

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 549 779

51 Int. Cl.:

F02B 33/40 (2006.01) F02B 33/44 (2006.01) F02B 39/10 (2006.01) F02D 23/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 07.06.2011 E 11723486 (4)
 (97) Fecha y número de publicación de la concesión europea: 12.08.2015 EP 2580444

(54) Título: Supercargador para motores de combustión interna

(30) Prioridad:

09.06.2010 DE 102010023188

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **02.11.2015**

73) Titular/es:

D. BROWN TECHNIK AG (100.0%) Sperl-Ring 2 85276 Pfaffenhofen-Hettenshausen, DE

(72) Inventor/es:

THALHOFER, AUGUSTIN

74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Supercargador para motores de combustión interna

Campo de aplicación

5

10

15

20

25

30

35

40

45

50

55

60

65

La invención se refiere a una combinación de un turbocargador de gases de escape y un supercargador para un motor de combustión interna, comprendiendo el supercargador un turbocompresor con al menos una rueda de álabes de compresor así como con un lado de succión y con un lado de presión, una masa de inercia para acumular energía de accionamiento, un motor auxiliar para accionar la rueda de álabes de compresor y la masa de inercia, así como un primer órgano de cierre dispuesto en el lado de succión del turbocompresor, formando la zona entre el primer órgano de cierre y la rueda de álabes de compresor del turbocompresor un espacio de aire de compresor en el lado de succión, estando realizado el turbocompresor de tal forma que el espacio de aire de compresor en el lado de succión puede ser evacuado sustancialmente, después del cierre del primer órgano de cierre, preferentemente exclusivamente mediante la potencia de compresor propia del turbocompresor.

II. Antecedentes técnicos

Se conoce el modo de comprimir el aire suministrado a un motor de combustión interna para la combustión en los cilindros, mediante turbocargadores de gases de escape accionados por la energía de gases de escape del motor de combustión interna, o bien, mediante supercargadores mecánicos. De esta manera, se consigue un aumento de potencia del motor de combustión interna. Si se usan supercargadores mecánicos, estos pueden ser accionados directamente por el motor de combustión interna, por ejemplo mediante un accionamiento por correa, o bien, pueden ser accionados mediante un motor auxiliar, por ejemplo un electromotor.

Si el aire suministrado al motor de combustión interna se comprime mediante un turbocargador de gases de escape, se conoce el hecho de que en caso de solicitaciones de carga súbitas, por ejemplo en el caso del paso del régimen a carga parcial al régimen a plena carga durante la aceleración de un vehículo accionado con el motor de combustión interna, el turbocargador de gases de escape no es capaz de proporcionar la cantidad de aire de alimentación necesaria para proporcionar el par de giro requerido por el motor de combustión interna. Este efecto frecuentemente se denomina también "agujero de turbo". Esto se debe a que la energía de gases de escape existente no es suficiente para accionar el turbocargador de tal forma que se pueda proporcionar la presión de admisión deseada. También las inercias del turbocargador conducen a que se produzca un retraso en el establecimiento de la presión de admisión.

Estos problemas se solucionan por una parte mediante modificaciones constructivas del turbocargador, por ejemplo mediante turbocargadores con una geometría variable de turbina. Otra solución conocida en el estado de la técnica consiste en prever en el árbol del turbocargador un electromotor (un llamado "turbocargador de gases de escape electroasistido").

Una tercera posibilidad consiste en prever adicionalmente al turbocargador de gases de escape un supercargador accionado mecánicamente que proporciona presión de admisión únicamente cuando a causa de solicitaciones de carga súbitas no es capaz de proporcionar instantáneamente la presión de admisión necesaria, es decir, cuando se encuentra en el agujero de turbo. El supercargador mecánico en principio puede ser accionado por el motor de combustión interna, lo que generalmente tal como es el caso en los supercargadores mecánicos que se usan exclusivamente para cargar el motor de combustión interna. Sin embargo, debido a que en este caso el supercargador mecánico tan sólo asiste al turbocargador de gases de escape en determinados puntos de funcionamiento, los supercargadores mecánicos de asistencia de este tipo generalmente no son accionados por el motor de combustión interna mismo, sin por un motor auxiliar propio.

Para poder proporcionar en este agujero de turbo la presión de admisión que falta, no proporcionada por el turbocargador de gases de escape, mediante el supercargador adicional accionado mecánicamente, este debe presentar un tiempo de respuesta muy corto. Si el supercargador mecánico es accionado únicamente cuando se necesita para proporcionar el aire de alimentación, se producen retrasos por la aceleración a plena marcha del supercargador mecánico. Los supercargadores con la reacción más rápida actualmente requieren para la aceleración a plena marcha un tiempo de arranque del orden de 350 a 400ms. Si el supercargador mecánico es accionado por un electromotor, durante dicha aceleración a plena marcha se produce un consumo de corriente muy alto del electromotor. Un consumo de corriente de este tipo, sin embargo, no es admisible en las redes de a bordo convencionales de 12 voltios de vehículos, ya que puede provocar considerables caídas de tensión. Se sitúa en el orden de 350A de corriente de arranque o 250A de corriente constante con una potencia del orden de 2,6kW.

Por el documento GB2214979A se dio a conocer un turbocompresor accionado mecánicamente para un motor diesel. El turbocompresor provisto de una rueda de álabes de compresor presenta un lado de succión y un lado de presión. Especialmente en el lado de succión del turbocompresor está dispuesto un órgano de cierre. La zona entre el órgano de cierre y la rueda de álabes de compresor del turbocompresor forma un espacio de aire de compresor

en el lado de succión, que después del cierre del órgano de cierre puede evacuarse con la ayuda de una bomba de vacío conectada especialmente al lado de succión del turbocompresor.

En el documento DE3322171A1 se describe un dispositivo para cargar un motor, que comprende un compresor accionado por el motor. El compresor puede cerrarse en el lado de succión y el lado de presión y evacuarse mediante bomba de vacío que se puede poner en funcionamiento cuando el compresor está cerrado.

Por el documento US2010/095914A1 se dio a conocer un compresor para un motor de combustión interna que puede accionarse con la ayuda de un electromotor. La energía de accionamiento para el compresor se puede acumular en volantes de inercia.

III. Exposición de la invención

a) Objetivo técnico

15

20

10

5

Por lo tanto, la invención tiene el objetivo de proporcionar un supercargador accionado mecánicamente (a continuación, denominado "supercargador") para un motor de combustión interna que se proporciona en el marco de la asistencia al turbocargador de gases de escape para compensar el llamado agujero de turbo y por tanto, en caso de necesidad, puede proporcionar inmediatamente la presión de admisión necesaria minimizándose al mismo tiempo su consumo de energía. Además, la invención tiene el objetivo de proporcionar un procedimiento para hacer funcionar un supercargador de este tipo que por una parte permite proporcionar rápidamente la presión de admisión necesaria y, por otra parte, limita tanto el consumo de energía del supercargador durante toda su duración de servicio como el consumo de energía máximo que se produce en determinados puntos de funcionamiento.

25 b) Solución del objetivo

Este objetivo se consigue mediante una combinación con las características de la reivindicación así como mediante un procedimiento con las características de la reivindicación 9. Más características de la invención resultan de las reivindicaciones subordinadas.

30

Un supercargador según la presente invención comprende un turbocompresor, una masa de inercia, un motor auxiliar y al menos un primer órgano de cierre. El turbocompresor presenta al menos una rueda de álabes de compresor así como un lado de succión y un lado de presión. El lado de presión es el lado de la rueda de álabes de compresor del turbocompresor en el que el aire de alimentación presenta la presión más alta. Por lo tanto, el lado de presión es el lado del turbocompresor que en el sentido de circulación habitual del aire de alimentación está más cerca del motor de combustión interna.

40

35

El turbocompresor, la masa de inercia y el motor auxiliar están conectados mecánicamente entre ellos estando dispuestos por ejemplo en un árbol común. El turbocompresor y la masa de inercia son accionados por el motor auxiliar. En la masa de inercia se acumula energía de accionamiento para accionar el turbocompresor durante el aquijero de turbo.

45

En el lado de succión del turbocompresor está dispuesto un primer órgano de cierre, por ejemplo una válvula de mariposa controlable. La zona entre el primer órgano de cierre y la al menos una rueda de álabes de compresor del turbocompresor forma un espacio de aire de compresor en el lado de succión, que por tanto comprende el espacio en el lado de succión de la rueda de álabes de compresor del turbocompresor y los sistemas de tuberías dispuestos en el lado de succión hasta el primer órgano de cierre.

50

El turbocompresor está realizado de tal forma que el espacio de aire de compresor en el lado de succión preferentemente se evacua al menos en gran parte exclusivamente por la propia potencia de compresor del turbocompresor después de que ha sido cerrado el primer órgano de cierre, es decir, el órgano de cierre en el lado de succión.

60

65

55

Un supercargador realizado en el sentido de la invención se caracteriza sobre todo porque el supercargador, cuando es accionado de forma permanente por el motor auxiliar, necesita durante dicho funcionamiento permanente, cuando está cerrado el primer órgano de cierre situado en el lado de succión, sólo una reducida potencia que ha de ser proporcionada por el motor auxiliar para accionar el turbocompresor. De esta manera, es posible hacer funcionar el turbocompresor del supercargador en un estado accionado permanentemente. Cuando el supercargador no se necesita, por ejemplo para compensar el agujero de turbo de un turbocargador de gases de escape mediante el que principalmente se carga el motor de combustión interna, el supercargador se puede hacer funcionar en un "modo de espera" y mantenerse siempre listo para el funcionamiento en caso de solicitaciones de carga súbitas. Para ello, se cierra el primer órgano de cierre. El compresor evacua entonces preferentemente exclusivamente de forma independiente el espacio de compresor situado en el lado de succión. Por la evacuación del espacio de compresor situado en el lado de succión, el compresor ya casi no tiene que prestar trabajo de compresión. De esta manera, se reduce considerablemente la potencia de accionamiento del motor auxiliar. El motor auxiliar sustancialmente ya sólo

tiene que compensar las pérdidas mecánicas del turbocompresor para mantener el número de revoluciones del turbocompresor en un número de revoluciones teórico predefinido.

Evacuar significa aquí generar en el marco de las posibilidades técnicas un vacío lo más grande posible en el espacio del compresor situado en el lado de succión, es decir, la menor presión posible en dicho espacio. Se entiende que un vacío absoluto, es decir un espacio de compresor absolutamente vacío de aire naturalmente no se puede conseguir.

5

10

30

35

40

45

50

55

60

65

Mediante la realización del supercargador según la invención es posible mantener el turbocompresor del supercargador, en modo de espera con un reducido consumo de energía del motor auxiliar, en un número de revoluciones teórico predefinido, es decir accionar permanentemente su rueda de álabes de compresor para proporcionar en caso de necesidad, por ejemplo cuando el turbocargador empleado en el modo normal para cargar el motor de combustión interna se encuentra en el agujero de turbo y por tanto no puede proporcionar la presión de admisión necesaria mediante la respuesta rápida del supercargador adicional.

La ventaja de la presente invención consiste especialmente en que especialmente para puentear el agujero de turbo a modo de "booster" está disponible presión de admisión en muy poco tiempo. La duración del agujero de turbo es hasta ahora de aprox. 500 a 1000ms. Los mejores turbocargadores actuales tardan aprox. 350ms en arrancar y por tanto pueden proporcionar su presión de admisión sólo cuando ya ha pasado entre 70 y 35% de la duración del agujero de turbo actual. Con la ayuda de la presente invención, la presión de admisión necesaria está disponible, después de su solicitación por la técnica de control, ya después de un tiempo de reacción de menos de 100ms, es decir, después de que ha pasado menos de 20 a 10% de la duración del agujero de turbo actual. Este tiempo de reacción muy corto es determinado sustancialmente por la rapidez de la respuesta del primer órgano de cierre así como la duración del establecimiento de presión en el turbocompresor tras la apertura del primer órgano de cierre. El conductor del vehículo, cuyo motor de combustión interna está equipado con el supercargador según la invención ya no notará casi o en absoluto durante la conducción el agujero de turbo restante con una duración inferior a 100ms. La eficiencia del puenteado del agujero de turbo se incrementa considerablemente con la presente invención.

La potencia de accionamiento absorbida por el turbocompresor durante el modo de espera se necesita principalmente para superar las pérdidas mecánicas. En pequeña parte, sin embargo, la potencia de accionamiento se necesita además para la prestación de trabajo de compresión debido a una evacuación no completa del espacio de aire de compresor en el lado de succión. En una forma de realización ventajosa de la invención, la potencia de accionamiento por tanto se puede seguir reduciendo disponiendo en el lado de presión del turbocompresor un segundo órgano de cierre, formando la zona entre la rueda de álabes de compresor del turbocompresor y el segundo órgano de cierre un espacio de aire de compresor en el lado de presión, y previendo un dispositivo para sustancialmente evacuar el espacio de aire de compresor en el lado de presión. La generación del mejor vacío posible en el espacio de aire de compresor en el lado de presión la menor depresión posible en términos absolutos, en el marco de las posibilidades técnicas, conduce también a que siga disminuyendo en términos absolutos la depresión en el espacio de aire de compresor en el lado de succión. En este sentido, el dispositivo para la evacuación sustancial del espacio de aire de compresor en el lado de presión asiste la evacuación del espacio de aire de compresor en el lado de presión asiste la evacuación del espacio de aire de compresor en el lado de presión asiste la evacuación del espacio de aire de compresor en el lado de presión asiste la evacuación del espacio de aire de compresor en el lado de succión.

El dispositivo para la evacuación sustancial del espacio de aire de compresor en el lado de presión puede ser por ejemplo una bomba de vacío en el sistema de frenos de un vehículo accionado con el motor de combustión interna, o bien, de cualquier otra bomba de vacío. De esta manera, aprovechando las bombas de depresión existentes es posible evacuar el espacio de aire de compresor en el lado de presión y, en cierta medida adicional, de manera auxiliar el espacio de aire de compresor en el lado de succión, y seguir reduciendo de esta manera el consumo de potencia del turbocompresor y por tanto del motor auxiliar en el modo de espera.

El motor auxiliar para accionar el turbocompresor puede ser por ejemplo un electromotor alimentado por ejemplo por la red de a bordo de un vehículo.

Para minimizar la influencia del electromotor en una red de energía de a bordo de un vehículo para que por ejemplo no se produzcan caídas de tensión inadmisibles o una solicitación excesiva de una batería del vehículo, resulta ventajoso limitar el consumo de corriente del electromotor, por ejemplo mediante un dispositivo regulador.

En este contexto resulta obvia otra ventaja de la presente invención. En el modo de espera del supercargador, el electromotor necesita para accionar el turbocompresor, en función de la forma de construcción, una corriente del orden de aprox. 25A ± 5A. En comparación con el consumo de corriente constante del orden de 250A en los supercargadores convencionales, accionados por electromotor, esto supone una considerable reducción de la intensidad de corriente al 10%. Si se usa una bomba de vacío para evacuar el espacio de aire de compresor en el lado de presión, se puede conseguir una reducción del consumo de corriente a menos de 10A o a menos de 4% del consumo de corriente de los supercargadores convencionales. Por las bajas corrientes, el supercargador según la invención ofrece una compatibilidad electromagnética considerablemente mejorada. Produce notablemente menos calor y el conjunto de sistema eléctrico para el accionamiento del turbocompresor se puede realizar más pequeño, especialmente se pueden usar cables eléctricos de sección transversal considerablemente más delgada.

El turbocompresor puede estar realizado como compresor radial o compresor axial. Preferentemente, se usa un compresor radial que comprende exactamente una rueda de álabes de compresor con números de revoluciones de 40.000 a 70.000 rev/min. Especialmente en el caso del turbocompresor como compresor axial pueden disponerse varias etapas de compresor dispuestas una después de otra en sentido axial.

Para poder controlar el paso del modo de espera al modo de carga o el paso del modo de carga al modo de espera, en otra forma de realización ventajosa de la invención, al menos el primer órgano de cierre puede ser controlado activamente por un dispositivo de control.

Si según otra forma de realización ventajosa de la invención, el segundo órgano de cierre existente eventualmente es una válvula de retención, no es necesario prever un dispositivo de control para el segundo órgano de cierre. Entonces, el segundo órgano de cierre cierra independientemente de la presión en el lado de presión del turbocompresor. Sin embargo, también se puede usar como segundo órgano de cierre un órgano de cierre controlado activamente por ejemplo por un dispositivo de control.

Para el funcionamiento de al menos un turbocompresor con al menos una rueda de álabes de compresor y un lado de succión y un lado de presión, el supercargador precisa de una masa de inercia para acumular energía de accionamiento, un motor auxiliar para accionar la rueda de álabes de compresor y la masa de inercia, y un primer órgano de cierre dispuesto en el lado de succión del turbocompresor. La zona entre el primer órgano de cierre y la rueda de álabes de compresor forma un espacio de aire de compresor en el lado de succión, que comprende los espacios, situados en el lado de succión, del turbocompresor mismo y de los sistemas de tuberías adyacentes. El supercargador se emplea adicionalmente a un turbocargador de gases de escape, para poder satisfacer solicitaciones de par de giro por el motor de combustión interna y ampliar el rango de funcionamiento del motor de combustión interna.

La masa de inercia se puede conseguir a nivel constructivo también mediante la configuración adecuada de las masas en giro del motor auxiliar y/o del turbocompresor.

El funcionamiento del supercargador junto al motor de combustión interna se realiza de tal forma que la rueda de álabes de compresor del turbocompresor y la masa de inercia son accionadas permanentemente por el motor auxiliar. En puntos de funcionamiento en los que no es necesario proporcionar por medio del turbocompresor una presión de admisión elevada, se cierra el primer órgano de cierre (lo que anteriormente se ha denominado "modo de espera"). El espacio de aire de compresor en el lado de succión es evacuado entonces preferentemente exclusivamente mediante la propia potencia de compresor del turbocompresor.

De esta manera, queda evacuado al menos sustancialmente el espacio de aire de compresor en el lado de succión. Es decir, su presión es considerablemente más baja que la presión del aire del ambiente.

Si por ejemplo en caso de solicitaciones de par de giro súbitas al motor de combustión interna que no se pueden realizar mediante la acción conjunta del motor de combustión interna con el turbocargador de gases de escape empleado como supercargador principal (por ejemplo, porque el turbocargador de gases de escape no es capaz de ello temporalmente debido al agujero de turbo) se necesita al turbocompresor para comprimir el aire de alimentación, se abre el primer órgano de cierre. Desde el lado de succión entra aire en el turbocompresor y el aire que ha entrado es comprimido inmediatamente por este a una presión requerida, ya que la rueda de álabes de compresor del turbocompresor gira en el modo de espera ya con su número de revoluciones nominal y por tanto no es necesaria la aceleración de la rueda de álabes de compresor a un número de revoluciones nominal. El aire comprimido a la presión de admisión más alta por el supercargador mecánico puede ser proporcionado entonces inmediatamente al motor de combustión interna.

Durante este modo de carga en el que el turbocompresor del supercargador proporciona presión de admisión para el motor de combustión interna, el accionamiento del turbocompresor es asistido notablemente, adicionalmente al accionamiento permanente por el motor auxiliar, por la energía de accionamiento acumulada en la masa de inercia.

Una caída del número de revoluciones del turbocompresor después de que se ha abierto el primer órgano de cierre y la rueda de álabes de compresor comienza a prestar trabajo de compresión y por tanto consume una mayor potencia, se reduce por la masa de inercia, cuando el motor auxiliar no es capaz de proporcionar el par de accionamiento solicitado súbitamente por el turbocompresor.

De esta manera, es posible garantizar una respuesta más rápida del turbocompresor, por ejemplo cuando un turbocargador de gases de escape empleado principalmente para la carga del motor de combustión interna no es capaz de proporcionar a corto plazo la presión de admisión necesaria. La presión de admisión se proporciona inmediatamente, y no con un retraso, ya que la rueda de álabes de compresor se encuentra siempre en un estado accionado constantemente con su número de revoluciones nominal y por tanto es capaz de proporcionar el trabajo de compresión.

65

5

15

20

25

35

40

45

En caso del uso repentino del supercargador mecánico, se pueden reducir las caídas de número de revoluciones de la rueda de álabes de compresor y por tanto las bajadas de presión correspondientes del aire de alimentación proporcionado por el turbocargador de gases de escape, ya que las caídas de número de revoluciones se reducen por la energía de accionamiento acumulada en la masa de inercia. Si en la fase en la que el supercargador mecánico proporciona la presión de admisión para el motor de combustión interna, el motor auxiliar no es capaz de compensar una caída de presión, desciende el número de revoluciones de la rueda de álabes de compresor. Este puede ser el caso por ejemplo cuando el par de giro del motor auxiliar no basta para proporcionar el par de accionamiento necesario para el turbocompresor, por ejemplo porque se limita conscientemente el consumo de energía del motor auxiliar. La energía de accionamiento acumulada en la masa de inercia se utiliza en estas fases adicionales para accionar el turbocompresor reduciendo de esta manera las caídas del número de revoluciones. En la fase en la que el supercargador se encuentra a continuación en modo de espera, es decir que está cerrado al menos el primer órgano de cierre y el turbocompresor no presta trabajo de compresión, el número de revoluciones de la rueda de álabes de compresor y de la masa de inercia se vuelve a llevar al número de revoluciones nominal por medio del motor auxiliar.

15

10

Dado que generalmente son cortas las fases de funcionamiento del supercargador, es decir que son del orden de menos de un segundo, ya que se ha de compensar solamente el agujero de turbo de un turbocargador de gases de escape, en este tiempo se producen sólo pequeñas caídas de número de revoluciones del supercargador y, por tanto, pequeñas bajadas de la presión de admisión.

20

Por la evacuación del espacio de aire de compresor en el lado de succión, en las fases en las que el turbocompresor no tiene que prestar trabajo y el primer órgano de cierre está cerrado, se minimiza el consumo de potencia del turbocompresor y por tanto también del motor auxiliar, de manera que se consigue un funcionamiento energéticamente óptimo.

25

El funcionamiento continuo del supercargador significa que la rueda de álabes de compresor del turbocompresor del supercargador es accionada por ejemplo durante fases de ralentí etc. del motor de combustión interna. Sin embargo, también es posible desconectar el motor auxiliar del supercargador temporalmente en fases de funcionamiento en las que no es de esperar que en un período de tiempo inminente sea solicitada presión de admisión por el turbocompresor del supercargador, por ejemplo, en fases de ralentí más largas del motor de combustión interna.

30

35

Para el procedimiento para el funcionamiento del supercargador resulta ventajoso adicionalmente prever en el lado de presión del turbocompresor un segundo órgano de cierre, de tal forma que la zona entre la rueda de álabes de compresor del turbocompresor y el segundo órgano de cierre forme un espacio de aire de compresor en el lado de presión, y evacuar el espacio de aire de compresor en el lado de presión mediante un dispositivo adicional para la evacuación del espacio de aire de compresor en el lado de presión. De esta manera, se puede reducir aún más la potencia de compresor absorbida aún por el turbocompresor a pesar de la mejor evacuación posible del espacio de aire de compresor en el lado de succión.

40

La evacuación del espacio de aire de compresor en el lado de presión se puede realizar con uno de los dispositivos ya existentes por ejemplo en un vehículo, por ejemplo mediante una bomba de vacío de un sistema de frenos.

45

En el procedimiento para el funcionamiento de un supercargador resulta ventajoso emplear como motor auxiliar un electromotor. Este puede ser alimentado de manera ventajosa por la red de a bordo de un vehículo en el que se usa el motor de combustión interna. De esta manera, a diferencia de otras realizaciones del motor auxiliar, por ejemplo motores hidráulicos, se puede recurrir a la alimentación de energía existente del vehículo.

50

Además, cuando como motor auxiliar se usa un electromotor, durante el funcionamiento del supercargador resulta ventajoso limitar, en función de la red de energía de a bordo del vehículo, la corriente absorbida por el electromotor. Por ejemplo, en el marco de la presente invención es posible una limitación a una magnitud de aprox. 100A. En particular, resulta ventajoso limitar la corriente de tal forma que por el consumo de potencia súbita del motor auxiliar durante el paso del modo de espera al modo de carga no se producen elevadas caídas de tensión, especialmente caídas de tensión que produzcan tensiones fuera de los límites de especificación de aparatos de control electrónicos del vehículo. De esta manera, se garantiza que todos los aparatos de control del vehículo trabajen de manera fiable durante todo el funcionamiento.

60

55

Resulta ventajoso controlar al menos el primer órgano de cierre activamente por un dispositivo de control, mientras que el segundo órgano de cierre existente eventualmente puede ser controlado opcionalmente por ejemplo mediante una unidad de control correspondiente, o bien, puede pasar automáticamente al estado cerrado por estar realizado como válvula de retención.

c) Ejemplos de realización

Algunas formas de realización de la invención se describen a continuación con la ayuda de los dibujos adjuntos:

65

Muestran

la figura 1: una disposición de un motor de combustión interna, un turbocargador de gases de escape y un

supercargador adicional según la invención,

la figura 2: una disposición de un motor de combustión interna, un turbocargador de gases de escape y un

supercargador adicional según la invención, siendo evacuado el espacio de aire de compresor en el lado de presión del supercargador adicional según la invención por medio de una bomba de

vacío, y

la figura 3: una forma de realización del supercargador según la invención con una bomba de vacío en la que

el turbocompresor está realizado como compresor radial.

La figura 1 muestra una disposición en la que un motor de combustión interna 1 en modo normal es alimentado de aire de alimentación por un turbocargador de gases de escape 2, siendo asistido el turbocargador de gases de escape 2 adicionalmente por un supercargador 5 mecánico que en lo sucesivo se denomina supercargador. El aire comprimido por el turbocompresor 6 del supercargador 5 se alimenta en el lado de succión 15 del compresor 4 del turbocargador de gases de escape 2. El lado de succión 15 del turbocargador de gases de escape 2 y el lado de presión 12 del supercargador 5 por tanto están unidos en la disposición representada en la figura 1. Además, está prevista una válvula de retención 20 para impedir que la presión de admisión generada en el lado de presión 12 por el turbocompresor 6 vuelva al conducto de succión 21.

20

25

5

10

15

El turbocargador de gases de escape 2 se compone de una turbina 3 accionada con el caudal másico de gas de escape del motor de combustión interna 1, la cual acciona el compresor 4 del turbocargador de gases de escape 2. El aire succionado por el compresor 4 del turbocargador de gases de escape 2 en el lado de succión 15 a través del conducto de succión 21 se comprime hacia el lado de presión 14 del compresor 4 y, a continuación, se suministra al

motor de combustión interna 1.

El supercargador 5 comprende un turbocompresor 6 que es accionado por un motor auxiliar 8. El motor auxiliar 8 acciona también la masa de inercia 7.

En la figura 1, el motor auxiliar 8 está representado como electromotor que es alimentado de energía por una red de a bordo 9 del vehículo. Sin embargo, se puede emplear también cualquier otra variante de motores auxiliares.

El turbocompresor 6 del supercargador 5 presenta un lado de succión 13 y un lado de presión 12. En el lado de succión 13 está dispuesto un órgano de cierre 10.

35

En un punto de funcionamiento en el que, debido a un caudal másico de gas de escape demasiado pequeño, el turbocargador de gases de escape 2 no es capaz de proporcionar una presión de admisión requerida con la que se puede realizar el par de giro requerido por el motor de combustión interna 1, la presión de admisión adicional

necesaria es proporcionada por el turbocompresor 6 del supercargador 5.

40

45

50

55

60

En este "modo de carga" está abierto el órgano de cierre 10. A través del órgano de cierre 10 y del lado de succión 13 del turbocompresor 6 es succionado aire por el turbocompresor 6 a través del conducto de succión 21 que viene por ejemplo de un filtro de aire (no representado) de un vehículo. El aire es comprimido por el turbocompresor 6. En la configuración representada en la figura 1, el aire de alimentación proporcionado por el supercargador 5 se suministra al lado de succión 15 del compresor 4 y, entonces, el caudal másico de aire compuesto por el aire del turbocargador de gases de escape 2 y del supercargador 5 fluye en conjunto a los cilindros del motor de combustión

interna.

Si la sola potencia de compresor del compresor 4 del turbocargador de gases de escape 2 es suficiente para proporcionar la presión de admisión necesaria para el par de giro requerido por el motor de combustión interna 1, el supercargador 5 se hace funcionar en modo de espera. Para ello, en primer lugar se cierra el órgano de cierre 10. El motor auxiliar 8 sigue accionando el turbocompresor 6 del supercargador 5. Por lo tanto, también en el modo de espera, la rueda de álabes de compresor 17 del turbocompresor 6 del supercargador 5, representada en la figura 3, es accionada permanentemente por el motor auxiliar 8. Sólo en determinados estados de funcionamiento en los que es previsible que el supercargador 5 ya no tiene que proporcionar presión de admisión durante un tiempo prolongado, es posible desconectar el supercargador 5 completamente, por ejemplo en fases de ralentí prolongadas

del motor de combustión interna.

En la fase de espera, el turbocompresor 6 evacua automáticamente el espacio de aire de compresor 18 en el lado de succión, que se puede ver en la figura 3 y que está situado entre la rueda de álabes de compresor 17 y el órgano de cierre 10 y que está delimitado por las paredes, situadas en el lado de succión, de la carcasa del turbocompresor

Cuando el espacio de aire de compresor 18 en el lado de succión ha sido sustancialmente evacuado por el turbocompresor 6, se reduce considerablemente el trabajo de compresión que debe ser prestado por el turbocompresor 6. En el caso de un vacío total que sin embargo prácticamente no se puede conseguir, incluso se

prestaría ningún trabajo de compresión. En este estado de funcionamiento, el motor auxiliar 8 tiene que compensar únicamente las pérdidas por fricción del turbocompresor 6, y en caso de un vacío no completo tiene que presentar únicamente un pequeño trabajo de compresión adicional. De esta manera, el consumo de energía del motor auxiliar 8 en este estado de funcionamiento es muy reducido.

Al mismo tiempo, queda garantizado que la rueda de álabes de compresor 17 del turbocompresor 6 del supercargador 5 gire, también en el modo de espera, siempre con un número de revoluciones predeterminado, para poder proporcionar en caso de un paso súbito al modo de carga del supercargador 5 inmediatamente la presión de admisión necesaria sin tener que poner previamente el supercargador 5 a su número de revoluciones nominal. Por lo tanto, al evitar una fase de aceleración a plena marcha del supercargador 5 durante el paso del modo de espera al modo de carga, se puede proporcionar mucho más rápidamente la presión de admisión necesaria para el motor de combustión interna, y el motor de combustión interna 1 puede emitir inmediatamente el par de giro requerido.

Dado que, generalmente, después de un corto tiempo del orden de un segundo y menos, el turbocargador de gases de escape 2 vuelve a ser capaz de proporcionar el sólo, sin el supercargador 5 adicional, la presión de admisión requerida por el motor de combustión interna 1, al cabo de este período, el supercargador 5 puede volver a la fase de espera. Durante ello, como se ha descrito anteriormente, se cierra el órgano de cierre 10 en el lado de succión. Entonces, el turbocompresor 6 evacua el espacio de aire de compresor 18 en el lado de succión, entre el órgano de cierre 10 y la rueda de álabes de compresor 17. El motor auxiliar 8 sigue accionando el turbocompresor 6 y la masa de inercia 7. Sin embargo, por el menor consumo de potencia del turbocompresor 6 tiene que proporcionar sólo una reducida energía para ello.

En función del importe del par de giro proporcionado por el motor auxiliar 8, durante el modo de carga del supercargador 5 se pueden producir caídas de número de revoluciones del turbocompresor 6, ya que el trabajo de compresión que ha de ser emitido por el turbocompresor 6 al aire de alimentación comprimido es mayor que el par de accionamiento proporcionado por el motor auxiliar 8. Esto por una parte puede ser resultado del dimensionamiento del motor auxiliar 8, pero por otra parte también de que por ejemplo en el caso en que el motor auxiliar 8 es un electromotor alimentado de corriente por la red de a bordo, se limita la absorción de corriente del electromotor para no provocar por ejemplo caídas de tensión inadmisibles de la red de energía de a bordo del vehículo. En este caso, las caídas demasiado fuertes del número de revoluciones debido a la diferencia del par de giro requerido por el turbocompresor 6 y emitido por el motor auxiliar 8 se compensan mediante la energía de accionamiento acumulada en la masa de inercia 7. La energía de accionamiento acumulada en la masa de inercia 7 hace al menos temporalmente que el número de revoluciones de la rueda de álabes de compresor 17 del turbocompresor 6 se mantenga al menos en parte durante el paso súbito del modo de espera al modo de carga y no descienda demasiado por debajo del número de revoluciones nominal, de manera que el turbocompresor 6 del supercargador 5 pueda seguir proporcionando suficientemente la presión requerida. Dado que las fases de funcionamiento del supercargador 5 generalmente son más cortos de un segundo, porque habitualmente ha de compensarse únicamente el agujero de turbo del turbocargador de gases de escape 2, por el modo de acción de la masa de inercia 7 se producen sólo pequeñas caídas de número de revoluciones.

En la fase de espera siguiente a la fase de carga, en la cual el turbocompresor 6 necesita sólo una baja potencia de accionamiento, el sistema formado por el turbocompresor 6, la masa de inercia 7 y el motor auxiliar 8 se vuelve a llevar lentamente al número de revoluciones nominal por medio del motor auxiliar 8. Entonces, la masa de inercia 7 vuelve a acumular energía de accionamiento que en la fase de carga siguiente se vuelve a utilizar de la manera descrita anteriormente para el accionamiento adicional del turbocompresor 6 adicionalmente al accionamiento del turbocompresor 6 por el motor auxiliar 8.

La figura 2 muestra otra forma de realización ventajosa. En esta, divergiendo de la forma de realización representada en la figura 1, en el lado de presión 12 del turbocompresor 6 están dispuestos un segundo órgano de cierre 11 en forma de una válvula de retención así como una bomba de vacío 16. La bomba de vacío 16 está comunicada, en el lado de presión 12 del turbocompresor 6, con el espacio de aire de compresor 19 en el lado de presión, que se puede ver en la figura 3. Mediante esta bomba de vacío 16, durante el paso a la fase de espera, después del cierre del órgano de cierre 10 se evacua el espacio de aire de compresor 19 en el lado de presión. Durante ello, se cierra automáticamente el órgano de cierre 11 realizado como válvula de retención. Por esta evacuación del espacio de aire de compresor 19 en el lado de presión, que tiene como consecuencia también una mejora adicional del vacío en el espacio de aire de compresor 18 en el lado de succión, se consigue seguir reduciendo el trabajo de compresión prestado por el turbocompresor y por tanto el consumo de potencia del motor auxiliar en el modo de espera.

Inmediatamente después del paso del supercargador 5 de la fase de espera al modo de carga se abre automáticamente el órgano de cierre 11 realizado como válvula de retención para dejar correr el aire comprimido por el turbocompresor 6 del supercargador 5, al motor de combustión interna 1 pasando por el compresor 4 del turbocargador de gases de escape 2. Divergiendo de la representación en la figura 2, el órgano de cierre 11 también puede realizarse como válvula controlable que se abre o se cierra por un control externo.

65

5

10

15

20

25

30

35

40

45

50

La bomba de vacío 16 puede ser una bomba de vacío prevista especialmente para el supercargador 5. De manera ventajosa, sin embargo, se usa una bomba de vacío ya existente en el vehículo en el que se usa el motor de combustión interna. Para ello, se ofrece especialmente la bomba de vacío del sistema de frenos.

- La figura 3 muestra una forma de realización del supercargador 5 según la invención en el que el turbocompresor 6 está realizado como compresor radial con exactamente una rueda de álabes de compresor 17. La rueda de álabes de compresor 17 provista de manera conocida de álabes de compresor divide el espacio encerrado lateralmente por la carcasa de compresor 22 en un espacio de aire de compresor 18 en el lado de succión, por una parte, y un espacio de aire de compresor 19 en el lado de presión, por otra parte. En la forma de realización representada, los espacios de aire de compresor 18 y 19 están limitados en el sentido de paso R en el que el supercargador 5 es atravesado por el aire comprimido o a comprimir, en el lado de succión por un órgano de cierre 10 realizado como válvula de mariposa pivotante y, en el lado de presión, por un órgano de cierre 11 realizado como válvula de retención. La bola de la válvula de retención está pretensada a su posición de cierre mediante un resorte 25. A través de una válvula magnética 23, una bomba de vacío 16 existente ya en el vehículo para otros fines, está conectada al espacio de aire de compresor 19 en el lado de presión. La válvula magnética 23 está conectada al órgano de cierre 10 a través de una línea de control 24.
- En el modo de espera, el órgano de cierre 10 está cerrado y la válvula magnética 23 está abierta. Por lo tanto, el espacio de aire de compresor 18 en el lado de succión se evacua con la ayuda de la propia potencia de compresor de la rueda de álabes de compresor 17, mientras que el espacio de aire de compresor 19 en el lado de presión se evacua según la flecha U con la ayuda de la bomba de vacío 16. El órgano de cierre 11 se ha cerrado automáticamente debido a la presión decreciente en el espacio de aire de compresor 19 en el lado de presión. La rueda de álabes de compresor 17 rota a su número de revoluciones nominal, accionando el motor auxiliar 8 la rueda de álabes de compresor 17 y la masa de inercia 7 con un bajo consumo de corriente.
 - Cuando el supercargador 5 ha de proporcionar presión de admisión, se abre la válvula magnética 23 y, a través de la línea de control 24, al mismo tiempo se abre el órgano de cierre 10. Entonces, la bomba de vacío 16 está separada del espacio de aire de compresor 19 en el lado de presión y la rueda de álabes de compresor 17 succiona bruscamente aire para la compresión, a través del órgano de cierre 10 abierto y del espacio de aire de compresor 19 en el lado de presión. A través del espacio de aire de compresor 19 en el lado de presión y del órgano de cierre 11 que abre automáticamente, el aire comprimido es suministrado de forma igualmente brusca al lado de presión 15, representado en la figura 2, del compresor 4 del turbocargador de gases de escape 2.
- Si como bomba de vacío 16 se prevé en el vehículo una bomba de vacío adicional que sirve exclusivamente para la evacuación del espacio de aire de compresor 19 en el lado de presión en el modo de espera y no realiza más funciones para otros sistemas del vehículo, se puede suprimir la válvula magnética 23 representada en la figura 3 y la bomba de vacío adicional puede ser controlada directamente para los fines del paso entre el modo de espera y el modo de carga.
- 40 El motor de combustión interna 1 puede ser un motor de gasolina o un motor diesel. Mediante la presente invención, al usar un motor diesel es posible ajustar en este una proporción de compresión óptima de aprox. 14:1 (frente a las proporciones de compresión alcanzadas hasta ahora, del orden de 15,8:1). De esta manera, se puede optimizar por ejemplo el comportamiento de encendido del motor diesel.

45 LISTA DE SIGNOS DE REFERENCIA

- 1 Motor de combustión interna
- 2 Turbocargador de gases de escape
- 3 Turbina del turbocargador de gases de escape
- 50 4 Compresor del turbocargador de gases de escape
 - 5 Supercargador

- 6 Compresor del supercargador
- 7 Masa de inercia
- 8 Motor auxiliar
- 55 9 Alimentación de energía
 - 10 Primer órgano de cierre
 - 11 Segundo órgano de cierre
 - 12 Lado de presión del supercargador
 - 13 Lado de succión del supercargador
- 60 14 Lado de presión del turbocargador de gases de escape
 - Lado de succión del turbocargador de gases de escape
 - 16 Bomba de vacío
 - 17 Rueda de álabes de compresor
 - 18 Espacio de aire de compresor en el lado de succión
- 65 19 Espacio de aire de compresor en el lado de presión
 - 20 Válvula de retención

	21	Conducto de succión
	22	Carcasa de compreso
	23	Válvula magnética
	24	Línea de control
5	25	Resorte

REIVINDICACIONES

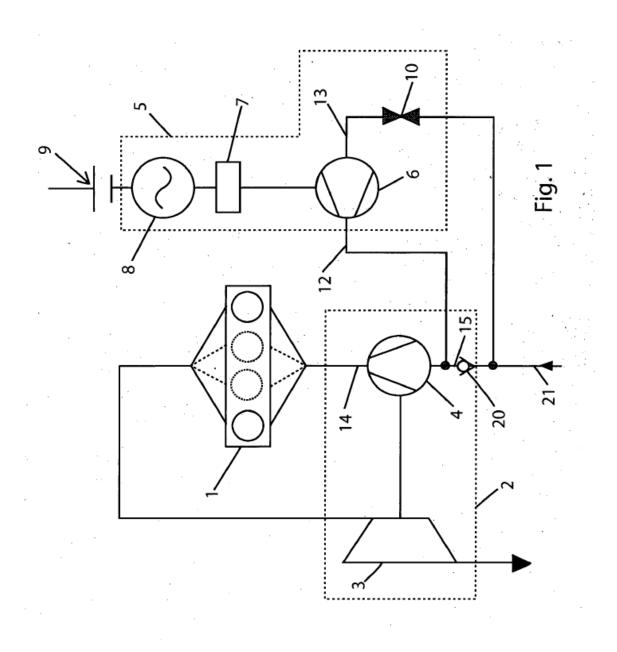
- 1. Combinación de un turbocargador de gases de escape (2) y un supercargador (5) para un motor de combustión interna (1), comprendiendo el supercargador (5)
 - un turbocompresor (6) con al menos una rueda de álabes de compresor (17), presentando el turbocompresor (6) un lado de succión (13) y un lado de presión (12),
 - una masa de inercia (7) para acumular energía de accionamiento,
 - un motor auxiliar (8) para accionar la rueda de álabes de compresor (17) y la masa de inercia (7), y
 - un primer órgano de cierre (10) dispuesto en el lado de succión (13) del turbocompresor (6),
 - formando la zona entre el primer órgano de cierre (10) y la rueda de álabes de compresor (17) del turbocompresor (6) un espacio de aire de compresor (18) en el lado de succión, estando realizado el turbocompresor (6) de tal forma que el espacio de aire de compresor (18) en el lado de succión puede ser evacuado sustancialmente, después del cierre del primer órgano de cierre (10), mediante la potencia de compresor propia del turbocompresor (6).
 - abriéndose el primer órgano de cierre (10) solamente cuando el motor de combustión interna (1) no puede proporcionar mediante la sola acción conjunta con el turbocargador de gases de escape (2) un par de giro predeterminado.
- 2. Combinación según la reivindicación 1, caracterizada por que en el lado de presión (12) del turbocompresor (6) está dispuesto un segundo órgano de cierre (11), porque la zona entre la rueda de álabes de compresor (17) del turbocompresor (6) y el segundo órgano de
- cierre (11) forma un espacio de aire de compresor (19) en el lado de presión y porque está previsto un dispositivo para la evacuación sustancial del espacio de aire de compresor (19) en el lado de presión.
 - 3. Combinación según la reivindicación 2, caracterizada por que el dispositivo para la evacuación sustancial del espacio de aire de compresor (19) en el lado de presión es una bomba de vacío (16) de un sistema de frenos de un vehículo.
 - 4. Combinación según una de las reivindicaciones anteriores, caracterizada por que el motor auxiliar (8) es un electromotor alimentado por la red de a bordo (9) de un vehículo.
 - 5. Combinación según la reivindicación 4,
- 35 caracterizada por que está previsto un dispositivo de regulación para limitar el consumo de corriente del electromotor.
 - 6. Combinación según una de las reivindicaciones anteriores, caracterizada por que el turbocompresor (6) es un compresor radial.
 - 7. Combinación según una de las reivindicaciones anteriores, caracterizada por que al menos el primer órgano de cierre (10) puede ser controlado activamente por un dispositivo de control.
- 45 8. Combinación según la reivindicación 3 o según una de las reivindicaciones 4 a 7 en combinación con la reivindicación 2, caracterizada por que el segundo órgano de cierre (11) es una válvula de retención.
- Procedimiento para el funcionamiento de una combinación de un turbocargador de gases de escape (2) y un supercargador (5) junto a un motor de combustión interna (1), comprendiendo el supercargador (5) un turbocompresor (6) con al menos una rueda de álabes de compresor (17) así como con un lado de succión (13) y con un lado de presión (12), un motor auxiliar (8) para accionar la rueda de álabes de compresor (17), una masa de inercia (7) para acumular energía de accionamiento, así como un primer órgano de cierre (10) dispuesto en el lado de succión (13) del turbocompresor (6), formando la zona entre el primer órgano de cierre (10) y la rueda de álabes de compresor (17) del turbocompresor (6) un espacio de aire de compresor (18) en el lado de succión, comprendiendo el procedimiento los siguientes pasos:
 - el accionamiento permanente de la rueda de álabes de compresor (17) del turbocompresor (6) y de la masa de inercia (7) por medio del motor auxiliar (8),
 - el cierre al menos del primer órgano de cierre (19) y la evacuación sustancial del espacio de aire de compresor (18) en el lado de succión mediante la potencia de compresor propia del turbocompresor (6), y
 - la apertura del primer órgano de cierre (10) solamente cuando el motor de combustión interna (1) no puede proporcionar un par de giro predeterminado, siendo asistido el motor auxiliar (8) durante el accionamiento de la rueda de álabes de compresor (17) del turbocompresor (6) por la energía de accionamiento acumulada en la masa de inercia (7)

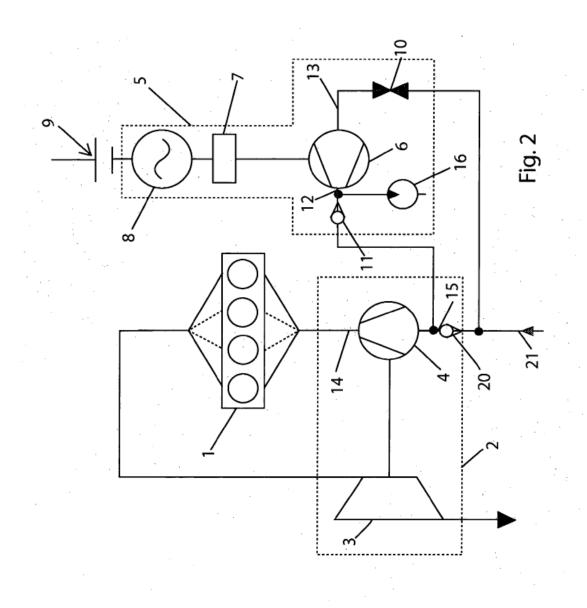
65

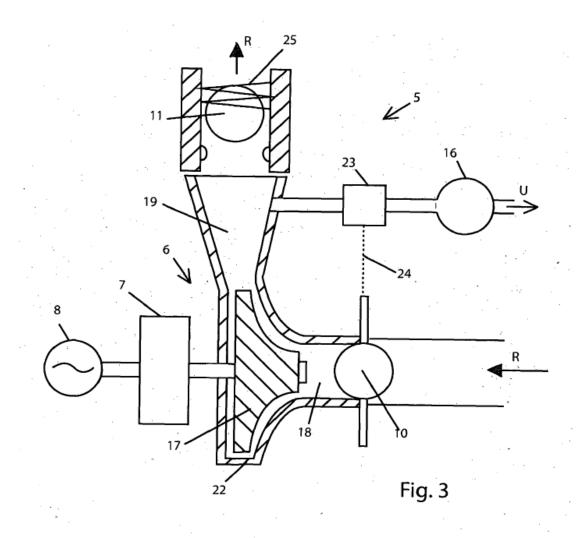
60

5

10


15


20


30

usándose el supercargador (5) adicionalmente al turbocargador de gases de escape (2), y abriéndose el primer órgano de cierre (10) solamente cuando el motor de combustión interna (1) no puede proporcionar mediante la sola acción conjunta con el turbocargador de gases de escape (2) un par de giro predeterminado.

- 10. Procedimiento según la reivindicación 9, caracterizado por que el supercargador (5) presenta en el lado de presión (12) del turbocompresor (6) un segundo órgano de cierre (11), porque la zona entre la rueda de álabes de compresor (17) del turbocompresor (6) y el segundo órgano de cierre (11) forma un espacio de aire de compresor (19) en el lado de presión y por que el procedimiento comprende adicionalmente el paso de la evacuación sustancial del espacio de aire de compresor (19) en el lado de presión mediante un dispositivo para la evacuación del espacio de aire de compresor (19) en el lado de presión.
- 11. Procedimiento según la reivindicación 10,
 caracterizado por que la evacuación del espacio de aire de compresor (19) en el lado de presión se realiza mediante
 una bomba de vacío (16) de un sistema de frenos de un vehículo que comprende el motor de combustión interna (1),
 la cual constituye el dispositivo para la evacuación.
- 12. Procedimiento según la reivindicación 10 u 11, caracterizado por que en el marco del proceso de evacuación del espacio de aire de compresor (19) en el lado de presión se hace pasar a un estado cerrado el segundo órgano de cierre (11).
 - 13. Procedimiento según la reivindicación 12, caracterizado por que el segundo órgano de cierre (11) pasa automáticamente al estado cerrado.
- 14. Procedimiento según una de las reivindicaciones 9 a 13 anteriores, caracterizado por que el motor auxiliar (8) es un electromotor y es alimentado por la red de a bordo (9) de un vehículo que comprende el motor de combustión interna (1).
- 15. Procedimiento según la reivindicación 14,30 caracterizado por que se limita la corriente absorbida por el electromotor.
- 16. Procedimiento según la reivindicación 15, caracterizado por que la limitación de la corriente se realiza de tal forma que la red de a bordo (9) no experimenta caídas de tensión situadas fuera de límites de especificación predefinidas de aparatos de control electrónicos del vehículo.
 - 17. Procedimiento según una de las reivindicaciones 9 a 16 anteriores, caracterizado por que al menos el primer órgano de cierre (10) es controlado activamente por un dispositivo de control.

