

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 568 931

51 Int. Cl.:

A01N 37/38 (2006.01) A01N 59/06 (2006.01) A01N 59/16 (2006.01) A01N 59/20 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- Fecha de presentación y número de la solicitud europea: 21.05.2007 E 07729291 (0)
 Fecha y número de publicación de la concesión europea: 09.03.2016 EP 2029515
- (54) Título: Uso de complejos metálicos que comprenden un ligando derivado de ácido 2-aril-2hidroxiacético y un catión de metal divalente o trivalente para el tratamiento de la deficiencia de metales en plantas
- (30) Prioridad:

24.05.2006 FR 0604679

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **05.05.2016**

(73) Titular/es:

WEYLCHEM LAMOTTE (100.0%) Rue du Flottage, BP 1 60350 Trosly Breuil, FR

(72) Inventor/es:

SCHOUTEETEN, ALAIN; JUS, SÉBASTIEN y CATHELINEAU, CLAUDE

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Uso de complejos metálicos que comprenden un ligando derivado de ácido 2-aril-2-hidroxiacético y un catión de metal divalente o trivalente para el tratamiento de la deficiencia de metales en plantas

La presente invención se refiere al uso de un complejo metálico que comprende al menos un ligando derivado de ácido 2-aril-2-hidroxiacético y un catión de metal divalente o trivalente, en el que el ligando es un compuesto de fórmula (I) según se describe más adelante y/o una de sus sales en la prevención o el tratamiento de una deficiencia de metales en plantas.

El campo de aplicación de la presente invención se refiere a la disolución de entidades de metales. La mayoría de las sales de metales tales como FECI₃ o AlCI₃ son sólidos que se disuelven fácilmente en agua. Sin embargo, las disoluciones acuosas obtenidas tienen un pH de carácter ácido debido a la liberación de ácido (HCI). Para algunas aplicaciones, es ventajoso tener simultáneamente entidades de metales en disolución acuosa y un pH neutro o de carácter básico. En realidad, se sabe que algunas entidades de metales divalentes o trivalentes tales como Fe(III), Al(III), Cr(III) o Cu(II), no existen en disolución a valores de pH neutros o básicos. Se puede hacer referencia a los diagramas de Pourbaix (diagramas de potencial/pH), por ejemplo, por ejemplo descritos en el libro "Atlas d'équilibres électrochimiques [Atlas de Equilibrios Electroquímicos], Gauthier-Villars, París, 1963". Por ejemplo, Fe(III) no existe en disolución para valores de pH mayores que 2, ya que, bajo estas condiciones, existe predominantemente en la forma de Fe(OH)₃ insoluble en la fase acuosa predomina para valores de pH de entre 3 y 12, mientras que para Cu(II), la forma Cu(OH)₂ insoluble en la fase acuosa predomina para valores de pH mayores que 6.

Una aplicación específica en la que es ventajoso disponer de entidades de metales en disolución acuosa a un pH neutro o de carácter básico se refiere al campo de los fertilizantes utilizados en agricultura. Por ejemplo, la deficiencia de hierro (o clorosis de hierro), lo cual puede resultar en una caída en el rendimiento para una amplia gama de cultivos agrícolas, se produce particularmente en suelos alcalinos tales como suelos calcáreos.

El uso es conocido, en la lucha contra este problema, de quelatos, por ejemplo descrito en la enciclopedia "Kirk-Othmer, Encyclopedia of Chemical Technology, 5ª edición, Vol. 5, págs. 708-739, 2004, Wiley".

El quelato [Fe(o,o-EDDHA)Na] es un producto de elección en la prevención y el tratamiento de la clorosis de hierro. El complejante de Fe(III) por el EDDHA (ácido 1,2-etilendiamina-N,N'-bis(ortohidroxifenilacético)) hace que sea posible obtener disoluciones acuosas estables a valores de pH mayores que o iguales a 7. Sin embargo, los quelatos comerciales [Fe(o,o-EDDHA)Na] comprenden un bajo nivel de hierro, en promedio del orden de 6% en peso. Además, para que se apliquen a la planta (en la raíz o la hoja), se pueden disolver en agua. En realidad, estos quelatos comerciales son relativamente insolubles, del orden de 150-300 g/l de agua. Por lo tanto, las disoluciones preparadas son muy diluidas y comprenden un bajo nivel de hierro (aproximadamente de 9 a 18 g de hierro por litro).

30

35

Por lo tanto, todavía está en curso una búsqueda de métodos que hagan posible la obtención de disoluciones que tienen un alto contenido en sales de metales, complejos metálicos o quelatos que tienen una buena solubilidad en agua, y ligandos que exhiben una biodegradabilidad aceptable.

Además, la zona de pH en el que el catión de metal divalente o trivalente es insoluble en el estado libre, en un intervalo de pH que puede ir desde el pH neutro al pH de carácter básico, puede diferir de acuerdo con el catión de metal considerado (véanse los diagramas de Pourbaix).

El problema técnico a resolver es, por lo tanto, proporcionar sustancias que se puedan utilizar en la prevención o el tratamiento de una deficiencia de metales en plantas.

En realidad, la solicitante ha descubierto que el uso de un complejo metálico que comprende al menos un ligando derivado de ácidos 2-aril-2-hidroxiacéticos y un catión de metal divalente o trivalente, en el que el ligando es un compuesto de fórmula (I) según se describe más adelante y/o una de sus sales, hace posible resolver los problemas descritos anteriormente.

De acuerdo con un primer aspecto, una materia objeto de la invención es el uso de un complejo metálico que comprende al menos un ligando derivado de ácido 2-aril-2-hidroxiacético y un catión de metal divalente o trivalente, en el que el ligando es un compuesto de fórmula (I)

$$\begin{bmatrix} R \end{bmatrix}_{m} \begin{matrix} O \\ O \\ O \end{matrix} \begin{matrix} O \\ O \end{matrix} \end{matrix} \begin{matrix} O \\ O \end{matrix} \end{matrix}$$

5 en la que

R representa un halógeno, un grupo OH, un grupo COOH, un grupo SO₃H, un grupo PO₃H₂, un grupo CN, un grupo NO₂, un grupo alquilo C₁-C₄ lineal o ramificado o un grupo alcoxi C₁-C₄,

n tiene el valor 1, 2 ó 3,

m tiene un valor de 0 a 5-n,

10 el o los grupos

se encuentra(n) en la posición orto y/o para con respecto al grupo OH del anillo de fenilo, y/o una de sus sales, en la prevención o el tratamiento de una deficiencia de metales en plantas.

Se puede hacer uso de al menos un compuesto de fórmula (I)

en la que

15

20

R representa un halógeno, un grupo OH, un grupo COOH, un grupo SO₃H, un grupo PO₃H₂, un grupo CN, un grupo NO₂, un grupo alquilo C₁-C₄ lineal o ramificado o un grupo alcoxi C₁-C₄,

n tiene el valor 1, 2 ó 3,

m tiene un valor de 0 a 5-n, el o los grupos

se encuentra(n) en la posición orto y/o para con respecto al grupo OH del anillo de fenilo, y/o una de sus sales,

en la disolución de al menos un catión de un metal divalente o trivalente en la fase acuosa a pH neutro o de carácter básico, en una zona de pH en la que dicho catión es insoluble en el estado no complejado.

La expresión "disolver al menos un catión de metal divalente o trivalente en la fase acuosa a pH neutro o de carácter básico" se entiende que significa que la solubilidad del catión metálico considerado, al pH considerado, cuando está en el estado de complejo con una ligando hecho de un compuesto de fórmula (I), se incrementa en comparación con el valor de solubilidad del catión metálico en un estado no complejado, para ser mayor que 0,1% aproximadamente, en particular mayor que 1% aproximadamente.

La expresión "sales de los compuestos de fórmula (I)" se entiende que significa que uno o más de los grupos funcionales salificables tales como los grupos funcionales ácido carboxílico, fenol, SO_3H o PO_3H_2 es (son) salificados.

Sales de este tipo se eligen, por ejemplo, de sales de metales alcalinos, por ejemplo sales de sodio o potasio, o amonio.

Los compuestos de fórmula (I) pueden ser salificados de acuerdo con técnicas bien conocidas para una persona experta en la técnica, por ejemplo utilizando bases inorgánicas (tales como hidróxidos de metales alcalinos o de metales alcalinotérreos), aminas, amoníaco o sales/ácidos tales como , por ejemplo, carbonatos de metales alcalinos o de m

En la presente invención, la expresión "uso de al menos un compuesto de fórmula (I) y/o una de sus sales" se entiende que significa el hecho de que, cuando varios compuestos de fórmula (I) se utilizan como una mezcla, pueden, independientemente uno de otro, ser salificados o no salificados.

Un procedimiento para la disolución de al menos un catión de metal divalente o trivalente en la fase acuosa a pH neutro o de carácter básico, en una zona de pH en la que dicho catión es insoluble en el estado no complejado, se caracteriza porque al menos un compuesto de fórmula (I)

$$\begin{bmatrix} R \end{bmatrix}_{m} \begin{array}{c} OH \\ OH \\ OH \end{array}$$

en la que

5

10

15

25

35

- R representa un halógeno, un grupo OH, un grupo COOH, un grupo SO_3H , un grupo PO_3H_2 , un grupo CN, un grupo NO_2 , un grupo alquilo C_1 - C_4 lineal o ramificado o un grupo alcoxi C_1 - C_4 ,
- n tiene el valor 1, 2 ó 3,

m tiene un valor de 0 a 5-n,

el o los grupos

30 se encuentra(n) en la posición orto y/o para con respecto al grupo OH del anillo de fenilo, y/o una de sus sales.

se pone en contacto, en dicha fase acuosa, con al menos un catión de metal divalente o trivalente y, si es necesario, el pH se ajusta a un valor del pH neutro o de carácter básico.

En particular, dicho procedimiento de disolución comprende las etapas que consisten en:

- preparar una disolución acuosa de al menos un compuesto de fórmula (I) como se define anteriormente y/o una de sus sales.
- añadir a dicha disolución al menos un catión de metal divalente o trivalente, no siendo importante el orden de las etapas, y

- ajustar, si es necesario, el pH a un valor de pH neutro o de carácter básico.

La relación molar del compuesto de fórmula (I) al catión de metal divalente o trivalente puede, por ejemplo, ser de 5/1 a 1/1, preferiblemente de 2/1 a 1/1, en particular 1/1.

En la fórmula (I) anterior, cuando R representa un halógeno, es, por ejemplo, un radical Cl, Br, F o I.

5 Cuando R representa un grupo alquilo C₁-C₄ lineal o ramificado, designa, por ejemplo, un radical metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec.-butilo o terc.-butilo.

Cuando R representa un grupo alcoxi C₁-C₄, es, por ejemplo, un radical metoxi, etoxi, propoxi o butoxi.

Cationes de metales divalentes adecuados comprenden los cationes Fe(II), Cu(II), Mg(II) y Cr(II).

Cationes de metales trivalentes adecuados comprenden los cationes Fe(III), Cr(III) y AI(III) y muy particularmente el catión Fe(III).

Dichos cationes de metales divalentes o trivalentes pueden emplearse, por ejemplo, en forma de carbonato, cloruro, bromuro, yoduro, sulfato, óxido, hidróxido, acetato o nitrato, en particular en la forma de cloruro o sulfato, y más particularmente en la forma de sulfato.

En condiciones preferidas para la implementación del uso de al menos un compuesto de fórmula (I) y/o una de sus sales para disolver al menos un catión de metal divalente o trivalente en la fase acuosa a pH neutro o de carácter básico, o del procedimiento que se describe arriba, se hace uso de al menos un compuesto de fórmula (I), en la que m es igual a 0 y/o una de sus sales.

Preferiblemente, se hace uso de al menos un compuesto de fórmula (I), en la que

m es igual a 0,

n tiene el valor 1 o 2,

el o los grupos

20

30

se encuentra(n) en la posición orto y/o para con respecto al grupo OH del anillo de fenilo, y/o una de sus sales.

En otras condiciones preferidas para la implementación del uso de al menos un compuesto de fórmula (I) y/o una de sus sales para disolver al menos un catión de metal divalente o trivalente en la fase acuosa a pH neutro o de carácter básico, o del procedimiento que se describe arriba, se hace uso de al menos un compuesto de fórmula (I), en la que

m es igual a 0,

n tiene el valor 1,

el grupo

se encuentra en la posición orto y/o para con respecto al grupo OH del anillo de fenilo, y/o una de sus sales.

Se puede hacer mención, como ejemplos de compuestos preferidos para los fines de la invención, salificado o no salificado, de fórmula (I), de ácido 2-(2-hidroxifenil)-2-hidroxiacético (OHM), la sal sódica del ácido 2-(2-hidroxifenil)-2-hidroxiacético (OHMNa), la sal disódica del ácido 2-(4-hidroxifenil)-2-hidroxiacético (OHMNa), ácido 2-(4-hidroxifenil)-2-hidroxiacético (PHMNa) o la sal disódica del ácido 2-(4-hidroxifenil)-2-hidroxiacético (PHMNa) o la sal

El uso de al menos un compuesto de fórmula (I) y/o una de sus sales para disolver al menos un catión de metal divalente o trivalente en la fase acuosa a pH neutro o de carácter básico y el proceso de disolución se llevan a cabo en condiciones de pH neutras o de carácter básico bajo las cuales los cationes de metales divalentes o trivalentes son particularmente difíciles de disolver (véanse los diagramas de Pourbaix).

La expresión "pH neutro" se entiende que significa un pH que es neutro (pH = 7) o próximo a la neutralidad, por ejemplo dentro del intervalo de 6 a 7,5.

En particular, el procedimiento de disolución de acuerdo con la invención puede comprender, después de poner en contacto al menos un compuesto de fórmula (I) y/o una de sus sales y el catión de metal divalente o trivalente, una etapa de ajuste del pH utilizando una base. Para este fin, puede hacerse uso, por ejemplo, de una base débil tal como trietilamina, o de una base fuerte tal como hidróxido de sodio o potasio, dependiendo del pH deseado. A partir de su conocimiento general, un experto en la técnica está en condiciones de determinar la base adecuada para el ajuste deseado.

Preferiblemente, el pH se ajusta en un intervalo de aproximadamente 6 a 12, en particular 7.

20 Preferiblemente, se utiliza una base fuerte tal como hidróxido de sodio.

5

10

15

25

30

35

El catión de metal puede emplearse, por ejemplo, en forma de una disolución acuosa.

Los compuestos de fórmula (I) son conocidos y son productos comercialmente disponibles o se pueden preparar mediante aplicación o adaptación de los métodos descritos en la bibliografía tales como, por ejemplo, en A.J. Hoefnagel et al., Rec. Trav. Chem., 107, 242-7, (1988), o en la solicitud FR 2 739 618. En general, los productos de fórmula (I) se obtienen por condensación de ácido glioxílico con fenol opcionalmente sustituido tal como se describe, por ejemplo, en la solicitud FR 2 638 740.

Se puede citar también el PHMNa vendido por Clariant Specialty Fine Chemicals (Francia).

Un complejo metálico que comprende al menos un ligando derivado de ácido 2-aril-2-hidroxiacético y un catión de metal divalente o trivalente, en el que el ligando es un compuesto de fórmula (I) y/o una de sus sales tal como se definió anteriormente, se pueden preparar mediante un procedimiento que comprende las etapas que consisten en poner en contacto al menos un compuesto de fórmula (I) y/o una de sus sales, en la fase acuosa, con un catión de metal divalente o trivalente y ajustar el pH a un valor de pH neutro o de carácter básico. Dicho complejo metálico se obtiene, por lo tanto, en la fase acuosa. Alternativamente, dicho complejo metálico se puede obtener en forma de polvo a partir de dicha disolución acuosa separando el agua mediante técnicas estándares, por ejemplo mediante evaporación, atomización, liofilización, y similares.

La invención también se refiere al uso de un complejo metálico que comprende al menos un ligando derivado del ácido 2-aril-2-hidroxiacético y un catión de metal divalente o trivalente, en el que el ligando es un compuesto de fórmula (I) y/o una de sus sales según se define anteriormente, o de una composición que comprende dicho complejo en la prevención o el tratamiento de la deficiencia de metales en plantas.

La invención también se refiere, para el uso anterior, a todos los aspectos preferidos de los compuestos de fórmula (I) y/o una de sus sales tal como se define anteriormente, para uso en la disolución de al menos un catión de metal divalente o trivalente en la fase acuosa a pH neutro o de carácter básico.

Especialmente, esta deficiencia de dicho metal puede consistir en una deficiencia en Fe(II), Cu(II), Mg(II), Cr(III), Cr(I

En particular, esta deficiencia es la clorosis de hierro, y el uso de acuerdo con la invención tiene como objetivo compensar una deficiencia en Fe(II) o Fe(III), y más particularmente en Fe(III).

Dicha composición se puede presentar en forma de polvo o en forma de una disolución acuosa.

La invención también se refiere al uso de un complejo metálico que comprende al menos un ligando derivado del ácido 2-aril-2-hidroxiacético y un catión de metal divalente o trivalente, en el que el ligando es un compuesto de fórmula (I) y/o una de sus sales según se define anteriormente o de una composición que comprende dicho complejo como fertilizante para plantas.

La invención también se refiere, para el uso anterior, a todos los aspectos preferidos de los compuestos de fórmula (I) y/o de una de sus sales tal como se definen anteriormente para el uso en la disolución de al menos un catión de metal divalente o trivalente en la fase acuosa a pH neutro o de carácter básico.

Dicha composición se puede presentar en forma de polvo o en forma de una disolución acuosa.

La invención se ilustra, sin limitación implícita, mediante los siguientes ejemplos, en los que las cantidades de metales en disolución se midieron por ICP-OES (siglas inglesas de espectroscopía de emisión óptica por plasma de acoplamiento inductivo).

15 En los ejemplos que siguen, la expresión "% teórico en peso de metal en disolución" se entiende que significa la relación, expresada como porcentaje, del peso total de metal introducido inicialmente en el medio de reacción al peso del filtrado recuperado y analizado.

Ejemplo 1

10

20

25

30

Disolución de FECI3 con una sal de sodio de ácido 2-(2-hidroxifenil)-2-hidroxiacético (OHMNa)

4,92 g (0,025 mol) de OHMNa se disuelven en 19,17 ml de agua. 20,27 g de una disolución acuosa que comprende 6,76 g de FECl₃ hexahidrato (0,025 mol) se añaden a lo largo de 15 min, manteniendo la temperatura del medio de reacción a aproximadamente 20°C. El pH de la disolución se ajusta a 7 mediante la adición de una disolución al 50% en peso de hidróxido de sodio acuoso (5,87 g). La mezcla se agita subsiguientemente a temperatura ambiente durante 24 h. Después de la filtración y del lavado con agua, se recuperan 59,9 g de una disolución con un color rojo-pardo oscuro.

Se mide 2,3% en peso de Fe en disolución (teóricamente 2,33% en peso).

Este ejemplo demuestra que OHMNa hace que sea posible obtener Fe soluble en la fase acuosa a pH 7.

Ejemplo 2

Disolución de FECI₃ con ácido 5-cloro-2-hidroximandélico

2,05 g (0,01 mol) de ácido 5-cloro-2-hidroximandélico se suspenden en 15 ml de agua. Se añaden 0,8 g de disolución al 50% en peso de hidróxido de sodio (0,01 mol) con el fin de obtener una disolución. Se añaden 17,7 g de una disolución acuosa que comprende 2,7 g de FECI₃ hexahidrato (0,01 mol) a lo largo de 15 min, manteniendo la temperatura del medio de reacción a aproximadamente 20°C. El pH de la disolución se ajusta a 7 mediante la adición de 2,4 g de una disolución acuosa al 50% en peso de hidróxido de sodio. La mezcla se agita subsiguientemente a temperatura ambiente durante 24 h. Después de filtrar, se recuperan 35,1 g de una disolución con un color rojo-pardo oscuro.

Se mide 1,3% en peso de Fe en disolución (teóricamente 1,59% en peso).

10 Este ejemplo demuestra que el ligando ácido 5-cloro-2-hidroximandélico hace que sea posible la obtención de Fe soluble en la fase acuosa a pH 7.

Ejemplos 3-6

El procedimiento del Ejemplo 1 ó 2 se repite, pero utilizando los ligandos B, C, D y E de fórmula (I), cuyas estructuras se describen en la Tabla 1 que figura a continuación, y variando las relaciones molares ligando/metal, en caso apropiado.

Tabla 1

15

Ligando	·Estructura
В	OH ONE
C	HO OII
D	IC OF OIL
E	E O

Los resultados obtenidos se muestran en las Tablas 2 y 3 a continuación.

Tabla 2

Ejemplo	Ligando	Cantidad de Cantidad de Pe		Peso de agua	Peso de	Peso del
		ligando (g)	FeCl₃ hexahidrato	(g)	NaOH	filtrado (g)
			(g)		añadido (g)	
3	В	5,81	3,55	40	3,12	49,28
4	С	6,12	3,55	26	4,56	39,63
5	D	2,6	1,35	16	1,6	18,69
6	E	1,78	2,38	25,15	4	33,28

Tabla 3

Ejemplo		orico de Fe en % en peso medido
	disolución	
3	1,47	1,1
4	1,83	1,5
5	1,49	1,2
6	1,46	1,4

Los Ejemplos 3 a 6 demuestran que el uso de los ligandos B a E hace que sea posible obtener una gran cantidad de Fe soluble en la fase acuosa a pH 7.

Ejemplos 7 a 11

Disolución de FECI₃ con la sal sódica de ácido 2-(2-hidroxifenil)-2-hidroxiacético (OHMNa) a diferentes valores de pH

Se repite el procedimiento descrito en el Ejemplo 1, pero ajustando el pH de la disolución a 6, 7, 9, 10 y 12.

Los resultados obtenidos se muestran en las Tablas 7 y 8 que figuran a continuación.

Tabla 7

Ejemplo	Cantidad de	Cantidad de	Peso de	Peso de	pН	Peso del	
	ligando (g)	FeCl ₃	agua (g)	NaOH		filtrado (g)	
		hexahidrato (g)		añadido (g)			
7	2,01	2,7	20	1,5	6	20,65	
8	4,92	6,76	42,68	5,87	7	59,9	
9	4,92	6,76	52,68	7,3	9	71,2	
10	4,92	6,76	40	8	10	49,8	
11	4,92	6,76	52,68	8	12	72,8	

Tabla 8

15

Ejemplo	% en peso teórico de Fe en	% en peso medido
	disolución	
7	2,18	1,7
8	2,33	2,3
9	1,96	1,9
10	2,80	2,7
11	1,92	1,9

5

10

Estos ejemplos demuestran que el uso de OHMNa hace que sea posible obtener Fe soluble en la fase acuosa para valores de pH que son de carácter básicos, neutros o próximos a la neutralidad.

Ejemplo 12

5

10

20

30

Disolución de FECI₃ con la sal disódica del ácido 2-(2-hidroxifenil)-2-hidroxiacético (OHM.2Na)

Una disolución compuesta de 40 g de agua y 12,97 g de FECI₃ hexahidrato (0,048 mol) se añade a lo largo de 15 min a 43,5 g de una disolución acuosa que comprende 10,2 g de OHM.2Na (0,048 mol) al tiempo que se mantiene la temperatura del medio de reacción a aproximadamente 20°C. El pH de la disolución se ajusta a 7 mediante la adición de una disolución acuosa al 50% en peso de hidróxido de sodio (5,1 g). La mezcla se agita subsiguientemente a temperatura ambiente durante 5 semanas sin protección específica con respecto a la luz. Después de filtrar, se recuperan 80 g de una disolución con un color rojo-pardo oscuro.

Se mide 3,2% en peso de Fe en disolución (teóricamente 3,35% en peso).

Este ejemplo demuestra que OHM.2Na hace posible disolver hierro en disolución acuosa a pH 7 y de una manera duradera.

15 **Ejemplo 13**

Disolución de FECI3 con OHMNa en presencia de carbonato de calcio CaCO3

1,98 g (0,01 mol) de OHMNa se disuelven en 8 ml de agua.

12,7 g de una disolución acuosa que comprende 2,7 g de FECl₃ hexahidrato (0,01 mol) se añaden a lo largo de 15 min, al tiempo que se mantiene la temperatura del medio de reacción a aproximadamente 20°C. El pH de la disolución se ajusta a 7 mediante la adición de 2,3 g de una disolución acuosa al 50% en peso de hidróxido de sodio. Se añade posteriormente una suspensión de 1,0 g (0,01 mol) de CaCO₃ en 15 g de agua. Se añaden unas pocas gotas de HCl al 37% para ajustar el pH a 7. La mezcla se agita subsiguientemente a temperatura ambiente durante 24 horas. Después de filtrar, se recuperan 35,0 g de una disolución con un color rojo pardo oscuro.

Se mide 1,4% en peso de Fe en disolución (teóricamente 1,59% en peso).

Este ejemplo muestra que el ligando OHMNa hace que sea posible la obtención de Fe soluble en la fase acuosa a pH 7, a pesar de la presencia de CaCO₃.

Ejemplo 14

La disolución de color rojo-pardo oscuro obtenida en el Ejemplo 1 se concentra por destilación de agua. El residuo se seca en una estufa a 50°C durante 48 h. Se obtiene un polvo de color pardo rojizo que comprende 12% en peso de hierro por medición ICP-OES.

Una medición en un polvo formado de quelato de [Fe(o,o-EDDHA)Na] disponible comercialmente proporciona sólo 7,8% en peso de hierro.

Este ejemplo demuestra que el uso de OHMNa hace que sea posible aumentar en gran medida el contenido de hierro en comparación con el producto comercialmente disponible.

Ejemplo 15

Estudio de solubilidad en el complejo OHMNa/Fe

10 g del polvo obtenido en el Ejemplo 14 se disuelven en 19 ml de agua. Después de filtrar, se recupera una disolución con un color pardo-rojo oscuro que comprende 4,1% en peso de hierro en disolución.

5 En comparación, el uso de un quelato disponible comercialmente [Fe(o,o-EDDHA)Na] hace que sea posible preparar una disolución acuosa que comprende en el mejor de los casos un nivel de hierro de 9-18 g/l, es decir 0.9-1,8% en peso.

Ejemplos 16 a 18

Disolución de cationes Al(III), Cr(III) y Cu(II) con OHMNa

10 El procedimiento del Ejemplo 1 se repite, pero sustituyendo FECl₃ por AlCl₃, CrCl₃·6H₂O y Cu(OAc)₂·H₂O, respectivamente.

Los resultados obtenidos se dan en las Tablas 9 y 10 que figuran a continuación.

Tabla 9

Ejemplo	Cantidad de ligando (g)	Metal	Cantidad de metal (g)	Peso de agua (g)	Peso de NaOH añadido (g)	Peso del filtrado (g)
16	2,01	AICI ₃	1,35	20	2,4	26,29
17	2,01	CrCl ₃	2,72	20	2,4	22,27
18	2,01	Cu(OAc) ₂	2,04	40	1,4	44,58

15 **Tabla 10**

- C.O.O.C.		
Ejemplo	% en peso teórico de metal en	% en peso medido
	disolución	
16	1	1
17	1,83	1,40
18	1,43	1,40

Los Ejemplos 16 a 18 demuestran que OHMNa hace que sea posible obtener Al soluble, Cr soluble y Cu soluble en la fase acuosa a pH 7 durante al menos 24 h.

Ejemplo 19

20 Disolución de cationes Mg(II) con OHM.2Na

A una disolución acuosa (60 g) que contiene 0,05 moles de OHM.2Na se añaden 9,9 g de una disolución acuosa que contiene 0,025 moles de cloruro de magnesio (MgCl₂). El pH se ajusta a 12 con 1 g de una disolución acuosa de HCl 1 N. Después de 24 horas bajo agitación, la disolución es todavía homogénea, sin ningún sólido. Sin el OHM.2Na, el magnesio precipita a pH 12 en forma de un sólido blanco (Mg(OH)₂).

25 **Ejemplo 20**

Disolución de cationes Mg(II) con OHM.2Na

A una disolución acuosa (60 g) que contiene 0,05 moles de OHM.2Na se añaden 19,8 g de una disolución acuosa que contiene 0,05 moles de cloruro de magnesio (MgCl₂). El pH se ajusta a 12 con 2,6 g de una disolución acuosa

de NaOH al 30%. Después de 24 horas bajo agitación, la disolución es todavía homogénea, sin ningún sólido. Sin el OHM.2Na, el magnesio precipita a pH 12 en forma de un sólido blanco (Mg(OH)₂).

Ejemplo 21

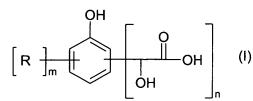
5

10

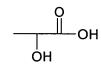
20

La efectividad de los complejos metálicos de la presente invención en el tratamiento de la clorosis de metales en plantas se ilustra en los siguientes procesos comparativos, realizados en un test en invernadero, utilizando suelo Issirac calcáreo. El Índice de Potencia Clorótica de este suelo es 1400. Ocho injertos de vid Syrah germinadas cloróticos fueron plantados en macetas de 1 kg. Cuatro plantas se trataron en cada caso con 10 mL de una disolución acuosa preparada con el complejo de hierro en polvo obtenido de acuerdo con el ejemplo 14. En cada uno de los 10 mL, la cantidad de complejo de hierro era equivalente a 1 mg de hierro puro. Las otras cuatro plantas no recibieron fuente de hierro alguna y se utilizaron como las plantas de control. Una vez al mes, todas las plantas recibieron disolución nutritiva que contiene 0% de hierro. Cuando las plantas comenzaron a crecer, la fluorescencia de la clorofila se midió en cada una de las plantas. Estas mediciones dieron la evolución del rendimiento cuántico de fluorescencia de clorofila que se muestra en la siguiente tabla 11. Se puede considerar como un parámetro de la vitalidad de la planta.

15 **Tabla 11**


Días	0	2	7	15	22	29	34	42	51	57
Plantas	0,802	0,801	0,806	0,814	0,817	0,810	0,780	0,740	0,696	0,648
control										
Plantas tratadas con complejo de hierro	0,812	0,814	0,808	0,803	0,804	0,806	0,800	0,782	0,763	0,757

Se puede observar que el rendimiento cuántico se puede conservar en un valor alto para las plantas tratadas inicialmente con complejo de hierro preparado en el ejemplo 14, mientras que, para las plantas de control, que no han recibido ningún tratamiento con hierro, el rendimiento cuántico de fluorescencia de la clorofila está cayendo en picado. La comparación visual es también sorprendente: las plantas no tratadas tenían un desarrollo muy bajo y mostraron un alto nivel clorótico, mientras que las plantas tratadas crecieron normalmente con un bajo nivel clorótico.


Estos resultados demuestran que el uso del complejo de hierro preparado de acuerdo con el ejemplo 14 es un tratamiento eficaz de la clorosis de hierro.

REIVINDICACIONES

1. Uso de un complejo metálico que comprende al menos un ligando derivado de ácido 2-aril-2-hidroxiacético y un catión de metal divalente o trivalente, en el que el ligando es un compuesto de fórmula (I)

- 5 en la que
 - R representa un halógeno, un grupo OH, un grupo COOH, un grupo SO₃H, un grupo PO₃H₂, un grupo CN, un grupo NO₂, un grupo alquilo C₁-C₄ lineal o ramificado o un grupo alcoxi C₁-C₄,
 - n tiene el valor 1, 2 ó 3,
 - m tiene un valor de 0 a 5-n,
- 10 el o los grupos

se encuentra(n) en la posición orto y/o para con respecto al grupo OH del anillo de fenilo, y/o una de sus sales, en la prevención o el tratamiento de una deficiencia de metales en plantas.

- 2. Uso de acuerdo con la reivindicación 1. caracterizado por que en la fórmula (I) m es igual a 0.
- 15 3. Uso de acuerdo con la reivindicación 1 ó 2, caracterizado por que en la fórmula (I)
 - m es igual a 0, y
 - n tiene el valor 1 ó 2.
 - 4. Uso de acuerdo con una cualquiera de las reivindicaciones 1 a 3, caracterizado por que en la fórmula (I)
 - m es igual a 0, y
- 20 n tiene el valor 1.

25

- 5. Uso de acuerdo con una cualquiera de las reivindicaciones 1 a 4, caracterizado por que el compuesto de fórmula (I) y/o una de sus sales se elige(n) de ácido 2-(2-hidroxifenil)-2-hidroxiacético (OHM), la sal sódica del ácido 2-(2-hidroxifenil)-2-hidroxiacético (OHMNa), la sal disódica del ácido 2-(2-hidroxifenil)-2-hidroxiacético (OHMNa), la sal sódica del ácido 2-(4-hidroxifenil)-2-hidroxiacético (PHMNa) o la sal disódica del ácido 2-(4-hidroxifenil)-2-hidroxiacético (PHMNa), y sus mezclas.
- 6. Uso de acuerdo con una cualquiera de las reivindicaciones 1 a 5, caracterizado por que el catión de metal se elige de Fe(II), Cu(II), Mg(II), Cr(II), Fe(III), Cr(III) y Al(III).
- 7. Uso de acuerdo con la reivindicación 6, caracterizado por que el catión de metal es Fe(III).
- 8. Uso de acuerdo con una cualquiera de las reivindicaciones 1 a 7, caracterizado por que dicho complejo metálico está en forma de un polvo, de una disolución acuosa o como una composición que comprende dicho complejo metálico en forma de un polvo o de una disolución acuosa.
 - 9. Uso de un complejo metálico que comprende al menos un ligando derivado de ácido 2-aril-2-hidroxiacético y un catión de metal divalente o trivalente, en el que el ligando es un compuesto de fórmula (I)

$$\begin{bmatrix} R \end{bmatrix}_{m} \begin{matrix} O \\ O \\ O \end{matrix} \begin{matrix} O \\ O \end{matrix} \end{matrix} \begin{matrix} (I$$

en la que

R representa un halógeno, un grupo OH, un grupo COOH, un grupo SO_3H , un grupo PO_3H_2 , un grupo CN, un grupo NO_2 , un grupo alquilo C_1 - C_4 lineal o ramificado o un grupo alcoxi C_1 - C_4 ,

n tiene el valor 1, 2 ó 3,

m tiene un valor de 0 a 5-n,

el o los grupos

se encuentra(n) en la posición orto y/o para con respecto al grupo OH del anillo de fenilo, y/o una de sus sales, como fertilizante para plantas.

10. Uso de acuerdo con la reivindicación 9, caracterizado por que dicho complejo metálico es como se define en una cualquiera de las reivindicaciones 2 a 8.

15

5