

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 550 938

51 Int. Cl.:

A61K 35/76 (2015.01) A61K 39/165 (2006.01) A61K 35/14 (2015.01) A61P 35/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 10.10.2008 E 08805222 (0)
 (97) Fecha y número de publicación de la concesión europea: 19.08.2015 EP 2203183
- (54) Título: Medicamentos y métodos para el tratamiento de mesotelioma
- (30) Prioridad:

10.10.2007 EP 07291232

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 13.11.2015

73) Titular/es:

INSTITUT PASTEUR (50.0%)
28, Rue du Docteur Roux
75724 Paris Cedex 15, FR y
CENTRE NATIONAL DE LA RECHERCHE
SCIENTIFIQUE (50.0%)

(72) Inventor/es:

GAUVRIT, ANNE; TANGY, FRÉDÉRIC y GREGOIRE, MARC

(74) Agente/Representante:

PONTI SALES, Adelaida

DESCRIPCIÓN

Medicamentos y métodos para el tratamiento de mesotelioma

5 Campo de la invención

[0001] La presente invención se refiere a métodos para preparar células dendríticas vacunales destinadas al tratamiento de mesotelioma maligno.

10 Antecedentes de la invención

[0002] Los mesoteliomas malignos (MM) son neoplasmas relativamente raros y altamente agresivos, que surgen de la proliferación descontrolada de células mesoteliales que revisten cavidades serosas, más comúnmente la pleura (Mesotelioma Pleural Maligno o MPM) (Robinson y col. (2005) Lancet 366: 397-408). Los estudios epidemiológicos han establecido que la exposición a amianto es uno de los factores etiológicos MPM más importantes en los países industrializados (Gruber (2005), Lung Cancer 49S1: S21-S23; Bartrip (2004) Postgrad Med. J. 80: 72-76). Aunque el uso mundial de amianto se ha reducido considerablemente, se espera que la incidencia de mesotelioma aumente en las siguientes dos décadas, debido a un largo periodo de latencia (de 20 a 40 años) entre el tiempo de exposición a amianto y la aparición de síntomas clínicos.

[0003] Hoy en día, el diagnóstico de cáncer se establece generalmente en una etapa avanzada debido a la ausencia de síntomas manifiestos en el período temprano de la enfermedad, lo que hace deficiente el pronóstico para los pacientes de mesotelioma. En consecuencia, el MPM es considerado realmente como un cáncer relativamente refractario a todas las modalidades de tratamiento convencional. Por consiguiente, hay una necesidad imperiosa del desarrollo de un nuevo enfoque terapéutico.

[0004] El desarrollo pasado y reciente en la inmunoterapia del MPM se ha revisado por Grégoire y Ebstein (2007) Bull Cancer 94(1): 23-31.

30 **[0005]** Un enfoque terapéutico reciente describe el uso de células dendríticas cargadas con células que expresan proteínas de choque térmico apoptóticas de 70 para inducir la actividad de los linfocitos T citotóxicos frente a las células de mesotelioma (Ebstein y col. (2004) Am J Respir Crit Care Med 169: 1322-1330).

[0006] Durante la última década, ha habido un creciente interés en la viroterapia, en parte relacionado con el conocimiento creciente en la producción de vectores víricos recombinantes para terapia génica humana. Ahora se consideran numerosos virus de replicación de ARN agentes terapéuticos del cáncer potenciales. Como tal, se ha propuesto la terapia del MPM usando virus del Herpes Simple (VHS) competentes para replicación creados mediante técnicas de ingeniería, basado en estudios *in vitro* y los resultados obtenidos en un modelo murino de MPM (Adusumilli y col. (2006) J. Gene Med. 8: 603-615). Sin embargo, la seguridad a largo plazo de estos vectores víricos creados mediante técnicas de ingeniería en seres humanos no se conoce y serán necesarios extensos estudios clínicos para documentar este aspecto del uso de VHS.

[0007] Por consiguiente, existe la necesidad de vectores víricos con una seguridad reconocida susceptible de usarse en el marco del tratamiento de mesotelioma.

[0008] El VS (Virus del Sarampión) es un virus de ARN monocatenario negativo con envoltura que pertenece a la familia *Paramyxoviridae*, género de los virus *Morbilli*. Se han desarrollado diversas cepas atenuadas vivas competentes para replicación de VS para producir vacunas contra el sarampión. A modo de ejemplo, Schwartz, Moraten o Zagreb (que se obtienen a partir de muestras del VS aisladas de un paciente Edmonston) son cepas de 50 vacunas del VS seguras y bien documentadas.

[0009] Se ha demostrado recientemente que la administración *in vivo* de una cepa del VS Edmonston competente para replicación dio como resultado una ralentización de crecimiento o a veces la regresión de tumores establecidos en modelos animales de linfoma y cáncer de mieloma (Grote y col. (2001) Blood 97: 3746-3754; Peng y 55 col. (2001) Blood 98: 2002-2007). Además, Anderson y col. (2004) Cancer Res. 64: 4919-4926, han demostrado en experimentos *in vitro* que fue necesaria una alta expresión de CD46 por las células tumorales para la infección y eliminación de estas células por una cepa del VS Edmonston atenuada viva. Sin embargo, se sabe que CD46 se expresa de forma variable por carcinomas humanos (Niehans y col. (1996) American J. Pathol. 149: 129-142), cuestionando así la aplicabilidad general de cepas del VS atenuadas vivas para tratar cánceres.

[0010] También se ha descrito previamente el uso de un virus del sarampión atenuado para tratar cánceres distintos de mesotelioma maligno, tal como en Peng y col. (2002) Cancer Research 62: 4656-4662, que describe que un virus del sarampión atenuado recombinante creado por ingeniería genética para expresar un péptido marcador
5 soluble e inerte, es decir, el dominio extracelular de un antígeno carcinoembrionario humano, es potente contra células de cáncer de ovario humano, o en el documento WO02/23994, que describe el uso de virus del sarampión atenuado para tratar linfoma, mieloma, melanoma, glioma y carcinoma de mama.

[0011] Aldjahdhami y col. (Poster contribution TP112 at Thoracic Society of Australia and New Zealand Annual Spring Meeting 2007, Respirology 12, S1) también describen la infección de las células de mesotelioma con vectores del virus del sarampión que contienen un transgen que es el gen indicador luciferasa o GFP, o el antígeno tumoral CEA o NIS. Este documento también menciona que todas las células de mesotelioma expresan el receptor del virus del sarampión CD46 y que los vectores del virus del sarampión pueden tener una utilidad más amplia que los adenovirus. Especificó adicionalmente que las líneas celulares mostraban las características de la formación de sincitios después de la infección junto con la expresión transgénica apropiada, y que son susceptibles a la eliminación celular.

[0012] Hegmans y col. (2005, Cancer Research, 171: 1168-1177) desvelan un método para preparar células dendríticas vacunales para el tratamiento de mesotelioma maligno en un individuo que comprende las etapas de 20 preparación de subtipos dendríticos obtenidos de médula ósea, carga con antígenos tumorales e inducción de la maduración.

[0013] La invención se define por las reivindicaciones.

25 Resumen de la invención

[0014] La presente invención surge del hallazgo inesperado, por los presentes inventores, de que el virus atenuado del sarampión podría infectar y matar eficientemente de las células de mesotelioma. Además, los presentes inventores han demostrado que las células dendríticas en contacto con el lisado de células de 30 mesotelioma infectadas con el virus del sarampión atenuado podrían activar los linfocitos T CD8 anti-mesotelioma.

[0015] Por lo tanto, la presente memoria descriptiva se refiera a un virus atenuado del sarampión para su uso en el tratamiento de mesotelioma maligno en un individuo.

35 **[0016]** La presente memoria descriptiva describe el uso de al menos un virus atenuado del sarampión para la fabricación de un medicamento destinado al tratamiento de mesotelioma maligno en un individuo.

[0017] La memoria descriptiva también describe un método para el tratamiento de mesotelioma maligno en un individuo, donde se administra una cantidad terapéuticamente eficaz de al menos un virus atenuado del sarampión a 40 dicho individuo.

[0018] La presente invención se refiere adicionalmente a un método para preparar células dendríticas vacunales destinadas al tratamiento de mesotelioma maligno en un individuo, que comprende las siguientes etapas:

- 45 infección *in vitro* de células de mesotelioma maligno, tomadas del individuo por una cepa de sarampión atenuada para producir un lisado celular;
 - poner en contacto células dendríticas con el lisado celular para producir células dendríticas vacunales.

[0019] La presente invención también se refiere a células dendríticas vacunales que pueden obtenerse por el método de preparación que se ha definido anteriormente y definido por las reivindicaciones, a una composición farmacéutica que comprende dichas células dendríticas vacunales como principio activo, junto con un vehículo farmacéuticamente aceptable, a dichas células dendríticas vacunales para su uso en el tratamiento del mesotelioma maligno en un individuo. La memoria descriptiva también describe el uso de dichas células dendríticas vacunales, para la fabricación de un medicamento destinado al tratamiento del cáncer en un individuo.

[0020] La memoria descriptiva describe adicionalmente un método para el tratamiento del cáncer en un individuo, donde una cantidad terapéuticamente eficaz de células dendríticas vacunales susceptibles de obtenerse por el método de preparación que se ha definido anteriormente se administran a dicho individuo.

Descripción detallada de la invención

40

[0021] Como se prevé en el presente documento, el individuo es preferiblemente un mamífero, más preferiblemente un ser humano. Preferiblemente además, el individuo ha estado expuesto a amianto.

[0022] Como se prevé en el presente documento, la expresión "virus del sarampión atenuado" designa cualquier virus obtenido a partir de un virus causante del sarampión y que presenta una virulencia reducida con respecto a dicho virus causante del sarampión. Como se prevé en el presente documento, el virus atenuado del sarampión puede obtenerse a partir del virus causante del sarampión mediante cualquier técnica conocida por el experto en la técnica, tal como pases seriados en células cultivadas y/o ingeniería genética. En particular, el virus atenuado del sarampión puede ser un virus recombinante, expresando opcionalmente genes adicionales. Más particularmente, el virus atenuado del sarampión puede ser un virus del sarampión en el que la expresión de una o más proteínas, preferiblemente la proteína C accesoria, se elimina. Se prefiere que el virus atenuado del sarampión no cause básicamente ningún síntoma del sarampión cuando se administra a un ser humano. Además, el virus atenuado del sarampión está preferiblemente vivo y es competente para replicación.

[0023] Preferiblemente, el virus atenuado del sarampión es una cepa Edmonston. Las cepas Edmonston del virus atenuado del sarampión se conocen bien por un experto en la técnica y se describen particularmente en Griffin (2001) Field's Virology 4ª Edición vol. 2 Knipe y Howley (ed.) Lippincott-Raven Publishers, Filadelfia, 1401-1441; 20 Hilleman (2002) Vaccine 20: 651-665). Más preferiblemente, el virus atenuado del sarampión se selecciona entre el grupo que consiste en una cepa Schwartz y una cepa Moraten. Estas cepas, cuyos genomas han demostrado ser idénticos, se conocen bien por el experto en la técnica y se usan ampliamente para la producción de vacunas contra el sarampión. Se describen en particular en Schwarz (1962) Am. J. Dis. Child 103: 216-219; Parks y col. (2001) J. Virol. 75: 921-933 y Parks y col. (2001) J. Virol., 75: 910-920. Mucho más preferiblemente, el virus atenuado del sarampión se produce a partir del plásmido pTM-MVSchw (SEQ ID NO: 1) descrito por Combredet y col. (2003) J. Virol. 77: 11546-11554.

[0024] Los mesoteliomas malignos a tratar dentro del marco de la presente invención son preferiblemente mesoteliomas pleurales malignos. Dichos cánceres se describen en particular en Kazan-Allen (2005) Lung cancer 30 49S1: S3-S8 y Robinson y col. (2005) Lancet 366: 397-408.

[0025] Cuando el virus atenuado del sarampión se administra a un individuo, puede administrarse a través de la cavidad intrapleural o por vía intranasal, intramuscular, intravenosa o subcutánea. Cuando el virus atenuado del sarampión se administra a través de la cavidad intrapleural, se administra preferiblemente en la proximidad cercana o directamente en los tumores a tratar. Si es necesario, el virus atenuado del sarampión puede estar asociado a cualquier vehículo farmacéuticamente aceptable adecuado. La cantidad terapéuticamente eficaz del virus atenuado del sarampión que se va a administrar está preferiblemente en el intervalo de 10³ a 10⁶ de dosis infecciosas de cultivo tisular al 50 % (TCID50). La determinación de la TCID50 se conoce bien por un experto en la técnica y se describe en particular por Karber (1931) Arch. Exp. Path. Pharmak. 162: 840-483.

[0026] La etapa de tomar las células de mesotelioma maligno del individuo que se va a tratar mediante las células dendríticas vacunales no se incluye en el método de preparación que se ha definido anteriormente de células dendríticas vacunales. Esta etapa puede proceder de acuerdo con cualquier técnica conocida por un experto en la técnica para recoger células, tales como biopsias y efusiones (por ejemplo, efusiones pleurales). Después de tomarse, las células de mesotelioma maligno pueden mantenerse en cultivo de acuerdo con técnicas convencionales, o congelarse (por ejemplo, a -80 °C) para su conservación, por ejemplo. Cuando las células de mesotelioma maligno no proceden del individuo a tratar por las células dendríticas vacunales, pueden obtenerse en particular a partir de líneas celulares alogénicas de mesotelioma humano.

50 **[0027]** En el método de preparación que se ha definido anteriormente, la infección de las células de mesotelioma maligno por el virus atenuado del sarampión puede proceder poniendo en contacto directamente las células y el virus, por ejemplo en una Multiplicidad de Infección (MOI) de 1, con una incubación de 2 horas a 37 °C. Después de la infección, la muerte de las células infectadas procede espontáneamente debido a la acción del virus. Un sincitio se forma normalmente en primer lugar seguido de la lisis de las células. Este fenómeno puede probarse mediante la observación microscópica directa de las células infectadas. Como se prevé en el presente documento, "lisado celular" incluye tanto el lisado celular en su totalidad (o total), como fracciones del lisado celular, tal como fracciones de membrana (por ejemplo, cuerpos de inclusión citoplásmicos o apocuerpos). Como se entenderá bien por los expertos en la técnica, el lisado celular obtenido en la primera etapa del método de preparación que se ha definido anteriormente corresponde a un lisado celular de mesotelioma maligno infectado por el virus.

[0028] Las células dendríticas pueden obtenerse por varias maneras bien conocidas por el experto en la técnica. Las células dendríticas proceden preferiblemente del individuo que se va a tratar. Actualmente se prefiere que las células dendríticas sean células dendríticas obtenidas de monocitos. La obtención de células obtenidas a partir de monocitos se conoce particularmente bien por un experto en la técnica. Preferiblemente, las células derivadas de monocitos pueden obtenerse siguiendo la metodología general descrita en el Ejemplo 4 o por Spisek y col. (2001) Cancer Immunology Immunotherapy 50: 417-427, o por Royer y col. (2006) Scand. J. Immunol. 63: 401-409. Cuando las células dendríticas obtenidas de monocitos proceden del individuo que se va a tratar, los monocitos pueden obtenerse a partir de la leucoféresis de dicho individuo.

10

[0029] Como será evidente para un experto en la técnica, el contacto de las células dendríticas y del lisado celular debe mantenerse durante un tiempo diferente para permitir una carga eficaz de las células dendríticas por los antígenos presentes en el lisado celular. Una vez cargadas (o pulsadas), se obtienen las células dendríticas vacunales de acuerdo con la invención. La carga puede proceder siguiendo la metodología general descrita en el Ejemplo 4. Un periodo de contacto ejemplar entre las células dendríticas y el lisado celular suficiente para permitir una carga eficiente de las células dendríticas es de aproximadamente 24 horas. En particular, el periodo de contacto puede mantenerse hasta que las células dendríticas estén en un estado activado. El estado activado se alcanza normalmente después de que las células dendríticas se hayan cargado. El estado activado (o estado maduro) de las células dendríticas puede probarse mediante numerosos marcadores bien conocidos por un experto en la técnica, tal como marcadores de membrana o de citocina. Dichos marcadores de las células dendríticas activadas se enumeran en particular en el Ejemplo 5.

[0030] Por lo tanto, las células dendríticas vacunales que pueden obtenerse de acuerdo con el método de preparación de la invención son particularmente ventajosas ya que son estimuladores potentes de linfocitos T CD8 anti-cancerosas. Igualmente ventajoso, el método de preparación de acuerdo con la invención permite la preparación de células dendríticas vacunales en un estado activado.

Breve descripción de las figuras

30 [0031]

Figuras 1, 2, 3, 4 y 5: Susceptibilidad del mesotelioma al virus atenuado del sarampión (VS).

Figura 1 - Actividad oncolítica selectiva de la cepa de vacuna del VS Schwarz. Un panel de líneas celulares de mesotelioma epitelioide humano (M11, M13, M47, M56 y M61) y una línea celular mesotelial normal inmortalizada 35 (Met5A) se infectar con un VS no recombinante (MOI 1.0) y se realizaron observaciones de la morfología de los cultivos infectados 72 horas más tarde.

Figuras 2-3 - Nivel de expresión superficial mayor de los receptores CD46 para células tumorales en comparación con sus equivalentes normales. Las células se tiñeron con anticuerpos específicos de CD46 conjugados con FITC (histograma de color gris) o control lg del isotipo relacionado (histograma de color blanco) (figura 2). Los números indican el índice de fluorescencia media y el histograma muestra los valores medios de expresión de CD46 obtenidos para líneas celulares mesoteliales (barra de color blanco) y de mesotelioma (barra tramada) (figura 3).

Figuras 4-5 - La cepa de vacuna del VS Schwarz infecta preferiblemente células tumorales transformadas. Números equivalentes de células M13 y Met5A se cultivaron por separado (figura 4) o se cultivaron conjuntamente (figura 5) durante una noche, permitiendo la adherencia celular, y la infección se hizo a MOI de 1,0 con el VS eGFP-

45 recombinante. En cultivos separados, el análisis de la expresión de eGFP se realizó en diferentes momentos tras la infección (24, 48 y 72 horas) por citometría de flujo (figura 4). En el modelo de cultivo conjunto, se realizó el mismo experimento junto con tinción por HLA-A2, ya que la expresión diferencial de los alelos HLA permitió la distinción entre dos líneas celulares. El histograma muestra el % de células eGFP-positivas para las células Met5A (barra de color blanco) y M13 (barra de color negro) del cultivo conjunto (figura 5).

50

Figura 6: Inmunogenicidad de línea celular de mesotelioma infectado por VS.

Figura 6 - Muerte celular inducida por tratamientos con VS y UV. Análisis de citometría de flujo de la apoptosis de células tumorales M13 desencadenada por exposición UV (5 kJ/cm²) o infección por VS (MOI = 1,0) en los puntos de tiempo indicados (D1 = 24 h, D2 = 48 h, D3 = 72 h, y D4 = 96 h) (barras tramadas) frente a células de control no tratadas (barras de color blanco).

Figuras 7 y 8: Fagocitosis de apocuerpos por CD derivadas de monocitos.

Figura 7 - Se marcaron células tumorales M13 tratadas por UV o VS con PKH-26 y se cultivaron conjuntamente con CD inmaduras durante 24 horas. Las CD cosechadas se tiñeron posteriormente con anticuerpos anti HLA DR

conjugados con FITC y se analizaron por citometría de flujo. Se muestra un experimento representativo de tres con resultados similares. El número de DC dobles positivas, que es el porcentaje de CD positivadas para PKH-26 separadas basándose en la expresión de HLA-DR (anticuerpos conjugados con FITC, clon B8.12.2, Immunotech), indica la eficiencia de la fagocitosis de células apoptóticas.

5 Figura 8 - El histograma representa valores medios del rendimiento de la fagocitosis obtenidos para cada condición de carga ensayada.

Figuras 9, 10 y 11: Maduración de CD inducida por cultivo conjunto con células de mesotelioma infectadas por VS.

- 10 Figuras 9 y 10 Se cultivaron CD inmaduras y células tumorales M13 en las combinaciones indicadas (relación 1/1) durante 24 horas. Como controles, se incubaron CD con ligando TLR3, ácido poliinsínico:policitidílico (50 μg/ml; Sigma), o se infectaron directamente con VS (MOI = 1,0). Posteriormente, las CD se cosecharon y se tiñeron con un panel de anticuerpo conjugado por PE específico para las moléculas de superficie celular indicadas (Figura 9 Moléculas HLA; Figura 10 Marcadores de maduración). Las CD se separaron de acuerdo con sus características y las células muertas se excluyeron basándose en la tinción por TOPRO-3 (Molecular Probes). El
- 15 morfológicas, y las células muertas se excluyeron basándose en la tinción por TOPRO-3 (Molecular Probes). El fenotipo de la superficie de las CD se analizó por citometría de flujo de tres colores. El histograma muestra los valores medios obtenidos de cuatro donantes independientes.
 - Figura 11 Se investigó el patrón de secreción de citocina de las CD en cultivo conjunto de sobrenadante de 24 horas por ensayos CBA (para IL-6, IL-1β, TNFα, IL-12 y IL-10) y ELISA (para IFNα).

Figura 12: Las CD cargadas con células de mesotelioma infectado por VS inducen el cebado de linfocitos T CD8 específicos de MSLN.

Figura 12 - El número de linfocitos T CD8 específicos de MSLN, obtenido a partir de un cultivo conjunto de sensibilización de una semana con CD no pulsadas o pulsadas UV-M13 o MV-M13, se analizó por citometría de 5 flujo. El histograma indica el porcentaje de células positivas de tetrámero PE entre linfocitos T separados basándose en la expresión de CD8 humana (anticuerpos conjugados con PE-Cy5, clon RPA-T8, BD Biosciences). Se muestra un experimento representativo.

Ejemplos

30

Ejemplo 1

Susceptibilidad del mesotelioma a infección por VS y actividad oncolítica.

- Para comparar el efecto citopático relacionado con el VS sobre células tumorales y no tumorales, un panel de cinco líneas celulares de mesotelioma epitelioide (M11, M13, M47, M56 y M61) y células mesoteliales (Met5A) se infectaron con una cepa de vacuna Schwarz en una Multiplicidad de Infección (MOI) de 1,0.
- [0033] Las líneas celulares de mesotelioma (M11, M13, M47, M56 y M61) se establecieron a partir de la efusión pleural recogida por toracocentesis de pacientes de cáncer. El diagnóstico de mesotelioma epitelioide se estableció por la tinción inmunohistoquímica de biopsias. La línea celular mesotelial de control (Met5A) se aisló de los fluidos pleurales de pacientes sin cáncer y se inmortalizó por transfección con el plásmido pRSV que codifica el antígeno T SV40 (ATCC-LGC Promochem, Molsheim, Francia). Las líneas celulares se mantuvieron en medio RPMI-1640 complementado con suero fetal de ternera inactivado por calor al 10 % (FCS de Biowest, Nuaille, Francia), L-45 glutamina al 1 % y antibióticos de penicilina/estreptomicina al 1 % (todos adquiridos en Sigma, St Quentin Fallavier, Francia). Los cultivos celulares se comprobaron de forma habitual para observar contaminaciones por *Mycoplasma* usando tinción Hoechst 33258 (Sigma).
- [0034] Se obtuvieron cepas de vacuna Schwarz del VS atenuado de F. Tangy (Pasteur Institut, Francia). El VS Schwarz se rescató del ADNc pTM-MVSchw (SEQ ID NO: 1) por el uso del sistema de restado basado en células auxiliares descrito por Radecke y col. (1995) EMBO J. 14: 5773-5784 y modificado por Parks y col. (1999) J. Virol. 73: 3560-3566. En resumen, las células auxiliares 293-3-46 se transfectaron con 5 μg de pTM-MVSchw y 0,02 μg de pEMC-Lschw que expresa el gen MV-L Schwarz (Combredet y col. (2003) J. Virol. 77: 11546-11554) (SEQ ID NO: 2). Después de una incubación durante una noche a 37 °C, se aplicó un choque de calor durante 2 h a 43 °C, y las células transfectadas se transfirieron sobre una monocapa de células Vero. Los sincitios que aparecieron en el cultivo conjunto de 15 días se transfirieron a pocillos de 35 mm y después se expandieron en matraces de 75 cm² y 150 cm² de cultivo de células Vero en DMEM FCS al 5 %. Cuando los sincitios alcanzaron una confluencia del 80-90 %, las células se rasparon en un volumen pequeño de OptiMEM y se congelaron-descongelaron una vez. Después de la centrifugación a baja velocidad para granular los desechos celulares, el sobrenadante que contenía el

virus se almacenó a -80 °C. La titulación de la reserva del VS recombinante se determinó por un ensayo de dilución del límite del punto final en células Vero. La TCID50 se calculó mediante el uso del método Kärber (Karber (1931) Arch. Exp. Path. Pharmak. 162: 480-483).

5 [0035] Se realizaron infecciones víricas de las líneas celulares de mesotelioma en una MOI = 1,0 durante 2 horas de incubación a 37 °C. Tres días después de la infección por VS, se observaron modificaciones morfológicas típicas de las células infectadas por VS, es decir, el desarrollo de un efecto citopático importante (CPE) en la mayor parte de las líneas de MPM tumorales (4/5), a diferencia de las células Met5A no cancerosas (figura 1). El CPE se demostró a través del desarrollo de sincitios más o menos importantes, lo finalmente condujo al desprendimiento en sobrenadante de cultivo de cuerpos de inclusión citoplasmáticos de células tumorales muertas (figura 1). El desarrollo de estos sincitios gigantes multinucleados es característico de la infección por sarampión y se produce por la fusión de células infectadas HA+ con células de cultivo CD46+ adyacentes.

[0036] Pudo demostrarse una expresión de regulación ascendente significativa de cepas del VS atenuado vivo 15 en el receptor CD46 por las células de mesotelioma (figuras 2-3).

[0037] Con el fin de cuantificar la susceptibilidad a la infección por VS, las líneas celulares Met5A y M13 se infectaron con reserva del VS eGFP-recombinante (Combredet y col. (2003) J. Virol. 77: 11546-11554). Se usó la expresión del transgen de GFP como un marcador de la infección vírica, permitiendo de este modo la determinación del porcentaje de células infectadas por citometría de flujo. El rendimiento de la infección por VS de ambas células de cultivo fue dependiente de la dosis (MOI variable de 0,01 a 5,0), indicando la especificidad de la señal eGFP. Mientras que Met5A se infectó por la cepa del VS (para MOI que variaba de 0,5), M13 también se infectó significativamente por VS, pero siempre a una MOI inferior (para MOI que variaba de 0,1). También se observó un aumento significativo del rendimiento de la infección de las células tumorales en comparación con las células normales (para MOI 1,0) tanto en sistemas de cultivo celular separado (figura 4) como de cultivo conjunto (figura 5) (relación 1:3) 48 horas después de la infección. Además, la infección vírica también pudo demostrarse por la regulación descendente de la expresión de la superficie de CD46 observada en los cultivos celulares infectados.

[0038] Por lo tanto, de acuerdo con estos resultados *in vitro*, los tumores de mesotelioma presentan una susceptibilidad más importante tanto a la infección mediada por VS como a la actividad citolítica relacionada con el VS que el tejido mesotelial. En consecuencia, el MPM aparece como un candidato relevante para un planteamiento de viroterapia basado en la administración del virus del sarampión.

Ejemplo 2

40

Muerte de células tumorales inducida por tratamientos con VS y UV.

[0039] Después de demostrar que el VS es capaz de infectar células de mesotelioma, los inventores verificaron si la infección del virus también podría conducir a la muerte celular mediada por apoptosis.

[0040] Los cultivos de células M13 monocapa subconfluentes se infectaron por VS (MOI 1,0) o se irradiaron por UV-B (312 nm-5 kJ/m²) usando un instrumento UV Stratalinker2400 (Stratagene Europe, Amsterdam, Holanda), como control positivo para la apoptosis. Las células se recogieron en diferentes momentos tras el tratamiento, y la muerte celular se cuantificó como se describe por Ebstein y col. (2004) Am. J. Respir. Crit. Care Med. 169: 1322-1330 mediante tinciones concomitantes de fosatidilserina y Anexina-V.

[0041] Como se muestra en la <u>figura 6</u>, 24 horas de exposición de las células M13 a irradiación UV-B y 72 horas de infección de las células M13 con VS produjeron una tasa equivalente de muerte de células tumorales (comprendida entre el 70 % y el 80 % de células positivas a anexina-V), lo que indica que el VS induce la apoptosis en las células tumorales infectadas. Las condiciones que indujeron la muerte de las células M13 definida de este modo se usaron en los siguientes experimentos.

[0042] Además, también se confirmó la eliminación de las células relacionadas con el virus por la observación de un efecto citopático importante, que conduce a la dislocación completa de la capa celular M13 72-96 horas 55 después de la infección (figura 1).

Ejemplo 3

Seguimiento del ciclo de replicación vírica en células tumorales infectadas por VS.

[0043] Con el fin de seguir la cinética del crecimiento vírico en cultivo de células M13 infectadas (MOI = 1,0), se realizaron RT-PCR específicas para receptores potenciales de ARNds vírico (Mda-5, TLR-3, RIG-I y PKR). Se usaron cebadores específicos para el gen β -actina como un control de experimento interno.

[0044] En resumen, las células M13 se incubaron con ligando de ácido poliinosínico:policitidílico (10 μg/ml) o VS (MOI = 1,0) y los gránulos celulares se recogieron en diferentes momentos. Después, todo el ARN celular se extrajo usando kits RNeasy (Qiagen, Courtaboeuf, Francia) de acuerdo con las instrucciones del fabricante, y se transcribieron a la inversa usando RTase (Invitrogen, Paisley, Reino Unido). Se usó el ADNc resultante como modelo para la amplificación por PCR usando cebadores específicos para Mda-5, TLR-3, RIG-I, PKR, IFNβ y β-actina. Las secuencias de cebadores PCR se enumeran en la <u>Tabla 1</u>. Los productos PCR se visualizaron por electroforesis en gel de agarosa.

Tabla 1: Secuencias de cebador

Cebador	Secuencia	Tamaño del fragmento (pb)	SEQ ID NO:
β-actina	ATCTGGCACCACACCTTCTACAATGAGCTGCG directa	837	3
•	CGTCATACTCCTGCTTGCTGATCCACATCTGC inversa		4
TLR-3	ATTGGGTCTGGGAACATTTCTCTTC directa	319	5
	GTGAGATTTAAACATTCCTCTTCGG inversa		6
Mda-5	GAGCAACTTCTTTCAACCAC directa	633	7
	GAACACCAGCATCTTCTCCA inversa		8
RIG-I	GAACGATTCCATCACTATCC directa	580	9
	GGCATCATTATATTTCCGCA inversa		10
PKR	CTTCTCAGCAGATACATCAG directa	689	11
	GTTACAAGTCCAAAGTCTCC inversa		12

[0045] Por lo tanto, puede mostrarse que se produjo un pico de replicación vírica entre 1 a 4 días después de la infección de las células M13 de mesotelioma. Además, también pudieron evidenciarse productos PCR correspondientes a receptores potenciales de ARNds vírico (Mda-5, TLR-3, RIG-I y PKR).

20 Ejemplo 4

15

5

Captación eficiente de células de mesotelioma apoptóticas por CD inmaduros.

[0046] Después, se estudió la captación por células dendríticas (CD) de apocuerpos de células tumorales M13 infectadas por VS (72 horas) y se comparó con la de células tumorales M13 infectadas por UV (24 horas).

[0047] Las células dendríticas se obtuvieron a partir de monocitos generados de recogidas de leucoféresis de donantes sanos HLA-A0201 (EFS, Nantes, Francia), después de obtener el consentimiento informado. La fracción enriquecida con monocitos (>85 % de pureza) se separó en primer lugar por centrifugación por gradiente de 30 densidad Ficoll (PAA Laboratories, Les Mureaux, Francia). Después, los monocitos se enriquecieron por elutriación (centrifugación contracorriente) usando una centrífuga Beckman Avanti J20 equipada con un rotor JE5.0 y una cámara de elutriación de 40 ml. De forma habitual, la pureza de los monocitos elutriados estaba por encima del 80 %, como se evaluó por citometría de flujo en base a la detección del marcador CD14. Los monocitos se cultivaron en 2 x 108 células/ml con 500 IU/ml de GM-CSF y 200 IU/ml de IL-4 (Cell Genix Technology, Freiburg, Alemania). 35 Después, las células se dejaron diferenciar durante 6 días.

[0048] El día 6, las CD derivadas de monocitos se recogieron del sobrenadante de cultivo y se sembraron en cultivo para su carga posterior. Las CD inmaduras se incubaron con 2·10⁸ células/ml de material apoptótico, derivado de células tumorales M13 alogénicas tratadas por UV o infectadas por VS, durante 24 horas más de cultivo conjunto (relación 1:1). El análisis del rendimiento de la fagocitosis de las CD se evaluó tanto por citometría de flujo como microscopía láser confocal, como se ha descrito previamente (Massé y col. (2002) Cancer Research 32: 1050-1056). En resumen, las células M13 tratadas por UV o por VS se marcaron con colorante de tinción de membrana PKH-26, de acuerdo con el protocolo del fabricante (Sigma, St Quentin Fallavier, Francia). Después de 24 horas de cultivo conjunto, las CD se tiñeron con anticuerpos anti HLA-DR conjugados con FITC (Immunotech, Marseilles, Francia). Después de los lavados con PBS, las células se cosecharon y se analizaron en un sistema FACSCalibur (BD Biosciences, Grenoble, Francia), o con un microscopio TCS NT (Leica Instruments, Heidelberg, Alemania). Las CD que habían ingerido células apoptóticas se identificaron como células doble positivo a HLA-DR/PKH-26 (figura

<u>7</u>).

[0049] Como se muestra en la <u>figura 8</u>, puede demostrarse que las CD sumergieron eficientemente células de mesotelioma tratadas por UV y por VS a la misma velocidad, como se ilustra por un porcentaje similar de CD 5 PKH26-positivas separadas basándose en la expresión de HLA-DR (65 % y 74 % para CD cargadas respectivamente con células M13 tratadas por UV o por VS).

[0050] Los experimentos de microscopía de exploración láser confocal confirmaron adicionalmente una internalización eficiente de las células M13 apoptóticas por las CD inmaduras en 24 horas de cultivo conjunto, 10 independientemente de la estrategia inducida por muerte usada (infectadas por VS o irradiadas por UV).

Ejemplo 5

Las células tumorales infectadas con VS inducen la maduración espontánea de las CD, a diferencia de las 15 células M13 apoptóticas inducidas por radiación UV.

[0051] A continuación, los inventores examinaron si el material celular obtenido a partir de células tumorales M13 infectadas por VS podía estimular eficientemente la maduración de las CD.

20 **[0052]** El estado de maduración de las CD se evaluó 24 horas después de la inmersión de las células tumorales eliminadas por exposición a la radiación o por la actividad citolítica mediada por el virus.

[0053] El fenotipo de las CD viables (separadas basándose en exclusión por tinción positiva a TOPRO-3) se investigó por la expresión superficial de moléculas CMH de Clase I y II (figura 9) y de los marcadores de maduración CD80, CD86, CD83 y CD40 (figura 10), completado por el análisis del patrón de secreción de citocinas realizado en el sobrenadante de cultivo conjunto (figura 11). Como controles, las CD se dejaron solas, o se maduraron con una combinación de ligando TLR3 y una citocina pro-inflamatoria (ácido poliinosínico:policitidílico/IFNα, como un imitador de la infección vírica), o se dispusieron directamente por contacto con el virus del sarampión (VS).

- 30 **[0054]** En resumen, la inmunotinción se realizó con un panel de anticuerpos monoclonales (todos adquiridos en Immunotech, Marseilles, Francia) específicos para HLA-ABC (clon B9.12.1), HLA-DR (clon B8.12.2), CD80 (clon MAB104), CD83 (clon HB15a), CD86 (clon HA5.2B7) y CD40 (clon MAB89). Las CD se incubaron con cada uno de los anticuerpos anteriores (1 μg/ml) a 4 °C durante 30 min antes de la citometría de flujo. Se ensayó la secreción del patrón de citocinas en sobrenadantes recogidos 24 horas después de la inmersión. Las concentraciones de IL-10, 35 IL-12, IL-6, IL-1β y TNFα se midieron usando kits de matriz citométrica de microesferas disponibles en el mercado
 - 5 IL-12, IL-6, IL-1β y TNFα se midieron usando kits de matriz citométrica de microesferas disponibles en el mercado (BD Biosciences, Le Pont de Claix, Francia), de acuerdo con el protocolo del fabricante. La cuantificación de IFNα se realizó con un ensayo ELISA (Biosource, Camarillo, Estados Unidos).
- [0055] Pudo observarse un programa de maduración espontánea únicamente para las CD cargadas con 40 apocuerpos obtenidos a partir de células de mesotelioma infectadas con VS, a un nivel básicamente equivalente al cóctel de maduración de control positivo usado en el experimento (Polyl:C/IFNα). La maduración espontánea se demostró por una regulación ascendente significativa de la expresión de moléculas de estimulación conjunta (para CD80, CD83, CD86, CD40 y HLA-ABC), y la producción de numerosas citocinas pro-inflamatorias (para IL-6, IL-1β, TNFα e IFNα).

[0056] Sin embargo, en consonancia con informes anteriores, las CD pulsantes con células tumorales apoptóticas irradiadas por UV, así como la infección directa de CD por virus del sarampión (VS), no condujeron a este efecto.

50 **[0057]** En general, estos datos apoyan fuertemente un aumento de la inmunogenicidad de las células tumorales infectadas por VS con respecto a las células tumorales irradiadas por UV.

Ejemplo 6

55 Cebado cruzado de la respuesta de linfocitos T CD8 específicos de MSLN.

[0058] Finalmente, los inventores ensayaron si las CD cargadas con apocuerpos obtenidos a partir de células de mesotelioma infectadas con VS podían estimular una respuesta CD8 efectora específica para un antígeno tumoral asociado a MPM, tal como Mesotelina (MSLN).

[0059] Con el fin de evaluar esta cuestión, se realizó una inmunotinción para tetrámero en linfocitos T CD8 sensibilizados durante una semana con CD autólogas cargadas con material apoptótico obtenido a partir de células M13 tratadas por UV o VS. Como controles, se realizó un experimento similar con la línea de linfocitos T de linfoma Jurkat, escogida basándose en su susceptibilidad al VS y sus características de expresión negativa a MSLN (figura 12). Como controles de experimento internos, se consiguió la tinción del tetrámero específico a MelanA/Mart-1 (MelanA26-35L) en complemento a los específicos para los dos epítopos CTL derivados de MSLN seleccionados. Estos péptidos (MSLN 531-539 y MSLN 541-550) se identificaron por la exploración de la secuencia aminoacídica de MSLN (GenPept NP 005814) para buscar correspondencias con los motivos de consenso para la unión a HLA-10 A0201, usando dos algoritmos informáticos BIMAS y SYFPEITHI (Tabla 2):

Tabla 2: Características de los tetrámeros

	Puntuación de uniór			n a HLA-A0201
Nombre del tetrámero	nbre del tetrámero Localización Secuencia		SYFPEITHI	BIMAS
HLA-A2 VLP9	531-539	VLPLTVAEV (SEQ ID NO: 13)	29/30	272/285
HLA-A2 KLL10	541-550	KLLGPHVEGL (SEQ ID NO: 14)	30/31	312/312

[0060] En resumen, los linfocitos T CD8 se prepararon a partir de PBMC de donantes sanos HLA-A0201 por selección positiva con los sistemas de columna MACS usando un kit CD8 multisort (Miltenyi Biotec, Paris, Francia). Los linfocitos T CD8 sin tratar purificados (>90 % de pureza) se estimularon con CD autólogas cargadas con cada preparación apoptótica o CD no cargadas como control. El cultivo conjunto se realizó en placas de 96 pocillos de fondo redondo (BD Falcon), mezclando 2·10⁴ CD maduras con 2·10⁵ linfocitos T respondedores (relación 1:10) en 200 μl de medio RPMI 1640 de suero humano al 8 %, complementado con 10 ng/ml de IL-12 durante los 3 primeros días (AbCys SA, Paris, Francia) y con 10 U/ml de IL-2 (Proleukin, Chiron Therapeutics, Estados Unidos) durante los siguientes días. Se añadió IL-2 cada tres días, permitiendo una renovación del medio de cultivo regular. Después de 7-8 días de cultivo, los linfocitos T se cosecharon y se tiñeron con los tetrámeros específicos de MSLN como se indica a continuación.

25 **[0061]** Los péptidos de epítopos CD8 seleccionados (síntesis realizada por Eurogentec, Liege, Bélgica) se usaron para la producción de monómeros (Recombinant Proteins Production Platform (Plataforma de Producción de Proteínas Recombinantes), U601-IFR26, Nantes, Francia) como se ha descrito previamente (Labarriere y col. (2002) Int. J. Cancer 101: 280-286). Los monómeros HLA-A2 VLP9 y HLA-A2 KLL10 se oligomerizaron con estreptavidina marcada con PE (BD Biosciences). La tinción y el lavado se realizaron en BSA-PBS al 0,1 %. Los linfocitos T se tiñeron sucesivamente con 10 μg/ml de multímeros pMHC marcados con PE a 4 °C durante 30 min, y con 1 μg/ml de anticuerpos anti-CD8 conjugados por PE-Cy5 diluidos (clon RPA-T8, BD Biosciences) durante 30 min más a 4 °C. Las células se lavaron y se analizaron inmediatamente en un FACSCalibur.

[0062] De manera interesante, pudo observarse un aumento significativo del porcentaje de linfocitos T específicos de MSLN entre la selección de población CD8-positiva para cultivos conjuntos con CD cargadas con material apoptótico obtenido a partir de células M13 tratadas por VS con respecto a cultivos conjuntos con CD cargadas con material apoptótico obtenido a partir de células M13 tratadas por UV.

LISTA DE SECUENCIAS

40

[0063]

<110> INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM) INSTITUT PASTEUR

45 <120> MEDICAMENTOS Y MÉTODOS PARA EL TRATAMIENTO DE MESOTELIOMA

<130> BET08P1093

<150> EP 07291232.2

<151> 10-10-2007

<160> 14

50 <170> PatentIn versión 3.4

<210> 1

<211> 18967

<212> ADN

<213> Secuencia artificial

55 <220>

<223> Plásmido pTM-MVSchw <400> 1

geggeegeta	atacgactca	ctatagggcc	aactttgttt	ggtctgatga	gtccgtgagg	60
acgaaacccg	gagtcccggg	tcaccaaaca	aagttgggta	aggatagttc	aatcaatgat	120
catcttctag	tgcacttagg	attcaagatc	ctattatcag	ggacaagagc	aggattaggg	180
atatccgaga	tggccacact	tttaaggagc	ttagcattgt	tcaaaagaaa	caaggacaaa	240
ccacccatta	catcaggatc	cggtggagcc	atcagaggaa	tcaaacacat	tattatagta	300
ccaatccctg	gagattcctc	aattaccact	cgatccagac	ttctggaccg	gttggtgagg	360
ttaattggaa	acccggatgt	gagcgggccc	aaactaacag	gggcactaat	aggtatatta	420
tccttatttg	tggagtctcc	aggtcaattg	attcagagga	tcaccgatga	ccctgacgtt	480
agcataaggc	tgttagaggt	tgtccagagt	gaccagtcac	aatctggcct	taccttcgca	540
tcaagaggta	ccaacatgga	ggatgaggcg	gaccaatact	tttcacatga	tgatccaatt	600
agtagtgatc	aatccaggtt	cggatggttc	gggaacaagg	aaatctcaga	tattgaagtg	660
caagaccctg	agggattcaa	catgattctg	ggtaccatcc	tagcccaaat	ttgggtcttg	720
ctcgcaaagg	cggttacggc	cccagacacg	gcagctgatt	cggagctaag	aaggtggata	780
aagtacaccc	aacaaagaag	ggtagttggt	gaatttagat	tggagagaaa	atggttggat	840
gtggtgagga	acaggattgc	cgaggacctc	tccttacgcc	gattcatggt	cgctctaatc	900
ctggatatca	agagaacacc	cggaaacaaa	cccaggattg	ctgaaatgat	atgtgacatt	960
gatacatata	tcgtagaggc	aggattagcc	agttttatcc	tgactattaa	gtttgggata	1020
gaaactatgt	atcctgctct	tggactgcat	gaatttgctg	gtgagttatc	cacacttgag	1080
tccttgatga	acctttacca	gcaaatgggg	gaaactgcac	cctacatggt	aatcctggag	1140
aactcaattc	agaacaagtt	cagtgcagga	tcataccctc	tgctctggag	ctatgccatg	1200

ggagtaggag	tggaacttga	aaactccatg	ggaggtttga	actttggccg	atcttacttt	1260
gatccagcat	attttagatt	agggcaagag	atggtaagga	ggtcagctgg	aaaggtcagt	1320
tccacattgg	catctgaact	cggtatcact	gccgaggatg	caaggettgt	ttcagagatt	1380
gcaatgcata	ctactgagga	caagatcagt	agagcggttg	gacccagaca	agcccaagta	1440
tcatttctac	acggtgatca	aagtgagaat	gagctaccga	gattgggggg	caaggaagat	1500
aggagggtca	aacagagtcg	aggagaagcc	agggagagct	acagagaaac	cgggcccagc	1560
agagcaagtg	atgcgagagc	tgcccatctt	ccaaccggca	cacccctaga	cattgacact	1620
gcaacggagt	ccagccaaga	tccgcaggac	agtcgaaggt	cagctgacgc	cctgcttagg	1680
ctgcaagcca	tggcaggaat	ctcggaagaa	caaggctcag	acacggacac	ccctatagtg	1740
tacaatgaca	gaaatcttct	agactaggtg	cgagaggccg	agggccagaa	caacatccgc	1800
ctaccatcca	tcattgttat	aaaaactta	ggaaccaggt	ccacacagcc	gccagcccat	1860
caaccatcca	ctcccacgat	tggagccaat	ggcagaagag	caggcacgcc	atgtcaaaaa	1920
cggactggaa	tgcatccggg	ctctcaaggc	cgagcccatc	ggctcactgg	ccatcgagga	1980
agctatggca	gcatggtcag	aaatatcaga	caacccagga	caggagcgag	ccacctgcag	2040
ggaagagaag	gcaggcagtt	cgggtctcag	caaaccatgc	ctctcagcaa	ttggatcaac	2100
tgaaggcggt	gcacctcgca	tccgcggtca	gggacctgga	gagagcgatg	acgacgetga	2160
aactttggga	atccccccaa	gaaatctcca	ggcatcaagc	actgggttac	agtgttatta	2220
cgtttatgat	cacagcggtg	aagcggttaa	gggaatccaa	gatgctgact	ctatcatggt	2280
tcaatcaggc	cttgatggtg	atagcaccct	ctcaggagga	gacaatgaat	ctgaaaacag	2340
cgatgtggat	attggcgaac	ctgataccga	gggatatgct	atcactgacc	ggggatctgc	2400
teccatetet	atggggttca	gggcttctga	tgttgaaact	gcagaaggag	gggagatcca	2460
cgagctcctg	agactccaat	ccagaggcaa	caactttccg	aagcttggga	aaactctcaa	2520
tgttcctccg	cccccggacc	ccggtagggc	cagcacttcc	gggacaccca	ttaaaaaggg	2580
cacagacgcg	agattagcct	catttggaac	ggagatcgcg	tctttattga	caggtggtgc	2640
aacccaatgt	gctcgaaagt	caccctcgga	accatcaggg	ccaggtgcac	ctgcggggaa	2700
tgtccccgag	tgtgtgagca	atgccgcact	gatacaggag	tggacacccg	aatctggtac	2760
cacaatctcc	ccgagatccc	agaataatga	agaaggggga	gactattatg	atgatgagct	2820
gttctctgat	gtccaagata	ttaaaacagc	cttggccaaa	atacacgagg	ataatcagaa	2880
gataatctcc	aagctagaat	cactgctgtt	attgaaggga	gaagttgagt	caattaagaa	2940
gcagatcaac	aggcaaaata	tcagcatatc	caccctggaa	ggacacctct	caagcatcat	3000
gatcgccatt	cctggacttg	ggaaggatcc	caacgacccc	actgcagatg	tcgaaatcaa	3060
tcccgacttg	aaacccatca	taggcagaga	ttcaggccga	gcactggccg	aagttctcaa	3120

gaaacccgtt	gccagccgac	aactccaagg	aatgacaaat	ggacggacca	gttccagagg	3180
acagctgctg	aaggaatttc	agctaaagcc	gatcgggaaa	aagatgagct	cagccgtcgg	3240
gtttgttcct	gacaccggcc	ctgcatcacg	cagtgtaatc	cgctccatta	taaaatccag	3300
ccggctagag	gaggatcgga	agcgttacct	gatgactctc	cttgatgata	tcaaaggagc	3360
caatgatctt	gccaagttcc	accagatgct	gatgaagata	ataatgaagt	agctacagct	3420
caacttacct	gccaacccca	tgccagtcga	cccaactagt	acaacctaaa	tccattataa	3480
aaaacttagg	agcaaagtga	ttgcctccca	aggtccacaa	tgacagagac	ctacgacttc	3540
gacaagtcgg	catgggacat	caaagggtcg	atcgctccga	tacaacccac	cacctacagt	3600
gatggcaggc	tggtgcccca	ggtcagagtc	atagatcctg	gtctaggcga	caggaaggat	3660
gaatgcttta	tgtacatgtt	tctgctgggg	gttgttgagg	acagcgattc	cctagggcct	3720
ccaatcgggc	gagcatttgg	gttcctgccc	ttaggtgttg	gcagatccac	agcaaagccc	3780
gaaaaactcc	tcaaagaggc	cactgagett	gacatagttg	ttagacgtac	agcagggctc	3840
aatgaaaaac	tggtgttcta	caacaacacc	ccactaactc	tcctcacacc	ttggagaaag	3900
gtcctaacaa	cagggagtgt	cttcaacgca	aaccaagtgt	gcaatgcggt	taatctgata	3960
ccgctcgata	ccccgcagag	gttccgtgtt	gtttatatga	gcatcacccg	tctttcggat	4020
aacgggtatt	acaccgttcc	tagaagaatg	ctggaattca	gatcggtcaa	tgcagtggcc	4080
ttcaacctgc	tggtgaccct	taggattgac	aaggcgatag	gccctgggaa	gatcatcgac	4140
aatacagagc	aacttcctga	ggcaacattt	atggtccaca	tcgggaactt	caggagaaag	4200
aagagtgaag	tctactctgc	cgattattgc	aaaatgaaaa	tcgaaaagat	gggcctggtt	4260
tttgcacttg	gtgggatagg	gggcaccagt	cttcacatta	gaagcacagg	caaaatgagc	4320
aagactctcc	atgcacaact	cgggttcaag	aagaccttat	gttacccgct	gatggatatc	4380
aatgaagacc	ttaatcgatt	actctggagg	agcagatgca	agatagtaag	aatccaggca	4440
gttttgcagc	catcagttcc	tcaagaattc	cgcatttacg	acgacgtgat	cataaatgat	4500
gaccaaggac	tattcaaagt	tctgtagacc	gtagtgccca	gcaatgcccg	aaaacgaccc	4560
ccctcacaat	gacagccaga	aggcccggac	aaaaaagccc	cctccgaaag	actccacgga	4620
ccaagcgaga	ggccagccag	cagccgacgg	caagcgcgaa	caccaggcgg	ccccagcaca	4680
gaacagccct	gacacaaggc	caccaccage	caccccaatc	tgcatcctcc	tcgtgggacc	4540
cccgaggacc	aacccccaag	getgeeeeg	atccaaacca	ccaaccgcat	ccccaccacc	4800
cccgggaaag	aaacccccag	caattggaag	gcccetcccc	ctcttcctca	acacaagaac	4860
tccacaaccg	aaccgcacaa	gcgaccgagg	tgacccaacc	gcaggcatcc	gactccctag	4920
acagateete	teteceegge	aaactaaaca	aaacttaggg	ccaaggaaca	tacacaccca	4980
acagaaccca	gaccccggcc	cacggcgccg	cgcccccaac	ccccgacaac	cagagggagc	5040
ccccaaccaa	tcccgccggc	tcccccggtg	cccacaggca	gggacaccaa	ccccgaaca	5100

gacccagcac	ccaaccatcg	acaatccaag	acggggggc	cccccaaaa	aaaggccccc	5160
aggggccgac	agccagcacc	gcgaggaagc	ccacccaccc	cacacacgac	cacggcaacc	5220
aaaccagaac	ccagaccacc	ctgggccacc	ageteceaga	ctcggccatc	accccgcaga	5280
aaggaaaggc	cacaaccege	gcaccccagc	cccgatccgg	cggggagcca	cccaacccga	5340
accagcaccc	aagagcgatc	cccgaaggac	ccccgaaccg	caaaggacat	cagtatccca	5400
cagcctctcc	aagtcccccg	gtctcctcct	cttctcgaag	ggaccaaaag	atcaatccac	5460
cacacccgac	gacactcaac	tccccacccc	taaaggagac	accgggaatc	ccagaatcaa	5520
gactcatcca	atgtccatca	tgggtctcaa	ggtgaacgtc	tetgecatat	tcatggcagt	5580
actgttaact	ctccaaacac	ccaccggtca	aatccattgg	ggcaatctct	ctaagatagg	5640
ggtggtagga	ataggaagtg	caagctacaa	agttatgact	cgttccagcc	atcaatcatt	5700
agtcataaaa	ttaatgccca	atataactct	cctcaataac	tgcacgaggg	tagagattgc	5760
agaatacagg	agactactga	gaacagtttt	ggaaccaatt	agagatgcac	ttaatgcaat	5820
gacccagaat	ataagaccgg	ttcagagtgt	agcttcaagt	aggagacaca	agagatttgc	5880
gggagtagtc	ctggcaggtg	cggccctagg	cgttgccaca	gctgctcaga	taacagccgg	5940
cattgcactt	caccagticca	tgctgaactc	tcaagccatc	gacaatctga	gagcgagcct	6000
ggaaactact	aatcaggcaa	ttgagacaat	cagacaagca	gggcaggaga	tgatattggc	6060
tgttcagggt	gtccaagact	acatcaataa	tgagctgata	ccgtctatga	accaactatc	6120
ttgtgattta	atcggccaga	agctcgggct	caaattgctc	agatactata	cagaaatcct	6180
gtcattattt	ggccccagtt	tacgggaccc	catatctgcg	gagatatcta	tccaggcttt	6240
gagctatgcg	cttggaggag	acatcaataa	ggtgttagaa	aagctcggat	acagtggagg	6300
tgatttactg	ggcatcttag	agagcggagg	aataaaggcc	cggataactc	acgtcgacac	6360
agagtcctac	ttcattgtcc	tcagtatagc	ctatccgacg	ctgtccgaga	ttaagggggt	6420
gattgtccac	cggctagagg	gggtctcgta	caacataggc	tctcaagagt	ggtataccac	6480
tgtgcccaag	tatgttgcaa	cccaagggta	ccttatctcg	aattttgatg	agtcatcgtg	6540
tactttcatg	ccagagggga	ctgtgtgcag	ccaaaatgcc	ttgtacccga	tgagtcctct	6600
gctccaagaa	tgcctccggg	ggtacaccaa	gtcctgtgct	cgtacactcg	tatccgggtc	6660
ttttgggaac	cggttcattt	tatcacaagg	gaacctaata	gccaattgtg	catcaatcct	6720
ttgcaagtgt	tacacaacag	gaacgatcat	taatcaagac	cctgacaaga	tcctaacata	6780
cattgctgcc	gatcactgcc	cggtagtcga	ggtgaacggc	gtgaccatcc	aagtcgggag	6840
caggaggtat	ccagacgctg	tgtacttgca	cagaattgac	ctcggtcctc	ccatatcatt	6900
ggagaggttg	gacgtaggga	caaatctggg	gaatgcaatt	gctaagttgg	aggatgccaa	6960
ggaattgttg	gagtcatcgg	accagatatt	gaggagtatg	aaaggtttat	cgagcactag	7020

catagtctac	atcctgattg	cagtgtgtct	tggagggttg	atagggatcc	ccgctttaat	7080
atgttgctgc	agggggcgtt	gtaacaaaaa	gggagaacaa	gttggtatat	caagaccagg	7140
cctaaagcct	gatcttacgg	gaacatcaaa	atcctatgta	aggtcgctct	gatcctctac	7200
aactcttgaa	acacaaatgt	cccacaagtc	tectettegt	catcaagcaa	ccaccgcacc	7260
cagcatcaag	cccacctgaa	attatctccg	gcttccctct	ggccgaacaa	tatcggtagt	7320
taatcaaaac	ttagggtgca	agatcatcca	caatgtcacc	acaacgagac	cggataaatg	7380
ccttctacaa	agataacccc	catcccaagg	gaagtaggat	agtcattaac	agagaacatc	7440
ttatgattga	tagaccttat	gttttgctgg	ctgttctgtt	tgtcatgttt	ctgagcttga	7500
tegggttget	agccattgca	ggcattagac	ttcatcgggc	agccatctac	accgcagaga	7560
tccataaaag	cctcagcacc	aatctagatg	taactaactc	aatcgagcat	caggtcaagg	7620
acgtgctgac	accactcttc	aaaatcatcg	gtgatgaagt	gggcctgagg	acacctcaga	7680
gattcactga	cctagtgaaa	ttaatctctg	acaagattaa	attccttaat	ccggataggg	7740
agtacgactt	cagagatete	acttggtgta	tcaacccgcc	agagagaatc	aaattggatt	7800
atgatcaata	ctgtgcagat	gtggctgctg	aagagctcat	gaatgcattg	gtgaactcaa	7860
ctctactgga	gaccagaaca	accaatcagt	tcctagctgt	ctcaaaggga	aactgctcag	7920
ggcccactac	aatcagaggt	caattctcaa	acatgtcgct	gtccctgtta	gacttgtatt	7980
taggtcgagg	ttacaatgtg	tcatctatag	tcactatgac	atcccaggga	atgtatgggg	8040
gaacttacct	agtggaaaag	cctaatctga	gcagcaaaag	gtcagagttg	tcacaactga	8100
gcatgtaccg	agtgtttgaa	gtaggtgtta	tcagaaatcc	gggtttgggg	gctccggtgt	8160
tccatatgac	aaactatctt	gagcaaccag	tcagtaatga	tctcagcaac	tgtatggtgg	8220
ctttggggga	gctcaaactc	gcagcccttt	gtcacgggga	agattctatc	acaattccct	8280
atcagggatc	agggaaaggt	gtcagcttcc	agctcgtcaa	gctaggtgtc	tggaaatccc	8340
caaccgacat	gcaatcctgg	gtccccttat	caacggatga	tccagtgata	gacaggcttt	8400
acctctcatc	tcacagaggt	gttatcgctg	acaatcaagc	aaaatgggct	gtcccgacaa	8460
cacgaacaga	tgacaagttg	cgaatggaga	catgetteca	acaggcgtgt	aagggtaaaa	8520
tccaagcact	ctgcgagaat	cccgagtggg	caccattgaa	ggataacagg	attccttcat	8580
acggggtctt	gtctgttgat	ctgagtctga	cagttgagct	taaaatcaaa	attgcttcgg	8640
gattcgggcc	attgatcaca	cacggttcag	ggatggacct	atacaaatcc	aaccacaaca	8700
atgtgtattg	gctgactatc	ccgccaatga	agaacctagc	cttaggtgta	atcaacacat	8760
tggagtggat	accgagattc	aaggttagtc	cctacctctt	cactgtccca	attaaggaag	8820
caggcgaaga	ctgccatgcc	ccaacatacc	tacctgcgga	ggtggatggt	gatgtcaaac	8880
tcagttccaa	tctggtgatt	ctacctggtc	aagatctcca	atatgttttg	gcaacctacg	8940
atacttccag	ggttgaacat	gctgtggttt	attacgttta	cagcccaagc	cgctcatttt	9000

cttactttta	tccttttagg	ttgcctataa	agggggtccc	catcgaatta	caagtggaat	9060
gcttcacatg	ggaccaaaaa	ctctggtgcc	gtcacttctg	tgtgcttgcg	gactcagaat	9120
ctggtggaca	tatcactcac	tctgggatgg	tgggcatggg	agtcagctgc	acagtcaccc	9180
gggaagatgg	aaccaatcgc	agatagggct	gctagtgaac	caatcacatg	atgtcaccca	9240
gacatcaggc	atacccacta	gtgtgaaata	gacatcagaa	ttaagaaaaa	cgtagggtcc	9300
aagtggttcc	ccgttatgga	ctcgctatct	gtcaaccaga	tcttataccc	tgaagttcac	9360
ctagatagcc	cgatagttac	caataagata	gtagccatcc	tggagtatgc	tcgagtccct	9420
cacgcttaca	gcctggagga	ccctacactg	tgtcagaaca	tcaagcaccg	cctaaaaaac	9480
ggattttcca	accaaatgat	tataaacaat	gtggaagttg	ggaatgtcat	caagtccaag	9540
cttaggagtt	atccggccca	ctctcatatt	ccatatccaa	attgtaatca	ggatttattt	9600
aacatagaag	acaaagagtc	aacgaggaag	atccgtgaac	tcctcaaaaa	ggggaattcg	9660
ctgtactcca	aagtcagtga	taaggttttc	caatgcttaa	gggacactaa	ctcacggctt	9720
ggcctaggct	ccgaattgag	ggaggacatc	aaggagaaag	ttattaactt	gggagtttac	9780
atgcacagct	cccagtggtt	tgagcccttt	ctgttttggt	ttacagtcaa	gactgagatg	9840
aggtcagtga	ttaaatcaca	aacccatact	tgccatagga	ggagacacac	acctgtattc	9900
ttcactggta	gttcagttga	gttgctaatc	tctcgtgacc	ttgttgctat	aatcagtaaa	9960
gagteteaac	atgtatatta	cctgacattt	gaactggttt	tgatgtattg	tgatgtcata	10020
gaggggaggt	taatgacaga	gaccgctatg	actattgatg	ctaggtatac	agagcttcta	10080
ggaagagtca	gatacatgtg	gaaactgata	gatggtttct	tccctgcact	cgggaatcca	10140
acttatcaaa	ttgtagccat	gctggagcct	ctttcacttg	cttacctgca	gctgagggat	10200
ataacagtag	aactcagagg	tgctttcctt	aaccactgct	ttactgaaat	acatgatgtt	10260
cttgaccaaa	acgggttttc	tgatgaaggt	acttatcatg	agttaactga	agctctagat	10320
tacattttca	taactgatga	catacatctg	acaggggaga	ttttctcatt	tttcagaagt	10380
ttcggccacc	ccagacttga	agcagtaacg	gctgctgaaa	atgttaggaa	atacatgaat	10440
cagcctaaag	tcattgtgta	tgagactctg	atgaaaggtc	atgccatatt	ttgtggaatc	10500
ataatcaacg	gctatcgtga	caggcacgga	ggcagttggc	caccgctgac	cctcccctg	10560
catgctgcag	acacaatccg	gaatgctcaa	gcttcaggtg	aagggttaac	acatgagcag	10620
tgcgttgata	actggaaatc	ttttgctgga	gtgaaatttg	gctgctttat	gcctcttagc	10680
ctggatagtg	atctgacaat	gtacctaaag	gacaaggcac	ttgctgctct	ccaaagggaa	10740
tgggattcag	tttacccgaa	agagttcctg	cgttacgacc	ctcccaaggg	aaccgggtca	10800
cggaggcttg	tagatgtttt	ccttaatgat	tcgagctttg	acccatatga	tgtgataatg	10860
tatgttgtaa	gtggagctta	cctccatgac	cctgagttca	acctgtctta	cagcctgaaa	10920

gaaaaggaga	tcaaggaaac	aggtagactt	tttgctaaaa	tgacttacaa	aatgagggca	10980
tgccaagtga	ttgctgaaaa	tctaatctca	aacgggattg	gcaaatattt	taaggacaat	11040
gggatggcca	aggatgagca	cgatttgact	aaggcactcc	acactctagc	tgtctcagga	11100
gtccccaaag	atctcaaaga	aagtcacagg	ggggggccag	tcttaaaaac	ctactcccga	11160
agcccagtcc	acacaagtac	caggaacgtg	agagcagcaa	aagggtttat	agggttccct	11220
caagtaattc	ggcaggacca	agacactgat	catccggaga	atatggaagc	ttacgagaca	11280
gtcagtgcat	ttatcacgac	tgatctcaag	aagtactgcc	ttaattggag	atatgagacc	11340
atcagcttgt	ttgcacagag	gctaaatgag	atttacggat	tgccctcatt	tttccagtgg	11400
ctgcataaga	ggcttgagac	ctctgtcctg	tatgtaagtg	accctcattg	ccccccgac	11460
cttgacgccc	atatcccgtt	atataaagtc	cccaatgatc	aaatcttcat	taagtaccct	11520
atgggaggta	tagaagggta	ttgtcagaag	ctgtggacca	tcagcaccat	tccctatcta	11580
tacctggctg	cttatgagag	cggagtaagg	attgcttcgt	tagtgcaagg	ggacaatcag	11640
accatagccg	taacaaaaag	ggtacccagc	acatggccct	acaaccttaa	gaaacgggaa	11700
gctgctagag	taactagaga	ttactttgta	attcttaggc	aaaggctaca	tgatattggc	11760
catcacctca	aggcaaatga	gacaattgtt	tcatcacatt	tttttgtcta	ttcaaaagga	11820
atatattatg	atgggctact	tgtgtcccaa	tcactcaaga	gcatcgcaag	atgtgtattc	11880
tggtcagaga	ctatagttga	tgaaacaagg	gcagcatgca	gtaatattgc	tacaacaatg	11940
gctaaaagca	tcgagagagg	ttatgaccgt	taccttgcat	attccctgaa	cgtcctaaaa	12000
gtgatacagc	aaattctgat	ctctcttggc	ttcacaatca	attcaaccat	gaccegggat	12060
gtagtcatac	ccctcctcac	aaacaacgac	ctcttaataa	ggatggcact	gttgcccgct	12120
cctattgggg	ggatgaatta	tctgaatatg	agcaggctgt	ttgtcagaaa	catcggtgat	12180
ccagtaacat	catcaattgc	tgatctcaag	agaatgattc	tcgcctcact	aatgcctgaa	12240
gagaccctcc	atcaagtaat	gacacaacaa	ccgggggact	cttcattcct	agactgggct	12300
agcgaccctt	actcagcaaa	tcttgtatgt	gtccagagca	tcactagact	cctcaagaac	12360
ataactgcaa	ggtttgtcct	gatccatagt	ccaaacccaa	tgttaaaagg	attattccat	12420
gatgacagta	aagaagagga	cgagggactg	gcggcattcc	tcatggacag	gcatattata	12480
gtacctaggg	cagctcatga	aatcctggat	catagtgtca	caggggcaag	agagtctatt	12540
gcaggcatgc	tggataccac	aaaaggcttg	attcgagcca	gcatgaggaa	ggggggtta	12600
acctctcgag	tgataaccag	attgtccaat	tatgactatg	aacaattcag	agcagggatg	12660
gtgctattga	caggaagaaa	gagaaatgtc	ctcattgaca	aagagtcatg	ttcagtgcag	12720
ctggcgagag	ctctaagaag	ccatatgtgg	gcgaggctag	ctcgaggacg	gcctatttac	12780
ggccttgagg	tccctgatgt	actagaatct	atgcgaggcc	accttattcg	gcgtcatgag	12840
acatgtgtca	tctgcgagtg	tggatcagtc	aactacggat	ggttttttgt	cccctcgggt	12900

tgccaactgg	atgatattga	caaggaaaça	tcatccttga	gagtcccata	tattggttct	12960
accactgatg	agagaacaga	catgaagctt	gccttcgtaa	gagccccaag	tcgatccttg	13020
cgatctgctg	ttagaatagc	aacagtgtac	tcatgggctt	acggtgatga	tgatagetet	13080
tggaacgaag	cctggttgtt	ggctaggcaa	agggccaatg	tgagcctgga	ggagctaagg	13140
gtgatcactc	ccatctcaac	ttcgactaat	ttagcgcata	ggttgaggga	tcgtagcact	13200
caagtgaaat	actcaggtac	atcccttgtc	cgagtggcga	ggtataccac	aatctccaac	13260
gacaatctct	catttgtcat	atcagataag	aaggttgata	ctaactttat	ataccaacaa	13320
ggaatgcttc	tagggttggg	tgttttagaa	acattgtttc	gactcgagaa	agataccgga	13380
tcatctaaca	cggtattaca	tettcacgtc	gaaacagatt	gttgcgtgat	cccgatgata	13440
gatcatccca	ggatacccag	ctcccgcaag	ctagagctga	gggcagagct	atgtaccaac	13500
ccattgatat	atgataatgc	acctttaatt	gacagagatg	caacaaggct	atacacccag	13560
agccatagga	ggcaccttgt	ggäatttgtt	acatggtcca	caccccaact	atatcacatt	13620
ttagctaagt	ccacagcact	atctatgatt	gacctggtaa	caaaatttga	gaaggaccat	13680
atgaatgaaa	tttcagctct	cataggggat	gacgatatca	atagtttcat	aacțgagttt	13740
ctgctcatag	agccaagatt	attcactatc	tacttgggcc	agtgtgcggc	catcaattgg	13800
gcatttgatg	tacattatca	tagaccatca	gggaaatatc	agatgggtga	gctgttgtca	13860
tegtteettt	ctagaatgag	caaaggagtg	tttaaggtgc	ttgtcaatgc	tctaagccac	13920
ccaaagatct	acaagaaatt	ctggcattgt	ggtattatag	agcctatcca	tggtccttca	13980
cttgatgctc	aaaacttgca	cacaactgtg	tgcaacatgg	tttacacatg	ctatatgacc	14040
tacctcgacc	tgttgttgaa	tgaagagtta	gaagagttca	catttctctt	gtgtgaaagc	14100
gacgaggatg	tagtaccgga	cagattcgac	aacatccagg	caaaacactt	atgtgttctg	14160
gcagatttgt	actgtcaacc	agggacctgc	ccaccaattc	gaggtctaag	accggtagag	14220
aaatgtgcag	ttctaaccga	ccatatcaag	gcagaggcta	tgttatctcc	agcaggatct	14280
tcgtggaaca	taaatccaat	tattgtagac	cattactcat	gctctctgac	ttatctccgg	14340
cgaggatcga	tcaaacagat	aagattgaga	gttgatccag	gattcatttt	cgacgccctc	14400
gctgaggtaa	atgtcagtca	gccaaagatc	ggcagcaaca	acatctcaaa	tatgagcatc	14460
aaggctttca	gacccccaca	cgatgatgtt	gcaaaattgc	tcaaagatat	caacacaagc	14520
aagcacaatc	ttcccatttc	agggggcaat	ctcgccaatt	atgaaatcca	tgctttccgc	14580
agaatcgggt	tgaactcatc	tgcttgctac	aaagctgttg	agatatdaac	attaattagg	14640
agatgccttg	agccagggga	ggacggcttg	ttcttgggtg	agggatcggg	ttctatgttg	14700
atcacttata	aagagatact	taaactaaac	aagtgcttct	ataatagtgg	ggtttccgcc	14760
aattctagat	ctggtcaaag	ggaattagca	ccctatccct	ccgaagttgg	ccttgtcgaa	14820

cacagaatgg	gagtaggtaa	tattgtcaaa	gtgctcttta	acgggaggcc	cgaagtcacg	14880
tgggtaggca	gtgtagattg	cttcaatttc	atagttagta	atatccctac	ctctagtgtg	14940
gggtttatcc	attcagatat	agagaccttg	cctgacaaag	atactataga	gaagctagag	15000
gaattggcag	ccatcttatc	gatggctctg	ctcctgggca	aaataggatc	aatactggtg	15060
attaagctta	tgcctttcag	cggggatttt	gttcagggat	ttataagtta	tgtagggtct	15120
cattatagag	aagtgaacct	tgtataccct	agatacagca	acttcatctc	tactgaatct	15180
tatttggtta	tgacagatct	caaggctaac	cggctaatga	atcctgaaaa	gattaagcag	15240
cagataattg	aatcatctgt	gaggacttca	cctggactta	taggtcacat	cctatccatt	15300
aagcaactaa	gctgcataca	agcaattgtg	ggagacgcag	ttagtagagg	tgatatcaát	15360
cctactctga	aaaaacttac	acctatagag	caggtgctga	tcaattgcgg	gttggcaatt	15420
aacggaccta	agctgtgcaa	agaattgatc	caccatgatg	ttgcctcagg	gcaagatgga	15480
ttgcttaatt	ctatactcat	cctctacagg	gagttggcaa	gattcaaaga	caaccaaaga	15540
agtcaacaag	ggatgttcca	cgcttacccc	gtattggtaa	gtagcaggca	acgagaactt	15600
atatctagga	tcacccgcaa	attctggggg	cacattcttc	tttactccgg	gaacaaaaag	15660
ttgataaata	agtttatcca	gaatctcaag	tccggctatc	tgatactaga	cttacaccag	15720
aatatcttcg	ttaagaatct	atccaagtca	gagaaacaga	ttattatgac	ggggggtttg	15780
aaacgtgagt	gggtttttaa	ggtaacagtc	aaggagacca	aagaatggta	taagttagtc	15840
ggatacagtg	ccctgattaa	ggactaattg	gttgaactcc	ggaaccctaa	tcctgcccta	15900
ggtggttagg	cattatttgc	aatatattaa	agaaaacttt	gaaaatacga	agtttctatt	15960
cccagctttg	tctggtggcc	ggcatggtcc	cagceteete	gctggcgccg	gctgggcaac	16020
attccgaggg	gacegtcccc	tcggtaatgg	cgaatgggac	geggeegate	cggctgctaa	16080
caaagcccga	aaggaagctg	agttggctgc	tgccaccgct	gagcaataac	tagcataacc	16140
ccttggggcc	tctaaacggg	tcttgagggg	ttttttgctg	aaaggaggaa	ctatatccgg	16200
atgcggccgc	gggccctatg	gtacccagct	tttgttccct	ttagtgaggg	ttaattccga	16260
gcttggcgta	atcatggtca	tagctgtttc	ctgtgtgaaa	ttgttatccg	ctcacaattc	16320
cacacaacat	aggagccgga	agcataaagt	gtaaagcctg	gggtgcctaa	tgagtgaggt	16380
aactcacatt	aattgcgttg	cgctcactgc	ccgctttcca	gtcgggaaac	ctgtcgtgcc	16440
agctgcatta	atgaatcggc	caacgcgcgg	ggagaggcgg	tttgcgtatt	gggcgctctt	16500
ccgcttcctc	gctcactgac	tegetgeget	eggtegtteg	gctgcggcga	gcggtatcag	16560
ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	16620
tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	ctggcgtttt	16680
tccataggct	cggcccccct	gacgagcatc	acaaaaatcg	acgeteaagt	cagaggtggc	16740
gaaacccgac	aggactataa	agataccagg	cgttcccccc	tggaagctcc	ctcgtgcgct	16800

ctcctgttcc	gaccctgccg	cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	16860
tggcgctttc	tcaatgctca	cgctgtaggt	atctcagttc	ggtgtaggtc	gttcgctcca	16920
agctgggctg	tgtgcacgaa	cccccgttc	agcccgaccg	ctgcgcctta	tccggtaact	16980
atcgtcttga	gtccaacccg	gtaagacacg	acttatcgcc	actggcagca	gccactggta	17040
acaggattag	cagagcgagg	tatgtaggcg	gtgctacaga	gttcttgaag	tggtggccta	17100
actacggcta	cactagaagg	acagtatttg	gtatctgcgc	tctgctgaag	ccagttacct	17160
tcggaaaaag	agttggtagc	tcttgatccg	gcaaacaaac	caccgctggt	agcggtggtt	17220
tttttgtttg	caagcagcag	attacgcgca	gaaaaaaagg	atctcaagaa	gatcctttga	17280
tcttttctac	ggggtctgac	gctcagtgga	acgaaaactc	acgttaaggg	attttggtca	17340
tgagattatc	aaaaaggatc	ttcacctaga	tccttttaaa	ttaaaaatga	agttttaaat	17400
caatctaaag	tatatatgag	taaacttggt	ctgacagtta	ccaatgctta	atcagtgagg	17460
cacctatctc	agcgatctgt	ctatttcgtt	catccatagt	tgcctgactg	cccgtcgtgt	17520
agataactac	gatacgggag	ggcttaccat	ctggccccag	tgctgcaatg	ataccgcgag	17580
acccacgctc	accggctcca	gatttatcag	caataaacca	gccagccgga	agggccgagc	17640
gcagaagtgg	tcctgcaact	ttatccgcct	ccatccagtc	tattaattgt	tgccgggaag	17700
ctagagtaag	tagttcgcca	gttaatagtt	tgcgcaacgt	tgttgccatt	gctacaggca	17760
tcgtggtgtc	acgctcgtcg	tttggtatgg	cttcattcag	ctccggttcc	caacgatcaa	17820
ggcgagttac	atgatecece	atgttgtgaa	aaaaagcggt	tagctccttc	ggtcctccga	17880
tcgttgtcag	aagtaagttg	gccgcagtgt	tatcactcat	gcttatggca	gcactgcata	17940
attctcttac	tgtcatgcca	tccgtaagat	gettttetgt	gactggtgag	tactcaacca	18000
agtcattctg	agaatagtgt	atgeggegae	cgagttgctc	ttgcccggcg	tcaatacggg	18060
ataataccgc	gccacatagc	agaactttaa	aagtgctcat	cattggaaaa	cgttcttcgg	18120
ggcgaaaact	ctcaaggatc	ttaccgctgt	tgagatccag	ttcgatgtaa	cccactcgtg	18180
cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	ttctgggtga	gcaaaaacag	18240
gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	gaaatgttga	atactcatac	18300
tetteettt	tcaatattat	tgaagcattt	atcagggtta	ttgtctcatg	agcggataca	18360
tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	gcgcacattt	ccccgaaaag	18420
tgccacctga	aattgtaaac	gttaatattt	tgttaaaatt	cgcgttaaat	ttttgttaaa	18480
tcagctcatt	ttttaaccaa	taggccgaaa	tcggcaaaat	cccttataaa	tcaaaagaat	18540
agaccgagat	agggttgagt	gttgttccag	tttggaacaa	gagtccacta	ttaaagaacg	18600
tggactccaa	cgtcaaaggg	cgaaaaaccg	tctatcaggg	cgatggccca	ctacgtgaac	18660
catcacccta	atcaagtttt	ttggggtcga	ggtgccgtaa	agcactaaat	cggaacccta	18720

aagggageee eegatttaga gettgaeggg gaaageegge gaaegtggeg agaaaggaag 18780 ggaagaaage gaaaggageg ggegetaggg egetggeaag tgtageggte aegetgeegeg 18840 taaccaccac accegeegeg ettaatgege egetacaggg egegteecat tegecattea 18900 ggetgegeaa etgttgggaa gggegategg tgegggeete ttegetatta egeeageeae 18960 egeggtg

<210> 2 <211> 12082 5 <212> ADN <213> Secuencia artificial <220> <223> Plásmido pEMC-LSchw <400> 2

10

aagettttge gatcaataaa tggatcacaa ccagtatete ttaacgatgt tettegeaga 60 tgatgattca ttttttaagt atttggctag tcaagatgat gaatcttcat tatctgatat 120 attgcaaatc actcaatatc tagactttct gttattatta ttgatccaat caaaaaataa 180 attagaagcc gtgggtcatt gttatgaatc tetttcagag gaatacagac aattgacaaa 240 attcacagac tttcaagatt ttaaaaaact gtttaacaag gtccctattg ttacagatgg 300 aagggtcaaa cttaataaag gatatttgtt cgactttgtg attagtttga tgcgattcaa 360 aaaagaatcc tctctagcta ccaccgcaat agatcctgtt agatacatag atcctcgtcg 420 caatatcgca ttttctaacg tgatggatat attaaagtcg aataaagtga acaataatta 480 attetttatt gteateatga aeggeggaca tatteagttg ataateggee ceatgtttte 540 aggtaaaagt acagaattaa ttagacgagt tagacgttat caaatagctc aatataaatg 600 660 cgtgactata aaatattcta acgataatag atacggaacg ggactatgga cgcatgataa gaataatttt gaagcattgg aagcaactaa actatgtgat gtcttggaat caattacaga 720 tttctccgtg ataggtatcg atgaaggaca gttctttcca gacattgttg aattgatctc 780 gatcccgcga aattaatacg actcactata gggagaccac aacggtttcc ctctagcggg 840 ateaatteeg ceceteteec tecececece etaacgttac tggccgaage cgettggaat 900 aaggeeggtg tgegtttgte tatatgttat tttccaccat attgeegtet tttggcaatg 960 tgagggcccg gaaacctggc cctgtcttct tgacgagcat tcctaggggt ctttccctc 1020 tcgccaaagg aatgcaaggt ctgttgaatg tcgtgaagga agcagttcct ctggaagctt 1080 cttgaagaca aacaacgtct gtagcgaccc tttgcaggca gcggaacccc ccacctggcg 1140 acaggtgcct ctgcggccaa aagccacgtg tataagatac acctgcaaag gcggcacaac 1200 cccagtgcca cgttgtgagt tggatagttg tggaaagagt caaatggctc tcctcaagcg 1260 1320 tattcaacaa ggggctgaag gatgcccaga aggtacccca ttgtatggga tctgatctgg ggcctcggtg cacatgcttt acatgtgttt agtcgaggtt aaaaaacgtc taggccccc 1380

gaaccacggg	gacgtggttt	tcctttgaaa	aacacgataa	taccatggac	tcgctatctg	1440
tcaaccagat	cttataccct	gaagttcacc	tagatagccc	gatagttacc	aataagatag	1500
tagccatcct	ggagtatgct	cgagtccctc	acgcttacag	cctggaggac	cctacactgt	1560
gtcagaacat	caagcaccgc	ctaaaaaacg	gattttccaa	ccaaatgatt	ataaacaatg	1620
tggaagttgg	gaatgtcatc	aagtccaagc	ttaggagtta	teeggeeeac	tctcatattc	1680
catatccaaa	ttgtaatcag	gatttattta	acatagaaga	caaagagtca	acgaggaaga	1740
tccgtgaact	cctcaaaaag	gggaattcgc	tgtactccaa	agtcagtgat	aaggttttcc	1800
aatgcttaag	ggacactaac	tcacggcttg	gcctaggctc	cgaattgagg	gaggacatca	1860
aggagaaagt	tattaacttg	ggagtttaca	tgcacagctc	ccagtggttt	gagecettte	1920
tgttttggtt	tacagtcaag	actgagatga	ggtcagtgat	taaatçacaa	acccatactt	1980
gccataggag	gagacacaca	cctgtattct	tcactggtag	ttcagttgag	ttgctaatct	2040
ctcgtgacct	tgttgctata	atcagtaaag	agtctcaaca	tgtatattac	ctgacatttg	2100
aactggtttt	gatgtattgt	gatgtcatag	aggggaggtt	aatgacagag	accgctatga	2160
ctattgatgc	taggtataca	gagcttctag	gaagagtcag	atacatgtgg	aaactgatag	2220
atggtttctt	ccctgcactc	gggaatccaa	cttatcaaat	tgtagccatg	ctggagcctc	2280
tttcacttgc	ttacctgcag	ctgagggata	taacagtaga	actcagaggt	gctttcctta	2340
accactgctt	tactgaaata	catgatgttc	ttgaccaaaa	cgggttttct	gatgaaggta	2400
cttatcatga	gttaactgaa	gctctagatt	acattttcat	aactgatgac	atacatctga	2460
caggggagat	tttctcattt	ttcagaagtt	tcggccaccc	cagacttgaa	gcagtaacgg	2520
ctgctgaaaa	tgttaggaaa	tacatgaatc	agcctaaagt	cattgtgtat	gagactctga	2580
tgaaaggtca	tgccatattt	tgtggaatca	taatcaacgg	ctatcgtgac	aggcacggag	2640
gcagttggcc	accgctgacc	ctcccctgc	atgctgcaga	cacaatccgg	aatgctcaag	2700
cttcaggtga	agggttaaca	catgagcagt	gcgttgataa	ctggaaatct	tttgctggag	2760
tgaaatttgg	ctgctttatg	cctcttagcc	tggatagtga	tctgacaatg	tacctaaagg	2820
acaaggcact	tgctgctctc	caaagggaat	gggattcagt	ttacccgaaa	gagttcctgc	2880
gttacgaccc	teccaaggga	accgggtcac	ggaggcttgt	agatgttttc	cttaatgatt	2940
cgagctttga	cccatatgat	gtgataatgt	atgttgtaag	tggagcttac	ctccatgacc	3000
ctgagttcaa	cctgtcttac	agcctgaaag	aaaaggagat	caaggaaaca	ggtagacttt	3060
ttgctaaaat	gacttacaaa	atgagggcat	gccaagtgat	tgctgaaaat	ctaatctcaa	3120
acgggattgg	caaatatttt	aaggacaatg	ggatggccaa	ggatgagcac	gatttgacta	3180
aggcactcca	cactctagct	gtctcaggag	tccccaaaga	tctcaaagaa	agtcacaggg	3240
gggggccagt	cttaaaaacc	tactcccgaa	gcccagtcca	cacaagtacc	aggaacgtga	3300

gagcagcaaa	agggtttata	gggttccctc	aagtaattcg	gcaggaccaa	gacactgatc	3360
atccggagaa	tatggaagct	tacgagacag	tcagtgcatt	tatcacgact	gatctcaaga	3420
agtactgcct	taattggaga	tatgagacca	tcagcttgtt	tgcacagagg	ctaaatgaga	3480
tttacggatt	gccctcattt	ttccagtggc	tgcataagag	gcttgagacc	tctgtcctgt	3540
atgtaagtga	ccctcattgc	cccccgacc	ttgacgccca	tatcccgtta	tataaagtcc	3600
ccaatgatca	aatcttcatt	aagtacccta	tgggaggtat	agaagggtat	tgtcagaagc	3660
tgtggaccat	cagcaccatt	ccctatctat	acctggctgc	ttatgagagc	ggagtaagga	3720
ttgcttcgtt	agtgcaaggg	gacaatcaga	ccatagccgt	aacaaaaagg	gtacccagca	3780
catggcccta	caaccttaag	aaacgggaag	ctgctagagt	aactagagat	tactttgtaa	3840
ttcttaggca	aaggctacat	gatattggcc	atcacctcaa	ggcaaatgag	acaattgttt	3900
catcacattt	ttttgtctat	tcaaaaggaa	tatattatga	tgggctactt	gtgtcccaat	3960
cactcaagag	catcgcaaga	tgtgtattct	ggtcagagac	tatagttgat	gaaacaaggg	4020
cagcatgcag	taatattgct	acaacaatgg	ctaaaagcat	cgagagaggt	tatgaccgtt	4080
accttgcata	ttccctgaac	gtcctaaaag	tgatacagca	aattctgatc	tctcttggct	4140
tcacaatcaa	ttcaaccatg	acccgggatg	tagtcatacc	cctcctcaca	aacaacgacc	4200
tcttaataag	gatggcactg	ttgcccgctc	ctattggggg	gatgaattat	ctgaatatga	4260
gcaggctgtt	tgtcagaaac	atcggtgatc	cagtaacatc	atcaattgct	gatetcaaga	4320
gaatgattct	cgcctcacta	atgcctgaag	agaccctcca	tcaagtaatg	acacaacaac	4380
cgggggactc	ttcattccta	gactgggcta	gcgaccctta	ctcagcaaat	cttgtatgtg	4440
tccagagcat	cactagactc	ctcaagaaca	taactgcaag	gtttgtcctg	atccatagtc	4500
caaacccaat	gttaaaagga	ttattccatg	atgacagtaa	agaagaggac	gagggactgg	4560
cggcattcct	catggacagg	catattatag	tacctagggc	agctcatgaa	atcctggatc	4620
atagtgtcac	aggggcaaga	gagtctattg	caggcatgct	ggataccaca	aaaggcttga	4680
ttcgagccag	catgaggaag	ggggggttaa	cctctcgagt	gataaccaga	ttgtccaatt	4740
atgactatga	acaattcaga	gcagggatgg	tgctattgac	aggaagaaag	agaaatgtcc	4800
tcattgacaa	. agagtcatgt	tcagtgcagc	tggcgagagc	tctaagaagc	catatgtggg	4860
cgaggctagc	tcgaggacgg	cctatttacg	gccttgaggt	ccctgatgta	ctagaatcta	4920
tgcgaggcca	ccttattcgg	cgtcatgaga	catgtgtcat	ctgcgagtgt	ggatcagtca	4980
actacggatg	gttttttgtc	ccctcgggtt	gccaactgga	tgatattgac	aaggaaacat	5040
catccttgag	agtcccatat	attggttcta	ccactgatga	gagaacagac	atgaagettg	5100
ccttcgtaag	agccccaagt	cgatccttgc	gatetgetgt	tagaatagca	acagtgtact	5160
catgggctta	cggtgatgat	gatagctctt	ggaacgaagc	ctggttgttg	gctaggcaaa	5220
gggccaatgt	gagcctggag	gagctaaggg	tgatcactcc	catctcaact	tcgactaatt	5280

tagcgcatag	gttgagggat	cgtagcactc	aagtgaaata	ctcaggtaca	tcccttgtcc	5340
gagtggcgag	gtataccaca	atctccaacg	acaatctctc	atttgtcata	tcagataaga	5400
aggttgatac	taactttata	taccaacaag	gaatgettet	agggttgggt	gttttagaaa	5460
cattgtttcg	actcgagaaa	gataccggat	catctaacac	ggtattacat	cttcacgtcg	5520
aaacagattg	ttgcgtgatc	ccgatgatag	atcatcccag	gatacccagc	tecegeaage	5580
tagagetgag	ggcagagcta	tgtaccaacc	cattgatata	tgataatgca	cctttaattg	5640
acagagatgc	aacaaggcta	tacacccaga	gccataggag	gcaccttgtg	gaatttgtta	5700
catggtccac	accccaacta	tatcacattt	tagctaagtc	cacagcacta	tctatgattg	5760
acctggtaac	aaaatttgag	aaggaccata	tgaatgaaat	ttcagctctc	ataggggatg	5820
acgatatcaa	tagtttcata	actgagtttc	tgctcataga	gccaagatta	ttcactatct	5880
acttgggcca	gtgtgcggcc	atcaattggg	catttgatgt	acattatcat	agaccatcag	5940
ggaaatatca	gatgggtgag	ctgttgtcat	cgttcctttc	tagaatgagc	aaaggagtgt	6000
ttaaggtgct	tgtcaatgct	ctaagccacc	caaagatcta	caagaaattc	tggcattgtg	6060
gtattataga	gcctatccat	ggtccttcac	ttgatgctca	aaacttgcac	acaactgtgt	6120
gcaacatggt	ttacacatgc	tatatgacct	acctcgacct	gttgttgaat	gaagagttag	6180
aagagttcac	atttctcttg	tgtgaaagcg	acgaggatgt	agtaccggac	agattcgaca	6240
acatccaggc	aaaacactta	tgtgttctgg	cagatttgta	ctgtcaacca	gggacctgcc	6300
caccaattcg	aggtctaaga	ccggtagaga	aatgtgcagt	tctaaccgac	catatcaagg	6360
cagaggctat	gttatctcca	gcaggatett	cgtggaacat	aaatccaatt	attgtagacc	6420
attactcatg	ctctctgact	tatctccggc	gaggatcgat	caaacagata	agattgagag	6480
ttgatccagg	attcattttc	gacgccctcg	ctgaggtaaa	tgtcagtcag	ccaaagatcg	6540
gcagcaacaa	catctcaaat	atgagcatca	aggctttcag	acccccacac	gatgatgttg	6600
caaaattgct	caaagatatc	aacacaagca	agcacaatct	tcccatttca	gggggcaatc	6660
tegecaatta	tgaaatccat	gctttccgca	gaatcgggtt	gaactcatct	gettgetaca	6720
aagctgttga	gatatcaaca	ttaattagga	gatgccttga	gccaggggag	gacggcttgt	6780
tcttgggtga	gggatcgggt	tctatgttga	tcacttataa	agagatactt	aaactaaaca	6840
agtgcttcta	taatagtggg	gtttccgcca	attctagatc	tggtcaaagg	gaattagcac	6900
cctatccctc	cgaagttggc	cttgtcgaac	acagaatggg	agtaggtaat	attgtcaaag	6960
tgctctttaa	cgggaggccc	gaagtcacgt	gggtaggcag	tgtagattgc	ttcaatttca	7020
tagttagtaa	tatccctacc	tctagtgtgg	ggtttatcca	ttcagatata	gagaccttgc	7080
ctgacaaaga	tactatagag	aagctagagg	aattggcagc	catcttatcg	atggctctgc	7140
tcctgggcaa	aataggatca	atactggtga	ttaagcttat	gcctttcagc	ggggattttg	7200

ttcagggatt	tataagttat	gtagggtctc	attatagaga	agtgaacctt	gtatacccta	7260
gatacagcaa	cttcatctct	actgaatctt	atttggttat	gacagatete	aaggctaacc	7320
ggctaatgaa	tcctgaaaag	attaagcagc	agataattga	atcatctgtg	aggacttcac	7380
ctggacttat	aggtcacatc	ctatccatta	agcaactaag	ctgcatacaa	gcaattgtgg	7440
gagacgcagt	tagtagaggt	gatatcaatc	ctactctgaa	aaaacttaca	cctatagagc	7500
aggtgctgat	caattgcggg	ttggcaatta	acggacctaa	gctgtgcaaa	gaattgatcc	7560
accatgatgt	tgcctcaggg	caagatggat	tgcttaattc	tatactcatc	ctctacaggg	7620
agttggcaag	attcaaagac	aaccaaagaa	gtcaacaagg	gatgttccac	gcttaccccg	7680
tattggtaag	tagcaggcaa	cgagaactta	tatctaggat	cacccgcaaa	ttctgggggc	7740
acattcttct	ttactccggg	aacaaaaagt	tgataaataa	gtttatccag	aatctcaagt	7800
ccggctatct	gatactagac	ttacaccaga	atatcttcgt	taagaatcta	tccaagtcag	7860
agaaacagat	tattatgacg	gggggtttga	aacgtgagtg	ggtttttaag	gtaacagtca	7920
aggagaccaa	agaatggtat	aagttagtcg	gatacagtgc	cctgattaag	gactaattgg	7980
ttgaactccg	gaaccctaat	cctgccctag	gtggttaggc	attatttacc	tcgaggggc	8040
cggatccact	agttctagaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	8100
aaaaaaaaa	aaaaaaaaa	acgtcgcgca	ggtgacaatg	tcgagctagc	tatgaattcc	8160
ccggggagct	cactagtgga	tccctgcagc	tcgagaggcc	taattaatta	agtcgacgat	8220
ccggctgcta	acaaagcccg	aaaggaagct	gagttggctg	ctgccaccgc	tgagcaataa	8280
ctagcataac	cccttggggc	ctctaaacgg	gtcttgaggg	gttttttgct	gaaaggagga	8340
actatatccg	gatcgagatc	aattctgtga	gcgtatggca	aacgaaggaa	aaatagttat	8400
agtagccgca	ctcgatggga	catttcaacg	taaaccgttt	aataatattt	tgaatcttat	8460
tccattatct	gaaatggtgg	taaaactaac	tgctgtgtgt	atgaaatgct	ttaaggaggc	8520
ttccttttct	aaacgattgg	gtgaggaaac	cgagatagaa	ataataggag	gtaatgatat	8580
gtatcaatcg	gtgtgtagaa	agtgttacat	cgactcataa	tattatattt	tttatctaaa	8640
aaactaaaaa	taaacattga	ttaaatttta	atataatact	taaaaatgga	tgttgtgtcg	8700
ttagataaac	cgtttatgta	ttttgaggaa	attgataatg	agttagatta	cgaaccagaa	8760
agtgcaaatg	aggtcgcaaa	aaaactgccg	tatcaaggac	agttaaaact	attactagga	8820
gaattatttt	ttcttagtaa	gttacagcga	cacggtatat	tagatggtgc	caccgtagtg	8880
tatataggat	ctgctcccgg	tacacatata	cgttatttga	gagatcattt	ctataattta	8940
ggagtgatca	tcaaatggat	gctaattgac	ggccgccatc	atgatcctat	tttaaatgga	9000
ttgcgtgatg	tgactctagt	gactcggttc	gttgatgagg	aatatctacg	atccatcaaa	9060
aaacaactgc	atccttctaa	gattatttta	atttctgatg	tgagatccaa	acgaggagga	9120
aatgaaccta	gtacggcgga	tttactaagt	aattacgctc	taçaaaatgt	catgattagt	9180

attttaaacc	ccgtggcgtc	tagtcttaaa	tggagatgcc	cgtttccaga	tcaatggatc	9240
aaggactttt	atatcccaca	cggtaataaa	atgttacaac	cttttgctcc	ttcatattca	9300
gggccgtcgt	tttacaacgt	cgtgactggg	aaaaccctgg	cgttacccaa	cttaatcgcc	9360
ttgcagcaca	tcccctttc	gccagctggc	gtaatagcga	agaggcccgc	accgatcgcc	9420
cttcccaaca	gttgcgcagc	ctgaatggcg	aatggcgcga	cgcgccctgt	agcggcgcat	9480
taagcgcggc	gggtgtggtg	gttacgcgca	gcgtgaccgc	tacacttgcc	agcgccctag	9540
egecegetee	tttcgctttc	ttcccttcct	ttctcgccac	gttegeegge	tttccccgtc	9600
aagctctaaa	tegggggete	cctttagggt	tccgatttag	tgctttacgg	cacctcgacc	9660
ccaaaaaact	tgattagggt	gatggttcac	gtagtgggcc	atcgccctga	tagacggttt	9720
ttcgcccttt	gacgttggag	tccacgttct	ttaatagtgg	actcttgttc	caaactggaa	9780
caacactcaa	ccctatctcg	gtctattctt	ttgatttata	agggattttg	ccgatttcgg	9840
cctattggtt	aaaaaatgag	ctgatttaac	aaaaatttaa	cgcgaatttt	aacaaaatat	9900
taacgtttac	aatttcccag	gtggcacttt	tcggggaaat	gtgcgcggaa	cccctatttg	9960
tttatttttc	taaatacatt	caaatatgta	teegeteatg	agacaataac	cctgataaat	10020
gcttcaataa	tattgaaaaa	ggaagagtat	gagtattcaa	catttccgtg	tcgcccttat	10080
tecettttt	gcggcatttt	gccttcctgt	ttttgctcac	ccagaaacgc	tggtgaaagt	10140
aaaagatgct	gaagatcagt	tgggtgcacg	agtgggttac	atcgaactgg	atctcaacag	10200
cggtaagatc	cttgagagtt	ttcgccccga	agaacgtttt	ccaatgatga	gcacttttaa	10260
agttctgcta	tgtggcgcgg	tattatcccg	tattgacgcc	gggcaagagc	aactcggtcg	10320
ccgcatacac	tattctcaga	atgacttggt	tgagtactca	ccagtcacag	aaaagcatct	10380
tacggatggc	atgacagtaa	gagaattatg	cagtgctgcc	ataaccatga	gtgataacac	10440
tgcggccaac	ttacttctga	caacgatcgg	aggaccgaag	gagctaaccg	cttttttgca	10500
caacatgggg	gatcatgtaa	ctcgccttga	tcgttgggaà	ccggagctga	atgaagccat	10560
accaaacgac	gagcgtgaca	ccacgatgcc	tgtagcaatg	gcaacaacgt	tgcgcaaact	10620
attaactggc	gaactactta	ctctagcttc	ccggcaacaa	ttaatagact	ggatggaggc	10680
ggataaagtt	gcaggaccac	ttetgegete	ggcccttccg	gctggctggt	ttattgctga	10740
taaatctgga	gccggtgagc	gtgggtctcg	cggtatcatt	gcagcactgg	ggccagatgg	10800
taagccctcc	cgtatcgtag	ttatctacac	gacggggagt	caggcaacta	tggatgaacg	10860
aaatagacag	atcgctgaga	taggtgcctc	actgattaag	cattggtaac	tgtcagacca	10920
agtttactca	tatatacttt	agattgattt	aaaacttcat	ttttaattta	aaaggatcta	10980
ggtgaagatc	ctttttgata	atctcatgac	caaaatccct	taacgtgagt	tttcgttcca	11040
ctgagcgtca	gaccccgtag	aaaagatcaa	aggatettet	tgagatcctt	ttttctgcg	11100

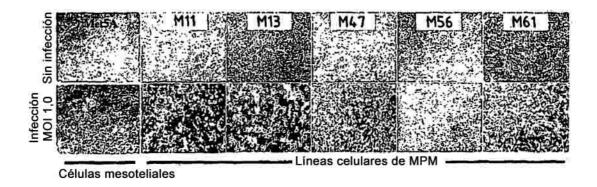
```
cqtaatctqc tqcttqcaaa caaaaaaacc accqctacca qcqqtqqttt qtttqccqqa 11160
tcaagagcta ccaactcttt ttccgaaggt aactggcttc agcagagcgc agataccaaa 11220
tactgtcctt ctagtgtage egtagttagg ccaccactte aagaactetg tagcacegec 11280
tacatacete getetgetaa teetgttace agtggetget gecagtggeg ataagtegtg 11340
tcttaccggg ttggactcaa gacgatagtt accggataag gcgcagcggt cgggctgaac 11400
ggggggttcg tgcacacagc ccagcttgga gcgaacgacc tacaccgaac tgagatacct 11460
acagegtgag ctatgagaaa gegecaeget teeegaaggg agaaaggegg acaggtatee 11520
ggtaagcggc agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg 11580
gtatetttat agteetgteg ggtttegeea cetetgaett gagegtegat tittigtgatg 11640
ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct 11700
ggccttttgc tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga 11760
taaccgtatt accgcctttg agtgagctga taccgctcgc cgcagccgaa cgaccgagcg 11820
cagcgagtca gtgagegagg aageggaaga gegeccaata egcaaacege eteteceege 11880
gegttggeeg atteattaat geagetggea egaeaggttt ceegaetgga aagegggeag 11940
tgagcgcaac gcaattaatg tgagttagct cactcattag gcaccccagg ctttacactt 12000
tatgetteeg getegtatgt tgtgtggaat tgtgagegga taacaattte acacaggaaa 12060
                                                                  12082
cagctatgac catgattacg cc
```

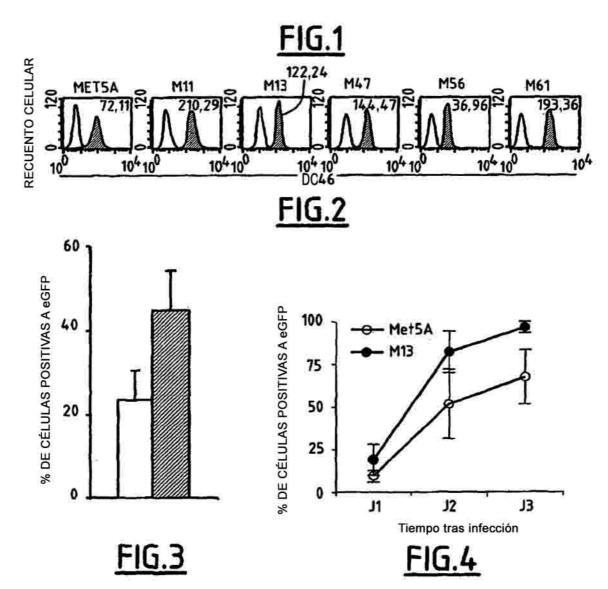
```
<210>3
   <211> 32
 5 <212> ADN
   <213> Secuencia artificial
   <220>
   <223> Cebador
   <400> 3
10
                                                       32
   atctggcacc acaccttcta caatgagctg cg
   <210>4
   <211> 32
15 <212> ADN
   <213> Secuencia artificial
   <220>
   <223> Cebador
   <400>4
20
   cgtcatactc ctgcttgctg atccacatct gc
                                                       32
   <210>5
   <211> 25
25 <212> ADN
   <213> Secuencia artificial
   <223> Cebador
```

	<400> 5	
	attgggtctg ggaacatttc tcttc	25
	<210> 6 <211> 25 <212> ADN <213> Secuencia artificial <220>	
10	<223> Cebador <400> 6	
	gtgagattta aacattcctc ttcgg	25
15	<210> 7 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Cebador <400> 7	
	gagcaacttc tttcaaccac	20
25	<210> 8 <211> 20 <212> ADN <213> Secuencia artificial	
30	<220> <223> Cebador <400> 8	
	gaacaccagc atcttctcca	20
35	<210> 9 <211> 20 <212> ADN <213> Secuencia artificial	
40	<220> <223> Cebador <400> 9	
	gaacgattcc atcactatcc	20
45	<210> 10 <211> 20 <212> ADN <213> Secuencia artificial	
50	<220> <223> Cebador <400> 10	
	ggcatcatta tatttccgca	20
55	<210> 11 <211> 20 <212> ADN <213> Secuencia artificial <220>	

```
<223> Cebador
   <400> 11
   cttctcagca gatacatcag
                                                  20
   <210> 12
   <211> 20
   <212> ADN
   <213> Secuencia artificial
10 <220>
   <223> Cebador
   <400> 12
                                                  20
   gttacaagtc caaagtctcc
15
   <210> 13
   <211>9
   <212> PRT
   <213> Secuencia artificial
20 <220>
   <223> Epítopo MSLN 531-539
   <400> 13
                             Val Leu Pro Leu Thr Val Ala Glu Val
                                                  5
25
   <210> 14
   <211> 10
   <212> PRT
   <213> Secuencia artificial
30 <220>
   <223> Epítopo MSLN 541-550
   <400> 14
                           Lys Leu Leu Gly Pro His Val Glu Gly Leu
35
```

REIVINDICACIONES


- Un método para preparar células dendríticas vacunales destinadas a tratar un mesotelioma maligno en 1. un individuo, que comprende las siguientes etapas:
- infección in vitro de células de mesotelioma maligno recogidas del individuo por una cepa de sarampión atenuada para producir un lisado celular;
- poner en contacto células dendríticas con el lisado celular para producir células dendríticas vacunales.
- 10 2. El método de acuerdo con la reivindicación 1, en el que las células dendríticas provienen del individuo.
 - El método de acuerdo con la reivindicación 1 o 2, en el que las células dendríticas son células dendríticas obtenidas de monocitos.
- 15 4. El método de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que el mesotelioma maligno es un mesotelioma pleural maligno.
 - El método de acuerdo con cualquiera de las reivindicaciones 1 a 4, en el que el virus atenuado del sarampión es una cepa Edmonston.
 - El método de acuerdo con cualquiera de las reivindicaciones 1 a 5, en el que el virus atenuado del sarampión se selecciona entre el grupo que consiste en una cepa Schwartz y una cepa Moraten.
- Células dendríticas vacunales que pueden obtenerse por el método de acuerdo con cualquiera de las 25 reivindicaciones 1 a 6, en el que dichas células dendríticas vacunales sobreexpresan CD80, CD83, CD86, CD40 y HLA-ABC y producen IL-6, IL-1 β , TNF α e IFN α .
 - Una composición farmacéutica que comprende células dendríticas vacunales de acuerdo con la reivindicación 7 como principio activo, junto con un vehículo farmacéuticamente aceptable.
 - Células dendríticas vacunales de acuerdo con la reivindicación 7 para su uso en el tratamiento de mesotelioma maligno en un individuo.
- 10. Células dendríticas vacunales de acuerdo con la reivindicación 7 para su uso de acuerdo con la 35 reivindicación 9, en las que el mesotelioma maligno es mesotelioma pleural maligno.


30

5

20

30

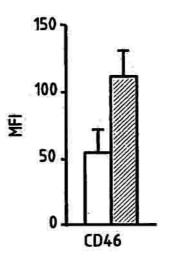


FIG.5

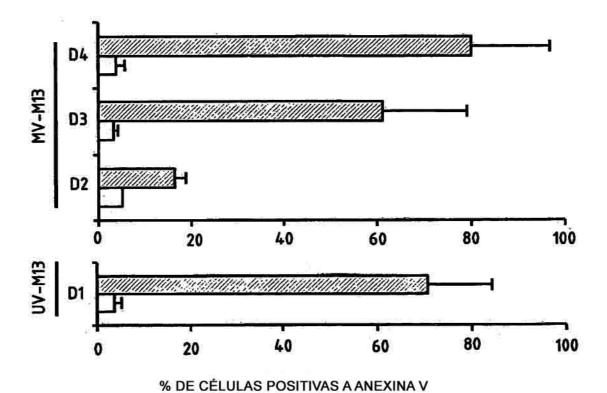
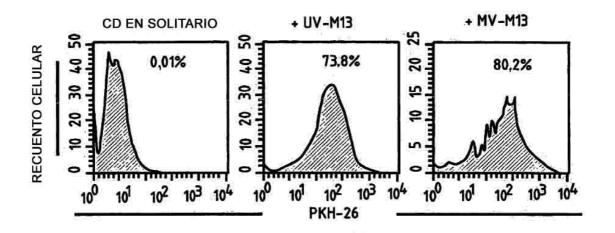
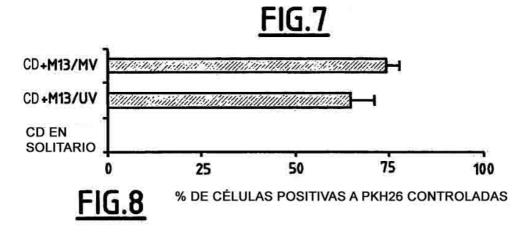
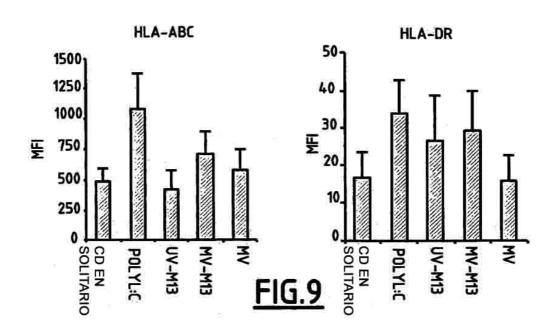





FIG.6

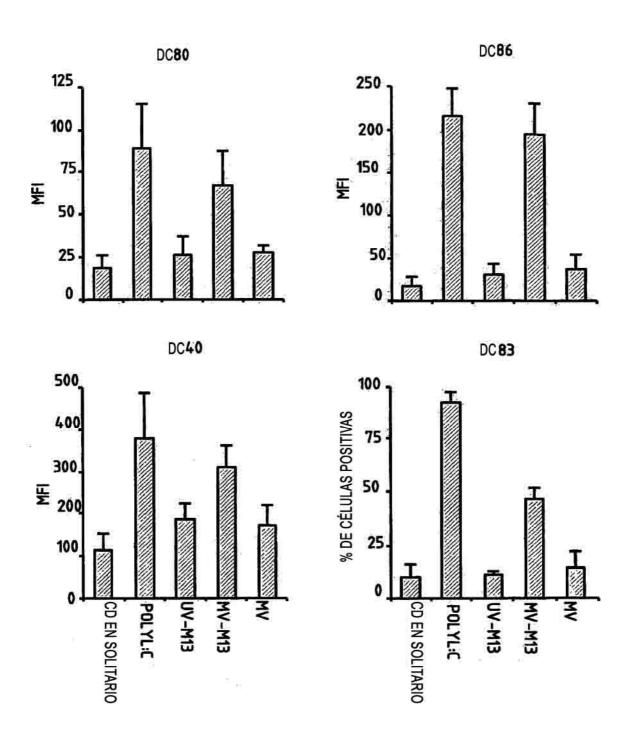
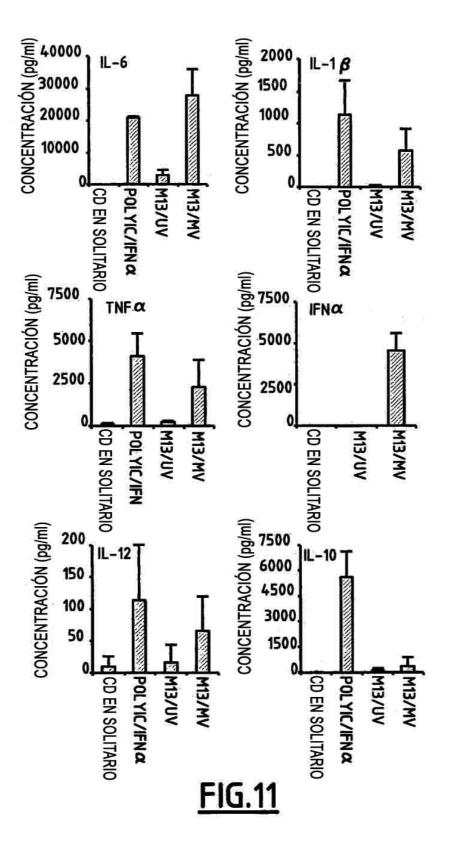



FIG.10

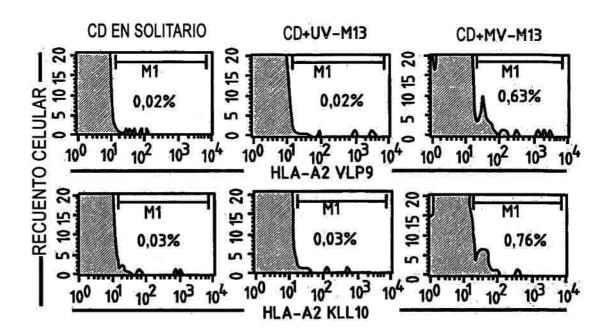


FIG.12