



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11 Número de publicación: 2 558 481

51 Int. Cl.:

B28B 1/08 (2006.01) B28B 3/02 (2006.01) B28B 11/10 (2006.01) B28B 13/00 (2006.01)

(12)

## TRADUCCIÓN DE PATENTE EUROPEA

**T3** 

(96) Fecha de presentación y número de la solicitud europea: 22.08.2012 E 12825491 (9)
(97) Fecha y número de publicación de la concesión europea: 07.10.2015 EP 2747967

(54) Título: Prensa de vibración en vacío para la formación de losas de piedra de compuesto con diseño

(30) Prioridad:

23.08.2011 US 201161526308 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **04.02.2016** 

(73) Titular/es:

BANUS, CHRISTOPHER T. (100.0%) 46 C Bay Ridge Drive Nashua, NH 03063, US

(72) Inventor/es:

BANUS, CHRISTOPHER T.

74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

#### **DESCRIPCIÓN**

Prensa de vibración en vacío para la formación de losas de piedra de compuesto con diseño

#### 5 Campo de la invención

10

15

20

25

30

35

40

45

50

La invención se refiere a losas de piedra de compuesto y, más particularmente, a una prensa de vibración en vacío para la realización de losas de piedra de compuesto con las características listadas en el preámbulo de la reivindicación 1.

#### Antecedentes de la invención

Losas y baldosas de piedra de compuesto fabricadas, a las que genéricamente se hace referencia a veces en el presente documento como "losas de cuarzo", se han producido desde mediados de los 80 del siglo XX. Incluyen normalmente el 90-93 % de contenido de piedra, siendo el restante 7-10 % resina, pigmento y aditivos, a los que genéricamente se hace referencia a veces en el presente documento como "aglomerante". El método más comúnmente usado para producir losas de piedra fabricadas se denomina generalmente como el método "Breton", o "Piedra Breton", debido a que el suministrador principal del equipo que se usa para realizar las losas de piedra de compuesto es Breton Spa de Italia. En particular, la Prensa de Vibración en Vacío de Breton y copias de las mismas juegan un papel clave en la producción de dichas losas de piedra.

La Figura 1 ilustra las etapas básicas usadas para la fabricación de losas de piedra usando el método Breton. Primero, se preparan 100 las materias primas. Normalmente, esto incluye la preparación de una mezcla que contiene aproximadamente el 65 % de granos de piedra 102 tal como cuarzo, granito, espejos, y/o vidrios machacados en tamaños de grano desde 0,2 mm hasta 6 mm o incluso 15 mm. Se incluye también aproximadamente el 25 % de "polvo de cuarzo" 104, en el que el término "polvo de cuarzo" se refiere genéricamente a uno o más minerales pulverizados tales como sílice y/o cuarzo, normalmente en aproximadamente un tamaño de menos de 325 mallas (menos de 45 micras). Finalmente, se incluye aproximadamente del 7 al 10 % de resina 106, normalmente con aditivos tales como catalizador 108, mezclas de pigmentos 110 y medios de dispersión.

Después de que se hayan pesado y medido las materias primas, se transportan a un mezclador 112 y se mezclan juntas 114. Normalmente, el mezclador se carga con los gránulos de piedra, y a continuación se añade la resina y pigmentos y la combinación se mezcla hasta que las partículas y gránulos están completamente impregnados. Para finalidades de diseño del color se emplean dos, tres o más mezcladores, cada uno con unas materias primas y pigmentos de color diferente. Esto se ilustra en la Figura 2.

El polvo de cuarzo se añade a continuación mientras continúa la mezcla. Cuando se combina con la resina, el polvo de cuarzo forma una pasta que sirve como el aglomerante entre los gránulos de piedra. Los materiales mezclados se conforman a continuación como una única losa 116, o bien en un molde de goma, un molde de metal, o bien en una lámina de papel u otro portador adecuado que se pueda usar para transportar la losa formada al interior de la prensa de vibración en vacío.

Una vez se ha transferido a la prensa, la losa conformada se somete a vacío, se hace vibrar y se prensa 118 simultáneamente de modo que se compacte el material mezclado, se elimine el aire de la mezcla de modo que no habrá huecos en la losa acabada, y se haga plana. El modo y tiempo de prensado también ayudan a la creación de la composición deseada de los diversos materiales y colores en la losa. El grado e intensidad del mezclado, composición y vibración afectarán todos al (a los) color(es) y aspecto(s) de la losa acabada. Un ejemplo de los parámetros usados en la etapa 118 de prensado podría ser:

- hacer vacío hasta una presión de 1,33 mbar-0,133 bar (1-100 torr);
- aplicar la placa de prensa con una presión hacia abajo de 0,689 mbar a 20,67 bar (0,01 a 300 psi);
- aplicar vibración con una frecuencia de aproximadamente 1000-5000 rpm y una amplitud de 0,05 a 2 mm; y
- continuar lo anterior durante entre 20-280 segundos para producir una losa prensada, libre de huecos.

Una vez ha sido prensada la losa, se transporta a un horno o a alguna otra localización para curado 120. Dependiendo del adhesivo (resina) usado para aglomerar las partículas unidas dentro de la losa, el proceso de curado y endurecimiento puede tener lugar a temperatura ambiente o a una temperatura elevada, y puede requerir desde pocos minutos a muchas horas. Después del curado y endurecimiento, la losa se devuelve a temperatura ambiente (si se ha aplicado calor).

La losa curada se desbasta y pulimenta 122 a continuación hasta un grosor y acabado deseados, usando una tecnología similar a la que se usa para desbastar, calibrar y a continuación pulir losas de piedra de granito natural convencionales. El resultado final 124 es una losa de cuarzo acabada, también denominada como una losa de cuarzo de diseño, una losa de cuarzo de compuesto, una losa de cuarzo artificial, y otras expresiones similares.

65

60

Aunque la prensa Breton y el proceso Breton son efectivos, hay varias desventajas asociadas con el estilo Breton de equipos y procedimiento de prensado, y con equipos y procedimientos similares comercializados por otros fabricantes. Con referencia a la Figura 3, la prensa Breton 300 incluye una cubierta de prensa/cámara de vacío 302 que es también el alojamiento para los motores de vibración 304 montados en una placa de vibración 306 y suspendidos por bolsas de aire 308 o montajes de vibración similares. La cubierta de la prensa 302 se monta sobre postes neumáticos 310 de modo que se pueda descender sobre una losa conformada 312 que normalmente se lleva el interior de la prensa sobre una cinta transportadora 314 que se mueve entre la cubierta de prensa y la base de la prensa 316. La prensa Breton 300 emplea peso y potencia en cantidades para aplicar simultáneamente vacío, vibración, y presión descendente a la losa conformada 312. La cubierta de prensa 302 y los mecanismos incluidos 304, 306, 308 pesan aproximadamente 6803,85 kg (15.000 libras), y la base de la prensa 316 pesa aproximadamente 13607,7 kg (30.000 libras). Juntas la prensa Breton 300 pesa normalmente desde 22679,5 kg a 34019,2 kg (50.000 a 75.000 libras). Además, debe anclarse a un bloque 318 de hormigón amortiguador de las vibraciones que se asienta por debajo del suelo de hormigón 320 y está rodeado por un material 322 aislante de las vibraciones. El bloque 318 es de aproximadamente 6,096 m (20 pulgadas) de largo por 4,572 m (15 pulgadas) de ancho por 4,572 m (15 pulgadas) de fondo y pesa otras 100-300 toneladas.

También, la cámara de vacío/cubierta de prensa (302) de acero, que se conforma normalmente como una caja rectangular, se construye masivamente para soportar la fuerza del vacío y los efectos destructivos a largo plazo de la vibración.

Además, debido a que la losa formada 312 se posiciona sobre una base sólida 316 que se atornilla a un bloque de hormigón 318, que por sí mismo pesa de 13607,7 kg a 18143,6 kg (30.000 a 40.000 libras), debe aplicarse una fuerza de vibración enorme, de aproximadamente 74,5699 kW a 223,7097 kW (100 a 300 hp) a de 1000 a 5000 rpm, de modo que haga vibrar apropiadamente la losa. Esencialmente, para prensar y hacer vibrar la losa 312 que pesa 181,43 kg - 680,38 kg (400-1500 libras), se requiere que la prensa Breton 300 haga vibrar un mecanismo 302, 316 que pesa 22679,5 kg a 34019,2 kg (50.000 a 75.000 libras), más el bloque de hormigón 318 al que está atornillada. Además, la placa de prensa 306 que comprime la losa y el montaje 308 para los motores de vibración son igualmente masivos.

También, el ciclo del tiempo de vibración en vacío por losa para la prensa Breton 300 es de aproximadamente 70-200 segundos, lo que requiere tiempo, y la prensa 300 hecha en Breton cuesta aproximadamente de 6 a 7 millones de dólares de Estados Unidos, lo que es muy caro.

El documento GB 2 098 126 A describe una prensa de vibración en vacío para la formación de losas de piedra de compuesto con una cámara de vacío y un mecanismo de prensado, en la que el material para la losa se rellena dentro de una caja de molde, que se coloca sobre rodillos. La parte inferior de la caja del molde sirve como una plataforma de transporte. Cuando se mueven los rodillos hacia abajo, la parte inferior de la caja del molde reposa sobre soportes fijos. La prensa de vibración en vacío comprende un dispositivo de vibración dispuesto sobre el lado superior de un martillo pilón que sirve como el mecanismo de prensado. Tanto la acción de prensado como la acción de vibración se ejercen por el mismo dispositivo. La cámara de vacío rodea el mecanismo de prensado, la caja del molde y la plataforma de transporte.

Lo que se necesita, por lo tanto, es una prensa de vibración en vacío que pueda aplicar vacío, vibración y presión en cantidades similares a una prensa Breton pero con un coste de fabricación y requisitos de energía de vibración significativamente más bajos, y con tiempos de prensado más cortos. El objeto de la presente invención es proporcionar una prensa de vibración en vacío, en la que la mesa de vibración se conecte al bastidor de soporte a través de un mecanismo que permita que la mesa de vibración se mueva libremente sin transmitir una vibración excesiva al bastidor de soporte o a la cámara de vacío.

50 Este objetivo se consigue mediante una prensa de vibración en vacío de acuerdo con la presente invención con las características de la reivindicación 1.

#### Sumario de la invención

10

15

20

25

45

60

65

Una prensa de vibración en vacío para la realización de losas de piedra de compuesto aplica tanta o más vibración y presión a una losa de cuarzo conformada como una prensa Breton convencional, mientras que pesa menos, cuesta menos de fabricar, proporcionando tiempos de ciclo de prensado más cortos, y requiriendo menos consumo de energía para hacer vibrar la losa en comparación con la prensa Breton. Se estima que la prensa de la presente invención se puede fabricar a un coste de aproximadamente 750.000 dólares de Estados Unidos.

En realizaciones, en lugar de una cámara de vacío rectangular con enorme resistencia y peso, la prensa de la presente invención usa una cámara cilíndrica de peso ligero dentro de la que se suspende un soporte del mecanismo de vibración y la piedra. A diferencia de la prensa Breton tradicional, la cámara de vacío de la presente invención no se hace vibrar, sino que en realidad está aislada de cualquier vibración. Este enfoque hace más factible el uso de cualquier tipo de diseño y/o construcción de la cámara de vacío, incluyendo diseños cilíndricos de peso ligero, y también diseños rectangulares y pesados si así se desea.

En lugar de hacer vibrar una prensa de 22679,5 kg - 34019,2 kg (50.000-75.000 libras) y sus más de 100 toneladas de base del bloque de hormigón, que requieren 74,5699 kW a 223,7097 kW (100-300 hp), la prensa de la presente invención solo requiere hacer vibrar aproximadamente 1360,7 kg a 2267,9 kg (3000 a 5000 libras) de maquinaria y losa, lo que requiere solamente aproximadamente 11,185 kW a 18,642 kW (15 a 25 hp).

La parte de la prensa que se hace vibrar se denomina en el presente documento como el Mecanismo de Vibración y Prensado (VPM, por "Vibration and Pressing Mechanism" en inglés). El VPM es simple y ligero, comprendiendo un Bastidor de Soporte de la Mesa de Prensado y Vibración, o VPT-SF (por "Vibration Press Table Support Frame" en inglés), una mesa de vibración, una placa de prensado y un mecanismo de prensado, y uno o más Dispositivos de Vibración (VD por "Vibration Devices" en inglés).

El Bastidor de Soporte de la Mesa de Prensa y Vibración (VPT-SF) se fija por abrazaderas o tornillos al interior de la cámara de vacío. La mesa de vibración se conecta a y se eleva desde el bastidor de soporte con resortes, bolsas de aire u otros mecanismos adecuados que permiten que la mesa de vibración se mueva libremente sin transmitir una vibración excesiva al bastidor de soporte o a la cámara de vacío. La placa de prensa y mecanismo de prensado se soportan por encima de la losa formada, y se descienden, posicionados con precisión, y se hacen vibrar de modo que lleven a cabo la compactación requerida de los componentes del material de la losa. Los Dispositivos de Vibración (VD) se montan en la parte inferior de la mesa de prensado y/o la parte superior de la placa de prensado, y hacen que la losa de cuarzo y el mecanismo de prensa de vibración completo vibren, pero no provocan que la cámara de vacío vibre apreciablemente.

#### Definiciones de términos

5

10

15

20

25

30

35

40

55

65

Obsérvese que los términos siguientes se usan con las definiciones indicadas a todo lo largo del presente documento.

Losas de cuarzo: Esta expresión se refiere genéricamente a losas de piedra de compuesto artificiales, otros términos que se usan de modo sinónimo e intercambiable incluyen: losas de piedra de diseño; losas de piedra aglomeradas; losas de cuarzo; losas de piedra o cuarto de compuesto; losas de piedra artificiales; y losas de piedra aglomeradas.

**Gránulos de piedra (GP**, por "Stone Granules" en inglés): Esta expresión se refiere en general a partículas de piedra (frecuentemente piedras basadas en cuarzo o sílice) u otros materiales duros tales como vidrio, granito, mármol, y similares, que tienen tamaños en el intervalo desde aproximadamente 200 micras hasta 2-3 centímetros. El término se usa de modo intercambiable en el presente documento con los términos agregados y gránulos.

Polvo de cuarzo (PC, por "Quartz Powder" en inglés): Esta expresión se refiere a material en polvo que varía en tamaño desde aproximadamente 1 micra a aproximadamente 300 micras. En la industria, el PC es comúnmente arena de cuarzo o sílice finamente pulverizados y/o molidos. La expresión se usa de modo intercambiable en el presente documento con los términos polvo de sílice, polvo de cuarzo, y cargas. Está realmente disponible en todo el mundo generalmente en un tamaño estándar de menos de 325 mallas, y se puede realizar a partir de mármol (carbonatos de calcio), vidrio, granito, o cualquier otro material que pueda pulverizarse y usarse para la realización de losas de cuarzo.

Resina: En la industria de las losas de cuarzo la resina es, por razones económicas, normalmente una resina termoendurecible de poliéster modificado. La expresión resina se usa a todo lo largo del presente documento para referirse a cualquier resina y/o sistema de adhesivo capaz de adherir juntos la gama de gránulos de piedra y piezas de polvo de cuarzo que se usan para formar una losa de cuarzo. Ejemplos incluyen resinas epoxi, de uretano, acrílicas, de éster-vinilo, silicona, e incluso adhesivos aglutinantes basados en las varias formas de cementos de tipo hidráulico. En donde la resina es un material de poliéster, entonces puede incluir varios aditivos que afectan a la velocidad de curado y especialmente a la adhesión de la resina a los minerales y granitos basados en sílice y/o cuarzo.

**Prensa**: Este término se usa en el presente documento para referirse a cualquier maquina o dispositivo que pueda aplicar simultáneamente un vacío, un prensado mecánico descendente, y vibración a una losa de cuarzo durante el proceso de producción. El término se usa de modo intercambiable en el presente documento con los términos prensa de vibración en vacío y VVP.

**Prensado**: Este término se usa en el presente documento para referirse al proceso de aplicación simultáneamente de vacío, presión descendente y vibración con niveles e intensidades seleccionados.

La presente invención es una prensa de vibración en vacío de peso ligero, eficiente en energía, bajo coste para la formación de losas de piedra de compuesto mediante compresión y vibración simultáneamente de las losas bajo vacío. La prensa incluye una cámara de vacío, un bastidor de soporte de la mesa de vibración dentro de la cámara de vacío, un sistema de aislamiento de la vibración fijado al bastidor de soporte de la prensa de vibración, una mesa de vibración soportada por el sistema de aislamiento de la vibración, proporcionando el sistema de aislamiento de la

vibración al menos un aislamiento parcial de la vibración entre el bastidor de soporte de la mesa de vibración y la mesa de vibración, un mecanismo de prensado que se configura para comprimir una mezcla de losa entre el mecanismo de prensado y la mesa vibración a una presión de entre 0,0689 bar y 6,89 bar (1 y 100 psi), y al menos un dispositivo de vibración configurado para hacer vibrar al menos una de entre la mesa de vibración y el mecanismo de prensado. La cámara de vacío se configura de modo que rodee y encierre dentro de su espacio de vacío el bastidor de soporte de la mesa de vibración, el sistema de aislamiento de la vibración, la mesa de vibración, la mezcla de losa, y el mecanismo de prensado.

Realizaciones incluyen adicionalmente al menos una bomba de vacío adecuada para la evacuación de la cámara de vacío.

Algunas realizaciones incluyen adicionalmente un mecanismo de transporte para el transporte de la mezcla de losa sobre y fuera de la mesa de vibración. En algunas de estas realizaciones, el mecanismo de transporte incluye una cinta transportadora. En algunas de estas realizaciones, la cámara de vacío incluye una sección superior y una sección inferior, siendo separables las secciones superior e inferior para permitir a la cinta transportadora pasar entre las secciones superior e inferior de modo que lleve a la mezcla de losa a la mesa de vibración y retire una losa prensada de la mesa de vibración, pudiéndose sellarse las secciones superior e inferior de modo que formen un sellado que permita la evacuación de la cámara durante el prensado de la mezcla de losa. Y en algunas de estas realizaciones, la cinta transportadora es más ancha que la cámara de vacío, y el sellado se forma entre las secciones superior e inferior y la cinta transportadora.

15

20

55

60

65

En varias realizaciones el mecanismo de aislamiento de la vibración incluye al menos uno de entre bolsas de aire y resortes.

- Algunas realizaciones incluyen adicionalmente al menos un bloque de reducción del volumen de vacío dentro de la cámara de vacío, estando configurado el volumen de reducción del vacío para llenar el espacio dentro de la cámara de vacío de modo que reduzca un volumen de evacuación que está sometido a la evacuación durante el prensado de la mezcla de losa.
- Otras realizaciones incluyen adicionalmente al menos un mecanismo de ajuste de la separación que se configura para permitir un ajuste preciso de una separación entre el mecanismo de prensado y una mezcla de losa soportada por la mesa de vibración, dando como resultado dicho ajuste preciso una losa de piedra de compuesto prensada que tiene un grosor uniforme a través de su longitud y su anchura. En algunas de estas realizaciones el mecanismo de ajuste de la separación incluye un gato de tornillo. En algunas de estas realizaciones un gato de tornillo es ayudado mediante un dispositivo de prensado para la creación de una presión descendente sobre el mecanismo de prensado. Y algunas de esta realizaciones el dispositivo de prensado incluye al menos uno de entre una bolsa de aire, un cilindro de aire y un resorte.
- En ciertas realizaciones un dispositivo de vibración es capaz de aplicar una vibración a la mesa de vibración a una frecuencia entre 100 rpm y 5000 rpm, y con una amplitud de entre 0,001 mm y 3 mm de largo. Y en algunas de estas realizaciones el dispositivo de vibración es accionado por una fuerza que es al menos una de entre neumática, eléctrica, magnética e hidráulica.
- En varias realizaciones el dispositivo de vibración incluye un transductor ultrasónico que es capaz de aplicar vibración a al menos una mesa vibración y al mecanismo de prensado a una frecuencia entre 1000 Hz y 5 MHz. Y en algunas de estas realizaciones el dispositivo de vibración es capaz de aplicar tanto vibraciones mecánicas como vibraciones ultrasónicas a al menos una de entre la mesa de vibración y el mecanismo de prensado.
- En ciertas realizaciones, el dispositivo de vibración es capaz de aplicar vibración con respecto al plano de la mezcla de losa en un modo de vibración y dirección que es al menos uno de entre vertical y lineal, vertical y circular, horizontal y lineal, y horizontal y circular.
  - En realizaciones se fija una pluralidad de dispositivos de vibración a uno de entre la mesa vibración y el mecanismo de prensado, estando los dispositivos de vibración sincronizados en frecuencia, fase y amplitud de modo que apliquen vibración a una frecuencia y fase común y una amplitud uniforme sobre la mezcla de losa. En algunas de estas realizaciones se fija una primera pluralidad de dispositivos de vibración a la mesa de vibración, y se fija una segunda pluralidad de dispositivos de vibración al mecanismo de prensado. En algunas de estas realizaciones la primera pluralidad y la segunda pluralidad están sincronizadas en frecuencia y fase. En otras de estas realizaciones la primera pluralidad y la segunda pluralidad están sincronizadas en frecuencia y desfasadas 180°. En otras más de estas realizaciones la primera pluralidad y la segunda pluralidad están sincronizadas en frecuencia y desfasadas 90°. En aún otras de estas realizaciones la primera pluralidad y la segunda pluralidad y la segunda pluralidad están sincronizadas en frecuencia y desfasadas en un ángulo que no es 180° y no es 90°. En aún otras más de estas realizaciones la primera pluralidad y la segunda pluralidad vibran a diferentes frecuencias. En aún otras más de estas realizaciones la primera pluralidad y la segunda pluralidad vibran con diferentes amplitudes. En aún otras más de estas realizaciones mecánicas. Y en aún otras más de estas realizaciones al menos una de entre la primera pluralidad y la segunda

pluralidad son capaces de aplicar vibraciones ultrasónicas.

Las características y ventajas descritas en el presente documento son todas no exclusivas y, en particular, serán evidentes muchas características y ventajas adicionales para un experto en la materia a la vista de los dibujos, especificación y reivindicaciones. Más aún, se debería observar que el lenguaje usado en la especificación se ha seleccionado principalmente para legibilidad y finalidades instructivas, y no para limitar el alcance de la materia sujeto inventiva.

## Breve descripción de los dibujos

10

La Figura 1 es un diagrama de flujo que ilustra el proceso global de producción para la realización de losas de piedra de compuesto de acuerdo con el proceso Breton tradicional de la técnica anterior;

15

la Figura 2 es un diagrama de flujo que ilustra la mezcla y combinación de una pluralidad de polvo, partículas de piedra, y otros componentes que tienen diferentes colores y/u otras propiedades que difieren, de acuerdo con el proceso Breton tradicional de la técnica anterior;

la Figura 3 es una ilustración en sección transversal de una prensa Breton tradicional de la técnica anterior;

20

la Figura 4A es una vista lateral de una cámara de vacío en una realización de la presente invención que incluye puertas abisagradas en sus extremos;

la Figura 4B es una vista del extremo de la cámara de vacío de la Figura 4A;

25

la Figura 5A es una vista superior de una cámara de vacío dividida en una realización de la presente invención mostrando una cinta transportadora más ancha que la cámara de vacío y que pasa entre las secciones divididas de la cámara de vacío;

30

la Figura 5B es una vista lateral de la cámara de vacío dividida de la Figura 5A;

la Figura 6A es una vista desde el extremo en sección transversal de una realización de la presente invención mostrando el mecanismo de prensa dentro de la cámara de vacío;

35

la Figura 6B es una vista en sección transversal de la realización de la Figura 6A;

J:

la Figura 6C es una vista en sección transversal ampliada de la realización de la Figura 6B mostrando un mecanismo de soporte que suspende la mesa de prensa por encima del bastidor de soporte de la prensa;

la Figura 6D es una vista superior de la placa de prensa de la Figura 6A ilustrando soporte de la placa de prensa mediante una pluralidad de gatos de tornillo;

40

la Figura 6E es una vista lateral de la placa de prensa de la Figura 6D;

la Figura 6F es una vista en sección transversal ampliada de un gato de tornillo y bolsa de aire que soporta una placa de prensa en una realización similar a la realización de la Figura 6A;

45

la Figura 7 es una vista desde el extremo en sección transversal de la realización de la Figura 6A mostrando solo los bloques de reducción del volumen de vacío dentro de la cámara de vacío;

50

la Figura 8A es una vista lateral en sección transversal que muestra las losas de compuesto que se suministran a y se retiran desde una cámara de vacío de una realización mediante una cinta transportadora; y

la Figura 8B es una vista lateral en sección transversal mostrando las losas de compuesto que se suministran a y se retiran desde una cámara de vacío de una realización en bandejas separadas sobre rodillos.

55

## Descripción detallada

60

La presente invención es una prensa de vibración en vacío para la realización de losas de piedra de compuesto, en la que los mecanismos de prensado y vibración están contenidos dentro de la cámara de vacío, de modo que no hay necesidad de una cámara de vacío masivamente reforzada y no hay necesidad de hacer vibrar la cámara de vacío junto con la losa formada. La invención aplica tanta o más vibración y presión a la losa de cuarzo formada como una prensa Breton convencional, mientras que pesa menos, cuesta menos de fabricar, proporciona tiempos de ciclo de prensado más cortos y requiere menos consumo de energía para hacer vibrar la losa en comparación con una prensa Breton.

65

Con referencia a las Figuras 4A y 4B (vistas lateral y del extremo, respectivamente), en lugar de una cámara de vacío rectangular con enormes resistencia y peso, la presente invención usa, en realizaciones, una cámara cilíndrica 400 de peso ligero dentro de la que se suspenden el mecanismo de vibración y soporte de la losa. En la realización de las Figuras 4A y 4B, la cámara de vacío incluye una sección cilíndrica 402 terminada en un extremo por una tapa del extremo 404 que se atornilla 406 en su sitio y el otro extremo mediante una tapa del extremo 408 que esta abisagrada 410 y se mantiene en su sitio por abrazaderas 412 fijadas a un reborde 414. Ambas cubiertas del extremo 404, 408 incluyen puertas abisagradas 416 a través de las que se puede insertar una losa formada 312 dentro de la prensa. Debido a que la cámara de vacío 400 en sí no se hace vibrar, a diferencia de la prensa de tipo Breton 300 tradicional, y está realmente aislada de cualquier vibración, se puede usar virtualmente cualquier tipo de diseño o construcción para la cámara de vacío 400, incluso una cámara rectangular y masiva si así se desea.

10

15

20

25

30

35

40

45

50

55

60

65

Las Figuras 5A y 5B son vistas superior y lateral, respectivamente, de una realización que incluye una cámara de vacío 500 horizontalmente dividida que forma un sello de vacío entre la cámara de vacío 500 y una cinta transportadora 314, siendo la cinta transportadora más ancha que la cámara de vacío 500 en sí. La cinta transportadora 314 pasa entre un reborde superior 502 y un reborde inferior 504 de la cámara de vacío 500 de modo que transporte una losa formada 312 entre una mitad superior de la cámara de vacío 506 y una mitad inferior de la cámara de vacío 508.

Con referencia a las Figuras 6A y 6B, en lugar de hacer vibrar una prensa 302, 316 de 22679,5 kg a 34019,2 kg (50.000-75.000 libras) y sus más de 100 toneladas de bloque 318 de hormigón base, que requieren 74,5699 kW a 223,7097 kW (100-300 hp), la prensa 400 de la presente invención solo requiere hacer vibrar aproximadamente 1360,7 kg a 2267,9 kg (3000 a 5000 libras) de maquinaria y losa, denominados en el presente documento como Mecanismo de Vibración y Prensado VPM, lo que requiere solo aproximadamente 11,185 kW a 18,642 kW (15 a 25 hp). El VPM es relativamente simple y ligero, e incluye los siguientes elementos.

Un Bastidor de Soporte de la Mesa de Prensa y Vibración (VPT-SF) 600 se fija por abrazaderas o tornillos mediante accesorios de soporte de tanque 602 al interior de la cámara de vacío 408, que es cilíndrica en la realización de las Figuras 6A y 6B. Puede accederse al VPT-SF 600 en el interior de la cámara 408 retirando los Bloques de Reducción del Volumen de Vacío (VVRB) 604, o mediante el aflojamiento de las abrazaderas, desatornillado y deslizamiento fuera de la cámara a través de la tapa del extremo de la cabeza articulada del tanque (416 de las Figuras 4A y 4B). En realizaciones similares, el VPT-SF puede deslizarse o rodar fuera desde el interior de la cámara con finalidades de mantenimiento, lo que reduce grandemente los tiempos de mantenimiento.

Se conecta y suspende una mesa de vibración 604 por encima del bastidor de soporte 600 mediante resortes y/o bolsas de aire 606 con dispositivos de limitación y nivelado de altura apropiados (628 en la Figura 6C) para mantener el nivelado y altura de trabajo apropiados. En la realización de la Figura 6C, el dispositivo de nivelado incluye una barra de metal o cadena 628 y un mecanismo de ajuste de altura 610. En otras realizaciones, en lugar de resortes y bolsas de aire, se usan resortes mecánicos u otros mecanismos adecuados que permiten que la mesa de vibración 604 se mueva de modo suficientemente libre para el modo de vibración seleccionado y sin transmitir una vibración excesiva al bastidor de soporte 600 de la cámara de vacío 408.

Se soportan una placa de prensa 612 y mecanismo de prensado 614 por encima de la losa formada 312 y se descienden, posicionados con precisión, y se hacen vibrar para llevar a cabo la compactación requerida de los componentes del material de la losa.

Los dispositivos de vibración (VD) 608, que pueden ser o bien dispositivos de vibración mecánica tradicional (accionados por fuentes motrices neumáticas, eléctricas, magnéticas, hidráulicas, o cualquier otra que cree vibración mecánica de frecuencias aproximadamente 100-5000 rpm y amplitudes de aproximadamente 0,001 a 1 mm de largo) y/o transductores ultrasónicos (frecuencia aproximadamente de 1000-5 MHz), se montan en la parte inferior de la mesa de prensa 604 y/o la parte superior de la placa de prensa 612.

Con respecto al plano de la losa 312 en sí, el modo de vibración puede ser vertical/lineal, vertical/circular, horizontal/lineal, horizontal/circular, o cualquier combinación de los mismos. Los VD provocan que la losa de cuarzo 312 y el mecanismo completo de la prensa de vibración (solo aproximadamente 1360,7 kg a 2267,9 kg (3000 - 5000 libras) de mecanismo) vibren, pero no provoca que la cámara de vacío 400 vibre apreciablemente.

Dependiendo de las dimensiones de la losa a ser prensada, en algunas realizaciones se monta una pluralidad de VD 608 o bien en la parte inferior de la tabla de prensa 604 o bien en la parte superior de la placa de prensa 612, o en ambas (tal como se muestra en la Figura 6F). En estas realizaciones, los VD se sincronizan electrónicamente y/o mecánicamente de modo que todos los VD vibren en fase entre sí, tanto en amplitud como en frecuencia, haciendo que la pluralidad de los VD actúe como un gran dispositivo de vibración.

En realizaciones en donde se fija un primer grupo de VD a la parte inferior de la mesa de prensa 604 y se fija un segundo grupo de VD a la parte superior de la placa de prensa 612, cada grupo de VD se sincroniza para vibrar en fase tanto en amplitud como en frecuencia dentro del grupo. Los dos grupos se pueden sincronizar entre sí en cualquiera de diferentes formas, que incluyen

- fase y frecuencia sincronizadas, de modo que tanto la mesa de prensa 604 como la placa de prensa 612 se elevan y caen al mismo tiempo;
- frecuencia sincronizada en oposición de fase, de modo que la mesa de prensa 604 se eleva cuando la placa de prensa 612 cae y viceversa, "prensando" de ese modo periódica y simultáneamente contra la losa de cuarzo 304;
- frecuencia sincronizada y desfase de 90°, de modo que cuando la placa de prensa 612 está yendo hacia arriba, la tabla de prensa 604 está moviéndose lateralmente;
- · frecuencia sincronizada y con algún otro desfase;
- frecuencia no sincronizada, es decir los dos grupos operan a diferentes frecuencias;
- operación a diferentes amplitudes, de modo que la vibración aplicada por los VD del primer grupo a la mesa de prensa tiene una amplitud diferente respecto a la vibración aplicada por los VD del segundo grupo a la placa de prensa; y
- · cualquier combinación de las anteriores.

5

10

20

25

30

35

40

Obsérvese que las realizaciones de la presente invención aplican vibraciones mecánicas y/o ultrasónicas usando cualquiera de estas combinaciones de los VD y combinaciones de sincronización de fase, frecuencia y amplitud.

Con referencia a las Figuras 6D y 6E, realizaciones de la presente invención emplean gatos de tornillo de precisión 616 fijados a los soportes de tornillos de prensa 618 para descender la placa de prensa 612 y aplicar una fuerza de prensado sobre la losa formada 312 durante la vibración. La Figura 6D es una vista superior de una placa de prensa 612 suspendida mediante una pluralidad de gatos de tornillo 616 fijados a la pluralidad de soportes de tornillo de prensa 618. La Figura 6E es una vista lateral de la placa de prensa 612, gatos de tornillo 616 y soportes de tornillo de prensa 618 de la Figura 6D. En realizaciones, los gatos de tornillo 616 pueden controlarse para descender la placa de prensa 612 a una velocidad variable y definida de descenso hasta una posición de grosor apropiada que permitirá que el material de losa se mueva o migre a través del área de la losa, dando como resultado un grosor muy uniforme a través de toda el área de la losa. Con referencia a la Figura 6F, la fuerza de prensado del posicionamiento de los gatos de tornillo 616 puede incrementarse con la fuerza de resortes de aire, bolsas de aire 620, u otros dispositivos de prensado neumáticos o hidráulicos. En algunas realizaciones, la fuerza de prensado se detecta y regula, o bien mediante la detección de la presión en las bolsas de aire 620 o mediante otros métodos de detección, y se controla el posicionamiento de los gatos de tornillo 616 de modo que se mantenga la placa de prensa 612 paralela a la mesa de prensa 604.

Debido a este método de descenso y posicionamiento de la placa de prensa de vibración 612, realizaciones de la presente invención permiten que se produzcan losas con menos variación de grosor de lado a lado o extremo a extremo que para prensas Breton tradicionales 300, reduciendo de ese modo la cantidad media de material que se debe usar para producir una losa de un grosor de acabado dado después del desbastado. La tecnología de prensa tradicional suspende y desciende la placa de prensa 306 con grandes bolsas de aire y/o resortes de aire 308 y sin gatos de tornillo de precisión 616, y por lo tanto la nivelación y paralelismo de la placa de prensa 306 con relación a la base de prensa 316 sobre la que reposa la losa formada 312, se determina solamente por la nivelación de la distribución del material de la losa 312 que se ha extendido en el proceso de formación de la losa. Por lo tanto, una extensión irregular da como resultado un grosor de losa irregular de extremo a extremo o lado a lado, lo que significa que para mantener un acabado dado y calibración posterior del grosor de la losa, el grosor de losa formado medio antes del desbastado debe ser mayor, y esto incrementa la cantidad media de material de losa (y por lo tanto el coste) de la losa para cualquier grosor final dado.

45 En algunas realizaciones, la vibración ultrasónica se aplica a la placa de prensa 612, la mesa de prensa 600, 604 de vibración, o a ambas, lo que puede reducir sustancialmente el tiempo del ciclo de prensado. Esto es posible económicamente debido al ligero peso del soporte de la losa 600, 604 y mecanismo de vibración 608.

En la operación de la prensa Breton 300 tradicional, un porcentaje significativo del tiempo del ciclo de prensado se dedica a la evacuación de la cámara de vacío por debajo de 0,133 bar (100 Torr), y en algunos casos incluso descender tan bajo como 1,33 mbar-6,65 mbar (1-5 Torr). El volumen de la cámara de vacío es un gran factor en la determinación de este tiempo. Esta es una de las razones para la elección de una cámara de vacío rectangular de bajo volumen para la máquina de Breton, que necesariamente requiere paredes masivamente gruesas y pesadas para soportar el vacío y la vibración.

En las realizaciones de la presente invención, la prensa usa una cámara de vacío 402 cilíndrica de peso ligero que tendría normalmente un enorme volumen interior y que por lo tanto requeriría o bien bombas de vacío masivas o un largo tiempo de ciclo de prensa para evacuación. Este problema del gran volumen de la cámara se elimina mediante el uso de bloques de reducción del volumen de vacío VVRB 604. Estos bloques ligeros 604 hechos de un material tal como uretano u otra espuma, madera de balsa, plásticos de células expandidas, metal, o cualquier otro material adecuado, que pueda soportar el vacío sin distenderse o expandirse, y que pueda reducir efectiva y sustancialmente el volumen de la cámara de vacío 402 y de ese modo acortar los tiempos del ciclo de prensa. Una vista desde el extremo que muestra los bloques VVRB 604 se presenta en la Figura 7. Los mecanismos de vibración y prensado se han omitido en la Figura 7 por claridad de la ilustración.

65

60

Con referencia a las Figuras 8A y 8B, realizaciones de la presente invención se configuran para aceptar losas formadas 312 y losas de piedra de compuesto acabadas extraídas 800 a través de cualquier de varios métodos. Estos incluyen losas 312 transportadas en una lámina continua de papel o metal sobre una cinta transportadora 802, losas 312 contenidas en bandejas de goma 804 transportadas sobre una cinta transportadora 802, y losas 312 situadas sobre bandejas o moldes 804 individuales de cualquier material apropiado que llegan y salen sobre los rodillos 806 o sobre una cinta transportadora 802.

5

10

La descripción precedente de las realizaciones de la invención se ha presentado con las finalidades de ilustración y descripción. No se pretende ser exhaustivo o limitar la invención a la forma precisa desvelada. Son posibles muchas modificaciones y variaciones a la vista de la presente divulgación. Se pretende que el alcance de la invención esté limitado no por la presente descripción detallada, sino en su lugar por las reivindicaciones adjuntas a la misma.

### REIVINDICACIONES

1. Prensa de vibración en vacío de peso ligero, eficiente energéticamente y de bajo coste para la formación de losas de piedra de compuesto mediante compresión y vibración simultáneas de las losas bajo vacío, comprendiendo la prensa:

una cámara de vacío (400);

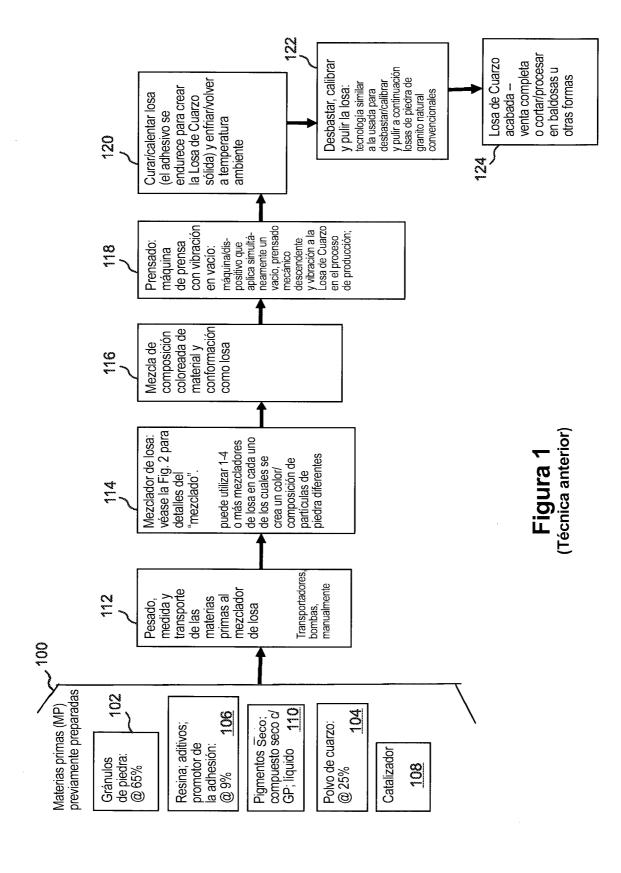
5

30

35

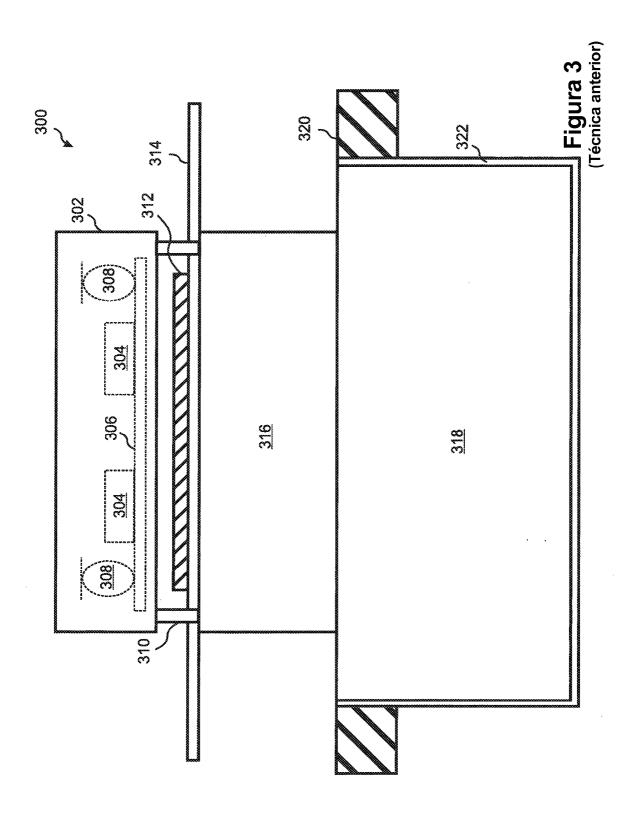
40

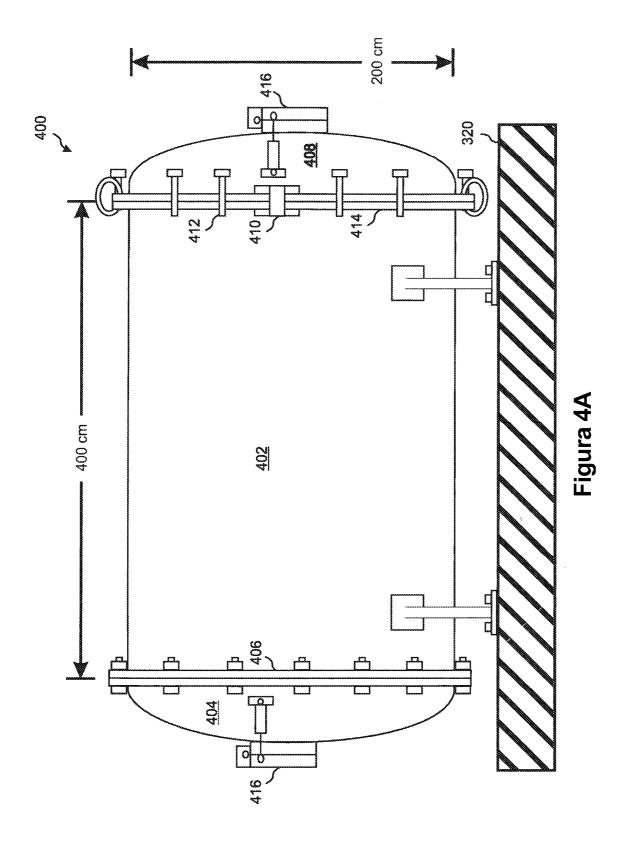
45

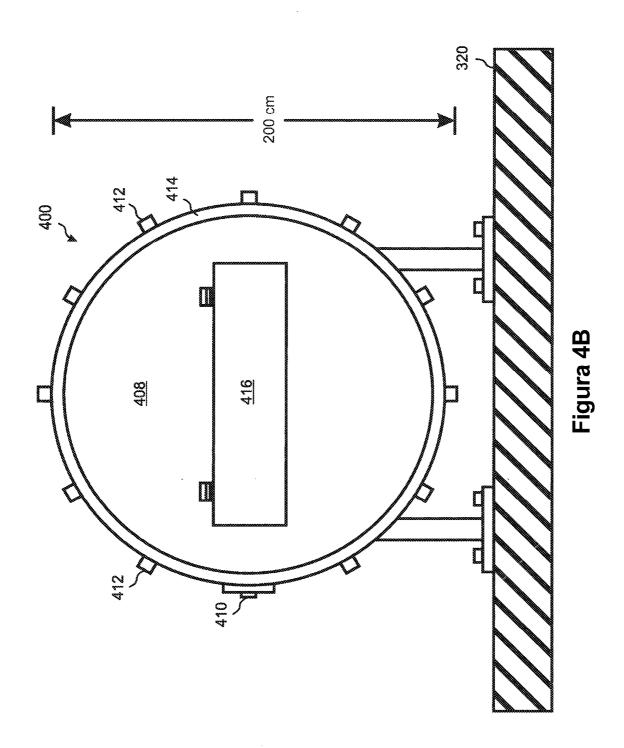

60


un bastidor de soporte de una mesa de vibración (600) dentro de la cámara de vacío (400);

la mesa de vibración (604)


- un mecanismo de prensado (614) que está configurado para comprimir una mezcla de losa (312) entre el mecanismo de prensado (614) y la mesa de vibración (604) a una presión de entre 0,0689 bar y 6,89 bar (1 y 100 psi); y al menos un dispositivo de vibración (608) configurado para hacer vibrar a al menos una de entre la mesa de vibración (604) y el mecanismo de prensado (614);
- estando configurada la cámara de vacío (400) de modo que rodee y encierre dentro de su espacio de vacío el bastidor de soporte de la mesa de vibración (600), la mesa de vibración (604), la mezcla de losa (312) y el mecanismo de prensado (614),
  - caracterizada por que se fija un sistema de aislamiento de la vibración (606) al bastidor de soporte de la mesa de vibración (600);
  - estando soportada la mesa de vibración (604) mediante dicho sistema de aislamiento de la vibración (606),
- proporcionando dicho sistema de aislamiento de la vibración (606) al menos un aislamiento parcial de la vibración entre el bastidor de soporte de la mesa de vibración (600) y la mesa de vibración (604);
  - estando configurada la cámara de vacío (400) de modo que rodee y encierre también dentro de su espacio de vacío dicho sistema de aislamiento de la vibración (606).
- 25 2. La prensa según la reivindicación 1, que comprende adicionalmente un mecanismo de transporte (802) para el transporte de la mezcla de losa (312) sobre y fuera de la mesa de vibración (604).
  - 3. La prensa según la reivindicación 1, que comprende adicionalmente al menos un bloque de reducción del volumen de vacío dentro de la cámara de vacío (400), estando configurado el bloque de reducción del volumen de vacío para llenar el espacio dentro de la cámara de vacío (400) de modo que reduzca un volumen de evacuación que está sometido a evacuación durante el prensado de la mezcla de losa.
  - 4. La prensa según la reivindicación 1, que comprende adicionalmente al menos un mecanismo de ajuste de espacio que está configurado para permitir un ajuste preciso de una separación entre el mecanismo de prensado (612, 614) y una mezcla de losa (312) soportada por la mesa de vibración (604), dando como resultado dicho ajuste preciso una losa de piedra de compuesto prensada que tiene un grosor uniforme a través de su longitud y su anchura.
  - 5. La prensa según la reivindicación 1, en la que el dispositivo de vibración es capaz de aplicar una vibración a la mesa de vibración (604) a una frecuencia entre 100 rpm y 5000 rpm y con una amplitud de entre 0,001 mm y 3 mm de longitud.
  - 6. La prensa según la reivindicación 1, en la que el dispositivo de vibración (608) incluye un transductor ultrasónico que es capaz de aplicar vibración a al menos uno de entre la mesa vibración (604) y el mecanismo de prensado (612, 614) a una frecuencia entre 1000 Hz y 5 MHz.
  - 7. La prensa según la reivindicación 1, en la que el dispositivo de vibración (608) es capaz de aplicar tanto vibraciones mecánicas como vibraciones ultrasónicas a al menos uno de entre la mesa de vibración y el mecanismo de prensado (612, 614).
- 50 8. La prensa según la reivindicación 1, en la que el dispositivo de vibración (608) es capaz de aplicar vibración con respecto a un plano de la mezcla de losa en un modo de vibración y una dirección que es al menos uno de entre vertical y lineal, vertical y circular, horizontal y lineal y horizontal y circular.
- 9. La prensa según la reivindicación 1, en la que se fija una primera pluralidad de dispositivos de vibración (608) a la mesa vibración (604) y se fija una segunda pluralidad de dispositivos de vibración (608) al mecanismo de prensado (612, 614).
  - 10. La prensa según la reivindicación 1, en la que la primera pluralidad y la segunda pluralidad están sincronizadas en frecuencia y fase.
  - 11. La prensa según la reivindicación 1, en la que la primera pluralidad y la segunda pluralidad están sincronizados en frecuencia y desfasados 180° o están sincronizadas en frecuencia y desfasados 90° o están sincronizados en frecuencia y desfasados en un ángulo que no es 180° y no es 90°.
- 65 12. La prensa según la reivindicación 1, en la que la primera pluralidad y la segunda pluralidad vibran a diferentes frecuencias.


- 13. La prensa según la reivindicación 1, en la que la primera pluralidad y la segunda pluralidad vibran a diferentes amplitudes.
- 5 14. La prensa según la reivindicación 1, en la que la compresión de la mezcla de losa para dar una losa libre de huecos requiere una energía de vibración de solo aproximadamente 11,185 kW (15 hp) a 18,642 kW (25 hp).






13







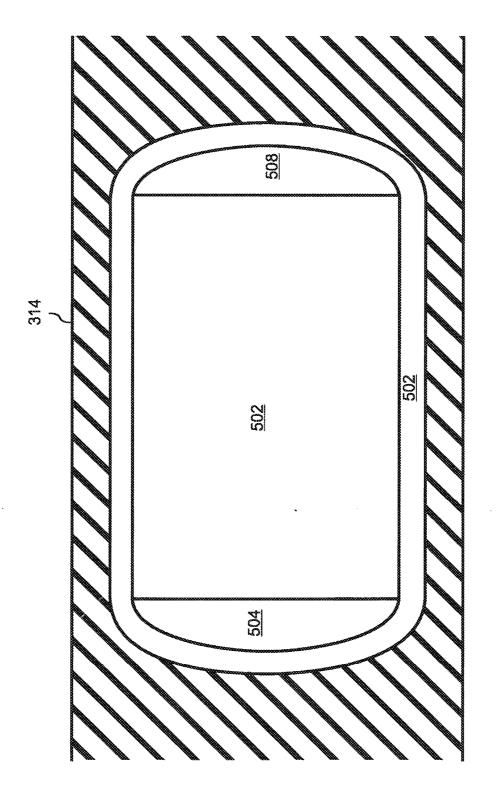
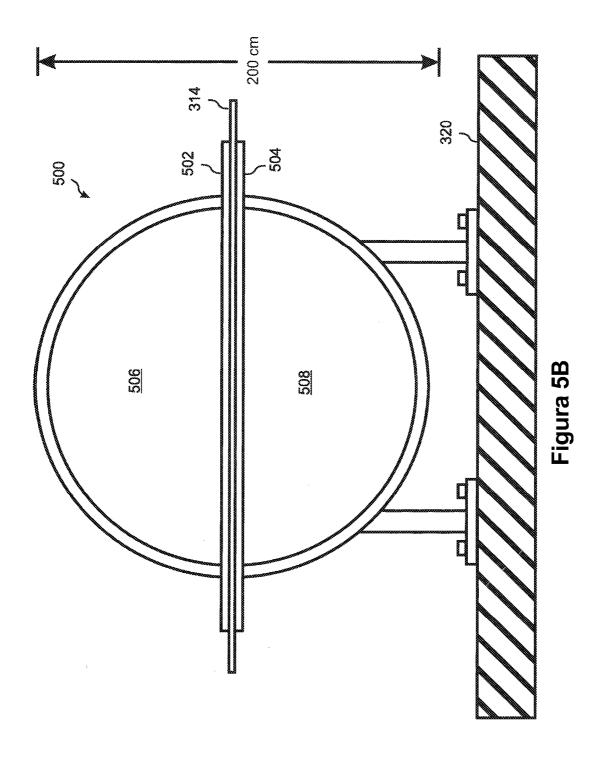
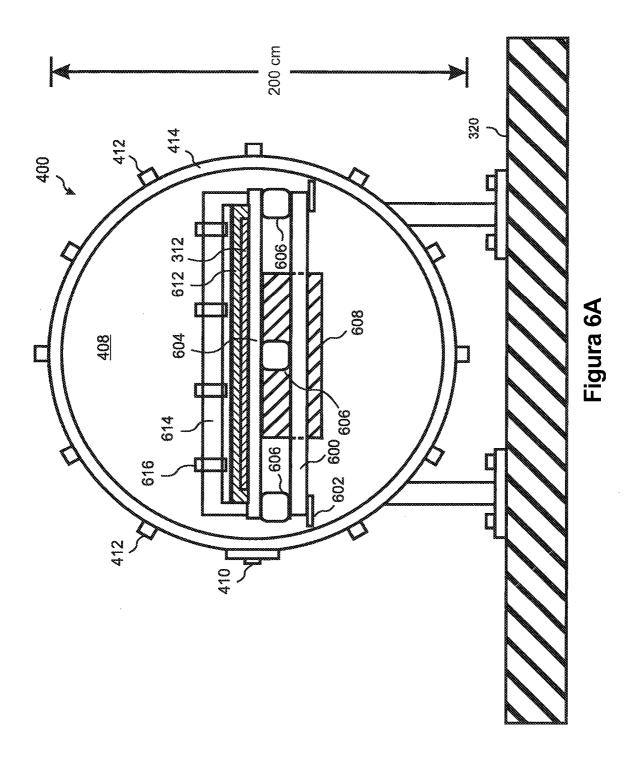





Figura 5A





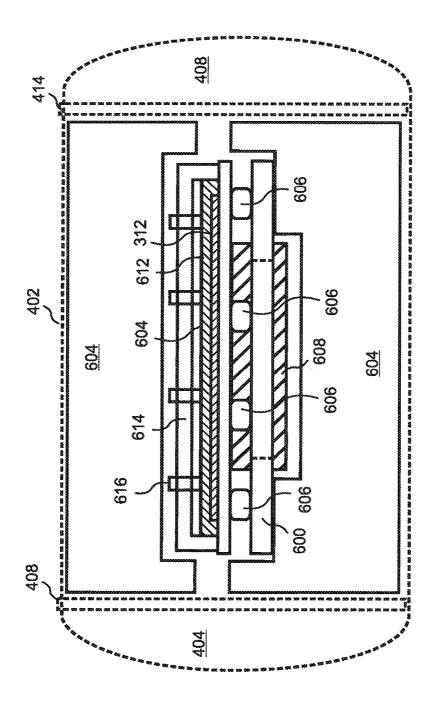
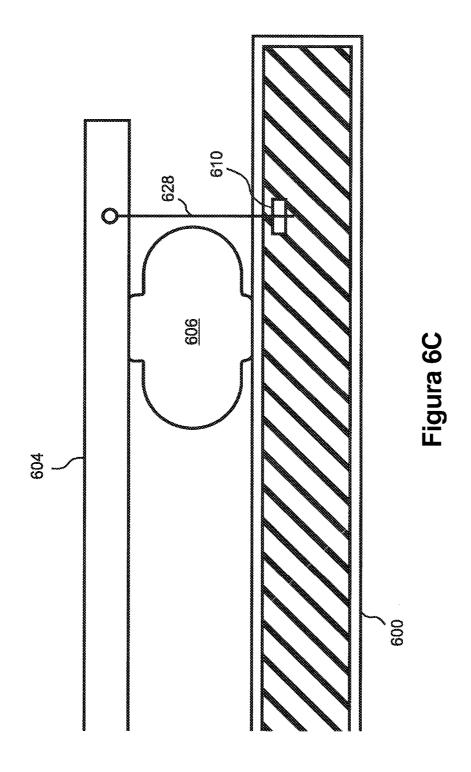




Figura 6B



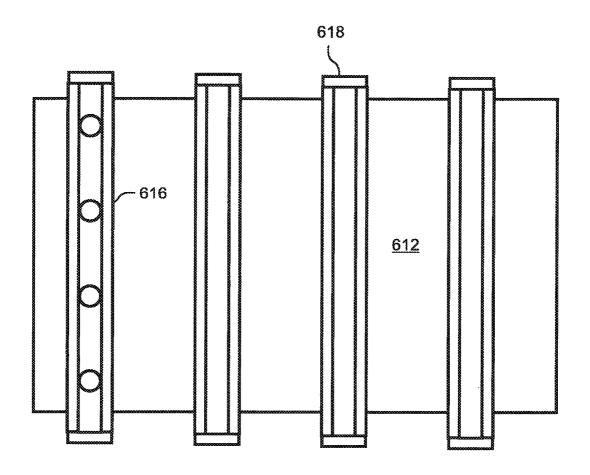
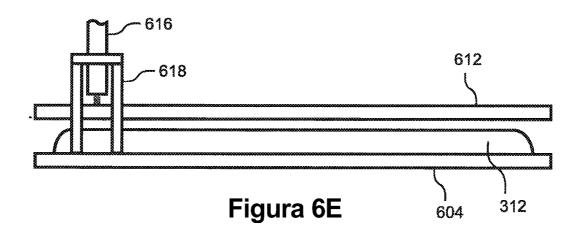
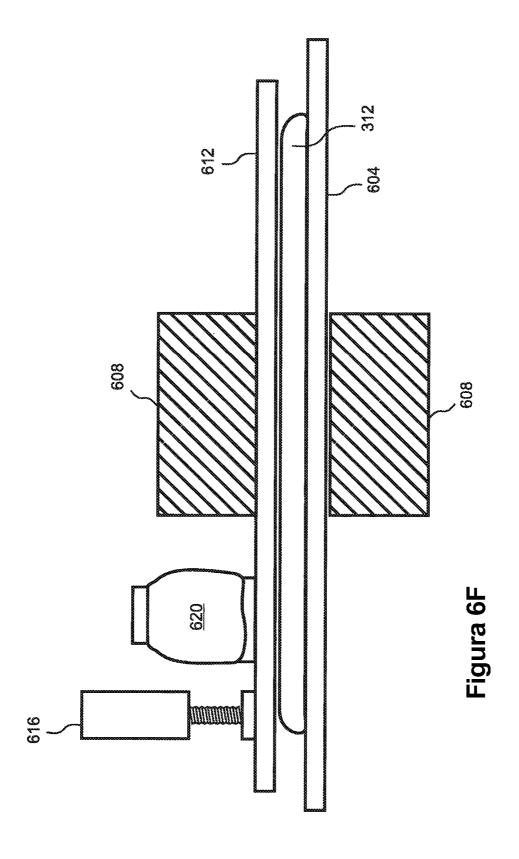
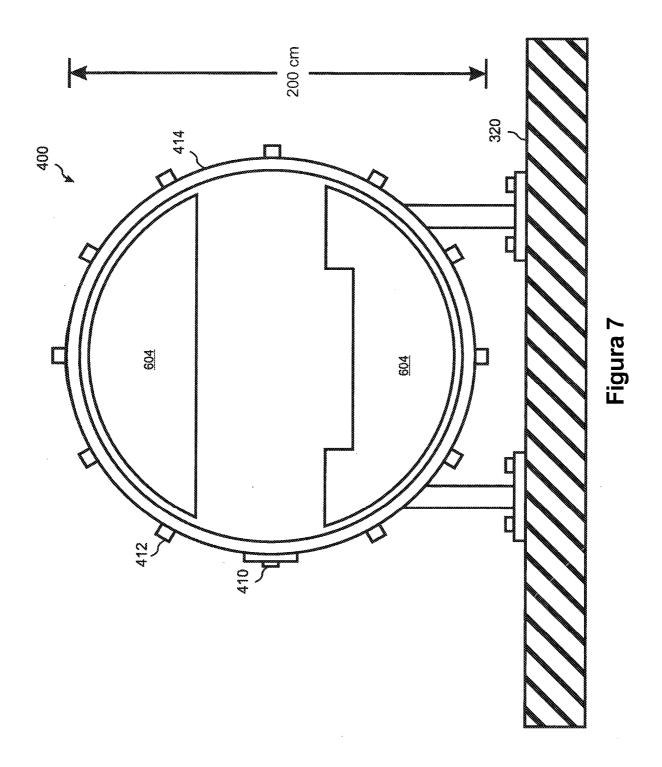






Figura 6D







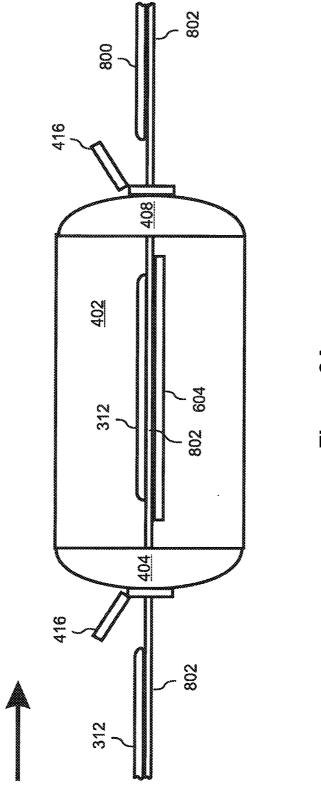



Figura 8A

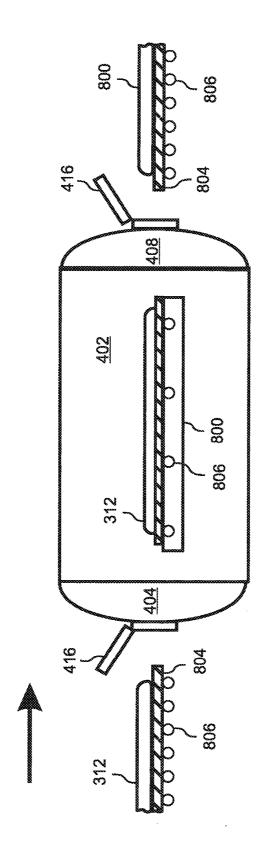



Figura 8B