



OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11) Número de publicación: 2 575 413

51 Int. Cl.:

C12N 9/04 (2006.01) C12N 15/53 (2006.01) C12P 7/16 (2006.01)

12 TRADUCCI

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 18.12.2008 E 13177890 (4)
(97) Fecha y número de publicación de la concesión europea: 09.03.2016 EP 2677028

(54) Título: Cetol-ácido reductoisomerasa que utiliza NADH

(30) Prioridad:

20.12.2007 US 15346 P 29.10.2008 US 109297 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 28.06.2016

(73) Titular/es:

BUTAMAX (TM) ADVANCED BIOFUELS LLC (100.0%)
Route 141 & Henry Clay, DuPont Experimental Station, Building 356
Wilmington, DE 19880-0356, US

(72) Inventor/es:

LI, YOUGEN; NELSON, MARK J.; LIAO, DER-ING y O'KEEFE, DANIEL P.

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

#### **DESCRIPCIÓN**

Cetol-ácido reductoisomerasa que utiliza NADH

Esta solicitud reivindica el beneficio de las aplicaciones provisionales de EE.UU. 61/015346, presentada el 20 de diciembre de 2007, y 61/109297 presentada 29 de octubre 2008.

#### 5 Campo de la invención

10

15

20

35

40

50

La invención se refiere a la evolución de proteínas. Específicamente, las enzimas cetol-ácido reductoisomerasa han evolucionado para utilizar el cofactor NADH en lugar del NADPH.

#### Antecedentes de la invención

Las enzimas cetol-ácido reductoisomerasa son de naturaleza ubicua y están involucradas en la producción de valina e isoleucina, rutas que pueden afectar a la síntesis biológica de isobutanol. El isobutanol se produce específicamente del catabolismo de L-valina como un subproducto de la fermentación de la levadura. Es un componente de "aceite de fusel" que se forma como resultado del metabolismo incompleto de los aminoácidos por las levaduras. Después de que el grupo amino de la L-valina se cosecha como fuente de nitrógeno, el α-ceto-ácido resultante es descarboxilado y se reduce a isobutanol por las enzimas de la ruta de Ehrlich (Dickinson, et al., J. Biol. Chem. 273, 25752-25756, 1998).

La adición de L-valina exógena para la fermentación aumenta el rendimiento de isobutanol, como se describe por Dickinson et al., supra, en donde se informa de que se obtiene un rendimiento de isobutanol de 3 g/l proporcionando L-valina en una concentración de 20 g/l en la fermentación. Además, se ha mostrado la producción de n-propanol, isobutanol y alcohol isoamílico mediante células de Zymomonas mobilis inmovilizadas en alginato de calcio (Oaxaca, et al., Acta Biotechnol., 11, 523-532, 1991).

Se mostraba un incremento en el rendimiento de alcoholes C3-C5 a partir de hidratos de carbono cuando se añadían los aminoácidos leucina, isoleucina y/o valina al medio de crecimiento como fuente de nitrógeno (WO 2005040392).

Mientras que los procedimientos descritos anteriormente indican el potencial de la producción de isobutanol a través de medios biológicos estos procedimientos tienen un coste prohibitivo para la producción de isobutanol escala industrial. La biosíntesis de isobutanol directamente a partir de azúcares sería económicamente viable y representaría un avance en la técnica. Sin embargo, hasta la fecha las únicas enzimas cetol-ácido reductoisomerasa (KARI) conocidas son aquellas que unen NADPH en su forma nativa, reduciendo la eficiencia energética de la ruta. Una KARI que uniera NADH sería beneficiosa y mejoraría la productividad de la ruta biosintética de isobutanol mediante la capitalización de la NADH producido por las rutas glucolíticas existentes y otras metabólicas en las células microbianas más habitualmente utilizadas. El descubrimiento de una enzima KARI que puede utilizar NADH como cofactor en lugar de NADPH sería un avance en la técnica.

La evolución de enzimas que tienen especificidad para el cofactor NADH en lugar de por el NADPH es conocida por algunas enzimas y se conoce normalmente como "intercambio/conmutación de cofactor". Véase, por ejemplo Eppink, et al. J. Mol. Biol., (1999), 292, 87-96, que describe la conmutación de la especificidad del cofactor de phidroxibenzoato hidroxilasa (PHBH) dependiente estrictamente de NADPH a partir de Pseudomonas fluorescens mediante mutagénesis dirigida al sitio; y Nakanishi, et al., J. Biol. Chem., (1997), 272, 2218-2222, que describe el uso de mutagénesis dirigida al sitio en una carbonilo reductasa de pulmón de ratón en la que Thr-38 fue sustituida por Asp (T38D) dando como resultado una enzima que tiene un aumento de 200 veces en los valores K<sub>m</sub> para NADP(H) y una disminución correspondiente de más de 7 veces en aquellos de NAD(H). La conmutación del cofactor de conmutación se ha aplicado a una variedad de enzimas que incluyen monooxigenasas (Kamerbeek, et al, Eur J, Biochem, (2004), 271, 2107-2116); deshidrogenasas; Nishiyama, et al., J. Biol. Chem, (1993), 268, 4656-4660; Ferredoxin-NADP reductasa, Martínez-Julvez, et al., Biophys. Chem, (2005), 115, 219-224); y oxidorreductasas (US2004/0248250).

Rane et al., (Arch. Biochem. Biophys., (1997), 338, 83-89) comentan la conmutación del cofactor de una cetol-ácido reductoisomerasa aislada de E. coli dirigiendo cuatro restos a la enzima para la mutagénesis (R68, K69, K75, y R76); sin embargo, se duda de la eficacia de este procedimiento.

Aunque los procedimientos citados anteriormente sugieren que es posible, por lo general, conmutar la especificidad del cofactor entre NADH y NADPH, los procedimientos son específicos de la enzima y los resultados impredecibles. El desarrollo de un cetol-ácido reductoisomerasa que tiene una alta especificidad por NADH en lugar de por NADPH mejoraría enormemente su eficacia en la ruta biosintética de isobutanol, sin embargo, no se ha informado de tal enzima KARI.

Los solicitantes han resuelto el problema planteado identificando una serie de enzimas cetol-ácido reductoisomerasa mutante que tienen una preferencia por unir NADH en lugar de NADPH.

#### Compendio de la invención

La invención se refiere a un procedimiento para la evolución de enzimas de cetol-ácido reductoisomerasa (KARI) desde unir el cofactor NADPH hasta unir NADH. El procedimiento implica la mutagénesis de ciertos restos específicos en la enzima KARI de ellos para producir la conmutación del co-factor.

- 5 Por consiguiente, la invención proporciona una enzima cetol-ácido reductoisomerasa como se expone en la ID de SEC Nº: 17 en donde
  - a) el resto 52 se muta; o
  - b) los restos 47, 50 y 52 se mutan; o
- c) el resto 52 y al menos un resto seleccionado del grupo que consiste en 24, 33, 53, 61, 80, 115, 156, 165 y 170 se 10 mutan: o
  - d) los restos 47, 50, 52 y al menos un resto seleccionado del grupo que consiste en 24, 33, 53, 61, 80, 115, 156, 165 y 170 se mutan; y
  - en donde dicha enzima cetol-ácido reductoisomerasa tiene una preferencia por unir NADH en lugar de por NADPH, y
- 15 en donde dicha mutación es una sustitución de aminoácidos.

En una realización de dicha invención, la enzima comprende la secuencia de aminoácidos como se expone en la ID de SEC Nº: 29. También se describe en el presente documento una enzima cetol-ácido reductoisomerasa mutante que comprende la secuencia de aminoácidos como se expone en la ID de SEC Nº: 29

Alternativamente, la invención proporciona una enzima cetol-ácido reductoisomerasa mutante que tiene la secuencia de aminoácidos seleccionada del grupo que consiste en la ID de SEC Nº: 19, 24, 25, 26, 27, 28, 67, 68, 69 y 70.

También se describe en el presente documento una enzima cetol-ácido reductoisomerasa mutante como se expone en la ID de SEC Nº: 17 que comprende al menos una mutación en un resto seleccionado del grupo consistente en 24, 33, 47, 50, 52, 53, 61, 80, 115, 156, 165 y 170.

En una realización específica, la invención proporciona una enzima cetol-ácido reductoisomerasa como se expone en la ID de SEC Nº: 17 en la que el resto en la posición 52 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, G, H, N, y S.

En algunas realizaciones,

- a) el resto en la posición 47 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, F, G, I, L, N, P e Y;
- b) el resto en la posición 50 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, E, F, G, M, N, V y W; y
  - c) el resto en la posición 52 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, G, H, N, y S.

En algunas realizaciones, en la enzima cetol-ácido reductoisomerasa de la invención

- a) el resto en la posición 156 tiene una sustitución de aminoácidos de V;
  - b) el resto en la posición 165 tiene una sustitución de aminoácidos de M;
  - c) el resto en la posición 61 tiene una sustitución de aminoácidos de F;
  - d) el resto en la posición 170 tiene una sustitución de aminoácidos de A;
  - e) el resto en la posición 24 tiene una sustitución de aminoácidos de F;
- 40 f) el resto en la posición 33 tiene una sustitución de aminoácidos de L;
  - g) el resto en la posición 80 tiene una sustitución de aminoácidos de I;
  - h) el resto en la posición 115 tiene una sustitución de aminoácidos de L; y
  - i) el resto en la posición 53 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, H, I y W.

En otra realización, la invención proporciona un procedimiento para la evolución de una enzima cetol-ácido reductoisomerasa que une NADPH a una forma que utiliza NADH que comprende:

- a) proporcionar una enzima cetol-ácido reductoisomerasa que utiliza NADPH que tiene una secuencia de aminoácidos nativa específica:
- b) identificar un resto de conmutación del cofactor en la enzima de a) basado en la secuencia de aminoácidos de la enzima cetol-ácido reductoisomerasa Pseudomonas fluorescens como se expone en la ID de SEC Nº: 17 en la que el resto de conmutación del cofactor en la ID de SEC Nº: 17 está en la posición 52;
  - c) crear una mutación en el resto de conmutación del cofactor identificado en b) para crear una enzima mutante en la que dicha enzima mutante ligue NADH.
- También se describe en el presente documento un procedimiento para la evolución de una enzima cetol-ácido reductoisomerasa que une NADPH a una forma que utiliza NADH que comprende:
  - a) proporcionar una enzima cetol-ácido reductoisomerasa que utiliza NADPH que tiene una secuencia de aminoácidos nativa específica;
- b) identificar los restos de conmutación del cofactor en la enzima de a) basado en la secuencia de aminoácidos de la enzima cetol-ácido reductoisomerasa Pseudomonas fluorescens como se expone en la ID de SEC Nº: 17 en la que los restos de conmutación del cofactor están en las posiciones seleccionadas del grupo que consiste en 24, 33, 47, 50, 52, 53, 61, 80, 115, 156, 165 y 170;
  - c) crear mutaciones en al menos uno de los restos de conmutación del cofactor de b) para crear una enzima mutante en la que dicha enzima mutante lique NADH.
- 20 En otra realización alternativa, la invención proporciona un procedimiento para la producción de isobutanol, que comprende:
  - a) proporcionar una célula anfitriona microbiana recombinante que comprende los siguientes constructos genéticos:
    - i) al menos un constructo genético que codifica una enzima acetolactato sintasa para la transformación de piruvato en acetolactato;
- 25 ii) al menos un constructo genético que codifica una enzima cetol-ácido reductoisomerasa de la invención;
  - iii) al menos un constructo genético que codifica una acetohidroxiácido deshidratasa para la transformación de 2,3-dihidroxiisovalerato en  $\alpha$ -cetoisovalerato (ruta de la etapa c);
  - iv) al menos un constructo genético que codifica una cetoácido descarboxilasa de cadena ramificada, para la transformación de  $\alpha$ -cetoisovalerato en isobutiraldehido (ruta de la etapa d);
  - v) al menos un constructo genético que codifica un alcohol deshidrogenasa de cadena ramificada para la transformación de isobutiraldehido en isobutanol (ruta de la etapa e); y
  - b) cultivar la célula anfitriona de (a) en condiciones en las que se produzca iso-butanol.

### Breve descripción de las descripciones de las secuencias de las figuras

30

35

40

- La invención puede ser entendida más completamente a partir de la siguiente descripción detallada, las Figuras y las descripciones de las secuencias que se adjuntan, que forman parte de esta solicitud.
  - Figura 1 Muestra cuatro diferentes rutas de biosíntesis de isobutanol. Las etapas marcadas "a", "b", "c", "d", "e", "f", "g", "h", "i", "j" y "k" representan las transformaciones de substrato a producto que se describen a continuación.
- Figura 2 Alineamiento múltiple de secuencias (MSA) de enzimas KARI de diferentes fuentes. (a) MSA entre tres enzimas KARI que requieren NADPH; (b) MSA entre PF5-KARI y otras enzimas KARI, con especificidad promiscua de nucleótidos, donde MMC5 es de Methanococcus maripaludis C5; MMS2 es de Methanococcus maripaludis S2; MNSB es de Methanococcus vanniellii SB; ilv5 es de Saccharomyces cerevisiae ilv5; KARI-D1 es de Sulfolobus solfataricus P2 ilvC; KARI-D2 es de Pyrobaculum aerophilum P2ilvC; y KARI-S1 es de Ralstonia solanacearum GM11000 ivlC.
  - Figura 3 Interacción de bucle de unión fosfato con NADPH basado en el modelado de homología.
- Figura 4 Actividades KARI de mejor desempeño de la biblioteca C que utilizan cofactores NADH frente a NADPH. La actividad y la desviación estándar se derivaron de experimentos triples. La información de la mutación es la siguiente: C3A7 = R47Y/S50A/T52D/V53W; C3A10 = R47Y/S50A/T52D/V53W; C3B11 = R47F/S50A/T52D/V53W; C3C8 = R47G/S50M/T52D/V53W; y C4D12 = R47C/S50MT52DN53W

- Figura 5 (a) Actividades KARI de mejor desempeño de las bibliotecas E, F y G que utilizan cofactores NADH frente a NADPH. (b) actividades KARI de control positivo frente a Pf5-ilvC de tipo silvestre que utilizan cofactores NADH. La actividad y la desviación estándar se derivaron de al menos tres experimentos paralelos. "Wt" representa el tipo silvestre de Pf5-ilvC y "Neg" significa control negativo.
- 5 Los experimentos de las reacciones NADH y NADPH en (a) duraron 30 minutos; en (b) duraron 10 minutos.

15

- Figura 6 Actividades de mejor desempeño de la biblioteca H que utilizan cofactores NADH frente NADPH. La actividad y la desviación estándar se derivaron de experimentos triples. La información de la mutación es la siguiente: 24F9 = R47P/S50G/T52D; 68F10 = R47P/T52S; 83G10 = R47P/S50D/T52S; 39G4 = R47P/S50C/T52D; 91A9 = R47P/S50CT52D; y C3B11 = R47F/S50A/T52D/V53W
- Figura 7 Termoestabilidad de PF5-ilvC. La actividad restante de la enzima después de calentar a ciertas temperaturas durante 10 min era el número promedio de experimentos triples y se normalizó a la actividad medida a temperatura ambiente.
  - Figura 8 Alineamiento múltiple de secuencias entre 5 moléculas KARI que existen en la naturaleza. Las posiciones resaltadas en negrita y gris fueron identificados por PCR propensa a error y de las posiciones solo resaltadas en gris fueron objeto de mutagénesis.
  - Figura 9 Alineamiento de las veinticuatro secuencias KARI funcionalmente verificadas. El motivo GxGXX(G/A) involucrado en la unión de NAD(P)H se indica debajo del alineamiento.
  - Figura 10 Un ejemplo del alineamiento de Pf5-KARI Pseudomonas fluorescens para el perfil HMM de KARI. Las once posiciones que son responsables de conmutación del co-factor están en negrita y sombreadas en gris.
- Tabla 9-es una tabla del perfil HMM de las enzimas KARI descritas en el Ejemplo 5. Los once posiciones en el perfil HMM que representan las columnas en el alineamiento que corresponden a las once posiciones de conmutación del cofactor en Pf-5-KARI Pseudomonas fluorescens están identificadas como posiciones 24, 33, 47, 50, 52, 53, 61, 80, 115, 156 y 170. Las líneas correspondientes a estas posiciones en el archivo de modelo se resaltan en amarillo. La Tabla 9 se presenta adjunta electrónicamente.
- Las siguientes secuencias se ajustan a 37 C.F.R. 1.821-1.825 ("Requisitos para las solicitudes de patente que contienen secuencias de nucleótidos y/o divulgaciones de secuencias de aminoácidos las Reglas de Secuencias") y son compatibles con la Norma ST.25 (1998) de la Organización Mundial de la Propiedad Intelectual (WIPO) y los requisitos del listado de secuencias de los de EPO y PCT (Reglas 5.2 y 49.5 (a-bis), y la Sección 208 y el Anexo C de las Instrucciones Administrativas). Los símbolos y formato utilizados para los datos de secuencias de nucleótidos y aminoácidos cumplen con las reglas establecidas en 37 CFR §1.822.

Tabla 1

Cebadores de oligonucleótidos utilizados en esta invención

|                        | Cebadores de oligonucleótidos utilizados en esta invención |                                            |  |  |
|------------------------|------------------------------------------------------------|--------------------------------------------|--|--|
| ID de SECUENCIA<br>No. | SECUENCIA                                                  | Descripción                                |  |  |
| 1                      | TGATGAACATCTTCGCGTATTCGCCGTCCT                             | Cebador inverso para el vector <i>pBAD</i> |  |  |
| 2                      | GCGTAGACGTGACTGTTGGCCTGNNTAAAGGCNN                         | Cebador directo de biblioteca C            |  |  |
|                        | GGCTNNCTGGGCCAAGGCT GAAGCCCACGGCTTG                        | Diblioteca C                               |  |  |
| 3                      | GCGTAGACGTGACTGTTGGCCTGNNTAAAGGCTCG                        | Cebador directo de biblioteca E            |  |  |
|                        | GCTACCGTTGCCAAGGCTGAAGCCCACGGCTTG                          | Dibiloteca E                               |  |  |
| 4                      | GCGTAGACGTGACTGTTGGCCTGCGTAAAGGCNNT                        | Cebador directo de biblioteca F            |  |  |
|                        | GCTACCGTTGCCAAGGCTGAAGCCCACGGCTTG                          | biblioteca F                               |  |  |
| 5                      | GCGTAGACGTGACTGTTGGCCTGCGTAAAGGCTCG                        | Cebador directo de biblioteca G            |  |  |
|                        | GCTNNTGTTGCCAAGGCTGAAGCCCACGGCTTG                          | biblioteca G                               |  |  |
| 6                      | GCGTAGACGTGACTGTTGGCCTGNNTAAAGGCNNT                        | Cebador directo de biblioteca H            |  |  |
|                        | GCTNNTGTTGCCAAGGCTGAAGCCCACGGCTTG                          |                                            |  |  |
| 7                      | AAGATTAGCGGATCCTACCT                                       | Cebador de secuenciación                   |  |  |

|                        | Cebadores de oligonucleótidos utilizados en esta invención |                                    |  |  |
|------------------------|------------------------------------------------------------|------------------------------------|--|--|
| ID de SECUENCIA<br>No. | SECUENCIA                                                  | Descripción                        |  |  |
|                        |                                                            | (directo)                          |  |  |
| 8                      | AACAGCCAAGCTTTTAGTTC                                       | Cebador de secuenciación (inverso) |  |  |
| 20                     | CTCTCTACTGTTTCTCCATACCCG                                   | pBAD_266-021308f                   |  |  |
| 21                     | CAAGCCGTGGGCTTCAGCCTTGGCKNN                                | PF5_53Mt022908r                    |  |  |
| 22                     | CGGTTTCAGTCTCGTCCTTGAAG                                    | pBAD_866-021308                    |  |  |
| 49                     | GCTCAAGCANNKAACCTGAAGG                                     | pBAD-405-C33_090808f               |  |  |
| 50                     | CCTTCAGGTTKNNTGCTTGAGC                                     | pBAD-427-C33_090808r               |  |  |
| 51                     | GTAGACGTGNNKGTTGGCCTG                                      | pBAD-435-T43_090808f               |  |  |
| 52                     | CAGGCCAACKNNCACGTCTAC                                      | pBAD-456-T43_090808r               |  |  |
| 53                     | CTGAAGCCNNKGGCNNKAAAGTGAC                                  | pBAD-484-<br>H59L61_090808f        |  |  |
| 54                     | GTCACTTTKNNGCCKNNGGCTTCAG                                  | pBAD-509-<br>H59L61_090808r        |  |  |
| 55                     | GCAGCCGTTNNKGGTGCCGACT                                     | pBAD-519-A71_090808f               |  |  |
| 56                     | AGTCGGCACCKNNAACGGCTGC                                     | pBAD-541-A71_090808r               |  |  |
| 57                     | CATGATCCTGNNKCCGGACGAG                                     | pBAD-545-T80_090808f               |  |  |
| 58                     | CTCGTCCGGKNNCAGGATCATG                                     | pBAD-567-T80_090808r               |  |  |
| 59                     | CAAGAAGGGCNNKACTCTGGCCT                                    | pBAD-608-A101_090808f              |  |  |
| 60                     | AGGCCAGAGTKNNGCCCTTCTTG                                    | pBAD-631-A101_090808r              |  |  |
| 61                     | GTTGTGCCTNNKGCCGACCTCG                                     | pBAD-663-R119_090808f              |  |  |
| 62                     | CGAGGTCGGCKNNAGGCACAAC                                     | pBAD-685-R119_090808r              |  |  |

Las secuencias adicionales utilizadas en la aplicación se enumeran a continuación. En esta divulgación se utilizan los nombres abreviados de los genes entre paréntesis.

- ID de SEC Nº: 9: Methanococcus maripaludis C5-ilvC (MMC5) Número de Acceso al Banco de Genes NC 009135.1 Región: 901034..902026
- 5 ID de SEC Nº: 10: es la Methanococcus maripaludis S2-ilvC (MMS2) Número de Acceso al Banco de Genes NC 005791.1 Región: 645729..646721
  - ID de SEC  $N^\circ$ : 11: es la Methanococcus vannielii SB-ilv5 (MVSB) Número de Acceso al Banco de Genes  $NZ_AAWX01000002.1$  Región: 302214..303206
- ID de SEC Nº: 12: es la Saccharomyces cerevisiae ilv5 (ilv5) Número de Acceso al Banco de Genes NC\_001144.4 10 Región: 838065..839252
  - ID de SEC Nº: 13: es la Sulfolobus solfataricus P2 ilvC (KARI-D1) Número de Acceso al Banco de Genes NC\_002754.1 Región: 506253..507260
  - ID de SEC N°: 14: es la Pyrobaculum aerophilum str. IM2 ilvC (KARI-D2) Número de Acceso al Banco de Genes NC\_003364.1 Región: 1976281..1977267
- 15 ID de SEC Nº: 15: es la Ralstonia solanacearum GMI1000 ilvC (KARI-S1) Número de Acceso al Banco de Genes NC 003295.1 Región: 2248264..2249280
  - ID de SEC Nº: 16: es la Pseudomonas aeruginosa PAO1 ilvC Número de Acceso al Banco de Genes NC\_002516 Región: 5272455..5273471
- ID de SEC Nº: 17: es la Pseudomonas fluorescens PF5 ilvC Número de Acceso al Banco de Genes NC\_004129 20 Región: 6017379..6018395

- ID de SEC Nº: 18: es la Spinacia oleracea ilvC (Spinach-KARI) Número de Acceso al Banco de Genes NC\_002516 Región: 1..2050.
- ID de SEC Nº: 19: es la secuencia de aminoácidos del mutante (Y24F/R47Y/S50A/T52D/V53A/L61F/G170A) de la proteína nativa ilvC de Pseudomonas fluorescens.
- 5 SEQ ID NO: 23 es la SEC de ADN del mutante (Y24F/R47Y/S50A/ T52D/V53A/L61 F/ G170A) de la proteína nativa ilvC de Pseudomonas fluorescens.
  - ID de SEC Nº: 24: es la SEC de aminoácidos de la ZB1 mutante (Y24F/R47Y/S50A/T52D/V53A/L61 F/A156V)
  - ID de SEC Nº: 25: es la SEC de aminoácidos de la ZF3 mutante (Y24F/C33L/R47YIS50A/T52D/V53A/L61F)
  - ID de SEC Nº: 26: es la SEC de aminoácidos de la ZF2 mutante (Y24F/C33L/R47Y/S50AIT52D/V53A/L61 F/A156V)
- 10 ID de SEC №: 27: es la SEC de aminoácidos de la ZB3 mutante (Y24F/C33L/R47Y/S50A/T52D/V53A/L61F/G170A)
  - ID de SEC Nº: 28: es la SEC de aminoácidos del Z4B8 mutante (C33L/R47Y/S50A/T52D/V53A1L61F/T801IA156V/G170A)
  - ID de SEC N°: 29: es una secuencia de aminoácidos de consenso que comprende todas las mutaciones puntuales KARI verificadas experimentalmente basadas en la ID de SEC N°: 17.
- 15 ID de SEC №: 30: es la secuencia de aminoácidos para KARI de Natronomonas pharaonis DSM 2160
  - ID de SEC Nº: 31: es la secuencia de aminoácidos para KARI de Bacillus subtilis subsp. subtilis str. 168
  - ID de SEC Nº: 32: es la secuencia de aminoácidos para KARI de Corynebacterium glutamicum ATCC 13032
  - ID de SEC Nº: 33: es la secuencia de aminoácidos para KARI de Phaeospirilum molischianum
  - ID de SEC Nº: 34: es la secuencia de aminoácidos para KARI de Zymomonas mobilis subsp. mobilis ZM4
- 20 ID de SEC N°: 35: es la secuencia de aminoácidos para KARI Alkalilimnicola ehrlichei MLHE-1
  - ID de SEC Nº: 36: es la secuencia de aminoácidos para KARI de Campylobacter lari RM2100
  - ID de SEC Nº: 37: es la secuencia de aminoácidos para KARI de Marinobacter aquaeolei VT8
  - ID de SEC Nº: 38: es la secuencia de aminoácidos para KARI Psychrobacter arcticus 273-4
  - ID de SEC Nº: 39: es la secuencia de aminoácidos para KARI de Hahella chejuensis KCTC2396
- 25 ID de SEC Nº: 40: es la secuencia de aminoácidos para KARI de Thiobacillus denitrificans ATCC25259
  - ID de SEC Nº: 41: es la secuencia de aminoácidos para KARI de Azotobacter vinelandii AvOP
  - ID de SEC Nº: 42: es la secuencia de aminoácidos para KARI de Pseudomonas syringae pv. syringae B728a
  - ID de SEC Nº: 43: es la secuencia de aminoácidos para KARI de Pseudomonas syringae pv. tomato str. DC3000
  - ID de SEC Nº: 44: es la secuencia de aminoácidos para KARI de Pseudomonas putida KT2440
- 30 ID de SEC №: 45: es la secuencia de aminoácidos para KARI de Pseudomonas entomophila L48
  - ID de SEC Nº: 46: es la secuencia de aminoácidos para KARI de Pseudomonas mendocina ymp
  - ID de SEC Nº: 47: es la secuencia de aminoácidos para KARI de Bacillus cereus ATCC10987 NP 977840.1
  - ID de SEC Nº: 48: es la secuencia de aminoácidos para KARI de Bacillus cereus ATCC10987 NP 978252.1
- ID de SEC Nº: 63: es la secuencia de aminoácidos para KARI de Escherichia coli-Número de Acceso al Banco de Genes P05793
  - ID de SEC N°: 64: es la secuencia de aminoácidos para KARI de Marine Gamma Proteobacterium HTCC2207 Número de Acceso al Banco de Genes  $ZP_01224863.1$
  - ID de SEC Nº: 65: es la secuencia de aminoácidos para KARI de Desulfuromonas acetoxidans Número de Acceso al Banco de Genes ZP\_01313517.1
- 40 ID de SEC Nº: 66: es la secuencia de aminoácidos para KARI de Pisum sativum (Pea) Número de Acceso al Banco de Genes 082043

- ID de SEC Nº: 67: es la secuencia de aminoácidos para el mutante 3361 G8 (C33L/R47Y/S50A/T52D/V53A/L61F/T80I)
- ID de SEC N°: 68: es la secuencia de aminoácidos del 2H10 mutante (Y24F/C33L/R47Y/S50A/T52D/V53I/L61F/T80I/A156V)
- 5 ID de SEC N°: 69: secuencia de aminoácidos del 1 D2 mutante es la (Y24F/R47Y/S50A/T52D/V53A/L61F/T801/A156V
  - ID de SEC  $N^{\circ}$ : 70: es la secuencia de aminoácidos del 3F12 mutante (Y24F/C33L/R47Y/S50A/T52D/V53A/L61F/T801/A156V).

#### Descripción detallada de la invención

50

- La presente invención se refiere a la generación de enzimas KARI mutadas para usar NADH en lugar de NADPH. Estas enzimas de co-factor conmutado funcionan de manera más eficaz en los sistemas microbianos diseñados para producir isobutanol. Isobutanol es un importante producto químico industrial de entre los productos básicos con una variedad de aplicaciones, donde su potencial como un combustible o un aditivo de combustible es particularmente significativo. Aunque sólo un alcohol de cuatro carbonos, butanol tiene un contenido de energía similar al de la gasolina y se puede mezclar con cualquier combustible fósil. Isobutanol está favorecido como un combustible o un aditivo del combustible, ya que produce sólo CO<sub>2</sub> y poco o ningún SO<sub>X</sub> o NO<sub>X</sub> cuando se quema en un motor estándar de combustión interna. Además el butanol es menos corrosivo que el etanol, el aditivo de combustible más preferido hasta la fecha.
- Las siguientes definiciones y abreviaturas se han de utilizar para la interpretación de las reivindicaciones y de la memoria descriptiva.
  - El término "invención" o la expresión "presente invención" como se utiliza en el presente documento está destinado a aplicarse en general a todas las realizaciones de la invención descritas en las reivindicaciones como presentadas o más tarde modificadas y complementadas, o en la memoria descriptiva.
- La expresión "ruta biosintética del isobutanol" se refiere a la ruta enzimática para producir isobutanol. Rutas biosintéticas de isobutanol preferidas se ilustran en la Figura 1 y se describen en el presente documento.
  - La expresión "ensayo de consumo de NADPH" se refiere a un ensayo enzimático para la determinación de la actividad específica de la enzima KARI, que implica medir la desaparición del cofactor KARI, NADPH, de la reacción enzimática.
  - "KARI" es la abreviatura de la enzima cetol-ácido reductoisomerasa.
- La expresión "proximidad cercana" cuando se refiere a la posición de diversos restos de aminoácidos de una enzima KARI con respecto al adenosil 2'-fosfato de NADPH significa aminoácidos en el modelo tridimensional para la estructura de la enzima que se encuentran a unos 4,5 Å del átomo de fósforo del adenosil 2'-fosfato de NADPH ligado a la enzima.
- La expresión "Cetol-ácido reductoisomerasa " (abreviado "KARI"), y "Acetohidroxiácido isomerorreductasa" se utilizarán de forma intercambiable y se refieren a la enzima que tiene el número de la CE, EC 1.1.1.86 (Enzyme Nomenclature 1992, Academic Press, San Diego). La cetol-ácido reductoisomerasa cataliza la reacción de (S)-acetolactato a 2,3-dihidroxiisovalerato, como se describe más completamente a continuación. Estas enzimas están disponibles a partir de una serie de fuentes, que incluyen, pero no se limitan a E. coli con Número de Acceso al Banco de Genes NC-000913 REGIÓN: 3955993..3957468, Vibrio cholerae con Número de Acceso al Banco de Genes NC-002505 REGIÓN: 157441..158925, Pseudomonas aeruginosa con Número de Acceso al Banco de Genes NC-002516, (ID de SEC Nº: 16) REGIÓN: 5272455..5273471, y Pseudomonas fluorescens con Número de Acceso al Banco de Genes NC-004129 (ID de SEC Nº: 17) REGIÓN: 6017379..6018395. Como se utiliza en el presente documento, la expresión "enzima cetol-ácido reductoisomerasa de Clase I" significa la forma corta que tiene típicamente entre 330 y 340 restos de aminoácidos, y es distinta de la forma larga, llamada clase II, que tiene típicamente aproximadamente 490 restos.
  - La expresión "acetolactato sintasa" se refiere a una enzima que cataliza la transformación de piruvato en acetolactato y CO<sub>2</sub>. Acetolactato tiene dos estereoisómeros ((R)- y (S)-); la enzima prefiere el (S)-isómero, que se produce mediante sistemas biológicos. Acetolactato sintasas preferidas son conocidas por el número EC 2.2.1.6 9 (Enzyme Nomenclature 1992, Academic Press, San Diego). Estas enzimas están disponibles a partir de una serie de fuentes, que incluyen, pero no se limitan a Bacillus subtilis (N° en el Banco de Genes: CAB15618, Z99122, secuencia de aminoácidos NCBI (Centro Nacional de Información Biotecnológica) y secuencia de nucleótidos NCBI, respectivamente), Klebsiella pneumoniae (N° en el Banco de Genes: AAA25079 (ID de SEC N°: 2), M73842 (ID de SEC N°: 1)), y Lactococcus lactis (N° en el Banco de Genes: AAA25161, L16975).
  - La expresión "acetohidroxiácido deshidratasa" se refiere a una enzima que cataliza la transformación de 2,3-

dihidroxi-isovalerato a  $\alpha$ -cetoisovalerato. Las acetohidroxiácido deshidratasas preferidas son conocidas por el número EC 4.2.1.9. Estas enzimas están disponibles a partir de en una amplia variedad de microorganismos, que incluyen, pero no se limitan a E. coli (Nº en el Banco de Genes: YP\_026248, NC\_000913, S. cerevisiae (Nº en el Banco de Genes: NP\_012550, NC\_001142), M. maripaludis (Nº en el Banco de Genes: CAF29874, BX957219), y B. subtilis (Nº en el Banco de Genes: CAB14105, Z99115).

5

10

15

30

35

40

La expresión " $\alpha$ -cetoácido descarboxilasa de cadena ramificada" se refiere a una enzima que cataliza la transformación de  $\alpha$ -cetoisovalerato a isobutiraldehido y CO $_2$ . Las  $\alpha$ -cetoácido descarboxilasas de cadena ramificada preferidas son conocidas por el número EC 4.1.1.72 y están disponibles a partir de una serie de fuentes, que incluyen, pero no se limitan a Lactococcus lactis (N $^\circ$  en el Banco de Genes: AAS49166, AY548760; CAG34226, AJ746364, Salmonella typhimurium (N $^\circ$  en el Banco de Genes: NP-461346, NC-003197), y Clostridium acetobutylicum (N $^\circ$  en el Banco de Genes: NP-149189, NC-001988).

La expresión "alcohol deshidrogenasa de cadena ramificada" se refiere a una enzima que cataliza la transformación de isobutiraldehido a isobutanol. Las alcohol deshidrogenasas de cadena ramificada preferidas son conocidas por el número EC 1.1.1.265, pero también pueden ser clasificadas bajo otras alcohol deshidrogenasas (específicamente, EC 1.1.1.1 o 1.1.1.2). Estas enzimas utilizan NADH (nicotinamida adenina dinucleótido reducida) y/o NADPH como donante de electrones y están disponibles a partir de una serie de fuentes, que incluyen, pero no se limitan a S. cerevisiae (Nº en el Banco de Genes: NP-010656, NC-001136; NP-014051, NC-001145), E. coli (Nº en el Banco de Genes: NP-417484, y C. acetobutylicum (Nº en el Banco de Genes: NP-349892, NC-003030).

La expresión "ceto ácido deshidrogenasa de cadena ramificada" se refiere a una enzima que cataliza la transformación de α-cetoisovalerato a isobutiril-CoA (isobutiril-cofactor A), utilizando NAD<sup>+</sup> (nicotinamida adenina dinucleótido) como aceptor de electrones. Las cetoácido deshidrogenasas de cadena ramificada preferidas son conocidas por el número EC 1.2.4.4. Estas cetoácido deshidrogenasas de cadena ramificada comprenden cuatro subunidades, y las secuencias de todas las subunidades están disponibles en una amplia variedad de microorganismos, que incluyen, pero no se limitan a B. subtilis (N° en el Banco de Genes: CAB14336, Z99116;
 CAB14335, Z99116; CAB14334, Z99116, y CAB14337, Z99116) y Pseudomonas putida (N° en el Banco de Genes: AAA65614, M57613; AAA65615, M57613; AAA65617, M57613, y AAA65618, M57613).

Los términos " $k_{cat}$ " y " $K_m$ " son conocidos por los expertos en la técnica y se describen en Enzyme estructure and Mechanism,  $2^a$  ed. (Ferst; W.H. Freeman: NY, 1985; pág. 98-120). La expresión " $k_{cat}$ ", a menudo llamado el "número de rotación", se define como el número máximo de moléculas de substrato transformadas a productos por sitio activo por unidad de tiempo, o el número de veces que la enzima da la vuelta por unidad de tiempo. kcat = Vmax/[E], donde [E] es la concentración de la enzima (Ferst, supra). Los términos "rotación total" y "número de rotación total" se utilizan en el presente documento para referirse a la cantidad de producto formado por la reacción de una enzima KARI con substrato.

La expresión "eficiencia catalítica" se define como la k<sub>cat</sub>/K<sub>M</sub> de una enzima. La eficiencia catalítica se utiliza para cuantificar la especificidad de una enzima por un substrato.

La expresión "molécula de ácido nucleico aislada", "fragmento de ácido nucleico aislado" y "construcción genética" se usan de forma intercambiable y significará un polímero de ARN o ADN que es monocatenario o bicatenario, que contiene opcionalmente, bases de nucleótidos sintéticas, no natural o alteradas. Un fragmento de ácido nucleico aislado en forma de un polímero de ADN puede estar compuesto de uno o más segmentos de ADNc, ADN genómico o ADN sintético.

El término "aminoácido" se refiere a la unidad estructural química básica de una proteína o polipéptido. Las siguientes abreviaturas se usan en el presente documento para identificar aminoácidos específicos:

| Aminoácido      | Abreviaturas de tres letras | Abreviaturas de una letra |
|-----------------|-----------------------------|---------------------------|
| Alanina         | Ala                         | A                         |
| Arginina        | Arg                         | R                         |
| Asparagina      | Asn                         | N                         |
| Ácido aspártico | Asp                         | D                         |
| Cisteína        | Cys                         | С                         |
| Glutamina       | Gln                         | Q                         |
| Ácido glutámico | Glu                         | E                         |
| Glicina         | Gly                         | G                         |
| Histidina       | Su                          | Н                         |
| Leucina         | Leu                         | L                         |

| Aminoácido   | Abreviaturas de tres letras | Abreviaturas de una letra |
|--------------|-----------------------------|---------------------------|
| Lisina       | Lys                         | K                         |
| Metionina    | Met                         | M                         |
| Fenilalanina | Phe                         | F                         |
| Prolina      | Pro                         | Р                         |
| Serina       | Ser                         | S                         |
| Treonina     | Thr                         | Т                         |
| Triptófano   | Trp                         | W                         |
| Tirosina     | Tyr                         | Υ                         |
| Valina       | Val                         | V                         |

El término "Gen" se refiere a un fragmento de ácido nucleico que es capaz de ser expresado como una proteína específica, incluyendo opcionalmente secuencias reguladoras que preceden (secuencias 5' no codificantes) y que siguen (secuencias 3' no codificantes) a la secuencia codificante. "Gen nativo" se refiere a un gen tal como se encuentra en la naturaleza con sus propias secuencias reguladoras. "Gen quimérico" se refiere a cualquier gen que no es un gen nativo, que comprende secuencias reguladoras y codificantes que no se encuentran juntas en la naturaleza. Por consiguiente, un gen quimérico puede comprender secuencias reguladoras y secuencias codificantes que se derivan de diferentes fuentes, o secuencias reguladoras y secuencias codificantes derivadas de la misma fuente, pero dispuestas de una manera diferente que la encontrada en la naturaleza. "Gen endógeno" se refiere a un gen nativo en su localización natural en el genoma de un organismo. Un gen "foráneo" se refiere a un gen que no se encuentra normalmente en el organismo anfitrión, pero que se introduce en el organismo anfitrión por transferencia génica. Los genes foráneos pueden comprender genes nativos insertados en un organismo no nativo, o genes quiméricos. Un "transgén" es un gen que ha sido introducido en el genoma por un procedimiento de transformación.

10

15

20

25

30

35

45

Tal como se utiliza en el presente documento, la expresión "Secuencia codificante" se refiere a una secuencia de ADN que codifica una secuencia específica de aminoácidos. "Secuencias reguladoras adecuadas" se refiere a secuencias de nucleótidos localizadas aguas arriba (secuencias 5' no codificantes), dentro de, o aguas abajo (secuencias 3' no codificantes) de una secuencia codificante, y que influyen en la transcripción, en el procesamiento del ARN o en la estabilidad, o en la traducción de la secuencia codificante asociada. Las secuencias reguladoras pueden incluir promotores, secuencias líder de traducción, intrones, secuencias de reconocimiento de poliadenilación, sitio de procesamiento del ARN, sitio de unión efector y estructura de bucle en horquilla.

La expresión "Promotor" se refiere a una secuencia de ADN capaz de controlar la expresión de una secuencia codificante o ARN funcional. En general, una secuencia codificante se encuentra en 3' a una secuencia promotora. Los promotores pueden derivarse en su totalidad de un gen nativo, o estar compuestos de diferentes elementos derivados de diferentes promotores encontrados en la naturaleza, o incluso comprender segmentos de ADN sintéticos. Los expertos en la técnica entenderán que promotores diferentes pueden dirigir la expresión de un gen en tejidos o tipos de células diferentes, o en diferentes etapas de desarrollo, o en respuesta a diferentes condiciones ambientales o fisiológicas. Los promotores que causan que un gen se exprese en la mayoría de los tipos de células en la mayoría de veces se denominan comúnmente "promotores constitutivos". Se reconoce además que, dado que en la mayoría de los casos los límites exactos de las secuencias reguladoras no han sido completamente definidos, fragmentos de ADN de diferentes longitudes puedan tener idéntica actividad promotora.

La expresión "unido operativamente" se refiere a la asociación de secuencias de ácido nucleico en un único fragmento de ácido nucleico de modo que la función de una se ve afectada por la otra. Por ejemplo, un promotor está unido operativamente con una secuencia codificante cuando es capaz de efectuar la expresión de esa secuencia codificante (es decir, que la secuencia codificante está bajo el control de la transcripción del promotor). Las secuencias codificantes pueden unirse operativamente a secuencias reguladoras en orientación sentido o antisentido.

El término "expresión", como se utiliza en el presente documento, se refiere a la transcripción y acumulación estable de derivados de ARN sentido (ARNm) o ARN antisentido derivados del fragmento de ácido nucleico de la invención. Expresión también puede referirse a la traducción de ARNm en un polipéptido.

Tal como se utiliza en el presente documento, el término "transformación" se refiere a la transferencia de un fragmento de ácido nucleico en el genoma de un organismo anfitrión, dando como resultado una herencia genéticamente estable. Organismos anfitrión que contienen los fragmentos de ácido nucleico transformados se denominan organismos "transgénicos" o "recombinantes" o "transformados".

Los términos "plásmido", "vector" y "casete" se refieren a un elemento cromosómico extra que llevan a menudo genes que no son parte del metabolismo central de la célula, y habitualmente en forma de fragmentos de ADN

circulares de doble cadena. Tales elementos pueden ser secuencias de replicación autónoma, secuencias que se integran en el genoma, fago o secuencias de nucleótidos, lineales o circulares, de un ADN o ARN monocatenario o bicatenario, derivadas de cualquier fuente, en el que una serie de secuencias de nucleótidos se han unido o recombinado en una única construcción que es capaz de introducir un fragmento promotor y la secuencia de ADN en un producto génico seleccionado junto con la secuencia no traducida 3' apropiada en una célula. "Casete de transformación" se refiere a un vector específico que contiene un gen foráneo y que tiene elementos, además del gen foráneo, que facilitan la transformación de una célula anfitriona particular. "Casete de expresión" se refiere a un vector específico que contiene un gen foráneo y que tiene elementos, además del gen foráneo, que permiten una realzada expresión de ese gen en un anfitrión foráneo.

Tal como se utiliza en el presente documento, la expresión "Degeneración del codón" se refiere a la naturaleza en el código genético que permite la variación de la secuencia de nucleótidos sin afectar la secuencia de aminoácidos de un polipéptido codificado. El experto en la materia es muy consciente del "sesgo del codón" exhibido por una célula anfitriona específica en el uso de codones de nucleótidos para especificar un aminoácido dado. Por lo tanto, cuando se sintetiza un gen para mejorar la expresión en una célula anfitriona, es deseable diseñar el gen de manera que su frecuencia de uso de codón se aproxime a la frecuencia de uso del codón preferida de la célula anfitriona.

La expresión "optimizado del codón" que se refiere a genes o regiones codificantes de moléculas de ácido nucleico para la transformación de diversos anfitriones, se refiere a la alteración de los codones en el gen o regiones codificantes de las moléculas de ácido nucleico para reflejar el uso de codones típico del organismo anfitrión sin alterar el polipéptido codificado por el ADN.

Técnicas estándar de ADN recombinante y de clonación molecular utilizadas en el presente documento son bien conocidas en la técnica y son descritas por Sambrook et al. (Sambrook, Fritsch y Maniatis, Molecular Cloning: A Laboratory Manual, Segunda Edición, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) (en adelante "Maniatis"); y por Silhavy et al. (Experiments with Gene Fusions, Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY, 1984); y por Ausubel, F.M. et al., (Current Protocols in Molecular Biology, publicado por Greene Publishing Assoc. y Wiley-Interscience, 1987).

La presente invención se refiere a una necesidad que surge en la producción microbiana de isobutanol, donde la enzima cetol-ácido reductoisomerasa desempeña una función vital. Las enzimas cetol-ácido reductoisomerasa de tipo silvestre normalmente utilizan NADPH como su cofactor. Sin embargo, en la formación de isobutanol un exceso de NADH se produce por rutas metabólicas auxiliares. La invención proporciona enzimas KARI de Clase I mutantes que han evolucionado para utilizar NADH como cofactor, superando el problema del cofactor y aumentando la eficiencia de la ruta biosintética de isobutanol.

La producción de isobutanol utiliza la ruta de la glucólisis presente en el organismo anfitrión. Durante la producción de dos moléculas de piruvato a partir de glucosa durante la glucólisis, existe una producción neta de dos moléculas de NADH a partir de NAD<sup>+</sup> por la reacción de gliceraldehido-3-fosfato deshidrogenasa. Durante producción posterior de una molécula de isobutanol a partir de dos moléculas de piruvato, existe consumo neto de una molécula de NADPH, por la reacción de la KARI, y una molécula de NADH por la reacción de isobutanol deshidrogenasa. La reacción global de la glucosa a isobutanol conduce así a la producción neta de una molécula de NADH y al consumo neto de una molécula de NADPH. La intertransformación de NADH con NADPH es generalmente lenta e ineficiente; por ello, el NADPH consumido se genera por el metabolismo (por ejemplo, por la ruta del fosfato de pentosa) que consume substrato en el proceso. Mientras tanto, la célula se esfuerza por mantener la homeostasis en la relación NAD+/NADH, lo que lleva al exceso de NADH producido en la producción de isobutanol siendo consumido en la reducción excesiva de otros intermediarios metabólicos; p. ej., mediante la producción de lactato a partir de piruvato. Por ello, el deseguilibrio entre NADH producido y NADPH consumido por la ruta de isobutanol conduce a una reducción en el rendimiento molar de isobutanol producido a partir de la glucosa de dos maneras: 1) la operación innecesaria de metabolismo para producir NADPH, y 2) reacción excesiva de intermedios metabólicos para mantener homeostasis de NAD<sup>+</sup>/NADH. La solución a este problema consiste es inventar una KARI que sea específica de NADH como su cofactor, de modo que ambas moléculas de NADH producidas en la glucólisis sean consumidas en la síntesis de isobutanol a partir de piruvato.

Enzimas de Cetol-ácido reductoisomerasa (KARI)

5

30

35

40

45

- Acetohidroxiácido isomerorreductasa o cetol-ácido reductoisomerasa (KARI; EC 1.1.1.86) cataliza dos etapas en la biosíntesis de aminoácidos de cadena ramificada y es una enzima clave en su biosíntesis. KARI se encuentra en diversos organismos y las comparaciones de las secuencias de aminoácidos entre especies han revelado que existen 2 tipos de esta enzima: una forma corta (clase I) que se encuentra en los hongos y en la mayoría de las bacterias, y una forma larga (clase II) típica de las plantas.
- Las KARI Clase I tienen típicamente entre 330-340 restos de aminoácidos. Las enzimas KARI de forma larga tienen alrededor de 490 restos de aminoácidos. Sin embargo, algunas bacterias tales como Escherichia coli poseen una forma larga, en donde la secuencia de aminoácidos difiere apreciablemente de la que se encuentra en las plantas. KARI está codificada por el gen ilvC y es una enzima esencial en el crecimiento de E. coli y otras bacterias en un medio mínimo. Típicamente KARI utiliza NADPH como cofactor y requiere un catión divalente tal como Mg<sup>++</sup> para su

actividad. Además de utilizar acetolactato en la ruta valina, KARI también transforma acetohidroxibutanoato a dihidroximetilpentanoato en la ruta de producción de isoleucina.

Las KARI de Clase II consisten, generalmente en un dominio N-terminal del resto 225 y un dominio C-terminal de resto 287. El dominio N-terminal, que contiene el sitio de unión NADPH, tiene una estructura  $\alpha/\beta$  y se asemeja a los dominios encontrados en otras oxidorreductasas dependientes de piridina nucleótidos. El dominio C-terminal consiste casi en su totalidad de  $\alpha$ -hélices y es de una topología previamente desconocida.

La estructura cristalina de la enzima KARI de E. Coli a 2,6 Å de resolución ha sido resuelta (Tyagi, et al., Protein Science, 14, 3089-3100, 2005). Esta enzima consiste en dos dominios, uno con estructura mixta  $\alpha/\beta$  que es similar a la encontrada en otras deshidrogenasas dependientes de piridina nucleótidos. El segundo dominio es principalmente  $\alpha$ -helicoidal y muestra una fuerte evidencia de la duplicación interna. La comparación de los sitios activos de KARI de E. Coli, Pseudomonas aeruginosa, y espinaca mostraba que la mayoría de los restos en el sitio activo de la enzima ocupan posiciones conservadas. Mientras que la KARI de E. Coli se cristalizaba como un tetrámero, que es probablemente la unidad probable biológicamente activa, la KARI P. aeruginosa (Ahn, et al., J. Mol. Biol., 328, 505-515, 2003) formaba un dodecámero y la enzima de la espinaca formaba un dímero. Las KARI conocidas son enzimas lentas con un número de rotación informado ( $k_{cat}$ ) de 2 s<sup>-1</sup> (Aulabaugh et al.; Biochemistry, 29, 2824-2830, 1990) o 0,12 s<sup>-1</sup> (Rane et al., Arch. Biochem. Biophys. 338, 83-89, 1997) para acetolactato. Los estudios han demostrado que el control genético de la biosíntesis de isoleucina-valina en E. coli es diferente de aquella en la Ps. aeruginosa (Marinus, et al., Genetics, 63, 547-56, 1969).

Identificación de sitios diana de aminoácidos para la conmutación del cofactor

5

10

15

35

Se informó que los átomos de oxígeno del fosfato p2' del NADPH forman enlaces de hidrógeno con cadenas laterales de Arg162, Ser165 y Ser167 de la KARI de la espinaca (Biou V. et al The EMBO Journal, 16: 3405-3415, 1997). Se realizaron múltiples alineamientos de secuencias, utilizando el vector NTI (Invitrogen Corp. Carlsbad, CA), con enzimas KARI de la espinaca, Pseudomonas aeruginosa (PAO-KARI) y Pseudomonas fluorescens (PF5-KARI). Los sitios de unión de NADPH se muestran en la Figura 2a. Los aminoácidos arginina, treonina y serina parecen desempeñar funciones similares en la formación de enlaces de hidrógeno con los átomos de oxígeno de fosfato p2' de NADPH en las enzimas de la KARI. Los estudios de Ahn et al (J. Mol Biol, 328: 505-515, 2003) habían identificado tres sitios de unión de fosfato de NADPH (Arg47, Ser50 y Thr52) para Pseudomonas aeruginosa (PAO-KARI) después de comparar su estructura con la de la KARI de la espinaca. Tomando como hipótesis que estos tres sitios de unión de fosfato de NADPH de las tres enzimas KARI utilizadas en la divulgación se conservaran, Arg47, Ser50 y Thr52 de PF5-KARI fueron direccionados como los sitios de unión fosfato para esta enzima. Esta hipótesis se confirmó, además, a través del modelado de homología.

También se realizóalineamiento múltiple de secuencias entre PF5-ilvC y varias otras enzimas KARI con especificidad de nucleótidos promiscua. Como se muestra en la Figura 2b, los aminoácidos de glicina (G50) y triptófano (W53), en otras enzimas KARI en la Figura 2b, siempre aparecen juntos como un par en las secuencias de aquellas enzimas. Se asumió, por lo tanto, que el resto voluminoso de triptófano 53 era importante en la determinación de la especificidad del nucleótido reduciendo el tamaño del bolsillo de unión de nucleótidos para favorecer al nucleótido más pequeño, NADH. La posición 53 de PF5-ilvC fue, por lo tanto, elegida como diana para la mutagénesis.

Varias genotecas de saturación del sitio se prepararon conteniendo genes que codifican enzimas KARI mediante los kits comercialmente disponibles para la generación de mutantes. Los clones de cada biblioteca fueron cribados en cuanto a la actividad KARI mejorada utilizando el ensayo de consumo de NADH descrito en el presente documento. El cribado dio como resultado la identificación de una serie de genes que tienen mutaciones que se pueden correlacionar con la actividad KARI. La ubicación de las mutaciones se identificaron utilizando la secuencia de aminoácidos de la proteína PF5 ilvC Pseudomonas fluorescens (ID de SEC Nº: 17). Los mutantes que tienen actividad KARI mejorada eran las que tenían mutaciones en las siguientes posiciones: 47, 50, 52 y 53. Las mutaciones más específicamente deseables incluían las siguientes sustituciones:

- a) el resto en la posición 47 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, F, G, I, L, N, P e Y;
- b) el resto en la posición 50 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, 50 E, F, G, M, N, V, W;
  - c) el resto en la posición 52 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, G, H, N, S:
  - d) el resto en la posición 53 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, H, I, W:
- En otra realización, la mutagénesis adicional, utilizando PCR propensa a error, realizada en los mutantes enumerados anteriormente identificó posiciones de mutación como: 156, 165, 61, 170, 115 y 24. Más específicamente los mutantes deseables con menor K<sub>m</sub> para NADH contenía las siguientes sustituciones:

- e) el resto en la posición 156 tiene una sustitución de aminoácidos de V;
- f) el resto en la posición 165 tiene una sustitución de aminoácidos de M;
- g) el resto en la posición 61 tiene una sustitución de aminoácidos de F;
- h) el resto en la posición 170 tiene una sustitución de aminoácidos de A;
- 5 i) el resto en la posición 24 tiene una sustitución de aminoácidos de F; y
  - j) el resto en la posición 115 tiene una sustitución de aminoácidos de L.

En trabajos adicionales, se realizó el alineamiento múltiple de secuencias de PF5-ilvC Pseudomonas fluorescens, de ilvC1 y livC2 Bacillus cereus y de KARI de espinacas que permitió la identificación de las posiciones 24, 33, 47, 50, 52, 53, 61, 80, 156 y 170 para posterior mutagénesis. Más específicamente, se obtuvieron mutantes con mucha menor Km para NADH. Estas mutaciones también se basan en la enzima KARI de Pseudomonas fluorescens, (ID de SEC Nº: 17) como una secuencia de referencia en la que la secuencia de referencia comprende al menos una sustitución de aminoácidos seleccionados del grupo que consiste en:

- k) el resto en la posición 24 tiene una sustitución de aminoácidos de fenilalanina;
- I) el resto en la posición 50 tiene una sustitución de aminoácidos de alanina;
- m) el resto en la posición 52 tiene una sustitución de aminoácidos de ácido aspártico;
  - n) el resto en la posición 53 tiene una sustitución de aminoácidos de alanina;
  - o) el resto en la posición 61 tiene una sustitución de aminoácidos de fenilalanina;
  - p) el resto en la posición 156 tiene una sustitución de aminoácidos de valina;
  - q) el resto en la posición 33 tiene una sustitución de aminoácidos de leucina;
  - r) el resto en la posición 47 tiene una sustitución de aminoácidos de tirosina;
    - s) el resto en la posición 80 tiene una sustitución de aminoácidos de isoleucina;

У

20

40

45

10

- t) el resto en la posición 170 tiene una sustitución de aminoácidos de la alanina.
- La presente invención incluye un polipéptido mutante que tiene actividad KARI, teniendo dicho polipéptido una secuencia de aminoácidos seleccionada del grupo que consiste en la ID de SEC Nº: 24, 25, 26, 27 y 28.

Una secuencia de consenso para el ilvC mutante era generada a partir del alineamiento múltiple de secuencias y se proporciona como ID de SEC Nº: 29 que representa todas las mutaciones verificadas experimentalmente de la enzima KARI basadas en la secuencia de aminoácidos de la enzima KARI aislada de Pseudomonas fluorescens, (ID de SEC Nº: 17)

Además la presente invención describe posiciones de mutación identificadas utilizando un perfil de Modelo Oculto de Markov (HMM) construido basado en secuencias de 25 enzimas KARI Clase I y Clase II funcionalmente verificadas. El perfil HMM identificó las posiciones de mutación 24, 33, 47, 50, 52, 53, 61, 80, 115, 156 y 170 (la numeración se basa en las secuencias de Pseudomonas fluorescens PF5 KARI). Por ello, el experto en la técnica comprenderá que las mutaciones en estas posiciones, así como las comentadas anteriormente que han sido verificadas experimentalmente darán lugar también a enzimas KARI que tienen la capacidad de unir NADH.

Cepas anfitrionas para ingeniería Kari

Dos cepas anfitrionas de E. coli TOP10, de Invitrogen y E. coli Bw25113 (ΔilvC, un gen desactivado ilvC), se utilizaron para fabricar constructos que sobreexpresan la enzima KARI en esta divulgación. En la cepa Bw25113, todo el gen ilvC del cromosoma de E. Coli fue reemplazado por una casete de Kanamicina utilizando la tecnología de recombinación de homología rojo Lambda descrita por Kirill et al., (Kirill A. Datsenko y Barry L. Wanner, Proc. Natl. Acad. Sci. EE.UU., 97, 6640-6645, 2000).

Homología de modelado de PF5 KARI con substratos ligados

La estructura de PF5-KARI con NADPH ligado, acetolactato e iones magnesio fue construida basada en la estructura cristalina de P. aeruginosa PAO1-KARI (PDB ID 1 NP3, Ahn H.J. et al, J. Mol. Biol., 328, 505-515, 2003), que tiene el 92% de homología de la secuencia aminoácidos con PF5 KARI. La estructura PAO1-KARI es un homododecámero y cada dodecámero consta de seis homo-dímeros con interfaz de dímero extensiva. El sitio activo de

KARI se encuentra en esta interfaz dímero. El conjunto biológico está formado por seis homo-dímeros situados en los bordes de un tetraedro dando como resultado un dodecámero muy simétrico de una simetría de 23 grupos puntuales. Por simplicidad, sólo la unidad dimérica (monómero A y monómero B) fue construida para el modelo de homología de PF5-KARI en este estudio debido a que el sitio activo es en la interfaz del homo-dímero.

- El modelo de dímero PF5-KARI fue construido en base a las coordenadas del monómero A y del monómero B de PAO1-KARI y la secuencia de PF5-KARI utilizando un visualizador PDB DeepView/Swiss (Guex, N. y Peitsch, MC Electrophoresis 18: 2714-2723, 1997). Este modelo fue importado después para programar O (Jones, T.A. et al, Acta Crystallogr. A 47, 110-119, 1991) en un sistema Silicon Graphics para su posterior modificación.
- La estructura de PAO1-KARI no tiene NADPH, substrato o inhibidor o magnesio en el sitio activo. Por lo tanto, la estructura KARI de espinacas (PDB ID 1 yve, Biou V. et al., The EMBO Journal, 16: 3405-3415, 1997), que tiene iones magnesio, NADPH e inhibidor (N-hidroxi-N-isopropiloxamato) en el sitio de unión del acetolactato, se utilizó para modelar estas moléculas en el sitio activo. La KARI de plantas tiene homología de secuencia muy pequeña con PF5-KARI o con PAO1-KARI (identidad de aminoácidos < 20%), sin embargo, las estructuras en la región del sitio activo de estas dos enzimas KARI son muy similares. Para superponer el sitio activo de estas dos estructuras KARI, se utilizaron comandos LSQ\_ext, LSQ\_improve, LSQ\_mol en el programa O para alinear el sitio activo de monómero A de la espinaca KARI con el monómero A del modelo PF5 KARI. Las coordenadas de NADPH, dos iones magnesio e inhibidor unido en el sitio activo de la espinaca KARI se extrajeron e incorporaron a la molécula A de PF5 KARI. Un conjunto de las coordenadas de estas moléculas se generaron para el monómero B de PF5 KARI aplicando el operador de transformación de monómero A a monómero B calculado por el programa.
- 20 Debido a que no hay NADPH en el sitio activo de la estructura cristalina PAO1 KARI, las estructuras de la región del bucle de unión de fosfato en el sitio de unión de NADPH (restos 44-45 en PAO1 KARI, 157-170 en Espinaca KARI) son muy diferentes entre los dos. Para modelar la forma ligada NADPH, el modelo del bucle de unión de fosfato PF5-KARI (44-55) fue sustituido por el de 1yve (157-170). Cualquier discrepancia de las cadenas laterales entre estas dos se transformó en las de la secuencia de PF5-KARI utilizando el comando mutate replace en el programa 25 O, y las conformaciones de las cadenas laterales sustituidas se ajustaron manualmente. El modelo completo PF5-KARI dimérico ligado a NADPH/Mg/inhibidor fue mediante una vuelta de minimización de energía utilizando el programa CNX (ACCELRYS San Diego CA, Burnger, A.T. y Warren, G.L., Acta Crystallogr., D 54, 905-921, 1998) después de lo cual el inhibidor fue sustituido por el substrato, acetolactato (AL), en el modelo. La conformación de AL se ajustó manualmente para favorecer la transferencia de hidruro de C4 de la nicotinamina de NADPH y el substrato. No se realizó ninguna minimización de energía adicional en este modelo (Coordenadas del modelo creado 30 para este estudio se adjuntan en un archivo de Word separado). Los restos en el bucle de unión a fosfato y sus interacciones con NADPH se ilustran en la Figura 3.

Aplicación de un perfil de Modelo Oculto de Markov para la identificación de posiciones de restos involucrados en la conmutación del cofactor en enzimas KARI

- Los solicitantes han desarrollado un procedimiento para la identificación de enzimas KARI y las posiciones de los restos que están involucradas en la conmutación del cofactor NADPH por NADH. Para caracterizar estructuralmente las enzimas KARI, se preparó un perfil de Modelo Oculto de Markov (HMM) como se describe en el Ejemplo 5 utilizando secuencias de aminoácidos de las 25 proteínas KARI con función verificada experimentalmente como se indica en la Tabla 6. Estas KARI eran de Pseudomonas fluorescens Pf-5 (ID de SEC Nº: 17), Sulfolobus solfataricus
- P2 (ID de SEC N°: 13), Pyrobaculum aerophilum str. IM2 (ID de SEC N°: 14), Natronomonas pharaonis DSM 2160 (ID de SEC N°: 30), Bacillus subtilis subsp. subtilis str. 168 (ID de SEC N°: 31), Corynebacterium glutamicum ATCC 13032 (ID de SEC N°: 32), Phaeospririlum molischianum (ID de SEC N°: 33), Ralstonia solanacearum GMI1000 (ID de SEC N°: 15), Zymomonas mobilis subsp. mobilis ZM4 (ID de SEC N°: 34), Alkalilimnicola ehrlichei MLHE-1 (ID de SEC N°: 35), Campylobacter lari RM2100 (ID de SEC N°: 36), Marinobacter aquaeolei VT8 (ID de SEC N°: 37),
- Psychrobacter arcticus 273-4 (ID de SEC N°: 38), Hahella chejuensis KCTC 2396 (ID de SEC N°: 39), Thiobacillus denitrificans ATCC 25259 (ID de SEC N°: 40), Azotobacter vinelandii AvOP (ID de SEC N°: 41), Pseudomonas syringae pv. syringae B728a (ID de SEC N°: 42), Pseudomonas syringae pv. tomato str. DC3000 (ID de SEC N°: 43), Pseudomonas putida KT2440 (proteína con ID de SEC N°: 44), Pseudomonas entomophila L48 (ID de SEC N°: 45), Pseudomonas mendocina ymp (ID de SEC N°: 46), Pseudomonas aeruginosa PAO1 (ID de SEC N°: 16), Bacillus cereus ATCC 10987 (ID de SEC N°: 48), y Spinacia oleracea (ID de SEC N°: 18).
  - Además utilizando procedimientos descritos en esta solicitud, se pueden mencionar las secuencias de enzimas KARI Clase II tales como E. coli (ID de SEC Nº: 63 Número de Acceso al Banco de Genes P05793), marine gamma Proteobacterium HTCC2207 (ID de SEC Nº: 64 Número de Acceso al Banco de Genes ZP\_01224863.1), Desulfuromonas acetoxidans (ID de SEC Nº: 65 Número de Acceso al Banco de Genes ZP\_01313517.1) y Pisum sativum (pea) (ID de SEC Nº: 66 Número de Acceso al Banco de Genes 082043)

55

60

Este perfil HMM de las KARI se puede utilizar para identificar cualquier proteína relacionada KARI. Se espera que cualquier proteína que coincida con el perfil HMM con un valor de E <10<sup>-3</sup> utilizando programa de hmmsearch en el paquete HMMER se espera que sea una KARI funcional, que puede ser una KARI bien Clase I o bien Clase II. Las secuencias que coinciden con el perfil HMM dado en el presente documento se analizan entonces para la ubicación

de las 12 posiciones en Pseudomonas fluorescens Pf-5 que conmutan el cofactor de NADPH por NADH. Los once nodos, tal como se define en la sección de construcción del perfil HMM, en el perfil HMM que representan las columnas del alineamiento que corresponden a las once posiciones de conmutación del co-factor en Pseudomonas fluorescens Pf-5 KARI se identifican como nodo 24, 33, 47, 50, 52, 53, 61, 80, 115, 156 y 170. Las líneas correspondientes a estos nodos en el archivo del modelo son identificadas en la Tabla 9. Un experto en la técnica podrá identificar fácilmente estas 12 posiciones en la secuencia de aminoácidos de una proteína KARI a partir del alineamiento de la secuencia con el perfil HMM utilizando el programa de hmmsearch en el paquete HMMER.

Las enzimas KARI identificadas por este procedimiento, incluyen tanto las enzimas KARI de Clase I como de Clase II de fuentes naturales microbianas o de plantas. Cualquier KARI identificada por este procedimiento se puede utilizar para la expresión heteróloga en las células microbianas.

Por ejemplo, cada uno de los fragmentos de ácido nucleico que codifican KARI descrito en el presente documento pueden utilizarse para aislar genes que codifican proteínas homólogas. El aislamiento de genes homólogos utilizando protocolos dependientes de la secuencia es bien conocido en la técnica. Ejemplos de protocolos dependientes de la secuencia incluyen, pero no se limitan a: 1) procedimientos de hibridación de ácido nucleico; 2) procedimientos de amplificación de ADN y de ARN, como se ejemplifica mediante diversos usos de tecnologías de amplificación de ácidos nucleicos [por ejemplo, reacción en cadena de la polimerasa (PCR), Mullis et al., patente de EE.UU. No. 4.683.202; reacción en cadena de la ligasa (LCR), Tabor, S. et al., Proc. Acad. Sci. EE.UU. 82: 1074 (1985); o amplificación por desplazamiento de cadena (SDA), Walker, et al., Proc. Natl. Acad. Sci. U.S.A., 89: 392 (1992)]; y 3) procedimientos de construcción de bibliotecas y detección por complementariedad.

Aunque la homología de secuencia entre las enzimas KARI de Clase I y Clase II es baja, la estructura tridimensional de ambas clases de enzimas, particularmente alrededor del sitio activo y de los dominios de unión a nucleótido está altamente conservada (Tygai, R., et al., Protein Science, 34: 399-408, 2001). Los restos de aminoácidos clave que conforman el bolsillo de unión al substrato son altamente conservadas entre estas dos clases incluso aunque no puedan alienarse bien en una simple comparación de secuencias. Puede concluirse, por lo tanto, que los restos que afectan a la especificidad del cofactor identificados en la KARI Clase I (p. ej., las posiciones 24, 33, 47, 50, 52, 53, 61, 80, 115, 156, y 170 de PF5 KARI) pueden hacerse extensibles a las enzimas KARI Clase II.

#### Rutas biosintéticas del isobutanol

5

10

15

30

35

50

55

Los microorganismos que utilizan hidratos de carbono emplean la ruta de Embden-Meyerhof-Parnas (EMP), la ruta de Entner y Doudoroff y el ciclo de las pentosas fosfato como las rutas metabólicas centrales, rutas metabólicas que proporcionan energía y precursores celulares para el crecimiento y el mantenimiento. Estas rutas tienen en común el intermedio gliceraldehido-3-fosfato y, en última instancia, se forma piruvato directamente o en combinación con la ruta de EMP. Posteriormente, piruvato se transforma en acetil-cofactor A (acetil-CoA) a través de una variedad de medios. Acetil-CoA sirve como un intermedio clave, por ejemplo, en la generación de ácidos grasos, aminoácidos y metabolitos secundarios. Las reacciones combinadas de transformación de azúcar en piruvato producen energía (p. ej., adenosina-5'-trifosfato, ATP) y equivalentes de reducción (por ejemplo, nicotinamida adenina dinucleótido reducida, NADH, y nicotinamida adenina dinucleótido fosfato reducida, NADH). NADH y NADPH se deben reciclar a sus formas oxidadas (NAD<sup>+</sup> y NADP<sup>+</sup>, respectivamente). En presencia de aceptores de electrones inorgánicos (p. ej., O<sub>2</sub>, NO<sub>3</sub><sup>-</sup> y SO<sub>4</sub><sup>2-</sup>), los equivalentes de reducción se pueden usar para aumentar el conjunto de energía; como alternativa, se puede formar un subproducto de carbono reducido.

Hay cuatro rutas potenciales para la producción de isobutanol a partir de fuentes de hidratos de carbono con microorganismos recombinantes como se muestra en la Figura 1. Todas las rutas potenciales para la transformación de hidratos de carbono en isobutanol se han descrito en la solicitud de patente de EE.UU. de propiedad común nº 11/586315.

La ruta preferida para la transformación de piruvato a isobutanol consta de etapas enzimáticos "a", "b", "c", "d" y "e" (Figura 1) e incluye las siguientes transformaciones de substrato a producto:

- a) de piruvato a acetolactato, catalizada, por ejemplo, por acetolactato sintasa,
- b) de (S)-acetolactato a 2,3-dihidroxiisovalerato, catalizada, por ejemplo, por acetohidroxiácido isomeroreductasa,
- c) de 2,3-dihidroxiisovalerato a α-cetoisovalerato, catalizada, por ejemplo, por acetohidroxiácido deshidratasa,
- d) de  $\alpha$ -cetoisovalerato a isobutiraldehido, catalizada, por ejemplo, mediante un cetoácido descarboxilasa de cadena ramificada, y
  - e) isobutiraldehido a isobutanol, catalizada, por ejemplo, un alcohol deshidrogenasa de cadena ramificada.

Esta ruta combina enzimas implicadas en rutas bien caracterizadas para biosíntesis de valina (piruvato a  $\alpha$ -cetoisovalerato) y el catabolismo de valina ( $\alpha$ -cetoisovalerato a isobutanol). Dado que muchas enzimas de biosíntesis de valina también catalizan reacciones análogas en la ruta de la biosíntesis de isoleucina, la especificidad del substrato es una consideración importante en la selección de las fuentes de genes. Por esta razón, los genes

primarios de interés para la enzima acetolactato sintasa son los de Bacillus (alsS) y Klebsiella (budB). Estos acetolactato sintasas particulares son conocidas por participar en la fermentación butanodiol en estos organismos y muestran una mayor afinidad por piruvato en lugar de cetobutirato (Gollop y otros, J. Bacteriol 172, 3444-3449, 1990); y (Holtzclaw et al., J. Bacteriol. 121, 917-922, 1975). Las etapas de las rutas segunda y tercera son catalizadas por acetohidroxiácido reductoisomerasa y deshidratasa, respectivamente. Estas enzimas se han caracterizado a partir de una serie de fuentes, tales como por ejemplo, E. coli (Chunduru et al, Biochemistry 28, 486-493, 1989); y (Flint et al., J. Biol. Chem. 268, 14732-14742, 1993). Las dos etapas finales de la ruta preferida de isobutanol se sabe que ocurren en levadura, que puede utilizar valina como fuente de nitrógeno y, en el proceso, secretar isobutanol. El α-cetoisovalerato se puede transformar en isobutiraldehido mediante una serie de enzimas cetoácido descarboxilasa, tal como, por ejemplo, piruvato descarboxilasa. Para evitar la desviación de piruvato alejada de la producción de isobutanol, se desea una descarboxilasa con afinidad por piruvato disminuida. Hasta el momento, hay dos de tales enzimas conocidas en la técnica (Smit et al, Appl. Environ. Microbiol., 71, 303-311, 2005); y (de la Plaza et al., FEMS Microbiol. Lett., 238, 367-374, 2004). Ambas enzimas son de cepas de Lactococcus lactis y tienen una preferencia de 50-200 veces por cetoisovalerato en lugar de por piruvato. Por último, en la levadura se han identificado una serie de aldehido reductasas, muchas de ellas con especificidad de substrato superpuesta. Las conocidas por preferir substratos de cadena ramificada frente a acetaldehido incluyen, pero no se limitan a alcohol deshidrogenasa VI (ADH6) e Ypr1p (Larroy et al, Biochem J. 361, 163-172, 2002); y (Ford et al., Yeast 19, 1087-1096, 2002), ambos de los cuales utilizan NADPH como donante de electrones. Una reductasa dependiente de NADPH, YqhD, activa con substratos de cadena ramificada también se ha identificado recientemente en E. coli (Sulzenbacher et al., J. Mol. Biol. 342, 489-502, 2004).

Dos de las otras rutas potenciales para la producción de isobutanol también contienen las tres etapas iniciales de "a", "b" y "c" (Figura 1). Una ruta consiste en etapas enzimáticas "a", "b", "c", "f", "g", "e" (Figura 1). La etapa "f" que contiene un "cetoácido deshidrogenasa de cadena ramificada", con un número EC 1.2.4.4. La etapa "g" que contiene un "aldehido deshidrogenasa acilante" con unos números EC 1.2.1.10 y 1.2.1.57, además de una etapa "e" que contiene el "alcohol deshidrogenasa de cadena ramificada". La otra ruta potencial consiste en las etapas "a", "b", "c", "h", "i", "j", "e" (Figura 1). El término "transaminasa" (etapa "h") números EC 2.6.1.42 y 2.6.1.66. La etapa "h" consiste en bien una "valina deshidrogenasa" con números EC 1.4.1.8 y 1.4.1.9 o bien la etapa "i", una "valina descarboxilasa" con un número EC 4.1.1.14. Por último, la etapa "j" utilizará una " omega transaminasa " con un número EC 2.6.1.18 para generar isobutiraldehido que se reducirá por la etapa "e" para producir isobutanol. Todas las rutas potenciales para la transformación de piruvato en isobutanol se representan en la Figura 1.

Además, una serie de organismos se sabe que producen butirato y/o butanol a través de un intermedio de butiril-CoA (Dürre, et al, FEMS Microbiol Rev. 17, 251-262, 1995); y (Abbad-Andaloussi et al., Microbiology 142, 1149-1158, 1996). Por lo tanto la producción de isobutanol en estos organismos se llevará a cabo utilizando las etapas "k", "g" y "e" mostradas en la Figura 1. La etapa "k" utilizará un "mutasa isobutiril CoA" con un número EC 5.4.99.13. La siguiente etapa implicará utilizar el " aldehido deshidrogenasa acilante " con los números EC 1.2.1.10 y 1.2.1.57 para producir isobutiraldehido seguido por la etapa "e" enzimática para producir isobutanol. Todas estas rutas se describen completamente en la solicitud de patente de propiedad común CL3243.

Por ello, en la provisión de múltiples rutas recombinantes de piruvato a isobutanol, existe una serie de opciones para cumplir con las etapas de transformación individuales, y la persona experta en la técnica podrá utilizar las secuencias disponibles al público para construir las rutas relevantes.

#### Anfitriones Microbianos para Producción de Isobutanol

5

10

15

20

25

30

35

40

45

50

55

60

Los anfitriones microbianos para la producción de isobutanol se pueden seleccionar de bacterias, cianobacterias, hongos filamentosos y levaduras. El anfitrión microbiano utilizado para la producción de isobutanol debe ser tolerante a isobutanol manera que el rendimiento no esté limitado por la toxicidad del butanol. Los microbios que son metabólicamente activos a elevados niveles de titulación de isobutanol no son bien conocidos en la técnica. Aunque se han aislado mutantes tolerantes al butanol a partir de solventogénesis de Clostridia, poca información hay disponible sobre la tolerancia a butanol de otras cepas bacterianas potencialmente útiles. La mayoría de los estudios sobre la comparación de la tolerancia al alcohol en bacterias sugieren que butanol es más tóxico que etanol (de Cavalho, et al., Microsc. Res. Tech. 64, 215-222, 2004) y (Kabelitz, et al., FEMS Microbiol. Lett. 220, 223-227, 2003, Tomas, et al. J. Bacteriol. 186, 2006-2018, 2004) informan que el rendimiento de 1-butanol durante la fermentación en Clostridium acetobutylicum puede estar limitada por la toxicidad de 1-butanol. El efecto primario de 1-butanol en Clostridium acetobutylicum es la interrupción de las funciones de la membrana (Hermann et al., Appl. Environ. Microbiol., 50, 1238-1243, 1985).

Los anfitriones microbianos seleccionados para la producción de isobutanol deben ser tolerantes a isobutanol y deberían ser capaces de transformar los hidratos de carbono en isobutanol. Los criterios para la selección de anfitrionas microbianas adecuadas incluyen los siguientes: tolerancia intrínseca a isobutanol, alta tasa de utilización de la glucosa, disponibilidad de las herramientas genéticas para la manipulación de genes y capacidad para generar alteraciones cromosómicas estables.

Cepas anfitrionas adecuadas con tolerancia a isobutanol se pueden identificar mediante el cribado basado en la tolerancia intrínseca de la cepa. La tolerancia intrínseca de los microbios a isobutanol se puede medir determinando

la concentración de isobutanol que es responsable de la inhibición del 50% de la tasa de crecimiento ( $IC_{50}$ ) cuando se cultiva en un medio mínimo. Los valores de  $IC_{50}$  se pueden determinar utilizando procedimientos conocidos en la técnica. Por ejemplo, los microbios de interés pueden ser cultivados en presencia de diversas cantidades de isobutanol y la tasa de crecimiento controlada midiendo la densidad óptica a 600 nanometros. El tiempo de duplicación puede calcularse a partir de la parte logarítmica de la curva de crecimiento y utilizarse como una medida de la tasa de crecimiento. La concentración de isobutanol que produce una inhibición del 50% del crecimiento se puede determinar a partir de un gráfico de la inhibición porcentual del crecimiento frente a la concentración de isobutanol. Preferiblemente, la cepa anfitriona debe tener una  $IC_{50}$  para isobutanol de más de aproximadamente 0,5%.

La anfitriona microbiana en la producción de isobutanol también debería utilizar la glucosa a una tasa elevada. La mayoría de los microbios son capaces de utilizar hidratos de carbono. Sin embargo, ciertos microbios del ambiente no pueden utilizar los hidratos de carbono con alta eficiencia y, por lo tanto, no serían anfitriones adecuados.

La capacidad de modificar genéticamente la anfitriona es esencial para la producción de cualquier microorganismo recombinante. El modo de la tecnología de transferencia de genes puede ser por electroporación, conjugación, transducción o transformación natural. Se dispone de una amplia gama de plásmidos conjugados anfitriones y marcadores de resistencia a los medicamentos. Los vectores de clonación se adaptan a las organismos anfitriones basado en la naturaleza de los marcadores con resistencia a los antibióticos que pueden funcionar en ese anfitrión.

El anfitrión microbiano también tiene que ser manipulado con el fin de desactivar las rutas que compiten en el flujo de carbono eliminando varios genes. Esto requiere la disponibilidad tanto de transposones para desactivación directa como vectores de integración cromosómica. Además, la anfitriona de producción debe ser susceptible de mutagénesis química por lo que se puede obtener mutaciones que mejoren la tolerancia intrínseca de isobutanol.

Basado en los criterios descritos anteriormente, anfitriones microbianos adecuados para la producción de isobutanol incluyen, pero no se limitan a miembros de los géneros Clostridium, Zymomonas, Escherichia, Salmonella, Rhodococcus, Pseudomonas, Bacillus, Vibrio, Lactobacillus, Enterococcus, Alcaligenes, Klebsiella, Paenibacillus, Arthrobacter, Corynebacterium, Brevibacterium, Pichia, Candida, Hansenula y Saccharomyces. Anfitriones preferidos incluyen: Escherichia coli, Alcaligenes eutrophus, Bacillus licheniformis, Paenibacillus macerans, Rhodococcus erythropolis, Pseudomonas putida, Lactobacillus plantarum, Enterococcus faecium, Enterococcus gallinarium, Enterococcus faecalis, Bacillus subtilis y Saccharomyces cerevisiae.

Construcción de un anfitrión de producción

5

15

20

25

40

Organismos recombinantes que contienen los genes necesarios que codificarán la ruta enzimática para la transformación de un substrato de carbono fermentable a isobutanol puede construirse utilizando técnicas bien conocidas en la técnica. En la presente invención, los genes que codifican las enzimas de una de las rutas de biosíntesis de isobutanol de la invención, por ejemplo, acetolactato sintasa, acetohidroxiácido isomeroreductasa, acetohidroxiácido deshidratasa, α-cetoácido descarboxilasa de cadena ramificada, y alcohol deshidrogenasa de cadena ramificada, se pueden aislar de varias fuentes, como se describió anteriormente.

Los procedimientos de obtención de los genes deseados a partir de un genoma bacteriano son frecuentes y bien conocidos en la técnica de la biología molecular. Por ejemplo, si se conoce la secuencia del gen, pueden crearse genotecas adecuadas por digestión con endonucleasas de restricción y se pueden cribar con sondas complementarias a la secuencia del gen deseado. Una vez que se aísla la secuencia, el ADN puede ser amplificado utilizando procedimientos estándares de amplificación dirigida al cebador tal como la reacción en cadena de la polimerasa (patente de EE.UU. nº 4.683.202) para obtener cantidades de ADN adecuado para la transformación utilizando vectores apropiados. Las herramientas para la optimización de codones para la expresión en un anfitrión heterólogo están fácilmente disponibles. Algunas herramientas para la optimización de codones están disponibles basadas en el contenido de GC del organismo anfitrión.

Una vez que se identifican los genes de la ruta relevante y se aíslan pueden ser transformados en adecuados anfitriones de expresión por medios bien conocidos en la técnica. Los vectores o casetes útiles para la transformación de una variedad de células anfitrionas son comunes y disponibles comercialmente de compañías tales como EPICENTRE® (Madison, WI), Invitrogen Corp. (Carlsbad, CA), Stratagene (La Jolla, CA), y New England Biolabs, Inc. (Beverly, MA). Típicamente, el vector o casete contiene secuencias que dirigen la transcripción y traducción del gen relevante, un marcador seleccionable, y secuencias que permiten la replicación autónoma o la integración cromosómica. Los vectores adecuados comprenden una región 5' del gen que alberga controles de iniciación de la transcripción y una región 3' del fragmento de ADN que controla la terminación de la transcripción. Ambas regiones de control se pueden derivar de genes homólogos a la célula anfitriona transformada, aunque se debe entender que tales regiones de control también se pueden derivar de genes que no son nativos para la especie específica escogida como anfitriona de producción.

Regiones o promotores de control de la iniciación, que son útiles para dirigir la expresión de las regiones codificantes de la ruta relevante en la célula anfitriona deseada son numerosas y familiares para los expertos en la técnica. Prácticamente cualquier promotor capaz de conducir estos elementos genéticos es adecuado para la presente

invención incluyendo, pero sin limitarse a CYC1, HIS3, GAL1, GAL10, ADH1, PGK, PH05, GAPDH, ADC1, TRP1, URA3, LEU2, ENO, TPI (útiles para la expresión en Saccharomyces); AOX1 (útil para la expresión en Pichia); y lac, ara, tet, trp, IP<sub>L</sub>, IP<sub>R</sub>, T7, tac y trc (útiles para la expresión en Escherichia coli, Alcaligenes y Pseudomonas), así como los promotores amy, abr y npr, y diversos promotores de fagos útiles para la expresión en Bacillus subtilis, Bacillus licheniformis y Paenibacillus macerans.

Regiones de control de terminación también se pueden derivar de diversos genes nativos para los anfitriones preferidos. Opcionalmente, un sitio de terminación puede ser innecesario, sin embargo, es más preferido si está incluido.

Ciertos vectores son capaces de replicarse en una amplia gama de bacterias anfitrionas y se pueden transferir por conjugación. Están disponibles la secuencia completa y anotada de pRK404 y las de tres vectores relacionados, pRK437, pRK442 y pRK442(H). Estos derivados han demostrado ser valiosas herramientas para la manipulación genética en bacterias Gram-negativas (Scott et al., Plasmid 50, 74-79, 2003). Varios derivados del plásmido de la amplia gama de anfitriones Inc P4 plasmid RSF1010 también están disponibles con promotores que pueden funcionar en una gama de bacterias Gram-negativas. Los plásmidos pAYC36 y pAYC37 tienen promotores activos junto con sitios de clonación múltiple para permitir la expresión de genes heterólogos en bacterias Gram-negativas.

También están ampliamente disponibles herramientas para la sustitución cromosómica de los genes. Por ejemplo, una variante termosensible del replicón pWV101 de una amplia gama de anfitrionas se ha modificado para construir un plásmido pVE6002 que se puede utilizar para efectuar la sustitución de genes en una gama de bacterias Grampositivas (Maguin et al., J. Bacteriol. 174, 5633-5638, 1992). Además, se dispone de transposomas in vitro para crear mutaciones aleatorias en una variedad de genomas de fuentes comerciales tales como EPICENTRE®.

La expresión de una ruta de biosíntesis de isobutanol en varios anfitrionas microbianas preferidas se describe con más detalle a continuación.

Expresión de una ruta biosintética de isobutanol en E. coli

20

30

35

50

Los vectores o casetes útiles para la transformación de E. coli son comunes y disponibles comercialmente de las empresas enumeradas anteriormente. Por ejemplo, los genes de una ruta biosintética de isobutanol se pueden aislar de diversas fuentes, clonado en un vector pUC19 modificado y transformado en E. coli NM522.

Expresión de una ruta biosintética de isobutanol en Rhodococcus erythropolis

Una serie de vectores lanzadera E. coli-Rhodococcus están disponibles para la expresión en R. erythropolis, que incluyen, pero no se limitan a pRhBR17 y pDA71 (Kostichka et al., Appl. Microbiol. Biotechnol. 62, 61-68, 2003). Además, una serie de promotores están disponibles para la expresión génica heteróloga en R. erythropolis (Nakashima et al., Appl. Environ. Microbiol. 70, 5557-5568, 2004 y Tao et al., Appl. Microbiol. Biotechnol. 68, 346-354, 2005). La disrupción de genes diana de los genes cromosómicos en R. erythropolis puede ser creada utilizando el procedimiento descrito por Tao et al., supra, y Brans et al. (Appl. Environ. Microbiol. 66, 2029-2036, 2000).

Los genes heterólogos requeridos para la producción de isobutanol, como se describió anteriormente, pueden ser clonado inicialmente en pDA71 o pRhBR71 y transformados en E. coli. Los vectores pueden después ser transformados en R. erythropolis mediante electroporación, como se describe por Kostichka et al., supra. Los recombinantes pueden cultivarse en un medio sintético que contiene glucosa y la producción de isobutanol se puede seguir utilizando procedimientos conocidos en la técnica.

Expresión de una ruta biosintética de isobutanol en B. subtilis

Los procedimientos para la expresión génica y la creación de mutaciones en B. subtilis son también bien conocidos en la técnica. Por ejemplo, los genes de una ruta biosintética de isobutanol se pueden aislar de diversas fuentes, clonados en un vector pUC19 modificado y transformados en Bacillus subtilis BE1010. Además, los cinco genes de una ruta biosintética de isobutanol se pueden dividir en dos operones para la expresión. Los tres genes de la ruta (bubB, ilvD y kivD) pueden integrarse en el cromosoma de Bacillus subtilis BE1010 (Payne, et al., J. Bacteriol. 173,
 2278-2282, 1991). Los dos genes restantes (ilvC y bdhB) pueden clonarse en un vector de expresión y transformarse en la cepa de Bacillus que lleva los genes de isobutanol integrados.

Expresión de una ruta biosintética de isobutanol en B. licheniformis

La mayoría de los plásmidos y vectores lanzadera que se replican en B. subtilis pueden utilizarse para transformar B. licheniformis por cualquier transformación o electroporación de protoplastos. Los genes requeridos para la producción de isobutanol se pueden clonar en plásmidos pBE20 o derivados de pBE60 (Nagarajan et al., Gene 114, 121-126, 1992). Los procedimientos para transformar B. licheniformis son conocidos en la técnica (Fleming et al. Appl. Environ. Microbiol., 61, 3775-3780, 1995). Los plásmidos construidos para expresión en B. subtilis pueden ser transformados en B. licheniformis para producir una anfitriona microbiana recombinante que produce isobutanol.

Expresión de una ruta biosintética de isobutanol en Paenibacillus macerans

Los plásmidos pueden construirse como se describió anteriormente para expresión en B. subtilis y se utilizaron para transformar Paenibacillus macerans por transformación de protoplastos para producir una anfitriona microbiana recombinante que produce isobutanol.

Expresión de la ruta biosintética de isobutanol en Alcaligenes (Ralstonia) eutrophus

Los procedimientos para la expresión génica y la creación de mutaciones en Alcaligenes eutrophus son conocidos en la técnica (Taghavi et al., Appl. Environ. Microbiol., 60, 3585-3591, 1994). Los genes para una ruta biosintética de isobutanol se pueden clonar en cualquiera de los vectores de amplia gama de anfitriones descritos anteriormente, y electroporados para generar recombinantes que producen isobutanol. La ruta de poli(hidroxibutirato) en Alcaligenes se ha descrito en detalle, una variedad de técnicas genéticas para modificar el genoma de Alcaligenes eutrophus es conocido, y esas herramientas se pueden aplicar para la ingeniería de una ruta biosintética de isobutanol.

Expresión de una ruta biosintética de isobutanol en Pseudomonas putida

Los procedimientos para la expresión génica en Pseudomonas putida son conocidos en la técnica (véase, por ejemplo, Ben-Bassat et al., patente de EE.UU. No. 6.586.229, que se incorpora en el presente documento como referencia). Los genes de la ruta del butanol se pueden insertar en pPCU18 y este ADN ligado se puede someter a electroporación en células electrocompetentes Pseudomonas putida DOT-T1 C5aAR1 para generar recombinantes que producen isobutanol.

Expresión de una ruta biosintética de isobutanol en Saccharomyces cerevisiae

Los procedimientos para la expresión génica en Saccharomyces cerevisiae son conocidos en la técnica (p. ej., Methods in Enzymology, volumen 194, Guide to Yeast Genetics and Molecular and cell Biology, Part A, 2004, Christine Guthrie y Gerald R. Fink, eds., Elsevier Académico Press, San Diego, CA). La expresión de genes en la levadura requiere típicamente un promotor, seguido por el gen de interés, y un terminador de la transcripción. Se puede utilizar una serie de promotores de levadura en la construcción de casetes de expresión para los genes que codifican una ruta biosintética de isobutanol, que incluyen, pero no se limita a promotores constitutivos FBA, GPD, ADH1 y GPM, y los promotores inducibles GAL1, GAL10, CUP1. Terminadores de la transcripción adecuados incluyen, pero no se limitan a FBAT, GPDt, GPMT, ERG10t, GAL1t, CYC1 y ADH1. Por ejemplo, promotores adecuados, terminadores de la transcripción, y los genes de una ruta biosintética de isobutanol se pueden clonar en vectores lanzadera de E. coli-levadura.

Expresión de una ruta biosintética de isobutanol de Lactobacillus plantarum

El género Lactobacillus pertenece a la familia Lactobacillales y muchos plásmidos y vectores utilizados en la transformación de Bacillus subtilis y Streptococcus pueden ser usados para lactobacillus. Ejemplos no limitantes de vectores adecuados incluyen pAMβ1 y sus derivados (Renault et al, Gene 183, 175-182, 1996); y (O'Sullivan et al, Gene 137, 227-231, 1993.); pMBB1 y pHW800, un derivado de pMBB1 (Wyckoff et al, Appl Environ Microbiol 62, 1481-1486, 1996); pMG1, un plásmido conjugativo (Tanimoto et al, J. Bacteriol 184, 5800-5804, 2002); pNZ9520 (Kleerebezem et al, Appl Environ Microbiol 63, 4581-4584, 1997); pAM401 (Fujimoto et al, Appl Environ Microbiol 67, 1262-1267, 2001); y pAT392 (Arthur et al., Antimicrob. Agents Chemother. 38, 1899-1903, 1994). Varios plásmidos de Lactobacillus plantarum también han sido informados (van Kranenburg R, et al. Appl. Environ. Microbiol. 71, 1223-1230, 2005).

Expresión de una ruta biosintética de isobutanol en varias especies de Enterococcus (E. faecium, E. gallinarium y E. faecalis)

El género Enterococcus pertenece a la familia Lactobacillales y muchos plásmidos y vectores utilizados en la transformación de las especies Lactobacilli, Bacilli y Streptococci pueden ser utilizados para la especie Enterococcus. Los ejemplos no limitantes de vectores adecuados incluyen pAMβ1 y sus derivados (Renault et al., Gene 183, 175-182, 1996.); y (O'Sullivan et al, Gene 137, 227-231, 1993); pMBB1 y pHW800, un derivado de pMBB1 (Wyckoff et al Appl Environ Microbiol 62, 1481-1486, 1996); pMG1, un plásmido conjugativo (Tanimoto et al, J. Bacteriol 184, 5800-5804, 2002..); pNZ9520 (Kleerebezem et al., Appl Environ Microbiol 63, 4581-4584, 1997); pAM401 (Fujimoto et al, Appl Environ Microbiol 67, 1262-1267, 2001); y pAT392 (Arthur et al., Antimicrob. Agents Chemother. 38, 1899-1903, 1994). También pueden utilizarse los vectores de expresión para E. faecalis que utilizan el gen nisA de Lactococcus (Eichenbaum et al., Appl. Environ. Microbiol., 64, 2763-2769, 1998). Además, pueden utilizarse vectores para la sustitución de genes en el cromosoma E. faecium (Nallaapareddy et al., Appl. Environ. Microbiol., 72, 334-345, 2006).

#### Medios de Fermentación

15

20

25

55

Los medios de fermentación en la presente invención deben contener substratos de carbono adecuados. Los substratos adecuados pueden incluir, pero no se limitan a monosacáridos tales como glucosa y fructosa, oligosacáridos tales como lactosa o sacarosa, polisacáridos tales como almidón o celulosa o mezclas de los mismos y mezclas no purificadas a partir de materias primas renovables tales como permeato de suero de queso, licor de maíz fermentado, melazas de remolacha azucarera y malta de cebada. Además, el substrato de carbono puede ser

también substratos tal como dióxido de carbono, o metanol para el que se ha demostrado la transformación metabólica en intermedios bioquímicos claves. Además de substratos de carbono uno y dos los organismos metilotróficos son también conocidos por utilizar una serie de otros compuestos que contienen carbono tales como metilamina, glucosamina y una variedad de aminoácidos para actividad metabólica. Por ejemplo, se conoce la levadura metilotrófica por utilizar el carbono de la metilamina para formar trehalosa o glicerol (Bellion et al., Microb. Growth C1 Compd., [Int. Symp.], 7º (1993), 415-432. (eds): Murrell, J. Collin; Kelly, Don P. Publisher: intercept, Andover, Reino Unido). Del mismo modo, diversas especies de Candida metabolizarán la alanina o el ácido oleico (Sulter et al., Arch. Microbiol., 153, 485-489, 1990). Por lo tanto, se contempla que la fuente de carbono utilizada en la presente invención puede abarcar una amplia variedad de substratos que contienen carbono y solamente estará limitado por la elección del organismo.

Aunque se contempla que todos los substratos de carbono mencionados anteriormente y mezclas de los mismos son adecuados en la presente invención, los preferidos son los substratos de carbono glucosa, fructosa y sacarosa.

Además de una apropiada fuente de carbono, los medios de fermentación deben contener adecuados minerales, sales, cofactores, tampones y otros componentes, conocidos por los expertos en la técnica, adecuados para el crecimiento de los cultivos y la promoción de la ruta enzimática necesaria para la producción de isobutanol.

#### Condiciones de cultivo

5

10

15

20

45

50

55

Normalmente las células se cultivan a una temperatura en el intervalo de aproximadamente 25°C a 40°C, en un medio apropiado. Medios de crecimiento adecuados en la presente invención son medios comunes preparados comercialmente, tales como el caldo de cultivo Luria Bertani (LB), Sabouraud Dextrosa (SD) o el caldo de cultivo Yeast medium (YM). Otros medios de cultivo definidos o sintéticos también pueden utilizarse y el medio apropiado para el cultivo del microorganismo particular será conocido por el experto en la técnica de la microbiología o de la ciencia de la fermentación. El uso de agentes conocidos para modular la represión del catabolito directa o indirectamente, p. ej., adenosin-2',3'-monofosfato cíclica (cAMP), también se pueden incorporar en el medio de fermentación.

Los intervalos de pH adecuados para la fermentación están entre pH 5,0 y pH 9,0, donde se prefiere pH 6,0 a pH 8,0 para el estado inicial.

Las fermentaciones se pueden realizar en condiciones aerobias o anaerobias, donde se prefieren las condiciones anaerobias o microaerobias.

Fermentaciones industriales por lote y en continuo

30 El presente proceso emplea un procedimiento de fermentación por lotes. Una fermentación por lotes clásica es un sistema cerrado donde la composición del medio se fija al comienzo de la fermentación y no está sujeta a alteraciones artificiales durante la fermentación. Por ello, al comienzo de la fermentación el medio se inocula con el organismo u organismos deseados, y se permite que la fermentación tenga lugar sin añadir nada al sistema. Típicamente, sin embargo, una fermentación "por lotes" es por lotes con respecto a la adición de fuente de carbono y a menudo se hacen intentos de controlar factores tales como el pH y la concentración de oxígeno. En los sistemas por lotes las composiciones de metabolito y biomasa del sistema cambian constantemente hasta el momento en que se detiene la fermentación. Dentro de los cultivos por lotes, las células se moderan a través de una fase de latencia estática hasta una fase log de gran desarrollo y finalmente a una fase estacionaria donde la velocidad de crecimiento disminuye o se detiene. Si no se tratan, las células en la fase estacionaria finalmente morirán. Las células en la fase log son responsables en general de la mayor parte de la producción del producto final o del intermedio.

Una variación en el sistema por lotes estándar es el sistema de lote alimentado. Los procesos de fermentación de lote alimentado son también adecuados en la presente invención y comprenden un típico sistema por lotes con la excepción de que el substrato se añade en incrementos a medida que progresa la fermentación. Los sistemas de lote alimentado son útiles cuando la represión de catabolito es apta para inhibir el metabolismo de las células y donde es deseable tener cantidades limitadas de substrato en los medios. La medición de la concentración de substrato real en los sistemas de lote alimentado por lotes es difícil y por lo tanto se estima sobre la base de los cambios de factores medibles tales como el pH, el oxígeno disuelto y la presión parcial de gases residuales tales como CO<sub>2</sub>. Las fermentaciones por lotes y por lote alimentado son comunes y bien conocidas en la técnica y los ejemplos se pueden encontrar en Thomas D. Brock en Biotechnology: A Textbook of Industrial Microbiology, Segunda Edición (1989) Sinauer Associates, Inc., Sunderland, MA, o Deshpande, Mukund (Appl. Biochem. Biotechnol., 36, 227, 1992).

Aunque la presente invención se realiza en modo por lotes se contempla que el procedimiento sería adaptable a procedimientos de fermentación continua. La fermentación continua es un sistema abierto donde se añade un medio de fermentación definido continuamente a un biorreactor y una cantidad igual de medio acondicionado se elimina simultáneamente durante el procesamiento. La fermentación continua mantiene generalmente los cultivos a una alta densidad constante donde las células están principalmente en crecimiento en fase log.

La fermentación continua permite la modulación de un factor o de cualquier número de factores que afectan el

crecimiento celular o la concentración de producto final. Por ejemplo, un procedimiento mantendrá un nutriente limitante tal como la fuente de carbono o el nivel de nitrógeno a una tasa fija y permite que los otros parámetros se moderen. En otros sistemas, una serie de factores que afectan al crecimiento puede ser continuamente alterado mientras la concentración celular, medida por la turbidez media, se mantiene constante. Los sistemas continuos se esfuerzan por mantener condiciones de crecimiento en estado estacionario y así la pérdida celular debida al medio que es retirado debe equilibrarse frente al crecimiento celular en la fermentación. Los procedimientos de modulación de nutrientes y factores de crecimiento para los procesos de fermentación continua así como las técnicas para maximizar la tasa de formación de producto son bien conocidos en la técnica de la microbiología industrial y una variedad de procedimientos son detallados por Brock, supra.

10 Se contempla que la presente invención puede ponerse en práctica utilizando procesos bien por lotes, por lotes alimentados o en continuo, y que cualquier modo conocido de fermentación sería adecuado. Adicionalmente, se contempla que las células pueden inmovilizarse en un substrato como catalizadores de células enteras y someterse a condiciones de fermentación para la producción de isobutanol.

Procedimientos para el aislamiento del isobutanol del medio de fermentación

El isobutanol producido biológicamente puede ser aislado del medio de fermentación utilizando procedimientos conocidos en la técnica para fermentaciones acetona-butanol-etanol (ABE) (véase, por ejemplo, Durre, Appl. Microbiol. Biotechnol. 49, 639-648, 1998), y (Groot et al., Proceso. Biochem. 27, 61-75, 1992 y referencias en el mismo). Por ejemplo, los sólidos pueden ser eliminados del medio de fermentación por centrifugación, filtración, decantación y el isobutanol puede ser aislado del medio de fermentación utilizando procedimientos tales como destilación, destilación azeotrópica, extracción líquido-líquido, adsorción, extracción de gas, evaporación por membrana o pervaporación.

#### **Ejemplos**

30

35

5

La presente invención se define adicionalmente en los siguientes Ejemplos. Debe entenderse que estos Ejemplos, aunque indican realizaciones preferidas de la invención, se dan solo a modo de ilustración.

25 Procedimientos generales:

Las técnicas de ADN recombinante y de clonación molecular estándares utilizadas en los Ejemplos son bien conocidas en la técnica y se describen por Sambrook, J., Fritsch, EF y Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Nueva York, 1989, por T.J. Silhavy, M.L. Bennan y L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, Nueva York, 1984, y por Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. y Wiley-Interscience, NY, 1987. Materiales y procedimientos adecuados para el mantenimiento y crecimiento de cultivos bacterianos son bien conocidos en la técnica. Las técnicas adecuadas para utilizar en los siguientes ejemplos se pueden encontrar en el Manual of Methods for General Bacteriology, Phillipp Gerhardt, RGE Murray, Ralph N. Costilow, Eugene W. Nester, Willis A. Wood, Noel R. Krieg y G. Briggs Phillips, eds., American Society for Microbiology, Washington, DC, 1994, o por Thomas D. Brock en Biotechnology: A Textbook of Industrial Microbiology, Segunda Edición, Sinauer Associates, Inc., Sunderland, MA, 1989. Todos los reactivos, las enzimas de restricción y los materiales utilizados para el crecimiento y mantenimiento de las células bacterianas se obtuvieron de Aldrich Chemicals (Milwaukee, WI), BD Diagnostic Systems (Sparks, MD.), Life Technologies (Rockville, MD.), o Sigma Chemical Company (San Luis, MO), a menos que se especifique lo contrario.

El significado de las abreviaturas utilizadas es el siguiente: "Å" significa Angstrom, "min" significa minuto (o minutos), "h" significa hora (u horas), "μl" significa microlitro (o microlitros), "ng/μl" significa nanogramos por microlitro, "pmol/μl" significa picomol por microlitro, "ml" significa millilitro (o millilitros), "l" significa litro (o litros), "g/l" significa gramo por litro, "ng" significa nanogramo, "s" significa segundo (o segundos), "ml/min" significa millilitro por minuto (o por minutos), "w/v" significa peso por volumen, "v/v" significa volumen por volumen, "nm" significa nanometro (o nanometros), "mm" significa millimetro (o millimetros), "cm" significa centímetro (o centímetros) "mM" se refiere a millimolar, "M" significa molar, "mmol" se refiere a millimol (o millimoles), "μποl" significa micromol (o micromoles), "g" significa gramo (o gramos), "μg" se refiere a microgramo (o microgramos), "mg" significa milligramo (o miligramos), "g" se refiere a la constante de la gravitación, "rpm" significa revoluciones por minuto, "HPLC" se refiere a cromatografía líquida de alto rendimiento "MS" se refiere a espectrometría de masas, "HPLC/MS" se refiere a cromatografía líquida de alto rendimiento/espectrometría de masas", AEDT" significa ácido etilendiaminotetraacético, "dNTP" significa desoxinucleótido trifosfato.

Los cebadores de oligonucleótidos utilizados en los siguientes Ejemplos se han descrito en el presente documento (véase la Tabla 1)

Ensayo de cribado de alto rendimiento de genotecas

El cribado de alto rendimiento de las genotecas de enzimas KARI mutantes se realizó como se describe en el presente documento: 10 × medio de congelación que contiene 554,4 g/l de glicerol, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> 68 mM, MgSO<sub>4</sub> 4 mM, citrato de sodio 17 mM, KH<sub>2</sub>PO<sub>4</sub> 132 mM, K<sub>2</sub>HPO<sub>4</sub> 36 mM se preparó con agua pura molecular y esterilizada

por filtración. Se preparó medio de congelación diluyendo el medio de congelación 10 veces con el medio LB. Una alícuota (200 µl) del medio de congelación se utilizó para cada pocillo de las placas de archivo de 96 pocillos (nº de Catálogo 3370, Corning Inc. Corning, NY).

Se seleccionaron clones de las placas de agar LB y se inocularon en las placas de archivo de 96 pocillos que contenían el medio de congelación y se cultivaron durante la noche a 37°C sin agitación. Las placas de archivo a continuación, se almacenaron a -80°C. La cepa E coli Bw25113 transformada con pBAD-HisB (Invitrogen) se utilizó siempre como control negativo. Para las bibliotecas C, E, F y G, se utilizó T52D mutante de (PF5-ilvC) como control positivo. El T52D mutante era un mutante de PF5-ilvC en el que la treonina en la posición 52 se cambió por ácido aspártico. Para biblioteca H, C3B11 mutante (R47F/S50A/T52D/v53W de PF5-ilvC) se utilizó como control positivo.

Los clones de placas de archivos se inocularon en los pocillos de 96 de profundidad. Cada pocillo contenía 3.0 µl de células a partir de placas de archivos descongeladas, 300 µl de medio LB que contenía 100 mg/ml de ampicilina y 0,02% (peso/vol.) de arabinosa como inductor. Las células se cultivaron durante la noche a 37°C con 80% de humedad con agitación (900 rpm), se recogieron por centrifugación (4.000 rpm, 5 min a 25°C). (centrífuga Eppendorf, Brinkmann Instruments, Inc. Westbury, NY) y el sedimento celular se almacenó a -20°C para su posterior análisis.

El substrato de ensayo, (R,S)-acetolactato, se sintetizó como se describió por Aulabaugh y Schloss (Aulabaugh y Schloss, Biochemistry, 29, 2824-2830, 1990): 1,0 g de éster etílico del ácido 2-acetoxi-2-metil-3-oxobutírico (Aldrich, Milwaukee, WI) se mezcló con 10 ml de NaOH (1,0 M) y se agitó a temperatura ambiente. Cuando el pH de la solución se hizo neutro, NaOH adicional se añadió lentamente hasta que se mantuvo pH~8,0. Todos los otros productos químicos utilizados en el ensayo fueron adquiridos de Sigma.

La transformación enzimática de acetolactato a  $\alpha$ , $\beta$ -dihidroxi-isovalerato por KARI fue seguido por la medición de la desaparición del cofactor, NADPH o NADH, a partir de la reacción a 340 nm utilizando un lector de placas (Molecular Device, Sunnyvale, CA). La actividad se calculó utilizando el coeficiente de extinción molar de 6220  $M^{-1}$ cm $^{-1}$ , ya sea para NADPH o NADH. Las soluciones madre utilizadas fueron:  $K_2HPO_4$  (0,2 M);  $KH_2PO_4$  (0,2 M) de la mezcla madre del tampón de reacción que contenía: 4,8 ml  $K_2HPO_4$ ,  $KH_2PO_4$  0,2 ml, 4,0 ml de  $KI_2PO_4$  0,1 ml de  $KI_2PO_4$  0,9 ml de agua.

El sedimento celular congelado en placas de pocillos hondos y BugBuster se calentaron a temperatura ambiente durante 30 min, al mismo tiempo. Cada pocillo de las placas de ensayo de 96 pocillos se llenó con 120 μl de tampón de reacción y 20 μl de NADH (2,0 mM), se añadieron 150 μl de BugBuster a cada pocillo después de 30 min de calentamiento y las células se suspendieron utilizando Genmate (Tecan Systems Inc. de San José, CA.) pipeteando la suspensión de células arriba y abajo (× 5). Las placas se incubaron a temperatura ambiente durante 20 min y después se calentaron a 60°C durante 10 min. Los restos celulares y los precipitados de proteínas se separaron por centrifugación a 4.000 rpm durante 5 min a 25°C. Una alícuota (50 μl) del sobrenadante se transfirió a cada pocillo de placas de ensayo de 96 pocillos, la solución se mezcló y las burbujas se separaron por centrifugación a 4.000 rpm a 25°C durante 1 min. La absorbancia a 340 nm se registró como fondo, a cada pocillo se añadieron 20 μl de acetolactato (4,5 mM, diluido con tampón de reacción) y se mezclaron con agitación por el lector de placas. La absorbancia a 340 nm fue recodificado a 0, y 60 minutos después de la adición del substrato. Se utilizó la diferencia en la absorbancia (antes y después de la adición del substrato) para determinar la actividad de los mutantes. Los mutantes con mayor actividad KARI en comparación con el tipo silvestre fueron seleccionados para recribado.

Aproximadamente 5.000 clones fueron cribados para la biblioteca C y 360 de mejor desempeño fueron seleccionados para volver a cribar. Aproximadamente 92 clones fueron cribados para la biblioteca E y 16 de mejor desempeño fueron seleccionados para volver a cribar. Aproximadamente 92 clones fueron cribados para la biblioteca F y 8 de mejor desempeño fueron seleccionados para volver a cribar. Aproximadamente 92 clones fueron cribados para la biblioteca G y 20 de mejor desempeño fueron seleccionados para volver a cribar. Aproximadamente 8.000 clones fueron cribados para la biblioteca H y 62 de mejor desempeño fueron seleccionados para volver a cribar.

Para la biblioteca C, aproximadamente 360 de mejor desempeño se volvieron a cribar utilizando el mismo procedimiento que para el cribado general. Entre ellos, se seleccionaron más de 45 de mejor desempeño para volver a cribar como se describe a continuación.

Ensayo secundario de mutantes activos

5

20

25

30

35

40

45

50

55

Las células que contienen pBAD-ilvC y sus mutantes identificados por cribado de alto rendimiento se cultivaron durante la noche, a 37°C, en 3,0 ml del medio LB que contiene 100  $\mu$ g/ml de ampicilina y 0,02% (peso/vol.) de arabinosa como el inductor mientras se agita a 250 rpm. Después, las células se recogieron por centrifugación a 18.000 g durante 1 min a temperatura ambiente (micro-centrífuga modelo 1-15 de Sigma, Laurel, MD.). Los sedimentos celulares se resuspendieron en 300  $\mu$ l de BugBuster Master Mix (EMD Chemicals). La mezcla de reacción se incubó primero a temperatura ambiente durante 20 min y después se calentó a 60°C durante 10 min. Los restos celulares y el precipitado de proteínas se eliminaron por centrifugación a 18.000 g durante 5 min a

temperatura ambiente.

El tampón de reacción (120  $\mu$ l), preparado como se ha descrito anteriormente se mezcló con patrón bien de NADH o bien de NADPH (20  $\mu$ l) y el extracto de células (20  $\mu$ l) en cada pocillo de una placa de ensayo 96 pocillos. La absorbancia a 340 nm a 25°C se registró como absorbancia de fondo. A continuación, 20  $\mu$ l de acetolactato (4,5 mM, se diluyeron con tampón de reacción) se añadió a cada pocillo y se mezclaron con agitación por el lector de placas. Se registró la absorbancia a 340 nm a 0 min, 2 min y 5 min después de la adición de acetolactato. Se utilizó la diferencia de absorbancia antes y después de añadir el substrato para determinar la actividad de los mutantes. Los mutantes con alta actividad se seleccionaron para la secuenciación.

Se identificaron y secuenciaron (Fig. 4) cinco de mejor desempeño de la "Biblioteca C". El de mejor desempeño era el mutante R47F/S50A/T52D/V53W, que invirtió por completo la especificidad de los nucleótidos. Los de mejor desempeño de las "Bibliotecas E, F y G" eran R47P, S50D y T52D respectivamente (Fig. 5). Para la "Biblioteca H", se identificaron y secuenciaron 5 de los de mejor desempeño (Fig. 6) y el de mejor desempeño era R47P/S50G/T52D, que también invirtió por completo la especificidad de los nucleótidos. Las enzimas que contienen actividades superiores que el fondo se consideraron positivas.

#### 15 Ensayo de la enzima KARI

20

25

30

35

40

45

50

55

La actividad de la enzima KARI se puede medir de forma rutinaria por oxidación de NADH o de NADPH como se ha descrito anteriormente, sin embargo para medir la formación del producto 2,3-dihidroxi-isovalerato directamente, el análisis de la reacción se realizaba mediante LC/MS.

La concentración de proteínas del extracto celular crudo de células lisadas Bugbuster (como se describió anteriormente) se midió utilizando el reactivo de ensayo de proteínas BioRad (BioRad Laboratories, Inc., Hercules, CA 94547). Se añadió un total de 0,5 microgramos de proteínas del extracto crudo a un tampón de reacción que consiste en HEPES-KOH 100 mM, pH 7,5, MgCl₂ 10 mM, glucosa-6-fosfato 1 mM (Sigma-Aldrich), 0,2 unidades de glucosa Leuconostoc mesenteroides 6-fosfato deshidrogenasa (Sigma-Aldrich), y diversas concentraciones de NADH o NADPH, hasta un volumen de 96 μl. La reacción se inició mediante la adición de 4 μl de acetolactato hasta una concentración final 4 mM y un volumen final de 100 μl. Después del cronometrado de incubaciones a 30°C, típicamente entre 2 y 15 min, la reacción se enfrió rápidamente mediante la adición de 10 μl de AEDT 0,5 M, pH 8,0 (Life Technologies, Grand Island, NY 14072). Para medir la K<sub>M</sub> de NADH, las concentraciones utilizadas fueron 0,03, 0,1, 0,3, 1, 3, y 10 mM.

Para analizar 2,3-dihidroxi-isovalerato, la muestra se diluyó 10 veces con agua, y se inyectaron 8,0 μl en un HPLC Waters Acquity equipado con espectrómetro de masas Waters SQD (Waters Corporation, Milford, MA). Las condiciones cromatográficas fueron: caudal (0,5 ml/min), en una columna HSS T3 de Waters Acquity (2,1 mm de diámetro, 100 mm de longitud). El tampón A consistía en 0,1% (v/v) en agua, el tampón B era ácido fórmico al 0,1% en acetonitrilo. La muestra se analizó utilizando 1% de tampón B (en tampón A) durante 1 min, seguido por un gradiente lineal de 1% de tampón B en 1 min hasta 75% de tampón B en 1,5 min. El producto de reacción, 2,3-dihidroxi-isovalerato, fue detectado por ionización a m/z = 133, utilizando el dispositivo de ionización electrospray de -30 V de voltaje de cono. La cantidad de producto 2,3-dihidroxiisovalerato se calculó por comparación con un molde auténtico.

Para calcular la K<sub>M</sub> para NADH, los datos de velocidad para la formación de DVIH eran representados gráficamente en el Kaleidagraph (Synergy Software, Reading, PA.) y se ajustaron a la ecuación de Michaelis\_Menton de un solo substrato, suponiendo que se satura la concentración de acetolactato.

#### Ejemplo 1

Construcción de Genotecas de Saturación del Sitio

Se construyeron siete genotecas (Tabla 2) utilizando dos etapas: 1) síntesis de MegaCebadores utilizando oligonucleótidos sintetizados comercialmente descritos en la Tabla 1; y 2) construcción de genes mutados utilizando los MegaCebadores obtenidos en la etapa 1. Estos cebadores se prepararon utilizando polimerasa Pfu-Ultra de alta fidelidad (Stratagene, La Jolla, CA) para un par de cebadores que contienen un cebador directo y uno inverso. Los moldes de las bibliotecas C, E, F, G y H fueron el tipo silvestre de PF5 ilvc. Los moldes de ADN para la biblioteca N fueron los mutantes que tienen actividad NADH detectable desde la biblioteca C, mientras que los de la biblioteca O eran aquellos mutantes que tienen actividad NADH detectable desde la biblioteca H. Una mezcla de reacción de 50 นl contenía: 5.0 นl de 10 veces tampón de reacción suministrado con la Pfu-Ultra polimerasa (Stratagene), 1.0 นl de 50 ng/l de molde, 1,0 μl cada uno de 10 μmol/μl de cebadores directo e inverso, 1,0 μl de 40 mM de mezcla dNTP (Promega, Madison, WI), 1,0 μl de Pfu-Ultra ADN polimerasa (Stratagene) y 39 μl de agua. La mezcla se colocó en un tubo de 200 µl de pared delgada para la reacción de PCR en un equipo de gradiente Mastercycler (Brinkmann Instruments, Inc. Westbury, NY). Las siguientes condiciones se usaron para la reacción PCR: La temperatura de partida fue de 95°C durante 30 s seguido por 30 ciclos de calentamiento/enfriamiento. Cada ciclo consistía en 95°C durante 30 segundos, 54°C durante 1 min y 70°C durante 2 min. A la finalización del ciclo de temperatura, las muestras se mantuvieron a 70°C durante 4 minutos más, y después se mantuvieron a la espera de la recuperación de la muestra a 4°C. El producto de PCR fue limpiado utilizando un kit de limpieza de ADN (nº de Catálogo D4003, Zymo Research, Orange, CA) según lo recomendado por el fabricante.

10

15

20

Tabla 2 - Genotecas

| Nombre de la biblioteca | Patrones                           | Posición o posiciones de direccionamiento de Pf5_ilvC | Cebadores usados |
|-------------------------|------------------------------------|-------------------------------------------------------|------------------|
| С                       | PF5_ilvc                           | 47, 50, 52 y 53                                       | ID de SEC Nº:    |
| E                       | PF5_ilvc                           | 47                                                    | ID de SEC Nº:    |
| F                       | PF5_ilvc                           | 50                                                    | ID de SEC Nº:    |
| G                       | PF5_ilvc                           | 52                                                    | ID de SEC Nº:    |
| Н                       | PF5_ilvc                           | 47, 50 y 52                                           | ID de SEC Nº:    |
| N                       | Buenos mutantes de la biblioteca C | 53                                                    | ID de SEC Nº:    |
| 0                       | Buenos mutantes de la biblioteca H | 53                                                    | ID de SEC Nº:    |

Los MegaCebadores se utilizaron después para generar genotecas utilizando el kit de mutagénesis dirigida al sitio QuickChange II XL (nº de Catálogo 200524, Stratagene, La Jolla CA). Una mezcla de reacción de 50 μl contenía: 5,0 μl de 10 veces tampón de reacción, 1,0 μl de 50 ng/μl de molde, 42 μl de MegaCebador, 1.0 μl de mezcla dNTP 40 mM, 1,0 μl de Pfu-Ultra ADN polimerasa. Excepto por el MegaCebador y los moldes, todos los reactivos utilizados en el presente documento fueron suministrados con el kit indicado anteriormente. Esta mezcla de reacción se colocó en un tubo de PCR de capacidad 200 μl de pared delgada y se utilizaron las siguientes reacciones para la PCR: La temperatura de partida era de 95°C durante 30 s seguido por 25 ciclos de calentamiento/enfriamiento. Cada ciclo consistía en 95°C durante 30 segundos, 55°C durante 1 min y 68°C durante 6 min. A la finalización de los ciclos de temperatura, las muestras se mantuvieron a 68°C durante 8 min más, y después se mantuvieron a 4°C para el procesamiento posterior. Enzima de restricción Dpn I (1,0 μl) (suministrada con el kit anterior) se añadía directamente a la mezcla de reacción terminada, la digestión enzimática se realizó a 37°C durante 1 hora y el producto de PCR se limpió utilizando un kit de limpieza de ADN (Zymo Research). El producto de PCR limpiado (10 μl) contenía genes mutados para una genoteca.

El producto de PCR limpiado fue transformado en una cepa electro-competente de E. coli Bw25113 ( $\Delta$ ilvC) utilizando un BioRad Gene Pulser II (Bio-Rad Laboratories Inc., Hercules, CA). Los clones transformados fueron rayados sobre placas con agar que contenían el medio Luria Broth y 100  $\mu$ g/ml de ampicilina (nº de Catálogo L1004, Teknova Inc. Hollister, CA) y se incubaron a 37°C durante la noche. Decenas de clones fueron escogidos al azar para la secuenciación de ADN para confirmar la calidad de la biblioteca.

Tabla 3

| Lista de alguno | s mutantes que tienen a | ctividades NADH identi | ficadas desde las bibliote | ecas de saturación |
|-----------------|-------------------------|------------------------|----------------------------|--------------------|
| Mutante         | Posición 47             | Posición 50            | Posición 52                | Posición 53        |
| SD2             | R47Y                    | S50A                   | T52H                       | V53W               |
| SB1             | R47Y                    | S50A                   | T52G                       | V53W               |
| SE1             | R47A                    | S50W                   | T52G                       | V53W               |
| SH2             | R47N                    | S50W                   | T52N                       | V53W               |
| SB2             | R47I                    |                        | T52G                       | V53W               |
| SG1             | R47Y                    |                        | T52G                       | V53W               |
| SB3             | R47G                    | S50W                   | T52G                       | V53W               |
| SE2             | R47P                    | S50E                   | T52A                       | V53W               |
| SD3             | R47L                    | S50W                   | T52G                       | V53W               |
| C2A6            | R47I                    | S50G                   | T52D                       | V53W               |
| C3E11           | R47A                    | S50M                   | T52D                       | V53W               |
| C3A7            | R47Y                    | S50A                   | T52D                       | V53W               |

| Mutante | Posición 47 | Posición 50 | Posición 52 | Posición 53 |
|---------|-------------|-------------|-------------|-------------|
| C3B11   | R47F        | S50A        | T52D        | V53W        |
| C4A5    | R47Y        | S50A        | T52S        | V53W        |
| C3B12   | R47I        |             | T52D        | V53W        |
| C4H7    | R47I        |             | T52S        | V53W        |
| C1D3    | R47G        | S50M        | T52D        | V53W        |
| C4D12   | R47C        | S50W        | T52G        | V53W        |
| C1G7    | R47P        | S50G        | T52D        | V53W        |
| C2F6    | R47P        | S50V        | T52D        | V53W        |
| C1C4    | R47P        | S50E        | T52S        | V53W        |
| 6924F9  | R47P        | S50G        | T52D        |             |
| 6881E11 | R47P        | S50N        | T52C        |             |
| 6868F10 | R47P        |             | T52S        |             |
| 6883G10 | R47P        | S50D        | T52S        |             |
| 6939G4  | R47P        | S50C        | T52D        |             |
| 11463D8 | R47P        | S50F        | T52D        |             |
| 9667A11 | R47N        | S50N        | T52D        | V53A        |
| 9675C8  | R47Y        | S50A        | T52D        | V53A        |
| 9650E5  | R47N        | S50W        | T52G        | V53H        |
| 9875B9  | R47N        | S50N        | T52D        | V53W        |
| 9862B9  | R47D        | S50W        | T52G        | V53W        |
| 9728G11 | R47N        | S50W        | T52G        | V53W        |
| 11461D8 | R47F        | S50A        | T52D        | V53A        |

Ejemplo 2

5

10

15

20

Construcción de bibliotecas de PCR propensas a error

Varias series de bibliotecas de PCR propensas a error (epPCR) se crearon utilizando el kit GeneMorph II (Stratagene) según lo recomendado por el fabricante. Todas las bibliotecas epPCR se dirigen al N-terminal de PF5\_KARI. El cebador directo (ID de SEC Nº: 20) y el cebador inverso (ID de SEC Nº: 22) se utilizaron para todas las bibliotecas ePCR.

Los moldes de ADN para cada biblioteca epPCR eran mutantes con relativamente buenas actividades NADH a partir de la biblioteca anterior. Por ejemplo: los moldes de ADN para la n-ésima biblioteca epPCR eran mutantes con buenas actividades de NADH a partir de la (n-1)-ésima biblioteca epPCR. Los moldes de la primera biblioteca epPCR eran mutantes con relativamente buenas actividades de NADH a partir de bibliotecas de N y O. La tasa de mutaciones de la biblioteca obtenida con este kit fue controlada mediante la cantidad de molde añadido en la mezcla de reacción y el número de ciclos de amplificación. Típicamente, se utilizó 1,0 ng de cada molde de ADN en 100 μl de mezcla de reacción. El número de ciclos de amplificación era de 70. Las condiciones siguientes se utilizaron para la reacción de PCR: La temperatura de partida era de 95°C durante 30 s seguido por 70 ciclos de calentamiento/enfriamiento. Cada ciclo consistía en 95°C durante 30 segundos, 55°C durante 30 min, y 70°C durante 2 min. Después de que los primeros 35 ciclos de calentamiento/enfriamiento terminaron, se añadieron más dNTP y ADN polimerasa Mutazyme II. El producto de PCR se limpió utilizando un kit de limpieza de ADN (n° de Catálogo D4003, Zymo Research, Orange, CA) según lo recomendado por el fabricante. El producto de PCR limpiado se trató como megacebador y se introdujo en el vector utilizando el kit Quickchange como se describe en el Ejemplo 1. La Tabla 4 siguiente enumera los mutantes KARI obtenidos y la mejora significativa observada en sus uniones NADH. La K<sub>m</sub> se redujo desde 1.100 μM para el C3B11 mutante hasta 50 μM para 12957G9 mutante.

Tabla 4

| Lista de algunos mutantes con sus valores de K <sub>m</sub> medidos |                                      |                          |  |
|---------------------------------------------------------------------|--------------------------------------|--------------------------|--|
| Mutante                                                             | Posiciones de Mutación               | NADH K <sub>m</sub> (μM) |  |
| C3B11                                                               | R47F/S50A/T52D/V53W                  | 1100                     |  |
| SB3                                                                 | R47G/S50W/T52G/V53W                  | 500                      |  |
| 11518B4                                                             | R47N/S50N/T52D/V53A/A156V            | 141                      |  |
| 11281G2                                                             | R47N/S50N/T52D/V53A/A156V/L165M      | 130                      |  |
| 12985F6                                                             | R47Y/S50A/T52D/V53A/L61 F/A156V      | 100                      |  |
| 13002D8                                                             | R47Y/S50A/T52D/V53A/L61F/A156V/G170A | 68                       |  |
| 12957G9                                                             | Y24F/R47Y/S50A/T52D/V53A/L61F/G170A  | 50                       |  |
| 12978D9                                                             | R47Y/S50A/T52D/V53A/L61F/Q115L/A156V | 114                      |  |

#### Ejemplo 3

10

25

30

#### Termoestabilidad de PF5-ilvC y sus mutantes

Las células que contienen pBAD-ilvC mutados se cultivaron durante la noche a  $37^{\circ}$ C en 25 ml de medio LB que contenía  $100~\mu$ g/ml de ampicilina y 0.02% (peso/vol.) de inductor de arabinosa con agitación a  $250~\rm rpm$ . Las células se recogieron después por centrifugación a  $18.000~\rm g$  durante 1 min a temperatura ambiente y los sedimentos celulares se resuspendieron en  $300~\mu$ l de BugBuster Master Mix (EMD Chemicals). La mezcla de reacción se incubó primero a temperatura ambiente durante  $20~\rm min$  y las alícuotas de esta mezcla de células (por ejemplo,  $50~\mu$ l) se incubaron a diferentes temperaturas (desde la temperatura ambiente hasta  $75^{\circ}$ C) durante  $10~\rm min$ . El precipitado se separó por centrifugación a  $18.000~\rm g$  durante  $5~\rm min$  a temperatura ambiente. La actividad remanente del sobrenadante se analizó como se describió anteriormente. Como se muestra en la Figura 7, pBAD-ilvC era muy estable con  $T_{50}$  igual a  $68^{\circ}$ C. ( $T^{50}$  es la temperatura a la cual el 50% de la proteína pierde su actividad después de  $10~\rm min$  de incubación).

La termoestabilidad de PF5-ilvC permitió la destrucción de la mayoría de la otra actividad de oxidación NADH no KARI dentro de estas células, reduciendo el consumo de fondo de NADH y facilitando de este modo los ensayos de actividad KARI. Este protocolo de tratamiento térmico se utilizó en todos los ensayos de cribado y re-cribado. Los mutantes obtenidos de este modo eran todos termoestables que permitían una más fácil selección de los mutantes deseables.

### Ejemplo 4

20 Producción estequiométrica de 2,3-dihidroxi-isovalerato por KARI durante el consumo de cofactores NADH o NADPH

Ensayos de cribado y de rutina de la actividad KARI se basan en la disminución de la absorción de 340 nm asociada con la oxidación de NADPH o NADH de nucleótidos piridina. Para asegurar que esta métrica se acoplaba a la formación del otro producto de reacción, la oxidación del nucleótido de piridina y la formación de 2,3-dihidroxi-isovalerato se midieron en las mismas muestras.

La oxidación de NADH o NADPH se midió a 340 nm en una cubeta de 1 cm longitud del trayecto en un espectrofotómetro modelo 8453 de Agilent (Agilent Technologies, Wilmington DEI.). El extracto celular crudo (0,1 ml) preparado como se describió anteriormente, conteniendo bien PF5 KARI tipo silvestre o bien C3B11 mutante, se añadió a 0,9 ml de tampón de K-fosfato (10 mM, pH 7,6), que contenía MgCl<sub>2</sub> 10 mM, y 0,2 mM de cualquiera NADPH o NADH. La reacción se inició mediante la adición de acetolactato a una concentración final de 0,4 mM. Después de una disminución de 10-20% en la absorción (aproximadamente 5 min), 50 µl de la mezcla de reacción se retiraron rápidamente y se añaden a un tubo Eppendorf de 1,5 ml conteniendo 10 µl de AEDT 0,5 mM para detener la reacción y la disminución de absorción real para cada muestra se registro con precisión. La producción de 2,3-dihidroxi-isovalerato se midió y se cuantificó mediante LC/MS como se describió anteriormente.

La relación de acoplamiento se define por la relación entre la cantidad de 2,3-dihidroxiisovalerato (DHIV) producido y la cantidad de NADH o NADPH consumida durante el experimento. La relación de acoplamiento para la enzima de tipo silvestre (PF5-ilvC), utilizando NADPH, era de 0,98 DHIV/NADPH, mientras que para el mutante (C3B11), utilizando NADH, era, en promedio, de alrededor de 1,10 DHIV/NADPH.

#### Eiemplo 5

5

10

15

20

Identificación de los aminoácidos implicados en la unión del cofactor en KARI para conmutar la especificidad del cofactor utilizando herramientas bioinformáticas

Para descubrir si las secuencias KARI existentes en la naturaleza podrían proporcionar pistas para las posiciones de aminoácidos que deberían ser objeto de mutagénesis, se realizó el alineamiento múltiple de secuencias (MSA) utilizando PF5-KARI, su cercano homólogo PA01 KARI y tres secuencias KARI con actividad NADH medible, es decir, B. Cereus ilvC1 e ilvC2 y espinaca KARI (Fig. 8). Sobre la base del alineamiento múltiple de secuencias, las posiciones 33, 43, 59, 61, 71, 80, 101, y 119 fueron seleccionados para la mutagénesis de saturación. Mutagénesis de saturación en todas estas posiciones se realizó simultáneamente utilizando el kit de mutagénesis dirigida al sitio QuickChange II XL (nº de Catálogo 200524, Stratagene, La Jolla CA) con el protocolo sugerido por el fabricante. El material de partida para esta mutagénesis era un molde mixto consistente en mutantes ya identificados en la Tabla 4 y en el Ejemplo 2. Los cebadores utilizados se enumeran en la Tabla 5. La biblioteca de mutantes obtenidos de este modo fueron nombrados biblioteca Z". Los mutantes con buena actividad NADH de esta biblioteca se identificaron utilizando cribado de alto rendimiento y su actividad KARI y la K<sub>m</sub> para NADH se midieron como se describió anteriormente. Estos mutantes (enumerados en la Tabla 6) poseen K<sub>m</sub> mucho menores para NADH en comparación con los moldes de los padres (Tabla 4). Se creó un megacebador utilizando cebadores (ID de SEC Nº. 20 y 58) y mutaciones en las posiciones 156 y 170 fueron eliminadas. El cribado posterior de este conjunto de mutantes identificó el mutante 3361 G8 (ID de SEC Nº: 67) (Tabla 7). Los aciertos de la biblioteca Z fueron sometidos además a mutagénesis de saturación en la posición 53 utilizando cebadores (ID de SEC Nº 20 y 21), y el cribado posterior identificó los mutantes restantes en la Tabla 7. Como se muestra en la Tabla 7. los nuevos mutantes poseían mucha menor K<sub>m</sub> para NADH (p. ej., 4,0 a 5,5 μM) en comparación con los mutantes enumerados en la Tabla 6 (p. ej., 14-40

Tabla 5

|                                                   | Cebadores para el Ejemplo 5                                                                                                               |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Posición o<br>Posiciones dirigidas<br>de Pf5_ilvC | Cebadores                                                                                                                                 |
| 33                                                | pBAD-405-C33_090808f: GCTCAAGCANNKAACCTGAAGG (ID de SEC N°: 49)<br>pBAD-427-C33_090808r: CCTTCAGGTTKNNTGCTTGAGC (ID de SEC N°: 50)        |
| 43                                                | pBAD-435-T43_090808f:GTAGACGTGNNKGTTGGCCTG (ID de SEC N°: 51)<br>pBAD-456-T43_090808r:CAGGCCAACKNNCACGTCTAC (ID de SEC N°: 52)            |
| 59 y 61                                           | pBAD-484-H59L61_090808f:CTGAAGCCNNKGGCNNKAAAGTGAC (ID de SEC N°: 53) pBAD-509-H59L61_090808r:GTCACTTTKNNGCCKNNGGCTTCAG (ID de SEC N°: 54) |
| 71                                                | pBAD-519-A71_090808f: GCAGCCGTTNNKGGTGCCGACT (ID de SEC Nº: 55) pBAD-541-A71_090808r: AGTCGGCACCKNNAACGGCTGC (ID de SEC Nº: 56)           |
| 80                                                | pBAD-545-T80_090808f: CATGATCCTGNNKCCGGACGAG (ID de SEC Nº: 57) pBAD-567-T80_090808r: CTCGTCCGGKNNCAGGATCATG (ID de SEC Nº: 58)           |
| 101                                               | pBAD-608-A101_090808f: CAAGAAGGGCNNKACTCTGGCCT (ID de SEC Nº: 59)<br>pBAD-631-A101_090808r: AGGCCAGAGTKNNGCCCTTCTTG (ID de SEC Nº: 60)    |
| 119                                               | pBAD-663-R119_090808f: GTTGTGCCTNNKGCCGACCTCG (ID de SEC Nº: 61) pBAD-685-R119_090808r: CGAGGTCGGCKNNAGGCACAAC (ID de SEC Nº: 62)         |

Tabla 6

| Lista de algunos mutantes con sus valores de K <sub>m</sub> medidos (las posiciones mutadas en esos mutantes se identificaron mediante herramientas bioinformáticas) |                                                                 |                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|--|
| Mutante                                                                                                                                                              | Posiciones de la Mutación                                       | NADH K <sub>m</sub> (µM) |  |
| ZB1                                                                                                                                                                  | Y24F/R47Y/S50A/T52D/V53A/L61F/A156V (ID de SEC Nº: 24)          | 40                       |  |
| ZF3                                                                                                                                                                  | Y24F/C33L1R47Y/S50A/T52D/V53A/L61F (ID de SEC Nº: 25)           | 21                       |  |
| ZF2                                                                                                                                                                  | ZF2 Y24F/C33L/R47Y/S50A/T52D/V53A/L61F/A156V (ID de SEC Nº: 26) |                          |  |

| Lista de algunos mutantes con sus valores de K <sub>m</sub> medidos (las posiciones mutadas en esos mutantes se identificaron mediante herramientas bioinformáticas) |                                                             |    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----|--|
| Mutante         Posiciones de la Mutación         NADH K <sub>m</sub> (μΜ)                                                                                           |                                                             |    |  |
| ZB3                                                                                                                                                                  | 17                                                          |    |  |
| Z4B8                                                                                                                                                                 | C33L/R47Y/S50A/T52D/V53A/L61F/T80I/A156V (ID de SEC Nº: 28) | 14 |  |

Tabla 7

| Los mutantes optimizados adicionalmente para mejorar la $K_{m}$ (para NADH) |                                                                |                          |
|-----------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------|
| Mutante                                                                     | Posiciones de la Mutación                                      | NADH K <sub>m</sub> (µM) |
| 3361 G8                                                                     | C33L/R47Y/S50A/T52D/V53A/L61F/T80I (SEQ ID NO: 67)             | 5.5                      |
| 2H10                                                                        | Y24F/C33L/R47Y/S50A/T52D/V53I/L61F/T80I/A156V (SEQ ID NO : 68) | 5.3                      |
| 1D2                                                                         | Y24F/R47Y/S50A/T52D/V53A/L61F/T80I/A156V (SEQ ID NO: 69)       | 4.1                      |
| 3F12                                                                        | Y24F/C33L/R47Y/S50A/T52D/V53A/L61 F/T80I/A156V (SEQ ID NO: 70) | 4.0                      |

Análisis adicionales utilizando herramientas bioinformáticas se realizaron, por tanto, para expandir los sitios mutacionales a otras secuencias KARI como se describe a continuación.

#### Análisis de secuencias

Los miembros de la familia de proteínas de cetol-ácido reductoisomerasa (KARI) fueron identificados a través de búsquedas BlastP de bases de datos disponibles al público utilizando la secuencia de aminoácidos de Pseudomonas fluorescens PF5 KARI (ID de SEC Nº: 17) con los siguientes parámetros de búsqueda: valor de E = 10, tamaño de la palabra = 3, Matriz = Blosum62, y apertura del Hueco = 11 y por extensión de hueco = 1, valor E de corte de 10<sup>-3</sup>. Se eliminaron las secuencias idénticas y las secuencias que eran más cortas que 260 aminoácidos. Además, también se eliminaron las secuencias que carecían del típico motivo GxGXX(G/A) involucrado en la unión de NAD(P)H en el dominio N-terminal. Estos análisis dieron como resultado un conjunto de 692 secuencias de KARI.

Un perfil de HMM se generó a partir del conjunto de las enzimas KARI Clase I y Clase II verificadas experimentalmente a partir de diversas fuentes, como se describe en la Tabla 8. A continuación se proporcionan los detalles de construcción, calibración, y búsqueda con este perfil de HMM. Cualquier secuencia que pueda ser recuperada por la búsqueda de HMM utilizando el perfil de HMM para KARI a un valor E por encima de 1E-3 se considera un miembro de la familia KARI. Las posiciones en una secuencia KARI alineada con los siguientes en los nodos del perfil de HMM (definidas a continuación en la sección de construcción del perfil de HMM) se reivindica de que son responsables de la utilización de NADH: 24, 33, 47, 50, 52, 53, 61, 80, 115, 156, y 170 (la numeración se basa en las secuencias de Pseudomonas fluorescens PF5 KARI).

#### 20 Preparación del Perfil de HMM

15

25

30

Un grupo de secuencias KARI se expresaron en E. coli y se ha verificado que tienen actividad KARI Estas KARI se enumeran en la Tabla 6. Las secuencias de aminoácidos de estas KARI funcionales verificadas experimentalmente fueron analizadas utilizando el paquete de software HMMER (la teoría tras los perfiles HMM se describe en R. Durbin, S. Eddy, A. Krogh y G. Mitchison, Biological sequence analysis: probabilistic models of proteins and nucleic acids, Cambridge University Press, 1998; Krogh et al, 1994; J. Mol Biol. 235: 1501-1531), siguiendo la guía del usuario que está disponible de HMMER (Janelia Farm Research Campus, Ashburn, VA). La salida del programa de software HMMER es un perfil de Modelo Oculto de Markov (perfil HMM) que caracteriza las secuencias de entrada. Como se indica en la guía del usuario, los perfiles HMM son descripciones estadísticas del consenso de un alineamiento múltiple de secuencias. Utilizan las puntuaciones específicas de la posición de los aminoácidos (o nucleótidos) y las puntuaciones de la posición específica para la apertura y extensión de una inserción o eliminación. En comparación con otros procedimientos basados en el perfil, los HMM tienen una base probabilística formal. Los perfiles HMM para un gran número de familias de proteínas están disponibles al público en la base de datos PFAM (Janelia Farm Research Campus, Ashburn, VA.).

El perfil HMM se construyó de la forma siguiente:

#### 35 Etapa1. Construir un alineamiento de secuencia

Las 25 secuencias para las KARI funcionalmente verificada enumeradas anteriormente se alinearon utilizando Clustal W (Thompson, J.D., Higgins, D.G., y Gibson T.J. (1994) Nuc Acid Res. 22: . 4673-4680) con los parámetros por defecto. El alineamiento se muestra en la Figura 9.

Tabla 8
25 enzimas KARI verificadas experimentalmente

| Número GI | Acceso         | ID de SEC Nº: | Organismo                                   |
|-----------|----------------|---------------|---------------------------------------------|
| 70732562  | YP_262325.1    | 17            | Pseudomonas fluorescens Pf-5                |
| 15897495  | NP_342100.1    | 13            | Sulfolobus solfataricus P2                  |
| 18313972  | NP_560639.1    | 14            | Pyrobaculum aerophilum str. IM2             |
| 76801743  | YP_326751.1    | 30            | Natronomonas pharaonis DSM 2160             |
| 16079881  | NP_390707.1    | 31            | Bacillus subtilis subsp. subtilis str. 168  |
| 19552493  | NP_600495.1    | 32            | Corynebacterium glutamicum ATCC 13032       |
| 6225553   | 032414         | 33            | Phaeospririlum molischianum                 |
| 17546794  | NP_520196.1    | 15            | Ralstonia solanacearum GMI1000              |
| 56552037  | YP_162876.1    | 34            | Zymomonas mobilis subsp. mobilis ZM4        |
| 114319705 | YP_741388.1    | 35            | Alkalilimnicola ehrlichei MLHE-1            |
| 57240359  | ZP_00368308.1  | 36            | Campylobacter lari RM2100                   |
| 120553816 | YP_958167.1    | 37            | Marinobacter aquaeolei VT8                  |
| 71065099  | YP_263826.1    | 38            | Psychrobacter arcticus 273-4                |
| 83648555  | YP_436990.1    | 39            | Hahella chejuensis KCTC 2396                |
| 74318007  | YP_315747.1    | 40            | Thiobacillus denitrificans ATCC 25259       |
| 67159493  | ZP_00420011.1  | 41            | Azotobacter vinelandii AvOP                 |
| 66044103  | YP_233944.1    | 42            | Pseudomonas syringae pv. syringae B728a     |
| 28868203  | NP_790822.1    | 43            | Pseudomonas syringae pv. tomato str. DC3000 |
| 26991362  | NP_746787.1    | 44            | Pseudomonas putida KT2440                   |
| 104783656 | YP_610154.1    | 45            | Pseudomonas entomophila L48                 |
| 146306044 | YP_001186509.1 | 46            | Pseudomonas mendocina ymp                   |
| 15599888  | NP_253382.1    | 16            | Pseudomonas aeruginosa PAO1                 |
| 42780593  | NP_977840.1    | 47            | Bacillus cereus ATCC 10987                  |
| 42781005  | NP_978252.1    | 48            | Bacillus cereus ATCC 10987                  |
| 266346    | Q01292         | 18            | Spinacia oleracea                           |

Etapa 2. Crear un perfil HMM

5

10

15

El programa hmmbuild se ha ejecutado en el conjunto de secuencias alineadas utilizando parámetros por defecto. El hmmbuild lee el archivo del alineamiento múltiple de secuencias, construye un nuevo perfil HMM, y guarda el perfil HMM para archivar. Utilizando este programa se generaba un perfil no calibrado a partir del alineamiento múltiple de secuencias para veinticuatro KARI verificadas experimentalmente como se describió anteriormente.

La siguiente información basada en la guía de usuario del software HMMER da alguna descripción de la forma en que el programa hmmbuild prepara un perfil HMM. Un perfil HMM es una máquina de estado lineal que consiste en una serie de nodos, cada uno de los cuales corresponde aproximadamente a una posición (columna) en el alineamiento múltiple de secuencias a partir del cual se construye. Si se ignoran los huecos, la correspondencia es exacta, es decir, el perfil HMM tiene un nodo para cada columna en el alineamiento, y cada nodo puede existir en un estado, un estado coincidente. La palabra "coincidente" en el presente documento implica que hay una posición en el modelo para cada posición en la secuencia para ser alineada con el modelo. Los huecos se modelan mediante estados de inserción (I) y de eliminación (D) estados. Todas las columnas que contienen más de una cierta fracción x de caracteres huecos serán asignadas como una columna de inserción. Por defecto, x se establece en 0,5. Cada estado coincidente tiene un estado I y uno D asociados con él. HMMER llama a un grupo de tres estados (M/D/I) en la misma posición de consenso en el alineamiento de un "nodo".

Un perfil HMM tiene varios tipos de probabilidades asociadas con él. Un tipo es la probabilidad de transición -- la probabilidad de transición de un estado a otro. También hay probabilidades de emisiones asociadas con cada

estado coincidente, basada en la probabilidad de que un determinado resto exista en esa posición en el alineamiento. Por ejemplo, para una columna bastante bien conservada en un alineamiento, la probabilidad de emisiones para el aminoácido más común puede ser 0,81, mientras que para cada uno de los otros 19 aminoácidos puede ser 0,01.

Un perfil HMM está completamente descrito en un archivo guardado con perfil HMMER2, que contiene todas las probabilidades que se utilizan para parametrizar el HMM. Las probabilidades de emisión de un estado coincidente o un estado de inserción se almacenan como relaciones log-momios relativas a un modelo Null: log<sub>2</sub> (p\_x)/(null\_x). Donde p\_x es la probabilidad de un resto de aminoácido, en una posición particular en el alineamiento, de acuerdo con el perfil HMM y null\_x es la probabilidad de acuerdo con el modelo Null. El modelo Null es un simple modelo probabilístico de un estado con un conjunto precalculado de probabilidades de emisión para cada uno de los 20 aminoácidos derivados de la distribución de los aminoácidos en el SWISSPROT release 24. Las puntuaciones de la transición de estado también se almacenan como parámetros log momios y son proporcionales a log<sub>2</sub> (t\_x). Donde t x es la probabilidad de transición de transitar de un estado a otro estado.

### Etapa 3. Calibrar el perfil HMM

40

50

El perfil HMM se leyó utilizando hmmcalibrate que anota un gran número de secuencias aleatorias sintetizadas con el perfil (el número por defecto de secuencias sintéticas utilizada es 5.000), se ajusta a una distribución de valor extremo (EVD) para el histograma de esas puntuaciones, y vuelve a guardar el archivo HMM incluyendo ahora los parámetros de EVD. Estos parámetros de EVD (μ y λ) se utilizan para calcular los valores de E de las puntuaciones de bits cuando el perfil se busca contra una base de datos de secuencias de proteínas. El hmmcalibrate escribe dos parámetros en el archivo HMM en una línea etiquetada "EVD": estos parámetros son los parámetros μ (localización) y λ (escala) de una distribución de valor extremo (EVD) que mejor se adapte a un histograma de las puntuaciones calculadas sobre secuencias generadas al azar de aproximadamente la misma longitud y composición del resto como SWISS-PROT. Esta calibración se hizo una vez para el perfil HMM.

El perfil HMM calibrado para el conjunto de secuencias KARI se proporciona adjunto a ello como un gráfico Excel del perfil HMM (Tabla 9). En la sección principal del modelo empezando desde la línea de marca del HMM, el modelo tiene tres líneas por cada nodo, para Inodos M (donde M es el número de estados coincidentes, como se determina mediante la línea LENG). La primera línea informa de las puntuaciones log-momios de emisión coincidente: la relación log-momios de emisión de cada aminoácido desde ese estado y desde el modelo Null. El primer número es el número de nodo (1..M). Los K siguientes numeran las puntuaciones de emisión coincidente, una por cada aminoácido. El aminoácido con mayor puntuación se indica entre paréntesis después del número de nodo. Estas puntuaciones log-momios se pueden transformar de nuevo en probabilidades HMM utilizando el la probabilidad del modelo Null. El último número de la línea representa el índice de la columna de alineamiento para este estado coincidente. La segunda línea informa de las puntuaciones de emisión del inserto, y la tercera línea informa de las puntuaciones de transición de estado: M → M, M → I, M → D; I → H, I → I; D → M, D → D; B → M; M → E.

35 Etapa 4. Ensayar la especificidad y sensibilidad de los HMM del perfil construido

El perfil HMM se evaluó utilizando hmmsearch, que lee un perfil HMM a partir de hmmfile y busca un archivo de secuencia para coincidencias de secuencias significativamente similares. El archivo de secuencia buscado contenía 692 secuencias (véase en lo que antecede). Durante la búsqueda, el tamaño de la base de datos (parámetro Z) se fijó en mil millones. Este ajuste del tamaño asegura que valores E significativos frente a la base de datos actual seguirán siendo significativos en un futuro previsible. El punto de corte del valor E se fijó en 10.

Una búsqueda hmmer, utilizando hmmsearch, con el HMM perfil generado a partir del alineamiento de los veinticinco KARI con la función verificada experimentalmente, hizo coincidentes las 692 secuencias con un valor de E <10<sup>-3</sup>. Este resultado indica que los miembros de la familia KARI comparten una significativa similitud de secuencia. Se utilizó una búsqueda hmmer con un corte de valor de E de 10<sup>-3</sup> para separar las KARI de otras proteínas.

45 Etapa 5. Identificar posiciones que son relevantes para la utilización de NAD(P)H.

Once posiciones se han identificado en KARI de Pseudomonas fluorescens Pf-5 que conmuta el cofactor NADPH por NADH. Dado que las secuencias KARI comparten significativa similitud de secuencias (como se describió anteriormente), se puede razonar que las posiciones homólogas en la alineamiento de secuencias KARI deben contribuir a la misma especificidad funcional. El HMM perfil para enzimas KARI se ha generado a partir del alineamiento múltiple de secuencias que contiene la secuencia de Pseudomonas fluorescens Pf-5 KARI. Las once posiciones en el perfil HMM que representan las columnas del alineamiento que corresponden a las once posiciones de conmutación del cofactor en Pseudomonas fluorescens Pf-5 KARI se identifican como las posiciones 24, 33, 47, 50, 52, 53, 61, 80, 115, 156 y 170. Las líneas correspondientes a estas posiciones en el archivo del modelo se resaltan en amarillo en la tabla 9.

Para cualquier secuencia de consulta, hmmsearch se utiliza para buscar el perfil HMM para KARI frente a la secuencia de consulta y el alineamiento de la consulta con el HMM se registra en el archivo de salida. En la sección de alineamiento de la salida, la línea superior es el consenso HMM. El aminoácido mostrado para el consenso es el aminoácido de mayor probabilidad en esa posición de acuerdo con el HMM (no necesariamente el aminoácido de

puntuación más alta). La línea central muestra letras de coincidencia "exacta" con el resto de mayor probabilidad en el HMM, o un "+" cuando la coincidencia tiene una puntuación positiva. La tercera línea muestra la propia secuencia. Las posiciones en la secuencia de consulta que se consideran como relevantes para la conmutación del cofactor se identifican como aquellas que están alineadas con estos once nodos en el perfil HMM como se describió anteriormente. Un ejemplo del alineamiento de Pseudomonas fluorescens Pf-5 KARI con el perfil HMM de KARI se muestra en la Figura 10 y las once posiciones que son responsables de la conmutación del cofactor están sombreadas en gris.

5

#### Tabla 9

HMMER2.0 [2.2 g] NOMBRE de las KARI verificadas funcionalmente

LENG 354 ALPH Amino

MAPA "yes"

COM hmmbuild-n KARI verificadas funcionalmente exp-KARI.hmm exp-KARI\_mod.aln

COM hmmcalibrate exp-KARI.hmm

NSEQ 25

FECHA Lun Dic 8 17: 34: 51

XT -8455 -1000 -1000 -8455 4 --8455 -

NULT -4 -8455

NULE 595 -1558 85 338-294 453-1158 197 249 902-1085-142-21-313 45 531 201 384-1 998-644

EVD -333.712708 0.110102

Versión del formato de archivo: un identificador único para este formato de archivo de guardar. Nombre del perfil HMM

Longitud del modelo: el número de estados coincidentes en el modelo.

Alfabeto de símbolos: Esto determina el alfabeto de símbolos y el tamaño de las distribuciones de probabilidad de emisión de símbolos. IAmino, el tamaño del alfabeto se establece en 20 y el alfabeto de símbolos a "ACDEFGHIKLMNPQRSTVWY" (orden alfabético).

Marca de anotación del mapa: Si se establece en "yes", cada línea de datos para el estado coincidente/columna de consenso en la sección principal del archivo es seguido de un número extra. Este número da el índice de la columna del alineamiento de la que se producía el estado coincidente. Esta información proporciona un "mapa" de los estados coincidentes (1..M) sobre las columnas del alineamiento (1..alen). Se utiliza para alinear rápidamente el modelo de vuelta al alineamiento original, p. ej., cuando se utiliza hmmalign-mapali.

Línea de comandos para cada comando HMMER que modifica el archivo de guardar: Esto significa que hmmbuild (parámetros por defecto) se aplicaba para generar el archivo de guardar.

Línea de comandos para cada comando HMMER que modifica el archivo de guardar: Esto significa que hmmcalibrate (parámetros por defecto) se aplicaba al archivo de guardar.

Número de secuencia: el número de secuencias en las que era entrenado el HMM

Fecha de creación: Cuando fue generado el archivo de guardar.

Ocho transiciones "especiales" para el control de partes de partes específicas del algoritmo del modelo Plan7. La probabilidad Null utilizada para transformarlos de vuelta a las probabilidades del modelo es 1,0. El orden de los ocho campos es  $N \rightarrow B$ ,  $N \rightarrow N$ ,  $E \rightarrow C$ ,  $E \rightarrow J$ ,  $C \rightarrow T$ ,  $C \rightarrow C$ ,  $J \rightarrow B$ ,  $J \rightarrow J$ .

La distribución de probabilidad de transición para el modelo Null (estado G único).

Los parámetros de distribución de valor extremo  $\mu$  y lambda, respectivamente; ambos valores puntuales flotantes. Estos valores se establecen cuando se calibra el modelo con hmmcalibrate. Se utilizan para determinar valores E de las puntuaciones de bits.

| AMM           | ا     | _     | n     | _    | 2          | 6         |               |               |               | . 1           | u     |       | Q       |       | s      | 1      | y.      | 100   |       |        | Posición en<br>alineamiento |
|---------------|-------|-------|-------|------|------------|-----------|---------------|---------------|---------------|---------------|-------|-------|---------|-------|--------|--------|---------|-------|-------|--------|-----------------------------|
| 111124        | /b->m | m->i  | ⊞->q  | l->m | -> <br> -> |           | d->d          | 0->M          | /n->e         | - 1           | л: ре |       | Ju      | - 10  | Ja     |        | 0       |       | 1     |        | ·                           |
|               | -650  | _     | -146  |      |            | , , , , , |               |               |               |               |       |       |         |       |        |        |         |       | * -   |        |                             |
| (Q)           | -64   | -135  | -136  | . 4  | 4 145      | 1166      | -219          | -1455         | 321           | -1417         | -911  | -227  | -1496   | 3263  | 122    | -643   | -684    | -1239 | -1542 | -1030  | 7100%                       |
|               | -145  |       |       |      |            |           |               | -626          |               | -466          | -720  | 275   | . , 394 | 45    | 96     | 359    | 117     | -369  | -294  | -249   |                             |
|               | - 38  | -584  | -686  | -69  | 4 -111     | -701      | -1378         | -650          |               |               |       |       |         |       |        |        |         |       |       | , ;    |                             |
| (M)           | 423   | 392   | -5216 | -540 | 2 -343     | 4370      | 4528          | -3232         | -5113         | 2513          | 5320  | -5052 | -4790   | -4977 | -4B23  | 4692   | -4459 . | -3629 | 4103  | -4017  | 7290%                       |
|               | -147  | 50    | 232   | 4    | 2 -38      | 397       | 104           | -525          | 209           | -467          | -722  | 276   | 396     | 44    | .95    | 361    | 121     | -368  | -296  | -251   |                             |
|               | 330   | -33 N | -325  | -347 | 3 -13      | -701      | -1378         |               |               |               |       |       |         |       |        |        |         |       |       |        |                             |
| (F)           | -1306 | -110  | -222  | -212 | 0, 361     | 2093      | -244          | -196          | -1891         | .64           | 66    | -1526 | -2278   | -1503 | -1798] | -1617] | 1350    | 4389) | 305   | - 1335 | -88007                      |
| 3/            | -149  |       |       |      |            |           |               | -626          | 210           | 466           | -720  | 275   | 394     | 45    | 96     | 359    | 117     | -369  | -294  | -249   |                             |
|               | -38   |       |       |      |            |           |               |               | 1             |               |       |       |         |       |        |        |         |       |       |        |                             |
| /A1           | 1 (44 | 471   | 445   |      | 2 004      | 1846      | ~4            | 4666          | 627           | 1786          | -911  | -252  | -1658   | 154   | -383   | -488   | 640     | -3    | -2038 | -1421  | 8700%                       |
| (A)           | 1616  |       |       |      | 3 -201     |           |               | -1686<br>-616 | 937<br>210    | -1765<br>-466 | -720  | 275   | 394     | 45    | 96     | 359    | 117     | -369  | -2030 | -249   | 67007                       |
| <del></del> - | -901  |       |       |      |            |           | 314           | -070          | 1 210         | 400           | -120  | 4/4   | 937     | 40    | 30     | 399    | 11/1    | -003  | *234  | -243   |                             |
|               | -30   | 140   | -114  |      | 1 -111     | -2302     | -314          |               |               |               |       |       |         |       |        |        |         |       |       |        | ,                           |
| (C)           | -346  | 2576  | 1084  | -71  | 2 209      | -1540     | -384          | -167          | -624          | 432           | 125   | -731  | -1705   | -461  | -893   | -631   | -338    | -50   | -771  | -133   | 8800%                       |
|               | -149  | -500  | 235   | . 4  | 3 -38      | 398       | 106           | -626          | 210           | -466          | -721  | 275   | 394     | 45    | 96     | 359    | 118     | -359  | -295  | -249   |                             |
|               | -1009 | -1006 | -7567 | -13  | 352        | -1916     | -444          | <u>'</u>      | ۱.            |               |       |       |         |       |        |        |         |       |       |        |                             |
| (S)           | 800   | -588  | -1937 | -141 | 5 -62      | -1740     | -954          | 1279          | -1204         | -684          | 19    | -1258 | -1964   | -1013 | 1350   | 1715   | 475     | 1117  | -1320 | -938   | 9000%                       |
| -             | -149  |       |       |      |            |           |               | -628          | 210           | -466          | -720  | 275   | 394     | 45    | 96     | 359    | 117     | -369  | -294  | -249   |                             |
|               | -17   |       | -79%  |      | -111       | -146      | -3378         |               | 1             |               |       |       |         |       |        |        |         |       |       |        |                             |
| (K)           | ·956  | -2411 | -803  | 50   | 1 -274     | -1919     | -558          | -2483         | 2435          | -2420         | -1502 | 57    | -2010   | 1146  | 458    | 829    | 224     | -2040 | -2577 | -1913  | 9100%                       |
| 19.           | 149   |       |       |      |            |           |               | -626          | 210           | -466          | -720  | 275   | 394     | 45    | 961    | 359    | 117     | -369  | -294  | -249   |                             |
|               | -8    | -8139 |       |      |            |           | -1378         |               |               |               |       |       |         |       |        |        |         |       |       | •      |                             |
| n.h           | 3,77  | 201/  | E000  | /76  | n 142      | 1700      | 2204          | 294 (         | 1671          | li aj         | -1318 | -4442 | 4600    | -4417 | -4528  | -4080  | -82     | 3033  | -3952 | -3510  | 9200%                       |
| (V)           | -2472 |       |       |      |            |           | -4391)<br>106 | 2241<br>-626  | -4574)<br>210 | -151)<br>-465 | -720  | 275   | 394     | 45    | 96     | 359    | 117     | -369  | -3904 | -249   | 24907                       |
|               | 198   | -8139 |       |      |            |           | -1378         | *020          | 1 10          | 1000          | *120  | 210   | ***     | 70    | 40     | 000    |         | *300  | -101  | -2-10  |                             |
|               |       | *0100 | -3101 | -03  | 7 -111     | -101      | -10101        |               |               |               |       |       |         |       |        |        |         |       |       |        |                             |

| 9(Y)   | -4673         | -3685         | -5210        | -5505      | 2423          | -5069        | -1332         | -3424         | -5065        | -392          | -2838            | -3728        | -4920        | -3835       | -4458        | -4313        | -4533        | -3643         | -581          | 4349          | 02048/   |
|--------|---------------|---------------|--------------|------------|---------------|--------------|---------------|---------------|--------------|---------------|------------------|--------------|--------------|-------------|--------------|--------------|--------------|---------------|---------------|---------------|----------|
| -      | 149           | -500          | 233          | 43         | -381          | 399          | 106           | -626          | 210          | -486          | -720             | 275          | 394          | 45          | 96           | 359          | . 117        | -369          | -294          | -249          | 9300%    |
| -      | -8            | -8139         | -9181        | -894       | -1115         | -701         | -1376         |               |              |               |                  |              |              | ,,,,        | <del></del>  | ****         |              | 77.14         |               |               |          |
|        |               |               |              |            |               |              |               |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 10(Y)  | -2170         | -2626         | -2419        | -2097      | -1555         | -2986        | -1481         | -2628         | 906          | -2674         | -2098            | -2051        | -3206        | -1513       | -107B        | -2258        | 1039         | -2435         | -2009         | 4185          | 9400%    |
|        | -143          | -500<br>-6139 | 233<br>-9181 | 43<br>-894 | -381<br>-1115 | 399<br>-701  | 106           | -526          | 210          | -466          | -720             | 275          | 384          | 45          | 98           | 359          | 117          | -369          | -294          | -249          |          |
|        |               | 70104         | -5/10/5      | -1007      | -1114         | -101         | -1016         |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 11(D)  | -2498         | -4412         | 3500         | 1042       | -4581         | -2437        | -1765         | -4500         | 733          | -4361         | -3682            | 515          | -2961        | -1429       | -2799        | -2168        | -2658        | -3974         | -4550         | -3541         | 9509%    |
|        | -149          | -500          | 233          | 43         | -381          | 399          | 108           | -626          | 210          | -466          | -720             | 275          | 394          | 45          | 98           | 359          | 117          | -369          | -294          | -249          |          |
| •      | -8            | -8139         | -9181        | -894       | -1115         | -701         | -1378         | 1             |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 49/81  | 11            | -2371         | 3/8          | 819        | -2692         | -535         | -527          | -2443         | 2294         | -2387         | 1461             | 590          | -1960        | 60          | ovil         | 67           | 027          | 4000          | AEE4          | 1074          | onsone   |
| 12(K)  | -149          | -500          | 233          | 43         | -381          | 399          | 106           | -626          | 210          | -466          | -720             | 275          | 394          | -68<br>45   | 904          | -67<br>369   | -837<br>117  | -1993<br>-369 | -2554<br>-294 | -1871<br>-249 | 9600%    |
| .      | -8            | -8139         | -9131        | -894       | -1115         | -701         | -1378         |               |              | 100           | 7201             |              | 074          | 77          | : •          | 800          | (11)         | -994          | -201          | 270           |          |
|        |               |               |              |            |               |              |               |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 13(D)  | -2663         | 4633          | 3700         | 580        | 4789          | -2487        | -1872         | -4738         | 731          | -4578         | -3963            | -1073        | -3046        | -1551       | -2987        | 2292         | -2742        | -4201         | 4759          | -3709         | 9701%    |
| -      | -149          | -500          | 233          | 43         | -381          | 399          | 108           | -626          | 210          | -466          | -720             | 275          | 394          | 45          | 96           | 359          | 117          | -363          | -294          | -249          |          |
|        | -8            | -8139         | -9181        | -894       | -1115         | -701         | -1376         |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 14(C)  | 2503          | 3193          | 4296         | -3B18      | -2010         | -3276        | -2896         | 762           | -3517        | -1437         | -1051            | -3233        | -3509        | -3212       | 3411         | -2499        | -1792        | 1507          | -2796         | -2431         | 9800%    |
|        | -149          | -500          | 233          | 43         | 381           | 399          | 106           | -626          | 210          | -466          | -720             | 275          | 394          | 45          | 96           | 359          | 117)         | -369          | -294          | -249          |          |
| . ]    | -8            | -8139         | -9181        | -894       | -1115         | -701         | -1378         |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| (65) T | - Janes       | - MAZI        | ATIO         | 744        | 0000          | laren.       | - Acad        | AA35          | 200          | 5016          | 4860             | (594)        |              |             | 2.408        | 70           |              |               | annal         | 2210          |          |
| 15(D)  | -1363<br>-149 | -2905<br>-500 | 2748<br>233  | 542<br>43  | -3202<br>-381 | -2072<br>399 | -920<br>106   | -2977<br>-626 | 290<br>210   | -2912<br>-466 | -2023<br>-720    | 1270<br>276  | -2294<br>394 | -489<br>45  | -1 186<br>96 | 53<br>359    | 1116         | -2518<br>-359 | -3086<br>-294 | -2349<br>-249 | 9900%    |
|        | -8            | -8139         | -9181        | -894       | -1115         | -701         | -1378         | 1020          | 210          | 400           | -140             | 419          | 334          | 47)         | 20           | 27.0         | 1111         | -203          | -234          | -243          |          |
|        |               | 0104          | VIVI         | Anil       | 1115          | - 701        | 10101         |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 16(L)  | -1268         | -1113         | -3338        | -54)       | -1057         | -2827        | -1716         | 569           | -2409        | 2299          | -236             | -2381        | -2862        | ·2089       | -2316        | -232         | -1213        | 1306          | -1645         | -1304         | 10000%   |
|        | -149          | -500          | 233          | 43         | -381          | 399          | 106           | -626          | 210          | -466          | -720             | 275          | 394          | 45          | 96           | 359          | 117          | -369          | -294          | -249          |          |
|        | 8             | -8 39         | -9181        | -894       | -1115         | -701         | -1378         |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 17(S)  | -1350         | -2877         | 588          | 1045       | -3189         | -496         | -920          | -2963         | -628         | -2901         | -2011            | 1860         | -2239        | -489        | -1184        | 2139         | 190          | -2503         | -3077         | -2343         | 10100%   |
| .,,,,, | -149          | -500          | 233          | 43         | -381          | 399          | 106           | -626          | 210          | -466          | -720             | 275          | 394          | 45          | 96           | 359          | 117          | -369          | -294          | -249          | 19100 10 |
| ,      | -2336         | -8139         | -325         | -894       | -1115         | -701         | -1378         | 1             |              |               |                  |              |              |             |              |              |              |               |               |               |          |
|        |               |               |              |            |               |              |               |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 18(G)  | -454          | -332          | -968         | -9110      | -2112         | 3143         | -1211         | -2091         | -1317        | -2264         | -1691            | -978         | -1439        | -1202       | -1421        | -646         | -774         | -1650         | -1916         | -1919         | 10200%   |
| -      | -149<br>-38   | -500<br>-5840 | 233<br>-5882 | -B94       | -381<br>-1115 | 399<br>-3098 | 106<br>-179 ° | -626          | 210          | -466          | -720             | 275          | 394          | 45          | 96           | 369          | 117          | -369          | -294          | -249          |          |
|        | ***           | -3010         | -5002        | -031       | -1119         | -0000        | -119          |               |              |               |                  |              |              |             |              |              |              |               | <del>,</del>  |               |          |
| 19(H)  | -898          | -1313         | -545         | 482        | -320          | -1336        | 4297          | -1652         | -160         | -1493         | -1035            | -579         | -1675        | 363         | -322<br>96   | -934         | -951         | -1354         | -726          | 107           | 10300%   |
|        | -149          | -\$00         | 233          | 43         | -381          | 399          | 106           | -626          | 210          | -466          | -720             | 275          | 394          | 45          | 96           | 359          | 117          | -369          | 234           | -249          |          |
|        | -38           | -5840         | -6882        | -894       | -1115         | -3098        | -179 1        |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 10/75  | -872          | -1812         | 3234         | 432        | 224           | -967         | -433          | -2172         | -569         | 2269          | -1704            | 99]          | -1453        | -184        | -1141        | -728         | 973          | -1814         | -2146         | -1645         | 10400%   |
| 20(D)  | -149          | -500          | 233          | 43         | -2215<br>-381 | 399          | 106           | -626          | 210          | -468          | -720             | 275          | 394          | 45          | 96           | 359          | 117          | -369          | -294          | -249          | 10440.5  |
|        | •38           | -5840         | -6882        | -891       | -1115         | -3098        | 179           |               | -            | 727           | tav <sub>i</sub> |              |              | - '9        | **1          | 244          |              | 744           |               |               |          |
|        |               |               |              |            |               |              |               |               |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 11(E)  | -766          | -1695         | 521          | 2B31       | -2050         | -1029        | -293          | -1804         | ·118         | -1919         | -1331            | 89           | -1441        | -4          | -527         | -653         | -814         | -1512         | -1968         | -1505         | 10500%   |
|        | -149          | -500          | 233          | 43         | -381          | 399          | 106           | -628          | 210          | -468          | -720             | 275          | 394          | 45          | 96           | 359          | 117          | -369          | -294          | -249          |          |
|        | -38           | -5840         | -5682        | -894       | -1115         | -3098        | -179          | <u> </u>      |              |               |                  |              |              |             |              |              |              |               |               |               |          |
| 22(Y)  | -1337         | -1228         | -1681        | -1556      | 1268          | -1957        | 121           | -518          | -1294        | -769          | -585             | -1229        | -2163        | -1111       | -1301        | -1443        | -1359        | -932          | 592           | 3932          | 10500%   |
|        | -149          | -500          | 233          | 43         | -381          | 399          | 106           | -626          | 210          | -466          | -720             | 275          | 394          | 45          | 96           | 359          | 117          | -369          | -294          | -249          |          |
|        | -38           | -5840         | -6082        | -894       | -1115         | -109         | -3775         | ľ             |              |               |                  |              |              |             |              |              |              |               |               |               |          |
|        | A4-1          |               |              |            |               | je sul       | Ac!           | arest.        | Annal        | 17.7.5        | 85.1             | 2000         | 61           | Apen        | ANIA         | ALC:         | 6412         | ages!         | Ann il        | 6055          | /#81481  |
| 3(1)   | -2294         | -1931         | -4749        | -4227      | -1724<br>-381 | -1227<br>399 | -3320<br>106  | 2306<br>-626  | -3952<br>210 | 1990          | -634<br>-720     | -3878<br>275 | 394          | -3538<br>45 | -3812        | -3411<br>359 | -2247<br>117 | 1576          | -2991<br>-294 | -2629<br>-249 | 10710%   |
|        | -119          | -500          | 233          | 43         | -381          | 399          | 100           | +020          | 210          | 1480          | •1ZU             | 215          | 124          | 40          | 96           | 203          | 11/1         | -369          | -£34          | -243          |          |

| F          | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -1376        |               |                      | L               |                |                  |                            |                      |                                        |              |              |               |                    |               |                      |
|------------|----------------------------------------|---------------|--------------|-------------|---------------|--------------|--------------|---------------|----------------------|-----------------|----------------|------------------|----------------------------|----------------------|----------------------------------------|--------------|--------------|---------------|--------------------|---------------|----------------------|
| 440        | 2004                                   | 600C)         | EARC         | Social      | 2400          | Estel        | read         | 3051]         | 4000                 | 4500            | ocol           | Acod             | 4700                       | eres.                | (010)                                  | 1102         | -2764        | 1435          | -3781              | -3585         | 10800%               |
| 24(1)      | -2801<br>-149                          | -2299<br>-500 | -5406<br>233 | -5003<br>43 | -2108<br>-391 | -5164<br>399 | 4649         | -626          | -4886<br>210         | 1593<br>-466    | -863<br>-720   | 4829<br>275      | -4788<br>394               | -4454<br>45          | -1829<br>98                            | 4493         | 117          | -369          | -294               | -249          | 1000074              |
|            | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -1378        |               |                      |                 |                |                  |                            |                      |                                        |              |              |               |                    |               |                      |
| 05.05      | 024                                    | eciel         | 200          | 1801        |               | - ·          | 740          |               | 2010                 | ocid            | G26            | 930              | 0014                       | 4161                 | C el                                   | 14001        | 1154         | 2000          | 0720               | 7476          | 400040               |
| 25(K)      | -234<br>-149                           | -2632<br>-500 | 306<br>233   | -500<br>43  | -3007<br>-381 | -2141<br>399 | -719<br>108  | -2712<br>-626 | 2540<br>210          |                 | -1730<br>-720  | -778<br>275      | -2231<br>394               | 2257<br>45           | 958<br>98                              | -1109<br>359 | -1152<br>117 | -2288<br>-369 | -2738<br>-294      | -2136<br>-249 | 10900%               |
|            | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -1376        |               |                      |                 |                |                  |                            |                      |                                        |              |              |               |                    |               |                      |
|            | arad                                   |               | - TAR        | 100         | 4474          | annal .      | irael        | (0.00)        | 4616                 |                 | 94779          | cen              | 40.44                      |                      | Ancal                                  | (acal        |              | 1000          | :                  | 2000          | 4400000              |
| 26(G)      | -2184<br>-149                          | -3900<br>-501 | 796<br>233   | 392<br>42   | 4174<br>-375  | 2903<br>399  | -1580<br>104 | -4030<br>-625 | -1635<br>210         | -3937<br>-453   | ·3173          | -957<br>276      | -2810 <u>-</u><br>396      | 44                   | -2352<br>96                            | 1069<br>358  | -2220<br>116 | -3530<br>-371 | -4130<br>-236      | -3229<br>-251 | 11000%               |
| -          | -155                                   | -3318         | -9181        | 3674        | -118          | -701         | -1378        |               |                      |                 |                |                  |                            | • • •                |                                        |              |              | <u> </u>      |                    |               |                      |
| 477.00     | -                                      | 4111          | 1146         | Atea        | 174           | wat          | laat v       | 10041         | 0000                 | A0/3            | 4000           | A4A4             | AFAN                       | 4676                 | 1040                                   | 0410         | 0078         | 00(7)         | Annel              | 9074          | COPAGE               |
| 27(K)      | -3243<br>-149                          | -3775<br>-500 | 4123         | -2558<br>43 | -4750<br>-381 | -3647<br>399 | -1490<br>108 | -4021<br>-626 | 3681<br>210          | -3617<br>-466   | -2982<br>-720  | -2368<br>276     | -3580<br>394               | -1076<br>45          | 1318                                   | -3119<br>359 | -2876<br>117 | -3817<br>-369 | -3396<br>-294      | -3374<br>-249 | 12600%               |
|            | -8                                     | -8139         | -9161        | -894        | -1115         | -701         | 1370         |               |                      |                 | ·              |                  |                            |                      |                                        | ***          |              |               |                    |               |                      |
| 200        | 4004                                   |               | 4000         | Awal        |               | arari        | - 601        | const         | A222                 | A41-H           | Annal          | 400              | - aran                     | 1501                 | -                                      | read         | 40.1         | 2015          | aggel              |               | - connect            |
| 28(K)      | -1584<br>-149                          | -2925<br>-500 | -1665<br>233 | -979<br>43  | -3407<br>-381 | ·2535        | -923<br>106  | -3021<br>-626 | 2737<br>210          | •2865<br>•466   | -2032<br>-720  | 202<br>275       | -2582<br>394               | 1301<br>45           | 804<br>96                              | -1564<br>369 | 1681         | -2645<br>-359 | -2905<br>-294      | -2448<br>-249 | 12700%               |
| F          | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | 1376         |               |                      |                 |                |                  |                            |                      |                                        | ***1         |              |               | -:-                |               | 15                   |
| 20/10      | Acasi                                  | 0400          | Ennot        | 4000        | 4204          | Eanel        | Emal         | กากป          | inie                 | 4EAM            | 4171           | ATION            | Aprol                      | 10001                | Eanal                                  | 1400         | 2014         | 1010          | 460cl              | acod          | 4000404              |
| 29(V)      | -2623<br>-149                          | -2122<br>-500 | -5300<br>233 | 4990<br>43  | -2769<br>-381 | -5101<br>399 | -5131<br>10E | 2388<br>-626  | 4945<br>210          | -1532<br>-466   | -1474<br>-720  | -4790<br>275     | -4868<br>394               | -4890<br>-45         | -5101<br>96                            | -4482<br>359 | -2619<br>117 | -3219<br>-359 | -4505<br>-294      | 3990<br>-249  | 12800%               |
| -          | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -1376        |               |                      |                 | ,20            |                  |                            |                      |                                        |              | ,,,,         |               |                    |               |                      |
|            | 4000                                   | 4000          | /Aml         | 44841       | 1400          | OPA          | 4419         | 121म          |                      | (48)            | A (00)         |                  | 4001                       | Asoll                | 48491                                  |              | PA           | 4017          | 10.10              | 1506          |                      |
| 30(A)      | 3309<br>-149                           | -1828<br>-500 | -4057<br>233 | 4294        | -4382<br>-381 | 656<br>399   | -3657<br>106 | -4147<br>-626 | 4169                 | -4428<br>-466   | -3497<br>-720  | -2821<br>275     | -2904<br>394               | -3694<br>45          | -3937<br>98                            | -1470<br>359 | 59<br>117    | -2957<br>-369 | -4610<br>-294      | -4522<br>-249 | 12900%               |
| -          | -8                                     | -8139         | -9181        | -694        | -1115         | -701         | -1376        |               |                      |                 | 180            |                  |                            | , v                  | •                                      |              |              |               |                    |               |                      |
| 2440       | -2525                                  | 0100          | -5304        | -4993       | -2772         | -5111        | euel         | 2881          | 4950                 | 4520            | 4171           | ATOL             | -4673                      | ·4896                | 6400                                   | 1100         | wad          |               | 4E tol             | 3997          | 400000               |
| 31(V)      | -149                                   | -2122<br>-500 | 233          | 43          | -381          | 399)         | -5142<br>108 | -626          | 210                  | -1532<br>-466   | -1474<br>-720  | -4798<br>275     | 394                        | 45                   | -5108<br>98                            | ·4492        | -2621<br>117 | -369<br>-369  | -4512<br>-294      | - 249         | 13000%               |
|            | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -1376        |               |                      |                 |                |                  |                            |                      |                                        |              |              |               |                    |               |                      |
| 32(i)      | -2790                                  | -2287         | -5403        | -5003       | -2155         | -5170)       | -4698        | 3324          | 4899                 | 1175            | -912           | -4835            | -4802                      | -4495                | -4860                                  | -4506        | -2757        | 1192          | -3838              | -3622         | 13100%               |
| · .        | -149                                   | -500          | 233          | 43          | -381          | 399          | 106          | -626          | 210                  | -466            | -720           | 275              | 394                        | 45                   | 96                                     | 359          | 117          | -369          | -294               | -249          | 1310076              |
|            | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -1378        |               |                      |                 |                |                  |                            |                      |                                        |              |              |               |                    |               | <u> </u>             |
| 33(G)      | -4435                                  | 4203          | -5092        | -5462       | -5893         | 3834         | -5028        | -6527         | -5765                | -6297           | -5970          | -5141            | -4804                      | ·5546                | -5385)                                 | 4727         | 4815         | -5862         | -4924              | -5849         | 1220607              |
| 20(0)      | -149                                   | -500          | 233          | 43          | 381           | 399          | 186          | -626          | 210                  | -466            | -720           | 275              | 394                        | 45                   | 96                                     | 359          | 117          | -359          | 294                | -249          | 13200%               |
|            | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -13781       | ·             |                      |                 |                |                  | ·                          |                      |                                        |              |              | <u> </u>      |                    |               |                      |
| 30VE:      | (************************************* | n and a       | 35.8000E     | ELECTRIC .  | 2727000       | Contact.     | 222 Santi    | er sandel     | er e e e             | in the          | E76944412      | 200              | 273 <b>56</b> 0 5          | (2344)               | :::::::::::::::::::::::::::::::::::::: | Mare!        | S Diction 3  | 019664151     | ~ `\%ooc!``        | e Mentico     | NO CCT.              |
| 1341 77    | 149                                    | n -500        | 64.6233 A    | 3 11843 ·   | ×5438)        | on 300 a     | 106          | i ≥ 626 .     | <b>\$210</b>         | 1-1-1-466       | £ . 60, 720 .: | 776              | 394                        | 1.85546 G            | · · · · · · · · · · · · · · · · · · ·  | 369          | 14 s 17 rs   | 359           | 2634 <b>-294</b> % | 8.54-249      | etitio des           |
| Garage St. | ការការ មិន                             | ::"8130<br>:  | ***91B1      | 27,894      | : 1115°       | 701          | 11378        | Willey !      | 57.03.33<br>52.03.34 | necku)<br>Light | 13.00 mg/s     | erenie<br>Erenie | १८ दतः स्रीतः<br>१९७१ १५ ५ | 14,1374.<br>14,1374. | erantia<br>Ottober                     | HI TO        | 10.00        | पुरुष तर्     | 4.167)             | 0.001 De      | सामानाम्<br>सामानाम् |
| 35(G)      | 4135                                   | 4203          | -5092        | -5462       | -5833         | 3834         | -5028        | -6627         | -5765                | -6297           | -5970          | -5141            | -4804                      | 5546                 | -5385                                  | -4727        | 4815         | -5862         | -4924              | -5849         | 13400%               |
| -          | -149                                   | -500          | 233          | 43          | -381          | 399          | 108          | -626          | 210                  | -466            | -720           | 275              | 394                        | 45                   | 36                                     | 359          | 117          | -369          | -294               | -249          | · (STEE II)          |
| •          | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | ·1378 °      |               |                      | <u>.</u>        |                |                  |                            |                      |                                        |              |              |               | ,                  |               | ·                    |
| 35(S)      | -1473                                  | -2007         | -3647        | -3780       | -3430         | -2363        | -3314        | 228           | -3616                | -3373           | -2876          | -2840            | -3093                      | -3395                | -3541                                  | 3475         | -1885        | -2307         | -3927              | 3474          | 13500%               |
| •          | -149                                   | -500          | 233          | 43          | -381          | 399          | 108          | -626          | 210                  | -466            | -720           | 276              | 394                        | 45                   | 95                                     | 359          | 117          | -369          | -294               | -249          |                      |
|            | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -1376        | 1             |                      |                 |                |                  | •                          |                      |                                        |              |              |               |                    |               |                      |
| 37(Q)      | -4589                                  | 4392          | -3927        | 4146        | -5099         | -4221        | -4099        | -5973         | -3840                | -5664           | -5304          | -4230            | -4693                      | 4575                 | -3826                                  | 4704         | 4772         | -5612         | -4577              | 4751          | 13600%               |
| •          | -149                                   | -500          | 233          | 43          | -381          | 399          | 308          | -626          | 210                  | -465            | -720           | 275              | 394                        | 45                   | 95                                     | 359          | 117          | 369           | -294               | 249           | /(                   |
|            | -8                                     | -8139         | -91B1        | -894        | -1115         | -701         | -1376        | •             |                      |                 |                |                  |                            |                      |                                        |              |              |               |                    |               | <u></u> -            |
| ı          |                                        |               |              |             |               |              |              |               |                      |                 |                |                  |                            |                      |                                        |              |              |               |                    | <u> </u>      |                      |

| 38(G)                                            | 677           | -2128         | -3838        | 4171        | 4641                                   | 3536          | -3816           | -4508         | 4340         | -4749         | -3867         | -3009        | -3149         | -3871                                              | -4137           | -1784            | -2005        | -3297                | -4725         | 4735          | 13700%      |
|--------------------------------------------------|---------------|---------------|--------------|-------------|----------------------------------------|---------------|-----------------|---------------|--------------|---------------|---------------|--------------|---------------|----------------------------------------------------|-----------------|------------------|--------------|----------------------|---------------|---------------|-------------|
| <u> </u>                                         | ·149          | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115                          | 399<br>-701   | 106<br>-1378 '  | -628          | 210          | -468          | -720          | 275          | 394           | 45)                                                | 98              | 359              | 117          | -369                 | -294          | -249          |             |
| <u> </u>                                         | -01           | -0100]        | -3101        | -024]       | 1110                                   | -/91          | -1919           |               |              |               |               |              |               | <u></u>                                            | <del> </del>    |                  |              |                      |               |               |             |
| 39(H)                                            | -2667         | -3375         | -2882        | -2114       | -3744                                  | -3201         | 4738            | -3782         | -445         | -3553         | -2886         | -2112        | 866           | -1265                                              | 1506            | -2514            | -2557        | -3469                | -3282         | -2908         | 13800 K     |
| <u> </u>                                         | -149          | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115                          | 399<br>-701   | 105<br>-137B)*  | -626          | 210          | -468          | -720          | 275          | 394           | 45                                                 | 95              | 359              | 117          | -369                 | -294          | -249          |             |
|                                                  |               | - 0100]       | -31011       | <u> </u>    |                                        | -701          | -10101          | 1             |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               | <del></del> |
| 40(A)                                            | 3631          | -2768         | -4492        | -4815       | 4688                                   | -2992         | -4271           | 4761          | -4816        | -5025         | 4365          | -3727        | -3728         | -4477                                              | 4545            | -2567            | -2762        | -3952                | 4724          | 4942          | 11900%      |
|                                                  | -149<br>-8    | -500<br>-8139 | 233<br>-9181 | -834        | -381<br>-1115                          | 399<br>-701   | 106<br>-1376*   | -626          | 210          | -466          | -720          | 275          | 394           | 45                                                 | 96              | 358              | 117)         | -369                 | •234          | -249          |             |
|                                                  |               | V144          |              | Vari        | 1119                                   |               |                 |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               |             |
| 41(H)                                            | -3103         | -3464         | -2%0         | -2573       | -783                                   | ·3679         | 4549            | -3487         | -1372        | -3071         | -2715         | -2454        | -3764         | 2546                                               | -1428           | -2990            | -2976        | -3308                | 2269          | -2%           | 14000%      |
| -                                                | -149          | -500<br>-8139 | 233<br>-9181 | 894         | -381<br>-1115                          | 399<br>-701   | 106<br>-1378    | -626          | 210          | -466          | -720          | 275          | 394           | 45                                                 | 96              | 359              | 117          | -369                 | -294          | -249          |             |
|                                                  |               | <u> </u>      |              | <u></u>     | 1114                                   |               | 1010            |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               | <del></del> |
| 42(A)                                            | 3057          | -1795         | -4134        | 4277        | -4057                                  | -2118         | -3548           | -3549         | 4035         | -4024         | -3192         | -2817        | -2900         | -3508                                              | -3B23           | 217              | -1660        | -276                 | -4363         | 4211          | 14100%      |
| <u></u>                                          | -149          | -500<br>-8139 | 233<br>-9181 | -834        | -381<br>-1115                          | - 399<br>-701 | 106<br>-1378    | -626          | 210          | -466          | -720          | 275          | 394           | 45                                                 | 96              | 359              | 117          | -369                 | -294          | -249          |             |
|                                                  |               | · · · · ·     |              |             |                                        |               |                 |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               |             |
|                                                  | .,[06]        |               | -2044        | 1475        | ::/1216                                | 2172          | 5 d154          | : ig 789      | ાં -1218     | 4061رنين      |               |              | 2346          | 2895                                               | ::141           | ii. 1392         | 1005         | 693                  | .:1678        | 1278          | 14100%      |
| 737.9                                            | 449           | 28176         | 9181         | (4)<br>R94  | 3331                                   | 211.701       | 2001 WW.        | 7.00          | 210          | 3000 4 M      | *********     |              | 7.77          | (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | 773 <b>70</b> 1 | 44.43 <b>4</b> 3 | 112 W 3      | 5 - 368 <sub>1</sub> | ( 21          | 31-245        |             |
|                                                  |               |               |              |             | ************************************** |               | 11, 110, 111    | - consid      | 3455.00      | Samuell.      | A117916       | liniaie)¥iùi |               |                                                    | . 13-,13, 214   | -                | 2.250.2      | 1. <del>7 (11.</del> |               |               | WMIN        |
| 44(N)                                            | -149          | -4117<br>-500 | -3389        | -3749       | -5073                                  | ·3911         | 4123            | -6022         | 4503         | -5797         | -5419         | 4397         | -4479         | -4255                                              | -4592           | -4115            | 4312         | -5371                | -4350         | 4731          | 14300%      |
|                                                  | -143          | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115                          | 399<br>-701   | . 106<br>-1376° | -626          | 210          | -456          | -720          | 275          | 394           | 45                                                 | 96              | 359              | 117          | -369                 | -284          | -249          |             |
|                                                  | <sup>1</sup>  | 0.00          |              |             |                                        |               |                 |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               |             |
| 45(L)                                            | -4414         | -3800         | -5638        | -5528       | -2290                                  | -4980         | -4628           | -1886         | -5423        | 3316          | -1236         | -5514        | -4997         | ·4750                                              | -5002           | -5379            | 4399         | -2629                | -3665         | ·3690         | 14400%      |
| <del>                                     </del> | -149<br>-8    | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115                          | 399<br>-701   | 106             | -626          | -210         | -466          | -720          | 275          | 394           | 45                                                 | 98              | 359              | 117          | -369                 | -234          | -249          |             |
|                                                  |               |               |              |             |                                        |               |                 |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               |             |
| 46(R)                                            | -1731         | -3015         | 275          | -931        | -3487                                  | -2518         | -973            | -3116         | 2321         | -2955         | •2123         | 224          | -2603         | 256                                                | 2808            | -1596            | -1613        | -2730                | -2995         | -2515         | 14500%      |
| <del></del>                                      | -149          | -500<br>-8139 | 233<br>-9161 | -894        | -381<br>-1115                          | 399<br>-701   | 105<br>-1376    | -626          | 210          | -466          | -720          | 275          | 394           | 45                                                 | 96              | 369              | 117          | -369                 | -294          | -249          |             |
|                                                  |               |               |              |             |                                        |               |                 |               | L            |               |               |              |               |                                                    |                 |                  |              |                      |               | - :           |             |
| 47(D)                                            | -2896<br>-149 | -4843<br>-500 | 3855<br>233  | 944         | -5037<br>-381                          | -2800<br>399  | -2082<br>106    | -5082<br>-€26 | -2528<br>210 | -4903<br>-466 | -4373<br>-720 | -1209        | -3196<br>394  | -1786                                              | -3536           | -2501<br>359     | -3007        | 4517                 | -5004         | -3956         | 14500%      |
| <del>-  </del>                                   | -192          | -8139         | -9181        | -894        | -1115                                  | -701          | -1378           | -£20          | 210          | -400          | -120          | 275          | 304           | 45                                                 | 96              | 228              | 117          | -369                 | -294          | -249          |             |
|                                                  |               |               |              |             |                                        |               |                 |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               |             |
| 48(S)                                            | -1538<br>-148 | -2212<br>-500 | -2363<br>232 | -2679<br>44 | -4293<br>-381                          | -2279<br>398  | -3082<br>105    | -4365<br>-627 | -3331<br>211 | -4524<br>-465 | -3676<br>-721 | 268<br>275   | -3026<br>393  | -2967<br>45                                        | 3497            | 3508<br>360      | -1962<br>118 | -3259<br>-370        | -4477<br>-295 | -4066<br>-250 | 14700%      |
| <u> </u>                                         | -155          | -3318         | -9181        | -2405       | -302                                   | -701          | -1378           | •021          | Z11          | *100)         | -121          | 219          | 939           | 40]                                                | \$5             | 300              | 110          | -310                 | -/30          | -200          |             |
|                                                  |               |               |              |             |                                        |               |                 |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               |             |
| 49(G)                                            | -2521<br>-149 | -3968<br>-500 | 1232         | -911<br>43  | 4849<br>-381                           | 3373<br>399   | -2126<br>106    | -4854<br>-626 | -2535<br>210 | -4752<br>-466 | 4136<br>-720  | -63<br>276   | -31 <b>15</b> | -1836<br>45                                        | -3440<br>96     | -2284<br>359     | -2716<br>117 | -369                 | 4880<br>-294  | -3914<br>-249 | 15490%      |
| <del>[                                    </del> | -143          | -8133         | -9191        | -894        | -1115                                  | -701          | -13781          | -020          |              | -400          | -124          | 210          | 924           | 40[                                                | 20[             | 303              | 104          | -303                 | -24           | -240          |             |
|                                                  |               |               |              |             |                                        |               |                 |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               |             |
| 150(V)                                           | -2767<br>-148 | -2324<br>-500 | ·5232<br>233 | -4770<br>43 | 396<br>-381                            | -4827<br>399  | -3784<br>106    | -36<br>-626   | 4546<br>211  | 848<br>-466   | -611<br>-720  | -4412<br>275 | 4518<br>394   | -3980<br>45                                        | -4367<br>96     | -4081<br>359     | -2716<br>117 | -369                 | -3637<br>-294 | -2660<br>-249 | 15500%      |
| <del>[ </del>                                    | -148          | -3381         | -91B1        | -203        | -2926                                  | -701          | -1378           | -020          | 210          | -900          | -124          | 210          | 424           | 40]                                                | 20]             | - NA             | 111          | -003                 | -234          | .743          |             |
|                                                  |               |               |              |             |                                        |               |                 |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               |             |
| 51(D)                                            | -1684         | -3285<br>-500 | 2735         | 2014        | -3554<br>-381                          | -2196<br>399  | -1177           | -3350<br>-628 | 92           | -3279<br>-466 | -2427         | 692          | -2505         | -770<br>AE                                         | -1595           | ·1483            | -1666        | 332                  | -3450         | -2676         | 15700%      |
| <del></del>                                      | -149<br>-8    | -8139         | 233<br>-9181 | -894        | -1115                                  | -701          | -1378°          | -020          | 210          | 400           | -720          | 275          | 394           | 45                                                 | 98              | 203              | 117          | -369                 | -294          | -249          |             |
|                                                  |               |               |              |             |                                        |               |                 |               |              |               |               |              |               |                                                    |                 |                  |              |                      |               |               |             |
| 52(V)                                            | 3127          | -2888         | -5092        | -5160       | -3522                                  | -4180         | -4687           | -905          | -5060        | -2626         | -2570         | -4662        | -4579<br>204  | -4940                                              | -4923           | ·4013            | -3297        | 3796                 | 4414          | -1190         | 15800%      |
| ــــا                                            | -149          | -500          | 233          | 43          | -381                                   | 399           | 106             | 626           | 210          | -466          | -720          | 276          | 394           | 45                                                 | 96              | 359              | 117)         | -369                 | -294          | -249          |             |

| <u> </u>                            | -8                 | -8133                | -9181        | -894                                   | -1115         | -701                                   | -1378                                        |                   | 1                                     |                  |                    |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | <u>.</u>     |                  |                   |                                  |                                           |                      |
|-------------------------------------|--------------------|----------------------|--------------|----------------------------------------|---------------|----------------------------------------|----------------------------------------------|-------------------|---------------------------------------|------------------|--------------------|----------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|------------------|-------------------|----------------------------------|-------------------------------------------|----------------------|
| 53(V)                               | 369                | 366                  | -3075        | -2462                                  | -883          | -2557                                  | -1420                                        | 1415              | 378                                   | -757             | -117               | -2098                                  | -2610        | -1809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2037                            | -1630        | 1166             | 2145              | -1385                            | -343                                      | 15900%               |
|                                     | -149               | -500                 | _233         | 43                                     | -381          | 399                                    | 105                                          | -626              | 210                                   | -166             | -720               | 275                                    | 394          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98                               | 359          | 117              | -369              | -294                             | -249                                      | <del></del>          |
| <u> </u>                            | -8                 | -8139                | -9181        | -894                                   | -1115         | -701                                   | -1378                                        |                   |                                       |                  | <del></del>        |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                  | ·····             |                                  |                                           |                      |
| 54(V)                               | -2624<br>-149      | -2122<br>-500        | -5302<br>233 | -4991<br>43                            | -2772<br>-381 | -5108<br>339                           | -5139<br>106                                 | 2523<br>-626      | -4948<br>210                          | -1533<br>-465    | -1475<br>-720      | -4791<br>275                           | 4871<br>394  | -4894<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -5106<br>96                      | -4488<br>359 | -2620<br>117     | 3088<br>-369      | -4511<br>-294                    | -3996<br>-249                             | 16000%               |
| -                                   | -143               | -8139                | -9181        | -894                                   | -1115         | -701                                   | -1378                                        | -020              | 1                                     | -1691            | -160               | 213                                    | ***1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                  | -404              | ·201]                            |                                           |                      |
| 55(G)                               | 929                | -2107                | -3852        | -4182                                  | 4633          | 3492                                   | -3809                                        | -4486             | -4335                                 | -4732            | -3635]             | -2997                                  | -3132        | -3863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4127                            | -1761        | -1982            | -3275             | 4720                             | 472                                       | 16100%               |
| -                                   | -149               | -500                 | 233          | 43                                     | -381          | 399                                    | 108                                          | -626              | 210                                   |                  | -720               | 275                                    | 394          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98                               | 359          | 117              | -369              | -294                             | -249                                      |                      |
| -                                   | -8                 | -8139                | -9181        | -894                                   | -1115         | -701                                   | -1378                                        | <u> </u>          | •                                     |                  |                    |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                  |                   | -                                |                                           | <del></del>          |
| 56(L)                               | -3427              | -2938                | -5791        | -5325                                  | -1449         | 5374                                   | -4410                                        | -543              | -5063                                 | 3041             | -25                | -5207                                  | 4820         | -4126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4691                             | -4757        | -3351            | 883               | -3184                            | -3234                                     | 16200%               |
|                                     | •149<br>•8         | -500<br>-8139        | 233<br>-9181 | -894                                   | -381<br>-1115 | 399<br>-701                            | -137B                                        | -626              | 210                                   | -466             | -720               | 275                                    | 394          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96                               | 359          | 117              | -369              | -294                             | -249                                      |                      |
| 27.0V-60                            | istimudi:          | bil rand             | 2017000      |                                        | 272.284N      | de Mad                                 |                                              | 5X1540H3          | - Asia din k                          | 2 3 /2 3c 6b / 3 | Stherido           | Jiseni.                                | Septial:     | Steriorals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) Honnii                         | el Chenil )  | i))]]]]]]]]]]]]] | t:Ezepal:         | :281a13                          | 101 <b>102 1</b> 42                       | :: \$15 keonne/      |
| 455.050                             | 340<br>349<br>349  | 500                  | 233          | 7/(c.43                                | 77,381        | 11771399                               | 2001018                                      | 5: C : 575        | 210                                   | 7.24400          | 111.720            | *1: 275 u                              | 271.304      | Y 127745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 795                              | H444250 1    | 101:117          | 477 369           | 1977294                          | (4.74                                     | Carriery<br>Carriery |
| Person dist                         |                    | 8 (39)               | -Ka9181      | ::::834                                |               |                                        | in =1378]                                    | 4400              | 10[003+003<br>10[003+003              | , 2009 E 15275   | an language        | ATT WELLT                              | acachiner    | e - 5399334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-10-11 H                        | #183194      | FAIR AN          | erenter describer | e4-25-3536                       | \$4 30 player \$ \$65                     | angerena.            |
| 58(K)                               | 31                 | -2412                | -803         | 1532                                   | -2743         | -1920                                  | -559                                         | -2483             | 1772                                  | -2421            | 1600               | -556                                   | 1229         | 727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1079                             | -566         | -893             | -2041             | -2579                            | -1915                                     | 16400%               |
|                                     | 149<br>-8          | -8139                | -9181        | -834                                   | -381<br>-1115 | 399<br>-701                            | 106<br>-1378                                 | -626              | 210                                   | -466             | -720               | 275                                    | 394          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98                               | 359          | 117              | -359              | -294                             | -249                                      |                      |
| ròm                                 | 9074               |                      |              |                                        |               |                                        |                                              | 1000              | 4000                                  |                  | - IAIH             | 444                                    | 444          | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |              | 4944             | (8.48)            | 1250                             | Ancel                                     |                      |
| 59(G)<br>-                          | -2671<br>-149      | -4661<br>-500        | 1614<br>233  | 587<br>43                              | -4832<br>-381 | 3103<br>399                            | -1901<br>106                                 | -4803<br>-626     | -2269<br>210                          | -4648<br>-466    | 4047<br>-720       | 421                                    | 3049<br>394  | -1597<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3230<br>96                      | -2297<br>359 | -2766<br>117     | -4245<br>-369     | 4850<br>-294                     | -3752<br>-249                             | 16500%               |
|                                     | -8                 | -8139                | -9181        | -894                                   | -1115         | -701                                   | -1378                                        |                   | •                                     |                  |                    |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                  |                   |                                  |                                           | ·                    |
| 60(S);;%(                           |                    | 2308                 | ~-1932       |                                        | 4000          | :: 1604                                | 212                                          | - 13/SI           | 1362                                  | 370              | 2015               | ::: 83 <b>3</b> 2                      | 2627         | (217X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1902                             | £2130        |                  | 2970              | 3910                             | 3479                                      | 15500%               |
| 1,000                               | 144 ±149           | 37 (500)<br>38 (100) | 200          | 343                                    | 381           | \$(1)\$ <b>199</b>                     | 15 : 108                                     | 19 9 <b>.62</b> 8 | 210                                   | 716              | 720                | 275                                    | 394 t        | 14 : 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 95                               | 19359        | 361              | crc=369 c         | c -294                           | 35,249                                    |                      |
|                                     |                    | Control II           | 171-75-74-0  | **********                             | 76777-71      | 12-12-12-1-12-1                        | 15-7-1-5-1                                   |                   | e e e e e e e e e e e e e e e e e e e | -                |                    |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                  |                   |                                  |                                           |                      |
| 61(K)                               | 1362               | -2232<br>-500        | -619<br>233  | -98<br>43                              | -2567<br>-381 | -427<br>399                            | 435<br>106                                   | -2309<br>-626     | 1599<br>210                           | -2265<br>-466    | ·1349              | 1101<br>275                            | -1861<br>394 | 836<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -512<br>96                       | 833<br>353   | 740              | -1868<br>-369     | -2441<br>-294                    | -1767<br>-249                             | 16700%               |
|                                     | -9                 | -79 <b>0</b> C       | -8943        | -B94                                   | -1115         | -344                                   | ·2238                                        |                   |                                       |                  |                    |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                  |                   |                                  |                                           |                      |
| 62(S):                              |                    | ::::190 <b>4</b> :   | 3742         |                                        | :::4384       | 2:2155                                 | #5 <b>/J593</b>                              | 4209              | ::.::399E                             |                  | -<br>- 1373        | 2789                                   | 2848         | 3606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JB32 2                           | 3517         | 228              | :3128 S           | ₩4 <b>00</b> 0                   | 4451                                      | H-:45800%            |
| 1777                                | E1974911           | 500                  | 12 231       | 1,000                                  | 238           | (1) 399                                | 2106                                         | 11,1626           | 2453210                               | 7757.466         | \$ 120             | 111276                                 | 194          | FE 140 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27746 ?                          | 359          | (#31) t          | 369               | @2 <b>29</b> 1                   | 2.9                                       | CTPREE               |
| 2011 ERE                            | waneon.            | 15 <b>401</b> 901 1  | 322710112    | ************************************** | RWIII)        | aran da                                | 160 010                                      | er milital        | army.                                 |                  |                    |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                  | <b>特殊計畫</b>       | A.K.A.B.L.                       | Privariteite                              | Minspins             |
| <b>5</b> 1(V) 4 5                   | 136 126 i<br>149 F |                      |              | 11 7 m.F                               |               |                                        | A. C. S. | 60                | 2257                                  | 3701             |                    |                                        |              | (698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |              |                  | 390               | 4091                             | 918                                       | 1690174              |
| 1927 1930<br>1927 1930<br>1939 1933 | 22.28              | -8 39                | #K9181       | 1 1834                                 | 1115          | ************************************** | 1378                                         |                   | 100 A 10                              | 1772; Madila     | entings<br>Strings | 50 (8) (4)<br>50 (8) (4)<br>54 (8) (8) | ना स्टब्स्ट  | Section Sectio | 37-28-04<br>87-28-04<br>21-28-05 |              | HE GOVE          | ACCOUNT OF        | entranti<br>entranti<br>entranti | 55.32 71.42<br>55.32 71.42<br>55.32 55.53 |                      |
| 64(E)                               | 1527               | 2104                 | 212          | 1636                                   | -2722         | -1878)                                 | -568                                         | -2474             | 1241                                  | -2419]           | -1497              | 350                                    | -1985        | -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -659]                            | 98           | 70               | -2025             | -2589                            | 1903                                      | 17000%               |
| -                                   | -149               | -600                 | 233          | 43                                     | -381          | 399                                    | 106                                          | -626              | 210                                   | 466              | -720               | 275                                    | 391          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95                               | 359          | 117              | -369              | -234                             | 249                                       |                      |
| -                                   | 8                  | -8139                | -9181        | -894                                   | -1115         | -701                                   | -1378                                        | i                 |                                       |                  |                    |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | -            |                  |                   |                                  |                                           |                      |
| 65(K)                               | -6                 | -2242                | -895         | 770                                    | ·2502         | -1963                                  | -609                                         | -2192             | 2589                                  | 22               | -1353              | -631<br>275                            | -2052<br>394 | 692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -617                             | -889         | -906             | -361              | -2456                            | -1836                                     | 17100%               |
|                                     | -149<br>-8         | -500<br>-8139        | 233<br>-9181 | -894                                   | -381<br>-1115 | 399<br>-701                            | 105                                          | -626<br>'         | 210                                   | 466              | -720               | 410                                    | 024          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96{                              | 359          | 117              | -369              | -294                             | -249                                      |                      |
| 66(A)                               | 3631               | -2768                | -44 92       | -4815                                  | -4888         | -2992                                  | 4271                                         | -4781             | 4818                                  | -5025            | 4365               | -3727                                  | -3728        | 4477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4545                            | -2567        | -2762            | -3852             | -4724                            | -4942                                     | 17200%               |
| -                                   | -149               | -500                 | 233          | 43                                     | -381          | 399                                    | 108                                          | 626               | 210                                   | -3025<br>-466    | •720               | 215                                    | 394          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96                               | 359          | 117              | -369              | -294                             | -249                                      | 112007               |
|                                     | -8                 | -8139                | -9181        | 894                                    | -1115         | -701                                   | -137B*                                       |                   |                                       |                  |                    |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                  |                   |                                  |                                           |                      |
|                                     |                    |                      |              |                                        |               |                                        |                                              |                   |                                       |                  |                    |                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |                  |                   |                                  |                                           |                      |

| c7/Di 1    | -1006         | -2441         | -869         | 1767        | -2780         | -1965        | -586               | -251Q               | 1702         | -2445                  | -1534         | -603         | -2052        | 1923              | 873         | -88B        | 236         | -630          | -2596         | -1949         | 17300%        |
|------------|---------------|---------------|--------------|-------------|---------------|--------------|--------------------|---------------------|--------------|------------------------|---------------|--------------|--------------|-------------------|-------------|-------------|-------------|---------------|---------------|---------------|---------------|
| 67(Q)<br>- | -149          | -500          | 233          | 43          | -381          | 399          | 106                | -626                | 210          | -466                   | -720          | 275          | 394          | 45                | 96          | 359         | 117         | -369          | -294          | -249          |               |
|            | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378              |                     |              |                        |               |              |              |                   |             |             |             |               |               |               |               |
| 68(A)      | 1489          | -2393         | 167          | 1234        | -2711         | -1873        | -547               | -2452               | 895          | -2408                  | -1485         | 1181         | -1977        | -90               | -64B        | 666         | 141         | -2014         | -2577         | -1892         | 17400%        |
| -          | -149          | ·500          | 233          | 43          | -381          | 399          | 106                | -626                | 210          | -466                   | -720          | 275          | 394          | 45                | 96          | 359         | 117         | -369          | -294          | -249          |               |
|            | -8            | -8139         | -91B1        | -694        | 4115          | -701         | -137B*             | ,                   |              |                        |               |              |              |                   |             |             |             |               |               |               | <del></del>   |
| 20(T)\     | 2104          | -2898         | 2124         | 985         | 3163          | -2036        | 1397               | -2935               | -693         | -2897                  | -2025         | -723         | -2329        | -543              | ·1250       | -1245       | -1368       | -2501         | -3087         | -530          | 17500%        |
| 69(D)      | ·149          | -500          | 233          | 43          | -381          | 399          | 196                | -626                | 210          | -466                   | -720          | 275          | 394          | 45                | .96         | 359         | 117         | -369          | -294          | -249          |               |
|            | -8            | -8139         | -9181        | -894        | -1115         | -701         | ·1378 <sup>1</sup> |                     |              | <del></del>            |               |              |              |                   |             |             |             |               |               |               | . —           |
| 20/03      | -2234         | -2898         | -2521        | -2885       | 4852          | 3641         | -3456              | -5042               | -3796        | -5094                  | 4356          | 365          | -3545        | -3376             | -4005       | -2451       | -2700       | -3996         | -4706         | -4575         | 17600%        |
| 70(G)      | -149          | -500          | 233          | 43          | -381          | 399          | 106                | -626                | 210          | -466                   | -720          | 275          | 394          | 45                | 96          | 369         | 117         | -369          | -294          | -249          |               |
|            | -8            | -8139         | -9181        | 894         | -1115         | -701         | -1376              |                     |              |                        |               |              |              |                   |             |             |             |               |               |               |               |
| 7400       | G-25 name (   |               | 4686         | 4400        | 62400 S       | <u> </u>     | H 1010             | izinz <b>kos</b> l. | (CEASES)     | 3453 <b>/ AGCE</b> 133 | Sec (405) à   | (13595 A     | ×3961/4      | 93157 <i>(</i> 2) | -3574       | ·-3277 +    | 2609        | ÷4337         | 1621          | ·             | 477814        |
|            | 2596<br>      |               | 233          | 7 100       | 381           | 399          | 100                | 626                 | 210          | 466                    | 120           | 275          | 36334        | 15                | 96          | 359         | 107         | 169           | 24            | 249           | 7897784CH4176 |
| 200        | 14.130        | 8139          | -9181        | ·B34        |               | 701          | 378                |                     | ***          | <b>74448</b>           |               | Highil       |              | g Princip         |             |             | High        |               | Kirks.        | 9134          | KINEDI        |
|            |               |               |              |             | apre)         | -1854        | -512               | -507                | 1721         | -2364                  | -1439         | 490          | -1947        | 672               | 436         | 806         | 687         | 1970          | -2533         | -1851         | 17800%        |
| 72(K)      | -149          | -2348<br>-500 | 338<br>232   | 950<br>46   | -2668<br>-381 | 399          | 105                | -627                | 210          | -466                   | -721          | 217          | 393          | 45                | 95          | 359         | 119         | -370          | -295          | -250          |               |
| -          | -155          | -3318         | -9181        | -2159       | -356          | -701         | -1378              |                     |              |                        |               |              |              |                   |             |             |             |               |               |               |               |
|            |               |               |              |             | 1020          | 9147         | -2822              | 28                  | 3369         | 320                    | -897          | -3230        | 112          | -3099             | -3291       | -2619       | -767        | 3269          | -2708         | -2354         | 18400%        |
| 73(V)      | -1810<br>-149 | -1639<br>-500 | -4149<br>233 | -3689<br>43 | -1869<br>-381 | -3417<br>399 | 106                | -526                | 210          | -466                   | -720          | 275          | 394          | 45                | 96          | 359         | 117         | -369          | -294          | -249          | السند         |
|            | -143          | -8139         | -9181        | -894        | -1115         | -701         | -1378              |                     |              |                        |               |              |              |                   |             |             |             |               | :             |               |               |
|            |               |               |              |             | 201           | 407          | 1407               | 200                 | ALIE         | S15                    | 1186          | -1534        | -2401        | -1174             | -1547       | -764        | -172        | -526          | -1519         | 1413          | 18500%        |
| 74(K)      | 847<br>-149   | -1093<br>-500 | -2131<br>233 | -1554<br>43 | -381          | 127<br>399   | -1127<br>106       | -637<br>-626        | 1445<br>210  | 645<br>-466            | -720          | 275          | 394          | 45                | 96          | 359         | 117         | -369          | -294          | -249          | 100070        |
| -          | -143          | -8139         | -9181        | -894        | -1115         | -701         | -1378              |                     | 1            |                        | :-1           |              |              |                   |             |             |             |               |               |               | <del></del>   |
|            |               |               |              |             |               |              |                    |                     | 27A          |                        | 4044          | cool         | 0040         | (07)              | -1095       | 1451        | 1827        | -2411         | -2986         | -2264         | 18600%        |
| 75(T)      | -1284<br>-149 | -2794<br>-500 | 1526<br>233  | 1290<br>43  | -3096<br>-381 | -2041<br>399 | 1289<br>106        | -2863<br>-626       | -548<br>210  | -2908<br>-466          | -1914<br>-720 | -668<br>275  | -2242<br>394 | -427<br>45        | 96          | 369         | 117         | -369          | -294          | -249          | . 10000 /6    |
| -          | -143          | -8139         | -9181        | -894        | -1115         | -701         | -1378              | - 520               | • •          | 1739                   |               |              |              |                   |             |             |             |               |               |               | <u></u>       |
|            | <u> </u>      |               |              |             |               |              |                    |                     |              | waal                   |               | 4.6          | eorl         | ennal             | 7444        | -1695       | 945         | 2346          | -1458         | -1106         | 18700%        |
| 75(V)      | -1089<br>-149 | -957<br>-500  | -3143<br>233 | -2535<br>43 | -943<br>-381  | -261B<br>399 | -1498<br>106       | 1052<br>-626        | -2198<br>210 | -792<br>-466           | 1858<br>-720  | -146<br>275  | 686<br>394   | -1884<br>45       | 2111<br>96  | 359         | 117         | -369          | -294          | -249          | 101 00 10     |
|            | -143          | -8139         | -9181        | -891        | -1115         | -701         | -1378              | 720                 | •            |                        |               |              |              |                   |             |             |             |               |               |               | .1            |
|            | 1             |               |              |             |               |              |                    |                     | ,            |                        | 440           | Esal         | 700          | 49                | 104         | 44          | and         | -1936         | 2212          | -1843         | 18800%        |
| 77(N)      | 1606          | -2321         | -752<br>233  | 612<br>43   | -2628<br>-381 | -323<br>399  | -527<br>106        | -2366<br>-626       | 1480<br>210  | -2331<br>-466          | -1416<br>-720 | -510<br>275  | -789<br>394  | -73<br>45         | 421<br>96   | 23<br>359   | -829<br>117 | -369          | -294          | -249          | 10000 72      |
|            | -149          | -500<br>-8139 | -9181        | -894        | -1115         | -701         | ·1378              | -920                | . 210        | יייי יייי              | 120[          |              |              |                   |             |             |             |               |               |               |               |
|            | <u> </u>      |               |              |             |               |              |                    |                     |              |                        | ,,,,,,,       | 2221         | Actal        | 4000              | AMA         | LAAL        | PEC         | 2401          | 2700          | _2057         | 100000        |
| 78(E)      | -1509         | -3540         | 1372         | 3127        | -3861         | -120         | ·1391              | -3685<br>-626       | -1319<br>210 | -3605<br>-466          | -2787<br>-720 | -900<br>275  | -2659<br>394 | -1005<br>45       | -1976<br>96 | -400<br>359 | -655<br>117 | -3194<br>-369 | -3790<br>-294 | -2957<br>-249 | 18900%        |
| _          | -149          | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115 | 399<br>-701  | -1378              | -020                | 1 210        | -400                   | -1201         | tin          | 034          | 70                |             | 844         | <u> </u>    | - 004         |               |               |               |
|            | 1             | 4104          | *(*4)        |             |               |              |                    |                     |              |                        |               |              |              | - 44421           | Aniel       | (FAT        | 204)        | 0001          | 4500          | #/ml          | 1000001       |
| 79(A)      | 3390          | -1868         | -4092        | -4341       | 4332          | -2153        | -3680              | -3942               |              |                        | -3471<br>-720 | -2869<br>275 | -2948<br>394 | -3730<br>45       | -3919<br>96 | ·1525       | 931         | -2894<br>-369 | -4580<br>-294 | -4483<br>-249 | 19000%        |
| <u> </u>   | -149<br>-8    | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115 | -701         | 106<br>-1378       | -626                | 210          | . •405                 | -120          | 210          | 374          | 40                | avi         |             | [11]        | - 443         |               | •14           |               |
| -          | 1 -01         | -0103         | -3101        | -034        | -1110         | 701          | . 10/0             |                     | L            |                        |               |              |              |                   |             |             |             | - ;т          |               |               | inana.        |
| 80(V)      | 2003          | -1721         | -4449        | -3995       | -2160         | -3763        | -3240              | 1342                |              |                        | -1124         | -3561        | -3855        | -3494             | -3700       | -2979       | -58<br>117  | 2574<br>-369  | -3091<br>-294 | -2698<br>-249 | 19100%        |
| -          | -149          | -500          | 233          | 43          | -381          | 399<br>-701  | 106<br>-1378       | -626                | 210          | -468                   | -720          | 276          | 394          | 45                | 96          | 359         | 117         | -000          | 234           | */*\          | •             |
| -          | -8            | -8139         | -9181        | -894        | -1115         | -101         | -1318              |                     | L            | L                      |               |              |              |                   |             |             |             |               |               |               |               |
| 81(K)      | 1714          | -2501         | -959         | 446         | 2858          | 2043         | -654               | -2574               |              |                        | -1609         | -689         | -2135        | -203              | 1088        | 428         | -1032       | •2148         | -2652         | -2027         | 19200%        |
|            | -149          | -500          | 233          | 43          | -381          | 399          | 106                | -626                | 210          | -466                   | -720          | 275          | 394          | 45                | 98          | 359         | 117         | -369          | -294          | -249          |               |

|                          | -8            | -8139         | -9181        | -894                | -1115         | -701           | -137B         |               |              |               |                |              |                        |             |             |              |              |                |               |               |                 |
|--------------------------|---------------|---------------|--------------|---------------------|---------------|----------------|---------------|---------------|--------------|---------------|----------------|--------------|------------------------|-------------|-------------|--------------|--------------|----------------|---------------|---------------|-----------------|
| 82(W)                    | 265           | -2347         | 815          | 432                 | -2663         | 634            | -519          | -2410         | 619          | -2361)        | -1438          | 496          | -1952                  | 1955        | -603        | -382         | 147          | -1956          | 2853          | -1853         | 19300%          |
| -                        | -149          | -500          | 233          | 43                  | -381          | 399            | 106           | -626          | 210          |               | -720           | 275          | 394                    | 45          | 95          | 359          | 117          | -369           | -284          | -249          |                 |
|                          | -8            | -8139         | -9181        | -B34                | -1115         | -701           | -1378         |               |              |               |                |              |                        |             |             |              |              |                |               |               | <u> </u>        |
| IONAL T                  | 2204          | . corol       | 2100         | 1070                | 41145         | - 0100         | 2041          | 4207          | 4197         | 4150          | -3565          | -2837        | -2929                  | -3729       | -3959       | 701          | -1718        | -3001          | 486           | -4534]        | 19100%          |
| 83(A)                    | -149          | -1860<br>-500 | -3338<br>233 | -4279<br>43         | -4411<br>-381 | -2128<br>339   | -3684<br>106  | -4207<br>-526 | 210          | -4490<br>-486 | -720           | 275          | 394                    | 45          | \$6         | 705<br>359   | 117          | -369           | -224          | -249          | 191707          |
| ļ —                      | -8            | -8139         | -9181        | -894                | -1115         | -701           | -137B*        |               |              |               |                | <u>=.v,</u>  |                        |             |             |              |              |                | مانت.         |               |                 |
|                          |               |               |              |                     | 40.40         |                | Janal         |               | 450/         | (72.0)        | 4484           | (Anel        | anad                   | · · · · · · | Anen        | Ases         | ANIA         | 25.29          |               | 1000          | 4024084         |
| 84(D)                    | -2747<br>-149 | -4795<br>-500 | 3813<br>233  | 395<br>43           | -4912<br>-381 | -2498<br>399   | -1935<br>106  | -4305<br>-628 | -2324<br>210 | -4735<br>-466 | -4166<br>-720  | -1079<br>275 | -3082<br>394           | €03<br>45   | -3256<br>96 | ·2353        | -2844<br>117 | -4347<br>-369  | -4929<br>-294 | -3809<br>-249 | 19500%          |
| -                        | -8            | -8139         | -9181        | -894                | -1115         | -701           | -1378         | - 1           | •            |               | 124            |              |                        |             |             |              |              |                |               |               |                 |
|                          |               |               |              |                     |               |                |               |               |              |               |                |              |                        |             | 10.4        |              |              |                |               | 2000          | (00)            |
| 85(V)                    | -2717<br>-149 | -2220<br>-500 | -5338<br>233 | -4951<br>43         | -2254<br>-381 | -5099<br>. 399 | 1670          | 1963<br>-526  | -4844<br>210 | 1563<br>-466  | -1011<br>-720  | -4759<br>275 | 4771<br>394            | 4509<br>45  | ·4836       | -4427<br>359 | -2588<br>117 | 2741<br>-369   | 3899<br>-294  | -3628<br>-249 | 19600%          |
|                          | -8            | -8139         | -9(8)        | -894                | -1115         | -701           | -1376         | -920          | 1            | 70            | -124           | 214          | 344                    | 47          | - 44        | - 303        | 1111         | VW]            | -221          | -210          |                 |
|                          |               |               |              |                     | 77.1          |                |               |               |              |               |                |              |                        |             |             |              |              |                |               |               |                 |
| 86(V)                    | 2635          | -2129         | -5306        | -4970               | -2652         | -5125          | -5011         | 2554          | 4915<br>210  |               | ·1368          | -4781        | 4852                   | 4798        | -5938<br>96 | 4487         | •2622        | 3019           | 4355          | -3902         | 19700%          |
| <del></del>              | -149          | -500<br>-8139 | 233<br>-9181 | -894                | -381<br>-1115 | 399<br>-701    | 106<br>-1376  | -626          | 210          | -466          | -720           | 275          | 394                    | 45          | 30]         | 359          | 117          | -369           | -234          | -249          |                 |
|                          |               | . 4144        | 4141         |                     |               |                |               |               |              |               |                |              |                        |             |             |              |              |                |               |               |                 |
| 97(M)                    | -1340         | -1208         | -3317        | -2708               | -988          | -2860          | -1708         | 577           | -2346        |               | 4131           | -2382        | -2878                  | 250         | -2265       | -228         | -1278        | -606           | -1629         | -1313         | · 19300%        |
|                          | -149<br>-8    | -500<br>-8139 | 233<br>-9181 | -894                | -381<br>-1115 | 399<br>-701    | 106<br>-137B* | -626          | 210          | -466          | -720           | 275          | 394                    | 45          | 96          | 359          | 117          | -369           | -294          | -249          | •               |
|                          |               | -0195         | -5101        | -024                | -1110         | *(0)[          | *1370         |               |              | <del></del>   |                | <del></del>  |                        |             |             | _            |              | <u>_</u>       |               |               |                 |
| 88(1)                    | -2566         | -2177         | -5017        | -4470               | 669           | ·4496          | -3487         | 2791          | 4191         | 1116          | 1394           | 4156         | 4228                   | -3615       | -3972       | -3687        | -2499        | 1692           | -2860         | -2711         | 19900%          |
|                          | -149          | -500          | 233          | 43                  | -381          | 399            | 106           | -626          | 210          | -466          | -720           | 275          | 394                    | 45          | 98          | 359          | 117          | 369            | -294          | -249          |                 |
| -                        | -8            | 8139          | -9181        | -894                | -1115         | -701           | -1378         |               |              |               |                |              |                        | <del></del> |             |              | <del></del>  |                |               |               | <del></del>     |
| 89(L)                    | -4414         | -3800         | -5638        | -5628               | -2290         | 4980           | +1628         | -1385         | -5423        | 3316          | -1236          | -5514        | -4997                  | 4750        | -5002       | -5379        | -4399        | -2629          | -3665         | -3690         | 20000%          |
|                          | -149          | -500          | 233          | 43                  | -381          | 399            | 105           | -525          | 210          | -466          | -720           | 275          | 394                    | 45          | 58          | 359          | 117          | -369           | -294          | -249          |                 |
|                          | -8]           | -8139         | -9181        | -894                | -1115         | -701           | ·1378         | L             |              |               |                |              |                        |             |             |              |              |                | <del></del>   |               |                 |
| 900)::::                 | 1212          | 1286          | 3845         | 3262                | : R60         | 3195           | 1166          | 1618          | 77.2918      | 1031          | %!! <b>493</b> | -1824        | 3211                   | ×2583       | S-2702      | 2308         | 1598         | 1299           | 2020          | 1668          | 20100%          |
| 37 33 13 4<br>2373175217 |               | 2.300         | 233          | 43                  |               | 12 399         | 10st          |               | 210          | 3)E-26        | 2E.20          | 275          | 194                    | 15          | 56          | .2339.5      | 117.         |                | 13:29         | 249           | 22.000 4.20.000 |
| \$2.44.55                |               | 19139         | 449181       | 5177 <b>1334</b> 17 | 2415          | ta (0)         | # 1378        | finds laid    | W. W.        |               | THE STATE      | billini      | eit-iletele<br>Kontono | i gright    | Kirilii H   | insidi       | XIIII 48     | ફેરાંશ્વર્યોલા | indian'i      | naide.        | संस्थितानील     |
| 91(P)                    | -1614         | -2214         | -3396        | -3710               | -4516         | -2407          | 3518          | -4516         | -3976        | -4705         | -3849          | -2890        | 3993                   | -3625       | -3900       | 666          | -2068        | -3354          | 4610          | -4474         | 202007/         |
|                          | -149          | -500          | 233          | 43                  | -381          | 399            | 108           | -626          | 210          | -466          | -720           | 276          | 194                    | 45          | \$6         | 359          | 117          | -369           | -294          | -249          |                 |
|                          | -8            | -8139         | -9181        | -894                | -1115         | -701           | -1378         |               | <u>'</u>     | <del></del>   |                |              | _                      | ¥           |             |              |              |                |               |               |                 |
| 92(D)                    | <b>4580</b>   | -4701         | 4174         | -3014               | -5700         | -3967          | -3905         | -6376         | 4478         | -6024         | -5744          | -3355        | -4501                  | -3870       | -4926       | 4440         | -4750        | -5894          | 4922          | -5231         | 20300%          |
|                          | -149          | -500          | 233          | 43                  | -381          | 399            | 106           | -626          | 210          | -466          | -720           | 275          | 394                    | 45          | 96          | 359          | 117          | -369           | 294           | -249          |                 |
|                          | -8            | -8139         | -91B1        | -894                | -1115         | -701           | -1378         |               |              |               |                |              |                        |             |             |              |              |                |               |               |                 |
| 93(E)                    | -1123         | -2199         | -937         | 2715                | -2589         | ·2046          | -912          | -2250         | -625         | -2356         | 1979           | -870         | -2250                  | -554        | -1093       | 463          | 932          | -1902          | -2660         | -2064         | 20400%          |
| -                        | -149          | -500          | 233          | 43                  | -381          | 399            | 106           | -626          | 210          | -466          | -720           | 275          | 394                    | 45          | 96          | 359          | 117          | -369           | -294          | -249          |                 |
|                          | -8            | -8139         | -9181        | -834                | -1115         | -701           | -1376         |               |              |               |                |              |                        |             |             |              |              |                |               |               |                 |
| garlen 1                 | 399           | -1137         | -2012        | -14                 | 1582          | -2306          | 1600          | 246           | -1252        | 190           | -326           | -1458        | 2374                   | 1,17,1      | - Mapl      | ادور         | -905         | gaci           | -1657         | -1158         | 20500%          |
| 94(H)                    | -149          | -1137         | 233          | 43                  | -381          | 399            | 105           | -626          | 210          | -466          | -720           | 275          | 394                    | 1474<br>45  | -1479<br>95 | 359          | 117          | -369           | -1007         | -1106         | 200007          |
|                          | -8            | -8139         | -9181        | -894                | -1115         | -701           | -1376         | <u> </u>      |              |               | 7.71.          |              |                        |             |             |              |              | . :::1_        |               |               |                 |
| 07.00                    | 6714          | 94.40         | ATAIT        | aras!               | 0704          | 23.231         | المدنم        | 4041          | (884)        | Med           | Over           | APAAI        | A944                   | 1015        | 1000        | 0004         | AATT         | ecel           | Accel         | A7/4l         | Assaul          |
| 95(O)                    | -2742<br>-149 | -3142<br>-500 | -2766<br>233 | -2681<br>43         | -2790<br>-381 | -3344<br>399   | -2460<br>108  | -160<br>-626  | -1802<br>210 | -2456<br>-466 | -2353<br>-720  | -2682<br>275 | -3710<br>394           | 4317<br>45  | -1866<br>95 | -2894<br>359 | -2844<br>117 | -2559<br>-369  | -3295<br>-294 | -2711<br>-249 | 20600%          |
| -                        | -8            | -8139         | -91BI        | -894                | -1115         | -701           | -1376         | -020          |              | -+00          | -120]          | -14          | 494                    | 40]         | 901         | - wa         | सम           | -500           | -227]         |               |                 |
|                          |               |               |              |                     |               |                |               |               |              |               |                |              |                        |             |             |              |              |                |               |               |                 |
|                          |               |               |              |                     |               |                |               |               |              |               |                |              |                        |             |             |              |              |                |               |               |                 |

| 96(A)     | 1981        | -2315 | -809  | -268  | -2645 | -531          | -579    | -2374 | 232      | -2350 | -1445 | -567        | 1217  | 711   | 445   | 447         | -874     | -1951       | -2540 | -1883       | 20700%      |
|-----------|-------------|-------|-------|-------|-------|---------------|---------|-------|----------|-------|-------|-------------|-------|-------|-------|-------------|----------|-------------|-------|-------------|-------------|
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | 466   | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -294  | -249        |             |
| -         | -8          | -8139 | -9181 | -894  | -1115 | -701          | -1378   | !     |          |       |       |             |       |       |       |             |          |             |       |             |             |
| 97(D)     | 491         | -2351 | 1394  | 1381  | -2671 | -1854         | 1062    | -2421 | 1010     | -2367 | -1440 | -489        | -1947 | 1017  | 362   | -760        | 250      | -623        | -2635 | -1852       | 20800%      |
| E         | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -284  | -249        | -           |
| <u> </u>  | -8          | -B139 | -9161 | -894  | -1115 | -701          | -1378   |       |          |       | :_    | <del></del> |       |       |       |             |          |             |       |             |             |
| 98(V)     | -2039       | -1706 | -4456 | -3939 | -1846 | -3939         | -3049   | 1986  | -3656    | 1460  | -826  | 804         | -3870 | -3351 | -3565 | -3105       | -2000    | 2330        | -2796 | -2442       | 20900%      |
|           | -149        | •500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 98    | 359         | 117      | -369        | -294  | 249         |             |
| <u> </u>  | -8          | -8139 | -9181 | -894  | -1115 | -701          | -1376   | !     |          |       |       |             |       |       |       |             |          |             |       |             |             |
| 99(Y)     | -4840       | -3766 | -5230 | ·5581 | 1898  | -5109         | -1300   | -3727 | -5135    | -3041 | -3132 | -3723       | 4964  | -3861 | -4501 | -4357       | -4690    | -3883       | 3325  | 4377        | 21000%      |
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -486  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -294  | -249        |             |
|           | -8          | -8139 | -9161 | -894  | -1115 | -701          | -1376   |       |          |       |       |             |       |       |       |             | <u> </u> |             |       |             |             |
| 100(E)    | ·163        | -2353 | -734  | 1681  | -2674 | -1859         | 888     | -2422 | 1668     | -792  | 1443  | 777         | -1952 | 890   | 286   | -766        | 238      | 1975        | -2536 | -1856       | 21100%      |
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -294  | -249        |             |
| <u> </u>  | -257        | -8139 | -2649 | -894  | -1115 | ·701          | -1378   |       |          |       |       |             |       |       |       |             |          |             |       |             |             |
| 101(E)    | 1017        | -2763 | 862   | 2042  | -3060 | -1913         | -775    | -2836 | -495     | -2773 | -1886 | 1956        | -2143 | -136  | -1056 | 266         | -1185    | -2377       | -2948 | -2207       | 21200%      |
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -284  | -249        |             |
| -         | -9          | -7891 | -8933 | -894  | -1115 | -338          | -2261   |       | <u> </u> |       |       |             |       |       |       |             |          |             |       |             | <del></del> |
| 102(E)    | 914         | -2422 | 663   | 2138  | -2740 | -436          | -567    | -2493 | 894      | -2437 | -1515 | -518        | -1994 | 1767  | -673  | 109         | -865     | -1023       | -2605 | -1917       | 21300%      |
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -294  | -249        | -           |
|           | -8          | -8139 | -9161 | -894  | -1115 | -701          | -1378 ' | '     |          |       |       |             |       |       |       | · · ·       |          |             |       |             | <del></del> |
| 103(f)    | -2660       | -2156 | -5316 | -4965 | -2520 | -5119         | -4900   | 3165  | 4894     | 297   | -1251 | 4175        | 4828  | -4705 | -4975 | -4476       | -2642    | 2240        | 4202  | -3814       | 21400%      |
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -294  | -249        |             |
|           | -8          | -8139 | -9181 | -894  | -1115 | -701          | -137B*  | Ľ     |          |       |       |             |       |       |       |             | ···      |             |       | <del></del> |             |
| 104(E)    | 1058        | -2341 | -766  | 2003  | 628   | <b>-18</b> 87 | 876     | -2380 | 1240     | -2341 | -1436 | -529<br>275 | -1983 | 881   | -618  | -804        | -855     | -1954       | -2530 | -1862       | 21500%      |
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 95    | 359         | 117      | 369         | -294  | -249        |             |
| <u> </u>  | -6          | -8139 | -9181 | -894  | -1115 | -701          | -1376   |       |          |       |       |             | :     | -     |       |             |          |             |       |             | <del></del> |
| 105(P)    | 343         | -3144 | 1561  | 442   | -3538 | -489          | -1216   | -3329 | -1038    | -3274 | -2420 | 848         | 2974  | -812  | -1635 | 469         | -1644    | -2849       | -3462 | -2693       | 21500%      |
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -284  | -249        |             |
| <u> </u>  | -6          | -8139 | •91B1 | -894  | -1115 | -701          | -1378   |       |          |       | ·     |             |       |       |       |             |          | <del></del> |       |             | <del></del> |
| 106(N)    | -1173       | -2375 | -814  | 827   | -2376 | -2071         | 1767    | -2273 | -479     | -2336 | ·1503 | 3151        | -2218 | -415  | -957  | -1093       | -1120    | -198        | -2486 | 647         | 21700%      |
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -294  | 248         |             |
| ┝─┤       | <u>-</u> tq | -8139 | -9181 | -894  | -1115 | -701          | -1378   |       |          |       |       |             |       |       |       |             |          |             |       |             | <del></del> |
| 107(M)    | 3415        | -2890 | -5826 | -5252 | -1352 | -5486         | -1282   | 1361  | -5022    | 2621  | 2728  | -5181       | -4778 | -4005 | -4613 | 4776        | -3292    | 69          | -3071 | -3194       | 21800%      |
|           | -145        | 500   | 233   | 43    | -381  | 399           | 106     | -626  | 210      | 466   | -720  | 275         | 394   | 45    | 98    | 359         | 117      | -369        | -294  | 249         |             |
| $\vdash$  | -8          | -8139 | 9181  | -894  | -1115 | 701           | -1378   |       |          |       |       |             |       |       |       | <del></del> |          |             |       |             | <del></del> |
| 108(K)    | -1941       | -3098 | -1997 | -1232 | -3650 | -2740         | -1025   | -3210 | 3059     | -3010 | -2208 | 499         | -2766 | 1457  | 1261  | -1817       | -90      | -2858       | -3002 | -2622       | 21906%      |
|           | -149        | -500  | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -294  | -249        |             |
| <b>  </b> | -8          | -8139 | -9181 | -894  | -1115 | -701          | -1378   |       |          |       |       |             |       |       |       |             |          |             |       | <u> </u>    |             |
| 109(P)    | 1129        | -2426 | -740  | 964   | -2747 | 1313          | -589    | -2491 | 1139     | -2440 | -1525 | -552        | 1941  | 1446  | -655  | -480        | -913     | -2050       | -2610 | -1935       | 22000%      |
|           | -149        | -500  | 233   | 43    | -361  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -369        | -234  | -249        |             |
| لـــــا   | -8          | -8139 | -9181 | -894  | -1115 | -701          | -1378   | '     |          |       |       |             |       |       |       |             |          | <u>.</u>    |       |             |             |
| 110(G)    | -2276       | -2907 | -2347 | -2709 | -4832 | 3554          | -3349   | -5005 | -3678    | -5053 | -4315 | 1193        | -3507 | -3243 | -3937 | -2418       | -2674    | -3974       | -4703 | 4521        | 22100%      |
|           | -149        | 500   | 233   | 43    | -381  | 399           | 106     | -626  | 210      | -466  | -720  | 275         | 394   | 45    | 96    | 359         | 117      | -389        | -294  | -249        |             |
| _         |             |       |       |       |       |               |         |       |          |       | -     |             |       |       |       |             | -        |             |       | -           |             |

|                                                  | -8            | -8139         | -9181        | -834        | -1115         | -701         | ·1378 '       |               |                 |               |               | ····         |              |             |              |               |              |               |               |               |             |
|--------------------------------------------------|---------------|---------------|--------------|-------------|---------------|--------------|---------------|---------------|-----------------|---------------|---------------|--------------|--------------|-------------|--------------|---------------|--------------|---------------|---------------|---------------|-------------|
| 111(A)                                           | 1730          | -2349         | 958          | -198        | -2661         | -1858        | -535          | -2405         | 927)            | -2362         | -144)         | 414          | -1968        | 786         | - <b>630</b> | 798           | -840         | -303          | -2540         | -1863         | 22200%      |
|                                                  | -149          | -500          | 233          | 43          | -381          | 399          | 106           | -626          | 210             | -466          | -720          | 275          | 394          | 45          | 96           | 359           | 117          | -369          | -294          | -249          | انتيسسي     |
|                                                  | -8            | -8139         | -91B1        | -894        | -1115         | -701         | 1378          |               |                 |               |               |              |              |             |              |               |              |               |               |               |             |
| 112(1)                                           | 1350          | -1149         | -14          | -1461       | -1155         | -2314        | -1111         | 758           | -1275           | -1024         | 1167          | -1475        | -2388        | -1111       | -1501        | 334           | 1843         | 354           | -1581         | -1182         | 22300%      |
| . 1120                                           | -149          | -500          | 233          | 43          | -381          | 399          | 106           | -628          | 210             | -466          | -720          | 275          | 394          | 45          | 96           | 359           | 117          | -369          | -294          | -249          | beat viti   |
|                                                  | -8            | -8139         | -9181        | -694        | -1115         | -701         | -1378         |               |                 |               |               |              |              |             |              |               |              |               |               |               |             |
| 1104                                             | 4400          | 4702          | cosal        | roay        | 4100          | cesel        | 1200          | 1004          | ciast           | 2018          | - Anal        | cord         | 1027         | 4476        | imal         | 1001          | 2026         | 2021          | 1001          | -3351         | 22400%      |
| 113(L)                                           | -3333<br>-149 | -2796<br>-500 | -5806<br>233 | -5293<br>43 | -1506<br>-361 | -5535<br>399 | -4502<br>(06  | 1096<br>-626  | -5103<br>210    | 2935<br>-466  | -282<br>-720  | -5232<br>275 | 4857<br>394  | -4172<br>45 | 4762<br>98   | -4864<br>359  | -3236<br>117 | 506<br>-369   | -3264<br>-294 | -249          | LETVUTC     |
|                                                  | - 8           | -8139         | -9181        | -894        | -1115         | -701         | -1378         | ***           | <del>' ''</del> |               |               |              |              |             |              |               |              |               |               |               |             |
|                                                  |               |               |              |             |               |              |               |               |                 |               |               |              |              |             |              | 2221          |              | 144.00        | 40.40         | 4.03          | 100111      |
| 114(A)                                           | 1769          | -1525         | 158<br>233   | -857<br>43  | -1603<br>-381 | 148<br>399   | -891<br>106   | -1181<br>-626 | •752<br>210     | 187<br>-466   | -712<br>-720  | 1040<br>275  | -2228<br>394 | 660<br>45   | ·1135        | 359           | -913<br>117  | 1305<br>-369  | -1913<br>-294 | -1442<br>-249 | 22500%      |
| $\vdash$                                         | -149<br>-8    | -500<br>-8139 | -9191        | -894        | -1115         | 701          | -1378         | -920          | 210             | -400          | -1201         | 214          | 334          | 40          | 70)          | 000]          | 114          | 1000          | 1607          | -279          |             |
| <u> </u>                                         | <u>`</u>      | - 01001       | <u> </u>     | <u></u>     |               |              |               |               |                 |               |               |              | ·            |             |              |               |              |               |               |               |             |
| 115(F)                                           | 4110          | -3437         | -5436        | -5431       | 4216          | -5143        | -2159         | -1742         | -5074           | 553           | -1124         | -4290        | -4871        | -3987       | ·4561        | ·4547         | -4016        | -2374         | -1356         | -292<br>-249  | 22600%      |
|                                                  | -1 <b>4</b> 9 | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115 | 399<br>-701  | 106<br>-1378  | -626          | 210             | -466          | -720          | .275         | 394          | 45          | 98           | 359           | 117          | -369          | -294          | -249          | •           |
|                                                  | -0            | -0133         | -3101        | -034        | чиы           | -101         | -1010         |               |                 |               |               |              |              |             |              | <del></del> - |              |               |               |               | <del></del> |
| 116(A)                                           | 3091          | -1829         | -3998        | -4219       | 4413          | 119          | -3537         | -4216         | 4134            | -4469         | 3523          | -2798        | -2896        | -3656       | -3927        | 1514          | -1679        | -2983         | -4632         | -4539         | 22700%      |
|                                                  | -149          | -500          | 233          | 43          | -381          | 399          | 108           | -626          | 210             | -466          | -720          | 275          | 394          | 45          | 96           | 359           | 117          | -369          | -294          | -243          |             |
|                                                  | 8             | -8139         | -9181        | -834        | -1115         | -701         | -1378*        | 1             |                 |               |               |              |              |             |              |               |              |               |               |               | <del></del> |
| 117(H)                                           | -5197         | -4539         | -4720        | -5009       | 4036          | -4506        | 5435          | -6314         | 4911            | -5786         | 5667          | -4954        | -4960        | -5011       | -4732        | -5391         | -5395        | -6022         | -4063         | -3641         | 22800%      |
|                                                  | -149          | -500          | 233          | 43          | -381          | 399          | 106           | -626          | 210             | -466          | -720          | 275          | 394          | 45          | 96           | 359           | 117          | -369          | -294          | -249          |             |
|                                                  | -8            | -8139         | -9181        | -834        | -1115         | -701         | -1378         |               |                 |               |               |              |              |             |              |               |              |               |               |               |             |
| 118(G)                                           | -4435         | -4203         | -5092        | -5462       | -5893         | 3834         | -5028         | -6627         | ·5765           | -6297         | -5970         | -5141        | -4304        | -5546       | -5385        | 4727          | -4815        | -5862         | 4924          | -5849         | 22900%      |
|                                                  | -149          | -500          | 233          | 43          | -381          | 399          | 105           | -826          | 210             | 456           | -720          | 275          | 394          | 45          | 95           | 359           | 117          | -369          | -294          | -249          |             |
|                                                  | -8            | -8139         | -9181        | -894        | -1115         | -701         | -137B°        |               |                 |               |               |              |              |             |              | <u>.</u>      |              | <del> </del>  |               |               | •           |
| 119(F)                                           | 4044          | -3337         | -5534        | -5444       | 4093          | -5246        | -2370         | -1514         | -5107           | 1089          | -868          | -4443        | -4880        | -3998       | -4592        | -4633         | -3934        | -2200)        | -1536         | -523          | 23000%      |
|                                                  | -149          | -500          | 233          | 43          | -381          | 399          | 106           | -626          | 210             | 466           | -720          | 275          | 394          | 45          | 96           | 359           | 117          | -369          | -294          | -249          |             |
|                                                  | -8            | -8139         | -91B1        | -894        | -1115         | -701         | ·1378*        |               | '               |               |               |              |              |             |              | <u> </u>      |              |               |               |               |             |
| 120(N)                                           | 885           | -1899         | -2020        | -1781       | -2956         | -2135        | ·1925         | -2602         | •1809           | 3             | -2052         | 3468         | -2633        | -1676       | -2141        | 413           | ·1437        | -2139         | -3194         | -2737         | 23100%      |
|                                                  | -149          | -500          | 233          | 43          | -381          | 399          | 108           | -626          | 210             | -456          | -720          | 276          | 394          | 46          | 96           | 359           | 117          | 369           | -294          | -249          |             |
|                                                  | -8            | -8139         | -9181        | -894        | -1115         | -701         | ·13781        |               |                 |               |               |              |              |             |              |               |              |               |               |               |             |
| 1010                                             | 8070          | Aire          | Panil        | 1000        | A 2 3 3       | 2400         | 1676          | 2000          | 1000            | 250           | 4044          | ATON         | 4004         | -4681       | -4961        | -4472         | -2653        | 1969          | -4158         | 3791          | 23200%      |
| 121(1)                                           | -2673<br>-149 | -2169<br>-500 | -5324<br>233 | -4969<br>43 | -2477<br>-381 | -5123<br>399 | -4876<br>106  | 3293<br>-626  | -4893<br>210    | 358<br>-466   | -1211<br>-720 | -4780<br>275 | -4824<br>394 | 45          | 96           | 359           | 117          | -369          | -294          | -249          | 2020074     |
| $\vdash$                                         | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378         |               | ,               |               | <u>;=-</u> L  |              |              | :           |              |               |              |               |               |               |             |
|                                                  |               |               |              |             |               |              |               |               |                 |               |               |              |              |             |              | 4444          | 4794         | (10.04)       | (478)         | ATEOL         | 0402500     |
| 122(H)                                           | -3381<br>-149 | -3705<br>-500 | -3197<br>233 | -3491<br>43 | -4166<br>-381 | 638<br>399   | 5216<br>106   | -5496<br>-626 | - 3798<br>210   | -5304<br>-466 | -4811<br>-720 | -3481<br>275 | 4165         | -3770<br>45 | -3879<br>96  | -3508<br>359  | -3702<br>117 | -4793<br>-369 | -4170<br>-294 | -3759<br>-249 | 23300%      |
| -                                                | -149          | -8139         | -9181        | -894        | -1115         | -701         | -1378         | -020          | - 210           | 1409          | -120          | - 614        | wq           | 44          | 70           | 930           | iiq          | -000          | wij           | ***           |             |
|                                                  | <u></u>       |               |              | ****        |               |              |               | <u>-</u> -    |                 |               |               |              |              |             |              |               |              |               |               |               |             |
| 123(Y)                                           | -4816         | -3757         | -5210        | -5549       | 3410          | -5097        | 2153          | -3719         | ·5105           | -3041         | -3127         | -3715        | 4955         | -3851       | -4483        | 4344          | -4669        | -3970         | 547           | 3577          | 23400%      |
| <u> </u>                                         | -149          | -500<br>-8139 | 233<br>-9181 | 43<br>-894  | -389<br>-1115 | 399<br>-701  | 105<br>-1378* | -626          | 210             | -468          | -720          | 275          | 394          | 45          | 96           | 359           | 117          | -169          | -234          | -249          |             |
| <del>                                     </del> | -8            | -0133         | -2101        | -071        | -1184         | -101         | -1010         |               |                 |               |               |              |              |             |              |               |              |               |               |               |             |
| 124(G)                                           | -1055         | -2519         | 948          | -272        | -2320         | 1844         | 998           | -2566         | 972             | -284          | -1522         | 1553         | -2090        | -229        | -802         | -938          | -1011        | -2133         | -2708         | -2021         | 23500%      |
|                                                  | -149          | -500          | 233          | 43          | -381          | 399          | 105           | -626          | 210             | -466          | 720           | 275          | 394          | 45          | 96           | 359           | 117          | -369          | -234          | -249          |             |
| لــــز                                           | -8            | -8139         | -9181        | -834        | -1115         | -701         | ·1378         |               | 1               |               |               |              |              |             |              |               |              |               |               | ·             |             |
| L                                                |               |               |              |             |               |              |               |               |                 |               |               |              |              |             | <del></del>  |               |              |               |               |               |             |

|             |                 |                                |                 |                |               |              |              | 35 - 1589                               | 15.586       | 1526               | E (121)                                     | 182187           | (13 <b>13</b> )            | 3585        | 2478              | °F2137           | 1564         |                                | 2189                   | 3*2414                   | 73EDDY      |
|-------------|-----------------|--------------------------------|-----------------|----------------|---------------|--------------|--------------|-----------------------------------------|--------------|--------------------|---------------------------------------------|------------------|----------------------------|-------------|-------------------|------------------|--------------|--------------------------------|------------------------|--------------------------|-------------|
| *131(19)    | 444444<br>44444 | (201-590<br>₹₹¦\$ <b>8</b> 139 | 233<br>****9j61 | 37. 344<br>394 |               |              | 161 31378    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | 210          | 5, (e46)<br>142(8) | :::124<br>::::::::::::::::::::::::::::::::: | in i <b>H</b> b. | 394 <sub>7</sub><br>515651 | 45].<br>    | 444)96<br>1475)14 | 44 200<br>44 200 | uindi):      | 221-2 <b>383</b><br>22-22-22-2 | 73 - 234<br>123 - 1234 | (16:4-249)<br>(16:4-249) |             |
|             |                 |                                |                 |                |               |              |              |                                         |              |                    |                                             |                  |                            |             |                   |                  |              |                                |                        |                          |             |
| 126(1)      | 149             | -1916<br>-500                  | -4813<br>233    | -4433<br>43    | -2456<br>-381 | -4221<br>399 | -3937<br>108 | 3248<br>-628                            | 4248         | -1515<br>-466      | -1324<br>-720                               | 4044             | -4259<br>394               | -4063<br>45 | 4255<br>96        | 230<br>359       | -2280<br>117 | 2003<br>-369                   | -3673<br>-294          | -3237<br>-249            | 23700%      |
|             | -8              | -8139                          | -9131           | -894           | -1115         | -701         | ·1378        |                                         |              |                    |                                             |                  |                            |             |                   |                  |              |                                |                        |                          |             |
| 127(19)     | -886            | -2231                          | 334             | 1172           | -2504         | -1881        | -546         | -93                                     | 1370         | -300               | -1337                                       | 465              | -1974                      | 655         | -646              | -794]            | -921         | 1255                           | -2449]                 | -1798                    | 23800%      |
|             | -149            | -500                           | 233             | 43             | -381          | 399          | 106          | -626                                    | 210          | -466               | 720                                         | 275              | 394                        | 45          | 96                | 359              | 117          | -369                           | -294                   | -249                     |             |
| <del></del> | -8              | -8139                          | -9181           | -894           | -1115         | -701         | -1378        | نــــــــــــــــــــــــــــــــــــــ | <u>'</u>     |                    |                                             | <del></del>      | <u>`</u>                   |             |                   |                  |              |                                |                        |                          |             |
| 128(P)      | 715             | -1925                          | -3618           | -3397          | -4464         | 653          | -3594        | -1274                                   | 4053         | -4520              | -3596                                       | -2770            | 3775                       | -3593       | 3911              | -1550            | -1770        | -3067                          | -4647                  | 4548                     | 23000%      |
| <u>:</u>    | -149<br>-8      | -500<br>-8139                  | 223<br>-9181    | 43<br>-894     | -381<br>-1115 | 399<br>-701  | 108<br>-1378 | -626                                    | 210          | -466               | -720                                        | 275              | 394                        | 45          | 96                | 359              | 117          | -369                           | -294                   | -249                     |             |
|             |                 |                                |                 | <del></del>    |               |              |              |                                         |              |                    |                                             |                  |                            |             |                   |                  |              |                                |                        |                          |             |
| 128(P)      | 479<br>-149     | -2398<br>-500                  | 1173<br>233     | -637<br>43     | -2915<br>-381 | -2106<br>399 | -848<br>106  | -2610<br>-626                           | -289<br>210  | -2586<br>-466      | -1713<br>-720                               | -884<br>275      | 2238<br>394                | 1247<br>45  | 2195              | 359              | -1147<br>117 | -2184<br>-369                  | -2757<br>-294          | -2174<br>-249            | 24008%      |
|             | -6              | -81 33                         | -9181           | -894           | -1115         | -701         | -1376        | 3                                       | 1 10         | -400               | -720]                                       |                  | 324                        | 40          | 301               | 1600             |              | -509                           | *234                   |                          |             |
| 130(A)      | 1787            | -2663                          | 1377            | 529            | -2976         | -1992        | -762         | -2736                                   | 1785         | -2680              | -1776                                       | -523             | -2161                      | -319        | -536              | 297              | -1120        | -2285                          | 2052                   | 2110                     | 2/1009/     |
| -           | -149            | -500                           | 233             | 43             | -381          | 399          | 106          | -626                                    | 210          | -466               | -720                                        | 275              | 394                        | 45          | 98                | 359              | 117          | -2263                          | -2853<br>-294          | -2146<br>-249            | 24100%      |
|             | -2336           | -8139                          | -25             | -894           | -1115         | -701         | -1378        |                                         | <u>'</u>     | <del></del> .      | <u> </u>                                    |                  |                            |             |                   |                  |              |                                |                        |                          |             |
| 131(F)      | -1308           | -1104                          | 2227            | -2120          | 3516          | -2093        | -244         | -196                                    | -1891        | 64                 | 66                                          | -1626            | -2278                      | -1503       | 1793              | -1617            | -1350        | -389                           | 305                    | 1335                     | 24200%      |
| -           | -149<br>-38     | -500<br>-5840                  | 233<br>-6882    | 43<br>-894     | -381<br>-1115 | 399<br>-3098 | 106          | -626                                    | 210          | -466               | -720                                        | 275              | 394                        | 45          | 96                | 359              | 117          | -369                           | -294                   | -249                     |             |
|             | -36             | -364V)                         | -0002           | -589]          | -1115         | -3098        | -179         | <u></u>                                 |              |                    |                                             |                  |                            |             | <u> </u>          |                  | ,            |                                |                        |                          | <u> </u>    |
| 132(P)      | -603<br>-149    | -937<br>-500                   | .97             | -1058          | -1632         | -1041        | -1092        | -1737                                   | -1074        | -1874              | -1416                                       | -992             | 3539                       | -1065       | -1192             | -789             | -866         | -1383                          | -1765                  | -1661                    | 24300%      |
|             | -38             | -5840                          | 233<br>-6682    | -894           | -381<br>-1115 | 399<br>3038  | 106<br>-179  | -626                                    | 210          | -466               | -720                                        | 215              | 394                        | 45          | 98                | 359              | 117          | -369                           | -294                   | -249                     |             |
| 122.60      | 904             | 4169                           | 821             |                | 4000          | . (335)      |              | 4000                                    |              | 4000               | 1001                                        | - 4 (0)          |                            |             |                   | ****             |              |                                |                        |                          |             |
| 133(K)      | -804<br>-149    | -1483<br>-500                  | 233             | -230<br>43     | -1920<br>-381 | -1335<br>399 | -101<br>106  | -1605<br>-626                           | 2889<br>210  | -1630<br>-466      | -1021<br>-720                               | -349<br>275      | -1569<br>394               | 232<br>45   | 633<br>96         | -786<br>359      | 759          | -1358<br>-369                  | -1637<br>-294          | -1317<br>-249            | 24400%      |
|             | 38              | -5840                          | 6682            | 894            | -1115         | -109         | -3775        |                                         |              |                    |                                             |                  |                            |             |                   |                  |              |                                |                        |                          | ·.',        |
| 134(D)      | -2405           | -4159                          | 3349            | -651           | 4260          | -261         | -1744        | 4307                                    | 1947         | -4207              | -3514                                       | 2151             | -2936                      | -1416       | -2754             | -2102            | -2471        | -3802                          | 4324                   | 637                      | 24500%      |
|             | -149            | -500                           | 231             | 43             | -3B1          | 399          | 106          | -628                                    | 210          | -466               | -720                                        | 275              | 394                        | 45          | 96                | 359              | 117          | -369                           | -294                   | -243                     | - 1.00 K    |
|             | -8              | -8139                          | -9181           | -894           | -1115         | -701         | -1378        |                                         | 1            |                    |                                             | ·                |                            |             |                   |                  |              |                                |                        |                          | <del></del> |
| (35(1)      | -2047           | -1713                          | -4504           | -3983          | -1821         | -3943        | -3061        | 2461                                    | -3697        | 1581               | -797                                        | -3593            | -3873                      | -3371       | -3587             | -342             | -2009        | 1904                           | -2784                  | -2441                    | 24600%      |
|             | -149<br>-8      | -500<br>-€139                  | 233<br>-9181    | 43<br>-694     | -381<br>-1115 | 339<br>-701  | 106<br>-1378 | -626                                    | 210          | 466                | 720                                         | 275              | 394                        | 45          | 96                | 359              | 117          | -369                           | 294                    | -249                     |             |
|             |                 |                                |                 |                |               |              |              |                                         |              |                    |                                             |                  |                            |             |                   | ·                |              |                                |                        | <del></del>              |             |
| 36(D)       | -2024<br>-149   | -3444<br>-500                  | 3496<br>233     | -680<br>43     | -3868<br>-381 | -2331<br>399 | -1598<br>106 | - 44<br>-626                            | -1632<br>210 | -3675<br>-466      | •2915<br>-720                               | 685<br>275       | -2782<br>394               | 1248<br>45  | -2305<br>96       | 476<br>359       | -2088<br>117 | -3196<br>-369                  | -3911<br>-294          | -3098                    | 24700%      |
|             | -8              | -8139                          | -9181           | -894           | -1115         | -701         | ·1378        | - 920                                   |              | -400/              | -120                                        | 210              | 334                        | 40          | 30]               | 200              | <u> 1111</u> | -303                           | -24                    | -248                     |             |
| 37(V)       | -3122           | -2888                          | -5092           | -5160          | -3522         | -4180        | 4007         | 1200                                    | 6000         | 201                | 557AL                                       | 400%             | 4570                       | 4010        | 1000              | 4012             | 2507         | 4700                           | 1444                   | 4100                     | 0.4000001   |
| \$1(V)      | -149            | -500                           | 233             | 43             | -381          | 399          | -4687<br>106 | -905<br>-626                            | 6060<br>210  | -2626<br>-456      | -2670<br>-720                               | -4662<br>275     | 4579<br>394                | -4940<br>45 | -4923<br>98       | 4013<br>359      | -3297<br>117 | 3798<br>-369                   | -4414<br>-294          | -4190<br>-249            | 24800%      |
|             | -8              | -8139                          | -9161           | -894           | -1115         | -701         | -1378        | ·                                       |              |                    |                                             |                  |                            |             |                   |                  |              |                                |                        |                          | ·           |
| 38(1)       | -53             | -875                           | -3230           | -2609          | 1867          | -393         | -1422        | 2613                                    | -2236        | -723               | -81                                         | -2157            | -2608                      | -1885       | -2086             | ·1633            | 276          | -271                           | -1325                  | 844                      | 24900%      |
|             | -149            | -500                           | 233             | 43             | -381          | 399          | 106          | -626                                    | 210          | -466               | -720                                        | 275              | 394                        | 45          | 56                | 359              | 117          | -369                           | -294                   | -249                     |             |
|             | -8              | -8139                          | -9181           | -834           | -1115         | -701         | -1378        | !'                                      |              |                    |                                             |                  | ·                          | <u> </u>    |                   |                  |              |                                |                        |                          | <del></del> |
| 39(M) .     | 315             | -2345                          | 4154            | -4279          | -1396         | 4001         | -3301        | -697                                    | -3877        | 816                | 4676                                        | -3879            | -3994                      | -3361       | -3676             | -3242            | -2531        | -1114                          | -2716                  | -2629                    | 25000%      |
|             | -149            | -500                           | 233             | 43             | -381          | 399          | 106          | -626                                    | 210          | 466                | -720                                        | 275              | 394                        | 45          | 96                | 359              | 117          | 369                            | -234                   | -249                     |             |

| . 1         | -81                                    | -6139         | -9181        | -894        | -1115         | -701         | -13761       | - 1           |              |               |               |              |              |             |             | _            |                                       |               |               |               |             |
|-------------|----------------------------------------|---------------|--------------|-------------|---------------|--------------|--------------|---------------|--------------|---------------|---------------|--------------|--------------|-------------|-------------|--------------|---------------------------------------|---------------|---------------|---------------|-------------|
|             |                                        | 0,007         | 3.5.         | VI.,        |               |              |              |               |              |               |               |              |              |             | 2/00        | Line         | - A216                                | 12000         |               | 2001          | 4(4)01/     |
| 140(1)      | -2623                                  | -2122         | 5301         | 4990        | -2770         | -5102        | -5132        | 2415          | 4915         | -1532<br>-466 | -1474<br>-720 | -4791<br>275 | -4869<br>394 | -4890<br>45 | -5102<br>98 | ·4483        | -2619<br>117)                         | 3205<br>-369  | 4506<br>-294  | -3991<br>-248 | 25100%      |
|             | -149                                   | ·500          | 233          | 43          | -381          | 299<br>-701  | 106<br>-1378 | -628          | 210          | 400           | -120          | 2/0          | 334          | 451         | - 301       | w.s          | - 11/1                                | -1001         |               | 270           |             |
| - 1         | -8                                     | -8139         | -9181        | -894        | -1115         | -101         | 1010         |               |              | <del></del>   |               |              |              |             |             |              |                                       |               |               |               |             |
| 141(A)      | 3405                                   | 2528          | -4529        | 4798        | -4340         | -2751        | -3851        | -3901         | -4447        | -4351         | -3532         | -3057        | -3052        | -3976       | -1112       | ·1643        | -1844                                 | -2329         | 4572          | 4519          | 25200%      |
| -           | -149                                   | -500          | 233          | 43          | -381          | 399          | 108          | -626          | 210          | -456          | -720          | 275          | 394          | 45          | 96          | 359          | 117                                   | -369          | -234          | -249          |             |
|             | -8]                                    | -8139         | -9161        | -694        | -1115         | -701         | -1378        |               | 1            |               |               |              |              | _           |             |              |                                       |               |               |               |             |
| 142(P)      | -4853                                  | -4392         | -5213        | -5573       | -5853         | -4408        | -5077        | -6679         | -5780        | -6281         | -6067         | -5357        | 4310         | -5648       | -5396       | -5165        | -5194                                 | -6092         | 4900          | -5786         | 25300%      |
| 142(F)<br>- | -149                                   | -500          | 233          | 43          | -381          | 399          | 105          | -525          | 210          | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117                                   | -369          | -294          | -249          |             |
| -           | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -13781       | 1             |              |               |               |              |              |             |             |              |                                       |               |               |               |             |
|             |                                        |               | -            |             |               |              |              | reed          | 0601         | 227.0         | 1707          | -3921        | JEAE         | -3079       | -2169       | -4529        | -4408                                 | -5264         | 4403          | 4729          | 25400%      |
| 113(19)     | -4484                                  | -4357<br>500  | -4390        | -3992<br>43 | -5413<br>-381 | -4236<br>399 | -3307<br>105 | -5555<br>-626 | 3594<br>210  | -5171<br>-466 | -4707<br>-720 | 275          | -4535<br>394 | 45          | 96          | 359          | 117                                   | -369          | -294          | -249          | 42/1977     |
| -           | -149                                   | -500<br>-8139 | 233<br>-9181 | -894        | -1115         | -701         | -1378        | 7020          | 214          | 100           | -irvj         |              |              |             |             |              |                                       |               |               |               |             |
|             |                                        | 701007        | -4191        | wij         | 1119          | , , , ,      |              |               |              |               |               |              |              |             |             |              |                                       | `             |               |               |             |
| 144(G)      | 2157                                   | -1833         | -3983        | -4199       | -4430         | 2715         | ·3642        | -4235         | 4146         | -4489         | -3540         | -2795        | -2898        | -3661       | -3939       | 910          | ·1682                                 | -2994         | 4647          | <b>-4</b> 556 | 25500%      |
|             | -149                                   | -500          | 233          | 43          | -381          | 399          | 106          | -626          | 210          | -466          | -720          | 275          | 394          | 45          | 95          | 359          | 117                                   | -369          | -294          | -249          |             |
| <u> </u>    | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -1378        | !             |              |               |               |              |              |             |             |              | ·                                     |               |               |               | <del></del> |
| 145(P)      | -2604                                  | -2948         | -4034        | -4235       | -3544         | -3269        | -3767        | -3353         | -3912        | -3056         | 2095          | -3659        | 4036         | -3912       | 3822        | -2883        | -2963                                 | -3249         | 4027          | -3787         | 25000%      |
| 14:0(F)     | -149                                   | -500          | 233          | 43          | -381          | 399          | 105          | -625          | 210          | 466           | -720          | 275          | 394          | 45          | 96          | 359          | 117                                   | -369          | -294          | -249          |             |
| -           | -8                                     | -8139         | -9181        | -B91        | -1115         | -701         | -137E        |               |              |               |               |              |              |             |             |              |                                       |               |               |               |             |
|             |                                        |               |              |             |               |              |              |               | - racel      | -             | - Fernal      | 2414         | 1001         | FEAR        | ranti       | 1707         | 1042                                  |               | 1001          | -5849         | 25700%      |
| 146(G)      | 4435                                   | -4203         | -5092        | -5462       | -5893         | 3834         | -5028<br>108 | -6627<br>-626 | -5765<br>210 | -6297<br>-466 | -5970<br>-720 | -5141<br>275 | -4804<br>394 | -5546<br>45 | -5385<br>96 | -4727<br>359 | -4815<br>117                          | -5862<br>-369 | -4924<br>-294 | -249          | 23100 10    |
| $\vdash$    | -149<br>-£                             | -500<br>-8139 | -9181        | -894        | -381<br>-1115 | 399<br>-701  | -1378        | -020          | 210          | ***09         | -1201         | 27.9         | 941          | 70]         |             |              |                                       |               |               | <del></del> . |             |
| <u> </u>    | 71                                     | -0100]        | -7101        | -way        | -itiv         |              | 10.01        |               |              |               |               |              |              |             |             |              |                                       |               |               |               |             |
| 147(H)      | -2569                                  | -3440         | -1867        | -1702       | -3820         | -2996        | 4731         | -3830         | 634          | -3639         | -2963         | -1838        | 1551         | -1305       | -748        | -2470        | -2510                                 | -3432         | -3434         | -2990         | 25800%      |
|             | -149                                   | -500          | 233          | 43          | -381          | 399          | 105          | -626          | 210          | -466          | -720          | 275          | 394          | 45          | 98          | 359          | 117                                   | -359          | -294          | -249          |             |
|             | -8                                     | -8139         | -9181        | -694        | -1115         | -701         | ·1376        |               |              | <u>.</u>      |               |              |              |             |             |              | · · · · · · · · · · · · · · · · · · · |               | · · ·         | <u> </u>      | <del></del> |
| 148(1)      | 194                                    | -1498         | -3256        | -2899       | -2240         | -2226        | -2291        | -1764         | -2652        | 1834          | -1430         | -2330        | -2747        | -2399       | 2684        | 567          | 2687                                  | -1484         | -2682         | -2351         | 25900%      |
| -           | -149                                   | -500          | 233          | 43          | -381          | 399          | 106          | -626          | 210          | -466          | -720          | 275          | 394          | 45          | 98          | 359          | 117                                   | -369          | -234          | -249          |             |
| •           | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | ·1378        |               |              |               |               |              |              | •           |             |              |                                       |               |               |               | <del></del> |
| 11000       |                                        | oonal         | coool        | EACOL       | 2620          | 1460/        | 16031        | .005          | -5060        | 2626          | -2570         | -4662        | 4579         | -4940       | 4923        | -4013        | -3297                                 | 3796          | 4414          | 4190          | 28000%      |
| 149(V)      | -3122<br>-149                          | -2888<br>-500 | -5092<br>233 | -5160<br>43 | -3522<br>-381 | -41E0<br>399 | -4687<br>106 | -905<br>-626  | 210          | -466          | -720          | 275          | 394          | 45          | 96          | .359         | 117                                   | -369          | 294           | -249          |             |
| $\vdash$    | -197                                   | -8139         | -9181        | -894        | -1115         | -701         | -1376        | 720           | - 1          | 1007          |               |              |              |             |             |              |                                       |               |               |               |             |
| $\vdash$    |                                        |               |              |             |               |              |              |               |              |               |               |              |              |             |             |              |                                       |               |               | المما         | - Arianti   |
| 150(R)      | -4845                                  | -4446         | -5107        | -4682       | -5507         | -412         | -3791        | -5946         | -2789        |               | -5118         | -4521        | 4754         | -3672       | 4219<br>96  | -4989<br>359 | -4832<br>117                          | -5644<br>-369 | -4538<br>-294 | -4993<br>-249 | 26100%      |
| ·           | -149                                   | -500<br>Nac   | 233          | 43          | -381          | 399          | 108          | -628          | 210          | -466          | -720          | 275          | 394          | 45          | 30          | 333          | . 111                                 | -400          | -204          | -244          |             |
| <u></u>     | -8                                     | -8139         | -9181        | 894         | -1115         | -701         | -1378        | 1             |              | L             | <del></del>   |              |              |             |             |              | <del></del>                           | <del></del>   |               |               |             |
| 151(R)      | -962                                   | -2395         | -777         | 1012        | -2721         | 76           | 1031         | -2459         | -142         |               | -1501         | -580         | -2018        | -128        | 2308        | 1224         | -66                                   | -2023         | -2585         | 1919          | 26200%      |
|             | -149                                   | -600          | 233          | 43          | -381          | 399          | 106          | -626          | 210          |               | -720          | 275          | 394          | 45          | 96          | 359          | 117                                   | -369          | -294          | -249          |             |
|             | -8                                     | -8139         | -9181        | -894        | -1115         | -701         | -1378        |               |              |               |               | _            |              |             |             |              |                                       |               |               |               |             |
| 150/5       | 1                                      | M75           | mel          | hree        | 9994          | la cos.      | -511         | -1837         | . 259        | -221          | -1156         | 520          | -2024        | 816         | -735        | -658         | 1303                                  | -287          | -2295         | 537           | 26300%      |
| 152(E)      | -902<br>-149                           | -2032<br>-500 | -899<br>233  | 2078<br>43  | -2228<br>-381 | -1934<br>339 | 105          | -1637         | 210          |               | -720          | 275          | 394          | 45          | 95          | 359          | 117                                   | -369          | -294          | -249          |             |
| <del></del> | -143                                   | -8139         | -9181        | -894        | -1115         | -701         | -1378        | 1             | -            |               | ····          |              |              |             |             |              |                                       |               |               |               |             |
|             | ــــــــــــــــــــــــــــــــــــــ |               |              |             |               |              |              |               |              |               |               |              |              |             | 1841        |              | LAGA                                  | 2000          | 2021          | 4054          | OFALSET     |
| 153(Y)      | -4920                                  | -3765         |              | -5565       | 3303          | -5093        | -1317        | -3703         |              |               | 3111          | -3732        | 4959         | -3868       | -4500       | 4356         | -4679<br>117                          | -3867<br>-369 | -565<br>-294  | 4052<br>-249  | 26400%      |
| -           | -149                                   | -500          | 233          | 43          | -381          | 399          | 106          | -626          | 210          | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 111                                   | -903          | *GH           | -240)         |             |
| <u> </u>    | -8                                     | -8139         | -9161        | -894        | -1115         | -701         | -1378        |               |              | L             |               |              |              |             |             | <del></del>  |                                       |               |               |               |             |
| L           |                                        |               |              |             |               |              |              |               |              |               |               |              |              |             |             |              |                                       |               |               |               |             |

| 154(V)      | 129           | -1901         | -939         | 821         | -2060         | -1969        | -654           | -1704         | 496                                          | -52           | -1037         | -703         | -2057        | 695         | -796         | 443         | -344         | 1871          | -2192         | -1626         | 26500%      |
|-------------|---------------|---------------|--------------|-------------|---------------|--------------|----------------|---------------|----------------------------------------------|---------------|---------------|--------------|--------------|-------------|--------------|-------------|--------------|---------------|---------------|---------------|-------------|
|             | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210                                          | -466          | -720          | 275          | 394          | 45          | \$6          | 359         | 117          | -389          | -294          | -249          | 2000076     |
| •           | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1376          |               | 1                                            |               |               |              |              |             |              |             | . ,          |               |               |               |             |
| ASS(P)      |               | MEET          | 0.11         |             | 4070          | 4650         | eiel           |               | 1000                                         | - ianal       |               |              |              |             |              |             |              |               |               |               |             |
| 155(0)      | 575<br>-149   | -2355<br>-500 | 314<br>233   | 1158<br>43  | -2675<br>-381 | -1856<br>399 | -515<br>106    | -608<br>-626  | 1502<br>210                                  | -2370<br>-466 | -1444<br>-720 | 571<br>275   | -1949<br>394 | 1876        | 419          | -764<br>359 | -822<br>117) | -1976         | -2538         | -1856         | 26600%      |
| ·           | -14-3         | -8139         | -9181        | -894        | -1115         | -701         | -1378          | 1020          | - 210                                        | -400          | -120          | 2/5          | 394          | 45          | 96           | 359         | 11/1         | -369          | -294          | -249          |             |
|             | 1             | -0104         | 3101         |             | 1119          | 701          | -1010          | —             |                                              |               |               |              |              |             |              |             |              |               |               |               |             |
| 156(G)      | -3239         | -3869         | 516          | -2361       | -6355         | 3646         | -3337          | -5629         | -3816                                        | -5498         | 4951          | -2619        | -1905        | -3167       | -4377        | -3211       | -3632        | -4837         | 4895          | -4826         | 28700%      |
|             | -149          | -500          | 232          | 44          | 381           | 399          | 105            | -627          | 211                                          | -466          | -721          | 277          | 393          | 45          | 95           | 359         | 117          | -368,         | -295          | -250          | لنسبب       |
| <u></u>     | -155          | -3318         | -9181        | -2159       | -366          | -701         | -1376          |               | <u>'                                    </u> |               |               |              |              |             |              |             |              |               |               |               |             |
| 157(G)      | 753           | -2516         | -789         | 486         | -2848         | 2300         | -672           | -2582         | 596                                          | -2529         | -1627         | 481          | -2112        | -224        | 674          | neal        | 40045        | ation         | ocos!         | 0022          | 4745.007    |
| . 107(0)    | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210                                          | -466          | 720           | 275          | 394          | 45          | 471<br>96    | -962<br>359 | -1024<br>117 | -2149<br>-369 | -2694<br>-294 | -2033<br>-249 | 27300%      |
|             | -8            | -8139         | -9181        | -894        | 1115          | -701         | -1376          | -             | ·                                            | 100           | 120]          |              | 034          | 70]         | 70           |             |              | -00-4         | 201           | -240          |             |
|             |               |               |              |             |               |              |                |               | ·····                                        |               | -             |              |              |             |              |             |              |               |               |               |             |
| 158(G)      | -52           | -2212         | -3792        | -4133       | -4698         | 3627         | -3943          | 4580          | -4356                                        | 4812          | -3907         | -3056        | -3216        | -3901       | -4170        | -1874       | 2095         | -3384         | -4734         | 4766          | 27400%      |
| <u> </u>    | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210                                          | -466          | •720          | 275          | 394          | 45          | 96           | 359         | 117          | -369          | -294          | -249          |             |
| <del></del> | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378          |               |                                              |               |               |              |              |             |              |             |              |               |               |               |             |
| 159(V)      | -2485         | -2030         | -5123        | 4769        | -2667         | -4797        | -4593          | 2349          | -4661                                        | -1545         | -1424         | 4502         | -4648        | -4554       | 4752         | -4115       | 825          | 2986          | -4159         | -3678         | 27500%      |
|             | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210                                          | 466           | -720          | 275          | 394          | 45          | 96           | 359         | 117          | -369          | -294          | -249          | 2(300 K)    |
| _           | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378          |               |                                              |               |               |              |              |             |              | 000,        |              |               |               |               |             |
|             | T             |               |              | 1           |               |              |                |               |                                              |               |               |              |              |             |              |             |              |               |               |               |             |
| 160(P)      | -2541         | -3139         | -2413        | -2753       | -4726         | -2991        | -3342          | -5055         | -3527                                        | -5058         | 4393          | 1199         | 4031         | -3244       | -3757<br>96  | -2665       | -2911        | -4148         | -4583         | -4362         | 27610%      |
| ·<br>       | -149<br>-8    | -500<br>-8139 | -9181        | -894        | -381<br>-1115 | 399<br>-701  | 106<br>-1378 ' | -626          | 210                                          | -466          | -720          | 275          | 394          | 45          | 95           | 359         | 117          | -369          | -294          | -249          |             |
|             | 1 -9          | -0109         | -3101        | -034        | -(1)0         | -701         | -(310)         |               |                                              |               |               |              |              |             |              |             |              |               |               |               |             |
| 161(C)      | 1577          | 3078          | 1357         | -656        | -2664         | -219         | 891            | -2359         | -617                                         | -2434         | -1576         | -891         | 2199         | -545        | -1093        | 872         | -1043        | -1946         | -2701         | -2102         | 27700%      |
|             | ·149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210                                          | -466          | 720           | 275          | 394          | 45          | 96           | 359         | 117          | -369          | -294          | -249          |             |
|             | -8            | -8139         | -9161        | -894        | -1115         | -701         | -1378          | ľ             |                                              |               |               |              |              |             |              |             |              |               |               |               | !           |
| 4000        | 1 0440        | - AIÂI        | amri .       | FORE        | enzal         | 2004         | 40001          | 4207          | - A2001                                      | 56(4          | Anna          | 1000         | 2000         | 0.000       | 4647         | - 100       | 4113         | 10 40         | 4470          |               |             |
| 162(L)      | -2140<br>-149 | -2404<br>-500 | -3995<br>233 | -3997<br>43 | -2053<br>-381 | 3121<br>399  | -3283<br>106   | -1687<br>-626 | -3689<br>210                                 | 3041<br>-466  | -720<br>-720  | -3360<br>275 | -3626<br>394 | -3433<br>45 | -3567<br>96  | 480<br>359  | -2414<br>117 | -1973<br>-369 | -3145<br>-294 | -2755         | 27800%      |
| <u> </u>    | -143          | -8139         | -9181        | -894        | -1115         | -701         | -1378          | -920          | 410                                          | -400          | -120          | 414          | 054          | 40          | 49           | 202         | 1111         | -303          | -234)         | -249          |             |
|             | <u> </u>      | -0100         | - 31011      | ***         |               | -701         | -1010          | <u></u>       |                                              |               |               |              |              |             |              |             | <del></del>  |               |               | <u></u>       |             |
| 163(1)      | -2527         | 2092          | -5072        | -4613       | 2047          | -4674        | -3911          | 2668          | -4413                                        | 117           | -841          | -4323        | -4439        | -4023       | <b>-4320</b> | -3916       | -2488        | 2176          | -3342         | -3040         | 27900%      |
|             | •149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210                                          | <b>-4</b> 66  | -720          | 275          | 394          | 45          | 96           | 359         | 117          | -369          | -294          | -249          |             |
|             | -8            | -8139         | -9181        | -894        | -1115         | -701         | 1376           |               |                                              |               |               |              |              |             |              |             |              | ;             |               |               |             |
| 164(A)      | 3631          | -2768         | -4492        | -4815       | -4888         | -2992        | -4271          | -4781         | 4818                                         | -5025         | -4365         | -3727        | -3728        | -4477       | 4545         | -2567       | -2762        | -3852         | 4724          | 4942          | 28000%      |
| ionpy.      | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210                                          | 466           | -720          | 275          | 394          | 45          | 96           | 359         | 117          | -369          | -294          | -249          | 2000 A      |
|             | -8            | -8139         | -9181        | -894        | -1115         | -701         | 1378           |               |                                              |               |               |              | ***          | 14          | - "          |             |              | 010[          |               | 614           | , .         |
|             |               |               |              |             |               |              |                |               |                                              |               |               |              |              |             |              |             |              | ···           |               |               |             |
| 165(V)      | -2623         | -2122         | -5301        | -4990       | -2770         | -5102        | -5132          | 2426          | -4946                                        | -1532         | -1474         | -4791        | 4869         | -4891       | -5102        | -4483       | -2619        | 3200          | 4506          | -3991         | 28100%      |
|             | -149          | -500          | 233          | 43          | -381          | 399          | 105            | -626          | 210                                          | -466          | -720          | 275          | 394          | 45          | 95           | 359         | 117          | -369          | -294          | -249          |             |
| <u></u>     | -8            | -0139         | -9161)       | -894        | -1115         | -701         | -1376          |               |                                              |               |               |              |              | ·           |              |             |              |               |               |               | <del></del> |
| 66(H)       | -495          | -2631         | 903          | -2051       | 722           | -3242        | 3763           | -2386         | -2056                                        | -2342         | -1663         | -2047        | -3330        | -1815       | -2362        | -2318       | -2233        | -2272         | -981          | 3316          | 28200%      |
|             | -149          | -500          | 233          | 43          | -381          | 399          | 105            | -626          | 210                                          | -466          | -720          | 275          | 394          | 45          | 96           | 359         | 117          | -369          | -29           | -249          | 20240 14    |
|             | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378          | · **          |                                              |               | ,,,,          | <u> </u>     |              |             |              |             |              |               |               |               |             |
|             |               |               |              |             |               |              |                |               |                                              |               |               |              |              |             |              |             |              |               |               |               |             |
| 67(0)       | -4589         | 4392          | -3927        | -4146       | -5099         | -4221        | -4099          | -5973         | -3840                                        | -5564         | -5304         | -4230        | 4693         | 4575        | 3828         | -4704       | -4772        | -5612         | 4577          | -4751         | 28300%      |
|             | -149          | -500          | 233          | 43          | -381          | 399          | 105            | -626          | 210                                          | -466          | -720          | 275          | 394          | 45          | 96           | 369         | 117          | -369          | -234          | -249          |             |
|             | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378          |               |                                              |               | <del></del>   |              |              |             |              |             |              |               | <u> </u>      |               |             |
| 68(D)       | -2873         | -4505         | 3943         | -902        | -4948         | -2833        | -2157          | -5087         | -2604                                        | -4922         | 4387          | 428          | 3235         | -1872       | -3575        | -2522       | -3009        | 4491)         | 4932          | -3946         | 28400%      |
| <u></u>     | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210                                          | 466           | -720          | 275          | 394          | 45          | 98           | 359         | 117          | -369          | -294          | -249          |             |
|             |               |               |              |             |               |              |                |               |                                              |               |               |              |              |             |              |             |              |               |               |               | 7           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8                   | -8139                  | -9181          | -894           | -1115          | -701                  | -1378                                  |               |              | <u> </u>              |               |              |                      |             |             |                 |               |               |               |                    |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|----------------|----------------|----------------|-----------------------|----------------------------------------|---------------|--------------|-----------------------|---------------|--------------|----------------------|-------------|-------------|-----------------|---------------|---------------|---------------|--------------------|---------------------------------------------------|
| 169(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ** 1716              | 1181612<br>212500      | 214            | 118            | 11:21696       | 2012                  | 816                                    | 129           | 7327750      | 5.52                  | 1180          | 943          | (F1212)              | 53B         | , 1013      | * 21056         | 1834          | 1275          | (51958        | × 635              | 28500 V                                           |
| A STATE OF THE STA | ranikara<br>Panikara | ii: 8139               | 91B1           | - KBH          | 1994116        | #EX101                | ************************************** | D-3094        | britane      | CARCARY<br>CONCESSION | electrical.   | in and       | Sichelly<br>Richtsch |             | eci-merini  | umpo)<br>uminum | ing ing ing   |               | S-204         | - 140<br>- 170 gra | ing (Salah)<br>Terretakan dari<br>Terretakan dari |
| 170(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1545<br>-149        | -2420<br>-500          | 1001           | -1518<br>43    | -4049<br>-391  | -2206<br>- 399        | -2206<br>108                           | -3839<br>-626 | -2264<br>210 | -1938<br>-466         | -3103<br>-720 | -162ñ<br>275 | -2814<br>394         | -1909<br>45 | -2758<br>98 | 2665<br>359     | 2313<br>117   | -3045<br>-369 | 4143          | -3590              | 28600%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8                   | -8139                  | -9181          | -894           | -1115          | -701                  | -1376                                  | -020          | 1            | **08)                 | -120          | 210          | 334                  | 49          | 30]_        | 309             | 1111          | -303          | -294          | -249               |                                                   |
| 171(G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2999<br>-149        | -3461<br>-500          | -2978<br>233   | -3207<br>43    | -5161<br>-381  | 3669<br>399           | -3454<br>105                           | -5283<br>-626 | 15<br>210    |                       | -4565<br>-720 | -3174<br>275 | -3946<br>394         | -3312<br>45 | -3140<br>98 | -3128<br>359    | 3317          | -4492<br>-369 | -4622<br>-294 | -4749<br>-249      | 28700%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8                   | -8139                  | -9181          | 894            | -1115          | -701                  | -1378                                  |               | ,            | ***                   |               |              |                      | - 190       | - 30        |                 |               | - 603         |               |                    |                                                   |
| 172(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -687<br>-149         | -2349<br>-500          | ·736<br>233    | 911<br>43      | -2668<br>-361  | -1850<br>399          | -618<br>106                            | -2415<br>-628 | 711<br>210   | ·2363                 | -1440<br>-720 | 1660<br>275  | -1954<br>394         | 436<br>45   | 799<br>98   | 671<br>359      | 1230<br>117   | -539<br>-369  | •2534<br>•294 | -1855<br>-249      | 28800%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8                   | -8139<br>-             | -9181          | -834           | -1115          | -701                  | -1378                                  | ·             |              |                       |               |              |                      |             |             |                 |               |               |               |                    |                                                   |
| 173(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3631<br>-149         | -2768<br>-500          | -4492<br>233   | 4815<br>43     | -4868<br>-381  | ·2992<br>399          | -4271<br>106                           | -4781<br>-625 | -4818<br>210 | -5025<br>-466         | 4365<br>-720  | 3727<br>275  | -3728<br>394         | -4477<br>45 | ·4545<br>96 | -2567<br>369    | -2762<br>117  | -3852<br>-369 | -4724<br>-234 | -4942<br>-249      | 26990%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8                   | -8139                  | -9181          | -894           | -1115          | -701                  | -1378                                  |               |              |                       |               |              |                      |             |             |                 |               |               |               |                    |                                                   |
| 174(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1368<br>-149        | 2597<br>500            | -1358<br>233   | -720<br>43     | -2953<br>-381  | -2298<br>3 <b>9</b> 9 | 1933<br>108                            | -2603<br>-626 | 1975<br>210  | 851<br>456            | -1706<br>-720 | -958<br>275  | -2360<br>394         | 859<br>45   | 1012<br>96  | -1273<br>359    | 1094          | -2245<br>-369 | -2690<br>-294 | -2165<br>-249      | 29000%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -8                   | -8139                  | -91B1          | -894           | -1115          | -701                  | -1378°                                 |               |              |                       | <del></del>   |              |                      | ·           |             | ···             | <del>,-</del> | <del></del>   |               | <u>`</u>           | <del></del>                                       |
| 175(D) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -27<br>-149          | -2613<br>-500          | 2320<br>233    | 1049<br>43     | -2923<br>-381  | -1962<br>399          | 1973                                   | -2684<br>-628 | 544<br>210   | -2624<br>-466         | -1712<br>-720 | 1408<br>275  | -2115<br>394         | 345<br>45   | -869<br>98  | 969<br>359      | -1056<br>117  | -2231<br>-369 | -2793<br>-294 | -2087<br>-249      | 29100%)                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                    | -8139                  | -9161          | -894           | -1115          | -701                  | 1378                                   |               |              |                       |               |              |                      |             |             |                 |               |               |               |                    |                                                   |
| 176(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1096<br>-149        | -938<br>-500           | 233            | -2658<br>43    | -899<br>-381   | -2643<br>399<br>-701  | -1513<br>105<br>-1378°                 | 1265<br>-626  | 1006<br>210  | 1388<br>-455          | -124<br>-720  | -2232<br>275 | -2668<br>394         | -1950<br>45 | ∙2151<br>98 | •1725<br>359    | 311<br>117    | 1669<br>-369  | ·1425         | -249               | 29200%                                            |
| 177(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3342                 | -8139<br>-1825         | -9181<br>-4061 | -834)<br>-4295 | -1115<br>-4368 | . 111                 | -1575                                  | 4129          | 4159         | -412                  | -3484         | -2820        | -2903                | 3689        | 3929        | -1469           | 409           | -2849         | 4593          | 4508               | 293001/                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -149                 | -1026<br>-500<br>-8139 | 233<br>-9181   | 43             | -381<br>-1115  | 399                   | 106                                    | 626           | 210          | -466                  | -720          | 275          | 394                  | 45          | 96          | 359             | 117           | -369          | 294           | -249               | 1999071                                           |
| 178(L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -4414                | -3800                  | -5638          | -5628          | -2290          | -4980                 | 4626                                   | -1886         | -5423        | 3316                  | •1236         | ·5514        | 4997                 | -4750       | -5002       | -5379           | 4399          | -2629         | -3665         | -3690              | 29400%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -149                 | -500<br>-8139          | 233<br>-9181   | 43             | -381<br>-1115  | 399<br>-701           | 106                                    | -626          | 210          | -456                  | -720          | 275          | 394                  | 45          | 96          | 359             | 117           | 369           | -294          | -248               |                                                   |
| 179(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2216                 | -1831                  | -3961          | -4157          | -4409          | 656                   | -3603                                  | 4213          | 4076         | -4452                 | -3514         | -2782        | -2892                | -3513       | -3895       | 2686            | -1675         | -2982         | 4623          | -4523              | 29500%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -149                 | -500<br>-8139          | 233<br>-9181   | 43<br>-894     | -381<br>-1115  | 399<br>-701           | 106<br>-1378                           | -628          | 210          | -466                  | -720          | 275          | 394                  | 45          | 96          | 359             | 117           | -369          | -294          | -249               |                                                   |
| 180(Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3634                 | -3050                  | -4918          | -4972          | 36             | 4597                  | -1405                                  | 223           | -4437        | -250                  | -1998         | -3545        | -4494                | -3522       | -4004       | -3782           | -3536         | -2621         | 2928          | 4349               | 29500%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -149<br>-6           | -500<br>-8139          | 233<br>-9181   | 43<br>-894     | -381<br>-1115  | 395<br>-701           | 105<br>-1376                           | -528          | 210          | 466                   | -720          | 275          | 394                  | 45          | 96          | 359             | 117           | -369          | -294          | -249               |                                                   |
| 181(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3391                 | -1860                  | 3998           | 4279           | -4411          | -2128                 | -3684                                  | -4207         |              | -4490                 | -3565         | -2837        | -2929                | -3729       | -3959       | 706             | -1716         | -3001         | 4536          | 4534               | 29700%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -149<br>-8           | -500<br>-8139          | 23.)<br>-9181  | 43<br>-894     | -381<br>-1115  | 899<br>-701           | 105<br>-1378 °                         | -528          | 210<br>•     | -466                  | -720          | 275          | 394                  | 45          | 98          | 359             | 117           | -369          | -384          | -249               | ·                                                 |
| 182(K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 370                  | 307                    | 113            | -351           | -2280<br>-381  | -1925                 | -615<br>106                            | 324<br>-626   | 1883         | -2040                 | -1194         | -632<br>275  | -2022<br>384         | -205<br>45  | -736<br>96  | 1541<br>359     | 14            | -1628<br>-369 | -2330<br>-234 | -1726<br>-249      | 29800%                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -149<br>8            | -500<br>-8139          | 233<br>-9181   | -894           | -361           | 399<br>-701           | -1378                                  | -626          | 210          | -466                  | 720]          | 213          | 324                  | 93]         |             | 309             | ш             | 1000          | •201          | -240               | <del></del>                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        |                |                |                |                       |                                        |               |              |                       |               |              |                      |             |             |                 | <del></del>   |               |               |                    |                                                   |

| 182(C) {        | 2572          |               |                   | March Marchael | 4575          |              | 318          |                            |                            | 7.466         | 376           | 2958               | 3070         | 3837         | 4092        | 1679            | 1898            | 3191                             | 4701          | 4686          | 2910078    |
|-----------------|---------------|---------------|-------------------|----------------|---------------|--------------|--------------|----------------------------|----------------------------|---------------|---------------|--------------------|--------------|--------------|-------------|-----------------|-----------------|----------------------------------|---------------|---------------|------------|
|                 | 149<br>1 8    |               | 23)<br>9181       | 1.5 %<br>28 %  |               | 399<br>701   |              | eran <b>626</b><br>Steware | ∋ix- <b>.210</b><br>Stoken | 464<br>461    | -51-720       | ista 175<br>Reguer | 394          | 6 45 V       | 96          | 43 <b>359</b> ( | iioiMi<br>Banks | aa <b>.369</b><br><i>aa.</i> 466 | 72.4          | 249           |            |
|                 |               |               |                   |                |               |              |              |                            |                            |               |               |                    |              |              |             |                 |                 |                                  |               |               |            |
| 184(1)          | -2178<br>-149 | -1808<br>-500 | -4630<br>233      | 4153<br>43     | -2034<br>-381 | -4190<br>399 | -3417<br>106 | 3121<br>-625               | -3909<br>210               | -456          | -1023<br>-720 | 698<br>275         | -4099<br>394 | -3656<br>45  | -3864<br>96 | -3388<br>359    | -2148<br>117    | 1742<br>-369                     | -3147<br>-284 | -2761<br>-249 | 30006%     |
|                 | -8            | -8139         | -9181             | -894           | -1115         | -701         | -1378        |                            | •                          |               |               |                    |              |              |             |                 |                 |                                  |               | ••••          |            |
| 185(G)          | -4435         | -4203         | -5092             | -5462          | -5893         | 3834         | -5028        | -6627                      | -5765                      | -6297         | -5970         | -5141              | -4804        | -5548        | -5385       | -4727           | -4815           | -5862                            | -4924         | -5849         | 30100%     |
|                 | -149          | -500          | 233               | 43             | -381          | 399          | 106          | · <b>62</b> 6              | 210                        | -466          | -720          | 275                | 394          | 45           | 95          | 359             | 117             | -369                             | -294          | -249          | 30,00%     |
|                 | -8            | -8139         | -9181             | -894           | -1115         | -701         | -1378        | ·                          | <u>'</u>                   |               |               |                    |              |              |             |                 |                 |                                  |               |               |            |
| 186(G)          | 1392          | 2751          | -4353             | 4536           | -4308         | 2864         | -3681        | -4084                      | -4233                      | -4354         | -3425         | -2859              | -2890        | -3744        | 3957        | 712             | -1658           | -2914                            | 4553          | -4470         | 30200%     |
|                 | -149<br>-8    | -500<br>-8139 | 233<br>•9181      | -894           | -381<br>-1115 | 399<br>-701  | 106<br>-1378 | -626                       | 210                        | -466          | -720          | 275                | 394          | 45           | 96          | 369             | 117             | -369                             | 234           | -249          |            |
|                 |               |               |                   | ·              |               |              |              |                            |                            |               |               |                    |              |              |             |                 |                 |                                  |               |               |            |
| 197(G)          | 855<br>-149   | -1822<br>-500 | -3738<br>233      | -3769<br>43    | -4188<br>-381 | 2507<br>399  | -3358<br>106 | -3950<br>-626              | -3667<br>210               | -4196<br>-466 | -3283<br>-720 | -2667<br>275       | 986<br>394   | -3302<br>45  | -3621<br>96 | -1441<br>359    | 2334            | -2867<br>-369                    | -4408<br>-294 | -4238<br>-249 | 20300%     |
|                 | -8            | -8139         | -9181             | -694           | -1115         | -701         | -1378        | 1                          | 1                          | 400           | -1201         | - 279              | 324          | 40           | 30]         | 343             |                 | -303                             | -234          | -2+3          |            |
| 88(R)           | -3706         | -3692         | -4430             | -3846          | 1391          | -4057        | -2273        | -3795                      | -1906                      | -3356         | -3181         | 3458               | -4263        | -2675        | 3948        | -3768           | -3671           | -3813                            | -2293         | -1328         | 30400%     |
| 190(1)          | 149           | -500          | 233               | 43             | -381          | 399          | 106          | -626                       | 210                        | -466          | -720          | 275                | 394          | 45           | 96          | 359             | 117             | -369                             | -234          | -249          | 3040070    |
|                 | -155          | -8139         | -3345             | -894           | -1115         | -701         | -1376        |                            |                            |               |               |                    |              |              |             |                 |                 |                                  |               |               |            |
| 189(A)          | 2844          | -1670         | -3814             | -3873          | 4048          | -1958        | -3318        | -3787                      | -3686                      | -4061         | -3156         | -2598              | -2734        | -3301        | -3572       | 1088            | 1907            | -2713                            | 4286          | -4136         | 38500%     |
|                 | -149          | 500           | 233<br>-9034      | 43             | -381          | 399          | 106          | -626                       | 210                        | -466          | -720          | 275                | 394          | 45           | 96          | 359             | 117             | -369                             | -294          | -249          |            |
|                 | -8            | -7992         | -3004             | -894           | -1115         | -1303        | -750         | <u> </u>                   |                            |               |               |                    |              | <del> </del> |             |                 | <del></del>     |                                  |               |               |            |
| 190(G)          | 4176          | -3995         | 4655              | -5222          | -5686         | 3828         | -4823        | -5386                      | -5533                      | -6087         | -5741         | -4896              | -4606        | -5312        | -5176       | -4461           | -4560           | -5613                            | 4754          | -5635         | 30500%     |
| -               | -149<br>-8    | -500<br>-7992 | 233<br>-9034      | -894           | -381<br>-1115 | .399<br>-422 | 106<br>-1980 | -626                       | 210                        | ·466          | -720          | 275                | 394          | 45           | 96          | 359             | 117             | -369                             | -294          | -249          |            |
| 0446            | À100          | - March       | r And             |                |               | ingel        |              | or and                     | 4000                       | 42.10         | 1454          | 47.89              | 4040         | Jesal        | 1701        | 4440            | 200             | Antal                            | (464)         | 9700          | ********   |
| 91(V)           | -2496<br>-149 | -2036<br>-500 | -5139<br>233      | -4788<br>43    | -2880<br>-381 | -4825<br>399 | -4537<br>106 | 2522<br>-626               | -4686<br>210               | -1549<br>-466 | -1431<br>-720 | -4527<br>275       | -4668<br>394 | -4584<br>45  | -4783<br>98 | -4148<br>359    | 629<br>117      | 2919<br>-369                     | -4191<br>-294 | -3706<br>-249 | 30700%     |
|                 | -8            | -8139         | -9181             | -894           | -1115         | -701         | -1378        |                            |                            |               |               |                    |              |              | ==:1_       |                 |                 |                                  |               |               |            |
| 92(1)           | -2760         | -2307         | -5270             | -4785          | 1172          | -4884        | -3992        | 3346                       | 4576                       | 662           | -572          | -4539              | 4535         | -4008        | -4400       | -4134           | -2703           | 757                              | -3223         | -3041         | 30800%     |
|                 | -149          | -500          | 233               | 43             | -381          | 399          | 106          | -626                       | 210                        | -466          | -720          | 275                | 394          | 45           | 96          | 359             | 117             | <b>-36</b> 9                     | 294           | -248          |            |
|                 | -8            | -8139         | 9181              | -B94           | -1115         | -701         | -13/8        |                            | <u> </u>                   | ·             |               |                    |              | · · ·        |             |                 |                 |                                  |               |               | ·          |
| 93(E)           | 454           | -3086         | -801              | 3279           | 4125          | -2346        | -1868        | -3919                      | -1868                      | -3932         | -3156         | -1291              | 1208         | -1533        | -2450       | -1842           | -2097           | -3305                            | 4121          | -3395         | 30900%     |
| ·               | -149<br>-8    | -500<br>-8139 | 233<br>-9181      | 43<br>-894     | -381<br>-1115 | 399<br>-701  | 106<br>-1378 | -626                       | 210                        | -466          | -720          | 275                | 394          | 45           | 96          | 359             | 117             | -369                             | -294          | -249          |            |
|                 |               |               |                   |                |               |              |              |                            | <del></del>                |               |               |                    |              |              |             |                 |                 |                                  | · · · · · ·   |               |            |
| 194(T)          | -2738<br>-149 | -3109<br>-500 | -4509<br>233      | -4810<br>43    | -4918<br>-381 | -3305<br>399 | -4346<br>106 | -4865<br>-628              | -4769<br>210               | -5072<br>-466 | -4551<br>-720 | -3987<br>276       | -3998<br>394 | -4580<br>45  | -4545<br>96 | -2999<br>359    | 4033<br>117     | -4113<br>-369                    | -4684<br>-284 | -4915<br>-249 | 31000%     |
|                 | -8            | -8139         | -9181             | -834           | -1115         | -701         | -1376        |                            |                            | 1700]         | -120          | 214                |              | 70]          | 399         | 339             | ***             | - 1000                           | -2271         |               |            |
| 95(T)           | -1323         | -1975         | -276 <del>6</del> | -2978          | -4207         | -2152        | -3105        | -4004                      | -3295                      | -4229         | -3354         | 134                | -2901        | -2988        | -3387       | -113            | 3742            | -2969                            | -4405         | -4119         | 31160%)    |
| <del>~(')</del> | -149          | -500          | 233               | 43             | -381          | 399          | 106          | -626                       | 210                        | -466          | -720          | 275                | 394          | 45           | 96          | 359             | 117             | -369                             | -294          | -249          | 911\$11/4] |
|                 | -8            | -8139         | -9181             | -894           | -1115         | -701         | -1378        |                            |                            |               |               |                    |              |              |             |                 |                 |                                  |               |               |            |
| 96(F)           | 4110          | -3437         | -5436             | -5431          | 4216          | -5143        | -2169        | -1742                      | -5074                      | 563           | -1124         | -4290              | 4871         | -3987        | -4561       | 4547            | -4016           | -2374                            | -1356         | -292          | 31200%     |
|                 | -149          | -500          | 233               | 43             | -381          | 399          | 106          | -626                       | 210                        | -466          | -720          | 275                | 394          | 45           | 96          | 359             | 117             | -369                             | -294          | -249          | كنب        |
|                 | -8            | -8139         | <b>-91</b> 81     | -894           | -1115         | -701         | -1378        |                            |                            |               |               |                    |              |              |             |                 | <del></del>     |                                  |               |               |            |
| 97(K)           | -111          | -2844         | -1470             | 1220           | -3294         | -2415        | -860         | -2939                      | 2448                       | -2798         | -1945         | -1056              | 2475         | 767          | 2054        | 1421            | -1432           | -2644                            | -2868         | -2356         | 31300%     |
|                 | -149          | -500          | 233               | 43             | -361          | 399          | 106          | -626                       | 210                        | -466          | -720          | 275                | 394          | 45           | 96          | 359             | 117             | -369                             | -294          | -249          |            |

|                 | -8    | -8139 | -9181 | -894  | -1115 | -701  | -1378   |       | · -      |        |        |              |       |              |       |        |       |        |       |       |                                         |
|-----------------|-------|-------|-------|-------|-------|-------|---------|-------|----------|--------|--------|--------------|-------|--------------|-------|--------|-------|--------|-------|-------|-----------------------------------------|
| 198(E)          | 545   | -3735 | 1715  | 2880  | 3981  | -2308 | -1442   | -3816 | -1408    | -3725  | -2924  | -909         | -2713 | 1281         | -2087 | -1777] | -2011 | -3331  | -3909 | -3048 | 31400%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 186     | -626  | 210      |        | -720   | 275          | 394   | 45           | 96    | 359    | 117   | -369   | -294  | -249  | - VI-100 /c                             |
| <u> </u>        | -9    | -8139 | -9181 | -894  | -1115 | -701  | -137B   |       | 1        |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 199(E)          | 4574  | 4565  | -2714 | 3919  | -5655 | -3995 | -3886   | -6219 | 4238     | -5698  | -5604] | -3415        | -4513 | -3838        | -4570 | -4456  | 4726  | -5788  | 4878  | -5197 | 31500%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 106     | -626  | 210      | -456   | -720   | 275          | 394   | 45           | 96    | 359    | 117   | -369   | -294  | -248  | \$1900                                  |
|                 | -8    | 8139  | -9181 | -894  | -1115 | -701  | -1376   |       | ı        |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 200(T)          | -1211 | 1331  | -3446 | -2962 | -1399 | -2495 | -1930   | -869  | -2610    | -1374  | -769   | -2403        | -2615 | -2309        | -2526 | - 1585 | 3305  | 195    | -1933 | 1430  | 31608%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 106     | 626   | 210      | -466   | -720   | 275          | 394   | 45           | 98    | 359    | 117   | -359   | -294  | -249  | V100020                                 |
|                 | -8    | -6139 | -9181 | -894  | -1115 | -701  | -1378   |       | <u>'</u> |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 201(E)          | -1941 | -3222 | -921  | 3293  | -3618 | -2473 | -1316   | -3186 | 916      | -3225  | -2465  | -1147]       | -2749 | -923         | -1064 | -1790  | -1902 | -171   | -3398 | -2802 | 31700%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 106     | -626  | 210      | -466   | -720   | 275          | 394   | 45           | 96    | 359    | 117   | -365   | -284  | -249  | VIIV                                    |
|                 | -8    | -8139 | -9181 | -894  | -1115 | -701  | -1378   |       |          |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 202(1)          | -1286 | ∙1B98 | -3764 | -4016 | -4329 | -2157 | -3572   | -4120 | -3959    | -4408  | -3517  | -2789        | 2947  | -3588        | -3797 | 697    | 3756  | -2989  | 4554  | -4399 | 31806%                                  |
|                 | -149  | -500  | 233   | 43    | -391  | 399   | 105     | -626  | 210      | -466   | -720   | 275          | 394   | 45           | 95    | 359    | 117   | -369   | -284  | -249  | A 1989 (C                               |
|                 | -8    | -8139 | -9161 | -894  | -1115 | -701  | -1378 ' |       |          |        |        |              |       |              |       |        |       |        |       |       | <u> </u>                                |
| 203(D)          | 4580  | -4701 | 4174  | -3014 | -5700 | -3967 | -3905   | -6376 | 4478     | -6024  | -5744  | -3355        | -4501 | -3B70)       | -4926 | -4440) | 4750  | -5894] | 4922  | -5231 | 31900%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 108     | -626  | 210      | -456   | -720   | 275          | 394   | 45           | 96    | 359    | 117   | -359   | -294  | -249  |                                         |
|                 | -8    | -8139 | -9181 | -894  | -1115 | -701  | -1378   |       |          |        |        |              |       |              |       |        |       |        |       |       | ·                                       |
| 204(L)          | -3785 | -3122 | -6060 | -5527 | -1359 | -5814 | -4569   | 1065  | -5292    | 3069   | -146   | <b>-5564</b> | 4963  | 4163         | -4828 | -5215  | -3571 | -1279  | -3159 | -3298 | 32000%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 106     | ·626  | 210      | 466    | -720   | 275          | 394   | 45           | \$6   | 369    | 117   | -369   | -294  | -249  | OLOVO K                                 |
| $\cdots$        | -6    | -8139 | -9181 | -894  | -1115 | -701  | -1378   |       |          |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 205(F)          | 3171  | -3220 | -5271 | -5259 | 4266  | -4892 | -2120   | 417   | 4916     | -1143  | -1314  | -4142        | 4753  | -3956)       | -4473 | -4270  | -3740 | -1899  | -1349 | -289  | 32100%                                  |
|                 | -149  | -500  | 213   | 43    | -381  | 399   | 106     | -626  | 210      | 456    | -720   | 275          | 384   | 45           | 98    | 359    | 117   | -369   | -294  | -249  |                                         |
|                 | -8    | -8139 | -9181 | -894  | -1115 | -701  | -13701  |       |          |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 206(G)          | 4135  | 4203  | -5092 | 5462  | -5893 | 3834  | 5028    | -6627 | 5765     | -8237  | -5970  | -5141        | 4804  | -5546        | -5385 | 4727   | -4815 | -5862  | 4924  | -5849 | 32200%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 106     | -626  | 210      | 466    | -720   | 276          | 394   | 45           | 96    | 359    | 117   | -369   | -294  | -249  |                                         |
|                 | -8    | -8139 | -9181 | -894  | -1115 | -701  | ·1378   |       |          |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 207(E)          | 4574  | 4665  | -2714 | 3919  | -5655 | -3995 | -3886   | -6219 | -4238    | -5898  | -5604  | -3415        | 4513  | <b>-3338</b> | 4570  | -4455  | 4726  | -5786  | -4878 | -5197 | 32300%                                  |
| •               | -149  | -500  | 233   | 43    | -381  | 399   | 106     | -626  | 210      | -456   | -720   | 275          | 394   | 45           | 96    | 359    | 117   | -369   | 294   | -249  | *************************************** |
|                 | -8    | -8139 | -9181 | -854  | -1115 | -701  | -1378   |       |          |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 208( <b>0</b> ) | -3157 | -3746 | -3170 | -2450 | -4497 | -3515 | -1763   | -4151 | 443      | -3809  | -3189  | -2392        | -3620 | 4200         | 1284  | -3063  | -2944 | -3900  | 3556  | -3420 | 32400%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 105     | -626  | 210      | -466   | -720   | 275          | 394   | 45           | 96    | 369    | 117   | -369   | -294  | -249  |                                         |
| · l             | -8    | -8139 | -9181 | -894  | -1115 | -701  | ·1378 ° |       |          |        |        |              |       |              |       |        |       |        |       |       | <del></del> ,                           |
| 209(A)          | 2672  | -1334 | -3316 | -2853 | -1740 | 371   | -2072   | 483   | -2577    | -1549  | -928   | -2359        | -2798 | -2295        | -2567 | -1629  | 191   | 932    | -2245 | -1899 | 32500%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 108     | -626  | 210      | -466   | -720   | 275          | 394   | 45           | 98    | 359    | 117   | -369   | -294  | -249  |                                         |
| <u> </u>        | -6    | -6139 | -9181 | -894  | -1115 | -701  | -1378   |       |          |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 210(V)          | -2620 | -2125 | -5293 | -4983 | -2755 | 5076  | -5100   | 1877  | 4932     | -1522) | -1466  | -4777        | -4855 | -4870        | -5062 | -4456  | -2619 | 3416   | -4480 | -3989 | 32500%                                  |
|                 | -149  | -500  | 233   | 43    | -381  | 399   | 106     | -626  | 210      | 466    | -720   | 275          | 394   | 45           | 96    | 359    | 117   | -369   | 294   | 249   |                                         |
| <u> </u>        | -8    | -8139 | -9191 | -694  | -1115 | -701  | •137B   | ,     |          |        |        |              |       |              |       |        |       |        |       |       |                                         |
| 211(L)          | -4414 | -3800 | -5638 | -5628 | -2290 | 4980  | -4528   | -1886 | -5423    | 3316   | -1236  | -5514        | -4997 | 4750         | -5002 | -5379  | -4399 | -2629  | -3665 | -3690 | 32700%                                  |
| • • •           | -149  | ·500  | 233   | 43    | -381  | 399   | 106     | -626  | 210      | -466   | -720   | 275          | 394   | · 45         | 98    | 359    | 117   | -369   | -294  | -249  |                                         |
|                 | -8    | -8139 | -9181 | -694  | -1115 | -701  | -1376*  | 1     |          |        |        |              |       |              |       |        |       |        |       |       |                                         |
|                 |       |       |       |       |       |       |         |       |          |        |        |              |       |              |       |        |       |        |       |       |                                         |

| 212(C)   | -2243         | 5944          | -4840          | -4445       | -1998         | -3905         | -3598          | -31           | -4138        | 449           | -930          | -3902        | 4040          | -3718       | -4010       | -3184        | -2306        | 1347          | -3209         | -2883         | 32800%      |
|----------|---------------|---------------|----------------|-------------|---------------|---------------|----------------|---------------|--------------|---------------|---------------|--------------|---------------|-------------|-------------|--------------|--------------|---------------|---------------|---------------|-------------|
| -        | -149          | -500<br>-8138 | 233<br>-918i   | -894        | -381<br>-1115 | . 399<br>-701 | 106<br>-1378   | -626          | 210          | -466          | -720          | 275          | 394           | 45          | 96          | 359          | 117          | -369          | -284          | -249          |             |
|          |               |               |                |             |               |               |                |               |              |               |               |              |               |             |             |              |              |               |               |               |             |
| 213(G)   | -4435<br>-149 | -4203<br>-500 | -50 <b>9</b> 2 | -5462<br>43 | -5893<br>-381 | 3834<br>399   | -5028<br>106   | -6627<br>-626 | -5765<br>210 | -6297<br>-466 | -5970<br>-720 | -5141<br>275 | -4804<br>394  | -5546<br>45 | -5385<br>95 | -4727<br>359 | -4915<br>117 | -5862<br>-369 | -4924<br>-294 | -5849<br>-249 | 32900%      |
|          | -8            | -8139         | -91BI          | -694        | -1115         | -701          | -137B          | - 1           | 219          | ****          | -120          | 279          |               | 761         |             | 999          | - 1111       |               | -271          | -243          |             |
| 214(G)   | -677          | -2128         | -3838          | 4171        | -4647         | 3536          | -3816          | -4506         | 4310         | -4749         | -3857         | -3809        | -3149         | -3871       | -4137       | -1784        | -2005        | -3297         | 4725          | 4735          | 33000%      |
| •        | -149          | -500          | 233            | 43          | -381          | 399           | 106            | -626          | 210          | -466          | -720          | 275          | 394           | 45          | 96          | 359          | 117          | -369          | -294          | -249          | 99289 /5    |
|          | -6            | -8139         | -9181          | -894        | -1115         | -701          | -1378          |               |              |               |               |              |               |             |             |              |              |               |               |               | · · · · · · |
| 215(V)   | 378           | 724           | -3707          | -3104       | -1180         | -2986         | -1919          | 1210          | -2734        | 1302          | -359          | -2627        | -3014         | -2382       | -2566       | -2089        | 1123         | 1949          | -1773         | -1423         | 33100%      |
|          | -149          | -500<br>-8139 | 233<br>-9161   | 43          | -381<br>-1115 | 399<br>-701   | 106<br>-1376°  | -626          | 210          | 466           | -720          | 275          | 394           | 45          | 98          | 359          | 117          | -369          | -294          | -249          |             |
|          | -0            | -5105         | -3101          | -094        | -1110         | -//1          | -1310          |               |              |               |               |              |               |             |             |              |              |               | <del></del> _ |               |             |
| 218(N)   | -948          | -1407         | -1515          | 158         | -1452         | -2164         | 1677           | -1030         | -821         | -1302         | 1976          | -1113        | 2245          | -718        | -1173       | 773          | 1715         | 1332          | -1794         | -1343         | 33200%      |
| -        | -149          | -500<br>-8139 | 233<br>-9181   | -894        | -381<br>-1115 | 399<br>-701   | 106<br>-1376   | -626          | 210          | -466          | -720          | 275          | 394           | 45          | 96          | 359          | 117          | -369          | -294          | -249          |             |
|          |               |               |                |             |               |               |                |               |              |               |               |              |               |             |             |              |              |               |               |               |             |
| 217(E)   | 1397          | -2528<br>-500 | -725<br>233    | 2286<br>43  | -2932<br>-381 | 240<br>399    | -791<br>106    | -2681<br>-626 | 328<br>210   | -2646<br>-466 | -1744<br>-720 | -674<br>275  | -2162<br>394  | -351<br>45  | -939<br>96  | 545<br>359   | -1095<br>117 | -2227<br>-369 | -2828<br>-294 | -2143<br>-249 | 33300%      |
| -        | -8            | -8139         | -9181          | -894        | -1115         | -701          | -1378          |               |              |               |               |              |               |             |             |              |              |               |               |               |             |
| 218(L)   | -3705         | -3122         | -6060          | -5527       | -1359         | -5814         | -4569          | 1065          | -5292        | 3069          | -146          | -5564        | <b>-49</b> 63 | ·4163       | -4828       | -5215        | -3671        | -1279         | -3159         | -3198         | 33400%      |
| -        | -149          | -500          | 233            | 43          | -381          | 399           | 106            | -626          | 210          | -466          | -720          | 275          | 394           | 45          | 96          | 359          | 117          | -369          | -294          | -249          |             |
|          | -8            | -8139         | -9181          | -854        | -1115         | -701          | -1378          |               |              |               |               |              |               |             |             |              |              |               |               |               |             |
| 219(V)   | -2600         | -2108         | -5251          | -4894       | -2568         | -5025         | -4783          | 2479          | -4810        | -1354         | 1358          | -4683        | 4772          | -4654       | -4895       | -4362        | -2594        | 3018          | -4181         | -3758         | 33500%      |
|          | -149<br>-8    | -500<br>-8139 | 233<br>-9181   | 43<br>-894  | -381<br>-1115 | 399<br>-701   | 106<br>-1378)* | 626           | 210          | -466          | -720          | 275          | 394           | 45          | 96          | 359          | 117          | -369          | -294          | -243          |             |
|          | -0            | -0103         | -31011         | -034        | 11119         | -7011         | -10104         |               |              |               |               |              |               |             |             |              |              |               |               |               |             |
| 220(K)   | -1633         | -2905         | -1573          | 708         | -3375         | -2487         | -900<br>106    | -3003<br>-628 | 2925         | -2849         | -2008<br>-720 | -1128<br>275 | -2541<br>394  | 1714<br>45  | 784<br>96   | -1509<br>359 | -105<br>117  | -2617<br>-369 | -2894<br>-294 | 2418          | 33600%      |
| -        | ·149          | -500<br>-8139 | -918           | -894        | -381<br>-1115 | 399<br>-701   | -1378          | *920          | 210          | 466           | -120          | 210          | 124           | 40          | 30          | 309          | 111          | -903          | -274          | -249          |             |
| 594/A)   | 2352          | 1000          | nconi          | 2000        | 0.876         | 7124          |                | -486          | -32          | -832          | 74.1          | -1817        | -2498         | -1493       | 4700        | 4400         | 27.1         | 453           | 4440          | 501           | 1036166     |
| 221(A)   | -149          | 2066<br>-500  | -2693<br>233   | -2000<br>43 | -947<br>-381  | -2434<br>399  | -1271<br>106   | -626          | 210          | 466           | 714<br>-720   | 275          | 394           | 45          | -1792<br>96 | -1483<br>359 | 274          | 453<br>-369   | -1419<br>-294 | -249          | 33700%      |
|          | -8            | -8139         | -9181          | -894        | ·1115         | -701          | -1378]         | ·             |              |               |               |              |               |             |             |              |              |               |               |               | <u> </u>    |
| 222(G)   | 224           | -1905         | -3562          | -3696       | -3684         | 3361          | -3297          | -3220         | -3625        | 81            | ·2886         | -2733        | -2977         | -3326       | -3545       | -1606        | -1763        | -2574         | 4068          | -3810         | 33800%      |
|          | -149          | 500           | 233            | 43          | -381          | 199           | 106            | -676          | 210          | -466          | -720          | 275          | 394           | 45          | 96          | 359          | 117          | -369          | -294          | -249          | <del></del> |
| -        | -6            | -6139         | -9181          | -694        | -1115         | -701          | -1378          |               |              |               |               |              |               |             |             |              |              | <del></del>   |               |               | <del></del> |
| 223(F)   | 4781          | -3756         | -5207          | -5542       | 4341          | ·5070         | -1342          | -3653         | -5111        | -2071         | -3065         | -3743        | -4949         | -3874       | -4496       | -4351        | -4650        | -3829         | -691          | 1725          | 33900%      |
| <u> </u> | -149          | -500<br>-8139 | 233<br>-9181   | -894        | -381<br>-1115 | 399<br>-701   | 106<br>-1376*  | -626          | 210          | 466           | -720          | 275          | 394           | 45          | 96          | 359          | 117          | 369           | -294          | -249          |             |
|          |               |               | -41011         | -003        |               | -101          |                | L             |              |               |               |              |               |             |             |              |              |               |               |               |             |
| 224(E)   | -2413<br>-149 | -4114<br>-500 | 221            | 3465<br>43  | -4392<br>-381 | -2485<br>399  | -1689<br>106   | -4248<br>-626 | -1608<br>210 | -4112<br>-466 | -3396<br>-720 | -1094<br>275 | -2951<br>394  | -1336<br>45 | 871<br>96   | -2119<br>359 | -2441<br>117 | -3763<br>-369 | -239<br>-294  | -3395<br>-249 | 34000%      |
| F        | -145          | -8139         | -9181          | 894         | -1115         | -701          | -1378          | -010          | 210          | -400          | -120]         | 219          | 324           | 49          | 30          | 993          | - 114        | -003          | -234]         | -743          |             |
| 995CT. 2 |               |               |                | 9638        |               | 4100          |                | lines         | late)        | onenl         | וואלו         | annd         | 9024          | Apocl       | oos!        | 47.10        | 2221         | FAO           | 10001         | Age il        | 9445080     |
| 225(T)   | -1461<br>-149 | -1864<br>-500 | -3139<br>233   | -2645<br>43 | -2659<br>-381 | -2483<br>399  | ·2136          | -1734<br>-626 | -1646<br>210 | -2359<br>-466 | -1761<br>-720 | -2298<br>275 | -2936<br>394  | ·1995<br>45 | 920<br>96   | -1748<br>359 | 3354<br>117  | 967<br>-369   | -2989<br>-294 | -2654<br>-249 | 34100%      |
|          | -8            | -8139         | -9181          | -894        | -1115         | -701          | -1378          |               |              |               |               |              |               |             |             |              |              |               |               |               |             |
| 226(L)   | -3831         | -3266         | -5314          | -5148       | -673          | -5068         | -2476          | -1443         | -4706        | 3059          | -789          | -4359        | 4756          | -3864       | 4314        | ·4462        | -3729        | -2115         | -1672         | 1736          | 34200%      |
|          | -149          | -500          | 233            | 43          |               | 399           | 106            | -626          | 210          | -466          | -720          | 276          | 394           | 45          | 96          | 359          | 117          | -369          | -294          | -249          |             |
|          |               |               |                |             |               |               |                |               |              |               |               |              |               |             |             |              |              |               |               |               |             |

| 220(0)   -1818   -1886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -3608 34900% -249 -3920 34400% -249 -249 -5849 34500% -249 -1941 34900%                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1483   596   233   448   588   5118   701   1310   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -249] -3520] 344007/ -249] -2174] 345007/ -249] -5849] 345007/ -249] -4616] 347007/ -249]         |
| 4-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3820] 344007/<br>-245]  -2174] 345007/<br>-249]  -5849] 345007/<br>-249]  4616] 347007/<br>-249] |
| 1468   4500   233   445   358   558   606   4525   210   4466   7720   2773   384   45   96   348   117   358   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -245] -2174 34500%] -249 -5849 34500%] -249 -4616 34700%]                                         |
| 1468   4500   233   445   358   558   606   4525   210   4466   7720   2773   384   45   96   348   117   358   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -245] -2174 34500%] -249 -5849 34500%] -249 -4616 34700%]                                         |
| Second Color   Seco   | -2174 34500%<br>-249 34500%<br>-5949 34600%<br>-249 34700%<br>-249                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5648  34500% <br>-249 <br>4516  34700%                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5648  34500% <br>-249 <br>4516  34700%                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5843  34500% <br>-249 <br>4618  34700% <br>-249                                                  |
| 330(9)   4435  4203   5992  5462   5593  3354   5028   4627   5769   6227   5769   6227   5769   5141   4609   5546   5899   4727   4619   5862   4928   4929   4169   5600   233   43   381   398   106   6228   210   456   720   216   384   45   56   389   117   388   288   231(7)   4093   3483   4921   5048   109   4109   1595   528   210   466   720   216   389   45   56   359   117   368   288   231(7)   4493   3483   4921   5048   109   4109   1595   528   210   466   720   216   389   46   56   359   117   368   288   233(7)   4111   2410   772   924   2733   399   106   528   210   466   720   217   394   46   96   359   117   389   238   238   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239   239      | -249<br>4618 34700%<br>-249                                                                       |
| - 1489 -500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -249<br>4618 34700%<br>-249                                                                       |
| - 1489 -500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -249<br>4618 34700%<br>-249                                                                       |
| 231(Y) 4699 3483 4921 5048 109 4705 1555 2544 4494 2334 2010 -3723 4707 -3735 4111 4665 4068 -3172 40 1 149 500 233 43 381 399 106 626 2110 466 720 275 384 45 56 359 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 23 117 -355 | -249                                                                                              |
| - 149 - 500 233 43 389 399 105 528 210 466 - 720 275 384 45 96 359 117 - 358 - 23  - 9 8139 - 9181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -249                                                                                              |
| - 149 - 500 233 43 389 399 105 528 210 466 - 720 275 384 45 96 359 117 - 358 - 23  - 9 8139 - 9181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -249                                                                                              |
| 9 -8133 -9181 -994 -1116 -701 -1378'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |
| 233(Q) 1711 -2410 -772 934 -2739 -1925 -634 -2477 -171 -2433 -1524 -574 -2035 2086 345 902 -923 -2642 -266149 -500 233 43 -381 399 105 626 210 -466 -720 275 394 45 96 359 117 -359 -298 -8139 -9161 -994 -1116 -701 -1376' 149 -500 233 43 -381 399 105 -626 210 -466 -720 276 394 45 96 359 117 -359 -298 -8139 -9161 -994 -1118 -701 -1376' 149 -500 233 43 -381 399 105 -626 210 -466 -720 276 394 45 96 359 117 -359 -298 -8139 -9161 -994 -1118 -701 -1376' 18 -8139 -9161 -994 -1118 -701 -1376' 18 -8139 -9161 -894 -1118 -701 -1376' 18 -8139 -9161 -894 -1118 -701 -1376' 143 -500 233 43 -381 399 105 -626 210 -466 -720 276 394 45 96 399 117 -369 -2918 -8139 -9161 -894 -1118 -701 -1376' 143 -500 233 43 -381 399 105 -626 210 -466 -720 275 394 45 96 399 117 -369 -2918 -8139 -9161 -894 -1118 -701 -1376' 143 -500 233 43 -381 399 105 -626 210 -466 -720 275 394 45 96 399 117 -369 -2918 -8139 -9161 -894 -1118 -701 -1376' 149 -500 233 43 -381 399 105 -626 210 -466 -720 275 394 45 96 399 117 -369 -2919 -8139 -9161 -894 -1118 -701 -1376' 149 -500 233 43 -381 399 105 -626 210 -466 -720 275 394 45 96 399 117 -369 -2919 -8139 -9161 -894 -1118 -701 -1376' 149 -500 233 43 -381 399 105 -626 210 -466 -720 275 394 45 96 359 117 -369 -2919 -8139 -9161 -894 -1118 -701 -1376' 149 -500 233 43 -381 399 105 -626 210 -466 -720 275 394 45 96 359 117 -369 -2919 -8139 -9161 -894 -1118 -701 -1376' 149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -369 -2919 -8139 -9161 -894 -1118 -701 -1376' 149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 45 96 359 117 -366 -28149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 46 96 359 117 -366 -28149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 46 96 359 117 -366 -28149 -500 233 43 -381 399 106 -626 210 -466 -720 275 394 46 96 359 117 -366 -28                                                                                                                                                                                                                                                   | -1941/ 9490AV                                                                                     |
| - 149 -500 233 43 -381 399 105 -626 210 -466 -720 275 384 45 96 359 117 -369 -29 -29 -23 -23 -24 -467 -476 -23 -24 -23 -24 -23 -24 -24 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -24 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1941 9490AFV                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |
| 233(P) 3403 4071 -1922 817 5220 -3359 3173 -5423 -3337 -5281 4771 -2564 4045 -2983 -3760 -3320 -3524 -4817 476 - 1449 5600 233 43 -381 399 105 -626 210 466 -720 276 384 45 96 359 117 -359 -28 - 8 -8139 -9181 -894 -1116 -701 -1378' - 149 5600 233 43 -381 399 105 -626 210 466 -720 276 384 45 96 359 117 -359 -28 - 234(E) -2670 4766 1266 3567 4993 -2500 -2068 -5026 -2483 4852 -303 -1212 -3168 -1766 -3456 -2484 -2974 -4467 -495 - 149 500 233 43 -381 399 105 -626 210 466 -720 275 384 45 96 359 117 -369 -28 - 8 -5139 -9181 -884 -1115 -701 -1378 ' - 149 500 233 43 -381 399 105 -626 210 466 -720 275 384 45 96 359 117 -369 -28 - 149 500 233 43 -381 399 105 -626 210 466 -720 275 384 45 96 359 117 -369 -28 - 149 500 233 43 -381 399 105 -626 210 466 -720 275 394 45 96 359 117 -369 -28 - 149 500 233 43 -381 399 105 -626 210 466 -720 275 394 45 96 359 117 -369 -288 -8139 -9181 -894 -1115 -701 -1378' '8 -8139 -9181 -894 -1115 -701 -1378' '8 -8139 -9181 -894 -1115 -701 -1378' '8 -8139 -9181 -894 -1115 -701 -1378' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -249                                                                                              |
| - 1449 - 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del></del>                                                                                       |
| - 1449 - 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4636 34900%                                                                                       |
| 234(E) -2670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -249                                                                                              |
| . 1449 -500 233 43 -381 399 106 -626 210 466 -720 275 334 45 96 359 117 -369 -298 -8139 -9161 -894 -1115 -701 -1378' '  235(M) 3(8) -2619 -5526 4976 -1443 -5126 4045 653 4736 1429 4289 4803 4610 -3916 -4423 4378 -2995 1140 -305149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -298 -8139 -9181 -894 -1115 -701 -1378' '  235(A) 3631 -2768 -4492 4815 4888 -2992 4271 -781 4818 -5025 4369 -3727 -3728 4477 4545 -2567 -2762 -3852 472149 -500 233 43 -381 399 136 626 210 466 -720 275 394 46 96 369 117 -369 -29149 -500 233 43 -381 399 136 626 210 466 -720 275 394 46 96 369 117 -369 -29149 -500 233 43 -381 399 136 626 210 466 -720 275 394 46 96 369 117 -369 -29149 -500 233 43 -381 399 136 626 210 466 -720 275 394 46 96 369 117 -369 -2919 -3139 -3161 -694 -1115 -701 -1376' 1 -3781 -4918 -3013 -3107 -3741 -4951 -3876 -4497 -4354 -4666 -3859 -68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| . 1449 -500 233 43 -381 399 106 -626 210 466 -720 275 334 45 96 359 117 -369 -298 -8139 -9161 -894 -1115 -701 -1378' '  235(M) 3(8) -2619 -5526 4976 -1443 -5126 4045 653 4736 1429 4289 4803 4610 -3916 -4423 4378 -2995 1140 -305149 -500 233 43 -381 399 106 -626 210 466 -720 275 394 45 96 359 117 -369 -298 -8139 -9181 -894 -1115 -701 -1378' '  235(A) 3631 -2768 -4492 4815 4888 -2992 4271 -781 4818 -5025 4369 -3727 -3728 4477 4545 -2567 -2762 -3852 472149 -500 233 43 -381 399 136 626 210 466 -720 275 394 46 96 369 117 -369 -29149 -500 233 43 -381 399 136 626 210 466 -720 275 394 46 96 369 117 -369 -29149 -500 233 43 -381 399 136 626 210 466 -720 275 394 46 96 369 117 -369 -29149 -500 233 43 -381 399 136 626 210 466 -720 275 394 46 96 369 117 -369 -2919 -3139 -3161 -694 -1115 -701 -1376' 1 -3781 -4918 -3013 -3107 -3741 -4951 -3876 -4497 -4354 -4666 -3859 -68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3925 35000%                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -249                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠ لتقد                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3074 <b>35100</b> %                                                                              |
| 236(A) 3631 -2768 -4492 -4815 -4868 -2992 -4271 -4781 -4818 -5025 -4369 -3727 -3728 -4477 -4545 -2567 -2762 -3852 -472<br>149 -500 233 -43 -381 -399 106 -628 210 -486 -720 275 -394 -46 96 369 117 -369 -28<br>8 -8139 -9101 -894 -1116 -701 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 -1378 - 2870 - 2870 -1378 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 2870 - 28   | -249                                                                                              |
| 149 - 500 233 43 - 381 398 106 - 628 210 - 446 - 720 275 394 46 96 369 117 - 368 - 28<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |
| 9 -9139 -9191 -934 -1115 -701 -1376 ' '   -237(v)   -4797 -3764 -5203 -5543 1114 -5059 -1339 -3694 -5111 -3013 -3107 -3741 -4951 -3876 -4497 -4354 -4666 -3859 -58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4942 <b>35</b> 200%                                                                              |
| 237(Y) 4797 3764 5203 5543 1114 5059 1399 3694 5111 3013 3107 3741 4951 3876 4497 4366 3859 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -249                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4723 35300%                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -249                                                                                              |
| - 8 -8139 -9181 -894 -1115 -701 -13781 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   |
| 239(F) 3828 3505 4146 4035 4292 4207 2060 3492 774 3071 3005 3656 4434 3287 2287 2282 3868 3856 3871 -158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                   |
| - 149 500 233 43 381 399 106 626 210 466 720 276 394 45 96 369 117 369 22<br>- 8 8139 8181 894 1115 701 1370 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 494 \$5400%                                                                                       |
| - 1 0 000 001 000 1110 001 1000 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -494 35400%<br>-248                                                                               |
| 239(E)   2775 4471 511 3552 4815 2610 2657 4863 2317 4711 4124 1234 3162 1755 3103 2442 2384 4306 475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |
| 149 -500 233 43 -381 399 106 -525 210 456 720 275 394 45 96 369 117 -369 -29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -249<br>-3820 35500%                                                                              |
| - 9 -9(39) -9(91) -894 -1115 -701 -1378) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -248                                                                                              |
| 240(C)   -1407  6022  4397  4323  3016  2468  3398  -1251  3952  2540  2082  3044  3133  3588  3744  -1803  1473  1126  367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -249<br>-3820 35500%                                                                              |
| - 149 500 233 43 381 399 106 626 210 466 720 275 394 45 96 359 117 369 -28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -249<br>-3820 35500%<br>-249                                                                      |
| · -8 -8139 -9181 -834 -1115 -701 -1318 <sup>1</sup> '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -249<br>-3820 35500%<br>-249<br>-3390 35600%                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -249<br>-3820 35500%<br>-249                                                                      |

| 241(L)  | -3370         | -2847         | -5795        | -5233      | -1380         | -5465        | -4298        | 70B)          | -5010                                   | 2859          | 1349          | -5155        | 477)         | -4026)      | -4522       | -4755        | -3254         | 814)          | -3103          | -3213         | 957/00      |
|---------|---------------|---------------|--------------|------------|---------------|--------------|--------------|---------------|-----------------------------------------|---------------|---------------|--------------|--------------|-------------|-------------|--------------|---------------|---------------|----------------|---------------|-------------|
|         | -149          | -500          | 233          | 43         | -381          | 399          | 106          | -626          | 210                                     | -466          | -720          | 276          | 394          | 45          | 96          | 359          | 117           | -369          | -3103          | -249          | 35700%      |
|         | £             | -8139         | -9181        | -894       | -1115         | -701         | -1378        |               |                                         |               | - 1231        |              |              |             | <u></u>     |              |               |               |                |               |             |
|         | 27/2          |               |              |            |               |              |              |               |                                         |               |               |              |              |             |             |              |               | 2.22          |                |               |             |
| 242(H)  | -251S<br>-149 | -4224<br>-500 | 233          | 946        | -4287<br>-381 | -2505<br>399 | 4583         | -4377<br>-626 | -1764<br>210                            | -4237<br>-466 | -3571<br>-720 | 2007<br>275  | -3009<br>394 | -1439<br>45 | -2361<br>96 | -2209<br>359 | -25 <b>69</b> | -3893<br>-369 | - <b>42</b> 67 | -3353         | 35800%      |
|         | - 143         | -8139         | ·9181        | -834       | -1115         | -701         | -137B        | -040          | 210                                     | 400           | -720          | 210          | 394          | 40          | *64         | 198          | 111           | -203          | -24            | -249          |             |
|         | <u> </u>      |               |              |            |               |              |              |               |                                         |               |               |              |              |             |             |              |               |               |                |               |             |
| 243(E)  | -3177         | 2571          | -2701        | 3711       | 4851          | -3438        | -3479        | -4765         | -3558                                   | -4932         | 4406          | -3081        | -4006        | -3370       | -3802       | -3269        | -3451         | -4260         | 4554           | -4524         | 35900%      |
|         | -149          | ·500          | 233          | 43         | 361           | 399          | 106          | -626          | 210                                     | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | -294           | -249          |             |
|         | -8            | -8139         | -9161        | -894       | -1115         | -701         | -1378        |               |                                         |               |               |              |              |             |             |              |               |               |                | <u> </u>      |             |
| 244(L)  | -85           | -1333         | -3893        | -3280      | -1111         | -3185        | -2083        | 1066          | -2910                                   | 2310          | 1961          | -2823        | -3170        | -2501       | -2721       | -2289        | -113          | 436           | -1859          | -1558         | 36000%      |
|         | -149          | -500          | 233          | 43         | -381          | 399          | 106          | -626          | 210                                     | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | -234           | -249          |             |
|         | -8            | 8139          | -9181        | -894       | -1115         | -701         | -1378)       |               |                                         |               |               |              |              |             |             |              |               |               |                |               |             |
| 245(16) | -2513         | -3173         | -2941        | -2370      | -4402         | -309A        | -1824        | -3895         | 3666                                    | -3734         | -3068         | -2271        | -3377        | -1447       | -616        | -2537        | 751           | -3485         | -3625          | -3471         | 36100%      |
|         | -149          | -500          | 233          | 43         | -381          | 400          | 106          | -626          | 210                                     | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | -294           | -249          | 2010034     |
|         | 155           | -3318         | -9181        | -196       | -2974         | -701         | ·1378 °      | <del></del> , |                                         |               |               | =:-          |              |             |             |              |               |               |                |               |             |
|         |               |               |              |            |               |              |              |               |                                         |               |               |              |              |             |             |              |               |               |                |               |             |
| 246(L)  | -3571<br>-149 | -3023<br>-500 | -5954<br>233 | -5375      | -1321<br>-381 | -5646<br>399 | -4390<br>106 | -632<br>-626  | -5138<br>210                            | 2962<br>-466  | 1671<br>-720  | -5356<br>275 | 4852<br>394  | -4044<br>45 | -4689<br>98 | -4963<br>359 | -3436<br>117  | 742<br>-369   | -3082<br>-234  | -3239         | 36300%      |
|         | -8            | -8139         | -9161        | -894       | -1115         | -701         | -1378        | -020          |                                         | -400          | •120          | 2/0          | 374          | 40          | 36          | 303          | 1111          | •303          | -234           | -249          |             |
|         | <u>`</u>      | VIVI          | 4101         |            | - 1119        |              | 1010         |               |                                         |               |               | <del></del>  |              |             |             |              |               |               |                |               |             |
| 247(1)  | -2980         | -2484         | -5473        | -5109      | -1958         | -5196        | -4587        | 3728          | -4915                                   | 267           | -781          | -4933        | -4833        | -4427       | -4799       | -4598        | -2949         | -64           | -3627          | -3397         | 36400%      |
|         | -149          | -500          | 233          | 43         | -181          | 399          | 108          | -626          | 210                                     | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | -294           | -249          | ;           |
|         | -8            | -8139         | -9181        | -894       | -1115         | -701         | -1378,       |               | 1                                       |               |               |              | <u> </u>     |             |             |              |               |               |                |               | <del></del> |
| 248(V)  | 1685          | -1668         | -4035        | -3732      | -2081         | -3082        | -2893        | -227          | -3402                                   | -1488         | 1383          | -3123        | -3419        | -3145       | -3320       | 367          | -1807         | 3332          | -2874          | -2504         | 36500%      |
|         | -149          | -500          | 233          | 43         | -381          | 399          | 106          | -626          | 210                                     | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | -234           | -249          |             |
|         | -8            | -8139         | -9181        | -894       | -1115         | -701         | ·1378°       | i·            |                                         |               |               |              |              |             |             |              |               |               |                |               |             |
| 249(D)  | -2963         | -4569         | 3864         | -1039      | -4953         | -2751        | -2187        | -4998         | 767                                     | -4822         | 4260          | -1424        | -3314        | -1891       | -3072       | -2624        | -3060         | -4467         | 4770           | -3912)        | 36600%      |
| (43(D)  | -149          | -500          | 233          | 43         | -361          | 399          | 106          | -626          | 210                                     | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | -294           | -249          | 3000076     |
|         | -8            | -8139         | -9181        | -834       | -1115         | -701         | -137B °      | <del></del> ; |                                         |               |               | 4,14         |              |             |             |              |               |               |                |               |             |
|         |               |               |              |            |               |              |              |               |                                         |               |               |              |              |             |             |              |               |               |                |               |             |
| 250(L)  | -2768         | -2715         | -4842        | -4633      | -1675         | -399B        | -3790        | -1038         | 4207                                    | 3056          | -562          | -4150        | -4179        | -3740       | -3989       | -3399        | 699           | -1545         | 3154           | -3057         | 36700%      |
|         | -149          | -500<br>-8139 | -9161        | -894       | -381<br>-1115 | 399<br>-701  | 106<br>-1378 | -626          | 210                                     | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | 294            | -249          |             |
|         |               | -0100         | -3101        | *****      | -1119         | -101         | -1010        |               |                                         |               |               |              |              | <u></u>     |             |              |               |               |                |               |             |
| 251(M)  | -2822         | -2356         | -5342        | -4861      | -1759         | -4985        | 4151         | 2587          | -4663                                   | 173           | 4005          | 4649         | -4601        | 4076        | -1487       | -4261        | -2764         | 766           | -3321          | -3216         | 36800%      |
|         | -149          | -500          | 233          | 43         | -381          | 399          | 108          | -626          | 210                                     | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | -294           | -249          |             |
|         | -8            | -8139         | -9181        | -894       | -1115         | -701         | -13781       |               | لــــــــــــــــــــــــــــــــــــــ |               |               |              |              |             |             |              |               |               |                |               |             |
| 252(Y)  | -4562         | -3630         | -5142        | -5401      | 1516          | -4992        | -1300        | -3544         | 4968                                    | -2963         | -2986         | -3671        | -4858        | -3786       | 4393        | 381          | -4432         | -3662         | 2413           | 4375          | 36900%      |
|         | 149           | -500          | 233          | 43         | -381          | 399          | 105          | -626          | 210                                     | -466          | -720          | 275          | 334          | 45          | 96          | 359          | 117           | -369          | -294           | -249          |             |
|         | -8            | -8139         | -9181        | -894       | -1115         | -701         | ·1378 `      | ľ             |                                         |               |               |              |              |             |             |              |               |               |                |               |             |
| E 6     | 1050          | 9127          | Ecol         | 1218       | 2044          | 4247         | 4440         | 2504          | 4468                                    | 1647          | 4754          | 4000         | 27/8         | 4070        | 1000        | 1767         | cool          | 2464          | 12001          | 2000          | 97Door!     |
| 53(E)   | -1959<br>-149 | -3457<br>-500 | -568<br>233  | 3135<br>43 | -3641<br>-381 | -2347<br>399 | -1410<br>106 | -3622<br>-626 | -1165<br>210                            | -3647<br>-466 | -2751<br>-720 | -1000<br>275 | -2716<br>394 | 1879<br>45  | -1666<br>96 | -1757<br>359 | 692<br>117    | -3152<br>-369 | -3709<br>-294  | -2960<br>-249 | 37000%      |
|         | -3            | -8139         | -9181        | -894       | -1115         | -701         | -1378        | -020          |                                         | -9004         | -120          | 219          | - UJ-1       |             | - 20        |              | 1111          | -003          | -2.74          | -241          |             |
|         |               | -107          | - 17.1       |            |               |              |              |               |                                         |               |               |              |              |             |             |              |               |               |                |               |             |
| 54(G)   | -347          | -2818         | -1215        | 201        | -3253         | 2635         | -921         | -2921         | 1474                                    | -2822         | -1972         | -1002        | -2459        | 466         | 658         | 1397         | -1435         | -2621         | -2923          | -2378         | 37100%      |
| ]       | -149          | ·500          | 233          | 43         | -381          | 339          | 105          | -626          | 210                                     | 466           | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | -294           | -249          |             |
|         | -8            | -8139         | -9181        | -894       | -1115         | -701         | -1376        |               | 1                                       |               |               |              |              |             |             |              |               |               |                |               |             |
| 55(G)   | 4435          | -4203         | -5092        | -5482      | -5893         | 3834         | -5028        | -8627         | -5765                                   | -6297         | -5970         | -5141        | 4804         | -5546       | -5385       | -4727        | 4815          | -5862         | 4924           | -5849         | 37200%      |
| ~~      | -149          | -500          | 233          | 43         | -381          | 399          | 105          | -626          | 210                                     | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117           | -369          | -294           | -249          |             |
|         |               |               |              |            |               |              |              |               |                                         |               |               |              |              |             |             |              |               |               |                |               |             |

|                                               | -8            | -8139         | -9181        | -894        | -1115         | -701         | ·1378 °        |               |              |                   |               |              |              |             |             |              |              |               |                       |               |                                        |
|-----------------------------------------------|---------------|---------------|--------------|-------------|---------------|--------------|----------------|---------------|--------------|-------------------|---------------|--------------|--------------|-------------|-------------|--------------|--------------|---------------|-----------------------|---------------|----------------------------------------|
| 256(1)                                        | -2042         | -1759         | -4321        | -3740       | -1316         | -3753        | -2668          | 3134          | -3389        | 1017              | 1993          | 194          | -3653        | -2958       | -3221       | -2884        | -1980        | -344          | -2325                 | -2073         | 37300%                                 |
|                                               | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210          | 466               | -720          | 276          | 394          | 45          | 96          | 359          | 117          | 389           | -294                  | -249          | 31000 K                                |
| <b> </b>                                      | -8            | -8139         | -9161        | -894        | -1115         | -701         | -1376          |               |              | _,                |               |              |              |             |             |              |              |               |                       |               |                                        |
| 257(A)                                        | 1914          | -1640         | -1237        | 128         | -1748         | -661         | -793           | -1355         | -577         | -49               | -817          | -905         | -2155        | 498         | -993        | 1037         | 162          | -1149         | -2002                 | 624           | 37400%                                 |
|                                               | -149          | -500          | 233          | 43          | -381          | 399<br>-701  | 106            | -626          | 210          | -456              | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -369          | -294                  | -249          |                                        |
|                                               | -8            | -8139         | -9161        | -894        | -1115         | -701         | -1378          | I             | لــــــا     |                   |               |              |              |             |             |              |              |               |                       |               |                                        |
| 258(N)                                        | 365           | -3809         | 1001         | 557         | 4083          | 1196         | -1518          | -3930         | -1535        | -3838             | -3055         | 3219         | -2763        | -1148       | -2243       | -1845        | -2131        | -3433         | -4027                 | -3144         | \$7500%                                |
|                                               | -149<br>-8    | -500<br>-8139 | -9181        | -894        | -381<br>-1115 | -701         | -1378°         | -626          | 210          | -466              | -720          | 275          | 394          | 45)         | ,36         | 359          | 117          | -369          | -294                  | -249          |                                        |
|                                               |               |               |              |             |               |              |                |               |              |                   |               |              |              |             |             |              |              |               |                       |               |                                        |
| 259(M)                                        | -3656<br>-149 | -3153<br>-500 | -5816<br>233 | -5350<br>43 | -1349<br>-381 | -5421<br>399 | -424B          | -822<br>-626  | -4928<br>210 | 948<br>-466       | 4920<br>-720  | -5248<br>275 | -4838<br>394 | -4039<br>45 | -4539<br>96 | -4860<br>359 | -3558<br>117 | -1557         | -3044                 | -3030         | 37600%                                 |
| F                                             | -8            | -8139         | -9181        | -894        | -1116         | -701         | -1376          | •020          | 210          | ******            | -120          | તાય          | 374          | 40          | 39          | 338          | 11/          | -369          | -294                  | -249          |                                        |
| 200                                           | 4014          | 45.44         |              |             |               |              | 4000           |               |              |                   |               |              |              |             |             |              |              |               |                       |               |                                        |
| 260(R)                                        | -1614<br>-149 | -1949<br>-500 | -2260<br>233 | -1663<br>43 | -886<br>-381  | -2765<br>399 | -1089<br>106   | -1596<br>-626 | -1089<br>210 | 360<br>-466       | -1133<br>-720 | 2239<br>275  | -2814<br>394 | -1215<br>45 | 2408<br>96  | -1789<br>359 | -1535<br>117 | -1468<br>-369 | 1995<br>-294          | 1546          | 37700%                                 |
|                                               | -8            | -8139         | -9181        | -834        | -1115         | -701         | -1378          |               |              |                   |               |              | 994          | - '9        |             |              |              | - 444         |                       |               |                                        |
| 261(Y)                                        | -1648         | -2973         | 568          | -509        | -2846         | 2207         | 1172           | -2986         | 444          | -2341             | -2110         | 1645         | -2446        | csol        | escil       | -1389        | 1500         | 2021          | 2024                  | 2005          | 070000                                 |
| •                                             | ·149          | -500          | 233          | 43          | -381          | 399          | 106            | -526          | 441<br>210   | 466               | -720          | 275          | 394          | -659<br>45  | -1264<br>96 | 359          | -1509<br>117 | -2582<br>-369 | -2924<br>-294         | 3695<br>•249  | 37800%                                 |
|                                               | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378          |               |              |                   |               |              |              |             |             |              |              |               |                       |               |                                        |
| 262(S)                                        | 279           | -1844         | -3877        | 4131        | -4448         | 136          | -3634          | -4260         | 4132         | -4511             | -3561         | -2782        | -2903        | 3646        | -3936       | 3391         | -1692        | -3009         | 4661                  | -4586         | 37900%                                 |
| •                                             | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210          | 466               | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -369          | 294                   | -249          | OI GOO A                               |
|                                               | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1376          |               |              |                   |               |              |              |             |             |              |              |               |                       |               |                                        |
| 263(1)                                        | -2653         | -2149         | -5311        | -4961       | -2538         | -5114        | 4905           | 2957          | 4891         | 332               | -1267         | -477d        | -4827        | 4713        | -4978       | -4466        | -2636        | 2521          | -4218                 | -3821         | 38000%                                 |
|                                               | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -625          | 210          | -466              | -720          | 275          | 394          | 45          | 9.6         | 359          | 117          | -369          | -294                  | -249          |                                        |
|                                               | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378          | <u> f</u>     |              |                   |               |              | <del></del>  |             |             |              |              |               |                       |               |                                        |
| 264(S)                                        | -2212         | -2711         | -4019        | -4348       | -4697         | -2899        | -4045          | 4998          | -4527        | -5102             | -4364         | -3492        | -3638        | -4203       | 4355        | 3681         | -2664        | -3902         | -4616                 | -4606         | 38100%                                 |
|                                               | -149          | -500<br>-8139 | 233<br>-9181 | -894        | -381          | 399<br>-701  | 106<br>-1379   | -626          | 210          | -466              | -720          | 275          | 394          | 45          | 98          | 359          | 117          | -369          | -294                  | 248           |                                        |
|                                               | -8            | -0103         | -3101        | -034        | -1115         | -1011        | 1010           |               |              | · · · · · · · · · |               |              |              |             |             |              |              |               |                       |               |                                        |
| 265(N)                                        | -2725         | -4778         | 2906         | 990         | 4898          | -2485        | -1922          | -4885         | -2320        | -4718             | -4140         | 3045         | -3069        | ·1512       | •3311       | -2334        | -2821        | -4325         | -4919                 | -3794         | 38200%                                 |
| <u>-</u>                                      | -149<br>-8    | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115 | 399<br>-701  | 106<br>-1378 ° | -626<br>'     | 210          | -466              | -720          | 275          | 394          | 45          | 96          | 369          | 117          | -369          | -294                  | -249          |                                        |
|                                               |               | 0.22          |              |             |               |              |                |               |              |                   |               |              |              |             |             |              |              |               |                       |               |                                        |
| 265(7)                                        | -2061<br>-149 | -3396<br>-500 | -596<br>233  | 903<br>43   | -4071<br>-381 | -2367<br>399 | -1713<br>106   | -3874<br>-825 | -1685<br>210 | -3859<br>-466     | -3103<br>-720 | 2125<br>275  | -2650<br>394 | -1369<br>45 | -2277<br>95 | -1897<br>359 | 3157         | -3351<br>-369 | <b>-4</b> 055<br>-234 | -3271<br>-249 | 38300%                                 |
| <del>-  </del>                                | -143          | -6139         | -9181        | -894        | -1115         | -701         | -1378          | *020          | 210          | **00]             | 120           | 210          | 324          | 10          | 30          |              | 118          | -303          |                       | -241          |                                        |
|                                               |               |               |              |             |               |              |                |               | - 1244       |                   |               |              |              |             | (854)       | - 7654       | (4.4)        | - 660         | i an al               | 1000          | 22.12.27                               |
| 267(A)                                        | 3410<br>-149  | -2035<br>-500 | -3979<br>233 | -4290<br>43 | -4573<br>-381 | 659<br>399   | -3798<br>106   | -4400<br>-626 | 4332         | -4660<br>-466     | -3754<br>-720 | -2978<br>275 | -3080<br>394 | -3858<br>45 | -4099<br>96 | -1690<br>359 | -1908<br>117 | -3194<br>-369 | -4697<br>-294         | -4687<br>-249 | 38400%                                 |
| <u>.                                     </u> | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378          |               |              |                   |               | =-           |              | :3          |             |              |              |               |                       |               |                                        |
| 289/E\                                        | 2110          | _1/0cl        | 4026         | 2054        | 2025          | -2588        | 1204           | -3596         | 1970         | -24 47)           | -aeac)        | tonel        | -2827        | 1323        | .777        | -1923        | -2032        | -3199         | -3455                 | -2917         | 38500%                                 |
| 268(E)                                        | -2118<br>-149 | -3486<br>-500 | -1036<br>233 | 2964<br>43  | -3935<br>-381 | 399          | -1284<br>106   | -526          | 1878<br>210  | -3417<br>-466     | -2636<br>-720 | -1209<br>275 | 394          | 45          | -773<br>96  | 359          | 117          | -369          | -294                  | -2317         | 00000 K                                |
|                                               | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1378*         |               |              |                   |               |              |              |             |             |              |              |               |                       |               |                                        |
| 269(Y) [                                      | 4524          | -3618         | -5100        | -5310       | 1910          | -4972        | -1299          | -3522         | 634          | -2951             | -2965         | -3649        | -4847        | -3741       | 4299        | -4199        | 4391)        | -3637         | 2997)                 | 4211          | 38600%                                 |
|                                               | -149          | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210          | -466              | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -359          | -294                  | -249          | ************************************** |
| :                                             | -166          | -8139         | -3345        | -894        | -1115         | -701         | -1378          |               |              |                   |               |              |              |             |             |              |              |               |                       |               |                                        |
|                                               |               |               |              |             |               |              |                |               |              |                   |               |              |              |             |             |              |              |               |                       |               |                                        |

| 270(G)                                 | -4176         | -3995         | -4855        | -5222       | -5686         | 3828              | -4823        | -6386         | -5533         | -9087         | 5741          | 4000         | ional        | E249)       | £470l       | 1161         | acco         | EC 42         | 4764          | 5000          | 5070001     |
|----------------------------------------|---------------|---------------|--------------|-------------|---------------|-------------------|--------------|---------------|---------------|---------------|---------------|--------------|--------------|-------------|-------------|--------------|--------------|---------------|---------------|---------------|-------------|
| 214(3)                                 | -149          | -500          | 233          | 43          | -381          | 399               | 106          | -626          | 210           | -466          | -5741<br>-720 | -4896<br>275 | -4606<br>394 | -5312<br>45 | -517B<br>96 | -4461<br>359 | -4560<br>117 | -5613<br>-369 | -4754<br>-294 | -5635<br>-249 | 38700%      |
|                                        | -6            | -7992         | -9034        | -894        | -1115         | 422               | -1980        | -020          | <del></del> " | -400          | -120          | 214          |              |             | 301         | 307          | 114          | -000/         | -234          | -243          |             |
|                                        |               |               | *****        |             |               |                   |              |               |               |               |               |              |              |             |             |              |              |               |               | <del></del>   |             |
| 271(D)                                 | -2710         | -4705         | 3025         | 1828        | -4680         | 1758              | -1932        | 4863          | -2320         | -4703         | -4115         | -1084        | -3073        | -1621       | -3297       | ·2330        | -2809        | -4301         | 4894          | -3793         | 38100%      |
|                                        | -149          | -500          | 233          | 43          | -381          | 399               | 106          | -626          | 210           | -466          | -720          | 275          | 394          | 45          | 96          | 359          | _117         | -369          | -294          | -249          |             |
|                                        | -8            | -8139         | -9181        | -894        | -1115         | -701              | -1378        |               | <u> </u>      |               |               |              |              |             |             |              |              |               |               |               |             |
| A7000                                  | 0107          | 017/          | 1000         | 4407        | A1(4          | 1510              | 444          | Arri          | 0700          | - Anal        | 4550          |              | 4000         |             | A 100       | 0404         | ALLA         | 42.00         |               | 4000          | ******      |
| 272(Y)                                 | -2497<br>-149 | -2175<br>-500 | -4651<br>233 | -4137<br>43 | 244T<br>-381  | -4046<br>399      | -2215<br>106 | 255<br>-626   | -3766<br>210  | 892<br>-466   | 1559<br>-720  | -3537<br>275 | -3886<br>394 | -3109<br>45 | -346B       | -3181<br>359 | -2410<br>117 | -1282         | -1615<br>-294 | 3508          | 38909%      |
|                                        | -6            | -6139         | -9181        | -894        | -1115         | -701              | -1378        | -920          | . 210         | -400          | -120          | 219          | 324          | 47          | 98          | 233          | 1111         | -369          | -24           | -249          |             |
|                                        | - 4           | -0107         | -9101        | 7/24        | -1110         | -701              | -1010        |               |               |               |               |              |              |             |             |              |              |               |               |               | <del></del> |
| 273(V)                                 | -1425         | -1250         | -3480        | -2894       | -1283         | -3035             | -1955        | 691           | -2570         | -1            | 429           | -2568        | -3060        | 942         | -2514       | -2129        | 1701         | 2578          | -1907         | -1553         | 39000%      |
|                                        | -149          | -500          | 233          | 43          | -381          | 399               | 106          | -626          | 210           | -456          | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          |             |
|                                        | -8            | -8139         | -9181        | -834        | -1115         | -701              | -1376        |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
|                                        |               |               | 77.10        |             |               |                   |              |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
| 274(T)                                 | 516           | -1643         | -1918        | -1401       | -2170         | -2112             | -1367        | -1759         | -1234         | -2016         | -1265         | -1442        | -2421        | -1149       | 887         | 1341         | 2345         | 822           | -2454         | -2006         | 39100%      |
|                                        | -149          | -500<br>-8139 | -9181        | -894        | -361          | 399               | 106          | -625          | 210           | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          |             |
| ــــــــــــــــــــــــــــــــــــــ | -8            | -6179         | •3/01        | -074        | -1115         | -701              | -1378        | 1             |               |               |               |              |              |             |             |              |              |               |               |               |             |
| 275(G)                                 | 677           | -2128         | -3838        | 4171        | -4647         | 3536              | -3816        | -4506         | 4340          | -4749         | -3857         | -3009        | -3149        | -3871       | -4137       | -1784        | -2005        | -3297         | 4725          | 4735          | 39200%      |
|                                        | -149          | -500          | 233          | 43          | -391          | 399               | 106          | -626          | 210           | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          | 33LVU IG    |
| .                                      | -8            | -8139         | -9181        | -894        | -1115         | -701              | -1378        |               |               |               | 124           |              |              |             | - 44        |              |              | <u> </u>      |               |               |             |
|                                        |               |               |              |             |               |                   |              |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
| 276(P)                                 | -992          | -2210         | 343          | -359        | -2447         | -1960             | -675         | -2143         | 633           | -2204         | -1351         | -651         | 2813         | -260        | -802        | 465          | -939         | -873          | -2467         | 1093          | 39300%      |
|                                        | -149          | -500          | 233          | 43          | -381          | 399               | 106          | -626          | 210           | -486          | -720          | 275          | 394          | 45          | 98          | 359          | 117          | -369          | -294          | -249          |             |
| 1                                      | -8            | -8139         | -9181        | -894        | -1115         | -701 <sub>t</sub> | -1378        |               | ·             |               |               |              |              |             |             |              |              |               |               |               |             |
| 477/Di                                 | -1214         | -2548         | 4007         | 4079        | 475           | 2145              | 246          | 1507          | 610           | 4510          | ACEN          | 705          | ^^^          | 570         | 2002        | 147          | 4100         | 94.04         | AFTAL         | 0034          |             |
| 277(R)                                 | -149          | -500          | -1097<br>233 | 1072        | 175<br>-381   | -2145<br>399      | -716<br>106  | -2587<br>-626 | 848<br>210    | -2528<br>-466 | -1653<br>-720 | -795<br>275  | -2228<br>394 | -273<br>45  | 2862<br>98  | 417<br>369   | -1133<br>117 | -2191<br>-369 | -2671<br>-294 | -2034<br>-249 | 39400%      |
|                                        | -8            | -B139         | -9161        | -B94        | -1115         | -701              | -1376        | -070          | 210           | -400          | -120          | 210          | 234          | 40          | 30          | 309          | 114          | -369          | -Z54          | -249          |             |
|                                        |               | <u> </u>      | - 4144       |             | 11.5          |                   | 1010         |               |               |               |               |              |              |             |             |              |              | <del></del>   |               |               |             |
| 278(V)                                 | 289           | -2035         | -5133        | -4789       | -2632         | -4777             | -4639        | 2142          | 4689          | -1581         | -1443         | -4511        | -4649        | -4585       | -4784       | -4102        | -2487        | 3125          | -4202         | -3717         | 39500%      |
| 1                                      | -149          | -500          | 233          | 43          | -381          | 399               | 105          | -626          | 210           | -466          | -720          | 275          | 394          | 45          | 96          | 369          | 117          | 369           | -294          | -249          |             |
|                                        | -8            | -8139         | -9181        | -894        | -1115         | -701              | ·1378        |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
|                                        |               |               |              |             |               |                   | a            |               |               | 1011          |               |              |              |             |             |              |              |               |               |               |             |
| 279(1)                                 | -2265<br>-149 | -1919         | -4828        | -4452       | -2473         | -4254             | ·3954        | 3155          | 4265          | -1516         | -1326         | 4066         | -4279        | -4082       | -1274       | 225          | -2288        | 2182          | -3688         | -3250         | 39600%      |
|                                        | -149          | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115 | 399<br>•701       | 106<br>-1378 | -626          | 210           | -456          | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -369          | 294           | -249          |             |
|                                        |               | -0109         | -9101        | -054        | 1119          | -,101             | 1910         |               |               |               |               |              |              |             |             |              |              |               |               |               | <del></del> |
| (C)081                                 | -1731         | -3162         | 2329         | -550        | -3318         | -2239             | -1273        | -3221         | -1145         | -3214         | -2403         | 2295         | -2573        | -899        | -1742       | -1561        | 1851         | -2804         | -3366         | 1327          | 39706%      |
|                                        | -149          | -500          | 233          | 43          | -381          | 399               | 106          | -626          | 210           | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          | 30,33 A     |
|                                        | -8            | -8139         | -9181        | -894        | ·1115         | -701              | -13781       |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
|                                        |               |               |              |             |               |                   |              |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
| 281(E)                                 | 1097          | -2699         | 1227         | 2368        | 2994          | -2011             | -796         | -2753         | 381           | -2704         | -1803         | -640         | -2190        | -358        | -992        | ·1055        | -1162        | -2310         | -2885         | 1152          | 39800%      |
|                                        | -149          | -500          | 233          | 43          | -381          | 339               | 106          | -628          | 210           | -466          | -720          | 276          | 394          | 45          | 96          | 359          | 117          | -369          | -234          | -249          |             |
|                                        | -8]           | -8139         | -9181        | -894        | -1115         | -701              | -1378        |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
| 82(E)                                  | -166          | -2372         | 859          | 1835        | -2692         | -1861             | 1182         | -2444         | 490           | -2388         | -1462         | 590          | 478          | 1356        | -520        | 116          | 837          | -1994         | -2555         | -1871         | 39900%      |
| ve(c)                                  | -149          | -500          | 233          | 43          | -381          | 399               | 105          | -626          | 210           | -466          | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          | 23300 /6    |
| -                                      | -8            | -8139         | -9181        | -834        | -1115         | -701              | -1376        | - 020         | 2,10          | -4001         | -120          | 119          | 034          | 40          | 30)         | - 009        | - 111        | -303          | -234          | 1243          |             |
|                                        |               |               | •.•.         | 243         |               |                   | ,519         |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
| 93(T)                                  | 228           | -1688         | -3656        | -3444       | -3179         | -2145             | -2891        | -2611         | -3215         | -3076         | -2328         | -2557        | -2821        | -2916       | -3214       | 2251         | 2366         | 1397          | -3549         | -3270         | 40000%      |
|                                        | -149          | -500          | 233          | 43          | -381          | 399               | 108          | -626          | 210           | 466           | -720          | 275          | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          |             |
|                                        | -8            | -8139         | -9181        | -894        | -1115         | -701              | -1376        | '             |               |               |               |              |              |             |             |              |              |               |               |               |             |
|                                        |               |               |              |             |               |                   |              |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
|                                        |               |               |              |             |               |                   |              |               |               |               |               |              |              |             |             |              |              |               |               |               |             |
| 84(K)                                  | -2931<br>-149 | -3623<br>-500 | -3848<br>233 | -2331<br>43 | -4472<br>-381 | -3512<br>399      | -1358<br>106 | -3763<br>-626 | 2942<br>210   | -3413<br>-466 | 1860<br>-720  | -2188<br>275 | -3430<br>394 | -937<br>45  | 2705<br>96  | ·2874<br>359 | -2650<br>117 | -3556<br>-369 | -3267<br>-294 | -3189<br>-249 | 40100%      |

|                                         | -8           | -8139         | -9181        | -894        | -1115         | -701         | -1378          |               |              |               |                |              |                                              |             |             |              |               |               |                 |               |               |
|-----------------------------------------|--------------|---------------|--------------|-------------|---------------|--------------|----------------|---------------|--------------|---------------|----------------|--------------|----------------------------------------------|-------------|-------------|--------------|---------------|---------------|-----------------|---------------|---------------|
| 285(E)                                  | 413          | -2370)        | 732          | 1690        | -2691         | -1863        | -528           | -2442         | 1639         | -2385         | -1468          | -498         | -1960                                        | 1120        | 437         | 106          | -836          | 1992          | -2552           | -1869         | 40200%        |
|                                         | -149         | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210          | -465          | -720           | 275          | 394                                          | 45          | 96          | 359          | 117           | -369          | -284            | -249          | 10000 11      |
| -                                       | .8           | -8139         | -9181        | -894        | -1115         | -701         | -1378          |               | ·            |               |                |              |                                              |             |             |              |               |               |                 |               |               |
| 286(A)                                  | 1871         | -2286         | -843         | 814         | 2570          | -1928        | -57B           | 269           | 1096         | -2279         | -1391          | -5%          | -2019                                        | -136        | 1056        | -62          | -881          | -1389         | -2488           | -1849         | 40300%        |
|                                         | -149         | -500          | 233          | 43          | -381          | 399          | 106            | -526          | 210          | -466          | -720           | 275          | 394                                          | 45          | 96          | 359          | 117           | -369          | -294            | -249          |               |
| $\vdash$ $\vdash$                       | -6]          | -8139         | -9181        | -834        | -1115         | -701         | -13761         |               | 1            |               |                |              |                                              |             |             |              |               |               |                 |               |               |
| 287(M)                                  | -3656        | -3159         | -5816        | -5350       | -1349         | -5421        | -1248          | -822          | 4928         | 948           | 4920           | -5248        | -4838                                        | -4039       | -4539       | -4860        | -3556         | -1557         | - 3014          | -3030         | 40400%        |
|                                         | -149<br>-8   | -500          | 233          | -894        | -381<br>-1115 | 399<br>-701  | 106            | -626          | 210          | -466          | -720           | 275          | 394                                          | 45          | 95          | 359          | 117           | -369          | -284            | -249          |               |
| $\vdash$                                | -01          | -8139         | -9181        | -034        | •1119         | -/01         | -13/0          |               |              | <del></del>   |                | <del></del>  |                                              |             |             |              |               |               |                 | <u> </u>      |               |
| 288(K)                                  | -1646        | -2891         | -1591        | 287         | -3346         | -526         | -912           | -2971         | 2631         | -2032         | -1997          | -1146        | -2554                                        | 472         | 1762        | ·1527        | -1524         | -2587         | -2865           | 1245          | 40500%        |
| <u> </u>                                | -149         | -500<br>-8139 | 233<br>-9161 | -894        | -381<br>-1115 | 399<br>-701  | 106            | -626          | 210          | -466          | -720           | 275          | 394                                          | 45]         | 96          | 359          | 117           | -369          | -294            | -249          |               |
|                                         | Y_           | 0100          | V1V4         |             |               |              | 1010)          |               |              |               |                |              |                                              |             |             |              |               |               |                 |               |               |
| 289(E)                                  | -172         | -2394         | 367          | 2205        | -2713         | 487          | -545           | -2465         | ·134         | -2403         | ·1486          | 1305         | ·1975                                        | 663         | 831         | -795         | 72            | -2015         | -2577           | -1891         | 40500%        |
|                                         | -149<br>-8   | -500<br>-8139 | 233<br>-9161 | -894        | -381<br>-1115 | 399<br>-701  | 106<br>-1378 ' | -626          | 210          | -466          | -720           | 275          | 394                                          | 45          | 96          | 369          | 117           | -369          | -294            | -249          |               |
|                                         |              |               |              |             |               |              |                |               |              |               |                |              |                                              |             |             |              |               |               |                 |               |               |
| 290(C)                                  | 1574<br>-149 | -500          | -45%<br>233  | -4122 ·     | -2155<br>-381 | -3932<br>399 | -3330<br>106   | 1746<br>-626  | -3870<br>210 | 1406<br>-456  | - <b>110</b> 9 | -3691<br>275 | -3957<br>394                                 | -3613<br>45 | -3805<br>98 | -3144<br>359 | -2046<br>117  | 2342<br>•369  | -3118<br>-294   | -2720<br>-249 | 40700%        |
| F                                       | -8           | -8139         | -9181        | -894        | -1115         | -701         | -1378          | -020          |              | *400          | -120           | 219          | . 394                                        | 44          | 30          | 333          | 1331          | •305          | -239            | •243          |               |
|                                         |              |               |              |             |               |              |                |               |              |               |                |              | ·                                            |             |             |              |               |               |                 |               |               |
| 291(L)                                  | -187<br>-149 | -2175<br>-500 | -4307<br>233 | -3889<br>43 | -898<br>-381  | -3779<br>399 | -2344<br>106   | -944<br>-626  | -3485<br>210 | 2865<br>-466  | -476<br>-720   | -3390<br>275 | -3782<br>394                                 | -3025<br>45 | -3298<br>96 | -2972<br>359 | -2345<br>117  | -1269<br>-369 | -1846<br>, -294 | 1565<br>-249  | 40860%        |
|                                         | -6           | -8139         | -9181        | -894        | -1115         | -701         | -137B          | -020          | 1            | -704          | -740           | *1A          | - V-13                                       |             |             |              |               | -000          | , 7,471         | -210          |               |
| 1902/12                                 | aen          | 22.42         | .449         | 4044        | need          | iocel        | 072            | 0444          | *conl        | 9256          | 017            | 400          | 10/0                                         | neni        | tool        | 762          | 707           | 4000          | ocaal           | 6054          | 400000        |
| 292(K) (                                | -149         | -2347<br>-500 | 233          | 1211<br>43  | -2665<br>-381 | -1855<br>399 | 873<br>106     | -2414<br>-626 | 1692         | -2362<br>-466 | -720           | -492<br>275  | -1949<br>394                                 | 889<br>45   | -603<br>98  | -763<br>359  | 783           | -1968<br>-369 | -2532<br>-294   | -1851<br>-249 | 40900%        |
|                                         | -8           | -B) 39        | -9181        | -894        | -1115         | -701         | -1378          |               |              |               |                |              |                                              |             |             |              |               |               |                 |               |               |
| 293(D)                                  | -2148        | -3878         | 2790         | 1765        | 4119          | -2356        | -1511          | -3962         | -1467        | -3852         | -3075)         | 24)          | -2782                                        | -1139       | 2142        | -1879        | -2163         | -3473         | 4024            | -3155         | 41000%        |
| 230(D)                                  | -149         | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210          | -466          | -720           | 275          | 394                                          | 45          | 96          | 359          | 117           | -369          | 294             | -249          | 71000 //      |
|                                         | -8           | -8139         | -9181        | -B94        | -1115         | -701         | -137B1         |               | <u> </u>     |               |                |              | <u>.                                    </u> |             |             |              |               |               |                 |               |               |
| 294()                                   | -2630        | -2131         | -5302        | -4991       | -2/37         | -5092        | -5106          | 3464          | 4941         | -1495         | 1447           | -4789        | 4862                                         | -4869       | -5086       | -4473        | -2627         | 2071          | -4467           | -3968         | 41100%        |
|                                         | -149         | -500          | 233          | 43          | -381          | 399          | 106            | -626          | 210          | -466          | -720           | 275          | 394                                          | 45          | 98          | 359          | 117           | -369          | 294             | -249          |               |
| لــــــــــــــــــــــــــــــــــــــ | -8           | -8139         | -9'81        | -894        | -1115         | -701         | -1378          |               |              |               |                |              |                                              | <u>-</u>    |             |              | <del></del> - |               | <del></del>     |               | <del></del> . |
| 295(Q)                                  | 346          | -3134         | -1818        | -1401       | -3862         | -2760        | -1314          | -3433         | 1329         | -3271         | -2513          | -1545        | -2936                                        | 3817        | -430<br>96  | -2018        | -2031         | -3060         | -3278           | -2903         | 41200%        |
| -                                       | -149         | -500          | 233          | 43          | -381          | 399          | 105            | -628          | 210          | -486          | -720           | 275          | 394                                          | 45          | 98          | 359          | 117           | -389          | -294            | -249          |               |
|                                         | -8           | -8139         | -9181        | -894        | -1115         | -701         | -1378          | ]             | <u>`</u>     |               |                |              |                                              |             |             |              |               |               |                 |               | <del></del>   |
| 296(S)                                  | -1354        | -2895         | 1712         | 354         | -3192         | -2068        | -914           | -2967         | ·621         | -2903         | -2012          | 1817         | -2288                                        | 724         | -1177       | 1978         | -96           | -2509         | -3076           | -2340         | 41300%        |
|                                         | -149         | -500          | 233          | 43          | -381          | 399<br>-701  | 106            | -626          | 210          | -466          | -720           | 275          | 394                                          | 45          | 96          | 359          | 117           | -369          | 294             | -249          |               |
|                                         | -8           | -8139         | -9181        | -694        | -1115         | -/01         | -1378          | !             |              |               |                |              |                                              |             |             | ·            | <del></del>   |               |                 |               |               |
| 297(G)                                  | 4435         | -4203         | -5092        | -5462       | -5693         | 3834         | -5028          | -6627         | -5765        | -6297         | -5970          | -5141        | -4804                                        | -5546       | -5385       | -4727        | -4815         | -5862         | 4924            | -5849         | 41410%        |
|                                         | -149<br>-8   | ·500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115 | 399<br>-701  | 105<br>-1376 ° | ·626          | 210          | -466          | -720           | 275          | 394                                          | 45          | 38          | 359          | 117           | -369          | -294            | -249          |               |
|                                         |              | -01001        | -0101        | -024        | -1119         |              | -rajuj         |               |              |               |                |              |                                              |             |             |              |               |               |                 |               |               |
| 298(E)                                  | -137         | -2374         | -769         | 2013        | -2697         | -1895        | -552           | -2438         | 623          | -2389         | -1472          | -536         | -1991                                        | -97         | 717         | 829          | 1488          | -1999         | -2559           | -1890         | 41500%        |
| <del>:</del> -                          | -149<br>-8   | -500<br>-8139 | 233<br>-9181 | -894        | -381<br>-1115 | 399<br>-701  | 106            | -626          | 210          | -466          | -720           | 275          | 394                                          | 45          | 96          | 359          | 117           | -369          | -294            | -249          |               |
|                                         |              | -9103         | -9181        | 457         | 1114          | 7011         | 1010           |               |              |               |                |              |                                              |             |             |              |               |               |                 |               |               |
|                                         |              |               |              |             |               |              |                |               |              |               |                |              |                                              |             |             |              |               |               |                 |               |               |

| 299(F)           | 4317          | -3577         | -4619        | 543       | 3859          | -4820       | -1320                     | -3438         | <b>√609</b>  | -2900)        | -2894         | -3532       | 4750         | -3628)      | -4203       | -4078        | -4237        | -3546         | -601)         | 2917          | 41600%  |
|------------------|---------------|---------------|--------------|-----------|---------------|-------------|---------------------------|---------------|--------------|---------------|---------------|-------------|--------------|-------------|-------------|--------------|--------------|---------------|---------------|---------------|---------|
|                  | -149          | -500          | 233          | 43        | -381          | 399         | 106                       | -626          | 210          | -466          | -720          | 275         | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          | 41000%  |
|                  | -8            | -8139         | -9181        | -894      | -1115         | -701        | -1378                     |               |              |               |               |             |              |             |             |              | ,,,,         |               |               |               |         |
|                  |               |               |              |           |               |             |                           |               |              |               |               |             |              |             |             |              |              |               |               |               |         |
| 300(A)           | 2827          | -1603         | -4068        | -3628     | -2047         | -3165       | -2823                     | 1205          | -3349        | -1486         | -1083         | -3103       | -3432        | -3073       | -3298       | ·2387        | 197          | 1100          | -2812         | -2147         | 41700%  |
| ·                | -149          | -500<br>-8139 | 233<br>-9181 | -894      | -381<br>-1115 | 399<br>-701 | 106<br>-1378              | -626          | 210          | 466           | -720          | 275         | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          |         |
|                  | -8            | -6135         | -9161        | -634      | -1115         | -101        | -13/0                     |               |              |               |               |             |              |             |             | <del></del>  |              |               |               |               |         |
| 301(K)           | 2364          | -3363         | -2464        | 163       | -4038         | -3041       | -1188                     | -3501         | 2928         | -3234         | -2487         | -1693       | -3047        | -758        | 2488        | -458         | -2152        | -3194         | -3159         | -2895         | 41800%  |
| •                | -149          | -500          | 233          | 43        | -381          | 399         | 106                       | -626          | 210          | 466           | -720          | 275         | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          | 110107  |
|                  | -8            | -8139         | -9161        | -894      | -1115         | -701        | -1376*                    |               |              |               |               |             |              |             |             |              |              |               |               |               |         |
|                  |               |               |              |           |               |             |                           |               |              |               |               |             |              |             |             |              |              |               |               |               |         |
| 302(N)           | -893          | -2361         | 740          | 1780      | -2580         | -537        | -524                      | -2429         | 930          | -2376         | 1895          | -498        | -1958        | -66         | 722         | 775          | -833         | -1982         | -2545         | -1864         | 41900%  |
| •                | -149<br>-8    | -500<br>-8139 | 233<br>-9181 | 43        | -381          | 399<br>-701 | 106<br>-1378              | -626          | 210          | -466          | -720          | 275         | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          |         |
|                  | 1 -0          | 10103         | -3  0        | -894      | -1115         | ·ruŋ        | 1310                      |               |              |               |               |             |              |             |             |              |              |               |               |               |         |
| 303(W)           | -2965         | -2553         | -4795        | -4462     | 3045          | -4315       | -1779                     | -1426         | -4093        | . 92          | -997          | -3564       | -4179        | -3330       | -3743       | -3175        | -2878        | 664           | 4754          | -84           | 42000%  |
| . ``             | -149          | -500          | 233          | 43        | -381          | 399         | 106                       | -826          | 210          | 466           | 720           | 275         | 394          | 45          | 96          | 359          | 117          | -359          | -294          | -249          |         |
| •                | 8             | -8139         | -9181        | -894      | -1115         | -701        | -1378                     |               |              |               | ·····         |             |              |             |             |              |              |               |               |               |         |
|                  |               |               |              |           |               |             |                           |               |              |               |               |             |              |             |             |              |              |               |               |               |         |
| 304(I)           | -2621         | -2136         | -5246        | -4859     | -2364         | -4987       | -4577                     | 3052          | 4747         | •250          | 1043          | 4641        | 4713         | -4488       | 4769        | -4301        | -2597        | 2384          | -3934         | -3596         | 42100%  |
| •                | -149<br>-8    | -500<br>-8139 | 233<br>-9181 | -894      | -381<br>-1115 | 399<br>-701 | 106                       | -626          | 210          | -466          | -720          | 275         | 394          | 45          | 96          | 359          | 117          | -365          | -294          | -249          |         |
|                  |               | -01004        | -VIOIL       | -wal      | -11114        | -IAIL       | 10101                     |               | 1            |               |               |             |              |             |             |              |              |               | <del></del>   |               |         |
| 305(L)           | 684           | -1319         | -1741        | · 761     | -1375         | -2223       | -1037                     | -927          | -1042        | 1693          | -533          | -1287       | -2325        | -915        | -1349       | 767          | ·152         | B4            | -1756         | -1329         | 42200%  |
|                  | -149          | 500           | 233          | 43        | -381          | 399         | 106                       | -526          | 210          | -466          | -720          | 275         | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          |         |
|                  | -8            | -8139         | -9181        | -894      | -1115         | -701        | -1376                     | ľ             |              |               |               |             |              |             |             |              |              |               |               |               |         |
|                  |               |               |              |           |               |             |                           |               |              |               |               |             | 21.20        |             |             |              |              |               |               |               |         |
| 306(E)           | 364           | 4165          | 621          | 3314      | 4393          | -2398       | ·1686                     | 4282          | -1836        | -4169         | -3446         | 729         | -2893        | -1339       | -2626       | 2045         | -2402        | -3767         | 4362          | -3401         | 42300%  |
|                  | -149<br>-8    | -500<br>-6139 | 233<br>-9181 | -894      | -381<br>-1115 | 399<br>-701 | 106<br>-1378 °            | -626          | 210          | -466          | -720          | 275         | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          |         |
|                  | - 70          | *0100         | -3 01        | -024      | -1110         | -101]       | -1010                     |               | 1            | <del></del>   |               |             |              |             |             |              |              |               |               |               |         |
| 307(14           | -939          | 979           | -1235        | -881      | -1738         | 1352        | 935                       | -1357         | -549         | -1572         | -816          | 2186        | -2155        | -482        | 165)        | ·1022        | -880         | 30            | -1990         | 1446          | 42400%  |
| -                | -149          | -500          | 233          | 43        | -381          | 399         | 106                       | -626          | 210          | 456           | -720          | 275         | 394          | 45          | 96          | 359          | 117          | 369           | -294          | -249          |         |
|                  | -8            | -8139         | -9181        | -894      | -1115         | -701        | -1378                     |               |              |               |               |             |              |             |             |              |              |               |               |               |         |
|                  |               |               |              |           |               |             |                           |               |              |               |               |             |              |             | ···         |              |              |               |               |               |         |
| 308(Q)           | -149          | -2393<br>-500 | -773<br>233  | 511<br>43 | -2721<br>-381 | -316<br>399 | -544<br>106               | -2465<br>-626 | 1211<br>210  | -2405<br>-466 | -1484<br>-720 | 584<br>275  | -1989<br>394 | 2135<br>45  | 1528<br>96  | -812<br>359  | -868<br>117  | -2019         | -2558<br>-294 | -1895         | 42500%  |
|                  | -149          | -8139         | -9181        | -394      | -1115         | 701         | 1378                      | -020          | 210          | -400          | -120          | 2/4         | 374          | 40          | 30          | 333          | 111          | -369          | -234          | -249          |         |
| <del>, , ,</del> | <u> </u>      | 0104          | - VIOIL      | 747       | 17,14         | -1017       | 1919                      | <del></del>   |              |               |               |             |              |             |             |              |              |               |               |               |         |
| 309(A)           | 2050          | -1857         | -1091        | -526      | -2013         | -2012       | 188                       | -1645         | -385         | -1213         | -1011         | 486         | -2103        | -346        | 1657        | -963         | 306          | -261          | -2169         | -1624         | 42800%  |
|                  | -149          | -500          | 233          | 43        | -381          | 399         | 106                       | -626          | 210          | 466           | 720           | 275         | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          |         |
|                  | -6            | -8139         | -9161        | -694      | -1115         | -701        | -1378                     |               |              |               |               |             |              |             |             |              |              |               |               |               |         |
| 24000            | 1010          | ALC D         | 2000         | 2000      | 4000          | 0064        | - APRIL                   | 3/65          | 0004         | 1000          | 3017          | A1151       | 2407         | 10130       | 2401        | Lond         | 04.00        | 1000          | 5044          | 40741         | 1078001 |
| 310(G)           | -1848<br>-149 | -2469<br>-500 | -2089        | -2292     | 1262          | 2914        | -2358                     | -3663<br>-626 | -2904<br>210 | -3628<br>-466 | -3017<br>-720 | 2347<br>275 | -3167<br>394 | -2550<br>45 | -3185<br>96 | -1996<br>359 | -2162<br>117 | -3006<br>-369 | -2814<br>-284 | -1874<br>-249 | 42700%  |
|                  | -195          | -6139         | 233<br>-9181 | -894      | -381<br>-1115 | 399<br>-701 | 106<br>-1376 <sup>4</sup> | -020          | 210          | *999          | -120          | 210         | 324          | 40          | 20          | 303          | 1111         | .000          | ·641          | -243          |         |
|                  | <u>~</u> _    | - V.V.        | - 101        | V.,       |               |             | -10101                    |               |              |               |               |             |              |             |             |              |              |               |               |               |         |
| 311(1)           | 475           | 1019          | -1606        | -1042     | 225           | -2192       | -935                      | -946          | -891         | -1226         | 1222          | 357         | -2267        | 1002        | 1577        | -1172        | -868         | 800           | -1730         | 2446          | 42800%  |
|                  | -149          | ·500          | 233          | 43        | -381          | 339         | 106                       | -626          | 210          | -466          | -720          | 275         | 394          | 45          | 96          | 359          | 117          | -369          | -234          | -249          | -       |
|                  | -8            | -8139         | -9181        | -894      | ·1115         | -701        | -1378                     | $-\mathrm{T}$ |              |               |               |             |              |             |             |              |              |               |               |               |         |
| (A/FC -          | . A-91        | AOTAL         | - Janal      |           | 0-00          | Annal       | Aparl                     | \$14F         | 1000         | 17.40         | IS AFA        | (Feel       | nced         | 10          | annal       | 4255         | and .        | 0000          | 0000          | 2074          | 1002001 |
| 112(P)           | -87<br>-149   | -2372         | -1362        | 756       | -3738         | -2205       | -2007<br>106              | -3445<br>-526 | -1924        | -3675<br>466  | -2761<br>-720 | -1555       | 3599         | -1697       | -2362       | -1566<br>359 | 286<br>117   | -2903         | -3832<br>-294 | -3277         | 42900%  |
|                  | -2336         | -500<br>-8139 | 233<br>-325  | -894      | -381<br>-1115 | 399<br>-701 | -1378                     | -920          | 210          | 700           | -120          | 275         | 194          | 45          | 96          | 100          | 111          | -369          | -234          | -249          |         |
| 1                | -2000         | 7100          | -3231        | -004      | -1110         | -101        | -1010                     |               |              |               |               |             |              |             |             |              |              |               |               |               |         |
| 13(K)            | -804          | -1483         | -564         | -230      | 1920          | -1335       | -101                      | -1605         | 2889         | -1630         | -1021         | -349        | -1569        | 232         | 698         | -786         | -769         | -1358         | -1637         | -1317         | 43000%  |
|                  | -149          | -500          | 233          | 43        | -361          | 399         | 106                       | -626          | 210          | -466          | -720          | 275         | 394          | 45          | 96          | 359          | 117          | -369          | -294          | -249          |         |
|                  |               |               |              |           |               |             |                           |               |              |               |               |             |              |             |             |              |              |               |               |               |         |

|                                              | -38           | -5840         | -6882        | -894        | -1115         | -3098        | -173         |               |              |               |                      |              |              |            |             |             |            |               |               |               |          |
|----------------------------------------------|---------------|---------------|--------------|-------------|---------------|--------------|--------------|---------------|--------------|---------------|----------------------|--------------|--------------|------------|-------------|-------------|------------|---------------|---------------|---------------|----------|
| 314(E)                                       | -766          | -1695         | 521          | 2831        | -2050         | -1029        | -293         | -1804         | -118         | -1919         | -1331                | 8            | -1441        | 4          | -527        | -653        | -814       | -1512         | -1988         | -1505         | 43100%   |
|                                              | -149          | -500          | 233          | 43          | -381          | 399          | 106          | -62€          | 210          | -466          | -720                 | 275          | 394          | 45         | 96          | 359         | 117        | -369          | -234          | -249          | 2,115,00 |
| <u>.                                    </u> | -38           | -5840         | -5882        | -894        | -1115         | -109         | -3775        |               |              |               |                      |              |              |            |             |             |            |               |               |               |          |
| 315(T)                                       | -942          | -2382         | -739         | 1086        | -2714         | 151          | -581         | -2459         | -171         | -2415         | -1499                | 414          | -2004        | -128       | 839         | 1365        | 1730       | -2017         | -2592         | -1915         | 43200%   |
|                                              | -149          | -500          | 233          | 43          | -381          | 399          | 106          | -626          | 210          | 466           | -720                 | 275          | 394          | 45         | 98          | 359         | 117        | -369          | -294          | -249          |          |
|                                              | 8             | -8139         | -9181        | -894        | -1115         | -701         | -1378        |               | 1            |               |                      |              |              |            |             |             |            |               |               |               |          |
| 316(M)                                       | -2196         | -1920         | -4499        | -3891       | 1726          | -3822        | -2504        | -645          | -3523        | 1973          | 3030                 | -3442        | -3673        | -2938      | -1257       | -2944       | -2114      | 326           | -2014         | 1662          | 43300%   |
|                                              | -149          | -500          | 233          | 43          | -381          | 399          | 106          | -628          | 210          | -466          | -720                 | 275          | 394          | 45         | 98          | 359         | 117        | -369          | -294          | 249           |          |
| ·                                            | -8            | -8139         | -9161        | -694        | -1115         | -701         | -1376        |               |              | <u> </u>      |                      |              |              |            |             |             |            |               |               |               |          |
| 317(H)                                       | -883          | -2314         | -747         | 517         | -2618         | -1863        | 1714         | 647           | 1272         | -2322         | -1408                | 1011         | 472          | -69        | 433         | -772        | 1411       | -289          | -2507         | -1836         | 43400%   |
|                                              | -149          | -500          | 233          | 43          | -381          | 399          | 106          | -626          | 210          | -466          | -720                 | 275          | 394          | 45         | 433<br>96   | 369         | 117        | -369          | -294          | -249          |          |
|                                              | િક            | -8139         | -9181        | -894        | -1115         | -701         | -1378        | 1,            | ]            |               |                      |              |              |            |             |             |            |               |               |               |          |
| 318(A)                                       | 2474          | -2397         | -816         | -367        | -2797         | -273         | -722         | -2529         | 555          | -2507         | -1610                | 592          | -2110        | 837        | -805        | -13B        | -1805      | -2092         | -2699         | -2039         | 43500%   |
|                                              | -149          | -500          | 233          | 43          | -381          | 399          | 106          | -626          | 210          | -466          | -720                 | 275          | 394          | 45         | 96          | 359         | 117        | -369          | 294           | -249          |          |
|                                              | -8            | -8139)        | -9181        | -894        | -1115         | -701         | -1378]*      |               | 1            |               |                      |              |              |            |             |             |            |               |               |               |          |
| 319( <b>M</b> )                              | 154           | -986          | -2485        | -337        | 1024          | -375         | -1232        | 325           | 414          | 867           | 1235                 | -1752        | -2474        | -1419      | 1020        | -1455       | 670        | -411          | 831           | 535           | 43600%   |
| * 14(14)                                     | 149           | -500          | 233          | 43          | -381          | 399          | 106          | -626          | 210          | 455           | -720                 | 275          | 394          | 45         | 96          | 359         | 117        | -369          | -294          | -249          | 7000071  |
|                                              | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1376*       |               |              |               |                      |              |              |            |             |             |            |               |               |               | ·        |
| 320(R)                                       | -1311         | -2432         | -1349        | -724        | -2724         | -2272        | -799         | -2361         | 613          | -644          | 1079                 | 976          | 597)         | -392       | 2908        | -1246       | -1219      | -2044         | -2579         | -2061         | 43700%   |
| VZOQI Y                                      | -149          | -500          | 233          | 43          | -381          | 399          | 106          | -626          | 210          | 466           | -720                 | 275          | 394          | 45         | 96          | 359         | 117        | -369          | -234          | -249          | 4910010  |
| -                                            | -6            | -8139         | -9181        | -894        | -1115         | -701         | -1378        |               |              |               |                      |              |              |            |             |             |            |               |               |               |          |
| 321(F)                                       | 897           | -2364         | -833         | 905         | -2678         | -1930        | -568         | -2405         | 1293         | -2366         | 1465                 | -575         | -2020        | -117       | 2045        | 95          | -893       | -1984         | -2543         | -1892         | 43800%   |
| -                                            | -149          | -500          | 233          | 43          | -381          | 399          | 106          | 626           | 210          | -466          | -720                 | 275          | 394          | 45         | 96          | 359         | 117        | -369          | -294          | -249          | 3000031  |
|                                              | -8            | -8139         | -9181        | -894        | -1115         | -701         | -1376        |               |              |               |                      |              |              |            |             |             |            |               |               |               |          |
| 322(N)                                       | 505           | -2300         | -750         | 523         | 2598          | 121          | -525         | -594          | 486          | 95            | -1396                | 1720         | -1957        | 348        | 224         | 551         | -821       | -1910         | -2497         | -1828         | 43900%   |
| 022(19)                                      | -149          | -2300         | 233          | .43         | -381          | 399          | 106          | -626          | 210          | 466           | -720                 | 275          | 394          | 45         | 96          | 359         | 117        | -369          | -294          | -249          | 10007    |
|                                              | -8            | -8139         | -91B1        | -B94        | -1115         | -701         | -1378        | •             |              |               |                      |              |              |            |             |             |            |               |               |               |          |
| 323(E)                                       | 444           | -2266         | -766         | 1488        | -2551         | -1871        | -533         | -2276         | 889          | -2266         | 1474                 | 1476         | 1963         | 682        | 629         | -781        | 12         | -279          | 2472          | 476           | 44000%   |
| 120(0)                                       | -149          | -500          | 233          | 43          | -381          | 399          | 106          | 626           | 210          | 466           | -720                 | 275          | 394          | 45         | 96          | 359         | 117        | -369          | 294           | -249          | 11000 8  |
|                                              | -6            | -8139         | -9161        | -834        | -1115         | -701         | -1376 '      | •             |              |               |                      |              |              |            |             |             |            |               |               |               |          |
| MALO                                         | 3214          | 1770          | 770          | ansi        | 1000          | 4704         | - 1661       | 600           | 601          | 444           | -1133                | 1769         | -1627        | 1398       | 447         | -748        | 746        | -1713         | -1779         | -1595         | 44100%   |
| 324(N)                                       | 1611          | -1770<br>-500 | -728<br>233  | -204<br>43  | -2244<br>-381 | -1781<br>399 | 426<br>106   | 282<br>-626   | 210          | -2121<br>-466 | -720                 | 275          | 394          | 45         | 95          | 359         | 117        | -369          | -294          | 249           | 441007   |
|                                              | -8            | -B139         | -9181        | -894        | -1115         | -701         | -1378        |               |              |               |                      |              |              |            |             |             |            |               |               |               | ·        |
| 225:11                                       | 1052          | 2100          | ATEN         | 1735        | 3404          | 2642         | (07.1)       | 2404          | 048          | 1494          | -2264                | 2158         | -2417        | -657       | -1430       | -1361       | 197        | -2727         | -3303         | -2540         | 44200%   |
| 325(N)                                       | 1053<br>-149  | -3109<br>-500 | 1756<br>233  | 43          | 381           | -2t43<br>399 | -1074<br>106 | -3191<br>-626 | -845<br>210  | -3124<br>-466 | -720                 | 275          | 394          | 45         | 98          | 359         | 117        | -369          | -294          | -249          | ******** |
| •                                            | -8            | -8139         | -9181        | 894         | -1115         | -701         | -13761       |               |              |               |                      |              |              |            |             |             |            |               |               |               |          |
| 20743                                        | AOP (         | 202/          | 404el        | Ancel       | 2000          | 0.20         | 1741         | 9641          | tocal        | 7500          | 2017                 | 4170         | ancal        | 4300       | 4003        | 875         | 0(22)      | 1464          | 1940          | -2601         | 44308%   |
| 326(H)                                       | -2054<br>-149 | -3071<br>-500 | -1245<br>233 | -1267<br>43 | -3252<br>-381 | -2570<br>399 | 4711<br>106  | -3611<br>-625 | -1060<br>210 | -3528<br>-466 | ·2812                | -1479<br>275 | -2961<br>394 | 1288<br>45 | -1287<br>96 | 670<br>359  | 2133       | -3161<br>-369 | -3310<br>-294 | -249          | W ORKER  |
|                                              | -8            | -8139         | -9181        | -894        | -1115         | -701         | ·1376°       |               |              |               | -اتتنب.<br>- خــــــ |              |              |            |             |             |            |               |               |               |          |
| 107(0)                                       | 901           | Mail          | -            | 614         | AFAF          | 710          | 10.91        | 7545          | 141          | 494           | (461)                | £40)         | 404          | 2024       | P I         | 705         | 610        | Er al         | 24021         | 1020          | 444600   |
| 327(Q)                                       | -891<br>-149  | -2294<br>-500 | 332<br>233   | 948<br>43   | -2585<br>-381 | -739<br>399  | -537<br>106  | -2316<br>-626 | -131<br>210  | -138<br>-466  | -1391<br>-720        | -518<br>275  | 1404<br>394  | 2021<br>45 | -634<br>96  | -785<br>359 | 619<br>117 | -561<br>-369  | -2495<br>-284 | -1830<br>-249 | 44400%   |
|                                              |               | -8139         | -9191        | -894        | -1115         | -701         | -137B        | 1             |              | TVV           | 124                  | -14          |              |            | - 44        | 244         |            |               |               |               |          |
|                                              |               |               |              | _التيب      |               |              |              |               |              |               |                      |              |              |            |             |             |            |               |               |               |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 328(1)        | -1632 | -1661  | -2846 | -86           | -1626 | -2983  | -1963   | 3240   | -1327 | -191        | 729          | -2160 | 2010         | 1616        | 000         | 7007         | 1500         | (00)        | Adres       | 4557  | <del></del> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|--------|-------|---------------|-------|--------|---------|--------|-------|-------------|--------------|-------|--------------|-------------|-------------|--------------|--------------|-------------|-------------|-------|-------------|
| 14   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |       |        |       |               |       |        |         |        |       |             | -722<br>-720 |       | -3016<br>194 | -1615<br>45 | 96          | -2097<br>359 | -1556<br>117 | -660        | -2157       | -1805 | 44500%      |
| 146  650   220   431   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335     |               |       |        |       | -834          |       |        |         |        |       |             | i i v        |       |              |             | 30          | 200          | 11/          | -903[       | -624        | -293  |             |
| 146  650   220   431   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335   335     |               |       |        |       |               |       |        |         |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
| 2528   4510   252   453   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   4718   47   | 323(F)        |       |        |       | 3593          |       |        |         |        | -2175 |             |              |       |              |             |             |              |              |             |             |       | 44500%      |
| 1869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u></u>       |       |        |       | - 40<br>- 801 |       | 388    |         | -020   | 210   | -455        | -720         | 275   | 394          | 45          | 96          | 359          | 117          | -369        | -294        | -249  |             |
| 149   550   233   44   38   82   106   458   20   468   70   770   770   584   48   30   30   11   48   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b></b> -     | 7,000 | 0100   | -020  | 10.74         | 1110  | -101   | •10/0   |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
| 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 330(VI)       |       | -1265  | -2058 | -1964         | 479   | -1810  | -483    | -1181  | -1470 | -968        | -802         | -1648 | -2104        | -1454       | -1405       | -1757)       | -1693        | -1218       | 5462        | 838   | 44700%      |
| 1-90   5949   6862   6864   7196   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176   7176      |               |       |        |       |               |       | 399    | 106     |        | 210   | -466        | -720         | 275   |              |             |             |              | 117          |             | -294        | 249   | 7117770     |
| 148   400   200   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400    | <u> </u>      | -38   | -5840  | -6862 | -894          | -1116 | -109   | -3775   |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
| 148   400   200   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400   400    | 33100         | R     | -2087  | ons   | 437           | .2276 | 1044   | 264     | 107    | 2024  | 9021        | 4400         | cocl  | 0000         | 1100        | 700         | - N.1        | AFN          | 4007        | 4441        | 4268  |             |
| 36   4138   4198   4584   1115   770   1738   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |        |       |               |       |        |         |        |       |             | -1109        | 275   |              |             | -/09<br>aci |              | -353         | 1337        | -2323       |       | 44800%      |
| 333(9)   2446   251(2)   5850   4109   3528   4872   4489   4538   4539   4480   4538   4630   4630   4648   4650   3980   1117   320   220   220   2480   3280   220   220   2480   3280   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   220   22   |               | -8    |        |       | -694          |       |        |         | - YAY  | 19    | 101         | -110         | 210   |              |             | 301         | 333          | - 1111       | -303        | -234        | *240  |             |
| 1486   5-90   223   48   3-30   299   146   475   210   486   720   218   8-94   68   80   159   111   3-85   2-94   4-85     1415   1420   2000   545   4888   3234   5268   457   5476   5476   5476   4894   448   489   448   489   448   489   448     1415   1420   488   489   489   489   489   489   489   489   489   489   489   489   489   489     1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416   1416    |               |       |        |       |               |       |        |         |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
| 1-4   8136   2181   4864   1182   700   1376   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 332(V)        |       |        |       |               |       | -4682  |         |        | 4580  | -1533       | -1402        | -4414 |              | -4456       | -4663       |              | 1117         | 3227        | 4065        | -3597 | 44900%      |
| 330    445    420    486    486    320    486    487    558    827    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486    486       | <u> </u>      |       |        |       |               |       |        |         | -525   | 210   | -496        | -720         | 275   | 394          | 45          | 96          | 369          | 117          | -369        | -234        | -249  |             |
| - 1-1-18   -596   239   -488   -389   889   155   \ \( \sqrt{1.576} \) \( \sqrt{1.576} \) \ \( \sqrt{1.576} \) \\( \sqrt{1.576} \) \( \sqrt{1.576} \) \\( |               | .0)   | -0103  | -2101 | -631          | -1115 | -101   | -13/0   | 4      |       |             |              |       |              |             |             |              |              |             |             |       | <del></del> |
| - 1-1-18   -596   239   -488   -389   889   155   \ \( \sqrt{1.576} \) \( \sqrt{1.576} \) \ \( \sqrt{1.576} \) \\( \sqrt{1.576} \) \( \sqrt{1.576} \) \\( | 333(G)        | -4435 | 4203   | -5092 | -5462         | -5893 | 3834   | -5028   | -66271 | -5765 | -6297       | -5970        | -5141 | 4804         | -5546       | -5385       | -4797        | 4915         | 5000        | 4994        | -seag | 4500002     |
| Section   Sect   |               | -149  | -500   | 233   | 43            | -381  | 399    |         |        | 210   | 466         |              | 275   | 394          | 45          | 96          | 359          | 117          | -369        |             | -249  | N GUIDE     |
| 149   -500   223   43   -328   339   166   626   216   466   720   217   324   45   56   359   111   358   224   345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •             | -8    | -8139  | -9181 | -894          | 1115  | -701   | -1378   |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
| 149   -500   223   43   -328   339   166   626   216   466   720   217   324   45   56   359   111   358   224   345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00100         | 1199  | 67.01  | 70.0  |               | -444  | 444    | 401     | ***    |       |             |              |       |              |             |             |              |              |             |             |       |             |
| -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 134(E)        |       |        |       |               | -3114 | -2113  |         |        | 445   |             | -1912        |       |              |             |             |              |              |             |             |       | 45100%      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |        |       |               |       |        |         | .020   | 210   | -406        | -120         | 219   | 324          | 40[         | 36          | 2034         | 111          | -309        | -239        | -243  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       | 4,00   | 4.144 |               |       |        | 1010    |        |       |             |              |       |              |             |             |              |              |             |             |       | <del></del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 335(K)        |       |        |       | 1309          |       | -2086  |         |        | 2626  | -2637       |              | -718  |              | 1198        |             |              |              |             | -2770       | -2133 | 45200%      |
| 336(1)   347    3622   5884   5375   5327   5884   4389   632   5432   5438   2862   1871   5558   4862   4044   4669   4863   3438   742   3692   3239   453072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | أست           |       |        |       |               |       | 399    |         | -626   | 210   | -466        | -720         | 276   | 394          | 45          | 96          | 359          | 117          | -369        | -294        | -249  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -8    | -8139  | -9181 | -894          | -1119 | -701   | ·1378[` |        | 1     | <u>-</u>    |              |       |              |             |             |              |              | <del></del> |             |       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 336(1.)       | 3671  | -3023  | -5064 | -5375         | -1321 | -5646  | -1390   | -630   | -5138 | 2062        | 1671         | -5358 | 4852         | 4044        | 4699        | .4963        | -2436        | 742)        | -3092       | -3239 | ASTONAL     |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |       |        |       |               |       |        |         |        |       |             |              |       |              |             |             |              | 117          |             |             | -249  | 44900 /6    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |        |       |               |       | -701   |         |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |        |       |               |       |        |         |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 337(R)        |       |        |       |               |       |        |         |        |       |             |              | 4521  |              |             |             |              |              |             |             | 4993  | 45400%      |
| 389(E)   943    -2422   1002    1200   2744    377    -572    -2483    962    -2438    -1617    -522    -1998    -117    -581    1128    -534    -2014    -2608    -1921    4550074    -148    -500    233    43    -381    339    106    -626    210    -466    -770    273    334    45    96    358    117    -368    -224    -248    -488    -3273    771    -3038    -224    -248    -488    -3273    771    -3038    -237    -248    -488    -3273    771    -3038    -237    -248    -488    -3273    771    -3038    -237    -248    -488    -3273    771    -3038    -237    -248    -488    -3273    771    -3038    -238    -238    -458    -488    -3273    771    -3038    -238    -238    -488    -488    -3273    771    -3038    -238    -238    -238    -388    -388    -388    -388    -388    -388    -388    -288    -228    -248    -288    -3273    -288    -288    -3273    -288    -288    -3273    -288    -288    -3273    -288    -288    -3273    -288    -288    -328    -288    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388    -388     | <del></del> - |       |        |       |               |       |        |         | -626   | 210   | 400         | -(24)        | 2/5   | 394          | 45          | 98          | 359          | 11/1         | -369        | -254)       | -249  |             |
| - 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | - 4   | .0103  | -7104 | -044          | -1110 | 4707   | *1010   |        |       | <del></del> |              |       |              |             |             |              |              |             | <del></del> |       | <del></del> |
| - 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 338(E)        | 913   | -2422  |       | 1200          | -2741 |        | -572    | 2493   | 982   | -2439       | -1517        | -522  | -1998        | -117        | 681         | 1129         | -534         | -2044       | -2609       | -1921 | 45500%      |
| 339(M) -3391 -2886 -5774 -5282 -1338 -5407 -4210 -576 -4943 1721 4388 -5109 -4742 -3963 -4548 -4689 -3273 771 -3008 -3137 45500% -149 -500 233 43 -381 399 106 -626 210 -466 -720 216 394 45 96 368 117 -369 -224 -249 -140 -140 -140 -140 -140 -140 -140 -140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |       |        |       |               |       |        |         | -626   | 210   | -466        | -720         | 275   | 394          | 45          | 96          | 359          | 117          | -369        | -294        | -249  |             |
| 148  -500  233  43  -381  399  106  -626  210  -466  -720  276  394  45  96  368  117  -385  -224  -249    -8  -5135  -918  -894  -1115  -701  -1378    -8  -258  441  4380  -2931  -3334  -2655  641  -2503  -1740  449  -1534  -1667  457007    -143  -500  253  43  -381  899  106  626  210  -466  -720  275  384  45  96  369  117  -369  -294  -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249      |               | -8    | -8139  | -9181 | -894          | -1115 | -701   | -1379   |        | 1     |             |              |       |              |             |             |              |              |             |             |       |             |
| 148  -500  233  43  -381  399  106  -626  210  -466  -720  276  394  45  96  368  117  -385  -224  -249    -8  -5135  -918  -894  -1115  -701  -1378    -8  -258  441  4380  -2931  -3334  -2655  641  -2503  -1740  449  -1534  -1667  457007    -143  -500  253  43  -381  899  106  626  210  -466  -720  275  384  45  96  369  117  -369  -294  -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249    -249      | 130/10/       | -3304 | -29961 | -577/ | _5202         | _1118 | -54071 | -4241)  | -576   | JOAN  | 4701        | 1100         | -5100 | 4749         | .3063       | ASAD!       | .4590        | 2072         | 771         | -3009       | -3177 | (VOODSA)    |
| 1-8  -9  -9  -9  -9  -9  -9  -9  -1  -1  -70  -1  -1  -70  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -1  -7  -1  -7  -1  -7  -1  -7  -7  -7  -7  -7  -7  -7  -7  -7  -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2(11)      |       |        |       |               |       |        |         |        | 210   |             |              |       |              |             |             |              |              |             |             |       | 4000074     |
| 1812   -1601   -3837   -3475   688   -3401   -2222   516   -2583   441   -4380   -2931   -3334   -2559   641   -2503   -1740   404   -1834   -1651   -4570076   -149   -500   233   -43   -3351   -339   105   -626   210   -466   -720   275   -384   -45   -96   -359   117   -369   -224   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -249   -   |               |       | -8139  | -9181 |               |       | -701   |         |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
| -149 -500 233 43 -381 399 106 426 210 466 -720 275 384 45 96 359 117 -369 -294 -249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |       |        |       |               |       |        |         |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
| -8 -8135 -5181 -658] -1116 -701 -1376 1<br>-41(F) 102 -1763 -1723 -1312 426 -2112 -1410 -2021 -1236 -2235 -1470 -1394 3205 693 -1607 703 -1207 -1700 -2313 -2127 458007/2<br>-149 -500 233 48 -381 359 106 -626 210 -466 -720 278 334 45 96 359 117 -355 -234 -249<br>-255 -6139 -2637 -894 -1118 -701 -1378 1<br>-4208 -3022 4312 -4121 1891 -4228 -1173 -2749 310 -2369 -2250 -3447 -4208 -2971 -3009 -3494 -3396 -2816 5544 611 458007/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140(11)       |       |        |       |               |       |        |         |        |       |             |              |       |              |             |             |              |              |             |             |       | 45700%      |
| 141(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |       |        |       |               |       |        |         | -626   | 210   | .466        | -720         | 275   | 394          | 45          | 96          | 359          | 117          | -369        | 294         | -249  |             |
| 149   -500   223   48   -381   399   101   -626   210   -466   -720   274   334   45   96   359   117   -359   -294   -249     -259   -0139   -2637   -693   -1112   -701   -1376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | - 4   | -8135  | -9161 | -894          | -1110 | -(01)  | -13/8   |        |       |             |              |       |              |             |             | <del></del>  |              |             |             |       |             |
| 149   -500   223   48   -381   399   101   -626   210   -466   -720   274   334   45   96   359   117   -359   -294   -249     -259   -0139   -2637   -693   -1112   -701   -1376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41(P)         | 102   | -1789  | -1729 | -1313         | 428   | -2112  | -14161  | -2021  | 1236  | 2235        | -1470)       | -1394 | 3205         | 695         | -1607       | 703          | -12071       | -1700       | -2313       | -2121 | 45809%      |
| -255 -0135 -2637 -891 -1115 -701 -1376 :<br>142(W) 3486 -3022 4312 -4121 1891 -4228 -1173 -2749 310 -2369 -2250 -3847 -4208 -2971 -3009 -3494 -3396 -2016 5544 611 44000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |       |        |       |               |       | 399    |         |        |       |             |              |       |              |             |             |              |              |             |             |       |             |
| 12(W) 3486 -3022 4312 4124 1694 -4228 -1173 -2749 310 -2369 -2350 -3147 4208 -2971 -3005 -3484 -3396 -2018 5544 611 43007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |       |        |       | -894          |       |        |         | 1      |       |             |              |       |              |             |             |              |              |             |             |       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |        |       |               | 1000  | 10.00  |         |        |       |             |              |       |              |             |             | A 1000       |              | 44.4        |             |       |             |
| 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (42(W)        |       |        |       |               |       |        |         |        |       |             |              |       |              |             |             | ·3484        |              |             |             |       | 45800%      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -1\$9 | •300   | 255   | 43            | -387  | 399    | 100     | -620   | 210   | -400        | -(20)        | 2/0   | 394          | 45          | 95          | 359          | 11/          | 103         | -294        | -243  |             |

|                | 239   | -7889         | -2749        | -894      | -1115         | ·1590)       | -583         |                                        | ,           |        |       |            |        |             |             |              |              |               |               |               |           |
|----------------|-------|---------------|--------------|-----------|---------------|--------------|--------------|----------------------------------------|-------------|--------|-------|------------|--------|-------------|-------------|--------------|--------------|---------------|---------------|---------------|-----------|
|                |       |               |              |           |               | 1030         | 1000         |                                        |             |        |       |            |        |             |             |              |              |               |               |               |           |
| 343(1)         | -2220 | -1737         | -4660        | 4531      | -2271         | -4617        | -4497        | 3348                                   | -4448       | -1059  | -1008 | 4311       | -4407  | -4340       | 4559        | -3974        | -2216        | 2150          | 3915          | 3445          | 46000%    |
|                | -149  | -500          | 233          | 43        | -381          | 399          | 106          | -626                                   | 210         | 466    | -720  | 275        | 394    | 45          | 36          | 359          | 117          | -369          | -294          | -249          | 70007     |
|                | -114  | -7660         | -3820        | -894      | -1115         | -1149        | -865         |                                        | ī           |        |       |            |        |             |             |              |              |               |               |               |           |
| 344(A)         | 1693  | 2010          | E77          | 22        | accel         | ccal         | 421          | 6204                                   | - 1010      | - 4000 | 43.00 |            | - 454A |             |             | - 485        |              |               |               |               |           |
| - Unjeer       | -149  | -2218<br>-500 | 532<br>233   | -33<br>43 | -2555<br>-381 | -653<br>399  | 413          | -2304                                  | 1212        | -2260  | -1348 | 582<br>275 | -1822  | 37          | -536        | 965          | -724         | -1859         | -2439         | -1755         | 46100%    |
| <del></del> -  | -10   | -7753         | -8795        | -894      | -1115         | -897         | 106<br>-1111 | -626                                   | 210         | -466   | -720  | 2/5        | 394    | 45          | 96          | 359          | 117          | -369          | -294          | -249          |           |
|                | -14   | 11/4          | -0130        | -024      | -1114         | -02/         | -1111        |                                        | {           |        |       |            |        |             |             |              |              |               |               |               |           |
| 345(A)         | 1523  | -2068         | -769         | -231      | 2383          | 1040         | -522         | -2094                                  | \$26        | -2120  | -1245 | -\$17      | -1922  | 1335        | -611        | 251          | -768         | -123          | -2361         | -1732         | 45200%    |
|                | -149  | -500          | 233          | 43        | -381          | 399          | 106          | -626                                   | 210         | -466   | -720  | 275        | 394    | 45          | 96          | 359          | 117          | -369          | -294          | 249           | 1,1,1,1,1 |
|                | -9    | -7949)        | -8991        | -894      | -1115         | -1432        | -668         |                                        |             |        |       |            |        |             |             |              |              |               |               |               |           |
| 346(N)         | -1650 | -3264         | 1760         | -348      | -3555         | -230         | -1131        | -3362                                  | 324         | -3285  | -2448 | 2847       | 1624   | -733        | 1607        | 4420         | APAE         | 6007          | 1491          | · Annal       | 4chand)   |
|                | -119  | -500          | 233          | 43        | -381          | 399          | 106          | -626                                   | 210         | -466   | -720  | 275        | 394    | 45          | -1607<br>98 | -1438<br>359 | -1645<br>117 | -2687<br>-369 | -3466<br>-294 | -2662<br>-249 | 46300%    |
|                | -193  | -7842         | -3049        | -894      | -1115         | -1432        | -668         | -920                                   | 219         | 704    | -120  | 214        | - 047  | 70]         |             | 303          | 114          | +303          | •274          | -243          |           |
|                |       |               |              |           |               |              |              |                                        |             |        |       |            |        |             |             |              |              |               |               |               |           |
| 34766)         | 150   | 2932          | -2433        | -1483     | -3710         | -2747        | -907         | -3141                                  | 3369        | -2897  | -2178 | -1487      | -2774  | 488         | 1175        | -1994        | -1888        | -2848         | -2822         | -2610         | 45400%    |
|                | -149  | -590          | 233          | 43        | -381          | 399          | 106          | -626                                   | 210         | 466    | -720  | 275        | 394    | 45          | 96          | 359          | 117          | -369          | -294          | -249          |           |
| <u> </u>       | -11   | -7660         | -8702        | -894      | -1115         | -1824        | -479         |                                        |             |        |       |            |        |             |             |              |              |               |               |               |           |
| 348(L)         | -740  | -922          | -1768        | 154       | -921          | -2070        | -829         | 1384                                   | 247         | 1472   | -100  | -1202      | -2134  | -805        | 4CE         | -1085        | 677          | (38)          | 4446          | 010           | (arrand   |
| oro(L)         | 149   | 500           | 233          | 43        | -381          | 399          | 105          | -626                                   | 210         | -466   | -720  | 275        | 394    | 45          | 485<br>96   | 359          | -677<br>117  | 471<br>-369   | -1340<br>-294 | -944<br>-249  | 46500%    |
| •              | -11   | -7660         | -8702        | -894      | -1115         | -943         | -1069        | - 020                                  | - 210       | 700    | -160[ | 210        | 301    |             | 301         | 333          | 1111         | •303          | -2341         | ZN            |           |
|                |       |               |              |           |               |              |              |                                        |             |        |       |            |        |             |             |              |              |               |               | 11.           |           |
| 349(V)         | . 138 | -1046         | -3186        | -2599     | -1089         | -2803        | -1711        | 589                                    | 645         | 945    | -236  | -2305      | 2830   | -2012       | -2236       | -1892        | -1154        | 2537          | -1701         | -1344         | 46800%    |
|                | -149  | -600          | 233          | 43        | -381          | 399          | 106          | -626                                   | 210         | -466   | -720  | 275        | 394    | 45          | 96          | 359          | 117          | -369          | -294          | -249          |           |
| ••             | -9    | -7842         | -88%         | -894      | -1115         | -380         | -2109        |                                        | <u> </u>    |        |       |            |        |             |             |              |              | :             |               |               |           |
| 350 <b>(D)</b> | -2086 | -3722         | 2888         | 1158      | -4001         | 1601         | -1510        | -3811                                  | -1573       | -3773  | -3018 | -904       | -2733  | -1154       | 2294        | -1833        | -2125        | 575           | -3993         | -3117         | 45700%    |
|                | -149  | -500          | 233          | 41        | -381          | 399          | 106          | -626                                   | 210         | -465   | -720  | 275        | 394    | 45          | 98          | 359          | 117          | -369          | -234          | -243          | 40100 10  |
|                | -8    | -8045         | -9088        | -894      | -1115         | -701         | -137B        | _                                      | <del></del> |        |       |            |        |             |             |              |              |               |               |               |           |
|                |       |               |              |           |               |              |              |                                        |             |        |       |            |        |             |             |              |              |               |               |               |           |
| 351 <u>(V</u>  | -78   | -2308         | 398          | -137      | -2626         | -463         | 542          | -2374                                  | 244         | -2323  | -1400 | -447       | 531    | 720         | 162         | -724         | 290          | -1929         | -2493         | -1812         | 46800%    |
| •              | 149   | -5(0)         | 233          | 43        | -381          | 399          | 106          | -626                                   | 210         | -466   | -720  | 275        | 394    | 45          | 98          | 359          | 117          | -369          | -294          | -249          |           |
|                | -8    | -8046         | -9088        | -894      | -1115         | -701         | -1378        | ــــــــــــــــــــــــــــــــــــــ |             |        |       |            |        |             |             |              |              |               |               |               |           |
| 352(D)         | 898   | -1911         | 1684         | -335      | -2089         | 1692         | -573         | -1746                                  | 489         | -144   | 811   | -609       | 34     | -182        | -708        | 541          | -74          | -281          | -2188         | -1605         | 46900%    |
|                | -149  | -500          | 233          | 43        | -381          | 399          | 106          | -626                                   | 210         | -466   | -720  | 276        | 334    | 45          | 96          | 359          | 117          | -369          | 234           | -249          |           |
|                | -10   | -7746         | -8797        | -894      | -1115         | -701         | -1378        |                                        |             |        |       |            |        |             |             |              |              |               |               |               |           |
|                | ional |               |              |           | 444           |              | 444          |                                        |             |        |       |            |        |             |             |              |              |               |               |               |           |
| 353(K)         | 1676  | -2544<br>-500 | -1956<br>233 | -1135     | -2823         | -2631<br>399 | -800<br>106  | -2469<br>-626                          | 2955<br>210 | -2426  | -1563 | -1240      | -2548  | -407        | 1469        | -1628        | -1517        | -119          | -2497         | 1519          | 47000%    |
|                | -11   | -7649         | -8691        | -894      | -1115         | -701         | -137B)*      | +010                                   | 210         | -466   | -720  | 275        | 394    | 45          | 96          | 359          | 117          | -369          | -294          | -249          |           |
|                | -11   | 1045          | -0031        | 1034      | -1110         | 701          | -1016        | 1                                      |             |        |       |            |        | <del></del> |             |              | <del></del>  |               |               |               |           |
| 54(N)          | -1074 | -1925         | 1092         | -1190     | -3523         | -1781        | -1760        | -3345                                  | -1701       | -3432  | -2589 | 3429       | 1327   | -1460       | -2119       | 1162         | -1362        | -2558         | -3601         | -3846         | 47100%    |
| •              | 1     |               |              | ١         | ,             | ,            |              |                                        |             | ī      | - 1   | ,          | ī      | ′           | •           | _ '          | · ·          |               | F             |               |           |
|                | 2 2   |               | 1            | 1         | 7             | 1            | ,            |                                        | 0           |        |       |            |        |             |             |              |              |               |               |               |           |

También se describe en el presente documento el objeto de las reivindicaciones de la solicitud internacional tal como fue presentada:

- 1. Una enzima cetol-ácido reductoisomerasa mutante que comprende la secuencia de aminoácido como se expone en la ID de SEC Nº: 29.
  - 2. Una molécula de ácido nucleico que codifica la enzima cetil-ácido reductoisomerasa mutante de la reivindicación
  - 3. Una molécula de ácido nucleico que codifica una enzima cetol-ácido reductoisomerasa mutante que tiene la secuencia de ácido nucleico como se expone en la ID de SEC Nº: 23.
- 4. Una enzima cetol-ácido reductoisomerasa mutante codificada por la molécula de ácido nucleico de la reivindicación 3.
  - 5. Una célula recombinante que comprende la enzima cetol-ácido reductoisomerasa mutante de la reivindicación 1.
  - 6. Una enzima cetol-ácido reductoisomerasa mutante como se expone en la ID de SEC Nº.: 17 que comprende al menos una mutación en un resto seleccionado del grupo consistente en 24, 33, 47, 50, 52, 53, 61, 80, 115, 156, 165 y 170.
  - 7. Una enzima cetol-ácido reductoisomerasa mutante de acuerdo con la reivindicación 6, en la que:

15

- a) el resto en la posición 47 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, F, G, I, L, N, P e Y;
- b) el resto en la posición 50 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, E, F, G, M, N, V y W;
- 5 c) el resto en la posición 52 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, G, H, N, y S;
  - d) el resto en la posición 53 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, H, I, W:
  - e) el resto en la posición 156 tiene una sustitución de aminoácidos de V;
- 10 f) el resto en la posición 165 tiene una sustitución de aminoácidos de M;
  - g) el resto en la posición 61 tiene una sustitución de aminoácidos de F;
  - h) el resto en la posición 170 tiene una sustitución de aminoácidos de A;
  - i) el resto en la posición 24 tiene una sustitución de aminoácidos de F;
  - j) el resto en la posición 33 tiene una sustitución de aminoácidos de L;
- 15 k) el resto en la posición 80 tiene una sustitución de aminoácidos de I; y
  - I) el resto en la posición 115 tiene una sustitución de aminoácidos de L.
  - 8. Una molécula de ácido nucleico que codifica la enzima cetol-ácido reductoisomerasa mutante de la reivindicación 6.
- 9. Un procedimiento para la evolución para la evolución de una enzima cetol-ácido reductoisomerasa que une NADPH a una forma que utiliza NADH que comprende:
  - a) proporcionar una enzima cetol-ácido reductoisomerasa que utiliza NADPH que tiene una secuencia de aminoácidos nativa específica;
  - b) identificar los restos de conmutación del cofactor en la enzima de a) basado en la secuencia de aminoácidos de la enzima cetol-ácido reductoisomerasa Pseudomonas fluorescens como se expone en la ID de SEC Nº: 17 en la que los restos de conmutación del cofactor están en las posiciones seleccionadas del grupo que consiste en 24, 33, 47, 50, 52, 53, 61, 80, 115, 156, 165 y 170;
    - c) crear mutaciones en al menos uno de los restos de conmutación del cofactor de b) para crear una enzima mutante en la que dicha enzima mutante ligue NADH.
    - 10. El procedimiento de la reivindicación 9, en el que:

25

- 30 a) el resto en la posición 47 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, F, G, I, L, N, P e Y;
  - b) el resto en la posición 50 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, E, F, G, M, N, V y W;
- c) el resto en la posición 52 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, 35 G, H, N, y S;
  - d) el resto en la posición 53 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, H, I, W;
  - e) el resto en la posición 156 tiene una sustitución de aminoácidos de V;
  - f) el resto en la posición 165 tiene una sustitución de aminoácidos de M;
- 40 g) el resto en la posición 61 tiene una sustitución de aminoácidos de F;
  - h) el resto en la posición 170 tiene una sustitución de aminoácidos de A;
  - i) el resto en la posición 24 tiene una sustitución de aminoácidos de F;
  - j) el resto en la posición 33 tiene una sustitución de aminoácidos de L;

- k) el resto en la posición 80 tiene una sustitución de aminoácidos de I; y
- I) el resto en la posición 115 tiene una sustitución de aminoácidos de L.
- 11. El procedimiento de la reivindicación 9, en el que la enzima cetol-ácido reductoisomerasa tiene la secuencia de aminoácidos como se expone en la ID de SEC №: 29.
- 5 12. Un procedimiento para la producción de isobutanol, que comprende:
  - a) proporcionar una célula anfitriona microbiana recombinante que comprende las siguientes constructos genéticos:
    - i) al menos un constructo genético que codifica una enzima acetolactato sintasa para la transformación de piruvato en acetolactato;
- ii) al menos un constructo genético que codifica una enzima cetol-ácido reductoisomerasa de cualquiera de las reivindicaciones 1 a 6.
  - iii) al menos un constructo genético que codifica una acetohidroxiácido deshidratasa para la transformación de 2,3-dihidroxi-isovalerato en  $\alpha$ -ceto-isovalerato (ruta de la etapa c);
  - iv) al menos un constructo genético que codifica una cetoácido descarboxilasa de de cadena ramificada, para la transformación de  $\alpha$ -cetoisovalerato en isobutiraldehido (ruta de la etapa d);
- v) al menos un constructo genético que codifica una alcohol deshidrogenasa de cadena ramificada para la transformación de isobutiraldehido a isobutanol (ruta de la etapa e); y
  - b) cultivar la célula anfitriona de a) en condiciones donde se produce iso-butanol.
  - 13. Un procedimiento para la evolución e identificación de una enzima cetol-ácido reductoisomerasa que une NADPH a una forma que utiliza NADH que comprende:
- 20 a) proporcionar una enzima cetol-ácido reductoisomerasa que utiliza NADPH que tiene una secuencia de aminoácidos nativa específica;
  - b) identificar los restos de aminoácidos en la secuencia de aminoácidos nativa cuyas cadenas laterales están en cercana proximidad a la adenosil 2'-fosfato de NADPH como objetivos de mutagénesis;
- c) crear una biblioteca de enzimas cetol-ácido reductoisomerasa mutantes a partir de la enzima cetol-ácido reductoisomerasa de clase I de la etapa a), que tienen al menos una mutación en al menos uno de los sitios objetivos de mutagénesis de la etapa (b); y
  - d) cribar la biblioteca de enzimas cetol-ácido reductoisomerasa mutantes de la etapa c) para identificar enzimas cetol-ácido reductoisomerasa mutantes que unen NADH.
- 14. Una enzima cetol-ácido reductoisomerasa mutante que tiene la secuencia de aminoácidos seleccionada del grupo que consiste en la ID de SEC Nº: 19, 24, 25, 26, 27, 28, 67, 68, 69, and 70.

#### **LISTADO DE SECUENCIAS**

- <110> E. I. du Pont de Nemours and Company
- <120> Cetol-ácido reductoisomerasa que une NADH
- <130> CL4165
- 35 <140> CL4165
  - <141> 13-12-2007
  - <160> 70
  - <170> PatentIn versión 3.5
  - <210> <sup>-</sup>
- 40 <211> 30
  - <212> ADN
  - <213> Cebador inverso para el vector pBAD
  - <400> 1

tgatgaacat cttcgcgtat tcgccgtcct

|    | <210><br><211><br><212><br><213> | 68<br>ADN                                                    |    |
|----|----------------------------------|--------------------------------------------------------------|----|
| 5  | <220><br><223>                   | Cebador directo de biblioteca G                              |    |
| 10 |                                  | característica_nueva<br>(24)(25)<br>n es a, c, g, o t        |    |
|    |                                  | característica_nueva<br>(33)(34)<br>n es a, c, g, o t        |    |
| 15 |                                  | característica_nueva<br>(39)(40)<br>n es a, c, g, o t        |    |
|    | <400>                            | 2                                                            |    |
|    | gcgta                            | gacgt gactgttggc ctgnntaaag gcnnggctnn ctgggccaag gctgaagccc | 60 |
| 20 | acggc                            | ttg                                                          | 68 |
|    | <210><br><211><br><212><br><213> |                                                              |    |
| 25 | <220><br><223>                   | Cebador directo de biblioteca E                              |    |
| 30 |                                  | característica_nueva<br>(24)(25)<br>n es a, c, g, o t        |    |
|    | <400>                            | 3                                                            |    |
|    | gcgta                            | gacgt gactgttggc ctgnntaaag gctcggctac cgttgccaag gctgaagccc | 60 |
|    | acggc                            | ttg                                                          | 68 |
| 35 | <210><br><211><br><212><br><213> | 68<br>ADN                                                    |    |
|    | <220><br><223>                   | Cebador directo de biblioteca F                              |    |
| 40 | <222>                            | característica_nueva (33)(34)<br>n es a, c, g, o t           |    |
|    | <400>                            | 4                                                            |    |
|    | gcgta                            | gacgt gactgttggc ctgcgtaaag gcnntgctac cgttgccaag gctgaagccc | 60 |
|    | acggc                            | ttg                                                          | 68 |
| 45 | <210><br><211>                   |                                                              |    |

|    |                                  | ADN secuencia artificial                              |           |            |           |   |    |
|----|----------------------------------|-------------------------------------------------------|-----------|------------|-----------|---|----|
|    | <220><br><223>                   | Cebador directo de biblioteca G                       |           |            |           |   |    |
| 5  | <220><br><221><br><222><br><223> | característica_nueva<br>(39)(40)<br>n es a, c, g, o t |           |            |           |   |    |
|    | <400>                            | 5                                                     |           |            |           |   |    |
|    | gcgta                            | gacgt gactgttggc ctgcgtaaag g                         | ctcggctnn | tgttgccaag | gctgaagcc | 3 | 60 |
| 10 | acggc                            | ttg                                                   |           |            |           |   | 68 |
|    | <210><br><211><br><212><br><213> | 68                                                    |           |            |           |   |    |
| 15 | <220><br><223>                   | Cebador directo de biblioteca H                       |           |            |           |   |    |
| 20 | <220><br><221><br><222><br><223> | característica_nueva<br>(24)(25)<br>n es a, c, g, o t |           |            |           |   |    |
|    | <220><br><221><br><222><br><223> | característica_nueva<br>(33)(34)<br>n es a, c, g, o t |           |            |           |   |    |
| 25 | <220><br><221><br><222><br><223> | (39)(40)<br>n es a, c, g, o t                         |           |            |           |   |    |
|    | <400>                            | o<br>gacgt gactgttggc ctgnntaaag g                    | cnntactnn | tottoccaao | gctgaagcc | 2 | 60 |
| 30 | acggc                            |                                                       | J         | -999       | ,,,,      |   | 68 |
|    | <210><211><211><212><213>        | 20                                                    |           |            |           |   |    |
| 35 | <220><br><223>                   | Cebador de secuenciación (directo)                    |           |            |           |   |    |
|    | <400>                            | 7                                                     |           |            |           |   |    |
|    | aagatta                          | gcg gatcctacct                                        | 20        |            |           |   |    |
| 40 | <210><br><211><br><212><br><213> | 20                                                    |           |            |           |   |    |
|    | <220><br><223>                   | Cebador de secuenciación (inverso)                    |           |            |           |   |    |
| 45 |                                  | 8                                                     |           |            |           |   |    |
|    | aacagc                           | caag cttttagttc                                       | 20        |            |           |   |    |

<210> 9 <211> 330 <212> PRT <213> Methanococcus maripaludis

5 <400> 9

Met Lys Val Phe Tyr Asp Ser Asp Phe Lys Leu Asp Ala Leu Lys Glu  $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$ 

Lys Thr Ile Ala Val Ile Gly Tyr Gly Ser Gln Gly Arg Ala Gln Ser 20 25 30

Leu Asn Met Lys Asp Ser Gly Leu Asn Val Val Val Gly Leu Arg Lys 35 40 45

Asn Gly Ala Ser Trp Glu Asn Ala Lys Ala Asp Gly His Asn Val Met

|            | 50         |            |            |            |            | 55         |            |            |                |            | 60         |                   |            |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|-------------------|------------|------------|------------|
| Thr<br>65  | Ile        | Glu        | Glu        | Ala        | Ala<br>70  | Glu        | Lys        | Ala        | Asp            | Ile<br>75  | Ile        | His               | Ile        | Leu        | Ile<br>80  |
| Pro        | Asp        | Glu        | Leu        | Gln<br>85  | Ala        | Glu        | Val        | Tyr        | Glu<br>90      | Ser        | Gln        | Ile               | Lys        | Pro<br>95  | Tyr        |
| Leu        | Lys        | Glu        | Gly<br>100 | Lys        | Thr        | Leu        | Ser        | Phe<br>105 | Ser            | His        | Gly        | Phe               | Asn<br>110 | Ile        | His        |
| Tyr        | Gly        | Phe<br>115 | Ile        | Val        | Pro        | Pro        | Lys<br>120 | Gly        | Val            | Asn        | Val        | Val<br>125        | Leu        | Val        | Ala        |
| Pro        | Lys<br>130 | Ser        | Pro        | Gly        | Lys        | Met<br>135 | Val        | Arg        | Arg            | Thr        | Tyr<br>140 | Glu               | Glu        | Gly        | Phe        |
| Gly<br>145 | Val        | Pro        | Gly        | Leu        | Ile<br>150 | Cys        | Ile        | Glu        | Ile            | Asp<br>155 | Ala        | Thr               | Asn        | Asn        | Ala<br>160 |
| Phe        | Asp        | Ile        | Val        | Ser<br>165 | Ala        | Met        | Ala        | Lys        | Gly<br>170     | Ile        | Gly        | Leu               | Ser        | Arg<br>175 | Ala        |
| Gly        | Val        | Ile        | Gln<br>180 | Thr        | Thr        | Phe        | Lys        | Glu<br>185 | Glu            | Thr        | Glu        | Thr               | Asp<br>190 | Leu        | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Val            | Thr        | Glu        | Leu<br>205        | Ile        | Lys        | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr            | Ala        | Pro<br>220 | Glu               | Met        | Ala        | Tyr        |
| Phe<br>225 | Glu        | Thr        | Cys        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile            | Val<br>235 | Asp        | Leu               | Ile        | Tyr        | Gln<br>240 |
| Lys        | Gly        | Phe        | Lys        | Asn<br>245 | Met        | Trp        | Asn        | Asp        | <b>Val</b> 250 | Ser        | Asn        | Thr               | Ala        | Glu<br>255 | Tyr        |
| Gly        | Gly        | Leu        | Thr<br>260 | Arg        | Arg        | Ser        | Arg        | Ile<br>265 | Val            | Thr        | Ala        | Asp               | Ser<br>270 | Lys        | Ala        |
| Ala        | Met        | Lys<br>275 | Glu        | Ile        | Leu        | Lys        | Glu<br>280 | Ile        | Gln            | Asp        | Gly        | <b>Arg</b><br>285 | Phe        | Thr        | Lys        |
| Glu        | Phe<br>290 | Val        | Leu        | Glu        | Lys        | Gln<br>295 | Val        | Asn        | His            | Ala        | His<br>300 | Leu               | Lys        | Ala        | Met        |

315

Arg Arg Ile Glu Gly Asp Leu Gln Ile Glu Glu Val Gly Ala Lys Leu

310

305

Arg Lys Met Cys Gly Leu Glu Lys Glu Glu 325 <210> 10 <211> 330 <212> PRT <213> Methanococcus maripaludis <400> 10 Met Lys Val Phe Tyr Asp Ser Asp Phe Lys Leu Asp Ala Leu Lys Glu 10 Lys Thr Ile Ala Val Ile Gly Tyr Gly Ser Gln Gly Arg Ala Gln Ser 25 Leu Asn Met Lys Asp Ser Gly Leu Asn Val Val Gly Leu Arg Lys 40 Asn Gly Ala Ser Trp Asn Asn Ala Lys Ala Asp Gly His Asn Val Met 60 Thr Ile Glu Glu Ala Ala Glu Lys Ala Asp Ile Ile His Ile Leu Ile Pro Asp Glu Leu Gln Ala Glu Val Tyr Glu Ser Gln Ile Lys Pro Tyr 90 Leu Lys Glu Gly Lys Thr Leu Ser Phe Ser His Gly Phe Asn Ile His Tyr Gly Phe Ile Val Pro Pro Lys Gly Val Asn Val Val Leu Val Ala Pro Lys Ser Pro Gly Lys Met Val Arg Arg Thr Tyr Glu Glu Gly Phe 135 Gly Val Pro Gly Leu Ile Cys Ile Glu Ile Asp Ala Thr Asn Asn Ala 155 Phe Asp Ile Val Ser Ala Met Ala Lys Gly Ile Gly Leu Ser Arg Ala 165 170 175 Gly Val Ile Gln Thr Thr Phe Lys Glu Glu Thr Glu Thr Asp Leu Phe 180 185

| Gly                              | Glu          | Gln<br>195 | Ala        | Val        | Leu            | Cys        | Gly<br>200 | Gly        | Val            | Thr        | Glu        | Leu<br>205        | Ile        | Lys        | Ala        |
|----------------------------------|--------------|------------|------------|------------|----------------|------------|------------|------------|----------------|------------|------------|-------------------|------------|------------|------------|
| Gly                              | Phe<br>210   | Glu        | Thr        | Leu        | Val            | Glu<br>215 | Ala        | Gly        | Tyr            | Ala        | Pro<br>220 | Glu               | Met        | Ala        | Tyr        |
| Phe<br>225                       | Glu          | Thr        | Cys        | His        | Glu<br>230     | Leu        | Lys        | Leu        | Ile            | Val<br>235 | Asp        | Leu               | Ile        | Tyr        | Gln<br>240 |
| Lys                              | Gly          | Phe        | Lys        | Asn<br>245 | Met            | Trp        | Asn        | Asp        | <b>Val</b> 250 | Ser        | Asn        | Thr               | Ala        | Glu<br>255 | Tyr        |
| Gly                              | Gly          | Leu        | Thr<br>260 | Arg        | Arg            | Ser        | Arg        | Ile<br>265 | Val            | Thr        | Ala        | Asp               | Ser<br>270 | Lys        | Ala        |
| Ala                              | Met          | Lys<br>275 | Glu        | Ile        | Leu            | Arg        | Glu<br>280 | Ile        | Gln            | Asp        | Gly        | <b>Arg</b><br>285 | Phe        | Thr        | Lys        |
| Glu                              | Phe<br>290   | Leu        | Leu        | Glu        | Lys            | Gln<br>295 | Val        | Ser        | Tyr            | Ala        | His<br>300 | Leu               | Lys        | Ser        | Met        |
| Arg<br>305                       | Arg          | Leu        | Glu        | Gly        | <b>Asp</b> 310 | Leu        | Gln        | Ile        | Glu            | Glu<br>315 | Val        | Gly               | Ala        | Lys        | Leu<br>320 |
| Arg                              | Lys          | Met        | Cys        | Gly<br>325 | Leu            | Glu        | Lys        | Glu        | Glu<br>330     |            |            |                   |            |            |            |
| <2102<br><2112<br><2122<br><2132 | > 33<br>> PF | 0          | ococci     | ıs van     | ınielii        |            |            |            |                |            |            |                   |            |            |            |
| <400                             | > 11         |            |            |            |                |            |            |            |                |            |            |                   |            |            |            |
| Met<br>1                         | Lys          | Val        | Phe        | Tyr<br>5   | Asp            | Ala        | Asp        | Ile        | Lys<br>10      | Leu        | Asp        | Ala               | Leu        | Lys<br>15  | Ser        |
| Lys                              | Thr          | Ile        | Ala<br>20  | Val        | Ile            | Gly        | Tyr        | Gly<br>25  | Ser            | Gln        | Gly        | Arg               | Ala<br>30  | Gln        | Ser        |
| Leu                              | Asn          | Met<br>35  | Lys        | Asp        | Ser            | Gly        | Leu<br>40  | Asn        | Val            | Val        | Val        | Gly<br>45         | Leu        | Arg        | Lys        |
| Asn                              | Gly<br>50    | Ala        | Ser        | Trp        | Glu            | Asn<br>55  | Ala        | Lys        | Asn            | Asp        | Gly<br>60  | His               | Glu        | Val        | Leu        |
| Thr<br>65                        | Ile          | Glu        | Glu        | Ala        | Ser<br>70      | Lys        | Lys        | Ala        | Asp            | Ile<br>75  | Ile        | His               | Ile        | Leu        | Ile<br>80  |

| Pro                | Asp        | Glu        | Leu        | Gln<br>85  | Ala        | Glu        | Val        | Tyr        | Glu<br>90  | Ser               | Gln        | Ile               | Lys        | Pro<br>95         | Tyr            |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|-------------------|----------------|
| Leu                | Thr        | Glu        | Gly<br>100 | Lys        | Thr        | Leu        | Ser        | Phe<br>105 | Ser        | His               | Gly        | Phe               | Asn<br>110 | Ile               | His            |
| Tyr                | Gly        | Phe<br>115 | Ile        | Ile        | Pro        | Pro        | Lys<br>120 | Gly        | Val        | Asn               | Val        | Val<br>125        | Leu        | Val               | Ala            |
| Pro                | Lys<br>130 | Ser        | Pro        | Gly        | Lys        | Met<br>135 | Val        | Arg        | Lys        | Thr               | Tyr<br>140 | Glu               | Glu        | Gly               | Phe            |
| Gly<br>145         | Val        | Pro        | Gly        | Leu        | Ile<br>150 | Cys        | Ile        | Glu        | Val        | <b>Asp</b><br>155 | Ala        | Thr               | Asn        | Thr               | Ala<br>160     |
| Phe                | Glu        | Thr        | Val        | Ser<br>165 | Ala        | Met        | Ala        | Lys        | Gly<br>170 | Ile               | Gly        | Leu               | Ser        | <b>Arg</b><br>175 | Ala            |
| Gly                | Val        | Ile        | Gln<br>180 | Thr        | Thr        | Phe        | Arg        | Glu<br>185 | Glu        | Thr               | Glu        | Thr               | Asp<br>190 | Leu               | Phe            |
| Gly                | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Val        | Thr               | Glu        | <b>Leu</b><br>205 | Ile        | Lys               | Ala            |
| Gly                | Phe<br>210 | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr        | Ser               | Pro<br>220 | Glu               | Met        | Ala               | Tyr            |
| Phe<br>225         | Glu        | Thr        | Cys        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile        | Val<br>235        | Asp        | Leu               | Ile        | Tyr               | Gln<br>240     |
| Lys                | Gly        | Phe        | Lys        | Asn<br>245 | Met        | Trp        | His        | Asp        | Val<br>250 | Ser               | Asn        | Thr               | Ala        | G1u<br>255        | Tyr            |
|                    |            |            | 260        | _          | Arg        |            |            | 265        |            |                   |            |                   | 270        |                   |                |
|                    |            | 275        |            |            | Leu        |            | 280        |            |            |                   | _          | 285               |            |                   |                |
|                    | 290        |            |            |            | Asn        | 295        |            | -          |            |                   | 300        |                   | -          |                   |                |
| 305                |            |            |            |            | Glu<br>310 |            |            |            |            | Glu<br>315        | Val        | Gly               | Ser        | Lys               | <b>Leu</b> 320 |
| <b>Arg</b><br><210 | _          |            | Cys        | Gly<br>325 | Leu        | Glu        | Lys        | Asp        | G1u<br>330 |                   |            |                   |            |                   |                |
| -211               | 2/         | 0          |            |            |            |            |            |            |            |                   |            |                   |            |                   |                |

|            | <212> PRT<br><213> Saccharomyces cerevisiae |            |            |            |            |            |            |            |            |                   |            |            |                    |            |            |
|------------|---------------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|--------------------|------------|------------|
| <400>      | > 12                                        |            |            |            |            |            |            |            |            |                   |            |            |                    |            |            |
| Met<br>1   | Leu                                         | Lys        | Gln        | Ile<br>5   | Asn        | Phe        | Gly        | Gly        | Thr<br>10  | Val               | Glu        | Thr        | Val                | Tyr<br>15  | Glu        |
| Arg        | Ala                                         | Asp        | Trp<br>20  | Pro        | Arg        | Glu        | Lys        | Leu<br>25  | Leu        | Asp               | Tyr        | Phe        | Lys<br>30          | Asn        | Asp        |
| Thr        | Phe                                         | Ala<br>35  | Leu        | Ile        | Gly        | Tyr        | Gly<br>40  | Ser        | Gln        | Gly               | Tyr        | Gly<br>45  | Gln                | Gly        | Leu        |
| Asn        | Leu<br>50                                   | Arg        | Asp        | Asn        | Gly        | Leu<br>55  | Asn        | Val        | Ile        | Ile               | Gly<br>60  | Val        | Arg                | Lys        | Asp        |
| Gly<br>65  | Ala                                         | Ser        | Trp        | Lys        | Ala<br>70  | Ala        | Ile        | Glu        | Asp        | Gly<br>75         | Trp        | Val        | Pro                | Gly        | Lys<br>80  |
| Asn        | Leu                                         | Phe        | Thr        | Val<br>85  | Glu        | Asp        | Ala        | Ile        | Lys<br>90  | Arg               | Gly        | Ser        | Tyr                | Val<br>95  | Met        |
| Asn        | Leu                                         | Leu        | Ser<br>100 | Asp        | Ala        | Ala        | Gln        | Ser<br>105 | Glu        | Thr               | Trp        | Pro        | <b>A</b> la<br>110 | Ile        | Lys        |
| Pro        | Leu                                         | Leu<br>115 | Thr        | Lys        | Gly        | Lys        | Thr<br>120 | Leu        | Tyr        | Phe               | Ser        | His<br>125 | Gly                | Phe        | Ser        |
| Pro        | Val<br>130                                  | Phe        | Lys        | Asp        | Leu        | Thr<br>135 | His        | Val        | Glu        | Pro               | Pro<br>140 | Lys        | Asp                | Leu        | Asp        |
| Val<br>145 | Ile                                         | Leu        | Val        | Ala        | Pro<br>150 | Lys        | Gly        | Ser        | Gly        | <b>Arg</b><br>155 | Thr        | Val        | Arg                | Ser        | Leu<br>160 |
| Phe        | Lys                                         | Glu        | Gly        | Arg<br>165 | Gly        | Ile        | Asn        | Ser        | Ser<br>170 | Tyr               | Ala        | Val        | Trp                | Asn<br>175 | Asp        |
| Val        | Thr                                         | Gly        | Lys<br>180 | Ala        | His        | Glu        | Lys        | Ala<br>185 | Gln        | Ala               | Leu        | Ala        | Val<br>190         | Ala        | Ile        |
| Gly        | Ser                                         | Gly<br>195 | Tyr        | Val        | Tyr        | Gln        | Thr<br>200 | Thr        | Phe        | Glu               | Arg        | Glu<br>205 | Val                | Asn        | Ser        |

Asp Leu Tyr Gly Glu Arg Gly Cys Leu Met Gly Gly Ile His Gly Met 210  $\phantom{\bigg|}215\phantom{\bigg|}220\phantom{\bigg|}$ 

| 225                                                 | шец                                               | ALA                                          | GIII             | TYL                    | 230                      | Vai                     | Leu                     | Arg              | GIU                | 235               | GIY               | nis                     | ser              | PIO              | 240        |
|-----------------------------------------------------|---------------------------------------------------|----------------------------------------------|------------------|------------------------|--------------------------|-------------------------|-------------------------|------------------|--------------------|-------------------|-------------------|-------------------------|------------------|------------------|------------|
| Glu                                                 | Ala                                               | Phe                                          | Asn              | Glu<br>245             | Thr                      | Val                     | Glu                     | Glu              | Ala<br>250         | Thr               | Gln               | Ser                     | Leu              | Tyr<br>255       | Pro        |
| Leu                                                 | Ile                                               | Gly                                          | Lys<br>260       | Tyr                    | Gly                      | Met                     | Asp                     | Tyr<br>265       | Met                | Tyr               | Asp               | Ala                     | Cys<br>270       | Ser              | Thr        |
| Thr                                                 | Ala                                               | <b>Arg</b><br>275                            | Arg              | Gly                    | Ala                      | Leu                     | Asp<br>280              | Trp              | Tyr                | Pro               | Ile               | Phe<br>285              | Lys              | Asn              | Ala        |
| Leu                                                 | <b>Lys</b><br>290                                 | Pro                                          | Val              | Phe                    | Gln                      | Asp<br>295              | Leu                     | Tyr              | Glu                | Ser               | Thr<br>300        | Lys                     | Asn              | Gly              | Thr        |
| Glu<br>305                                          | Thr                                               | Lys                                          | Arg              | Ser                    | Leu<br>310               | Glu                     | Phe                     | Asn              | Ser                | Gln<br>315        | Pro               | Asp                     | Tyr              | Arg              | Glu<br>320 |
| Lys                                                 | Leu                                               | Glu                                          | Lys              | Glu<br>325             | Leu                      | Asp                     | Thr                     | Ile              | <b>A</b> rg<br>330 | Asn               | Met               | Glu                     | Ile              | Trp<br>335       | Lys        |
| Val                                                 | Gly                                               | Lys                                          | Glu<br>340       | Val                    | Arg                      | Lys                     | Leu                     | Arg<br>345       | Pro                | Glu               | Asn               | Gln                     |                  |                  |            |
|                                                     |                                                   |                                              |                  |                        |                          |                         |                         |                  |                    |                   |                   |                         |                  |                  |            |
| <2102<br><2112<br><2122<br><2132                    | > 33<br>> PF                                      | 5<br>RT                                      | us sol           | fatario                | cus                      |                         |                         |                  |                    |                   |                   |                         |                  |                  |            |
| <2112<br><212                                       | > 33<br>> PF<br>> Su                              | 5<br>RT<br>Ifolob                            |                  | fatario                | cus                      |                         |                         |                  |                    |                   |                   |                         |                  |                  |            |
| <2112<br><2122<br><2132<br><4002                    | > 33<br>> PF<br>> Su<br>> 13                      | 5<br>RT<br>Ifolob                            | us sol           |                        |                          | Ile                     | Tyr                     | Thr              | Asp<br>10          | Asn               | Asp               | Ala                     | Asn              | Leu<br>15        | Asp        |
| <211;<br><212;<br><213;<br><400;<br><b>Met</b><br>1 | > 33<br>> PF<br>> Su<br>> 13<br><b>Lys</b>        | 5<br>RT<br>Ifolob<br>Cys                     | us sol           | Ser<br>5               | Lys                      |                         |                         |                  | 10                 |                   |                   |                         |                  |                  |            |
| <2113<br><2123<br><2133<br><4003<br>Met<br>1        | > 33<br>> PF<br>> Su<br>> 13<br>Lys               | 5<br>RT<br>Ifolob<br>Cys                     | Thr<br>Gly<br>20 | Ser<br>5<br>Lys        | Lys<br>Arg               | Ile                     | Ala                     | Val<br>25        | 10                 | Gly               | Tyr               | Gly                     | Ser<br>30        | 15               | Gly        |
| <211; <212; <213; <400; Met 1 Leu Arg               | > 33<br>> PF<br>> Su<br>> 13<br>Lys<br>Ile        | 5<br>RT<br>Ifolob<br>Cys<br>Lys<br>Trp<br>35 | Thr<br>Gly<br>20 | Ser<br>5<br>Lys<br>Gln | Lys<br>Arg<br>Asn        | Ile<br>Leu              | Ala<br>Arg<br>40        | Val<br>25<br>Asp | 10<br>Leu<br>Ser   | Gly<br>Gly        | Tyr<br>Leu        | Gly<br>Asn<br>45        | Ser<br>30<br>Val | 15<br>Gln        | Gly<br>Val |
| <211; <212; <213; <400; Met 1 Leu Arg Gly           | > 33<br>> PF<br>> Su<br>> 13<br>Lys<br>Ile<br>Ala | 5<br>RT<br>Ifolob<br>Cys<br>Lys<br>Trp<br>35 | Thr Gly 20 Ala   | Ser<br>5<br>Lys<br>Gln | Lys<br>Arg<br>Asn<br>Gly | Ile<br>Leu<br>Lys<br>55 | Ala<br>Arg<br>40<br>Ser | Val<br>25<br>Asp | 10<br>Leu<br>Ser   | Gly<br>Gly<br>Leu | Tyr<br>Leu<br>Ala | Gly<br>Asn<br>45<br>Lys | Ser<br>30<br>Val | 15<br>Gln<br>Val | Gly<br>Val |

| Val                                                                | Gln        | Pro               | Tyr<br>100 | Met        | Lys        | Lys        | Gly        | Ala<br>105 | Asp                | Leu        | Val                | Phe        | Ala<br>110 | His        | Gly        |
|--------------------------------------------------------------------|------------|-------------------|------------|------------|------------|------------|------------|------------|--------------------|------------|--------------------|------------|------------|------------|------------|
| Phe                                                                | Asn        | Ile<br>115        | His        | Tyr        | Lys        | Leu        | Ile<br>120 | Asp        | Pro                | Pro        | Lys                | Asp<br>125 | Ser        | Asp        | Val        |
| Tyr                                                                | Met<br>130 | Ile               | Ala        | Pro        | Lys        | Gly<br>135 | Pro        | Gly        | Pro                | Thr        | Val<br>140         | Arg        | Glu        | Tyr        | Tyr        |
| Lys<br>145                                                         | Ala        | Gly               | Gly        | Gly        | Val<br>150 | Pro        | Ala        | Leu        | Val                | Ala<br>155 | Val                | His        | Gln        | Asp        | Val<br>160 |
| Ser                                                                | Gly        | Thr               | Ala        | Leu<br>165 | His        | Lys        | Ala        | Leu        | <b>A</b> la<br>170 | Ile        | Ala                | Lys        | Gly        | Ile<br>175 | Gly        |
| Ala                                                                | Thr        | Arg               | Ala<br>180 | Gly        | Val        | Ile        | Pro        | Thr<br>185 | Thr                | Phe        | Lys                | Glu        | Glu<br>190 | Thr        | Glu        |
| Thr                                                                | Asp        | Leu<br>195        | Phe        | Gly        | Glu        | Gln        | Val<br>200 | Ile        | Leu                | Val        | Gly                | Gly<br>205 | Ile        | Met        | Glu        |
| Leu                                                                | Met<br>210 | Arg               | Ala        | Ala        | Phe        | Glu<br>215 | Thr        | Leu        | Val                | Glu        | Glu<br>220         | Gly        | Tyr        | Gln        | Pro        |
| Glu<br>225                                                         | Val        | Ala               | Tyr        | Phe        | Glu<br>230 | Thr        | Ile        | Asn        | Glu                | Leu<br>235 | Lys                | Met        | Leu        | Val        | Asp<br>240 |
| Leu                                                                | Val        | Tyr               | Glu        | Lys<br>245 | Gly        | Ile        | Ser        | Gly        | Met<br>250         | Leu        | Lys                | Ala        | Val        | Ser<br>255 | Asp        |
| Thr                                                                | Ala        | Lys               | Tyr<br>260 | Gly        | Gly        | Met        | Thr        | Val<br>265 | Gly                | Lys        | Phe                | Val        | Ile<br>270 | Asp        | Glu        |
| Ser                                                                | Val        | <b>Arg</b><br>275 | Lys        | Arg        | Met        | Lys        | Glu<br>280 | Ala        | Leu                | Gln        | Arg                | Ile<br>285 | Lys        | Ser        | Gly        |
| Lys                                                                | Phe<br>290 | Ala               | Glu        | Glu        | Trp        | Val<br>295 | Glu        | Glu        | Tyr                | Gly        | <b>A</b> rg<br>300 | Gly        | Met        | Pro        | Thr        |
| Val<br>305                                                         | Val        | Asn               | Gly        | Leu        | Ser<br>310 | Asn        | Val        | Gln        | Asn                | Ser<br>315 | Leu                | Glu        | Glu        | Lys        | Ile<br>320 |
| _                                                                  |            |                   | Leu        | Arg<br>325 | Asp        | Leu        | Val        | Gln        | Lys<br>330         | Gly        | Lys                | Pro        | Lys        | Ser<br>335 |            |
| <210> 14<br><211> 328<br><212> PRT<br><213> Pyrobaculum aerophilum |            |                   |            |            |            |            |            |            |                    |            |                    |            |            |            |            |
| <400>                                                              | > 14       |                   |            |            |            |            |            |            |                    |            |                    |            |            |            |            |

| Met<br>1   | Ala        | Lys        | Ile        | Tyr<br>5   | Thr        | Asp        | Arg        | Glu        | Ala<br>10  | Ser        | Leu        | Glu        | Pro        | Leu<br>15  | Lys        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Lys        | Thr        | Ile<br>20  | Ala        | Val        | Ile        | Gly        | Tyr<br>25  | Gly        | Ile        | Gln        | Gly        | Arg<br>30  | Ala        | Gln        |
| Ala        | Leu        | Asn<br>35  | Leu        | Arg        | Asp        | Ser        | Gly<br>40  | Leu        | Glu        | Val        | Ile        | Ile<br>45  | Gly        | Leu        | Arg        |
| Arg        | Gly<br>50  | Gly        | Lys        | Ser        | Trp        | Glu<br>55  | Leu        | Ala        | Thr        | Ser        | Glu<br>60  | Gly        | Phe        | Arg        | Val        |
| Tyr<br>65  | Glu        | Ile        | Gly        | Glu        | Ala<br>70  | Val        | Arg        | Lys        | Ala        | Asp<br>75  | Val        | Ile        | Leu        | Val        | Leu<br>80  |
| Ile        | Pro        | Asp        | Met        | Glu<br>85  | Gln        | Pro        | Lys        | Val        | Trp<br>90  | Gln        | Glu        | Gln        | Ile        | Ala<br>95  | Pro        |
| Asn        | Leu        | Lys        | Glu<br>100 | Gly        | Val        | Val        | Val        | Asp<br>105 | Phe        | Ala        | His        | Gly        | Phe<br>110 | Asn        | Val        |
| His        | Phe        | Gly<br>115 | Leu        | Ile        | Lys        | Pro        | Pro<br>120 | Lys        | Asn        | Ile        | Asp        | Val<br>125 | Ile        | Met        | Val        |
| Ala        | Pro<br>130 | Lys        | Ala        | Pro        | Gly        | Lys<br>135 | Ala        | Val        | Arg        | Glu        | Glu<br>140 | Tyr        | Leu        | Ala        | Gly        |
| Arg<br>145 | Gly        | Val        | Pro        | Ala        | Leu<br>150 | Val        | Ala        | Val        | Tyr        | Gln<br>155 | Asp        | Tyr        | Ser        | Gly        | Ser<br>160 |
| Ala        | Leu        | Lys        | Tyr        | Ala<br>165 | Leu        | Ala        | Leu        | Ala        | Lys<br>170 | Gly        | Ile        | Gly        | Ala        | Thr<br>175 | Arg        |
| Ala        | Gly        | Val        | Ile<br>180 | Glu        | Thr        | Thr        | Phe        | Ala<br>185 | Glu        | Glu        | Thr        | Glu        | Thr<br>190 | Asp        | Leu        |
| Ile        | Gly        | Glu<br>195 | Gln        | Ile        | Val        | Leu        | Val<br>200 | Gly        | Gly        | Leu        | Met        | Glu<br>205 | Leu        | Ile        | Lys        |
| Lys        | Gly<br>210 | Phe        | Glu        | Val        | Leu        | Val<br>215 | Glu        | Met        | Gly        | Tyr        | Gln<br>220 | Pro        | Glu        | Val        | Ala        |
| Tyr<br>225 | Phe        | Glu        | Val        | Leu        | Asn<br>230 | Glu        | Ala        | Lys        | Leu        | Ile<br>235 | Met        | Asp        | Leu        | Ile        | Trp<br>240 |

Gln Arg Gly Ile Tyr Gly Met Leu Asn Gly Val Ser Asp Thr Ala Lys 245 250 Tyr Gly Gly Leu Thr Val Gly Pro Arg Val Ile Asp Glu Asn Val Lys 265 Arg Lys Met Lys Glu Ala Ala Met Arg Val Lys Ser Gly Glu Phe Ala Lys Glu Trp Val Glu Glu Tyr Asn Arg Gly Ala Pro Thr Leu Arg Lys 295 Leu Met Glu Glu Ala Arg Thr His Pro Ile Glu Lys Val Gly Glu Glu Met Arg Lys Leu Leu Phe Gly Pro <210> 15 <211> 338 <212> PRT <213> Ralstonia solanacearum <400> 15 Met Lys Val Phe Tyr Asp Lys Asp Ala Asp Leu Ser Leu Ile Lys Gly Lys Asn Val Thr Ile Ile Gly Tyr Gly Ser Gln Gly His Ala His Ala Leu Asn Leu Asn Asp Ser Gly Val Lys Val Thr Val Gly Leu Arg Lys Asn Gly Ala Ser Trp Asn Lys Ala Val Asn Ala Gly Leu Gln Val Lys Glu Val Ala Glu Ala Val Lys Asp Ala Asp Val Val Met Ile Leu Leu Pro Asp Glu Gln Ile Ala Asp Val Tyr Lys Asn Glu Val His Gly Asn 90 85 Ile Lys Gln Gly Ala Ala Leu Ala Phe Ala His Gly Phe Asn Val His 100 Tyr Gly Ala Val Ile Pro Arg Ala Asp Leu Asp Val Ile Met Val Ala

120

115

125

| Pro                  | Lys<br>130 | Ala               | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg        | Gly        | Thr               | Tyr<br>140 | Ala        | Gln        | Gly        | Gly        |
|----------------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|
| Gly<br>145           | Val        | Pro               | His        | Leu        | Ile<br>150 | Ala        | Val        | His        | Gln        | <b>Asp</b><br>155 | Lys        | Ser        | Gly        | Ser        | Ala<br>160 |
| Arg                  | Asp        | Ile               | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Thr        | Ala<br>170 | Asn               | Gly        | Gly        | Gly        | Arg<br>175 | Ala        |
| Gly                  | Ile        | Ile               | Glu<br>180 | Thr        | Asn        | Phe        | Arg        | Glu<br>185 | Glu        | Thr               | Glu        | Thr        | Asp<br>190 | Leu        | Phe        |
| Gly                  | Glu        | Gln<br>195        | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Thr        | Val               | Glu        | Leu<br>205 | Ile        | Lys        | Ala        |
| Gly                  | Phe<br>210 | Glu               | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr        | Ala               | Pro<br>220 | Glu        | Met        | Ala        | Tyr        |
| Phe<br>225           | Glu        | Cys               | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile        | Val<br>235        | Asp        | Leu        | Ile        | Tyr        | Glu<br>240 |
| Gly                  | Gly        | Ile               | Gly        | Asn<br>245 | Met        | Asn        | Tyr        | Ser        | Ile<br>250 | Ser               | Asn        | Asn        | Ala        | Glu<br>255 | Tyr        |
| Gly                  | Glu        | Tyr               | Val<br>260 | Thr        | Gly        | Pro        | Arg        | Val<br>265 | Val        | Thr               | Ala        | Glu        | Thr<br>270 | Lys        | Gln        |
| Ala                  | Met        | <b>Lys</b><br>275 | Gln        | Cys        | Leu        | His        | Asp<br>280 | Ile        | Gln        | Thr               | Gly        | Glu<br>285 | Tyr        | Ala        | Lys        |
| Ser                  | Phe<br>290 | Leu               | Leu        | Glu        | Asn        | Lys<br>295 | Ala        | Gly        | Ala        | Pro               | Thr<br>300 | Leu        | Ile        | Ser        | Arg        |
| Arg<br>305           | Arg        | Leu               | Thr        | Ala        | Asp<br>310 | His        | Gln        | Ile        | Glu        | Gln<br>315        | Val        | Gly        | Ala        | Lys        | Leu<br>320 |
| Arg                  | Ala        | Met               | Met        | Pro<br>325 | Trp        | Ile        | Ala        | Lys        | Asn<br>330 | Lys               | Leu        | Val        | Asp        | Gln<br>335 | Ser        |
| Lys                  | Asn        |                   |            |            |            |            |            |            |            |                   |            |            |            |            |            |
| <210<br><211<br><212 | > 33       | 8                 |            |            |            |            |            |            |            |                   |            |            |            |            |            |
| <213                 | _          |                   | monas      | aeru       | ginosa     | a          |            |            |            |                   |            |            |            |            |            |
| <100°                | . 16       |                   |            |            |            |            |            |            |            |                   |            |            |            |            |            |

| Met<br>1   | Arg        | Val        | Phe        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys            | Asp<br>10  | Leu               | Ser        | Ile        | Ile        | Gln<br>15         | Gly               |
|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|-------------------|------------|------------|------------|-------------------|-------------------|
| Lys        | Lys        | Val        | Ala<br>20  | Ile        | Ile        | Gly        | Tyr        | Gly<br>25      | Ser        | Gln               | Gly        | His        | Ala<br>30  | His               | Ala               |
| Cys        | Asn        | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp            | Val        | Thr               | Val        | Gly<br>45  | Leu        | Arg               | Ser               |
| Gly        | Ser<br>50  | Ala        | Thr        | Val        | Ala        | Lys<br>55  | Ala        | Glu            | Ala        | His               | Gly<br>60  | Leu        | Lys        | Val               | Ala               |
| Asp<br>65  | Val        | Lys        | Thr        | Ala        | Val<br>70  | Ala        | Ala        | Ala            | Asp        | Val<br>75         | Val        | Met        | Ile        | Leu               | Thr<br>80         |
| Pro        | Asp        | Glu        | Phe        | Gln<br>85  | Gly        | Arg        | Leu        | Tyr            | Lys<br>90  | Glu               | Glu        | Ile        | Glu        | Pro<br>95         | Asn               |
| Leu        | Lys        | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105     | Ala        | His               | Gly        | Phe        | Ser<br>110 | Ile               | His               |
| Tyr        | Asn        | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp            | Leu        | Asp               | Val        | Ile<br>125 | Met        | Ile               | Ala               |
| Pro        | Lys<br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg            | Ser        | Glu               | Phe<br>140 | Val        | Lys        | Gly               | Gly               |
| Gly<br>145 | Ile        | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr            | Gln        | <b>Asp</b><br>155 | Ala        | Ser        | Gly        | Asn               | <b>Ala</b><br>160 |
| Lys        | Asn        | Val        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Cys            | Gly<br>170 | Val               | Gly        | Gly        | Gly        | <b>Arg</b><br>175 | Thr               |
|            |            |            | Glu<br>180 |            |            |            | _          | 185            |            |                   |            |            | 190        |                   |                   |
|            |            | 195        | Ala        |            |            |            | 200        |                |            |                   |            | 205        |            |                   |                   |
|            | 210        |            | Thr        |            |            | 215        |            |                |            |                   | 220        |            |            |                   |                   |
| 225        |            | -          | Leu        |            | 230        |            | -          |                |            | 235               |            |            |            |                   | 240               |
| Gly        | Gly        | Ile        | Ala        | Asn        | Met        | Asn        | ${	t Tyr}$ | $\mathtt{Ser}$ | Ile        | Ser               | Asn        | Asn        | Ala        | Glu               | ${	t Tyr}$        |

|                                  |              |                   |            | 245        |                    |            |            |            | 250        |            |            |            |            | 255               |            |
|----------------------------------|--------------|-------------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|
| Gly                              | Glu          | Tyr               | Val<br>260 | Thr        | Gly                | Pro        | Glu        | Val<br>265 | Ile        | Asn        | Ala        | Glu        | Ser<br>270 | Arg               | Ala        |
| Ala                              | Met          | <b>Arg</b><br>275 | Asn        | Ala        | Leu                | Lys        | Arg<br>280 | Ile        | Gln        | Asp        | Gly        | Glu<br>285 | Tyr        | Ala               | Lys        |
| Met                              | Phe<br>290   | Ile               | Thr        | Glu        | Gly                | Ala<br>295 | Ala        | Asn        | Tyr        | Pro        | Ser<br>300 | Met        | Thr        | Ala               | Tyr        |
| <b>Arg</b><br>305                | Arg          | Asn               | Asn        | Ala        | <b>A</b> la<br>310 | His        | Pro        | Ile        | Glu        | Gln<br>315 | Ile        | Gly        | Glu        | Lys               | Leu<br>320 |
| Arg                              | Ala          | Met               | Met        | Pro<br>325 | Trp                | Ile        | Ala        | Ala        | Asn<br>330 | Lys        | Ile        | Val        | Asp        | <b>Lys</b><br>335 | Ser        |
| Lys                              | Asn          |                   |            |            |                    |            |            |            |            |            |            |            |            |                   |            |
| <210:<br><211:<br><212:<br><213: | > 33<br>> PF | 8<br>RT           | monas      | s fluore   | escen              | S          |            |            |            |            |            |            |            |                   |            |
| <400                             | > 17         |                   |            |            |                    |            |            |            |            |            |            |            |            |                   |            |
| Met<br>1                         | Lys          | Val               | Phe        | Tyr<br>5   | Asp                | Lys        | Asp        | Cys        | Asp<br>10  | Leu        | Ser        | Ile        | Ile        | Gln<br>15         | Gly        |
| Lys                              | Lys          | Val               | Ala<br>20  | Ile        | Ile                | Gly        | Tyr        | Gly<br>25  | Ser        | Gln        | Gly        | His        | Ala<br>30  | Gln               | Ala        |
| Cys                              | Asn          | Leu<br>35         | Lys        | Asp        | Ser                | Gly        | Val<br>40  | Asp        | Val        | Thr        | Val        | Gly<br>45  | Leu        | Arg               | Lys        |
| Gly                              | Ser<br>50    | Ala               | Thr        | Val        | Ala                | Lys<br>55  | Ala        | Glu        | Ala        | His        | Gly<br>60  | Leu        | Lys        | Val               | Thr        |
| Asp<br>65                        | Val          | Ala               | Ala        | Ala        | Val<br>70          | Ala        | Gly        | Ala        | Asp        | Leu<br>75  | Val        | Met        | Ile        | Leu               | Thr<br>80  |
| Pro                              | Asp          | Glu               | Phe        | Gln<br>85  | Ser                | Gln        | Leu        | Tyr        | Lys<br>90  | Asn        | Glu        | Ile        | Glu        | Pro<br>95         | Asn        |
| Ile                              | Lys          | Lys               | Gly<br>100 | Ala        | Thr                | Leu        | Ala        | Phe<br>105 | Ser        | His        | Gly        | Phe        | Ala<br>110 | Ile               | His        |
|                                  |              |                   |            |            |                    |            |            |            |            |            |            |            |            |                   |            |

|                                  |                   | 115               |            |            |            |            | 120                |            |                    |            |            | 125        |            |                    |            |
|----------------------------------|-------------------|-------------------|------------|------------|------------|------------|--------------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|
| Pro                              | <b>Lys</b><br>130 | Ala               | Pro        | Gly        | His        | Thr<br>135 | Val                | Arg        | Ser                | Glu        | Phe<br>140 | Val        | Lys        | Gly                | Gly        |
| Gly<br>145                       | Ile               | Pro               | Asp        | Leu        | Ile<br>150 | Ala        | Ile                | Tyr        | Gln                | Asp<br>155 | Ala        | Ser        | Gly        | Asn                | Ala<br>160 |
| Lys                              | Asn               | Val               | Ala        | Leu<br>165 | Ser        | Tyr        | Ala                | Ala        | Gly<br>170         | Val        | Gly        | Gly        | Gly        | <b>A</b> rg<br>175 | Thr        |
| Gly                              | Ile               | Ile               | Glu<br>180 | Thr        | Thr        | Phe        | Lys                | Asp<br>185 | Glu                | Thr        | Glu        | Thr        | Asp<br>190 | Leu                | Phe        |
| Gly                              | Glu               | Gln<br>195        | Ala        | Val        | Leu        | Cys        | Gly<br>200         | Gly        | Thr                | Val        | Glu        | Leu<br>205 | Val        | Lys                | Ala        |
| Gly                              | Phe<br>210        | Glu               | Thr        | Leu        | Val        | Glu<br>215 | Ala                | Gly        | Tyr                | Ala        | Pro<br>220 | Glu        | Met        | Ala                | Tyr        |
| Phe<br>225                       | Glu               | Cys               | Leu        | His        | Glu<br>230 | Leu        | Lys                | Leu        | Ile                | Val<br>235 | Asp        | Leu        | Met        | Tyr                | Glu<br>240 |
| Gly                              | Gly               | Ile               | Ala        | Asn<br>245 | Met        | Asn        | Tyr                | Ser        | Ile<br>250         | Ser        | Asn        | Asn        | Ala        | Glu<br>255         | Tyr        |
| Gly                              | Glu               | Tyr               | Val<br>260 | Thr        | Gly        | Pro        | Glu                | Val<br>265 | Ile                | Asn        | Ala        | Glu        | Ser<br>270 | Arg                | Gln        |
| Ala                              | Met               | <b>Arg</b><br>275 | Asn        | Ala        | Leu        | Lys        | <b>A</b> rg<br>280 | Ile        | Gln                | Asp        | Gly        | Glu<br>285 | Tyr        | Ala                | Lys        |
| Met                              | Phe<br>290        | Ile               | Ser        | Glu        | Gly        | Ala<br>295 | Thr                | Gly        | Tyr                | Pro        | Ser<br>300 | Met        | Thr        | Ala                | Lys        |
| Arg<br>305                       | Arg               | Asn               | Asn        | Ala        | Ala<br>310 | His        | Gly                | Ile        | Glu                | Ile<br>315 | Ile        | Gly        | Glu        | Gln                | Leu<br>320 |
| Arg                              | Ser               | Met               | Met        | Pro<br>325 | Trp        | Ile        | Gly                | Ala        | <b>A</b> sn<br>330 | Lys        | Ile        | Val        | Asp        | Lys<br>335         | Ala        |
| Lys                              | Asn               |                   |            |            |            |            |                    |            |                    |            |            |            |            |                    |            |
| <2102<br><2112<br><2122<br><2132 | > 33<br>> PF      | 8<br>RT           | ı olera    | cea        |            |            |                    |            |                    |            |            |            |            |                    |            |
| <400>                            | ·<br>> 18         |                   |            |            |            |            |                    |            |                    |            |            |            |            |                    |            |

| Met<br>1   | Arg        | Val        | Phe        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys        | 10         | Leu        | Ser        | IIe        | IIe               | GIn<br>15          | GTĀ        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|--------------------|------------|
| Lys        | Lys        | Val        | Ala<br>20  | Ile        | Ile        | Gly        | Tyr        | Gly<br>25  | Ser        | Gln        | Gly        | His        | Ala<br>30         | His                | Ala        |
| Cys        | Asn        | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp        | Val        | Thr        | Val        | Gly<br>45  | Leu               | Arg                | Ser        |
| Gly        | Ser<br>50  | Ala        | Thr        | Val        | Ala        | Lys<br>55  | Ala        | Glu        | Ala        | His        | Gly<br>60  | Leu        | Lys               | Val                | Ala        |
| Asp<br>65  | Val        | Lys        | Thr        | Ala        | Val<br>70  | Ala        | Ala        | Ala        | Asp        | Val<br>75  | Val        | Met        | Ile               | Leu                | Thr<br>80  |
| Pro        | Asp        | Glu        | Phe        | Gln<br>85  | Gly        | Arg        | Leu        | Tyr        | Lys<br>90  | Glu        | Glu        | Ile        | Glu               | Pro<br>95          | Asn        |
| Leu        | Lys        | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105 | Ala        | His        | Gly        | Phe        | Ser<br>110        | Ile                | His        |
| Tyr        | Asn        | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp        | Leu        | Asp        | Val        | Ile<br>125 | Met               | Ile                | Ala        |
| Pro        | Lys<br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg        | Ser        | Glu        | Phe<br>140 | Val        | Lys               | Gly                | Gly        |
| Gly<br>145 | Ile        | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr        | Gln        | Asp<br>155 | Ala        | Ser        | Gly               | Asn                | Ala<br>160 |
| Lys        | Asn        | Val        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Cys        | Gly<br>170 | Val        | Gly        | Gly        | Gly               | <b>A</b> rg<br>175 | Thr        |
| Gly        | Ile        | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | Asp<br>185 | Glu        | Thr        | Glu        | Thr        | <b>Asp</b><br>190 | Leu                | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Cys        | Val        | Glu        | Leu<br>205 | Val               | Lys                | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr        | Ala        | Pro<br>220 | Glu        | Met               | Ala                | Tyr        |
| Phe<br>225 | Glu        | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile        | Val<br>235 | Asp        | Leu        | Met               | Tyr                | Glu<br>240 |

|                                 | Gly                       | Ile                     | Ala                | Asn<br>245                    | Met                                   | Asn                            | Tyr              | Ser                     | Ile<br>250         | Ser                            | Asn                     | Asn                            | Ala                     | Glu<br>255               | Tyr               |
|---------------------------------|---------------------------|-------------------------|--------------------|-------------------------------|---------------------------------------|--------------------------------|------------------|-------------------------|--------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------|-------------------|
| Gly                             | Glu                       | Tyr                     | Val<br>260         | Thr                           | Gly                                   | Pro                            | Glu              | Val<br>265              | Ile                | Asn                            | Ala                     | Glu                            | Ser<br>270              | Arg                      | Ala               |
| Ala                             | Met                       | Arg<br>275              | Asn                | Ala                           | Leu                                   | Lys                            | Arg<br>280       | Ile                     | Gln                | Asp                            | Gly                     | Glu<br>285                     | Tyr                     | Ala                      | Lys               |
| Met                             | Phe<br>290                | Ile                     | Thr                | Glu                           | Gly                                   | Ala<br>295                     | Ala              | Asn                     | Tyr                | Pro                            | Ser<br>300              | Met                            | Thr                     | Ala                      | Tyr               |
| Arg<br>305                      | Arg                       | Asn                     | Asn                | Ala                           | Ala<br>310                            | His                            | Pro              | Ile                     | Glu                | Gln<br>315                     | Ile                     | Gly                            | Glu                     | Lys                      | Leu<br>320        |
| Arg                             | Ala                       | Met                     | Met                | Pro<br>325                    | Trp                                   | Ile                            | Ala              | Ala                     | <b>As</b> n<br>330 | Lys                            | Ile                     | Val                            | Asp                     | Lys<br>335               | Ser               |
| Lys                             | Asn                       |                         |                    |                               |                                       |                                |                  |                         |                    |                                |                         |                                |                         |                          |                   |
| <210                            | > 19                      |                         |                    |                               |                                       |                                |                  |                         |                    |                                |                         |                                |                         |                          |                   |
| <2112<br><212                   |                           |                         |                    |                               |                                       |                                |                  |                         |                    |                                |                         |                                |                         |                          |                   |
|                                 |                           |                         |                    | -                             |                                       |                                |                  |                         |                    |                                |                         |                                |                         |                          |                   |
| <213                            | - 5                       | eudor                   | nonas              | fluore                        | escen                                 | S                              |                  |                         |                    |                                |                         |                                |                         |                          |                   |
| <400                            |                           |                         | nonas              | fluore                        | escen                                 | S                              |                  |                         |                    |                                |                         |                                |                         |                          |                   |
| <400                            | > 19                      |                         | nonas<br>Phe       |                               |                                       |                                | Asp              | Cys                     | Asp<br>10          | Leu                            | Ser                     | Ile                            | Ile                     | Gln<br>15                | Gly               |
| <400<br>Met<br>1                | > 19<br><b>Lys</b>        | Val                     |                    | Tyr<br>5                      | Asp                                   | Lys                            |                  | -                       | 10                 |                                |                         |                                |                         | 15                       |                   |
| <4003<br>Met<br>1<br>Lys        | > 19<br>Lys<br>Lys        | Val<br>Val              | Phe<br>Ala         | Tyr<br>5                      | Asp                                   | Lys<br>Gly                     | Phe              | Gly<br>25               | 10 Ser             | Gln                            | Gly                     | His                            | Ala<br>30               | 15<br>Gln                | Ala               |
| <4003<br>Met<br>1<br>Lys        | > 19<br>Lys<br>Lys<br>Asn | Val<br>Val<br>Leu<br>35 | Phe<br>Ala<br>20   | Tyr<br>5<br>Ile<br>Asp        | Asp<br>Ile<br>Ser                     | Lys<br>Gly<br>Gly              | Phe<br>Val<br>40 | Gly<br>25               | 10<br>Ser<br>Val   | Gln<br>Thr                     | Gly<br>Val              | His<br>Gly<br>45               | Ala<br>30<br>Leu        | 15<br>Gln<br>Tyr         | Ala<br>Lys        |
| <4003<br>Met<br>1<br>Lys<br>Cys | Lys Lys Asn Ala           | Val<br>Val<br>Leu<br>35 | Phe Ala 20 Lys     | Tyr<br>5<br>Ile<br>Asp        | Asp<br>Ile<br>Ser                     | Lys<br>Gly<br>Gly<br>Lys<br>55 | Phe<br>Val<br>40 | Gly<br>25<br>Asp        | Ser<br>Val         | Gln<br>Thr<br>His              | Gly<br>Val<br>Gly<br>60 | His<br>Gly<br>45<br>Phe        | Ala<br>30<br>Leu<br>Lys | 15<br>Gln<br>Tyr<br>Val  | Ala<br>Lys        |
| <4003 Met 1 Lys Cys Gly Asp 65  | Lys Lys Asn Ala 50        | Val Leu 35 Ala          | Phe Ala 20 Lys Asp | Tyr<br>5<br>Ile<br>Asp<br>Ala | Asp<br>Ile<br>Ser<br>Ala<br>Val<br>70 | Lys<br>Gly<br>Gly<br>Lys<br>55 | Phe Val 40 Ala   | Gly<br>25<br>Asp<br>Glu | Ser<br>Val<br>Ala  | Gln<br>Thr<br>His<br>Leu<br>75 | Gly<br>Val<br>Gly<br>60 | His<br>Gly<br>45<br>Phe<br>Met | Ala<br>30<br>Leu<br>Lys | Gln<br>Tyr<br>Val<br>Leu | Ala<br>Lys<br>Thr |

| Tyr                     | Asn        | Gln<br>115        | Val        | Val        | Pro        | Arg        | Ala<br>120         | Asp               | Leu                | Asp               | Val        | Ile<br>125 | Met               | Ile                | Ala        |
|-------------------------|------------|-------------------|------------|------------|------------|------------|--------------------|-------------------|--------------------|-------------------|------------|------------|-------------------|--------------------|------------|
| Pro                     | Lys<br>130 | Ala               | Pro        | Gly        | His        | Thr<br>135 | Val                | Arg               | Ser                | Glu               | Phe<br>140 | Val        | Lys               | Gly                | Gly        |
| Gly<br>145              | Ile        | Pro               | Asp        | Leu        | Ile<br>150 | Ala        | Ile                | Tyr               | Gln                | <b>Asp</b><br>155 | Ala        | Ser        | Gly               | Asn                | Ala<br>160 |
| Lys                     | Asn        | Val               | Ala        | Leu<br>165 | Ser        | Tyr        | Ala                | Ala               | <b>Ala</b><br>170  | Val               | Gly        | Gly        | Gly               | <b>A</b> rg<br>175 | Thr        |
| Gly                     | Ile        | Ile               | Glu<br>180 | Thr        | Thr        | Phe        | Lys                | <b>Asp</b><br>185 | Glu                | Thr               | Glu        | Thr        | <b>Asp</b><br>190 | Leu                | Phe        |
| Gly                     | Glu        | Gln<br>195        | Ala        | Val        | Leu        | Cys        | Gly<br>200         | Gly               | Thr                | Val               | Glu        | Leu<br>205 | Val               | Lys                | Ala        |
| Gly                     | Phe<br>210 | Glu               | Thr        | Leu        | Val        | Glu<br>215 | Ala                | Gly               | Tyr                | Ala               | Pro<br>220 | Glu        | Met               | Ala                | Tyr        |
| Phe<br>225              | Glu        | Cys               | Leu        | His        | Glu<br>230 | Leu        | Lys                | Leu               | Ile                | Val<br>235        | Asp        | Leu        | Met               | Tyr                | Glu<br>240 |
| Gly                     | Gly        | Ile               | Ala        | Asn<br>245 | Met        | Asn        | Tyr                | Ser               | Ile<br>250         | Ser               | Asn        | Asn        | Ala               | Glu<br>255         | Tyr        |
| Gly                     | Glu        | Tyr               | Val<br>260 | Thr        | Gly        | Pro        | Glu                | Val<br>265        | Ile                | Asn               | Ala        | Glu        | Ser<br>270        | Arg                | Gln        |
| Ala                     | Met        | <b>Arg</b><br>275 | Asn        | Ala        | Leu        | Lys        | <b>A</b> rg<br>280 | Ile               | Gln                | Asp               | Gly        | Glu<br>285 | Tyr               | Ala                | Lys        |
| Met                     | Phe<br>290 | Ile               | Ser        | Glu        | Gly        | Ala<br>295 | Thr                | Gly               | Tyr                | Pro               | Ser<br>300 | Met        | Thr               | Ala                | Lys        |
| Arg<br>305              | Arg        | Asn               | Asn        | Ala        | Ala<br>310 | His        | Gly                | Ile               | Glu                | Ile<br>315        | Ile        | Gly        | Glu               | Gln                | Leu<br>320 |
| Arg                     | Ser        | Met               | Met        | Pro<br>325 | Trp        | Ile        | Gly                | Ala               | <b>As</b> n<br>330 | Lys               | Ile        | Val        | Asp               | <b>Lys</b><br>335  | Ala        |
| Lys                     | Asn        |                   |            |            |            |            |                    |                   |                    |                   |            |            |                   |                    |            |
| -<br><210               |            | ı                 |            |            |            |            |                    |                   |                    |                   |            |            |                   |                    |            |
| <2112<br><2122<br><2132 | > PF       | RT                | omona      | as fluc    | resce      | ns         |                    |                   |                    |                   |            |            |                   |                    |            |
| <400                    | > 20       |                   |            |            |            |            |                    |                   |                    |                   |            |            |                   |                    |            |

| Met<br>1   | ьys        | vaı        | Pne        | Tyr<br>5   | Asp        | ьys        | Asp        | Cys               | 10                 | Leu               | ser        | тте        | TTE               | 15         | GТĀ        |
|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|--------------------|-------------------|------------|------------|-------------------|------------|------------|
| Lys        | Lys        | Val        | Ala<br>20  | Ile        | Ile        | Gly        | Phe        | Gly<br>25         | Ser                | Gln               | Gly        | His        | Ala<br>30         | Gln        | Ala        |
| Cys        | Asn        | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp               | Val                | Thr               | Val        | Gly<br>45  | Leu               | Tyr        | Lys        |
| Gly        | Ala<br>50  | Ala        | Asp        | Ala        | Ala        | Lys<br>55  | Ala        | Glu               | Ala                | His               | Gly<br>60  | Phe        | Lys               | Val        | Thr        |
| Asp<br>65  | Val        | Ala        | Ala        | Ala        | Val<br>70  | Ala        | Gly        | Ala               | Asp                | Leu<br>75         | Val        | Met        | Ile               | Leu        | Thr<br>80  |
| Pro        | Asp        | Glu        | Phe        | Gln<br>85  | Ser        | Gln        | Leu        | Tyr               | Lys<br>90          | Asn               | Glu        | Ile        | Glu               | Pro<br>95  | Asn        |
| Ile        | Lys        | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105        | Ser                | His               | Gly        | Phe        | Ala<br>110        | Ile        | His        |
| Tyr        | Asn        | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp               | Leu                | Asp               | Val        | Ile<br>125 | Met               | Ile        | Ala        |
| Pro        | Lys<br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg               | Ser                | Glu               | Phe<br>140 | Val        | Lys               | Gly        | Gly        |
| Gly<br>145 | Ile        | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr               | Gln                | <b>Asp</b><br>155 | Ala        | Ser        | Gly               | Asn        | Ala<br>160 |
| Lys        | Asn        | Val        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ala               | <b>A</b> la<br>170 | Val               | Gly        | Gly        | Gly               | Arg<br>175 | Thr        |
| Gly        | Ile        | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu                | Thr               | Glu        | Thr        | <b>Asp</b><br>190 | Leu        | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly               | Thr                | Val               | Glu        | Leu<br>205 | Val               | Lys        | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly               | Tyr                | Ala               | Pro<br>220 | Glu        | Met               | Ala        | Tyr        |
| Phe<br>225 | Glu        | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu               | Ile                | Val<br>235        | Asp        | Leu        | Met               | Tyr        | Glu<br>240 |

|    | Gly G                            | 3ly                   | Ile               | Ala                      | Asn<br>245   | Met        | Asn        | Tyr        | Ser        | Ile<br>250     | Ser        | Asn        | Asn        | Ala        | Glu<br>255 | Tyr        |
|----|----------------------------------|-----------------------|-------------------|--------------------------|--------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|------------|
|    | Gly G                            | lu                    | Tyr               | Val<br>260               | Thr          | Gly        | Pro        | Glu        | Val<br>265 | Ile            | Asn        | Ala        | Glu        | Ser<br>270 | Arg        | Gln        |
|    | Ala M                            |                       | <b>Arg</b><br>275 | Asn                      | Ala          | Leu        | Lys        | Arg<br>280 | Ile        | Gln            | Asp        | Gly        | Glu<br>285 | Tyr        | Ala        | Lys        |
|    | Met P                            | Phe<br>290            | Ile               | Ser                      | Glu          | Gly        | Ala<br>295 | Thr        | Gly        | Tyr            | Pro        | Ser<br>300 | Met        | Thr        | Ala        | Lys        |
|    | Arg A                            | Arg                   | Asn               | Asn                      | Ala          | Ala<br>310 | His        | Gly        | Ile        | Glu            | Ile<br>315 | Ile        | Gly        | Glu        | Gln        | Leu<br>320 |
|    | Arg S                            | Ser                   | Met               | Met                      | Pro<br>325   | Trp        | Ile        | Gly        | Ala        | <b>Asn</b> 330 | Lys        | Ile        | Val        | Asp        | Lys<br>335 | Ala        |
|    | Lys A                            | Asn                   |                   |                          |              |            |            |            |            |                |            |            |            |            |            |            |
| 5  | <210><211><211><212><213>        | 21<br>24<br>AD        |                   | ia arti                  | ficial       |            |            |            |            |                |            |            |            |            |            |            |
|    | <220><br><223>                   | cel                   | oador             | рВАГ                     | 266          |            |            |            |            |                |            |            |            |            |            |            |
|    | <400>                            | 21                    |                   |                          |              |            |            |            |            |                |            |            |            |            |            |            |
|    | ctctctac                         | ctg ttt               | tctcca            | ita ccc                  | g            |            |            |            |            | 24             |            |            |            |            |            |            |
| 10 | <210><br><211><br><212><br><213> | 22<br>27<br>AD<br>sec |                   | ia arti                  | ficial       |            |            |            |            |                |            |            |            |            |            |            |
| 15 | <220><br><223>                   | cel                   | oador             | PF5-                     | 53Mt         |            |            |            |            |                |            |            |            |            |            |            |
|    | <220><br><221><br><222><br><223> | (26                   | 5)(27             | ística_<br>′)<br>c, g, o | <del>-</del> | а          |            |            |            |                |            |            |            |            |            |            |
| 20 | <400>                            | 22                    |                   |                          |              |            |            |            |            |                |            |            |            |            |            |            |
|    | caagcc                           | gtgg                  | gcttc             | agcct                    | tggckı       | nn         |            |            |            | 27             |            |            |            |            |            |            |
| 25 | <210><br><211><br><212><br><213> |                       |                   | cia arti                 | ficial       |            |            |            |            |                |            |            |            |            |            |            |
|    | <220><br><223>                   | cel                   | oador             | рВАГ                     | 866          |            |            |            |            |                |            |            |            |            |            |            |
|    | <400>                            | 23                    |                   |                          |              |            |            |            |            |                |            |            |            |            |            |            |
|    | cggtttca                         | agt ct                | tcgtcc            | ttg aa                   | g            |            |            |            |            | 23             |            |            |            |            |            |            |
| 30 | <210>                            | 24                    |                   |                          |              |            |            |            |            |                |            |            |            |            |            |            |

|   | <2112<br><2122<br><2132 | > PF              | -          | ia arti    | ficial     |            |            |            |            |            |            |            |            |            |            |     |
|---|-------------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| 5 | <220<br><223            |                   | nstruc     | cto sin    | tético     | del m      | utante     | de ilo     | :V         |            |            |            |            |            |            |     |
|   | <400>                   | > 24              | ļ          |            |            |            |            |            |            |            |            |            |            |            |            |     |
|   | Met<br>1                | Lys               | Val        | Phe        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys        | Asp<br>10  | Leu        | Ser        | Ile        | Ile        | Gln<br>15  | Gly |
|   | Lys                     | Lys               | Val        | Ala<br>20  | Ile        | Ile        | Gly        | Phe        | Gly<br>25  | Ser        | Gln        | Gly        | His        | Ala<br>30  | Gln        | Ala |
|   | Cys                     | Asn               | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp        | Val        | Thr        | Val        | Gly<br>45  | Leu        | Tyr        | Lys |
|   | Gly                     | Ala<br>50         | Ala        | Asp        | Ala        | Ala        | Lys<br>55  | Ala        | Glu        | Ala        | His        | Gly<br>60  | Phe        | Lys        | Val        | Thr |
|   | Asp<br>65               | Val               | Ala        | Ala        | Ala        | Val<br>70  | Ala        | Gly        | Ala        | Asp        | Leu<br>75  | Val        | Met        | Ile        | Leu        | Thr |
|   | Pro                     | Asp               | Glu        | Phe        | Gln<br>85  | Ser        | Gln        | Leu        | Tyr        | Lys<br>90  | Asn        | Glu        | Ile        | Glu        | Pro<br>95  | Asr |
|   | Ile                     | Lys               | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105 | Ser        | His        | Gly        | Phe        | Ala<br>110 | Ile        | His |
|   | Tyr                     | Asn               | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp        | Leu        | Asp        | Val        | Ile<br>125 | Met        | Ile        | Ala |
|   | Pro                     | <b>Lys</b><br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg        | Ser        | Glu        | Phe<br>140 | Val        | Lys        | Gly        | Gly |
|   | Gly<br>145              | Ile               | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr        | Gln        | Asp<br>155 | Val        | Ser        | Gly        | Asn        | Ala |
|   | Lys                     | Asn               | Val        |            | Leu<br>165 |            | Tyr        | Ala        |            | Gly<br>170 |            | Gly        | Gly        | Gly        | Arg<br>175 |     |

Gly Ile Ile Glu Thr Thr Phe Lys Asp Glu Thr Glu Thr Asp Leu Phe

|                              |              |                   | 180        |            |            |            |            | 185        |            |            |            |            | 190        |            |            |
|------------------------------|--------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly                          | Glu          | Gln<br>195        | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Thr        | Val        | Glu        | Leu<br>205 | Val        | Lys        | Ala        |
| Gly                          | Phe<br>210   | Glu               | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr        | Ala        | Pro<br>220 | Glu        | Met        | Ala        | Tyr        |
| Phe<br>225                   | Glu          | Cys               | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile        | Val<br>235 | Asp        | Leu        | Met        | Tyr        | Glu<br>240 |
| Gly                          | Gly          | Ile               | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser        | Ile<br>250 | Ser        | Asn        | Asn        | Ala        | Glu<br>255 | Tyr        |
| Gly                          | Glu          | Tyr               | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265 | Ile        | Asn        | Ala        | Glu        | Ser<br>270 | Arg        | Gln        |
| Ala                          | Met          | <b>Arg</b><br>275 | Asn        | Ala        | Leu        | Lys        | Arg<br>280 | Ile        | Gln        | Asp        | Gly        | Glu<br>285 | Tyr        | Ala        | Lys        |
| Met                          | Phe<br>290   | Ile               | Ser        | Glu        | Gly        | Ala<br>295 | Thr        | Gly        | Tyr        | Pro        | Ser<br>300 | Met        | Thr        | Ala        | Lys        |
| Arg<br>305                   | Arg          | Asn               | Asn        | Ala        | Ala<br>310 | His        | Gly        | Ile        | Glu        | Ile<br>315 | Ile        | Gly        | Glu        | Gln        | Leu<br>320 |
| Arg                          | Ser          | Met               | Met        | Pro<br>325 | Trp        | Ile        | Gly        | Ala        | Asn<br>330 | Lys        | Ile        | Val        | Asp        | Lys<br>335 | Ala        |
| Lys                          | Asn          |                   |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <210<br><211<br><212<br><213 | > 33<br>> PF | 8                 | ia arti    | ficial     |            |            |            |            |            |            |            |            |            |            |            |
| <220<br><223                 |              | nstruc            | to sin     | tético     | del mi     | utante     | de ilc     | :V         |            |            |            |            |            |            |            |
| <400>                        |              |                   |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1                     | Lys          | Val               | Phe        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys        | Asp<br>10  | Leu        | Ser        | Ile        | Ile        | Gln<br>15  | Gly        |
| Lys                          | Lys          | Val               | Ala<br>20  | Ile        | Ile        | Gly        | Phe        | Gly<br>25  | Ser        | Gln        | Gly        | His        | Ala<br>30  | Gln        | Ala        |
| Leu                          | Asn          | Leu<br>35         | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp        | Val        | Thr        | Val        | Gly<br>45  | Leu        | Tyr        | Lys        |

| Gly        | Ala<br>50  | Ala        | Asp        | Ala        | Ala        | Lys<br>55  | Ala        | Glu        | Ala        | His               | Gly<br>60  | Phe               | Lys        | Val                | Thr        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|--------------------|------------|
| Asp<br>65  | Val        | Ala        | Ala        | Ala        | Val<br>70  | Ala        | Gly        | Ala        | Asp        | Leu<br>75         | Val        | Met               | Ile        | Leu                | Thr<br>80  |
| Pro        | Asp        | Glu        | Phe        | Gln<br>85  | Ser        | Gln        | Leu        | Tyr        | Lys<br>90  | Asn               | Glu        | Ile               | Glu        | Pro<br>95          | Asn        |
| Ile        | Lys        | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105 | Ser        | His               | Gly        | Phe               | Ala<br>110 | Ile                | His        |
| Tyr        | Asn        | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp        | Leu        | Asp               | Val        | Ile<br>125        | Met        | Ile                | Ala        |
| Pro        | Lys<br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg        | Ser        | Glu               | Phe<br>140 | Val               | Lys        | Gly                | Gly        |
| Gly<br>145 | Ile        | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr        | Gln        | <b>Asp</b><br>155 | Ala        | Ser               | Gly        | Asn                | Ala<br>160 |
| Lys        | Asn        | Val        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ala        | Gly<br>170 | Val               | Gly        | Gly               | Gly        | <b>A</b> rg<br>175 | Thr        |
| Gly        | Ile        | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | Asp<br>185 | Glu        | Thr               | Glu        | Thr               | Asp<br>190 | Leu                | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Thr        | Val               | Glu        | <b>Leu</b><br>205 | Val        | Lys                | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr        | Ala               | Pro<br>220 | Glu               | Met        | Ala                | Tyr        |
| Phe<br>225 | Glu        | Суѕ        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile        | Val<br>235        | Asp        | Leu               | Met        | Tyr                | Glu<br>240 |
| Gly        | Gly        | Ile        | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser        | Ile<br>250 | Ser               | Asn        | Asn               | Ala        | Glu<br>255         | Tyr        |
| Gly        | Glu        | Tyr        | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265 | Ile        | Asn               | Ala        | Glu               | Ser<br>270 | Arg                | Gln        |
| Ala        | Met        | Arg<br>275 | Asn        | Ala        | Leu        | Lys        | Arg<br>280 | Ile        | Gln        | Asp               | Gly        | Glu<br>285        | Tyr        | Ala                | Lys        |

Met Phe Ile Ser Glu Gly Ala Thr Gly Tyr Pro Ser Met Thr Ala Lys

|                           | 290               |            |            |            |            | 295        |            |            |            |            | 300        |            |            |            |            |
|---------------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Arg<br>305                | Arg               | Asn        | Asn        | Ala        | Ala<br>310 | His        | Gly        | Ile        | Glu        | Ile<br>315 | Ile        | Gly        | Glu        | Gln        | Leu<br>320 |
| Arg                       | Ser               | Met        | Met        | Pro<br>325 | Trp        | Ile        | Gly        | Ala        | Asn<br>330 | Lys        | Ile        | Val        | Asp        | Lys<br>335 | Ala        |
| Lys                       | Asn               |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| <210><211><211><212><213> | > 33<br>> PF      | 8<br>RT    | ia arti    | fical      |            |            |            |            |            |            |            |            |            |            |            |
| <400>                     | > 26              |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1                  | Lys               | Val        | Phe        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys        | Asp<br>10  | Leu        | Ser        | Ile        | Ile        | Gln<br>15  | Gly        |
| Lys                       | Lys               | Val        | Ala<br>20  | Ile        | Ile        | Gly        | Phe        | Gly<br>25  | Ser        | Gln        | Gly        | His        | Ala<br>30  | Gln        | Ala        |
| Leu                       | Asn               | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp        | Val        | Thr        | Val        | Gly<br>45  | Leu        | Tyr        | Lys        |
| Gly                       | Ala<br>50         | Ala        | Asp        | Ala        | Ala        | Lys<br>55  | Ala        | Glu        | Ala        | His        | Gly<br>60  | Phe        | Lys        | Val        | Thr        |
| Asp<br>65                 | Val               | Ala        | Ala        | Ala        | Val<br>70  | Ala        | Gly        | Ala        | Asp        | Leu<br>75  | Val        | Met        | Ile        | Leu        | Thr<br>80  |
| Pro                       | Asp               | Glu        | Phe        | Gln<br>85  | Ser        | Gln        | Leu        | Tyr        | Lys<br>90  | Asn        | Glu        | Ile        | Glu        | Pro<br>95  | Asn        |
| Ile                       | Lys               | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105 | Ser        | His        | Gly        | Phe        | Ala<br>110 | Ile        | His        |
| Tyr                       | Asn               | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp        | Leu        | Asp        | Val        | Ile<br>125 | Met        | Ile        | Ala        |
| Pro                       | <b>Lys</b><br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg        | Ser        | Glu        | Phe<br>140 | Val        | Lys        | Gly        | Gly        |
| Gly<br>145                | Ile               | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr        | Gln        | Asp<br>155 | Val        | Ser        | Gly        | Asn        | Ala<br>160 |
| Lys                       | Asn               | Val        | Ala        | Leu        | Ser        | Tyr        | Ala        | Ala        | Gly        | Val        | Gly        | Gly        | Gly        | Arg        | Thr        |

|                              |              |                   |            | 165                 |            |            |            |                   | 170        |            |            |            |                   | 175        |            |
|------------------------------|--------------|-------------------|------------|---------------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|
| Gly                          | Ile          | Ile               | Glu<br>180 | Thr                 | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu        | Thr        | Glu        | Thr        | <b>Asp</b><br>190 | Leu        | Phe        |
| Gly                          | Glu          | Gln<br>195        | Ala        | Val                 | Leu        | Cys        | Gly<br>200 | Gly               | Thr        | Val        | Glu        | Leu<br>205 | Val               | Lys        | Ala        |
| Gly                          | Phe<br>210   | Glu               | Thr        | Leu                 | Val        | Glu<br>215 | Ala        | Gly               | Tyr        | Ala        | Pro<br>220 | Glu        | Met               | Ala        | Tyr        |
| Phe<br>225                   | Glu          | Cys               | Leu        | His                 | Glu<br>230 | Leu        | Lys        | Leu               | Ile        | Val<br>235 | Asp        | Leu        | Met               | Tyr        | Glu<br>240 |
| Gly                          | Gly          | Ile               | Ala        | Asn<br>245          | Met        | Asn        | Tyr        | Ser               | Ile<br>250 | Ser        | Asn        | Asn        | Ala               | Glu<br>255 | Tyr        |
| Gly                          | Glu          | Tyr               | Val<br>260 | Thr                 | Gly        | Pro        | Glu        | Val<br>265        | Ile        | Asn        | Ala        | Glu        | Ser<br>270        | Arg        | Gln        |
| Ala                          | Met          | <b>Arg</b><br>275 | Asn        | Ala                 | Leu        | Lys        | Arg<br>280 | Ile               | Gln        | Asp        | Gly        | Glu<br>285 | Tyr               | Ala        | Lys        |
| Met                          | Phe<br>290   | Ile               | Ser        | Glu                 | Gly        | Ala<br>295 | Thr        | Gly               | Tyr        | Pro        | Ser<br>300 | Met        | Thr               | Ala        | Lys        |
| Arg<br>305                   | Arg          | Asn               | Asn        | Ala                 | Ala<br>310 | His        | Gly        | Ile               | Glu        | Ile<br>315 | Ile        | Gly        | Glu               | Gln        | Leu<br>320 |
| Arg                          | Ser          | Met               | Met        | Pro<br>325          | Trp        | Ile        | Gly        | Ala               | Asn<br>330 | Lys        | Ile        | Val        | Asp               | Lys<br>335 | Ala        |
| Lys                          | Asn          |                   |            |                     |            |            |            |                   |            |            |            |            |                   |            |            |
| <210<br><211<br><212<br><213 | > 33<br>> PF | 8<br>RT           | ia artil   | ficial              |            |            |            |                   |            |            |            |            |                   |            |            |
| <220<br><223                 |              | netrus            | to sint    | tático              | dal m      | utanto     | de ile     | ·\/               |            |            |            |            |                   |            |            |
| <400                         |              |                   | io siii    | i <del>c</del> iiCO | uei IIII   | ulalile    | ue IIC     | , v               |            |            |            |            |                   |            |            |
| Met<br>1                     |              |                   | Phe        | Tyr<br>5            | Asp        | Lys        | Asp        | Cys               | Asp<br>10  | Leu        | Ser        | Ile        | Ile               | Gln<br>15  | Gly        |
| Lys                          | Lys          | Val               | Ala<br>20  | Ile                 | Ile        | Gly        | Phe        | Gly<br>25         | Ser        | Gln        | Gly        | His        | Ala<br>30         | Gln        | Ala        |

| Leu        | Asn        | Leu<br>35  | Lys        | Asp                | Ser        | Gly        | Val<br>40  | Asp               | Val        | Thr        | Val        | Gly<br>45  | Leu               | Tyr        | Lys        |
|------------|------------|------------|------------|--------------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|
| Gly        | Ala<br>50  | Ala        | Asp        | Ala                | Ala        | Lys<br>55  | Ala        | Glu               | Ala        | His        | Gly<br>60  | Phe        | Lys               | Val        | Thr        |
| Asp<br>65  | Val        | Ala        | Ala        | Ala                | Val<br>70  | Ala        | Gly        | Ala               | Asp        | Leu<br>75  | Val        | Met        | Ile               | Leu        | Thr<br>80  |
| Pro        | Asp        | Glu        | Phe        | Gln<br>85          | Ser        | Gln        | Leu        | Tyr               | Lys<br>90  | Asn        | Glu        | Ile        | Glu               | Pro<br>95  | Asn        |
| Ile        | Lys        | Lys        | Gly<br>100 | Ala                | Thr        | Leu        | Ala        | Phe<br>105        | Ser        | His        | Gly        | Phe        | Ala<br>110        | Ile        | His        |
| Tyr        | Asn        | Gln<br>115 | Val        | Val                | Pro        | Arg        | Ala<br>120 | Asp               | Leu        | Asp        | Val        | Ile<br>125 | Met               | Ile        | Ala        |
| Pro        | Lys<br>130 | Ala        | Pro        | Gly                | His        | Thr<br>135 | Val        | Arg               | Ser        | Glu        | Phe<br>140 | Val        | Lys               | Gly        | Gly        |
| Gly<br>145 | Ile        | Pro        | Asp        | Leu                | Ile<br>150 | Ala        | Ile        | Tyr               | Gln        | Asp<br>155 | Ala        | Ser        | Gly               | Asn        | Ala<br>160 |
| Lys        | Asn        | Val        | Ala        | Leu<br>165         | Ser        | Tyr        | Ala        | Ala               | Ala<br>170 | Val        | Gly        | Gly        | Gly               | Arg<br>175 | Thr        |
| Gly        | Ile        | Ile        | Glu<br>180 | Thr                | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu        | Thr        | Glu        | Thr        | <b>Asp</b><br>190 | Leu        | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val                | Leu        | Cys        | Gly<br>200 | Gly               | Thr        | Val        | Glu        | Leu<br>205 | Val               | Lys        | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu                | Val        | Glu<br>215 | Ala        | Gly               | Tyr        | Ala        | Pro<br>220 | Glu        | Met               | Ala        | Tyr        |
| Phe<br>225 | Glu        | Cys        | Leu        | His                | Glu<br>230 | Leu        | Lys        | Leu               | Ile        | Val<br>235 | Asp        | Leu        | Met               | Tyr        | Glu<br>240 |
| Gly        | Gly        | Ile        | Ala        | <b>As</b> n<br>245 | Met        | Asn        | Tyr        | Ser               | Ile<br>250 | Ser        | Asn        | Asn        | Ala               | Glu<br>255 | Tyr        |
| Gly        | Glu        | Tyr        | Val<br>260 | Thr                | Gly        | Pro        | Glu        | Val<br>265        | Ile        | Asn        | Ala        | Glu        | Ser<br>270        | Arg        | Gln        |

Ala Met Arg Asn Ala Leu Lys Arg Ile Gln Asp Gly Glu Tyr Ala Lys

|                                  |              | 275        |            |            |            |            | 280        |            |                    |            |            | 285        |            |                   |            |
|----------------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|-------------------|------------|
| Met                              | Phe<br>290   | Ile        | Ser        | Glu        | Gly        | Ala<br>295 | Thr        | Gly        | Tyr                | Pro        | Ser<br>300 | Met        | Thr        | Ala               | Lys        |
| Arg<br>305                       | Arg          | Asn        | Asn        | Ala        | Ala<br>310 | His        | Gly        | Ile        | Glu                | Ile<br>315 | Ile        | Gly        | Glu        | Gln               | Leu<br>320 |
| Arg                              | Ser          | Met        | Met        | Pro<br>325 | Trp        | Ile        | Gly        | Ala        | <b>A</b> sn<br>330 | Lys        | Ile        | Val        | Asp        | <b>Lys</b><br>335 | Ala        |
| Lys                              | Asn          |            |            |            |            |            |            |            |                    |            |            |            |            |                   |            |
| <2102<br><2112<br><2122<br><2132 | > 33<br>> PF | 8<br>RT    | ia arti    | ficial     |            |            |            |            |                    |            |            |            |            |                   |            |
| <220<br><223                     |              | netruc     | to sin     | tético     | del m      | utante     | de ila     | ~\/        |                    |            |            |            |            |                   |            |
| <400                             |              |            | 10 SIII    | ielico     | uei iii    | utante     | de lic     | . v        |                    |            |            |            |            |                   |            |
| Met<br>1                         | Lys          | Val        | Phe        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys        | Asp<br>10          | Leu        | Ser        | Ile        | Ile        | Gln<br>15         | Gly        |
| Lys                              | Lys          | Val        | Ala<br>20  | Ile        | Ile        | Gly        | Tyr        | Gly<br>25  | Ser                | Gln        | Gly        | His        | Ala<br>30  | Gln               | Ala        |
| Leu                              | Asn          | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp        | Val                | Thr        | Val        | Gly<br>45  | Leu        | Tyr               | Lys        |
| Gly                              | Ala<br>50    | Ala        | Asp        | Ala        | Ala        | Lys<br>55  | Ala        | Glu        | Ala                | His        | Gly<br>60  | Phe        | Lys        | Val               | Thr        |
| Asp<br>65                        | Val          | Ala        | Ala        | Ala        | Val<br>70  | Ala        | Gly        | Ala        | Asp                | Leu<br>75  | Val        | Met        | Ile        | Leu               | Ile<br>80  |
| Pro                              | Asp          | Glu        | Phe        | Gln<br>85  | Ser        | Gln        | Leu        | Tyr        | Lys<br>90          | Asn        | Glu        | Ile        | Glu        | Pro<br>95         | Asn        |
| Ile                              | Lys          | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105 | Ser                | His        | Gly        | Phe        | Ala<br>110 | Ile               | His        |
| Tyr                              | Asn          | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp        | Leu                | Asp        | Val        | Ile<br>125 | Met        | Ile               | Ala        |
| Pro                              | Lys<br>130   | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg        | Ser                | Glu        | Phe<br>140 | Val        | Lys        | Gly               | Gly        |

| Gly<br>145                       | Ile          | Pro                       | Asp        | Leu        | Ile<br>150 | Ala        | Ile               | Tyr        | Gln                | Asp<br>155 | Val        | Ser        | Gly        | Asn                | Ala<br>160 |
|----------------------------------|--------------|---------------------------|------------|------------|------------|------------|-------------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|
| Lys                              | Asn          | Val                       | Ala        | Leu<br>165 | Ser        | Tyr        | Ala               | Ala        | <b>A</b> la<br>170 | Val        | Gly        | Gly        | Gly        | <b>A</b> rg<br>175 | Thr        |
| Gly                              | Ile          | Ile                       | Glu<br>180 | Thr        | Thr        | Phe        | Lys               | Asp<br>185 | Glu                | Thr        | Glu        | Thr        | Asp<br>190 | Leu                | Phe        |
| Gly                              | Glu          | Gln<br>195                | Ala        | Val        | Leu        | Cys        | Gly<br>200        | Gly        | Thr                | Val        | Glu        | Leu<br>205 | Val        | Lys                | Ala        |
| Gly                              | Phe<br>210   | Glu                       | Thr        | Leu        | Val        | Glu<br>215 | Ala               | Gly        | Tyr                | Ala        | Pro<br>220 | Glu        | Met        | Ala                | Tyr        |
| Phe<br>225                       | Glu          | Cys                       | Leu        | His        | Glu<br>230 | Leu        | Lys               | Leu        | Ile                | Val<br>235 | Asp        | Leu        | Met        | Tyr                | Glu<br>240 |
| Gly                              | Gly          | Ile                       | Ala        | Asn<br>245 | Met        | Asn        | Tyr               | Ser        | Ile<br>250         | Ser        | Asn        | Asn        | Ala        | Glu<br>255         | Tyr        |
| Gly                              | Glu          | Tyr                       | Val<br>260 | Thr        | Gly        | Pro        | Glu               | Val<br>265 | Ile                | Asn        | Ala        | Glu        | Ser<br>270 | Arg                | Gln        |
| Ala                              | Met          | Arg<br>275                | Asn        | Ala        | Leu        | Lys        | <b>Arg</b><br>280 | Ile        | Gln                | Asp        | Gly        | Glu<br>285 | Tyr        | Ala                | Lys        |
| Met                              | Phe<br>290   | Ile                       | Ser        | Glu        | Gly        | Ala<br>295 | Thr               | Gly        | Tyr                | Pro        | Ser<br>300 | Met        | Thr        | Ala                | Lys        |
| Arg<br>305                       | Arg          | Asn                       | Asn        | Ala        | Ala<br>310 | His        | Gly               | Ile        | Glu                | Ile<br>315 | Ile        | Gly        | Glu        | Gln                | Leu<br>320 |
| Arg                              | Ser          | Met                       | Met        | Pro<br>325 | Trp        | Ile        | Gly               | Ala        | <b>Asn</b> 330     | Lys        | Ile        | Val        | Asp        | Lys<br>335         | Ala        |
| Lys                              | Asn          |                           |            |            |            |            |                   |            |                    |            |            |            |            |                    |            |
| <2102<br><2112<br><2122<br><2132 | > 33<br>> PF | 88                        | cia arti   | ficial     |            |            |                   |            |                    |            |            |            |            |                    |            |
| <220<br><223                     |              | onstruc                   | cto sin    | tético     |            |            |                   |            |                    |            |            |            |            |                    |            |
| <220<br><221<br><222<br><223     | > ca<br>> (2 | racter<br>4) (2<br>aa = T | 24)        | _          | а          |            |                   |            |                    |            |            |            |            |                    |            |
| <220<br><221<br><222             | > ca         | racter<br>3)(33           | _          | _nuev      | а          |            |                   |            |                    |            |            |            |            |                    |            |

```
<223> Xaa = Cys o Leu
      <220>
     <221> característica_nueva
     <222> (47)..(47)
     <223> Xaa = Arg o Tyr
     <220>
     <221> característica_nueva
      <222> (50)..(50)
     <223> Xaa = Ser o Ala
     <220>
10
     <221> característica_nueva
     <222>
             (52)..(52)
     <223> Xaa = Thr o Asp
     <220>
15
     <221> característica_nueva
     <222> (53)..(53)
     <223> Xaa = Val o Ala
     <220>
     <221> característica_nueva
     <222> (61)..(61)
<223> Xaa = Leu o Phe
20
     <220>
     <221> característica_nueva
      <222>
             (80)..(80)
25
     <223> Xaa = Thr o Iso
     <220>
     <221> característica_nueva
     <222> (156)..(156)
     <223> Xaa = Ala o Val
30
     <220>
     <221> característica nueva
      <222>
             (170)..(170)
      <223> Xaa = Gly o Ala
      <400> 29
      Met Lys Val Phe Tyr Asp Lys Asp Cys Asp Leu Ser Ile Ile Gln Gly
                                                  10
      Lys Lys Val Ala Ile Ile Gly Xaa Gly Ser Gln Gly His Ala Gln Ala
      Xaa Asn Leu Lys Asp Ser Gly Val Asp Val Thr Val Gly Leu Xaa Lys
35
                                        40
                                                                45
```

Gly Xaa Ala Xaa Xaa Ala Lys Ala Glu Ala His Gly Xaa Lys Val Thr 50 55 60 Asp Val Ala Ala Ala Val Ala Gly Ala Asp Leu Val Met Ile Leu Xaa 75 Pro Asp Glu Phe Gln Ser Gln Leu Tyr Lys Asn Glu Ile Glu Pro Asn Ile Lys Lys Gly Ala Thr Leu Ala Phe Ser His Gly Phe Ala Ile His 105 Tyr Asn Gln Val Val Pro Arg Ala Asp Leu Asp Val Ile Met Ile Ala 120 Pro Lys Ala Pro Gly His Thr Val Arg Ser Glu Phe Val Lys Gly Gly 135 Gly Ile Pro Asp Leu Ile Ala Ile Tyr Gln Asp Xaa Ser Gly Asn Ala Lys Asn Val Ala Leu Ser Tyr Ala Ala Xaa Val Gly Gly Gly Arg Thr 165 170 175 Gly Ile Ile Glu Thr Thr Phe Lys Asp Glu Thr Glu Thr Asp Leu Phe 180 185 Gly Glu Gln Ala Val Leu Cys Gly Gly Thr Val Glu Leu Val Lys Ala 195 200 Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr Ala Pro Glu Met Ala Tyr Phe Glu Cys Leu His Glu Leu Lys Leu Ile Val Asp Leu Met Tyr Glu 225 Gly Gly Ile Ala Asn Met Asn Tyr Ser Ile Ser Asn Asn Ala Glu Tyr Gly Glu Tyr Val Thr Gly Pro Glu Val Ile Asn Ala Glu Ser Arg Gln Ala Met Arg Asn Ala Leu Lys Arg Ile Gln Asp Gly Glu Tyr Ala Lys Met Phe Ile Ser Glu Gly Ala Thr Gly Tyr Pro Ser Met Thr Ala Lys

Arg Arg Asn Asn Ala Ala His Gly Ile Glu Ile Ile Gly Glu Gln Leu

310

305

Arg Ser Met Met Pro Trp Ile Gly Ala Asn Lys Ile Val Asp Lys Ala 330 Lys Asn <210> 30 <211> 331 <212> PRT <213> Natronomonas pharaanis <400> 30 Met Thr Asp Ala Thr Ile Tyr Tyr Asp Asp Ala Glu Ser Thr Val Leu Asp Asp Lys Thr Val Ala Val Leu Gly Tyr Gly Ser Gln Gly His Ala His Ala Gln Asn Leu Asp Asp Ser Gly Val Asp Val Val Val Gly Leu Arg Glu Asp Ser Ser Ser Arg Ser Ala Ala Glu Ala Asp Gly Leu Asp Val Ala Thr Pro Arg Gly Ala Ala Glu Gln Ala Asp Leu Val Ser 70 Val Leu Val Pro Asp Thr Val Gln Pro Ala Val Tyr Glu Gln Ile Glu 85 Asp Val Leu Gln Pro Gly Asp Thr Leu Gln Phe Ala His Gly Phe Asn 100 Ile His Tyr Gly Gln Ile Glu Pro Ser Glu Asp Val Asn Val Thr Met 115 Val Ala Pro Lys Ser Pro Gly His Leu Val Arg Arg Asn Tyr Glu Asn 130 135 Asp Glu Gly Thr Pro Gly Leu Leu Ala Val Tyr Gln Asp Pro Ser Gly 145 Glu Ala His Asp Leu Gly Leu Ala Tyr Ala Lys Ala Ile Gly Cys Thr 165 170

| Arg                          | AIA          | СТУ               | 180        | Vai        | GIU        | III        | THE        | 185            | Arg            | GIU        | GIU        | III                | 190            | III        | ASP        |
|------------------------------|--------------|-------------------|------------|------------|------------|------------|------------|----------------|----------------|------------|------------|--------------------|----------------|------------|------------|
| Leu                          | Phe          | Gly<br>195        | Glu        | Gln        | Ala        | Val        | Leu<br>200 | Cys            | Gly            | Gly        | Val        | Thr<br>205         | Ser            | Leu        | Val        |
| Lys                          | Thr<br>210   | Gly               | Tyr        | Glu        | Thr        | Leu<br>215 | Val        | Asp            | Ala            | Gly        | Tyr<br>220 | Ser                | Pro            | Glu        | Met        |
| Ala<br>225                   | Tyr          | Phe               | Glu        | Cys        | Leu<br>230 | Asn        | Glu        | Leu            | Lys            | Leu<br>235 | Ile        | Val                | Asp            | Leu        | Met<br>240 |
| Tyr                          | Glu          | Gly               | Gly        | Asn<br>245 | Ser        | Glu        | Met        | Trp            | <b>Asp</b> 250 | Ser        | Val        | Ser                | Asp            | Thr<br>255 | Ala        |
| Glu                          | Tyr          | Gly               | Gly<br>260 | Leu        | Thr        | Arg        | Gly        | <b>Asp</b> 265 | Arg            | Ile        | Val        | Asp                | <b>Asp</b> 270 | His        | Ala        |
| Arg                          | Glu          | <b>Lys</b><br>275 | Met        | Glu        | Glu        | Val        | Leu<br>280 | Glu            | Glu            | Val        | Gln        | <b>As</b> n<br>285 | Gly            | Thr        | Phe        |
| Ala                          | Arg<br>290   | Glu               | Trp        | Ile        | Ser        | Glu<br>295 | Asn        | Gln            | Ala            | Gly        | Arg<br>300 | Pro                | Ser            | Tyr        | Lys        |
| Gln<br>305                   | Leu          | Arg               | Ala        | Ala        | Glu<br>310 | Lys        | Asn        | His            | Asp            | Ile<br>315 | Glu        | Ala                | Val            | Gly        | Glu<br>320 |
| Asp                          | Leu          | Arg               | Ala        | Leu<br>325 | Phe        | Ala        | Trp        | Gly            | Asp<br>330     | Asp        |            |                    |                |            |            |
| <210<br><211<br><212<br><213 | > 34<br>> PF | 2<br>RT           | subtili    | s sub:     | sp. su     | btilis     |            |                |                |            |            |                    |                |            |            |
| <400                         | > 31         |                   |            |            |            |            |            |                |                |            |            |                    |                |            |            |
| Met<br>1                     | Val          | Lys               | Val        | Tyr<br>5   | Tyr        | Asn        | Gly        | Asp            | Ile<br>10      | Lys        | Glu        | Asn                | Val            | Leu<br>15  | Ala        |
| Gly                          | Lys          | Thr               | Val<br>20  | Ala        | Val        | Ile        | Gly        | Tyr<br>25      | Gly            | Ser        | Gln        | Gly                | His<br>30      | Ala        | His        |
| Ala                          | Leu          | Asn<br>35         | Leu        | Lys        | Glu        | Ser        | Gly<br>40  | Val            | Asp            | Val        | Ile        | Val<br>45          | Gly            | Val        | Arg        |
| Gln                          | Gly<br>50    | Lys               | Ser        | Phe        | Thr        | Gln<br>55  | Ala        | Gln            | Glu            | Asp        | Gly<br>60  | His                | Lys            | Val        | Phe        |

| Ser<br>65  | Val        | Lys        | Glu        | Ala        | Ala<br>70  | Ala        | Gln            | Ala        | Glu        | Ile<br>75  | Ile               | Met        | Val        | Leu        | Leu<br>80  |
|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|-------------------|------------|------------|------------|------------|
| Pro        | Asp        | Glu        | Gln        | Gln<br>85  | Gln        | Lys        | Val            | Tyr        | Glu<br>90  | Ala        | Glu               | Ile        | Lys        | Asp<br>95  | Glu        |
| Leu        | Thr        | Ala        | Gly<br>100 | Lys        | Ser        | Leu        | Val            | Phe<br>105 | Ala        | His        | Gly               | Phe        | Asn<br>110 | Val        | His        |
| Phe        | His        | Gln<br>115 | Ile        | Val        | Pro        | Pro        | Ala<br>120     | Asp        | Val        | Asp        | Val               | Phe<br>125 | Leu        | Val        | Ala        |
| Pro        | Lys<br>130 | Gly        | Pro        | Gly        | His        | Leu<br>135 | Val            | Arg        | Arg        | Thr        | Tyr<br>140        | Glu        | Gln        | Gly        | Ala        |
| Gly<br>145 | Val        | Pro        | Ala        | Leu        | Phe<br>150 | Ala        | Ile            | Tyr        | Gln        | Asp<br>155 | Val               | Thr        | Gly        | Glu        | Ala<br>160 |
| Arg        | Asp        | Lys        | Ala        | Leu<br>165 | Ala        | Tyr        | Ala            | Lys        | Gly<br>170 | Ile        | Gly               | Gly        | Ala        | Arg<br>175 | Ala        |
| Gly        | Val        | Leu        | Glu<br>180 | Thr        | Thr        | Phe        | Lys            | Glu<br>185 | Glu        | Thr        | Glu               | Thr        | Asp<br>190 | Leu        | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200     | Gly        | Leu        | Ser        | Ala               | Leu<br>205 | Val        | Lys        | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Thr        | Glu<br>215 | Ala            | Gly        | Tyr        | Gln        | Pro<br>220        | Glu        | Leu        | Ala        | Tyr        |
| Phe<br>225 | Glu        | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys            | Leu        | Ile        | Val<br>235 | Asp               | Leu        | Met        | Tyr        | Glu<br>240 |
| Glu        | Gly        | Leu        | Ala        | Gly<br>245 | Met        | Arg        | Tyr            | Ser        | Ile<br>250 | Ser        | Asp               | Thr        | Ala        | Gln<br>255 | Trp        |
| Gly        | Asp        | Phe        | Val<br>260 | Ser        | Gly        | Pro        | Arg            | Val<br>265 | Val        | Asp        | Ala               | Lys        | Val<br>270 | Lys        | Glu        |
| Ser        | Met        | Lys<br>275 | Glu        | Val        | Leu        | Lys        | <b>Asp</b> 280 | Ile        | Gln        | Asn        | Gly               | Thr<br>285 | Phe        | Ala        | Lys        |
| Glu        | Trp<br>290 | Ile        | Val        | Glu        | Asn        | Gln<br>295 | Val            | Asn        | Arg        | Pro        | <b>Arg</b><br>300 | Phe        | Asn        | Ala        | Ile        |
| Δer        | Δla        | Sor        | Glu        | Aen        | Glu        | Hie        | Glr            | Tle        | Gl 11      | Va1        | Va 1              | G1 57      | Ara        | T.378      | T.011      |

| 305                              |                   |            |            |            | 310        |            |            |            |                    | 315               |            |            |            |                   | 320        |
|----------------------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|--------------------|-------------------|------------|------------|------------|-------------------|------------|
| Arg                              | Glu               | Met        | Met        | Pro<br>325 | Phe        | Val        | Lys        | Gln        | Gly<br>330         | Lys               | Lys        | Lys        | Glu        | <b>Ala</b><br>335 | Val        |
| Val                              | Ser               | Val        | Ala<br>340 | Gln        | Asn        |            |            |            |                    |                   |            |            |            |                   |            |
| <2102<br><2112<br><2122<br><2132 | > 33<br>> PF      | 8<br>RT    | oacteri    | um glı     | utamio     | cun        |            |            |                    |                   |            |            |            |                   |            |
| <400                             | > 32              |            |            |            |            |            |            |            |                    |                   |            |            |            |                   |            |
| Met<br>1                         | Ala               | Ile        | Glu        | Leu<br>5   | Leu        | Tyr        | Asp        | Ala        | Asp<br>10          | Ala               | Asp        | Leu        | Ser        | Leu<br>15         | Ile        |
| Gln                              | Gly               | Arg        | Lys<br>20  | Val        | Ala        | Ile        | Val        | Gly<br>25  | Tyr                | Gly               | Ser        | Gln        | Gly<br>30  | His               | Ala        |
| His                              | Ser               | Gln<br>35  | Asn        | Leu        | Arg        | Asp        | Ser<br>40  | Gly        | Val                | Glu               | Val        | Val<br>45  | Ile        | Gly               | Leu        |
| Arg                              | Glu<br>50         | Gly        | Ser        | Lys        | Ser        | Ala<br>55  | Glu        | Lys        | Ala                | Lys               | Glu<br>60  | Ala        | Gly        | Phe               | Glu        |
| Val<br>65                        | Lys               | Thr        | Thr        | Ala        | Glu<br>70  | Ala        | Ala        | Ala        | Trp                | Ala<br>75         | Asp        | Val        | Ile        | Met               | Leu<br>80  |
| Leu                              | Ala               | Pro        | Asp        | Thr<br>85  | Ser        | Gln        | Ala        | Glu        | Ile<br>90          | Phe               | Thr        | Asn        | Asp        | Ile<br>95         | Glu        |
| Pro                              | Asn               | Leu        | Asn<br>100 | Ala        | Gly        | Asp        | Ala        | Leu<br>105 | Leu                | Phe               | Gly        | His        | Gly<br>110 | Leu               | Asn        |
| Ile                              | His               | Phe<br>115 | Asp        | Leu        | Ile        | Lys        | Pro<br>120 | Ala        | Asp                | Asp               | Ile        | Ile<br>125 | Val        | Gly               | Met        |
| Val                              | <b>Ala</b><br>130 | Pro        | Lys        | Gly        | Pro        | Gly<br>135 | His        | Leu        | Val                | Arg               | Arg<br>140 | Gln        | Phe        | Val               | Asp        |
| Gly<br>145                       | Lys               | Gly        | Val        | Pro        | Cys<br>150 | Leu        | Ile        | Ala        | Val                | <b>Asp</b><br>155 | Gln        | Asp        | Pro        | Thr               | Gly<br>160 |
| Thr                              | Ala               | Gln        | Ala        | Leu<br>165 | Thr        | Leu        | Ser        | Tyr        | <b>A</b> la<br>170 | Ala               | Ala        | Ile        | Gly        | Gly<br>175        | Ala        |
| Ara                              | Δla               | G1 v       | Va l       | Tla        | Pro        | Thr        | Thr        | Dhe        | Gl 11              | Δla               | Glu        | Thr        | Va 1       | Thr               | Δen        |

|                                  |                   |                   | 180        |            |            |            |            | 185        |            |            |                |                | 190                |                   |            |
|----------------------------------|-------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|----------------|--------------------|-------------------|------------|
| Leu                              | Phe               | Gly<br>195        | Glu        | Gln        | Ala        | Val        | Leu<br>200 | Cys        | Gly        | Gly        | Thr            | Glu<br>205     | Glu                | Leu               | Val        |
| Lys                              | Val<br>210        | Gly               | Phe        | Glu        | Val        | Leu<br>215 | Thr        | Glu        | Ala        | Gly        | Tyr<br>220     | Glu            | Pro                | Glu               | Met        |
| Ala<br>225                       | Tyr               | Phe               | Glu        | Val        | Leu<br>230 | His        | Glu        | Leu        | Lys        | Leu<br>235 | Ile            | Val            | Asp                | Leu               | Met<br>240 |
| Phe                              | Glu               | Gly               | Gly        | Ile<br>245 | Ser        | Asn        | Met        | Asn        | Tyr<br>250 | Ser        | Val            | Ser            | Asp                | Thr<br>255        | Ala        |
| Glu                              | Phe               | Gly               | Gly<br>260 | Tyr        | Leu        | Ser        | Gly        | Pro<br>265 | Arg        | Val        | Ile            | Asp            | <b>A</b> la<br>270 | Asp               | Thr        |
| Lys                              | Ser               | <b>Arg</b><br>275 | Met        | Lys        | Asp        | Ile        | Leu<br>280 | Thr        | Asp        | Ile        | Gln            | <b>Asp</b> 285 | Gly                | Thr               | Phe        |
| Thr                              | <b>Lys</b><br>290 | Arg               | Leu        | Ile        | Ala        | Asn<br>295 | Val        | Glu        | Asn        | Gly        | <b>Asn</b> 300 | Thr            | Glu                | Leu               | Glu        |
| Gly<br>305                       | Leu               | Arg               | Ala        | Ser        | Tyr<br>310 | Asn        | Asn        | His        | Pro        | Ile<br>315 | Glu            | Glu            | Thr                | Gly               | Ala<br>320 |
| Lys                              | Leu               | Arg               | Asp        | Leu<br>325 | Met        | Ser        | Trp        | Val        | Lys<br>330 | Val        | Asp            | Ala            | Arg                | <b>Ala</b><br>335 | Glu        |
| Thr                              | Ala               |                   |            |            |            |            |            |            |            |            |                |                |                    |                   |            |
| <2102<br><2112<br><2122<br><2132 | > 33<br>> PF      | 9<br>RT           | oririlur   | n moli     | schiar     | num        |            |            |            |            |                |                |                    |                   |            |
| <2202<br><2212<br><2222<br><2232 | > ca<br>> (3      | 10)(3             |            | _          |            | amino      | ácido      | de ori     | gen n      | atural     |                |                |                    |                   |            |
| <400                             | > 33              |                   |            |            |            |            |            |            |            |            |                |                |                    |                   |            |
| Met<br>1                         | Arg               | Val               | Tyr        | Tyr<br>5   | Asp        | Arg        | Asp        | Ala        | Asp<br>10  | Val        | Asn            | Leu            | Ile                | Lys<br>15         | Ser        |
| Lys                              | Lys               | Val               | Ala<br>20  | Val        | Ile        | Gly        | Tyr        | Gly<br>25  | Ser        | Gln        | Gly            | His            | Ala<br>30          | His               | Val        |

| Leu        | Asn        | Leu<br>35         | Arg               | Asp        | Ser        | Gly        | Val<br>40         | Lys                | Asp              | Val        | Ala        | Val<br>45  | Ala               | Leu              | Arg               |
|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|--------------------|------------------|------------|------------|------------|-------------------|------------------|-------------------|
| Pro        | Gly<br>50  | Ser               | Ala               | Ser        | Ile        | Lys<br>55  | Lys               | Ala                | Glu              | Ala        | Glu<br>60  | Gly        | Leu               | Lys              | Val               |
| Leu<br>65  | Thr        | Pro               | Ala               | Glu        | Ala<br>70  | Ala        | Ala               | Trp                | Ala              | Asp<br>75  | Val        | Val        | Met               | Ile              | Leu<br>80         |
| Thr        | Pro        | Asp               | Glu               | Leu<br>85  | Gln        | Ala        | Asp               | Leu                | <b>Tyr</b><br>90 | Lys        | Ser        | Glu        | Leu               | <b>Ala</b><br>95 | Ala               |
| Asn        | Leu        | Lys               | Pro<br>100        | Gly        | Ala        | Ala        | Leu               | Val<br>105         | Phe              | Ala        | His        | Gly        | Leu<br>110        | Ala              | Ile               |
| His        | Phe        | <b>Lys</b><br>115 | Leu               | Ile        | Glu        | Ala        | <b>Arg</b><br>120 | Ala                | Asp              | Leu        | Asp        | Val<br>125 | Phe               | Met              | Val               |
| Ala        | Pro<br>130 | Lys               | Gly               | Pro        | Gly        | His<br>135 | Thr               | Val                | Arg              | Gly        | Glu<br>140 | Tyr        | Leu               | Lys              | Gly               |
| Gly<br>145 | Gly        | Val               | Pro               | Cys        | Leu<br>150 | Val        | Ala               | Val                | Ala              | Gln<br>155 | Asn        | Pro        | Thr               | Gly              | <b>Asn</b><br>160 |
| Ala        | Leu        | Glu               | Leu               | Ala<br>165 | Leu        | Ser        | Tyr               | Ala                | Ser<br>170       | Ala        | Ile        | Gly        | Gly               | Gly<br>175       | Arg               |
| Ser        | Gly        | Ile               | Ile<br>180        | Glu        | Thr        | Thr        | Phe               | <b>A</b> rg<br>185 | Glu              | Glu        | Суѕ        | Glu        | Thr<br>190        | Asp              | Leu               |
| Phe        | Gly        | Glu<br>195        | Gln               | Val        | Val        | Leu        | Cys<br>200        | Gly                | Gly              | Leu        | Ser        | Lys<br>205 | Leu               | Ile              | Gln               |
| Tyr        | Gly<br>210 | Phe               | Glu               | Thr        | Leu        | Val<br>215 | Glu               | Ala                | Gly              | Tyr        | Ala<br>220 | Pro        | Glu               | Met              | Ala               |
| Tyr<br>225 | Phe        | Glu               | Cys               | Leu        | His<br>230 | Glu        | Val               | Lys                | Leu              | Ile<br>235 | Val        | Asp        | Leu               | Ile              | Tyr<br>240        |
| Glu        | Gly        | Gly               | Ile               | Ala<br>245 | Asn        | Met        | Arg               | Tyr                | Ser<br>250       | Ile        | Ser        | Asn        | Thr               | Ala<br>255       | Glu               |
| Tyr        | Gly        | Asp               | <b>Tyr</b><br>260 | Val        | Thr        | Gly        | Ser               | <b>Arg</b><br>265  | Ile              | Ile        | Thr        | Glu        | <b>Ala</b><br>270 | Thr              | Lys               |
| Ala        | Glu        | Met<br>275        | Lys               | Arg        | Val        | Leu        | Ala<br>280        | Asp                | Ile              | Gln        | Ser        | Gly<br>285 | Arg               | Phe              | Val               |

| Arg                       | Asp<br>290   | Trp        | Met        | Leu        | Glu               | Cys<br>295 | Lys        | Ala        | Gly        | Gln        | Pro<br>300 | Ser        | Phe                | Lys            | Ala        |
|---------------------------|--------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|--------------------|----------------|------------|
| Thr<br>305                | Arg          | Arg        | Ile        | Gln        | <b>Xaa</b><br>310 | Glu        | His        | Val        | Ile        | Glu<br>315 | Val        | Val        | Gly                | Glu            | Lys<br>320 |
| Leu                       | Arg          | Gly        | Met        | Met<br>325 | Pro               | Trp        | Ile        | Ser        | Lys<br>330 | Asn        | Lys        | Leu        | Val                | <b>Asp</b> 335 | Lys        |
| Ala                       | Arg          | Asn        |            |            |                   |            |            |            |            |            |            |            |                    |                |            |
| <210><211><211><212><213> | > 33<br>> PF | 9<br>RT    | onas n     | nobilis    |                   |            |            |            |            |            |            |            |                    |                |            |
| <400                      | > 34         |            |            |            |                   |            |            |            |            |            |            |            |                    |                |            |
| Met<br>1                  | Lys          | Val        | Tyr        | Tyr<br>5   | Asp               | Ser        | Asp        | Ala        | Asp<br>10  | Leu        | Gly        | Leu        | Ile                | Lys<br>15      | Ser        |
| Lys                       | Lys          | Ile        | Ala<br>20  | Ile        | Leu               | Gly        | Tyr        | Gly<br>25  | Ser        | Gln        | Gly        | His        | Ala<br>30          | His            | Ala        |
| Gln                       | Asn          | Leu<br>35  | Arg        | Asp        | Ser               | Gly        | Val<br>40  | Ala        | Glu        | Val        | Ala        | Ile<br>45  | Ala                | Leu            | Arg        |
| Pro                       | Asp<br>50    | Ser        | Ala        | Ser        | Val               | Lys<br>55  | Lys        | Ala        | Gln        | Asp        | Ala<br>60  | Gly        | Phe                | Lys            | Val        |
| Leu<br>65                 | Thr          | Asn        | Ala        | Glu        | Ala<br>70         | Ala        | Lys        | Trp        | Ala        | Asp<br>75  | Ile        | Leu        | Met                | Ile            | Leu<br>80  |
| Ala                       | Pro          | Asp        | Glu        | His<br>85  | Gln               | Ala        | Ala        | Ile        | Tyr<br>90  | Ala        | Glu        | Asp        | Leu                | Lys<br>95      | Asp        |
| Asn                       | Leu          | Arg        | Pro<br>100 | Gly        | Ser               | Ala        | Ile        | Ala<br>105 | Phe        | Ala        | His        | Gly        | <b>Le</b> u<br>110 | Asn            | Ile        |
| His                       | Phe          | Gly<br>115 | Leu        | Ile        | Glu               | Pro        | Arg<br>120 | Lys        | Asp        | Ile        | Asp        | Val<br>125 | Phe                | Met            | Ile        |
| Ala                       | Pro<br>130   | Lys        | Gly        | Pro        | Gly               | His<br>135 | Thr        | Val        | Arg        | Ser        | Glu<br>140 | Tyr        | Val                | Arg            | Gly        |
| Gly<br>145                | Gly          | Val        | Pro        | Cys        | Leu<br>150        | Val        | Ala        | Val        | Asp        | Gln<br>155 | Asp        | Ala        | Ser                | Gly            | Asn<br>160 |

| Ala                     | His               | Asp        | Ile        | Ala<br>165 | Leu        | Ala        | Tyr        | Ala        | Ser<br>170 | Gly        | Ile        | Gly        | Gly        | Gly<br>175        | Arg        |
|-------------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|
| Ser                     | Gly               | Val        | Ile<br>180 | Glu        | Thr        | Thr        | Phe        | Arg<br>185 | Glu        | Glu        | Val        | Glu        | Thr<br>190 | Asp               | Leu        |
| Phe                     | Gly               | Glu<br>195 | Gln        | Ala        | Val        | Leu        | Cys<br>200 | Gly        | Gly        | Leu        | Thr        | Ala<br>205 | Leu        | Ile               | Thr        |
| Ala                     | Gly<br>210        | Phe        | Glu        | Thr        | Leu        | Thr<br>215 | Glu        | Ala        | Gly        | Tyr        | Ala<br>220 | Pro        | Glu        | Met               | Ala        |
| Phe<br>225              | Phe               | Glu        | Cys        | Met        | His<br>230 | Glu        | Met        | Lys        | Leu        | Ile<br>235 | Val        | Asp        | Leu        | Ile               | Tyr<br>240 |
| Glu                     | Ala               | Gly        | Ile        | Ala<br>245 | Asn        | Met        | Arg        | Tyr        | Ser<br>250 | Ile        | Ser        | Asn        | Thr        | Ala<br>255        | Glu        |
| Tyr                     | Gly               | Asp        | Ile<br>260 | Val        | Ser        | Gly        | Pro        | Arg<br>265 | Val        | Ile        | Asn        | Glu        | Glu<br>270 | Ser               | Lys        |
| Lys                     | Ala               | Met<br>275 | Lys        | Ala        | Ile        | Leu        | Asp<br>280 | Asp        | Ile        | Gln        | Ser        | Gly<br>285 | Arg        | Phe               | Val        |
| Ser                     | <b>Lys</b><br>290 | Phe        | Val        | Leu        | Asp        | Asn<br>295 | Arg        | Ala        | Gly        | Gln        | Pro<br>300 | Glu        | Leu        | Lys               | Ala        |
| Ala<br>305              | Arg               | Lys        | Arg        | Met        | Ala<br>310 | Ala        | His        | Pro        | Ile        | Glu<br>315 | Gln        | Val        | Gly        | Ala               | Arg<br>320 |
| Leu                     | Arg               | Lys        | Met        | Met<br>325 | Pro        | Trp        | Ile        | Ala        | Ser<br>330 | Asn        | Lys        | Leu        | Val        | <b>Asp</b><br>335 | Lys        |
| Ala                     | Arg               | Asn        |            |            |            |            |            |            |            |            |            |            |            |                   |            |
| <210>                   |                   |            |            |            |            |            |            |            |            |            |            |            |            |                   |            |
| <2112<br><2122<br><2132 | > PF              | RT         | nicola     | ehrlic     | hei        |            |            |            |            |            |            |            |            |                   |            |
| <400>                   | > 35              |            |            |            |            |            |            |            |            |            |            |            |            |                   |            |
| Met<br>1                | Gln               | Val        | Tyr        | Tyr<br>5   | Asp        | Lys        | Asp        | Ala        | Asp<br>10  | Leu        | Ser        | Ile        | Ile        | Gln<br>15         | Gly        |
| Lys                     | Lys               | Val        | Ala<br>20  | Val        | Ile        | Gly        | Tyr        | Gly<br>25  | Ser        | Gln        | Gly        | His        | Ala<br>30  | His               | Ala        |

| Asn        | Asn        | Leu<br>35  | Lys        | Glu        | Ser        | Gly        | Val<br>40  | Asp        | Val        | Val               | Val        | Gly<br>45  | Leu               | Arg        | Glu        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|-------------------|------------|------------|
| Gly        | Ser<br>50  | Ser        | Ser        | Ala        | Ala        | Lys<br>55  | Ala        | Gln        | Lys        | Ala               | Gly<br>60  | Leu        | Ala               | Val        | Ala        |
| Ser<br>65  | Ile        | Glu        | Asp        | Ala        | Ala<br>70  | Ala        | Gln        | Ala        | Asp        | Val<br>75         | Val        | Met        | Ile               | Leu        | Ala<br>80  |
| Pro        | Asp        | Glu        | His        | Gln<br>85  | Ala        | Val        | Ile        | Tyr        | His<br>90  | Asn               | Gln        | Ile        | Ala               | Pro<br>95  | Asn        |
| Val        | Lys        | Pro        | Gly<br>100 | Ala        | Ala        | Ile        | Ala        | Phe<br>105 | Ala        | His               | Gly        | Phe        | Asn<br>110        | Ile        | His        |
| Phe        | Gly        | Gln<br>115 | Ile        | Gln        | Pro        | Ala        | Ala<br>120 | Asp        | Leu        | Asp               | Val        | Ile<br>125 | Met               | Val        | Ala        |
| Pro        | Lys<br>130 | Gly        | Pro        | Gly        | His        | Leu<br>135 | Val        | Arg        | Ser        | Thr               | Tyr<br>140 | Val        | Glu               | Gly        | Gly        |
| Gly<br>145 | Val        | Pro        | Ser        | Leu        | Ile<br>150 | Ala        | Ile        | His        | Gln        | <b>Asp</b><br>155 | Ala        | Thr        | Gly               | Lys        | Ala<br>160 |
| Lys        | Asp        | Ile        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ser        | Ala<br>170 | Asn               | Gly        | Gly        | Gly               | Arg<br>175 | Ala        |
| Gly        | Val        | Ile        | Glu<br>180 | Thr        | Ser        | Phe        | Arg        | Glu<br>185 | Glu        | Thr               | Glu        | Thr        | <b>Asp</b><br>190 | Leu        | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Ile        | Thr               | Ser        | Leu<br>205 | Ile               | Gln        | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr        | Ala               | Pro<br>220 | Glu        | Met               | Ala        | Tyr        |
| Phe<br>225 | Glu        | Cys        | Leu        | His        | Glu<br>230 | Thr        | Lys        | Leu        | Ile        | Val<br>235        | Asp        | Leu        | Leu               | Tyr        | Gln<br>240 |
| Gly        | Gly        | Ile        | Ala        | Asn<br>245 | Met        | Arg        | Tyr        | Ser        | Ile<br>250 | Ser               | Asn        | Thr        | Ala               | Glu<br>255 | Tyr        |
| Gly        | Asp        | Phe        | Thr<br>260 | Arg        | Gly        | Pro        | Arg        | Val<br>265 | Ile        | Asn               | Glu        | Glu        | Ser<br>270        | Arg        | Glu        |
| Ala        | Met        | Arg        | Glu        | Ile        | Leu        | Ala        | Glu        | Ile        | Gln        | Glu               | Gly        | Glu        | Phe               | Ala        | Arg        |

|                                  |                      | 275               |            |            |            |            | 280        |            |            |                   |            | 285        |            |                   |            |
|----------------------------------|----------------------|-------------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|-------------------|------------|
| Glu                              | Phe<br>290           | Val               | Leu        | Glu        | Asn        | Gln<br>295 | Ala        | Gly        | Cys        | Pro               | Thr<br>300 | Leu        | Thr        | Ala               | Arg        |
| Arg<br>305                       | Arg                  | Leu               | Ala        | Ala        | Glu<br>310 | His        | Glu        | Ile        | Glu        | <b>Val</b><br>315 | Val        | Gly        | Glu        | Arg               | Leu<br>320 |
| Arg                              | Gly                  | Met               | Met        | Pro<br>325 | Trp        | Ile        | Asn        | Ala        | Asn<br>330 | Lys               | Leu        | Val        | Asp        | <b>Lys</b><br>335 | Asp        |
| Lys                              | Asn                  |                   |            |            |            |            |            |            |            |                   |            |            |            |                   |            |
| <2102<br><2112<br><2122<br><2132 | > 34<br>> PF<br>> Ca | 0<br>RT<br>ampylo | obacte     | er lari    |            |            |            |            |            |                   |            |            |            |                   |            |
| <400                             |                      |                   | Sor        | Tlo        | Ф.,,,      | Ф.,,,      | 7 cn       | Tve        | λen        | Cvs               | λen        | Tlo        | λen        | Ton               | T10        |
| 1                                | Ala                  | vai               | 261        | 5          | TYL        | TYT        | rsp        | пуз        | 10         | Cys               | rsp        | 116        | ASII       | 15                | 116        |
| Lys                              | Ser                  | Lys               | Lys<br>20  | Val        | Ala        | Ile        | Ile        | Gly<br>25  | Phe        | Gly               | Ser        | Gln        | Gly<br>30  | His               | Ala        |
| His                              | Ala                  | Met<br>35         | Asn        | Leu        | Arg        | Asp        | Ser<br>40  | Gly        | Val        | Glu               | Val        | Ile<br>45  | Ile        | Gly               | Leu        |
| Lys                              | Glu<br>50            | Gly               | Gly        | Gln        | Ser        | Trp<br>55  | Ala        | Lys        | Ala        | Gln               | Lys<br>60  | Ala        | Asn        | Phe               | Ile        |
| Val<br>65                        | Lys                  | Ser               | Val        | Lys        | Glu<br>70  | Ala        | Thr        | Lys        | Glu        | Ala<br>75         | Asp        | Leu        | Ile        | Met               | Ile<br>80  |
| Leu                              | Ala                  | Pro               | Asp        | Glu<br>85  | Ile        | Gln        | Ser        | Glu        | Ile<br>90  | Phe               | Asn        | Glu        | Glu        | Ile<br>95         | Lys        |
| Pro                              | Glu                  | Leu               | Lys<br>100 | Ala        | Gly        | Lys        | Thr        | Leu<br>105 | Ala        | Phe               | Ala        | His        | Gly<br>110 | Phe               | Asn        |
| Ile                              | His                  | Tyr<br>115        | Gly        | Gln        | Ile        | Val        | Ala<br>120 | Pro        | Lys        | Gly               | Ile        | Asp<br>125 | Val        | Ile               | Met        |
| Ile                              | Ala<br>130           | Pro               | Lys        | Ala        | Pro        | Gly<br>135 | His        | Thr        | Val        | Arg               | His<br>140 | Glu        | Phe        | Ser               | Ile        |
| Gly                              | Gly                  | Gly               | Thr        | Pro        | Cys        | Leu        | Ile        | Ala        | Ile        | His               | Gln        | Asp        | Glu        | Ser               | Lys        |

| 145                                                  | 150                |                    | 155                    | 160                |
|------------------------------------------------------|--------------------|--------------------|------------------------|--------------------|
| Asn Ala Lys A                                        | Asn Leu Ala<br>165 | Leu Ser Tyr        | Ala Ser Ala Ile<br>170 | Gly Gly Gly<br>175 |
| _                                                    | Ile Ile Glu<br>180 | Thr Thr Phe<br>185 | Lys Ala Glu Thr        | Glu Thr Asp<br>190 |
| Leu Phe Gly (                                        | Glu Gln Ala        | Val Leu Cys<br>200 | Gly Gly Leu Ser<br>205 | Ala Leu Ile        |
| Gln Ala Gly I<br>210                                 | Phe Glu Thr        | Leu Val Glu<br>215 | Ala Gly Tyr Glu<br>220 | Pro Glu Met        |
| Ala Tyr Phe (<br>225                                 | Glu Cys Leu<br>230 | His Glu Met        | Lys Leu Ile Val<br>235 | Asp Leu Ile<br>240 |
| Tyr Gln Gly (                                        | Gly Ile Ala<br>245 | Asp Met Arg        | Tyr Ser Val Ser<br>250 | Asn Thr Ala<br>255 |
|                                                      | Asp Tyr Ile<br>260 | Thr Gly Pro<br>265 | Lys Ile Ile Thr        | Lys Glu Thr<br>270 |
| Lys Glu Ala M<br>275                                 | Met Lys Gly        | Val Leu Lys<br>280 | Asp Ile Gln Asn<br>285 | Gly Ser Phe        |
| Ala Lys Asp I<br>290                                 | Phe Ile Leu        | Glu Arg Arg<br>295 | Ala Asn Phe Ala<br>300 | Arg Met His        |
| Ala Glu Arg 1<br>305                                 | Lys Leu Met<br>310 | Asn Asp Ser        | Leu Ile Glu Lys<br>315 | Thr Gly Arg<br>320 |
| Glu Leu Arg A                                        | Ala Met Met<br>325 | Pro Trp Ile        | Ser Ala Lys Lys<br>330 | Leu Val Asp<br>335 |
| Lys Asp Lys A                                        | Asn<br>340         |                    |                        |                    |
| <210> 37<br><211> 338<br><212> PRT<br><213> Marinoba | ncter aquaeolei    |                    |                        |                    |
| <400> 37                                             |                    |                    |                        |                    |
| Met Gln Val 1                                        | Tyr Tyr Asp<br>5   | Lys Asp Cys        | Asp Leu Ser Ile<br>10  | Ile Gln Gly<br>15  |
| Lys Lys Val A                                        | Ala Ile Leu        | Gly Phe Gly        | Ser Gln Gly His        | Ala His Ala        |

|            |            |            | 20         |            |            |            |            | 25                |            |                   |            |                   | 30         |            |            |
|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|------------|------------|
| Cys        | Asn        | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp               | Val        | Val               | Val        | Gly<br>45         | Leu        | Arg        | Ala        |
| Gly        | Ser<br>50  | Ser        | Ser        | Ile        | Ala        | Lys<br>55  | Ala        | Glu               | Ala        | Tyr               | Gly<br>60  | Leu               | Lys        | Thr        | Ser        |
| Asp<br>65  | Val        | Ala        | Ser        | Ala        | Val<br>70  | Ala        | Ser        | Ala               | Asp        | Val<br>75         | Val        | Met               | Val        | Leu        | Thr<br>80  |
| Pro        | Asp        | Glu        | Phe        | Gln<br>85  | Ala        | Gln        | Leu        | Tyr               | Arg<br>90  | Glu               | Glu        | Ile               | Glu        | Pro<br>95  | Asn        |
| Leu        | Lys        | Gln        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105        | Ala        | His               | Gly        | Phe               | Ala<br>110 | Ile        | His        |
| Tyr        | Asn        | Gln<br>115 | Ile        | Val        | Pro        | Arg        | Lys<br>120 | Asp               | Leu        | Asp               | Val        | Ile<br>125        | Met        | Val        | Ala        |
| Pro        | Lys<br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg               | Thr        | Glu               | Phe<br>140 | Thr               | Lys        | Gly        | Gly        |
| Gly<br>145 | Ile        | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Phe               | Gln        | <b>Asp</b><br>155 | Ala        | Ser               | Gly        | Asn        | Ala<br>160 |
| Lys        | Asn        | Val        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ser               | Gly<br>170 | Ile               | Gly        | Gly               | Gly        | Arg<br>175 | Thr        |
| Gly        | Ile        | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu        | Thr               | Glu        | Thr               | Asp<br>190 | Leu        | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly               | Ala        | Val               | Glu        | <b>Leu</b><br>205 | Val        | Lys        | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Thr        | Glu<br>215 | Ala        | Gly               | Tyr        | Ala               | Pro<br>220 | Glu               | Met        | Ala        | Tyr        |
| Phe<br>225 | Glu        | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu               | Ile        | Val<br>235        | Asp        | Leu               | Met        | Tyr        | Glu<br>240 |
| Gly        | Gly        | Ile        | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser               | Ile<br>250 | Ser               | Asn        | Asn               | Ala        | Glu<br>255 | Tyr        |
| Gly        | Glu        | Tyr        | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265        | Ile        | Asn               | Glu        | Gln               | Ser<br>270 | Arg        | Glu        |

| Ala Met Arg Asn Ala Leu Lys Arg Ile Gln Ser Gly Glu Tyr Ala Lys<br>275 280 285     | ŀ  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Met Phe Ile Ser Glu Gly Ala Leu Asn Tyr Pro Ser Met Thr Ala Arg<br>290 295 300     | ŗ  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Arg Arg Gln Asn Ala Ala His Glu Ile Glu Thr Val Gly Glu Lys Leu<br>305 310 315 320 |    |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Arg Ser Met Met Pro Trp Ile Ser Ala Asn Lys Ile Val Asp Lys Asp<br>325 330 335     | >  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lys Asn                                                                            |    |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <210> 38 <211> 338 <212> PRT <213> Psychrobacter arcticus                          |    |  |  |  |  |  |  |  |  |  |  |  |  |  |
| <400> 38                                                                           |    |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Met Asn Val Tyr Tyr Asp Lys Asp Cys Asp Leu Ser Ile Val Gln Gly 1 5 10 15          | ,  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Lys Lys Val Ala Ile Ile Gly Tyr Gly Ser Gln Gly His Ala His Ala<br>20 25 30        | L  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Leu Asn Leu Gln Asp Ser Asn Val Asp Val Thr Val Gly Leu Arg Ala<br>35 40 45        | ì  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Asp Ser Gly Ser Trp Lys Lys Ala Glu Asn Ala Gly Leu Lys Val Ala<br>50 55 60        | L  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Glu Val Glu Glu Ala Val Lys Ala Ala Asp Ile Ile Met Ile Leu Thr<br>65 70 75 80     | :  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Pro Asp Glu Phe Gln Lys Glu Leu Tyr Asn Asp Val Ile Glu Pro Asr<br>85 90 95        | 1  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ile Lys Gln Gly Ala Thr Leu Ala Phe Ala His Gly Phe Ala Ile His                    | \$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Tyr Asn Gln Val Ile Pro Arg Ser Asp Leu Asp Val Ile Met Val Ala<br>115 120 125     | ì  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Pro Lys Ala Pro Gly His Thr Val Arg Ser Glu Phe Ala Lys Gly Gly                    | 7  |  |  |  |  |  |  |  |  |  |  |  |  |  |

| Gly<br>145                       | Ile          | Pro                | Asp        | Leu        | Ile<br>150 | Ala        | Ile                | Tyr        | Gln        | Asp<br>155 | Ala        | Ser        | Gly        | Gln        | Ala<br>160 |
|----------------------------------|--------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Lys                              | Gln          | Leu                | Ala        | Leu<br>165 | Ser        | Tyr        | Ala                | Ala        | Gly<br>170 | Val        | Gly        | Gly        | Gly        | Arg<br>175 | Ser        |
| Gly                              | Ile          | Ile                | Glu<br>180 | Thr        | Thr        | Phe        | Lys                | Asp<br>185 | Glu        | Thr        | Glu        | Thr        | Asp<br>190 | Leu        | Phe        |
| Gly                              | Glu          | Gln<br>195         | Ala        | Val        | Leu        | Cys        | Gly<br>200         | Gly        | Ala        | Val        | Glu        | Leu<br>205 | Val        | Lys        | Met        |
| Gly                              | Phe<br>210   | Glu                | Thr        | Leu        | Thr        | Glu<br>215 | Ala                | Gly        | Tyr        | Ala        | Pro<br>220 | Glu        | Met        | Ala        | Tyr        |
| Phe<br>225                       | Glu          | Cys                | Leu        | His        | Glu<br>230 | Leu        | Lys                | Leu        | Ile        | Val<br>235 | Asp        | Leu        | Met        | Tyr        | Glu<br>240 |
| Gly                              | Gly          | Ile                | Ala        | Asp<br>245 | Met        | Asn        | Tyr                | Ser        | Ile<br>250 | Ser        | Asn        | Asn        | Ala        | Glu<br>255 | Tyr        |
| Gly                              | Glu          | Tyr                | Val<br>260 | Thr        | Gly        | Pro        | Glu                | Val<br>265 | Ile        | Asn        | Glu        | Gln        | Ser<br>270 | Arg        | Glu        |
| Ala                              | Met          | <b>A</b> rg<br>275 | Asn        | Ala        | Leu        | Lys        | <b>A</b> rg<br>280 | Ile        | Gln        | Ser        | Gly        | Glu<br>285 | Tyr        | Ala        | Lys        |
| Met                              | Phe<br>290   | Ile                | Ser        | Glu        | Gly        | Ala<br>295 | Thr                | Asn        | Tyr        | Pro        | Ser<br>300 | Met        | Thr        | Ala        | Arg        |
| Arg<br>305                       | Arg          | Asn                | Asn        | Ala        | Glu<br>310 | His        | Gln                | Ile        | Glu        | Ile<br>315 | Thr        | Gly        | Ala        | Lys        | Leu<br>320 |
| Arg                              | Gly          | Met                | Met        | Pro<br>325 | Trp        | Ile        | Gly                | Gly        | Asn<br>330 | Lys        | Ile        | Ile        | Asp        | Lys<br>335 | Asp        |
| Lys                              | Asn          |                    |            |            |            |            |                    |            |            |            |            |            |            |            |            |
| <2102<br><2112<br><2122<br><2132 | > 33<br>> PF | 8<br>RT            | chejue     | ensis      |            |            |                    |            |            |            |            |            |            |            |            |
| <400                             | > 39         |                    |            |            |            |            |                    |            |            |            |            |            |            |            |            |
| Met<br>1                         | Gln          | Val                | Tyr        | Tyr<br>5   | Asp        | Lys        | Asp                | Cys        | Asp<br>10  | Leu        | Ser        | Ile        | Ile        | Gln<br>15  | Gly        |

Lys Lys Val Ala Ile Ile Gly Tyr Gly Ser Gln Gly His Ala His Ala Asn Asn Leu Lys Asp Ser Gly Val Asp Val Cys Val Gly Leu Arg Lys 40 Gly Ser Gly Ser Trp Ala Lys Ala Glu Asn Ala Gly Leu Ala Val Lys Glu Val Ala Glu Ala Val Ala Gly Ala Asp Val Val Met Ile Leu Thr Pro Asp Glu Phe Gln Ala Gln Leu Tyr Lys Ser Glu Ile Glu Pro Asn Leu Lys Ser Gly Ala Thr Leu Ala Phe Ala His Gly Phe Ser Ile His 100 105 Tyr Asn Gln Ile Val Pro Arg Ala Asp Leu Asp Val Ile Met Ile Ala 120 Pro Lys Ala Pro Gly His Thr Val Arg Ser Glu Phe Val Lys Gly Gly 130 135 Gly Ile Pro Asp Leu Ile Ala Ile Phe Gln Asp Ala Ser Gly Ser Ala 145 150 Lys Asp Leu Ala Leu Ser Tyr Ala Ser Gly Val Gly Gly Gly Arg Thr 165 Gly Ile Ile Glu Thr Thr Phe Lys Asp Glu Thr Glu Thr Asp Leu Phe 185 Gly Glu Gln Ala Val Leu Cys Gly Gly Ala Val Glu Leu Val Lys Ala 200 205 Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr Ala Pro Glu Met Ala Tyr Phe Glu Cys Leu His Glu Leu Lys Leu Ile Val Asp Leu Met Tyr Glu 230 235 Gly Gly Ile Ala Asn Met Asn Tyr Ser Ile Ser Asn Asn Ala Glu Tyr 250 Gly Glu Tyr Val Thr Gly Pro Glu Val Ile Asn Asp Gln Ser Arg Ala 260 265 270

Ala Met Arg Asn Ala Leu Lys Arg Ile Gln Asp Gly Glu Tyr Ala Lys 275 280 Met Phe Ile Ala Glu Gly Ala His Asn Tyr Pro Ser Met Thr Ala Tyr Arg Arg Asn Asn Ala Ala His Pro Ile Glu Gln Val Gly Glu Lys Leu 310 315 Arg Ser Met Met Pro Trp Ile Ala Ser Asn Lys Ile Val Asp Lys Ser 330 Lys Asn <210> 40 <211> 338 <212> PRT <213> Thiobacillus denitrificans <400> 40 Met Lys Val Tyr Tyr Asp Lys Asp Ala Asp Leu Ser Leu Ile Lys Gln Arg Lys Val Ala Ile Val Gly Tyr Gly Ser Gln Gly His Ala His Ala Asn Asn Leu Lys Asp Ser Gly Val Asp Val Thr Val Ala Leu Arg Pro Gly Ser Ala Ser Ala Lys Lys Ala Glu Asn Ala Gly Leu Thr Val Lys 50 55 Ser Val Pro Glu Ala Val Ala Gly Ala Asp Leu Val Met Ile Leu Thr Pro Asp Glu Phe Gln Ser Arg Leu Tyr Arg Asp Glu Ile Glu Pro Asn Ile Lys Gln Gly Ala Thr Leu Ala Phe Ala His Gly Phe Ser Ile His 100 105 Tyr Asn Gln Val Val Pro Arg Ala Asp Leu Asp Val Ile Met Ile Ala Pro Lys Ala Pro Gly His Thr Val Arg Ser Glu Phe Val Lys Gly Gly 130 135 140

| Gly<br>145                   | Ile          | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr               | Gln                | Asp<br>155 | Ala        | Ser        | Gly        | Lys                | Ala<br>160 |
|------------------------------|--------------|------------|------------|------------|------------|------------|------------|-------------------|--------------------|------------|------------|------------|------------|--------------------|------------|
| Lys                          | Glu          | Thr        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ser               | <b>A</b> la<br>170 | Ile        | Gly        | Gly        | Gly        | <b>A</b> rg<br>175 | Thr        |
| Gly                          | Ile          | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu                | Thr        | Glu        | Thr        | Asp<br>190 | Leu                | Phe        |
| Gly                          | Glu          | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly               | Ala                | Val        | Glu        | Leu<br>205 | Val        | Lys                | Ala        |
| Gly                          | Phe<br>210   | Asp        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly               | Tyr                | Ala        | Pro<br>220 | Glu        | Met        | Ala                | Tyr        |
| Phe<br>225                   | Glu          | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu               | Ile                | Val<br>235 | Asp        | Leu        | Met        | Tyr                | Glu<br>240 |
| Gly                          | Gly          | Ile        | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser               | Ile<br>250         | Ser        | Asn        | Asn        | Ala        | Glu<br>255         | Tyr        |
| Gly                          | Glu          | Tyr        | Val<br>260 | Thr        | Gly        | Val        | Lys        | Val<br>265        | Ile                | Asn        | Glu        | Gln        | Ser<br>270 | Arg                | Ala        |
| Ala                          | Met          | Lys<br>275 | Glu        | Cys        | Leu        | Ala        | Asn<br>280 | Ile               | Gln                | Asn        | Gly        | Ala<br>285 | Tyr        | Ala                | Lys        |
| Arg                          | Phe<br>290   | Ile        | Leu        | Glu        | Gly        | Gln<br>295 | Ala        | Asn               | Tyr                | Pro        | Glu<br>300 | Met        | Thr        | Ala                | Trp        |
| Arg<br>305                   | Arg          | Asn        | Asn        | Ala        | Ala<br>310 | His        | Gln        | Ile               | Glu                | Val<br>315 | Val        | Gly        | Ala        | Lys                | Leu<br>320 |
| Arg                          | Ser          | Met        | Met        | Pro<br>325 | Trp        | Ile        | Ala        | Ala               | Asn<br>330         | Lys        | Leu        | Val        | Asp        | His<br>335         | Ser        |
| Lys                          | Asn          |            |            |            |            |            |            |                   |                    |            |            |            |            |                    |            |
| <210<br><211<br><212<br><213 | > 33<br>> PF | 8<br>RT    | cter v     | inelan     | dii        |            |            |                   |                    |            |            |            |            |                    |            |
| <400>                        | > 41         |            |            |            |            |            |            |                   |                    |            |            |            |            |                    |            |
| Met<br>1                     | Lys          | Val        | Tyr        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys               | Asp<br>10          | Leu        | Ser        | Ile        | Ile        | Gln<br>15          | Ser        |

| Lys        | Lys        | Val        | Ala<br>20  | Ile        | Ile        | Gly        | Tyr        | Gly<br>25         | Ser        | Gln               | Gly        | His        | Ala<br>30  | His        | Ala        |
|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|------------|------------|------------|------------|
| Cys        | Asn        | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp               | Val        | Tyr               | Val        | Gly<br>45  | Leu        | Arg        | Ala        |
| Gly        | Ser<br>50  | Ala        | Ser        | Val        | Ala        | Lys<br>55  | Ala        | Glu               | Ala        | His               | Gly<br>60  | Leu        | Thr        | Val        | Lys        |
| Ser<br>65  | Val        | Lys        | Asp        | Ala        | Val<br>70  | Ala        | Ala        | Ala               | Asp        | Val<br>75         | Val        | Met        | Ile        | Leu        | Thr<br>80  |
| Pro        | Asp        | Glu        | Phe        | Gln<br>85  | Gly        | Arg        | Leu        | Tyr               | Lys<br>90  | Asp               | Glu        | Ile        | Glu        | Pro<br>95  | Asn        |
| Leu        | Lys        | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105        | Ala        | His               | Gly        | Phe        | Ser<br>110 | Ile        | His        |
| Tyr        | Asn        | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp               | Leu        | Asp               | Val        | Ile<br>125 | Met        | Ile        | Ala        |
| Pro        | Lys<br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg               | Ser        | Glu               | Phe<br>140 | Val        | Arg        | Gly        | Gly        |
| Gly<br>145 | Ile        | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Val        | Tyr               | Gln        | <b>Asp</b><br>155 | Ala        | Ser        | Gly        | Asn        | Ala<br>160 |
| Lys        | Asn        | Leu        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Cys               | Gly<br>170 | Val               | Gly        | Gly        | Gly        | Arg<br>175 | Thr        |
| Gly        | Ile        | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu        | Thr               | Glu        | Thr        | Asp<br>190 | Leu        | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly               | Cys        | Val               | Glu        | Leu<br>205 | Val        | Lys        | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly               | Tyr        | Ala               | Pro<br>220 | Glu        | Met        | Ala        | Tyr        |
| Phe<br>225 | Glu        | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu               | Ile        | Val<br>235        | Asp        | Leu        | Met        | Phe        | Glu<br>240 |
| Gly        | Gly        | Ile        | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser               | Ile<br>250 | Ser               | Asn        | Asn        | Ala        | Glu<br>255 | Tyr        |
| Gly        | Glu        | Tyr        | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265        | Ile        | Asn               | Glu        | Gln        | Ser<br>270 | Arg        | Gln        |

| Ala                                                              | Met        | <b>Arg</b><br>275 | Asn        | Ala        | Leu                | Lys        | Arg<br>280 | Ile        | Gln        | Asp        | Gly        | Glu<br>285 | Tyr        | Ala               | Lys        |
|------------------------------------------------------------------|------------|-------------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|
| Met                                                              | Phe<br>290 | Ile               | Thr        | Glu        | Gly                | Ala<br>295 | Ala        | Asn        | Tyr        | Pro        | Ser<br>300 | Met        | Thr        | Ala               | Tyr        |
| Arg<br>305                                                       | Arg        | Asn               | Asn        | Ala        | <b>A</b> la<br>310 | His        | Gln        | Ile        | Glu        | Val<br>315 | Val        | Gly        | Glu        | Lys               | Leu<br>320 |
| Arg                                                              | Thr        | Met               | Met        | Pro<br>325 | Trp                | Ile        | Ala        | Ala        | Asn<br>330 | Lys        | Ile        | Val        | Asp        | <b>Lys</b><br>335 | Thr        |
| Lys Asn                                                          |            |                   |            |            |                    |            |            |            |            |            |            |            |            |                   |            |
| <210> 42<br><211> 338<br><212> PRT<br><213> Pseudomonas syringae |            |                   |            |            |                    |            |            |            |            |            |            |            |            |                   |            |
| <400>                                                            | > 42       |                   |            |            |                    |            |            |            |            |            |            |            |            |                   |            |
| Met<br>1                                                         | Lys        | Val               | Phe        | Tyr<br>5   | Asp                | Lys        | Asp        | Cys        | Asp<br>10  | Leu        | Ser        | Ile        | Ile        | Gln<br>15         | Gly        |
| Lys                                                              | Lys        | Val               | Ala<br>20  | Ile        | Ile                | Gly        | Tyr        | Gly<br>25  | Ser        | Gln        | Gly        | His        | Ala<br>30  | Gln               | Ala        |
| Cys                                                              | Asn        | Leu<br>35         | Lys        | Asp        | Ser                | Gly        | Val<br>40  | Asp        | Val        | Thr        | Val        | Gly<br>45  | Leu        | Arg               | Lys        |
| Gly                                                              | Ser<br>50  | Ala               | Thr        | Val        | Ala                | Lys<br>55  | Ala        | Glu        | Ala        | His        | Gly<br>60  | Leu        | Lys        | Val               | Thr        |
| Asp<br>65                                                        | Val        | Ala               | Ser        | Ala        | Val<br>70          | Ala        | Ala        | Ala        | Asp        | Leu<br>75  | Val        | Met        | Ile        | Leu               | Thr<br>80  |
| Pro                                                              | Asp        | Glu               | Phe        | Gln<br>85  | Ser                | Gln        | Leu        | Tyr        | Lys<br>90  | Asn        | Glu        | Val        | Glu        | Pro<br>95         | Asn        |
| Leu                                                              | Lys        | Lys               | Gly<br>100 | Ala        | Thr                | Leu        | Ala        | Phe<br>105 | Ser        | His        | Gly        | Phe        | Ala<br>110 | Ile               | His        |
| Tyr                                                              | Asn        | Gln<br>115        | Val        | Val        | Pro                | Arg        | Ala<br>120 | Asp        | Leu        | Asp        | Val        | Ile<br>125 | Met        | Ile               | Ala        |
| Pro                                                              | Lys<br>130 | Ala               | Pro        | Gly        | His                | Thr<br>135 | Val        | Arg        | Thr        | Glu        | Phe<br>140 | Val        | Lys        | Gly               | Gly        |

| Gly<br>145                   | Ile          | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Val        | Tyr               | Gln        | <b>Asp</b><br>155 | Ala        | Ser        | Gly        | Asn                | Ala<br>160 |
|------------------------------|--------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|------------|------------|--------------------|------------|
| Lys                          | Asn          | Val        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ser               | Gly<br>170 | Val               | Gly        | Gly        | Gly        | <b>A</b> rg<br>175 | Thr        |
| Gly                          | Ile          | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu        | Thr               | Glu        | Thr        | Asp<br>190 | Leu                | Phe        |
| Gly                          | Glu          | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly               | Thr        | Val               | Glu        | Leu<br>205 | Val        | Lys                | Ala        |
| Gly                          | Phe<br>210   | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly               | Tyr        | Ala               | Pro<br>220 | Glu        | Met        | Ala                | Tyr        |
| Phe<br>225                   | Glu          | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu               | Ile        | Val<br>235        | Asp        | Leu        | Met        | Tyr                | Glu<br>240 |
| Gly                          | Gly          | Ile        | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser               | Ile<br>250 | Ser               | Asn        | Asn        | Ala        | Glu<br>255         | Tyr        |
| Gly                          | Glu          | Tyr        | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265        | Ile        | Asn               | Ala        | Glu        | Ser<br>270 | Arg                | Gln        |
| Ala                          | Met          | Arg<br>275 | Asn        | Ala        | Leu        | Lys        | Arg<br>280 | Ile               | Gln        | Asp               | Gly        | Glu<br>285 | Tyr        | Ala                | Lys        |
| Met                          | Phe<br>290   | Ile        | Ser        | Glu        | Gly        | Ala<br>295 | Thr        | Gly               | Tyr        | Pro               | Ser<br>300 | Met        | Thr        | Ala                | Lys        |
| Arg<br>305                   | Arg          | Asn        | Asn        | Ala        | Ala<br>310 | His        | Gly        | Ile               | Glu        | Ile<br>315        | Ile        | Gly        | Glu        | Lys                | Leu<br>320 |
| Arg                          | Ser          | Met        | Met        | Pro<br>325 | Trp        | Ile        | Ala        | Ala               | Asn<br>330 | Lys               | Ile        | Val        | Asp        | Lys<br>335         | Asp        |
| Lys                          | Asn          |            |            |            |            |            |            |                   |            |                   |            |            |            |                    |            |
| <210<br><211<br><212<br><213 | > 33<br>> PF | 8<br>RT    | monas      | s syrin    | gae        |            |            |                   |            |                   |            |            |            |                    |            |
| <400                         | > 43         |            |            |            |            |            |            |                   |            |                   |            |            |            |                    |            |
| Met<br>1                     | Lys          | Val        | Phe        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys               | Asp<br>10  | Leu               | Ser        | Ile        | Ile        | Gln<br>15          | Gly        |

| Lys       | Lys        | Val       | Ala<br>20  | Ile       | Ile       | Gly        | Tyr       | Gly<br>25  | Ser       | Gln       | Gly        | His       | Ala<br>30  | Gln       | Ala        |
|-----------|------------|-----------|------------|-----------|-----------|------------|-----------|------------|-----------|-----------|------------|-----------|------------|-----------|------------|
| Cys       | Asn        | Leu<br>35 | Lys        | Asp       | Ser       | Gly        | Val<br>40 | Asp        | Val       | Thr       | Val        | Gly<br>45 | Leu        | Arg       | Lys        |
| Gly       | Ser<br>50  | Ala       | Thr        | Val       | Ala       | Lys<br>55  | Ala       | Glu        | Ala       | His       | Gly<br>60  | Leu       | Lys        | Val       | Thr        |
| Asp<br>65 | Val        | Ala       | Ser        | Ala       | Val<br>70 | Ala        | Ala       | Ala        | Asp       | Leu<br>75 | Val        | Met       | Ile        | Leu       | Thr<br>80  |
| Pro       | Asp        | Glu       | Phe        | Gln<br>85 | Ser       | Gln        | Leu       | Tyr        | Lys<br>90 | Asn       | Glu        | Val       | Glu        | Pro<br>95 | Asn        |
| Leu       | Lys        | Lys       | Gly<br>100 | Ala       | Thr       | Leu        | Ala       | Phe<br>105 | Ser       | His       | Gly        | Phe       | Ala<br>110 | Ile       | His        |
| -         |            | 115       |            |           |           | -          | 120       | _          |           | -         |            | 125       |            |           | Ala        |
| Pro       | Lys<br>130 | Ala       | Pro        | Gly       | His       | Thr<br>135 | Val       | Arg        | Thr       | Glu       | Phe<br>140 | Val       | Lys        | Gly       | Gly        |
| 145       |            |           |            |           | 150       |            |           | _          |           | 155       |            |           |            |           | Ala<br>160 |
| _         |            |           | Ala        | 165       |           |            |           |            | 170       |           |            |           |            | 175       |            |
| -         |            |           | Glu<br>180 |           |           |            | -         | 185        |           |           |            |           | 190        |           |            |
|           |            | 195       |            |           |           | -          | 200       |            |           |           |            | 205       |            | -         | Ala        |
|           | 210        |           | Thr        |           |           | 215        |           |            |           |           | 220        |           |            |           |            |
| 225       |            |           | Leu        |           | 230       |            | -         |            |           | 235       | -          |           |            | -         | 240        |
| _         | _          |           | Ala        | 245       |           |            | -         |            | 250       |           |            |           |            | 255       | -          |
| GТĀ       | GLU        | Tyr       | val        | ınr       | GТĀ       | Pro        | GLu       | val        | тте       | Asn       | Α⊥а        | GLu       | ser        | Arg       | Gln        |

|                                  |              |                   | 260        |            |            |            |            | 265        |                    |            |            |            | 270        |            |            |
|----------------------------------|--------------|-------------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|
| Ala                              | Met          | <b>Arg</b><br>275 | Asn        | Ala        | Leu        | Lys        | Arg<br>280 | Ile        | Gln                | Asp        | Gly        | Glu<br>285 | Tyr        | Ala        | Lys        |
| Met                              | Phe<br>290   | Ile               | Thr        | Glu        | Gly        | Ala<br>295 | Thr        | Gly        | Tyr                | Pro        | Ser<br>300 | Met        | Thr        | Ala        | Lys        |
| Arg<br>305                       | Arg          | Asn               | Asn        | Ala        | Glu<br>310 | His        | Gly        | Ile        | Glu                | Val<br>315 | Ile        | Gly        | Glu        | Lys        | Leu<br>320 |
| Arg                              | Ser          | Met               | Met        | Pro<br>325 | Trp        | Ile        | Ala        | Ala        | <b>A</b> sn<br>330 | Lys        | Ile        | Val        | Asp        | Lys<br>335 | Asp        |
| Lys                              | Asn          |                   |            |            |            |            |            |            |                    |            |            |            |            |            |            |
| <2102<br><2112<br><2122<br><2132 | > 33<br>> PF | 8<br>RT           | nonas      | s putid    | а          |            |            |            |                    |            |            |            |            |            |            |
| <400>                            | > 44         |                   |            |            |            |            |            |            |                    |            |            |            |            |            |            |
| Met<br>1                         | Lys          | Val               | Phe        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys        | Asp<br>10          | Leu        | Ser        | Ile        | Ile        | Gln<br>15  | Gly        |
| Lys                              | Lys          | Val               | Ala<br>20  | Ile        | Ile        | Gly        | Tyr        | Gly<br>25  | Ser                | Gln        | Gly        | His        | Ala<br>30  | Gln        | Ala        |
| Cys                              | Asn          | Leu<br>35         | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp        | Val                | Thr        | Val        | Gly<br>45  | Leu        | Arg        | Lys        |
| Gly                              | Ser<br>50    | Ala               | Thr        | Val        | Ala        | Lys<br>55  | Ala        | Glu        | Ala                | His        | Gly<br>60  | Leu        | Lys        | Val        | Ala        |
| Asp<br>65                        | Val          | Ala               | Thr        | Ala        | Val<br>70  | Ala        | Ala        | Ala        | Asp                | Leu<br>75  | Val        | Met        | Ile        | Leu        | Thr<br>80  |
| Pro                              | Asp          | Glu               | Phe        | Gln<br>85  | Gly        | Ala        | Leu        | Tyr        | Lys<br>90          | Asn        | Glu        | Ile        | Glu        | Pro<br>95  | Asn        |
| Ile                              | Lys          | Lys               | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105 | Ser                | His        | Gly        | Phe        | Ser<br>110 | Ile        | His        |
| Tyr                              | Asn          | Gln<br>115        | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp        | Leu                | Asp        | Val        | Ile<br>125 | Met        | Ile        | Ala        |
| Pro                              | T.vs         | Ala               | Pro        | G1 v       | His        | Thr        | Val        | Ara        | Ser                | Glu        | Phe        | Val        | Lvs        | Gl v       | G1 v       |

|                              | 130          |            |            |            |            | 135        |            |            |            |                   | 140        |            |                   |            |            |
|------------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|-------------------|------------|------------|
| Gly<br>145                   | Ile          | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr        | Gln        | <b>Asp</b><br>155 | Ala        | Ser        | Gly               | Asn        | Ala<br>160 |
| Lys                          | Asn          | Val        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ser        | Gly<br>170 | Val               | Gly        | Gly        | Gly               | Arg<br>175 | Thr        |
| Gly                          | Ile          | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | Asp<br>185 | Glu        | Thr               | Glu        | Thr        | <b>Asp</b><br>190 | Leu        | Phe        |
| Gly                          | Glu          | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Thr        | Val               | Glu        | Leu<br>205 | Val               | Lys        | Ala        |
| Gly                          | Phe<br>210   | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr        | Ala               | Pro<br>220 | Glu        | Met               | Ala        | Tyr        |
| Phe<br>225                   | Glu          | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile        | Val<br>235        | Asp        | Leu        | Met               | Tyr        | Glu<br>240 |
| Gly                          | Gly          | Ile        | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser        | Ile<br>250 | Ser               | Asn        | Asn        | Ala               | Glu<br>255 | Tyr        |
| Gly                          | Glu          | Tyr        | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265 | Ile        | Asn               | Glu        | Glu        | Ser<br>270        | Arg        | Lys        |
| Ala                          | Met          | Arg<br>275 | Asn        | Ala        | Leu        | Lys        | Arg<br>280 | Ile        | Gln        | Asp               | Gly        | Glu<br>285 | Tyr               | Ala        | Lys        |
| Met                          | Phe<br>290   | Ile        | Ser        | Glu        | Gly        | Ala<br>295 | Thr        | Asn        | Tyr        | Pro               | Ser<br>300 | Met        | Thr               | Ala        | Lys        |
| Arg<br>305                   | Arg          | Asn        | Asn        | Ala        | Ala<br>310 | His        | Gly        | Ile        | Glu        | Ile<br>315        | Ile        | Gly        | Glu               | Gln        | Leu<br>320 |
| Arg                          | Ser          | Met        | Met        | Pro<br>325 | Trp        | Ile        | Ser        | Ala        | Asn<br>330 | Lys               | Ile        | Val        | Asp               | Lys<br>335 | Thr        |
| Lys                          | Asn          |            |            |            |            |            |            |            |            |                   |            |            |                   |            |            |
| <210<br><211<br><212<br><213 | > 33<br>> PF | 8<br>RT    | monas      | s entoi    | mophi      | la         |            |            |            |                   |            |            |                   |            |            |
| <400>                        | > 45         |            |            |            |            |            |            |            |            |                   |            |            |                   |            |            |
| Met                          | Lys          | Val        | Phe        | Tyr        | Asp        | Lys        | Asp        | Cys        | Asp        | Leu               | Ser        | Ile        | Ile               | Gln        | Gly        |

| 1          |            |            |            | 5          |            |            |            |                   | 10         |            |            |                   |            | 15                 |            |
|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|-------------------|------------|--------------------|------------|
| Lys        | Lys        | Val        | Ala<br>20  | Ile        | Ile        | Gly        | Tyr        | Gly<br>25         | Ser        | Gln        | Gly        | His               | Ala<br>30  | Gln                | Ala        |
| Cys        | Asn        | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp               | Val        | Thr        | Ile        | Gly<br>45         | Leu        | Arg                | Lys        |
| Gly        | Ser<br>50  | Ala        | Thr        | Val        | Ala        | Lys<br>55  | Ala        | Glu               | Ala        | His        | Gly<br>60  | Leu               | Lys        | Val                | Thr        |
| Asp<br>65  | Val        | Ala        | Thr        | Ala        | Val<br>70  | Ala        | Ala        | Ala               | Asp        | Leu<br>75  | Val        | Met               | Ile        | Leu                | Thr<br>80  |
| Pro        | Asp        | Glu        | Phe        | Gln<br>85  | Gly        | Gln        | Leu        | Tyr               | Lys<br>90  | Gln        | Glu        | Ile               | Glu        | Pro<br>95          | Asn        |
| Ile        | Lys        | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105        | Ser        | His        | Gly        | Phe               | Ala<br>110 | Ile                | His        |
| Tyr        | Asn        | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp               | Leu        | Asp        | Val        | Ile<br>125        | Met        | Ile                | Ala        |
| Pro        | Lys<br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg               | Ser        | Glu        | Phe<br>140 | Val               | Lys        | Gly                | Gly        |
| Gly<br>145 | Ile        | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr               | Gln        | Asp<br>155 | Ala        | Ser               | Gly        | Asn                | Ala<br>160 |
| Lys        | Asn        | Val        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ser               | Gly<br>170 | Val        | Gly        | Gly               | Gly        | <b>A</b> rg<br>175 | Thr        |
| Gly        | Ile        | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu        | Thr        | Glu        | Thr               | Asp<br>190 | Leu                | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly               | Thr        | Val        | Glu        | <b>Leu</b><br>205 | Val        | Lys                | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly               | Tyr        | Ala        | Pro<br>220 | Glu               | Met        | Ala                | Tyr        |
| Phe<br>225 | Glu        | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu               | Ile        | Val<br>235 | Asp        | Leu               | Met        | Tyr                | Glu<br>240 |
| Gly        | Gly        | Ile        | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser               | Ile<br>250 | Ser        | Asn        | Asn               | Ala        | Glu<br>255         | Tyr        |

| GIĄ                              | GIU          | Tyr        | 260        | Tnr        | GТĀ        | Pro        | GIU               | 265        | TTE                | Asn        | GIU        | GLu        | 270        | Arg        | туѕ        |
|----------------------------------|--------------|------------|------------|------------|------------|------------|-------------------|------------|--------------------|------------|------------|------------|------------|------------|------------|
| Ala                              | Met          | Arg<br>275 | Asn        | Ala        | Leu        | Lys        | <b>Arg</b><br>280 | Ile        | Gln                | Asp        | Gly        | Glu<br>285 | Tyr        | Ala        | Lys        |
| Met                              | Phe<br>290   | Ile        | Ser        | Glu        | Gly        | Ala<br>295 | Thr               | Asn        | Tyr                | Pro        | Ser<br>300 | Met        | Thr        | Ala        | Lys        |
| Arg<br>305                       | Arg          | Asn        | Asn        | Ala        | Ala<br>310 | His        | Gly               | Ile        | Glu                | Ile<br>315 | Ile        | Gly        | Glu        | Gln        | Leu<br>320 |
| Arg                              | Ser          | Met        | Met        | Pro<br>325 | Trp        | Ile        | Ser               | Ala        | <b>As</b> n<br>330 | Lys        | Ile        | Val        | Asp        | Lys<br>335 | Thr        |
| Lys                              | Asn          |            |            |            |            |            |                   |            |                    |            |            |            |            |            |            |
| <210:<br><211:<br><212:<br><213: | > 33<br>> PF | 8<br>RT .  | monas      | s men      | docina     | 1          |                   |            |                    |            |            |            |            |            |            |
| <400                             | > 46         | i          |            |            |            |            |                   |            |                    |            |            |            |            |            |            |
| Met<br>1                         | Lys          | Val        | Tyr        | Tyr<br>5   | Asp        | Lys        | Asp               | Cys        | Asp<br>10          | Leu        | Ser        | Ile        | Ile        | Gln<br>15  | Gly        |
| Lys                              | Lys          | Val        | Ala<br>20  | Ile        | Ile        | Gly        | Tyr               | Gly<br>25  | Ser                | Gln        | Gly        | His        | Ala<br>30  | Gln        | Ala        |
| Cys                              | Asn          | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40         | Asp        | Val                | Thr        | Ile        | Gly<br>45  | Leu        | Arg        | Lys        |
| Gly                              | Ser<br>50    | Ala        | Thr        | Val        | Ala        | Lys<br>55  | Ala               | Glu        | Ala                | His        | Gly<br>60  | Leu        | Lys        | Val        | Thr        |
| Asp<br>65                        | Val          | Ala        | Ser        | Ala        | Val<br>70  | Ala        | Ala               | Ala        | Asp                | Leu<br>75  | Val        | Met        | Ile        | Leu        | Thr<br>80  |
| Pro                              | Asp          | Glu        | Phe        | Gln<br>85  | Gly        | Gln        | Leu               | Tyr        | Lys<br>90          | Asn        | Glu        | Ile        | Glu        | Pro<br>95  | Asn        |
| Ile                              | Lys          | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala               | Phe<br>105 | Ser                | His        | Gly        | Phe        | Ala<br>110 | Ile        | His        |
| Tyr                              | Asn          | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120        | Asp        | Leu                | Asp        | Val        | Ile<br>125 | Met        | Ile        | Ala        |

|   | Pro                     | Lys<br>130 | Ala               | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg        | Thr        | Glu               | Phe<br>140 | Val        | Lys        | Gly                | Gly        |
|---|-------------------------|------------|-------------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|--------------------|------------|
|   | Gly<br>145              | Ile        | Pro               | Asp        | Leu        | Ile<br>150 | Ala        | Val        | Tyr        | Gln        | <b>Asp</b><br>155 | Ala        | Ser        | Gly        | Asn                | Ala<br>160 |
|   | Lys                     | Asn        | Val               | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ser        | Gly<br>170 | Val               | Gly        | Gly        | Gly        | <b>A</b> rg<br>175 | Thr        |
|   | Gly                     | Ile        | Ile               | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | Asp<br>185 | Glu        | Thr               | Glu        | Thr        | Asp<br>190 | Leu                | Phe        |
|   | Gly                     | Glu        | Gln<br>195        | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Thr        | Val               | Glu        | Leu<br>205 | Val        | Lys                | Ala        |
|   | Gly                     | Phe<br>210 | Glu               | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr        | Ala               | Pro<br>220 | Glu        | Met        | Ala                | Tyr        |
|   | Phe<br>225              | Glu        | Cys               | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile        | Val<br>235        | Asp        | Leu        | Met        | Tyr                | Glu<br>240 |
|   | Gly                     | Gly        | Ile               | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser        | Ile<br>250 | Ser               | Asn        | Asn        | Ala        | Glu<br>255         | Tyr        |
|   | Gly                     | Glu        | Tyr               | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265 | Ile        | Asn               | Ala        | Glu        | Ser<br>270 | Arg                | Gln        |
|   | Ala                     | Met        | <b>Arg</b><br>275 | Asn        | Ala        | Leu        | Lys        | Arg<br>280 | Ile        | Gln        | Asp               | Gly        | Glu<br>285 | Tyr        | Ala                | Lys        |
|   | Met                     | Phe<br>290 | Ile               | Ser        | Glu        | Gly        | Ala<br>295 | Thr        | Gly        | Tyr        | Pro               | Ser<br>300 | Met        | Thr        | Ala                | Lys        |
|   | Arg<br>305              | Arg        | Asn               | Asn        | Ala        | Ala<br>310 | His        | Gly        | Ile        | Glu        | <b>Val</b><br>315 | Ile        | Gly        | Glu        | Gln                | Leu<br>320 |
|   | Arg                     | Ala        | Met               | Met        | Pro<br>325 | Trp        | Ile        | Ala        | Ala        | Asn<br>330 | Lys               | Ile        | Val        | Asp        | Lys<br>335         | Thr        |
|   | Lys                     | Asn        |                   |            |            |            |            |            |            |            |                   |            |            |            |                    |            |
|   | <210                    |            |                   |            |            |            |            |            |            |            |                   |            |            |            |                    |            |
| 5 | <2112<br><2122<br><2132 | > PF       | RT                | cereu      | S          |            |            |            |            |            |                   |            |            |            |                    |            |

<400> 47

| Met<br>1   | Ala        | Lys        | Val        | Tyr<br>5   | Tyr        | Glu        | Lys        | Asp        | Val<br>10  | Thr        | Val        | Asn        | Val        | Leu<br>15  | Lys        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Glu        | Lys        | Lys        | Val<br>20  | Ala        | Ile        | Ile        | Gly        | Tyr<br>25  | Gly        | Ser        | Gln        | Gly        | His<br>30  | Ala        | His        |
| Ala        | Gln        | Asn<br>35  | Leu        | Arg        | Asp        | Asn        | Gly<br>40  | Phe        | Asp        | Val        | Val        | Val<br>45  | Gly        | Leu        | Arg        |
| Lys        | Gly<br>50  | Lys        | Ser        | Trp        | Asp        | Lys<br>55  | Ala        | Lys        | Glu        | Asp        | Gly<br>60  | Phe        | Ser        | Val        | Tyr        |
| Thr<br>65  | Val        | Ala        | Glu        | Ala        | Ala<br>70  | Lys        | Gln        | Ala        | Asp        | Val<br>75  | Val        | Met        | Ile        | Leu        | Leu<br>80  |
| Pro        | Asp        | Glu        | Leu        | Gln<br>85  | Pro        | Glu        | Val        | Tyr        | Glu<br>90  | Ala        | Glu        | Ile        | Ala        | Pro<br>95  | Asn        |
| Leu        | Gln        | Ala        | Gly<br>100 | Asn        | Ser        | Leu        | Val        | Phe<br>105 | Ala        | His        | Gly        | Phe        | Asn<br>110 | Val        | His        |
| Phe        | Asp        | Gln<br>115 | Val        | Lys        | Pro        | Pro        | Ala<br>120 | Asn        | Val        | Asp        | Val        | Phe<br>125 | Leu        | Val        | Ala        |
| Pro        | Lys<br>130 | Gly        | Pro        | Gly        | His        | Leu<br>135 | Val        | Arg        | Arg        | Thr        | Phe<br>140 | Ser        | Glu        | Gly        | Gly        |
| Ala<br>145 | Val        | Pro        | Ala        | Leu        | Phe<br>150 | Ala        | Val        | Tyr        | Gln        | Asp<br>155 | Ala        | Thr        | Gly        | Val        | Ala<br>160 |
| Thr        | Glu        | Lys        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Asp        | Gly<br>170 | Ile        | Gly        | Ala        | Thr        | Arg<br>175 | Ala        |
| Gly        | Val        | Leu        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | Glu<br>185 | Glu        | Thr        | Glu        | Thr        | Asp<br>190 | Leu        | Phe        |
| Gly        | Glu        | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Val        | Thr        | Ala        | Leu<br>205 | Val        | Lys        | Ala        |
| Gly        | Phe<br>210 | Glu        | Thr        | Leu        | Val        | Asp<br>215 | Ala        | Gly        | Tyr        | Gln        | Pro<br>220 | Glu        | Leu        | Ala        | Tyr        |
| Phe<br>225 | Glu        | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile        | Val<br>235 | Asp        | Leu        | Met        | Tyr        | Glu<br>240 |
| Gly        | Gly        | Leu        | Glu        | Asn<br>245 | Met        | Arg        | Tyr        | Ser        | Val<br>250 | Ser        | Asp        | Thr        | Ala        | Gln<br>255 | Trp        |

| Gly                          | Asp          | Phe        | Val<br>260 | Ser        | Gly        | Pro        | Arg        | Val<br>265 | Val               | Thr        | Glu        | Asp        | Thr<br>270 | Lys               | Lys        |
|------------------------------|--------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|
| Ala                          | Met          | Gly<br>275 | Thr        | Val        | Leu        | Ala        | Glu<br>280 | Ile        | Gln               | Asp        | Gly        | Thr<br>285 | Phe        | Ala               | Arg        |
| Gly                          | Trp<br>290   | Ile        | Ala        | Glu        | His        | Lys<br>295 | Ala        | Gly        | Arg               | Pro        | Asn<br>300 | Phe        | His        | Ala               | Thr        |
| Asn<br>305                   | Glu          | Lys        | Glu        | Asn        | Glu<br>310 | His        | Glu        | Ile        | Glu               | Val<br>315 | Val        | Gly        | Arg        | Lys               | Leu<br>320 |
| Arg                          | Glu          | Met        | Met        | Pro<br>325 | Phe        | Val        | Gln        | Pro        | <b>Arg</b><br>330 | Val        | Lys        | Val        | Gly        | <b>Met</b><br>335 | Lys        |
| <210<br><211<br><212<br><213 | > 33<br>> PF | 5          | cereu      | S          |            |            |            |            |                   |            |            |            |            |                   |            |
| <400                         | > 48         |            |            |            |            |            |            |            |                   |            |            |            |            |                   |            |
| Met<br>1                     | Lys          | Thr        | Tyr        | Tyr<br>5   | Glu        | Lys        | Asp        | Ala        | Asn<br>10         | Val        | Glu        | Leu        | Leu        | Lys<br>15         | Gly        |
| Lys                          | Thr          | Val        | Ala<br>20  | Val        | Ile        | Gly        | Tyr        | Gly<br>25  | Ser               | Gln        | Gly        | His        | Ala<br>30  | Gln               | Ala        |
| Gln                          | Asn          | Leu<br>35  | Arg        | Asp        | Ser        | Gly        | Val<br>40  | Glu        | Val               | Val        | Val        | Gly<br>45  | Val        | Arg               | Pro        |
| Gly                          | Lys<br>50    | Ser        | Phe        | Glu        | Val        | Ala<br>55  | Lys        | Thr        | Asp               | Gly        | Phe<br>60  | Glu        | Val        | Met               | Ser        |
| Val<br>65                    | Ser          | Glu        | Ala        | Val        | Arg<br>70  | Thr        | Ala        | Gln        | Val               | Val<br>75  | Gln        | Met        | Leu        | Leu               | Pro<br>80  |
| Asp                          | Glu          | Gln        | Gln        | Ala<br>85  | His        | Val        | Tyr        | Lys        | Ala<br>90         | Gly        | Val        | Glu        | Glu        | Asn<br>95         | Leu        |
| Arg                          | Glu          | Gly        | Gln<br>100 | Met        | Leu        | Leu        | Phe        | Ser<br>105 | His               | Gly        | Phe        | Asn        | Ile<br>110 | His               | Phe        |
| Gly                          | Gln          | Ile<br>115 | Asn        | Pro        | Pro        | Ser        | Tyr<br>120 | Val        | Asp               | Val        | Ala        | Met<br>125 | Val        | Ala               | Pro        |

5

Lys Ser Pro Gly His Leu Val Arg Arg Val Phe Gln Glu Gly Asn Gly 130  $\phantom{\bigg|}135\phantom{\bigg|}135\phantom{\bigg|}140\phantom{\bigg|}$ 

| Val<br>145                | Pro          | Ala        | Leu                     | Val        | Ala<br>150 | Val        | His        | Gln        | Asp        | Ala<br>155 | Thr               | Gly        | Thr        | Ala               | Leu<br>160        |
|---------------------------|--------------|------------|-------------------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|-------------------|-------------------|
| His                       | Val          | Ala        | Leu                     | Ala<br>165 | Tyr        | Ala        | Lys        | Gly        | Val<br>170 | Gly        | Cys               | Thr        | Arg        | Ala<br>175        | Gly               |
| Val                       | Ile          | Glu        | Thr<br>180              | Thr        | Phe        | Gln        | Glu        | Glu<br>185 | Thr        | Glu        | Thr               | Asp        | Leu<br>190 | Phe               | Gly               |
| Glu                       | Gln          | Thr<br>195 | Val                     | Leu        | Cys        | Gly        | Gly<br>200 | Val        | Thr        | Ala        | Leu               | Val<br>205 | Lys        | Ala               | Gly               |
| Phe                       | Glu<br>210   | Thr        | Leu                     | Thr        | Glu        | Gly<br>215 | Gly        | Tyr        | Arg        | Pro        | Glu<br>220        | Ile        | Ala        | Tyr               | Phe               |
| Glu<br>225                | Cys          | Leu        | His                     | Glu        | Leu<br>230 | Lys        | Leu        | Ile        | Val        | Asp<br>235 | Leu               | Met        | Tyr        | Glu               | Gly<br>240        |
| Gly                       | Leu          | Thr        | Asn                     | Met<br>245 | Arg        | His        | Ser        | Ile        | Ser<br>250 | Asp        | Thr               | Ala        | Glu        | Phe<br>255        | Gly               |
| Asp                       | Tyr          | Val        | Thr<br>260              | Gly        | Ser        | Arg        | Ile        | Val<br>265 | Thr        | Asp        | Glu               | Thr        | Lys<br>270 | Lys               | Glu               |
| Met                       | Lys          | Arg<br>275 | Val                     | Leu        | Thr        | Glu        | Ile<br>280 | Gln        | Gln        | Gly        | Glu               | Phe<br>285 | Ala        | Lys               | Lys               |
| Trp                       | Ile<br>290   | Leu        | Glu                     | Asn        | Gln        | Ala<br>295 | Gly        | Arg        | Pro        | Thr        | <b>Tyr</b><br>300 | Asn        | Ala        | Met               | Lys               |
| Lys<br>305                | Ala          | Glu        | Gln                     | Asn        | His<br>310 | Gln        | Leu        | Glu        | Lys        | Val<br>315 | Gly               | Ala        | Glu        | Leu               | <b>Arg</b><br>320 |
| Glu                       | Met          | Met        | Ser                     | Trp<br>325 | Ile        | Asp        | Ala        | Pro        | Lys<br>330 | Glu        | Leu               | Val        | Lys        | <b>Lys</b><br>335 |                   |
| <210><211><211><212><213> | > 22<br>> A[ | !<br>DN    | ia arti                 | ficial     |            |            |            |            |            |            |                   |            |            |                   |                   |
| <220><br><223>            |              | bador      | рВАГ                    | - 405      |            |            |            |            |            |            |                   |            |            |                   |                   |
| <220><221><222><222><223> | > ca         | 0)(11      | ística_<br>)<br>c, g, o | _          | a          |            |            |            |            |            |                   |            |            |                   |                   |
| <400>                     | > 49         | )          |                         |            |            |            |            |            |            |            |                   |            |            |                   |                   |
| gctcaa                    | agcar        | nkaa       | cctgaa                  | a gg       |            |            |            |            | 22         |            |                   |            |            |                   |                   |
| <210><br><211>            |              |            |                         |            |            |            |            |            |            |            |                   |            |            |                   |                   |

|    | <212><br><213>                   |                                                       |    |
|----|----------------------------------|-------------------------------------------------------|----|
|    | <220><br><223>                   | cebador pBAD 427                                      |    |
| 5  | <222>                            | característica_nueva<br>(12)(13)<br>n es a, c, g, o t |    |
|    | <400>                            | 50                                                    |    |
| 10 | ccttcagg                         | gtt knntgcttga gc                                     | 22 |
|    | <210><br><211><br><212><br><213> | 21                                                    |    |
| 15 | <220><br><223>                   | cebador pBAD435                                       |    |
| 20 | <222>                            | característica_nueva<br>(10)(11)<br>n es a, c, g, o t |    |
|    | <400>                            | 51                                                    |    |
|    | gtagacg                          | tgn nkgttggcct g                                      | 21 |
| 25 | <210><br><211><br><212><br><213> | 21                                                    |    |
|    | <220><br><223>                   | cebador pBAD456                                       |    |
| 30 | <220><br><221><br><222><br><223> |                                                       |    |
|    | <400>                            | 52                                                    |    |
|    | caggcca                          | aack nncacgtcta c                                     | 21 |
| 35 | <210><br><211><br><212><br><213> | 25                                                    |    |
| 40 | <220><br><223>                   | cebador pBAD484                                       |    |
|    |                                  | característica_nueva<br>(9)(10)<br>n es a, c, g, o t  |    |
| 45 |                                  | característica_nueva<br>(15)(16)<br>n es a, c, g, o t |    |
|    | <400>                            | 53                                                    |    |
| 50 | ctgaagc                          | cnn kggcnnkaaa gtgac                                  | 25 |

|    | <210><br><211><br><212><br><213> | 25                                                    |    |
|----|----------------------------------|-------------------------------------------------------|----|
| 5  | <220><br><223>                   | cebador pBAD509                                       |    |
| 10 | <222>                            | característica_nueva<br>(10)(11)<br>n es a, c, g, o t |    |
|    | <222>                            | característica_nueva<br>(16)(17)<br>n es a, c, g, o t |    |
| 15 | <400>                            | 54                                                    |    |
|    | gtcactttl                        | kn ngccknnggc ttcag                                   | 25 |
| 20 | <210><br><211><br><212><br><213> | 22                                                    |    |
|    | <220><br><223>                   | Cebador pBAD519                                       |    |
| 25 | <222>                            | característica_nueva<br>(10)(11)<br>n es a, c, g, o t |    |
|    | <400>                            | 55                                                    |    |
|    | gcagcc                           | gttn nkggtgccga ct                                    | 22 |
| 30 | <210><br><211><br><212><br><213> | 22                                                    |    |
|    | <220><br><223>                   | Cebador pBAD541                                       |    |
| 35 | <222>                            | característica_nueva<br>(12)(13)<br>n es a, c, g, o t |    |
|    | <400>                            | 56                                                    |    |
| 40 | agtcggc                          | cacc knnaacggct gc                                    | 22 |
|    | <210><br><211><br><212><br><213> | 22                                                    |    |
| 45 | <220><br><223>                   | Cebador pBAD545                                       |    |
| 50 | <222>                            | característica_nueva<br>(11)(12)<br>n es a c g o t    |    |

|    | <400>                            | 57                                                    |    |
|----|----------------------------------|-------------------------------------------------------|----|
|    | catgatco                         | etg nnkceggaeg ag                                     | 22 |
| 5  | <210><211><211><212><213>        | 22                                                    |    |
|    | <220><br><223>                   | Cebador pBAD567                                       |    |
| 10 | <222>                            | característica_nueva<br>(11)(12)<br>n es a, c, g, o t |    |
|    | <400>                            | 58                                                    |    |
|    | ctcgtccg                         | ggk nncaggatca tg                                     | 22 |
| 15 | <210><211><211><212><213>        | 23                                                    |    |
| 20 | <220><br><223>                   | Cebador pBAD608                                       |    |
|    | <222>                            | característica_nueva<br>(11)(12)<br>n es a, c, g, o t |    |
| 25 | <400>                            | 59                                                    |    |
|    | caagaa                           | gggc nnkactctgg cct                                   | 23 |
| 30 | <210><br><211><br><212><br><213> | 23                                                    |    |
|    | <220><br><223>                   | Cebador 60 pBAD631                                    |    |
| 35 | <222>                            | característica_nueva<br>(12)(13)<br>n es a, c, g, o t |    |
|    | <400>                            | 60                                                    |    |
|    | aggccag                          | gagt knngcccttc ttg                                   | 23 |
| 40 | <210><211><211><212><213>        |                                                       |    |
|    | <220><br><223>                   | Cebador pBAD663                                       |    |
| 45 |                                  | característica_nueva<br>(10)(11)<br>n es a, c, g, o t |    |
|    | <400>                            | 61                                                    |    |

|    | gttgtgc                          | ctn nkgccgacct cg                                     | 22 |
|----|----------------------------------|-------------------------------------------------------|----|
| 5  | <210><br><211><br><212><br><213> | 22                                                    |    |
|    | <220><br><223>                   | Cebador pBAD685                                       |    |
| 10 | <222>                            | característica_nueva<br>(12)(13)<br>n es a, c, g, o t |    |
|    | <400>                            | 62                                                    |    |
|    | cgaggto                          | eggc knnaggcaca ac                                    | 22 |
| 15 | <210><br><211><br><212><br><213> | 491                                                   |    |
|    | <400>                            | 63                                                    |    |

| Met<br>1   | Ala        | Asn        | Tyr        | Phe<br>5   | Asn        | Thr        | Leu        | Asn        | Leu<br>10  | Arg        | Gln        | Gln        | Leu        | Ala<br>15  | Gln        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu        | Gly        | Lys        | Cys<br>20  | Arg        | Phe        | Met        | Gly        | Arg<br>25  | Asp        | Glu        | Phe        | Ala        | Asp<br>30  | Gly        | Ala        |
| Ser        | Tyr        | Leu<br>35  | Gln        | Gly        | Lys        | Lys        | Val<br>40  | Val        | Ile        | Val        | Gly        | Cys<br>45  | Gly        | Ala        | Gln        |
| Gly        | Leu<br>50  | Asn        | Gln        | Gly        | Leu        | Asn<br>55  | Met        | Arg        | Asp        | Ser        | Gly<br>60  | Leu        | Asp        | Ile        | Ser        |
| Tyr<br>65  | Ala        | Leu        | Arg        | Lys        | Glu<br>70  | Ala        | Ile        | Ala        | Glu        | Lys<br>75  | Arg        | Ala        | Ser        | Trp        | Arg<br>80  |
| Lys        | Ala        | Thr        | Glu        | Asn<br>85  | Gly        | Phe        | Lys        | Val        | Gly<br>90  | Thr        | Tyr        | Glu        | Glu        | Leu<br>95  | Ile        |
| Pro        | Gln        | Ala        | Asp<br>100 | Leu        | Val        | Ile        | Asn        | Leu<br>105 | Thr        | Pro        | Asp        | Lys        | Gln<br>110 | His        | Ser        |
| Asp        | Val        | Val<br>115 | Arg        | Thr        | Val        | Gln        | Pro<br>120 | Leu        | Met        | Lys        | Asp        | Gly<br>125 | Ala        | Ala        | Leu        |
| Gly        | Tyr<br>130 | Ser        | His        | Gly        | Phe        | Asn<br>135 | Ile        | Val        | Glu        | Val        | Gly<br>140 | Glu        | Gln        | Ile        | Arg        |
| Lys<br>145 | Asp        | Ile        | Thr        | Val        | Val<br>150 | Met        | Val        | Ala        | Pro        | Lys<br>155 | Cys        | Pro        | Gly        | Thr        | Glu<br>160 |
| Val        | Arg        | Glu        | Glu        | Tyr<br>165 | Lys        | Arg        | Gly        | Phe        | Gly<br>170 | Val        | Pro        | Thr        | Leu        | Ile<br>175 | Ala        |
| Val        | His        | Pro        | Glu<br>180 | Asn        | Asp        | Pro        | Lys        | Gly<br>185 | Glu        | Gly        | Met        | Ala        | Ile<br>190 | Ala        | Lys        |
| Ala        | Trp        | Ala<br>195 | Ala        | Ala        | Thr        | Gly        | Gly<br>200 | His        | Arg        | Ala        | Gly        | Val<br>205 | Leu        | Glu        | Ser        |
| Ser        | Phe<br>210 | Val        | Ala        | Glu        | Val        | Lys<br>215 | Ser        | Asp        | Leu        | Met        | Gly<br>220 | Glu        | Gln        | Thr        | Ile        |
| Leu<br>225 | Cys        | Gly        | Met        | Leu        | Gln<br>230 | Ala        | Gly        | Ser        | Leu        | Leu<br>235 | Cys        | Phe        | Asp        | Lys        | Leu<br>240 |

| Val          | Glu        | Glu        | Gly        | Thr<br>245 | Asp        | Pro        | Ala        | Tyr        | Ala<br>250 | Glu               | Lys        | Leu        | Ile        | Gln<br>255 | Phe               |
|--------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|
| Gly          | Trp        | Glu        | Thr<br>260 | Ile        | Thr        | Glu        | Ala        | Leu<br>265 | Lys        | Gln               | Gly        | Gly        | Ile<br>270 | Thr        | Leu               |
| Met          | Met        | Asp<br>275 | Arg        | Leu        | Ser        | Asn        | Pro<br>280 | Ala        | Lys        | Leu               | Arg        | Ala<br>285 | Tyr        | Ala        | Leu               |
| Ser          | Glu<br>290 | Gln        | Leu        | Lys        | Glu        | Ile<br>295 | Met        | Ala        | Pro        | Leu               | Phe<br>300 | Gln        | Lys        | His        | Met               |
| Asp<br>305   | Asp        | Ile        | Ile        | Ser        | Gly<br>310 | Glu        | Phe        | Ser        | Ser        | Gly<br>315        | Met        | Met        | Ala        | Asp        | Trp<br>320        |
| Ala          | Asn        | Asp        | Asp        | Lys<br>325 | Lys        | Leu        | Leu        | Thr        | Trp<br>330 | Arg               | Glu        | Glu        | Thr        | Gly<br>335 | Lys               |
| Thr          | Ala        | Phe        | Glu<br>340 | Thr        | Ala        | Pro        | Gln        | Tyr<br>345 | Glu        | Gly               | Lys        | Ile        | Gly<br>350 | Glu        | Gln               |
| Glu          | Tyr        | Phe<br>355 | Asp        | Lys        | Gly        | Val        | Leu<br>360 | Met        | Ile        | Ala               | Met        | Val<br>365 | Lys        | Ala        | Gly               |
| Val          | Glu<br>370 | Leu        | Ala        | Phe        | Glu        | Thr<br>375 | Met        | Val        | Asp        | Ser               | Gly<br>380 | Ile        | Ile        | Glu        | Glu               |
| Ser<br>385   | Ala        | Tyr        | Tyr        | Glu        | Ser<br>390 | Leu        | His        | Glu        | Leu        | Pro<br>395        | Leu        | Ile        | Ala        | Asn        | Thr<br>400        |
| Ile          | Ala        | Arg        | Lys        | Arg<br>405 | Leu        | Tyr        | Glu        | Met        | Asn<br>410 | Val               | Val        | Ile        | Ser        | Asp<br>415 | Thr               |
| Ala          | Glu        | Tyr        | Gly<br>420 | Asn        | Tyr        | Leu        | Phe        | Ser<br>425 | Tyr        | Ala               | Cys        | Val        | Pro<br>430 | Leu        | Leu               |
| Lys          | Pro        | Phe<br>435 | Met        | Ala        | Glu        | Leu        | Gln<br>440 | Pro        | Gly        | Asp               | Leu        | Gly<br>445 | Lys        | Ala        | Ile               |
| Pro          | Glu<br>450 | Gly        | Ala        | Val        | Asp        | Asn<br>455 | Gly        | Gln        | Leu        | Arg               | Asp<br>460 | Val        | Asn        | Glu        | Ala               |
| Ile<br>465   | Arg        | Ser        | His        | Ala        | Ile<br>470 | Glu        | Gln        | Val        | Gly        | <b>Lys</b><br>475 | Lys        | Leu        | Arg        | Gly        | <b>Tyr</b><br>480 |
| Met          | Thr        | Asp        | Met        | Lys<br>485 | Arg        | Ile        | Ala        | Val        | Ala<br>490 | Gly               |            |            |            |            |                   |
| <210<br><211 |            |            |            |            |            |            |            |            |            |                   |            |            |            |            |                   |

| <212<br><213 |                   |            | proted     | bacte      | erium l    | N4-7       |            |            |            |            |            |            |            |            |            |
|--------------|-------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| <400>        | > 64              |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1     | Ala               | Asn        | Tyr        | Phe<br>5   | Asn        | Thr        | Leu        | Ser        | Leu<br>10  | Arg        | Asp        | Lys        | Leu        | Thr<br>15  | Gln        |
| Leu          | Gly               | Lys        | Cys<br>20  | Arg        | Phe        | Met        | Asp        | Arg<br>25  | Ser        | Glu        | Phe        | Thr        | Asp<br>30  | Gly        | Cys        |
| Asp          | Phe               | Ile<br>35  | Lys        | Asp        | Trp        | Asn        | Ile<br>40  | Val        | Ile        | Ile        | Gly        | Cys<br>45  | Gly        | Ala        | Gln        |
| Gly          | Leu<br>50         | Asn        | Gln        | Gly        | Leu        | Asn<br>55  | Met        | Arg        | Asp        | Ser        | Gly<br>60  | Leu        | Asn        | Ile        | Ser        |
| Tyr<br>65    | Ala               | Leu        | Arg        | Ala        | Gln<br>70  | Ala        | Ile        | Ala        | Glu        | Lys<br>75  | Arg        | Gln        | Ser        | Phe        | Val<br>80  |
| Trp          | Ala               | Ser        | Glu        | Asn<br>85  | Gly        | Phe        | Thr        | Val        | Gly<br>90  | Thr        | Ala        | Glu        | Glu        | Leu<br>95  | Val        |
| Pro          | Ala               | Ala        | Asp<br>100 | Leu        | Val        | Leu        | Asn        | Leu<br>105 | Thr        | Pro        | Asp        | Lys        | Gln<br>110 | His        | Thr        |
| Ala          | Ala               | Val<br>115 | Thr        | Ala        | Val        | Met        | Pro<br>120 | Leu        | Met        | Lys        | Gln        | Gly<br>125 | Ala        | Thr        | Leu        |
| Ala          | <b>Tyr</b><br>130 | Ser        | His        | Gly        | Phe        | Asn<br>135 | Ile        | Val        | Glu        | Glu        | Gly<br>140 | Met        | Gln        | Ile        | Arg        |
| Pro<br>145   | -                 | Leu        | Thr        |            | Val<br>150 |            | Val        | Ala        |            | Lys<br>155 | -          | Pro        | Gly        | Thr        | Glu<br>160 |
| Val          | Arg               | Glu        | Glu        | Туг<br>165 | Lys        | Arg        | Gly        | Phe        | Gly<br>170 | Val        | Pro        | Thr        | Leu        | Ile<br>175 | Ala        |
| Val          | His               | Pro        | Glu<br>180 | Asn        | Asp        | Pro        | Gln        | Gly<br>185 | Asn        | Gly        | His        | Ala        | Ile<br>190 | Ala        | Lys        |

Ala Tyr Ala Ser Ala Thr Gly Gly Asp Arg Ala Gly Val Leu Glu Ser 195 200 205

Ser Phe Ile Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220

| Leu<br>225 | Cys            | Gly            | Met        | Leu        | Gln<br>230 | Thr        | Gly        | Ala        | Val        | Leu<br>235 | Gly        | His        | Gln        | Gln        | Leu<br>240 |
|------------|----------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ile        | Asn            | Leu            | Gly        | Val<br>245 | Asp        | Ala        | Ala        | Tyr        | Ala<br>250 | Arg        | Lys        | Leu        | Ile        | Gln<br>255 | Tyr        |
| Gly        | Trp            | Glu            | Thr<br>260 | Val        | Thr        | Glu        | Gly        | Leu<br>265 | Lys        | His        | Gly        | Gly        | Ile<br>270 | Thr        | Asn        |
| Met        | Met            | <b>Asp</b> 275 | Arg        | Leu        | Ser        | Asn        | Pro<br>280 | Ala        | Lys        | Ile        | Lys        | Ala<br>285 | Phe        | Asp        | Met        |
| Ser        | Glu<br>290     | Glu            | Leu        | Lys        | Val        | Thr<br>295 | Leu        | Arg        | Pro        | Leu        | Phe<br>300 | Glu        | Lys        | His        | Met        |
| Asp<br>305 | Asp            | Ile            | Ile        | Glu        | Gly<br>310 | Glu        | Phe        | Ser        | His        | Thr<br>315 | Met        | Met        | Ile        | Asp        | Trp<br>320 |
| Ala        | Asn            | Asp            | Asp        | Ala<br>325 | Asn        | Leu        | Leu        | Lys        | Trp<br>330 | Arg        | Ala        | Glu        | Thr        | Ala<br>335 | Asp        |
| Ser        | Ser            | Phe            | Glu<br>340 | Gln        | Ala        | Ala        | Asp        | Cys<br>345 | Asp        | Ile        | Glu        | Ile        | Thr<br>350 | Glu        | Gln        |
| Glu        | Phe            | Tyr<br>355     | Asp        | Lys        | Gly        | Ile        | Туг<br>360 | Leu        | Val        | Ala        | Met        | Ile<br>365 | Lys        | Ala        | Gly        |
| Val        | Glu<br>370     | Leu            | Ala        | Phe        | Glu        | Thr<br>375 | Met        | Val        | Ala        | Ser        | Gly<br>380 | Ile        | Ile        | Glu        | Glu        |
| Ser<br>385 | Ala            | Tyr            | Tyr        | Glu        | Ser<br>390 | Leu        | His        | Glu        | Thr        | Pro<br>395 | Leu        | Ile        | Ala        | Asn        | Cys<br>400 |
| Ile        | Ala            | Arg            | Asn        | Lys<br>405 | Leu        | Tyr        | Glu        | Met        | Asn<br>410 | Val        | Val        | Ile        | Ser        | Asp<br>415 | Thr        |
| Ala        | Glu            | Tyr            | Gly<br>420 | Asn        | Tyr        | Leu        | Phe        | Thr<br>425 | His        | Ala        | Ala        | Val        | Pro<br>430 | Leu        | Leu        |
| Gln        | Ala            | His<br>435     | Ala        | Ser        | Ser        | Leu        | Thr<br>440 | Leu        | Glu        | Glu        | Leu        | Gly<br>445 | Gly        | Gly        | Leu        |
| Ala        | <b>Asp</b> 450 | Ser            | Ser        | Asn        | Ala        | Val<br>455 | Asp        | Asn        | Leu        | Arg        | Leu<br>460 | Ile        | Glu        | Val        | Asn        |
| 465        |                |                |            | _          | 470        | _          |            |            |            | 475        | _          | His        | Glu        | Leu        | Arg<br>480 |
| СΤΆ        | туr            | меt            | Thr        | 485        | met        | ьys        | Arg        | тте        | Val<br>490 | GLU        | ALA        | GТĀ        |            |            |            |

<210> 65

| <2112<br><2122<br><2132 | > PF       |            | omon       | as ace     | etoxida    | ans        |            |            |            |            |            |            |            |            |            |
|-------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| <400>                   | > 65       | ;          |            |            |            |            |            |            |            |            |            |            |            |            |            |
| Met<br>1                | Gly        | Gln        | Asn        | Tyr<br>5   | Phe        | Asn        | Thr        | Leu        | Ser<br>10  | Met        | Arg        | Glu        | Lys        | Leu<br>15  | Asp        |
| Glu                     | Leu        | Gly        | Thr<br>20  | Cys        | Arg        | Phe        | Met        | Asp<br>25  | Ala        | Ser        | Glu        | Phe        | Ala<br>30  | Gly        | Gly        |
| Cys                     | Glu        | Tyr<br>35  | Ala        | Lys        | Gly        | Lys        | Lys<br>40  | Ile        | Val        | Ile        | Val        | Gly<br>45  | Cys        | Gly        | Ala        |
| Gln                     | Gly<br>50  | Leu        | Asn        | Gln        | Gly        | Leu<br>55  | Asn        | Met        | Arg        | Asp        | Ser<br>60  | Gly        | Leu        | Asp        | Val        |
| Ser<br>65               | Tyr        | Thr        | Leu        | Arg        | Lys<br>70  | Glu        | Ala        | Ile        | Ala        | Glu<br>75  | Lys        | Arg        | Gln        | Ser        | Tyr<br>80  |
| Ile                     | Asn        | Ala        | Thr        | Glu<br>85  | Asn        | Gly        | Phe        | Thr        | Val<br>90  | Gly        | Ser        | Tyr        | Glu        | Glu<br>95  | Leu        |
| Leu                     | Pro        | Thr        | Ala<br>100 | Asp        | Ile        | Val        | Met        | Asn<br>105 | Leu        | Ala        | Pro        | Asp        | Lys<br>110 | Gln        | His        |
| Thr                     | Asp        | Val<br>115 | Val        | Asn        | Thr        | Val        | Val<br>120 | Pro        | Leu        | Met        | Lys        | Gln<br>125 | Gly        | Ala        | Thr        |
| Phe                     | Ser<br>130 | Tyr        | Ala        | His        | Gly        | Phe<br>135 | Asn        | Ile        | Val        | Glu        | Glu<br>140 | Gly        | Thr        | Ile        | Ile        |
| Arg<br>145              | Lys        | Asp        | Leu        | Thr        | Val<br>150 | Ile        | Met        | Val        | Ala        | Pro<br>155 | Lys        | Cys        | Pro        | Gly        | Ser<br>160 |
| Glu                     | Val        | Arg        | Ala        | Glu<br>165 | Tyr        | Gln        | Arg        | Gly        | Phe<br>170 | Gly        | Val        | Pro        | Thr        | Leu<br>175 | Ile        |
| Ala                     | Val        | His        | Lys<br>180 | Glu        | Asn        | Asp        | Pro        | Asn<br>185 | Gly        | Asp        | Gly        | Leu        | Glu<br>190 | Leu        | Ala        |
| Lys                     | Ala        | Leu<br>195 | Cys        | Ser        | Ala        | Gln        | Gly<br>200 | Gly        | Asp        | Arg        | Ala        | Gly<br>205 | Val        | Leu        | Glu        |

| Ser        | Ser<br>210 | Phe        | Val        | Ala        | Glu        | Val<br>215 | Lys               | Ser        | Asp               | Leu        | Met<br>220        | Gly        | Glu        | Gln        | Thr            |
|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|------------|------------|----------------|
| Ile<br>225 | Leu        | Cys        | Gly        | Met        | Leu<br>230 | Gln        | Ala               | Gly        | Ala               | Leu<br>235 | Leu               | Cys        | Phe        | Asp        | Lys<br>240     |
| Met        | Val        | Glu        | Asn        | Gly<br>245 | Ile        | Glu        | Ala               | Pro        | <b>Tyr</b><br>250 | Ala        | Val               | Lys        | Leu        | Ile<br>255 | Gln            |
| Tyr        | Gly        | Trp        | Glu<br>260 | Thr        | Ile        | Thr        | Glu               | Ala<br>265 | Leu               | Lys        | His               | Gly        | Gly<br>270 | Ile        | Thr            |
| Asn        | Met        | Met<br>275 | Asp        | Arg        | Leu        | Ser        | Asn<br>280        | Pro        | Ala               | Lys        | Leu               | Glu<br>285 | Ala        | Tyr        | Glu            |
| Leu        | Ala<br>290 | Glu        | Glu        | Leu        | Lys        | Glu<br>295 | Ile               | Met        | Arg               | Pro        | <b>Leu</b><br>300 | Phe        | Arg        | Lys        | His            |
| Met<br>305 | Asp        | Asp        | Ile        | Ile        | Thr<br>310 | Gly        | Val               | Phe        | Ser               | Ser<br>315 | Thr               | Met        | Met        | Glu        | <b>Asp</b> 320 |
| Trp        | Ala        | Asn        | Asp        | Asp<br>325 | Ile        | Asn        | Leu               | Leu        | Thr<br>330        | Trp        | Arg               | Glu        | Gln        | Thr<br>335 | Gly            |
| Gln        | Thr        | Ala        | Phe<br>340 | Glu        | Lys        | Thr        | Glu               | Ala<br>345 | Ala               | Gly        | Glu               | Ile        | Ser<br>350 | Glu        | Gln            |
| Glu        | Tyr        | Phe<br>355 | Asp        | Lys        | Ala        | Ile        | <b>Leu</b><br>360 | Met        | Val               | Ala        | Met               | Val<br>365 | Lys        | Ala        | Gly            |
| Val        | Glu<br>370 | Leu        | Ala        | Phe        | Glu        | Ser<br>375 | Met               | Val        | Glu               | Val        | Gly<br>380        | Ile        | Glu        | Pro        | Glu            |
| Ser<br>385 | Ala        | Tyr        | Tyr        | Glu        | Ser<br>390 | Leu        | His               | Glu        | Thr               | Pro<br>395 | Leu               | Ile        | Ala        | Asn        | Thr<br>400     |
| Ile        | Ala        | Arg        | Lys        | Lys<br>405 | Leu        | Tyr        | Glu               | Met        | Asn<br>410        | Arg        | Val               | Ile        | Ser        | Asp<br>415 | Thr            |
| Ala        | Glu        | Tyr        | Gly<br>420 | Cys        | Tyr        | Leu        | Phe               | Ala<br>425 | His               | Ala        | Cys               | Val        | Pro<br>430 | Leu        | Leu            |
| Lys        | Asp        | Phe<br>435 | Met        | Ala        | Ser        | Val        | Thr<br>440        | Thr        | Glu               | Val        | Ile               | Gly<br>445 | Lys        | Gly        | Leu            |
| Asp        | Asn        | Val        | Asp        | Thr        | Ser        | Val        | Asp               | Asn        | Ser               | Thr        | Leu               | Val        | Arg        | Val        | Asn            |

| Ala<br>465                       | Asp            | Ile        | Arg        | Ser        | His<br>470 | Tyr        | Ile        | Glu        |            | Ile (<br>475 | ∃ly G      | 3lu G      | lu L       |            | rg<br>80   |
|----------------------------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|
| Asp                              | Ala            | Met        | Gln        | Gly<br>485 | Met        | Lys        | Ala        | Ile        | Val<br>490 |              |            |            |            |            |            |
| <2102<br><2112<br><2122<br><2132 | > 58<br>> PF   | 1<br>RT    | ativun     | n          |            |            |            |            |            |              |            |            |            |            |            |
| <400                             | > 66           |            |            |            |            |            |            |            |            |              |            |            |            |            |            |
| Met<br>1                         | Ala            | Ala        | Val        | Thr<br>5   | Ser        | Ser        | Cys        | Ser        | Thr<br>10  | Ala          | Ile        | Ser        | Ala        | Ser<br>15  | Ser        |
| Lys                              | Thr            | Leu        | Ala<br>20  | Lys        | Pro        | Val        | Ala        | Ala<br>25  | Ser        | Phe          | Ala        | Pro        | Thr<br>30  | Asn        | Leu        |
| Ser                              | Phe            | Ser<br>35  | Lys        | Leu        | Ser        | Pro        | Gln<br>40  | Ser        | Ile        | Arg          | Ala        | Arg<br>45  | Arg        | Ser        | Ile        |
| Thr                              | Val<br>50      | Gly        | Ser        | Ala        | Leu        | Gly<br>55  | Ala        | Thr        | Lys        | Val          | Ser<br>60  | Ala        | Pro        | Pro        | Ala        |
| Thr<br>65                        | His            | Pro        | Val        | Ser        | Leu<br>70  | Asp        | Phe        | Glu        | Thr        | Ser<br>75    | Val        | Phe        | Lys        | Lys        | Glu<br>80  |
| Arg                              | Val            | Asn        | Leu        | Ala<br>85  | Gly        | His        | Glu        | Glu        | Tyr<br>90  | Ile          | Val        | Arg        | Gly        | Gly<br>95  | Arg        |
| Asp                              | Leu            | Phe        | His<br>100 | Leu        | Leu        | Pro        | Asp        | Ala<br>105 |            | Lys          | Gly        | Ile        | Lys<br>110 | Gln        | Ile        |
| Gly                              | Val            | Ile<br>115 | Gly        | Trp        | Gly        | Ser        | Gln<br>120 | Gly        | Pro        | Ala          | Gln        | Ala<br>125 | Gln        | Asn        | Leu        |
| Arg                              | <b>Asp</b> 130 | Ser        | Leu        | Val        | Glu        | Ala<br>135 |            | Ser        | Asp        | Ile          | Val<br>140 | Val        | Lys        | Val        | Gly        |
| Leu<br>145                       | Arg            | Lys        | Gly        | Ser        | Ser<br>150 | Ser        | Phe        | Asn        | Glu        | Ala<br>155   | Arg        | Glu        | Ala        | Gly        | Phe<br>160 |
| Ser                              | Glu            | Glu        | Lys        | Gly<br>165 | Thr        | Leu        | Gly        | Asp        | Ile<br>170 | _            | Glu        | Thr        | Ile        | Ser<br>175 | Gly        |
| Ser                              | Asp            | Leu        | Val        | Leu        | Leu        | Leu        | Ile        | Ser        | Asp        | Ser          | Ala        | Gln        | Ala        | Asp        | Asn        |

|            |                   |                   | 180        |                    |            |                   |            | 185        |            |                   |                   |            | 190        |                    |            |
|------------|-------------------|-------------------|------------|--------------------|------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|--------------------|------------|
| Tyr        | Glu               | <b>Lys</b><br>195 | Ile        | Phe                | Ser        | His               | Leu<br>200 | Lys        | Pro        | Asn               | Ser               | Ile<br>205 | Leu        | Gly                | Leu        |
| Ser        | His<br>210        | Gly               | Phe        | Leu                | Leu        | Gly<br>215        | His        | Leu        | Gln        | Ser               | Ile<br>220        | Gly        | Leu        | Asp                | Phe        |
| Pro<br>225 | Lys               | Asn               | Phe        | Ser                | Val<br>230 | Ile               | Ala        | Val        | Cys        | Pro<br>235        | Lys               | Gly        | Met        | Gly                | Pro<br>240 |
| Ser        | Val               | Arg               | Arg        | Leu<br>245         | Tyr        | Val               | Gln        | Gly        | Lys<br>250 | Glu               | Ile               | Asn        | Gly        | Ala<br>255         | Gly        |
| Ile        | Asn               | Ser               | Ser<br>260 | Phe                | Gly        | Val               | His        | Gln<br>265 | Asp        | Val               | Asp               | Gly        | Arg<br>270 | Ala                | Thr        |
| Asn        | Val               | Ala<br>275        | Leu        | Gly                | Trp        | Ser               | Val<br>280 | Ala        | Leu        | Gly               | Ser               | Pro<br>285 | Phe        | Thr                | Phe        |
| Ala        | Thr<br>290        | Thr               | Leu        | Glu                | Gln        | Glu<br>295        | Tyr        | Lys        | Ser        | Asp               | Ile<br>300        | Phe        | Gly        | Glu                | Arg        |
| Gly<br>305 | Ile               | Leu               | Leu        | Gly                | Ala<br>310 | Val               | His        | Gly        | Ile        | <b>Val</b><br>315 | Glu               | Ser        | Leu        | Phe                | Arg<br>320 |
| Arg        | Tyr               | Thr               | Glu        | <b>As</b> n<br>325 | Gly        | Met               | Ser        | Glu        | Asp<br>330 | Leu               | Ala               | Tyr        | Lys        | <b>As</b> n<br>335 | Thr        |
| Val        | Glu               | Ser               | Ile<br>340 | Thr                | Gly        | Val               | Ile        | Ser<br>345 | Lys        | Thr               | Ile               | Ser        | Thr<br>350 | Gln                | Gly        |
| Met        | Leu               | <b>Ala</b><br>355 | Val        | Tyr                | Asn        | Ala               | Leu<br>360 | Ser        | Glu        | Asp               | Gly               | Lys<br>365 | Lys        | Glu                | Phe        |
| Glu        | <b>Lys</b><br>370 | Ala               | Tyr        | Ser                | Ala        | <b>Ser</b><br>375 | Phe        | Tyr        | Pro        | Cys               | <b>Met</b><br>380 | Glu        | Ile        | Leu                | Tyr        |
| Glu<br>385 | Cys               | Tyr               | Glu        | Asp                | Val<br>390 | Ala               | Ser        | Gly        | Ser        | Glu<br>395        | Ile               | Arg        | Ser        | Val                | Val<br>400 |
| Leu        | Ala               | Gly               | Arg        | Arg<br>405         | Phe        | Tyr               | Glu        | Lys        | Glu<br>410 | Gly               | Leu               | Pro        | Ala        | Phe<br>415         | Pro        |
| Met        | Gly               | Lys               | Ile<br>420 | Asp                | Gln        | Thr               | Arg        | Met<br>425 | Trp        | Lys               | Val               | Gly        | Glu<br>430 | Arg                | Val        |

| Arg                              | Ser            | Thr<br>435        | Arg        | Pro        | Ala        | Gly                | Asp<br>440 | Leu               | Gly            | Pro               | Leu        | Tyr<br>445 | Pro        | Phe        | Thr        |
|----------------------------------|----------------|-------------------|------------|------------|------------|--------------------|------------|-------------------|----------------|-------------------|------------|------------|------------|------------|------------|
| Ala                              | Gly<br>450     | Val               | Phe        | Val        | Ala        | Met<br>455         | Met        | Met               | Ala            | Gln               | Ile<br>460 | Glu        | Val        | Leu        | Arg        |
| Lys<br>465                       | Lys            | Gly               | His        | Ser        | Tyr<br>470 | Ser                | Glu        | Ile               | Ile            | Asn<br>475        | Glu        | Ser        | Val        | Ile        | Glu<br>480 |
| Ser                              | Val            | Asp               | Ser        | Leu<br>485 | Asn        | Pro                | Phe        | Met               | His<br>490     | Ala               | Arg        | Gly        | Val        | Ser<br>495 | Phe        |
| Met                              | Val            | Asp               | Asn<br>500 | Cys        | Ser        | Thr                | Thr        | <b>Ala</b><br>505 | Arg            | Leu               | Gly        | Ser        | Arg<br>510 | Lys        | Trp        |
| Ala                              | Pro            | <b>Arg</b><br>515 | Phe        | Asp        | Tyr        | Ile                | Leu<br>520 | Thr               | Gln            | Gln               | Ala        | Leu<br>525 | Val        | Ala        | Val        |
| Asp                              | <b>Ser</b> 530 | Gly               | Ala        | Pro        | Ile        | <b>As</b> n<br>535 | Gln        | Asp               | Leu            | Ile               | Ser<br>540 | Asn        | Phe        | Val        | Ser        |
| <b>Asp</b> 545                   | Pro            | Val               | His        | Gly        | Ala<br>550 | Ile                | Gln        | Val               | Cys            | <b>Ala</b><br>555 | Glu        | Leu        | Arg        | Pro        | Thr<br>560 |
| Leu                              | Asp            | Ile               | Ser        | Val<br>565 | Pro        | Ala                | Ala        | Ala               | <b>Asp</b> 570 | Phe               | Val        | Arg        | Pro        | Glu<br>575 | Leu        |
| Arg                              | Gln            | Cys               | Ser<br>580 | Asn        |            |                    |            |                   |                |                   |            |            |            |            |            |
| <2102<br><2112<br><2122<br><2132 | > 33<br>> PF   | 8<br>RT           | cia arti   | ficial     |            |                    |            |                   |                |                   |            |            |            |            |            |
| <220<br><223                     |                | ıtante            | KARI       | 3361       | G8         |                    |            |                   |                |                   |            |            |            |            |            |
| <400                             |                |                   |            |            | 00         |                    |            |                   |                |                   |            |            |            |            |            |
| Met<br>1                         | Lys            | Val               | Phe        | Tyr<br>5   | Asp        | Lys                | Asp        | Cys               | Asp<br>10      | Leu               | Ser        | Ile        | Ile        | Gln<br>15  | Gly        |
| Lys                              | Lys            | Val               | Ala<br>20  | Ile        | Ile        | Gly                | Tyr        | Gly<br>25         | Ser            | Gln               | Gly        | His        | Ala<br>30  | Gln        | Ala        |
| Leu                              | Asn            | Leu<br>35         | Lys        | Asp        | Ser        | Gly                | Val<br>40  | Asp               | Val            | Thr               | Val        | Gly<br>45  | Leu        | Tyr        | Lys        |
| Gly                              | Ala            | Ala               | Asp        | Ala        | Ala        | Lys                | Ala        | Glu               | Ala            | His               | Gly        | Phe        | Lys        | Val        | Thr        |

| Asp<br>65  | Val        | Ala               | Ala        | Ala                | Val<br>70  | Ala        | Gly        | Ala            | Asp        | Leu<br>75         | Val        | Met        | Ile                | Leu                | I16<br>80  |
|------------|------------|-------------------|------------|--------------------|------------|------------|------------|----------------|------------|-------------------|------------|------------|--------------------|--------------------|------------|
| Pro        | Asp        | Glu               | Phe        | Gln<br>85          | Ser        | Gln        | Leu        | Tyr            | Lys<br>90  | Asn               | Glu        | Ile        | Glu                | Pro<br>95          | Ası        |
| Ile        | Lys        | Lys               | Gly<br>100 | Ala                | Thr        | Leu        | Ala        | Phe<br>105     | Ser        | His               | Gly        | Phe        | <b>A</b> la<br>110 | Ile                | His        |
| Tyr        | Asn        | Gln<br>115        | Val        | Val                | Pro        | Arg        | Ala<br>120 | Asp            | Leu        | Asp               | Val        | Ile<br>125 | Met                | Ile                | Ala        |
| Pro        | Lys<br>130 | Ala               | Pro        | Gly                | His        | Thr<br>135 | Val        | Arg            | Ser        | Glu               | Phe<br>140 | Val        | Lys                | Gly                | Gl         |
| Gly<br>145 | Ile        | Pro               | Asp        | Leu                | Ile<br>150 | Ala        | Ile        | Tyr            | Gln        | <b>Asp</b><br>155 | Ala        | Ser        | Gly                | Asn                | Ala<br>160 |
| Lys        | Asn        | Val               | Ala        | Leu<br>165         | Ser        | Tyr        | Ala        | Ala            | Gly<br>170 | Val               | Gly        | Gly        | Gly                | <b>A</b> rg<br>175 | Th         |
| Gly        | Ile        | Ile               | Glu<br>180 | Thr                | Thr        | Phe        | Lys        | <b>Asp</b> 185 | Glu        | Thr               | Glu        | Thr        | Asp<br>190         | Leu                | Phe        |
| Gly        | Glu        | Gln<br>195        | Ala        | Val                | Leu        | Cys        | Gly<br>200 | Gly            | Thr        | Val               | Glu        | Leu<br>205 | Val                | Lys                | Ala        |
| Gly        | Phe<br>210 | Glu               | Thr        | Leu                | Val        | Glu<br>215 | Ala        | Gly            | Tyr        | Ala               | Pro<br>220 | Glu        | Met                | Ala                | Ту         |
| Phe<br>225 | Glu        | Cys               | Leu        | His                | Glu<br>230 | Leu        | Lys        | Leu            | Ile        | Val<br>235        | Asp        | Leu        | Met                | Tyr                | Gl:<br>24  |
| Gly        | Gly        | Ile               | Ala        | <b>As</b> n<br>245 | Met        | Asn        | Tyr        | Ser            | Ile<br>250 | Ser               | Asn        | Asn        | Ala                | Glu<br>255         | ТУ         |
| Gly        | Glu        | Tyr               | Val<br>260 | Thr                | Gly        | Pro        | Glu        | Val<br>265     | Ile        | Asn               | Ala        | Glu        | Ser<br>270         | Arg                | Glı        |
| Ala        | Met        | <b>Arg</b><br>275 | Asn        | Ala                | Leu        | Lys        | Arg<br>280 | Ile            | Gln        | Asp               | Gly        | Glu<br>285 | Tyr                | Ala                | Ly         |
| Met        | Phe<br>290 | Ile               | Ser        | Glu                | Gly        | Ala<br>295 | Thr        | Gly            | Tyr        | Pro               | Ser<br>300 | Met        | Thr                | Ala                | Ly         |
|            |            |                   |            |                    |            |            |            |                |            |                   |            |            |                    |                    |            |

Arg Arg Asn Asn Ala Ala His Gly Ile Glu Ile Ile Gly Glu Gln Leu 305 310 Arg Ser Met Met Pro Trp Ile Gly Ala Asn Lys Ile Val Asp Lys Ala Lys Asn <210> 68 <211> 338 <212> PRT <213> secuencia artificial <220> <223> mutante KARI 2H10 Met Lys Val Phe Tyr Asp Lys Asp Cys Asp Leu Ser Ile Ile Gln Gly 10 Lys Lys Val Ala Ile Ile Gly Phe Gly Ser Gln Gly His Ala Gln Ala Leu Asn Leu Lys Asp Ser Gly Val Asp Val Thr Val Gly Leu Tyr Lys Gly Ala Ala Asp Ile Ala Lys Ala Glu Ala His Gly Phe Lys Val Thr 55 Asp Val Ala Ala Ala Val Ala Gly Ala Asp Leu Val Met Ile Leu Ile Pro Asp Glu Phe Gln Ser Gln Leu Tyr Lys Asn Glu Ile Glu Pro Asn 90 Ile Lys Lys Gly Ala Thr Leu Ala Phe Ser His Gly Phe Ala Ile His Tyr Asn Gln Val Val Pro Arg Ala Asp Leu Asp Val Ile Met Ile Ala 115 120 125 Pro Lys Ala Pro Gly His Thr Val Arg Ser Glu Phe Val Lys Gly Gly 130 Gly Ile Pro Asp Leu Ile Ala Ile Tyr Gln Asp Val Ser Gly Asn Ala 145 150 155

Lys Asn Val Ala Leu Ser Tyr Ala Ala Gly Val Gly Gly Arg Thr

|                           |              |                   |            | 165        |            |            |            |            | 170            |            |            |            |            | 175               |            |
|---------------------------|--------------|-------------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|-------------------|------------|
| Gly                       | Ile          | Ile               | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | Asp<br>185 | Glu            | Thr        | Glu        | Thr        | Asp<br>190 | Leu               | Phe        |
| Gly                       | Glu          | Gln<br>195        | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly        | Thr            | Val        | Glu        | Leu<br>205 | Val        | Lys               | Ala        |
| Gly                       | Phe<br>210   | Glu               | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly        | Tyr            | Ala        | Pro<br>220 | Glu        | Met        | Ala               | Tyr        |
| Phe<br>225                | Glu          | Cys               | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu        | Ile            | Val<br>235 | Asp        | Leu        | Met        | Tyr               | Glu<br>240 |
| Gly                       | Gly          | Ile               | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser        | Ile<br>250     | Ser        | Asn        | Asn        | Ala        | Glu<br>255        | _          |
| Gly                       | Glu          | Tyr               | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265 | Ile            | Asn        | Ala        | Glu        | Ser<br>270 | Arg               | Gln        |
| Ala                       | Met          | <b>Arg</b><br>275 | Asn        | Ala        | Leu        | Lys        | Arg<br>280 | Ile        | Gln            | Asp        | Gly        | Glu<br>285 | Tyr        | Ala               | Lys        |
| Met                       | Phe<br>290   | Ile               | Ser        | Glu        | Gly        | Ala<br>295 | Thr        | Gly        | Tyr            | Pro        | Ser<br>300 | Met        | Thr        | Ala               | Lys        |
| Arg<br>305                | Arg          | Asn               | Asn        | Ala        | Ala<br>310 | His        | Gly        | Ile        | Glu            | Ile<br>315 | Ile        | Gly        | Glu        | Gln               | Leu<br>320 |
| Arg                       | Ser          | Met               | Met        | Pro<br>325 | Trp        | Ile        | Gly        | Ala        | <b>Asn</b> 330 | Lys        | Ile        | Val        | Asp        | <b>Lys</b><br>335 | Ala        |
| Lys                       | Asn          |                   |            |            |            |            |            |            |                |            |            |            |            |                   |            |
| <210><211><211><212><213> | > 33<br>> PF | 8<br>RT           | ia arti    | ficial     |            |            |            |            |                |            |            |            |            |                   |            |
| <220><br><223>            |              | utante            | KARI       | 1D2        |            |            |            |            |                |            |            |            |            |                   |            |
| <400>                     | > 69         |                   |            |            |            |            |            |            |                |            |            |            |            |                   |            |
| Met<br>1                  | Lys          | Val               | Phe        | Tyr<br>5   | Asp        | Lys        | Asp        | Cys        | Asp<br>10      | Leu        | Ser        | Ile        | Ile        | Gln<br>15         | Gly        |
| Lys                       | Lys          | Val               | Ala<br>20  | Ile        | Ile        | Gly        | Phe        | Gly<br>25  | Ser            | Gln        | Gly        | His        | Ala<br>30  | Gln               | Ala        |

| Cys        | Asn               | Leu<br>35  | Lys        | Asp        | Ser        | Gly        | Val<br>40  | Asp               | Val        | Thr               | Val        | Gly<br>45         | Leu        | Tyr               | Lys        |
|------------|-------------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|
| Gly        | Ala<br>50         | Ala        | Asp        | Ala        | Ala        | Lys<br>55  | Ala        | Glu               | Ala        | His               | Gly<br>60  | Phe               | Lys        | Val               | Thr        |
| Asp<br>65  | Val               | Ala        | Ala        | Ala        | Val<br>70  | Ala        | Gly        | Ala               | Asp        | Leu<br>75         | Val        | Met               | Ile        | Leu               | Ile<br>80  |
| Pro        | Asp               | Glu        | Phe        | Gln<br>85  | Ser        | Gln        | Leu        | Tyr               | Lys<br>90  | Asn               | Glu        | Ile               | Glu        | Pro<br>95         | Asn        |
| Ile        | Lys               | Lys        | Gly<br>100 | Ala        | Thr        | Leu        | Ala        | Phe<br>105        | Ser        | His               | Gly        | Phe               | Ala<br>110 | Ile               | His        |
| Tyr        | Asn               | Gln<br>115 | Val        | Val        | Pro        | Arg        | Ala<br>120 | Asp               | Leu        | Asp               | Val        | Ile<br>125        | Met        | Ile               | Ala        |
| Pro        | <b>Lys</b><br>130 | Ala        | Pro        | Gly        | His        | Thr<br>135 | Val        | Arg               | Ser        | Glu               | Phe<br>140 | Val               | Lys        | Gly               | Gly        |
| Gly<br>145 | Ile               | Pro        | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr               | Gln        | <b>Asp</b><br>155 | Val        | Ser               | Gly        | Asn               | Ala<br>160 |
| Lys        | Asn               | Val        | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ala               | Gly<br>170 | Val               | Gly        | Gly               | Gly        | <b>Arg</b><br>175 | Thr        |
| Gly        | Ile               | Ile        | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu        | Thr               | Glu        | Thr               | Asp<br>190 | Leu               | Phe        |
| Gly        | Glu               | Gln<br>195 | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly               | Thr        | Val               | Glu        | <b>Leu</b><br>205 | Val        | Lys               | Ala        |
| Gly        | Phe<br>210        | Glu        | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly               | Tyr        | Ala               | Pro<br>220 | Glu               | Met        | Ala               | Tyr        |
| Phe<br>225 | Glu               | Cys        | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu               | Ile        | Val<br>235        | Asp        | Leu               | Met        | Tyr               | Glu<br>240 |
| Gly        | Gly               | Ile        | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser               | Ile<br>250 | Ser               | Asn        | Asn               | Ala        | Glu<br>255        | Tyr        |
| Gly        | Glu               | Tyr        | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265        | Ile        | Asn               | Ala        | Glu               | Ser<br>270 | Arg               | Gln        |
| Ala        | Met               | Arg        | Asn        | Ala        | Leu        | Lys        | Arg        | Ile               | Gln        | Asp               | Gly        | Glu               | Tyr        | Ala               | Lys        |

|                                                         |            | 275        |            |            |                    |            | 280        |            |                    |            |            | 285        |            |            |            |
|---------------------------------------------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|
| Met                                                     | Phe<br>290 | Ile        | Ser        | Glu        | Gly                | Ala<br>295 | Thr        | Gly        | Tyr                | Pro        | Ser<br>300 | Met        | Thr        | Ala        | Lys        |
| <b>A</b> rg<br>305                                      | Arg        | Asn        | Asn        | Ala        | <b>A</b> la<br>310 | His        | Gly        | Ile        | Glu                | Ile<br>315 | Ile        | Gly        | Glu        | Gln        | Leu<br>320 |
| Arg                                                     | Ser        | Met        | Met        | Pro<br>325 | Trp                | Ile        | Gly        | Ala        | <b>A</b> sn<br>330 | Lys        | Ile        | Val        | Asp        | Lys<br>335 | Ala        |
| Lys                                                     | Asn        |            |            |            |                    |            |            |            |                    |            |            |            |            |            |            |
| <210> 70 <211> 338 <212> PRT <213> secuencia artificial |            |            |            |            |                    |            |            |            |                    |            |            |            |            |            |            |
| <220><br><223>                                          |            | utante     | KARI       | 3F12       |                    |            |            |            |                    |            |            |            |            |            |            |
| <400>                                                   |            |            |            |            |                    |            |            |            |                    |            |            |            |            |            |            |
| Met<br>1                                                | Lys        | Val        | Phe        | Tyr<br>5   | Asp                | Lys        | Asp        | Cys        | Asp<br>10          | Leu        | Ser        | Ile        | Ile        | Gln<br>15  | Gly        |
| Lys                                                     | Lys        | Val        | Ala<br>20  | Ile        | Ile                | Gly        | Phe        | Gly<br>25  | Ser                | Gln        | Gly        | His        | Ala<br>30  | Gln        | Ala        |
| Leu                                                     | Asn        | Leu<br>35  | Lys        | Asp        | Ser                | Gly        | Val<br>40  | Asp        | Val                | Thr        | Val        | Gly<br>45  | Leu        | Tyr        | Lys        |
| Gly                                                     | Ala<br>50  | Ala        | Asp        | Ala        | Ala                | Lys<br>55  | Ala        | Glu        | Ala                | His        | Gly<br>60  | Phe        | Lys        | Val        | Thr        |
| Asp<br>65                                               | Val        | Ala        | Ala        | Ala        | Val<br>70          | Ala        | Gly        | Ala        | Asp                | Leu<br>75  | Val        | Met        | Ile        | Leu        | Ile<br>80  |
| Pro                                                     | Asp        | Glu        | Phe        | Gln<br>85  | Ser                | Gln        | Leu        | Tyr        | Lys<br>90          | Asn        | Glu        | Ile        | Glu        | Pro<br>95  | Asn        |
| Ile                                                     | Lys        | Lys        | Gly<br>100 | Ala        | Thr                | Leu        | Ala        | Phe<br>105 | Ser                | His        | Gly        | Phe        | Ala<br>110 | Ile        | His        |
| Tyr                                                     | Asn        | Gln<br>115 | Val        | Val        | Pro                | Arg        | Ala<br>120 | Asp        | Leu                | Asp        | Val        | Ile<br>125 | Met        | Ile        | Ala        |
| Pro                                                     | Lys<br>130 | Ala        | Pro        | Gly        | His                | Thr<br>135 | Val        | Arg        | Ser                | Glu        | Phe<br>140 | Val        | Lys        | Gly        | Gly        |

| Gly<br>145 | Ile        | Pro               | Asp        | Leu        | Ile<br>150 | Ala        | Ile        | Tyr               | Gln            | <b>Asp</b><br>155 | Val        | Ser        | Gly        | Asn        | Ala<br>160 |
|------------|------------|-------------------|------------|------------|------------|------------|------------|-------------------|----------------|-------------------|------------|------------|------------|------------|------------|
| Lys        | Asn        | Val               | Ala        | Leu<br>165 | Ser        | Tyr        | Ala        | Ala               | Gly<br>170     | Val               | Gly        | Gly        | Gly        | Arg<br>175 | Thr        |
| Gly        | Ile        | Ile               | Glu<br>180 | Thr        | Thr        | Phe        | Lys        | <b>Asp</b><br>185 | Glu            | Thr               | Glu        | Thr        | Asp<br>190 | Leu        | Phe        |
| Gly        | Glu        | Gln<br>195        | Ala        | Val        | Leu        | Cys        | Gly<br>200 | Gly               | Thr            | Val               | Glu        | Leu<br>205 | Val        | Lys        | Ala        |
| Gly        | Phe<br>210 | Glu               | Thr        | Leu        | Val        | Glu<br>215 | Ala        | Gly               | Tyr            | Ala               | Pro<br>220 | Glu        | Met        | Ala        | Tyr        |
| Phe<br>225 | Glu        | Cys               | Leu        | His        | Glu<br>230 | Leu        | Lys        | Leu               | Ile            | Val<br>235        | Asp        | Leu        | Met        | Tyr        | Glu<br>240 |
| Gly        | Gly        | Ile               | Ala        | Asn<br>245 | Met        | Asn        | Tyr        | Ser               | 11e<br>250     | Ser               | Asn        | Asn        | Ala        | Glu<br>255 | Tyr        |
| Gly        | Glu        | Tyr               | Val<br>260 | Thr        | Gly        | Pro        | Glu        | Val<br>265        | Ile            | Asn               | Ala        | Glu        | Ser<br>270 | Arg        | Gln        |
| Ala        | Met        | <b>Arg</b><br>275 | Asn        | Ala        | Leu        | Lys        | Arg<br>280 | Ile               | Gln            | Asp               | Gly        | Glu<br>285 | Tyr        | Ala        | Lys        |
| Met        | Phe<br>290 | Ile               | Ser        | Glu        | Gly        | Ala<br>295 | Thr        | Gly               | Tyr            | Pro               | Ser<br>300 | Met        | Thr        | Ala        | Lys        |
| Arg<br>305 | Arg        | Asn               | Asn        | Ala        | Ala<br>310 | His        | Gly        | Ile               | Glu            | Ile<br>315        | Ile        | Gly        | Glu        | Gln        | Leu<br>320 |
| Arg        | Ser        | Met               | Met        | Pro<br>325 | Trp        | Ile        | Gly        | Ala               | <b>Asn</b> 330 | Lys               | Ile        | Val        | Asp        | Lys<br>335 | Ala        |
| Lys        | Asn        |                   |            |            |            |            |            |                   |                |                   |            |            |            |            |            |

#### **REIVINDICACIONES**

- 1. Una enzima cetol-ácido reductoisomerasa como se expone en la ID de SEC Nº: 17, en la que
- a) el resto 52 se muta; o
- b) los restos 47, 50 y 52 se mutan; o
- 5 c) el resto 52 y al menos un resto seleccionado del grupo que consiste en 24, 33, 53, 61, 80, 115, 156, 165 y 170 se mutan; o
  - d) los restos 47, 50, 52 y al menos un resto seleccionado del grupo que consiste en 24, 33, 53, 61, 80, 115, 156, 165 y 170 se mutan; y
- en la que dicha enzima cetol-ácido reductoisomerasa en el que dicha enzima cetol-ácido reductoisomerasa tiene una preferencia por la unión NADH en lugar de por NADPH, y en donde dicha mutación es una sustitución de aminoácidos.
  - 2. La enzima cetol-ácido reductoisomerasa según la reivindicación 1, en la que el resto en la posición 52 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, G, H, N y S.
  - 3. La enzima cetol-ácido reductoisomerasa según la reivindicación 1 o la reivindicación 2, en la que:
- a) el resto en la posición 47 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, F, G, I, L, N, P e Y;
  - b) el resto en la posición 50 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, E, F, G, M, N, V, W; y
- c) el resto en la posición 52 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, 20 G, H, N y S.
  - 4. La enzima cetol-ácido reductoisomerasa de una cualquiera de las reivindicaciones 1 a 3, en la que:
  - a) el resto en la posición 156 tiene una sustitución de aminoácidos de V;
  - b) el resto en la posición 165 tiene una sustitución de aminoácido de M;
  - c) el resto en la posición 61 tiene una sustitución de aminoácidos de F;
- d) el resto en la posición 170 tiene una sustitución de aminoácidos de A;
  - e) el resto en la posición 24 tiene una sustitución de aminoácidos de F;
  - f) el resto en la posición 33 tiene una sustitución de aminoácidos de L;
  - g) el resto en la posición 80 tiene una sustitución de aminoácidos de I;
  - h) el resto en la posición 115 tiene una sustitución de aminoácidos de L; y
- i) el resto en la posición 53 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, H, I,
   W
  - 5. La enzima cetol-ácido reductoisomerasa según la reivindicación 1, que comprende la secuencia de aminoácidos como se expone en la ID de SEC Nº: 29.
- 6. Una molécula de ácido nucleico que codifica la enzima cetol-ácido reductoisomerasa de una cualquiera de las reivindicaciones 1 a 5.
  - 7. Una célula recombinante que comprende la enzima cetol-ácido reductoisomerasa de una cualquiera de las reivindicaciones 1 a 5.
  - 8. Un procedimiento para la evolución de una enzima cetol-ácido reductoisomerasa que une NADPH a una forma que utiliza NADH que comprende:
- a) proporcionar una enzima cetol-ácido reductoisomerasa que utiliza NADPH que tiene una secuencia de aminoácidos nativa específica;
  - b) identificar un resto que conmuta el cofactor en la enzima de a) basado en la secuencia de aminoácidos de la enzima cetol-ácido reductoisomerasa Pseudomonas fluorescens como se expone en la ID de SEC Nº: 17 en la que el resto que conmuta el cofactor de la ID de SEC Nº: 17 se encuentra en la posición 52;

- c) crear una mutación en el resto que conmuta el cofactor identificado en b) para crear una enzima mutante en donde dicha enzima mutante une NADH.
- 9. El procedimiento de la reivindicación 8, en el que el resto en la posición 52 tiene una sustitución de aminoácidos seleccionados del grupo que consiste en A, C, D, G, H, N y S.
- 5 10. El procedimiento de la reivindicación 8 en el que la enzima cetol-ácido reductoisomerasa tiene la secuencia de aminoácidos como se expone en la ID de SEC Nº: 29.
  - 11. Un procedimiento para la producción de isobutanol, que comprende:
  - a) proporcionar una célula anfitriona microbiana recombinante que comprende las siguientes constructos genéticos:
  - i) al menos un constructo genético que codifica una enzima acetolactato sintasa para la transformación de piruvato en acetolactato;
    - ii) al menos un constructo genético que codifica una enzima cetol-ácido reductoisomerasa de una cualquiera de las reivindicaciones 1 a 5.
    - iii) al menos un constructo genético que codifica una acetohidroxiácido deshidratasa para la transformación de 2,3-dihidroxi-isovalerato en  $\alpha$ -ceto-isovalerato (ruta de la etapa c);
- iv) al menos un constructo genético que codifica una cetoácido descarboxilasa de de cadena ramificada, para la transformación de  $\alpha$ -cetoisovalerato en isobutiraldehido (ruta de la etapa d);
  - v) al menos un constructo genético que codifica una alcohol deshidrogenasa de cadena ramificada para la transformación de isobutiraldehido a isobutanol (ruta de la etapa e); y
  - b) cultivar la célula anfitriona de a) en condiciones donde se produce iso-butanol.
- 20 12. Un procedimiento para la evolución e identificación de una enzima cetol-ácido reductoisomerasa que une NADPH a una forma que utiliza NADH que comprende:
  - a) proporcionar una enzima cetol-ácido reductoisomerasa que tiene la secuencia de aminoácidos de ID de SEC Nº: 17:
- b) identificar los restos de aminoácidos en la secuencia de aminoácidos cuyas cadenas laterales están en cercana 25 proximidad a la adenosil 2'-fosfato de NADPH como objetivos de mutagénesis:
  - c) crear una biblioteca de enzimas cetol-ácido reductoisomerasa mutantes a partir de la enzima de la etapa a), que tienen una mutación en el resto 52; y
  - d) cribar la biblioteca de enzimas cetol-ácido reductoisomerasa mutantes de la etapa c) para identificar enzimas cetol-ácido reductoisomerasa mutantes que unen NADH.

30

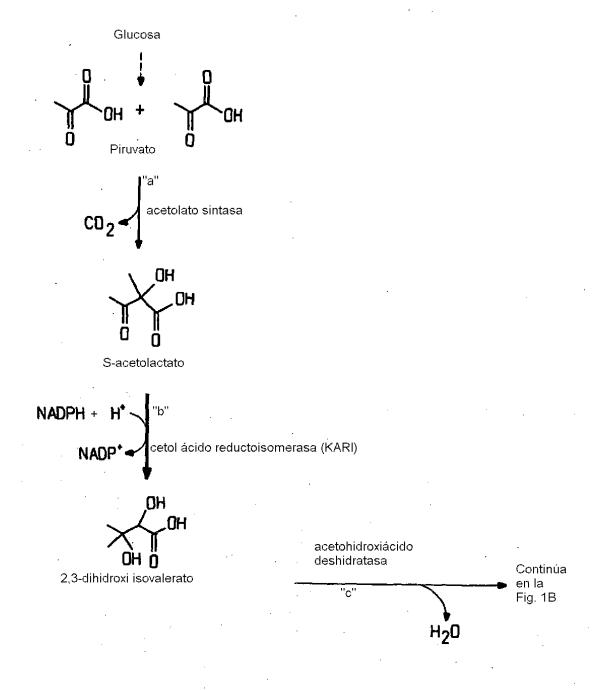
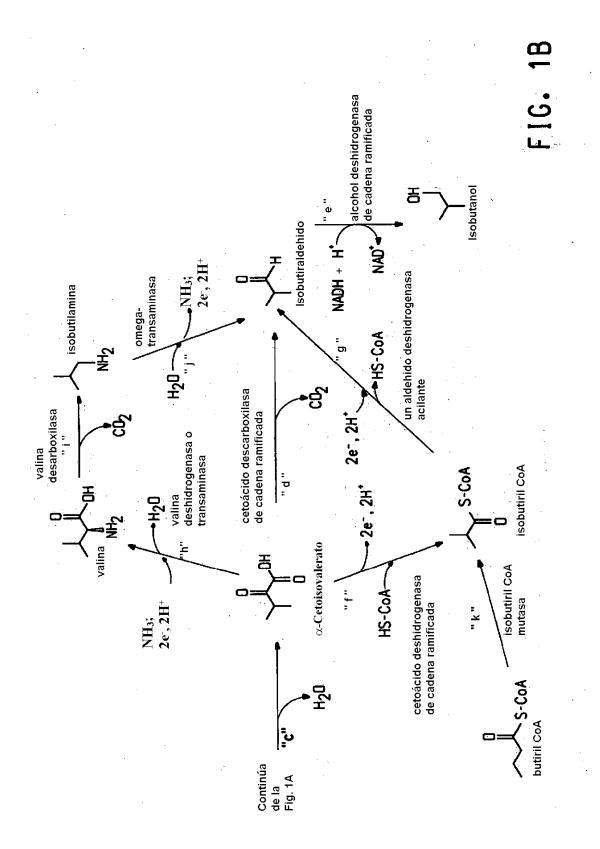
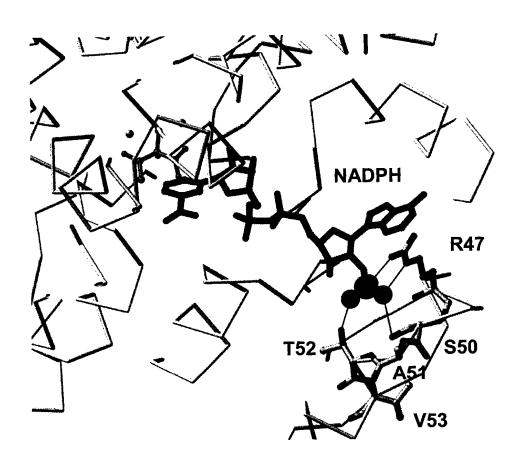
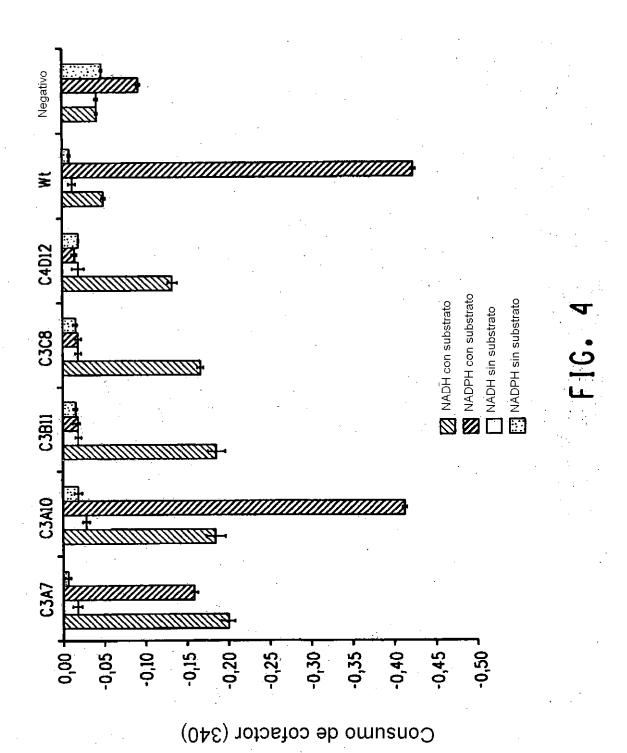
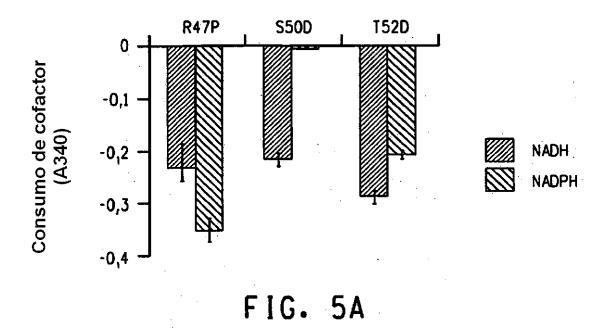
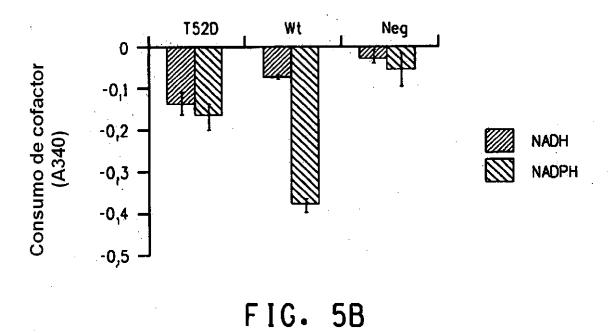



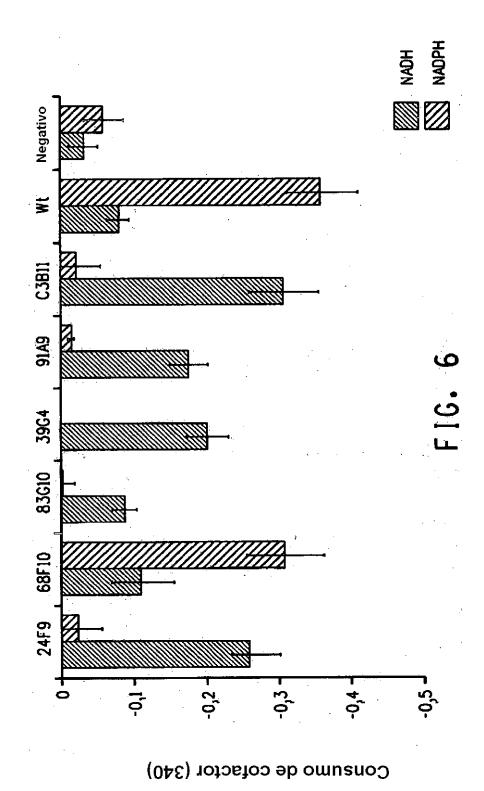

FIG. 1A

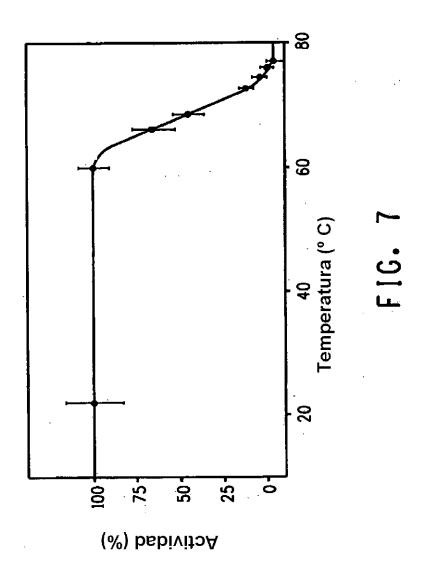


| PF5 - KARI    | (44) VGLRKGSATVAKA  |
|---------------|---------------------|
| PAO - KARI    | (44) VGLRSGSATVAKA  |
| Espinaca_KARI | (162) IGLRKGSNSFAEA |
|               | FIG. 2A             |

|          | •    | 59 72                            |
|----------|------|----------------------------------|
| MMC5     | (44) | VGLRKNGASWENAK                   |
| MMS2     | (44) | VGLRK <b>NG</b> AS <b>W</b> NNAK |
| MVSB     | (44) | VGLRKN <b>G</b> AS <b>W</b> ENAK |
| PF5-ilvC | (44) | VGLRKGSATVAKÆ                    |
| KARI-SI  | (44) | VGLRKN <b>G</b> AS <b>W</b> NKAV |
| ilv5     | (59) | IGVRKD <b>G</b> AS <b>W</b> KAAI |
| KARI-DI  | (48) | VGLEREGKSWELAK                   |
| KARI-D2  | (45) | IGLRRGGKSWELAT                   |
| Consenso | (59) | VGLRKNGASWE AK                   |
|          | FI   | G. 2B                            |



FIG. 3








5B





| ilvCl B cereus<br>ilvC2 B cereus<br>Espinaca KARI                         | (18)<br>(17)<br>(51)                      | 100KKVAIIGKGSQGHAHAONLRDNGFDVVGLRKG-KSWDKAKTVAVIGKGSQGHAQAONLRDSGVEVVVGVRPG-KSFEVA FKGIKOIGVIGWGSQAPAQAONLKDSLTEAKSDVVVKIGLRKGSNSFAEA                                                                                                                   |
|---------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PAO KARI<br>PFS KARI                                                      | (71)                                      | KKVA                                                                                                                                                                                                                                                    |
| ilvCl B cereus<br>ilvC2 B cereus<br>Espinaca KARI<br>PAO KARI<br>PF5 KARI | (56)<br>(56)<br>(101)<br>(57)<br>(57)     | KEDGESVYTVAEAAKBADVVMIILPDELQPEVYEAEIAPNLQAGN<br>KTDGEEVMSVSEAVRIAQVVQMILPDEQQAHVYKAGVEENLREGO<br>RAAGESEENGTLGDMWETISGSDLVLLLISDSAQADNYEKVFSHMK-PNS<br>EAHGIKVADVKTAVAAADVVMILTPDEFQGRLYKEEIEPNLKKGA<br>EAHGIKVTDVAAAVAGAADLVMILTPDEFQSQLYKNEIEPNIKKGA |
| ilvC1 B cereus ilvC2 B cereus Espinaca KARI PAO KARI                      | (102)<br>(101)<br>(150)<br>(102)<br>(102) | 151 SLVFAHGFNVHFDQVKPPANVDVFLVAPKGPGHLVRRTFSEG MLLFSHGFNIHFGQINPPSYVDVAMVAPKSPGHLVRRVFQEG ILGLSHGFLLGHLQSLGQDFPKNISVIAVCPKGMGPSVRRLYVQGKEVNG TLAFAHGFSIHYNQVVPRADLDVIMIAPKAPGHTVRSEFVKG TLAFSHGFAIHYNQVVPRADLDVIMIAPKAPGHTVRSEFVKG                      |
| ilvCl B cereus                                                            | (144)                                     | 201 GAVPALFAVYQDATGVATEKALSYADGIGATRAGVLETTFKEETETDLFG NGVPALVAVHODATGTALHVALAYAKGVGCTRAGVIETTFOEETETDLFG                                                                                                                                               |
| Espinaca KARI PAO KARI                                                    | (200)                                     | AGINSSFAVHODVDGRATDVALGWSIALGSPFTFATTLEQEYKSDIFG GGIPDLIAIYODASGNAKNVALSYACGVGGGRTGIIETTFKDETETDLFG GGIPDL. AIYODASGNAKNVALSYAAGAGGRTGIIETTFKDETETDLFG                                                                                                  |

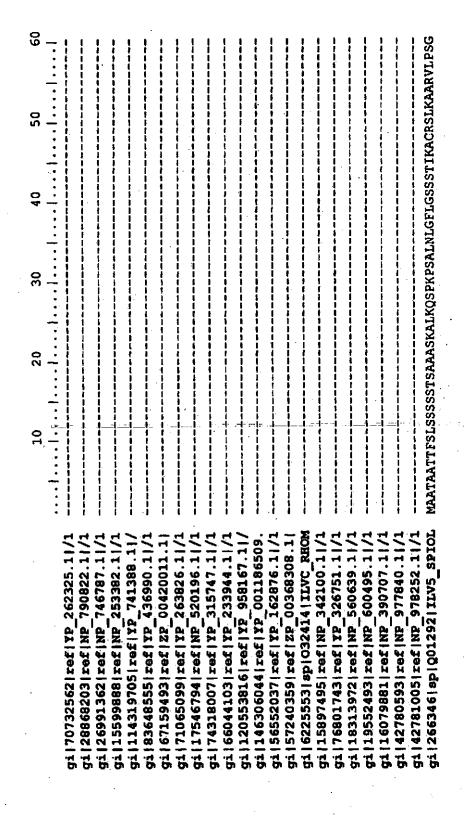



FIG. 9A

|                                                                 | 70           | 80                                      | 90 100                                                       | 110 120                                |
|-----------------------------------------------------------------|--------------|-----------------------------------------|--------------------------------------------------------------|----------------------------------------|
| 1/11 305030 8013103306504115.                                   |              |                                         |                                                              |                                        |
| 7907                                                            |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | KVEYDKDCDLS                                                  | IIOG                                   |
| q1 26991362 refine 746787.11/1                                  | W            |                                         | KVFYDKDCDLS                                                  | IIQG                                   |
| gil15599888 refine 253382.11/1                                  |              |                                         | RVFYDKDCDLS                                                  | II0G                                   |
| gi 114319705 ref YP 741388.11/                                  | W            |                                         | QVYYDKDADLS                                                  | IIQG                                   |
| gi 83648555 ref TP_436990.1 /1                                  |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | QVYYDKDCDLS                                                  | II06                                   |
| 57159493 ref ZP_004                                             |              | • • • • • • • • • • • • • • • • • • •   | KVYYDKUCDLS                                                  |                                        |
| g1   71065099   ref   YP_263826.1   /1                          |              |                                         | NVTYDKDCDLS                                                  |                                        |
| g1[17546794]ret NP_520196.1.                                    |              |                                         | KUVYDKDADI S                                                 |                                        |
| ga   /431800/ rer ir 313/4/.4//                                 |              |                                         | KVEVDKDCDI S                                                 | ************************************** |
| gi becettos reristrativa de |              |                                         |                                                              |                                        |
| gril20553816 rer xP_95816/.11/                                  |              |                                         |                                                              |                                        |
| gi 146306044 ref TP_001186509.                                  |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                              |                                        |
| gi[56552037]ref[TP_162876.11/1                                  |              |                                         |                                                              |                                        |
| gi [57240359 ref ZP_00368308.1                                  |              |                                         | -AVSIIIDADCDIN                                               |                                        |
| g1 6225553 8P 032414 1LVC_KRUM                                  |              |                                         | KCTSKIYTDNDANLD                                              | LIKG                                   |
| gi   76801743   ref  XP   326751.11/1                           |              |                                         | -TD-ATIYYDDDAEST                                             | VLDD                                   |
| qi 18313972 ref NP 560639.1 /1                                  | <u> </u>     |                                         | -AKIYTOREASLE                                                | PLKG                                   |
| di   19552493   ref   NP 600495.11/1                            | <u> </u>     |                                         | -AIELLYDADADLS                                               | L10G                                   |
| dil16079881 ref NP 390707.1 /1                                  | X            |                                         | -VKVYYNGDIKEN                                                | VLAG                                   |
| gi   42780593   ref   NP 977840.11/1                            | <u> </u>     |                                         | -AKVYYEKDVTVN                                                | VLKE                                   |
| gi 42781005 ref NP 978252.11/1                                  | <del>2</del> |                                         | KTYYEKDANVE                                                  | TLKG                                   |
| gi 266346 sp Q01292 ILW5_SPIOL                                  | ANGGGSALSAC  | VSAPSINTPSATT                           | angggsalsaqqysapsintpsattfdfdssvekkekvtlsghdeyivrggrnlfpllpd | DEYIVRGGRNLFPLLPD                      |

FIG. 9B

|                                                                  | 130 140 150 160 170 180                                      |
|------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                  |                                                              |
| gi 70732562 ref YP_262325.1 /1<br>gi 28868203 ref WP_788822-1 /1 |                                                              |
| di 126991362 (zer int. 746787.11/1                               |                                                              |
| qi 15599888 ref NP_253382.1 /1                                   | 1                                                            |
| gil114319705 xef YP 741388.11/                                   | kkvavichcschahannikesgv-dwwgiregssaakackagia                 |
| gi 83648555 ref YP_436990.1 /1                                   | CSHAHANNIKDS                                                 |
| gi 67159493 ref ZP_00420011.1                                    |                                                              |
| gi   71065099  ref  XP 263826.11/1                               |                                                              |
| gi 17546794 ref NP_520196.1 /1                                   | CHARAININDS                                                  |
| gi 74318007 ref YP_315747.1 /1                                   |                                                              |
| gi 66044103 ref YP_233944.1 /1                                   | OACINICAS                                                    |
| gi 120553816 ref YP 958167.1 /                                   | AHACNIKDS                                                    |
| gill46306044 ref YP 001186509.                                   | kkvaligygggggggagnikdsgv-dyfiglrkgsatvakaeahglk              |
| gi 56552037 ref YP 162876.1 /1                                   | kkiaiikargogarahagnirdsGvaevaialrpdsasvkkaodagfk             |
| gil57240359 ref ZP_00368308.1                                    | kkvaiigegssaamnirdscv-eviigikeggssaakaskanfi                 |
| gi   6225553   sp   032414   ILVC RROM                           |                                                              |
| g1 15897495 ref NP_342100.1 /1                                   |                                                              |
| gi 76801743 ref YP_326751.1 /1                                   | SCHAHACNIDOS                                                 |
| g1 18313972 ref NP_560639.1 /1                                   | KTIAVIGYCHDCRADALNIRDSGL-EVIIGLRRGGKSWEIAITSEGFR             |
| gi   19552493   ref   NP 600495.11 / 1                           | rkvalvgyggggggglgndrosgv-enviglregsksaekakeagfe              |
| 91 16079881   ref   NP 390707.11/1                               | KIVAVIGAGEDEHAHAINIKESGV-DVIVGVROGK-SFIGADEDGHK              |
|                                                                  | kkvaiigygbbghagnirdngf-dwwgirkgk-swokrkedgfs                 |
| qi 42781005 ref NP 978252.11/1                                   | KIVAVICHGEDGHADAGNIRDSGV-EWWGVRPGK-SFEVAKTDGFE               |
| 91   266346   sp   Q01292   ILVS_SPIOL                           | AFKGIKQIGVIGMGBDAFHDAQNIKDSLTEAKSDV-VVKIGLRKGSNSFAEHRAAGFSEE |
|                                                                  |                                                              |
|                                                                  | GKGKX (G/A)                                                  |

151

| •                                      | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 210                       | 220                      | 230                        | 240      |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|----------------------------|----------|
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | · · · ·   · · · · ·      |                            | 1 00,000 |
| ហ                                      | VTDVAAAVAGADLVMIITTEDE FOSOLYKNE I EPNIKKGAT LAF SAGFAI II INOVVFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LVMILT FOEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DSOLYKNEIE<br>DSOLYKNEIE  | PNIKKGATLA<br>PNIKKGATLA | NAHLAGURYA I               | ZVVER    |
| 28868203 ref NP_790822.1               | VIDVASAVAAADLVMILLIANDE FUSKLIANBVEFNLANKSTATIAFSHGFSIHYNOVVPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LVMILLI FIDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DOZLINNEVE<br>OGRI ÝKNETE | PNIKKGATIA               | FSHGESIHYN                 | OVVPR    |
| 급 :                                    | VADVALAVARADDVANJILTEDEFOGRLYKEEIEPNIKKGATLAFAHGFSIHYNQVVPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VVM TLT FDE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OGRLYKEEIE                | PNLKKGATLA               | NEAHGESTHYN                | DVVPR    |
| g1 155998881fer Nr_255554:11/          | VASIEDAAAQADVVMILA PDEHQAVIYHNOIAPNVKPGAAIAFAHGFNIHFGOIQPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VVMILAPDEH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QAVIYHNOIA                | PNVKPGAAIA               | NFAHGENIHEG                | QIQPA    |
| gilification   43690.11/1              | VKEVAEAVAGADVVMILTHDEFQAQLYKSEIEPNIKSGATLAFAHGFSIHYNQIVPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OVWNILT POEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QAQLYKSEIE                | PNLKSGATL                | VEAHGESTHYN                | OIVPR    |
| gi   67159493   ref   ZP 00420011.1    | VKSVKDAVAAADVVMIHTEEFOGRLYKDEIEPNLKKGATLAFAHGESIHYNOVVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OVVM THAT FOE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OGRLYKDETE                | PNLKKGATL?               | AFAHGESIHYN<br>FRHOERTHYN  | QVVPR    |
| gi   71065099   ref   YP 263826.1   /1 | VAEVEEAVKAADIIMIILTEDEFOKELYNDVIEPNIKOGAILAFANGFAINTINVIEN<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OI IMILL'EDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QKELYNDVIE<br>Tanvyknevh  | FNIKOGATLA               | A FAHGENVHYG               | AVIPR    |
| gi 17546794 ref NP_520196.1 /1         | THE VARIATION OF THE POST WAS TRUE TO SALVE THE THE TANGENT OF THE | TAME TO A STATE OF THE PARTY OF | OSRLYRDEIE                | PNIKOGATLA               | AFAHGESIHYN                | QVVPR    |
| gi 74318007 ref YP_315/4/.1 /1         | VASVEBVAAADLVMIIITEDEFOSOLYKNEVEPNIKKGATLAFSHGFAIHYNQVVPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OI VM ILT POE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OSOLYKNEVE                | PNLKKGATLA               | AFSHGFAIHYN                | QVVPR    |
| dx   bb044103  tex   1r                | TSDVASAVASADVVMVITHEDEFOAOLYREELEPNIKOGATLAFAHGFAIHYNOIVPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OVVMVIAT FIDE F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>O</u> AOLYREEIE        | PNLKQGATLA               | <b>AFAHGFAIHYN</b>         | QIVPR    |
| gijizobbardireriri<br>                 | VIDVATAVAAADLVMILPPPEFQGQLYKQEIEPNIKKGATLAFSHGFAIHYNQVVPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DLVMILTPDEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OGOLYKOEIE                | PNIKKGATL!               | AFSHGFAIHYN                | QVVPR    |
| giltessessifetitetti.                  | VITNAEAAKWADILMILARDEHQAAIYAEDLKDNIRPGSAIAFAHGINIHFGLIEPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DILMILARDEH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QAAIYAEDLK                | ONIRPGSAL                | AFAHGENIHEG                | LIEPR    |
| 4113032237 Ltt 121 101368308.11        | VKSVKEATKEADLIMILA POETOSET FNEETKPELKAGKTLAFAHGFNIHYGOIVAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DLIMILAPOEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QSEI FNEEIK               | (PELKAGKTL)              | afahgenihyg                | QIVAP    |
| 41 57 5 5 5 3 1 5 5 1 4 1 ILVC RHOM    | VITPAEAAAWADVVWIIJTPIDELQADLYKSELAANLKPGAALVFAHGLAIHFKLIEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>DVVMILLIPIDE</b> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QADLYKSELP                | ANLKPGAAL                | VFAHGLAIHEK                | LIEAR    |
| 91115897495 ref NP 342100.11/1         | PLHTKDAVKDADIIIFILVFDMVQRTLWLESVQPYMKKGADLVFAHGFNIHYKLIDPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | отттецивому                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QRTLWLESVC                | PYMKKGADL                | VFAHGENIHYK                | LIDEP    |
| di 176801743   ref   YP 326751.1   /1  | VATPRGAAEQADLVSVLVPIDTVQPAVYE-QIEDVLQPGDTLQFAHGFNIHYGQIEPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | orvsvirveorv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QPAVYE-QIE                | DVLQPGDTL                | OFPHGENIHYG                | QLEPS    |
| gill8313972 refine 560639.11/1         | VYEIGEAVRKADVILVULI POMEOPKVWOEQIAPNIKEGVVVDFAHGFNVHFGLIKPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DVILVILI PIDME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QPKVWQEQI?                | PNLKEGVVV                | DEMIGENVHFG                | LIKPP    |
| 4112522317eflNP 600495,11/1            | vkttaeaaawadvimihahdhsqaeiftndiepninagdalifqhqinihfdlikpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DVIMILAPIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>GAEIFTNDIE</b>         | PNLNAGDAL                | LFGHGLNIHFE                | LIKPA    |
| #1160708811##FIND 390707.11/1          | VesvkeaaaqaeiimvilipdeqqqkvyeaeikdeltagksivfahgenvhfhqivPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EIIMVLLPDEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>QOKVYEAEI</b>          | <b>CDELTAGKSE</b>        | VEAHGENVHEE                | QIVPP    |
| 41 100 2001 ECT NO 977840.11/1         | VYTVAEAAKQADVVMIILEPPELQPEVYEAEIAPNLQAGNSLVFAHGENVHFDQVKPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DVVMTLL PDE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>OPEVYEAEI</b>          | APNLOAGNSL               | VERHGENVHFU                | QVKPP    |
| 91142/303351251312_0314141             | vmsvseavrtaqvvqmilippeqqahvykagveendregqmllfshgfnihfgqinpp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | QVVQM11. PDEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OAHVYKAGVI                | SENTREGOME               | LFSHGENIHEC                | OINPP    |
| <u> </u>                               | NGTLGDMWETISGSDLVLILISDSAQADNYE-KVFSHMKPNSILGLSHGFLLGHLOSLGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEVELLE SPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACADNYE-KVI               | SHMKPNSIL                | сга <mark>нс</mark> гілсні | OSIGO    |

## FIG. 9E

| •                                      | 310                                                                  | 320                   | 330              | 340                 | 350                | 360          |
|----------------------------------------|----------------------------------------------------------------------|-----------------------|------------------|---------------------|--------------------|--------------|
| #11003325621#8£1XP 262325.11/1         | GEGRAGIIETHER OFFE FOLKED AND GETVELVKAGFETLVERGYAPEMAKFECTHEL       | l<br>Prembiesebay     | IOGETVELV        | KAGFETLVEAG         | YAPEMAYFEC         | LHEL         |
| di 288 68203   refine 790822.11/1      | GCGRTGIIETTFKDETETDLEGEDAVLGGSTVELVKAGFETLVEAGYAPEMAKFECLHEL         | ETETOLEGEDAV          | ICCTVELV         | KAGFETLVEAG         | YAPEMAKFEC         | THET         |
| gi   26991362   ref   NP 746787.1   /1 | GEGRIGII ETIFFKDEJFEJDLEGEDAVLGGSTVELVKAGFETLVEAGYAPEMAKFECLHEL      | ELETOLEGEOAV          | ICCTVELY         | KAGFETLVEAG         | XAPEMAKEEK         | THET         |
| g115599888 ref NP_253382.1 /1          | GGGRTGIIETH FKOENEIDL FGEDAVLOGSCVELVKAGFETLVEAGYAPEMAKFECLHEL       | <b>ETETOLEGEDAV</b>   | LOGECVELV        | KAGFETLVEAG         | YAPEMAKEE          | THEI         |
| gii114319705 ref YP_741388.11/         | SEGRAGVIETS FREETETITES SEDAVIDGEITSLIQAGFETIVE AGYAPEMAYFECIHET     | ETETOL FGEDAV         | udgeitsii        | OAGFETLVEAG         | YAPEMAKFE          | LHET         |
| gi 83648555 ref YP_436990.1 /1         | SSGRTGIIETTFKOETETOLFGEDAVOGGAVELVKAGFETIVEAGYAPEMAKFECLHEL          | ELETIDIL FIGEDAV      | ICCCAVELY        | KAGFETLVEAG         | YAPEMAKFE          | LHEL         |
| gi 67159493 ref ZP_00420011.1          | CEGRIGII ETT FROEDE TO FEDAVLOGECVELVRAGFETLVEAGYAPEMAKFECLHEL       | ERETIDITEGEDAV        | Idecoerv         | KAGFETLVEAG         | Xapemanfe(         | THEI         |
| gil71065099 ref YP 263826.11/1         | SEGRSGIIENPEKDEPETDLEGEDAVIDGGAVELVKMGFETLTEAGYAPENAKFECLHEL         | ZTETOLFGEDAV          | <b>LCGGAVELY</b> | KMGFETLTEAG         | YAPEMAYFE          | THEI         |
| qi 17546794 ref NP 520196.1 /1         | GGGRAGIIENNFREETETETEEDAVEGGTVELIKAGFETLVEAGYAPEMAYFECLHEL           | ETETION FIGEDAV       | LCGCTVEL1        | KAGFETLVEAG         | <b>YAPEMAYFE</b> ( | THEL         |
| qi 74318007 ref YP 315747.1 /1         | SEGRICI I EMPEKOENE NOL FICEDAVILOGISAVELVKAGFOTI VEAGYAPEMAKFECIHEL | erendi ecepav         | LCGGAVELV        | <b>KAGEDILVEA</b> G | <b>YAPEMA</b> YFE( | LHEL         |
| q1   66044103   ref   YP 233944.1   /1 | GEGRIGII ETIFFKOETE TOLFGEDAVILGGETVELVKAGFETLVEAGYAPEMAKFECLHEL     | ETETIDILEGEDAV        | LCGGTVELY        | <b>KAGFETLVEAG</b>  | YAPEMAYFE          | LHEL         |
| qi 120553816 ref TP 958167.11/         | CEGRTGIIETTFKTETETETETAVTGGSAVELVKAGFETLTENGYAPENAKFECLHEL           | ETETIDIL FIGEDAV      | LCGRAVELY        | <b>KAGFETLTEAG</b>  | YA PEMAN FE        | THET         |
| gi 146306044 ref YP 001186509;         | GEGRIGII ETH FKOETE TOLFGEDAVI COSTVELVKAGFETLVENGYAPENNY FECLHEL    | ETETOL FGEDAV         | IDECTVELY        | KAGFETLVEAG         | XAPEMANFE(         | THEI         |
| q1 56552037 ref TP 162876.11/1         | CSGRSGVIENTEREEVENDLEGEDAVICESLIALITAGEETLTENGYAPEMAFFECMHEM         | EVERIDIL FIGEDAV      | ICCLTAL)         | TAGEETLTEAG         | XA PEMAFFE(        | MHEM         |
| gi 57240359 ref ZP 00368308.1          | GEGRIGII ETH FKAETE HOLFEDAVILGELSALIQAGFETIVEAGYEPEMAKFECIHEM       | ETETIOLEGEDAV         | LICELSAL         | QAGFETLVEAG         | <b>YEPEMANFE</b>   | THEM         |
| gi   6225553   sp   032414   ILVC RHOM | CSGRSGIIENTEREFCETDIFFEDVVIDGELSKLIQYGFETLVENGYAPEMAYFECLHEV         | <b>ECETIOL FGEDVV</b> | 1CGCLSKL)        | QYGFETLVEAG         | <b>YAPEMAYFE</b>   | THEY         |
| gi 15897495 ref NP 342100.1 /1         | CATRAGVI PHTFKEETETETETETETETVINAGIMELMRAAFETLVEETYOPEVAYFETINEL     | ere roceseva          | LVGCIMELA        | RAAFETLVEEG         | YOPEVAYFE          | LINEL        |
| gill6801743 xef YP 326751.1 /1         | SCTRAGYVETITFREETETIOLFGEDAVILGGSVTSLVKTGYETLVDAGYSPEMAYFECLNEL      | ETETION FICEDAV       | TOCCATSTA        | KTGXETLVDAG         | YSPEMAYFE          | CLNEL        |
| gi 18313972   ref   NP 560639.1   / 1  | CATRAGVIENT FREETE TO TOEDIVING CIMELIKK GFEVIVENGY OPEVAK FEVINEA   | erenomiceory          | LWGGLMEL         | KKGFEVLVEMG         | YOPEVAYEE          | /LNEA        |
| q1 19552493 ref(NP 600495.11/1         | CBARAGVI HINFEAPITVIIDI FOEDAVILOOFIEELVKVGFEVLIEAGYEPEMAKFEVIHEL    | ETVIDLEGEDAV          | LOGGTEEL         | <b>XVGFEVLTEAG</b>  | YEPEMAYFE          | /LHEL        |
| g1 16079881 ref NP 390707.1 /1         | GBARAGVIEHFFREEHEIDLFGEDAVILGGGLSALVKAGFETLTEAGYQPELAYFECLHEL        | EFE TIDL FICEDAV      | ICCELSALV        | <b>RAGFETLTEAG</b>  | YOPETHYFE          | CLHEL        |
| gi 42780593   ref   NP 977840.11/1     | CATRAGVLENFEREPTETION FICEDAVILOGSVTALVKAGFETLVDAGYQPETAYFECLHEL     | ETETOLEGEDAV          | LCCOTAL          | /KAGFETLVDAG        | захипааох          | CLHEL        |
| g1 42781005 ref NP_978252.1 /1         | GLTRAGVIENTFOEFIENDLEGEDTWICGSVTALVKAGFETLTEGGYRPETAKFECLHEL         | ehendurkebrv          | LCCCVTAL         | <b>TKAGFETLTEGG</b> | YRPETAKFE          | CLHEL        |
| di  266346 sp 001292 ILW5 SPIOL        | GBPF~~TFAITHLEGEVKSDI FGERGILIGAVHGIVECLFRRYTESGMSEDLAYKNIVECI       | EYKSDI FGERGI         | LLCAVHGIV        | ECL FRRYTESG        | MSEDIAKK           | <b>LVECI</b> |

FIG. 9F

|                                         | 370                                                            | 380              |          | 390              | 400       | 410                      | 420   |
|-----------------------------------------|----------------------------------------------------------------|------------------|----------|------------------|-----------|--------------------------|-------|
| 91170732562 ref YP 262325.11/1          | K-LIVDLMYEGGIANMNYSISNNAEYGEYVTGPEVINAESRQAMRNALKRIQDGEYAKMF   | TANMNYST         | SNNAEYGE | YVIGPEVI         | NAESRQAMR | NALKRIODGE               | YAKME |
| gi 28868203 ref NP_790822.1 /1 H        | K-LIVDLMYEGGIANMNYSISNNAEYGEYVTGPEVINAESRQAMRNALKRIQDGEYAKMF   | TANMINIST        | SNNAEYGE | YVTGPEVI         | NAESROAMR | nalkriodg <mark>e</mark> | YAKME |
| gi   26991362   ref   NP 746787.1   /1  | K-LIVDLMYEGGIANMNYSISNNAEYGEYVIGPEVINEESRKAMRNALKRIQDGEYAKMF   | TANMNAST:        | SNNAEYGI | SYVIGPEVI        | NEESRKAMR | NALKRIODGE               | YAKME |
| gil15599888 ref NP_253382.1 /1          | K-LIVDLMYEGGIANMNYSISNNAEYGEYVIGPEVINAESRAAMRNALKRIQDGEYAKMF   | TANMNYST:        | SNNAEYGI | XVTGPEVI         | NAESRAAMR | NALKRIODGE               | YAKME |
| gil114319705 ref YP 741388.11/          | K-LIVDLLYOGGIANMRYSISNTAEYGDFTRGPRVINEESREAMREILAEIQEGEFAREF   | TANMRYST:        | SNTAEYG  | <b>SETRGPRVI</b> | NEESREAMR | EILAEIQEGE               | FAREF |
| g1 83648555 ref YP 436990.1 /1          | K-LIVDLMYEGGIANMNYSISNNAEYGEYVTGPEVINDOSRAAMRNALKRIQUGEYAKMF   | TANMNYST         | SNNAEYG  | SYVTGPEVÎ        | NDOSRAAMR | NALKRIODGE               | YAKME |
| gil 67159493 ref ZP 00420011.1          | K-LIVDLMFEGGIANMNYSISNNAEYGEYVIGPEVINEOSROAMRNALKRIODGEYAKMF   | TANMNYST:        | SNNAEYG  | SYVIGPEVI        | NEOSROAMR | NALKRIODGE               | YAKME |
| qi 71065099 ref YP 263826.1 /1          | K-LIVDLMYEGGIADMNYSISNNAEYGEYVTGPEVINEOSREAMRNALKRIOSGEYAKMF   | TADMNYST         | SNNAEYG  | SYVTGPEVI        | NEOSREAMR | NALKRIQSGE               | YAKME |
| qi 17546794 ref NP 520196.1 /1          | K-LIVDLIYEGGIGNMNYSISNNAEYGEYVIGPRVVIAETKOAMKOCLHDIQTGEYAKSF   | <b>JIGNMNYST</b> | SNNAEYG  | SYVIGERVV        | TAETKQAMK | OCLHDIQTGE               | YAKSE |
| q1 74318007 ref YP 315747.1 /1          | K-LIVDLMYEGGIANMNYSISNNAEYGEYVTGVKVINEQSRAAMKECLANIONGAYAKRF   | TANMNYST         | SNNAEYG  | SYVTGVKVI        | NEQSRAAMK | ECLANIONG                | YAKRE |
| di   66044103   ref   YP 233944.1   /1  | K-LIVDLMYEGGIANMNYSISNNAEYGEYVTGPEVINAESROAMRNALKRIODGEYAKMF   | <b>TANMNYST</b>  | SNNAEYG  | SYVIGPEVI        | NAESROAMR | NALKRIODGE               | YAKME |
| qi 120553816 ref TP 958167.11/          | K-LIVDLMYEGGIANMNYSISNNAEYGEYVTGPEVINEOSREAMRNALKRIOSGEYAKMF   | TANMNAST         | SNNAEYG  | SYVIGPEVI        | NEOSREAMR | NALKRIOSGE               | YAKME |
| qi 146306044 ref TP 001186509.          | K-LIVDLMYEGGIANMNYSISNNAEYGEYVTGPEVINEESRKAMRNALKRIODGEYAKMF   | TANMNYST         | SNNAEYG  | SYVTGPEVI        | NEESRKAMR | NALKRIODGE               | YAKME |
| q1156552037 ref YP 162876.1 /1          | K-LIVDLIYEAGIANMRYSISNTAEYGDIVSGPRVINEESKKAMKAILDDIQSGRFVSKF   | TANMRYST         | SNTAEYG  | DIVSGPRVI        | NEESKKAMK | AILDDIQSGR               | EVSKF |
| qi 57240359 ref ZP 00368308.1}          | K-LIVDLIYQQQIADMRYSVSNTAEYGDYITGPKIITKETKEAMKGVLKDIQNGSFAKDF   | <b>TADMRYSV</b>  | SNTAEYG  | DYITCPKII        | TKETKEAMK | GVLKDIQNGS               | FAKDE |
| G116225553  sp   032414   ILVC RHOM     | K-LIVOLIYEGGIANMRYSISNTAEYGDYVTGSRIITEATKAEMKRVLADIQSGRFVRDW   | <b>TANMRYST</b>  | SNTAEYG  | DYVTGSRII        | TEATKAEMK | RVLADIOSER               | EVRDW |
| q1 15897495 ref NP 342100.11/1          | K-MLVDLVYENGISGMLKAVSDTAKYGGMTVGKFVIDESVRKRMKEALQRIKSGKFAEEW   | SEMLKAV          | SDTAKYG  | SMTVGKFVI        | DESVRKRMK | EALORIKSER               | FAEEW |
| gil76801743 xef YP 326751.11/1          | K-LIVDLMYEGGNSEMWDSVSDTAEYGGLTRGDRIVDDHAREKMEEVLEEVQNGTFAREW   | <b>ENSEMWIST</b> | SDTAEYG  | SLTRGDRIV        | DDHAREKME | EVLEEVONG                | FAREW |
| gi   18313972   ref   NP 560639.1   / 1 | K-LIMDLIWORGIYGMLNGVSDTAKYGGLTVGPRVIDENVKRKMKEAAMRVKSGEFAKEW   | STYGMLNGV        | SDTAKYG  | SLTVGPRVI        | DENVKRKMK | EAAMRVKSGE               | FAKEW |
| qi 19552493 ref NP 600495.1 /1          | K-LIVDLMFEGGISNMWSWSDTAEFGGYLSGPRVIDADTKSRMKDILTDIQDGTFTKRL    | CI SNAWYSV       | SDTAEFG  | SYLSGPRVI        | DADTKSRMK | DILTDIQUE                | FTKRL |
| q116079881 ref NP 390707.11/1           | K-LIVDLMYERSTALAGMRYSISDTAQWGDFVSGPRVVDAKVKESMKEVLKDIQNGTFAKEW | <b>GLAGMRYSI</b> | SDTAQWG  | DFVSGPRVV        | DAKVKESMK | EVLKDIONG                | FAKEW |
| qi 42780593 ref NP 977840.1 /1          | K-LIVDLMYEGGLENMRYSVSDTAQWGDFVSGPRVVTEDTKKAMGTVLAEIQDGFFARGW   | <b>CLENMRYSV</b> | SDTAQWG  | DFVSGPRVV        | TEDTKKAMG | TVLAETODG                | FARGW |
| q1142781005 ref NP 978252.1 /1          | K-LIVDIMYEGGLINMRHSISDIAEFGDYVIGSRIVIDEIKKEMKRVLIEIQQSEFAKKW   | CL TNMRHST       | SDTAEFG  | DYVTGSRIV        | TDETKKEMK | RVLTEIOOGE               | FAKKW |
| g1 266346 sp Q01292 ILV5_SPIOL          | TGVISKTISTROMLALYNSLSEEGKK-DFQAAYSASYYPSMDILYECYEDVASGBEIRSV   | GMIALYNSE        | SEEGKK-  | DFQAAYSAS        | YYPSMDILY | ECYEDVAS                 | EIRSV |

|                                                                  | 430                                                                                                    | 440                                       | 450                    | 460                      | 470           | 480        |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|--------------------------|---------------|------------|
| di   70732562   ref   YP 262325.11/1                             | ISEGATGYPSMTAKRRNNAAHGIE-IIGEOIRSMMFWIGANKIVDKAKN-                                                     | <br>KRRNNAAHGIE-                          | I IGEOLRISM            | 1 <br>1PWIGANKIV         | DKAKN         | - <u> </u> |
| gi   28868203   ref   NP 790822.11/1                             | ITEGATGYPSMTAKRRNNAEHGIE-VIGEKIRSMMPWIAANKIVDKDKN-                                                     | KRRNNAEHGIE-                              | VICEKIRSM              | 4PWI AANKIV              | JDKDKN        | -          |
| gi 26991362 ref NP_746787.1 /1                                   |                                                                                                        | KRRNNAAHGIE-                              | IIDEOIBBM              | <b>TPWISANKIV</b>        | /DKTKN        | -          |
| gil15599888   ref   NP 253382.11/1                               | ITEGAANYPSMTAYRRNNAAHPIE-OIGEKIRAMPWIAANKIVDKSKN-                                                      | YRRNNAAHPIE                               | OIGEKTRAM              | 4PWIAANKI\               | DKSKN         | -          |
| gi 114319705 ref YP 741388.1 /<br>ci 83648555 ref YP 436990,11/1 | VLENOAGCPTLTARRELAAEHETE-VVSERTREMMPMINANKLVUKURN<br>TAEGAHNYPSMTAYRRNNAAHPTE-OVGEKTREMMPWIASNKIVOKSKN | RRRLAAEHEIE-<br>YRBNNAAHPIE-              | VVGERTREM<br>OVGERTREM | MPWINANKLY<br>MPWIASNKIY | DKSKN         |            |
| gi 67159493 ref ZP_00420011.1                                    |                                                                                                        | YRRNNAAHQIE-                              | VVGEKLRIM              | <b>HPWIAANKIN</b>        | DKTKN         | -          |
| gi   71065099   ref   YP 263826.11 / 1                           | ISEGATNYP                                                                                              | SMTARRRNNAEHQIE-ITCAKIRGMMPWIGGNKIIDKDKN- | ITCAKIRGM              | MPWIGGNKI                | CDKDKN        | 1          |
| gil17546794 ref NP_520196.11/1                                   |                                                                                                        | RRRLTADHQIE-                              | OVGAKURAM              | MPWIAKNKLY               | /DQSKN        |            |
| gil74318007 ref YP_315747.1 /1                                   | ilegoanyp                                                                                              | WRRNNAAHQIE-                              | VVGAKIRSM              | MEWIAANKLY               | /DHSKN        | 1 1 2      |
| gi 66044103 ref YP_233944.1 /1                                   | ISEGATGYP                                                                                              | SMTAKRRNNAAHGIE-IIGEKIRSMMPWIAANKIVDKDKN- | I IGEKIRSM             | MPWIAANKI                | /DKDKN        | 1          |
| gi 120553816  ref  YP 958167.11/                                 | ISEGALNYP                                                                                              | Smtarrqnaahete-tvgekirsmmpwisankivdkdkn-  | TVGEKTRSM              | MPWISANKI                | /DKDKN        | 1          |
| gi 146306044 ref YP_001186509.                                   | ISEGATNYP                                                                                              | SMTAKRRNNAAHGIE-IIGEQIRSMMPHISANKIVDKTKN  | I IGEOLESM             | MPWISANKI                | /DKTKN        | ! ! !      |
| gi[56552037 ref YP_162876.1 /1                                   |                                                                                                        | Elkaarkrmaahpie-Qugarirkmmpwiasnkludkarn- | OVGRRIPKM              | MPWIASNKL                | /DKARN        |            |
| gi 57240359 ref ZP_00368308.1}                                   |                                                                                                        | ERKLMNDSLIE-                              | KTGREITAM              | MPWISAKKE                | /DKDKN        |            |
| gi   6225553  sp   032414   ILVC_RHOM                            |                                                                                                        | TRRICXEHVIE-                              | VVGERTRGM              | <b>MANISKNKE</b>         | /DKARN        | 1 1 1      |
| gi 15897495 ref NP_342100.1 /1                                   |                                                                                                        | GLSNVQNSLEE-                              | KIGNOLRDI              | VQK                      | -GKPKS        |            |
| gi 76801743 ref YP_326751.1 /1                                   |                                                                                                        | LRAAEKNHDIE-                              | AVGEDIRAL              | FAW                      | -CDD          |            |
| gi[18313972]ref[NP_560639.1]/1                                   |                                                                                                        | LMEEARTHPIE-                              | KVERENEKL              | LFGP                     |               |            |
| gi 19552493   ref   NP 600495.1   / 1                            |                                                                                                        | LRASYNNHPIE-                              | ETGAKIRDI              | MSWVKVDAR                | <b>AETA</b> - | 1          |
| gi 16079881 ref NP_390707.1 /1                                   |                                                                                                        | INASENEHQIE-                              | VVGRKIREM              | MPFVKQGKKI               | CEAVVSVAON-   |            |
| gi (42780593)ref [NP 977840.1]/1                                 |                                                                                                        | TNEKENEHEIE-                              | VVGRKIREM              | MPFV-QPRVI               | (VGMK         |            |
| gi 42781005 ref NP_978252.1 /1                                   | ILENDAGRPTYNAMKKAEONHOLE-KVCAEIREMMSWIDAPKELVKK                                                        | MKKAEQNHOLE-                              | KVGAELREM              | MSWIDAPKE                | LVKK          |            |
| gi   266346  sp   Q01292   ILV5_SPIOL                            | VLAGRRFYEKEGLPAFPMGKIDQTRMWKVGEKVRSVRPAGDLGPLYPFTAGVYVAL                                               | <b>FPMGKI DOTRM</b>                       | KVEEKVESV              | RPAGD)                   | GPLYPFTAGV    | YVAL       |
|                                                                  |                                                                                                        |                                           |                        |                          |               |            |

## FIG. 9H

|                                         | 490 500 510 520 530 540                                      |
|-----------------------------------------|--------------------------------------------------------------|
|                                         | - · · ·   · · · ·   · · · ·   · · · ·                        |
| gi   20/32322   1541   15               |                                                              |
| gi   26991362   ref   NP 746787.1   /1  |                                                              |
| gi 15599888 ref NP_253382.1 /1          |                                                              |
| gill4319705 ref TP_741388.1 /           |                                                              |
| gi 83648555 ref YP_436990.1 /1          |                                                              |
| gi 67159493[ref ZP_00420011.1]          |                                                              |
| gi 71065099 ref YP_263826.1 /1          |                                                              |
| gill546794[ref]NP_520196.11/1           |                                                              |
| gi 74318007 ref YP_315747.1 /1          |                                                              |
| qi 66044103 ref YP 233944.1 /1          | \$2E\$\$0\$00011U11111111111111111111111111111               |
| gi 120553816 ref xP 958167.11/          | \$                                                           |
| gi 146306044 ref XP_001186509.          |                                                              |
| gi 56552037 ref TP 162876.1 /1          |                                                              |
| gi 57240359 ref ZP_00368308.1           |                                                              |
| gi   6225553   sp   032414   ILVC RHOM  |                                                              |
| gi   15897495   ref   NP 342100.1   / 1 | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$     |
| g1   76801743   ref   YP 326751.1   /1  |                                                              |
| gi 18313972 ref NP_560639.1 /1          |                                                              |
| g1(19552493 ref NP_600495.1 /1          |                                                              |
| gil16079881 ref NP_390707.11/1          |                                                              |
| gi 42780593 ref NP_977840.1 /1          |                                                              |
| gil 42781005 ref NP 978252.1 /1         | MMADIETIERKEHSYSETINESVIEAVDSINPEMHARGVSFMVDNCSTTARLGSRKWADR |
|                                         |                                                              |

FIG. 91

|                                                                                        | 009 065 085 020 290                                          |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|
| q1 70732562 ref TP 262325.1 /1                                                         | · · · ·   · · · ·   · · · ·   · · · ·                        |
| gi(28868203 refine_790822.11/1                                                         |                                                              |
| gi 25991362 rez NF_/46/6/.1 /1<br>gi 15599888 ref NF_253382.1 /1                       |                                                              |
| gill4319705 zef TP_741388.1 /                                                          |                                                              |
| gi 67159493 ref ze_450550:1 /1                                                         |                                                              |
| gi 71065099 ref XP 263826.1 /1                                                         |                                                              |
| gi 17546794 xef NP_520196.1 /1<br>ci 74318007 xef XP_315747.1 /1                       |                                                              |
| gi 66044103 xef YP 233944.1 /1                                                         | 18222799999999999999999999999995                             |
| gi 120553816 ref YP 958167.1 /                                                         |                                                              |
| g1 146306044 ref TP_001186509.                                                         |                                                              |
| gi 56552037 xef TP_162876.1 /1                                                         |                                                              |
| g1(5/240359 rer 22_00365508.1{<br>d1 6225553 sp 032414 ILVC RHOM                       |                                                              |
| gi(15897495)zef(NP_342100.11/1                                                         |                                                              |
| gi 76801743 xef YP 326751.11/1                                                         |                                                              |
| gi   18313972   ref   NP   560639.1   / 1<br>qi   19552493   ref   NP   600495.1   / 1 |                                                              |
| gi 16079881 ref NP_390707.1 /1                                                         |                                                              |
| gi 42780593 ref NP_977840.1 /1                                                         |                                                              |
| g:[266346 ap Q01292 ILV5_SPIOL                                                         | edtilsogalvavdngapinodlisnflsdpvheaigvcaqlrpsvdisvtadadfvrpe |

IG. 9J

```
gi | 70732562 | xef | XP 262325.1|/1
gi | 28868203 | xef | NP 790822.1|/1
gi | 26991362 | xef | NP 746787.1|/1
gi | 1559988 | xef | NP 741388.1|/1
gi | 1559988 | xef | NP 741388.1|/1
gi | 1559988 | xef | XP 741388.1|/1
gi | 83648555 | xef | XP 741388.1|/1
gi | 83648555 | xef | XP 263826.1|/1
gi | 71065099 | xef | XP 263826.1|/1
gi | 74318007 | xef | XP 233944.1|/1
gi | 74318007 | xef | XP 233944.1|/1
gi | 74318007 | xef | XP 233944.1|/1
gi | 57240359 | xef | XP 233944.1|/1
gi | 5552037 | xef | XP 233944.1|/1
gi | 56552037 | xef | XP 32676.1|/1
gi | 56552037 | xef | XP 342100.1|/1
gi | 5655293 | xef | NP 342100.1|/1
gi | 15897495 | xef | NP 342100.1|/1
gi | 16079881 | xef | NP 560639.1|/1
gi | 42780593 | xef | NP 978252.1|/1
gi | 42781005 | xef | NP 978252.1|/1
```

gi |70732562 | ref | YP\_262325.1 | : dominio 1 de 1, desde 1 a 338: puntuación 926,8, E = 1e-270

| 37                                                                                                                                        | 82                                                                                                                                                              | 45<br>46.                                                                                                                                                        | 184                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *->qwfafskvyyDbadlsghdeylikGRkVavIdYdSgGHAHAdNLrD<br>M kV+YDbD+dls +1+GKkVA+IGYDSQGHA+A+NL+D<br>-MKVFYDKDCDLSIIQGKKVAIIGYJSQGHAQACNLKD 37 | SGVdV•VGIRKGSBSWakAeaaGfkVktvaEAvaqADvVmlillPDefQae<br>SGVdV+VGIRKGSB++akAea+G+kV +va Ava+AD+Vmil+PDefQ++<br>SGVDVTVGIRKGSATVAKAEAHGIKVTDVAAAVAGADLVMIITPDEFQSQ | vYeeelepnikpgatlafAHGFNIHfgqivPrafFkDiDViMVAPKgPGH<br>+Y++elepn+k+GatlaF+HGF+IH++q+vPra D+DViM+APK+PGH<br>88 LYKNEIBPNIKKGATLAFSHGFAIHYNQVVPRADLDVIMIAPKAPGH 134 | tvrreyykgggvpallavyqdasgnakdlalsyakglgggragytefk<br>tvr+a+vkggG+P+LiA+yqdasgnAk++AlsyA+g+GggR+G+Tettfk<br>135 tvrsefvkgggipdlalyqdasgnaknvalsyaagygggrtgiiettfk 184 |
| ਼ ਜ                                                                                                                                       | ω<br>(M                                                                                                                                                         | 80                                                                                                                                                               | e<br>C                                                                                                                                                              |
|                                                                                                                                           |                                                                                                                                                                 |                                                                                                                                                                  | H                                                                                                                                                                   |
| gi 7073256                                                                                                                                | 91 7073256                                                                                                                                                      | gi 7073256                                                                                                                                                       | gi   7073256                                                                                                                                                        |

185 DETETDLFGEQAVLCGGTVELVKAGFETLVEAGYAPEMAYFECLHELKLI 234

91 | 7073256

eETETDLFGEQaVLCGGvtelVkaGFETLVEaGYaPEMAYFECLHElKLI +ETETDLFGEQaVLCGG++eLVkaGFETLVEaGYaPEMAYFECLHElKLI

| C | מַ       |
|---|----------|
| C | 0        |
|   | _        |
| • |          |
|   |          |
| - | •        |
| C | ٥        |
|   |          |
|   |          |
| L | <u>.</u> |

| VDLMYEGGIALMIYSiSdTAeYGdyvtGprVIdeeskeaMkevlkdiQsG<br>VDLMYEGGIALM+ySiS++AeYG+yvtGp+VI++es++aM+++Lk+1Q+G<br>235 VDLMYEGGIANMYSISNNAEYGEYVTGPEVINAESRQAMRNALKRIQDG 284 | efakewilEngadyPketltalrrneaeHqIEWkVGekLRammpWlaanK<br>e+Ak++i+B++GyP ++ta rrn+a+H IE +Ge+LRsmmpWl anK<br>285 BYAKMFISEGATGYPSMTAKRRNNAAHGIB-IIGEQLRSMMPWIGANK 331 | 1vdkdkn<-*<br>+vdk+kn<br>332 IVDKAKN 338 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 23.5                                                                                                                                                                  | 2<br>88<br>55                                                                                                                                                     | 332                                      |
| 91   7073256                                                                                                                                                          | gi 7073256                                                                                                                                                        | g1   7073256                             |