

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 549 732

61 Int. Cl.:

C08G 79/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 30.07.2008 E 08782528 (7)
 (97) Fecha y número de publicación de la concesión europea: 02.09.2015 EP 2181141

(54) Título: Polifosfonatos insolubles y ramificados y métodos relacionados con los mismos

(30) Prioridad:

30.07.2007 US 952608 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **02.11.2015**

73 Titular/es:

FRX POLYMERS, INC. (100.0%) 200 TURNPIKE ROAD CHELMSFORD, MA 01824, US

(72) Inventor/es:

FREITAG, DIETER y GO, PIN

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Polifosfonatos insolubles y ramificados y métodos relacionados con los mismos

Esta solicitud reivindica prioridad de la Solicitud Provisional nº. 60/952.608 titulada "Synthesis of Insoluble and Branched Polyphosphates Syínthesis de Polyphosphonates Insolubles and Branched that Exhibit an Advantageous Combination of Properties, and Mehods Related Thereto", presentada el 30 de julio de 2007.

Campo de la invención

5

15

20

25

30

35

40

45

50

La presente invención se refiere en general a polifosfonatos insolubles ramificados y métodos para su preparación. También se refiere a composiciones de polímeros que incluyen estos polifosfonatos insolubles y artículos producidos de ellos.

10 Descripción de la técnica relacionada

Los polifosfonatos presentan excelente resistencia al fuego (por ejemplo, patentes de EE.UU. n^{os}. 2.682.522 y 4.331.614). Generalmente los polifosfonatos lineales se producen por condensación en estado fundido de un éster de diarilo de ácido fosfónico y un bisfenol usando un catalizador metálico. (por ejemplo fenolato sódico) a alta temperatura (por ejemplo, patente U.S. nº. 2.682.522). Sin embargo, este enfoque produce polifosfonatos de bajo peso molecular que exhiben mala tenacidad.

Para mejorar la tenacidad se han desarrollado métodos para producir polifosfonatos ramificados por transesterificación. En la reacción de transesterificación, se combinan un éster de diarilo de ácido fosfónico, un agente de ramificación tal como un éster de trifenol o tetrafenol o fosfórico y un catalizador, tal como fenolato sódico, y se hacen reaccionar en estado fundido, usualmente en un autoclave (por ejemplo, patentes de EE.UU. nºs. 2.716.101, 3.326.852, 4.328.174, 4.328.174, 4.331.614, 4.374.971, 4.515.719, 5.216.113, 5.334.692 y 4.374.971). Este enfoque tuvo éxito en la producción de polifosfonatos de alto peso molecular que presentan tenacidad mejorada, pero se sacrificó la aptitud de procesamiento. Por ejemplo, se han descrito polifosfonatos ramificados con un peso molecular numérico medio (Mn) de 11.000 g/mol a 200.000 g/mol con una dispersión de polímero inferior a 2,5. Sin embargo, estos polímeros presentaban viscosidades en estado fundido altas, falta de estabilidad hidrolítica y turbiedad del material. Consecuentemente, la combinación de propiedades de estos polifosfonatos no es suficiente para su aceptación general en el mercado.

Más recientemente se ha desarrollado usando un catalizador de fosfonio tal como fenolato de tetrafenilfosfonio (TPPP) (patente de EE.UU. nº. 6.681.499) un procedimiento para sintetizar polifosfonatos ramificados con una combinación mejorada de propiedades tales como Tg más alta, mejor tenacidad y superior estabilidad hidrolítica. Estos fosfonatos presentan un peso molecular muy alto, buena aptitud de procesamiento en estado fundido y, dependiendo de las condiciones de reacción empleadas pueden ser solubles o insolubles. Desafortunadamente, el TPPP tiene varias desventajas en cuanto a que es caro y el tiempo de reacción requerido para hacer los polímeros es más lento en comparación con el fenolato sódico, lo que da por resultado costes más altos para producir polifosfonatos. Además, el TPPP es volátil en las condiciones de reacción y debe añadirse periódicamente para mantener una concentración suficiente.

Sumario de la invención

Las realizaciones de la invención presentadas aquí están dirigidas a un procedimiento para producir polifosfonatos insolubles ramificados que incluye las etapas de combinar uno o varios ésteres de diarilo de ácido fosfónico, uno o varios bisfenoles y un catalizador de metal alcalino en un recipiente de reacción para formar una mezcla de reacción; calentar la mezcla de reacción una primera vez en vacío a una temperatura a la que el fenol comienza a destilar del recipiente y continuar calentando hasta que se para el desprendimiento de fenol, y calentar la mezcla de reacción una segunda vez a una temperatura a la que se ha restablecido y ha parado el desprendimiento de fenol, y se ha generado un material resultante que es parcial o completamente insoluble en cloruro de metileno a 23°C después de 8 horas de inmersión. En varias realizaciones, la etapa de calentamiento de la mezcla de reacción una segunda vez puede realizarse durante un tiempo que es al menos igual al de calentamiento la primera vez y, en algunas realizaciones, la etapa de calentamiento de la mezcla de reacción la primera vez y el calentamiento de la mezcla de reacción la segunda vez se pueden realizar simultáneamente, de manera que se interrumpe al calentamiento. La viscosidad en estado fundido de la mezcla de reacción aumenta al menos aproximadamente 10 veces durante la etapa de calentamiento de la mezcla de reacción una segunda vez.

En algunas realizaciones, la mezcla de reacción puede incluir hasta aproximadamente 20% en moles de exceso de bisfenol y hasta aproximadamente 20% en moles de exceso del éster de diarilo de ácido fosfónico. En realizaciones particulares, el catalizador puede ser sodio asociado con un anión y, en algunas realizaciones, el catalizador de metal alcalino puede ser fenolato sódico. En ciertas realizaciones, la mezcla de reacción puede incluir también un agente de ramificación y, en algunas realizaciones, el agente de ramificación puede ser 1,1,1-tris(4-

hidroxifenil)etano. El éster de diarilo de ácido fosfónico de varias realizaciones puede ser de la estructura general:

en la que R es un hidrocarburo alifático de alquilo inferior, uno cicloalifático o aromático C₁₋₄, y el bisfenol se puede seleccionar entre 4,4'-dihidroxibifenilo, 2,2-bis(4-hidroxifenil)propano (bisfenol A), 1,1-bi(4-hidroxifenil)-3,3-dimetil-5-metil ciclohexano (TMC), 1,3-dihidroxibenceno (resorcinol), 1,4-dihidroxibenceno (hidroquinona) y combinaciones de los mismos.

Algunas realizaciones de la invención están dirigidas a un polifosfonato ramificado insoluble preparado por un procedimiento que incluye las etapas de combinar uno o varios ésteres de diarilo de ácido fosfónico, uno o varios bisfenoles y un catalizador de sodio en un recipiente de reacción formando una mezcla de reacción; calentar la mezcla de reacción una primera vez en vacío a una temperatura a la que el fenol empieza a destilar del recipiente y continuar calentando hasta que cesa el desprendimiento de fenol; y calentar la mezcla de reacción una segunda vez a una temperatura a la que como mínimo se ha restablecido y ha parado el desprendimiento de fenol y se ha generado un material resultante que es parcial o completamente insoluble en cloruro de metileno a 23°C después de 8 horas de inmersión. En ciertas realizaciones, la etapa de calentamiento de la mezcla de reacción una segunda vez se puede realizar durante un tiempo que es como mínimo igual al de la etapa de calentamiento de la mezcla de reacción una primera vez. La viscosidad en estado fundido de la mezcla de reacción aumenta en al menos aproximadamente 10 veces durante la etapa de calentamiento de la mezcla de reacción una segunda vez. En otras realizaciones, la mezcla de reacción puede incluir hasta un exceso molar del 20% del bisfenol y hasta aproximadamente un exceso de 20% en moles del éster de diarilo del ácido fosfónico. El polifosfonato insoluble preparado no es soluble en cloruro de metileno a 23°C. y presenta una Tg de como mínimo 100°C medida por calorimetría diferencial de barrido. En otras realizaciones, el polifosfonato insoluble puede ser insoluble y fusible.

Otras realizaciones de la invención están dirigidas a una composición de polímero que comprende como mínimo un polifosfonato insoluble ramificado preparado como se ha descrito antes y al menos otro polímero seleccionado entre policarbonatos, poliacrilatos, poliacrilonitrilos, poliésteres, poliamidas, poliestirenos, poliuretanos, poliureas, poliepóxidos, poli(acrilonitrilo butadieno estireno)s, polimidas, poliarilatos, poli(arilen éter)es, polietilenos, polipropilenos, poli(sulfuros de etileno), poli(vinil ésteres), poli(cloruro de vinilo), polímeros de bismaleimida, polianhídridos, polímeros cristalinos líquidos, poliéteres, óxidos de polímero, polímero de celulosa y combinaciones de los mismos. En algunas realizaciones, la composición de polímero puede ser un artículo manufacturado seleccionado entre fibras, películas, revestimientos, piezas moldeadas, adhesivos, espumas, artículos reforzados con fibras y combinaciones de los mismos.

Descripción detallada

5

10

15

20

25

30

35

40

45

Antes de describir las presentes combinaciones y los métodos, ha de saberse que la invención no está limitada a los procedimientos, las composiciones o las metodologías particulares descritas, ya que estos pueden variar. También ha de saberse que la terminología usada en la descripción tiene sólo la finalidad de describir las versiones o realizaciones particulares, y no la de limitar el alcance de la presente invención. que está limitada únicamente por las reivindicaciones anexas.

Debe señalarse que, tal como se usa aquí y en las reivindicaciones anexas, las formas singulares "uno", "una" y "el" incluyen la referencia plural a no ser que el contexto dicte claramente lo contrario. A no ser que se defina lo contrario, todos los términos técnicos y científicos usados aquí tienen el mismo significado que el comúnmente entendido por un experto en la técnica de cualificación normal. Aunque en la práctica o el ensayo de realizaciones de la presente invención se pueden usar cualesquier procedimientos similares de la presente invención, se describen ahora los procedimientos preferidos.

Tal como se usa aquí, el término "aproximadamente" significa más p menos 10% del valor numérico que se usa. Por tanto, aproximadamente 50% significa el intervalo de 45% a 55%.

Los términos "pirorretardador", "resistente a la llama", "resistente al fuego" o "resistencia al fuego", tal como se usan aquí., significan que la composición exhibe un índice limitativo de oxígeno (LOI) de como mínimo aproximadamente 27 y/o un patrón de referencia a la llama UL-94 para composiciones electrónicas.

El término "temperatura de distorsión por calor" o "HDT" tal como se usa aquí significa la temperatura a la que una barra estándar de ensayo flexiona bajo una carga dada.

El término "buena tenacidad" o similar, tal como se usa aquí, significa que una muestra moldeada del polímero o la composición de polímero presenta una energía de fractura que es comparable a la de una muestra preparada de un polímero de acuerdo con la técnica o de un polímero huésped solo.

El término "insoluble" tal como se usa aquí significa que el polifosfonato no se disolverá completamente en cloruro de metileno después de 8 horas de inmersión.

5

10

15

20

25

30

35

40

El término "estabilidad hidrolítica", tal como se usa aquí, significa que el polifosfonato puede formar menos de 5% de productos de degradación, tiene menos de 5% o menos de pérdida de transparencia o menos de 5% de pérdida de resistencia mecánica cuando se calienta en agua a ebullición durante aproximadamente 6 horas.

Generalmente, las realizaciones de la invención presentadas aquí están dirigidas a procedimientos para preparar pirorretardadores, polifosfonatos insolubles que tienen una combinación mejorada de propiedades por transesterificción. Diversas realizaciones de tales procedimientos incluyen la etapa de hacer reaccionar uno o varios ésteres de diarilo de ácido fosfónico, uno o varios bisfenoles y, opcionalmente, un agente de ramificación en presencia de un catalizador de sodio. Los polifosfonatos insolubles de la invención proporcionan plásticos resistentes al fuego que pueden ser útiles para varias aplicaciones. Por ejemplo, los polifosfonatos de la invención pueden tener un comportamiento mejor en el ensayo UL, un tiempo de quemado más bajo y no gotear, en comparación con polifosfonatos solubles.

Entre otras realizaciones de la invención figuran artículos manufacturados preparados de polifosfonatos insolubles y otros plásticos ingenieriles mezclas de estoa polifosfonatos insolubles, incluidos los polifosfonatos insolubles de la invención. Por ejemplo, los polifosfonatos insolubles y mezclas de polímeros se pueden usar como revestimientos, o se pueden usar para fabricar películas autoportantes, fibras, espumas, artículos moldeados y composiciones reforzadas con fibras.

En varias realizaciones, el procedimiento para preparar polifosfonatos insolubles puede incluir al menos las etapas de combinar uno o varios uno o varios ésteres de diarilo de ácido fosfónico, uno o varios bisfenoles y opcionalmente uno o varios agentes de reticulación en un recipiente de reacción formando una mezcla de reacción, y hacer reaccionar estos componentes en una reacción de polimerización. En algunas reacciones, a la mezcla de reacción se puede añadir un catalizador de sodio, tal como, por ejemplo, fenolato sódico. En tales realizaciones no se requiere catalizador de fosfonio. Por tanto, el procedimiento realizado por la invención puede ser más atractivo económicamente porque generalmente los catalizadores fenolato son menos caros que los catalizadores de fosfonio mientras que la reacción es rápida y el rendimiento de polímero es más alto, siendo mejor el retardo de la llama.

En realizaciones particulares, los componentes de reacción se pueden combinar de manera que exista un desequilibrio estequiométrico de éster de diarilo a bisfenol. Por ejemplo, en algunas realizaciones la mezcla de reacción puede contener una relación de desequilibrio estequiométrico (esto es, relación molar) que corresponde a aproximadamente 20% en moles de exceso de éster de diarilo de ácido fosfónico a bisfenol, y, en otras realizaciones, la mezcla de reacción puede contener un desequilibrio estequiométrico de aproximadamente 20% en moles de defecto de éster de diarilo de ácido fosfónico a bisfenol. En aún otra realización, el éster de diarilo del ácido fosfónico puede ser de hasta aproximadamente % en moles de exceso hasta aproximadamente % en moles de efecto respecto a bisfenol.

En el procedimiento de realización de la invención se puede usar casi cualquier éster de diarilo de ácido fosfónico. Por ejemplo, en algunas realizaciones el éster de diarilo de ácido fosfónico puede ser de la fórmula general:

en la que R es un hidrocarburo alifático de alquilo inferior, tal como alquilo C_{1-4} , uno cicloalifático C_{5-10} o arilo C_{5-10} . Por ejemplo, en ciertas realizaciones el éster de diarilo de ácido fosfónico puede ser óxido de metildifenoxifosfina:

Análogamente, el procedimiento de varias realizaciones de la invención se puede usar con cualquier bisfenol. Por ejemplo, entre los bisfenoles de algunas realizaciones pueden figurar, no limitativamente, los disponibles comercialmente tales como 4,4'-dihidroxibifenilo, 4,4'dihidroxifenilsulfona, 2,2-bis(4-hidroxifenil)propano (bisfenol A), 4,4'-dihidroxifenil éter, 9,9-dihidroxi-fenilfluoreno y 1,1-bis(4-hidroxifenil)-3,3-dimetil-5-metil ciclohexano(TMC)

5

Adicionalmente, usando el método de algunas realizaciones de la invención, también se pueden preparar copolímeros preparados usando dos o más bisfenoles diferentes. Por ejemplo, en ciertas realizaciones, se pueden preparar copolímeros usando una combinación de bisfenoles en la que al menos se usa como mínimo 10% en moles de bisfenol A.

10

15

Son conocidas una variedad de catalizadores y se pueden usar en realizaciones de la invención, y, en realizaciones particulares, catalizadores de metales alcalinos tales como, por ejemplo, fenolato sódico. En algunas realizaciones, los catalizadores de metales alcalinos se pueden asociar con una o varias moléculas de agua, la sal disódica de bisfenol A y/u otras sales sódicas. La cantidad de catalizador suministrada en la mezcla de reacción puede variar y corresponde al saber del técnico experto determinar la cantidad de catalizador a usar en la reacción. Por ejemplo, en algunas realizaciones, la cantidad molar usada es de aproximadamente 0,00004 moles a aproximadamente 0,001 moles por 1 mol de bisfenol.

20

En algunas realizaciones, la mezcla de reacción puede incluir además un agente de ramificación o varios. En general, un agente de ramificación puede contener al menos dos grupos funcionales tales como, por ejemplo, hidroxilo o éster de fósforo. Por ejemplo, entre los agentes de ramificación adecuados útiles en realizaciones de la invención figuran, no exclusivamente, 1,1,1-tris(4-hidroxifenil)etano, fosfato de trisfenilo, fenol isopropanílico oligómero y similares. En realizaciones particulares, el agente de ramificación proporcionado puede variar en realizaciones de la invención. Por ejemplo, la cantidad molar de agente de ramificación usado es de aproximadamente 0,0005 moles a aproximadamente 0,030 moles o, en algunas realizaciones, de aproximadamente 0,0010 moles a aproximadamente 0,020 moles por 1 mol de bisfenol.

25

En ciertas realizaciones, se pueden preparar polifosfonatos ramificados sin añadir agente de ramificación cuando se usa bisfenol A, porque el bisfenol A puede experimentar una segunda reacción que produce compuestos y oligómeros que contienen múltiples grupos hidroxi que pueden actuar como agentes de ramificación. Así, en tales realizaciones, se puede formar in situ un agente de ramificación.

30

La reacción de polimerización se puede realizar generalmente a alta temperatura en estado fundido en vacío, y la temperatura y la presión de reacción se pueden ajustar en una o varias etapas en el transcurso de la reacción. Por ejemplo, en algunas realizaciones, la temperatura de reacción puede ser de aproximadamente 200°C a aproximadamente 400°C y, en otras realizaciones, la temperatura de reacción puede ser de aproximadamente 250°C a aproximadamente 300°C.

35

La reacción tiene lugar en al menos dos etapas. En una primera etapa puede producirse la reacción de polimerización en condiciones de reacción apropiadas hasta que comienza el desprendimiento de fenol y haya parado el desprendimiento desde la mezcla de reacción. En tales realizaciones, la primera etapa puede dar por resultado un polifosfonato que es soluble. En una segunda etapa o "posreacción", en algunas realizaciones, la reacción de polimerización puede continuar por un período de tiempo de manera que se restablece el desprendimiento de fenol y otros monómeros y su cese. Después de la segunda etapa, el polifosfonato se vuelve insoluble.

40

45

En general, la segunda etapa puede ser una extensión de la primera etapa de manera que las condiciones de reacción de la primera y la segunda etapa son las mismas. Sin que ello suponga aceptar una teoría, se piensa que la duración de la reacción puede dictar la producción de un polifosfonato soluble o un polifosfonato insoluble. Por ejemplo, en algunos experimentos, la temperatura de reacción para la primera etapa puede estar entre 200°C y 400°C y la presión puede estar entre 760 mm de Hg y aproximadamente 0,3 mm de Hg o menos, y la temperatura de reacción para la segunda etapa puede estar entre 200°C y 400°C y la presión puede estar entre 760 mm de Hg y aproximadamente 0,3 mm de Hg o menos. En otras realizaciones, la temperatura de reacción de la primera y la segunda etapas pueden ser diferentes. Por ejemplo, la temperatura de reacción de la segunda etapa puede ser como mínimo igual o superior a la de la primera etapa.

Como se ha descrito antes, la reacción de polimerización se puede realizar durante el tiempo que se desee y terminar cuando los polifosfonatos que se preparan se han convertido en insolubles. El tiempo requerido para que los polifosfonatos lleguen a ser insolubles puede variar y puede depender de las condiciones de reacción y/el tamaño de la reacción. Por ejemplo, una reacción de polimerización que se realiza a una temperatura más baja y/o una presión más alta puede requerir un tiempo de reacción más alto en comparación con una reacción de polimerización realizada a una temperatura de reacción más alta y/o una presión más baja. Generalmente, se puede controlar el cambio de la viscosidad de la solución para determinar el punto en el que el polifosfonato se hace insoluble. Por tanto, a medida que transcurre la reacción de polimerización aumentará la viscosidad de la solución hasta que el polifosfonato se haga insoluble.

5

10

15

20

25

30

35

40

45

50

55

En un ejemplo más especifico, se puede polimerizar en condiciones apropiadas una mezcla de reacción que incluye 2-2,8 kg de material de partida durante aproximadamente 5 a aproximadamente 6 horas en una primera etapa, resultando un polifosfonato soluble que tiene una viscosidad determinada por par de torsión de aproximadamente 0,3 a aproximadamente 0,4. Luego se puede someter la misma reacción a una segunda etapa de polimerización de aproximadamente 7 horas a aproximadamente 10 horas en las mismas o similares condiciones de reacción durante un tiempo total de reacción de aproximadamente 12 a aproximadamente 16 horas. Durante la segunda etapa, la viscosidad del polifosfonato puede aumentar a aproximadamente 12 o 13. Los ejemplos de tiempos de reacción dados son a fines de ejemplo, únicamente. Se señala que el tiempo de reacción puede variar dependiendo de, por ejemplo, la cantidad de materiales de partida y/o las condiciones de reacción. Así por ejemplo, una mezcla de reacción que incluye más de 2,8 kg de material de partida puede requerir un primero y/o segundo tiempo de reacción aumentados y, análogamente, los tiempos de reacción pueden reducirse si se reduce el tamaño de la mezcla de reacción. Sin embargo, en general, al menos aproximadamente una duplicación del tiempo de reacción puede dar por resultado un aumento de la viscosidad en estado fundido del polifosfonato de al menos aproximadamente 10 veces. En algunas realizaciones, la viscosidad en estado fundido puede aumentar en al menos aproximadamente 20 veces durante la segunda etapa y, en otras, la viscosidad en estado fundido puede aumentar en aproximadamente 30 a 40 veces durante la segunda etapa.

A causa de que la reacción de polimerización se realiza durante un tiempo prolongado, los polifosfonatos preparados por métodos de realización descritos aquí pueden tener un peso molecular más alto que los polifosfonatos descritos previamente en los que la reacción de polimerización se termina antes de que el polifosfonato se vuelva insoluble. Adicionalmente, estos pesos moleculares altos pueden dar por resultado polifosfonatos que tienen Tg más altos y sean hidrolíticamente más estables que los polifosfonatos previamente descritos.

Generalmente, los métodos de realización descritos antes puede dar por resultado polifosfonatos insolubles que presentan una resistencia a la llama sobresaliente, alta estabilidad térmica y buena tenacidad en comparación con fosfonatos del estado de la técnica que usualmente son solubles en cloruro de metileno. Los polifosfonatos preparados como se describe aquí pueden presentar también una Tg mejorada respecto a polifosfonatos del estado de la técnica. Por ejemplo, los polifosfonatos ramificados preparados a partir de óxido de metildifenoxifosfina y 2,2-bis(4-hidroxifenil)propano (bisfenol A) conforme a realizaciones de la invención pueden presentar Tg de como mínimo aproximadamente 100°C, mientras que los polifosfonatos preparados por procedimientos del estado de la técnica típicamente presentan Tgs inferiores a 100°C. Además, los polifosfonatos de acuerdo con la invención pueden presentar una excelente capacidad para ser procesados, proporcionando por ello un polifosfonato que es insoluble y que son fusibles. Tales características no las han demostrado los polímeros descritos hasta ahora.

Los polifosfonatos insolubles de la invenció se pueden usar en la preparación de composiciones de polímeros que tienen características ventajosas. Por ejemplo, en algunas realizaciones se pueden incluir polifosfonatos insolubles preparados como se ha descrito antes en composiciones de polímeros que contienen uno o varios polímeros adicionales u otros polímeros. Tal como se usa aquí, el término "composición de polímero" puede referirse a una composición que incluye como mínimo un polifosfonato insoluble preparado como se ha descrito antes y como mínimo otro polímero. El término "otro polímero" se puede referir a cualquier polímero tal como, por ejemplo, plásticos ingenieriles o de conveniencia, que no son los polifosfonatos insolubles. Entre los ejemplos de "otros polímeros" figuran, no exclusivamente, policarbonatos, poliacrilatos, poliacrilonitrilos, poliesteres, poliamidas, poliestirenos (incluidos poliestirenos de alto impacto), poliuretanos, poliureas, poliepóxidos, poli(acrilonitrilo butadieno estirenos), polimidas, poliarilatos, poli(éteres de arileno), polietilenos, polipropilenos, polímeros cristalinos líquidos, polímeros de celulosa y copolímeros y combinaciones de los mismos.

Las composiciones de polímeros de la invención se pueden producir por cualquier procedimiento conocido en la técnica. Por ejemplo, los polifosfonatos de la invención se pueden combinar con otros polímero o con otros varios polímeros usando métodos de mezcla tales como combinación, composición, extrusión y similares o combinaciones de los mismos.

En algunas realizaciones, los polifosfonatos insolubles y las composiciones de polímeros de la invención pueden

incluir además otros componentes tales como, por ejemplo, cargas, vidrio, tensioactivos, aglutinantes orgánicos, aglutinantes polímeros, agentes de reticulación, agentes acopladores, agentes antigoteo, teflón, colorantes, tintas, coloreadores y combinaciones de ellos. Por ejemplo, en algunas realizaciones ejemplares, la composición de polímero puede incluir uno o varios polifosfonatos preparados como se ha descrito, poli(tereftalato de butileno) (PBT), fibra de vidrio y teflón.

Estas otras composiciones se pueden añadir a loa polifosfonatos insolubles o composiciones de polímero por métodos conocidos tales como combinación, composición, extrusión y similares o combinaciones de los mismos, y os otros componentes se pueden añadir en cualquier momento durante la preparación de los polifosfonatos insolubles a las composiciones de polímero. Por ejemplo, se puede añadir otro componente u otros varios componentes durante la mezcla del polifosfonato insoluble con uno o varios otros polímeros, o los otros componentes s pueden añadir después de haber combinado la composición de polímero.

Los polifosfonatos insolubles o las composiciones de polímero de la invención se pueden usar para una variedad de fines y en realizaciones particulares, los polifosfonatos insolubles o las composiciones de polímero de la invención se pueden usar para preparar artículos adecuados para aplicaciones que requieren pirorresistencia. Por ejemplo, en algunas realizaciones, los polifosfonatos insolubles se pueden usar como revestimientos, fibras, espumas, artículos moldeados y composiciones con fibras de refuerzo. En realizaciones en las que los polifosfonatos insolubles o las composiciones de polímero se usan para hacer materiales compuestos de fibra reforzadora, el refuerzo puede ser fibras continuas, tejidas o cortadas preparadas de diversos materiales, entre ellos, no exclusivamente, vidrio, carbón, carboro de silicio y fibras orgánicas, o combinaciones de los mismos. En ciertas realizaciones, los materiales descritos aquí pueden ser útiles en aplicaciones de las industrias de automoción y electrónica y requieren una cualificación excelente en cuanto a retraso al fuego y comportamiento a alta temperatura.

El resumen anterior de la presente invención no pretende describir cada realización ilustrada o cada implementación de la presente invención. La descripción detallada siguiente ejemplifica en particular estas realizaciones.

Ejemplos

5

10

15

20

25

35

Habiendo descrito en general la invención, se puede comprender más completamente la misma por referencia a los ejemplos siguientes que se presentan sólo a fines de ilustración y no limitan la invención.

Ejemplo 1

30 Estado de la técnica. Preparación de polifosfonatos ramificados usando catalizador fenolato

Se preparó un polifosfonato ramificado descrito en la patente U.S. nº. 4.415.719 usando el sistema de reacción:

Polifosfonato ramificado

Se preparó una mezcla de reacción que contenía 33,28g (0,1457 mol) de 2,2-bis(4-hidroxifenil)propano (bisfenol A), 37,07 g (0,1493 mol) de éster de difenilo del ácido metilfosfónico y 0,006 g (5,16 x 10⁻⁵ mol) de fenolato sódico, y 0,459 (1,5 x 10⁻³ mol) de 1,1,1-tris(4-hidroxifenil)etano (agente de ramificación). Esta mezcla de reacción contiene un exceso molar de 2,4% en moles de bisfenol A en relación a éster fosfónico y 3,54 x 10⁻⁴ moles de fenolato sódico por 1 mol de bisfenol A. La mezcla de reacción se calentó de 250°C a 300°C en vacío durante aproximadamente 8 horas.

40 El polímero aislado no era tan tenaz como los polímeros descritos en los Ejemplos 2 y 3. Una solución al 0,5% del polímero en cloruro de metileno tenía una viscosidad relativa de aproximadamente 1,09 a 23°C y una película colada de la solución en cloruro de metileno tenía una Tg de aproximadamente 91 °C por DSC con una baja

tenacidad y un color amarillo.

Ejemplo 2

5

10

15

20

25

30

35

40

45

50

Estado de la técnica. Preparación de polifosfonatos usando un catalizador de tetrafenilfosfonio descrito en EP 04714123.0

Se cargaron en un reactor de 12 l equipado con una columna de destilación y agitador mecánico 3,329 kg de 2,2-bis-(4-hidroxifenil)propano (bisfenol A), 1,2 g de catalizador fenolato de tetrafenilfosfonio, 89 g de 1,1,1-tis(4-hidroxifenil)etano y 3,581 kg de éster de difenilo del ácido metilfosfónico. Del éster de difenilo del ácido metilfosfónico se desprende fenol (0,224 kg) y también está presente en la mezcla de reacción. La mezcla se calienta a entre 250°C y 300°C mientras que se reduce la presión de 150 a 1,5 mm de Hg durante un período de aproximadamente 14,5 horas. Durante la última hora de la reacción se observa un notable aumento rápido de la viscosidad de la solución de la mezcla fundida.

En el transcurso de la reacción se recogieron aproximadamente 3428 g de destilado. Se extruyó el polifosfonato del reactor como varilla que se cortó en gránulos usando un dispositivo de granulación. El rendimiento del polifosfonato sacado del reactor fue de 3560 g y tenía 10,8% de fósforo. El polifosfonato era transparente, incoloro y tenaz y no era totalmente soluble en CH₂Cl₂ después de 8 horas de inmersión. El polímero tenía una Tg de 97°C y un LOI (índice de oxígeno limitado) de aproximadamente 65.

Ejemplo 3

Preparación de polifosfonatos insolubles usando catalizador fenolato sódico

Se cargaron en un reactor de 12 l equipado con una columna de destilación y agitador mecánico 3,329 kg de 2,2-bis-(4-hidroxifenil)propano (bisfenol A), 0,6 g de catalizador fenolato sódico, 89 g de 1,1,1-tis(4-hidroxifenil)etano y 3,581 kg de éster de difenilo del ácido metilfosfónico. Del éster de difenilo del ácido metilfosfónico se desprende fenol (0,093 kg) y también está presente en la mezcla de reacción. La mezcla se calentó a entre 250°C y 300°C mientras que se reduce la presión de 150 a 1,5 mm de Hg durante un período de aproximadamente 14 horas. Durante la última hora de la reacción se observó un notable aumento rápido de la viscosidad de la solución de la mezcla fundida.

En el transcurso de la reacción se recogieron aproximadamente 3253 g de destilado. Se extruyó el polifosfonato del reactor como varilla que se cortó en gránulos usando un dispositivo de granulación. El rendimiento del polifosfonato sacado del reactor fue de 3748 g y tenía aproximadamente 10,8% de fósforo. El polifosfonato era transparente, incoloro y tenaz y no era totalmente soluble en CH₂Cl₂ después de 8 horas de inmersión. El polímero tenía una Tg de 100°C y un LOI (índice de oxígeno limitado) de aproximadamente 65.

Ejemplo 4

Estado de la técnica. Preparación de polifosfonatos usando un catalizador de tetrafenilfosfonio descrito en EP 04714123.0

Se cargaron en un reactor de 6 l equipado con una columna de destilación y agitador mecánico 1,308 kg (5,737) mol) de 2,2-bis-(4-hidroxifenil)propano (bisfenol A), 35,1 g (0,115 mol) de 1,1,1-tis(4-hidroxifenil)etano, 1,467 g (5,915 mol) de éster de difenilo del ácido metilfosfónico destilado y 450 mg de catalizador fenolato de tetrafenilfosfonio (TPPP) que es un complejo de fenolato de tetrafenilfosfonio y fenol que consiste en aproximadamente 70% y 30%, respectivamente, de cada uno. La mezcla se calentó a entre 250°C y 300°C mientras que se reduce la presión de 150 a 1,5 mm de Hg durante un período de aproximadamente 15,25 horas. Se recogió el destilado. Durante la última hora de la reacción se observó un notable aumento rápido de la viscosidad de la solución de la mezcla fundida. Al final se aplicó un par de torsión de 13,5 ± 1,5 a 300°C y se determinó un velocidad de agitación de 110 rpm como medida de la viscosidad en estado fundido.

En el transcurso de la reacción se recogieron aproximadamente 1238 g de destilado. Se extruyó el polímero del reactor a un baño de agua formando una varilla que luego se peletizó. El rendimiento del polifosfonato sacado del reactor fue de 1591 g. El polímero era transparente, incoloro y tenaz con un contenido fosforoso de 10,8% y una Tg de 104°C. El polímero no era totalmente soluble en cloruro de metileno después de 12 horas.

Ejemplo 5

Preparación de polifosfonatos insolubles usando un catalizador fenolato sódico

Se cargaron en un reactor de 6 l equipado con una columna de destilación y agitador mecánico 1,308 kg (5,737 mol) de 2,2-bis-(4-hidroxifenil)propano (bisfenol A), 130 mg de catalizador fenolato sódico, 35,4 g (0,115 mol) de 1,1,1-tis(4-hidroxifenil)etano, y 1,458 g (5,879 mol) de éster de difenilo del ácido metilfosfónico destilado. La mezcla

se calentó a entre 250°C y 300°C mientras que se reduce la presión de 150 a 1,5 mm de Hg durante un período de aproximadamente 12,5 horas. Se recogió el destilado. Durante la última hora de la reacción se observó un notable aumento rápido de la viscosidad de la solución de la mezcla fundida. Al final se aplicó un par de 14,6 ± 1,5 a 300°C y se determinó la velocidad de agitación de 110 rpm como medida de la viscosidad en estado fundido.

En el transcurso de la reacción se recogieron aproximadamente 1223 g de destilado. Se extruyó el polímero del reactor a un baño de agua formando una varilla que luego se peletizó. El rendimiento del polímero sacado del reactor fue de 1542 g. El polímero era transparente, incoloro y tenaz con un contenido fosforoso de 10,8% y una Tg de 102°C. El polímero no era totalmente soluble en cloruro de metileno después de 12 horas.

Ejemplo 6

5

15

20

25

10 Comparación de la estabilidad hidrolítica (Ejemplo 1 y Ejemplo 3)

Este ejemplo ilustra la estabilidad electrolítica mejorada de polifosfonatos insolubles ramificados de la presente invención (Ejemplo 3) en comparación con la del polifosfonato ramificado soluble del Ejemplo 1.

Se puso en agua destilada y se calentó a 100º durante 6 horas una muestra moldeada (aproximadamente 2 cm x 2 cm x 1 cm de espesor) descrita en el ejemplo 1 y el Ejemplo 3. Antes de la exposición al agua las muestras eran transparentes y como una pieza singular. Después de la exposición, el polifosfonato moldeado soluble del Ejemplo 1 se había roto en varias piezas menores y tenía una superficie opaca blanca de aspecto congelado y parecía que se había espumado presumiblemente debido a la generación de volátiles. Las piezas pequeñas eran frágiles y se rompían fácilmente al manipularlas. La pieza de polifosfato moldeada insoluble del Ejemplo 3 quedó como una pieza entera y presentaba una ligera cantidad de zona blanqueada en un lado del material con una pequeña reducción de transparencia visual. El polímero del Ejemplo 3 presentaba mejor tenacidad, Tg superior y superior estabilidad electrolítica que el polímero del Ejemplo 1.

Ejemplo 7

Comparación de propiedades (Ejemplo 2, Ejemplo 3, Ejemplo 4 y Ejemplo 5)

Los resultados presentados en la Tabla I son una comparación de la síntesis de polifosfonatos insolubles ramificados usando fenolato sódico o TPPP. Comparativamente los resultados revelan que cuando la reacción se realiza con fenolato sódico, la reacción es ligeramente más rápida, la viscosidad en estado fundido es más alta y la Tg más alta, indicativo ello de un peso molecular más alto y proporciona un rendimiento de polímero más alto. Además, el fenolato sódico es menos caro y menos volátil que TPPP.

Tabla 1. Efecto del catalizador sobre las propiedades del fosfonato

Información sobre la reacción	Ejemplo 2	Ejemplo 3	Ejemplo 4	Ejemplo 5
Exceso de monómeros	4,9% de OH de monómeros	4,9% de OH de monómeros	0,1% de OH de DPP	0,5% de OH de monómeros
Cantidad de agente de reticulación Catalizador Suministro total, g Tiempo de reacción total, h	2% en mol	2% en mol	2% en mol	2% en mol
	TPPP	Fenolato sódico	TPPP	Fenolato sódico
	7224	7092	2810	2801
	14,5	14	15,25	12,5
Viscosidad relativa	Insoluble	Insoluble	Insoluble	Insoluble
Tg,°C	97	100	104 <u>+</u> 1	102 <u>+</u> 1
Rendimiento en polímero, g Viscosidad en estado fundido, a 100	3560	3748	1591	1542
	36	56	13,5	14,6
rpm y 300°C, par*				

30

Los Ejemplos 2 y 3 se prepararon en un reactor diferente al usado para los Ejemplos 4 y 5. La determinación de la viscosidad en estado fundido usando par de torsión depende del equipo. Por tanto, los Ejemplos 2 y 3 se pueden comparar entre sí, pero deben compararse separadamente de los Ejemplos 4 y 5 y los Ejemplos 4 y 5 se pueden

comparar entre sí pero se deben comparar separadamente de los Ejemplo 2 y 3.

La Tabla 2 muestra una comparación entre el poli(tereftalato de butileno) solo y mezclas de PBT incluidos polifosfonatos ramificados preparados como se describe en el Ejemplo 2 usando como catalizador fenolato de tetrafenilfosfonio (TPPP) (Composición 1) y los descritos en el Ejemplo 3 usando fenolato sódico como catalizador (Composición 2). Estos resultados indican que los polifosfonatos insolubles ramificados preparados usando fenolato sódico presentan una resistencia a la llama mejor que los preparados usando TPPP. Este comportamiento mejorado puede ser debido al peso molecular incrementado de los polifosfonatos insolubles modificados preparados usando el catalizador fenolato sódico.

Tabla 2. Caracterización de mezclas de PBT/polifosfonato

Componentes de la composición	Composición 1	Composición 2	Composición 3
PBT con 30% de GF	73%	73%	100%
Polifosfonato del Ejemplo 2	26%		
Polifosfonato del Ejemplo 3		26%	
Teflón	0,4%	0,4%	
K-0160 (sal C4)	0,6%	0,6%	
Propiedades			
Ensayo de quemado			
0,8 mm	V2	V0	НВ
Gota de llameo	Si	No	
MFI 250°C 10 min de exposición/			
2,16 kg carga, g	8,34	10,6	5,0
HDT 1,82 MPa (°C)	101	102	194

10

5

PBT = (PF300G6, PBT mezclado con fibra de vidrio de Polygram).

K-0160 (sal C-4)= muestra de acopio que contiene 15% de la sal de potasio del ácido perfluorobutanosulfónico y 85% de policarbonato Makrolon. La cantidad total de sal de potasio de ácido perfluorobutanosulfónico en las mezclas era 0,09% en peso.

15

REIVINDICACIONES

1. Un procedimiento para producir polifosfonatos insolubles ramificados, que comprende;

5

10

15

25

30

combinar uno o varios ésteres de diarilo de ácido fosfónico, uno o varios bisfenoles y un catalizador de un metal alcalino en un recipiente de reacción para formar una mezcla de reacción;

- calentar la mezcla de reacción una primera vez en vacío a una temperatura a la que empieza a destilar el fenol del recipiente y continuar calentando hasta que pare el desprendimiento de fenol; y calentar la mezcla de reacción una segunda vez a una temperatura a la que al menos se restablece el desprendimiento de fenol y haya parado el desprendimiento de fenol, en el que la etapa de calentamiento de la mezcla de reacción una segunda vez se realiza durante un tiempo que como mínimo es igual a la etapa de calentamiento de la mezcla de reacción una primera vez, y en el que la viscosidad en estado fundido de la mezcla de reacción aumenta en al menos 10 veces durante la etapa de calentamiento de la mezcla de reacción una segunda vez y el polifosfonato es insoluble en cloruro de metileno a 23°C después de 8 horas de inmersión.
- 2. El procedimiento de la reivindicación 1, en el que la etapa de calentamiento de la mezcla de reacción una primera vez y el calentamiento de la mezcla de reacción una segunda vez se realizan simultáneamente de manera que se interrumpe tal calentamiento.
- 3. El procedimiento de la reivindicación 1, en el que la mezcla de reacción comprende hasta aproximadamente 20% en moles de exceso de bisfenol o hasta aproximadamente 20% en moles de exceso del éster de diarilo de ácido fosfónico.
- 4. El procedimiento de la reivindicación 1, en el que el catalizador es sodio asociado con un anión, preferiblemente en el que el catalizador es fenolato sódico.
 - 5. El procedimiento de la reivindicación 1, que además comprende un agente de ramificación, preferiblemente en el que el agente de ramificación es 1,1,1-tris(4-hidroxifenil)etano.
 - 6. El procedimiento de la reivindicación 1, en el que el éster de diarilo del ácido fosfónico es de la estructura general:

en la que R es un hidrocarburo alifático alquilo inferior. un hidrocarburo cicloalifático C₁₋₄ o aromático.

- 7. El procedimiento de la reivindicación 1, en el que el bisfenol se selecciona entre 4,4'-dihidroxibifenilo, 2,2-bis(4-hidroxifenil)propano (bisfenol A), 1,1-bis(4-hidroxifenil)-3,3-dimetil-5-metil ciclohexano (TMC), 1,3-dihidroxibenceno (resorcinol), 1,4-dihidroxibenceno (hidroquinona) y combinaciones de los mismos.
- 8. Un polifosfonato ramificado insoluble preparado por un procedimiento reivindicado en la reivindicación 1 en el que el mencionado catalizador es un catalizador de sodio.
 - 9. El polifosfonato ramificado insoluble de la reivindicación 8, en el que la mezcla de reacción comprende hasta aproximadamente 20% en moles de exceso de bisfenol o hasta aproximadamente 20% en moles de exceso del éster de diarilo de ácido fosfónico.
- 35 10. El polifosfonato ramificado insoluble de la reivindicación 8, en el que el polifosfonato no es soluble en cloruro de metileno a 23°C.
 - 11. El polifosfonato ramificado insoluble de la reivindicación 8, en el que el polifosfonato insoluble exhibe una Tg de como mínimo 100°C medido por calorimetría diferencial de barrido.
 - 12. Una composición de polímero que comprende
- 40 como mínimo un polifosfonato insoluble ramificado preparado por un procedimiento de una cualquiera de las reivindicaciones 1 a 5; y

como mínimo otro polímero seleccionado entre policarbonatos, poliacrilatos, poliacrilonitrilos, poliésteres, poliamidas, poliestirenos, poliuretanos, poliureas, poliepóxidos, poli(arilonitrilo butadieno estireno)s, poliimidas, poliarilatos, poli(arilen éter)es, polietilenos, poliforpopilenos, poli(sulfuros de etileno), poli(vinil ésteres), poli(cloruro de

ES 2 549 732 T3

vinilo), polímeros de bismaleimida, polianhídridos, polímeros cristalinos líquidos, poliéteres, poli(óxidos de fenileno), polímero de celulosa y combinaciones de los mismos.

13. La composición de polímero de la reivindicación 12, en la que la composición de polímero es un artículo manufacturado seleccionado entre fibras, películas, revestimientos, piezas moldeadas, adhesivos, espumas, artículos reforzadas con fibras y combinaciones de los mismo.

5