

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 575 868

61 Int. Cl.:

C12N 15/11 (2006.01) C12Q 1/68 (2006.01) G01N 33/48 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 12.09.2008 E 13161709 (4)
 (97) Fecha y número de publicación de la concesión europea: 04.05.2016 EP 2610342
- (54) Título: Expresión de miARN en microvesículas de sangre periférica humana y sus usos
- (30) Prioridad:

14.09.2007 US 993809 P 22.05.2008 US 55178 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 01.07.2016

73) Titular/es:

THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION (100.0%) 1960 Kenny Road Columbus, OH 43210-1063, US

(72) Inventor/es:

MARSH, CLAY B.; PIPER, MELISSA G y ISMAIL, NOURA

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

DESCRIPCIÓN

Expresión de miARN en microvesículas de sangre periférica humana y sus usos

5 Antecedentes de la invención

25

35

55

Los microARN (miARN o miR) son ARN no codificantes pequeños expresados en animales y plantas. Regulan la función celular, supervivencia celular, activación celular y diferenciación celular durante el desarrollo^{7,8}.

Los microARN son una familia no codificante pequeña de ARN de 19-25 nucleótidos que regulan la expresión génica dirigiendo ARN mensajeros (ARNm) de una manera específica de secuencia, induciendo la represión de la traducción o degradación de ARNm dependiendo del grado de complementariedad entre los miARN y sus dianas (Bartel, D.P. (2004) Cell 116, 281- 297; Ambros, V. (2004) Nature 431, 350-355). Muchos miR están conservados en secuencia entre organismos relacionados de forma distante, lo que sugiere que estas moléculas participan en procesos esenciales. De hecho, los miR están implicados en la regulación de la expresión génica durante el desarrollo (Xu, P., y col. (2003) Curr. Biol. 13, 790-795), proliferación celular (Xu, P., y col. (2003) Curr. Biol. 13, 790-795), apoptosis (Cheng, A.M., y col. (2005) Nucl. Acids Res. 33, 1290-1297), metabolismo de la glucosa (Poy, M.N., y col. (2004) Nature 432, 226-230), resistencia a tensión (Dresios, J., y col. (2005) Proc. Natl. Acad. Sci. USA 102, 1865-1870) y cáncer (Calin, G.A, y col. (2002) Proc. Natl. Acad. Sci. USA 99, 1554-15529; Calin, G.A., y col. (2004)
Proc. Natl Acad. Scl. USA 101, 11755-11760; He, L., y col. (2005) Nature 435, 828-833; y Lu, J., y col. (2005) Nature 435: 834-838).

Hay pruebas sólidas de que los miR desempeñan un papel en la hematopoyesis de mamíferos. En ratones, miR-181, miR-223 y miR-142 se expresan de forma diferencial en tejidos hematopoyéticos, y su expresión está regulada durante la hematopoyesis y compromiso de linaje (Chen, C.Z., y col. (2004) Science 303, 83-86). La expresión ectópica de miR-181 en células progenitoras hematopoyéticas murinas condujo a proliferación en el compartimento de linfocitos B (Chen, C.Z., y col. (2004) Science 303, 83-86). La realización de perfiles génicos de miR sistemática en células del sistema hematopoyético murino reveló diferentes patrones de expresión de miR en el sistema hematopoyético en comparación con tejidos neuronales e identificó cambios de expresión de miR individuales que se producen durante la diferenciación celular (Monticelli, S., y col. (2005) Genome Biology 6, R71). Un estudio reciente ha identificado la modulación negativa de miR-221 y miR-222 en cultivos eritropoyéticos humanos de células progenitoras de sangre del cordón umbilical CD34+ (Felli, N., y col. (2005) Proc. Natl. Acad. ScL USA. 102, 18081-18086). Se descubrió que estos miR se dirigían al oncogén c-Kit. Los estudios funcionales adicionales indicaron que la reducción de estos dos miR en cultivos eritropoyéticos desbloquea la producción de proteína Kit al nivel de traducción lo que conduce a la expansión de células eritroides tempranas (Felli, N., y col. (2005) Proc. Natl. Acad. ScL USA. 102, 18081-18086). En concordancia con la hipótesis de que los miR regulan la diferenciación celular, se descubrió que miR-223 es un miembro clave de un circuito regulador que implica C/EBPa y NFI-A, que controla la diferenciación granulocítica en líneas celulares leucémicas promielocíticas agudas tratadas con ácido retinoico todo trans (Fazi, F., y col. (2005) Cell 123, 819-831).

Valadi et al. han mostrado en Nature Cell Biology 9, 654-659 (2007) que los exosomas contienen tanto ARNm como microARN, que pueden suministrarse a otra célula, y pueden ser funcionales en esta nueva localización.
 Barbarotto et al. revisaron miARN y su papel en cáncer en el International Journal of Cancer 122 5 969-977 1 de marzo de 2008. Barbarotto et al. explicaron que miARN representan una nueva clase de ARNnc pequeños que pueden regular la expresión génica dirigiendo ARN mensajeros de genes codificantes de proteínas y otros transcritos de ARNnc. Explican adicionalmente que se ha descubierto que miARN están implicados en la patofisiología de todos los tipos de cánceres humanos analizados principalmente por expresión génica aberrante, que se caracteriza por niveles anómalos de expresión para transcritos de miARN maduros y/o precursores en comparación con los tejidos normales correspondientes. El perfil de miARN ha permitido la identificación de distintivos asociados con diagnóstico, pronóstico y respuesta a tratamiento de tumores humanos. Por lo tanto, la identificación genética de miARN representa una nueva adición a las herramientas para usar por oncólogos médicos.

Se ha identificado una deleción frecuente y expresión reducida de dos miR en leucemia linfocítica crónica de linfocitos B⁹. Este descubrimiento estimuló numerosos artículos que documentaban la expresión aberrante de miR en carcinomas de cabeza y cuello, cánceres pulmonares de células pequeñas, glioblastomas, cánceres de mama, leucemia linfocítica crónica y linfoma de Burkitt⁹⁻¹². Más recientemente, se ha presentado una relación entre la información y los miR en macrófagos¹³.

Para ensayar tales trastornos, se han obtenido muestras tisulares para confirmar la presencia de dichos macrófagos.

Además, hasta ahora, no ha habido ningún informe que demuestre que las microvesículas que circulan en la sangre contengan miR.

En parte se expondrán ventajas, objetivos y características adicionales de la invención en la descripción a continuación y en parte resultarán evidentes para los expertos habituales en la técnica tras el examen de lo siguiente o pueden aprenderse a partir de la práctica de la invención. Los objetivos y las ventajas de la invención pueden realizarse y obtenerse como se apunta particularmente en las reivindicaciones adjuntas.

Sumario

5

10

20

40

50

60

En un aspecto, la presente invención proporciona un procedimiento para diagnosticar cáncer colorrectal en un sujeto, que comprende:

i) aislar microvesículas en una muestra de un sujeto;

- ii) determinar el nivel de al menos los siguientes regulados positivamente y al menos los siguientes miR regulados negativamente en las microvesículas aisladas; en el que los miR regulados positivamente comprenden miR-19a, miR-21, miR-127, miR-31, miR-96, miR-135b y miR-183; y los miR regulados negativamente comprenden miR-30c, miR-133a, miR-143, miR-133b y miR-145; y
- iii) comparar el nivel de los miR con un control, en el que una alteración del nivel de los miR, en relación con el del control, es diagnóstico del cáncer colorrectal.

Las microvesículas facilitan la comunicación entre células. Muchas células incluyendo macrófagos, plaquetas, linfocitos T y tumores liberan microvesículas pequeñas que contienen ácidos nucleicos y/o proteínas ¹⁻⁵. Los factores contenidos dentro de las microvesículas regulan angiogénesis, crecimiento celular y diferenciación celular ¹⁻³.

En otro aspecto, la invención también proporciona el uso de una microvesícula aislada como un biomarcador para cáncer colorrectal, en el que la microvesícula se aísla de sangre periférica de un sujeto que tiene cáncer colorrectal, y en el que los siguientes miicroARN están regulados positivamente en la microvesícula aislada en relación con la del sujeto de control: miR-19a, miR-21, miR-127, miR-31, miR-96, miR-135b y miR-183; y los siguientes miR están regulados negativamente en la microvesícula aislada en relación con la del sujeto de control: miR-30c, miR-133a, mir-143, miR-133b y miR-145.

En otro aspecto de la presente divulgación, se determina la presencia de los miR en fluidos tales como sangre periférica de pacientes que padecen trastornos particulares.

En otro aspecto de la presente divulgación, se determina la presencia de los miR en tejido pulmonar de pacientes que padecen fibrosis pulmonar.

En otro aspecto más de la presente divulgación, se proporciona en el presente documento un procedimiento para diagnosticar o pronosticar un trastorno particular en un sujeto (por ejemplo, un ser humano). De acuerdo con un procedimiento particular de la presente divulgación, el nivel de al menos un producto génico de miR en una muestra de ensayo del sujeto se compara con el nivel de un producto génico de miR correspondiente en una muestra de control. Una alteración (por ejemplo, un aumento, una reducción) del nivel del producto génico de miR en la muestra de ensayo, en relación con el nivel de un producto génico de miR correspondiente en la muestra de control, es indicativa de que el sujeto tiene, o está en riesgo de desarrollar un trastorno inflamatorio agudo.

En una realización de la presente divulgación, el nivel del producto génico de miR en la muestra de ensayo del sujeto es mayor que el del control. En otra realización de la presente divulgación, el al menos un producto génico de miR se selecciona del grupo que consiste en los miARN como se muestra en el presente documento.

En realizaciones particulares de la presente divulgación, el trastorno que se diagnostica o pronostica es uno que provoca que los fagocitos mononucleares y/o células THP-1 liberen microvesículas.

45 En realizaciones particulares de la presente divulgación, el trastorno que se diagnostica o pronostica es uno que provoca una respuesta inflamatoria.

En otra realización, la divulgación incluye un procedimiento para tratar un cáncer y/o un trastorno inflamatorio en un sujeto (por ejemplo, un ser humano).

En una realización particular de la presente divulgación, se administra una cantidad eficaz de un compuesto para inhibir la expresión de al menos un producto génico de miR seleccionado de uno o más de los grupos hallados en las Tablas I-VI al sujeto.

55 En la presente divulgación el compuesto para inhibir la expresión de al menos un producto génico de miR inhibe la expresión de un producto génico de miR seleccionado de uno o más de los grupos hallados en las Tablas I-VI.

La presente divulgación proporciona además composiciones farmacéuticas para tratar cáncer y/o un trastorno inflamatorio. En una realización de la presente divulgación, las composiciones farmacéuticas comprenden al menos un compuesto de inhibición de la expresión de miR y un vehículo farmacéuticamente aceptable. En una realización particular de la presente divulgación, el al menos un compuesto de inhibición de la expresión de miR es específico para un producto génico de miR cuya expresión es mayor en sangre de pacientes enfermos en comparación con normales.

En otra realización más de la presente divulgación, la composición farmacéutica comprende además al menos un agente anti-inflamatorio.

En una realización de la presente divulgación, la divulgación es una composición farmacéutica para tratar un cáncer asociado con la sobre-expresión de un producto génico de miR y/o trastorno pulmonar asociado con la sobre-expresión de un producto génico de miR. Tales composiciones farmacéuticas comprenden una cantidad eficaz de al menos un producto génico de miR y un vehículo farmacéuticamente aceptable, uniéndose el al menos un producto génico de miR con, y reduciendo la expresión de, el producto génico de miR. En otra realización de la presente divulgación, el al menos un producto génico de miR comprende una secuencia de nucleótidos que es complementaria de una secuencia de nucleótidos en el producto génico de miR. En otra realización más de la presente divulgación, el al menos un producto génico de miR es miR o una variante o un fragmento biológicamente activo del mismo. En otra realización más de la presente divulgación, la composición farmacéutica comprende además al menos un agente anti-neoplásico.

Diversos objetivos y ventajas de la presente invención resultarán evidentes para los expertos en la materia a partir de la siguiente descripción detallada, cuando se lea a la vista de los dibujos adjuntos.

15 Breve descripción de los dibujos

10

20

25

30

35

40

45

50

55

60

65

La **Figura 1** muestra la liberación inducida por diferenciación de microvesículas de macrófagos. Los monocitos de sangre periférica (PBM) se dejaron sin tratar (claro) o se trataron con GM-CSF (oscuro) durante 24 horas. Se recogió sobrenadante sin células y se ultracentrifugó. Las vesículas se resuspendieron en PBS y se analizaron con respecto a tamaño en una citometría de flujo. Antes del análisis, los parámetros FSS y SSC se ajustaron usando perlas convencionales de 2 pm (no mostradas). Se muestran datos representativos de tres donantes diferentes.

Las **Figuras 2A-2C** muestran que las microvesículas median en la diferenciación de macrófagos. Se recogieron microvesículas de células THP1 tratadas con PMA y después se añadieron a células THP1 indiferenciadas (**Figura 2B**) o monocitos (**Figura 2C**). Como control, se dejaron sin tratar células THP1 (**Figura 2A**). Las células se fotografiaron diariamente. Se muestran las células el día 3.

Las **Figuras 3A-3C** muestran el aislamiento de microvesículas de sangre periférica. Después del consentimiento informado, se obtuvo plasma de 20 cm³ de sangre de donantes voluntarios normales. Las microvesículas de 0,5 cm³ se incubaron con anticuerpos CD206-FITC o MHCII-FITC y se analizaron en BD FACS Calibur con respecto a tamaño usando dispersión frontal frente a lateral (**Figura 3A**) y expresión de antígenos en superficie (**Figura 3B**). El porcentaje de expresión de CD206 o MHC II en comparación con el control de isotipos se determinó para la región seleccionada mostrada en la **Figura 3A** (**Figura 3C**). Se muestra la media ± ETM de dos donantes.

Figura 4. Análisis del origen de las microvesículas de sangre periférica. Se analizaron microvesículas de sangre periférica de donantes sanos (n=10) por citometría de flujo. Para determinar el origen celular, las microvesículas se tiñeron con respecto a CD3, CD202b (Tie-2), CD66b, CD79a o CD41a para determinar las que se originaron de linfocitos T, células endoteliales, neutrófilos, linfocitos B o plaquetas. Las microvesículas derivadas de fagocitos mononucleares fueron positivas para CD14, CD206, CCR3, CCR2 o CCR5. Se muestra el porcentaje medio máximo de acontecimientos seleccionados totales ± E.T.M.

Figuras 5A - 5B. Expresión de miARN de microvesículas de sangre periférica y PBMC. (Figura 5A) Se muestra el análisis por grupos jerárquico con respecto a microvesículas y PBMC basándose en criterios de filtración. Se generaron mapas de calor que demostraban el perfil de expresión para microvesículas (Figura 5B) y PBMC (Figura 5C). (Figura 5D). Se muestra el número de compartidos y específicos para cada grupo de muestra.

Figura 6: Tabla I que muestra diversas enfermedades y se enumeran miR regulados positiva y negativamente asociados con las mismas, microARN que son importantes en el tejido de enfermedades humanas, incluyendo aplicaciones de cáncer y no de cáncer. Comparando miARN que son indetectables en el plasma del conjunto de datos de los inventores (Figura 7, Tabla II) con miARN que se sabe que aumentan en el tejido de enfermedades específicas, los inventores creen ahora que predicen que varios miARN pueden actuar como biomarcadores en el plasma (véase miARN en negrita en la Figura 6, Tabla I Columna de Expresión Aumentada).

Figura 7: Tabla II que muestra miR que se expresan en el plasma y los que son indetectables.

Figura 8: La **Tabla III** enumera miR y muestra los diez miARN más expresados en las microvesículas del plasma y las PBMC de todos los individuos.

Figura 9: **Tabla IV** que muestra que las rutas canónicas implicadas en el metabolismo y regulación del sistema inmune adquirido estaban altamente reguladas por las expresiones de estos miARN usando Sanger miRBase solamente (parte superior) o dianas comunes de Sanger miRBase y TargetScan (parte inferior).

Figura 10: Tabla V que muestra que 20 miARN tenían un aumento mayor de tres veces en la expresión en la fracción de PBMC en comparación con las muestras de plasma de la microvesículas así como la proporción de cambio de las microvesículas de plasma en comparación con PBMC (última columna).

Figura 11: Tabla VI que muestra los datos de expresión normalizados para todos los miR detectados: nombre del detector, media -MNC, et-MNC, nombre de detector, media-suero, et-suero.

Descripción detallada

La presente invención se basa, en parte, en la identificación de microARN específicos (miARN) que están implicados en una respuesta inflamatoria y/o tienen niveles de expresión alterados en sangre. La invención se basa además, en parte, en la asociación de estos miARN con elementos de diagnóstico particulares.

Como se describe y ejemplifica en el presente documento los miARN particulares están regulados positiva o negativamente durante la lesión tisular y/o inflamación.

Como se usa en el presente documento de forma intercambiable, un "producto génico de miR", "microARN", "miR", "miR" o "miARN" se refiere al transcrito de ARN procesado o no procesado de un gen de miR. Como los productos génicos de miR no se traducen en proteína, el término "productos génicos de miR" no incluye proteínas. El transcrito génico de miR no procesado también se llama un "precursor de miR" y normalmente comprende un transcrito de ARN de aproximadamente 70-100 nucleótidos de longitud. El precursor de miR puede procesarse por digestión con una RNasa (por ejemplo, Dicer, Argonaut, RNAsa III (por ejemplo, RNasa III de *E. coli*) en una molécula de ARN de 19-25 nucleótidos activa también se llama el transcrito génico de miR "procesado" o miARN "maduro".

10

15

20

35

40

55

60

La molécula de ARN de 19-25 nucleótidos activa puede obtenerse del precursor de miR a través de rutas de procesamiento naturales (por ejemplo, usando células intactas o lisados celulares) o mediante rutas de procesamiento sintéticas (por ejemplo, usando enzimas de procesamiento aisladas, tales como Dicer, Argonaut o RNAsa HI aisladas). Se entiende que la molécula de ARN de 19-25 nucleótidos activa también puede producirse directamente por síntesis biológica o química, sin tener que procesarse a partir del precursor de miR. Cuando se hace referencia a un microARN en el presente documento por nombre, el nombre corresponde a las formas tanto precursora como madura, a no ser que se indique de otro modo.

La presente invención abarca procedimientos para diagnosticar o pronosticar si un sujeto tiene un trastorno en el que se liberen microvesículas.

Los procedimientos comprenden determinar el nivel de al menos un producto génico de miR en una muestra del sujeto y comparar el nivel del producto génico de miR en la muestra con un control. Como se usa en el presente documento, un "sujeto" puede ser cualquier mamífero que tenga, o se sospeche que tiene, dicho trastorno. En una realización preferida, el sujeto es un ser humano que tiene, o se sospecha que tiene, dicho trastorno.

El nivel de al menos un producto génico de miR puede medirse en células de una muestra biológica obtenida del 30 sujeto.

En otra realización, puede retirarse una muestra del sujeto, y puede extraerse ADN y aislarse por técnicas convencionales. Por ejemplo, en ciertas realizaciones, la muestra puede obtenerse del sujeto antes del inicio de la radioterapia, quimioterapia u otro tratamiento terapéutico. Puede obtenerse una muestra de control correspondiente, o una muestra de referencia de control (por ejemplo, obtenida de una población de muestras de control), a partir de muestras no afectadas del sujeto, de un individuo humano normal o población de individuos normales, o de células cultivadas correspondientes a la mayoría de células en la muestra del sujeto. La muestra de control puede procesarse después junto con la muestra del sujeto, de modo que los niveles de producto génico de miR producido de un gen miR dado en células de la muestra del sujeto pueden compararse con los niveles de producto génico de miR correspondientes de células de la muestra de control. Como alternativa, puede obtenerse una muestra de referencia y procesarse por separado (por ejemplo, en un momento diferente) a partir de la muestra de ensayo y el nivel de un producto génico de miR producido a partir de un gen de miR dado en células de la muestra de ensayo puede compararse con el nivel de producto génico de miR correspondiente de la muestra de referencia.

En una realización de la presente divulgación, el nivel del al menos un producto génico de miR en la muestra de ensayo es mayor que el nivel del producto génico de miR correspondiente en la muestra de control (es decir, la expresión del producto génico de miR está regulada "positivamente"). Como se usa en el presente documento, la expresión de un producto génico de miR está "regulada positivamente" cuando la cantidad de producto génico de miR en una muestra de un sujeto es mayor que la cantidad del mismo producto génico en un control (por ejemplo, un patrón de referencia, una muestra celular de control, una muestra tisular de control).

En otra realización de la presente divulgación, el nivel del al menos un producto génico de miR en la muestra de ensayo es menor que el nivel del producto génico de miR correspondiente en la muestra de control (es decir, la expresión del producto génico de miR está "regulada negativamente"). Como se usa en el presente documento, la expresión de un gen de miR está "regulada negativamente" cuando la cantidad del producto génico de miR producido a partir de ese gen en una muestra de un sujeto es menor que la cantidad producida a partir del mismo gen en una muestra de control. La expresión génica de miR relativa en el control y muestras normales puede determinarse con respecto a uno o más patrones de expresión de ARN. Los patrones pueden comprender, por ejemplo, un nivel de expresión génica de miR cero, el nivel de expresión génica de miR en una línea celular convencional, el nivel de expresión génica de miR en muestras no afectadas del sujeto, o el nivel medio de la expresión génica de miR previamente obtenido para una población de controles humanos normales (por ejemplo, un patrón de referencia de control).

El nivel del al menos un producto génico de miR puede medirse usando diversas técnicas que se conocen bien por los expertos en la materia (por ejemplo, RT-PCR cuantitativa o semicuantitativa, análisis de transferencia de Northern, detección por hibridación de solución). En una realización particular de la presente divulgación, el nivel de

al menos un producto génico de miR se mide por transcripción inversa de ARN a partir de una muestra de ensayo obtenida del sujeto para proporcionar un conjunto de oligodesoxinucleótidos diana, hibridando los oligodesoxinucleótidos diana con uno o más oligonucleótidos sonda específicos de miARN (por ejemplo, una micromatriz que comprende oligonucleótidos sonda específicos de miARN) para proporcionar un perfil de hibridación para la muestra de ensayo, y comparar el perfil de hibridación de la muestra de ensayo con un perfil de hibridación generado a partir de una muestra de control. Una alteración de la señal de al menos un miARN en la muestra de ensayo en relación con la muestra de control es indicativa de que el sujeto tiene, o está en riesgo de un trastorno particular.

Además, puede prepararse una micromatriz a partir de sondas oligonucleotídicas específicas de gen generadas a partir de secuencias de miARN conocidas. La matriz puede contener dos sondas oligonucleotídicas diferentes para cada miRNA, conteniendo una la secuencia activa madura y siendo la otra específica para el precursor del miARN. La matriz también puede contener controles, tales como una o más secuencias de ratón que difieren de ortólogos humanos en solamente unas pocas bases, que pueden actuar como controles para condiciones de rigurosidad de hibridación, ARNt y otros ARN (por ejemplo, ARNr, ARNm) de ambas especies también pueden imprimirse en la microplaca, proporcionando un control interno, relativamente estable, positivo para hibridación específica. También puede incluirse uno o más controles apropiados para hibridación no específica en la microplaca. Para este fin, se seleccionan secuencias basándose en la ausencia de cualquier homología con cualquier miARN conocido.

20 La micromatriz puede fabricarse usando técnicas conocidas en este campo. Por ejemplo, oligonucleótidos sonda de una longitud apropiada, por ejemplo, 40 nucleótidos, se modifican con 5'-amina en la posición C6 y se imprimen usando sistemas de micromatriz disponibles en el mercado, por ejemplo, el Microarrayer GeneMachine OmniGrid 100 y portaobjetos activados Amersham CodeLink™. Se prepara oligómero de ADNc marcado correspondiente a los ARN diana por transcripción inversa del ARN diana con cebador marcado. Después de la síntesis de primera 25 cadena, los híbridos de ARN/ADN se desnaturalizan para degradar los moldes de ARN. Los ADNc diana marcados preparados de este modo se hibridan después con la microplaca de micromatriz en condiciones de hibridación, por ejemplo, SSPE 6X/formamida 30 % a 25 °C durante 18 horas, seguido de lavado en TNT 0,75X a 37 °C durante 40 minutos. En posiciones en la matriz en las que el ADN sonda inmovilizado reconoce un ADNc diana complementario en la muestra, se produce hibridación. El ADNc diana marcado señala la posición exacta en la matriz en la que se 30 produce unión, permitiendo la detección y cuantificación automática. El resultado consiste en una lista de acontecimientos de hibridación, que indica la abundancia relativa de secuencias de ADNc específicas, y por lo tanto la abundancia relativa de los miR complementarios correspondientes, en la muestra del paciente. De acuerdo con una realización de la presente divulgación, el oligómero de ADNc marcado es un ADNc marcado con biotina, preparado a partir de un cebador marcado con biotina. La micromatriz se procesa después por detección directa de 35 los transcritos que contienen biotina usando, por ejemplo, conjugado de estreptavidina-Alexa647, y se explora utilizando procedimientos de exploración convencionales. Las intensidades de imagen de cada punto en la matriz son proporcionales a la abundancia del miR correspondiente en la muestra del paciente.

El uso de la matriz tiene varias ventajas para la detección de la expresión de miARN. En primer lugar, la expresión global de varios cientos de genes puede identificarse en la misma muestra en un punto temporal. En segundo lugar, mediante un diseño cuidadoso de las sondas oligonucleotídicas, puede identificarse la expresión de moléculas tanto maduras como precursoras. En tercer lugar, en comparación con el análisis de transferencia de Northern, la microplaca requiere una cantidad pequeña de ARN, y proporciona resultados reproducibles usando 2,5 µg de ARN total. El número relativamente limitado de miARN (algunos cientos por especie) permite la construcción de una micromatriz común para varias especies, con sondas oligonucleotídicas distintas para cada una. Dicha herramienta posibilita el análisis de expresión entre especies para cada miR conocido en diversas condiciones.

Además de su uso para ensayos de nivel de expresión cuantitativa de miR específicos, puede emplearse una microplaca que contenga oligonucleótidos sonda específicos de miARN correspondientes a una parte sustancial del miRNoma, preferentemente el miRNoma completo, para llevar a cabo el perfil de expresión génica de miR, para análisis de los patrones de expresión de miR. Pueden asociarse firmas de miR distintas con marcadores de enfermedad establecidos, o directamente con una patología.

50

De acuerdo con los procedimientos de realización de perfiles de expresión descritos en el presente documento, el ARN total de una muestra de un sujeto que se sospecha que tiene un trastorno particular se transcribe de forma inversa cuantitativamente para proporcionar un conjunto de oligodesoxinucleótidos diana marcados complementarios del ARN en la muestra. Los oligodesoxinucleótidos diana se hibridan después con una micromatriz que comprende oligonucleótidos sonda específicos de miARN para proporcionar un perfil de hibridación para la muestra. El resultado es un perfil de hibridación para la muestra que representa el patrón de expresión de miARN en la muestra. El perfil de hibridación comprende la señal de la unión de los oligodesoxinucleótidos diana de la muestra con los oligonucleótidos sonda específicos de miARN en la micromatriz. El perfil puede registrarse como la presencia o ausencia de unión (señal frente a señal cero). Más preferentemente, el perfil registrado incluye la intensidad de la señal de cada hibridación. El perfil se compara con el perfil de hibridación generado a partir de una muestra de control normal o muestra de referencia. Una alteración en la señal es indicativa de la presencia de, o tendencia a desarrollar, el trastorno particular en el sujeto.

Otras técnicas para medir la expresión génica de miR también están dentro de la experiencia de la técnica, e incluyen diversas técnicas para medir velocidades de transcripción y degradación de ARN.

La presente divulgación también proporciona procedimientos para diagnosticar si un sujeto tiene, o está en riesgo de desarrollar, un trastorno particular con un pronóstico adverso. En este procedimiento, el nivel de al menos un producto génico de miR, que se asocia con un pronóstico adverso en un trastorno particular, se mide por transcripción inversa de ARN a partir de una muestra de ensayo obtenida del sujeto para proporcionar un conjunto de oligodesoxinucleótidos diana. Los oligodesoxinucleótidos diana se hibridan después con uno o más oligonucleótidos sonda específicos de miARN (por ejemplo, una micromatriz que comprende oligonucleótidos sonda específicos de miARN) para proporcionar un perfil de hibridación para la muestra de ensayo, y el perfil de hibridación de la muestra de ensayo se compara con un perfil de hibridación generado a partir de una muestra de control. Una alteración en la señal de al menos un miARN en la muestra de ensayo en relación con la muestra de control es indicativa de que el sujeto tiene, o está en riesgo de desarrollar, un trastorno particular con un pronóstico adverso.

10

25

30

35

45

60

65

En algunos casos, puede ser deseable determinar simultáneamente el nivel de expresión de una pluralidad de diferentes productos génicos de miR en una muestra. En otros casos, puede ser deseable determinar el nivel de expresión de los transcritos de todos los genes de miR conocidos correlacionados con un trastorno particular. Evaluar los niveles de expresión específicos para cientos de genes o productos génicos de miR consume tiempo y requiere una gran cantidad de ARN total (por ejemplo, al menos 20 μg para cada transferencia de Northern) y técnicas autorradiográficas que requieren isótopos radiactivos.

Para superar estas limitaciones, puede construirse una oligobiblioteca, en formato de microplaca (es decir, una micromatriz), que contenga un conjunto de sondas oligonucleotídicas (por ejemplo, oligodesoxinucleotídica) que sean específicas para un conjunto de genes de miR. Usando dicha micromatriz, el nivel de expresión de múltiples microARN en una muestra biológica puede determinarse por transcripción inversa de los ARN para generar un conjunto de oligodesoxinucleótidos diana, e hibridarlos para explorar los oligonucleótidos en la micromatriz para generar un perfil de hibridación o expresión. El perfil de hibridación de la muestra de ensayo puede compararse después con el de una muestra de control para determinar qué microARN tienen un nivel de expresión alterado. Como se usa en el presente documento, "oligonucleótido sonda" o "oligodesoxinucleótido sonda" se refiere a un oligonucleótido que es capaz de hibridar con un oligonucleótido diana. "Oligonucleótido diana" u "oligodesoxinucleótido diana" se refiere a una molécula para detectar (por ejemplo, mediante hibridación). Por "oligonucleótido sonda específico de miR" u "oligonucleótido sonda específico para un miR" se entiende un oligonucleótido sonda que tiene una secuencia seleccionada para hibridar con un producto génico de miR específico, o con un transcrito inverso del producto génico de miR específico.

Un "perfil de expresión" o "perfil de hibridación" de una muestra particular es esencialmente una identificación del estado de la muestra; mientras que dos estados pueden tener cualquier gen particular expresado de forma similar, la evaluación de varios genes simultáneamente permite la generación de un perfil de expresión génica que es único para el estado de la célula. Es decir, pueden distinguirse muestras normales de muestras que presentan trastorno correspondiente. Dentro de dichas muestras que presentan trastorno, pueden determinarse diferentes estados de pronóstico (por ejemplo, buenas o malas perspectivas de supervivencia a largo plazo). Comparando los perfiles de expresión de muestras que presentan trastorno en diferentes estados, se obtiene información con respecto a qué genes son importantes (incluyendo tanto regulación positiva como regulación negativa de genes) en cada uno de estos estados.

La identificación de secuencias que se expresan de forma diferencial en muestras que presentan trastorno, así como la expresión diferencial que da diferentes resultados de pronóstico, permite el uso de esta información de varias maneras. Por ejemplo, puede evaluarse un régimen de tratamiento particular (por ejemplo, para determinar si un fármaco quimioterapéutico actúa para mejorar el pronóstico a largo plazo en un sujeto particular). De forma similar, puede realizarse o confirmarse el diagnóstico comparando muestras de un sujeto con perfiles de expresión conocidos. Además, estos perfiles de expresión génica (o genes individuales) permiten la exploración de candidatos farmacológicos que suprimen el perfil de expresión del trastorno particular o convierten un perfil de pronóstico malo en un perfil de mejor pronóstico.

Las alteraciones en el nivel de uno o más productos génicos de miR en células pueden dar como resultado la desregulación de una o más dianas pretendidas para estos miR, lo que puede conducir a un trastorno particular. Por lo tanto, alterar el nivel del producto génico de miR (por ejemplo, reduciendo el nivel de un miR que está regulado positivamente en células que muestran un trastorno, aumentando el nivel de un miR que está regulado negativamente en células que presentan trastorno) puede tratar exitosamente el trastorno.

En consecuencia, la presente divulgación abarca procedimientos para tratar un trastorno en un sujeto, en el que al menos un producto génico de miR está desregulado (por ejemplo, regulado negativamente, regulado positivamente) en las células del sujeto. En una realización de la presente divulgación, el nivel de al menos un producto génico de miR en una muestra de ensayo es mayor que el nivel del producto génico de miR correspondiente en una muestra de control o referencia. En otra realización de la presente divulgación, el nivel de al menos un producto génico de miR en una muestra de ensayo es menor que el nivel del producto génico de miR correspondiente en una muestra

de control. Cuando el al menos un producto génico de miR aislado está regulado negativamente en la muestra de ensayo, el procedimiento comprende administrar una cantidad eficaz del al menos un producto génico de miR aislado, o una variante aislada o un fragmento biológicamente activo del mismo, de modo que se inhiba la proliferación de las células que presentan trastorno en el sujeto.

Por ejemplo, cuando un producto génico de miR está regulado negativamente en una célula cancerosa en un sujeto, administrar una cantidad eficaz 10 de un producto génico de miR aislado al sujeto puede inhibir la proliferación de la célula cancerosa. El producto génico de miR aislado que se administra al sujeto puede ser idéntico a un producto génico de miR natural endógeno que está regulado negativamente en la célula cancerosa o puede ser una variante o un fragmento biológicamente activo del mismo.

10

15

20

45

50

55

60

65

Como se define en el presente documento, una "variante" de un producto génico de miR se refiere a un miARN que tiene menos del 100 % de identidad con un producto génico de miR natural correspondiente y posee una o más actividades biológicas del producto génico de miR natural correspondiente. Los ejemplos de dichas actividades biológicas incluyen, pero sin limitación, inhibición de la expresión de una molécula de ARN diana (por ejemplo, inhibir la traducción de una molécula de ARN diana, modular la estabilidad de una molécula de ARN diana, inhibir el procesamiento de una molécula de ARN diana) e inhibición de un proceso celular asociado con cáncer y/o un trastorno mieloproliferativo (por ejemplo, diferenciación celular, crecimiento celular, muerte celular). Estas variantes incluyen variantes de especie y variantes que son la consecuencia de una o más mutaciones (por ejemplo, una sustitución, una deleción, una inserción) en un gen de miR. En ciertas realizaciones de la presente divulgación, la variante es al menos aproximadamente 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 98 % o 99 % idéntica a un producto génico de miR natural correspondiente.

Como se define en el presente documento, un "fragmento biológicamente activo" de un producto génico de miR se refiere a un fragmento de ARN de un producto génico de miR que posee una o más actividades biológicas de un producto génico de miR natural correspondiente. Como se ha descrito anteriormente, los ejemplos de dichas actividades biológicas incluyen, pero sin limitación, inhibición de la expresión de una molécula de ARN diana e inhibición de un proceso celular asociado con cáncer y/o un trastorno mieloproliferativo. En ciertas realizaciones de la presente divulgación, el fragmento biológicamente activo es de al menos aproximadamente 5, 7, 10, 12, 15 o 17 nucleótidos de longitud. En una realización particular de la presente divulgación, puede administrarse un producto génico de miR aislado a un sujeto en combinación con uno o más tratamientos antineoplásicos adicionales. Los tratamientos antineoplásicos adecuados incluyen, pero sin limitación, quimioterapia, radioterapia y combinaciones de los mismos (por ejemplo, quimiorradiación).

Cuando el al menos un producto génico de miR aislado está regulado positivamente en las células cancerosas, el procedimiento comprende administrar al sujeto una cantidad eficaz de un compuesto que inhibe la expresión del al menos un producto génico de miR, de modo que se inhiba la proliferación de las células que muestran trastorno. Dichos compuestos se denominan en el presente documento compuestos de inhibición de la expresión génica de miR. Los ejemplos de compuestos de inhibición de la expresión génica de miR adecuados incluyen, pero sin limitación, los descritos en el presente documento (por ejemplo, ARN bicatenario, ácidos nucleicos antisentido y moléculas de ARN enzimático).

En una realización particular de la presente divulgación, un compuesto que inhibe la expresión génica de miR puede administrarse a un sujeto en combinación con uno o más tratamientos antineoplásicos adicionales. Los tratamientos antineoplásicos adecuados incluyen, pero sin limitación, quimioterapia, radioterapia y combinaciones de los mismos (por ejemplo, quimiorradiación).

Como se ha descrito en el presente documento, cuando el al menos un producto génico de miR aislado está regulado positivamente en células cancerosas, el procedimiento comprende administrar al sujeto una cantidad eficaz de al menos un compuesto para inhibir la expresión del al menos un producto génico de miR, de modo que se inhiba la proliferación de células cancerosas.

Los términos "tratar", "tratando" y "tratamiento", como se usan en el presente documento, se refieren a aliviar síntomas asociados con una enfermedad o afección, por ejemplo, cáncer y/u otra afección o trastorno, incluyendo prevenir o retardar la aparición de los síntomas de la enfermedad y/o reducir la gravedad o frecuencia de síntomas de la enfermedad, trastorno o afección.

Los términos "sujeto", "paciente" e "individuo" se define en el presente documento que incluyen animales, tales como mamíferos, incluyendo, pero sin limitación, primates, vacas, ovejas, cabras, caballos, perros, gatos, conejos, cobayas, ratas, ratones u otras especies bovinas, ovinas, equinas, caninas, felinas, roedores o murinas. En una realización preferida de la presente divulgación, el animal es un ser humano.

Como se usa en el presente documento, un producto génico de miR "aislado" es uno que se sintetiza, o altera o retira del estado natural mediante intervención humana. Por ejemplo, se considera que un producto génico de miR sintético, o un producto génico de miR parcial o completamente separado de los materiales coexistentes de su estado natural, está "aislado". Un producto génico de miR aislado puede existir en una forma sustancialmente

purificada, o puede existir en una célula en la que se ha suministrado el producto génico de miR. Por lo tanto, un producto génico de miR que se suministra deliberadamente a, o se expresa en, una célula se considera un producto génico de miR "aislado". Se considera que un producto génico de miR producido dentro de una célula a partir de una molécula precursora de miR también es una molécula "aislada". De acuerdo con la presente divulgación, los productos génicos de miR aislados descritos en el presente documento pueden usarse para la fabricación de un medicamento para tratar a un sujeto (por ejemplo, un ser humano).

Pueden obtenerse productos génicos de miR aislados usando varias técnicas convencionales. Por ejemplo, los productos génicos de miR pueden sintetizarse de forma química o producirse de forma recombinante usando procedimientos conocidos en la técnica. En una realización de la presente divulgación, los productos génicos de miR se sintetizan químicamente usando ribonucleósido fosforamiditas protegidas de forma apropiada y un sintetizador de ADN/ARN convencional. Los proveedores comerciales de moléculas de ARN sintéticas o reactivos de síntesis incluyen, por ejemplo, Proligo (Hamburgo, Alemania), Dharmacon Research (Lafayette, CO, Estados Unidos), Pierce Chemical (parte de Perbio Science, Rockford, IL, Estados Unidos), Glen Research (Sterling, VA, Estados Unidos), ChemGenes (Ashland, MA, Estados Unidos) y Cruachem (Glasgow, Reino Unido).

10

15

20

50

55

60

65

Como alternativa, los productos génicos de miR pueden expresarse a partir de plásmidos de ADN circulares o lineales recombinantes usando cualquier promotor adecuado. Los promotores adecuados para expresar ARN a partir de un plásmido incluyen, por ejemplo, las secuencias promotoras U6 o H1 ARN pol III, o los promotores de citomegalovirus. La selección de otros promotores adecuados está dentro de la experiencia de la técnica. Los plásmidos recombinantes de la presente divulgación también pueden comprender promotores inducibles o regulables para expresión de los productos génicos de miR en células (por ejemplo, células cancerosas, células que muestran un trastorno mieloproliferativo).

Los productos génicos de miR que se expresan a partir de plásmidos recombinantes pueden aislarse de sistemas de expresión de células cultivadas por técnicas convencionales. Los productos génicos de miR que se expresan a partir de plásmidos recombinantes también pueden suministrarse a, y expresarse directamente en, células.

Los productos génicos de miR pueden expresarse a partir de un plásmido recombinante separado, o pueden expresarse a partir del mismo plásmido recombinante. En una realización de la presente divulgación, los productos génicos de miR se expresan como moléculas precursoras de ARN a partir de un plásmido único, y las moléculas precursoras se procesan en el producto génico de miR funcional por un sistema de procesamiento adecuado, incluyendo, pero sin limitación, sistemas de procesamiento existentes dentro de una célula cancerosa.

La selección de plásmidos adecuados para expresar los productos génicos de miR, procedimientos para insertar secuencias de ácido nucleico en el plásmido para expresar los productos génicos, y procedimientos para suministrar el plásmido recombinante a las células de interés están dentro de la experiencia de la técnica. Véase, por ejemplo, Zeng y col. (2002), Molecular Cell 9:1327-1333; Tuschl (2002), Nat. Biotechnol, 20:446-448; Brummelkamp y col. (2002), Science 296:550-553; Miyagishi y col. (2002), Nat. Biotechnol. 20:497-500; Paddison y col. (2002), Genes Dev. 16:948-958; Lee y col. (2002), Nat. Biotechnol. 20:500-505; y Paul y col. (2002), Nat. Biotechnol. 20:505-508. Por ejemplo, en ciertas realizaciones de la presente divulgación, un plásmido que expresa los productos génicos de miR puede comprender una secuencia que codifica un ARN precursor de miR bajo el control del promotor intermedio-temprano de CMV. Como se usa en el presente documento, "bajo el control" de un promotor significa que las secuencias de ácido nucleico que codifican el producto génico de miR se localiza en 3' del promotor, de modo que el promotor puede iniciar la transcripción de las secuencias codificantes del producto génico de miR.

Los productos génicos de miR también pueden expresarse a partir de vectores virales recombinantes. Se contempla que los productos génicos de miR pueden expresarse a partir de dos vectores virales recombinantes separados, o a partir del mismo vector viral. El ARN expresado a partir de los vectores virales recombinantes puede aislarse de sistemas de expresión de células cultivadas por técnicas convencionales, o puede expresarse directamente en células (por ejemplo, células cancerosas, células que muestran un trastorno mieloproliferativo).

En otras realizaciones de los procedimientos de tratamiento de la presente divulgación, puede administrarse al sujeto una cantidad eficaz de al menos un compuesto que inhiba la expresión de miR. Como se usa en el presente documento "inhibir la expresión de miR" significa que la producción del precursor y/o forma activa, madura del producto génico de miR después del tratamiento es menor que la cantidad producida antes del tratamiento. Un experto en la materia puede determinar fácilmente si la expresión de miR se ha inhibido en células usando, por ejemplo, las técnicas para determinar el nivel de transcrito de miR analizado en el presente documento. Puede producirse inhibición en el nivel de la expresión génica (es decir, inhibiendo la transcripción de un gen de miR que codifica el producto génico de miR) o en el nivel de procesamiento (por ejemplo, inhibiendo el procesamiento de un precursor de miR en un miR maduro, activo).

Como se usa en el presente documento, una "cantidad eficaz" de un compuesto que inhibe la expresión de miR es una cantidad suficiente para inhibir la proliferación de células en un sujeto que padece cáncer y/o un trastorno mieloproliferativo. Un experto en la materia puede determinar fácilmente una cantidad eficaz de un compuesto que inhibe la expresión de miR para administrar a un sujeto dado, teniendo en cuenta factores tales como la talla y peso

del sujeto; el alcance de la penetración de la enfermedad; la edad, salud y sexo del sujeto; la vía de administración; y si la administración es regional o sistémica.

Un experto en la materia también puede determinar fácilmente un régimen de dosificación apropiado para administrar un compuesto que inhiba la expresión de miR a un sujeto dado, como se describe en el presente documento. Los compuestos adecuados para inhibir la expresión génica de miR incluyen ARN bicatenario (tal como ARN de interferencia corto o pequeño o "ARNip"), ácidos nucleicos antisentido y moléculas de ARN enzimáticas, tales como ribozimas. Cada uno de estos compuestos puede dirigirse a un producto génico de miR dado e interferir con la expresión (por ejemplo, inhibiendo la traducción, induciendo la escisión y/o degradación) del producto génico de miR diana.

Por ejemplo, la expresión de un gen de miR dado puede inhibirse induciendo una interferencia de ARN del gen de miR con una molécula de ARN bicatenario ("ARNbc") aislada que tiene al menos 90 %, por ejemplo, al menos 95 %, al menos 98 %, al menos 99 % o 100 % de homología de secuencia con al menos una parte del producto génico de miR. En una realización particular de la presente divulgación, la molécula de ARNbc es un "ARN de interferencia corto o pequeño" o "ARNip".

La administración de al menos un producto génico de miR, o al menos un compuesto para inhibir la expresión de miR, inhibirá la proliferación de células (por ejemplo, células cancerosas, células que muestren un trastorno mieloproliferativo) en un sujeto que tiene un cáncer y/o un trastorno mieloproliferativo. Como se usa en el presente documento, "inhibir la proliferación de células cancerosas o células que muestren un trastorno mieloproliferativo" significa destruir las células, o detener permanente o temporalmente o ralentizar el crecimiento de las células. La inhibición de la proliferación celular puede inferirse si el número de tales células en el sujeto permanece constante o se reduce después de la administración de los productos génicos de miR o compuestos que inhiben la expresión del gen de miR. También puede inferirse una inhibición de la proliferación de células cancerosas o células que muestren un trastorno mieloproliferativo si el número absoluto de tales células aumenta, pero la velocidad de crecimiento tumoral se reduce.

Un producto génico de miR o compuesto que inhibe la expresión génica de miR también puede administrarse a un sujeto por cualquier vía de administración entérica o parenteral adecuada. Las vías de administración entéricas adecuadas para los presentes procedimientos incluyen, por ejemplo, suministro oral, rectal o intranasal. Las vías de administración parenterales adecuadas incluyen, por ejemplo, administración intravascular (por ejemplo, inyección de embolada intravenosa, infusión intravenosa, inyección de embolada intra-arterial, infusión intra-arterial e instilación por catéter en la vasculatura); inyección peri e intra-tisular (por ejemplo, inyección peri-tumoral e intra-tumoral, inyección intra-retiniana o inyección subretiniana); inyección o deposición subcutánea, incluyendo infusión subcutánea (tal como por bombas osmóticas); aplicación directa al tejido de interés, por ejemplo, por un catéter u otro dispositivo de colocación (por ejemplo, un microgránulo retiniano o un supositorio o un implante que comprende un material poroso, no poroso o gelatinoso); e inhalación. Son vías de administración particularmente adecuadas inyección, infusión e inyección directa en el tumor.

Los productos génicos de miR o compuestos de inhibición de la expresión génica de miR pueden formularse como composiciones farmacéuticas, en ocasiones denominadas "medicamentos", antes de administrarlos a un sujeto, de acuerdo con técnicas conocidas en este campo. En consecuencia, la presente divulgación abarca composiciones farmacéuticas para tratar cáncer y/o un trastorno mieloproliferativo.

Las presentes composiciones farmacéuticas comprenden al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende una secuencia que codifica el producto génico de miR o compuesto de inhibición de la expresión génica de miR) (por ejemplo, de 0,1 a 90 % en peso), o una sal fisiológicamente aceptable del mismo, mezclado con un vehículo farmacéuticamente aceptable. En ciertas realizaciones de la presente divulgación, la composición farmacéutica comprende adicionalmente uno o más agentes antineoplásicos (por ejemplo, agentes quimioterapéuticos). Las formulaciones farmacéuticas de la invención también pueden comprender al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende una secuencia que codifica el producto génico de miR o compuesto de inhibición de la expresión génica de miR), que se encapsula por liposomas y un vehículo farmacéuticamente aceptable.

Las composiciones farmacéuticas también pueden comprender excipientes y/o 25 aditivos farmacéuticos convencionales. Los excipientes farmacéuticos adecuados incluyen estabilizadores, antioxidantes, agentes de ajuste de la osmolalidad, tampones y agentes de ajuste del pH. Los aditivos adecuados incluyen, por ejemplo, tampones fisiológicamente biocompatibles (por ejemplo, clorhidrato de trometamina), adiciones de quelantes (tales como, por ejemplo, DTPA o DTPA-bisamida) o complejos de quelado cálcico (tales como, por ejemplo, DTPA de calcio, CaNaDTPA-bisamida) o, opcionalmente, adiciones de sales de calcio o sodio (por ejemplo, cloruro cálcico, ascorbato cálcico, gluconato cálcico o lactato cálcico). Las composiciones farmacéuticas de la presente divulgación pueden envasarse para su uso en forma líquida, o pueden liofilizarse.

65

60

10

15

20

25

30

35

40

45

50

55

Para composiciones farmacéuticas sólidas, pueden usarse vehículos convencionales no tóxicos sólidos farmacéuticamente aceptables; por ejemplo, usos farmacéuticos de manitol, lactosa, almidón, estearato de magnesio, sacarina sódica, talco, celulosa, glucosa, sacarosa, carbonato de magnesio y similares.

Por ejemplo, una composición farmacéutica sólida para administración oral puede comprender cualquiera de los vehículos y excipientes enumerados anteriormente y 10-95 %, preferentemente 25 %-75 %, del al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende secuencias que los codifican). Una composición farmacéutica para administración para aerosol (inhalación) puede comprender 0,01-20 % en peso, preferentemente 1 %-10 % en peso, del al menos un producto génico de miR o compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende una secuencia que codifica el producto génico de miR o compuesto de inhibición de la expresión génica de miR) encapsulado en un liposoma como se ha descrito anteriormente y un propulsor. También puede incluirse un vehículo según se desee; por ejemplo, lecitina para suministro intranasal.

Las composiciones farmacéuticas de la presente divulgación pueden comprender además uno o más agentes 15 antineoplásicos. En una realización particular de la presente divulgación, las composiciones comprenden al menos un producto génico de miR o un compuesto de inhibición de la expresión génica de miR (o al menos un ácido nucleico que comprende una secuencia que codifica el producto génico de miR o un compuesto de inhibición de la expresión génica de miR) y al menos un agente quimioterapéutico. Los agentes quimioterapéuticos que son adecuados para los procedimientos de la presente divulgación incluyen, pero sin limitación, agentes alquilantes de 20 ADN, agentes antibióticos anti-tumorales, agentes anti-metabólicos, agentes estabilizadores de tubulina, agentes desestabilizadores de tubulina, agentes antagonistas de hormonas, inhibidores de topoisomerasa, inhibidores de proteína quinasa, inhibidores de HMG-CoA, inhibidores de CDK, inhibidores de ciclina, inhibidores de caspasa, inhibidores de metaloproteinasa, ácidos nucleicos antisentido, ADN de triple hélice, aptámeros de ácidos nucleicos y 25 agentes virales, bacterianos y exotóxicos modificados molecularmente. Los ejemplos de agentes adecuados para las composiciones incluyen, pero sin limitación, citidina arabinósido, metotrexato, vincristina, etopósido (VP-16), doxorrubicina (adriamicina), cisplatino (CDDP), dexametasona, arglabina, ciclofosfamida, metilnitrosourea, fluorouracilo, 5-fluorouracilo (5FÚ), vinblastina, camptotecina, actinomicina D, mitomicina C, peróxido de hidrógeno, oxaliplatino, irinotecán, topotecán, leucovorina, carmustina, estreptozocina, CPT-11, taxol, 30 tamoxifeno, dacarbazina, rituximab, daunorrubicina, 1-p-D-arabinofuranosilcitosina, imatinib, fludarabina, docetaxel y FOLFOX4.

En una realización de la presente divulgación, el procedimiento comprende proporcionar un agente de ensayo a una célula y medir el nivel de al menos un producto génico de miR asociado con niveles de expresión reducidos en células cancerosas. Un aumento del nivel del producto génico de miR en la célula, en relación con un control adecuado (por ejemplo, el nivel del producto génico de miR en una célula de control), es indicativo de que el agente de ensayo es un agente antineoplásico.

35

40

45

Los miR de interés se enumeran en bases de datos públicas. En ciertas realizaciones preferidas, la base de datos pública puede ser un depósito central proporcionado por el Instituto Sanger www.http://microma.sanger.ac.uk/sequences/ al que se remiten las secuencias de miR para asignación de nomenclatura y nombre, así como colocación de las secuencias en una base de datos para su archivo y para su recuperación en línea a través de internet. En general, los datos recogidos en las secuencias de miR por el Instituto Sanger incluyen especie, fuente, secuencias genómicas correspondientes y localización genómica (coordenadas cromosómicas), así como productos de transcripción de longitud completa y secuencias para el miARN maduro completamente procesado (miARN con un grupo fosfato terminal 5'). Otra base de datos puede ser la base de datos GenBank a la que se accede a través del sitio web del Centro Nacional para la Información Biotecnológica (NCBI), mantenido por los Institutos Nacionales de Salud y la Biblioteca Nacional de Medicina.

Productos secundarios de biogénesis de miR* que están a nivel bajo, función desconocida		Secuencia madura	SEC ID Nº
hsa-let-7a*	MIMAT0004481	CUAUACAAUCUACUGUCUUUC	1
hsa-let-7a-1	MIMAT0000062	UGAGGUAGUAGGUUGUAUAGUU	2
hsa-let-7a-2	MIMAT0000062	UGAGGUAGUAGGUUGUAUAGUU	3
hsa-let-7a-3	MIMAT0000062	UGAGGUAGUAGGUUGUAUAGUU	4
hsa-let-7b	MIMAT0000063	UGAGGUAGUAGGUUGUGGUU	5
hsa-let-7b*	MIMAT0004482	CUAUACAACCUACUGCCUUCCC	6
hsa-let-7c	MIMAT0000064	UGAGGUAGUAGGUUGUAUGGUU	7
hsa-let-7c*	MIMAT0004483	UAGAGUUACACCCUGGGAGUUA	8
hsa-let-7d	MIMAT0000065	AGAGGUAGUAGGUUGCAUAGUU	9

hsa-let-7d*	MIMAT0004484	CUAUACGACCUGCUGCCUUUCU	10
hsa-let-7e	MIMAT000066	UGAGGUAGGAGGUUGUAUAGUU	11
hsa-let-7e*	MIMAT0004485	CUAUACGGCCUCCUAGCUUUCC	12
hsa-let-7f-1	MIMAT000067	UGAGGUAGUUGUAUAGUU	13
hsa-let-7f-1*	MIMAT0004486	CUAUACAAUCUAUUGCCUUCCC	14
hsa-let-7f-2	MIMAT000067	UGAGGUAGUUGUAUAGUU	15
hsa-let-7f-2*	MIMAT0004487	CUAUACAGUCUACUGUCUUUCC	16
hsa-let-7g	MIMAT0000414	UGAGGUAGUUUGUACAGUU	17
hsa-let-7g*	MIMAT0004584	CUGUACAGGCCACUGCCUUGC	18
hsa-let-7i	MIMAT0000415	UGAGGUAGUUUGUGCUGUU	19
hsa-let-7i*	MIMAT0004585	CUGCGCAAGCUACUGCCUUGCU	20
hsa-mir-009-1	MIMAT0000441	UCUUUGGUUAUCUAGCUGUAUGA	21
hsa-mir-009-1*	MIMAT0000442	AUAAAGCUAGAUAACCGAAAGU	22
hsa-mir-009-2	MIMAT0000441	UCUUUGGUUAUCUAGCUGUAUGA	23
hsa-mir-009-3	MIMAT0000441	UCUUUGGUUAUCUAGCUGUAUGA	24
hsa-mir-010a	MIMAT0000253	UACCCUGUAGAUCCGAAUUUGUG	25
hsa-mir-010a*	MIMAT0004555	CAAAUUCGUAUCUAGGGGAAUA	26
hsa-mir-015a	MIMAT000068	UAGCAGCACAUAAUGGUUUGUG	27
hsa-mir-015b	MIMAT0000417	UAGCAGCACAUCAUGGUUUACA	28
hsa-mir-015b*	MIMAT0004586	CGAAUCAUUAUUUGCUGCUCUA	29
hsa-mir-016-1	MIMAT000069	UAGCAGCACGUAAAUAUUGGCG	30
hsa-mir-016-1*	MIMAT0004489	CCAGUAUUAACUGUGCUGCUGA	31
hsa-mir-016-2	MIMAT000069	UAGCAGCACGUAAAUAUUGGCG	32
hsa-mir-016-2*	MIMAT0004518	CCAAUAUUACUGUGCUGCUUUA	33
hsa-mir-017-3-p	MIMAT000071	ACUGCAGUGAAGGCACUUGUAG	34
hsa-mir-017-5-p	MIMAT0000070	CAAAGUGCUUACAGUGCAGGUAG	35
hsa-mir-018a	MIMAT0000072	UAAGGUGCAUCUAGUGCAGAUAG	36
hsa-mir-018a*	MIMAT0002891	ACUGCCCUAAGUGCUCCUUCUGG	37
hsa-mir-019a	MIMAT0000073	UGUGCAAAUCUAUGCAAAACUGA	38
hsa-mir-019b-1	MIMAT0000074	UGUGCAAAUCCAUGCAAAACUGA	39
hsa-mir-019b-1*	MIMAT0004491	AGUUUUGCAGGUUUGCAUCCAGC	40
hsa-mir-019b-2	MIMAT0000074	UGUGCAAAUCCAUGCAAAACUGA	41
hsa-mir-019b-2*	MIMAT0004492	AGUUUUGCAGGUUUGCAUUUCA	42
hsa-mir-020a	MIMAT0000075	UAAAGUGCUUAUAGUGCAGGUAG	43
hsa-mir-020a*	MIMAT0004493	ACUGCAUUAUGAGCACUUAAAG	44
hsa-mir-020b	MIMAT0001413	CAAAGUGCUCAUAGUGCAGGUAG	45
hsa-mir-021	MIMAT0000076	UAGCUUAUCAGACUGAUGUUGA	46
hsa-mir-021*	MIMAT0004494	CAACACCAGUCGAUGGGCUGU	47
hsa-mir-023a	MIMAT0000078	AUCACAUUGCCAGGGAUUUCC	48
hsa-mir-023a*	MIMAT0004496	GGGGUUCCUGGGGAUGGGAUUU	49
hsa-mir-023b	MIMAT0004587	UGGGUUCCUGGCAUGCUGAUUU	50
hsa-mir-024-1	MIMAT0000080	UGGCUCAGUUCAGCAGGAACAG	51
hsa-mir-024-1*	MIMAT0000079	UGCCUACUGAGCUGAUAUCAGU	52
hsa-mir-024-2	MIMAT0000080	UGGCUCAGUUCAGCAGGAACAG	53

hsa-mir-024-2*	MIMAT0004497	UGCCUACUGAGCUGAAACACAG	54
hsa-mir-025	MIMAT000081	CAUUGCACUUGUCUCGGUCUGA	55
hsa-mir-025*	MIMAT0004498	AGGCGGAGACUUGGGCAAUUG	56
hsa-mir-026a-1	MIMAT000082	UUCAAGUAAUCCAGGAUAGGCU	57
hsa-mir-026a-1*	MIMAT0004499	CCUAUUCUUGGUUACUUGCACG	58
hsa-mir-026a-2	MIMAT000082	UUCAAGUAAUCCAGGAUAGGCU	59
hsa-mir-026a-2*	MIMAT0004681	CCUAUUCUUGAUUACUUGUUUC	60
hsa-mir-026b	MIMAT000083	UUCAAGUAAUUCAGGAUAGGU	61
hsa-mir-026b*	MIMAT0004500	CCUGUUCUCCAUUACUUGGCUC	62
hsa-mir-027a	MIMAT000084	UUCACAGUGGCUAAGUUCCGC	63
hsa-mir-027a*	MIMAT0004501	AGGGCUUAGCUGCUUGUGAGCA	64
hsa-mir-027b	MIMAT0000419	UUCACAGUGGCUAAGUUCUGC	65
hsa-mir-027b*	MIMAT0004588	AGAGCUUAGCUGAUUGGUGAAC	66
hsa-mir-028-3p	MIMAT0004502	CACUAGAUUGUGAGCUCCUGGA	67
hsa-mir-028-5p	MIMAT000085	AAGGAGCUCACAGUCUAUUGAG	68
hsa-mir-029a	MIMAT000086	UAGCACCAUCUGAAAUCGGUUA	69
hsa-mir-029a*	MIMAT0004503	ACUGAUUUCUUUUGGUGUUCAG	70
hsa-mir-029b-1	MIMAT0000100	UAGCACCAUUUGAAAUCAGUGUU	71
hsa-mir-029b-1*	MIMAT0004514	GCUGGUUUCAUAUGGUGGUUUAGA	72
hsa-mir-029b-2	MIMAT0000100	UAGCACCAUUUGAAAUCAGUGUU	73
hsa-mir-029b-2*	MIMAT0004515	CUGGUUUCACAUGGUGGCUUAG	74
hsa-mir-029b-3	MIMAT0000100	UAGCACCAUUUGAAAUCAGUGUU	75
hsa-mir-029c	MIMAT0000681	UAGCACCAUUUGAAAUCGGUUA	76
hsa-mir-030a	MIMAT000087	UGUAAACAUCCUCGACUGGAAG	77
hsa-mir-030a*	MIMAT000088	CUUUCAGUCGGAUGUUUGCAGC	78
hsa-mir-030b	MIMAT0000420	UGUAAACAUCCUACACUCAGCU	79
hsa-mir-030b*	MIMAT0004589	CUGGGAGGUGGAUGUUUACUUC	80
hsa-mir-030c-1	MIMAT0000244	UGUAAACAUCCUACACUCUCAGC	81
hsa-mir-030c-2	MIMAT0000244	UGUAAACAUCCUACACUCUCAGC	82
hsa-mir-030c-2*	MIMAT0004550	CUGGGAGAAGGCUGUUUACUCU	83
hsa-mir-030d	MIMAT0000245	UGUAAACAUCCCCGACUGGAAG	84
hsa-mir-030d*	MIMAT0004551	CUUUCAGUCAGAUGUUUGCUGC	85
hsa-mir-031	MIMAT000089	AGGCAAGAUGCUGGCAUAGCU	86
hsa-mir-031*	MIMAT0004504	UGCUAUGCCAACAUAUUGCCAU	87
hsa-mir-032	MIMAT0000090	UAUUGCACAUUACUAAGUUGCA	88
hsa-mir-032*	MIMAT0004505	CAAUUUAGUGUGUGUGAUAUUU	89
hsa-mir-034a	MIMAT0000255	UGGCAGUGUCUUAGCUGGUUGU	90
hsa-mir-034a*	MIMAT0004557	CAAUCAGCAAGUAUACUGCCCU	91
hsa-mir-092a-1	MIMAT0000092	UAUUGCACUUGUCCCGGCCUGU	92
hsa-mir-092a-1*	MIMAT0004507	AGGUUGGGAUCGGUUGCAAUGCU	93
hsa-mir-093	MIMAT0000093	CAAAGUGCUGUUCGUGCAGGUAG	94
hsa-mir-093*	MIMAT0004509	ACUGCUGAGCUAGCACUUCCCG	95
hsa-mir-095	MIMAT0000094	UUCAACGGGUAUUUAUUGAGCA	96
hsa-mir-096	MIMAT000095	UUUGGCACUAGCACAUUUUUGCU	97

hsa-mir-096*	MIMAT0004510	AAUCAUGUGCAGUGCCAAUAUG	98
hsa-mir-098	MIMAT0000096	UGAGGUAGUAGUUGUAUUGUU	99
hsa-mir-099b	MIMAT0000689	CACCCGUAGAACCGACCUUGCG	100
hsa-mir-099b*	MIMAT0004678	CAAGCUCGUGUCUGUGGGUCCG	101
hsa-mir-100	MIMAT0000098	AACCCGUAGAUCCGAACUUGUG	102
hsa-mir-100*	MIMAT0004512	CAAGCUUGUAUCUAUAGGUAUG	103
hsa-mir-103-1	MIMAT0000101	AGCAGCAUUGUACAGGGCUAUGA	104
hsa-mir-103-2	MIMAT0000101	AGCAGCAUUGUACAGGGCUAUGA	105
hsa-mir-105-1	MIMAT0000102	UCAAAUGCUCAGACUCCUGUGGU	106
hsa-mir-105-1*	MIMAT0004516	ACGGAUGUUUGAGCAUGUGCUA	107
hsa-mir-105-2	MIMAT0000102	UCAAAUGCUCAGACUCCUGUGGU	108
hsa-mir-105-2*	MIMAT0004516	ACGGAUGUUUGAGCAUGUGCUA	109
hsa-mir-106a	MIMAT0000103	AAAAGUGCUUACAGUGCAGGUAG	110
hsa-mir-106a*	MIMAT0004517	CUGCAAUGUAAGCACUUCUUAC	111
hsa-mir-106b	MIMAT0000680	UAAAGUGCUGACAGUGCAGAU	112
hsa-mir-106b*	MIMAT0004672	CCGCACUGUGGGUACUUGCUGC	113
hsa-mir-107	MIMAT0000104	AGCAGCAUUGUACAGGGCUAUCA	114
hsa-mir-122	MIMAT0000421	UGGAGUGUGACAAUGGUGUUUG	115
hsa-mir-122*	MIMAT0004590	AACGCCAUUAUCACACUAAAUA	116
hsa-mir-125a-3p	MIMAT0004602	ACAGGUGAGGUUCUUGGGAGCC	117
hsa-mir-125a-5p	MIMAT0000443	UCCCUGAGACCCUUUAACCUGUGA	118
hsa-mir-125b-1	MIMAT0000423	UCCCUGAGACCCUAACUUGUGA	119
hsa-mir-125b-1*	MIMAT0004592	ACGGGUUAGGCUCUUGGGAGCU	120
hsa-mir-125b-2	MIMAT0000423	UCCCUGAGACCCUAACUUGUGA	121
hsa-mir-125b-2*	MIMAT0004603	UCACAAGUCAGGCUCUUGGGAC	122
hsa-mir-126	MIMAT0000445	UCGUACCGUGAGUAAUAAUGCG	123
hsa-mir-126*	MIMAT0000444	CAUUAUUACUUUUGGUACGCG	124
hsa-mir-127-3p	MIMAT0000446	UCGGAUCCGUCUGAGCUUGGCU	125
hsa-mir-127-5p	MIMAT0004604	CUGAAGCUCAGAGGGCUCUGAU	126
hsa-mir-128-1	MIMAT0000424	UCACAGUGAACCGGUCUCUUU	127
hsa-mir-128-2	MIMAT0000424	UCACAGUGAACCGGUCUCUUU	128
hsa-mir-130	MIMAT0000425	CAGUGCAAUGUUAAAAGGGCAU	129
hsa-mir-130*	MIMAT0004593	UUCACAUUGUGCUACUGUCUGC	130
hsa-mir-130b	MIMAT0000691	CAGUGCAAUGAUGAAAGGGCAU	131
hsa-mir-130b*	MIMAT0004680	ACUCUUUCCCUGUUGCACUAC	132
hsa-mir-132	MIMAT0000426	UAACAGUCUACAGCCAUGGUCG	133
hsa-mir-132*	MIMAT0004594	ACCGUGGCUUUCGAUUGUUACU	134
hsa-mir-133a-1	MIMAT0000427	UUUGGUCCCCUUCAACCAGCUG	135
hsa-mir-133a-2	MIMAT0000427	UUUGGUCCCCUUCAACCAGCUG	136
hsa-mir-133b	MIMAT0000770	UUUGGUCCCCUUCAACCAGCUA	137
hsa-mir-134	MIMAT0000447	UGUGACUGGUUGACCAGAGGGG	138
hsa-mir-135b	MIMAT0000758	UAUGGCUUUUCAUUCCUAUGUGA	139
hsa-mir-135b*	MIMAT0004698	AUGUAGGGCUAAAAGCCAUGGG	140
hsa-mir-140-3p	MIMAT0004397	UACCACAGGGUAGAACCACGG	141

hsa-mir-140-5p	MIMAT0000431	CAGUGGUUUUACCCUAUGGUAG	142
hsa-mir-142-3p	MIMAT0000434	UGUAGUGUUUCCUACUUUAUGGA	143
hsa-mir-142-5p	MIMAT0000433	CAUAAAGUAGAAAGCACUACU	144
hsa-mir-143	MIMAT0000435	UGAGAUGAAGCACUGUAGCUC	145
hsa-mir-143*	MIMAT0004599	GGUGCAGUGCUGCAUCUCUGGU	146
hsa-mir-145	MIMAT0000437	GUCCAGUUUUCCCAGGAAUCCCU	147
hsa-mir-145*	MIMAT0004601	GGAUUCCUGGAAAUACUGUUCU	148
hsa-mir-146a	MIMAT0000449	UGAGAACUGAAUUCCAUGGGUU	149
hsa-mir-146a*	MIMAT0004608	CCUCUGAAAUUCAGUUCUUCAG	150
hsa-mir-146b-3p	MIMAT0004766	UGCCCUGUGGACUCAGUUCUGG	151
hsa-mir-146b-5p	MIMAT0002809	UGAGAACUGAAUUCCAUAGGCU	152
hsa-mir-147	MIMAT0000251	GUGUGUGGAAAUGCUUCUGC	153
hsa-mir-148a	MIMAT0000243	UCAGUGCACUACAGAACUUUGU	154
hsa-mir-148a*	MIMAT0004549	AAAGUUCUGAGACACUCCGACU	155
hsa-mir-148b	MIMAT0000759	UCAGUGCAUCACAGAACUUUGU	156
hsa-mir-148b*	MIMAT0004699	AAGUUCUGUUAUACACUCAGGC	157
hsa-mir-149	MIMAT0000450	UCUGGCUCCGUGUCUUCACUCCC	158
hsa-mir-149*	MIMAT0004609	AGGGAGGACGGGGCUGUGC	159
hsa-mir-150	MIMAT0000451	UCUCCCAACCCUUGUACCAGUG	160
hsa-mir-150*	MIMAT0004610	CUGGUACAGGCCUGGGGGACAG	161
hsa-mir-151-3p	MIMAT0000757	CUAGACUGAAGCUCCUUGAGG	162
hsa-mir-151-5p	MIMAT0004697	UCGAGGAGCUCACAGUCUAGU	163
hsa-mir-155	MIMAT0000646	UUAAUGCUAAUCGUGAUAGGGGU	164
hsa-mir-155*	MIMAT0004658	CUCCUACAUAUUAGCAUUAACA	165
hsa-mir-181-1	MIMAT0000256	AACAUUCAACGCUGUCGGUGAGU	166
hsa-mir-181a-1*	MIMAT0000270	ACCAUCGACCGUUGAUUGUACC	167
hsa-mir-181a-2	MIMAT0000256	AACAUUCAACGCUGUCGGUGAGU	168
hsa-mir-181a-2*	MIMAT0004558	ACCACUGACCGUUGACUGUACC	169
hsa-mir-181b-1	MIMAT0000257	AACAUUCAUUGCUGUCGGUGGGU	170
hsa-mir-181b-2	MIMAT0000257	AACAUUCAUUGCUGUCGGUGGGU	171
hsa-mir-181d	MIMAT0002821	AACAUUCAUUGUUGUCGGUGGGU	172
hsa-mir-182	MIMAT0000259	UUUGGCAAUGGUAGAACUCACACU	173
hsa-mir-182*	MIMAT0000260	UGGUUCUAGACUUGCCAACUA	174
hsa-mir-183	MIMAT0000261	UAUGGCACUGGUAGAAUUCACU	175
hsa-mir-183*	MIMAT0004560	GUGAAUUACCGAAGGGCCAUAA	176
hsa-mir-185	MIMAT0000455	UGGAGAGAAAGGCAGUUCCUGA	177
hsa-mir-185*	MIMAT0004611	AGGGGCUGGCUUUCCUCUGGUC	178
hsa-mir-186	MIMAT0000456	CAAAGAAUUCUCCUUUUGGGCU	179
hsa-mir-186*	MIMAT0004612	GCCCAAAGGUGAAUUUUUUGGG	180
hsa-mir-190	MIMAT0000458	UGAUAUGUUUGAUAUAUUAGGU	181
hsa-mir-191	MIMAT0000440	CAACGGAAUCCCAAAAGCAGCUG	182
hsa-mir-191*	MIMAT0001618	GCUGCGCUUGGAUUUCGUCCCC	183
hsa-mir-192	MIMAT0000222	CUGACCUAUGAAUUGACAGCC	184
hsa-mir-192*	MIMAT0004543	CUGCCAAUUCCAUAGGUCACAG	185

hsa-mir-193a-3p	MIMAT0000459	AACUGGCCUACAAAGUCCCAGU	186
hsa-mir-193a-5p	MIMAT0004614	UGGGUCUUUGCGGGCGAGAUGA	187
hsa-mir-193b	MIMAT0002819	AACUGGCCCUCAAAGUCCCGCU	188
hsa-mir-193b*	MIMAT0004767	CGGGGUUUUGAGGGCGAGAUGA	189
hsa-mir-195	MIMAT0000461	UAGCAGCACAGAAAUAUUGGC	190
hsa-mir-195*	MIMAT0004615	CCAAUAUUGGCUGUGCUCC	191
hsa-mir-196a*	MIMAT0004562	CGGCAACAAGAAACUGCCUGAG	192
hsa-mir-196a-1	MIMAT0000226	UAGGUAGUUUCAUGUUGUUGGG	193
hsa-mir-196a-2	MIMAT0000226	UAGGUAGUUUCAUGUUGUUGGG	194
hsa-mir-196b	MIMAT0001080	UAGGUAGUUUCCUGUUGUUGGG	195
hsa-mir-197	MIMAT0000227	UUCACCACCUUCUCCACCCAGC	196
hsa-mir-198	MIMAT0000228	GGUCCAGAGGGGAGAUAGGUUC	197
hsa-mir-199a-3p	MIMAT0000232	ACAGUAGUCUGCACAUUGGUUA	198
hsa-mir-199a-5p	MIMAT0000231	CCCAGUGUUCAGACUACCUGUUC	199
hsa-mir-199a-5p	MIMAT0000231	CCCAGUGUUCAGACUACCUGUUC	200
hsa-mir-199b-3p	MIMAT0004563	ACAGUAGUCUGCACAUUGGUUA	201
hsa-mir-199b-5p	MIMAT0000263	CCCAGUGUUUAGACUAUCUGUUC	202
hsa-mir-200a	MIMAT0000682	UAACACUGUCUGGUAACGAUGU	203
hsa-mir-200a*	MIMAT0001620	CAUCUUACCGGACAGUGCUGGA	204
hsa-mir-200b	MIMAT0000318	UAAUACUGCCUGGUAAUGAUGA	205
hsa-mir-200b*	MIMAT0004571	CAUCUUACUGGGCAGCAUUGGA	206
hsa-mir-200c	MIMAT0000617	UAAUACUGCCGGGUAAUGAUGGA	207
hsa-mir-200c*	MIMAT0004657	CGUCUUACCCAGCAGUGUUUGG	208
hsa-mir-203	MIMAT0000264	GUGAAAUGUUUAGGACCACUAG	209
hsa-mir-204	MIMAT0000265	UUCCCUUUGUCAUCCUAUGCCU	210
hsa-mir-205	MIMAT0000266	UCCUUCAUUCCACCGGAGUCUG	211
hsa-mir-210	MIMAT0000267	CUGUGCGUGUGACAGCGGCUGA	212
hsa-mir-213	MIMAT0000256	AACAUUCAACGCUGUCGGUGAGU	213
hsa-mir-214	MIMAT0000271	ACAGCAGGCACAGACAGGCAGU	214
hsa-mir-214*	MIMAT0004564	UGCCUGUCUACACUUGCUGUGC	215
hsa-mir-216a	MIMAT0000273	UAAUCUCAGCUGGCAACUGUGA	216
hsa-mir-216b	MIMAT0004959	AAAUCUCUGCAGGCAAAUGUGA	217
hsa-mir-217	MIMAT0000274	UACUGCAUCAGGAACUGAUUGGA	218
hsa-mir-218-1	MIMAT0000275	UUGUGCUUGAUCUAACCAUGU	219
hsa-mir-218-1*	MIMAT0004565	AUGGUUCCGUCAAGCACCAUGG	220
hsa-mir-218-2	MIMAT0000275	UUGUGCUUGAUCUAACCAUGU	221
hsa-mir-218-2*	MIMAT0004566	CAUGGUUCUGUCAAGCACCGCG	222
hsa-mir-221	MIMAT0000278	AGCUACAUUGUCUGCUGGGUUUC	223
hsa-mir-221*	MIMAT0004568	ACCUGGCAUACAAUGUAGAUUU	224
hsa-mir-222	MIMAT0000279	AGCUACAUCUGGCUACUGGGU	225
hsa-mir-222*	MIMAT0004569	CUCAGUAGCCAGUGUAGAUCCU	226
hsa-mir-223	MIMAT0000280	UGUCAGUUUGUCAAAUACCCCA	227
hsa-mir-223*	MIMAT0004570	CGUGUAUUUGACAAGCUGAGUU	228
hsa-mir-224	MIMAT0000281	CAAGUCACUAGUGGUUCCGUU	229

hsa-mir-302a	MIMAT0000684	UAAGUGCUUCCAUGUUUUGGUGA	230
hsa-mir-302a*	MIMAT0000683	ACUUAAACGUGGAUGUACUUGCU	231
hsa-mir-302b	MIMAT0000715	UAAGUGCUUCCAUGUUUUAGUAG	232
hsa-mir-302b*	MIMAT0000714	ACUUUAACAUGGAAGUGCUUUC	233
hsa-mir-302c	MIMAT0000717	UAAGUGCUUCCAUGUUUCAGUGG	234
hsa-mir-302c*	MIMAT0000716	UUUAACAUGGGGUACCUGCUG	235
hsa-mir-302d	MIMAT0000718	UAAGUGCUUCCAUGUUUGAGUGU	236
hsa-mir-302d*	MIMAT0004685	ACUUUAACAUGGAGGCACUUGC	237
hsa-mir-302e	MIMAT0005931	UAAGUGCUUCCAUGCUU	238
hsa-mir-302f	MIMAT0005932	UAAUUGCUUCCAUGUUU	239
hsa-mir-320a	MIMAT0000510	AAAAGCUGGGUUGAGAGGGCGA	240
hsa-mir-320b-1	MIMAT0005792	AAAAGCUGGGUUGAGAGGGCAA	241
hsa-mir-320b-2	MIMAT0005792	AAAAGCUGGGUUGAGAGGGCAA	242
hsa-mir-320c-1	MIMAT0005793	AAAAGCUGGGUUGAGAGGGU	243
hsa-mir-320c-2	MIMAT0005793	AAAAGCUGGGUUGAGAGGGU	244
hsa-mir-320d-1	MIMAT0006764	AAAAGCUGGGUUGAGAGGA	245
hsa-mir-320d-2	MIMAT0006764	AAAAGCUGGGUUGAGAGGA	246
hsa-mir-324-3p	MIMAT0000762	ACUGCCCCAGGUGCUGCUGG	247
hsa-mir-324-5p	MIMAT0000761	CGCAUCCCCUAGGGCAUUGGUGU	248
hsa-mir-326	MIMAT0000756	CCUCUGGGCCCUUCCUCCAG	249
hsa-mir-328	MIMAT0000752	CUGGCCCUCUCUGCCCUUCCGU	250
hsa-mir-330-3p	MIMAT0000751	GCAAAGCACACGGCCUGCAGAGA	251
hsa-mir-330-5p	MIMAT0004693	UCUCUGGGCCUGUGUCUUAGGC	252
hsa-mir-331-3p	MIMAT0000760	GCCCCUGGGCCUAUCCUAGAA	253
hsa-mir-331-5p	MIMAT0004700	CUAGGUAUGGUCCCAGGGAUCC	254
hsa-mir-335	MIMAT0000765	UCAAGAGCAAUAACGAAAAAUGU	255
hsa-mir-335*	MIMAT0004703	UUUUUCAUUAUUGCUCCUGACC	256
hsa-mir-339-3p	MIMAT0004702	UGAGCGCCUCGACGACAGAGCCG	257
hsa-mir-339-5p	MIMAT0000764	UCCCUGUCCUCCAGGAGCUCACG	258
hsa-mir-340	MIMAT0004692	UUAUAAAGCAAUGAGACUGAUU	259
hsa-mir-340*	MIMAT0000750	UCCGUCUCAGUUACUUUAUAGC	260
hsa-mir-342-3p	MIMAT0000753	UCUCACACAGAAAUCGCACCCGU	261
hsa-mir-342-5p	MIMAT0004694	AGGGUGCUAUCUGUGAUUGA	262
hsa-mir-345	MIMAT0000772	GCUGACUCCUAGUCCAGGGCUC	263
hsa-mir-361-3p	MIMAT0004682	UCCCCAGGUGUGAUUCUGAUUU	264
hsa-mir-361-5p	MIMAT0000703	UUAUCAGAAUCUCCAGGGGUAC	265
hsa-mir-370	MIMAT0000722	GCCUGCUGGGGUGGAACCUGGU	266
hsa-mir-374a	MIMAT0000727	UUAUAAUACAACCUGAUAAGUG	267
hsa-mir-374b	MIMAT0004955	AUAUAAUACAACCUGCUAAGUG	268
hsa-mir-376a*	MIMAT0003386	GUAGAUUCUCCUUCUAUGAGUA	269
hsa-mir-376a-1	MIMAT0000729	AUCAUAGAGGAAAAUCCACGU	270
hsa-mir-376a-2	MIMAT0000729	AUCAUAGAGGAAAAUCCACGU	271
hsa-mir-376b	MIMAT0002172	AUCAUAGAGGAAAAUCCAUGUU	272
hsa-mir-376c	MIMAT0000720	AACAUAGAGGAAAUUCCACGU	273

hsa-mir-378	MIMAT0000732	ACUGGACUUGGAGUCAGAAGG	274
hsa-mir-378*	MIMAT0000731	CUCCUGACUCCAGGUCCUGUGU	275
hsa-mir-382	MIMAT0000737	GAAGUUGUUCGUGGUGGAUUCG	276
hsa-mir-411	MIMAT0003329	UAGUAGACCGUAUAGCGUACG	277
hsa-mir-411*	MIMAT0004813	UAUGUAACACGGUCCACUAACC	278
hsa-mir-423	MIMAT0004748	UGAGGGGCAGAGAGCUUU	279
hsa-mir-423*	MIMAT0001340	AGCUCGGUCUGAGGCCCCUCAGU	280
hsa-mir-425-3p	MIMAT0001343	AUCGGGAAUGUCGUGUCCGCCC	281
hsa-mir-425-5p	MIMAT0003393	AAUGACACGAUCACUCCCGUUGA	282
hsa-mir-432	MIMAT0002814	UCUUGGAGUAGGUCAUUGGGUGG	283
hsa-mir-432*	MIMAT0002815	CUGGAUGGCUCCUCCAUGUCU	284
hsa-mir-433	MIMAT0001627	AUCAUGAUGGGCUCCUCGGUGU	285
hsa-mir-484	MIMAT0002174	UCAGGCUCAGUCCCCUCCCGAU	286
hsa-mir-485-3p	MIMAT0002176	GUCAUACACGGCUCUCCUCUCU	287
hsa-mir-485-5p	MIMAT0002175	AGAGGCUGGCCGUGAUGAAUUC	288
hsa-mir-486-3p	MIMAT0004762	CGGGGCAGCUCAGUACAGGAU	289
hsa-mir-486-5p	MIMAT0002177	UCCUGUACUGAGCUGCCCCGAG	290
hsa-mir-487a	MIMAT0002178	AAUCAUACAGGGACAUCCAGUU	291
hsa-mir-487b	MIMAT0003180	AAUCGUACAGGGUCAUCCACUU	292
hsa-mir-532	MIMAT0002888	CAUGCCUUGAGUGUAGGACCGU	293
hsa-mir-532-5p	MIMAT0004780	CCUCCCACACCCAAGGCUUGCA	294
hsa-mir-539	MIMAT0003163	GGAGAAAUUAUCCUUGGUGUGU	295
hsa-mir-574-3p	MIMAT0003239	CACGCUCAUGCACACACCCACA	296
hsa-mir-574-5p	MIMAT0004795	UGAGUGUGUGUGUGUGUGU	297
hsa-mir-584	MIMAT0003249	UUAUGGUUUGCCUGGGACUGAG	298
hsa-mir-628-3p	MIMAT0003297	UCUAGUAAGAGUGGCAGUCGA	299
hsa-mir-628-5p	MIMAT0004809	AUGCUGACAUAUUUACUAGAGG	300
hsa-mir-643	MIMAT0003313	ACUUGUAUGCUAGCUCAGGUAG	301
hsa-mir-660	MIMAT0003338	UACCCAUUGCAUAUCGGAGUUG	302

Referencias

15

20

- 1. Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran 7, Urbanowicz B, Branski P, Ratajczak MZ, Zembala M. 5 Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother. 2006; 55:808818.
 - 2. Rauch U, Bonderman D, Bohrmann B, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood. 2000; 96:170-175.
- 3. Jungi TW, Spycher MO, Nydegger UE, Barandun S. Platelet-leukocyte interaction: selective binding of 10 thrombin-stimulated platelets to human monocytes, polymorphonuclear leukocytes, and related cell lines. Blood. 1986: 67:629-636.
 - 4. Lyberg T, Nakstad B, Hetland O, Boye NP. Procoagulant (thromboplastin) activity in human bronchoalveolar lavage fluids is derived from alveolar macrophages. Eur Respir J. 1990; 3:61-67.
 - 5. Thiagarajan P, Le A, Benedict CR, Beta(2)-glycoprotein I promotes the binding of anionic phospholipid vesicles by macrophages. Arterioscler Thromb Vase Biol. 1999;19:2807-2811.
 - 6. Setzer F, Oberle V, Blass M, Moller E, Russwurm S, Deigner HP, Claus RA, Bauer M, Reinhart K, Losche W. Platelet-derived microvesicles induce differential gene expression in monocytic cells: a DNA microarray study. Platelets. 2006;17:571-576.
 - 7. Plasterk RH. Micro RNAs in animal development. Cell. 2006;124:877-881.
- 8. Willingham AT, Gingeras TR. TUF love for "junk" DNA. Cell. 2006;125:1215-1220.
 9. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA. 2004; 101:9740-9744.

- 10. Calin GA, Croce CM. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Semin Oncol. 2006;33:167-173.
- 11. Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk B. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer. 2007;6:5.
- 5 12. Voorhoeve PM, Agami R. Classifying microRNAs in cancer: The good, the bad and the ugly. Biochim Biophys Acta. 2006.
 - 13. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci US A. 2006;103:12481-12486.

10

LISTADO DE SECUENCIAS

- <110> THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION
- 15 <120> EXPRESIÓN DE MIARN EN MICROVESÍCULAS DE SANGRE PERIFÉRICA HUMANA Y USOS DEL MISMO

21

22

22

22

- <130> 53-29097
- 20 <140> 12677931
 - <141> 12-03-2010
 - <150> PCT/US08/076109
 - <151> 12-09-2008

25

- <150> 61/055.178
- <151> 22-05-2008
- <150> 60/993.809
- 30 <151> 14-09-2007
 - <160> 302
 - <170> PatentIn versión 3.5

35

- <210> 1
- <211> 21
- <212> ARN
- <213> Homo sapiens

40

- <400> 1
- cuauacaauc uacugucuuu c

<210> 2

- 45 <211> 22
 - <212> ARN
 - <213> Homo sapiens

<400> 2

- 50 ugagguagua gguuguauag uu
 - <210> 3
 - <211> 22
 - <212> ARN
- 55 <213> Homo sapiens

<400> 3

- ugagguagua gguuguauag uu
- <210> 4
- <211> 22

60

- <212> ARN
- <213> Homo sapiens

<400> 4

65 ugagguagua gguuguauag uu

5	<210> 5 <211> 22 <212> ARN <213> Homo sapiens		
ວ	<400> 5 ugagguagua gguugugugg uu	22	
10	<210>6 <211> 22 <212> ARN <213> Homo sapiens		
15	<400> 6 cuauacaacc uacugccuuc cc	22	
20	<210> 7 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 7 ugagguagua gguuguaugg uu	22	
25	<210> 8 <211> 22 <212> ARN <213> Homo sapiens		
30	<400> 8 uagaguuaca cccugggagu ua	22	
35	<210> 9 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 9 agagguagua gguugcauag uu	22	
	<210> 10 <211> 22 <212> ARN		
45	<213> Homo sapiens <400> 10 cuauacgacc ugcugccuuu cu		22
50	<210> 11 <211> 22 <212> ARN <213> Homo sapiens		
55	<400> 11 ugagguagga gguuguauag uu		22
60	<210> 12 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 12 cuauacggcc uccuagcuuu cc		22
65	<210> 13 <211> 22		

	<212> ARN <213> Homo sapiens	
5	<400> 13 ugagguagua gauuguauag uu	22
10	<210> 14 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 14 cuauacaauc uauugccuuc cc	22
15	<210> 15 <211> 22 <212> ARN <213> Homo sapiens	
20	<400> 15 ugagguagua gauuguauag uu	22
25	<210> 16 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 16 cuauacaguc uacugucuuu cc	22
30	<210> 17 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 17 ugagguagua guuuguacag uu	22
40	<210> 18 <211> 21 <212> ARN <213> Homo sapiens	
45	<400> 18 cuguacaggc cacugccuug c	21
50	<210> 19 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 19 ugagguagua guuugugcug uu	22
55	<210> 20 <211> 22 <212> ARN <213> Homo sapiens	
60	<400> 20 cugcgcaagc uacugccuug cu	22
65	<210> 21 <211> 23 <212> ARN <213> Homo sapiens	

	<400> 21 ucuuugguua ucuagcugua uga		23
5	<210> 22 <211> 22 <212> ARN <213> Homo sapiens		
10	<400> 22 auaaagcuag auaaccgaaa gu		22
15	<210> 23 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 23 ucuuugguua ucuagcugua uga		23
20	<210> 24 <211> 23 <212> ARN <213> Homo sapiens		
25	<400> 24 ucuuugguua ucuagcugua uga	23	
30	<210> 25 <211> 23 <212> ARN <213> Homo sapiens		
25	<400> 25 uacccuguag auccgaauuu gug	23	
35	<210> 26 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 26 caaauucgua ucuaggggaa ua	22	
45	<210> 27 <211> 22 <212> ARN <213> Homo sapiens		
50	<400> 27 uagcagcaca uaaugguuug ug	22	
55	<210> 28 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 28 uagcagcaca ucaugguuua ca	22	
60	<210> 29 <211> 22 <212> ARN <213> Homo sapiens		
65	<400> 29 cgaaucauua uuugcugcuc ua	22	

-	<210> 30 <211> 22 <212> ARN <213> Homo sapiens		
5	<400> 30 uagcagcacg uaaauauugg cg	22	
10	<210> 31 <211> 22 <212> ARN <213> Homo sapiens		
15	<400> 31 ccaguauuaa cugugcugcu ga		22
20	<210> 32 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 32 uagcagcacg uaaauauugg cg		22
25	<210> 33 <211> 22 <212> ARN <213> Homo sapiens		
30	<400> 33 ccaauauuac ugugcugcuu ua		22
35	<210> 34 <211> 22 <212> ARN <213> Homo sapiens		
40	<400> 34 acugcaguga aggcacuugu ag		22
	<210> 35 <211> 23 <212> ARN		
45	<213> Homo sapiens <400> 35 caaagugcuu acagugcagg uag		23
50	<210> 36 <211> 23 <212> ARN <213> Homo sapiens		
55	<400> 36 uaaggugcau cuagugcaga uag		23
60	<210> 37 <211> 23 <212> ARN <213> Homo sapiens		
	<400> 37 acugcccuaa gugcuccuuc ugg		23
65	<210> 38 <211> 23		

	<212> ARN <213> Homo sapiens	
5	<400> 38 ugugcaaauc uaugcaaaac uga	23
10	<210> 39 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 39 ugugcaaauc caugcaaaac uga	23
15	<210> 40 <211> 23 <212> ARN <213> Homo sapiens	
20	<400> 40 aguuuugcag guuugcaucc agc	23
25	<210> 41 <211> 23 <212> ARN <213> Homo sapiens	
30	<400> 41 ugugcaaauc caugcaaaac uga	23
	<210> 42 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 42 aguuuugcag guuugcauuu ca	22
40	<210> 43 <211> 23 <212> ARN <213> Homo sapiens	
45	<400> 43 uaaagugcuu auagugcagg uag	23
50	<210> 44 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 44 acugcauuau gagcacuuaa ag	22
55	<210> 45 <211> 23 <212> ARN <213> Homo sapiens	
60	<400> 45 caaagugcuc auagugcagg uag	23
65	<210> 46 <211> 22 <212> ARN <213> Homo sapiens	

	<400> 46 uagcuuauca gacugauguu ga	22
5	<210> 47 <211> 21 <212> ARN <213> Homo sapiens	
10	<400> 47 caacaccagu cgaugggcug u	21
15	<210> 48 <211> 21 <212> ARN <213> Homo sapiens	
	<400> 48 aucacauugc cagggauuuc c	21
20	<210> 49 <211> 22 <212> ARN <213> Homo sapiens	
25	<400> 49 gggguuccug gggaugggau uu	22
30	<210> 50 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 50 uggguuccug gcaugcugau uu	22
	<210>51 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 51 uggcucaguu cagcaggaac ag	22
45	<210> 52 <211> 22 <212> ARN <213> Homo sapiens	
50	<400> 52 ugccuacuga gcugauauca gu	22
55	<210> 53 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 53 uggcucaguu cagcaggaac ag	22
60	<210> 54 <211> 22 <212> ARN <213> Homo sapiens	
65	<400> 54 ugccuacuga gcugaaacac ag	22

E	<210> 55 <211> 22 <212> ARN <213> Homo sapiens	
5	<400> 55 cauugcacuu gucucggucu ga	22
10	<210> 56 <211> 21 <212> ARN <213> Homo sapiens	
15	<400> 56 aggcggagac uugggcaauu g	21
20	<210> 57 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 57 uucaaguaau ccaggauagg cu	22
25	<210> 58 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 58 ccuauucuug guuacuugca cg	22
35	<210> 59 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 59 uucaaguaau ccaggauagg cu	22
	<210> 60 <211> 22 <212> ARN <213> Homo sapiens	
45	<400> 60 ccuauucuug auuacuuguu uc	22
50	<210> 61 <211> 21 <212> ARN <213> Homo sapiens	
55	<400> 61 uucaaguaau ucaggauagg u	21
60	<210> 62 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 62 ccuguucucc auuacuuggc uc	22
65	<210> 63 <211> 21	

	<212> ARN <213> Homo sapiens	
5	<400> 63 uucacagugg cuaaguuccg c	21
10	<210> 64 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 64 agggcuuagc ugcuugugag ca	22
15	<210> 65 <211> 21 <212> ARN <213> Homo sapiens	
20	<400> 65 uucacagugg cuaaguucug c	21
25	<210> 66 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 66 agagcuuagc ugauugguga ac	22
	<210> 67 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 67 cacuagauug ugagcuccug ga	22
40	<210> 68 <211> 22 <212> ARN <213> Homo sapiens	
45	<400> 68 aaggagcuca cagucuauug ag	22
50	<210> 69 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 69 uagcaccauc ugaaaucggu ua	22
55	<210> 70 <211> 22 <212> ARN <213> Homo sapiens	
60	<400> 70 acugauuucu uuugguguuc ag	22
65	<210> 71 <211> 23 <212> ARN <213> Homo sapiens	

	<400> 71 uagcaccauu ugaaaucagu guu	23
5	<210> 72 <211> 24 <212> ARN <213> Homo sapiens	
10	<400> 72 gcugguuuca uauggugguu uaga	24
15	<210> 73 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 73 uagcaccauu ugaaaucagu guu	23
20	<210> 74 <211> 22 <212> ARN <213> Homo sapiens	
25	<400> 74 cugguuucac augguggcuu ag	22
30	<210> 75 <211> 23 <212> ARN <213> Homo sapiens	
35	<400> 75 uagcaccauu ugaaaucagu guu	23
	<210> 76 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 76 uagcaccauu ugaaaucggu ua	22
45	<210> 77 <211> 22 <212> ARN <213> Homo sapiens	
50	<400> 77 uguaaacauc cucgacugga ag	22
55	<210> 78 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 78 cuuucagucg gauguuugca gc	22
60	<210> 79 <211> 22 <212> ARN <213> Homo sapiens	
65	<400> 79 uguaaacauc cuacacucag cu	22

5	<210> 80 <211> 22 <212> ARN <213> Homo sapiens	
5	<400> 80 cugggaggug gauguuuacu uc	22
10	<210>81 <211> 23 <212> ARN <213> Homo sapiens	
15	<400> 81 uguaaacauc cuacacucuc agc	23
20	<210> 82 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 82 uguaaacauc cuacacucuc agc	23
25	<210> 83 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 83 cugggagaag gcuguuuacu cu	22
35	<210> 84 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 84 uguaaacauc cccgacugga ag	22
	<210> 85 <211> 22 <212> ARN	
45	<213> Homo sapiens <400> 85 cuuucaguca gauguuugcu gc	22
50	<210> 86 <211> 21 <212> ARN <213> Homo sapiens	
55	<400> 86 aggcaagaug cuggcauagc u	21
60	<210> 87 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 87 ugcuaugcca acauauugcc au	22
65	<210> 88 <211> 22	

	<212> ARN <213> Homo sapiens	
5	<400> 88 uauugcacau uacuaaguug ca	22
10	<210> 89 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 89 caauuuagug ugugugauau uu	22
15	<210> 90 <211> 22 <212> ARN <213> Homo sapiens	
20	<400> 90 uggcaguguc uuagcugguu gu	22
25	<210> 91 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 91 caaucagcaa guauacugcc cu	22
30	<210> 92 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 92 uauugcacuu gucccggccu gu	22
40	<210> 93 <211> 23 <212> ARN <213> Homo sapiens	
45	<400> 93 agguugggau cgguugcaau gcu	23
50	<210> 94 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 94 caaagugcug uucgugcagg uag	23
55	<210> 95 <211> 22 <212> ARN <213> Homo sapiens	
60	<400> 95 acugcugagc uagcacuucc cg	22
65	<210> 96 <211> 22 <212> ARN <213> Homo sapiens	

	<400> 96 uucaacgggu auuuauugag ca	22
5	<210> 97 <211> 23 <212> ARN <213> Homo sapiens	
10	<400> 97 uuuggcacua gcacauuuuu gcu	23
15	<210> 98 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 98 aaucaugugc agugccaaua ug	22
20	<210> 99 <211> 22 <212> ARN <213> Homo sapiens	
25	<400> 99 ugagguagua aguuguauug uu	22
30	<210> 100 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 100 cacccguaga accgaccuug cg	22
	<210> 101 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 101 caagcucgug ucuguggguc cg	22
45	<210> 102 <211> 22 <212> ARN <213> Homo sapiens	
50	<400> 102 aacccguaga uccgaacuug ug	22
55	<210> 103 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 103 caagcuugua ucuauaggua ug	22
60	<210> 104 <211> 23 <212> ARN <213> Homo sapiens	
65	<400> 104 agcagcauug uacagggcua uga	23

F	<210> 105 <211> 23 <212> ARN <213> Homo sapiens	
5	<400> 105 agcagcauug uacagggcua uga	23
10	<210> 106 <211> 23 <212> ARN <213> Homo sapiens	
15	<400> 106 ucaaaugcuc agacuccugu ggu	23
20	<210> 107 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 107 acggauguuu gagcaugugc ua	22
25	<210> 108 <211> 23 <212> ARN <213> Homo sapiens	
30	<400> 108 ucaaaugcuc agacuccugu ggu	23
35	<210> 109 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 109 acggauguuu gagcaugugc ua	22
	<210> 110 <211> 23 <212> ARN	
45	<213> Homo sapiens <400> 110 aaaagugcuu acagugcagg uag	23
50	<210> 111 <211> 22 <212> ARN <213> Homo sapiens	
55	<400> 111 cugcaaugua agcacuucuu ac	22
60	<210> 112 <211> 21 <212> ARN <213> Homo sapiens	
	<400> 112 uaaagugcug acagugcaga u	21
65	<210> 113 <211> 22	

	<212> ARN <213> Homo sapiens	
5	<400> 113 ccgcacugug gguacuugcu gc	22
10	<210> 114 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 114 agcagcauug uacagggcua uca	23
15	<210> 115 <211> 22 <212> ARN <213> Homo sapiens	
20	<400> 115 uggaguguga caaugguguu ug	22
25	<210> 116 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 116 aacgccauua ucacacuaaa ua	22
	<210> 117 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 117 acaggugagg uucuugggag cc	22
40	<210> 118 <211> 24 <212> ARN <213> Homo sapiens	
45	<400> 118 ucccugagac ccuuuaaccu guga	24
50	<210> 119 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 119 ucccugagac ccuaacuugu ga	22
55	<210> 120 <211> 22 <212> ARN <213> Homo sapiens	
60	<400> 120 acggguuagg cucuugggag cu	22
65	<210> 121 <211> 22 <212> ARN <213> Homo sapiens	

	<400> 121 ucccugagac ccuaacuugu ga	22
5	<210> 122 <211> 22 <212> ARN <213> Homo sapiens	
10	<400> 122 ucacaaguca ggcucuuggg ac	22
15	<210> 123 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 123 ucguaccgug aguaauaaug cg	22
20	<210> 124 <211> 21 <212> ARN <213> Homo sapiens	
25	<400> 124 cauuauuacu uuugguacgc g	21
30	<210> 125 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 125 ucggauccgu cugagcuugg cu	22
	<210> 126 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 126 cugaagcuca gagggcucug au	22
45	<210> 127 <211> 21 <212> ARN <213> Homo sapiens	
50	<400> 127 ucacagugaa ccggucucuu u	21
55	<210> 128 <211> 21 <212> ARN <213> Homo sapiens	
	<400> 128 ucacagugaa ccggucucuu u	21
60	<210> 129 <211> 22 <212> ARN <213> Homo sapiens	
65	<400> 129	22

_	<210> 130 <211> 22 <212> ARN <213> Homo sapiens	
5	<400> 130 uucacauugu gcuacugucu gc	22
10	<210> 131 <211> 22 <212> ARN <213> Homo sapiens	
15	<400> 131 cagugcaaug augaaagggc au	22
20	<210> 132 <211> 21 <212> ARN <213> Homo sapiens	
	<400> 132 acucuuuccc uguugcacua c	21
25	<210> 133 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 133 uaacagucua cagccauggu cg	22
35	<210> 134 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 134 accguggcuu ucgauuguua cu	22
	<210> 135 <211> 22 <212> ARN	
45	<213> Homo sapiens <400> 135 uuuggucccc uucaaccagc ug	22
50	<210> 136 <211> 22 <212> ARN <213> Homo sapiens	
55	<400> 136 uuuggucccc uucaaccagc ug	22
60	<210> 137 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 137 uuuggucccc uucaaccagc ua	22
65	<210> 138 <211> 22	

	<212> ARN <213> Homo sapiens	
5	<400> 138 ugugacuggu ugaccagagg gg	22
10	<210> 139 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 139 uauggcuuuu cauuccuaug uga	23
15	<210> 140 <211> 22 <212> ARN <213> Homo sapiens	
20	<400> 140 auguagggcu aaaagccaug gg	22
25	<210> 141 <211> 21 <212> ARN <213> Homo sapiens	
30	<400> 141 uaccacaggg uagaaccacg g	21
	<210> 142 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 142 cagugguuuu acccuauggu ag	22
40	<210> 143 <211> 23 <212> ARN <213> Homo sapiens	
45	<400> 143 uguaguguuu ccuacuuuau gga	23
50	<210> 144 <211> 21 <212> ARN <213> Homo sapiens	
	<400> 144 cauaaaguag aaagcacuac u	21
55	<210> 145 <211> 21 <212> ARN <213> Homo sapiens	
60	<400> 145 ugagaugaag cacuguagcu c	21
65	<210> 146 <211> 22 <212> ARN <213> Homo sapiens	

	<400> 146 ggugcagugc ugcaucucug gu	22
5	<210> 147 <211> 23 <212> ARN <213> Homo sapiens	
10	<400> 147 guccaguuuu cccaggaauc ccu	23
15	<210> 148 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 148 ggauuccugg aaauacuguu cu	22
20	<210> 149 <211> 22 <212> ARN <213> Homo sapiens	
25	<400> 149 ugagaacuga auuccauggg uu	22
30	<210> 150 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 150 ccucugaaau ucaguucuuc ag	22
40	<210> 151 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 151 ugcccugugg acucaguucu gg	22
45	<210> 152 <211> 22 <212> ARN <213> Homo sapiens	
50	<400> 152 ugagaacuga auuccauagg cu	22
55	<210> 153 <211> 20 <212> ARN <213> Homo sapiens	
	<400> 153 guguguggaa augcuucugc	20
60	<210> 154 <211> 22 <212> ARN <213> Homo sapiens	
65	<400> 154 ucagugcacu acagaacuuu gu	22

-	<210> 155 <211> 22 <212> ARN <213> Homo sapiens	
5	<400> 155 aaaguucuga gacacuccga cu	22
10	<210> 156 <211> 22 <212> ARN <213> Homo sapiens	
15	<400> 156 ucagugcauc acagaacuuu gu	22
20	<210> 157 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 157 aaguucuguu auacacucag gc	22
25	<210> 158 <211> 23 <212> ARN <213> Homo sapiens	
30	<400> 158 ucuggcuccg ugucuucacu ccc	23
35	<210> 159 <211> 21 <212> ARN <213> Homo sapiens	
40	<400> 159 agggagggac gggggcugug c	21
	<210> 160 <211> 22 <212> ARN	
45	<213> Homo sapiens <400> 160 ucucccaacc cuuguaccag ug	22
50	<210> 161 <211> 22 <212> ARN <213> Homo sapiens	
55	<400> 161 cugguacagg ccugggggac ag	22
60	<210> 162 <211> 21 <212> ARN <213> Homo sapiens	
	<400> 162 cuagacugaa gcuccuugag g	21
65	<210> 163 <211> 21	

	<212> ARN <213> Homo sapiens	
5	<400> 163 ucgaggagcu cacagucuag u	21
10	<210> 164 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 164 uuaaugcuaa ucgugauagg ggu	23
15	<210> 165 <211> 22 <212> ARN <213> Homo sapiens	
20	<400> 165 cuccuacaua uuagcauuaa ca	22
25	<210> 166 <211> 23 <212> ARN <213> Homo sapiens	
30	<400> 166 aacauucaac gcugucggug agu	23
30	<210> 167 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 167 accaucgacc guugauugua cc	22
40	<210> 168 <211> 23 <212> ARN <213> Homo sapiens	
45	<400> 168 aacauucaac gcugucggug agu	23
50	<210> 169 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 169 accacugacc guugacugua cc	22
55	<210> 170 <211> 23 <212> ARN <213> Homo sapiens	
60	<400> 170 aacauucauu gcugucggug ggu	23
65	<210> 171 <211> 23 <212> ARN <213> Homo sapiens	

	<400> 171 aacauucauu gcugucggug ggu	23
5	<210> 172 <211> 23 <212> ARN <213> Homo sapiens	
10	<400> 172 aacauucauu guugucggug ggu	23
15	<210> 173 <211> 24 <212> ARN <213> Homo sapiens	
	<400> 173 uuuggcaaug guagaacuca cacu	24
20	<210> 174 <211> 21 <212> ARN <213> Homo sapiens	
25	<400> 174 ugguucuaga cuugccaacu a	21
30	<210> 175 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 175 uauggcacug guagaauuca cu	22
	<210> 176 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 176 gugaauuacc gaagggccau aa	22
45	<210> 177 <211> 22 <212> ARN <213> Homo sapiens	
50	<400> 177 uggagagaaa ggcaguuccu ga	22
55	<210> 178 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 178 aggggcuggc uuuccucugg uc	22
60	<210> 179 <211> 22 <212> ARN <213> Homo sapiens	
65	<400> 179 caaagaauuc uccuuuuggg cu	22

5	<210> 180 <211> 22 <212> ARN <213> Homo sapiens	
·	<400> 180 gcccaaaggu gaauuuuuug gg	22
10	<210> 181 <211> 22 <212> ARN <213> Homo sapiens	
15	<400> 181 ugauauguuu gauauauuag gu	22
20	<210> 182 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 182 caacggaauc ccaaaagcag cug	23
25	<210> 183 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 183 gcugcgcuug gauuucgucc cc	22
35	<210> 184 <211> 21 <212> ARN <213> Homo sapiens	
40	<400> 184 cugaccuaug aauugacagc c	21
70	<210> 185 <211> 22 <212> ARN	
45	<213> Homo sapiens <400> 185 cugccaauuc cauaggucac ag	22
50	<210> 186 <211> 22 <212> ARN <213> Homo sapiens	
55	<400> 186 aacuggccua caaaguccca gu	22
60	<210> 187 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 187 ugggucuuug cgggcgagau ga	22
65	<210> 188 <211> 22	

	<212> ARN <213> Homo sapiens	
5	<400> 188 aacuggcccu caaagucccg cu	22
10	<210> 189 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 189 cgggguuuug agggcgagau ga	22
15	<210> 190 <211> 21 <212> ARN <213> Homo sapiens	
20	<400> 190 uagcagcaca gaaauauugg c	21
25	<210> 191 <211> 22 <212> ARN <213> Homo sapiens	
20	<400> 191 ccaauauugg cugugcugcu cc	22
30	<210> 192 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 192 cggcaacaag aaacugccug ag	22
40	<210> 193 <211> 22 <212> ARN <213> Homo sapiens	
45	<400> 193 uagguaguuu cauguuguug gg	22
50	<210> 194 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 194 uagguaguuu cauguuguug gg	22
55	<210> 195 <211> 22 <212> ARN <213> Homo sapiens	
60	<400> 195 uagguaguuu ccuguuguug gg	22
65	<210> 196 <211> 22 <212> ARN <213> Homo sapiens	

	<400> 196 uucaccaccu ucuccaccca gc	22
5	<210> 197 <211> 22 <212> ARN <213> Homo sapiens	
10	<400> 197 gguccagagg ggagauaggu uc	22
15	<210> 198 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 198 acaguagucu gcacauuggu ua	22
20	<210> 199 <211> 23 <212> ARN <213> Homo sapiens	
25	<400> 199 cccaguguuc agacuaccug uuc	23
30	<210> 200 <211> 23 <212> ARN <213> Homo sapiens	
35	<400> 200 cccaguguuc agacuaccug uuc	23
	<210> 201 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 201 acaguagucu gcacauuggu ua	22
45	<210> 202 <211> 23 <212> ARN <213> Homo sapiens	
50	<400> 202 cccaguguuu agacuaucug uuc	23
55	<210> 203 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 203 uaacacuguc ugguaacgau gu	22
60	<210> 204 <211> 22 <212> ARN <213> Homo sapiens	
65	<400> 204 caucuuaccg gacagugcug ga	22

5	<210> 205 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 205 uaauacugcc ugguaaugau ga	22
10	<210> 206 <211> 22 <212> ARN <213> Homo sapiens	
15	<400> 206 caucuuacug ggcagcauug ga	22
20	<210> 207 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 207 uaauacugcc ggguaaugau gga	23
25	<210> 208 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 208 cgucuuaccc agcaguguuu gg	22
35	<210> 209 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 209 gugaaauguu uaggaccacu ag	22
10	<210> 210 <211> 22 <212> ARN <213> Homo sapiens	
45	<400> 210 uucccuuugu cauccuaugc cu	22
50	<210> 211 <211> 22 <212> ARN <213> Homo sapiens	
55	<400> 211 uccuucauuc caccggaguc ug	22
60	<210> 212 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 212 cugugcgugu gacagcggcu ga	22
65	<210> 213 <211> 23	

	<212> ARN <213> Homo sapiens	
5	<400> 213 aacauucaac gcugucggug agu	23
10	<210> 214 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 214 acagcaggca cagacaggca gu	22
15	<210> 215 <211> 22 <212> ARN <213> Homo sapiens	
20	<400> 215 ugccugucua cacuugcugu gc	22
25	<210> 216 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 216 uaaucucagc uggcaacugu ga	22
00	<210> 217 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 217 aaaucucugc aggcaaaugu ga	22
40	<210> 218 <211> 23 <212> ARN <213> Homo sapiens	
45	<400> 218 uacugcauca ggaacugauu gga	23
50	<210> 219 <211> 21 <212> ARN <213> Homo sapiens	
	<400> 219 uugugcuuga ucuaaccaug u	21
55	<210> 220 <211> 22 <212> ARN <213> Homo sapiens	
60	<400> 220 augguuccgu caagcaccau gg	22
65	<210> 221 <211> 21 <212> ARN <213> Homo sapiens	

	<400> 221 uugugcuuga ucuaaccaug u	21
5	<210> 222 <211> 22 <212> ARN <213> Homo sapiens	
10	<400> 222 caugguucug ucaagcaccg cg	22
15	<210> 223 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 223 agcuacauug ucugcugggu uuc	23
20	<210> 224 <211> 22 <212> ARN <213> Homo sapiens	
25	<400> 224 accuggcaua caauguagau uu	22
30	<210> 225 <211> 21 <212> ARN <213> Homo sapiens	
35	<400> 225 agcuacaucu ggcuacuggg u	21
	<210> 226 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 226 cucaguagcc aguguagauc cu	22
45	<210> 227 <211> 22 <212> ARN <213> Homo sapiens	
50	<400> 227 ugucaguuug ucaaauaccc ca	22
55	<210> 228 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 228 cguguauuug acaagcugag uu	22
60	<210> 229 <211> 21 <212> ARN <213> Homo sapiens	
65	<400> 229 caagucacua gugguuccgu u	21

5	<210> 230 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 230 uaagugcuuc cauguuuugg uga	23
10	<210> 231 <211> 23 <212> ARN <213> Homo sapiens	
15	<400> 231 acuuaaacgu ggauguacuu gcu	23
20	<210> 232 <211> 23 <212> ARN <213> Homo sapiens	
25	<400> 232 uaagugcuuc cauguuuuag uag	23
	<210> 233 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 233 acuuuaacau ggaagugcuu uc	22
35	<210> 234 <211> 23 <212> ARN <213> Homo sapiens	
40	<400> 234 uaagugcuuc cauguuucag ugg	23
45	<210> 235 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 235 uuuaacaugg ggguaccugc ug	22
50	<210> 236 <211> 23 <212> ARN <213> Homo sapiens	
55	<400> 236 uaagugcuuc cauguuugag ugu	23
60	<210> 237 <211> 22 <212> ARN <213> Homo sapiens	
65	<400> 237 acuuuaacau ggaggcacuu gc	22
	<210> 238	

	<211> 17 <212> ARN <213> Homo sapiens		
5	<400> 238 uaagugcuuc caugcuu	17	
10	<210> 239 <211> 17 <212> ARN <213> Homo sapiens		
15	<400> 239 uaauugcuuc cauguuu	17	
10	<210> 240 <211> 22 <212> ARN <213> Homo sapiens		
20	<400> 240 aaaagcuggg uugagagggc ga		22
25	<210> 241 <211> 22 <212> ARN <213> Homo sapiens		
30	<400> 241 aaaagcuggg uugagagggc aa		22
35	<210> 242 <211> 22 <212> ARN <213> Homo sapiens		
	<400> 242 aaaagcuggg uugagagggc aa		22
40	<210> 243 <211> 20 <212> ARN <213> Homo sapiens		
45	<400> 243 aaaagcuggg uugagagggu		20
50	<210> 244 <211> 20 <212> ARN <213> Homo sapiens		
55	<400> 244 aaaagcuggg uugagagggu		20
00	<210> 245 <211> 19 <212> ARN <213> Homo sapiens		
60	<400> 245 aaaagcuggg uugagagga		19
65	<210> 246 <211> 19 <212> ARN		

	<213> Homo sapiens		
5	<400> 246 aaaagcuggg uugagagga	19	
3	<210> 247 <211> 20 <212> ARN <213> Homo sapiens		
10	<400> 247 acugccccag gugcugcugg	20	
15	<210> 248 <211> 23 <212> ARN <213> Homo sapiens		
20	<400> 248 cgcauccccu agggcauugg ugu		23
25	<210> 249 <211> 20 <212> ARN <213> Homo sapiens		
	<400> 249 ccucugggcc cuuccuccag		20
30	<210> 250 <211> 22 <212> ARN <213> Homo sapiens		
35	<400> 250 cuggcccucu cugcccuucc gu		22
40	<210> 251 <211> 23 <212> ARN <213> Homo sapiens		
45	<400> 251 gcaaagcaca cggccugcag aga		23
	<210> 252 <211> 22 <212> ARN <213> Homo sapiens		
50	<400> 252 ucucugggcc ugugucuuag gc		22
55	<210> 253 <211> 21 <212> ARN <213> Homo sapiens		
60	<400> 253 gccccugggc cuauccuaga a		21
65	<210> 254 <211> 22 <212> ARN <213> Homo sapiens		

	<400> 254 cuagguaugg ucccagggau cc	22
5	<210> 255 <211> 23 <212> ARN <213> Homo sapiens	
10	<400> 255 ucaagagcaa uaacgaaaaa ugu	23
15	<210> 256 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 256 uuuuucauua uugcuccuga cc	22
20	<210> 257 <211> 23 <212> ARN <213> Homo sapiens	
25	<400> 257 ugagcgccuc gacgacagag ccg	23
30	<210> 258 <211> 23 <212> ARN <213> Homo sapiens	
25	<400> 258 ucccuguccu ccaggagcuc acg	23
35	<210> 259 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 259 uuauaaagca augagacuga uu	22
45	<210> 260 <211> 22 <212> ARN <213> Homo sapiens	
50	<400> 260 uccgucucag uuacuuuaua gc	22
55	<210> 261 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 261 ucucacacag aaaucgcacc cgu	23
60	<210> 262 <211> 21 <212> ARN <213> Homo sapiens	
65	<400> 262 aggggugcua ucugugauug a	21

5	<210> 263 <211> 22 <212> ARN <213> Homo sapiens	
5	<400> 263 gcugacuccu aguccagggc uc	22
10	<210> 264 <211> 23 <212> ARN <213> Homo sapiens	
15	<400> 264 ucccccaggu gugauucuga uuu	23
20	<210> 265 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 265 uuaucagaau cuccaggggu ac	22
25	<210> 266 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 266 gccugcuggg guggaaccug gu	22
35	<210> 267 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 267 uuauaauaca accugauaag ug	22
	<210> 268 <211> 22 <212> ARN <213> Homo sapiens	
45	<400> 268 auauaauaca accugcuaag ug	22
50	<210> 269 <211> 22 <212> ARN <213> Homo sapiens	
55	<400> 269 guagauucuc cuucuaugag ua	22
60	<210> 270 <211> 21 <212> ARN <213> Homo sapiens	
	<400> 270 aucauagagg aaaauccacg u	21
65	<210> 271 <211> 21	

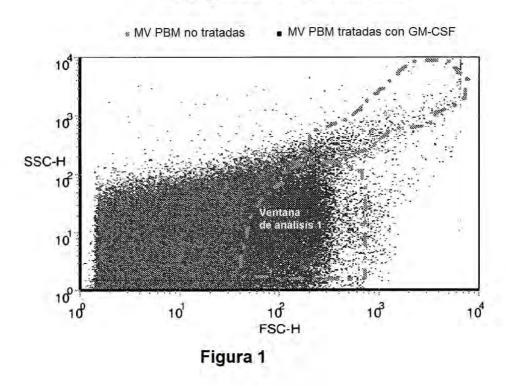
	<212> ARN <213> Homo sapiens	
5	<400> 271 aucauagagg aaaauccacg u	21
10	<210> 272 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 272 aucauagagg aaaauccaug uu	22
15	<210> 273 <211> 21 <212> ARN <213> Homo sapiens	
20	<400> 273 aacauagagg aaauuccacg u	21
25	<210> 274 <211> 21 <212> ARN <213> Homo sapiens	
30	<400> 274 acuggacuug gagucagaag g	21
35	<210> 275 <211> 22 <212> ARN <213> Homo sapiens	
33	<400> 275 cuccugacuc cagguccugu gu	22
40	<210> 276 <211> 22 <212> ARN <213> Homo sapiens	
45	<400> 276 gaaguuguuc gugguggauu cg	22
50	<210> 277 <211> 21 <212> ARN <213> Homo sapiens	
	<400> 277 uaguagaccg uauagcguac g	21
55	<210> 278 <211> 22 <212> ARN <213> Homo sapiens	
60	<400> 278 uauguaacac gguccacuaa cc	22
65	<210> 279 <211> 23 <212> ARN <213> Homo sapiens	

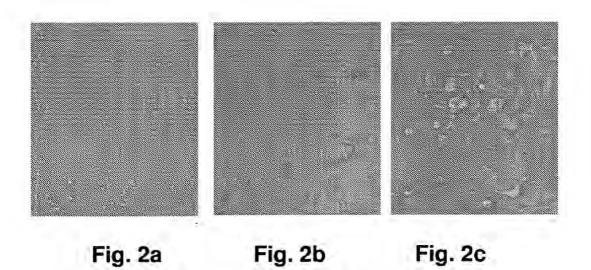
	<400> 279 ugaggggcag agagcgagac uuu	23
5	<210> 280 <211> 23 <212> ARN <213> Homo sapiens	
10	<400> 280 agcucggucu gaggccccuc agu	23
15	<210> 281 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 281 aucgggaaug ucguguccgc cc	22
20	<210> 282 <211> 23 <212> ARN <213> Homo sapiens	
25	<400> 282 aaugacacga ucacucccgu uga	23
30	<210> 283 <211> 23 <212> ARN <213> Homo sapiens	
35	<400> 283 ucuuggagua ggucauuggg ugg	23
40	<210> 284 <211> 21 <212> ARN <213> Homo sapiens	
10	<400> 284 cuggauggcu ccuccauguc u	21
45	<210> 285 <211> 22 <212> ARN <213> Homo sapiens	
50	<400> 285 aucaugaugg gcuccucggu gu	22
55	<210> 286 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 286 ucaggcucag uccccucccg au	22
60	<210> 287 <211> 22 <212> ARN <213> Homo sapiens	
65	<400> 287 gucauacacg gcucuccucu cu	22

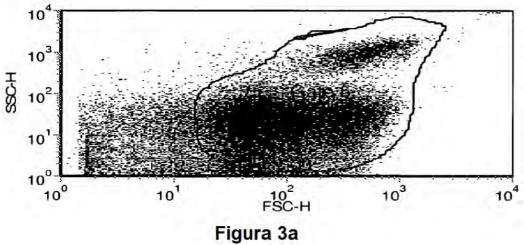
5	<210> 288 <211> 22 <212> ARN <213> Homo sapiens	
5	<400> 288 agaggcuggc cgugaugaau uc	22
10	<210> 289 <211> 21 <212> ARN <213> Homo sapiens	
15	<400> 289 cggggcagcu caguacagga u	21
20	<210> 290 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 290 uccuguacug agcugccccg ag	22
25	<210> 291 <211> 22 <212> ARN <213> Homo sapiens	
30	<400> 291 aaucauacag ggacauccag uu	22
35	<210> 292 <211> 22 <212> ARN <213> Homo sapiens	
40	<400> 292 aaucguacag ggucauccac uu	22
	<210> 293 <211> 22 <212> ARN <213> Homo sapiens	
45	<400> 293 caugccuuga guguaggacc gu	22
50	<210> 294 <211> 22 <212> ARN <213> Homo sapiens	
55	<400> 294 ccucccacac ccaaggcuug ca	22
60	<210> 295 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 295 ggagaaauua uccuuggugu gu	22
65	<210> 296 <211> 22	

	<212> ARN <213> Homo sapiens	
5	<400> 296 cacgcucaug cacacacca ca	22
10	<210> 297 <211> 23 <212> ARN <213> Homo sapiens	
	<400> 297 ugagugugug ugugugagug ugu	23
15	<210> 298 <211> 22 <212> ARN <213> Homo sapiens	
20	<400> 298 uuaugguuug ccugggacug ag	22
25	<210> 299 <211> 21 <212> ARN <213> Homo sapiens	
30	<400> 299 ucuaguaaga guggcagucg a	21
	<210> 300 <211> 22 <212> ARN <213> Homo sapiens	
35	<400> 300 augcugacau auuuacuaga gg	22
40	<210> 301 <211> 22 <212> ARN <213> Homo sapiens	
45	<400> 301 acuuguaugc uagcucaggu ag	22
50	<210> 302 <211> 22 <212> ARN <213> Homo sapiens	
	<400> 302 uacccauugc auaucggagu ug	22

REIVINDICACIONES


- 1. Un método para diagnosticar o pronosticar cáncer colorrectal en un sujeto, que comprende:
- 5 i) aislar microvesículas en una muestra del sujeto;
 - ii) determinar el nivel de al menos los siguientes regulados positivamente y al menos los siguientes miR regulados negativamente en las microvesículas aisladas; en donde los miR regulados positivamente comprenden miR-19a, miR-21, miR-127, miR-31, miR-96, miR-135b y miR-183; y los miR regulados negativamente comprenden miR-30c, miR-133a, miR-143, miR-133b y miR-145; y
- 10 iii) comparar el nivel de los miR con un control, en donde una alteración del nivel de los miR, en relación con el del control, es diagnóstico del cáncer colorrectal.
 - 2. El método de la reivindicación 1, que comprende:
- a) marcar los miR en las microvesículas aisladas del sujeto:
 - b) hibridar los miR marcados con una matriz de miR;
 - c) determinar la hibridación de los miR marcados con la matriz de miR; y
 - d) identificar los miR expresados diferencialmente en las microvesículas aisladas en comparación con el control.
- 20 3. El método de las reivindicaciones 1 o 2, en el que el control se selecciona del grupo que consiste en:
 - i) un patrón de referencia;


25


30

- ii) el nivel de los miR de un sujeto que no tiene cáncer colorrectal; y
- iii) el nivel de los miR de una muestra de un sujeto que no muestra cáncer colorrectal.
- 4. El método de cualquier reivindicación anterior, en el que el sujeto es un ser humano.
- 5. El método de cualquier reivindicación anterior, en el que la muestra del sujeto comprende sangre periférica o plasma.
- 6. El método de cualquier reivindicación anterior, en el que el nivel de los productos génicos de miR se mide por RT-PCR, análisis de transferencia de Northern, detección de hibridación en solución y/o análisis de micromatrices.
- 7. El método de cualquier reivindicación anterior, en el que el aislamiento de microvesículas comprende centrifugación.
- 8. Uso de una microvesícula aislada como un biomarcador para cáncer colorrectal, en el que la microvesícula se aísla de sangre periférica de un sujeto que tiene cáncer colorrectal, y además en el que los siguientes microARN están regulados positivamente en la microvesícula aislada en relación con el del sujeto de control: miR-19a, miR-21, miR-127, miR-31, miR-96, miR-135b y miR-183, y los siguientes miR están regulados negativamente en la microvesícula aislada en relación con el del sujeto de control: miR-30c, miR-133a, miR-143, miR-133b y miR-145.

Superposición de FSC frente a SSC

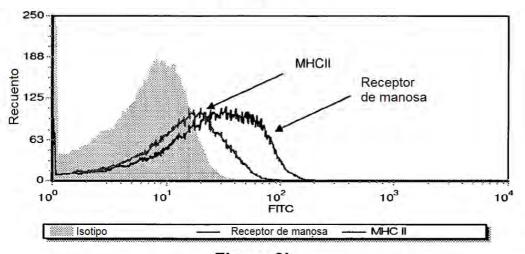


Figura 3b

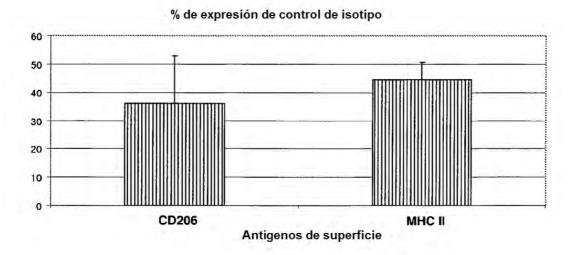


Figura 3c

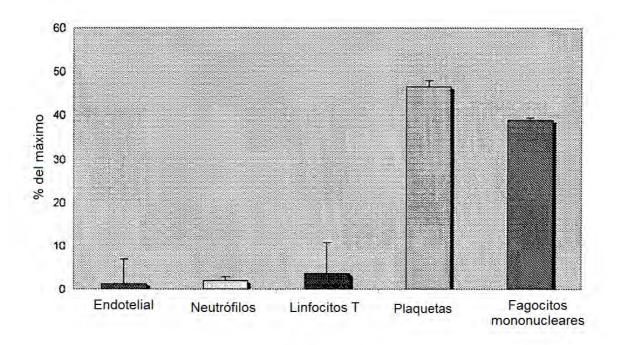


Figura 4

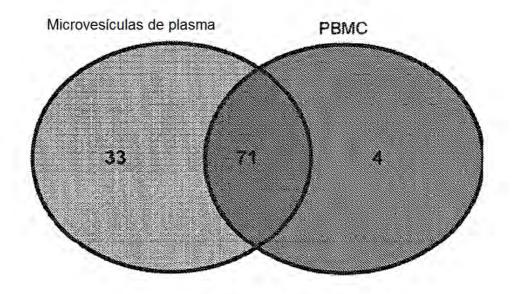


Figura 5D

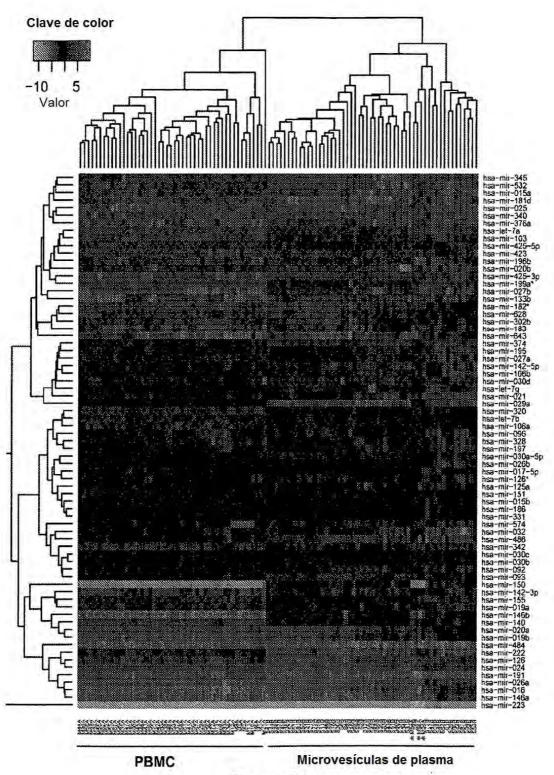


Figura 5A

Clave de color

Valor

Figura 5B

Clave de color

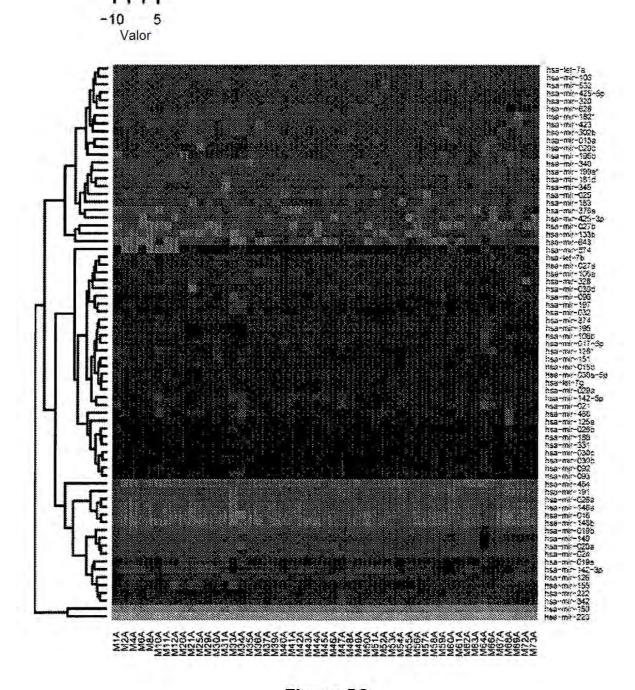


Figura 5C

Tabla 1			
Enfermedad	Aumento de la expresión en tejido enfermo	Reducción de la expresión en tejido enfermo	Referencia
Adenocarcinoma de colon	miR-20a, miR-21, miR-106a, miR-181b, miR-203		JAMA. 30 ene 2008; 299(4):425-36; Int J Cancer. 1 mar 2008 1; 122(5): 969-77.
Colorrectal	miR-19a. miR-21 miR-127, miR-31, miR-96. miR-135b y miR-183,	miR-30c, miR-133a, miR-143, miR-133b y miR-145	Int J Cancer. 1 mar 2008; 122(5):969-77; Cancer. 19 jul 2006; 5:29; Braz J Med Biol Res. nov 2007; 40(11):1435-40.
Cáncer de próstata	miR-21	miR-15a, miR-16-1, miR- 143, miR-145	Int J Cancer. 1 mar 2008; 122(5): 969-77.
Cáncer de pulmón	mir-17-92, miR-19a, miR-21, miR-92, miR-155. miR-191. miR-205, miR- miR-210	miR-let-7	Int J Cancer. 1 mar 2008; 122(5): 969-77.
Cáncer de mama	miR-21, miR-155	miR-125b, miR-145	Int J Cancer. 1 mar 2008; 122(5): 969-77.
Linfoma de linfocitos B	miR-155, miR-17-92, miR-19a, miR- 92, miR-142, miR- 155, miR-221		Int J Cancer. 1 mar 2008; 122 (5): 969-77.
Pancreático	miR-103 y <u>miR-107</u> , miR-18a, <u>miR-31</u> , miR-93. miR-221 y miR-224, miR-155	miR-133a, miR-216 , miR 217	J Clin Oncol. 10 oct 2006; 24(29): 4677-84; Oncogene. 28 jun 2007; 26(30): 4442-52
BCL grande diifuso	miR-155, miR-17-92		Int J Cancer. 1 mar 2008; 122 (5): 969-77.
CLL	miR-23b, miR-24-1, miR-146, miR- 155, miR-195, miR-221, miR-331, miR-29a. miR-195, miR-34a y miR- 29c		Int J Cancer. 1 mar 2008; 122 (5):969-77; Braz J Med Biol Res. nov 2007; 40(11):1435-40.
Cáncer de vejiga	miR-223, miR-26b, miR-221, miR- 103-1, miR-185, miR-23b, <u>miR-203</u> , miR-17-5p, <u>miR-23a</u> y <u>miR-205</u>		Urol Oncol. sep-oct 2007; 25(5): 387-92
Cáncer renal	miR-28, miR-185, miR-27 y miR-let- 7f-2		Urol Oncol. sep-oct 2007; 25(5): 387-92
Tumor-hipoxia	miR-23, miR-24, miR-26, miR-27, miR-103, miR-107, miR-181, miR- 210 y miR-213		Mol Cell Biol. mar 2007; 27(5): 1859-67.
Leiomiomas uterinos	familia miR-let-7, miR-21, miR-23b, miR-29b y miR-197		Genes Chromosomes Cancer. abr 2007;46(4): 336-47
Ovárico	miR-199*. miR-200a, miR-214	let-7, miR-125b	Cancer Res. 15 ene 2008; 15; 68(2); 425-33
asociado a virus de la hepatitis C	miR-122, miR-100 y miR-10a	miR-198 y <u>miR-145</u>	Hepatology. 19 dic 2007 [Epub antes de la impresión]
ALL	miR-128b, miR-204, miR-218, miR- 331 y miR-181b-1, miR-17-92		Braz J Med Biol Res. nov 2007; 40(11): 1435-40.
Enfermedad de Alzheimer	miR-9, miR-128	miR-107	J Neurosci. 30 ene 2008; 28(5): 1213-23 Neuroreport. 12 feb 2007; 18(3): 297-300
Mielofibrosis	<u>miR-190</u>	miR-31, <u>miR-150</u> y miR-95	Exp Hematol. nov 2007;35(11): 1708-18
Mielofibrosis, policitemia vera, trombocitemia		miR-34a, <u>-342</u> , -326, -105,- 149 y-147	Exp Hematol. nov 2007;35(11): 1708-18
VIH	miR-29a, <u>miR-29b</u> , <u>miR-149</u> , <u>miR-378</u> , miR-324-5p		Biochem Biophys Res Commun. 2 dic 2005; 337(4): 1214-8.
Latencia de VIH-1	miR-28, miR-125b, miR-150, miR- 223 y miR-382		Nat Med. Oct 2007; 13(10):1241-7

Figura 6 - Tabla I

Tabla II

miARN en plasma después de filtrac		Nombre de detector			
and the state of		Indetectable			
Nombre_detector	filtro				0.51.51.01.00.0
hsa-let-7a	0,333333333	hsa-let-7e	hsa-mir-346	hsa-mir-520c	hsa-mir-629
hsa-let-7b	0,058823529	hsa-mir-001	hsa-mir-362	hsa-mir-520d hsa-mir-	hsa-mir-630
hsa-let-7c	0,725490196	hsa-mir-007	hsa-mir-363	520d*	hsa-mir-631
hsa-let-7d	0,529411765	hsa-mir-009	hsa-mir-363*	hsa-mir-520e	hsa-mir-632
hsa-let-7f	0,745098039	hsa-mir-009*	hsa-mir-365	hsa-mir-520f	hsa-mir-633
hsa-let-7g	0,215686275	hsa-mir-010a	hsa-mir-367	hsa-mir-520g	hsa-mir-634
hsa-mir-015a	0,568627451	hsa-mir-010b	hsa-mir-368	hsa-mir-520h	hsa-mir-635
hsa-mir-015b	0,078431373	Section 1	hsa-mir-369-3p	hsa-mir-521	hsa-mir-636
hsa-mir-016	0	hsa-mir-017- 3p	hsa-mir-369-5p	hsa-mir-522	hsa-mir-637
	0,117647059		hsa-mir-371	hsa-mir-523	hsa-mir-638
hsa-mir-017-5p		hsa-mir-018b	hsa-mir-372	hsa-mir-524	hsa-mir-639
hsa-mir-018a	0,784313726	hsa-mir-022		hsa-mir-525	hsa-mir-641
hsa-mir-018a*	0,784313726	hsa-mir-023a	hsa-mir-373	hsa-mir-525*	hsa-mir-642
hsa-mir-019a	0,176470588	hsa-mir-023b	hsa-mir-373*	hsa-mir-526a	nsa-mir-042
hsa-mir-019b	0,058823529	hsa-mir-028	hsa-mir-375		h
hsa-mir-020a	0	hsa-mir-029b	hsa-mir-376a*	hsa-mir-526b hsa-mir-	hsa-mir-644
hsa-mir-020b	0,37254902	hsa-mir-029c	hsa-mir-376b	526b*	hsa-mir-645
hsa-mir-021	0,411764706	hsa-mir-031	hsa-mir-377	hsa-mir-526c	hsa-mir-646
hsa-mir-024	0	hsa-mir-033	hsa-mir-378	hsa-mir-527	hsa-mir-647
hsa-mir-025	0,647058824	hsa-mir-034a	hsa-mir-379		hsa-mir-648
hsa-mir-026a	0	hsa-mir-034b	hsa-mir-380-3p	12 D-M2 622 C	hsa-mir-649
hsa-mir-026b	0,176470588	hsa-mir-034c	hsa-mir-380-5p	hsa-mir-542- 3p hsa-mir-542-	hsa-mir-650
hsa-mir-027a	0,254901961	hsa-mir-095	hsa-mir-381	5p	hsa-mir-651
hsa-mir-027b	0,352941177	hsa-mir-099a	hsa-mir-383	hsa-mir-544	hsa-mir-652
hsa-mir-029a	0,764705882	hsa-mir-100	hsa-mir-409-5p	hsa-mir-545	hsa-mir-653
hsa-mir-030a-3p	0,37254902	hsa-mir-101	hsa-mir-410	hsa-mir-548a	hsa-mir-654
hsa-mir-030a-5p	0,098039216	hsa-mir-105	hsa-mir-412	hsa-mir-548b	hsa-mir-655
hsa-mir-030b	0,039215686	hsa-mir-107	hsa-mir-422a	hsa-mir-548c	hsa-mir-656
hsa-mir-030c	0,019607843	hsa-mir-122a	hsa-mir-422b	hsa-mir-548d	hsa-mir-657
hsa-mir-030d	0,274509804	hsa-mir-124a	hsa-mir-424	hsa-mir-549	hsa-mir-658
hsa-mir-032	0	hsa-mir-125b	hsa-mir-429	hsa-mir-550	hsa-mir-659
hsa-mir-092	0	hsa-mir-126	hsa-mir-432*	hsa-mir-551a	hsa-mir-660
hsa-mir-093	0,058823529	hsa-mir-128a	hsa-mir-448	hsa-mir-551b	hsa-mir-661
hsa-mir-096	0	hsa-mir-128b	hsa-mir-449	hsa-mir-552	hsa-mir-662
hsa-mir-098	0,784313726		hsa-mir-449b	hsa-mir-553	
hsa-mir-099b	0,549019608	hsa-mir-133a	hsa-mir-450	hsa-mir-554	

hsa-mir-103	0,235294118	hsa-mir-135a	hsa-mir-451	hsa-mir-555
hsa-mir-106a	0,058823529	hsa-mir-135b	hsa-mir-452	hsa-mir-556
hsa-mir-106b	0,215686275	hsa-mir-136	hsa-mir-452*	hsa-mir-557
hsa-mir-125a	0,078431373	hsa-mir-137	hsa-mir-453	hsa-mir-558
hsa-mir-126	0	hsa-mir-138	hsa-mir-455	hsa-mir-559
hsa-mir-126*	0,117647059	hsa-mir-139	hsa-mir-483	hsa-mir-561
hsa-mir-127	0,176470588	hsa-mir-141	hsa-mir-485-5p	hsa-mir-562
hsa-mir-130a	0,666666667	hsa-mir-143	hsa-mir-487a	hsa-mir-563
hsa-mir-130b	0,705882353	hsa-mir-147	hsa-mir-488	hsa-mir-564
hsa-mir-132	0,705882353	hsa-mir-148a	hsa-mir-489	hsa-mir-565
hsa-mir-133b	0,529411765	hsa-mir-149	hsa-mir-491	hsa-mir-566
hsa-mir-134	0,235294118	hsa-mir-152	hsa-mir-492	hsa-mir-567
hsa-mir-140	0,078431373	hsa-mir-153	hsa-mir-493-3p	hsa-mir-569
hsa-mir-142-3p	0,196078431	hsa-mir-154	hsa-mir-493-5p	hsa-mir-570
hsa-mir-142-5p	0,254901961	hsa-mir-154*	hsa-mir-494	hsa-mir-571
hsa-mir-145	0,705882353	hsa-mir-181a hsa-mir-	hsa-mir-495	hsa-mir-572
hsa-mir-146a	0	181a*	hsa-mir-496	hsa-mir-573
hsa-mir-146b	0,078431373	hsa-mir-181c	hsa-mir-497	
hsa-mir-148b	0,784313726	hsa-mir-182	hsa-mir-498	hsa-mir-575
hsa-mir-150	0,019607843	hsa-mir-184	hsa-mir-499	hsa-mir-576
hsa-mir-151	0,019607843	hsa-mir-185	hsa-mir-500	hsa-mir-578
hsa-mir-155	0,176470588	hsa-mir-187	hsa-mir-501	hsa-mir-579
hsa-mir-181d	0,725490196	hsa-mir-189	hsa-mir-502	hsa-mir-580
hsa-mir-182*	0,196078431	hsa-mir-190	hsa-mir-503	hsa-mir-583
hsa-mir-183	0,058823529	hsa-mir-192	hsa-mir-504	
hsa-mir-186	0,039215686	hsa-mir-193b	hsa-mir-505	hsa-mir-585
hsa-mir-191	0	hsa-mir-194	hsa-mir-506	hsa-mir-586
hsa-mir-193a	0,66666667	hsa-mir-196a	hsa-mir-507	hsa-mir-587
hsa-mir-195	0,31372549	hsa-mir-198	hsa-mir-508	hsa-mir-588
hsa-mir-196b	0,254901961	hsa-mir-199a	hsa-mir-509	hsa-mir-589
hsa-mir-197	0,019607843	hsa-mir-199b	hsa-mir-510	hsa-mir-591
hsa-mir-199a*	0,254901961	hsa-mir-200a hsa-mir-	hsa-mir-511	hsa-mir-592
hsa-mir-221	0,784313726	200a*	hsa-mir-512-3p	hsa-mir-593
hsa-mir-222	0	hsa-mir-200b	hsa-mir-512-5p	hsa-mir-594
hsa-mir-223	0	hsa-mir-200c	hsa-mir-513	hsa-mir-596
hsa-mir-224	0,529411765	hsa-mir-202	hsa-mir-514	hsa-mir-597
hsa-mir-302b	0,078431373	hsa-mir-202*	hsa-mir-515-3p	hsa-mir-599
hsa-mir-320	0,098039216	hsa-mir-203	hsa-mir-515-5p	hsa-mir-600
hsa-mir-324-3p	0,705882353	hsa-mir-204	hsa-mir-516-5p	hsa-mir-601
hsa-mir-324-5p	0,470588235	hsa-mir-205	hsa-mir-517*	hsa-mir-603
hsa-mir-328	0	hsa-mir-206	hsa-mir-517a	hsa-mir-604
	11 11 11 11 11 11 11 11 11 11 11 11 11			

Figura 7 - Tabla II (cont.)

hsa-mir-330	0,666666667	hsa-mir-208	hsa-mir-517b	hsa-mir-606
hsa-mir-331	0,039215686	hsa-mir-210	hsa-mir-517c	hsa-mir-607
hsa-mir-335	0,725490196	hsa-mir-211	hsa-mir-518a	hsa-mir-608
hsa-mir-339	0,607843137	hsa-mir-214	hsa-mir-518b	hsa-mir-609
hsa-mir-340	0,529411765	hsa-mir-215	hsa-mir-518c	hsa-mir-610
hsa-mir-342	0,019607843	hsa-mir-216	hsa-mir-518c*	hsa-mir-612
hsa-mir-345	0,705882353	hsa-mir-217	hsa-mir-518d	hsa-mir-613
hsa-mir-361	0,725490196	hsa-mir-218	hsa-mir-518e	hsa-mir-614
hsa-mir-370	0,549019608	hsa-mir-219	hsa-mir-518f	hsa-mir-615
hsa-mir-374	0,37254902	hsa-mir-220	hsa-mir-519a	hsa-mir-616
hsa-mir-376a	0,450980392	hsa-mir-296 hsa-mir-299-	hsa-mir-519b	hsa-mir-617
hsa-mir-382	0,607843137	3p hsa-mir-299-	hsa-mir-519c	hsa-mir-618
hsa-mir-411	0,607843137	5p	hsa-mir-519d	hsa-mir-619
hsa-mir-423	0,215686275	hsa-mir-301	hsa-mir-519e	hsa-mir-621
hsa-mir-425-3p	0,31372549	hsa-mir-302a hsa-mir-	hsa-mir-519e*	hsa-mir-622
hsa-mir-425-5p	0,215686275	302a* hsa-mir-	hsa-mir-520a	hsa-mir-624
hsa-mir-432	0,392156863	302b*	hsa-mir-520a*	hsa-mir-626
hsa-mir-433	0,470588235	hsa-mir-302c hsa-mir-	hsa-mir-520b	hsa-mir-627
hsa-mir-484	0	302c*		
hsa-mir-485-3p	0,31372549	hsa-mir-302d		
hsa-mir-486	0	hsa-mir-323		
hsa-mir-487b	0,529411765	hsa-mir-325		
hsa-mir-532	0,62745098	hsa-mir-326		
hsa-mir-539	0,588235294	hsa-mir-329		
hsa-mir-574	0	hsa-mir-337		
hsa-mir-584	0,784313726	hsa-mir-338		
hsa-mir-628	0			
hsa-mir-643	0,568627451			

Figura 7 - Tabla II (cont.)

Tabla III. D	Diez miARN ma	ás expresados (en microvesí	culas de plas	ma y PBMC.		
Microvesículas de plasma			PBMC				
miARN	Expresión normalizada (± D.T.)	Frecuencia expresada entre donantes (%)	10 frecuencias de mayor clasificación (%)		Expresión normalizada (± D.T.)	Frecuencia expresada entre donantes (%)	10 frecuencias de mayor clasificación (%)
mir-223	1589 ± 653	100	100	mir-223	2143 ± 499	100	100
mir-484	50,9 ± 22,9	100	96	mir-150	241 ± 94,6	98	98
mir-191	46,4 ±14,9	100	100	mir-146b	57,5 ± 21,1	100	100
mir-146a	39,5 ± 19	100	88	mir-016	54,7 ± 32,9	100	100
mir-016	25,4 ± 13,3	100	78	mir-484	40,6 ±18,8	89	88
mir-026a	25,2 ± 9,95	100	90	mir-146a	39,6 ±13,0	100	98
mir-222	24,5 ± 12,4	100	76	mir-191	32,4 ±15,6	100	94
mir-024	22,7 ± 10,5	100	80	mir-026a	$30 \pm 8,92$	100	100
mir-126	18,2 ±8,04	100	66	mir-019b	21,7 ± 7,49	100	80
mir-032	15,3 ± 32,6	100	31	mir-020a	15 ± 5.11	100	4

Figura 8 - Tabla III

Rutas predichas reguladas por miARN expresados en las microvesículas de plasma y fracciones de PBMC basándose en análisis de IPA solamente de dianas predichas por Sanger miRBase							
Microvesículas de plasma	p-valor	PBMC	p-valor				
Metabolismo de glicerofosfolípidos	3,29E-03	Señalización de orientación axonal	1,47E-02				
Metabolismo de inositol fosfato 5,77E-03 Potenciación a largo plazo sináptica			2,07E-02				
Degradación de fosfolípidos 9,17E-03 Señalización de receptores de estrógenos		2,23E-02					
Metabolismo de alanina y aspartato	1,96E-02	Metabolismo de glicerofosfolípidos	2,45E-02				
Señalización del receptor de estrógenos 2,14E-02 Metabolismo de D-glutar		Metabolismo de D-glutamina y D-glutamato	2,78E-02				
Rutas predichas reguladas por miARN expresados en las microvesículas de plasma y fracciones de PBMC de							
dianas combinadas de TargetScan y Sange	r miRBase						
Microvesículas de plasma	p-valor	PBMC	p-valor				
Ruta de presentación de antígenos	1,28E-03	Metabolismo de glicina, serina, treonina	3,63E-03				
Metabolismo de glicerofosfolípidos	9,05E-03	Metabolismo de glicerofosfolípidos	2,38E-02				
Metabolismo de glicina, serina, treonina	Metabolismo de glicina, serina, treonina 1,56E-02 Metabolismo de D-glutamina y D-glutamato 2,54l		2,54E-02				
Señalización de linfocitos citolíticos naturales 1.57E-02 Metabolismo de glioxilato, dicarboxilato 4.378			4.37E-02				

Figura 9 - Tabla IV

plasma_media es la media de Ct en bruto en las 51 observaciones para plasma PBMC_media es la media de la Ct en bruto en las 51 observaciones para PBMC

"Plasma-PBMC" es la diferencia de datos normalizados entre plasma y PBMC

[&]quot;p-valor" se consideró significativo si el p-valor < 0,05/72 = 0,0006

Nombre_detector	Plasma_media	PBMC_media	Plasma- MNC	factor de cambio	p-valor	Factor de cambio para plasma
hsa-mir-029a	37,12771586	31,87566924	5,3333	40,31654208	9,70E-28	0,024803715
18S (CT)	12,71460766	9,451029281	3,3449	10,16050356	9,84E-25	0,098420319
hsa-mir-155	32,77301951	29,64446324	3,2098	9,252222752	6,61E-23	0,108082136
hsa-mir-146b	30,87718855	26,44380422	4,5147	22,85915231	1,81E-22	0,043746154
hsa-mir-142-3p	33,45027482	28,97701498	4,5545	23,49855274	1,91E-22	0,042555812
hsa-mir-222	27,69255453	29,77206378	-1,9982	0,250312111	1,18E-21	3,995012452
hsa-mir-328	30,15998382	32,9642692	-2,723	0,151459083	1,64E-21	6,602443268
hsa-mir-151	30,40933518	32,29093225	-1,8003	0,287114879	2,24E-21	3,482926432
hsa-mir-150	30,47592494	24,6518619	5,9053	59,93388544	7,01E-21	0,016685052
hsa-mir-486	28,73173943	31,56628224	-2,7533	0,148311256	4,31E-20	6,74257657
hsa-mir-197	30,22004439	32,22121169	-1,9199	0,264272828	5,34E-18	3,783968293
hsa-mir-140	30,80686384	28,81119314	2,077	4,219289268	2,87E-17	0,237006741
hsa-mir-320	32,3865371	33,86695527	-1,3991	0,379165604	1,63E-16	2,637370031
hsa-mir-374	34,51049488	32,67750663	1,9143	3,76930882	8,01E-15	0,265300629
hsa-mir-019a	32,11311761	29,96710463	2,2273	4,682568177	2,86E-12	0,213558022
hsa-mir-019b	29,4539469	27,85115537	1,6841	3,213398715	7,12E-12	0,311196988
hsa-mir-126	28,07632355	29,10031739	-0,9427	0,520258307	2,61E-11	1,922122121
hsa-mir-016	27,74576263	26,5689361	1,2581	2,391805375	1,35E-10	0,418094219
hsa-mir-532	36,36702118	34,20639555	2,2419	4,730196117	6,15E-10	0,211407725
hsa-mir-092	29,75216725	30,55396618	-0,7205	0,606887075	1,17E-09	1,647753003
hsa-mir-199a*	33,58726049	35,4571252	-1,7886	0,289452796	3,21E-09	3,454794744
hsa-let-7g	33,60687451	31,98889118	1,6993	3,247433539	4,99E-09	0,307935478
hsa-mir-032	29,54416735	31,80526606	-2,1798	0,220706343	8,52E-09	4,530907381
hsa-mir-345	36,51374094	34,71916814	1,8759	3,670305114	1,26E-08	0,272456913
hsa-mir-103	33,43298386	34,64525506	-1,131	0,456599125	1,99E-08	2,190104942
hsa-mir-021	34,3396759	32,34668429	2,0743	4,211400264	4,23E-08	0,237450714
hsa-mir-183	32,45422284	35,11564953	-2,5801	0,167229352	7,17E-08	5,979811469
hsa-mir-142-5p	33,80914806	32,4729949	1,4174	2,671037073	9,83E-08	0,374386417
hsa-mir-017-5p	31,31194325	32,41959375	-1,0264	0,490933663	1,26E-07	2,03693508
hsa-mir-106b	33,74281576	32,50763722	1,3165	2,490611501	1,28E-07	0,401507822
hsa-mir-342	30,04861659	29,34785373	0,782	1,719512972	3,06E-07	0,581560021

Figura 10 - Tabla V

Plasma-MNC "+": el nivel de miR es mayor en PBMC, y "---": el nivel de miR es menor en plasma "Factor de cambio" es 2^ la diferencia. Para miR 29a: 40,3 = 2^ (5,33). Lo que significa que el nivel de miR en PBMC es 40 veces mayor que en suero

hsa-mir-015a	36,02643541	34,41777394	1,6899	3,226343396	3,25E-07	0,309948408
hsa-mir-106a	32,27341998	33,310393	-0,9557	0,515591362	4,92E-07	1,939520467
hsa-mir-030a-						
5p	32,84903206	32,11457514	0,8157	1,760151976	4,98E-07	0,56813276
hsa-mir-181d	36,91248884	35,10117465	1,8926	3,713037794	5,30E-07	0,269321255
hsa-mir-574	29,77877718	31,99443544	-2,1344	0,227762162	3,05E-06	4,390544899
hsa-mir-020a	29,10969835	28,36665692	0,8243	1,770675693	3,74E-06	0,564756157
hsa-mir-133b	35,04172861	36,86655569	-1,7435	0,298644281	4,05E-06	3,348465259
hsa-let-7b	32,39289143	33,23120741	-0,757	0,591725511	4,25E-06	1,689972769
hsa-mir-026b	32,29385324	31,16910598	1,206	2,30697121	5,44E-06	0,433468782
hsa-mir-027b	34,97319163	37,12771071	-2,0732	0,23763183	1,20999E-05	4,208190455
hsa-mir-223	21,63665394	21,16179467	0,5561	1,470289246	2,99379E-05	0,680138281
hsa-mir-195	33,54064118	32,45677802	1,1652	2,242643031	0,000055077	0,44590244
hsa-mir-024	27,78702461	28,36258525	-0,4943	0,709906043	0,000137267	1,408637114
hsa-mir-030d	33,8831652	32,98623929	0,9782	1,970005968	0,000154741	0,507612675
hsa-mir-015b	31,44832671	32,07442065	-0,5448	0,685486424	0,000371404	1,458818095
hsa-mir-096	31,46980261	32,73422363	-1,1831	0,44040416	0,000386324	2,270641588
hsa-mir-191	26,63890682	27,27556098	-0,7068	0,612677595	0,00047708	1,632179808
hsa-mir-425-3p	34,77417378	35,82356186	-0,9681	0,511178832	0,00084906	1,95626254
hsa-mir-020b	34,97815304	33,84422814	1,2152	2,321729667	0,000852341	0,430713366
hsa-mir-643	35,6734501	37,16658316	-1,4118	0,375842469	0,00130314	2,660689207
hsa-mir-126*	31,16681945	32,1345669	-0,8865	0,54092482	0,001314585	1,84868574
hsa-mir-423	33,93739253	34,82278949	-0,8041	0,57271925	0,001362239	1,746056205
hsa-mir-425-5p	33,23637712	33,88098071	-0,5633	0,676752398	0,00179719	1,477645299
hsa-mir-026a	27,61150875	27,32677761	0,366	1,28877463	0,003310506	0,775930854
hsa-mir-302b	33,23113157	34,33434284	-1,0219	0,492467356	0,003731969	2,030591447
hsa-mir-484	26,55751618	28,13046808	-1,4917	0,355593289	0,009046242	2,812201558
hsa-mir-125a	30,94104939	31,63410639	-0,6118	0,654379746	0,02785181	1,528164657
hsa-let-7a	34,16573733	34,66154112	-0,4145	0,750279477	0,031855987	1,332836671
hsa-mir-628	33,65892745	34,23451988	-0,4943	0,709906043	0,033363855	1,408637114
hsa-mir-182*	34,51246341	35,19580641	-0,6021	0,65879431	0,04206113	1,517924464
hsa-mir-093	29,92991163	30,33080725	-0,3196	0,801292012	0,043597802	1,247984486
hsa-mir-376a	35,49479343	36,2218518	-0,6458	0,639138279	0,048003434	1,564606648
hsa-mir-196b	33,89190492	34,56216867	-0,589	0,664803554	0,052904716	1,504203751
hsa-mir-025	36,27231106	35,85259422	0,501	1,41519416	0,069149461	0,706616822
hsa-mir-027a	33,33901471	32,99540369	0,4249	1,342479446	0,101287776	0,744890362
hsa-mir-146a	27,051654	26,95885476	0,1741	1,12826034	0,241458101	0,886320262
hsa-mir-340	35,71472961	35,53800265	0,258	1,195819797	0,297093531	0,8362464
hsa-mir-030b	30,55810765	30,72009382	-0,0807	0,945598728	0,389875101	1,057531033
hsa-mir-186	31,31177086	31,45367741	-0,06062	0,958851963	0,659198081	1,042913858
hsa-mir-331	31,20308243	31,25979306	0,02458	1,017183525	0,843135202	0,983106761
hsa-mir-030c	30,93719829	31,01586004	0,002625	1,001821168	0,97816881	0,998182143

Figura 10 - Tabla V (cont.)

Tabla VI						
Nombre_detector	Expresión normalizada media PBMC	Desviación típica de PBMC	Nombre_detector	Expresión normalizada media plasma	Desviación típica de plasma	
hsa-mir-223	2143,797514	499,6723532	hsa-mir-223	1589,265353	653,1441	
hsa-mir-150	241,3339986	94,6316509	hsa-mir-484	50,93154102	22,91411	
hsa-mir-146b	57,51515588	21,17347322	hsa-mir-191	46,44422571	14,98219	
hsa-mir-016	54,79023342	32,92864759	hsa-mir-146a	39,5631478	19,02017	
hsa-mir-484	40,62828652	18,89513879	hsa-mir-016	25,45043823	13,32435	
hsa-mir-146a	39,66536453	13,01422255	hsa-mir-026a	25,2068328	9,956682	
hsa-mir-191	32,44104295	15,62493155	hsa-mir-222	24,51626706	12,42177	
hsa-mir-026a	30,05789737	8,928309461	hsa-mir-024	22,79169634	10,53596	
hsa-mir-019b	21,72111133	7,496587814	hsa-mir-126	18,20923598	8,04666	
hsa-mir-020a	15,03972998	5,117918017	hsa-mir-032	15,32305403	32,61654	
hsa-mir-024	14,49037987	2,924884427	hsa-mir-486	12,89548349	11,97428	
hsa-mir-142-3p	11,61802275	7,535807778	hsa-mir-020a	10,12067658	5,597534	
hsa-mir-140	11,15286241	3,933184767	hsa-mir-019b	9,158209689	6,76422	
hsa-mir-126	9,209558485	3,825687483	hsa-mir-150	8,165508668	25,08223	
hsa-mir-342	7,803100549	3,388772813	hsa-mir-574	5,939301367	3,722014	
hsa-mir-155	6,584151232	4,579272166	hsa-mir-092	5,700980896	3,157407	
hsa-mir-222	5,715723219	2,105344287	hsa-mir-093	5,436799962	2,417329	
hsa-mir-019a	5,53562668	2,957936571	hsa-mir-342	5,114543492	3,297305	
hsa-mir-093	3,756090874	1,000518353	hsa-mir-197	4,9808586	4,507	
hsa-mir-092	3,215354275	0,85390195	hsa-mir-328	4,707858075	3,592588	
hsa-mir-486	3,096228853	7,676887526	hsa-mir-096	3,674085488	5,965292	
hsa-mir-030b	2,865611791	0,76538861	hsa-mir-151	3,452172299	1,08377	
hsa-mir-574	2,458205492	1,894539696	hsa-mir-146b	3,272000368	2,101495	
hsa-mir-030c	2,335820956	0,663949738	hsa-mir-140	3,196516876	1,71678	
hsa-mir-026b	2,129402092	0,705755408	hsa-mir-030b	3,134519745	1,142809	
hsa-mir-331	1,985929854	0,609153141	hsa-mir-125a	3,080410769	1,975409	
hsa-mir-125a	1,808127477	1,087896802	hsa-mir-126*	3,023376204	2,068206	
hsa-mir-186	1,720577641	0,419612713	hsa-mir-183	2,854264163	6,494415	
hsa-mir-032	1,716467503	1,338128537	hsa-mir-030c	2,412532336	0,863587	
hsa-mir-029a	1,323099465	0,533548819	hsa-mir-017-5p	2,13024101	0,998316	
hsa-mir-126*	1,269368187	0,759421276	hsa-mir-331	2,087433557	0,81255	
hsa-let-7g	1,199246639	0,349725473	hsa-mir-186	2,022411766	0,916917	
hsa-mir-021	1,161213483	0,674584117	hsa-mir-015b	1,808314178	0,81048	
hsa-mir-197	1,149407136	0,647186919	hsa-mir-019a	1,697172987	1,453897	

Figura 11 - Tabla VI

has mir 01Eh	1 14600440	0.400407505	has mir 000h	1 00001000	0.007011
hsa-mir-015b hsa-mir-030a-	1,14628446	0,432407565	hsa-mir-302b	1,339313335	2,387044
5p	1,094683149	0,306485271	hsa-mir-026b	1,292369054	0,824158
hsa-mir-195	1,017673959	0,797387672	hsa-mir-106a	1,186157531	1,293289
hsa-mir-151	1,007960478	0,397967603	hsa-let-7b	0,97666637	0,625536
hsa-mir-142-5p	0,962665368	0,492490733	hsa-mir-320	0,911092198	0,420503
hsa-mir-017-5p	0,941159371	0,360846484	hsa-mir-155	0,808867743	0,52866
hsa-mir-106b	0,910164376	0,403715009	hsa-mir-030a-5p	0,727538734	0,549257
hsa-mir-096	0,875989336	0,559638262	hsa-mir-628	0,713396354	1,263219
hsa-mir-374	0,764917256	0,274388929	hsa-mir-027a	0,641903058	0,448917
hsa-mir-328	0,720096352	0,412158586	hsa-mir-142-3p	0,627217683	0,607184
hsa-mir-030d	0,662654685	0,22361572	hsa-mir-195	0,564628001	0,392046
hsa-mir-027a	0,622821419	0,251240619	hsa-mir-425-5p	0,554428361	0,275865
hsa-mir-106a	0,542577626	0,312616405	hsa-let-7g	0,515997707	0,337364
hsa-let-7b	0,534079686	0,25068168	hsa-mir-021	0,51383279	0,491008
hsa-mir-020b	0,410435233	0,262371622	hsa-mir-199a*	0,503454664	0,327551
hsa-mir-320	0,344918355	0,140441973	hsa-mir-142-5p	0,485752905	0,504504
hsa-mir-425-5p	0,334114444	0,131686276	hsa-mir-103	0,469571039	0,215895
hsa-mir-628	0,323074686	0,328272174	hsa-mir-106b	0,455236625	0,295268
hsa-mir-302b	0,31107497	0,233922375	hsa-mir-182*	0,450866408	0,779637
hsa-mir-532	0,30283697	0,175299492	hsa-mir-196b	0,424682779	0,283318
hsa-mir-196b	0,291839926	0,203868959	hsa-mir-643	0,410079866	0,934729
hsa-mir-015a	0,263528933	0,156658681	hsa-mir-030d	0,360317322	0,195419
hsa-mir-183	0,223615225	0,225419033	hsa-mir-423	0,355300524	0,267033
hsa-mir-345	0,222589939	0,14617654	hsa-let-7a	0,316043353	0,197157
hsa-mir-423	0,213547231	0,136842846	hsa-mir-027b	0,252490316	0,182518
hsa-mir-103	0,205412359	0,093491856	hsa-mir-374	0,251770179	0,197212
hsa-let-7a	0,198065472	0,082808812	hsa-mir-020b	0,227198431	0,167979
hsa-mir-181d	0,170055022	0,109234879	hsa-mir-133b	0,201227753	0,178372
hsa-mir-182*	0,151155794	0,079789533	hsa-mir-425-3p	0,183808363	0,094868
hsa-mir-340	0,128492001	0,08303611	hsa-mir-376a	0,166829158	0,161986
hsa-mir-425-3p	0,127886265	0,097067479	hsa-mir-340	0,113550436	0,088995
hsa-mir-199a*	0,127527328	0,079775882	hsa-mir-015a	0,110336695	0,095621
hsa-mir-376a	0,124903907	0,160137603	hsa-mir-181d	0,093074354	0,212993
hsa-mir-643	0,116164417	0,195641411	hsa-mir-532	0,086633253	0,064244
hsa-mir-025	0,11319355	0,079644761	hsa-mir-025	0,072911126	0,043857
hsa-mir-133b	0,100108157	0,121551814	hsa-mir-345	0,071420142	0,054899
hsa-mir-027b	0,07101679	0,067406886	hsa-mir-029a	0,058322216	0,093625

Figura 11 - Tabla VI (cont.)