

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 558 751

61 Int. Cl.:

C12N 1/20 (2006.01) C12P 21/00 (2006.01) C12P 21/02 (2006.01) C07K 14/775 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 25.08.2011 E 11748406 (3)
 (97) Fecha y número de publicación de la concesión europea: 25.11.2015 EP 2611900

(54) Título: Alimento alcalino

(30) Prioridad:

30.08.2010 EP 10008997

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **08.02.2016**

73) Titular/es:

F. HOFFMANN-LA ROCHE AG (100.0%) Grenzacherstrasse 124 4070 Basel, CH

(72) Inventor/es:

SCHANTZ, CHRISTIAN

74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Alimento alcalino

En la presente memoria se informa de un método para el cultivo de alta densidad celular de una célula procariótica, tal como una cepa de *Escherichia coli*, en un medio químicamente definido para la producción de un polipéptido, en el que se alimenta un aminoácido mediante una solución alcalina concentrada regulando simultáneamente el pH del medio de cultivo y actuando de fuente de nitrógeno.

10 Antecedentes de la invención

15

30

35

45

En los últimos años se ha incrementado de manera constante la producción de proteínas y es probable que en el futuro cercano las proteínas se conviertan en el grupo más grande de terapéuticos disponibles para el tratamiento de diversas enfermedades. El impacto de las proteínas deriva de su especificidad, tal como la función específica de reconocimiento y unión a dianas.

Los cultivos celulares se utilizan en procedimientos de fermentación para producir sustancias y, en particular, proteínas. Se establece una distinción entre procedimientos en los que los cultivos celulares no han sido genéticamente modificados y forman sus propios productos metabólicos, y procedimientos en los que los organismos se han modificado genéticamente de manera que producen una cantidad más elevada de sus propias sustancias, tales como proteínas, o producen sustancias foráneas. Los organismos productores de las sustancias se proveen de un medio nutritivo que garantiza la supervivencia de los organismos y permite la producción del compuesto diana deseado. Se conocen numerosos medios de cultivo para dichos propósitos que permiten un cultivo óptimo del huésped específico.

Se informa de un cultivo de alta densidad celular de *Escherichia coli* en Riesenberg (Riesenberg D. et al., Curr. Opin. Biotechnol. 2:380-384, 1991) y en Horn (Horn U. et al., Appl. Microbiol. Biotechnol. 46:524-532, 1996). Riesenberg D. y Guthke R. (Appl. Microbiol. Biotechnol. 51:422-430, 1999) informan del cultivo de alta densidad celular de microorganismos. Se proporciona una revisión del cultivo de *E. coli* hasta altas densidades celulares en Shiloach J. y Fass R. (Biotechnol. Advances 23:345-357, 2005).

En el documento nº WO 91/10721 se informa de un procedimiento para la fermentación a elevada densidad celular de *Escherichia coli* en una caldera fermentadora bajo agitación. Se informa de un método de producción y purificación de ADN plasmídico en el documento nº WO 97/29190. Se informa del control del crecimiento de los cultivos de microorganismos sumergidos aeróbicos mediante el control de la concentración de oxígeno disuelto y la tas de transferencia de oxígeno en la patente DD nº 295867. En la patente EP nº 0 866 876 se informa de un procedimiento para la preparación de proteínas recombinantes en *E. coli* mediante fermentación a alta densidad celular.

En el documento nº WO 03/048374 se informa de un procedimiento para la producción de metabolito de aminoácido aromático o derivado del mismo. En el documento nº WO 97/21829 se informa de un procedimiento para la preparación de proteínas recombinantes en *E. coli* mediante fermentación de alta densidad celular

Descripción resumida de la invención

Se ha encontrado que una célula procariótica, especialmente una cepa de *E. coli* K12 auxotrófica para un aminoácido, puede cultivarse en un medio químicamente definido a elevadas densidades celulares en el caso de que se añada un aminoácido al medio de cultivo en una solución alcalina.

- Se da a conocer en la presente memoria un método para el cultivo de una célula bacteriana, especialmente una célula de *E. coli*, a elevadas densidades celulares, en el que la célula expresa un polipéptido recombinante, en el que el cultivo comprende la adición de una solución alcalina de un aminoácido seleccionado de entre aspartato, ácido aspártico, glutamina, ácido glutámico, glicina, histidina, isoleucina, leucina, lisina, metionina, fenilalanina, triptófano y tirosina durante el cultivo,
- en el que el aminoácido presenta una concentración en la solución alcalina que es más alta que su solubilidad en agua a 20°C y a pH neutro, y en el que el peso de células secas de la célula bacteriana en cultivo es en un punto del cultivo de por lo menos 20 g/l.
- Un aspecto tal como se informa en la presente memoria es un método para producir un polipéptido que comprende las etapas de:
 - a) proporcionar una célula bacteriana, especialmente una célula de *E. coli*, que comprende un ácido nucleico codificante de un polipéptido,
 - b) cultivar la célula proporcionada,

- c) ajustar el valor del pH durante el cultivo con una solución alcalina que comprende un aminoácido seleccionado de entre aspartato, ácido aspártico, glutamina, ácido glutámico, histidina, isoleucina, leucina, metionina, fenilalanina, triptófano y tirosina,
- d) recuperar el polipéptido a partir de la célula o del medio de cultivo, produciendo de esta manera el polipéptido, en el que el aminoácido presenta una concentración en la solución alcalina de 30 g/l o superior, y

en el que la solución alcalina es una solución de amonio al 10% (p/v) o superior. Se informa en la presente memoria de la utilización de una solución alcalina que comprende un aminoácido para ajustar el valor del pH durante el cultivo de una célula bacteriana.

Se informa en la presente memoria de la utilización de una solución alcalina de un aminoácido como alimento en el cultivo de una célula bacteriana, en el que el aminoácido se selecciona de entre aspartato, ácido aspártico, glutamina, ácido glutámico, glicina, histidina, isoleucina, leucina, lisina, metionina, fenilalanina, triptófano y tirosina y el cultivo se realiza hasta un peso de células secas de 20 g/l o superior.

A continuación se proporcionan realizaciones específicas de todos los aspectos tal como se ha indicado de manera general anteriormente.

En una realización, el aminoácido es un aminoácido de solubilidad en agua pobre. En una realización, la célula 20 bacteriana es una célula auxotrópica para un aminoácido y la auxotrofia es para un aminoácido seleccionado de entre aspartato, ácido aspártico, glutamina, ácido glutámico, glicina, histidina, isoleucina, leucina, lisina, metionina, fenilalanina, triptófano y tirosina. En otra realización, la célula bacteriana es una célula de Escherichia coli o un mutante de la misma. En una realización adicional, el aminoácido presenta una solubilidad en agua a 20°C de 50 g/l o inferior. En una realización adicional, el aminoácido presenta una solubilidad en agua a 20°C de 40 g/l o inferior. 25 En una realización adicional, el aminoácido se selecciona de entre aspartato, ácido aspártico, glutamina, ácido glutámico, histidina, isoleucina, leucina, metionina, fenilalanina, triptófano y tirosina. En otra realización, el aminoácido se selecciona de entre aspartato, ácido aspártico, glutamina, ácido glutámico, histidina, leucina, triptófano y tirosina. En una realización, el aminoácido es la leucina. En todavía otra realización, el aminoácido presenta una concentración en la solución alcalina que es superior a su solubilidad en agua a 20°C. En una 30 realización, la solubilidad es dos veces superior, en otra realización es tres veces superior a la solubilidad en agua a 20°C. En otra realización, la solubilidad es superior a la solubilidad en agua a 20°C y a un valor de pH de entre 6 y 8. En una realización, el aminoácido presenta una concentración de 35 g/l o superior en la solución alcalina. En una realización, el aminoácido presenta una concentración en la solución alcalina de 45 g/l o superior. En una realización, el aminoácido presenta una concentración en la solución alcalina de aproximadamente 50 g/l. En una 35 realización adicional, la solución alcalina presenta un valor de pH de 9 o superior; en una realización adicional, de 10 o superior, y en todavía otra realización, de 10,5 o superior. En una realización, la solución alcalina es una solución de amonio al 15% (p/v) o superior. En una realización, la solución alcalina es una solución de amonio aproximadamente al 12,5 % (p/v) en agua. En una realización además el polipéptido es la apolipoproteína A humana o un derivado de la misma. Én una realización adicional, la apolipoproteína A1 presenta una secuencia de 40 aminoácidos seleccionada de entre SEC ID nº 01 y SEC ID nº 35. En una realización, el polipéptido presenta una secuencia de aminoácidos seleccionada de entre SEC ID nº 01, SEC ID nº 02, SEC ID nº 34 ó SEC ID nº 35.

Descripción detallada de la invención

5

10

- 45 En la presente memoria se informa de un método para el cultivo de una célula procariótica, por ejemplo una célula bacteriana auxotrófica para un aminoácido, en el que se añade en una solución alcalina por lo menos un aminoácido, por ejemplo aquel para el que la célula es auxotrófica.
- Se ha encontrado que una célula procariótica, por ejemplo una cepa de E. coli K12 auxotrófica para un aminoácido, 50 puede cultivarse a densidades celulares elevadas en el caso de que se añada al medio de cultivo en una solución alcalina un alimento que comprende por lo menos un aminoácido, tal como aquel para el que la célula presenta auxotrofia. Lo anterior resulta especialmente ventajoso en el caso de que el aminoácido sea pobremente soluble en aqua y la solubilidad pueda incrementarse mediante la disolución del aminoácido en una solución alcalina. Simultáneamente, la solución alcalina puede utilizarse para ajustar el valor del pH del medio de cultivo. Mediante la 55 combinación de la solución del aminoácido y la solución de ajuste del pH en una única solución nutritiva altamente concentrada puede reducirse el volumen añadido, permitiendo de esta manera un cultivo de alta densidad celular de la célula procariótica. Además, se ha encontrado que una concentración de por lo menos 45 g/l del aminoácido en la solución nutritiva alcalina resulta en una producción incrementada del polipéptido recombinante.
- 60 En una realización, el método para el cultivo de una célula procariótica comprende las etapas siguientes:
 - a) proporciona una célula procariótica,
 - b) cultivar la célula procariótica,
 - c) ajustar el valor del pH durante el cultivo de la célula procariótica con una solución alcalina que comprende un aminoácido seleccionado de entre aspartato, ácido aspártico, glutamina, ácido glutámico, histidina, isoleucina,
- 65 leucina, metionina, fenilalanina, triptófano y tirosina.

Una "célula procariótica auxotrófica para un aminoácido" es una célula procariótica que no puede sintetizar un aminoácido esencial, por ejemplo debido a una mutación o deleción dentro de un locus génico que comprende el gen estructural codificante de las proteínas de la ruta biosintética correspondiente. Sin la adición del aminoácido respectivo al medio de cultivo no puede proliferar la célula. La auxotrofia puede ser para cualquier aminoácido. La célula procariótica también puede ser auxotrófica para más de un aminoácido. De esta manera, en una realización, la célula procariótica auxotrófica para un aminoácido es auxotrófica para como mínimo un aminoácido. En otra realización, la célula procariótica auxotrófica para un aminoácido es auxotrófica para por lo menos un, por lo menos dos, por lo menos tres, por lo menos cuatro o por lo menos cinco aminoácidos. En una realización adicional, la célula procariótica auxotrófica para un máximo de 5, o un máximo de 10 o un máximo de 15 aminoácidos. En otra realización, la célula procariótica auxotrófica para un aminoácido es auxotrófica para uno a cinco aminoácidos, o uno a tres aminoácidos, o para uno a dos aminoácidos, o para un aminoácido, o para dos aminoácidos, o para tres aminoácidos, o para cuatro aminoácidos. La célula procariótica auxotrófica para un aminoácido es, en una realización, una célula bacteriana.

5

10

40

45

- En una realización, la célula es una célula de *Escherichia*, o una célula de *Bacillus*, o una célula de *Lactobacillus*, o una célula de *Corynebacterium* o una célula de levadura (*Saccharomyces*, *Candida* o *Pichia*). En una realización adicional, la célula es una célula de *Escherichia coli*, o una célula de *Bacillus subtilis*, o una célula de *Lactobacillus acidophilus*, o una célula de *Corynebacterium glutamicum* o una célula de levadura de *Pichia pastoris*.
- La expresión "ajustar un valor" se refiere a que el valor respectivo se mantiene en un nivel predeterminado durante el cultivo, es decir, el valor se comprueba continuamente o a intervalos de tiempos constantes predeterminados y se modifica mediante la adición de un líquido de corrección en el caso de que el valor se encuentre fuera de un intervalo de aceptación prefijado. Por ejemplo, la expresión "ajustar el valor del pH" se refiere a que el valor del pH de un medio de cultivo se determina periódicamente a tiempos fijados, es decir, con intervalos de tiempo fijados, y en el caso de que el valor de pH determinado se encuentre fuera de un intervalo de aceptación, tal como, por ejemplo, 0,1 unidades de pH o 0,15 unidades de pH o 0,2 unidades de pH, se reajusta el valor del pH hasta el valor predeterminado de pH mediante la adición de un líquido de corrección, tal como una solución ácida o alcalina.
- Los métodos para el cultivo de una célula procariótica y también para el cultivo de una célula procariótica auxotrófica para un aminoácido son conocidos por el experto en la materia (ver, por ejemplo, Riesenberg D. et al., Curr. Opin. Biotechnol. 2:380-384, 1991). El cultivo puede llevarse a cabo con cualquier método. En una realización, el cultivo es por lotes, por lotes alimentado, mediante perfusión, semicontinuo, o con retención celular total o parcial. El único requisito para el cultivo es que debe añadirse una solución alcalina. Dicha adición puede ser una única solución de alimentación o en forma de solución combinada de alimentación y de ajuste del pH.
 - El medio de cultivo utilizado para el inicio del cultivo de la célula puede ser cualquier medio conocido por el experto en la materia, en el que la concentración del aminoácido que debe alimentarse se encuentran en el medio a una concentración inferior a 5 g/l, o inferior a 7,5 g/l o inferior a 10 g/l. Debe mencionarse que la concentración de los compuestos correspondientes debe seleccionarse de manera que no se prevea ninguna interferencia negativa con el crecimiento de la célula. En una realización el medio es un medio definido de glucosa-sales minerales.
 - En una realización, el cultivo es un cultivo a alta densidad celular. La expresión "cultivo a alta densidad celular" se refiere a un método de cultivo en el que el peso de células secas de la célula procariótica en cultivo es en un punto durante el cultivo de por lo menos 10 g/l. En una realización, el peso de células secas es en un punto durante el cultivo de por lo menos 20 g/l, o de por lo menos 50 g/l o de por lo menos 100 g/l o superior a 100 g/l. Con el fin de alcanzar un estado de densidad celular tan elevada, el volumen de las soluciones de alimentación y/o ajuste añadidas durante el cultivo debe ser tan pequeño como resulte posible. Los métodos para la determinación del peso de células secas se informan en, por ejemplo, Riesenberg D. et al., Appl. Microbiol. Biotechnol. 34:77-82, 1990.
- Los nutrientes en el medio proporcionado resultarán metabolizados durante el cultivo y deben ser repuestos con el fin de evitar una limitación. En el caso de que un aminoácido presente una solubilidad pobre sólo puede prepararse y añadirse una solución de alimentación de concentración reducida. Para proporcionar la cantidad requerida del aminoácido debe añadirse un volumen grande de la solución de alimentación. Ello resulta en un incremento del volumen de cultivo total, una dilución del caldo de cultivo y, de esta manera, resulta desventajoso para un procedimiento a alta densidad celular.

La solubilidad de los 20 aminoácidos naturales se lista en la Tabla a continuación.

<u>Tabla</u>											
aminoácido	solubilida	d en agua	Solubilidad [buena/aceptable/pobre]								
	[g/l]	a [°C]									
alanina	166,5	25	buena								
arginina	150	20	buena								
aspartato	22	20	pobre								
ácido aspártico	4	20	pobre								

cisteína	280	20	buena
glutamina	26	18	pobre
ácido glutámico	11	25	pobre
glicina	225	20	buena
histidina	38	20	pobre
isoleucina	40	20	pobre
leucina	24	20	pobre
lisina	300	20	buena
metionina	48	20	pobre
fenilalanina	27	20	pobre
prolina	1500	20	buena
serina	364	20	buena
treonina	90	20	aceptable
triptófano	10	20	pobre
tirosina	0,4	20	pobre
valina	88	20	aceptable

La solubilidad de los aminoácidos aspartato, ácido aspártico, glutamina, ácido glutámico, histidina, isoleucina, leucina, metionina, fenilalanina, triptófano y tirosina es inferior a 50 g/l y, de esta manera, se considera que estos aminoácidos presentan una solubilidad pobre en aqua.

5

10

30

Por ejemplo, el aminoácido leucina presenta una solubilidad en agua a 20°C de 24 g/l y, de esta manera, es pobremente soluble. En una solución alcalina que comprende 12,5% (p/v) de amonio la solubilidad se incrementa a 76 g/l y, de esta manera, presenta una solubilidad tres veces mayor en agua. Además, el volumen de alimentación requerido se reduce en más de 60%. En el caso de que simultáneamente también se utilice la solución alcalina para ajustar el valor del pH del cultivo, el volumen añadido puede reducirse todavía más. Por ejemplo, el aminoácido tirosina presenta una solubilidad en agua a 20°C de 0,4 g/l y, de esta manera, es pobremente soluble. En una solución alcalina que comprende 12,5% (p/v) de amonio la solubilidad se incrementa a 39 g/l y, de esta manera, presenta una solubilidad cien veces mayor en agua.

15 En una realización, el aminoácido es aspartato, ácido aspártico, glutamina, ácido glutámico, histidina, isoleucina, leucina, metionina, fenilalanina, triptófano y/o tirosina. En otra realización, el aminoácido es aspartato, ácido aspártico, glutamina, ácido glutámico, histidina, leucina, triptófano y/o tirosina. En una realización, el aminoácido es la leucina. En una realización, el aminoácido es un aminoácido que es pobremente soluble en agua a un pH de aproximadamente 7 a 20°C. En otra realización, el aminoácido es leucina y prolina, o el aminoácido es leucina y 20 prolina y triptófano. En una realización adicional, el aminoácido presenta una solubilidad en la solución alcalina que es superior a la solubilidad en agua a 20°C. En una realización adicional, la solubilidad en la solución alcalina es entre dos y diez veces la solubilidad en aqua a 20°C. En una realización, el aminoácido presenta una solubilidad en agua de 40 g/l o menos. En otra realización, el aminoácido presenta una solubilidad en agua de 30 g/l o inferior. En una realización adicional, el aminoácido presenta una solubilidad en la solución alcalina de 25 g/l o superior. En una 25 realización adicional, el aminoácido presenta una concentración en la solución alcalina de 30 g/l o superior. En otra realización, el aminoácido presenta una concentración en la solución alcalina de 35 g/l o superior. En una realización adicional, el aminoácido presenta una solubilidad en la solución alcalina de 50 g/l o superior.

En la Tabla a continuación, se muestran los resultados del cultivo en un recipiente de cultivo con 10 l de volumen de trabajo de la misma célula de *E. coli* auxotrófica para leucina y prolina obtenida con diferentes modos de alimentación.

	<u>Tabla</u>			
experimento	alimentación	biomasa total (materia seca) [g/l]	rendimiento de proteína recombinante [g/l]	volumen de cultivo final [l]
1	alimentaciones separadas: -20 g/l L-leucina -100 g/l L-prolina	49,4	10,0	11,8
2	alimentaciones separadas: -20 g/l L-leucina -100 g/l L-prolina	50,6	9,0	12,2
3	alimentación combinada: solución de NH₃ al 12,5% (p/v) que contiene 50 g/l L-leucina y 50 g/l L-prolina	75,7	16,5	10,2
4	alimentación combinada:	56,5	13,5	9,3

solución de NH ₃ al 12,5% (p/v) que contiene		
33 g/l L-leucina y		
33 g/l L-prolina		

Puede observarse que en los Experimentos 1 y 2, en los que se añaden dos aminoácidos como alimentaciones separadas al medio de cultivo, la biomasa total obtenida al final del cultivo y el rendimiento de proteína recombinante son más bajos que en los Experimentos 3 y 4, en los que los aminoácidos se añaden en forma de una alimentación alcalina combinada que simultáneamente se utiliza para ajustar el valor del pH del medio de cultivo. Además, el volumen de cultivo final en los Experimentos 3 y 4 no excede el volumen de trabajo del recipiente de cultivo tal como en los Experimentos 1 y 2.

En una realización, la solución alcalina es una solución de amonio al 12,5% (p/v) en agua y comprende por lo menos un aminoácido a una concentración de aproximadamente 50 g/l o superior. En una realización, la solución alcalina comprende leucina y prolina a una concentración de aproximadamente 50 g/l.

Las células procarióticas que pueden utilizarse en el método informado en la presente memoria pueden comprender una o más auxotrofias de aminoácido. Por ejemplo, las células de *E. coli* deficientes en la ruta biosintética de leucina pueden seleccionarse de entre las células deficientes en LeuB6 13-6, x148, x156, x2224, x462, x463, x474, x478, x515, x65, x697, x760, 2000k MSE248, 342-167, 342MG, 679-680, A586, A592, A593, AA100, AA7852, AA787, AB1102, AB1111, AB1115, AB1122, AB1129, AB113, AB1132, AB1133, AB114, AB1157, AB1157-D, AB1314, AB1330, AB1331, AB1881, AB1884, AB1885, AB188, CP78, CP79, CR34 Thy-, CR34 Thy-SR, CR34/308, CR34/313, CR34/399, CR34/43, CR34/454, CR34/500, CR34/7a, CS130, CS312, CS419, CS425, CS426, CS460, CS471, CS472, CS50, CS81, CS85, CSR06, CSR603, CSR603/pDR1996, CT28-3b, DA10, DA11, DB1161, DB1257, DE1878, DE1882, DE2345, DF225, DF41, JRG94, JS10 C600r-m-, T6R, P678SSR pro-, PA20SR, PA200 SR, PA201 SR, PA214SRT6R, PA265 SR, PA309, PDE70, PA340, PA340/T6, PA360, PA414, PAM161, PAM162, PAM163, PAM164, PAM660, PAT84, PB349, PB69, PC1, PC2, PC3, PC5, PC6, PC8, PJ1, PJ2, PJ3, PJ4, PJ5, PJ C600 (= CRSR), W208 SR AzR, W2660, LAM-, W945his, WA2127, WA2379, WA2548, WA2552, WA2574, WA2899,

En una realización, la célula procariótica es una célula de E. coli K12 o una célula de E. coli B.

En una realización, la solución alcalina es una solución fuertemente alcalina. En otra realización, la solución alcalina presenta un valor de pH de 9 o superior, o un pH de 10 o superior o un pH de 10,5 o superior. En una realización adicional, la solubilidad del aminoácido en la solución alcalina es por lo menos el doble de la solubilidad del aminoácido en agua.

En una realización, el método para la producción de un polipéptido tal como se informa en la presente memoria comprende las etapas siguientes:

- a) proporcionar una célula bacteriana auxotrófica para un aminoácido, que comprende un ácido nucleico codificante del polipéptido,
- b) cultivar la célula proporcionada,

5

25

45

50

- do c) ajustar el valor del pH durante el cultivo, con una solución alcalina que comprende un aminoácido para el que la célula bacteriana es auxotrófica,
 - d) recuperar el polipéptido a partir de la célula o del medio de cultivo, produciendo de esta manera el polipéptido.

Realizaciones específicas de la invención

1. Un método para producir un polipéptido comprende las etapas de:

WA921, WA946, WA960, Y10, Y46, Y53, Y70 e YYC100.

- a) cultivar una célula de Escherichia coli que comprende un ácido nucleico codificante del polipéptido,
- b) ajustar el valor del pH durante el cultivo, con una solución alcalina que comprende un aminoácido seleccionado de entre aspartato, ácido aspártico, glutamina, ácido glutámico, histidina, isoleucina, leucina, metionina, fenilalanina, triptófano y tirosina,
- c) recuperar el polipéptido a partir de la célula o del medio de cultivo, produciendo de esta manera el polipéptido, en el que el aminoácido presenta una concentración en la solución alcalina de 30 g/l o superior, y en el que la solución alcalina es una solución de amonio de 10% (p/v) o superior.
- 2. El método según cualquiera de las realizaciones anteriores, caracterizado porque la célula bacteriana es una célula auxotrópica para un aminoácido y la auxotrofia es para un aminoácido seleccionado de entre aspartato, ácido aspártico, glutamina, ácido glutámico, glicina, histidina, isoleucina, leucina, lisina, metionina, fenilalanina, triptófano y tirosina.
 - 3. El método según cualquiera de las realizaciones anteriores, caracterizado porque la solución alcalina presenta un valor de pH de 9 o superior.
- 4. El método según cualquiera de las realizaciones anteriores, caracterizado porque el polipéptido es la apolipoproteína A humana o un derivado de la misma.

- 5. Método según la realización 4, caracterizado porque la apolipoproteína A1 presenta una secuencia de aminoácidos seleccionada de entre SEC ID nº 01 y nº 35.
- 6. El método según la realización 5, caracterizado porque la apolipoproteína A1 presenta una secuencia de aminoácidos seleccionada de entre SEC ID nº 01, nº 02, nº 34 y nº 35.
- 7. El método según cualquiera de las realizaciones anteriores, caracterizado porque el aminoácido presenta una concentración de aproximadamente 50 g/l.
 - 8. El método según cualquiera de las realizaciones anteriores, caracterizado porque la solución alcalina es una solución de amonio de aproximadamente 12,5% (p/v) de amonio en agua.
 - 9. El método según cualquiera de las realizaciones anteriores, caracterizado porque el aminoácido es la leucina.
- 10 10. El método según cualquiera de las realizaciones anteriores, caracterizado porque la solución alcalina comprende leucina y prolina.
 - 11. El método según cualquiera de las realizaciones anteriores, caracterizado porque la solución alcalina es una solución de amonio de aproximadamente 12,5% (p/v) y comprende los aminoácidos leucina y prolina, cada uno a una concentración de aproximadamente 50 g/l.
 - Los ejemplos, listado de secuencias y figuras siguientes se proporcionan con el fin de ayudar a comprender la presente invención, el alcance real de la cual se proporciona en las reivindicaciones adjuntas.

Descripción de las figuras

20

15

5

Figura 1 Gráfico de parámetros Ejemplo 3 -alimentación separada de aminoácidos.
Figura 2 Gráfico de parámetros Ejemplo 3 -alimentación separada de aminoácidos.
Figura 3 Gráfico de parámetros Ejemplo 4 -alimentación combinada de aminoácidos.
Figura 4 Gráfico de parámetros Ejemplo 4 -alimentación combinada de aminoácidos.

25

Materiales y métodos

Se midió la densidad óptica de los cultivos con un fotómetro DR2800 (Hach-Lange, Düsseldorf, Alemania) a 578 nm.

30 Se determinó la concentración de proteína densitométricamente mediante la comparación de los volúmenes de una banda de una proteína estándar con los volúmenes de banda de la proteína producida en muestras de fermentación en un gel SDS-Page.

Ejemplo 1

35

40

Determinación de la solubilidad de la leucina en una solución de amonio

Se introdujo la cantidad calculada de leucina en un matraz de 500 ml. Tras la adición de 250 ml de agua desionizada, la solución se esterilizó mediante autoclavado. A continuación, se añadieron 250 ml de una solución de amonio al 25% (p/v) y se determinó si la leucina se encontraba disuelta o no. Tras la disolución de la leucina, se determinó el volumen final de la solución. En caso de que se desviase notablemente de 500 ml, se preparaba nuevamente la solución con una cantidad reducida de agua (ver la Tabla 3).

				<u>Tabla 3</u>					
Concentración de leucina [g/l]	17	18	19	20	21	25	30	40	50
Agua [ml]	250	250	250	250	250	250	250	250	250
Solución de amonio [ml]	250	250	250	250	250	250	250	250	250
Soluble?	sí	sí	sí	sí	sí	sí	sí	sí	sí
Volumen final [ml]	500	500	500	500	500	500	500	500	500

45

Concentración de leucina [g/l]	60	70	71	72	73	74	75	76	77
Agua [ml]	250	250	250	250	250	250	250	250	250
Solución de amonio [ml]	250	250	250	250	250	250	250	250	250
Soluble?	sí								
Volumen final [ml]	500	500	500	500	500	500	500	500	500

Ejemplo 2

Preparación y descripción de los plásmidos de expresión de E. coli

Se preparó el polipéptido de fusión de tetranectina-apolipoproteína A-I por medios recombinantes. La secuencia de aminoácidos del polipéptido de fusión expresado en la dirección N- a C-terminal es la siguiente:

- el aminoácido metionina (M),
- un fragmento de una secuencia de interferón que presenta la secuencia de aminoácidos CDLPQTHSL (SEC ID nº 36),
- un conector GS,
- una etiqueta hexa-histidina que presenta la secuencia de aminoácidos HHHHHH (SEC ID nº 37),
- un conector GS.
- un sitio de corte de IgA proteasa que presenta la secuencia de aminoácidos VVAPPAP (SEC ID nº 38), y
- 10 una tetranectina-apolipoproteína A-l que presenta la secuencia de aminoácidos SEC ID nº 02.

Los polipéptidos de fusión de tetranectina-apolipoproteína A-I tal como se ha indicado anteriormente son polipéptidos precursores a partir de los que se liberaron los polipéptidos de fusión de tetranectina-apolipoproteína A-I mediante corte enzimático in vitro utilizando IgA proteasa.

15

5

El gen de fusión codificante del polipéptido precursor se ensambló mediante métodos y técnicas de recombinación conocidos mediante conexión de los segmentos de ácidos nucleicos apropiados. Las secuencias de ácidos nucleicos preparadas mediante síntesis química se verificaron mediante secuenciación del ADN. El plásmido de expresión para la producción de tetranectina-apolipoproteína A-I se preparó tal como se indica a continuación.

20

25

30

40

Construcción del plásmido de expresión de E. coli

El plásmido 4980 (4980-pBRori-URA3-LACI-SAC) es un plásmido de expresión para la expresión de la estreptavidina nuclear en *E. coli*. Se generó mediante ligación del fragmento de vector EcoRI/CeIII de 3.142 pb derivado del plásmido 1966 (1966-pBRori-URA3-LACI-T-repetición, informado en la patente EP nº B 1 422 237) con un fragmento EcoRI/CeIII codificante de la estreptavidina nuclear de 435 pb de longitud.

El plásmido de expresión de E. coli de estreptavidina nuclear comprende los elementos siguientes:

- el origen de replicación del vector pBR322 para la replicación en *E. coli* (correspondiente a las posiciones de pb 2.517 a 3.160 según Sutcliffe J.G. et al., Quant. Biol. 43:77-90, 1979),
- el gen URA3 de *Saccharomyces cerevisiae* codificante de la orotidina 5'-fosfato descarboxilasa (Rose M. et al., Gene 29:113-124, 1984), que permite la selección de plásmido mediante complementación de las cepas mutantes *E. coli* pyrF (auxotrofia para el uracilo).
- el casete de expresión de la estreptavidina nuclear, que comprende:
- el promotor T5 híbrido (promotor híbrido T5-PN25/03/04 según Bujard H. et al., Methods Enzymol. 155:416-433,
 1987, y Stueber D. et al., Immunol. Methods IV:121-152, 1990), incluyendo un sitio de unión ribosómica sintético según Stueber D. et al. (ver anteriormente),
 - el gen de la estreptavidina nuclear,
 - dos terminadores de transcripción derivados de bacteriófago, el terminador λ-T0 (Schwarz E. et al., Nature 272:410-414, 1978) y el terminador fd (Beck E. y Zink B., Gene 1-3:35-58, 1981),
 - el gen represor lacl de E. coli (Farabaugh P.J., Nature 274:765-769, 1978).

El plásmido de expresión final para la expresión del polipéptido precursor de tetranectina-apolipoproteína A-l se preparó cortando el gen estructural de la estreptavidina nuclear del vector 4980 utilizando el sitio de corte único por endonucleasa de restricción EcoRI y CelII e insertando el ácido nucleico flanqueado por el sitio de restricción EcoRII/CelII codificante del polipéptido precursor en el fragmento de vector EcoRI/CelII-4980 de 3.142 pb de longitud.

Ejemplo 3

50

55

60

Alimentación de leucina y prolina como soluciones separadas

En el presente ejemplo de referencia se llevó a cabo el cultivo de una cepa de *E. coli* auxotrófica mediante un método de cultivo de alta densidad celular tal como se informa en Riesenberg et al. (1991, *supra*) en combinación con la alimentación separada de los aminoácidos L-leucina y L-prolina.

Se utilizó la cepa *E. coli* K12 CSPZ-2 (leuB, proC, trpE, th-1, ΔpyrF). La cepa se transformó con un plásmido de expresión para la producción de una proteína terapéutica y se mantuvo como banco de inóculo primario en ampollas que contenían 1 ml de la cepa cultivada en medio de precultivo definido hasta una densidad óptica (determinada a 578 nm) de aproximadamente 1 y 1 ml de glicerol al 85% (v/v) y se almacenó a -80°C.

El medio de precultivo definido era un medio M9 según Sambrook J. et al., Molecular Cloning: A Laboratory Manual, segunda edición, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989) complementado con

65 1,0 g/l de L-leucina,

1,0 g/l de L-prolina y 1,0 mg/l de tiamina-HCl.

Para la fermentación, se utilizó un medio de lote según Riesenberg et al. (1991, supra):

27,6 g/l de glucosa,
 13,3 g/l de KH₂PO₄,
 4,0 g/l de (NH₄)₂HPO₄,
 1,7 g/l de citrato,

1,7 g/l de Citrato, 1,2 g/l de MgSO₄*7H₂O,

10 60 mg/l de citrato de hierro (III), 2,5 mg/l de CoCl₂*6H₂O, 15 mg/l de MnCl₂*4H₂O, 1,5 mg/l de CuCl₂*2H₂O,

3 mg/l de H₃BO₃,

2,5 mg/l de Na₂MoO₄*2H₂O
8 mg/l de Zn(CH₃COO)₂*2H₂O,
8,4 mg/l de Titriplex III, y
1,3 ml/l de agente antiespumante Synperonic al 10%.

1,5 mi/i de agente antiespumante Symperonic ai 10

20 El medio del lote se complementó con: 5,4 mg/l de tiamina-HCl, y 1,2 g/l de L-leucina y L-prolina- respectivamente.

La solución de alimentación 1 contenía:

700 g/l de glucosa y19,7 g/l de MgSO₄*7H₂O.

30

45

50

55

60

65

La solución de alimentación 2 contenía: 20 g/l de L-leucina.

La solución de alimentación 3 contenía: 100 g/l de L-prolina.

Se prepararon las alimentaciones 2 y 3 introduciendo una cantidad medida del aminoácido, disolviendo el aminoácido en agua y autoclavando la solución. A continuación, se determinó que el valor del pH de la solución era de aproximadamente 6,15 para la alimentación 2 y de aproximadamente 6,43 para la alimentación 3.

La solución alcalina utilizada para la regulación del pH fue una solución acuosa de NH₃ al 12,5% (p/v).

Todos los componentes se disolvieron en agua desionizada.

Para el precultivo, en 300 ml de medio M9 en un matraz Erlenmeyer de 1.000 ml con 3 deflectores se inocularon 2 ml de ampolla de banco de inóculo primario. El cultivo se llevó a cabo en un agitador rotatorio durante 13 horas a 37°C hasta alcanzar una densidad óptica (determinada a 578 nm) de entre 1 y 3.

La fermentación principal se llevó a cabo en un fermentador Biostat C DCU3 de 10 I (Sartorius, Melsungen, Alemania). Partiendo de 6,4 I de medio de lote estéril más 300 ml de precultivo, se llevó a cabo la fermentación por lotes a 37°C, pH 6,9 ± 0,2, 500 mbar y una tasa de aireación de 10 l/min. Tras agotarse la glucosa inicialmente añadida, la temperatura se modificó a 28°C y la fermentación entró en el modo por lotes alimentados manteniendo el oxígeno disuelto (pO₂) al 50% (DOstat, ver, por ejemplo, Shay L.K. et al. (1987, infra)) y mediante la adición de la alimentación 1 en combinación con una velocidad de agitación en constante incremento (550 rpm a 1.000 rpm en 10 horas y de 1.000 rpm a 1.400 rpm en 16 horas) y una tasa de aireación en constante incremento (de 10 l/min. a 16 l/min. en 10 horas y de 16 l/min. a 20 l/min. en 5 horas). El suministro de aminoácidos adicionales se inició al alcanzar el pH el límite de regulación inferior, es decir, pH 6,70, con la adición de la alimentación 2 (iniciándose con 33,8 ml/h durante 14 horas e incrementándose después hasta 97,6 ml/h) y la alimentación 3 (iniciándose con 6,8 ml/h durante 14 horas e incrementándose después hasta 19,5 ml/h). Los caudales se calcularon a partir de una fermentación separada (ver el Ejemplo 4), para aplicar exactamente la misma cantidad de aminoácidos a los cultivos con independencia de la estrategia de alimentación. Se indujo la expresión de proteína terapéutica recombinante mediante la adición de IPTG 1 mM a una densidad óptica de 70.

Los gráficos de parámetros de dicha fermentación se muestran en las figuras 1 y 2.

Tras la inoculación, seguida de una etapa de latencia corta, las células crecían a una tasa de crecimiento específico máxima de μ_{max} =0,30 l/h. Tras 8 horas de cultivo, se alcanzó el límite de regulación de pH inferior y se controló el pH a 6,70 con la adición de una solución de NH₄OH al 12,5%. Simultáneamente se inició la alimentación de aminoácido

mediante la adición de las alimentaciones 2 y 3. Tras 16 horas, se había consumido la glucosa, indicado por el acusado incremento del valor de pO₂. En este tiempo se modificó la temperatura del cultivo de 37°C a 28°C. Tras 15 minutos adicionales, se inició el control pO₂-alimentación y se controló la pO₂ a 50% mediante la adición de la alimentación 1, incrementando continuamente la agitación y la tasa de aireación hasta los máximos respectivos, de 1.400 rpm y 20 l/min. Se redujo continuamente la tasa de crecimiento de 0,15 hasta aproximadamente 0,05 l/h. Concomitantemente, se redujo en etapas la velocidad del agitador tras 36 horas de cultivo. Una vez ya no pudo determinarse ningún incremento más de la densidad óptica, se terminó la fermentación y se enfriaron las células bacterianas a 4°C durante la noche, antes de la recolección.

- Al final de la fermentación el rendimiento de biomasa total era de 49,4 g/l (materia seca). Durante la fermentación prácticamente no se excretó acetato, aunque hacia el final las concentraciones se incrementaron acusadamente hasta 7 g/l. La formación de proteína recombinante rindió 9,96 g/l. El volumen de caldo de cultivo excedía el volumen de trabajo normal del fermentador y se incrementó a 11,8 l.
- Se repitió la fermentación, resultando en una densidad óptica final de 130, un rendimiento de biomasa final de 50,6 g/l y un rendimiento de proteína recombinante de 9,0 g/l; el volumen del caldo de cultivo al final de la fermentación era de 12.2 l.

Ejemplo 4

20

25

5

Alimentación de leucina y prolina incorporada en la solución de álcali para la regulación del pH

En la presente fermentación se incorporó la alimentación de aminoácido en la solución alcalina de control del pH. La base de dicha fermentación era el mismo método de cultivo a alta densidad celular según Riesenberg et al. (1991, supra) tal como se utiliza en el Ejemplo 3. Se incorporaron los aminoácidos L-leucina y L-prolina en la solución acuosa de NH₃ al 12,5% y se alimentación con adición de álcali durante el control del pH.

Se utilizó la cepa *E. coli* K12 CSPZ-2 (leuB, proC, trpE, th-1, ΔpyrF). La cepa se transformó con un plásmido de expresión para la producción de una proteína terapéutica y se mantuvo como banco de inóculo primario en ampollas que contenían 1 ml de la cepa cultivada en medio de precultivo definido hasta una densidad óptica (determinada a 578 nm) de aproximadamente 1 y 1 ml de glicerol al 85% (v/v) y se almacenó a -80°C.

El medio de precultivo definido era un medio M9 según Sambrook J. et al. (Molecular Cloning: A Laboratory Manual, segunda edición, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)) complementado con:

35

1,0 g/l de L-leucina, 1,0 g/l de L-prolina, y

1,0 mg/l de tiamina-HCl.

40 Para la fermentación, se utilizó un medio de lote según Riesenberg et al. (1991, supra):

27,6 g/l de glucosa, 13,3 g/l de KH₂PO₄, 4,0 g/l de (NH₄)₂HPO₄, 45 1,7 g/l de citrato, 1,2 g/l de MgSO₄*7H₂O, 60 mg/l de citrato de hierro (III), 2,5 mg/l de CoCl₂*6H₂O, 15 mg/l de MnCl₂*4H₂O, 50 1,5 mg/l de CuCl₂*2H₂O, 3 mg/l de H₃BO₃,

2,5 mg/l de Na₂MoO₄*2H₂O 8 mg/l de Zn(CH₃COO)₂*2H₂O, 8,4 mg/l de Titriplex III, y

55 1,3 ml/l de agente antiespumante Synperonic al 10%.

El medio de lote se complementó co: 5,4 mg/l de tiamina-HCl y 1,2 g/l de L-leucina y L-prolina, respectivamente.

60

La solución de alimentación 1 contenía: 700 g/l de glucosa y 19,7 g/l de MgSO₄*7H₂O.

La solución alcalina utilizada para la regulación del pH fue una solución acuosa de NH₃ al 12,5% (p/v) complementada con 50 g/l de L-leucina y 50 g/l de L-prolina, respectivamente.

Todos los componentes se disolvieron en agua desionizada.

5

10

15

25

30

35

40

60

65

<400> 1

La fermentación principal se llevó a cabo en un fermentador Biostat C DCU3 de 10 I (Sartorius, Melsungen, Alemania). Partiendo de 6,4 I de medio de lote estéril más 300 ml de precultivo, se llevó a cabo la fermentación por lotes a 37°C, pH 6,9 ± 0,2, 500 mbar y una tasa de aireación de 10 l/min. Tras agotarse la glucosa inicialmente añadida, la temperatura se modificó a 28°C y la fermentación entró en el modo por lotes alimentados manteniendo el oxígeno disuelto (pO₂) al 50% (DOstat, ver, por ejemplo, Shay L.K. et al. (Shay L.K. et al., J. Indus. Microbiol. 2:79-85, 1987)) y mediante la adición de la alimentación 1 en combinación con una velocidad de agitación en constante incremento (550 rpm a 1.000 rpm en 10 horas y de 1.000 rpm a 1.400 rpm en 16 horas) y una tasa de aireación en constante incremento (de 10 l/min. a 16 l/min. en 10 horas y de 16 l/min. a 20 l/min. en 5 horas). El suministro de aminoácidos adicionales resultó de la adición de álcali al alcanzar el pH el límite de regulación inferior, pH 6,70. A partir del curso temporal de adición de álcali, se calcularon los caudales para las alimentaciones 2 y 3 en el Ejemplo 2, a fin de aplicar exactamente la misma cantidad de aminoácidos a los cultivos con independencia de la estrategia de alimentación. Se indujo la expresión de proteína terapéutica recombinante mediante la adición de IPTG 1 mM a una densidad óptica de 70.

20 Los gráficos de parámetros típicos de dicha fermentación se muestran en las figuras 3 y 4.

Tras la inoculación, seguida de una etapa de latencia corta, las células crecían a una tasa de crecimiento específico máxima de μ_{max}=0,30 l/h. Tras 8 horas de cultivo, se alcanzó el límite de regulación de pH inferior y se controló el pH a 6,70 con la adición de una solución de NH₃ al 12,5% complementada con 50 g/l de L-leucina y 50 g/l de L-prolina, respectivamente. Lo anterior inició simultáneamente la alimentación de aminoácido. Tras 16 horas se había consumido la glucosa proporcionada. En este tiempo se modificó la temperatura del cultivo de 37°C a 28°C. Tras 15 minutos adicionales, se inició el control pO₂-alimentación y se controló la pO₂ a 50% mediante la adición de la alimentación 1, incrementando continuamente la agitación y la tasa de aireación hasta los máximos respectivos, de 1.400 rpm y 20 l/min. Se redujo continuamente la tasa de crecimiento de 0,15 hasta aproximadamente 0,05 l/h. Una vez ya no se podía detectar ningún incremento adicional de la densidad óptica, se terminó la fermentación y se enfriaron las células bacterianas a 4°C durante la noche, antes de la recolección.

Al final de la fermentación la densidad óptica era de 169 y el rendimiento de biomasa total era de 75,7 g/l (materia seca). Durante la fermentación prácticamente no se excretó acetato y hacia el final las concentraciones se elevaron a 1 g/l. La formación de proteína recombinante rindió 16,5 g/l. El volumen del caldo de cultivo era de 10,2 l.

Se repitió la fermentación con diferentes cantidades de aminoácidos disueltos en la solución de álcali (33 g/l de L-leucina y L-prolina). La cantidad de aminoácidos alimentados era inferior y resultó en una densidad óptica de 145, un rendimiento de biomasa final de 56,5 g/l y un rendimiento de proteína recombinante de 13,5 g/l; el volumen del caldo de cultivo al final de la fermentación era de 9,3 l.

LISTADO DE SECUENCIAS

```
    <110> F. Hoffmann-La Roche AG
    <120> Alimentación alcalina
    <130> 26775 WO
    <150> EP10008997.8
    <151> 2010-08-30
    <160> 38
```

55 <170> Patentln versión 3.5

```
<210> 1
<211> 285
<212> PRT
<213> Secuencia artificial
<220>
<223> Tetranectina-apolipoproteína A-I (1)
```

Ala 1	Pro	Ile	Val	Asn 5	Ala	Lys	Lys	Asp	Val 10	Val	Asn	Thr	Lys	Met 15	Phe
Glu	Glu	Leu	Lys 20	Ser	Arg	Leu	Asp	Thr 25	Leu	Ala	Gln	Glu	Val 30	Ala	Leu
Leu	Lys	Glu 35	Gln	Gln	Ala	Leu	Gln 40	Thr	Val	Asp	Glu	Pro 45	Pro	Gln	Ser
Pro	Trp 50	Asp	Arg	Val	Lys	Asp 55	Leu	Ala	Thr	Val	Tyr 60	Val	Asp	Val	Leu
Lys 65	Asp	Ser	Gly	Arg	Asp 70	Tyr	Val	Ser	Gln	Phe 75	Glu	Gly	Ser	Ala	Leu 80
Gly	Lys	Gln	Leu	Asn 85	Leu	Lys	Leu	Leu	Asp 90	Asn	Trp	Asp	Ser	Val 95	Thr
Ser	Thr	Phe	Ser 100	Lys	Leu	Arg	Glu	Gln 105	Leu	Gly	Pro	Val	Thr 110	Gln	Glu
Phe	Trp	Asp 115		Leu	Glu	Lys	Glu 120	Thr	Glu	Gly	Leu	Arg 125	Gln	Glu	Met
Ser	Lys 130	Asp	Leu	Glu	Glu	Val 135	Lys	Ala	Lys	Val	Gln 140	Pro	Tyr	Leu	Asp
Asp	Phe	Gln	Lys	Lys	Trp	Gln	Glu	Glu	Met	Glu	Leu	Tyr	Arg	Gln	Lys
145 Val		Pro	Leu	Arg 165	150 Ala	Glu	Leu	Gln	Glu 170	155 Gly	Ala	Arg	Gln	Lys 175	160 Leu
His	Glu	Leu	Gln 180	Glu	Lys	Leu	Ser	Pro 185	Leu	Gly	Glu	Glu	Met 190	Arg	Asp
Arg	Ala	Arg 195	Ala	His	Val	Asp	Ala 200	Leu	Arg	Thr	His	Leu 205		Pro	Tyr
Ser	Asp 210	Glu	Leu	Arg	Gln	Arg 215	Leu	Ala	Ala	Arg	Leu 220	Glu	Ala	Leu	Lys
Glu 225	Asn	Gly	Gly	Ala	Arg 230	Leu	Ala	Glu	Tyr	His 235	Ala	Lys	Ala	Thr	Glu 240
His	Leu	Ser	Thr	Leu 245	Ser	Glu	Lys	Ala	Lys 250	Pro	Ala	Leu	Glu	Asp 255	Leu
Arg	Gln	Gly	Leu 260	Leu	Pro	Val	Leu	Glu 265	Ser	Phe	Lys	Val	Ser 270		Leu
Ser	Ala	Leu 275	Glu	Glu	Tyr	Thr	Lys 280	Lys	Leu	Asn	Thr	Gln 285			

<210> 2 <211> 283 <212> PRT <213> Secuencia artificial <220> <223> Tetranectina-apolipoproteína A-I (2) 10 <400> 2 Ile Val Asn Ala Lys Lys Asp Val Val Asn Thr Lys Met Phe Glu Glu 10 Leu Lys Ser Arg Leu Asp Thr Leu Ala Gln Glu Val Ala Leu Leu Lys 20 Glu Gln Gln Ala Leu Gln Thr Val Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu Ala Thr Val Tyr Val Asp Val Leu Lys Asp 55 Ser Gly Arg Asp Tyr Val Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys 75

85

Gln Leu Asn Leu Lys Leu Leu Asp Asn Trp Asp Ser Val Thr Ser Thr

Phe Ser Lys Leu Arg Glu Gln Leu Gly Pro Val Thr Gln Glu Phe Trp 100 105 110

		Asp	Asn	Leu 115	Glu	Lys	Glu	Thr	Glu 120	Gly	Leu	Arg	Gln	Glu 125	Met	Ser	Lys
		Asp	Leu 130	Glu	Glu	Val	Lys	Ala 135	Lys	Val	Gln	Pro	Tyr 140	Leu	Asp	Asp	Phe
		Gln 145	Lys	Lys	Trp	Gln	Glu 150	Glu	Met	Glu	Leu	Tyr 155	Arg	Gln	Lys	Val	Glu 160
		Pro	Leu	Arg	Ala	Glu 165	Leu	Gln	Glu	Gly	Ala 170	Arg	Gln	Lys	Leu	His 175	Glu
		Leu	Gln	Glu	Lys 180	Leu	Ser	Pro	Leu	Gly 185	Glu	Glu	Met	Arg	Asp 190	Arg	Ala
		Arg	Ala	His 195	Val	Asp	Ala	Leu	A rg 200	Thr	His	Leu	Ala	Pro 205	Tyr	Ser	Asp
		Glu	Leu 210	Arg	Gln	Arg	Leu	Ala 215	Ala	Arg	Leu	Glu	Ala 220	Leu	Lys	Glu	Asn
		Gly 225	Gly	Ala	Arg	Leu	A la 230	Glu	Tyr	His	Ala	Lys 235	Ala	Thr	Glu	His	Leu 240
		Ser	Thr	Leu	Ser	Glu 245	Lys	Ala	Lys	Pro	Ala 250	Leu	Glu	Asp	Leu	Arg 255	Gln
		Gly	Leu	Leu	Pro 260	Val	Leu	Glu	Ser	Phe 265	Lys	Val	Ser	Phe	Leu 270	Ser	Ala
		Leu	Glu	Glu 275	Tyr	Thr	Lys	Lys	Leu 280	Asn	Thr	Gln					
5	<210> 3 <211> 22 <212> PR <213> Sec		a artifi	cial													
10	<220> <223> min	nético	de ap	olipopı	roteína	a A-I (1)										
10	<400> 3	Descri		T	3	C1	Dha	3	C1	T	T	3	C1	C1 '	T a	~1 1	v7 -
		1	val	. Leu	Asp	5 5	rue.	wr.d	GIU	тÀ2	10	ASN	с ти	GIU .		31u <i>1</i> 15	3⊥g
		Leu	ı Lys	Gln	Lys 20	Leu	Lys										

```
<210>4
     <211> 22
     <212> PRT
     <213> Secuencia artificial
     <220>
     <223> mimético de apolipoproteína A-I (2)
10
     <400> 4
           Pro Val Leu Asp Leu Phe Arg Glu Leu Leu Asn Glu Leu Leu Glu Ala
                              5
           Leu Lys Gln Lys Leu Lys
                         20
     <210> 5
15
     <211> 267
     <212> PRT
     <213> Homo sapiens
     <400> 5
20
               Met Lys Ala Ala Val Leu Thr Leu Ala Val Leu Phe Leu Thr Gly Ser
               Gln Ala Arg His Phe Trp Gln Gln Asp Glu Pro Pro Gln Ser Pro Trp
               Asp Arg Val Lys Asp Leu Ala Thr Val Tyr Val Asp Val Leu Lys Asp
                                             40
               Ser Gly Arg Asp Tyr Val Ser Gln Phe Glu Gly Ser Ala Leu Gly Lys
               Gln Leu Asn Leu Lys Leu Leu Asp Asn Trp Asp Ser Val Thr Ser Thr
                                    70
                                                         75
               Phe Ser Lys Leu Arg Glu Gln Leu Gly Pro Val Thr Gln Glu Phe Trp
                                85
               Asp Asn Leu Glu Lys Glu Thr Glu Gly Leu Arg Gln Glu Met Ser Lys
               Asp Leu Glu Glu Val Lys Ala Lys Val Gln Pro Tyr Leu Asp Asp Phe
               Gln Lys Lys Trp Gln Glu Glu Met Glu Leu Tyr Arg Gln Lys Val Glu
               Pro Leu Arg Ala Glu Leu Gln Glu Gly Ala Arg Gln Lys Leu His Glu
                                    150
```

	Leu	Gln	Glu	Lys	Leu 165	Ser	Pro	Leu	Gly	Glu 170	Glu	Met	Arg	Asp	Arg 175	Ala
	Arg	Ala	His	Val 180	Asp	Ala	Leu	Arg	Thr 185	His	Leu	Ala	Pro	Tyr 190	Ser	Asp
	Glu	Leu	Arg 195	Gln	Arg	Leu	Ala	Ala 200	Arg	Leu	Glu	Ala	Leu 205	Lys	Glu	Asn
	Gly	Gly 210	Ala	Arg	Leu	Ala	Glu 215	Tyr	His	Ala	Lys	Ala 220	Thr	Glu	His	Leu
	Ser 225	Thr	Leu	Ser	Glu	Lys 230	Ala	Lys	Pro	Ala	Leu 235	Glu	Asp	Leu	Arg	Gln 240
	Gly	Leu	Leu	Pro	Val 245	Leu	Glu	Ser	Phe	Lys 250	Val	Ser	Phe	Leu	Ser 255	Ala
	Leu	Glu	Glu	Tyr 260	Thr	Lys	Lys	Leu	Asn 265	Thr	Gln					
<210> 6 <211> 100 <212> PRT <213> Hom		ens														
<400> 6																
	_			.												
	1	Lys	Leu	Leu	Ala 5	Ala	Thr	Val	Leu	Leu 10	Leu	Thr	Ile	Cys	Ser 15	Leu
					5					10				_	15	
	Glu	Gly	Ala	Leu 20	5 Val	Arg	Arg	Gln	Ala 25	10 Lys	Glu	Pro	Cys	Val	15 Glu	Ser
	Glu Leu	Gly Val	Ala Ser 35	Leu 20 Gln	5 Val Tyr	Arg Phe	Arg Gln	Gln Thr 40	Ala 25 Val	10 Lys Thr	Glu Asp	Pro Tyr	Cys Gly 45	Val 30	15 Glu Asp	Ser Leu
	Glu Leu Met	Gly Val Glu 50	Ser 35	Leu 20 Gln Val	5 Val Tyr Lys	Arg Phe Ser	Arg Gln Pro 55	Gln Thr 40 Glu	Ala 25 Val Leu	10 Lys Thr	Glu Asp Ala	Pro Tyr Glu 60	Cys Gly 45 Ala	Val 30 Lys	15 Glu Asp Ser	Ser Leu Tyr
	Glu Leu Met	Glu Glu 50	Ala Ser 35 Lys	Leu 20 Gln Val	Val Tyr Lys	Arg Phe Ser Glu 70	Arg Gln Pro 55	Gln Thr 40 Glu Leu	Ala 25 Val Leu	10 Lys Thr Gln Pro	Glu Asp Ala Leu 75	Pro Tyr Glu 60	Cys Gly 45 Ala Lys	Val 30 Lys Lys	15 Glu Asp Ser	Ser Leu Tyr Gly 80

10

<210> 7 <211> 396

<212> PRT <213> Homo sapiens

<400> 7

Met 1	Phe	Leu	Lys	Ala 5	Val	Val	Leu	Thr	Leu 10	Ala	Leu	Val	Ala	Val 15	Ala
Gly	Ala	Arg	Ala 20	Glu	Val	Ser	Ala	Asp 25	Gln	Val	Ala	Thr	Val 30	Met	Trp
Asp	Tyr	Phe 35	Ser	Gln	Leu	Ser	Asn 40	Asn	Ala	Lys	Glu	Ala 45	Val	Glu	His
Leu	Gln 50	Lys	Ser	Glu	Leu	Thr 55	Gln	Gln	Leu	Asn	Ala 60	Leu	Phe	Gln	Asp
Lys 65	Leu	Gly	Glu	Val	Asn 70	Thr	Tyr	Ala	Gly	Asp 75	Leu	Gln	Lys	Lys	Leu 80
Val	Pro	Phe	Ala	Thr 85	Glu	Leu	His	Glu	Arg 90	Leu	Ala	Lys	Asp	Ser 95	Glu
Lys	Leu	Lys	Glu 100	Glu	Ile	Gly	Lys	Glu 105	Leu	Glu	Glu	Leu	Arg 110	Ala	Arg
Leu	Leu	Pro 115	His	Ala	Asn	Glu	Val 120	Ser	Gln	Lys	Ile	Gly 125	Asp	Asn	Leu
Arg	Glu 130	Leu	Gln	Gln	Arg	Leu 135	Glu	Pro	Tyr	Ala	Asp 140	Gln	Leu	Arg	Thr
Gln 145	Val	Asn	Thr	Gln	Ala 150	Glu	Gln	Leu	Arg	Arg 155	Gln	Leu	Thr	Pro	Tyr 160
Ala	Gln	Arg	Met	Glu 165	Arg	Val	Leu	Arg	Glu 170	Asn	Ala	Asp	Ser	Leu 175	Gln
Ala	Ser	Leu	Arg 180	Pro	His	Ala	Asp	Glu 185	Leu	Lys	Ala	Lys	Ile 190	Asp	Gln
Asn	Val	Glu 195	Glu	Leu	Lys	Gly	Arg 200	Leu	Thr	Pro	Tyr	Ala 205	Asp	Glu	Phe
Lys	Val 210	Lys	Ile	Asp	Gln	Thr 215	Val	Glu	Glu	Leu	Arg 220	Arg	Ser	Leu	Ala
Pro 225	Tyr	Ala	Gln	Asp	Thr 230	Gln	Glu	Lys	Leu	Asn 235	His	Gln	Leu	Glu	Gly 240

	Leu	Thr	Ph€	e Gl		Met 245	Lys	Lys	Asn	Ala	Glu 250		ı Leı	ı Ly	ys i	Ala	Arg 255	Ile
	Ser	Ala	Ser	Al 26		31u	Glu	Leu	Arg	Gln 265	Arg	Leu	ı Ala	a Pi		Leu 270	Ala	Glu
	Asp	Val	Arg 275		.у 7	Asn	Leu	Arg	Gly 280	Asn	Thr	Glu	ı Gly	_	eu (35	Gln	Lys	Ser
	Leu	Ala 290		ı Le	eu G	3ly	Gly	His 295	Leu	Asp	Gln	Gln	Va:		Lu (Glu	Phe	Arg
	A rg 305		Va]	L G1	.u E	?ro	Tyr 310	Gly	Glu	Asn	Phe	Asn 315	_	s Ai	La :	Leu	Val	Gln 320
	Gln	Met	Glu	ı Gl		Leu 325	Arg	Gln	Lys	Leu	Gly 330		Hi:	s A	La (Gly	Asp 335	Val
	Glu	Gly	His	34		Ser	Phe	Leu	Glu	Lys 345	Asp	Leu	ı Arç	g As	_	Lys 350	Val	Asn
	Ser	Phe	Phe 355		er T	Chr	Phe	Lys	Glu 360	Lys	Glu	Ser	: Glı		sp : 65	Lys	Thr	Leu
	Ser	Leu 370		G1	.u I	Leu	Glu	Gln 375	Gln	Gln	Glu	Gln	380		Ln (Glu	Gln	Gln
	Gln 385		Glr	ı Va	al G	31n	Met 390	Leu	Ala	Pro	Leu	Glu 395		r				
PI	66 RT omo s	sapien	s															
8																		
		Met 1	Ala	Ser	Met	. Ala	a Ala	a Val	Leu	Thr	Trp 10	Ala	Leu .	Ala	Leu	1 Let 15	ı Ser	
		Ala	Phe	Ser	Ala 20	Th:	r Glr	n Ala	Arg	Lys 25	Gly	Phe	Trp	Asp	Tyr 30	. Phe	e Ser	
		Gln		Ser 35	Gly	As	p Lys	s Gly	Arg 40	Val	Glu	Gln		His 45	Glr	n Glr	ı Lys	
		Met	Ala 50	Arg	Glu	ı Pr	o Ala	Thr	Leu	Lys	Asp	Ser	Leu 60	Glu	Glr	n Asp	Leu	

<210>

<211><211><211><212><213>

<400>

5

Asn 65	Asn	Met	Asn	Lys	Phe 70	Leu	Glu	Lys	Leu	Arg 75	Pro	Leu	Ser	Gly	Ser 80
Glu	Ala	Pro	Arg	Leu 85	Pro	Gln	Asp	Pro	Val 90	Gly	Met	Arg	Arg	Gln 95	Leu
Gln	Glu	Glu	Leu 100	Glu	Glu	Val	Lys	Ala 105	Arg	Leu	Gln	Pro	Tyr 110	Met	Ala
Glu	Ala	His 115	Glu	Leu	Val	Gly	Trp 120	Asn	Leu	Glu	Gly	Leu 125	Arg	Gln	Gln
Leu	Lys 130	Pro	Tyr	Thr	Met	Asp 135	Leu	Met	Glu	Gln	Val 140	Ala	Leu	Arg	Val
Gln 145	Glu	Leu	Gln	Glu	Gln 150	Leu	Arg	Val	Val	Gly 155	Glu	Asp	Thr	Lys	Ala 160
Gln	Leu	Leu	Gly	Gly 165	Val	Asp	Glu	Ala	Trp 170	Ala	Leu	Leu	Gln	Gly 175	Leu
Gln	Ser	Arg	Val 180	Val	His	His	Thr	Gly 185	Arg	Phe	Lys	Glu	Leu 190	Phe	His
Pro	Tyr	Ala 195	Glu	Ser	Leu	Val	Ser 200	Gly	Ile	Gly	Arg	His 205	Val	Gln	Glu
Leu	His 210	Arg	Ser	Val	Ala	Pro 215	His	Ala	Pro	Ala	Ser 220	Pro	Ala	Arg	Leu
Ser 225	Arg	Cys	Val	Gln	Val 230	Leu	Ser	Arg	Lys	Leu 235	Thr	Leu	Lys	Ala	Lys 240
Ala	Leu	His	Ala	Arg 245	Ile	Gln	Gln	Asn	Leu 250	Asp	Gln	Leu	Arg	Glu 255	Glu
Leu	Ser	Arg	Ala 260	Phe	Ala	Gly	Thr	Gly 265	Thr	Glu	Glu	Gly	A la 270	Gly	Pro
Asp	Pro	Gln 275	Met	Leu	Ser	Glu	Glu 280	Val	Arg	Gln	Arg	Leu 285	Gln	Ala	Phe
Arg	Gln 290	Asp	Thr	Tyr	Leu	Gln 295	Ile	Ala	Ala	Phe	Thr 300	Arg	Ala	Ile	Asp
Gln 305	Glu	Thr	Glu	Glu	Val 310	Gln	Gln	Gln	Leu	Ala 315	Pro	Pro	Pro	Pro	Gly 320
Hie	Ser	Δls	Dhe	Δ 1 =	Dro	G1 11	Dhe	G1 20	G1 n	Thν	λεν	Ser	G1.,	T.326	₩-1

						325					330					335	
		Let	ı Ser	: Lys	340		Ala	Arg	Leu	Asp 345	Asp	Leu	Trp	Glu	Asp 350	Ile	Thr
		His	s Ser	: Leu 355	His	Asp	Gln	Gly	His 360	Ser	His	Leu	Gly	Asp 365	Pro		
5	<210> 9 <211> 267 <212> PRT <213> Homo	o sapie	ens														
	<400> 9	·															
		Met 1	Lys	Ala	Ala	Val 5	Leu	Thr	Leu	Ala	Val 10	Leu	Phe	. Leu	Thr	Gl ₃	7 Ser
		Gln	Ala	Arg	His 20	Phe	Trp	Gln	Gln	Asp 25	Glu	Pro	Pro	Gln	Ser 30	Pro	Trp
		Asp	Arg	Val 35	Lys	Asp	Leu	Ala	Thr 40	Val	Tyr	Val	Asp	Val	. Leu	ı Lys	s Asp
		Ser	Gly 50	Arg	Asp	Tyr	Val	Ser 55	Gln	Phe	Glu	Gly	Ser 60	Ala	Leu	ı Gly	, Lys
		Gln 65	Leu	Asn	Leu	Lys	Leu 70	Leu	Asp	Asn	Trp	Asp 75	Ser	Val	Thr	: Sei	Thr 80
		Phe	Ser	Lys	Leu	Arg 85	Glu	Gln	Leu	Gly	Pro 90	Val	Thr	Gln	Glu	ı Ph∈ 95	e Trp
		Asp	Asn	Leu	Glu 100	Lys	Glu	Thr	Glu	Gly 105	Leu	Arg	Gln	Glu	Met 110		. Lys
		Asp	Leu	Glu 115	Glu	Val	Lys	Ala	Lys 120	Val	Gln	Pro	Tyr	Leu 125		As _I	o Ph∈
		Gln	Lys 130	Lys	Trp	Gln	Glu	Glu 135	Met	Glu	Leu	Tyr	Arg 140		Lys	val	l Glu
		Pro 145	Leu	Arg	Ala	Glu	Leu 150	Gln	Glu	Gly	Ala	Arg 155		Lys	Leu	ı His	5 Glu 160
		Leu	Gln	Glu	Lys	Leu 165	Ser	Pro	Leu	Gly	Glu 170		Met	Arg	Asp	Arç 175	g Ala

20

Arg Ala His Val Asp Ala Leu Arg Thr His Leu Ala Pro Tyr Ser Asp 180 185 190

	Glu	ı Le		arg .95	Gln	Ar	g	Leu	Ala	Ala 200	Arg	Leu	Glu	Al:	a Le 20		ys (Glu	Asn
	Gly	G1 21	_	la	Arg	Le	u	Ala	Glu 215	Tyr	His	Ala	Lys	Al. 22		ır G	lu 1	His	Leu
	Ser 225		r I	eu	Ser	Gl		Lys 230	Ala	Lys	Pro	Ala	Leu 235		u As	p Le	eu i	Arg	Gln 240
	Gly	' Le	u I	eu	Pro	Va 24		Leu	Glu	Ser	Phe	Lys 250	Val	. Se	r Ph	e Le		Ser 255	Ala
	Leu	ı Gl	u G	Slu	Туг 260		r	Lys	Lys	Leu	Asn 265	Thr	Gln	ı					
<210> 10 <211> 267 <212> PRT <213> Hom		piens	3																
<400> 10																			
		Met 1	Lys	a Al	a A	La V		. Leu	Thr	Leu	Ala	Val 10	Leu	Phe	Leu	Thr	Gly 15	y Se	r
	ı	Gln	Ala	a Ar	eg H: 2		he	Trp	Gln	Gln	Asp 25	Glu	Pro	Pro	Gln	Ser 30	Pro	o Tr	p
	•	Asp	Arg	y Va 35		ys A	sp	Leu	Ala	Thr 40	Val	Tyr	Val	Asp	Val 45	Leu	Lys	s As	p
		Ser	Gly 50	, Ar	g A	sp I	'yr	· Val	Ser 55	Gln	Phe	Glu	Gly	Ser 60	Ala	Leu	Gly	у Lу	s
		Gln 65	Leu	ı As	n L	eu I	ys	Leu 70	Leu	Asp	Asn	Trp	Asp 75	Ser	Val	Thr	Sei	r Th 80	
	:	Phe	Ser	. Ly	s L		rg 5	, Glu	Gln	Leu	Gly	Pro 90	Val	Thr	Gln	Glu	Phe 95	e Tr	р
	•	Asp	Asr	ı Le		Lu I	ys	Glu	Thr	Glu	Gly 105	Leu	Arg	Gln	Glu	Met 110	Sei	r Ly	s
	•	Asp	Leu	ı Gl 11		Lu V	'al	. Lys	Ala	Lys 120	Val	Gln	Pro	Tyr	Leu 125	Asp	Ası	o Ph	e
	ı	Gln	Lys 130	_	s T	rp G	ln	Glu	Glu 135	Met	Glu	Leu	Tyr	Arg 140	Gln	Lys	Va:	l Gl	u

5

10

Pro Leu Arg Ala Glu Leu Gln Glu Gly Ala Arg Gln Lys Leu His Glu

	145					150					155					160
	Leu	Gln	Glu	Lys	Leu 165	Ser	Pro	Leu	Gly	Glu 170	Glu	Met	Arg	Asp	Arg 175	Ala
	Arg	Ala	His	Val 180	Asp	Ala	Leu	Arg	Thr 185	His	Leu	Ala	Pro	Tyr 190	Ser	Asp
	Glu	Leu	Arg 195	Gln	Arg	Leu	Ala	Ala 200	Arg	Leu	Glu	Ala	Leu 205	Lys	Glu	Asn
	Gly	Gly 210	Ala	Arg	Leu	Ala	Glu 215	Tyr	His	Ala	Lys	Ala 220	Thr	Glu	His	Leu
	Ser 225	Thr	Leu	Ser	Glu	Lys 230	Ala	Lys	Pro	Ala	Leu 235	Glu	Asp	Leu	Arg	Gln 240
	Gly	Leu	Leu	Pro	Val 245	Leu	Glu	Ser	Phe	Lys 250	Val	Ser	Phe	Leu	Ser 255	Ala
	Leu	Glu	Glu	Tyr 260	Thr	Lys	Lys	Leu	Asn 265	Thr	Gln					
<210> 11 <211> 267 <212> PR1 <213> Hon	Γ	oiens														
<400> 11																
	Met 1	Lys	Ala	Thr	Val 5	Leu	Thr	Leu	Ala	Val 10	Leu	Phe	Leu	Thr	Gly 15	Ser
	Gln	Ala	Arg	His 20	Phe	Trp	Gln	Gln	Asp 25	Glu	Pro	Pro	Gln	Thr 30	Pro	Trp
	Asp	Arg	Val 35	Lys	Asp	Leu	Val	Thr 40	Val	Tyr	Val	Glu	Ala 45	Leu	Lys	Asp
	Ser	Gly 50	Lys	Asp	Tyr	Val	Ser 55	Gln	Phe	Glu	Gly	Ser 60	Ala	Leu	Gly	Lys
	Gln 65	Leu	Asn	Leu	Lys	Leu 70	Leu	Asp	Asn	Trp	Asp 75	Ser	Val	Thr	Ser	Thr 80
	Val	Ser	Lys	Leu	Arg 85	Glu	Gln	Leu	Gly	Pro 90	Val	Thr	Gln	Glu	Phe 95	Trp
	Asp	Asn	Leu	Glu	Lys	Glu	Thr	Glu	Gly		Arg	Gln	Glu	Met	Ser	Lys

	A	.sp 1	Leu	Glu 115	Glu	Val	Lys	Ala	Lys 120	Val	Gln	Pro	Tyr	Leu 125	Asp	Asp	Ph	е
	G		Lys 130	Lys	Trp	Gln	Glu	Glu 135	Met	Glu	Leu	Tyr	Arg 140	Gln	Lys	Val	G1	u
		ro 1 45	Leu	Arg	Ala	Glu	Leu 150	His	Glu	Gly	Thr	Arg 155	Gln	Lys	Leu	His	G1 16	
	L	eu I	His	Glu	Lys	Leu 165		Pro	Leu	Gly	Glu 170	Glu	Val	Arg	Asp	Arg 175		a
	A	rg 1	Ala	His	Val 180		Ala	Leu	Arg	Thr 185	His	Leu	Ala	Pro	Tyr 190	Ser	As	p
	G	lu 1	Leu	Arg 195	Gln	Arg	Leu	Ala	Ala 200	Arg	Leu	Glu	Ala	Leu 205	Lys	Glu	As	n
	G	-	Gly 210	Ala	Arg	Leu	Ala	Glu 215	Tyr	His	Ala	Lys	Ala 220	Ser	Glu	His	Le	u
		er :	Thr	Leu	Ser	Glu	Lys 230	Ala	Lys	Pro	Ala	Leu 235	Glu	Asp	Leu	Arg	G1: 24	
	G	ly 1	Leu	Leu	Pro	Val 245		Glu	Ser	Phe	Lys 250	Val	Ser	Phe	Leu	Ser 255		a
	L	eu (Glu	Glu	Туг 260		Lys	Lys	Leu	Ser 265	Thr	Gln						
<210> 12 <211> 265 <212> PR <213> Ho	Т	piens	S															
<400> 12																		
	Met 1	Lys	s Al	la V		Val 5	Leu	Thr	Leu	Ala	Val 10	Leu	ı Phe	e Le	u Th		1 y 5	Ser
	Gln	Ala	a Aı		is 0	Phe	Trp	Gln	Gln	Asp 25	Asp	Pro	Gl:	n Se	r Se	_	rp	Asp
	Arg	Val	1 L ₃	-	sp	Phe	Ala	Thr	Val 40	Tyr	Val	Glu	ı Ala	a Il 45	_	ys A	.sp	Ser
	Gly	Arq 50	g As	sp T	yr	Val	Ala	Gln 55	Phe	Glu	Ala	Ser	Ala 60	a Le	u Gl	Ly L	ys	Gln
	Leu	Asr	n Le	eu L	ys	Leu	Leu	Asp	Asn	Trp	Asp	Thr	: Lei	ı Al	.a S∈	er T	hr	Leu

	65					70					75					80
	Ser	Lys	Val	Arg	Glu 85	Gln	Leu	Gly	Pro	Val 90	Thr	Gln	Glu	Phe	Trp 95	Asp
	Asn	Leu	Glu	Lys 100	Glu	Thr	Ala	Ser	Leu 105	Arg	Gln	Glu	Met	His 110	Lys	Asp
	Leu	Glu	Glu 115	Val	Lys	Gln	Lys	Val 120	Gln	Pro	Tyr	Leu	Asp 125		Phe	Glr
	Lys	Lys 130	Trp	His	Glu	Glu	Val 135	Glu	Ile	Tyr	Arg	Gln 140	Lys	Val	Ala	Pro
	Leu 145	Gly	Glu	Glu	Phe	Arg 150	Glu	Gly	Ala	Arg	Gln 155	Lys	Val	Gln	Glu	Leu 160
	Gln	Asp	Lys	Leu	Ser 165	Pro	Leu	Ala	Gln	Glu 170	Leu	Arg	Asp	Arg	Ala 175	_
	Ala	His	Val	Glu 180	Thr	Leu	Arg	Gln	Gln 185	Leu	Ala	Pro	Tyr	Ser 190	Asp	Asp
	Leu	Arg	Gln 195	Arg	Leu	Thr	Ala	Arg 200	Leu	Glu	Ala	Leu	Lys 205	Glu	Gly	Gly
	Gly	Ser 210	Leu	Ala	Glu	Tyr	His 215	Ala	Lys	Ala	Ser	Glu 220	Gln	Leu	Lys	Ala
	Leu 225	Gly	Glu	Lys	Ala	Lys 230	Pro	Val	Leu	Glu	Asp 235	Leu	Arg	Gln	Gly	Leu 240
	Leu	Pro	Val	Leu	Glu 245	Ser	Leu	Lys	Val	Ser 250	Ile	Leu	Ala	Ala	Ile 255	
	Glu	Ala	Ser	Lys 260	Lys	Leu	Asn	Ala	Gln 265							
<210> 13 <211> 264 <212> PR <213> Hor	Т	oiens														
<400> 13																
	Met 1	. Lys	Ala	Trp	Leu 5	Thr	Leu	Ala	Val	Leu 10	Phe	Leu	Thr	Gly	Ser 15	Gln
	Ala	Arg	His	Phe 20	Trp	Gln	Gln	Asp	Asp 25	Pro	Gln	Ser	Pro	Trp 30	Asp	Arg

Val	Lys	Asp 35	Phe	Ala	Thr	Val	Tyr 40	Val	Asp	Ala	Ile	Lys 45	Asp	Ser	Gly
Arg	Asp 50	Tyr	Val	Ala	Gln	Phe 55	Glu	Ala	Ser	Ala	Leu 60	Gly	Lys	His	Leu
Asn 65	Leu	Lys	Leu	Leu	Asp 70	Asn	Trp	Asp	Ser	Leu 75	Gly	Ser	Thr	Phe	Thr 80
Lys	Val	Arg	Glu	Gln 85	Leu	Gly	Pro	Val	Thr 90	Gln	Glu	Phe	Trp	Asp 95	Asn
Leu	Glu	Lys	Glu 100	Thr	Glu	Ala	Leu	Arg 105	Gln	Glu	Met	Ser	Lys 110	Asp	Leu
Glu	Glu	Val 115	Lys	Lys	Lys	Val	Gln 120	Pro	Tyr	Leu	Asp	Asp 125	Phe	Gln	Asn
Lys	Trp 130	Gln	Glu	Glu	Met	Glu 135	Thr	Tyr	Arg	Gln	Lys 140	Met	Ala	Pro	Leu
Gly 145	Ala	Glu	Phe	Arg	Glu 150	Gly	Ala	Arg	Gln	Lys 155	Val	Gln	Glu	Leu	Gln 160
Glu	Lys	Leu	Ser	Pro 165	Leu	Ala	Glu	Glu	Leu 170	Arg	Asp	Arg	Leu	A rg 175	Ala
His	Val	Glu	A la 180	Leu	Arg	Gln	His	Val 185	Ala	Pro	Tyr	Ser	Asp 190	Asp	Leu
Arg	Gln	Arg 195	Met	Ala	Ala	Arg	Phe 200	Glu	Ala	Leu	Lys	Glu 205	Gly	Gly	Gly
Ser	Leu 210	Ala	Glu	Tyr	Gln	Ala 215	Lys	Ala	Gln	Glu	Gln 220	Leu	Lys	Ala	Leu
Gly 225	Glu	Lys	Ala	Lys	Pro 230	Ala	Leu	Glu	Asp	Leu 235	Arg	Gln	Gly	Leu	Leu 240
Pro	Val	Leu	Glu	Asn 245	Leu	Lys	Val	Ser	Ile 250	Leu	Ala	Ala	Ile	Asp 255	Glu

Ala Ser Lys Lys Leu Asn Ala Gln 260 <210>14 <211>266 <212> PRT

<213> Homo sapiens

<4	იი	>	14	

Met	Lys	Ala	Ala	Leu	Leu	Thr	Leu	Ala	Val	Leu	Phe	Leu	Thr	Gly	Ser
1				5					10					15	

- Gln Ala Arg His Phe Trp Gln Gln Asp Glu Pro Gln Ser Pro Trp Asp 20 25 30
- Arg Val Lys Asp Leu Ala Thr Val Tyr Val Asp Ala Val Lys Asp Ser 35 40 45
- Gly Arg Asp Tyr Val Ala Gln Phe Glu Ala Ser Ala Leu Gly Lys Gln 50 60
- Leu Asn Leu Lys Leu Leu Asp Asn Trp Asp Ser Leu Ser Ser Thr Val 65 70 75 80
- Thr Lys Leu Arg Glu Gln Ile Gly Pro Val Thr Gln Glu Phe Trp Asp 85 90 95
- Asn Leu Glu Lys Glu Thr Glu Val Leu Arg Gln Glu Met Ser Lys Asp 100 105 110
- Leu Glu Glu Val Lys Gln Lys Val Gln Pro Tyr Leu Asp Asp Phe Gln
 115 120 125
- Lys Lys Trp Gln Glu Glu Val Glu Leu Tyr Arg Gln Lys Val Ala Pro 130 135 140
- Leu Gly Ser Glu Leu Arg Glu Gly Ala Arg Gln Lys Leu Gln Glu Leu 145 150 155 160
- Gln Glu Lys Leu Ser Pro Leu Ala Glu Glu Leu Arg Asp Arg Ala Arg 165 170 175
- Thr His Val Asp Ala Leu Arg Ala Gln Leu Ala Pro Tyr Ser Asp Asp 180 185 190
- Leu Arg Glu Arg Leu Ala Ala Arg Leu Glu Ala Leu Lys Glu Gly Gly 195 200 205
- Gly Ala Ser Leu Ala Glu Tyr His Ala Arg Ala Ser Glu Gln Leu Ser 210 215 220
- Ala Leu Gly Glu Lys Ala Arg Pro Ala Leu Glu Asp Leu Arg Gln Gly 225 230 235 240
- Leu Leu Pro Val Leu Glu Ser Phe Lys Val Ser Leu Leu Ala Ala Ile
 245 250 255
 Asp Glu Ala Thr Lys Lys Leu Asn Ala Gln
 260 265

<210> 15 <211> 206 <212> PRT <213> Homo sapiens

<400> 15

5

Met Lys Ala Val Val Leu Thr Leu Ala Val Leu Phe Leu Thr Gly Ser 1 5 10 15

Gln Ala Arg His Phe Trp Gln Arg Asp Glu Pro Arg Ser Ser Trp Asp 20 25 30

Lys Ile Lys Asp Phe Ala Thr Val Tyr Val Asp Thr Val Lys Asp Ser 35 40 45

Gly Arg Glu Tyr Val Ala Gln Phe Glu Ala Ser Ala Phe Gly Lys Gln 50 60

Leu Asn Leu Lys Leu Leu Asp Asn Trp Asp Ser Leu Ser Ser Thr Val 65 70 75 80

Ser Lys Leu Gln Glu Gln Leu Gly Pro Val Thr Gln Glu Phe Trp Asp 85 90 95

Asn Leu Glu Lys Glu Thr Glu Gly Leu Arg Glu Glu Met Asn Lys Asp 100 105 110

Leu Gln Glu Val Arg Gln Lys Val Gln Pro Tyr Leu Asp Glu Phe Gln 115 120 125

Lys Lys Trp Gln Glu Glu Val Glu Arg Tyr Arg Gln Lys Val Glu Pro 130 135 140

Leu Gly Ala Glu Leu Arg Glu Ser Ala Arg Gln Lys Leu Thr Glu Leu 145 150 155 160

Gln Glu Lys Leu Ser Pro Leu Ala Glu Glu Leu Arg Asp Ser Ala Arg 165 170 175

Thr His Val Gly Leu Leu Pro Val Leu Glu Ser Phe Lys Ala Ser Val 180 185 190

Gln Asn Val Leu Asp Glu Ala Thr Lys Lys Leu Asn Thr Gln 195 200 205

10

<210> 16 <211> 265

<212> PRT <213> Homo sapiens

<400> 16

Met 1	Lys	Ala	Val	Val 5	Leu	Thr	Leu	Ala	Val 10	Leu	Phe	Leu	Thr	Gly 15	Ser
Gln	Ala	Arg	His 20	Phe	Trp	Gln	Gln	Asp 25	Glu	Pro	Gln	Ser	Ser 30	Trp	Asp
Arg	Val	Arg 35	Asp	Leu	Ala	Asn	Val 40	Tyr	Val	Asp	Ala	Val 45	Lys	Glu	Ser
Gly	Arg 50	Glu	Tyr	Val	Ser	Gln 55	Leu	Glu	Ala	Ser	Ala 60	Leu	Gly	Lys	Gln
Leu 65	Asn	Leu	Lys	Leu	Val 70	Asp	Asn	Trp	Asp	Thr 75	Leu	Gly	Ser	Thr	Phe 80
Gln	Lys	Val	His	Glu 85	His	Leu	Gly	Pro	Val 90	Ala	Gln	Glu	Phe	Trp 95	Glu
Lys	Leu	Glu	Lys 100	Glu	Thr	Glu	Glu	Leu 105	Arg	Arg	Glu	Ile	Asn 110	Lys	Asp
Leu	Glu	Asp 115	Val	Arg	Gln	Lys	Thr 120	Gln	Pro	Phe	Leu	Asp 125	Glu	Ile	Gln
Lys	Lys 130	Trp	Gln	Glu	Asp	Leu 135	Glu	Arg	Tyr	Arg	Gln 140	Lys	Val	Glu	Pro
Leu 145	Ser	Ala	Gln	Leu	Arg 150	Glu	Gly	Ala	Arg	Gln 155	Lys	Leu	Met	Glu	Leu 160
Gln	Glu	Gln	Val	Thr 165	Pro	Leu	Gly	Glu	Asp 170	Leu	Arg	Asp	Ser	Val 175	Arg
Ala	Tyr	Ala	Asp 180	Thr	Leu	Arg	Thr	Gln 185	Leu	Ala	Pro	Tyr	Ser 190	Glu	Gln
Met	Arg	Lys 195	Thr	Leu	Gly	Ala	Arg 200	Leu	Glu	Ala	Ile	Lys 205	Glu	Gly	Gly
Ser	Ala 210	Ser	Leu	Ala	Glu	Tyr 215	His	Ala	Lys	Ala	Ser 220	Glu	Gln	Leu	Ser
Ala 225	Leu	Gly	Glu	Lys	Ala 230	Lys	Pro	Val	Leu	Glu 235	Asp	Ile	His	Gln	Gly 240

Leu Met Pro Met Trp Glu Ser Phe Lys Thr Gly Val Leu Asn Val Ile 245 250 255

Asp Glu Ala Ala Lys Lys Leu Thr Ala 260 265

<210> 17

5

<211> 264

<212> PRT

<213> Homo sapiens

<400> 17

Met Lys Ala Val Val Leu Ala Val Ala Leu Val Phe Leu Thr Gly Ser 1 5 10 15

Gln Ala Trp His Val Trp Gln Gln Asp Glu Pro Gln Ser Gln Trp Asp
20 25 30

Lys Val Lys Asp Phe Ala Asn Val Tyr Val Asp Ala Val Lys Asp Ser 35 40 45

Gly Arg Asp Tyr Val Ser Gln Phe Glu Ser Ser Ser Leu Gly Gln Gln 50 60

Leu Asn Leu Asn Leu Glu Asn Trp Asp Thr Leu Gly Ser Thr Val 65 70 75 80

Ser Gln Leu Gln Glu Arg Leu Gly Pro Leu Thr Arg Asp Phe Trp Asp 85 90 95

Asn Leu Glu Lys Glu Thr Asp Trp Val Arg Gln Glu Met Asn Lys Asp 100 105 110

Leu Glu Glu Val Lys Gln Lys Val Gln Pro Tyr Leu Asp Glu Phe Gln 115 120 125

Lys Lys Trp Lys Glu Asp Val Glu Leu Tyr Arg Gln Lys Val Ala Pro 130 135 140

Leu Gly Ala Glu Leu Gln Glu Ser Ala Arg Gln Lys Leu Gln Glu Leu 145 150 155 160

Gln Gly Arg Leu Ser Pro Val Ala Glu Glu Phe Arg Asp Arg Met Arg 165 170 175

Thr His Val Asp Ser Leu Arg Thr Gln Leu Ala Pro His Ser Glu Gln 180 185 190

	Met	Arg	Glu 195	Ser	Leu	Ala	Gln	Arg 200	Leu	Ala	Glu	Leu	1 Ly 20		r As	sn P	'ro
	Thr	Leu 210	Asn	Glu	Tyr	His	Thr 215	Arg	Ala	Lys	Thr	His 220		u Ly	s Tl	nr I	eu
	Gly 225	Glu	Lys	Ala	Arg	Pro 230	Ala	Leu	Glu	Asp	Leu 235		у Ні	s Se	r Le	_	iet 240
	Pro	Met	Leu	Glu	Thr 245	Leu	Lys	Thr	Lys	Ala 250	Gln	Ser	. Va	1 11		sp I 55	ıys
	Ala	Ser	Glu	Thr 260	Leu	Thr	Ala	Gln									
<210> 18 <211> 259 <212> PR <213> Hor	Т	piens															
<400> 18																	
100 10	Ме 1	et Ly	s Al	a Ala	a Val	. Leu	Ala	Val	Ala	Leu 10	Val	Phe	Leu	Thr	Gly 15	Cys	;
	G]	ln Al	a Tr	p Glu 20	ı Phe	Trp	Gln	Gln	Asp 25	Glu	Pro	Gln	Ser	Gln 30	Trp	Asp)
	Aı	rg Va	.1 Ly 35	s Ası	p Phe	Ala	Thr	Val 40	Tyr	Val	Asp	Ala	Val 45	Lys	Asp	Ser	:
	G]	L y A r 50	_	р Туі	r Val	. Ser	Gln 55	Phe	Glu	Ser	Ser	Thr 60	Leu	Gly	Lys	Gln	ı
	Le 65		n Le	u Ası	n Lev	Leu 70	Asp	Asn	Trp	Asp	Thr 75	Leu	Gly	Ser	Thr	Val 80	-
	G]	Ly Ar	g Le	u Glr	n Glu 85	ı Gln	Leu	Gly	Pro	Val 90	Thr	Gln	Glu	Phe	Trp 95	Ala	ı
	As	sn Le	u Gl	u Lys 10(ı Thr	Asp	Trp	Leu 105	Arg	Asn	Glu	Met	Asn 110	Lys	Asp)
	Le	eu Gl	u As 11	n Val	l Lys	: Gln	Lys	Met 120	Gln	Pro	His	Leu	Asp 125	Glu	Phe	Gln	ı

Leu Gly Thr Glu Leu His Lys Asn Ala Lys Glu Met Gln Arg His Leu

Glu Lys Trp Asn Glu Glu Val Glu Ala Tyr Arg Gln Lys Leu Glu Pro

	Ly	s Val	l Val	. Ala	Glu 165	Glu	Phe	Arg	Asp	Arg 170	Met	Arg	Val	Asn	Ala 175	Asp
	Ala	a Leu	ı Arç	7 Ala 180		Phe	Gly	Leu	Tyr 185	Ser	Asp	Gln	Met	Arg 190	Glu	Asn
	Le	u Ala	a Glr 195	a Arg	Leu	Thr	Glu	Ile 200	Arg	Asn	His	Pro	Thr 205	Leu	Ile	Glu
	Ту	r His 21(: Lys	Ala	Gly	Asp 215	His	Leu	Arg	Thr	Leu 220	Gly	Glu	Lys	Ala
	Ly: 22!		Ala	a Leu	Asp	Asp 230		Gly	Gln	Gly	Leu 235	Met	Pro	Val	Leu	Glu 240
	Ala	a Trp	Lys	s Ala	Lys 245	Ile	Met	Ser	Met	Ile 250	Asp	Glu	Ala	Lys	Lys 255	Lys
<210> 19 <211> 24 <212> PF <213> Ho) .1 RT	u As r apiens		1												
<400> 19)															
	Asp 1	Glu	Ala	Lys	Ser 5	Tyr	Trp	Asp	Gln	Ile 10	Lys	Asp	Met	Leu	Thr 15	· Val
	Tyr	Val	Asp	Thr 20	Ala	Lys	Asp	Ser	Gly 25	Lys	Asp	Tyr	Leu	Thr 30	Ser	Leu
	Asp	Thr	Ser 35	Ala	Leu	Gly	Gln	Gln 40	Leu	Asn	Lys	Lys	Leu 45	Ala	Asp	Asn
	Trp	Asp 50	Thr	Val	Ser	Ser	Ala 55	Leu	Leu	Lys	Ala	Arg 60	Glu	Gln	Met	. Lys
	Pro 65	Ile	Ala	Met	Glu	Phe 70	Trp	Gly	Asn	Leu	Glu 75	Lys	Asp	Thr	Glu	Gly 80
	Leu	Arg	Gln	Thr	Val 85	Ser	Lys	Asp	Leu	Glu 90	Leu	Val	Lys	Glu	Lys 95	s Val

	Leu	Tyr	Arg 115	Gln	Lys	Val	Ala	Pro 120	Leu	Ser	Ala	Glu	Trp 125	Arg	Glu	Gln
	Ala	Arg 130	Gln	Lys	Ala	Gln	Glu 135	Leu	Gln	Gln	Lys	Ala 140	Gly	Glu	Leu	Gly
	Gln 145	Gln	His	Arg	Asp	Arg 150	Val	Arg	Thr	His	Val 155	Asp	Ala	Leu	Arg	Thr 160
	Asp	Leu	Ala	Pro	Tyr 165	Gly	Glu	Glu	Ala	Arg 170	Lys	Leu	Leu	Leu	Gln 175	Arg
	Leu	Gln	Asp	Ile 180	Lys	Ala	Lys	Ser	Gly 185	Asp	Leu	Ala	Glu	Tyr 190		Thr
	Lys	Leu	Ser 195	Glu	His	Leu	Lys	Ser 200	Phe	Gly	Glu	Lys	Ala 205	Gln	Pro	Thr
	Leu	Gln 210	Asp	Leu	Arg	His	Gly 215	Leu	Glu	Pro	Leu	Trp 220	Glu	Gly	Ile	Lys
	Ala 225	Gly	Ala	Met	Ser	Met 230	Leu	Glu	Glu	Leu	Gly 235	Lys	Lys	Leu	Asn	Ser 240
	Gln															
<210> 20 <211> 264 <212> PR ¹ <213> Hon	Γ	niene														
<400> 20	πο σαμ	ЛСПЗ														
	Met 1	Arg	Gly	Val	Leu 5	Val	Thr	Leu	Ala	Val 10	Leu	Phe	Leu	Thr	Gly 15	Thr
	Glr	. Ala	. Arg	Ser 20	Phe	Trp	Gln	His	Asp 25	Glu	Pro	Gln	Thr	Pro 30	Leu	Asp
	Arg	, Ile	Arg 35	Asp	Met	Val	Asp	Val 40	Tyr	Leu	Glu	Thr	Val 45	Lys	Ala	Ser
	Gly	Lys 50	Asp	Ala	Ile	Ala	Gln 55	Phe	Glu	Ser	Ser	Ala 60	Val	Gly	Lys	Gln
	Leu 65	. Asp	Leu	Lys	Leu	Ala 70	Asp	Asn	Leu	Asp	Thr 75	Leu	Ser	Ala	Ala	Ala 80
	Ala	Lys	Leu	Arg	Glu 85	Asp	Met	Ala	Pro	Tyr 90	Tyr	Lys	Glu	Val	Arg 95	Glu

	Met	Trp	Leu	Lys 100	Asp	Thr	Glu	Ala	Leu 105	Arg	Ala	Glu	Leu	Thr 110		Asp
	Leu	Glu	Glu 115	Val	Lys	Glu	Lys	Ile 120	Arg	Pro	Phe	Leu	Asp 125	Gln	Phe	Ser
	Ala	Lys 130	Trp	Thr	Glu	Glu	Leu 135	Glu	Gln	Tyr	Arg	Gln 140	Arg	Leu	Thr	Pro
	Val 145	Ala	Gln	Glu	Leu	Lys 150	Glu	Leu	Thr	Lys	Gln 155	Lys	Val	Glu	Leu	Met 160
	Gln	Ala	Lys	Leu	Thr 165	Pro	Val	Ala	Glu	Glu 170	Ala	Arg	Asp	Arg	Leu 175	Arg
	Gly	His	Val	Glu 180	Glu	Leu	Arg	Lys	Asn 185	Leu	Ala	Pro	Tyr	Ser 190	Asp	Glu
	Leu	Arg	Gln 195	Lys	Leu	Ser	Gln	Lys 200	Leu	Glu	Glu	Ile	Arg 205	Glu	Lys	Gly
	Ile	Pro 210	Gln	Ala	Ser	Glu	Tyr 215	Gln	Ala	Lys	Val	Met 220	Glu	Gln	Leu	Ser
	Asn 225	Leu	Arg	Glu	Lys	Met 230	Thr	Pro	Leu	Val	Gln 235	Glu	Phe	Arg	Glu	Arg 240
	Leu	Thr	Pro	Tyr	Ala 245	Glu	Asn	Leu	Lys	Asn 250	Arg	Leu	Ile	Ser	Phe 255	Leu
	Asp	Glu	Leu	Gln 260	Lys	Ser	Val	Ala								
<210> 21 <211> 264 <212> PRT <213> Homo sapiens																
<400> 21																
	Met 1	. Arg	Gly	Val	Leu 5	Val	Thr	Leu	Ala	Val 10	Leu	Phe	Leu	Thr	Gly 15	Thr
	Glr	n Ala	Arg	Ser 20	Phe	Trp	Gln	His	Asp 25	Asp	Pro	Gln	Thr	Pro 30	Leu	Asp
	Arç	, Ile	Arg	Asp	Met	Leu	Asp	Val 40	Tyr	Leu	Glu	Thr	Val 45	Lys	Ala	Ser

	Gly	Lys 50	Asp	Ala	Ile	Ser	Gln 55	Phe	Glu	Ser	Ser	Ala 60	Val	Gly	Lys	Gln
	Leu 65	Asp	Leu	Lys	Leu	Ala 70	Asp	Asn	Leu	Asp	Thr 75	Leu	Ser	Ala	Ala	Ala 80
	Ala	Lys	Leu	Arg	Glu 85	Asp	Met	Thr	Pro	Tyr 90	Tyr	Arg	Glu	Val	Arg 95	Glu
	Met	Trp	Leu	Lys 100	Asp	Thr	Glu	Ala	Leu 105	Arg	Ala	Glu	Leu	Thr 110	Lys	Asp
	Leu	Glu	Glu 115	Val	Lys	Glu	Lys	Ile 120	Arg	Pro	Phe	Leu	Asp 125	Gln	Phe	Ser
	Ala	Lys 130	Trp	Thr	Glu	Glu	Val 135	Glu	Gln	Tyr	Arg	Gln 140	Arg	Leu	Ala	Pro
	Val 145	Ala	Gln	Glu	Leu	Lys 150	Asp	Leu	Thr	Lys	Gln 155	Lys	Val	Glu	Leu	Met 160
	Gln	Ala	Lys	Leu	Thr 165	Pro	Val	Ala	Glu	Glu 170	Val	Arg	Asp	Arg	Leu 175	Arg
	Glu	Gln	Val	Glu 180	Glu	Leu	Arg	Lys	Asn 185	Leu	Ala	Pro	Tyr	Ser 190	Ser	Glu
	Leu	Arg	Gln 195	Lys	Leu	Ser	Gln	Lys 200	Leu	Glu	Glu	Ile	Arg 205	Glu	Arg	Gly
	Ile	Pro 210	Gln	Ala	Ser	Glu	Tyr 215	Gln	Ala	Lys	Val	Val 220	Glu	Gln	Leu	Ser
	Asn 225	Leu	Arg	Glu	Lys	Met 230	Thr	Pro	Leu	Val	Gln 235	Glu	Phe	Lys	Glu	Arg 240
	Leu	Thr	Pro	Tyr	Ala 245	Glu	Asn	Leu	Lys	A sn 250	Arg	Leu	Ile	Asp	Leu 255	Leu
	Asp	Glu	Val	Gln 260	Lys	Thr	Met	Ala								
<210> 22 <211> 264 <212> PRT <213> Homo	sapie	ns														

Met Arg Val Val Val Thr Leu Ala Leu Leu Phe Leu Thr Gly Thr

<400> 22

Gln	Ala	Arg	Tyr 20	Phe	Trp	Gln	His	Asp 25	Glu	Pro	Gln	Ala	Pro 30	Leu	Asp
Arg	Leu	Arg 35	Asp	Leu	Val	Asp	Val 40	Tyr	Leu	Glu	Thr	Val 45	Lys	Ala	Ser
Gly	Lys 50	Asp	Ala	Ile	Ala	Gln 55	Phe	Glu	Ala	Ser	Ala 60	Val	Gly	Lys	Glr
Leu 65	Asp	Leu	Lys	Leu	Ala 70	Asp	Asn	Leu	Asp	Thr 75	Leu	Gly	Ala	Ala	Ala 80
Ala	Lys	Leu	Arg	Glu 85	Asp	Met	Ala	Pro	Tyr 90	Tyr	Lys	Glu	Val	Arg 95	Glu
Met	Trp	Leu	Lys 100	Asp	Thr	Glu	Ser	Leu 105	Arg	Ala	Glu	Leu	Thr 110	Lys	Asp
Leu	Glu	Glu 115	Val	Lys	Glu	Lys	Ile 120	Arg	Pro	Phe	Leu	Asp 125	Gln	Phe	Ser
Ala	Lys 130	Trp	Thr	Glu	Glu	Leu 135	Glu	Gln	Tyr	Arg	Gln 140	Arg	Leu	Ala	Pro
Val 145	Ala	Glu	Glu	Leu	Lys 150	Glu	Leu	Thr	Lys	Gln 155	Lys	Val	Glu	Leu	Met 160
Gln	Gln	Lys	Leu	Thr 165	Pro	Val	Ala	Glu	Glu 170	Ala	Arg	Asp	Arg	Leu 175	Arç
Gly	His	Val	Glu 180	Glu	Leu	Arg	Lys	Asn 185	Leu	Ala	Pro	Tyr	Ser 190	Asp	Glu
Leu	Arg	Gln 195	Lys	Leu	Ser	Gln	Lys 200	Leu	Glu	Glu	Ile	A rg 205	Glu	Lys	Gly
Ile	Pro 210	Gln	Ala	Ala	Glu	Tyr 215	Gln	Ala	Lys	Val	Val 220	Glu	Gln	Leu	Ser
Asn 225	Leu	Arg	Glu	Lys	Met 230	Thr	Pro	Leu	Val	Gln 235	Asp	Phe	Lys	Glu	Arg 240
Leu	Thr	Pro	Tyr	Ala 245	Glu	Asn	Leu	Lys	Thr 250	Arg	Phe	Ile	Ser	Leu 255	Let
Asp	Glu	Leu	Gln 260	Lys	Thr	Val	Ala								

<210> 23

<211> 262 <212> PRT <213> Homo sapiens

5 <400> 23

Met Lys Phe Leu Ala Leu Ala Leu Thr Ile Leu Leu Ala Ala Gly Thr Gln Ala Phe Pro Met Gln Ala Asp Ala Pro Ser Gln Leu Glu His Val 20 25 Lys Ala Ala Leu Ser Met Tyr Ile Ala Gln Val Lys Leu Thr Ala Gln Arg Ser Ile Asp Leu Leu Asp Asp Thr Glu Tyr Lys Glu Tyr Lys Met Gln Leu Thr Gln Ser Leu Asp Asn Leu Gln Gln Tyr Ala Asp Ala Thr 70 Ser Gln Ser Leu Ala Pro Tyr Ser Glu Ala Phe Gly Thr Gln Leu Thr Asp Ala Thr Ala Ala Val Arg Ala Glu Val Met Lys Asp Val Glu Glu 100 Leu Arg Ser Gln Leu Glu Pro Lys Arg Ala Glu Leu Lys Glu Val Leu Asp Lys His Ile Asp Glu Tyr Arg Lys Leu Glu Pro Leu Ile Lys 130 135 140 Glu His Ile Glu Leu Arg Arg Thr Glu Met Glu Ala Phe Arg Ala Lys 150 155 Met Glu Pro Ile Val Glu Glu Leu Arg Ala Lys Val Ala Ile Asn Val 165 170 Glu Glu Thr Lys Thr Lys Leu Met Pro Ile Val Glu Ile Val Arg Ala 185 Lys Leu Thr Glu Arg Leu Glu Glu Leu Arg Thr Leu Ala Ala Pro Tyr 195 200 205 Ala Glu Glu Tyr Lys Glu Gln Met Ile Lys Ala Val Gly Glu Val Arg 210

Glu Lys Val Ser Pro Leu Ser Glu Asp Phe Lys Gly Gln Val Gly Pro

235

240

230

225

Ala Ala Glu Gln Ala Lys Gln Lys Leu Leu Ala Phe Tyr Glu Thr Ile 250 Ser Gln Ala Met Lys Ala 260 <210> 24 <211> 262 <212> PRT <213> Homo sapiens <400> 24 Met Lys Phe Leu Ala Leu Ala Leu Thr Ile Leu Leu Ala Ala Ala Thr 10 Gln Ala Val Pro Met Gln Ala Asp Ala Pro Ser Gln Leu Glu His Val 25 Lys Val Ala Met Met Glu Tyr Met Ala Gln Val Lys Glu Thr Gly Gln Arg Ser Ile Asp Leu Leu Asp Asp Thr Glu Phe Lys Glu Tyr Lys Val 55 Gln Leu Ser Gln Ser Leu Asp Asn Leu Gln Gln Tyr Ala Gln Thr Thr Ser Gln Ser Leu Ala Pro Tyr Ser Glu Ala Phe Gly Ala Gln Leu Thr Asp Ala Ala Ala Val Arg Ala Glu Val Met Lys Asp Val Glu Asp Val Arg Thr Gln Leu Glu Pro Lys Arg Ala Glu Leu Lys Glu Val Leu 120 Asp Lys His Ile Asp Glu Tyr Arg Lys Lys Leu Glu Pro Leu Ile Lys Glu Ile Val Glu Gln Arg Arg Thr Glu Leu Glu Ala Phe Arg Val Lys 150 155 Met Glu Pro Val Val Glu Glu Met Arg Ala Lys Val Ser Thr Asn Val 165 170 Glu Glu Thr Lys Ala Lys Leu Met Pro Ile Val Glu Thr Val Arg Ala 10 180 185

Lys Leu Thr Glu Arg Leu Glu Glu Leu Arg Thr Leu Ala Ala Pro Tyr

200

195

5

	Ala	Glu 210	Glu	Tyr	Lys	Glu	Gln 215	Met	Phe	Lys	Ala	Val 220	Gly	Glu	Val	Arg
	Glu 225	Lys	Val	Gly	Pro	Leu 230	Thr	Asn	Asp	Phe	Lys 235	Gly	Gln	Val	Gly	Pro 240
	Ala	Ala	Glu	Gln	Ala 245	Lys	Glu	Lys	Leu	Met 250	Asp	Phe	Tyr	Glu	Thr 255	Ile
	Ser	Gln	Ala	Met 260	Lys	Ala										
<210> 25 <211> 258 <212> PRT <213> Homo	o sapie	ens														
<400> 25																
	Met 1	Lys	Phe	Leu	Val 5	Leu	Ala	Leu	Thr	Ile 10	Leu	Leu	Ala	Ala	Gly 15	Thr
	Gln	Ala	Phe	Pro 20	Met	Gln	Ala	Asp	Ala 25	Pro	Ser	Gln	Leu	Glu 30	His	Val
	Lys	Ala	Ala 35	Leu	Asn	Met	Tyr	Ile 40	Ala	Gln	Val	Lys	Leu 45	Thr	Ala	Gln
	Arg	Ser 50	Ile	Asp	Leu	Leu	Asp 55	Asp	Thr	Glu	Tyr	Lys 60	Glu	Tyr	Lys	Met
	Gln 65	Leu	Ser	Gln	Ser	Leu 70	Asp	Asn	Leu	Gln	Gln 75	Phe	Ala	Asp	Ser	Thr 80
	Ser	Lys	Ser	Trp	Pro 85	Pro	Thr	Pro	Arg	Ser 90	Ser	Ala	Pro	Ser	Cys 95	Asp
	Ala	Thr	Ala	Thr 100	Val	Arg	Ala	Glu	Val 105	Met	Lys	Asp	Val	Glu 110	Asp	Val
	Arg	Thr	Gln 115	Leu	Glu	Pro	Lys	A rg 120	Ala	Glu	Leu	Thr	Glu 125	Val	Leu	Asn
	Lys	His 130	Ile	Asp	Glu	Tyr	Arg 135	Lys	Lys	Leu	Glu	Pro 140	Leu	Ile	Lys	Gln
	His	Ile	Glu	Leu	Arg	Arg	Thr	Glu	Met	Asp	Ala	Phe	Arg	Ala	Lys	Ile

	145					150					155					160
	Asp	Pro	Val	Val	Glu 165	Glu	Met	Arg	Ala	Lys 170	Val	Ala	Val	Asn	175	. Glu
	Glu	Thr	Lys	Thr 180	Lys	Leu	Met	Pro	Ile 185	Val	Glu	Ile	Val	Arc 190		Lys
	Leu	Thr	Glu 195	Arg	Leu	Glu	Glu	Leu 200	Arg	Thr	Leu	Ala	Ala 205		Туг	Ala
	Glu	Glu 210	Tyr	Lys	Glu	Gln	Met 215	Phe	Lys	Ala	Val	Gly 220		Val	. Arç	, Glu
	Lys 225	Val	Ala	Pro	Leu	Ser 230	Glu	Asp	Phe	Lys	Ala 235	Arg	Trp	Ala	Pro	Pro 240
	Pro	Arg	Arg	Pro	Ser 245	Lys	Ser	Ser	Trp	Leu 250	Ser	Thr	Arg	Pro	Ser 255	Ala
	Arg	Pro														
<210> 26 <211> 262 <212> PR ⁻ <213> Hon	Γ	oiens														
<400> 26																
	Met 1	t Lys	Phe	Val	Ala 5	Leu	Ala	Leu	Thr	Leu 10	Leu	Leu	Ala	Leu	Gly 15	Ser
	Glı	n Ala	. Asn	Leu 20	Phe	Gln	Ala	Asp	Ala 25	Pro	Thr	Gln	Leu	Glu 30	His	Tyr
	Ly	s Ala	Ala 35	Ala	Leu	Val	Tyr	Leu 40	Asn	Gln	Val	Lys	Asp 45	Gln	Ala	Glu
	Ly	s Ala 50	Leu	Asp	Asn	Leu	Asp 55	Gly	Thr	Asp	Tyr	Glu 60	Gln	Tyr	Lys	Leu
	Gl: 65	n Leu	. Ser	Glu	Ser	Leu 70	Thr	Lys	Leu	Gln	Glu 75	Tyr	Ala	Gln	Thr	Thr 80
	Se	r Glr	ı Ala	Leu	Thr 85	Pro	Tyr	Ala	Glu	Thr 90	Ile	Ser	Thr	Gln	Leu 95	Met
	Glı	ı Asr	Thr	Lys 100		Leu	Arg	Glu	Arg 105	Val	Met	Thr	Asp	Val 110	Glu	Asp

5

10

	Le	u Ar	g Ser 115	_	Leu	Glu	Pro	His 120	Arg	Ala	Glu	Leu	Tyr 125	Thr	Ala	Leu
	G1	n Ly:	s His O	: Ile	Asp	Glu	Tyr 135	Arg	Glu	Lys	Leu	Glu 140	Pro	Val	Phe	Gln
	G1 14		r Ser	· Ala	. Leu	Asn 150	Arg	Gln	Asn	Ala	Glu 155	Gln	Leu	Arg	Ala	Lys 160
	Le	u Glı	u Pro	Leu	Met 165		Asp	Ile	Arg	Lys 170	Ala	Phe	Glu	Ser	As n 175	Ile
	G1	u Glı	u Thr	180		Lys	Val	Val	Pro 185	Met	Val	Glu	Ala	Val 190	Arg	Thr
	Ly	s Le	u Thr 195		Arg	Leu	Glu	Asp 200	Leu	Arg	Thr	Met	Ala 205	Ala	Pro	Tyr
	Al	a Gl	u Glu O	ı Tyr	. Lys	Glu	Gln 215	Leu	Val	Lys	Ala	Val 220	Glu	Glu	Ala	Arg
	G1 22	_	s Ile	Ala	Pro	His 230	Thr	Gln	Asp	Leu	Gln 235	Thr	Arg	Met	Glu	Pro 240
	Ту	r Mei	t Glu	. Asn	Val 245	_	Thr	Thr	Phe	Ala 250	Gln	Met	Tyr	Glu	Thr 255	Ile
	Al	a Ly:	s Ala	11e 260		Ala										
<210> 27 <211> 260 <212> PRT <213> Hon	Γ	iens														
<400> 27																
	Met 1	Lys	Phe	Ala	Ala 5	Leu	Ala	Leu	Ala	Leu 10	Leu	Leu	ı Ala	a Vai	1 Gl ₃	y Ser
	His	Ala	Ala	Ser 20	Met	Gln	Ala	Asp	Ala 25	Pro	Ser	Gln	. Leu	1 As j 30	o Hi	s Ala
	Arg	Ala	Val 35	Leu	Asp	Val	Tyr	Leu 40	Thr	Gln	Val	Lys	Asp 45	Met	t Se	r Leu
	Arg	Ala 50	Val	Asn	Gln	Leu	As p 55	Asp	Pro	Gln	Tyr	Ala 60	Glu	ı Phe	e Ly	s Thr
	Asn	T.e.11	Δla	Gln	Ara	Tle	Glu	Glu	Met	Туг	Thr	Gln	T1-	- T.324	g ጥሎ	r Ten

	6	55					70					75					80
	G	ln	Gly	Ser	Val	Ser 85	Pro	Met	Thr	Asp	Ser 90	Phe	Tyr	Asn	Thr	Val 95	Met
	G	lu	Val	Thr	Lys 100	Asp	Thr	Arg	Glu	Ser 105	Leu	Asn	Val	Asp	Leu 110	Glu	Ala
	L	eu	Lys	Ser 115	Ser	Leu	Ala	Pro	Gln 120	Asn	Glu	Gln	Leu	Lys 125	Gln	Val	Ile
	G	lu	Lys 130	His	Leu	Asn	Asp	Tyr 135	Arg	Thr	Leu	Leu	Thr 140	Pro	Ile	Tyr	Asn
		.sp .45	Tyr	Lys	Thr	Lys	His 150	Asp	Glu	Glu	Met	Ala 155	Ala	Leu	Lys	Thr	Arg 160
	L	eu	Glu	Pro	Val	Met 165	Glu	Glu	Leu	Arg	Thr 170	Lys	Ile	Gln	Ala	As n 175	Val
	G	lu	Glu	Thr	Lys 180	Ala	Val	Leu	Met	Pro 185	Met	Val	Glu	Thr	Val 190	Arg	Thr
	L	ys	Val	Thr 195	Glu	Arg	Leu	Glu	Ser 200	Leu	Arg	Glu	Val	Val 205	Gln	Pro	Tyr
	v	al	Gln 210	Glu	Tyr	Lys	Glu	Gln 215	Met	Lys	Gln	Met	Tyr 220	Asp	Gln	Ala	Gln
		hr 25	Val	Asp	Thr	Asp	Ala 230	Leu	Arg	Thr	Lys	Ile 235	Thr	Pro	Leu	Val	Glu 240
	G	lu	Ile	Lys	Val	Lys 245	Met	Asn	Ala	Ile	Phe 250	Glu	Ile	Ile	Ala	Ala 255	Ser
	v	'al	Thr	Lys	Ser 260												
<210> 28 <211> 39 <212> PI <213> Ho	96 RT	apie	ens														
<400> 28																	
	Met 1	Pho	e Le	eu L	ys A 5		Val	Val	Leu	Thr	Leu 10	ı Ala	a Le	u Va	al A		al Ala .5
	Gly	Ala	a Ar	rg A		lu v	Val	Ser	Ala	Asp	Gln	va:	l Al	a Tł	ır V		let Trp

Asp	Tyr	Phe 35	Ser	Gln	Leu	Ser	Asn 40	Asn	Ala	Lys	Glu	Ala 45	Val	Glu	His
Leu	Gln 50	Lys	Ser	Glu	Leu	Thr 55	Gln	Gln	Leu	Asn	Ala 60	Leu	Phe	Gln	Asp
Lys 65	Leu	Gly	Glu	Val	Asn 70	Thr	Tyr	Ala	Gly	Asp 75	Leu	Gln	Lys	Lys	Leu 80
Val	Pro	Phe	Ala	Thr 85	Glu	Leu	His	Glu	Arg 90	Leu	Ala	Lys	Asp	Ser 95	Glu
Lys	Leu	Lys	Glu 100	Glu	Ile	Gly	Lys	Glu 105	Leu	Glu	Glu	Leu	Arg 110	Ala	Arg
Leu	Leu	Pro 115	His	Ala	Asn	Glu	Val 120	Ser	Gln	Lys	Ile	Gly 125	Asp	Asn	Leu
Arg	Glu 130	Leu	Gln	Gln	Arg	Leu 135	Glu	Pro	Tyr	Ala	Asp 140	Gln	Leu	Arg	Thr
Gln 145	Val	Asn	Thr	Gln	Ala 150	Glu	Gln	Leu	Arg	A rg 155	Gln	Leu	Thr	Pro	Tyr 160
Ala	Gln	Arg	Met	Glu 165	Arg	Val	Leu	Arg	Glu 170	Asn	Ala	Asp	Ser	Leu 175	Gln
Ala	Ser	Leu	Arg 180	Pro	His	Ala	Asp	Glu 185	Leu	Lys	Ala	Lys	Ile 190	Asp	Gln
Asn	Val	Glu 195	Glu	Leu	Lys	Gly	A rg 200	Leu	Thr	Pro	Tyr	Ala 205	Asp	Glu	Phe
Lys	Val 210	Lys	Ile	Asp	Gln	Thr 215	Val	Glu	Glu	Leu	Arg 220	Arg	Ser	Leu	Ala
Pro 225	Tyr	Ala	Gln	Asp	Thr 230	Gln	Glu	Lys	Leu	Asn 235	His	Gln	Leu	Glu	Gly 240
Leu	Thr	Phe	Gln	Met 245	Lys	Lys	Asn	Ala	Glu 250	Glu	Leu	Lys	Ala	A rg 255	Ile
Ser	Ala	Ser	Ala 260	Glu	Glu	Leu	Arg	Gln 265	Arg	Leu	Ala	Pro	Leu 270	Ala	Glu
Asp	Val	Arg 275	Gly	Asn	Leu	Lys	Gly 280	Asn	Thr	Glu	Gly	Leu 285	Gln	Lys	Ser

	Leu	Ala 290	Glu	Leu	Gly	Gly	His 295	Leu	Asp	Gln	Gln	Val 300	Glu	Glu	Phe	Arg
	Arg 305		Val	Glu	Pro	Tyr 310	Gly	Glu	Asn	Phe	Asn 315	Lys	Ala	Leu	Val	Gln 320
	Gln	Met	Glu	Gln	Leu 325	Arg	Gln	Lys	Leu	Gly 330	Pro	His	Ala	Gly	Asp 335	Val
	Glu	Gly	His	Leu 340	Ser	Phe	Leu	Glu	Lys 345	Asp	Leu	Arg	Asp	Lys 350	Val	Asn
	Ser	Phe	Phe 355	Ser	Thr	Phe	Lys	Glu 360	Lys	Glu	Ser	Gln	Asp 365	Lys	Thr	Leu
	Ser	Leu 370	Pro	Glu	Leu	Glu	Gln 375	Gln	Gln	Glu	Gln	Gln 380	Gln	Glu	Gln	Gln
	Gln 385		Gln	Val	Gln	Met 390	Leu	Ala	Pro	Leu	Glu 395	Ser				
<210> 29 <211> 429 <212> PRT <213> Hom		ens														
<400> 29																
	Met 1	Phe	Leu	Lys	Ala 5	Val	Val	Leu	Thr	Leu 10	Ala	Leu	Val	Ala	Val 15	Thr
	Gly	Ala	Arg	Ala 20	Glu	Val	Ser	Ala	Asp 25	Gln	Val	Ala	Thr	Val 30	Met	Trp
	Asp	Tyr	Phe 35	Ser	Gln	Leu	Ser	Ser 40	Asn	Ala	Lys	Glu	Ala 45	Val	Glu	His
	Leu	Gln 50	Lys	Ser	Glu	Leu	Thr 55	Gln	Gln	Leu	Asn	Ala 60	Leu	Phe	Gln	Asp
		50					55					60				Asp Leu 80
	Lys 65	50 Leu	Gly	Glu		Asn 70	55 Thr	Tyr	Ala	Gly	Asp 75	60 Leu	Gln	Lys	Lys	Leu 80
	Lys 65 Val	50 Leu Pro	Gly Phe	Glu Ala	Val Thr 85	Asn 70 Glu	55 Thr Leu	Tyr His	Ala Glu	Gly Arg 90	Asp 75 Leu	60 Leu Ala	Gln Lys	Lys Asp	Lys Ser 95	Leu 80

Arg	Glu 130	Leu	Gln	Gln	Arg	Leu 135	Glu	Pro	Tyr	Thr	Asp 140	Gln	Leu	Arg	Thr
Gln 145	Val	Asn	Thr	Gln	Thr 150	Glu	Gln	Leu	Arg	Arg 155	Gln	Leu	Thr	Pro	Tyr 160
Ala	Gln	Arg	Met	Glu 165	Arg	Val	Leu	Arg	Glu 170	Asn	Ala	Asp	Ser	Leu 175	Gln
Thr	Ser	Leu	Arg 180	Pro	His	Ala	Asp	Gln 185	Leu	Lys	Ala	Lys	Ile 190	Asp	Gln
Asn	Val	Glu 195	Glu	Leu	Lys	Glu	Arg 200	Leu	Thr	Pro	Tyr	Ala 205	Asp	Glu	Phe
Lys	Val 210	Lys	Ile	Asp	Gln	Thr 215	Val	Glu	Glu	Leu	Arg 220	Arg	Ser	Leu	Ala
Pro 225	Tyr	Ala	Gln	Asp	Ala 230	Gln	Glu	Lys	Leu	Asn 235	His	Gln	Leu	Glu	Gly 240
Leu	Ala	Phe	Gln	Met 245	Lys	Lys	Asn	Ala	Glu 250	Glu	Leu	Lys	Ala	Arg 255	Ile
Ser	Ala	Ser	Ala 260	Glu	Glu	Leu	Arg	Gln 265	Arg	Leu	Ala	Pro	Leu 270	Ala	Glu
Asp	Met	Arg 275	Gly	Asn	Leu	Arg	Gly 280	Asn	Thr	Glu	Gly	Leu 285	Gln	Lys	Ser
Leu	Ala 290	Glu	Leu	Gly	Gly	His 295	Leu	Asp	Arg	His	Val 300	Glu	Glu	Phe	Arg
Leu 305	Arg	Val	Glu	Pro	Tyr 310	Gly	Glu	Asn	Phe	Asn 315	Lys	Ala	Leu	Val	Gln 320
Gln	Met	Glu	Gln	Leu 325	Arg	Gln	Lys	Leu	Gly 330	Pro	His	Ala	Gly	Asp 335	Val
Glu	Gly	His	Leu 340	Ser	Phe	Leu	Glu	Lys 345	Asp	Leu	Arg	Asp	Lys 350	Val	Asn
Ser	Phe	Phe 355	Ser	Thr	Phe	Lys	Glu 360	Lys	Glu	Ser	Gln	Asp 365	Asn	Thr	Leu
Ser	Leu 370	Pro	Glu	Pro	Glu	Gln 375	Gln	Arg	Glu	Gln	Gln 380	Gln	Glu	Gln	Gln

		G1: 38:		ı Glr	n Glu	Gln	Glu 390	Gln	Gln	Gln	Gln	Gln 395	Glu	Gln	Gln (31n 400
		G1:	n Glı	ı Glr	ı Gln	Arg 405		Gln	Gln	Gln	Gln 410	Glu	Gln	Gln		Glu (415	Gln
		G1:	n Glı	n Glu	ı Gln 420		Gln	Met	Leu	Ala 425	Pro	Leu	Glu	Ser			
5	<210> 30 <211> 395 <212> PR ⁻¹ <213> Hon	Γ	oiens														
	<400> 30																
		Met 1	Phe	Leu	Lys	Ala 5	Ala	Val	Leu	Thr	Leu 10	Ala	Leu	Val	Ala	Ile 15	Thr
		Gly	Thr	Arg	Ala 20	Glu	Val	Thr	Ser	Asp 25	Gln	Val	Ala	Asn	Val	Val	Trp
		Asp	Tyr	Phe 35	Thr	Gln	Leu	Ser	Asn 40	Asn	Ala	Lys	Glu	Ala 45	Val	Glu	Gln
		Phe	Gln 50	Lys	Thr	Asp	Val	Thr 55	Gln	Gln	Leu	Ser	Thr 60	Leu	Phe	Gln	Asp
		Lys 65	Leu	Gly	Asp	Ala	Ser 70	Thr	Tyr	Ala	Asp	Gly 75	Val	His	Asn	Lys	Leu 80
		Val	Pro	Phe	Val	Val 85	Gln	Leu	Ser	Gly	His 90	Leu	Ala	Lys	Glu	Thr 95	Glu
		Arg	Val	Lys	Glu 100	Glu	Ile	Lys	Lys	Glu 105	Leu	Glu	Asp	Leu	Arg 110	_	Arg
		Met	Met	Pro 115	His	Ala	Asn	Lys	Val 120	Thr	Gln	Thr	Phe	Gly 125		Asn	Met
		Gln	Lys 130	Leu	Gln	Glu	His	Leu 135	Lys	Pro	Tyr	Ala	Val 140		Leu	Gln	Asp
		Gln 145	Ile	Asn	Thr	Gln	Thr 150	Gln	Glu	Met	Lys	Leu 155	Gln	Leu	Thr	Pro	Tyr 160
		Ile	Gln	Arg	Met	Gln 165	Thr	Thr	Ile	Lys	Glu 170	Asn	Val	Asp	Asn	Leu 175	His
0		Thr	Ser	Met	Met	Pro	Leu	Ala	Thr	Asn	Leu	Lys	Asp	Lys	Phe	Asn	Arg

				180					185					190		
	Asn	Met	Glu 195	Glu	Leu	Lys	Gly	His 200	Leu	Thr	Pro	Arg	Ala 205	Asn	Glu	Leu
	Lys	Ala 210	Thr	Ile	Asp	Gln	Asn 215	Leu	Glu	Asp	Leu	Arg 220	Arg	Ser	Leu	Ala
	Pro 225	Leu	Thr	Val	Gly	Val 230	Gln	Glu	Lys	Leu	Asn 235	His	Gln	Met	Glu	Gly 240
	Leu	Ala	Phe	Gln	Met 245	Lys	Lys	Asn	Ala	Glu 250	Glu	Leu	Gln	Thr	Lys 255	Val
	Ser	Ala	Lys	Ile 260	Asp	Gln	Leu	Gln	Lys 265	Asn	Leu	Ala	Pro	Leu 270	Val	Glu
	Asp	Val	Gln 275	Ser	Lys	Val	Lys	Gly 280	Asn	Thr	Glu	Gly	Leu 285	Gln	Lys	Ser
	Leu	Glu 290	Asp	Leu	Asn	Arg	Gln 295	Leu	Glu	Gln	Gln	Val 300	Glu	Glu	Phe	Arg
	A rg 305	Thr	Val	Glu	Pro	Met 310	Gly	Glu	Met	Phe	Asn 315	Lys	Ala	Leu	Val	Gln 320
	Gln	Leu	Glu	Gln	Phe 325	Arg	Gln	Gln	Leu	Gly 330	Pro	Asn	Ser	Gly	Glu 335	Val
	Glu	Ser	His	Leu 340	Ser	Phe	Leu	Glu	Lys 345	Ser	Leu	Arg	Glu	Lys 350	Val	Asn
	Ser	Phe	Met 355	Ser	Thr	Leu	Glu	Lys 360	Lys	Gly	Ser	Pro	Asp 365	Gln	Pro	Gln
	Ala	Leu 370	Pro	Leu	Pro	Glu	Gln 375	Ala	Gln	Glu	Gln	Ala 380	Gln	Glu	Gln	Ala
	Gln 385	Glu	Gln	Val	Gln	Pro 390	Lys	Pro	Leu	Glu	Ser 395					
<210> 31 <211> 40	1															

5

<212> PRT <213> Homo sapiens

<400> 31

- Gly Ala Arg Ala Glu Val Ser Ala Asp Gln Val Ala Thr Val Met Trp

 1 Asp Tyr Phe Ser Gln Leu Ser Ser Asn Ala Lys Glu Ala Val Glu His
 25 Leu Gln Lys Ser Glu Leu Thr Gln Gln Leu Asn Ala Leu Phe Gln Asp
 40 Lys Leu Gly Glu Val Asn Thr Tyr Ala Gly Asp Leu Gln Lys Lys Leu
 50 Leu Gln Lys Lys Lys Leu
- Val Pro Phe Ala Thr Glu Leu His Glu Arg Leu Ala Lys Asp Ser Lys 65 70 75 80
- Lys Leu Lys Glu Glu Ile Arg Lys Glu Leu Glu Glu Val Arg Ala Arg 85 90 95
- Leu Leu Pro His Ala Asn Glu Val Ser Gln Lys Ile Gly Glu Asn Val
 100 105 110
- Arg Glu Leu Gln Gln Arg Leu Glu Pro Tyr Thr Asp Gln Leu Arg Thr 115 120 125
- Gln Val Asn Thr Gln Thr Glu Gln Leu Arg Arg Gln Leu Thr Pro Tyr 130 135 140
- Ala Gln Arg Met Glu Arg Val Leu Arg Glu Asn Ala Asp Ser Leu Gln 145 150 155 160
- Thr Ser Leu Arg Pro His Ala Asp Gln Leu Lys Ala Lys Ile Asp Gln 165 170 175
- Asn Val Glu Glu Leu Lys Gly Arg Leu Thr Pro Tyr Ala Asp Glu Phe 180 185 190
- Lys Val Lys Ile Asp Gln Thr Val Glu Glu Leu Arg Arg Ser Leu Ala 195 200 205
- Pro Tyr Ala Gln Asp Ala Gln Glu Lys Leu Asn His Gln Leu Glu Gly 210 215 220
- Leu Ala Phe Gln Met Lys Lys Asn Ala Glu Glu Leu Lys Ala Arg Ile 225 230 235 240
- Ser Ala Ser Ala Glu Glu Leu Arg Gln Arg Leu Ala Pro Leu Ala Glu 245 250 255
- Asp Met Arg Gly Asn Leu Arg Gly Asn Thr Glu Gly Leu Gln Lys Ser 260 265 270

	Leu	Ala	Glu 275	Leu	Gly	Gly	His	Leu 280	Asp	Arg	His	Val	Glu 285	Glu	Phe	Arg
	Leu	Arg 290	Val	Glu	Pro	Tyr	Gly 295	Glu	Asn	Phe	Asn	Lys 300	Ala	Leu	Val	Gln
	Gln 305	Met	Glu	Gln	Leu	A rg 310	Gln	Lys	Leu	Gly	Pro 315	His	Ala	Gly	Asp	Val 320
	Glu	Gly	His	Leu	Ser 325	Phe	Leu	Glu	Lys	Asp 330	Leu	Arg	Asp	Lys	Val 335	Asn
	Ser	Phe	Phe	Ser 340	Thr	Phe	Lys	Glu	Lys 345	Glu	Ser	Gln	Asp	Asn 350	Thr	Leu
	Ser	Leu	Pro 355	Glu	Pro	Glu	Gln	Gln 360	Gln	Glu	Gln	Gln	Gln 365	Glu	Gln	Glu
	Gln	Gln 370	Gln	Glu	Gln	Gln	Glu 375	Glu	Gln	Gln	Gln	Gln 380	Glu	Gln	Gln	Gln
	Glu 385	Gln	Glu	Gln	Gln	Gln 390	Glu	Gln	Val	Gln	Met 395	Leu	Ala	Pro	Leu	Glu 400
	Ser															
<210> 32 <211> 382 <212> PRT <213> Hom		iens														
<400> 32	io oup	10110														
	Met 1	Phe	Leu	Lys	Ala 5	Val	Val	Leu	Ser	Leu 10	Ala	Leu	Val	Ala	Val 15	Thr
	Gly	Ala	Arg	Ala 20	Glu	Val	Asn	Ala	Asp 25	Gln	Val	Ala	Thr	Val 30	Met	Trp
	Asp	Tyr	Phe 35	Ser	Gln	Leu	Gly	Ser 40	Asn	Ala	Lys	Lys	Ala 45	Val	Glu	His
	Leu	Gln 50	Lys	Ser	Glu	Leu	Thr 55	Gln	Gln	Leu	Asn	Thr 60	Leu	Phe	Gln	Asp
	Lys 65	Leu	Gly	Glu	Val	Asn 70	Thr	Tyr	Thr	Glu	Asp 75	Leu	Gln	Lys	Lys	Leu 80
	Val	Pro	Phe	Ala	Thr	Glu	Leu	His	Glu	Arg	Leu	Thr	Lys	Asp	Ser	Glu

5

10

Lys	Leu	Lys	Glu 100	Glu	Ile	Arg	Arg	Glu 105	Leu	Glu	Glu	Leu	Arg 110	Ala	Arg
Leu	Leu	Pro 115	His	Ala	Thr	Glu	Val 120	Ser	Gln	Lys	Ile	Gly 125	Asp	Asn	Val
Arg	Glu 130	Leu	Gln	Gln	Arg	Leu 135	Gly	Pro	Phe	Thr	Gly 140	Gly	Leu	Arg	Thr
Gln 145	Val	Asn	Thr	Gln	Val 150	Gln	Gln	Leu	Gln	Arg 155	Gln	Leu	Lys	Pro	Tyr 160
Ala	Glu	Arg	Met	Glu 165	Ser	Val	Leu	Arg	Gln 170	Asn	Ile	Arg	Asn	Leu 175	Glu
Ala	Ser	Val	Ala 180	Pro	Tyr	Ala	Asp	Glu 185	Phe	Lys	Ala	Lys	Ile 190	Asp	Gln
Asn	Val	Glu 195	Glu	Leu	Lys	Gly	Ser 200	Leu	Thr	Pro	Tyr	Ala 205	Glu	Glu	Leu
Lys	Ala 210	Lys	Ile	Asp	Gln	Asn 215	Val	Glu	Glu	Leu	Arg 220	Arg	Ser	Leu	Ala
Pro 225	Tyr	Ala	Gln	Asp	Val 230	Gln	Glu	Lys	Leu	Asn 235	His	Gln	Leu	Glu	Gly 240
Leu	Ala	Phe	Gln	Met 245	Lys	Lys	Gln	Ala	Glu 250	Glu	Leu	Lys	Ala	Lys 255	Ile
Ser	Ala	Asn	Ala 260	Asp	Glu	Leu	Arg	Gln 265	Lys	Leu	Val	Pro	Val 270	Ala	Glu
Asn	Val	His 275	Gly	His	Leu	Lys	Gly 280	Asn	Thr	Glu	Gly	Leu 285	Gln	Lys	Ser
Leu	Leu 290	Glu	Leu	Arg	Ser	His 295	Leu	Asp	Gln	Gln	Val 300	Glu	Glu	Phe	Arg
Leu 305	Lys	Val	Glu	Pro	Tyr 310	Gly	Glu	Thr	Phe	Asn 315	Lys	Ala	Leu	Val	Gln 320
Gln	Val	Glu	Asp	Leu 325	Arg	Gln	Lys	Leu	Gly 330	Pro	Leu	Ala	Gly	Asp 335	Val
Glu	Gly	His	Leu 340	Ser	Phe	Leu	Glu	Lys 345	Asp	Leu	Arg	Asp	Lys 350	Val	Asn

Thr	Phe	Phe	Ser	Thr	Leu	Lys	Glu	Glu	Ala	Ser	Gln	Gly	Gln	Ser	Gln
		355					360					365			

Ala Leu Pro	Ala Gln	Glu Lys	Ala	Gln	Ala	Pro	Leu	Glu	Gly
370		375					380		

<210> 33 <211> 391

<212> PRT

<213> Homo sapiens

<400> 33

10

Met Phe Leu Lys Ala Val Val Leu Thr Val Ala Leu Val Ala Ile Thr 1 5 10 15

Gly Thr Gln Ala Glu Val Thr Ser Asp Gln Val Ala Asn Val Met Trp
20 25 30

Asp Tyr Phe Thr Gln Leu Ser Asn Asn Ala Lys Glu Ala Val Glu Gln 35 40 45

Leu Gln Lys Thr Asp Val Thr Gln Gln Leu Asn Thr Leu Phe Gln Asp 50 60

Lys Leu Gly Asn Ile Asn Thr Tyr Ala Asp Asp Leu Gln Asn Lys Leu 65 70 75 80

Val Pro Phe Ala Val Gln Leu Ser Gly His Leu Thr Lys Glu Thr Glu 85 90 95

Arg Val Arg Glu Glu Ile Gln Lys Glu Leu Glu Asp Leu Arg Ala Asn 100 105 110

Met Met Pro His Ala Asn Lys Val Ser Gln Met Phe Gly Asp Asn Val 115 120 125

Gln Lys Leu Gln Glu His Leu Arg Pro Tyr Ala Thr Asp Leu Gln Ala 130 135 140

Gln Ile Asn Ala Gln Thr Gln Asp Met Lys Arg Gln Leu Thr Pro Tyr 145 150 155 160

Ile Gln Arg Met Gln Thr Thr Ile Gln Asp Asn Val Glu Asn Leu Gln 165 170 175

Ser Ser Met Val Pro Phe Ala As
n Glu Leu Lys Glu Lys Phe As
n Glu 180 185 190

Asn Met Glu Gly Leu Lys Gly Gln Leu Thr Pro Arg Ala Asn Glu Leu

			195					200					205			
	Lys	Ala 210	Thr	Ile	Asp	Gln	Asn 215	Leu	Glu	Asp	Leu	Arg 220	Ser	Arg	Leu	Ala
	Pro 225	Leu	Ala	Glu	Gly	Val 230	Gln	Glu	Lys	Leu	Asn 235	His	Gln	Met	Glu	Gly 240
	Leu	Ala	Phe	Gln	Met 245	Lys	Lys	Asn	Ala	Glu 250	Glu	Leu	Gln	Thr	Lys 255	Val
	Ser	Thr	Asn	Ile 260	Asp	Gln	Leu	Gln	Lys 265	Asn	Leu	Ala	Pro	Leu 270	Val	Glu
	Asp	Val	Gln 275	Ser	Lys	Leu	Lys	Gly 280	Asn	Thr	Glu	Gly	Leu 285	Gln	Lys	Ser
	Leu	Glu 290	Asp	Leu	Asn	Lys	Gln 295	Leu	Asp	Gln	Gln	Val 300	Glu	Val	Phe	Arg
	A rg 305	Ala	Val	Glu	Pro	Leu 310	Gly	Asp	Lys	Phe	Asn 315	Met	Ala	Leu	Val	Gln 320
	Gln	Met	Glu	Lys	Phe 325	Arg	Gln	Gln	Leu	Gly 330	Ser	Asp	Ser	Gly	Asp 335	Val
	Glu	Ser	His	Leu 340	Ser	Phe	Leu	Glu	Lys 345	Asn	Leu	Arg	Glu	Lys 350	Val	Ser
	Ser	Phe	Met 355	Ser	Thr	Leu	Gln	Lys 360	Lys	Gly	Ser	Pro	Asp 365	Gln	Pro	Leu
	Ala	Leu 370	Pro	Leu	Pro	Glu	Gln 375	Val	Gln	Glu	Gln	Val 380	Gln	Glu	Gln	Val
	Gln 385	Pro	Lys	Pro	Leu	Glu 390	Ser									
<210> 34 <211> 28 <212> PF <213> Se	5 RT	cia arti	ficial													

51

5

10

<220>

<223> Tetranectina-apolipoproteína A-I

<220> <221> MISC_FEATURE <223> X = A o G o S o T

<220>

<221> misc_feature

<222> (1)..(1)

<223> Xaa puede ser cualquier aminoácido natural

<400> 34

Xaa Pro Ile Val Asn Ala Lys Lys Asp Val Val Asn Thr Lys Met Phe 1 $$ 5 $$ 10 $$ 15

Glu Glu Leu Lys Ser Arg Leu Asp Thr Leu Ala Gln Glu Val Ala Leu $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$

Leu Lys Glu Gln Gln Ala Leu Gln Thr Val Asp Glu Pro Pro Gln Ser 35 40 45

Pro Trp Asp Arg Val Lys Asp Leu Ala Thr Val Tyr Val Asp Val Leu 50 55 60

Lys Asp Ser Gly Arg Asp Tyr Val Ser Gln Phe Glu Gly Ser Ala Leu 65 70 75 80

Gly Lys Gln Leu Asn Leu Lys Leu Leu Asp Asn Trp Asp Ser Val Thr 85 90 95

Ser Thr Phe Ser Lys Leu Arg Glu Gln Leu Gly Pro Val Thr Gln Glu 100 105 110

Phe Trp Asp Asn Leu Glu Lys Glu Thr Glu Gly Leu Arg Gln Glu Met 115 120 125

Ser Lys Asp Leu Glu Glu Val Lys Ala Lys Val Gln Pro Tyr Leu Asp 130 135 140

Asp Phe Gln Lys Lys Trp Gln Glu Glu Met Glu Leu Tyr Arg Gln Lys 145 150 155 160

Val Glu Pro Leu Arg Ala Glu Leu Gln Glu Gly Ala Arg Gln Lys Leu 165 170 175

His Glu Leu Gln Glu Lys Leu Ser Pro Leu Gly Glu Glu Met Arg Asp 180 185 190

Arg Ala Arg Ala His Val Asp Ala Leu Arg Thr His Leu Ala Pro Tyr 195 200 205

Ser Asp Glu Leu Arg Gln Arg Leu Ala Ala Arg Leu Glu Ala Leu Lys 210 215 220

Glu Asn Gly Gly Ala Arg Leu Ala Glu Tyr His Ala Lys Ala Thr Glu 225 230 235 240

5

10

15

20

25

30

35

<220>

<220>

<220>

<220>

His Leu Ser Thr Leu Ser Glu Lys Ala Lys Pro Ala Leu Glu Asp Leu 250 Arg Gln Gly Leu Leu Pro Val Leu Glu Ser Phe Lys Val Ser Phe Leu 265 Ser Ala Leu Glu Glu Tyr Thr Lys Lys Leu Asn Thr Gln 280 <210> 35 <211> 291 <212> PRT <213> Secuencia artificial <223> Tetranectina-apolipoproteína A-I con etiqueta de His N-terminal <221> MISC FEATURE <222> (7)..(7) <223> X = cualquiera de entre AP, GP, SP, PP, GSAP, GSGP, GSSP, GSPP, GGGS, GGGGG, GGGGGGGS, GGGSGGGS, GGGSGGSGGGS, GGGSGGGSGGGS, GGGSAP, GGGSGP, GGGSSP <221> MISC FEATURE <222> (7)..(7) <223> X = cualquiera de entre GGGSPP, GGGGSAP, GGGGSGP, GGGGSSP, GGGGSPP, GGGSGGSAP, GGGSGGGSGP, GGGSGGSSP, GGGSGGSPP, GGGSGGSGGSAP, GGGSGGSGGSGP, GGGSGGSGGSSP, GGGSGGSGGSPP <221> MISC FEATURE <222> (7)..(7) GGGSGGGGSGP. GGGGSGGGSSP, GGGGSGGGSPP, GGGGSGGGGSAP. GGGGSGGGGGGGPP, GGGGSGGGGGGSPP, and GGGGSGGGGGGPP. <221> misc feature <222> (8)..(8) <223> Xaa puede ser cualquier aminoácido natural <400> 35 Met His His His His His Xaa Ile Val Asn Ala Lys Lys Asp Val Val Asn Thr Lys Met Phe Glu Glu Leu Lys Ser Arg Leu Asp Thr Leu 25 20 30 Ala Gln Glu Val Ala Leu Leu Lys Glu Gln Gln Ala Leu Gln Thr Val 35 40

Asp Glu Pro Pro Gln Ser Pro Trp Asp Arg Val Lys Asp Leu Ala Thr

Val 65	Tyr	Val	Asp	Val	Leu 70	Lys	Asp	Ser	Gly	Arg 75	Asp	Tyr	Val	Ser	Glr 80
Phe	Glu	Gly	Ser	Ala 85	Leu	Gly	Lys	Gln	Leu 90	Asn	Leu	Lys	Leu	Leu 95	Asp
Asn	Trp	Asp	Ser 100	Val	Thr	Ser	Thr	Phe 105	Ser	Lys	Leu	Arg	Glu 110	Gln	Leu
Gly	Pro	Val 115	Thr	Gln	Glu	Phe	Trp 120	Asp	Asn	Leu	Glu	Lys 125	Glu	Thr	Glu
Gly	Leu 130	Arg	Gln	Glu	Met	Ser 135	Lys	Asp	Leu	Glu	Glu 140	Val	Lys	Ala	Lys
Val 145	Gln	Pro	Tyr	Leu	Asp 150	Asp	Phe	Gln	Lys	Lys 155	Trp	Gln	Glu	Glu	Met 160
Glu	Leu	Tyr	Arg	Gln 165	Lys	Val	Glu	Pro	Leu 170	Arg	Ala	Glu	Leu	Gln 175	Glu
Gly	Ala	Arg	Gln 180	Lys	Leu	His	Glu	Leu 185	Gln	Glu	Lys	Leu	Ser 190	Pro	Leu
Gly	Glu	Glu 195	Met	Arg	Asp	Arg	Ala 200	Arg	Ala	His	Val	Asp 205	Ala	Leu	Arg
Thr	His 210	Leu	Ala	Pro	Tyr	Ser 215	Asp	Glu	Leu	Arg	Gln 220	Arg	Leu	Ala	Ala
Arg 225	Leu	Glu	Ala	Leu	Lys 230	Glu	Asn	Gly	Gly	Ala 235	Arg	Leu	Ala	Glu	Tyr 240
His	Ala	Lys	Ala	Thr 245	Glu	His	Leu	Ser	Thr 250	Leu	Ser	Glu	Lys	Ala 255	Lys
Pro	Ala	Leu	Glu 260	Asp	Leu	Arg	Gln	Gly 265	Leu	Leu	Pro	Val	Leu 270	Glu	Ser
Phe	Lys	Val 275	Ser	Phe	Leu	Ser	Ala 280	Leu	Glu	Glu	Tyr	Thr 285	Lys	Lys	Leu
Asn	Thr 290	Gln													

<210> 36 <211> 9

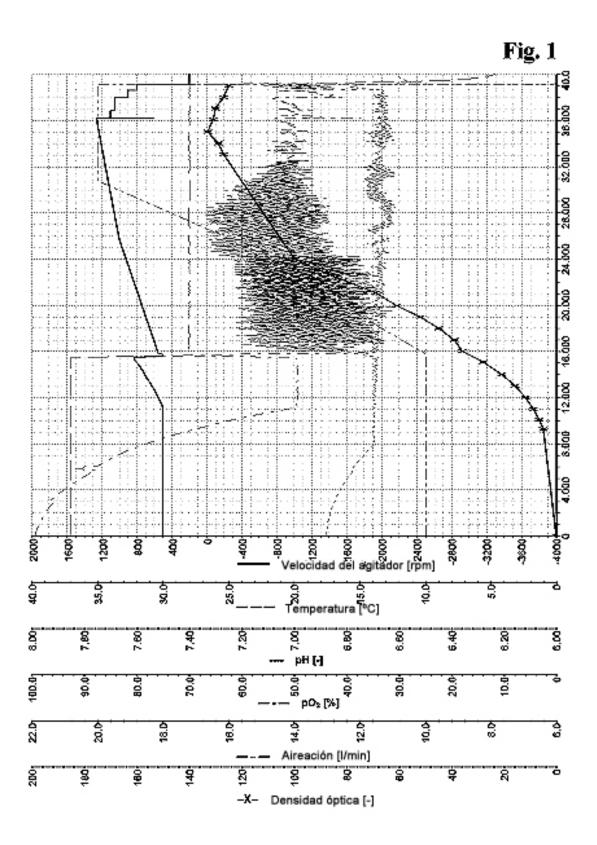
<212> PRT

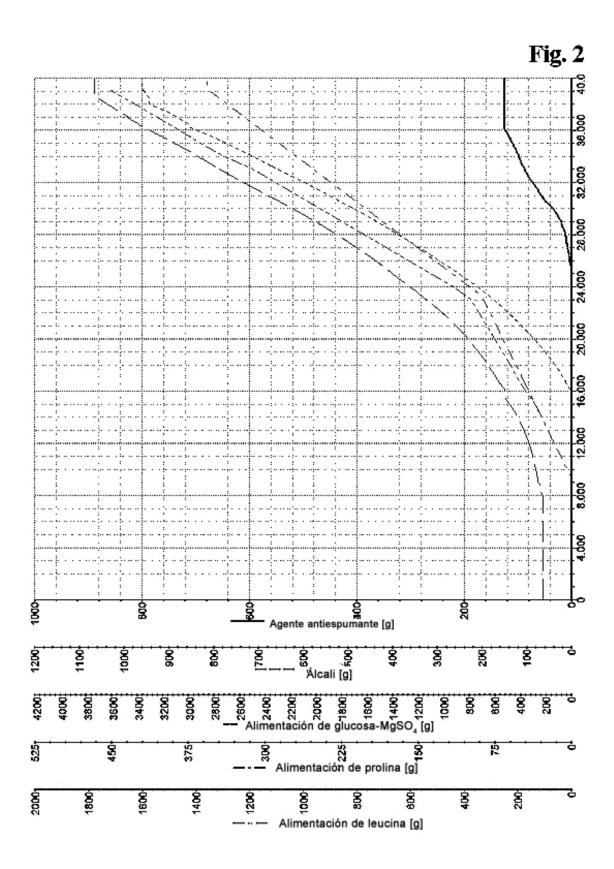
<213> Secuencia artificial

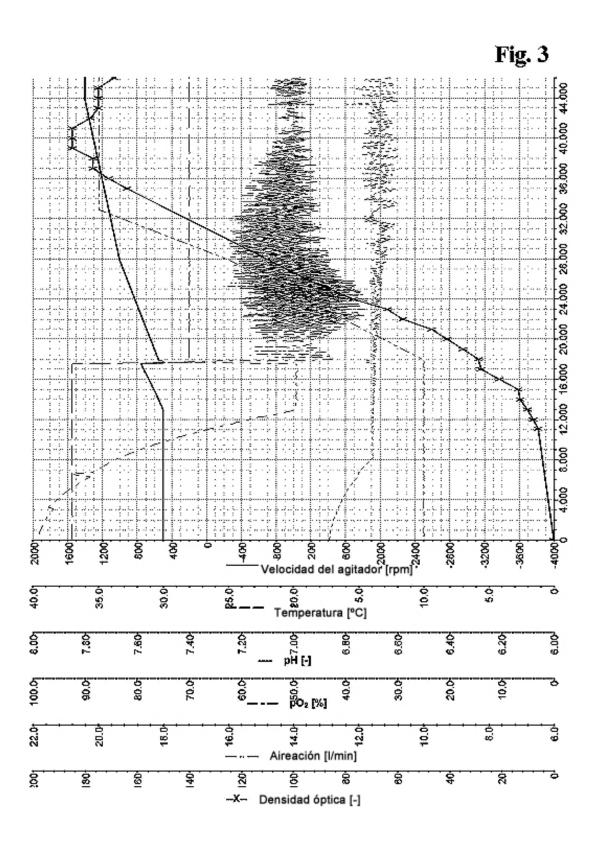
<220>

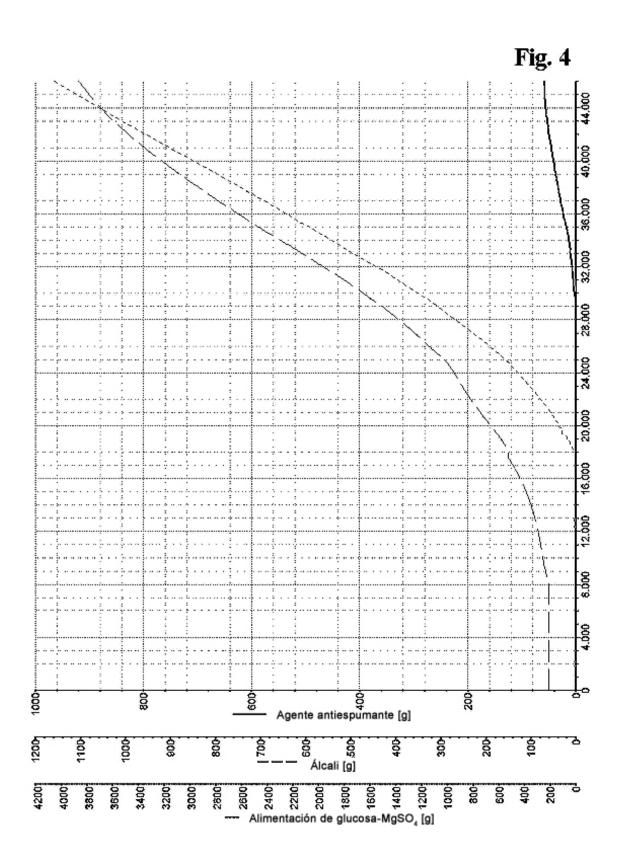
<223> fragmento de una secuencia de interferón <400> 36 Cys Asp Leu Pro Gln Thr His Ser Leu 1 5 5 <210> 37 <211>6 <212> PRT 10 <213> Secuencia artificial <220> <223> etiqueta hexa-histidina 15 <400> 37 His His His His His <210> 38 20 <211> 7 <212> PRT <213> Secuencia artificial <220> 25 <223> corte de IgA proteasa <400> 38 Val Val Ala Pro Pro Ala Pro

REIVINDICACIONES


1. Un método para producir un polipéptido comprende las etapas de:


10


15


30

- a) cultivar una célula de Escherichia coli que comprende un ácido nucleico codificante del polipéptido,
- b) ajustar el valor del pH durante el cultivo, con una solución alcalina que comprende un aminoácido seleccionado de entre aspartato, ácido aspártico, glutamina, ácido glutámico, histidina, isoleucina, leucina, metionina, fenilalanina, triptófano y tirosina.
 - c) recuperar el polipéptido a partir de la célula o del medio de cultivo, produciendo de esta manera el polipéptido, en el que el aminoácido presenta una concentración en la solución alcalina de 30 g/l o superior, y en el que la solución alcalina es una solución de amonio de 10% (p/v) o superior.
 - 2. Método según la reivindicación 1, caracterizado por que la célula bacteriana es una célula auxotrópica para un aminoácido y la auxotrofia es para un aminoácido seleccionado de entre aspartato, ácido aspártico, glutamina, ácido glutámico, glicina, histidina, isoleucina, leucina, lisina, metionina, fenilalanina, triptófano y tirosina.
 - 3. Método según cualquiera de las reivindicaciones anteriores, caracterizado por que la solución alcalina presenta un valor de pH de 9 o superior.
- 4. Método según cualquiera de las reivindicaciones anteriores, caracterizado por que el polipéptido es la apolipoproteína A1 humana o un derivado de la misma.
 - 5. Método según la reivindicación 4, caracterizado por que la apolipoproteína A1 presenta una secuencia de aminoácidos seleccionada de entre SEC ID nº 01 y nº 35.
- 25 6. Método según la reivindicación 5, caracterizado por que la apolipoproteína A1 presenta una secuencia de aminoácidos seleccionada de entre SEC ID nº 01, nº 02, nº 34 y nº 35.
 - 7. Método según cualquiera de las reivindicaciones anteriores, caracterizado por que el aminoácido presenta una concentración de aproximadamente 50 g/l.
 - 8. Método según cualquiera de las reivindicaciones anteriores, caracterizado por que la solución alcalina es una solución de aproximadamente 12,5% (p/v) de amonio en agua.
 - 9. Método según cualquiera de las reivindicaciones anteriores, caracterizado por que el aminoácido es la leucina.
 - Método según cualquiera de las reivindicaciones anteriores, caracterizado por que la solución alcalina comprende leucina y prolina.
- 11. Método según cualquiera de las reivindicaciones anteriores, caracterizado por que la solución alcalina es una solución de amonio de aproximadamente 12,5% (p/v) y comprende los aminoácidos leucina y prolina, cada uno a una concentración de aproximadamente 50 g/l.

