

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 567 952

51 Int. CI.:

B66B 1/30 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 23.11.2005 E 05852240 (0)
- (97) Fecha y número de publicación de la concesión europea: 20.01.2016 EP 1957390
- (54) Título: Accionamiento de motor de ascensor tolerante con una fuente de alimentación eléctrica irregular
- (45) Fecha de publicación y mención en BOPI de la traducción de la patente: 26.04.2016

(73) Titular/es:

OTIS ELEVATOR COMPANY (100.0%) 10 FARM SPRINGS FARMINGTON, CT 06032, US

(72) Inventor/es:

AGIRMAN, ISMAIL; CZERWINSKI, CHRISTOPHER; IZARD, JEFREY; PIEDA, EDWARD; BLASKO, VLADIMIR; HIGGINS, FRANK y KIM, HANJONG

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Accionamiento de motor de ascensor tolerante con una fuente de alimentación eléctrica irregular

Antecedentes de la invención

5

10

15

20

25

30

35

45

La presente invención se refiere al campo de los sistemas de ascensor. En particular, la presente invención se refiere a un sistema eléctrico para accionar un motor elevador de ascensor desde una fuente de alimentación eléctrica irregular.

Un accionamiento regenerativo para un motor elevador de ascensor incluye típicamente un convertidor conectado a un inversor a través de un bus de corriente continua (CC). El inversor está conectado al motor elevador y el convertidor está conectado a un suministro eléctrico de corriente alterna (CA), por ejemplo procedente de una red de suministro eléctrico. Cuando el motor elevador de ascensor está en modo motor, corriente procedente del suministro de CA alimenta el convertidor, que convierte la CA en CC para el bus de CC. El inversor convierte después en CA la CC del bus de CC, para accionar el motor elevador. En el modo regenerativo, la carga del ascensor acciona el motor de forma que este genera CA, actuando como un generador. El inversor convierte en CC, sobre el bus de CC, la CA procedente del motor elevador, corriente que el convertidor convierte después nuevamente en CA para entregarla al suministro de CA

El accionamiento está diseñado típicamente para funcionar dentro de un intervalo específico de tensiones de entrada desde el suministro de CA. Este intervalo se especifica habitualmente como una tensión de funcionamiento nominal y una banda de tolerancia (por ejemplo, 480 V_{CA} ± 10%). Así pues, los componentes del accionamiento tienen especificaciones de tensión y de intensidad de corriente que permiten que el accionamiento funcione sin interrupción mientras el suministro de CA se mantenga dentro del intervalo de diseño de la tensión de entrada. Sin embargo, en algunos mercados la red de suministro eléctrico es poco fiable, y son frecuentes caídas de la tensión de suministro o situaciones de "apagón parcial" (es decir, situaciones en las que la tensión está por debajo de la banda de tolerancia del accionamiento). Cuando se producen caídas de la tensión de la red, el accionamiento toma más corriente del suministro de CA con el fin de entregar una potencia uniforme al motor elevador. En sistemas convencionales, cuando se toma demasiada corriente del suministro de CA, el accionamiento se desconecta para evitar daños en los componentes del accionamiento. En consecuencia, el servicio de ascensor deja de estar disponible hasta que el suministro de CA retorne al intervalo nominal de la tensión de servicio.

El documento JP 11 299290 A, sobre el cual se caracteriza la reivindicación 1, describe un accionamiento regenerativo para un ascensor. El documento EP 0 426 056 A2 describe un aparato para controlar un motor elevador de ascensor en el cual se modifica la velocidad del ascensor en función de la tensión de red.

Breve compendio de la invención

Según la presente invención, se provee un sistema según la reivindicación 1 y un método según la reivindicación 14.

Breve descripción de los dibujos

La Figura 1 es una vista esquemática de un sistema eléctrico que incluye un controlador para accionar un motor elevador de ascensor desde un suministro eléctrico irregular, según una realización de la presente invención.

La Figura 2 es un gráfico que muestra un ajuste de la velocidad del motor elevador de ascensor según la presente invención en respuesta a una caída en la tensión de suministro eléctrico.

La Figura 3 es un gráfico que muestra un ajuste en la tensión de bus de alimentación proporcional a un ajuste de velocidad en el motor elevador de ascensor en respuesta a una caída en la tensión de suministro eléctrico.

40 Descripción detallada

La Figura 1 es una vista esquemática de un sistema eléctrico 10 que incluye un controlador 11 para accionar el motor elevador 12 del ascensor 14 desde un suministro eléctrico 16 según una realización de la presente invención. El ascensor 14 incluye la cabina 20 del ascensor y el contrapeso 22, que están unidos mediante cables 23 al motor elevador 12. El suministro eléctrico 16 puede consistir en electricidad suministrada desde una red de suministro eléctrico, por ejemplo una fuente de alimentación eléctrica comercial. En algunos mercados, la red de suministro eléctrico es poco fiable, y son frecuentes caídas de la tensión del suministro o situaciones de "apagón parcial" (es decir, situaciones en las que la tensión está por debajo de la banda de tolerancia del accionamiento). El sistema eléctrico 10 según la presente invención permite el funcionamiento continuo del motor elevador 12 desde el suministro eléctrico 16 durante estos períodos irregulares.

El sistema eléctrico 10 incluye controlador 11, reactores 28 en línea, convertidor 30 de corriente, condensador alisador 32 e inversor 34 de corriente. El convertidor 30 de corriente y el inversor 34 de corriente están conectados por el bus 36 de alimentación de CC. Los condensadores alisadores 32 están conectados a través del bus 36 de alimentación de CC. El controlador 11 incluye observador térmico 40, bucle 42 de enganche de fase, control 44 de convertidor, regulador 46 de tensión de bus de CC, control 48 de inversor, sensor 50 de tensión de suministro eléctrico, control 52

de perfil de movimiento de ascensor y control 54 de posición, velocidad y corriente. En una realización, el controlador 11 es un procesador de señal digital (DSP, por sus siglas en inglés) y cada uno de los componentes del controlador 11 son bloques funcionales que se implementan en *software* ejecutado por el controlador 11.

El observador térmico 40 está conectado entre los reactores 28 en línea y el convertidor 30 de corriente, y proporciona como salida una señal de control de ventilador. El bucle 42 de enganche de fase recibe como entrada la señal trifásica del suministro eléctrico 16, y entrega una salida al control 44 de convertidor, al regulador 46 de tensión de bus de CC y al sensor 50 de tensión de suministro eléctrico. El control 44 de convertidor también recibe una entrada desde el regulador de tensión de bus de CC y entrega una salida al convertidor 30 de corriente. El sensor 50 de tensión de suministro eléctrico entrega una salida al control 52 de perfil de movimiento de ascensor, que a su vez entrega una salida al control 54 de posición, velocidad y corriente. El regulador 46 de tensión de bus de CC recibe señales desde el bucle 42 de enganche de fase y el control 54 de posición, velocidad y corriente, y supervisa la tensión a través del bus 36 de alimentación de CC. También el control 48 de inversor recibe una señal desde el control 54 de posición, velocidad y corriente, y entrega una salida de control al inversor 34 de corriente.

5

10

15

20

25

30

50

55

60

El suministro eléctrico 16, que es un suministro eléctrico de CA trifásica procedente de la fuente de alimentación eléctrica comercial, proporciona energía eléctrica al convertidor 30 de corriente. El convertidor 30 de corriente es un inversor de corriente trifásico que puede funcionar para convertir CA trifásica del suministro eléctrico 16 en CC. En una realización, el convertidor 30 de corriente comprende una pluralidad de circuitos de transistor de potencia que incluyen transistores 56 y diodos 58 conectados en paralelo. Cada transistor 56 puede ser, por ejemplo, un transistor bipolar de puerta aislada (IGBT, por sus siglas en inglés). El electrodo controlado (es decir, la puerta o base) de cada transistor 56 está conectado al control 44 de convertidor. El control 44 de convertidor controla los circuitos de transistor de potencia con el fin de rectificar la CA trifásica del suministro eléctrico 16 a una salida de CC. El convertidor 30 de corriente entrega la salida de CC sobre el bus 36 de alimentación de CC. El condensador alisador 32 alisa la corriente rectificada proporcionada por el convertidor 30 de corriente sobre el bus 36 de alimentación de CC. Cabe señalar que, aunque se represente el suministro eléctrico 16 como un suministro eléctrico de CA trifásica, el sistema eléctrico 10 puede estar adaptado para recibir corriente desde cualquier tipo de fuente de alimentación eléctrica, entre ellas una fuente de alimentación eléctrica de CC.

Los circuitos de transistor de potencia del convertidor 30 de corriente también permiten invertir la corriente del bus 36 de alimentación de CC y entregarla al suministro eléctrico 16. En una realización, el controlador 11 utiliza modulación por ancho de pulso (PWM, por sus siglas en inglés) para generar pulsos de compuerta al objeto de conmutar periódicamente los transistores 56 del convertidor 30 de corriente con el fin de entregar una señal de CA trifásica al suministro eléctrico 16. Esta configuración regenerativa reduce la demanda sobre el suministro eléctrico 16. Están conectados reactores 28 en línea entre el suministro eléctrico 16 y el convertidor 30 de corriente con el fin de controlar la corriente que pasa entre el suministro eléctrico 16 y el convertidor 30 de corriente. En otra realización, el convertidor 30 de corriente comprende un rectificador de puente de diodos trifásico.

El inversor 34 de corriente es un inversor de corriente trifásico que puede funcionar para invertir CC del bus 36 de alimentación de CC a CA trifásica. El inversor 34 de corriente comprende una pluralidad de circuitos de transistor de potencia que incluyen transistores 60 y diodos 62 conectados en paralelo. Cada transistor 60 puede ser, por ejemplo, un transistor bipolar de puerta aislada (IGBT). En una realización, el control 48 de inversor controla el electrodo controlado (es decir, la puerta o base) de cada transistor 60, con el fin de invertir la CC sobre el bus 36 de alimentación de CC a salida de CA trifásica. La CA trifásica en las salidas del inversor 34 de corriente es suministrada al motor elevador 12. En una realización, el control 48 de inversor utiliza PWM para generar pulsos de compuerta al objeto de conmutar periódicamente los transistores 60 del inversor 34 de corriente con el fin de entregar una señal de CA trifásica al motor elevador 12. El control 48 de inversor puede modificar la velocidad y dirección de movimiento del ascensor 14 mediante el ajuste de la frecuencia y la intensidad de los pulsos de compuerta enviados a los transistores 60.

Además, los circuitos de transistor de potencia del inversor 34 de corriente pueden funcionar para rectificar la corriente que se genera cuando el ascensor 14 acciona el motor elevador 12. Por ejemplo, si el motor elevador 12 está generando corriente, el control 34 de inversor desactiva los transistores 60 del inversor 34 de corriente para permitir que los diodos 62 rectifiquen la corriente generada y la suministren al bus 36 de alimentación de CC. El condensador alisador 32 alisa la corriente rectificada proporcionada por el inversor 34 de corriente sobre el bus 36 de alimentación de CC.

El motor elevador 12 controla la velocidad y la dirección del movimiento entre la cabina 20 del ascensor y el contrapeso 22. La potencia necesaria para accionar el motor elevador 12 varía con la aceleración y la dirección del ascensor 14 y con la carga de la cabina 20 del ascensor. Por ejemplo, si el ascensor 14 está acelerando, moviéndose hacia arriba con una carga mayor que el peso del contrapeso 22 (es decir, con una carga pesada), o bien moviéndose hacia abajo con una carga menor que el peso del contrapeso 22 (es decir, con una carga ligera), se requiere una cantidad máxima de energía eléctrica para accionar el motor elevador 12. Si el ascensor 14 está equilibrado o bien se mueve a una velocidad fija con una carga equilibrada, puede estar consumiendo una menor cantidad de energía eléctrica. Si el ascensor 14 está decelerando, moviéndose hacia abajo con una carga pesada, o bien moviéndose hacia arriba con una carga ligera, el ascensor 14 acciona el motor elevador 12. En este caso, el motor elevador 12 genera CA trifásica que es convertida en CC por el inversor 34 de corriente bajo el control del control de inversor 30. La CC convertida se

acumula en el bus 36 de alimentación de CC.

5

10

15

20

25

30

35

40

45

50

55

60

Según la presente invención, el controlador 11 supervisa el suministro eléctrico 16 detectando variaciones en su nivel de tensión y controla el sistema eléctrico 10 para hacer funcionar sin interrupciones el motor elevador 12 durante una variación en la tensión del suministro eléctrico 16. Se entrega la salida trifásica del suministro eléctrico 16 al bucle 42 de enganche de fase. El bucle 42 de enganche de fase entrega la fase y la magnitud del suministro eléctrico 16 al control 44 de convertidor, al regulador 46 de tensión de bus de CC y al sensor 50 de tensión de suministro eléctrico. El sensor 50 de tensión de suministro eléctrico supervisa permanentemente el valor de la tensión del suministro eléctrico del genera señal cuando tensión suministro eléctrico una la varía Por ejemplo, el sensor 50 de tensión de suministro eléctrico puede generar una señal cuando la tensión del suministro eléctrico cae saliéndose de la banda de tolerancia (por ejemplo, 10% por debajo de la tensión nominal) del sistema eléctrico 10. Esta señal, que incluye información acerca del nuevo nivel de tensión del suministro eléctrico 16, se entrega al control 52 de perfil de movimiento de ascensor.

El control 52 de perfil de movimiento de ascensor genera una señal que se utiliza para controlar el movimiento del ascensor 14. En particular, el funcionamiento automático del ascensor implica el control de la velocidad del ascensor 12 durante un viaje del ascensor. Se denomina "perfil de movimiento" del ascensor 14 a la variación de la velocidad en función del tiempo durante un viaje completo. Por tanto, el control 52 de perfil de movimiento de ascensor genera un perfil de movimiento del ascensor que establece la aceleración máxima, la máxima velocidad de régimen y la deceleración máxima del ascensor 14. El perfil de movimiento y los parámetros de movimiento particulares generados por el control 52 de perfil de movimiento de ascensor representan un compromiso entre el deseo de "máxima velocidad " y la necesidad de mantener niveles aceptables de comodidad para los pasajeros.

Para permitir que el sistema eléctrico 10 accione de forma continua el motor elevador 12 cuando la tensión del suministro eléctrico 16 se desvía saliéndose de la banda de tolerancia de sistema eléctrico 10, el control 52 de perfil de movimiento de ascensor aiusta el perfil de movimiento del ascensor basándose en la variación de la tensión del suministro eléctrico 16. Más específicamente, cuando la tensión del suministro eléctrico 16 cae, el sistema eléctrico 10 normalmente tomaría más corriente del suministro eléctrico 16 si el perfil de movimiento del ascensor permaneciera inalterado. Para mantener la intensidad de corriente tomada del suministro eléctrico 16 dentro de lo especificado para los componentes del sistema eléctrico 10, el control 52 de perfil de movimiento de ascensor ajusta el perfil de movimiento del ascensor proporcionadamente a la variación de la tensión de suministro eléctrico. Así pues, se ajustan la aceleración, velocidad de régimen y desaceleración normales del perfil de movimiento del ascensor en función de la relación entre la tensión medida del suministro eléctrico 16 y la tensión nominal del suministro eléctrico 16. Se entrega al control 52 de perfil de movimiento de ascensor una señal de ajuste relacionada con esta relación de ajuste. En una realización, el sistema eléctrico 10 ajusta el perfil de movimiento del ascensor cuando la tensión del suministro eléctrico 10 cae al menos aproximadamente 15% por debajo de la tensión nominal de suministro eléctrico. El ajuste del perfil de movimiento se puede realizar varias veces dependiendo de la magnitud y duración de la caída de tensión. Cuando la tensión del suministro eléctrico 16 retorna al intervalo de funcionamiento nominal (por ejemplo, 480 V_{CA} ± 10%), el control 52 de perfil de movimiento de ascensor ajusta el perfil de movimiento del ascensor a las condiciones normales de funcionamiento.

Además, cuando la tensión del suministro eléctrico 16 cae por debajo de una tensión umbral que haría inviable continuar el funcionamiento (por ejemplo, 30% por debajo de la tensión nominal del suministro eléctrico), el control 52 de perfil de movimiento de ascensor genera un perfil de movimiento que reduce a cero la velocidad, la aceleración y la deceleración. Cuando se genera este perfil de movimiento, el sistema eléctrico 10 hace funcionar el motor elevador 12 hasta completar todos los viajes activos del ascensor, e ignora cualquier llamada adicional hasta que la tensión del suministro eléctrico 16 vuelva al intervalo nominal de funcionamiento.

La salida de perfil de movimiento del control 52 de perfil de movimiento de ascensor se entrega al control 54 de posición, velocidad y corriente. El perfil de movimiento incluye señales de referencia relacionadas con la velocidad, posición y corriente de motor para el motor elevador 12, ajustadas, que concuerdan con el perfil de movimiento ajustado. El control 54 de posición, velocidad y corriente compara estas señales con los valores de retroalimentación reales de la posición del motor (pos_m), velocidad del motor (V_m) y corriente del motor (I_m), para determinar una señal de error relacionada con la diferencia entre los parámetros reales de funcionamiento del motor elevador 12 y los parámetros operativos deseados, del perfil de movimiento ajustado. Por ejemplo, el control 54 de posición, velocidad y corriente puede incluir amplificadores proporcionales e integrales que permitan determinar esta señal de error a partir de los parámetros de movimiento ajustados reales y deseados. El control 54 de posición, velocidad y corriente entrega la señal de error al control 48 de inversor y al regulador 46 de tensión de bus de CC.

Basándose en la señal de error procedente del control 54 de posición, velocidad y corriente, el control 48 de inversor calcula las señales que se deben entregar al inversor 34 de corriente para accionar el motor elevador 12 en conformidad con el perfil de movimiento cuando el motor elevador 12 está en modo motor. Como se ha descrito más arriba, el control 48 de inversor puede utilizar PWM para generar pulsos de compuerta al objeto de conmutar periódicamente los transistores 60 del inversor 34 de corriente con el fin de entregar una señal de CA trifásica al motor elevador 12. El control 48 de convertidor puede modificar la velocidad y la dirección de movimiento del ascensor 14 mediante el ajuste de la frecuencia y la intensidad de los pulsos de compuerta enviados a los transistores 60. Así pues, en caso de caída de tensión cuando el motor elevador 12 está en modo motor, el control 48 de inversor modifica las

señales PWM de compuerta enviadas a los transistores 60, con el fin de reducir la velocidad del ascensor 14 proporcionadamente a la reducción de la tensión del suministro eléctrico.

La Figura 2 ilustra un ajuste de la velocidad del motor elevador del ascensor 12 (línea 60) en respuesta a una caída en la tensión del suministro eléctrico 16 (línea 62). En el instante 64, el ascensor 14 está parado y la velocidad del ascensor 14 es cero. Cuando el ascensor 14 inicia una carrera, la velocidad del ascensor 14 aumenta hasta una velocidad de régimen fijada por el perfil activo de movimiento del ascensor (instante 66). Si la tensión del suministro eléctrico 16 comienza a caer (línea 62), se ajusta la velocidad del ascensor 14 proporcionadamente a la reducción de la tensión del suministro eléctrico 16 (instante 68). Si la tensión del suministro eléctrico 16 continúa cayendo aún más, se reduce de nuevo la velocidad del ascensor proporcionadamente a la bajada de la tensión del suministro eléctrico (instante 70). Estas variaciones pueden producirse durante una carrera, por lo que se reduce la velocidad del ascensor 14 con el fin de reducir al mínimo el efecto sobre los pasajeros. Cuando el suministro eléctrico 16 retorna a su tensión nominal, el perfil de movimiento del motor elevador continúa igual hasta que se ha completado la carrera, momento en el cual la velocidad del ascensor cae nuevamente a cero (instante 72).

5

10

25

30

50

55

60

Haciendo referencia otra vez a la Figura 1, el regulador 46 de tensión de bus de CC controla la tensión a través del bus 36 de alimentación de CC. En accionamientos regenerativos con convertidores de línea activos tales como el convertidor 30 de corriente, se controla el bus 36 de alimentación de CC para que tenga una tensión constante con independencia de la tensión del suministro eléctrico 16. Típicamente, la tensión a través del bus 36 de alimentación de CC se fija más alta que la tensión del suministro eléctrico 16, al objeto de permitir un margen suficiente para el condensador alisador 32 y los transistores 56 del convertidor 30 de corriente. De esta forma, el convertidor 30 de corriente no solo funciona para convertir en CC la CA del suministro eléctrico 16, sino también para controlar la CA entre el suministro eléctrico 16 y el convertidor 30 de corriente.

Cuando se reduce la velocidad del motor elevador 12 debido a una caída de tensión en el suministro eléctrico 16, se debe reducir en consecuencia la tensión a través del bus 36 de alimentación de CC. Si se mantuviese la misma tensión a través del bus 36 de alimentación de CC, la diferencia entre la tensión a través del bus 36 de alimentación de CC y la tensión del suministro eléctrico 16 se traduciría en pérdidas de conmutación en el convertidor 30 de corriente y corriente de rizado en los reactores 28 en línea. Por tanto, las salidas del bucle 42 de enganche de fase y del control 54 de posición, velocidad y corriente se entregan al regulador 46 de tensión de bus de CC. Además, se entrega una señal de ajuste al bucle 42 de enganche de fase y al regulador 46 de tensión de bus de CC con el fin de ajustar las ganancias de control del regulador 46 de tensión de bus de CC y del bucle 42 de enganche de fase mediante la relación de ajuste de la tensión de funcionamiento reducida del suministro eléctrico 16 y la tensión de funcionamiento nominal del suministro eléctrico 16. Basándose en estas señales, el regulador 46 de tensión de bus de CC ajusta la tensión mantenida a través del bus 36 de alimentación de CC proporcionadamente a la reducción de la velocidad del motor elevador 12. Cuando la tensión del suministro eléctrico 16 retorna al intervalo nominal de funcionamiento, se devuelve la tensión a través del bus 36 de alimentación de CC a la tensión mantenida normal.

35 La Figura 3 ilustra el ajuste de la tensión a través del bus 36 de alimentación de CC (línea 80) proporcional al ajuste de la velocidad en el motor elevador 12 del ascensor, en respuesta a una caída en la tensión del suministro eléctrico (línea 82). En el instante 84, se mantiene el bus 36 de alimentación de CC a una tensión más baja, cercana a la tensión de la tensión rectificada procedente del suministro eléctrico 16, ya que al convertidor 30 de corriente no se le entregan señales de control (es decir, el ascensor 14 no se está moviendo). Cuando el ascensor 14 inicia una carrera, se 40 incrementa gradualmente la tensión del bus hasta su tensión nominal mantenida (instante 86), que en este caso es 750 V_{CC}. Si comienza a caer la tensión del suministro eléctrico 16 (línea 82), se ajusta la velocidad del motor elevador 12 y se ajusta la corriente en el bus 36 de alimentación de CC, proporcionadamente a la reducción de velocidad del motor elevador 12, hasta un primer nivel reducido (instante 88). Si la tensión del suministro eléctrico 16 continúa cayendo aún más, nuevamente se ajusta la velocidad del motor elevador 12 y nuevamente se ajusta la corriente en el bus 36 de alimentación de CC, proporcionadamente a la reducción de velocidad del motor elevador 12, hasta un segundo nivel 45 reducido (instante 90). Cuando el suministro eléctrico 16 retorna a su tensión nominal, se devuelve a la normalidad el perfil de movimiento del motor elevador 12, y análogamente se devuelve la tensión a través del bus 36 de alimentación de CC a su tensión mantenida normal (instante 92).

Además de controlar la tensión a través del bus 36 de alimentación de CC, el regulador 46 de tensión de bus de CC proporciona entrega una señal al control 44 de convertidor relacionada con el cambio proporcional en la tensión a través del bus 36 de alimentación de CC. El control 44 de convertidor también recibe una señal desde el bucle 42 de enganche de fase relacionada con el valor de la tensión del suministro eléctrico 16 y una señal de "prealimentación" (por analogía a la "retroalimentación") de corriente desde la conexión entre los reactores 28 en línea y el convertidor 30 de corriente. Con estas entradas, el control 44 de convertidor calcula las señales que deben entregarse al convertidor 30 de corriente para rectificar la corriente procedente del suministro eléctrico 16. Como se ha escrito más arriba, el control 44 de convertidor puede utilizar PWM para generar pulsos de compuerta al objeto de conmutar periódicamente los transistores 56 del convertidor 30 de corriente, con el fin de rectificar la señal de CA trifásica del suministro eléctrico 16 a CC para el bus 36 de alimentación de CC. Además, el control 44 de convertidor regula la corriente que atraviesa los reactores 28 en línea, comparando la señal procedente del regulador 46 de tensión de bus de CC y comparándola con la señal de "prealimentación" de corriente. El control 44 de convertidor 30 de corriente de acuerdo con la señal de referencia.

ES 2 567 952 T3

Dado que el sistema eléctrico 10 está diseñado para funcionar durante carreras prolongadas a velocidades reducidas, los reactores 28 en línea y los disipadores de calor del convertidor 30 de corriente y el inversor 34 de corriente pueden experimentar una sobrecarga térmica. El observador térmico 40 vigila la temperatura de los reactores 28 en línea y utiliza el control de ventilador para evitar situaciones tales como un sobrecalentamiento de reactor en línea y un sobrecalentamiento de disipador de calor. Para lograrlo, el observador térmico 40 vigila la corriente entre los reactores 28 en línea y el convertidor 30 de corriente. Cuando esta corriente alcanza un nivel umbral (por ejemplo 90%) con respecto a las especificaciones de continuo de los reactores 28 en línea, el observador térmico 40 envía una señal de control de ventilador para hacer funcionar a velocidad máxima los ventiladores de enfriamiento de los reactores 28 en línea, del convertidor 30 de corriente y del inversor 34 de corriente. Esto elimina la posibilidad de tener que desconectar el sistema eléctrico 10 debido a una sobrecarga térmica.

5

10

15

20

En resumen, la presente invención está dirigida a un sistema para accionar de forma continua un motor elevador para un ascensor desde un suministro eléctrico irregular. El sistema incluye un accionamiento regenerativo para transmitir energía eléctrica entre el suministro eléctrico y el motor elevador. Un controlador mide una tensión de suministro eléctrico en respuesta a una variación detectada en la tensión de suministro eléctrico y controla el accionamiento regenerativo para ajustar un perfil de movimiento nominal del ascensor proporcionadamente a una relación de ajuste entre la tensión de suministro eléctrico medida y una tensión de suministro eléctrico normal. Esto permite que el ascensor funcione sin interrupciones cuando cae la tensión de suministro eléctrico, sin tomar excesiva corriente del suministro eléctrico. En consecuencia, se evitan daños en los componentes del accionamiento de motor elevador, y el ascensor funciona de manera consistente, con menos retrasos debidos a la desconexión del accionamiento de motor elevador.

Aunque se ha descrito la presente invención con referencia a ejemplos y realizaciones preferidos, los expertos en la técnica reconocerán que se pueden hacer cambios en la forma y el detalle sin salirse del alcance de la invención, definido por las reivindicaciones que siguen.

REIVINDICACIONES

- 1. Un sistema (10) para accionar de forma continua un motor elevador (12) para un ascensor (20) desde un suministro eléctrico (16) irregular, comprendiendo el sistema (10):
- un accionamiento regenerativo para transmitir energía eléctrica entre el suministro eléctrico (16) y el motor elevador (12); en donde el accionamiento regenerativo comprende:
- un convertidor (30) para convertir corriente alterna (CA) del suministro eléctrico (16) en corriente continua (CC); un inversor (34) para accionar el motor elevador (12) mediante la conversión de la CC del convertidor (30) en CA y, cuando el motor elevador (12) está en modo generador, para convertir la CA producida por el motor elevador (12) en CC: v
- un bus (36) de alimentación conectado entre el convertidor (30) y el inversor (34) para recibir CC del convertidor (30) y del inversor (34); y caracterizado por

5

15

30

50

55

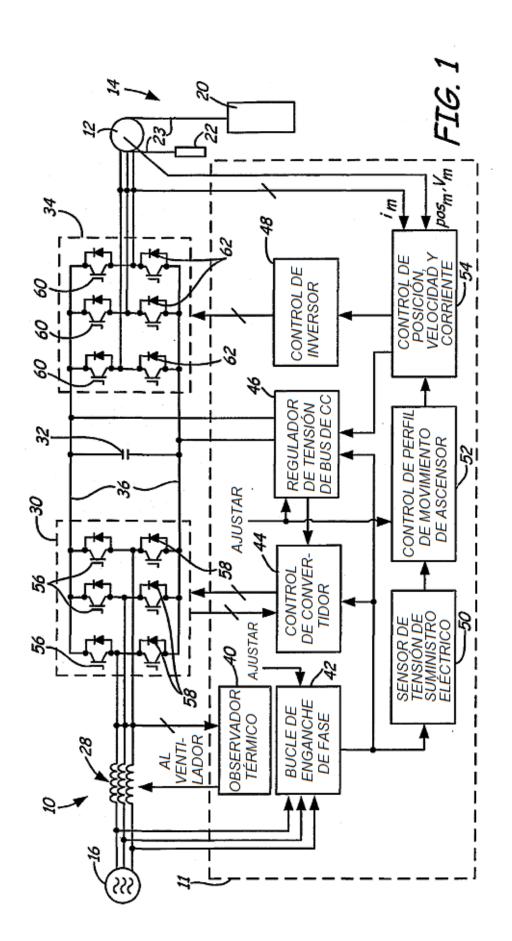
- un controlador (11) que puede funcionar para medir una tensión de suministro eléctrico en respuesta a una variación detectada en la tensión de suministro eléctrico y para controlar el accionamiento regenerativo al objeto de ajustar un perfil de movimiento nominal del ascensor (20) proporcionadamente a una relación de ajuste entre la tensión de suministro eléctrico medida y una tensión de suministro eléctrico normal, en donde el controlador (11) ajusta la tensión a través del bus (36) de alimentación proporcionadamente a la relación de ajuste en respuesta a una variación en la tensión de suministro eléctrico.
- 2. El sistema según la reivindicación 1, en donde el convertidor (30) está conectado al suministro eléctrico (16) a través de reactores (28) en línea, comprendiendo el sistema (10):
- 20 un sensor (50) de tensión para detectar una variación en una tensión de suministro eléctrico y medir la tensión del suministro eléctrico;
 - un generador (52) de perfil de movimiento de ascensor que, en respuesta a una variación en la tensión de suministro eléctrico, genera un nuevo perfil de movimiento que es el perfil de movimiento nominal ajustado proporcionadamente mediante la relación de ajuste;
- un dispositivo (54) de corrección de error que recibe el nuevo perfil de movimiento y parámetros reales de funcionamiento del motor elevador (12) y genera una señal de error relacionada con una diferencia entre los parámetros reales de funcionamiento y los parámetros de funcionamiento deseados sobre la base del nuevo perfil de movimiento; y
 - un controlador (48) de inversor que recibe la señal de error y controla el inversor (34) para llevar el motor elevador a los parámetros de funcionamiento deseados.
 - 3. El sistema según la reivindicación 1 o 2, en donde el perfil de movimiento nominal comprende al menos una de aceleración máxima, máxima velocidad de régimen y deceleración máxima del ascensor cuando la tensión de suministro eléctrico es normal.
- 4. El sistema según la reivindicación 3 cuando depende de la reivindicación 1, y que comprende además: un dispositivo sensor para determinar si el motor elevador (12) está en modo motor o en modo generador, en donde el controlador (11) hace funcionar adicionalmente el accionamiento regenerativo para ajustar el perfil de movimiento del ascensor (20) proporcionadamente a la relación de ajuste basándose en si el motor elevador (12) está en modo motor o en modo generador.
- 5. El sistema según la reivindicación 4, en donde se ajustan la aceleración máxima y la máxima velocidad de régimen proporcionadamente a la relación de ajuste cuando el ascensor (20) está en modo motor, en donde se ajustan la deceleración máxima y la máxima velocidad de régimen proporcionadamente a la relación de ajuste cuando el ascensor (20) está en modo generador y en donde no se ajusta el perfil de movimiento cuando el ascensor (20) no está ni en modo motor ni en modo generador.
- 6. El sistema según la reivindicación 1, en donde el controlador (11) controla el inversor (34) para accionar el motor elevador (12) basándose en el perfil de movimiento nominal ajustado del ascensor (20).
 - 7. El sistema según la reivindicación 1, y que comprende además: reactores (28) en línea conectados entre el accionamiento regenerativo y el suministro eléctrico (16).
 - 8. El sistema según la reivindicación 7, y que comprende además: un módulo (40) de control térmico para hacer funcionar a la máxima velocidad un ventilador de enfriamiento del accionamiento cuando la corriente que atraviesa los reactores (28) en línea se acerca a una especificación de corriente de continuo de los reactores (28) en línea.
 - 9. El sistema según la reivindicación 3 cuando depende de la reivindicación 2, en donde el generador (52) de perfil de movimiento de ascensor ajusta la aceleración máxima y la máxima velocidad de régimen proporcionadamente a la relación de ajuste cuando el ascensor (20) está en modo motor, en donde el generador (52) de perfil de movimiento de ascensor ajusta la deceleración máxima y la máxima velocidad de régimen proporcionadamente a la relación de ajuste cuando el ascensor (20) está en modo generador y en donde el generador (52) de perfil de movimiento de ascensor no ajusta el perfil de movimiento cuando el ascensor (20) no está ni en modo motor ni en modo generador.
 - 10. El sistema según la reivindicación 2, y que comprende además:

ES 2 567 952 T3

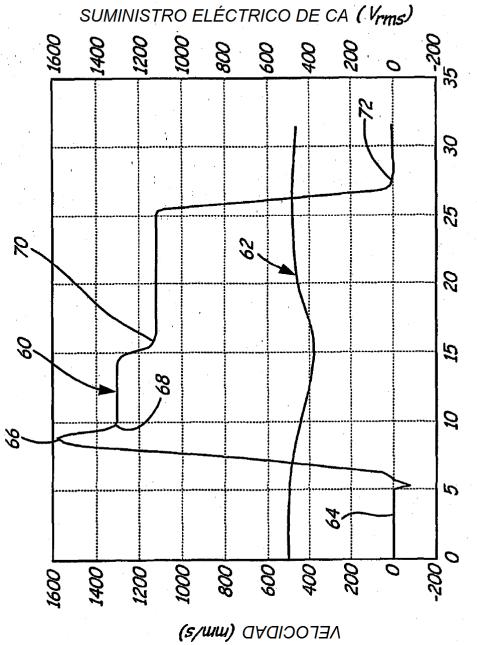
un regulador (40) de tensión de bus de CC que puede funcionar para ajustar una tensión a través del bus (56) de CC proporcionadamente a la relación de ajuste en respuesta a una variación en la tensión de suministro eléctrico.

11. El sistema según la reivindicación 2, y que comprende además:

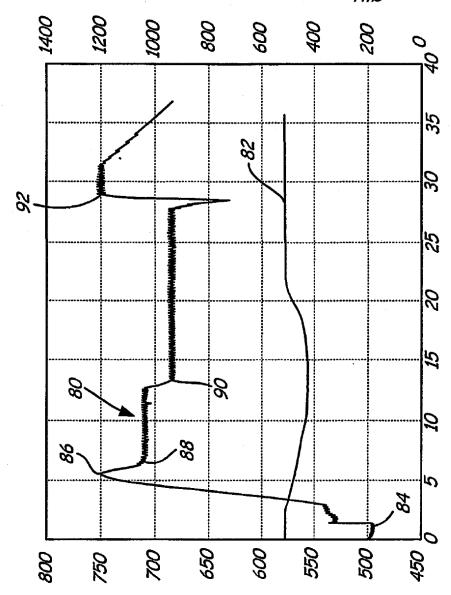
5


10

15


30

35


- un regulador (44) de corriente para determinar una diferencia entre la tensión de suministro eléctrico y una tensión de bus de CC y hacer funcionar el convertidor (30) para equilibrar la tensión de suministro eléctrico y la tensión de bus de CC al objeto de regular la corriente que atraviesa los reactores (28) en línea.
- 12. El sistema según la reivindicación 11, en donde el convertidor (30) comprende una pluralidad de circuitos de transistor de potencia, comprendiendo cada circuito de transistor de potencia un transistor (56) y un diodo (58) conectados en paralelo, y en donde el regulador (44) de corriente emplea modulación por ancho de pulso para producir pulsos de compuerta que conmutan periódicamente los transistores (56) para equilibrar la tensión de suministro eléctrico y la tensión de bus de CC.
- 13. El sistema según la reivindicación 2, en donde el inversor (34) comprende una pluralidad de circuitos de transistor de potencia, comprendiendo cada circuito de transistor de potencia un transistor (60) y un diodo (62) conectados en paralelo, y en donde el controlador (48) de inversor emplea modulación por ancho de pulso para generar pulsos de compuerta al objeto de conmutar periódicamente los transistores (60) con el fin de llevar el motor elevador (12) a los parámetros de funcionamiento deseados.
- 14. Un método para accionar de forma continua un motor elevador (12) para un ascensor (20) desde un suministro eléctrico (16) irregular utilizando el sistema según la reivindicación 1, comprendiendo el método: medir una tensión de suministro eléctrico en respuesta a una variación en la tensión de suministro eléctrico;
- ajustar un perfil de movimiento nominal del ascensor (20) proporcionadamente a una relación de ajuste entre la tensión de suministro eléctrico medida y una tensión de suministro eléctrico normal, en donde el perfil de movimiento nominal comprende al menos una de aceleración máxima, máxima velocidad de régimen y deceleración máxima del ascensor (20) cuando la tensión de suministro eléctrico es normal;
- ajustar la tensión a través del bus (36) de alimentación proporcionadamente a la relación de ajuste en respuesta a la variación en la tensión de suministro eléctrico; y accionar el motor elevador (12) con una corriente de accionamiento basada en el nuevo perfil de movimiento.
 - 15. El sistema según la reivindicación 14, en donde ajustar un perfil nominal del ascensor comprende determinar si el motor elevador (12) está en modo motor o en modo generador y ajustar el perfil de movimiento del ascensor (20) proporcionadamente a la relación de ajuste basándose en si el motor elevador (12) está en modo motor o en modo generador.
 - 16. El método según la reivindicación 15, en donde se ajustan la aceleración máxima y la máxima velocidad de régimen proporcionadamente a la relación de ajuste cuando el ascensor (20) está en modo motor, en donde se ajustan la deceleración máxima y la máxima velocidad de régimen proporcionadamente a la relación de ajuste cuando el ascensor (20) está en modo generador y en donde no se ajusta el perfil de movimiento cuando el ascensor (20) no está ni en modo motor ni en modo generador.
 - 17. El método según la reivindicación 16, y que comprende además: accionar el motor elevador (12) del ascensor con una corriente de accionamiento basada en el perfil de movimiento nominal cuando el suministro eléctrico retorna a una tensión de suministro eléctrico normal.

SUMINISTRO ELÉCTRICO DE CA (V_{rms})

LENSIÓN DE BUS DE CC (VOLTIOS)