

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 554 752

51 Int. Cl.:

C12N 15/86 (2006.01) C12N 7/00 (2006.01) A01K 67/033 (2006.01) C12N 15/85 (2006.01) C07K 14/005 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 06.12.2013 PCT/EP2013/075812

(87) Fecha y número de publicación internacional: 12.06.2014 WO14086981

(96) Fecha de presentación y número de la solicitud europea: 06.12.2013 E 13811407 (9)

(97) Fecha y número de publicación de la concesión europea: 31.05.2017 EP 2928290

(54) Título: Sistema de baculovirus para expresar proteínas que forman partículas de tipo virus

(30) Prioridad:

07.12.2012 EP 12196120

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 09.10.2017 (73) Titular/es:

ALTERNATIVE GENE EXPRESSION, S.L. (100.0%) Campus de Montegancedo 28223 Pozuelo de Alarcón, Madrid, ES

(72) Inventor/es:

GOMEZ SEBASTIAN, SILVIA; LOPEZ VIDAL, JAVIER y MARTINEZ ESCRIBANO, JOSÉ ANGEL

(74) Agente/Representante:

FÚSTER OLAGUIBEL, Gustavo Nicolás

DESCRIPCIÓN

Sistema de baculovirus para expresar proteínas que forman partículas de tipo virus

5 Campo de la invención

10

15

20

25

30

35

40

45

50

La presente invención puede incluirse en el campo de la biotecnología y cubre la producción mejorada de proteínas recombinantes en células de insectos o larvas de insectos como biofactorías mediante un casete de expresión novedoso. Este casete de expresión comprende secuencias de ácido nucleico tales como promotores, regiones homólogas (*hr*) como potenciadoras, y secuencias que codifican para reguladores transcripcionales, por ejemplo, el ADN de Ac-ie-01 de baculovirus, o cualquier combinación de los mismos, que sean capaces de aumentar la calidad y eficacia de producción de las proteínas recombinantes, en particular aquellas que forman partículas de tipo virus. Además, la presente invención también se refiere a los vectores, células o insectos que comprenden el casete de expresión mencionado anteriormente de la invención, y los métodos para producir las proteínas recombinantes usando el casete, vectores, células o insectos mencionados.

Estado de la técnica

El sistema de vector de expresión de baculovirus (BEVS) es un método bien establecido para la producción de proteínas recombinantes que se usan como vacunas, moléculas terapéuticas o reactivos de diagnóstico. Con su potencial para sobreexpresión y velocidad rápida de desarrollo, BEVS es una de de las elecciones más atractivas para producir proteínas recombinantes para cualquier fin. El baculovirus más empleado usado en la industria para la expresión de proteína recombinante se basa en nucleopolihedrovirus múltiple de *Autographa californica* (AcMNPV) con células de insectos de *Spodoptera frugiperda* 9 (Sf9) o 21 (Sf21) como huéspedes de expresión adecuados (1), así como larvas de insectos *Trichoplusia ni* (*T. ni*) como biofactorías vivas (2). Puesto que el BEVS se desarrolló en los años 80 (3), cientos de proteínas recombinantes, que oscilan entre enzimas citosólicas y proteínas unidas a membrana, se han producido satisfactoriamente en células de insectos infectadas con baculovirus.

Se han realizado esfuerzos para aumentar la productividad de BEVS (4). Está disponible una variedad de vectores de transferencia para la construcción de baculovirus recombinantes, que codifican para proteínas de fusión residentes, que se ha notificado que mejoran la expresión de proteínas, incluyendo proteína de unión a maltosa, glutationa S transferasa, señal de retención SUMO y KDEL. Se han investigado otros intentos relacionados con la mejora de la estabilidad de proteínas expresadas que se centran en dos genes en el genoma de baculovirus, que no son esenciales para el crecimiento del virus en cultivo celular, concretamente *chiA* (quitinasa) y *cath* (catepsina). La deleción de *ChiA* parece que mejora la producción de proteínas secretadas mediante la acumulación de la proteína en el retículo endoplasmático y el procesamiento de las proteínas a través de la ruta secretora de las células. Adicionalmente, la prevención de la formación de catepsina proteasa también puede contribuir a estabilidad de producto mejorada de virus ChiA. Líneas celulares de insectos novedosas, tales como líneas celulares High-Cinco™ (Hi-5) o BTI-TnAo38 de*T. ni*, se han desarrollado recientemente para aumentar la productividad de baculovirus con mejoras significativas en la cantidad final de recuperación de proteína heteróloga (5, 6).

La aceleración de expresión de proteína recombinante, de modo que la expresión de proteína tenga lugar antes de que la infección de baculovirus afecte gravemente a la maquinaria de células de insectos, sería una mejora importante de la BEVS. La expresión tardía, impulsada por los promotores de virus fuertes convencionales de genes polihedrin (polh) o p10, tiene serias desventajas en las modificaciones postraduccionales de proteínas foráneas. Senger T et al: Virology, 388(2) 1 de mayo 2009, págs. 344-353, en relación con la producción de proteína recombinante que forma partículas que forman tipo virus en un sistema de insecto de expresión baculoviral, da a conocer la expresión de HPV-L1 que forma VLP impulsada por p10 o bien por un casete solo o bien simultáneamente con un casete que impulsa la expresión de L1 en el promotor polh en Baculovirus a base de Multibac. Se han caracterizado promotores de baculovirus que permiten una expresión más temprana que los promotores polh o p10 usados de manera convencional y se han usado para la producción de proteínas heterólogas, pero mostraron una productividad reducida (7).

Otra posibilidad para mejorar la BEVS sería aumentar la conservación de la integridad celular a tiempos tardíos tras la infección reduciendo la muerte celular inducida por virus. La reducción en la grave afección de la maquinaria celular del insecto a tiempos tardíos tras la infección provocada por BEVS no solo debería aumentar el marco temporal para producir y acumular proteínas recombinantes (secretadas o no), sino también permitir más tiempo para el plegado de proteínas complejas o cualquier modificación postraduccional de las proteínas producidas.

Se ha determinado que algunos elementos de ADN de baculovirus están implicados en la activación de genes de factor de expresión tardía, que son necesarios para la propagación del virus. Uno de ellos es la proteína IE-1 temprana inmediata (ie) y su variante IE-0 de empalme de AcMNPV (8). La traducción de los ARNm de AcMNPV, codificados por el gen Ac-ie-01, da como resultado tanto expresión IE-0 como IE-1 debido al inicio de traducción interno. Se piensa que ambos son mediadores críticos de expresión de gen de baculovirus debido a su potencia como reguladores transcripcionales (9). Sintetizado muy tempranamente durante la infección, AcMNPV IE-1 es una proteína de unión de ADN dimérico de 67-kDa que estimula la transcripción en ensayos de transfección de plásmido

a través de la actividad de su dominio ácido N-terminal (10, 11). IE-1 acumula dentro del núcleo, donde se mantiene a través de tiempos tardíos (12). La transactivación por IE-1 se potencia mediante su unión como un homodímero a las secuencias de región de homólogo de baculovirus (*hr*), que funciona como potenciadores transcripcionales y origina la replicación de ADN viral. AcMNPV IE-0 es una proteína de 636 aminoácidos de 72,6- kDa compuesta por 38 aminoácidos codificados por *orf141* (*exon0*), 16 aminoácidos codificados por el líder no traducido en el sentido de 5' de *ie1*, y la proteína IE-1de 582 aminoácidos completa. El producto final es por tanto idéntico a IE-1 excepto para los 54 aminoácidos adicionales fusionados al N-terminal. Presumiblemente debido a sus secuencias comunes, IE-0 y IE-1 comparten actividades bioquímicas, incluyendo unión potenciadora hr y regulación transcripcional.

10 Sumario de la invención

La presente invención se basa en una amplia gama de propiedades inesperadas del casete de expresión de la invención.

- 15 En particular, se descubre que el casete de expresión de la invención impulsa la expresión de proteínas recombinantes notablemente más altas que la expresión obtenida mediante promotores convencionales, tales como *polh*, y por tanto hasta niveles sin precedentes.
- Además, las células e insectos infectados con un baculovirus recombinante que contiene un casete de expresión que expresa las proteínas IE-1/IE-0 por encima de niveles endógenos tienen una viabilidad aumentada y un aumento en la integridad de la maquinaria celular molecular y morfología celular.
 - Por tanto, la presente invención proporciona productos y métodos para la expresión mejorada de proteínas recombinantes que forman partículas de tipo virus.

Los siguientes puntos son parte de la presente divulgación:

- 1. Un casete de expresión que comprende secuencias de ácido nucleico que permiten la expresión de los reguladores transcripcionales IE-1 e/o IE-0 por encima de los niveles endógenos obtenidos durante la infección de baculovirus y la expresión de una proteína recombinante,
- en el que la expresión de la proteína recombinante es impulsada por un promotor que comprende el promotor p10 baculoviral y en el que la proteína recombinante se selecciona del grupo que consiste en una proteína de partícula de tipo virus, proteína de vacuna, proteína de vacuna de subunidades monoméricas, proteína de vacuna de subunidades multiméricas, proteína terapéutica, anticuerpo, enzima, citocina, factor de coagulación sanguínea, anticoagulante, receptor, hormona y proteína de diagnóstico.
- 2. Un casete de expresión que comprende secuencias de ácido nucleico que permiten la expresión de los reguladores transcripcionales IE-1 e/o IE-0 por encima de los niveles endógenos obtenidos durante la infección de baculovirus y la expresión de una proteína recombinante, en el que la proteína recombinante se selecciona del grupo que consiste en proteína de partícula de tipo virus, proteína de vacuna, proteína de vacuna de subunidades monoméricas, proteína de vacuna de subunidades multiméricas, proteína terapéutica, anticuerpo, enzima, citocina, factor de coagulación sanguínea, anticoagulante, receptor, hormona y proteína de diagnóstico.
- 45 3. El casete de expresión según los puntos 1 ó 2, en el que la proteína recombinante es cualquier proteína de partícula de tipo virus seleccionado del grupo que consiste en:
 - (a) Proteína de cápside de circovirus porcino,
- 50 (b) Proteína VP1, VP3 o VP0 de virus de fiebre aftosa,
 - (c) Proteínas VP1 y VP2 de parvovirus canino,
 - (d) Proteínas VP1 y VP2 de parvovirus porcino,
 - (e) Proteína de cápside de norovirus humano (genogrupo I o II),
 - (f) Proteína de cápside de calcivirus,
- 60 (g) Proteína L1 de virus del papiloma,
 - (h) Proteína E2 de hepatitis E,
 - (i) Proteínas VP1, VP2 y VP3 del virus de bursitis infecciosa,
 - (j) Proteínas codificadas por ORF2 de astrovirus,

3

55

65

25

30

- (k) Proteínas HA, NA y M1 de virus de la gripe,
- (I) Antígenos de superficie y núcleo de hepatitis B,
- (m) Proteínas VP1 y VP2 de parvovirus, y

5

25

45

- (n) Proteína VP60 de calicivirus de conejo.
- 4. El casete de expresión según el punto 3, en el que la proteína de cápside de circovirus porcino es la proteína de cápside del circovirus porcino de tipo 2, la proteína L1 de virus del papiloma humano es la proteína L1 de virus del papiloma humano 16 y la proteína VP60 de calicivirus de conejo es la proteína V60 virus de enfermedad hemorrágica de conejo.
- 15 5. El casete de expresión según los puntos 1 ó 2, en el que la proteína recombinante es cualquier proteína de partícula de tipo virus, proteína de vacuna o proteína de diagnóstico seleccionado del grupo que consiste en:
 - (a) Proteína de cápside de circovirus porcino.
- 20 (b) Proteína VP1, VP3 o VP0 de virus de fiebre aftosa,
 - (c) Proteínas VP1 y VP2 de parvovirus canino,
 - (d) Proteínas VP1 y VP2 de parvovirus porcino,
 - (e) Proteínas VP1 y VP2 de parvovirus humano
 - (f) Proteína de cápside de norovirus humano (genogrupo I o II),
- 30 (g) Proteína de cápside de calcivirus,
 - (h) Proteína L1 de virus del papiloma humano,
 - (i) Proteína E2 de hepatitis E,
- 35 (j) Proteína E2 de peste porcina clásica,
 - (k) Proteína E2 de virus de diarrea viral bovina (BVDV),
- 40 (I) Proteínas HA, NA y M1 Virus de la gripe A,
 - (m) Proteínas VP1, VP2 y VP3 del virus de bursitis infecciosa,
 - (n) Proteínas codificadas por ORF2 de astrovirus,
 - (o) Antígenos de superficie y núcleo de hepatitis B,
 - (p) Proteína E virus del Nilo Occidental,
- 50 (q) Proteínas de tipo p30, p54, p72 y CD2 virus de peste porcina africana,
 - (r) Anticuerpo de dominio único (VHH) de camélidos,
 - (s) Proteínas VP1 y VP2 de parvovirus,
 - (t) Proteína VP60 de calicivirus de conejo, y
 - (u) Anticuerpos de mamífero de longitud completa o fragmentos derivados de los mismos.
- 60 6. El casete de expresión según cualquiera de los puntos 1-5, que comprende una secuencia de ácido nucleico que codifica para las proteínas IE- 1 e/o IE seleccionado del grupo que consiste en:
 - (a) secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 1-5;
- (b) secuencia de ácido nucleico que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido

nucleico indicada en cualquiera de SEQ ID NO: 1-5 y que codifica para una proteína que funciona como un regulador transcripcional en un baculovirus;

- (c) secuencia de ácido nucleico que codifica para una proteína con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9; y
 - (d) secuencia de ácido nucleico que codifica para una proteína que funciona como un regulador transcripcional en un baculovirus y que tiene una similitud de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9.
 - 7. El casete de expresión según cualquiera de los puntos 1-6, en el que el promotor que impulsa la expresión de la proteína recombinante comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en:
- 15 (a) secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 10-16; y

10

20

25

30

35

- (b) secuencia de ácido nucleico que funciona como un promotor en un baculovirus y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 10-16.
- 8. El casete de expresión según el punto 7, en el que el promotor que impulsa la expresión de la proteína recombinante comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en:
- (a) secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 11, 12, 13, 15 y 16; y
- (b) secuencia de ácido nucleico que funciona como un promotor en un baculovirus y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 11, 12, 13, 15 y 16.
 - 9. El casete de expresión según los puntos 7 u 8, en el que el promotor que impulsa la expresión de la proteína recombinante comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en:
 - (a) secuencia de ácido nucleico indicada en SEQ ID NO: 11; y
 - (b) secuencia de ácido nucleico que funciona como un promotor en un baculovirus y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en SEQ ID NO: 11.
- 40 10. El casete de expresión según cualquiera de los puntos 1-9, que comprende al menos el una región homóloga recombinante (*hr*) como región potenciadora, unida operativamente al promotor que impulsa la expresión de la proteína recombinante.
- 11. El casete de expresión según el punto 10, en el que la región homóloga recombinante (*hr*) se selecciona del grupo de secuencias de ácido nucleico que consiste en:
 - (a) secuencia de ácido nucleico indicada en SEQ ID NO: 27; y
- (b) secuencia de ácido nucleico que funciona como una región homóloga potenciadora en un baculovirus y que tiene una identidad de secuencia de al menos 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en SEQ ID NO: 27.
 - 12. El casete de expresión según cualquiera de los puntos 1-11, que comprende una secuencia de ácido nucleico que se une operativamente a la expresión de la proteína recombinante y seleccionado del grupo que consiste en:
 - (a) secuencia de ácido nucleico que contiene la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 17-22, 25 y 26 y
- (b) secuencia de ácido nucleico que conserva sustancialmente la actividad de los elementos funcionales y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 17-22, 25 y 26.
- 13. El casete de expresión según el punto 12, que comprende una secuencia de ácido nucleico que se une operativamente a la expresión de la proteína recombinante y seleccionado del grupo que consiste en:

- (a) secuencia de ácido nucleico que contiene la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 17-19 y 25; y
- (b) secuencia de ácido nucleico que conserva sustancialmente la actividad de los elementos funcionales y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 17-19 y 25.
- 14. El casete de expresión según cualquiera de los puntos 1-11, que comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en:
 - (a) secuencia de ácido nucleico que contiene la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 51-56; γ
- (b) secuencia de ácido nucleico que conserva sustancialmente la actividad de los elementos funcionales y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 51-56.
- 20 15. Un vector de clonación que comprende el casete de expresión de cualquiera de los puntos 1-14.
 - 16. Un vector de transferencia que comprende el casete de expresión de cualquiera de los puntos 1-14 y además una secuencia de ácido nucleico adecuada para integración o transposición en un genoma de baculovirus.
- 25 17. El vector de transferencia según el punto 16, caracterizado porque el vector de transferencia se deriva de cualquiera de los sistemas de expresión de baculovirus "Bac-to-Bac®" (invitrogen™), "BacPAK™" (Clontech™), "FlashBAC™" (Oxford Expression Technologies™), "BacuVance™" (GenScript™), "Bac-N-Blue DNA™" (invitrogen™), "BaculoDirect™" (invitrogen™), "BacVector®" 1000, 2000, 3000 (Novagen®), "DiamondBac™" (Sigma-Aldrich®) o "BaculoGold™" (BD biosciences™).
 - 18. Un bácmido que comprende el casete de expresión de cualquiera de los puntos 1-14.
 - 19. Un baculovirus recombinante que comprende el casete de expresión de cualquiera de los puntos 1-14.
- 35 20. Una célula que comprende el casete de expresión de cualquiera de los puntos 1-14.

30

50

- 21. La célula según el punto 20, infectadas, transfectadas, transducidas o transformadas con el casete de expresión, vector de clonación, vector de transferencia, bácmido o baculovirus recombinante de cualquiera de los puntos 1-19.
- 40 22. La célula según los puntos 20 ó 21, caracterizada porque es de origen de insecto.
 - 23. La célula según cualquiera de los puntos 20-22, caracterizado porque se deriva de un insecto que pertenece a al género Lepidoptera o Diptera.
- 45 24. La célula según cualquiera de los puntos 20-23, caracterizada porque se deriva de *Trichoplusia ni, Spodoptera frugiperda, Ascalapha odorata, Bombyx mori, Drosophila melanogaster, Stigmene acrea* o *Aedes aegypti.*
 - 25. La célula según cualquiera de los puntos 20-24, caracterizada porque es una línea celular seleccionada del grupo que consiste en Hi-5™, *Sf9, Sf*21, BTI-Tn5B-1, Tn368, ExpresSf+®, BTI-TnAo38, ATC-10, Mimic™ Sf9, SfSWT-1, SfSWT-3, SfSWT-5, TriEX™ y línea 2 *Drosophila* Schneider.
 - 26. Un insecto que comprende el casete de expresión de cualquiera de los puntos 1-14.
- 27. El insecto según el punto 26, infectado, transfectado, transducido o transformado con el casete de expresión, vector de clonación, vector de transferencia, bácmido o baculovirus recombinante de cualquiera de los puntos 1-19.
 - 28. El insecto según los puntos 26 ó 27, en el que el insecto se deriva del género Lepidoptera.
- 29. El insecto según cualquiera de los puntos 26-28, en el que el insecto se selecciona del grupo que consiste en 7 Trichoplusia ni, Spodoptera frugiperda, Spodoptera exigua, Ascalapha odorata, Bombyx mori, Rachiplusia ni y 8 Stigmene acrea.
 - 30. El insecto según cualquiera de los puntos 26-29, en el que el casete de expresión se introduce en el insecto mediante un baculovirus recombinante, preferiblemente AcMNPV, SeNPV o *Bm*NPV.
 - 31. Un medio de cultivo que comprende el casete de expresión, vector de clonación, vector de transferencia,

bácmido o baculovirus recombinante de cualquiera de los puntos 1-19.

- 32. Un método para producir una proteína recombinante que comprende el uso del casete de expresión, vector de clonación, vector de transferencia, bácmido, baculovirus recombinante, célula o insecto según cualquiera de los puntos 1-30 y la extracción y purificación de la proteína recombinante mediante medios convencionales.
- 33. Proteína recombinante obtenible mediante el método según el punto 32.
- 34. Proteína recombinante según el punto 33 para su uso en un método de tratamiento, terapia o diagnóstico.
- 35. Método de tratamiento, terapia o diagnóstico usando la proteína recombinante según el punto 33.
- 36.Un uso del casete de expresión según cualquiera de los puntos 1-14 para producir un vector de clonación, vector de transferencia, bácmido, baculovirus recombinante, célula, insecto o medio de cultivo según cualquiera de los puntos 15-31.
- 37.Un uso del vector de clonación según el punto 15 para producir un vector de transferencia, bácmido, baculovirus recombinante, célula, insecto o medio de cultivo según cualquiera de los puntos 16-31.
- 38. Un uso del vector de transferencia según cualquiera de los puntos 16-17 para producir un bácmido, baculovirus recombinante, célula, insecto o medio de cultivo según cualquiera de los puntos 18-31.
 - 39. Un uso del bácmido según el punto 18 para producir un baculovirus recombinante, célula, insecto o medio de cultivo según cualquiera de los puntos 19-31.
 - 40. Un uso del baculovirus recombinante según el punto 19 para producir una célula, insecto o medio de cultivo según cualquiera de los puntos 20-31.

Breve descripción de las figuras

5

10

15

25

30

35

40

45

50

- Figura 1. Se cultivaron células de insectos *Sf*9 en suspensión y se infectaron con un baculovirus que sobreexpresa el ADNc de Ac-ie-01 bajo el control de *polh*. o mediante un baculovirus convencional que expresa la proteína GFP bajo el control de promotor polh para evaluar la densidad celular (A) y viabilidad (B) de estas células. Se infectaron las células de insectos en suspensión a una MOI de 0,1. (A) Se contaron las células a diferentes tiempos tras la infección (0, 24 y 48 horas) para calcular la densidad celular. Un análisis más detallado del momento preciso en el que se produce proliferación celular mediante la sobreexpresión del ADNc de Ac-ie-01 se muestra en el inserto para células infectadas con *polhGFP* o *polhAc-ie-01*. (B) Se evaluó la viabilidad celular mediante tinción de azul de tripano (dilución 1:1 de células suspendidas y colorante a tampón de PBS al 0,4%). Esta tinción permite la diferenciación entre células vivas y muertas. Se calculó la viabilidad celular mediante el porcentaje de células vivas con respecto al número total de células a diferentes tiempos tras la infección (desde 0 hasta 120 horas). Micrografías de monocapas de células de insecto Hi-5™ infectadas a una MOI de 5 con un baculovirus convencional de control que sobreexpresa la proteína GFP indicadora en el promotor polh (C) o con un baculovirus que sobreexpresa el ADNc de Ac-ie-01 bajo el control del promotor polh (D). Se obtuvieron micrografías a las 96 h tras la infección a un aumento de 20X en un microscopio invertido Leica™ DMIL™.
- Figura 2: A) Porcentaje de larvas *T. ni* que sobreviven 96 h tras la infección usando 5 x 10⁴ UFP como dosis infecciosa del baculovirus que sobreexpresa el ADNc de Ac-ie-01 en el promotor polh (*polhAc-ie-01*) o usando un baculovirus convencional que expresa GFP en el promotor polh (*polhGFP*). B) Biomasa de insecto en el tiempo de infección con los mismos baculovirus que en el panel A y la biomasa recubierta a las 96 h tras la infección. La dosis infecciosa fue de 5 x 10⁴ UFP.
- Figura 3: Se analizó el efecto del ADNc de Ac-ie-01 en combinación con promotores diferentes en la expresión de una proteína GFP indicadora. Se infectaron células de insectos Sf21 en monocapa a una MOI de 5 con los respectivos baculovirus recombinantes y se midió posteriormente el aumento o disminución de fluorescencia 96 h tras la infección. La fluorescencia obtenida con un baculovirus convencional que expresa la proteína GFP bajo el control de promotor polh se consideró como el valor del 100%.
- Figura 4: Representación esquemática de elementos de ADN recombinante de proteína de la invención: una secuencia que codifica para reguladores transcripcionales (por ejemplo IE-0 y IE-1, por ejemplo, codificados por el ADNc de Ac-ie-01), cuya expresión es impulsada por un promotor (por ejemplo *polh*); una secuencia de región homóloga potenciadora (*hr*) (por ejemplo *hr*1) hacia el sentido 5' de los promotores (por ejemplo *p6,9p10*) que impulsan la expresión del gen foráneo, que codifica para una proteína de cápsida recombinante de un circovirus porcino de tipo 2 (ORF2 PCV2), o para la proteína de cápside de virus de enfermedad hemorrágica de conejo (VP60 RHDV), o para la proteína de cápside del virus del papiloma humano 16 (L1 HPV16).
 - Figura 5: A) SDS-PAGE y análisis de tinción con azul de Coomassie o análisis de inmunotransferencia de tipo

Western usando un anticuerpo monoclonal frente a la proteína Cap de los extractos de células S/9 cultivadas en suspensión e infectadas con un baculovirus convencional que expresa la proteína Cap de PCV2 bajo el control del promotor polh (polhCap) o con un vector de baculovirus modificado por ingeniería con el casete de expresión de la invención que contiene los elementos polhAc-ie-01/hr1p6,9p10Cap. Se tomaron muestras de células a diferentes tiempos tras la infección (de 0 a 120 horas). B) Comparación de productividad de proteína Cap recombinante en mg/l en células de insectos Sf9 que se hacen crecer en suspensión en el tiempo de expresión obtenida máxima mediante un baculovirus convencional modificado por ingeniería con el casete de expresión polhCap (gris claro) o mediante un baculovirus de la invención con el casete de expresión polhAc-ie-01/hr1p6,9p10Cap (negro). Se determinaron los rendimientos de productividad de cada baculovirus mediante inmunotrasferencia de tipo Western con un anticuerpo monoclonal específico para Cap y una curva patrón de proteína Cap purificada. Se llevó a cabo la cuantificación de reacción de inmunotransferencia de tipo Western mediante un sistema de obtención de imágenes XRS ChemiDoc™ (Bio-Rad™, EE.UU.). Se infectaron células a una MOI de 0,1 con cada virus. C) Micrografías electrónicas de VLP purificadas obtenidas de células de insectos infectadas en suspensión a una MOI de 0,1 con un baculovirus que expresa la proteína Cap bajo el control de promotor polh o mediante el casete de expresión polhAc-ie-01/hr1p6,9p10. Se muestran VLP en dos aumentos. Los insertos en la esquina inferior izquierda de los paneles superiores muestran perfiles de proteínas que se tiñen con azul de Coomassie de preparaciones VLP purificadas reveladas por electroforesis SDS-PAGE.

5

10

15

40

45

50

65

Figura 6: A) SDS-PAGE y análisis de tinción con azul de Coomassie o análisis de inmunotransferencia de tipo Western usando un anticuerpo monoclonal frente a la proteína V60 de los extractos de células St9 cultivadas en 20 suspensión e infectadas con un baculovirus convencional que expresa la proteína V60 de RHDV bajo el control del promotor polh (polhVP60) o con un vector de baculovirus modificado por ingeniería con el casete de expresión de la invención que contiene los elementos polhAc-ie- 01/hrZp6,9p10VP60. Se tomaron muestras de células a diferentes tiempos tras la infección (de 0 a 120 horas). B) Comparación de productividad de proteína VP6 recombinante en 25 mg/l en Sf9 células de insectos que se hacen crecer en suspensión en el tiempo de expresión obtenida máxima mediante un baculovirus convencional modificado por ingeniería con el casete de expresión polhVP60 (gris claro) o mediante un baculovirus de la invención con el casete de expresión polhAc-ie-01/hr1p6.9p10VP60 (negro). Se determinaron los rendimientos de productividad de cada baculovirus mediante inmunotrasferencia de tipo Western con un anticuerpo monoclonal específico para VP60 y una curva patrón de proteína VP60 purificada. Se llevó a cabo 30 la cuantificación de reacción de inmunotransferencia de tipo Western mediante un sistema de obtención de imágenes XRS ChemiDoc™ (Bio-Rad™, EE.UU.). Se infectaron células a una MOI de 0,1 con cada virus. C) Micrografías electrónicas de VLP purificadas obtenidas de células de insectos infectadas en suspensión a una MOI de 0,1 con un baculovirus que expresa la proteína V60 bajo el control de promotor polh o mediante el casete de expresión polhAc-ie-01/hr1p6.9p10. Se muestran VLP en dos aumentos. Los insertos en la esquina inferior izquierda de los paneles superiores muestran los perfiles de proteínas que se tiñen con azul de Coomassie de preparaciones 35 VLP purificadas reveladas por electroforesis SDS-PAGE.

Figura 7: A) SDS-PAGE y análisis de tinción con azul de Coomassie o análisis de inmunotransferencia de tipo Western usando un anticuerpo monoclonal frente a la proteína L1 de los extractos de células Sf9 cultivadas en suspensión e infectadas con un baculovirus convencional que expresa la proteína L1 del virus del papiloma humano 16 (HPV 16) bajo el control del promotor polh (polhL1) o con un vector de baculovirus modificado por ingeniería con el casete de expresión de la invención que contiene los elementos polhAc-ie-01/hr1p6,9p10L1. Se tomaron muestras de células a diferentes tiempos tras la infección (de 0 a 120 horas). B) Comparación de la productividad de proteína L1 recombinante expresada en unidades arbitrarias en Sf9 células de insectos que se hacen crecer en suspensión en el tiempo de expresión obtenida máxima mediante un baculovirus convencional modificado por ingeniería con el casete de expresión polhL1 (gris claro) o mediante un baculovirus de la invención con el casete de expresión polhAc-ie-01/hr1p6,9p10L1 (negro). Se determinaron los rendimientos de productividad de cada baculovirus mediante cuantificación de reacción de inmunotransferencia de tipo Western mediante un sistema de obtención de imágenes XRS ChemiDoc™ (Bio-Rad™, EE.UU.). Se infectaron células a una MOI de 0,1 con cada virus. C) Inmunofluorescencia de células de insectos Sf21 infectadas con cada uno de los baculovirus anteriores con un anticuerpo monoclonal frente a proteína L1 y un anticuerpo comercial de anti-IgG de ratón marcado con fluorescencia secundario. La intensidad de fluorescencia observada en cada caso tenía correlación con el nivel de proteína expresada detectada por otras técnicas.

Figura 8: Las diferencias en densidad y viabilidad celular a diferentes tiempos tras la infección observadas en células infectadas *Sf9* (MOI 0,1) por baculovirus diferentes que expresan proteínas recombinantes bajo el control de promotor polh o con vectores de baculovirus modificados por ingeniería con el casete de expresión de la invención que contiene los elementos *polhAc-ie-01/hr1p6,9p10*. A) *polhAc-ie-01/hr1p6,9p10Cap*, B) *polhAc-ie-01/hr1p6,9p10VP60* y C) *polhAc-ie-01/hr1p6,9p10L1*.

Figura 9: A) Comparación de la proteína Cap recombinante expresada por un baculovirus convencional bajo el control del promotor polh (polhCap) o por un baculovirus que contiene el casete de expresión de la presente invención polhAc-ie-01/hr1p6,9p10Cap. Se obtuvieron extractos de proteína de larvas infectadas con 5 x 10⁵ UFP de cada baculovirus a 72 y 96 h tras la infección y se analizaron mediante electroforesis SDS-PAGE y tinción con azul de Coomassie. Se analizaron los mismos extractos mediante inmunotransferencia de tipo Western y se cuantificaron bandas de reacción mediante un sistema de obtención de imágenes XRS ChemiDoc™ (Bio-Rad™, EE.UU.). B)

Representación de la cuantificación de inmunotransferencias de tipo Western. El baculovirus que contiene el casete de expresión *polhAc-ie-01/hr1p6,9p10Cap* aumentó la productividad de proteína Cap en aproximadamente el 325% a 72 h tras la infección y en aproximadamente el 24% a 96 h tras la infección en comparación con la expresión mediante el baculovirus convencional.

Figura 10: Porcentaje de larvas que sobreviven a 96 h tras la infección con 5 x 10⁵ UFP del baculovirus que contiene el casete de expresión de la presente invención *polhAc-ie-01/hr1p6,9p10Cap* o el baculovirus convencional (*polhCap*).

Figura 11: Comparación de productividad de proteína Cap recombinante en mg en 100 larvas *Trichoplusia ni* 72 y 96 h tras la infección con un baculovirus convencional modificado por ingeniería con el casete de expresión *polhCap* (gris claro) o con un baculovirus de la invención con el casete de expresión *polhAc-ie-01/hr1p6,9p10Cap* (gris oscuro). Se midieron productividades mediante análisis de proteínas de microfluidos (Experion™; BioRad™, EE.UU.). Se infectaron insectos con 5 x 10⁵ UFP de cada baculovirus.

Descripción detallada de la invención

La presente invención mejora la expresión de proteínas recombinantes combinando los elementos de ADN recombinante de la invención en un casete de expresión novedoso.

Casete de expresión

5

15

20

25

30

35

40

45

50

60

Un "casete de expresión" comprende elementos de ADN recombinante que están implicados en la expresión de un determinado gen, tal como el propio gen y/o elementos que controlan la expresión de este gen (por ejemplo el promotor).

"ADN recombinante" se refiere a una forma de ADN artificial que se modifica por ingeniería mediante la combinación o inserción de una o más cadenas de ADN, combinando de este modo ADN que no se combinaría normalmente entre sí.

"Elemento de ADN recombinante" se refiere a un elemento funcional dentro del ADN recombinante, tal como un promotor, potenciador o gen (tal como un gen que codifica para una proteína recombinante o un regulador transcripcional). El casete de expresión de la invención comprende los siguientes elementos de ADN recombinante: [1] una copia del gen endógeno que codifica para el regulador transcripcional como transgén bajo el control de un promotor adecuado, en el que el regulador transcripcional es IE-1 e/o IE-0, que permite la expresión de las proteínas IE- 1 e/o IE-0 que funcionan como reguladores transcripcionales por encima de niveles endógenos obtenidos durante la infección de baculovirus, en el que el ácido nucleico se selecciona del grupo que consiste en:(a) secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 1-5;(b) secuencia de ácido nucleico que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 1-5 y que codifica para una proteína que funciona como un regulador transcripcional en un baculovirus; (c) secuencia de ácido nucleico que codifica para una proteína con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9; y (d) secuencia de ácido nucleico que codifica para una proteína que funciona como un regulador transcripcional en un baculovirus y que tiene una similitud de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9; [2] una secuencia de ácido nucleico que permite la expresión de una proteína recombinante, en el que la proteína recombinante es una proteína que forma partículas de tipo virus en el que la expresión de la proteína recombinante es impulsada por un promotor que comprende el promotor p10 baculoviral, [3] al menos una región homóloga recombinante (hr) como región

En un aspecto preferido, los elementos de ADN recombinante que forman parte del casete de expresión están presentes en una única molécula de ácido nucleico,

55 En otro aspecto preferido, los elementos de ADN recombinante que forman parte del casete de expresión están presentes en distintas moléculas de ácido nucleicos. Preferiblemente, las distintas moléculas de ácido nucleicos están presentes dentro de la misma célula.

potenciadora, unida operativamente al promotor que impulsa la expresión de la proteína recombinante.

Preferiblemente, la proteína recombinante se selecciona del siguiente grupo de proteínas de partícula de tipo virus:

- Proteína de cápside de circovirus porcino, que está representada, por ejemplo, por la secuencia de aminoácidos de SEQ ID NO: 32 o codificados por la secuencia de ácido nucleico de SEQ ID NO: 31.
- Proteínas VP1, VP3 y VP0 del virus de la enfermedad de fiebre aftosa (FMDV), cuyas secuencias se indican o pueden derivarse, por ejemplo, de las siguientes secuencias:

- Genoma completo de serotipo O de FMDV: GenBank JX570650.1 - Genoma completo de serotipo A de FMDV: GenBank HQ832592.1 - Genoma completo de serotipo C de FMDV: GenBank AY593810.1 - Genoma completo de serotipo SAT 1 de FMDV: GenBank AY593846.1 - Genoma completo de serotipo SAT 2 de FMDV: GenBank JX014256.1 - Genoma completo de serotipo ASIA 1 de FMDV: GenBank HQ631363.1 • Proteínas VP1 y VP2 de parvovirus humano, cuyas secuencias se indican o pueden derivarse, por ejemplo, de las siguientes secuencias: - Aislado Vn115 de parvovirus humano B19. GenBank: DQ357065.1 - Aislado VES065 CSF de parvovirus humano 4. GenBank: HQ593532.1 • Proteínas VP1 y VP2 de parvovirus porcino, cuyas secuencias se indican o pueden derivarse, por ejemplo, de las siguientes secuencias: - Cepa 693a de parvovirus porcino. GenBank: JN400519.1 - Cepa 8a de parvovirus porcino. GenBank: JN400517.1 • Proteínas VP1 y VP2 de parvovirus canino, cuyas secuencias se indican o pueden derivarse, por ejemplo, de las siguientes secuencias: - Proteínas VP1 y VP2 de parvovirus canino de tipo 1: GenBank AB518883.1 - VP1 y VP2 de parvovirus canino de tipo 2a. GenBank: M24003.1 - VP2 de parvovirus canino de tipo 2b: GenBank FJ005265.1 - VP2 de parvovirus canino de tipo 2c: GenBank FJ005248.1 Proteína de cápside de norovirus humano (genogrupo I o II), cuyas secuencias se indican o pueden derivarse, por ejemplo, de las siguientes secuencias: - Virus Norwalk: GenBank M87661, NP056821 - Virus Southampton: GenBank L07418 - Virus Mexico: GenBank U22498

40

50

5

10

15

20

25

30

35

- 45
 - Virus Seto: GenBank AB031013
 - Virus Chiba: GenBank AB042808

- Virus Lordsdale: GenBank X86557

- Virus Snow Mountain: GenBank U70059
- 55 - Virus Hawaii: GenBank U07611
 - Proteína VP60 del virus de la enfermedad hemorrágica del conejo, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
- 60 - Secuencia de referencia de NCBI: NC_001543.1
 - Proteína L1 de virus del papiloma humano, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
- HPV 6: GenBank: JN252323.1 65

- HPV 11: GenBank: JQ773411.1
- HPV 16: GenBank DQ155283.1
- HPV 18: GenBank FJ528600.1

20

25

30

35

40

45

50

55

60

65

- Proteína E2 del virus de hepatitis E, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
- 10 Virus de hepatitis E, secuencia de referencia NCBI de genoma completo: NC_001434.1
 - Gen de proteína de cápside del aislado ITFAE11 del virus de hepatitis E porcino. GenBank: JN861806.1

Preferiblemente, la proteína recombinante se selecciona del grupo anterior de proteínas de partícula de tipo virus excepto la proteína de cápside de circovirus porcino.

En un aspecto preferido alternativo, la proteína recombinante es la proteína de partícula de tipo virus seleccionado del grupo que consiste en la proteína de cápside de un circovirus porcino, la proteína L1 de virus del papiloma humano y la proteína V60 de calicivirus de conejo. Preferiblemente, la proteína de cápside es del circovirus porcino de tipo 2, la proteína L1 es de virus del papiloma humano 16 y la proteína V60 es virus de enfermedad hemorrágica del conejo.

Las proteínas recombinantes están preferiblemente codificadas por las secuencias de ácido nucleico indicadas anteriormente (o los respectivos ORF en caso de la secuencia genómica) o representadas por las respectivas secuencias de aminoácidos. Las proteínas recombinantes pueden estar también codificadas o representadas por variantes de dichas secuencias, por ejemplo, que representan diferentes tipos y subtipos de virus.

La secuencia de las variantes de secuencia de ácido nucleico es idéntica preferiblemente en al menos el 70%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% a las respectivas secuencias de ácido nucleico (o los respectivos ORF en el caso de la secuencia genómica).

La secuencia de las variantes de secuencia de aminoácidos es similar preferiblemente en al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% a las respectivas secuencias de aminoácidos.

"Promotor" se refiere a una secuencia de ADN a la que puede unirse ARN polimerasa para iniciar la transcripción. La secuencia puede contener además sitios de unión para diversas proteínas que regulan la transcripción, tal como factores de transcripción. La secuencia del promotor puede estar compuesta por diferentes fragmentos de promotor (fragmentos o bien diferentes o bien los mismos) que están localizados cerca en la secuencia de ADN y pueden separarse mediante ligadores o espaciadores. Tales promotores se denominan promotores quiméricos.

La expresión de la proteína recombinante de la invención está preferiblemente impulsada por un promotor seleccionado del grupo que consiste en SEQ ID NO: 10-16 y variantes de la misma que todavía funcionan como un promotor en un baculovirus y tienen preferiblemente al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% de identidad con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 10-16.

En un aspecto preferido, la expresión de la proteína recombinante de la invención está impulsada por un promotor seleccionado del grupo que consiste en SEQ ID NO: 11-13, 15-16 y variantes de la misma que todavía funcionan como un promotor en un baculovirus y tienen preferiblemente al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% de identidad con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 11-13, 15-16.

La expresión de la proteína recombinante está impulsada por un promotor que comprende SEQ ID NO: 11, es decir el promotor *p10*, o variantes del mismo que todavía funcionan como un promotor en un baculovirus y tienen preferiblemente al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% de identidad con la secuencia de ácido nucleico indicada en SEQ ID NO: 11. El promotor que comprende SEQ ID NO: 11 puede comprender además fragmentos de promotor y por tanto formar un promotor quimérico.

El promotor que comprende SEQ ID NO: 11 se selecciona preferentemente del grupo que consiste en SEQ ID NO: 11, 12, 13, 15 y 16 y variantes de la misma que todavía funcionan como un promotor en un baculovirus y tienen preferiblemente al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% de identidad con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 11, 12, 13, 15 y 16.

En un aspecto preferido, la señal de poliadenilación del ácido nucleico que codifica para la proteína recombinante es la señal de poliadenilación *p10* o SV40. Lo más preferiblemente, es la señal de poliadenilación *p10*. Los casetes de expresión más preferidos que comprenden la señal de poliadenilación del ácido nucleico que codifica para la proteína recombinante están representados por SEQ ID NO: 51-56 (o variantes de estas secuencias que conservan la actividad de los elementos funcionales y que tienen una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 51-56).

- Tal como se describió anteriormente, un elemento de ADN recombinante que está presente en el casete de expresión de la invención es una secuencia de ácido nucleico que permite la expresión por encima de niveles endógenos de baculovirus reguladores transcripcionales. Preferiblemente esta secuencia de ácido nucleico está unida operativamente a la expresión de la proteína recombinante.
- "Regulador transcripcional" se refiere a una proteína reguladora que puede modular la transcripción de genes específicos mediante, por ejemplo, unión a regiones represoras o potenciadoras y/o captar proteínas que están implicadas en la transcripción.
- "Nivel de expresión endógeno" se refiere al nivel base de expresión de una proteína que se obtiene durante la infección de una célula de insecto o insecto con un baculovirus que no se ha alterado en su expresión de dicha proteína mediante, por ejemplo, medios artificiales, tales como introducción de una secuencia de ADN recombinante.
 - La "expresión por encima de niveles endógenos" también se denomina "sobreexpresión".
- La expresión por encima de niveles endógenos se logra introduciendo copias adicionales del gen endógeno que codifica para el regulador transcripcional. Además, las copias del gen endógeno pueden introducirse como transgenes bajo el control de un promotor adecuado tal como *polh* o *pB2*₉.
 - El nivel de expresión puede determinarse a niveles tanto de ARNm como de proteína con métodos conocidos convencionalmente por el experto en la técnica, tal como PCR cuantitativa y análisis por inmunotransferencia de tipo Western.
 - "Que está unido operativamente" se refiere a dos secuencias de ácido nucleico que están conectadas de manera que una influye en la otra en términos de, por ejemplo, regulación transcripcional.
- 35 IE-1 y su variante IE-0 de empalme son reguladores transcripcionales que se expresan de manera endógena mediante baculovirus.
 - Los reguladores transcripcionales de baculovirus de la invención son IE-1 e/o IE-0.

30

- 40 En un aspecto preferido, el nivel de expresión de IE-1 e/o IE-0 alcanza niveles de expresión por encima de los obtenidos mediante AcMNPV de tipo natural, tal como el clon C6 de AcMNPV (secuencia genómica: GenBank n.º de registro NC_001623.1).
- En otro aspecto preferido, el nivel de expresión de IE-1 e/o IE-0 alcanza más de dos veces la cantidad que puede obtenerse con el AcMNPV de tipo natural, tal como el clon C6 de AcMNPV. IE-1 e/o IE-0 están codificados preferiblemente por cualquiera de las secuencias de ácido nucleico de SEQ ID NO: 1-5 o representados por cualquiera de las secuencias de aminoácidos correspondientes de SEQ ID NO: 6-9. IE-1 e/o IE-0 pueden estar también codificadas o representadas por cualquiera de las variantes de dichas secuencias. SEQ ID NO: 1 es el ADNc de Ac-ie-01 que codificada para tanto IE-1 como IE-0, SEQ ID NO: 2 es la secuencia codificante (CDS) de IE-1 y SEQ ID NO: 3 es la CDS de IE-0. SEQ ID NO: 4 y 5 son las CDS de los dominios N-terminales de IE-1 e IE-0 respectivamente que conserva sustancialmente la actividad de regulador transcripcional. Las proteínas que están codificadas por SEQ ID NO: 2-5 están representadas por SEQ ID NO: 6-9 respectivamente.
- Las variantes de SEQ ID NO: 1-9 están codificadas o codifican para aminoácidos que conservan sustancialmente su función como regulador transcripcional.
 - La secuencia de las variantes de SEQ ID NO: 1-5 es idéntica preferiblemente en al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% a las secuencias de SEQ ID NO: 1-5.
 - La secuencia de las variantes de SEQ ID NO: 6-9 es similar preferiblemente en al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% a las secuencias de SEQ ID NO: 6-9.
- En un aspecto preferido, las secuencias anteriores están limitadas a las que codifican para o representan la proteína IE-1, es decir SEQ ID NO: 1, 2, 4, 6 y 8 o variantes de la misma tal como se definió anteriormente.

En otro aspecto preferido, las secuencias anteriores están limitadas a las que codifican para o representan la proteína IE-0, es decir SEQ ID NO: 1, 3, 5, 7 y 9 o variantes de la misma tal como se definió anteriormente.

5 En aún otro aspecto preferido, IE-1 e/o IE-0 están codificadas por la secuencia de ácido nucleico de SEQ ID NO: 1.

Una región homóloga recombinante (*hr*) que puede potenciar la expresión de la proteína recombinante uniéndose operativamente al/los promotor(es) de la misma está presente además en el casete de expresión de la invención, además de las secuencias de ácido nucleico que permiten la expresión de la proteína recombinante y la expresión por encima de niveles endógenos de los reguladores transcripcionales.

"Región potenciadora" se refiere a una secuencia de control, que uniéndose a reguladores transcripcionales aumenta el nivel de transcripción de genes asociados.

- Las regiones homólogas, *hr*, están compuestas por unidades de repetición de aproximadamente 70-bp con un palíndromo de 30-bp imperfecto cerca de su centro. Las regiones homólogas se repiten en ocho ubicaciones en el genoma *Ac*MNPV con de 2 a 8 repeticiones en cada lado. Las regiones homólogas se han implicado como tanto potenciadores transcripcionales como orígenes de replicación de ADN de baculovirus.
- La secuencia de región homóloga potenciadora *hr* en el sentido de 5' del/los promotor(es) es preferiblemente *hr1* (SEQ ID NO: 27) o una secuencia que puede funcionar como una región homóloga potenciadora y tiene preferiblemente al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% de identidad con la secuencia de ácido nucleico indicada en SEQ ID NO: 27.
- En una realización preferida, el casete de expresión de la invención comprende combinaciones de promotores recombinantes, secuencias que codifican para reguladores transcripcionales y regiones potenciadoras, que están unidas operativamente a la expresión de la proteína recombinante, en el que estas combinaciones están representadas por cualquiera de SEQ ID NO: 17-22, 25 y 26 o variantes de la misma que conservan sustancialmente las actividades de los elementos funcionales y tienen preferiblemente al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% de identidad con las secuencias de ácido nucleico indicadas en cualquiera de SEQ ID NO: 17-22, 25 y 26.
 - Más preferiblemente, las combinaciones mencionadas anteriormente están representadas por cualquiera de SEQ ID NO: 17-19 y 25 o variantes de la misma que conservan sustancialmente las actividades de los elementos funcionales y tienen preferiblemente al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% de identidad con las secuencias de ácido nucleico indicadas en cualquiera de SEQ ID NO: 17-19 y 25.
- El casete de expresión de la invención puede usarse preferiblemente para producir el vector de clonación, vector de transferencia, bácmido, baculovirus recombinante, célula, insecto o medio de cultivo de la invención.

Vector de clonación

10

35

50

55

"Vector de clonación" se refiere a cualquier vector que es adecuado para la clonación, que generalmente implica la presencia de sitios de restricción, un origen de replicación para la propagación bacteriana y un marcador seleccionable.

El vector de clonación de la invención comprende el casete de expresión de la invención y puede usarse preferiblemente para producir el vector de transferencia, bácmido, baculovirus recombinante, célula, insecto o medio de cultivo de la invención.

El vector de clonación que comprende un casete de expresión también se denomina "vector donador".

Vector de transferencia

"Vector de transferencia" (o "vector de transferencia de baculovirus") se refiere a un vector que es adecuado para la integración o transposición en un genoma de baculovirus. El vector de transferencia por tanto permite generalmente la inserción de información genética a un baculovirus.

- 60 El vector de transferencia de la invención comprende el casete de expresión de la invención y puede usarse preferiblemente para producir el bácmido, baculovirus recombinante, célula, insecto o medio de cultivo de la invención.
- En un aspecto preferido, el vector de transferencia se deriva de cualquiera de los sistemas de expresión de baculovirus "Bac-to-Bac[®]" disponibles comercialmente (invitrogen™), "BacPAK™" (Clontech™), "FlashBAC™" (Oxford Expression Technologies™), "BacuVance™" (GenScript™), "Bac-N-Blue DNA™" (invitrogen™),

"BaculoDirect™" (invitrogen™), "BacVector®" 1000, 2000, 3000 (Novagen®), "DiamondBac™" (Sigma-Aldrich®) o "BaculoGold™" (BD biosciences™).

<u>Bácmido</u>

5

20

25

30

- "Bácmido" se refiere a un constructo de plásmido que contiene la secuencia de ácido nucleico que es suficiente para generar un baculovirus cuando se transfecta en una célula.
- El bácmido de la invención comprende el casete de expresión de la invención y puede usarse preferiblemente para producir el baculovirus recombinante, célula, insecto o medio de cultivo de la invención.

Baculovirus

- "Baculovirus" se refiere a una familia de virus infecciosos para invertebrados, principalmente insectos y artrópodos infecciosos. Un "baculovirus recombinante" ha introducido además ADN recombinante mediante, por ejemplo, transposición o recombinación homóloga.
 - El baculovirus recombinante de la invención comprende el casete de expresión de la invención y puede usarse preferiblemente para producir la célula, insecto o medio de cultivo de la invención.

El baculovirus recombinante se origina preferiblemente de AcMNPV.

En otro aspecto preferido, el baculovirus recombinante se origina de nucleopolihedrovirus *Bombyx mori (Bm*NPV) o nucleopolihedrovirus *Spodoptera exigua* (SeNPV).

<u>Célula</u>

La célula de la invención comprende el casete de expresión de la invención. Dentro de esta célula, los elementos de ADN recombinante del casete de expresión pueden estar presentes en diferentes moléculas.

En una realización preferida, la célula es infectada, transfectada, transducida o transformada con el casete de expresión, vector de clonación, vector de transferencia, bácmido o baculovirus recombinante de la invención, lo más preferiblemente con el baculovirus recombinante.

35 En un aspecto preferido, la célula se mantiene en cultivo celular.

La célula es preferiblemente una línea celular de insecto, más preferiblemente una línea celular derivada de un insecto que pertenece al género Lepidoptera o Diptera, más preferiblemente la célula se deriva del grupo que consiste en *Trichoplusia ni, Spodoptera frugiperda, Ascalapha odorata, Bombyx mori, Drosophila melanogaster,*40 Estigmene acrea y Aedes aegypti y lo más preferiblemente se selecciona del grupo de líneas celulares de insecto que consiste en Hi-5™, Sf9, Sf21, BTI-Tn5B-1, Tn368, ExpresSf+®, BTI-TnAo38, ATC-10, Mimic™ Sf9, SfSWT-1, SfSWT-3, SfSWT-5, TriEx™ y línea 2 de *Drosophila* de Schneider. La célula puede cultivarse en monocapa o en suspensión.

45 Insecto

60

El insecto de la invención comprende el casete de expresión de la invención. Dentro de este insecto, los elementos de ADN recombinante del casete de expresión pueden estar presentes en moléculas diferentes.

En un aspecto preferido, el insecto es infectado, transfectado, transducido o transformado con el casete de expresión, vector de clonación, vector de transferencia, bácmido o baculovirus recombinante de la invención. El casete de expresión de la invención se introduce preferiblemente en el insecto mediante un baculovirus recombinante. Preferiblemente, este baculovirus es AcMNPV, SeNPV o BmNPV y el insecto es un insecto larva o insecto pupa. Se administra el baculovirus al insecto mediante administración oral (p.o.) o más preferiblemente mediante inyección.

En un aspecto preferido adicional, el insecto es un insecto transgénico. El insecto es preferiblemente un lepidóptero y más preferiblemente un insecto seleccionado del grupo que consiste en *Trichoplusia ni, Spodoptera frugiperda, Spodoptera exigua, Ascalapha odorata, Bombyx mori, Rachiplusia ni y Estigmene acrea.* En un aspecto preferido, el insecto es una larva o una pupa. Las larvas de insectos pueden criarse en un módulo de cría, tal como el descrito en la solicitud de patente ES 2 232 308.

Medio de cultivo

65 El medio de cultivo de la invención comprende el casete de expresión, vector de clonación, vector de transferencia, bácmido o baculovirus recombinante de la invención.

En un aspecto preferido, el medio de cultivo comprende el baculovirus de la invención.

Métodos para producir la proteína recombinante

5

15

20

25

En un aspecto adicional, la invención da a conocer métodos para producir la proteína recombinante que forma partículas de tipo virus.

La producción de la proteína recombinante comprende el uso del casete de expresión, vector de clonación, vector de transferencia, bácmido, baculovirus recombinante, célula o insecto de la invención. Tras la expresión de la proteína recombinante, la extracción y purificación de dicha proteína se realiza mediante medios convencionales.

Preferiblemente, dicho método de producción comprende el uso de la célula o insecto de la invención. Las células de la invención pueden cultivarse en suspensión (biorreactores), a densidades entre 2x10⁶ y 8x10⁶ células por ml, dependiendo de la línea celular y el procedimiento de fermentación usado. Además, las células se infectaron preferiblemente a una MOI de 0,05 a 10.

Puede infectarse a las larvas de insectos o insecto pupa inyectando una alta dosis de virus (mayor de 10⁴ unidades formadoras de placa) del baculovirus recombinante de la invención. 3-4 días tras la infección, se procesaron los insectos infectados y se obtuvo el extracto de proteína soluble completo mediante el uso de tampones de extracción apropiados. Se centrifugaron los extractos y se eliminó la fracción lipídica. Entonces, se purificó la proteína recombinante mediante medios convencionales.

Puede usarse la proteína recombinante en un método de tratamiento, terapia o diagnóstico, por ejemplo para vacunación.

Resumen de secuencias

SEQ ID NO:	Nombre:
1	ADNc de Ac-ie-01 completo
2	Secuencia de ADN codificante (CDS) de IE-1
3	CDS de IE-0
4	CDS del dominio del N-terminal IE-1
5	CDS del dominio del N-terminal IE-0
6	proteína IE-1
7	proteína IE-0
8	proteína de domino N-terminal IE-1
9	proteína de domino N-terminal IE-0
10	polh (promotor)
11	p10 (promotor)
12	pB29p10 (promotor)
13	<i>p6,9p10</i> (promotor)
14	pB29 (promotor)
15	pB2p10 (promotor)
16	polhp10 (promotor)
17	polhAc-ie-01/hr1p10
18	polhAc-ie-01/hr1pB29p10
19	polhAc-ie-01/hr1p6,9p10
20	pB29Ac-ie-01/hr1p10
21	pB29Ac-ie-01/hr1pB29p10
22	pB29Ac-ie-01/hr1p6,9p10
23	polhAc-ie-01/hr1polh
24	pB29Ac-ie-01/hr1polh
25	polhAc-ie-01/hr1polhp10
26	pB29Ac-ie-01/hr1polhp10
27	hr1 potenciador de región homóloga
28	polhAc-ie-01
29	polhGFP
30	polhAc-ie-01/hr1p6,9p10Cap
31	ORF2 del circovirus porcino de tipo 2
32	Proteína de cápside (Cap) del circovirus porcino de tipo 2
33	polhCap
34	polhAc-ie-01/hr1p6,9p10GFP
35	polhAc-ie-01/hr1polhp10GFP

36	polhAc-ie-01/hr1pB29p10GFP
37	polhAc-ie-01/hr1p6,9GFP
38	polhAc-ie-01/hr1p10GFP
39	polhAc-ie-01/hr1polhGFP
40	p6,9GFP
41	pB29GFP
42	p10GFP
43	Secuencia de ácido nucleico que codifica para VHH 3B2
44	Secuencia de aminoácidos de VHH 3B2
45	Secuencia de ácido nucleico que codifica para VHH 2KD1
46	Secuencia de aminoácidos de VHH 2KD1
47	Secuencia de ácido nucleico que codifica para la proteína L1 del virus de
	papiloma humano 16
48	Secuencia aminoácida de la proteína L1 del virus de papiloma humano 16
49	Secuencia de ácido nucleico de la VP60 que codifica para gen de RHDV
50	Secuencia aminoácida de la proteína VP60 de RHDV
51	polhAc-ie-01/hr1p6,9p10Cap (señal de poliadenilación de gen p10)
52	polhAc-ie-01/hr1p6,9p10L1 (señal de poliadenilación de gen p10)
53	polhAc-ie-01/hr1p6,9p10VP60 (señal de poliadenilación de gen p10)
54	polhAc-ie-01/hr1p6,9p10L1 (señal de poliadenilación SV40)
55	polhAc-ie-01/hr1p6,9p10VP60 (señal de poliadenilación SV40)
56	polhAc-ie-01/hr1p6,9p10Cap (señal de poliadenilación SV40)

Todas las secuencias de la divulgación incluyen variantes de las mismas que conservan sustancialmente la actividad funcional de la secuencia parenteral. "Variantes" son aminoácidos o ácidos nucleicos cuya secuencia de ácidos nucleicos o secuencias difiere en una o más posiciones de la secuencia parenteral de ácidos nucleicos o secuencias, en la cual las diferencias podrían ser adiciones, deleciones y/o sustituciones de ácidos nucleicos o residuos de aminoácido.

Las variantes de la divulgación tienen preferiblemente identidad (secuencias de ácido nucleico) o similitud (secuencias de aminoácidos) de al menos el 70%, más preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia parenteral.

En otro aspecto preferido, las variantes son fragmentos de secuencia de ácido nucleico o de aminoácidos que conservan sustancialmente su actividad funcional.

Las secuencias de ácidos nucleicos y de aminoácidos de la presente divulgación pueden distinguirse de otras secuencias de ácidos nucleicos y de aminoácidos por el grado de identidad de secuencia o similitud respectivamente tal como se determinó usando, por ejemplo, EMBOSS Needle con los parámetros por defecto (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Métodos para la generación de tales variantes incluyen mutagénesis al azar o dirigida al sitio, mutagénesis de saturación en el sitio, ensamblaje de fragmento basado en PCR, intercambio de ADN, recombinación homóloga *in vitro* o *in vivo*, y métodos de síntesis de genes.

Deposición de microorganismos según el tratado de Budapest

El plásmido que contiene el casete de expresión *polhAc-ie-01/hr1p6,9p10Cap* se depositó en la Colección Española de Cultivos Tipo (CECT) (www.cect.org); Universidad de Valencia, Parc Científic Universitat de València; Catedrático Agustín Escardino, 9; 46980 Paterna (Valencia), España, con el número de registro CECT 8228 el 6 de noviembre de 2012.

Ejemplos

5

10

25

30

35

40

Ejemplo 1. El casete de expresión de baculovirus de la invención induce la proliferación celular y aumenta la viabilidad celular a través de los reguladores transcripcionales codificados por el *ADNc de Ac-ie-01*.

Se observó por microscopio que los baculovirus recombinantes que incorporan un casete de expresión de baculovirus con el *ADNc de Ac-ie-01* tienen propiedades interesantes relacionadas con una disminución en los efectos citopáticos inducidos por virus y un aumento de la densidad celular en cultivos. Para cuantificar estos fenómenos y para determinar el/los elemento(s) de ADN responsable(s) de tales propiedades interesantes, se generó un baculovirus recombinante que expresa los reguladores transcripcionales codificados por el *ADNc de Ac-ie-01* bajo el control del promotor *polh*. Como control, se usó el baculovirus recombinante convencional que expresa la proteína GFP bajo el control del promotor *polh*. Estos baculovirus se usaron para infectar células *Sf*9 en suspensión a una baja multiplicidad de infección (MOI) de 0,1. Se estudió el aumento en el número de células hasta 48 h tras la infección y se estudió la viabilidad celular entre de 24 a 120 h tras la infección. A las 24 h tras la infección, células de insecto infectadas mediante el baculovirus que sobreexpresa el *ADNc de Ac-ie-01* codificaron

para reguladores transcripcionales, es decir IE-1 e IE-0, presentaron un aumento en el número de células mayor del 10% con respecto a cultivos infectados mediante el baculovirus recombinante control (figura 1A). Se observaron estas diferencias en el número de células tan pronto como a las 6 h tras la infección (figura 1A). Un análisis más detallado mediante citometría de flujo del tiempo requerido para que estos factores induzcan las diferencias observadas en la proliferación celular reveló un aumento de células de insecto en la fase S a las 3 h tras la infección y luego a las 6 h tras la infección se observó un aumento en el número de células de insecto en G1. Estos datos implican un incremento muy temprano de la mitosis en los cultivos infectados mediante el baculovirus que sobreexpresa el *ADNc de Ac-ie-01* que codifica para proteínas (datos no mostrados).

Se realizaron medidas de fluorescencia en un citómetro de flujo FACSCalibur™ (BD Biosciences™). Se fijaron las células en EtOH al 70%, se resuspendieron e incubaron en la disolución de tinción (yoduro de propidio 50 μg/ml en PBS, 5 ug /ml ARNse). Se controlaron los datos para eliminar partículas con un tamaño distinto a las células y se analizaron representando el número de células frente a la fluorescencia del rojo del yoduro de propidio. Se contaron 50.000 células por ensayo. Se realizó el análisis de datos del número total de células por fase de ciclo celular (G1, S y G2) usando el software Modfit.

También se analizaron cultivos celulares infectados con tinción de azul de tripano para determinar la viabilidad celular a diferentes tiempos tras la infección. De manera interesante, a tiempos muy tardíos tras la infección (96-120 horas), las células de insecto infectadas mediante el virus que sobreexpresa los reguladores transcripcionales mostró un aumento (el 50-60 % de aumento) de la viabilidad celular e integridad (figura 1B). Esto sugiere que la sobreexpresión de los reguladores transcripcionales de la presente invención protege las células del efecto citopático inducido por baculovirus, permitiendo expresión a largo plazo. Tanto la proliferación celular como la viabilidad celular aumentada tras la infección tienen consecuencias importantes en la productividad de proteína recombinante del BEVS. Se obtuvieron resultados similares cuando la sobreexpresión de los reguladores transcripcionales se conducía mediante tanto el promotor *pB29* como *polh* (datos no mostrados). Se confirmaron los resultados observados en células *Sf9* de insecto infectadas en suspensión en células *Sf21* cultivadas en monocapa (datos no mostrados) y también en células Hi-5™ cultivadas en monocapa (figuras 1C y D). Estas figuras demuestran cómo la sobreexpresión de los reguladores transcripcionales mejora la integridad celular a tiempos tardíos tras la infección (96 horas).

Ejemplo 2. El casete de expresión de baculovirus de la invención aumenta las tasas de supervivencia de larvas de insecto infectadas por baculovirus y biomasa de insecto recuperada usando dosis altamente infecciosas mediante los reguladores transcripcionales codificados por el *ADNc de Ac-ie-01*.

En el ejemplo anterior, se mostró una ventaja de los baculovirus que expresan proteína recombinante GFP en el contexto del casete de baculovirus que expresa los reguladores transcripcionales IE-1 e IE-0 por encima de niveles endógenos en términos de viabilidad y proliferación de células de insecto.

Usando los mismos constructos de baculovirus con el casete de expresión *polhAc-ie-01* o *polhGFP*, se infectaron larvas *T. ni* con una dosis altamente infecciosa de 5 x 10⁴ unidades formadoras de placas (UFP). De manera similar a las células infectadas con baculovirus con estos casetes de expresión, las larvas infectadas con el baculovirus que sobreexpresa el *ADNc de Ac-ie-01* (*polhAc-ie-01*) también mostraron tasas de supervivencia aumentadas en comparación con larvas infectadas con un baculovirus convencional que expresa la proteína indicadora de GFP bajo el control del mismo promotor (*polh*GPF) (figura 2A). Esto sugiere fuertemente que la sobreexpresión de los reguladores transcripcionales usados en el casete de expresión de baculovirus de la presente invención reduce la mortalidad de larvas de insecto infectadas por baculovirus, permitiendo expresión a largo plazo (más producción de proteína recombinante) y aumentado la recuperación de biomasa de insecto usando dosis altamente infecciosas (productividad máxima) (figura 2B).

50 <u>Ejemplo 3. La sobreexpresión de las proteínas de regulador transcripcional codificadas por ADNc de Ac-ie-01 en un baculovirus aumenta los rendimientos de producción de proteína recombinantes cuando su expresión se conduce mediante el promotor p10 o cualquier promotor quimérico que contiene p10</u>

Para analizar el efecto de los reguladores transcripcionales IE-1/IE-0 en combinación con diferentes promotores en la expresión de proteínas, se prepararon baculovirus de *Ac*MNPV recombinantes con los siguientes casetes de expresión:

- polhAc-ie-01/hr1polhp10GFP
- 60 polhAc-ie-01/hr1p6,9p10GFP
 - polhAc-ie-01/hr1pB29p10GFP
 - polhAc-ie-01/hr1p6,9GFP
 - polhAc-ie-01/hr1p10GFP

17

65

20

25

- polhAc-ie-01/hr1polhGFP
- p6.9GFP
- pB2₉GFP
- p10GFP
- 10 polhGFP

5

Como control, se usó un baculovirus de AcMNPV convencional sin gen foráneo alguno, denominado BacNi (sin inserto).

- Se infectaron células Sf21 con los diferentes baculovirus a una MOI de 5 y se midió el aumento en fluorescencia a 96 h tras la infección. Se normalizaron los valores a la fluorescencia obtenida con un vector de baculovirus convencional que expresa la GFP bajo el control del promotor *polh*, que se consideró como el 100%.
- Como puede observarse a partir de la Figura 3, la presencia del promotor *p10* (quimérico o no) es crucial para la expresión aumentada mediada por la sobreexpresión de *ADNc de Ac-ie-01*. Por el contrario, cuando el *ADNc de Ac-ie-01* se combina en el casete de expresión con los promotores *polh* o *p6,9* solo, se da o bien un aumento no significativo o bien incluso una disminución en la expresión.
- Ejemplo 4. La sobreexpresión de reguladores transcripcionales de baculovirus IE-1 e IE-0 potencia la función potenciadora de una región homóloga *hr* unida funcionalmente a un promotor que aumenta la expresión de proteínas recombinantes que forman partículas de tipo virus en un sistema de expresión de vector de baculovirus (BEVS).
- Se comparó la expresión de diferentes proteínas que forman partículas de tipo virus entre un baculovirus convencional y un baculovirus de la invención. El baculovirus convencional expresó las proteínas Cap, VP60 y L1 bajo el control del promotor polh (polhCap; polhVP60 y polhL1). El baculovirus de la invención expresó las proteínas Cap, VP60 y L1 bajo el control del promotor quimérico p6,9p10 que se sintetizó previamente. Este promotor quimérico estaba unido operativamente con la región homóloga de secuencia potenciadora hr1. El baculovirus de la invención contenía además el ADNc de Ac-ie-01 clonado bajo el control del promotor polh para obtener los casetes de expresión de baculovirus polhAc-ie-01/hr1p6,9p10Cap, polhAc-ie-01/hr1p6,9p10VP60 y polhAc-ie-01/hr1p6,9p10L1 (figura 4). Entonces se analizó la expresión de las proteínas Cap, VP60 y L1 en extractos de proteína de células Sf9 cultivadas en suspensión a diferentes tiempos tras la infección (MOI de 0,1) con estos baculovirus. Se sometieron los extractos a electroforesis SDS-PAGE y se tiñeron las proteínas reveladas mediante azul de Coomassie y/o se analizaron mediante inmunotransferencia de tipo Western.

40 Proteína Cap

45

60

65

Los resultados obtenidos para la proteína Cap fueron que se observó una banda de proteína teñida más intensamente que la correspondiente a la proteína Cap de circovirus porcino de tipo 2, expresada por el baculovirus modificado por el casete de expresión de la presente invención a los diferentes tiempos tras la infección (figura 5A). Esto demostró claramente que el casete de expresión novedoso es más eficaz en la expresión de la proteína Cap. Se encontró este resultado tanto en las células de monocapa (*Sf21*) como de suspensión (*Sf*9) independientemente de la multiplicidad de la infección usada (MOI 5 o MOI 0,1) (datos no mostrados).

Una inmunotransferencia de tipo Western con un anticuerpo monoclonal frente a la proteína Cap de los mismos extractos celulares infectados también corroboró una presencia más abundante de proteína Cap en células infectadas con el baculovirus de la invención (polhAc-ie- 01/hr1p6,9p10Cap). Se analizó la cantidad de proteína usando un sistema de detección de inmunotransferencia de tipo Western ECL y un sistema de obtención de imágenes en gel XRS Chemi-Doc™ (Bio-Rad™, EE.UU.). Se estudiaron reacciones de inmunotransferencia de tipo Western a diferentes tiempos tras la infección en células *Sf*9 cultivadas en suspensión tal como se describió anteriormente.

Se expresaron los datos de cuantificación de este análisis con los diferentes baculovirus obtenidos mediante el sistema de obtención de imágenes en gel XRS ChemiDoc™ como unidades de expresión arbitrarias. A las 72 h tras la infección, en comparación con un baculovirus convencional que expresa la proteína Cap bajo el control del promotor *polh*, el nivel de expresión de Cap era aproximadamente de 4,8 veces y 3,5 veces mayor en cultivos *SF21* de monocapa (MOI de 5) y *Sf*9 de suspensión (MOI de 0,1) respectivamente con el baculovirus modificado por el casete de expresión de la invención (*polhAc-ie-01/hr1p6,9p10Cap*) (datos no mostrados). Estas diferencias en acumulación de proteínas también se observaron en células Hi-5™ (datos no mostrados), sugiriendo que el casete de expresión de baculovirus de la invención podría usarse para producir la proteína recombinante Cap en diferentes líneas celulares de insectos usadas en la investigación y la industria.

De manera importante, los niveles de expresión de proteína Cap recombinante mediada por el casete de expresión de baculovirus de la presente invención eran mayores en cualquiera de los tiempos tras la infección analizados (figura 5A). Los máximos niveles de expresión se detectaron a las 72 h tras la infección con el baculovirus modificado genéticamente con el casete de expresión de la presente invención, mientras que el máximo nivel de expresión con el baculovirus convencional (polhCap) era a las 48 h tras la infección (figura 5A).

Se realizó una cuantificación más precisa de la productividad de la proteína Cap mediante análisis de inmunotransferencia de tipo Western con un anticuerpo monoclonal específico para Cap de extractos de células Sf9 de insecto cultivadas en suspensión e infectadas mediante un baculovirus convencional (polhCap) o el baculovirus de la presente invención (polhAc-ie-01/lhr1p6,9p10Cap). Se llevó a cabo la cuantificación con una curva patrón de proteína Cap purificada y posteriormente análisis mediante el sistema de obtención de imágenes en gel XRS ChemiDocTM (Bio-RadTM, EE.UU.). Se cultivaron células de insecto en suspensión a una densidad de 2x10⁶ células/ml y se infectaron a una MOI de 0,1 con cada baculovirus. Esto demostró que mientras que la productividad de la proteína Cap en células infectadas con el baculovirus convencional era aproximadamente de 57 mg/l, las células de insecto infectadas con el baculovirus de la invención podían producir aproximadamente 198 mg/l (figura 5B). Las productividades máximas de baculovirus recombinantes se obtuvieron a diferentes tiempos tras la infección (48 y 72 horas tras la infección respectivamente).

Se infectaron células Sf9 de insecto cultivadas en suspensión con un baculovirus convencional que expresa la 20 proteína Cap (polhCap) o el baculovirus de la presente invención que expresa la proteína Cap (polhAc-ie-01/hr1p6,9p10Cap). Se purificaron las VLP que se formaron tras la expresión de la proteína Cap. Para este fin, se usaron volúmenes idénticos de cultivos celulares en ambos casos. Se alteraron las células mediante un tratamiento suave con un detergente no iónico y se sometieron después a aclaramiento a una alta velocidad de centrifugación en un gradiente de sacarosa para purificar las VLP. Entonces se analizaron las VLP mediante microscopía electrónica con tinción negativa. Las VLP formadas por ambos baculovirus eran idénticas en tamaño y forma, pero la 25 concentración de pseudopartículas observadas reflejó las diferencias en los niveles de expresión de Cap detectados anteriormente entre los dos baculovirus. El número de VLP producidas por las células infectadas con el baculovirus modificado con el casete de expresión de la invención era mayor que para las células infectadas con el baculovirus que expresa la proteína Cap que usa el promotor polh (figura 5C). El mayor número de VLP producidas por las 30 células infectadas con el baculovirus de la invención se correlacionaba con una expresión aumentada de proteína Cap en estas células, y la cantidad de proteína Cap detectada en VLP purificadas se analizó mediante electroforesis SDS-PAGE y tinción con azul de Coomassie (figura 5C, paneles superiores, insertos en las esquinas inferiores izquierdas).

35 Proteína VP60

40

45

50

55

60

65

5

10

15

Los resultados obtenidos para la proteína VP60 fueron que se observó una banda de proteína teñida más intensamente que corresponde a la proteína VP60 de virus de la enfermedad hemorrágica del conejo expresada por el baculovirus modificado por el casete de expresión de la presente invención a los diferentes tiempos tras la infección (figura 6A). Esto demostró claramente que el casete de expresión novedoso es más eficaz en la expresión de la proteína VP60. Se encontró este resultado tanto en las células de monocapa (*Sf21*) como de suspensión (*Sf9*) independientemente de la multiplicidad de la infección usada (MOI 5 o MOI 0,1) (datos no mostrados).

Una inmunotransferencia de tipo Western con un anticuerpo monoclonal frente a la proteína VP60 de los mismos extractos celulares infectados también corroboró una presencia más abundante de proteína VP60 en células infectadas con el baculovirus de la invención (polhAc-ie- 01/hr1p6,9p10VP60). Se analizó la cantidad de proteína usando un sistema de detección de inmunotransferencia de tipo Western ECL y un sistema de obtención de imágenes en gel XRS ChemiDoc™ (Bio-Rad™, EE.UU.). Se estudiaron reacciones de inmunotransferencia de tipo Western a diferentes tiempos tras la infección en células Sf9 cultivadas en suspensión tal como se describió anteriormente.

Se expresaron los datos de cuantificación de este análisis con los diferentes baculovirus obtenidos mediante el sistema de obtención de imágenes en gel XRS ChemiDoc™ como unidades de expresión arbitrarias. A las 72 h tras la infección, en comparación con un baculovirus convencional que expresa la proteína VP60 bajo el control del promotor polh, el nivel de expresión de VP60 era más de 3 veces mayor en cultivos Sf21 de monocapa (MOI de 5) y Sf9 de suspensión (MOI de 0,1) respectivamente con el baculovirus modificado por el casete de expresión de la invención (polhAc-ie-01/hr1p6,9p10VP60) (datos no mostrados). Estas diferencias en acumulación de proteínas también se observaron en células Hi-5™ (datos no mostrados), sugiriendo que el casete de expresión de baculovirus de la invención podría usarse para producir la proteína recombinante VP60 en diferentes líneas celulares de insectos usadas en la investigación y la industria.

De manera importante, los niveles de expresión de proteínas VP60 recombinante mediada por el casete de expresión de baculovirus de la presente invención eran mayores en cualquiera de los tiempos tras la infección analizados (figura 6A). Los máximos niveles de expresión se detectaron a las 120 h tras la infección con el baculovirus modificado genéticamente con el casete de expresión de la presente invención, mientras que el máximo nivel de expresión con el baculovirus convencional (polhCap) era a las 72 h tras la infección (figura 6A).

Se realizó una cuantificación más precisa de la productividad de la proteína VP60 mediante análisis de inmunotransferencia de tipo Western con un anticuerpo monoclonal específico para VP60 de extractos de células Sf9 de insecto cultivadas en suspensión e infectadas mediante un baculovirus convencional (polhVP60) o el baculovirus de la presente invención (polhAc-ie-01/lhr1p6,9p10VP60). Se llevó a cabo la cuantificación con una curva patrón de proteína VP60 purificada y posteriormente análisis mediante el sistema de obtención de imágenes en gel XRS ChemiDoc™ (Bio-Rad™, EE.UU.). Se cultivaron células de insecto en suspensión a una densidad de 2x10⁶ células/ml y se infectaron a una MOI de 0,1 con cada baculovirus. Esto demostró que mientras que la productividad de proteína VP60 en células infectadas con el baculovirus convencional era aproximadamente de 630 mg/l, las células de insecto infectadas con el baculovirus de la invención podían producir aproximadamente 1.950 mg/l (figura 6B). Las productividades máximas de baculovirus recombinantes se obtuvieron a diferentes tiempos tras la infección (72 y 120 horas tras la infección respectivamente).

Se infectaron células *Sf*9 de insecto cultivadas en suspensión con un baculovirus convencional que expresa la proteína VP60 (*polhVP60*) o el baculovirus de la presente invención que expresa la proteína VP60 (*polhAc-ie-01lhr1p6,9p10VP60*). Se purificaron las VLP que se formaron tras la expresión de la proteína VP60. Para este fin, se usaron volúmenes idénticos de cultivos celulares en ambos casos. Se alteraron las células mediante un tratamiento suave con un detergente no iónico y se sometieron después a aclaramiento a una alta velocidad de centrifugación en un gradiente de sacarosa para purificar las VLP. Entonces se analizaron las VLP mediante microscopía electrónica con tinción negativa. Las VLP formadas por ambos baculovirus eran idénticas en tamaño y forma pero la concentración de pseudopartículas observadas reflejó las diferencias en los niveles de expresión de VP60 detectados anteriormente entre los dos baculovirus. El número de VLP producidas por células infectadas con el baculovirus modificado con el casete de expresión de la invención era mayor que para las células infectadas con el baculovirus que expresa la proteína VP60 que usa el promotor *polh* (figura 6C). El mayor número de VLP producidas por las células infectadas con el baculovirus de la invención se correlacionaba con un expresión aumentada de proteína VP60 en estas células, y la cantidad de proteína VP60 detectada en VLP purificadas se analizó mediante electroforesis SDS-PAGE y tinción con azul de Coomassie (figura 6C, paneles superiores, insertos en las esquinas inferiores izquierdas).

30 Proteína L1

5

10

15

20

25

35

55

Los resultados obtenidos para la proteína L1 mediante análisis de inmunotransferencia de tipo Western con un anticuerpo monoclonal frente a L1 eran que se encontraron bandas que reaccionan más intensamente que corresponden a la proteína L1 del virus de papiloma humano (HPV16) en células infectados mediante el baculovirus modificado por el casete de expresión de la presente invención a los diferentes tiempos tras la infección (figura 7A). Esto demostró claramente que el casete de expresión novedoso (polhAc-ie-01/hr1p6,9p10L1) es más eficaz en la expresión de la proteína L1. Se encontró este resultado tanto en células de monocapa (Sf21) como de suspensión (Sf9) independientemente de la multiplicidad de la infección usada (MOI 5 o MOI 0,1) (datos no mostrados).

Se analizó la cantidad de proteína L1 usando un sistema de detección de inmunotransferencia de tipo Western ECL y un sistema de obtención de imágenes en gel XRS ChemiDoc™ (Bio-Rad™, EE.UU.). Se estudiaron reacciones de inmunotransferencia de tipo Western a diferentes tiempos tras la infección en células *Sf9* cultivadas en suspensión tal como se describió anteriormente. Se expresaron los datos de cuantificación de este análisis con los diferentes baculovirus obtenidos mediante el sistema de obtención de imágenes en gel XRS ChemiDoc™ como unidades de expresión arbitrarias. En el momento de máximos niveles de expresión de L1 de diferentes baculovirus analizados (96 y 120 hpi respectivamente), el nivel de expresión de L1 VP60 era más de 3,5 veces mayor en cultivos *Sf9* de suspensión (MOI de 0,1) con el baculovirus modificado por el casete de expresión de la invención (*polhAc-ie-01/hr1p6,9p10L1*) (figura 7B). Estas diferencias en acumulación de proteínas también se observaron en células Hi-5™ (datos no mostrados), sugiriendo que el casete de expresión de baculovirus de la invención podría usarse para producir la proteína recombinante L1 en diferente líneas celulares de insectos usadas en la investigación y la industria.

De manera importante, los niveles de expresión de proteína L1 recombinante mediada por el casete de expresión de baculovirus de la presente invención eran mayores en cualquiera de los tiempos tras la infección analizados (figura 7A). Los máximos niveles de expresión se detectaron a las 120 h tras la infección con el baculovirus modificado genéticamente con el casete de expresión de la presente invención, mientras que el máximo nivel de expresión con el baculovirus convencional (polhCap) era a las 96 h tras la infección (figuras 7A y B).

La tinción por inmunotransferencia con un anticuerpo monoclonal específico para L1 de células *Sf21* infectadas en monocapa a una MOI de 5 por ambos baculovirus reveló claras diferencias en la intensidad de fluorescencia de las células infectadas. Se encontraron intensidades de inmunofluorescencia mayores en células infectadas mediante el baculovirus modificado por el casete de expresión de la invención (polhAc-ie-01/hr1p6,9p10L1), indicando mayores niveles de expresión de L1 (figura 7C).

65 <u>Ejemplo 5. El casete de expresión de baculovirus de la invención induce la proliferación celular y el aumento de la viabilidad celular.</u>

Se evaluaron los baculovirus del ejemplo 4 que contenían los casetes de expresión polhCap, polhVP60, polhL1, polhAc-ie-01/hr1p6,9p10Cap, polhAc-ie-01/hr1p6,9p10VP60 y polhAc-ie-01/hr1p6,9p10L1 en términos de su efecto en el crecimiento celular y viabilidad.

5

Se realizó el experimento tal como se describe en el ejemplo 1 y pudo observarse de manera similar un aumento en el número de células, así como un aumento en la viabilidad para las células infectadas con el baculovirus que contenía el casete de expresión de la invención, es decir polhAc-ie-01/hr1p6,9p10Cap (figura 8A), polhAc-ie-01/hr1p6,9p10VP60 (figura 8B) y polhAcie- 01/hr1p6,9p10L1 (figura 8C).

10

Ejemplo 6. El casete de expresión de la presente invención potencia la productividad de proteínas recombinantes que forman partículas de tipo virus en larvas de insecto Trichoplusia ni infectadas por baculovirus.

15

20

Se analizó la expresión de proteína Cap mediada por los diferentes baculovirus (con el casete de expresión convencional y con el casete de expresión de la presente invención) en larvas Trichoplusia ni infectadas. Para este fin, se infectó a las larvas con 5 x 104 UFP del baculovirus con el casete de expresión polhCap o polhAc-ie-01/hr1p6,9p10Cap y se analizaron los extractos a las 72 y 96 h tras la infección mediante tinción con azul de Coomassie y análisis de inmunotransferencia de tipo Western usando un anticuerpo monoclonal frente a la proteína Cap (figura 9A). También se cuantificó la proteína Cap expresada en los diferentes extractos mediante el sistema de obtención de imágenes en gel XRS ChemiDoc™ (Bio-Rad™, EE.UU.) (figura 9B). El nivel de expresión de Cap aumentó en extractos de larvas mediante el baculovirus que contenía el casete de expresión de la presente invención mencionado anteriormente en aproximadamente el 325% a las 72 h tras la infección y en el 24% a las 96 h

tras la infección (figura 9B).

Adicionalmente, las larvas infectadas con el baculovirus modificado por el casete de expresión de la presente 25 invención presentaron un aumento del 30% en la supervivencia (figura 10). Esto representa un aumento significativo en la recuperación de biomasa de insecto durante el procedimiento de producción.

Posteriormente, se estudió la productividad de 100 larvas infectadas con el baculovirus convencional anterior y el 30 baculovirus de la invención considerando tanto el rendimiento de producción de Cap determinado mediante análisis

35

de proteínas microfluídico (Experion™; BioRad™, EE.UU.) y la biomasa de insecto recuperada tras la infección. Se estudió la productividad a las 72 y 96 h tras la infección con 5 x 10⁵ UFP del respectivo baculovirus. El baculovirus que contenía el casete de expresión de la invención, es decir polhAc-ie-01/hr1p6,9p10Cap, aumentó la productividad de la proteína Cap en larvas de insecto infectadas con respecto al baculovirus convencional en aproximadamente 3,5 veces a las 72 h tras la infección y 2 veces a las 96 h tras la infección (figura 11). Cien larvas infectadas con el baculovirus que contenía el casete de expresión polhAc-ie-01jhr1p6,9p10Cap podían producir aproximadamente 300 mg de proteína Cap recombinante a las 96 h tras la infección, mientras que las larvas infectadas con el baculovirus convencional solo producían 150 mg (figura 11).

40 Ejemplo 7. Virus y cultivos celulares.

> Las líneas celulares de Spodoptera frugiperda Sf21 o Sf9 se cultivaron en placas de cultivo tisulares de 6 pocillos (1x10⁶ células/pocillo) en medio de insecto TNM-FH (Pan Biotech™, Alemania) que contenía el 10% suero bovino fetal inactivado por calor (Pan Biotech™, Alemania) a 27°C.

45

Se infectaron las células confluentes Sf9 o Sf21 en monocapa (1x10⁶ células/pocillo) con el baculovirus a diferentes multiplicidades de infección (desde 0,01 hasta 10). En suspensión, se infectaron células Sf9 (2x10⁶ células/ml) igualmente a diferentes multiplicidades de infección. Se analizaron las células infectadas a desde 16 hasta 120 h tras la infección.

50

Ejemplo 8. Generación de los vectores donadores y de clonación de la invención

55

Se usó un plásmido pUC57 que contenía el casete de expresión de baculovirus de la presente invención como vector de clonación. Se clonaron el gen que codifica para la proteína Cap (ORF2 a partir de circovirus porcino de tipo 2), el gen que codifica para la proteína VP60 (virus de la enfermedad hemorrágica del coneio) o el gen que codifica para la proteína L1 (virus de papiloma humano 16) en el MCS de un plásmido de clonación usando los sitios de restricción Xho I y Nco I. Tras la introducción de la proteína que forma VLP que codifica para genes, el vector de clonación pasar a ser el vector donador.

60

El casete de expresión de baculovirus en el vector donador está bordeado por sitios de restricción específicos (por ejemplo Bg/II y BstZ17I en el extremo 5'-terminal y Bg/ II y Sgfl en el extremo 3'-terminal) para facilitar la subclonación a un vector de transferencia de un sistema de generación de baculovirus comercial (por ejemplo, basándose en la transposición tal como el sistema "Bac-to-Bac[®]"; invitrogen™).

65 Ejemplo 9. Generación del vector de transferencias de la invención Se generaron los vectores de transferencia digiriendo los vectores donadores anteriores con *BstZ17*I en el extremo 5'-terminal del casete de expresión y con *Hind* III en el extremo 3'-terminal del casete de expresión. En este caso, como resultado de la subclonación, la señal SV40 de poliadenilación del casete de expresión de baculovirus se intercambia por la señal SV40 de poliadenilación del vector de transferencia. Se clonaron en el vector de transferencia pFastBac[™]1 que se digirió también con las mismas enzimas. Aparte de esto, todos los elementos del casete de expresión se incluyen en el vector de transferencia pFastBac, que sustituye el promotor *polh* y MCS del vector de transferencia comercial original.

Ejemplo 10. Generación de vectores de expresión de baculovirus de la invención usando el sistema "Bac-to-Bac[®]"

Se usaron los vectores de transferencia pFastBac™1 modificados del ejemplo 9 para generar baculovirus recombinantes mediante el sistema de expresión de baculovirus "Bac-to-Bac®". Más específicamente, se usaron los vectores de transferencia modificados para transformar la cepa de huésped de *E. coli* DH10Bac™ que contiene un vector transportador de baculovirus (bácmido) y un plásmido auxiliar, y permite la generación de los bácmidos recombinantes tras la transposición del casete de expresión. Entonces se usó el ADN de los bácmidos recombinantes que contenía el casete de expresión de baculovirus de la presente invención para transfectar células *Sf21* de insecto usando Cellfectin[®]. 72 h tras la transfección, se recogieron las células y se obtuvo la primera generación de baculovirus recombinantes. Estos baculovirus recombinantes podían entonces ampliarse adicionalmente y/o valorarse según protocolos convencionales.

Para los baculovirus de la invención que se usaron en los ejemplos 4, 5 y 6, es decir polhAc-ie-01/hr1p6,9p10Cap, polhAc-ie-01/hr1p6,9p10VP60 y polhAc-ie-01/hr1p6,9p10L1, se clonó el ADNc de Ac-ie-01 bajo el control del promotor polh. En el mismo baculovirus, pero en otro locus, se clonaron las Cap, VP60 o L1 que codifican para genes en el sentido de 3' del promotor quimérico hr1p6,9p10 que se sintetizó previamente y contiene la región homóloga hr1 unida operativamente a los promotores p6,9 y p10. Una representación esquemática del casete de expresión resultante de baculovirus de la presente invención se muestra en la figura 4. El casete de expresión de este baculovirus, es decir polhAc-ie-01/hr1p6,9p10Cap, está representado por SEQ ID NO: 30. Específicamente, se usó una versión de este casete de expresión con una señal de poliadenilación génica de Cap de SV40 en los ejemplos (SEQ ID NO: 56). También se usaron los casetes de expresión polhAc-ie-01/hr1p6,9p10VP60 y polhAc-ie-01/hr1p6,9p10L1 de los ejemplos con una señal SV40 de poliadenilación y están representados por SEQ ID NO: 55 y 54, respectivamente.

De manera similar, se generaron los otros baculovirus mediante la misma metodología de los ejemplos 8-10.

35 <u>Ejemplo 11. Preparación de muestra de proteína.</u>

10

15

20

25

30

40

Se recogieron células infectadas de cada punto de tiempo $(1x10^6)$ y se centrifugaron a 14000 x g durante 5 min a 4°C. Se retiraron los sobrenadantes y se resuspendieron los granulados celulares en PBS y se sometieron a tres ciclos de congelación (-196°C) y descongelación (37°C). Se retiraron los desechos celulares mediante centrifugación.

Ejemplo 12. Estudio de transcurso de tiempo de expresión de proteínas.

Se infectaron células Sf9, Sf21 o Hi-5™ con los diferentes baculovirus recombinantes que expresaban proteína Cap bajo el control de diferentes elementos regulatorios, potenciadores y promotores, usando una MOI de 5 o 0,1 tal como se indica. Se recogieron cultivos celulares a diversos puntos de tiempo (24, 48, 72, 96 y 120 h tras la infección) y se analizó la expresión de proteínas recombinantes mediante SDS-PAGE seguida por tinción con azul de Coomassie y/o inmunotransferencia de tipo Western.

Se llevó a cabo la cuantificación de las proteínas recombinantes mediante dos metodologías. Una implicaba el uso de inmunotransferencia de tipo Western cuantitativa con un anticuerpo monoclonal específico y posterior análisis mediante el sistema de obtención de imágenes en gel XRS ChemiDoc™ (Bio-Rad™, EE.UU.) usando proteínas complementarias purificadas para llevar a cabo una curva de cuantificación patrón. Una segunda técnica implicaba el uso de perlas Pro260 (Bio-Rad™) y electroforesis capilar usando el sistema Experion™ (Bio-Rad™), según las instrucciones del fabricante. Se realizó la electroforesis de las muestras a través de microcanales controlando el voltaje aplicado y la energía eléctrica. Las perlas microfluídicas permitían varios procedimientos secuenciales incluyendo separación, tinción, decoloración, detección y análisis básico de datos sin necesidad alguna de la intervención del usuario. El sistema Experion™ revelaba y cuantificaba muestras de proteína de desde 10 hasta 260 kDa en tamaño, con una alta sensibilidad, comparable a la tinción en gel SDS-PAGE con azul de Coomassie coloidal. Para la cuantificación, se usó una escala Pro260 en el sistema Experion™, que es una versión modificada del patrón Precision Plus Protein™ que se ha optimizado para su uso en este sistema.

Ejemplo 13. Crianza e infección de larvas de insecto.

65 Se criaron larvas de *Trichoplusia ni* (falso medidor) en condiciones de bioseguridad de nivel 2. Se colocaron los huevos en jaulas de desarrollo de larvas diseñadas especialmente que contenían una dieta de insecto artificiales

mantuvieron en cámaras de crecimiento a 22°C bajo humedad controlada (50%) y condiciones periódicas de luz (8 h/día).

Se usaron para todos los experimentos larvas de *Trichoplusia ni* (falso medidor) de quinta fase (larvas de última fase antes de la pupación). El peso estándar de cada larva era de aproximadamente 120-130 mg y se inyectaron larvas cerca de las falsas patas (anterior a la cavidad corporal) con 5 μl de baculovirus recombinantes diluidos para alcanzar el número de UFP por dosis seleccionada. Se procesaron las larvas a 72 o 96 h tras la infección. Se congelaron las larvas recogidas inmediatamente para almacenarlas a -20°C hasta que se procesaran para la cuantificación de proteína recombinante. Se obtuvieron las proteínas totales solubles, no desnaturalizadas (TSNDP) de las larvas *T. ni* congeladas infectadas mediante el baculovirus mediante homogenización usando una mezcladora Bag Mixer[®] (Interscience ™, Francia) durante 2 min. El tampón de extracción estaba compuesto por PBS 1x, Triton X-100 al 0.01%, cóctel inhibidor de proteasa completo (Roche™, Alemania), y DTT 25 mM.

Ejemplo 14. Análisis de inmunotransferencia de tipo Western.

Se revelaron las fracciones de proteína soluble total (10 μg) de células infectadas con los baculovirus recombinantes en geles SDS-PAGE al 15%. Se tiñeron los geles mediante el método de tinción con azul de Coomassie o se transfirieron a membranas nitrocelulosa. Se probaron las inmunotransferencias de tipo Western con el anticuerpo monoclonal anti-Cap (I36A; IngenasaTM, España) a 1:1000 o con el anticuerpo monoclonal anti L1 HPV16 (Camvir1; AbCam, EE.UU.) a 1:1000, y se visualizaron los inmunocomplejos con el conjugado marcado con peroxidasa de rábano (HRP)-anti-IgG de ratón (KPLTM, R.U:), diluido a 1:2.000 o mediante un conjugado marcado con peroxidasa de rábano (HRP)-anti-IgG de conejo (KPLTM, UK), diluido 1:2.000 respectivamente como anticuerpo secundario. Se detectaron bandas de proteína usando un sistema de detección de inmunotransferencia de tipo Western ECL y se

Bibliografía

15

20

25

30

50

60

1. Nettleship, J.E., Assenberg, R., Diprose, J.M., Rahman-Huq, N., Owens, R.J. Recent advances in the production of proteins in insect and mammalian cells for structural biology. J. Struct. Biol. 2010,172, 55-65.

analizó mediante el sistema de obtención de imágenes en gel XRS ChemiDoc™ (Bio-Rad™, EE.UU.).

- 2. Gomez-Casado E, Gomez-Sebastian S, Núñez MC, Lasa-Covarrubias R, Martínez-Pulgarín S, Escribano JM. Insect larvae biofactories as a platform for influenza vaccine production. Protein Expr Purif. 79: 35-43. 2011.
- 3. Smith, G.E., M.D. Summers, and M.J. Fraser. 1983. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3: 2156-21 65.
 - 4. Hitchman RB, Possee RD, King LA. Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat Biotechnol. 2009;3(1):46-54.
- 40 5. Hashimoto, Y., S. Zhang, Y. R. Chen and G. W. Blissard (2012). "BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins." BMC Biotechnol 12: 12.
- 6. Taticek RA, Choi C, Phan SE, Palomares LA, Shuler ML. Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture. Biotechnol. Prog. 2001, 17 (4), 676-684
 - 7. Hill-Perkins MS, Possee RD. A baculovirus expression vector derived from the basic protein promotor of *Autographa californica* nuclear polyhedrosis virus. J Gen Virol. 1990, 71 (Pt 4):971-6.
 - 8. Taryn MS, Huijskens I, Willis LG, Theilmann DA. The *Autographa californica* multiple nucleopolyhedrovirus ie0- ie1 gen complex is essential for wild-type virus replication, but either IE0 or IE1 can support virus growth. Journal of Virology, 2005, Vol. 79 (No. 8): 4619-4629
- 9. Passarelli, A. L., and L. K. Miller. Three baculovirus genes involved in late and very late gen expression: ie-1, ie-n, and lef-2. J. Virol. 1993, 67:2149-2158.
 - 10. Rodems, S. M., S. S. Pullen, and P. D. Friesen. ADN-dependent transregulation by IE1 of *Autographa californica* nuclear polyhedrosis virus: IE1 domains required for transactivation and ADN binding. J. Virol. 1997, 71: 9270-9277.
 - 11. Lin X, Chen Y, Yi Y, Zhang Z: Baculovirus immediately early 1, a mediator for homologous regions potenciador function in trans. Virol J 2010, 7:32.
- 12. Okano K, Mikhailov VS, Maeda S: Colocalization of baculovirus IE-1 and two ADN-binding proteins, DBP and LEF-3, to viral replication factories. Journal of virology 1999, 73(1):110-119.

Lista de secuencias

<110> ALTERNATIVE GEN EXPRESSION S.L.

5 <120> SISTEMA DE EXPRESIÓN DE VECTOR DE BACULOVIRUS PARA LA EXPRESIÓN DE PROTEÍNAS RECOMBINANTES (EN PARTICULAR, LAS QUE FORMAN PARTÍCULAS DE TIPO VIRUS)

<130> 169 570

10 <150> EP 12 196 120.5 <151> 07-12-2012

<160> 56

15 <170> PatentIn version 3.5

<210> 1

<211> 1911

<212> ADN

20 <213> Nucleopolihedrovirus Autographa californica

<400> 1

atgateegta cateeageea egt	cctgaac gtccaagaaa	acatcatgac	ttccaactgt	60
gcttccagcc cctactcctg tga	aggccact tcagcctgcg	ctgaggccca	gcaactgcag	120
gtggacacag gtggcgataa gat	cgtgaac aaccaggtca	ccatgactca	aatcaacttc	180
aacgcttcct acacctctgc cag	cactece tetegtgeta	gcttcgacaa	ctcatactcg	240
gagttctgcg acaagcaacc taa	acgattac ttgtcttact	acaaccaccc	aaccccggac	300
ggagctgata ctgtcatctc cga	ctctgaa accgctgccg	ctagcaactt	cctcgcctca	360
gttaactcgc tcactgacaa cga	tttggtg gagtgtctgc	tcaagaccac	tgacaacctg	420
gaggaagetg tgteetetge eta	ctacage gagteacteg	aacagccagt	ggtcgaacaa	480
ccctctccta gctcagctta cca	egeegag teettegaae	actctgctgg	tgtcaaccag	540
ccgtcggcca caggcaccaa gag	gaagttg gacgagtacc	tggataactc	ccagggagtt	600
gtgggtcaat tcaacaagat caa	gttgaga cctaagtaca	agaagagcac	catccagtca	660
tgcgctacac tggaacaaac cat	caaccac aacactaaca	tctgtacagt	ggcttccacc	720
caggagatca ctcactactt cac	aaacgac ttcgccccct	acctgatgag	gttcgacgat	780
aacgactaca actcgaacag att	ctccgat cacatgtctg	aaaccggtta	ctacatgttc	840
gtcgttaaga agtccgaggt gaa	gcctttc gaaatcatct	tcgccaagta	cgtctctaac	900
gtggtctacg agtacacaaa caa	ctactac atggttgaca	accgtgtgtt	cgttgtgacc	960
ttcgataaga tccgcttcat gat	cagctac aacctggtta	aggagactgg	catcgaaatc	1020
ccacactcac aggacgtctg caa	cgatgag accgccgctc	aaaactgcaa	gaagtgtcac	1080
ttcgtggacg tccaccacac att	caaggcc gctctgacct	cctacttcaa	cctcgatatg	1140
tactacgctc agacaacctt cgt	gaccttg ctgcaatcac	tcggcgagcg	taagtgtgga	1200

ttcctcttgt cgaagttgta cgagatgtac caggacaaga acctcttcac tttgcccatc 1260 atgctgagcc gcaaggaatc aaacgagatc gaaaccgcct ctaacaactt cttcgtctcg 1320 ccatacgttt cccagatect caagtacteg gagteegtee aatteeegga caaceeteee 1380 aacaagtacg tcgttgataa cctgaacctc atcgtgaaca agaagagcac tctgacatac 1440 aagtactcgt ccgtcgctaa cctgctcttc aacaactaca agtaccacga caacatcgct 1500 tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 1620 gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1680 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1740 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1800 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1860 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1911 ttcgccgagc aaaagctcaa ctgcaagtac aagaagttcg agttcaacta a

<210> 2

5

<211> 1749

<212> ADN

<213> Nucleopolihedrovirus Autographa californica

<400> 2 atgactcaaa tcaacttcaa cgcttcctac acctctgcca gcactccctc tcgtgctagc 60 ttcgacaact catactcgga gttctgcgac aagcaaccta acgattactt gtcttactac 120 aaccacccaa ccccggacgg agctgatact gtcatctccg actctgaaac cgctgccgct 180 agcaacttcc tcgcctcagt taactcgctc actgacaacg atttggtgga gtgtctgctc 240 aagaccactg acaacctgga ggaagctgtg teetetgeet actacagega gteactegaa 300 cagccagtgg tcgaacaacc ctctcctagc tcagcttacc acgccgagtc cttcgaacac 360 tctgctggtg tcaaccagcc gtcggccaca ggcaccaaga ggaagttgga cgagtacctg 420 480 gataactccc agggagttgt gggtcaattc aacaagatca agttgagacc taagtacaag 540 aagagcacca tccagtcatg cgctacactg gaacaaacca tcaaccacaa cactaacatc tgtacagtgg cttccaccca ggagatcact cactacttca caaacgactt cgcccctac 600 ctgatgaggt tcgacgataa cgactacaac tcgaacagat tctccgatca catgtctgaa 660 720 accggttact acatgttcgt cgttaagaag tccgaggtga agcctttcga aatcatcttc 780 gccaagtacg tctctaacgt ggtctacgag tacacaaaca actactacat ggttgacaac 840 cgtgtgttcg ttgtgacctt cgataagatc cgcttcatga tcagctacaa cctggttaag 900 gagactggca tcgaaatccc acactcacag gacgtctgca acgatgagac cgccgctcaa 960 aactgcaaga agtgtcactt cgtggacgtc caccacacat tcaaggccgc tctgacctcc

tacttcaacc	tcgatatgta	ctacgctcag	acaaccttcg	tgaccttgct	gcaatcactc	1020
ggcgagcgta	agtgtggatt	cctcttgtcg	aagttgtacg	agatgtacca	ggacaagaac	1080
ctcttcactt	tgcccatcat	gctgagccgc	aaggaatcaa	acgagatcga	aaccgcctct	1140
aacaacttct	tcgtctcgcc	atacgtttcc	cagatcctca	agtactcgga	gtccgtccaa	1200
ttcccggaca	accctcccaa	caagtacgtc	gttgataacc	tgaacctcat	cgtgaacaag	1260
aagagcactc	tgacatacaa	gtactcgtcc	gtcgctaacc	tgctcttcaa	caactacaag	1320
taccacgaca	acatcgcttc	taacaacaac	gccgagaacc	tcaagaaggt	caagaaggaa	1380
gacggaagca	tgcacatcgt	tgagcagtac	ttgactcaaa	acgtcgataa	cgttaagggt	1440
cacaacttca	tcgtgttgtc	cttcaagaac	gaggaaaggc	tgaccatcgc	taagaagaac	1500
aaggagttct	actggatctc	tggcgaaatc	aaggacgttg	atgtgagcca	ggtcatccaa	1560
aagtacaaca	gattcaagca	ccacatgttc	gtgatcggca	aggtcaaccg	tcgcgagtca	1620
actacactgc	acaacaactt	gctgaagctc	ttggccttga	tcctgcaggg	actggtgcca	1680
ctctccgacg	ccatcacatt	cgccgagcaa	aagctcaact	gcaagtacaa	gaagttcgag	1740
ttcaactaa						1749

<210> 3

5

<211> 1911

<212> ADN

<213> Nucleopolihedrovirus Autographa californica

atgatecgta catecageca egteetgaac gteeaagaaa acateatgae tteeaactgt 60 gcttccagcc cctactcctg tgaggccact tcagcctgcg ctgaggccca gcaactgcag 120 180 gtggacacag gtggcgataa gatcgtgaac aaccaggtca ccatgactca aatcaacttc aacgetteet acacetetge cageacteee tetegtgeta gettegacaa eteatacteg 240 300 gagttctgcg acaagcaacc taacgattac ttgtcttact acaaccaccc aaccccggac ggagctgata ctgtcatctc cgactctgaa accgctgccg ctagcaactt cctcgcctca 360 gttaactcgc tcactgacaa cgatttggtg gagtgtctgc tcaagaccac tgacaacctg 420 gaggaagctg tgtcctctgc ctactacagc gagtcactcg aacagccagt ggtcgaacaa 480 ccctctccta gctcagctta ccacgccgag tccttcgaac actctgctgg tgtcaaccag 540 600 ccgtcggcca caggcaccaa gaggaagttg gacgagtacc tggataactc ccagggagtt 660 gtgggtcaat tcaacaagat caagttgaga cctaagtaca agaagagcac catccagtca 720 tgcgctacac tggaacaaac catcaaccac aacactaaca tctgtacagt ggcttccacc caggagatca ctcactactt cacaaacgac ttcgccccct acctgatgag gttcgacgat 780 aacgactaca actcgaacag attctccgat cacatgtctg aaaccggtta ctacatgttc 840

gtggtctacg agtacacaaa caactactac atggttgaca accggtgtgt cgttggacc 960 ttcgataaga tccgcttcat gatcagctac aacctggtta aggagactgg catcgaaatc 1020 ccacactcac aggacgtctg caacgatgag accgccgctc aaaactgcaa gaagtgtcac 1080 ttcgtggacg tccaccacac attcaaggcc gctctgacct cctacttcaa cctcgatatg 1140 tactacgctc agacaacctt cgtgaccttg ctgcaatcac tcggcgagcg taagtgtgga 1200 ttcctcttgt cgaagttgta cgagatgtac caggacaaga acctcttcac tttgcccatc 1260 atgctgagcc gcaaggaatc aaacgagatc gaaaccgcct ctaacaactt cttcgtctcg 1320 ccatacgttt cccagatcct caagtactcg gagtccgtcc aattcccgga caaccctccc 1380 aacaagtacg tcgttgataa cctgaacctc atcgtgaaca agaaggaca tctgacatac 1440 aagtactcgt ccgtcgctaa cctgctcttc aacaactaca agtaccacga caaccatcgct 1500 tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 gttgggcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaaggagtt ctactggatc 1800 tctgcggaaa tcatggcctt gatcgcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactcccga cgccatcaca 1911	gtcgttaaga	agtccgaggt	gaagcctttc	gaaatcatct	tcgccaagta	cgtctctaac	900
ccacactcac aggacgtctg caacgatgag accgccgctc aaaactgcaa gaagtgtcac 1080 ttcgtggacg tccaccacac attcaaggcc gctctgacct cctacttcaa cctcgatatg 1140 tactacgctc agacaacctt cgtgaccttg ctgcaatcac tcggcgagcg taagtgtgga 1200 ttcctcttgt cgaagttgta cgagatgtac caggacaaga acctcttcac tttgcccatc 1260 atgctgagcc gcaaggaatc aaacgagatc gaaaccgcct ctaacaactt cttcgtctcg 1320 ccatacgttt cccagatcct caagtactcg gagtccgtcc aattcccgga caaccctccc 1380 aacaagtacg tcgttgataa cctgaacctc atcgtgaaca agaagagcac tctgacatac 1440 aagtactcgt ccgtcgctaa cctgacctc aacaactaca agtaccacga caacatcgct 1500 tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt cactctccga cgccatcaca 1800 ttgctgaagc tcttggcctt gatcctga ggactggtgc cactctccga cgccatcaca 1800	gtggtctacg	agtacacaaa	caactactac	atggttgaca	accgtgtgtt	cgttgtgacc	960
ttcgtggacg tccaccaca attcaaggcc gctctgacct cctacttcaa cctcgatatg 1140 tactacgctc agacaacctt cgtgaccttg ctgcaatcac tcggcgagcg taagtgtgga 1200 ttcctcttgt cgaagttgta cgagatgtac caggacaaga acctcttcac tttgcccatc 1260 atgctgagcc gcaaggaatc aaacgagatc gaaaccgcct ctaacaactt cttcgtctcg 1320 ccatacgttt cccagatcct caagtactcg gagtccgtcc aattcccgga caaccctccc 1380 aacaagtacg tcgttgataa cctgaacctc atcgtgaaca agaagagcac tctgacatac 1440 aagtactcgt ccgtcgctaa cctgctcttc aacaactaca agtaccacga caacatcgct 1500 tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca	ttcgataaga	tccgcttcat	gatcagctac	aacctggtta	aggagactgg	catcgaaatc	1020
tactacgete agacaacett egtgacettg etgeaateae teggegageg taagtgtga 1200 tteetettgt egaagttgta egagatgtae eaggacaaga acetetteae tttgeceate 1260 atgetgagee geaaggaate aaacgagate gaaacegeet etaacaacet ettegteteg 1320 ecatacgttt eceagateet eaagtacteg gagteegtee aatteeegga eaaceeteee 1380 aacaagtaeg tegttgataa eetgaacete ategtgaaca agaaggageae tetgacatae 1440 aagtactegt eegtegetaa eetgetette aacaactaea agtaceaega eaacateget 1500 tetaacaaca aegeegagaa eeteaagaag gteaagaagg aagaeggaag eatgeacate 1560 gttgageagt aettgaetea aaacgtegat aaegttaagg gteacaacet eategtgttg 1620 teetteaaga aegaggaaag getgaceate getaagaaga acaaggagt etaetggate 1680 teetgeegaaa teaaggaegt tgatgtgage eaggteatee aaaagtaeaa eagatteaag 1740 eaceacatgt tegtgategg eaaggteaae egtegegagt eaactaeeet geacaacaac 1800 ttgetgaage tettggeett gateetgeag ggaetggtge eacteteega egeeateaca 1860	ccacactcac	aggacgtctg	caacgatgag	accgccgctc	aaaactgcaa	gaagtgtcac	1080
ttcctcttgt cgaagttgta cgagatgtac caggacaaga acctcttcac tttgcccatc 1260 atgctgagcc gcaaggaatc aaacgagatc gaaaccgcct ctaacaactt cttcgtctcg 1320 ccatacgttt cccagatcct caagtactcg gagtccgtcc aattcccgga caaccctccc 1380 aacaagtacg tcgttgataa cctgaacctc atcgtgaaca agaagagcac tctgacatac 1440 aagtactcgt ccgtcgctaa cctgctcttc aacaactaca agtaccacga caacatcgct 1500 tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	ttcgtggacg	tccaccacac	attcaaggcc	gctctgacct	cctacttcaa	cctcgatatg	1140
atgctgagcc gcaaggaatc aaacgagatc gaaaccgcct ctaacaactt cttcgtctcg 1320 ccatacgttt cccagatcct caagtactcg gagtccgtcc aattcccgga caaccctccc 1380 aacaagtacg tcgttgataa cctgaacctc atcgtgaaca agaagagcac tctgacatac 1440 aagtactcgt ccgtcgctaa cctgctcttc aacaactaca agtaccacga caacatcgct 1500 tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcaacactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaaggagtt ctactggatc 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	tactacgctc	agacaacctt	cgtgaccttg	ctgcaatcac	tcggcgagcg	taagtgtgga	1200
ccatacgttt cccagatcct caagtactcg gagtccgtcc aattcccgga caaccctccc 1380 aacaagtacg tcgttgataa cctgaacctc atcgtgaaca agaagagcac tctgacatac 1440 aagtactcgt ccgtcgctaa cctgctcttc aacaactaca agtaccacga caacatcgct 1500 tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	ttcctcttgt	cgaagttgta	cgagatgtac	caggacaaga	acctcttcac	tttgcccatc	1260
aacaagtacg tcgttgataa cctgaacctc atcgtgaaca agaagagcac tctgacatac 1440 aagtactcgt ccgtcgctaa cctgctcttc aacaactaca agtaccacga caacatcgct 1500 tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	atgctgagcc	gcaaggaatc	aaacgagatc	gaaaccgcct	ctaacaactt	cttcgtctcg	1320
aagtactcgt ccgtcgctaa cctgctcttc aacaactaca agtaccacga caacatcgct 1500 tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcgcag ggactggtgc cactctccga cgccatcaca 1860	ccatacgttt	cccagatcct	caagtactcg	gagtccgtcc	aattcccgga	caaccctccc	1380
tctaacaaca acgccgagaa cctcaagaag gtcaagaagg aagacggaag catgcacatc 1560 gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	aacaagtacg	tcgttgataa	cctgaacctc	atcgtgaaca	agaagagcac	tctgacatac	1440
gttgagcagt acttgactca aaacgtcgat aacgttaagg gtcacaactt catcgtgttg 1620 tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	aagtactcgt	ccgtcgctaa	cctgctcttc	aacaactaca	agtaccacga	caacatcgct	1500
tccttcaaga acgaggaaag gctgaccatc gctaagaaga acaaggagtt ctactggatc 1680 tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	tctaacaaca	acgccgagaa	cctcaagaag	gtcaagaagg	aagacggaag	catgcacatc	1560
tctggcgaaa tcaaggacgt tgatgtgagc caggtcatcc aaaagtacaa cagattcaag 1740 caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	gttgagcagt	acttgactca	aaacgtcgat	aacgttaagg	gtcacaactt	catcgtgttg	1620
caccacatgt tcgtgatcgg caaggtcaac cgtcgcgagt caactacact gcacaacaac 1800 ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	tccttcaaga	acgaggaaag	gctgaccatc	gctaagaaga	acaaggagtt	ctactggatc	1680
ttgctgaagc tcttggcctt gatcctgcag ggactggtgc cactctccga cgccatcaca 1860	tctggcgaaa	tcaaggacgt	tgatgtgagc	caggtcatcc	aaaagtacaa	cagattcaag	1740
	caccacatgt	tcgtgatcgg	caaggtcaac	cgtcgcgagt	caactacact	gcacaacaac	1800
ttcgccgagc aaaagctcaa ctgcaagtac aagaagttcg agttcaacta a 1911	ttgctgaagc	tcttggcctt	gatcctgcag	ggactggtgc	cactctccga	cgccatcaca	1860
	ttcgccgagc	aaaagctcaa	ctgcaagtac	aagaagttcg	agttcaacta	a	1911

<210> 4

<211> 666

<212> ADN

<213> Nucleopolihedrovirus Autographa californica

atgactcaaa tcaacttcaa cgcttcctac acctctgcca gcactccctc tcgtgctagc 60 ttcgacaact catactcgga gttctgcgac aagcaaccta acgattactt gtcttactac 120 aaccacccaa ccccggacgg agctgatact gtcatctccg actctgaaac cgctgccgct 180 agcaacttcc tcgcctcagt taactcgctc actgacaacg atttggtgga gtgtctgctc 240 aagaccactg acaacctgga ggaagctgtg tcctctgcct actacagcga gtcactcgaa 300 cagccagtgg tcgaacaacc ctctcctagc tcagcttacc acgccgagtc cttcgaacac 360 420 tctgctggtg tcaaccagcc gtcggccaca ggcaccaaga ggaagttgga cgagtacctg 480 gataactccc agggagttgt gggtcaattc aacaagatca agttgagacc taagtacaag 540 aagagcacca tccagtcatg cgctacactg gaacaaacca tcaaccacaa cactaacatc tgtacagtgg cttccaccca ggagatcact cactacttca caaacgactt cgcccctac 600

ctgatgaggt	tcgacgataa	cgactacaac	tcgaacagat	tctccgatca ca	tgtctgaa 660
accggt					666
<210> 5 <211> 828 <212> ADN <213> Nucleopo	olihedrovirus <i>Aut</i> o	ographa californio	ca		
<400> 5					
atgatccgta	catccagcca	cgtcctgaac	gtccaagaaa	acatcatgac tt	ccaactgt 60
gcttccagcc	cctactcctg	tgaggccact	tcagcctgcg	ctgaggccca go	caactgcag 120
gtggacacag	gtggcgataa	gatcgtgaac	aaccaggtca	ccatgactca aa	tcaacttc 180
aacgcttcct	acacctctgc	cagcactccc	tctcgtgcta	gcttcgacaa ct	catactcg 240
gagttctgcg	acaagcaacc	taacgattac	ttgtcttact	acaaccaccc aa	accccggac 300
ggagctgata	ctgtcatctc	cgactctgaa	accgctgccg	ctagcaactt co	etegeetea 360
gttaactcgc	tcactgacaa	cgatttggtg	gagtgtctgc	tcaagaccac to	gacaacctg 420
gaggaagctg	tgtcctctgc	ctactacagc	gagtcactcg	aacagccagt gg	gtcgaacaa 480
ccctctccta	gctcagctta	ccacgccgag	tccttcgaac	actctgctgg to	gtcaaccag 540
ccgtcggcca	caggcaccaa	gaggaagttg	gacgagtacc	tggataactc co	agggagtt 600
gtgggtcaat	tcaacaagat	caagttgaga	cctaagtaca	agaagagcac ca	atccagtca 660
				tctgtacagt go	
				acctgatgag gt	
			cacatgtctg		828
_	accegaacag	acceccgae	cacatytety	aaaccygt	020
<210> 6 <211> 582 <212> PRT <213> Nucleopo	olihedrovirus <i>Aut</i> o	ographa californio	ca		
<400> 6					
	n Ile Asn Pi 5	he Asn Ala	Ser Tyr Thr 10	Ser Ala Ser 1	Thr Pro L5
Ser Arg Ala	a Ser Phe A 20	_	Tyr Ser Glu 25	Phe Cys Asp I	Lys Gln
Pro Asn As ₁	p Tyr Leu S	er Tyr Tyr 40	Asn His Pro	Thr Pro Asp (Gly Ala
Asp Thr Va	l Ile Ser A	sp Ser Glu	Thr Ala Ala	Ala Ser Asn E	Phe Leu

Ala 65	Ser	Val	Asn	Ser	Leu 70	Thr	Asp	Asn	Asp	Leu 75	Val	Glu	Cys	Leu	Leu 80
Lys	Thr	Thr	Asp	Asn 85	Leu	Glu	Glu	Ala	Val 90	Ser	Ser	Ala	Tyr	Tyr 95	Ser
Glu	Ser	Leu	Glu 100	Gln	Pro	Val	Val	Glu 105	Gln	Pro	Ser	Pro	Ser 110	Ser	Ala
Tyr	His	Ala 115	Glu	Ser	Phe	Glu	His 120	Ser	Ala	Gly	Val	Asn 125	Gln	Pro	Ser
Ala	Thr 130	Gly	Thr	Lys	Arg	Lys 135	Leu	Asp	Glu	Tyr	Leu 140	Asp	Asn	Ser	Gln
Gly 145	Val	Val	Gly	Gln	Phe 150	Asn	Lys	Ile	Lys	Leu 155	Arg	Pro	Lys	Tyr	Lys 160
Lys	Ser	Thr	Ile	Gln 165	Ser	Cys	Ala	Thr	Leu 170	Glu	Gln	Thr	Ile	Asn 175	His
Asn	Thr	Asn	Ile 180	Cys	Thr	Val	Ala	Ser 185	Thr	Gln	Glu	Ile	Thr 190	His	Tyr
Phe	Thr	Asn 195	Asp	Phe	Ala	Pro	Tyr 200	Leu	Met	Arg	Phe	Asp 205	Asp	Asn	Asp
Tyr	Asn 210	Ser	Asn	Arg	Phe	Ser 215	Asp	His	Met	Ser	Glu 220	Thr	Gly	Tyr	Tyr
Met 225	Phe	Val	Val	Lys	Lys 230	Ser	Glu	Val	Lys	Pro 235	Phe	Glu	Ile	Ile	Phe 240
Ala	Lys	Tyr	Val	Ser 245	Asn	Val	Val	Tyr	Glu 250	Tyr	Thr	Asn	Asn	Tyr 255	Tyr
Met	Val	Asp	Asn 260	Arg	Val	Phe	Val	Val 265	Thr	Phe	Asp	Lys	Ile 270	Arg	Phe
Met	Ile	Ser 275	Tyr	Asn	Leu	Val	Lys 280	Glu	Thr	Gly	Ile	Glu 285	Ile	Pro	His
Ser	Gln 290	Asp	Val	Cys	Asn	Asp 295	Glu	Thr	Ala	Ala	Gln 300	Asn	Cys	Lys	Lys
Cys 305	His	Phe	Val	Asp	Val 310	His	His	Thr	Phe	Lys 315	Ala	Ala	Leu	Thr	Ser 320

Tyr	Phe	Asn	Leu	Asp 325	Met	Tyr	Tyr	Ala	Gln 330	Thr	Thr	Phe	Val	Thr 335	Leu
Leu	Gln	Ser	Leu 340	Gly	Glu	Arg	Lys	Cys 345	Gly	Phe	Leu	Leu	Ser 350	Lys	Leu
Tyr	Glu	Met 355	Tyr	Gln	Asp	Lys	Asn 360	Leu	Phe	Thr	Leu	Pro 365	Ile	Met	Leu
Ser	A rg 370	Lys	Glu	Ser	Asn	G1u 375	Ile	Glu	Thr	Ala	Ser 380	Asn	Asn	Phe	Phe
Val 385	Ser	Pro	Tyr	Val	Ser 390	Gln	Ile	Leu	Lys	Tyr 395	Ser	Glu	Ser	Val	Gln 400
Phe	Pro	Asp	Asn	Pro 405	Pro	Asn	Lys	Tyr	Val 410	Val	Asp	Asn	Leu	Asn 415	Leu
Ile	Val	Asn	Lys 420	Lys	Ser	Thr	Leu	Thr 425	Tyr	Lys	Tyr	Ser	Ser 430	Val	Ala
Asn	Leu	Leu 435	Phe	Asn	Asn	Tyr	Lys 440	Tyr	His	Asp	Asn	Ile 445	Ala	Ser	Asn
Asn	Asn 450	Ala	Glu	Asn	Leu	Lys 455	Lys	Val	Lys	Lys	Glu 460	Asp	Gly	Ser	Met
His 465	Ile	Val	Glu	Gln	Tyr 470	Leu	Thr	Gln	Asn	Val 475	Asp	Asn	Val	Lys	Gly 480
His	Asn	Phe		Val 485	Leu	Ser	Phe	_	Asn 490		Glu	Arg		Thr 495	
Ala	Lys	Lys	Asn 500	Lys	Glu	Phe	Tyr	Trp 505	Ile	Ser	Gly	Glu	Ile 510	Lys	Asp
Val	Asp	Val 515	Ser	Gln	Val	Ile	Gln 520	Lys	Tyr	Asn	Arg	Phe 525	Lys	His	His
Met	Phe 530	Val	Ile	Gly	Lys	Val 535	Asn	Arg	Arg	Glu	Ser 540	Thr	Thr	Leu	His
Asn 545	Asn	Leu	Leu	Lys	Leu 550	Leu	Ala	Leu	Ile	Leu 555	Gln	Gly	Leu	Val	Pro 560
Leu	Ser	Asp	Ala	Ile 565	Thr	Phe	Ala	Glu	Gln 570	Lys	Leu	Asn	Cys	Lys 575	Tyr
Lys L	ys Phe	e Glu l	Phe A	sn											

580

<210>	7
<211>	636
<212>	PRT

<213> Nucleopolihedrovirus Autographa californica

<400> 7

Met Ile Arg Thr Ser Ser His Val Leu Asn Val Gln Glu Asn Ile Met 1 5 10 15

Thr Ser Asn Cys Ala Ser Ser Pro Tyr Ser Cys Glu Ala Thr Ser Ala 20 25 30

Cys Ala Glu Ala Gln Gln Leu Gln Val Asp Thr Gly Gly Asp Lys Ile 35 40 45

Val Asn Asn Gln Val Thr Met Thr Gln Ile Asn Phe Asn Ala Ser Tyr 50 55 60

Thr Ser Ala Ser Thr Pro Ser Arg Ala Ser Phe Asp Asn Ser Tyr Ser 65 70 75 80

Glu Phe Cys Asp Lys Gln Pro Asn Asp Tyr Leu Ser Tyr Tyr Asn His 85 90 95

Pro Thr Pro Asp Gly Ala Asp Thr Val Ile Ser Asp Ser Glu Thr Ala
100 105 110

Ala Ala Ser Asn Phe Leu Ala Ser Val Asn Ser Leu Thr Asp Asn Asp 115 120 125

Leu Val Glu Cys Leu Leu Lys Thr Thr Asp Asn Leu Glu Glu Ala Val 130 135 140

Ser Ser Ala Tyr Tyr Ser Glu Ser Leu Glu Gln Pro Val Val Glu Gln 145 150 155 160

Pro Ser Pro Ser Ser Ala Tyr His Ala Glu Ser Phe Glu His Ser Ala 165 170 175

Gly Val Asn Gln Pro Ser Ala Thr Gly Thr Lys Arg Lys Leu Asp Glu 180 185 190

Tyr Leu Asp Asn Ser Gln Gly Val Val Gly Gln Phe Asn Lys Ile Lys 195 200 205

Leu	Arg 210	Pro	Lys	Tyr	Lys	Lys 215	Ser	Thr	Ile	Gln	Ser 220	Cys	Ala	Thr	Leu
Glu 225	Gln	Thr	Ile	Asn	His 230	Asn	Thr	Asn	Ile	Cys 235	Thr	Val	Ala	Ser	Thr 240
Gln	Glu	Ile	Thr	His 245	Tyr	Phe	Thr	Asn	Asp 250	Phe	Ala	Pro	Tyr	Leu 255	Met
Arg	Phe	Asp	Asp 260	Asn	Asp	Tyr	Asn	Ser 265	Asn	Arg	Phe	Ser	Asp 270	His	Met
Ser	Glu	Thr 275	Gly	Tyr	Tyr	Met	Phe 280	Val	Val	Lys	Lys	Ser 285	Glu	Val	Lys
Pro	Phe 290	Glu	Ile	Ile	Phe	Ala 295	Lys	Tyr	Val	Ser	Asn 300	Val	Val	Tyr	Glu
Tyr 305	Thr	Asn	Asn	Tyr	Tyr 310	Met	Val	Asp	Asn	Arg 315	Val	Phe	Val	Val	Thr 320
Phe	Asp	Lys	Ile	Arg 325	Phe	Met	Ile	Ser	Tyr 330	Asn	Leu	Val	Lys	Glu 335	Thr
Gly	Ile	Glu	Ile 340	Pro	His	Ser	Gln	Asp 345	Val	Cys	Asn	Asp	Glu 350	Thr	Ala
Ala	Gln	As n 355	Cys	Lys	Lys	Cys	His 360	Phe	Val	Asp	Val	His 365	His	Thr	Phe
Lys	Ala 370	Ala	Leu	Thr	Ser	Tyr 375	Phe	Asn	Leu	Asp	Met 380	Tyr	Tyr	Ala	Gln
Thr 385	Thr	Phe	Val	Thr	Leu 390	Leu	Gln	Ser	Leu	Gly 395	Glu	Arg	Lys	Cys	Gly 400
Phe	Leu	Leu	Ser	Lys 405	Leu	Tyr	Glu	Met	Tyr 410	Gln	Asp	Lys	Asn	Leu 415	Phe
Thr	Leu	Pro	Ile 420	Met	Leu	Ser	Arg	Lys 425	Glu	Ser	Asn	Glu	Ile 430	Glu	Thr
Ala	Ser	Asn 435	Asn	Phe	Phe	Val	Ser 440	Pro	Tyr	Val	Ser	Gln 445	Ile	Leu	Lys
Tyr	Ser	Glu	Ser	Val	Gln	Phe	Pro	Asp	Asn	Pro	Pro	Asn	Lys	Tyr	Val

	450					455					460				
Val 465	Asp	Asn	Leu	Asn	Leu 470	Ile	Val	Asn	Lys	Lys 475	Ser	Thr	Leu	Thr	Tyr 480
Lys	Tyr	Ser	Ser	Val 485	Ala	Asn	Leu	Leu	Phe 490	Asn	Asn	Tyr	Lys	Tyr 495	His
Asp	Asn	Ile	Ala 500	Ser	Asn	Asn	Asn	Ala 505	Glu	Asn	Leu	Lys	Lys 510	Val	Lys
Lys	Glu	Asp 515	Gly	Ser	Met	His	Ile 520	Val	Glu	Gln	Tyr	Leu 525	Thr	Gln	Asn
Val	Asp 530	Asn	Val	Lys	Gly	His 535	Asn	Phe	Ile	Val	Leu 540	Ser	Phe	Lys	Asn
Glu 545	Glu	Arg	Leu	Thr	Ile 550	Ala	Lys	Lys	Asn	Lys 555	Glu	Phe	Tyr	Trp	Ile 560
Ser	Gly	Glu	Ile	Lys 565	Asp	Val	Asp	Val	Ser 570	Gln	Val	Ile	Gln	Lys 575	Tyr
Asn	Arg	Phe	Lys 580	His	His	Met	Phe	Val 585	Ile	Gly	Lys	Val	Asn 590	Arg	Arg
Glu	Ser	Thr 595	Thr	Leu	His	Asn	Asn 600	Leu	Leu	Lys	Leu	Leu 605	Ala	Leu	Ile
Leu	Gln 610	Gly	Leu	Val	Pro	Leu 615	Ser	Asp	Ala	Ile	Thr 620	Phe	Ala	Glu	Gln
Lys 625	Leu	Asn	Cys	Lys	Tyr 630	Lys	Lys	Phe	Glu	Phe 635	Asn				
<210> <211> <212> <213>	222 PRT	eopolil	nedrov	virus <i>A</i>	utogra	apha c	aliforn	ica							
<400> Met 1	-	Gln	Ile	Asn 5	Phe	Asn	Ala	Ser	Tyr 10	Thr	Ser	Ala	Ser	Thr 15	Pro
Ser	Arg	Ala	Ser 20	Phe	Asp	Asn	Ser	Tyr 25	Ser	Glu	Phe	Cys	Asp 30	Lys	Gln
Desc	3	3	M	T		M	M	3	17. c	Desc	mla	Desc	3	G1	3 1-

		33					40					45			
Asp	Thr 50	Val	Ile	Ser	Asp	Ser 55	Glu	Thr	Ala	Ala	Ala 60	Ser	Asn	Phe	Leu
Ala 65	Ser	Val	Asn	Ser	Leu 70	Thr	Asp	Asn	Asp	Leu 75	Val	Glu	Cys	Leu	Leu 80
Lys	Thr	Thr	Asp	Asn 85	Leu	Glu	Glu	Ala	Val 90	Ser	Ser	Ala	Tyr	Tyr 95	Ser
Glu	Ser	Leu	Glu 100	Gln	Pro	Val	Val	Glu 105	Gln	Pro	Ser	Pro	Ser 110	Ser	Ala
Tyr	His	Ala 115	Glu	Ser	Phe	Glu	His 120	Ser	Ala	Gly	Val	Asn 125	Gln	Pro	Ser
Ala	Thr 130	Gly	Thr	Lys	Arg	Lys 135	Leu	Asp	Glu	Tyr	Leu 140	Asp	Asn	Ser	Gln
Gly 145	Val	Val	Gly	Gln	Phe 150	Asn	Lys	Ile	Lys	Leu 155	Arg	Pro	Lys	Tyr	Lys 160
Lys	Ser	Thr	Ile	Gln 165	Ser	Cys	Ala	Thr	Leu 170	Glu	Gln	Thr	Ile	Asn 175	His
Asn	Thr	Asn	Ile 180	Cys	Thr	Val	Ala	Ser 185	Thr	Gln	Glu	Ile	Thr 190	His	Tyr
Phe	Thr	Asn 195	Asp	Phe	Ala	Pro	Tyr 200	Leu	Met	Arg	Phe	Asp 205	Asp	Asn	Asp
Tyr	Asn 210	Ser	Asn	Arg	Phe	Ser 215	Asp	His	Met	Ser	Glu 220	Thr	Gly		
<210> <211> <212> <213>	276 PRT	eopolił	nedrov	virus <i>A</i>	utogra	apha c	aliforn	ica							
<400> Me t 1		Arg	Thr	Ser 5	Ser	His	Val	Leu	Asn 10	Val	Gln	Glu	Asn	Ile 15	Met
Thr	Ser	Asn	Cys 20	Ala	Ser	Ser	Pro	Tyr 25	Ser	Cys	Glu	Ala	Thr 30	Ser	Ala
Cys	Ala	Glu	Ala	Gln	Gln	Leu	Gln	Val	Asp	Thr	Gly	Gly	Asp	Lys	Ile

		35					40					45			
Val	Asn 50	Asn	Gln	Val	Thr	Met 55	Thr	Gln	Ile	Asn	Phe 60	Asn	Ala	Ser	Туг
Thr 65	Ser	Ala	Ser	Thr	Pro 70	Ser	Arg	Ala	Ser	Phe 75	Asp	Asn	Ser	Tyr	Sei 80
Glu	Phe	Cys	Asp	Lys 85	Gln	Pro	Asn	Asp	Tyr 90	Leu	Ser	Tyr	Tyr	Asn 95	His
Pro	Thr	Pro	Asp 100	Gly	Ala	Asp	Thr	Val 105	Ile	Ser	Asp	Ser	Glu 110	Thr	Ala
Ala	Ala	Ser 115	Asn	Phe	Leu	Ala	Ser 120	Val	Asn	Ser	Leu	Thr 125	Asp	Asn	Asp
Leu	Val 130	Glu	Cys	Leu	Leu	Lys 135	Thr	Thr	Asp	Asn	Leu 140	Glu	Glu	Ala	Val
Ser 145	Ser	Ala	Tyr	Tyr	Ser 150	Glu	Ser	Leu	Glu	Gln 155	Pro	Val	Val	Glu	Glr 160
Pro	Ser	Pro	Ser	Ser 165	Ala	Tyr	His	Ala	Glu 170	Ser	Phe	Glu	His	Ser 175	Ala
Gly	Val	Asn	Gln 180	Pro	Ser	Ala	Thr	Gly 185	Thr	Lys	Arg	Lys	Leu 190	Asp	Glu
Tyr	Leu	Asp 195	Asn	Ser	Gln	Gly	Val 200	Val	Gly	Gln	Phe	As n 205	Lys	Ile	Lys
Leu	Arg 210	Pro	Lys	Tyr	Lys	Lys 215	Ser	Thr	Ile	Gln	Ser 220	Cys	Ala	Thr	Let
Glu 225	Gln	Thr	Ile	Asn	His 230	Asn	Thr	Asn	Ile	Cys 235	Thr	Val	Ala	Ser	Th: 240
Gln	Glu	Ile	Thr	His 245	Tyr	Phe	Thr	Asn	Asp 250	Phe	Ala	Pro	Tyr	Leu 255	Met
Arg	Phe	Asp	Asp 260	Asn	Asp	Tyr	Asn	Ser 265	Asn	Arg	Phe	Ser	Asp 270	His	Met
Ser	Glu	Thr 275	Gly												

<210> 10

	<211> 128 <212> ADN <213> Nucleopo												
5	<pre><400> 10 atcatggaga taattaaaat gataaccatc tcgcaaataa ataagtattt tactgttttc 60</pre>												
			_	_	-	_							
	gtaacagttt	tgtaataaaa	aaacctataa	atattccgga	ttattcatac	cgtcccacca	120						
	tegggege						128						
10	<210> 11 <211> 122 <212> ADN <213> Nucleopolihedrovirus <i>Autographa californica</i>												
	<400> 11				. .		60						
	atacggacct	ttaattcaac	ccaacacaat	atattatagt	taaataagaa	ttattatcaa	60						
	atcatttgta	tattaattaa	aatactatac	tgtaaattac	attttattta	caatcactcg	120						
15	ac												
20	<210> 12 <211> 571 <212> ADN <213> Secuenci	a artificial											
20	<220> <223> Promotor quimérico recombinante												
	<400> 12 aaaaacatcg	attagggtga	ctgaaggtta	cattggggta	ggttatggtt	aatacgtaat	60						
	ggtttaacac	caaaacgata	tcatggattt	tatataaggt	gtaataatat	ttttaatgag	120						
	tggacgcgtc	gggtcaatgt	cctgcctatt	gacgtcataa	catattaggt	gattatatta	180						
	aaaatagttt	aaactcaaat	attacttgca	agtttaagtt	tcatcataat	ctgatcataa	240						
	gtttcaccca	aacagaaacc	aaaagcataa	ctatcgaata	tctttagctt	cccatgaaga	300						
	aagattaccg	taaccatcac	taggatttta	tacgattgta	gaaaataaag	tattctcagt	360						
	ctcttttcag	agcgctataa	aaaggggtgc	attctcggta	agagtacagt	tgaactcaca	420						
	tcgagttaac	tccacgctgc	agtctcgaga	tacggacctt	taattcaacc	caacacaata	480						
	tattatagtt	aaataagaat	tattatcaaa	tcatttgtat	attaattaaa	atactatact	540						
25	gtaaattaca	ttttatttac	aatcactcga	С			571						
30	<210> 13 <211> 465 <212> ADN <213> Secuenci	a artificial											
	<220> <223> Promotor quimérico recombinante												
35	<400> 13												

	ggcaccaaac	cccgccccgc	gacgacgcag	ageceegaa	caggetgete	aaacacacag	00		
	atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	120		
	tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	180		
	aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	240		
	acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	300		
	attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	360		
	aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	420		
	taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgac		465		
5	<210> 14 <211> 436 <212> ADN <213> Nucleopo	olihedrovirus <i>Aut</i> o	ographa californic	ra					
	<400> 14 aaaaacatcg	attagggtga	ctgaaggtta	cattggggta	ggttatggtt	aatacgtaat	60		
	ggtttaacac	caaaacgata	tcatggattt	tatataaggt	gtaataatat	ttttaatgag	120		
	tggacgcgtc	gggtcaatgt	cctgcctatt	gacgtcataa	catattaggt	gattatatta	180		
	aaaatagttt	aaactcaaat	attacttgca	agtttaagtt	tcatcataat	ctgatcataa	240		
	gtttcaccca	aacagaaacc	aaaagcataa	ctatcgaata	tctttagctt	cccatgaaga	300		
	aagattaccg	taaccatcac	taggatttta	tacgattgta	gaaaataaag	tattctcagt	360		
	ctcttttcag	agcgctataa	aaaggggtgc	attctcggta	agagtacagt	tgaactcaca	420		
10	tcgagttaac	tccacg					436		
10	<210> 15 <211> 1199 <212> ADN <213> Secuenci	a artificial							
15	<220> <223> Promotor quimérico recombinante								
	<400> 15	agtgaaaccc	cctgcgacac	aagtattaca	ttccttagtg	cttgaatcct	60		
		aaagccaatt		_		_	120		
		atactacaat				_	180		
	_	ccaataataa		_		_	240		
		cctcttgcac				_	300		
20		atgatattga	_	_		_	360		
-									

cgcaagttct	ttatcaataa	aatagctgaa	aacaaaaaa	aaaacatcga	ttagggtgac	420
tgaaggttac	attggggtag	gttatggtta	atacgtaatg	gtttaacacc	aaaacgatat	480
catggattga	ctttataaat	tttatataag	gtgtaataat	atttttaatg	agtggacgcg	540
tcgggtcaat	gtcctgccta	ttgacgtcat	aacatattag	gtgattatat	taaaaatact	600
caaatattac	ttgcaagttt	aagtttcatc	ataatctgat	cataagtttc	acccaaacag	660
aaaccaaaag	cataactatc	tgctatttga	atatctttag	cttcccatga	agaaagatta	720
ccgtaaccat	cactaggatt	ttatacgatt	gtagaaaata	aagtattctc	agtctctttt	780
cagtttaaaa	tctgctggca	tttttacaag	tcgctgtatc	agtcaatgtt	tatacaatat	840
gtcaatgtac	tttcgtatta	atcagaaaaa	aatattctac	tagttttgat	aagctatcac	900
ttttgttaca	ttgtactgcc	ctttacagtt	catcaggtat	ttatgaatga	catattggag	960
aaacatcgta	atcagtccag	tataaaaagg	ggtgcattct	cggtaagagt	acagttgaac	1020
tcacatcgag	ttaactccac	gaatcactag	tgaattcgcg	gccgctgcag	tctcgagata	1080
cggaccttta	attcaaccca	acacaatata	ttatagttaa	ataagaatta	ttatcaaatc	1140
atttgtatat	taattaaaat	actatactgt	aaattacatt	ttatttacaa	tcactcgac	1199
<210> 16 <211> 250 <212> ADN <213> Secuenci	a artificial					
<220> <223> Promotor	quimérico recom	nbinante				
<400> 16					L L - L L L L L -	60
	taattaaaat	_	_	_	_	60
	tgtaataaaa				_	120
tcgggcgcat	acggaccttt	aattcaaccc	aacacaatat	attatagtta	aataagaatt	180
attatcaaat	catttgtata	ttaattaaaa	tactatactg	taaattacat	tttatttaca	240
atcactcgac						250
<210> 17 <211> 3163 <212> ADN <213> Secuenci	a artificial					
<220> <223> Casete de	e expresión recoi	mbinante				
<400> 17 ttagttgaac	tcgaacttct	tgtacttgca	gttgagcttt	tgctcggcga	atgtgatggc	60
gtcggagagt	ggcaccagtc	cctgcaggat	caaggccaag	agcttcagca	agttgttgtg	120
cagtgtagtt	gactcgcgac	ggttgacctt	gccgatcacg	aacatgtggt	gcttgaatct	180

gttgtacttt	tggatgacct	ggctcacatc	aacgtccttg	atttcgccag	agatccagta	240
gaactccttg	ttcttcttag	cgatggtcag	cctttcctcg	ttcttgaagg	acaacacgat	300
gaagttgtga	cccttaacgt	tatcgacgtt	ttgagtcaag	tactgctcaa	cgatgtgcat	360
gcttccgtct	tccttcttga	ccttcttgag	gttctcggcg	ttgttgttag	aagcgatgtt	420
gtcgtggtac	ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
agtgctcttc	ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat	tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatt	1920
gggtcatcta	gattcgaaag	cggccgcgac	tagtgagctc	gtcgacgtag	gcctttgaat	1980
tccgcgcgct	tcggaccggg	atccgcgccc	gatggtggga	cggtatgaat	aatccggaat	2040

atttataggt	ttttttatta	caaaactgtt	acgaaaacag	taaaatactt	atttatttgc	2100
gagatggtta	tcattttaat	tatctccatg	atctattaat	attccggagt	atacatcgat	2160
gttgacccca	acaaaagatt	tataattaat	cataatcacg	aacaacaaca	agtcaatgaa	2220
acaaataaac	aagttgtcga	taaaacattc	ataaatgaca	cagcaacata	caattcttgc	2280
ataataaaaa	tttaaatgac	atcatatttg	agaataacaa	atgacattat	ccctcgattg	2340
tgttttacaa	gtagaattct	acccgtaaag	cgagtttagt	tttgaaaaac	aaatgacatc	2400
atttgtataa	tgacatcatc	ccctgattgt	gttttacaag	tagaattcta	tccgtaaagc	2460
gagttcagtt	ttgaaaacaa	atgagtcata	cctaaacacg	ttaataatct	tctgatatca	2520
gcttatgact	caagttatga	gccgtgtgca	aaacatgaga	taagtttatg	acatcatcca	2580
ctgatcgtgc	gttacaagta	gaattctact	cgtaaagcca	gttcggttat	gagccgtgtg	2640
caaaacatga	catcagctta	tgactcatac	ttgattgtgt	tttacgcgta	gaattctact	2700
cgtaaagcga	gttcggttat	gagccgtgtg	caaaacatga	catcagctta	tgagtcataa	2760
ttaatcgtgc	gttacaagta	gaattctact	cgtaaagcga	gttgaaggat	catatttagt	2820
tgcgtttatg	agataagatt	gaaagcacgt	gtaaaatgtt	tcccgcgcgt	tggcacaact	2880
atttacaatg	cggccaagtt	ataaaagatt	ctaatctgat	atgttttaaa	acacctttgc	2940
ggcccgagtt	gtttgcgtac	gtgactagcg	aagaagatgt	gtggaccgca	gaacagatag	3000
taaaacaaaa	ccctagtatt	ggagcaataa	tcgatgagct	catacggacc	tttaattcaa	3060
cccaacacaa	tatattatag	ttaaataaga	attattatca	aatcatttgt	atattaatta	3120
aaatactata	ctgtaaatta	cattttattt	acaatcactc	gac		3163

<210> 18

<211> 3656

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 180 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 480 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag

agtgctcttc	ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat	tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatt	1920
gggtcatcta	gattcgaaag	cggccgcgac	tagtgagctc	gtcgacgtag	gcctttgaat	1980
teegegeget	tcggaccggg	atccgcgccc	gatggtggga	cggtatgaat	aatccggaat	2040
atttataggt	ttttttatta	caaaactgtt	acgaaaacag	taaaatactt	atttatttgc	2100
gagatggtta	tcattttaat	tatctccatg	atctattaat	attccggagt	atacatcgat	2160
gttgacccca	acaaaagatt	tataattaat	cataatcacg	aacaacaaca	agtcaatgaa	2220
acaaataaac	aagttgtcga	taaaacattc	ataaatgaca	cagcaacata	caattcttgc	2280
ataataaaaa	tttaaatgac	atcatatttg	agaataacaa	atgacattat	ccctcgattg	2340

tgttttacaa	gtagaattct	acccgtaaag	cgagtttagt	tttgaaaaac	aaatgacatc	2400
atttgtataa	tgacatcatc	ccctgattgt	gttttacaag	tagaattcta	tccgtaaagc	2460
gagttcagtt	ttgaaaacaa	atgagtcata	cctaaacacg	ttaataatct	tctgatatca	2520
gcttatgact	caagttatga	gccgtgtgca	aaacatgaga	taagtttatg	acatcatcca	2580
ctgatcgtgc	gttacaagta	gaattctact	cgtaaagcca	gttcggttat	gagccgtgtg	2640
caaaacatga	catcagctta	tgactcatac	ttgattgtgt	tttacgcgta	gaattctact	2700
cgtaaagcga	gttcggttat	gagccgtgtg	caaaacatga	catcagctta	tgagtcataa	2760
ttaatcgtgc	gttacaagta	gaattctact	cgtaaagcga	gttgaaggat	catatttagt	2820
tgcgtttatg	agataagatt	gaaagcacgt	gtaaaatgtt	tcccgcgcgt	tggcacaact	2880
atttacaatg	cggccaagtt	ataaaagatt	ctaatctgat	atgttttaaa	acacctttgc	2940
ggcccgagtt	gtttgcgtac	gtgactagcg	aagaagatgt	gtggaccgca	gaacagatag	3000
taaaacaaaa	ccctagtatt	ggagcaataa	tcgatgagct	cgtcgacgta	ggcctttgaa	3060
ttccgcgcgc	ttcggaccgg	gatccaaaaa	catcgattag	ggtgactgaa	ggttacattg	3120
gggtaggtta	tggttaatac	gtaatggttt	aacaccaaaa	cgatatcatg	gattttatat	3180
aaggtgtaat	aatatttta	atgagtggac	gcgtcgggtc	aatgtcctgc	ctattgacgt	3240
cataacatat	taggtgatta	tattaaaaat	agtttaaact	caaatattac	ttgcaagttt	3300
aagtttcatc	ataatctgat	cataagtttc	acccaaacag	aaaccaaaag	cataactatc	3360
gaatatcttt	agcttcccat	gaagaaagat	taccgtaacc	atcactagga	ttttatacga	3420
ttgtagaaaa	taaagtattc	tcagtctctt	ttcagagcgc	tataaaaagg	ggtgcattct	3480
cggtaagagt	acagttgaac	tcacatcgag	ttaactccac	gctgcagtct	cgagatacgg	3540
acctttaatt	caacccaaca	caatatatta	tagttaaata	agaattatta	tcaaatcatt	3600
tgtatattaa	ttaaaatact	atactgtaaa	ttacatttta	tttacaatca	ctcgac	3656

<210> 19 <211> 3541

<212> ADN <213> Secuencia artificial

<223> Casete de expresión recombinante

10

ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300

360	cgatgtgcat	tactgctcaa	ttgagtcaag	tatcgacgtt	cccttaacgt	gaagttgtga
420	aagcgatgtt	ttgttgttag	gttctcggcg	ccttcttgag	tccttcttga	gcttccgtct
480	tgtatgtcag	gacgagtact	gttagcgacg	tgaagagcag	ttgtagttgt	gtcgtggtac
540	tgggagggtt	acgtacttgt	gttatcaacg	tgaggttcag	ttgttcacga	agtgctcttc
600	gcgagacgaa	gaaacgtatg	gaggatctgg	ccgagtactt	tggacggact	gtccgggaat
660	tgatgggcaa	cggctcagca	tgattccttg	cgatctcgtt	gaggcggttt	gaagttgtta
720	atccacactt	gacaagagga	gtacaacttc	ggtacatctc	ttcttgtcct	agtgaagagg
780	acatatcgag	tgagcgtagt	gaaggttgtc	gcaaggtcac	agtgattgca	acgctcgccg
840	agtgacactt	acgtccacga	tgtgtggtgg	cggccttgaa	gaggtcagag	gttgaagtag
900	ggatttcgat	tgtgagtgtg	gcagacgtcc	tctcatcgtt	tgagcggcgg	cttgcagttt
960	aggtcacaac	atcttatcga	catgaagcgg	tgtagctgat	ttaaccaggt	gccagtctcc
1020	cgttagagac	tcgtagacca	gtttgtgtac	tgtagtagtt	ttgtcaacca	gaacacacgg
1080	cgaacatgta	ttcttaacga	cacctcggac	cgaaaggctt	aagatgattt	gtacttggcg
1140	tatcgtcgaa	ttgtagtcgt	tctgttcgag	gatcggagaa	tcagacatgt	gtaaccggtt
1200	gggtggaagc	gtgatctcct	gaagtagtga	agtcgtttgt	tagggggcga	cctcatcagg
1260	atgactggat	agtgtagcgc	ggtttgttcc	tgtggttgat	atgttagtgt	cactgtacag
1320	caactccctg	aattgaccca	gatcttgttg	gtctcaactt	ttgtacttag	ggtgctcttc
1380	gctggttgac	gtggccgacg	cttggtgcct	ccaacttcct	aggtactcgt	ggagttatcc
1440	gttgttcgac	ctaggagagg	gtaagctgag	acteggegtg	tgttcgaagg	accagcagag
1500	ccaggttgtc	acagcttcct	ggcagaggac	cgctgtagta	tcgagtgact	cactggctgt
1560	ctgaggcgag	agcgagttaa	gttgtcagtg	ccaccaaatc	agcagacact	agtggtcttg
1620	cgtccggggt	gtatcagctc	ggagatgaca	tttcagagtc	gcggcagcgg	gaagttgcta
1680	ccgagtatga	tcgcagaact	aggttgcttg	agtaatcgtt	tagtaagaca	tgggtggttg
1740	tgaagttgat	taggaagcgt	ggcagaggtg	agggagtgct	ctagcacgag	gttgtcgaag
1800	cctgcagttg	cctgtgtcca	cttatcgcca	tgttcacgat	gtgacctggt	ttgagtcatg
1860	cacagttgga	gggctggaag	acaggagtag	aagtggcctc	gcgcaggctg	ctgggcctca
1920	tagatctatc	gtacggatca	gtggctggat	cgttcaggac	ttttcttgga	agtcatgatg
1980	attccgcgcg	aggcctttga	tcgtcgacgt	actagtgagc	agcggccgcg	tagattcgaa
2040	atatttatag	ataatccgga	gacggtatga	ccgatggtgg	ggatccgcgc	cttcggaccg
2100	gcgagatggt	ttatttattt	agtaaaatac	ttacgaaaac	tacaaaactg	gtttttttat
2160	atgttgaccc	gtatacatcg	atattccgga	tgatctatta	attatctcca	tatcatttta

caacaaaaga	tttataatta	atcataatca	cgaacaacaa	caagtcaatg	aaacaaataa	2220
acaagttgtc	gataaaacat	tcataaatga	cacagcaaca	tacaattctt	gcataataaa	2280
aatttaaatg	acatcatatt	tgagaataac	aaatgacatt	atccctcgat	tgtgttttac	2340
aagtagaatt	ctacccgtaa	agcgagttta	gttttgaaaa	acaaatgaca	tcatttgtat	2400
aatgacatca	tcccctgatt	gtgttttaca	agtagaattc	tatccgtaaa	gcgagttcag	2460
ttttgaaaac	aaatgagtca	tacctaaaca	cgttaataat	cttctgatat	cagcttatga	2520
ctcaagttat	gagccgtgtg	caaaacatga	gataagttta	tgacatcatc	cactgatcgt	2580
gcgttacaag	tagaattcta	ctcgtaaagc	cagttcggtt	atgagccgtg	tgcaaaacat	2640
gacatcagct	tatgactcat	acttgattgt	gttttacgcg	tagaattcta	ctcgtaaagc	2700
gagttcggtt	atgagccgtg	tgcaaaacat	gacatcagct	tatgagtcat	aattaatcgt	2760
gcgttacaag	tagaattcta	ctcgtaaagc	gagttgaagg	atcatattta	gttgcgttta	2820
tgagataaga	ttgaaagcac	gtgtaaaatg	tttcccgcgc	gttggcacaa	ctatttacaa	2880
tgcggccaag	ttataaaaga	ttctaatctg	atatgtttta	aaacaccttt	gcggcccgag	2940
ttgtttgcgt	acgtgactag	cgaagaagat	gtgtggaccg	cagaacagat	agtaaaacaa	3000
aaccctagta	ttggagcaat	aatcgatgag	ctcgtcgacg	taggcctttg	aattccgcgc	3060
gcttcggacc	gggatcggta	ccaaattccg	ttttgcgacg	atgcagagtt	tttgaacagg	3120
ctgctcaaac	acatagatcc	gtacccgctc	agtcggatgt	attacaatgc	agccaatacc	3180
atgttttaca	cgactatgga	aaactatgcc	gtgtccaatt	gcaagttcaa	cattgaggat	3240
tacaataaca	tatttaaggt	gatggaaaat	attaggaaac	acagcaacaa	aaattcaaac	3300
gaccaagacg	agttaaacat	atatttggga	gttcagtcgt	cgaatgcaaa	gcgtaaaaaa	3360
tattaataag	gtaaaaatta	cagctacata	aattacacaa	tttaaactgc	agtctggaga	3420
tacggacctt	taattcaacc	caacacaata	tattatagtt	aaataagaat	tattatcaaa	3480
tcatttgtat	attaattaaa	atactatact	gtaaattaca	ttttatttac	aatcactcga	3540
С						3541
<210> 20 <211> 3512 <212> ADN <213> Secuenci	a artificial					
<220> <223> Casete de	e expresión reco	mbinante				
<400> 20 ttagttgaac	tcgaacttct	tgtacttgca	gttgagcttt	tgctcggcga	atgtgatggc	60

gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg

cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct

gttgtacttt	tggatgacct	ggctcacatc	aacgtccttg	atttcgccag	agatccagta	240
gaactccttg	ttcttcttag	cgatggtcag	cctttcctcg	ttcttgaagg	acaacacgat	300
gaagttgtga	cccttaacgt	tatcgacgtt	ttgagtcaag	tactgctcaa	cgatgtgcat	360
gcttccgtct	tccttcttga	ccttcttgag	gttctcggcg	ttgttgttag	aagcgatgtt	420
gtcgtggtac	ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
agtgctcttc	ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat	tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagatgcatt	cgcgaggtac	cgagctcgaa	ttcactggcc	gtcgttttac	aacgtcgtga	1980
ctgggaaaac	cctggcgtta	cccaacttaa	tcgccttgca	gcacatcccc	ctttcgccag	2040

ctgctagcac	catggctcga	gcgtggagtt	aactcgatgt	gagttcaact	gtactcttac	2100
cgagaatgca	cccctttta	tagcgctctg	aaaagagact	gagaatactt	tattttctac	2160
aatcgtataa	aatcctagtg	atggttacgg	taatctttct	tcatgggaag	ctaaagatat	2220
tcgatagtta	tgcttttggt	ttctgtttgg	gtgaaactta	tgatcagatt	atgatgaaac	2280
ttaaacttgc	aagtaatatt	tgagtttaaa	ctatttttaa	tataatcacc	taatatgtta	2340
tgacgtcaat	aggcaggaca	ttgacccgac	gcgtccactc	attaaaaata	ttattacacc	2400
ttatataaaa	tccatgatat	cgttttggtg	ttaaaccatt	acgtattaac	cataacctac	2460
cccaatgtaa	ccttcagtca	ccctaatcga	tgtttttgta	tacatcgatg	ttgaccccaa	2520
caaaagattt	ataattaatc	ataatcacga	acaacaacaa	gtcaatgaaa	caaataaaca	2580
agttgtcgat	aaaacattca	taaatgacac	agcaacatac	aattcttgca	taataaaaat	2640
ttaaatgaca	tcatatttga	gaataacaaa	tgacattatc	cctcgattgt	gttttacaag	2700
tagaattcta	cccgtaaagc	gagtttagtt	ttgaaaaaca	aatgacatca	tttgtataat	2760
gacatcatcc	cctgattgtg	ttttacaagt	agaattctat	ccgtaaagcg	agttcagttt	2820
tgaaaacaaa	tgagtcatac	ctaaacacgt	taataatctt	ctgatatcag	cttatgactc	2880
aagttatgag	ccgtgtgcaa	aacatgagat	aagtttatga	catcatccac	tgatcgtgcg	2940
ttacaagtag	aattctactc	gtaaagccag	ttcggttatg	agccgtgtgc	aaaacatgac	3000
atcagcttat	gactcatact	tgattgtgtt	ttacgcgtag	aattctactc	gtaaagcgag	3060
ttcggttatg	agccgtgtgc	aaaacatgac	atcagcttat	gagtcataat	taatcgtgcg	3120
ttacaagtag	aattctactc	gtaaagcgag	ttgaaggatc	atatttagtt	gcgtttatga	3180
gataagattg	aaagcacgtg	taaaatgttt	cccgcgcgtt	ggcacaacta	tttacaatgc	3240
ggccaagtta	taaaagattc	taatctgata	tgttttaaaa	cacctttgcg	gcccgagttg	3300
tttgcgtacg	tgactagcga	agaagatgtg	tggaccgcag	aacagatagt	aaaacaaaac	3360
cctagtattg	gagcaataat	cgatgagctc	atacggacct	ttaattcaac	ccaacacaat	3420
atattatagt	taaataagaa	ttattatcaa	atcatttgta	tattaattaa	aatactatac	3480
tgtaaattac	attttattta	caatcactcg	ac			3512
<210> 21						

<211> 4005

5 <212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

<400> 21
ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60
gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120

cagtgtagtt	gactcgcgac	ggttgacctt	gccgatcacg	aacatgtggt	gcttgaatct	180
gttgtacttt	tggatgacct	ggctcacatc	aacgtccttg	atttcgccag	agatccagta	240
gaactccttg	ttcttcttag	cgatggtcag	cctttcctcg	ttcttgaagg	acaacacgat	300
gaagttgtga	cccttaacgt	tatcgacgtt	ttgagtcaag	tactgctcaa	cgatgtgcat	360
gcttccgtct	tccttcttga	ccttcttgag	gttctcggcg	ttgttgttag	aagcgatgtt	420
gtcgtggtac	ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
agtgctcttc	ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat	tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagatgcatt	cgcgaggtac	cgagctcgaa	ttcactggcc	gtcgttttac	aacgtcgtga	1980

ctgggaaaac	cctggcgtta	cccaacttaa	tcgccttgca	gcacatcccc	ctttcgccag	2040
ctgctagcac	catggctcga	gcgtggagtt	aactcgatgt	gagttcaact	gtactcttac	2100
cgagaatgca	ccccttttta	tagcgctctg	aaaagagact	gagaatactt	tattttctac	2160
aatcgtataa	aatcctagtg	atggttacgg	taatctttct	tcatgggaag	ctaaagatat	2220
tcgatagtta	tgcttttggt	ttctgtttgg	gtgaaactta	tgatcagatt	atgatgaaac	2280
ttaaacttgc	aagtaatatt	tgagtttaaa	ctatttttaa	tataatcacc	taatatgtta	2340
tgacgtcaat	aggcaggaca	ttgacccgac	gcgtccactc	attaaaaata	ttattacacc	2400
ttatataaaa	tccatgatat	cgttttggtg	ttaaaccatt	acgtattaac	cataacctac	2460
cccaatgtaa	ccttcagtca	ccctaatcga	tgtttttgta	tacatcgatg	ttgaccccaa	2520
caaaagattt	ataattaatc	ataatcacga	acaacaacaa	gtcaatgaaa	caaataaaca	2580
agttgtcgat	aaaacattca	taaatgacac	agcaacatac	aattcttgca	taataaaaat	2640
ttaaatgaca	tcatatttga	gaataacaaa	tgacattatc	cctcgattgt	gttttacaag	2700
tagaattcta	cccgtaaagc	gagtttagtt	ttgaaaaaca	aatgacatca	tttgtataat	2760
gacatcatcc	cctgattgtg	ttttacaagt	agaattctat	ccgtaaagcg	agttcagttt	2820
tgaaaacaaa	tgagtcatac	ctaaacacgt	taataatctt	ctgatatcag	cttatgactc	2880
aagttatgag	ccgtgtgcaa	aacatgagat	aagtttatga	catcatccac	tgatcgtgcg	2940
ttacaagtag	aattctactc	gtaaagccag	ttcggttatg	agccgtgtgc	aaaacatgac	3000
atcagcttat	gactcatact	tgattgtgtt	ttacgcgtag	aattctactc	gtaaagcgag	3060
ttcggttatg	agccgtgtgc	aaaacatgac	atcagcttat	gagtcataat	taatcgtgcg	3120
ttacaagtag	aattctactc	gtaaagcgag	ttgaaggatc	atatttagtt	gcgtttatga	3180
gataagattg	aaagcacgtg	taaaatgttt	cccgcgcgtt	ggcacaacta	tttacaatgc	3240
ggccaagtta	taaaagattc	taatctgata	tgttttaaaa	cacctttgcg	gcccgagttg	3300
tttgcgtacg	tgactagcga	agaagatgtg	tggaccgcag	aacagatagt	aaaacaaaac	3360
cctagtattg	gagcaataat	cgatgagctc	gtcgacgtag	gcctttgaat	tccgcgcgct	3420
tcggaccggg	atccaaaaac	atcgattagg	gtgactgaag	gttacattgg	ggtaggttat	3480
ggttaatacg	taatggttta	acaccaaaac	gatatcatgg	attttatata	aggtgtaata	3540
atattttaa	tgagtggacg	cgtcgggtca	atgtcctgcc	tattgacgtc	ataacatatt	3600
aggtgattat	attaaaaata	gtttaaactc	aaatattact	tgcaagttta	agtttcatca	3660
taatctgatc	ataagtttca	cccaaacaga	aaccaaaagc	ataactatcg	aatatcttta	3720
gcttcccatg	aagaaagatt	accgtaacca	tcactaggat	tttatacgat	tgtagaaaat	3780
aaagtattct	cagtctcttt	tcagagcgct	ataaaaaggg	gtgcattctc	ggtaagagta	3840
cagttgaact	cacatcgagt	taactccacg	ctgcagtctc	gagatacgga	cctttaattc	3900

	aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3960
	taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgac		4005
5	<210> 22 <211> 3898 <212> ADN <213> Secuenci	a artificial					
10	<220> <223> Casete de	e expresión reco	mbinante				
10	<400> 22 ttagttgaac	tcgaacttct	tgtacttgca	gttgagcttt	tgctcggcga	atgtgatggc	60
	gtcggagagt	ggcaccagtc	cctgcaggat	caaggccaag	agcttcagca	agttgttgtg	120
	cagtgtagtt	gactcgcgac	ggttgacctt	gccgatcacg	aacatgtggt	gcttgaatct	180
	gttgtacttt	tggatgacct	ggctcacatc	aacgtccttg	atttcgccag	agatccagta	240
	gaactccttg	ttcttcttag	cgatggtcag	cctttcctcg	ttcttgaagg	acaacacgat	300
	gaagttgtga	cccttaacgt	tatcgacgtt	ttgagtcaag	tactgctcaa	cgatgtgcat	360
	gcttccgtct	tccttcttga	ccttcttgag	gttctcggcg	ttgttgttag	aagcgatgtt	420
	gtcgtggtac	ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
	agtgctcttc	ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
	gtccgggaat	tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
	gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
	agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
	acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
	gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
	cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
	gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
	gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
	gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
	gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
	cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
	cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
	ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
	ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380

1440

accagcagag tgttcgaagg actcggcgtg gtaagctgag ctaggagagg gttgttcgac

ca	ctggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
ag	tggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
ga	agttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tg	ggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gt	tgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
tt	gagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ct	gggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
ag	tcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
ta	gatgcatt	cgcgaggtac	cgagctcgaa	ttcactggcc	gtcgttttac	aacgtcgtga	1980
ct	gggaaaac	cctggcgtta	cccaacttaa	tcgccttgca	gcacatcccc	ctttcgccag	2040
ct	gctagcac	catggctcga	gcgtggagtt	aactcgatgt	gagttcaact	gtactcttac	2100
cg	agaatgca	cccctttta	tagcgctctg	aaaagagact	gagaatactt	tattttctac	2160
aa	tcgtataa	aatcctagtg	atggttacgg	taatctttct	tcatgggaag	ctaaagatat	2220
tc	gatagtta	tgcttttggt	ttctgtttgg	gtgaaactta	tgatcagatt	atgatgaaac	2280
tt	aaacttgc	aagtaatatt	tgagtttaaa	ctatttttaa	tataatcacc	taatatgtta	2340
tg	acgtcaat	aggcaggaca	ttgacccgac	gcgtccactc	attaaaaata	ttattacacc	2400
tt	atataaaa	tccatgatat	cgttttggtg	ttaaaccatt	acgtattaac	cataacctac	2460
cc	caatgtaa	ccttcagtca	ccctaatcga	tgtttttgta	tacatcgatg	ttgaccccaa	2520
ca	aaagattt	ataattaatc	ataatcacga	acaacaacaa	gtcaatgaaa	caaataaaca	2580
ag	ttgtcgat	aaaacattca	taaatgacac	agcaacatac	aattcttgca	taataaaaat	2640
tt	aaatgaca	tcatatttga	gaataacaaa	tgacattatc	cctcgattgt	gttttacaag	2700
ta	gaattcta	cccgtaaagc	gagtttagtt	ttgaaaaaca	aatgacatca	tttgtataat	2760
ga	catcatcc	cctgattgtg	ttttacaagt	agaattctat	ccgtaaagcg	agttcagttt	2820
tg	aaaacaaa	tgagtcatac	ctaaacacgt	taataatctt	ctgatatcag	cttatgactc	2880
aa	gttatgag	ccgtgtgcaa	aacatgagat	aagtttatga	catcatccac	tgatcgtgcg	2940
tt	acaagtag	aattctactc	gtaaagccag	ttcggttatg	agccgtgtgc	aaaacatgac	3000
at	cagcttat	gactcatact	tgattgtgtt	ttacgcgtag	aattctactc	gtaaagcgag	3060
tt	cggttatg	agccgtgtgc	aaaacatgac	atcagcttat	gagtcataat	taatcgtgcg	3120
tt	acaagtag	aattctactc	gtaaagcgag	ttgaaggatc	atatttagtt	gcgtttatga	3180
ga	taagattg	aaagcacgtg	taaaatgttt	cccgcgcgtt	ggcacaacta	tttacaatgc	3240
gg	ccaagtta	taaaagattc	taatctgata	tgttttaaaa	cacctttgcg	gcccgagttg	3300
tt	tgcgtacg	tgactagcga	agaagatgtg	tggaccgcag	aacagatagt	aaaacaaaac	3360

cctagtattg	gagcaataat	cgatgagctc	gtcgacgtag	gcctttgaat	tccgcgcgct	3420
teggaceggg	atcggtacca	aattccgttt	tgcgacgatg	cagagttttt	gaacaggctg	3480
ctcaaacaca	tagatccgta	cccgctcagt	cggatgtatt	acaatgcagc	caataccatg	3540
ttttacacga	ctatggaaaa	ctatgccgtg	tccaattgca	agttcaacat	tgaggattac	3600
aataacatat	ttaaggtgat	ggaaaatatt	aggaaacaca	gcaacaaaaa	ttcaaacgac	3660
caagacgagt	taaacatata	tttgggagtt	cagtcgtcga	atgcaaagcg	taaaaaatat	3720
taataaggta	aaaattacag	ctacataaat	tacacaattt	aaactgcagt	ctggagatac	3780
ggacctttaa	ttcaacccaa	cacaatatat	tatagttaaa	taagaattat	tatcaaatca	3840
tttgtatatt	aattaaaata	ctatactgta	aattacattt	tatttacaat	cactcgac	3898

<210> 23

<211> 3179

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 180 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 360 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat getteegtet teettettga eettettgag gtteteggeg ttgttgttag aagegatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 540 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 600 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 660 720 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag 780 840 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 900 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 1020 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac

gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagetteet	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatt	1920
gggtcatcta	gattcgaaag	cggccgcgac	tagtgagctc	gtcgacgtag	gcctttgaat	1980
tccgcgcgct	tcggaccggg	atccgcgccc	gatggtggga	cggtatgaat	aatccggaat	2040
atttataggt	ttttttatta	caaaactgtt	acgaaaacag	taaaatactt	atttatttgc	2100
gagatggtta	tcattttaat	tatctccatg	atctattaat	attccggagt	atacatcgat	2160
gttgacccca	acaaaagatt	tataattaat	cataatcacg	aacaacaaca	agtcaatgaa	2220
acaaataaac	aagttgtcga	taaaacattc	ataaatgaca	cagcaacata	caattcttgc	2280
ataataaaaa	tttaaatgac	atcatatttg	agaataacaa	atgacattat	ccctcgattg	2340
tgttttacaa	gtagaattct	acccgtaaag	cgagtttagt	tttgaaaaac	aaatgacatc	2400
atttgtataa	tgacatcatc	ccctgattgt	gttttacaag	tagaattcta	tccgtaaagc	2460
gagttcagtt	ttgaaaacaa	atgagtcata	cctaaacacg	ttaataatct	tctgatatca	2520
gcttatgact	caagttatga	gccgtgtgca	aaacatgaga	taagtttatg	acatcatcca	2580
ctgatcgtgc	gttacaagta	gaattctact	cgtaaagcca	gttcggttat	gagccgtgtg	2640
caaaacatga	catcagctta	tgactcatac	ttgattgtgt	tttacgcgta	gaattctact	2700
cgtaaagcga	gttcggttat	gagccgtgtg	caaaacatga	catcagctta	tgagtcataa	2760
ttaatcgtgc	gttacaagta	gaattctact	cgtaaagcga	gttgaaggat	catatttagt	2820
tgcgtttatg	agataagatt	gaaagcacgt	gtaaaatgtt	tcccgcgcgt	tggcacaact	2880
atttacaatg	cggccaagtt	ataaaagatt	ctaatctgat	atgttttaaa	acacctttgc	2940

ggcccgagtt gtttgcgtac gtgactagcg aagaagatgt gtggaccgca gaacagatag 3000
taaaacaaaa ccctagtatt ggagcaataa tcgattccgg aatattaata gatcatggag 3060
ataattaaaa tgataaccat ctcgcaaata aataagtatt ttactgtttt cgtaacagtt 3120
ttgtaataaa aaaacctata aatattccgg attattcata ccgtcccacc atcgggcgc 3179

<210> 24

<211> 3528

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

<400> 24 60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 660 720 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag 840 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 900 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 1020 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1080 1140 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc 1200 1260 cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat 1320 ggtgctcttc ttgtacttag gtctcaactt gatcttgttg aattgaccca caactccctg

ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagatgcatt	cgcgaggtac	cgagctcgaa	ttcactggcc	gtcgttttac	aacgtcgtga	1980
ctgggaaaac	cctggcgtta	cccaacttaa	tcgccttgca	gcacatcccc	ctttcgccag	2040
ctgctagcac	catggctcga	gcgtggagtt	aactcgatgt	gagttcaact	gtactcttac	2100
cgagaatgca	ccccttttta	tagcgctctg	aaaagagact	gagaatactt	tattttctac	2160
aatcgtataa	aatcctagtg	atggttacgg	taatctttct	tcatgggaag	ctaaagatat	2220
togatagtta	tgcttttggt	ttctgtttgg	gtgaaactta	tgatcagatt	atgatgaaac	2280
ttaaacttgc	aagtaatatt	tgagtttaaa	ctatttttaa	tataatcacc	taatatgtta	2340
tgacgtcaat	aggcaggaca	ttgacccgac	gcgtccactc	attaaaaata	ttattacacc	2400
ttatataaaa	tccatgatat	cgttttggtg	ttaaaccatt	acgtattaac	cataacctac	2460
cccaatgtaa	ccttcagtca	ccctaatcga	tgtttttgta	tacatcgatg	ttgaccccaa	2520
caaaagattt	ataattaatc	ataatcacga	acaacaacaa	gtcaatgaaa	caaataaaca	2580
agttgtcgat	aaaacattca	taaatgacac	agcaacatac	aattcttgca	taataaaaat	2640
ttaaatgaca	tcatatttga	gaataacaaa	tgacattatc	cctcgattgt	gttttacaag	2700
tagaattcta	cccgtaaagc	gagtttagtt	ttgaaaaaca	aatgacatca	tttgtataat	2760
gacatcatcc	cctgattgtg	ttttacaagt	agaattctat	ccgtaaagcg	agttcagttt	2820
tgaaaacaaa	tgagtcatac	ctaaacacgt	taataatctt	ctgatatcag	cttatgactc	2880
aagttatgag	ccgtgtgcaa	aacatgagat	aagtttatga	catcatccac	tgatcgtgcg	2940
ttacaagtag	aattctactc	gtaaagccag	ttcggttatg	agccgtgtgc	aaaacatgac	3000
atcagcttat	gactcatact	tgattgtgtt	ttacgcgtag	aattctactc	gtaaagcgag	3060
ttcggttatg	agccgtgtgc	aaaacatgac	atcagcttat	gagtcataat	taatcgtgcg	3120
ttacaagtag	aattctactc	gtaaagcgag	ttgaaggatc	atatttagtt	gcgtttatga	3180
gataagattg	aaagcacgtg	taaaatgttt	cccgcgcgtt	ggcacaacta	tttacaatgc	3240

ggccaagtta	taaaagattc	taatctgata	tgttttaaaa	cacctttgcg	gcccgagttg	3300
tttgcgtacg	tgactagcga	agaagatgtg	tggaccgcag	aacagatagt	aaaacaaaac	3360
cctagtattg	gagcaataat	cgattccgga	atattaatag	atcatggaga	taattaaaat	3420
gataaccatc	tcgcaaataa	ataagtattt	tactgttttc	gtaacagttt	tgtaataaaa	3480
aaacctataa	atattccgga	ttattcatac	cgtcccacca	tcgggcgc		3528

<210> 25

<211> 3291

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

<400> 25 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 420 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 480 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 660 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 720 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag 780 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 840 900 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 1020 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1080 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1140 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc 1200 1260 cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat

ggto	gctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggag	gttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
acca	agcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cact	ggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagetteet	ccaggttgtc	1500
agto	gtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaag	gttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tggg	gtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gtto	gtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttga	gtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctg	gcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agto	catgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatt	1920
gggt	catcta	gattcgaaag	cggccgcgac	tagtgagctc	gtcgacgtag	gcctttgaat	1980
tcc	gegeget	tcggaccggg	atccgcgccc	gatggtggga	cggtatgaat	aatccggaat	2040
attt	ataggt	ttttttatta	caaaactgtt	acgaaaacag	taaaatactt	atttatttgc	2100
gaga	tggtta	tcattttaat	tatctccatg	atctattaat	attccggagt	atacatcgat	2160
gtto	gacccca	acaaaagatt	tataattaat	cataatcacg	aacaacaaca	agtcaatgaa	2220
acaa	ataaac	aagttgtcga	taaaacattc	ataaatgaca	cagcaacata	caattcttgc	2280
ataa	taaaaa	tttaaatgac	atcatatttg	agaataacaa	atgacattat	ccctcgattg	2340
tgtt	ttacaa	gtagaattct	acccgtaaag	cgagtttagt	tttgaaaaac	aaatgacatc	2400
attt	gtataa	tgacatcatc	ccctgattgt	gttttacaag	tagaattota	tccgtaaagc	2460
gagt	tcagtt	ttgaaaacaa	atgagtcata	cctaaacacg	ttaataatct	tctgatatca	2520
gctt	atgact	caagttatga	gccgtgtgca	aaacatgaga	taagtttatg	acatcatcca	2580
ctga	tcgtgc	gttacaagta	gaattctact	cgtaaagcca	gttcggttat	gagccgtgtg	2640
caaa	acatga	catcagctta	tgactcatac	ttgattgtgt	tttacgcgta	gaattctact	2700
cgta	aagcga	gttcggttat	gagccgtgtg	caaaacatga	catcagctta	tgagtcataa	2760
ttaa	tcgtgc	gttacaagta	gaattctact	cgtaaagcga	gttgaaggat	catatttagt	2820
tgcg	gtttatg	agataagatt	gaaagcacgt	gtaaaatgtt	tecegegegt	tggcacaact	2880
attt	acaatg	cggccaagtt	ataaaagatt	ctaatctgat	atgttttaaa	acacctttgc	2940
ggcd	cgagtt	gtttgcgtac	gtgactagcg	aagaagatgt	gtggaccgca	gaacagatag	3000
taaa	acaaaa	ccctagtatt	ggagcaataa	tcgatgagct	catcatggag	ataattaaaa	3060
tgat	aaccat	ctcgcaaata	aataagtatt	ttactgtttt	cgtaacagtt	ttgtaataaa	3120
aaaa	acctata	aatattccgg	attattcata	ccgtcccacc	atcgggcgca	tacggacctt	3180

taattcaacc caacacaata tattatagtt aaataagaat tattatcaaa tcatttgtat 3240 3291 attaattaaa atactatact gtaaattaca ttttatttac aatcactcga c <210> 26 <211> 3640 <212> ADN 5 <213> Secuencia artificial <223> Casete de expresión recombinante 10 <400> 26 60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 360 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 540 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 660 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 720 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 840 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 900 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 960 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1020 1080 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa 1140 cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc 1200 cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat 1260 1320 ggtgctcttc ttgtacttag gtctcaactt gatcttgttg aattgaccca caactccctg

ggagttatcc aggtactcgt ccaacttcct cttggtgcct gtggccgacg gctggttgac

accagcagag tgttcgaagg actcggcgtg gtaagctgag ctaggagagg gttgttcgac

1380

cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagatgcatt	cgcgaggtac	cgagctcgaa	ttcactggcc	gtcgttttac	aacgtcgtga	1980
ctgggaaaac	cctggcgtta	cccaacttaa	tcgccttgca	gcacatcccc	ctttcgccag	2040
ctgctagcac	catggctcga	gcgtggagtt	aactcgatgt	gagttcaact	gtactcttac	2100
cgagaatgca	cccctttta	tagcgctctg	aaaagagact	gagaatactt	tattttctac	2160
aatcgtataa	aatcctagtg	atggttacgg	taatctttct	tcatgggaag	ctaaagatat	2220
tcgatagtta	tgcttttggt	ttctgtttgg	gtgaaactta	tgatcagatt	atgatgaaac	2280
ttaaacttgc	aagtaatatt	tgagtttaaa	ctatttttaa	tataatcacc	taatatgtta	2340
tgacgtcaat	aggcaggaca	ttgacccgac	gcgtccactc	attaaaaata	ttattacacc	2400
ttatataaaa	tccatgatat	cgttttggtg	ttaaaccatt	acgtattaac	cataacctac	2460
cccaatgtaa	ccttcagtca	ccctaatcga	tgtttttgta	tacatcgatg	ttgaccccaa	2520
caaaagattt	ataattaatc	ataatcacga	acaacaacaa	gtcaatgaaa	caaataaaca	2580
agttgtcgat	aaaacattca	taaatgacac	agcaacatac	aattcttgca	taataaaaat	2640
ttaaatgaca	tcatatttga	gaataacaaa	tgacattatc	cctcgattgt	gttttacaag	2700
tagaattcta	cccgtaaagc	gagtttagtt	ttgaaaaaca	aatgacatca	tttgtataat	2760
gacatcatcc	cctgattgtg	ttttacaagt	agaattctat	ccgtaaagcg	agttcagttt	2820
tgaaaacaaa	tgagtcatac	ctaaacacgt	taataatctt	ctgatatcag	cttatgactc	2880
aagttatgag	ccgtgtgcaa	aacatgagat	aagtttatga	catcatccac	tgatcgtgcg	2940
ttacaagtag	aattctactc	gtaaagccag	ttcggttatg	agccgtgtgc	aaaacatgac	3000
atcagcttat	gactcatact	tgattgtgtt	ttacgcgtag	aattctactc	gtaaagcgag	3060
ttcggttatg	agccgtgtgc	aaaacatgac	atcagcttat	gagtcataat	taatcgtgcg	3120
ttacaagtag	aattctactc	gtaaagcgag	ttgaaggatc	atatttagtt	gcgtttatga	3180
gataagattg	aaagcacgtg	taaaatgttt	cccgcgcgtt	ggcacaacta	tttacaatgc	3240
ggccaagtta	taaaagattc	taatctgata	tgttttaaaa	cacctttgcg	gcccgagttg	3300
tttgcgtacg	tgactagcga	agaagatgtg	tggaccgcag	aacagatagt	aaaacaaaac	3360

	cctagtattg	gagcaataat	cgatgagctc	atcatggaga	taattaaaat	gataaccatc	3420
	tcgcaaataa	ataagtattt	tactgttttc	gtaacagttt	tgtaataaaa	aaacctataa	3480
	atattccgga	ttattcatac	cgtcccacca	tcgggcgcat	acggaccttt	aattcaaccc	3540
	aacacaatat	attatagtta	aataagaatt	attatcaaat	catttgtata	ttaattaaaa	3600
	tactatactg	taaattacat	tttatttaca	atcactcgac			3640
5	<210> 27 <211> 881 <212> ADN <213> Nucleopo	olihedrovirus <i>Auto</i>	ographa californic	ra			
	<400> 27 atcgatgttg	accccaacaa	aagatttata	attaatcata	atcacgaaca	acaacaagtc	60
	aatgaaacaa	ataaacaagt	tgtcgataaa	acattcataa	atgacacagc	aacatacaat	120
	tcttgcataa	taaaaattta	aatgacatca	tatttgagaa	taacaaatga	cattatccct	180
	cgattgtgtt	ttacaagtag	aattctaccc	gtaaagcgag	tttagttttg	aaaaacaaat	240
	gacatcattt	gtataatgac	atcatcccct	gattgtgttt	tacaagtaga	attctatccg	300
	taaagcgagt	tcagttttga	aaacaaatga	gtcataccta	aacacgttaa	taatcttctg	360
	atatcagctt	atgactcaag	ttatgagccg	tgtgcaaaac	atgagataag	tttatgacat	420
	catccactga	tcgtgcgtta	caagtagaat	tctactcgta	aagccagttc	ggttatgagc	480
	cgtgtgcaaa	acatgacatc	agcttatgac	tcatacttga	ttgtgtttta	cgcgtagaat	540
	tctactcgta	aagcgagttc	ggttatgagc	cgtgtgcaaa	acatgacatc	agcttatgag	600
	tcataattaa	tcgtgcgtta	caagtagaat	tctactcgta	aagcgagttg	aaggatcata	660
	tttagttgcg	tttatgagat	aagattgaaa	gcacgtgtaa	aatgtttccc	gcgcgttggc	720
	acaactattt	acaatgcggc	caagttataa	aagattctaa	tctgatatgt	tttaaaacac	780
	ctttgcggcc	cgagttgttt	gcgtacgtga	ctagcgaaga	agatgtgtgg	accgcagaac	840
10	agatagtaaa	acaaaaccct	agtattggag	caataatcga	t		881
15	<210> 28 <211> 2124 <212> ADN <213> Secuenci	a artificial					
		to de ADN recom	ibinante que fusio	ona el ADNc de A	Ac-ie-01 al promo	otor polh	
	<400> 28 atcatggaga	taattaaaat	gataaccatc	tcgcaaataa	ataagtattt	tactgttttc	60
20	gtaacagttt	tgtaataaaa	aaacctataa	atattccgga	ttattcatac	cgtcccacca	120

tcgggcgcgg	atcccggtcc	gaagcgcgcg	gaattcaaag	gcctacgtcg	acgagctcac	180
tagtcgcggc	cgctttcgaa	tctagataga	tctatgatcc	gtacatccag	ccacgtcctg	240
aacgtccaag	aaaacatcat	gacttccaac	tgtgcttcca	gcccctactc	ctgtgaggcc	300
acttcagcct	gcgctgaggc	ccagcaactg	caggtggaca	caggtggcga	taagatcgtg	360
aacaaccagg	tcaccatgac	tcaaatcaac	ttcaacgctt	cctacacctc	tgccagcact	420
ccctctcgtg	ctagcttcga	caactcatac	tcggagttct	gcgacaagca	acctaacgat	480
tacttgtctt	actacaacca	cccaaccccg	gacggagctg	atactgtcat	ctccgactct	540
gaaaccgctg	ccgctagcaa	cttcctcgcc	tcagttaact	cgctcactga	caacgatttg	600
gtggagtgtc	tgctcaagac	cactgacaac	ctggaggaag	ctgtgtcctc	tgcctactac	660
agcgagtcac	tcgaacagcc	agtggtcgaa	caaccctctc	ctagctcagc	ttaccacgcc	720
gagtccttcg	aacactctgc	tggtgtcaac	cagccgtcgg	ccacaggcac	caagaggaag	780
ttggacgagt	acctggataa	ctcccaggga	gttgtgggtc	aattcaacaa	gatcaagttg	840
agacctaagt	acaagaagag	caccatccag	tcatgcgcta	cactggaaca	aaccatcaac	900
cacaacacta	acatctgtac	agtggcttcc	acccaggaga	tcactcacta	cttcacaaac	960
gacttcgccc	cctacctgat	gaggttcgac	gataacgact	acaactcgaa	cagattctcc	1020
gatcacatgt	ctgaaaccgg	ttactacatg	ttcgtcgtta	agaagtccga	ggtgaagcct	1080
ttcgaaatca	tcttcgccaa	gtacgtctct	aacgtggtct	acgagtacac	aaacaactac	1140
tacatggttg	acaaccgtgt	gttcgttgtg	accttcgata	agatccgctt	catgatcagc	1200
tacaacctgg	ttaaggagac	tggcatcgaa	atcccacact	cacaggacgt	ctgcaacgat	1260
gagaccgccg	ctcaaaactg	caagaagtgt	cacttcgtgg	acgtccacca	cacattcaag	1320
gccgctctga	cctcctactt	caacctcgat	atgtactacg	ctcagacaac	cttcgtgacc	1380
ttgctgcaat	cactcggcga	gcgtaagtgt	ggattcctct	tgtcgaagtt	gtacgagatg	1440
taccaggaca	agaacctctt	cactttgccc	atcatgctga	gccgcaagga	atcaaacgag	1500
atcgaaaccg	cctctaacaa	cttcttcgtc	tcgccatacg	tttcccagat	cctcaagtac	1560
tcggagtccg	tccaattccc	ggacaaccct	cccaacaagt	acgtcgttga	taacctgaac	1620
ctcatcgtga	acaagaagag	cactctgaca	tacaagtact	cgtccgtcgc	taacctgctc	1680
ttcaacaact	acaagtacca	cgacaacatc	gcttctaaca	acaacgccga	gaacctcaag	1740
aaggtcaaga	aggaagacgg	aagcatgcac	atcgttgagc	agtacttgac	tcaaaacgtc	1800
gataacgtta	agggtcacaa	cttcatcgtg	ttgtccttca	agaacgagga	aaggctgacc	1860
atcgctaaga	agaacaagga	gttctactgg	atctctggcg	aaatcaagga	cgttgatgtg	1920
agccaggtca	tccaaaagta	caacagattc	aagcaccaca	tgttcgtgat	cggcaaggtc	1980
aaccgtcgcg	agtcaactac	actgcacaac	aacttgctga	agctcttggc	cttgatcctg	2040

	cagggactgg	tgccactctc	cgacgccatc	acattcgccg	agcaaaagct	caactgcaag	2100
	tacaagaagt	tcgagttcaa	ctaa				2124
5	<210> 29 <211> 911 <212> ADN <213> Secuenci	a artificial					
10	<220> <223> Construc	to de ADN recom	ibinante que fusio	ona el ADNc de (GFP al promotor	polh	
10	<400> 29 atcatggaga	taattaaaat	gataaccatc	tcgcaaataa	ataagtattt	tactgttttc	60
	gtaacagttt	tgtaataaaa	aaacctataa	atattccgga	ttattcatac	cgtcccacca	120
	tcgggcgcgg	atccaaggcc	actagtgcgg	ccgctctgca	gtctcgagca	tgcggtacca	180
	agcttgaatt	catggtgagc	aagggcgagg	agctgttcac	cggggtggtg	cccatcctgg	240
	tcgagctgga	cggcgacgta	aacggccaca	agttcagcgt	gtccggcgag	ggcgagggcg	300
	atgccaccta	cggcaagctg	accctgaagt	tcatctgcac	caccggcaag	ctgcccgtgc	360
	cctggcccac	cctcgtgacc	accctgacct	acggcgtgca	gtgcttcagc	cgctaccccg	420
	accacatgaa	gcagcacgac	ttcttcaagt	ccgccatgcc	cgaaggctac	gtccaggagc	480
	gcaccatctt	cttcaaggac	gacggcaact	acaagacccg	cgccgaggtg	aagttcgagg	540
	gcgacaccct	ggtgaaccgc	atcgagctga	agggcatcga	cttcaaggag	gacggcaaca	600
	tcctggggca	caagctggag	tacaactaca	acagccacaa	cgtctatatc	atggccgaca	660
	agcagaagaa	cggcatcatg	gtgaacttca	agatccgcca	caacatcgag	gacggcagcg	720
	tgcagctcgc	cgaccactac	cagcagaaca	cccccatcgg	cgacggcccc	gtgctgctgc	780
	ccgacaacca	ctacctgagc	acccagtccg	ccctgagcaa	agaccccaac	gagaagcgcg	840
	atcacatggt	cctgctggag	ttcgtgaccg	ccgccgggat	cactctcggc	atggacgagc	900
	tgtacaagta	a					911
15	<210> 30 <211> 3873 <212> ADN <213> Secuenci	a artificial					
20	<220> <223> Casete de	e expresión recoi	mbinante				
	<400>30 ttagttgaac	tcgaacttct	tgtacttgca	gttgagcttt	tgctcggcga	atgtgatggc	60
	gtcggagagt	ggcaccagtc	cctgcaggat	caaggccaag	agcttcagca	agttgttgtg	120
	cagtgtagtt	gactcgcgac	ggttgacctt	gccgatcacg	aacatgtggt	gcttgaatct	180

240	agatccagta	atttcgccag	aacgtccttg	ggctcacatc	tggatgacct	gttgtacttt
300	acaacacgat	ttcttgaagg	cctttcctcg	cgatggtcag	ttcttcttag	gaactccttg
360	cgatgtgcat	tactgctcaa	ttgagtcaag	tatcgacgtt	cccttaacgt	gaagttgtga
420	aagcgatgtt	ttgttgttag	gttctcggcg	ccttcttgag	tccttcttga	gcttccgtct
480	tgtatgtcag	gacgagtact	gttagcgacg	tgaagagcag	ttgtagttgt	gtcgtggtac
540	tgggagggtt	acgtacttgt	gttatcaacg	tgaggttcag	ttgttcacga	agtgctcttc
600	gcgagacgaa	gaaacgtatg	gaggatctgg	ccgagtactt	tggacggact	gtccgggaat
660	tgatgggcaa	cggctcagca	tgattccttg	cgatctcgtt	gaggcggttt	gaagttgtta
720	atccacactt	gacaagagga	gtacaacttc	ggtacatctc	ttcttgtcct	agtgaagagg
780	acatatcgag	tgagcgtagt	gaaggttgtc	gcaaggtcac	agtgattgca	acgctcgccg
840	agtgacactt	acgtccacga	tgtgtggtgg	cggccttgaa	gaggtcagag	gttgaagtag
900	ggatttcgat	tgtgagtgtg	gcagacgtcc	tctcatcgtt	tgagcggcgg	cttgcagttt
960	aggtcacaac	atcttatcga	catgaagcgg	tgtagctgat	ttaaccaggt	gccagtctcc
1020	cgttagagac	tcgtagacca	gtttgtgtac	tgtagtagtt	ttgtcaacca	gaacacacgg
1080	cgaacatgta	ttcttaacga	cacctcggac	cgaaaggctt	aagatgattt	gtacttggcg
1140	tatcgtcgaa	ttgtagtcgt	tctgttcgag	gatcggagaa	tcagacatgt	gtaaccggtt
1200	gggtggaagc	gtgatctcct	gaagtagtga	agtcgtttgt	tagggggcga	cctcatcagg
1260	atgactggat	agtgtagcgc	ggtttgttcc	tgtggttgat	atgttagtgt	cactgtacag
1320	caactccctg	aattgaccca	gatcttgttg	gtctcaactt	ttgtacttag	ggtgctcttc
1380	gctggttgac	gtggccgacg	cttggtgcct	ccaacttcct	aggtactcgt	ggagttatcc
1440	gttgttcgac	ctaggagagg	gtaagctgag	actcggcgtg	tgttcgaagg	accagcagag
1500	ccaggttgtc	acagcttcct	ggcagaggac	cgctgtagta	tcgagtgact	cactggctgt
1560	ctgaggcgag	agcgagttaa	gttgtcagtg	ccaccaaatc	agcagacact	agtggtcttg
1620	cgtccggggt	gtatcagctc	ggagatgaca	tttcagagtc	gcggcagcgg	gaagttgcta
1680	ccgagtatga	tcgcagaact	aggttgcttg	agtaatcgtt	tagtaagaca	tgggtggttg
1740	tgaagttgat	taggaagcgt	ggcagaggtg	agggagtgct	ctagcacgag	gttgtcgaag
1800	cctgcagttg	cctgtgtcca	cttatcgcca	tgttcacgat	gtgacctggt	ttgagtcatg
1860	cacagttgga	gggctggaag	acaggagtag	aagtggcctc	gcgcaggctg	ctgggcctca
1920	tagatctatc	gtacggatca	gtggctggat	cgttcaggac	ttttcttgga	agtcatgatg
1980	attccgcgcg	aggcctttga	tcgtcgacgt	actagtgagc	agcggccgcg	tagattcgaa
2040	atatttatag	ataatccgga	gacggtatga	ccgatggtgg	ggatccgcgc	cttcggaccg

gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tegacetega	gatgacgtat	3180
ccaaggaggc	gtttccgcag	acgaagacac	cgcccccgca	gccatcttgg	ccagatcctc	3240
cgccgccgcc	cctggctcgt	ccacccccgc	caccgttacc	gctggagaag	gaaaaatggc	3300
atcttcaaca	cccgcctctc	ccgcaccttc	ggatatactg	tcaaggctac	cacagtcaca	3360
acgccctcct	gggcggtgga	catgatgaga	tttaatatta	acgactttgt	tcccccggga	3420
ggggggacca	acaaaatctc	tatacccttt	gaatactaca	gaataagaaa	ggttaaggtt	3480
gaattctggc	cctgctcccc	aatcacccag	ggtgacaggg	gagtgggctc	cactgctgtt	3540
attctagatg	ataactttgt	aacaaaggcc	acagccctaa	cctatgaccc	ctatgtaaac	3600
tactcctccc	gccatacaat	cccccaaccc	ttctcctacc	actcccgtta	cttcacaccc	3660
aaacctgtac	tggatagaac	tattgattac	ttccagccaa	acaacaaaaa	aaatcagctt	3720
tggctgaggc	tacaaacctc	tgcaaatgta	gaccacgtag	gcctcggcac	tgcgttcgaa	3780
aacagtaaat	acgaccagga	ctacaatatc	cgtgtaacca	tgtatgtaca	attcagagaa	3840
tttaatctta	aagacccccc	acttaaaccc	taa			3873

<211> 702

		> ADN > Circo		porcin	o de ti	ро 2										
5	<400> atga		atc o	caago	gaggo	g tt	tcc	gcaga	a cga	aagad	cacc	gcc	ccg	cag	ccato	cttggc
	caga	atcct	caa q	gccgo	ccgcc	ec ct	ggat	tagta	c cac	caaa	cgcc	acco	gttad	ccg (ctgga	agaagg
	aaaa	aatg	gca 1	tatta	caaca	ac co	egaat	tata	c cgc	cacct	tcg	gata	atact	.gt	caago	gctacc
	acaç	gtcad	caa o	egeed	ctcct	g gg	gaggt	tggad	c ato	gatga	agat	ttaa	atatt	caa (cgact	ttgtt
	ccc	ccgg	gag q	gggg	gacca	a ca	aaat	tctct	: ata	accct	ttg	aata	actad	cag :	aataa	agaaag
	gtta	aaggt	tg a	aatto	ctggd	ec ct	gcto	ccca	a ato	cacco	cagg	gtga	acago	ggg (agtgg	getee
	acto	gctgt	ta 1	ttcta	agato	ga ta	actt	ttgta	a aca	aagg	gcca	cago	ccta	aac	ctato	gacccc
	tato	gtaaa	act a	actco	ctccc	eg co	catao	caato	2 220	ccaac	ccct	tcto	cctad	cca (ctcc	gttac
	ttca	acaco	cca a	aacct	gtac	et go	gatag	gaact	. att	gatt	act	tcca	agcca	aaa (caaca	aaaaa
					_			_		_			_			gcact
		_							_		_		_			gtacaa
				ttaat											-	
10	<210><211><211><212><212><213>	> 233 > PRT		porcin	o de ti	po 2										
	<400> Met 1	-	Tyr	Pro	Arg 5	Arg	Arg	Phe	Arg	Arg 10	Arg	Arg	His	Arg	Pro 15	Arg
	Ser	His	Leu	Gly 20	Gln	Ile	Leu	Arg	Arg 25	Arg	Pro	Trp	Leu	Val 30	His	Pro
	Arg	His	Arg 35	Tyr	Arg	Trp	Arg	Arg 40	Lys	Asn	Gly	Ile	Phe 45	Asn	Thr	Arg
	Leu	Ser 50	Arg	Thr	Phe	Gly	Tyr 55	Thr	Val	Lys	Ala	Thr 60	Thr	Val	Thr	Thr
	Pro 65	Ser	Trp	Ala	Val	Asp 70	Met	Met	Arg	Phe	Asn 75	Ile	Asn	Asp	Phe	Val 80
	Pro	Pro	Gly	Gly	Gly 85	Thr	Asn	Lys	Ile	Ser 90	Ile	Pro	Phe	Glu	Tyr 95	Tyr
	Arg	Ile	Arg	Lys	Val	Lys	Val	Glu	Phe	Trp	Pro	Cys	Ser	Pro	Ile	Thr

Gln	Gly	Asp 115	Arg	Gly	Val	Gly	Ser 120	Thr	Ala	Val	Ile	Leu 125	Asp	Asp	Asn		
Phe	Val 130	Thr	Lys	Ala	Thr	Ala 135	Leu	Thr	Tyr	Asp	Pro 140	Tyr	Val	Asn	Tyr		
Ser 145	Ser	Arg	His	Thr	Ile 150	Pro	Gln	Pro	Phe	Ser 155	Tyr	His	Ser	Arg	Tyr 160		
Phe	Thr	Pro	Lys	Pro 165	Val	Leu	Asp	Arg	Thr 170	Ile	Asp	Tyr	Phe	Gln 175	Pro		
Asn	Asn	Lys	Lys 180	Asn	Gln	Leu	Trp	Leu 185	Arg	Leu	Gln	Thr	Ser 190	Ala	Asn		
Val	Asp	His 195	Val	Gly	Leu	Gly	Thr 200	Ala	Phe	Glu	Asn	Ser 205	Lys	Tyr	Asp		
Gln	Asp 210	Tyr	Asn	Ile	Arg	Val 215	Thr	Met	Tyr	Val	Gln 220	Phe	Arg	Glu	Phe		
Asn 225	Leu	Lys	Asp	Pro	Pro 230	Leu	Lys	Pro									
<210><211><211><212><213>	836 ADN		artifici	al													
<220> <223>		structo	de A[ON rec	ombin	ante q	jue fus	siona e	el ADN	c de C	Cap al	promo	otor po	lh			
<400>		.~. +	+ +		. + ~-	+	.a.t.	. +		+	a+ a -	·~+ -+	-++ +		-+++-		60
		_			_							_			ttttc	1	60 20
															cacca		
															JCCCCC		.80
															ccgtt		40
															gatata 		300
															taata		360
															atact		120
															gtgaca		180
gggg	ragto	ggg d	ctcca	actgo	et gt	tatt	ctag	y ato	gataa	ıctt	tgta	acaa	aag g	gccad	cagccc	5	40

taacctatga cccctatgta aactactcct cccgccatac aatcccccaa cc	ccttctcct 600
accactcccg ttacttcaca cccaaacctg tactggatag aactattgat ta	acttccagc 660
caaacaacaa aaaaaatcag ctttggctga ggctacaaac ctctgcaaat gt	tagaccacg 720
taggcctcgg cactgcgttc gaaaacagta aatacgacca ggactacaat at	tccgtgtaa 780
ccatgtatgt acaattcaga gaatttaatc ttaaagaccc cccacttaaa cc	cctaa 836

<210> 34

<211> 3891

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

<400> 34 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 360 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 420 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 480 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 540 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 600 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 660 720 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag 840 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 900 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 960 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1020 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1080 1140 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa 1200 cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat 1260 1320 ggtgctcttc ttgtacttag gtctcaactt gatcttgttg aattgaccca caactccctg

ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatggtgagc	3180

aagggc	gagg	agctgttcac	cggggtggtg	cccatcctgg	tcgagctgga	cggcgacgta	3240
aacggc	caca	agttcagcgt	gtccggcgag	ggcgagggcg	atgccaccta	cggcaagctg	3300
accctg	aagt	tcatctgcac	caccggcaag	ctgcccgtgc	cctggcccac	cctcgtgacc	3360
accctg	acct	acggcgtgca	gtgcttcagc	cgctaccccg	accacatgaa	gcagcacgac	3420
ttcttc	aagt	ccgccatgcc	cgaaggctac	gtccaggagc	gcaccatctt	cttcaaggac	3480
gacggc	aact	acaagacccg	cgccgaggtg	aagttcgagg	gcgacaccct	ggtgaaccgc	3540
atcgag	ctga	agggcatcga	cttcaaggag	gacggcaaca	tcctggggca	caagctggag	3600
tacaac	taca	acagccacaa	cgtctatatc	atggccgaca	agcagaagaa	cggcatcatg	3660
gtgaac	ttca	agatccgcca	caacatcgag	gacggcagcg	tgcagctcgc	cgaccactac	3720
cagcag	aaca	ccccatcgg	cgacggcccc	gtgctgctgc	ccgacaacca	ctacctgagc	3780
acccag	tccg	ccctgagcaa	agaccccaac	gagaagcgcg	atcacatggt	cctgctggag	3840
ttcgtg	accg	ccgccgggat	cactctcggc	atggacgagc	tgtacaagta	a	3891

<210> 35

<211> 3618

<212> ADN <213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

<400> 35 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 480 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 660 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 720 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag 840 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 900 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat

gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatccgcg	1920
cccgatggtg	ggacggtatg	aataatccgg	aatatttata	ggtttttta	ttacaaaact	1980
gttacgaaaa	cagtaaaata	cttatttatt	tgcgagatgg	ttatcatttt	aattatctcc	2040
atgatctatt	aatattccgg	agtataccta	cccgtaaagc	gagtttagtt	ttgaaaaaca	2100
aatgacatca	tttgtataat	gacatcatcc	cctgattgtg	ttttacaagt	agaattctat	2160
ccgtaaagcg	agttcagttt	tgaaaacaaa	tgagtcatac	ctaaacacgt	taataatctt	2220
ctgatatcag	cttatgactc	aagttatgag	ccgtgtgcaa	aacatgagat	aagtttatga	2280
catcatccac	tgatcgtgcg	ttacaagtag	aattctactc	gtaaagccag	ttcggttatg	2340
agccgtgtgc	aaaacatgac	atcagcttat	gactcatact	tgattgtgtt	ttacgcgtag	2400
aattctactc	gtaaagcgag	ttcggttatg	agccgtgtgc	aaaacatgac	atcagcttat	2460
gagtcataat	taatcgtgcg	ttacaagtag	aattctactc	gtaaagcgag	ttgaaggatc	2520
atatttagtt	gcgtttatga	gataagattg	aaagcacgtg	taaaatgttt	ccgagctcat	2580
catggagata	attaaaatga	taaccatctc	gcaaataaat	aagtatttta	ctgttttcgt	2640
aacagttttg	taataaaaaa	acctataaat	attccggatt	attcataccg	tcccaccatc	2700
gggcgcgagc	tcatacggac	ctttaattca	acccaacaca	atatattata	gttaaataag	2760

aattattatc	aaatcatttg	tatattaatt	aaaatactat	actgtaaatt	acattttatt	2820
tacaatcact	cgacctcgag	ccatggttct	agacagctga	tgcatactag	agcctgcagt	2880
ctcgacaagc	ttgaattcat	ggtgagcaag	ggcgaggagc	tgttcaccgg	ggtggtgccc	2940
atcctggtcg	agctggacgg	cgacgtaaac	ggccacaagt	tcagcgtgtc	cggcgagggc	3000
gagggcgatg	ccacctacgg	caagctgacc	ctgaagttca	tctgcaccac	cggcaagctg	3060
cccgtgccct	ggcccaccct	cgtgaccacc	ctgacctacg	gcgtgcagtg	cttcagccgc	3120
taccccgacc	acatgaagca	gcacgacttc	ttcaagtccg	ccatgcccga	aggctacgtc	3180
caggagcgca	ccatcttctt	caaggacgac	ggcaactaca	agacccgcgc	cgaggtgaag	3240
ttcgagggcg	acaccctggt	gaaccgcatc	gagctgaagg	gcatcgactt	caaggaggac	3300
ggcaacatcc	tggggcacaa	gctggagtac	aactacaaca	gccacaacgt	ctatatcatg	3360
gccgacaagc	agaagaacgg	catcatggtg	aacttcaaga	tccgccacaa	catcgaggac	3420
ggcagcgtgc	agctcgccga	ccactaccag	cagaacaccc	ccatcggcga	cggccccgtg	3480
ctgctgcccg	acaaccacta	cctgagcacc	cagtccgccc	tgagcaaaga	ccccaacgag	3540
aagcgcgatc	acatggtcct	gctggagttc	gtgaccgccg	ccgggatcac	tctcggcatg	3600
gacgagctgt	acaagtaa					3618

<210> 36

<211> 3950

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

<400> 36 60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 420 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 480 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 660 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 720

acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagetteet	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580

taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	caaaaacatc	gattagggtg	actgaaggtt	acattggggt	aggttatggt	2700
taatacgtaa	tggtttaaca	ccaaaacgat	atcatggatt	ttatataagg	tgtaataata	2760
tttttaatga	gtggacgcgt	cgggtcaatg	tcctgcctat	tgacgtcata	acatattagg	2820
tgattatatt	aaaaatagtt	taaactcaaa	tattacttgc	aagtttaagt	ttcatcataa	2880
tctgatcata	agtttcaccc	aaacagaaac	caaaagcata	actatcgaat	atctttagct	2940
tcccatgaag	aaagattacc	gtaaccatca	ctaggatttt	atacgattgt	agaaaataaa	3000
gtattctcag	tctctttca	gagcgctata	aaaaggggtg	cattctcggt	aagagtacag	3060
ttgaactcac	atcgagttaa	ctccacgctg	caggaccttt	aattcaaccc	aacacaatat	3120
attatagtta	aataagaatt	attatcaaat	catttgtata	ttaattaaaa	tactatactg	3180
taaattacat	tttatttaca	atcactcgac	ggatcccccg	ggatctcgag	atggtgagca	3240
agggcgagga	gctgttcacc	ggggtggtgc	ccatcctggt	cgagctggac	ggcgacgtaa	3300
acggccacaa	gttcagcgtg	tccggcgagg	gcgagggcga	tgccacctac	ggcaagctga	3360
ccctgaagtt	catctgcacc	accggcaagc	tgcccgtgcc	ctggcccacc	ctcgtgacca	3420
ccctgaccta	cggcgtgcag	tgcttcagcc	gctaccccga	ccacatgaag	cagcacgact	3480
tcttcaagtc	cgccatgccc	gaaggctacg	tccaggagcg	caccatcttc	ttcaaggacg	3540
acggcaacta	caagacccgc	gccgaggtga	agttcgaggg	cgacaccctg	gtgaaccgca	3600
tcgagctgaa	gggcatcgac	ttcaaggagg	acggcaacat	cctggggcac	aagctggagt	3660
acaactacaa	cagccacaac	gtctatatca	tggccgacaa	gcagaagaac	ggcatcatgg	3720
tgaacttcaa	gatccgccac	aacatcgagg	acggcagcgt	gcagctcgcc	gaccactacc	3780
agcagaacac	ccccatcggc	gacggccccg	tgctgctgcc	cgacaaccac	tacctgagca	3840
cccagtccgc	cctgagcaaa	gaccccaacg	agaagcgcga	tcacatggtc	ctgctggagt	3900
tcgtgaccgc	cgccgggatc	actctcggca	tggacgagct	gtacaagtaa		3950

<210> 37

<211> 3791

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

<400> 37
ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60
gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120
cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180
gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240

gaactccttg	ttcttcttag	cgatggtcag	cctttcctcg	ttcttgaagg	acaacacgat	300
gaagttgtga	cccttaacgt	tatcgacgtt	ttgagtcaag	tactgctcaa	cgatgtgcat	360
gcttccgtct	tccttcttga	ccttcttgag	gttctcggcg	ttgttgttag	aagcgatgtt	420
gtcgtggtac	ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
agtgctcttc	ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat	tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100

tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgct	cgagcatgca	3060
agcttgaatt	catggtgagc	aagggcgagg	agctgttcac	cggggtggtg	cccatcctgg	3120
tcgagctgga	cggcgacgta	aacggccaca	agttcagcgt	gtccggcgag	ggcgagggcg	3180
atgccaccta	cggcaagctg	accctgaagt	tcatctgcac	caccggcaag	ctgcccgtgc	3240
cctggcccac	cctcgtgacc	accctgacct	acggcgtgca	gtgcttcagc	cgctaccccg	3300
accacatgaa	gcagcacgac	ttcttcaagt	ccgccatgcc	cgaaggctac	gtccaggagc	3360
gcaccatctt	cttcaaggac	gacggcaact	acaagacccg	cgccgaggtg	aagttcgagg	3420
gcgacaccct	ggtgaaccgc	atcgagctga	agggcatcga	cttcaaggag	gacggcaaca	3480
tcctggggca	caagctggag	tacaactaca	acagccacaa	cgtctatatc	atggccgaca	3540
agcagaagaa	cggcatcatg	gtgaacttca	agatccgcca	caacatcgag	gacggcagcg	3600
tgcagctcgc	cgaccactac	cagcagaaca	cccccatcgg	cgacggcccc	gtgctgctgc	3660
ccgacaacca	ctacctgagc	acccagtccg	ccctgagcaa	agaccccaac	gagaagcgcg	3720
atcacatggt	cctgctggag	ttcgtgaccg	ccgccgggat	cactctcggc	atggacgagc	3780
tgtacaagta	a					3791

5

<210> 38 <211> 3530

<212> ADN

<213> Secuencia artificial

<220> <223> Casete de expresión recombinante

5

<400> 38 60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 660 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa agtgaagagg ttettgteet ggtacatete gtacaaette gacaagagga atecacaett 720 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag 840 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 900 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1020 1080 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1140 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa 1200 cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc 1260 cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat ggtgctcttc ttgtacttag gtctcaactt gatcttgttg aattgaccca caactccctg 1320 1380 ggagttatcc aggtactcgt ccaacttcct cttggtgcct gtggccgacg gctggttgac 1440 accagcagag tgttcgaagg actcggcgtg gtaagctgag ctaggagagg gttgttcgac 1500 cactggctgt tcgagtgact cgctgtagta ggcagaggac acagcttcct ccaggttgtc agtggtcttg agcagacact ccaccaaatc gttgtcagtg agcgagttaa ctgaggcgag 1560 gaagttgcta gcggcagcgg tttcagagtc ggagatgaca gtatcagctc cgtccggggt 1620 tgggtggttg tagtaagaca agtaatcgtt aggttgcttg tcgcagaact ccgagtatga 1680 1740 gttgtcgaag ctagcacgag agggagtgct ggcagaggtg taggaagcgt tgaagttgat

ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatt	1920
gggtcatcta	gattcgaaag	cggccgcgac	tagtgagctc	gtcgacgtag	gcctttgaat	1980
tccgcgcgct	tcggaccggg	atccgcgccc	gatggtggga	cggtatgaat	aatccggaat	2040
atttataggt	ttttttatta	caaaactgtt	acgaaaacag	taaaatactt	atttatttgc	2100
gagatggtta	tcattttaat	tatctccatg	atctattaat	attccggagt	atacctaccc	2160
gtaaagcgag	tttagttttg	aaaaacaaat	gacatcattt	gtataatgac	atcatcccct	2220
gattgtgttt	tacaagtaga	attctatccg	taaagcgagt	tcagttttga	aaacaaatga	2280
gtcataccta	aacacgttaa	taatcttctg	atatcagctt	atgactcaag	ttatgagccg	2340
tgtgcaaaac	atgagataag	tttatgacat	catccactga	tcgtgcgtta	caagtagaat	2400
tctactcgta	aagccagttc	ggttatgagc	cgtgtgcaaa	acatgacatc	agcttatgac	2460
tcatacttga	ttgtgtttta	cgcgtagaat	tctactcgta	aagcgagttc	ggttatgagc	2520
cgtgtgcaaa	acatgacatc	agcttatgag	tcataattaa	tcgtgcgtta	caagtagaat	2580
tctactcgta	aagcgagttg	aaggatcata	tttagttgcg	tttatgagat	aagattgaaa	2640
gcacgtgtaa	aatgtttccg	agctcatacg	gacctttaat	tcaacccaac	acaatatatt	2700
atagttaaat	aagaattatt	atcaaatcat	ttgtatatta	attaaaatac	tatactgtaa	2760
attacatttt	atttacaatc	actcgacctc	gagcatgcaa	gcttgaattc	atggtgagca	2820
agggcgagga	gctgttcacc	ggggtggtgc	ccatcctggt	cgagctggac	ggcgacgtaa	2880
acggccacaa	gttcagcgtg	tccggcgagg	gcgagggcga	tgccacctac	ggcaagctga	2940
ccctgaagtt	catctgcacc	accggcaagc	tgcccgtgcc	ctggcccacc	ctcgtgacca	3000
ccctgaccta	cggcgtgcag	tgcttcagcc	gctaccccga	ccacatgaag	cagcacgact	3060
tcttcaagtc	cgccatgccc	gaaggctacg	tccaggagcg	caccatcttc	ttcaaggacg	3120
acggcaacta	caagacccgc	gccgaggtga	agttcgaggg	cgacaccctg	gtgaaccgca	3180
tcgagctgaa	gggcatcgac	ttcaaggagg	acggcaacat	cctggggcac	aagctggagt	3240
acaactacaa	cagccacaac	gtctatatca	tggccgacaa	gcagaagaac	ggcatcatgg	3300
tgaacttcaa	gatccgccac	aacatcgagg	acggcagcgt	gcagctcgcc	gaccactacc	3360
agcagaacac	ccccatcggc	gacggccccg	tgctgctgcc	cgacaaccac	tacctgagca	3420
cccagtccgc	cctgagcaaa	gaccccaacg	agaagcgcga	tcacatggtc	ctgctggagt	3480
tcgtgaccgc	cgccgggatc	actctcggca	tggacgagct	gtacaagtaa		3530

<210> 39 <211> 3515

<212> ADN

<213> Secuencia artificial

<220>

5

<223> Casete de expresión recombinante

<400> 39 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 180 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 360 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 420 getteegtet teettettga eettettgag gtteteggeg ttgttgttag aagegatgtt 480 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 540 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 600 gaagttgtta gaggeggttt egatetegtt tgatteettg eggeteagea tgatgggeaa 660 agtgaagagg ttettgteet ggtacatete gtacaaette gacaagagga atecaeaett 720 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag 780 840 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 900 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1020 1080 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1140 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa 1200 cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat 1260 ggtgctcttc ttgtacttag gtctcaactt gatcttgttg aattgaccca caactccctg 1320 1380 ggagttatcc aggtactcgt ccaacttcct cttggtgcct gtggccgacg gctggttgac accagcagag tgttcgaagg actcggcgtg gtaagctgag ctaggagagg gttgttcgac 1440 1500 cactggctgt tcgagtgact cgctgtagta ggcagaggac acagcttcct ccaggttgtc 1560 agtggtcttg agcagacact ccaccaaatc gttgtcagtg agcgagttaa ctgaggcgag 1620 gaagttgcta gcggcagcgg tttcagagtc ggagatgaca gtatcagctc cgtccggggt 1680 tgggtggttg tagtaagaca agtaatcgtt aggttgcttg tcgcagaact ccgagtatga

gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatccgcg	1920
cccgatggtg	ggacggtatg	aataatccgg	aatatttata	ggtttttta	ttacaaaact	1980
gttacgaaaa	cagtaaaata	cttatttatt	tgcgagatgg	ttatcatttt	aattatctcc	2040
atgatctatt	aatattccgg	agtactgcta	cccgtaaagc	gagtttagtt	ttgaaaaaca	2100
aatgacatca	tttgtataat	gacatcatcc	cctgattgtg	ttttacaagt	agaattctat	2160
ccgtaaagcg	agttcagttt	tgaaaacaaa	tgagtcatac	ctaaacacgt	taataatctt	2220
ctgatatcag	cttatgactc	aagttatgag	ccgtgtgcaa	aacatgagat	aagtttatga	2280
catcatccac	tgatcgtgcg	ttacaagtag	aattctactc	gtaaagccag	ttcggttatg	2340
agccgtgtgc	aaaacatgac	atcagcttat	gactcatact	tgattgtgtt	ttacgcgtag	2400
aattctactc	gtaaagcgag	ttcggttatg	agccgtgtgc	aaaacatgac	atcagcttat	2460
gagtcataat	taatcgtgcg	ttacaagtag	aattctactc	gtaaagcgag	ttgaaggatc	2520
atatttagtt	gcgtttatga	gataagattg	aaagcacgtg	taaaatgttt	cctccggaat	2580
attaatagat	catggagata	attaaaatga	taaccatctc	gcaaataaat	aagtatttta	2640
ctgttttcgt	aacagttttg	taataaaaaa	acctataaat	attccggatt	attcataccg	2700
tcccaccatc	gggcgcggga	tcccccggga	tctcgagcca	tggttctaga	cagctgatgc	2760
atactagagc	ctgcagtctc	gacaagcttg	aattcatggt	gagcaagggc	gaggagetgt	2820
tcaccggggt	ggtgcccatc	ctggtcgagc	tggacggcga	cgtaaacggc	cacaagttca	2880
gcgtgtccgg	cgagggcgag	ggcgatgcca	cctacggcaa	gctgaccctg	aagttcatct	2940
gcaccaccgg	caagctgccc	gtgccctggc	ccaccctcgt	gaccaccctg	acctacggcg	3000
tgcagtgctt	cagccgctac	cccgaccaca	tgaagcagca	cgacttcttc	aagtccgcca	3060
tgcccgaagg	ctacgtccag	gagcgcacca	tcttcttcaa	ggacgacggc	aactacaaga	3120
cccgcgccga	ggtgaagttc	gagggcgaca	ccctggtgaa	ccgcatcgag	ctgaagggca	3180
tcgacttcaa	ggaggacggc	aacatcctgg	ggcacaagct	ggagtacaac	tacaacagcc	3240
acaacgtcta	tatcatggcc	gacaagcaga	agaacggcat	catggtgaac	ttcaagatcc	3300
gccacaacat	cgaggacggc	agcgtgcagc	tcgccgacca	ctaccagcag	aacaccccca	3360
tcggcgacgg	ccccgtgctg	ctgcccgaca	accactacct	gagcacccag	tccgccctga	3420
gcaaagaccc	caacgagaag	cgcgatcaca	tggtcctgct	ggagttcgtg	accgccgccg	3480
ggatcactct	cggcatggac	gagctgtaca	agtaa			3515

<211> 1097 <212> ADN

<213> Secuencia artificial

5 <220>

<223> Constructo de ADN recombinante que fusiona el ADNc de GFP al promotor p6.9

ggtaccaaat tccgttttgc gacgatgcag agtttttgaa caggctgctc aaacacatag 60 120 atccgtaccc gctcagtcgg atgtattaca atgcagccaa taccatgttt tacacgacta 180 tggaaaacta tgccgtgtcc aattgcaagt tcaacattga ggattacaat aacatattta 240 aggtgatgga aaatattagg aaacacagca acaaaaattc aaacgaccaa gacgagttaa 300 acatatattt gggagttcag tcgtcgaatg caaagcgtaa aaaatattaa taaggtaaaa attacagcta cataaattac acaatttaaa ctgcagtctg gagatacgct cgagcatgcg 360 qtaccaaget tgaatteatg qtqaqcaagg qcqaqqaqet qttcaccqqq qtqqtqccca 420 480 tcctggtcga gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc ggcgagggcg 540 agggcgatgc cacctacggc aagctgaccc tgaagttcat ctgcaccacc ggcaagctgc 600 ccgtgccctg gcccaccctc gtgaccaccc tgacctacgg cgtgcagtgc ttcagccgct accccgacca catgaagcag cacgacttct tcaagtccgc catgcccgaa ggctacgtcc 660 aggagegeae catettette aaggaegaeg geaactaeaa gaeeegegee gaggtgaagt 720 tcgagggcga caccctggtg aaccgcatcg agctgaaggg catcgacttc aaggaggacg 780 gcaacatcct ggggcacaag ctggagtaca actacaacag ccacaacgtc tatatcatgg 840 ccgacaagca gaagaacggc atcatggtga acttcaagat ccgccacaac atcgaggacg 900 gcagcgtgca gctcgccgac cactaccagc agaacacccc catcggcgac ggccccgtgc 960 tgctgcccga caaccactac ctgagcaccc agtccgccct gagcaaagac cccaacgaga 1020 1080 agegegatea catggteetg etggagtteg tgacegeege egggateaet eteggeatgg acgagctgta caagtaa 1097

10

<210> 41

<211> 1211 <212> ADN

<213> Secuencia artificial

15

<220>

<223> Constructo de ADN recombinante que fusiona el ADNc de GFP al promotor pB29

<400> 41

20

aaaaacatcg attagggtga ctgaaggtta cattggggta ggttatggtt aatacgtaat 60 ggtttaacac caaaacgata tcatggattt tatataaggt gtaataatat ttttaatgag 120

tggacgcgtc	gggtcaatgt	cctgcctatt	gacgtcataa	catattaggt	gattatatta	180
aaaatagttt	aaactcaaat	attacttgca	agtttaagtt	tcatcataat	ctgatcataa	240
gtttcaccca	aacagaaacc	aaaagcataa	ctatcgaata	tctttagctt	cccatgaaga	300
aagattaccg	taaccatcac	taggatttta	tacgattgta	gaaaataaag	tattctcagt	360
ctcttttcag	agcgctataa	aaaggggtgc	attctcggta	agagtacagt	tgaactcaca	420
tcgagttaac	tccacgctcg	agccatggtg	ctagcagctg	atgcatagca	tgcggtacca	480
agcttgaatt	catggtgagc	aagggcgagg	agctgttcac	cggggtggtg	cccatcctgg	540
tcgagctgga	cggcgacgta	aacggccaca	agttcagcgt	gtccggcgag	ggcgagggcg	600
atgccaccta	cggcaagctg	accctgaagt	tcatctgcac	caccggcaag	ctgcccgtgc	660
cctggcccac	cctcgtgacc	accctgacct	acggcgtgca	gtgcttcagc	cgctaccccg	720
accacatgaa	gcagcacgac	ttcttcaagt	ccgccatgcc	cgaaggctac	gtccaggagc	780
gcaccatctt	cttcaaggac	gacggcaact	acaagacccg	cgccgaggtg	aagttcgagg	840
gcgacaccct	ggtgaaccgc	atcgagctga	agggcatcga	cttcaaggag	gacggcaaca	900
tcctggggca	caagctggag	tacaactaca	acagccacaa	cgtctatatc	atggccgaca	960
agcagaagaa	cggcatcatg	gtgaacttca	agatccgcca	caacatcgag	gacggcagcg	1020
tgcagctcgc	cgaccactac	cagcagaaca	cccccatcgg	cgacggcccc	gtgctgctgc	1080
ccgacaacca	ctacctgagc	acccagtccg	ccctgagcaa	agaccccaac	gagaagcgcg	1140
atcacatggt	cctgctggag	ttcgtgaccg	ccgccgggat	cactctcggc	atggacgagc	1200
tgtacaagta	a					1211

<210> 42

<211> 865

<212> ADN

<213> Secuencia artificial

<220>

<223> Constructo de ADN recombinante que fusiona el ADNc de GFP al promotor p10

10

60 atacggacct ttaattcaac ccaacacaat atattatagt taaataagaa ttattatcaa atcatttgta tattaattaa aatactatac tgtaaattac attttattta caatcactcg 120 acctcgagca tgcaagcttg aattcatggt gagcaagggc gaggagctgt tcaccggggt 180 240 ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc cacaagttca gcgtgtccgg 300 cgagggcgag ggcgatgcca cctacggcaa gctgaccctg aagttcatct gcaccaccgg caagetgeee gtgeeetgge ceaecetegt gaccaecetg acetaeggeg tgeagtgett 360 cagccgctac cccgaccaca tgaagcagca cgacttcttc aagtccgcca tgcccgaagg 420 ctacgtccag gagcgcacca tcttcttcaa ggacgacggc aactacaaga cccgcgccga 480

ggtgaagtt	c gagg	gcgaca	ccctg	gtgaa	ccg	gcato	gag	ctga	aggg	ca 1	tcgac	ttca	a	540
ggaggacgg	c aacat	catgg	ggcaca	agct	gga	igtac	aac	taca	acag	cc a	acaac	gtct	a	600
tatcatggc	c gacaa	agcaga	agaaco	gcat	cat	ggtg	raac	ttca	agat	cc (gccac	aaca	t	660
cgaggacgg	c agcgt	gcagc	tcgccg	jacca	cta	ccag	gcag	aaca	cccc	ca 1	tcggc	gacg	g	720
ccccgtgct	g ctgc	ccgaca	accact	acct	gag	gcacc	cag	tccg	ccct	ga q	gcaaa	gacc	С	780
caacgagaa	g cgcga	atcaca	tggtc	etget	gga	igtto	gtg	accg	ccgc	cg (ggato	actc	t	840
cggcatgga	c gagct	gtaca	agtaa											865
<210> 43 <211> 387 <212> ADN <213> Secuer	ncia artific	ial												
<220> <223> Secuer es específico p						el ant	icuerp	o de d	dominio	únic	co (VHI	H) 3B2	de camé	lidos, que
<400>43 atggctgat	g tgcad	gctgca	ggcgto	ctggg	gga	ıggtt	tgg	cgca	aggete	aa (ggact	ctct	q	60
acactctcc								_					_	120
caggctcca														180
tggtatgga														240
gtgaatctg														300
ggggccggg														360
gtcaccgtc	t cctca	acgcgg	ccgcta	aa										387
<210> 44 <211> 128 <212> PRT <213> Secuer														
<220> <223> Anticue	erpo de do	minio ún	ico (VHH)	3B2 de	e cam	nélidos	s, que	es esp	ecífico	para	a la pro	teína V	/P6 de ro	tavirus A
<400>44 Met Ala A 1	sp Val	Gln L 5	eu Gln	Ala	Ser	Gly 10	Gly	Gly	Leu 2	Ala	Gln 15	Ala		
Gly Asp S	er Leu 20	Thr L	eu Ser		Ala 25	Ala	Ser	Gly		Thr 30	Phe	Ser		
Gly Tyr V	al Val	Gly T	rp Phe	Arg	Gln	Ala	Pro	Gly	Ala (Glu	Arg	Glu		

	Phe	Val 50	Gly	Ala	Ile	Arg	Trp 55	Ser	Glu	Asp	Ser	Thr 60	Trp	Tyr	Gly	Asp		
	Ser 65	Met	Lys	Gly	Arg	Ile 70	Leu	Ile	Ser	Arg	Asn 75	Asn	Ile	Lys	Asn	Thr 80		
	Val	Asn	Leu	Gln	Met 85	Phe	Asn	Leu	Lys	Pro 90	Glu	Asp	Thr	Ala	Val 95	Tyr		
	Val	Cys	Ala	Ala 100	Gly	Ala	Gly	Asp	Ile 105	Val	Thr	Thr	Glu	Thr 110	Ser	Tyr		
	Asn	Tyr	Trp 115	Gly	Arg	Gly	Thr	Gln 120	Val	Thr	Val	Ser	Ser 125	Arg	Gly	Arg		
5	<210><211><211><212><213>	> 381 > ADN		artifici	al													
10	<220> <223> es es	Secu								el anti	cuerpo	o de do	ominic	único) (VHF	I) 2KD1	de cam	nélidos, que
	<400> atgg	-	atg t	cgcaç	gatgo	ca go	gcgto	ctggg	g gga	aggat	ttg	tgca	agcct	agg a	agatt	catat	g	60
	agto	etete	cct q	gtgca	agcct	c to	ggagg	gcaco	ttt	agta	agct	atto	ccatt	gg d	ctggt	tacg	С	120
	cago	gtc	cag q	ggaag	ggago	g to	gagtt	cgto	g gct	acta	atca	gtto	cgagt	ga t	agto	ccgtg	g	180
	tato	gaga	agc o	ccgc	gaago	gg co	cgatt	caco	gto	cgcca	agag	ttaa	acgco	caa q	gaata	acggc	g	240
	tato	etgea	act t	gaad	caggt	t ga	aaac	ctgaç	g gad	cacgo	jcca	ctta	attat	tg t	gcaç	gccgg [.]	t	300
	agto	gtaca	aac a	acato	ggcga	aa to	gagaa	atgaç	g tat	gtct	att	gggg	gccaç	ggg q	gacco	caggt	С	360
	acco	gtata	cca ç	gegge	ccgct	aa												381
15	<210><211><211><212><213>	• 126 • PRT	ıencia	artifici	al													
20	<220> <223> A		cuerpo	de do	ominio	único	(VHH) 2KD	1 de c	amélio	dos, qı	ue es	espec	ífica p	ara la	proteír	na VP6 d	de rotavirus
25	<400> Met 1		Asp	Val	Gln 5	Leu	Gln	Ala	Ser	Gly 10	Gly	Gly	Phe	Val	Gln 15	Pro		

Gly Asp Ser Leu Ser Leu Ser Cys Ala Ala Ser Gly Gly Thr Phe Ser 20 25 30

Ser Tyr Ser Ile Gly Trp Phe Arg Gln Gly Pro Gly Lys Glu Arg Glu 35 40 45

Phe Val Ala Thr Ile Ser Ser Ser Asp Ser Pro Trp Tyr Gly Glu Pro 50 55 60

Ala Lys Gly Arg Phe Thr Val Ala Arg Val Asn Ala Lys Asn Thr Ala 65 70 75 80

Tyr Leu His Leu Asn Arg Leu Lys Pro Glu Asp Thr Ala Thr Tyr Tyr 85 90 95

Cys Ala Ala Gly Ser Val Gln His Met Ala Asn Glu Asn Glu Tyr Val 100 105 110

Tyr Trp Gly Gln Gly Thr Gln Val Thr Val Ser Ser Gly Arg 115 120 125

<210> 47

<211> 1518

<212> ADN

5

<213> Virus de papiloma humano de tipo 16

<400> 47

atgtetettt ggetgeetag egaggeeaet gtetaettge eteetgteee agtatetaaa 60 gttgtaagca cggatgaata tgttgcacgc acaaacatat attatcatgc aggaacatcc 120 agactacttg cagttggaca tccctatttt cctattaaaa aacctaacaa taacaaaata 180 ttagttccta aagtatcagg attacaatac agggtattta gaatatattt acctgacccc 240 aataagtttg gttttcctga cacctcattt tacaatccag atacacagcg gctggtttgg 300 gcctgtgtag gtgttgaggt aggccgtggt cagccattag gtgtgggcat tagtggccat 360 cctttattaa ataaattgga tgacacagaa aatgctagtg cttatgcagc aaatgcaggt 420 gtggataata gagaatgtat atctatggat tacaaacaaa cacaattgtg tttaattggt 480 540 tgcaaaccac ctatagggga acactggggc aaaggatccc catgtaacaa tgttgcagta 600 aatccaggtg attgtccacc attagagtta ataaacacag ttattcagga tggtgatatg gttgataccg gctttggtgc tatggacttt actacattac aggctaacaa aagtgaagtt 660 720 ccactggata tttgtacgtc tatttgcaaa tatccagatt atattaaaat ggtgtcagaa ccatatggcg acagcttatt tttttattta cgaagggaac aaatgtttgt tagacattta 780 tttaataggg ctggtgctgt tggtgaaaat gtaccagacg atttatacat taaaggctct 840 900 gggtctactg caaatttagc cagttcaaat tattttccta cacctagtgg ttctatggtt

acctctgatg	cccaaatatt	taataaacca	tattggttac	aacgagcaca	gggccacaat	960
aatggtattt	gttggggtaa	ccaactattt	gttactgttg	ttgatactac	acgcagtaca	1020
aatatgtcat	tatgtgctgc	catatctact	tcagaaacta	catataaaaa	tactaacttt	1080
aaagagtacc	tacgacatgg	ggaggaatat	gatttacagt	ttatttttca	actgtgcaaa	1140
ataaccttaa	ctgcagacgt	tatgacatac	atacattcta	tgaattccac	tattttggag	1200
gactggaatt	ttggtttaca	acctccccca	ggaggcacac	tagaagatac	ttataggttt	1260
gtaacatccc	aggcaattgc	ttgtcaaaaa	catacacctc	cagcacctaa	agaagatccc	1320
cttaaaaaat	atactttttg	ggaagtaaat	ttaaaagaaa	agttttctgc	agacctagat	1380
cagtttcctt	taggacgcaa	atttttacta	caagcaggat	ttaaggccaa	accaaaattt	1440
acattaggaa	aacgaaaagc	tacacccacc	acctcatcta	cctctacaac	tgctaaacgc	1500
aaaaaacgta	agctgtaa					1518

<210> 48

<211> 505

5 <212> PRT

<213> Virus de papiloma humano de tipo 16

<400> 48

Met Ser Leu Trp Leu Pro Ser Glu Ala Thr Val Tyr Leu Pro Pro Val 1 5 10 15

Pro Val Ser Lys Val Val Ser Thr Asp Glu Tyr Val Ala Arg Thr Asn 20 25 30

Ile Tyr Tyr His Ala Gly Thr Ser Arg Leu Leu Ala Val Gly His Pro $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Tyr Phe Pro Ile Lys Lys Pro Asn Asn Lys Ile Leu Val Pro Lys 50 55 60

Val Ser Gly Leu Gln Tyr Arg Val Phe Arg Ile Tyr Leu Pro Asp Pro 65 70 75 80

Asn Lys Phe Gly Phe Pro Asp Thr Ser Phe Tyr Asn Pro Asp Thr Gln 85 90 95

Arg Leu Val Trp Ala Cys Val Gly Val Glu Val Gly Arg Gly Gln Pro 100 105 110

Leu Gly Val Gly Ile Ser Gly His Pro Leu Leu Asn Lys Leu Asp Asp 115 120 125

	130	11011		501		135			11011		140	•	шр		
Glu 145	Cys	Ile	Ser	Met	Asp 150	Tyr	Lys	Gln	Thr	Gln 155	Leu	Cys	Leu	Ile	Gly 160
Сув	Lys	Pro	Pro	Ile 165	Gly	Glu	His	Trp	Gly 170	Lys	Gly	Ser	Pro	Cys 175	Asn
Asn	Val	Ala	Val 180	Asn	Pro	Gly	Asp	Cys 185	Pro	Pro	Leu	Glu	Leu 190	Ile	Asn
Thr	Val	Ile 195	Gln	Asp	Gly	Asp	Met 200	Val	Asp	Thr	Gly	Phe 205	Gly	Ala	Met
Asp	Phe 210	Thr	Thr	Leu	Gln	Ala 215	Asn	Lys	Ser	Glu	Val 220	Pro	Leu	Asp	Ile
Cys 225	Thr	Ser	Ile	Cys	Lys 230	Tyr	Pro	Asp	Tyr	Ile 235	Lys	Met	Val	Ser	Glu 240
Pro	Tyr	Gly	Asp	Ser 245	Leu	Phe	Phe	Tyr	Leu 250	Arg	Arg	Glu	Gln	Met 255	Phe
Val	Arg	His	Leu 260	Phe	Asn	Arg	Ala	Gly 265	Ala	Val	Gly	Glu	Asn 270	Val	Pro
Asp	Asp	Leu 275	Tyr	Ile	Lys	Gly	Ser 280	Gly	Ser	Thr	Ala	Asn 285	Leu	Ala	Ser
Ser	Asn 290	Tyr	Phe	Pro	Thr	Pro 295	Ser	Gly	Ser	Met	Val 300	Thr	Ser	Asp	Ala
305	Ile				310					315					320
	Gly		_	325					330					335	
	Arg		340					345					350		
	Thr	355					360					365			
Glu	Tyr 370	Asp	Leu	Gln	Phe	11e 375	Phe	Gln	Leu	Cys	Lys 380	Ile	Thr	Leu	Thr

395

Ala Asp Val Met Thr Tyr Ile His Ser Met Asn Ser Thr Ile Leu Glu

390

385

5

Asp Trp	Asn I		Gly 405	Leu	Gln	Pro	Pro	Pro 410	Gly	Gly	Thr	Leu	Glu 415	Asp		
Thr Tyr		Phe V 420	Val	Thr	Ser	Gln	Ala 425	Ile	Ala	Cys	Gln	Lys 430	His	Thr		
Pro Pro	Ala I 435	Pro I	Lys	Glu	Asp	Pro 440	Leu	Lys	Lys	Tyr	Thr 445	Phe	Trp	Glu		
Val Asn 450		Lys (Glu	Lys	Phe 455	Ser	Ala	Asp	Leu	Asp 460	Gln	Phe	Pro	Leu		
Gly Arg 465	Lys I	Phe I		Leu 470	Gln	Ala	Gly	Phe	Lys 475	Ala	Lys	Pro	Lys	Phe 480		
Thr Leu	Gly I	_	Arg 485	Lys	Ala	Thr	Pro	Thr 490	Thr	Ser	Ser	Thr	Ser 495	Thr		
Thr Ala		Arg I 500	Lys	Lys	Arg	Lys	Leu 505									
<210> 49 <211> 2133 <212> ADN <213> Virus		enferme	edad	hemo	orrágic	a del c	conejo									
<400> 49 atggaggg	gca aa	agcco	cgca	c ag	regec	egcaa	a ggo	gaag	jcag	cago	gcact	ge d	acca	ıcagca		60
tcagtcc	ctg ga	aacca	acaa	.c cg	gatgo	gcato	g gad	caaq	gcg	ttgt	ggcc	cac t	acca	ıgcgtg		120
gtcactgo	cag ag	gaatt	tcat	c cg	cato	gatt	gca	acgo	gcag	ggat	tggc	egg a	ccac	cccaa	,	180
caggtgga	acc aa	acaaç	gaga	c at	ggag	jaacç	g aac	tttt	att	ataa	atgad	gt t	ttca	cttgg	,	240
tcagtcg	egg at	tgccc	cctg	g ca	ıgcat	actt	tac	acco	gttc	aaca	attct	cc a	caga	acaac		300
ccattcac	cag co	cgtgo	ctga	g cc	agat	gtat	gct:	ggct	ggg	ctgg	gtggc	cat c	gcagt	ttcgc	;	360

420

480

540

600

660

720

ttcatagttg ccggatcggg tgtgtttggt gggcggttgg ttgcggccgt gataccaccg

ggcatcgaga ttggaccagg gctggaggtc aggcaattcc cccatgttgt catcgacgct

cgttcacttg aacctgtcac catcaccatg ccagacttgc gtcccaacat gtaccatcca

actggtgacc ctggccttgt tcccacacta gtccttagtg tttataacaa cctcatcaac

ccgtttggtg ggtccaccag cgcaatccag gtgacagtgg aaacaaggcc aagtgaagat

tttgagttcg tgatgattcg agcccctcc agcaagactg ttgactcaat ttcacccgca

ggcctcctca cgacccca	rt cctcactggg	gttggcaatg	acaacaggtg	gaatggccaa	780
atagtgggac tgcaaccag	rt acctggaggg	ttctctacgt	gcaacaggca	ttggaacttg	840
aatggcagca catatggc	g gtcaagcccc	cggtttgccg	acattgacca	tcgaagaggc	900
agtgcaagtt accctggat	c caacgcaacc	aacgtgcttc	agttttggta	tgccaatgct	960
gggtctgcaa tcgacaato	c catctcccag	gttgcaccag	acggctttcc	tgatatgtcg	1020
ttcgtgccct ttaacggc	c tggcattcca	gccgcggggt	gggtcggatt	tggtgcaatc	1080
tggaacagta acagcggt	c ccccaacgtt	acgactgtgc	aggcttatga	gttaggtttt	1140
gccactgggg caccaggca	a cctccagccc	accaccaaca	cttcaggttc	acagactgtc	1200
gccaagtcca tatatgccq	rt ggtaactggc	acagcccaaa	accccgccgg	attgtttgtg	1260
atggcctcgg gtgttatc	c caccccaagt	gccaacgcca	tcacatacac	gccccaacca	1320
gacagaattg taaccacac	c cggcactcct	gccgctgcac	ctgtgggtaa	gaacacaccc	1380
atcatgttcg cgtctgtcq	rt caggcgcacc	ggtgacgtca	acgccacagc	tgggtcagct	1440
aacgggaccc agtacggca	c aggctctcaa	ccactgccag	taacaattgg	actttcgctc	1500
aacaactact cgtcagcad	t tatgcccgga	cagtttttcg	tttggcagtt	aacctttgca	1560
tctggtttca tggagattq	g tttaagtgtg	gacgggtatt	tttatgcagg	aacaggagcc	1620
tcaaccacac tcattgact	t gactgaactc	attgacgtac	gccctgtggg	acccaggcca	1680
tccaagagca cactcgtgt	t caacctgggg	ggcacagcca	atggcttttc	ttatgtctga	1740
attcatcgga ctgggact	g caggtgccag	cgttttgagc	aatgcattgc	tccgcaggca	1800
agagctgcaa ctacaaaga	c aagctttgga	gaatgggttg	gttttgaaag	ccgaccaatt	1860
aggtaggtta ggttttaat	c caaatgaagt	taagaatgtg	attgtaggta	atagttttag	1920
tagtaatgtt agattaag	a atatgcataa	tgatgctagt	gtagttaatg	cttataatgt	1980
gtataatcct gccagcaat	g gcatcagaaa	gaaaattaag	agtttgaata	atagtgttaa	2040
gatttataac accactggg	g agtccagtgt	ttaatttgat	tttattggtt	ttgaaatttg	2100
gtttaattgg gtttatag	t taaagtaagc	tat			2133

<210> 50

<400> 50

```
Met Glu Gly Lys Ala Arg Thr Ala Pro Gln Gly Glu Ala Ala Gly Thr 1 5 10 15
```

Ala Thr Thr Ala Ser Val Pro Gly Thr Thr Thr Asp Gly Met Asp Pro 20 25 30

<211> 579

<212> PRT

<213> Virus de la enfermedad hemorrágica del conejo

Gly	Val	Val 35	Ala	Thr	Thr	Ser	Val 40	Val	Thr	Ala	Glu	Asn 45	Ser	Ser	Ala
Ser	Ile 50	Ala	Thr	Ala	Gly	Ile 55	Gly	Gly	Pro	Pro	Gln 60	Gln	Val	Asp	Gln
Gln 65	Glu	Thr	Trp	Arg	Thr 70	Asn	Phe	Tyr	Tyr	Asn 75	Asp	Val	Phe	Thr	Trp 80
Ser	Val	Ala	Asp	Ala 85	Pro	Gly	Ser	Ile	Leu 90	Tyr	Thr	Val	Gln	His 95	Ser
Pro	Gln	Asn	Asn 100	Pro	Phe	Thr	Ala	Val 105	Leu	Ser	Gln	Met	Tyr 110	Ala	Gly
Trp	Ala	Gly 115	Gly	Met	Gln	Phe	A rg 120	Phe	Ile	Val	Ala	Gly 125	Ile	Gly	Val
Phe	Gly 130	Gly	Arg	Leu	Val	Ala 135	Ala	Val	Ile	Pro	Pro 140	Gly	Ile	Glu	Ile
Gly 145	Pro	Gly	Leu	Glu	Val 150	Arg	Gln	Phe	Pro	His 155	Val	Val	Ile	Asp	Ala 160
Arg	Ser	Leu	Glu	Pro 165	Val	Thr	Ile	Thr	Met 170	Pro	Asp	Leu	Arg	Pro 175	Asn
Met	Tyr	His	Pro 180	Thr	Gly	Asp	Pro	Gly 185	Leu	Val	Pro	Thr	Leu 190	Val	Leu
Ser	Val	Tyr 195	Asn	Asn	Leu	Ile	Asn 200	Pro	Phe	Gly	Gly	Ser 205	Thr	Ser	Ala
Ile	Gln 210	Val	Thr	Val	Glu	Thr 215	Arg	Pro	Ser	Glu	Asp 220	Phe	Glu	Phe	Val
Met 225	Ile	Arg	Ala	Pro	Ser 230	Ser	Lys	Thr	Val	Asp 235	Ser	Ile	Ser	Pro	Ala 240
Gly	Leu	Leu	Thr	Thr 245	Pro	Val	Leu	Thr	Gly 250	Val	Gly	Asn	Asp	Asn 255	Arg
Trp	Asn	Gly	Gln 260	Ile	Val	Gly	Leu	Gln 265	Pro	Val	Pro	Gly	Gly 270	Phe	Ser
Thr	Cys	Asn 275	Arg	His	Trp		Leu 280		Gly	Ser	Thr	Tyr 285	Gly	Trp	Ser

Ser	Pro 290	Arg	Phe	Gly	Asp	Ile 295	Gly	His	Arg	Arg	Gly 300	Ser	Ala	Ser	Tyr
Pro 305	Gly	Asn	Asn	Ala	Thr 310	Asn	Val	Leu	Gln	Phe 315	Trp	Tyr	Ala	Asn	Ala 320
Gly	Ser	Ala	Ile	Asp 325	Asn	Pro	Ile	Ser	Gln 330	Val	Ala	Pro	Asp	Gly 335	Phe
Pro	Asp	Met	Ser 340	Phe	Val	Pro	Phe	Asn 345	Gly	Pro	Gly	Ile	Pro 350	Ala	Ala
Gly	Trp	Val 355	Gly	Phe	Gly	Ala	Ile 360	Trp	Asn	Ser	Asn	Ser 365	Gly	Ala	Pro
Asn	Val 370	Thr	Thr	Val	Gln	Ala 375	Tyr	Glu	Leu	Gly	Phe 380	Ala	Thr	Gly	Ala
Pro 385	Gly	Asn	Leu	Gln	Pro 390	Thr	Thr	Asn	Thr	Ser 395	Gly	Ser	Gln	Thr	Val 400
Ala	Lys	Ser	Ile	Tyr 405	Ala	Val	Val	Thr	Gly 410	Thr	Ala	Gln	Asn	Pro 415	Ala
Gly	Leu	Phe	Val 420	Met	Ala	Ser	Gly	Val 425	Ile	Ser	Thr	Pro	Ser 430	Ala	Asn
Ala	Ile	Thr 435	Tyr	Thr	Pro	Gln	Pro 440	Asp	Arg	Ile	Val	Thr 445	Thr	Pro	Gly
Thr	Pro 450	Ala	Ala	Ala	Pro	Val 455	Gly	Lys	Asn	Thr	Pro 460	Ile	Met	Phe	Ala
Ser 465	Val	Val	Arg	Arg	Thr 470	Gly	Asp	Val	Asn	Ala 475	Thr	Ala	Gly	Ser	Ala 480
Asn	Gly	Thr	Gln	Tyr 485	Gly	Thr	Gly	Ser	Gln 490	Pro	Leu	Pro	Val	Thr 495	Ile
Gly	Leu	Ser	Leu 500	Asn	Asn	Tyr	Ser	Ser 505	Ala	Leu	Met	Pro	Gly 510	Gln	Phe
Phe	Val	Trp 515	Gln	Leu	Thr	Phe	Ala 520	Ser	Gly	Phe	Met	Glu 525	Ile	Gly	Leu
Ser	Val	Asp	Glv	Tvr	Phe	Tvr	Ala	Glv	Thr	Glv	Ala	Ser	Thr	Thr	Leu

530 535 540

Ile Asp Leu Thr Glu Leu Ile Asp Val Arg Pro Val Gly Pro Arg Pro 545 550 555 560

Ser Lys Ser Thr Leu Val Phe Asn Leu Gly Gly Thr Ala Asn Gly Phe 565 570 575

Ser Tyr Val

<210> 51

<211> 4550

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 660 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 720 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 840 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 900 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1020 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1080 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa 1140 1200 cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc

cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060

aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatgacgtat	3180
ccaaggaggc	gtttccgcag	acgaagacac	cgcccccgca	gccatcttgg	ccagatcctc	3240
cgccgccgcc	cctggctcgt	ccacccccgc	caccgttacc	gctggagaag	gaaaaatggc	3300
atcttcaaca	cccgcctctc	ccgcaccttc	ggatatactg	tcaaggctac	cacagtcaca	3360
acgccctcct	gggcggtgga	catgatgaga	tttaatatta	acgactttgt	teceeggga	3420
ggggggacca	acaaaatctc	tatacccttt	gaatactaca	gaataagaaa	ggttaaggtt	3480
gaattctggc	cctgctcccc	aatcacccag	ggtgacaggg	gagtgggctc	cactgctgtt	3540
attctagatg	ataactttgt	aacaaaggcc	acagccctaa	cctatgaccc	ctatgtaaac	3600
tactcctccc	gccatacaat	cccccaaccc	ttctcctacc	actcccgtta	cttcacaccc	3660
aaacctgtac	tggatagaac	tattgattac	ttccagccaa	acaacaaaaa	aaatcagctt	3720
tggctgaggc	tacaaacctc	tgcaaatgta	gaccacgtag	gcctcggcac	tgcgttcgaa	3780
aacagtaaat	acgaccagga	ctacaatatc	cgtgtaacca	tgtatgtaca	attcagagaa	3840
tttaatctta	aagacccccc	acttaaaccc	taaccatgga	agcttatgaa	tcgtttttaa	3900
aataacaaat	caattgtttt	ataatattcg	tacgattctt	tgattatgta	ataaaatgtg	3960
atcattagga	agattacgaa	aaatataaaa	aatatgagtt	ctgtgtgtat	aacaaatgct	4020
gtaaacgcca	caattgtgtt	tgttgcaaat	aaacccatga	ttatttgatt	aaaattgttg	4080
ttttctttgt	tcatagacaa	tagtgtgttt	tgcctaaacg	tgtactgcat	aaactccatg	4140
cgagtgtata	gcgagctagt	ggctaacgct	tgccccacca	aagtagattc	gtcaaaatcc	4200
tcaatttcat	caccctcctc	caagtttaac	atttggccgt	cggaattaac	ttctaaagat	4260
gccacataat	ctaataaatg	aaatagagat	tcaaacgtgg	cgtcatcgtc	cgtttcgacc	4320
atttccgaaa	agaactcggg	cataaactct	atgatttctc	tggacgtggt	gttgtcgaaa	4380
ctctcaaagt	acgcagtcag	gaacgtgcgc	gacatgtcgt	cgggaaactc	gcgcggaaac	4440
atgttgttgt	aaccgaacgg	gtcccatagc	gccaaaacca	aatctgccag	cgtcaataga	4500
atgagcacga	tgccgacaat	ggagctggct	tggatagcga	ttcgagttaa		4550
<210> 52						

<211> 5366

<212> ADN <213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

<400> 52 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120

cagtgtagtt	gactcgcgac	ggttgacctt	gccgatcacg	aacatgtggt	gcttgaatct	180
gttgtacttt	tggatgacct	ggctcacatc	aacgtccttg	atttcgccag	agatccagta	240
gaactccttg	ttcttcttag	cgatggtcag	cctttcctcg	ttcttgaagg	acaacacgat	300
gaagttgtga	cccttaacgt	tatcgacgtt	ttgagtcaag	tactgctcaa	cgatgtgcat	360
gcttccgtct	tccttcttga	ccttcttgag	gttctcggcg	ttgttgttag	aagcgatgtt	420
gtcgtggtac	ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
agtgctcttc	ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat	tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980

cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatgtctctt	3180
tggctgccta	gcgaggccac	tgtctacttg	cctcctgtcc	cagtatctaa	agttgtaagc	3240
acggatgaat	atgttgcacg	cacaaacata	tattatcatg	caggaacatc	cagactactt	3300
gcagttggac	atccctattt	tcctattaaa	aaacctaaca	ataacaaaat	attagttcct	3360
aaagtatcag	gattacaata	cagggtattt	agaatatatt	tacctgaccc	caataagttt	3420
ggttttcctg	acacctcatt	ttacaatcca	gatacacagc	ggctggtttg	ggcctgtgta	3480
ggtgttgagg	taggccgtgg	tcagccatta	ggtgtgggca	ttagtggcca	tcctttatta	3540
aataaattgg	atgacacaga	aaatgctagt	gcttatgcag	caaatgcagg	tgtggataat	3600
agagaatgta	tatctatgga	ttacaaacaa	acacaattgt	gtttaattgg	ttgcaaacca	3660
cctatagggg	aacactgggg	caaaggatcc	ccatgtaaca	atgttgcagt	aaatccaggt	3720
gattgtccac	cattagagtt	aataaacaca	gttattcagg	atggtgatat	ggttgatacc	3780
ggctttggtg	ctatggactt	tactacatta	caggctaaca	aaagtgaagt	tccactggat	3840
atttgtacgt	ctatttgcaa	atatccagat	tatattaaaa	tggtgtcaga	accatatggc	3900

gacagcttat	ttttttattt	acgaagggaa	caaatgtttg	ttagacattt	atttaatagg	3960
gctggtgctg	ttggtgaaaa	tgtaccagac	gatttataca	ttaaaggctc	tgggtctact	4020
gcaaatttag	ccagttcaaa	ttattttcct	acacctagtg	gttctatggt	tacctctgat	4080
gcccaaatat	ttaataaacc	atattggtta	caacgagcac	agggccacaa	taatggtatt	4140
tgttggggta	accaactatt	tgttactgtt	gttgatacta	cacgcagtac	aaatatgtca	4200
ttatgtgctg	ccatatctac	ttcagaaact	acatataaaa	atactaactt	taaagagtac	4260
ctacgacatg	gggaggaata	tgatttacag	tttattttc	aactgtgcaa	aataacctta	4320
actgcagacg	ttatgacata	catacattct	atgaattcca	ctattttgga	ggactggaat	4380
tttggtttac	aacctccccc	aggaggcaca	ctagaagata	cttataggtt	tgtaacatcc	4440
caggcaattg	cttgtcaaaa	acatacacct	ccagcaccta	aagaagatcc	ccttaaaaaa	4500
tatacttttt	gggaagtaaa	tttaaaagaa	aagttttctg	cagacctaga	tcagtttcct	4560
ttaggacgca	aatttttact	acaagcagga	tttaaggcca	aaccaaaatt	tacattagga	4620
aaacgaaaag	ctacacccac	cacctcatct	acctctacaa	ctgctaaacg	caaaaaacgt	4680
aagctgtaac	catggaagct	tatgaatcgt	ttttaaaata	acaaatcaat	tgttttataa	4740
tattcgtacg	attctttgat	tatgtaataa	aatgtgatca	ttaggaagat	tacgaaaaat	4800
ataaaaaata	tgagttctgt	gtgtataaca	aatgctgtaa	acgccacaat	tgtgtttgtt	4860
gcaaataaac	ccatgattat	ttgattaaaa	ttgttgtttt	ctttgttcat	agacaatagt	4920
gtgttttgcc	taaacgtgta	ctgcataaac	tccatgcgag	tgtatagcga	gctagtggct	4980
aacgcttgcc	ccaccaaagt	agattcgtca	aaatcctcaa	tttcatcacc	ctcctccaag	5040
tttaacattt	ggccgtcgga	attaacttct	aaagatgcca	cataatctaa	taaatgaaat	5100
agagattcaa	acgtggcgtc	atcgtccgtt	tcgaccattt	ccgaaaagaa	ctcgggcata	5160
aactctatga	tttctctgga	cgtggtgttg	tcgaaactct	caaagtacgc	agtcaggaac	5220
gtgcgcgaca	tgtcgtcggg	aaactcgcgc	ggaaacatgt	tgttgtaacc	gaacgggtcc	5280
catagcgcca	aaaccaaatc	tgccagcgtc	aatagaatga	gcacgatgcc	gacaatggag	5340
ctggcttgga	tagcgattcg	agttaa				5366

<210> 53

<211> 5981

<212> ADN

<213> Secuencia artificial

<220>

<400> 53

<223> Casete de expresión recombinante

10

ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60

gtcggagagt	ggcaccagtc	cctgcaggat	caaggccaag	agcttcagca	agttgttgtg	120
cagtgtagtt	gactcgcgac	ggttgacctt	gccgatcacg	aacatgtggt	gcttgaatct	180
gttgtacttt	tggatgacct	ggctcacatc	aacgtccttg	atttcgccag	agatccagta	240
gaactccttg	ttcttcttag	cgatggtcag	cctttcctcg	ttcttgaagg	acaacacgat	300
gaagttgtga	cccttaacgt	tatcgacgtt	ttgagtcaag	tactgctcaa	cgatgtgcat	360
gcttccgtct	tccttcttga	ccttcttgag	gttctcggcg	ttgttgttag	aagcgatgtt	420
gtcgtggtac	ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
agtgctcttc	ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat	tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagetteet	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980

cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggetgete	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatggagggc	3180
aaagcccgca	cagcgccgca	aggcgaagca	gcaggcactg	ccaccacagc	atcagtccct	3240
ggaaccacaa	ccgatggcat	ggaccccggc	gttgtggcca	ctaccagcgt	ggtcactgca	3300
gagaattcat	ccgcatcgat	tgcaacggca	gggattggcg	gaccacccca	acaggtggac	3360
caacaagaga	catggagaac	gaacttttat	tataatgacg	ttttcacttg	gtcagtcgcg	3420
gatgcccctg	gcagcatact	ttacaccgtt	caacattctc	cacagaacaa	cccattcaca	3480
gccgtgctga	gccagatgta	tgctggctgg	gctggtggca	tgcagtttcg	cttcatagtt	3540
gccggatcgg	gtgtgtttgg	tgggcggttg	gttgcggccg	tgataccacc	gggcatcgag	3600
attggaccag	ggctggaggt	caggcaattc	ccccatgttg	tcatcgacgc	tcgttcactt	3660
gaacctgtca	ccatcaccat	gccagacttg	cgtcccaaca	tgtaccatcc	aactggtgac	3720
cctggccttg	ttcccacact	agtccttagt	gtttataaca	acctcatcaa	cccgtttggt	3780
gggtccacca	gcgcaatcca	ggtgacagtg	gaaacaaggc	caagtgaaga	ttttgagttc	3840

gtgatgattc	gagccccctc	cagcaagact	gttgactcaa	tttcacccgc	aggcctcctc	3900
acgaccccag	tcctcactgg	ggttggcaat	gacaacaggt	ggaatggcca	aatagtggga	3960
ctgcaaccag	tacctggagg	gttctctacg	tgcaacaggc	attggaactt	gaatggcagc	4020
acatatggct	ggtcaagccc	ccggtttgcc	gacattgacc	atcgaagagg	cagtgcaagt	4080
taccctggat	ccaacgcaac	caacgtgctt	cagttttggt	atgccaatgc	tgggtctgca	4140
atcgacaatc	ccatctccca	ggttgcacca	gacggctttc	ctgatatgtc	gttcgtgccc	4200
tttaacggcc	ctggcattcc	agccgcgggg	tgggtcggat	ttggtgcaat	ctggaacagt	4260
aacagcggtg	cccccaacgt	tacgactgtg	caggcttatg	agttaggttt	tgccactggg	4320
gcaccaggca	acctccagcc	caccaccaac	acttcaggtt	cacagactgt	cgccaagtcc	4380
atatatgccg	tggtaactgg	cacagcccaa	aaccccgccg	gattgtttgt	gatggcctcg	4440
ggtgttatct	ccaccccaag	tgccaacgcc	atcacataca	cgccccaacc	agacagaatt	4500
gtaaccacac	ccggcactcc	tgccgctgca	cctgtgggta	agaacacacc	catcatgttc	4560
gcgtctgtcg	tcaggcgcac	cggtgacgtc	aacgccacag	ctgggtcagc	taacgggacc	4620
cagtacggca	caggetetea	accactgcca	gtaacaattg	gactttcgct	caacaactac	4680
tcgtcagcac	ttatgcccgg	acagtttttc	gtttggcagt	taacctttgc	atctggtttc	4740
atggagattg	gtttaagtgt	ggacgggtat	ttttatgcag	gaacaggagc	ctcaaccaca	4800
ctcattgact	tgactgaact	cattgacgta	cgccctgtgg	gacccaggcc	atccaagagc	4860
acactcgtgt	tcaacctggg	gggcacagcc	aatggctttt	cttatgtctg	aattcatcgg	4920
actgggactt	gcaggtgcca	gcgttttgag	caatgcattg	ctccgcaggc	aagagctgca	4980
actacaaaga	caagctttgg	agaatgggtt	ggttttgaaa	gccgaccaat	taggtaggtt	5040
aggttttaat	ccaaatgaag	ttaagaatgt	gattgtaggt	aatagtttta	gtagtaatgt	5100
tagattaagt	aatatgcata	atgatgctag	tgtagttaat	gcttataatg	tgtataatcc	5160
tgccagcaat	ggcatcagaa	agaaaattaa	gagtttgaat	aatagtgtta	agatttataa	5220
caccactggg	gagtccagtg	tttaatttga	ttttattggt	tttgaaattt	ggtttaattg	5280
ggtttatagt	ttaaagtaag	ctatccatgg	aagcttatga	atcgttttta	aaataacaaa	5340
tcaattgttt	tataatattc	gtacgattct	ttgattatgt	aataaaatgt	gatcattagg	5400
aagattacga	aaaatataaa	aaatatgagt	tctgtgtgta	taacaaatgc	tgtaaacgcc	5460
acaattgtgt	ttgttgcaaa	taaacccatg	attatttgat	taaaattgtt	gttttctttg	5520
ttcatagaca	atagtgtgtt	ttgcctaaac	gtgtactgca	taaactccat	gcgagtgtat	5580
agcgagctag	tggctaacgc	ttgccccacc	aaagtagatt	cgtcaaaatc	ctcaatttca	5640
tcaccctcct	ccaagtttaa	catttggccg	tcggaattaa	cttctaaaga	tgccacataa	5700
tctaataaat	gaaatagaga	ttcaaacgtg	gcgtcatcgt	ccgtttcgac	catttccgaa	5760

aagaactcgg gcataaactc tatgatttct ctggacgtgg tgttgtcgaa actctcaaag 5820
tacgcagtca ggaacgtgcg cgacatgtcg tcgggaaact cgcgcggaaa catgttgttg 5880
taaccgaacg ggtcccatag cgccaaaacc aaatctgcca gcgtcaatag aatgagcacg 5940
atgccgacaa tggagctggc ttggatagcg attcgagtta a 5981

<210> 54

<211> 4961

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

<400> 54 60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 660 720 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 840 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 900 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 1020 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1080 1140 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc 1200 1260 cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat 1320 ggtgctcttc ttgtacttag gtctcaactt gatcttgttg aattgaccca caactccctg

ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatgtctctt	3180
tggctgccta	gcgaggccac	tgtctacttg	cctcctgtcc	cagtatctaa	agttgtaagc	3240

acggatgaat	atgttgcacg	cacaaacata	tattatcatg	caggaacatc	cagactactt	3300
gcagttggac	atccctattt	tcctattaaa	aaacctaaca	ataacaaaat	attagttcct	3360
aaagtatcag	gattacaata	cagggtattt	agaatatatt	tacctgaccc	caataagttt	3420
ggttttcctg	acacctcatt	ttacaatcca	gatacacagc	ggctggtttg	ggcctgtgta	3480
ggtgttgagg	taggccgtgg	tcagccatta	ggtgtgggca	ttagtggcca	tcctttatta	3540
aataaattgg	atgacacaga	aaatgctagt	gcttatgcag	caaatgcagg	tgtggataat	3600
agagaatgta	tatctatgga	ttacaaacaa	acacaattgt	gtttaattgg	ttgcaaacca	3660
cctatagggg	aacactgggg	caaaggatcc	ccatgtaaca	atgttgcagt	aaatccaggt	3720
gattgtccac	cattagagtt	aataaacaca	gttattcagg	atggtgatat	ggttgatacc	3780
ggctttggtg	ctatggactt	tactacatta	caggctaaca	aaagtgaagt	tccactggat	3840
atttgtacgt	ctatttgcaa	atatccagat	tatattaaaa	tggtgtcaga	accatatggc	3900
gacagcttat	ttttttattt	acgaagggaa	caaatgtttg	ttagacattt	atttaatagg	3960
gctggtgctg	ttggtgaaaa	tgtaccagac	gatttataca	ttaaaggctc	tgggtctact	4020
gcaaatttag	ccagttcaaa	ttattttcct	acacctagtg	gttctatggt	tacctctgat	4080
gcccaaatat	ttaataaacc	atattggtta	caacgagcac	agggccacaa	taatggtatt	4140
tgttggggta	accaactatt	tgttactgtt	gttgatacta	cacgcagtac	aaatatgtca	4200
ttatgtgctg	ccatatctac	ttcagaaact	acatataaaa	atactaactt	taaagagtac	4260
ctacgacatg	gggaggaata	tgatttacag	tttattttc	aactgtgcaa	aataacctta	4320
actgcagacg	ttatgacata	catacattct	atgaattcca	ctattttgga	ggactggaat	4380
tttggtttac	aacctccccc	aggaggcaca	ctagaagata	cttataggtt	tgtaacatcc	4440
caggcaattg	cttgtcaaaa	acatacacct	ccagcaccta	aagaagatcc	ccttaaaaaa	4500
tatacttttt	gggaagtaaa	tttaaaagaa	aagttttctg	cagacctaga	tcagtttcct	4560
ttaggacgca	aatttttact	acaagcagga	tttaaggcca	aaccaaaatt	tacattagga	4620
aaacgaaaag	ctacacccac	cacctcatct	acctctacaa	ctgctaaacg	caaaaaacgt	4680
aagctgtaaa	agcttcagct	ggtcgagaag	tactagagga	tcataatcag	ccataccaca	4740
tttgtagagg	ttttacttgc	tttaaaaaac	ctcccacacc	tccccctgaa	cctgaaacat	4800
aaaatgaatg	caattgttgt	tgttaacttg	tttattgcag	cttataatgg	ttacaaataa	4860
agcaatagca	tcacaaattt	cacaaataaa	gcatttttt	cactgcattc	tagttgtggt	4920
ttgtccaaac	tcatcaatgt	atcttatcat	gtctggatct	g		4961

<210> 55 <211> 5576

<212> ADN

<213> Secuencia artificial

<220> <223> Casete de expresión recombinante

5

<400> 55 60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 180 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 660 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa agtgaagagg ttettgteet ggtacatete gtacaaette gacaagagga atccacaett 720 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 840 900 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 1020 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1080 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1140 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa 1200 cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc 1260 cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat ggtgctcttc ttgtacttag gtctcaactt gatcttgttg aattgaccca caactccctg 1320 ggagttatcc aggtactcgt ccaacttcct cttggtgcct gtggccgacg gctggttgac 1380 1440 accagcagag tgttcgaagg actcggcgtg gtaagctgag ctaggagagg gttgttcgac 1500 cactggctgt tcgagtgact cgctgtagta ggcagaggac acagcttcct ccaggttgtc agtggtcttg agcagacact ccaccaaatc gttgtcagtg agcgagttaa ctgaggcgag 1560 gaagttgcta gcggcagcgg tttcagagtc ggagatgaca gtatcagctc cgtccggggt 1620 1680 tgggtggttg tagtaagaca agtaatcgtt aggttgcttg tcgcagaact ccgagtatga 1740 gttgtcgaag ctagcacgag agggagtgct ggcagaggtg taggaagcgt tgaagttgat

ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatggagggc	3180
aaagcccgca	cagcgccgca	aggcgaagca	gcaggcactg	ccaccacagc	atcagtccct	3240
ggaaccacaa	ccgatggcat	ggaccccggc	gttgtggcca	ctaccagcgt	ggtcactgca	3300
gagaattcat	ccgcatcgat	tgcaacggca	gggattggcg	gaccacccca	acaggtggac	3360
caacaagaga	catggagaac	gaacttttat	tataatgacg	ttttcacttg	gtcagtcgcg	3420
gatgcccctg	gcagcatact	ttacaccgtt	caacattctc	cacagaacaa	cccattcaca	3480
gccgtgctga	gccagatgta	tgctggctgg	gctggtggca	tgcagtttcg	cttcatagtt	3540
gccggatcgg	gtgtgtttgg	tgggcggttg	gttgcggccg	tgataccacc	gggcatcgag	3600

attggaccag	ggctggaggt	caggcaattc	ccccatgttg	tcatcgacgc	tcgttcactt	3660
gaacctgtca	ccatcaccat	gccagacttg	cgtcccaaca	tgtaccatcc	aactggtgac	3720
cctggccttg	ttcccacact	agtccttagt	gtttataaca	acctcatcaa	cccgtttggt	3780
gggtccacca	gcgcaatcca	ggtgacagtg	gaaacaaggc	caagtgaaga	ttttgagttc	3840
gtgatgattc	gagccccctc	cagcaagact	gttgactcaa	tttcacccgc	aggcctcctc	3900
acgaccccag	tcctcactgg	ggttggcaat	gacaacaggt	ggaatggcca	aatagtggga	3960
ctgcaaccag	tacctggagg	gttctctacg	tgcaacaggc	attggaactt	gaatggcagc	4020
acatatggct	ggtcaagccc	ccggtttgcc	gacattgacc	atcgaagagg	cagtgcaagt	4080
taccctggat	ccaacgcaac	caacgtgctt	cagttttggt	atgccaatgc	tgggtctgca	4140
atcgacaatc	ccatctccca	ggttgcacca	gacggctttc	ctgatatgtc	gttcgtgccc	4200
tttaacggcc	ctggcattcc	agccgcgggg	tgggtcggat	ttggtgcaat	ctggaacagt	4260
aacagcggtg	cccccaacgt	tacgactgtg	caggcttatg	agttaggttt	tgccactggg	4320
gcaccaggca	acctccagcc	caccaccaac	acttcaggtt	cacagactgt	cgccaagtcc	4380
atatatgccg	tggtaactgg	cacagcccaa	aaccccgccg	gattgtttgt	gatggcctcg	4440
ggtgttatct	ccaccccaag	tgccaacgcc	atcacataca	cgccccaacc	agacagaatt	4500
gtaaccacac	ccggcactcc	tgccgctgca	cctgtgggta	agaacacacc	catcatgttc	4560
gcgtctgtcg	tcaggcgcac	cggtgacgtc	aacgccacag	ctgggtcagc	taacgggacc	4620
cagtacggca	caggetetea	accactgcca	gtaacaattg	gactttcgct	caacaactac	4680
tegteageae	ttatgcccgg	acagtttttc	gtttggcagt	taacctttgc	atctggtttc	4740
atggagattg	gtttaagtgt	ggacgggtat	ttttatgcag	gaacaggagc	ctcaaccaca	4800
ctcattgact	tgactgaact	cattgacgta	cgccctgtgg	gacccaggcc	atccaagagc	4860
acactcgtgt	tcaacctggg	gggcacagcc	aatggctttt	cttatgtctg	aattcatcgg	4920
actgggactt	gcaggtgcca	gcgttttgag	caatgcattg	ctccgcaggc	aagagctgca	4980
actacaaaga	caagctttgg	agaatgggtt	ggttttgaaa	gccgaccaat	taggtaggtt	5040
aggttttaat	ccaaatgaag	ttaagaatgt	gattgtaggt	aatagtttta	gtagtaatgt	5100
tagattaagt	aatatgcata	atgatgctag	tgtagttaat	gcttataatg	tgtataatcc	5160
tgccagcaat	ggcatcagaa	agaaaattaa	gagtttgaat	aatagtgtta	agatttataa	5220
caccactggg	gagtccagtg	tttaatttga	ttttattggt	tttgaaattt	ggtttaattg	5280
ggtttatagt	ttaaagtaag	ctataagctt	cagctggtcg	agaagtacta	gaggatcata	5340
atcagccata	ccacatttgt	agaggtttta	cttgctttaa	aaaacctccc	acacctcccc	5400
ctgaacctga	aacataaaat	gaatgcaatt	gttgttgtta	acttgtttat	tgcagcttat	5460
aatggttaca	aataaagcaa	tagcatcaca	aatttcacaa	ataaagcatt	tttttcactg	5520

cattctagtt gtggtttgtc caaactcatc aatgtatctt atcatgtctg gatctg 5576

<210> 56

<211> 4145

<212> ADN

<213> Secuencia artificial

<220>

5

10

<223> Casete de expresión recombinante

<400> 56

60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 180 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 540 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 660 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 720 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 780 acgetegeeg agtgattgea geaaggteae gaaggttgte tgagegtagt acatategag 840 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 900 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1020 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1080 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa 1140 cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc 1200 1260 cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat 1320 ggtgctcttc ttgtacttag gtctcaactt gatcttgttg aattgaccca caactccctg ggagttatcc aggtactcgt ccaacttcct cttggtgcct gtggccgacg gctggttgac 1380 accagcagag tgttcgaagg actcggcgtg gtaagctgag ctaggagagg gttgttcgac 1440 cactggctgt tcgagtgact cgctgtagta ggcagaggac acagcttcct ccaggttgtc 1500

agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatgacgtat	3180
ccaaggaggc	gtttccgcag	acgaagacac	cgcccccgca	gccatcttgg	ccagatcctc	3240
cgccgccgcc	cctggctcgt	ccacccccgc	caccgttacc	gctggagaag	gaaaaatggc	3300
atcttcaaca	cccgcctctc	ccgcaccttc	ggatatactg	tcaaggctac	cacagtcaca	3360
acgccctcct	gggcggtgga	catgatgaga	tttaatatta	acgactttgt	tcccccggga	3420

ggggggacca	acaaaatctc	tatacccttt	gaatactaca	gaataagaaa	ggttaaggtt	3480
gaattetgge	cctgctcccc	aatcacccag	ggtgacaggg	gagtgggctc	cactgctgtt	3540
attctagatg	ataactttgt	aacaaaggcc	acagccctaa	cctatgaccc	ctatgtaaac	3600
tactcctccc	gccatacaat	ccccaaccc	ttctcctacc	actcccgtta	cttcacaccc	3660
aaacctgtac	tggatagaac	tattgattac	ttccagccaa	acaacaaaaa	aaatcagctt	3720
tggctgaggc	tacaaacctc	tgcaaatgta	gaccacgtag	gcctcggcac	tgcgttcgaa	3780
aacagtaaat	acgaccagga	ctacaatatc	cgtgtaacca	tgtatgtaca	attcagagaa	3840
tttaatctta	aagacccccc	acttaaaccc	taaaagcttc	agctggtcga	gaagtactag	3900
aggatcataa	tcagccatac	cacatttgta	gaggttttac	ttgctttaaa	aaacctccca	3960
cacctcccc	tgaacctgaa	acataaaatg	aatgcaattg	ttgttgttaa	cttgtttatt	4020
gcagcttata	atggttacaa	ataaagcaat	agcatcacaa	atttcacaaa	taaagcattt	4080
ttttcactgc	attctagttg	tggtttgtcc	aaactcatca	atgtatctta	tcatgtctgg	4140
atcto						4145

REIVINDICACIONES

	1.	Casete de expresión que comprende
5		[1] una copia del gen endógeno que codifica para el regulador transcripcional como transgén bajo el control de un promotor adecuado, en el que el regulador transcripcional es IE-1 e/o IE-0, que permite la expresión de las proteínas IE-1 e/o IE-0 que funcionan como reguladores transcripcionales por encima de niveles endógenos obtenidos durante la infección de baculovirus, en el que el ácido nucleico se selecciona del grupo que consiste en:
10		(a) secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 1-5;
15		(b) secuencia de ácido nucleico que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 1-5 y que codifica para una proteína que funciona como un regulador transcripcional en un baculovirus;
20	(c) secuencia de ácido nucleico que codifica para una proteína con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9; y	
		(d) secuencia de ácido nucleico que codifica para una proteína que funciona como un regulador transcripcional en un baculovirus y que tiene una similitud de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9;
25		[2] una secuencia de ácido nucleico que permite la expresión de una proteína recombinante, en el que la proteína recombinante es una proteína que forma partículas de tipo virus en el que la expresión de la proteína recombinante es impulsada por un promotor que comprende el promotor <i>p10</i> baculoviral,
30		[3] al menos una región homóloga recombinante (hr) como región potenciadora, unida operativamente al promotor que impulsa la expresión de la proteína recombinante.
2.	Casete de expresión según la reivindicación 1, en el que la proteína recombinante es cualquier proteína que forma partículas de tipo virus seleccionadas del grupo que consiste en:	
35		(a) Proteína de cápside de circovirus porcino, preferiblemente de circovirus porcino de tipo 2,
	(b) Proteína VP1, VP3 o VP0 de virus de fiebre aftosa,	
40		(c) Proteínas VP1 y VP2 de parvovirus canino,
	(d) Proteínas VP1 y VP2 de parvovirus porcino,	
45	(e) Proteína de cápside de norovirus humano (genogrupo I o II),	
	(f) Proteína de cápside de calcivirus,	
		(g) Proteína L1 de virus del papiloma humano, preferiblemente de virus del papiloma humano 16,
50		(h) Proteína E2 de hepatitis E,
	(i) Proteínas VP1, VP2 y VP3 del virus de bursitis infecciosa,	
55	(j) Proteínas codificadas por ORF2 de astrovirus,	
	(k) Proteínas HA, NA y M1 de virus de la gripe,	
		(I) Antígenos de superficie y núcleo de hepatitis B,

3. Casete de expresión según cualquiera de las reivindicaciones 1-2, en el que el promotor que impulsa la expresión de la proteína recombinante comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en:

(n) Proteína VP60 de calicivirus de conejo, preferiblemente de virus de enfermedad hemorrágica de conejo.

(m) Proteínas VP1 y VP2 de parvovirus, y

60

65

- (a) secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 10-16; y
- (b) secuencia de ácido nucleico que funciona como un promotor en un baculovirus y que tiene una identidad de secuencia de al menos 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 10-16.
- 4. Casete de expresión según la reivindicación 3, en el que el promotor que impulsa la expresión de la proteína recombinante comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en:
 - (a) secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 11, 12, 13, 15 y 16; y
- (b) secuencia de ácido nucleico que funciona como un promotor en un baculovirus y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 11, 12, 13, 15 y 16.
- 20 5. Casete de expresión según la reivindicación 3 ó 4, en el que el promotor que impulsa la expresión de la proteína recombinante comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en:
 - (a) secuencia de ácido nucleico indicada en SEQ ID NO: 11; y
- (b) secuencia de ácido nucleico que funciona como un promotor en un baculovirus y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en SEQ ID NO: 11.
- 30 6. Casete de expresión según cualquiera de las reivindicaciones 1 a 5, en el que la región homóloga recombinante (*hr*) se selecciona del grupo de secuencias de ácido nucleico que consiste en:
 - (a) secuencia de ácido nucleico indicada en SEQ ID NO: 27: v

50

- 35 (b) secuencia de ácido nucleico que funciona como una región homóloga potenciadora en un baculovirus y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en SEQ ID NO: 27.
- 40 7. Casete de expresión según cualquiera de las reivindicaciones 1-6, que comprende una secuencia de ácido nucleico que se une operativamente a la expresión de la proteína recombinante y se selecciona del grupo que consiste en:
- (a) secuencia de ácido nucleico que contiene la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 17-22, 25 y 26 y
 - (b) secuencia de ácido nucleico que conserva sustancialmente la actividad de los elementos funcionales y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 17-22, 25 y 26.
 - 8. Casete de expresión según una cualquiera de las reivindicaciones 1-6, que comprende una secuencia de ácido nucleico seleccionada del grupo que consiste en:
- 55 (a) secuencia de ácido nucleico que contiene la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 51-56; y
- (b) secuencia de ácido nucleico que conserva sustancialmente la actividad de los elementos funcionales y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 80%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de ácido nucleico indicada en cualquiera de SEQ ID NO: 51-56.
- 9. Vector de clonación, vector de transferencia, bácmido, baculovirus recombinante, célula o insecto que comprende el casete de expresión de cualquiera de las reivindicaciones 1-8, en el que el vector de transferencia comprende además una secuencia de ácido nucleico adecuada para integración o transposición en un genoma de baculovirus.

ES 2 554 752 T3

- 10. Medio de cultivo que comprende el casete de expresión, vector de clonación, vector de transferencia, bácmido o baculovirus recombinante de cualquiera de las reivindicaciones 1-9.
- 5 11. Método para producir una proteína recombinante que comprende el uso del casete de expresión, vector de clonación, vector de transferencia, bácmido, baculovirus recombinante, célula o insecto según cualquiera de las reivindicaciones 1-9 y la extracción y purificación de la proteína recombinante mediante medios convencionales.

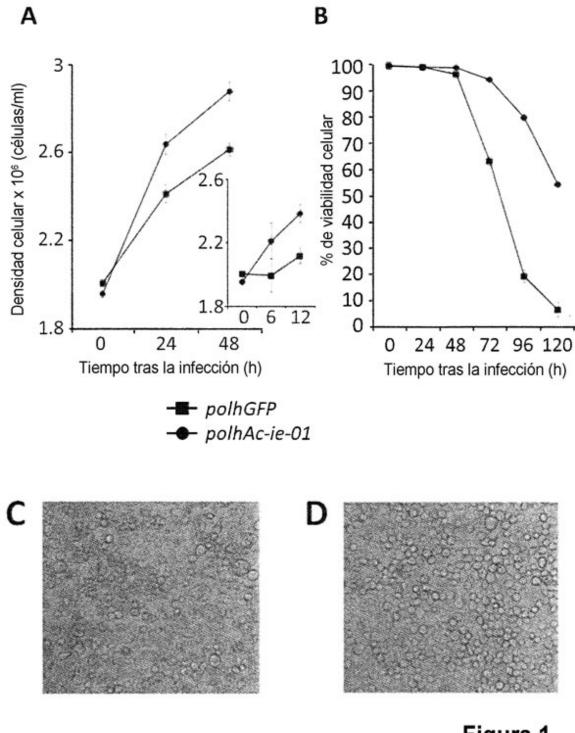


Figura 1

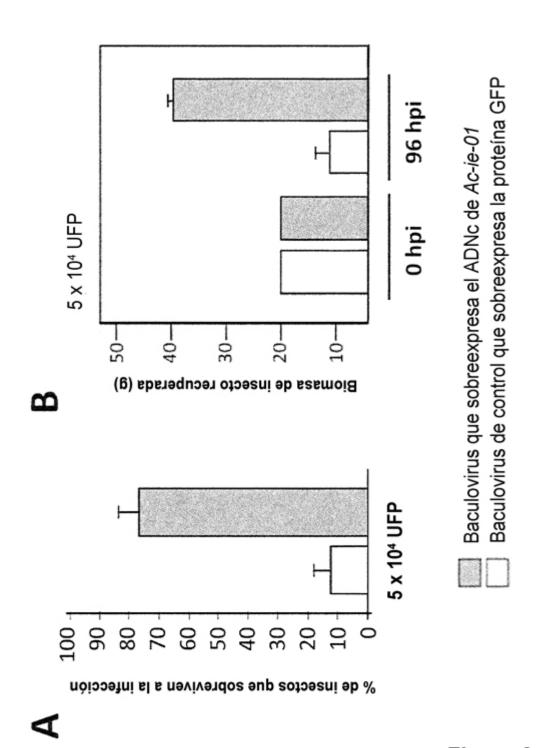


Figura 2

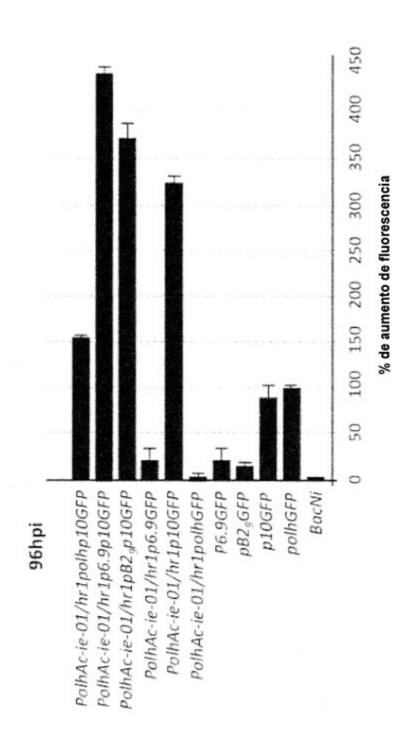


Figura 3

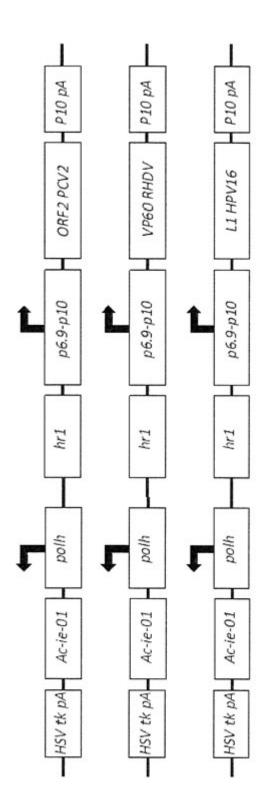


Figura 4

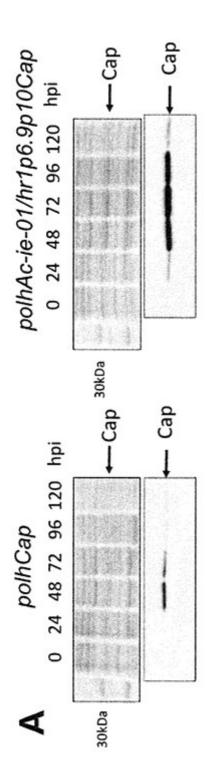


Figura 5

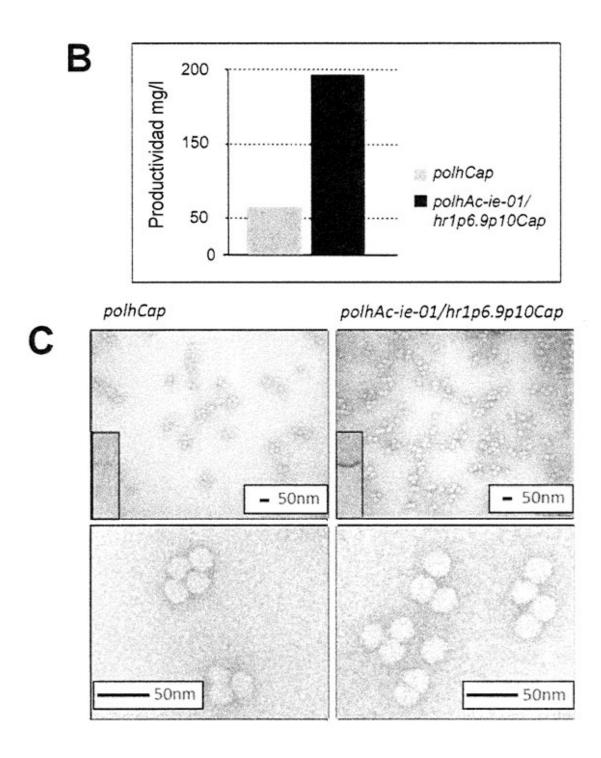


Figura 5

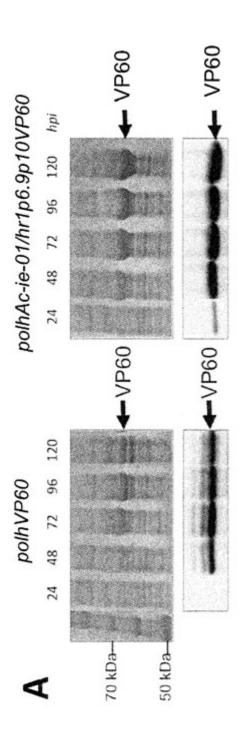


Figura 6

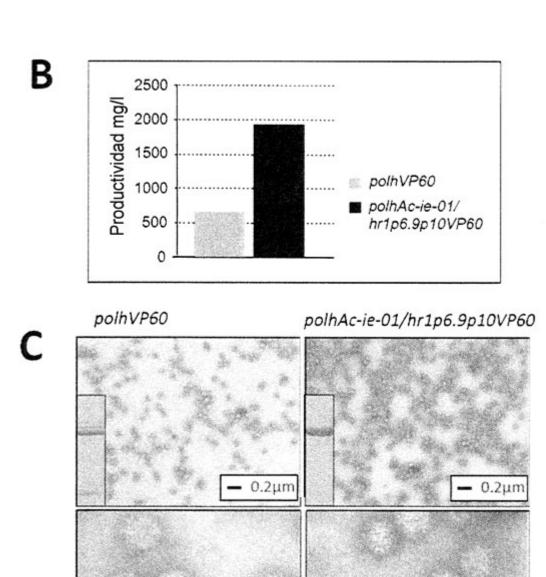


Figura 6

0.05µm

-0.05μm

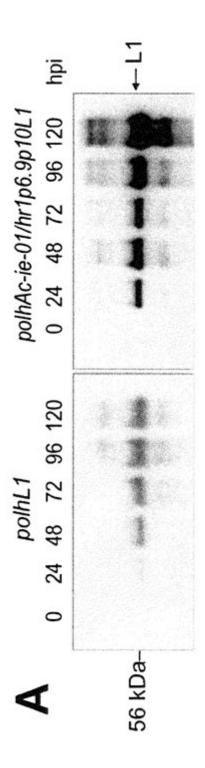


Figura 7

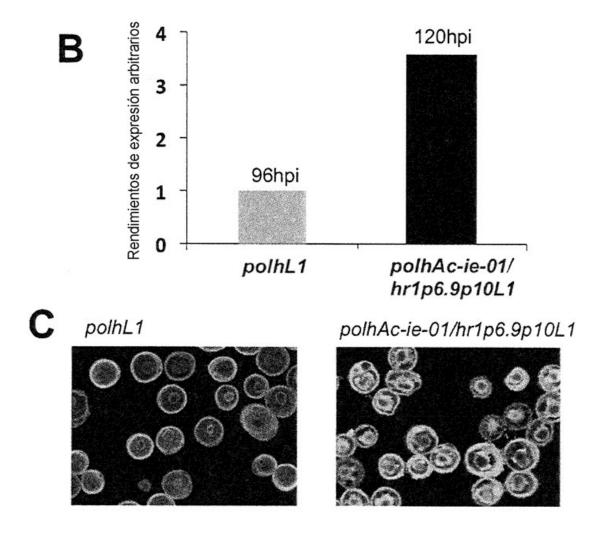
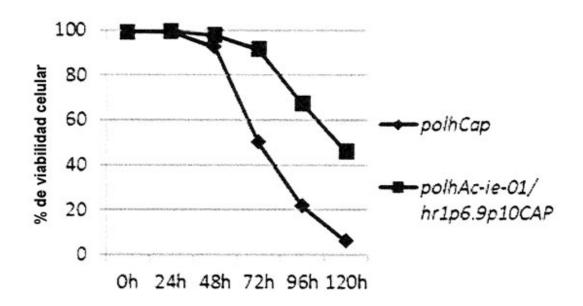



Figura 7

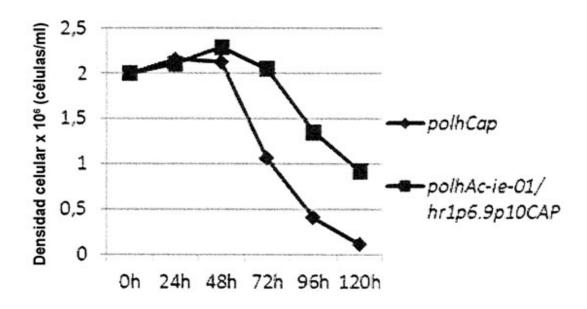
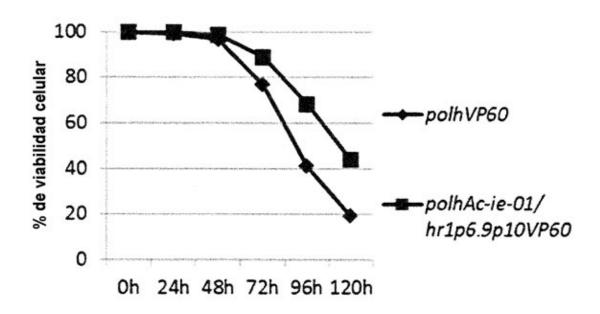



Figura 8A

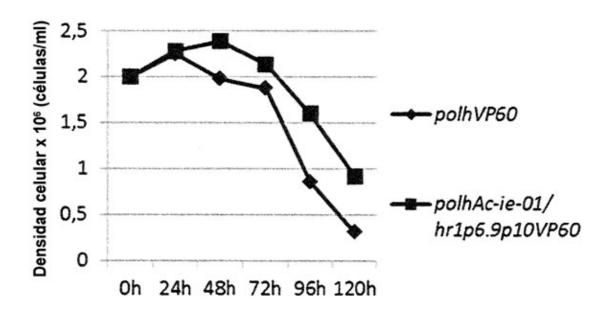
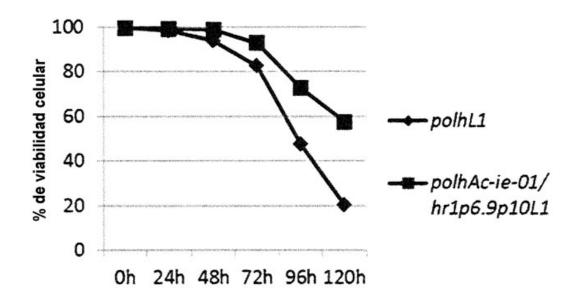



Figura 8B

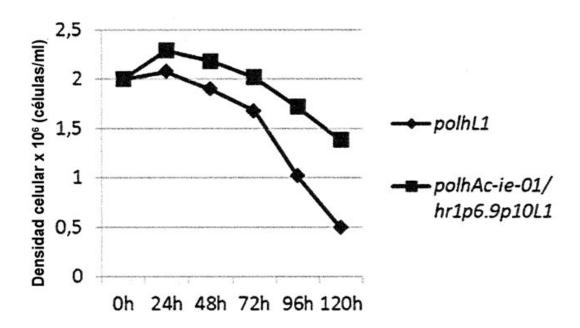


Figura 8C

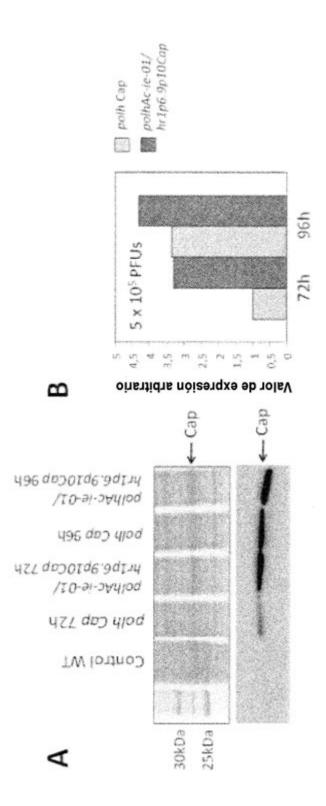


Figura 9

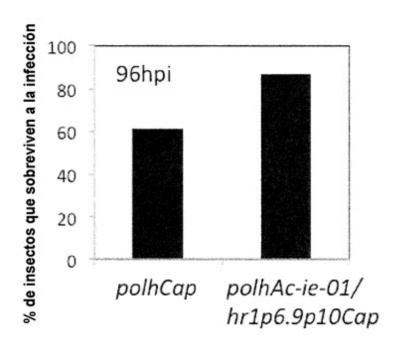


Figura 10

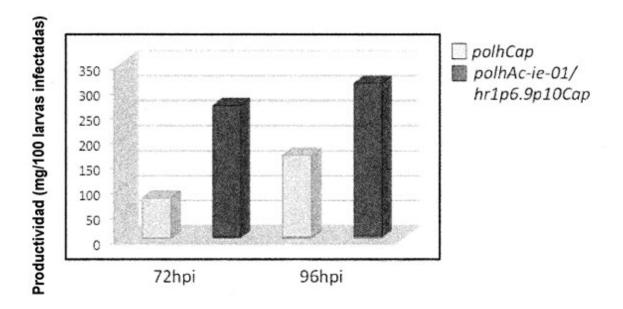


Figura 11