



OFICINA ESPAÑOLA DE PATENTES Y MARCAS

**ESPAÑA** 



11) Número de publicación: 2 564 371

(51) Int. CI.:

B29B 13/10 (2006.01) **B29C 47/00** (2006.01) B29B 17/04 (2006.01) **B29C 47/38** (2006.01) B29C 47/60

(2006.01) B02C 18/08 (2006.01) B01F 15/02 (2006.01) B02C 18/22 (2006.01) B29B 7/10 B29B 7/14 (2006.01) B29B 7/18 (2006.01) B29B 17/00 (2006.01)

(12)

## TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 12.10.2012 E 12781264 (2) (97) Fecha y número de publicación de la concesión europea: 16.12.2015 EP 2766166
- (54) Título: Dispositivo para pretratar materiales sintéticos
- (30) Prioridad:

14.10.2011 AT 15072011

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 22.03.2016

(73) Titular/es:

**EREMA ENGINEERING RECYCLING MASCHINEN UND ANLAGEN GESELLSCHAFT M.B.H. (100.0%)** Freindorf Unterfeldstrasse 3 4052 Ansfelden, AT

(72) Inventor/es:

FEICHTINGER, KLAUS y HACKL, MANFRED

(74) Agente/Representante:

SANZ-BERMELL MARTÍNEZ, Alejandro

## **DESCRIPCION**

- La invención se refiere a un dispositivo según el concepto general de la reivindicación 1.
- Del estado de la técnica se conocen numerosos dispositivos similares de distintos tipos de construcción que comprenden un recipiente colector o compresor de corte para triturar, calentar, ablandar y procesar un material plástico a reciclar, así como un transportador o extrusor conectado a él para fundir el material pretratado de ese modo. El objetivo es obtener un producto final de la mayor calidad posible, generalmente en forma de granulado.
- Por ejemplo, en EP 123 771 o en EP 303 929 se describen dispositivos con un recipiente colector y un extrusor conectado a él, en el que el material plástico alimentado al recipiente colector, con la rotación de las herramientas de trituración y de mezcla, se tritura, se lleva a un movimiento de giro formando un torbellino y se calienta simultáneamente mediante la energía aportada. Con ello, se forma una mezcla con una homogeneidad térmica suficientemente buena. Pasado el tiempo de permanencia correspondiente, esta mezcla se descarga del recipiente colector al extrusor de tornillo sinfín, se transporta y, al mismo tiempo, se plastifica o funde. El extrusor de tornillo sinfín está dispuesto aproximadamente a la altura de las herramientas de trituración. De este modo, las partículas de plástico ablandadas se introducen mediante las herramientas de
  - En EP 1 283 855 B1 se divulga un dispositivo según el concepto general de la reivindicación 1.

activamente a presión o se alimentan al extrusor.

- 20 La mayoría de estas construcciones, conocidas desde hace ya tiempo, no son satisfactorias en cuanto a la calidad del material plástico procesado que se obtiene a la salida del extrusor y/o en lo que respecta al rendimiento del tornillo sinfín. Mediante ensayos, se ha comprobado que los requisitos de los tornillos sinfín acoplados a continuación del recipiente, la mayoría de las veces un tornillo sinfín plastificante, no son iguales a lo largo del funcionamiento.
- En un material homogéneo térmica y mecánicamente, se produce normalmente una mejora de la calidad del material obtenido a la salida del tornillo sinfín cuando la profundidad del paso de rosca de la zona de dosificación del tornillo sinfín es muy elevada y las revoluciones del tornillo sinfín se mantienen muy bajas. Mediante ensayos se ha comprobado que el motivo de esto es que el material procesado mediante una geometría de tornillo sinfín de este tipo es sometido a un cizallamiento reducido. El cizallamiento del material tratado (velocidad de cizallamiento) se calcula dividiendo la velocidad periférica del tornillo sinfín por la profundidad del paso de rosca del tornillo sinfín. Con una geometría del tornillo sinfín de este tipo, el material únicamente se somete a una solicitación mecánica y térmica reducida.
  - Sin embargo, si se le da importancia a un aumento de la descarga del tornillo sinfín o a mejorar el rendimiento de, por ejemplo, una combinación de despedazador-extrusor, entonces hay que elevar la velocidad de rotación del tornillo sinfín, lo que significa que también se eleva el cizallamiento. Pero con esto, el material procesado es sometido a una mayor solicitación mecánica y térmica.
    - Tanto en los tornillos sinfín de marcha lenta y de corte profundo con mayor profundidad del paso de rosca como también en los tornillos sinfín de marcha rápida, las ya mencionadas diferencias de calidad de cada partida de material introducida en el tornillo sinfín, p. ej. distintos tamaños de copos y/o distintas temperaturas del material plástico, suponen una desventaja en cuanto a la falta de homogeneidad del material plástico obtenido a la salida del tornillo sinfín. Para igualar estas inhomogeneidades, en la práctica se aumenta el perfil de temperatura del extrusor, lo que significa que se tiene que aportar al plástico energía adicional, lo que
- produce los daños térmicos del material plástico mencionados y un aumento del consumo energético. Además, con ello se reduce la viscosidad del material plástico obtenido a la salida del extrusor, es decir, es más líquido, lo que conlleva dificultades en la posterior transformación de este material.
  - Por lo tanto, queda claro que los parámetros del proceso para obtener una buena calidad de material a la salida del tornillo sinfín son contradictorios entre sí.
  - El principal cometido del tornillo sinfín del extrusor es captar el material plástico, transportarlo, fundirlo o aglomerarlo y, a continuación, homogeneizarlo. Para esto, se tiene que desarrollar una cierta presión.
- Básicamente, un tornillo sinfín de extrusor clásico de núcleo progresivo se divide en tres zonas funcionales. Un tornillo sinfín de tres zonas de este tipo es la forma de tornillo sinfín más habitual, con el que se puede procesar una gran cantidad de tipos de materiales. En la zona de entrada, el material es captado en la zona del tornillo sinfín y se sigue transportando por la rotación del tornillo sinfín. En la zona de compresión, el material, mediante la profundidad decreciente del paso de rosca, se compacta y se funde o aglomera. En la zona de dosificación, la masa fundida o el aglomerado se lleva a la temperatura de tratamiento deseada, se homogeniza y se funde por completo. Además, se genera la presión necesaria para superar la resistencia de la herramienta. Esta influye en el rendimiento de paso.
- Por lo tanto, para el comportamiento de la masa fundida o de aglomerado del material polímero pretratado o ablandado que va a parar del compresor de corte al extrusor y para la calidad final del producto obtenida posteriormente y, en consecuencia, para el caudal de paso o rendimiento del extrusor, es fundamental entre otros la longitud de las distintas áreas o zonas del tornillo sinfín, así como los parámetros del tornillo sinfín, p. ej., su espesor, profundidad de paso de rosca, etc.

Sin embargo, en las combinaciones aquí propuestas de compresor de corte-extrusor se dan unas condiciones especiales, ya que el material que va a parar al extrusor no se inserta directamente, sin tratar y frío, sino ya pretratado en el compresor de corte, es decir, calentado, ablandado y/o parcialmente cristalizado, etc. Esto también es decisivo para el desarrollo de la extrusión y la calidad final de la masa fundida o del producto final.

- Los dos sistemas, es decir, el compresor de corte y el extrusor, se influyen mutuamente, y los resultados de la extrusión dependen en gran medida del pretratamiento, al igual que a través de la extrusión se pueden compensar e influir en ciertos parámetros del pretratamiento.
- En consecuencia, una zona importante es la interfaz entre el compresor de corte y el extrusor, es decir, la zona donde el material pretratado pasa del compresor de corte al extrusor. Por un lado, este es un punto problemático desde el enfoque puramente mecánico, ya que aquí se tienen que acoplar entre sí dos dispositivos que funcionan de forma distinta. Además, este punto también es delicado para el material polímero, ya que el material suele estar aquí generalmente cerca de la gama de fusión en un estado muy ablandado, pero no debe llegar a fundirse. Si la temperatura es demasiado baja, el caudal y la calidad disminuyen; si la temperatura es demasiado alta y se produce en algunos puntos una fusión no deseada, la entrada se obstruye.
- Además, también es difícil realizar una dosificación y alimentación precisas al extrusor ya que se trata de un sistema cerrado y no hay ningún acceso directo a la entrada, sino que la alimentación del material al extrusor se produce desde el compresor de corte, es decir: no se puede influir directamente en ella por ejemplo a través de un dosificador gravimétrico.
- Es decisivo, por lo tanto, realizar concienzudamente tanto la parte mecánica de esta transición, es decir, entendiendo también las características del polímero, como tener en cuenta simultáneamente la rentabilidad de todo el proceso, es decir, un caudal elevado y la correspondiente calidad. Aquí hay que tener en cuenta requisitos parcialmente contrarios.

15

45

50

55

60

- Los dispositivos mencionados al principio, conocidos del estado de la técnica, tienen en común que la dirección 25 de transporte o de giro de las herramientas de mezcla y de trituración - y con ello la dirección en la que las partículas de material circulan dentro del recipiente colector - y la dirección de transporte del extrusor son básicamente iguales o discurren en el mismo sentido. Esta disposición seleccionada deliberadamente se debía al deseo de llenar o alimentar forzosamente en la mayor medida posible el material en el tornillo sinfín. Esta idea de alimentar las partículas al tornillo sinfín de transporte o al extrusor en la dirección de transporte del tornillo sinfín era sin duda lógica y se ajustaba a los conceptos habituales del experto, va que así las partículas no tienen que invertir su dirección de movimiento y, en consecuencia, no hay que aplicar ninguna fuerza adicional para el cambio de dirección. Lo que se intentaba siempre aquí y en los perfeccionamientos derivados era conseguir un grado de llenado lo más elevado posible del tornillo sinfín y reforzar este efecto de alimentación. Por ejemplo, también se intentó ampliar la zona de entrada del extrusor de forma cónica o curvar 35 las herramientas de trituración en forma de hoz a fin de que estas pudieran insertar el material en el tornillo sinfín a modo de espátulas. Con el desplazamiento del extrusor por el lado de admisión, de una posición radial a una tangencial respecto al recipiente, se reforzó aún más el efecto de llenado y la herramienta en rotación transportaba o introducía a presión el material plástico en el extrusor con mayor intensidad.
- Este tipo de dispositivos son en principio operativos y funcionan de forma satisfactoria, aunque también con problemas recurrentes:

Por ejemplo, en materiales con una reducida energía interna, como p. ej., fibras o películas de PET, o en materiales con un punto de viscosidad o de ablandamiento temprano, como p. ej. el ácido poliláctico (PLA), se ha observado una y otra vez el efecto de que el llenado deliberado del material plástico bajo presión en el mismo sentido en la zona de entrada del extrusor produce una fusión precoz del material justo después o incluso en la zona de entrada del extrusor. Con ello se disminuye por un lado el efecto de transporte del extrusor y también se puede producir un reflujo parcial de la masa fundida a la zona del compresor de corte o recipiente colector, lo que hace que algunos copos no fundidos se adhieran a la masa fundida, esto produzca que la masa fundida se enfríe nuevamente y se solidifique parcialmente, formándose de este modo una especie de protuberancia tipo pólipo o conglomerado de masa fundida parcialmente solidificada y partículas sólidas de plástico. Con esto, se obstruye la entrada del extrusor y las herramientas de mezcla y de trituración se adhieren. En consecuencia, el caudal de paso del extrusor se reduce, puesto que ya no se da un llenado suficiente del tornillo sinfín. Además, las herramientas de mezcla y de trituración podrían griparse. Por lo general, en dichos casos es necesario parar la instalación y limpiarla completamente.

Además, se producen problemas en aquellos materiales polímeros que ya se han calentado dentro del compresor de corte a una temperatura cercana a su temperatura de fusión. Si la zona de entrada se llena entonces excesivamente, el material se funde y se reduce la alimentación.

También se producen problemas en los materiales fibrosos, en tiras, generalmente estirados, con una cierta extensión longitudinal y un reducido espesor o rigidez, como por ejemplo en películas de plástico cortadas en tiras. Esto se debe sobre todo a que el material alargado se engancha por el extremo de salida del orificio de entrada del tornillo sinfín, sobresaliendo un extremo de la tira por el interior del recipiente colector y el otro por

el interior de la zona de entrada. Puesto que tanto las herramientas de mezcla como el tornillo sinfín giran en el mismo sentido o bien ejercen el mismo componente de dirección de transporte y de presión sobre el material, se ejerce la misma tracción y presión en ambos extremos de la tira, por lo que la tira ya no se puede desprender. Esto provoca a su vez un amontonamiento del material en esta zona, un estrechamiento de la sección transversal del orificio de entrada y un peor comportamiento de captación y, en consecuencia, deficiencias en el caudal de paso. Además, esta presión más elevada de alimentación puede provocar que se produzca una fusión en esta zona, con lo que nuevamente se generan los problemas mencionados al principio. A este tipo de compresores de corte que giran en el mismo sentido se les acoplaban diversos extrusores, siendo los resultados en principio sin ninguna duda aceptables y adecuados. Sin embargo, el solicitante de la patente ha efectuado estudios exhaustivos para mejorar aún más el sistema general.

Por lo tanto, el cometido de la presente invención es superar las desventajas antes mencionadas y mejorar un dispositivo del tipo descrito al principio, de tal modo que el tornillo sinfín, además de los materiales habituales, también pueda recoger sin problemas los materiales delicados o en forma de tiras y se puedan procesar o tratar con una alta calidad del material, ahorrando el máximo espacio posible, eficientemente en términos de tiempo, con ahorro de energía y un caudal elevado.

Este cometido se resuelve con un dispositivo del tipo antes mencionado mediante las características distintivas de la reivindicación 1.

Para ello está previsto en primer lugar que la prolongación imaginaria del eje longitudinal central del extrusor cuando este presenta un único tornillo sinfín, o el eje longitudinal del tornillo sinfín más próximo al orificio de entrada cuando el extrusor presenta más de un tornillo sinfín, discurra en dirección contraria a la dirección de transporte del extrusor y pase junto al eje de rotación del recipiente colector sin cruzarse con él, estando desplazado el eje longitudinal del extrusor, cuando este presenta un único tornillo sinfín, o el eje longitudinal del tornillo sinfín más próximo al orificio de entrada, por el lado de descarga relativamente a una cierta distancia con respecto al radial del recipiente que discurre en paralelo al eje longitudinal y está orientado hacia fuera con respecto al eje de rotación de la herramienta de mezcla y/o de trituración en la dirección de transporte del extrusor.

20

25

35

50

Por consiguiente, la dirección de transporte de las herramientas de mezcla y la dirección de transporte del extrusor ya no discurren en el mismo sentido, como se conocía hasta ahora del estado de la técnica, sino al menos levemente en sentido contrario, con lo que se reduce el efecto de alimentación forzada mencionado al principio. Con la inversión deliberada de la dirección de rotación de las herramientas de mezcla y de trituración en comparación con los dispositivos hasta ahora conocidos, la presión de alimentación se reduce en la zona de entrada y disminuye el riesgo de un llenado excesivo. De este modo, el material sobrante ya no se alimenta o introduce a modo de espátulas con una presión excesiva en la zona de entrada del extrusor sino que, por el contrario, el material sobrante incluso tiende a volver a alejarse de allí, de modo que, aunque siempre hay suficiente material en la zona de entrada, está sometido a una presión prácticamente nula o a una presión muy reducida. Esto permite que el extrusor se pueda llenar suficientemente y recoger siempre suficiente material sin que se produzca un llenado excesivo del tornillo sinfín y, en consecuencia, picos de presión locales que pudieran provocar la fusión del material.

De este modo se evita que el material se funda en la zona de entrada del extrusor, con lo que aumenta la eficacia de funcionamiento, se espacian los intervalos de mantenimiento y se acortan los tiempos de parada debido a posibles reparaciones o medidas de limpieza.

Con la disminución de la presión de alimentación, las válvulas correderas, con las que se pueden regular el nivel de llenado del tornillo sinfín de la forma conocida, reaccionan con una sensibilidad claramente superior y el grado de llenado del tornillo sinfín se puede ajustar con una precisión aún más elevada. En particular en los materiales más pesados, como por ejemplo material molido de polietileno de alta densidad (HDPE) o PET, es más fácil encontrar el punto de funcionamiento óptimo de la instalación.

Además, ha resultado ser sorprendentemente ventajoso que los materiales ya ablandados hasta casi formar una masa fundida se pueden captar mejor con el funcionamiento en sentido contrario según la invención. Sobre todo cuando el material se encuentra ya en un estado pastoso o ablandado, el tornillo sinfín corta el material y lo extrae del anillo pastoso que está situado cerca de la pared del recipiente. Si el sentido de giro fuese en la dirección de transporte del tornillo sinfín del extrusor, más bien seguiría empujando este anillo y ya no se podría realizar un rascado mediante el tornillo sinfín, con lo que disminuiría la captación. Esto se evita mediante la inversión de la dirección de giro según la invención.

Además, en el procesamiento de los materiales en tiras o fibrosos arriba descritos, se pueden desprender con más facilidad los elementos enganchados o amontonados o bien esto nunca llega a producirse, ya que en el borde del orificio que está situado en la dirección de rotación de las herramientas de mezcla por la parte de salida o en el sentido de flujo, el vector de dirección de las herramientas de mezcla y el vector de dirección del extrusor presentan direcciones casi opuestas o al menos sentidos ligeramente contarios, con lo que una tira alargada no puede doblarse en torno a este borde y engancharse, sino que es arrastrada nuevamente al interior del recipiente colector por el torbellino de mezcla.

En general, con la configuración según la invención mejora considerablemente el comportamiento de captación y aumenta el caudal de paso. El sistema completo de compresor de corte y extrusor se vuelve con ello más estable y más productivo.

Está estrechamente relacionada con esto la configuración especial del tornillo sinfín, sobre todo en la zona de entrada y en la zona de compresión. El solicitante de la patente ha descubierto sorprendentemente que mediante una geometría especial del tornillo sinfín se puede mejorar aún más el comportamiento de captación. Aquí está previsto que la relación L/D del tornillo sinfín sea a partir del final del orificio de entrada ≥ 7. Expresado de otro modo, la relación entre la longitud del tornillo sinfín − medida desde el borde situado en sentido de flujo en la dirección de transporte del tornillo sinfín, o bien desde el punto de este borde situado el más alejado en sentido de flujo en la dirección de transporte del tornillo sinfín, hasta el extremo distal alejado del recipiente del tornillo sinfín o de la carcasa, o como muy pronto hasta el orificio de salida de la masa fundida o aglomerado constituido en la carcasa situado el más alejado a contracorriente − y el diámetro nominal del tornillo sinfín es ≥ 7. A partir del borde del orificio de entrada situado en sentido de flujo en la dirección de transporte del tornillo sinfín, empieza la parte del tornillo sinfín rodeada en todo su perímetro por la carcasa. Cuando se habla del diámetro del tornillo sinfín se trata del diámetro medio en la zona situada en sentido de flujo del orificio de entrada.

Además, está previsto que la configuración compresora del tornillo sinfín no empiece hasta a partir de una distancia A superior a 1,5 veces el diámetro del tornillo sinfín, medida desde el borde situado en el orificio de entrada en sentido de flujo en la dirección de transporte del tornillo sinfín o bien desde el punto de este borde situado el más alejado en sentido de flujo en la dirección de transporte del tornillo sinfín. Con esto se asegura una introducción suave y se evitan o compensan los posibles picos de presión locales en el material o excesos de alimentación.

20

45

50

60

fundir el material.

En la zona anterior, el tornillo sinfín está constituido básicamente sin compresión, es decir, sin compactación, o incluso es descompresor. Esto es ventajoso especialmente en la zona de entrada.

Por comienzo de la configuración compresora del tornillo sinfín se entiende aquel punto en el que el ángulo de paso del tornillo sinfín es ≥ 1 o donde se alcanza por primera vez este valor y se incrementa. En la zona que le precede, el ángulo de paso es < 1 y el tornillo sinfín básicamente no es compresor o apenas comprime. Este ángulo de paso del tornillo sinfín se determina creando un corte a través del tornillo sinfín por el centro, a lo largo de su eje longitudinal central. En cada paso de rosca del tornillo sinfín, se toma el punto más profundo y los puntos se unen entre sí. De esto resulta una recta o una curva que presenta en relación con el eje longitudinal del tornillo sinfín o respecto a una paralela del eje longitudinal un ángulo, el ángulo de paso. Por consiguiente, el ángulo de paso sirve como medida de las propiedades compresoras del tornillo sinfín o del efecto compresor del tornillo sinfín sobre el material. Cuanto más grande es el ángulo de paso, más compresor es el tornillo sinfín. No obstante, en la zona < 1°, el efecto compresor es tan reducido que no se tiene en cuenta. Aunque el ángulo de paso no puede ser negativo, en un tornillo sinfín configurado de forma descompresora sí es negativo el incremento de la recta formada con estos puntos, visto en la dirección de transporte.

La existencia de una cierta zona sin presión tiene, por un lado, la ventaja de que se introduce energía en el material de forma suave sin demasiado cizallamiento, p. ej. mediante calefactores dispuestos en el extrusor. Por otro lado, con una zona sin presión demasiado larga se prolonga innecesariamente la forma de construcción del extrusor, sobre todo cuando no existe en absoluto la necesidad de hacer la zona sin presión demasiado larga porque el material que proviene del compresor de corte está ya de todos modos correspondientemente precalentado. Mediante el uso del material precalentado y homogeneizado procedente del compresor de corte, se da la posibilidad adicional de hacer la zona de compresión más corta, puesto que ya hay suficiente energía interior en el material, con lo que solo hace falta una zona de compresión corta para

Con esto se ha creado una configuración específica de un sistema de compresor de corte-extrusor, que comprende un compresor de corte de configuración especial con una dirección especial de rotación de las herramientas para transferir el material ablandado al extrusor de forma eficaz pero suave, así como un extrusor de configuración especial con un tornillo sinfín, que precisamente en combinación con este compresor de corte recoge el material sorprendentemente bien y lo compacta a continuación. Como se ha mencionado, el comportamiento de captación es decisivo para la calidad del material de la masa fundida o del aglomerado y del producto final, y también para el rendimiento de paso del sistema.

55 Mediante ensayos comparativos del solicitante de la patente, se han obtenido los siguientes resultados:

Se trató por un lado un biopolímero fibroso, en concreto ácido poliláctico (PLA), en una instalación según la invención conforme a la fig. 1 o 2 (con rotación en sentido contrario, L/D=14, A=2) y por otro lado en una instalación conocida del mismo tipo (rotación en el mismo sentido, L/D=15, A=2,5), por lo demás con los mismos parámetros.

Se sacaron continuamente muestras de la masa fundida al final del extrusor y se determinó respectivamente su valor MFI (índice de flujo de fusión en g/10 min) según la ISO 1133:1997. Estos resultados están resumidos en la fig. 5.

- Se puede ver que en la instalación conocida se produce un rango de fluctuación considerablemente mayor de los valores MFI. Esto puede deberse, entre otros, a que el llenado del tornillo sinfín es irregular, lo que conlleva en caso de subalimentación a una descomposición oxidativa y térmica del material y, con ello, el material se vuelve más líquido, por lo que el valor MFI aumenta. Esto podría deberse a un mayor enganche de material en la entrada, lo que conlleva por fases a una subalimentación y por fases a una sobrealimentación, que producen entonces estos valores fluctuantes de viscosidad.
- Lo ideal sería lograr un valor MFI lo más constante posible y, al mismo tiempo, obtener un valor MFI que se asemeje lo máximo posible al valor de partida del material tratado. Ambas cosas se consiguen con la instalación según la invención y, como puede verse en la fig. 5, la constancia es mayor y el rango de fluctuación de los valores MFI, considerablemente menor.
- 15 Se describen otras configuraciones ventajosas de la invención mediante las siguientes características:

20

35

45

- En una forma de ejecución especialmente ventajosa, está previsto que la configuración compresora del tornillo sinfín comience en una zona anterior a una distancia B equivalente a como máximo 30 veces, preferentemente 20 veces, el diámetro, medido desde el borde situado en sentido de flujo en la dirección de transporte del tornillo o desde el punto del orificio de entrada situado el más alejado en sentido de flujo. La zona sin presión no tiene por qué ni puede ser demasiado larga. Por un lado, esto prolongaría la instalación innecesariamente y, por otro lado, un transporte demasiado largo del material hasta la fusión o compactación resulta difícil y tampoco es necesario para la calidad.
- Según otra configuración ventajosa y de productividad mejorada, está previsto que la relación entre la longitud
  L del tornillo sinfín, medida desde el borde situado en sentido de flujo con respecto a la dirección de transporte
  o desde el punto del orificio de entrada situado el más alejado en sentido de flujo hasta el orificio de salida
  constituido en la carcasa, en el extremo del tornillo sinfín alejado del recipiente, y el diámetro nominal d del
  tornillo sinfín sea ≥ 10, en particular ≥ 14.
- Además, es ventajoso para el comportamiento de captación que la configuración compresora del tornillo sinfín empiece solo a partir de una distancia A equivalente a más de 2 veces, preferentemente 3 veces, el diámetro d del tornillo sinfín, medido desde el borde situado en sentido de flujo en la dirección de transporte o desde el punto del orificio de entrada situado el más alejado en sentido de flujo.
  - Según una configuración constructivamente ventajosa y que produce un rendimiento de fusión eficaz, está previsto que la longitud de la configuración compresora del tornillo sinfín es decir, en tornillos sinfín de tres zonas, la longitud de la zona de compresión hasta la zona de dosificación esté en torno a entre 0,5 y 7 veces, preferentemente entre 1 y 5 veces, el diámetro del tornillo sinfín.
  - Según un perfeccionamiento ventajoso de la invención, está previsto que el extrusor esté conectado con el recipiente colector de tal modo que el producto escalar del vector de dirección (vector de dirección de la dirección de rotación) orientado tangencialmente respecto al recorrido circular del punto más exterior radialmente de la herramienta de mezcla y/o de trituración o bien respecto al material que pasa rozando el orificio y en perpendicular respecto a un radial del recipiente colector y que apunta en la dirección de rotación o de movimiento de la herramienta de mezcla y/o de trituración y del vector de dirección de la dirección de transporte del extrusor sea cero o negativo en cada uno de los puntos o en toda la zona del orificio o bien en cada uno de los puntos o en toda la zona situada radialmente justo delante del orificio se define como aquella zona antepuesta al orificio en la que el material está a punto de pasar por el orificio pero aún no lo ha pasado. De este modo se consiguen las ventajas

mencionadas al principio y se evita eficazmente todo tipo de formaciones de aglomerados causadas por

- efectos de llenado en la zona del orificio de entrada. En particular, aquí lo más importante no es la disposición espacial de las herramientas de mezcla y del tornillo sinfín entre sí; por ejemplo, el eje de rotación no tiene que estar necesariamente orientado en perpendicular a la superficie de la base o al eje longitudinal del extrusor o del tornillo sinfín. El vector de dirección de la dirección de rotación y el vector de dirección de la dirección de transporte están situados en un plano preferentemente horizontal, o bien orientando en perpendicular respecto al eje de rotación.
- Se consigue otra configuración ventajosa cuando el vector de dirección de la dirección de rotación de la herramienta de mezcla y/o de trituración forma con el vector de la dirección de transporte del extrusor un ángulo superior o igual a 90° y menor o igual a 180°, midiéndose el ángulo en el punto donde se cortan ambos vectores de dirección en el borde del orificio situado a contracorriente con respecto al sentido de rotación o de movimiento, en particular en el punto más alejado a contracorriente de este borde o del orificio. Con ello, se describe la gama del ángulo en la que se debe disponer el extrusor en el recipiente colector para conseguir los efectos ventajosos. Al hacerlo, se produce en toda la zona del orificio o en cada uno de los puntos del orificio una orientación al menos ligeramente contraria de las fuerzas que actúan sobre el material o, en caso extremo, una orientación transversal de presión neutra. El producto escalar de los vectores de dirección de las

herramientas de mezcla y del tornillo sinfín no es positivo en ningún punto, por lo que ni siquiera en una subárea del orificio se produce un efecto de llenado demasiado elevado.

En otra configuración ventajosa de la invención está previsto que el vector de dirección de la dirección de rotación o de movimiento forme con el vector de la dirección de transporte un ángulo de entre 170° y 180°, medido en el punto donde se cortan los dos vectores de dirección en el centro del orificio. Se produce una disposición de este tipo cuando, por ejemplo, el extrusor está conectado tangencialmente al compresor de corte.

Para asegurarse de que no se produzca un efecto de alimentación demasiado elevado, puede estar previsto ventajosamente que la distancia o bien el desplazamiento del eje longitudinal con respecto al radial sea mayor o igual a la mitad del diámetro interior de la carcasa del extrusor o del tornillo sinfín.

Además, puede resultar ventajoso en este sentido dimensionar la distancia o el desplazamiento del eje longitudinal con respecto al radial mayor o igual al 7%, o aún más ventajoso dimensionarla mayor o igual al 20%, del radio del recipiente colector. En extrusores con una zona de entrada prolongada o con un casquillo ranurado o una escotadura ampliada, puede ser ventajoso que la distancia sea mayor o igual al radio del recipiente colector. En particular, esto es aplicable en aquellos casos en los que el extrusor está conectado tangencialmente con el recipiente colector o bien discurre tangencialmente con respecto a la sección transversal del recipiente.

Aquí es especialmente ventajoso que el eje longitudinal del extrusor o del tornillo sinfín o bien el eje longitudinal del tornillo sinfín más próximo al orificio de entrada o la pared interior de la carcasa o la camisa del tornillo sinfín discurra tangencialmente respecto a la parte interior de la pared lateral del recipiente, estando preferentemente el tornillo sinfín conectado por su lado frontal con un accionamiento, y que por su extremo frontal opuesto transporte a un orificio de salida dispuesto en el extremo frontal de la carcasa, en particular a un cabezal de extrusor.

20

25

45

55

En los extrusores desplazados radialmente, pero no dispuestos tangencialmente, está previsto ventajosamente que la prolongación imaginaria del eje longitudinal del extrusor atraviese el espacio interior del recipiente colector en contra de la dirección de transporte, por lo menos en algunos segmentos a modo de secante.

Es ventajoso que esté previsto que el orificio esté conectado inmediata y directamente y sin grandes distancias y sin tramo de transferencia, p. ej. de un tornillo sinfín de transporte, con el orificio de entrada. Esto permite una transferencia eficaz y suave del material.

La inversión de la dirección de rotación de las herramientas de mezcla y de trituración que giran dentro del recipiente colector no puede ser en absoluto únicamente aleatoria o producirse por equivocación, y ni en los dispositivos conocidos ni en el dispositivo según la invención se puede hacer rotar sin más las herramientas de mezcla en la dirección opuesta, sobre todo porque las herramientas de mezcla y de trituración están dispuestas en cierto modo asimétricamente y orientadas de tal manera que únicamente actúan en un solo lado o en una dirección. Si se hiciese girar un aparato como este deliberadamente en la dirección errónea, no se formaría un buen torbellino de mezcla ni el material se trituraría o calentaría suficientemente. Por lo tanto, cada compresor de corte tiene su dirección de rotación fija predeterminada de las herramientas de mezcla y de trituración.

En este contexto, es especialmente ventajoso que esté previsto que las zonas delanteras o cantos frontales de las herramientas de mezcla y/o de trituración que apuntan en el sentido de rotación o de movimiento y que actúan sobre el material plástico presenten distintas configuraciones, curvaturas, ajustes o estén dispuestas/os de forma distinta que las zonas posteriores o que se mueven por inercia en la dirección de rotación o de movimiento.

En una disposición ventajosa, está previsto que sobre la herramienta de mezcla y/o de trituración estén dispuestas herramientas y/o cuchillas que actúan sobre el material plástico en la dirección de rotación o de movimiento calentándolo, triturándolo y/o cortándolo. Las herramientas y/o cuchillas pueden estar fijadas directamente en el árbol o bien están dispuestas preferentemente sobre un portaherramientas o disco portante giratorio, dispuesto en particular en paralelo a la superficie de la base, o bien conformadas en él, si procede de una sola pieza.

Por norma, los efectos mencionados no solo son relevantes en extrusores muy compresores de fusión o aglomerantes, sino también en tornillos sinfín de transporte menos compresores. También aquí se evitan las sobrealimentaciones locales.

En otra configuración especialmente ventajosa, está previsto que el recipiente colector sea básicamente cilíndrico y presente una superficie de la base plana y una pared lateral orientada en vertical respecto a esta en forma de camisa cilíndrica. Además, desde el punto de vista de la construcción, resulta fácil que el eje de rotación coincida con el eje central del recipiente colector. En otra configuración ventajosa, está previsto que el eje de rotación o el eje central del recipiente esté orientado en vertical y/o perpendicular con respecto a la superficie de la base. Con estas geometrías especiales, se optimiza el comportamiento de captación en un dispositivo estructuralmente estable y fácil de construir.

En este contexto, también resulta ventajoso prever que la herramienta de mezcla y/o de trituración o - en caso de que estén previstas varias herramientas de mezcla y/o de trituración dispuestas unas sobre otras - la herramienta de mezcla y/o de trituración situada más abajo y más próxima a la base, así como el orificio, estén dispuestos a corta distancia de la zona de la base, en particular en la zona del cuarto inferior de la altura del

recipiente colector. La distancia se define y se mide aquí desde el borde más inferior del orificio o del orificio de entrada hasta la base del recipiente, en la zona del borde del recipiente. Puesto que el canto angular suele estar construido de forma redondeada, la distancia se mide hacia fuera desde el canto de más abajo del orificio hasta la prolongación imaginaria de la base del recipiente, hacia abajo a lo largo de la prolongación imaginaria de la pared lateral. Se consideran distancias adecuadas entre 10 y 400 mm.

Además, es ventajoso para el procesamiento que los cantos más exteriores radialmente de las herramientas de mezcla y/o de trituración lleguen hasta muy cerca de la pared lateral.

El recipiente no tiene que presentar necesariamente una forma cilíndrica circular, si bien esta forma resulta ventajosa por motivos prácticos y técnicos de producción. Las formas de recipiente que difieren de la forma cilíndrica circular, por ejemplo los recipientes con forma troncocónica o los recipientes cilíndricos con un plano elíptico u oval, deben equivaler en cuanto a capacidad volumétrica a un recipiente cilíndrico circular, suponiendo que la altura de este recipiente teórico es igual a su diámetro. Las alturas de recipiente que superan considerablemente el torbellino de mezcla que se forma aquí (teniendo en cuenta la distancia de seguridad) no se tomarán en cuenta, ya que esta altura de recipiente excesiva no se utiliza y, por lo tanto, ya no influye en el procesamiento del material.

Por extrusor o compresor se entienden en el presente texto tanto extrusores con el que se funde el material total o parcialmente, p. ej., con el clásico tornillo sinfín de tres zonas, como también los extrusores con los que el material ablandado únicamente se aglomera pero no se funde. En los tornillos sinfín aglomerantes, el material únicamente se comprime y se corta rápida y fuertemente, pero no se plastifica. Por lo tanto, el tornillo sinfín aglomerante proporciona a su salida material que no está completamente fundido, sino que solo está compuesto de partículas fundidas en su superficie y que se ha aglutinado de forma similar que en una sinterización. En ambos casos, sin embargo, con el tornillo sinfín se ejerce presión sobre el material y se compacta

En los ejemplos descritos en las siguientes figuras están representados, sin excepción, extrusores de un único husillo o de un tornillo sinfín individual. No obstante, como alternativa también serían posibles los extrusores de dos o de múltiples husillos, en particular con varios tornillos sinfín idénticos que presentan al menos el mismo diámetro d

De la descripción de los siguientes ejemplos de ejecución del objeto de la invención, que no deben entenderse como restrictivos, se derivan otras características y ventajas representadas en los dibujos de forma esquemática y no a escala:

La fig. 1 muestra una sección vertical a través de un dispositivo según la invención con un extrusor conectado más o menos tangencialmente.

La fig. 2 muestra una sección horizontal a través de la forma de ejecución de la fig. 1.

La fig. 3 muestra otra forma de ejecución con un desplazamiento mínimo.

La fig. 4 muestra otra forma de ejecución con un desplazamiento mayor.

En la fig. 5 se resumen los resultados de los ensayos.

20

50

Ni los recipientes ni los tornillos sinfín o las herramientas de mezcla están representados a escala en los dibujos, ni en sí, ni unos respecto a otros. Por ejemplo, en la realidad los recipientes son generalmente más grandes o los tornillos sinfín más largos de lo aquí representado.

La ventajosa combinación de compresor de corte-extrusor representada en la fig. 1 y en la fig. 2 para el tratamiento o reciclaje de material plástico presenta un recipiente o compresor de corte o despedazador 1 cilíndrico circular con una superficie de la base 2 plana horizontal y una pared lateral 9 vertical orientada en perpendicular respecto a ella, en forma de camisa cilíndrica.

A corta distancia de la superficie de la base 2, como máximo a aproximadamente entre el 10 y el 20%, si procede menos, de la altura de la pared lateral 9 – medido desde la superficie de la base 2 hasta el borde superior de la pared lateral 9 – está dispuesto un disco portante o un portaherramientas 13 plano, orientado en paralelo a la superficie de la base 2, que puede girar en torno a un eje central de rotación 10, que constituye al mismo tiempo el eje central del recipiente 1, en la dirección de rotación o de movimiento 12 señalada mediante la flecha 12. El disco portante 13 va accionado mediante un motor 21 que se encuentra debajo del recipiente 1. En la parte superior del disco portante 13 están dispuestas cuchillas o herramientas, p. ej. cuchillas de corte, 14 que forman junto con el disco portante 13 la herramienta de mezcla y/o de trituración 3.

Como se esboza esquemáticamente, las cuchillas 14 no están dispuestas simétricamente en el disco portante 13, sino que están constituidas, ajustadas o dispuestas en sus cantos delanteros 22, que apuntan en la dirección de rotación o de movimiento 12 de forma especial para poder actuar sobre el material plástico de una forma mecánicamente específica. Los cantos situados radialmente más al exterior de las herramientas de mezcla y de trituración 3 llegan relativamente cerca de la pared lateral 9, aproximadamente a un 5% del radio 11 del recipiente 1.

El recipiente 1 presenta arriba un orificio de alimentación, a través del cual se introduce el material a tratar, p. ej. porciones de películas de plástico, que se echan por ejemplo mediante un dispositivo de transporte en la dirección de la flecha. Como alternativa, puede estar previsto que el recipiente 1 esté cerrado y sea evacuable

al menos a un vacío técnico, introduciéndose el material a través de un sistema de esclusas. Las herramientas de mezcla y/o de trituración 3 captan este material y lo arremolinan hacia arriba en forma de un torbellino de mezcla 30, con lo que el material se eleva a lo largo de la pared lateral 9 vertical y, cerca de la zona de la altura útil del recipiente H, vuelve a caer nuevamente hacia el interior y hacia abajo debido al efecto de la gravedad en la zona del centro del recipiente 1. La altura útil H del recipiente 1 es aproximadamente igual a su diámetro interior D. Por lo tanto, en el recipiente 1 se genera un torbellino de mezcla 30 que hace que el material se arremoline tanto de arriba abajo como también en la dirección de rotación 12. Por lo tanto, un dispositivo de este tipo únicamente puede funcionar con la dirección de rotación o de movimiento 12 predeterminada debido a la disposición especial de las herramientas de mezcla y de trituración 3 o de las cuchillas 14, y la dirección de rotación 12 no puede invertirse sin más o sin realizar modificaciones adicionales.

Las herramientas de mezcla y de trituración 3 giratorias trituran y mezclan el material plástico introducido y, al hacerlo, lo calientan y ablandan mediante la energía de fricción aportada, pero no lo funden. Tras un cierto tiempo de permanencia en el recipiente 1, el material homogeneizado, ablandado y pastoso pero no fundido se extrae - como se describe a continuación en detalle - del recipiente 1 a través de un orificio 8, se introduce en la zona de entrada de un extrusor 5 y ahí lo capta un tornillo sinfín 6 y, a continuación, se funde.

A la altura de, en el presente caso, la única herramienta de trituración y de mezcla 3, está constituido el mencionado orificio 8 en la pared lateral 9 del recipiente 1, a través del cual se puede extraer el material plástico pretratado del interior del recipiente 1. El material se transfiere a un extrusor de un solo tornillo sinfín 5 dispuesto tangencialmente al recipiente 1, presentando la carcasa 16 del extrusor 5 un orificio de entrada 80 situado en la pared de su camisa para el material a captar por el tornillo sinfín 6. Una forma de ejecución como esta tiene la ventaja de que el tornillo sinfín 6 puede estar accionado por un accionamiento representado solo esquemáticamente en el dibujo desde el extremo frontal inferior, de modo que el extremo frontal superior según el dibujo del tornillo sinfín 6 se puede dejar libre del accionamiento. Esto permite disponer el orificio de salida del material plástico transportado, plastificado o aglomerado por el tornillo sinfín 6 en este extremo frontal superior, p. ej. en forma de un cabezal de extrusor no representado. Por lo tanto, el material plástico puede ser transportado por el tornillo sinfín 6 a través del orificio de salida sin desviación, lo que en las formas de ejecución según las figuras 3 y 4 no es posible sin más.

20

25

35

El orificio de entrada 80 está conectado en transporte o transferencia de material con el orificio 8 y, en el presente caso, está conectado directa, inmediatamente y sin una pieza intermedia o distancia largas con el orificio 8. Únicamente está prevista una zona de transferencia muy corta.

En la carcasa 16 está alojado de forma giratoria en torno a su eje longitudinal 15 un tornillo sinfín 6 compresor. El eje longitudinal 15 del tornillo sinfín 6 y del extrusor 5 coinciden. El extrusor 5 transporta el material en la dirección de la flecha 17. El extrusor 5 es un extrusor convencional del tipo ya conocido, en el que el material plástico ablandado se comprime y, con ello, se funde; a continuación, la masa fundida sale por el lado opuesto, por el cabezal del extrusor.

Las herramientas de mezcla y/o de trituración 3 o las cuchillas 14 están situadas aproximadamente a la misma altura o plano que el eje longitudinal central 15 del extrusor 5. Los extremos más exteriores de las cuchillas 14 están suficientemente alejados de los nervios del tornillo sinfín 6.

En la forma de ejecución según las figs. 1 y 2, el extrusor 5, como se ha indicado, está conectado tangencialmente al recipiente 1 o bien discurre tangencialmente con respecto a su sección transversal. La prolongación imaginaria del eje longitudinal central 15 del extrusor 5 o del tornillo sinfín 6 hacia atrás, en sentido contrario a la dirección de transporte 17 del extrusor 5, pasa de largo en el dibujo junto al eje de rotación 10 sin cortarse con este. El eje longitudinal 15 del extrusor 5 o del tornillo sinfín 6, por el lado de descarga, está desplazado a una cierta distancia 18 con respecto al radial 11 del recipiente 1 que discurre en paralelo al eje longitudinal 15 y está orientado hacia fuera con respecto al eje de rotación 10 de la herramienta de mezcla y/o de trituración 3 en la dirección de transporte 17 del extrusor 5. En el presente caso, la prolongación imaginaria hacia atrás del eje longitudinal 15 del extrusor 5 no atraviesa el espacio interior del recipiente 1, sino que pasa de largo junto a él a corta distancia.

La distancia 18 es algo mayor que el radio del recipiente 1. Por lo tanto, el extrusor 5 está ligeramente desplazado hacia fuera o bien la zona de entrada está algo más hondo.

Bajo los conceptos "contrario/a", "opuesto/a" o "en sentido contrario" deben entenderse aquí todas las orientaciones de los vectores entre sí que no formen ángulos agudos, tal y como se explica detalladamente a continuación.

Dicho de otro modo, el producto escalar de un vector de dirección 19 de la dirección de rotación 12, orientado tangencialmente respecto al recorrido circular del punto más exterior de la herramienta de mezcla y/o de trituración 3 o bien tangencialmente respecto al material plástico que pasa rozando el orificio 8 y que apunta en la dirección de rotación o de movimiento 12 de las herramientas de mezcla y/o de trituración 3, y de un vector de dirección 17 de la dirección de transporte del extrusor 5, que discurre en la dirección de transporte en paralelo al eje longitudinal central 15, es cero o negativo en todos y cada uno de los puntos del orificio 8 o en la zona situada radialmente justo antes del orificio 8, pero en ningún caso positivo.

En el orificio de entrada de las figs. 1 y 2, el producto escalar del vector de dirección 19 de la dirección de rotación 12 y del vector de dirección 17 de la dirección de transporte es negativo en cada punto del orificio 8.

El ángulo a entre el vector de dirección 17 de la dirección de transporte y el vector de dirección de la dirección de rotación 19, medido en el punto 20 del orificio 8 más alejado a contracorriente con respecto a la dirección de rotación 12 o en el borde del orificio 8 situado más lejos a contracorriente equivale, casi como máximo, a unos 170°.

- Si en la fig. 2 se sigue hacia abajo a lo largo del orificio 8, es decir en dirección de rotación 12, el ángulo obtuso entre los dos vectores de dirección es cada vez más grande. En el centro del orificio 8, el ángulo entre los vectores de dirección es de aproximadamente 180° y el producto escalar es como máximo negativo; aún más abajo, el ángulo es incluso > 180° y el producto escalar vuelve a reducirse un poco, pero se mantiene siempre negativo. Sin embargo, estos ángulos ya no se denominan ángulo a, ya que no están medidos en el punto 20.
- 10 Un ángulo β no representado en la fig. 2, medido en el medio o centro del orificio 8 entre el vector de dirección de la dirección de rotación 19 y el vector de dirección de la dirección de transporte 17, es de aproximadamente entre 178 y 180°.
  - El dispositivo según la fig. 2 representa el primer caso límite o valor extremo. En una disposición de este tipo es posible un efecto de alimentación muy suave o bien una alimentación especialmente ventajosa, y un dispositivo como este resulta ventajoso en particular para materiales delicados que se procesan a una temperatura próxima a la de fusión o para materiales de tiras largas.
    - En la fig. 2 se indican las longitudes y segmentos característicos L, A y B a modo de ejemplo. No obstante, y al igual que en el resto de características mostradas en las figuras, se hace únicamente de forma esquemática y no a escala o con las proporciones correctas, y en ocasiones se han abreviado esquemáticamente mediante interrupciones. En las formas de ejecución de las figs. 3 y 4, estas longitudes y segmentos no están representados

20

de toda la superficie del orificio 8.

- La relación entre la longitud L del tornillo sinfín 6, medida desde el borde 20' del orificio de entrada 80 situado en sentido de flujo en la dirección de transporte del tornillo sinfín 6 o desde el punto de este borde 20' situado el más alejado en sentido de flujo en la dirección de transporte del tornillo sinfín 6 hasta como muy pronto el orificio de salida 30 constituido en la carcasa 16 situado el más alejado a contracorriente con respecto a la dirección de transporte, en el extremo 31 distal del tornillo sinfín 6 alejado del recipiente, y el diámetro nominal d del tornillo sinfín 6 es en este ejemplo preferente de ejecución Ud = 21.
- La configuración compresora, tampoco representada en el dibujo esquemático, del tornillo sinfín 6 empieza solo a partir de una distancia A equivalente a 6 veces el diámetro d del tornillo sinfín 6, medido desde el borde 20' del orificio de entrada 80. En la zona del comienzo de su configuración compresora, el tornillo sinfín 6 está constituido básicamente como no compresor o sin compresión, por lo que no ejerce ninguna presión sobre el material recogido por el tornillo 6.
  - Con ello empieza la configuración compresora del tornillo sinfín 6, tal y como se requiere, también en la zona situada antes de una distancia B equivalente a como máximo 30 veces el diámetro d, medida a partir del borde 20' del orificio de entrada 80.
  - Las figs. 3 y 4 sirven sobre todo para ilustrar las posibilidades de conexión del extrusor en cuanto a la dirección de rotación. Los valores de L, B y A no están indicados.
- En la fig. 3 se muestra una forma de ejecución alternativa, en la que el extrusor 5 no está conectado tangencialmente al recipiente 1, sino por su lado frontal 7. El tornillo sinfín 6 y la carcasa 16 del extrusor 5 están adaptados en la zona del orificio 8 al contorno de la pared interior del recipiente 1 y desplazados hacia atrás a ras. Ningún elemento del extrusor 5 sobresale a través del orificio 8 hacia el espacio interior del recipiente 1.
- La distancia 18 equivale aquí aproximadamente a entre el 5 y 10% del radio 11 del recipiente 1 y aproximadamente a la mitad del diámetro interior d de la carcasa 16. Esta forma de ejecución representa, por lo tanto, un segundo caso límite o valor extremo con el desplazamiento o distancia 18 mínimos posible, en la que la dirección de rotación o de movimiento 12 de las herramientas de mezcla y/o de trituración 3 está orientada, al menos levemente, en sentido contrario a la dirección de transporte 17 del extrusor 5, en concreto a lo largo
- En la fig. 3, el producto escalar en el punto 20 que es el de valor límite y el situado más lejos a contracorriente es exactamente cero y está situado en el borde del orificio 8 más alejado a contracorriente. El ángulo α entre el vector de dirección 17 de la dirección de transporte y el vector de dirección de la dirección de rotación 19 es exactamente de 90°, medido en el punto 20 de la fig. 3. Si se sigue a lo largo del orificio 8 hacia abajo, es decir, en la dirección de rotación 12, el ángulo α entre los vectores de dirección se agranda cada vez más y se convierte en un ángulo obtuso > 90°, al tiempo que el producto escalar pasa a ser negativo. Pero en ningún punto ni en ninguna zona del orificio 8 es el producto escalar positivo ni el ángulo inferior a 90°. Gracias a esto, no se puede producir un exceso de alimentación local ni siquiera en una subárea del orificio 8, ni tener lugar un efecto de carga excesivo y perjudicial en ninguna zona del orificio 8.
  - Con esto se produce también una diferencia decisiva con respecto a una disposición puramente radial, ya que en el punto 20 o en el canto 20', en una disposición completamente radial del extrusor 5, se daría un ángulo α < 90° y aquellas zonas del orificio 8 situadas en el dibujo por encima del radial 11 o bien a contracorriente o bien en el lado de admisión de este presentarían un producto escalar positivo. Por lo tanto, en estas zonas se podría acumular localmente material plástico fundido.

## ES 2 564 371 T3

En la fig. 4 está representada otra forma de ejecución alternativa, en la que el extrusor 5 está algo más desplazado por el lado de descarga que en la fig. 3, pero aún no tangencialmente como en las figs. 1 y 2. En el presente caso, como también en la fig. 3, la prolongación imaginaria hacia atrás del eje longitudinal 15 del extrusor 5 atraviesa el espacio interior del recipiente 1 a modo de secante. Esto tiene como consecuencia que el orificio 8, medido en la dirección perimetral del recipiente 1, es más ancho que en la forma de ejecución según la fig. 3. También la distancia 18 es correspondientemente mayor que en la fig. 3, si bien algo menor que el radio 11. El ángulo  $\alpha$ , medido en el punto 20, es de unos 150°, con lo que se reduce el efecto de alimentación con respecto al dispositivo de la fig. 3, lo que puede ser más ventajoso para ciertos polímeros delicados. El borde derecho interior o la pared interior de la carcasa 16, visto desde el recipiente 1, está conectado/a tangencialmente con el recipiente 1, con lo que, a diferencia de la fig. 3, no se forma ningún canto de transición obtuso. En este punto situado el más alejado en sentido de flujo del orificio 8 (en la fig. 4, a la izquierda del todo), el ángulo es aproximadamente de 180°.

## REIVINDICACIONES

Dispositivo para pretratar y, a continuación, plastificar o aglomerar materiales sintéticos, en particular residuos de material termoplástico para fines de reciclaje, con un recipiente (1) para el material a procesar, en el que está dispuesta al menos una herramienta de mezcla y/o de trituración (3) que gira perimetralmente en torno a un eje de rotación (10) para mezclar, calentar y, si procede, triturar el material plástico, en el que está constituido en una pared lateral (9) del recipiente (1), en la zona situada a la altura de la herramienta, o de la herramienta situada más abajo y próxima a la base, de mezcla y/o de trituración (3) un orificio (8) por el que se puede extraer el material plástico pretratado del interior del recipiente (1), estando previsto al menos un extrusor o compresor (5) para recoger el material pretratado, con al menos un tornillo sinfín (6) que rota, comprime y plastifica o aglomera en el interior de una carcasa (16), en particular un tornillo sinfín (6) plastificante o aglomerante, presentando la carcasa (16) un orificio de entrada (80) situado en su lado frontal (7) o en la pared de su camisa para el material a captar por el tornillo sinfín (6), estando conectado el orificio de entrada (80) con el orificio (8), en el que la prolongación imaginaria del eje longitudinal central (15) del extrusor (5) o del tornillo sinfín (6) más próximo al orificio de entrada (80) pasa junto al eje de rotación (10) sin cortarse con él en sentido contrario a la dirección de transporte (17) del extrusor (5), y en el que la relación entre la longitud (L) del tornillo sinfín (6), medida desde el borde (20') situado en sentido de flujo en la dirección de transporte del tornillo sinfín (6), o bien desde el punto (20) situado el más alejado en sentido de flujo del orificio de entrada (80), hasta el final del tornillo sinfín (6) o, como muy pronto, hasta el orificio de salida (30) de la masa fundida de la carcasa (16) situado el más alejado en sentido de flujo con respecto a la dirección de transporte del tornillo sinfín (6) en el extremo (31) distal del tornillo sinfín (6) situado lejos del recipiente, y el diámetro nominal (d) del tornillo sinfín (6) es ≥ 7, caracterizado por que el eje longitudinal (15) del extrusor (5) o del tornillo sinfín (6) más próximo al orificio de entrada (80), en el lado de descarga y en la dirección de rotación o de movimiento (12) de la herramienta de mezcla y/o de trituración (3), está desplazado a una cierta distancia (18) con respecto al radial (11) del recipiente (1) que discurre en paralelo al eje longitudinal (15) y está orientado hacia fuera con respecto al eje de rotación (10) de la herramienta de mezcla y/o de trituración (3) en la dirección de transporte (17) del extrusor (5) y por que la configuración compresora del tornillo sinfín (6) no empieza hasta una distancia (A) equivalente a más de 1,5 veces el diámetro (d) del tornillo sinfín (6), medida desde el borde (20') situado en sentido de flujo en la dirección de transporte del tornillo sinfín (6) o desde el punto (20) del orificio de entrada (80) situado el más alejado en sentido de flujo, entendiéndose como comienzo de la configuración compresora del tornillo sinfín (6) aquel punto en el que el ángulo de paso del tornillo sinfín (6) es por primera vez ≥ 1°, presentando el tornillo sinfín (6) antes de empezar la zona de configuración compresora una configuración básicamente sin compresión o descompresora en la que el ángulo de paso es < 1°, siendo el ángulo de paso el ángulo entre el eje longitudinal central (15) del tornillo sinfín (6) o bien una paralela a este y una recta o una curva formada por los respectivos puntos más profundos de cada paso de rosca del tornillo sinfín (6).

20

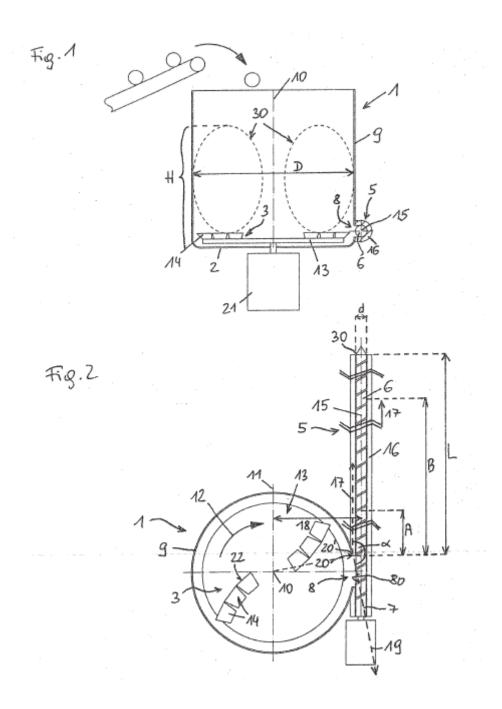
35

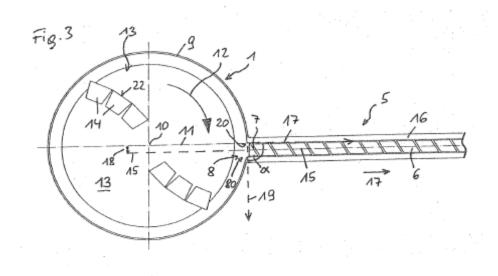
- Dispositivo según la reivindicación 1, caracterizado por que la configuración compresora del tornillo sinfín (6) empieza en una zona anterior a una distancia (B) equivalente como máximo a 30 veces, preferentemente como máximo a 20 veces, el diámetro (d), medido desde el borde (20') del orificio de entrada (80) situado en sentido de flujo en la dirección de transporte del tornillo sinfín (6).
- Dispositivo según la reivindicación 1 o 2, caracterizado por que la relación entre la longitud (L) del tornillo sinfín (6), medida desde el borde (20') del orificio de entrada (80) situado en sentido de flujo en la dirección de transporte del tornillo sinfín (6) hasta como muy pronto el orificio de salida (30), y el diámetro nominal (d) del tornillo sinfín (6) es ≥ 10, en particular ≥ 14.
  - 4. Dispositivo según una de las reivindicaciones 1 a 3, caracterizado por que la configuración compresora del tornillo sinfín (6) empieza solo a partir de una distancia (A) equivalente a más de 2 veces, preferentemente 3 veces, el diámetro (d) del tornillo sinfín (6), medida desde el borde (20') del orificio de entrada (80) situado en sentido de flujo en la dirección de transporte del tornillo sinfín (6).
- 5. Dispositivo según una de las reivindicaciones 1 a 4, caracterizado por que la longitud de la configuración compresora del tornillo sinfín (6) equivale a entre 0,5 y 7 veces, preferentemente entre 1 y 5 veces, el diámetro (d) del tornillo sinfín (6).
  - 6. Dispositivo según una de las reivindicaciones 1 a 5, caracterizado por que para un extrusor (5) conectado con el recipiente (1), el producto escalar formado por el vector de dirección de la dirección de rotación (19) orientado tangencialmente respecto al recorrido circular del punto más exterior radialmente de la herramienta de mezcla y/o de trituración (3) o bien tangencialmente respecto al material plástico que pasa junto al orificio (8) y en perpendicular respecto a un radial (11) del recipiente (1) y que apunta en la dirección de rotación o de movimiento (12) de la herramienta de mezcla y/o de trituración (3) y del vector de dirección (17)

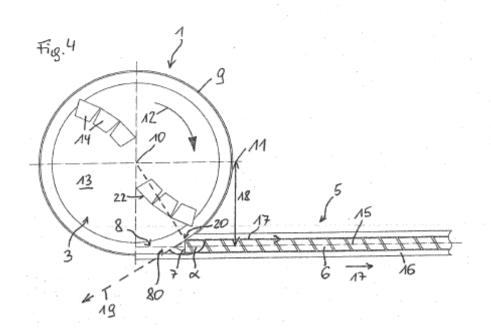
de la dirección de transporte del extrusor (5) es cero o negativo en cada uno de los puntos o en toda la zona del orificio (8) o bien radialmente justo antes del orificio (8).

7. Dispositivo según una de las reivindicaciones 1 a 6, caracterizado por que el vector de dirección de la dirección de rotación (19) del punto más exterior radialmente de la herramienta de mezcla y/o de trituración (3) forma con el vector de dirección (17) de la dirección de transporte del extrusor (5) un ángulo (α) superior o igual a 90° y menor o igual a 180°, medido en el punto donde se cortan ambos vectores de dirección (17, 19) en el borde del lado de admisión del orificio (8) situado a contracorriente respecto a la dirección de rotación o de movimiento (12) de la herramienta de mezcla y/o de trituración (3), en particular en el punto (20) más alejado a contracorriente de este borde o del orificio (8).

10


15


20


25

35

- 8. Dispositivo según una de las reivindicaciones 1 a 7, caracterizado por que el vector de dirección (19) de la dirección de rotación o de movimiento (12) y el vector de dirección de la dirección de transporte del extrusor (5) forman un ángulo (β) de entre 170° y 180°, medido en el punto donde se cortan los dos vectores de dirección (17, 19) en el centro del orificio (8).
- 9. Dispositivo según una de las reivindicaciones 1 a 8, caracterizado por que la distancia (18) es mayor o igual a la mitad del diámetro interior de la carcasa (16) del extrusor (5) o del tornillo sinfín (6) y/o mayor o igual al 7%, preferentemente mayor o igual al 20%, del radio del recipiente (1) o por que la distancia (18) es mayor o igual al radio del recipiente (1).
- 10. Dispositivo según una de las reivindicaciones 1 a 8, caracterizado por que la prolongación imaginaria del eje longitudinal (15) del extrusor (5) está dispuesta en contra del sentido de transporte como una especie de secante respecto a la sección transversal del recipiente (1) y atraviesa el espacio interior del recipiente (1), por lo menos en algunos segmentos.
- 11. Dispositivo según una de las reivindicaciones 1 a 8, caracterizado por que el extrusor (5) está conectado tangencialmente al recipiente (1) o bien discurre tangencialmente respecto a la sección transversal del recipiente (1) o por que el eje longitudinal (15) del extrusor (5) o del tornillo sinfín (6) o bien el eje longitudinal del tornillo sinfín (6) más próximo al orificio de entrada (80) o la pared interior de la carcasa (16) o la camisa del tornillo sinfín (6) discurre tangencialmente respecto a la parte interior de la pared lateral (9) del recipiente (1), estando preferentemente el tornillo sinfín (6) conectado por su lado frontal (7) con un accionamiento y que por su extremo frontal opuesto transporta a un orificio de salida dispuesto en el extremo frontal de la carcasa (16), en particular a un cabezal de extrusor.
- 12. Dispositivo según una de las reivindicaciones 1 a 11, caracterizado por que el orificio (8) está conectado inmediata y directamente y sin grandes distancias, en particular sin tramo de transferencia o tornillo sinfín de transporte, con el orificio de entrada (80).
- 40 13. Dispositivo según una de las reivindicaciones 1 a 12, caracterizado por que la herramienta de mezcla y/o de trituración (3) comprende herramientas y/o cuchillas (14) que actúan en la dirección de rotación o de movimiento (12) sobre el material plástico y lo trituran, cortan y calientan, estando dispuestas o constituidas las herramientas y/o cuchillas (14) preferentemente sobre o en un portaherramientas (13) giratorio, en particular un disco portante (13), constituido en particular en paralelo a la superficie de la base (2), y/o por que las zonas delanteras o cantos frontales (22) de las herramientas de mezcla y/o de trituración (3) o de las cuchillas (14), que actúan sobre el material plástico y que apuntan en el sentido de rotación o de movimiento (12), presentan distintas configuraciones, ajustes, curvaturas y/o están dispuestas/os de forma distinta que las zonas posteriores o que se mueven por inercia en la dirección de rotación o de movimiento (12).
- Dispositivo según una de las reivindicaciones 1 a 13, caracterizado por que el recipiente (1) es básicamente cilíndrico circular y presenta una superficie de la base (2) plana y una pared lateral (9) orientada en vertical respecto a esta, constituida en forma de camisa cilíndrica, y/o por que el eje de rotación (10) de las herramientas de mezcla y/o de trituración (3) coincide con el eje central del recipiente (1) y/o por que el eje de rotación (10) o el eje central están orientados en vertical y/o en perpendicular respecto a la superficie de la base (2), y/o por que el portaherramientas (13) de más abajo o bien la herramienta de mezcla y/o de trituración (3) de más abajo y/o el orificio (8) están dispuestos a corta distancia de la superficie de la base (2), en particular en la zona del cuarto inferior de la altura del recipiente (1), preferentemente a una distancia con respecto a la superficie de la base (2) de entre 10 y 400 mm.
- 60 15. Dispositivo según una de las reivindicaciones 1 a 14, caracterizado por que el extrusor (5) es un extrusor de un solo tornillo sinfín (6) con un único tornillo sinfín compresor (6) o un extrusor de dos o múltiples tornillos sinfín, siendo el diámetro d de cada uno de los tornillos sinfín (6) del mismo tamaño entre sí.







15
14
13
12
12
13
10
9
8
0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 5: Diagrama MFI (índice de flujo de fusión)

Eje x: número de muestra

Eje y: MFI (ISO 1133:1997) [g/10 min]