

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 571 743

61 Int. Cl.:

A61M 5/20 (2006.01) **A61M 5/315** (2006.01) **A61M 5/32** (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96) Fecha de presentación y número de la solicitud europea: 21.08.2012 E 12753638 (1)
- (97) Fecha y número de publicación de la concesión europea: 06.04.2016 EP 2747809
- (54) Título: Módulo de relleno para un dispositivo de inyección
- (30) Prioridad:

26.08.2011 US 201161527718 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 26.05.2016

(73) Titular/es:

ELI LILLY AND COMPANY (100.0%) Lilly Corporate Center Indianapolis, IN 46285, US

(72) Inventor/es:

FOURT, JESSE ARNOLD; DAVIS-WILSON, JENNIFER ELLEN Y YURCHENCO, JAMES R.

(74) Agente/Representante:

PONS ARIÑO, Ángel

DESCRIPCIÓN

Módulo de relleno para un dispositivo de inyección.

5 ANTECEDENTES DE LA INVENCIÓN

La presente invención pertenece a los dispositivos de inyección de fármacos y, en particular, a un módulo de relleno que contiene medicamento que se usa con un conjunto de émbolo reutilizable.

10 Los pacientes que sufren varias enfermedades diferentes frecuentemente deben inyectarse fármacos. Se han propuesto una diversidad de dispositivos para facilitar estas inyecciones. Un tipo de dispositivo es un dispositivo de inyección automático o autoinyector. Este tipo de dispositivo, cuando es accionado por un usuario, típicamente inserta automáticamente dentro del usuario una aguja de una jeringa que antes del accionamiento estaba dispuesta dentro de la carcasa del dispositivo, y luego inyecta automáticamente una dosis de medicamento a través de esa 15 aguja insertada.

Aunque los dispositivos de inyección automáticos de este tipo pueden hacer más agradable el proceso de inyección para algunos, tal dispositivo es más complejo que una jeringa estándar. Esta complejidad hace a los dispositivos de inyección automáticos de un solo uso o desechables más costosos de fabricar que las jeringas estándar. Se conocen sistemas de inyección automáticos que pueden atenuar este problema de coste utilizando conjunto de émbolo reutilizable con una jeringa de medicamento desechable. La jeringa desechable sirve como módulo de relleno reemplazable para el sistema, permitiendo así que el conjunto de émbolo sea retirado de una jeringa gastada después de la inyección del contenido de medicamento de la jeringa, y luego unido de manera reutilizable a una nueva jeringa de repuesto para una inyección posterior con el sistema. Aunque tales sistemas son útiles, los usuarios todavía pueden tener diversos problemas, dependiendo del sistema, manejando las jeringas y sus agujas asociadas. Tales problemas pueden estar relacionados con la exposición de la aguja, así como con la tarea de manipulación, tal como la carga, descarga o eliminación de las jeringas.

Por lo tanto, sería deseable proporcionar un módulo de relleno que pueda superar una o más deficiencias de la 30 técnica anterior.

El documento WO2009/022132A2 desvela un dispositivo de invección que comprende una porción de carcasa principal, una jeringa que tiene una aquia, un medio de bloqueo y un medio de retenida. La jeringa está montada en la porción de carcasa para su movimiento entre una posición atrasada en la cual la aquia está cubierta por una parte 35 delantera de la porción de carcasa, y una posición adelantada en la cual la aguja sobresale por delante de la carcasa para el suministro de una dosis. El medio de bloqueo bloquea la jeringa en una posición atrasada y puede ser liberado para permitir el avance de la jeringa. El medio de retenida puede ser accionado para enclavar la jeringa liberada en una posición atrasada después del suministro de una dosis. La jeringa está contenida en un soporte de jeringa que coopera con el medio de bloqueo y el medio de enclavamiento. El medio de bloqueo y el medio de 40 enclavamiento están definidos por un elemento de bloqueo/enclavamiento móvil común móvil entre: una posición de bloqueo/enclavamiento en la cual (i) impide el avance de dicha jeringa desde una posición atrasada, y (ii) retiene dicha jeringa contra el avance cuando vuelve desde una posición adelantada hacia una posición atrasada, y una posición desbloqueada en la cual se permite que la jeringa avance. El elemento de enclavamiento/bloqueo comprende al menos una porción de retenida móvil de manera generalmente transversal en relación con la jeringa 45 entre la posición de bloqueo/enclavamiento y la posición desbloqueada. Cada porción de retenida está provista en una uña respectiva móvil transversalmente entre la posición de bloqueo/enclavamiento y la posición desbloqueada. Por lo tanto, están provistas una pluralidad de porciones de enclavamiento en porciones de pared arqueadas de un manguito de bloqueo extensible elásticamente generalmente cilíndrico. El manguito de bloqueo puede ser liberado mediante acoplamiento axial y desplazamiento de las porciones de pared mediante una porción de anillo de 50 liberación.

BREVE RESUMEN DE LA INVENCIÓN

55

De acuerdo con un aspecto de la presente invención, se proporciona el módulo de relleno de la reivindicación 1.

Aspectos adicionales de la invención se exponen en las reivindicaciones dependientes.

Una ventaja de la presente invención es que puede proporcionarse un módulo de relleno que permite a un usuario recargar un conjunto de impulsión de, por ejemplo, un autoinyector con una dosis de medicamento de una manera

sencilla y práctica.

25

Otra ventaja de la presente invención es que puede proporcionarse un módulo de relleno que incluye una aguja de inyección que se extiende desde y después se retrae dentro de la carcasa del módulo durante el uso, limitando así el 5 riesgo de clavarse la aguja inadvertidamente así como permitiendo una mejor ocultación de la aguja de la vista.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

Las ventajas y los objetos anteriormente mencionados y otras ventajas y objetos de esta invención, y la manera de 10 lograrlos, resultarán más evidentes, y la invención en sí se comprenderá mejor, por referencia a la siguiente descripción de realizaciones de la invención tomada conjuntamente con los dibujos adjuntos, en los que:

La fig. 1 es una vista frontal de un módulo de relleno de la presente invención mostrado separado de cualquier porción de un conjunto de émbolo reutilizable adecuado con el cual el módulo de relleno encuentra aplicación beneficiosa, y donde el módulo de relleno está dispuesto en su estado guardado previo a la utilización;

la fig. 2 es una vista en perspectiva desde arriba, parcialmente en despiece ordenado, del módulo de relleno de la fig. 1;

20 la fig. 3 es una vista en corte longitudinal, tomada conceptualmente a lo largo de la línea 3-3 de la fig. 2, del módulo de relleno parcialmente en despiece ordenado de la fig. 2;

la fig. 4 es una vista en corte longitudinal, tomada conceptualmente a lo largo de la línea 4-4 de la fig. 2, del módulo de relleno parcialmente en despiece ordenado de la fig. 2;

la fig. 5 es la vista en corte longitudinal del módulo de relleno de la fig. 3 en un estado ensamblado o sin despiezar, y donde se muestran parcialmente ciertos miembros cooperantes de un conjunto de émbolo reutilizable adecuado;

la fig. 6 es la vista en corte longitudinal del módulo de relleno de la fig. 4 en un estado ensamblado, y donde se 30 muestran parcialmente ciertos miembros cooperantes de un conjunto de émbolo reutilizable adecuado;

la fig. 7 es una vista en corte desde abajo, tomada a lo largo de la línea 7-7 de la fig. 1, de los elementos de soporte y enclavamiento mostrados separados del resto del módulo de relleno;

35 la fig. 8 es una vista en corte longitudinal del módulo de relleno de la fig. 5 en una fase posterior de su accionamiento;

las figs. 9-12 son vistas en corte longitudinal del módulo de relleno similar a la fig. 8, pero a través de un plano girado respecto al plano de corte de la fig. 8 una cantidad igual a la rotación de los componentes del módulo en relación 40 con la carcasa durante el uso, en fases posteriores del accionamiento del módulo;

la fig. 13 es una vista frontal del módulo de relleno de la fig. 12 después de su retirada del conjunto de émbolo reutilizable; y

45 la fig. 14 es una vista en perspectiva del conjunto de aguja de inyección mostrado separado del resto del módulo de relleno.

Los caracteres de referencia correspondientes indican partes correspondientes a lo largo de las varias vistas. Aunque los dibujos representan una realización de la presente invención, los dibujos no están necesariamente a 50 escala, y ciertas características pueden estar exageradas u omitirse en algunos de los dibujos con el fin de ilustrar y explicar mejor la presente invención.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

55 Haciendo referencia ahora a la fig. 1, se muestra una primera realización de un módulo de relleno de la presente invención. El módulo de relleno, designado en general por (20), se muestra en un estado previo a la utilización. El módulo de relleno (20) se muestra antes de cualquier unión directa o asociación operativa con un conjunto de émbolo reutilizable que se interconecta con el módulo (20) para permitir que el contenido de medicamento del módulo sea inyectado en un usuario a través de una aguja de inyección del módulo. El módulo de relleno (20) se

describe en este documento como que proporciona preferentemente una sola dosis de medicamento fijada prellenada, pero tal es ilustrativo ya que el contenido del módulo podría suministrarse durante varias dosis, dependiendo del conjunto de émbolo reutilizable y siempre que una aguja expuesta no resulte problemática entre dosis.

Con referencia adicional a las figs. 2-6, el módulo de relleno (20) está ensamblado a partir de una carcasa, designada en general por (30), un subconjunto de jeringa, designado en general por (70), un soporte, designado en general por (120), y un conjunto de tres elementos de enclavamiento, designados en general por (170).

- 10 La carcasa (30) es moldeada por inyección en una sola pieza, tal como a partir de un plástico transparente tal como policarbonato, con una forma externa sustancialmente cilíndrica. Naturalmente, pueden emplearse otras formas. La carcasa (30) incluye una porción de cuerpo tubular (32) que está abierta en su extremo superior (33). Una ranura circunferencial (35) formada alrededor de la periferia externa de la porción de cuerpo adyacente al extremo superior (33) está adaptada para permitir el montaje en el conjunto de émbolo reutilizable por medio de componentes
 15 fijadores complementarios no mostrados del conjunto de émbolo. Medios de fijación distintos de la ranura (35) usada para conectar la carcasa directamente al conjunto de émbolo reutilizable, incluyendo porciones de un roscado o un encaje de tipo bayoneta, o un resalte radial, pueden emplearse en la porción de cuerpo (32) para permitir la conexión de dirección de la carcasa (30) al conjunto de émbolo reutilizable. Aún más, los medios de fijación pueden eliminarse de la carcasa, tal como en una realización alternativa en la cual todo el módulo de relleno podría ser
 20 montado en el conjunto de émbolo insertándose axialmente dentro de un retenedor complementario del conjunto de émbolo reutilizable, retenedor que está relacionado con el tipo de retenedor usado a menudo para sujetar cartuchos en plumas de inyección reutilizables, o en una realización alternativa en la cual todo el módulo de relleno es insertado desde el lateral o radialmente dentro de un retenedor de forma diferente asociado con el conjunto de émbolo.
- Un conjunto de tres guías de soporte están formadas en la carcasa tal como se indica en (38). Las guías (38) están provistas como aberturas que se extienden a través del grosor de la pared de la porción de cuerpo, y cada guía (38) incluye un carril que se extiende longitudinalmente (40) con una hendidura que sobresale lateral o angularmente (42) a lo largo de una sección media de la longitud del carril. Alternativamente, las guías podrían estar provistas como escotaduras de forma apropiada formadas en la periferia interior o pared de la porción de cuerpo de carcasa tubular (32). Se muestran tres guías con un espaciado angular igual alrededor de la circunferencia de la carcasa para un diseño robusto, pero podrían usarse menos guías, incluyendo tan solo una, o incluso más guías. Cada hendidura de guía (42) está definida por una superficie de rampa (44) en su extremo inferior, superficie de rampa (44) que es para hacer girar el soporte durante el proceso de inserción de la aguja tal como se describe más adelante. Las guías pueden modificarse, o el soporte guiado por tales guías puede modificarse, para reducir la posibilidad de que las chavetas de soporte deslicen hacia atrás desde el carril (40) al interior de la hendidura (42) cuando el soporte es levantado más allá durante la retracción de la aguja.

25

- A lo largo de la pared interior de la porción de cuerpo de carcasa (32), tres ranuras que se extienden 40 longitudinalmente (46) que están provistas para guiar las chavetas (140) durante el ensamblaje del módulo se extienden hacia arriba hasta el extremo superior de la carcasa (33) desde las tres hendiduras de guía (42). Cada ranura (46) incluye un extremo superior en rampa (47).
- Están provistas tres aberturas cuadradas (48) a través de la porción de cuerpo (32) para alojar características 45 complementarias de los elementos de enclavamiento (170). Las aberturas (48) están espaciadas angularmente por igual alrededor de la circunferencia de la porción de cuerpo y están espaciadas angularmente de las guías de soporte (38).
- En su extremo inferior, la porción de cuerpo (32) incluye un resalte circunferencial (50) que sobresale radialmente hacia el exterior. El resalte (50) promueve la estabilidad sobre la piel cuando se usa el módulo, así como ayuda a la orientación del módulo para el montaje en un conjunto de émbolo reutilizable. Además, el resalte (50) proporciona una característica de agarre que puede ayudar a un usuario a retirar el módulo de relleno del conjunto de émbolo. Una sección de base en forma de disco (52) de la carcasa cierra el extremo inferior de la porción de cuerpo (32) menos para una abertura (54) dispuesta centralmente a través de la sección de base (52). Un collarín tubular cilíndrico (56) de la carcasa sobresale hacia arriba desde la cara superior (58) de la sección de base (52) dentro del hueco (60) interior de la porción de cuerpo de carcasa (32). El collarín (56) ayuda a situar o guiar la jeringa del módulo. El collarín (56) se muestra en relación espaciada con la periferia interior de la porción de cuerpo (32). Tres resaltes de guía (62) de la carcasa (30) están formados en la superficie interior (37) de la porción de cuerpo (32) y se extienden hacia arriba desde la sección de base (52). Los resaltes (60) se extienden longitudinalmente y están

espaciados angularmente por igual dentro de la porción de cuerpo de carcasa.

40

El subconjunto de jeringa (70) está lleno de medicamento y durante el uso se mueve axialmente dentro de la carcasa (30). El movimiento del subconjunto de jeringa (70) tiene como resultado que su aguja sobresale más allá 5 de la carcasa (30) para su inserción dentro de un usuario, y luego que su aguja se retrae, después de la inyección, hasta una posición protegida dentro de la carcasa.

Con referencia particular a las figs. 5 y 6, se muestra que el subconjunto de jeringa (70) incluye un cilindro (72), tal como hecho de un material plástico moldeado. El cilindro (72) incluye una superficie interior cilíndrica (73) que define un hueco interior (75) que sirve como depósito de medicamento en el cual se almacena para su uso el medicamento que ha de suministrarse. El cilindro (72) El cilindro (72) incluye un resalte o pestaña circunferencial que se extiende radialmente hacia el exterior (74) en su extremo superior. Una porción de cuello de diámetro reducido del cilindro (72) forma un conector o collarín tubular (71) adaptado para la recepción de un conjunto de aguja de inyección (76) y la tapa de aguja (78) del subconjunto de jeringa (70).

Un miembro elastomérico o pistón (80) encaja de manera hermética y deslizante con la superficie interior del cilindro (73) para sellar el extremo superior del depósito de medicamento (75). El extremo inferior del depósito de medicamento (75) está sellado por el conjunto de aguja de inyección (76).

El conjunto de aguja de inyección (76) incluye un inserto de conector (84), así como una cánula de doble extremo (86) enclavada en un soporte de aguja (88). El inserto de conector (84) incluye una base rígida de plástico moldeado por inyección (90) con un elemento resiliente (92) que está formado por un sobremoldeo de la base (90). Materiales adecuados para el elemento (92) incluyen un elastómero termoplástico moldeado o una silicona moldeada por inyección. La base de conector (90) proporciona una unión segura al collarín (71) del cilindro de jeringa (72) cuando el inserto de conector (84) está instalado dentro del collarín (71) durante el ensamblaje de fabricación. Un medio de unión adecuado son los salientes en forma de rampa (94) de la base (90) tal como se muestra en la fig. 6 que encajan dentro de muescas de forma apropiada (91) formadas en el collarín (71) que proporcionan juntos un encaje de bayoneta. Una muesca transversal mostrada en el extremo inferior de la base (90) permite que el conjunto de aguja (76) sea girado con una herramienta dentro del collarín (71) para la unión de estilo bayoneta durante el ensamblaje de fabricación. Pueden usarse otros medios de unión conocidos en la técnica, tales como encajes rápidos o encajes a presión. Cuando el inserto de conector (84) está instalado de esa manera, una zona de tabique o sellado (98) del elemento de inserto de conector (92) forma una junta estanca a los fluidos con el cilindro (72) alrededor de un orificio de salida (77) del cilindro para formar un tabique perforable que sella el extremo inferior del depósito de medicamento (75).

La cánula (86) incluye una punta perforadora de tabique (100) en su extremo proximal o superior y una punta penetrante de paciente o de inyección (102) en su extremo distal o inferior. La cánula (86) es moldeada por inserción dentro del soporte de aguja (88), con sus puntas (100) y (102) expuestas, de manera que la cánula y el soporte de aguja se pueden desplazar axialmente como una sola unidad durante el uso tal como se describe más adelante.

El soporte de aguja (88) incluye primera y segunda ranuras circunferenciales (104) y (106) en una disposición espaciada axialmente a lo largo de la longitud del soporte. El extremo distal del soporte (88) está provisto de una cabeza agrandada (89) que está dimensionada y conformada complementaria a la abertura biselada (54) en la sección de base de carcasa (52) para encajar en, pero no atravesar la abertura (54).

El soporte de aguja (88) y la cánula (86) están sujetos dentro de un hueco central que se extiende axialmente (108) del inserto de conector (84) ya sea en una primera o en una segunda posición axial. Las protuberancias (110) del elemento conector (92) se extienden dentro del hueco (108) y encajan dentro de alguna de las ranuras (104) o (106). Durante el ensamblaje de fabricación, el conjunto de aguja de inyección (76) se instala en el inserto de conector (84) de manera que las protuberancias (110) encajan dentro de la ranura (104), disposición en la cual el conjunto de aguja (76) es enclavado en una primera posición axial en relación con el inserto de conector (84) con la punta de la aguja (100) en una relación no perforante separada axialmente con el tabique (98). En la segunda posición axial del conjunto de aguja, las protuberancias (110) encajan dentro de la ranura (106), y la punta de la aguja (100) ha perforado el tabique (98) para estar en comunicación fluida con el contenido del depósito de medicamento (75).

La tapa de aguja (78) mantiene la esterilidad de la cánula (86) antes del uso del módulo de relleno (20). La tapa de aguja (78) está hecha de una sola pieza hermética de un elastómero moldeado por compresión o inyección, tal como una silicona moldeada por compresión. La tapa (78) está formada con un anillo de montaje (114), un cuerpo plegable o fuelle (116), y una zona de punta (118) en el extremo inferior del cuerpo de tapa (116). El anillo (114)

encaja de manera estanca en la periferia del conector de jeringa (71) para mantener la esterilidad de la aguja. El conector (71) incluye dos aristas anulares en su exterior para un acoplamiento seguro con el interior liso del anillo (114). El cuerpo de tapa (116) encaja dentro del collarín de carcasa interior (56) y se pliega a modo de acordeón cuando es comprimido axialmente durante el uso del módulo. La zona de punta (118) está conformada para cubrir la 5 abertura de carcasa biselada (54).

El subconjunto de jeringa (70) permite la inyección sin retirada manual o por parte del usuario de cualquier tapa de esterilidad de la aguja de inyección, pero pueden emplearse diferentes jeringas con el módulo de relleno (20) dentro del alcance de la invención. Por ejemplo, en una realización alternativa, una jeringa de aguja apilada convencional con una tapa de aguja extraíble manualmente en la cual la punta de inyección está metida de manera estanca puede usarse con una modificación adecuada en la carcasa para permitir un acceso apropiado a la tapa. Aún más, la jeringa podría incluir una aguja que esté en contacto con el contenido de fármaco antes del uso, pero con una tapa plegable, no necesariamente en forma de fuelle, que tenga una masa distal en la cual la punta de inyección esté metida de manera estanca antes del uso, y a través de la cual la punta de la aguja empuja para su inserción. En otras realizaciones adicionales, una cánula de doble extremo podría empujar a través de un tapón de tabique, distinto de un inserto que retiene la aguja, y en el extremo del depósito, y una tapa plegable no en forma de fuelle. O, y de nuevo con una aguja seca antes del uso, el subconjunto de jeringa puede emplear un corcho que es desplazado por una punta de aguja proximal roma durante la inserción de la aguja.

20 El soporte (120) se forma como una sola parte en un proceso de moldeo por inyección. Un material aceptable para el soporte (120) que proporciona resistencia y rigidez adecuadas mientras que permite suficiente flexibilidad para la instalación de la jeringa es una resina de acetal conocida como Delrin®. El soporte (120) incluye un cuerpo tubular (122) que está dimensionado para encajar de manera deslizante dentro del hueco (60) interior de una manera guiada tal como se describe más adelante. Tres muescas (132) en el cuerpo de soporte (122) que se extienden longitudinalmente desde el extremo inferior del cuerpo (134) alojan los resaltes de guía (62) en la extensión inferior del recorrido del soporte. A lo largo de una zona axial media, aberturas (136) formadas a través del cuerpo (122) definen tres uñas flexibles idénticas (138). El extremo superior de cada uña (138) incluye un labio (139) para apoyo en la pestaña de la jeringa. Una chaveta (140) con una cara distal en rampa hacia el interior sobresale radialmente hacia el exterior desde cada uña (138) por debajo de su labio respectivo (139) y está dimensionada para encajar dentro de la guía de carcasa (38) para situar de manera giratoria el soporte (120) dentro de la carcasa (30). Cuando el módulo de relleno (20) está orientado en su condición de almacenamiento o previa a la utilización, las chavetas (140) residen dentro de las hendiduras de guía (42).

El soporte (120) incluye una porción de pared tubular (142) que está conectada al cuerpo (122) por medio de una pestaña expandida (144) situada a lo largo de una zona media de la altura axial de la porción de pared (142). La pestaña expandida (144) incluye una pluralidad de muescas arqueadas con fines de moldeo. Una separación anular (155) está formada entre la porción de pared (142) y el cuerpo de soporte (122) en el extremo superior del soporte. El extremo superior (152) de la porción de pared (142) está biselado para promover que un émbolo de avance de pistón del conjunto de émbolo reutilizable se inserte correctamente a través del agujero o vía de paso central (156) definido por la porción de pared (142). Tres muescas espaciadas angularmente por igual (146) formadas en la porción de pared (142) y que se extienden hacia arriba desde la base de la porción de pared (142) están en alineación angular con tres aberturas (150) en la pestaña (144) así como las muescas de cuerpo (132) para alojar los elementos de enclavamiento (170). El cuerpo (122) incluye secciones de pared más gruesas en (157) por encima de las muescas (132) para mantener la separación (155) pequeña y proporcionar un diseño robusto.

Los elementos de enclavamiento (170) están montados en el soporte (120) y se usan en la retracción del soporte y de ese modo el subconjunto de jeringa después de una inyección. Los elementos de enclavamiento (170) pueden estar hechos de un material adecuadamente duradero y resiliente tal como polipropileno. Se muestran tres elementos de enclavamiento (170) con espaciado angular igual y a una altura común dentro del soporte (120). Puede usarse tan solo un elemento de enclavamiento (170), pero la colocación triangular mostrada alrededor de la vía de paso central (156) proporciona un acoplamiento seguro con el émbolo de avance de pistón durante su extracción para efectuar la retracción de la aguja. Aún más, los tres elementos de enclavamiento podrían ser fabricados juntos como una sola parte.

55 Los tres elementos de enclavamiento (170) son idénticos y cada uno incluye una base recta (172) que incluye un borde superior que tiene una porción plana (175) y una superficie inclinada o en forma de rampa (174) a lo largo de su zona superior y radialmente hacia el exterior. La superficie de base (174) es de forma complementaria a una superficie de soporte en ángulo (147) contra la cual encajar cuando el elemento de enclavamiento (170) está ensamblado en el soporte (120). La base (172) incluye además una cara interior (176) que se extiende axialmente, y

un lado inferior (178) que se extiende radialmente hacia el exterior desde el extremo inferior de la cara de base (176). Una porción de lengüeta de forma cuadrada (180) sobresale desde la base (172) a una altura por debajo de la superficie (174). Las porciones de lengüeta (180) están dimensionadas para encajar dentro de aberturas de carcasa (48) para servir como retenes de ubicación de soporte antes del uso.

Cada elemento de enclavamiento (170) incluye además un par de uñas resilientes o apéndices flexibles (182). Un apéndice flexible (182) sobresale desde cada cara lateral alineada radialmente (173) de la base (172) y forma un ángulo para acoplar la superficie de soporte (149). Este acoplamiento de apéndice flexible con la superficie (149) desvía el elemento de enclavamiento (170) radialmente hacia el exterior. Aunque esta formación integral del 10 apéndice flexible de desviación dentro del elemento de enclavamiento facilita el ensamblaje, tal fuerza de desviación, si se desea, puede proporcionarse de otro modo.

El módulo de relleno (20) está pensado para uso con un conjunto de émbolo reutilizable o dispositivo de inyección que en la mayoría de los sentidos puede estar configurado de cualquier manera adecuada conocida en la técnica.

15 Por ejemplo, el conjunto de émbolo reutilizable puede incluir un émbolo impulsado por resorte o motor o de otro modo que permita una inyección automática, o puede ser un sistema que esté controlado y accionado de manera completamente manual. En las figs. 5 y 6 y 8-12 se muestra que el conjunto de émbolo reutilizable, para uso con el módulo de relleno (20), incluye un par de émbolos, concretamente un primer émbolo que funciona con el pistón de jeringa y se hace avanzar para la inyección y luego se retrae para un uso posterior de ese dispositivo, y un segundo 20 émbolo para activar un sistema para enclavar el primer émbolo así como hacer avanzar la jeringa para la inserción de la aguja.

El émbolo de avance de pistón (200) es un vástago cilíndrico (202) que está dimensionado y conformado para que pueda moverse dentro del módulo de relleno (20). Un extremo distal (204) del vástago de émbolo (202) está dimensionado para ser insertado libremente dentro de una cavidad de forma complementaria (82) en el pistón (80). El extremo de vástago (204) se acopla directamente en el émbolo elastomérico en la base de la cavidad (82) mediante contacto de apoyo, aunque el émbolo de avance en una realización alternativa podría impulsar el pistón elastomérico indirectamente, tal como a través de un componente intermedio, tal como un inserto montado en el pistón en el que se apoya el vástago del pistón. Puesto que el émbolo de avance (200) no está unido mecánicamente al pistón, el proceso de extraer el émbolo del pistón después del uso no es complicado. El extremo proximal no mostrado del vástago del émbolo (202) está asociado con el resto del conjunto de émbolo reutilizable no mostrado, y no entra en el módulo de relleno (20) durante el uso.

El émbolo (200) también incluye un elemento de retracción que coopera con los elementos de enclavamiento (170) 35 para permitir la retracción de la aguja después de realizarse una inyección. El elemento de retracción está provisto como un resalte (208) que sobresale radialmente del vástago (202) proximalmente del extremo de vástago (204). El resalte (208) se extiende por toda la circunferencia del vástago (204) para permitir que sea enclavada en cualquier orientación angular del vástago (204). La sección transversal del resalte (208) mostrado en las figuras es representativa de todas las secciones transversales longitudinales, y el resalte (208) incluye una superficie distal 40 (210), una superficie biselada (212), y una superficie en ángulo orientada hacia arriba (214). La superficie del resalte (210) no se apoya en el pistón de jeringa en la realización mostrada, pero podría en realizaciones alternativas, tales como donde se emplea un pistón configurado de diferente manera. La superficie biselada (212), que define el mayor diámetro del émbolo (200) que se inserta dentro del módulo de relleno, está dimensionada para encajar libremente a través de la vía de paso central (156) definida por la porción de pared de soporte (142), y entre las caras interiores 45 (176) de los elementos de enclavamiento (170) cuando los apéndices flexibles (182) han desviado los elementos (170) radialmente hacia el exterior. El bisel de la superficie (212) ayuda a situar e insertar el émbolo dentro de la vía de paso de soporte. La superficie en ángulo (214) sirve como superficie de apoyo de retenida para el acoplamiento con las caras de base (178) de los elementos de enclavamiento (170) que han sido desplazadas radialmente hacia el interior sobre la fuerza de desviación de los apéndices flexibles (182) durante el uso tal como se describe más 50 adelante. El ángulo de la superficie (214) es ventajoso ya que, si los elementos de enclavamiento, a pesar de que la desviación proporcionada por los apéndices flexibles (182), no se desplazan hacia el exterior lo suficiente como para enclavar el módulo después del uso, la superficie en ángulo (214) sirve para ejercer de leva sobre los elementos de enclavamiento hacia fuera para lograr tal movimiento hacia el exterior.

55 El émbolo de activación de retenida (220) se muestra en forma de manguito cilíndrico, aunque pueden emplearse elementos de forma diferente que sean adecuados para acoplamiento en los elementos de enclavamiento. El émbolo (220) incluye la cara de extremo achaflanado (222) que se usa para acoplar en los elementos de enclavamiento (170) para impulsarlos radialmente hacia el exterior cuando el émbolo (220) se hace avanzar axialmente dentro del módulo (20). El émbolo (220) en la realización mostrada también sirve para impulsar el

subconjunto de jeringa y el soporte hacia abajo durante la inserción de la aguja según se describe más adelante. La función de inserción de la aguja no tiene que ser realizada por el émbolo de activación de retenida en todas las realizaciones, ya que un elemento adicional del dispositivo de inyección, o posiblemente el émbolo de avance de pistón, podría realizar alternativamente esta función.

El émbolo (220) está dispuesto coaxialmente con el vástago del émbolo (202), pero los émbolos (200) y (220) pueden moverse axialmente uno respecto al otro al menos durante parte del funcionamiento del conjunto de émbolo reutilizable. Por ejemplo, tal como con el módulo de relleno (20) montado en el conjunto de émbolo reutilizable y al principio de una inyección, los émbolos (200) y (220) se mueven de manera simultánea axialmente hacia abajo hasta un punto en el cual el resalte de émbolo (208) está por debajo de los elementos de enclavamiento (170) y se ha hecho avanzar apropiadamente al subconjunto de jeringa mediante el émbolo (220) para permitir una completa inserción de la aguja en un usuario. Después, el dispositivo de inyección, sin más movimiento hacia abajo del émbolo (220), puede mover el émbolo (200) más hacia abajo para suministrar el contenido de medicamento. Después de una inyección, la retracción del émbolo (200) puede producirse sin movimiento del émbolo (220) hasta que el soporte (120) es desplazado hacia arriba tal como se describe más adelante, desplazamiento que también mueve hacia arriba al émbolo (220). Se apreciará que el émbolo (220) puede, de hecho, ser retraído por el conjunto de émbolo independientemente del émbolo (200) en cualquier momento después de que, por ejemplo, el émbolo (200) se acople con el pistón de jeringa, ya que los elementos de enclavamiento se han girado de manera que las porciones de lengüeta (180) no se alinean con las aberturas de carcasa (48) ya que las porciones de lengüeta se 20 apoyarían entonces en la pared interior de la carcasa.

La descripción anterior del conjunto de émbolo pretende ser ilustrativa y no limitativa, ya que los módulos de relleno dentro del alcance de la presente invención pueden ser accionados por émbolos configurados de manera y en número diferente. Por ejemplo, las funciones realizadas por el conjunto de émbolo descrito anteriormente, 25 concretamente la activación de los elementos de enclavamiento, la inserción de la aguja, el suministro de medicamento y la retracción de la aguja, pueden realizarse con dos émbolos que dividen la funcionalidad de manera diferente a como se divide entre los dos émbolos descritos anteriormente. Alternativamente podrían usarse más émbolos con funcionalidad dedicada. O podría usarse tan solo un único émbolo con algunos módulos de relleno. Por ejemplo, con un módulo de relleno provisto dentro de aberturas adicionales en el soporte por encima del cilindro de 30 jeringa, podría usarse un conjunto de émbolo que tenga sólo un único émbolo configurado apropiadamente. Ese único émbolo podría incluir no sólo un extremo distal y una superficie de apoyo de retenida que funcionen de manera similar a lo descrito anteriormente, sino también uñas que sobresalgan hacia el exterior y hacia abajo desde una sección media de ese único émbolo. Las puntas inferiores de las uñas del único émbolo se apoyarían y ejercerían de levas hacia el interior en los elementos de enclavamiento del módulo de relleno al realizar la inserción de la aguja y 35 la función de activación de los elementos de enclavamiento. Cuando el soporte del módulo de relleno gira durante la inserción de la aquia, las aberturas adicionales provistas en el soporte se moverían hasta corresponder exactamente con las uñas, permitiendo que las puntas inferiores de las uñas pasen a través de las aberturas de soporte y dentro del volumen interior del cilindro de la jeringa cuando el único émbolo se hace avanzar para forzar al contenido de medicamento desde el módulo. Aunque este módulo de relleno modificado puede tener que estar alineado 40 angularmente con el conjunto de émbolo para su uso, el diseño del conjunto de émbolo con el cual funciona se simplifica respecto al que tiene múltiples émbolos móviles.

El módulo de relleno (20) puede ser ensamblado por el fabricante de la siguiente manera. En primer lugar el soporte (120) se proporciona independiente de los otros componentes del módulo (20). Después, cada elemento de enclavamiento (170) se inserta por separado dentro del extremo inferior del cuerpo tubular (122) de manera que su porción de lengüeta (180) se inserta y desliza hacia arriba dentro de la muesca de soporte (132). Cada elemento de enclavamiento (170) se desliza así hacia arriba, con su superficie de base (174) pasando a través de la abertura de pestaña (150), y su cara interior (176) entrando en la muesca de la porción de pared (146), hasta que su superficie de base (174) se apoya en la superficie de soporte (147). Durante este deslizamiento hacia arriba de los elementos de enclavamiento, los apéndices flexibles (182) son manipulados para encajar sobre, y deslizar a lo largo de la superficie (149) de la porción de pared (142). En este punto del ensamblaje, los elementos de enclavamiento y el soporte están dispuestos como se muestra en la fig. 7.

Después de que los tres elementos de enclavamiento (170) están así instalados, se instala el subconjunto de jeringa completo (70) insertándolo dentro del cuerpo tubular (122) desde abajo y con el extremo del resalte de cilindro (74) por delante. El subconjunto de jeringa (70) puede insertarse libremente hasta que el resalte de cilindro (74) se encuentra con las uñas flexibles (138). Cuando se aplica fuerza suficiente al subconjunto de jeringa, las uñas flexibles (138) son forzadas hacia el exterior hasta que el resalte de cilindro (74) pasa por ellas, punto en el cual las uñas flexibles (138) enganchan de nuevo hacia dentro con el labio (139) encajando por debajo del lado inferior del

resalte de cilindro (74) para impedir que el subconjunto de jeringa sea extraído hacia abajo. En tal punto, un movimiento hacia arriba adicional del subconjunto de jeringa (70) está limitado por el acoplamiento de apoyo del lado inferior de la pestaña de soporte (144) por el resalte de cilindro (74) por medio de los apéndices flexibles (182) intercalados entre ellas. El subconjunto de jeringa (70) es así enclavado o capturado axialmente dentro del soporte 5 (120).

El soporte ensamblado (120), el subconjunto de jeringa (70), y los elementos de enclavamiento (170) puede instalarse entonces como una unidad en la carcasa (30), primero insertando la punta inferior del subconjunto de jeringa dentro de la parte superior de la carcasa y luego moviéndolo hacia abajo hasta que las chavetas de soporte (140) estén alineadas con las ranuras (46). A medida que se prosigue el movimiento hacia abajo dentro de la carcasa, las uñas flexibles (138) se doblan hacia el interior para permitir que las chavetas (140) deslicen dentro de las ranuras (46), y durante tal tiempo las porciones de lengüeta (180) son forzadas hacia el interior por una herramienta contra la fuerza de retorno proporcionada por la flexión de los apéndices flexibles (182) para que puedan insertarse dentro del interior de la carcasa (30) y deslizar a lo largo de la superficie interior de la carcasa (37). Este movimiento hacia abajo continúa hasta que las porciones de lengüeta (180) enganchan hacia fuera, debido a la fuerza proporcionada por los apéndices flexibles, dentro de las aberturas de carcasa (48), deteniendo así el proceso de ensamblaje. Las chavetas (140) engancharán hacia fuera dentro de la abertura proporcionada por la hendidura (42) de la guía de soporte (38) justo antes o simultáneamente con el recorrido de enganche hacia fuera de las porciones de lengüeta (180). En este punto, el módulo de relleno (20) está configurado en su disposición preparada para su uso mostrada en la fig. 1.

El módulo de relleno (20) y sus beneficios se comprenderán aún más en vista de la siguiente descripción de su funcionamiento. El módulo de relleno (20) tal como se muestra en la fig. 1 se monta en primer lugar en un conjunto de émbolo reutilizable. Aunque no se muestra en las figuras, puede estar provista una etiqueta en el exterior de la 25 carcasa, etiqueta que podría extenderse desde la parte inferior de la ranura (35) hasta el extremo del soporte (134). Tal etiqueta ocultaría de la vista el mecanismo del soporte y la tira indicativa (190), así como haría más difícil a un usuario empujar hacia el interior con el dedo los extremos de las porciones de lengüeta (180), permitiendo mientras tanto que sea visible toda la dosis de la jeringa. Para la configuración de carcasa mostrada que incluye la ranura (35), el montaje implica disponer el módulo (20) de manera que los émbolos (200) y (220) puedan insertarse a través 30 del extremo superior de la carcasa con el extremo distal del vástago (204) y el resalte (208) entrando suavemente en el volumen central o vía de paso (156) del soporte (120) y el subconjunto de jeringa (70), y con la cara extrema del émbolo (222) entrando en la separación (155), punto tras el cual los elementos de fijación no mostrados que actúan con la ranura (35) puede ser acoplados por un usuario. El hecho de que el módulo (20) no tenga que estar orientado angularmente en relación con los émbolos (200) y (220) facilita la instalación del módulo. En este punto, el módulo 35 de relleno (20) y los émbolos (200) y (220) están dispuestos tal como se muestra en las figs. 5 y 6. Se reconocerá que el émbolo (200) no tiene que ser insertado dentro de la vía de paso (156) durante el proceso de montaje del módulo, sino que, en cambio, podría insertarse así mediante un accionamiento del conjunto de émbolo después de que el montaje del módulo esté terminado.

40 Cuando se pretende suministrar la dosis contenida en el módulo (20), el dispositivo es manipulado de manera que la sección de base de carcasa se coloca contra la piel del paciente con la abertura 54 sobre el sitio de inyección previsto, y se acciona el conjunto de émbolo reutilizable, haciendo inicialmente que los émbolos (200) y (220) se hagan avanzar simultáneamente hacia abajo dentro de la carcasa (30). Durante este avance, el extremo del manguito del émbolo (222) en primer lugar se apoya en las superficies en rampa (174) de los elementos de 45 enclavamiento (170), y luego desliza a lo largo de tales superficies en rampa (174) a medida que ejerce de leva sobre los elementos de enclavamiento (170) radialmente hacia el interior contra la fuerza de los apéndices flexibles (182). Los elementos de enclavamiento (170) se mueven radialmente hacia el interior de manera que las caras interiores (176) se mueven desde su primera disposición que permitía el paso axial libre del resalte de émbolo (208) hasta una segunda disposición que tiene una abertura circular central que es más pequeña que el diámetro 50 abarcado por el resalte (208), resalte (208) que está por debajo de los elementos de enclavamiento (170) cuando se ejerce de leva sobre los elementos de ese modo hacia el interior, pero la cual abertura circular central todavía permite el paso libre del diámetro del vástago. En esta segunda disposición, las lengüetas (180) ya no sobresalen radialmente hacia el exterior dentro de las aberturas de carcasa (48). Aunque se describe que este desplazamiento de los elementos de enclavamiento se produce durante el suministro de la dosis, tal podría producirse 55 alternativamente durante el montaje del módulo de relleno. Además, el émbolo (220) podría hacerse avanzar así independientemente del émbolo (200) si el émbolo (200), por ejemplo, hubiera sido insertado suficientemente dentro del módulo de relleno durante el montaje del módulo de relleno. En este punto, el módulo de relleno (20) y los émbolos (200) y (220) están dispuestos tal como se muestra en la fig. 8.

A medida que los émbolos (200) y (220) continúan haciéndose avanzar simultáneamente hacia abajo dentro de la carcasa (30), se produce la inserción de la aguja en el paciente porque el subconjunto de jeringa (70) es impulsado hacia abajo por el émbolo (220) que actúa sobre los elementos de enclavamiento (170) que actúan sobre el resalte de cilindro de la jeringa (74). El émbolo (200) aún no contacta con el pistón de jeringa (80). El soporte (120) también 5 es impulsado hacia abajo, debido a que el resalte de cilindro (74) actúa sobre el labio (139), y el soporte (120) inicialmente también gira ligeramente, tal como aproximadamente siete grados, durante este movimiento hacia abajo debido a la torsión impartida por las guías (38) a medida que las chavetas de soporte (140) montan a lo largo de las superficies de rampa (44) y dentro de los carriles (40). En las figuras 9-12, el soporte y los otros componentes además de la carcasa se han girado todos desde sus posiciones de rotación en la fig. 8, pero se muestran similares 10 a la fig. 8 porque, en cambio, la carcasa en las figs. 9-12 se ha girado los siete grados desde su posición mostrada en la fig. 8. Cuando se giran así, las muescas de soporte (132) se mueven a una alineación angular con los resaltes de guía de carcasa (62) de manera que el soporte (120) es fijado de manera giratoria cuando se mueve más hacia abajo a lo largo de la longitud de los resaltes (62) a medida que tales resaltes encajan en las muescas (132). Durante la rotación inicial del soporte (120), los elementos de enclavamiento (170) soportados por el soporte 15 también se giran de manera similar para desalinearse angularmente con las aberturas de carcasa (48), y de este modo no vuelven a extenderse dentro de tales aberturas (48) durante el proceso de retracción de la aquia, sino que, en cambio, se apoyan contra la superficie de la pared de la carcasa (37), y de este modo el émbolo (200) ya no tiene que aplicar una fuerza hacia abajo sobre los elementos de enclavamiento una vez que el émbolo (200) contacta adecuadamente con el pistón (80).

20 Durante este avance simultáneo hacia abajo de los émbolos (200) y (220) para la inserción de la aguja, el conjunto de aguja (76) inicialmente no está en comunicación de flujo con el depósito de la jeringa ya que el conjunto de aguja está en su primera posición axial en la cual las protuberancias (110) encajan en la ranura (104). A medida que el subconjunto de jeringa (70) se mueve hacia abajo, la punta de la cánula (102) perfora la zona de punta de tapa (118) 25 y pasa a través de la abertura de carcasa (54) y dentro del usuario. La característica de retén de la protuberancia (110) y la ranura (104) impiden que la cánula (86) se mueva axialmente en relación con el conector de jeringa (71). A medida que el movimiento hacia abajo de la jeringa continúa siendo impulsado por el avance del émbolo (220), la cabeza de soporte de aguja (89) se apoya en la sección de base de carcasa (52), con la zona de punta de la tapa (118) intercalada entre las mismas, y un avance adicional del émbolo (220) vence la retención de la protuberancia 30 (110) y la ranura (104) de manera que el conjunto de aguja (76) se desplaza hasta su segunda posición axial donde las protuberancias (110) encajan en la ranura (106) y con la punta de la aguja (100) perforando el tabique (98) para permitir que el contenido de la jeringa sea forzado a través de la cánula (86) y saliendo por la punta de inyección (102). En este punto, en el cual el cilindro (72) contacta con el collarín (56) hasta ser detenido físicamente y no avanzar más, el módulo de relleno (20) y los émbolos (200) y (220) están dispuestos tal como se muestra en la fig. 9, 35 y se detiene el avance del émbolo (220).

El avance hacia abajo adicional del émbolo (200) por el conjunto de émbolo reutilizable tiene como resultado que el extremo distal del vástago (204) se apoya en el pistón (80) en la base de la cavidad (82) e impulsa el pistón (80) hacia abajo dentro del cilindro (72) para disminuir el volumen del depósito (75) e impulsar el contenido de la jeringa 40 dentro del usuario a través de la cánula de la aguja (86). Cuando el contenido del subconjunto de jeringa (70) ha sido inyectado adecuadamente, el módulo de relleno (20) y los émbolos (200) y (220) están dispuestos tal como se muestra en la fig. 10.

La retracción de la aguja se realiza por el conjunto de émbolo reutilizable retrayendo el émbolo (200) hacia arriba dentro del módulo de relleno sin movimiento axial del émbolo (220). Al comienzo de tal retracción del émbolo, no se produce ningún efecto sobre el módulo de relleno (20) a medida que la retracción del émbolo progresa hasta que la superficie de retenida (210) se apoya y es enclavada de ese modo por los lados inferiores (178) de los elementos de enclavamiento (170) que todavía están en su disposición radialmente hacia el interior. En este punto, el módulo de relleno (20) y los émbolos (200) y (220) están dispuestos tal como se muestra en la fig. 11. Se apreciará que aunque el émbolo (220) fuera retraído inicialmente con el émbolo (200), los elementos de enclavamiento (170) todavía podrían mantenerse en su disposición radialmente hacia el interior que proporciona una interferencia para el resalte de émbolo (208) debido a que las caras externas de las lengüetas (180) se apoyan en la superficie interior de la carcasa (30).

55 A medida que la retracción del émbolo (200) continúa después, junto con la propia retracción o incluso la retracción activada por el émbolo (200) del émbolo (220), debido a la relación entre la parte superior de los apéndices flexibles (182) de los elementos de enclavamiento (170) que actúan sobre la pestaña de soporte (144), y los labios de soporte (139) que actúan sobre la pestaña de cilindro de jeringa (74), el émbolo (200) levantará los elementos de enclavamiento (170), el soporte (120) y el subconjunto de jeringa (70) hacia arriba dentro de la carcasa (30). Este

ES 2 571 743 T3

levantamiento continúa hasta que el soporte (120) es sacado parcialmente de la carcasa (30) y los elementos de enclavamiento (170) se desenganchan hacia fuera, debido a la fuerza de retorno proporcionada por los apéndices flexibles (182), hasta su posición radial ocupada antes del uso, posición radial en la cual las lengüetas (180) sobresalen radialmente hacia el exterior sobre la parte superior de la carcasa (30). En esta disposición radia de los elementos de enclavamiento, el émbolo (200) es liberado de su acoplamiento enclavado con los elementos de enclavamiento (170) para permitir la extracción adicional del émbolo del módulo de relleno. En este punto, el módulo de relleno (20) y los émbolos (200) y (220) están dispuestos tal como se muestra en la fig. 12. La punta de la aguja (102) ha sido retraída totalmente dentro del interior de la carcasa. Aunque la tapa (78) se muestra en la fig. 12 devuelta a su disposición extendida, aunque, debido a la fricción con la cánula (86) permanece en su estado plegado sin cubrir la punta (102), la probabilidad de que la aguja se clave inadvertidamente se reduce en virtud de la retracción de la aguja dentro de la carcasa.

Cuando el conjunto de émbolo reutilizable y el módulo de relleno (20) son separados o desmontados posteriormente, el módulo de relleno (20) estará tal como se muestra en la fig. 13. El estado utilizado del módulo de relleno resulta evidente a partir de la diferencia en su apariencia respecto a su estado sin utilizar mostrado en la fig. 1. Por ejemplo, el soporte (120) ahora sobresale por encima de la parte superior de la carcasa (30) y una tira indicadora (190) que se extiende alrededor de la periferia radial del soporte (120) ahora resulta visible para un usuario. La reutilización del módulo se impide mediante las lengüetas (180) que se acoplan a la carcasa (30) para evitar la inmersión de la jeringa. El usuario puede desechar el módulo de relleno (20) de manera apropiada y cargar el conjunto de émbolo reutilizable con un nuevo módulo de repuesto (20) para un uso posterior.

Aunque se ha mostrado y descrito que esta invención tiene diseños preferentes, la presente invención puede modificarse dentro del alcance de las reivindicaciones.

REIVINDICACIONES

1. Un módulo de relleno (20) montable en un conjunto de émbolo reutilizable que tiene al menos un émbolo (200), incluyendo el al menos un émbolo una superficie de apoyo de retenida (214), comprendiendo el 5 módulo de relleno:

una carcasa (30) que tiene un hueco (60) interior y un primer extremo axial y un segundo extremo axial;

un subconjunto de jeringa (70) que incluye un cilindro (72) con un depósito lleno de medicamento (75), un pistón (80) y una aguja (86) con una punta de inyección (102), teniendo dicho pistón capacidad de avanzar dentro de dicho cilindro por el movimiento del al menos un émbolo en una dirección de avance para empujar al medicamento desde dicho depósito a través de dicha aguja y fuera de dicha punta de inyección, siendo desplazable dicho subconjunto de jeringa dentro del hueco interior de la carcasa desde una posición retraída hasta una posición de inyección por el movimiento del al menos un émbolo, sobresaliendo dicha punta de inyección del hueco interior de la carcasa y más allá de dicho segundo extremo axial de la carcasa cuando dicho subconjunto de jeringa está dispuesto en dicha posición de inyección;

un soporte (120) que tiene una vía de paso (156) en la cual es insertable el al menos un émbolo para el avance de dicho pistón, siendo desplazable dicho soporte dentro del hueco interior de dicha carcasa desde una primera posición axial hasta una segunda posición axial, siendo dicho subconjunto de jeringa acoplado por dicho soporte para moverse axialmente cuando dicho soporte se desplaza desde dicha primera posición axial hasta dicha segunda posición axial, estando dicho subconjunto de jeringa dispuesto en dicha posición de inyección cuando dicho soporte está en dicha primera posición axial, estando dicha punta de inyección de la aguja dispuesta en dicho hueco interior de la carcasa entre dichos primer y segundo extremos axiales cuando dicho soporte está en dicha segunda posición 25 axial:

al menos un elemento de enclavamiento (170) montado de manera desplazable radialmente en dicho soporte, incluyendo dicho al menos un elemento de enclavamiento una superficie de leva (174) y una superficie de retenida (178), dicho al menos un elemento de enclavamiento siendo desplazable radialmente en relación con el soporte desde una disposición retraída radialmente hacia el exterior hasta una disposición de enclavamiento radialmente hacia el interior por el al menos un émbolo que se acopla en dicha superficie de leva durante el avance del al menos un émbolo.

donde dicha superficie de retenida, cuando dicho al menos un elemento de enclavamiento está dispuesto en dicha 35 disposición de enclavamiento, restringe un tamaño de la vía de paso para impedir la extracción del al menos un émbolo de la vía de paso debido a la interferencia por dicha superficie de retenida con la superficie de apoyo de retenida (214):

donde dicho soporte, con la retracción del al menos un émbolo en una dirección opuesta a dicha dirección de avance mientras el al menos un elemento de enclavamiento está en dicha disposición de enclavamiento de manera que la superficie de apoyo de retenida se acopla en dicha superficie de retenida, es elevado dentro de dicha carcasa para ser desplazado desde dicha primera posición axial hasta dicha segunda posición axial para retraer la punta de inyección dentro del hueco interior de la carcasa, donde en dicha segunda posición axial de dicho soporte dicho al menos un elemento de enclavamiento es desplazable desde dicha disposición de enclavamiento hacia dicha disposición retraída para alejar dicha superficie de retenida de dicha superficie de apoyo de retenida para permitir la extracción del al menos un émbolo de la vía de paso sin elevación adicional de dicho soporte.

- 2. El módulo de relleno de acuerdo con la reivindicación 1, donde dicho al menos un elemento de enclavamiento incluye una lengüeta (180) que se inserta dentro de una abertura (48) en dicha carcasa para situar 50 axialmente dicho soporte dentro de dicha carcasa antes del uso del módulo de relleno.
 - 3. El módulo de relleno de acuerdo con la reivindicación 1, donde dicho al menos un elemento de enclavamiento desliza radialmente hacia el interior por dentro de dicho soporte cuando se desplaza desde dicha disposición retraída hasta dicha disposición de enclavamiento.

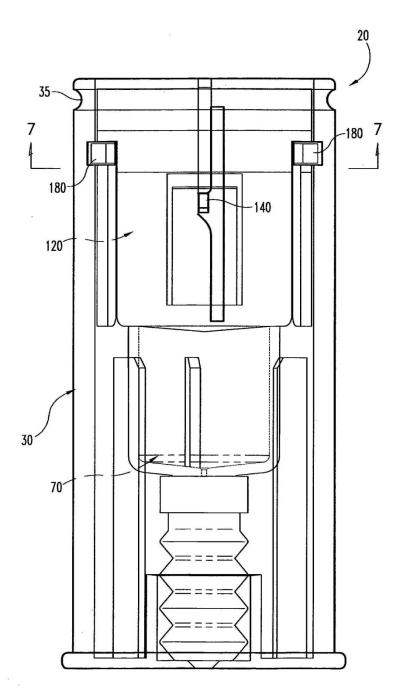
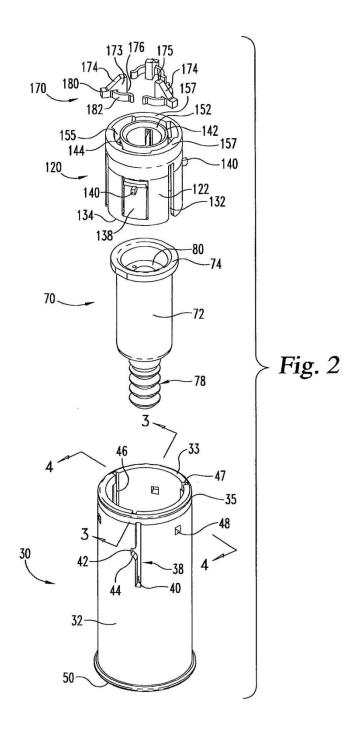
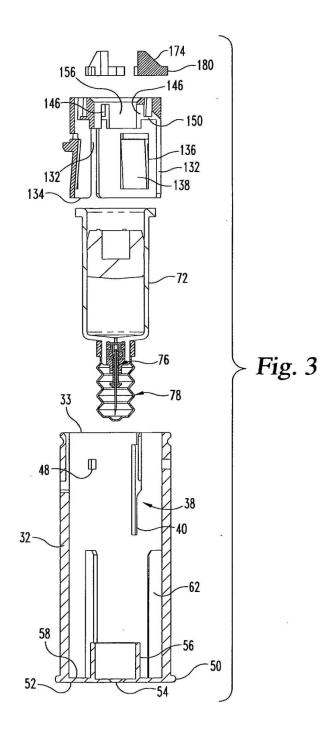
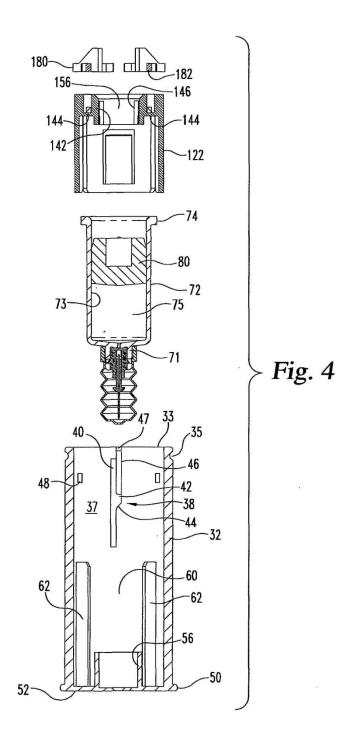
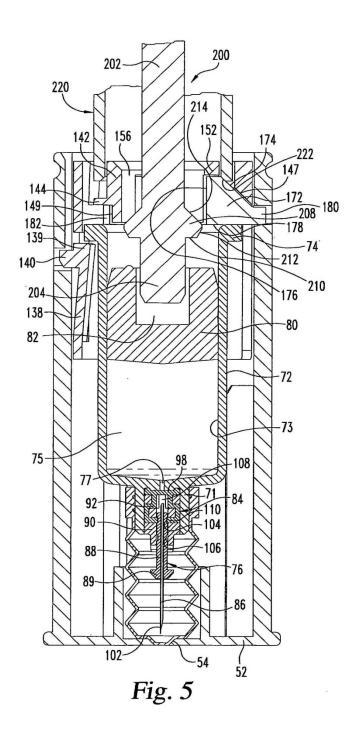
55

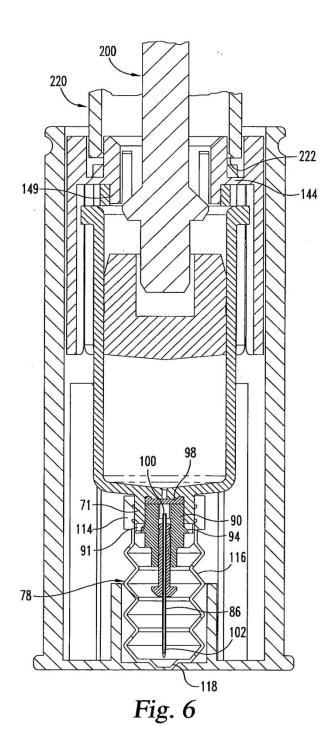
4. El módulo de relleno de acuerdo con la reivindicación 2, que comprende además medios (44, 140) para girar dicho soporte dentro de dicha carcasa a medida que dicho soporte se mueve desde una posición de almacenamiento hasta dicha primera posición axial, por lo cual dicha lengüeta se aleja de la alineación angular con dicha abertura de la carcasa.

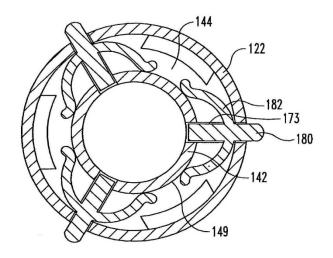
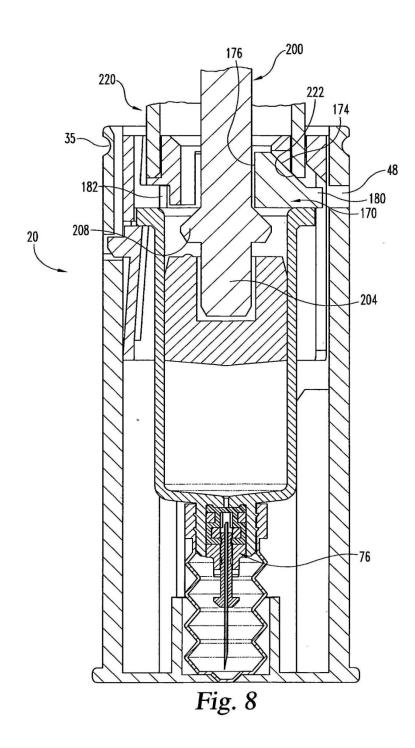
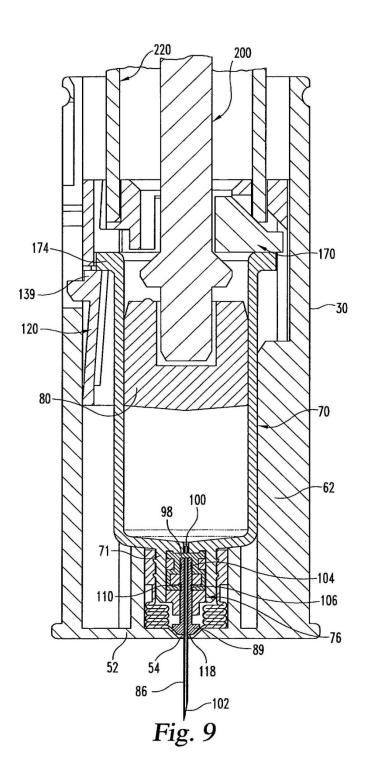
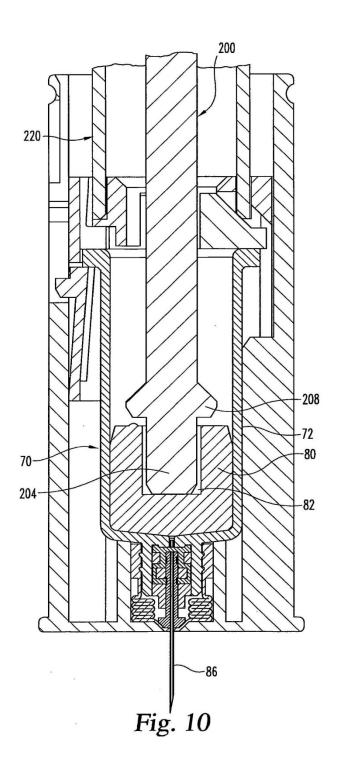
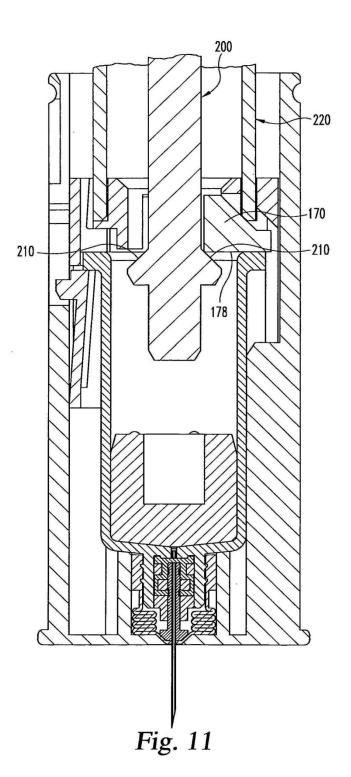
5. El módulo de relleno de acuerdo con la reivindicación 1, donde dicho al menos un elemento de enclavamiento incluye medios (182) que pueden acoplarse con dicho soporte para desviar dicho elemento de enclavamiento desde dicha disposición de enclavamiento hasta dicha disposición retraída.

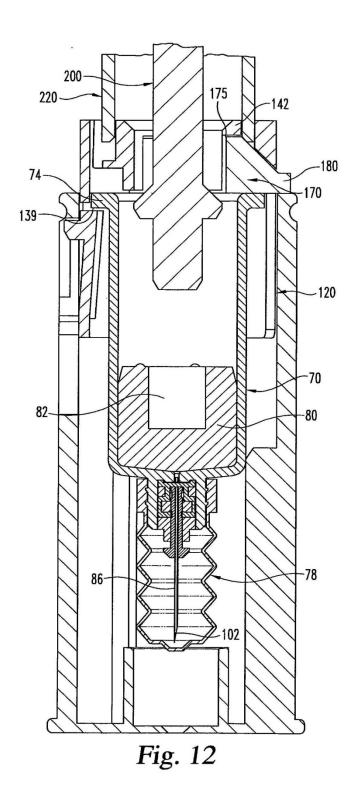
5

- 6. El módulo de relleno de acuerdo con la reivindicación 2, donde dicho soporte, cuando está en dicha segunda posición axial, sobresale del hueco interior de la carcasa y más allá de dicho primer extremo axial de la carcasa, y donde dicha lengüeta, cuando está en dicha disposición retraída, sobresale radialmente de dicho soporte para extenderse sobre dicho primer extremo axial de la carcasa para impedir así que dicho soporte se sumerja de 10 nuevo en el hueco interior de la carcasa por acoplamiento de apoyo de dicha lengüeta con dicho primer extremo axial de la carcasa.
- 7. El módulo de relleno de acuerdo con la reivindicación 1, donde dicho al menos un elemento de enclavamiento comprende tres elementos de enclavamiento (170) espaciados angularmente por igual alrededor del 15 soporte.


Fig. 1


Fig. 7

