Ile	Val	Thr 30	Cys	Val
	V	al Va	al As 35		l Sei	Glu	Asp	Asp 40	Pro	Asp	Val	Gln	Ile 45	Ser	Trp	Phe
50	V	al As	sn As O	n Va.	l Glı	ı Val	His 55	Thr	Ala	Gln	Thr	Gln 60	Thr	His .	Arg	Glu
55		sp Ty 5	yr As	n Se	r Thi	Leu 70	Arg	Val	Val	Ser	Ala 75	Leu	Pro	Ile	Gln	His 80
60	G	ln As	sp Tr	p Met	t Ser 85	Gly	Lys	Glu	Phe	Lys 90	Cys	Lys	Val		Asn 95	Lys
65	A	sp Le	eu Pr	o Ala) Ile	Glu	Arg	Thr 105	Ile	Ser	Lys	Pro	Lys 110		

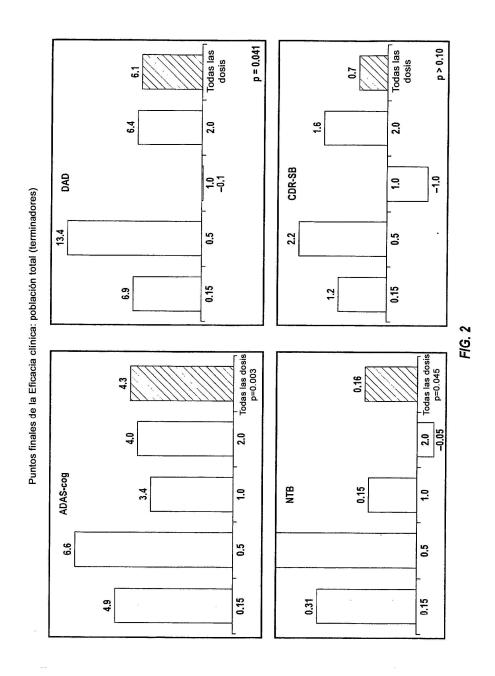
Reivindicaciones

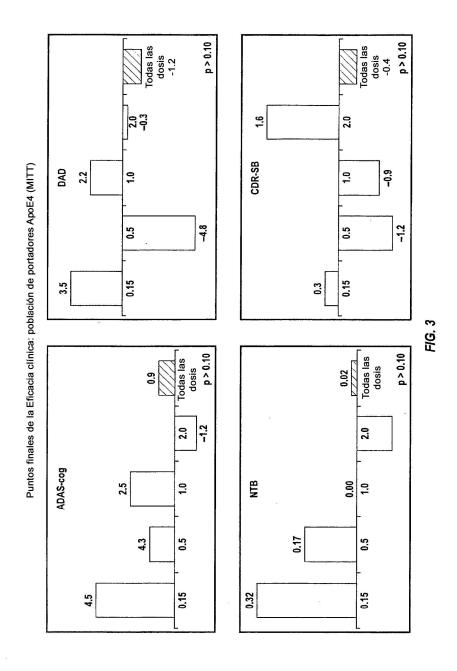
5

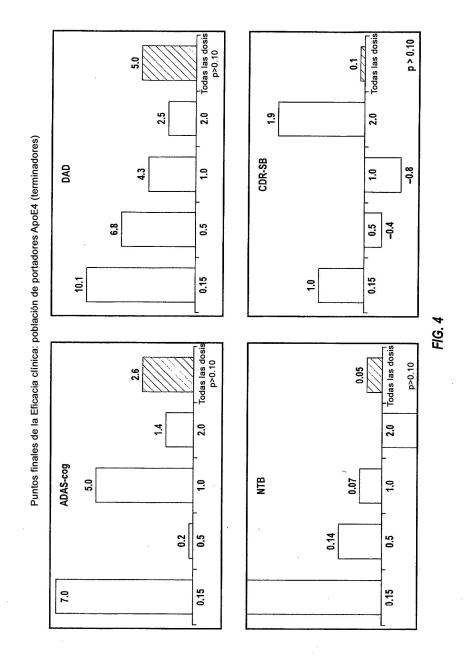
20

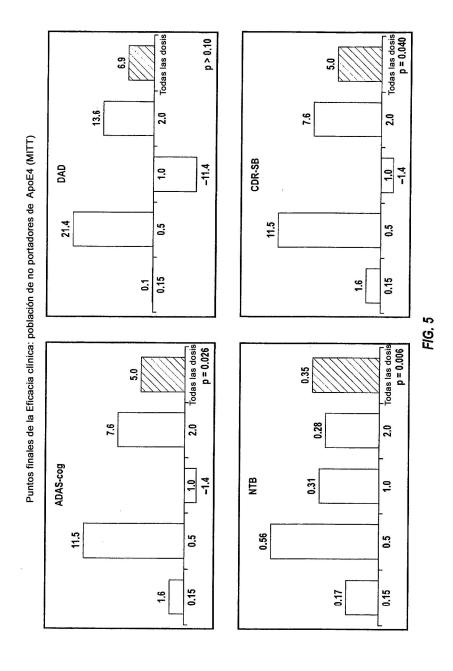
35

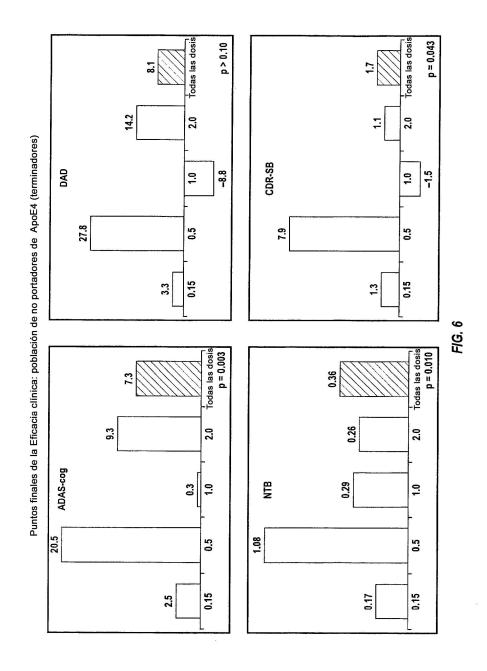

45


- 1. Una forma humanizada de un anticuerpo 3D6 que comprende una región constante de cadenas pesadas humanas con mutaciones L234A, L235A y G237A, donde las posiciones son enumeradas por el sistema de numeración EU, donde 3D6 es un anticuerpo producido por el acceso de ATCC número PTA- 5130.
- 2. El anticuerpo humanizado de la reivindicación 1, donde el isotipo es IgG1, IgG2 o IgG4, preferiblemente IgG1 humanos.
- 3. El anticuerpo humanizado de la reivindicación, que contiene una secuencia de región variable de cadena ligera madura de la identificación secuencia número: 2, y la secuencia de región variable de cadena pesada madura de la IDENTIFICACIÓN SECUENCIAL NÚMERO: 3, donde el anticuerpo tiene un isotipo IgG humano.
- 4. El anticuerpo humanizado de la reivindicación 1, que contiene una cadena ligera humanizada que tiene una secuencia de aminoácidos que comprende a la IDENTIFICACIÓN SECUENCIAL NÚMERO: 48 y una cadena pesada humanizada que tiene una secuencia de aminoácidos que comprende a la IDENTIFICACIÓN SECUENCIAL NÚMERO: 66 o 67.
 - 5. Una composición farmacéutica que contiene al anticuerpo humanizado de cualquiera de las reivindicaciones 1-4.
 - 6. Un ácido nucleico aislado que codifica al anticuerpo humanizado de cualquiera de las reivindicaciones 1-4, que tiene una secuencia que comprende a la IDENTIFICACIÓN SECUENCIAL NÚMERO: 68, siempre y cuando los nucleótidos 1-57 que codifican a la secuencia de señalización puedan estar o no presentes.
- 7. El anticuerpo humanizado de acuerdo a cualquiera de las reivindicaciones 1-4 para su utilización en un método para tratar o efectuar la profilaxis de una enfermedad amiloidogénica caracterizada por depósitos de amiloides de Aβ en el cerebro, en un paciente que tiene cero alelos ApoE4.
- 8. El anticuerpo humanizado de la reivindicación 7, para su uso en la reivindicación 7, donde el paciente tiene cero alelos ApoE4 y se le administra una dosis de 0.5-2 mg/kilogramos del anticuerpo.
 - 9. El anticuerpo humanizado de acuerdo a cualquiera de las reivindicaciones 1-4 para su uso en un método de tratamiento o de ejecución de profilaxis de una enfermedad amiloidogénica caracterizada por depósitos de amiloides de Aß en el cerebro, en un paciente que tiene uno o dos alelos ApoE4.
 - 10. El anticuerpo humanizado de la reivindicación 9, para el uso de la reivindicación 9, donde el paciente que tiene uno o dos alelos ApoE4 se le administra una dosis de 0.15-1 mg/kilogramos del anticuerpo.
- 11. El anticuerpo humanizado de cualquiera de las reivindicaciones 7 a 10, para la utilización de aquellas reivindicaciones, donde el paciente es monitoreado para detectar edemas vasogénicos, preferiblemente por medio de MRI.
 - 12. El anticuerpo humanizado de cualquiera de las reivindicaciones 7 a 11, para la utilización de esas reivindicaciones, donde la enfermedad amiloidogénica caracterizada por depósitos de amiloides de Aβ en el cerebro es la enfermedad de Alzheimer.
- 13. Un anticuerpo de acuerdo a cualquiera de las reivindicaciones 1 a 4, para su uso en el tratamiento o profilaxis de una enfermedad caracterizada por depósitos de amiloides en el cerebro en el paciente, y por lo menos un primer o segundo régimen, donde una medida de un número de copia de ApoE4 es utilizada para seleccionar a uno de los varios regímenes.


55


60


65



MMSE - MITT

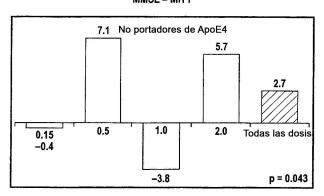


FIG. 7

MMSE - Análisis de terminadores

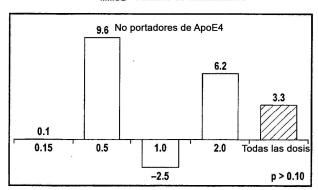
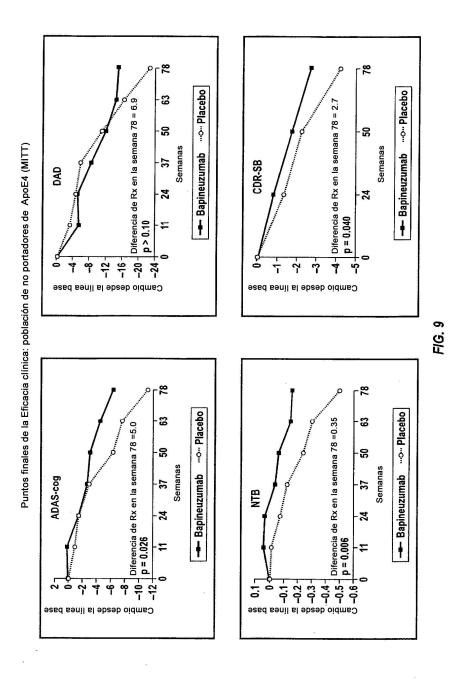
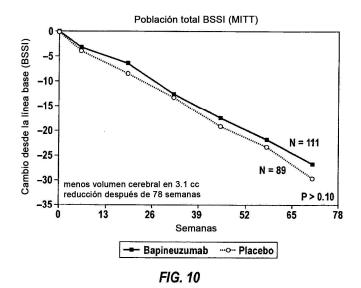




FIG. 8

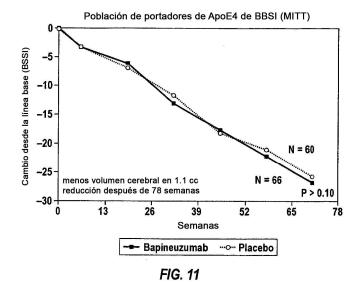
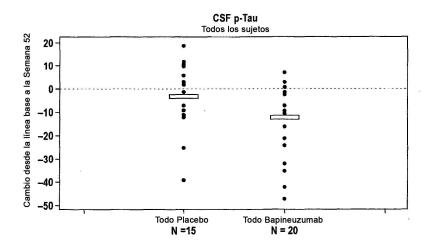
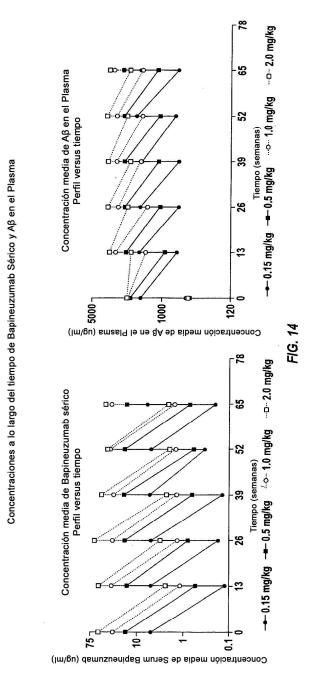
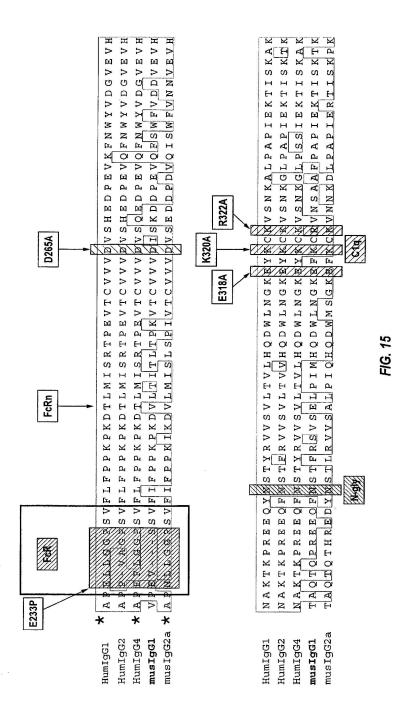
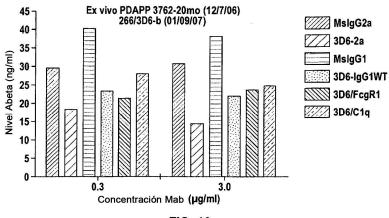
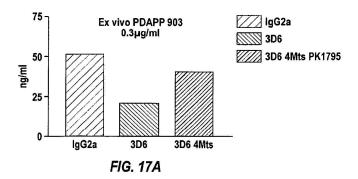
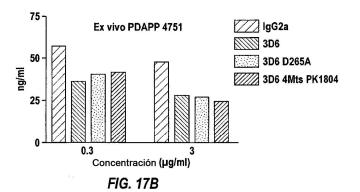
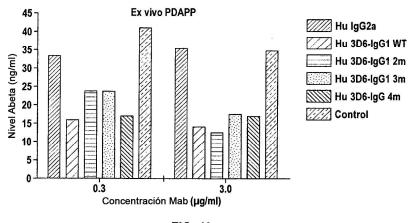
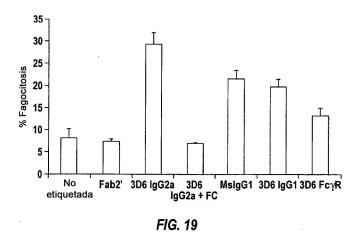
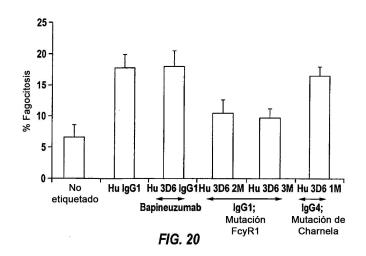
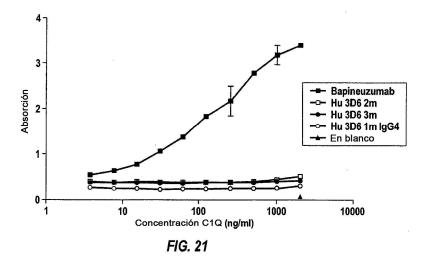
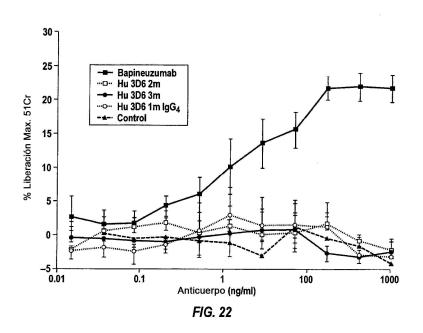


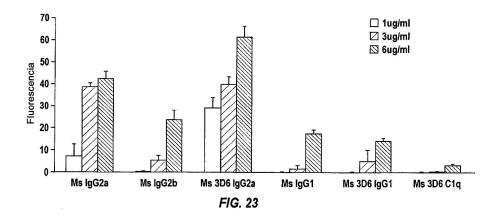
FIG. 12

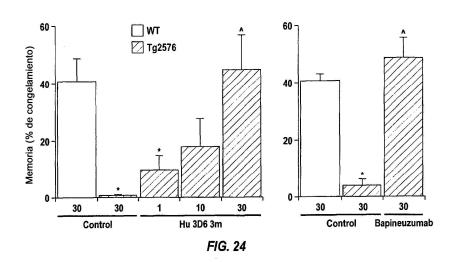






FIG. 13




FIG. 18



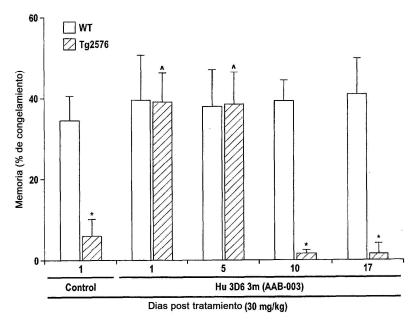
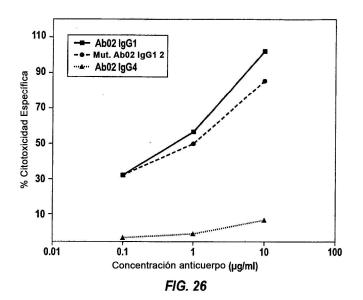
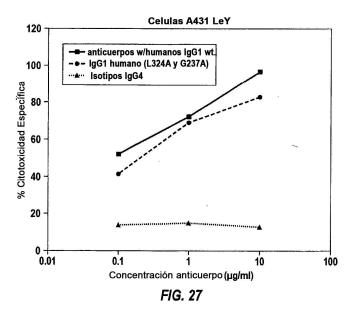




FIG. 25

