

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 565 184

51 Int. Cl.:

C07D 231/06 (2006.01) C07D 231/54 (2006.01) C07D 403/12 (2006.01) C07D 471/10 (2006.01) C07D 491/10 C07D 491/107 (2006.01) A61K 31/4155 A61K 31/416 (2006.01) A61K 31/4162 (2006.01) A61P 25/00 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- Fecha de presentación y número de la solicitud europea: 17.03.2009 E 09721279 (9)
 Fecha y número de publicación de la concesión europea: 27.01.2016 EP 2265589
- (4) Título: Derivados de arilsulfonilpirazolina carboxamidina como antagonistas de 5-HT₆
- (30) Prioridad:

18.03.2008 EP 08152873 18.03.2008 US 37463 P

45) Fecha de publicación y mención en BOPI de la traducción de la patente: 01.04.2016

(73) Titular/es:

ABBVIE BAHAMAS LTD. (100.0%) Sassoon House, Shirley Street & Victoria Avenue New Providence, Nassau, BS

(72) Inventor/es:

VAN LOEVEZIJN, ARNOLD; IWEMA BAKKER, WOUTER I.; STOIT, AXEL; RENSINK, AGATHA A.M.; VENHORST, JENNIFER; VAN DER NEUT, MARTINA A.W.; DE HAAN, MARTIN y KRUSE, CORNELIS G.

(74) Agente/Representante:

LAZCANO GAINZA, Jesús

S 2 565 184 T3

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).

DESCRIPCIÓN

Derivados de arilsulfonilpirazolina carboxamidina como antagonistas de 5-HT₆.

Campo técnico

5

10

15

20

25

Esta invención se refiere a los campos de química farmacéutica y orgánica y proporciona derivados de arilsulfonilpirazolina carboxamidina, intermediarios, formulaciones y métodos.

Técnica antecedente

La serotonina (5-hidroxitriptamina o 5-HT), un transmisor clave del sistema nervioso central y periférico, modula un amplio intervalo de funciones fisiológicas y patológicas, mediadas a través de numerosas familias de receptores denominadas 5-HT₁, 5-HT₂, 5-HT₃, 5-HT₄, 5-HT₅, 5-HT₆ y 5-HT₇. Aunque las funciones de los últimos tres se entienden menos que aquellas de los otros, por lo general se acepta que los compuestos que interfieren selectivamente con la transducción de señales mediadas por 5-HT son dianas importantes para medicamentos novedosos. Gran parte del reciente interés en el receptor 5-HT6 se debe a que varios agentes psicotrópicos son antagonistas de alta afinidad en el receptor 5-HT₆ humano (Kohen, 1996; Roth, 1994). Estos compuestos incluyen amitriptilina (K_i=65 nM) y los antipsicóticos atípicos clozapina (K_i =9.5 nM), olanzapina (K_i =10 nM) y quetiapina (K_i=33 nM). Ninguno de estos compuestos, no obstante, es selectivo. Los primeros antagonistas selectivos del receptor 5-HT₆ que se reportaron son Ro 04-6790 y Ro 63-0563. Su utilidad se ve limitada por su afinidad moderada (K_i = 50 nM y 12 nM, respectivamente) y mala farmacocinética (Sleight, 1998). Con el reciente desarrollo de los antagonistas selectivos del receptor 5-HT₆ Ro-04-6790 y SB-271046, ha habido varios informes sobre la actividad de estos compuestos en modelos de función cognitiva. SB-271 046 mejoró el desempeño en el laberinto de agua de Morris (Rogers, 1999). Estos resultados son consistentes con el hallazgo de que la administración intracerebroventricular crónica de oligonucleótidos antisentido dirigidos hacia la secuencia del receptor 5-HT₆ condujo a mejoramientos en algunas mediciones de desempeño en el laberinto de agua de Morris (Bentley, 1999b). Recientemente ha sido informado el efecto de antagonistas 5-HT₆ y oligonucleótidos antisentido 5-HT₆ para reducir la ingesta de alimentos en ratas (*Bentley*, 1997; *Bentley*, 1999^e, Woolley, 2001). La obesidad es una condición caracterizada por un incremento en el contenido de grasa corporal lo cual da lugar a un exceso de peso corporal por encima de las normas aceptadas. La obesidad es el trastorno nutricional más importante del mundo occidental y representa un problema grave de salud en todos los países industrializados. Este trastorno conduce a mortalidad incrementada debido a las incidencias incrementadas de enfermedades tales como enfermedad cardiovascular, enfermedad digestiva, enfermedad respiratoria, cáncer y diabetes tipo 2.

Se han identificado ligandos selectivos de 5-HT6 como potencialmente útiles en el tratamiento o prevención de 30 determinados trastornos del sistema nervioso central tales como la enfermedad de Parkinson, la corea de Huntington y/o esquizofrenia, ansiedad, depresión, depresión maniaca, psicosis, epilepsia, trastornos compulsivos obsesivos, trastornos del ánimo, migraña, enfermedad de Alzheimer (aumento de memoria cognitiva), disminución cognitiva relacionada con la edad, deterioro cognitivo leve, enfermedades neurodegenerativas caracterizadas por crecimiento neuronal deteriorado, trastornos de sueño, trastornos de alimentación tales como anorexia y bulimia, desórdenes de 35 atracón de comida, ataques de pánico, acatisia, trastorno de hiperactividad y déficit de atención (ADHD), trastorno de déficit de atención (ADD), abstinencia de abuso de drogas tales como cocaína, etanol, nicotina y benzodiazepinas; y dolor y también trastornos asociados con trauma espinal y/o daño en la cabeza tal como hidrocefalia. También se espera que los ligandos selectivos de 5-HT₆ sean de utilidad en el tratamiento de ciertos trastornos gastrointestinales tales como trastorno funcional de intestinos y síndrome de intestino irritable y en el tratamiento o prevención de 40 obesidad y diabetes tipo 2, para lograr la reducción de peso corporal y de aumento de peso corporal. La reducción de peso corporal y de aumento de peso corporal (por ejemplo, tratamiento de trastornos de peso corporal) se logra, entre otros, mediante reducción de ingesta de alimentos.

WO03/026648 describe derivados de 4,5-dihidro-1H-pirazol. Los derivados son antagonistas del receptor de cannabinoides (CBI) con utilidad para el tratamiento de trastornos que involucran neurotransmisión de cannabinoide.

El objetivo de la presente invención fue proporcionar antagonistas de 5-HT₆, metabólicamente más estables que los compuestos antagonistas de 5-HT₆ conocidos, químicamente relacionados (como se divulgan en WO 2008/034863), útiles para el tratamiento de determinados trastornos del SNC.

Divulgación

De manera sorprendente se ha encontrado que determinados derivados de arilsulfonilpirazolina carboxamidina que llevan una funcionalidad donante de enlace de H sobre o en el grupo molecular arilsulfonilo, son antagonistas del receptor 5-HT₆, más potentes y metabólicamente más estables que los antagonistas de 5-HT₆ conocidos, químicamente relacionados. Se describen compuestos de la fórmula general (1):

$$\begin{array}{c|c}
R_1 & R_2 \\
R_3 & R_4 \\
N & R_5 & (1) \\
N & R_6 & R_7 \\
N & R_8 & R_7
\end{array}$$

o un tautómero, estereoisómero, N-óxido o una sal farmacológicamente aceptable de cualquiera de los anteriores, en donde:

-R₁ se elige de hidrógeno o un grupo alquilo de (C₁-₄), opcionalmente sustituido con uno o más átomos de halógeno o un grupo hidroxilo,

 $-R_2$ y R_3 se seleccionan de modo independiente de hidrógeno, un grupo hidroxilo o un grupo alquilo de (C_{1-4}) opcionalmente sustituido con uno o más sustituyentes Q, seleccionado independientemente de: halógeno, alquilo de C_{1-4} , alquenilo de C_{1-4} , alquenilo de C_{1-4} , alquinilo de C_{1-4} , N[alquilo de C_{1-4}), OH, =O, O-alquilo de C_{1-4} , o OCF3, o

 R_1 y R_2 , conjuntamente con los átomos de carbono marcados 'a' y 'b', forman un anillo de cicloalquilo de C_{5-6} , opcionalmente sustituido con uno o más átomos de halógeno, un grupo hidroxilo o un grupo alquilo de C_{1-4} , o

 R_2 y R_3 , conjuntamente con el átomo de carbono marcado 'b' forman un cicloalquilo de C_{3-8} o un heterocicloalquilo de C_{4-8} , opcionalmente sustituido con uno o más sustituyentes Q, tal como se han definido antes,

R₄ y R₅ se seleccionan independientemente de un grupo aromático monocíclico o fusionado bicíclico, o heteroaromático, sustituidos opcionalmente con uno o más sustituyentes Q, tal como se han definido antes, con la condición de que Q no puede ser =O (ceto) en anillos aromáticos, o

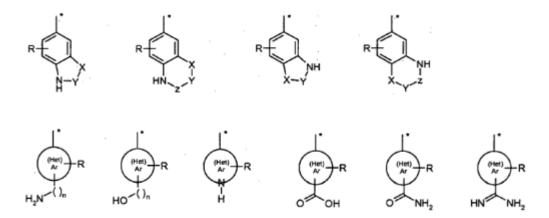
 R_3 y R_4 , conjuntamente con los átomos de carbono marcados 'b' y 'c' forman un cicloalquilo de C_{3-8} o un anillo heterocicloalquilo de C_{5-8} , opcionalmente sustituido con uno o más sustituyentes Q, tal como se han definido antes,

 R_6 y R_7 se seleccionan independientemente entre hidrógeno o un grupo alquilo de C_{1-4} , opcionalmente sustituido con uno o más átomos de halógeno o un grupo hidroxilo o un grupo dialquil (de C_{1-3})-amino-alquilo (C_{1-3}), o

 R_6 y R_7 se seleccionan independientemente entre un grupo aromático monocíclico, un grupo aromático bicíclico fusionado o un grupo heteroaromático, opcionalmente sustituidos con uno o más sustituyentes Q, tal como se han definido antes, o

 R_6 y R_7 son independientemente un grupo cicloalquilo de C_{5-8} o un grupo heterocicloalquilo de C_{5-8} opcionalmente sustituidos con uno o más sustituyentes Q, tal como se definieron antes, o

 R_6 y R_7 , conjuntamente con el átomo de nitrógeno al cual están unidos, forman un grupo heterocicloalquilo de C_{5-8} , opcionalmente sustituido con uno o más sustituyentes Q, tal como se han definido antes;


R₈ se selecciona de:

30

5

20

25

Donde:

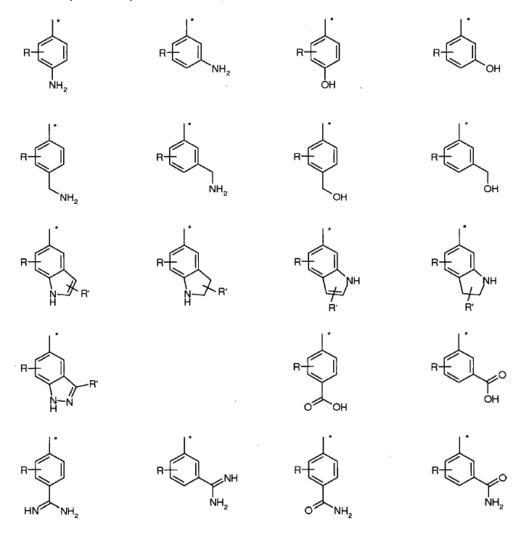
- el asterisco (*) marca el enlace con el átomo de S
- 5 n es 0 (cero) o 1,

- es un grupo arilo o heteroalquilo,
- X, Y y Z se seleccionan independientemente entre C, N O o S, con el entendimiento que los enlaces en el anillo que contienen X, Y o Z pueden ser sencillos o dobles, y C y N están sustituidos solamente con átomos de H,
- R y R' se seleccionan independientemente entre halógeno, alquilo de C_{1-4} , alquenilo de C_{1-4} , alquinilo de C_{1-4} , CF_3 , NH_2 , NH-alquilo de C_{1-4} , $N[alquilo de <math>C_{1-4}]_2$, NH-alquilo de NH-

con la condición de que cuando R_1 , R_3 , R_4 , R_5 y R_6 son hidrógeno, R_2 y R_7 son etilo, y R_8 es 4-aminofenilo o 3-cloro-4-aminofenilo, los compuestos no son mezclas racémicas sino enantiómeros puros (ambas mezclas racémicas se divulgaron en WO 2008/03486(3).

15 La invención proporciona compuestos de acuerdo con las reivindicaciones 1-9, donde R₈ es 4-aminofenilo.

La invención se refiere a racematos, mezclas de diaestereoisómeros así como también a los estereoisómeros individuales de los compuestos de las reivindicaciones 1-9. La invención también se refiere al isómero E, isómero E y mezclas de E/Z de compuestos de las reivindicaciones 1-9.


- La invención se refiere en particular a un compuesto de la fórmula general (1) o a un tautómero, estereoisómero, N-20 óxido o a una sal farmacológicamente aceptable de cualquiera de los anteriores, donde:
 - R₁, R₄ y R₆ son hidrógeno
 - R_2 y R_3 se seleccionan independientemente entre hidrógeno, un grupo hidroxilo o un grupo alquilo de C_{1-4} , opcionalmente sustituido con uno o más sustituyentes Q^* , seleccionados independientemente entre: halógeno, alquilo de C_{1-4} , NH_2 , NH_3 , NH_4 , N
- R₂ y R₃, conjuntamente con el átomo de carbono al cual están unidos, forman un cicloalquilo de C₃₋₈ o un anillo de heterocicloalquilo de C₅₋₈ opcionalmente sustituido con uno o más sustituyentes Q* tal como se han definido antes,

 R_5 se selecciona de hidrógeno o de un grupo alquilo C_{1-4} , opcionalmente sustituido con uno o más sustituyentes Q^* , tal como se han definido antes, o un grupo aromático o heteroaromático monocíclico, opcionalmente sustituido con uno o más sustituyentes Q^* , tal como se han definido antes,

R₇ se selecciona de hidrógeno, o un grupo alquilo de C₁₋₄ no sustituido, opcionalmente sustituido con uno o más átomos de halógeno o un grupo hidroxilo,

R₈ es 4-aminofenilo.

Se describen además aquellos compuestos donde R₈ se selecciona entre:

Donde los símbolos tienen los mismos significados que los dados en la reivindicación 1, con la condición de que cuando R_3 y R_5 son hidrógeno, R_2 y R_7 son etilo y R_8 es 4-aminofenilo o 3-cloro-4-aminofenilo, los compuestos no son mezclas racémicas sino enantiómeros puros.

En otra modalidad, la invención se refiere a compuestos de las reivindicaciones 1-9 donde uno o ambos átomos de carbono potencialmente asimétricos en el anillo de pirazolina es el enantiómero levogiratorio o dextrogiratorio.

Los compuestos de la invención de fórmula (1), así como también las sales farmacológicamente aceptables de los mismos, tienen actividad antagonista del receptor 5-H T_6 . Son útiles en el tratamiento de trastornos que involucran receptores 5-H T_6 , o que pueden tratarse mediante la manipulación de aquellos receptores. Por ejemplo en: enfermedad de Parkinson, corea de Huntington, esquizofrenia, ansiedad, depresión, depresión maniática, psicosis, epilepsia, trastornos obsesivos compulsivos, trastornos del estado de ánimo, migraña, enfermedad de Alzheimer, disminución cognitiva relacionada con la edad, deterioro cognitivo leve, trastornos del sueño, trastornos de la alimentación, anorexia, bulimia, trastornos de atracones en la alimentación, ataques de pánico, acatisia, trastorno de hiperactividad y déficit de atención, trastorno de déficit de atención, abstinencia del abuso de cocaína, de etanol, de nicotina o de benzodiazepinas, dolor, trastornos asociados con trauma espinal o daño en la cabeza, hidrocefalia, trastorno funcional del intestino, síndrome del intestino irritable, obesidad y diabetes tipo 2.

Otras modalidades de la invención incluyen:

5

10

15

Composiciones farmacéuticas para tratar, por ejemplo, un trastorno o condición que pueden tratarse bloqueando receptores 5-HT₆, y la composición comprende un compuesto de cualquiera de las reivindicaciones 1-9 o una sal farmacéuticamente aceptable del mismo y un vehículo farmacéuticamente aceptable:

ES 2 565 184 T3

Composiciones farmacéuticas para tratar, por ejemplo, un trastorno o condición seleccionados entre los trastornos listados en la presente;

Composiciones farmacéuticas para tratar un trastorno o condición seleccionado entre los desórdenes listados en la presente y las composiciones comprenden un compuesto de cualquiera de las reivindicaciones 1-9 o una sal farmacéuticamente aceptable del mismo y un vehículo farmacéuticamente aceptable;

Se describe además:

5

20

El tratamiento de un trastorno condición que puede tratarse bloqueando receptores 5-HT₆, el cual comprende administrar a un paciente que necesita tal tratamiento un compuesto de fórmula (1) o una sal farmacéuticamente aceptable del mismo;

El tratamiento de un trastorno o condición seleccionados entre los trastornos listados en la presente, y los métodos comprenden administrar a un paciente que necesita tal tratamiento un compuesto de fórmula (1) o una sal farmacéuticamente aceptable del mismo; y

Antagonizar un receptor 5-HT₆ el cual comprende administrar a un sujeto que lo necesite una cantidad efectiva de un compuesto de fórmula (1).

La invención también proporciona el uso de un compuesto o sal de acuerdo con cualquiera de las reivindicaciones 1-9 para la fabricación de un medicamento.

La invención se refiere además a combinar terapias en las cuales un compuesto de la invención o una sal farmacéuticamente aceptable del mismo, o una composición o una formulación farmacéutica que comprende un compuesto de la invención se combina con otro agente u otros agentes terapéuticos para tratar una o más de las condiciones listadas. Tal(es) otro(s) agente(s) terapéutico(s) puede(n) administrarse antes de, simultáneamente con o después de la administración de los compuestos de la invención.

También se describen compuestos, composiciones farmacéuticas, kits y métodos para tratar un trastorno o condición seleccionados entre los desórdenes listados en la presente, y el método comprende administrar a un paciente que necesite tal tratamiento un compuesto de fórmula (1) o una sal farmacéuticamente aceptable del mismo.

Los compuestos de la invención poseen actividad antagonista del receptor 5-HT₆. Esta actividad de los compuestos de la invención se demuestra fácilmente, por ejemplo, usando uno o más de los ensayos descritos en la presente o conocidos en la técnica.

La invención también proporciona métodos para preparar los compuestos de la invención y los intermediarios usados en aquellos métodos.

El aislamiento y la purificación de los compuestos e intermediarios descritos en la presente pueden efectuarse, si se desea, mediante cualquier procedimiento adecuado de separación o purificación tal como, por ejemplo, filtración, extracción, cristalización, cromatografía de columna, cromatografía de capa delgada, cromatografía de capa gruesa, cromatografía líquida preparativa de baja o alta presión o una combinación de estos procedimientos. Las ilustraciones específicas de los procedimientos adecuados de separación y aislamiento pueden tomarse de las preparaciones y ejemplos. Sin embargo, por supuesto también podrían usarse otros procedimientos equivalentes de separación o aislamiento.

Los compuestos de la presente invención pueden contener uno o más centros asimétricos y por consiguiente pueden presentarse como racematos y mezclas racémicas, enantiómeros individuales, mezclas diaestereoisoméricas y diastereoisómeros individuales.

Dependiendo de la naturaleza de los diversos sustituyentes, la molécula puede tener centros asimétricos adicionales. 40 Cada centro asimétrico de estos producirá independientemente dos isómeros ópticos. Todos los isómeros y diaestereoisómeros ópticos posibles, en mezclas y como compuestos puros o parcialmente purificados, pertenecen a esta invención. La presente invención comprende todas las tales formas isoméricas de estos compuestos. La fórmula (1) muestra la estructura de la clase de compuestos sin estereoquímica preferida. Las síntesis independientes de estos 45 diaestereoisómeros, o sus separaciones cromatográficas, pueden alcanzarse tal como se conoce en la técnica mediante modificación apropiada de la metodología divulgada en la misma. Su estereoquímica absoluta puede determinarse mediante cristalografía de rayos X de productos cristalinos o intermedios cristalinos que se derivan, si es necesario, con un reactivo que contiene un centro asimétrico de conocida configuración absoluta. Las mezclas racémicas de los compuestos pueden separarse en enantiómeros individuales mediante métodos bien conocidos en la técnica tales como 50 el acoplamiento de una mezcla racémica de compuestos con un compuesto enantioméricamente puro para formar una mezcla diaestereoisomérica, seguido de la separación de los diastereoisómeros individuales mediante métodos estándar, tales como la cristalización fraccionaria o la cromatografía. El acoplamiento consiste frecuentemente en la formación de sales usando un ácido o base enantioméricamente puros, por ejemplo ácido (-)-di-p-toluoil-D-tartárico y/o ácido (+)-di-p-toluoil-L-tartárico. Los derivados diaestereoisoméricos pueden convertirse luego en enantiómeros puros mediante disociación del residuo quiral añadido. La mezcla racémica de los compuestos también puede separarse directamente mediante métodos cromatográficos utilizando fases estacionarias quirales, que son métodos bien conocidos en la técnica. De manera alternativa, puede obtenerse cualquier enantiómero de un compuesto mediante síntesis estéreoselectiva usando materiales de partida o reactivos ópticamente puros de configuración conocida mediante métodos bien conocidos en la técnica.

Los isómeros *cis* y *trans* del compuesto de las reivindicaciones 1-9, o una sal farmacéuticamente aceptable del mismo, también pertenecen a la invención y esto también aplica para tautómeros de los compuestos de las reivindicaciones 1-9 o una sal farmacéuticamente aceptable de los mismos.

Algunas de las formas cristalinas de los compuestos pueden existir como polimorfos, los cuales también están destinados a pertenecer a la invención. En adición, algunos de los compuestos pueden formar solvatos con agua (es decir hidratos), o solventes orgánicos comunes. Tales solvatos también caen dentro del alcance de esta invención.

Un compuesto etiquetado isotópicamente de las reivindicaciones 1-9, o sales farmacéuticamente aceptables del mismo, que incluyen compuestos de las reivindicaciones 1-9 etiquetados isotópicamente para ser detectables mediante PET o SPECT, también se encuentran dentro del alcance de la invención. Lo mismo aplica para compuestos de las reivindicaciones 1-9 etiquetados con [13C]-, [14C]-, [14F]-, [18F]-, [125]- u otros átomos enriquecidos isotópicamente, adecuados para enlazamiento de receptor o estudios de metabolismo.

Los compuestos de la invención también pueden usarse como reactivos o estándares en el estudio bioquímico de función, disfunción y enfermedad neurológica.

20 Definiciones

5

15

45

55

Dentro del contexto de esta descripción, el término 'antagonista del receptor 5-HT₆' se refiere a un compuesto que exhibe esta actividad, medida mediante ensayos farmacológicos no ambiguos y bien aceptados, que incluyen aquellos descritos en WO 20081034863, sin exhibir reactividad cruzada sustancial hacia otro receptor.

Los términos generales utilizados en la descripción de los compuestos descritos en la presente tienen sus significados 25 usuales. El término alquilo tal como se utiliza en la presente invención denota una cadena de hidrocarburo univalente saturada, ramificada o recta. A menos que se enuncie algo diferente, tales cadenas pueden contener desde 1 hasta 18 átomos de carbono. Los representantes de dichos grupos alquilo son metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo, ter-butilo, pentilo, isopentilo, neopentilo, ter-pentilo, hexilo, isohexilo, heptilo, octilo, nonilo, decilo, undecilo, dodecilo, tridecilo, tetradecilo, pentadecilo, hexadecilo, heptadecilo, octadecilo, y similares. Cuando se califica como 30 'inferior', el grupo alquilo contendrá desde 1 hasta 6 átomos de carbono. El mismo contenido de carbono aplica al término parental 'alcano' y a los términos derivados tales como 'alcoxi'. El contenido de carbono de diversos residuos que contienen hidrocarburo se indica mediante un prefijo que designa el número mínimo y máximo de átomos de carbono en el residuo, es decir el prefijo $C_{x\cdot y}$ define la cantidad de átomos de carbono presente desde el número entero "x" hasta el número entero "y" inclusive. 'Alquilo de C₁₋₃', por ejemplo, significa metilo, etilo, n-propilo o isopropilo, y 'alquilo de C₁₋₄' significa 'metilo, etilo, n-propilo, isopropilo, n-butilo, 2-butilo, isobutilo o 2-metil-n-propilo'. El término 35 'alquenilo' denota radicales de hidrocarburo, rectos o ramificados, que tienen uno o más enlaces dobles carbonocarbono, tales como vinilo, alilo, butenilo, etc., y por ejemplo representa alquenilo de C2-4. En los grupos 'alquinilo', lo radicales de hidrocarburo, rectos o ramificados, tienen uno o más enlaces triples carbono-carbono, tales como etinilo, propargilo, 1-butinilo, 2-butinilo, etc., y por ejemplo representan alquinilo de C_{2-4} . A menos que se enuncie de otra 40 manera, las cadenas de 'alquenilo' y 'alquinilo' pueden contener desde 1 hasta 18 átomos de carbono.

El término 'acilo' significa alquil(de C₁₋₃)carbonilo, arilcarbonilo o aril-alquil(de C₁₋₃)-carbonilo.

'Arilo' abarca grupos aromáticos mono- o policíclicos que incluyen fenilo, naftilo, 1,2,3,4-tetrahidro-naftilo, indenilo, fluorenilo, antracenilo, fenantrenilo; naftacenilo y azulenilo. 'Heteroarilo' abarca grupos heteroaromáticos mono- o policíclicos que incluyen furilo, tienilo, pirrolilo, oxazolilo, tiazolilo, imidazolilo, imidazolilo, imidazolilo, piridazolilo, piridazinilo, pirmidinilo, pirazinilo, 1,3,5-triazinilo, indazolilo, indolilo, indolilo, indolilo, indolilo, indolilo, indolilo, indolilo, indazolilo, benzo[b]tienilo, 2,3-dihidro-1,4-benzodioxin-5-ilo, bencimidazolilo, cinnolinilo, carbazolilo, acridinilo, fenazinilo, fenotazinilo, fenoxazinilo, benzotiazolilo, benzo[1,2,5]tia-diazolilo, purinilo, quinolinilo, isoquinolinilo, quinolizinilo, ftalazinilo, quinazolinilo, quinoxalinilo, 1,8-naftiridinilo y pteridinilo.

⁵⁰ 'Halo' o 'halógeno' significan cloro, flúor, bromo o yodo; 'hetero' tal como en 'heteroalquilo, heteroaromático', etc. significa que contiene uno o más átomos de N, O o S.

El término "sustituido" significa que el grupo o residuo especificado lleva uno o más sustituyentes. Donde cualquier grupo puede transportar múltiples sustituyentes y puede proporcionarse una variedad de posibles sustituyentes, los sustituyentes se seleccionan de modo independiente y no necesitan ser los mismos. El término "no sustituido" significa que el grupo especificado no lleva sustituyentes.

ES 2 565 184 T3

Con referencia los sustituyentes, el término 'independientemente' significa que cuando son posibles más de uno de dichos sustituyentes, estos pueden ser los mismos o diferentes entre sí.

'Cicloalquilo de C_{3-8} ' significa ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclopheptilo o ciclooctilo; 'heterocicloalquilo de C_{4-8} ' se refiere a anillos que contienen heteroátomos, que incluyen piperidinlo, morfolinilo, azepanilo, pirrolidinilo, tiomorfolinilo, piperazinilo, tetrahidro-piranilo.

5

10

20

40

50

55

Los términos "oxi", "tio" y "carbo" tal como se usan en la presente como parte de otro grupo se refieren respectivamente a un átomo de oxígeno, un átomo de azufre y a un grupo carbonilo (C=O), los cuales sirven como conectores entre dos grupos, tales como, por ejemplo, hidroxilo, oxialquilo, tioalquilo, carboxialquilo, etc. El término "amino" tal como se usa en la presente sólo, o como parte de otro grupo, se refiere a un átomo de nitrógeno que puede ser terminal o un conector entre dos otros grupos, en cuyo caso el grupo puede ser una amina primaria, secundaria o terciaria (dos átomos de hidrógeno enlazados con el átomo de nitrógeno, un átomo de hidrógeno enlazado con el átomo de nitrógeno y ningún átomos de hidrógeno enlazado al átomo de nitrógeno, respectivamente). Los términos "sulfinilo" y "sulfonilo", tal como se usan en la presente como parte de otro grupo, se refieren respectivamente a un grupo -SO-o a un grupo -SO-o.

Para proporcionar una descripción más concisa, los términos 'compuesto' o 'compuestos' incluyen tautómeros, estereoisómeros, N-óxidos, análogos isotópicamente etiquetados o sales farmacológicamente aceptables, incluso cuando no se mencionan explícitamente.

Los N-óxidos de los compuestos mencionados antes pertenecen a la invención. Las aminas terciarias pueden dar lugar o pueden no dar lugar a metabolitos de N-óxido. La extensión a la cual tiene lugar la N-oxidación varía desde cantidades de vestigios hasta una conversión casi cuantitativa. Los N-óxidos pueden ser más activos que sus aminas terciarias correspondientes, o menos activos. Mientras que los N-óxidos pueden reducirse fácilmente hasta sus aminas terciarias correspondientes por medios químicos, en el cuerpo humano esto ocurre en diferentes grados. Algunos N-óxidos experimentan una conversión reductiva casi cuantitativa en las correspondientes aminas terciarias; en otros casos la conversión es solo una reacción a nivel de vestigios o incluso está completamente ausente (*Bickel*, 1969).

El término 'forma' abarca todos los sólidos: polimorfos, solvatos y formas amorfas. Una 'forma cristalina' se refiere a diversas formas sólidas del mismo compuesto, por ejemplo polimorfos, solvatos y formas amorfas. Las 'formas amorfas' son materiales no cristalinos sin un orden de intervalo largo y, generalmente, no brindan un patrón distintivo de difracción de rayos X en polvo. Las formas cristalinas han sido descritas en términos generales por Byrn (1995) y Martin (1995). Los 'polimorfos' son estructuras cristalinas en las cuales puede cristalizarse un compuesto en diferentes disposiciones de empaquetamiento cristalino, todas las cuales tienen la misma composición elemental. El polimorfismo es un fenómeno que ocurre frecuentemente y que se ve afectado por varias condiciones de cristalización tales como la temperatura, el nivel de sobresaturación, la presencia de impurezas, la polaridad de solvente, la velocidad de enfriamiento. Los diferentes polimorfos habitualmente tienen diferentes patrones de difracción de rayos X, espectros de RMN en Estado sólido, espectros infrarrojos o Raman, puntos de fusión, densidad, dureza, forma cristalina, propiedades ópticas y eléctricas, estabilidad y solubilidad. El solvente de re cristalización, la velocidad de cristalización, la temperatura de almacenamiento y otros factores pueden hacer que predomine una forma cristalina.

Para dar una descripción más concisa, algunas de las expresiones cuantitativas dadas en la presente no están calificadas con el término "alrededor de" o "aproximadamente". Se entiende que si se usa o no se usa explícitamente cualquiera de estos términos, cada cantidad dada significa que se refiere al valor real y también a la aproximación a dicho valor dado el cual se inferiría razonablemente con base en la habilidad ordinaria en el arte, lo que incluye aproximaciones debidas a las condiciones experimentales o de medición para tal valor dado.

El término "selectivo" y "selectividad" se refieren a compuestos que muestran reactividad hacia un receptor particular (por ejemplo, un receptor 5-HT₆) sin presentar reactividad cruzada sustancial hacia otro receptor (por ejemplo, otros subtipos de receptor de 5-HT).

A lo largo de la descripción y las reivindicaciones, la palabra "comprender" y las variaciones de esta palabra tales como "comprenden" y "comprende" no tienen la intención de excluir otros aditivos, componentes, números enteros o pasos.

Aunque puede ser posible que los compuestos de fórmula (1) se administren como el producto químico crudo, es preferible presentarlos como una 'composición farmacéutica'. De acuerdo con otro aspecto, la presente invención proporciona una composición farmacéutica que comprende un compuesto de cualquiera de las reivindicaciones 1-9, o una sal o solvato del mismo que sean aceptables farmacéuticamente, conjuntamente con uno o más soportes del mismo farmacéuticamente aceptables y opcionalmente uno o más ingredientes terapéuticos. El o los soportes tienen que ser 'aceptables' en el sentido de ser compatibles con los otros ingredientes de la formulación y no perjudiciales para el destinatario de la misma.

El término "composición", tal como se usa en la presente, abarca un producto que comprende ingredientes especificados en cantidades o proporciones predeterminadas, así como también cualquier producto que resulte, directa o indirectamente, de combinar ingredientes especificados en cantidades especificadas. En relación con composiciones

farmacéuticas, este término abarca un producto que comprende uno o más ingredientes activos y un soporte opcional que comprende ingredientes inertes, así como cualquier producto que resulte, directa o indirectamente de la combinación, acomplejamiento o agregación de cualquiera de los dos o más ingredientes, o la disociación de uno o más de los ingredientes, o de otros tipos de reacciones o interacciones de uno o más de los ingredientes. En términos generales, las composiciones farmacéuticas se preparan asociando de manera uniforme e íntima el ingrediente activo con un soporte líquido o un soporte sólido finamente dividido, o con ambos, y luego, si es necesario, dando forma al producto hacia la formulación deseada. La composición farmacéutica incluye bastante del compuesto objeto activo para producir el efecto deseado sobre el progreso o la condición de las enfermedades. Por consiguiente, las composiciones farmacéuticas de la presente invención abarcan cualquier composición hecha mezclando compuesto de la presente invención y un soporte farmacéuticamente aceptable. "Farmacéuticamente aceptable" significa que el soporte, el diluyente o el excipiente tienen que ser compatibles con los otros ingredientes de la formulación y no perjudiciales para el receptor de la misma.

5

10

15

20

25

30

35

40

45

50

55

Dentro del contexto de esta solicitud, el término 'preparación de combinación' comprende tanto combinaciones verdaderas, lo que significa un compuesto de la fórmula (1) y uno o más de otros medicamentos combinados físicamente en una preparación tal como un comprimido o un fluido de inyección, como también 'kit de partes', que comprende un compuesto de la fórmula (1) y uno o varios otros medicamentos en formas posológicas separadas, conjuntamente con instrucciones para usar, opcionalmente con otros medios para facilitar el cumplimiento de la administración de los compuestos componentes, por ejemplo etiqueta o dibujos. Con combinaciones verdaderas, la farmacoterapia es simultánea por definición. Los contenidos del 'kit de partes' pueden administrarse de modo simultáneo o a diferentes intervalos de tiempo. La terapia, concomitante o secuencial, dependerá de las características de los otros medicamentos usados, características tales como inicio y duración de la acción, niveles de plasma, eliminación, etcétera y como también de la enfermedad, su etapa y características del paciente individual.

La afinidad de los compuestos de la invención para receptores de 5-HT₆ se determinó tal como se describió antes. A partir de la afinidad de enlazamiento, medida para un compuesto dado de la fórmula (1), puede estimarse la más baja dosis efectiva teórica. A una concentración del compuesto igual a dos veces el valor de K_i medido, casi el 100% de los receptores de 5-HT₆ estarán probablemente ocupados por el compuesto. La conversión de esa concentración a mg de compuesto por kg del paciente da lugar a la más baja dosis efectiva teórica, suponiendo una biodisponibilidad ideal. La farmacocinética, la farmacodinámica y otras consideraciones pueden modificar la dosis administrada realmente a un valor más alto o más bajo. La dosis diaria típica de los ingredientes activos varía dentro de un rango amplio y dependerá de varios factores tales como la indicación relevante, la ruta de administración, la edad, el peso y el sexo del paciente y puede determinarse por parte de un médico. En términos generales, la administración de dosis diaria total a un paciente en dosis individuales o únicas puede estar diariamente en cantidades de, por ejemplo, 0.001 a 10 mg/kg de peso corporal, y más usualmente desde 0.01 a 1,000 mg por día, de los ingredientes activos totales. Tales dosificaciones se administrarán a un paciente que necesite el tratamiento de una a tres veces cada día, o tan frecuentemente como se necesite para la eficacia, y por períodos de al menos dos meses, de modo más típico durante al menos seis meses, o de manera crónica.

El término "cantidad terapéuticamente efectiva" se refiere a una cantidad de un agente terapéutico para tratar una condición que puede tratarse administrando una composición de la invención. La cantidad incluye la cantidad suficiente para exhibir una respuesta terapéutica detectable o de mejora en un sistema tisular humano. El efecto puede incluir el tratamiento de las condiciones listadas en la presente. La cantidad farmacéuticamente efectiva precisa para un sujeto dependerá del tamaño y de la salud del sujeto, la naturaleza y alcance de la condición que se esta tratando, recomendaciones del médico y de los productos terapéuticos, o combinación de productos terapéuticos, seleccionados para administración. Por lo tanto, no es útil especificar de antemano una cantidad farmacéuticamente efectiva. El término "sal farmacéuticamente aceptable" se refiere a aquellas sales que son adecuadas dentro del alcance del juicio médico sensato para usar en contacto con los tejidos de los humanos y animales inferiores sin una toxicidad indebida, irritación, respuesta alérgica y similares y que son proporcionales a una relación de beneficio razonable/riesgo. Las sales farmacéuticamente aceptables son bien conocidas en la técnica. Pueden prepararse in situ cuando los compuestos de la invención se aíslan y purifican finalmente, o por separado al hacerlos reaccionar con bases o ácidos no tóxicos, farmacéuticamente aceptables, que incluyen bases inorgánicas u orgánicas y ácidos inorgánicos u orgánicos (Berge, 1977). La forma de 'base libre' puede regenerarse mediante contacto de la sal con una base o ácido y aislando el compuesto parental de la manera convencional. La forma parental del compuesto difiere de las diversas formas de sal en ciertas propiedades físicas, tales como la solubilidad en solventes polares, pero de otra manera las sales son equivalentes a la forma parental del compuesto para los propósitos de la presente invención.

El término "tratamiento" se refiere a cualquier tratamiento de una condición o enfermedad humana e incluye: (1) inhibir la enfermedad o la condición, es decir detener su desarrollo, (2) aliviar la enfermedad o condición, es decir causar que la condición sufra una regresión, o (3) detener los síntomas de la enfermedad. El término 'inhibir' incluye su significado generalmente aceptado que incluye contener, aliviar, mejorar y desacelerar, detener o reversar la progresión, la severidad o un síntoma resultante. Tal como se usa en la presente, el término 'terapia médica' esta destinado a incluir regímenes diagnósticos y terapéuticos llevados a cabo *in vivo* o *ex vivo* en humanos.

ES 2 565 184 T3

Tal como se usa en la presente, el término "trastornos de peso corporal" se refiere a los trastornos causados por un desequilibrio entre la toma de energía y el gasto de energía, lo que da lugar a un peso corporal anormal (por ejemplo, excesivo). Tales trastornos de peso corporal incluyen obesidad (*Roth*, 1994; *Sibley*, 1993; *Sleigh*, 1995, 1997). La 'obesidad' se refiere a una condición por la cual una persona tiene un índice de masa corporal (IMC), calculado como el peso dividido por altura al cuadrado (km/m²), de al menos 25.9. Convencionalmente, aquellas personas con peso normal tienen un IMC de 19.9 a menos de 25.9. La obesidad en este caso puede deberse a cualquier causa, ya sea genética o ambiental. Ejemplos de trastornos que pueden dar lugar obesidad o ser la causa de la obesidad incluyen sobre-alimentación y bulimia, enfermedad policística de ovarios, craneofaringioma, el síndrome de Prader-Willi, el síndrome de Frohlich, diabetes tipo II, sujetos con deficiencia de GH, estatura corta variante normal, síndrome de Turner, y otras condiciones patológicas que muestran actividad metabólica reducida o una disminución en el gasto de energía en reposo como un porcentaje de masa libre de grasa total, por ejemplo niños con leucemia linfoblástica aguda.

Abreviaturas

5

10

ACE-CI cloroformiato de 1-cloroetilo

ACN acetonitrilo

15 ADD trastorno de déficit de atención

ADHD trastorno de hiperactividad y déficit de atención

API ionización a presión atmosférica

BEMP 2-ter-butilimino-2-dietilamino-1,3-dimetil-perhidro-1,3,2-diazafosforina

IMC índice de masa corporal

20 Boc ter-butoxicarbonilo

Boc₂O dicarbonato de di-ter-butilo

CHO ovarios de hámster chino (células)

CNS sistema nervioso central

CUR cortina de gas

25 DCM diclorometano

DiPEA N,N,-diisopropiletilamina

DMAP 4-dimetilaminopiridina

DMC cloruro de 2-cloro-1.3-dimetilimidazolinio

DMF N,N'-dimetilformamida

30 DMSO sulfóxido de dimetilo

EA acetato de etilo

SI ionización por rocío de electrones

FCS suero fetal bovino

FP potencial de enfoque

35 g gramo(s)

h hora(s)

HPLC cromatografía líquida de alta resolución

5-HT 5-hidroxitriptamina, serotonina

Mel yoduro de metilo

MeOH metanol

mg miligramo (s)

min minuto (s)

5 ml mililitro(s)

p.f. Punto de fusión, opcionalmente intervalo de fusión

MS espectrometría de masas

MTBE metil ter-butil éter

PA éter de petróleo (40-60)

10 R_f factor de retención (cromatografía en capa fina)

R_t tiempo de retención (LC-MS)

RT temperatura ambiente

SIM monitoreo de iones seleccionados

SCX intercambio de cationes fuertes

15 SPE extracción en fase sólida

t_{1/2} vida media

TBAF fluoruro de tetrabutilamonio

TBOPS ter-butildifenilsililo

TFAA anhídrido trifluoroacético

20 TMS trimetilsililo

TMSCI cloruro de trimetilsililo

THF tetrahidrofurano

WME medio E de Williams

X-Phos 2-diciclohexilfosfino-2'-4'-6'-triisopropilbifenilo

25 Ejemplo 1: Métodos analíticos

30

Los espectros de resonancia magnética nuclear (1 H RMN) se determinaron en el solvente indicado utilizando un instrumento Bruker ARX 400 (1 H: 400 MHz) o un Varian VXR200 (1 H: 200 MHz) a 300 K, a menos que se indique algo diferente. Los espectros se determinaron en cloroformo deuterado o DMSO y se obtuvieron de Cambridge Isotope Laboratories Ltd. Los desplazamientos químicos (δ) están dados en ppm en el intervalo siguiente al tetrametilsilano (1H). Las constantes de acoplamiento J están dadas en Hz. Las formas de los picos en los espectros de RMN se indican con los símbolos 'q' (cuarteto), 'dq' (doble cuarteto), 't' (triplete), 'dt' (doble triplete), 'd' (doblete),'dd' (doble doblete), 's' (singulete), 'bs' (singulete ancho) y 'm' (multiplete). Las señales de NH y OH se identificaron después de mezclar la muestra con una gota de D_2O .

La cromatografía flash (instantánea) se refiere a la purificación usando el eluyente indicado y gel de sílice (gel de sílice Merck 60: 0,040-0.063 mm). Los puntos de fusión se registraron en un aparato de punto de fusión Büchi B-545. Todas las reacciones que involucran compuestos sensibles a la humedad y/o al oxígeno fueron llevadas a cabo en una atmósfera de nitrógeno. Las reacciones fueron monitoreadas utilizando cromatografía en capa fina (TLC) sobre placas recubiertas con gel de sílice (gel de sílice pre-recubiertas 60 de Merck F254) con el eluyente indicado. Las manchas fueron visualizadas mediante luz ultravioleta (254 nm) o l₂.

Cromatografía líquida-espectrometría de masas (LC-MS): el sistema de LC-MS consistió en 2 micro-bombas de Perkin Elmer serie 200. Las bombas se conectaron entre si por medio de un mezclador en T de 50 µl, conectado con un automuestreador Gilson 215. El método fue tal como sigue:

	Etapa	tiempo total	flujo (µm/min)	A(%)	B(%)
5	0	0	2000	95	5
	1	1.8	2000	0	100
	2	2.5	2000	0	100
	3	2.7	2000	95	5
	4	3.0	2000	95	5

10 A= 100% de agua con 0.025% de HCOOH y 10 mmol de NH_4HCOO pH= ± 3

B= 100% de ACN con 0.025% de HCOOH

El auto-muestreador tenía un bucle de inyección de 2 µl y estaba conectado con una columna Waters Atlantis C18 30*4.6 mm con partículas de 3 µm. La columna tenía la temperatura estabilizada en un horno para columnas Perkin Elmer serie 200 a 40 °C. La columna estaba conectada con un medidor de luz ultravioleta Perkin Elmer serie 200 que tenía una celda de flujo de 2.7 µm. La longitud de onda se ajustó a 254 nm. El medidor de luz ultravioleta se conectó a un espectrómetro de masa Sciex API 150EX. El espectrómetro de masa tenía los siguientes parámetros:

Intervalo de barrida: 150-900 unidades de masa atómica; Polaridad: positiva; modo de barrido: perfil; resolución Q1: unidad; tamaño de paso: 0.10 unidades de masa atómica; tiempo por barrido: 0.500 s; NEB: 10; CUR: 10 IS: 5200; TEM: 325; DF: 30; FP: 225 y EP: 10. El detector de dispersión de luz estaba conectado al Sciex API 150. El detector de dispersión de luz era un Sedere Sedex 55 que operaba a 50° C y 3 bar de N₂. El sistema completo estaba controlado por una G3 Powermac.

Ejemplo 2: Aspectos generales de síntesis

Las síntesis adecuadas de los compuestos e intermediarios reivindicados que contienen residuos de pirazolina siguen rutas análogas a aquellas divulgadas previamente en WO 2008/034863, empleando bloques de construcción de 4,5-dihidro-1H-pirazol o 4,5-dihidro-3H-pirazol los cuales están comercialmente disponible o se preparan tal como se describe más adelante.

Ruta 1

15

20

25

30

La ruta 1 emplea estructuras de N-(bis-alquilsulfanil-metilen)-sulfonamida de la fórmula general (V), que pueden prepararse a partir de sulfonamidas mediante reacción con CS₂ en presencia de KOH, seguido por reacción con un haluro de alquilo tal como yoduro de metilo. Las dos funcionalidades S-alquilo pueden sustituirse a continuación por aminas, preferiblemente iniciando con los bloques de construcción de pirazolina para obtener estructuras de la fórmula general (VI), para terminar con derivados de sulfonilpirazolina carboxamidina de la fórmula general (IV).

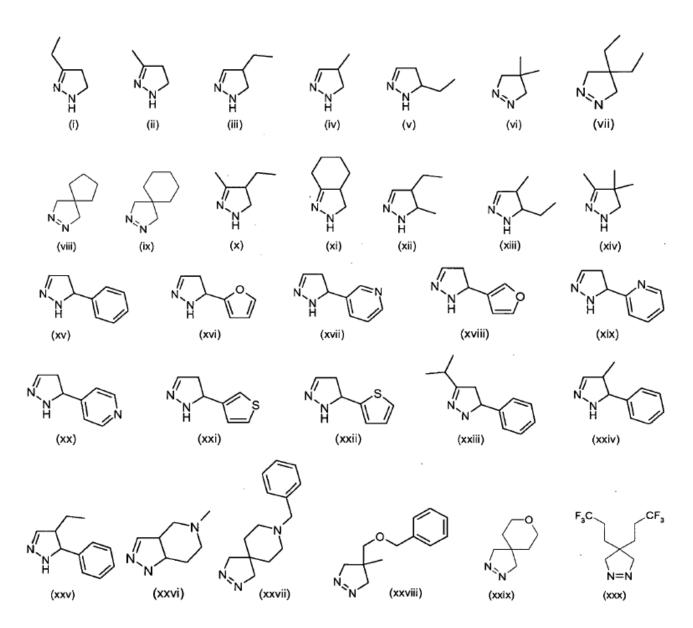
Ruta 2

Alkyl-X R Alkyl R O=
$$S=0$$
 R O= $S=0$ R O= $S=0$ R (IV)

La ruta 2 emplea fragmentos de alquil-isotiourea o formas salinas adecuadas de la misma de la fórmula general (IX), convenientemente preparadas mediante reacción de bloques de construcción de tiourea con haluros de alquilo, tales como yoduro de metilo, que pueden hacerse reaccionar con pirazolinas en presencia de una base para obtener derivados de pirazolina carboxamidina de la fórmula general (X). Estos últimos pueden hacerse reaccionar con haluros de sulfonilo (X = Br, CI, F, preferiblemente CI) en presencia de una base para obtener derivados de sulfonilpirazolina carboxamidina de la fórmula general (IV).

Ruta 3

5


La ruta 3 emplea sulfonil carbamatos de la fórmula general (I), que pueden prepararse, por ejemplo, mediante reacción de sulfonamidas con cloroformiato de metilo o dicarbonato de di-ter-butilo en presencia de una base. Sus productos de reacción con pirazolinas de la fórmula general (II) pueden convertirse a continuación en los intermediarios de cloroimina de la fórmula general (III) usando agentes de halogenación tales como PCl₃, POCl₃/DMAP o cloruro de 2-cloro-1,3-dimetilimidazolinio (DMC), seguido por reacción con aminas para obtener derivados de sulfonilpirazolina carboxamidina de la fórmula general (IV).

La selección de los procedimientos sintéticos particulares depende de factores conocidos por aquellos versados en la materia, tales como la compatibilidad de grupos funcionales con los reactivos usados, la posibilidad de usar grupos de protección, catalizadores, reactivos de activación y acoplamiento y las características estructurales finales presentes en los compuestos finales que se están preparando.

Las sales farmacéuticamente aceptables pueden obtenerse utilizando procedimientos estándar bien conocidos en la técnica, por ejemplo mezclando un compuesto de la presente invención con un ácido adecuado, por ejemplo un ácido inorgánico o un ácido orgánico.

Ejemplo 3: Síntesis de intermediarios de pirazolina

Los siguientes intermediarios de pirazolina fueron sintetizados tal como se describe en WO 2008/034863.

- (i) 3-Etil-4,5-dihidro-1H-pirazol
- (ii) 3-Metil-4,5-dihidro-1H-pirazol
- (iii) 4-Etil-4,5-dihidro-1H-pirazol
- (iv) 4-Metil-4,5-dihidro-1H-pirazol

5

- (v) 5-Etil-4,5-dihidro-1H-pirazol
- (vi) 4,4-Dimetil-4,5-dihidro-3H-pirazol
- (vii) 4,4-Dietil-4,5-dihidro-3H-pirazol
- (viii) 2,3-Diaza-espiro[4.4]non-2-eno
- 10 (ix) 2,3-Diaza-espiro[4.5]dec-2-eno
 - (x) 4-Etil-3-metil-4,5-dihidro-1H-pirazol
 - (xi) 3,3a,4,5,6,7-Hexahidro-2H-indazol

- (xii) 4-Etil-5-metil-4,5-dihidro-1H-pirazol
- (xiii) 5-Etil-4-metil-4,5-dihidro-1H-pirazol
- (xiv) 3,4,4-Trimetil-4,5-dihidro-1H-pirazol
- (xv) 5-Fenil-4,5-dihidro-1H-pirazol
- 5 (xvi) 5-Furan-2-il-4,5-dihidro-1H-pirazol
 - (xvii) 3-(3,4-Dihidro-2H-pirazol-3-il)-piridina
 - (xviii) 5-Furan-3-il-4,5-dihidro-1H-pirazol
 - (xix) 2-(3,4-Dihidro-2H-pirazol-3-il)-piridina
 - (xx) 4-(3,4-Dihidro-2H-pirazol-3-il)-piridina
- 10 (xxi) 5-Tiofen-3-il-4,5-dihidro-1H-pirazol
 - (xxii) 5-Tiofen-2-il-4,5-dihidro-1H-pirazol
 - (xxiii) 3-lsopropil-5-fenil-4,5-dihidro-1H-pirazol
 - (xxiv) 4-Metil-5-fenil-4,5-dihidro-1H-pirazol
 - (xxv) 4-Etil-5-fenil-4,5-dihidro-1H-pirazol
- 15 (xxvi) 5-Metil-3a,4,5,6,7,7a-hexahidro-1H-pirazolo[4,3-c]piridina
 - (xxvii) 8-Bencil-2,3,8-triaza-espiro[4.5]dec-2-eno
 - (xxviii) 4-Benciloximetil-4-metil-4,5-dihidro-3H-pirazol
 - (xxix) 8-Oxa-2,3-diaza-espiro[4.5]dec-2-eno
 - (xxx) 4,4-Bis-(2,2,2-trifluoro-etil)-4,5-dihidro-3H-pirazol
- 20 Ejemplo 4: síntesis de compuestos específicos

25

30

- 4-Amino-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]bencenosulfonamida (Compuesto 4)
- 4-Amino-N-(bis-metilsulfanil-metilen)-bencenesulfonamida:

Se disolvieron 100 g de sulfanilamida en 375 mL de DMF, se adicionaron gota a gota 33.2 mL de una solución acuosa al 50% de NaOH y continuó revolviéndose durante 10 minutos a temperatura ambiente. A la suspensión blanca se adicionaron gota a gota 19.2 mL de disulfuro de carbono y se revolvió la mezcla durante 30 minutos a temperatura ambiente. La mezcla fue tratada dos veces más con adición subsiguiente de 18.1 mL de NaOH acuoso al 50% y 9.6 mL de disulfuro de carbono con un intervalo para revolver de 10 minutos entre los dos ciclos. Después de revolver finalmente la mezcla durante 30 minutos, se enfrió la solución naranja/rojo con un baño de hielo y se adicionaron gota a gota 72.3 mL de yodometano a una velocidad tal que la temperatura de la mezcla se mantuvo por debajo de 25°C. Se adicionó una cantidad de 25 mL de DMF para mantener la mezcla capaz de ser revuelta y continuó revolviéndose durante 1 hora. Mientras aún se enfriaba, se adicionaron 250 mL de agua a la mezcla y la suspensión se revolvió mecánicamente por una noche a temperatura ambiente. El precipitado fue separado por filtración y lavado con agua y etanol frío. El residuo fue recristalizado a partir de acetato de etilo para producir, después de secar a 50 °C al vacío,

64.9 g (40%) de un sólido blanco. 1 H RMN (400 MHz, DMSO-d₆) δ 3.38 (s, 6H), 6.15 (s, 2H), 6.66 (d, J =8.73 Hz, 2H), 7.56 (d, J=8.73 Hz, 2H).

4-Amino-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-metilsulfanil-metilene]-bencenosulfonamida

- 5 En un vial de microondas de 25 mL se disolvieron 2.00 g de 4-amino-N-(bis-metilsulfanil-metilen)bencenesulfonamida y 1.00 g de 2,3-diaza-espiro[4.4]non-2-eno en 15 mL de piridina. El vial fue tapado y calentado durante 2 horas a 180 °C en el microondas. Las mezclas resultantes a partir de 8 de estos experimentos secuenciales fueron combinadas y concentradas a presión reducida. El residuo fue sometido a cromatografía flash (DCM/EA 95:5 → 90:10) y la evaporación de las fracciones puras produjo 5.20 g (25%) de un sólido amarillo. ¹H RMN (400 MHz, CDCl₃) δ 1.63-1.92 (m, 8H), 2.23 (s, 3H), 3.06 (s, 2H), 4.03 (s, 2H), 6.67 (d, 2H), 6.98 (s, 1 H), 7.74 (d, 2H).

A una solución de 4.05 g de 4-amino-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-metilsulfanil-metilen]-bencenosulfonamida en 30 mL de MeOH se adicionaron 7.86 mL de una solución acuosa al 70% de etilamina. La mezcla se revolvió durante 1 hora a temperatura ambiente y se evaporó hasta secarse. El residuo se disolvió en una cantidad mínima de DCM y se trituró con MTBE. El precipitado se separó por filtración y se secó al vacío y a continuación fue recristalizado a partir de acetato de n-butilo para producir 2.40 g (67%) de 4-amino-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-bencenosulfonamida como un material micro cristalino blancuzco después de secarse al vacío a 80 °C; p.f. 141-142°C. ¹H RMN (400 MHz, CDCl₃) δ 1.14 (t, *J*=7.22 Hz, 3H), 1.47-1.89 (m, 8H), 3.35-3.57 (m, 2H), 3.79 (s, 2H), 4.02 (br.s., 2H), 6.65 (d, *J*=8.73 Hz, 2H), 6.78 (s, 1 H), 6.91 (br. s., 1H), 7.70 (d, *J*=8.73 Hz, 2H).

- 4-Amino-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-3-fluoro-bencenosulfonamida (Compuesto 15)
 - 3-Fluoro-4-nitro-bencenosulfonamida

15

A una solución de 5.00 g de cloruro de 3-fluoro-4-nitrobencenesulfonilo en 20 mL de acetonitrilo enfriado en un baño de hielo se adicionaron gota a gota 4.40 mL de una solución de hidróxido de amonio al 30%. Después de retirar el baño de hielo continuó revolviéndose durante 30 minutos a temperatura ambiente. Se adicionó agua y la mezcla se extrajo con DCM. Las capas orgánicas combinadas se secaron sobre MgSO₄ y se evaporaron hasta secarse para producir 4.65 g (99%) de un sólido amarillo. 1 H RMN (400 MHz, OMSO-d₆) δ 7.51 (s, 2H), 7.89 (d, J = 9.33 Hz, 1 H), 7.92 (dd, J = 10.23; 1.81 Hz, 1H), 8.14-8.21 (m, 1 H).

4-Amino-3-fluoro-bencenosulfonamida

5

30

A una solución de 1.00 g de 3-fluoro-4-nitro-bencenosulfonamida en 10 mL de MeOH se adicionó 10% molar de paladio sobre carbono. La mezcla fue hidrogenada durante 30 minutos a una presión de H_2 de 50 psi. Después de filtrar sobre Hyflo, la concentración al vacío produjo 630 mg (74%) de un aceite marrón oscuro. ¹H RMN (400 MHz, DMSO-d₆) δ 6.83 (t, J = 8.43 Hz, 1H), 7.42 (dd, J = 8.28, 1.96 Hz, 1H), 7.47 (dd, J = 10.99, 1.96 Hz, 1H) [NH₂ invisibles].

4-amino-N-(bis-metilsulfanil-metilen)-3-fluoro-bencenosulfonamida

- 1.15g de 4-amino-3-fluoro-bencenosulfonamida se disolvieron en 50 mL de DMF, se adicionaron gota a gota 0.33 mL de una solución al 50% de NaOH y continuó revolviéndose durante 30 minutos a temperatura ambiente. Se adicionaron gota a gota a la mezcla 0.16 mL de disulfuro de carbono y la mezcla se revolvió durante 1 hora a temperatura ambiente. La mezcla fue tratada dos veces más con adición subsiguiente de 0.16 mL de NaOH acuoso al 50% y 0.08 mL de disulfuro de carbono, con un intervalo para revolver de 30 minutos entre los dos ciclos. Después de revolver finalmente la mezcla durante 1 hora, a la solución púrpura se agregaron gota a gota 0.72 mL de yodometano y continuó revolviéndose durante 1 hora. Después de enfriar la mezcla en un baño de agua, se adicionaron lentamente 100 mL de agua a la mezcla y la suspensión se revolvió mecánicamente por una noche a temperatura ambiente. El precipitado se separó mediante filtración y se secó para producir 0.60 g (35%) de un sólido marrón. ¹H RMN (400 MHz, CDCl₃) δ 2.55 (s, 6H), 4.20 (br. s., 2H); 6.80 (t, *J*=8.58 Hz, 1 H), 7.56-7.64 (m, 2 H).
- 4-Amino-N-[2,3-diaza-espiro[4.4]non-3-en-2-il)-metilsulfanil-metilen]-3-fluorobencenosulfonamida

En un vial para microondas de 10 mL, se disolvieron 530 mg de 4-amino-N-(bis-metilsulfanil-metilen)-3-fluoro-5 bencenosulfonamida y 325 mg de 2,3-diaza-espiro[4.4]non-2-eno en 5 mL de piridina, y se adicionó una gota de líquido iónico (hexafluorofosfato de 1-butil-3-metilimidazolio). El grial fue tapado y calentado durante 2 horas a 180 °C en microondas. La mezcla fue concentrada a presión reducida y secada al vacío y el producto crudo (840 mg) fue utilizado

en la etapa subsiguiente. 1 H RMN (400 MHz, CDCl₃) δ 1.60-2.03 (m, 8H), 2.24 (s, 3H), 3.07 (s, 2H), 4.90 (br.s., 2H), 7.00 (s, 1H), 7.28-7.33 (m, 1H), 7.65-7.73 (m, 1H), 8.62 (d, J = 3.91 Hz, 1H).

A una solución de 840 mg de 4-amino-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-metilsulfanil-metilen]-3-fluorobencenosulfonamida (cruda) en 25 mL de MeOH se adicionaron 3.43 mL de una solución acuosa al 70% de etilamina. La mezcla se revolvió durante 1 hora a temperatura ambiente, se adicionó agua y la mezcla se extrajo con DCM. Las capas orgánicas combinadas se secaron sobre MgSO₄ y se evaporaron hasta secarse el residuo se purificó mediante cromatografía flash (EA/PA 3:1) para producir 260 mg (33% por 2 etapas) de 4-amino-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-3-fluoro-bencenosulfonamida como un aceite marrón. 1 H RMN (400 MHz, CDCl₃) δ 1.16 (t, J = 7.2 Hz, 3H), 1.57-1.87 (m, 7H), 3.43-3.53 (m, 2H), 3.82 (s, 2H), 4.02-4.07 (m, 2H), 6.77 (t, J = 8.4 Hz, 1 H), 6.80 (s, 1 H), 7.50-7.58 (m, 2H) [NH₂ invisible].

N-[Etilamino-(5-fenil-4, 5-dihidro-pirazol-1-il)-metilen]-4-hidroxibencenosulfonamida (compuesto 25)

N-(Bis-metilsulfanil-metilen)-4-metoxi-bencenosulfonamida

5

10

10.00 g de 4-metoxibencenosulfonamida se disolvieron en 90 mL de DMF y se adicionaron 5.16 mL de disulfuro de carbono. La mezcla se enfrió en un baño de hielo, seguido por la adición gota a gota de 6.47 ml de una solución acuosa al 50% de NaOH. La mezcla roja oscura se revolvió durante 30 minutos, se adicionaron gota a gota 7.65 mL de yodometano, se retiró el baño de hielo se revolvió la mezcla durante 1 hora a temperatura ambiente. A continuación se adicionaron lentamente 33 mL de agua a la mezcla y la suspensión se revolvió por una noche a temperatura ambiente.
El precipitado se retiro mediante filtración, se lavó 3 veces con agua y se seco al vacío. El producto se purificó mediante cromatografía flash (DCM → DCM/MeOH 95:5) para producir 8.00 g (44%) de un material blanco, aceitoso y amorfo. ¹H RMN (400 MHz, CDCl₃) δ 2.53 (s, 6H), 3.88 (s, 3H), 6.97 (q, *J* = 5.12 Hz, 2H), 7.93 (q, *J* = 5.02 Hz, 2H).

4-Metoxi-N-[metilsulfanil-(5-fenil-4,5-dihidro-pirazol-1-il]-metilen]bencenosulfonamida

A una atmósfera de N₂ se disolvieron 3.26 g de N-(Bis-metilsulfanil-metilen)-4-metoxi-bencenosulfonamida y 4.34 g de 5-fenil-4,5-dihidro-1H-pirazol en 25 mL de piridina y se sometieron a reflujo durante 3 días. La mezcla se enfrió y se concentró a presión reducida. El residuo se llevó a EA y se extrajo con una solución acuosa al 5% de NaHCO₃. La capa

orgánica se seco sobre MgSO $_4$ y se evaporó hasta secarse y el residuo se purificó mediante cromatografía flash (DCM \rightarrow 4 DCM/MeOH 95:5). La evaporación de las fracciones puras produjo 2.30 g (40%) de un aceite amarillo. TLC: Rf 0.71 (DCM/MeOH 95:5). LC-MS: Rt 1.85 min (MH $^+$ 390).

N-[Etilamino-(5-fenil-4,5-dihidro-pirazol-1-il)-metilen]-4-metoxi-bencenosulfonamida

A una solución de 2.30 g de 4-metoxi-N-[metilsulfanil-(5-fenil-4,5-dihidro-pirazol-1-il)metilen]-bencenosulfonamida en 50 mL de MeOH se adicionaron 3.80 mL de una solución acuosa al 70% de etilamina. La mezcla se revolvió por una noche a temperatura ambiente y se evaporó hasta secarse. El residuo se llevó a EA y se extrajo con una solución acuosa al 5% de NaHCO₃. La capa orgánica se secó sobre MgSO₄ y se evaporó hasta secarse y el residuo se purificó mediante HPLC preparativa para producir 1.20 g (62%) de un sólido amorfo blanco. 1 H RMN (400 MHz, CDCl₃) δ 1.14 (t, J = 7.2 Hz, 3H), 2.66-2.79 (m, 1 H), 3.28-3.42 (m, 1 H), 3.48-3.67 (m, 2H), 3.80 (s, 3H), 5.51 (dd, J=11.9, 7.1 Hz, 1H), 6.60 (d, J=9.0 Hz, 2H), 6.94-6.98 (m, 1H), 7.02-7.09 (m, 2H), 7.18 (d, J = 9.0 Hz, 2H), 7.20-7.25 (m, 3H) [NH de guanidina invisible].

En una atmósfera de N₂, a una solución de 1.05 g de N-[etilamino-(5-fenil-4,5-dihidro-pirazol-1-il)-metilen]-4-metoxibencenosulfonamida en 25 mL de DCM, se adicionaron 12.91 mL de una solución de 1 M de tribromuro de boro en DCM. La mezcla se revolvió por una noche a temperatura ambiente en una atmósfera de N₂, se apagó con agua y se revolvió durante otros 30 minutos. Los sólidos se separaron mediante filtración y el filtrado se extrajo con agua. La capa orgánica se secó sobre MgSO₄ y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (gradiente por etapas DCM → DCM/MeOH 95:5). Las fracciones puras se concentraron y se trituraron con Et₂O. Los sólidos se separaron mediante filtración y se secaron al vacío para producir 0.34 g (34%) de N-[etilamino-(5-fenil-4,5-dihidro-pirazol-1-il)-metilen]-4-hidroxi-bencenosulfonamida como un material cristalino gris, p.f. 158-160°C. ¹H RMN (400 MHz, DMSO-d₆) δ 1.07 (t, *J* = 7.2 Hz, 3H), 2.69-2.81 (m, 1H), 3.36-3.47 (m, 1H), 3.49-3.59 (m, 2H), 5.40-5.51 (m, 1H), 6.55 (d, *J* = 8.7 Hz, 2H), 7:00 (d, *J* = 8.4 Hz, 2H), 7.04-7.12 (m, 3H), 7.22-7.29 (m, 3H), 9.71 (s, 1H) [NH de guanidina invisible].

N-[(2,3-Diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-4-hidroximetilbencenosulfonamida (Compuesto 40)

Éster metílico de ácido 4-sulfamoil-benzoico

5

10

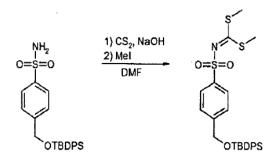
30

A una mezcla de 5.16 g de 4-carboxilbencenosulfonamida en 150 mL de metanol se adicionaron 6.84 mL de ácido sulfúrico. La mezcla se sometió a reflujo durante una noche y se enfrió a temperatura ambiente. La mezcla se evaporó

hasta secarse y el residuo se trituró con Et_2O . La precipitación formada se separó mediante filtración, se lavo con Et_2O y C secó para producir 5.2 g (92%) de un sólido blanco. ¹H RMN (400 MHz, CDCl₃) δ 3.90 (s, 3H), 7.59 (s, 2H), 7.97 (d, J = 5.84 Hz, 2H), 8.15 (d, J = 5.84 Hz, 2H).

4-Hidroximetil-bencenosulfonamida

5


10

A una solución de 5.2 g de éster metílico de ácido 4-sulfamoil-benzoico en 100 mL de THF y 1.44 mL de MeOH se adicionaron 0.77 g de borohidruro de litio por porciones durante un período de 10 minutos. La mezcla se calentó a reflujo por una noche, se enfrió a temperatura ambiente y se vertió sobre hielo que contenía 100 mL de HCl de 1 N. La mezcla se extrajo con EtOAc, y la capa orgánica se seco sobre MgSO₄ y se concentró a presión reducida. El residuo fue purificado mediante cromatografía flash automatizada (EtOAc/Hexano 1:1) para producir 0.75 g (17%) de producto. 1 H RMN (400 MHz, DMSO-d₆) δ 4.57 (d, J = 5.81 Hz, 1H), 5.38 (t, J = 5.81 Hz, 1H), 7.48 (d, J = 8.34 Hz, 2H), 7.78 (d, J = 8.34 Hz, 2H).

4-(ter-Butil-difenil-silaniloximetil)-bencenosulfonamida

A una mezcla de 750 mg de 4-hidroximetil-bencenosulfonamida en 50 mL de DMF se adicionaron 1.55 mL de terbutilclorodifenilsilano y 539 mg de imidazol. La mezcla se revolvió por una noche a temperatura ambiente, se diluyó con EtOAc y se extrajo con agua. La fase orgánica se seco sobre MgSO₄ y se concentró a presión reducida. El producto crudo se purificó mediante cromatografía flash automatizada (DCM) para producir 0.5 g de producto puro y 0.6 g de material proveniente de fracciones de producto contaminado. HRMN (400 MHz, CDCl₃) δ 1.07 (s, 3H), 1.11 (s, 6H), 4.75 (s, 2H), 4.82 (s, 2H), 7.35-7.47 (m, 6H), 7.49 (d, *J* = 5.68 Hz, 2H), 7.64-7.74 (m, 4H), 7.90 (d, *J* = 5.68 Hz, 2H).

N-(Bis-metilsulfanil-metilen)-4-(ter-butil-difenil-silaniloximetil)-bencenosulfonamida

A una mezcla de 500 mg de 4-(ter-butil-difenil-silaniloximetil)-bencenosulfonamida en 50 mL de DMF se adicionaron 0.11 mL de disulfuro de carbono, y la mezcla se enfrió hasta 10° C. Mientras se revolvía, se adicionaron gota a gota 0.14 mL de NaOH acuoso al 50% y la mezcla se revolvíó durante una hora a temperatura ambiente. A continuación se adicionaron gota a gota 0.16 mL de yodometano y continuó revolviéndose a temperatura ambiente durante 30 minutos. Después de adicionar 10 mL de agua, la mezcla se revolvió por una noche a temperatura ambiente. La precipitación se separó mediante filtración, se lavo con agua y se seco para producir 0.4 g de producto. 1 H RMN (400 MHz, DMSO-d₆) δ 1.04-1.08 (m, 9H), 2.57 (s, 6H), 4.88 (s, 2H), 7.40-7.50 (m, 6H), 7.59 (d, J = 8.34 Hz, 2H), 7.63-7.68 (m, 4H), 7.90 (d, J = 8.34 Hz, 2H).

25

4-(ter-Butil-difenil-silaniloximetil)-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-metilsulfanilmetilen]-bencenosulfonamida

A 15 mL de piridina, se adicionaron 400 mg de N-(bis-metilsulfanil-metilen)-4-(ter-butil-difenil-silaniloximetil)-bencenosulfonamida y 111 mg de 2,3-diaza-espiro[4.4]non-2-eno. La mezcla se calentó durante dos noches a 90°C, se concentró a presión reducida y se secó al vacío para proporcionar 700 mg de producto (LC-MS R_t 3.91 min) el cual se usó en la etapa subsiguiente sin purificación. ¹H RMN (400 MHz, CDCl₃) δ ppm 1.10-1.12 (m, 9H), 1.63-1.94 (m, 8H), 4.82 (s, 2H), 7.91 (s, 1H), 7.65-7.71 (m, 4H), 7.92-7.96 (m, 2H).

4-(ter-Butil-difenil-silaniloximetil)-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-bencenosulfonamida

5

A una solución de 700 mg de 4-(ter-butil-difenil-silaniloximetil)-N-[(2,3-diaza-espiro[4,4]non-3-en-2-il)-metilsulfanil-metilen]-bencenosulfonamida en 50 mL de metanol se adicionaron 1.84 mL de una solución acuosa al 70% de etilamina. La mezcla se revolvió durante una hora a temperatura ambiente y se concentró a presión reducida. El residuo se purificó mediante cromatografía flash automatizada (DCM → DCM/MeOH 97:3) para producir 730 mg de producto. ¹H RMN(400 MHz, CDCl₃) δ ppm 1.10 (s, 9H), 1.15 (t, *J* = 7.21 Hz, 3H), 1.66-1.75 (m, 8H), 3,48 (dd, *J* = 7.21, 5.38 Hz, 2H), 3.85 (s, 2H), 4.80-4.81 (m, 2H), 6.80 (s, 1H), 7.35-7,47 (m, 6H), 7.65-7.70 (m, 4H), 7.65-7.70 (m, 2H), 7.88-7.91 (m, 2H).

Se pusieron 694 mg de 4-(ter-butil-difenil-silaniloximetil)-N-[(2,3-diaza-espiro[4,4]non-3-en-2-il)-etilamino-metilen]-bencenosulfonamida en 40 mL de THF, y se adcionaron gota a gota 1.04 mL de una solución de 1 M de fluoruro de tetrabutilamonio. La mezcla se revolvió a temperatura ambiente duante 4 horas. La mezcla se diluyó con EtOAc y se extrajo 3 veces con NaHCO₃ acuoso al 5%. La fase orgánica se secó sobre MgSO₄ y se concentró a presión reducida. El residuo se sometió a cromatografía flash automatizada (DCM/MeOH 95:5), y el producto crudo resultante se puso en EtOAc y se extrajo dos veces con NaOH acuoso de 2N. Después de secar y de concentrar, el residuo se revolvió con 5 mL de MTBE y el sólido blanco resultante se separó mediante filtración y se secó para producir 40 mg de producto. 1H RMN (400 MHz, CDCl₃) δ 1.15 (t, J = 7.20 Hz, 3H), 1.62-1.86 (m, 8H), 3.41-3.52 (m, 2H), 3.84 (br.s., 1H), 4.77 (d, J = 5.31 Hz, 2H), 6.80 (s, 1 H), 7.45 (d, J = 8.34 Hz, 2H), 7.93 (d, J = 8.34 Hz, 2H).

4-Amino-N-[etilamino-(2,3,8-triaza-espiro[4.5]dec-3-en-2-il)-metilen]-bencenosulfonamida (compuesto 47)

4-Amino-N-[(8-bencil-2,3,8-triaza-espiro[4.5]dec-3-en-2-il)-metilsulfanil-metilen]-bencenosulfonamida:

5

10

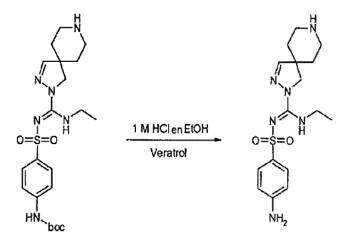
En un vial para microondas de 25 mL se suspendieron 1.50 g de 4-amino-N-(bis-metilsulfanil-metilen) bencenosulfonamida y 1.37 g de 8-bencil-2,3,8-triaza-espiro[4.5]dec-2-eno en 20 mL de piridina. El vial se tapó se tapó y se calentó durante 1 hora a 180°C (6 bar) en el microondas. La mezcla de reacción se concentró sobre sílice. La purificación con cromatografía flash de columna (DCM → DCM/MeOH 99:1 → DCM/MeOH 98:2) produjo 1.03 g (41 %) de un amorfo beige. ¹H RMN (400 MHz, CDCl₃) δ 1.57-1.72 (m, 2H), 1.78-1.92 (m, 2H), 2.17-2.32 (m, 5H), 2.66-2.81 (m, 2H), 3.51 (s, 2H), 4.04 (s, 2H), 4.28 (s, 2H), 6.64-6.71 (m, 2H), 6.98 (s, 1 H), 7.20-7.37 (m, 5H), 7.72-7.79 (m, 2H).

4-Amino-N-[(8-bencil-2,3,8-triaza-espiro[4.5]dec-3-en-2-il)-etilamino-metilen]bencenosulfonamida:

A una solución de 1.35 g de 4-amino-N-[(8-bencil-2,3,8-triaza-espiro[4.5]dec-3-en-2-il)metilsulfanil-metilen]-bencenosulfonamida en 30 mL de MeOH se adicionaron 2.26 mL (10 equivalentes) de una solución acuosa al 70% de etilamina. La mezcla se revolvió durante un fin de semana a temperatura ambiente y se concentró sobre sílice. La purificación con cromatografía flash de columna (DCM \rightarrow DCM/MeOH 99:1 \rightarrow DCM/MeOH 95:5) produjo 1.16 g (87 %) de un vidrio amarillo pálido. 1 H RMN (400 MHz, CDCl₃) δ 1.14 (t, J =7 Hz, 3H), 1.50-1.60 (m, 2H), 1.73-1.84 (m, 2H), 2.11-2.26 (m, 2H), 2.63-2.76 (m, 2H), 3.41-3.53 (m, 2H), 3.79 (s, 2H), 3.98 (s, 2H), 6.62-6.70 (m, 2H), 6.76 (s, 1 H), 6.97 (br. s, 1 H), 7.22-7.36 (m, 5H), 7.67-7.75 (m, 2H).

5

10


15

Éster ter-butílico de ácido (4-{[(8-Bencil-2,3,8-triaza-espiro[4.5]dec-3-en-2-il)-etilamino-metilen]-sulfamoil}- fenil-carbámico

A una solución de 510 mg de 4-amino-N-[(8-bencil-2,3,8-triaza-espiro[4.5]dec-3-en-2-il)-etilamino-metilen]-bencenosulfonamida en 10 mL de 1,4-dioxano se adicionaron 490 mg (2 equivalentes) de carbonato de di-ter-butilo. La mezcla se revolvió a reflujo durante una noche, se enfrió y se concentró sobre sílice. La purificación con cromatografía flash de columna (DCM/MeOH 99:1 \rightarrow 95:5) produjo 550 mg (87 %) de un vidrio amarillo. ¹H RMN (400 MHz, CDCl3) δ 1.14 (t, J = 7 Hz, 3H), 1.47-1.61 (m, 11H), 1.73-1.86 (m, 2H), 2.11-2.26 (m, 2H), 2.64-2.76 (m, 2H), 3.41-3.54 (m, 2H), 3.80 (s, 2H), 6.66 (s, 1H), 6.78 (s, 1H), 6.94 (br. s., 1H), 7.21-7.37 (m, 5H), 7.41-7.48 (m, 2H), 7.82-7.89 (m, 2H).

Éster ter-butílico de ácido (4-{[etilamino-(2,3,8-triaza-espiro[4.5]dec-3-en-2-il)-metilen]-sulfamoil}-fenil)-carbámico:

Una solución de 550 mg de éster ter-butílico del ácido (4-{[(8-bencil-2,3,8-triaza-espiro[4.5]dec-3-en-2-il)-etilamino-metilen]sulfamoil}-fenil)-carbámico en 10 mL de 1,2-dicloroetano se enfrió en un baño de hielo, y se adicionaron gota a gota 0.12 mL (1.1 equivalentes) de cloroformiato de 1-cloroetilo y 0.03 mL de DiPEA. Después de 15 minutos se retiró el baño de hielo y la mezcla se revolvió durante 30 minutos a temperatura ambiente. La mezcla se concentró al vacío y se co-evaporó 3 veces con tolueno. El residuo se puso en 10 mL de MeOH y se revolvió durante una noche a temperatura ambiente. La mezcla se concentró. El residuo se puso en EA y se extrajo con NaOH de 2 M. la capa orgánica se secó sobre Na₂SO₄, se filtró y se concentró sobre sílice. Purificación con cromatografía flash de columna (EtOAc/MeOH/ET₃N 50:45:5) produjo 360 mg (72 %) de un vidrio naranja. 1 H RMN (400 MHz, DMSO-d₆) δ 0.96 (t, J = 7 Hz, 3H), 1.33-1.43 (m, 2H), 1.48 (s, 9H), 1.53-1.64 (m, 2H), 2.44, 2.56 (m, 2H), 2.76-2.88 (m, 2H), 321-3.33 (m, 2H), 3.68 (s, 2H), 7.29 (s, 1H), 7.50-7.59 (m, 2H), 7.60-7.74 (m, 3H), 9.70 (s, 1H).

360 mg de éster ter-butílico de ácido (4-{[etilamino-(2,3,8-triaza-espiro[4.5]dec-3-en-2-il)-metilen]-sulfamoil}-fenil)-carbámico se suspendió en 10 mL de etanol; se adicionaron 0.44 mL (5 equivalentes) de veratrol, y a continuación 3.49 mL de HCl de 1 M en etanol (5 equivalentes). La mezcla se revolvió a 60°C durante una noche. Después de enfriar, la mezcla se purificó con SPE (Isolute Flash SCX-2, acondicionando, muestreando y lavando con MeOH, elución con NH $_3$ de 1 M en MeOH) para producir 150 mg (53 %) de un vidrio amarillo. 1 H RMN (400 MHz, DMSO-d $_6$) δ 0.97 (t, J=7 Hz, 3H), 1.33-1.45 (m, 2H), 1.52-1.66 (m, 2H), 2.46-2.60 (m, 2H), 2.76-2.90 (m, 2H), 3.20-3.40 (m, 2H), 3.66 (s, 2H), 5.71 (s, 2H), 6.50-6.61 (m, 2H), 7.26 (s,1H), 7.37-7.52 (m, 3H).

20 Los compuestos preparados mediante esta ruta de síntesis están marcados como 'ruta 1' en la tabla más adelante.

4-Amino-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-bencenosulfonamida (compuesto 3)

Yodohidrato de 1-etil-2-metil-isotiourea:

5

10

15

20.5 g de etil-tiourea se disolvieron en 100 mL de EtOH. La mezcla se enfrió con un baño de hielo y se adicionaron gota a gota 13.5 mL (1.1 equivalentes) de Mel. La mezcla se revolvió durante 1 hora a temperatura ambiente y se concentró al vacío para producir 48.3 g de un aceite amarillo claro. 1 H RMN (400 MHz, DMSO-d₆) δ 1.17 (t, J = 7.5 Hz, 3H), 2.61 (s, 3H), 3.34 (q, J = 7.5 Hz, 2H), 9.10 (br.s, 2H).

Clorhidrato de N-etil-4.4-dimetil-4,5-dihidro-pirazol-1-carboxamidina

5

10

15

20

25

12.0 g de 4,4-dimetil-4,5-dihidro-3H-pirazol se disolvieron en 100 mL de piridina. Se adicionó una solución de 30.0 g de yodohidrato de 1-etil-2-metil-isotiourea en 50 mL de piridina y la mezcla se sometió a reflujo durante 20 horas. La mezcla se enfrió a temperatura ambiente y se concentró a presión reducida, y el residuo se puso en DCM (120 mL). La fase orgánica se extrajo con NaOH de 2 N (2 x 120 mL), se lavó con agua (120 mL), se secó sobre Na_2SO_4 y se evaporó a presión reducida para producir 16.3 g (79%) de un aceite naranja. El aceite (10.0 g) se puso en EtOAc (50 mL) y se calentó a 60°C. Después de retirar la fuente de calor se dosificó una solución de HCl de 5-6 N en isopropanol (20 mL) por un período de 4 minutos. Después de enfriar a temperatura ambiente se adicionó EtOAc (50 mL) por un período de 4 minutos, y la mezcla se revolvió a 20°C durante 90 minutos. Los cristales formados se recogieron mediante filtración y se lavaron con EtOAc (20 mL), seguido por secado a presión reducida calentando moderadamente para producir 6.52 g (54%) del producto deseado como un sólido amarillo. 1 H RMN (400 MHz, DMSO-d₆) δ 1.13 (t, J = 7 Hz, 3H), 1.24 (s, 6H), 3.27-3.34 (m, 2H), 3.64 (s, 2H), 7.26 (s, 1 H), 8.03 (br. s., 2H), 8.13 (br. s., 1 H).

N-(4-{[(4;4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilene]-sulfamoil}-fenil)acetamida:

Se suspendieron 500 mg de clorhidrato de N-etil-4,4-dimetil-4,5-dihidro-pirazol-1-carboxamidina en 10 mL de DCM, se adicionaron 0.88 mL de DiPEA, seguido de 571 mg de cloruro de 4-acetilaminobencensulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente temperature. La conversión se llevó más allá haciendo reaccionar durante una noche después de adicionar otros 0,44 mL de base y 290 mg de cloruro de sulfonilo. La mezcla se extrajo a continuación con NaHCO₃ acuoso al 5% y solución de NaOH de 2M, la capa orgánica se secó sobre Na₂SO₄, y se evaporó hasta secarse y el producto crudo (900 mg de un aceite púrpura que contenía >95% del producto anticipado con base en LC-MS) se utilizó en el paso siguiente. LC-MS: R₁ 1.34 minutos (MH⁺ 366).

Se disolvieron 900 mg de N-(4-{[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-sulfamoil}-fenil)acetamida en 5 mL de MeOH, y se adicionaron 5 mL de HCI concentrado. La mezcla se revolvió durante una noche a temperatura ambiente. La mezcla se convirtió en básica con NaOH de 2M, y se extrajo dos veces con DCM. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se evaporaron hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/MeOH 99:1) para producir 400 mg (50%) de 4-amino-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilaminometilen]-bencenosulfonamida como un sólido amorfo. 1 H RMN (400 MHz, CDCl₃) δ 1.15 (t, J =7 Hz, 3H), 1.20 (s, 6H), 3.42-3.51 (m, 2H), 3.74 (br.s., 2H), 4.00 (br.s., 2H), 6.62-6.68 (m, 2H), 6.71 (s, 1H), 6.90 (br.s., 1H), 7-.67-7.73 (m, 2H).

4-Amino-3-cloro-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-bencenosulfonamida (compuesto 13)

 $N-(2-Cloro-4-\{[(4.4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-sulfamoil\} fenil)-acetamida$

5

15

Se suspendieron 500 mg de clorhidrato de N-etil-4,4-dimetil-4,5-dihidro-pirazol-1-carboxamidina en 10 mL de DCM, 0.88 mL de DiPEA se adicionaron, seguidos de 655 mg de cloruro de 4-acetilamino-3-cloro-bencenosulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente. La conversación fue llevada más allá haciendo reaccionar durante una noche después de adicionar otros 0.44 mL de base y 290 mg de cloruro de sulfonilo. La mezcla se extrajo a continuación con NaHCO₃ acuoso al 5% y solución de NaOH de 2M, la capa orgánica se secó sobre Na₂SO₄, y se evaporó hasta secarse y el producto crudo (680 mg que contenían 85% del producto anticipado con base en LC-MS) se utilizó en la etapa siguiente. LC-MS: R_t 1.46 minutos (MH⁺ 400).

680 mg de N-(2-cloro-4-{[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-sulfamoil}-fenil)-acetamida se disolvieron en 5 mL de MeOH, y 5 mL de HCI concentrado se adicionaron. La mezcla se revolvió durante una noche a temperatura ambiente. La mezcla se volvió básica con NaOH de 2M, y se extrajo dos veces con DCM. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se evaporaron hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/MeOH 99: 1) para producir 240 mg (40%) de 4-amino-3-cloro-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)etilamino-metilen]-bencenosulfonamida como un aceite naranja. 1 H RMN (400 MHz, CDCI₃) δ 1.17 (t, J = 7 Hz, 3H), 1.21 (s, 6H), 3.43-3.52 (m, 2H), 3.75 (br.s., 2H), 4.37 (br.s., 2H), 6.73 (s, 1 H), 6.76 (d, J = 8 Hz, 1H), 6.86 (br.s., 1H), 7.62 (dd, J = 2 y 8 Hz, 1H), 7.83 (d, J = 2 Hz, 1H).

10 Etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 2,3-dihidro-1H-indol-5-sulfónico (compuesto 16)

Clorhidrato de 4,N-dietil-4,5-dihidro-pirazol-1-carboxamidina

5

15

20

Se disolvieron 19.36 g de 4-etil-4,5-dihidro-1H-pirazol en 100 mL de tolueno. Se adicionaron 48.5 g de yodohidrato de 1-etil-2-metil-isotiourea y 33.8 mL de DiPEA y la mezcla se sometió a reflujo durante 48 horas. La mezcla se concentró, se adicionó NaOH de 2M, seguido por la extracción con DCM (tres veces). Las capas orgánicas combinadas se secaron sobre Na_2SO_4 y el solvente se evaporó al vacío para producir 32.7 g (99%) de un aceite rojo que contenía 75% del producto deseado de acuerdo con RMN. El aceite se disolvió en EtOH y se adicionaron gota a gota 194 mL de HCl de 1 M en EtOH. La mezcla se revolvió a temperatura ambiente durante 30 minutos y se concentró al vacío. La cristalización a partir de $CH_3CN:MTBE = 1:1$ produjo 11.52 g (29%) del producto deseado como un sólido color beige. 1H RMN (400 MHz, DMSO-d₆) δ 0.96 (t, J = 7.5 Hz, 3H), 1.16 (t, J = 7 HZ,3H), 1.46-1.72 (m, 2H), 3.32 (q, J = 7 Hz, 2H), 3.35-3.45 (m, 1 H), 3.55 (dd, J = 10.5 y 7 Hz, 1 H), 3.96 (t, J = 10.5 Hz, 1H), 7.34 (d, J = 2Hz, 1H), 8.00 (br. s, 2H).

Etilamino-(4-etil-4.5-dihidro-pirazol-1-il)-metilenamida del ácido 1-acetil-2.3-dihidro-1 H-indol-5-sulfónico

Se suspendieron 5.76 g de clorhidrato de 4,N-dietil-4,5-dihidro-pirazol-1-carboxamidina en 100 mL de DCM, se adicionaron 13.10 mL de DiPEA, seguidos de 5.00 g de cloruro de 1-acetil-2,3-dihidro-1 H-indol-5-sulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente. La mezcla se extrajo a continuación con NaHCO₃ acuoso al 5% y solución de NaOH de 2M, la capa orgánica se secó sobre Na₂SO₄, y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/EA 3:1 \rightarrow EA) para producir 1.85 g (25%) de un aceite amarillo. ¹H RMN (400 MHz, CDCl₃) δ 0.97 (t, J = 7.52 Hz, 3H), 1.15 (t, J = 7.37 Hz, 3H), 1.45-1.69 (m, 2H), 2.25 (s, 3H), 3.01-3.16 (m, 1 H), 3.24 (t, J = 8.58 Hz, 2H), 3.42-3.52 (m, 2H), 3.64-3.75 (m, 1 H), 4.02-4.21 (m, 3H), 6.90 (d, J = 1.20 Hz, 1 H), 7.72-7.82 (m, 2H), 8.24 (d, J = 8.43 Hz, 1 H) [NH de guanidina invisible].

10

15

5

1.74 g de etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 1-acetil-2,3-dihidro-1H-indol-5-sulfónico se disolvieron en 100 mL de EtOH, y se adicionaron 22.2 mL de HCl de 1 M. la mezcla se revolvió durante 5 horas bajo reflujo. Después de enfriar a temperatura ambiente, la mezcla se volvió básica con una solución de NaHCO₃ al 5% y se extrajo dos veces con DCM. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se evaporaron hasta secarse. El residuo se purificó mediante cromatografía flash (DCM \rightarrow DCM/EA 4:1) para producir 0.66 g (43%) de etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 2,3-dihidro-1H-indol-5-sulfónico como un aceite amarillo. ¹HRMN (400 MHz, CDCl₃) δ 0.97 (t, J = 7.52 Hz, 3H), 1.15 (t, J = 7.22 Hz, 3H), 1.44-1.68 (m, 2H), 2.97-3.13 (m, 3H), 3.42-3.54 (m, 2H), 3.58-3.72 (m, 3H), 3.99-4.09 (m, 1H), 6.55 (d, J = 8.13 Hz, 1H), 6.88 (d, J = 1.50 Hz, 1H), 7.00 (br.s., 1H), 7.55-7.65 (m, 2H) [NH invisible].

20 Etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 1H-indol-5-sulfónico (Compuesto 18)

0.42 g de etilamino-(4-etil-4,5-dihidro-pirazol-1-il)metilenamida del ácido 2,3-dihidro-1 H-indol-S-sulfónico se disolvieron en 25 mL de tolueno, y se adicionaron 10% molar eines de paladio sobre carbono. La mezcla se revolvió a 50 °C durante 5 días, con adición de catalizador recién preparado (10% molar) después de 2 días. La mezcla se enfrió a temperatura ambiente y se filtró sobre Hyflo. El filtrado se evaporó hasta secarse y el residuo se purificó mediante cromatografía flash (DCM \rightarrow DCM/EA 9:1) para producir 0.26 g (66%) de etilamino-(4-etil-4,5-dihidro-pirazol-1-il)metilenamida del ácido 1H-indol-S-sulfónico como un aceite azul. ¹H RMN (400 MHz, CDCl₃) δ 0.87 (t, J = 7.37 Hz, 3H), 1.08 (t, J = 7.22 Hz, 3H), 1.32-1.S9 (m, 2H), 2.89-3.02 (m, 1 H), 3.35-3.50 (m, 2H), 3.58 (dd, J = 11.44, 7.52 Hz, 1 H), 3.96 (t, J = 11.29 Hz, 1 H), 6.54-6.58 (m, 1 H), 6.85 (d, J = 1.50 Hz, 1 H), 6.97 (br.s., 1 H) 7.23-7.29 (m, 1 H), 7.42 (d, J = 8.73 Hz, 1 H), 7.69 (dd, J = 8.73, 1.81 Hz, 1 H), 8.24 (d, J = 1.20 Hz, 1 H), 9.43 (br.s., 1 H).

N-[Etilamirio-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-4-hidroxibencenosulfonamida (Compuesto 19)

N-[Etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-4-metoxi-bencenosulfonamida

En una atmósfera de N₂, se suspendieron 0,50 g de clorhidrato de 4,N-dietil-4,5-dihidro-pirazol-1-carboxamidina en 50 mL de DCM, se adicionaron 0.43 mL de DiPEA, seguidos de 0.61 g de cloruro de 4-metoxi-bencensulfonilo. La mezcla se revolvió durante un fin de semana a temperatura ambiente. La mezcla se extrajo a continuación con NaHCO₃ acuoso al 5% y solución de NaOH de 2M, la capa orgánica se secó sobre MgSO₄ y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (gradiente por etapas DCM → DCM/MeOH 95:5) para producir 0.28 g (28%) de producto. TLC: R₁ 0.33 (DCM/MeOH 99:1). LC-MS: R₁ 1.58 minutos (MH⁺ 339).

5

10

En 20 mL de DCM se disolvieron 0.28 g de N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-4-metoxibencenosulfonamida y se adicionaron 3.32 mL de una solución de BBr $_3$ de 1 M en DCM. La mezcla se revolvió durante una noche a temperatura ambiente, se extrajo con NaHCO $_3$ acuoso al 5%, se secó sobre MgSO $_4$ y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (gradiente por etapas DCM \rightarrow DCM/MeOH 95:5) para producir 0.186 g (59%) de N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-4-hidroxi-bencenosulfonamida. ¹HRMN (400 MHz, CDCI $_3$) δ 0.95 (t, J = 7.52 Hz, 3H), 1.13 (t, J = 7.22 Hz, 3H), 1.50 (dq, J = 14.20, 7.00 Hz, 1H), 1.60 (dq, J = 14.22, 7.00 Hz, 1H), 3.01-3.16 (m, 1H), 3.43-3.50 (m, 2H), 3.66 (dd, J = 11.44, 7.52 Hz, 1H), 4.05 (t, J = 11.29 Hz, 1H), 6.80 (br.s., 1H), 6.87 (d, J = 8.73 Hz, 2H), 6.91 (d, J = 1.50 Hz, 1H); 7.78 (d, J = 8.73 Hz, 2H) [NH de guanidina invisible].

3-Cloro-N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-4-hidroxibencenosulfonamida (compuesto 26)

Cloruro de 3-cloro-4-metoxi-bencenosulfonilo

5

10

15

En una atmósfera de N_2 , se enfriaron 41.25 mL de ácido clorosulfónico en un baño de hielo y revolviendo se adicionaron gota a gota 22.26 mL de 2-cloroanisol. La mezcla se calentó a 55°C; después de 10 minutos se retiro la fuente de calor y la mezcla se revolvió durante una noche a temperatura ambiente. La mezcla se vertió agua con hielo y se extrajo dos veces con DCM. Las capas orgánicas combinadas se secaron sobre MgSO₄ y se evaporaron hasta secarse. El residuo se purificó mediante cromatografía flash (PA/EA 9:1) para producir 24.94 g (50%) de un aceite color beige. 1 H RMN (400 MHz, CDCI₃) δ 4.03 (s, 3H), 7.08 (d, J = 8.73 Hz, 1H), 7.94 (dd, J = 9.03, 2.41 Hz, 1H), 8.06 (d, J = 2.41 Hz, 1 H).

3-Cloro-N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-4-metoxibencensulfonamida

Se suspendieron 2.00 g de clorhidrato de 4,N-dietil-4,5-dihidro-pirazol-1-carboxamidina en 100 mL de DCM, se adicionaron 10.76 mL de DiPEA, seguidos de 3.79 g de cloruro de 3-cloro-4-metoxibencensulfonilo. La mezcla se revolvió durante un fin de semana a temperatura ambiente y a continuación se evaporó hasta secarse. El residuo se purificó mediante cromatografía (gradiente por etapas DCM → DCM/EA 9:1 seguido de DCM/MeOH 98:2) para producir 1.38 g (24%) de un aceite incoloro. ¹H RMN (400 MHz, CDCl₃) δ 0.98 (t, *J* = 7.52 Hz, 3H), 1.17 (t, *J* = 7.22 Hz, 3H), 1.45-1.69 (m, 2H), 3.05-3.16 (m, 1H), 3.43-3.53 (m, 2H), 3.70 (dd, *J* = 11.29, 7.67 Hz, 1H), 3.95 (s, 3H), 4.04-4.13 (m, 1H), 6.80 (br.s., 1 H), 6.92 (d, *J* = 1.50 Hz, 1 H), 6.95 (d, *J* = 8.43 Hz, 1 H), 7.82 (dd, *J* = 8.73, 2.41 Hz, 1H), 7.95 (d, *J* = 2.11 Hz,1H).

En 25 mL de DCM se disolvieron 1.09 g de 3-cloro-N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-4-metoxibencenosulfonamida y se adicionaron 11.69 mL de una solución de BBr $_3$ de 1 M en DCM. La mezcla se revolvió durante una noche a temperatura ambiente, se extrajo con NaHCO $_3$ acuoso al 5%, se seco sobre MgSO $_4$ y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/EA 95:5) para producir 0.89 g (84%) de 3-cloro-N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-4-hidroxi-bencenosulfonamida como un aceite amarillo. 1 H RMN (400 MHz, CDCI $_3$) δ 0.97 (t, J = 7.52 Hz, 3H), 1.16 (t, J = 7.22 Hz, 3H), 1.46-1.70 (m, 2H), 3.05-3.18 (m, 1H), 3.43-3.54 (m, 2H), 3.69 (dd, J = 11.14, 7.52 Hz, 1H), 4.04-4.12 (m, 1H), 6.05 (br.s., 1H), 6.83 (br.s., 1 H), 6.93 (d, J = 1.50 Hz, 1 H), 7.06 (d, J = 8.43 Hz, 1H), 7.75 (dd, J = 8.73, 2.11 Hz, 1H), 7.94 (d, J = 2.11 Hz, 1H).

10 3-Amino-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]bencenosulfonamida (compuesto 30)

N-[(4.4-Dimetil-4.5-dihidro-pirazol-1-ill-etilamino-metilen]-3-nitro-bencenosulfonamida

5

15

Se suspendieron 1.50 g de clorhidrato de N-etil-4,4-dimetil-4,5-dihidro-pirazol-1-carboxamidina en 50 mL de DCM, se adicionaron 5.02 mL de DiPEA, seguido de 1.95 g de cloruro de 3-nitro-bencensulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente y se extrajo con NaHCO₃ acuoso al 5%. La capa acuosa se acidificó con HCI de 1 M y se extrajo con DCM. La fase orgánica se secó sobre MgSO₄ y se evaporó hasta secarse para producir 2.18 g (84%) de un aceite marrón. 1 H RMN (400 MHz, CDCl3) δ 1.19 (t, J = 7.22 Hz, 3H), 1.25 (s, 6H), 3.44-3.53 (m, 2H), 3.83 (br.s., 2H), 6.80 (s, 1H), 7.66 (t, J = 7.98 Hz, 1H), 8.28 (d, J = 7.82 Hz, 1H), 8.34 (dd, J = 8.13, 1.20 Hz, 1H).

En una mezcla de 50 mL de EtOH y 25 mL de agua disolvieron 1.11 g de N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)etilamino-metilen]-3-nitro-bencenosulfonamida. A continuación, se adicionaron 1.05 g de hierro y 1.08 mL de ácido acético, y la mezcla se sometió a reflujo durante 4 horas. Después de enfriar a temperatura ambiente la mezcla se filtró sobre Hyflo y la Hyflo se enjuagó con MeOH. Los alcoholes se evaporaron del filtrado y se adicionaron NaHCO $_3$ acuoso al 5% y DCM. El material insoluble en estas fases se separó mediante filtración, la fase orgánica se separó y la fase acuosa se extrajo una vez más con DCM. Las capas orgánicas combinadas se secaron sobre MgSO $_4$ y se evaporaron hasta secarse para producir 1.02 g (100%) de 3-amino-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-bencenosulfonamida como una espuma marrón. 1 H RMN (400 MHz, CDCl $_3$) δ 1.14 (t, J = 7.22 Hz, 3H), 1.19 (s, 6H), 3.42-3.51 (m, 2H), 3.73 (s, 2H), 3.93 (br.s., 2H), 6.71-6.79 (m, 2H), 6.90 (br.s., 1H), 7.20 (t, J = 7.83 Hz, 1H), 7.24-7.31 (m, 2H).

Etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 5-bromo-2,3-dihidro-1 H-indol-6-sulfónico (compuesto 32)

Cloruro de 1-acetil-5-bromo-2,3-dihidro-1H-indol-6-sulfonilo

5

10

25

En una atmósfera de N₂, se enfriaron 25.00 mL de ácido clorosulfónico en un baño de hielo y revolviendo se adicionaron a porciones 5.00 g de 1-acetil-5-bromoindolina. Se continuó revolviendo durante 20 minutos, después de lo cual se retiro el baño de hielo y la mezcla se calentó a 70°C. Después de enfriar a temperatura ambiente, la mezcla se vertió cuidadosamente a agua con hielo y se extrajo dos veces con DCM. Las capas orgánicas combinadas se secaron sobre MgSO₄ y se evaporaron hasta secarse para producir 6.57 g (93%) de un sólido beige. ¹H RMN (400 MHz, DMSO-d₆) δ
 2.16 (s, 3H), 3.15 (t, *J* = 8.58 Hz, 2H), 4.11 (t, *J* = 8.58 Hz, 2H), 7.37 (s, 1 H), 8.66 (s, 1 H).

Etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 1-acetil-5-bromo-2,3-dihidro-1 H-indol-6-sulfónico

Se suspendieron 1.94 g de clorhidrato de 4,N-dietil-4,5-dihidro-pirazol-1-carboxamidina en 50 mL de DCM, se adicionaron 4.58 mL de DiPEA, seguidos de 2.34 g de cloruro de 1-acetil-5-bromo-2,3-dihidro-1H-indol-6-sulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente y a continuación se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (gradiente DCM/EA 95:5 \rightarrow 75:25) para producir 0.65 g (16%) de un aceite marrón. ¹H RMN (400 MHz, CDCl₃) 80.98 (t, J = 7.37 Hz, 3H), 1.13-1.21 (m, 3H), 1.43-1.80 (m, 2H), 2.22 (s, 3H), 3.11 (br.s., 1H), 3.17-3.27 (m, 2H), 3.48-3.58 (m, 2H), 3.73-3.84 (m, 1H), 4.04-4.27 (m, 3H), 6.91 (s, 1H), 7.47 (s, 1H), 8.99 (s, 1H). [NH de guanidina invisible].

Se disolvieron 0.65 g de etilamino-(4-etil-4,5-dihidropirazol-1-il)-metilenamida del ácido 1-acetil-5-bromo-2,3-dihidro-1H-indol-6-sulfónico en 20 mL de MeOH y se adicionaron 20.7 mL de HCl de 1 M en MeOH. La mezcla se revolvió durante una noche bajo reflujo. Después de enfriar a temperatura ambiente, la mezcla se volvió básica con una solución de NaHCO₃ al 5% y se extrajo dos veces con DCM. Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y se evaporaron hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/EA 9:1 \rightarrow 8:2) para producir 0.35 g (64%) de etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 5-bromo-2,3-dihidro-1 H-indol-6-sulfónico como un aceite amarillo. ¹H RMN (400 MHz, CDCl₃) δ 0.96 (t, J = 7.37 Hz, 3H), 1.17 (t, J = 7.22 Hz, 3H), 1.45-1.68 (m, 2H), 3.00-3.15 (m, 3H), 3.48-3.57 (m, 2H), 3.62 (t, J = 8.43 Hz, 2H), 3.71 (dd, J = 11,14, 7.52 Hz, 1H), 3.91 (br.s., 1H), 4.08-4.17 (m, 1H), 6.76 (br.s., 1H), 6.90 (d, J = 1.50 Hz, 1H), 7.34 (s, 1H), 7.46 (s, 1H).

Etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 2,3-dihidro-1 H-indol-6-sulfónico (compuesto 33)

5

10

15

20

A una solución de 0.30 g de etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 5-bromo-2,3-dihidro-1 H-indol-6-sulfónico en 50 mL de EtOH se adicionaron 0.94 mL de trietilamina. La mezcla fue desgasificada exhaustivamente y se adicionaron 10% molar de paladio sobre carbono. La mezcla se hidrógeno durante una noche a una presión de H_2 de 1 atm. La mezcla se filtró sobre Hyflo, la Hyflo se lavó con EtOH, y el filtrado se concentró al vacío. El residuo se purificó mediante cromatografía flash (DCM \rightarrow DCM/EA 95:5 \rightarrow DCM/EA 9:1) para producir 0.20 g (76%) de etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 2,3-dihidro-1 H-indol-6-sulfónico como un aceite rojo. 1 H RMN (400 MHz, CDCl₃) δ 0.96 (t, J = 7.52 Hz, 3H), 1.14 (t, J = 7.22 Hz, 3H), 1.43-1.67 (m, 2H), 3.04 (t, J = 8.43 Hz, 3H), 3.42-3.52 (m, 2H), 3.60 (t, J = 8.43 Hz, 2H), 3.66 (dd, J = 11.44, 7.83 Hz, 1 H), 4.06 (t, J = 11.29 Hz, 1 H), 6.89 (d, J = 1.50 Hz, 1 H), 7.10-7.15 (m, 2H), 7.24-7.27(m, 1H). [NH invisible].

Etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 1H-indol-6-sulfónico (compuesto 34)

Se disolvieron 0.14 g de etilamino-(4-etil-4,5-dihidro-pirazol-1-il)metilenamida del ácido 2,3-dihidro-1 H-indol-6-sulfónico en 25 mL de tolueno, la mezcla se desgasificó y se adicionaron 10% molar de paladio sobre carbono. La mezcla se revolvió durante una noche a 50°C. La mezcla se enfrió a temperatura ambiente y se filtró sobre Hyflo, y la Hyflo se lavó con tolueno. El filtrado se evaporó hasta secarse y el residuo se purificó mediante cromatografía flash (DCM \rightarrow DCM/EA 95:5 \rightarrow DCM/EA 8:2) para producir 70 mg de etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilenamida del ácido 1H-indol-6-sulfónico como un sólido blanco amorfo. ¹H RMN (400 MHz, CDCl₃) δ 0.86 (t, J = 7.52 Hz, 3H), 1.06 (t, J = 7.22 Hz, 3H), 1.32-1.57 (m, 2H), 2.89-3.00 (m, 1 H), 3.35-3.54 (m, 3H), 3.89 (t, J = 11.44 Hz, 1 H), 6.54 (br.s., 1 H), 6.84 (d, J = 1.50 Hz, 1 H), 6.96 (br.s., 1H), 7.36 (t, J = 2.86 Hz, 1 H), 7.59-7.70 (m, 2H), 8.26 (d, J = 1.20 Hz, 1 H), 9.55 (br.s., 1 H).

10 N-[(4,4-Dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-3-hidroxibencenosulfonamida (compuesto 36)

N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-3-metoxibencensulfonamida

5

Se suspendieron 2.5 g de clorhidrato de N-etil-4,4-dimetil-4,5-dihidro-pirazol-1-carboxamidina en 20 mL de DCM, se adicionaron 4.39 mL de DiPEA, seguidos de 2.52 g de cloruro de 3-metoxi-bencensulfonilo. La mezcla se revolvió durante un fin de semana a temperatura ambiente. La mezcla se extrajo a continuación con NaHCO₃ acuoso al 5% y una solución de NaOH de 2M, la capa orgánica se secó sobre Na2SO₄, y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/MeOH 99.5:0.5 → 99:1) para producir 2.95 g (11%) de un aceite naranja. ¹H RMN (400 MHz, CDCl₃) δ 1.16 (t, *J* = 7 Hz, 3H), 1.22 (s, 6H), 3.43-3.52 (m, 2H), 3.79 (br.s., 2H), 3.85 (s, 3H), 6.74 (s, 1H), 6.85 (br.s., 1H), 7.01 (dd, *J* = 8 y 2.5 Hz, 1H), 7.35 (t, *J* = 8 Hz, 1H), 7.46-7.50 (m, 1 H), 7.53 (br. d, *J* = 8 Hz, 1 H).

$$\begin{array}{c|c}
& & & \\
N & N \\
O = S = O
\end{array}$$

$$\begin{array}{c|c}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

En 20 mL de DCM se disolvieron 2.32 g de N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-3-metoxibencenosulfonamida y se adicionaron 13.7 mL de una solución de BBr $_3$ de 1M en DCM. La mezcla se revolvió durante un fin de semana a temperatura ambiente. Se adicionó una solución acuosa de NaHCO $_3$ al 5% para apagar la mezcla que contenía un precipitado pegajoso; después de apagar, está se disolvió calentando suavemente la mezcla. La capa orgánica se separó y la capa acuosa se extrajo una vez más con DCM. Las capas orgánicas combinadas se secaron sobre Na $_2$ SO $_4$ y se evaporaron hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/MeOH 99:1 -+98:2) para producir 1.24 g (56%) de N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-3-hidroxibencenosulfonamida como un polvo beige. 1 HRMN (400 MHz, CDCI $_3$) δ 1.09 (t, J = 7 Hz, 3H), 1.14 (s, 6H), 3.40-3.50 (m, 2H), 3.58 (br.s., 2H), 6.72 (s, 1 H), 6.79 (br.s., 1H), 6.97-7.03 (m, 1H), 7.25-7.34 (m, 2H), 7.46 (brd, J = 8 Hz, 1H), 7.66 (brs, 1H).

3-Cloro-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-5-hidroxi-bencenosulfonamida (compuesto 38)

3-Bromo-5-cloro-fenol

En una atmósfera de nitrógeno seco se pusieron 103 mg de 1,5-ciciooctadieno(H5-indenil)iridio (I) en una botella Pirex de 25 mL. A continuación se adicionaron 0.04 mL de 1,2-bis(dimetilfosfino)etano, 0.61 mL de 3-bromoclorobenceno y 1.52 mL de pinacolborano. La mezcla se revolvió a 150°C durante 3.5 h. Después de enfriar a temperatura ambiente, producto de adición de borano se puso en 17 mL de acetona para producir una solución transparente. Esta solución se adicionó lentamente a 17.41 mL de una solución de oxona de 0.30 M en agua enfriada en un baño de hielo. La mezcla se revolvió vigorosamente durante 15 minutos a temperatura ambiente y se extrajo tres veces con DCM. Las fases orgánicas combinadas se secaron sobre Na₂SO₄ y se evaporaron hasta secarse. El residuo se purificó mediante cromatografía flash (DCM) para producir 750 mg (62%) de un sólido beige. ¹H RMN está conforme con datos conocidos (compuesto (1), Maleczka, 2003).

1-Benciloxi-3-bromo-5-cloro-benceno

2.54 g de 3-bromo-5-cloro-fenol se disolvieron en 50 mL de acetona. A continuación se adicionaron 8.04 g de carbonato de potasio, 1.52 mL de bromuro de bencilo y 0.86 g de yoduro de tetrabutilamonio. La mezcla se sometió a reflujo durante 2 horas, se enfrió a temperatura ambiente y se filtró, y el filtrado se concentró hasta secarse. El residuo fue cromatografiado por una columna corta de sílice, eluyendo con DCM/PA 1:4, y se retiro el color rosa de las fracciones de producto (en el frente) con carbón activado. Después de filtrar y evaporar se obtuvieron 3.11 g (90%) de un aceite

30

5

10

amarillo pálido. 1 H RMN (400 MHz, CDCl₃) δ 5.03 (s, 2H), 6.92 (t, J = 2 Hz, 1 H), 7.03 (t, J = 2 Hz, 1 H), 7.12 (t, J = 1.5 Hz, 1H), 7.31-7.45 (m, 5H).

Cloruro de 3-benciloxi-5-cloro-bencenosulfonilo

En una atmósfera de N₂ se disolvieron 2.23 g de 1-benciloxi-3-bromo-5-cloro-benceno en 50 mL de THF seco, y la mezcla se enfrió en un baño de hielo. Gota a gota se adicionaron 14.84 mL de una solución de un complejo cloruro de iso-propilo magnesio - cloruro de litio de 1 M y la mezcla se revolvió a temperatura ambiente temperature durante una noche. Después de enfriar a -40°C, se adicionaron 2.41 mL de cloruro de sulfurilo en una porción (T se incrementó a 10°C), y la mezcla se revolvió durante 15 minutos a temperatura ambiente. Después de enfriar con un baño de hielo, la mezcla se apagó con y se acidificó con HCl acuoso de 1 M. La mezcla se extrajo con MTBE, y la fase orgánica se seco sobre Na₂SO₄ y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (PA → PA/Et₂O 95:5) para producir 1.53 g (62%) de un aceite incoloro. ¹H RMN (400 MHz, CDCl₃) δ 5.14 (s, 2H), 7.30 (t, *J* = 2 Hz, 1 H), 7.34-7.47 (m, 5H), 7.50 (t, *J* = 2 Hz, 1 H), 7.62 (t, *J* = 1.5 Hz, 1 H).

3-Benciloxi-5-cloro-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]bencenosulfonamida

15

20

0.93 g de clorhidrato de N-etil-4,4-dimetil-4,5-dihidro-pirazol-1-carboxamidina se suspendieron en 10 mL de DCM, se adicionaron 1.71 mL de DiPEA, seguidos de 1.52 g de cloruro de 3-benciloxi-5-cloro-bencensulfonilo. La mezcla se revolvió durante un fin de semana a temperatura ambiente. La mezcla se extrajo a continuación con NaHCO₃ acuoso al 5% y solución de NaOH de 2M, la capa orgánica se secó sobre Na $_2$ SO₄, y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/acetona 99:1) para producir 1.28 g (62%) de un aceite naranja. ¹H RMN (400 MHz, CDCl₃) δ 1.16 (t, J = 7 Hz, 3H), 1.23 (s, 6H), 3.40-3.50 (m, 2H), 3.77 (br.s., 2H), 5.09 (s, 2H), 6.77 (s, 1H), 6.80 (br.s., 1H), 7.07 (t, J = 2 Hz, 1H), 7.31-7.48 (m, 6H), 7.51-7.55 (m, 1H).

25

En 10 mL de DCM se disolvieron 1.28 g de 3-benciloxi-5-cloro-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etil-amino-metilen]-bencenosulfonamida y después de enfriar en un baño de hielo se adicionaron gota a gota 5.64 mL de una solución de 1 M de BBr₃ en DCM. La mezcla se revolvió a temperatura ambiente durante 1 h y se apagó con una solución acuosa de NaHCO₃ al 5%. La capa orgánica se separó y la capa acuosa se extrajo una vez más con DCM. Las capas orgánicas

combinadas se secaron sobre Na_2SO_4 y se evaporaron hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/MeOH 99:1 \rightarrow 98:2) para producir 0.93 g (92%) de 3-cloro-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-5-hidroxi-bencenosulfonamida como un sólido blanco amorfo. ¹H RMN (400 MHz, CDCl₃) δ 1.13 (t, J = 7 Hz, 3H), 1.16 (s, 6H), 3.41-3.51 (m, 2H), 3.56 (br.s., 2H), 6.75 (br.s., 1 H), 6.76 (s, 1 H), 6.99 (t, J = 2 Hz, 1 H), 7.44 (t, J=1.75 Hz, 1 H), 7.54 (dd, J = 2 y 1.75 Hz, 1 H), 7.72 (br.s., 1 H).

4-Aminometil-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]bencenosulfonamida (compuesto 39)

N-Etil-2,3-diaza-espiro[4.4]non-3-eno-2-carboxamidina

5

40.89 g de yodohidrato de 1-etil-2-metil-isotiourea se disolvieron en 150 mL de piridina a 40°C. A continuación, se adicionaron 20.00 g de 2,3-diaza-espiro[4.4]non-2-eno y la mezcla se revolvió durante una noche bajo reflujo. La mezcla se enfrió a 60°C y se concentró a presión reducida y el residuo naranja se puso en DCM (250 mL). La fase orgánica se extrajo 3 veces con agua, se seco sobre Na₂SO₄ y se evaporó a presión reducida. Se retiró la piridina residual mediante destilación azeotrópica con agua a presión reducida a 60 °C, y el agua residual se retiro mediante destilación azeotrópica con isopropanol a presión reducida a 60 °C. Esto produjo 31.5 g de un aceite amarillo/marrón que contenía aproximadamente 80% del producto anticipado el cual se utilizó en las etapas siguientes sin purificar más. ¹H RMN (400 MHz, CDCl₃) δ 1.35 (t, *J* = 7.22 Hz, 3H), 1.57-1.99 (m, 8H), 3.60 (q, *J* = 7.22 Hz, 2H), 4.04 (s, 2H), 7.03 (s, 1 H) [NH₂ de guanidina invisible].

Cloruro de 4-(1,3-dioxo-1,3-dihidro-isoindol-2-ilmetil)-bencensulfonilo

En una atmósfera de N₂ se enfriaron 11.26 mL de ácido clorosulfónico en un baño de hielo y revolviendo se adicionaron en porciones 10.00 g de n-bencilftalimida durante un período de 20 minutos. Se retiro del baño de hielo y la mezcla se calentó a 60°C durante 30 minutos. Después de enfriar a temperatura ambiente, la mezcla se vertió cuidadosamente sobre agua con hielo y se extrajo dos veces con cloroformo. Las capas orgánicas combinadas se secaron sobre MgSO₄ y se concentraron a un volumen pequeño. El producto se obtuvo mediante trituración del concentrado con PA para producir 10.44 g (73%) de un polvo blanco. ¹H RMN (400 MHz, CDCl₃) δ 4.95 (s, 2H), 7.67 (d, J = 8.43 Hz, 2H), 7.73-7.78 (m, 2H), 7.85-7.90 (m, 2H), 8.00 (d, J = 8.43 Hz, 2H).

N-[(2,3-diaza-espiro[4.4]non-3-en-2-il-etilamino-metilen]-4-(1,3-dioxo-1,3-dihidro-isoindol-2-ilmetil)-bencenosulfonamida

3.07 g de N-etil-2,3-diaza-espiro[4.4]non-3-eno-2-carboxamidina se pusieron en 200 mL de DCM, se adicionaron 10.83 mL de DiPEA, seguidos de 5.00 g de cloruro de 4-(1,3-dioxo-1,3-dihidro-isoindol-2-ilmetil)-bencensulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente. La mezcla se extrajo a continuación con NaHCO₃ acuoso al 5% y solución de NaOH de 2M; la capa orgánica se secó sobre Na₂SO₄, y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (PA/EA 1:1) para producir 2.51 g (38%) de un aceite marrón. 1 H RMN (400 MHz, CDCl₃) δ 1.13 (t, J = 7.22 Hz, 3H), 1.60-1.82 (m, 8H), 3.41-3.50 (m, 2H), 3.81 (br.s., 2H), 4.89 (s, 2H), 6.79 (s, 1H), 7.49 (d, J = 8.43 Hz, 2H), 7.70-7.76 (m, 2H), 7.81-7.87 (m, 2H), 7.88 (d, J = 8.43 Hz, 2H) [NH de guanidina invisible].

- 2.51 g de N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-4-(1,3-dioxo-1,3-dihidro-isoindol-2-ilmetil)-bencenosulfonamida se pusieron en 50 mL de EtOH. Después de adicionar 0.70 mL de hidrato de hidrazina la mezcla se sometió a reflujo durante 2 horas. Después de enfriar a temperatura ambiente, el precipitado formado se separó mediante filtración. El filtrado se concentró hasta secarse para producir 1.20 g (67%) de 4-aminometil-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]bencenosulfonamida como un aceite rojo. ¹H RMN (400 MHz, CDCl₃) δ 1.14
 (t, *J* = 7.22 Hz, 3H), 1.59-1.83 (m, 8H), 3.46 (q, 2H), 3.82 (br.s., 2H), 3.92 (br.s., 2H), 6.82 (s, 1H), 7.40 (d, *J* = 8.13 Hz, 2H), 7.88 (d, *J* = 8.13 Hz, 2H) [NH2 & NH de guanidina invisibles].
 - 4-{[(4,4-Dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-sulfamoil}benzamidina (compuesto 41)
 - 4-Ciano-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-bencensulfonamida

500 mg de N-etil-4,4-dimetil-4,5-dihidro-pirazol-1-carboxamidina se suspendieron en 10 mL de diclorometano; 0.92 mL (2.2 equivalentes) de DiPEA se adicionaron y a continuación 0.49 g (1.0 equivalente) de cloruro de 4-cianobencenosulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente. La mezcla de reacción se extrajo con NaHCO₃ acuoso al 5% y NaOH acuoso de 2 M, se secó sobre Na₂SO₄ y se concentró a presión reducida para producir 680 mg (82 %) de un aceite marrón. 1 H RMN (400 MHz, CDCl₃) δ 1.16 (t, J = 7 Hz, 3H), 1.25 (s, 6H), 3.39-3.50 (m, 2H), 3.81 (s, 2H), 6.71 (br s, 1 H), 6.79 (s, 1 H), 7.73-7.79 (m, 2H), 8.02-8.09 (m, 2H).

1.08 g de (10 equivalentes) cloruro de amonio se suspendieron en 10 mL de tolueno y la mezcla se enfrió en un baño de hielo. Gota a gota se adiconaron 10.12 mL de una solución de trimetilaluminio de 2 M (10 equivalentes), se retiró el baño de hielo y la mezcla se revolvió a temperatura ambiente durante 30 minutos. A continuación, una solución de 0.71 g de 4-ciano-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)etilamino-metilen]-bencenosulfonamida en 10 mL de tolueno se adicionaron gota a gota y la mezcla se revolvió a 80°C durante una noche. Después de enfriar, la mezcla se diluyó con acetato de etilo y se extrajo con NaOH de 2 M. Las capas orgánicas combinadas se secaron sobre Na₂SO₄, se filtraron y se concentraron a presión reducida. La purificación con cromatografía flash de columna (MeOH/EhN 97:3) produjo 310 mg (43 %) de un material amorfo blancuzco. ¹H RMN (400 MHz, CDCl₃) δ 1.17 (t, *J* = 7 Hz, 3H), 1.23 (s, 6H), 3.41-3.53 (m, 2H), 3.80 (s, 2H), 6.77 (s, 1H), 6.80 (br s, 1H), 7.66-7.74 (m, 2H), 7.94-8.02 (m, 2H).

3-{[(4,4-Dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-sulfamoil}benzamidina (compuesto 42)

3-Ciano-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-bencensulfonamida

20

500 mg de N-etil-4,4-dimetil-4,5-dihidro-pirazol-1-carboxamidina se suspendió en 10 mL de diclorometano; 0.92 mL (2.2 equivalentes) de DiPEA se adicionaron y a continuación 0.49 g (1.0 equivalente) de cloruro de 3-cianobencenosulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente. La mezcla de reacción se extrajo con NaHCO₃ acuoso al 5% y NaOH acuoso de 2 M, se secó sobre Na₂SO₄ y se concentró a presión reducida para producir 680 mg (82 %) de un aceite marrón. 1 H RMN (400 MHz, CDCl₃) δ 1.18 (t, J = 7 Hz, 3H), 1.25 (s, 6H), 3.41-3.52 (m, 2H), 3.81 (s, 2H), 6.71 (br s, 1H), 6.80 (s, 1H), 7.59 (t, J = 8 Hz, 1H), 7.73-7.79 (m, 1H), 8.15-8.21 (m, 1H), 8.22-8.26 (m, 1 H).

535 mg (10 equivalentes) de cloruro de amonio se suspendieron en 10 mL de tolueno. La mezcla se enfrió en un baño de hielo. Gota a gota se adicionaron 5.00 mL de una solución de trimetilaluminio de 2 M (10 equivalentes), se retiró el baño de hielo y la mezcla se revolvió a temperatura ambiente por 30 minutos. A continuación, se adicionó gota a gota una solución de 340 mg de 3-ciano-N-[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-bencenosulfonamida en 5 mL de tolueno y la mezcla se revolvió 80 °C durante una noche. Después de enfriar, la mezcla se diluyó con cloroformo y se filtró sobre Hyflo. La Hyflo se lavó con MeOH y el filtrado se purificó con SPE (Isolute Flash SCX-2, acondicionando, muestreando y lavando con MeOH, elución con NH₃ de 1M) para producir 280 mg de un aceite amarillo después de la evaporación. Este fue purificado adicionalmente con cromatografía flash de columna (MeOH/Et₃N 97:3) para producir 210 mg (59 %) de un amorfo blancuzco. ¹H RMN (400 MHz, CDCl₃) δ 1.17 (t, *J* = 7 Hz, 3H), 1.23 (s, 6H), 3.41-3.53 (m, 2H), 3.79 (s, 2H), 6.77 (5, 1H), 6.80 (br s, 1H), 7.53 (t, , *J* = 8 Hz, 1H), 7.74-7.81 (m, 1H), 8.00-8.07 (m, 1H), 8.15-8.20 (m, 1H).

4-{[Etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-sulfamoil}-benzamida (compuesto 43)

4-Ciano-N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-bencensulfonamida

5

10

15

25

En una atmósfera de N_2 se disolvieron 2.50 g de 4,N-dietil-4,5-dihidro-pirazol-1-carboxamidina en 30 mL de DCM seco, y 5.69 mL de DiPEA y se adicionaron 3.0 g de cloruro de 4-cianobencen-1-sulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente. La mezcla se extrajo dos veces con NaHCO₃ acuoso al 5%, se seco sobre MgSO₄ y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/acetona 97:3) para producir 1.47 g (30%) de un aceite marrón. 1 H RMN (400 MHz, CDCl₃) δ 0.98 (t, J = 7.5 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H), 1.45-1.73 (m, 2H), 3.09-3.24 (m, 1 H), 3.38-3.51 (m, 2H), 3.72 (dd, J = 11.0, 7.4 Hz, 1 H), 4.12 (t, J = 11.0 Hz, 2H), 6.74 (br. s., 1 H), 6.96 (d, J = 1.5 Hz, 1 H), 7.75 (d, J = 8.1 Hz, 2H), 8.05 (d, J = 8.1 Hz, 2H).

A 1.37 g de 4-ciano-N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-bencenosulfonamidase adicionaron 2.08 mL de TMSCI. La mezcla se enfrió a 0 - 5°C y a esta temperatura se adicionaron lentamente 0.3 mL de agua. Se dejó que la solución se calentará lentamente hasta la temperatura ambiente (-3 h.) La mezcla se volvió básica con NaHCO₃ sólido y luego se extrajo dos veces con DCM. Las capas orgánicas combinadas se secaron sobre MgSO₄ y se evaporaron hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/MeOH 95:5) para producir 0.79 g (52%) de un aceite amarillo que se solidificó en reposo; p.f. 146-149°C. 1 H RMN (400 MHz, CDCl₃) δ 0.97 (t, J = 7.5 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H), 1.42-1.79 (m, 2H), 3.07-3.18 (m, 1 H), 3.39-3.53 (m, 2H), 3.70 (dd, J = 11.3, 7.4 Hz, 1 H), 4.09 (t, J = 11.3 Hz, 1 H), 5.79 (br. s., 1 H), 6.34 (br. s., 1 H), 6.79 (br. s., 1H), 6.94 (d, J = 1.5 Hz, 1H) 7.88 (d, J = 8.1 Hz, 2H), 7.98 (d, J = 8.1 Hz, 2 H).

3-{[Etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-sulfamoil}-benzamida (compuesto 44)

3-Ciano-N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-bencenosulfonamida

5

10

15

20

En una atmósfera de N_2 se disolvieron 3.0 g de 4,N-dietil-4,5-dihidro-pirazol-1-carboxamidina en 35 mL de DCM seco y se adicionaron 6.83 mL de DiPEA y 3.6 g de cloruro de 3-cianobenceno-1-sulfonilo. La mezcla se revolvió durante una noche a temperatura ambiente. La mezcla se extrajo dos veces con NaHCO3 acuoso al 5%, se seco sobre la MgSO₄ y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/acetona 98:2) para producir 1.78 g (27%) de un aceite marrón. 1 H RMN (400 MHz, CDCl₃) δ 0.98 (t, J = 7.5 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H), 1.43-1.76 (m, 2 H), 3.08-3.27 (m, 1H), 3.40-3.54 (m, 2H), 3.73 (dd, J = 11.3, 7.4 Hz, 1H), 4.13 (t, J = 11.3 Hz, 1H), 6.74 (br. s., 1H), 6.96 (d, J = 1.2 Hz, 1H), 7.59 (t, J = 8.1 Hz, 1H), 7.75 (d, J = 8.1 Hz, 1H), 8.18 (d, J = 8.1 Hz, 1H), 8.23 (m, 1H).

A 1.78 g de 3-ciano-N-[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-bencenosulfonamida se adicionaron 4.86 mL de TMSCI. La mezcla se enfrió a 0 - 5°C y a esta temperatura se adicionaron lentamente 0.35 mL de agua. Se dejó que la

solución se calentará lentamente hasta la temperatura ambiente (aproximadamente 3 h). La mezcla se volvió básica con NaHCO $_3$ sólido y luego se extrajo dos veces con DCM. Las capas orgánicas combinadas se secaron sobre MgSO $_4$ y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (DCM/MeOH/ácido acético 96:3.75:0.25 para producir 1.39 g (74%) de un polvo blancuzco; p.f. 164-168°C. 1 H RMN (400 MHz, DMSO-d $_6$) δ 0.96 (t, J = 7.4 Hz, 3H), 1.11 (t, J = 7.2 Hz, 3H), 1.44-1.71 (m, 2H), 3.06-3.24 (m, 1 H), 3.39-3.49 (m, 2H), 3.66 (dd, J = 11.3, 7.4 Hz, 1H), 4.05 (t, J = 11.3 Hz, 1H), 6.58 (br. s., 1H), 7.01 (d, J = 1.5 Hz, 1H), 7.07 (br. s., 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.86 (br. s., 1H), 8.02 (d, J = 7.8 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1 H), 8.47 (m, 1 H).

Ácido 4-{[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-sulfamoil}-benzoico (compuesto 45)

5

En una atmósfera de N₂ se disolvieron 2.27 g de 4,N-dietil-4,5-dihidro-pirazol-1-carboxamidina en 30 mL de DCM seco, y se adicionaron 5.17 ml de DiPEA y 2.98 g de ácido 4-(clorosulfonil)benzoico. La mezcla se revolvió durante una noche a temperatura ambiente y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (primera columna con DCM/MeOH/NH₄OH 92:7.5:0.5; la segunda columna con DCM/MeOH/ácido acético 92:7.5:0.5) para producir 0.26 g (4%) de producto (sal de mono-DiPEA) como un polvo blancuzco amorfo. ¹H RMN (400 MHz, CDCl₃) δ
0.98 (t, *J* = 7.4 Hz, 3H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.53-1.81 (m, 2H), 3.15-3.30 (pico ancho, 1H), 3.43-3.66 (pico ancho, 3H), 4.01-4.20 (pico ancho, 1H), 6.97 (br. s., 1H), 7.90 (d, *J* = 8.1 Hz, 2H), 8.14 (d, *J* = 8.1 Hz, 2H), 9.69 (br. s., 1 H).

Ácido 3-{[etilamino-(4-etil-4,5-dihidro-pirazol-1-il)-metilen]-sulfamoil}-benzoico (compuesto 46)

En una atmósfera de N_2 se disolvió 1.0 g de 4,N-dietil-4,5-dihidro-pirazol-1-carboxamidina en 15 mL de DCM seco, y se adicionaron 1.14 mL de DiPEA y 1.31 g de ácido 3-(clorosulfonil)benzoico. La mezcla se revolvió durante una noche a temperatura ambiente y se evaporó hasta secarse. El residuo se purificó mediante cromatografía flash (primera columna con DCM/MeOH/ácido acético 84:15:1; segunda columna con DCM/MeOH/NH₄OH 84:15:1) para producir 0.08 g (4%) de un polvo blancuzco. 1 H RMN (400 MHz, CDCl₃) δ 0.90 (t, J = 7.4 Hz, 3H), 1.14 (t, J = 7.2 Hz, 3H), 1.38-1.62 (m, 2H), 3.02-3.18 (m, 1H), 3.27-3.62 (m, 3H), 3.89-4.17 (m, 1H), 6.94 (s, 1H), 7.26 (t, J = 7.8 Hz, 1H), 7.89 (d, J = 7.8 Hz, 1 H), 8.49 (5, 1 H).

3-Aminometil-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]bencenosulfonamida (compuesto 61) .

3-Ciano-N-[(2,3-diaza-espiro[4.41non-3-en-2-il)-etilamino-metilenl-bencenosulfonamida

A una solución de 3.50 g de cloruro de 3-cianobencensulfonilo en 150 mL de DCM se adicionaron 17,69 mL (6.0 equivalentes) de DiPEA y 4.00 g (1.0 equivalente) de N-etil-2,3-diaza-espiro[4.4]non-3-ene-2-carboxamidina. La mezcla de reacción se revolvió durante una noche a temperatura ambiente y se extrajo con agua. La fase orgánica se secó sobre Na_2SO_4 y se evaporó, y el residuo se purificó mediante cromatografía flash automatizada (EtOAc/PA 1:1) para producir 3.54 g (57%) de un aceite amarillo pálido. ¹H RMN (400 MHz, CDCl₃) δ 1.17 (t, J = 8 Hz, 3H), 1.65-1.86 (m, 8H), 3.41-3.50 (m, 2H), 3.87 (br.s., 2H), 6.70-6.80 (br.s., 1H), 6.87 (s, 1H), 7.60 (t, J = 8 Hz, 1H), 7.77 (d, J = 8Hz, 1H), 8.17 (d, J = 8 Hz, 1 H), 8.23 (br.s., 1 H).

3-Aminometil-N-[(2.3-diaza-espiro[4.41non-2-il)-etilamino-metilen]-bencenosulfonamida

10

15

5

3.54 g de 3-ciano-N-[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-bencenosulfonamida se disolvieron en 50 mL de THF y 49.24 mL de una solución de 1 M de complejo borano-THF se adicionaron gota a gota. La mezcla se revolvió durante 1 hora a 30°C, se apagó con HCl acuoso de 3 M (3.6 equivalentes) y se revolvió por otra hora. La mezcla de reacción se enfrió en un baño de hielo, se volvió básica con NaOH acuoso (7 equivalentes) y se extrajo con DCM. La fase orgánica se secó sobre Na₂SO₄ y se evaporó, y el residuo se purificó mediante cromatografía flash automatizada (DCM/MeOH/NH₄OH 92:7.5:0.5) para producir 0.80 g (22%) de un aceite amarillo. 1 H RMN (400 MHz, CDCl₃) δ 1.13 (t, J = 8 Hz, 3H), 1.50-1.76 (m, 8H), 2.76 (m, 2H), 3.17-3.27 (m, 2H), 3.78 (s, 2H), 3.91(s, 2H), 4.40-4.50 (br.m., 1 H), 6.88 (br.t., J = 6 Hz, 1 H), 7.37-7.44 (m, 2H), 7.78-7.83 (m, 1H), 7.88 (br.s., 1H).

20

0.1 g de 3-aminometil-N-[(2,3-diaza-espiro[4.4]non-2-il)-etilamino-metilen]-bencenosulfonamida se disolvieron en 10 mL de THF, y 0.5 mg de acetato de cobre (II) se adicionaron. Durante un período de 20 segundos se hizo burbujear O_2 a través de la solución revuelta a temperatura ambiente, y continuó revolviéndose durante 10 minutos. La mezcla se

concentró a presión reducida, y el residuo se purificó mediante cromatografía flash automatizada (DCM/MeOH/NH₄OH 92:7.5:0.5) para producir 50 mg (50%) de un aceite amarillo pálido. 1 H RMN (400 MHz, CDCI₃) δ 1.15 (t, J = 8 Hz, 3H), 1.52-1.84 (br.m., 10H), 3.43-3.53 (m, 2H), 3.84 (br.s., 2H), 3.94 (s, 2H), 6.81 (s, 1 H), 6.90 (br.s., 1 H), 7.42 (t, J = 8 Hz, 1H), 7.47 (d, J = 8 Hz, 1H), 7.80 (d, J = 8 Hz, 1H), 7.87 (s, 1H).

5 N-[(2,3-Diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-3-hidroximetil-bencenosulfonamida (compuesto 62)

Éster metílico del ácido 3-{[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-sulfamoil}-benzoico

A una solución de 4.07 g de éster metílico de ácido 3-clorosulfonil-benzoico en 150 mL de DCM se adicionaron 17,69 mL (6.0 equivalentes) de DiPEA y 4.00 g (1.0 equivalente) de N-etil-2,3-diaza-espiro[4.4]non-3-ene-2-carboxamidina. La mezcla de reacción se revolvió durante una noche a temperatura ambiente en una atmósfera de N₂ y se extrajo con agua. La fase orgánica se secó sobre Na₂SO₄ y se evaporó y el residuo se purificó mediante cromatografía flash automatizada (EtOAc/PA 1:1) para producir 4.80 g (71 %) de un sólido amarillo. ¹H RMN (400 MHz, CDCl₃) δ 1.16 (t, *J* = 8 Hz, 3H), 1.62-1.86 (m, 8H), 3.42-3.53 (m, 2H), 3.87 (s, 2H), 3.95 (s, 3H), 6.83 (s, 1 H), 6.83-6.95 (pico ancho, 1 H), 7.56 (t, *J* = 8 Hz, 1H), 8.13-8.18 (m, 2H), 8.61 (s, 1H).

15 N-[(2,3-diaza-espiro[4.4]non-2-il)-etilamino-metilen]-3-hidroximetil-bencenosulfonamida

20

25

A una solución de 0.50 g de éster metílico del ácido 3-{[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]sulfamoil}benzoico en 3.0 mL de THF seco se adicionaron 0.11 g (2.0 equivalentes) de LiCl seco y a continuación 0.10 g (2.0 equivalentes) de NaBH₄ seguido por la adición de 5.0 mL de EtOH. La mezcla se revolvió durante una noche a temperatura ambiente en atmósfera de N_2 , se enfrió en un baño de hielo y se acidificó hasta pH 4.0 por adición de ácido cítrico acuoso al 10%. La mezcla se concentró, el residuo se disolvió en 6 mL de agua, y la fase acuosa se extrajo 3 veces con DCM. Las bases orgánicas combinadas se lavaron con NaHCO $_3$ acuoso saturado, se secaron sobre Na_2SO_4 y se evaporaron sobre sílice. La purificación mediante cromatografía flash automatizada (DCM/MeOH/NH₄OH 96:3.75:0.25) produjo un 0.24 g (51%) de un sólido blanco, p.f. 142-144%C. 1 H RMN (400 MHz, DMSO- 1 G) 1 B Hz, 1 B, $^$

0.1 g de N-[(2,3-diaza-espiro[4.4]non-2-il)-etilamino-metilen]-3-hidroximetil-bencenosulfonamida se disolvieron en 10 mL de THF, y se adicionaron 0.1 mg de acetato de cobre (II). Durante un período de 5 segundos se hizo burbujear O_2 a través de la solución revuelta a temperatura ambiente, y continuó revolviéndose durante 10 minutos. La mezcla se concentró a presión reducida, y el residuo se purificó mediante cromatografía flash automatizada (DCM/MeOH 99: 1) para producir 80 mg (80%) de un aceite incoloro. 1 H RMN (400 MHz, CDCl₃) δ 1.13 (t, J = 8 Hz, 3H), 1.60-1.83 (m, 8H), 2.58 (br.s., 1 H), 3.41-3.51 (m, 2H), 3.82 (br.s., 2H), 4.73 (br.s., 2H), 6.81 (s, 1 H), 6.80-7.00 (br.s., 1H), 7.42 (t, J = 8 Hz, 1H), 7.49 (d, J = 8 Hz, 1H), 7.83 (d, J = 8 Hz, 1H), 7.92 (s, 1H).

(2,3-Diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilenamida del ácido 1H-indazol-5-sulfónico (compuesto 63)

2,2,2-Trifluoro-N-o-tolil-acetamida

Una solución de 48.75 mL de o-toluidina y 45.90 mL (1.25 equivalentes) de piridina seca en 600 mL de DCM se enfrió a -5 - 0° C en un baño de hielo/acetona y se adicionaron gota a gota 69.46 mL (1.10 equivalentes) de anhídrido trifluoroacético durante un período de 1 hora, manteniendo la temperatura de la mezcla de reacción por debajo de 5° C. Se retiró el baño de hielo, la mezcla se revolvió a temperatura ambiente durante una noche, a continuación se vertió en 2 L de agua y se extrajo tres veces con DCM. Las capas orgánicas combinadas se lavaron con 500 ml de HCl de 0.5N, agua y salmuera, luego se secaron sobre Na_2SO_4 , se filtraron y se evaporaron para producir 90.3 g (97%) de un sólido amarillo pálido que se utilizó sin más purificación en la siguiente reacción. 1 H RMN (400 MHz, CDCl $_3$) δ 2.28 (s, 3H), 7.15-7.31 (m, 3H), 7.73 (d, J=7.83 Hz, 1 H), 7.79 (br.s., 1 H).

20 Cloruro de 3-metil-4-(2,2,2-trifluoro-acetilamino)-bencensulfonilo

16.43 mL (5.00 equivalentes) de ácido clorosulfónico se enfrió en un baño de acetona/hielo y se adicionaron en tres porciones 10.00 g de 2,2,2-trifluoro-N-o-tolil-acetamida, manteniendo la temperatura de la mezcla de reacción por debajo de 5°C. Se retiró el baño de hielo, la mezcla amarilla pálida se dejó calentar a temperatura ambiente y luego se calentó en un baño de aceite de 70 °C durante 5.5 horas. El baño de aceite se retiró y en alrededor de 30-35 °C la mezcla marrón se vertió muy cuidadosamente a un vaso con hielo (exotérmicas, emanan cantidades copiosas de HCl), lo cual produce un precipitado espeso, gomoso y muy pegajoso. La mezcla se extrajo tres veces con DCM y las capas

10

orgánicas combinadas se lavaron con salmuera, se secaron sobre Na₂SO₄, se filtraron y evaporaron sobre sílice. La purificación con cromatografía flash (EtOAc/PA 1:9 \rightarrow 1 :4) produjo 10.3 g (69%) de un sólido blanco. ¹H RMN (400 MHz, CDCl₃) δ 2.46 (s, 3H), 7.90 (br.s., 1 H), 7.94 (s, 1 H), 7.98 (dd, J = 8.6, 2.15 Hz, 1 H), 8.35 (d, J = 8.6 Hz, 1 H).

N-(4-{[(2,3-Diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-sulfamoil}-2-metil-fenil)-2,2,2-trifluoro-acetamida

A

5

10

15

A una solución de 0.23 g de N-etil-2,3-diaza-espiro[4.4]non-3-ene-2-carboxamidina en 5 mL de DMF seca se adicionaron 0.87 mL (3.0 equivalentes) de BEMP y la mezcla marrón clara se revolvió durante 10 minutos a temperatura ambiente. A continuación, 0.33 g (1.1 equivalentes) de cloruro de cloruro de 3-metil-4-(2,2,2-trifluoro-acetilamino)bencensulfonilo se adicionaron en una porción y la solución amarilla brillante resultante se revolvió durante una noche a temperatura ambiente. La mezcla se enfrió en un baño de hielo, se acidificó con HCl de 1 N y luego se extrajo tres veces con EtOAc/Et₃O 1 :1. Las capas orgánicas combinadas fueron lavadas una vez con agua, luego con salmuera, se secaron sobre Na₂SO₄ y se evaporaron sobre sílice. La purificación con cromatografía flash (EtOAc/PA 4:6 \rightarrow 5:5) produjo 0.18g (39%) de un sólido blanco. ¹H RMN (400 MHz, CDCl₃) δ 1.16 (t, J = 7.2 Hz, 3H), 1.63-1.86 (m, 8H), 2.33 (s, 3H), 3.43-3.52 (m, 2H), 3.83 (s, 2H), 6.77-6.85 (br.s., 1 H), 6.83 (s, 1 H), 7.73-7.79 (m, 2H), 7.86 (d, J = 8.3 Hz, 1 H), 8.10 (br.s., 1 H).

4-Amino-N-[(2,3-diaza-espiro[4.4]non-2-il)-etilamino-metilen]-3-metil-bencenosulfonamida

20

0.36 g de N-(4-{[(2,3-diaza-espiro[4.4]non-3-en-2-il)-etilamino-metilen]-sulfamoil}-2-metilfenil)-2,2,2-trifluoro-acetamida se adicionaron a 15.00 mL de MeOH y la mezcla se revolvió hasta que todos los sólidos se disolvieron (aproximadamente 5-10 minutos). Luego se adicionaron 2.00 mL de agua y 0.54 g (5.0 equivalentes) de K_2CO_3 , y la suspensión resultante se sometió a reflujo durante 4.5 horas. La mezcla se dejó enfriar, se concentró a presión reducida, se puso en DCM/H₂O y se extrajo tres veces con DCM. Las capas orgánicas combinadas se lavaron con salmuera, se secaron sobre Na_2SO_4 , se filtraron y se evaporaron sobre sílice. La purificación en la que se uso cromatografía flash (EtOAc/PA 1:1 \rightarrow 3:1) produjo 0.16g (56%) de un aceite amarillo pálido. ¹H RMN (400 MHz, CDCl₃) δ 1.15 (t, J = 7.33 Hz, 3H), 1.57-1.82 (m, 8H), 2.18 (s, 3H), 3.42-3.53 (m, 2H), 3.79 (s, 2H), 3.92 (br.s., 2H) 6.65 (d, J = 8.0 Hz, 1H), 6.77 (s, 1 H), 6.94 (br.s., 1 H), 7.58 (dd, J = 8.0, 2.0 Hz, 1 H), 7.62 (d, J = 2.0 Hz, 1 H).

Se disolvieron 0.16 g de 4-amino-N-[(2,3-diaza-espiro[4.4]non-2-il)-etilamino-metilen]-3-metil-bencenosulfonamida en 2.50 mL de ácido acético y se adicionó una solución de 30.37 mg (1.0 equivalente) de nitrito de sodio en 0.2 mL de agua en una porción. La mezcla amarilla/naranja resultante se revolvió durante 3 horas a temperatura ambiente, se vertió sobre una solución de NaHCO₃ al 5% (ocurre espumado excesivo) y se extrajo tres veces con EtOAc. Las capas orgánicas combinadas se lavaron una vez con salmuera, se secaron sobre Na₂SO₄, se filtraron y evaporaron sobre sílice. La purificación con cromatografía flash (DCM/MeOH 97:3) produjo 10 mg (6%) de un aceite amarillo. 1 H RMN (400 MHz, CDCl₃) δ 1.15 (t, J = 7.0 Hz, 3H), 1.59-1.82 (m, 8H), 3.41-3.53 (m, 2H), 3.83 (br.s., 2H), 6.80 (s, 1H), 6.90 (br.s., 1H), 7.58 (d, J = 8.8 Hz, 1H), 7.94 (dd, J = 8.8, 1.52 Hz, 1H), 8.17 (s, 1H), 8.40 (s, 1 H).

10 (4,4-Dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilenamida de ácido 2-trifluorometil-1H-indol-5-sulfónico (compuesto 64)

N-(2-Bromo-fenil)-2,2,2-trifluoro-acetamida

5

25

Se disolvieron 24.9 g de 2-bromoanilina en 200 mL de DCM. Se adicionaron 28.0 mL (1.4 equivalentes) de trietilamina y la mezcla de reacción se enfrió a 0 °C. Después se adicionaron gota a gota 24.0 mL (1.2 equivalentes) de anhídrido trifluoroacético manteniendo la temperatura de la mezcla de reacción por debajo de 10°C). La mezcla se dejó calentar a temperatura ambiente, se revolvió durante 2 horas y se apagó con agua. La capa orgánica se separó, se secó sobre Na₂SO₄, se filtró y se evaporó a presión reducida. La purificación mediante cromatografía flash (Et₂O/PA 1 :6) produjo 34.6 g (89%) de un compuesto cristalino blanco. ¹H RMN (400 MHz, CDCl₃) δ 7.12 (dt, *J* = 7.8, 1.3 Hz, 1 H), 7.39 (dt, *J* = 7.8, 1.3 Hz, 1 H), 7.61 (dd, *J* = 8.0, 1.3 Hz, 1 H), 8.31 (dd, *J* = 8.0, 1.3 Hz, 1 H), 8.45 (br.s., 1H).

20 Cloruro de 3-bromo-4-(2,2,2-trifluoro-acetilamino)-bencensulfonilo

Se adicionaron en tres porciones 3,0 g de N-(2-bromo-fenil)-2,2,2-trifluoro-acetamida a 3.74 mL (5.0 equivalentes) de ácido clorosulfónico enfriando en un baño de hielo. El baño de hielo se retiró, la mezcla se calentó a temperatura ambiente, y a continuación se revolvió durante 1 hora a 80°C. Después de enfriar, se vertió la mezcla de reacción marrón clara sobre hielo y se extrajo con DCM. La fase orgánica se secó sobre Na₂SO₄, se filtró y se evaporó hasta secarse para producir 3.36 g (80%) de un aceite que se solidificó en reposo. 1 H RMN (400 MHz, CDCl₃) δ 8.09 (dd, J = 9.0, 2.0 Hz, 1 H), 8.30 (d, J = 2.0 Hz, 1 H), 8.69 (d, J = 9.0 Hz, 1 H), 8.71 (br.s.,1 H).

 $N-(2-Bromo-4-\{[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-sulfamoil\} fenil)-2,2,2-trifluoro-acetamida$

A una solución de 1.20 g de clorhidrato de N-etil-4,4-dimetil-4,5-dihidro-pirazol-1-carboxamidina en 35 mL de THF seco se adicionaron 5.1 mL (3.0 equivalentes) de BEMP y la mezcla de reacción se revolvió durante 10 minutos a temperatura ambiente. 2.15 g (1.0 equivalente) de cloruro de 3-bromo-4-(2,2,2-trifluoroacetilamino)-bencensulfonilo se adicionaron en una porción y la solución amarilla brillante resultante se revolvió durante una noche a temperatura ambiente. La mezcla de reacción se acidificó con HCl de 1 N y se extrajo dos veces con EA, Las capas orgánicas combinadas se secaron sobre Na₂SO₄, se filtraron y se evaporaron a presión reducida. La purificación mediante cromatografía flash (Et₂O/PA 1:1 \rightarrow Et₂O) produjo 2.29 g (78%) de producto. ¹H RMN (400 MHz, CDCl₃) δ 1.18 (t, J = 7,3 Hz, 3H), 1.24 (s, 6H), 3.43-3.51 (m, 2H), 3.79 (br.s, 2H), 6.78 (s, 1 H), 7.93 (dd, J=8.6, 2.0 Hz, tH), 8.19 (d, J = 2.0 Hz, 1 H), 8.39 (d, J = 8.6 Hz, 1 H), 8.61 (br.s., 1 H).

4-Amino-3-bromo-N-[(4,4-dimetil-pirazolidin-1-il)-etilamino-metilen]-bencenosulfonamida

5

10

15

Se disolvieron 2.18 g de N-(2 -bromo-4-{[(4,4-dimetil-4,5-dihidro-pirazol-1-il)-etilamino-metilen]-sulfamoil}-fenil)-2,2,2-trifluoro-acetamida en 75 mL de MeOH. Se adicionaron 3.0 g (5.0 equivalentes) de carbonato de potasio y 10 mL de agua y la mezcla de reacción se sometió a reflujo durante 2.5 horas. Los volátiles se retiraron a presión reducida, y el residuo se puso en EA y se extrajo con NaOH acuoso de 2N. La capa orgánica se secó sobre Na₂SO₄, se filtró y se concentró sobre sílice. La purificación mediante cromatografía flash (Et₂O) produjo 1.54 g (83%) de producto. 1 H RMN (400 MHz, CDCI₃) δ 1.17 (t, J = 7.3 Hz, 3H), 1.19-1.23 (m, 6H), 3.43-3.52 (m, 2H), 3.74 (br.s, 2H), 4.45 (br.s, 2H), 6.73 (s, 1 H), 6.75 (d, J = 8.4 Hz, 1 H), 6.88 (br.s., 1 H), 7.65 (dd, J = 8.4, 2.0 Hz, 1 H) 7.99 (d, J = 2.0 Hz, 1 H).

En un tubo de ensayo de video Pyrex con un tapón de rosca, equipado con una barra magnética para revolver, el cual contenía 22 mg (0.10 equivalentes) de acetato de paladio (II), 71.5 mg (0.15 equivalentes) de X-Phos (71.5 mg; 0.15 equivalentes) y 0.39 g (1.2 equivalentes) de carbonato de cesio, se adicionaron 2.0 mL de tolueno desgasificado. Después de la adición de 0.42 g de 4-amino-3-bromo-N-[(4,4-dimetil-pirazolidin-1-il)-etilamino-metilen]-bencenosulfonamida y 0.21 g (1.2 equivalentes) de 2-bromo-3,3,3-trifluoropropen, el reactor cerrado se calentó durante 15 horas a 125°C. La mezcla se puso en EA y se extrajo con NaHCO3 acuoso al 5%. La capa orgánica se secó sobre Na₂SO₄, se filtró y se concentró. La purificación mediante cromatografía de capa gruesa sobre placas de gel de sílice (Et₂O) produjo 10 mg (1.6%) de producto. HR-MS: [M⁺H] 416.1346 (calculado para C₁₇H₂₁F₃N₅O₂S: 416.1368). ¹H RMN (400 MHz, CDCI₃) δ 1.15 (t, J = 7.3 Hz, 3H), 1.21 (br.s., 6H), 3.43-3.51 (m, 2H), 3.76 (br.s., 2H), 5.83 (br.s., 1 H), 6.73 (s, 1 H), 7.01 (s, 1 H), 7.50 (d, J=8.7 Hz, 1 H), 7.88 (dd, J=8.7, 1.5 Hz, 1 H), 8.31 (br.s., 1 H), 9.39 (br.s., 1 H).

5

10

Los compuestos preparados mediante la misma ruta de síntesis están marcados como 'ruta 2' en la siguiente tabla.

				des físico	-químicas	Farmacologia 5-HT6	
			TLC	LCMS		5-	HT6
Comp	Estructura	S*	Rt(x)	Rt	m.p. °C	pA2	pKi
1 (+)- enantiómero +130° (1%, CHCl3)	N O O O O O O O O O O O O O O O O O O O	2	0.20 (a)	1.66		8.7	8.5
2 (-)- enantiómero -136° (1%, CHCl3)	N O O O NH ₂	2	0.20 (a)	1.66		8.2	8.0
3	NH O O NH ₂	2	0.08 (b)	1.35		7.6	7.9
4	NH O O NH ₂	1	0.28 (a)	1.55	141-142	8.3	8.0
5	NH ₂ Q, Q	1	0.28 (a)	1.45		7.1	7.0
6	NH Q Q	1			148-150		
7	NH Q Q	1	0.19 (c)			7.6	7.2
8	NH Q Q NH NH,	1	0.17 (c)			6.8	6.7

			Propieda	des físico	-químicas	Farma	cologia
			TLC	LCMS			HT6
0.00000	Falmoria	C *	D.(5.3	-		4 -	
Comp	Estructura	S*	Rt(x)	Rt	m.p. °C	pA2	pKi
9	NH ₂ O, O NN, S NH ₂	1	0.16 (c)			6.7	6.6
10	NH Q, Q	1		1.58			
11 (+)- enantiómero +131° (1%, CHCl3)	N O O CI	2	0.31 (a)	1.43		9.3	9.0
12 (-)- enantiómero -131° (1%, CHCl3)	N O O CI	2	0.31 (a)	1.43		9.0	8.8
13	NH Q Q CI	2	0.13 (b)	1.52		8.5	8.2
14	NH O O CI	1	0.22 (a)	1.82		9.0	8.8
15	NH Q Q NN S F NH,	1		1.71			

			Propieda	des físico	-químicas	Farma	cologia
			TLC	LCMS			HT6
0	Estructura	C*	D.(11)	D.	90		
Comp 16	NH Q Q	2	Rt(x)	1.38	m.p. °C	pA2	pKi 7.9
17	NH O O	1		1.61			
18	NH O O N N N N N N N N N N N N N N N N N	2		1.62			8.4
19	N O O O O O O O O O O O O O O O O O O O	2	0.35 (d)	1.34		8.6	8.5
20 (+)- enantiómero +120° (1%, MeOH)	N O O O O O O O O O O O O O O O O O O O	2	0.35 (d)			9.0	8.7
21 (-)- enantiómero -104° (1%, MeOH)	N O O O	2	0.35 (d)			8.2	8.0
22	NH O, O N S OH	2		1.47		8.3	7.9
23	NH O O O	1		1.59			

					-químicas		cologia
			TLC	LCMS		5-	HT6
Comp	Estructura	S*	Rt(x)	Rt	m.p. °C	pA2	pKi
24	NH O O OH	1			140-142		
25	NH O O O OH	1		1.60	158-160		
26	NH Q O CI	2		1.61		7.7	8.0
27	NH Q O CI	2		1.61		7.6	7.8
28	NH O O CI OH	1	0.32 (e)				
29	NH O O NH ₂	2		1.36		7.0	7.2
30	NH O O NH ₂	2		1.31		6.9	6.6
31	NH Q Q NH ₂	2		1.54			
32	NH Q Q	2		1.62			

			Propieda	des físico	-químicas	Farma	cologia
			TLC	LCMS		5-	HT6
		0.1	5()		20		16
Comp	Estructura	S*	Rt(x)	Rt	m.p. °C	pA2	pKi
33	NH O O H	2		1.22			6.3
34	NH O O HN	2		1.70			
35	NH Q O OH	2		1.49		7.9	7.7
36	NH O O OH	2	0.15 (a)	1.49		7.5	7.3
37	NH O O OH	2		1.64			
38	NH O O CI	2	0.10 (b)				
39	NH O O NH,	2		1.00			
40	NH O O NH O O NH O O NH O O NH O O	1		1.54			6.2

			Propieda	ides físico	-químicas	Farma	cologia
			TLC	LCMS			HT6
Caman	Estructura	S*	D ₁ (₁₁)	Rt	°C	m A o	IV:
Comp 41	NH O O NH ₂	2	Rt(x)	0.84	m.p. °C	pA2	pKi
42	NH Q Q NH NH,	2	0.09 (j)	0.93			
43	NH O O NH ₂	2		1.32	146-149		
44	NII O O O NH ₃	2		1.37	164-168		
45	NH Q Q N N S OH	2		1.09			
46	NH O O O OH	2		1.14			
47	HN NH Q O	1		0.80		8.6	
48	HN N N N N N N N N N N N N N N N N N N	1		0.90			

				des físico	-químicas		cologia
			TLC	LCMS		5-	НТ6
Comp	Estructura	S*	Rt(x)	Rt	m.p. °C	pA2	pKi
49	HN N S N H	1	0.15 (h)	0.89	пп.р. С	8.8	ркі
50	HN N N S OH	1	0.34 (i)	0.84			7.9
51	HN N S CI	1	0.48 (i)	1.00			
52	HN NH O O OH	1	0.20 (f)	1.04	112-114		8.1
53	NH O O O	2		1.71	146-147		8.3
54	NH O O O OH	2		1.84	157-158		
55	NH O O CI OH	1		1.94		9.7	
56	NH Q Q N S	1		1.48			7.8

			Propieda	des físico	-químicas	Farma	cologia
			TLC	LCMS		5-HT6	
	- · ·	- ·	5 / \				
Comp	Estructura	S*	Rt(x)	Rt	m.p. °C	pA2	pKi
57	NH O O NH	1	0.12 (g)	1.61		8.6	8.1
58	NH O O	1	0.20 (g)	1.75			
59	NH O O	1		1.76			8.1
60	NH O O O NH O O NH	1	0.50 (d)	1.85			8.5
61	NH O O NH ₂	2	0.40 (k)				
62	NH O, O	2	0.20 (b)				
63	NH O O	2	0.33 (c)	1.56			
64	NH O O N S N S N CF ₃	2	0.21 (I)	1.89			

 $S^*=$ ruta de síntesis: 'ruta 1' o 'ruta 2' tal como se ha descrito antes. $R_f(x)=$ valor de $R_f,(x)$ entre paréntesis: fase móvil de TLC: (a) = DCM:MeOH = 98:2; (b) = DCM:MeOH = 99:1;

```
 \begin{array}{l} (c) = \text{EA}; \\ (d) = \text{DCM:MeOH} = 95.5; \\ (e) = \text{EA:PA} = 2.1; \\ (f) = \text{DCM:MeOH:NH}_4\text{OH} = 85.15.1; \\ \\ 5 \qquad (g) = \text{EA:PA} = 1.1; \\ (h) = \text{EA:MeOH:Et}_3\text{N} = 45.50.5; \\ (i) = \text{MeOH:Et}_3\text{N} = 95.5; \\ (j) = \text{MeOH:Et}_3\text{N} = 97.3; \\ (k) = \text{DCM/MeOH/NH}_4\text{OH} = 92.7.5.0.5; \\ \\ 10 \qquad (I) = \text{Et}_2\text{O}. \\ \\ R_t = \text{tiempo de retención (en minutos) en análisis de LC-MS} \\ \end{array}
```

Los compuestos específicos, cuya síntesis se ha descrito antes, están destinados a ilustrar aún más la invención con más detalle y por lo tanto no deben ser considerados restrictivos de ninguna manera del alcance de la invención. Otras modalidades de la invención serán evidentes para aquellos versados en la materia a partir de la consideración de la especificación y de la práctica de la invención, divulgadas en la presente. Por consiguiente, se pretende que la especificación y los ejemplos se consideren solamente ejemplares.

Ejemplo 5: Métodos farmacológicos

15

45

50

55

Afinidad in vitro por receptores 5-HT₆ humanos

La afinidad por receptores 5-HT₆ humanos se midió en una preparación de membrana de células de CHO transfectadas 20 con receptores 5-HT₆ humanos mediante estudios de enlazamiento utilizando dietilamina de ácido [³H]-N-metil-lisérgico ([3H]-LSD) como ligando. La preparación de membrana se preparó a partir de células suministradas por Euroscreen (Bruselas). Se cultivaron células de CHO/Gα16/mtAEQ/h5HT6-A1 en matraces T en medio CHO-S-SFM II (Gibco BRL), suplementado con FCS al 1% dializado, L-glutamina de 2 mM, Geneticin 500 µg/ml y Zeocin 200 µg/ml. Las células se cosecharon utilizando tripsina al 0.25% (1ml/matraz T175), se centrifugaron y se suspendieron a continuación en medio 25 CHO-S-SFM II y se congelaron a -80°C. Después de descongelar se centrifugaron las células durante 3 minutos a 1500 g a 4°C. A partir del gránulo comprimido se prepararon membranas de células mediante dos ciclos de homogeneización (Potter-Elvehjem 10 recorridos, 600 rpm) y centrifugación (40,000g durante 15 min, 4°C). El ensayo se estableció para lograr condiciones de estado estacionario y optimizar enlazamiento específico. Para el receptor 5-HT₆, se incubaron membranas de 5.10⁵ células con [³H]-LSD de 5.0 nM a 37°C durante 30 minutos. Se determinó el enlazamiento no específico usando serotonina de 10⁻⁵ M. los ensayos se terminaron mediante filtración al vacío a través de filtros de fibra 30 de vidrio (GF/B) los cuales habían sido pretratados con polietilenimina al 0.5%. La radiactividad total y enlazada se determinó mediante conteo de escintilación líquida. Se logró más de 80% de enlazamiento específico en cada uno de estos ensayos. Los compuestos se ensayaron en un intervalo de concentración de 4 log; todas las determinaciones se llevaron a cabo por triplicado. Se determinaron los valores de IC₅₀ mediante análisis de regresión no lineal utilizando el 35 ajuste la curva de la ecuación de Hill. Las constantes de inhibición (valores de Ki) se calcularon a partir de la ecuación de Cheng-Preushoff:

$$K_i = IC_{50}: (1+L/K_d)$$

donde L representa la concentración de [3 H]-LSD en el ensayo, y K_d su afinidad por el receptor. Los resultados se expresan como valores de p K_i , medias \pm SD de al menos tres experimentos separados.

40 Actividad de ((ant)agonismo) funcional in vitro en receptores 5-HT₆ humanos

El ensayo en CHO-Aequorina-5HT₆-humano fue adquirido a Euroscreen, Bruselas (Euroscreen, expediente técnico, receptor 5-HT₆-A1 de serotonina recombinante humano, clon de ADN y línea celular recombinante CHO AequoScreenTM, N° de catálogo: ES-316-A, febrero de 2003). Las células de Aequorina-5-HT₆- humano expresan apo-Aequorina dirigida de modo mitocondrial. Las células tienen que cargarse con coelanterazina, a fin de reconstituir Aequorina activa. Después de enlazar agonistas al receptor 5-HT₆ humano, la concentración de calcio intracelular se incrementa y el enlazamiento de calcio al complejo apo-Aequorina/coelenterazina conduce a una reacción de oxidación de coelenterazina, lo cual da lugar a la producción de apo-Aequorina, coelenteramida, CO₂ y luz (λ_{max} 469nm). Esta respuesta luminiscente depende de la concentración de agonista. La luminiscencia se mide utilizando el MicroBela Jet (Perkin Elmer). Los efectos agonísticos de los compuestos se expresan como pEC₅₀. Los efectos antagonísticos de los compuestos se determinaron como inhibición de la luminiscencia inducida por α-metilserotonina de 10⁻⁸ M y el pA₂ se calculó de acuerdo con la ecuación de Cheng-Preushoff. Los compuestos se ensayaron en un intervalo de concentración de 5 log y se llevaron a cabo 3 experimentos independientes por duplicado.

Determinación in vitro de estabilidad metabólica en presencia de hepatocitos de humanos/rata

Para obtener un estimado in vitro de la vida media (t_½) biológica, se incubaron compuestos a 37 °C en placas de 96 pozos en medio WME que contenía 5 μg/ml de insulina, durante 0, 10, 20, 40 o 60 minutos, con hepatocitos humanos o

rata (50,000 por pozo), en un baño de agua, en atmósfera de oxígeno, con un contenido de 4-7% de CO₂. Los compuestos de ensayo se disolvieron en DMSO (1 mg/ml). Las concentraciones de ensayo fueron de 1 μg/ml. Para evitar los efectos tóxicos en los hepatocitos, las concentraciones de ensayo en DMSO nunca excedieron el 0,1% del volumen de ensayo. Después del período de incubación, las placas de 96 pozos se pusieron sobre hielo; a cada pozo se adicionaron 100 μl de CAN enfriado en hielo después de lo cual se sometieron las placas a un vórtice y se centrifugaron a 2500 rpm, at 4 °C durante 5 minutos. A continuación se separó el sobrenadante de cada pozo mediante pipeteo dentro de una placa de recolección, se puso en hielo, se cubrió con una cubierta de caucho y se almacenó a -80 °C hasta el análisis mediante HPLC-MS.

Análisis de HPLC-MS:

5

Se midió la posible reducción de la concentración de los compuestos de ensayo utilizando un Agilent de la serie 1100 LC-MSD. Dependiendo de la estructura del compuesto de ensayo se midió MH⁺ o (M-H). Antes del análisis, se dejó calentar las muestras (desde -80 °C) hasta la temperatura ambiente, después de lo cual se homogeneizaron mediante un vórtice durante unos pocos segundos. A continuación se centrifugaron las muestras a 3500 rpm, a 4 °C durante 10 minutos. Se inyectaron las muestras en un sistema de cuadrupolo simple, utilizando un gradiente con el objeto de lograr la separación cromatográfica. En el espectrómetro de masa se logró la ionización mediante ESI, seguida por análisis de los iones formados mediante SIM. Para cada compuesto se midió un barrido completo (100 - 1000 m/z). Se integraron las 'áreas bajo la curva' en los diferentes tiempos de incubación y se graficaron contra el tiempo (de incubación) produciendo t_½. Los detalles experimentales fueron tal como siguen:

Eluyente A: 0.77 g de acetato de amonio + 800 mL de agua + 100 mL de metanol + 100 de acetonitrilo

20 Eluyente B: 0.77 g de acetato de amonio + 100 mL de agua + 100 mL de metanol + 800 de acetonitrilo

Tabla de gradiente de bomba:

Tiempo	Eluyente	Eluyente	Flujo
(min)	A (%)	B (%)	(ml/min)
0.00	100	0	1
3.60	0	100	1
7.20	0	100	1
8.50	100	0	1
11.00	100	0	1

Columna: Pre-columna Chromsep Guard Column SS 10 x 2 mm (CP28141)

Inertsil 5 ODS-3 100 x 3.0 mm (CP22234)

25 Temperatura de columna 25 °C

Inyección: temperatura de placa de pozos 4 °C

Volumen de inyección: 20 µl

•

Divisor (post columna) 1:4

Tiempo total de ejecución 11.0 minutos

30 SIM de detección: MH⁺ (M-Hr)⁻, obtenido del registro de barrido completo

ESI (pos/neg) rocío 4.0 kV

Fragmentado por 70

Ganancia 2.0

Residencia 700 msegundos

35 Presión del nebulizador 42 psi.

Temperatura de gas de secado 325°C

Temperatura de capilaridad 325°C

Ejemplo 6: Efecto de donantes de enlace H en la actividad y estabilidad metabólica

		Farmacologia		Estabilidad		
		5.I	HT ₆	Vida med	lia (t _{1/2}) minutos	
Compuesto	Estructura	pA2	pK1	humano	rata	
175 de WO 2008/034863	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.9	7.2	1.028	34	
3	NH O S NH ₂	7.6	7.9	>1,000	71	
22	Z-Z Z-Z O 0 0 0 0	8.3	7.9	1,444	33	
33 de WO 2008/034863	NH ON S	7.8	7.6	61	18	
13	NH O O CI	8.5	8.2	700	22	
49 de WO 2008/034863	NH O SS CI	8.2	8.3	33	12	
14	NH ON S	9.0	8.8	51	17	
81 de WO 2008/034863	O-H ⁹	7.0	7.2	68	16	
19	Z-N N N N N N N N N N N N N N N N N N N	8.6	8.5	354	19	

Los datos comparativos mostrados en la tabla anterior indican claramente que los compuestos de la presente invención, sustituidos en el anillo fenilo con grupos donantes de enlace H adicionales, tales como -NH₂ o -OH, tienen mayores tiempos de vida media en presencia de hepatocitos y/o mayor afinidad y mayor actividad funcional que los compuestos relacionados estructuralmente cercanos, divulgados en WO 2008/034863; sin grupos donantes de enlace H.

Ejemplo 8: Preparaciones farmacéuticas

5

10

15

Para uso clínico, los compuestos de la fórmula (1) se formulan en composiciones farmacéuticas que son modalidades novedosas e importantes de la invención porque contienen los compuestos, más particularmente los compuestos específicos divulgados en la presente. Los tipos de composiciones farmacéuticas que pueden utilizarse incluyen comprimidos, comprimidos masticables, cápsulas (incluidas microcápsulas), soluciones, soluciones parenterales, ungüentos (cremas y geles), supositorios, suspensiones y otros tipos divulgados en la presente o evidentes para una persona versada en la materia a partir de la especificación y del conocimiento general en la técnica. El ingrediente activo, por ejemplo, también puede estar en forma de un complejo de inclusión en ciclodextrinas, sus éteres o sus ésteres. Las composiciones se utilizan para administración oral, intravenosa, subcutánea, traqueal, bronquial, intranasal, pulmonar, transdérmica, bucal, rectal, parenteral u otras vías de administración. La formulación farmacéutica contiene al menos un compuesto de la fórmula (1) en mezcla con al menos un adyuvante, diluyente y/o vehículo farmacéuticamente

aceptables. La cantidad total de ingredientes activos se encuentra de manera adecuada en el rango desde aproximadamente 0,1% (p/p) hasta aproximadamente 95% (p/p) de la formulación, adecuadamente desde 0.5% hasta 50% (p/p) y preferiblemente desde 1 % hasta 25% (p/p).

Los compuestos de la invención pueden llevarse a formas adecuadas para administración mediante los procesos usuales utilizando sustancias auxiliares tales como ingredientes líquidos o sólidos, en polvo, tales como los materiales de carga líquidos o sólidos farmacéuticamente habituales y extensores, solventes, emulsionantes, lubricantes, saborizantes, colorantes y/o sustancias reguladoras del pH. Las sustancias auxiliares frecuentemente utilizadas incluyen carbonato de magnesio, dióxido de titanio, lactosa, sacarosa, sorbitol, manitol y otros azúcares o alcoholes de azúcares, talco, lactoproteína, gelatina, almidón, amilopectina, celulosa y sus derivados, aceites animales y vegetales tales como aceite de hígado de pescado, girasol, maní o sésamo, polietilenglicol y solventes tales como, por ejemplo, agua estéril y alcoholes mono- o polihídricos tales como glicerina, así como con agentes desintegrantes y agentes lubricantes tales como estearato de magnesio, estearato de calcio, estearilo fumarato de sodio y ceras de polietilenglicol. Luego la mezcla puede procesarse en gránulos o comprimirse en comprimidos. Un comprimido se prepara utilizando los ingredientes a continuación:

15	Ingrediente	Cantidad (mg/comprimido)
	COMPUESTO No.4	10
	Celulosa, microcristalina	200
	Dióxido de silicio ahumado	10
	Ácido esteárico	10
20	Total	230

5

10

40

Los componentes se mezclan y se comprimen para formar comprimidos que pesan cada uno 230 mg.

Los ingredientes activos pueden mezclarse previamente por separado con los otros ingredientes no activos antes de mezclarse para formar una formulación. Los ingredientes activos también pueden mezclarse entre sí, antes de mezclarse con los ingredientes no activos para formar una formulación.

- Pueden prepararse cápsulas de gelatina blanda con cápsulas que contienen una mezcla de los ingredientes activos de la invención, aceite vegetal, grasa u otros vehículos adecuados para cápsulas de gelatina blanda. Las cápsulas de gelatina dura pueden contener gránulos de los ingredientes activos. Las cápsulas de gelatina dura también pueden contener los ingredientes activos. Con ingredientes sólidos en polvo tales como lactosa, sacarosa, sorbitol, manitol, almidón de patata, almidón de maíz, amilopectina, derivados de celulosa o gelatina.
- Pueden prepararse unidades de dosificación para administración rectal (i) en forma de supositorios que contienen la sustancia activa mezclada con una base de grasa neutra; (ii) en forma de una cápsula rectal de gelatina que contiene la sustancia activa en mezcla con un aceite vegetal, aceite de parafina u otro vehículo adecuado para cápsulas rectales de gelatina; (iii) en forma de un microenema listo para usar; o (iv) en forma de una formulación de microenema seca para reconstituirse en un solvente adecuado justo antes de su administración.
- Las preparaciones líquidas pueden prepararse en forma de jarabes, elíxires, gotas concentradas o suspensiones, por ejemplo soluciones o suspensiones que contienen los ingredientes activos y los restos consisten, por ejemplo, en azúcar o alcoholes de azúcares y una mezcla de etanol, agua, glicerina, propilenglicol y polietilenglicol.
 - Si se desea, tales preparaciones líquidas pueden contener agentes colorantes, agentes saborizantes, preservantes, sacarina y carboximetilcelulosa u otros agentes espesantes. Las preparaciones líquidas también pueden prepararse en forma de un polvo seco, reconstituido con un solvente antes de su uso. Las soluciones para administración parenteral pueden prepararse como una solución de una formulación de la invención en un solvente farmacéuticamente aceptable. Estas soluciones también pueden contener ingredientes estabilizantes, preservantes y/o ingrediente reguladores de pH. Las soluciones para administración parenteral también pueden prepararse como una preparación seca, reconstituida con un solvente adecuado antes de su uso.
- También se describen formulaciones y 'kits de partes' que comprenden uno o más contenedores llenados con uno o más de los ingredientes de una composición farmacéutica de la invención para uso en terapia médica. Asociados con tal(es) contenedor(es) pueden encontrarse diversos materiales escritos tales como instrucciones para uso o una notificación en forma prescrita por una agencia gubernamental que regula la fabricación, uso o venta de productos farmacéuticos y tal notificación refleja la aprobación por parte de la agencia para la fabricación, uso o venta para administración humana. El uso de las formulaciones de la presente invención en la fabricación de medicamentos para usarse en tratamiento de una condición en la cual se requiera o se desee antagonismo de receptores 5-HT₆, y métodos de tratamiento médico o que comprenden la administración de una cantidad total terapéuticamente efectiva de al menos

ES 2 565 184 T3

un compuesto de la fórmula (1) a un paciente que sufre de, o es susceptible a, una condición en la cual se requiere o se desea el antagonismo de los receptores 5-HT₆.

A manera de ejemplo y no de limitación, se dan diversas composiciones farmacéuticas que comprenden compuestos activos preferidos para uso sistémico o aplicación tópica. Otros compuestos de la invención o combinaciones de los mismos pueden utilizarse en lugar de (o adicionalmente a) dichos compuestos. La concentración del ingrediente activo puede variar en un intervalo amplio tal como se discute en la presente. Las cantidades y tipo de ingredientes que pueden incluirse son bien conocidos en la técnica.

Bibliografía

5

Ni estos ni ningún otro documento o cita en la presente invención, ni citas a ninguna referencia, se admiten como documentos o citas de la técnica anterior

Bentley, J. C. et al. (1997) J. Psychopharmacol. Suppl. A64, 255

Bentley. J. C. et al. (1999a) Br J Pharmacol. Suppl. 126. P66

Bentley, J. C., et al. (1999b) Br J Pharmacol 126(7): 1537-42

Berge, S.M.: "Pharmaceutical salts", J. Pharmaceutical Science, 66, 1-19 (1977).

15 Bickel, M.H.: "The pharmacology and Biochemistry of N-oxides", Pharmacological Reviews, 21(4), 325-355, 1969.

Bym et al., Pharmaceutical Research, 12(7), 945-954, 1995.

Kohen, R., et al. (1996). J Neurochem 66(1): 47-56

Maleczka Jr., R.E., Shi, F., Holmes, D. y Smith III, M.R., J. Am. Chem. Soc., 2003, 125, 7792-7793.

Martin, E.W. (Editor). "Remington: The Science and Practice of Pharmacy', Mack Publishing Company, 19a edición. Easton, Pa, Vol 2., Capítulo 83. 1447-1462, 1995.

Rogers, D. C., et al. (1999) Br J Pharamcol 127(suppl,). 22P

Roth, B. L., et al. (1994). J Pharmacol Exp Ther 268(3): 1403-10

Ruat, M. et al. (1993) Biochem. Biophys. Res. Commun. 193: 268-276

Sebben. M. et al. (1994) NeuroReport 5: 2553-2557

25 40

Sleight, A. J., et al. (1998) Br J Pharmacol 124(3): 556-62

Woolley M. L. et al. (2001) Neuropharmacology 41: 210-219

WO 2008/034863 (= PCT/EP20071059944)

REIVINDICACIONES

1. Un compuesto de fórmula (1):

$$R_{1}$$
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{6}
 R_{6}
 R_{7}
 R_{8}

- o un tautómero, estereoisómero, N-óxido o una sal farmacológicamente aceptable de cualquiera de los anteriores, donde:
- R_1 se selecciona de hidrógeno o un grupo alquilo de C_{1-4} , opcionalmente sustituido con uno o más átomos de halógeno o un grupo hidroxilo,
- R₂ y R₃ se seleccionan de manera independiente entre hidrógeno, un grupo hidroxilo o un grupo alquilo de C₁₋₄, opcionalmente sustituido con uno o más sustituyentes Q, seleccionados independientemente entre: halógeno, alquilo de C₁₋₄, alquenilo de C₁₋₄, alquenilo de C₁₋₄, alquinilo de C₁₋₄, N[alquilo de C₁₋₄]₂, OR, =O, O-alquilo de C₁₋₄, o OCF₃, o,
 - R_1 y R_2 , conjuntamente con los átomos de carbono marcados 'a' y 'b' forman un anillo cicloalquilo de C_{5-8} , opcionalmente sustituido con uno o más átomos de halógeno, un grupo hidroxilo o un grupo alquilo de C_{1-4} , o
- R₂ y R₃, conjuntamente con el átomo de carbono marcado 'b', forma un anillo cicloalquilo de C₃₋₈ o un anillo heterocicloalquilo de C₄₋₈, opcionalmente sustituido con uno o más sustituyentes Q tal como se han definido antes,
 - R_4 y R_5 se seleccionan de modo independiente entre hidrógeno o un grupo alquilo de C_{1-4} , opcionalmente sustituido con uno o más sustituyentes Q, tal como se han definido antes, o
- R_4 y R_5 se seleccionan de modo independiente entre un grupo aromático o heteroaromático, monocíclico o fusionado bicíclico, opcionalmente sustituido con uno o más sustituyentes Q, tal como se han definido antes, con la condición de que Q no puede ser =O (ceto) en los anillos aromáticos, o
 - R_3 y R_4 , conjuntamente con los átomos de carbono marcados 'b' y 'c' forman un anillo cicloalquilo de C_{3-8} o heterocicloalquilo de C_{5-8} , opcionalmente sustituidos con uno o más sustituyentes Q tal como se han definido antes,
 - R_6 y R_7 se seleccionan independientemente entre hidrógeno o un grupo alquilo de C_{1-4} , opcionalmente sustituido con uno o más átomos de halógeno o un grupo hidroxilo o un grupo dialquilo de C_{1-3} -amino-alquilo de C_{1-3} , o
- R₆ y R₇ se seleccionan de modo independiente entre un grupo monocíclico o bicíclico fusionado, aromático o heteroaromático, opcionalmente sustituido con uno o más sustituyentes Q, tal como se han definido antes, o
 - R_6 y R_7 son de modo independiente un grupo cicloalquilo de C_{5-8} o un grupo heterocicloalquilo de C_{5-8} , opcionalmente sustituido con uno o más sustituyentes Q, tal como se han definido antes, o
- R_6 y R_7 , conjuntamente con el átomo de nitrógeno al cual están unidos, forman un grupo heterocicloalquilo de C_{5-8} , opcionalmente sustituido con uno o más sustituyentes Q, tal como se han definido antes,
 - R₈ es 4-aminofenilo,
 - con la condición de que cuando R_1 , R_3 , R_4 , R_5 y R_6 son hidrógeno y R_2 y R_7 son etilo, el compuesto no es una mezcla racémica sino un enantiómero puro.
- Un compuesto tal como se reivindica en la reivindicación 1, de fórmula (1), o un tautómero, estereoisómero, N-óxido o una sal farmacológicamente aceptable de cualquiera de los precedentes, donde
 - R₁, R₄ y R₆ son hidrógeno

- R_2 y R_3 se seleccionan independientemente entre hidrógeno, un grupo hidroxilo o un grupo alquilo de C_{1-4} , sustituido opcionalmente con uno o más sustituyentes Q^* , independientemente seleccionados entre: halógeno, alquilo de C_{1-4} , NR_2 , NR_3 , NR_4 , N
- R_2 y R_3 , conjuntamente con el átomo de carbono al cual están unidos forman un anillo cicloalquilo de C_{3-8} o heterocicloalquilo de C_{5-8} , opcionalmente sustituido con uno o más sustituyentes Q^* tal como se han definido antes,
- R_5 se selecciona entre hidrógeno o un grupo alquilo de C_{1-4} , opcionalmente sustituido con uno o más sustituyentes Q^* tal como se han definido antes, o un grupo cíclico, aromático o heteroaromático, opcionalmente sustituido con uno o más sustituyentes Q^* tal como se han definido antes,
- R₇ se selecciona entre hidrógeno o un grupo alquilo de C₁₋₄ no sustituido, opcionalmente sustituido con uno o más átomos de halógeno o un grupo hidroxilo,
- R₈ es 4-aminofenilo,

5

10

15

con la condición de que cuando R_3 y R_5 son hidrógeno y R_2 y R_7 son etilo, el compuesto no es una mezcla racémica sino un enantiómeros puro.

- 3. Un compuesto tal como se reivindica en la reivindicación 1 o la reivindicación 2, o un tautómero, estereoisómero, Nóxido o una sal farmacológicamente aceptable de cualquiera de los anteriores, en cuyo caso dicho compuesto es un enantiómeros ópticamente activo.
 - 4. Un compuesto de acuerdo con cualquiera de las reivindicaciones 1-3, seleccionado de:

compuesto 2, (-)-enantiómero,

20 compuesto 5,

compuesto 8,

compuesto 9,

o una sal farmacéuticamente aceptable de cualquiera de los compuestos precedentes.

5. Un compuesto de acuerdo con cualquiera de las reivindicaciones 1-3 de fórmula-

o una sal farmacéuticamente aceptable del mismo.

6. Un compuesto de acuerdo con cualquiera de las reivindicaciones 1-3 de fórmula

o una sal farmacéuticamente aceptable del mismo.

7. Un compuesto de acuerdo con cualquiera de las reivindicaciones 1-3 de fórmula

o una sal farmacéuticamente aceptable del mismo.

10 8. Un compuesto de acuerdo con cualquiera de las reivindicaciones 1-3 de fórmula

o una sal farmacéuticamente aceptable del mismo.

9. Un compuesto de acuerdo con cualquiera de las reivindicaciones 1-3 de fórmula

o una sal farmacéuticamente aceptable del mismo.

- 10. Una composición farmacéutica que comprende un compuesto de acuerdo con cualquiera de las reivindicaciones 1-9 o una sal farmacológicamente aceptable del mismo, y un soporte farmacéuticamente aceptable.
- 11. Un medicamento que comprende un compuesto de acuerdo con cualquiera de las reivindicaciones 1-9, o una sal farmacológicamente aceptable del mismo.
- 12. El medicamento de la reivindicación 11 que comprende además al menos un agente terapéutico adicional.

- 13. Utilización de un compuesto tal como se reivindica en cualquiera de las reivindicaciones 1-9 para la preparación de una composición farmacéutica para el tratamiento o prevención de la enfermedad de Parkinson, corea de Huntington, esquizofrenia, ansiedad, depresión, depresión maníaca, psicosis, epilepsia, trastornos obsesivos compulsivos, trastornos del estado de ánimo, migraña, enfermedad de Alzheimer, disminución cognitiva relacionada con la edad, deterioro cognitivo leve, trastornos del sueño, trastornos de alimentación, anorexia, bulimia, trastornos de atracones en la alimentación, ataques de pánico, acatisia, trastorno de déficit de atención y de hiperactividad, trastorno de déficit de atención, abstinencia del abuso de cocaína, etanol, nicotina o de benzodiazepinas, dolor, trastornos asociados con trauma espinal o daño en la cabeza, hidrocefalia, trastorno funcional del intestino, síndrome de intestino irritable, obesidad y diabetes tipo 2.
- 10 14. Compuestos de la fórmula general (1^X):

5

$$\begin{array}{c|c}
R_1 & R_2 \\
R_3 & R_4 \\
N & R_5 & (1^X)
\end{array}$$

$$\begin{array}{c|c}
R_2 & R_3 & R_4 \\
N & R_5 & R_5 & (1^X)
\end{array}$$

$$\begin{array}{c|c}
R_3 & R_4 & R_5 & R_5$$

Donde A representa un halógeno o S-alquilo de C_{1-4} , y los otros símbolos tienen los significados tal como se indican en la reivindicación 1, y tautómeros y estereoisómeros del mismo, en cuyo caso tales compuestos son útiles en la síntesis de compuestos de la fórmula general (1).

- 15. Proceso para preparar compuestos tal como se reivindican en la reivindicación 1 de fórmula (1) donde R₇ es hidrógeno, y por lo tanto tiene la fórmula (1'), donde todos los símbolos tienen el significado indicado en la reivindicación 1, el cual comprende los pasos de:
- (i) hacer reaccionar un compuesto de fórmula (X), que puede obtenerse mediante reacción de un compuesto de fórmula (1^X) con un haluro de alquilo, por ejemplo yoduro de metilo, con una pirazolina en presencia de una base, para producir un compuesto de fórmula (1^Z).
 - (ii) hace reaccionar un compuesto de fórmula (1^{Z}) con un haluro de sulfonilo de fórmula RS-SO₂-X, donde X es Br, Cl o F, en un solvente aprótico tal como diclorometano, en presencia de una base tal como disopropiletilamina,

16. Un compuesto de acuerdo con cualquiera de las reivindicaciones 1-9 para usar como un medicamento.

5

10

17. Un compuesto de acuerdo con cualquiera de las reivindicaciones 1-9 para usar en un método para el tratamiento o prevención de enfermedad de Parkinson, corea de Huntington, esquizofrenia, ansiedad, depresión, depresión maníaca, psicosis, epilepsia, trastornos obsesivos compulsivos, desórdenes del Estado de ánimo, migraña, enfermedad de Alzheimer, disminución cognitiva relacionada con la edad, deterioro cognitivo suave, trastornos del sueño, trastornos de alimentación, anorexia, bulimia, trastornos de atracones de alimentación, ataques de pánico, acatisia, desorden de déficit de atención y de hiperactividad, desorden de déficit de atención, abstinencia del abuso de cocaína, etanol, nicotina o de benzodiazepinas, dolor, trastornos asociados con trauma espinal o daño en la cabeza, hidrocefalia, desorden funcional del intestino, síndrome de intestino irritable, obesidad o diabetes tipo 2.