

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 563 809

61 Int. Cl.:

A47J 31/00 (2006.01) **A47J 31/40** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 09.11.2011 E 11840149 (6) (97) Fecha y número de publicación de la concesión europea: 20.01.2016 EP 2637532

(54) Título: Sistema basado en cápsulas para preparar y dispensar una bebida

(30) Prioridad:

09.11.2010 US 411786 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 16.03.2016

(73) Titular/es:

LA VIT TECHNOLOGY LLC (100.0%) 228 Park Avenue South, Suite 28215 New York, NY 10003-1502, US

(72) Inventor/es:

LO FARO, GIAN MATTEO; LAVERACK, JOHN R.; WESEMAN, KURT R.; SHENTU, YUANLI; RICHM, GEORGE E. y WEAVER, GREG G.

74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Sistema basado en cápsulas para preparar y dispensar una bebida

5 REFERENCIA CRUZADA A SOLICITUDES RELACIONADAS

Esta solicitud reivindica la prioridad de la Solicitud Provisional de Estados Unidos Nº 61/411.786, presentada el 9 de noviembre de 2010.

10 ANTECEDENTES DE LA INVENCIÓN

Campo de la invención

Esta invención se refiere a sistemas para dispensar una bebida. La invención también se refiere a una cápsula utilizada en un sistema para dispensar una bebida y procedimientos de dispensación de una bebida desde una cápsula.

Descripción de la técnica relacionada

- 20 Existen varios dispositivos y técnicas para dispensar una bebida, tales como, por ejemplo, una taza de café o té a partir de una cápsula. En un enfoque, un recipiente desechable se coloca en la parte superior de una taza y tiene un compartimiento para recibir un extracto de bebida, tal como café, con un gran depósito en la parte superior, en el que una persona debe verter aqua hirviendo. Estos dispositivos pueden ser desechables pero costosos, el café se expone al aire, donde puede quedar rancio o contaminarse fácilmente, y generalmente no son adecuados para 25 máquinas automáticas de preparación de café u otras bebidas. Debido a que el caudal de la bebida generalmente es lento, estos dispositivos comúnmente son grandes con respecto al volumen de la bebida dispensada. Además, estos dispositivos se pueden diseñar para utilizarse en orientación vertical y solamente el área inferior está disponible para el flujo de filtración, y esto contribuye a la lentitud del proceso de filtración. En una construcción, se proporciona un filtro en un receptáculo cerrado herméticamente y se incluye un miembro de soporte entre el receptáculo y el filtro, 30 que funciona para sostener el filtro. Cuando el filtro se humedece, se curva y se adapta al miembro de soporte que tiene un orificio para liberar la bebida filtrada pero que, de otro modo, bloquea la salida del filtro. Tal diseño de filtro, utilizado en una aplicación en la que se inyecta agua a presión, proporcionará bajas velocidades de flujo.
- Existen varias empresas conocidas que operan máquinas basadas en cápsulas patentadas en el espacio de café y té, incluyendo Nespresso de Nestlé, Keurig de Green Mountain Coffee Roaster y Tassimo de Kraft. Mars Flavia y Britta Yource son máquinas que utilizan un sistema dispensador en bolsa de uso individual.
- Actualmente, existen otras tres máquinas que pretenden comercializar un sistema de bebidas de punto de utilización basado en cápsulas/bolsitas unitarias similar. Omnifrio utiliza un mecanismo de perforación, que perfora la parte superior e inferior de la cápsula, permitiendo que filtre un jarabe concentrado. Bevyz utiliza un mecanismo de presión para abrir la cápsula y permitir un proceso de mezcla. Por último, Esio fabrica una máquina que ofrece una solución individual de bebidas que utiliza un sistema de bolsa.
- Cuando se dispensan bebidas frías en un sistema en el que se prepara la bebida mezclando un líquido frío, generalmente agua, con un polvo, un desafío considerable es que el polvo no se disolverá eficazmente durante el proceso de mezcla. Esto puede provocar una producción de baja calidad del sistema de bebidas y un residuo antiestético, y posiblemente insalubre en la propia máquina. La presente invención pretende proporcionar un sistema para administrar una bebida caliente o fría mezclada a temperatura ambiente, diseñado para permitir mezclar eficazmente el polvo con el líquido frío durante la dispensación, proporcionando poco o ningún residuo, contaminación o contaminación cruzada entre las bebidas. Se describe un estado de la técnica adicional en: los documentos WO 2010/025392, GB2 380 990, US 2008/223741, WO 2005/079637, EP1844805.

BREVE SUMARIO DE LA INVENCIÓN

- El fin de la invención es ofrecer una alternativa convincente al agua embotellada y otras bebidas listas para beberse (RTD) a base de agua. La invención pretende ofrecer una solución de punto de utilización cómoda, fiable y económica para cubrir las necesidades de hidratación y bebida del consumidor. La invención es un sistema de bebida unitario que puede producir agua filtrada congelada ilimitada, así como bebidas únicas unitarias a través de un sistema patentado basado en cápsulas. La invención puede ser de aguas filtradas ultra purificadas frías, calientes, sin gas (no espumosas), aromatizadas, mejoradas, y sabores.
 - Las cápsulas contienen un polvo o un líquido que se mezcla en el agua filtrada para producir la bebida. Las bebidas pueden ser "fórmulas domésticas" o bebidas de comercialización masiva licenciadas por los fabricantes.
- 65 Las variadas realizaciones de la invención tienen múltiples beneficios:

- Agua pura a demanda: Agua pura, filtrada ilimitada. Los contaminantes potencialmente insalubres se extraen por filtración del agua.
- Bebidas personalizadas a demanda: Los clientes pueden disfrutar muchas de sus bebidas comerciales favoritas, producidas con agua muy pura, enfriadas a la temperatura correcta. Opción de elaborar bebidas con gas disponibles en determinados modelos de máquinas.
 - Reducción de CO2: Sin necesidad de transportar bebidas embotelladas pesadas al punto de consumo. Cada máquina en uso disminuye las emisiones de carbono.
 - Ahorro de Espacio: La no necesidad de almacenar bebidas voluminosas ahorra espacio en el refrigerador/cocina/despensa.
- Beneficio para la salud: Hidratación mejorada que resulta de opciones más convenientes y de mejor hidratación que incluyen una mejor concentración, mejor circulación y mejor salud general.
 - Beneficio financiero: La cápsula cuesta aproximadamente un 2-3 % del coste del agua embotellada normal y aproximadamente un 33 % del coste de las bebidas embotelladas.
- El procedimiento de desprendimiento para acceder a la cápsula ofrece una forma eficaz y eficiente de preparar y administrar una bebida. Se adapta un dispositivo mecánico para desprender una parte o toda la cubierta superior de una cápsula. Alternativamente, un motor de impulso para hacerla girar hacia un cortador para cortar o raspar la cubierta superior de la cápsula. Alternativamente, se podrían incluir ligeros pliegues en un labio de la cápsula que se puede usar para romper el cierre y permitir desprender entonces la cubierta. Cuando la cubierta se desprende (rompiendo o rasgando), la bebida se mezcla con una corriente de mezcla de líquido que, en muchas realizaciones, será agua, fría o caliente, con gas o no. La prueba ha tenido buenos resultados al verter un concentrado de bebida en polvo desde una cápsula, utilizando una corriente de agua de un grifo normal, así como en experimentos controlados en un banco de pruebas a pleno funcionamiento.
- En otra realización, la invención incluye una cápsula que incluye uno o más pliegues en la interfaz entre la cubierta de la cápsula y el cuerpo de la cápsula. Se pueden aplicar fuerzas a la cápsula para abrir la cápsula en los pliegues para acceder a la bebida. La bebida se puede mezclar en la cápsula utilizando una corriente de mezcla en la cápsula, vibración para retirar el material de la cápsula para mezclarlo fuera de la cápsula o una combinación de ambas. En muchas realizaciones, se utiliza una corriente de acabado para dirigir la corriente de mezcla al recipiente que se llena con la bebida mezclada.
 - Puede ser ventajoso promover un desgarro controlado en el pliegue de la cápsula, lo que puede asegurar una apertura suave de la cápsula. El desgarro controlado puede servir para reducir la fuerza requerida para abrir la cápsula y/o proporcionar un desgarro más uniforme y repetible para abrir la cápsula. Un borde anterior levantado en el mecanismo utilizado para abrir la cápsula puede servir para proporcionar un desgarro controlado. El borde anterior levantado se puede ubicar de tal forma que facilitaría la apertura de la cápsula a lo largo de una línea central longitudinal de la cápsula o puede no estar alineado con la línea central de la cápsula, de manera que el desprendimiento se iniciará apartado de la línea central y transcurrirá a lo largo de un pliegue para abrir la cápsula.
- 45 Los logros técnicos específicos de la invención pueden incluir:
 - Fácil reciclaje: La cápsula puede reciclarse en la corriente de reciclaje de aluminio común junto con las latas de aluminio. No se requiere tratamiento ni recolección especiales para el reciclaje. Las cápsulas no contienen residuos ni contaminantes (tales como residuos de la molienda del café).
 - Control de bacterias: La mezcla se realiza en la cápsula, por lo que no hay contaminación cruzada entre las posibles sustancias dulces dispensadas por la máquina y la propia máquina. El producto final sale de la cápsula y pasa directamente al vaso del cliente.
- Esterilización: La cámara de mezcla puede auto-esterilizarse mediante calor o luz UV, dependiendo de la marca y modelo de la máquina.
 - Corriente de acabado para otorgar excelentes características de mezcla: Una corriente de acabado mezcla cualquier polvo o líquido que pueda haberse hecho en recipiente de bebidas (por ejemplo, un vaso). Este chorro relativamente potente genera un remolino en el vaso/receptáculo, proporcionando así un mezclado adicional. Opcionalmente, determinadas máquinas pueden tener un embudo de mezcla lavable secundario donde puede tener lugar la mezcla adicional para determinados tipos de bebidas.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

65

60

40

50

5

10

La figura 1 es una vista isométrica de una realización ejemplar de la presente invención;

la figura 1A es una sección transversal tomada a lo largo de las líneas de sección 1A-1A en la figura 1;

la figura 2 ilustra una vista detallada de la inserción de una cápsula en la realización de la figura 1;

- 5 la figura 2A ilustra una sección transversal detallada tomada a lo largo de las líneas de sección 2A-2A en la figura 2 con una cápsula insertada en el dispositivo dispensador;
 - las figuras 2B-2D ilustran el proceso de apertura de la cápsula y mezclado de bebida de acuerdo con una primera realización de la invención;
 - la figura 3 es una vista isométrica de una segunda realización ejemplar de la presente invención;
 - la figura 3A es una sección transversal tomada a lo largo de las líneas de sección 3A-3A en la figura 3;
- 15 la figura 4 ilustra una vista de la inserción de una cápsula en la realización de la figura 3;
 - la figura 4A ilustra una sección transversal tomada a lo largo de las líneas de sección 4A-4A en la figura 4 con una cápsula orientada para su inserción en el dispositivo dispensador;
- 20 la figura 5 es una vista isométrica de la segunda realización ejemplar de la presente invención con la cápsula en el dispensador;
 - la figura 5A es una sección transversal tomada a lo largo de las líneas de sección 5A-5A en la figura 5;
- 25 la figura 6 ilustra una vista de la inserción de una cápsula en la realización de la figura 5;
 - la figura 6A ilustra una sección transversal tomada a lo largo de las líneas de sección 6A-6A en la figura 6 con una cápsula dispuesta en el dispositivo dispensador;
- 30 la figura 7 es una vista isométrica de otra realización ejemplar de la presente invención;
 - la figura 7A es una sección transversal tomada a lo largo de las líneas de sección 7A-7A en la figura 7;
- la figura 7B detalla una acción de mezcla posible con la invención, específicamente, por ejemplo, la realización de la figura 7;
 - la figura 8 es una vista isométrica de otra realización ejemplar de la presente invención que ilustra una forma de comprimir la cápsula;
- 40 la figura 8A es una sección transversal tomada a lo largo de las líneas de sección 8A-8A en la figura 8;
 - la figura 9 detalla un diagrama de flujo que ilustra un proceso ejemplar para dispensar una bebida de acuerdo con la presente invención;
- 45 la figura 10 es un sistema ejemplar de esquema que describe las trayectorias del flujo para los fluidos en el dispensador de bebidas;
 - las figuras 11A y 11B ilustran otra realización de la presente invención donde se utiliza vibración en el proceso de mezcla y/o dispensación de las bebidas;
 - las figuras 12A, 12B, 13A, 13B ilustran detalles del proceso de apertura de la cápsula en la realización descrita en relación a las figuras 5 y 7 de la presente invención;
- las figuras 14A-14F ilustran detalles del proceso de apertura de la cápsula para la realización descrita en las figuras 5 y 7;
 - las figuras 15-17 ilustran vistas lateral superior y final, respectivamente, de una cápsula de la presente invención;
- las figuras 18-20 ilustran vistas lateral superior y final, respectivamente, de otra cápsula más grande de la presente invención;
 - Estas ilustraciones ilustran la presente invención y no deberían interpretarse como limitantes del alcance o rango de la invención presentada en esta solicitud.
 - Descripción detallada de realizaciones de la invención

65

50

La presente invención se refiere a la dispensación de una sustancia desde un recipiente por medio de un aparato dispensador. Específicamente, las realizaciones ejemplares de la presente invención se refieren a (1) una cápsula y (2) un dispensador con un mecanismo para abrir una cápsula y (3) un procedimiento automático para dispensar el contenido de dicho recipiente a un receptáculo o vaso de un cliente con una opción para expulsar la cápsula al final del ciclo de preparación de la bebida. Cada una de estas áreas se describirá en más detalle a continuación:

- (1) El Recipiente/Cápsula: La cápsula está compuesta de tres partes, todas las cuales, en una realización preferente, están fabricadas de aluminio, aunque son posibles otros materiales, tales como materiales y plásticos biodegradables con la presente invención:
- papel de aluminio que cubra la parte superior de la cápsula,

5

10

15

30

35

40

45

50

55

60

- un receptáculo para sostener los agentes de mezcla, que pueden encontrarse en forma de polvo y también en forma de líquido. El receptáculo puede tener una variedad de formas, tal como un óvalo que se ha cortado a la mitad cuando el receptáculo se observa desde la parte superior, y
- un borde superior más rígido del receptáculo que se puede formar a partir del mismo material o uno distinto del receptáculo, y al que se fija el papel de aluminio mediante algún agente de unión, tal como pegamento.
- 20 En una realización de la invención, la cápsula comprende un cuerpo o receptáculo preformado que define una cavidad de relleno. El cuerpo tiene una abertura y un borde circunferencial planar integral que rodea la abertura. La abertura se cierra mediante una lámina de cubierta que se sella al borde circunferencial por medio de un pegamento de sellado circunferencial.
- El borde circunferencial tiene una parte plana dispensadora en cualquiera de los extremos que está cubierta por la lámina de cubierta, por ejemplo, papel de aluminio, cuya lámina de cubierta se sella a la parte dispensadora mediante al menos dos rebordes de sellado dirigidos hacia fuera en cada lado, uniendo el reborde de sellado circunferencial y extendiéndose a una distancia entre sí desde el reborde de sellado circunferencial al borde de la parte dispensadora en cualquier extremo.
 - Un cierre debilitado se extiende entre los dos rebordes de sellado dirigidos en los lados perpendiculares: La ranura entre los dos puntos se dirige hacia la cavidad y el reborde de sellado debilitado une los respectivos rebordes de sellado dirigidos hacia fuera a una distancia de la ubicación, donde los respectivos rebordes dirigidos hacia fuera se unen al sellado circunferencial.
 - Hay dos tamaños de cápsulas, uno de aproximadamente 20 cc y otro de aproximadamente 40 cc. Por supuesto, se contemplan otros tamaños en esta invención. Una diferencia entre los dos tamaños es el volumen de la parte del receptáculo de la cápsula, que en la versión más grande es más largo y más voluminoso, ya que puede contener más agentes de mezcla. Las partes superiores de las cápsulas son idénticas, lo que permite que quepan en el mismo mecanismo de alimentación y eyección de la cámara en la máquina. La cápsula contiene un concentrado en polvo o líquido. De acuerdo con una realización de la invención, la sustancia, por ejemplo polvo o jarabe o sustancia para bebida energizante u otras bebidas, se dispensa directamente desde el recipiente a un recipiente de servir, por ejemplo una taza o una botella. Además, el agua se dispensa en el recipiente de servir de tal forma que la mezcla se puede realizar en el recipiente de servir, evitando así la contaminación del aparato dispensador con la sustancia. Las cápsulas se describen en más detalle en relación a las ilustraciones que se indican a continuación.
 - (2) El dispensador para abrir dicha cápsula. Otro aspecto de la invención es el dispensador para abrir la cápsula. En general, para operar la máquina, un usuario levanta una tapa ubicada en la parte superior de la máquina. Después, el usuario podrá insertar la cápsula de aluminio en la ranura de la bandeja, o la abertura dimensionada para sostener la cápsula, y cierra la tapa. Se puede utilizar un escáner óptico opcional para leer un código de barras opcional en la cápsula para garantizar que se active un proceso de mezcla adecuado mediante un sistema de control que podría incluir una unidad de procesamiento central. La cápsula se abre mediante un proceso de corte y desprendimiento de la cápsula. En una realización, el extremo del borde de la cápsula se corta estrechamente mediante el mecanismo de la tapa y parte de la parte superior de la cápsula se desprende mediante un mecanismo de alimentación que agarra el extremo de salida de la cápsula y rompe el reborde para abrir la cápsula y después tira de la cubierta para desprender la cubierta de la cápsula. Esta porción inicial del reborde puede requerir la mayor fuerza para abrirse y puede conseguirse por el usuario. Cuando la cubierta rompe el sello, un servomotor que produce menos par se puede seleccionar para reducir el coste y la complejidad de la máquina. En esta realización, la cápsula puede girar (por ejemplo, girada hacia abajo aproximadamente 45°-90° desde la horizontal) para facilitar la rotura y el desprendimiento de la cubierta en la parte superior de la cápsula.
 - Una superficie o borde de soporte soporta la lámina de cubierta y mantiene el borde anterior firmemente sujeto, pero permite que la lámina de cubierta se desprenda a lo largo de los rebordes de sellado dirigidos hacia fuera en la parte dispensadora del borde y a lo largo de los lados. Los rebordes pueden ser opcionales si, tras la selección de un material o configuración de cubierta apropiado, permite el desgarro uniforme a lo largo de una trayectoria deseada con una fuerza predeterminada. Esta forma de abrir el recipiente no requiere medios de corte ni otros medios

adaptados para abrir el recipiente que podrían contaminarse con la sustancia, lo que es ventajoso en cuanto a higiene y evitar la contaminación cruzada. Obviamente, como se describe en una realización alternativa a continuación, la cápsula se puede abrir a lo largo de un pliegue, abriendo uno o ambos bordes. En cualquier configuración, la cápsula se proporciona con una forma cóncava del borde anterior de la cápsula que tiene el efecto beneficioso de dirigir el flujo del producto mezclado, de manera que se reduzca o evite la salpicadura y contaminación del aparato dispensador.

(3) El procedimiento automatizado de dispensación del contenido desde dicho recipiente. La presente invención contempla una "infusión fría". Proceso en el que se preparan las bebidas en la máquina La Vit a través de una "infusión" fría, de manera que es posible la máxima mezcla por cápsula. Un usuario introduce una cápsula envasada individualmente en una máquina.

10

15

20

25

35

50

55

De acuerdo con otro aspecto de la invención, la sustancia, por ejemplo, polvo, jarabe u otra sustancia para bebidas no edulcoradas u otras, se dispensa directamente desde el recipiente a un recipiente de servir, por ejemplo, una taza o una botella. También se dispensa el agua en el recipiente de servir, de tal forma que la mezcla tiene lugar en el recipiente de servir, evitando así la contaminación.

Mezcla de bebidas: A medida que la cápsula entra en un ángulo de vertido de 45º-90º grados, se inyecta agua en la cápsula y el polvo o líquido en el interior de la cápsula se mezcla con el agua filtrada. La mayor parte o la totalidad de la mezcla del polvo se logra dentro de la cápsula. El polvo se aglomera y es altamente soluble por naturaleza.

Mezcla secundaria opcional: La mezcla a base de agua se suministra mediante gravedad en un "embudo" o "bandeja de captura", donde se produce una mezcla secundaria. Esta mezcla secundaria tendrá lugar con la ayuda del agua introducida en el lado de dicho embudo, por lo que se genera un remolino en la segunda cámara de mezcla. El embudo genera un remolino, que se complementa mediante una segunda boquilla que añade más agua a la mezcla. Después, la mezcla se suministra al embudo y fuera de la boquilla dispensadora a un receptáculo de bebida. Esta etapa es opcional y dependerá del modelo de la máguina.

Calidad de Vertido: La bebida sale de la cápsula (o la segunda cámara de mezcla) y se vierte directamente en el receptáculo/vaso del cliente. La corriente principal sale de la cápsula y por gravedad se suministra al receptáculo del cliente.

Corriente de acabado: Una segunda corriente relativamente presurizada de agua filtrada se inyecta directamente desde el receptáculo/vaso del cliente, provocando una agitación en el vaso, y haciendo de este modo que cualquier polvo o líquido no mezclado se mezcle completamente en el recipiente de bebida (por ejemplo, un vaso).

DESCRIPCIÓN DE REALIZACIONES EJEMPLARES EN LAS FIGURAS DE LOS DIBUJOS

La figura 1 es una vista isométrica de un dispensador de bebidas ejemplar 10 de la presente invención y la figura 1A
40 es una sección transversal tomada a lo largo de las líneas de sección 1A-1A en la figura 1. El dispensador de
bebidas 10 es adecuado para un entorno doméstico o comercial. Como se ilustra, el dispensador 10 generalmente
tiene forma rectangular y se adapta para ubicarse en una encimera de cocina o en alguna mesa de tamaño
adecuado. Si bien el tamaño general del dispositivo es de aproximadamente 30 cm de alto, 20 cm de profundidad y
35 cm de ancho, las dimensiones particulares pueden cambiar sin apartarse del alcance de la invención referida en
45 la memoria descriptiva.

El dispensador 10 incluye una pantalla opcional 12 para transmitir información sobre el estado del dispensador (tal como, la dispensación, la mezcla, una cápsula de tamaño inapropiado) o sobre otra información que pueda ser útil para un usuario, incluyendo información acerca de la bebida que se dispensa (tal como recuento de calorías, ingredientes, información del fabricante) o incluso anuncios. Los anuncios se pueden asociar a determinadas elecciones de bebidas, de manera que, por ejemplo, si una persona elige una bebida con vitaminas, un anuncio puede estar orientado a tiendas o productos asociados relacionados con la salud, que comercialicen productos asociados relacionados con la salud. La figura 1 ilustra la etapa 1, donde el dispositivo proporciona al usuario instrucciones iniciales, tales como, "seleccione una cápsula de bebida", "suba la palanca" e "inserte la cápsula". Las instrucciones pueden tener números o letras de etapas asociados como ayuda durante la utilización de la máquina. Se pueden utilizar diversas imágenes o iconos para representar las etapas o instrucciones. Los iconos pueden representar una etapa del proceso o pueden representar una condición de la máquina, por ejemplo, disponible, en funcionamiento, etc., o pueden representar una condición de la bebida, por ejemplo, caliente, tibia, fría, etc.

Por ejemplo, la pantalla puede programarse para ilustrar las etapas del proceso de dispensación de bebidas. La etapa 1 del proceso de dispensación puede incluir la pantalla que proporciona al usuario instrucciones iniciales, tales como, "seleccione una cápsula de bebida", "suba la palanca" e "inserte la cápsula". Las instrucciones pueden tener números o letras de etapas asociados como ayuda durante la utilización de la máquina. Se pueden utilizar diversas imágenes o iconos para representar las etapas o instrucciones. Los iconos pueden representar una etapa del proceso o pueden representar una condición de la máquina, por ejemplo, disponible, en funcionamiento, etc., o pueden representar una condición de la bebida, por ejemplo, caliente, tibia, fría, etc. Otra etapa, por ejemplo, la

etapa 2, del proceso puede incluir una pantalla que muestre información del dispositivo, por ejemplo, el dispositivo detecta que se ha realizado una etapa, por ejemplo, se ha insertado una cápsula en la máquina. La pantalla ilustra una solicitud de "dispensar", de modo que comience el proceso de dispensación. Después, el usuario puede presionar el botón o icono táctil para comenzar el proceso de dispensación. Alternativamente, se puede utilizar un botón en la máquina en lugar de o además del control de pantalla táctil. La instrucción se puede separar del icono que comenzará el proceso de dispensación de la bebida o puede superponerse con la instrucción. Una etapa adicional, por ejemplo, la etapa 3, puede ser cuando la pantalla se utiliza para mostrar el estado de la máquina durante el proceso de dispensación. Se puede utilizar un icono y/o palabras o frases para mostrar el estado de la máquina. Una etapa final, por ejemplo, etapa 4, puede ser una pantalla de visualización ejemplar adecuada para notificar al usuario que la bebida está lista y el proceso de dispensar se ha completado. De nuevo, se pueden utilizar palabras o iconos para comunicar el mensaje al usuario. Además, aunque se utilizan cuatro etapas para describir el proceso, la presente invención contempla el uso del proceso de dispensación de bebidas de pantalla táctil con más etapas como parte del proceso de dispensación. También se prevén menos etapas y están dentro del alcance de la invención. Por supuesto, se pueden utilizar otras luces, tales como luces LED, para iluminar diversas partes de la máquina y del compartimiento dispensador, de manera que se pueda proporcionar iluminación adicional y/o comunicar información al usuario. El código de barras de la cápsula permite que la máquina lea la cápsula y muestre información relacionada con la cápsula o la etapa correcta. La programación se puede actualizar utilizando una llave USB o de forma inalámbrica.

10

15

45

50

55

60

65

Se proporcionan unos botones de accionamiento 14 y 16 para permitir al usuario seleccionar una bebida particular. El botón 14, por ejemplo, se puede seleccionar para dispensar agua caliente y tener indicios apropiados para informar al usuario del dispensador de cuál podría ser la selección, en la ilustración se utiliza "H". Alternativamente, se pueden utilizar otros indicios, tal como el color (por ejemplo, rojo) o líneas onduladas sobre el símbolo de un líquido. Se puede utilizar el botón 16 para iniciar un ciclo de dispensación de una bebida, en el que se utiliza agua fría para mezclar la bebida y se pueden utilizar indicios apropiados (tal como la letra "C"). Obviamente, se pueden utilizar otros símbolos para indicar al accionador que dispense una bebida fría. Adicionalmente, se pueden utilizar sensores opcionales 18 para determinar la presencia de un recipiente de bebida (no ilustrado en la figura 1) en una ubicación de relleno apropiada 24 en la bandeja 22 del dispensador de bebidas.

El dispensador 10 incluye una puerta o cubierta que se puede abrir 26, accionada por una palanca 28. La cubierta 26 se ilustra en la parte superior del dispensador pero podría estar en la parte frontal o a los lados del dispensador. La cubierta o puerta se utiliza para acceder a la parte del compartimiento de recepción de la cápsula 30 del dispensador y, como se ilustra en la figura 1A, la cubierta incluye un pivote 27 que permite que la puerta se abra. Por supuesto, se pueden utilizar otros tipos de mecanismos. A continuación se describe un mecanismo para mezclar y dispensar una bebida de acuerdo con una realización de la invención. Se puede utilizar una papelera extraíble 40 con lados creados por paredes 42 para almacenar las cápsulas usadas, como se describe a continuación. Se puede utilizar una porción trasera 44 del dispensador 10 para alojar una CPU y otros componentes electrónicos 46, un recipiente de agua (en la figura 1A) o un enfriador (mencionado en la figura 9) para enfriar agua. Se puede proporcionar un calentador (mencionado en la figura 9) útil para calentar agua. Como una característica deseada opcional, el dispensador de bebidas puede incluir una ventana que muestra el filtro real o una representación de un filtro que comunica al usuario que el agua que se mueve a través del sistema se está filtrando.

Como se ilustra en la figura 1A, el dispensador 10 también incluye un embudo de mezcla opcional 48 que se puede utilizar para guiar el agua hacia el recipiente de bebida y facilitar el proceso de mezcla. El embudo de mezcla puede tener varias formas y sirve para guiar las bebidas. El embudo de mezcla se puede proporcionar opcionalmente con una boquilla 92 que dispensa una corriente de mezcla secundaria 94. Adicionalmente, se pueden utilizar otros tipos de estructuras de guiado de bebidas para guiar el líquido al recipiente de bebidas. Por ejemplo, aunque no se ilustra en esta realización, el líquido se puede guiar a lo largo de la parte interior, o incluso exterior, de un tubo o cilindro, de manera que la corriente se suavice. El tubo o cilindro de acabado, además, puede añadirse a o sustituir el embudo de mezcla.

En lugar o además del embudo de mezcla 48, una boquilla 45 puede proporcionar una corriente de acabado del líquido 230, por ejemplo, agua. La ubicación de la boquilla de la corriente de acabado 45 se encuentra preferiblemente en la parte delantera (desde la perspectiva de un usuario) de la corriente de mezcla del embudo 48, de estar presente, o la corriente de mezcla desde la cápsula, como se describe en detalle a continuación. Además de la corriente de acabado, se puede utilizar la corriente de mezcla, en lugar de la corriente de mezcla (en caso de que el usuario desee una bebida filtrada). Si la mezcla de bebida en la cápsula se deposita en el recipiente de bebida sin la corriente de mezcla, la corriente de acabado puede mezclar la bebida en el recipiente de mezcla. Adicionalmente, cuando se utiliza la corriente de acabado, como se describe en más detalle a continuación, la corriente turbulenta (y, tal vez, menos agradable desde el punto de vista estético) se puede cubrir con la corriente de acabado más laminar, proporcionando así al usuario una experiencia de dispensación de bebida más agradable desde el punto de vista estético.

La figura 2 ilustra una vista detallada de la inserción de una cápsula en la realización de la figura 1, y la figura 2A ilustra una sección transversal detallada tomada a lo largo de las líneas de sección 2A-2A en la figura 2 con una cápsula insertada en el dispositivo dispensador. La figura 2A también ilustra dos cápsulas 50, 52 que se pueden

utilizar para contener la mezcla que se puede mezclar por el dispensador 10. En esta realización de la invención, las cápsulas tienen una parte superior rectangular (o cuadrada) 54, 56, respectivamente, con una parte inferior curva arqueada 60, 62, respectivamente. La configuración de superficie arqueada se puede modificar para que quepa más o menos mezcla de bebida. Por ejemplo, una cápsula más pequeña 50 puede contener 20 cc de material y la cápsula más grande 52 puede contener 40 cc de mezcla. Puede ser deseable una cápsula más grande 52 para que más mezcla produzca una bebida más fuerte, edulcorante para producir una bebida más dulce o para que cualquier material que puede mezclarse pueda aceptar más volumen del disponible en el tamaño de 20 cc. Los elementos de cápsulas 50, 52 se describen más detalladamente, que incluyen un labio 68 sobre el cual se dispone una cubierta 70 (normalmente, con pegamento, que no se muestra), que, en una realización, puede ser papel de aluminio. El labio proporciona rigidez a la cápsula. En una realización preferida, una cubierta de papel de aluminio se pega o de otro modo se sella al labio de manera que quede fijado a la cápsula y el material se sella dentro de la cápsula hasta que se dispense por el dispensador.

5

10

15

20

25

30

35

40

45

50

55

60

65

Las figuras 2A-2D ilustran el proceso de apertura de la cápsula y la mezcla de bebida de acuerdo con una primera realización de la invención, que puede describirse como un proceso de corte y desprendimiento. Como se describe en más detalle a continuación, una porción del papel de aluminio se sujeta firmemente ("se pincha") y después un mecanismo gira la cápsula para rasgar o "pelar" la cápsula para abrirla, lo que permite mezclar la bebida. Por lo tanto, el procedimiento de apertura para la cápsula para esta realización es rasgar o desprender el papel de aluminio de la parte superior de la cápsula de manera que se pueda mezclar (opcionalmente) la bebida en la propia cápsula para reducir el proceso de contaminación del dispensador con polvo o bebida no mezclada, lo que podría permitir el crecimiento de bacterias. Se selecciona una cápsula 50, 52 para mezclar la bebida y se encaja dentro de la ranura 64 en una estructura 72 que gira sobre una bisagra 74 durante el proceso de dispensación, como se describe a continuación. Una vez que se desliza una cápsula 50, 52 hasta la ranura 64 de manera que se sujete firmemente por los tres lados (figura 2A), la cubierta 26 se cierra sobre una bisagra 27 en una dirección ilustrada por una flecha.

Se puede utilizar un lector óptico 80 para escanear información de la cápsula, de manera que la información sobre la cápsula y su contenido pueda procesarse en una CPU que contiene el envase electrónico 46 (que se muestra esquemáticamente en la figura 1) del dispensador de bebidas 10. De esa forma, el dispensador de bebidas puede asegurar que se incorpore cualquier variable programable (por ejemplo, temperatura, volumen, parámetros de mezcla, etc.) al proceso de mezcla del dispensador de bebidas para una bebida particular.

Volviendo al proceso de apertura de la cápsula, a medida que el usuario cierra la tapa, la tapa (o alguna otra parte del mecanismo de alimentación 78 agarra el extremo de salida 58 del papel de aluminio y "rompe" el reborde para abrirla. Esta primera porción inicial del reborde es la más difícil de abrir y se realiza por el usuario presionando la tapa 26. Una vez que se rompe, un servomotor (no mostrado) gira un engranaje 82 que, a su vez, hace girar un engranaje seguidor 84 que hace girar la estructura 72 alrededor de la bisagra 74. A medida que la estructura 72 gira, una porción de la cubierta 70 se mantiene inmóvil y el resto de la cápsula gira como se ilustra en la figura 2C. Opcionalmente, la cápsula se "rompe" mediante la fuerza de la cubierta y no mediante el servomotor dentro del dispensador. Esto permite el uso de un servomotor más pequeño y garantiza su longevidad. En este mecanismo, el papel de aluminio no se perfora, reduciendo así la posibilidad de contaminación por lo que sea que pueda encontrarse sobre la superficie de perforación. La separación de la lámina de cubierta de la parte dispensadora de la cápsula avanza entonces a lo largo del sello debilitado hacia los rebordes de sellado dirigidos hacia fuera. Esta forma de abrir la cápsula no requiere medios de corte ni otros medios adaptados para abrir la cápsula que podrían contaminarse con la sustancia, lo que es ventajoso en cuanto a higiene y evita la contaminación cruzada. Como también se ilustra en la figura 2C, se proporciona una corriente de mezcla 86 desde la boquilla 88 que mezcla el contenido de la cápsula en el recipiente y después se deja que la corriente de mezcla fluya hacia el embudo de mezcla 48 mediante una segunda boquilla 90 y 92 (figura 2C), de manera que la bebida mezclada se pueda guiar (y, tal vez, mezclar adicionalmente) en el embudo a medida que se dirige hacia el recipiente de bebida mezclada. Una corriente de acabado opcional, aunque a menudo deseada, se puede dirigir en dirección descendente en una dirección hacia el recipiente de bebidas 90. La corriente de acabado 230 de la boquilla 45 puede ayudar a mezclar la bebida (fuera de la cápsula) y dirigir la bebida mezclada hacia el vaso 90. El embudo puede ser opcional si la corriente de acabado se diseña de forma apropiada e ideal.

Una vez que se dispensa la bebida, la cápsula está lista para colocarse en la papelera de cápsulas usadas del dispensador de bebidas, como se ilustra en la figura 2D. El mecanismo de alimentación libera el borde 58 del papel de aluminio de su ubicación segura y la cápsula puede caer dentro del recipiente por gravedad. Preferiblemente, la estructura se orienta de manera que las ranuras dirijan la cápsula usada hacia el recipiente de cápsulas usadas. Se dispensa la bebida, la cápsula se ha dispuesto en la papelera de cápsulas usadas y el dispensador está listo para dispensar otra bebida. Un detector óptico 43 detecta cuando el compartimiento de cápsulas usadas se encuentra lleno y genera un mensaje en la pantalla 12 para vaciar la papelera.

La figura 3 es una vista isométrica de una segunda realización ejemplar de la presente invención y la figura 3A es una sección transversal tomada a lo largo de las líneas de sección 3A-3A en la figura 3. En esta realización, uno o ambos de los bordes frontales y posteriores de una cápsula construida especialmente se "rompen" a lo largo de un reborde para permitir que el dispositivo de bebida se mezcle (opcionalmente) en la cápsula. La forma y contorno

general del dispensador puede ser igual (y características similares del alojamiento del dispensador se identifican con números similares), el proceso de abrir una cápsula es diferente.

5

10

15

20

25

30

35

65

En la segunda realización, el dispensador 100 incluye una cubierta 126, la cubierta está configurada para cerrarse alrededor de una bisagra 127. Puede disponerse un sensor 80 en el alojamiento para leer instrucciones simbólicas en la cápsula. Las cápsulas, ilustradas en la figura 4A, pueden ser de dos tamaños, uno de 20 cc y otro de 40 cc. La principal diferencia entre los tamaños es el volumen de la parte inferior de la cápsula. La figura 4A también ilustra dos cápsulas 150, 152 que se pueden utilizar para contener la mezcla que se puede mezclar por el dispensador 100. En esta realización de la invención, las cápsulas tienen una parte superior rectangular (o cuadrada) 154, 156, respectivamente, con una parte inferior cóncava 160, 162, respectivamente. La configuración de superficie cóncava se puede modificar para que quepa más o menos mezcla de bebida. Por ejemplo, una cápsula más pequeña 150 puede contener 20 cc de material y la cápsula más grande 152 puede contener 40 cc de mezcla. Puede ser deseable una cápsula más grande para que más mezcla produzca una bebida más fuerte, edulcorante para producir una bebida más dulce o para que cualquier material que puede mezclarse pueda aceptar más volumen del disponible en el tamaño de 20 cc. Los elementos de la cápsula 50 se describen en más detalle, que incluyen un labio 168 sobre el cual se dispone una cubierta 170 (normalmente con pegamento, no mostrado), que, en una realización, puede ser papel de aluminio. El labio o borde enrollado proporciona rigidez a la cápsula. En una realización preferida, una cubierta de papel de aluminio se pega al labio de forma que quede sujetada firmemente a la cápsula y el material se sella dentro de la cápsula. Las cápsulas 150 y 152 se describen en más detalle en relación a las figuras 15-20.

La figura 5 es una vista isométrica de la segunda realización ejemplar de la presente invención con la cápsula 150 en el dispensador 100, y la figura 5A es una sección transversal tomada a lo largo de las líneas de sección 5A-5A en la figura 5. La figura 6 ilustra una vista de la inserción de una cápsula en la realización de la figura 5, y la figura 6A ilustra una sección transversal tomada a lo largo de las líneas de sección 6A-6A en la figura 6 con una cápsula dispuesta en el dispositivo dispensador. La cápsula 150 o 152 se dispone en una abertura en una estructura 200 que tiene un tamaño adecuado para alojar la cápsula en la base del labio 168. Una vez dispuesta en la estructura 200 como se ilustra en las figuras 5 y 5A, la cubierta cierra sobre una bisagra 127 que cierra la cubierta al dispensador. Como se ilustra en las figuras 6 y 6A, la cubierta incluye una porción 129 que se dispone enfrentada a la parte superior de la cápsula en la estructura 200. Un lector óptico 80 en la porción 129 escanea la información de la cápsula y la envía a la CPU (no mostrada en esta figura).

La estructura 200 incluye tres secciones 202, 204 y 206. La sección 204 es la porción central de la estructura y forma un asiento para sujetar firmemente la cápsula a medida que se abren los extremos de la cápsula. La sección 202, en la parte delantera de la cápsula y la sección 206 en la parte posterior están unidas a la porción central 204 por unas piezas de bisagra 210 y 212, respectivamente. La pieza de bisagra 210 permite que la sección delantera 202 oscile hacia arriba con respecto a la porción central 204. Asimismo, la pieza de bisagra 212 permite que la sección posterior oscile hacia arriba con respecto a la porción central 204.

40 En la posición observada en las figuras 6A y 6B, se puede considerar que la estructura 200 está en una posición "de reposo" estando la sección delantera, la porción central y la sección posterior alineadas en una relación plana por resortes o similares (no mostrados). La sección delantera 202 descansa sobre unos rieles laterales para guías 214. Los rieles 214 actúan tanto como levas y como topes como se describe a continuación. Una leva adicional 216 se encuentra justo debajo de la superficie inferior de la sección posterior 206 como se observa mejor en la figura 6A. 45 Desde la posición que se ve en la figura 6A, el usuario presiona manualmente hacia abajo las partes delanteras del labio de la cápsula 168 para que giren en el sentido contrario a las agujas del reloj alrededor de la bisagra 212. Los rieles 214 actúan como topes cuando los extremos de la cápsula se han roto por completo como se observa en la figura 7A. Después, el usuario puede liberar la cubierta durante los ciclos de mezcla y dispensación, ya que el mecanismo (no mostrado) retiene la cubierta y la estructura en sus posiciones completamente hacia abajo hasta 50 después del ciclo de rotura. Como se detalla en relación a las figuras 17-20, la cápsula incluye un pliegue que permite una rotura controlada y una apertura de los extremos de la cápsula como se ilustra en las figuras 7 y 7A. Es el movimiento relativo entre la porción central 204 y las porciones delantera y posterior 202 y 206 permitido por las bisagras 210 y 212 el que permite que la cápsula se abra. Por supuesto, se pueden usar diversos mecanismos para crear el movimiento relativo entre las secciones delantera y posterior y la sección central. Por ejemplo, la sección 55 central se puede descender por un servomecanismo o las secciones delantera y posterior se pueden mover con respecto a la sección central por un servomecanismo que permitirá el movimiento articulado entre la sección delantera y la sección central y la sección posterior y la sección central. Adicionalmente, si bien hay dos piezas articuladas, está dentro del alcance de la invención incluir una única pieza articulada y abrir solo un lado de la cápsula para permitir el vertido de la mezcla. Además, los términos delantero y posterior son con fines de orientación 60 y no han de considerarse como limitantes de la descripción de la invención. Es posible que la cápsula pueda orientarse a lo largo de un ángulo diferente que ilustrado de adelante hacia atrás y el mecanismo de vertido se podría ajustar conforme a ello. Además, la apertura y la mezcla podrían ser de adelante hacia atrás.

Como se ilustra en la figura 7A, en una realización de la invención, la mezcla en la cápsula se deja salir de la cápsula antes de la adición de un líquido. En esta realización, la mezcla puede ocurrir en un embudo de mezclado y/o en el propio recipiente de la bebida. La figura 7B ilustra posibilidades de mezcla alternativas. Una boquilla 218

fijada en la sección posterior 206 proporciona una corriente de mezcla 220 para hacer fluir agua al interior de la cápsula. Como se ilustra, la corriente de mezcla 220 se fija dentro de la estructura 200. Alternativamente, podría estar fuera de la estructura y orientada de forma que permita que la corriente entre en la parte superior de la cápsula para que el agua se pueda mezclar con la mezcla de bebida. La cantidad, fuerza y temperatura de la corriente de mezcla pueden ajustarse de acuerdo con la mezcla particular o pueden permanecer fijas en el dispositivo. Además, se puede usar una corriente de acabado 230 de la boquilla 45 para añadir más cantidad de agua que no es necesaria mezclar con la mezcla de bebida. Por ejemplo, en una porción de 8 oz., se pueden usar 3 onzas de agua para mezclar la bebida y se pueden incluir 5 oz. en la mezcla de acabado. Esto permite que se use la cantidad apropiada de agua con la mezcla sin demorar excesivamente el tiempo necesario para completar el proceso de mezcla y dispensación de la bebida. Adicionalmente, puesto que la corriente de acabado puede ser diferente de la corriente de mezcla, la temperatura del aqua de corriente de mezcla se puede calentar para asegurar que la mezcla de bebida se disuelva completamente. Se puede usar agua helada como la corriente de acabado para asegurar que la temperatura total de la bebida esté a una temperatura fría deseada. Otro beneficio del uso de una corriente de acabado opcional es que puede facilitar la creación de un fluio laminar de bebida fuera la máquina, de manera que un usuario del dispensador de la bebida tenga una visión más agradable del flujo laminar que sale del dispensador y no un flujo turbulento de bebida mezclada. Dicha corriente de acabado puede ayudar en el proceso de asegurar que el uso del dispositivo sea una experiencia agradable y relajante, de manera que se pueda disfrutar del proceso de preparación de una bebida.

10

15

30

35

40

45

50

55

60

65

Como se ha descrito anteriormente, con cualquier realización, hay varias alternativas que pueden emplearse en el proceso de mezcla. Todo el líquido para crear la bebida puede introducirse por la corriente de mezcla. Esto garantizará que se mezcle toda la bebida y minimizará la necesidad de una disposición de mezcla alternativa. Sin una corriente de acabado, el dispensador se simplificaría. Con las ventajas de una corriente de acabado, el uso del dispensador de bebida contemplado actualmente es tanto con una corriente de mezcla como con una corriente de acabado. La proporción de las cantidades de la corriente de acabado y la corriente de mezcla puede variar e incluso ajustarse según la bebida. Otro diseño alternativo contemplado es el uso de una "corriente de acabado", donde la mezcla de bebida se deja salir de la cápsula por gravedad.

El origen y la orientación de la corriente de acabado también pueden variar. La corriente de acabado se puede orientar para entrar en el recipiente de bebida desde un ángulo oblicuo y contribuir al proceso de mezcla en el recipiente de bebida. Se puede crear un remolino agradable en el vaso que puede contribuir a atributos del dispensador agradables desde el punto de vista estético. La corriente de acabado se puede introducir a la corriente de mezcla por debajo (y a lo largo del lado) de la abertura inferior de la cápsula. Así, la orientación de la corriente de mezcla se mantiene conforme con la corriente de acabado y la corriente de acabado puede introducir una calidad de flujo laminar a la corriente de mezcla de bebida y contribuir a otro tipo de aspecto agradable a la bebida dispensada. Por último, la corriente de acabado se puede orientar de manera que se una a la corriente de mezcla a medida que la corriente de mezcla sale de la cápsula. Esto permitirá que el flujo laminar se introduzca adicionalmente en la corriente de dispensado de bebida. Si se usan diferentes temperaturas para la corriente de mezcla y la corriente de acabado, esto permitirá que la mezcla iguale la temperatura a la temperatura deseada. Puesto que el agua más caliente disuelve la mezcla de bebida de una forma más uniforme, probablemente se podrá usar agua tibia/caliente para mezclar la bebida y se mezclará con agua helada o más fría de forma que la temperatura total de la bebida esté a una temperatura deseada. El uso de agua más caliente en la corriente de mezcla también puede permitir que pase menos agua a través de la cápsula de mezcla y acelerar la administración de la bebida mezclada. Por supuesto, es posible usar agua más fría en la cápsula de mezcla y agua más caliente en la corriente de acabado.

La figura 8 es una vista isométrica de otra realización ejemplar de la presente invención que ilustra una forma de comprimir la cápsula, y la figura 8A es una sección transversal tomada a lo largo de las líneas de sección 8A-8A en la figura 8. En esta realización, la bebida se ha dispensado y la cápsula se debe retirar de la estructura para permitir que el dispensador de bebida esté disponible para recibir otra cápsula y dispensar otra bebida. En esta realización, la sección central 204 está contenida en dos dedos móviles, un dedo izquierdo 204a y un dedo derecho 204b. Los dedos derecho e izquierdo se deslizan lateralmente hacia la cápsula de manera que la cápsula se comprima. El brazo izquierdo y derecho 204a y 204b pasan a través de unas ranuras en las paredes laterales del compartimiento que recibe la cápsula 30 y se accionan por unos accionadores lineales (no mostrados). La cápsula está hecha preferiblemente de un material ligero, que se puede comprimir, tal como una lámina de aluminio fina. Una vez que la cápsula se comprime, la cápsula caerá a través de la abertura en la estructura.

Se ilustra un mecanismo opcional 240 para abrir el recipiente de la cápsula vacía para permitir que caiga en el recipiente. Este mecanismo 240, que puede controlarse de forma mecánica o controlado por la CPU, incluye un motor accionador lineal que puede mover una pared 242 de manera que se oriente para recibir la cápsula, como se ilustra en la figura 8A. La CPU también puede controlar el receptáculo para que se oriente para el proceso de dispensación de otra bebida. Por supuesto, se pueden proporcionar unos resortes (no ilustrados) de manera que las porciones centrales 204a y 204b regresen a la posición para aceptar otra cápsula.

La figura 9 detalla un diagrama de flujo que ilustra un proceso ejemplar para la dispensación de una bebida de acuerdo con la presente invención. El proceso ejemplar incluye una etapa 300 de flujo de trabajo del dispensador que se puede mostrar en la pantalla táctil en el alojamiento 10. En la etapa 305, el dispositivo detecta si un recipiente

de bebida, tal como un vaso, está presente y qué tamaño tiene el recipiente. El dispositivo lee un código en la cápsula (o bolsita) y determina el tamaño de proporción por recipiente de acuerdo con la etapa 310. En la etapa 315, el dispositivo solicita al usuario que presione la palanca o de otro modo inicie la rotura del sello de la cápsula. En la etapa 320, el dispensador solicita al usuario que active la selección de bebida de agua caliente o fría. También es posible que el proceso de mezcla de bebida se pueda iniciar presionando la cubierta para romper la cápsula. Pueden incluirse diversas características de automatización para facilitar el inicio del proceso de mezcla y automatizar la diversidad del proceso de mezcla.

En la etapa 325, la pantalla de visualización muestra el estado de la bebida dispensada. En la etapa 330, el líquido que se dispensa se agota. En la etapa 335, el dispositivo avisa al usuario de que la bebida se ha dispensado e invita al usuario a retirar el recipiente de la bebida del dispensador. Cuando el dispositivo detecta que el recipiente de la bebida se ha retirado, se inicia el proceso de reciclaje en la etapa 340 y los dedos de la porción central 204a y 204b se mueven para comprimir la cápsula. La puerta de reciclaje también se abre en la etapa 340. En la etapa 345, la cápsula cae a la papelera de reciclaje y después la papelera de reciclaje se cierra en la etapa 350, y el sistema se puede purgar en la etapa 355.

Otras funciones del sistema se pueden comunicar con palabras o iconos en el sistema. Pueden realizarse posibles funciones por la máquina e ilustrarse en la pantalla táctil ya sea para informar al usuario de que se debe seguir una etapa o para notificar al usuario sobre el estado de la máquina. Por ejemplo, la pantalla táctil se puede usar para dar instrucciones al usuario para que purgue el sistema. Adicionalmente, una pantalla ejemplar para alertar al usuario de que la papelera de basura está llena y ha de vaciarse. El dispensador puede alertar al usuario cuando el tanque de agua fría está vacío y ha de llenarse. Por supuesto, la máquina puede tener una conexión a la línea de una fuente de agua, tal como agua corriente, en cuyo caso se puede alertar al usuario sobre asuntos con respecto a la alimentación de agua o problemas con la conexión. Se puede proporcionar una fuente de agua caliente y fría. Por último, si se usan filtros en el dispositivo, se puede proporcionar una pantalla para dar instrucciones al usuario de cambiar el filtro en el momento apropiado. Se puede incorporar en la programación el momento apropiado para el cambio del filtro, por ejemplo, por cantidad de usos, por cantidad de días, etc. La pantalla puede personalizarse si se desea permitir una limpieza periódica o un reemplazo del "prefiltro" y el "filtro de pulido" en diferentes tiempos de ciclo. Además, pueden usarse diversas varias imágenes o iconos para informar y entretener al usuario durante el ciclo de preparación y dispensación. Las imágenes e iconos pueden ser fijos o móviles.

La figura 10 es un sistema ejemplar esquemático 450 que describe las trayectorias del flujo para los fluidos en el dispensador de bebida. Se puede suministrar agua por un conducto de agua corriente 452 y/o un tanque de agua rellenable 454. El tanque rellenable puede tener una capacidad de aproximadamente 2-5 litros. El tanque debería tener suficiente capacidad para permitir preparar diversas bebidas en serie sin una demora excesiva para enfriar o rellenar el tanque. Se puede usar una bomba 456 para mover agua a través de un conducto 458 desde el tanque de agua 454 hacia una válvula de sistema 460 que controla la fuente de agua que se va a usar en la dispensación. La válvula del sistema 458 se puede usar para interrumpir el agua al dispensador. El prefiltro 430 se dispone a lo largo de la línea de conducto 462. El prefiltro puede ser un filtro disponible en el mercado adecuado a efectos de purificar el agua y retirar las impurezas. Una válvula de conducto 464 es una válvula que controla el circuito de agua de acabado 466 y el circuito de purga 490. También se proporciona una bomba de dispensación 470 a lo largo del conducto 466 para proporcionar un líquido que se va a dispensar desde el dispensador.

En unidades que proporcionan bebidas tanto calientes como frías, la unidad se puede configurar como se ilustra con un tanque de agua caliente 472 y una unidad de refrigeración/enfriamiento 474. Diversas válvulas 476, 478 y 480 y conductos 464, 482, 484, 486, 488 conectan los componentes. Las salidas del dispensador 494, 496 se usan para dispensar agua desde el sistema.

El dispensador de acuerdo con la presente invención puede incluir un "bucle de higienización" que desinfecta todos los conductos no clorados del postfiltro, de manera que las bacterias en los conductos y componentes se aborden de un modo eficaz. Los conductos, por ejemplo, se pueden limpiar abriendo las válvulas 480, 478 y 476 para permitir que los conductos ciclen el agua caliente. Se pueden usar otros tipos de diseños de limpieza/desinfección, por ejemplo los conductos pueden tener un conducto de flujo interno y uno externo que permiten que el fluido limpiador circule.

Las figuras 11A y 11B ilustran otra realización de la presente invención donde la vibración se utiliza en el proceso de mezcla y/o dispensación de bebidas. En esta realización, la cápsula 150 se dispone en la porción central 504 de la estructura 500 y la sección delantera de la estructura 502 y la sección posterior de la estructura 506 se articulen (en 510 y 512) como se ha descrito en la realización anterior. En este documento, la orientación de la cápsula 152 se dispone adyacente a un mecanismo de vibración 520 que es un brazo de peso excéntrico 522 conectado por un eje 524 a un motor rotatorio (no mostrado). A medida que el motor rotatorio gira el peso excéntrico, la vibración creada en la cápsula 152 mezcla la mezcla de bebida en la cápsula. La ubicación del dispositivo de vibración puede ser en cualquier lugar a lo largo de la porción cóncava de la cápsula. Esto puede servir para facilitar el proceso de mezcla de bebida. Además, la vibración puede servir para facilitar el movimiento de la mezcla de bebida para que salga de la cápsula y entre en el área de mezclado. En una forma preferida, ilustrada en la figura 11B, la vibración se acopla

cuando se produce la mezcla para asegurar que la mezcla esté completamente humedecida y disuelta en el agua de mezcla.

Se puede usar vibración con una corriente de mezcla como se ilustra. También se puede usar con una corriente de mezcla y acabado. Por último, es posible que la vibración pueda diseñarse de forma tal que una cantidad suficiente de material vibre de la cápsula y sea capaz de mezclarse en el recipiente de bebida o en un embudo de mezcla.

También se ilustra en las figuras 11A y 11B una característica adicional de la estructura 500 que permite una apertura más uniforme de la cápsula durante el proceso de apertura. Una porción elevada 540 en la parte delantera de la estructura 502 proporciona un lugar focal para hacer una grieta inicial en el sello de la cápsula. Una vez que se ha producido la apertura inicial, la apertura seguirá el pliegue a lo largo de los extremos delantero y posterior de la cápsula y asegurarán un proceso de apertura regular y uniforme que incluye la menor fuerza necesaria y el patrón más predecible a través del extremo delantero y posterior de la cápsula. Como se ilustra en la figura 11B, la cápsula durante la mezcla se orienta en un ángulo de tal forma que se facilita la mezcla y el vertido desde la cápsula. El lado de la cápsula (la sección cóncava) se puede orientar unos pocos grados desviado de la horizontal como se indica en la línea horizontal en la parte inferior de la cápsula.

Las figuras 12A, 12B, 13A, 13B ilustran detalles del proceso de apertura de la cápsula en la realización descrita en relación a las figuras 5-7 y 11 de la presente invención. En particular, la sección delantera de la estructura incluye una porción elevada 540 a lo largo del centro simétrico de la cápsula. Por supuesto, la parte elevada puede estar tanto en la parte delantera como en la posterior de las porciones en la estructura. Como se ilustra en la figura 12B, que ilustra una cápsula abierta usando una estructura con una porción elevada, la sección abierta 520 es regular y uniforme a lo largo del pliegue de la cápsula. La abertura 522 que se crea sin una porción elevada 540 se ilustra a efectos de comparación. Las figuras 13A y 13B ilustran una realización alternativa de la porción elevada 550 en la estructura. En esta realización, se dispone a una distancia lejos de la línea central de la cápsula. Esto facilitará la apertura de la cápsula a lo largo del pliegue a través de la parte delantera (o posterior) de la cápsula. Como se ilustra en la figura 13B, la cápsula se abre en 524 con la porción elevada 550 desviada de la línea central.

Las figuras 14A-14F ilustran detalles del proceso de apertura de la cápsula para la realización descrita en las figuras 5, 7 y 11, en las que se ilustra un pliegue en la cápsula. En la cápsula 600 ilustrada en la figura 14A, la cápsula incluye una porción inferior 602 y un labio 604. El extremo de la cubierta de papel de aluminio 606 cuelga del labio ligeramente. La cápsula 600 está construida con un pliegue 610, 612 en la parte delantera y posterior, respectivamente, a lo largo de la parte inferior del labio 604. El pliegue sirve para crear una trayectoria predeterminada para que la cápsula se abra, como se ilustra en las figuras Las figuras 14C y 14D ilustran una ubicación particular de un pliegue o sección debilitada 610. La línea de rasgadura está inmediatamente por debajo del labio 604 y produce una abertura como se ilustra en la figura 14D. La abertura puede tener un borde más regular dependiendo del tipo de material con el que se construye la cápsula y el tipo de ranura o sección debilitada que se encuentra en la cápsula. Las figuras 14E y 14F ilustran una ubicación alternativa para un pliegue 620. El pliegue o borde de rotura está en el labio 604 de manera que el mecanismo de rotura y apertura pueda desprender suavemente la tapa del borde de la cápsula como se ilustra en la cápsula abierta en la figura 14F. En esta configuración, la apertura puede ser entre el papel de aluminio y el labio (por ejemplo, separando por donde está el pegamento o el punto de fijación entre el labio y el papel de aluminio) o puede estar por debajo de la superficie superior del labio y una porción del labio puede romperse hacia atrás con el papel de aluminio.

Las figuras 15-17 ilustran vistas lateral superior y final, respectivamente, de una cápsula 700 de la presente invención que se puede usar con la segunda realización de la invención. La cápsula 700 incluye una cubierta de papel de aluminio 702, un labio o parte rizada 704 y una porción de cuerpo cóncavo 706. La porción de cuerpo cóncavo pretende contener el material de mezcla. La parte inferior de la porción de cuerpo cóncavo puede incluir una sección aplanada 710. La sección aplanada puede facilitar la estabilización de la cápsula en una mesa y el apilamiento de las cápsulas en una columna. Los lados del cuerpo cóncavo pueden conformarse de una manera que permitan una adecuada presión del material para crear el material cóncavo. La porción de labio 704 puede formarse durante el mismo proceso de la porción de cuerpo. Alternativamente, la porción de labio puede añadirse después del proceso de formación de cuerpo en un proceso de montaje secundario que podría agilizar la formación de la porción de cuerpo. La cubierta de papel de aluminio sella la mezcla de bebida en la cápsula. Se puede usar pegamento o algún otro material para crear el sello. El sello puede ser plano como se ilustra o, como alternativa, podría tener un contorno u orientación diferente con respecto al borde de la cápsula. Se puede proporcionar un pliegue o sección debilitada 712, 714 al labio o al cuerpo adyacente al labio. La sección debilitada puede perforarse o ser una sección afinada de material. El borde de la sección debilitada puede extenderse cierta porción alrededor de la cápsula como se ilustra, podría estar a lo largo de una porción de la cápsula, hasta aproximadamente un cuarto de la dirección longitudinal de la cápsula como se ilustra en la figura 15, distancia de referencia a y b. Se pueden proporcionar diferentes dimensiones para a y b según sea necesario para las características de apertura. La cápsula puede dimensionarse de manera que únicamente una cápsula particular se pueda usar en la máquina, y la cápsula puede tener una orientación irregular de manera que únicamente una cápsula en una orientación particular se pueda usar en el cartucho.

65

5

10

15

20

25

30

35

40

45

50

55

Las figuras 18-20 ilustran vistas lateral superior y final, respectivamente, de otra cápsula mayor 800 de la presente invención que se puede usar con la segunda realización de la invención. La cápsula 800 incluye una cubierta de papel de aluminio 802, un labio o parte rizada 804 y una porción de cuerpo cóncavo 806. La porción de cuerpo cóncavo pretende contener el material de mezcla. La parte inferior de la porción de cuerpo cóncavo puede incluir una sección aplanada 810. La sección aplanada puede facilitar la estabilización de la cápsula en una mesa y el apilamiento de las cápsulas en una columna. Los lados del cuerpo cóncavo pueden conformarse de una manera que permitan una adecuada presión del material para crear el material cóncavo. La porción de labio 804 puede formarse durante el mismo proceso de la porción de cuerpo. Alternativamente, la porción de labio puede añadirse después del proceso de formación de cuerpo en un proceso de montaje secundario que podría agilizar la formación de la porción de cuerpo. La cubierta de papel de aluminio sella la mezcla de bebida en la cápsula. Se puede usar pegamento o algún otro material para crear el sello.

El sello puede ser plano como se ilustra o, como alternativa, podría tener un contorno u orientación diferente con respecto al borde de la cápsula. Se puede proporcionar un pliegue o sección debilitada 812, 814 al labio o al cuerpo adyacente al labio. La sección debilitada puede perforarse o ser una sección afinada de material. El borde de la sección debilitada puede extenderse cierta porción alrededor de la cápsula como se ilustra, podría estar a lo largo de una porción de la cápsula, hasta aproximadamente un cuarto de la dirección longitudinal de la cápsula como se ilustra en la figura 18, distancia de referencia c y d. Se pueden proporcionar diferentes dimensiones para c y d según sea necesario para las características de apertura. La cápsula puede dimensionarse de manera que únicamente una cápsula particular se pueda usar en la máquina, y la cápsula puede tener una orientación irregular de manera que únicamente una cápsula en una orientación particular se pueda usar en el cartucho.

Detalles adicionales de la invención

- El uso de un mecanismo de desprendimiento para abrir una cápsula es una forma única y deseada de abrir la cápsula. El desprendimiento de la cápsula expande la cantidad de espacio en el interior de la cápsula permitiendo que un polvo aglomerado tenga más espacio para mezclarse con el agua filtrada. El procedimiento de presión de borde se puede usar con cualquiera de las realizaciones de la presente invención. En un procedimiento de mezcla de cápsula, la mezcla de cápsula permite que la solución mezclada salga rápidamente de la cápsula dejando que agua nueva se mezcle constantemente con una nueva capa de polvo seco de tal forma que el polvo no se humedezca ni forme grumos. El polvo aglomerado no se mezcla fácilmente cuando se envasa firmemente. La cápsula se puede llenar con polvo o líquido. Opcionalmente para usar un polvo o un líquido en la cápsula. En cualquier caso, puede usarse vibración para mezclar el material en la cápsula con agua.
- Otra ventaja de la presente invención es que el exterior de la cápsula no entra en contacto con la bebida. No hay contacto de producto final con el exterior de la cápsula, ya que no hay perforación de la tapa de papel de aluminio o la base de cápsula en la bebida. La mayoría de las máquinas tienen contacto con la parte exterior de la cápsula y la bebida final, lo que no es higiénico. La parte exterior de la cápsula se ha manipulado de una forma no estéril. La expulsión de cápsula automatizada evita que la cápsula usada cree bacterias dentro de la cámara de mezclado.

 Tener una cámara vacía permite la esterilización de dicha cámara.
 - Pantalla a color: Ofrece a los usuarios una experiencia de bebida comercial
 - Las cápsulas son muy ecológicas y fácilmente reciclables.
 - Apariencia y sensación de calidad superior de cápsulas y máquina

Si bien hay muchos mecanismos de perforación que preparan y administran bebidas, se cree que el mecanismo de desprendimiento de La Vit es una nueva forma de preparar y administrar bebidas. Al exponer el interior de la cápsula a un chorro de agua, el mecanismo evita cualquier acumulación o agrupación del polvo en cualquier parte de la cápsula ya que la mezcla se elimina fácilmente de la cápsula permitiendo una mezcla completa y uniforme de la sustancia. Un futuro desarrollo podría incluir introducir una forma diferente de desprender o abrir la cápsula, una forma de cápsula diferente y una forma diferente de mezclar los agentes y el agua. Cuando se produce el mezclado en la cápsula y cuando está vacía, ésta no es propensa al moho o el crecimiento de bacterias como otro sistema basado en cápsulas donde la cápsula no se limpia.

Las aplicaciones comerciales del producto incluyen la oficina y el hogar principalmente, pero incluyen hospitales, instituciones, escuelas, hoteles, cruceros y cualquier ambiente donde una máquina de bebida de punto de utilización sería conveniente y beneficiosa.

60

55

45

50

5

10

15

REIVINDICACIONES

- 1. Un dispensador para mezclar una bebida desde una cápsula, comprendiendo el dispensador:
- una estructura para alojar la cápsula de manera que la cápsula se sitúe de forma segura dentro de la estructura, un mecanismo para abrir al menos un borde de una cubierta de la capsula, situando la estructura la cápsula de manera que, cuando la cápsula se abra, una corriente de mezcla se dirija al interior de la cápsula y se configure para verter un borde abierto de la cápsula.
- 10 2. El dispensador referido en la reivindicación 1, en el que el mecanismo para abrir la cubierta de la cápsula desprende la cubierta de la cápsula.
 - 3. El dispensador referido en la reivindicación 1, en el que el mecanismo para abrir la cubierta de la cápsula rompe la cubierta de la cápsula.
- 4. El dispensador referido en la reivindicación 1, comprendiendo la estructura una bisagra, de manera que el mecanismo pueda bascularse sobre la bisagra para realizar la apertura de la cápsula, y en el que la cápsula incluye un material delgado en la parte superior de la cápsula y el mecanismo incluye adicionalmente un medio para asegurar un borde del material delgado, de manera que el material permanezca fijo mientras el mecanismo bascula la estructura sobre la bisagra para realizar la apertura de la cápsula.
 - 5. El dispensador referido en la reivindicación 4, en el que la estructura se adapta para ubicar la cápsula de manera que una corriente de mezcla pueda mezclar la bebida en la cápsula.
- 25 6. El dispensador referido en la reivindicación 5, que comprende adicionalmente una corriente de acabado que no está orientada para entrar en la cápsula y se dirige hacia un recipiente de bebida.
 - 7. El dispensador referido en la reivindicación 1, que comprende adicionalmente:
- 30 un lector en el dispensador para leer información codificada en una cápsula; y un ordenador en el dispensador para preparar la bebida de acuerdo con un conjunto de instrucciones, basándose en la información codificada de la cápsula.
- 8. El dispensador referido en la reivindicación 1, que comprende adicionalmente una estructura que incluye al menos un extremo que gira sobre bisagras con respecto a una porción central, incluyendo el mecanismo adicionalmente una porción del dispositivo que inmoviliza la cápsula con respecto a la estructura, abriendo el mecanismo la cápsula girando el al menos un extremo con respecto a la porción central para abrir la cápsula.
- 9. El dispensador referido en la reivindicación 8, que comprende adicionalmente una boquilla de corriente de mezcla adaptada para proporcionar una corriente de mezcla de agua en la cápsula cuando la cápsula se abre por un extremo delantero del al menos un extremo que gira.
 - 10. El dispensador referido en la reivindicación 9, que comprende adicionalmente una segunda boquilla adaptada para proporcionar una corriente de acabado de agua además de la corriente de mezcla, en el que la corriente de acabado se dirige hacia el recipiente de bebida sin pasar por la cápsula.
 - 11. El dispensador referido en la reivindicación 9 o la reivindicación 10, en el que la estructura se adapta para ubicar la cápsula de manera que la corriente de mezcla pueda mezclar la bebida en la cápsula.
- 50 12. El dispensador referido en la reivindicación 11, en el que la estructura se adapta para ubicar la cápsula de manera que la corriente de acabado pueda mezclar adicionalmente la bebida en el recipiente de bebida.
 - 13. Una cápsula para usar en un dispensador de bebidas que comprende:
- un receptáculo cóncavo para contener una mezcla;
 - un borde que forma una abertura en un receptáculo externo, teniendo el borde una sección plana; y una cubierta que se adapta para disponerse en la sección plana del borde;
- 60 en la que la cápsula se adapta para abrirse desde al menos un borde y la cápsula se adapta para permitir que una bebida se mezcle dentro del receptáculo de la cápsula.
 - 14. La cápsula referida en la reivindicación 13, que comprende adicionalmente un pliegue a lo largo de un canto de la cápsula adyacente al borde, en la que la cápsula se adapta para abrirse a lo largo del pliegue.
 - 15. La cápsula referida en la reivindicación 14, en la que la cápsula tiene una parte superior axisimétrica.

45

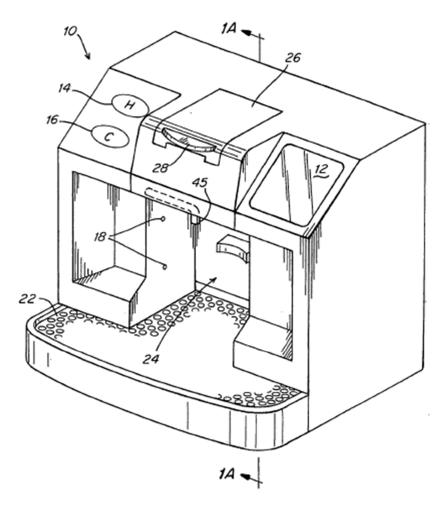


Fig. 1

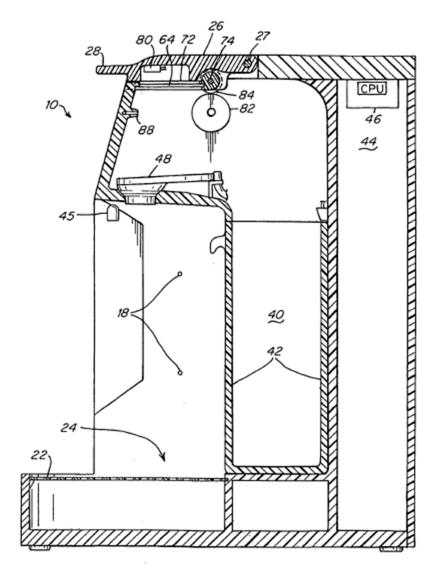
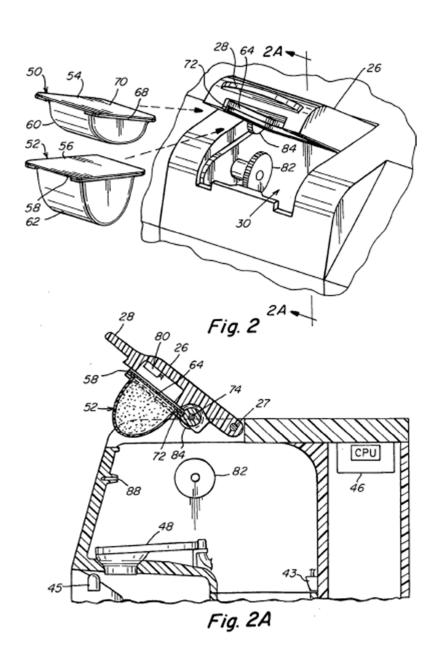
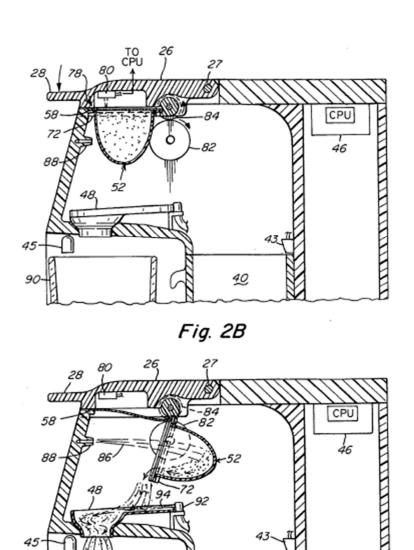




Fig. 1A

40

Fig. 2C

Fig. 2D

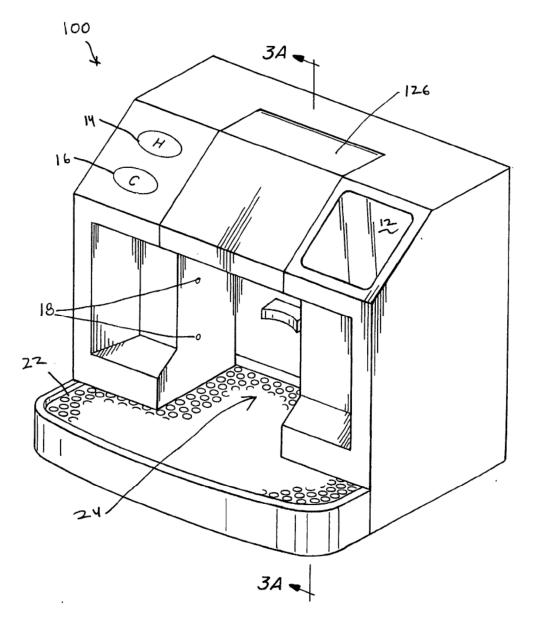
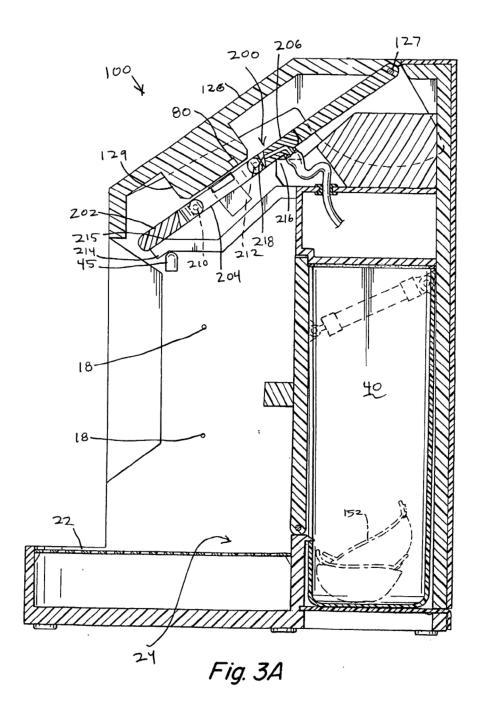
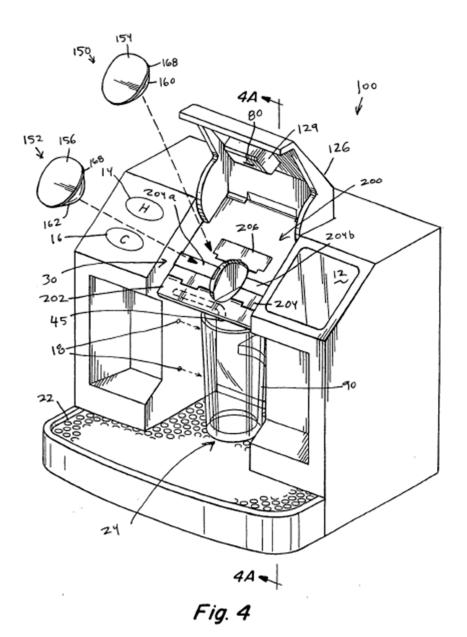




Fig. 3

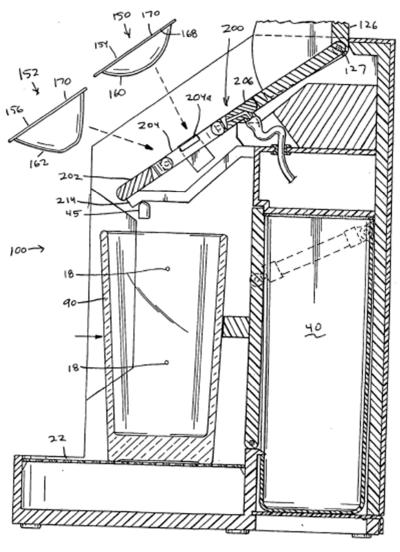
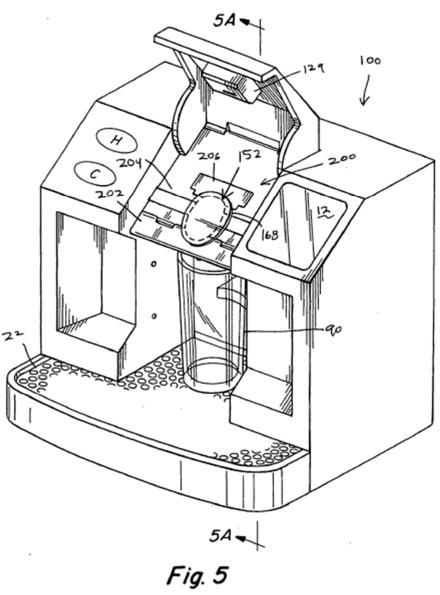
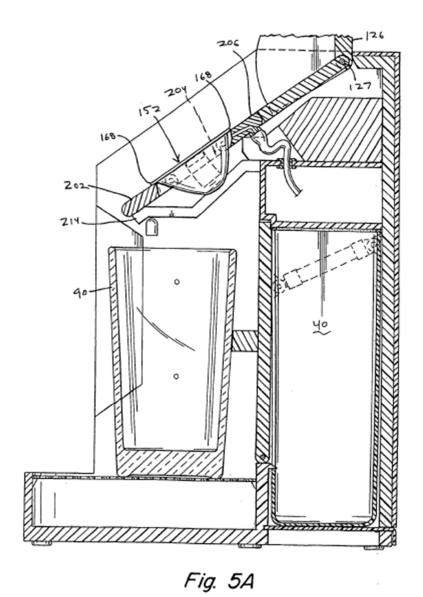
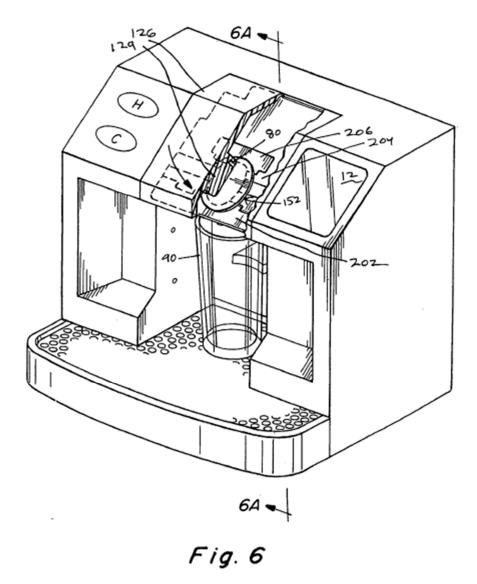





Fig. 4A

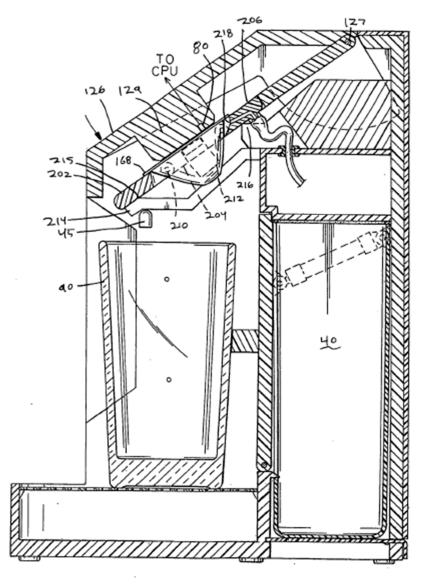
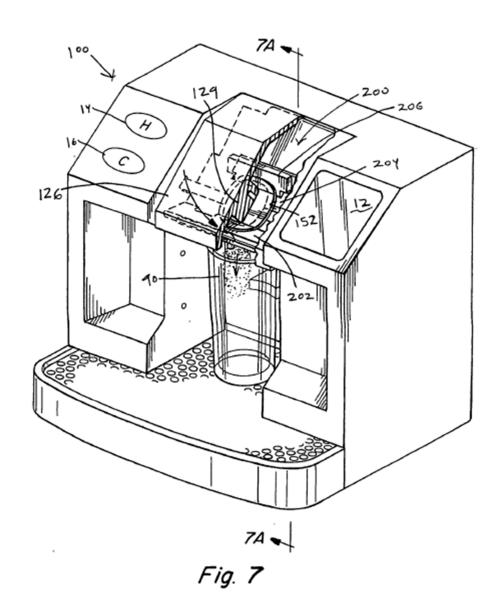



Fig. 6A

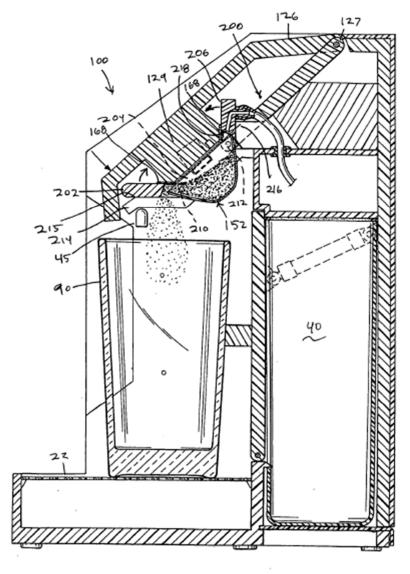


Fig. 7A

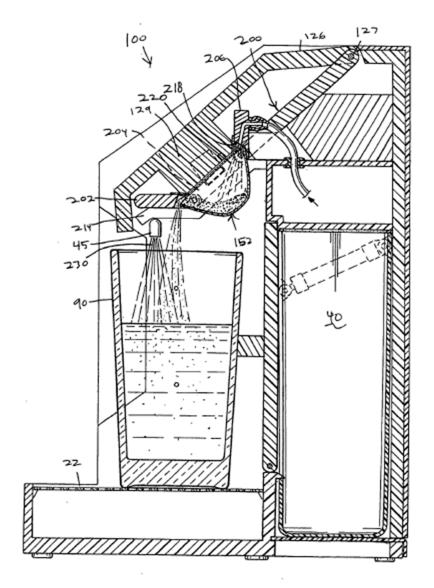
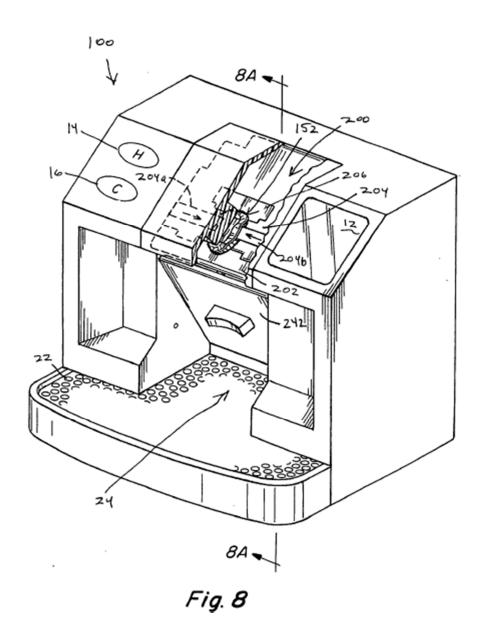
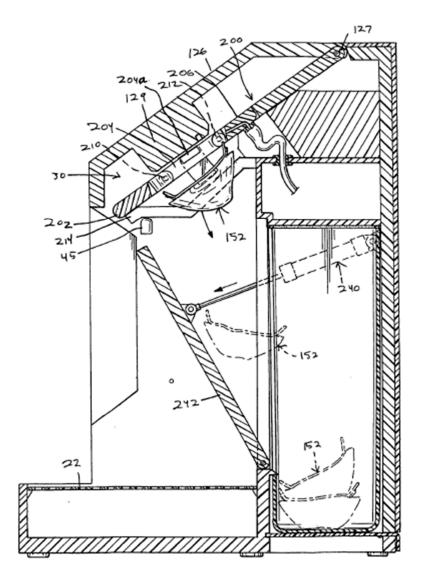
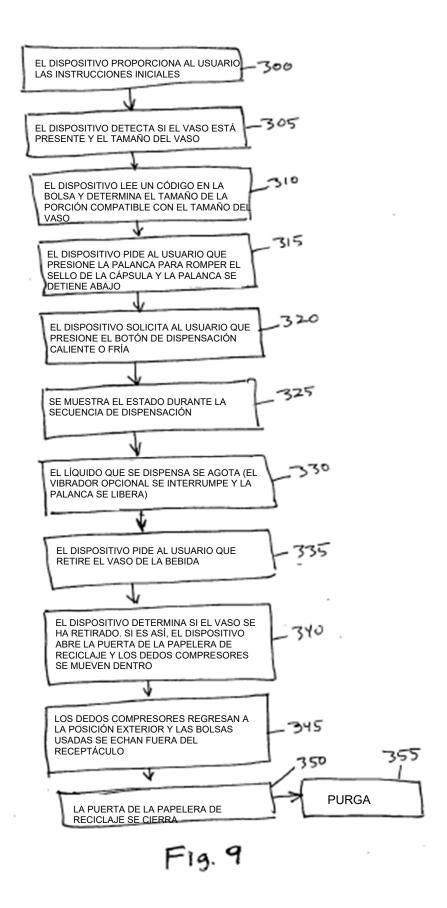
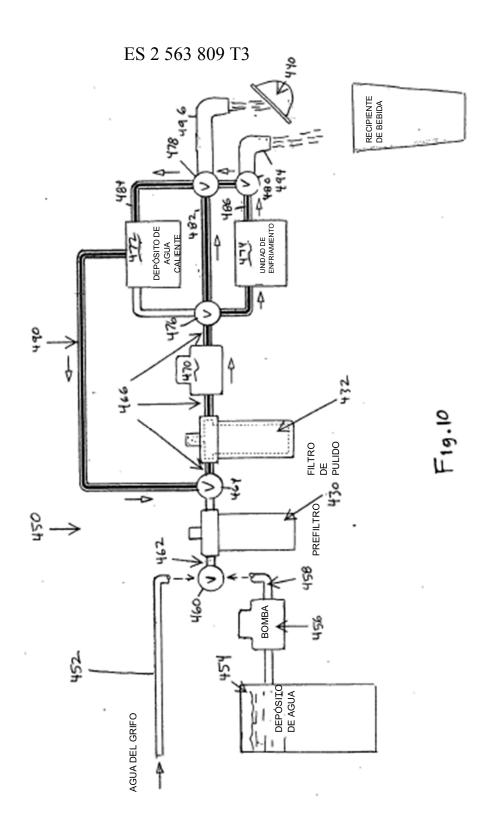
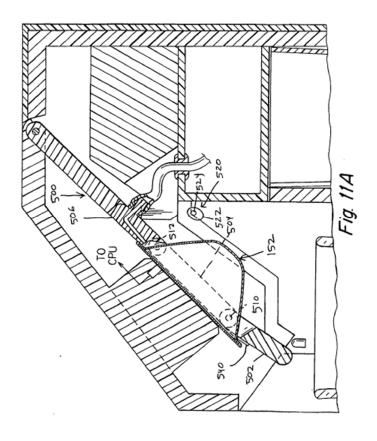
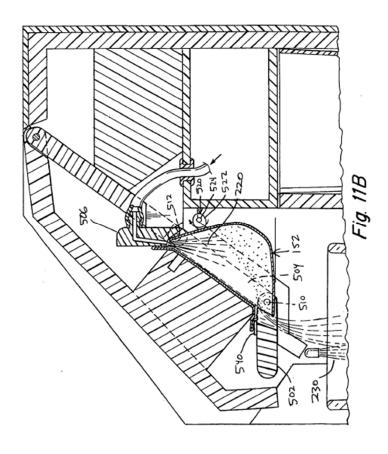
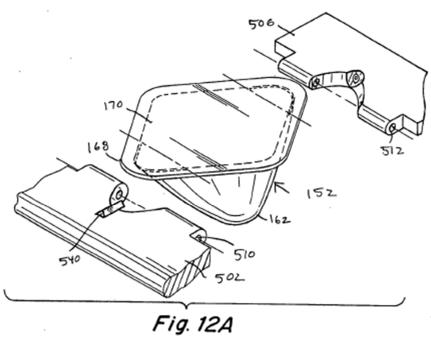



Fig. 7B


Fig. 8A

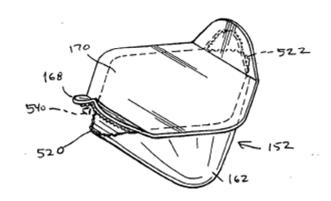


Fig. 12B

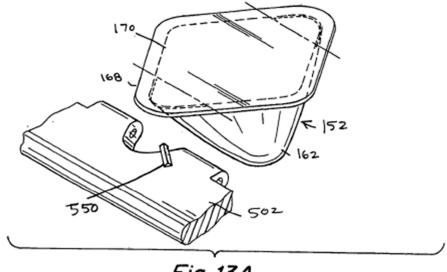


Fig. 13A

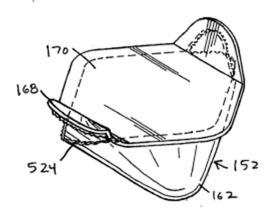
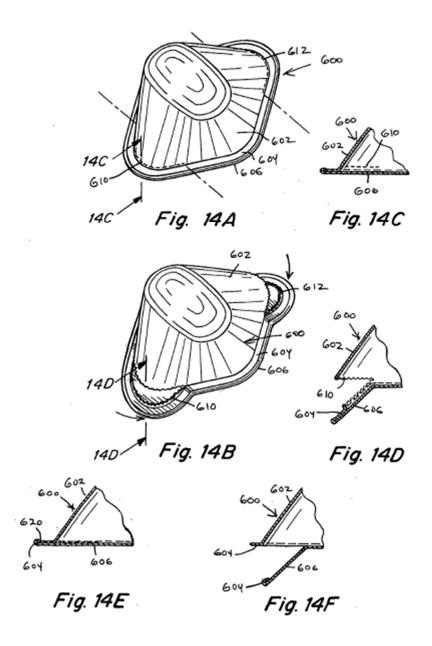
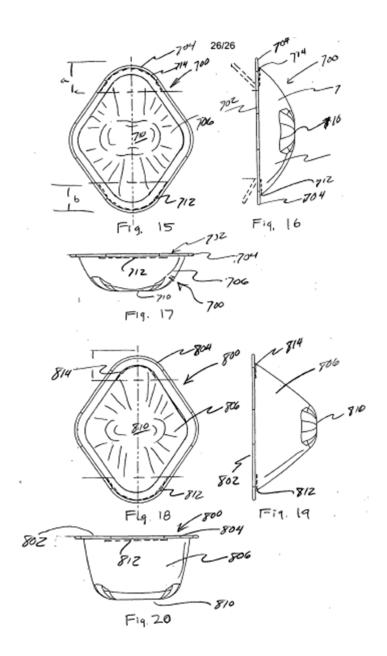




Fig. 13B

