

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 571 865

51 Int. Cl.:

C12N 9/80 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

96 Fecha de presentación y número de la solicitud europea: 28.12.2006 E 14173437 (6)

(97) Fecha y número de publicación de la concesión europea: 02.03.2016 EP 2851423

(54) Título: Acilasas de beta-lactama de tipo II mutantes

(30) Prioridad:

28.12.2005 EP 05113024

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 27.05.2016

(73) Titular/es:

DSM SINOCHEM PHARMACEUTICALS NETHERLANDS B.V. (100.0%) Alexander Fleminglaan 1 2613 AX Delft, NL

(72) Inventor/es:

VAN DER LAAN, JAN METSKE; KERKMAN, RICHARD; BIJLEVELD, WILLEM y GIELESEN, BIANCA ELISABETH MARIA

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Acilasas de beta-lactama de tipo II mutantes

5

10

15

20

25

30

35

40

45

50

La presente invención se refiere a acilasas de beta-lactama de tipo II mutantes, a polinucleótidos que codifican dichas enzimas y a microorganismos transformados con dichos polinucleótidos, así como a métodos para producir la beta-lactama de tipo II mutante. La invención se refiere, además, a un procedimiento para la producción de un compuesto de beta-lactama desacilado de interés utilizando las acilasas de beta-lactama de tipo II mutantes de la invención.

Los antibióticos beta-lactámicos constituyen el grupo más importante de compuestos antibióticos, con un largo historial de uso clínico. Entre este grupo, los más prominentes son las penicilinas y cefalosporinas. Las penicilinas son producidas de forma natural por diversos hongos filamentosos tales como *Penicillium* (p. ej., *P. chrysogenum*). Las cefalosporinas son producidas de forma natural por diversos microorganismos tales como *Acremonium* (p. ej., *A. chrysogenum*) y *Streptomyces* (p. ej., *Streptomyces clavuligerus*).

Como resultado de las técnicas de mejora de la cepa clásicas, los niveles de producción de los antibióticos de *P. chrysogenum* y *A. chrysogenum* han aumentó notablemente a lo largo de las últimas décadas. Con el creciente conocimiento de las vías biosintéticas que conducen a penicilinas y cefalosporinas y el advenimiento de la tecnología del ADN recombinante, se han vuelto disponibles nuevas herramientas para la mejora de las cepas de producción.

La mayoría de las enzimas implicadas en la biosíntesis de beta-lactamas han sido identificadas y sus correspondientes genes han sido clonados tal como se puede encontrar en Ingolia y Queener, Med Res Rev (1989) 9:245-264 (ruta de biosíntesis y enzimas) y Aharonowitz, Cohen y Martin, Ann Rev Microbiol (1992) 46:461-495 (clonación de genes).

Las dos primeras etapas en la biosíntesis de penicilina en *P. chrysogenum* son la condensación de los tres aminoácidos ácido L-5-amino-5-carboxipentanoico (ácido L-alfalfa-aminoadípico) (A), L-cisteína (C) y L-valina (V) en el tripéptido LLD-ACV, seguido de ciclación de este tripéptido para formar isopenicilina N. Este compuesto contiene la típica estructura de beta-lactama. La tercera etapa implica la sustitución de la cadena lateral hidrófila del ácido L-5-amino-5-carboxipentanoico con una cadena lateral hidrofóbica por la acción de la enzima aciltransferasa (AT).

En el documento EP-A-0448180 se ha descrito que la reacción de intercambio enzimática mediada por AT tiene lugar dentro de una organela celular, el microcuerpo. La observación de que se pueden formar cantidades sustanciales de deacetoxicefalosporina C (DAOC) por transformantes no presagiados de *P. chrysogenum* expresan deacetoxicefalosporina C sintasa (EC 1.14.20.1 - DAOCS, se indica adicionalmente en esta memoria como expandasa) implica la presencia de cantidades significativas de penicilina N, el sustrato natural para expandasa, en *P. chrysogenum* (Alvi et al, J Antibiot (1995) 48:338-340). Sin embargo, las cadenas laterales de D-alfa-amino-adipilo de DAOC no se pueden separar fácilmente.

Las cefalosporinas son mucho más caras que las penicilinas. Una razón es que algunas cefalosporinas (p. ej., cefalexina) se preparan a partir de penicilinas mediante un cierto número de conversiones químicas. Otra razón es que, hasta ahora, sólo se pueden fermentar cefalosporinas con una cadena lateral de D-alfa-amino-adipilo. La cefalosporina C, de lejos el material de partida más importante a este respecto, es muy soluble en agua a cualquier pH, implicando así procesos de aislamiento largos y costosos utilizando tecnologías de columna engorrosas y caras. La cefalosporina C obtenida de esta manera tiene que ser convertida en cefalosporinas utilizadas terapéuticamente por un número de conversiones químicas y enzimáticas.

Los métodos actualmente favorecidos en la industria para preparar el compuesto intermedio ácido 7-amino-deacetoxicefaloporánico (7-ADCA) implican etapas químicas complejas que conducen a la expansión y derivatización de penicilina G. Una de las etapas químicas necesarias para producir 7-ADCA implica la expansión de la estructura de anillo de 5 miembros de la penicilina a una estructura de anillo de 6 miembros de la cefalosporina (véase, por ejemplo, el documento US 4.003.894). Este procesamiento químico complejo es tanto costoso como nocivo para el medio ambiente. Por consiguiente, hay un gran deseo de reemplazar dichos procesos químicos por reacciones enzimáticas tales como la catálisis enzimática, preferiblemente durante la fermentación. Una clave para la sustitución del proceso de expansión química mediante un proceso biológico es la enzima central en la vía biosintética de la cefalosporina, expandasa. Se encontró que la enzima expandasa de la bacteria *Streptomyces clavuligerus* (*S. clavuligerus*) lleva a cabo, en algunos casos, expansiones del anillo de penicilina. Cuando se

introduce en *P. chrysogenum*, puede convertir la estructura del anillo de penicilina en la estructura del anillo de cefalosporina tal como se describe en Cantwell et al., Proc R Soc Lond B (1992) 248:283-289. Puesto que la enzima expandasa cataliza la expansión del anillo de tiazolidina de 5 miembros de la penicilina N al anillo de dihidrotiazina de 6 miembros de DAOC, esta enzima sería, por supuesto, un candidato lógico para reemplazar las etapas de expansión del anillo del proceso químico. Desafortunadamente, la enzima actúa sobre el compuesto intermedio de la penicilina N de la vía biosintética de la cefalosporina, pero no o de manera muy ineficiente sobre las penicilinas económicas fácilmente disponibles tales como las producidas por *P. chrysogenum*, tales como la penicilina V o la penicilina G. La penicilina N no está disponible comercialmente e incluso cuando se expande, su cadena lateral Dalfa-amino-adipilo no se puede separar fácilmente mediante acilasas de penicilina.

Se ha informado que la enzima expandasa es capaz de expandir penicilinas con cadenas laterales particulares en el derivado de 7-ADCA correspondiente. Esta característica de la expandasa ha sido explotada en la tecnología tal como se describe en los documentos WO93/05158, WO95/04148 y WO95/04149. En estas descripciones, el producto químico convencional en la conversión in vitro de la penicilina G a 7-ADCA ha sido reemplazado por la conversión *in vivo* de determinados derivados de ácido 6-aminopenicilánico (6-APA) en cepas de *Penicillium chrysogenum* recombinantes transformadas con un gen expandasa. Más particularmente, el documento WO93/05158 enseña el uso *in vivo* de la enzima expandasa en *P. chrysogenum*, en combinación con una cadena lateral de adipilo (a la que se alude en adelante como adipilo) como material de alimentación, que es un sustrato para la enzima aciltransferasa en *P. chrysogenum*. Esto conduce a la formación de adipil-6-APA, que se convierte por una enzima expandasa introducida en la cepa de *P. chrysogenum* para producir adipil-7-ADCA, que se excreta por las células de hongos en el medio circundante.

En una etapa subsiguiente, las cadenas laterales de los correspondientes derivados de 7-ADCA pueden ser escindidas, ya sea química o enzimáticamente, por una enzima acilasa, produciendo de este modo 7-ADCA y la cadena lateral correspondiente. Se han propuesto diversos tipos de microorganismos en la bibliografía como cepas productoras de acilasa, útiles para la desacilación de los derivados de beta-lactama obtenidos por fermentación. Ejemplos de tales microorganismos productores de acilasa son determinadas cepas de las especies *Escherichia coli, Kluyvera citrophila, Proteus rettgeri, Pseudomonas sp., Alcaligenes faecalis, Bacillus megaterium, Bacillus sphaericus* y *Arthrobacter viscosus*.

25

30

35

40

De acuerdo con la bibliografía se pueden prever varios tipos de acilasas, en función de su estructura molecular y su especificidad para el sustrato (Vandamme E. J. "Penicillin acylases and beta-lactamases" En: "Microbial Enzymes and Bioconversions" E. H. Rose (Comp.), Economic Microbiology 5 (1980) 467-552, Acad. Press, New York).

Las acilasas de tipo I son específicas para la penicilina V. Estas enzimas se componen de cuatro subunidades idénticas, cada una con un peso molecular de 35 kDa. Se ha informado de una secuencia completa de nucleótidos del gen clonado de *Bacillus sphaericus* (Ollson A. Appl. Environm. Microb. (1976), 203).

Las acilasas de tipo II comparten todas una estructura molecular común: estas enzimas son heterodímeros compuestos por una pequeña subunidad alfa (20-25 kDa) y una gran subunidad beta (60-65 kDa). Con respecto a la especificidad para el sustrato, las acilasas de tipo II se pueden dividir adicionalmente en dos grupos

Acilasas de tipo IIA son muy específicas para la penicilina G y, por lo tanto, se las conoce generalmente como penicilina acilasas. En general, no son tan específicas para el resto adyacente al átomo de nitrógeno del grupo amida (éste podría ser un grupo cefem, un grupo penem, un aminoácido, etc.), pero la especificidad para el sustrato reside en el resto acilo del sustrato. Este resto acilo debe ser muy hidrófobo y es preferiblemente bencilo o alquilo (corto). Ejemplos de sustratos que no son hidrolizados por acilasas de tipo IIA son aquellos con ácidos dicarboxílicos como resto acilo: succinilo, glutarilo, adipilo y aminoadipilo, la cadena lateral de CefC. Ejemplos de acilasas de tipo IIA son las enzimas de *Escherichia coli*, *Kluyvera citrophila*, *Proteus rettgeri* y *Alcaligenes faecalis*.

Se ha informado que acilasas de tipo-IIB son capaces de hidrolizar cefalosporinas (incluyendo el derivado desacetoxi) con succinilo, glutarilo, adipilo y α-cetoadipilo como un resto acilo e incluso CefC en un grado muy limitado. El grupo de acilasas de tipo-IIB de nuevo se puede dividir en dos grupos sobre la base de la homología de la secuencia de aminoácidos. Estos subgrupos se definirán aquí como el grupo SY77 y el grupo SE83 y se nombran detrás de la acilasa de *Pseudomonas* SY77 y *Pseudomonas* SE83-acil, respectivamente.

Matsuda et al (J. Bacteriol (1985), <u>163</u>, 1222 han clonado y secuenciado el gen que codifica la SY77-acilasa y han demostrado que la enzima era activa con relación a glutaril-7ACA, pero mucho menos con relación a succinil-7ACA y adipil-7ACA. La estructura tridimensional para el precursor de SY77 es conocida (J. Biol. Chem. (2002), <u>277</u>, 2823).

Posteriormente, Matsuda et al. (J. Bacteriol (1987), <u>169</u>, 5815 y J. Bacteriol. (1987), <u>169</u>, 5821) clonaron y secuenciaron el gen que codifica la acilasa SE83-acil y demostraron que esta enzima era activa con relación a (en orden decreciente) glutaril-7ACA, adipil-7ACA, succinil-7ACA y CEFC (cefalosporina C). Todos los estudios relacionados con SE83 se centraron en la capacidad de la enzima de hidrolizar derivados de 7-ACA, en particular, de hidrolizar CEFC.

En el documento WO91/16435 se ha demostrado que la homología de aminoácidos entre SY77 y SE83-acil es muy baja: aproximadamente el 25% para las subunidades alfa y el 28% para las subunidades beta de las acilasas.

El documento WO9512680 describe otra acilasa del grupo SE83 de *Brevundimonas diminuta*, denominada N176, que es aproximadamente un 94% homóloga a SE83-acil y que fue sometida a ensayo por su actividad de CEFC-acilasa. Un tercer miembro del grupo SE83 es V22 de *Brevundimonas diminuta* V22. Las secuencias de aminoácidos de estas tres acilasas se describen por Aramori et al en Journal of Fermentation and Bioengineering 72, 232-243 (1991). La Tabla 0 muestra la matriz de identidad de secuencia de longitud completa de las secuencias de aminoácidos de las diversas acilasas de tipo IIB del grupo SE83.

Tabla 0.

5

10

15

20

25

Acilasa de tipo IIB	SE83-acii	N176	V22
SE83acii	100	94	93
N176	94	100	98
V22	93	98	100

Se han hecho varios intentos para aumentar la actividad de CEFC-acilasa de unas pocas acilasas existentes: el documento WO2005014821 describe mutantes de la SE83-acilasa y el documento EP-A-1553175 describe mutantes de la N176-acilasa, todo con el fin de mejorar la actividad de la CEFC-acilasa. Ninguna de las referencias citadas se centró en la mejora de la reacción de desacilación con otros compuestos de beta-lactama acilados de interés tales como adipil-7-ADCA. Por lo tanto, todavía hay una necesidad urgente de una acilasa con una actividad desacilante mejorada hacia adipil-7ADCA y que puede ser utilizada ventajosamente en un procedimiento para la producción de 7-ADCA a partir de adipil-7-ADCA, producido, por ejemplo, por fermentación de una cepa de *Penicillium*

transformada.

Alineamiento múltiple de las secuencias de aminoácidos de las acilasas de beta-lactama de tipo II SE83-acyii de *Pseudomonas* SE83 (SEQ ID No.1), N176 de *Brevundimonas diminuta* N-176 (SEQ ID No. 2) y V22 de *Brevundimonas diminuta* V22 (SEQ ID No. 3)

Figura 2:

Figura 1:

Conversión de adipil-7ADCA mediante acilasa inmovilizada a pH = 8,8 y 30°C (Figura 2a) y a pH = 9,5 y 40°C (Figura 2b). Acilasa inmovilizada de tipo salvaje ACYii de *Pseudomonas* SE83 (línea continua) y acilasa inmovilizada L161T mutante (línea discontinua). La tasa (ml de KOH/min en el eje Y) se representa gráficamente como una función de la conversión en porcentaje (% en el eje X).

30

35

40

45

En un primer aspecto, la presente invención proporciona un mutante de acilasa de beta-lactama de tipo II que es una variante de un polipéptido modelo con la actividad de acilasa de beta-lactama de tipo II por el que la acilasa de beta-lactama mutante tiene una actividad de acilasa de beta-lactama in vitro al menos 1,5 veces mejorada hacia adipil-7-ADCA, en comparación con el polipéptido modelo con actividad de acilasa de beta-lactama. La determinación de la actividad de acilasa de beta-lactama in vitro hacia adipil-7-ADCA se describe en detalle en la sección de Materiales y Métodos. Más preferiblemente, la actividad de acilasa de beta-lactama in vitro hacia adipil-7-ADCA de la acilasa de beta-lactama de tipo II mutante se mejora al menos 2 veces, más preferiblemente al menos 2,5 veces, más preferiblemente al menos 3 veces, más preferiblemente al menos 4 veces, más preferiblemente al menos 5 veces, más preferiblemente al menos 8 veces, más preferiblemente al menos 9 veces, más preferiblemente al menos 10 veces, más preferiblemente al menos 11 veces.

-

Con "acilasa de beta-lactama de tipo II alterada o mutante" en el contexto de la presente invención se quiere dar a entender cualquier enzima que tenga actividad de acilasa, que no haya sido obtenida de una fuente natural y para la cual la secuencia de aminoácidos difiere de las secuencias de aminoácidos completas de las enzimas acilasa de beta-lactama de tipo II naturales.

Realizaciones muy preferidas de la presente invención son mutantes del modelo acilasas de beta-lactama de tipo II seleccionados del grupo que consiste en la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 1 y la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 2 y la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 3, y polipéptidos con actividad de acilasa de beta-lactama de tipo II que tienen una secuencia de aminoácidos con un porcentaje de identidad con SEQ ID NO: 1 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 95%, o con SEQ ID NO: 2 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 95%, o con SEQ ID NO: 3 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 95% y que pueden portar una de las siguientes modificaciones: L161G, L161S o L161T.

5

10

15

20

25

30

50

55

La invención también proporciona una acilasa de beta-lactama de tipo II mutante que es una variante de un polipéptido modelo con la actividad de acilasa de beta-lactama de tipo II, en donde la acilasa de beta-lactama de tipo II mutante ha sido modificada, además de la posición 161, en al menos una posición de aminoácido seleccionada del grupo que consiste en las posiciones 270, 296, 442 y 589, o del grupo que consiste en las posiciones 10, 29, 274, 280, 314, 514, 645, 694, 706 y 726, o del grupo que consiste en 10, 29, 270, 274, 280, 296, 314, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645 , 694 y 726 utilizando la numeración de la posición de aminoácido de la secuencia de aminoácidos de la acilasa SE83-acill de *Pseudomonas* (SEQ ID NO: 1).

Más preferiblemente, la presente invención proporciona una acilasa de beta-lactama de tipo II mutante que es una variante de un polipéptido modelo con actividad de acilasa de beta-lactama de tipo II, en donde la acilasa de beta-lactama mutante tiene una actividad de acilasa de beta-lactama in vitro al menos 1,5 veces mejorada hacia adipil-7-ADCA, en comparación con el polipéptido modelo con actividad de acilasa de beta-lactama, más preferiblemente al menos 2 veces, más preferiblemente al menos 3 veces, más preferiblemente al menos 3 veces, más preferiblemente al menos 5 veces, más preferiblemente al menos 6 veces, más preferiblemente al menos 7 veces, más preferiblemente al menos 8 veces, más preferiblemente al menos 9 veces, más preferiblemente al menos 10 veces, más preferiblemente al menos 11 veces, con lo que la acilasa de beta-lactama de tipo II mutante ha sido modificada, además de la posición 161, en al menos una posición de aminoácido seleccionada del grupo que consiste en las posiciones 270, 296, 442 y 589, o del grupo que consiste en las posiciones 10, 29, 274, 280, 314, 514, 645, 694, 706 y 726, o del grupo que consiste en 10, 29, 270, 274, 280, 296, 314, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 442, 514, 589, 645, 694, 706 y 726 o del grupo que consiste en 10, 29, 270, 274, 280, 4

La presente invención proporciona también una acilasa de beta-lactama de tipo II mutante que es una variante de un polipéptido modelo con actividad de acilasa de beta-lactama de tipo II, en donde el mutante de tipo II acilasa beta-lactama se ha modificado al menos en una combinación de posiciones 161 + 270 o al menos en una combinación de posiciones 161 + 296 o al menos en una combinación de posiciones 161 + 296 o al menos en una combinación de posiciones 161 + 270 + 296 o al menos en una combinación de posiciones 161 + 270 + 589, o al menos en una combinación de posiciones 161 + 270 + 589, o al menos en una combinación de posiciones 161 + 296 + 589 o al menos en una combinación de posiciones 161 + 296 + 442 o al menos en una combinación de posiciones 161 + 296 + 589, o al menos en una combinación de posiciones 161, 270, 296, 442 y 589, y en donde las acilasas de beta-lactama de tipo II mutantes pueden tener modificaciones en otras posiciones de aminoácidos, además de esas posiciones y todas las combinaciones posibles de los mismos como se ha descrito antes utilizando la numeración de la posición de aminoácidos de la secuencia de aminoácidos de la acilasa SE83-acyll de Pseudomonas (SEQ ID NO: 1).

El polipéptido modelo con actividad de acilasa de beta-lactama de tipo II tal como se utiliza en la presente invención se selecciona del grupo que consiste en un polipéptido con actividad de acilasa de beta-lactama de tipo II, que tiene preferiblemente una secuencia de aminoácidos de acuerdo con SEQ ID NO: 1 (es decir, la acilasa SE83-acyll de *Pseudomonas* especie SE83) o que tiene una secuencia de aminoácidos de acuerdo con SEQ ID NO: 2 (es decir, la acilasa N176 de *Pseudomonas* especie N176) o que tiene una secuencia de aminoácidos de acuerdo con la SEQ ID NO: 3 (es decir, la acilasa V22 de *Brevundimonas diminuta* V22) y polipéptidos con la actividad de acilasa de beta-lactama de tipo II que tienen una secuencia de aminoácidos con un porcentaje de identidad con SEQ ID NO: 1 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, o con SEQ ID NO: 2 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 85%, más preferiblemente al menos 80%, lo más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 95%, o con SEQ ID NO: 3 de al menos 70%, preferiblemente al menos 90%, lo más preferiblemente al menos 95%, o con SEQ ID NO: 3 de al menos 70%,

preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 95%. Más preferido como polipéptido modelo con actividad de acilasa de beta-lactama de tipo II tal como se utiliza en la presente invención es un polipéptido con actividad de acilasa de beta-lactama de tipo II que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 1 o que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 3. El más preferido como polipéptido modelo con actividad de acilasa de beta-lactama de tipo II es la acilasa SE83-acyll de Pseudomonas (SEQ ID NO: 1).

5

10

15

20

25

30

35

La presente invención proporciona preferiblemente mutantes de las acilasas de beta-lactama de tipo II modelo seleccionados del grupo que consiste en la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 1 y la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 2 y la acilasa que tiene la secuencia de aminoácidos de acuerdo con la SEQ ID NO: 3 y polipéptidos con actividad de acilasa de beta-lactama de tipo II que tienen una secuencia de aminoácidos con un porcentaje de identidad con SEQ ID NO: 1 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 95%, o con SEQ ID NO: 2 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 95%, o con SEQ ID NO: 3 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 95% y en el que los mutantes tienen modificaciones, además de una modificación en la posición 161, al menos en la posición 10 o al menos en la posición 29, al menos en la posición 161 o al menos en la posición 270 o al menos en la posición 274 o al menos en la posición 280 o al menos en la posición 296 o al menos en la posición 314 o al menos en la posición 442 o al menos en la posición 514 o al menos en la posición 589 o al menos en la posición 645 o al menos en la posición 694 o al menos en la posición 706 o al menos en la posición 726. En una realización, la invención proporciona acilasas de beta-lactama de tipo II mutantes que tienen una sola modificación, ya sea en la posición 161 o en la posición 296 utilizando la numeración de la posición de aminoácidos de la secuencia de aminoácidos de la acilasa SE83-acil de Pseudomonas (SEQ ID NO: 1).

Tabla 1

Aminoácido	Código de 3 letras	Código de 1 letra
Alanina	Ala	A
Arginina	Arg	R
Asparagina	Asn	N
Ácido aspártico	Asp	D
Cisteína	Cys	С
Ácido glutámico	Glu	E
Glutamina	Gln	Q
Glicina	Gly	G
Histidina	His	Н
Isoleucina	lle	I
Leucina	Leu	L
Lisina	Lys	K
Metionina	Met	M
Fenilalanina	Phe	F
Prolina	Pro	Р
Serina	Ser	S
Treonina	Thr	Т
Triptófano	Trp	W
Tirosina	Tyr	Y
Valina	Val	V

La modificación en una posición de aminoácido puede comprender una sustitución por otro aminoácido, seleccionado de entre el grupo de 20 L-aminoácidos que se producen en la naturaleza - véase la Tabla 1. Alternativamente, la modificación en una posición de aminoácido puede comprender una deleción de aminoácido en dicha posición. Además, la modificación en una posición de aminoácido puede comprender una sustitución de uno o más aminoácidos en el lado C-terminal o N-terminal de dicho aminoácido.

La acilasa de beta-lactama de tipo II mutante de la invención, preferiblemente los mutantes de las acilasas de betalactama de tipo II modelo seleccionados del grupo que consiste en la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 1 y la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 2 y la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 3 portan una sustitución de la leucina en la posición 161 por un aminoácido más pequeño y más polar tal como treonina, serina, glicina y cisteína o uno cargado positivamente en torno a pH=9 tal como arginina y lisina, preferiblemente por serina o treonina o glicina, lo más preferiblemente por treonina, y pueden portar una o más de las siguientes modificaciones:

5

10

15

20

25

30

35

40

45

50

55

60

- Sustitución del glutamato (SEQ ID NO: 1) o alanina (SEQ ID NO: 2 y SEQ ID NO: 3) en la posición 10 por un residuo de aminoácido cargado positivamente tal como lisina o arginina o un pequeño residuo de aminoácido, con preferencia conformacional para la formación de la hélice α tal como alanina, preferiblemente por lisina.
- Sustitución de la serina en la posición 29 por un aminoácido con una cadena lateral (tipo) aromática tal como fenilalanina, tirosina, triptófano e histidina, o con una cadena lateral más grande polar, sin carga o cargada positivamente, tal como asparagina, glutamina, arginina y lisina, preferiblemente por asparagina o fenilalanina.
- Sustitución de la histidina en la posición 274 por un residuo de aminoácido que contiene al menos un átomo de carbono, oxígeno o azufre en la posición gamma de la cadena lateral y que es más pequeño en tamaño en comparación con histidina tal como leucina, isoleucina, cisteína, treonina, serina, asparagina, valina y prolina, preferiblemente por leucina, isoleucina, cisteína o treonina.
- Sustitución de la arginina en la posición 280 por un residuo de aminoácido que sustituye la carga positiva por una carga negativa tal como ácido aspártico y ácido glutámico o por una cadena lateral polar no ramificada y sin carga tal como glutamina, asparagina y serina, preferiblemente glutamina y asparagina, lo más preferiblemente glutamina.
- Sustitución de la histidina en la posición 296 por un aminoácido cargado o polar o un residuo de aminoácido que es capaz de reemplazar el enlace hidrógeno existente en la acilasa modelo por los átomos N-delta o N-épsilon del residuo de histidina tal como por asparagina y glutamina, de preferencia por una glutamina.
- Sustitución de la isoleucina en la posición 314 por un residuo de aminoácido más pequeño con ramificación β tales como valina o por una cadena lateral polar de tamaño medio tal como glutamina, asparagina, serina y treonina, preferiblemente por valina o glutamina.
- Sustitución del ácido glutámico en la posición 442 por un residuo de aminoácido con ninguna o con una pequeña cadena lateral hidrofóbica tal como glicina, alanina, leucina, valina e isoleucina, preferiblemente glicina.
- Sustitución de la prolina en la posición 514 por un residuo de aminoácido con una cadena lateral más polar y/o más flexible que es capaz de contribuir en la unión adicional de hidrógeno tal como glutamina, asparagina, treonina, serina, cisteína, ácido aspártico y ácido glutámico, preferiblemente glutamina
- Sustitución de la arginina en la posición 589 por un residuo de aminoácido que puede mantener una carga positiva en un determinado entorno tal como histidina y lisina, o por cadenas laterales aromáticas capaces de formar enlaces hidrógeno tales como tirosina y triptófano, o por residuos de aminoácidos que son capaces de reemplazar el enlace hidrógeno existente en la acilasa modelo por los átomos N-delta o N-épsilon del residuo de histidina tal como por asparagina y glutamina, de preferencia por histidina.
- Sustitución de la alanina en la posición 645 por un residuo de aminoácido pequeño, con una preferencia incrementada por la formación de la hebra β tal como treonina, valina, serina, cisteína y leucina, preferiblemente por treonina.
- Sustitución de la asparagina en la posición 694 por un residuo de aminoácido con una cadena lateral más pequeño que asparagina tal como alanina, treonina, serina, cisteína, valina y glicina, preferiblemente por una treonina.
- Sustitución de la tirosina en la posición 706 por un residuo de aminoácido sin o con una cadena lateral más pequeño que leucina tal como glicina, alanina, valina, serina, cisteína, treonina y prolina, preferiblemente una glicina.
- Sustitución de la valina en 726 por un residuo de aminoácido con una cadena lateral hidrofóbica más grande tal como isoleucina, leucina y metionina, preferiblemente una isoleucina.

Realizaciones muy preferidas de la presente invención son mutantes de las acilasas de beta-lactama de tipo II modelo seleccionadas del grupo que consiste en la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 1 y la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 2 y la acilasa que tiene la secuencia de aminoácidos de acuerdo con SEQ ID NO: 3 y polipéptidos con actividad de acilasa de beta-lactama de tipo II que tienen una secuencia de aminoácidos con un porcentaje de identidad con SEQ ID NO: 1 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 95%, o con SEQ ID NO: 2 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más

preferiblemente al menos 90%, lo más preferiblemente al menos 95%, o con SEQ ID NO: 3 de al menos 70%, preferiblemente al menos 75%, más preferiblemente al menos 80%, más preferiblemente al menos 85%, más preferiblemente al menos 90%, lo más preferiblemente al menos 95% y que portan una modificación en las siguientes combinaciones de 2 posiciones: [161 + 10], [161 + 29] o [161 + 694] o [161 + 726] o [161 + 274] o [161 + 589] o [161 + 314] o tienen modificaciones en las siguientes combinaciones de 3 posiciones: [161 + 29 + 274], [161 + 29 + 706], [161 + 29 + 514], [161 + 274 + 589] o [161 + 274 + 706], o en las siguientes combinaciones de 4 posiciones: [161 + 29 + 274 + 726], [161 + 274 + 280 + 314], o las siguientes combinaciones en 5 posiciones: [161 + 29 + 274 + 314 + 694], [161 + 274 + 280 + 514 + 726] o las siguientes combinaciones de 6 posiciones: [161 + 29 + 280 + 314 + 645 + 726].

La presente invención proporciona preferiblemente mutantes de la acilasa SE83-acil de *Pseudomonas* (SEQ ID NO: 1) que tienen modificaciones al menos en una combinación de posiciones L161 + M270 o al menos en una combinación de posiciones L161 + E442 o al menos en una combinación de posiciones L161 + R589 o al menos en una combinación de posiciones L161 + M270 + H296 o al menos en una combinación de posiciones L161 + M270 + E442 o al menos en una combinación de posiciones L161 + M270 + R589 o al menos en una combinación de posiciones L161 + H296 + R589 o al menos en una combinación de posiciones L161 + H296 + R589, y en donde las acilasas de beta-lactama de tipo II mutantes pueden tener modificaciones en otras posiciones de aminoácidos, además de esas posiciones y todas las combinación son los mutantes SE83-Acyll de *Pseudomonas* resumidos en las Tablas 2-5 de los Ejemplos.

En un segundo aspecto, la invención proporciona un polinucleótido que codifica la acilasa de beta-lactama de tipo II mutante de la presente invención. La invención proporciona también polinucleótidos que codifican la subunidad alfa de la acilasa de beta-lactama de tipo II mutante, así como polinucleótidos que codifican la subunidad beta de la acilasa de beta-lactama de tipo II mutante. El documento WO2005/014821 describe en las páginas 8 y 9 que los genes que codifican las acilasas del grupo SE83 codifican un polipéptido compuesto de una subunidad α , un péptido espaciador y una subunidad β , en ese orden. La acilasa derivada de SE83 de *Pseudomonas sp.* es generada en forma de un polipéptido de cadena sencilla inactivo que tiene un tamaño de aproximadamente 84 kDa después de sufrir transcripción y traducción en una célula huésped. Después de ello, se producen dos auto-digestiones entre los aminoácidos en las posiciones 230 y 231, y en las posiciones 239 y 240 en la secuencia de aminoácidos de SEQ ID NO: 1, lo que resulta en la separación del péptido espaciador que consiste en 9 aminoácidos, y en la separación en una subunidad α de 25 kDa y una subunidad α de 58 kDa. Una subunidad α está unida a una subunidad α a través de interacciones hidrofóbicas, para formar un heterodímero de aproximadamente 83 kDa que tiene actividad de acilasa. Como se conoce en general se necesita el primer codón (ATG) que codifica la metionina N-terminal para el inicio de la traducción durante la síntesis de proteínas en un procariota. La metionina se retira después de la traducción.

25

30

35

40

El polinucleótido que codifica la acilasa de beta-lactama de tipo II mutante o la subunidad alfa o la subunidad beta de acuerdo con la presente invención puede ser cualquier polinucleótido que codifica la secuencia de aminoácidos correcta de acuerdo con la invención. Alternativamente, el polinucleótido de la invención puede comprender una secuencia codificadora en la que el uso de codones para los diversos aminoácidos se desvía del uso de codones en *Pseudomonas*. Por ejemplo, el uso de codones se puede adaptar al uso de codones de una célula huésped particular, o que será o ha sido transformada con el fragmento de ADN que codifica la acilasa de beta-lactama de tipo II alterada.

En un tercer aspecto, la invención proporciona un vector de expresión o una casete de expresión que comprende el polinucleótido de la invención tal como se define anteriormente en esta memoria.

45 En un cuarto aspecto, la invención proporciona una célula huésped transformada, transformada con el polinucleótido de la invención o el vector de expresión o la casete de expresión de la invención. La célula huésped transformada se puede utilizar para la producción de la acilasa de beta-lactama de tipo II mutante de la invención.

Células huésped para la producción de la acilasa de beta-lactama de tipo II mutante de la invención son preferiblemente células huésped que son conocidas en la técnica por su producción eficaz de proteínas o de enzimas, ya sea de forma extracelular o intracelular, por ejemplo microorganismos tales como hongos, levaduras y bacterias. Ejemplos de células huésped preferidas comprenden, pero no se limitan a, los siguientes géneros: Aspergillus (p. ej., A. niger, A. oryzea), Penicillium (p. ej., P. emersonii, P. chrysogenum), Saccharomyces (p. ej., S. cerevisiae), Kluyveromyces (p. ej., K. lactis), Bacillus (p. ej., B. subtilis, B. licheniformis, B. amyloliquefaciens). Escherichia (E. coli), Streptomyces (p. ej., S. clavuligerus), Pseudomonas.

En un quinto aspecto, la invención proporciona un procedimiento para la producción de la acilasa de beta-lactama de tipo II mutante de la invención, que comprende cultivar la célula huésped transformada de acuerdo con la invención en condiciones que conducen a la producción de la expandasa mutante y, opcionalmente, recuperar la expandasa mutante.

En un sexto aspecto, la invención proporciona un procedimiento para la producción de un compuesto de beta-lactama desacilado de interés, que comprende la etapa de desacilar un precursor acilado del compuesto de beta-lactama de interés utilizando la acilasa de beta-lactama de tipo II mutante de la invención. Compuestos de beta-lactama desacilados de interés pueden ser derivados de penicilinas o cefalosporinas que se producen de forma natural tales como 6-APA, 7-ACA, 7-ADCA, 7-ADAC, ácido 7-amino-3-carbamoiloximetil-3-cefem-4-carboxílico (p. ej., documento WO2004/106347) y otros. Preferiblemente, el compuesto de beta-lactama desacilado de interés es 7-ADCA o 7-ACA, el más preferido es 7-ADCA. Precursores acilados del compuesto de beta-lactama de interés pueden tener un acilo que pertenece al grupo consistente en ácidos dicarboxílicos. Grupos acilo preferidos son succinilo, glutarilo, adipilo, alfa-cetoadipilo y aminoadipilo. Más preferidos son adipilo y aminoadipilo, muy preferido es adipilo. Precursores acilados preferidos del compuesto de beta-lactama de interés son adipil-7-ADCA, adipil-7-ACA, aminoadipil-7-ADCA y aminoadipil-7-ACA, este último conocido como CEFC; el más preferido es adipil-7-ADCA.

El procedimiento de la invención para la producción de un compuesto de beta-lactama desacilado de interés se puede llevar a cabo en un modo discontinuo, con lo que la acilasa de beta-lactama de tipo II mutante se utiliza en un estado disuelto en una disolución que comprende el precursor acilado del compuesto de beta-lactama de interés.

Más preferiblemente, la acilasa de beta-lactama de tipo II mutante se utiliza como una forma inmovilizada. La ventaja de ello es que la acilasa de beta-lactama de tipo II mutante puede ser recuperada después de completarse la reacción de desacilación y puede ser reutilizada para reacciones de desacilación adicionales. De esta manera, el costo en el uso de la acilasa de beta-lactama de tipo II mutante se puede reducir significativamente, aumentando con ello el atractivo económico del proceso de desacilación. Condiciones para la reacción de desacilación, así como la inmovilización de la enzima son conocidos en la técnica anterior (p. ej., Kallenberg, A.I. et al. Adv. Synth. Catal. (2005), 347, 905-926).

En un séptimo aspecto, la presente invención se refiere al uso de la acilasa de beta-lactama de tipo II mutante de la invención en un procedimiento para la producción de un compuesto de beta-lactama desacilado de interés, procedimiento que comprende la etapa de desacilar un precursor acilado del compuesto de beta-lactama de interés. Compuestos de beta-lactama desacilados de interés pueden ser derivados de penicilinas o cefalosporinas que se producen de forma natural tales como 6-APA, 7-ACA, 7-ADCA, 7-ADAC, ácido 7-amino-3-carbamoiloximetil-3cefem-4-carboxílico y otros. Preferiblemente, el compuesto de beta-lactama desacilado de interés es 7-ADCA o 7-ACA, el más preferido es 7-ADCA. Precursores acilados del compuesto de beta-lactama de interés pueden tener un acilo que pertenece al grupo consistente en ácidos dicarboxílicos. Grupos acilo preferidos son succinilo, glutarilo, adipilo, alfa-cetoadipilo y aminoadipilo. Más preferidos son adipilo y aminoadipilo, muy preferido es adipilo. Los precursores acilados más preferidos del compuesto de beta-lactama de interés son adipil-7-ADCA, adipil-7-ACA, adipil-7-amino-3-carbamoiloximetil-3-cefem-4-carboxílico, alfa-cetoadipil-7-ADCA, alfa-cetoadipil-7-ACA, aminoadipil-7-ADCA, aminoadipil-7-ACA, este último conocido como CEFC. El procedimiento de la invención para la producción de un compuesto de beta-lactama desacilado de interés puede llevarse a cabo en un modo discontinuo, con lo que la acilasa de beta-lactama de tipo II mutante se utiliza en un estado disuelto en una disolución que comprende el precursor acilado del compuesto de beta-lactama de interés. Más preferiblemente, la acilasa de betalactama de tipo II mutante se utiliza en una forma inmovilizada.

MATERIALES Y MÉTODOS

Preparación de acilasa

30

35

40

Plásmidos con el gen wt o genes mutantes se transformaron en células Top 10 de E. coli (Invitrogen). Las células se inocularon en matraces de 100 ml utilizando 20 ml de medio 2xTY que contenía 50 μg/ml de zeocina a 37°C y 280 rpm. Después de 24 horas, matraces con 100 ml de medio 2xTY, 50 μg/ml de zeocina y arabinosa al 0,05% se inocularon con 50 μl del cultivo 1:1000 y se cultivaron a 25°C y 280 rpm. Los cultivos se centrifugaron y se congelaron a -20°C. Con el fin de preparar un extracto libre de células, los sedimentos se resuspendieron en tampón de extracción (Tris/HCl 50 mM, 0,1 mg/ml de Dnasa1, 2 mg/ml de lisozima, DTT (ditiotreitol) 10 mM, MgSO4 5 mM) y se incubaron. Después de 30 minutos, el extracto se centrifugó y el sobrenadante que contiene la actividad de acilasa se utilizó para las mediciones de actividad.

El contenido de acilasa se determinó utilizando electroforesis en gel de SDS-PAGE y cromatografía de exclusión de tamaño HPLC analítica realizada en una columna TSK 3000SWxl con tampón fosfato 0,1 M pH 7,0 como eluyente. Condiciones cromatográficas aplicadas: caudal 1,0 ml/min y detección a 280 nm. Mediante la comparación de las zonas observadas de los picos de acilasa se puede comparar el contenido de proteína de diferentes muestras. El contenido de proteína acilasa se calcula a partir de la DO280 utilizando un coeficiente de extinción molar de 154350 (M⁻¹.cm⁻¹). En el caso de picos adicionales en el cromatograma de HPLC, el valor E280 de la muestra se corrige para la contribución de los picos adicionales.

Purificación

Sedimentos celulares de cultivos de 100 ml se resuspendieron con 1 ml de Tris 20 mM pH 8. Después de 9x10 segundos de tratamiento con ultrasonidos (Soniprep 150 I-BU03) con una amplitud de 10 μ en hielo (pausas de 15 segundos) la suspensión de células se centrifugó durante 5 minutos a 14000 rpm y 4°C en tubos de microcentrífuga. Después de llevar el sobrenadante a un pH de 5,3-5,4 con HCl 0,1M, se centrifugó para separar el precipitado. Posteriormente, el sobrenadante se tituló de nuevo a pH = 8 con NaOH. Aproximadamente 100-400 μl se aplicaron a una columna MonoQ de 1 ml, que se equilibró con Tris 20 mM pH 8 que contiene NaCl al 10%.
Tampón A (Tris 20 mM pH 8) y tampón B (Tris 20 mM pH 8 + NaCl 1 M) se mezclaron durante la elución como sigue: minutos 0-1 10% de B/90% de A; 1-5 20% de B/80% de A; 5-9 40% de B/60% de A; 9-12 60% de B/40% de A; 12-15 100% de B. Las fracciones pico que contenían actividad de acilasa se recogieron y se aplicaron a una columna de filtración en gel, TSKGel 3000SWxl, que se equilibró con tampón fosfato de sodio 100 mM pH 7. Las fracciones de los picos se recogieron y almacenaron para su uso posterior.

20 Reactivos

30

35

Adipil-7ADCA se puede preparar a partir de ácido adípico y 7-ADCA mediante síntesis enzimática tal como se describe en el documento WO9848037. Además, adipil-7ADCA se puede preparar mediante síntesis química tal como se describe por Shibuya et al. en Agric. Biol. Chem., 1981, 45(7), 1561-1567, partiendo de anhídrido adípico en lugar de anhídrido glutárico.

Una disolución madre al 8% (p/v) de sustrato de adipil-7ADCA se preparó en el tampón adecuado y se ajustó al pH deseado con NaOH 4 N.

El reactivo de color 4-(dimetilamino)-benzaldehído (p-DMBA) se preparó recientemente mediante disolución de 200 mg en 100 ml de ácido cítrico (315,5 g de ácido cítrico monohidrato disuelto en 1 litro de etanol).

Las mediciones de actividad en el intervalo de pH = 8,0 a pH = 10,0 se llevaron a cabo en tampón CHES (ácido 2-(N-ciclohexilamino)etano-sulfónico) 0,2 M, ajustado al pH deseado con HCl 4 N o NaOH 4 N según sea necesario.

Medición de la actividad de acilasa

180 µl del tampón apropiado se mezclaron con 200 µl de la disolución madre de sustrato en el tampón correspondiente y 20 µl de disolución de enzima y se incubaron durante 20 minutos a la temperatura deseada, habitualmente la temperatura ambiente, a menos que se indique lo contrario. La adición de 600 µl de reactivo de color detuvo la reacción. Después de 10 minutos a temperatura ambiente se midió la absorbancia a 415 nm. Las mediciones se realizaron añadiendo disolución de color al ensayo antes de añadir la enzima. La actividad de acilasa se calcula como el incremento de la densidad óptica (DO) por minuto (delta DO/min). Para el cálculo de las actividades absolutas se utilizó una línea de calibración de 7-ADCA en el intervalo de 0,1 a 1 g de 7-ADCA por litro.

Determinaciones de K_M y curvas de pH

Se llevaron a cabo determinaciones de K_M utilizando el ensayo como se ha descrito. Sin embargo, la concentración adipil-7-ADCA se varió de 0,5 a 4% (p/v) de adipil-7ADCA.

EJEMPLOS

Ejemplo 1

Actividad de acilasa de mutantes SE83 ACYii

La actividad de acilasa de los mutantes con adipil-7-ADCA como sustrato se determinó a pH = 8,5 y pH = 9,5. Los resultados se muestran en la Tabla 2.

Tabla 2: Actividades relativas de acilasas de tipo salvaje y mutantes en adipil-7ADCA que ajustan la actividad de tipo salvaje a pH = 8,5 a 1. Entre paréntesis, las actividades relativas a la actividad de tipo salvaje a pH = 9,5. El ensayo se llevó a cabo a temperatura ambiente. Las velocidades iniciales se midieron en presencia de adipil-7ADCA al 4% (p/v).

5

10

25

30

Enzima	Cádigo	Activida	ad de acilasa	Actividad a pH = 9,5
Elizillia	Código	pH=8,5	pH=9,5	Actividad a pH = 8,5
Tipo salvaje	SE83 ACY-ii	1,00	0,61 (1,00)	0,61 (1,00)
	L161T	1,95	1,38 (2,26)	0,71 (1,16)
Mutante	H296Q	1,35	1,11 (1,82)	0,83 (1,36)
Mutante	L161S+E442G	1,68	1,22 (2,00)	0,73 (1,20)
	L161S+H589R	1,60	1,05 (1,72)	0,66 (1,08)

A pH = 8,5, así como a pH = 9,5 la actividad de los mutantes es significativamente mayor en comparación con la acilasa de tipo salvaje. Además, al comparar la actividad a pH = 9,5 con la actividad a pH = 8,5 resulta evidente que la actividad de la acilasa mutante a pH 9,5 es relativamente mayor en comparación con la de tipo salvaje. El perfil de actividad del pH de los mutantes se ha desplazado a un pH más alto, lo que hace a estos mutantes, en particular, adecuados para su uso a un pH elevado. Esto es de particular importancia, debido a que el rendimiento de la conversión se incrementará a pH más alto debido al desplazamiento del equilibrio termodinámico más hacia la finalización de la reacción de hidrólisis.

Dado que durante el proceso de conversión de adipil-7ADCA en 7-ADCA y ácido adípico la concentración de este último se incrementará, la inhibición del producto podría reducir las mejoras de los mutantes medidos en condiciones de velocidad inicial. Por lo tanto, se midió la actividad de las acilasas de tipo salvaje y mutantes en presencia de ácido adípico al 1,5 (p/v). La Tabla 3 muestra que en estas condiciones la actividad de los mutantes es significativamente mayor en comparación con la acilasa de tipo salvaje a pH = 8,5, así como a pH = 9,5. El perfil de actividad del pH para estos mutantes no se ha desplazado a un pH más alto.

La actividad de acilasa de tipo salvaje y acilasas mutantes utilizando adipil-7-ADCA como sustrato se determinó a pH = 8,6, pH = 9,1 y pH = 9,5, en presencia de ácido adípico al 1,5% (p/v). Los resultados se muestran en la Tabla 4.

La Tabla 4 muestra que a pH = 8,6, pH = 9,1, así como a pH = 9,5 la actividad de los mutantes es significativamente mayor en comparación con la acilasa de tipo salvaje. Al comparar la mejora de la actividad a pH = 9,1 con la mejora de la actividad a pH = 8,6 (columnas con relación de actividades) resulta evidente que la actividad de las acilasas mutantes a pH 9,1 está relativamente más mejorada en comparación con el tipo salvaje. El perfil de actividad del pH de los mutantes se ha desplazado a un pH más alto, haciendo a estos mutantes, en particular, adecuados para su uso a un pH elevado. Al comparar el pH = 9,5 con el pH = 8,6, la actividad de la mayoría de las acilasas mutantes está aún más mejorada a pH = 9,5 que a pH = 8,5 en comparación con el tipo salvaje.

Tabla 3: Actividades relativas de acilasas de tipo salvaje y mutantes sobre adipil-7ADCA que ajustan la actividad de tipo salvaje a pH = 8,5 a 1. Entre paréntesis, las actividades relativas a la actividad de tipo salvaje a pH = 9,5. El ensayo se llevó a cabo a temperatura ambiente. La concentración inicial del sustrato era adipil-7ADCA al 4% (p/v). La actividad inicial se midió en presencia de ácido adípico al 1,5% (p/v).

Enzima	Código	Activid	ad de acilasa	Actividad a pH = 9,5
LIIZIIIId	Codigo	pH=8,5	pH=9,5	Actividad a pH = 8,5
Tipo salvaje	SE83 ACY-ii	1,00	0,80 (1,00)	0,80 (1,00)
Mutante	L161G	2,53	1,80 (2,25)	0,71 (0,89)
iviutarite	L161G+ E10K	2,13	1,47 (1,83)	0,69 (0,86)

Tabla 4: Actividades relativas de acilasas de tipo salvaje y mutantes sobre adipil-7ADCA que ajustan la actividad de tipo salvaje a pH = 8,6 a 1. Entre paréntesis, las actividades relativas a la actividad de tipo salvaje a pH = 9,1 y pH = 9,5, respectivamente. El ensayo se llevó a cabo a temperatura ambiente. La concentración inicial del sustrato fue de adipil-7ADCA al 2% (p/v). La actividad inicial se midió en presencia de ácido adípico al 1,5% (p/v).

	-	Actividad Relati	va a pH	Relación de	actividades a
Enzima / Mutante	8,6	9,1	9,5	pH=9,1 pH= 8,6	pH=9,5 pH= 8,6
SE83 ACY-ii de tipo salvaje	1,00	0,76 (1,00)	0,94 (1,00)	0,76 (1,00)	0,94 (1,00)
L161S	2,23	2,24 (2,94)	2,02 (2,13)	1,01 (1,32)	0,90 (0,96)
L161T	2,08	2,57 (3,36)	1,89 (2,00)	1,23 (1,62)	0,91 (0,96)
L161T+S29N	2,28	2,82 (3,69)	2,61 (2,76)	1,23 (1,62)	1,14 (1,21)
L161T+H274L	3,58	5,59 (7,32)	6,27 (6,63)	1,56 (2,04)	1,75 (1,85)
L161T+S29N+H274L	4,46	6,63 (8,68)	7,29 (7,72)	1,49 (1,94)	1,63 (1,73)
L161T+I231 °314V	2,93	3,54 (4,63)	3,39 (3,58)	1,21 (1,58)	1,16 (1,22)
L161T+N694T	2,39	1,91 (2,49)	1,48 (1,57)	0,80 (1,04)	0,62 (0,65)
L161T+V726I	2,55	4,06 (5,32)	4,25 (4,50)	1,59 (2,09)	1,67 (1,76)
L161T+S29N	2,28	2,82 (3,69)	2,61 (2,76)	1,23 (1,62)	1,14 (1,21)
L161T+Y706G	4,51	4,05 (5,30)	3,65 (3,86)	0,90 (1,17)	0,81 (0,86)
L161T+S29N+Y706G	10,20	9,57 (12,53)	8,33 (8,82)	0,94 (1,23)	0,82 (0,86)
L161T+S29N+P514Q	3,08	3,16 (4,13)	2,98 (3,15)	1,03 (1,34)	0,97 (1,02)
L161T+S29N+H274L+ I314Q+N694T	8,92	9,39 (12,29)	9,69 (10,25)	1,05 (1,38)	1,09 (1,15)
L161T+S29N+R280Q+ I314V+A645T+V726I	5,35	7,26 (9,51)	7,20 (7,62)	1,36 (1,78)	1,34 (1,42)
L161T+S29F+H274L+ V726I	4,30	7,23 (9,46)	7,46 (7,89)	1,68 (2,20)	1,73 (1,84)
L161T+H274I+R280Q+ I314V	6,06	9,05 (11,85)	9,24 (9,78)	1,49 (1,96)	1,53 (1,61)
L161T+H274L+R589H	3,00	3,72 (4,87)	4,53 (4,79)	1,24 (1,62)	1,51 (1,60)
L161T+H274C+Y706G	7,50	7,24 (9,47)	7,60 (8,04)	0,97 (1,26)	1,01 (1,07)
L161S+H274T+R280Q + P514Q+V726I	4,09	4,19 (5,48)	4,82 (5,10)	1,02 (1,34)	1,18 (1,25)

Ejemplo 2

5

10

15

Afinidad por el sustrato indicada por la medición K_M de mutantes SE83 ACYii

La Tabla 5 muestra los valores K_M medidos para un cierto número de mutantes con relación al tipo salvaje. La constante de Michaelis K_M representa la concentración de sustrato a la que la enzima funciona al 50% de su velocidad máxima. A concentraciones de sustrato por debajo de la K_M , la enzima se vuelve más lenta, a concentraciones de sustrato por encima de la K_M la enzima opera más rápido hasta que a una alta concentración de sustrato la enzima se vuelve totalmente saturada y opera a la velocidad máxima. Al final de una conversión enzimática en la que el sustrato se agota, una baja K_M es crucial con el fin de mantener la actividad sustancial. En el caso de que el valor relativo de K_M para un mutante sea <1,00, esto significa que a concentraciones de sustrato inferiores, p. ej., al final de la conversión, el mutante tiene una ventaja con respecto al tipo salvaje en el mantenimiento de una mayor actividad sustancial.

Tabla 5: Afinidades relativas de sustratos representadas como valores de K_M relativos. Las determinaciones de K_M se realizaron utilizando el ensayo tal como se describe anteriormente. La concentración de adipil-7ADCA se varió de 0,5 a 4% de adipil-7ADCA.

	K _M rela	ativa a
Enzima / Mutante	pH = 8,6	pH = 9,5
SE83 ACYii Wt	1,00	1,00
L161T	0,43	1,33
L161S	0,40	0,92
L161T+N694T	0,64	1,37
L161T+I314V	0,39	0,87
L161T+I314V	0,43	0,89
S29N+L161T	0,51	1,19
S29N+L161T+P514Q	0,57	1,31
L161T+V726I	0,24	0,62
L161T+V726I	0,21	0,64
L161T+H274L	0,18	0,48
L161T+Y706G	0,40	1,10

Ejemplo 3

Actividad de acilasa de mutantes de SE83 ACYii inmovilizados

- La inmovilización se llevó a cabo según se describe en el documento WO97/04086 utilizando gelatina y quitosano como agentes y dialdehído glutárico gelificante como agente de reticulación. El rendimiento de la acilasa de tipo salvaje inmovilizada y acilasas mutantes se midió realizando una hidrólisis completa de adipil-7ADCA en un reactor de 100 ml controlado en temperatura y pH. Los experimentos se realizaron a adipil-7-ADCA al 3,2%. La enzima inmovilizada se dosificó de una forma tal que se podía obtener una conversión de al menos 90% dentro de los 120 minutos bajo las condiciones deseadas. Las conversiones se llevaron a cabo a pH = 8,8 y 30°C y a pH = 9,5 a 40°C. Se utilizó la misma cantidad (en peso) de acilasa de tipo salvaje y mutante para las conversiones. Durante la reacción, el pH se mantuvo constante mediante la adición de una disolución de KOH 1 M. La actividad de la acilasa inmovilizada se expresa como ml de KOH por min. En las Figuras 2a y 2b se muestra la tasa, expresada como ml de KOH por min, como una función de la conversión.
- La media de 6 operaciones se tomó a pH = 8,8 y 30°C. No se incluyeron los datos de la primera conversión del 30%, debido a que el sistema no estaba completamente estabilizado, dando lugar a una gran dispersión de los datos. A pH = 9,5 y 40°C se tomó la media de dos operaciones. Por lo tanto, la variación es mayor. Sin embargo, la pendiente calculada proporciona una buena indicación de la actividad. Las Figuras 2a y 2b muestran que la actividad de la acilasa mutante es significativamente más alta durante toda la conversión.
- La estabilidad de las acilasas inmovilizadas se determinó midiendo 20 conversiones subsiguientes de 180 minutos con el mismo lote de acilasa inmovilizada. Se midió la tasa de entre 30 y 50% de conversión de cada una de las incubaciones. La actividad residual de una acilasa inmovilizada se define aquí como la actividad de la 20ª incubación en comparación con la tasa de la primera incubación.
- La Tabla 6 resume los resultados. Se observó que, en particular, en las condiciones que desplazan el equilibrio termodinámico de la reacción de hidrólisis a una conversión más completa (alta temperatura y alto pH) la estabilidad de la acilasa mutada está significativamente meiorada en comparación con el tipo salvaie.

Como consecuencia de esta actividad hidrolítica superior y de una mayor estabilidad de la acilasa mutada, la productividad por gramo de la enzima acilasa mutada se aumentó considerablemente.

Tabla 6: Actividad residual después de 20 conversiones en las condiciones indicadas.

Condición de la Reacción	Acilasa	Actividad Residual (%)
pH 8,8; 30 °C	tipo salvaje	103%
μ⊓ ο,ο, 30 ℃	L161T	106%
pH 9,5; 30 °C	tipo salvaje	98%
рп 9,5, 30 С	L161T	102%
pH 8,8; 40 °C	tipo salvaje	88%
μπ 6,6, 40 °C	L161T	99%
pH 9,5; 40°C	tipo salvaje	66%
ριτ 9,5, 40 C	L161T	76%

LISTADO DE SECUENCIAS

- <110> DSM IP Assets B.V
- <120> Acilasas Mutantes
- <130> 24988WO
- 5 <160>3
 - <170> PatentIn version 3.3
 - <210> 1
 - <211> 3141
 - <212> ADN
- 10 <213> Pseudomonas sp. SE83
 - <220>
 - <221> CDS
 - <222> (562)..(2886)
- 15 <400> 1

agccg 60	gggcg	caa	ccta	ccg	aaga	gaaga	cto	ccgc	gctg	ge e	ggac	tcgc	cga '	cttg	aag
cagc 120	tctgg	ggt	gcgc	ccg	acgg	gcaga	tc	cgate	gggti	gc c	ggtc	tgac	tcc	gtct	gtg
gctc 180	cacg	999	actg	tgga	gtga	gcag	ga	tggad	accg	tt c	egget	aggc	дса а	atgc	aat
cgac 240	cggca	caa	acgc	tcta	ccgg	cttc	gto	ggage	ggtt	ga c	gaag	ccaa	999	gcc	gca
gctgg 300	tgccg	cta	cgaa	gcgo	aact	caaca	gge	acato	ttct	ca t	gacgo	cgct	cgc	atgt	atg
eggcc 360	tgato	gcc	aggc	ccaa	tatg	cgcc1	gc	agcto	caaa	ac c	catca	ccgt	acg	tgcga	agc
gtga 420	ccct	acg	ggac	taag	ccta	gagge	g to	tcag	gaga	gc c	cgcg	gcate	agc (cgcaa	acc
cagt 480	atcgt	gac	caaa	cct	tgcg	cgcc1	t ac	cggai	cggc	gg c	agcc	gttca	cca (9999	tgt
gataa 540	atcc	cag	cgtc	gct	gtga	acgc	t cga	acgc1	gctc	gc a	tctg	atct	ccg a	gctt	cca
jag 591 51u 10	t cgc p Arg	gat Asp	acc Thr	aag Lys	gcc Ala 5	gcg Ala	atg Met	acg Thr	atg Met 1	aga	acaga	ccaga	ggt	acga	gça
	c att r Ile 25	tcc Ser	ctc Leu	agc Ser	ggc Gly	tcc Ser 20	ctt Leu	ccg Pro	ccg Pro	ctg Leu	gcg Ala 15	gcg Ala	cag Gln	ctg Leu	gcc Ala
ccg 687 Pro	c atc y Ile	ggc Gly 40	tgg Trp	ggc Gly	gat Asp	cgc Arg	cag Gln 35	gtc val	cgt Arg	gtc val	ccg Pro	gcg Ala 30	agc Ser	ttg L eu	gga Gly
ttc 735 Phe	g ggc u Gly	ctg Leu	gcg Ala 55	cgc Arg	tat Tyr	gcc Ala	gat Asp	gcc Ala 50	gag Glu	ggc Gly	tcg Ser	gcc Ala	aag Lys 45	atc Ile	cat His
aag 783 ₋ ys	c cgc g Arg	cgc Arg	acg Thr	ctg Leu 70	gaa Glu	atg Met	cag Gln	ttc Phe	ctt Leu 65	cgc Arg	gac Asp	cag Gln	gcg Ala	cat His 60	gtc Val
gcc 831 Ma 90	c gag a Glu	gcc Ala	gca Ala	gag Glu	gcc Ala 85	ggc Gly	ctg Leu	tgg Trp	gaa Glu	gcc Ala 80	gcg Ala	cgc Arg	ggt Gly	ctg Leu	gcg Ala 75
	g cgc g Arg 105														
gtc 927 /al	c tat a туг O	gcc Ala 120	cgg Arg	ctg Leu	atg Met	gac Asp	aag Lys 115	gcg Ala	gag Glu	gcc Ala	ggt Gly	ctg Leu 110	gcc Ala	gag Glu	ttc Phe
gaa 975 Slu	c atc	CCC	ttg Leu	cct Pro	gct Ala	ggt Gly	Ser	gct Ala	ctg Leu	ttc Phe	gcg Ala	Asn	gtg Val	ggc Gly	gcc Ala

tat Tyr	99c Gly 140	ctg Leu	ctc Leu	ggc Gly	gcc Ala	gaa Glu 145	ccg Pro	gag Glu	ccc Pro	tgg Trp	gaa Glu 150	ccc Pro	tgg Trp	cac His	agc Ser	1023
atc Ile 155	gcc Ala	gtg Val	atg Met	cgg Arg	cgg Arg 160	ctg Leu	9 9 9 Gly	ctc Leu	ctg Le u	atg Met 165	ggc Gly	tcc Ser	gtc Val	tgg Trp	ttc Phe 170	1071
aag Lys	ctc Leu	tgg Trp	cgg Arg	atg Met 175	ctg Leu	gcg Ala	ctg Leu	ccg Pro	gtg Val 180	gtc val	gga Gly	gcc Ala	gcg Ala	aat Asn 18 5	gcg Ala	1119
ctg Leu	aag Lys	ctg Leu	cgc Arg 190	tat Tyr	gac Asp	gat Asp	ggc Gly	ggc Gly 195	caa Gln	gac Asp	ctg Leu	ctc Leu	tgc Cys 200	atc Ile	ccg Pro	1167
ccg Pro	ggt Gly	gtc Val 205	gag Glu	gcc Ala	gag Glu	cgg Arg	ctc Leu 210	gaa Glu	gcg Ala	gat Asp	ctc Leu	gcg Ala 215	gcg Ala	ctg Leu	agg Arg	1215
ccc Pro	gcg Ala 220	gtt Val	gat Asp	gcc Ala	ctg Leu	ctg Leu 225	aaa Lys	gcg Ala	atg Met	ggc Gly	ggc Gly 230	gac Asp	gcc Ala	tcc Ser	gat Asp	1263
gcg Ala 235	gcc Ala	ggc Gly	ggc Gly	ggc Gly	agc Ser 240	aac Asn	aac Asn	tgg Trp	gcg Ala	gtc val 245	gcg Ala	ccg Pro	ggc Gly	cgc Arg	acg Thr 250	1311
gcg Ala	acg Thr	ggc Gly	cgg Arg	ccc Pro 255	atc Ile	ctc Leu	gcg Ala	ggc Gly	gat Asp 260	ccg Pro	cat His	cgc Arg	gtc Val	ttc Phe 265	gaa Glu	1359
atc Ile	ccc Pro	ggc Gly	atg Met 270	tat Tyr	gcg Ala	cag Gln	cat His	cac His 275	ctg Leu	gcc Ala	tgc Cys	gat Asp	cgg Arg 280	ttc Phe	gac Asp	1407
atg Met	atc Ile	ggt Gly 285	ctg L e u	acc Thr	gtg val	ccg Pro	ggt Gly 290	gtg val	ccg Pro	ggc Gly	ttc Phe	ccg Pro 295	cat His	ttc Phe	gcg Ala	1455
cat His	aac Asn 300	ggc Gly	aag Lys	gtc Val	gcc Ala	tac Tyr 305	tgc Cys	gtc Val	acc Thr	cat His	gcc Ala 310	ttc Phe	atg Met	gac Asp	att Ile	1503
					gag Glu 320											1 551
					gag Glu											1599
gtc val	cgg Arg	ggt Gly	gg c Gly 350	gcc Ala	gat Asp	cgc Arg	gaa Glu	ttc Phe 355	gat Asp	atc Ile	gtc val	gag Glu	acg Thr 360	cgc Arg	cat His	1647
		365			ggc Gly		370					375				1695
cgc Arg	tcg ser 380	gtc val	cag Gln	ttc Phe	gcc Ala	gag Glu 385	acc Thr	gac Asp	ctt Leu	tcc Ser	ttc Phe 390	gat Asp	tgc Cys	ctg Leu	acg Thr	1743
cgg Arg 395	atg Met	ccg Pro	ggc Gly	gca Ala	tcg Ser 400	acc Thr	gtg Val	gcg Ala	cag Gln	ctt Leu 405	tac Tyr	gac Asp	gcg Ala	acg Thr	cgc Arg 410	17 91
ggc Gly	tgg Trp	ggc Gly	ctg Leu	atc Ile 415	gac Asp	cat His	aat Asn	ctc Leu	gtc val 420	gcc Ala	ggg Gly	gat Asp	gtc val	gcg Ala 425	ggc Gly	1839
tcg Ser	atc Ile	ggc Gly	cat His 430	ctg Leu	gtc Val	cgc Arg	gcc Ala	ege Arg 435	gtc Val	ccg Pro	tcc Ser	cgc Arg	ccg Pro 440	cgc Arg	gag Glu	1887

aac Asn	ggc G1y	tgg Trp 445	ctg Leu	ccg Pro	gtg val	ccg Pro	ggc G1y 450	tgg Trp	tcc Ser	ggc Gly	gag Glu	cat His 455	gaa Gl u	tgg Trp	cgc Arg	1935
ggc Gly	tgg Trp 460	att Ile	ccg Pro	cac His	gag Glu	gcg Ala 465	atg Met	ccg Pro	cgc Arg	gtc Val	atc Ile 470	gat Asp	ccg Pro	ccg Pro	ggc Gly	1983
ggc Gly 475	ctc Leu	atc Ile	gtc Val	acg Thr	gcg A1a 480	aac Asn	aac Asn	cgc Arg	gtc val	gtg Val 485	gcc Ala	gat Asp	gat Asp	cat His	ccc Pro 490	2031
gat Asp	tat Tyr	ctc Leu	tgt Cys	acc Thr 495	gat Asp	tgc Cys	cat His	ccg Pro	ccc Pro 500	tac Tyr	cgc Arg	gcc Ala	gaa Glu	cgg Arg 505	atc Ile	2079
					gcc Ala											2127
					acg Thr											2175
					gga Gly											2223
agg Arg 555	cag Gln	acc Thr	ctc Leu	atc Ile	gcc Ala 560	tgg Trp	gac Asp	ggc Gly	cgc Arg	atg Met 565	gat Asp	gct Ala	ggc Gly	tcg Ser	cag Gln 570	2271
gcg Ala	gct Ala	tcc Ser	gct Ala	tat Tyr 575	aat Asn	gcg Ala	ttc Phe	cgc Arg	agg Arg 580	gcg Ala	ctg Leu	acg Thr	cgg Arg	ctg Leu 585	gta Val	2319
acg Thr	gcc Ala	cgc Arg	agc Ser 590	ggg Gly	ctg Leu	gag Glu	caa Gln	gcg Ala 595	ata Ile	gcg Ala	cat His	CCC Pro	ttc Phe 600	gcg Ala	gcc Ala	2367
gtc Val	ccg Pro	ccc Pro 605	ggc Gly	gtc Val	tcg Ser	ccg Pro	cag Gln 610	ggg Gly	cag Gln	gtc Val	tgg Trp	tgg Trp 615	gcc Ala	gtg Val	ccg Pro	2415
acc Thr	ctg Leu 620	ctg Leu	cgc Arg	aac Asn	gac Asp	gat Asp 625	gcc Ala	ggg Gly	atg Met	ctg Leu	aaa Lys 630	ggc Gly	tgg Trp	agc Ser	tgg Trp	2463
gac Asp 635	gag Glu	gcc Ala	ttg Leu	tcg Ser	gag Glu 640	gcc Ala	ctg Leu	tcc Ser	gtc Val	gcg Ala 645	acg Thr	cag Gln	aac Asn	ctg Leu	acc Thr 650	2511
					gag Glu											2559
tcc Ser	gcg Ala	cag Gln	ttc Phe 670	ccg Pro	gcc Ala	tgg Trp	gcc Ala	gcg Ala 675	ctg Leu	ctg Leu	aac Asn	ccg Pro	gtt val 680	tcg Ser	cgc Arg	2607
ccg Pro	atc Ile	ggc Gly 685	ggc Gly	gat Asp	ggc Gly	gac Asp	acc Thr 690	gtg Val	ctg Leu	gcg Ala	aac Asn	999 G1y 695	ctc L eu	gtc val	cca Pro	2655
tcg Ser	gcc Ala 700	gga Gly	cct Pro	gag Glu	gcg Ala	acc Thr 705	tat Tyr	ggc Gly	gcc Ala	ctg Leu	tcg Ser 710	cgc Arg	tac Tyr	gtc Val	ttc Phe	2703
gat Asp 715	gtc Val	ggc Gly	aat Asn	tgg Trp	gac Asp 720	aat Asn	agc Ser	cgc Arg	tgg Trp	gtc Val 725	gtc Val	ttc Phe	cac His	ogc Gly	gcc Ala 730	2751
					agc Ser											2799

agc gac tgc gcg atg gtg ccg atg ctc tat agc tgg gac agg atc gcc Ser Asp Cys Ala Met Val Pro Met Leu Tyr Ser Trp Asp Arg Ile Ala 750 755 760	2847
gcg gag gcc gtg acc tcg cag gaa ctc gtc ccg gcc tga ggggcaaggc Ala Glu Ala Val Thr Ser Gln Glu Leu Val Pro Ala 765 770	2896
tgcggtcagc ctgccgcagc attcttgcgg caggcgcggg tgcgtaagcc cgctgtttcg	2956
ccgccgtcga cggtcaggac ggcgccgttc acatagctcg acgcgtcgga caggagccag	3016
gccgcgagat cggcgacctc gtccggcgtg ccgagccggc ctgccggaat gcgcagctca	3076
agctgctcca gccgcagcgg gtcggccagc accttgtcca tcatccgcgt cgcgatctgc	3136
ccqqq	3141

<210> 2

<211> 2847

< 212> ADN

< 213> Brevundimonas diminuta N-176

<220>

5

< 221> CDS

< 222> (483)..(2801)

<400> 2

cccgggg	atc 1	tcgca	agacg	jg ct	ggcg	gcggt	CC1	tggcd	agc	aata	ıtgcç	oca a	aggco	ggctt	60
cacggtg	gaa (cagca	aggtg	ja tç	gatt	9999	cad	ggtg	ctc	gcco	gccg	3 99 (ccaag	aagga	120
cggctgga	agc 🤉	gtttt	cccg	g to	tacg	jccaa	. cgg	gcato	gac	atga	atgto	gc	cgctg	acgca	180
tttctaca	atc g	ggcaa	acaac	t go	gtga	acta	tg	gggc	tgg	agct	gcga	acg (ccgto	atcac	240
cgaaaag	ctc	gccgo	ctat	g co	aagg	gcgcc	cga	atccg	gct	acco	gcaa	ac	gcato	gcggc	300
cgaaatc	cag (gtcga	aggco	t ac	aagg	gacac	gco	cctc	gtg	atgt	gggg	gcc a	agtto	agccg	360
gccggcg	ggc 1	tacco	gcctg	jc go	ctca	agaa	cat	tcgto	cag	tcca	igctt	cc	cgato	ttctg	420
gcagctc	acg (ctcga	ecgcg	jt ga	agctt	gccc	aga	attco	gac	aago	aatg	jag i	gtccc	gacgc	480
ga atg a Met 1	act a Thr A	atg g Met A	gcg g Ala A	jec a Na A	aac a Asn T	acc g Thr A	at (arg A	gcg g Nla V 10	gtc t /al i	ttg (Leu (ag Gln	Ala A	icg (1a L5	527
ctg ccg Leu Pro	ccg Pro	ctt Leu	tcc ser 20	ggc Gly	agc Ser	ctc Leu	CCC Pro	att Ile 25	ccc Pro	gga Gly	ttg Leu	agc Ser	gcg Ala 30	tcg Ser	575
gtc cgc val Arg	gtc Val	cgg Arg 35	cgc Arg	gat Asp	gcc Ala	tgg Trp	ggc Gly 40	atc Ile	ccg Pro	cat His	atc Ile	aag Lys 45	gcc Ala	tcg Ser	623
ggc gag Gly Glu	gcc Ala 50	gat Asp	gcc Ala	tat Tyr	cgg Arg	gcg Ala 55	ctg Leu	ggc Gly	ttc Phe	gtc Val	саt ніs 60	tcg Ser	cag Gln	gac Asp	671
cgt ctt Arg Leu 65	ttc Phe	cag Gln	atg Met	gag Glu	ctg Leu 70	acg Thr	cgt Arg	cgc Arg	aag Lys	gcg Ala 75	ctg Leu	gga Gly	cgc Arg	gcg Ala	719
gcc gaa Ala Glu 80	tgg Trp	ctg Leu	ggc Gly	gcc Ala 85	gag Glu	gcc Ala	gcc Ala	gag Glu	gcc Ala 90	gat Asp	atc Ile	ctc Leu	gtg Val	cgc Arg 95	767
cgg ctc Arg Leu				Lys					Āsp					ggc Gly	815

gtc Val	gag Glu	gcg Ala	aag Lys 115	gac Asp	аtg меt	ctg Leu	cgg Arg	gct Ala 120	tat Tyr	gtc Val	gcc Ala	ggc Gly	gtg Val 125	aac Asn	gca Ala	863
ttc Phe	ctg Leu	gct Ala 130	tcc Ser	ggt Gly	gct Ala	ccc Pro	ctg Leu 135	cct Pro	gtc Val	gaa Glu	tac Tyr	gga Gly 140	ttg Leu	ctc Leu	gga Gly	911
gca Ala	gag Glu 145	ccg Pro	gag Glu	ccc Pro	tgg Trp	gag Glu 150	cct Pro	tgg Trp	cac His	agc Ser	atc Ile 155	gcg Ala	gtg val	atg Met	cgc Arg	959
cgg Arg 160	ctg Leu	ggc Gly	ctg Leu	ctt Leu	atg Met 165	ggt Gly	tcg Ser	gtg val	tgg Trp	ttc Phe 17 0	aag Lys	ctc Leu	tgg Trp	cgg Arg	atc Ile 175	1007
ctg Leu	gcg Ala	ctg Leu	ccg Pro	gtg val 180	gtc val	gga Gly	gcc Ala	gcc Ala	aat Asn 185	gcg Ala	ctg Leu	aag Lys	ctg Leu	cgc Arg 190	tat Tyr	1055
gac Asp	gat Asp	ggc Gly	ggc Gly 195	cgg Arg	gat Asp	ttg Leu	ctc Leu	tgc Cys 200	atc Ile	ccg Pro	ccg Pro	ggc Gly	gcc Ala 205	gaa Glu	gcc Ala	1103
gat Asp	cgg Arg	ctc Leu 210	gag Glu	gcg Ala	gat Asp	ctc Leu	gcg Ala 215	acc Th r	ctg Leu	cgg Arg	ccc Pro	gcg Ala 220	gtc val	gat Asp	gcg Ala	1151
ctg Leu	ctg Leu 22 5	aag Lys	gcg Ala	atg Met	ggc Gly	ggc Gly 230	gat Asp	gcc Ala	tcc Ser	gat Asp	gct Ala 235	gcc Ala	ggc Gly	ggc Gly	ggc Gly	1199
agc Ser 240	aac Asn	aac Asn	tgg Trp	gcg Ala	gtc val 245	gct Ala	ccg Pro	ggc Gly	cgc Arg	acg Thr 250	gcg Ala	acc Thr	ggc Gly	agg Arg	ccg Pro 255	1247
atc Ile	ctc Leu	gcg Ala	ggc Gly	gat A5p 260	ccg Pro	cat His	cgc Arg	gtc Val	ttc Phe 265	gaa Glu	atc Ile	ccg Pro	ggc Gly	atg Met 270	tat Tyr	1295
gcg Ala	cag Gln	cat His	cat His 275	ctg Leu	gcc Ala	tgc Cys	gac Asp	cgg Arg 280	ttc Phe	gac Asp	atg Met	atc Ile	ggc G1y 285	ctg Leu	acc Thr	1343
gtg Val	ccg Pro	ggc GTy 290	gtg val	ccg Pro	ggc Gly	ttc Phe	ccg Pro 295	cac His	ttc Phe	gcg Ala	cat His	aac Asn 300	ggc Gly	aag Lys	gtc Val	1391
gcc Ala	tat Tyr 305	tgc Cys	gtc Val	acc Thr	cat His	gcc Ala 310	ttc Phe	atg Met	gac Asp	atc Ile	cac His 315	gat Asp	ctc Leu	tat Tyr	ctc L eu	1439
gag Glu 320	cag Gln	ttc Phe	gcg Ala	ggg Gly	gag Glu 325	ggc Gly	cgc Arg	act Thr	gcg Ala	cgg Arg 330	ttc Phe	ggc Gly	aac Asn	gat Asp	ttc Phe 335	1487
								cgt Arg								1535
gat Asp	cgc Arg	gag Glu	ttc Phe 355	gat Asp	atc Ile	gtc val	gag Glu	acg Thr 360	cgc Arg	cat His	ggc Gly	ccg Pro	gtt val 365	atc Ile	gcg Ala	1583
ggc Gly	gat Asp	ccg Pro 370	cgc Arg	gat Asp	ggc Gly	gca Ala	gcg Ala 375	ctc Leu	acg Thr	ctg Leu	cgt Arg	tcg Ser 380	gtc Val	cag Gln	ttc Phe	1631
								tgc Cys								1679
tcg Ser 400	acc Thr	gtg Val	gcc Ala	cag Gln	ctc Leu 405	tac Tyr	gac Asp	gcg Ala	acg Thr	cgc Arg 410	ggc Gly	tgg Trp	ggc Gly	ctg Leu	atc 17e 415	1727

														cat His 430		1775
gtc val	.cgc Arg	gcc Ala	cgc Arg 435	gtt Val	ccg Pro	tcc Ser	cgt Arg	ccg Pro 440	cgc Arg	gaa Glu	aac Asn	ggc Gly	tgg Trp 445	ctg Leu	ccg Pro	1823
gtg val	ccg Pro	ggc Gly 450	tgg Trp	tcc Ser	ggc Gly	gag Glu	cat His 455	gaa Glu	tgg Trp	cgg Arg	ggc Gly	tgg Trp 460	att Ile	ccg Pro	cac H i s	1871
gag Glu	gcg Ala 465	аtg меt	ccg P ro	cgc Arg	gtg val	atc 11e 470	gat Asp	ccg Pro	ccg Pro	ggc Gly	ggc G1y 475	atc Ile	atc Ile	gtc val	acg Thr	1919
														tgc Cys		1967
														ctg Leu 510		2015
														gcc Ala		2063
														gcg Ala		2111
														ctc Leu		2159
														gcc Ala		2207
aat Asn	gcg Ala	ttc Phe	cgc Arg	agg Arg 580	gcg Ala	ctg Leu	acg Thr	cgg Arg	ctg Leu 585	gtg Val	acg Thr	gac A sp	cgc Arg	agc ser 590	999 G1y	2255
														ggc Gly		2303
														cgc Arg		2351
														ttg Leu		2399
gag Glu 640	gcc Ala	ctc Leu	tcg Ser	gtc Val	gcg A1a 645	tcg Ser	cag Gln	aac Asn	ctg Leu	a cc Thr 6 50	ggg Gly	cga Arg	agc Ser	tgg Trp	ggc Gly 655	2447
														ttc Phe 670		2495
gcc Ala	tgg Trp	gcg Ala	ggg G1y 675	ctg Leu	ctg Leu	aat Asn	ссg Рго	gct Ala 680	tcc Ser	cgt Arg	ccg Pro	atc Ile	ggt Gly 685	ggc Gly	gat Asp	2543
ggc Gly	gat Asp	acc Thr 690	gtg val	ctg Leu	gcg Ala	aac Asn	ggg G1y 695	ctc Leu	gtc val	ccg Pro	tca Ser	gcc Ala 700	ggg Gly	ccg Pro	cag Gln	2591
														aat Asn		2639

gac Asp 720	aat Asn	agc Ser	cgc Arg	tgg Trp	gtc Val 725	gtc val	ttc Phe	cac His	ggc Gly	gcc Ala 730	tcc Ser	999 Gly	cat His	ccg Pro	gcc Ala 735	2687
agc Ser	gcc Ala	cat His	tat Tyr	gcc Ala 740	gat Asp	cag Gln	aat Asn	gcg Ala	ccc Pro 745	tgg Trp	agc Ser	gac Asp	tgt Cys	gcg Ala 750	atg Met	2735
gtg val	ccg Pro	atg Met	ctc Leu 755	tat Tyr	agc Ser	tgg Trp	gac Asp	agg Arg 760	atc Ile	gcg Ala	gca Ala	gag Glu	gcc Ala 765	gtg Val	acg Thr	2783
tcg Ser	cag Gln	gaa Glu 770	ctc Leu	gtc Val	ccg Pro	gcct	tgag	ggc (:ggg(cctg1	tt g	tcag	cctg	C		2831
cgca	agcto	ctc 1	ttcg	gc												2847

<210> 3

<211> 2325

< 212> ADN

< 213> Brevundimonas diminuta V22

<220>

5

< 221> CDS

< 222> (1)..(2322)

<400> 3

atg Met 1	act Thr	atg Met	gct Ala	gcc Ala 5	aac Asn	acc Thr	gat Asp	cgc Arg	gcc Ala 10	gtc Val	ttg Leu	cag Gln	gcg Ala	gcg Ala 15	ctg Leu	48
ccg Pro	ccg Pro	ctt Leu	tcc ser 20	ggc Gly	agc Ser	ctc Leu	ccc Pro	att Ile 25	CCC Pro	gga Gly	ttg Leu	agc Ser	gcg Ala 30	tcg Ser	gtc Val	96
cct Pro	atc Ile	cag Gln 35	cgc Arg	gat Asp	gcc Ala	tgg Trp	ggc Gly 40	atc Ile	ccg Pro	cat His	atc Ile	aag Lys 45	gcc Ala	tcc Ser	ggc Gly	144
gag Glu	gcc Ala 50	gat Asp	gcc Ala	tat Tyr	cgc Arg	gcg Ala 55	ctg Leu	ggc Gly	ttc Phe	gtc Val	cat His 60	gcg Ala	cag Gln	gac Asp	cgc Arg	192
ctt Leu 65	ttc Phe	cag Gln	atg Met	gag Glu	ctg Leu 70	acg Thr	cgt Arg	cgc Arg	aag Lys	gcg Ala 75	ctg Leu	gga Gly	cgc Arg	gcg Ala	gcc Ala 80	240
gaa Glu	tgg Trp	ctg Leu	ggt Gly	gcc Ala 85	gag Glu	gcc Ala	gcc Ala	gag Glu	gcc Ala 90	gat Asp	atc Ile	ctc Leu	gtg val	cgc Arg 95	cgg Arg	288
ctc Leu	ggt Gly	atg Met	gaa Glu 100	aaa Lys	gtc val	tgc Cys	cga Arg	cgc Arg 105	gat Asp	ttc Phe	gag Glu	gcc Ala	ctg Leu 110	ggc Gly	gcc Ala	336
gag Glu	gcg Ala	aag Lys 115	gac Asp	atg Met	ctc Leu	cgg Arg	gcc Ala 120	tac Tyr	gtc val	gcc Ala	ggc Gly	gtg Val 125	aac Asn	gca Ala	ttc Phe	384
ctg Leu	gct Ala 130	tcc Ser	ggt Gly	gtt Val	CCC Pro	ctg Leu 135	cct Pro	gtc Val	gaa Glu	tac Tyr	gga Gly 140	ttg Leu	ctc Leu	gga Gly	gca Ala	432
gag Glu 1 45	ccg Pro	gag Glu	ccc Pro	tgg Trp	gag Glu 150	cct Pro	tgg Trp	cac His	agc Ser	atc Ile 155	gcg Ala	gtg val	atg Met	cgc Arg	cgg Arg 160	480
ctg Leu	ggc Gly	ctg Leu	ctg Leu	atg Met 165	ggt Gly	tcg Ser	gtc val	tgg Trp	ttc Phe 170	aag Lys	ctc Leu	tgg Trp	cgg Arg	atg Met 175	ctg Leu	528
gcg	ctg	ccg	gtg	gtc	gga	gcc	gcg	aat	gcg	ctg	aag	ctg	cgc	tat	gac	576

Αl	laι	Leu	Pro	val 180	val	Gly	∆la	Ala	Asn 185	Ala	Leu	Lys	Leu	Arg 190	Tyr	Asp	
ga As	it g	9gc 5 1y	99c Gly 195	cgc Arg	gat Asp	ttg Leu	ctc Leu	tgc Cys 200	atc Ile	ccg Pro	ccg Pro	cgc Arg	gcc Ala 205	gaa Glu	gcg Ala	gat Asp	624
CQ A1	rg L	ctc Leu 210	gag Glu	gcg Ala	gat Asp	ctc Leu	gcg Ala 215	acc Thr	ctg Leu	cgg Arg	ccc Pro	gcg A1a 220	gtc val	gat Asp	gcg Ala	ctg Leu	672
ct Le 22		aag Lys	gcg Ala	atg Met	ggc Gly	999 G1y 230	gat Asp	gcc Ala	tca Ser	gat Asp	gcc Ala 235	gcc Ala	ggt Gly	ggc Gly	ggc Gly	agc Ser 240	720
aa As	ac a	aac Asn	tgg Trp	gcg Ala	gtc Val 245	gcg Ala	ccg P ro	ggc GTy	cgt Arg	acg Thr 250	gcg Ala	acc Thr	ggc Gly	cgg Arg	ccg Pro 255	atc Ile	768
C1 L6	tc g	gcg Ala	ggc Gly	gat Asp 260	ccg Pro	cat His	cgc Arg	gtc Val	ttc Phe 265	cag Gln	atc Ile	ccc Pro	ggc Gly	atg Met 270	tat Tyr	gcc Ala	816
G	ag d In H	cat His	cat His 275	ctg Leu	gcc Ala	tgc Cys	gat Asp	cgc Arg 280	ttc Phe	gac Asp	atg Met	atc Ile	9 9 c Gly 285	ctg Leu	acc Thr	gtg val	864
C (rō č	ggc G1y 290	gtg Val	ccg Pro	ggt Gly	ttt Phe	ccg Pro 295	cat His	ttc Phe	gcg Ala	cat His	aac Asn 300	ggc Gly	a ag Lys	gtc val	gcc Ala	912
Ty	ac t yr (tgc Cys	gtc Val	acc Thr	cat His	gcc Ala 310	ttc Phe	atg Met	gac Asp	att Ile	cac His 315	gat Asp	ctc L eu	tac Tyr	ctt Leu	gag Glu 320	960
G G	ag t In i	ttc Phe	gcg Ala	gag Glu	gag Glu 325	ggc Gly	cgc Arg	agg Ar g	gcg Ala	cgg Arg 330	ttc Phe	ggc G1y	aac Asn	gat Asp	ttc Phe 335	gag Glu	1008
C P	cc (gcc Ala	gcc Ala	tgg Trp 340	agc ser	cgg Arg	gac Asp	cgt Arg	atc Ile 345	gcg Ala	gtc Val	cgg Arg	ggt Gly	ggt Gly 350	gcc Ala	gac Asp	1056
C(gc g r g (gaa Glu	ttc Phe 355	gat Asp	atc Ile	atc Ile	gag Glu	acg Thr 360	cgc Arg	cat His	ggt Gly	CCC Pro	gtc Val 365	ata Ile	gca Ala	ggc Gly	1104
ga As	sp j	ccg Pro 370	cgc Arg	gat Asp	ggc Gly	gca Ala	gcg Ala 375	ctc Leu	acg Thr	ctg Leu	cgc Arg	tcg Ser 380	gtc Val	cag Gln	ttc Phe	gcc Ala	1152
Ğ	ag a lu = 85	acc Thr	gat Asp	ctg Leu	tcc Ser	ttc Phe 390	gat Asp	tgc Cys	ctg Leu	acg Thr	cgg Arg 395	atg Met	ccg Pro	ggc Gly	gca Ala	tcg Ser 400	1200
a Tl	cc (gtg Val	gcg Ala	cag Gln	ctc Leu 405	tac Tyr	gac Asp	gcg Ala	acg Thr	cgc Arg 410	ggc Gly	tgg Trp	ggc Gly	ctg Leu	atc Ile 415	gac Asp	1248
H.	at a	aat Asn	ctc Leu	gtc Val 420	gcc Ala	ggg Gly	gat Asp	gtc Val	999 GTy 425	ggc Gly	tcg Ser	atc Ile	ggc Gly	cat His 430	ctg Leu	gtc Val	1296
C(gc (gcc Ala	cgt Arg 435	gtc val	ccg Pro	tcc Ser	cgc Arg	tcg ser 440	cgc Arg	gaa Glu	aac Asn	ggc Gly	tgg Trp 445	ctg Leu	ccg Pro	gtg Val	1344
P	ro (ggc G1y 450	tgg Trp	tcc ser	ggc Gly	gag Glu	cat His 455	gaa Glu	tgg Trp	cgg Arg	ggt Gly	tgg Trp 460	att Ile	ccg Pro	cac His	gag Glu	1392
Ā						atc Ile 470											1440
a	at a	aat	cgc	gtc	gtg	gcc	gat	gac	cat	ccc	gat	tat	ctc	tgc	acc	gat	1488

Asn	Asn	Arg	۷al	Val 485	дlа	Asp	Asp	His	Pro 490	Asp	Tyr	Leu	Cys	Thr 495	Asp	
tgc Cys	cat His	ccg Pro	ccc Pro 500	tac Tyr	cgc Arg	gcc Ala	gag Glu	ccc Pro 505	atc Ile	atg Met	aag Lys	cgc Arg	ctg Leu 510	gtc Val	gcc Ala	1536
aat Asn	ccg Pro	gct Ala 515	ttc Phe	gcc Ala	gtc val	gac Asp	gat Asp 520	gcc Ala	gcc Ala	gcg Ala	atc Ile	cat His 525	gcc Ala	gat Asp	acg Thr	1584
ctg Leu	tcg Ser 530	ccc Pro	cat His	gtc val	ggg Gly	ttg Leu 535	ctg Leu	cgc Arg	cgg Arg	agg Arg	ctc Leu 540	gag Glu	gcg Ala	ctt Leu	gga Gly	1632
gcc Ala 545	cgc Arg	gac Asp	gac Asp	tcc Ser	gcg Ala 550	gcc Ala	gaa Glu	ggg Gly	ctg Leu	agg Arg 555	cag Gln	atg Met	ctc Leu	gtc val	gcc Ala 560	1680
tgg Trp	gac Asp	ggc Gly	cgc Arg	atg Met 565	gat Asp	gcg Ala	gct Ala	tcg Ser	gag Glu 570	gtc Val	gcg Ala	tct Ser	gcc Ala	tac Tyr 575	aat Asn	1728
gcg Ala	ttc Phe	cgc Arg	agg Arg 580	gcg Ala	ctg Leu	acg Thr	cgg Arg	ctg Leu 585	gtg val	acg Thr	gac Asp	cgc Arg	agc Ser 590	ggg Gly	ctg Leu	1776
gag Glu	cag Gln	gcg Ala 595	ata Ile	tcg Ser	cat His	ccc Pro	ttc Phe 600	gcg Ala	gct Ala	gtc Val	gcg Ala	ccg Pro 605	ggc Gly	gtc Val	tca Ser	1824
ccg Pro	caa Gln 610	ggc Gly	cag Gln	gtc val	tgg Trp	tgg Trp 615	gcc Ala	gtg Val	ccg Pro	acc Thr	ctg Leu 620	ctg Leu	cgc Arg	gac Asp	gac Asp	1872
gat Asp 625	gcc Ala	gga Gly	atg Met	ctg Leu	aag Lys 630	ggc Gly	tgg Trp	agc Ser	tgg Trp	gac Asp 635	cag Gln	gcc Ala	ttg Leu	tct Ser	gag Glu 640	1920
											cga Arg					1968
gag Glu	cat His	cgg Arg	ccg Pro 660	cgc Arg	ttc Phe	acg Thr	cat His	ccg Pro 665	ctt Leu	gcc Ala	acg Thr	caa Gln	ttc Phe 670	ccg Pro	gcc Ala	2016
tgg Trp	gcg Ala	ggg Gly 675	ctg Leu	ctg Leu	aat Asn	ccg Pro	gct Ala 680	tcc Ser	cgt Arg	ccg Pro	atc Ile	ggc Gly 685	ggc Gly	gat Asp	ggc Gly	2064
gac Asp	acc Thr 690	gtg Val	ctg Leu	gcg Ala	aac Asn	ggg Gly 695	ctc Leu	gtc Val	ccg Pro	tca Ser	gcc Ala 700	ggg Gly	ccg Pro	cag Gln	gcg Ala	2112
											gtc Val					2160
aat Asn	agc Ser	cgc Arg	tgg Trp	gtc Val 725	gtc Val	ttc Phe	cac His	ggc Gly	gcc Ala 730	tcc Ser	ggg Gly	cat His	ccg Pro	gcc Ala 735	agc Ser	2208
											gac Asp					2256
ccg Pro	atg Met	ctc Leu 755	tat Tyr	agc Ser	tgg Trp	gac Asp	agg Arg 760	atc Ile	gcg Ala	gca Ala	gag Glu	gcc Ala 765	gtg Val	acg Thr	tcg Ser	2304
		ctc Leu			gcc Ala	tga										2325

REIVINDICACIONES

- 1. Una acilasa de beta-lactama de tipo II mutante seleccionada del grupo que consiste en la acilasa SE83-acil de *Pseudomonas* según se representa en la SEQ ID NO: 1, N176 de *Brevundimonas diminuta* según se representa en la SEQ ID NO: 2 y la acilasa V22 de *Brevundimonas diminuta* según se representa en la SEQ ID NO: 3, y polipéptidos con actividad de acilasa de beta-lactama de tipo II que tienen una secuencia de aminoácidos que es al menos un 90% idéntica a lo largo de toda su longitud con SEQ ID NO: 1, SEQ ID NO: 2 o SEQ ID NO: 3, en donde dicha acilasa de beta-lactama de tipo II mutante se caracteriza por que leucina en la posición 161 ha sido modificada en glicina, serina o treonina.
- Acilasa de beta-lactama de tipo II mutante de acuerdo con la reivindicación 1, que comprende una modificación en una posición seleccionada del grupo que consiste en 10, 29, 270, 274, 280, 296, 314, 442, 514, 589, 645, 694, 706 y 726, utilizando la numeración de la posición de los aminoácidos de la secuencia de aminoácidos de la acilasa SE83acil de *Pseudomonas* según se representa en la SEQ ID NO: 1.
 - 3. Acilasa de beta-lactama de tipo II mutante de acuerdo con la reivindicación 2, en donde serina en la posición 29 ha sido modificada en arginina, asparagina, glutamina o lisina y en donde tirosina en la posición 706 ha sido modificada en alanina, cisteína, glicina, prolina, serina, treonina o valina.
 - 4. Acilasa de beta-lactama de tipo II mutante de acuerdo con una cualquiera de las reivindicaciones 1-3, en donde dicha acilasa de beta-lactama mutante tiene una actividad in vitro de acilasa de beta-lactama mejorada al menos 1,5 veces hacia adipil-7-ADCA en comparación con el polipéptido modelo con actividad de acilasa de beta-lactama.
- 5. Un polinucleótido que codifica la acilasa de beta-lactama de tipo II mutante de una cualquiera de las reivindicaciones 1-4.
 - 6. Un vector o casete de expresión que comprende el polinucleótido de la reivindicación 5.

5

15

30

- 7. Una célula huésped que comprende el polinucleótido de la reivindicación 5 o el vector o la casete de expresión de la reivindicación 6.
- 8. Un método de producir la acilasa de beta-lactama de tipo II mutante de una cualquiera de las reivindicaciones 1-4, que comprende cultivar una célula huésped de acuerdo con la reivindicación 7 bajo condiciones que conducen a la producción de la acilasa de beta-lactama de tipo II mutante y recuperar el polipéptido.
 - 9. Un procedimiento para la producción de 6-APA, 7-ACA, 7-ADCA, 7-ADAC o ácido 7-amino-3-carbamoiloximetil-3-cefem-4-carboxílico, que comprende desacilar un precursor acilado de 6-APA, 7-ACA, 7-ADCA, 7-ADAC o ácido 7-amino-3-carbamoiloximetil-3-cefem-4-carboxílico, respectivamente utilizando la acilasa de beta-lactama de tipo II mutante de una cualquiera de las reivindicaciones 1-4, en el que el grupo acilo de dicho precursor acilado es un ácido dicarboxílico.
 - 10. Procedimiento de acuerdo con la reivindicación 9, en el que la acilasa de beta-lactama de tipo II mutante se utiliza en una forma inmovilizada.
- 11. Uso de la acilasa de beta-lactama de tipo II mutante de las reivindicaciones 1-4, para la desacilación de un precursor acilado de 6-APA, 7-ACA, 7-ADCA, 7-ADAC o ácido 7-amino-3-carbamoiloximetil-3-cefem-4-carboxílico.
 - 12. Uso de acuerdo con la reivindicación 11, en donde el grupo acilo de dicho precursor acilado de 6-APA, 7-ACA, 7-ADAC o ácido 7-amino-3-carbamoiloximetil-3-cefem-4-carboxílico es un ácido dicarboxílico.
 - 13. Uso de acuerdo con cualquiera de las reivindicaciones 11-12, en donde la acilasa de beta-lactama de tipo II mutante se utiliza en una forma inmovilizada.

SE83_ACYII N176_CCAC V22_CCAC	MTMAAKTDREALQAALPPLSGSLSIPGLSAPVRVQRDGWGIPHIKASGEADAYRALGFVH MTMAANTDRAVLQAALPPLSGSLPIPGLSASVRVRRDAWGIPHIKASGEADAYRALGFVH MTMAANTDRAVLQAALPPLSGSLPIPGLSASVPIQRDAWGIPHIKASGEADAYRALGFVH ****:** .******************************	60
SEB3_ACYII N176_CCAC V22_CCAC	AQDRLFQMELTRRKALGRAAEWLGAEAAEADILVRRLGMEKVCRRDFEALGAEAKDMLRA SQDRLFQMELTRRKALGRAAEWLGAEAAEADILVRRLGMEKVCRRDFEALGVEAKDMLRA AQDRLFQMELTRRKALGRAAEWLGAEAAEADILVRRLGMEKVCRRDFEALGAEAKDMLRA :************************************	120
SE83_ACYII N176_CCAC V22_CCAC	YVAGVNAFLASGAPLPIEYGLLGAEPEPWEPWHSIAVMRRLGLLMGSVWFKLWRMLALPV YVAGVNAFLASGAPLPVEYGLLGAEPEPWEPWHSIAVMRRLGLLMGSVWFKLWRILALPV YVAGVNAFLASGVPLPVEYGLLGAEPEPWEPWHSIAVMRRLGLLMGSVWFKLWRMLALPV ************************************	
SE83_ACYII N176_CCAC V22_CCAC	VGAANALKLRYDDGGQDLLCIPPGVEAERLEADLAALRPAVDALLKAMGGDASDAAGGGS VGAANALKLRYDDGGRDLLCIPPGAEADRLEADLATLRPAVDALLKAMGGDASDAAGGGS VGAANALKLRYDDGGRDLLCIPPRAEADRLEADLATLRPAVDALLKAMGGDASDAAGGGS *********************************	240 240 240
SE83_ACYII N176_CCAC V22_CCAC	NNWAVAPGRTATGRPILAGDPHRVFEIPGMYAQHHLACDRFDMIGLTVPGVPGFPHFAHN NNWAVAPGRTATGRPILAGDPHRVFEIPGMYAQHHLACDRFDMIGLTVPGVPGFPHFAHN NNWAVAPGRTATGRPILAGDPHRVFQIPGMYAQHHLACDRFDMIGLTVPGVPGFPHFAHN ************************************	300 300 300
SE83_ACYII N176_CCAC V22_CCAC	GKVAYCVTHAFMDIHDLYLEQFAEDGRTARFGNEFEPVAWRRDRIAVRGGADREFDIVET GKVAYCVTHAFMDIHDLYLEQFAGEGRTARFGNDFEPVAWSRDRIAVRGGADREFDIVET GKVAYCVTHAFMDIHDLYLEQFAEEGRRARFGNDFEPAAWSRDRIAVRGGADREFDIIET ***********************************	360 360 360
SE83_ACYII N176_CCAC V22_CCAC	RHGPVIAGDPLEGAALTLRSVQFAETDLSFDCLTRMPGASTVAQLYDATRGWGLIDHNLV RHGPVIAGDPRDGAALTLRSVQFAETDLSFDCLTRMPGASTVAQLYDATRGWGLIDHNLV RHGPVIAGDPRDGAALTLRSVQFAETDLSFDCLTRMPGASTVAQLYDATRGWGLIDHNLV ************************************	
SE83_ACYII N176_CCAC V22_CCAC	AGDVAGSIGHLVRARVPSRPRENGWLPVPGWSGEHEWRGWIPHEAMPRVIDPPGGLIVTA AGDVAGSIGHLVRARVPSRPRENGWLPVPGWSGEHEWRGWIPHEAMPRVIDPPGGIIVTA AGDVGGSIGHLVRARVPSRSRENGWLPVPGWSGEHEWRGWIPHEAMPRVIDPPGGIIVTA ****.********************************	480
SE83_ACYII N176_CCAC V22_CCAC	NNRVVADDHPDYLCTDCHPPYRAERIMERLVASPAFAVDDAAAIHADTLSPHVGLLRARL NNRVVADDHPDYLCTDCHPPYRAERIMKRLVANPAFAVDDAAAIHADTLSPHVGLLRRRL NNRVVADDHPDYLCTDCHPPYRAEPIMKRLVANPAFAVDDAAAIHADTLSPHVGLLRRRL ********************************	540
SE83_ACYII N176_CCAC V22_CCAC	EALGIQGSLPAEELRQTLIAWDGRMDAGSQAASAYNAFRRALTRLVTARSGLEQAIAHPF EALGARDDSAAEGLRQMLVAWDGRMDAASEVASAYNAFRRALTRLVTDRSGLEQAISHPF EALGARDDSAAEGLRQMLVAWDGRMDAASEVASAYNAFRRALTRLVTDRSGLEQAISHPF **** : ** *** *:*********************	600 600
SE83_ACYII N176_CCAC V22_CCAC	AAVPPGVSPQGQVWWAVPTLLRNDDAGMLKGWSWDEALSEALSVATQNLTGRGWGEEHRP AAVAPGVSPQGQVWWAVPTLLRDDDAGMLKGWSWDQALSEALSVASQNLTGRSWGEEHRP AAVAPGVSPQGQVWWAVPTLLRDDDAGMLKGWSWDQALSEALSVASQNLSRRSWGEEHRP	660

	.*****************************	
SE83 ACYII	RFTHPLSAQFPAWAALLNPVSRPIGGDGDTVLANGLVPSAGPEATYGALSRYVFDVGNWD	720
N176 CCAC	RFTHPLATQFPAWAGLLNPASRPIGGDGDTVLANGLVPSAGPQATYGALSRYVFDVGNWD	720
V22_CCAC	RFTHPLATQFPAWAGLLNPASRPIGGDGDTVLANGLVPSAGPQATYGALSRYVFDVGNWD	720
SE83 ACYII	NSRWVVFHGASGHPASPHYADQNAPWSDCAMVPMLYSWDRIAAEAVTSQELVPA- 774	
N176 CCAC	NSRWVVFHGASGHPASAHYADQNAPWSDCAMVPMLYSWDRIAAEAVTSQELVPA- 774	
V22_CCAC	NSRWVVFHGASGHPASAHYADQNAPWSDCAMVPMLYSWDRIAAEAVTSQELVPAX 775	

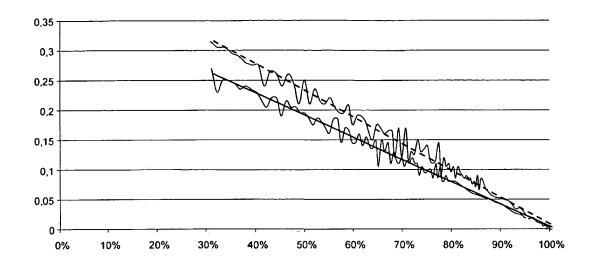


Fig. 2a

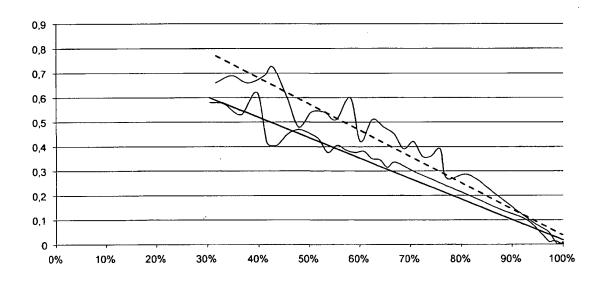


Fig. 2b