

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 551 711

51 Int. Cl.:

C12C 5/00 (2006.01) C12C 7/00 (2006.01) C12C 11/00 (2006.01) C12N 9/44 (2006.01)

12

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 12.12.2007 E 07869143 (3)
 (97) Fecha y número de publicación de la concesión europea: 12.08.2015 EP 2222830

(54) Título: Proceso de maceración

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 23.11.2015

73) Titular/es:

NOVOZYMES A/S (50.0%) Krogshoejvej 36 2880 Bagsværd, DK y NOVOZYMES INC. (50.0%)

(72) Inventor/es:

ELVIG, NIELS; JOERGENSEN, PER LINAA y THOMAS, MICHAEL

(74) Agente/Representante:

TOMAS GIL, Tesifonte Enrique

S 2 551 711 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Proceso de maceración

5 Referencia a un listado de secuencias

[0001] Esta solicitud contiene un listado de secuencias en la forma legible informática. La forma legible informática es incorporada aquí por referencia.

10 Campo de la invención

20

25

30

35

40

45

50

55

60

[0002] La presente invención se refiere a un proceso de maceración mejorado para la producción de un mosto de cerveza y para la producción de una cerveza.

15 Antecedentes de la invención

[0003] En los procesos de maceración modemos, frecuentemente se añaden enzimas como suplemento cuando la malta de maceración es baja en enzimas o para permitir el uso de todas las moliendas de adjuntos. También se pueden aplicar enzimas en la maceración de maltas bien modificadas con alto contenido enzimático para aumentar la recuperación de extracto al igual que la cantidad de azúcares fermentables. Por consiguiente es bien conocido aplicar enzimas desramificantes, por ejemplo, isoamilasa o pululanasa para aumentar el rendimiento de azúcares fermentables. Las enzimas desramificantes se pueden aplicar en procesos para la producción de cerveza baja en calorías. Tales procesos son el objeto de Willox et al. (MBAA Technical Quarterly, 1977, 14: 105), patentes estadounidenses números 4,528,198, 4,666,718, y 4,318,927, y GB 2056484 y GB 2069527, y US 4,355,047.

Resumen de la invención

[0004] Los presentes inventores han descubierto ahora sorprendentemente que usando una determinada pululanasa, la maceración se puede conseguir utilizando una cantidad menor de proteína enzimática.

[0005] Por consiguiente, en un primer aspecto la invención proporciona un proceso para producir un mosto de cerveza que comprende formar un macerado a partir de una molienda, y poner en contacto dicho macerado con una pululanasa (E.C. 3.2.1.41), donde dicha pululanasa tiene una secuencia de aminoácidos que a) es al menos un 98% idéntica a la secuencia de aminoácidos mostrada en SEC ID nº 4.

[0006] En otro aspecto, la invención proporciona una composición adecuada para su uso en el proceso del primer aspecto, dicha composición comprende pululanasa (E.C. 3.2.1.41), glucoamilasa y opcionalmente alfa-amilasa, donde la pululanasa tiene una secuencia de aminoácidos que a) es al menos un 98% idéntica a la secuencia de aminoácidos mostrada en la SEC ID nº 4.

Descripción detallada de la invención

[0007] Los procesos de elaboración de cerveza son bien conocidos en la técnica, y generalmente comprenden los pasos de malteado, maceración, y fermentación. La maceración es el proceso de conversión del almidón a partir de la malta de cebada molida y adjuntos sólidos en azúcares fermentables y no fermentables para producir mosto de la composición deseada. La maceración tradicional implica la mezcla de malta de cebada molida y adjuntos con agua a una temperatura y volumen establecidos para continuar los cambios bioquímicos iniciados durante el proceso de malteado. El proceso de maceración se lleva a cabo durante un periodo de tiempo a varias temperaturas para activar las enzimas endógenas responsables de la degradación de proteínas y carbohidratos. Por mucho, el cambio más importante causado en la maceración es la conversión de moléculas de almidón en azúcares fermentables. Las enzimas principales responsables de la conversión de almidón en un proceso de maceración tradicional son las alfa y beta-amilasas. La alfa-amilasa reduce muy rápidamente el almidón insoluble y soluble escindiendo moléculas de almidón en cadenas mucho más cortas que pueden ser atacadas por la beta-amilasa. El disacárido producido es maltosa. Además de la maltosa formada durante la maceración se producen oligómeros de glucosa ramificada corta. Los oligómeros de glucosa ramificada corta son azúcares no fermentables y contribuyen tanto al sabor como a la cantidad de calorías de la cerveza final.

[0008] Después de la maceración, cuando todo el almidón ha sido descompuesto, es necesario separar el extracto líquido (el mosto) de los sólidos (granos consumidos). La separación del mosto, la filtración, es importante debido a que los sólidos contienen grandes cantidades de proteína, almidón pobremente modificado, material graso, silicatos, y polifenoles (taninos). Tras la separación del mosto de los granos consumidos el mosto se puede fermentar con levadura de cerveza para producir una cerveza.

[0009] Se puede encontrar más información sobre los procesos de elaboración de cerveza convencionales en "Technology Brewing and Malting" por Wolfgang Kunze del Research and Teaching Institute of Brewing, Berlín (VLB), 2ª edición corregida 1999, ISBN 3-921690-39-0.

[0010] Los oligómeros de glucosa ramificada corta formados durante la maceración pueden ser además hidrolizados mediante la adición de enzimas exógenas (enzimas añadidas además de la malta). Las enzimas desramificantes tales como pululanas a e isoamilas a hidrolizan la ramificación de enlaces alfa-1,6-glucosídicos en estos oligómeros, liberando así glucosa o maltosa y oligómeros de cadena lineal que están sujetos a la acción de enzimas endógenas (derivadas de la malta) y/o exógenas, por ejemplo, alfa-amilas as, beta-amilas as y glucoamilas as.

[0011] La presente invención proporciona un proceso nuevo adecuado para producir un mosto que sea bajo en azúcares no fermentables. El proceso aplica una actividad de pululanasa expresamente seleccionada.

Definiciones

5

10

15

25

40

45

50

55

- [0012] En toda esta divulgación, se usan varios términos que son generalmente entendidos por aquellos de habilidad ordinaria en la técnica. Se usan varios términos con significado específico, tal y como se define posteriormente.
- [0013] Como se utiliza en este caso el término **"molienda"** se entiende como el almidón o azúcar que contiene material que es la base para la producción de œrveza, por ejemplo, la malta de cebada y el adjunto. Generalmente, la molienda no contiene agua añadida.
- 20 [0014] El término "malta" se entiende como cualquier grano de cereal malteado, en particular cebada.
 - [0015] El término "adjunto" se entiende como la parte de la molienda que no es de malta cebada. El adjunto puede comprender cualquier material vegetal rico en almidón, por ejemplo, grano no malteado, tal como cebada, arroz, maíz, trigo, centeno, sorgo y azúcar y/o jarabe fácilmente fermentable.
 - [0016] El término **"macerado"** se entiende como un almidón que contiene lodo que comprende molienda mojada en agua.
- [0017] El término **"mosto"** se entiende como la solución extraída no fermentada siguiente a la extracción de la molienda durante la maceración.
 - [0018] El término **"granos consumidos"** se entiende como los sólidos drenados restantes cuando la molienda ha sido extraída y el mosto separado.
- 35 [0019] El término **"cerveza"** se entiende como mosto fermentado, es decir, una bebida alcohólica fermentada a partir de malta de cebada, opcionalmente adjunto y lúpulo.
 - [0020] El término "secuencia homóloga" se utiliza para caracterizar una secuencia con una secuencia de aminoácidos que es al menos un 70%, preferiblemente al menos un 75%, o al menos un 80%, o al menos un 85%, o un 90%, o al menos un 95%, al menos un 96%, al menos un 97%, al menos un 98%, al menos un 99% o incluso al menos un 100% idéntica a una secuencia conocida. La parte relevante de la secuencia de aminoácidos para la determinación de homología es el polipéptido maduro, es decir, sin el péptido señal. El término "secuencia homóloga" también se usa para caracterizar secuencias de ADN que hibridan a astringencia baja, astringencia media, astringencia media/alta, astringencia alta, o incluso a astringencia muy alta con una secuencia conocida. Las condiciones experimentales adecuadas para determinar la hibridación a astringencia baja, media o alta entre una sonda de nucleótido y una secuencia de ADN o ARN homóloga implican el prerremojo del filtro que contiene los fragmentos de ADN o el ARN por hibridar en 5 x SSC (cloruro de sodio/citrato de sodio, Sambrook et al., 1989) durante 10 min, y la prehibridación del filtro en una solución de 5 x SSC, 5 x solución de Denhardt (Sambrook et al., 1989), 0,5% SDS y 100 microgramos/ml de ADN de esperma del salmón desnaturalizado y sometido a un baño de ultrasonido (Sambrook et al., 1989), seguido de la hibridación en la misma solución con una concentración de 10ng/ml de una sonda de preparado aleatorio (Feinberg y Vogelstein, 1983, Anal. Biochem. 132:6-13), marcada con 32P-dCTP (actividad específica > 1 x 109 cpm/microgramo) durante 12 horas a alrededor de 45°C. El filtro es luego lavado dos veces durante 30 minutos en 2 x SSC, 0,5% SDS a alrededor de 55°C (astringencia baja), de forma más preferible a alrededor de 60°C (astringencia media), todavía de forma más preferible a alrededor de 65°C (astringencia media/alta), incluso de forma más preferible a alrededor de 70°C (astringencia alta), e incluso de forma más preferible a alrededor de 75°C (astringencia muy alta). Las moléculas a las que la sonda de oligonudeótidos hibridiza bajo estas condiciones son detectadas utilizando una película radiográfica.
- [0021] El término "identidad" cuando se usa acerca de secuencias de polipéptido o de ADN y al cual se hace referencia en esta divulgación se entiende como el grado de identidad entre dos secuencias que indican una derivación de la primera secuencia respecto de la segunda. La identidad puede ser determinada adecuadamente mediante programas informáticos conocidos en la técnica tales como gap proporcionado en el paquete de programa GCG (Program Manual for the Wisconsin Package, versión 8, agosto 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, EE.UU 53711) (Needleman y Wunsch, 1970, Journal of Molecular Biology 48: 443-453). Se usan los siguientes ajustes para la comparación de secuencia polipeptídica: penalización de creación de gap de 3,0 y penalización por extensión de gap de 0,1. El grado de identidad entre una secuencia de aminoácidos de la

presente invención y una secuencia de aminoácidos diferente ("secuencia foránea") se calcula como el número de coincidencias exactas en un alineamiento de las dos secuencias, dividido por la longitud de la "secuencia de invención" o la longitud de la "secuencia foránea", la que sea más corta. El resultado se expresa en porcentaje de identidad.

Producción de mosto

5

10

15

20

50

55

[0022] Conforme al primer aspecto, la invención proporciona un proceso para producir un mosto de cerveza que comprende formar un macerado a partir de una molienda, y poner en contacto dicho macerado con una pululanasa (E.C. 3.2.1.41), donde dicha pululanasa tiene una secuencia de aminoácidos que es al menos un 98% o incluso al menos un 99% idéntica a la secuencia de aminoácidos mostrada en la SEC ID nº 4.

[0023] La molienda del primer aspecto comprende almidón que contiene grano y/o adjunto malteado. La molienda puede comprender preferiblemente de 0% a 100%, preferiblemente de 20% a 100%, preferiblemente de 30% a 100%, de forma más preferible de 40% a 100%, incluso de forma más preferible de 50% a 100%, aún de forma más preferible de 60% a 100%, tal como de 80% a 100% o incluso de la forma más preferible de 90% a 100% de adjunto, grano no malteado y/o cebada no malteada. En una forma de realización particular el adjunto está compuesto al 100% de cebada no malteada. Además, la molienda preferiblemente comprende de 0% a 100%, preferiblemente de 20% a 100%, preferiblemente de 30% a 100%, de forma más preferible de 40% a 100%, incluso de forma más preferible de 50% a 100%, aún de forma más preferible de 60% a 100%, o de la forma más preferible de 70% a 100%, o incluso de la forma más preferible de 90% a 100% de grano malteado y/o cebada malteada. En una forma de realización particular la molienda comprende aproximadamente el 50% de grano malteado, tal como cebada no malteada.

- [0024] El grano malteado usado en el proceso del primer aspecto puede comprender cualquier grano malteado, y preferiblemente el grano malteado seleccionado a partir de cebada, trigo, centeno, sorgo, milla, maíz, y arroz malteados, y de la forma más preferible cebada malteada.
- [0025] El adjunto usado en el proceso del primer aspecto puede obtenerse a partir de tubérculos, raíces, tallos, hojas, legumbres, cereales y/o grano entero. El adjunto puede comprender almidón crudo y/o refinado y/o azúcar que contiene material derivado de plantas como trigo, centeno, avena, maíz, arroz, sorgo, milla, sorgo, patata, batata, mandioca, tapioca, sagú, plátano, remolacha azucarera y/o azúcar de caña. Preferiblemente, el complemento comprende grano no malteado, por ejemplo, grano no malteado seleccionado a partir de la lista consistente en cebada, trigo, centeno, sorgo, milla, maíz, y arroz, y de la forma más preferible cebada no malteada. El adjunto que comprende carbohidratos fácilmente fermentables tales como azúcares o jarabes se puede añadir al macerado de malta de cebada antes, durante o después del proceso de maceración de la invención pero se añade preferiblemente después del proceso de maceración.
- [0026] Según la invención, una enzima pululanasa (E.C. 3.2.1.41) con al menos el 98% de identidad a la secuencia de aminoácidos de la SEC ID nº 4, es suministrada exógenamente y está presente en el macerado. La pululanasa se puede añadir a los ingredientes del macerado, por ejemplo, el agua y/o la molienda antes, durante o después de la formación del macerado. En una forma de realización particularmente preferida se añade una alfa-amilasa (E.C. 3.2.1.1) y/o una glucoamilasa (E.C. 3.2.1.3), y está presente en el macerado con la pululanasa.
- 45 [0027] En otra forma de realización preferida, se añade otra enzima al macerado, dicha enzima es seleccionada a partir del grupo consistente en celulosa, isoamilasa, proteasa, xilanasa.
 - [0028] Durante el proceso de maceración, el almidón extraído de la molienda es hidrolizado gradualmente en azúcares fermentables y dextrinas más pequeñas. Preferiblemente, el macerado es negativo en almidón en la prueba de yodo, antes de extraer el mosto.
 - [0029] El proceso de maceración aplica generalmente un aumento gradual controlado de la temperatura, donde cada paso favorece una acción enzimática sobre las demás proteínas, paredes celulares y almidón finalmente degradados. Los perfiles de temperatura de maceración son generalmente conocidos en la técnica. En la presente invención el paso de sacarificación (degradación de almidón) en el proceso de maceración se lleva a cabo preferiblemente entre 60°C y 66°C, de forma más preferible entre 61°C y 65°C, incluso de forma más preferible entre 62°C y 64°C, y de la forma más preferible entre 63°C y 64°C. En una forma de realización particular de la presente invención la temperatura de sacarificación es 64°C.
- [0030] Obtener el mosto a partir del macerado incluye típicamente extraer mediante presión el mosto a partir de los granos consumidos, es decir, el grano insoluble y material de cáscara que forman parte de la molienda. El agua caliente puede hacerse correr a través de los granos consumidos para enjuagar, o asperjar, cualquier extracto restante de la molienda. La solicitud de una celulasa termoestable en el proceso de la presente invención produce una reducción eficaz del nivel de beta-glucano facilitando la extracción por presión del mosto asegurando así una duración del ciclo reducida y una alta recuperación de extracto. Preferiblemente la recuperación del extracto es al menos del 80%, preferiblemente al menos del 81%, de forma más preferible al menos del 82%, incluso de forma

más preferible al menos del 83%, tal como al menos del 84%, al menos del 85%, al menos del 86%, al menos del 87%, al menos del 88%, al menos del 89%, al menos del 90%, y de la forma más preferible al menos del 91%.

- [0031] Después de la separación del mosto de los granos consumidos de la molienda de cualquiera de las formas de realización anteriormente mencionadas del primer aspecto, el mosto se puede utilizar como es o se puede deshidratar para proporcionar un mosto concentrado y/o seco. El mosto concentrado y/o seco se puede utilizar como extracto de elaboración de cerveza, como aromatizante de extracto de malta, para bebidas de malta sin alcohol, vinagre de malta, cereales de desayuno, para confitado, etc.
- [0032] En una forma de realización preferida, el mosto se fermenta para producir una bebida alcohólica, preferiblemente una cerveza, por ejemplo, ale, strong ale, amarga, stout, porter, lager, cerveza de exportación, licor de malta, vino de cebada, cerveza happoushu, cerveza de alta graduación alcohólica, cerveza de baja graduación alcohólica, cerveza baja en calorías o cerveza light. La fermentación del mosto puede incluir ajustar el mosto con un lodo de levadura que comprende levadura fresca, es decir, levadura no previamente usada para la invención o la levadura puede ser levadura recidada. La levadura aplicada puede ser cualquier levadura adecuada para la elaboración de cerveza, especialmente levaduras seleccionadas a partir de Saccharomyces spp. tal como S. cerevisiae y S. uvarum, induyendo variantes producidas naturalmente o artificialmente de estos organismos. Los métodos para fermentación de mosto para la producción de cerveza son conocidos por el experto en la materia.
- [0033] El proceso de la invención puede incluir la adición de hidrogel de sílice al mosto fermentado para aumentar la estabilidad coloidal de la cerveza. Los procesos pueden incluir además la adición de diatomita al mosto fermentado y la filtración para hacer la cerveza luminosa.
- [0034] También se describe cerveza producida a partir del mosto del segundo o tercer aspecto, tal como una cerveza producida mediante fermentación del mosto para producir una cerveza. La cerveza puede ser cualquier tipo de cerveza, por ejemplo, ales, strong ales, stouts, porters, lagers, bitters, cervezas de exportación, licores de malta, cerveza happoushu, cerveza de alta graduación alcohólica, cerveza de baja graduación alcohólica, cerveza baja en calorías o cerveza light.

30 Enzimas

50

55

[0035] Las enzimas por ser aplicadas en la presente invención deberían ser seleccionadas por su capacidad para retener la suficiente actividad a la temperatura de proceso de los procesos de la invención, al igual que bajo el régimen de pH en el macerado y deberían ser añadidas en cantidades eficaces. Las enzimas pueden ser derivadas de cualquier fuente, preferiblemente de una planta o una alga, y de forma más preferible de un microorganismo, tal como de una bacteria o un hongo.

Pululanasa (E.C. 3.2.1.41)

- 40 [0036] Una enzima de pululanasa preferida para ser usada en los procesos y/o composiciones de la invención es una pululanasa con una secuencia de aminoácidos que es al menos un 98% o incluso un 100% idéntica a la secuencia mostrada en la SEC ID nº 4; particular iónica cuando se alinea utilizando la matriz que usa el programa Needle: BLOSUM62; penalización de iniciación de gap: 10,0; penalización por extensión de gap: 0,5; matriz de identidad sin gaps.
 - [0037] De la forma más preferible la pululanasa es derivada de *Bacillus acidopulluliticus*. La pululanasa puede tener la secuencia de aminoácidos descrita por Kelly et al., 1994 (FEMS Microbiol. Letters 115: 97-106) (SEC ID nº 6).

Isoamilasa (E.C. 3.2.1.68)

[0038] Otra enzima aplicada en los procesos y/o composiciones de la invención puede ser una enzima desramificante alternativa, tal como una isoamilasa (E.C. 3.2.1.68). La isoamilasa hidroliza enlaces alfa-1,6-D-glucosídicos ramificados en amilopectina y beta-dextrinas límite y se pueden distinguir de las pululanasas por la incapacidad de la isoamilasa de atacar el pulolano, y por la acción limitada en las alfa-dextrinas límite. La isoamilasa se puede añadir en cantidades eficaces bien conocidas por el experto en la materia. La isoamilasa se puede añadir sola o junto con unas pululanasas.

Alfa-amilasa (EC 3.2.1.1)

[0039] Una enzima de alfa-amilasa particular para ser usada en los procesos y/o composiciones de la invención puede ser una alfa-amilasa de Bacillus. Las alfa-amilasas de Bacillus bien conocidas incluyen alfa-amilasas derivadas de una cepa de B. licheniformis, B. amyloliquefaciens, y B. stearothermophilus. En el contexto de la presente invención, una alfa-amilasa de Bacillus contemplada es una alfa-amilasa tal y como se define en el documento WO 99/19467 en la página 3, línea 18 a página 6, línea 27. Una alfa-amilasa preferida tiene una secuencia de aminoácidos con al menos el 90% de identidad a la SEC ID nº 4 en el documento WO 99/19467 (aquí descrita como SEC ID nº 7), tal como al menos el 92%, al menos el 95%, al menos el 96%, al menos el 97%, al

menos el 98%, o particularmente al menos el 99%. La alfa-amilasa maltogénica más preferida es la SEC ID nº 9 o comprende sus variantes descritas en el documento WO 99/43794. Las variantes e híbridos contemplados son descritos en los documentos WO 96/23874, WO 97/41213, y WO 99/19467. Específicamente contemplada es una alfa-amilasa (E.C. 3.2.1.1) de *B. stearothermophilus* con la secuencia de aminoácidos descrita como la SEC ID nº 3 en el documento WO 99/19467 (aquí descrita como SEC ID nº 10) con las mutaciones: I181* + G182* + N193F.

[0040] Se pueden añadir alfa-amilasas de *Bacillus* en las cantidades de 1,0-1000 NU/kg DS, preferiblemente de 2,0-500 NU/kg DS, preferiblemente 10-200 NU/kg DS.

10 [0041] Otra alfa-amilasa particular para ser usada en los procesos de la invención puede ser cualquier alfa-amilasa fúngica, por ejemplo, una alfa-amilasa derivada de una especie dentro de *Aspergillus*, y preferiblemente derivada de una cepa de *Aspergillus niger*. Especialmente contempladas son las alfa-amilasas fúngicas que muestran una alta identidad, es decir, al menos el 50%, al menos el 55%, al menos el 60%, al menos el 65%, al menos el 70%, al menos el 75%, al menos el 80%, al menos el 85% o incluso al menos el 90% de identidad a las secuencias de aminoácidos mostradas en la SEC ID nº 1 en el documento WO 2002/038787 (aquí descrita como SEC ID nº 11). Las alfa-amilasas fúngicas se pueden añadir en una cantidad de 1-1000 AFAU/kg DS, preferiblemente de 2-500 AFAU/kg DS, preferiblemente 20-100 AFAU/kg DS.

Glucoamilas as (E.C. 3.2.1.3)

20

25

30

45

55

60

65

[0042] Otra enzima particular para ser usada en los procesos y/o composiciones de la invención puede ser una glucoamilasa (E.C. 3.2.1.3) derivada de un microorganismo o una planta. Se prefieren las glucoamilasas de origen fúngico o bacteriano seleccionadas del grupo consistente en glucoamilasas de *Aspergillus*, en particular glucoamilasa G1 o G2 de *A. niger* (Boel et al., 1984, EMBO J. 3(5): 1097-1102), o variantes de las mismas, tal como se describe en el documento WO 92/00381 y el documento WO 00/04136; la glucoamilasa de *A. awamori* (WO 84/02921), *A. oryzae* (Agric. Biol. Chem., 1991,55(4): 941-949), o variantes o fragmentos de las mismas.

[0043] Otras glucoamilasas contempladas incluyen glucoamilasas de *Talaromyces*, en particular derivadas de *Talaromyces emersonii* (WO 99/28448), *Talaromyces leycettanus* (patente estadounidense nº Re. 32, 153), *Talaromyces duponti*, y *Talaromyces themophilus* (patente estadounidense nº 4,587,215). Glucoamilasas preferidas incluyen las glucoamilasas derivadas de *Aspergillus oryzae*, tal como una glucoamilasa con al menos el 90%, al menos el 92%, al menos el 95%, al menos el 96%, al menos el 97%, al menos el 98%, o particularmente al menos el 99% o incluso al menos el 90% de identidad a la secuencia de aminoácidos mostrada en la SEC ID nº 2 en el documento WO00/04136. Otras glucoamilasas preferidas incluyen las glucoamilasas derivadas de *Talaromyces emersonii* tales como una glucoamilasa con al menos el 90%, al menos el 92%, al menos el 95%, al menos el 96%, al menos el 97%, al menos el 98%, o particularmente al menos el 99% o incluso al menos el 90% de identidad a la secuencia de aminoácidos de *Talaromyces emersonii* (WO 99/28448).

[0044] Glucoamilas as bacterianas contempladas incluyen glucoamilas as del género *Clostridium*, en particular *C. thermoamylolyticum* (EP 135,138), y *C. thermohydrosulfuricum* (WO 86/01831).

[0045] También se contemplan los productos comerciales AMG 200L; AMG 300 L; SAN™ SUPER y AMG™ E (de Novozymes); OPTIDEX™ 300 (de Genencor Int.); AMIGASE™ y AMIGASE™ PLUS (de DSM); G-ZYME™ G900 (de Enzime Bio-Systems); G-ZYME™ G990 ZR (glucoamilasa de *A. Niger* y baja contenido de proteasa). Las glucoamilasas se pueden añadir en cantidades eficaces bien conocidas por el experto en la técnica.

Proteas a

[0046] Proteasas adecuadas incluyen proteasas microbianas, tales como proteasas fúngicas y bacterianas. Las proteasas preferidas son proteasas ácidas, es decir, proteasas caracterizadas por la capacidad para hidrolizar proteínas bajo condiciones ácidas inferiores a pH 7.

[0047] Las proteasas son responsables de la reducción de la longitud total de proteínas de alto peso molecular en proteínas de bajo peso molecular en el macerado. Las proteínas de bajo peso molecular son necesarias para la nutrición de la levadura y las proteínas de alto peso molecular aseguran la estabilidad de la espuma. Así es bien conocido al experto en la materia que la proteasa debería ser añadida en una cantidad equilibrada que al mismo tiempo permita el paso de aminoácidos libres para la levadura y deje suficientes proteínas de alto peso molecular para estabilizar la espuma. Las proteasas se pueden añadir en las cantidades de 0,1-1000 AU/kg DS, preferiblemente 1-100 AU/kg DS y de la forma más preferible 5-25 AU/kg DS.

Celulasa (E.C. 3.2.1.4)

[0048] La celulasa puede ser de origen microbiano, tal como derivable a partir de una cepa de un hongo filamentoso (por ejemplo, *Aspergillus*, *Trichoderma*, *Humicola*, *Fusarium*). Ejemplos específicos de celulasas incluyen la endoglucanasa (endoglucanasa I) obtenible de *H. insolens* y además definida por la secuencia de aminoácidos de la figura 14 en el documento WO 91/17244 (aquí descrita como SEC ID nº 12) y los 43 kD de endoglucanasa de *H.*

insolens descrita en el documento WO 91/17243.

[0049] Una celulasa particular para ser usada en los procesos de la invención puede ser una endoglucanasa, tal como un endo-1,4-beta-glucanasa. Especialmente contemplada es la beta-glucanasa mostrada en la SEQ ID n° 2 en el documento WO 2003/062409 (aquí descrita como SEC ID n° 14) y secuencias homólogas. Las preparaciones con celulasa disponibles comercialmente que se pueden usar incluyen CELLUCLAST®, CELLUZYME®, CEREFLO® y ULTRAFLO® (disponible de Novozymes A/S), LAMINEX™ y SPEZYME® CP (disponible de Genencor Int.) y ROHAMENT® 7069 W (disponible de Röhm, Alemania).

10 [0050] Las beta-glucanasas se pueden añadir en las cantidades de 1,0-10000 BGU/kg DS, preferiblemente de 10-5000 BGU/kg DS, preferiblemente de 50-1000 BGU/kg DS y de la forma más preferible de 100-500 BGU/kg DS.

Materiales v métodos

15 Enzimas

[0051] Pululanasa 1 derivada de *Bacillus acidopullulyticus* y con la secuencia mostrada en la SEC ID nº 1. Pululanasa 1 está disponible por Novozymes como Promozyme 400L.

20 [0052] Pululanasa 2 derivada de *Bacillus deramificans* (patente estadounidense n° 5,736,375) y con la secuencia mostrada en la SEC ID n° 2. Pululanasa 2 está disponible por Novozymes como Promozyme D2.

[0053] Pululanasa 3 derivada de Bacillus acidopullulyticus y con la secuencia mostrada en la SEC ID nº 4.

25 [0054] Alfa-amilasa fúngica ácida derivada de Aspergillus niger y con la secuencia mostrada en la SEC ID nº 11.

[0055] Glucoamilasa G1 derivada de Aspergillus niger (Boel et al., supra).

Métodos

30

35

55

Actividad de alfa-amilasa (NU)

[0056] La actividad de alfa-amilasa se puede determinar usando almidón de patata como sustrato. Este método se basa en la descomposición de almidón de patata modificado por la enzima, y la reacción es seguida de la mezcla de muestras de la solución de almidón/enzima con una solución de yodo. Inicialmente, se forma un color azul negruzco, pero durante la descomposición del almidón, el color cielo se vuelve más débil y cambia gradualmente a marrón rojizo, que se compara con un estándar de vidrio coloreado.

[0057] Una Unidad Kilo Novo de amilasa alfa (KNU por sus siglas en inglés) equivale a 1000 NU. Un KNU se define como la cantidad de enzima que, bajo condiciones estándar (es decir, a 37°C +/- 0,05, 0,0003 M Ca²⁺; y pH 5,6) degrada 5,26 g de sustancia seca de almidón (Merck Amylum soluble).

Actividad de alfa-amilasa ácida (AFAU)

- [0058] La actividad de alfa-amilasa ácida se puede medir en AFAU (unidades de alfa-amilasa fúngica ácida, por sus siglas en inglés), que se determinan con respecto a un estándar enzimático. 1 FAU se define como la cantidad de enzima que degrada 5,260 mg de almidón sustancia seca por hora bajo las condiciones estándar mencionadas posteriormente.
- [0059] La alfa-amilasa ácida, una endo-alfa-amilasa (1,4-alfa-D-glucan-glucanohidrolasa, E.C. 3.2.1.1) hidroliza enlaces alfa-1,4-glucosídicos en las regiones internas de la molécula de almidón para formar dextrinas y oligosacáridos con diferentes longitudes de cadena. La intensidad de color formada con yodo es directamente proporcional a la concentración de almidón. La actividad de la amilasa se determina utilizando la colorimetría inversa como una reducción en la concentración de almidón bajo condiciones analíticas especificas.

ALFA-AMILASA

ALMIDÓN + YODINA \longrightarrow DEXTRINAS + OLIGOSACÁRIDOS $\lambda = 590 \text{ nm}$

azul/violeta t = 23 seg. decoloración

Condiciones estándar/condiciones de reacción:

[0060]

Sustrato: almidón soluble, aprox. 0,17 g/L

Tampón: citrato, aprox. 0,03 M

Temperatura de incubación: 40°C
Tiempo de reacción: 23 segundos
Longitud de onda: 590 nm

Concentración enzimática: 0,025 AFAU/mL Rango de trabajo de enzima: 0,01-0,04 AFAU/mL

Actividad de glucoamilasa (AGU)

15

10

[0061] La Unidad Novo de Glucoamilasa (AGU por sus siglas en inglés) se define como la cantidad de enzima, que hidroliza 1 micromol de maltosa por minuto a 37°C y pH 4,3.

[0062] La actividad se determina como AGU/ml mediante un método modificado después (AEL-SM-0131, disponible en la solicitud de Novozymes) utilizando el equipo Glucose GOD-Perid de Boehringer Mannheim, 124036. Estándar: estándar AMG, lote 7-1195, se incuban 195 AGU/ml. 375 microL de sustrato (1% maltosa en 50 mM acetato sódico, pH 4,3) durante 5 minutos a 37°C. Se añaden 25 microL de enzima diluida en el acetato sódico. La reacción es detenida después de 10 minutos añadiendo 100 microL 0,25 M NaOH. 20 microL se transfiere a una placa microtituladora de 96 pocillos y se añaden 200 microL de solución GOD-Perid (124036, Boehringer Mannheim).

25 Después de 30 minutos a temperatura ambiente, la absorbancia se mide a 650 nm y la actividad calculada en AGU/ml del estándar AMG. Una descripción detallada del método analítico (AEL-SM-0131) está disponible tras solicitarla a Novozymes.

Actividad de pululanasa (PUN):

30

[0063] Una unidad de pululanasa (PUN por sus siglas en inglés) se define como la cantidad de enzima que es capaz de formar 1 micromol de glucosa a partir de sustrato de pululano por minuto a 50°C en un tampón de citrato a pH 5.

[0064] Se incuban muestras de pululanasa con sustrato (rojo pululano). La endo-pululanasa hidroliza los enlaces alfa-1,6-glicosídicos en el pululano rojo, liberando productos de degradación de sustrato rojo. El sustrato no-degradado es precipitado usando etanol. La cantidad de color liberada se mide espectrofotométricamente a 510 nm y es proporcional a la actividad de endo-pululanasa en la muestra. La formación de color de las muestras es comparada con la formación de color producida por muestras con actividad de pululanasa conocida.

40 [0065] La pululanasa es una pululano 6-glucano-hidrolasa con el número de clasificación enzimática E.C. 3.2.1.41.

Condiciones de reacción

[0066]

45

Temperatura $50^{\circ}\text{C} \pm 2^{\circ}\text{C}$ pH 5,0

Concentración de sustrato 0,67% pululano rojo Concentración enzimática 0,04 - 0,13 PUN/mI

Tiempo de reacción 30 min. Longitud de onda 510 nm

Reactivos / sustratos

[0067]

50

60

Solución de cloruro de potasio 0,5 M

Sustrato de pululano rojo 2%. Proveedor Megazyme, Australia

Tampón de citrato 0,05 M pH 5,0

Tampón de citrato 0,05 M pH 5,0 con 25 mM cisteína

55 Etanol 99,8%

Preparación estándar de pululanasa de 904 PUN/g diluida en el tampón de citrato 0,05 M hasta obtener una serie de dilución estándar de 0,05 - 0,20 PUN/mI

Tampón de citrato virgen 0,05 M

Las muestras enzimáticas son diluidas en el tampón de citrato 0,05 M hasta obtener una actividad entre 0,06 - 0,20 PUN/ml y comparado con la serie de dilución estándar.

Ejemplo 1

5

10

[0068] En este ejemplo, se analizó la capacidad de diferentes pululanasas para reducir la cantidad de carbohidratos no fermentables (dextrina/DP4/4+) en un mosto.

[0069] 100% malta bien modificada fue molida utilizando un perfil de temperatura de maceración que comprende 46°C durante 26 minutos, seguido de un aumento de 1°C/minuto hasta 64°C después de lo cual la temperatura fue mantenida constante. Se recogieron muestras en los minutos 98, 128 y 158.

[0070] Las enzimas fueron añadidas en el minuto 0. Se añadieron glucoamilasa y alfa-amilasa a todos los tratamientos en cantidades de 1000 AGU/kg DS y 250 AFAU/kg DS respectivamente. La pululanasa fue añadida según la tabla 1.

15 [0071] Las muestras fueron hervidas 10 minutos y filtradas (tamaño de los poros 0,20 micro-m). Las muestras fueron analizadas mediante HPLC y se calculó el % carbohidrato no fermentable (DP4/4+).

Tabla 1: % de cart	oohidrato no fermentable o	después de los tiempo	s de maceración de 98, 1	128 y 158 minutos.
Tipo de pululanasa	Cantidad en mg/kg	Tiempo de maœración		
ripo de puldiariasa	DS	98 minutos	128 minutos	158 minutos
Ninguno	0	28,87	25,16	22,94
Pululanasa 1	0,74	27,64	24,55	21,96
Pululanasa 1	3,65	23,96	21,35	18,92
Pululanasa 1	7,25	20,71	17,74	16,11
Pululanasa 1	14,39	16,36	14,47	13,22
Pululanasa 2	1,86	28,34	25,21	22,79
Pululanasa 2	9,26	26,81	23,28	21,36
Pululanasa 2	18,40	25,68	22,33	20,17
Pululanasa 2	36,59	23,56	20,58	18,35
Pululanasa 3	1,37	27,11	23,38	20,51
Pululanasa 3	2,74	24,46	20,93	18,18

[0072] Los datos en la tabla 1 fueron usados para calcular, por regresión, las dosificaciones enzimáticas de pululanasa 1 y pululanasa 2 necesarias para obtener el mismo efecto que 2,74 mg de proteína enzimática/kg de pululanasa 3 (véase tabla 2).

	Tabla 2. Proteína enzimática de pululanasa mg/kg DS necesaria para conseguir el mismo efecto que con 2,74 mg pululanasa 3 y tiempos de maceración de 98, 128 y 158 minutos.				
	Tiempo de maœración Pululanasa 1 Pululanasa 2				
Ī	98 minutos	3,38	27,33		
	128 minutos	4,04	31,06		
	158 minutos	4,56	40,37		

[0073] De estos resultados se puede observar que la pululanasa 3 es la enzima más eficaz. Consecuentemente, es necesaria menos proteína enzimática de pululanasa 3 para reducir la cantidad de carbohidratos no fermentables (dextrina/DP4/4+) y así aumentar la atenuación del mosto.

Ejemplo 2

30 [0074] En el presente ejemplo se analizan el perfil de pH y el perfil de temperatura de diferentes pululanasas.

[0075] Las investigaciones del perfil de pH y temperatura se basaron en el análisis de actividad enzimática relativa con las condiciones descritas posteriormente.

35 [0076] Principios del método analítico:

Los enlaces alfa-1,6-glicosídicos en el pululano fueron hidrolizados por una enzima de pululanasa y la capacidad aumentada del azúcar reductor fue detectada por un método Somogyi-Nelson modificado.

40 [0077] En el presente experimento la actividad es evaluada como actividad relativa, donde la muestra más activa se da como 100%.

Las condiciones de ensayo son de la siguiente manera:

Tampón: citrato 0,1 M + 0,2 M fosfato (ajustado en el perfil de pH, a pH 5 en el perfil de temperatura)

45 Sustrato: 0,2% pululano Sigma (p-4516)

Temperatura: 60°C en el perfil de pH, ajustado en el perfil de temperatura

Tiempo de reacción: 30 minutos

[0078] Los azúcares reductores liberados por pululanas as fueron detectados según el principio descrito en Nelson, 1944, J. Biol. Chem. 153: 375-380 y Somogyi, 1945, J. Biol. Chem. 160: 61- 68. En resumen, la reacción de hidrólisis es detenida añadiendo reactivo de cobre de Somogyi a un volumen correspondiente al volumen de muestra (por ejemplo, 2 ml a una muestra de 2 ml). Las muestras son hervidas durante 20 minutos y enfriadas antes de la reacción de color. Esta reacción se realiza añadiendo reactivo de Nelson correspondiente a ½ del volumen de la muestra (por ejemplo, 2 ml a 4 ml muestra+reactivo de cobre de Somogyi). Las muestras son mezcladas durante 2 minutos seguido de la adición de agua en la misma cantidad como reactivo de Nelson. Las muestras son incubadas 30 minutos a oscuras y medidas en un espectrofotómetro a 540 nm.

[0079] Los reactivos se pueden preparar de la siguiente manera:

15 Reactivo de cobre de Somogyi.

5

10

20

25

Disolver 70,2 g Na $_2$ HPO $_4$ x2H $_2$ O y 80,0 g KNAC $_4$ H $_4$ O $_6$ x4H $_2$ O (tartrato de sodio potasio) en 1000 ml H $_2$ O (calentar ligeramente). Además añadir 60 g NaOH; 16,0 g CuSO $_4$ x5 H $_2$ O y 360,0 g Na $_2$ SO $_4$ y llenar hasta 2000 ml. Ajustar el pH a 10,8 con NaOH

Reactivo de Nelson:

Disolver 100,0 g (NH₄) $_6$ Mo₇O₂₄x7 H₂O en 1200 ml H₂O. Añadir 84,0 ml H₂SO₄ cuidadosamente. Adicionalmente, disolver 12,00 g Na₂HAsO₄x7H₂O (arsenato de hidrógeno disódico) en 100 ml H₂O, y añadir esta solución lentamente a la primera solución y rellenar hasta 2000 ml.

[0080] Los perfiles de pH y temperatura para las tres pululanasas se dan en la tabla 3 y 4 a continuación.

Tabla	3: pH perfil dado en activid		
рН	Pululanasa 1	Pululanasa 2	Pululanasa 3
2,4	2,2	1	0,2
2,8	6	2,4	30,7
3,7	10,8	68,5	90
4,2	23,1	100	100
5	94	77,4	92,4
5,8	92,8	31,7	74,2
6,3	43,1	4,4	45,3
6,7	3,7	0	1,8
7,3	0	0	0

Tabla 4: perfil	Tabla 4: perfil de temperatura dado en actividad enzimática relativa (%) a pH 5,0				
Temp. °C	Pululanasa 1	Pululanasa 2	Pululanasa 3		
30	22,8	36,7	19,7		
45	64,4	72,5	47,3		
55	100	100	76,8		
60	99,6	85,2	92,6		
62,5	87,1	70	101,2		
65	42,1	54,4	100		
70	9,4	12,7	75,6		

[0081] Estos resultados muestran que la pululanasa 3 tiene un perfil de pH amplio y actividad a altas temperaturas en comparación con las otras dos pululanasas. Estas propiedades hacen de la pululanasa 3 una enzima muy robusta en la elaboración de cerveza (condiciones de maceración), en particular para temperaturas de sacarificación entre 62°C y 65°C.

Ejemplo 3

[0082] La prueba de maceración de infusión se llevó a cabo con pululanasa 1 y 3 (SEC ID nº 1 y 4). Se prepararon 6 muestras de maceración con 100% cebada como sustrato (molienda).

[0083] Cebada (DS%: 86,73) fue molida y para cada muestra 50,0 g (total DS 43,34 g) fueron mezcladas con 200 g de agua de grifo a 50° C y 3,0 ml 1 M H₃PO₄.

[0084] A todas las muestras se les añadió una mezcla de enzima idéntica sin pululanasa.

35

30

40

[0085] A las muestras 1-6 se les añadió lueg pululanasa según la siguiente tabla: Actividad de dosis enzimática/q

Muestra nº	Pululanasa 1PUN/g	Pululanasa 3 PUN/g
1	0,1	-
2	0,2	-
3	0,5	-
4	-	0,1
5	-	0,2
6	-	0,5

[0086] Las muestras fueron luego evaluadas en el equipamiento de maceración automatizado ejecutando el siguiente programa.

Tiempo en minutos	Temp. ℃
0-30	50
30-44	aumento a 64
44-104	64
104-120	aumento a 80
120-140	80
140-155	disminución a 20

10 [0087] Después de la maceración a todas las muestras se les añadió agua del grifo hasta un total de 300 g y fueron filtradas. Las muestras filtradas fueron luego hervidas durante 10 minutos y diluidas 1:1 con agua desionizada. Se centrifugaron submuestras de 50 ml y se sometieron a análisis de densidad estándar para el cálculo de RDF % (grado real de fermentación por sus siglas en inglés). Los resultados se dan como RDF % y azúcar de mosto (DP2 y DP4+) en %.

PUN/g	Pululanasa 1	Pululanasa 3
0	0	0
0,1	64	64,6
0,2	65	66,1
0,5	67,3	69,5

	Pululanasa 1		Pulula	ınasa 3
PUN/g	DP2	DP4+	DP2	DP4+
0	48,5	31,5	48,5	31,5
0,1	48,5	30	49	29
0,2	49,5	29	50	27,5
0,5	50,5	36,5	n.d.	n.d.

[0088] Los resultados muestran que la pululanasa 3 es claramente mejor que la pululanasa 1 para hacer un % RDF alto, y la pululanasa 3 aún es capaz de producir niveles de maltosa (niveles DP2) incluso mejores que la pululanasa 1.

Ejemplo 4

[0089] La prueba de maceración de infusión fue llevada a cabo con pululanasa 3 (SEC ID nº 4) para evaluar las propiedades generadoras de maltosa de la pululanasa 3. Se prepararon 6 muestras con 100% cebada como sustrato (molienda).

[0090] La cebada (DS%: 86,73) fue molida y para cada muestra se mezclaron 50,0 g (total DS 43,34 g) con 200 g agua de grifo a 50° C y 5° Na₂SO₃ y 1 M H₃PO₄

[0091] A todas las muestras se les añadió una mezcla de enzima idéntica sin pululanasa.

[0092] Luego a las muestras 1-6 se añadió pululanas a 3 según la siguiente tabla:

Muestra nº	Pululanasa 3 PUN/g
1	-
2	0,1
3	0,3
4	0,5

5

15

20

25

30

5	1,0
6	2,0

[0093] Las muestras fueron luego evaluadas en el equipamiento de maceración automatizada ejecutando el siguiente programa.

Tiempo en minutos	Temp °C
0-30	50
30-44	aumento a 64
44-104	64
104-120	aumento a 80
120-140	80
140-155	disminución a 20

5

[0094] Después de la maceración, a todas las muestras se les añadió agua del grifo a un total de 300 g y fueron filtradas. Las muestras filtradas fueron luego hervidas durante 10 minutos y diluidas 1:1 con agua desionizada. Se centrifugaron submuestras de 50 ml y se sometieron a análisis. Los resultados fueron de la siguiente manera:

PUN/g	% glucosa	% maltosa	% dextrina	% RDF
0	3,8	47,5	34	61,2
0,1	3,8	48,2	32	63,2
0,3	3,8	49,8	28,8	65,7
0,5	3,7	51,2	26,4	68,6
1	3,7	52,6	23,9	71
2	3,6	55,6	20,1	74,3

10

[0095] Los resultados muestran que la concentración de maltosa está en aumento con la dosificación en aumento de la pululanasa 3, y el aumento en el % de maltosa es seguido por el aumento en la atenuación (RDF%). La fracción de dextrina (análisis HPLC DP4/4+) está decreciendo a la vez.

15 [0096] Sólo la beta-amilasa de cebada puede producir maltosa en esta reacción, y la pululanasa 3 está facilitando la acción de beta-amilasa de cebada.

[0097] La concentración de glucosa es baja y no efectuada por la acción de pululanasa 3 lo cual es una ventaja cuando se fermenta el mosto producido. La pululanasa 3 contribuye a la degradación de dextrina y facilita la formación de maltosa, por la beta-amilasa de cebada, y por este aumento de la atenuación (RDF%) del mosto.

Listado de secuencias

[8000]

25

20

<110> Novozymes A/S Novozymes NA, Inc. Elvig, Niels Joergensen, Per L.

30 Thomas, Michael

<120> Proceso de maceración

<130> 11323.004-WO

35

<160> 14

<170> Versión de patentln 3.4

40 <210>1

<211>921

<212> PRT

<213> Bacillus acidopullulyticus

45 <220>

<221> mat_peptide

<222> (1)..(921)

<400> 1

Asp	Ser	Thr	Ser	Thr	Lys	Val	Ile	Val	His	Tyr	His	Arg	Phe	Asp	Ser
1				5					10					15	

- Asn Tyr Thr Asn Trp Asp Val Trp Met Trp Pro Tyr Gln Pro Val Asn 20 25 30
- Gly Asn Gly Ala Ala Tyr Gln Phe Thr Gly Thr Asn Asp Asp Phe Gly 35 40 45
- Ala Val Ala Asp Thr Gln Val Pro Gly Asp Asn Thr Gln Val Gly Leu 50 60
- Ile Val Arg Lys Asn Asp Trp Ser Glu Lys Asn Thr Pro Asn Asp Leu 65 70 75 80
- His Ile Asp Leu Ala Lys Gly His Glu Val Trp Ile Val Gln Gly Asp 85 90 95
- Pro Thr Ile Tyr Tyr Asn Leu Ser Asp Ala Gln Ala Ala Ile Pro 100 105 110
- Ser Val Ser Asn Ala Tyr Leu Asp Asp Glu Lys Thr Val Leu Ala Lys 115 120 125

Leu Ser Met Pro Met Thr Leu Ala Asp Ala Ala Ser Gly Phe Thr Val

	130					135					140				
Ile 145	Asp	Lys	Thr	Thr	Gly 150	Glu	Lys	Ile	Pro	Val 155	Thr	Ser	Ala	Val	Ser 160
Ala	Asn	Pro	Val	Thr 165	Ala	Val	Leu	Val	Gly 170	Asp	Leu	Gln	Gln	Ala 175	Leu
Gly	Ala	Ala	Asn 180	Asn	Trp	Ser	Pro	Asp 185	Asp	Asp	His	Thr	Leu 190	Leu	Lys
Lys	Ile	Asn 195	Pro	Asn	Leu	Tyr	Gln 200	Leu	Ser	Gly	Thr	Leu 205	Pro	Ala	Gly
Thr	Туг 210	Gln	Tyr	Lys	Ile	Ala 215	Leu	Asp	His	Ser	Trp 220	Asn	Thr	Ser	Tyr
Pro 225	Gly	Asn	Asn	Val	Ser 230	Leu	Thr	Val	Pro	Gln 235	Gly	Gly	Glu	Lys	Val 240
Thr	Phe	Thr	Tyr	Ile 245	Pro	Ser	Thr	Asn	G1n 250	Val	Phe	qzA	Ser	Val 255	Asn
His	Pro	Asn	Gln 260	Ala	Phe	Pro	Thr	Ser 265	Ser	Ala	Gly	Val	Gln 270	Thr	Asn
Leu	Val	G1n 275	Leu	Thr	Leu	Ala	Ser 280	Ala	Pro	Asp	Val	Thr 285	His	Asn	Leu
Asp	Val 290	Ala	Ala	Asp	Gly	Tyr 295	Lys	Ala	His	Asn	Ile 300	Leu	Pro	Arg	Asn
Val 305	Leu	Asn	Leu	Pro	Arg 310	Tyr	Asp	Tyr	Ser	Gly 315	Asn	Asp	Leu	Gly	Asn 320
Val	Tyr	Ser	Lys	Asp 325	Ala	Thr	Ser	Phe	Arg 330	Val	Trp	Ala	Pro	Thr 335	Ala
Ser	Asn	Val	Gln 340	Leu	Leu	Leu	Tyr	Asn 345	Ser	Glu	Lys	Gly	Ser 350	Ile	Thr
Lys	Gln	Leu 355	Glu	Met	Gln	Lys	Ser 360	Asp	Asn	Gly	Thr	Trp 365	Lys	Leu	Gln
Val	Ser 370	Gly	Asn	Leu	Glu	Asn 375	Trp	Tyr	Tyr	Leu	Tyr 380	Gln	Val	Thr	Val

Asn Gly Thr 385	Thr Gln	Thr Ala	Val	Asp	Pro	Tyr 395	Ala	Arg	Ala	Ile	Ser 400
Val Asn Ala	Thr Arg 405	Gly Met	Ile	Val	Asp 410	Leu	Lys	Ala	Thr	Asp 415	Pro
Ala Gly Trp	Gln Gly 420	Asp His	Glu	Gln 425	Thr	Pro	Ala	Asn	Pro 430	Val	Asp
Glu Val Ile 435	Tyr Glu	Ala His	Val 440	Arg	Asp	Phe	Ser	Ile 445	Asp	Ala	Asn
Ser Gly Met 450	Lys Asn	Lys Gly 455		Tyr	Leu	Ala	Phe 460	Thr	Glu	His	Gly
Thr Lys Gly 465	Pro Asp	His Val 470	Lys	Thr	Gly	Ile 475	Asp	Ser	Leu	Lys	Glu 480
Leu Gly Ile	Thr Thr 485		Leu	Gln	Pro 490	Val	Glu	Glu	Phe	Asn 495	Ser
Ile Asp Glu	Thr Gln 500	Pro Asp	Thr	Tyr 505	Asn	Trp	Gly	Tyr	Asp 510	Pro	Arg
Asn Tyr Asn 515	Val Pro	Glu Gly	Ala 520	Tyr	Ala	Thr	Thr	Pro 525	Glu	Gly	Thr
Ala Arg Ile 530	Thr Glu	Leu Lys		Leu	Ile	Gln	Ser 540	Leu	His	Gln	Gln
Arg Ile Gly 545	Val Asn	Met Asp 550	Val	Val	Tyr	Asn 555	His	Thr	Phe	Asp	Val 560
Met Val Ser	Asp Phe 565		Ile	Val	Pro 570	Gln	Tyr	Tyr	Tyr	Arg 575	Thr
Asp Ser Asn	Gly Asn 580	Tyr Thr	Asn	Gly 585	Ser	Gly	Суз	Gly	Asn 590	Glu	Phe
Ala Thr Glu 595	His Pro	Met Ala	Gln 600	Lys	Phe	Val	Leu	Asp 605	Ser	Val	Asn
Tyr Trp Val	Asn Glu	Tyr His		Asp	Gly	Phe	Arg 620	Phe	Asp	Leu	Met

Ala 625	Leu	Leu	Gly	Lys	Asp 630	Thr	Met	Ala	Lys	Ile 635	Ser	Asn	Glu	Leu	His 640
Ala	Ile	Asn	Pro	Gly 645	Ile	Val	Leu	Tyr	Gly 650	Glu	Pro	Trp	Thr	Gly 655	Gly
Thr	Ser	Gly	Leu 660	Ser	Ser	Asp	Gln	Leu 665	Val	Thr	Lys	Gly	Gln 670	Gln	Lys
Gly	Leu	Gly 675	Ile	Gly	Val	Phe	Asn 680	Asp	Asn	Ile	Arg	Asn 685	Gly	Leu	Asp
Gly	Asn 690	Val	Phe	Asp	Lys	Thr 695	Ala	Gln	Gly	Phe	Ala 700	Thr	Gly	Asp	Pro
Asn 705	Gln	Val	Asp	Val	Ile 710	Lys	Asn	Gly	Val	Ile 715	Gly	Ser	Ile	Gln	Asp 720
Phe	Thr	Ser	Ala	Pro 725	Ser	Glu	Thr	Ile	Asn 730	Tyr	Val	Thr	Ser	His 735	Asp
Asn	Met	Thr	Leu 740	Trp	Asp	Lys	Ile	Leu 745	Ala	Ser	Asn	Pro	Ser 750	Asp	Thr
Glu	Ala	Asp 755	Arg	Ile	Lys	Met	Asp 760	Glu	Leu	Ala	His	Ala 765	Val	Val	Phe
Thr	Ser 770	Gln	Gly	Val	Pro	Phe 775	Met	Gln	Gly	Gly	Glu 780	Glu	Met	Leu	Arg
Thr 785	Lys	Gly	Gly	Asn	Asp 790	Asn	Ser	Tyr	Asn	Ala 795	Gly	Asp	Ser	Val	Asn 800
Gln	Phe	Asp	Trp	Ser 805	Arg	Lys	Ala	Gln	Phe 810	Lys	Asp	Val	Phe	Asp 815	Tyr
Phe	Ser	Ser	Met 820	Ile	His	Leu	Arg	Asn 825	Gln	His	Pro	Ala	Phe 830	Arg	Met
Thr	Thr	Ala 835	Asp	Gln	Ile	Lys	Gln 840	Asn	Leu	Thr	Phe	Leu 845	Glu	Ser	Pro
Thr	Asn 850	Thr	Val	Ala	Phe	Glu 855	Leu	Lys	Asn	Tyr	Ala 860	Asn	His	Asp	Thr

Trp Lys Asn Ile Ile Val Met Tyr Asn Pro Asn Lys Thr Ser Gln Thr 865

Leu Asn Leu Pro Ser Gly Asp Trp Thr Ile Val Gly Leu Gly Asp Gln 885 890 895

Ile Gly Glu Lys Ser Leu Gly His Val Met Gly Asn Val Gln Val Pro 900 905

Ala Ile Ser Thr Leu Ile Leu Lys Gln 915 920

<210>2

<211>928

<212> PRT

<213> Bacillus deramificans

<220>

<221> mat_peptide <222> (1)..(928)

10

<400>2

Asp 1	GIÀ	Asn	Inr	5	Thr	TTE	ПĖ	val	10	Tyr	Pne	Arg	Pro	15	GIĀ
Asp	Tyr	Gln	Pro 20	Trp	Ser	Leu	Trp	Met 25	Trp	Pro	Lys	Asp	Gly 30	Gly	Gly
Ala	Glu	Tyr 35	Asp	Phe	Asn	Gln	Pro 40	Ala	Asp	Ser	Phe	Gly 45	Ala	Val	Ala
Ser	Ala 50	Asp	Ile	Pro	Gly	Asn 55	Pro	Ser	Gln	Val	Gly 60	Ile	Ile	Val	Arg
Thr 65	Gln	Asp	Trp	Thr	Lys 70	Asp	Val	Ser	Ala	Asp 75	Arg	Tyr	Ile	Asp	Leu 80
Ser	Lys	Gly	Asn	Glu 85	Val	Trp	Leu	Val	Glu 90	Gly	Asn	Ser	Gln	Ile 95	Phe
Tyr	Asn	Glu	Lys 100	Asp	Ala	Glu	Asp	Ala 105	Ala	Lys	Pro	Ala	Val 110	Ser	Asn

Ala Tyr Leu Asp Ala Ser Asn Gln Val Leu Val Lys Leu Ser Gln Pro

125

120

115

	130					135					140				
Ala 145	Asn	Lys	Asp	Ile	Pro 150	Val	Thr	Ser	Val	Lys 155	Asp	Ala	Ser	Leu	Gly 160
Gln	Asp	Val	Thr	Ala 165	Val	Leu	Ala	Gly	Thr 170	Phe	Gln	His	Ile	Phe 175	Gly
Gly	Ser	Asp	Trp 180	Ala	Pro	Asp	Asn	His 185	Ser	Thr	Leu	Leu	Lys 190	Lys	Val
Thr	Asn	Asn 195	Leu	Tyr	Gln	Phe	Ser 200	Gly	Asp	Leu	Pro	Glu 205	Gly	Asn	Tyr
Gln	Tyr 210	Lys	Val	Ala	Leu	Asn 215	Asp	Ser	Trp	Asn	Asn 220	Pro	Ser	Tyr	Pro
Ser 225	Asp	Asn	Ile	Asn	Leu 230	Thr	Val	Pro	Ala	Gly 235	Gly	Ala	His	Val	Thr 240
Phe	Ser	Tyr	Ile	Pro 245	Ser	Thr	His	Ala	Val 250	Tyr	Asp	Thr	Ile	Asn 255	Asn
Pro	Asn	Ala	Asp 260	Leu	Gln	Val	Glu	Ser 265	Gly	Val	Lys	Thr	Asp 270	Leu	Val
Thr	Val	Thr 275	Leu	Gly	Glu	Asp	Pro 280	Asp	Val	Ser	His	Thr 285	Leu	Ser	Ile
Gln	Thr 290	Asp	Gly	Tyr	Gln	Ala 295	Lys	Gln	Val	Ile	Pro 300	Arg	Asn	Val	Leu
Asn 305	Ser	Ser	Gln	Tyr	Tyr 310	Tyr	Ser	Gly	Asp	Asp 315	Leu	Gly	Asn	Thr	Tyr 320
Thr	Gln	Lys	Ala	Thr 325	Thr	Phe	Lys	Val	Trp 330	Ala	Pro	Thr	Ser	Thr 335	Gln
Val	Asn	Val	Leu 340	Leu	Tyr	Asp	Ser	Ala 345	Thr	Gly	Ser	Val	Thr 350	Lys	Ile
Val	Pro	Met 355	Thr	Ala	Ser	Gly	His 360	Gly	Val	Trp	Glu	Ala 365	Thr	Val	Asn
Gln	Asn 370	Leu	Glu	Asn	Trp	Tyr 375	Tyr	Met	Tyr	Glu	Val 380	Thr	Gly	Gln	Gly

13	0				135					140				
Ala As 145	n Lys	Asp	Ile	Pro 150	Val	Thr	Ser	Val	Lys 155	Asp	Ala	Ser	Leu	Gly 160
Gln As	p Val	Thr	Ala 165	Val	Leu	Ala	Gly	Thr 170	Phe	Gln	His	Ile	Phe 175	Gly
Gly Se	r Asp	Trp 180	Ala	Pro	Asp	Asn	His 185	Ser	Thr	Leu	Leu	Lys 190	Lys	Val
Thr As	n Asn 195	Leu	Tyr	Gln	Phe	Ser 200	Gly	Asp	Leu	Pro	Glu 205	Gly	Asn	Tyr
Gln Ty 21	_	Val	Ala	Leu	Asn 215	Asp	Ser	Trp	Asn	Asn 220	Pro	Ser	Tyr	Pro
Ser As 225	p Asn	Ile	Asn	Leu 230	Thr	Val	Pro	Ala	Gly 235	Gly	Ala	His	Val	Thr 240
Phe Se	r Tyr	Ile	Pro 245	Ser	Thr	His	Ala	Val 250	Tyr	Asp	Thr	Ile	Asn 255	Asn
Pro As	n Ala	Asp 260	Leu	Gln	Val	Glu	Ser 265	Gly	Val	Lys	Thr	Asp 270	Leu	Val
Thr Va	1 Thr 275		Gly	Glu	Asp	Pro 280	Asp	Val	Ser	His	Thr 285	Leu	Ser	Ile
Gln Th	_	Gly	Tyr	Gln	Ala 295	Lys	Gln	Val	Ile	Pro 300	Arg	Asn	Val	Leu
Asn Se 305	r Ser	Gln	Туr	Tyr 310	Tyr	Ser	Gly	Asp	Asp 315	Leu	Gly	Asn	Thr	Tyr 320
Thr GJ	n Lys	Ala	Thr 325	Thr	Phe	Lys	Val	Trp 330	Ala	Pro	Thr	Ser	Thr 335	Gln
Val As	n Val	Leu 340	Leu	Tyr	Asp	Ser	Ala 345	Thr	Gly	Ser	Val	Thr 350	Lys	Ile
Val Pr	o Met 355	Thr	Ala	Ser	Gly	His 360	Gly	Val	Trp	Glu	Ala 365	Thr	Val	Asn
Gln As		Glu	Asn	Trp	Tyr 375	Tyr	Met	Tyr	Glu	Val 380	Thr	Gly	Gln	Gly

Ser Thr Aro	Thr Ala	Val Asp 390	Pro Tyr	Ala Thi		Ile A	Ala Pro	Asn 400
Gly Thr Arc	Gly Met 405		Asp Leu	Ala Lys 410	s Thr	Asp H	Pro Ala 415	
Trp Asn Sei	Asp Lys 420	His Ile	Thr Pro		n Ile		Asp Glu 430	Val
Ile Tyr Glu 435	_	Val Arg	Asp Phe	e Ser Ile	e Asp	Pro # 445	Asn Ser	Gly
Met Lys Asr 450	ı Lys Gly	Lys Tyr 455		Leu Th	r Glu 460	Lys (Gly Thr	Lys
Gly Pro Asp 465	Asn Val	Lys Thr 470	Gly Ile	Asp Sei 47!		Lys (Gln Leu	Gly 480
Ile Thr His	Val Gln 485		Pro Val	Phe Ala	a Ser	Asn S	Ser Val 495	
Glu Thr Asp	Pro Thr 500	Gln Asp	Asn Try 505		r Asp		Arg Asr 510	Tyr
Asp Val Pro		Gln Tyr	Ala Thi	Asn Ala		Gly 1 525	Asn Ala	Arg
Ile Lys Glu 530	ı Phe Lys	Glu Met 535		l Ser Le	u His 540	Arg (Glu His	Ile
Gly Val Ası 545	n Met Asp	Val Val 550	Tyr Asr	His The		Ala :	Thr Glr	Ile 560
Ser Asp Pho	Asp Lys 565		Pro Glu	1 Tyr Ty: 570	r Tyr	Arg :	Thr Asp 575	
Ala Gly Ası	Tyr Thr 580	Asn Gly	Ser Gly 585		y Asn		Ile Ala 590	Ala
Glu Arg Pro		Gln Lys	Phe Ile	e Ile As _l	p Ser	Leu 1 605	Lys Tyr	Trp
Val Asn Glu 610	ı Tyr His	Ile Asp 615		e Arg Ph	e Asp 620	Leu N	Met Ala	Leu

Leu 625	Gly	Lys	Asp	Thr	Met 630	Ser	Lys	Ala	Ala	Ser 635	Glu	Leu	His	Ala	Ile 640
Asn	Pro	Gly	Ile	Ala 645	Leu	Tyr	Gly	Glu	Pro 650	Trp	Thr	Gly	Gly	Thr 655	Ser
Ala	Leu	Pro	Asp 660	_	Gln	Leu	Leu	Thr 665	Lys	Gly	Ala	Gln	Lys 670	Gly	Met
Gly	Val	Ala 675	Val	Phe	Asn	Asp	Asn 680	Leu	Arg	Asn	Ala	Leu 685	Asp	Gly	Asn
Val	Phe 690	Asp	Ser	Ser	Ala	Gln 695	Gly	Phe	Ala	Thr	Gly 700	Ala	Thr	Gly	Leu
Thr 705	Asp	Ala	Ile	Lys	Asn 710	Gly	Val	Glu	Gly	Ser 715	Ile	Asn	Asp	Phe	Thr 720
Ser	Ser	Pro	Gly	Glu 725	Thr	Ile	Asn	Tyr	Val 730	Thr	Ser	His	Asp	Asn 735	Tyr
Thr	Leu	Trp	Asp 740	Lys	Ile	Ala	Leu	Ser 745	Asn	Pro	Asn	Asp	Ser 750	Glu	Ala
Asp	Arg	Ile 755	Lys	Met	Asp	Glu	Leu 760	Ala	Gln	Ala	Val	Val 765	Met	Thr	Ser
Gln	Gly 770	Val	Pro	Phe	Met	Gln 775	Gly	Gly	Glu	Glu	Met 780	Leu	Arg	Thr	Lys
Gly 785	Gly	Asn	Asp	Asn	Ser 790	Tyr	Asn	Ala	Gly	Asp 795	Ala	Val	Asn	Glu	Phe 800
Asp	Trp	Ser	Arg	Lys 805	Ala	Gln	Tyr	Pro	Asp 810	Val	Phe	Asn	Tyr	Tyr 815	Ser
Gly	Leu	Ile	His 820	Leu	Arg	Leu	Asp	His 825	Pro	Ala	Phe	Arg	Met 830	Thr	Thr
Ala	Asn	Glu 835	Ile	Asn	Ser	His	Leu 840	Gln	Phe	Leu	Asn	Ser 845	Pro	Glu	Asn
Thr	Val 850	Ala	Tyr	Glu	Leu	Thr 855	Asp	His	Val	Asn	Lys 860	Asp	Lys	Trp	Gly

	Asn 865		Ile	Val	. Val	Tyr 870		n Pr	o As	n Ly	s Th		al A	la :	Thr	Ile	880	
	Leu	Pro	Ser	Gly	2 Lys 885		Ala	a Il	e As	n Al 89		nr S	er G	ly 1	Lys	Val 895	Gly	
	Glu	Ser	Thr	1eu 900	Gly	Gln	Ala	a Gl	u Gl 90	_	r Va	al G	ln V		Pro 910	Gly	Ile	
	Ser	Met	Met 915		. Leu	His	Gli	n Gl 92		l Se	r Pi	ro A		is (Gly	Lys	Lys	
5	<210><211><211><212><213>	2589 ADN		cidopu	ullulyti	cus												
10	<220> <221> <222>	sig_p	•	е														
15	<220> <221> <222>	CDS)														
10	<220> <221> <222>	mat_																
		` '	, ,	-														
20	<400>	` .																
20	atg	3	cta		cgt Arg										Phe			48
20	atg Met gtc	3 tcc Ser	cta Leu	Ile -30 atg		Ser cta	Arg	Tyr gtt	Asn -25 tgt	His ttc	Phe ccc	Val gct	Ile	Leu -20 aaa	Phe gct	Th	r a	48 96
20	atg Met gtc Val gca	3 tcc Ser gcc Ala gat Asp	cta Leu ata Ile -15	Ile -30 atg Met	Arg	Ser cta Leu aca	Arg aca Thr	Tyr gtt Val -10 gtc	Asn -25 tgt Cys	ttc Phe gtg	Phe ccc Pro	Val gct Ala tat	tat Tyr -5	Leu -20 aaa Lys	gct Ala	tt tta Le	r a u	
20	atg Met gtc Val gca Ala -1	3 tcc Ser gcc Ala gat Asp 1 aac	cta Leu ata Ile -15 tct Ser	Ile -30 atg Met acc Thr	Arg ttt Phe tcg	cta Leu aca Thr 5	aca Thr gaa Glu	Tyr gtt Val -10 gtc Val cta	Asn -25 tgt Cys att Ile	ttc Phe gtg Val	Phe ccc Pro cat His 10	yal gct Ala tat Tyr	tat Tyr -5 cat His	Leu -20 aaa Lys cgt Arg	gct Ala	tt Le ga As 15	r au t p	96
20	atg Met gtc Val gca Ala -1 tct Ser	tcc Ser gcc Ala gat Asp 1 aac Asn	cta Leu ata Ile -15 tct Ser tat Tyr	Ile -30 atg Met acc Thr gca Ala	ttt Phe tcg Ser aat Asn	cta Leu aca Thr 5 tgg Trp	aca Thr gaa Glu gat Asp	gtt Val -10 gtc Val cta Leu	Asn -25 tgt Cys att Ile tgg Trp	ttc Phe gtg Val atg Met 25 tct	Phe ccc Pro cat His 10 tgg Trp	yal gct Ala tat Tyr cca Pro	tat Tyr -5 cat His tat Tyr	Leu -20 aaa Lys cgt Arg caa Gln	gct Ala ttt Phe	tta Le ga As 15 a gt	r au tp tl	96 144
20	atg Met gtc Val gca Ala -1 tct Ser aat Asn	tcc Ser gcc Ala gat Asp 1 aac Asn	cta Leu ata Ile -15 tct Ser tat Tyr aat Asn	Ile -30 atg Met acc Thr gca Ala gga Gly 35 gat	ttt Phe tcg Ser aat Asn 20	cta Leu aca Thr 5 tgg Trp gca Ala	Arg aca Thr gaa Glu gat Asp tac Tyr	Tyr gtt Val -10 gtc Val cta Leu gag Glu cct	Asn -25 tgt Cys att Ile tgg Trp ttt Phe 40 ggg	ttc Phe gtg Val atg Met 25 tct Ser	Phe ccc Pro cat His 10 tgg Trp gga Gly	gct Ala tat Tyr cca Pro aag Lys	tat Tyr-5 cat His tat Tyr	Leu-20 aaaa Lys cgt Arg caaa Gln gat Asp 45	ttt Phe	tti Le gas Ass 15 Va gg Gl	r au tp tl cy	96 144 192

	65					70					75					
								gaa Glu								384
								gat Asp								432
								aat Asn 120								480
								gat Asp								528
								att Ile								576
gcg Ala 160	aac Asn	tca Ser	gcc Ala	tcc Ser	tcg Ser 165	tct Ser	gag Glu	cag Gln	aca Thr	gac Asp 170	ttg Leu	gtt Val	caa Gln	ttg Leu	acg Thr 175	624
	_	_	_	_	_	_		cat His				-		_	_	672
								cca Pro 200								720
								tta Leu								768
								cca Pro								816
								cct Pro								864
								aaa Lys								912
								gta Val 280								960
								gct Ala								1008
	_		-	-		-	-	acg Thr							_	1056

gat Asp 320	cat His	caa Gln	cag Gln	aca Thr	cct Pro 325	gcg Ala	aac Asn	cca Pro	gtg Val	gat Asp 330	gaa Glu	gta Val	atc Ile	tac Tyr	gaa Glu 335	1104
			-	-		-			gct Ala 345				_			1152
					-			_	cat His						-	1200
									aag Lys							1248
									aac Asn							1296
		_						_	cca Pro	_						1344
									gga Gly 425							1392
									aaa Lys							1440
	-	_	_						aac Asn	-				_		1488
									cgg Arg							1536
	_					_			gaa Glu					_	-	1584
									gtt Val 505							1632
									ctt Leu							1680
***		_	_						ctt Leu		_					1728
									ggc Gly							1776

								aag Lys 570					1824
								gat Asp					1872
								cca Pro					1920
				-		 _		gat Asp		_	_		1968
								gat Asp					2016
								aca Thr 650					2064
	_		_	_	_	-	 -	ttt Phe				-	2112
								cgg Arg					2160
								aat Asn					2208
		-			-	-	_	tac Tyr			_		2256
								atg Met 730					2304
								cca Pro					2352
								aaa Lys					2400
								act Thr					2448
								caa Gln					2496
								cca Pro					2544
800					805			810				815	
								att Ile					2589

<210>4

<211>862

<212> PRT

<213> Bacillus acidopullulyticus

<400>4

Met Ser Leu Ile Arg Ser Arg Tyr Asn His Phe Val Ile Leu Phe Thr
-30 -25 -20

Val Ala Ile Met Phe Leu Thr Val Cys Phe Pro Ala Tyr Lys Ala Leu -15 -10 -5

Ala Asp Ser Thr Ser Thr Glu Val Ile Val His Tyr His Arg Phe Asp -1 1 5 10 15

Ser Asn Tyr Ala Asn Trp Asp Leu Trp Met Trp Pro Tyr Gln Pro Val 20 25 30

Asn Gly Asn Gly Ala Ala Tyr Glu Phe Ser Gly Lys Asp Asp Phe Gly 35 40 45

Val Lys Ala Asp Val Gln Val Pro Gly Asp Asp Thr Gln Val Gly Leu 50 55 60

Ile Val Arg Thr Asn Asp Trp Ser Gln Lys Asn Thr Ser Asp Asp Leu 65 70 75

His Ile Asp Leu Thr Lys Gly His Glu Ile Trp Ile Val Gln Gly Asp 80 85 90 95

Pro Asn Ile Tyr Tyr Asn Leu Ser Asp Ala Gln Ala Ala Ala Thr Pro 100 105 110

Lys Val Ser Asn Ala Tyr Leu Asp Asn Glu Lys Thr Val Leu Ala Lys 115 120 125

Leu Thr Asn Pro Met Thr Leu Ser Asp Gly Ser Ser Gly Phe Thr Val

Thr Asp Lys Thr Thr Gly Glu Gln Ile Pro Val Thr Ala Ala Thr Asn 145 150 155

Ala 160	Asn	Ser	Ala	Ser	Ser 165	Ser	Glu	Gln	Thr	Asp 170	Leu	Val	Gln	Leu	Thr 175
Leu	Ala	Ser	Ala	Pro 180	Asp	Val	Ser	His	Thr 185	Ile	Gln	Val	Gly	Ala 190	Ala
Gly	Tyr	Glu	Ala 195	Val	Asn	Leu	Ile	Pro 200	Arg	Asn	Val	Leu	Asn 205	Leu	Pro
Arg	Tyr	Tyr 210	Tyr	Ser	Gly	Asn	Asp 215	Leu	Gly	Asn	Val	Tyr 220	Ser	Asn	Lys
Ala	Thr 225	Ala	Phe	Arg	Val	Trp 230	Ala	Pro	Thr	Ala	Ser 235	Asp	Val	Gln	Leu
Leu 240	Leu	Tyr	Asn	Ser	Glu 245	Thr	Gly	Pro	Val	Thr 250	Lys	Gln	Leu	Glu	Met 255
Gln	Lys	Ser	Asp	Asn 260	Gly	Thr	Trp	Lys	Leu 265	Lys	Val	Pro	Gly	Asn 270	Leu
Lys	Asn	Trp	Tyr 275	Tyr	Leu	Tyr	Gln	Val 280	Thr	Val	Asn	Gly	Lys 285	Thr	Gln
Thr	Ala	Val 290	Asp	Pro	Tyr	Val	Arg 295	Ala	Ile	Ser	Val	Asn 300	Ala	Thr	Arg
Gly	Met 305	Ile	Val	Asp	Leu	Glu 310	Asp	Thr	Asn	Pro	Pro 315	Gly	Trp	Lys	Glu
Asp 320	His	Gln	Gln	Thr	Pro 325	Ala	Asn	Pro	Val	Asp 330	Glu	Val	Ile	Tyr	G1u 335
Val	His	Val	Arg	Asp 340	Phe	Ser	Ile	Asp	Ala 345	Asn	Ser	Gly	Met	Lys 350	Asn
Lуs	Gly	Lys	Tyr 355	Leu	Ala	Phe	Thr	Glu 360	His	Gly	Thr	Lys	Gly 365	Pro	Asp
Asn	Val	Lys 370	Thr	Gly	Ile	Asp	Ser 375	Leu	Lys	Glu	Leu	Gly 380	Ile	Asn	Ala
Val	G1n 385	Leu	Gln	Pro	Ile	Glu 390	Glu	Phe	Asn	Ser	Ile 395	Asp	Glu	Thr	Gln

Pro Asn 400	Met	Tyr	Asn	Trp 405	Gly	Tyr	Asp	Pro	Arg 410	Asn	Tyr	Asn	Val	Pro 415
Glu Gly	Ala	Tyr	Ala 420	Thr	Thr	Pro	Glu	Gly 425	Thr	Ala	Arg	Ile	Thr 430	Gln
Leu Lys		Leu 435	Ile	Gln	Ser	Ile	His 440	Lys	Asp	Arg	Ile	Ala 445	Ile	Asn
Met Asp	Val 450	Val	Tyr	Asn	His	Thr 455	Phe	Asn	Val	Gly	Val 460	Ser	Asp	Phe
Asp Lys 465	Ile	Val	Pro	Gln	Tyr 470	Tyr	Tyr	Arg	Thr	Asp 475	Ser	Ala	Gly	Asn
Tyr Thr 480	Asn	Gly	Ser	Gly 485	Val	Gly	Asn	Glu	Ile 490	Ala	Thr	Glu	Arg	Pro 495
Met Val	Gln	Lys	Phe 500	Val	Leu	Asp	Ser	Val 505	Lys	Tyr	Trp	Val	Lys 510	Glu
Tyr His		Asp 515	Gly	Phe	Arg	Phe	Asp 520	Leu	Met	Ala	Leu	Leu 525	Gly	Lys
Asp Thr	Met . 530	Ala	Lys	Ile	Ser	Lys 535	Glu	Leu	His	Ala	Ile 540	Asn	Pro	Gly
Ile Val 545	Leu	Tyr	Gly	Glu	Pro 550	Trp	Thr	Gly	Gly	Thr 555	Ser	Gly	Leu	Ser
Ser Asp 560	Gln	Leu	Val	Thr 565	Lys	Gly	Gln	Gln	Lys 570	Gly	Leu	Gly	Ile	Gly 575
Val Phe	Asn .	Asp	Asn 580	Ile	Arg	Asn	Gly	Leu 585	Asp	Gly	Asn	Val	Phe 590	Asp
Lys Ser		G1n 595	Gly	Phe	Ala	Thr	Gly 600	Asp	Pro	Asn	Gln	Val 605	Asn	Val
Ile Lys	Asn 610	Gly	Val	Met	Gly	Ser 615	Ile	Ser	Asp	Phe	Thr 620	Ser	Ala	Pro
Ser Glu 625	Thr	Ile	Asn	Tyr	Val 630	Thr	Ser	His	Asp	Asn 635	Met	Thr	Leu	Trp

Asp Lys Ile Ser Ala Ser Asn Pro Asn Asp Thr Gln Ala Asp Arg Ile 640 Lys Met Asp Glu Leu Ala Gln Ala Val Val Phe Thr Ser Gln Gly Val 660 665 Pro Phe Met Gln Gly Gly Glu Glu Met Leu Arg Thr Lys Gly Gly Asn 675 680 Asp Asn Ser Tyr Asn Ala Gly Asp Ser Val Asn Gln Phe Asp Trp Ser 690 695 700 Arg Lys Ala Gln Phe Glu Asn Val Phe Asp Tyr Tyr Ser Trp Leu Ile 705 715 710 His Leu Arg Asp Asn His Pro Ala Phe Arg Met Thr Thr Ala Asp Gln Ile Lys Gln Asn Leu Thr Phe Leu Asp Ser Pro Thr Asn Thr Val Ala 745 740 Phe Glu Leu Lys Asn His Ala Asn His Asp Lys Trp Lys Asn Ile Ile 755 760 765 Val Met Tyr Asn Pro Asn Lys Thr Ala Gln Thr Leu Thr Leu Pro Ser 770 775 780 Gly Asn Trp Thr Ile Val Gly Leu Gly Asn Gln Val Gly Glu Lys Ser 795 785 790 Leu Gly His Val Asn Gly Thr Val Glu Val Pro Ala Leu Ser Thr Ile 800 805 810 815 Ile Leu His Gln Gly Thr Ser Glu Asp Val Ile Asp Gln Asn 820 825

<222> (1)..(2586)

10

<210> 5 <211> 2589 5 <212> ADN <213> Bacillus acidopullulyticus <220> <221> CDS

```
<220>
<221> sig_peptide
<222> (1)..(99)

5     <220>
     <221> mat peptide
<222> (100)..(2586)

<400> 5

10
```

gtg Val									48
gtc (Val 2									96
gca (Ala 2 -1	Asp								144
tct . Ser .									192
aat Asn									240
gtt Val									288
att (336
cat His 80									384
Pro									432
aag Lys									480
cta Leu									528
aca f									576
gcg Ala 160									624
tta Leu									672

											gta Val					720
_				-			_				gtt Val				_	768
											tcg Ser 235					816
				_					_		aaa Lys	_		_	_	864
		-	_						_	_	gtc Val				_	912
											aat Asn					960
											gtc Val					1008
	_		-			_	_	_			cct Pro 315				_	1056
_										-	gaa Glu	_				1104
			_	_		_		-	_		tca Ser		_			1152
											aca Thr					1200
											tta Leu					1248
											att Ile 395					1296
					-	-		,		_	aac Asn			_		1344
_				_				_		_	gct Ala	_				1392

									aaa Lys							1440
									aac Asn							1488
									cgg Arg							1536
									gaa Glu							1584
									gtt Val 505							1632
			_			_		_	ctt Leu		-					1680
									ctt Leu							1728
		_							ggc Gly							1776
									caa Gln							1824
									ctc Leu 585							1872
									gat Asp							1920
att Ile	aaa Lys	aat Asn 610	aga Arg	gtt Val	atg Met	gga Gly	agt Ser 615	att Ile	tca Ser	gat Asp	ttc Phe	act Thr 620	tcg Ser	gca Ala	Pro	1968
									cat His							2016
									gat Asp							2064
-	-		-		_				gta Val 665						_	2112
cca	ttt	atg	caa	ggt	gga	gaa	gaa	atg	ctg	cgg	aca	aaa	ggc	ggt	aat	2160

Pro	Phe	Met	Gln 675	Gly	Gly	Glu	Glu	Met 680	Leu	Arg	Thr	Lys	Gly 685	Gly	Asn	
														tgg Trp		2208
														ttg Leu		2256
														gat Asp		2304
							_	_						gta Val 750	-	2352
	-					_			_					att Ile		2400
														cca Pro		2448
														aaa Lys		2496
														acg Thr		2544
								gat Asp						taa		2589

<210>6

5

<211> 862 <212> PRT <213> Bacillus acidopullulyticus

<400>6

Val	Ser	Leu	Ile	Arg	Ser	Arg	Tyr	Asn	His	Phe	Val	Ile	Leu	Phe	Thr
			-30					-25					-20		

Val Ala Ile Met Phe Leu Thr Val Cys Phe Pro Ala Tyr Lys Ala Leu -15 -10 -5

Ala Asp Ser Thr Ser Thr Glu Val Ile Val His Tyr His Arg Phe Asp -1 1 5 10 10

Ser Asn Tyr Ala Asn Trp Asp Leu Trp Met Trp Pro Tyr Gln Pro Val 20 25 30

Asn	Gly	Asn	G1y 35	Ala	Ala	Tyr	Glu	Phe 40	Ser	Gly	Lys	Asp	Asp 45	Phe	Gly
Val	Lys	Ala 50	Asp	Val	Gln	Val	Pro 55	Gly	Asp	Asp	Thr	Gln 60	Val	Gly	Leu
Ile	Val 65	Arg	Thr	Asn	Asp	Trp 70	Ser	Gln	Lys	Asn	Thr 75	Ser	Asp	Asp	Leu
His 80	Ile	Asp	Leu	Thr	Lys 85	Gly	His	Glu	Ile	Trp 90	Ile	Val	Gln	Gly	Asp 95
Pro	Asn	Ile	Tyr	Tyr 100	Asn	Leu	Ser	Asp	Ala 105	Gln	Ala	Ala	Ala	Thr 110	Pro
Lys	Val	Ser	Asn 115	Ala	Tyr	Leu	Asp	Asn 120	Glu	Lys	Thr	Val	Leu 125	Ala	Lys
Leu	Thr	Asn 130	Pro	Met	Thr	Leu	Ser 135	Asp	Gly	Ser	Ser	Gly 140	Phe	Thr	Val
Thr	Asp 145	Lys	Thr	Thr	Gly	Glu 150	Gln	Ile	Pro	Val	Thr 155	Ala	Ala	Thr	Asn
Ala 160	Asn	Ser	Ala	Ser	Ser 165	Ser	Glu	Gln	Thr	Asp 170	Leu	Val	Gln	Leu	Thr 175
Leu	Ala	Ser	Ala	Pro 180	Asp	Val	Ser	His	Thr 185	Ile	Gln	Val	Gly	Ala 190	Ala
Gly	Tyr	Glu	Ala 195	Val	Asn	Leu	Ile	Pro 200	Arg	Asn	Val	Leu	Asn 205	Leu	Pro
Arg	Tyr	Tyr 210	Tyr	Ser	Gly	Asn	Asp 215	Leu	Gly	Asn	Val	Tyr 220	Ser	Asn	Lys
Ala	Thr 225	Ala	Phe	Arg	Val	Trp 230	Ala	Pro	Thr	Ala	Ser 235	Asp	Val	Gln	Leu
Leu 240	Leu	Tyr	Asn	Ser	Glu 245	Thr	Gly	Pro	Val	Thr 250	Lys	Gln	Leu	Glu	Met 255
Gln	Lys	Ser	Asp	Asn 260	Gly	Thr	Trp	Lys	Leu 265	Lys	Val	Pro	Gly	Asn 270	Leu

Lys	Asn	Trp	Tyr 275	Tyr	Leu	Tyr	Gln	Val 280	Thr	Val	Asn	Gly	Lys 285	Thr	Gln
Thr	Ala	Val 290	Asp	Pro	Tyr	Val	Arg 295	Ala	Ile	Ser	Val	Asn 300	Ala	Thr	Arg
Gly	Met 305	Ile	Val	Asp	Leu	Glu 310	Asp	Thr	Asn	Pro	Pro 315	Gly	Trp	Lys	Glu
Asp 320	His	Gln	Gln	Thr	Pro 325	Ala	Asn	Pro	Val	Asp 330	Glu	Val	Ile	Tyr	Glu 335
Val	His	Val	Arg	Asp 340	Phe	Ser	Ile	Asp	Ala 345	Asn	Ser	Gly	Met	Lys 350	Asn
Lys	Gly	Lys	Tyr 355	Leu	Ala	Phe	Thr	Glu 360	His	Gly	Thr	Lys	Gly 365	Pro	Asp
Asn	Val	Lys 370	Thr	Gly	Ile	Asp	Ser 375	Leu	Lys	Glu	Leu	Gly 380	Ile	Asn	Ala
Val	Gln 385	Leu	Gln	Pro	Ile	Glu 390	Glu	Phe	Asn	Ser	Ile 395	Asp	Glu	Thr	Gln
Pro 400	Asn	Met	Tyr	Asn	Trp 405	Gly	Tyr	Asp	Pro	Arg 410	Asn	Tyr	Asn	Val	Pro 415
Glu	Gly	Ala	Tyr	Ala 420	Thr	Thr	Pro	Glu	Gly 425	Thr	Ala	Arg	Ile	Thr 430	Gln
Leu	Lys	Gln	Leu 435	Ile	Gln	Ser	Ile	His 440	Lys	Asp	Arg	Ile	Ala 445	Ile	Asn
Met	Asp	Val 450	Val	Tyr	Asn	His	Thr 455	Phe	Asn	Val	Gly	Val 460	Ser	Asp	Phe
Asp	Lys 465	Ile	Val	Pro	Gln	Tyr 470	Tyr	Tyr	Arg	Thr	Asp 475	Ser	Ala	Gly	Asn
Tyr 480	Thr	Asn	Gly	Ser	Gly 485	Val	Gly	Asn	Glu	Ile 490	Ala	Thr	Glu	Arg	Pro 495
Met	Val	Gln	Lys	Phe 500	Val	Leu	Asp	Ser	Val 505	Lys	Tyr	Trp	Val	Lys 510	Glu

Tyr	His	Ile	Asp 515	Gly	Phe	Arg	Phe	Asp 520	Leu	Met	Ala	Leu	Leu 525	Gly	Lys
Asp	Thr	Met 530	Ala	Lys	Ile	Ser	Lys 535	Glu	Leu	His	Ala	Ile 540	Asn	Pro	Gly
Ile	Val 545	Leu	Tyr	Gly	Glu	Pro 550	Trp	Thr	Gly	Gly	Thr 555	Ser	Gly	Leu	Ser
Ser 560	Asp	Gln	Leu	Val	Thr 565	Lys	Gly	Gln	Gln	Lys 570	Gly	Leu	Gly	Ile	Gly 575
Val	Phe	Asn	qzA	Asn 580	Ile	Arg	Asn	Gly	Leu 585	Asp	Gly	Asn	Val	Phe 590	Asp
Lys	Ser	Ala	Gln 595	Gly	Phe	Ala	Thr	Gly 600	Asp	Pro	Asn	Gln	Val 605	Asn	Val
Ile	Lys	Asn 610	Arg	Val	Met	Gly	Ser 615	Ile	Ser	Asp	Phe	Thr 620	Ser	Ala	Pro
Ser	Glu 625	Thr	Ile	Asn	Tyr	Val 630	Thr	Ser	His	Asp	Asn 635	Met	Thr	Leu	Trp
Asp 640	Lys	Ile	Ser	Ala	Ser 645	Asn	Pro	Asn	Asp	Thr 650	Gln	Ala	Asp	Arg	Ile 655
Lys	Met	Asp	Glu	Leu 660	Ala	Gln	Ala	Val	Val 665	Phe	Thr	Ser	Gln	Gly 670	Val
Pro	Phe	Met	Gln 675	Gly	Gly	Glu	Glu	Met 680	Leu	Arg	Thr	Lys	Gly 685	Gly	Asn
Asp	Asn	Ser 690	Tyr	Asn	Ala	Gly	Asp 695	Ser	Val	Asn	Gln	Phe 700	Asp	Trp	Ser
Arg	Lys 705	Ala	Gln	Phe	Glu	Asn 710	Val	Phe	Asp	Tyr	Tyr 715	Ser	Trp	Leu	Ile
His 720	Leu	Arg	Asp	Asn	His 725	Pro	Ala	Phe	Arg	Met 730	Thr	Thr	Ala	Asp	Gln 735
Ile	Lys	Gln	Asn	Leu 740	Thr	Phe	Leu	Asp	Ser 745	Pro	Thr	Asn	Thr	Val 750	Ala
Phe	Glu	Leu	Lys	Asn	His	Ala	Asn	His	Asp	Lys	Trp	Lys	Asn	Ile	Ile

				755					760					765		
	Val	Met	Tyr 770	Asn	Pro	Asn	Lys	Thr 775	Ala	Gln	Thr	Leu	Thr 780	Leu	Pro	Ser
	Gly	Asn 785	Ťrp	Thr	Ile	Val	Gly 790	Leu	Gly	Asn	Gln	Val 795	Gly	Glu	Lys	Ser
	Leu 800	Gly	His	Val	Asn	Gly 805	Thr	Val	Glu	Val	Pro 810	Ala	Leu	Ser	Thr	Ile 815
	Ile	Leu	His	Gln	Gly 820	Thr	Ser	Glu	Asp	Val 825	Ile	Asp	Gln	Asn		
<2 <2	10> 7 11> 4 12> F 13> B	83 PRT	s liche	enifor	mis											
<2		nat_pe 1)(48	eptide 33)													
<4	00> 7															
	Ala 1	Asn	Leu	Asn	Gly 5	Thr	Leu	Met	Gln	Туг 10	Phe	Glu	Trp	Tyr	Met 15	Pro
	Asn	Asp	Gly	Gln 20	His	Trp	Arg	Arg	Leu 25	Gln	Asn	Asp	Ser	Ala 30	Tyr	Leu
	Ala	Glu	His 35	Gly	Ile	Thr	Ala	Val 40	Trp	Ile	Pro	Pro	Ala 45	Tyr	Lys	Gly
	Thr	Ser 50	Gln	Ala	Asp	Val	Gly 55	Tyr	Gly	Ala	Tyr	Asp 60	Leu	Tyr	Asp	Leu
	Gly 65	Glu	Phe	His	Gln	Lys 70	Gly	Thr	Val	Arg	Thr 75	Lys	Tyr	Gly	Thr	Lys 80
	Gly	Glu	Leu	Gln	Ser 85	Ala	Ile	Lys	Ser	Leu 90	His	Ser	Arg	Asp	Ile 95	Asn
	Val	Tyr	Gly	Asp 100	Val	Val	Ile	Asn	His 105	Lys	Gly	Gly	Ala	Asp 110	Ala	Thr
	Glu	Asp	Val 115	Thr	Ala	Val	Glu	Val 120	Asp	Pro	Ala	Asp	Arg 125	Asn	Arg	Val

Ile	Ser 130	Gly	Glu	His	Leu	Ile 135	Lys	Ala	Trp	Thr	His 140	Phe	His	Phe	Pro
Gly 145	Arg	Gly	Ser	Thr	Tyr 150	Ser	Asp	Phe	Lys	Trp 155	His	Trp	Tyr	His	Phe 160
Asp	Gly	Thr	Asp	Trp 165	Asp	Glu	Ser	Arg	Lys 170	Leu	Asn	Arg	Ile	Tyr 175	Lys
Phe	Gln	Gly	Lys 180	Ala	Trp	Asp	Trp	Glu 185	Val	Ser	Asn	Glu	Asn 190	Gly	Asn
Tyr	Asp	Туг 195	Leu	Met	Tyr	Ala	Asp 200	Ile	Asp	Tyr	Asp	His 205	Pro	Asp	Val
Ala	Ala 210	Glu	Ile	Lys	Arg	Trp 215	Gly	Thr	Trp	Tyr	Ala 220	Asn	Glu	Leu	Gln
Leu 225	Asp	Gly	Phe	Arg	Leu 230	Asp	Ala	Val	Lys	His 235	Ile	Lys	Phe	Ser	Phe 240
Leu	Arg	Asp	Trp	Val 245	Asn	His	Val	Arg	Glu 250	Lys	Thr	Gly	Lys	Glu 255	Met
Phe	Thr	Val	Ala 260	Glu	Tyr	Trp	Gln	Asn 265	Asp	Leu	Gly	Ala	Leu 270	Glu	Asn
Tyr	Leu	Asn 275	Lys	Thr	Asn	Phe	Asn 280	His	Ser	Val	Phe	Asp 285	Val	Pro	Leu
His	Tyr 290	Gln	Phe	His	Ala	Ala 295	Ser	Thr	Gln	Gly	Gly 300	Gly	Tyr	Asp	Met
Arg 305	Lys	Leu	Leu	Asn	Gly 310	Thr	Val	Val	Ser	Lys 315	His	Pro	Leu	Lys	Ser 320
Val	Thr	Phe	Val	Asp 325	Asn	His	Asp	Thr	Gln 330	Pro	Gly	Gln	Ser	Leu 335	Glu
Ser	Thr	Val	Gln 340	Thr	Trp	Phe	Lys	Pro 345	Leu	Ala	Tyr	Ala	Phe 350	Ile	Leu
Thr	Arg	Glu 355	Ser	Gly	Tyr	Pro	Gln 360	Val	Phe	Tyr	Gly	Asp 365	Met	Tyr	Gly

Th	r Ly 37		.y A:	sp S	er	Gln	Arg 375	Glu	Ile	Pro	Ala	Leu 380	Lys	His	: Lys	Ile	
G1 38		o Il	e Le	eu L	ys	Ala 390	Arg	Lys	Gln	Tyr	Ala 395	Tyr	Gly	Ala	Gln	His 400	
As	р Ту	r Ph	ie As		is 05	His	Asp	Ile	Val	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Asp	
Se	r Se	r Va		la A 20	sn	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro	
Gl	y Gl	y Al 43		ys A	ırg	Met	Tyr	Val 440	Gly	Arg	Gln	Asn	Ala 445	-	Glu	Thr	
Tr	р Ні 45		p I	le T	hr	Gly	Asn 455	Arg	Ser	Glu	Pro	Val 460	Val	Ile	a Asn	Ser	
Gl 46		y Tr	р G.	ly G		Phe 470	His	Val	Asn	Gly	G1y 475	Ser	Val	Sei	: Ile	Tyr 480	
۷a	1 G1	n Ar	g														
212	> 8 > 216 > ADN > Bac	1	sp.														
	> > CDS > (1)		7)														
	> > m at > (100																
400	> 8																
											ctg Leu						48
		_		_				Pro			cca Pro		_	_	_		96
											att Ile					1	144
att	gac	cgg	ttt	tac	gat	ggg	gac	acg	acg	aac	aac	aat	cct	gcc	aaa	1	192

Ile	Asp	Arg	Phe	Tyr 20	Asp	Gly	Asp	Thr	Thr 25	Asn	Asn	Asn	Pro	Ala 30	Lys		
									tcg Ser								240
ggc Gly	Gly ggg	gat Asp 50	ctg Leu	gag Glu	Gly ggg	gtt Val	cgt Arg 55	caa Gln	aaa Lys	ctt Leu	cct Pro	tat Tyr 60	ctt Leu	aaa Lys	cag Gln		288
									ccg Pro								336
									tat Tyr								384
									ggg Gly 105								432
	-	-		-	_				gga Gly		_	-		_	_		480
									aag Lys						ttt Phe		528
									gga Gly							4*	576
									cac His								624
		_	-						tgg Trp 185				_	_			672
gcc Ala	ggt Gly	ttc Phe	tcg Ser 195	ctt Leu	gcc Ala	gat Asp	ttg Leu	tcg Ser 200	cag Gln	gaa Glu	aat Asn	ggc Gly	acg Thr 205	att Ile	gct Ala		720
									ttg Leu								768
									ttt Phe								816
									aaa Lys								864
									gcc Ala								912

260		265	270	
		t gtg ctg gat n Val Leu Asp 0		
		a ttt acg caa r Phe Thr Gln		
		g aac gag tac y Asn Glu Tyr 315		
	Asp Asn His	t gat atg tca s Asp Met Ser 330		
		c cag gcg ctt s Gln Ala Leu 345		
 		t tat gga acc r Tyr Gly Thr 0	-	-
		g ggg atg atg g Gly Met Met		
		g tca act ctg l Ser Thr Leu 395		
 	Gln Tyr Gly	c acc acc acc y Thr Thr Thr 410		
		g aaa ttt ttc g Lys Phe Phe 425		
 _	-	a toc toc tat n Ser Ser Tyr 0	-	
		c tat gcg gat r Tyr Ala Asp	-	
		t toc aat gga 1 Ser Asn Gly 475		
	Ala Val Ser	t gtt tgg cag r Val Trp Gln 490		
		t gct cca aat 1 Ala Pro Asn 505		-

											Gly ggg				1680
											aaa Lys				1728
											gcc Ala 555				1776
		_					-		_		ctg Leu				1824
											act Thr				1872
	_			_		_	_			-	acg Thr			_	1920
_	-				_	_	_	_	_		gcc Ala	_			1968
											tgg Trp 635				2016
_	_		_		_	_				_	ttc Phe		_	_	2064
											aac Asn				2112
											acg Thr			tag	2160

<210> 9 <211> 719 5 <212> PRT <213> Bacillus sp.

<400>9

Gly Leu Leu Phe Ser Gly Ser Leu Pro Tyr Asn Pro Asn Ala Ala Glu -15 10 5

Ala -1	Ser 1	Ser	Ser	Ala	Ser 5	Val	Lys	Gly	Asp	Val 10	Ile	Tyr	Gln	Ile	Ile 15
Ile	Asp	Arg	Phę	Tyr 20	Asp	Gly	Asp	Thr	Thr 25	Asn	Asn	Asn	Pro	Ala 30	Lys
Ser	Tyr	Gly	Leu 35	Tyr	Asp	Pro	Thr	Lys 40	Ser	Lys	Trp	Lys	Met 45	Tyr	Trp
Gly	Gly	Asp 50	Leu	Glu	Gly	Val	Arg 55	Gln	Lys	Leu	Pro	Tyr 60	Leu	Lys	Gln
Leu	Gly 65	Val	Thr	Thr	Ile	Trp 70	Leu	Ser	Pro	Val	Leu 75	Asp	Asn	Leu	Asp
Thr 80	Leu	Ala	Gly	Thr	Asp 85	Asn	Thr	Gly	Tyr	His 90	Gly	Tyr	Trp	Thr	Arg 95
Asp	Phe	Lys	Gln	Ile 100	Glu	Glu	His	Phe	Gly 105	Asn	Trp	Thr	Thr	Phe 110	Asp
Thr	Leu	Val	Asn 115	Asp	Ala	His	Gln	Asn 120	Gly	Ile	Lys	Val	Ile 125	Val	Asp
Phe	Val	Pro 130	Asn	His	Ser	Thr	Pro 135	Phe	Lys	Ala	Asn	Asp 140	Ser	Thr	Phe
Ala	Glu 145	Gly	Gly	Ala	Leu	Tyr 150	Asn	Asn	Gly	Thr	Tyr 155	Met	Gly	Asn	Tyr
Phe 160	Asp	Asp	Ala	Thr	Lys 165	Glу	Tyr	Phe	His	His 170	Asn	Gly	Asp	Ile	Ser 175
Asn	Trp	Asp	Asp	Arg 180	Tyr	Glu	Ala	Gln	Trp 185	Lys	Asn	Phe	Thr	Asp 190	Pro
Ala	Gly	Phe	Ser 195	Leu	Ala	Asp	Leu	Ser 200	Gln	Glu	Asn	Gly	Thr 205	Ile	Ala
Gln	Tyr	Leu 210	Thr	Asp	Ala	Ala	Val 215	Gln	Leu	Val	Ala	His 220	Gly	Ala	Asp
Gly	Leu 225	Arg	Ile	Asp	Ala	Va1 230	Lys	His	Phe	Asn	Ser 235	Gly	Phe	Ser	Lys
Ser	Leu	Ala	Asp	Lys	Leu	Tyr	Gln	Lys	Lys	Asp	Ile	Phe	Leu	Val	Gly

240	245	250	255
Glu Trp Tyr Gly Asp		Thr Ala Asn His 265	Leu Glu Lys Val 270
Arg Tyr Ala Asn As	n Ser Gly Val	Asn Val Leu Asp	Phe Asp Leu Asn
275		280	285
Thr Val Ile Arg As	n Val Phe Gly		Thr Met Tyr Asp
290	295		300
Leu Asn Asn Met Va	l Asn Gln Thr	Gly Asn Glu Tyr	Lys Tyr Lys Glu
305	310	315	
Asn Leu Ile Thr Ph	e Ile Asp Asn	His Asp Met Ser	Arg Phe Leu Ser
320	325	330	335
Val Asn Ser Asn Ly		His Gln Ala Leu	Ala Phe Ile Leu
34		345	350
Thr Ser Arg Gly Th	r Pro Ser Ile	Tyr Tyr Gly Thr	Glu Gln Tyr Met
355		360	365
Ala Gly Gly Asn As	p Pro Tyr Asn		Pro Ala Phe Asp
370	375		380
Thr Thr Thr Al	a Phe Lys Glu 390	Val Ser Thr Leu 395	Ala Gly Leu Arg
Arg Asn Asn Ala Al	a Ile Gln Tyr	Gly Thr Thr Thr	Gln Arg Trp Ile
400	405	410	415
Asn Asn Asp Val Ty 42	-	Arg Lys Phe Phe 425	_
Leu Val Ala Ile As	n Arg Asn Thr	Gln Ser Ser Tyr	Ser Ile Ser Gly
435		440	445
Leu Gln Thr Ala Le	u Pro Asn Gly		Tyr Leu Ser Gly
450	455		460
Leu Leu Gly Gly As	n Gly Ile Ser	Val Ser Asn Gly	Ser Val Ala Ser
465	470	475	
Phe Thr Leu Ala Pr	o Gly Ala Val	Ser Val Trp Gln	Tyr Ser Thr Ser
480	485	490	495

Ala Ser Ala Pro Gln Ile Gly Ser Val Ala Pro Asn Met Gly Ile Pro 505 500 Gly Asn Val Val Thr Ile Asp Gly Lys Gly Phe Gly Thr Thr Gln Gly 515 520 Thr Val Thr Phe Gly Gly Val Thr Ala Thr Val Lys Ser Trp Thr Ser 535 540 530 Asn Arg Ile Glu Val Tyr Val Pro Asn Met Ala Ala Gly Leu Thr Asp 545 550 Val Lys Val Thr Ala Gly Gly Val Ser Ser Asn Leu Tyr Ser Tyr Asn 560 565 Ile Leu Ser Gly Thr Gln Thr Ser Val Val Phe Thr Val Lys Ser Ala 580 585 Pro Pro Thr Asn Leu Gly Asp Lys Ile Tyr Leu Thr Gly Asn Ile Pro 595 600 Glu Leu Gly Asn Trp Ser Thr Asp Thr Ser Gly Ala Val Asn Asn Ala 610 615 . 620 Gln Gly Pro Leu Leu Ala Pro Asn Tyr Pro Asp Trp Phe Tyr Val Phe 635 625 630 Ser Val Pro Ala Gly Lys Thr Ile Gln Phe Lys Phe Phe Ile Lys Arg 640 645 650 Ala Asp Gly Thr Ile Gln Trp Glu Asn Gly Ser Asn His Val Ala Thr 660 665 Thr Pro Thr Gly Ala Thr Gly Asn Ile Thr Val Thr Trp Gln Asn 675 680 <210> 10

<211>514

<212> PRT

<213> Bacillus stearothermophilus

<220>

<221> mat peptide

¹⁰ <222> (1)..(514)

<400> 10

Ala 1	Ala	Pro	Phe	Asn 5	Gly	Thr	Met	Met	Gln 10	Tyr	Phe	Glu	Trp	Tyr 15	Leu
Pro	Asp	Asp	Gly 20	Thr	Leu	Trp	Thr	Lys 25	Val	Ala	Asn	Glu	Ala 30	Asn	Asn
Leu	Ser	Ser 35	Leu	Gly	Ile	Thr	Ala 40	Leu	Trp	Leu	Pro	Pro 45	Ala	Tyr	Lys
Gly	Thr 50	Ser	Arg	Ser	Asp	Val 55	Gly	Tyr	Gly	Val	Tyr 60	Asp	Leu	Tyr	Asp
Leu 65	Gly	Glu	Phe	Asn	Gln 70	Lys	Gly	Ala	Val	Arg 75	Thr	Lys	Tyr	Gly	Thr 80
Lys	Ala	Gln	Tyr	Leu 85	Gln	Ala	Ile	Gln	Ala 90	Ala	His	Ala	Ala	Gly 95	Met
Gln	Val	Tyr	Ala 100	Asp	Val	Val	Phe	Asp 105	His	Lys	Gly	Gly	Ala 110	Asp	Gly
Thr	Glu	Trp 115	Val	Asp	Ala	Val	Glu 120	Val	Asn	Pro	Ser	Asp 125	Arg	Asn	Gln
Glu	Ile 130	Ser	Gly	Thr	Tyr	Gln 135	Ile	Gln	Ala	Trp	Thr 140	Lys	Phe	Asp	Phe
Pro 145	Gly	Arg	Gly	Asn	Thr 150	Tyr	Ser	Ser	Phe	Lys 155	Trp	Arg	Trp	Tyr	His 160
Phe	Asp	Gly	Val	Asp 165	Trp	Asp	Glu	Ser	Arg 170	Lys	Leu	Ser	Arg	11e 175	Tyr
Lys	Phe	Arg	Gly 180	Ile	Gly	Lys	Ala	Trp 185	Asp	Trp	Glu	Val	Asp 190	Thr	Glu
Asn	Gly	Asn 195	Tyr	Asp	Tyr	Leu	Met 200	Tyr	Ala	Asp	Leu	Asp 205	Met	Asp	His
Pro	Glu 210	Val	Val	Thr	Glu	Leu 215	Lys	Ser	Trp	Gly	Lys 220	Trp	Tyr	Val	Asn
Thr 225	Thr	Asn	Ile	Asp	Gly 230	Phe	Arg	Leu	Asp	Ala 235	Val	Lys	His	Ile	Lys 240

Phe	Ser	Phe	Phe	Pro 245	Asp	Trp	Leu	Ser	Asp 250	Val	Arg	Ser	Gln	Thr 255	Gly
Lys	Pro	Leu	Phe 260	Thr	Val	Gly	Glu	Tyr 265	Trp	Ser	Tyr	Asp	Ile 270	Asn	Lys
Leu	His	Asn 275	Tyr	Ile	Met	Lys	Thr 280	Asn	Gly	Thr	Met	Ser 285	Leu	Phe	Asp
Ala	Pro 290	Leu	His	Asn	Lys	Phe 295	Tyr	Thr	Ala	Ser	Lys 300	Ser	Gly	Gly	Thr
Phe 305	Asp	Met	Arg	Thr	Leu 310	Met	Thr	Asn	Thr	Leu 315	Met	Lys	Asp	Gln	Pro 320
Thr	Leu	Ala	Val	Thr 325	Phe	Val	Asp	Asn	His 330	Asp	Thr	Glu	Pro	Gly 335	Gln
Ala	Leu	Gln	Ser 340	Trp	Val	Asp	Pro	Trp 345	Phe	Lys	Pro	Leu	Ala 350	Tyr	Ala
Phe	Ile	Leu 355	Thr	Arg	Gln	Glu	Gly 360	Tyr	Pro	Cys	Val	Phe 365	Tyr	Gly	Asp
Tyr	Tyr 370	Gly	Ile	Pro	Gln	Tyr 375	Asn	Ile	Pro	Ser	Leu 380	Lys	Ser	Lys	Ile
Asp 385	Pro	Leu	Leu	Ile	Ala 390	Arg	Arg	Asp	Туг	Ala 395	Tyr	Gly	Thr	Gln	His 400
Asp	Tyr	Leu	Asp	His 405	Ser	Asp	Ile	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Val
Thr	Glu	Lys	Pro 420	Gly	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
Gly	Gly	Ser 435	Lys	Trp	Met	Tyr	Val 440	Gly	Lys	Gln	His	Ala 445	Gly	Lys	Val
Phe	Tyr 450	Asp	Leu	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	Val 460	Thr	Ile	Asn	Ser
Asp 465	Gly	Trp	Gly	Glu	Phe 470	Lys	Val	Asn	Gly	Gly 475	Ser	Val	Ser	Val	Trp 480
Val	Pro	Arg	Lys	Thr	Thr	Val	Ser	Thr	Ile	Ala	Trp	Ser	Ile	Thr	Thr

485 490 495

Arg Pro Trp Thr Asp Glu Phe Val Arg Trp Thr Glu Pro Arg Leu Val 500 505 510

Ala Trp

<210>11

<211>484

5 <212> PRT

<213> Aspergillus niger

<220>

10

<221> mat_peptide

<222> (1)..(484)

<400>11

Leu Ser Ala Ala Ser Trp Arg Thr Gln Ser Ile Tyr Phe Leu Leu Thr
1 10 15

Asp Arg Phe Gly Arg Thr Asp Asn Ser Thr Thr Ala Thr Cys Asn Thr 20 25 30

Gly Asn Glu Ile Tyr Cys Gly Gly Ser Trp Gln Gly Ile Ile Asp His 35 40 45

Leu Asp Tyr Ile Glu Gly Met Gly Phe Thr Ala Ile Trp Ile Ser Pro 50 55 60

Ile Thr Glu Gln Leu Pro Gln Asp Thr Ala Asp Gly Glu Ala Tyr His 65 70 75 80

Gly Tyr Trp Gln Gln Lys Ile Tyr Asp Val Asn Ser Asn Phe Gly Thr 85 90 95

Ala Asp Asn Leu Lys Ser Leu Ser Asp Ala Leu His Ala Arg Gly Met 100 105 110

Tyr Leu Met Val Asp Val Val Pro Asp His Met Gly Tyr Ala Gly Asn 115 120 125

Gly Asn Asp Val Asp Tyr Ser Val Phe Asp Pro Phe Asp Ser Ser Ser 130 135 140

Tyr Phe His Pro Tyr Cys Leu Ile Thr Asp Trp Asp Asn Leu Thr Met 145 150 155 160

Val	Glu	Asp	Cys	Trp 165	Glu	Gly	Asp	Thr	Ile 170	Val	Ser	Leu	Pro	Asp 175	Leu
Asp	Thr	Thr	Glu 180	Thr	Ala	Val	Arg	Thr 185	Ile	Trp	Tyr	Asp	Trp 190	Val	Ala
Asp	Leu	Val 195	Ser	Asn	Tyr	Ser	Val 200	Asp	Gly	Leu	Arg	Ile 205	Asp	Ser	Val
Leu	Glu 210	Val	Gln	Pro	Asp	Phe 215	Phe	Pro	Gly	Tyr	Asn 220	Lys	Ala	Ser	Gly
Val 225	Tyr	Cys	Val	Gly	Glu 230	Ile	Asp	Asn	Gly	Asn 235	Pro	Ala	Ser	Asp	Cys 240
Pro	Tyr	Gln	Lys	Val 245	Leu	Asp	Gly	Val	Leu 250	Asn	Tyr	Pro	Ile	Tyr 255	Trp
Gln	Leu	Leu	Tyr 260	Ala	Phe	Glu	Ser	Ser 265	Ser	Gly	Ser	Ile	Ser 270	Asn	Leu
Tyr	Asn	Met 275	Ile	Lys	Ser	Val	Ala 280	Ser	Asp	Суз	Ser	Asp 285	Pro	Thr	Leu
Leu	Gly 290	Asn	Phe	Ile	Glu	Asn 295	His	Asp	Asn	Pro	Arg 300	Phe	Ala	Lys	Tyr
Thr 305	Ser	Asp	Tyr	Ser	Gln 310	Ala	Lys	Asn	Val	Leu 315	Ser	Tyr	Ile	Phe	Leu 320
Ser	Asp	Gly	Ile	Pro 325	Ile	Val	Tyr	Ala	Gly 330	Glu	Glu	Gln	His	Tyr 335	Ala
Gly	Gly	Lys	Val 340	Pro	Tyr	Asn	Arg	Glu 345	Ala	Thr	Trp	Leu	Ser 350	Gly	Tyr
Asp	Thr	Ser 355	Ala	Glu	Leu	Tyr	Thr 360	Trp	Ile	Ala	Thr	Thr 365	Asn	Ala	Ile
Arg	Lys 370	Leu	Ala	Ile	Ala	Ala 375	Asp	Ser	Ala	Tyr	Ile 380	Thr	Tyr	Ala	Asn
Asp 385	Ala	Phe	Tyr	Thr	Asp 390	Ser	Asn	Thr	Ile	Ala 395	Met	Ala	Lys	Gly	Thr 400

Ser Gly Ser Gln Val Ile Thr Val Leu Ser Asn Lys Gly Ser Ser Gly 405 410 Ser Ser Tyr Thr Leu Thr Leu Ser Gly Ser Gly Tyr Thr Ser Gly Thr 425 420 Lys Leu Ile Glu Ala Tyr Thr Cys Thr Ser Val Thr Val Asp Ser Ser 440 Gly Asp Ile Pro Val Pro Met Ala Ser Gly Leu Pro Arg Val Leu Leu 450 455 460 Pro Ala Ser Val Val Asp Ser Ser Ser Leu Cys Gly Gly Ser Gly Arg 465 470 475 Leu Tyr Val Glu <210> 12 <211>435 <212> PRT <213> Humicola insolens <220> <221> mat_peptide <222> (1)..(435) <400> 12 Met Ala Arg Gly Thr Ala Leu Leu Gly Leu Thr Ala Leu Leu Gly 5 10 Leu Val Asn Gly Gln Lys Pro Gly Glu Thr Lys Glu Val His Pro Gln 25 20 Leu Thr Thr Phe Arg Cys Thr Lys Arg Gly Gly Cys Lys Pro Ala Thr 35 40 45 Asn Phe Ile Val Leu Asp Ser Leu Ser His Pro Ile His Arg Ala Glu 50 55 60 Gly Leu Gly Pro Gly Gly Cys Gly Asp Trp Gly Asn Pro Pro Pro Lys 75 80 70 Asp Val Cys Pro Asp Val Glu Ser Cys Ala Lys Asn Cys Ile Met Glu

10

90

Gly	Ile	Pro	Asp 100	Tyr	Ser	Gln	Tyr	Gly 105	Val	Thr	Thr	Asn	Gly 110	Thr	Ser
Leu	Arg	Leu 115	Gln	His	Ile	Leu	Pro 120	Asp	Gly	Arg	Val	Pro 125	Ser	Pro	Arg
Val	Tyr 130	Leu	Leu	Asp	Ļуs	Thr 135	Lys	Arg	Arg	Tyr	Glu 140	Met.	Leu	His	Leu
Thr 145	Gly	Phe	Glu	Phe	Thr 150	Phe	Asp	Val	Asp	Ala 155	Thr	Lys	Leu	Pro	Cys 160
Gly	Met	Asn	Ser	Ala 165	Leu	Tyr	Leu	Ser	Glu 170	Met	His	Pro	Thr	Gly 175	Ala
Lys	Ser	Lys	Tyr 180	Asn	Ser	Gly	Gly	Ala 185	Tyr	Tyr	Gly	Thr	Gly 190	Tyr	Cys
Asp	Ala	Gln 195	Cys	Phe	Val	Thr	Pro 200	Phe	Ile	Asn	Gly	Leu 205	Gly	Asn	Ile
Glu	Gly 210	Lys	Gly	Ser	Cys	Cys 215	Asn	Glu	Met	Asp	11e 220	Trp	Glu	Val	Asn
Ser 225	Arg	Ala	Ser	His	Val 230	Val	Pro	His	Thr	Cys 235	Asn	Lys	Lys	Gly	Leu 240
Tyr	Leu	Cys	Glu	Gly 245	Glu	Glu	Cys	Ala	Phe 250	Glu	Gly	Val	Cys	Asp 255	Lys
Asn	Gly	Cys	Gly 260	Trp	Asn	Asn	Tyr	Arg 265	Val	Asn	Val	Thr	Asp 270	Tyr	Tyr
Gly	Arg	Gly 275	Glu	Glu	Phe	Lys	Val 280	Asn	Thr	Leu	Lys	Pro 285	Phe	Thr	Val
Val	Thr 290	Gln	Phe	Leu	Ala	Asn 295	Arg	Arg	Gly	Lys	Leu 300	Glu	Lys	Ile	His
Arg 305	Phe	Tyr	Val	Gln	Asp 310	Gly	Lys	Val	Ile	Glu 315	Ser	Phe	Tyr	Thr	Asn 320
Lys	Glu	Gly	Val	Pro 325	Tyr	Thr	Asn	Met	11e 330	Asp	Asp	Glu	Phe	Cys 335	Glu
Ala	Thr	Gly	Ser	Arg	Lys	Tyr	Met	Glu	Leu	Gly	Ala	Thr	Gln	Gly	Met

	Gly	/ Glu	1 Ala 355		1 Thr	Arg	Gly	Met 360	Val	Leu	Ala	Met	Ser 365	Ile	Trp	Trp	
	Asp	Glr 370		g Gly	Asn	Met	Glu 375	Trp	Leu	Asp	His	Gly 380	Glu	Ala	Gly	Pro	
	Суs 385		a Lys	s Gly	Glu	Gly 390	Ala	Pro	Ser	Asn	Ile 395	Val	Gln	Val	Glu	Pro 400	
	Phe	e Pro	o Glu	ı Val	Thr 405	Tyr	Thr	Asn	Leu	Arg 410	Trp	Gly	Glu	Ile	Gly 415	Ser	
	Thi	ту	r Glr	1 Glu 420	ı Val	Gln	Lys	Pro	Lys 425	Pro	Lys	Pro	Gly	His 430	Gly	Pro	
	Arg	g Sei	r Asp 435														
5	<210> <211> <212> <213>	1008 ADN	noas ci	us aur	antiac	us											
10	<220> <221> <222>		005)														
15	<220> <221> s <222>																
10	<220> <221> i <222>																
20	<400>	13															
					tct c Ser L						er Al					r	48
				Pro 1	ctc g Leu A -10					ln G1				g Ala			96
					ttc g Phe G			sn G									144
	Gln				gga g Gly V		lu G					e Tr					192

									ggg Gly							240	
									aac Asn 60							288	
									gcg Ala							336	
									cct Pro							384	
tac Tyr	aat Asn 100	tct Ser	ata Ile	atc Ile	tcg Ser	agc Ser 105	cct Pro	tcc Ser	gat Asp	ttc Phe	cag Gln 110	acc Thr	ttc Phe	tgg Trp	aaa Lys	432	
									cca Pro							480	
									acc Thr 140							528	
_	_	_		_			100		gcc Ala		-			_		576	
									ggg Gly							624	
		_		_			_		gac Asp			_	_			672	
		_		_		_			gac Asp							720	
acc Thr	tgc Cys	gta Val	tct Ser	tcg Ser 215	acc Thr	atc Ile	ggt Gly	caa Gln	gag Glu 220	cga Arg	atc Ile	acc Thr	agc Ser	gca Ala 225	acg Thr	768	
cag Gln	tgg Trp	ctc Leu	agg Arg 230	gcc Ala	aac Asn	ggg Gly	aag Lys	aag Lys 235	ggc Gly	atc Ile	atc Ile	ggc Gly	gag Glu 240	ttt Phe	gcg Ala	 816	
		_		_	_	_		Thr	gcc Ala		-		_	_		864	
tac Tyr	atg Met 260	gcc Ala	cag Gln	aac Asn	aca Thr	gac Asp 265	gtc Val	tgg Trp	act Thr	ggc Gly	gcc Ala 270	atc Ile	tgg Trp	tgg Trp	gcg Ala	912	
gcc Ala 275					p G							r Me					960
ggc Gly					n G						Lei					tga	1008

<210> 14 <211> 335

<212> PRT

<213> Thermoascus aurantiacus

<400> 14

5

Met Lys Leu Gly Ser Leu Val Leu Ala Leu Ser Ala Ala Arg Leu Thr -25 -20 -15-30 Leu Ser Ala Pro Leu Ala Asp Arg Lys Gln Glu Thr Lys Arg Ala Lys -10 -5 Val Phe Gln Trp Phe Gly Ser Asn Glu Ser Gly Ala Glu Phe Gly Ser 10 Gln Asn Leu Pro Gly Val Glu Gly Lys Asp Tyr Ile Trp Pro Asp Pro 25 30 Asn Thr Ile Asp Thr Leu Ile Ser Lys Gly Met Asn Ile Phe Arg Val 50 35 40 45 Pro Phe Met Met Glu Arg Leu Val Pro Asn Ser Met Thr Gly Ser Pro 55 60 Asp Pro Asn Tyr Leu Ala Asp Leu Ile Ala Thr Val Asn Ala Ile Thr 75 70 80 Gln Lys Gly Ala Tyr Ala Val Val Asp Pro His Asn Tyr Gly Arg Tyr 85 90 95 Tyr Asn Ser Ile Ile Ser Ser Pro Ser Asp Phe Gln Thr Phe Trp Lys 100 105 Thr Val Ala Ser Gln Phe Ala Ser Asn Pro Leu Val Ile Phe Asp Thr 115 120 125 Asn Asn Glu Tyr His Asp Met Asp Gln Thr Leu Val Leu Asn Leu Asn 145 135 140

Gln Ala Ala Ile Asp Gly Ile Arg Ser Ala Gly Ala Thr Ser Gln Tyr

			150					155					160		
Ile	Phe	Val 165	Glu	Gly	Asn	Ser	Trp 170	Thr	Gly	Ala	Trp	Thr 175	Trp	Thr	Asn
Val	Asn 180	Asp	Asn	Met	Lys	Ser 185	Leu	Thr	Asp	Pro	Ser 190	Asp	Lys	Ile	Ile
Tyr 195	Glu	Met	His	Gln	Tyr 200	Leu	Asp	Ser	Asp	Gly 205	Ser	Gly	Thr	Ser	Ala 210
Thr	Суз	Val	Ser	Ser 215	Thr	Ile	Gly	Gln	Glu 220	Arg	Ile	Thr	Ser	Ala 225	Thr
Gln	Trp	Leu	Arg 230	Ala	Asn	Gly	Lys	Lys 235	Gly	Ile	Ile	Gly	Glu 240	Phe	Ala
Gly	Gly	Ala 245	Asn	Asp	Val	Cys	Glu 250	Thr	Ala	Ile	Thr	Gly 255	Met	Leu	Asp
Tyr	Met 260	Ala	Gln	Asn	Thr	Asp 265	Val	Trp	Thr	Gly	Ala 270	Ile	Trp	Trp	Ala
Ala 275	Gly	Pro	Trp	Trp	Gly 280	Asp	Tyr	Ile	Phe	Ser 285	Met	Glu	Pro	Asp	Asn 290
Gly	Ile	Ala	Tyr	Gln 295	Gln	Ile	Leu	Pro	Ile 300	Leu	Thr	Pro	Tyr	Leu 305	

REIVINDICACIONES

- 1. Proceso para producir un mosto de cerveza que comprende la formación de un macerado a partir de una molienda, y la puesta en contacto de dicho macerado con una pululanasa, donde dicha pululanasa tiene una secuencia de aminoácidos que es al menos un 98 % idéntica a la secuencia de aminoácidos mostrada en la SEC ID nº 4
 - 2. Proceso según la reivindicación 1, donde la pululanasa es derivada de Bacillus acidopullulyticus.

5

- 3. Proceso según la reivindicación 1 o 2, que comprende además la puesta en contacto de dicho macerado con una glucoamilas a y/o alfa-amilasa.
 - 4. Proceso según cualquiera de las reivindicaciones anteriores, donde la glucoamilasa y/o alfa-amilasa es derivada de Aspergillus niger o Talaromyces emersonii.
 - 5. Proceso según cualquiera de las reivindicaciones anteriores, que comprende además la puesta en contacto del macerado con una enzima seleccionada del grupo consistente en celulasa, isoamilasa, xilanasa y proteasa.
- 6. Proceso según cualquiera de las reivindicaciones anteriores, donde la molienda comprende grano malteado y/o no malteado.
 - 7. Proceso según cualquiera de las reivindicaciones anteriores, donde el grano no malteado y/o el grano malteado es seleccionado a partir de la lista consistente en cebada, trigo, centeno, sorgo, milla, maíz y arroz.
- 8. Proceso según cualquiera de las reivindicaciones anteriores, donde el grano malteado comprende grano malteado seleccionado a partir de cebada, trigo, centeno, sorgo, milla, maíz, y arroz malteados.
 - 9. Proceso según cualquiera de las reivindicaciones anteriores, donde el mosto es concentrado y/o seco.
- 30 10. Proceso según cualquiera de las reivindicaciones anteriores, que comprende además la fermentación del mosto para obtener una bebida alcohólica.
 - 11. Proceso según la reivindicación 10, donde la bebida alcohólica es una cerveza.
- 12. Proceso según la reivindicación 11, donde la cerveza es ale, strong ale, amarga, stout, porter, lager, cerveza de exportación, licor de malta, vino de cebada, cerveza happoushu, cerveza de alta graduación alcohólica, cerveza de baja graduación alcohólica, cerveza baja en calorías o cerveza light.
- 13. Composición adecuada para su uso en el método según cualquiera de las reivindicaciones anteriores, dicha composición comprende una pululanasa, una glucoamilasa y opcionalmente una alfa-amilasa, donde dicha pululanasa tiene una secuencia de aminoácidos que es al menos un 98% idéntica a la secuencia de aminoácidos mostrada en la SEC ID nº 4.
- 14. Composición según la reivindicación 13, donde la glucoamilasa y/o la alfa-amilasa es derivada de *Aspergillus* niger o *Talaromyces emersonii*.