

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 548 690

51 Int. CI.:

C12Q 1/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 13.08.2007 E 12176466 (6)
 Fecha y número de publicación de la concesión europea: 22.07.2015 EP 2543739

(54) Título: Secuencias consenso de codificación de cánceres colorrectales humanos

(30) Prioridad:

11.08.2006 US 836944 P 06.09.2006 US 842363 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 20.10.2015

(73) Titular/es:

JOHNS HOPKINS UNIVERSITY (100.0%) 100 North Charles Street 5th Floor Baltimore, MD 21201, US

(72) Inventor/es:

SJOBLOM, TOBIAS; JONES, SIAN; PARSONS, D. WILLIAMS; WOOD, LAURA D.; LIN, JIMMY; BARBER, THOMAS; MANDELKER, DIANA; VOGELSTEIN, BERT; KINZLER, KENNETH W. y VELCULESU, VICTOR E

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Secuencias consenso de codificación de cánceres colorrectales humanos

5 Campo técnico de la invención

La presente invención está relacionada con el área de caracterización de cáncer. En particular, se refiere a cánceres de mama y colorrectal.

10 Antecedentes de la invención

15

20

25

30

35

55

60

65

Se acepta ampliamente que el cáncer humano es una enfermedad genética causada por una acumulación secuencial de mutaciones en oncogenes y genes supresores de tumor (1). Estas mutaciones específicas de tumor (es decir, somáticas) proporcionan pistas para los procesos celulares que subyacen en la tumorigénesis y han demostrado ser útiles para fines de diagnóstico y terapéuticos. Sin embargo, hasta ahora, solo se ha analizado una pequeña fracción de los genes y se desconoce el número y tipo de alteraciones responsables del desarrollo de tipos de tumores comunes (2). En el pasado, la selección de genes elegidos para análisis mutacionales en cáncer se guió por la información a partir de estudios de relación en familias propensas al cáncer, identificación de anomalías cromosómicas en tumores, o atributos funcionales conocidos de genes individuales o familias genéticas (2-4). La determinación de la secuencia del genoma humano acoplada con mejoras en la secuenciación y enfoques de bioinformática han hecho posible en la actualidad, en principio, el examen del genoma de células cancerígenas de una manera completa y sin sesgar. Tal enfoque no solamente proporciona el medio para descubrir otros genes que contribuyen a la tumorigénesis sino que también conduce a conocimientos mecanísticos que solamente son evidentes a través de una perspectiva biológica de los sistemas. Los análisis genéticos completos de los cánceres humanos podrían conducir al descubrimiento de un conjunto de genes, unidos entre sí a través de un fenotipo compartido, que apuntan a la importancia de los procesos o rutas celulares específicos.

Higinbotham *et al.*, (Activating Point Mutation in Ki-ras Codon 63 in a Chemically Induced Rat Renal Tumor, molecular Carcinogenesis 5: 136-139 (1992)) desvelan una mutación del codón 117 de KRAS en un tumor hepático de ratón. Stanley, (Molecular aspects of Chemical Carcinogenesis: The roles of oncogenes and tumor suppressor genes, Toxicology 96 (1995) 173-194) enseña que una mutación puntual en el Codón 117 puede activar el grupo de genes Ras.

En la técnica existe una necesidad continua de identificar genes y patrones de mutaciones genéticas útiles para la identificación y estadificación de cánceres en pacientes individuales.

Sumario de la invención

Se proporciona un método para el diagnóstico del cáncer colorrectal en un ser humano. Una mutación somática en el gen KRAS o su ARNm o proteína codificada, estando dicha mutación en el codón K117, se determina en una muestra de ensayo con respecto a una muestra normal del ser humano. La muestra se identifica como cáncer colorrectal si se determina la mutación somática.

Se proporciona un método para la estadificación de cánceres colorrectales para someter a ensayo agentes terapéuticos anticáncer candidatos o conocidos de acuerdo con la reivindicación 5.

Se proporciona otro método para la caracterización de un cáncer colorrectal en un ser humano de acuerdo con la reivindicación 8.

50 Breve descripción de las figuras

Fig. 1A y 1B. Esquema de Exploraciones de Descubrimiento y Validación de Mutación.

- Fig. 2. Frecuencia de mutación de grupos de genes *CAN*. Los genes *CAN* se agruparon por función usando grupos de Ontología Genética (GO), dominios INTERPRO, y bibliografía disponible. Las barras indican la fracción de tumores (35 de mama o 35 colorrectales) con al menos un gen mutado en el grupo funcional.
- Fig. 3. (Fig. S1) Frecuencias de mutación del codón. Barras abiertas, codones de CCDS (n = 7.479.318 en 13.023 genes); barras de color rojo, codones afectados por mutaciones de sustitución de bases en cánceres de mama (n = 789); barras de color azul, codones afectados por mutaciones de sustitución de bases en cánceres colorrectales (0 = 669).
- **Fig. 4.** (Fig. S2) Genes de CCDS excluidos del análisis. Ciento treinta y cuatro transcritos de 119 genes que se emparejaban muy de cerca de más de un locus genómico (círculo grande), y/o se localizaban en el cromosoma Y (círculo pequeño), se excluyeron del análisis.

- Fig. 5. (Tabla 1.) Sumario de mutaciones somáticas
- Fig. 6. (Tabla 2) Espectro de sustituciones de bases individuales
- 5 Fig. 7. (Tabla 3.) Clasificación funcional de genes CAN*
 - **Fig. 8.** (Tabla S1.) Cebadores usados para amplificación y secuenciación de PCR (página 1 de 1333 solamente; todas las secuencias de cebador están disponibles al público en un archivo que se puede descargar (1133427_som_tables.zip) en la página web de la revista *science* (www.sciencemag.org) con Material de Apoyo En Línea ubicado en la página web /cgi/content/full/sci; 1133427/DC1)
 - Fig. 9. (Tabla S2A.) Características de las muestras de cáncer colorrectal.
 - Fig. 10. (Tabla S2B.) Características de las muestras de cáncer de mama.
 - Fig. 11. (Tabla S3.) Distribución de mutaciones en cánceres individuales.
 - Fig. 12. (Tabla S4.) Mutaciones somáticas identificadas en cánceres de mama o colorrectales.
- Fig. 13. (Tabla S5.) Genes CAN de mama.

10

15

25

30

35

Fig. 14. (Tabla S6.) Genes CAN colorrectales.

Descripción detallada de la invención

Los inventores han desarrollado métodos para caracterizar cánceres colorrectales sobre la base de firmas genéticas.

Estas firmas comprenden uno o más genes que están mutados en un cáncer en particular. Las firmas se pueden usar como un medio de diagnóstico, de pronóstico, de identificación de metástasis, de estadificación para estudios farmacológicos, y para la asignación de un tratamiento apropiado.

De acuerdo con la presente invención, una mutación somática, se puede determinar sometiendo a ensayo ya sea un gen, ARNm (o ADNc derivado), o su proteína codificada. Se puede usar cualquier método conocido en la técnica para determinar una mutación somática. El método puede implicar la determinación de la secuencia de todo o parte de un gen, ADNc, o proteína. El método puede implicar reactivos específicos de mutación tales como sondas, cebadores, o anticuerpos. El método se puede basar en amplificación, hibridación, reacciones de anticuerpo-antígeno, extensión del cebador, etc. Se puede usar cualquier técnica o método conocidos en la técnica para determinar una característica basada en la secuencia.

- Las muestras para el ensayo pueden ser muestras tisulares de tejido colorrectal o fluidos corporales o productos que contienen células desprendidas o genes o ARNM o proteínas. Tales fluidos o productos incluyen heces, fluido intestinal. Preferentemente, para la muestra de ensayo y la muestra normal se usa el mismo tipo de tejido o fluido. Sin embargo, se sospecha que la muestra de ensayo tiene una posible anomalía neoplásica, mientras que no hay sospecha con respecto a la muestra normal.
- Las mutaciones somáticas se determinan mediante el hallazgo de una diferencia entre una muestra de ensayo y una muestra normal de un ser humano. Este criterio elimina la posibilidad de diferencias de línea germinal que confunden el análisis. Para el cáncer colorrectal, el gen (o ADNc o proteína) a someter a ensayo es KRAS. Éste y otros genes asociados con el cáncer colorrectal se muestran en la Fig. 14. (Tabla S6).
- 50 Una mutación somática en el codón K117 es informativa. Esta y otras mutaciones se muestran en la Fig. 12 (Tabla S4).
- Para someter a ensayo agentes terapéuticos candidatos, o que ya se han identificado, para determinar que pacientes y tumores serán sensibles a los agentes, se pueden usar una estadificación basándose en firmas. Se formarán uno o más grupos con una firma de mutación similar y el efecto del agente terapéutico en el grupo se compara con el efecto de los pacientes cuyos tumores no comparten la firma del grupo formado. El grupo de pacientes que no comparte la firma puede compartir una firma diferente o puede ser una población mixta de pacientes portadores de tumor cuyos tumores portan una diversidad de firmas.
- La eficacia se puede determinar mediante cualquier medio convencional conocido en la técnica. Se puede usar cualquier índice de eficacia. El índice puede ser esperanza de vida, periodos de remisión libre de enfermedad, contracción del tumor, parada del crecimiento tumoral, mejora de la calidad de vida, disminución de efectos secundarios, disminución del dolor, etc. Se puede usar cualquier medida útil de la salud y bienestar del paciente. Además, se puede realizar ensayo *in vitro* en células tumorales que tienen firmas particulares. Las células tumorales con firmas particulares también se pueden someter al ensayo en modelos animales.

Una vez que una firma se ha correlacionado con la sensibilidad o resistencia a un régimen terapéutico en particular, esa firma se puede usar para prescribir un tratamiento a un paciente. Por lo tanto, la determinación de una firma es útil para tomar decisiones terapéuticas. La firma también se puede combinar con otros hallazgos físicos o bioquímicos con respecto al paciente para llegar a una decisión terapéutica. No es necesario que una firma sea la única base para tomar una decisión terapéutica.

Un agente anticáncer asociado con una firma puede ser, por ejemplo, docetaxel, paclitaxel, topotecán, adriamicina, etopósido, fluorouracilo (5-FU), o ciclofosfamida. El agente puede ser un agente de alquilación (por ejemplo, mostazas de nitrógeno), antimetabolitos (por ejemplo, análogos de pirimidina), isótopos radiactivos (por ejemplo, fósforo y yodo), diversos agentes (por ejemplo, ureas sustituidas) y productos naturales (por ejemplo, alcaloides de la vinca y antibióticos). El agente puede ser alopurinol sódico, mesilato de dolasetrón, pamidronato disódico, etidronato, fluconazol, epoetina alfa, levamisol HCl, amifostina, granisetrón HCl, leucovorina calcita, sargramostim, dronabinol, mesna, filgrastim, pilocarpina HCI, acetato de octreótido, dexrazoxano, ondansetrón HCI, ondansetrón, busulfano, carboplatino, cisplatino, tiotepa, melfalán HCl, melfalán, ciclofosfamida, ifosfamida, clorambucilo, mecloretamina HCl, carmustina, lomustina, polifeprosán 20 con implante de carmustina, estreptozocina, doxorrubicina HCl, sulfato de bleomicina, daunirrubicina HCl, dactinomicina, citrato de daunorrubicina, idarrubicina HCI, plimicina, mitomicina, pentostatina, mitoxantrona, valrrubicina, citarabina, fosfato de fludarabina, floxuridina, cladribina, metotrexato, mercaptipurina, tioquanina, capecitabina, metiltestosterona, nilutamida, testolactona, bicalutamida, flutamida, anastrozol, citrato de toremifeno, fosfato de estramustina sódica, etinil estradiol, estradiol, estrógenos esterificados, estrógenos conjugados, acetato de leuprolida, acetato de goserelina, acetato de medroxiprogesterona, acetato de megestrol, levamisol HCl, aldesleuquina, irinotecán HCl, dacarbazina, asparaginasa, fosfato de etopósido, gemcitabina HCI, altretamina, topotecán HCI, hidroxiurea, interferón alfa-2b, mitotano, procarbazina HCI, tartrato de vinorelbina, L-asparaginasa de E. coli, L-asparaginasa de Erwinia, sulfato de vincristina, denileuquina diftitox, aldesleuquina, rituximab, interferón alfa-2a, paclitaxel, docetaxel, BCG vivo (intravesical), sulfato de vinblastina, etopósido, tretinoína, tenipósido, porfímero sódico, fluorouracilo, fosfato de betametasona sódica y acetato de betametasona, letrozol, factor de etopósido citrororum, ácido folínico, leucovorina cálcica, 5-fluorouricilo, adriamicina, citoxano, o diamino-dicloro-platino.

Las firmas de genes *CAN* de acuerdo con la presente invención se pueden usar para determinar una terapia apropiada para un individuo. Por ejemplo, una muestra de un tumor (por ejemplo, un tejido obtenido mediante un procedimiento de biopsia, tal como una biopsia con aguja) se puede obtener del individuo, tal como antes de administrar una terapia primaria. El perfil de expresión genética del tumor se puede determinar, tal como mediante una tecnología de matriz de ácidos nucleicos (o matriz proteica), y el perfil de expresión se puede comparar con una base de datos que correlaciona firmas con resultados de tratamientos. Otra información con respecto al ser humano (por ejemplo, edad, género, historia familiar, etc.) puede influir en una recomendación de tratamiento. Un proveedor de cuidados sanitarios puede tomar una decisión para administrar o prescribir un fármaco en particular basándose en la comparación de la firma del gen CAN del tumor e información en la base de datos. Algunos proveedores de cuidados sanitarios a modo de ejemplo incluyen doctores, enfermeras, y practicantes de enfermería. Los laboratorios de diagnóstico también pueden proporcionar una terapia recomendada basándose en firmas y otra información sobre el paciente.

Después del tratamiento con una terapia primaria para el cáncer, el paciente se puede supervisar para una mejora un empeoramiento del cáncer. Se puede tomar una muestra de tejido tumoral (tal como una biopsia) en cualquier etapa del tratamiento. En particular, se puede tomar una muestra de tejido tumoral después de la evolución del tumor, que se puede determinar mediante crecimiento tumoral o metástasis. Una firma de gen CAN se puede determinar, y uno o más agentes terapéuticos secundarios se pueden administrar para aumentar, o restaurar, la sensibilidad del tumor con respecto a la terapia primaria.

Las predicciones del tratamiento se pueden basar en firmas genéticas previas al tratamiento. Los agentes terapéuticos secundarios o posteriores se pueden seleccionar basándose en las evaluaciones posteriores del paciente y las últimas firmas del tumor. Por lo general, el paciente se supervisará para el efecto en la evolución del tumor.

Una intervención médica se debe seleccionar basándose en la identidad de la firma del gen CAN. Por ejemplo, los individuos se pueden clasificar en subpoblaciones de acuerdo con su genotipo. A continuación se pueden prescribir terapias farmacológicas específicas del genotipo. Algunas intervenciones médicas incluyen intervenciones que se practican ampliamente, así como intervenciones menos convencionales. Por lo tanto, las intervenciones médicas incluyen, pero no se limitan a, procedimientos quirúrgicos, administración de fármacos en particular o dosificaciones de fármacos en particular (por ejemplo, moléculas pequeñas, proteínas sometidas a bioingeniería, y fármacos basados en genes tales como oligonucleótidos antisentido, ribozimas, sustituciones genéticas, y vacunas basadas en ADN o ARN), incluyendo fármacos aprobados por la FDA, fármacos aprobados por la FDA usados para fines fuera de los indicados, y agentes experimentales. Otras intervenciones médicas incluyen terapia nutricional, regímenes holísticos, acupuntura, meditación, estimulación eléctrica o magnética, remedios osteopáticos, tratamientos quiroprácticos, tratamientos naturopáticos, y ejercicio.

65

5

10

15

20

25

30

35

40

45

50

55

60

A partir del análisis mutacional completo del cáncer humano de los inventores han surgido cuatro puntos importantes. En primer lugar, en cánceres de mama y colorrectal existe un número relativamente grande de genes *CAN* sin caracterizar anteriormente y estos genes se pueden descubrir mediante enfoques sin sesgar tales como los usados en el estudio de los inventores. Estos resultados apoyan la idea de que se demostrará que los análisis mutacionales a gran escala de otros tipos de tumor serán útiles para identificar genes que anteriormente no se sabía que estaban relacionados con el cáncer humano.

En segundo lugar, los resultados de los inventores sugieren que el número de sucesos mutacionales que se producen durante la evolución de tumores humanos desde un estadio benigno a uno metastásico es mucho mayor de lo que se pensaba anteriormente. Los inventores encontraron que los cánceres de mama y colorrectal albergan un promedio de 52 y 67 mutaciones somáticas no sinónimas en genes de CCDS, de los cuales un promedio de 9 y 12, respectivamente, se encontraban en genes *CAN*. Fig. 11(Tabla S3). Estos datos se pueden usar para calcular el número total de mutaciones no sinónimas en genes de codificación que aparecen en un cáncer "habitual" a través de rondas secuenciales de mutación y selección. Suponiendo que la prevalencia de la mutación en genes que todavía no se han secuenciado es similar a la de los genes que ya se han analizado, los inventores calculan que existen 81 y 105 genes mutantes (promedio, 93) en los cánceres de colorrectal o de mama habituales, respectivamente. De estos, se esperaría que un promedio de 14 y 20, respectivamente, fueran genes *CAN*. Además de los genes *CAN*, había otros genes de CCDS mutados que probablemente se habían seleccionado durante la tumorigénesis pero que no estaban alterados a una frecuencia lo suficientemente elevada como para garantizar la confianza en su interpretación.

Un tercer punto que surge del estudio de los inventores es que los cánceres de mama y colorrectal muestran diferencias sustanciales en sus espectros de mutación. En los cánceres colorrectales, anteriormente se ha observado un sesgo hacia las transiciones de C:G a T:A en los sitios 5'-CpG-3' en TP53 (42). Los resultados de los inventores sugieren que este sesgo es amplio en el genoma en lugar de representar una selección para ciertos nucleótidos dentro de TP53. Este sesgo puede reflejar una metilación más extensa de dinucleótidos 5'-CpG-3' en cánceres colorrectales que en cánceres de mama o el efecto de agentes carcinógenos dietéticos (43, 44). En los cánceres de mama, la fracción de muchas en los sitios 5'-TpC-3' era mucho más elevada en los genes de CCDS examinados en este estudio que la informada anteriormente para TP53 (37). Se ha observado que una pequeña fracción de tumores de mama puede tener un sistema de reparación defectuoso, dando como resultado mutaciones en 5'-TpC-3' (15). Los estudios de los inventores confirman que algunos cánceres de mama tienen fracciones más elevadas de mutaciones en 5'-TpC-3' que otros, pero también muestran que las mutaciones en este dinucleótido son generalmente más frecuentes que en los cánceres colorrectales (Figs. 6 y 11; Tablas 2 y S3).

Por último, los resultados de los inventores revelan que existen diferencias sustanciales en el panel de genes CAN mutados en los dos tipos de tumor (Fig. 7; Tabla 3). Por ejemplo, se mutaron genes de metaloproteinasa en una gran fracción de cánceres colorrectales pero solamente en una fracción pequeña de cánceres de mama (Figs. 13 y 14; Tablas S5 y S6). Los genes reguladores de la transcripción se mutaron en una fracción elevada de tumores tanto de mama como colorrectales, pero los genes específicos afectados variaban de acuerdo con el tipo de tumor (Fig. 7; Tabla 3). También había una heterogeneidad considerable entre los genes CAN mutados en diferentes muestras de ensayo de tumor derivadas del mismo tipo de tejido (Figs. 12-14; Tablas S4, S5, y S6). Se ha documentado que prácticamente todos los atributos bioquímicos, biológicos, y clínicos son heterogéneos dentro de los cánceres humanos del mismo subtipo histológico (45). Los datos de los inventores sugieren que las diferencias en los genes CAN mutados en diversos tipos de tumor podrían representar una parte principal de esta heterogeneidad. Esto podría explicar por qué ha sido tan difícil correlacionar el comportamiento, pronóstico, o respuesta a la terapia de tumores sólidos comunes con la presencia o ausencia de una sola alteración genética; tales alteraciones reflejan solamente un pequeño componente de cada composición mutacional del tumor. Por otro lado, diversos genes que contribuyen al cáncer a menudo son funcionalmente equivalentes, lo que influye en el crecimiento celular neto a través de la misma ruta molecular (1). Por lo tanto, las mutaciones TP53 y MDM2 ejercen efectos comparables en las células, al igual que lo hacen las mutaciones en RB1, CDKN2A (p16), CCND1 y CDK4. Será de interés determinar si un número limitado de rutas incluyen la mayoría de los genes CAN, una posibilidad coherente con las formaciones de grupos en la Fig. 2 y en la Fig. 7 (Tabla 3).

Al igual que una versión preliminar de cualquier proyecto del genoma, el estudio de los inventores tiene limitaciones. En primer lugar, solamente se analizaron los genes presentes en la versión actual de CCDS. Hay ~ 5000 genes para los que existe excelente evidencia de apoyo, pero aún no están incluidos en la base de datos de CCDS (46). En segundo lugar, el estudio de los inventores no fueron capaces de secuenciar de forma satisfactoria ~ 10 % de las bases dentro de las secuencias codificantes de los 13.023 genes de CCDS (equivalente a 1.302 genes sin secuenciar). En tercer lugar, aunque era de esperar que la exploración de los inventores identificara los tipos más comunes de mutaciones encontradas en algunos tipos de cáncer, algunas alteraciones genéticas, incluyendo mutaciones en genes no codificantes, mutaciones en regiones no codificantes de genes de codificación, supresiones o inserciones relativamente grandes, amplificaciones, y traslocaciones, no se pudieron detectar con los métodos usados por los inventores. Los futuros estudios que usan una combinación de diferentes tecnologías, tales como las previstas por el Proyecto Atlas del Genoma del Cáncer (TCGA) (47), serán capaces de abordar estas cuestiones.

65

5

10

15

20

25

30

35

40

45

50

55

60

Los resultados de este estudio informan de los futuros esfuerzos para secuenciar el genoma del cáncer en varios aspectos importantes.

5

10

15

20

25

30

35

40

45

50

55

60

65

- (i) Un desafío técnico importante de estos estudios será discernir mutaciones somáticas del gran número de alteraciones en secuencias identificadas. En el estudio de los inventores, se detectaron 557.029 alteraciones de secuencia no sinónimas en la Exploración del Descubrimiento, pero después de análisis posteriores solamente un 0,23 % de las mismas se identificaron como mutaciones somáticas legítimas (Fig. 1). Menos de un 10 % de alteraciones no sinónimas eran polimorfismos conocidos; muchas del resto eran variantes de la línea germinal poco comunes o artefactos de secuencia que no eran reproducibles. La inclusión de las muestras normales emparejadas y la secuenciación de ambas hebras de cada producto de PCR podrían reducir los falsos positivos en la Exploración del Descubrimiento, pero aumentaría el coste de la secuenciación en cuatro veces. Aunque los métodos de secuenciación desarrollados recientemente podrían reducir el coste de tales estudios en el futuro (48), las tasas de error más elevadas de estos enfoques pueden dar como resultado una proporción incluso menor de mutaciones somáticas de buena fe a supuestas alteraciones.
- (ii) Otro problema técnico es que el diseño cuidadoso de cebadores es importante para eliminar artefactos de secuencia debido a la amplificación y secuenciación involuntaria de genes relacionados. Los pares de cebadores que dieron como resultado amplificación y secuenciación exitosa representan un recurso valioso en este sentido. Incluso con cebadores bien diseñados, es esencial examinar cualquier mutación observada para asegurar que no se encuentra como una variante normal en un gen relacionado.
- (iii) Aunque es probable que los estudios de otros tipos de tumores sólidos también identificarán un gran número de mutaciones somáticas, será importante aplicar enfoques rigurosos para identificar las mutaciones que se han seleccionado durante la tumorigénesis. Las técnicas estadísticas, tales como las usadas en este estudio o las que se describen en Greenman et al. (11), pueden proporcionar pruebas sólidas para la selección de genes mutados. Es probable que estos enfoques mejoren a medida que se acumulan más datos de secuenciación genómica del cáncer a través del Proyecto Atlas del Genoma del Cáncer (47) y otros proyectos que se están realizando en la actualidad.
- (iv) Ha habido mucha discusión acerca de qué genes deberían ser el foco de los futuros esfuerzos de secuenciación. Los resultados de los inventores sugieren que muchos genes no implicados previamente en el cáncer están mutados a niveles significativos y pueden proporcionar nuevas pistas sobre la patogénesis. A partir de estos datos, parecería que las exploraciones sin sesgar a gran escala de genes de codificación pueden ser más informativas que las exploraciones basadas en criterios previamente definidos.
 - (v) Los resultados también plantean preguntas sobre el número óptimo de los tumores de cualquier tipo que se debería evaluar en un estudio del genoma del cáncer. El estudio de los inventores se diseñó para determinar la naturaleza y tipos de alteraciones presentes en un cáncer de mama o colorrectal "promedio" y para descubrir genes mutados a frecuencias razonablemente elevadas. El poder de los inventores para detectar genes mutados en más de un 20 % de los tumores de un tipo determinado era de un 90 %, pero solamente un 50 % de los genes mutados en un 6 % de los tumores se habría descubierto. Para detectar los genes mutados en un 6 % o un 1 % de los tumores con > 99 % de probabilidad en una Exploración del Descubrimiento sería necesaria la determinación de la secuencia de al menos 75 o 459 tumores, respectivamente. Aunque será imposible detectar todas las mutaciones que se pueden producir en los tumores, las estrategias que identificarían los más importantes a un coste asequible se pueden establecer sobre la base de los datos y análisis presentados en el presente documento.
 - (vi) Por último, las secuencias de todos los genomas del cáncer, incluyendo regiones intergénicas, se podrán obtener. Los estudios de los inventores demuestran las dificultades inherentes en la determinación de la importancia de las mutaciones somáticas, incluso las que alteran la secuencia de aminoácidos de los genes altamente anotados y bien estudiados. El establecimiento de la importancia de las mutaciones en regiones no codificantes del genoma probablemente será mucho más difícil. Hasta que haya disponibilidad de nuevas herramientas para la solución de este problema, es probable que los análisis del cáncer centrados en genes sean más útiles.

Los resultados de los inventores proporcionan un gran número de oportunidades futuras de investigación en cáncer humano. Para la genética, será de interés dilucidar el momento y el alcance de las mutaciones de genes *CAN* en cánceres de mama y colorrectal, si estos genes están mutados en otros tipos de tumores, y si las variantes de línea germinal en los genes *CAN* están asociadas con predisposición al cáncer. Para la inmunología, el hallazgo de que los tumores contienen un promedio de ~ 90 sustituciones de aminoácidos diferentes que no están presentes en ninguna célula normal puede proporcionar nuevos enfoques para generar inmunidad antitumoral. Para la epidemiología, la diferencia notable en los espectros de mutación de cánceres de mama y colorrectal sugiere la existencia de agentes carcinógenos específicos de órgano. Para la biología del cáncer, es evidente que ningún modelo de cáncer animal o *in vitro* actual recapitula el paisaje genético de un tumor humano real. La comprensión y la captura de este paisaje y su heterogeneidad pueden proporcionar modelos que imiten con mayor éxito la enfermedad humana. Para la epigenética, es posible que un subconjunto de genes *CAN* también se pueda ver

desregulado en los tumores a través de cambios en la cromatina o metilación del ADN en lugar de a través de la mutación. Para el diagnóstico, los genes de Can definen un subconjunto relativamente pequeño de genes que podrían ser útiles como marcadores para la neoplasia. Por último, algunos de estos genes, en particular los que se encuentran en la superficie celular o los que tienen actividad enzimática, pueden llegar a ser buenos objetivos para el desarrollo terapéutico.

La divulgación mencionada anteriormente describe en general la presente invención. Una comprensión más completa se puede obtener por referencia a los siguientes ejemplos específicos que se proporcionan en el presente documento solamente con fines de ilustración, y no pretenden limitar el alcance de la invención.

Ejemplos

10

15

20

25

45

50

55

60

65

Para comenzar el estudio sistemático del genoma del cáncer, los inventores han examinado una fracción principal de genes humanos en dos tipos de tumores comunes, cánceres de mama y colorrectal. Estos cánceres eligieron para su estudio debido a su significancia clínica sustancial en todo el mundo: en conjunto, representan ~2,2 millones de diagnósticos de cáncer (20 % del total) y ~940.000 muertes por cáncer cada año (14 % del total) (5). Para la evaluación genética de estos tumores, los inventores se centraron en conjunto genes que codifican proteínas, denominados las secuencias consenso de codificación (CCDS) que representan el gen más altamente conservado disponible en la actualidad (6). La base de datos de CCDS contiene genes de codificación de proteínas de longitud completa que se han definido mediante conservación manual extensa y procesamiento informático y tienen anotaciones genéticas que son idénticas entre bases de datos de referencia.

Los objetivos de este estudio eran de carácter triple: (i) desarrollar una estrategia metodológica para realizar análisis totalmente genómico es de genes del cáncer en tumores humanos; (ii) determinar el espectro y alcance de mutaciones somáticas en tumores humanos de tipos histológicos similares y diferentes; e (iii) identificar nuevos genes del cáncer y rutas moleculares que podrían conducir a mejoras en diagnóstico o terapia.

EJEMPLO 1 - Exploración del descubrimiento de mutación de cáncer

30 La etapa inicial hacia el logro de estos objetivos fue el desarrollo de métodos para la identificación de alto rendimiento de mutaciones somáticas en cánceres. Estos métodos incluían aquellos para el diseño del cebador, reacción en cadena de la polimerasa (PCR), secuenciación y análisis mutacional (Fig. 1). El primer componente implicaba la extracción de todas las secuencias de codificación de proteína de los genes de CCDS. Un total de 120.839 exones no redundantes y secuencias intrónicas adyacentes se obtuvieron de 14.661 transcripciones 35 diferentes en CCDS. Estas secuencias se usaron para diseñar cebadores para la amplificación por PCR y secuenciación de exones y sitios de corte y empalme advacentes. Los cebadores se diseñaron usando una serie de criterios para asegurar la amplificación robusta y secuenciación de regiones de molde (7). Aunque la mayoría de los exones se podían amplificar en una sola reacción de PCR, los inventores encontraron que los exones con más de 350 pb se amplificaban de forma más eficaz como múltiples amplicones de solapamiento. Un miembro de cada par 40 de cebadores de PCR se adaptó con una secuencia de cebador universal para posteriores reacciones de secuenciación. Un total de 135.483 pares de cebadores que incluyen ~ 21 Mb de secuencia genómica se diseñaron de este modo (Fig 8; Tabla S1).

Once líneas celulares o xenoinjertos de cada tipo de tumor (carcinomas de mama y colorrectales) se usaron en la Exploración del Descubrimiento Figs. 9-10; Tablas S2A y S2B). Dos muestras normales de emparejamiento se usaron como controles para ayudar a identificar variaciones de secuencia normal y artefactos de secuenciación específicos de amplicón tales como los asociados con las regiones ricas en GC. Un total de ~3 millones de productos de PCR se generaron y se secuencian directamente, dando como resultado 465 Mb de secuencia de tumor.

Los datos de la secuencia se ensamblaron para cada amplicón y se evaluaron para la calidad dentro de la región diana usando un software diseñado específicamente para esta finalidad (7). La región diana de cada exón incluía todas las bases de codificación así como las cuatro bases intrónicas en ambos de los extremos 5' y 3' que sirven como los principales sitios de reconocimiento de corte y empalme. Para que un amplicón se considere analizado de forma satisfactoria, los inventores necesitaron que ≥ 90 % de bases en la región diana tuvieran una puntuación de calidad Phred (tímida como - 10[log₁₀ (error por base sin procesar)]) de al menos 20 en al menos tres cuartos de las muestras de tumor analizadas (8). Este corte de calidad se eligió para proporcionar una alta sensibilidad para la detección de mutaciones a la vez que se reducen los falsos positivos al mínimo. Usando estos criterios, un 93 % de los 135.483 amplicones y un 91 % de las bases totales dirigidas en CCDS se analizaron de forma satisfactoria para alteraciones potenciales.

El examen de trazas de secuencia de estos amplicones reveló un total de 816.986 cambios de nucleótidos supuestos. Como la gran mayoría de los cambios que no influían en la secuencia de aminoácidos (es decir, sustituciones sinónimas o silenciosas) probablemente iban a ser no funcionales, estos cambios no se analizaron adicionalmente. Los 557.029 cambios restantes podrían representar variantes de la línea germinal, artefactos de PCR o secuenciación, o mutaciones somáticas de buena fe. Se usaron varias medidas bioinformáticas y

experimentales para distinguir entre estas posibilidades. En primer lugar, se retiró cualquier alteración que también estuviera presente en cualquiera de las dos muestras normales incluidas en la Exploración del Descubrimiento, ya que era probable que estas representaran polimorfismos comunes de la línea germinal o artefactos de secuencia. En segundo lugar, como se esperaría que estas dos muestras normales de control contuvieran solamente un subconjunto de variantes conocidas, también se retiró cualquier cambio correspondiente a un polimorfismo de la línea germinal validado encontrado en bases de datos de polimorfismo de un solo nucleótido (SNP) (7). Por último, la traza de secuencia de cada alteración potencial se inspeccionó visualmente para eliminar las determinaciones de falsos positivos en el análisis automatizado. La combinación de estos esfuerzos de datos de análisis de datos era eficaz, eliminando ~96 % de las alteraciones potenciales y dejando 29.281 para un examen más detallado (Fig. 1).

10

15

20

25

30

35

40

5

Para garantizar que las mutaciones observadas no se produjeron en forma de artefacto durante las etapas de PCR o secuenciación, las regiones que las contienen se volvieron a amplificar y secuenciar independientemente en los tumores correspondientes. Esta etapa eliminó 9.295 alteraciones. Las regiones que contienen las supuestas mutaciones se secuencian a continuación en muestras de ADN normal emparejado para determinar las mutaciones eran realmente somáticas: se observó que 18.414 cambios estaban presentes en la línea germinal de estos pacientes, lo que representa variantes no anotadas en la actualidad en bases de datos de SNP, y se excluyeron. Como una etapa final, las 1.572 supuestas mutaciones somáticas restantes se examinaron atentamente *in silico* para asegurar que las alteraciones no surgían de una de secuenciación dirigida de forma errónea de regiones altamente relacionadas que se producen en cualquier otra parte en el genoma (7). Puede parecer que algunas alteraciones en tales regiones duplicadas son somáticas cuando existe pérdida de uno o ambos alelos de la región diana en el tumor y cuando los cebadores seleccionados coinciden estrechamente y por lo tanto amplifican zonas similares del genoma. Se excluyó un total de 265 cambios en regiones estrechamente relacionadas de esta manera, dando como resultado un total de 1.307 mutaciones somáticas confirmadas en 1.149 genes (Fiq 5; Tabla 1).

EJEMPLO 2 - Exploración de validación

Para evaluar la prevalencia y espectro de mutaciones somáticas en estos 1.149 genes, los inventores determinaron su secuencia en tumores adicionales del mismo tipo histológico (Figs. 1, 9, 10; Tablas S2A y S2B). Los genes mutados en al menos un tumor de mama o colorrectal en la Exploración del Descubrimiento se analizaron en 24 tumores de mama o colorrectales adicionales, respectivamente. Este esfuerzo implicaba 453.024 reacciones de PCR y secuenciación adicionales, incluyendo 77 Mb de ADN tumoral. Se identificaron un total de 133.693 supuestos cambios en la Exploración del Descubrimiento. Algunos métodos similares a los usados en la Exploración del Descubrimiento se usaron para excluir cambios silenciosos, variantes de la línea germinal conocidas y novedosas, falsos positivos que surgen de PCR o artefactos de secuenciación, y cambios aparentes que se debían probablemente a la coamplificación de genes altamente relacionados. Además, cualquier cambio correspondiente a variantes de la línea germinal no encontrados en bases de datos de SNP pero identificados en la Exploración del Descubrimiento se excluyeron. Las regiones que contienen los 4.948 cambios restantes se volvieron a amplificar y se volvieron a secuenciar en los tumores correspondientes (para asegurar la reproducibilidad) y en el tejido normal emparejado para determinar si eran somáticas. Una cantidad adicional de 365 mutaciones somáticas en 236 genes se identificaron de este modo. En total, se identificaron 921 y 751 mutaciones somáticas en cánceres de mama y colorrectales, respectivamente (Fig. 1, 5, y 12; Tablas 1 y S4).

EJEMPLO 3 - Espectro de mutación

50

55

60

45

La gran mayoría de las 1.672 mutaciones observadas en las Exploraciones de Descubrimiento o Validación eran sustituciones de una sola base: un 81 % de las mutaciones eran de cambio de sentido, un 7 % eran sin sentido, y un 4 % eran sitios de corte y empalme alterados (Fig. 5, Tabla 1.). El 8 % restante eran inserciones, supresiones y duplicaciones que varían de uno a 110 nucleótidos de longitud. Aunque la fracción de mutaciones que eran sustituciones de una sola base era similar en los cánceres de mama y colorrectales, los contextos de espectro y de nucleótidos de las mutaciones de sustitución eran muy diferentes entre los dos tipos de tumores. La más llamativa de estas diferencias se produjo en los pares de bases de C:G: un 59 % de las 696 mutaciones de cáncer colorrectal eran transiciones de C:G a T:A mientras que solamente un 7 % eran transversiones de C: G a G: C (Figs. 6 y 11; Tablas 2 y S3). Por el contrario, solamente un 35 % de las mutaciones en cánceres de mama eran transiciones de C:G a T:A, mientras que un 29 % eran transversiones de C:G a G:C. Además, una fracción grande (44 %) de las mutaciones en cánceres colorrectales se encontraban en los sitios de dinucleótidos 5'-CpG-3' pero solamente un 17 % de las mutaciones en cánceres de mama se producían en tales sitios. Esta preferencia por 5'-CpG-3' conducía a un exceso de mutaciones no sinónimas dando como resultado cambios de restos de arginina en cánceres colorrectales, aunque no en cánceres de mama (Fig. S1). Por el contrario, un 31 % de las mutaciones en cánceres de mama se producía en los sitios 5'-TpC-3' (o en sitios de 5'-GpA-3' complementarios), mientras que solamente un 11 % de las mutaciones en cánceres colorrectales se producía en estos sitios de dinucleótidos. Las diferencias señaladas anteriormente eran altamente significativas (P < 0,0001) (7) y tienen implicaciones importantes para los mecanismos que subyacen a la mutagénesis en los dos tipos de tumores.

EJEMPLO 4- Distinción entre mutaciones pasajeras y no pasajeras

Las mutaciones somáticas en tumores humanos pueden surgir ya sea a través de la selección de alteraciones funcionalmente importantes a través de su efecto en el crecimiento celular neto o a través de la acumulación de alteraciones "pasajeras" no funcionales que surgen durante la frondas repetidas de división celular en el tumor o en su célula madre progenitora. A la vista de las tasas relativamente bajas de mutación en células cancerígenas humanas (9, 10), generalmente no es necesaria una distinción entre mutaciones seleccionadas y pasajeras cuando el número de genes y tumores analizados es pequeño. En estudios a gran escala, sin embargo, estas distinciones son de suma importancia (11, 12). Por ejemplo, se ha calculado que las mutaciones pasajeras no sinónimas están presentes a una frecuencia no superior a ~1,2 por Mb de ADN en cánceres de mama o de colon (13-15). Dado que los inventores evaluaron 542 Mb de ADN tumoral, los inventores por lo tanto habrían esperado observar -650 mutaciones pasajeras. En realidad los inventores observaron 1.672 mutaciones (Fig. 5; Tabla 1), muchas más de lo que se habría predicho que produciría al azar ($P < 1 \times 10^{-10}$) (7). Además, la frecuencia de mutaciones en la Exploración de Validación era significativamente mayor que en la Exploración del Descubrimiento (5,8 frente a 3,1 mutaciones por Mb, P < 1 x 10⁻¹⁰, Fig. 5; Tabla 1). Las mutaciones en la Exploración de Validación también se enriquecieron para cambios en sitios sin sentido, de inserción, supresión, duplicación, y corte y empalme en comparación con la Exploración del Descubrimiento; se esperaría que cada uno de éstos tuviera un efecto funcional en las proteínas codificadas.

20 Para distinguir genes que probablemente contribuyen a la tumorigénesis de aquellos en los que las mutaciones pasajeras se produjeron por casualidad, los inventores excluyeron primero los genes que no estaban mutados en la Exploración de Validación. A continuación, los inventores desarrollaron métodos estadísticos para calcular la probabilidad de que el número de mutaciones un gen dado fuera mayor del esperado a partir de la tasa de mutación de fondo. Para cada gen, este análisis incorporaba el número observado de alteraciones somáticas en cualquiera de la Exploración del Descubrimiento o de Validación, el número de tumores estudiados, y el número de nucleótidos 25 que se analizaron satisfactoriamente (tal como se indica con el número de bases con puntuaciones de calidad de Phred ≥ 20). Dado que las frecuencias de mutación variaban con el tipo de nucleótido y el contexto y eran diferentes en cánceres de mama con respecto a colorrectales (Fig. 6; Tabla 2), estos factores se incluyeron en los cálculos. El rendimiento de este análisis era una puntuación de prevalencia de mutación de cáncer (CaMP) para cada gen 30 analizado. La puntuación de CaMP refleja la probabilidad de que el número observado de mutaciones realmente en un gen sea superior de lo que se esperaba que se fuera a observar por casualidad dada la tasa de mutación de fondo; su derivación se basa en principios que se describen en el Material de Apoyo En Línea. El uso de la puntuación de CaMP para el análisis de mutaciones somáticas es análogo al uso de la puntuación de LOD para análisis de unión en situaciones genéticas familiares. Por ejemplo, se predice que un 90 % de los genes con 35 puntuaciones de CaMP > 1,0 tienen frecuencias de mutación más elevadas que la frecuencia de mutación del fondo.

EJEMPLO 5 - Genes cancerígenos candidatos

10

15

55

60

65

Una lista completa de las mutaciones somáticas identificadas en este estudio se proporciona en la Fig. 12; Tabla S4.

Se consideró que los genes validados con puntuaciones de CaMP superiores a 1,0 eran genes <u>can</u>cerígenos <u>can</u>didatos (genes *CAN*). Por lo tanto, la combinación de validación experimental y el cálculo estadístico proporcionaron cuatro como todos anidados de genes: de 13.023 genes evaluados, 1.149 estaban mutados, 242 estaban validados, y 191 eran genes *CAN*. Entre estos, era más probable que los genes *CAN* se hubieran sometido a selección mutacional durante la tumorigénesis. Había 122 y 69 genes *CAN* identificados en cánceres de mama y colorrectales, respectivamente (Figs. 13 y 14; Tablas S5 y S6). Los cánceres de mama individuales examinados en la Exploración del Descubrimiento albergaban un promedio de 12 (que varía de 4 a 23) genes *CAN* mutantes mientras que el número promedio de genes *CAN* en cánceres colorrectales era de 9 (que varía de 3 a 18) (Fig. 11; Tabla S3). Curiosamente, cada muestra de ensayo de cáncer de un tipo de tumor dado lleva su propia firma distinta mutacional diferente de gen *CAN*, ya que ningún cáncer presentaba más de seis genes CAN mutantes en común con otros cánceres (Figs. 12-14; Tablas S4, S5, y S6).

Los genes CAN se pudieron dividir en tres telas: (a) genes que anteriormente se había observado que estaban mutacionalmente alterados en cánceres humanos; (b) genes en los que no se habían descubierto mutaciones previas en cánceres humanos pero se habían unido al cáncer a través de estudios funcionales; y (c) genes sin conexiones fuertes previas a neoplasia.

(a) La reidentificación de genes que anteriormente se había mostrado que estaban mutados somáticamente en cánceres representaba una validación crítica del enfoque usado en este estudio. Se encontró que todos los genes de CCDS que anteriormente se había mostrado que estaban mutados en > 10 % de cualquiera de los cánceres de mama o colorrectales eran genes CAN en el estudio actual. Estos incluían TP53 (2), APC (2), KRAS (2), SMAD4 (2), y FBXW7 (CDC4) (16) (Figs. 12-14; Tablas S4, S5 y S6). Además, los inventores identificaron mutaciones en genes cuya prevalencia de mutación en cánceres esporádicos era bastante baja. Estos genes incluían EPHA3 (17), MRE11A (18), NF1 (2), SMAD2 (19,20), SMAD3 (21), TCF7G2 (TCF4) (22), BRCA1 (2) y TGFBRII (23). Los inventores también detectaron mutaciones en genes que anteriormente se había encontrado que estaban alterados en tumores humanos pero no en el mismo tipo de tumor identificado en este estudio. Estos incluían la proteína de unión a nucleótido guanina, GNAS alfa estimulante (24), proteína KEAP1 asociada

a ECH de tipo kelch (25), protooncogén RET (2), y factor de transcripción TCF1 (26). Por último, los inventores encontraron mutaciones en una serie de genes que anteriormente se habían identificado como dianas de traslocación o amplificación en cánceres humanos. Estas incluían nucleoporina NUP214 (2), receptor de kinesina KTN1 (27), polipéptido 10 de caja DEAD DDX10 (28), homólogo 1 de oncogén GLI1 asociado a glioma (29), y el gen diana de translocación del factor I RUNX1T1 (MTG8) de transcripción relacionado con runt (2). Los inventores llegaron a la conclusión de que si estos genes aún no habían demostrado que desempeñaban un papel causativo en tumores humanos, se habrían descubierto a través del enfoque tomado en este estudio. Por analogía, es probable que los otros 176 genes CAN en las Figs. 13 y 14 (Tablas S5 y S6) desempeñen papeles importantes en cánceres de mama, colorrectales, y quizá en otros tipos de cánceres.

10

5

(b) Aunque las alteraciones genéticas en la actualidad proporcionan el indicador más viable de la importancia de un gen en la neoplasia humana (1, 30), existen otros muchos genes que se cree que desempeñan papeles en la base de estudios funcionales o de expresión. El estudio de los inventores proporciona una evidencia genética que apoya la importancia de varios de estos genes en la neoplasia. Por ejemplo, los inventores descubrieron mutaciones intragénicas el receptor EPHB6 (31) de efrina, gen (MLL3) de leucemia 3 de linaje mixto (32), GSN de gelsolina (33), genes CDH10 y CDH20 de cadherina, proteína filamina B FLNB de unión a actina y SMAD (34), receptor PTPRD de proteína tirosina fosfatasa (35), y receptor AMFR del factor autocrino de motilidad (36).

20

15

(c) Además de los genes indicados anteriormente, el estudio de los inventores desveló un gran número de genes de los que no se había sospechado fuertemente que estaban implicados en el cáncer. Estos incluían gen *PKHD1* de enfermedad 1 renal y hepática poliquística, guanilato ciclasa 1 *GUCY1A2*, factor de transcripción *TBX22*, componente *SEC8L1* del complejo de exocito, tubulina tirosina ligasa *TTLL3*, transportador *ATP8B1* dependiente de ATP, receptor *CUBN* de cobalamina de factor intrínseco, proteína *DBN1* de unión a actina, y tectorina alfa *TECTA*. Además, siete genes CAN correspondían a genes para los que todavía no se ha establecido un papel biológico.

25

30

35

Los inventores examinaron la distribución de mutaciones dentro de productos de gen CAN para observar la confusión que se producía en regiones específicas o funcionales. Además de los sitios conflictivos bien documentados en TP53 (37) y KRAS (38), los inventores identificaron tres mutaciones en GNAS en cánceres colorrectales que afectaban a un solo resto de aminoácidos (R201). Anteriormente se había mostrado que las alteraciones de este resto conducían a una activación constitutiva de la proteína α_s G codificada a través de inhibición de la actividad de GTPasa (24). Dos mutaciones en el gen EGFL6 de tipo EGF en tumores de mama afectaba a la misma posición del nucleótido y daba como resultado un cambio de L508F en el dominio de adhesión de MAM. Un total de siete genes presentaban alteraciones localizadas dentro de cinco restos de aminoácidos entre sí, y 12 genes adicionales presentaban agrupamientos de múltiples mutaciones dentro de un dominio específico de proteína (separados por 13 a 78 aminoácidos). Treinta y uno de 40 de estos cambios afectaban a residuos que estaban conservados de forma evolutiva. Aunque se desconocen los efectos de estas alteraciones, su agrupamiento sugiere papeles específicos para las regiones mutadas en el proceso neoplásico.

40 EJEMPLO 6 - Grupos de genes CAN

45 inverse Mol INT este ger 50 de alta form de

55

60

65

Una exploración sin sesgar de un gran conjunto de genes puede proporcionar conocimientos sobre la patogénesis que no serían evidentes a través de análisis mutación de un solo gen. Esto se ha usado a modo de ejemplo mediante exploraciones de mutagénesis a gran escala en organismos experimentales (39-41). Por lo tanto, los inventores intentaron asignar cada gen CAN a un grupo funcional basándose en grupos de proceso de Función Molecular de Ontología Genética (GO) o Bioquímicos, la presencia de dominios específicos de secuencia INTERPRO, o bibliografía publicada anteriormente (Fig. 7; Tabla 3) y (Fig. 2). Varios de los grupos identificados de este modo eran de interés especial. Por ejemplo, 22 de los 122 (18 %) genes CAN de mama y 13 de los 69 (19 %) genes CAN colorrectales eran reguladores de la transcripción. Al menos uno de estos genes estaba mutado en más de un 80 % de los tumores de cada tipo. Los factores de transcripción de dedo de cinc en particular estaban altamente representados (8 genes mutados de forma colectiva en un 43 % de muestras de cáncer de mama). De forma análoga, los genes implicados en la adhesión celular representaban ~22 % de genes CAN y afectaban a más de dos tercios de tumores de cada tipo. Los genes implicados en la transducción de señales representaban ~23 % de genes CAN y al menos uno de tales genes estaba mutado en un 77 % y un 94 % de las muestras de cáncer de mama y colorrectal, respectivamente. Los subconjuntos de estos grupos también eran de interés e incluían metaloproteinasas (parte del grupo de adhesión celular y motilidad y mutado en un 37 % de cánceres colorrectales), proteínas G y sus reguladores (parte del grupo de transducción de señales y alterado en un 43 % de cánceres de mama). Estos datos sugieren que la desregulación de procesos celulares específico se selecciona genéticamente durante la neoplasia y que miembros distintos de cada grupo pueden servir para papeles similares en tumores diferentes.

EJEMPLO 7 - Materiales y Métodos

Selección genética. La base de datos de Secuencias Consenso de ADN de Codificación (CCOS) representa una colección altamente conservada de 14.795 transcritos de 13,142 genes (www.ncbi.nlm.nih.gov/CCOSI). Para la inclusión en CCOS, las coordenadas genómicas que definen la secuencia de codificación transcrita deben ser

idénticas en las bases de datos de Ensembl y RefSeq. Los transcritos deben tener codones de inicio y parada canónicos y sitios consenso de corte y empalme, no tienen codones de parada en marco, se pueden traducir a partir de la secuencia del genoma de referencias y desplazamientos de marco. Por último, los transcritos de CCOS deben estar apoyados por homología de transcrito y proteína y conservación entre especies. Los inventores examinaron todos los transcritos de CCOS y excluyeron los que estaban localizados en múltiples posiciones en el genoma a través de aplicación genética (113 transcritos) o estaban presentes en el cromosoma Y (21 transcritos adicionales) (fig. S1). Los 14.661 transcritos de CCOS restantes de 13.023 genes se seleccionaron para análisis mutacional.

Recursos bioinformáticos. Las coordenadas de genes y transcritos de CCOS (edición 1, 3/02/05), secuencias del genoma humano, y polimorfismos de un solo nucleótido se obtuvieron del Sitio de Bioinformática Genómica de UCSC Santa Cruz (http://genome.ucsc.edu). Las búsquedas de homología en los genomas humano y de ratón se realizaron usando la herramienta de alineación BLAT (S1) de tipo BLAST y PCR In Silico (http://genome.ucsc.edu/cqi-bin/hqPcr). Todas las posiciones genómica se corresponden a la secuencia genómica humana UCSC Santa Cruz hg17 build 35.1. Los SNP de -3,4 M de dbSNP (edición 125) que se habían validado a través del proyecto (S2) de HapMap se usaron para la retirada automatizada de polimorfismos conocidos.

10

15

20

25

30

35

40

45

50

65

Diseño del cebador. Para cada transcrito, se extrajeron todas las secuencias genómicas que comprenden toda la región de codificación de cada exón así como secuencias intrónicas de flangueo y secuencias de UTR en la posición 5' y de UTR en la posición 3'. Se generaron pares de cebadores para amplificación de PCR y secuenciación de cada exón de codificación usando Cebador3 (http://frodo.wi.mit.edu/cqi-bin/primer3/primer3 www.cqi) (S3). Se necesitó que los cebadores directos e inversos de PCR se colocaran no más cerca de 50 pb con respecto a los límites del exón diana, y se evitaron las posiciones genómicas con polimorfismos conocidos en las cinco bases de los cebadores más cercanas a la posición 3'. Los exones con tamaño superior a 350 pb se analizaron como as múltiples amplicones de solapamiento. Se diseñaron productos de PCR que variaban en tamaño de 300 pb a 600 pb, que se consideraba óptimo para amplificación, purificación, y secuenciación. Para minimizar la amplificación de secuencias genómicas homólogas, se filtraron pares de cebadores usando PCR In Silico de UCSC y solamente se usaron los pares que proporcionaban un solo producto. 0,33 Mb (-1,5 %) de secuencia genómica diana se excluyeron del análisis adicional debido a una falta de amplificación y cebadores de secuenciación adecuados. Un total de 135.483 pares de cebadores que incluyen -21 Mb de secuencia diana se diseñaron de forma satisfactoria. Se añadió un cebador de secuenciación universal (M13 directo, 5'-GTAAAACGACG-GCCAGT-3'; SEC ID №: 1) al extremo en la posición 5' del cebador en el par con el número más pequeño de repeticiones de mono y di nucleótidos entre sí mismo y el exón diana. Las secuencias de cebadores se enumeran en la Fig. 8; Tabla S1,

Muestras de tumor. Las muestras de ADN de líneas celulares de carcinoma de mama ductal y se emparejaron con tejido de mama normal o líneas de sangre periférica se obtuvieron en la Colección Americana de Cultivos Tipo (Manassas, VA) o en A. Gazdar (S4, S5). Las muestras de ensayo de tumor de mama primario y tejido quirúrgico normal circundante aisladas de pacientes positivos en ganglios en los Hospitales Palmetto Health Richland o Baptist se obtuvieron a través del Banco Tisular del Centro de Cáncer de Carolina del Sur. Cada muestra de tejido se congeló rápidamente a los 30 minutos de la escisión, y se almacenó a -80 °C. Los tumores colorrectales retirados por vía quirúrgica colorrectal se desagregaron e implantaron en ratones atímicos o en condiciones de cultivo *in vitro* tal como se ha descrito anteriormente (S6, 57). El ADN se preparó dentro de 3 pasajes después del establecimiento del xenoinjerto. Las características de las muestras tumorales usadas en este estudio se enumeran en las Figs. 9-10; Tablas S2A y S2B. Ningún tumor cursado en este estudio era deficiente en reparación de emparejamiento erróneo tal como se evalúa con marcadores convencionales de microsatélite (S8); tales tumores se excluyeron debido a sus tasas de mutación de fondo mucho más elevadas. Todas las muestras se obtuvieron de acuerdo con el Acta de Portabilidad y Responsabilidad del Seguro Sanitario (HIPAA).

Microdisección de captura con láser. Se depositaron secciones de 20 µm de tejidos de tumor de mama primario congelados inmediatamente embebidos en OCT en portaobjetos de silano-prepTM de Sigma y se tiñeron con hematoxilina y eosina. Las células tumorales se separaron del tejido circundante y se recuperaron en película de transferencia mediante microdisección de captura con láser (extensión PixCell®, Arcturus). El ADN genómico se purificó a partir de aproximadamente 20 portaobjetos para cada muestra usando el kit de ADN Micro QIAamp® de QiagenTM de acuerdo con el protocolo del fabricante.

Amplificación del Genoma Completo. La amplificación del genoma completo se usó para proporcionar cantidades suficientes de ADN para la Exploración de Validación. En resumen, se desnaturaliza 5-20 ng de ADN molde con KOH 5 M, se neutralizaron y se incubaron a 30 °C durante 16-24 horas con 4x de tampón REPLI-g y de ADN polimerasa de REPLI-g de acuerdo con las instrucciones del fabricante (Qiagen, Valencia, CA). Las muestras se incubaron a 65 °C durante 3 min para inactivar la enzima antes de su almacenamiento a 20 °C. Para cada muestra, un mínimo de 5 reacciones de WGA independientes se combinaron para reducir los efectos de cualquier sesgo alélico o del locus que se puede haber producido durante la amplificación.

Confirmación de la identidad de la muestra. Las identidades de muestras de ADN se controlaron a través de las Exploraciones del Descubrimiento y de Validación mediante amplificación por PCR y secuenciación del exón 3 del gen HLA-A del complejo de histocompatibilidad principal (cebador directo 5'CGCCTTTACCCGGTTTCATT-3', SEC ID Nº: 2; cebador inverso 5'-CCAATTGTCTCCCCTCCTTG-3', SEC ID Nº: 3). Además, el emparejamiento de todos

los pares de tumor-normal se confirmó por escritura de nueve sitios de STR (TPOX, chr 2p23-ter; D3S1358, chr3p; FGA, chr4q28; D8S1179, chr8; TH01, chr11 p15,5; vWA, chr12p12-ter; Penta E, chrl5q; D18S51, chr18q21,3; 021 S11, chr21 q11-21) usando el Sistema PowerPlex 2.1 (Promega, Madison, WI).

Amplificación y secuenciación por PCR. Todos los cebadores se sintetizaron en Invitrogen (San Diego, CA). La PCR se realizó en 5 III reacciones que contenían 1 x de Tampón de PCR (TrisHCl 67 mM, pH 8,8, MgCb 6,7 mM, NH4SO4 16,6 mM, 2-mercaptoetanol 10 mM), dNTPs 1 mM (Invitrogen, San Diego, CA), 1 cebador directo 11 M y 1 cebador inverso 11M, DMSO al 6 %, ATP 2 mM, 0,25 U de Platino *Taq* (Invitrogen, San Diego, CA) y 3 ng de ADN. Las reacciones se realizaron en termocicladores ABI9700 de 384 pocillos (Applied Biosystems, Foster City, CA) usando un protocolo de PCR de ensayo (1 ciclo de 96 °C durante 2 min; 3 ciclos de 96 °C durante 10 seg, 64 °C durante 10 seg, 70 °C durante 30 seg; 3 ciclos de 96 °C durante 10 seg, 60 °C durante 10 seg, 70 °C durante 10 seg, 57 °C durante 10 seg, 70 °C durante 30 seg; 1 ciclo de 70 °C durante 5 min). Los moldes se purificaron usando AMPure (Agencourt Biosciences, Beverly, MA) y la secuenciación se realizó con el cebador directo M13 (5'GTAAAACGACGGCCAGT-3'; sentido 1) y el Kit Big Dye Terminator v.3.1 (Applied Biosystems, Foster City, CA). En las reacciones de secuenciación se incluyó al DMSO 1 % cuando el contenido de GC del molde superaba un 65 %. Los terminadores de colorante se retiraron usando el kit CleanSEQ (Agencourt Biosciences, Beverly, MA) y las reacciones de secuencias se definieron en aparatos de secuenciación 3730x1 de ABI PRISM (Applied Biosystems, Foster City, CA).

10

15

20

25

30

35

40

45

50

55

60

Ensamblaje de secuencias y análisis de mutaciones. Las trazas de secuencia de muestras de ADN de tumor y normal se alinearon con respecto a las secuencias genómicas de referencia. Para considerar que un amplicón está secuenciado de forma satisfactoria, se necesitó que al menos tres cuartos de los tumores tuvieran 2':90 % de las bases en la región diana con una puntuación de calidad de Phred de 20 o mejor. Los amplicones que no satisfacen estos criterios no se analizaron adicionalmente. El análisis mutacional se realizó para todas las secuencias exónicas de codificación y los 4 pb de flanqueó de secuencias intrónicas o de UTR usando Mutation Surveyor (Softgenetics, State College, PA) acoplado a una base de datos relacional (Microsoft SQL Server). Para las Exploraciones tanto del Descubrimiento de la mutación como de Validación, se usaron las siguientes etapas básicas para identificar mutaciones de interés. En primer lugar, se identificaron los cambios sinónimos y se excluyeron del análisis adicional. En segundo lugar, los cambios no sinónimos en muestras de tumor se descartaban si un cambio idéntico estaba presente en una muestra de ADN normal. En tercer lugar, se retiraron los polimorfismos conocidos de un solo nucleótido mediante comparación con una base de datos de entradas de dbSNP validadas anteriormente con el proyecto Hap Map. Por último, los artefactos de falso positivo se eliminaron mediante inspección visual de los cromatogramas para cada muestra con una supuesta mutación. Las etapas adicionales se describen a continuación.

Exploración del Descubrimiento de la Mutación. Los cebadores diseñados anteriormente se usaron para amplificar todos los exones conocidos de CCDS de 11 muestras de cáncer colorrectal, 11 muestras de cáncer de mama, y dos muestras de ADN normales emparejadas. Esto dio como resultado un total de -3,25 millones de reacciones de PCR, que comprenden 465 Mb de secuencias derivadas de tumor así como un total de 42 Mb de secuencias normales de las dos muestras de ADN normales emparejadas. Después del ensamblaje de secuencias y análisis mutacional, cada supuesto cambio no sinónimo observado se confirmó en una reacción de PCR independiente usando el primer par cebador. Tras la confirmación con el ADN de una muestra de tejido normal del mismo paciente se usó para determinar si la mutación observada era un suceso somático real en lugar de una variante de la línea germinal. Cuando la misma supuesta mutación se observó en múltiples muestras de tumor, solamente un solo tumor y muestra normal emparejada se usaron inicialmente para confirmar la mutación y su mutación somática. Si se confirmara, el ADN de los otros tumores que contienen la misma mutación somática se evaluaría del mismo modo. Para excluir la posibilidad de que las supuestas mutaciones somáticas puedan estar causadas por amplificación de secuencias homólogas pero no idénticas, se usó BLAT (58) para buscar estas secuencias frente al genoma humano. Este examen aseguraba que el cambio de nucleótido no estaba presente en una región altamente relacionada en el genoma humano. Para las supuestas mutaciones somáticas encontradas en tumores xenoinjertados, se usó BLAT para buscar del mismo modo el genoma del ratón para excluir la contribución de secuencias homólogas de ratón.

Exploración de Validación de la Mutación. Cada gen que se encontró mutado en la Exploración del Descubrimiento se analizó adicionalmente mediante amplificación y secuenciación de 24 muestras de tumor adicionales del mismo tipo de tejido. Debido a las cantidades limitantes de ADN de la muestra, el conjunto de 24 tumores evaluados cambio con el tiempo. Todas las variantes de transcritos de CCDS del gen de interés se investigaron usando pares de cebadores que proporcionaban secuencias informativas en la Exploración del Descubrimiento. Se realizó detección de mutación, confirmación de alteraciones, y determinación de estado somático como se ha mencionado anteriormente, con la excepción de que se consideró que todas las variantes de la línea germinal observadas anteriormente en las muestras de ADN normal de la Exploración del Descubrimiento eran variantes conocidas (Fig. 1).

Análisis estadísticos.

10

25

30

35

40

45

50

55

60

Puntuaciones de CaMP. Para ayudar a identificar genes que estaban mutados más frecuentemente de lo que sería de esperar en ausencia de selección, los inventores primero calcularon la probabilidad de que un gen dado estuviera mutado el número observado de veces dada la frecuencia de mutación de fondo. Anteriormente se ha determinado que la frecuencia de mutación de fondo en cánceres de mama y colorrectales es inferior al 1,2 mutaciones por Mb (59-511). La comparación de la prevalencia de mutaciones sinónimas frente a mutaciones no sinónimas puede ser un indicador útil de genes que habían experimentado selección, ya que se puede asumir que las mutaciones sinónimas generalmente no son funcionales (511-515). Sin embargo, se detectaron relativamente pocas mutaciones en la mayoría de los genes en muchos de los tumores que los inventores estudiaron, lo que conduce a amplios límites de confianza en este parámetro. Por lo tanto, los inventores usaron una combinación de validación experimental y un cálculo de la tasa de mutación de fondo para identificar los genes que es más probable que hayan experimentado selección.

Para corregir la influencia de la composición del nucleótido en la probabilidad de mutación, los inventores supusieron que el espectro de mutación observado en el estudio actual no era diferente desde las mutaciones de fondo sin seleccionar y que ambos eran un resultado de los mismos procesos y exposiciones subyacentes a agentes exógenos. La tabla que sigue a continuación muestra la frecuencia de mutación de fondo por Mb en cada uno de los seis contextos de nucleótidos sillones analizados. Por ejemplo, en las exploraciones de Descubrimiento y Validación de los inventores en cánceres colorrectales, los inventores encontraron que las mutaciones en las mutaciones de 5'-CpG-3' eran 6,44 veces más frecuentes que la frecuencia de mutación en todas las posiciones combinadas. Por lo tanto, se calculó que la frecuencia de mutación de fondo esperada en los sitios de 5'-CpG-3' era de 6,44 x 1,2 = 7,73 mutaciones por millón de pb.

Frecuencias de mutación de fondo calculadas por millón de pb.

	5'-CpG-3'	5'-TpC-3'	А	С	G	Т	INS/DEL/DUP
Colorrectal	7,73	0,96	0,56	0,95	0,85	0,51	0,55
Mama	2,99	2,48	0,76	1,38	1,07	0,30	0,55

Para cada gen tipo de tumor, el número de sitios de los dinucleótidos 5'-CpG-3' y 5'-TpC3' (o 5'-GpA-3' complementario) secuenciados de forma satisfactoria sitios de los mononucleótidos A, C, T, y G se denominaron NcpG, NTpC, NA, Nc, NG, y NT, respectivamente. Nc no incluía las C dentro de los dinucleótidos 5'-CpG o 5'-TpC y NG no incluía las G dentro de los dinucleótidos 5'-CpG-3' o 5'GpA-3. Obsérvese que las mutaciones en los sitios 5'-TpC-3' casi siempre estaban en el resto de C y las mutaciones en los sitios de 5'-GpA-3' complementarios estaban casi siempre en el resto de G, lo que explica por qué no era necesario que las A y las T se corrigieran para su presencia dentro de los dinucleótidos. A continuación, se calculó la probabilidad de un gen que tiene el número observado de mutaciones en un sitio en particular con una distribución binomial exacta. Por ejemplo, los parámetros para este cálculo para la categoría de 5'-CpG-3' usaron el número observado de mutaciones en los sitios de 5'-CpG-3' como el número de sucesos positivos, NcpG como el número de ensayos independientes, y las frecuencias de mutación de fondo para los NopG y numerados en la tabla anterior (7,73 x 10⁻⁶ para cánceres colorrectales) como la probabilidad de un resultado positivo en cada ensayo. Las probabilidades de un gen que tiene el número observado de mutaciones en cada uno de los otros cinco dinucleótidos o mononucleótidos se calcularon del mismo modo. La probabilidad de un gen que contiene el número observado de inserciones, supresiones, o duplicaciones (INS/DEL/DUP) se calculó usando una distribución binomial con los siguientes parámetros: número observado de sucesos de INS/DEL/DUP como el número de sucesos positivos, nucleótidos totales secuenciados de forma satisfactoria dentro del gen como el número de ensayos independientes, y 0,55 x 10-6 como la probabilidad de un resultado positivo en cada ensayo. Obsérvese que se consideraba que cada una de estas siete probabilidades era independiente. A continuación, se calculó que la probabilidad de un gen que tiene el número observado de mutaciones en las posiciones observadas era el producto de las siete probabilidades específicas en el contexto del

Dado que se evaluaron 13.023 genes para mutaciones, era necesario corregir estas probabilidades para comparaciones múltiples. Para este fin, los inventores usaron el algoritmo que se describe en Benjamini y Hochberg (S16). Los genes se clasificaron en orden ascendente, asignando un 1 al gen que tiene la probabilidad más baja del número observado de mutaciones en el mismo, un 2 al gen la siguiente probabilidad más baja, etc. La puntuación de CaMP para cada gen se definió después como -log₁o(13.023 * PROB/RANK), en la que PROB es la probabilidad de que tiene el número observado de mutaciones y RANK representa la posición numérica en la lista. Es posible solicitar a los autores una hoja de cálculo Excel™ de Microsoft que calcula automáticamente las puntuaciones de CaMP para genes individuales o múltiples.

Significancia estadística de datos en las Figs. 5-6 (Tablas 1 y 2) en la Fig. 15 (fig. S1). Para determinar si el número observado de mutaciones en todo el conjunto de cánceres de mama y colorrectales diferían de forma significativa del número de mutaciones esperadas (Fig. 5; Tabla 1), se usó un ensayo de distribución binomial

simple, usando una probabilidad de 1,2 x 10⁻⁶ como la tasa de fondo. El espectro de mutaciones se comparó en cánceres de mama y colorrectales (Fig. 6; Tabla 2) usando un ensayo de Chi-Cuadrado.

El espectro de codones afectados por mutación (Fig. 15; fig. S1) también se analizó con un ensayo de Chi-Cuadrado.

Cálculo de mutaciones no sinónimas en el genoma del cáncer. El número total de genes que contenían mutaciones no sinónimas en un cáncer colorrectal o de mama habitual se calculó de la siguiente manera. Aunque el número real de genes que codifican proteínas en el genoma humano todavía es una cuestión de debate, hay 5180 genes para los que existe una evidencia de apoyo excelente y que forman parte de RefSeq (S17) pero todavía no están incluidos en la base de datos de CCOS. Los inventores supusieron que la prevalencia de mutación en los genes que todavía no se han secuenciado es similar a la de los genes que ya se han secuenciado. Además, los inventores no fueron capaces de secuencias de forma satisfactoria -10 % de las bases dentro de las secuencias de codificación de los 13.023 genes de CCOS (equivalente a 1.302 genes sin secuenciar). Por lo tanto, los inventores calcularon que habían secuenciado de forma satisfactoria un 64 % de los 18.203 genes que codifican proteínas en el genoma humano (13023 - 1302)/(13023 + 5180). Dado que los inventores identificaron un promedio de 60 genes mutados por tumor en los genes ya secuenciados, se podría predecir que 93 genes (6010,64) estaban mutados en todo el compendio de genes que codifican proteínas en un cáncer habitual.

20 Referencias

40

5

- 1. B. Vogelstein, K. W. Kinzler, Nature Med 10, 789 (2004).
- 2. P. A. Futreal et al., Nature Rev Cancer 4, 177 (2004).
- 3. A. Bardelli, V. E. Velculescu, Curr Opin Genet Dev 15, 5 (2005).
- 25 4. B. Vogelstein, K. W. Kinzler, The Genetic Basis of Human Cancer (McGraw-Hill, Toronto, 2002)
 - 5. D. M. Parkin, F. Bray, J. Ferlay, P. Pisani, CA Cancer J Clin 55, 74 (2005).
 - 6. dominio de la world wide web: ncbi.nlm.nih.gov, base de datos: CCDS.
 - 7. Los materiales y métodos están disponibles como material de apoyo en Science Online.
 - 8. B. Ewing, P. Green, Genome Res 8, 186 (1998).
- 30 9. C. Lengauer, K. W. Kinzler, B. Vogelstein, Nature 396, 643 (1998).
 - 10. L. A. Loeb, Cancer Res 61, 3230 (2001).
 - 11. C. Greenman, R. Wooster, P. A. Futreal, M. R. Stratton, D: F. Easton, Genetics 173, 2187 (2006).
 - 12. S. E. Kern, J. M. Winter, Cancer Biol Ther 5, 349 (2006).
 - 13. T. L. Wang et al., Proc Natl Acad Sci U S A 99, 3076 (2002).
- 35 14. D. Shen et al., Submitted (2006).
 - 15. P. Stephens et al., Nat Genet 37, 590 (2005).
 - 16. H. Strohmaier et al., Nature 413, 316 (2001).
 - 17. A. Bardelli et al., Science 300, 949 (2003).
 - 18. Z. Wang et al., Cancer Res 64, 2998 (2004).
 - 19. G. J. Riggins, et al. Nat Genet 13, 347 (1996).
 - 20. K. Eppert et al., Cell 86, 543 (1996).
 - 21. J. L. Ku et al., Cancer Lett (Jul 5, 2006).
 - 22. A. Duval et al., Cancer Res 59, 4213 (1999).
 - 23. S. Markowitz et al., Science 268, 1336 (1995).
- 45 24. C. A. Landis et al., Nature 340, 692 (1989).
 - 25. B. Padmanabhan et al., Mol Cell 21, 689 (2006).
 - 26. O. Bluteau et al., Nat Genet 32, 312 (2002).
 - 27. K. Salassidis et al., Cancer Res 60, 2786 (2000).
 - 28. Y. Arai et al., Blood 89, 3936 (1997).
- 50 29. K. W. Kinzler et al., Science 236, 70 (1987).
 - 30. H. Varmus, Science 312, 1162 (2006).
 - 31, X. X. Tang, G. M. Brodeur, B. G. Campling, N. Ikegaki, Clin Cancer Res 5, 455 (1999).
 - 32. M. Ruault, M. E. Brun, M. Ventura, G. Roizes, A. De Sario, Gene 284, 73 (2002).
 - 33. M. Tanaka et al., Cancer Res 55, 3228 (1995).
- 55 34. A. Sasaki, Y. Masuda, Y. Ohta, K. Ikeda, K. Watanabe, J Biol Chem 276, 17871 (2001).
 - 35. M. Sato et al., Genes Chromosomes Cancer 44, 405 (2005).
 - 36. Y. Onishi, K. Tsukada, J. Yokota, A. Raz, Clin Exp Metastasis 20, 51 (2003).
 - 37. M. Hollstein, D. Sidransky, B. Vogelstein, C. C. Harris, Science 253, 49 (1991).
 - 38. J. L. Bos et al., Nature 327, 293 (1987).
- 60 39. R. Brent, Cell 100, 169 (2000).
 - 40. T. Ideker et al., Science 292, 929 (2001).
 - 41. S. L. Ooi et al., Trends Genet 22, 56 (2006).
 - 42. T. Soussi, G. Lozano, Biochem Biophys Res Commun 331, 834 (2005).
 - 43. M. Olivier, S. P. Hussain, C. Caron de Fromentel, P. Hainaut, C. C. Harris, IARC Sci Publ, 247 (2004).
- 65 44. J. F. Costello et al., Nat Genet 24, 132 (2000).
 - 45. A. H. Owens, Coffey, D.S., y Baylin, S.B., eds., Tumor Cell Heterogeneity. (Academic Press, Nueva York,

```
1982), pp. pp. 441-460,
         46. K. D. Pruitt, T. Tatusova, D. R. Maglott, Nucleic Acids Res 33, D501 (2005).
         47. Dominio de la world wide web: cancergenome.nih.gov; documento: index.asp
         48. Y. H. Rogers, J. C. Venter. Nature 437, 326 (2005).
 5
      Listado de secuencias
         <110> Sjoblom, Tobias Jones, Sian Wood, Laura Parsons, D. Williams Lin, Jimmy Barber, Thomas Mandelker,
         Diana Vogelstein, Bert Kinzler, Kenneth W. Velculescu Bictor E.
10
         <120> SECUENCIAS CONSENSO DE CODIFICACIÓN DE CÁNCERES DE MAMA Y
         COLORRECTALES
         <130> 001107.00673
15
         <150> 60/842363
         <151> 06-09-2006
         <150> 60/836944
         <151> 11-08-2006
20
         <150> pct/us2007/017866
         <151> 13-08-2007
25
         <160> 215
         <170> FastSEQ para Windows Versión 4.0
         <210>1
30
         <211> 17
         <212> ADN
         <213> Homo sapiens
         <400> 1
35
         gtaaaacgac ggccagt
                                      17
         <210>2
         <211> 20
         <212> ADN
40
         <213> Homo sapiens
         <400> 2
         cgcctttacc cggtttcatt
                                      20
45
         <210>3
         <211> 20
         <212> ADN
         <213> Homo sapiens
50
         <400>3
                                      20
         ccaattgtct ccctccttg
         <210>4
         <211>15
55
         <212> ADN
         <213> Homo sapiens
         <400> 4
         ggaagggtgt gagga
                                      15
60
         <210>5
         <211>15
         <212> ADN
         <213> Homo sapiens
65
         <400>5
```

	ggaagggtgt gagga	15	
5	<210> 6 <211> 12 <212> ADN <213> Homo sapiens		
10	<400> 6 gaggaagaag ag	12	
	<210> 7 <211> 12 <212> ADN <213> Homo sapiens		
15	<400> 7 gaggaagaag ag	12	
20	<210> 8 <211> 36 <212> ADN <213> Homo sapiens		
25	<400> 8 ggcggccgcg gcggcagtgg cggcgg	gegge ggegge	36
30	<210> 9 <211> 36 <212> ADN <213> Homo sapiens		
	<400> 9 ggcggccgcg gcggcagtgg cggcgg	gegge ggegge	36
35	<210> 10 <211> 16 <212> ADN <213> Homo sapiens		
40	<400> 10 agtgttccca acatat	16	
45	<210> 11 <211> 16 <212> ADN <213> Homo sapiens		
50	<400> 11 agtgttccca acatat	16	
	<210> 12 <211> 10 <212> ADN <213> Homo sapiens		
55	<400> 12 gacaaggaca 10		
60	<210> 13 <211> 10 <212> ADN <213> Homo sapiens		
65	<400> 13 gacaaggaca	10	
	<210> 14		

	<211> 10 <212> ADN <213> Homo sapiens		
5	<400> 14 caaaatccag	10	
10	<210> 15 <211> 10 <212> ADN <213> Homo sapiens		
15	<400> 15 caaaatccag	10	
	<210> 16 <211> 12 <212> ADN <213> Homo sapiens		
20	<400> 16 tcagctcgtc aa	12	
25	<210> 17 <211> 12 <212> ADN <213> Homo sapiens		
30	<400> 17 tcagctcgtc aa	12	
35	<210> 18 <211> 14 <212> ADN <213> Homo sapiens		
	<400> 18 ttgtggtaag ttat	14	
40	<210> 19 <211> 14 <212> ADN <213> Homo sapiens		
45	<400> 19 ttgtggtaag ttat	14	
50	<210> 20 <211> 21 <212> ADN <213> Homo sapiens		
55	<400> 20 ttaacggtaa ggtgctgttg t		21
	<210> 21 <211> 22 <212> ADN <213> Homo sapiens		
60	<400> 21 tttaacggta aggtgctgtt gt	t	22
65	<210> 22 <211> 23 <212> ADN		

	<213> Homo sapiens			
5	<400> 22 gaggataaag ttttaactgt g	ggt		23
	<210> 23 <211> 23 <212> ADN <213> Homo sapiens			
10	<400> 23 gaggataaag ttttaactgt g	ggt		23
15	<210> 24 <211> 24 <212> ADN <213> Homo sapiens			
20	<400> 24 caacctgact tcccggggca	ı tgga		24
25	<210> 25 <211> 24 <212> ADN <213> Homo sapiens			
	<400> 25 caacctgact tcccggggca	ı tgga		24
30	<210> 26 <211> 12 <212> ADN <213> Homo sapiens			
35	<400> 26 tatctgaact tg	12		
40	<210> 27 <211> 12 <212> ADN <213> Homo sapiens			
45	<400> 27 tatctgaact tg	12		
	<210> 28 <211> 19 <212> ADN <213> Homo sapiens			
50	<400> 28 aagaaaaact tgtcatcag		19	
55	<210> 29 <211> 19 <212> ADN <213> Homo sapiens			
60	<400> 29 aagaaaaact tgtcatcag		19	
65	<210> 30 <211> 20 <212> ADN <213> Homo sapiens			

	<400> 30 ctttgtacag gagaatatta	20		
5	<210> 31 <211> 20 <212> ADN <213> Homo sapiens			
10	<400> 31 ctttgtacag gagaatatta	20		
15	<210> 32 <211> 40 <212> ADN <213> Homo sapiens			
	<400> 32 tttttggata ggtattggtg gatttat	ggt gcggcaaaga	40	
20	<210> 33 <211> 40 <212> ADN <213> Homo sapiens			
25	<400> 33 tttttggata ggtattggtg gatttat	ggt gcggcaaaga	40	
30	<210> 34 <211> 24 <212> ADN <213> Homo sapiens			
35	<400> 34 cttgtacaat taatggcaca tgga	24		
	<210> 35 <211> 24 <212> ADN <213> Homo sapiens			
40	<400> 35 cttgtacaat taatggcaca tgga	24		
45	<210> 36 <211> 53 <212> ADN <213> Homo sapiens			
50	<400> 36 agcacagctt gctttggggt caaa	ocgtgga tcagcagcct cttggto	cagt aaa	53
55	<210> 37 <211> 53 <212> ADN <213> Homo sapiens			
	<400> 37 agcacagctt gctttggggt caaa	ncgtgga tcagcagcct cttggtd	cagt aaa	53
60	<210> 38 <211> 12 <212> ADN <213> Homo sapiens			
65	<400> 38			

5	<210> 39 <211> 12 <212> ADN <213> Homo sapiens			
	<400> 39 cactgcatcc cc	12		
10	<210> 40 <211> 12 <212> ADN <213> Homo sapiens			
15	<400> 40 ttcctaagtg ga	12		
20	<210> 41 <211> 12 <212> ADN <213> Homo sapiens			
25	<400> 41 ttcctaagtg ga	12		
	<210> 42 <211> 10 <212> ADN <213> Homo sapiens			
30	<400> 42 tcctcctgct	10		
35	<210> 43 <211> 10 <212> ADN <213> Homo sapiens			
40	<400> 43 tcctcctgct	10		
45	<210> 44 <211> 15 <212> ADN <213> Homo sapiens			
	<400> 44 acagaatcct gaagg		15	
50	<210> 45 <211> 15 <212> ADN <213> Homo sapiens			
55	<400> 45 acagaatcct gaagg		15	
60	<210> 46 <211> 42 <212> ADN <213> Homo sapiens			
65	<400> 46 agggcatcat ggaggagga	nt gaggcc	tgcg ggcgccagta ca	42
	<210> 47			

	<211> 42 <212> ADN <213> Homo sapiens			
5	<400> 47 agggcatcat ggaggagga	at gaggcc	tgcg ggcgccagta ca	42
10	<210> 48 <211> 12 <212> ADN <213> Homo sapiens			
15	<400> 48 gtgtttgtaa gc	12		
	<210> 49 <211> 12 <212> ADN <213> Homo sapiens			
20	<400> 49 gtgtttgtaa gc	12		
25	<210> 50 <211> 19 <212> ADN <213> Homo sapiens			
30	<400> 50 ccatgatcct gtctgcggt		19	
35	<210> 51 <211> 19 <212> ADN <213> Homo sapiens			
	<400> 51 ccatgatcct gtctgcggt		19	
40	<210> 52 <211> 15 <212> ADN <213> Homo sapiens			
45	<400> 52 tgctggacta accct		15	
50	<210> 53 <211> 15 <212> ADN <213> Homo sapiens			
55	<400> 53 tgctggacta accct		15	
	<210> 54 <211> 11 <212> ADN <213> Homo sapiens			
60	<400> 54 ttttaatagc t	11		
65	<210> 55 <211> 11 <212> ADN			

	<213> Homo sapiens			
5	<400> 55 ttttaatagc t	11		
	<210> 56 <211> 25 <212> ADN <213> Homo sapiens			
10	<400> 56 tgaacacgca ccctgataag o	etgeg	25	
15	<210> 57 <211> 25 <212> ADN <213> Homo sapiens			
20	<400> 57 tgaacacgca ccctgataag o	ctgcg	25	
25	<210> 58 <211> 38 <212> ADN <213> Secuencia artificia	al		
	<220> <223> cebador para pcr			
30	<400> 58 gtaaaacgac ggccagtgcc	cttccaccct agttctt	С	38
35	<210> 59 <211> 38 <212> ADN <213> Secuencia artificia	al		
40	<220> <223> cebador para pcr			
40	<400> 59 gtaaaacgac ggccagtctg t	ttgggtgtct accttcc	С	38
45	<210> 60 <211> 38 <212> ADN <213> Secuencia artificia	al		
50	<220> <223> cebador para pcr			
	<400> 60 gtaaaacgac ggccagtgtg	cctggagaaa cctct	cac	38
55	<210> 61 <211> 21 <212> ADN <213> Secuencia artificia	al		
60	<220> <223> cebador para pcr			
65	<400> 61 cacctcagtg ttctacgcca g	21		
	<210>62			

	<211> 18 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 62 cgccgccgag attaattg 18		
	<210> 63 <211> 35 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 63 gtaaaacgac ggccagtgag acggaccggg tag	999	35
25	<210> 64 <211> 18 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 64 ctgcggaagc agaacctg 18		
35	<210> 65 <211> 20 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 65 cacaagatgg ctcggaagac	20	
45	<210> 66 <211> 38 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 66 gtaaaacgac ggacagtcta gatccttcca gagg	gcac	38
55	<210> 67 <211> 38 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
	<400> 67 gtaaaacgac ggccagtcct gacactcaaa ccca	aacag	38
65	<210> 68		

	<211> 21 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 68 gagtgaggtc agggtctcca g	21	
	<210> 69 <211> 21 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 69 gagaaccata gagccactcg g	21	
25	<210> 70 <211> 38 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 70 gtaaaacgac ggccagtgtg ggtgtctgta tccaag	9 99	38
35	<210> 71 <211> 39 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 71 gtaaaacgac ggccagttga agggagtaga ctga	ccctg	39
45	<210> 72 <211> 22 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 72 ggacagctct gaggaggaag ag	22	
55	<210> 73 <211> 38 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
G.E.	<400> 73 gtaaaacgac ggccagtcca acctctgccc tatgtc	etg	38
65	<210> 74		

	<211> 38 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 74 gtaaaacgac ggccagtagt gctga	aggcca acaaattc	38
	<210> 75 <211> 21 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 75 agtcgtagag gctatgctgg c	21	
25	<210> 76 <211> 38 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 76 gtaaaacgac ggccagttcg gccat	acagg tgctattc	38
35	<210> 77 <211> 20 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 77 aggtgctttg ggaagagctg	20	
45	<210> 78 <211> 36 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 78 gtaaaacgac ggccagtaag gccc	aggtgt tcacag	36
55	<210> 79 <211> 20 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
	<400> 79 aggaaatgat tcctgtgccg	20	
65	<210> 80		

	<211> 38 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 80 gtaaaacgac ggccagtacg tgccttgte	cc tgctttag	38
	<210> 81 <211> 21 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 81 tatctcttgt ttcgggttgg g	21	
25	<210> 82 <211> 37 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 82 gtaaaacgac ggccagtatg gaccttca	atg gtctccc	37
35	<210> 83 <211> 38 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 83 gtaaaacgac ggccagtcaa cagctat	gca cttgagcc	38
45	<210> 84 <211> 20 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 84 gagcagcagg cagtggttag	20	
55	<210> 85 <211> 21 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
05	<400> 85 aacttggagg atggctttgt g	21	
65	<210> 86		

	<211> 38 <212> ADN <213> Secuencia artificial	
5	<220> <223> cebador para pcr	
10	<400> 86 gtaaaacgac ggccagtagt gaaggcctac tgggattg	38
10	<210> 87 <211> 38 <212> ADN <213> Secuencia artificial	
15	<220> <223> cebador para pcr	
20	<400> 87 gtaaaacgac ggccagtgcc aaatgctctg ttctctgg	38
25	<210> 88 <211> 38 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador para pcr	
30	<400> 88 gtaaaacgac ggccagtctc ttccagaaag gctccacc	38
35	<210> 89 <211> 38 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador para pcr	
40	<400> 89 gtaaaacgac ggccagtaga cttgccgacc tgtacgac	38
45	<210> 90 <211> 21 <212> ADN <213> Secuencia artificial	
50	<220> <223> cebador para pcr	
	<400> 90 gtcctgtagc tgtgtggatg c 21	
55	<210> 91 <211> 38 <212> ADN <213> Secuencia artificial	
60	<220> <223> cebador para pcr	
	<400> 91 gtaaaacgac ggccagtaaa gttgtgcatt acgccaag	38
65	<210>92	

	<211> 38 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
40	<400> 92 gtaaaacgac ggccagtctg ctacctggag ctattccc		38
10	<210> 93 <211> 19 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 93 cctgacccag gacttggag 19		
25	<210> 94 <211> 22 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 94 tttaccacct ggagaagcag ac 22		
35	<210> 95 <211> 36 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 95 gtaaaacgac ggccagtgca gtgctgtctg tgcctc	36	
45	<210> 96 <211> 37 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 96 gtaaaacgac ggccagtcca gctctccaag tacccag		37
55	<210> 97 <211> 20 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
65	<400> 97 gacgcccgac tctttagtgg 20		
- •	<210> 98		

	<211> 39 <212> ADN <213> Secuencia artificial	
5	<220> <223> cebador para pcr	
40	<400> 98 gtaaaacgac ggccagtgcg acagaataag acttcgtcc	39
10	<210> 99 <211> 37 <212> ADN <213> Secuencia artificial	
15	<220> <223> cebador para pcr	
20	<400> 99 gtaaaacgac ggccagtaac tcagactgga gggagcc	37
25	<210> 100 <211> 36 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador para pcr	
30	<400> 100 gtaaaacgac ggccagtcag ttgtcctgga gccacc	36
35	<210> 101 <211> 38 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador para pcr	
40	<400> 101 gtaaaacgac ggccagtcaa gcctgaggtc tgttcagg	38
45	<210> 102 <211> 21 <212> ADN <213> Secuencia artificial	
50	<220> <223> cebador para pcr	
	<400> 102 ctcagcttgt gagtagcagc c 21	
55	<210> 103 <211> 39 <212> ADN <213> Secuencia artificial	
60	<220> <223> cebador para pcr	
	<400> 103 gtaaaacgac ggccagttgc ctctgacagg tgagtaagg	39
65	<210> 104	

	<211> 21 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 104 aggccttaaa tagggaaacg g	21	
	<210> 105 <211> 36 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 105 gtaaaacgac ggccagtccg agcgcgtatt aacg	gag	36
25	<210> 106 <211> 21 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 106 gagatgaccg tgagacacct g	21	
35	<210> 107 <211> 38 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 107 gtaaaacgac ggccagtctt ataatagggc cggt	gctg	38
45	<210> 108 <211> 21 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 108 accctagcag gtaaagggag g 21		
55	<210> 109 <211> 21 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
	<400> 109 atgtcggtgt cagagctgaa g	21	
65	<210> 110		

	<211> 38 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 110 gtaaaacgac ggccagtctc gctttcatat ttccgtcc	38	
	<210> 111 <211> 21 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 111 tcaggcatgt tcagagagca g 21		
25	<210> 112 <211> 35 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 112 gtaaaacgac ggccagtgaa tgtggcagga ccgag		35
35	<210> 113 <211> 21 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 113 cgagtcctca ctctgccttt c 21		
45	<210> 114 <211> 21 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 114 tctggatctc agctggattt g 21		
55	<210> 115 <211> 39 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
05	<400> 115 gtaaaacgac ggccagtccc acctggtcag agtaaacag		39
65	<210> 116		

	<211> 35 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 116 gtaaaacgac ggccagtagt gggcagctcc cgtag	35	
	<210> 117 <211> 37 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 117 gtaaaacgac ggccagttgg tcccactgaa tacccac		37
25	<210> 118 <211> 35 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 118 gtaaaacgac ggccagtcac agggcaggtt ggagg		35
35	<210> 119 <211> 38 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 119 gtaaaacgac ggccagttcc ttccaccaca actcacag		38
45	<210> 120 <211> 35 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 120 gtaaaacgac ggccagtaca ggctgggcct caaac		35
55	<210> 121 <211> 18 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
	<400> 121 agggccaagg ttggaatg 18		
65	<210> 122		

	<211> 38 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 122 gtaaaacgac ggccagtgag gtc	acacctg ggacagag	38
	<210> 123 <211> 18 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 123 agccagtctc caggcacc	18	
25	<210> 124 <211> 37 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 124 gtaaaacgac ggccagtctc ctca	acacgca cttcacc	37
35	<210> 125 <211> 38 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 125 gtaaaacgac ggccagtgag aa	eggacaac etcaetee	38
45	<210> 126 <211> 21 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 126 ttctactcag cacccagacc c	21	
55	<210> 127 <211> 20 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
65	<400> 127 agcttggact gcacatctgg	20	
-	<210> 128		

	<211> 38 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 128 gtaaaacgac ggccagtgag gaagggtcct ctcctgtc		38
	<210> 129 <211> 21 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 129 acatctggca gctgaggagt c 21		
25	<210> 130 <211> 35 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 130 gtaaaacgac ggccagtctc ctctgccctc ctccc	35	
35	<210> 131 <211> 18 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 131 ccaagcctgg cagaggag 18		
45	<210> 132 <211> 19 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 132 caacctgtcc tccagtgcc 19		
55	<210> 133 <211> 35 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
	<400> 133 gtaaaacgac ggccagtaga ggccaaaccc accac		35
65	<210> 134		

	<211> 20 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 134 tgtggtagat gctgcctgtg	20	
	<210> 135 <211> 37 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 135 gtaaaacgac ggccagtcaa cccg	gaatagg agaaggg	37
25	<210> 136 <211> 20 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 136 caacccgaat aggagaaggg	20	
35	<210> 137 <211> 20 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 137 cccactactg cttgctcagg	20	
45	<210> 138 <211> 21 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 138 ttgggaatta ggcttctgct g	21	
55	<210> 139 <211> 19 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
6E	<400> 139 gcctcagcaa caggaatgg	19	
65	<210> 140		

	<211> 38 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 140 gtaaaacgac ggccagtaga gctgaacaca gtgcttgg		38
	<210> 141 <211> 35 <212> ADN <213> Secuencia artificial		
15	<220> <223> cebador para pcr		
20	<400> 141 gtaaaacgac ggccagtccc tacccggtcc gtctc	35	
25	<210> 142 <211> 18 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
30	<400> 142 ggttcagcac cagcaggg 18		
35	<210> 143 <211> 37 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
40	<400> 143 gtaaaacgac ggccagtgcc cacctgtgtg gaagtag		37
45	<210> 144 <211> 35 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
	<400> 144 gtaaaacgac ggccagtctc ctgaccgtcg tgtgc	35	
55	<210> 145 <211> 21 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
65	<400> 145 ccatcctttc cagggaggta g 21		

	<210> 146 <211> 19 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 146 gacaagggct gctctcctg	19	
15	<210> 147 <211> 38 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
20	<400> 147 gtaaaacgac ggccagtacc gaa	agaaata aagcggtg	38
25	<210> 148 <211> 38 <212> ADN <213> Secuencia artificial		
30	<220> <223> cebador para pcr		
30	<400> 148 gtaaaacgac ggccagtaaa gcc	cgaagct aggaactc	38
35	<210> 149 <211> 21 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
	<400> 149 cctgcctagg acagagtttg g	21	
45	<210> 150 <211> 20 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
55	<400> 150 cttcctgcac agaaaggctg	20	
	<210> 151 <211> 38 <212> ADN		
60	<213> Secuencia artificial <220> <223> cebador para pcr		
65	<400> 151 gtaaaacgac ggccagtttg tcact	tgcgc tgaagaag	38

	<210> 152 <211> 21 <212> ADN <213> Secuencia artificial	
5	<220> <223> cebador para pcr	
10	<400> 152 aaaggcctgg atgtactcac g 21	
15	<210> 153 <211> 21 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador para pcr	
20	<400> 153 ttgccatgtc tctgtcctag c 21	
25	<210> 154 <211> 38 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador para pcr	
30	<400> 154 gtaaaacgac ggccagtgtc tccgacagac aggacacc	38
35	<210> 155 <211> 21 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador para pcr	
	<400> 155 gactgcctga gacagaaacc c 21	
45	<210> 156 <211> 38 <212> ADN <213> Secuencia artificial	
50	<220> <223> cebador para pcr	
55	<400> 156 gtaaaacgac ggccagtagg tgctctgtga gacattcg	38
33	<210> 157 <211> 21 <212> ADN <213> Secuencia artificial	
60	<220> <223> cebador para pcr	
65	<400> 157 gtctcaaccc atccaccctt c 21	

5	<210> 158 <211> 38 <212> ADN <213> Secuencia artificial	
5	<220> <223> cebador para pcr	
10	<400> 158 gtaaaacgac ggccagttcc agaatccaga gcatctcc	38
15	<210> 159 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador para pcr	
20	<400> 159 gtgacacccg tgacaaggag 20	
25	<210> 160 <211> 38 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador para pcr <400> 160	
	gtaaaacgac ggccagtgtc catgcttgaa cttggagg	38
35	<210> 161 <211> 20 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador para pcr	
	<400> 161 acaagggcac ctcctaccag 20	
45	<210> 162 <211> 20 <212> ADN <213> Secuencia artificial	
50	<220> <223> cebador para pcr	
55	<400> 162 gtcagcttct cccaggcttc 20	
	<210> 163 <211> 38 <212> ADN <213> Secuencia artificial	
60	<220> <223> cebador para pcr	
65	<400> 163 gtaaaacgac ggccagtcgc cctggtctca agtcatag	38

5	<210> 164 <211> 36 <212> ADN <213> Secuencia artificial		
J	<220> <223> cebador para pcr		
10	<400> 164 gtaaaacgac ggccagtctc gtggctctgg gaagt	С	36
15	<210> 165 <211> 21 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
20	<400> 165 tgccagagaa cagagcattt g	21	
25	<210> 166 <211> 21 <212> ADN <213> Secuencia artificial		
20	<220> <223> cebador para pcr		
30	<400> 166 aagcctgtcc cgtgtctact g 21		
35	<210> 167 <211> 21 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
	<400> 167 tagtggaaga gcttgttggc g	21	
45	<210> 168 <211> 19 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
55	<400> 168 ggaagaccct gagctgcac 19		
55	<210> 169 <211> 38 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
65	<400> 169 gtaaaacgac ggccagtgta gcagtcgctg acato	ectg	

	<210> 170 <211> 21 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 170 aacacctgtg atctggaagg c	21	
15	<210> 171 <211> 21 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
20	<400> 171 acacatacac acacgtgctc c	21	
25	<210> 172 <211> 36 <212> ADN <213> Secuencia artificial		
30	<220> <223> cebador para pcr		
30	<400> 172 gtaaaacgac ggccagtctc gaggcaca	ga cagcac	36
35	<210> 173 <211> 35 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
	<400> 173 gtaaaacgac ggccagtcag gcgatgag	ggg aactg	35
45	<210> 174 <211> 21 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
55	<400> 174 cgaaatacag gttcctcctg c <210> 175	21	
	<211> 21 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
65	<400> 175 tgaccgtagt cctcgtagct g 2	21	

	<210> 176 <211> 37 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 176 gtaaaacgac ggccagtacg tcgg	tcaggc tgatctc	37
15	<210> 177 <211> 20 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
20	<400> 177 aactctctga ggctgcaagg	20	
25	<210> 178 <211> 21 <212> ADN <213> Secuencia artificial		
30	<220> <223> cebador para pcr		
30	<400> 178 gctagaaaca gcctaggcca c	21	
35	<210> 179 <211> 21 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
	<400> 179 ctgaacagac ctcaggcttg g	21	
45	<210> 180 <211> 20 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
55	<400> 180 tccctcagag tcccaagagg	20	
	<210> 181 <211> 38 <212> ADN		
60	<213> Secuencia artificial <220> <223> cebador para pcr		
65	<400> 181 gtaaaacgac ggccagtggt aggg	aaggca gagatgtg	38

E	<210> 182 <211> 20 <212> ADN <213> Secuencia artificial	
5	<220> <223> cebador para pcr	
10	<400> 182 tgggttcaga ccctgacttg 20	
15	<210> 183 <211> 35 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador para pcr	
20	<400> 183 gtaaaacgac ggccagtatg accggcttgg aggac	35
25	<210> 184 <211> 20 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador para pcr	
30	<400> 184 gacacaggag gagaggtcgg 20	
35	<210> 185 <211> 38 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador para pcr	
	<400> 185 gtaaaacgac ggccagttct gctacagtct cggcaaag	38
45	<210> 186 <211> 21 <212> ADN <213> Secuencia artificial	
50	<220> <223> cebador para pcr	
55	<400> 186 ctccctttac ctgctagggt g 21	
	<210> 187 <211> 37 <212> ADN	
60	<213> Secuencia artificial <220>	
	<223> cebador para pcr	
65	<400> 187 gtaaaacgac ggccagtgtc agccagaaca ggtcgtc	37

_	<210> 188 <211> 38 <212> ADN <213> Secuencia artificial	
5	<220> <223> cebador para pcr	
10	<400> 188 gtaaaacgac ggccagtgag gcggccattt ctctttac	38
15	<210> 189 <211> 21 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador para pcr	
20	<400> 189 tacggccctt tagagatgtg g 21	
25	<210> 190 <211> 37 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador para pcr	
00	<400> 190 gtaaaacgac ggccagtact ccagtctcag gdccatc	37
35	<210> 191 <211> 20 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador para pcr	
	<400> 191 cagagtgagg actcgggatg 20	
45	<210> 192 <211> 37 <212> ADN <213> Secuencia artificial	
50	<220> <223> cebador para pcr	
55	<400> 192 gtaaaacgac ggccagtcac tcagcctgtg tctgtgg	37
55	<210> 193 <211> 38 <212> ADN <213> Secuencia artificial	
60	<220> <223> cebador para pcr	
65	<400> 193 gtaaaacgac ggccagtctt gatggagaac ggtctgtc	38

F	<210> 194 <211> 21 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 194 caacactttg tgctggttcc c	21	
15	<210> 195 <211> 21 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
20	<400> 195 agtaggagct gatgctgcga g		21
25	<210> 196 <211> 21 <212> ADN <213> Secuencia artificial		
30	<220> <223> cebador para pcr		
00	<400> 196 gaggagcttg ttgttgggaa g		21
35	<210> 197 <211> 21 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
	<400> 197 taaaggacag gtggaaggtg g		21
45	<210> 198 <211> 22 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
55	<400> 198 tggctgaacc tctgactcta gc		22
	<210> 199 <211> 20 <212> ADN <213> Secuencia artificial		
60	<220> <223> cebador para pcr		
65	<400> 199 cttcctgacc acctcgtctc	20	

	<210> 200 <211> 35 <212> ADN <213> Secuencia artificial			
5	<220> <223> cebador para pcr			
10	<400> 200 gtaaaacgac ggccagtgct gactgcacca gtggg)	35	
15	<210> 201 <211> 21 <212> ADN <213> Secuencia artificial			
	<220> <223> cebador para pcr			
20	<400> 201 tacttccagg cctgagacac c	21		
25	<210> 202 <211> 38 <212> ADN <213> Secuencia artificial			
20	<220> <223> cebador para pcr			
30	<400> 202 gtaaaacgac ggccagtcac acggtcaggt caca	cttc		38
35	<210> 203 <211> 21 <212> ADN <213> Secuencia artificial			
40	<220> <223> cebador para pcr			
	<400> 203 cctccttaga cctcagcaac g	21		
45	<210> 204 <211> 21 <212> ADN <213> Secuencia artificial			
50	<220> <223> cebador para pcr			
55	<400> 204 gagaaagcag ggacaggaca c	21		
	<210> 205 <211> 38 <212> ADN <213> Secuencia artificial			
60	<220> <223> cebador para pcr			
65	<400> 205 gtaaaacgac ggccagtaac tgggtgcagc tggaa	atac		38

	<210> 206 <211> 37 <212> ADN <213> Secuencia artificial		
5	<220> <223> cebador para pcr		
10	<400> 206 gtaaaacgac ggccagtagc atgcatccac tcaggtc		37
15	<210> 207 <211> 19 <212> ADN <213> Secuencia artificial		
	<220> <223> cebador para pcr		
20	<400> 207 agcagcagct gggtctctg 19		
25	<210> 208 <211> 35 <212> ADN <213> Secuencia artificial		
30	<220> <223> cebador para pcr		
30	<400> 208 gtaaaacgac ggccagttcc tgcacccact tctgc	35	
35	<210> 209 <211> 18 <212> ADN <213> Secuencia artificial		
40	<220> <223> cebador para pcr		
	<400> 209 cgtcgttgta gaagcccg 18		
45	<210> 210 <211> 37 <212> ADN <213> Secuencia artificial		
50	<220> <223> cebador para pcr		
55	<400> 210 gtaaaacgac ggccagtgtt tgaggttcgt ttctgcg	37	
55	<210> 211 <211> 38 <212> ADN		
60	<213> Secuencia artificial <220> <223> cebador para pcr		
65	<400> 211 gtaaaacgac ggccagtaca aagatagggt ggtcaggg		38

5	<210> 212 <211> 21 <212> ADN <213> Secuencia artificial	
3	<220> <223> cebador para pcr	
10	<400> 212 caaccaggtc cagccacata g 21	
15	<210> 213 <211> 36 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador para pcr	
20	<400> 213 gtaaaacgac ggccagtgta cagggccagc aggatg	36
25	<210> 214 <211> 18 <212> ADN <213> Secuencia artificial	
30	<220> <223> cebador para pcr	
00	<400> 214 atcttggcca gggtggag 18	
35	<210> 215 <211> 37 <212> ADN <213> Secuencia artificial	
40	<220> <223> cebador para pcr	
	<400> 215 gtaaaacgac ggccagtgca cctagaacgg tgcagag	37

REIVINDICACIONES

- 1. Un método para el diagnóstico del cáncer colorrectal en un ser humano, que comprende las etapas de:
- determinar en una muestra de ensayo con respecto a una muestra normal del ser humano, una mutación somática en el gen *KRAS* o su ARNm o proteína codificados, estando dicha mutación en el codón K117; identificar la muestra como cáncer colorrectal cuando se determina la mutación somática.
 - 2. El método de la reivindicación 1 en el que la mutación es K117N.
 - 3. El método de la reivindicación 1 en el que la muestra de ensayo es una muestra de tejido colorrectal o una metástasis sospechosa de cáncer colorrectal.
 - 4. El método de la reivindicación 1 en el que la muestra normal es una muestra de tejido colorrectal.
- 5. Un método para estratificar cánceres colorrectales para someter a ensayo agentes terapéuticos anticáncer candidatos o conocidos, que comprende las etapas de:
- determinar, en una muestra de ensayo con respecto a una muestra normal del ser humano, una mutación somática en el gen *KRAS* o su ARNm o proteína codificados, estando dicha mutación en el codón K 117; formar un primer grupo de cánceres colorrectales que tienen la mutación somática; comparar la eficacia de un agente terapéutico anticáncer candidato o conocido en el primer grupo con respecto a la eficacia en un segundo grupo de cánceres colorrectales que no tienen la mutación somática; identificar una mutación somática que se correlaciona con el aumento o la disminución de la eficacia del agente terapéutico anticáncer candidato o conocido con respecto a otros grupos.
 - 6. El método de la reivindicación 5 en el que la muestra de ensayo es una muestra de tejido colorrectal.

8. Un método para caracterizar un cáncer colorrectal en un ser humano, que comprende las etapas de:

- 7. El método de la reivindicación 5 en el que la muestra normal es una muestra de tejido colorrectal.
- determinar, en una muestra de ensayo con respecto a una muestra normal del ser humano, una mutación somática en el gen *KRAS* o su ARNm o proteína codificados, estando dicha mutación en el codón K117.
 - 9. El método de la reivindicación 8 en el que la muestra de ensayo es una muestra de tejido colorrectal o una metástasis sospechosa de cáncer colorrectal.
 - 10. El método de la reivindicación 8 en el que la muestra normal es una muestra de tejido colorrectal.

40

30

35

10

15

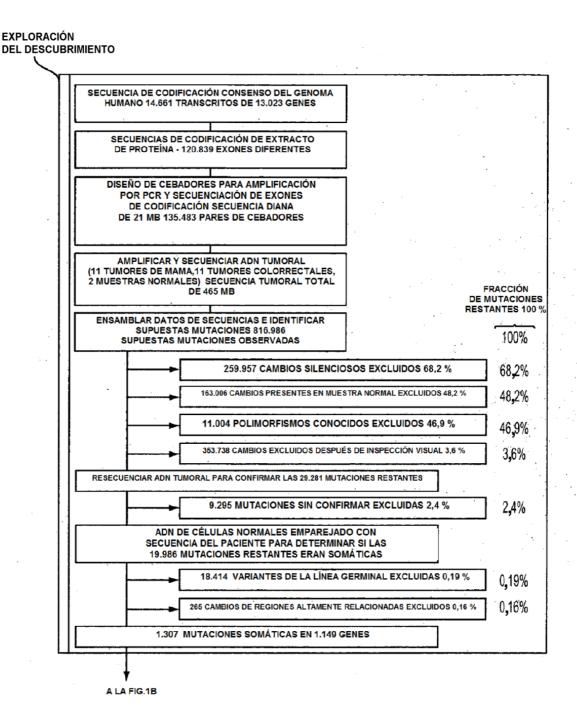


FIG. 1A

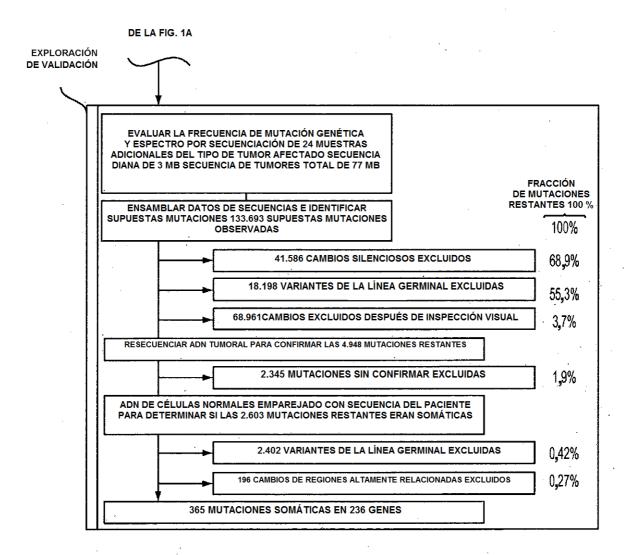


FIG. 1B

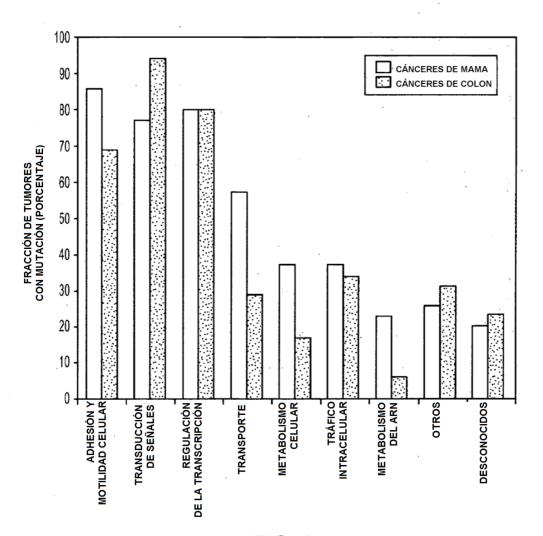


FIG. 2

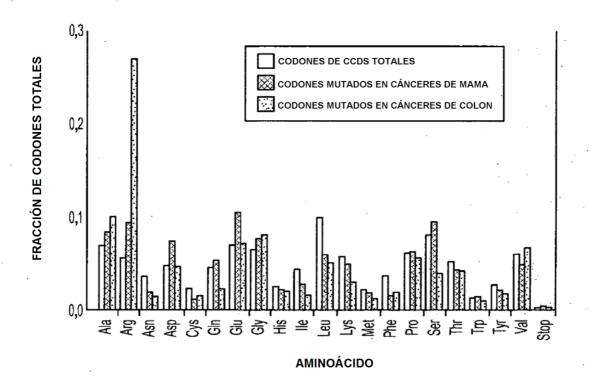
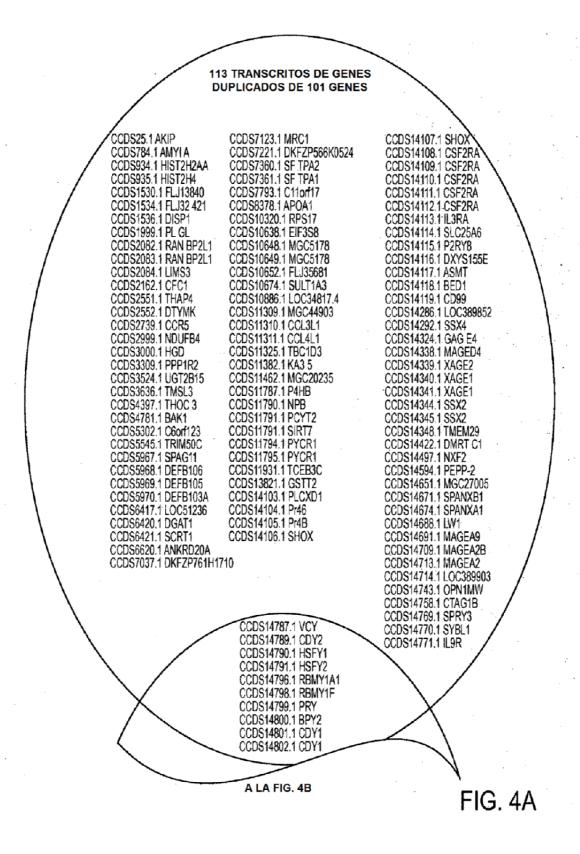



FIG. 3

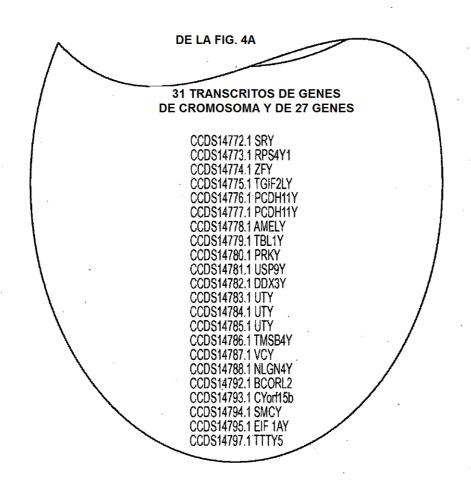


FIG. 4B

TABLA 1. SUMARIO DE MUTACIONES SOMÁTICAS*

		Número	Número de	OATA	Mutaciones no sinónimas en secuencias de codificación	nes no	sinóni	nas e	n secu	ancias	de cod	ificaci		Mutaciones en secuencias de no codificación	aciones en secuen de no codificación	Secu	encias	Nucledtidos	
Exploracion i unior	ouin	de genes mutados	de genes mutaciones mutados	Can	nbio	Sin	op.	Inse	Inserción	Supr	Supresión	Dupl	Duplicación	Sitio de corte y empalme	me +	5	UTR	satisfactoriamente (Mb)	Frecuencia de la mutación (mutaciones/Mb)
	Colon	519	574	482	(84,0)	ક્ક	(6,1)	3	(0,5)	80	(3,1)	1	(3,0)	17	(3,0)	2	(0,3)	208,5	2,8
descubrimiento	Mama		733	9	(81,9)	33	(2,3)	3	(0,4)	8	(6,5)	7	(0,3)	37	(2,0)	4	(0,5)	209,2	3,5
	Total	1149	1307	1082	(82,8)	74	(5,7)	9	(0,5)	99	(2,0)	9	(1,5)	স্ক	(4,1)	9	(0,5)	417,7	3,1
Exploración de	용	\$	171	128	(71,2)	92	(14,7)	7	(1,1)	9	(2,6)	ന	(1,7)	თ	(5,1)	-	(9,0)	28,7	6,2
prevalencia #	Mama	137	88	145	(11,1)	00	(4,3)	7	£,	33	(6,9)	4	(6,4)	œ	(4,3)	0	(0,0)	34,3	5,5
	Total	236	385	271	(742)	ऋ	(8,3)	4	£,	ß	(6,3)	5	(4,1)	11	(4,7)	-	(0,3)	63,0	5,8
	Selection	519	751	809	(81,0)	6	(8,1)	2	(0,7)	88	(3,7)	8	(2,7)	92	(3,5)	က	(0,4)	237,2	35
Ambas exploraciones	Mama		921	745	(6,08)	47	(5,1)	9	(0,5)	9	(9,9)	#	(1,5)	45	(4,9)	4	(0,4)	243,5	3,8
combinadas	Total	1149	1672	1353	(803)	8	(6.5)	9	(9.0)	8	(5.3)	Z,	(20)	71	(42)	7	(40)	480.7	35

de CCDS se secuenciaron en 11 cánceres colorrectales y 11 cánceres de mama. # Los genes mutados en la exploración del descubrimiento se sentenciaron en 24 muestras de tumor adicionales del tipo de tumor afectado. † Mutaciones intrónicas dentro de 4 pb del límite del exón/intrón. ‡ Mutaciones en regiones sin traducir (UTR) dentro de 4 pb en la posición 5' del codón de inicio o 4 pb en la posición 3' del codón de terminación. ° Nucleótidos con puntuación de la calidad de Phred de al menos 20. *Los números entre parêntesis se refieren al porcentaje de mutaciones totales. ¶ Las regiones de codificación y de no codificación adyacentes de 13.023 genes

FIG. 5

TABLA 2. ESPECTRO DE SUSTITUCIONES DE UNA SOLA BASE*

Fxnloración	Tumor	Número total	S	Sustituciones en los pares de bases de C:G	de de	an los pare: de C:G	de ba	ses	Sur	Sustituciones en los pares de T:A	es en	an los pare de T:A	s de ba	Ses	Sust	Sustituciones en los dinucleótidos	s en los tidos	
		de sustituciones	ဗ္ဗ	A:T-	c;G	3+6:0	1	C:6-A:T	T:A	ပ္ပ	T:A-	Ç.C +	T:A+	-A:T	5.5	96-3	5.1	S
Exploración del	Colon	535	325	(60,7)	38	(6,7)			42	(6,7)	88	(7,1)	24	(4,5)	254	(47.5)	R	(10,1
descubrimiento	Mama	678	230	(33,9)	202		2	4.85	\$	(8,0)	8	(4,4)	47	(6.9)	115	(17,0)	235	34,7
	Total	1213	555	(45,8)	243	(20,0)	8	(14,8)	8	(6,7)	88	(2,6)	7	(2,9)	369	(30,4)	289	(23,8)
Exploración	Colon	161	88	(54,7)	12		ß	(14,3)	4	(8,7)	5	(8,1)	F	(8,8)	22	(34.2)	25	(15,5
de prevalencia	Mama	160	29	(36,9)	35		8	(23,8)	8	(11,3)	2	(3,1)	00	(20)	24	(150)	22	(13.8
	Total	321	147	(45,8)	4		9	(18,0)	33	(10,0)	8	(2,6)	19	(2,9)	79	(24,6)	47	(14,6
Ambas	Colon	969	413#	(28,3)	48#		83	(13,4)	28	(8,0)	5	(7,3)	35	(2,0)	308	(44,4)	数2	4,11
exploraciones	Mama	838	588	(34.5)	239		148	(17.7)	72	(8,6)	સ	(4.2)	88	(9,9)	139	(16.6)	257#	(30,7
combinadas	Total	1534	702	(45,8)	287		241	(15,7)	128	(8,3)	8	(2,6)	8	(2,9)	\$	(29,2)	336	(21,9

* Se incluyen sustituciones de bases en secuencias de codificación que dan como resultado cambios no sinónimos aasí como sustituciones en secuencias de no codificación (véase la Tabla 1). Los números entre parêntesis indican el porcentaje de mutaciones totales. # indica que los valores en esta categoría eran significativamente diferentes entre cánceres de mama y colorrectales (P<0,0001). ¶ Incluye sustituciones en la C o G del dinucleótido 5'-CpG-3', la C del dinucleótido 5'-TpC-3', o la G del dinucleótido 5'-GpA-3'.

FIG. 6

Tabla 3. CLASIFICACIÓN FUNCIONAL DE GENES CAN*

Cánceres de mama	Cánceres colorrectales
Puntuaciones de genes <i>CAN</i> y CaMP	Puntuaciones de genes CAN y CaMP

Adhesión y motilidad celular

(ejemplos: proteína de unión citoesquelética go:0008092, adhesión celular go:0007155, actividad de metalopeptidasa go:0008237)

Transducción de señales

(ejemplos: cascada de señalización intracelular go:0007242, actividad del receptor go:0004872, regulador de la gtpasa go:0030695)

RAP1GA1 1,8 NALP8 1,4 APC2 1,3 GL EGFL6 1,8 RGL1 1,4 STARD8 1,2 E AMFR 1,7 PPM1E 1,4 PTPN14 1,1 T CENTB1 1,7 PKDREJ 1,4 IRTA2 1,1 GPNMB 1,7 CNNM4 1,3 RASGRF2 1,1 INHBE 1,7 ALS2CL 1,3 MTMR3 1,1 P	EPHA3 UCY1A2 EPHB6 GFBR2 GNAS RET 22RY14 LGR6	10 10 15 15 15 15 15 15 15 15 15 15 15 15 15	MCP NF1 PTPRU CD109 PHIP	1,9 1,4 1,3 1,2
---	--	--	--------------------------------------	--------------------------

Regulación de la transcripción

(ejemplos: regulación de la transcripción go:0045449, subtipo c2h2 de dedo de cinc ipr007086)

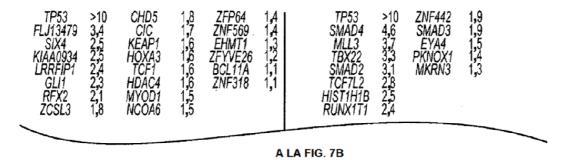


FIG. 7A

DE LA FIG. 7A **Transporte** (ejemplos: actividad del transportador de iones go:0015075, actividad del canal iónico abierto por ligando go:0015276, actividad del vehículo go:0005386) C6orf29 Metabolismo celular (ejemplos: metabolismo de compuestos aromáticos go:0006725, generación de metabolitos precursores go:0016445, biosíntesis go:0009058) Tráfico intracelular (ejemplos: secuencia de direccionamiento del retículo endoplasmático ipr000886, fusión de membrana go:0006944) PLEKHA8 LRBA LOC283849 AEGP Metabolismo del ARN (ejemplos: procesamiento de arn go:0008353, selección del sitio de corte y empalme de arn go:0006376) C14orf155 SP110 SFRS6 1,3 DDX10 **Otros** (ejemplos: respuesta al estímulo del daño en adn go:0006974, ubiquitinación de proteínas go:0016567) FLJ40869 SERPINB1 1.4 Desconocido KIAA1632 **KIAA0999** C10orf137 KIAA 1409 MGC24047 LOC157697 C15orf2

FIG. 7B

^{*}Los genes CAN se asignaron a clases funcionales usando grupos de ontología genética (go), dominios interpro y bibliografía disponible. los grupos de go y dominios de interpro representativos se enumeran para cada clase.

ALAFIG.8B FIG 8

		Exór	Exón de codificación		Cebador directo		ŭ	Cebador inverso
Referencia de CCDS	Gen	Número	Posición genómica	Posición relativa ‡	Secuencia §	Posición relativa‡		Secuencia §
CCDS1.1	FLJ22639	-	chr1:801942-802434	69-22	MI3-GCCCTTCCACCCTAGTTCTTC	447	477	CCCACTACTGCTTGCTCAGG#
CCDS9 1	SAMD11	_	chr1-014832_014083	ž tċ	MIS-CIGITOGO GOLGICIACO INCOMENTA MIS-CONTRACTOR CONTRACTOR CONTRA	\$ 1	8 8	LIGGGRALIAGGLICIG
0000		~	chr1-016665_016820	\$	いまつしているのではののないできないというというというというというというというというというというというというという	\$	8	M13-Aにおりにはいる。 M13-Aにおりにあるとのというにある。
		100	chr1-917658-910029	± €	くなくないのできない。	+74	124	M13-CCCPACCGGTCGGTCTC
		ব	chr1917932-918011	\$	M13-GAGACGGACCGGGTAGGG	+192	+192	GGTTCAGCACCAGCAGGG#
		Ŋ	chr1-918081-918581	ස්	CTGCGGBAGCAGAACCTG	486	486	M13-GCCCACCTGTGTGAAGTAG
				305	CACAAGATGGCTCGGAAGAC	+121	+121	M13-CTCCTGACCGTCGTGTGC
		9	chr1-918775-918900	-177	M13-CTAGATCCTTCCAGAGGCAC	1 5	5	CCATCCTTTCCAGGGGGTAG
		7	chr1:919220-919331	-134	M13-CCTGACACTCAAACCCAACAG	+199	1 38	GACAAGGGCTGCTCCTG
		œ	chr1:919430-919676	8	GAGTGAGGTCAGGGTCTCCAG	+71	+7	M13-ACCGAAAGAAATAAAGCGGTG
CCDS3.1	DKFZP564C186	-	chr1-934737-934763		GAGAACCATAGAGCCACTCGG	+159	+159	M13-AAAGCCCGAAGCTAGGAACTC
		7	chr1:934451-934604		M13-GTGGGTGTCTGTATCCAAGGG		+176	CCTGCCTAGGACAGAGTTTGG
		က	chr1:932621-932796		M13-TGAAGGGAGTAGACTGACCCTG			CTTCCTGCACAGAAAGGCTG#
		4	chr1.932416-932548		GGACAGCTCTGAGGAGGAGAGAG			M13-TTGTCACTTGCGCTGAAGAAG
		ഹ	chr1:931617-931738		M13-CCAACCTCTGCCCTATGTCTG			AAAGGCCTGGATGTACTCACG
		ထ	chr1:931445-931536		M13-AGTGCTGAGGCCAACAATTC			TIGCCATGTCTCTGTCCTAGC
		~	chr1:929526-929605		AGTCGTAGAGGCTATGCTGGC		+114	M13-GTCTCCGACAGACAGGACACC
		ထ	chr1:929304-929415	-13	M13-TCGGCCATACAGGTGCTATTC	+164	+164	GACTGCCTGAGACAGAAACCC
		ത	chr1-928697-928811	-123	AGGTGCTTTGGGAAGAGCTG	+141	+14	M13-AGGTGCTCTGTGAGACATTCG
		0	chr1-927934-928123	ౙ	M13-AAGGCCAGGTGTTCACAG	+147	+147	GTCTCAACCCATCCACCCTTC#
		F	chr1-927522-927662	ş	AGGAATGATTCCTGTGCCG	+157	+157	M13-TCCAGAATCCAGAGCATCTCC
		12	chr1-926649-926761	-124	M13_A CTCCCTTCCTTCTCTCTTTT	+113	+	GTGACACCCGTGACAAGGAG
		íΩ		169	はなり、いつのでは、このでは、このでは、このでは、このでは、このでは、このでは、このでは、こ	584	4	M13_CPCP DPCPTPCDAPPCCACC
		7		<u>.</u>	TOTOTOTOTOTOGOTOGOG	92+	35	Aであることでは、これでいるとしている。 Aであることでは、これでいるとのできた。
		ŕc	chr1:021024_0220135	-150	が12-711 GOMGCTTでは、GOMGCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	+110		いませんかけんしんしゅんしゅんしょう
		ب ش	chr1-021524-322000	-138	CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGC	433		していたのではないののはないです。 M1 3→CGCCのですないのです。 M1 3→CGCCのですないのです。
		1,	chr1-02-1040-02-1045	-151	ない。これでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、	75		15
		:	_		3		5	2

8 8
<u>등</u>
Y
ᆷ

TGCCAGAGAACAGATTTG# AAGCCTGTCCGTGTCTACTG	_	GGAAGACCCTGAGCTGCAC	M13-GTAGCAGTCGCTGACATCCTG				M13-CAGGCGATGAGGGAACTG		_	M13-ACGTCGGTCAGGCTGATCTC				_	-	MID-GGIAGGGAAGGCAGAGAIGIG		-	GACACAGGAGGAGGICGG	M13-TCTGCTACAGTCTCGGCAAAG	CICCCITIACCIGCIAGGGIG	M13-GTCAGCCAGAACAGGTCGTC	M13-GAGGCGGCCATTICTCTTTAC	TACGGCCCTTTAGAGATGTGG	M13-ACTCCAGTCTCAGGCCCATC	CAGAGIGAGGACICGGGAIG	M13-CACTCAGCCTGTGTCTGTGG	M13-CTTGATGGAGAACGGTCTGTC				TAAAGGACAGGTGGAAGGTGG	
+122	+155	+70	+ 94	+141	+75	+155	+76	+68	+171	+139	+103	+	9	24	5	4	4/8	+78	1 94	+54	+182				+64	+59	+26	+151	+62	+135	+149	+231	
M13-AGTGAAGGCCTACTGGGATTG M13-GCCAAATGCTCTGTTCTCTGG	•	M13-AGACTTGCCGACCTGTACGAC	GTCCTGTAGCTGTGGATGC	M13-AAAGTTGTGCATTACGCCAAG	M13-CIGCIACCIGGAGCIATICCC	CCTGACCCAGGACTTGGAG	TTTACCACCTGGAGAAGCAGAC	M13-GCAGTGCTGTCTGTGCCTC	M13-CCAGCTCTCCAAGTACCCAG	GACGCCCGACTCTTTAGTGG	M13-GCGACAGAATAAGACTTCGTCC	M13_AACTCAGACTGGAGGGAGCC		びとしているのでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	りつけつこうけつけつけついることではついっていることではついっていることではいっていることではいることでは、そのではいることでは、そのでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	CICAGCIIGIGAGIAGCAGC	MI3-TGCCTCTGACAGGTGAGTAAGG	AGGCCTTAAATAGGGAAACGG	M13-CCGAGCGCGTATTAACGAG	GAGATGACCGTGAGACACCTG	M13-CTTATAATAGGGCCGGTGCTG	ACCCTAGCAGGTAAAGGGAGG	ATGTCGGTGTCAGAGCTGAAG	M13-CTCGCTTTCATATTTCCGTCC	TCAGGCATGTTCAGAGAGCAG	M13-GAATGTGCCAGGACCGAG	CGAGTCCTCACTCTGCCTTTC	TCTGGATCTCAGCTGGATTTG	M13-CCCACCTGGTCAGAGTAAACAG	M13-AGTGGGCAGCTCCCGTAG	M13-TGGTCCCACTGAATACCCAC	M13-CACAGGCAGGTTGGAGG	
1	.13 89	-500	ౙ	-145	<u>.</u>	æ	-174	-165	-112	-73	-118	6	ខុ	38	26.	717.	\$	-15/	-145	-142	-110	-224	83	-13	-19	-207	ද 3	213	-13	6 9 -	-19	4	æ
chr1:920579-920669 chr1:920216-920323	chr1:941978-942061	chr1:942150-942250	chr1:945723-945870	chr1:945967-946048	chr1:946132-946205	chr1:946325-946453	chr1:946559-946655	chr1:946770-946851	chr1:947521-947597	chr1:947734-947871	chr1:948307-948457	chr1-948632-948773	chr1-948946-949087	chr1-040270-048408	011 1.040K1 0-040400	11.049/02-049011 11.049/02-049011	Chr1:949888-9500Z2	chr1:9/5312-9/5420	chr1:974972-975060	chr1:974505-974879	chr1:989020-989023	chr1:989430-989925		chr1:1062441-1062481	chr1:1061180-1061315	chr1:1059783-1059809	chr1:1059217-1059686		chr1:1058195-1058290	chr1:1155356-1155643	chr1:1155785-1155904	chr1:1156033-1156163	A FIG. 80 FIG.
<u>ක දා</u>	_	~	ഹ	ব	S	တ	~	∞	σ	9	=	5	: £:	7	<u> </u>	2 \$	۵-		ഗ	4		7		-	~	က	4		Ŋ	-	~	~	ALA
	DKFZP434H2010																	艺艺			G1P2			FLJ20584						FLJ36119			
	CCDS4.1																	CCDS5.1			CCDS6.1			CCDS7.1						CCDS8.1			

DE LA FIG. 8B

		4	chr1:1157043-1157118	-121	M13-TCCTTCCACCACACTCACAG	+112	TGGCTGAACCTCTGACTCTAGC
		. rc	chr1:1157663-1157749	-78	M13-ACAGGCTGGGCCTCAAAC	+117	CTTCCTGACCACCTCGTCTC
		ဖ	chr1:1158178-1158350	-124	AGGCCCAAGGTTGGAATG	425	M13-GCTGACTGCACCAGTGGG
		7	chr1:1159222-1159394	-125	M13-GAGGTCACACCTGGGACAGAG	+119	TACTTCCAGGCCTGAGACACC
		∞	chr1:1160271-1160445	e,	AGCCAGTCTCCAGGCACC	+79	M13-CACACGGTCAGGTCACACTTC
CCDS9.1	TNFRSF18	_	chr1:1181687-1181874	-127	M13-CTCCTCACACGCACTTCACC	£64	CCTCCTTAGACCTCAGCAACG
		7	chr1:1180672-1180795	6	M13-GAGAACGGACAACCTCACTCC	+177	GAGAAAGCAGGACAGGACAC
		က	chr1:1179701-1179789	-114	TTCTACTCAGCACCCAGACCC	+154	M13-AACTGGGTGCAGCTGGAATAC
		4	chr1:1178893-1179263	-124	AGCTTGGACTGCACATCTGG	+82	M13-AGCATGCATCCACTCAGGTC
CCDS10.1	TNFRSF18	4	chr1:1179336-1179539	-112	M13-GAGGAAGGGTCCTCTCTGTC	+63	AGCAGCAGCTGGTCTCTG
		5	chr1:1179146-1179271	19	ACATCTGGCAGCTGAGGAGTC	+109	M13-TCCTGCACCCACTTCTGC
CCDS11.1	TNFRSF4	_	chr1:1189285-1189430	8	M13-CTCCTCTGCCCTCCC	+258	CGTCGTTGTAGAAGCCCG
		7	chr1:1188965-1189088	æ	CCAAGCCTGGCAGAGGAG	464	M13-GTTTGAGGTTCGTTTCTGCG
		က	chr1:1188294-1188396	\$	CAACCTGTCCTCCAGTGCC	+562	M13-ACAAAGATAGGGTGGTCAGGG
		4	chr1:1187940-1188007	-117	M13-AGAGGCCAAACCCACCAC	+154	CAACCAGGTCCAGCCACATAG
		Ś	chr1:1187244-1187441	-109	TGTGGTAGATGCTGCCTGTG	+171	M13-GTACAGGCCCAGCAGGATG
		9	i chr1:1187006-1187135	3 9-	M13-CAACCCGAATAGGAGAAGGG	+128	ATCTTGGCCAGGGTGGAG
		7	chr1:1186857-1186928	-783	CAACCCGAATAGGAGAAGGG	+110	M13-GCACCTAGAACGGTGCAGAG

del extremo 3' del cebador de PCR inverso con respecto a la última base del exón. # El par cebador nos satisfizo los criterios de calidad de los inventores de que > 90 % de bases en la región diana tienen una puntuación de calidad de Phred de al menos 20 en tres cuartas partes de las muestras de tumor analizadas en la números sin signos indican la posición del extremo 3' del cebador de PCR inverso con respecto a la primera base del exón. Los signos más indican la posición ordinal más bajo. Los exones de codificación con más de 350 pb se amplificaron y secuenciaron con múltiples pares de cebadores. Posición del extremo 5' del 'Cuando múltiples entradas de CCDS se derivan del mismo gen, los cebadores para exones compartidos se enumeran en la entrada de CCDS con el número cebador de PCR directo con respecto a la primera base del exón. § M13 se refiere al cebador de secuenciación universal 5'-6TAAAACGACGCCAGT-3' † Los exploración del descubrimiento

FIG. 8C

TABLA S2A. CARACTERISTICAS DE LAS MUESTRAS DE CANCER COLORRECTAL

ID	Edad del paciente (años)	Sexo	Derivación del tejido	Ubicación del tumor original	Estadio clínico	Tipo de muestra	Exploración
Co74	35		Metástasis hepática	Sigmoideo	IV	Línea celular	Descubrimiento
Co92	46		Metástasis hepática	Colon derecho	IV	Línea celular	Descubrimiento
Co108	3 77		Metástasis hepática	Colon derecho	IV	Línea celular	Descubrimiento
Mx22	66		Metástasis hepática	Desconocido	IV	Xenoinjerto	Descubrimiento
M×27	74		Metástasis hepática	Colon derecho	IV	Xenoinjerto	Descubrimiento
M×30	62		Metástasis hepática	Sigmoideo	IV	Xenoinjerto	Descubrimiento
Mx32	56		Metástasis hepática	Colon derecho	IV	Xenoinjerto	Descubrimiento
Mx38	67	М	Metástasis hepática	Recto	IV	Xenoinjerto	Descubrimiento
M×41	57	М	Metástasis hepática	Colon derecho	IV	Xenoinjerto	Descubrimiento
Mx42	72	М	Metástasis hepática	Colon izquierdo	IV	Xenoinjerto	Descubrimiento
Mx43	72	M	Metástasis hepática	Sigmoideo	IV	Xenoinjerto	Descubrimiento
Co79	81	М	Metástasis en ganglios linfáticos	Colon derecho	IV	Línea celular	Validación
Co82	80	F	Tumor colorrectal primarios	Colon derecho	IV	Línea celular	Validación
Co84	40	М	Metástasis en ganglios linfáticos	Colon derecho	III	Línea celular	Validación
Co94	46	М	Metástasis en ganglios linfáticos	Recto	IV	Línea celular	Validación
МхЗ	64	М	Tumor colorrectal primarios	Colon derecho	IV	Xenoinjerto	Validación
Mx8	65	М	Tumor colorrectal primarios	Rectal	IV	Xenoinjerto	Validación
Mx26	45	F	Metástasis hepática	Colon derecho	IV	Xenoinjerto	Validación
Mx29	51	M	Metástasis hepática	Colon izquierdo	IV	Xenoinjerto	Validación
Mx31	50	М	Metástasis hepática	Recto	IV	Xenoinjerto	Validación
Mx34	82	F	Metástasis en ganglios linfáticos	Colon derecho	IV	Xenoinjerto	Validación
Mx35	57	F	Metástasis pulmonar	Recto	IV	Xenoinjerto	Validación
M×40	75	F	Metástasis en ganglios linfáticos	Colon derecho	Ш	Xenoinjerto	Validación
M×45	67	F	Metástasis hepática	Colon transversal	IV	Xenoinjerto	Validación
Hx005	62	F	Metástasis hepática	Angulo esplénico	IV	Xenoinjerto	Validación
Hx169	9 68	M	Metástasis hepática	Recto	IV	Xenoinjerto	Validación
Hx172	2 69	F	Metástasis hepática	Desconocido	IV	Xenoinjerto	Validación
Hx174	73	F	Metástasis hepática	Sigmoideo	IV	Xenoinjerto	Validación
Hx185	5 39	F	Metástasis hepática	RectoSigmoideo	IV	Xenoinjerto	Validación
Hx188	3 60	М	Metástasis hepática	Izquierda	IV	Xenoinjerto	Validación
Hx189	72	M-	Metástasis hepática	Izquierda	IV	Xenoinjerto	Validación
Hx190	73	M	Metástasis hepática	Derecha	IV	Xenoinjerto	Validación
Hx206	5 54	М	Metástasis hepática	Recto	IV	Xenoinjerto	Validación
Hx218	3 56	F	Metástasis hepática	Izquierda	IV	Xenoinjerto	Validación
Hx219	9 69	М	Metástasis hepática	Ciego	IV	Xenoinjerto	Validación
Hx220	83	F	Metástasis hepática	Derecha	IV	Xenoinjerto	Validación
Hx223	3 45	F	Metástasis hepática	RectoSigmoideo	IV	Xenoinjerto	Validación

FIG. 9

TABLA S2B. CARACTERÍSTICAS DE LAS MUESTRAS DE CÁNCER DE MAMA

Q	Edad del paciente (años)	Tipo de adenocarcinoma	Derivación del tejido	Estadio	Estado de ER#	Estado de PR *	Estado de Her-2/neu*	Tipo de muestra	Exploración
HCC1008	29	Ductal	Ganglio linfático	≝			‡	Línea celular	Descubrimiento
HCC1954	5	Ductal	Tumor de mama primaria	≝			ΟN	Línea celular	Descubrimiento
HCC38	83	Ductal	Tumor de mama primaria	8				Línea celular	Descubrimiento
HCC1143	25	Ductal	Tumor de mama primaria	M	,	,		Línea celular	Descubrimiento
HCC1187	4	Ductal	Tumor de mama primaria	M				Línea celular	Descubrimiento
HCC1395	43	Ductal	Tumor de mama primaria	_		,		Línea celular	Descubrimiento
HCC1599	4	Ductal	Tumor de mama primaria	≝				Línea celular.	Descubrimiento
HCC1937	74	Ductal	Tumor de mama primaria			,		Línea celular	Descubrimiento
HCC2157	•	Ductal	Tumor de mama primaria	¥		+	‡	Linea celular Linea celular	Descubrimiento
HCC2218	88	Ductal	Tumor de mama primaria	¥			‡	Línea celular	Descubrimiento
Hs578T		Carcinosarcoma	Tumor de mama primaria	N	•	,	+	Línea celular	Validación
HCC2713	33	Ductal	Tumor de mama primaria	_		ND	‡	Teildo tumoral microdiseccionado	y Validación
881⊥	32	Ductal	Tumor de mama primaria	≌:	•			Tejido tumoral microdiseccionado	y Validación
882T	<u>ک</u> ۽	Ductal	Tumor de mama primaria	≝≅			‡ :	Tejido tumoral microdiseccionado	o Validación
884T	3 8	- Odcial - Obular	Tumor de mama primaria	¥	+ +	+ 4	‡ ‡	Tejido tumoral microdiseccionado	o Validación
BBST	3 23	Ductal	Tumor de mama primaria	≦≝	. 4	- +	: •	Tejido tumoral microdiseccionado	o Validación
BB7T	ය	Ductal	Tumor de mama primaria	≝	+	+	#	Tejido tumoral microdiseccionado	o Validación
BB9T	47	Ductal	Tumor de mama primaria	≝	+	+	ŧ	Tejido tumoral microdiseccionado	o Validación
BB10T	સ્ટ	Ductal	Tumor de mama primaria		+	+	+	Tejido tumoral microdiseccionado	o Validación
BB12T	82	Ductal	Tumor de mama primaria	¥II		•	+	Tejido tumoral microdiseccionado	o Validación

A LÁ FIG. 10 B

FIG 10A

_
<u> </u>
ü
뜶
₹
긆
풉

| Validación |
|----------------------------------|
| Valid | Valic | Valic | Valic | | Valid | Valic | Valic | Valic | Valic | - | Valic | Valic | - | Valic | | | Valic | | | Valid | Valic | _ | Valic | Valid | | - 1 |
| Teiido tumoral microdiseccionado | Tejido tumoral microdiseccionado |
| | • | 4- | + | | | , | + | | + | | | | + | | + | <u>+</u> | ‡ | N
N | ‡ | | ‡ | ‡ | | | ‡ | + |
| • | + | + | + | + | + | + | + | • | • | • | + | • | | • | • | + | + | + | • | | + | | | • | + | + |
| • | + | + | + | + | + | + | + | + | | + | | + | | • | + | + | + | + | | + | + | + | + | • | + | + |
| ≌ | ≝ | ≌ | | ≝ | ≝ | ≝ | ≌ | ≌ | ≝ | ≝ | ≝ | ≝ | œ | ≝ | ≝ | 2 | ¥ | 2 | <u>∞</u> | ≝: | ≌ | ≌ | ≝ | <u> </u> | ≝ | - |
| | mama | mama | de mama l | mama | mama | l umor de mama primaria | Tumor de mama primaria | mama | mama | _ | Tumor de mama primaria |
| Ducta | Ducta | Ductal | Ducta | Ductal | Ducta | Ducta | Ducta | Ductolubular | Ducta | Ducta | Ducta | Ductal | Ductal | Ducta | Ducta | Ducta | Ductolubular | Ducta | Ductal | Ductal | Ductal | Lobular | Ducta | Ducta | Ductolubular | Ductolubular |
| 83 | 74 | 20 | 9 | 83 | 8 | 11 | S
S | 46 | 8 | 4 | 47 | ZS : | 32 | 20 | 22 | es: | % | 67 | 3 | 4 | 2 | දූ | 4 | දි | Z : | 8 |
| BB13T | BB14T | BB15T | BB16T | BB18T | BB20T | BB21T | BB22T | BB23T | BB24T | 88271 | 88281 | BB29T | BB301 | BB31T | BB32T | BB33T | BB34T | 88351 | BB36T | 88371 | 88381 | 88391 | BB40T | BB421 | 88431 | 8844 |

Estado del receptor de estrógenos (ER) y del receptor de progesterona (PR) tal como se determina mediante inmunohistoquímica, -, negativo; +, positivo; *estado de Her-2/neu; -negativo; +, positivo bajo, ++, moderadamente positivo o +++ muy positivo; N/A no disponible.

TABLA S3. DISTRIBUCIÓN DE MUTACIONES EN CÁNCERES INDIVIDUALES*

_	A	1			A LA FIG. 11B		66						-	\
ases	e de T:A	1 → A:T		6-00000004	2,4 2,0		(11,2)	(A)	- œ	5,5	დ <u>,</u> დ	6.2	5,5	4,7)
s de b	de bas	T:A		ф-шооши .	47		= -	es re	- c	7	w ⊲	~ ~	9	7
tucione	pares); → G:C		5004005040 605-640000000000000000000000000000000000	7,4) 0,0)		(3,4) (4,4)	(4) (5)	5,4	(E)	6,6 C.S.	(4) (5) (5)	0,0	(22,2)
sustif	en los	T.A		5440w0r0vw	-2		es c	~	t (7)	~	~ ~	· ~	0	.
Mutaciones de sustituciones de bases	Sustituciones en los pares de base de	A → C:G		5 <u>807.8555</u>	20,4		(4,1) (15,6)	(6,8)	(3,6)	6,7	€, 60 €, 60 €, 60	(129)	(1,8)	(18,5)
Muta	Sus	=		∞ ₩4+∞0₩ ⊢ ₩	72		4 ~	w r	~ ~	₽,	~ ~	ത	7	S
	de C:G	3 → A:T		82.0.0.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	25 <u>6</u>		(11,2) (4,4)	(1,4)	(250)	(13,4)	(23) (23) (23) (23) (23) (23) (23) (23)	20,00	(11,9)	(11,1)
	e base	ပ္ပ		681878471	വ		11	ינט ע	, 4	1	≅ €	7	₽	က
	Sustituciones en los pares de base de	3 → G:C		5 <u>87848470</u> 5 <u>880880808</u>	20 20 20 20 20 20 20 20 20 20 20 20 20 2		(30,6)	(S) (S)	3.0 3.4	3,8	8,8 4,8	(25.7)	(44,0	(3,7)
l	en los	C:G		54-400044a	7		80	€. £	<u>.</u>	₩:	= =	<u>~</u>	48	← ,
	rciones	; → T:A		2888888888888 2200	(72,0		(90 (90 (90 (90 (90 (90 (90 (90 (90 (90	(2,3)	(8,8)	(S)	S (2)	2,1	(35,8)	(22,2)
	Sustitu	၁		48.88 8888	38.57		23.30	3.5	<u> </u>	37	= €	<u>6</u>	89	ഇ`
Número	de genes CAN mutados#			後打46530つで	თ , ⊖ თ		భం	∓ «	• =	នះ	≘ ⊮	, <u>6</u>	19	4£
N. Caronia	mutaciones		Norrectales	C844484261	22 20	; mama	45	4 R	3 58	127	¥ &	92	109	23
No.	del tumor		Cánceres colorrectales	0000XXXXXX 5000000000000000000000000000	MX42 Mx43 Promedio	Cánceres de mama	HCC1008 HCC1954	HCC38	HCC187	HCC1385	HCC1388	HCC2157	HCC2218	HS578T. Promedio

en secuencias de no codificación (véase la Tabla 1).

Los números entre paréntesis indican el porcentaje de mutaciones totales. # Genes CAN, genes cancerígenos candidatos. § Incluye sustituciones FIG. 11A en la C o G del dinucleótido 5'-CpG-3', en la C del dinucleótido 5'-TpC-3', o en la G del dinucleótido 5'-GpA-3'. ¶ Nucleótidos con puntuación de calidad de Phred de al menos 20. *Se incluyen sustituciones de bases en secuencias de codificación que dan como resultado cambios no sinónimos así como sustituciones

	;	
Nucleótidos secuenciados de forma satisfactoria (Kb)	19.003 19.003 19.003 19.003 19.158 19.162 19.162	19.041 19.070 19.105 19.105 19.081 18.976 18.976
Duplicación	4.5849.40.544. 6.5845.5955	97999999999 97999999999
	21-042818011	0-0000000-
Supresión	2-00004-00-0 0-04-0000000000000000000000	0.4.5.05.4.1.5.0.5.1 0.4.6.0.0.0.0.1.4.1.6.1.0.1.
Sugar, Su	##O#O####	8-12266-10629
Inserción	<u> </u>	000000000000000000000000000000000000000
<u>n</u>	00-0-00-000	000070-0000
icleótidos §	0.000407477400 0.0004477500	88.25.28.25.25.55.55.55.55.55.55.55.55.55.55.55.
ficos§	54000000000000000000000000000000000000	84567857
nstituciones en dinucleótidos específicos§	204 205 505 505 505 505 505 505 505 505 505	(16,3) (13,4) (11,4) (14,4) (14,4)
l list	\$2255°55	\$tt 4 0 8 C 0 4 8 C C

DE LA FIG. 11A

A LA FIG. 12B

la_	ı																							- [
Aminoácido (proteína)	C fs p.A57T p.A148T	p.S514F	p.E475K	p.V45M	p.D119N	p.R66/G	p.E250G	p.Q123H	p. D990H	p.R14881	D. 002.9	p.5100w	p. 6509R	p.A96V	p. T467M	p.R1394H	ī\$	p.C257R	p. V609C	p.A1231	p.C196G	p.A617T	fs.	
Nucleótido (ADNc)§	c.683_690delGCTACGTC c.169G>A	c.1541C>T	c.14236>A	c.133G>A	c.355G>A	c.1999A>G c.370G>T	c.749A>G	c.369G>T	c.2968G×C	c.44636>T	L/2000 4	c.700>T	c.15256>C	c.287C>T	c.1400C>T	c.4181G>A	c.12261_dupC	c.769T>C	c.1826A>G	c.367G>A	C.5867>G	c.1849G>A	c.203delG	
Nucleót	TACGTC										(1)	(otob)	igoto)		igoto)		(homocigoto)			igoto)				
Nucleótido (genómico) #	g.chrl.:1058278_1058271delGCTACGTC g.chrl.:1155525G>A	g.chr1.2138880C>T	g.chr1:2478019G>A	g.chr1:6162550G>A	g.chr1:6153694G>A	g.chr1.6138193A>G n.chr1.6458971G>T	g.chr1:7915180A>G	g.chr1:11944746G>T	g.chr1:16001009G>C	g.chr1:16002504G>T	201611100	g.chrt.16493737C>T a.chrt.16493737C>T	g.chr1:17348647G>C(homocigoto)	g.chr1:17673957C>T	g.chr1:18450122C>T (homocigoto)	g.chr1:19237486G>A	g.chr1:19178501_19178501dupC(homocigoto)	g.chr1.21683325T>C	g.chr1:21670252A>G	g.chr1:22/32/90G>A (homocigoto)	g.chr1;234345951>G	g.chr1:23506155G>A	g.chr1:23939865delG	
Nombre del tumor	HCC1008 Co108 Mx41	Mx30	MX22 Mv42	8829T	HCC1008	88231 HCC1143	Co 108	HCC2157	887T	HCC1187	UCC1205	Hs 578T	HCC1599	Mx30	C092	HCC1187	BB33T	Hs 578T	BB20T	HCC138	HS 5/81	Mx41	HCC1008	
Tipo de tumor	Mama Colorrectal Colorrectal									Mama			Mama	Colorrectal	\circ				Mama	Marria	Mama	Colorrectal	Mama	
Gen	FLJ20584 FLJ36119 Cab45	PRKCZ	PANK4 KIAA1185	<u> </u>		CHU5 TNFRSF25	TNFRSF9	P[0]		SPEN MCC34047	MCC24047	L0C374955	PADI3	FLJ10521	MGC15730	KBAF600	RBAF600	RAP1GA1	RAP1GA1	9 1 1 1 1 1 1	ZNF436	DDEFL1	FUCA1	
Registro de CCDS	00087.1 00088.1 000817.1	CCDS37.1	CCDS42.1	000857.1	OCDS57.1	CCDS7.1	CCDS92.1	CCDS142.1	CCDS164.1	CCDS164.1	CDC166.1	OCDS172.1	CCDS179.1	CCDS182.1	OCDS184.1	CCDS189.1	CCDS189.1	CCDS218.1	OCDS218.1	CCDS228.1	CC0S233.1	CCDS235.1	CCDS244.1	

TABLA S4. MUTACIONES SOMÁTICAS IDENTIFICADAS EN CÁNCERES DE MAMA O COLORRECTALES *

	1																					,					1
	p.\$207F p.\$103C	p.R312H S0	p.P869T	p.P88R	D. 1935W	D.R856C	p.R671W	p.ET8TK	15	D.K.14 1087	p. V392F	p.H439R	p:R215H	p. D391H	p.1142M	p.E302V	ડ્	p.E4504Q	p.65135E	HCOLD O	0.8464W	0.V155M	p.Q100X	p. A345D	p.A155D	p.R41C p.R159X	
	c.620C>T c.308C>G	c.9356>A IVS14+3G>A	c.2605C>A	c.263C>G	C.2400C>1	c.2566C>T	c.2011C>T	C.541G>A	c.1290delA	C.4220071	C 1175T>A	c.1316A>G	C.644G>A	c.11716>C	c.426C>G	c.905A>T	c.8345_8346insA	c.13510G>C	C.15404G>A	C.480G>C	C.320G>T	c.463G>A	c.298C>T	c.1034C>A	C.464C>A	c.1210>1 c.4750>T	FIG. 12B
	g.chr/:24432814C>T g.chr/:25356539C>G	g.chr1.26962079G>A g.chr1.27371551G>A	g.chr1:27369223C>A	g.chr1:2/804260C>G	g.dirl.zg439150c71 g.chr1-29439151C>T	g-chr1:29451042C>T	g.chr/:31933153C>T	g.cnrl;32603839G>A (nomocigoto)	g.chr1:35516061delA	g.ciii	g.chr1:35697117T>A	g.chr1:35895299A>G	g.chr1:37006970G>A	g.chr1:36988350G>C	g.chr1.37694153C>G	g.chr1:39418255A>T	g.chr1:39522138_39522139insA	g.chr1:39582278G>C	g.chr133536/05G>A	g.cnr1.4068z883G>C	g.chr1.434078066>T	g.chr1:44111853G>A	g.chr1;46475314C>T	g.chr1:46586233C>A	g.chr1:53139263C>A	g.chr1.54049072C>T	A LA FIG. 12C
∢.	HCC1143 HCC 38	Mx32 BB13T	HCC1008	HCC1395	\$ 85 \$ \$8	Mx41	HCC1954	Vix42	HX190	Co74	Co 74	HCC1954	Mx32	HCC1008	29 20 10 10 10	884	BB7T	HCC 38	BB231	01777 Co74	HCC1599	HCC1599	HCC1008	HCC1937	HCC1395	MX30	
DE LA FIG. 12	29 Mama Mama	3 Colorrectal Mama		Mama	Colorrectal				Colorrectal	Colorrectal	Colorrectal	Mama	Colorrectal	Mama	Colorrectal	Mama	Mama	Mama		Colorrectal	Mama		Mama	Mama	_	Colorrectal 19.1 Colorrectal	
	LOC90529 RHD	FLJ34633 WAP3K6	MAP3K6	STX12 DTDDI	PTPR	PTPRU	SPOCD	22127	201VZ	NCON NCON		CLSPN	GRIK3	GR (S)	DIA	MAC-1	MACH!	MACFI	A CASE	7. E	MGC177	ATP6V0B	MUFI	FAAH	255	SLCTA/ DJ167A19.1	
	CCDS253.1 CCDS262.1	CCDS293.1 CCDS299.1	CCDS299.1	CCDS310.1	CCDS334.1	CCDS334.1	CCDS347.1	CCDS364.1	CCDS389.1	CCC303	CCDS392.1	CCDS396.1	CCDS416.1	CCDS416.1	CCDS420.1	CCDS435.1	CCDS435.1	CCDS435.1	CCDX435.1	CCDS453	CCDS480.1	CCDS505.1	CCDS533.1	CCDS535.1	CCDS5/2.1	CCDS584.1	
/	ĺ																										/

																	_	~			-						
	p.S183Y p.P371T	p.S523G	p.\$433L	p.0151E	p.E262U p.L235M	ాకు	p. R 629G	unknown	p.P456S	p.L455H	p.G754E	p.R1320	P.E530	p. 1224M	P. 5332C	p.D493Y	p.A1326	p.Q1328	p.01328	VC000	2752H		p.E28del	જ	p.R200H		
								٠.															Ş	క			
	c.548C>A c.1111C>A	c.1567A>G	c.1298C>T	c.4510>G	c.108669 c.703C>A	c.719delA	c.1885C>G	c.1A>G	c.1366C>T	c.1364T>A	c.2261G>A	c.395G>A	c.1576>C	6.67157	6.1655C>G WS14+2T>C	c.1477G>T	c.3977C>T	c.3982C>A	C.3983AV	6.1133C21	2285G>A	c.100>A	c.82_84delGA(c.317_318delCA	c.599G>A	7	اكا .ز
																						·				Ì	Ī
					mocigoto)																omociaoto)		0466247delGAG	1007delCA			
	1168C>A 1987C>A	5315A>G 4259C>G	6176C>T	8716C>G	04.3524.3 [G> 70163976C>A(homocigoto)	70163992delA	72010>6	75902494A>G 75012504C>G	20407 196950>T	5559T>A	1178G>A	17854G>A	87756>C	6468C>	64121×C	76561G>T	191930C>T	91264C>A	J3091263A>	10 FT 1021	398857(14G>A (homocigoto)	9875687C>A		10661008_11066100	0772853G>A 1669180T>A		G. 12D
	g.chr1:5483 a.chr1:5688	g.chr1.5686	g.chr1:60036	g.chr1:60218716	g.chri.9430 g.chri.7016	g.chr1:7016	g.chr1:74617	g.chr1:/59024	g.chr1.77809	g.chr1:85835	g.chr1:8663	g.chr1:8903	g.chr1.9111	g.chr.1:942/	g.chr.1.9436	g.chr1:1006	g.chr1:1030	g.chr1:1030	g.chr1:1030	9.577 1000 K	20 Land	0.chr1.109	g.chr1:1104	g.chr1:1106	g.chr1:110/	2	A LA FIG. 12D
12B	HCC1599 HCC1187	HCC2157	HCC1395	HCC2157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BB1T	Co 108	HCC2218	0074	C074	HCC1395	Mx41	-CC2218		2007 2007 2007 2007 2007 2007 2007 2007	Mx43	BB9T	HCC2157	HCC215/	55.55	155 175 175 175 175 175 175 175 175 175	HCC1395	Mx43	0XX)	500 700 700 700 700 700 700 700 700 700		
DE LA FIG. '	Mama Mama	Mama Colorrectal	Mama		Mama Mama	Mama	Colorrectal	Mama	Colorrectal	Colorrectal	Mama	Colorrectal	Mama	Mama	Mama Mama	Colorrectal	Mama	Mama	Mama	Mama	Maria	Mama	Colorrectal	Colorrectal	Colorrectal Colorrectal		
_	FLJ46354 PRKAA2	PRKAA2 OMA1	HOOK1	MGC34837	LRRC7	LRRC7	XXXX	ACADM		FLJ20729	CLCA2	GTF2B	ZNF644	ABCA4	PARG PARG	CDC14A	COL11A1	COL11A1	COL11A1	VAV3 KIAA1324	AMPD2	AMPD2	KCNC4		KCNA10 OVGP1	i	
	CCDS595.1 CCDS605.1	CCDS605.1	CCDS612.1	CCDS614.1	CCDS645.1	CCDS645.1	CCDS664.1		CCDS677.1	CCDS707.1	CCDS708.1	CCDS715.1	CCDS731.1	CCDS/47.1	CCDS/48.1	CCDS769.1	CCDS778.1	CCDS778.1	CCDS//8.1	CCD0700	CCDS804.1	CCDS805.1	CCDS821.1	CCDS824.1	CCDS826.1		
/																										/	

	p.4105T p.V94M p.N139S p.P633H	p.C217Y p.D1707E p.A537	p.i3.8V p.E806V p.R165W p.R244H	AGGA p.G954_X957del	p.R955G p.S358F	sp p.S687C	sp p.H445N	p.G141S	D.L81F	p.D100N	p.S775A	p.C5183 p.E509D	p.K56/X p.V190	p.R1116H p.Y209S	
	c.313G>A c.280G>A c.416A>G	c.650G>A c.5121T>G c.157G>A	c.954876 c.24178>T c.493C>T c.731G>A	c.2860_2874delGGAAGGGTGTGAGGA p.G954_X957del	c.2863A>G c.1073C>T	IVS2-3C>1 c.2060C>G	IVS164C>G c.1333C>A	c.4216>A c.2081C>T	c.241C>T	c.2865A c.263C>T	c.2323T>G	c.15276>C	c.5686>A	c.33476>A c.626A>C	FIG. 12D
				g.chr1:151978716_151978702delGGAAGGGTGTGAGGA									٠		LA FIG. 12E
	g.chr1:1112237111G>A g.chr1:112237111G>A g.chr1:114830256A>G	g.chr1:117019184G>A g.chr1:118249128T>G g.chr1:146672383G>A	g.chr1.14/962336A>G g.chr1.151375812A>T g.chr1.151733832C>T g.chr1.151972790G>A	g.chr1:151978716_151 (homociaata)	g.chr1:151978713A>G g.chr1:152033577C>T	g.chr1.152066835C>1 g.chr1.154307321C>G	g.chr1:154298631C>G g.chr1:154478270C>A	g.chr1:156371320G>A	15742022	g.chr1:158010520G>A g.chr1:164072861C>T		g.chr1.175146408G>C	g.chr1:1751524884>1 g.chr1:176590119G>A	g.chr1:179831202G>A g.chr1:180581502A>C	ALA
O	Mx38 Mx43 Co92 Mx42	CS22 1622 1623 1638 1638 1638 1638 1638 1638 1638 163	HCC1395 Co108 Mx42	HCC 38	BB40T HCC2218	HCC143	8871 HCC2157	HCC1143 Mx43	HCC1008	Co 108 HCC2218	Mx32	HCC1143	HCC 38	MX32 HCC1395	
DE LA FIG. 12C	Colorrectal Colorrectal Colorrectal Colorrectal		Mama Mama Colorrectal Colorrectal	Mama	Mama Mama	Mama Mama	Mama Mama	Mama Colorrectal	Mama	Colorrectal Mama	Colorrectal	Colorrectal	Mama Mama	Colorrectal Mama	
۵	AD026 KCND3 BCAS2 AMPD1	CD2 PF6 HIST2H2AB	ADAR ADAR PBXIP1 MUC1	THBS3	THBS3 C1off2	IRTA2	FCRT3	APCS IGSF9	SLAMF1	FLJ12770 POU2F1	F5	RASAL2	KASA[2 LAP18	LAMC1 RGL1	
	CCDS838.1 CCDS843.1 CCDS874.1 CCDS876.1	CCDX8889.1 CCDX8999.1 1.00000000000000000000000000000000	CCDS1071.1 CCDS1074.1 CCDS1098.1	CCDS1099.1	CCDS1089.1 CCDS1103.1	CCDS1108.1	CCDS1165.1 CCDS1167.1	CCDS/186.1	CCDS1207.1	CCDS1227.1 CCDS1259.1	CCDS1281.1	CCDS1321.1	CCDS/1321.1	CCDS1351.1 CCDS1359.1	

	p.R177Q p.Y735C p.T735C p.T763F p.R791G p.R84W p.D564N p.D564N	p.E493_E496del p.T4841 p.M86T p.R395T p.E50D p.K104T p.I1325M	D.1147N D.0187H D.0272S D.0179Y D.1134V D.0682X	p.K76del p.R319W p.E7K p.T299S p.R806Q
	c.2306>A c.2204A>G c.2287C>T c.2371C>G c.1267G>T c.427G>A c.1690G>A c.1690G>A	c.1480_1491delGAGGAAGAGGG c.1451C>T c.257T>C c.1184G>C c.150G>C c.3975C>G c.3975C>G	2440C>A c559G>C c814T>A c508G>T c5208C>G c400C>G c2044C>T	c.226.228delAAG c.955C>T c.19G>A c.896C>G c.2417G>A FIG. 12G
	g.chr2.27357072G>A g.chr2.27361398A>G g.chr2.27611780C>G g.chr2.31501422C>T g.chr2.32273304G>T g.chr2.3284244C>T g.chr2.3386424C>T g.chr2.46115233G>A g.chr2.46115233G>A g.chr2.46165601C>G	g.chr2:60600218 60600207delGAGGAAGAGAG g.chr2:61086829G>T g.chr2:63013212G>C g.chr2:63013212G>C g.chr2:6736381G>C g.chr2:7750101C>G g.chr2:7750101C>G g.chr2:7750101C>G		g.chr2:99248923_99248921delAAG g.chr2:100369282C>T g.chr2:101383550G>A g.chr2:102740219C>G g.chr2:102783444G>A
	Mx22 Co74 Co74 BBB43T HCC1143 Mx38 Mx43 HCC1187 HCC7187	8B247 Mx32 HCC1008 HCC2157 Mx38 HCC218 HCC2218	HCC1008 HCC2218 HCC1395 HCC2218 CO74 HCC1008	Mx42 Mx32 HCC1395 BB23T HCC1954
DE LA FIG. 12F	Colorrectal Colorrectal Colorrectal Mama Mama Colorrectal Colorrectal Mama Colorrectal	Mama Colorrectal Mama Colorrectal Mama Mama	Mama Mama Mama Mama Colorrectal Mama	Colorrectal Colorrectal Mama Mama
DEL	CAD CAD SCH SCH MYADM MYADM MYADM MYADM MYADM MYADM MYADM	BCL11A FLJ32312 AHSA2 EHBP1 ETAA16 GKN1 DYSF	TCF7L1 JMJD1A MGC27019 CSEN CSEN ASCC3L1 CNNM4	LOC129531 FLJ45273 RNF149 SLC9A2 SLC9A2
	CCDS1742.1 CCDS1742.1 CCDS1775.1 CCDS1775.1 CCDS1778.1 CCDS1824.1 CCDS1822.1 CCDS1822.1	CCDS1861.1 CCDS1868.1 CCDS1868.1 CCDS1872.1 CCDS1891.1 CCDS1991.1	CCDS1971.1 CCDS2005.1 CCDS2013.1 CCDS2013.1 CCDS2020.1	CCDS2040.1 CCDS2046.1 CCDS2051.1 CCDS2062.1 CCDS2062.1

	p.V3856 sp. D.K123M p.K123M p.R773N p.R277D p.R277D p.R277D p.R277D p.R277D p.R32V p.L432V p.L432V p.R69G p.R69G	p.Q948X p.K204N p.T129M p.Q6833 p.Y45X p.Y45X p.Q634X p.C688C p.C634X	
	c.11547>6 NS7-16>C c.368A>T c.368A>T c.3682A>G c.819G>T c.394C>T c.394C>T c.316S>T c.14delT c.2818G>A c.3359G>C c.6505C>T c.7045G>A c.1294C>G c.205C>G c.205C	c.2842C>T c.612A>T c.85G>A c.31AC c.134C>A c.135G>T c.135C>A lVS2+3A>G c.203C>G c.200C>T c.2467C>G	FIG. 12I
	9.chr2:192060493T>G 9.chr2:202020752G>C 9.chr2:202293455A>T 9.chr2:204130748G>T 9.chr2:204129737A>G 9.chr2:20838619C>T 9.chr2:210384514C>T 9.chr2:211246977delT 9.chr2:21608067G>C 9.chr2:216088067G>C 9.chr2:216088067C>C 9.chr2:216088067C>A 9.chr2:216088067C>A 9.chr2:216088067C>A 9.chr2:216088067C>A 9.chr2:216088067C>A 9.chr2:216088067C>A 9.chr2:216088067C>A 9.chr2:216088067C>A 9.chr2:216088067C>A 9.chr2:216088067C>A	g.chr2.2246820984>T g.chr2.2246820984>T g.chr2.2280208936>A g.chr2.2308593686>A g.chr2.2344629376>A g.chr2.2344629376>A g.chr2.23441419C>G g.chr2.238944197C>G	A LA FIG. 12J
	MX38 MX38 MX38 MX22 MX22 MX28 MX28 MX28 MX28 MX28 MX2	Mx42 HCC1143 Mx43 HCC1395 BB43T HCC1008 HCC1008 HCC1187 HCC2218 BB55T HCC2218	
IG. 12H	Colorrectal Mama Colorrectal Colorrectal Colorrectal Colorrectal Mama Mama Colorrectal Mama Mama Mama Mama Mama Mama Mama Ma	Colorrectal Mama Colorrectal Mama Mama Mama Colorrectal Mama Mama Mama Mama	
DE LA FIG. 12H	MYO18 ALS2CR12 ALS2CR11 RAPH1 CPO IDH1 MAP2 MAP2 CPS1 FN1 FN1 FN1 FN1 SMARCAL1 TNS ABCB6 SLC4A3	EPHA4 SERPINE2 CZOJĘ33 FLJ25955 SP110 CHRND UGT1A9 CMKOR1 LRRFIP1 LRRFIP1 PER2	
	CCDS2311.1 CCDS2349.1 CCDS2349.1 CCDS2359.1 CCDS2384.1 CCDS2384.1 CCDS2384.1 CCDS2389.1 CCDS2399.1	CCDS2447.1 CCDS2460.1 CCDS2465.1 CCDS2474.1 CCDS2474.1 CCDS2516.1 CCDS2516.1 CCDS2521.1 CCDS2521.1 CCDS2521.1	
/			/

	A149S	S2471	3348H	A944G	V209N	642S	23M	213W	200C	3184L	5110	9360	133I	7650	34X	397Q	140P	304X	1917	400A		53331			K20H	14/1	77L	7710	302P	D415H		/	
	A.q.			P.O.	3.0	p.G	0.12 0.12	, a	p.S.	D.S.	D.A	æ.	So	. O.	Ю. C	G.G.	p.L.	iúi o	O.d.	7.d	ş	3	N IS	TATAT fs_	a.	O.	ζ.k	ťď.	0.1	C'd		٦,	
	C.445G>T	C.740C>T	c.1044G>C	c.2831C>G	c.627G>C	c.124G>A	0.669C>G	c.637C>T	c.598A>T	c.551C>T	c.1532C>T	c.2807G>A	c.578G>T	c.2294G>A	c.100G>T	c.1190G>A	c.419T>C	c.910G>T	c.571G>T	c.1199T>C	c.988delG	c.998G>T	c.2443_2444delA4	c.974_980delAT	C.29G>A	0.4400>	いたのから	C.93700-1	c.2404A>C	c.1243G>C	71 017	ר ה ה	
	g.chr3:101934071G>T	g.ch/3:120639476C>T	a.chr3:122918503G>C	22899214		g.chr3:124162677G>A	g.chr3:124129508C>G(homocigoto)	25470466	g.chr3:125852372A>T		g.chr3:127333016C>T(homocigoto)	g.chr3:131907228G>A	g.chr3:141606247G>T(homocigoto)	g.chr3:141764432G>A	g.chr3:150065989G>T	g.chr3:150351110G>A	g.chr3:152414384T>C	g.chr3:152413893G>T	g.chr3:152495161G>T	1570340	5858178	585817760	58461684	g.chr3:161612937_161612943delATTATAT	68804865	g.cii.3.168243846G>1	9.011.0.1032032220CC	g.dilo.108203201071 n.chr3:1735535505T	g.chr3:174016192A>C	g.chr3:180577852G>C		A LA FIG. 12M	
	 Mx30 HCC1054	HCC143	HCC2157	HCC1395	HCC1937	BB24T	HCC1395	Mx27	Hs 578T	HCC1143	Mx43	HCC2157	C092	Mx40	HCC1937	Mx22	Mx32	C079	C065	Mx41	BB9T	BB5T	HCC1599	HCC1599	MX32	1007137 1007137	25.25	100 100 100 100 100 100 100 100 100 100	HCC 38	Mx27			
3. 12K	Colorrectal	Mama	Mama	Mama	Mama	Mama	Mama	Colorrectal	Mama	Mama	Colorrectal	Mama	Colorrectal	Colorrectal	Mama	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Colorrectal	Marria	Mama	Mama	Mama	Colorrectal			
DE LA FIG. 12K	TFG	TMEM39A	GOLGB1	601681	DTX3L	SEMA5B	SEMA5B	HAPIP	TRAD	OSBPL11	ALDH1L1	PK3R4	CLSTN2	CLSTN2	CPA3	HPS3	P2RY14	P2RY14	GPR87	SLC33A1	KEPH1	VEPH1	VEPH1	SMC4L1	WDK49	200	בלקל בלקל בלקל	FNDC3B	ECT2	MFN1			
	CCDS2939.1	CCDS2987.1	CCDS3004.1	CCDS3004.1	CCDS3015.1	CCDS3019.1	CCDS3019.1	CCDS3027.1	CCDS3028.1	CCDS3033.1	CCDS3034.1	CCDS3067.1	CCDS3112.1	CCDS3112.1	CCDS3138.1	CCDS3140.1	CCDS3156.1	CCDS3156.1	CCDS3157.1	CCDS3173.1	CCDS3179.1	CCDS3179.1	CCDS3179.1	CCDS:189.1	CCDS3201.1	CCCCCCC.	OCD 63204.	CCDS3917.1	CCDS3220.1	CCDS3228.1			
/																																	

p.A226T 0.A233T	p.L254P	p.R622H p.L1039F	p.V128M	p.R216T	p.P696L	p.3260N	\$0 \$0	p.V181L	indel	p.T354S	5.5426X	p.D613N	p.G339V	p.S60C	p.A550S	p.L914V	15	p.A.150F	p.R719H	p.A1130T	p.S2461	p.M265T	p.1155V	p.R434X	p.P283A	
c.676G>A c.697G>A	c.7617×C	c.18656>A c.31150>T	c.382G>A	c.6476>C	6.208/C>l	C.778G>A	NS2:3T>A	c.541G>C	c.912_923delTCAGCTCGTCAA	c.1060A>T	c.1277056	c.18376>A	c.1016G>T	c.179C>G	c.1648G>T	c.2740T>G	c.3635_3636delAG	C.148652	c.21566>A	c.3388G>A	c.7376>T	c.794T>C	c.463A>G	C.130051 NS104 din T	c.847C>G	
867G>A 854G>A	255T>C	5056>A 173C>T	769G>A	<u>6</u> 506>C	7300>	85345Z31G>A 8736548GG>A	87757269T>A	87986678G>C	1717_187990706delTCAGCTCGTCAA	492A>T 1138C>A (homocigoto)	5840>6	363G> <u>A</u>	293G>T	478C>G	1,550×1	91>G	682699_5682698delAG (homocigoto)	.GN/4:000/2226>C (momorigae) .chr4:6200089C>T	86>A	6G>A	26G>T	7/17/0	27/A>G	//1(> (homocigoto)	786>6	
g.chr3:18107 g.chr3:18215	g.chr3:18451	g.chr3:18438 g.chr3:18438	g.chr3:18525	g.chr3:18536	g.chr3:18552	g.chr3.18594	a.chr3:18775	g.chr3:18798	g.chr3:187990717	g.chr3:18799	a.chr3:19118	g.chr3:19117	g.chr3:19559	9777	745/	g.chr4:57044	g.chr4.56826	g.cnr4.b08/222(g.chr4:8347648G>	g.chr4:83553	g.chr4;13292	g.chr4:17495	g.chr4:25066	g.chr4:26420	g.chr4:39926	
Mx27 HCC2157	Mx38	MX38 HCC 1395	Mx41	HCC2218	MXZ/	25. 25. 35. 36.	Mx42	HCC2157	Mx22	555 555 555 555 555 555 555 555 555 55	HCC2218	HCC2157	HCC2157	HCC2218	C074	8 8 8 8 8 8 8	MX32	200 200 200 200 200 200 200 200 200 200	MX38	Hx218	五 5 5 3 8 8	MX38	50/4	HCC2218	HCC2218	
Colorrectal Mama		Colorrectal Mama	Colorrectal		Colorrectal	Mama	Colorrectal	Mama	Colorrectal	Mama	Mama	Mama	Mama	Mama	Colorrectal	Colorrectal	Colorrectal	Mama	Colorrectal	_	Mama		_	Mama		
EXSE FX	MCF2L2	MCF2L2 MCF2L2	HTR3C	DVL3	El-461	MGC 21988	FL/10560	EIF4A2	RFC4	2 2 2 2 3	LEPREL1	LEPREL 1	5	WDR53	25 25 25 25 25 25 25 25 25 25 25 25 25 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2		MARI IN	SH3TC1	SH3TC1	FAM44A	ECAP-G	ANA	15013 16113	N4BP2	
CCDS3236.1 CCDS3238.1	CCDS3243.1	CCDS3243.1	CCDS3250.1	CCDS3253.1	CCDS3259.1	CCDS3202.	CCDS3276.1	CCDS3282.1	CCDS3283.1	CCDS3283.1	CCDS3294.1	CCDS3294.1	CCDS3307.1	CCDS3318.1	CCDS3382.1	CCDS3382.1	CCDS3382.1	CCD53385.1	CCDS3399.1	CCDS3399.1	CCDS3411.1	CCDS3424.1	CCDS:434.1	CCDS3439-1	CCDS3457.1	

DE LA FIG. 12M Colorectal Mx27 g.cht4/46771289A-C c.1546A-C KDR Colorrectal Mx27 g.cht4/565075142A-G (nomocigoto) c.26176-A KDR Colorrectal Mx38 g.cht4/56573742A-G (nomocigoto) c.26176-A CAOff4 Mamma HCC/187 g.cht4/757742A-G (nomocigoto) c.21786-b-G APIN Colorrectal Mx38 g.cht4/7571276C-A (nomocigoto) c.2726-b-G APIN Colorrectal Mx38 g.cht4/7571276C-A (nomocigoto) c.2726-b-G CDR12 g.cht4/7576C-C c.276-b-G CDR12 g.cht4/75776C-C c.278		/	/	p.S516R	1370G v		D. GO/ 3R	n 05700	2000	n F1430		0.6785		D.G42A	77.67	Y7/37,C	. 8	6	D434		0.00821	D585N	N.COCO.	D. K2047		20	n 01204K	Table 1	N:071.0	D830	5	25	K67N	. 0445	25.15.5		F 600 C	7,007.0	D.G685E	A7877	None of the	J. 13033A	D.H2640	VR3C	NZ0CT C	D. I. 36/N	OS	1136		D/L:d	p.Q2038H		1
DE LA FIG. 12M GABRA4 Mama Hs 578T g.chrd.46771289 KDR Colorrectal Mx27 g.chrd.558205514 KDR Colorrectal Mx38 g.chrd.558205514 CMC Colorrectal Mx38 g.chrd.75429391 UNQ689 Colorrectal Mx43 g.chrd.76610257 CDKL2 Mama HCC2218 g.chrd.7664283 G3BP2 Mama HCC1143 g.chrd.7664283 G1BP2 Colorrectal CO74 g.chrd.36588244 MLT2 Mama HCC1937 g.chrd.3651361 MLT2 Mama HCC108 g.chrd.3661891 MLT2 Mama HCC108 g.chrd.36681 MRXB Mama HCC108 g.chrd.36688 MRXB			0.10127	c.1546A>C	上へひからなっ	* OF 70	C.201/02.A	r 17364>C	C 100 1.3	C 429G>C		C.737G>A		C.125G>C	0,0000	C.1421C>G	NOT-10-N	20112	c 130105T		C.2044G>A	° 1893€> ∆	C 0000 5	C.611A>C	Taib 02.0	C. Joseph	c.3610C>A	4/3634	C.020C>A	6.245C>A	1/04 10.4	W21-107	c.2016>C	A / C / C / C / C / C / C / C / C / C /	5.55 CCA	c.27C>G	0.00800	0,20000.0	C.2054G>A	c 3700G>A	6/2000 CF 6	せんつのころ こっこう	c.792T>G	c 248A>G	A1007.V	C. II BUCA	.IVS9-2A>G	C406A>C		C.Z.I.Z.A	c.6114G>T		בופי
GABRA4 Mama KDR Colorrectal KDR Colorrectal CA0rf14 Mama APIN Colorrectal CA0rf14 Mama APIN Colorrectal CONCL2 Mama CONCRECTAL COLORRECTAL MLLT2 Mama CONCRECTAL COLORRECTAL COLORRECTAL COLORRECTAL ANK2 COLORRECTAL ANK2 COLORRECTAL ANK2 COLORRECTAL COLORRECT			0.100011101	g.chr4:46//1289A>C	n chrd-5582005510>T		G:0114:0000450067A(101100100101010)	n chrd:5767374045G (homociaata)		0.chr4.71249391G>C	200000000000000000000000000000000000000	(I chr4 / 15/13/h(5>A (homocigoto)	C. C. T. J. J. C.	0.cnr4:/561025/G>C	C . CC0C1202C. hade a	g.cnr4:/r0004283C>G	7803893405>D	0.0000000000000000000000000000000000000	a chr4·76927941C>T	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G.CNF4:84190388G>A	o chrd:84718310G>A	C - 100 - 10	a.chr4:85910181A>C	A Ahrd 95012523 950125234 INT	giall+todalouge coal-oughning	g.chr4:88414009C>A	A / CC / CO CO / France of	g.C.114.045091757A	a.chr4.100836487C>A	A 70700001-1740 F	g GII+: 10200017- G/A	g chr4:106868013G>C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	のことでは、このなも24c20c/メ	a.chr4:109929442C>G	1 a Abra-111828A2ACS	0.0147111000 B	g.chr4:11456160/G>A	o chr4-114617088G>A	A / 14642060/ A	G.C.14. 1404600C/3	g.chr4:1193334601>G	n chrd·144694410A>G	A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	G. G. 1144 1 323 C. 7	g.chr4:146431394A>G	d chrd 148764844A>C	0 0bs4.44074E020.A	g.CII.4. 1487 1008/CVA	g.chr4:151869582G>1		A LA FIG. 120
CCDS376211 CCDS3776211 C	DE LA FIG. 12M	-	7,0070	GABKA4 Mama	KDR		NUN	Cdorf14 Mama		APIN Colorrectal	0000	UNU689 Colorrectal	CLCL	EKEU Mama	0 I/IO	Nama Mama	GRED	CODI E INIGILIA	G38P2 Mama		I LIARS Colorrectal	HFI 308 Marna		CDS1 Mama	Choragian 1900	COMMITTEE COMMITTEE	MLI2 Mama	COIDS	GNIDZ Colorrectal	RG9MTD2	NEKP1		FLJ20184	EE4	Colollecial	77	FNDFD	ייונט	ANK2 Mama	ANK? Colorrectal	NIV CAINCE	Will Colonia C	NUS 3 Colorrectal	GAB1 Mama	CARI	ואומווומ	HSHIN1 Mama	EDNRA Mama	ND3C3	MYSON COLOITECIAL	LKBA Mama		

	p.07R	p.S266R	p.S777A	p. 14151	p.E2K	p.R3260	p.V574M	p.K114H	D.R650X	p.D1216E	Ş	p.R333H	p.E92G	p.R213X	p.R302X	p.Y416X	p.W421X	p.R499X	p.Y500X	p.R919X	p. Y 935X	\$	p.C1045X	p.E1145X	IS INDEAL	D.11234F	p.51313X	কৈ কৈ	•	
	c.20A>G NS7-16>T	6.7980>6	c.2329T>G	6.1244C>1 c.1356_1358diinTAA	C.4G>A	c.977G>A	c.1720G>A	6.341G>A	c.1948C>T	c.3648C>G	c.310_dupA	c.998G>A	c.275A>G	c.637C>T	c.904C>T	c.1248C>G	c.1263G>A	c. 1495C>T	c.1500T>A	c.2755A>1	C.2805C>A	c.3079_3080ins1	C3133C>1	C. 6433GV	6.3/38_3/38INSG	C.370UA>1	C.5844C>G	c.3956delC		FIG. 12P
	834002A>G 843398G>T	5417410>6	2165591T>G	28/633C> 625349 67625351dunTAA (homocigoto)	5212216>A	525915G>A	7 = 1	J3/45U46>A	444294C>T	0557279C>G	984190_82984190dupA	973138G>A)0250174A>G	2144491C>T	2179160C>T	2182876C>G	2182891G>A (homocigoto)	2190790C>T	2190795T>A	2201945A>1	2201995C>A	2202269 1122022/Umsl (homocigoto)	ZZUZZZZC> (homocigoto)	ZZUZ6Z3G>1	2 ! 2 ! \$	ZZUZSUR>1 (homocigoto)	22U3134U-76 (homocigoto)	2203146delC (homocigoto) 2203146delC		A LA FIG. 12Q
	HCC1143 g.chr5:40	HCC1187 g.chr5:43	Mx27 g.chr5:50	Mx42 Hs 578T 0 chr5:670	Mx30 0.chr5:68	Hx169 g.chr5:71	Mx22 g.chr5:71	C0/4 g.chr5:80	Hx218 0.chr5:80	BB23T g.chr5:80	6 g.chr5:82	g.chr5:82	Mx38 g.chr5:10	Mx34 g.chr5:11	Mx27 g.chr5:11;	Mx40 g.chr5:11	Hx185 g.chr5:11	Mx43 g.chr5.11	Mx29 g.chr5:11	Mx40 g.chr5:11	Co/4 g.cnr5:11	Hx188 g.chr5:11	MX31 g.cnr5:11	INX GOOD STATE	MX38 G.Ch.73.11	Wix36 g.cnro.11	MAJOR G.CHIO.T.	Mx8 g.chr5:11:		4
DE LA FIG. 120	Mama Colorrectal			Mama	Colorrectal	Colorrectal		Colorrectal												_	_	_	_	_				Colorrectal		
DE L/	PRKAA1	FLJ32363	PARP8	1.65 PK3P	CENPT	MAP1B	MAP1B	RANGKF2	PASGRF2	RASGRF2	HAPLN	HAPLN1	ST8SIA4	SP.	APC	APC.	9 9 9	A.	A 4	A 4	A.	A S	£5	\{\bar{2}{2}	£ 5	£ 5	٢ ٢	F F S	:	
	CCDS3932.1	CCDS3946.1	CCDS3954.1	CCDS38/71.1	CCDS3998.1	CCDS4012.1	CCDS4012.1	CCDS4052.1	CCDS4052.1	CCDS4052.1	CCDS4061.1	CCDS4061.1	CCDS4091.1	CCDS4107.1	CCDS4107.1	CCDS4107.1	CCDS4107.1	CCDS4107.1	CCDS4107.1	CCD24107.1	CCD04107.1	CCDS4107.1	CC0650	2004	CCD04107.1	CCDQ4107.1	CCD4107.	CCDS4107.1	/	

	p.S1346X p.E1374X	p.Y1376X p.C1387X	p.S1400X	ম ক	p.R1450X	p.R1450X	ls p.T1487	<u>.</u>	ည် မှ	<u>ာ</u> သ	fs	D.0434N	0.E1430	p.L3601	p.S248P	D.S.33	n A719V	0.6758V	p.R471W	p.S836X	p.T1428P	p.R315C	p.R33N p.R953K	
	c.4037C>G c.4120G>T	c.4128T>A c.4161T>A	c.4199C>A	c.4304del G c.4312delA	c.4348C>T	C.4348C>T	c.4461 44620up c.4461T>C	c.4473delT	c.4473delT	c.4496 4497insG	c.1820_1826delCAGTTAG	C. 300G>A	c.4276>C	c.1078C>A	c.7427>C	C.98G>1	C 156C>T	c.2273G>T	c.1411C>T	6.25U/C>A	c.4282A>C	c.943C>T	c.2858G>A	G. 120
	hr5:112203310G>T (homocigoto) thr5:112203310G>T (homocigoto)	:hr5:112203318T>A(homocigoto) :hr5:112203361T>A	thr5:112203389C>A(homocigoto)	ilni:112203494delG(nomocigoto) ihri:11203502delA(nomocigoto)	htts://2203538C>T (homocigoto)	38C>T (homocigoto)	.ms1zzuses1_11zzuseszuup11 :hr5:112203651T>C	2hr5:112203663deIT	ihri:112203663del] (nomocigoto) hri:112003663delT	chr5:112203686_112203687insG	3hr5:114494200_114494194delCAGTTAG(homocigoto)	:nro:11466436624 hrs-11488374625	thrift 115170091G>C	:hr5:128891349C>A	:hr5:134257231T>C (homocigoto) 	2002137234337G> Spring 137234337G> Spring 137234337G>	::h5:140607486C>T(homociaoto)	hr5:140607603G>T	chr5:141032027C>T	Shr5:141026240C>A	hts:141014054A>C (homocigoto)	hr5:147004746C>T	Shr5:1472412456>C (nomocigoto) Shr5:149749685G>A (nomocigoto)	ALA FIG. 12R FI
DE LA FIG. 12P	APC Colorrectal Mx32 g.c	APC Colorrectal Hx172 g.c		APC Colorrectal Hx219 g.c			APC Colorrectal Mx42 0.0		APC Colorrectal C082 g.c			FEMIC Mama HCC1934 gt.	_	ADAMTS19 Mama HCC 38 g.c		NDIEW Colorrectal MXZ/ g.g.				CENTD3 Mama HCC2218 g.(_		SOGESAZ Mama HCC215/ 9.0 TCOF1 Colorrectal Co74 g.0	
	CCDS4107.1 CCDS4107.1	CCDS4107.1 CCDS4107.1	CCDS4107.1	CCD84107.1	CCDS4107.1	CCDS4107.1	CCDS4107.1	CCDS4107.1	CCDX4107.1	CCDS4107.1	CCDS4115.1	CCDS4118.1	CCDS4121.1	CCDS4146.1	CCDS4180.1	CCCCC	CCDS4257.1	CCDS4257.1	CCDS4266.1	CCUS4286.1	CCDS4266.1	CCDS4285.1	CCDS4287.1 CCDS4306.1	

	P. P	
	c.2368_2373delCCGCCC c.388G>A c.892G>A c.892G>A lVS0-1G>C c.1438C>T c.1498C>T c.1498C>T c.1498C>T c.1498C>T c.1350G>C c.1350G>C c.1350G>C c.1350G>C c.1350G>C c.137_dupG lVS5-1G>C c.137_dupG lVS5-1G>C c.142C>T c.128C>T c.130G>C	FIG. 12R
	9.chr5:150016498_150016503delCCGCC 9.chr5:156890402G>A 9.chr5:1568990402G>A 9.chr5:161049229C>A 9.chr5:167651735G>C 9.chr5:176247162C>T(homocigoto) 9.chr5:176247162C>T(homocigoto) 9.chr5:176247162C>T 9.chr5:176820163G>T 9.chr5:176820163G>T 9.chr5:176843275G>C 9.chr5:176843275G>C 9.chr5:176843275G>C 9.chr5:176843275G>C 9.chr5:17624566S>C 9.chr5:1762460S>T 9.chr6:339441G>C 9.chr6:3394317G>A 9.chr6:3394317G>A 9.chr6:3264980C>T 9.chr6:2264980C>T 9.chr6:279330G>A 9.chr6:279330G>A 9.chr6:279330G>A 9.chr6:279330G>A 9.chr6:279330G>A 9.chr6:27943030G>A 9.chr6:27943030G>A	A LA FIG. 12S
	al Mx42 al Mx22 al Mx22 ACC218 HCC1143 ACC1143 ACC1168 HCC1008 HCC1008 HCC1008 HCC1008 HCC1008 HCC1008 ACC1008	
DE LA FIG. 12Q	Colorrectal Colorrectal Colorrectal Mama Mama Mama Mama Mama Mama Mama Ma	
DE LA	SYNPO ADAM19 ADAM19 GABRA6 KIBRA GABRP HK3 HK3 HK3 HK3 DBN1 DBN1 DBN1 DBN1 DBN1 DBN1 CACL1L GRMC CACL1L GRMC CACL1L GRMC SERPINB1 SERPINB1 SERPINB1 SERPINB1 SERPINB1 SERPINB1 SERPINB1 SERPINB1 MGC8685 C60rf145 PRPF48 BMP6 BMP6 BMP6 BMP6 HIST1H18 HIST1H18 HIST1H18 HIST1H18	
	CCDS4338.1 CCDS4338.1 CCDS4366.1 CCDS44407.1 CCDS44407.1 CCDS44407.1 CCDS4442.1 CCDS4442.1 CCDS4442.1 CCDS4433.1 CCDS4488.1 CCDS453.1 CCDS453.1 CCDS4635.1 CCDS4635.1	

	<i>'</i>																							٠							
	p.R1370	p.r.230L p.T1087	p.R1152H	UTR	p.A347T	p. 1412M	p.L.183V	p.M/b5l	- 784-C	0.V 136L	D.E.3.10A	D 4386F	7910	0.R97S	D.A451T	p.N632S	p.G1094R	p.G153D	p.A293T	p.1455V	p.S/31L	ds	p.V214	Z.Z.	p.R1081C	p.L.1096R	p.R1624W	p.E.1806X	p.D195H	2000	
	6.410G>A	c.3260c>T	c.3455G>A	IVS24+3C>G	c.1039G>A	c.1238C>1	6.04/C>G	6.2285G>A	C.Z60G2A	C.4/2621	C.040571	C 1157C>A	(A)	c.289C>A	c.1351G>A	c.1895A>G	c.3280G>C	c.458G>A	c.877G>A	c.1363A>G	6.21920	\000000000000000000000000000000000000	c.640G>1	6.56G>A	c.3241C>1	c.328/1>G	c.4870C>T	c.5416G>A	0.583G>C	1,020	FIG. 12S
	g.chr6.28202562G>A	g.che:31707689C>T	g.chr6:31707884G>A	g.chr6:31714884C>G	g.chr6:31945392G>A	g.cnr6:31944912C>	g.chrc;32036/98C>G	g.cnro:3204235/G>A	g.cfiro.32226401G2A	9.CIII0.53201200G71	g.cilic.304 47.3067	g.cii.c.30653834C>A	g:cirio:020989C>G	a.chr6:41358228C>A	g.chr6:41666019G>A	g.chr6;43430615A>G	g.chr6:43415894G>C	g.chr6:43663172G>A	g.chr6:44307725G>A	g.chr6:44309235A>G	g.chr6:4//93033C>1	g.cnro:49682819C>1	g.cnrc;50804568G>	g.chrc:52056009G>A	g.chr6:52005910C>1	g.chr6:520058641>G	g.chr6:51997697C>1	g.chr6:51990351G>A	g.chro:553242226>C	200000000000000000000000000000000000000	A LA FIG. 12T
	Mx43	BB20T	HCC1954	HCC1395	6/02	C087) 	C0/4		HCC1027	365	HCC2218	HCC1143	HCC2157	HCC1143	BB13T	HCC1395	HCC1395	MX29	Mx43	HCC1143	HCC1008	HCC2218	MXZ2	2 2	MX31	HX206	HX169	R32T		1
. 12R	Colorrectal	Mama	Mama	Mama		Colorrectal	Mama	Colorrectal	Mama	Mama	Colorrectal	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Colorrectal	Colorrectal	Mama	Mama	Mama	Colorrectal	Colorrectal	Colorrectal		Colorrectal	Mama	N .	
DE LA FIG.	ZNF435	BAT2	BAT2	BAT3	C60rf29	87E93	SKIVZL	SKIVZL	C0013	MADK13	DNAHR	Chorf 102	TREML1	TREM	FOXP4	ZNF318	ZNF318	POLH	SLC29A1	SLC29A1	5. 7. 7. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	KHAG	I PAPZU		2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55	5	<u> </u>	PKHUI	COI 1941		
	CCDS4644.1	CCDS4708.1	CCDS4708.1	CCDS4709.1	CCDS4724.1	CCU04/24.1	CCD04/31.	CCD04/31.	CCCCC47380.1	2000	CCDS4810.	CCDS4844 1	CCDS4851.1	CCDS4854.1	CCDS4856.1	CCDS4895.1	CCDS4895.1	CCDS4902.1	CCDS4908.1	CCDS4908.1	CCDS4822.1	CCDV4827.1	CCD04833.	CCD4859.1	CCDS4835.1	CCDV4835.1	CCD8485.1	CCDV4935.1	CCDS4857		
																															/

		1
	P. N. 1916 P. N. 1916	
-	5301307-1 6301907-6 6301907-6 6301907-6 6301907-1 6301907-1 6301907-1 6301007-1	בות ביים
	g.chr6.7380461T>G g.chr6.7380461T>G g.chr6.73846C>G g.chr6.73781637G>A g.chr6.7397295G>T g.chr6.83903943G>C g.chr6.8470696S>T g.chr6.1083280C>T g.chr6.10832804C>G g.chr6.10832804C>G g.chr6.10832804C>G g.chr6.11803854_111803854dupT g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.117119916C>G g.chr6.1171758GSOA>C g.chr6.1171765G20A>C g.chr6.152747383G>A g.chr6.152747383G>A g.chr6.152747383G>A	A LA FIG. 120
	MX32 MX32 MX32 MX24 MX34 MX34 MX34 MX34 MX36 MX36 MX36 MX36 MX36 MX36 MX36 MX36 MX36 MX37 MX36 MX37 MX36 MX37 MX36 MX37	
IG. 12S	Colorrectal Colorrectal Colorrectal Colorrectal Colorrectal Mama Mama Mama Mama Mama Mama Mama Ma	
DE LA FIG. 12S	KCNO5 KCNO5 KCNO5 CD109 CD10 CD10 CD109 CD109 CD109 CD109 CD109 CD109 CD109 CD109 CD109 CD	
	CODS4987.1 CODS4987.1 CODS4987.1 CODS4987.1 CODS5031.1 CCDS5031.1	

	p.L5507R p.R2992H TGTGGT is	p.G756A	p.v/L sp	p.R336Q	p.A147G	p.P104S	. 6368 888	p.E230V	p.A110D	p.S519	p.D42N	0.637D	0.0457R	S	p.V368E	p.A45T	p.L105V	p.12897	p.629E	p.P169L	p.S1304P	p.L110V	p. 17M	p.R252C	p.17815 p.G200V	
	c.16520T>G c.8975G>A c.529_551delGAGGATAAAGTTTTAACTGTGGT	c.2267G>C	c.196>C NS2-3C>T	c.1007G>A	c.440C>G	c.310\$-T	c.1060>A	c.689A>T	c.329C>A	c.1556G>T	6.1246>A	C 11053A	c.1370A×G	IVS64G>A	c.1103T>A	c.133Q>A	c.313T>G	0.8667>C	C.866>A	C:506C>T	c.3910T>C	c.328C>G	c.20C>1	c./54C>1	c.5996>T	FIG. 120
	g.chr6:152731382T>G g.chr6:152553254G>A g.chr6:154846733_154846711	g.chr6:157546383G>C	g.chre.160642148C>T	g.chr6:163958236G>A	g.chr7:2084826C>G	g.chr7.6395062C>T g.chr7.7451964G>T	g.chr7:18958120G>A	\approx	g.chr7:23067133C>A	g.chr7:23086956G>T	g.chr/:26923376G>A	g.chr7.26943483G>A	g.chr7:27606031A>G	g.chr7:29865561G>A		g.chr7:30781764G>A	g.chr7:31384960T>G	` -	g.chr/:3994/321G>A	g.chr/:41861503C>1	g.chr7:41778001T>C	g.chr7:42737560C>G	g.chr/:45/33960C>1	g.chr/:45/2//81C>1	g.chr7.54995955G>T	DE LA FIG. 12V
	Co74 Mx41 HCC1008	HCC1395	HCC2218	2603	24	HCC1954	C092	Mx43	88271	HCC1187	HCC2218	HCC1395	HCC2218	HCC2713	HCC1008	Mx41	25	HCC2157	HCC2218	507	S 2	Mx41	Mx27	HX218	HCC193/ BB12T	
DE LA FIG. 12T	Colorrectal Colorrectal Mama	Mama	Mama	Colorrectal	Colorrectal	Mama Colorrectal	Colorrectal	Colorrectal	Mama	Mama	Mama Mama	Mama	Mama	Mama	_	_		_	_	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Mama Mama	
DE LA	SYNE1 SYNE1 MAGI1	ARID18	SLC22A2	충	SNX8	ZDHTC4 RPA3	FERDSL	ABCB5	GPIMB GPIMB	GPNMB	HOXA3	HOXA AA	TAX18P1	PLEKHA8	PLEKHA8	SHE H	LOC223075	XNOC3	्र जा 11	<u></u>	GLIS	PSMA2	GFBF3	25 25 25 25 25 25 25 25 25 25 25 25 25 2	SE SE	
	CCDS5236.1 CCDS5237.1 CCDS5246.1	CCDS5251.1	CCDS5268.1	CCDS5285.1	CCDS5331.1	CCDS5352.1	CCDS5368.1	CCDS5371.1	CCDS5380.1	CCDS5380.1	CCUS5404.1	CCDS5405.1	CCDS5415.1	CCDS5424.1	CCDS5424.1	CCDS5432.1	CCDS5435.1	CCDS5452.1	CCD85463.1	CCDS5465.1	CCDS5465.1	CCDS5467.1	CCDS5505.1	CCDS5505.1	CCDS5531.1	

	p.S916X p.A131T	p.K887N	হ ক	p.M24091	p.E3297Q	p.D200N	p.V329M	5.490G	p.R609C	p.L176S	p.P1093H	p.c.1 16V	p.1320L	p.G554A	p.0149X	p.L146V	labul	p.V116M	p.R735H	p.Y200_L203del	p. 15/9A	p.A599T	Ş	p.A112E		/
	c.2747C>G c.391G>A	6.2661G>T 6.5678 58.77ing.GTC	c.6364_dupA	c.7227G>T	0.9889G>C 0.55G>A	c.598G>A	C.985G>A	C.400C21 C.1468A2G	c.1825C>T	c.527T>C	C.32/8C>A	C.554/GVI	C.800AV	6.1661G>C	C.445C>T	C.436C>G	C.86Z_SUDGEICARCTICC	c.346G>A	c.2204G>A	c.598_609delTATCTGAACTTG	C:1/35A>G C:659C>T	c.1795G>A	c.1889_1907delAAGAAAAACTTGTCATCAG	c.335C>A	707 01	FIG. 12V
	g.chr7:72328617C>G g.chr7:83384499G>A	g.chr/:868U5285G>T g.chr7-013350g_013353NNpsCTCC	g.chr7:91344028_91344028dupA	g.chr7:91353325G>T	g.chr7:913/0813G>C g.chr7:92403404G>A	g.chr7:99417896G>A (homozygous)	g.chr7:99703436G>A	g.cirr.100480313021 g.chr7:101511970A>G	g.chr7:101518570C>T	g.chr7:105503630T>C	g.chr7:10/393695C>A	9.CIII 7.107.004311671	9.CIII.1.1137.507.07V	g.clir.; 113101 1767C g.chr7:113112437G>C	g.chr7:113863859C>T	15188594	GUILTI 103 1230 LE 103 1233000 CAACC TGAOTTOOGGGGGATGGA	2058	122686920G>A	:127264047_127264036delTATCTGAACTTG	g.Cnr/:12/26/291UA>G g.chr7:132459295C>T	· ·	g.chr7:133059608_133059626delAAGAAA XACTTGTCATCAG	g.chr7:134306783C>A		A LA FIG. 12W
	HCC1395 HCC1954	MX41	BBST	Mx41	125 125 125 125 125 125 125 125 125 125	HCC2218	HCC1954	MX42 HCC2157	Mx41	095 295 295 295 295 295 295 295 295 295 2	BB23	25.25.25.25.25.25.25.25.25.25.25.25.25.2	325	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	HCC1599	Mx42	860 70	Mx38	So 108		MX42 Hx172	284	Mx38	Mx42		
LA FIG. 12U	Mama Mama		Colorrectal Mama		Mama			Colorrectal	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Mama	Colorrectal	Mama	Colorrectal	Colorrectal	Mama	Colorrectal	Colorrectal	Colorrectal	Colorrectal		
DEL	BAZ1B SEMA3A	AKAPO	AKAP9	AKAP9	AKAP9 1 OC253012	GPC2	THG-1		CUTL1	PBEF1	NACAM	7NE 277	ZNE277	PPP1R3A	FOXP2	TFEC	7 1 100	WNT16	FLJ35834	\$ 5 5 5 5 5	SECS-1	SEC8L1	SEC8L1	FLJ11000		
	CCDS5549.1 CCDS5599.1							CCDS5720.1	CCDS5720.1	CCDS5737.1	CCU39/91.1	CCD33/31.	CCDS37.55.	CCDS5759.1	CCDS5760.1	CCDS5762.1	00000771.1	CCDS5780.1	CCDS5787.1	CCDS9/99.1	CCDS5829.1	CCDS5829.1	CCDS5829.1	CCDS5837.1		

p. P54L p. R86W p. V600E fs p. T137M p. D345N p. D345N p. S480del p. V166E p. V166E p. R602Q p. R602Q	p.R1906X p.T3698S p.R262C p.E716K sp. p.L365F p.R74Q	
c.161C>T c.256C>T c.1799T>A c.821 840delCTTTGTACAGGAGAATATTA c.410C>T c.1033G>A c.1762G>C c.211G>A c.142G>A c.1420C>T c.1805G>A c.1420C>T c.1805G>A c.1420C>T c.1805G>A c.1430T>G c.1198G>A c.1433T>G c.1433T>	c.57'6C>T c.11092A>T c.784C>T c.2146G>A WS2.4G>T c.221G>A	FIG. 12W
9.chr7:134308847C>T 9.chr7:139064224C>T 9.chr7:13906320T>A 9.chr7:140794326_140794345delCTTTGTACAGGAGAATATTA 9.chr7:14208198G>A 9.chr7:142082259G>C 9.chr7:142083204G>A 9.chr7:142083204G>A 9.chr7:142083204G>A 9.chr7:142083204G>A 9.chr7:142083204G>A 9.chr7:142083204G>A 9.chr7:150136153C>T 9.chr7:150169042T>C 9.chr7:150169042T>C 9.chr7:151387315T>G 9.chr7:151387315T>G 9.chr7:151387315T>G 9.chr7:151387315T>G 9.chr7:151387315T>G 9.chr7:151387315T>G	g.chr7:151316877C>T g.chr7:151297218A>T g.chr7:154313555C>T g.chr8:632616G>T g.chr8:632616G>T g.chr8:6781025G>A	A LA FIG. 12X
CCDSS855.1 TBXAS1 Mama HCC1187 CCDSS855.1 TBXAS1 Mama HCC1187 CCDSS855.1 BRAF Colorrectal MCC108 CCDSS872.1 PRSS1 Colorrectal MX42 CCDSS873.1 EPHB6 Colorrectal MX42 CCDSS873.1 EPHB6 Colorrectal MX43 CCDSS873.1 EPHB6 Colorrectal MX43 CCDSS873.1 EPHB6 Colorrectal MX42 CCDSS873.1 EPHB6 Colorrectal MX42 CCDSS873.1 EZH2 Colorrectal MX42 CCDSS897.1 FLJ31413 Mama HCC1939 CCDSS912.1 NOS3 Colorrectal MX22 CCDSS913.1 ABC8 Mama HCC1187 CCDSS913.1 ABC8 Mama HCC1187 CCDSS913.1 ABC8 Mama CCDSS913.1 MLL3 Colorrectal MX2 CCDSS931.1 MLL3 Colorrectal MX26	CCDS5931.1 MLL3 Colorrectal Hx169 CCDS5936.1 MLL3 Colorrectal Co74 CCDS5936.1 HTR5A Colorrectal Co92 CCDS5947.1 PTPRN2 Colorrectal Mx32 CCDS5955.1 LOC157697 Colorrectal Mx41 CCDS5955.1 LOC157697 Colorrectal Co79 CCDS5961.1 DEFA4 Colorrectal Co92	
	MGC5242 Colorrectal Mx27 goh7:139084224C-T C.161C>T C.266C>T TBXAS1 Mamma HCC1167 gch7:139084324C-T C.266C>T C.266C>T BRAF Colorrectal MCC108 gch7:141094326_T40794356_H0794356_T C.169C>T BRAF Colorrectal Mx42 gch7:141094125_T40794356_T C.1030P-A EPH86 Colorrectal Mx42 gch7:142084956A-C C.1762G-C EPH86 Colorrectal Mx43 gch7:142084956A-C C.1762G-C CLCNI Mamma HCC108 gch7:142084956A-C C.1762G-C CLCNI Mamma HCC108 gch7:142084956A-C C.1762G-C CLCNI Mamma HCC108 gch7:142084956A-C C.1662G-C FLJ34413 Mamma HCC108 gch7:142084956A-C C.1662G-C ABCBR Mamma HCC108 gch7:146095090 14809588delAC C.1662C-C ABCBR Mamma HCC108 gch7:145013613C-C C.1662C-C ABCBR Mamma HCC108 gch7:1450136C-C	NBC5242 Colorrectal M27 Suhf-139308947C-1 C.161C-1 C.26C-1 C.2

	P.R633Q p.D45H p.D45H p.D45H p.C40W p.W57C p.C32V p.D332H p.D332H p.D332H p.D332H p.D332H p.A314S p.A3116 p.C316E p.V5371 p.C316E p.V5371 p.C316E p.V5371 p.C316E p.V5371 p.C316E p.V5371 p.C316E p.V5371 p.C316E p.C320 p.C320 p.C320 p.C320 p.C3201V p.C322C p.C322C p.C322C	
	c.1898G>A c.133G>C NS0-98_12del110bp c.1441C>T c.1441C>T c.146>T c.146>T c.947A>C c.947A>C c.946O>T c.662A>G c.662A>G c.662A>G c.662A>G c.662A>G c.662A>G c.660A>C c.1609C>A c.1609C>A c.1609C>A c.1609C>T c.1412C>T c.1	FIG. 12X
	g.chr8:22037124G>A g.chr8:22078996G>C(homocigoto) g.chr8:22078996G>C(homocigoto) g.chr8:2656849C>T g.chr8:26778286G>T g.chr8:27155130G>T g.chr8:37008894A>C (homocigoto) g.chr8:37809825_37809825dupG g.chr8:41696449G>C g.chr8:41696449G>C g.chr8:42033657A>G g.chr8:54015076C>A g.chr8:5221983G>T g.chr8:6788663C>T g.chr8:6815225G>A (homocigoto) g.chr8:6815225G>A (homocigoto) g.chr8:6815225G>A (homocigoto) g.chr8:6915225G>A (homocigoto) g.chr8:6915228G>A (homocigoto) g.chr8:6915228C>A g.chr8:6915228G>A (homocigoto) g.chr8:6915228C>A g.chr8:6915228G>A (homocigoto) g.chr8:6915228G>A (homocigoto) g.chr8:6915228G>A (homocigoto) g.chr8:6915288Q>T g.chr8:932067624C>T g.chr8:932067624C>T g.chr8:93286538D>C g.chr8:932809G>C g.chr8:105436488G>T g.chr8:113368564G>A	A LA FIG. 12Y
	MX41 HCC2218 HCC1395 MX27 HCC2157 CO92 HCC38 HCC38 HCC38 HCC395 HCC395 MX42 MX42 MX42 MX42 MX63 MX64 MX64 MX64 MX64 MX64 MX64 MX64 MX64	
G. 12W	Colorrectal Mama Colorrectal Mama Colorrectal Mama Mama Mama Mama Mama Mama Colorrectal	
DE LA FIG. 12W	HR BMP1 NEF3 DPYSL2 ADRA1A STIMN4 STIMN4 STIMN4 STIMN4 SORI SORI SORI SORI SORI SORI SORI SORI	
	CCDS6022.1 CCDS6026.1 CCDS6026.1 CCDS6026.1 CCDS6036.1 CCDS6037.1 CCDS6139.1 CCDS6230.1 CCDS6230.1 CCDS6230.1 CCDS6230.1	

	A indel	p.R3359Q	p.R373H	p.C3127	5.E881	D.187N	တ္တ	p.R280	p.L276P	p.V879A	p.W164C	p.S177L	p.R342C	p.K117N	p.A607T	p.L686M	p.P209S	p.H539Y	p.G572D	p.T205M	p.R161H	p.E423K	p.R496X	p.R239W	p.S140T	ည	p.E210D	p.D917Y	2010.4	
	c.9641_9664delCTTGTACAATTAATGGCACATGGA	c.10076G>A	c.1118G>A	6.1030G21 6.1030G21	C26431>G	c.260T>A	NS8+3A>G	c.83G>A	c.827T>C	c.2636T>C	c.492G>T	c.530C>T	c.1024C>T	c.351G>C	c.1819G>A	c.2056T>A	c.625C>T	c.1615C>T	c.1715G>A	c.614C>T	c.482G>A	c.1267G>A	c.1486C>T	c.715C>T	c.418T>A	c.819delA	c.630A>C	c.27496>T	L.0017t.9	FIG 12Y
	g.chr8:113346863_113346840delCTTGT	g.chr8:113335692G>A	g.chr8:120677278G>A	g.cn/6.120/03/20621	g.ch/g.1319177377>G	g.chr9:6411018T>A	g.chr9:6472102A>G	g.chr9:8626826G>A	g.chr9:8511372T>C	g.chr9:8476142T>C	g.chr9:21067377G>T	g.chr9:21374799C>T	g.chr9:22441419C>T	g.chr9:27148127G>C	g.chr9:35064155G>A	g.chr9:35081828T>A	g.chr9:35285791C>T	g.chr9:35599473C>T (homocigoto)	g.chr9:37730240G>A	g.chr9:37877934C>T(homocigoto)	g.chr9:77053989G>A	g.chr9.85477759G>A(homocigoto)	g.chr9:85477540C>T	g.chr9:91897307C>T	g.chr9.92919823T>A	g.chr9:99810420delA(nomocigoto)	g.chr9:104700448A>C	g.chrg:104664411G>T g.chg:104651387Cs>A	9-0110-10-10-10-10-10-10-10-10-10-10-10-1	A LA FIG. 12Z
	HCC1599	Hx218	MX32	MXZ/ HCC1395	W38.23	Hx218	Mx32	Mx42	天88	6 <u>7</u> 9	HCC1937	万 5184	Mx27	HCC2218	Mx41	Co74	88	HCC1395	HCC1187	HCC1008	Mx27	Mx38	Mx32	HCC2157	衆 公 子	Mx38	Hx172	Co79	71414	
DE LA FIG. 12X	Mama	Colorrectal	Colorrectal	Mama	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Mama	Mama	Colorrectal	Mama	Colorrectal	Colorrectal	Colorrectal	Mama	Mama	Mama	Colorrectal	Colorrectal	Colorrectal	Mama	Mama	Colorrectal	Colorrectal	Colorrectal		
DE L	CSMD3	CSMD3	ENPP2	ZNF3/Z	ADCY8	UHRF2	CHRF2	PTPRO	PTPRO	PTPRO	FNB	FNA2	DMRTA1	至	FANCG	960 900	UNC138	TESK1	FRMPD1	MCART1	VPS13A	AGTPBP1	AGTP8P1	SPTLC1	SUSD3	STX17	ABCA	ABCA1		
/	CCDS6315.1	CCDS6315.1	CCDS6329.1	CCDS6356.1	CCDS6363.1	CCDS6469.1	CCDS6469.1	CCDS6472.1	CCDS6472.1	CCDS6472.1	CCDS6495.1	CCDS6506.1	CCDS6514.1	CCDS6519.1	CCDS6574.1	CCDS6575.1	CCDS6579.1	CCDS6580.1	CCDS6612.1	CCDS6614.1	CCDS6655.1	CCDS6672.1	CCDS6672.1	CCDS6692.1	CCDS6701.1	CCDS6745.1	CCDS6762.1	CCDS6762.1	00000	

	p.A2109T p.D225N p.D225E	p.M8601	p.V1242L	p.P712T	p.SZZL	p.12011	T041V	p.T190N	p.G280R	p.S904C	p.P1017S	p.R1794W	p.D1918N	<u>ح</u>	p.6424A	p.P1378L	p.A1392V	E	p.R172W	p.R231H	p.R496L	D.N89K	p.P80L	p.Y175C	p.P244T	<u>.</u>	p.R1095W p.K17N		/
	c.6325G>A c.673G>A c.675T>A	c.2665G>C	c.3724G>C	C.2134C>A	C.65C>1	C.002C>1	C.418A>C	c.569C>A	c.838 G> C	c.2711C>G	c.3049C>T	c.5380C>T	c.5752G>A	c.7399delC	c.12716>C	c.4133C>T	c.4175C>T	IVS2+3C>T	c.514C>T	c.692G>A	c.1487G>T	c:267C>G	c.239C>T	c.524A>G	c.730C>A	c.2297_dupC	c.3283C>T c.51G>C		FIG. 12Z
	g.chr9:104628210G>A g.chr9:105449680G>A g.chr9:105449682T>A		g.chr9;116267827G>C			9.CIII.9:121132013C>1	4 (-				g.chr9:128433352C>T		. ~	C - 1	~~	<u> </u>	g.chr9:131102610C>T	g.chr9:131213231C>T	g.chr9:132404423C>T	g.chr9:132894726G>A	g.chr9:133011616G>T	g.chr9:133251124C>G	g.chr9:135001117C>T	g.chr9:135030351A>G	137024559(g.chr9.137027846_137027846dupC	g.chr9:137030264C>T g.chr9:137359066G>C		A LA FIG. 12AA
	Mx29 HCC1395 HCC1395	HCC1937	HCC1954	Mx38	HCC1008	88281	HCC2157	HCC 38	Hs 578T	BB1 3T	B89T	HCC1954	BB27T	BB23T	BB 51	HCC1008	BB 23⊤	HCC2218	Mx41	Mx42	Mx32	HCC1395	Mx41	Mx38	HCC 38	8813T	8821T HCC2218	-	
. 12Y	Colorrectal Mama Mama	Mama	Mama	Colorrectal	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Colorrectal	Colorrectal	Colorrectal	Mama	Colorrectal	Colorrectal	Mama	Mama	Mama Mama		
DE LA FIG. 12Y	ABCA1 FCMD FCMD	IKBKAP	ASTNZ	08C	N S	N N	NDI FA8	ORINI	STRBP	SPTAN1	SPTAN	SPTAN	SPTAN	SPTAN	NUP214	NUP214	NUP214	C90rf67	FLJ46082	GF11B	RALGDS	SURF1	FCN2	FCN.	AEGP	AEGP	AEGP SSNA1		
	CCDS6762.1 CCDS6766.1 CCDS6766.1	CCDS6773.1	CCDS6815.1	CCDS6822.1	CCDS6828.1	CCDS6828.1	CCDS6835.1	CCDS6844.1	CCDS6851.1	CCDS6905.1	CCDS6905.1	CCDS6905.1	CCDS6905.1	CCDS6905.1	CCDS6940.1	CCDS6940.1	CCDS6940.1	CCDS6942.1	CCDS6949.1	CCDS6957.1	CCDS6959.1	CCDS6966.1	CCDS6983.1	CCDS6985.1	CCDS7010.1	CCDS7010.1	CCDS7010.1 CCDS7034.1	/	

	p.D81G p.V145G	p.R360W	p.G593E	P.C. /	p.R530H	p.R702W	p.R100H	p.P591A	p.R652L	p.R1038T	p.E1119Q	p.E1119V	p.D415G	p.E607K	p.K57N	p.E279K	p.R123H	p.L296V	p.T483A	p.L551V	p.X242S	p.V448M	p.V1071	p.W167X	p.A1957	p.032X	1/7:4	p.H333Y	
	c.242A>G c.434T>G	c.1078C>T	c.17786>A	7.289.7 7.388.4>T	c.15896>A	c.2104C>T	c.299G>A	c.1771C>G	c.1955G>T	c.31136>C	c.3355G>C	c.3356A>T	c.1244A>G	c.1819G>A	c.171A>C	c.835G>A	c.368G>A	c.886C>G	c.1447A>G	c.1651C>G	c.725G>C	c.13426>A	c.319G>A	c.500G>A	c.583G>A	C.94CV	C.250C1	c.1166C>T	FIG. 12AB
	g.chr10:38282689A>G g.chr10:42917892T>G	g.chr10:42924499C>T	g.chr10:42929028G>A	9.CIII 10.447 900000071	a.chr10:48009295G>A	g.chr10:49065328C>T	g.chr10:49985803G>A	g.chr10:50371219C>G	g.chr10:50361435G>T	g.chr10;50348899G>C	g.chr10:50348657G>C	g.chr10:50348656A>T	g.chr10:50393923A>G	g.chr10:70186229G>A	g.chr10:71648532A>C	g.chr10:71865104G>A	g.chr10:72030297G>A	g:chr10:74946568C>G	g.chr10:76405548A>G (homocigoto)	g.chr10:80728328C>G	g.chr10:80816108G>C	g.chr10:88693179G>A	0:89540110	0:94824611	10:97164372G>A	0.ChriU:994Z9559C> (nomocigoto)	g.cli 10.10.1484856771	g.chr10:102729906C>T	A LA FIG. 12AC
	HCC2157 Mx3	Hx218	MX41	MX32 HCC1143	260 260 260 260 260	Mx22	MX41	Mx38	SX3	HCC2218	HCC2218	HCC2218	HCC1143	MX22	FCC1143	Mx38	Mx38	元 第 記 第	8 2 2 3 3 3 3 3 3	HCC2218	FC 158	MX32	3		25.55	25.25	25.5	HCC1143	
. 12AA	Mama Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Colorrectal	Mama	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Colorrectal	
DE LA FIG. 12AA	ZNF25 RET	딦	RET	ZNE227	85. 12.	FRMPD2	C100rf72	ERCC6	ERCC6	ERCC6	EKCC6	ERCCS	PGBD3	CCAR1	<u>a</u>	NODAL	PRF1	USP54	MYST4	RAI17	C100rf56	MMRNZ	AIAU1	CYP26A1	SOKES!	API CITO	WAIT SD	SEMA4G	
	CCDS7195.1 CCDS7200.1	CCDS7200.1	CCDS7200.1	CCDS/200.	CCDS7218.1	CCDS7222.1	CCDS7228.1	CCDS7229.1	CCDS7229.1	CCDS7229.1	CCDS7229.1	CCDS7229.1	CCDS7230.1	CCDS7282.1	CCDS7299.1	CCDS7304.1	CCDS7305.1	CCDS7329.1	CCDS7345.1	CCDS/357.1	CCDS/359.1	CCDS/379.1	CCDS/386.1	CCDS/426.1	CCDS/442.1	CCDS/4/0.	20001460.	CCDS7501.1	

	p.S84X p.G1652V	p.R526X	p.8779C	p.D445N	p.G345V	90 0.5129X	D.E262K	p.A309V	D.V032E	p.T40S	p.A569V	p.N22D	<u>s</u>	p.F11/L	P.E806	7.052 IE	p.9337	p.R179C	D.D278A	p.L123R	p.H424L	p.S455F	HCZQ.4	D.A595V	D.N521K	p.F157L		1
	c.251C>G c.4956S>T	c.1576C>T	c.23360> G	c.1333G>A	C.1034G>T	180172130 0.38602G	c.784G>A	c.926C>T	C.188012A	c.118A>T	c.1706C>T	c.64A>G	6.304_308del1C11G	6.3511>6	C.259A5G	C.002G/A	67G>A	C.535C>T	c.833A>C	c.368T>G	c.1271A>T	c.1364C>1	C./3G>	C.11/80/>	c.1563C>A	c.469T>C	י	FIG. 1ZAD
	g.chr11:3756783C>G g.chr11:3657478G>T (homocigoto)	g.chr11:6429202C>T	g.chr11;70355280>6	g.chr11:7395931G>A	g.chr11:8088894G>T	g.cii. 1 1.10428100 1 7.0 (nomocigoto) o.chr1111976868(2)G	g.chr11:17699452G>A	g.chr11:17699594C>T	g.cnr11;200166061>A	g.chr11:22319681A>T (homocigoto)	g.chr11:30881646C>T	g.chr11:31348938A>G	g.chr11:31404466 314044/0del1C116	g.chr11:320/5362/>G	9.CITTT.3Z300//9A2G	g.cll 1.440.8339.067A	g-chr11-491864716>A	0.chr11:56911878C>T	g:chr11:59125877A>C	g.chr11:59957842T>G	g.chr11:62276592A>T	g.chr11:62276499C>1	g.cnr11.bz3516686>1	G.CHT 1:02830048C>1	g.chr11.62932889C>A	g.chr11:63844943T>C		A LA FIG. 12AE
	HCC1143 HCC1187	Mx43	HCC2218	Co74	Co74	HCC 1008	HCC 1008	BB13T	M27 M27	HCC1008	Mx30	BB13T	× 5	MX43	PD2 143	HCC2218	Mx43	Mx42	Co74	C092	HCC1143	HCC138		25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	Mx275	HCC1395		
3. 12AC	Mama Mama	Colorrectal	Mama	Colorrectal	Colorrectal	Mama	Mama	Mama	iviama Colorrectal	Mama	Colorrectal	Mama	Mama	Colorrectal	Marria	Mama	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Colorrectal	Mama		
DE LA FIG. 12AC	NUP98 NUP98	TRIM3	NALP14	SYT9	200 100 100 100 100 100 100 100 100 100		MY001	MYOD1	NFI 1	SLC17A6	FLJ46154	ZCST3	2525	SS SS SS SS SS SS SS SS SS SS SS SS SS	STATE OTATE	PHACS	5 5 5 7	PRG2	OSB	MS4A5	ZBTB3	58 8 7	2 73340	SLC278	SLC22A9	PRDX5		
	CCDS7746.1 CCDS7746.1	CCDS7764.1	CCDS7776.1	CCDS7778.1	CCDS7788.1	CCDS7808.1	OCDS7826.1	CCDS7826.1	CCDS/854.1	CCDS7856.1	CCDS7871.1	CCDS7873.1	CCDS/8/3.1	CCDS/8/6.1	CCDS/860.1	CCDS7907.1	CCDS7946.1	CCDS7955.1	CCDS7974.1	CCDS7987.1	CCDS8034.1	CCDS8034.1	CCD86036.1	CCDS8045.	CCDS8043.1	CCDS8069.1		

99

	p.V220l sp	p.G12S	p.G12D	p.G12D	p.G12V	p.G12V	p.G12V	p.G12A	0.6120	p.612D	p.G13D	0.6130	p.613D	0.061R	0.K117N	p.A146T	p.A146T	p.S227P	p.S169T	p.R781X	p.P794H	p. G526R	p.V173M	p.V43M	p.V441	D.A48T	p.676A	p.R212H	p.T248M	p.L168V	p.G430S	
	c.658G>A IVS1+1G>T	c.34G>A	c.35G>A	c.35G>A	c.356>T	c.356>T	c.35G>T	c.35G>C	c.35G>A	c.356>A	c.38G>A	c.38G>A	c.38G>A	c.182A>G	C.351A>T	c.436G>A	c.436G>A	c.679T>C	c.505T>A	c.2341C>T	c.2381C>A	c.1576G>A	c.517G>A	c.127G>A	c.1321G>A	c.142G>A	c.227G>C	c.635G>A	c.743C>T	c.502C>G	c.1288G>A	12AG
	g.chr12:21345402G>A g.chr12:21698743G>T	12.25	4,	5289551G>A		5289551	g.chr12:25289551G>T	S	g.chr12:25289551G>A (homocigoto)	g.chr12:25289551G>A	g.chr12:25289548G>A	g.chr12:25289548G>A (homocigoto)	g.chr12:25289548G>A	a.chr12:25271543A>G	3	Ŝ	53	g.chr12:26968680T>C	g.chr12:28007567T>A	g.chr12:32381788C>T	∺	g.chr12:40253198G>A	g.chr12:41065014G>A (homocigoto)	g.chr12:46478849G>A	g.chr12:48238761G>A	g.chr12:49688567G>A	g.chr12:50022725G>C	g.chr12:51296244G>A	g.chr12:51294706C>T	g.chr12:51456841C>G	g.chr12:51891804G>A	A LA FIG. 12AH FIG.
	Colorrectal Co74 Mama HCC1395	Colorrectal C094	_	_		Colorrectal Hx218	Colorrectal Hx219	Colorrectal Mx30	Colorrectal Mx34	Colorrectal Mx41	Colorrectal Hx5	Colorrectal Mx22	Colorrectal Mx43	Colorrectal Mx27	Colorrectal Co82	Colorrectal Mx26	Colorrectal Mx3	Colorrectal Mx32	Mama HCC2218	≥	<u>၂</u>	ctal (Ŧ	工	Colorrectal Mx22	ctal	I	<u>ن</u>	ctal H	Mama HCC1143	Mama HCC215/	ALA
DE LA FIG. 12AF	A2	KRAS							KRAS							KRAS								HDAC7A N	•	~		K6IRS3		YTZA	KAKG	
	CCDS8686.1 CCDS8691.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8702.1	CCDS8708.1	CCDS8715.1	CCDS8726.1	CCDS8737.1	CCDS8739.1	CCDS8741.1	CCDS8756.1	CCDS8787.1	CCDS8805.1	CCDS8812.1	CCDS8834.1	CCDS8834.1	CCDS8838.1	CCDS8850.1	

	p.031E p.T633S p.E888K p.S996C	p.D105N sp	p.M16481 p.A338T	p.E1593X p.P954L	25.7. 0.5.2. 0.5.2.2.	p.K113R p.R620C	p.K956N	p.P301S	p.1354A p.L451M	p.T32N	p.M393V	p.M14761	p.P1036dup	sp sp	p.P413S	p.M3611	p.A272V p.S497Y	
	c.91C>G c.1897A>T c.2862G>A c.2987C>G	c.3136>A IVS3-3C>G	c.4944G>A c.1012G>A	c.4777G>T c.2861C>T	c.626>A	c.338A>G	c.2868G>C	C.9010>1	c.1060A>G c.1351C>A	C.950>A	c.1177A>G	c.4428G>A	c.3106_3108dupCCG	WS11+3C>T	c.1237C>T	c.1083G>T	c.815C>T c.1490C>A	12AI
	g.chr12:121335002A>T g.chr12:122335002A>T g.chr12:122329861G>A g.chr12:122325033C>G	g.chr12:131083043G>A(homocigoto) g.chr12:132342436C>G	g.chr13:22810630G>A g.chr13:24642389G>A	g.chr13:31811269G>T g.chr13:32536145C>T	g.chr13:36577332G>A	g.chr13:40540772A>G (homocigoto)	g.chr13:52317041G>C (homocigoto)	g.chr13.72534639C>T	g.chr13:75291662C>A g.chr13:75291662C>A		g.chr13:100062697A>G	g.chr13:100518288G>A	g.chr13:109233296 109233294dupCCG	g.chr14:20556453C>T	g.chr14:22313411C>T	g.chr14:22898444G>T	g.chr14:23184274C>T g.chr14:23843166C>A	A LA FIG. 12AJ FIG
	Mx27 BB23T HCC2218 HCC 38	HCC2218	Mx41 Co92	HCC1395 Co108	Co92 HCC1395	HCC2718	HCC2218	Mx38	Mx41 Hx206	HCC1187	HCC1954	HCC1143	Mx38	HCC1008	FCC1957	Mx32	Co108 HCC2218	ALA
3. 12AH	Colorrectal Mama Mama Mama	Mama Mama	Colorrectal Colorrectal	Mama Colorrectal	Colorrectal	Mama	Mama	Colorrectal	Colorrectal Colorrectal	Mama	Mama Mama	Mama	Colorrectal	Mama	Mama	Colorrectal	Colorrectal Mama	
DE LA FIG. 12AH	SBNO1 SBNO1 SBNO1 SBNO1	PUS1 ZNF10	SACS FLU25477	BRCA2 KL	CSNK1A1L TRPC4	WBP4 COG3	PCO78	조 문 5	- - - - - - - - - - - - - - - - - - -	IR Post	FLJ14624	VGCNL1 FGF14	IRS2 1 OC 122258	NDRG2	SLC7A7 ACIN1	EFS	DHRS2 C14orf21	
	OCD S9237.1 OCD S9246.1 OCD S9246.1 OCD S9246.1	CCDS9275.1 CCDS9283.1	CCDS9300.1 CCDS9312.1	CCDS9344.1 CCDS9347.1	OCDS9363.1 OCDS9365.1	OCDS9375.1	OCDS9438.1	CCDS9448.1	CCDS#54.1	OCDS9472.1	CCDS9497.1	CCDS9498.1	CCDS9510.1	CCDS9564.1	OCDS9574.1	CCDS9595.1	CCDS9604.1 CCDS9624.1	

	p.R6260 p.H152Y	p.E857K	p.K910M	p.M1192I	p.S1471X	p.E1702Q	p.P1839T	D.147M	Ş	£	p.D437H	p.T262R	p.0764K	D.S775L	S	p.1205V	ক	p.P1238S	p.P226R	p.T1316P	p.651X	p.G124C	D.S682L	p.E20	p.G425D	p.U/59E	0.0252V.d	p.Y2585C	IS	p.R19450		
	c.1877G>A c.454C>T	c.2569G>A	c.2729A>T	c.3576G>T	c.4412C>A	c.5104G>C	c.5515C>A	c.141A>G	c.4268delG	c.427_428insC	c.1309 G >C	c.786C>G	c.2290C>A	c.2324C>T	NS4-4C>G	c.613A>G	c.767_IVS3+3deIAGTA	c.3712C>T	c.677C>G	c.3946A>C	c.1516>T	c.370G>T	c.2045C>1	6.4G>C	c.1274G>A	6.2217C>A	C.09/3G>A	c.//54A>G	C 8863 000A	c.5834G>A		12AJ
										ocigoto)																					i	E G
	g.chr14:23844107G>A g.chr14:29205115C>T	g:chr14:29116365G>A	g.chr14:32139748A>T	g.chr14:32312838G>T	زنز	نئ	g.chr14:32362285C>A	4	g.chr14:34297779delG (nomocigoto)	g.chr14:34942227_34942226insC(homocigoto)	g.chr14:38786838G>C(homocigoto)	g.chr14:44045156C>G	g.chr14:44043651C>A	g.chr14:44043617C>T	g.chr14:44647364C>G	g.chr14:50438360A>G (nomocigoto)	g.chr14:51596592_51596589delAGTA	g.chr14:515473540>T	žζ	g.chr14:55214913A>C	g.chr14:56116536G>T	g.chr14:58177231G>T	g.cnr14;58183139C>1	g.chr14:60260479G>C(homocigoto)		G.Chr14:60249884C>A	g.cir(14:63/23/265/A	0.Chr14:63/464/14>G (nomocigoto)	g.cnr 14:03/30/36 03/30/30upA	g.chr14:67302874G>A		A LA FIG. 12AK
	HCC1954 Co74	Hx174	HCC1395	HCC1385	Mx32	光 分 発	MX34	古C1954	FCC1008	HCC1187	FCC1385	BB23T	BB22T	HCC2157	HCC2218	HCC1937	88 22 24	HCC1937	BB23T	HCC1008	HCC2218	Mx38	MX38	15.00 15.00	HCC1854	28828 2828 2828 2828	504700	HCC1388	DD221	HCC1954		
12AI	Mama Colorrectal	Colorrectal	Mama	Mama	Colorrectal	Mama	Colorrectal	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Mama	Mama	Mama Mama		
DE LA FIG. 12AI	C14orf21 PRKD1	PRKD1	AKAP6	AKAP6	AKAP6	AKAP6	AKAP6	CFL2	BAZ1A	NFKBIA	MIA2	C14orf155	C14orf155	C14orf155	PRPF39	. C14orf29	ND2	ND2	KIN	KTN1	C14orf101	DACI		SIX4	\$ XX	SIX4	STINEZ	SYNEZ	371NEZ 75V/526	ZFWE26		
	CCDS9624.1 CCDS9637.1	CCDS9637.1	CCDS9644.1	CCDS9644.1	OCDS9644.1	OCDS9644.1	CCDS9644.1	CCDS9649.1	CCDS9651.1	OCDS9656.1	OCDS9672.1	CCDS9679.1	CCDS9679.1	CCDS9679.1	CCDS9682.1	CCDS9702.1	CCDS9706.1	CCDS9706.1	OCDS9725.1	OCDS9725.1	OCDS9727.1	CCDS9/36.1	CCDS8/36.1	CCDS9/49.1	CCDS8/49.1	0000049.1	1.10783/01.1	CCDS9/61.1	CCD38/01.1	CCDS9788.1	/	

	p.E6120 p.E9960	sp 0 V133M	S	Įs S	D.L.30V	<u> </u>	D.V1549I	p.A22V	p.P331S	p.P190L	p.P249L	p.E455U	p.D1//N	D.N4 18M	MZ4CA.d	D. 1-145IVI	0.0203 0.020 c	7.57.0 7.57.0	D.V.1141	ה אליות האבות מ	P. C. C.	p.E189G	p.A913S	p.R5250	p.R1583X	p.E49V	p.E285K	p.P31A	
	c.1834G>C c.2988G>C	IVS4+1G>A c.397G>A	c.983_dupG	c.2278delC	5.88CS 1.002/3	IVS24+2T>C	c.4645G>A	C.65C>T	c.991C>T	C.569C>T	c./46C>1	c.13656×C	C.529G>A	C.1203A21	C.102462A	C.454C.	0.7100 0.4100 0.400	240654	6/00t/cc c	A<0.121.0	C.10130	C.566A>G	c27376>T	c.1574G>A	c.4747C>T	c.146A>T	c.853G>A	c.91C>G	FIG. 12AK
	g.chr14:69597360G>C(homocigoto) g.chr14:71208976G>C	g.chr14:73834385G>A g.chr14:73837836G>A	g.chr14:73894222_73894222dupG	g.chr14:79003451delC	g.chr14:80/52554(>G	g.dii 14.300 137 300 71	g.chr14:93158358G>A	g.chr14:93323753C>T	g.chr14:98711722C>T	g.chr14:99664690C>T (homocigoto)	g.chr14;99665681C>1	g.chr14;998/1016G>C	g.chr14;101884/5/6>A	G.CII 14:10267702474	G.CII 14, 104/000/46/A	g.cnrt3.z136z436c>1 (nomocigoto)	9.01115.21302130G/O	g.dii 13.224/221/67A g.chr15:92472447G>A/homociaoto)		9.01 10.407 10 14407 A	g.ciii 13.307 1307 307 A	g.chr15:38415060A>G	g.chr15:38982646G>T	a.chr15:39606950G>A	g.chr15:41495826C>T	g.chr15:48342782A>T	g.chr15:48332198G>A	g.chr15:48389197C>G (homocigoto)	A LA FIG. 12AL
	HCC1395 HCC2218	Mx43	Mx26	ECC 38	HCC2218	H218	Mx42	_	Z603	6 6 6 6 6 6 6 7 6 7	MX32	HCC18/	MX41	35.15	* * * * * * * * * * * * * * * * * * *	4.67	M×43	Hv100	==	HCC034	Mx42	_	_	-	Mx41	Mx41	MX27	al Mx38	
12AJ	Mama	Colorrectal Colorrectal	Colorrecta	Mama	Mama		Colorrecta	Colorrectal	Colorrectal	Colorrectal	Colorrectal		Colorrecta	Mama	Colorrectal	Colorrectal	Colorrectal	Colorrectal		Maria	Colorrecta	Colorrectal	Colorrecta	Colorrectal	Colorrectal	Colorrectal		Colorrectal	
DE LA FIG. 12AJ	SLC8A3 SIPA1L1	ABCD4 C14orf115	C14orf115	NRXN3	G1F2A1 K1AA1400	KIAA1409	KIAA1409	PRIMA1	BCL118	25	EVL	VARO	S		ואסאוא	MKDND	C15orf	C150rf2	OCA3	ARHGAP11A	PAK6	FLJ43339	VPS18	RPAP1	TP53BP1	올	으	GABPB2	
	CCDS9800.1 CCDS9807.1	CCDS9828.1	CCDS9830.1	CCDS9870.1	CCDS98/3.1	CCDS99111	CCDS9911.1	CCDS9912.1	CCDS9949 1	CCDS9955.1	CCDS9955.1	CCDS9860.1	CCDS99/2.1	CCD38860.	CCDC10001.	CCDS 10013.	CCDC10015.	CCDS10015.	CCDC10013	CCDS 10020.	CCDS10054 1	CCDS10055.1	CCDS10069.1	CCDS10079.1	CCDS10096.1	CCDS10134.1	CCDS10134.1	CCDS10135.1	

CCTGAAGG D.R.198777 CCTGAAGG D.R.19877 CCTGAAGG D.R.19877 C D.R.19877 C D.R.19877 C D.R.19877 C D.R.19877 C D.R.19877 C D.R.1987 C D.R.1988 C D	
CCTGAAGG	
c.1456>A c.1364>C c.1364>C c.2085_dupT c.4126>A c.1306>A c.1306>A c.1879>T c.1526>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.15196>A c.1660>T c.2016>C c.1660>T c.216>C c.1660>T c.216>C c.1660>T c.216>C c.1660>T c.216>C c.1660>T c.216>C c.1660>T c.216>C c.216>C c.1660>T c.216>C c.216>C c.216>C c.1660>T c.2160>C c.216>C c	FIG. 12AN
9.chrf6:759535746>A 9.chrf6:75947434A>C 9.chrf6:75947434A>C 9.chrf6:82909453G>A 9.chrf6:82909453G>A 9.chrf6:82819366>A 9.chrf6:84229176>T 9.chrf6:84229176>T 9.chrf6:84229176>T 9.chrf6:84239786>A 9.chrf6:87436676>A 9.chrf6:87436676>A 9.chrf6:8743696>A 9.chrf6:874732896>A 9.chrf6:874732896>A 9.chrf6:874732896>A 9.chrf6:874732896>A 9.chrf6:874732896>A 9.chrf6:87473286>A 9.chrf7:73893817C>C 9.chrf7:473996>T 9.chrf7:4589806>C 9.chrf7:4589806>C 9.chrf7:4589806>C 9.chrf7:4589806>C 9.chrf7:4589806>C 9.chrf7:71863514A>G 9.chrf7:7186514A>G 9.chrf7:7786514A>G 9.chrf7:7786514A>G 9.chrf7:7786514A>G 9.chrf7:7786514A>G 9.chrf7:7786514A>G 9.chrf7:7786514A>G 9.chrf7:7786514A>G 9.chrf7:7786514A>G 9.chrf7:7786514A>G 9.chrf7:7520246G>T	A LA FIG. 12AO
H	
Colorrectal Mama Colorrectal Colorrectal Mama Colorrectal	
DE LA I ADAMTS18 ADAMTS18 ADAMTS18 ADAMTS18 WFDC1 ZDHHC7 KIAA0182 KIAA0182 KIAA0182 KIAA0182 KIAA0182 CCHC14 GALNS CRF273 CRF273 CRF273 CRF273 CRF273 CRF273 CRF273 CRF273 CRF273 CRF274 MGC32124 MGC32124 MGC32124 MGC32124 MGC32124 CENTB1 CENTB1 CENTB1 CENTB1 CENTB1	
CCDS 10926.1 CCDS 10926.1 CC	

	indel	D.R40H	p.G797R	7.0 2.7 2.7 2.7 3.7	. 30F	p.L758F	p.G778C	p.G270A	Sp	p.0286H	p.P459H	p.L997	p.K301X	p.P89S	p.R4470	p.S233L	p.R311G	p.G289E	p.R600	Ş	p.T27A	p.A392V	p.P541L	p.S97C	p.S146R	p.R82H	p.V140E	p.V95M	p.R537Q	₽	
	c.119_160delAGGGCATCATGGAGGAGG	C.1196>A	c.2389G>C	0.40C>A	C-906-2	c.22746>C	c.23326>T	C.809G>C	NS10+1G>A	C.858G>1	6.1376C>A	5.296 >6	c.901A>	c.265C>T	c.1340G>A	C.698C>T	c.931C>G	c.866G>A	c.179G>A	c.419_dupT	c.79A>G	c.11/5C>1	6.1622C>1	6.290C>G	c.438C>G	c.245G>A	C.419T>A	c.283G>A	c.1610G>A	c.780_783delGTGT	FIG. 12AO
	g.chr17:37181514_37181473delAGGCCATCATGGAGG	7.37535921	5	g.dil 17.576z604C>A	g.chr/7/3852/3/36>T (homocigoto)		g.chr17:38498742G>T	g.chr17:42589311G>C (nomocigoto)	g.chr17:42724934G>A	g.chr17:428028546>	g.chr17:44601142C>A	g.chr1/:5226/4511>G (nomocigoto)	g.cnr1/:52336641A>1	g.chr17:53438817C>T	g.chr17:53707927G>A	g.chr17:54397951C>T	g.chr17:54401829C>G	g.chr17:55366663G>A	g.chr17:59260956G>A	g.chr17:64643869_64643869dupT	g.chr17.70125161A>G	:/0438500C>I	g.chrl/;/0/4/110C>1 (nomocigoto)	Ξ	3	671832(\sim	g.chr18:27724814G>A	g.chr18:30652196_30652199delGTGT (homocigoto)	A LA FIG. 12AR
	HCC1395	C092	Mx41	HCC1954	HCC2157	BB23T	BB22T	HCC2218	Mx22	HC2218	MX.22	35.55	150 Jay	HCC1143	MX41	HCC2218	BB91	Mx42	Mx32	WX38	MX2/	777	HCC 143	HCC2218	HCC1143	HCC1954	FC159	HCC2218	HCC2218	HCC1937	
LA FIG. 12AP	Mama	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Mama	Colorrectal	Mama	Colorrectal	Mama	Mama	Mama	Colorrectal	Mama	Mama	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	
DE LA	B ₃	RAB5C	KCNT4	7.05. 7.05.	BRCA1	BRCA1	BRCA1	CDC27	TGB3	1.040342	GALGIZ	UGATE TOTAL	IKINZ5	SES	MPO 1	PPMIE	PPM1E	RPS6KB1	PSMC5	ABCA6	天 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7	2500	GGAS		UISZK	C180119	C180IF19	ANKRDZ9	KIAA1012	OINA	
	CCDS11407.1	CCDS11419.1	CCDS11420.1	CCDS 11425.	CCDS11453.1	CCDS11453.1	CCDS11453.1	CCDS11509.1	CCDS11511.1	CCDS11512.1	CCDS11344.1	CCD211390.1	CCDS11391.1	CCDS11600.1	CCDS11604.1	CCDS11613.1	CCDS11613.1	CCDS11621.1	CCDS11645.1	CCDS11683.1	CCDS11/02.1	CCD311/08.	CCDSTITIBLE	CCDS11805.1	CCDS11810.1	CCDS11866.1	CCDS11866.1	CCDS11879.1	CCDS11901.1	CCDS11908.1	

	P.1215P P.1215P P.13420 P.13420 P.13420 P.13420 P.13420 P.13420 P.13420 P.13420 P.13441 P.1344	
	c.6441>C c.1246>6 c.1469G>A c.10261>A c.184A>G c.409G>T c.607C>A c.259G>T c.124A>T c.1124A>T c.1124A>T c.10821>G c.10821>G c.1081>G c.1181G>A c.1181G>A c.1181G>A c.1181G>A c.1181G>A c.1181G>A c.1181G>A c.1181G>A c.118C>A c.118C>A c.118C>A c.118C>A c.118C>A c.118G>	FIG. 12AU
	g.chr19:56339685T>C g.chr19:57229498C>G g.chr19:57229498C>G g.chr19:57239275G>A g.chr19:59301990A>G g.chr19:60109881G>T g.chr19:60141220A>C g.chr19:61156360A>T g.chr19:61156360A>T g.chr19:61158330T>G g.chr19:61158330T>G g.chr19:611728330T>G g.chr19:611728330T>G g.chr19:611728330T>G g.chr19:611728330T>G g.chr19:611728330T>G g.chr19:611728330T>G g.chr19:6116340A(homocigoto) g.chr20:339985_360965delTG(TTGTAAGC (homocigoto) g.chr20:361986_3610A(homocigoto) g.chr20:361986_3610A(homocigoto) g.chr20:3619863794G>C g.chr20:16508332A>C g.chr20:16508332A>C g.chr20:16508402A>C g.chr20:17394038G>A g.chr20:1753709G>A g.chr20:1753709G>A g.chr20:1753709G>A	A LA FIG. 12AV
DE LA FIG. 12AT	SIGLEC7 Colorrectal Mx41 ZNF432 Mama HCC2157 ZNF480 Colorrectal Mx27 NDUFA3 Mama HCC2157 RPS9 Mama HCC2157 RIR2DS4 Mama HCC218 NCR1 Colorrectal Mx32 NALP8 Mama HCC218 NALP8 Mama HCC1395 SDCBP2 Colorrectal Mx30 SDCBP2 Colorrectal Mx30 SDCBP2 Colorrectal Mx30 SDCBP3 Colorrectal Mx30 SDCBP3 Colorrectal Mx30 SNNC Mama HCC1395 C200rf103 Mama HCC1395 C200rf23 Mama HCC1395 C200rf23 Mama HCC1395 C200rf23 Colorrectal Mx32 SNRPB2 Colorrectal Mx32 SNRPB2 Colorrectal Mx32 SNRPB2 Colorrectal Mx37 COlorrectal Mx37 COLORRECTAL Mx37 SNRS5 COLORRECTAL Mx37 COLORRECT	
	00000000000000000000000000000000000000	

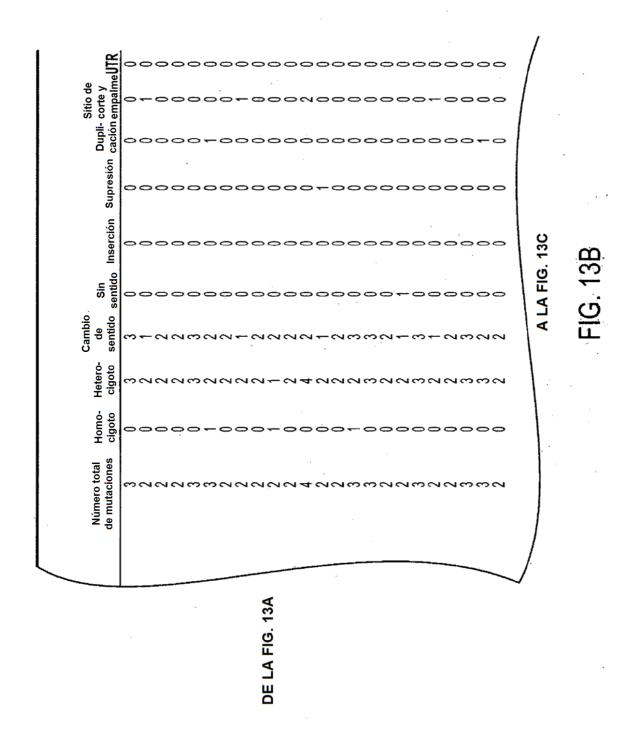
	p.R201H p.S35G p.C35G p.C92R p.C92R p.C692R p.C615S p.	sp p.V2651 p.D105H p.A166T p.S64N p.S159F	p.L409V p.V1576I p.R50G p.N488S p.Y276X p.G337E p.A296T	
	c.602G>A c.283A>G c.322C>G c.25C>T c.274G>A c.17G>A NS20-9 2313delTTTAATAGCT c.155C>T c.4016C>T c.1259A>G c.1259A>G c.126G>T c.3866A>T c.211G>A c.116A	NS5+4C>A c.793G>A c.313G>C c.496G>A c.191G>A c.476C>T c.539_563delTGAACACGCACCCTGATAAGCTGCG	c.1225C>G c.4726G>A c.148A>G c.1463A>G c.1010G>A c.886G>A c.1810C>T	FIG. 12AW
	9.chr20:56917816G>A 9.chr20:57952676A>G 9.chr20:51803956C>G 9.chr20:61892530G>T 9.chr20:62208355G>A 9.chr21:3973152G>A 9.chr21:31049525G>A 9.chr21:31049525G>A 9.chr21:36330349A>G 9.chr21:37231489G>T 9.chr21:37231489G>T 9.chr21:38533264G>A 9.chr21:38593264G>A	g.chr21:43310190C>A g.chr21:43314554G>A g.chr21:44778042G>A g.chr21:44856636G>A g.chr21:44856921C>T g.chr21:45146037_45146013delTGAACACGCA	g.chr21:46489461G>A g.chr21:46489461G>A g.chr22:16470592A>G g.chr22:18127178C>G(homocigoto) g.chr22:18144990G>A g.chr22:18144990G>A g.chr22:18144990G>A	A LA FIG. 12AX
	MX22 HCC1395 HCC1395 HCC1937 HCC1433 HCC1143 HCC1143 HCC1143 HCC1143 HCC1143 HCC1143	Co74 Hx189 HCC1395 Mx43 Mx42 HCC1937 HCC1187	HX218 MX43 MX22 HCC 38 HCC1008 MX43 HCC1954	
LA FIG. 12AV	Colorrectal Mama Colorrectal Mama Mama Mama Mama Colorrectal Colorrectal Colorrectal Colorrectal Mama Mama Mama		Colorrectal Colorrectal Colorrectal Mama Colorrectal Mama	
DE LA	GNAS C20orf177 ARFRP1 BTBD4 GPR8 TPTE PRSS7 KRTAP21-1 TAM1 C21orf18 C21orf18 TCS DSCR6 TTCS TCS TCS TCS	PKNOX1 PKNOX1 CRYAA C210129 KRTAP10-8 KRTAP10-8	MCM3AP MCM3AP ATP6V1E1 PRODH TBX1 GNB1L HTF9C	
	CODS13442.1 CODS13444.1 CODS13553.1 CODS13660.1 CODS13600.1 CODS13600.1 CODS13640.1 CODS13	CCDS13692.1 CCDS13692.1 CCDS13695.1 CCDS13712.1 CCDS13713.1 CCDS13713.1	CCDS13734.1 CCDS13734.1 CCDS13745.1 CCDS13765.1 CCDS13765.1 CCDS13765.1 CCDS13765.1	

	p.E16D p.R499C	p.0417K	p.D12V	p.T380K	p.E463K	p.V221L	p.R511W	p.R63/Q	p.1204T	p.K810N	fs fs	p.R223H	p.5225K	p.r.zst. p.E1320	p.6239S	p.P484A	D.E81/A	SD	unknown	p.A250V	p.1697N n.A273S	p.N347K	
	c.48G>C c.1495C>T	c.1249C>A	c.35A>T	c.1139C>A c.1495G>A	c.1387G>A	c.6616>C	c.15310>T	c.1910G>A c.2288C>T	c.6117>C	C.2430G>C C.4200 42024elGCA	c.44 dupC	c.668G>A	6.6/5C>A	6.3946>C	c.715G>A	c.1450C>G	C.2443G>A	VS13+1G>A	c.1A>G	c.749C>T	c.2090C>A c.817G>T	c.1041T>A	FIG. 12AX
	18481122G>C 19108126C>T 20610078G>A	20602135C>A 20602135C>A 20447236C>A (homociqoto)	27521032A>T	28246417C>A 28237904G>A	28395425G>A	28723526G>C 28740882 28740882durC	29059544C>T	2981/3216>A 298193350>T	34985945T>C	35023183G>C 35013676 35012674delCCA(homociaoto)	35823941_35823941dupC	35810313G>A	3381U3U6C>A (nomocigoto) 35083449C\T	36290775G>C	36343939G>A	36351528C>G	30030 <i>21</i> 062A 3667004AT>4	37459846G>A	.chr22:38040102A>G	.chr22:38742267C>T	.chr22:40248408C>A .chr22:40591489G>T	:40594475T>A	A LA FIG. 12AY
	HCC1937 g.chr22:1 HCC1937 g.chr22:1		<u>-</u> _	BB14T g.chr22:2 HCC1008 o.chr22:3	HCC2218 g.chr22:2	HCC1937 g.chr222 BB23T g.chr222	al Mx32 g.chr22:	al Mx40 g.chr22:2	HCC1937 g.chr22:3	BB71 g.chr22:0	BB14T g.chr22:3	HCC1599 g.chr22:0	BB331 g.cnr22::	HCC1395 0.chr22:3	BB22T g.chr22:3	HCC1395 g.chr22:0	HCC2457 G-chr22.2	MX42 0.chr223	HCC2157 g	Ö	HCC2157 g.chr22:4 HCC2157 g.chr22:4	7 g.chr22	
DE LA FIG. 12AW	RANBP1 Mama SCARF2 Mama PPM1F Colorrectal			C22orf19 Mama		MTMR3 Mama		SMIN Colorrectal	_	MYH9 Mama		TMPRSS6 Mama		LGALS2 Mama		<u>-</u>	_	UNC84B Colorrectal		83	ACOZ Mama SREBF2 Mama		
	CCDS13775.1 CCDS13779.1	CCDS13796.1	CCDS13847.1	CCDS13859.1 CCDS13859.1	CCDS13861.1	CCDS13870.1 CCDS13870.1	CCDS13875.1	CCDS13886.1	CCDS13925.1	CCDS13927.1	CCDS13941.1	CCDS13941.1	CCDV130451	CCDS13950.1	CCDS13951.1	CCDS/13951.1	CCD313861.	CCDS13978.1	CCDS13988.1	CCDS14000.1	CCDS14017.1 CCDS14023.1	CCDS14023.1	

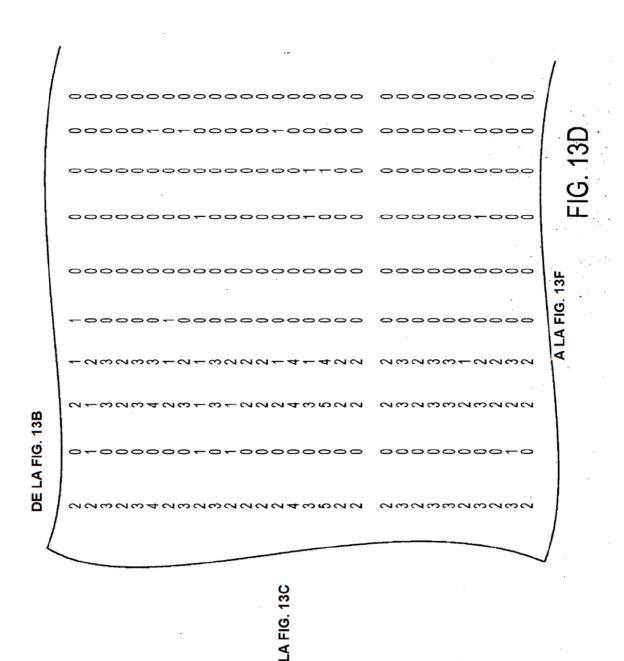
	p.E290G p.A669G	p.T18751	p.S137F	p.P43L	D1245H	D.R53X	p.L508F	p.L508F	inde	p.A844T	p.Y43X	p.N368H	p.A32P	p.1416V	p.R46H	p.D103N	p.L334F	p.E1219Q	p.R1470H	p.A2164V	p.Q202X	p. F601	p.0270R	p.F1325L	p.R294T	p.D15E	p.R167C	p.L1106R	p.R396H	p. T3l		
	c.8694>G c.2006C>G	c.5624C>T	c.410C>T	6.128C>1	C.3733GVC	c.157C>T	c.1524G>T	c.1524G>T	c.936_941delGCCAGA	c.2530G>A	c. 129C>A	c.1102A>C	C.946>C	c.1246A>G	c.137 G >A	c.307G>A	c.1002G>T	c.3655G>C	c.4409G>A	c.6491C>T	c.604C>T	c.1787>A	c.809A>G	c.3975C>A	c.8816>C	c.45C>A	c.499C>T	c.3317T>G	c.1187G>A	c.8C>T	FIC 12AV	ולאו סו
	g.chr22:41538305A>G q.chr22:44977733C>G(homocigoto)	g.chr22:44974115C>T	:48918038C>1	g.chrzz.49z355UC> j (nomocigoto) a chrz:568z002c>4	g.chrX:9715055G>C(homocigoto)	g.chrX:12696973C>1 (homocigoto)	g.chrX:13405025G>T	g.chrX:13405025G>T	g.chrX:15061320_15061315deIGCCAGA	g.chrX:17504476G>A (homocigoto)	g.chrX:17527859C>A	g.chrX:18381803A>C	g.chrX:19894561G>C	g.chrX:19950628A>G	g.chrX:21204344G>A	g.chrX:21634566G>A	g.chrX:32422885G>T (homocigoto)	g.chrX:32226361G>C	g.chrX:32167384G>A (homocigoto)	g.chrX:31746236C>T	g.chrX:34721209C>T	g.chrX:37068589T>A	g.chrX:38024437A>G	g.chrX:40270564C>A (homocigoto)		g.chrx:432/1888C>A (nomocigoto)	g.chrX:44460131C>T	g.chrX:44698991T>G (homocigoto)	g.chrX:46796098G>A (nomocigoto)	g.chrX:47245490C>T	A I A FIG 12A7	A LA FIG. 12M2
	HCC1954 BB23T	HCC1395	HCC1385	25.55 26.55	HCC1385	Mx41	BB13T	HCC1008	HCC2218	HCC1395	HCC2157	Co108	HCC1599	HCC1008	Mx32	FCC1008	Mx41	BB32T	HCC1395	Co79	HCC2218	FC108	TCC1386	10C138	HCC 1395	FC138	Mx22	Mx42	Mx43	BB43T		
3. 12AX	Mama Mama	Mama	Mama	Mama Colorrectal	Mama	Colorrectal	Mama	Mama	Mama	Mama	Mama	Colorrectal	Mama	Mama	Colorrectal	Mama	Colorrectal	Mama	Mama	Colorrectal	Mama	Mama	Mama	Mama	Mama	Mama	Colorrectal	Colorrectal	Colorrectal	Mama		
DE LA FIG. 12AX	ARFGAP3 PKDREJ	PKOREU	PANX2	BOUCS#Z NI GNAX	APXI.	7LR8	EGFL6	EGFL6	ASB11	圣 圣	SCML1	CUKLS	FLJ14503	RPS6KA3	CNKSR2	772	OMO	OMO	OMO	OMO	FAM47B	PRRG1	Sic	CRSP2	XXX	MACA	DUSP21	XIO	KBM10	<u>유</u>		
	CCDS14042.1 CCDS14073.1	CCDS14073.1	CCDS14085.1	CCDS 14093.	CCDS14135.1	CCDS14152.1	CCDS14155.1	CCDS14155.1	CCDS14164.1	CCDS14181.1	CCDS14182.1	CCDS14186.1	CCDS14195.1	CCDS14197.1	CCDS14198.1	CCDS14202.1	CCDS14233.1	CCDS14233.1	CCDS14233.1	CCDS14233.1	CCDS14236.1	CCDS14239.1	CCDS14247.1	CCDS14254.1	CCDS14255.1	CCDS14260.1	CCDS14264.1	CCDS14265.1	CCDS14274.1	CCDS14282.1		

CCDS14282.1 CCDS14309.1	PFC POBP1	Mama Colorrectal	HCC2218 Mx22	g.chrX:47245324C>G g.chrX:48516481C>T	6.80C>G	p.S27X p.R224W
CCDS14311.1 CCDS14320.1 CCDS14331.1	SIC35A2 LMO6 CONB3	Mama Mama Colorrectal	Co74 Co74 Co74 Co74 Co74 Co74 Co74 Co74	g.chrX:48518678G>1 g.chrX:48788567G>C g.chrX:49885995A>C	c./56G> c.1674G>C c.1730A>C	p.W252C p.E558D p.K597T
CDS14362.1 CDS14379.1	MAGED2 MTMR8	Mama Mama	Hs 578T HCC1008	g.chrX:54724215A>C g.chrX:63357767T>A	c.1372A>C c.379T>A	p.K458Q p.W127R
CDS14379.1 CDS14381.1	MTMR8 LAS1L	Mama Colorrectal	HCC1937 Mx30	g.chrX:63331794G>A g.chrX:64534264C>T	c.1360G>A c.508C>T	p.E454K p.R170C
CDS14390.1 CDS14390.1	STARD8 STARD8	Mama	HCC1395 BB32T	g.chrX:67720579G>A (homocigoto) g.chrX:67720741G>A	c.562G>A	p.G188S 0.E242K
CDS 14394.1	EDA ABB3	Colorrectal	MX22 Mx32	g.chrX:68619526C>T	6.353(>T	p.P118L
CDS14403.1	200 200 200 200 200 200 200 200 200 200	Colorrectal	Co108	g.chrX.69448190G>A	2.118G>A	p.G40R
CDS14412.1	PAS PES	Mama Mama	HCC1395	158_70381163delAGATAT	(homocigoto) c.1046_1051delAGATAT	indel
2CDS14426.1	SLC16A2	Mama Mama	HCC 38	g.cnrx.704370700del1 g.chrx.73534403_73534407delAATCT	c.1836_1840delAATCT	S 53
CDS14433.1	MAGEET	Mama Mama	EC108	g.chrX.75433014C>A (homocigoto)	c.199(C>A	p.T664N
CDS14445.1 CDS14445.1	18X22	Colorrectal Colorrectal	NX26 MX26	g.chrX:790839601>C g.chrX:79084064G>A	c.1516>A	p.V16A p.A51T
OCDS14445.1 CCDS14461.1	TBX22 PCDH11X	Colorrectal	Mx43 Co74	g.chrX:79089690G>A(homocigoto)	c.919G>A	p.D307N
CDS14461.1	PCDH11X	Colorrectal	Mx34	g.chrX:91262537C>T	c.3052C>T	p.R1018X
CCDS14517.1	IL1RAPL2 PRPS1	Mama Mama	HCC2218 HCC2157	g.chrX:104817556C>G c.hrX:106694678G>C	6.18180>G 6076>C	p.F606L
CDS14529.1	PRPS1	Mama	BB43T	g.chrX:106694677T>G	c.6567>G	p.V219G
XCDS14529.1 XCDS14541.1	COI 4A6	Colorrectal	25 25 25 25 25 25 25 25 25 25 25 25 25 2	g.chrX:106694712C>G g.chrX:107220091G>A	c.6910>6 33890>A	p.H2310
CDS14544.1	<u>8</u> 88	Colorrectal	Co108	g.chrX:107785661C>T	C.59C>T	p.A20V
OCDS14544.1 OCDS14544.1 OCDS14545.1	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Mama Colorrectal Mama	MX26 MX26 HCC3157	g.chrx.10/7850/6G>A g.chrx.107784051G>C g.chrx.108525282G>C (homocigoto)	c.1669G>C c.1669G>C c.29G>C	p.G213E p.G557R p.R10P
	i					

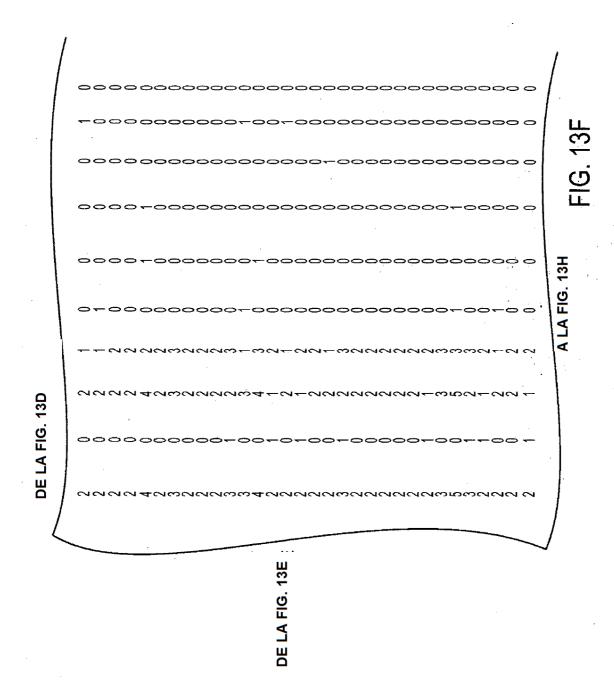
N
ZA
9.
Ε
4
믬
_


	p.R133C	p.G358R	p.D485A	p.A122G	p.R53C	p.L342F	p.V1216	p.F1482V	p.Q2235H	p.L2396F	p.G832D	p.V63l	p.P217A	ds	p.T1571	p.0931P	0.G6C	p.V206I	. OS	p.R97H	p.R3990	p.G153D	p.K278T	p.R266T	p.K288N	p.P25S	p.R39C	p.R247H	p.R222H	
	c.397C>T c.7091>C	c.1072G>C	c.1454A>C	c.365C>G	c.157C>T	c.1026G>C	c.3646G>A	c.4444T>G	c.6705G>C	c.7188G>T	c.2495G>A	c.187G>A	c.649C>G	NS4-16>A	c.470C>T	c.2792A>C	c.16G>T	c.616G>A	IVS6+1G>A	c.290G>A	c.1196G>A	c.458G>A	c.833A>C	c.797G>C	c.864G>T	c.73C>T	c.1150>T	c.740G>A	c.665G>A	2004 del genoma hilmano Las
	g.chrX:108732225C>T g.chrX:10922756T>C	g.chrX:110300376G>C	g.chrX:114703778A>C	g.chrX:117890990C>G	g.chrX:118789203C>T	g.chrX:123531210G>C	g.chrX:123356450G>A	g.chrX:123281663T>G	g.chrX:123243590G>C	g.chrX:1232431076>T	g.chrX:128874778G>A	g.chrX:133758683G>A	g.chrX:136375019C>G	g.chrX:137440668G>A	g.chrX:138612244C>T	g.chrX:138557749A>C	g.chrX:141017278G>T	g.chrX:142443829G>A	g.chrX:149615214G>A	g.chrX:1505786886>A (homocigoto)	g.chrX:150582739G>A	g.chrX:150763162G>A	g.chrX:151966379A>C	g.chrX:152293378G>C	g.chrX:152293445G>T	g.chrX:152459082C>T	g.chrX:152594843C>T	g.chrX:152692547G>A	g.chrX:154070975G>A	35.1 LICSC Santa Critz de mayo de
	Mx27 Co92	Co74	HCC1187	FCC108	Mx32	完 発 子 子	HCC1008	Mx30	HCC1937	C079	HCC2218	HCC2218	HCC1008	Co74	Mx27	Co 108	FCC1954	S 108	Mx22	FCC1954	HCC1008	HCC1008	HCC1008	B B 4T	HCC1008	HCC2157	HCC1599	HCC1008	Mx41	das en la liberación de ho17
1	Colorrectal Colorrectal	Colorrectal	Mama	Mama	Colorrectal	Mama	Mama	Colorrectal	Mama	Colorrectal	Mama	Mama	Mama	Colorrectal	Colorrectal	Colorrectal	Mama	Colorrectal	Colorrectal	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Mama	Colorrectal	7
, בי הי	ACSL4 FLJ22679	CAPN6	<u>ال</u>	RNF127	NDUFA1	1200	00Z1	1Z00	ODZ1	0021	BCORL1	MOSPD1	SICS	FGF13	ATP11C	ATP/10	MAGEC2	SLITRK4	CD99L2	CNGA2	CNGA2	MAGEA4	MAGEA1	BGN	BGN	PNCK	PDZK4	AVPR2	CLIC2	nómicas son coorden
	CCDS14548.1 CCDS14550.1	CCDS14555.1	CCDS14568.1	CCDS14575.1	CCDS14590.1	CCDS14609.1	CCDS14609.1	CCDS14609.1	CCDS14609.1	CCDS14609.1	CCDS14616.1	CCDS14645.1	CCDS14663.1	CCDS14664.1	CCDS14668.1	CCDS14668.1	CCDS14678.1	CCDS14679.1	CCDS14697.1	CCDS14701.1	CCDS14701.1	CCDS14702.1	CCDS14720.1	CCDS14721.1	CCDS14721.1	CCDS14725.1	CCDS14732.1	CCDS14735.1	CCDS14767.1	l as posiciones denómicas

*Las posiciones genómicas son coordenadas en la liberación de hg17 35.1 UCSC Santa Cruz, de mayo de 2004, del genoma humano. Las coordenadas genómicas y secuencias de mutaciones están en la hebra de codificación. Todos los cambios son heterocigotos a menos que se marquen como homocigotos, g., secuencia genómica; c, secuencia de ADNc; p, secuencia de proteínas; del, supresión; dup, duplicación; ins, inserción, # 'chr, cromosoma; § Las mutaciones en las secuencias de no codificación se anotan con el número del intrón precedido por "IVS", con los números positivos comenzando desde la G del sitio donante de corte y empalme de GT y los números negativos comenzando desde la G del sitio donante de corte y empalme de AG. ¶ fs, mutación por desplazamiento de marco; sp, votación del sitio de corte y empalme; UTR, mutación en marco, cambio por supresión o duplicación que influye en más de un solo codón. El cambio de aminoácido que resulta de mutaciones en la metionina que inicia la traducción se indica como "desconocido". A LA FIG. 13B


tumores que estimada de contienen mutación* Fracción Puntuación de CaMP del cromosoma Banda Acil-Coenzima A deshidrogenasa, cadena lineal de C-4 a C-12 Casete de unión a ATP, subfamilia B (MDR/TAP), miembro 10 Casete de unión a ATP, subfamilia B (MDR/TAP), miembro 8 -actor de intercambio de nucleótido Rho guanina (GEF) 4 Casete de unión a ATP, subfamilia A (ABC1), miembro 3 Proteína 5 de unión a ADN de helicasa de cromodominio Marco de lectura abierto 155 del cromosoma 14 Receptor del factor de motilidad autocrina Dominio 12 de metalopeptidasa ADAM ATPasa, Clase I, tipo 8B, miembro 1 Cáncer de mama 1, inicio temprano CLL de linfocitos B /linfoma 11A Jominio MAM que contiene 4 Adenomatosis poliposis coli 2 Cardiomiopatía asociada 1 ALS2 de tipo C-terminal Argininosuccinato liasa Centaurina, gamma 1 Sadherina 10, tipo 2 Cadherina 20, tipo 2 Complejo 5 de THO Homólogo capicúa Centaurina, beta 1 Nombre del gen **GENES CAN EN MAMA** Biglicano 3859 322165. 8 88 2058951 Registro de CCDS TABLA S5.

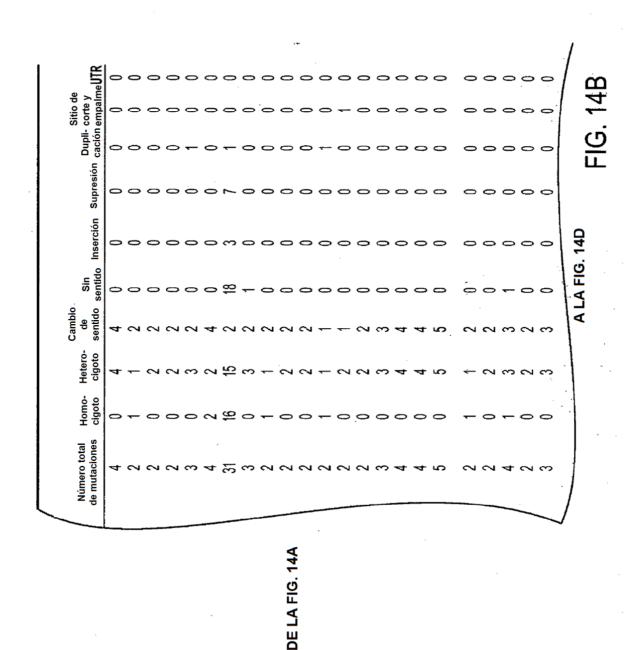
A LA FIG. 13C


FIG. 13

122

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
౼౼౼౼౸౼౸౼౼౼౸౸౼౼౼౸౼౼ౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢ
2011.1 20
Receptor Fc de tipo 5 Integrina, alfa 9 Integrina alfa 5 Integrina alfa 6 Integrina 2 Integrina 3 Integrina 3 Integrina 4 Integr
COCCOCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
IRTA2 KEAP1 KIAA0927 KIAA0934 KIAA1632 KIAA1632 KIAA1632 KIAA1632 KIAA1632 KIAA1632 KIAA1632 KIAA1632 KIAA1632 KIAA1632 KIAA11 MACHIA M

	A LA FIG. 13H	/ FIG. 13G
	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	%%%% %%%% %%%%
	<u> </u>	<u> </u>
	26 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20013.2 14024.1 60ter-012.1 19013.12
DE LA FIG. 13E	00000000000000000000000000000000000000	ZENTA CODS 13439.1 Dedo de cinc, tipo CSLque contiene 3 ZEPP64 CCDS 13439.1 Homólogo de protein de dedo de cinc 64 ZEYVE26 CCDS 1388.1 Dedo de cinc, dominio FYVE que contiene 26 ZNF318 CCDS 4895.1 Proteina de dedo de cinc 318 ZNF569 CCDS 12503.1 Proteina de dedo de cinc 369


* La fracción de los 35 tumores de mama evaluados en las selecciones de descubrimiento y validación que contienen mutaciones del gen dividido entre el número de bases secuenciadas satisfactoriamente en ese gen (es decir, bases con puntuación de calidad de Phred ≥ 20)

1	, ·
	0000000-0000-000000-0-0-000000
	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
١	00-000-00000000000000000000000000000000
	-a-aaaa-aaaaaaaaaaaaaaa-a2-a-aaaa
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	000000000000000000000000000000000000000
	とこれとこととともとうとことのとうというとは、 1000000000000000000000000000000000000
•	

ALA FIG. 14C FIG. 14A

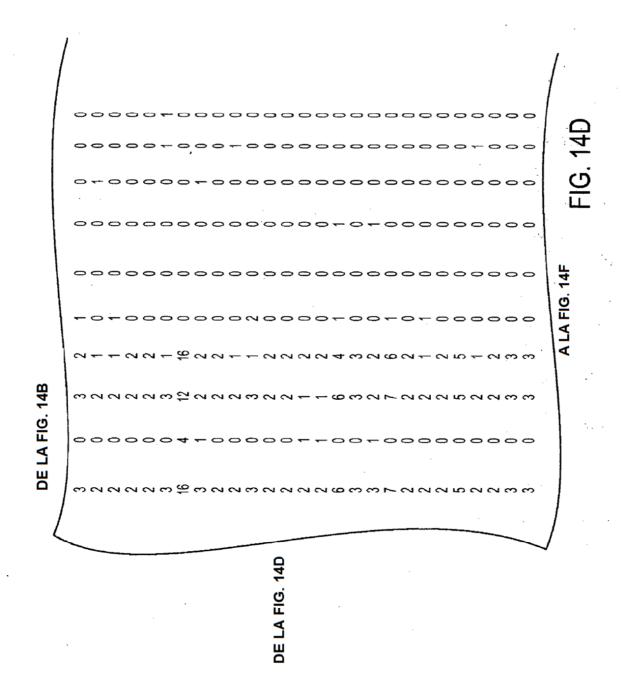
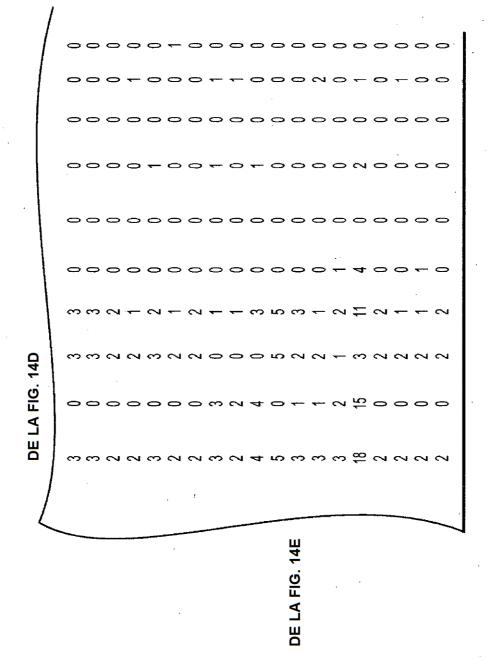

_									٧												_	_		
		_																						-
Fracción estimada de tumores que contienen mutación*	12%	%	10%	%	17%	12%	%06	10%	%	%9	%	%	<b>%</b> 9	%9	11%	13%	13%	% %	%9 8	2%	14%	<b>%</b> 9	10%	
Puntuación de CaMP	2,82	1.57	8	1,75	2,70	3,27	, <del>Ç</del>	2 2,67		<u></u>	1,33	1,17	1,26	1,38	85	4,22	3,50	1,02	1.97	1,51	5,07	1,19	2,64	
Banda del cromosoma	9931.1	10q25.1-q25.2	4034	11q25	16qZ3	15q25.2	5921-922	10q26,13-q26.2	15q11-q13	6p21.3	6q13	11q13	3026.1	3p26-p25	8q23.3	3p11.2	7933-935	10q11.23	14q32.2	6q23	4q31.3	16q24.3	20q13.3	
Nombre del gen	Casete de unión a ATP, subfamilia A (ABC1), miembro 1	Miembro 5 de familia de cadena larga de la acil-CoA sintetasa	_	Metalopeptidasa de ADAM con motivo de tipo 1 de trombospondina, 15	.1 Metalopeptidasa de ADAM con motivo de tipo 1 de trombospondina, 18	.1 3 de tipo ADAMTS 3	Adenomatosis poliposis coli		<del>-</del>									orupo de compremento o de preparazion de deliciencia en roedor que comprementa ar cruce, reparación de escisión	-	Homólogo ausente en ojos 4		. 1 Galactosamina (N-acetil)-6-sulfato sulfatasa	SCDS13472.1 Locus del complejo GNAS	
Registro de CCDS	CCDS6762.1	CCDS7572.1	CCDS3823.1	CCDS8488.1	CCDS10926.1	$\sim$	CCDS4107.1	CCDS7646.1	CCDS10015.1	CCDS4724.1	CCDS4982.1	CCDS8134.1	CCDS2556.1	CCDS2558.1	CCDS6315.1	CCD\$2922.1	CCDS5873.1	CCDS/229.1	CCDS9955.1	CCDS5165.1	CCDS3777.1	CCDS10970.1	CCDS13472.	
Gen	ABCA1	ACSL5	ADAM29	ADAMTS15	ADAMTS18	ADAMTSL3	APC	C100rf137	C15ort2	C60rf29	CD109	CD248	동	CNT/N	CSMD3	EPHA3	EPTB6	EXCC	ΕVL	EYA4	FBXW7	GALNS	GNAS	

TABLA S6. GENES CAN EN COLORRECTAL



A LA FIG. 14D

	1	•	
•		Ì	
(		2	
		-	
	1	ļ	
L	ı	_	




4C
4
$\overline{}$
<u>ত</u>
正
٩
Щ
Ω

REF         CCDS7200.1 Proto-oncogen ret         10q11.2         2,29         10%           RUNXTT         CCDS6256.1 Factor de transcripción 1 relacionado con runt, translocado a 1         10q11.2         2,29         10%           SCN/3B         CCDS8442.1 Canal de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto por voltaje, tipo III, Beta         200 men de sodio, abierto abiert		4	
CCDS7200.1 Proto-oncogén ret CCDS6256.1 Factor de transcripción 1 relacionado con runt, translocado a 1 CCDS6256.1 Factor de transcripción 1 relacionado con runt, translocado a 1 CCDS62642.1 Canal de sodio, abierto por voltaje, tipo III, Beta CCDS62629.1 Canal de sodio, abierto por voltaje, tipo III, Beta CCDS62829.1 Componente 4 de complejo de exocito CCDS62829.1 Familia de vehiculo de soluto 29 (transportadores de nucleosidos), miembro 1 CCDS62829.1 SMAD, madres frente a homólogo 2 de DPP (Drosophila) CCDS62829.1 SMAD, madres frente a homólogo 3 de DPP (Drosophila) CCDS62829.1 SMAD, madres frente a homólogo 4 de DPP (Drosophila) CCDS6286.1 factor de transcripción 7 de tipo 2 CCDS6480.1 factor de transcripción 7 de tipo 2 CCDS648.1 factor de crecimiento transformante, beta receptor II (70/80 kDa) CCDS648.1 factor de crecimiento transformante, beta receptor II (70/80 kDa) CCDS648.1 factor de crecimiento transformante, beta receptor II (70/80 kDa) CCDS648.1 factor de crecimiento transformante, beta receptor II (70/80 kDa) CCDS648.1 factor de crecimiento transformante, beta receptor II (70/80 kDa) CCDS6489.1 factor de crecimiento de dedo de cinc 442 CCDS6489.1 factor de dedo de cinc 442 19p13.2	10% 6% 6% 10% 10%	13% 12% 10% 51%	%%% %% %%
CCDS5256.1 Factor de transcripción 1 relacionado con runt, translocado a 1 CCDS6256.1 Factor de transcripción 1 relacionado con runt, translocado a 1 CCDS8442.1 Canal de sodio, abierto por voltaje, tipo III, Beta CCDS13257.1 ERGIC y golgi 3 CCDS5829.1 Componente 4 de complejo de exocito CCDS13318.1 Factor de corte y empalme, rico en argininalserina número se CCDS13318.1 Factor de corte y empalme, rico en argininalserina número se CCDS1934.1 SMAD, madres frente a homólogo 2 de DPP (Drosophila) CCDS11936.1 Familia de vehículo de soluto 29 (transportadores de nucleósidos), miembro CCDS11936.1 SMAD, madres frente a homólogo 4 de DPP (Drosophila) CCDS11936.1 son en argininalserina nuclear 1, que contiene repetición de espectrina CCDS14445.1 Caja T 22 CCDS14445.1 factor de transcripción 7 de tipo 2 CCDS156.1 factor de transcripción 7 de tipo 2 CCDS1648.1 factor de crecimiento transformante, , beta receptor II (70/80 kDa) CCDS2648.1 familia de tipo tubulina firosina ligasa, miembro 3 CCDS266.1 familia de tipo ubiquifina, que contiene dominios de dedo de PHD y RING, 2 CCDS1669.1 forteina de dedo de cinc 442 CCDS12271.1 proteína de dedo de cinc 442	2,29 1,89 1,24 1,28 1,90 3,05	4,56 3,27 2,83 >10	2,19 1,48 1,87
CCDS7200.1 CCDS6256.1 CCDS13257.1 CCDS13318.1 CCDS11934.1 CCDS11934.1 CCDS11950.1 CCDS11950.1 CCDS14445.1 CCDS14445.1 CCDS14445.1 CCDS14445.1 CCDS14445.1 CCDS14445.1 CCDS7576.1 CCDS7576.1 CCDS11118.1 CCDS769.1	10q11.2 8q22 11q23.3 20pter-q12 7q31 20q12-q13.1 6p21.1-p21.2 18q21.1	18q21.1 8q21.1 Xq21.1 10q25.3 3p2 17p13.1	3925.3 9924.1 16p12 19p13.2
RET CCDS7200.1 RUNX1T1 CCDS6256.1 SCN3B CCDS8442.1 SCN3B CCDS13257. SEC8L1 CCDS5829.1 SFRS6 CCDS13318. SLC29A1 CCDS4908.1 SMAD2 CCDS11934. SMAD3 CCDS11934. SMAD3 CCDS11950. SMAD4 CCDS11950. TBX22 CCDS11950. TGFBR2 CCDS7576.1 TGFBR2 CCDS7576.1 TGFBR2 CCDS758.1 TH53 CCDS2585.1 UMRF2 CCDS1601.	Proto-oncogén ret Factor de transcripción 1 relacionado con runt, translocado a 1 Canal de sodio, abierto por voltaje, tipo III, Beta 1 ERGIC y golgi 3 Componente 4 de complejo de exocito 1 Factor de corte y empalme, rico en arginina/serina número se Familia de vehículo de soluto 29 (transportadores de nucleósidos), miembro 1 SMAD, madres frente a homólogo 2 de DPP (Drosophila)	1 SMAD, madres frente a nombogo 3 de DPP (Drosophila) 1 SMAD, madres frente a homólogo 4 de DPP (Drosophila) envoltura nuclear 1, que contiene repetición de espectrina 1 Caja T 22 factor de transcripción 7 de tipo 2 factor de crecimiento transformante, , beta receptor II (70/80 kDa) 1 proteína tumoral p53	familia de tipo tubulina tirosina ligasa, miembro 3 de tipo ubiquitina, que contiene dominios de dedo de PHD y RING, 2 proteína II de núcleo de ubiquinol-citocromo c reductasa proteína de dedo de cinc 442
RET RUNX/171 SCN3B SCN3B SCN3B SEC8L1 SFRS6 SLC29A1 SMAD2 SMAD2 SMAD3 SMAD3 TRX22 TGF7L2 TGF8R2 TGF8R2 TGF1L2 UQCRC2 ZNF442	CCDS6256.1 CCDS8442.1 CCDS13257.1 CCDS13318. CCDS13318.1 CCDS11934.1	CCDS11950. CCDS5236.1 CCDS74445. CCDS7576.1 CCDS2648.1 CCDS211118.	CCDS2585.1 CCDS6469.1 CCDS10601.7 CCDS12271.7
	RET RUNX1T1 SCN3B SDBCAG84 SEC8L1 SFRS6 SLC29A1 SMAD2	SMAD4 SYNE1 TBX22 TCF7L2 TGFBR2 TP53	TTLL3 UHRF2 UQCRC2 ZNF442

* La fracción de los 35 tumores colorrectales evaluados en las selecciones de descubrimiento y validación que contienen mutaciones del gen dividido entre el número de bases secuenciadas satisfactoriamente en ese gen (es decir, bases con puntuación de calidad de Phred ≥ 20)

## FIG. 14E

