

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 552 041

51 Int. Cl.:

F02M 21/02 (2006.01) F02B 43/00 (2006.01) F02D 41/00 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 29.03.2012 E 12161950 (6)
- (97) Fecha y número de publicación de la concesión europea: 05.08.2015 EP 2508741
- (54) Título: Procedimiento y dispositivo para el diagnóstico de fugas de fluido gaseoso en un circuito de alimentación de combustible de un vehículo accionado a motor
- (30) Prioridad:

04.04.2011 IT MI20110547

Fecha de publicación y mención en BOPI de la traducción de la patente: **25.11.2015**

(73) Titular/es:

LANDI RENZO S.P.A. (100.0%) Via Nobel 2 Zona Industriale Corte Tegge 42025 Cavriago (RE), IT

(72) Inventor/es:

CECCARINI, DANIELE

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Procedimiento y dispositivo para el diagnóstico de fugas de fluido gaseoso en un circuito de alimentación de combustible de un vehículo accionado a motor

5

La presente invención se refiere a un procedimiento y dispositivo para el diagnóstico de fugas de fluido gaseoso en un circuito de alimentación de combustible de un motor de combustión interna de un vehículo del tipo de funcionamiento tanto en combustible líquido como gaseoso, de acuerdo con las reivindicaciones independientes correspondientes.

10

En particular, en los últimos años, el uso por los fabricantes de vehículos accionados a motor de sistemas de alimentación de motor usando combustible gaseoso se ha extendido, tanto si consiste en GLP, GNC (metano), H2 (hidrógeno) o mezclas de estos gases. Esto se debe principalmente a las ventajas económicas para el usuario relacionadas con el uso de dichos combustibles, y a las menores emisiones contaminantes de los motores que funcionan con dichos combustibles.

15

20

25

30

Por este motivo, numerosos fabricantes de vehículos de motor, ya sean automóviles, vehículos comerciales u otros tipos de vehículo, ofrecer una gama de los denominados vehículos bicombustibles, que permiten que el motor se alimente con combustible líquido tradicional (gasolina, etanol, mezclas de gasolina-etanol, etc.) o bien con combustible gaseoso (GLP, metano). También se sabe que la industria del automóvil gasta una energía considerable en el desarrollo de vehículos alimentados con hidrógeno o mezclas de hidrógeno-metano (Hythane). La característica común de algunos de estos combustibles (usados en forma gaseosa) es que se almacenan en el vehículo en forma líquida bajo alta presión, dentro de depósitos adecuados Este es el caso de GLP, del que su presión en el depósito puede ser de varios bares. Además, al contrario que con combustibles líquidos que se almacenan en depósitos no bajo presión y, por tanto, que tienen que inyectarse en la cámara de explosión de un cilindro del motor en forma líquida atomizada, los combustibles gaseosos almacenados en fase líquida, en general, se gasifican antes de inyectarse. Esta gasificación, en general, tiene lugar dentro de miembros reductores de presión que pueden ser de una única fase o de dos fases y que están dispuestos entre el depósito y los invectores del combustible fluido (gas) del motor. Estos componentes forman parte del circuito para alimentar dicho fluido al motor. En particular, la línea de conexión entre el depósito y los inyectores (conectados habitualmente a un conducto común) y a través de la que se alimenta el combustible a estos últimos está dividida en dos ramificaciones por el miembro reductor (o simplemente reductor): una primera ramificación o ramificación de alta presión presente entre el depósito y el reductor, y una segunda ramificación o ramificación de baja presión entre este último y los inyectores (o más bien el conducto común al que están conectados estos). La ramificación de alta presión comprende al menos un miembro de válvula fabricado para interrumpir el alimento cuando se requiere que el motor funcione con el otro combustible, tal como gasolina o similares, o cuando el motor está en reposo.

35

Finalmente, la ramificación de baja presión comprende un dispositivo de medida de la presión. Este último, junto con el miembro de válvula controlada (por ejemplo, una válvula de solenoide) y cada inyector, está conectado a una unidad de orden y control que supervisa el funcionamiento del sistema de alimentación de motor.

40

45

Se conocen métodos y procedimientos de diagnóstico que pueden detectar posibles fugas de fluido gaseoso dentro de un circuito de alimentación de combustible para vehículos del tipo indicado anteriormente, implementándose normalmente dichos procedimientos en un circuito de alimentación en el que el reductor es del tipo de fase única. Un ejemplo de este procedimiento se describe en el documento FR2840025 (sobre el que se basan los preámbulos de las reivindicaciones independientes) que describe un circuito de alimentación de combustible de acuerdo con la introducción de la reivindicación principal. En este circuito y de acuerdo con la invención de los autores, la implementación del procedimiento comprende detectar la presión en la ramificación de alta presión, es decir, sólo en la entrada del motor. De acuerdo con el procedimiento conocido, el diagnóstico de fuga se lleva a cabo en el circuito de alimentación dentro de un periodo en el que los inyectores están cerrados, como en el caso de un periodo después de una parada en el funcionamiento del motor con combustible gaseoso, o un periodo de deceleración o frenado durante el que se ajusta de nuevo el motor para la alimentación de combustible gaseoso, pero con el funcionamiento del inyector y, por tanto, con el combustible gaseoso alimentado al motor, temporalmente reducido.

50

55

En el periodo de prueba o diagnóstico, los inyectores del circuito mencionado anteriormente están cerrados y el motor funciona con el otro combustible. A continuación, se cierra la válvula controlada y se mide la presión en la ramificación de baja presión.

60

Una solución de este tipo no permite que la variación de presión en el circuito se mida rápidamente dentro de un periodo de tiempo corto y de forma correcta, debido a que la diferencia entre la presión en la ramificación de baja presión del mismo y la presión atmosférica puede ser demasiado baja para permitir que se detecte la fuga con certeza. De hecho, esta es la situación cuando el motor funciona bajo condiciones de ralentí o condiciones en las que se implementa el procedimiento de la patente anterior, siendo en dichas situaciones la presión en la ramificación de baja presión un poco mayor que la presión atmosférica. Además, con el procedimiento descrito en la patente francesa

anterior, ninguna fuga en la ramificación de alta presión se puede evaluar directamente, sino sólo indirectamente con obvias posibilidades de error.

El documento JP 2000 346292 se refiere a un vaporizador para gas licuado, un procedimiento de vaporización para gas licuado y depósito de almacenamiento a granel de GLP. De acuerdo con este documento, una atmósfera gaseosa sobre la superficie líquida del gas licuado tal como GLP en un depósito de almacenamiento a granel se extrae por una tubería, su presión se reduce por un medio de vaporización natural, regulador primario de dos fases, y la presión se regula finalmente por un regulador secundario de dos fases para alimentarse en un lado del consumidor. A continuación, el caudal máximo se regula hasta una cantidad de vaporización prescrita preestablecida por una válvula de flujo constante. El gas licuado en el depósito de almacenamiento a granel se introduce en un vaporizador, o a un medio de vaporización forzada directa por una tubería en su estado líquido y se vaporiza calentándose por una fuente de calor de vaporización. La presión finalmente se regula por el regulador secundario de dos fases para la alimentación al lado del consumidor.

Un objetivo de la presente invención es proporcionar un procedimiento y un dispositivo correspondiente que pueda implementar el diagnóstico de fugas de fluido (gaseoso) en un circuito que alimenta combustible a un motor de vehículo que representan mejoras en comparación con procedimientos y dispositivos conocidos.

Un objetivo particular de la invención es proporcionar un procedimiento y dispositivo del tipo mencionado anteriormente que permitan que el diagnóstico de fugas se lleve a cabo en un periodo de tiempo muy corto, mientras que se garantiza una evaluación correcta de cualquiera de dichas fugas.

Otro objetivo de la invención es permitir un diagnóstico que se realice con frecuencia durante el uso del vehículo y, en consecuencia, se implemente tanto si el uso principal del vehículo se caracteriza por recorridos de desplazamientos largos (por ejemplo, desplazamiento en autopista), como si el uso principal del vehículo se caracteriza por recorridos en ciudad cortos o un desplazamiento mixto.

Otro objetivo de la invención es efectuar un diagnóstico que también se pueda integrar con planta o sistemas de alimentación de combustible gaseoso (por ejemplo, GLP) para vehículos accionados a motor que ya están circulando por medio de una actualización de las funciones de diagnóstico de la unidad que controla la inyección de este fluido en el motor. Estos y otros objetivos que serán evidentes para el experto en la técnica se consiguen por un procedimiento y dispositivo de acuerdo con las reivindicaciones adjuntas.

La presente invención se entenderá mejor a partir de los dibujos adjuntos, que se proporcionan a modo de ejemplo no limitante y en los que:

35

40

45

50

55

60

5

10

20

25

30

La figura 1 es un diagrama de bloques de un circuito de alimentación de combustible gaseoso para vehículos accionados a motor que usa un reductor de presión de dos fases;

La figura 2 es una sección a través de un reductor de dos fases usado en el circuito de la figura 1, en un modo de realización particular mostrado a modo de ejemplo no vinculante; el diagrama de la figura 3 muestra esquemáticamente las variaciones de presión dentro de las diversas secciones de circuito;

La figura 4 es un diagrama de bloques ejemplificado de una aplicación ventajosa de un procedimiento de diagnóstico de acuerdo con la invención;

Las figuras 5a y 5b representan la variación simplificada de las presiones medidas o procesadas en el circuito de la figura 2, bajo condiciones normales sin ninguna fuga de combustible en el circuito, donde la figura 5a también muestra los tiempos además de la variación de presión simplificada, mientras que la figura 5b representa el intervalo de variación de presión permitida (ΔP_{rail}) por encima del que se diagnostica una fuga;

Las figuras 6a y 6b representan la variación simplificada de las presiones medidas o procesadas en el circuito de la figura 3, en presencia de condiciones anómalas que provocan fugas de combustible, donde la figura 6a también muestra los tiempos además de la variación de presión simplificada, mientras que la figura 6b representa el intervalo de variación de presión permitida (ΔP_{rail}) por encima del que se diagnostica una fuga.

Con referencia particular a la figura 1, un circuito para alimentar combustible gaseoso a un motor de vehículo M comprende un reductor de presión de dos fases 1 conocido, un depósito 2 para combustible gaseoso contenido posiblemente en forma líquida, una primera ramificación de alta presión 3 (definida por un complejo de tuberías) que transfiere el combustible desde el depósito 2 al reductor de presión de dos fases 1; la ramificación 3 comprende una válvula de solenoide 4 para interrumpir el combustible situado corriente abajo del reductor de presión de dos fases. Un complejo de inyectores de combustible 5 integrados en un conducto común 16, alimenta el combustible gaseoso en el motor; este complejo está asociado con un dispositivo de medida de presión 6 situado en una ramificación de baja presión 7 del circuito de alimentación que transfiere el combustible que sale del reductor de dos fases 1 a los inyectores de combustible 5. Esta ramificación 7 y el conducto que define representan un conducto común para los inyectores.

Todos estos componentes se controlan y ordenan por una unidad de control electrónico 8 conectada a los mismos por cables de interconexión relativa 10; esta unidad de control 8 ejecuta el procedimiento de diagnóstico de acuerdo con la invención.

- 5 Finalmente, un sensor de temperatura 14 se monta en la base B del motor M, estando conectado además dicho sensor 14 a la unidad de control 8. El interior del reductor de dos fases 1 se puede ver esquemáticamente en la figura 2 en la que se pueden identificar dos fases de regulación, indicadas respectivamente por 9 para la fase de alta presión y 15 para la fase de baja presión. Cada fase basa su funcionamiento en una membrana reguladora (indicada por 11 y 12 y que define respectivamente la membrana de la primera fase de alta presión 9 y la segunda fase de baja presión 15); las 10 fases 9 y 15 están conectadas por una válvula de interconexión 13 de tipo conocido. Como se puede observar de la figura 2, de manera conocida se hace funcionar la válvula de interconexión 13 entre las dos fases por la segunda membrana de fase 12. Cuando el diferencial de presión que actúa sobre la segunda membrana de fase 12 es menor que una presión definida en la fase de diseño, la válvula de interconexión 13 entre las dos fases se abre y las dos fases se conectan hidráulicamente. Esta situación se produce cuando el motor funciona a cargas altas (tal como durante la 15 aceleración) y requiere una alimentación de combustible gaseoso constante. El reductor 1 comprende otros componentes conocidos, mostrados en la figura 2, que, sin embargo, no se describen ya que esto no es necesario para la comprensión de la invención.
- Con referencia a la figura 3, P_{depósito} representa la presión del combustible en el depósito que está en estado gaseoso en el caso de funcionamiento con metano o líquido de dos fases y gas en el caso de alimentación con GLP. La presión en el depósito de presión es del orden de varios bares si el combustible es GLP o de varias decenas de bares si el combustible es metano. Esta presión también está presente en la ramificación de alta presión 3 y en la entrada de la válvula de interrupción de solenoide 4. La presión de depósito P_{depósito} es sustancialmente constante durante las variaciones transitorias de la carga de motor.
 - Cuando el motor se alimenta con combustible gaseoso, la válvula de solenoide 4 se abre, lo que permite que el combustible entre en la primera fase 9 del reductor 1 y se expanda y se gasifique en el mismo. La primera fase de alta presión 9 del reductor está diseñada para reducir la presión de combustible de la del depósito a una presión inferior P_{ist}. Como ejemplo no limitante, esta presión puede ser de aproximadamente 2,6 bares absolutos y puede ser virtualmente constante a medida que varía la carga de motor.
 - Por medio de la segunda fase de baja presión 15, la presión se reduce adicionalmente y se regula a una presión a la que el valor P_{rail} es variable de acuerdo con las condiciones de carga del motor y, por tanto, a la presión P_{MAP} presente en el colector de admisión. Como ejemplo no limitante, esta presión puede ser de aproximadamente 2 bares absolutos cuando el motor funciona a cargas altas, y justo por encima de 1 bar absoluto cuando el motor está en ralentí. El procedimiento de diagnóstico de acuerdo con la invención se muestra en el diagrama de flujo de la figura 4. Habiendo verificado la presencia de condiciones precisas para iniciar la fase de verificación (bloque 41), la unidad de orden y control 8 cambia el funcionamiento del vehículo de combustible gaseoso a combustible líquido, y cierra la válvula de solenoide 4 para interrumpir el combustible gaseoso (bloque 42). También se asumirá que el vehículo está acelerando.
 - Bajo estas condiciones y con referencia a la figura 5a, se pueden determinar las diferentes variaciones de presión dentro de las ramificaciones 3 y 7 y en el colector de admisión habitual del motor M, verificándose este último valor por un sensor conocido presente en el mismo (no mostrado) y conectado a la unidad de orden y control 8. Esta figura muestra las variaciones de la:
 - presión en la primera fase 9 (P₁^a)

25

30

35

40

45

50

55

60

- presión en la ramificación 7, correspondiente a la presión en la salida de la segunda fase 15 (Prail)
- presión en el colector de admisión (P_{MAP})
- diferencial de presión estimada $P_{dif} = (P_{rail} P_{MAP})$.

Durante la aceleración, la presión de colector se incrementa, como lo hace la presión del combustible gaseoso a la segunda fase 15 (P_{rail}).

- En el tiempo t1 cuando la presión de colector (P_{MAP}) excede de una presión predeterminada y la válvula de interrupción de solenoide se cierra (bloque 42) ya no se produce más flujo de salida de combustible en estado líquido desde el depósito. En esta situación, la unidad de orden y control 8 mide y memoriza la presión P_{rail}.
- Aunque la válvula de interrupción de solenoide esté cerrada, los inyectores de combustible gaseoso 5 continúan inyectando gas en los cilindros del motor M y la presión en la primera fase 9 comienza a disminuir a medida que se abre la válvula de interconexión entre las dos fases 13, como ya se ha descrito (bloque 43 de la figura 4).

Esto da como resultado el equilibrio entre la fase de alta presión 9 y la fase de baja presión 15, que tienden a alcanzar una presión intermedia (medida por 6) entre la presión de la primera fase inicial (P_{1a}) y la presión de la segunda fase (P_{rail}) . Después de un tiempo del orden de algunos milisegundos, los inyectores de gas se cierran (tiempo t_{iny} , bloque

44 de la figura 4) y el motor se alimenta con combustible líquido. En este estado de equilibrio con el circuito aislado, el algoritmo para medir la fuga de combustible identificada en ese instante por el tiempo t_{prueba0} se puede iniciar (bloque 45 de la figura 4), con la condición de que se verifiquen las siguientes condiciones resumidas:

- valor de presión en el intervalo entre dos valores finales (P_{rail-Max} y P_{rail-min}), para garantizar la ausencia de posibles oscilaciones;
- valor de presión a una presión suficientemente mayor que la del entorno exterior tal como para tener las condiciones para medir una fuga de combustible forma exacta y rápida.
- Además para garantizar que la válvula de interconexión entre las dos fases del reductor de dos fases se abra definitivamente, el diferencial de presión evaluado por la unidad de orden y control 8 (P_{dif}) debe ser menor que la de una válvula predefinida correspondiente a la válvula abierta.

5

20

25

30

35

50

- A estas condiciones, sin embargo, se debe añadir preliminarmente al menos una de las siguientes (que se anticipa a las indicadas anteriormente):
 - que el vehículo esté funcionando con alimentación de combustible gaseoso durante un tiempo determinado (típicamente de 2-8 segundos, preferentemente de 5 segundos) tal como para garantizar la ausencia de oscilaciones debidas a un cambio reciente entre el funcionamiento con combustible líquido y el funcionamiento con combustible gaseoso;
 - que la temperatura del reductor 1, medida indirectamente por el sensor de temperatura de agua del motor 14, sea suficientemente alta; esto se logra, por ejemplo, midiendo la temperatura de agua de refrigeración de motor y verificando que esta es mayor que un valor umbral predefinido (típicamente en el intervalo de 80-90 °C);
 - que, si la temperatura de agua de refrigeración en el momento de poner el marcha el motor se encuentra entre dos valores umbrales limitantes (típicamente de 15 °C-40 °C), haya pasado preferentemente un tiempo (por ejemplo, para el mercado europeo de aproximadamente 20 minutos) durante el que se miden convencionalmente las emisiones del motor;
 - que las r.p.m. del motor sean preferentemente menores que un límite (típicamente al menos de 3500 r.p.m.)
 tal como para garantizar que el motor no esté funcionando r.p.m. muy altas.

El diagnóstico se puede llevar a cabo sólo si se verifican las condiciones establecidas anteriormente. Estas condiciones se verifican en el bloque 45 y bloque 46 (con respecto a los tiempos mencionados anteriormente) de la figura 4.

- En una implementación modificada del procedimiento de diagnóstico de acuerdo con la invención, la presión del circuito a baja presión (P_{rail}) en el momento de iniciar el algoritmo de medida de fuga de combustible puede ser meramente mayor que un mínimo predefinido (P_{rail min}), sin restricciones de presión máxima.
- Con estas condiciones, la unidad de orden y control 8 mide la fuga de combustible (bloque 47) y verifica cualquier reducción de presión (P_{rail}) dentro de un tiempo predeterminado (t_{prueba}) del orden de unos pocos segundos (por ejemplo, de entre 5 y 10). Si, como se muestra en la figura 5b, la reducción de presión en relación con el valor medido en el momento t_{prueba_0} no es menor que un valor umbral predefinido ΔP_{rail}), no se determina una fuga (es decir, el diagnóstico ha dado un resultado positivo, bloque 48 de la figura 4) y el procedimiento se detiene, restableciéndose entonces el funcionamiento del motor con alimentación de combustible gaseoso (bloque 49).
 - La figura 6a muestra las variaciones de las diversas presiones si el circuito se ha dañado y, por lo tanto, existe una fuga de combustible gaseoso (por ejemplo, en la ramificación 7). En este caso, la presión de circuito no se estabiliza en torno a un valor sustancialmente constante como en el caso descrito en las figuras 5a y 5b sino que, debido a las fugas, disminuye progresivamente. Bajo estas condiciones, como se describe en la figura 6b, la unidad de orden y control 8 que mide la fuga de combustible verifica la disminución de presión(ΔP_{raii}) dentro del tiempo predeterminado (t_{prueba}) del orden de algunos segundos; si esta disminución excede el valor umbral predefinido, la fuga se indica y el procedimiento se detiene.
- De esta manera, el procedimiento de diagnóstico de acuerdo con la invención se inicia cuando es seguro que las dos fases del reductor de dos fases están conectadas hidráulicamente de forma conjunta y por tanto, si cualquier reducción de presión (ΔP_{rail}) excede un valor umbral predeterminado, una fuga de gas en la primera fase y en la segunda fase del reductor se diagnostica correctamente.
- Para reducir el consumo de combustible líquido (gasolina, etanol, mezcla de gasolina-etanol, etc.) hasta un mínimo durante la prueba, un procedimiento preferente de implementación del procedimiento de la invención efectúa el diagnóstico una sola vez para cada viaje del vehículo, donde "viaje" quiere decir el periodo entre un inicio del motor y la siguiente interrupción del motor. Una manera alternativa de implementar el procedimiento de la invención es efectuar el diagnóstico repitiéndolo varias veces en el mismo viaje; para reducir el consumo de combustible líquido hasta un

mínimo, la repetición se puede efectuar sólo después de un tiempo suficientemente prolongado, del orden de varias decenas de minutos o de varias horas.

Esta configuración del procedimiento de diagnóstico permite que se tomen medidas de fugas de presión incluso cuando el tiempo predeterminado (t_{prueba}) dentro del que tiene lugar la medida no es consecutivo pero se puede obtener como una suma de fracciones de tiempo en las que P_{dif} excede el valor umbral tal como para garantizar que la válvula de interconexión entre las dos fases del reductor de dos fases esté abierta de forma definitiva; estas fracciones de tiempo se caracterizan por tener una duración individual menor que el tiempo predeterminado t_{prueba}. De esta manera, el procedimiento de diagnóstico se puede concluir incluso en situaciones en las que la aceleración del motor se interrumpe brevemente durante unos pocos segundos para cada cambio de engranajes.

5

10

15

Con este procedimiento de implementación, se pueden garantizar condiciones de accionamiento extremadamente flexibles apropiadas para llevar a cabo el procedimiento de diagnóstico, de modo que el procedimiento de diagnóstico se pueda implementar no sólo cuando el vehículo discurre en recorridos con cargas de motor altas durante tiempos bastante prolongados, sino también bajo condiciones de accionamiento en ciudad caracterizadas por la presencia de aceleraciones cortas, cambios de engranaje y paradas en ralentí frecuentes, por ejemplo, en la proximidad de semáforos.

- Sin embargo, en ambos casos se lleva a cabo la prueba mientras se mantiene una alta presión en el circuito en evaluación; por este motivo, y para limitar los tiempos de prueba, el motor debe estar suministrando energía, es decir, debe estar acelerando. A este respecto, si el motor está bajo condiciones de funcionamiento de ralentí, la presión en el conducto sólo es ligeramente superior a la presión atmosférica, por tanto, se puede diagnosticar cualquier fuga de gas sólo si la fuga es significativamente grande.
- La información de diagnóstico obtenida se puede usar tanto para indicar al conductor una irregularidad que provoca una fuga de combustible gaseoso desde la primera fase del reductor como para forzar que la unidad de control electrónico 8 cambie el funcionamiento del motor exclusivamente a combustible líquido.
- Las características y ventajas de la invención son evidentes de la descripción, estando representadas principalmente por simplicidad y economía de construcción sin requerir componentes adicionales en el circuito para alimentar combustible gaseoso fluido a un motor. Además, al llevar a cabo el diagnóstico durante una aceleración, los tiempos para su aplicación son muy cortos, aun cuando se permite una evaluación fiable de cualquier fuga de gas tanto en la ramificación de alta presión 3 como en la ramificación de baia presión 7.
- Otros modos de realización de la invención son posibles mientras se mantengan dentro del alcance de la invención como se define en las siguientes reivindicaciones.

REIVINDICACIONES

- 1. Un procedimiento para el diagnóstico de fugas de fluido gaseoso en un circuito que alimenta combustible gaseoso, ya sea que consiste en GLP, GNC (metano), H2 (hidrógeno) o mezclas de estos gases, en un motor de combustión interna (M) a través de al menos un inyector (5) correspondiente, comprendiendo dicho circuito además de dicho inyector (5) un depósito (2) para dicho fluido en el que está contenido a alta presión, un miembro reductor (1) para dicha presión que está dispuesto en una línea de conexión entre dicho depósito y dicho inyector y que lo divide en una ramificación de alta presión (3) y una ramificación de baja presión (7), estando dispuesto en dicha línea corriente arriba del miembro reductor un miembro de válvula controlada (4) para interrumpir el flujo de fluido al inyector (5) y un dispositivo de medida de presión (6) situado en la ramificación de baja presión (7), estando conectados dicho dispositivo de medida (6), cada inyector (5) y dicho miembro de válvula (4) a una unidad de orden y control (8), comprendiendo dicho procedimiento cerrar el miembro de válvula (4), cerrar cada inyector (5) y evaluar la variación de la presión de fluido en la línea con el tiempo por medio de dicho dispositivo de medida (6) para determinar cualquier fuga de dicho circuito corriente abajo del miembro de válvula, caracterizado por que dicha evaluación se lleva a cabo durante una fase en la que el motor (M) está bajo aceleración, siendo el miembro reductor un reductor de dos fases.
- 2. Un procedimiento como se reivindica en la reivindicación 1, caracterizado por que el cierre de cada inyector tiene lugar después de un tiempo del orden de algunos milisegundos después del cierre del miembro de válvula (4).
- 3. Un procedimiento como se reivindica en la reivindicación 1, caracterizado porque antes de activar el diagnóstico de fuga de combustible gaseoso, se verifica que exista al menos una de las siguientes características preliminares:
 - a. que el vehículo esté funcionando con alimentación de combustible gaseoso durante un tiempo determinado tal como para garantizar la ausencia de oscilaciones debidas a un cambio reciente entre el funcionamiento con combustible líquido y el funcionamiento con combustible gaseoso;
 - b. que la temperatura del miembro reductor (1) sea suficientemente alta, midiendo la temperatura de agua de refrigeración de motor y verificando que esta es mayor que un valor umbral predefinido;
 - c. que, si la temperatura de agua de refrigeración en el momento de poner el marcha el motor se encuentra entre dos valores umbrales limitantes haya pasado preferentemente un tiempo durante el que se miden convencionalmente las emisiones del motor;
 - d. que las r.p.m. del motor sean preferentemente menores que un valor limitante tal como para garantizar que el motor no esté funcionando r.p.m. muy altas.
- 4. Un procedimiento como se reivindica en la reivindicación 3, caracterizado por que:

5

10

15

20

25

30

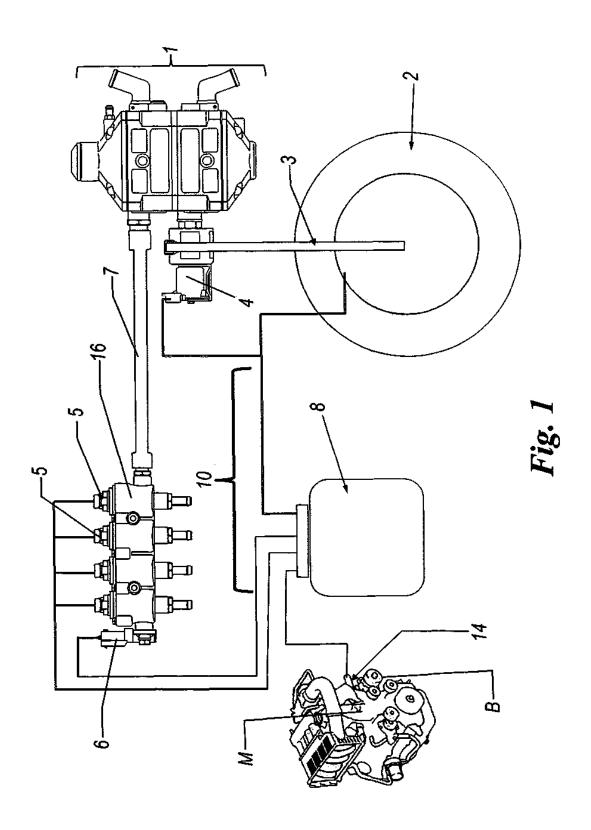
35

40

50

55

60

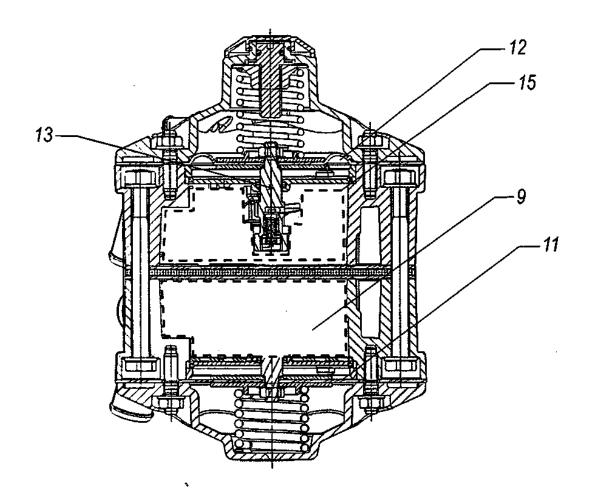
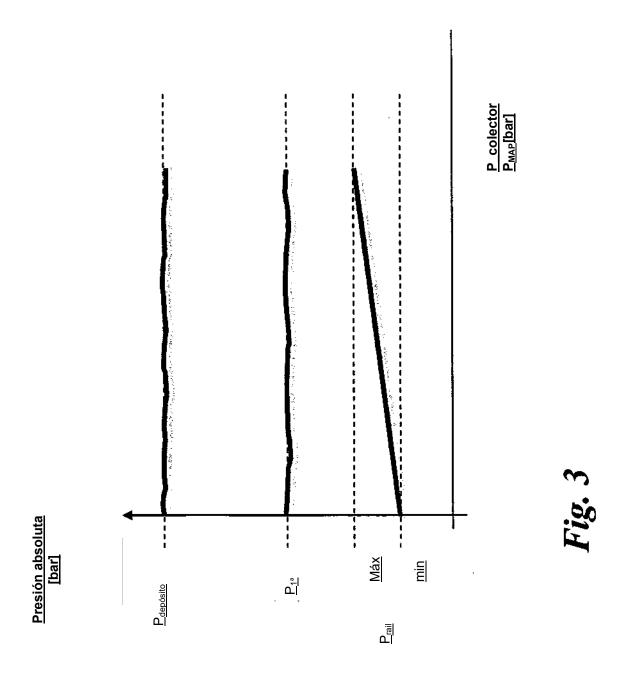
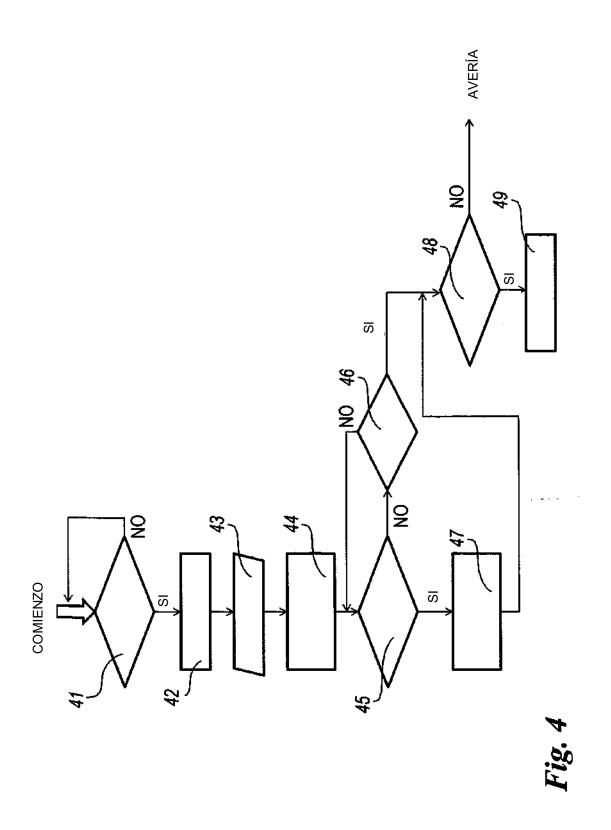
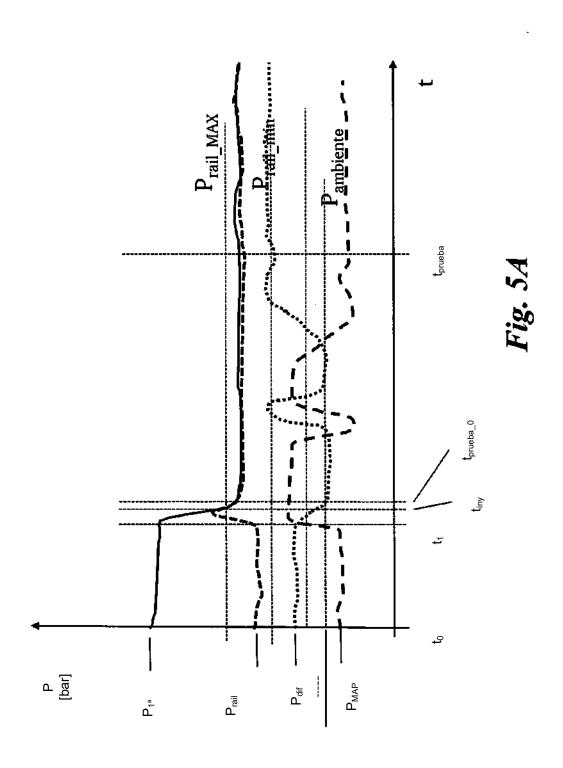
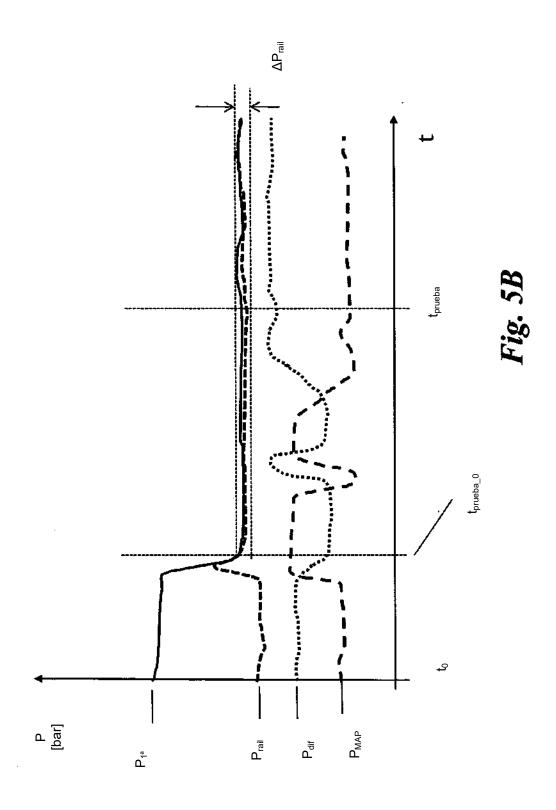

- el periodo de tiempo del punto a) es típicamente de 2-8 segundos, preferentemente de 5 segundos;
- el valor umbral de temperatura de agua del punto b) es de 80-90 °C;
- los dos valores umbrales limitantes del punto c) son respectivamente 15 °C y 40 °C, siendo el tiempo de medida de emisión al menos de 15-18 minutos;
- el valor de r.p.m. del punto d) es al menos igual a 3500 r.p.m.
- 5. Un procedimiento como se reivindica en las reivindicaciones 1 y 3, caracterizado por que el diagnóstico de fuga comprende las siguientes etapas preliminares:
 - i) verificar la existencia de al menos una de las características preliminares;
 - ii) cerrar el miembro de válvula (4) y cambiar simultáneamente el funcionamiento del motor (M) a combustible líquido, tal como gasolina, mezcla de gasolina/etanol o etanol;
 - iii) verificar que las dos fases habituales (9, 10) del miembro reductor (1) están en comunicación.
 - 6. Un procedimiento como se reivindica en la reivindicación 5, caracterizado por que también comprende las siguientes etapas:
 - A) medir la presión (P_{rail}) en la ramificación de baja presión (7) después de cerrar el miembro de válvula (4) y
 B) memorizar dicha medida y continuar verificando la variación en su valor durante un tiempo
 - predeterminado, siendo este último del orden de unos pocos segundos, tal como de 5-10 segundos; C) si la variación en dicha presión (P_{rail}) excede un valor umbral predefinido, se diagnostica una fuga de presión en el circuito de alimentación.
 - 7. Un dispositivo para implementar el procedimiento reivindicado en la reivindicación 1, para el diagnóstico de fugas de fluido gaseoso en un circuito de alimentación de combustible de un motor de combustión interna de vehículo (M) a través de al menos un inyector (5) correspondiente, comprendiendo dicho circuito además de dicho inyector (5) un depósito (2) para dicho fluido en el que está contenido a alta presión, un miembro reductor (1) para dicha

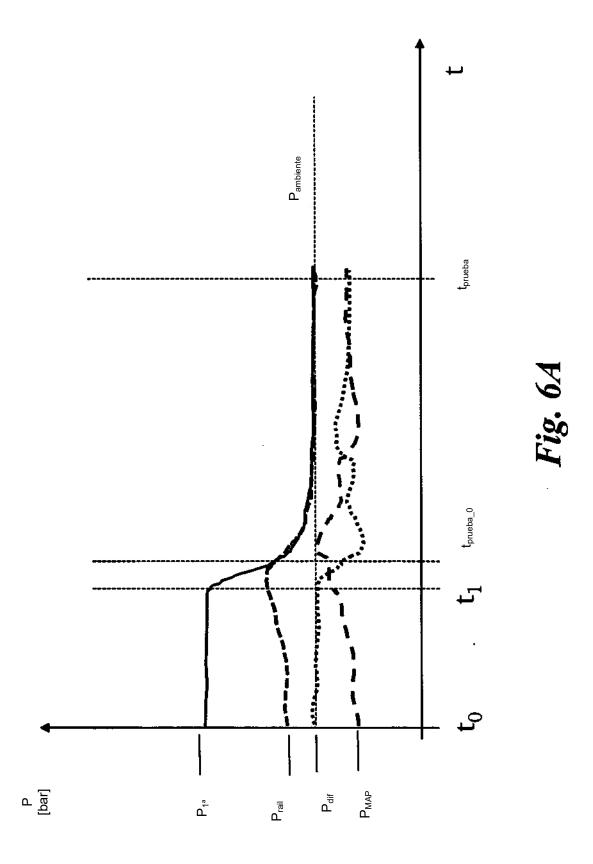
presión que está dispuesto en una línea de conexión entre dicho depósito y dicho inyector y que lo divide en una ramificación de alta presión (3) y una ramificación de baja presión (7), estando dispuesto en dicha línea corriente arriba del miembro reductor un miembro de válvula controlada (4) para interrumpir el flujo de fluido al inyector (5) y un dispositivo de medida de presión (6) situado en la ramificación de baja presión (7), estando conectados dicho dispositivo de medida (6), cada inyector (5) y dicho miembro de válvula (4) a una unidad de orden y control (8) adaptada para evaluar la variación de la presión de fluido en la línea con el tiempo por medio de dicho dispositivo de medida (6) para determinar posibles fugas en dicho circuito, caracterizado por que comprende, para detectar la presión de la alimentación de fluido gaseoso al motor, medios conectados a la unidad de orden y control (8) y dispuestos para permitir a este último detectar una fase de aceleración del motor (M) implementando dicha unidad dicho diagnóstico de fuga en esta fase, siendo dicho miembro reductor (1) del tipo de dos fases.

5

10

8


Fig. 2

