

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 569 253

51 Int. Cl.:

A61F 9/007 (2006.01) A61M 39/22 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 26.09.2012 E 12779202 (6)
 (97) Fecha y número de publicación de la concesión europea: 16.03.2016 EP 2736464

(54) Título: Sistema de válvula bimodal activo para el control de PIO en tiempo real

(30) Prioridad:

18.10.2011 US 201113275711

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 09.05.2016

(73) Titular/es:

ALCON RESEARCH, LTD. (100.0%) 6201 South Freeway, Mail Code TB4-8 Fort Worth, TX 76134, US

(72) Inventor/es:

DACQUAY, BRUNO

4 Agente/Representante:

CURELL AGUILÁ, Mireia

DESCRIPCIÓN

Sistema de válvula bimodal activo para el control de PIO en tiempo real.

- 5 La presente divulgación se refiere en general a válvulas y sistemas y procedimientos asociados para su utilización en tratamientos oftálmicos. En algunos casos, las formas de realización de la presente divulgación están configuradas para formar parte de un sistema de control de PIO.
- El glaucoma, un grupo de enfermedades oculares que afectan a la retina y el nervio óptico, es una de las causas principales de ceguera en todo el mundo. La mayoría de las formas de glaucoma resultan cuando la presión intraocular (PIO) aumenta hasta presiones por encima de lo normal durante periodos de tiempo prolongados. La PIO puede aumentar debido a alta resistencia al drenaje del humor acuoso en relación con su producción. Si se deja sin tratar, una PIO elevada produce daño irreversible al nervio óptico y las fibras retinianas, dando como resultado una pérdida de visión progresiva, permanente.
 - El cuerpo ciliar del ojo produce de manera continua humor acuoso, el fluido transparente que llena el segmento anterior del ojo (el espacio entre la córnea y el cristalino). El humor acuoso fluye fuera de la cámara anterior (el espacio entre la córnea y el iris) a través de la malla trabecular y las vías uveosclerales, contribuyendo ambas al sistema de drenaje de humor acuoso. El delicado equilibrio entre la producción y el drenaje de humor acuoso determina la PIO del ojo.
 - Figura 1 es un diagrama de la parte frontal de un ojo que ayuda a explicar los procesos del glaucoma. En la figura 1, se muestran representaciones del cristalino 110, la córnea 120, el iris 130, el cuerpo 140 ciliar, la malla 150 trabecular y el canal 160 de Schlemm. Anatómicamente, el segmento anterior del ojo incluye las estructuras que producen PIO elevada que puede conducir a glaucoma. El fluido acuoso se produce por el cuerpo 140 ciliar que está situado por debajo del iris 130 y adyacente al cristalino 110 en el segmento anterior del ojo. Este humor acuoso baña el cristalino 110 y el iris 130 y fluye hacia el sistema de drenaje ubicado en el ángulo de la cámara anterior. El ángulo de la cámara anterior, que se extiende circunferencialmente alrededor del ojo, contiene estructuras que permiten que el humor acuoso drene. La malla 150 trabecular está implicada comúnmente en el glaucoma. La malla 150 trabecular se extiende circunferencialmente alrededor de la cámara anterior. La malla 150 trabecular parece actuar como un filtro, limitando el flujo de salida de humor acuoso y proporcionando una contrapresión que está relacionada directamente con la PIO. El canal 160 de Schlemm está ubicado más allá de la malla 150 trabecular. El canal 160 de Schlemm está acoplado fluídicamente a los canales colectores (no mostrados) permitiendo que el humor acuoso fluya fuera de la cámara anterior. Las dos flechas en el segmento anterior de la figura 1 muestran el flujo de humor acuoso desde los cuerpos 140 ciliares, sobre el cristalino 110, sobre el iris 130, a través de la malla 150 trabecular y al interior del canal 160 de Schlemm y sus canales colectores.
- Un procedimiento de tratamiento del glaucoma incluye implantar un dispositivo de drenaje en el ojo de un paciente. El dispositivo de drenaje permite que fluya fluido desde la cámara interior del ojo hacia un sitio de drenaje, aliviando la presión en el ojo y por tanto disminuyendo la PIO. Estos dispositivos generalmente son dispositivos pasivos y no proporcionan un control inteligente, interactivo de la cantidad de flujo a través del tubo de drenaje. Además, con frecuencia se desarrollan vesículas llenas con fluido en el sitio de drenaje. El desarrollo de una vesícula normalmente incluye fibrosis, lo que conduce a una resistencia al flujo aumentada y generalmente ocurre que esta resistencia aumenta a lo largo del tiempo. Este desarrollo y progresión de fibrosis reduce o elimina el flujo desde la cámara anterior, eliminando la capacidad de que el dispositivo de drenaje afecte a la PIO.
 - El estado de la técnica se representa mediante los documentos WO 2007/127305 A2, WO 2013/052332 A1 y US 2011/071459 A1.
- 50 El documento WO2013/052332 forma parte de la técnica anterior según el Artículo 54(3) CPE, siendo por tanto relevante solo para la novedad. El documento WO007/127305 constituye el preámbulo de la reivindicación 1.
 - El sistema de control de presión intraocular (PIO) de la invención se define mediante las características de la parte caracterizadora de la reivindicación 1. El procedimiento de actuación del sistema de control de PIO de la invención se define mediante las características de la reivindicación 15.
 - El sistema y los procedimientos dados a conocer en la presente memoria superan una o más de las deficiencias de la técnica anterior.

60 Sumario

55

15

20

25

30

35

- La presente invención proporciona un sistema de control de PIO y un procedimiento para hacer funcionar un sistema de válvula, según las reivindicaciones que siguen.
- 65 En un aspecto a modo de ejemplo, la presente divulgación se refiere a un sistema de control de PIO para su implantación en un ojo de un paciente para proporcionar drenaje desde una cámara anterior del ojo hasta una

ubicación de drenaje en el ojo, que comprende:

un sistema de válvula que presenta una posición de flujo abierta y una posición de flujo cero cerrada, permitiendo la posición de flujo abierta el flujo de fluido a través del sistema de válvula, impidiendo sustancialmente la posición de flujo cero cerrada el flujo de fluido a través del sistema de válvula;

un sistema de sensor que comprende un primer sensor dispuesto para detectar una primera presión representativa de un parámetro en tiempo real del ojo; y

un controlador dispuesto para recibir datos del sistema de sensor y comparar los datos que representan la presión detectada con un umbral de presión superior preestablecido y un umbral de presión inferior preestablecido para determinar si cambiar el estado del sistema de válvula de forma bimodal de una de entre una posición de flujo abierta y la posición de flujo cero cerrada a otra de entre la posición de flujo abierta y la posición de flujo cero cerrada,

caracterizado por que el sistema de válvula (230) comprende:

un alojamiento (502);

5

15

25

30

60

65

una membrana (538) flexible acoplada con el alojamiento, presentando la membrana flexible un primer lado y un segundo lado;

una cámara (530) delimitada por un interior del alojamiento y un primer lado de la membrana flexible, conteniendo la cámara un fluido (532) de accionamiento;

un orificio de entrada (504) y un orificio de salida (506) ubicado en el alojamiento adyacente al segundo lado de la membrana flexible;

un paso ubicado dentro del alojamiento (502), acoplando fluídicamente el paso el orificio de entrada (504) al orificio de salida (506);

en el que cuando el sistema de válvula está en la posición de flujo cero cerrada, la membrana flexible está adaptada para ocluir el orificio de entrada (504).

- En otro aspecto a modo de ejemplo, la presente divulgación se refiere a un procedimiento para tratar glaucoma utilizando un sistema de control de PIO. El procedimiento puede incluir una etapa de recibir una entrada que representa un intervalo de presión objetivo para un ojo de un paciente, presentando el intervalo de presión objetivo un umbral de presión superior y un umbral de presión inferior, siendo los umbrales superior e inferior extremos del intervalo del intervalo de presión objetivo. El procedimiento también puede incluir etapas de detectar con al menos un sensor de presión una presión real asociada con el ojo de un paciente, comparar la presión real con el intervalo de presión objetivo, y accionar una válvula de manera bimodal entre un estado que permite el flujo de drenaje y un estado que impide el flujo de drenaje basándose en la comparación de la presión real con el intervalo de presión objetivo.
- En otro aspecto a modo de ejemplo, la presente divulgación se refiere a un sistema de control de PIO para su implantación en un ojo de un paciente para proporcionar drenaje desde una cámara anterior del ojo hasta una ubicación de drenaje en el ojo. El sistema puede incluir un sistema de válvula bimodal que presenta una posición de flujo abierta y una posición de flujo cero cerrada. La posición de flujo abierta puede permitir el flujo de fluido a través del sistema de válvula, y la posición cerrada puede impedir sustancialmente el flujo de fluido a través del sistema de válvula. El sistema también puede comprender un sistema de sensor que incluye un primer sensor dispuesto para detectar una primera presión representativa de un parámetro en tiempo real del ojo y un segundo sensor dispuesto para detectar una segunda presión. Puede estar dispuesto un controlador para comparar datos que representan las presiones primera y segunda con un umbral de presión superior preestablecido y un umbral de presión inferior preestablecido para determinar si cambiar el estado del sistema de válvula de manera bimodal entre la posición abierta y la posición cerrada.

Ha de entenderse que tanto la descripción general anterior como la siguiente descripción detallada son a modo de ejemplo y de naturaleza explicativa y se pretende que proporcionen una comprensión de la presente divulgación sin limitar el alcance de la presente divulgación. A este respecto, aspectos, características y ventajas adicionales de la presente divulgación resultarán evidentes para un experto en la materia a partir de la siguiente descripción detallada.

Breve descripción de los dibujos

Los dibujos adjuntos ilustran formas de realización de los dispositivos y el procedimiento dados a conocer en la presente memoria y junto con la descripción, sirven para explicar los principios de la presente divulgación.

La figura 1 es un diagrama de la parte frontal de un ojo.

La figura 2 es un diagrama de bloques de un sistema de control de PIO a modo de ejemplo según los principios de la presente divulgación.

5

- La figura 3 es un diagrama de un sistema de control de PIO a modo de ejemplo según los principios de la presente divulgación.
- La figura 4 es un diagrama de una posible aplicación del sensor de PIO de la presente divulgación.

10

- Las figuras 5 a 7 son ilustraciones de una vista en sección transversal de un sistema de válvula a modo de ejemplo según una forma de realización compatible con los principios de la presente divulgación.
- La figura 8 es un diagrama de flujo que ilustra un procedimiento de funcionamiento bimodal compatible con los 15 principios de la presente divulgación.

Descripción detallada de las formas de realización preferidas

Para los fines de promover una compresión de los principios de la presente divulgación, ahora se hará referencia a las formas de realización ilustradas en los dibujos, y se utilizará vocabulario específico para describir las mismas. No 20 obstante, se entenderá que no se pretende limitar el alcance de la divulgación. Se contempla completamente cualquier alteración y modificación adicional a los dispositivos, instrumentos, procedimientos descritos y cualquier aplicación adicional de los principios de la presente divulgación tal como se le ocurriría normalmente a un experto en la materia a la que se refiere la divulgación. En particular, se contempla completamente que las características, componentes y/o etapas descritos con respecto a una forma de realización pueden combinarse con las 25 características, componentes y/o etapas descritos con respecto a otras formas de realización de la presente divulgación. Por motivos de simplicidad, en algunos casos se utilizan los mismos números de referencia a lo largo de

todos los dibujos para referirse a partes iguales o similares.

30 Los esfuerzos previos para controlar la PIO con válvulas implantables se encuentran principalmente dentro de dos categorías generales. La primera es una categoría de flujo libre o flujo de drenaje no controlado, y la segunda es una categoría de flujo de drenaje microcontrolado. La categoría de flujo libre incluye sistemas de implante que proporcionan drenaie continuo, no restringido desde la cámara anterior. Aunque es adecuada para drenar fluido para reducir presiones en la cámara anterior, estos dispositivos no pueden cerrarse para reducir o impedir el flujo. La categoría de flujo de drenaje microcontrolado incluye sistemas de implante que utilizan válvulas controladas de manera continua a través de ajustes variables para aumentar y disminuir el flujo para lograr un valor de PIO objetivo.

35

40

45

Esta divulgación se refiere a un sistema de control de PIO bimodal. Al ser bimodal, hace funcionar un sistema de válvula de control de flujo solo en dos modos: un modo de flujo completamente abierto y un modo de flujo cero o cerrado. En este caso, completamente abierto significa un ajuste de flujo superior. Puede coincidir con el régimen de flujo máximo de la válvula o puede ser un ajuste de flujo máximo establecido por el operario o el fabricante. En este caso, se varía el historial de tiempo del sistema de válvula con el fin de mantener la PIO dentro de un intervalo deseado. En otras palabras, para elevar o disminuir la PIO, el sistema dado a conocer en la presente memoria varía el ciclo de trabajo abierto/cerrado del sistema de válvula. El sistema de válvula se acciona únicamente cuando se supera uno de los límites de extremo del intervalo de PIO deseado. Cuando esto ocurre, el sistema de válvula se controla de manera bimodal desde un ajuste hasta otro, tal como desde abierto hasta cerrado, o viceversa. Un sistema de este tipo puede consumir menos energía que los dispositivos anteriores porque hay menos ajustes. Esto puede dar como resultado directamente un dispositivo que es más fiable, más robusto y que puede requerir menos mantenimiento.

50

La figura 2 es un diagrama de bloques de un sistema de control de PIO 200 a modo de ejemplo implantable en un ojo de un paciente para el tratamiento de glaucoma u otros estados. El sistema de control de PIO 200 incluye una fuente 205 de alimentación, un sistema de sensor de PIO 210, un controlador 212, un módulo 225 de transmisión de datos y un sistema de válvula 230.

55

La fuente 205 de alimentación normalmente es una batería recargable, tal como una batería de polímero de litio o ion litio, aunque pueden emplearse otros tipos de baterías. Además, cualquier otro tipo de pila de alimentación es apropiada para la fuente 205 de alimentación. La fuente 205 de alimentación proporciona energía al sistema 200, y más particularmente al procesador 215. La fuente de alimentación puede recargarse a través de acoplamiento inductivo tal como una conexión RFID u otro tipo de acoplamiento magnético.

60

65

El controlador 212 comprende un procesador 215 y una memoria 220. Está configurado para recibir datos, para realizar funciones y para ejecutar programas almacenados en la memoria 220. En este caso, el controlador 212 está configurado para hacer funcionar el sistema de válvula 230 de manera bimodal, estando configurado el controlador para controlar el sistema de válvula para funcionar en dos estados únicamente: un estado de flujo completamente abierto y un estado de flujo cero.

El procesador 215 normalmente es un circuito integrado con clavijas de alimentación, entrada y salida que pueden realizar funciones lógicas. En diversas formas de realización, el procesador 215 es un controlador de dispositivo dirigido. En tal caso, el procesador 215 realiza funciones de control específicas dirigidas a un dispositivo o componente específico, tal como un módulo 225 de transmisión de datos, la fuente 205 de alimentación, el sistema de detección 210, el sistema de válvula 230 o la memoria 220. En otras formas de realización, el procesador 215 es un microprocesador. En tal caso, el procesador 215 puede programarse de modo que pueda funcionar para controlar más de un componente del dispositivo. En otros casos, el procesador 215 no es un microprocesador programable, sino que en cambio es un controlador especializado configurado para controlar diferentes componentes que realizan diferentes funciones.

5

10

15

35

40

45

50

65

La memoria 220 normalmente es una memoria de semiconductor tal como RAM, FRAM o memoria flash. La memoria 220 está interconectada con el procesador 215. Como tal, el procesador 215 puede escribir y leer de la memoria 220. Por ejemplo, el procesador 215 puede estar configurado para leer datos del sistema de sensor de PIO 210 y escribir esos datos en la memoria 220. De esta manera, pueden almacenarse una serie de lecturas de PIO en la memoria 220. El procesador 215 también puede realizar otras funciones de memoria básicas, tales como borrar o sobreescribir la memoria 220, detectar cuando la memoria 220 está llena, y otras funciones comunes asociadas con gestionar la memoria de semiconductor.

El módulo 225 de transmisión de datos puede emplear cualquiera de varios tipos diferentes de transmisión de datos. Por ejemplo, el módulo 225 de transmisión de datos puede ser un dispositivo activo tal como una radio, o también puede ser un dispositivo pasivo tal como la antena o una etiqueta RFID. En tal caso, una etiqueta RFID puede incluir la memoria 220, mientras que el módulo 225 de transmisión de datos está en forma de una antena. Un lector de RFID colocado cerca del sistema 200 puede escribir datos en o leer datos de la memoria 220. Puesto que la cantidad de datos almacenados normalmente en la memoria 220 probablemente va a ser pequeña (consistiendo en lecturas de PIO a lo largo de un periodo de tiempo), la velocidad con la que se transfieren los datos no es crucial. Otros tipos de datos que pueden almacenarse en la memoria 220 y transmitirse por el módulo 225 de transmisión de datos incluyen, pero no se limitan a, datos de la fuente de alimentación (por ejemplo batería baja, defecto de batería), datos del altavoz (tonos de aviso, voces), datos del sensor de PIO (lecturas de PIO, estados de problema), datos del reloj fechador y similares.

Alternativamente, el módulo 225 de transmisión de datos puede activarse para comunicar un estado de PIO elevada a un dispositivo secundario tal como un PDA, un teléfono móvil, ordenador, reloj de pulsera, dispositivo personalizado exclusivamente para este fin, sitio de almacenamiento de datos accesible a distancia (por ejemplo un servidor de internet, servidor de correo electrónico, servidor de mensajes de texto) u otro dispositivo electrónico. En una realización, un dispositivo electrónico personal descarga los datos al sitio de almacenamiento de datos accesible a distancia (por ejemplo un servidor de internet, servidor de correo electrónico, servidor de mensajes de texto). La información puede descargarse a un sitio de almacenamiento de datos accesible a distancia de modo que pueda visualizarse en tiempo real, por ejemplo, por el personal médico. Por ejemplo, en un entorno de hospital, una vez que un paciente se ha sometido a cirugía de glaucoma y se le ha implantado el sistema 200, puede ubicarse un dispositivo secundario cerca de la cama de hospital del paciente. Puesto que las fluctuaciones de PIO son comunes tras la cirugía de glaucoma (tanto hacia arriba como hacia abajo, lo que también es un estado peligroso), el procesador 215 puede leer las mediciones de PIO detectadas por el sistema de sensor 210. Si el procesador 215 lee un estado de PIO no seguro, el módulo 225 de transmisión de datos puede alertar al paciente y al personal médico directamente o transmitir las lecturas no seguras a un dispositivo secundario.

La figura 3 es un diagrama del sistema de control de PIO 200 a modo de ejemplo con su sistema de sensor 210, un tubo 310 de drenaje, el sistema de válvula 230 y un divisor 350. El sistema de control de PIO 200 puede colocarse dentro del ojo en la cavidad subconjuntival entre la conjuntiva y la esclerótica estando colocado el borde anterior del sistema de control de PIO 200 aproximadamente 10 milímetros detrás del limbo (el borde entre la córnea y la esclerótica). Puede mantenerse en su sitio dentro del ojo a través de estructuras de anclaje, el ángulo de implantación y la anatomía circundante, o mediante una fuerza de resorte u otros mecanismos que estabilizan el sistema de control de PIO 200.

En la figura 3, el sistema de sensor de PIO 210 a modo de ejemplo incluye dos sensores de presión, P1 y P3. El sensor de presión P1 está ubicado en o está en comunicación de fluido con la cámara anterior 340, y el sensor de presión P3 está ubicado alejado de P1 de manera que mida la presión atmosférica. En algunas formas de realización, el sensor de presión P1 está ubicado en una luz o tubo que está en comunicación de fluido con la cámara anterior, tal como en el tubo 310 de drenaje.

En la forma de realización mostrada, el sensor de presión P1 mide la presión en el tubo 310 aguas arriba del sistema de válvula 230 y aguas debajo de la cámara anterior 340. De esta manera, el sensor de presión P1 mide la presión en la cámara anterior 340. La discrepancia de medición esperada entre la verdadera presión de la cámara anterior y la medida por P1 cuando está ubicado en un tubo aguas abajo de la cámara anterior (incluso cuando está ubicado entre la esclerótica y la conjuntiva) es realmente mínima. Por ejemplo, la ley de Poiseuille para flujo en tuberías predice una disminución de presión de 0,01 mmHg a través de un tubo de 5 milímetros de largo con un diámetro

interior de 0,300 milímetros para una velocidad de flujo 3 microlitros por minuto de agua.

5

10

35

40

45

50

55

El sensor de presión atmosférica P3 puede ubicarse en proximidad cercana al ojo, y en una forma de realización, se implanta en el ojo bajo la conjuntiva. En tal caso, el sensor de presión P3 mide una presión que puede estar correlacionada con la presión atmosférica. Por ejemplo, la verdadera presión atmosférica puede ser función de la lectura de presión del sensor de presión P3. Tal como se utiliza en la presente memoria, las referencias de presión atmosférica incluyen referencias de presión que pueden correlacionarse directamente con la presión atmosférica. El sensor de presión P3 también puede ubicarse en una parte 360 seca del espacio subconjuntival, separado de la ubicación de drenaje. Independientemente de la ubicación, se pretende que el sensor de presión P3 mida la presión atmosférica en las proximidades del ojo o en la superficie del ojo. En una forma de realización que presenta una forma de estilo de placa GDD convencional, el sensor de presión P3 se encuentra en la parte superior con una barrera que impide que se aplaste mientras que todavía se permite la comunicación de presión a través de la conjuntiva.

- En general, la PIO es una lectura de presión manométrica: la diferencia entre la presión absoluta en el ojo (tal como se mide por P1) y la presión atmosférica (tal como se mide por P3). La presión atmosférica, normalmente de alrededor de 760 mmHg, a menudo varía en magnitud en 10 mmHg o más dependiendo de las condiciones meteorológicas o de los sistemas de control ambientales interiores. Además, la presión atmosférica efectiva puede variar significativamente (en más de 100 mmHg) si el paciente va a nadar, hacer senderismo, sube en un avión, etc.

 Una variación en presión atmosférica de este tipo es significativa puesto que la PIO normalmente está en el intervalo de aproximadamente 15 mmHg. Por tanto, para la monitorización precisa de la PIO, es deseable tener lecturas de presión para la cámara anterior (tal como se mide por P1) y la presión atmosférica en las proximidades del ojo (tal como se mide por el sensor P3).
- Por tanto, en una forma de realización de la presente invención, se toman lecturas de presión por P1 y P3 simultáneamente o casi simultáneamente a lo largo del tiempo de modo que puede calcularse la PIO real (como P1-P3 o P1-f(P3), donde f(P3) indica una función de P3). Las lecturas de presión de P1 y P3 pueden almacenarse en la memoria 220 por el procesador 215. Más tarde pueden leerse de la memoria de modo que la PIO real a lo largo del tiempo pueda interpretarse por un médico. Los sensores de presión P1 y P3 pueden ser cualquier tipo de de sensores de presión adecuados para su implantación en el ojo. Pueden ser cada uno el mismo tipo de sensor de presión, o pueden ser diferentes tipos de sensores de presión.

El divisor 350 es una estructura física que separa el sitio 320 de drenaje húmedo del sensor de presión P3. El divisor 350 se incluye cuando el sistema de la presente invención está ubicado sobre un único sustrato. En esta configuración, ambos sensores de presión (P1 y P3) están ubicados sobre un sustrato que incluye el tubo 310, el sistema de válvula 230, el divisor 350 y los otros componentes del sistema.

El tubo 310 de drenaje puede disponerse para desviar fluido desde la cámara anterior 340 hasta una ubicación 320 de drenaje, que puede estar en cualquiera de numerosas ubicaciones dentro del ojo. Por ejemplo, algunos tubos están dispuestos para desviar humor acuoso desde la cámara anterior 340 hasta el espacio subconjuntival, formando así una vesícula bajo la conjuntiva o alternativamente, hasta el espacio subescleral, formando así una vesícula bajo la esclerótica. Otros diseños de tubo desvían humor acuoso desde la cámara anterior hasta el espacio supracoroideo, el espacio supraciliar, el espacio yuxtauveal, o hasta la coroides, formando vesículas en esas ubicaciones respectivas. En otras aplicaciones, el tubo de drenaje desvía humor acuoso desde la cámara anterior hasta el canal de Schlemm, un canal colector en el canal de Schlemm, o cualquiera de varios vasos sanguíneos diferentes como una vena epiescleral. En algunos ejemplos, el tubo de drenaje incluso desvía humor acuoso desde la cámara anterior hasta el exterior de la conjuntiva. Cada una de estas ubicaciones anatómicas diferentes a las que se desvía el humor acuoso es un ejemplo de una ubicación 320 de drenaje. Otros ejemplos de una ubicación 320 de drenaje incluyen, pero no se limitan a: un espacio subconjuntival, un espacio supracoroideo, un espacio subescleral, un espacio supraciliar, el canal de Schlemm, un canal colector, una vena epiescleral y una vía uveoescleral.

En la figura 4, el tubo 310 está ubicado con un extremo en la cámara anterior 340 y el otro extremo está en la ubicación 320 de drenaje. El sistema de válvula 230 controla el flujo de humor acuoso a través del tubo 310 desde la cámara anterior 340 hasta la ubicación 320 de drenaje. Tal como se indicó anteriormente, el sensor de presión P1 está ubicado en la cámara anterior o en comunicación de fluido con la cámara anterior 340, y por tanto, tal como se muestra en la forma de realización de la figura 3, el sensor de presión P1 está ubicado aguas arriba del sistema de válvula 230.

El sistema de control de PIO 200 controla la PIO de modo que permanezca dentro de un intervalo aceptable o parámetros aceptables a la vez que se minimiza el ajuste real. Las lecturas de los sensores de presión P1 y P3 pueden utilizarse como entradas en las que basarse para controlar las velocidades de flujo de fluido a través del tubo 310 controlando el sistema de válvula 230. De esta manera, la PIO es el parámetro de control. Para lograr esto, el sistema de válvula 230 se ajusta para mantener la PIO dentro de un intervalo de presión particular (como una presión PIO de 10-20 mm Hg). En un ejemplo, el intervalo de presión PIO incluye los umbrales superior e inferior, estando el umbral de presión superior de PIO en el intervalo de aproximadamente 15 a 18 mmHg y estando el umbral de presión inferior de PIO en el intervalo de aproximadamente 8 a 10 mmHg. Obsérvese que en algunas

ES 2 569 253 T3

formas de realización, el médico puede determinar y programar los umbrales alto/bajo de PIO para cumplir con cada una de las necesidades específicas de un paciente. Esto puede realizarse con un interfaz de entrada, tal como un teclado u otro dispositivo de entrada. En otras formas de realización, los umbrales se justan previamente durante la fabricación.

El sistema de válvula 230 puede controlarse por el controlador 212 basándose en datos de entrada recibidos de los sensores P1, P3. Puede mantenerse un diferencial de presión deseado (que corresponde a una velocidad de flujo deseada) controlando el funcionamiento del sistema de válvula 230. Asimismo, puede controlarse una PIO deseada, tasa de cambio de PIO, o presión de vesícula controlando el funcionamiento del sistema de válvula 230.

La figura 5 muestra una forma de realización del sistema de válvula 230 a modo de ejemplo en mayor detalle. El sistema de válvula 230 está dispuesto a lo largo, y puede formar parte de, el tubo 310 de drenaje entre el extremo de tubo en la cámara anterior y el extremo de tubo en el sitio de drenaje. Puede estar configurado para controlar el flujo de fluido de drenaje a través del tubo 310 de drenaje, y controlar así la presión en el ojo, incluyendo la PIO. Por ejemplo, cuando la PIO es alta, el sistema de válvula 230 puede funcionar en un primer modo para permitir un flujo máximo a través del tubo de drenaje, y cuando la PIO es baja, el sistema de válvula 230 puede funcionar en un segundo modo para impedir el flujo a través del tubo de drenaje. Para lograr eso, el sistema de válvula 230 responde a señales enviadas como instrucciones desde el procesador 215. El procesador 215 responde a mediciones de presión tomadas por los sensores de presión P1, P3 y/o a la PIO tal como se determina por las presiones detectadas, tal como se explicó anteriormente. En otra forma de realización, un sensor de presión, P2, está ubicado en o está en comunicación de fluido con la ubicación 320 de drenaje y por tanto las mediciones tomadas por P2 y P3 también pueden influir en la respuesta del sistema de válvula 230. Por ejemplo, si la PIO (P1-P3) es alta pero la presión de la ubicación de drenaje (P2-P3) también es alta, el sistema de válvula 230 puede retrasar la apertura hasta que la presión del sitio de drenaje se reduce de manera natural. En un ejemplo, el intervalo de presión del sitio de drenaje incluye un umbral de presión superior que está en el intervalo de aproximadamente 12 a 15 mmHg.

Las figuras 5 a 7 muestran un sistema de válvula 230 a modo de ejemplo según una forma de realización de la presente divulgación. Más específicamente, la figura 5 es una vista esquemática desde arriba del sistema de válvula 230; la figura 6 es una vista esquemática lateral en sección transversal del sistema de válvula 230 en un estado de flujo completamente abierto; y la figura 7 es una vista esquemática lateral en sección transversal del sistema de válvula 230 similar al de la figura 6, pero mostrando el sistema de válvula 230 en un estado completamente cerrado o de flujo cero.

Tal como se muestra en las figuras 5 a 7, el sistema de válvula 230 incluye un alojamiento 502 con un orificio de entrada 504 y un orificio de salida 506, una protuberancia 508 y un sistema de control de flujo 510. El orificio de entrada 504 se conecta al tubo 310 de drenaje y está configurado para recibir humor acuoso que fluye desde el tubo 310 de drenaje. El orificio de salida 506 permite que el humor acuoso salga del alojamiento 502 para liberarse en el sitio 320 de drenaje o para regulación adicional.

El sistema de control de flujo 510 incluye una cámara de control de flujo 530, un fluido 532 de accionamiento en la cámara de control de flujo 530, electrodos (no mostrados) dispuestos para actuar conjuntamente con el fluido 532 de accionamiento, y una membrana 538 flexible. En funcionamiento, los electrodos (no mostrados) generan burbujas en el fluido 532 de accionamiento a través de electrólisis, aumentando el volumen y por tanto la presión dentro de la cámara de la cámara de control de flujo 530. Cuando aumenta la presión, la membrana 538 flexible se expande hacia la protuberancia 508, disminuyendo e impidiendo en última instancia el flujo de fluido desde el orificio de entrada 504, restringiendo así el flujo de humor acuoso desde el tubo 310 de drenaje. De manera similar, pero opuesta, cuando la disolución en la cámara de control de flujo 530 vuelve a su estado más fluido, el volumen en la cámara 530 disminuye, permitiendo que la membrana 538 flexible se aleje de la protuberancia 508, permitiendo así que el humor acuoso fluya desde el tubo 310 de drenaje a través del sistema de válvula 230.

Tal como puede observarse en la figura 5, en el ejemplo mostrado, la cámara de control de flujo se forma en el alojamiento 502 con una estructura rígida formada por las paredes del alojamiento en tres lados. La cámara 530 está cerrada de manera sellada por la membrana 538 flexible. Por consiguiente, cuando aumenta el volumen, el aumento de presión actúa para desplazar la membrana 538 sólo en una dirección.

La membrana 538 flexible puede estar formada por un material elastomérico que puede deformarse elásticamente incluyendo sin limitación, materiales tales como una silicona, nitruro de silicona, material elastomérico de silicona, poliimida, parileno y otros. En el ejemplo mostrado, la membrana 538 flexible se sujeta al alojamiento 502 en sus bordes. En la forma de realización mostrada, la membrana 538 flexible se forma como una estructura de forma cuadrada. Sin embargo, en otras formas de realización, el sistema de válvula 230, incluyendo la membrana 538 flexible, puede ser un material circular sujeto en su periferia al alojamiento 502. Como tal, cuando aumenta el volumen o la presión dentro de la cámara, la parte central de la membrana flexible proporciona el nivel superior de desplazamiento. En otras formas de realización, el alojamiento y la membrana flexible se forman de modo que la membrana presenta una forma no circular, incluyendo ovalada, sustancialmente rectangular o cuadrada, por ejemplo. También se contemplan otras formas. De manera aplicable a todas las membranas flexibles tales como 538, también pueden presentar características de ondulación (tales como resaltes y valles), cuyas profundidades

afectarán a la forma de desplazamiento. Por ejemplo, ondulaciones profundas conducirían a un mayor desplazamiento, mientras que ondulaciones poco profundas conducirían a desplazamientos más pequeños. La colocación de las ondulaciones poco profundas y profundas puede utilizarse para crear formas de desplazamiento que son muy pronunciadas, luego graduales, o viceversa, permitiendo esto un mayor control en el grado de disminución de presión a través de la membrana a diversas presiones de desplazamiento permitiendo un diseño optimizado.

5

10

15

20

25

30

35

40

45

50

55

El fluido 532 de accionamiento está contenido en la cámara de control de flujo 530 y, en algunas formas de realización, incluye agua. Algunas formas de realización incluyen una solución salina como cloruro de sodio en el agua.

Los electrodos (no mostrados) están dispuestos dentro del fluido 532 de accionamiento de manera que se permite que al menos una parte de los iones y electrolitos en el fluido 532 de accionamiento cambie de fase de líquido a gas, formando las burbujas a través de electrólisis. Cuando esto ocurre, la presión en la cámara aumenta, aumentando así la presión global. Esta presión aumentada actúa sobre la membrana 538 flexible para producir su desplazamiento. Los electrodos están en comunicación eléctrica con la fuente 205 de alimentación, que está controlada por el procesador 215. A través de la electrólisis, el agua en el fluido 532 de accionamiento puede dar como resultado moléculas de hidrógeno y oxígeno. Los electrodos pueden ser electrodos interdigitados para una electrólisis eficiente y eficaz.

Alternativamente, el sistema de control de flujo 510 puede incluir un sistema de desplazamiento mecánico que desplaza mecánicamente la membrana flexible para regular el flujo de humor acuoso a través del sistema de válvula. En un ejemplo, el desplazamiento mecánico es un sistema de engranaje y cremallera, incluyendo el desplazamiento accionar el engranaje. También se contemplan otros sistemas de desplazamiento mecánico. También se contemplan otros mecanismos de accionamiento, tales como electromagnéticos, electroestáticos, piezoelétricos, térmicos o aleación con memoria de forma.

Algunas formas de realización del sistema de válvula 230 incluyen un elemento de retención (no mostrado) que permite que la membrana 538 flexible se sujete y se mantenga en su estado desplazado. La utilización de un elemento de retención de este tipo permite que se modifique el flujo a través del sistema de válvula 230, pero entonces permite que se mantenga la posición de la membrana a lo largo del tiempo sin necesidad de ajustes constantes o intermitentes que consumen energía para mantener el volumen o la presión en la cámara de control de flujo 530. En algunos ejemplos, el elemento de retención es un elemento de retención de gancho mecánico que captura la membrana y la mantiene en su sitio hasta que se desea liberar. Por consiguiente, el elemento de retención puede sujetar la membrana flexible en una posición de modo que el paso esté en la posición de flujo abierta o la posición de flujo cero cerrada. Este elemento de retención de gancho mecánico puede controlarse y hacerse funcionar por el procesador. En otros ejemplos, el elemento de retención es un desplazamiento mecánico que controla la posición del borde de la membrana para moverla en relación con el paso. Algunas formas de realización utilizan elementos de retención de resistencia o de no resistencia. Algunos pueden requerir energía para desengancharse, pero no requieren energía para engancharse. Algunos elementos de retención constante de resorte.

La figura 8 ilustra un procedimiento a modo de ejemplo realizado por el sistema de control de PIO 200. El sistema de control de PIO 200 utiliza una válvula de control de flujo variable general que se controla particularmente para funcionar de manera bimodal, lo que significa que la válvula se utiliza sólo en dos ajustes, un ajuste de flujo completamente abierto y un ajuste de flujo cero.

El procedimiento en la figura 8 comienza en una etapa 802 en la que el sistema de control de flujo recibe un umbral de presión alto. En una realización, este umbral de presión alto se recibe a través del módulo 225 de transmisión de datos y se almacena en la memoria 220. Este umbral de presión alto se almacena como programación en la memoria ejecutable por el procesador 215. En otro ejemplo, el umbral de presión alto es un umbral físico creado a través de un circuito de filtración electrónica que se comporta de manera deseada cuando se mide que la presión está por encima del umbral de presión alto y se comporta de manera diferente cuando se mide que la presión está por debajo del umbral de presión alto. En algunos ejemplos, el umbral de presión alto se recibe a partir de un profesional de la salud, que puede ser el profesional de la salud que implanta el dispositivo de tratamiento de glaucoma o un profesional de la salud que personaliza el implante según las necesidades específicas de un paciente. En otros ejemplos, el umbral de presión alto se recibe durante la programación realizada por el fabricante o se codifica de manera fija en el conjunto de circuitos del sistema de control de PIO 200 durante la fabricación.

- 60 En una etapa 804, el sistema de control de flujo recibe un umbral de presión bajo. Puede introducirse o generarse de la misma manera que el umbral de presión alto comentado anteriormente. Es decir, entre otras cosas, puede introducirse y almacenarse por un profesional de la salud o un fabricante, puede ser, por ejemplo, un circuito electrónico, o puede codificarse de manera fija.
- El umbral de presión alto y el umbral de presión bajo definen juntos los límites de extremo de un intervalo de presión aceptable para PIO. Tal como se comentó anteriormente, la PIO puede determinarse mediante las mediciones de

ES 2 569 253 T3

presión como los datos recogidos por los sensores de presión P1 y P3 (o, alternativamente, P2 y P3). En un ejemplo, en lugar de utilizar PIO como la referencia para los umbrales de presión alto y bajo, el sistema de control de flujo 200 está configurado para funcionar basándose enteramente en lecturas de presión del sensor P1, por ejemplo.

Con los umbrales alto y bajo establecidos, el procesador 215 recibe datos de los sensores de presión P1 y P3, en la etapa 806 en tiempo real. En algunos ejemplos, para conservar energía, se recogen los datos de los sensores de presión solo a intervalos establecidos previamente, tales como, por ejemplo, en tiempo real una vez cada 20 minutos. Se contemplan tanto intervalos más largos como más cortos. En otros ejemplos, los datos de los sensores de presión se reciben en tiempo real y se procesan en el procesador 215 de manera continua, proporcionando una evaluación continua de las presiones actuales. El procesador 215 puede manipular estas presiones medidas tal como se comentó anteriormente para determinar una PIO.

15

20

35

50

En una etapa 808, el procesador 215 compara los datos de presión con el umbral de presión alto, y consulta si la PIO está por encima del umbral de presión alto. Si la PIO está por encima del umbral de presión alto, entonces el procesador 215 emprende acciones para reducir la PIO hasta un nivel compatible con el intervalo objetivo deseado. Para hacer esto, tal como se indica en la etapa 810, el procesador 215 genera y envía una señal de control al sistema de válvula 230 para abrir el sistema de válvula desde un estado cerrado hasta una posición abierta de manera bimodal. Si la válvula ya está abierta, la válvula simplemente permanece abierta. Basándose en la señal recibida en el sistema de válvula 810, el sistema de válvula se abre hasta su ajuste de flujo completamente abierto. Puesto que la válvula funciona de manera bimodal, con un ajuste de flujo completamente abierto y un ajuste de flujo cero o cerrado, cambiar al ajuste de flujo abre la válvula para permitir la cantidad máxima de flujo que puede obtenerse por el sistema de control de PIO cuando se hace funcionar de manera bimodal.

Si la PIO no está por encima del umbral de presión alto en la etapa 808, entonces el procesador 215 compara los datos de presión con el umbral de presión bajo, y consulta si la PIO está por debajo del umbral de presión bajo en una etapa 812. Si la PIO está por debajo del umbral de presión bajo en una etapa 812, entonces el procesador 215 emprende acciones para aumentar la PIO hasta un nivel compatible con el intervalo objetivo deseado. Para hacer esto, tal como se indica en la etapa 814, el procesador 215 genera y envía una señal de control al sistema de válvula 230 para cerrar el sistema de válvula desde un estado abierto hasta un estado cerrado. Si la válvula ya está cerrada, la válvula simplemente permanece cerrada. Basándose en la señal recibida en el sistema de válvula 810, el sistema de válvula se cierra, impidiendo el flujo a través del sistema. Puesto que la válvula funciona de manera bimodal, con un ajuste de flujo completo y un ajuste de flujo cero, cambiar el ajuste de flujo al flujo cero bloquea todo el flujo de drenaje. Una vez que se cierra el sistema de válvula 230, no volverá a abrirse hasta que la PIO aumente y supere el umbral de presión alto.

Si la PIO no está por debajo del umbral de presión bajo en la etapa 812, entonces el procesador 215 vuelve a la etapa 806 y recibe de nuevo datos de los sensores de presión P1 y P3 (o, alternativamente, P2 y P3).

Los umbrales de presión alto y bajo son los límites de extremo del intervalo aceptable de presiones PIO. Ajustando los umbrales en los límites de extremo, se retrasa la actuación del sistema de válvula desde un modo hasta el otro hasta que sea necesario. Esto significa que los cambios se minimizan y sólo se producen cuando son necesarios para mantener las presiones dentro de los límites de extremo, conservando de ese modo la energía y prolongando la vida de la fuente de alimentación, repitiendo la frecuencia de mantenimiento requerida y aumentando la fiabilidad del sistema de control de PIO en su conjunto.

Los expertos ordinarios en la materia apreciarán que las formas de realización englobadas por la presente divulgación no se limitan a las formas de realización a modo de ejemplo particulares descritas anteriormente. A este respecto, aunque se han mostrado y descrito formas de realización ilustrativas, se contempla una amplia variedad de modificación, cambio y sustitución en la divulgación anterior. Se entiende que tales variaciones pueden realizarse en lo expuesto anteriormente sin apartarse, por ello, del alcance de la presente divulgación. Por consiguiente, resulta apropiado que las reivindicaciones adjuntas se interpreten ampliamente y de manera compatible con la presente divulgación

REIVINDICACIONES

- 1. Sistema de control de presión intraocular (PIO) (200) para su implantación en un ojo de un paciente para proporcionar drenaje desde una cámara anterior del ojo hasta una ubicación de drenaje en el ojo, que comprende:
 - un sistema de válvula (230) que presenta una posición de flujo completamente abierta y una posición de flujo cero cerrada, permitiendo la posición de flujo abierta el flujo de fluido a través del sistema de válvula, impidiendo sustancialmente la posición de flujo cero cerrada el flujo de fluido a través del sistema de válvula;
- un sistema de sensor (210) que comprende un primer sensor dispuesto para detectar una primera presión representativa de un parámetro en tiempo real del ojo; y
 - un controlador (212) dispuesto para recibir datos del sistema de sensor (806) y comparar (808, 812) los datos que representan la presión detectada con un umbral de presión superior preestablecido y un umbral de presión inferior preestablecido para determinar si cambiar el estado del sistema de válvula de forma bimodal de una de entre una posición de flujo completamente abierta y la posición de flujo cero cerrada a otra de entre la posición de flujo completamente abierta y la posición de flujo cero cerrada.
 - caracterizado por que el sistema de válvula (230) comprende:
 - un alojamiento (502);

5

15

20

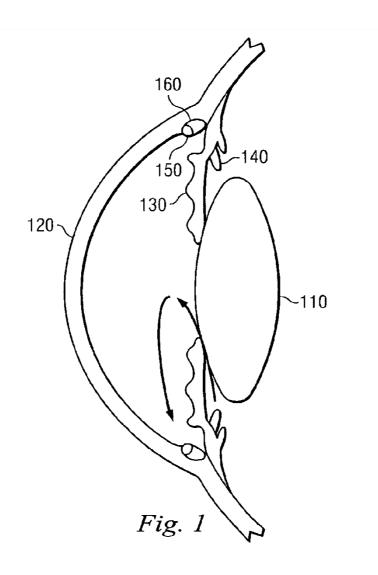
25

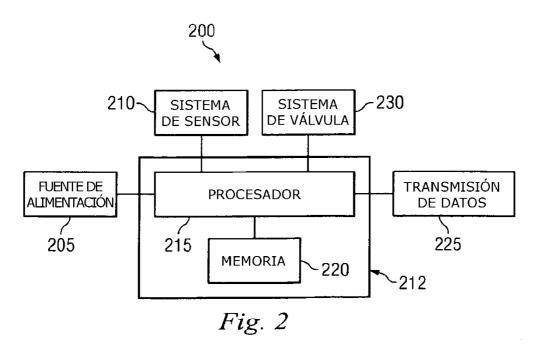
40

50

55

60


- una protuberancia (508) centralmente ubicada en la cámara de control de flujo (530) y adyacente al segundo lado de la membrana (538) flexible, presentando la protuberancia (508) un orificio de entrada (504) centralmente ubicado en la protuberancia (508);
- una membrana (538) flexible acoplada con el alojamiento, presentando la membrana flexible un primer lado y un segundo lado;
- 30 una cámara de control de flujo (530) delimitada por un interior del alojamiento y un primer lado de la membrana flexible, conteniendo la cámara un fluido (532) de accionamiento;
 - un orificio de salida (506) ubicado en el aloiamiento advacente al segundo lado de la membrana flexible:
- un paso ubicado dentro del alojamiento (502), acoplando fluídicamente el paso el orificio de entrada (504) al orificio de salida (506);
 - en el que cuando el sistema de válvula está en la posición de flujo cero cerrada, la membrana flexible está adaptada para expandirse hacia la protuberancia (508) para impedir el flujo de fluido desde el orificio de entrada (504).
 - 2. Sistema de control de PIO según la reivindicación 1, en el que el primer sensor del sistema de sensor (210) está dispuesto para detectar la presión de la cámara anterior.
- 3. Sistema de control de PIO según la reivindicación 2, en el que el sistema de sensor (210) comprende un segundo sensor dispuesto para detectar la presión del sitio de drenaje.
 - 4. Sistema de control de PIO según la reivindicación 3, en el que el sistema de sensor (210) comprende un tercer sensor dispuesto para detectar una presión atmosférica.
 - 5. Sistema de control de PIO según la reivindicación 1, en el que el sistema de sensor (210) comprende un segundo sensor dispuesto para detectar una presión atmosférica, y en el que el controlador (212) está dispuesto para determinar un valor representativo de PIO, estando el controlador dispuesto para comparar (808, 812) la PIO con los umbrales de presión superior e inferior.
 - 6. Sistema de control de PIO según la reivindicación 5, en el que el controlador (212) está dispuesto asimismo para determinar un valor representativo de presión del sitio de drenaje, estando el controlador dispuesto para comparar (808, 812) la PIO con los umbrales de presión superior e inferior y estando dispuesto para comparar la presión del sitio de drenaje con el umbral de presión superior.
 - 7. Sistema de control de PIO según la reivindicación 6, en el que el umbral de presión superior para la ubicación de drenaje está en el intervalo comprendido entre aproximadamente 12 y 15 mmHg.
- 8. Sistema de control de PIO según la reivindicación 1, en el que el controlador (212) está configurado para generar una señal para abrir (810) la válvula cuando los datos que representan las presiones están por encima del umbral superior.


ES 2 569 253 T3

- 9. Sistema de control de PIO según la reivindicación 8, en el que el controlador (212) está configurado para generar una señal para cerrar (814) la válvula cuando los datos que representan las presiones están por debajo del umbral inferior.
- 10. Sistema de control de PIO según la reivindicación 1, en el que el umbral de presión superior para PIO está en el intervalo comprendido entre aproximadamente 15 y 18 mmHg y el umbral de presión inferior está en el intervalo comprendido entre aproximadamente 8 y 10 mmHg.
- 10 11. Sistema de control de PIO según la reivindicación 1, que además comprende una interfaz dispuesta para recibir una entrada (802, 804) de un profesional de la salud que establece uno de entre el umbral de presión superior y el umbral de presión inferior.

5

- 12. Sistema de control de PIO según la reivindicación 1, en el que el controlador (212) está configurado para generar y emitir una señal al sistema de válvula (230) para cambiar de dicha una de entre la posición de flujo completamente abierta y la posición de flujo cero cerrada a otra de entre la posición de flujo completamente abierta y la posición de flujo cero cerrada.
- 13. Sistema de control de PIO según la reivindicación 1, en el que el controlador (212) está configurado para monitorizar los datos del sistema de sensor en tiempo real.
 - 14. Sistema de control de PIO según la reivindicación 1, en el que el controlador (212) y el sistema de válvula (230) están dispuestos de modo que el estado completamente abierto coincida con el estado de flujo abierto para el sistema de válvula.
- 15. Procedimiento de accionamiento del sistema de control de PIO según cualquiera de las reivindicaciones anteriores, en el que el accionamiento de la válvula en el estado que impide el flujo de drenaje comprende realizar una electrólisis en el fluido (532) de accionamiento contenido en la cámara de control de flujo (530) de manera que las burbujas de gas en el fluido (532) de accionamiento producidas por electrólisis expandan la membrana (538) flexible hacia la protuberancia (508), impidiendo de este modo el flujo de fluido desde el orificio de entrada (504) en la válvula alojamiento (502).

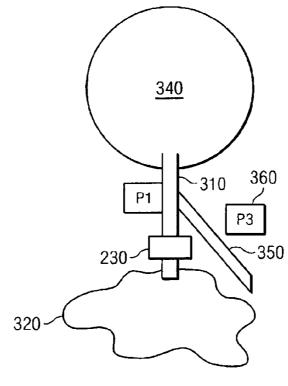
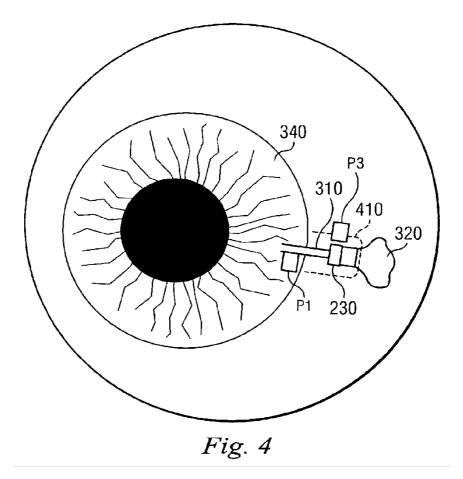
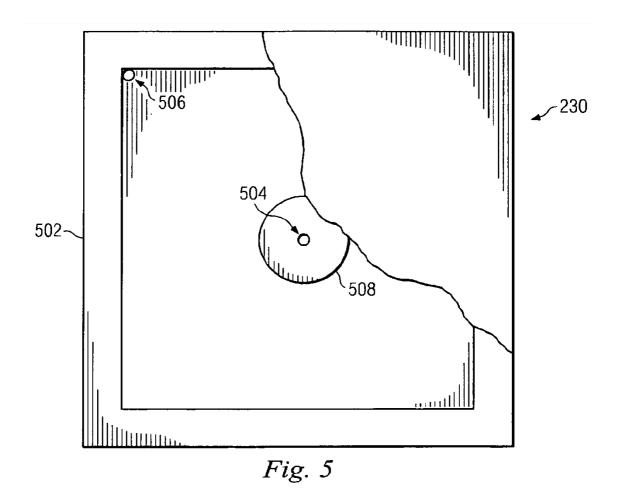
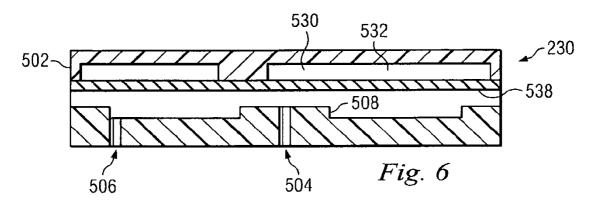
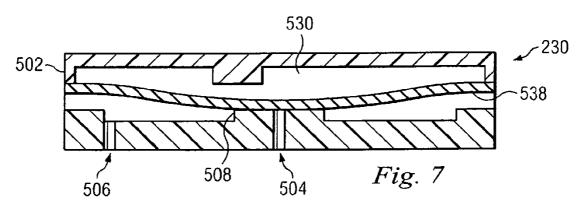






Fig. 3

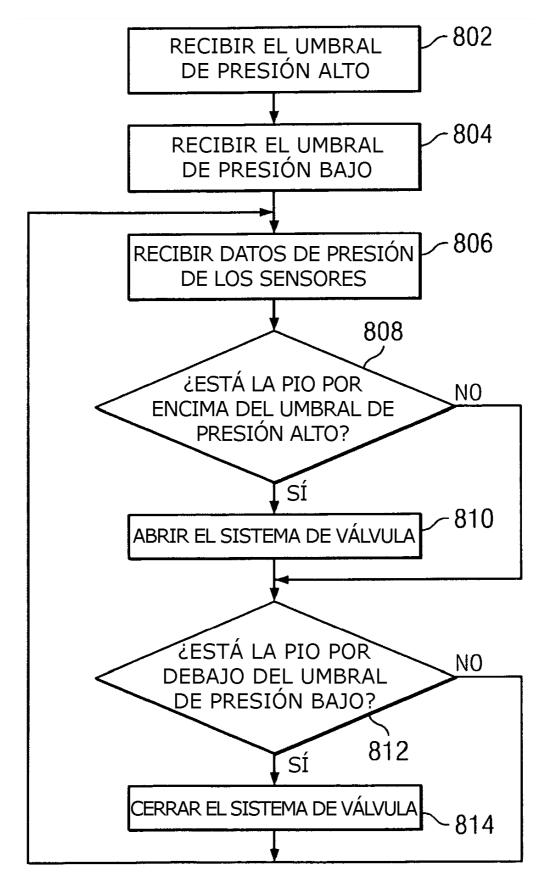


Fig. 8