

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 549 663

61 Int. Cl.:

H01M 2/30 (2006.01) **H01M 2/06** (2006.01) **H01M 10/12** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 14.06.2013 E 13172004 (7)
 (97) Fecha y número de publicación de la concesión europea: 12.08.2015 EP 2814088
- (54) Título: Terminal sellable para una batería recargable
- (45) Fecha de publicación y mención en BOPI de la traducción de la patente: **30.10.2015**

(73) Titular/es:

WEGMANN AUTOMOTIVE GMBH & CO. KG (100.0%)
Rudolf-Diesel-Strasse 6
97209 Veitshöchheim, DE

(72) Inventor/es:

HEID, ANDREAS

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Terminal sellable para una batería recargable

Campo de la invención

5

10

15

20

40

45

50

La invención se refiere a terminales para baterías recargables, también llamados polos de conexión, para baterías recargables, en particular para la conexión de los polos de las baterías, específicamente de las baterías de plomo - ácido, también llamadas acumuladores. Otro aspecto de la invención se refiere a cubiertas para carcasas y / o carcasas de baterías de este tipo y a baterías de este tipo.

Descripción de la técnica relacionada

Un terminal para una batería que puede ser moldeado en la cubierta de la batería y que tiene una pluralidad de ranuras que forman una junta de laberinto, se desvela en la publicación de patente europea EP 0 601 268 B1.

Un terminal de batería que forma una pluralidad de canales o rebajes longitudinales formados en una porción de superficie interior se desvela en el documento US 2011/0250493.

En la publicación de patente norteamericana US 6.030.723 se desvela un casquillo de plomo, que está conectado a un borne terminal de una batería por un adhesivo conductor. Para simplificar la inserción del borne terminal en el casquillo de plomo, el borne terminal tiene un diámetro significativamente más pequeño que el casquillo de plomo. La holgura entre el borne terminal y el casquillo de plomo se llena con el citado adhesivo conductor.

Sumario de la invención

El problema a resolver por la invención es proporcionar un terminal para una batería, que proporcione un sellado mejorado y una estabilidad mecánica mejorada. Además, el terminal debe permitir un fácil montaje de la batería y, por tanto, la inserción del borne terminal en el terminal durante el montaje con una baja fricción. El proceso de fabricación del terminal y el proceso de moldeo por inyección de una cubierta de la batería debería simplificarse y debería ser más preciso y fiable.

Las soluciones de los problemas se describen en las reivindicaciones independientes. Las reivindicaciones dependientes se refieren a mejoras adicionales de la invención.

25 En una primera realización, un terminal para una batería tiene una sección de montaje y una sección de contacto. Hay un anillo de par de torsión entre la sección de montaje y la sección de contacto, que tiene preferiblemente una protuberancia en forma de diente. La sección de montaje es para sujetar el terminal en el interior de una cubierta de la batería, en cuyo interior se moldea por inyección preferentemente. La batería está conectada externamente por la sección de contacto. El terminal es un cuerpo hueco, que tiene una pared exterior y una pared interior. En la sección 30 de contacto, la pared exterior preferiblemente tiene una forma cónica con un diámetro decreciente hacia el lado superior del terminal. En la sección de montaje, la pared exterior tiene preferiblemente al menos una proyección circunferencial que forma un laberinto. Esto se conoce en lo que sigue como anillo de laberinto. La pared interior comprende al menos dos secciones. Una sección superior está rodeada esencialmente por la sección de contacto, y preferiblemente tiene una forma cónica con un diámetro decreciente hacia el lado superior del terminal. También puede tener una forma cilíndrica. Una sección inferior está rodeada esencialmente por la sección de montaje. La 35 sección inferior tiene preferiblemente una forma cóncava, en una vista en sección lateral. Entre la sección superior y la sección inferior, hay un borde. El borde en la pared interior está rodeado esencialmente por el anillo de par de torsión en la pared exterior.

La sección inferior cóncava de la pared interior proporciona espacio para el material plástico de la cubierta de la batería. Aunque los terminales de baterías que son conocidos en la técnica anterior solamente están sujetos por sus paredes exteriores en el interior de la cubierta de la batería, esta realización de un terminal está completamente integrada dentro del material de la cubierta de la batería en su sección de montaje, incluyendo la pared exterior y la pared interior del terminal. Esto proporciona una mayor estabilidad al terminal de la batería y produce una fuerza de retención significativamente más elevada. Esto no es comparable a los elementos deslizantes delgados. En contraste con eso, hay espacio para una capa significativa de material de la cubierta de la batería que cubre la pared interior de la sección de montaje del terminal. El grosor del material de la cubierta de la batería puede ser de 1 mm o más, preferiblemente de 3 mm. Para moldear un terminal en una cubierta de batería, una espiga de una herramienta de moldeo se inserta en el terminal para limitar el flujo del material de la cubierta de la batería en el interior del terminal. Un borde circular en la pared interior del terminal entre la sección superior y la sección inferior está en contacto con la espiga de la herramienta de moldeo y asegura un sellado del área en la que el material de la cubierta de la batería puede fluir. Esto produce un límite claro del material de la cubierta de la batería a la sección inferior del terminal.

El borde circular se presiona preferiblemente contra la espiga de la herramienta de moldeo. Para obtener un sellado seguro, la espiga de la herramienta de moldeo debe ajustarse estrechamente al menos en el diámetro del borde

circular. La espiga de la herramienta de moldeo también puede ser presionada en el terminal, extendiendo ligeramente el diámetro interior del borde circular. Por lo tanto se prefiere que el borde circular se encuentre en posición opuesta a la protuberancia en la pared exterior del terminal, ya que esta protuberancia actúa como un refuerzo y permite la absorción de las fuerzas comparativamente elevadas sin que se produzca una deformación del terminal.

En una realización adicional, la sección de montaje tiene un grosor de material decreciente desde el anillo de par de torsión al extremo de la sección de montaje. Como las posibles fuerzas de sujeción disminuyen hacia el extremo de la sección de montaje debido a las fuerzas de anclaje de los anillos de laberinto, el grosor de las paredes se puede reducir, ahorrando así más material y masa.

Otra realización se refiere a una cubierta de batería que tiene por lo menos un terminal como se ha descrito en la presente memoria descriptiva.

Otra realización se refiere a una batería que tiene al menos un terminal y / o una cubierta de la batería como se describe en la presente memoria descriptiva.

Una realización adicional se refiere a un procedimiento para moldear un terminal en una cubierta de la batería. La cubierta de la batería puede estar moldeada con matriz o a presión utilizando una herramienta de moldeo que tiene la forma de la cubierta de la batería. En primer lugar, una espiga de la herramienta de moldeo se introduce en el terminal hasta que la espiga esté en contacto con el borde circular. Se entiende que es lo mismo que el terminal sea empujado sobre la espiga, lo cual puede hacerse al insertar el terminal en la herramienta. Además, la herramienta está cerrada. También se puede hacer empujar la espiga en el terminal durante esto o al cerrar el molde. A continuación, la herramienta de moldeo se llena con un material plástico, permitiendo preferiblemente que el material de plástico se encuentre esencialmente encerrado en la sección de montaje. Después de que el material plástico se haya enfriado de manera que ya no esté en forma líquida, se abre el molde y la espiga se retira del terminal. La extracción de la clavija puede ser realizada con la apertura de la herramienta, o antes o después de la apertura, pero no mientras el material plástico esté líquido.

Descripción de los dibujos

10

15

20

30

40

45

50

25 En lo que sigue, la invención se describirá a modo de ejemplo, sin limitación del concepto inventivo general, en ejemplos de realizaciones con referencia a los dibujos.

La figura 1 muestra una realización preferida de un terminal de batería.

La figura 2 muestra una vista lateral de una primera realización.

La figura 3 muestra una vista superior de la primera realización.

La figura 4 muestra una vista en sección de un terminal integrado en una cubierta de la batería.

La figura 5 muestra una realización con un borne de herramienta de moldeo insertado.

La figura 6 muestra una primera realización del terminal en el interior del borne terminal insertado.

La figura 7 muestra una segunda realización de un terminal

La figura 8 muestra una realización adicional.

La figura 9 muestra una vista en sección de una realización del terminal.

La figura 10 muestra la distancia de avance entre el material de la cubierta de la batería y el terminal.

En la figura 1, se muestra una realización preferida de un terminal 100 de la batería. El terminal de la batería tiene una sección de contacto 110 para entrar en contacto con la batería, y una sección de montaje 112 para el montaje y la sujeción del terminal en el interior de una cubierta de la batería. Entre la sección de contacto 110 y la sección de montaje 112 hay un anillo de par de torsión 111, que proporciona al terminal una elevada resistencia a la torsión. Preferiblemente, la sección de montaje tiene al menos uno, preferiblemente dos anillos de laberinto 131, 132. El terminal es un cuerpo hueco, en el que la mayor parte del cuerpo, con excepción del anillo de par de torsión, es simétrico rotacionalmente con respecto a un eje central 150. Tiene una pared interior 101 y una pared exterior 102. La pared interior 101 tiene una sección superior 154 y una sección inferior 155. Entre estas secciones hay un borde circular 151. Este borde circular entre las secciones está situado en posición opuesta al anillo de par de torsión en la pared exterior 102. Preferiblemente, la sección superior 154 tiene una forma ligeramente cónica con diámetro decreciente hacia el lado superior del terminal. Tiene una sección transversal decreciente desde el borde circular 151 en el lado superior 115 del terminal. En una realización alternativa, puede ser cilíndrica. La sección inferior 155 tiene una sección transversal decreciente desde el exterior hacia el lado inferior 114 del terminal hasta el borde circular 151. En una sección longitudinal, la forma de la pared interior en la sección inferior 155 es cóncava. Una forma

ES 2 549 663 T3

cóncava de este tipo permite formar mejor el borde circular 151 y permite, además, que en el extremo del terminal haya una distancia mayor desde el eje central 150.

En la figura 2, se muestra una vista lateral de una primera realización.

5

10

15

45

En la figura 3, se muestra una vista superior de una primera realización. Aquí se muestran las protuberancias 118 del anillo de par de torsión 111.

En la figura 4, se muestra una vista en sección de un terminal integrado en una cubierta 200 de batería. Aquí, la sección de montaje 112 del terminal 100 está completamente integrada en el material de la cubierta de la batería, incluyendo la pared exterior y la pared interior. Esto mejora el deslizamiento de un borne terminal en el terminal durante el montaje, e incrementos adicionales de la estabilidad mecánica, ya que el material de la cubierta de la batería soporta mejor la sección de montaje 112 del terminal.

En la figura 5, se muestra una realización con un borne de herramienta de moldeo insertado. Esta puede ser una etapa durante el moldeo por inyección de la cubierta 200 de la batería. Para evitar el flujo del material de la cubierta de la batería en la sección superior del terminal, una espiga de una herramienta de moldeo 300 se inserta en el terminal. La herramienta tiene preferentemente una forma cónica y un tamaño de tal manera que se ajuste exactamente al diámetro del borde circular 151. Esto evita aún más que el material plástico de la cubierta de la batería fluya más allá del borde circular. Preferiblemente, el diámetro de la espiga 300 es ligeramente más grande que el diámetro del borde circular 151, comprimiendo ligeramente de esta manera el borde circular y alcanzando un mejor sellado.

En la figura 6, se muestra una primera realización del terminal en el interior del borne de terminal insertado 500 de la batería. El borne terminal 500 de la batería está conectado a las celdas de la batería, que se encuentran en la parte inferior y que no se muestran. En su lado superior, se calienta para fundirse junto con el terminal y para obtener una conexión estanca a los gases y eléctricamente segura. El borne terminal 500 tiene un diámetro, que es ligeramente menor que el diámetro interior del terminal. Preferiblemente, el borne terminal tiene una forma cilíndrica con un diámetro menor que el diámetro más pequeño de la pared interior del terminal. De la manera más preferible, el diámetro del borne terminal es de entre 0,5 mm y 3 mm menor que el diámetro del borde circular.

En la figura 7, se muestra una segunda realización de un terminal. Aquí, en lugar del borde circular, hay un escalón 152. Este escalón es adecuado también para el sellado del terminal contra la espiga de la herramienta de moldeo 300. Esto permite, además, una medición precisa de la longitud de la sección inferior 155.

En la figura 8, se muestra una realización adicional. Aquí, la sección de montaje 112 tiene un laberinto ligeramente modificado. En lugar de tener planos rectos entre los anillos de laberinto 131, 132, hay unas protuberancias 140 y 141 que tienen una sección transversal en forma de arco. Tales secciones transversales en forma de arco reducen las tensiones mecánicas en el material del terminal y de la cubierta de la batería, aumentando así la estabilidad mecánica y la vida útil.

En la figura 9, se muestra una vista en sección de una realización del terminal. Aquí, una vez más, la espiga de la herramienta de moldeo está insertada con propósitos de demostración. Debido a la envoltura completa de la sección de montaje 112 por el material de la cubierta 200 de la batería, el grosor de las paredes se puede disminuir. Por lo tanto, se prefiere que el grosor de la pared 134 en una primera localización entre el anillo de par de torsión y el primer anillo de laberinto 131 sea más grande que el grosor 135 de las paredes entre el primer anillo de laberinto 131 y el segundo anillo de laberinto 132. El grosor máximo 210 del material de la cubierta de la batería en la pared interior del terminal está determinado por la forma de la sección inferior y la espiga de la herramienta de moldeo. Preferiblemente se encuentra en el intervalo de entre 1 mm y 5 mm, más preferiblemente de 2 a 3 mm.

En la figura 10, se muestra la distancia de avance o la distancia de fuga entre el material de la cubierta 200 de la batería y el terminal 100. El trayecto de avance 305 a través del cual el ácido desde el interior de la batería tiene que avanzar hasta que alcance el exterior es entre los puntos 301 y 306. Esto es incrementado significativamente por el material plástico de la cubierta que encierra la pared interior de la sección de montaje.

Lista de números de referencia

100 terminal de la batería

101 pared interior

102 pared exterior

50 110 sección de contacto

111 anillo de par de torsión

ES 2 549 663 T3

	112	sección de montaje
	114	lado inferior del terminal
	115	lado superior del terminal
	118	protuberancias del anillo de par de torsión
5	131	primer anillo de laberinto
	132	segundo anillo de laberinto
	134	grosor de pared entre los anillos de par de torsión primero y segundo
	135	grosor de pared entre los anillos de laberinto primero y segundo
	140, 14	1protuberancias con secciones transversales en forma de arco
10	150	eje central
	151	borde circular
	152	escalón
	154	sección superior
	155	sección inferior
15	200	cubierta de la batería
	210	grosor máximo
	300	espiga de una herramienta de moldeo
	301, 30	6puntos de trayecto para el avance del ácido de la batería
	305	trayecto de avance
20	500	borne terminal de la batería

REIVINDICACIONES

1. Un terminal (100) para una batería que tiene un cuerpo hueco, que tiene una pared exterior (102) y una pared interior (101), proporcionando además una sección de montaje (112), una sección de contacto (110) y un anillo de par de torsión (111) entre la sección de montaje (112) y la sección de contacto (110), la pared exterior (102) tiene preferiblemente al menos un anillo de laberinto (131, 132) en la sección de montaje (112), que forma un laberinto,

que se caracteriza porque

5

30

la pared interior (101) tiene al menos una sección superior (154) que está rodeada por la sección de contacto (110),

una sección inferior (155) que está rodeada por la sección de montaje y que tiene en una vista en sección lateral una forma cóncava, y

un borde (151) entre la sección superior (154) y la una sección inferior (155).

2. Un terminal (100) para una batería de acuerdo con la reivindicación 1,

que se caracteriza porque

- el borde (151) está rodeado por el anillo de par de torsión (111).
 - 3. Un terminal (100) para una batería de acuerdo con la reivindicación 1 o 2,

que se caracteriza porque

la sección superior (154) tiene una forma cónica con diámetro decreciente hasta un lado superior (115) del terminal.

20 4. Un terminal (100) para una batería de acuerdo con una cualquiera de las reivindicaciones anteriores,

que se caracteriza porque

la sección de montaje (112) tiene una forma cónica con diámetro decreciente hasta un lado superior (115) del terminal.

5. Un terminal (100) para una batería de acuerdo con una cualquiera de las reivindicaciones anteriores,

25 que se caracteriza porque

un escalón circular (152) es adyacente al borde circular (151).

6. Un terminal (100) para una batería de acuerdo con una cualquiera de las reivindicaciones anteriores,

que se caracteriza porque

- la sección de montaje (112) tiene un grosor de material decreciente comenzando desde el anillo de par de torsión (111) hasta el extremo de la sección de montaje.
- 7. Una cubierta (200) de batería que tiene al menos un terminal (100) de acuerdo con una cualquiera de las reivindicaciones anteriores.
- 8. Una cubierta (200) de batería de acuerdo con la reivindicación 7,

que se caracteriza porque

- 35 el al menos un terminal (100) está moldeado en el interior de la cubierta (200).de la batería.
 - 9. Una cubierta (200) de batería de acuerdo con la reivindicación 7 u 8,

que se caracteriza porque

la sección de montaje (112) del terminal (100) está encerrada por material plástico de la cubierta (200) de la batería.

40 10. Una batería que tiene por lo menos un terminal (100) de acuerdo con una cualquiera de las reivindicaciones 1 a

ES 2 549 663 T3

- 11. Una batería que tiene una cubierta (200) de batería de acuerdo con la reivindicación 7, 8 o 9.
- 12. Un procedimiento de moldeo de un terminal (100) de acuerdo con una cualquiera de las reivindicaciones 1 a 6 dentro de una cubierta (200) de la batería, que comprende las etapas de:
 - empujar una espiga (300) de una herramienta de moldeo para formar una cubierta (200) de la batería en el terminal (100) hasta que la espiga esté en contacto con el borde circular (151),
 - llenar la herramienta de moldeo con un material plástico,
 - retirar la espiga del terminal (100).
- 13. Un procedimiento de acuerdo con la reivindicación 12, que comprende encerrar la sección de montaje (112) del terminal (100) por el material plástico en el segundo escalón.

10

5

Fig. 1

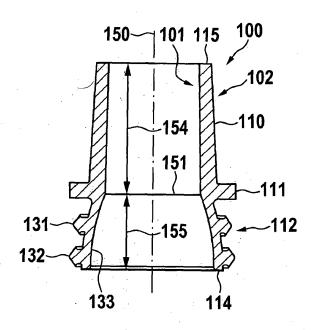


Fig. 2

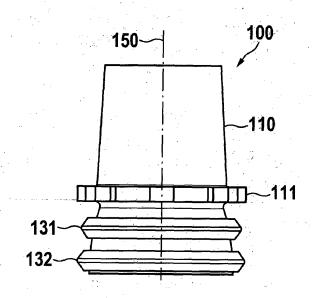


Fig. 3

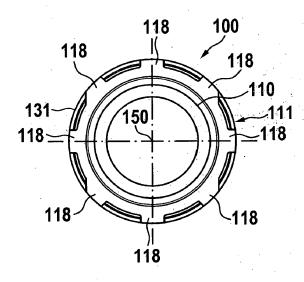


Fig. 4

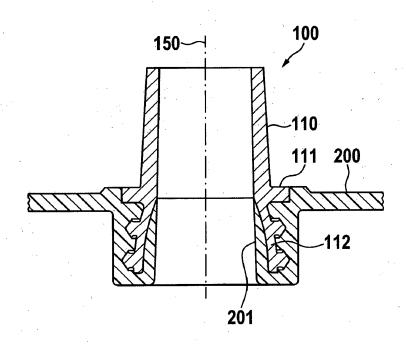
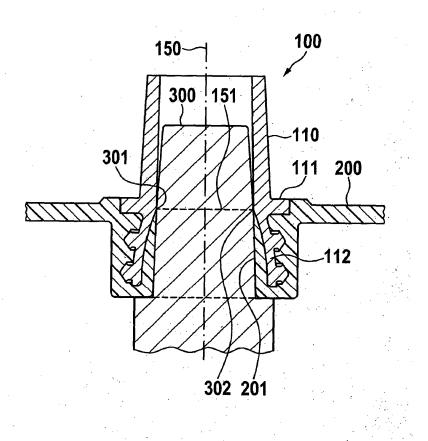



Fig. 5

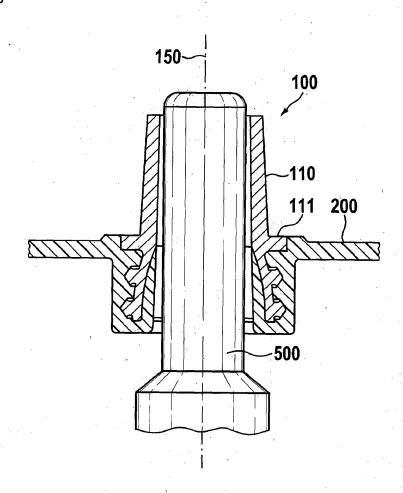


Fig. 7

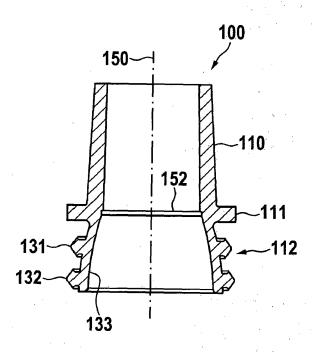


Fig. 8

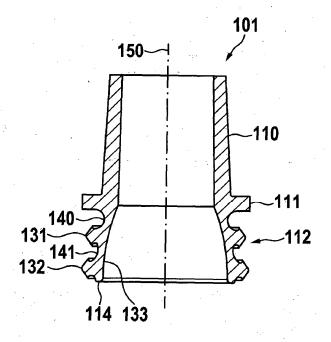


Fig. 9

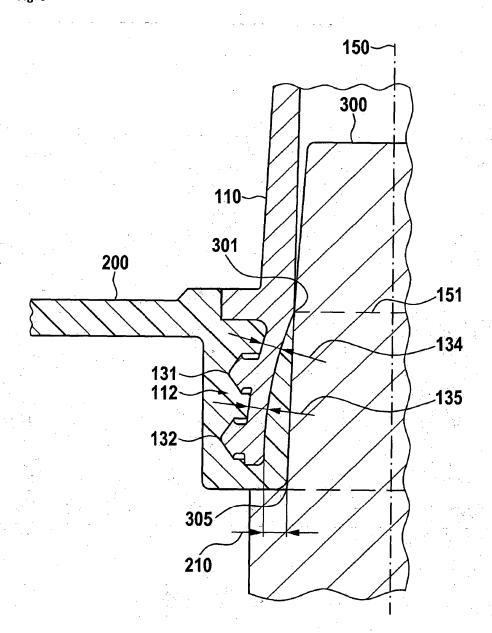
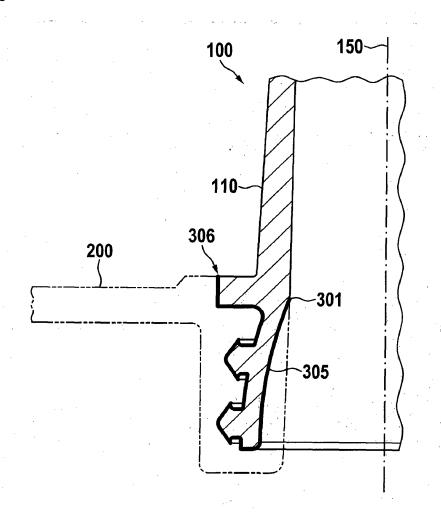



Fig. 10

