

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 581 387

61 Int. Cl.:

A61K 31/415 (2006.01) A61K 31/496 (2006.01) A61K 31/545 (2006.01) A61K 31/40 (2006.01) A61P 31/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 26.03.2009 E 09725273 (8)
 (97) Fecha y número de publicación de la concesión europea: 23.03.2016 EP 2276484
- (54) Título: UNA COMPOSICIÓN ANTIMICROBIANA
- (30) Prioridad:

26.03.2008 IE 20080218

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **05.09.2016**

(73) Titular/es:

INSTITUTE OF TECHNOLOGY SLIGO (100.0%) Ballinode, Sligo, IE

(72) Inventor/es:

BARRETT, JOHN REGINALD; BRENNAN, JAMES JOSEPH y PATTON, THOMAS PATRICK

(74) Agente/Representante:

PONS ARIÑO, Ángel

DESCRIPCIÓN

Una composición antimicrobiana.

5 Campo de la invención

La presente invención se refiere a una composición antimicrobiana mejorada que comprende una fuente de peróxido de hidrógeno y uno o más agentes antimicrobianos.

10 Antecedentes de la invención

Existen muchas composiciones antimicrobianas ya conocidas. Por ejemplo, dichas composiciones antimicrobianas incluyen tratamientos convencionales tales como antisépticos y antibióticos. Sin embargo, existen muchos efectos adversos potenciales y reales asociados al uso clínico de dichas composiciones antimicrobianas. Los efectos adversos asociados al uso de antibióticos incluyen reacciones alérgicas, destrucción de la microflora benéfica, desarrollo de especies resistentes de microorganismos, supresión inmunitaria, crecimiento excesivo de *Candida albicans* y flora intestinal indeseable, desarrollo del síndrome de fatiga crónica y pérdida de nutrientes que puede dar como resultado un estado de deficiencia de nutrientes. El grado al que estos efectos adversos ocurren depende normalmente de la concentración de antimicrobiano administrado.

20

Uno de los más importantes de estos efectos secundarios adversos, es la aparición de resistencia a los antibióticos. La continua aparición de patógenos resistentes a los antibióticos es una grave amenaza para el control de infecciones y proporciona una razón convincente para desarrollar nuevas terapias diseñadas para superar este problema. Será deseable cualquier tratamiento que supera o mejora este efecto adverso significativo.

25

Además, los efectos secundarios asociados al uso de antibióticos potentes y potencialmente tóxicos no pueden pasarse por alto. De nuevo, será deseable cualquier tratamiento que supere o mejore estos efectos adversos.

Otro tratamiento convencional usado en el tratamiento de acné vulgar leve a moderado, es la combinación de un antibiótico y peróxido de benzoílo. Ahora existe una considerable bibliografía sobre el uso de peróxido de benzoílo para el tratamiento del acné y aumento de eficacia en combinación con antibióticos, especialmente eritromicina. Se ha descubierto que esta terapia de combinación proporciona una mejor eficacia sobre los agentes individuales, con el potencial de reducir la aparición de cepas resistentes de *P. acnes.* (Bowman, S., Gold, M., Nasir, A., y Vamvakias, G. Comparison of clindamycinlbenzoyl peroxide, tretinoin plus clindamycin, and the combination of clindamycin/benzoyl peroxide and tretinoin plus clindamycin in the treatment of acne vulgaris: a randomized, blinded study. Journal of Drugs in Dermatology, Sept-Oct, 2005).

Además, por ejemplo, la patente de Estados Unidos Nº 4.497.794 se refiere al uso de peróxido de benzoílo y eritromicina. Todos los ejemplos en esta patente de Estados Unidos se refieren al uso de peróxido de benzoílo y eritromicina en solitario. Otras publicaciones, en relación con el uso de peróxido de benzoílo y eritromicina incluyen Burkhart CN, Specht K Neckers D, "Synergistic activity of benzoyl peroxide and erythromycin"; Skin Pharmacol Appl Skin Physiol.: 2000 Sep-Oct;13(5): 292-6 y Eady EA, Farmery MR, Ross JI, Cove JH, Cunliffe WJ. "Effects of benzoyl peroxide and erythromycin alone and in combination against antibiotic-sensitive and -resistant skin bacteria from acne patient": Br J Dermatol. sept. de 1994; 131(3): 331-6. Ambas de estas publicaciones indican que la combinación de peróxido de benzoílo y eritromicina no es sinérgica y que el aumento de beneficio se debe al peróxido de benzoílo que además mata a las cepas resistentes a eritromicina. Finalmente, la publicación de patente internacional Nº 96/10998 se refiere a un tratamiento tópico para el acné que comprende un peróxido y antibiótico de la familia de lincomicina. De nuevo, todos los ejemplos en esta patente se refieren al uso de peróxido de benzoílo en solitario.

50

Otros tratamientos antimicrobianos incluyen geles que contienen plata, compuestos que contienen metales pesados y soluciones de peróxido de hidrógeno y sustancias farmacéuticamente activas naturales y sintéticas. Sin embargo, incluso estos tratamientos tienen efectos secundarios, por ejemplo, los altos niveles peróxido de hidrógeno tienen un efecto tóxico. Además, el peróxido de hidrógeno en solución es típicamente inestable y es difícil de proporcionar un 55 sistema de administración sostenida para este material.

Adicionalmente, recientemente ha vuelto a resurgir el interés por la eficacia terapéutica de la miel, en concreto, en el ámbito de la curación de heridas. Como producto natural, la miel ofrece una alternativa atractiva a los tratamientos convencionales. Muchos tipos diferentes de miel tienen actividad antimicrobiana. Durante los últimos años, se ha

reconocido que la miel de Manuka tiene una actividad superior a la de la mayoría de las mieles. Se conoce la miel de Manuka para el tratamiento de infecciones de heridas y por su actividad antibacteriana. Sin embargo, la miel natural como agente antibacteriano tiene varias desventajas. En primer lugar, la miel natural está compuesta por una mezcla diversa de compuestos orgánicos e inorgánicos identificados y no identificados a diversas concentraciones. A este respecto, se puede esperar demostrar un grado de variabilidad que puede ser inaceptable para su uso en muchas aplicaciones clínicas. En segundo lugar, la miel se usa principalmente para aplicación tópica. Esto se debe a que cuando la miel se diluye, por ejemplo, mediante absorción en el intestino, ésta se vuelve demasiado diluida para tener alguna actividad detectable. Finalmente, la miel es un producto natural, que tendrá muchos compuestos adicionales presentes y algunos de estos compuestos pueden dar lugar a una reacción alérgica al aplicarse.

10

Por lo tanto, por una amplia diversidad de razones diferentes, los tratamientos antimicrobianos convencionales disponibles hasta la fecha tienen muchas desventajas. Así, por lo tanto, existe la necesidad de mejores sistemas antimicrobianos que superen las desventajas que se han mencionado anteriormente.

15 Estados de la invención

De acuerdo con un primer aspecto general de la presente invención, se proporciona una composición antimicrobiana mejorada que comprende una fuente de peróxido de hidrógeno y uno o más agentes antimicrobianos para su uso en terapia, idealmente en el tratamiento y/o profilaxis de infecciones microbianas.

20

Idealmente, la composición antimicrobiana mejorada está en forma de una terapia de combinación o preparación combinada. La fuente de peróxido de hidrógeno puede ser peróxido de hidrógeno per se o un medio para generar peróxido de hidrógeno de forma ideal en forma de un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende una enzima oxido-reductasa, un sustrato para la enzima oxido reductasa, azúcares adicionales y peróxido de hidrógeno en una solución acuosa y el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.

30

De acuerdo con un segundo aspecto general de la presente invención, se proporciona una composición antimicrobiana mejorada que comprende una fuente de peróxido de hidrógeno en forma de un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema. La composición antimicrobiana mejorada de este aspecto de la invención también puede usarse en el tratamiento y/o profilaxis de una infección microbiana.

40 De esta manera, el sistema antimicrobiano e inmunoestimulador estable en almacenamiento puede usarse como la composición antimicrobiana *per se* o en combinación con uno o más agentes antimicrobianos.

De acuerdo con la invención, se proporciona una composición antimicrobiana que comprende (i) un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o 45 más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema; y (ii) el antibiótico Lincosamida o

50 Cefalosporina; o el agente antifúngico seleccionado de entre uno o más de Clotrimazol, Ciclopiroxolamina, Terbinafina y/o Ketoconazol.

En una realización de la invención, se proporciona una terapia de combinación antimicrobiana que comprende (i) un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-55 glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema; y (ii) el antibiótico Lincosamida

o Cefalosporina; o el agente antifúngico seleccionado de entre uno o más de Clotrimazol, Ciclopiroxolamina, Terbinafina y/o Ketoconazol; para su uso en terapia.

En otra realización de la invención, se proporciona una terapia de combinación antimicrobiana que comprende (i) un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al 10 menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema; y (ii) el antibiótico Lincosamida o Cefalosporina; o el agente antifúngico seleccionado de entre uno o más de Clotrimazol, Ciclopiroxolamina, Terbinafina y/o Ketoconazol; para su uso en el tratamiento simultáneo, separado o secuencial de una infección microbiana.

15 En una realización adicional de la invención, se proporciona una composición antimicrobiana o terapia de combinación en forma de una preparación combinada.

En una realización alternativa de la invención, se proporciona una composición, terapia de combinación o preparación combinada, donde la combinación de la fuente de peróxido de hidrógeno y el agente antibiótico o 20 antifúngico proporciona una eficacia mayor que la eficacia de cualquier agente administrado en solitario.

En una realización alternativa de la invención, se proporciona una composición, terapia de combinación o preparación combinada, donde la combinación de la fuente de peróxido de hidrógeno y el agente antibiótico o antifúngico proporciona una eficacia mayor que la eficacia de cualquier agente administrado en solitario.

En otra realización de la invención, se proporciona una composición, terapia de combinación o preparación combinada donde la fuente de peróxido de hidrógeno es un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde una cantidad eficaz de glucosa oxidasa está presente a una actividad de al menos 10 U por 100 g del sistema; donde D-glucosa está presente del 20 % al 85 % en peso en base al peso del sistema total; uno o más de sacarosa, fructosa y/o maltosa están presentes del 10 % al 70 % en peso en base al peso del sistema total; el agua está presente del 10 al 20 % en peso en base al peso del sistema total; el sistema tiene un pH de 4 a 8; y el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.

En otra realización de la invención, se proporciona una composición, terapia de combinación o preparación combinada donde la infección microbiana es una infección bacteriana o fúngica, preferiblemente una infección 40 cutánea, una infección de uñas, mastitis, MRSA u otra infección resistente a antibióticos.

En una realización adicional de la invención, se proporciona una composición, terapia de combinación o preparación combinada donde la fuente de peróxido de hidrógeno y/o el agente antibiótico o antifúngico están adaptados para administración tópica, enteral o parenteral.

En una realización alternativa de la invención, se proporciona una composición, terapia de combinación o preparación combinada donde la fuente de peróxido de hidrógeno y el agente antimicrobiano están adaptados para administración tópica.

50 La invención se refiere adicionalmente al uso de las composiciones, terapias de combinación o preparaciones combinadas de la invención en un método para la fabricación de un medicamento para el tratamiento de una infección microbiana.

Descripción detallada de la invención

55

25

En la memoria descriptiva, se entenderá que los términos "antimicrobiano" o "antibacteriano" se usan de forma intercambiable en el presente documento e incluyen actividad biocida o bioestática frente a diversos tipos de microorganismos, incluyendo, pero sin limitación, bacterias, hongos, virus, levaduras, microorganismos parásitos o patógenos y/o mohos.

En la memoria descriptiva, también se entenderá que la expresión "un agente antimicrobiano" incluye todos los fármacos antimicrobianos quimioterapéuticos, preferiblemente antibióticos o agentes antifúngicos, antivíricos y antiparasitarios.

También se entenderá que la expresión "composición antimicrobiana" incluye tanto la fuente de peróxido de hidrógeno *per se* (tal como el sistema antimicrobiano e inmunoestimulador estable en almacenamiento que se describe a continuación) como la terapia de combinación/preparación combinada que comprende la fuente de peróxido de hidrógeno y el agente antimicrobiano.

En esta memoria descriptiva, se entenderá que la expresión "fuente de peróxido de hidrógeno" incluye tanto peróxido de hidrógeno *per se* como un medio para generar peróxido de hidrógeno. En una realización preferida, la fuente de peróxido de hidrógeno es el sistema antimicrobiano e inmunoestimulador estable en almacenamiento (el "sistema antimicrobiano") que se describe a continuación.

En la memoria descriptiva, el término "en peso", "porcentaje de su peso" o "% p/p" se refiere al peso de la composición o sistema final. Estos valores p/p son intercambiables con p/v.

Terapia de combinación

10

15

20

De acuerdo con un primer aspecto general de la presente invención, se proporciona una composición antimicrobiana mejorada que comprende una fuente de peróxido de hidrógeno y uno o más agentes antimicrobianos.

La fuente de peróxido de hidrógeno puede ser peróxido de hidrógeno *per se* o un medio para generar peróxido de 25 hidrógeno.

El agente antimicrobiano puede ser uno o más antibióticos antibióticos antibióticos antifúngicos, uno o más agentes antiparasitarios y/o uno o más agentes antivíricos.

30 Idealmente, la fuente de peróxido de hidrógeno y uno o más agentes antimicrobianos están presentes como parte de una terapia de combinación o preparación combinada. En esta memoria descriptiva, la expresión "terapia de combinación" se usa ampliamente. La terapia de combinación puede producirse en una forma farmacéutica que comprende ambos principios activos o en dos formas separadas, incluyendo comprimidos, cápsulas, polvos, mezclas o soluciones. Por lo tanto, la expresión "terapia de combinación" incluye tanto la administración simultánea, 35 secuencial como separada de la fuente de peróxido de hidrógeno y el agente o agentes antimicrobianos.

Por consiguiente, los principios activos de la terapia de combinación pueden administrarse sustancialmente al mismo tiempo o en diferentes momentos.

- 40 Por lo tanto, la expresión "terapia de combinación" incluye la combinación de agente o agentes antimicrobianos y la fuente de peróxido de hidrógeno como una única entidad, es decir, una preparación combinada. De esta manera, la fuente de peróxido de hidrógeno puede combinarse, integrarse o secuestrarse con el agente o agentes antimicrobianos durante o después de la fabricación.
- 45 Como alternativa, el agente o agentes antimicrobianos pueden envasarse por separado a la fuente de peróxido de hidrógeno para su administración concomitante. En esta situación, también puede proporcionarse un conjunto de instrucciones para su administración concomitante. Por ejemplo, la invención también proporciona un medio mediante el cual el uso sistémico de agentes antimicrobianos para tratar una infección tópica puede aumentarse por el tratamiento tópico simultáneo de la infección con la invención.

Se entenderá que la composición antimicrobiana de la invención debe estar presente en una cantidad terapéuticamente eficaz para eliminar o inhibir o controlar el crecimiento de los microorganismos que se tratan. Sin embargo, también es posible usar una menor cantidad de agente antimicrobiano debido al efecto sinérgico o aditivo entre el agente antimicrobiano y el peróxido de hidrógeno. Se ha descubierto sorprendentemente que, en algunos casos, la composición antimicrobiana de la invención tiene una mayor eficacia antimicrobiana que la conseguida por los componentes individuales en solitario. Este efecto va más allá de un efecto de combinación/aditivo y se observa tras una reducción en la concentración de los agentes antimicrobianos individuales presentes en la composición, indicando que la concentración reducida de componentes individuales no afecta a la actividad antimicrobiana e indicando inesperadamente que la actividad antimicrobiana de la composición de la invención está de hecho

mejorada. Se concluye que el aumento de la eficacia de la composición antimicrobiana de la invención es resultado de una acción ventajosa, es decir, algún nivel de sinergia, entre el peróxido de hidrógeno y el agente antimicrobiano. De esta manera, la composición, terapia de combinación o preparación combinada de la invención proporciona una eficacia mayor que la eficacia de cualquier agente administrado en solitario.

En particular, cuando se usó una fuente de peróxido de hidrógeno en combinación con ciertos agentes antibióticos y antifúngicos (incluyendo, pero sin limitación, lincosamidas (tal como Clindomicina) o cefalosporinas (primera o segunda generación, tal como Zinacef® o Velocef® (Cefuroxima o Cefradina respectivamente)), se observó un efecto sinérgico. Esta es una de las principales ventajas de la invención. Este efecto inesperado proporciona una 10 ventaja significativa sobre las composiciones antimicrobianas de la técnica anterior y proporciona una terapia mejorada para el tratamiento de infecciones microbianas.

Ventajosamente, este aspecto de la invención también proporciona un medio por el que la concentración de un antimicrobiano puede reducirse al combinarse con peróxido de hidrógeno para el tratamiento de infecciones microbianas. Por ejemplo, la composición de la invención tiene distintas ventajas donde el uso de antimicrobianos tóxicos está indicado médicamente ya que la cantidad de antimicrobiano tóxico puede reducirse.

Finalmente, ventajosamente, se sostiene que el constituyente de peróxido de hidrógeno de la invención proporciona un medio por el que los organismos resistentes antimicrobianos pueden adquirir de nuevo sensibilidad 20 antimicrobiana. Es probable que la eficacia antimicrobiana no específica del peróxido de hidrógeno afecte de forma negativa al modo de resistencia del organismo resistente antimicrobiano. La resistencia a los antimicrobianos está mediada generalmente por la disminución de la permeabilidad celular, un eflujo activo de antimicrobiano, la inactivación enzimática del antimicrobiano, la modificación del sitio receptor de antimicrobianos y la síntesis de una ruta metabólica resistente. La toxicidad aleatoria no específica de peróxido de hidrógeno puede proporcionar un 25 medio por el cual se pueden superar los mecanismos de resistencia. Este es un efecto importante y sorprendente de la invención y lo importante es que no se limita a combinaciones donde se ha demostrado que se produce sinergia.

Otra aplicación ventajosa y significativa de este aspecto de la invención es la eliminación de las biopelículas, donde las bacterias encerradas en capas limosas son menos susceptibles a los antibióticos y han estado implicadas en infecciones persistentes. Los ensayos ya *in vitro* sobre biopelículas con yodo muestran inhibición, y el peróxido de hidrógeno también ofrece potencial para la alteración de las biopelículas y, en consecuencia, un aumento de la susceptibilidad a los antibióticos presentes en la invención. El desarrollo de las biopelículas es de gran importancia en el tratamiento de la fibrosis quística y en el cuidado de heridas. (Costerton, J. W., Stewart, P. S, y Greenberg, E, P. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284 (5418): 1318-22/Kunisada, T., Yamada, K., Oda, S. y Hara, O. Investigation on the efficacy of povidone-iodine against antiseptic-resistant species. Dermatology 1997; 195 Comp. 2: 14-8/Presterl, E., Suchomel, M., Eder, M., Reichmann, S., Lassnigg, A., Wolfgang Graninger, W., y Rotter, M. Effects of alcohols, povidone-iodine and hydrogen peroxide on biofilms of Staphylococcus epidermidis. Journal of Antimicrobial Chemotherapy, 2007, 60(2): 417-420; doi: 10.1093/jac/dkm221).

40 Agente antimicrobiano

Como se ha definido previamente, el agente antimicrobiano del primer aspecto de la invención incluye, pero sin limitación, uno o más antibióticos antibacterianos, uno o más antibióticos antifúngicos, uno o más agentes antiparasitarios y/o uno o más agentes antivíricos. Idealmente, se usarán agentes antimicrobianos o fármacos 45 antimicrobianos quimioterapéuticos disponibles en el mercado.

Los antibióticos que muestran propiedades beneficiosas al combinarse con una fuente de peróxido de hidrógeno incluyen lincosamidas y cefalosporinas.

50 Las lincosamidas (por ejemplo, lincomicina, clindamicina) son una clase de fármacos que se unen a la porción 23s de la subunidad 50S de las ribosomas bacterianos e inhiben el alargamiento temprano de la cadena peptídica inhibiendo la reacción de la transpeptidasa. En este sentido, tienen una acción similar a los macrólidos.

Las cefalosporinas son una clase de antibióticos β-lactámicos. Los antibióticos β-lactámicos son una clase amplia de 55 antibióticos que incluyen derivados de penicilina, cefalosporinas, monobactamas, carbapenems, e inhibidores de β-lactamasa, es decir, cualquier agente antibiótico que contiene un núcleo β-lactama en su estructura molecular. Son el grupo más ampliamente utilizado de los antibióticos. Velocef® (Cefradina) es un antibiótico de cefalosporina de primera generación. Zinacef® (Cefuroxima) es un antibiótico de cefalosporina de segunda generación que ha estado ampliamente disponible en Estados Unidos como Ceftin desde 1977.

Otros antibióticos que pueden usarse incluyen:

- Los macrólidos (tal como Klacid) son un grupo de fármacos (típicamente antibióticos) cuya actividad parte de la 5 presencia de un anillo macrólido, un anillo de lactona macrocíclico grande al que puede añadirse uno o más azúcares desoxi, normalmente cladinosa y desosamina. Los anillos lactona tienen normalmente 14, 15 o 16 miembros. Los macrólidos pertenecen a la clase de los policétidos de productos naturales. La eritromicina es un antibiótico macrólido que tiene un espectro antimicrobiano similar a o ligeramente mayor que el de la penicilina, y a menudo se usa para personas que tienen alergia a las penicilinas. Para infecciones del tracto respiratorio, tiene 10 mejor cobertura de los organismos anormales, incluyendo micoplasma y legionelosis.
- Los antibióticos β-lactámicos (tal como amoxicilina) son una clase amplia de antibióticos que incluyen derivados de penicilina, cefalosporinas, monobactamas, carbapenems, e inhibidores de β-lactamasa, es decir, cualquier agente antibiótico que contiene un núcleo β-lactama en su estructura molecular. Son el grupo más ampliamente utilizado de los antibióticos. La flucloxacilina (INN) o floxacilina (USAN) es un antibiótico beta-lactana de espectro estrecho de la clase de las penicilinas. Se usa para tratar infecciones causadas por las bacterias Gram-positivas susceptibles. A diferencia de otras penicilinas, la flucloxacilina tiene actividad frente a organismos productores de beta-lactamasa, tal como *Staphylococcus aureusas* que es estable a beta-lactamasa. Sin embargo, es ineficaz frente a MRSA. Es muy similar a la dicloxacilina y estos dos agentes se consideran intercambiables. La flucloxacilina también está disponible
 20 bajo una diversidad de nombres comerciales, incluyendo Flopen (CSL) y Floxapen (GSK).
- Co-amoxiclav (Augmentine en Reino Unido) es un antibiótico de combinación que contiene amoxicilina trihidrato, un antibiótico β-lactámico, con clavulanato de potasio, un inhibidor de β-lactamasa. Esta combinación da como resultado un antibiótico con un espectro aumentado de acción y eficacia restaurada frente a bacterias resistentes a 25 amoxicilina productoras de β-lactamasa.

Ahora se ha demostrado específicamente que dos clases de antibióticos demuestran efectos que van más allá de un mero efecto de combinación o aditivo con la fuente de peróxido de hidrógeno. Los antibióticos que muestran sinergia están en dos clases generales

30

- (a) Lincosamida (por ejemplo, Clindamicina); y/o
- (b) Cefalosporinas (por ejemplo, Cefradina, Cefuroxima Velocef® y Zinacef®);
- 35 Como se ha analizado anteriormente, la resistencia a los antimicrobianos está mediada generalmente por la disminución de la permeabilidad celular, un eflujo activo de antimicrobiano, la inactivación enzimática del antimicrobiano, la modificación del sitio receptor de antimicrobianos y la síntesis de una ruta metabólica resistente. La toxicidad aleatoria no específica de peróxido de hidrógeno (ya se proporcione *per se* o se produzca por la fuente de peróxido de hidrógeno de la invención) proporciona un medio por el que dichos mecanismos de resistencia 40 puedan superarse. Es probable que este efecto se extienda por todo el espectro de clases de antibióticos, más allá de los ilustrados específicamente anteriormente. Se espera generalmente que la medida del efecto varíe de un antibiótico a otro.
- Además, la acción antimicrobiana no específica potente del peróxido de hidrógeno per se o el peróxido de hidrógeno 45 producido por la fuente de peróxido de hidrógeno, también puede proporcionar un efecto adyuvante en combinación con otros antimicrobianos, tales como agentes antivíricos y antifúngicos en los que puede conseguirse una antimicrobiosis mejorada global (aditiva y/o sinérgica).

Se proporcionan ejemplos de fármacos antivíricos adecuados en la tabla a continuación:

•	-	,	٦
:		ι	J

Fármaco	Virus	Tipo químico	Diana
Vidarabina	Virus del herpes	Análogo nucleósido	Virus polimerasa
Aciclovir	Virus del herpes simple (VHS)	Análogo nucleósido	Virus polimerasa
Ganciclovir y Valcyte™ (valganciclovir)	Citomegalovirus (CMV)	Análogo nucleósido	Virus polimerasa (necesita virus UL98 cinasa para la activación)
Inhibidores de la transcriptasa inversa	Retrovirus (VIH)	Análogo	Transcriptasa inversa

análogos de nucleósidos (NRTI): AZT (Zidovudina), ddl (Didanosina), ddC (Zalcitabina), d4T (Estavudina), 3TC (Lamivudina)		nucleósido	
Inhibidores de transcriptasa inversa no nucleósidos (NNRTI): Nevirapina, Delavirdina	Retrovirus (VIH)	Análogo nucleósido	Transcriptasa inversa
Inhibidores de la proteasa: Saquinavir, Ritonavir, Indinavir, Nelfinavir	VIH	Análogo peptídico	Proteasa del VIH
Ribavirina	Amplio espectro: VHC, VHS, sarampión, paperas, fiebre de Lassa	Triazol carboxamida	Mutagen de ARN
Amantadina/Rimantadina	Cepas de gripe A	Amina tricíclica	Proteína de matriz/hemaglutinina
Relenza y Tamiflu	Cepas A y B de gripe	Mimético de ácido neuramínico	Inhibidor de neuraminidasa
Pleconarilo	Picomavirus	Cíclico pequeño	Unión de bloques y sin revestimiento
Interferones	Hepatitis B y C	Proteína	Proteínas de defensa celular inactivadas

También se ha demostrado que varias clases de antifúngicos demuestran efectos que van más allá de un efecto de combinación/aditivo con el peróxido de hidrógeno. Los agentes antifúngicos descubiertos para demostrar estos efectos incluyen Clotrimazol; Ciclopiroxalomina; Terbinafina; y/o Ketoconazol. Pueden contemplarse otros agentes antifúngicos.

Fuente de peróxido de hidrógeno

Como se ha definido previamente, la fuente de peróxido de hidrógeno del primer aspecto de la invención incluye un 10 peróxido de hidrógeno *per se* o, como alternativa, puede ser un medio para generar una liberación sostenida de peróxido de hidrógeno.

De acuerdo con una realización, la fuente de peróxido de hidrógeno de la invención comprende un sistema antimicrobiano e inmunoestimulador estable en almacenamiento ("el sistema antimicrobiano") que comprende una 15 enzima oxido-reductasa, un sustrato para la enzima oxido reductasa, azúcares adicionales y peróxido de hidrógeno en una solución acuosa y el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.

Idealmente, la enzima oxidorreductasa del sistema se selecciona de entre uno o más de los siguientes compuestos: glucosa oxidasa, hexosa oxidasa, colesterol oxidasa, galactosa oxidasa, piranosa oxidasa, colina oxidasa, piruvato oxidasa, glicolato oxidasa y/o aminoácido oxidasa. Se entiende que cada enzima oxidorreductasa actúa en un sustrato específico. Los sustratos correspondientes para estas enzimas oxidorreductasa son D-glucosa, hexosa, colesterol, D-galactosa, piranosa, colina, piruvato, glicolato y/o aminoácidos, respectivamente. Se entenderá que se puede utilizar una mezcla de una o más enzimas oxidorreductasa y uno o más sustratos para las enzimas oxidorreductasa.

Preferiblemente, la enzima oxidorreductasa es glucosa oxidasa, hexosa oxidasa, galactosa oxidasa y/o piranosa 30 oxidasa y el sustrato respectivo para la enzima oxidorreductasa es D-glucosa, hexosa, D-galactosa y/o piranosa.

De acuerdo con una realización preferida, la enzima oxidorreductasa es glucosa oxidasa y el sustrato es D-glucosa.

De acuerdo con otra realización preferida, la fuente de peróxido de hidrógeno es un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que

- (a) el peróxido de hidrógeno producido de forma endógena y estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para una liberación inmediata; y
- 5 (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.

Las realizaciones preferidas adicionales en relación con el sistema antimicrobiano e inmunoestimulador estable en almacenamiento se tratan a continuación.

10

- Se entenderá que el sistema antimicrobiano e inmunoestimulador estable en almacenamiento puede usarse con el agente antimicrobiano que se ha definido anteriormente como parte de una terapia de combinación o puede usarse por si mismo en el tratamiento profilaxis de infecciones microbianas.
- 15 Esta composición antimicrobiana, que comprende el agente antimicrobiano y el sistema antimicrobiano que se ha definido anteriormente, de la invención puede proporcionarse en muchas formas físicas diferentes (incluyendo, pero sin limitación, preparaciones líquidas, preparaciones sólidas o semi-sólidas) dependiendo del modo de uso.
- Por ejemplo, se entenderá que la composición antimicrobiana de la invención puede estar presente en muchas 20 formas de administración diferentes. Estas formas incluyen, pero sin limitación, formas adaptadas para su administración, tópica, enteral o parenteral. Se entenderá que el agente antimicrobiano y/o el sistema antimicrobiano pueden estar en la misma o diferente forma de administración. Por ejemplo, la fuente de peróxido de hidrógeno (el sistema antimicrobiano) puede estar en una forma adaptada para su uso tópico, y el agente antimicrobiano (por ejemplo, un antibiótico) puede estar en una forma adaptada para su administración tópica, enteral o parenteral.

25

- Las formas adecuadas para la administración tópica incluyen una pomada, crema, loción, aceite, linimento, líquido y/o gel tópico. Por ejemplo, la composición antimicrobiana puede aplicarse, por vía epicutánea, intranasal, a través del ojo y/o gotas para los oídos. Una realización particular proporciona la composición antimicrobiana de la invención en una forma adaptada para administración intramamaria. En esta situación, la composición de la invención puede adaptarse para su administración como parte de un sellador de pezones y un depósito intramamario administrado a través del conducto del pezón. Las composiciones adicionales pueden estar adaptadas como tejidos, vendajes o apósitos.
- Otra forma adecuada para administración tópica incluye la composición antimicrobiana de la invención donde la 35 composición antimicrobiana está en una forma adaptada para su administración a través de una banda o bandas de película soluble. En esta situación, la composición antimicrobiana es soluble en su aplicación.
- La administración enteral incluye, pero sin limitación, la administración oral. Otras formas de administración oral incluyen supositorios y enemas. Las formas adecuadas para administración oral incluyen una cápsula, gránulo, cápsula de gel, pastilla, píldora, glóbulo, hilo dental, pasta de dientes, enjuague bucal, goma de mascar medicada, bandas de película soluble y/o formas adaptadas para su administración como parte de un protector bucal. De acuerdo con una realización, la composición antimicrobiana está en una forma adecuada para una administración controlada o de liberación sostenida. Por ejemplo, la forma de administración oral puede tener un revestimiento entérico para proporcionar una administración controlada o de liberación sostenida. Este aspecto de liberación sostenida es importante para el tratamiento de infecciones de Campylobacter en aves y el tratamiento de infecciones por Cryptosporidium en ganado.
- Las formas de administración parenteral incluyen, pero sin limitación, inyección. Por ejemplo, la composición antimicrobiana puede adaptarse para inyección mediante administración intramamaria. Esto es particularmente útil 50 para el tratamiento de la mastitis. La inyección intramamaria por este medio implica la inyección directa en el conducto del pezón mediante un tubo o jeringa con una boquilla del tamaño apropiado, por ejemplo, aprox. 1,0 mm. En esta situación, la inyección se dirige a una cavidad corporal o absceso.
- Como se ha analizado anteriormente, se entenderá que la fuente de peróxido de hidrógeno y el agente 55 antimicrobiano puede estar en diferentes formas de administración. Por ejemplo, ambos pueden estar en una forma adecuada para su administración tópica. Opcionalmente, la fuente de peróxido de hidrógeno puede estar en una forma adecuada para su administración tópica y el agente antimicrobiano puede estar en una forma para administración sistémica (por ejemplo, administración enteral). A continuación se destacan algunas realizaciones específicas:

Por ejemplo, de acuerdo con una realización, la composición antimicrobiana mejorada que comprende la fuente de peróxido de hidrógeno y uno o más agentes antimicrobianos puede proporcionarse como parte de un apósito. Dichos apósitos incluyen gasas, vendajes, películas, geles, espumas - Lyofoam®, hidrocoloides - Granuflex®, alginatos - 5 Kaltostat® (Comvita), hidrogeles - Intrasite Gel® y pastas polisacáridas, gránulos y gotas.

Ventajosamente, de acuerdo con otra realización, la composición antimicrobiana de la presente invención puede estar presente en una matriz en gel. Idealmente, la composición antimicrobiana mejorada puede estar presente junto con una matriz de vendaje de heridas. Idealmente, la relación de la composición antimicrobiana con respecto a la 10 matriz de vendaje de heridas es aproximadamente 1:1, aunque se contemplan otras relaciones. La matriz del vendaje de heridas puede ser una matriz de colágeno o una matriz de colágeno-GAG (glicosaminoglicano).

De acuerdo con una realización adicional del primer aspecto de la invención, se proporciona una composición antimicrobiana de la invención para su uso en un método de terapia.

De acuerdo con una realización, se proporciona la composición antimicrobiana de la invención para su uso en un método de tratamiento de una infección microbiana. Además, la composición antimicrobiana también puede utilizarse en la prevención profiláctica de dichas infecciones microbianas.

20 Adicionalmente, y acuerdo con otra realización, se proporciona la composición antimicrobiana de la invención para la regeneración y/o reparación de tejidos y/o de células, incluyendo tejidos y/o células dañados. Se entenderá que el sistema o composición farmacéutica de la invención mejora una respuesta inmune mediante la estimulación de la liberación de interleucina-1 (IL-1). Las propiedades inmunoestimuladoras del sistema o la composición farmacéutica de la presente invención son responsables de la estimulación, regeneración y reparación de los tejidos y/o células dañados. Se entenderá que las células incluyen, pero sin limitación, células de la piel.

La composición antimicrobiana proporciona una doble funcionalidad tanto antimicrobiana como inmunoestimuladora. Ventajosamente, esta doble funcionalidad permite que el sistema se use para una amplia gama de aplicaciones terapéuticas y profilácticas.

Idealmente, la infección microbiana que puede tratarse usando la composición antimicrobiana de la invención es cualquier infección microbiana que puede tratarse por peróxido de hidrógeno y/o un agente antimicrobiano.

Se entenderá que la infección microbiana puede estar causada por bacterias Gram positivas, bacterias Gram 35 negativas, bacterias acidorresistentes, virus, levaduras, microorganismos parásitos o patógenos y/o hongos. Las bacterias acidorresistentes incluyen Mycobacteria, incluyendo tuberculosis por micobacterias que causa TB. Dichas infecciones microbianas pueden causarse, pero sin limitación, por Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Propionibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, estreptococos beta hemolíticos del grupo A, Campylobacter coli, 40 Campylobacter jejuni, Staphylococcus Aureus resistentes a meticilina (MRSA), y/o tuberculosis por micobacterias.

Además, la infección microbiana puede estar causada por Cryptosporidium, un patógeno protozoo del Phylum Apicomplexa. Cryptosporidium causa una enfermedad diarreica denominada criptosporidiosis. Otros patógenos apicomplejos cubiertos por la presente solicitud incluyen el parásito Plasmodium de la malaria y el Toxoplasma, el 45 agente causante de la toxoplasmosis.

Ventajosamente, la composición antimicrobiana puede usarse en el tratamiento o prevención profiláctica del MRSA u otros microorganismos y bacterias resistentes a los antibióticos. Por lo tanto, la invención supera el problema de las cepas de microorganismos resistentes a los antibióticos de una forma no tóxica.

Se trata de una importante ventaja de la presente invención respecto a los sistemas convencionales. Para esta aplicación, la composición antimicrobiana puede administrarse por vía tópica, por ejemplo, en forma de una pomada tópica, crema, loción, aceite, linimento, líquido y/o gel. De forma opcional, la composición antimicrobiana puede administrarse como parte de un tejido o toallita para la piel. Este tipo de administración puede ser importante en la 55 prevención profiláctica de las infecciones de MRSA y del tipo MRSA.

La infección microbiana puede ser una infección bucal, ocular y/o de oídos. La infección bucal puede ser una enfermedad de las encías, ulceración bucal y/o un trastorno en la higiene bucal. El trastorno de higiene bucal puede ser halitosis y/o gingivitis. Como alternativa, la infección bucal puede ser una infección de garganta o una infección

10

15

30

50

nasal, incluyendo infecciones por estafilococos nasales. Una infección ocular puede incluir conjuntivitis.

Otra afección es mastitis, incluyendo mastitis húmeda y/o seca. La mastitis es una afección importante tanto en seres humanos como en animales y está inicialmente causada por una infección microbiana a través de la piel 5 dañada, el bloqueo del conducto del pezón o el contacto con superficies infectadas. En particular, la mastitis tiene una tremenda importancia económica para la industria láctea. Por lo tanto, terapias alternativas a las terapias con antibióticos convencionales están bajo evaluación. Los microorganismos más comunes causantes de la mastitis que se han descubierto incluyen: Staphylococcus aureus, Staphylococcus albus, especies Streptococcus, Escherichia coli, Salmonella species, tuberculosis por Mycobacterium, mastitis fúngica, Candida albicans y Cryptococcus 10 neoformans.

Se ha descubierto ventajosamente que la composición antimicrobiana puede usarse en el tratamiento mejorado de la mastitis. Como se ha indicado previamente, el componente de peróxido de hidrógeno de la invención puede tener una forma adaptada para la administración intramamaria, por ejemplo, en una forma adaptada para la administración como parte de un sellador de pezones, tejido, toallita para la piel, vendaje o apósito o en una forma adecuada para invección intramamaria. El componente antibiótico puede administrarse de manera convencional.

Adicionalmente, la infección microbiana puede ser una infección cutánea y/o de las uñas.

- 20 Como alternativa, la composición antimicrobiana puede usarse en el tratamiento de una infección por hongos en la piel y/o en las uñas. Las infecciones por hongos en la piel incluyen pie de atleta y/o tiña en humanos. En medicina veterinaria, las afecciones por hongos en la piel incluyen tiña y el control de las infecciones zoonóticas de la piel. Las infecciones por hongos en las uñas incluyen onicomicosis.
- 25 Adicionalmente, la composición antimicrobiana puede usarse en el tratamiento de un trastorno de la piel. El trastorno de la piel puede ser acné, eczema y/o psoriasis y fascitis necrotizante. Ventajosamente, se ha descubierto que la composición de la invención es tan eficaz como las terapias anti-acné convencionales. Se entenderá que el acné y el eczema también pueden tener un componente de infección microbiana que el sistema trata. Además, las infecciones microbianas secundarias de lesiones psoriásicas causadas por arañazos pueden tratarse por el sistema de la presente invención. El efecto inmunoestimulador del sistema de la presente infección también puede facilitar la regeneración y la reparación de los tejidos y células cutáneas dañados.

De acuerdo con otra realización, la composición antimicrobiana de la invención puede utilizarse en un método de cuidado de las heridas, incluyendo el tratamiento de una herida y/o el tratamiento o gestión de la sepsis en heridas.

La herida puede ser una herida aguda, herida crónica, herida quirúrgica, quemadura crónica y/o quemadura aguda. Este aspecto de la invención implica tanto el tratamiento de una infección microbiana como la regeneración/reparación de tejidos y células dañados, preferiblemente las células epidérmicas. Una realización particular de este aspecto implica el uso de la composición antimicrobiana en un método de la gestión del estoma. El estoma puede ser resultado de una colostomía, ileostomía, jejunostomía y/o gastrostomía. Otra realización implica el tratamiento de úlceras diabéticas o heridas.

Como alternativa, la composición antimicrobiana puede usarse en la prevención profiláctica de la sepsis en heridas.

De acuerdo con otra realización más de la presente invención, la composición antimicrobiana puede usarse en la 45 eliminación de biopelículas.

Se entenderá que la composición antimicrobiana puede usarse tanto en aplicaciones de medicina veterinaria como humana.

50 Muchas de estas aplicaciones humanas específicas se han definido previamente. Sin embargo, como se ha definido anteriormente, la composición antimicrobiana puede usarse en el tratamiento de infecciones microbianas generales y el tratamiento o la gestión de trastornos cutáneos, cuidado de heridas y/o el tratamiento de quemaduras. El tratamiento o la gestión de heridas y de quemaduras pueden implicar tanto el efecto antimicrobiano como inmunoestimulador de la composición antimicrobiana.

Las aplicaciones veterinarias importantes también implican el tratamiento de infecciones microbianas y el tratamiento o la gestión del cuidado de heridas y/o el tratamiento de quemaduras. Sin embargo, las afecciones específicas incluyen la mastitis húmeda y seca en el ganado u otros animales domésticos, infecciones cutáneas crónicas en perros (infecciones subcutáneas por estafilococos), otitis externa (infecciones del oído), cuidados bucales de los

animales, infecciones por campilobacter en pollos, coliosis, infecciones microbianas entéricas en cerdos, aves y ganado, infecciones por Cryptosporidium, eliminación de infecciones zoonóticas, apósitos, por ejemplo, eliminación de quemaduras y el tratamiento de abscesos. La presente invención presenta las ventajas particulares en el uso veterinario, permitiendo el tratamiento de infecciones microbianas sin necesidad de introducir antibióticos en la 5 cadena alimenticia.

De acuerdo con otra realización del primer aspecto de la invención, se proporciona el uso de la composición antimicrobiana de la presente invención para la fabricación de un medicamento para el tratamiento de una infección microbiana o para la prevención profiláctica de una infección microbiana.

Adicionalmente, se proporciona el uso de la composición antimicrobiana de la presente invención para la fabricación de un medicamento para la reparación y/o regeneración de tejidos y/o células dañados. La composición antimicrobiana de la presente invención mejora idealmente una respuesta inmune estimulando la liberación de interleucina-1 (IL-1) como se ha definido previamente.

15

- Se entenderá que la infección microbiana, el trastorno cutáneo, la herida u otro trastorno pueden tratarse por un método que comprende la administración tópica, enteral y/o parenteral del sistema o la composición farmacéutica de la presente invención, como se ha definido previamente.
- 20 De acuerdo con una cuarta realización del primer aspecto de la invención, se proporciona un método para tratar una infección microbiana y/o la reparación y/o regeneración de tejidos dañados y/o de células de un paciente que comprende las etapas de aplicar una cantidad terapéuticamente eficaz de la composición antimicrobiana de la invención a una zona infectada del paciente, preferiblemente por modos de administración tópica, enteral y/o parenteral.

25

- De acuerdo con un segundo aspecto de la invención, se proporciona una fuente de peróxido de hidrógeno en forma de un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende una enzima oxidorreductasa, un sustrato para la enzima oxidorreductasa, azúcares adicionales opcionales, y peróxido de hidrógeno en una solución acuosa, donde el sistema proporciona una liberación de peróxido de hidrógeno en dos
- 30 fases en la que
 - (a) el peróxido de hidrógeno producido de forma endógena y estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para una liberación inmediata; y
- 35 (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.

Idealmente, el sustrato para la enzima oxidorreductasa está presente hasta en un 90 % en peso, el agua está presente hasta en un 20 % en peso en base al peso del sistema total, y el sistema tiene un pH de aproximadamente 40 4 a 8. Opcionalmente, los azúcares adicionales comprenden uno o más de sacarosa, fructosa y/o maltosa.

De esta manera, el sistema antimicrobiano e inmunoestimulador estable en almacenamiento que se ha definido anteriormente es una fuente de peróxido de hidrógeno como se ha definido previamente. Esta fuente de peróxido de hidrógeno puede usarse como una composición antimicrobiana por sí misma o en combinación con uno o más 45 agentes antimicrobianos como se ha definido previamente. Por lo tanto, se entenderá que los siguientes pasos son aplicables a la fuente de peróxido de hidrógeno per se o la terapia de combinación que se ha definido anteriormente. Además, las diversas formas de administración y usos terapéuticos para la composición antimicrobiana descrita en relación con el primer aspecto de la invención pueden aplicarse igualmente a este segundo aspecto, el sistema antimicrobiano en solitario.

Idealmente, la enzima oxidorreductasa del sistema se selecciona de entre uno o más de los siguientes compuestos: glucosa oxidasa, hexosa oxidasa, colesterol oxidasa, galactosa oxidasa, piranosa oxidasa, colina oxidasa, piruvato oxidasa, glicolato oxidasa y/o aminoácido oxidasa. Se entenderá que cada enzima oxidorreductasa actúa en un sustrato específico. Los sustratos correspondientes para estas enzimas oxidorreductasa son D-glucosa, hexosa, 55 colesterol. D-galactosa, piranosa, colina, piruyato, glicolato v/o aminoácidos, respectivamente. Se entenderá que se puede utilizar una mezcla de una o más enzimas oxidorreductasa y uno o más sustratos para las enzimas oxidorreductasa.

Preferiblemente, la enzima oxidorreductasa es glucosa oxidasa, hexosa oxidasa, galactosa oxidasa y/o piranosa

oxidasa y el sustrato respectivo para la enzima oxidorreductasa es D-glucosa, hexosa, D-galactosa y/o piranosa.

Idealmente, la enzima oxidorreductasa es glucosa oxidasa y el sustrato es D-glucosa.

- 5 De acuerdo con una realización preferida, el sistema antimicrobiano e inmunoestimulador estable en almacenamiento comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que
- 10 (a) el peróxido de hidrógeno producido de forma endógena y estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para una liberación inmediata; y
 - (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.
 - De acuerdo con otra realización preferida, se proporciona un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa
- 20 donde está presente una cantidad eficaz de glucosa oxidasa en una actividad de al menos 10 U por 100 g del sistema;

donde D-glucosa está presente de hasta aproximadamente el 90 %, preferiblemente de aproximadamente el 20 % al 85 % en peso en base al peso del sistema total;

uno o más de sacarosa, fructosa y/o maltosa están presentes de aproximadamente el 10 % al 70 % en peso en base al peso del sistema total;

el agua está presente del 10 al 20 % en peso en base al peso del sistema total;

el sistema tiene un pH de aproximadamente 4 a 8; y

15

25

30

40

50

el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que

- 35 (a) el peróxido de hidrógeno producido de forma endógena y estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para una liberación inmediata; y
 - (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.
 - De acuerdo con otra realización preferida más de este aspecto general de la invención, se proporciona un sistema antimicrobiano e inmunoestimulador estable en almacenamiento como se ha definido anteriormente que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa, maltosa y peróxido de hidrógeno en una solución acuosa
 - donde la D-glucosa está presente de aproximadamente el 26 % a aproximadamente el 43 % en peso en base al peso del sistema total;

la sacarosa está presente entre el 0,5 % al 2,5 % en peso en base al peso del sistema total;

la fructosa está presente entre el 30 % al 40 % en peso en base al peso del sistema total;

la maltosa está presente entre el 5 % al 15 % en peso en base al peso del sistema total.

55 De acuerdo con otra realización preferida más de este aspecto general de la invención, se proporciona un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que contiene glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa, maltosa y peróxido de hidrógeno en una solución acuosa y un agente tamponante opcional:

donde está presente una cantidad eficaz de glucosa oxidasa en una actividad de al menos 10 U por 100 g del sistema;

donde la D-glucosa está presente de aproximadamente el 33% a aproximadamente el 43 % en peso en base al peso 5 del sistema total;

la sacarosa está presente entre el 0,5 % al 2,5 % en peso en base al peso del sistema total;

la fructosa está presente entre el 30 % al 40 % en peso en base al peso del sistema total;

la maltosa está presente entre el 5 % al 15 % en peso en base al peso del sistema total;

el agua está presente del 10 al 20 % en peso en base al peso del sistema total;

10

25

15 un agente tamponante opcional está presente en una cantidad eficaz para conseguir un sistema con un pH de aproximadamente 4 a 8; y

el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que

20 (a) el peróxido de hidrógeno producido de forma endógena y estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para una liberación inmediata; y

(b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.

De forma ventajosa, esta fuente de peróxido de hidrógeno es un sistema de componente único estable en almacenamiento que está listo para su uso inmediato y proporciona una doble funcionalidad en cuando a la actividad antimicrobiana e inmunoestimuladora. Además, esta fuente de peróxido de hidrógeno tiene una eficacia aumentada en cuanto al efecto antimicrobiano e inmunoestimulador en comparación con la miel de Manuka y los antimicrobianos convencionales, tal como apósitos de plata.

El efecto antimicrobiano de esta fuente de peróxido de hidrógeno está mediado por la liberación de peróxido de hidrógeno en dos fases que proporciona ventajosamente una liberación de peróxido de hidrógeno en dos fases de una manera regulada, definida y reproducible.

Una de las principales ventajas de esta fuente de peróxido de hidrógeno es que proporciona peróxido de hidrógeno estable en almacenamiento para su liberación inmediata. Este depósito endógeno proporciona un peróxido de hidrógeno disponible de forma inmediata y un efecto antimicrobiano inmediato. Adicionalmente, después de la rehidratación, el sistema proporciona un segundo nivel de actividad de peróxido de hidrógeno que implica la 40 liberación sostenida de peróxido de hidrógeno durante al menos un periodo de veinticuatro o cuarenta y ocho horas.

Preferiblemente, el peróxido de hidrógeno producido de forma endógena estable en almacenamiento se encuentra biodisponible en el sistema a un nivel de al menos 10 mg, preferiblemente 75 mg de peróxido de hidrógeno por litro o partes por millón para su liberación inmediata. Sin embargo, se entenderá que el nivel de peróxido de hidrógeno 45 producido de forma endógena que está inmediatamente biodisponible en el sistema, dependerá de la cantidad de enzima oxidorreductasa presente en el sistema. Por lo tanto, el nivel podría ser muy superior de 10 o 75 mg de peróxido de hidrógeno por litro del sistema si la actividad de enzima oxidorreductasa usada es elevada. Por lo tanto, si se aumenta la concentración de enzima oxidorreductasa y/o el sustrato para la enzima oxidorreductasa, entonces el conjunto de peróxido de hidrógeno endógeno aumenta. Por ejemplo, se ha descubierto que aproximadamente 175 U de enzima oxidorreductasa por 100 g del sistema genera un conjunto endógeno de aproximadamente 10 mg de peróxido de hidrógeno por litro. Además, aproximadamente 1400 U de enzima oxidorreductasa por 100 g de sistema genera un conjunto endógeno por litro.

Este depósito endógeno inicial de peróxido de hidrógeno presente es estable en almacenamiento y permanece en el sistema hasta que se libera el segundo nivel de peróxido de hidrógeno. En el contexto de esta solicitud, estable en almacenamiento significa que el peróxido de hidrógeno producido de forma endógena se mantiene en el sistema durante un periodo de hasta aproximadamente 36 meses. Además, el sistema no se degrada, separa ni pierde actividad durante este periodo de tiempo. La caducidad esperada para el sistema en condiciones normales es de aproximadamente 36 meses. Además, el sistema, cuando se somete a esterilización, por ejemplo, mediante

irradiación, no se deteriora en calidad ni actividad.

40

Tras el uso o aplicación del sistema, se libera un segundo nivel de peróxido de hidrógeno cuando el nivel de peróxido de hidrógeno de liberación sostenida producido en el momento de la rehidratación del sistema es de al menos 10 mg, preferiblemente de 20 mg de peróxido de hidrógeno por litro o partes por millón. De nuevo, el nivel de peróxido de hidrógeno de liberación sostenida generado dependerá de la cantidad de enzima oxidorreductasa y/o sustrato para la enzima oxidorreductasa presente en el sistema. Ventajosamente, se ha descubierto después del periodo establecido y la posterior dilución/rehidratación que la cantidad de peróxido de hidrógeno de liberación sostenida supera a la presente en la miel natural. Además, se ha descubierto ventajosamente que la liberación sostenida de más peróxido de hidrógeno en el sistema se produce durante al menos un periodo de veintiocho, sino cuarenta y ocho horas.

De forma general, el efecto inmunoestimulador del sistema está mediado por la interleucina-1. El sistema de la presente invención promueve la liberación de interleucina-1 (IL-1) de las células de la piel. IL-1 es una citocina también secretada por macrófagos, monocitos y células dendríticas. Se trata de una parte importante de la respuesta inflamatoria del cuerpo contra la infección. Aumenta la expresión de los factores de adhesión sobre las células endoteliales para permitir la transmigración de leucocitos a los sitios de infección. También actúa sobre el centro termorregulador del cerebro que conduce a un aumento de la temperatura corporal en forma de fiebre. Por lo tanto, también se denomina pirógeno endógeno. El aumento de la temperatura corporal ayuda al sistema inmune corporal a combatir la infección. Esta es la fase inicial de una respuesta inmune inflamatoria que aumenta la actividad antimicrobiana del sistema. La respuesta inflamatoria juega un papel central en la curación de las heridas a través de su defensa contra una posible infección y participando en la reparación y regeneración celular y tisular. El efecto antimicrobiano del sistema de la presente invención se facilita y se complementa por el efecto inmunoestimulador que facilita la regeneración y la reparación de los tejidos y/o células dañados.

De acuerdo con esta realización específica de la invención, la fuente de peróxido de hidrógeno proporciona un sistema que proporciona un nivel regulado, definido y reproducible de actividad antimicrobiana y demuestra una diferencia y aumento significativo en la actividad respecto a un producto de miel natural. Un beneficio adicional del sistema de la invención es la capacidad para alterar la cantidad de principios activos y de excipientes, permitiendo así la producción de una gama de formulaciones de diversas fuerzas y propiedades. Esto incluye la capacidad de optimizar el pH para el sitio de destino correspondiente. Además, el sistema permite un elevado nivel de control de calidad con respecto a la seguridad y la eficacia, consistencia en lotes, determinación de la potencia, y un mayor control de impurezas, en el mantenimiento con los requisitos actuales de Buena Práctica de Fabricación (cGMP). Es aún una ventaja adicional del sistema que no provocará ninguna reacción alérgica, debido a su composición definida. Ventajosamente, esto permite unas instrucciones de etiquetado precisas como se requiere la normativa de la UE para los productos farmacológicos activos.

Cada uno de los componentes preferidos del sistema antimicrobiano e inmunoestimulador se analizan a continuación.

Idealmente, la enzima oxidorreductasa, preferiblemente glucosa oxidasa, está presente en el sistema con una actividad de al menos 10 U por 100 g del sistema. Generalmente hablando, una unidad (U) es la cantidad de enzima que provoca la oxidación de un micromol de glucosa por minuto a 25 °C y un pH de 7,0. Se entenderá que habrá suficiente enzima oxidorreductasa presente para catalizar el sustrato y formar el peróxido de hidrógeno según sea necesario. Preferiblemente, la enzima oxidorreductasa está presente en el sistema con una actividad de al menos 100 U, 1400 U o incluso 5600 U por 100 g del sistema.

Idealmente, la D-glucosa está presente hasta aproximadamente el 90 %, preferiblemente de aproximadamente el 20 % al 85 %, preferiblemente del 25 al 65 %, preferiblemente del 28 al 48 %, más preferiblemente del 25 al 45 %, 50 incluso más preferiblemente del 25 % al 40 %, aún más preferiblemente del 30 % al 40 %, todavía más preferiblemente del 30 al 35 % en peso en base al peso del sistema total. Opcionalmente, la D-glucosa puede estar presente de aproximadamente el 26 % a aproximadamente el 43 % en peso en base al peso del sistema total, o como alternativa, del 33 % a aproximadamente el 43 % en peso en base al peso del sistema total o como alternativa del 26 % a aproximadamente el 37 % en peso en base al peso del sistema total.

Idealmente, el agua se encuentra presente en el sistema a un nivel de aproximadamente el 10 % a aproximadamente el 20 % en peso en base al peso del sistema total. Más preferiblemente, el agua puede estar presente a un nivel de aproximadamente el 10 % a aproximadamente el 15 % en peso en base al peso del sistema total. La cantidad de agua presente inicialmente en el sistema es un aspecto crucial de la invención. La adición de un

exceso de agua puede conducir a inestabilidad del sistema, dado que un exceso de agua puede dar lugar a la hidrólisis de la glucosa oxidasa, por lo que es importante que el agua únicamente esté inicialmente presente dentro de los parámetros definidos. Además, el sistema requiere suficiente agua para permitir la generación de H₂O₂, facilitar la aplicación y evitar la precipitación de azúcares durante el almacenamiento.

Idealmente, el sistema tiene un pH de aproximadamente 4 a 8, preferiblemente de 5 a 7, y más preferiblemente de aproximadamente 5,5. El pH es importante ya que juega un papel primordial en muchos aspectos terapéuticos de la presente invención, por ejemplo, la curación de heridas y también asegura que la oxidorreductasa tenga unas condiciones correctas según sea necesario para una actividad óptima. Ventajosamente, el pH del presente sistema 10 puede ajustarse a un pH deseado según se requiera para una aplicación particular. Pueden usarse agentes tamponantes para manipular el pH. Opcionalmente, el sistema comprende adicionalmente un agente tamponante, preferiblemente ácido carbónico-bicarbonato y/o ácido fosfórico/hidrogenofosfato disódico. Preferiblemente, el agente tamponante se disuelve previamente y reemplaza parte del agua del sistema. Se pueden usar diferentes concentraciones de agente tamponante en función del pH que se desee obtener.

15

Idealmente, uno o más azúcares adicionales en forma de sacarosa, fructosa y/o maltosa están presentes de aproximadamente el 5 % al 80 %, del 10 % al 70 %, preferiblemente del 30,6 % al 61,5 %, aún preferiblemente del 20 % al 50 %, incluso más preferiblemente del 30 % al 40 % en peso en base al peso del sistema total. Estos "azúcares adicionales" son azúcares no que no se incluyen por la expresión "sustrato para la enzima 20 oxidorreductasa". Los azúcares adicionales tienen una función importante para garantizar que la viscosidad apropiada se mantenga y pueden actuar como un agente modificador de la viscosidad. Por ejemplo, un cambio en los índices de los azúcares adicionales puede dar como resultado un aumento o disminución correspondiente en la viscosidad del sistema. Idealmente, la fructosa está presente de aproximadamente el 8 al 50 % p/p, preferiblemente del 25 al 45 %, la maltosa está presente de aproximadamente el 4 al 15 % p/p, preferiblemente del 5 al 15 %, y la 25 sacarosa está presente de aproximadamente el 0,5 al 3 % p/p, preferiblemente del 0,5 al 1,5 % en base al peso del sistema total. Idealmente, los azúcares adicionales se encuentran presentes en combinación con el sustrato para la enzima oxidorreductasa con un índice de azúcares añadidos en el sustrato de aproximadamente 10:1 a 0,01:1, preferiblemente, de 3,5:1 a 0,05:1. El índice superior preferido de 3,5:1 se basa en un sustrato mínimo para el contenido de enzima oxidorreductasa del 20 %, un contenido de agua mínimo del 10 % y un contenido de azúcar 30 adicional máximo del 70 %. El índice inferior preferido de 0,05:1 se basa en un sustrato máximo para el contenido de enzima oxidorreductasa del 85 %, un contenido mínimo de agua del 10 % y un contenido de azúcar adicional del

De acuerdo con otra realización de este aspecto de la invención, el sistema puede incluir adicionalmente al menos un ingrediente modificador de la viscosidad. Idealmente, el agente modificador de la viscosidad se selecciona de entre uno o más de los siguientes: Metilcelulosa, carboximetilcelulosa, hidroxipropil metilcelulosa, hidroxipropil celulosa, Carbopol, alcohol polivinílico, polivinil pirrolidona, aceites vegetales hidrogenados, goma xantano y otras gomas naturales, polietilenglicoles (peso molecular bajo y alto), parafina (líquida, semisólida y sólida) y/o glicerol. Puede encontrarse el ingrediente modificador de la viscosidad además de los azúcares dicionales que se han mencionado anteriormente. También se pueden utilizar otros agentes modificadores de la viscosidad convencionales.

Se entenderá que los azúcares añadidos y/o los ingredientes que modifican la viscosidad se añaden para proporcionar las propiedades físicas necesarias para la aplicación específica del sistema. Por ejemplo, si el sistema se usa de forma tópica, debe contar con la viscosidad suficiente para adherirse a la superficie aplicada. En esta situación, puede ser deseable usar un ingrediente que modifique la viscosidad y/o modificar los índices presentes de azúcares adicionales. En otra situación, puede ser ventajoso modificar la viscosidad de tal forma que el sistema pueda ser una preparación intramamaria eficaz.

50 De acuerdo con otra realización de esta aspecto de la invención, el sistema puede comprender adicionalmente un agente tamponante, preferiblemente ácido carbónico/bicarbonato y/o ácido fosfórico/hidrogenofosfato disódico.

De acuerdo con una realización preferida de este aspecto de la invención, el sustrato para la enzima oxidorreductasa, preferiblemente D-glucosa, se encuentra presente del 20 al 85 % p/p, preferiblemente del 10 al 85 % p/p, y los azúcares añadidos, preferiblemente uno o más de sacarosa, fructosa y/o maltosa, se encuentran presentes del 5 al 70 % p/p. Idealmente, con fructosa del 8 al 50 % p/p, maltosa del 4 al 15 % p/p y sacarosa del 0,5 al 3 % p/p. El pH del sistema será de 5 a 7 y el agua está idealmente presente del 10 % al 20 % v/v. Opcionalmente, el índice de fructosa:sustrato para la enzima oxidorreductasa:maltosa:sacarosa es de aproximadamente 1,5:4:2:1 a aproximadamente 3,5:4:1:0,1. Un índice preferido es aproximadamente 4,5:4:1:1,7.

De acuerdo con una realización preferida de este aspecto de la presente invención, se proporciona un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa y peróxido de hidrógeno en una solución acuosa;

- donde D-glucosa se encuentra presente hasta el 90 %, preferiblemente el 85 % en peso, y el agua se encuentra presente hasta el 20 % en peso e base al peso de la composición total; el sistema tiene un pH de aproximadamente 4 a 8; y el sistema proporciona una liberación de peróxido de hidrógeno en dos etapas en la que
- 10 (a) el peróxido de hidrógeno producido de forma endógena y estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para una liberación inmediata; y

15

- (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.
- Este sistema puede estar en muchas formas físicas diferentes, incluyendo, pero sin limitación, preparaciones líquidas, sólidas o semisólidas. Para preparar formulaciones sólidas o semisólidas, los ingredientes del sistema deberán manipularse para reducir el contenido de agua y aumentar el contenido de otros componentes.
- 20 El sistema puede estar en forma de una preparación líquida. Las preparaciones líquidas incluyen, pero sin limitación, un jarabe, pasta, pulverización, gota, pomadas, cremas, lociones, aceites, linimentos y/o geles. Un gel típico incluye un gel alcohólico tales como isopropanol, etanol o propanol y/o un hidrogel.
- Como alternativa, el sistema puede estar en forma de una preparación sólida o semisólida. Las preparaciones sólidas o semisólidas incluyen, pero sin limitación, cápsulas, gránulos, cápsulas en gel, hidrogeles, pastillas, píldoras y/o glóbulos. Pueden adoptarse otros medios usados para la administración de medicamentos convencional, por ejemplo, se puede contemplar la administración liposomal.
- De acuerdo con este segundo aspecto de la invención, el sistema puede usarse como un sistema antimicrobiano y/o estimulador *per se.* Opcionalmente, el sistema puede usarse en combinación con un agente antimicrobiano de acuerdo con el primer aspecto. Las formas de administración y usos terapéuticos se tratan en relación con el primer aspecto de la invención. Se entenderá que estas formas de administración y usos terapéuticos pueden aplicarse igualmente a este segundo aspecto de la invención al usarse en solitario.
- Adicionalmente, el sistema como se define en relación con el segundo aspecto de la invención puede estar presente en forma de y para su uso como una composición cosmética junto con al menos un excipiente o adyuvante cosmético adecuado. Dichos excipientes o adyuvantes cosméticos se utilizan normalmente en este campo. Las aplicaciones cosméticas incluyen diferentes aplicaciones de cuidado personal. Idealmente, para estos tipos de aplicaciones, el sistema se proporciona en una forma adaptada para aplicaciones tópicas, aunque también se contemplan otras formas de administración que se han mencionado previamente. Dichas aplicaciones cosméticas incluyen, pero sin limitación, el tratamiento de afecciones del cabello o el tratamiento del olor corporal. Las afecciones del cabello incluyen la caspa y el sistema de la presente invención elimina la piel muerta que se acumula en el cuero cabelludo y también puede tratar cualquier infección microbiana subyacente. El sistema puede utilizarse como una alternativa al uso convencional del peróxido de hidrógeno para el control del olor corporal y cualquier infección microbiana asociada que cause o aumente un problema de olor corporal. Adicionalmente, y ventajosamente, la composición o sistema antimicrobiano de la invención puede usarse en el tratamiento de afecciones cutáneas, por ejemplo, acné, eczema, psoriasis, pie de atleta, infección por hongos en las uñas.
- Otra aplicación cosmética incluye el uso del sistema de la presente invención en un método para blanqueamiento dental. Un blanqueamiento dental convencional implica la aplicación de una solución de peróxido de hidrógeno o blanqueante en las superficies externas de los dientes, normalmente bajo la supervisión de un dentista. Puesto que el peróxido penetra en los dientes, estos adquieren un color más claro. Ventajosamente, el sistema de la presente invención se proporciona en una forma adaptada para su administración oral a través de una banda o bandas de película soluble, hilo dental, pasta de dientes, goma masticable medicada, enjuague bucal y/o formas adaptadas para su administración a través de un protector bucal. La administración mediante estos medios permite aclarar el color de los dientes allí donde el peróxido de hidrógeno se libera del sistema de la presente invención. El sistema de la presente invención proporciona una liberación sostenida de peróxido de hidrógeno que es ideal para el blanqueamiento dental. Además, el sistema está hidratado y se tolera fácilmente, superando así las desventajas asociadas a los sistemas de blanqueamiento convencionales que emplean peróxido de hidrógeno *per se.* Por lo

tanto, el sistema de la presente invención puede utilizarse como una fuente de peróxido de hidrógeno alternativa para reemplazar el uso del blanqueador utilizado en un gran número de aplicaciones para el cuidado personal.

- El proceso para la fabricación del sistema antimicrobiano e inmunoestimulador estable en almacenamiento, como se 5 define en el primer y segundo aspectos de la invención, y que comprende una enzima oxidorreductasa, un sustrato para la enzima oxidorreductasa y peróxido de hidrógeno en una solución acuosa comprende las etapas de
 - a. calentar el agua a una temperatura de al menos 60 °C, preferiblemente de aproximadamente 75 °C a 95 °C;
- 10 b. añadir el sustrato para la enzima oxidorreductasa al agua caliente para formar una solución de azúcar en agua,
 - c. enfriar la solución de azúcar en agua hasta una temperatura por debajo de aproximadamente 40 °C para permitir la retención de la actividad enzimática;
- 15 d. añadir la enzima oxidorreductasa a la solución de azúcar en agua de la etapa (c) con agitación para formar peróxido de hidrógeno a un índice controlado predeterminado; y
- e. enfriar la mezcla resultante de la etapa (d) hasta la temperatura ambiente para producir un sistema con peróxido de hidrógeno producido de forma endógena estable en almacenamiento y biodisponible, a un nivel de al menos 20 10 mg por litro para una liberación inmediata.

El tratamiento por calor no controlado de los azúcares tiende a producir una caramelización que da como resultado una formulación que adquiere una coloración de amarillo a pardo. Para eliminar la caramelización, y producir así un material transparente, se desarrolló el proceso de fabricación que se ha mencionado anteriormente en el que el orden de la adición de los azúcares y su disolución por calentamiento se selecciona cuidadosamente para evitar el proceso de caramelización.

Preferiblemente, el proceso comprende la etapa adicional de añadir un agente tamponante al sistema para conseguir un pH de aproximadamente 4 a 8, preferiblemente de 5 a 7, más preferiblemente 5,5. El agente tamponante puede 30 añadirse durante o después de la etapa (d).

La enzima oxidorreductasa y los componentes adicionales de la invención se han definido anteriormente.

Opcionalmente, los azúcares adicionales, como se ha definido previamente, pueden añadirse al sistema en la etapa 35 (b). Idealmente, cuando se añaden uno o más azúcares, cada azúcar se añade de forma secuencial después de que el azúcar anterior se haya disuelto completamente en el agua de la etapa (a).

De acuerdo con una realización de este aspecto de la invención, los azúcares se añaden en la siguiente secuencia: fructosa, glucosa, maltosa y sacarosa. Cada azúcar se disuelve completamente en el agua por calentamiento a aproximadamente 90 °C antes de añadir el siguiente azúcar. Como alternativa, los azúcares pueden prepararse como se ha indicado anteriormente al vacío a aproximadamente -0,5 Bar. Este vacío reduce el punto de ebullición de los azúcares a una temperatura de menos de 90 °C, evitando la decoloración.

Opcionalmente, puede añadirse al menos un ingrediente modificador de la viscosidad al sistema durante el proceso anterior. Idealmente, el ingrediente modificador de la viscosidad se selecciona de entre polietilenoglicol, glicerol y/o parafina líquida. Pueden contemplarse ingredientes modificadores de la viscosidad convencionales.

Una vez que el sistema de la presente invención se realiza de acuerdo con el procedimiento anterior, el sistema de la invención puede envasarse en un recipiente opaco e impermeable. Esto evitará la producción adicional de 50 peróxido de hidrógeno, que únicamente podrá reiniciarse en una atmósfera aerobia.

El sistema generado de acuerdo con el proceso anterior puede ser una solución líquida, preparación sólida o semisólida. Después de la fabricación, el sistema puede procesarse entonces en el producto final deseado, es decir, en una forma de administración, tal como una forma sólida o semi-sólida adecuada para las diferentes formas de 35 administración que se han analizado anteriormente. Por ejemplo, el sistema puede combinarse con un gel alcohólico para proporcionar una forma de gel adecuada para su administración. Adicionalmente, el sistema puede incorporarse en diversos apósitos disponibles en el mercado.

El sistema también puede someterse a una esterilización posterior a su fabricación, por ejemplo, mediante

irradiación. Dicha esterilización posterior a su fabricación no tiene un efecto negativo sobre la fuente de peróxido de hidrógeno.

La invención se ilustrará ahora mediante los siguientes ejemplos no limitativos con referencia a las siguientes 5 figuras, en las que:

La figura 1a muestra un perfil de inhibición de la miel de Manuka en *Staphylococcus aureus*. La miel de Manuka muestra un perfil de inhibición de segundo nivel. La actividad de inhibición microbiana de primer nivel se produce entre diluciones del 50 % a aproximadamente el 6,25 %, y el segundo nivel de actividad de inhibición microbiana se 10 produce en diluciones del 3,125 % a aproximadamente el 0,195 %;

la figura 1b muestra un perfil de inhibición microbiana de la miel de Manuka de pH ajustado en *Staphylococcus aureus*. El ajuste del pH de la miel de Manuka de su pH natural de aproximadamente 4,0 a un pH de 6,8 no afecta al perfil de inhibición microbiana;

la figura 1c muestra un perfil de inhibición microbiana de la miel de Manuka de pH ajustado al que se ha añadido un exceso de catalasa en *Staphylococcus aureus*. El pH de la miel de Manuka ajustado a casi un pH neutro seguido de la adición de catalasa en exceso altera el perfil de inhibición microbiana de la miel. El primer nivel de inhibición microbiana únicamente se ve ligeramente afectado pero el segundo nivel se ve considerablemente afectado, lo que 20 indica que el efecto antibacteriano en el segundo nivel es principalmente el resultado de la liberación de peróxido de hidrógeno;

15

la figura 2 muestra un perfil de inhibición microbiana de la miel de Manuka y una formulación prototipo en *Staphylococcus aureus*. La formulación prototipo demuestra una mayor actividad en comparación con la de la miel 25 de Manuka;

la figura 3a muestra los resultados de un ensayo de inhibición microbiana usando formulaciones prototipo a base de gel en *Staphylococcus aureus*, E. coli y *Candida Albicans*. Ambos geles a base de celulosa demuestran una disminución de la estabilidad y la formulación de gel a base de celulosa tampoco es tan activa como la formulación prototipo, tal como demuestran las zonas más pequeñas de inhibición en los ensayos de difusión (compárese la figura 3a (geles) con la figura 3b (formulación prototipo));

la figura 3b muestra los resultados de un ensayo de inhibición microbiana de las formulaciones prototipo en *Staphylococcus aureus*. Son evidentes unas zonas grandes de inhibición que indican actividad;

la figura 4a muestra los resultados del ensayo de inhibición microbiana de la glucosa/glucosa oxidasa utilizando formulaciones con diferentes bacterias. Ensayos de inhibición microbiana de 4 réplicas de D-glucosa al 75 % con GOX al 0,5 % 5600 U/g en pocillos y su actividad antimicrobiana frente a varias bacterias diferentes. Estas formulaciones demuestran un grado limitado de actividad antibacteriana. Esta actividad se encuentra por debajo de la observada con la formulación antimicrobiana prototipo descrita en el ejemplo 2, como se pone de manifiesto por las zonas más pequeñas de inhibición en los ensayos de difusión de pocillo/disco (compárese figura 4a (geles) con la figura 4b (prototipo));

la figura 4b muestra los resultados del ensayo de inhibición microbiana de la formulación prototipo frente a varias 45 bacterias diferentes;

la figura 5a muestra la actividad de A³IS que contiene concentraciones enzimáticas diferentes de GOX (5600 U/g) frente a *S. aureus*. Se midió la variación del contenido de la glucosa oxidasa en A³IS y su efecto sobre el perfil de inhibición. La actividad antibacteriana de A³IS aumenta proporcionalmente con respecto a la concentración de 50 glucosa oxidasa. Se consigue un efecto antibacteriano sustancial a una concentración enzimática del 0,05 %;

la figura 5b muestra una generación de H₂O₂ en el tiempo por A³IS que contiene la enzima GOX Aldrich sigma al 0,5 % 5600 U/g diluida al 50 % (C1), al 25 % (C2), al 12,5 % (C3) o al 6,25 % en agua desionizada (DI). A³IS genera un aumento considerable de los niveles de peróxido de hidrógeno en comparación con la miel de Manuka diluida al 50 % en agua DI;

la figura 5c muestra una generación de H_2O_2 en el tiempo por A^3IS . La producción de H_2O_2 mediante A^3IS con enzima GOX Aldrich sigma al 0,5 % 5600 U/g y diluido al 25 % en agua DI se mantiene durante un periodo de, al menos, 48 h;

la figura 5d muestra que la actividad antimicrobiana de A³IS aumenta con un aumento de la concentración de la glucosa oxidasa. La potencia/eficacia depende de la concentración de glucosa oxidasa en las formulaciones de A³IS. Los resultados muestran un aumento de la eficacia con una concentración en aumento de glucosa oxidasa al ensayarse en *Staphylococcus aureus*, *Pseudomonas aeruginosa y Escherichia coli*;

la figura 6 muestra los resultados de estabilidad y retención del depósito de H₂O₂ mediante A³IS durante un periodo de diez meses. El depósito de H₂O₂ disponible, producido mediante A³IS, es estable en almacenamiento. El nivel de H₂O₂ disponible presente se determinó inicialmente inmediatamente después de colocarse en tubos y nuevamente 10 después de que haya transcurrido un periodo de 7 y 10 meses. No existe una evidencia de una pérdida de H₂O₂ disponible dentro de la formulación de A³IS, indicando así la estabilidad. Se han obtenido resultados similares con bacterias diferentes.

la figura 7a muestra la actividad antimicrobiana en una formulación de A³IS en *Staphylococcus aureus* durante 3 meses. La actividad antimicrobiana en una formulación de A³IS en *Staphylococcus aureus* demuestra un nivel consistente de actividad antimicrobiana a través del tiempo como se determina mediante las zonas de inhibición medidas en cada punto temporal de muestreo y los resultados se representan en gráficas utilizando limites de confianza del 95 % durante un periodo de 3 meses;

20 la figura 7b muestra la actividad antimicrobiana en una formulación de A³IS en Staphylococcus aureus durante 14 meses. La actividad antimicrobiana en una formulación de A³IS en Staphylococcus aureus demuestra un nivel consistente de actividad antimicrobiana a través del tiempo como se determina por las zonas de inhibición medidas en cada punto temporal de muestreo y los resultados se representan gráficamente utilizando limites de confianza del 95 % durante un periodo de 14 meses;

la figura 8a muestra la actividad antimicrobiana de A³IS contra *Staphylococcus aureus*, el método de curva de eliminación de NCCLS. Actividad antimicrobiana de A³IS contra *Staphylococcus aureus*, según se determinó mediante el método de curva de eliminación de NCCLS. A³IS tiene una eficacia aumentada en comparación con la miel de Manuka y una eficacia comparable con vendaje de plata;

30

la figura 8b muestra la actividad antimicrobiana de A³IS contra *Staphylococcus aureus*, un método específico del fabricante de dispositivos médicos. Actividad antimicrobiana de A³IS contra *Staphylococcus aureus*, según se determina mediante un protocolo específico del fabricante para dispositivos médicos. A³IS tiene una eficacia aumentada en comparación con la miel de Manuka y una eficacia comparable con el vendaje de plata;

la figura 8c muestra la actividad antimicrobiana de A³IS contra el grupo A de *Streptococci* beta hemolíticos. Resultados de un ensayo de inhibición (repeticiones de 3 días) para A³IS, Medihoney® y gel de fenol al 10 % ensayado contra 5 aislados clínicos del Grupo A de *Streptococci* beta hemolíticos. A³IS está a un pH normal de 5,5 (material de ensayo A) y pH 7 (material de ensayo B), se incluye un control negativo de A³IS que no contiene GOX. 40 La formulación de A³IS demuestra que es comparable con la eficacia *in vitro* del gel de fenol al 10 % y es superior a Medihoney®;

la figura 8d muestra la actividad antimicrobiana de A³IS contra *Campylobacter*. Resultados de un ensayo de inhibición (repeticiones de 3 días) para A³IS, miel de Manuka y gel de fenol al 10% al ensayarse contra 5 aislados 45 clínicos de *Campylobacter spp*. La formulación de A³IS está a un pH normal de 5,5 (material de ensayo A) y pH 7 (material de ensayo B), se incluye un control negativo de A³IS que no contiene GOX. Los resultados indican una eficacia *in vitro anti-Campylobacter* significativa y la superioridad de A³IS con respecto a la miel de Manuka;

la figura 9a muestra la actividad antimicrobinana de A³IS contra P. *acnes*. Actividad de A³IS contra P. *acnes* en condiciones de incubación variable: luz y oscuridad aerobia, luz y oscuridad anaerobios. A³IS demuestra un alto nivel de actividad contra *P. acnes*, lo que indica el potencial de los materiales para aplicación tópica en acné;

la figura 9b muestra la actividad antimicrobiana A³IS contra *P. acnes*. Se muestra la actividad antimicrobiana de A³IS y los productos comerciales anti-acné disponibles actualmente incluyen algunos productos comerciales que 55 incorporan los antibióticos. A³IS demuestra un alto nivel de actividad comparable con los productos anti-acné disponibles en el mercado, lo que indica el potencial de los materiales para aplicación tópica en acné;

la figura 10 muestra la actividad antimicrobiana de A³IS contra 8 cepas de MRSA durante tres días diferentes y en comparación con un estándar de fenol al 10 % y con miel de Manuka. La formulación de A³IS está a un pH normal

de 5,5 (material de ensayo A) y pH 7 (material de ensayo B), se incluye un control negativo de A³IS que no contiene GOX. Los resultados demuestran una eficacia significativa de anti-MRSA *in vitro* y la superioridad de A³IS con respecto a la miel de Manuka y un control de gel de fenol al 10 %;

- 5 la figura 11a muestra una actividad antimicrobiana de A³IS contra MRSA en comparación con un estándar de fenol al 10 % y con la miel de Manuka. La formulación de A³IS está a un pH normal de 5,5 (material de ensayo A) y pH 7 (material de ensayo B), se incluye un control negativo de A³IS que no contiene GOX. Los resultados demuestran una eficacia anti-MRSA *in vitro* significativa y la superioridad de A³IS con respecto a la miel de Manuka y un control del gel de fenol al 10 %;
- la figura 11b muestra la actividad antimicrobiana de A³IS contra aislados clínicos de mastitis en comparación con antibióticos. Ensayo de inhibición de A³IS (repeticiones de 3 días) en comparación con cuatro antibióticos (vancomicina, estreptomicina, tetraciclina y cloranfenicol) al ensayarse contra 22 aislados clínicos de organismos de *Staphylococcus aureus* que provocan mastitis. A³IS demuestra una eficacia superior *in vitro* con la totalidad de estos antibióticos. El aislado clínico número 15 es resistente a vancomicina, estreptomicina y tetraciclina y muestra únicamente una leve sensibilidad a cloranfenicol, sin embargo, demuestra sensibilidad a A³IS:
- la figura 11c muestra la actividad antimicrobiana de A³IS contra aislados clínicos de mastitis en comparación con productos anti-mastitis disponibles en el mercado. Ensayo de inhibición de A³IS (repeticiones de 3 días) en 20 comparación con cuatro de los productos multi-antibióticos, anti-mastitis disponibles en el mercado al ensayarse contra 22 aislados clínicos de organismos *Staphylococcus aureus* que provocan mastitis. La formulación de A³IS demuestra una eficacia *in vitro* comparable en comparación con tres de los productos comerciales principales y es superior a uno de estos productos;
- 25 la figura 11d muestra la actividad antimicrobiana de A³IS contra aislados clínicos de mastitis en comparación con una solución de nisina al 2 %. Ensayo de inhibición de A³IS (repeticiones de 3 días) en comparación con una solución de nisina al 2 % sobre 21 aislados clínicos de organismos de *Staphylococcus aureus* que provocan mastitis. La formulación de A³IS demuestra una eficacia superior *in vitro* a la solución de nisina al 2 %. Observación: El aislado clínico número 15 de la figura 11b fue irrecuperable del almacenamiento y no se incluye en este ensayo;
 - la figura 11e muestra el desarrollo de resistencia a nisina. Una colonia resistente a nisina al 2 % (indicada por la flecha) dentro de la zona de inhibición durante el estudio de eficacia de nisina. Nunca se han observado colonias resistentes a A³IS;
- 35 la figura 12a muestra una evaluación de toxicidad MTT de A³IS en NHF (fibroblastos humanos normales). Se incluyen en el ensayo una concentración al 50 % de A³IS, un rango de concentraciones de gel que contiene plata comercial y un producto de gel que contiene cinc comercial, en comparación con azida sódica (control positivo). A³IS, demuestra menor toxicidad que el gel que contiene plata comercial o el producto de gel que contiene cinc comercial;
- la figura 12b muestra la evaluación de toxicidad MTT de A³IS en NHK (Queratinocitos Humanos Normales). Se incluyen en el ensayo una concentración al 50 % de A³IS, un rango de concentraciones de un gel que contiene plata comercial y un producto de gel que contiene cinc comercial, en comparación con azida sódica (control positivo). A³IS demuestra menor toxicidad que el gel que contiene plata comercial o el producto de gel que contiene cinc comercial;
 - la figura 12c muestra una evaluación de citotoxicidad de revestimiento con agar de A³IS en las células L929. Se incluyen en el ensayo una concentración al 50 % de A³IS, un rango de concentraciones de un gel que contiene plata comercial y un producto de gel que contiene cinc comercial, en comparación con azida sódica (control positivo). A³IS demuestra menor toxicidad que el gel que contiene plata comercial o el producto de gel que contiene cinc comercial;
 - la figura 12d muestra A³IS y otro ensayo de irritación MTT de material de ensayo durante un periodo de 24 horas empleando el modelo de piel Skinethic® 3D. A³IS demuestra menos irritación en este ensayo tridimensional que los productos disponibles en el mercado ensayados;
- 55 la figura 12e muestra una sección transversal teñida con hematoxilina/eosina (H&E) de piel Skinethic® 3D expuesta al producto de gel que contiene placa comparativo. Obsérvese que la formulación de plata provoca desprendimiento de la capa epidérmica de la capa basal;
 - la figura 12f muestra una sección transversal teñida con hematoxilina/eosina (H&E) de piel Skinethic® 3D expuesta

al producto de gel que contiene placa comparativo. Obsérvese que la formulación de plata provoca el desprendimiento de la capa epidérmica de la capa basal;

la figura 12g muestra una sección transversal teñida con hematoxilina/eosina (H&E) de piel Skinethic® 3D expuesta 5 a A³IS. Obsérvese que A³IS no provoca el desprendimiento de la capa epidérmica de la capa basal;

la figura 12h muestra una sección transversal teñida con hematoxilina/eosina (H&E) de piel Skinethic® 3D expuesta a A³IS. Obsérvese que A³IS no provoca el desprendimiento de la capa epidérmica de la capa basal;

10 la figura 13a muestra la inducción de la liberación de IL-1 mediante A³IS. Ensayo ELISA del sobrenadante procedente de un ensayo de irritación 3D durante un periodo de 48 horas, medición y comparación de la liberación de IL-1 cuando se expone a la formulación de A³IS, a un control positivo con azida sódica, y un producto de gel que contiene plata comercial. Los resultados indican que IL-1 se libera de las células de la piel expuestas a la formulación de A³IS;

la figura 13b muestra la inducción de la liberación de LDH mediante A³IS. Ensayo ELISA del sobrenadante procedente de un ensayo de irritación 3D durante un periodo de 48 horas, medición y comparación de la liberación de lactato deshidrogenasa (LDH) al exponerse a A³IS, un control positivo con azida sódica, y un producto de gel que contiene plata disponible comercialmente. La lactato deshidrogenasa se libera por las células expuestas a 20 compuestos destructivos. Los resultados indican que la formulación de A³IS es menos tóxica que los productos de gel que contienen plata disponibles en el mercado;

la figura 14 muestra A³IS antes y después de la esterilización mediante irradiación gamma. La irradiación gamma no reduce la actividad como se muestra por la zona de ensayos de inhibición en *S. aureus*, *E. coli* y *Pseudomonas* 25 *aeruginosas*;

la figura 15a muestra A³IS en una matriz de colágeno-GAG y en vendajes comerciales para heridas ensayados para comprobar la actividad antibacteriana contra *S. aureus*. A³IS demuestra una actividad antibacteriana que es superior a la observada con el vendaje de plata disponible en el mercado utilizado como control;

las figuras 15b y 15c muestran la infiltración de la matriz de colágeno-GAG mediante los NHF. Infiltración mediante los NHF de las matrices de colágeno-GAG. Durante un periodo de 4 días después de la adición de las secciones de ensayo, se observó que los NHF se unen y crecen dentro y a lo largo de las matrices de colágeno-GAG como se indica por la flecha;

la figura 16a muestra A³IS en un gel alcohólico ensayado utilizando el bioensayo de discusión superficial para determinar las zonas de inhibición contra *S. aureus*. Las zonas de inhibición son pequeñas debido a la propiedad absorbente de la matriz de gel, aunque existe una zona clara alrededor de la matriz de gel;

- 40 la figura 16b muestra la estabilidad de A³IS en un gel alcohólico. El A³IS en una formulación de gel alcohólico se puso en un estudio de estabilidad a corto plazo de 6 semanas, incluyendo un ciclo de congelación descongelación y se ensayó utilizando el bioensayo de difusión superficial para determinar las zonas de inhibición contra *S. aureus*. Los resultados indicaron que la formulación de gel mantuvo la estabilidad a lo largo de todo el periodo de ensayo;
- 45 la figura 17 muestra una investigación comparativa de la eficacia de A³IS. A³IS se vertió sobre la superficie de un rango de vendajes disponibles en el mercado Kaltostat® (Comvita), Kendal® (Telfa) y una matriz de colágeno-GAG (glucosaminoglicano) como se ha descrito anteriormente y se dejó difundir en el vendaje durante varias horas. Las secciones se cortaron y se colocaron sobre placas de agar, inoculadas anteriormente con *S. aureus*, *E. coli* y P. aeruginosa. Después, la eficacia antibacteriana de los vendajes impregnados con A³IS se comparó con Aquacel® (Convatec) y Betadine® (Seton), vendajes disponibles en el mercado que contienen plata y yodo elemental. Los vendajes de A³IS son tan eficaces desde un punto de vista antimicrobiano como Aquacel® (Convatec) y Betadine®

(Seton) y un vendaje disponible comercialmente que utiliza plata y yodo elemental;

la figura 18a muestra la actividad antimicrobiana de A³IS contra *Onychomycosis*. *Onychomycosis* presente en una

55 uña del pie antes del tratamiento con A³IS;

la figura 18b muestra la actividad antimicrobiana de A³IS contra *Onychomycosis*. A³IS cubierto con un vendaje cuyo relleno se humedece usando agua. Por lo tanto, la uña se cubre en un vendaje oclusivo;

la figura 18c muestra una actividad antimicrobiana de A³IS contra *Onychomycosis*. Fotografía 48 horas después del inicio del tratamiento con A³IS. Es evidente que la uña ha cambiado de aspecto ya que ahora tiene un color más oscuro; y

- 5 la figura 18d muestra una actividad antimicrobiana de A³IS contra *Onychomycosis*. Fotografía 8 semanas después del inicio del tratamiento con A³IS. En ésta, la franja de uña sin infectar es claramente visible, lo que indica que se han eliminado los dermatofitos;
- figura 19 muestra los resultados de un ensayo de inhibición usando (a) A³IS en solitario, (b) una combinación de un 10 placebo (A³IS que no contiene GOX) y un agente antifúngico, y (c) una combinación de A³IS y un agente antifúngico ensayado contra *Candida albicans*.

EJEMPLOS:

15 Materiales y métodos generales

Miel de Manuka:

Se preparó Manuka Care 18+® (Comvita) o Medihoney® en forma de un caldo de nutriente al 50 % v/v. Se hicieron 11 series 1 en 2 diluciones de la preparación al 50 % v/v en caldo de nutrientes y se usaron para una prueba de inhibición microbiana dando una menor concentración del 0,01 %.

Azúcares:

30

25 (D+) glucosa, D (-) fructosa, (D+) maltosa y (D+) sacarosa (Sigma Aldrich)

Glucosa oxidasa

Se usó polvo de glucosa oxidasa al 0,5 % (5600 U/100 g) en la fabricación de A³IS.

También se usaron 240 U/mg de glucosa oxidasa (Biozyme UK) (1 U es la cantidad de enzima que provoca la oxidación de un micromol de glucosa por minuto a 25 $^{\circ}$ C y con un pH de 7,0) y de 100 U/mg a 250 U/mg de glucosa oxidasa (Sigma Aldrich) (1 U oxidará 1,0 mol de D-glucosa en D-gluconolactona y H_2O_2 por minuto a pH de 5,1 a 35 $^{\circ}$ C) en los siguientes ejemplos.

Ajuste del pH:

Se ajustó el pH de una solución al 50 % v/v de miel de Manuka a pH 6,5 con NaOH 1 M, y se ajustó el pH de una muestra de mezcla de azúcar sin glucosa oxidasa a pH a 3,8 con HCl 1 M. El pH se midió con un medidor del pH 40 (Hanna Instruments HI 931410).

Preparaciones con un azúcar:

Se prepararon soluciones al 50 % w/v de glucosa en solitario, fructosa en solitario y sacarosa en solitario y se 45 diluyeron en serie de forma similar que la miel de Manuka.

Medición del contenido de humedad y agua disponible (Aw):

La determinación del contenido de humedad se hizo mediante un aparato de titulación Carl Fisher (Suiza). La 50 determinación de Aw se hizo usando un medidor de Aw Aqua Lab, modelo serie 3Te, Decagon Devices Inc, Pullman, Washington, (con autorización del Glanbia Innovation Centre, Kilkenny).

Ensayo de H₂O₂:

55 El peróxido de hidrógeno se determinó siguiendo el método de (Kerkvkiet 1996 y Serrano y col., 2004), usando una tira de ensayo Merckoquant (№ 10011, Merck, Alemania).

Eliminación de H₂O₂:

Se añadió catalasa (Sigma Chemical Co, de hígado de bovino, N^o cat. C-30 12.800 U/mg) a diluciones de miel de Manuka de pH normal (pH inicial de 4) y a diluciones de miel de Manuka con un pH ajustado (pH inicial de 6,8) a las mismas concentraciones utilizadas por Taormina y col., Alien y col. y Molan y col., 1988). Típicamente, la concentración añadida es 100 veces superior a la cantidad medida de $\underline{H}_2\underline{O}_2$ presente.

Tratamiento de calor de la miel de Manuka:

Un solución al 50 % de miel de Manuka en un caldo de nutriente se calentó tratada a una temperatura de 85 +/- 5 °C en un baño con agua. Esta temperatura se mantuvo durante un periodo de 60 minutos o 120 minutos. Un solución al 50 % de miel de Manuka en un caldo de nutriente se introdujo en autoclave a 121 psi durante 15 minutos. A partir de estas preparaciones de miel tratada con calor se prepararon diluciones para su ensayo.

Cadenas microbianas:

- 15 Se desarrollan *Escherichia coli* (NCIMB 8545), *Staphylococcus aureus* (NCIMB 9518) y *Pseudomonas aeruginosa* (NCIMB 8626) en agar de nutrientes o en un caldo de nutrientes, durante 24 horas a 37 °C.
- Se desarrollan *Candida albicans* (NCIMB 3179) y *Saccharomyces cerevisiae* en agar dextrosa Sabouraud o en un caldo de dextrosa Sabouraud durante 24 h a 37 °C.
 - Se desarrolla *Propionibacterium acnes* (P. acnes ATCC/NTC 11827) de forma anaerobia en agar sangre o en un caldo de nutrientes durante 72 horas a 37 °C.
- 22 aislados de *Staphylococcus aureus* procedentes de mastitis clínica obtenida de los laboratorios veterinarios 25 regionales de Sligo se desarrollan en agar de nutrientes o en un caldo de nutrientes durante 24 horas a 37 °C.
 - Para un ensayo realizado en el Sligo Regional General Hospital, cinco aislados clínicos de *streptococci* beta hemolíticos del grupo A se desarrollaron en agar sangre o en un caldo de nutrientes durante 24 horas a 37 °C.
- 30 Se desarrolla *Campylobacter coli* (NCTC 11366) en agar de infusión de cerebro y corazón o en un caldo de infusión de cerebro y corazón durante 72 horas a 37 °C.
 - Se desarrollan *Campylobacter jejuni* (NCTC 11322) y tres aislados clínicos en agar de infusión de cerebro y corazón o en un caldo de infusión de cerebro y corazón durante 72 horas a 37 °C.
 - Se desarrollan MRSA (ATCC 43300) y siete aislados clínicos en agar de nutrientes o en un caldo de infusión de cerebro y corazón durante 72 horas a 37 °C.
- Se desarrollan aislados de moho de laboratorio en agar dextrosa Sabouraud o en un caldo de dextrosa durante 40 48 h a 25 °C.
 - Se desarrolla Botrytis cinerea en agar dextrosa Sabouraud o en un caldo de dextrosa durante 48 h a 25 °C.
- El crecimiento bacteriano se controla midiendo la densidad óptica del cultivo (DO) en un espectrofotómetro (Anthos 2010) con una longitud de onda de 620 nm.

Procedimientos de difusión de pocillo/disco - para la medición de la inhibición microbiana

Se inoculan placas de agar mediante un cultivo de exudado durante una noche sobre la superficie de la placa. Las placas se dejan en reposo a temperatura ambiente durante 15 minutos, antes de su uso. Los pocillos de 8,2 mm de diámetro se perforan en la superficie del agar. Se ponen ciento ochenta µl de muestra en cada pocillo. Las muestras se difunden en el agar alrededor del pocillo y se ensayan para ver si producen una zona de inhibición. Las placas se incuban durante 24, 48 o 72 h y se miden las zonas de inhibición usando un lector de zona automático Autodata. El diámetro de las zonas se registra, incluido el diámetro del pocillo (8,2 mm).

Para los ensayos de disco, se colocan unos discos absorbentes estériles (de 8,2 mm de diámetro) en las diluciones de muestra durante 10 minutos antes de aplicarse directamente a placas de agar inoculadas. Las muestras se difunden del disco al agar y se ensayan para comprobar la capacidad de producir una zona de inhibición. Las placas se incuban durante 24, 48 o 72 h y las zonas de inhibición se miden usando un lector de zona automático Autodata.

24

Se registra el diámetro de las zonas, incluyendo el diámetro del disco (8,2 mm).

Cuantificaciones bactericidas de la miel

5 El ensayo de difusión de agar (ADA) es generalmente el método preferido para las cuantificaciones bactericidas de la miel y determinar la potencia biológica de los compuestos/activos - antibióticos, y se usa para los análisis en lote de producción de miel de Manuka y procedimientos de liberación (Gribbles Analytical Laboratories Kerkvliet, J.D., 1996. Screening method for the determination of peroxide accumulation in honey and relation with UMF content (Journal of Apiculture Research 35, 3, págs. 110-117). Sin embargo, la naturaleza subjetiva de este ensayo limita la interpretación de los resultados. También requiere mucho tiempo y es laboriosa, ya que necesita la preparación y enfriamiento de las placas, la perforación de los pocillos de ensayo en agar y la medición manual de las zonas de inhibición después de 24 horas de incubación. La calidad de los resultados depende en gran medida de la técnica y del juicio, y la precisión sugerida no puede obtenerse cuando la zona de inhibición es confusa o no es perfectamente circular.

Otros métodos - para la medición de la inhibición microbiana

El crecimiento microbiano, o la inhibición del crecimiento, puede detectarse usando una diversidad de métodos biológicos, incluyendo, recuento microscópico directo, absorbancia, bioluminiscencia, ensayos que incorporan un 20 indicador de crecimiento colorimétrico y fluorométrico, turbidez, peso en seco y zonas de inhibición.

Ensayo espectrofotométrico

15

Se desarrolló un ensayo espectrofotométrico mediante placas de microtitulación de 96 pocillos (Patton T. y col., Journal of Microbiological Methods (2006) páginas 84-95) y se comparó este método con los métodos estándar de difusión de pocillo/disco para evaluar las ventajas potenciales de este bioensayo en relación con las propiedades antibacterianas de la miel de Manuka. Se consiguió un aumento de la automatización y del rendimiento (eficiencia) usando el ensayo espectrofotométrico que puede generar con rapidez grandes cantidades de datos que permiten un análisis estadístico detallado de los resultados. El método es más sensible y más receptivo a los análisis estadísticos que los ensayos empleados actualmente, permitiendo estudios cinéticos más extensos incluso en presencia de bajas concentraciones de miel (Tabla 1). El ensayo es capaz de detectar unos niveles inhibitorios por debajo de los registrados para los ensayos de difusión de pocillo o disco. Este ensayo proporciona un procedimiento rápido y sensible para averiguar la actividad de la miel de Manuka.

35 **Tabla 1**

	Disco	Pocillo	Espectrofotométrico
	Ensayo MIC50	Ensayo MIC50	Ensayo MIC50
Especies microbianas			
Escherichia coli	22,4 %	24,5 %	5,6 %
Staphylococcus aureus	25,7 %	22,6 %	0,78 %
Bacillus cereus	24 %	21,9 %	2,00 %
Candida albicans	Sin inhibición	Sin inhibición	40 %

Los valores de MIC50 indican el porcentaje de miel de Manuka presente, dando como resultado una inhibición del 50 % en el crecimiento de un microorganismo de ensayo.

Las diluciones de miel se inoculan con un 5 % v/v de cultivo de ensayo en volumen durante una noche. Se aplican doscientos microlitros de cada dilución, usando 8 réplicas por dilución, a los pocillos de placas de microtitulación de 96 pocillos de fondo plano con tapa para evitar la contaminación cruzada (Costar, Corning Ltd. NY). Los pocillos de control recibieron 200 microlitros de un caldo inoculado de cultivo al 5 %. La densidad óptica se determina en un 45 espectrofotómetro a 620 nm antes de la incubación, (T₀). Las placas se incuban durante 24 h en la oscuridad en un agitador orbital Certomat MO a 100 rpm para impedir la adherencia y la aglomeración. Después de 24 h, las placas se leen de nuevo en un espectrofotómetro a 620 nm, (T₂₄). Los resultados mostrados son promedios de ocho determinaciones repetidas cinco veces en tres días separados.

La DO para cada réplica en T_0 se resulta de la DO para cada réplica en T_{24} . Después, a la DO ajustada de cada pocillo de control se le asigna un valor de crecimiento al 100 %. La inhibición del crecimiento para los pocillos de ensayo en cada dilución se determina usando la fórmula:

5 Porcentaje de inhibición = 1 - (DO pocillo de ensayo/DO del pocillo de control correspondiente) x 100 para cada fila de la placas de 96 pocillos, por ejemplo, la DO fila 1, columna 1, pocillo 1 (ensayo) se divide por el valor de DO de la Fila 1, columna 12, pocillo 12 (control).

Esto produce ocho valores de inhibición de réplicas para cada dilución de miel. Todos los ensayos se repiten un 10 mínimo de tres veces en tres días diferentes usando un mínimo de tres placas por ensayo, es decir, cada punto de datos indicado es un promedio de un mínimo de 72 determinaciones puntuales.

La desviación estándar asociada a los valores de inhibición calculados medios para los pocillos de réplicas se determina y se representa como barras de error asociadas para cada punto de datos en las gráficas. Cuando la medición resultante registró un valor de inhibición negativo (promoción del crecimiento), esto se indica como una estimulación usando la fórmula:

Porcentaje de crecimiento = (DO ensayo/DO control) x 100

20 Ejemplo 1: Caracterización de actividades antimicrobianas en miel de Manuka - Ausencia de peróxido de hidrógeno endógeno.

Mediante el bioensayo espectrofotométrico descrito, se determina la actividad antimicrobiana de la miel de Manuka disponible en el mercado, usando varias muestras para asegurar la consistencia. Los resultados mostrados en la figura 1a demuestran que la miel de Manuka proporciona un primer nivel de actividad de inhibición microbiana con diluciones del 50 % a aproximadamente el 6,25 % y un segundo nivel de actividad de inhibición microbiana con diluciones del 3,125 % al aproximadamente el 0,195 %.

Se muestra que este efecto de doble nivel se produce por mecanismos separados. La inhibición microbiana inicial en una dilución de miel baja (50 % - 6,25 %) es resultado de una combinación de un bajo pH y el Aw (agua disponible) que limita el crecimiento y, en menor medida, por el peróxido de hidrógeno que únicamente se produce *de novo* tras la dilución y después de un periodo considerable de tiempo. No existe peróxido de hidrógeno endógeno detectable presente en la miel de Manuka diluida o no diluida, como muestra la Tabla 2.

35 **Tabla 2**

% de dilución	50,00	25,00	12,50	6,25
Miel de Manuka	pH 3,89	pH 4,35	pH 4,96	pH 5,95
H_2O_2 mg/l (Tiempo 0 h)	0	0	0	0
Miel de Manuka	pH 3,89	pH 4,35	pH 4,96	pH 5,95
H ₂ O ₂ mg/l (Tiempo 3 h)	0	35	35	65

Perfil de generación de H2O2 de miel de Manuka

40 A medida que se diluye la concentración de la miel, y después de que haya transcurrido un periodo de tiempo, se produce peróxido de hidrógeno y contribuye adicionalmente al efecto antimicrobiano.

El ajuste del pH de la miel de Manuka de su pH natural a aproximadamente 4,0 a casi pH neutro 7,0 no afecta significativamente al perfil antimicrobiano (figura 1b). Cuando las diluciones de miel de Manuka son de un pH ajustado a casi neutro seguido de la adición de catalasa en exceso, el perfil antimicrobiano de la miel se altera (figura 1c). El primer nivel de inhibición antimicrobiana se ve afectado sólo ligeramente, pero el segundo nivel se ve afectado significativamente, lo que indica que el efecto antibacteriano en el segundo nivel es principalmente el resultado de la liberación de peróxido de hidrógeno.

50 La creencia de que existe una actividad sin peróxido también denominada como un factor único de Manuka (UMF)

se debe a un error del procedimiento experimental. Específicamente, el fracaso por otros grupos de investigación para neutralizar el pH de la miel de Manuka antes de la adición de catalasa hace básicamente que la catalasa añadida resulte ineficaz, ya que el pH de la miel es demasiado ácido para la actividad de la catalasa. Dado que la miel a la que se ha añadido la catalasa en exceso todavía conserva actividad antimicrobiana, ha persistido la creencia de que existe un UMF. Como muestra la figura 1b, el ajuste del pH de la miel de Manuka a pH 6,80 no afecta a la actividad antimicrobiana. Un pH de 6,80 está cercano al pH óptimo para la actividad de catalasa y en esta condición, la catalasa añadida neutraliza la actividad del peróxido de hidrógeno, alterando así el perfil de actividad antimicrobiana de la miel.

10 De manera sorprendente, también se ha descubierto que esta trayectoria de la glucosa oxidasa no es operativa inmediatamente en la aplicación de la miel de Manuka y sólo es operativa después de la dilución de la miel y después de que haya transcurrido un periodo de tiempo.

EJEMPLO 2: Un sistema de generación de peróxido de hidrógeno endógeno antimicrobiano y de liberación sostenida prototipo

Se hace una formulación prototipo que contuvo 31 +/- 5 g de glucosa: 35 +/- 5 g de fructuosa: 7 +/- 2 g de maltosa: 1,5 +/- 1 g de sacarosa, mezclando los ingredientes, preparando la mezcla hasta un volumen final de 100 ml en agua desionizada destilada (DI); la mezcla se esteriliza mediante autoclave. Se añade glucosa oxidasa al 0,05% en peso, 20 que es una concentración similar a la contenida en la miel de Manuka.

La figura 2 muestra los resultados de un ensayo antimicrobiano sobre *S. aureus* usando esta formulación prototipo. La formulación prototipo de este ejemplo demostró una mayor actividad en comparación con la miel de Manuka. Es probable que la función decisiva desempeñada por la trayectoria enzimática de la glucosa oxidasa en el efecto antibacteriano se mejore una vez que esté libre de impurezas y compuestos limitantes de la reacción (tal como catalasa) presentes en la miel. Este prototipo demuestra una actividad bactericida muy eficaz.

EJEMPLO 2.1: Un sistema prototipo de generación de peróxido de hidrógeno endógeno antimicrobiano y de liberación sostenida en gel

A la formulación prototipo se le añaden agentes gelificantes que son ingredientes comunes en las formulaciones farmacéuticas tópicas y se ensayan. Los geles ensayados incluyen celulosa reconstituida con agua y agentes de celulosa reconstituidos con alcohol (1. carbómero, 2. methocel, 3. polivinilpirrolidona y 4. goma xantano al 2 % en un hidrogel que incorpora la formulación prototipo). Ambos geles a base de celulosa demuestran una disminución de la estabilidad. Es posible que la impedancia estérica y la hidrólisis de la glucosa oxidasa den como resultado una pérdida de actividad antibacteriana. Incluso antes de la pérdida de la actividad, debido a una disminución de la estabilidad, ninguna de las formulaciones en gel son tan activas como la formulación prototipo, como resulta evidente por las zonas menores de inhibición en ensayos de difusión (compárese la figura 3a (geles) con la figura 3b (formulación prototipo)).

EJEMPLO 2.2: Un sistema prototipo de generación de peróxido de hidrógeno endógeno antimicrobiano y de liberación sostenida - Formulación individual de azúcar y gel enzimático

En un intento por resolver la estabilidad en gel descrita en el ejemplo 2.1, se preparan formulaciones que contienen glucosa y glucosa oxidasa únicamente. Las formulaciones de glucosa que varían del 30 %-80 % de glucosa en agua se someten a autoclave o se calientan lentamente hasta el punto de ebullición para facilitar la disolución del azúcar. Durante la disolución mediante ebullición, se añaden diversos agentes gelificantes y, cuando se enfrían a menos de 40 °C, se añade glucosa oxidasa al 0,1 %. Estas formulaciones se ensayan para comprobar la actividad antibacteriana (figura 4a).

Estas formulaciones demuestran únicamente un grado limitado de actividad antibacteriana y esta actividad está por debajo de la observada con la formulación antimicrobiana prototipo que se ha descrito en el Ejemplo 2 como resulta evidente por las zonas menores de inhibición en los ensayos de difusión de pocillo/disco (compárese la figura 4a (geles) con la figura 4b (prototipo)).

Además de la actividad reducida, las formulaciones que contienen altas concentraciones de glucosa, cuando se colocan en tubos de aluminio, solidifican haciendo que las formulaciones no se puedan utilizar. Los tubos que contienen las formulaciones con menores concentraciones de glucosa demuestran una falta de estabilidad como resulta evidente por una disminución de la actividad antimicrobiana con el tiempo.

27

40

30

50

55

EJEMPLO 2.3: Características mejoradas de la formulación del sistema de generación de peróxido de hidrógeno endógeno antimicrobiano y de liberación sostenida - Variación de la concentración de carbohidrato y agua

Este ejemplo describe los intentos de minimizar la cantidad de agua presente en las formulaciones de acuerdo con la invención, para minimizar los problemas relacionados con la estabilidad ya que el exceso de agua puede dar lugar a la hidrólisis de la glucosa oxidasa. Las formulaciones todavía requieren suficiente agua para permitir la generación de H₂O₂, facilitar la aplicación y evitar la precipitación de azúcares durante el almacenamiento. Se mezclan concentraciones variables de azúcares y se calientan como se ha descrito en el Ejemplo 2.2 para determinar la fuente principal para la precipitación y la textura granular observada en las formulaciones anteriores. A partir de este análisis, las concentraciones de azúcares se ajustan para reducir este efecto. Tras la adición de la enzima, las formulaciones adecuadas se ensayan para determinar la actividad antibacteriana.

15 Se ha descubierto que la concentración de agua podría reducirse del 20 % al 10 %, que es la concentración mínima que permite actividad enzimática, facilitar la aplicación y prevenir la precipitación de azúcares.

El tratamiento con calor sin control de los azúcares tiende a producir caramelización dando como resultado una formulación que adquiere un color amarillo a pardo. Para eliminar la caramelización, y producir así un material transparente, se desarrolla un proceso de fabricación en el que se selecciona cuidadosamente el orden de adición de azúcares y su disolución por calentamiento para evitar el proceso de caramelización. A esta formulación se le añade la enzima de glucosa oxidasa y se evalúan la actividad antibacteriana, la estabilidad y la adecuabilidad para aplicación. Estas mejoras a la formulación prototipo forman la base para la totalidad de formulaciones/sistemas futuros descritos en el presente documento.

EJEMPLO 3: Sistema antimicrobiano de componente único, que tiene un depósito de peróxido de hidrógeno endógeno y liberación sostenida

De acuerdo con la Tabla 3, se prepara una formulación para un sistema antimicrobiano de componente único (en lo 30 sucesivo aquí denominado como "sistema antimicrobiano" o A³IS o A3IS).

Tabla 3

Ingrediente	Porcentaje en peso en el Ej. 3.	Intervalo de porcentaje preferido
Agua purificada	13,5 ajustado para hacer el 100 %	10-20 %
Polvo de glucosa	38 % +/- 10, preferiblemente +/- 5	28-48 %
Polvo de fructosa	35 % +/- 10, preferiblemente +/- 5	25-45 %
Polvo de maltosa	10 % +/- 5	5-15 %
Polvo de	1.5 % +/- 1	0,5-1,5 %
sacarosa	1,5 /6 +/- 1	0,5-1,5 /6
Polvo de glucosa	Enzima al 0,5 % (5600 U/g) disuelta previamente en el 1,5 %	al menos 10 U por 100 g del
oxidasa	de agua purificada	sistema
TOTAL	100 %	100%

35 El pH de A³IS se ajusta a pH 5,5. Este bajo pH está dentro del intervalo de actividad de la glucosa oxidasa (pH 4,0-7,0, pH óptimo de 5,5). Si es necesario, se puede añadir un tampón para obtener el pH deseado, como se ilustra en la tabla 4. El tampón se disuelve previamente en agua purificada y reemplaza parte del agua purificada de la formulación anterior.

40 Tabla 4

Ingredientes tamponantes opcionales para pH 5,5	Porcentaje en peso
Ácido cítrico/citrato sódico	0,918 % disuelto previamente en un 2 % de agua purificada para pH 5,5
Ácido fosfórico/fosfato de hidrógeno disódico	1,598 % disuelto previamente en un 2 % de agua purificada para pH 5,5

Se entenderá que se pueden utilizar diferentes proporciones de ingredientes tamponantes dependiendo del pH deseado.

- 5 Se entenderá que el Prototipo, que se ha descrito en el Ejemplo 2 y A³IS descrito aquí proporciona formulaciones adecuadas para su uso de acuerdo con la invención. Los Ejemplos posteriores muestran el análisis de diversas características de A³IS.
- Los azúcares descritos en la tabla 3 se añaden en la siguiente secuencia: fructosa, glucosa, maltosa y sacarosa. 10 Cada carbohidrato se disuelve totalmente en el agua mediante calentamiento a aproximadamente 90 °C antes de añadir el siguiente carbohidrato. Como alternativa, los azúcares pueden prepararse como anteriormente pero al vacío a -0,5 bar, lo que reduce el punto de ebullición de los azúcares a una temperatura menor de 90 °C evitando la decoloración.
- 15 Cuando los carbohidratos se disuelven totalmente y están transparentes, la mezcla se deja enfriar por debajo de 60 °C y a la mezcla principal se le añaden los ingredientes tamponantes opcionales disueltos previamente en agua.
- Cuando la mezcla base está a una temperatura por debajo de 40 °C, una temperatura que permite la retención de la actividad enzimática, la enzima glucosa oxidasa que está disuelta previamente en agua se añade y se dispersa en la 20 mezcla. La mezcla se deja enfriara a temperatura ambiente. Cuando se enfría, la mezcla se pone en tubos de aluminio que después se cierran herméticamente. Los tubos se almacenan a temperatura ambiente.

EJEMPLO 3.1: Un sistema prototipo de generación de peróxido de hidrógeno endógeno antimicrobiano y de liberación sostenida - variación de la concentración y tipo de enzimas

Se sabe que la miel contiene varias enzimas además de la glucosa oxidasa, incluyendo diastasa e invertasa. Las enzimas diastasa e invertasa se incorporan en la formulación prototipo del Ejemplo 2 para determinar si pueden mejorar la actividad antibacteriana total permitiendo una liberación más lenta pero sostenida de H_2O_2 actuando sobre diferentes carbohidratos en la fórmula.

Se investigan varias combinaciones y concentraciones de enzimas para determinar esta actividad antibacteriana potencialmente mejorada. Se añaden diastasa e invertasa en diferentes combinaciones a A³IS y se comparan con A³IS que contiene glucosa oxidasa únicamente. No se ha descubierto ninguna mejora en la actividad antibacteriana en ninguna de las formulaciones que contienen enzimas múltiples.

También se incorporan diferentes concentraciones de glucosa oxidasa y se comparan mediante ensayo espectrofotométrico para determinar su relación de cantidad/actividad. La actividad antibacteriana de A³IS aumenta proporcionalmente con la concentración de glucosa oxidasa. Se consigue un efecto antibacteriano sustancial a una concentración enzimática del 0,05 % (figura 5a).

Esto muestra que puede conseguirse una variación de la actividad antibacteriana variando la concentración de glucosa oxidasa. La enzima puede dispersarse con facilidad por todo el material durante la mezcla.

EJEMPLO 4: A³IS - Un sistema de generación de peróxido de hidrógeno innovador y aumentado

El peróxido de hidrógeno se cuantifica siguiendo el método de (Kerkvliet 1996 y Serrano y col., 2004), usando una tira de ensayo Merckoquant (Nº 10011; Merck, Alemania). Los resultados se expresan en miligramos de H₂O₂ por litro. La adecuabilidad del método para la determinación de peróxido de hidrógeno se verifica añadiendo diluciones de miel de Manuka recién preparadas con H₂O₂ líquido y verificando que el ensayo puede detectar de manera 50 precisa la cantidad de H₂O₂ presente.

La tabla 5 y la figura 5b muestran que A³IS, con la enzimas GOX sigma Aldrich al 0,5 % 5600 U/g y diluida al 50 % (C1), 25 % (C2), 12,5 % (C3) o 6,25 % en agua desionizada (DI) generan niveles significativamente aumentados de peróxido de hidrógeno en comparación con la miel de Manuka diluida al 50 % en agua DI.

55

25

30

40

Tabla 5

	Muestra/mgH2O2/l				
Tiempo h	C1	C2	C3	C4	Manuka
0	25	15	15	10	0
1	55	25	20	10	15
2	100	90	50	50	35
3	90	90	75	60	55
4	75	75	80	50	50
5	75	75	75	65	40
6	75	75	75	75	40
9	75	75	50	50	35

5 La figura 5c muestra que este aumento de producción de peróxido de hidrógeno (A³IS diluido al 25 % en agua DI) se mantiene durante un periodo de al menos 48 h.

EJEMPLO 4.1: A³IS - Aumento de la actividad antimicrobiana con un aumento de la concentración de glucosa oxidasa

La figura 5d muestra una relación dosis-respuesta entre el rango de concentración de la glucosa oxidasa y el efecto antimicrobiano en *S. aureus*, según se mide usando un bioensayo de inhibición espectrofotométrica.

La figura 5d demuestra adicionalmente que es posible abordar el problema de la potencia/eficacia, ya que las formulaciones producidas pueden ajustarse por variaciones de la concentración de glucosa oxidasa que se incorpora durante la fabricación, resultados mostrados en *Staphylococcus aureus, Pseudomonas aeruginosas* y *Escherichia coli*.

EJEMPLO 5: A³IS - Deposito de peróxido de hidrógeno endógeno

10

20

Cuando A³IS se mezcla con agua dentro del intervalo de dilución del 50 % al 0,1 %, la liberación de peróxido de hidrógeno se detecta inmediatamente. La Tabla 6 muestra que se detectan hasta 75 mg/l de peróxido de hidrógeno en T = 0. Esto contrasta con la miel de Manuka que no puede registrar ninguna liberación de peróxido en el momento cero (véase el Ejemplo 1, Tabla 2) y demuestra la presencia de un depósito endógeno significativo de 25 peróxido de hidrógeno generado durante el proceso de formulación.

Además, después de tres horas de incubación de las muestras diluidas, la cantidad de peróxido detectado en A³IS excede significativamente la detectada en la miel natural, Tabla 6.

30 Tabla 6

% de dilución	50,00	25,00	12,50	6,25	3,13	1,56	0,78	0,39	0,20	0,10	0,05	0,025
<u>Manuka</u>												
<u>pH</u> normal	3,89	4,35	4,96	5,95	6,60	6,87	7,03	7,11	7,12	7,14	7,15	7,15
Aw a pH normal	0,908	0,970	0,985	0,994	0,994	0,995	0,996	0,996	0,996	0,996	0,996	0,997
% de agua	53,0	74,7	84,5	91,3	N/A							
H_2O_2 mg/l (T = 0 horas)	0	0	0	0	0	0						
H_2O_2 mg/l (T = 3 horas)	0	35	35	65	55	40	40	35	30	0	0	0
pH ajustado	6,6	6,6	6,88	7,02	7,10	7,13	7,18	7,20	7,20	7,21	7,21	721
Aw a pH ajustado	0,906	0,966	0,983	0,990	N/A							
<u>A³IS</u>												
pH normal	5,5	6,0	6,96	7,05	7,13	7,17	7,17	7,19	7,2	7,21	7,21	7,19
Aw a pH	0,906	0,964	0,983	0,990	0,995	0,996	0,997	0,997	0,997	0,997	0,997	0,997

normal												
% de agua	52,4	71,8	83,9	90,7	N/A							
H_2O_2 mg/l (T = 0 horas)	75,0	75,0	75,0	75,0	70,0	60,0	55	55	45	5	0	0
H_2O_2 mg/l (T = 3 horas)	90	90	75	80	-	-	-	-	-	-	-	-
pH ajustado	3,8	5,6	6,55	6,9	7,03	7,12	7,17	7,19	7,20	7,21	7,21	7,21
Aw a pH ajustado	0,904	0,964	0,982	0,991	N/A							

Este depósito endógeno, mostrado aquí variando entre 10 y 75 mg/l de peróxido de hidrógeno dependiendo de la cantidad de GOX presente en A³IS, se muestra en la figura 5a, la figura 5b y la tabla 6. Tal depósito proporciona ventajosamente peróxido de hidrógeno, y su actividad antimicrobiana, para un efecto inmediato con la aplicación de 5 A³IS. Combinado con un mayor nivel de peróxido de hidrógeno producido con la dilución, se podría esperar que contribuya a un efecto antimicrobiano significativamente aumentado en comparación con otros sistemas, tal como miel de Manuka.

EJEMPLO 6: A³IS - El depósito de peróxido de hidrógeno endógeno es estable en almacenamiento

10

45

Una característica sorprendente y ventajosa de A³IS es la retención tanto de la actividad antimicrobiana como del depósito de hidrógeno en el tiempo como se muestra en la figura 6.

El depósito de H₂O₂ disponible producido mediante A³IS es estable en almacenamiento ya que los lotes situados en estabilidad retienen los mismos niveles de H₂O₂ que los detectados cuando los lotes se producen inicialmente. La retención a través de la estabilidad del H₂O₂ disponible inmediatamente es una característica única de las formulaciones de A³IS. Utilizando el ensayo de difusión por pocillo para evaluar la actividad antimicrobiana, se demostró que se mantiene en el tiempo un nivel consistente de actividad antimicrobiana. La figura 7a muestra las zonas de inhibición medidas en cada punto temporal de muestreo y los resultados se representan en gráficos usando límites de confianza al 95 % durante un período de tres meses. De manera similar, la figura 7b muestra una estabilidad extendida de la actividad antimicrobiana durante un período de 9 meses. Los datos de estabilidad extendida indican que la formulación A³IS no muestra ninguna pérdida de actividad ni siquiera después de un periodo de 14 meses.

25 Usando el ensayo de difusión por pocillo para evaluar la actividad antimicrobiana, se demuestra un nivel consistente de actividad antimicrobiana en el tiempo. La figura 7a muestra las zonas de inhibición medidas en cada punto temporal de muestreo y los resultados se representan en gráficas usando límites de confianza del 95 % durante un período de tres meses. De manera similar, la figura 7b muestra una estabilidad extendida de la actividad antimicrobiana durante un período de 9 meses. Los datos de estabilidad extendida indican que la formulación A³IS no muestra ninguna pérdida de actividad ni siguiera después de un periodo de 14 meses.

EJEMPLO 7: A³IS - Actividad antimicrobiana potente contra Staphylococcus aureus

Se muestra que A³IS tiene actividad antimicrobiana contra *Staphylococcus aureus*. La figura 8a y la figura 8b muestran curvas de eliminación bacteriana realizadas usando dos protocolos separados, las directrices NCCLS, un método (figura 8a) y un protocolo especifico del fabricante del dispositivo médico (figura 8b) durante un periodo de 6,0 horas. A³IS tiene eficacia aumentada en comparación con la miel de Manuka y una eficacia comparable con el vendaje de plata.

40 La figura 8c muestra los resultados de un ensayo de inhibición (repeticiones de 3 días) para A³IS, Medihoney® y un gel de fenol al 10 % al ensayarse frente a 5 aislados clínicos del grupo A de *Streptococcus* beta hemolíticos. A³IS está a pH normal de 5,5 (material de ensayo A) y pH 7 (material de ensayo B), se incluye un control negativo de A³IS que no contiene GOX. La formulación de A³IS demuestra una eficacia *in vitro* comparable a un gel de fenol al 10 % y es superior a Medihoney®.

EJEMPLO 8: A³IS - Actividad antimicrobiana potente contra Campylobacter

Se muestra que A³IS tiene actividad antimicrobiana contra Campylobacter. La figura 8d muestra los resultados de un ensayo de inhibición (repeticiones de 3 días) para la formulación de A³IS, miel de Manuka y un gel de fenol al 10 % 50 al ensayarse frente a 5 aislados clínicos de *Campylobacter spp.* La formulación de A³IS está a un pH normal de 5,5

(material de ensayo A) y pH 7 (material de ensayo B), se incluye un control negativo de A³IS que no contiene GOX. Los resultados indican una eficacia *in vitro* anti-*Campylobacter* significativa y la superioridad de A³IS con respecto a la miel de Manuka.

5 EJEMPLO 9: A³IS - Actividad antimicrobiana potente contra *Propionibacterium acnes*

Se muestra que A³IS tiene actividad antimicrobiana contra *Propionibacterium acnes (P. acnes).*

La figura 9a muestra los resultados de inhibición de A³IS contra *P. acn*es en condiciones de incubación variables: luz y oscuridad aerobia, luz y oscuridad anaerobia. A³IS demuestra un alto nivel de actividad contra *P. acnes*, lo que indica que el material puede tener potencial para su aplicación tópica en acné. Los resultados para A³IS y los productos anti-acné comerciales disponibles actualmente, incluyendo algunos productos comerciales que incorporan antibióticos, se muestran en la figura 9b. Estos resultados indican que A³IS es comparable con "respecto a" la eficacia anti-acné *in vitro* para productos anti-acné disponibles en el mercado que contienen Clindamicina y peróxido 15 de benzoílo.

EJEMPLO 10: A³IS - Actividad antimicrobiana potente contra MRSA

Se muestra que la formulación del sistema antimicrobiano tiene actividad antimicrobiana contra 8 cepas de MRSA en tres días diferentes y en comparación con un estándar de fenol al 10 % y con miel de Manuka, figura 10. La formulación de A³IS está a pH normal de 5,5 (material de ensayo A) y pH 7 (material de ensayo B), se incluye un control negativo de A³IS que no contiene GOX. Los resultados demuestran una eficacia anti-MRSA *in vitro* significativa y la superioridad de A³IS con respecto a la miel de Manuka y un control de gel de fenol al 10 %. Las zonas de inhibición se muestran en la figura 11a. El material de ensayo A se ajusta a pH 5,5 y la muestra de pruebas 25 B se ajusta a pH 7. La figura 11a muestra los resultados mejorados de A³IS que son aproximadamente un 300 % mejores que la miel de Manuka. Esto muestra más claramente que A³IS tiene propiedades superiores y ventajosas con respecto a la miel de Manuka anterior.

EJEMPLO 11: A³IS - Actividad antimicrobiana potente contra aislados clínicos de mastitis y retención de 30 actividad en leche cruda

La figura 11b muestra los resultados de un ensayo de inhibición (repeticiones de 3 días) para A³IS y cuatro antibióticos (vancomicina, estreptomicina, tetraciclina y cloranfenicol) al ensayarse contra 22 aislados clínicos de organismos de *Staphylococcus aureus* que provocan mastitis. La formulación de A³IS demuestra una eficacia *in vitro* 35 superior para la totalidad de estos antibióticos. Sin embargo, el aislado clínico número 15 es resistente a vancomicina, estreptomicina y tetraciclina y muestra únicamente una sensibilidad leve a cloranfenicol, sin embargo, demuestra sensibilidad a A3IS.

- La figura 11c muestra los resultados de un ensayo de inhibición (repeticiones de 3 días) para A³IS al ensayarse contra 22 aislados clínicos de organismos de *Staphylococcus aureus* que provocan mastitis. La formulación de A³IS demuestra una eficacia *in vitro* comparable con tres de los principales productos multi-antibióticos disponibles en el mercado para la mastitis y es superior a uno de estos productos.
- La figura 11d muestra los resultados de un ensayo de inhibición (repeticiones de 3 días) para A³IS ensayado contra 45 una solución de nisina al 2 % en 21 aislados clínicos de organismos de *Staphylococcus aureus* que provocan mastitis. La formulación A³IS demuestra una eficacia *in vitro* superior con respecto a la solución de nisina al 2 %. Observación: el aislado clínico número 15 de la figura 11b fue irrecuperable del almacenamiento y no se incluyó en este ensayo.
- 50 La figura 11e muestra la presencia de una colonia resistente a nisina al 2 % dentro de la zona de inhibición durante un estudio de eficacia de nisina. Las colonias resistentes a A³IS nunca se han observado en estudios de eficacia en base a la zona de ensayos de inhibición, ni tiene regeneración de cultivos producidos después de ensayos de inhibición de A³IS basados en espectrofotometría.
- 55 Se inoculan cinco ml de leche cruda con 0,1 ml de un cultivo durante una noche de *Staphylococcus aureus* (que contiene aproximadamente 5 x 10⁷ ufc/ml) seguido de la adición de 0,5 ml de la formulación de A³IS. Esta mezcla se incuba durante una noche a 37 °C. Después, la mezcla se analiza para la producción de H₂O₂ y la supervivencia del *Staphylococcus aureus* inoculado. Se detectan niveles de H₂O₂ en exceso de 100 mg/l en esta leche y se recupera parte de los *Staphylococcus* inoculados. La mezcla no muestra señales de avinagrado, lo cual se podría esperar

después de una incubación durante una noche a alta temperatura. Por el contrario, la leche cruda a la que se le añade A³IS se amarga y se coagula. Este hallazgo indica que A³IS mantiene la actividad incluso en un medio complejo tal como leche cruda.

5 EJEMPLO 12: A³IS - Medición *in vivo* de la toxicidad/irritancia

La toxicidad/irritancia se determina usando fibroblastos humanos normales (NHF ECACC 90011807) y queratinocitos humanos normales (NHK CC-2501) desarrollados en medio esencial mínimo de Eagle (EMEM) con, L-glutamina 2 mm, suero fetal de bovino al 10 % (FBS), incubado a 37 °C en CO₂ al 5 %. Se realizan tres repeticiones de ensayos bi-dimensionales usando placas de 24 y 12 pocillos, utilizando tanto rojo neutro como bromuro de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolio (MTT), Sigma, "kit de ensayo para toxicología *in vitro*" para ensayos celulares de contacto directo, para evaluar la viabilidad después de la incubación con materiales de ensayo durante 8 horas (azida sódica - control positivo, concentraciones de gel de plata, gel de cinc, A³IS y medio recién preparado - control negativo).

También se usa el estándar ISO 10993, ensayos de citotoxicidad con revestimiento de agar: método *in vitro*, empleando células L929 (fibroblastos de ratón ECACC 85011425). En resumen; se incuba una monocapa confluyente de células, esta después se cubre con una capa de medio recién preparado (EMEM, L-Glutamina 2 mm, FBS al 5 %, Penicilina-Estreptomicina al 2 %) que contiene 1,5 g/l de agar suave y se deja solidificar. Un décimo de la de la superficie se cubre con materiales de ensayo (que se han descrito anteriormente) y se incuba durante 24 horas. Después de la incubación, el material de ensayo se elimina cuidadosamente y se añade una cepa vital (rojo neutro) en medios recién preparados. Después de la incubación, ésta se elimina, las células se lavan y después el colorante se extrae de las células y se cuantifica espectrofotométricamente para comprobar la viabilidad celular.

- 25 También se emplea un modelo de piel dérmica tridimensional (Skinethic, Francia) para determinar el efecto irritante de la formulación y controles sobre los queratinocitos diferenciados como en el estrato córneo, un equivalente de piel cultivado. El ensayo emplea un modelo de piel epidérmica tridimensional y se realiza en varios puntos temporales. El modelo de epidermis humana reconstituida consiste en una construcción de tejido epidérmico de capas múltiples, vivo, aérea, producido en insertos de policarbonato en medio libre de suero y definido químicamente, que incorpora una ultraestructura normal y funcionalidad equivalente con la epidermis humana *in vivo*. Los tejidos de epidermis humana reconstituidos *in vitro* por cuadruplicado, 17 días de edad, (tamaño 0,63 cm²) se dosifican por vía tópica con 2-10 mg/cm² de la formulación durante 3 y 24 horas y se evalúa la viabilidad del tejido usando el ensayo MTT, utilizando el protocolo validado del Instituto Federal Alemán para Valoración de Riesgo (BFR-ZEBET).
- 35 El sobrenadante de cultivo celular del ensayo de irritancia que se ha descrito previamente se analiza usando un ensayo inmunoabsorbente ligado a enzimas IL-1 (ELISA) (R&D Systems) y un ELISA de lactato de deshidrogenasa (LDH) (R&D Systems), para la medición de citocina y enzimas para evaluar el efecto inmunoestimulador e irritante de los materiales de ensayo.
- 40 Las secciones transversales de los modelos de piel 3D utilizados para el ensayo de irritancia se tiñen con hematoxilina y eosina (H&E), el procedimiento técnico incluyó:

Fijación: Los tejidos se estabilizan mecánica y bioquímicamente en un fijador. El fijador es formalina tamponada neutra, formaldehído al 10 % en solución salina tamponada con fosfato (PBS).

Incrustación: La técnica utilizada es incrustación con cera. Las muestras se sumergen progresivamente en concentraciones en aumento (20 %, 30 %, 40 %, 50 %, 80 % y 100 %) de etanol puro para deshidratar el tejido, seguido de un agente aclarante, xileno (100 %), y por último cera de parafina fundida caliente (impregnación) y se dejan enfriar y endurecer.

Sección: Después, el tejido de muestra se secciona en secciones de 5 micrómetros usando un micrótomo. Después, estas porciones se colocan en un portamuestras de vidrio para tinción.

Tinción: para observar el tejido bajo un microscopio, las secciones se tiñen con hematoxilina y eosina (H&E) para 55 evaluar la velocidad de degradación epidérmica superficial provocada por cada material de prueba.

La figura 12a y la figura 12b muestran los resultados de la evaluación de toxicidad inicial de A³IS por medio de los ensayos de viabilidad MTT en los NHF (fibroblastos humanos normales) y los NHK (queratinocitos humanos normales). La toxicidad porcentual se calculó de acuerdo con la fórmula: % de toxicidad = 1 - (DO promedio de los

pocillos del material de ensayo/DO promedio de los pocillos de control correspondientes (sin ningún material de ensayo añadido)) x 100. En el ensayo se incluyeron una concentración al 50 % de A³IS, un intervalo de concentraciones de un gel que contenía plata comercial y un producto de gel que contenía cinc comercial, en comparación con azida sódica (control positivo). Para el ensayo de toxicidad, la concentración del material de 5 ensayo usado fue dos veces la usada para el ensayo de irritancia, 100 mg por pocillo y el tiempo de contacto se extendió a 8 h.

La figura 12c, muestra los resultados del estándar internacional ISO, ensayo con revestimiento de agar 10993-5 para citotoxicidad durante 24 h utilizando rojo neutro en L929. La toxicidad porcentual se calculó de acuerdo con la 10 fórmula: % de toxicidad = 1 - (DO promedio de los pocillos del material de ensayo/DO promedio de los pocillos de control correspondientes (azida sódica añadida)) x 100. En el ensayo se incluyen una concentración al 50 % de A³IS, un rango de concentraciones de gel que contiene plata comercial y producto de gel que contiene cinc comercial en comparación con azida sódica (control positivo). El control positivo con azida sódica proporciona una toxicidad del 100 %. Para el análisis de toxicidad con cubierta de agar, la cantidad de los materiales de ensayo usados fue similar 15 a la usada para los ensayos de contacto directo inicial de 100 mg por pocillo, sin embargo el tiempo de contacto se extendió a 24 h.

Los resultados de un ensayo de irritancia de los materiales de prueba para un rango de tiempos de contacto empleando el modelo de piel 3D Skinethic® se muestran en la figura 12d. Este modelo de epidermis humana reconstituida consiste de una estructura de tejido epidérmico de capas múltiples, viva, aerotransportada, producida en insertos de policarbonato en medio libre de suero y definido químicamente, incorporando una ultra-estructura y funcionalidad normales equivalentes a la epidermis humana *in vivo*. Los efectos de este contacto directo sobre las muestras de piel 3D se muestran en secciones transversales teñidas con hematoxilina/eosina (H&E) en la figura 12e y la figura 12f para el producto de gel que contiene plata comparativo. La figura 12g y la figura 12h muestran secciones transversales teñidas con H&E después del contacto directo de la formulación de A³IS sobre las muestras de piel 3D. Los resultados muestran que la formulación de placa provoca desprendimiento de la capa epidérmica de la capa basal, mientras que la muestra de formulación de A³IS no presenta daño.

Los tejidos epidérmicos humanos reconstituidos *in vitro* por cuadruplicado, edad 17 días, (tamaño 0,63 cm²) se 30 dosifican por vía tópica con 2-10 mg/cm² de la formulación durante 3 y 24 horas y la viabilidad tisular se evalúa usando el ensayo MTT, utilizando el protocolo validado por el Instituto Federal Alemán para Valoración de Riesgo (BFR-ZEBET). Se calculó la irritancia porcentual de acuerdo con la fórmula: % de irritancia = 1 - (DO promedio de las pieles del material de ensayo/DO promedio de las pieles de control correspondientes (sin material de ensayo añadido)) x 100. A³IS demuestra menos irritancia en este ensayo tridimensional que los productos disponibles en el 35 mercado ensayados.

EJEMPLO 13: A³IS - Inducción de la liberación de IL-1 inflamatoria a partir de células de la piel

La figura 13a muestra los resultados de un ensayo ELISA del sobrenadante eliminado durante el ensayo de irritancia 3D durante un periodo de 48 horas, midiendo y comparando la liberación de IL-1 cuando se expone a la formulación de A³IS, con respecto a un control positivo de azida sódica, y un producto de gel que contiene plata comercial. Los resultados indican que IL-1 se libera de las células de la piel expuestas a la formulación de A³IS. La figura 13b ilustra la medición de lactato deshidrogenasa (LDH) liberada en el medio celular utilizado durante el protocolo de ensayo de irritancia. Los resultados muestran la liberación de LDH mediante células después de la exposición a la formulación de A³IS, un control positivo de azida sódica, y un producto de gel que contiene plata disponible en el mercado. La lactato deshidrogenasa se libera por las células expuestas a compuestos destructivos. Los resultados indican que la formulación de A³IS es menos tóxica que los productos de gel que contienen plata disponibles en el mercado.

EJEMPLO 14: A³IS - Esterilización terminal

A³IS se llenó en botellas de vidrio y tubos de plástico. Después, se esterilizaron mediante irradiación gamma. Después de la esterilización, la actividad antibacteriana de las muestras se comparó con los resultados antes de la esterilización. Se descubrió que la irradiación gamma no reduce la actividad. Hubo una ligera decoloración del recipiente primario; sin embargo el proceso de irradiación no afectó la actividad o el color del material de ensayo. La figura 14 muestra la eficacia de A³IS antes y después de la irradiación gamma en S. *aureus*, *E. coli* y *Pseudomonas aeruginosa*.

EJEMPLO 15: A³IS - Incorporación en una matriz de colágeno-GAG (glucosaminoglicano) - como un vendaje antibacteriano

Imagen de A³IS en GAG sobre S. aureus e imágenes de la infiltración de GAG (figura 15a a figura 15c).

Se formuló la matriz de colágeno-GAG (glucosaminoglicano) se ha descrito previamente (Wilkins, L., M., y col., 1993. 5 Development of a bilayered Living Skin Construct for Clinical Applications. Organogenesis Inc.) y se añadió A³IS a esta matriz a una proporción de 1:1.

La mezcla se vertió en una superficie estéril para formar una capa fina de aproximadamente 1 mm y se secó en una incubadora durante 24 horas para formar un vendaje para piel. Una vez seca, se cortaron secciones de 1 cm y se 10 colocaron sobre placas con agar inoculado con *S. aureus, E. coli* y *P. acnes*. Se observó actividad antibacteriana contra *S. aureus, E. coli* y *P. acnes*. Existen zonas definidas claras de inhibición y no se observa desarrollo bacteriano bajo el vendaje.

Las secciones de ensayo también se colocan sobre una monocapa confluyente de los NHF (fibroblastos humanos 15 normales) en placas de 6 pocillos en T₀. Se descubre que hubo poca o ninguna toxicidad.

Después, las secciones de ensayo se co-incubaron con células de NHF, en pocillos para cultivo celular. Se descubrió que, además de adherirse a la parte inferior de los pocillos de cultivo celular, como se esperaba, las células NHF también se infiltraron, se fijaron a y crecieron en las secciones de ensayo. Esto demuestra que los 20 matrices de colágeno-GAG que incorporan A³IS son matrices adecuadas para la unión y el crecimiento celular (véanse la figura 15b y la figura 15c).

EJEMPLO 16: A³IS - Incorporación en un gel alcohólico

25 A³IS se mezcla con un gel alcohólico que consiste de alcohol absoluto, agente gelificante ultrez 10, diisopropanolamina y propilenglicol, que se mezcla antes de la adición de A³IS dando como resultado un material no adhesivo transparente. Esta formulación de gel se ensaya usando el bioensayo de difusión en pocillo y de difusión superficial para determinar las zonas de inhibición contra *S. aureus, E. coli y P. acnes*. Se muestran los resultados para *S. aureus,* figura 16a. Se ha de apreciar que las zonas de inhibición son artificialmente bajas en esta situación debido a la propiedad de absorción de la matriz de gel, sin permitir así la difusión libre a través de la matriz de agar, pero hay una zona clara alrededor de la matriz de gel.

La formulación de gel se pone en un estudio de estabilidad a corto plazo de 6 semanas, incluyendo una prueba de congelación-descongelación. Los resultados indican que la formulación de gel mantuvo la estabilidad a todo lo largo del periodo de ensayo, figura 16b. Se muestran los resultados para *S. aureus*.

EJEMPLO 17: A³IS - Incorporación en vendajes para heridas disponibles en el mercado

Imagen de A³IS en vendajes para heridas, figura 17.

40

La formulación A³IS se vertió sobre la superficie de un rango de vendajes disponibles en el mercado Kaltostat® (Comvita), Kendal® (Telfa) y una matriz de colágeno-GAG (glucosaminoglicano) como se ha descrito anteriormente y se dejó en difusión en el vendaje durante varias horas para formar una capa fina de aproximadamente 1 mm. Se cortaron secciones de 1 cm² y se colocaron sobre placas de agar, inoculadas anteriormente con *S. aureus, E. coli* y 45 *P. aeruginosa*. Después, la eficacia antibacteriana de los vendajes impregnados con A³IS se comparó con los vendajes Aquacel® (Convatec) y Betadine® (Seton) disponibles en el mercado que contienen plata y yodo elementales, figura 17. Se descubrió que los vendajes con A³IS son tan eficaces desde el punto de vista antimicrobiano como Aquacel® (Convatec) y Betadine® (Seton) y un vendaje disponible en el mercado que utiliza plata y yodo elementales.

EJEMPLO 18: A³IS - Potente actividad antimicrobiana contra Onychomycosis

Se realizó un estudio de caso sobre la eficacia de A³IS en el tratamiento de infecciones de las uñas por hongos en un voluntario humano. La uña infectada fue la uña del dedo gordo del pie derecho y la infección se localizó en el 55 costado izquierdo de la uña. La infección había estado presente durante un periodo de tiempo considerable, aproximadamente 2 años. Antes del tratamiento, se obtuvo una fotografía de la uña infectada, figura 18a. El tratamiento se realizó una vez al día por en la mañana, posteriormente a la ducha del sujeto y el secado con toalla. Se aplicó A³IS a la superficie de la uña sobre la región infectada en lugar de sobre toda la superficie de la uña. Después, A³IS se cubrió con un vendaje cuyo relleno se había humedecido usando agua y, por lo tanto, la uña se

cubrió en un vendaje oclusivo durante el resto del día, figura 18b. Este tratamiento se realizó a diario durante un periodo de tres semanas. Después de un periodo de dos días, se tomó otra fotografía, figura 18c. Es evidente que la región infectada de la uña ha cambiado de apariencia y que ahora tiene un color mas oscuro. Durante el periodo de tratamiento, hubo poca evidencia de alteración física adicional, excepto el desarrollo de una sección mayor en aumento de crecimiento de la uña sin infectar. Se muestra una fotografía adicional 8 semanas después del inicio del tratamiento, figura 18d. En esta, la franja de uña sin infectar es claramente visible, lo que indica que se han eliminado los dermatofitos.

Ejemplo 19:

10

Formulaciones estables en almacenamiento de 2 niveles adicionales

Las siguientes formulaciones se prepararon de acuerdo con el protocolo del Ejemplo 3 (en lotes de 50 g). Cada formulación se ensayó para comprobar la presencia inmediata de peróxido de hidrógeno usando los protocolos que se han descrito previamente. Las composiciones de cada una de las formulaciones preparadas se describen en las tablas a continuación. Idealmente, enzima glucosa oxidasa al 0,5 % (idealmente al menos 5600 U/g) disuelta previamente en agua.

20

Formulación Nº: 1

Ingrediente	% p/p
Agua	10
Glucosa	79,5
Fructosa	7,5
Maltosa	2,2
Sacarosa	0,3
Glucosa Oxidasa	0,5

Formulación Nº: 2

Ingrediente	% p/p
Agua	20
Glucosa	69,5
Fructosa	7,5
Maltosa	2,2
Sacarosa	0,3
Glucosa Oxidasa	0,5

25

Formulación Nº: 3

Ingrediente	% p/p
Agua	10
Glucosa	20
Fructosa	52
Maltosa	15,4
Sacarosa	2,1
Glucosa Oxidasa	0,5

Formulación Nº: 4

Ingrediente	% p/p
Agua	20
Glucosa	10
Fructosa	52
Maltosa	15,4
Sacarosa	2,1
Glucosa Oxidasa	0,5

Formulación Nº: 5

Ingrediente	% p/p
Agua	18
Glucosa	30
Fructosa	40
Maltosa	10
Sacarosa	1,5
Glucosa Oxidasa	0,5

Formulación Nº: 6

Ingrediente	% p/p
Agua	20
Glucosa	40
Fructosa	29,5
Maltosa	10
Sacarosa	0
Glucosa Oxidasa	0,5

Formulación Nº: 7

Ingrediente	% p/p
Agua	20
Glucosa	40
Fructosa	38
Maltosa	0
Sacarosa	1,5
Glucosa Oxidasa	0,5

Formulación Nº: 8

Ingrediente	% p/p
Agua	20
Glucosa	30
Fructosa	0
Maltosa	48
Sacarosa	1,5
Glucosa Oxidasa	0,5

Formulación Nº: 9

Ingrediente	% p/p
Agua	20
Glucosa	40
Fructosa	39,5
Maltosa	0
Sacarosa	0
Glucosa Oxidasa	0,5

Formulación Nº: 10

Ingrediente	% p/p
Agua	20
Glucosa	60
Fructosa	0

5

10

15

Maltosa	19,5
Sacarosa	0
Glucosa Oxidasa	0,5

Resultados

Se descubrió que todos los lotes tenían tanto un contenido de peróxido de hidrógeno inicial como actividad 5 antibacteriana indicativa de la liberación sostenida de peróxido durante un periodo de tiempo.

Generación de H2O2 mg/l:

Formulación Nº	Día 0	Día 09	Día 20	
1	≥10 mg/l	≥10 mg/l	≥10 mg/l	
2	≥10 mg/l	≥10 mg/l	≥10 mg/l	
3	≥10 mg/l	≥10 mg/l	≥10 mg/l	
4	≥10 mg/l	≥10 mg/l	≥10 mg/l	
5	≥10 mg/l	≥10 mg/l	≥10 mg/l	
6	≥10 mg/l	≥10 mg/l	≥10 mg/l	
7	≥10 mg/l	≥10 mg/l	≥10 mg/l	
8	≥10 mg/l	≥10 mg/l	≥10 mg/l	
9	≥10 mg/l	≥10 mg/l	≥10 mg/l	
10	≥10 mg/l	≥10 mg/l	≥10 mg/l	

10 Ejemplo 20

Ensayos de inhibición para combinaciones de peróxido de hidrógeno y antibióticos

Se ensayaron diversas combinaciones de A³IS (del Ejemplo 3) y agentes antibióticos/antifúngicos frente a un 15 placebo y A³IS en solitario usando un método de difusión de pocillo/disco. Se usaron las siguientes muestras:

- a) 100 µl de A³IS;
- b) combinación placebo y antibiótico/antifúngico que comprende 50 μl de placebo (A³IS que no contiene GOX) y 50
 20 μg de un agente antibiótico/antifúngico; y
 - c) combinación A^3IS y antibiótico/antifúngico 50 μI de combinación de A^3IS y 50 μg de un agente antibiótico/antifúngico.

25 Métodos de difusión de pocillo/disco para la medición de la inhibición microbiana:

Se inocularon placas de agar mediante un cultivo de exudado durante una noche sobre la superficie de la placa. Las placas se dejaron en reposo a temperatura ambiente durante 15 minutos antes de su uso. Los pocillos de 8,2 mm de diámetro se perforaron en la superficie del agar. Se pusieron 100 µl de muestras (a) a (c) en cada pocillo. Las 30 muestras se difundieron en el agar alrededor del pocillo y se ensayaron para comprobar la capacidad de producción de una zona de inhibición. Las placas se incubaron durante 24, 48 o 72 h y se midieron las zonas de inhibición. El diámetro de las zonas se registra, incluyendo el diámetro del pocillo (8,2 mm).

Resultados:

35

Los resultados se muestran en la figura 19. La figura 19 muestra los resultados de un ensayo de inhibición contra Candida albicans.

Conclusión:

40

La combinación de A³IS y antifúngico dio como resultado una zona mayor de inhibición que indicaba la sinergia entre los dos agentes. Se observa un efecto sinérgico, que va más allá de un efecto de combinación/aditivo, a pesar de una reducción eficaz al 50 % en la concentración de A³IS cuando se usa en combinación (50 ul) en comparación con A³IS cuando se usa en solitario (100 ul). Este efecto se observó para *Candida albicans*.

Ejemplo 21

Pruebas de sinergia para combinaciones de peróxido de hidrógeno y antibióticos

Materiales y método:

Se realizó la técnica en damero (Rochon-Edouard S, Pestel-Caron M, Lemeland JF, Caron F: In vitro synergistic effects of double and triple combinations of b-lactams, vancomycin and netilmicin against methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 2000, 44: 3055-60; Eliopolus GM, Moellering RC Jr: Antimicrobial combinations. In Antibiotics in Laboratory medicine. 3ª edición. Williams y Wilkins, Co. Baltimore, MD Estados Unidos; 2000: 432-49), incluyendo las combinaciones: A3IS/Flucloxacilina, A3IS/Zinacef, A3IS/Eritrocina, A3IS/Klacid, A3IS/Velocef, A3IS/Amoxicilina, A3IS/Clindamicina y A3IS/Augmentine. Se prepararon soluciones madre de acuerdo con los estándares publicados (CLSI (Clinical and Laboratory Standards Institute): Performance Standards for Antimicrobial Susceptibility testing. Decimoquinto complemento informativo. Documento CLSI M100-S15. Pennsylvania Estados Unidos 2005, 19087-1898)

Se realizaron ensayos de sinergia en placas de microtitulación de 96 pocillos que contenían las combinaciones A³IS (del Ejemplo 3)/antibiótico en diluciones dobles dispensadas en damero el día del ensayo. Cada pocillo contenía 20 0,1 ml de A³IS/antimicrobianas. Se preparó una suspensión de cultivo de ensayo de suspensión de S. *aureus* a partir de un caldo de cultivo durante una noche para producir un inóculo final de aproximadamente 3 x 10⁵ a 5 x 10⁵ UFC/ml. Se añadieron veinte microlitros de esta suspensión a todos excepto los pocillos de control de esterilidad. Las MIC se leyeron después de una noche de incubación a 35 °C. Se incluyeron controles de crecimiento y esterilidad en cada placa. Cada aislado se ensayó dos veces. El crecimiento se determinó examinando visualmente 25 cada pocillo para obtener pruebas de turbidez.

Interpretación de los ensayos de sinergia

Para el primer pocillo transparente en cada fila de la placa de microtitulación que contenía ambos agentes antimicrobianos, la concentración inhibitoria fraccional (FIC) se calculó como se indica a continuación: FIC del fármaco A (FIC_A) = MIC del fármaco A en combinación/MIC del fármaco A en solitario, y la FIC del fármaco B (FIC_B) = MIC del fármaco B en combinación/MIC del fármaco B en solitario. La suma de ambas FIC en cada pocillo se usó para clasificar la combinación de agentes antimicrobianos como el efecto sinérgico cuando los índices FIC fueron ≤ 0,5; FIC sinérgica parcial >0,5 pero < 1; FIC de aditivo = 1.0; efecto indiferente cuando los valores fueron >1 y < 4 y antagonista cuando los valores fueron ≥ 4.0 (Eliopolus GM, Moellering RC Jr: Antimicrobial combinations. In Antibiotics in Laboratory medicine. 3ª edición. Williams y Wilkins, Co. Baltimore, MD Estados Unidos; 2000: 432-49).

Resultados

40 Los resultados de las pruebas de sinergia en damero se resumen en las tablas a continuación.

Ensayo de sinergia en damero						
Concentraciones previas a la	A ³ IS	Flucloxacilina	Zinacef	Eritrocina	Klacid	
dilución de A ³ IS y antibióticos.	GOX al 0,5 %	500 mg	750 mg	1,00 g	500 mg	
3.2	. 2					
Diluciones finales de A ³ IS y	A ³ IS	Rucloxacilina	Zinacef	Eritrocina	Klacid	
antibióticos para ensayo de sinergia en damero	3 %	1:3.200.000	1:400.000	1:1.600.000	1:1.600.000	
MIC para A ³ IS y antibióticos en S.	A ³ IS	Flucloxacilina	Zinacef	Eritrocina	Klacid	
aureus NCIMB 9587.	1/8	1/2	1/2	1/2	1/2	
3		,	9	9	,	
FIC para combinación (A ³ IS +		A ³ IS + Klacid				
antibiótico) en S. aureus NCIMB		Flucloxacilina	Zinacef	Eritrocina		
9587 para ensayos de sinergia en damero.		1,35	0,5	2,00	1,0	
		Sin sinergia	Sinergia	Sin sinergia	Sin sinergia	

Ensayo de sinergia en damero (continuación)						
Concentraciones previas a la	- 23	Velocef	Amoxicilina	Clindamicina	Augmentine	
dilución de A ³ IS y antibióticos.	GOX al 0,5 %	500 mg	500 mg	1,00 g	1,00 g	
Diluciones finales de A ³ IS y	A^3IS	Velocef	Amoxicilina	Clindamicina	Augmentine	
antibióticos para ensayo de sinergia en damero	3 %	1:100.000	1:3.200.000	1:100	1:1.600.000	
MIC para A ³ IS y antibióticos en S.	A ³ IS	Velocef	Amoxicilina	Clindamicina	Augmentine	
aureus NCIMB 9587.	1/8	1/4	1/4	1/2	1/8	
FIC para combinación (A ³ IS +		A ¹ IS + Velocef	A ³ IS +	A ³ IS +	A ³ IS +	
antibiótico) en S. aureus NCIMB			Amoxicilina	Clindamicina	Augmentine	
9587 para ensayos de sinergia en damero.		0,1248	1,5	0,125	2,00	
		Sinergia	Sin sinergia	Sinergia	Sin sinergia	

La combinación de $A^3IS/Zinacef$, $A^3IS/Velocef$ y $A^3IS/Clindamicina$ muestran una $FIC \le 0,5$ que indica un efecto sinérgico con estas combinaciones. Se observa un efecto indiferente con las otras combinaciones de $A^3IS/Antibióticos$ ensayadas. Ninguna de las combinaciones mostró un efecto antagonista.

Conclusión

La capacidad de A³IS para mediar un efecto sinérgico cuando se usa en combinación con varios antibióticos individuales tiene potencial clínico. Aunque la sinergia se ha demostrado previamente con algunas combinaciones de 10 antibióticos, A³IS proporciona un vector antimicrobiano al que se le pueden añadir otros antibióticos para dar un mayor antimicrobiano del que es posible con el antibiótico en solitario.

REIVINDICACIONES

- 1. Una composición antimicrobiana que comprende
- 5 (i) un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al 10 menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema; y
 - (ii) el antibiótico Clindamicina, Cefradina o Cefuroxima; o el agente antifúngico seleccionado de entre uno o más de Clotrimazol, Ciclopiroxalomina, Terbinafina y/o Ketoconazol.
- 15 2. Una terapia de combinación antimicrobiana que comprende
- (i) un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema; y
- (ii) el antibiótico Clindamicina, Cefradina o Cefuroxima; o el agente antifúngico seleccionado de entre uno o más de 25 Clotrimazol, Ciclopiroxalomina, Terbinafina y/o Ketoconazol;

para su uso en terapia.

45

- 3. Una terapia de combinación antimicrobiana que comprende
- (i) un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa donde el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que (a) el peróxido de hidrógeno producido de forma endógena estable en almacenamiento está biodisponible en el sistema a un nivel de al menos
 35 10 mg por litro para liberación inmediata; y (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema; y
- (ii) el antibiótico Clindamicina, Cefradina o Cefuroxima; o el agente antifúngico seleccionado de entre uno o más de Clotrimazol, Ciclopiroxalomina, Terbinafina y/o Ketoconazol;
 40

para su uso en el tratamiento simultáneo, separado o secuencial de una infección microbiana.

- 4. Una composición antimicrobiana o terapia de combinación de acuerdo con cualquiera de las reivindicaciones 1 a 3 en forma de una preparación combinada.
- 5. La composición, terapia de combinación o preparación combinada de acuerdo con cualquiera de las reivindicaciones anteriores donde la combinación de la fuente de peróxido de hidrógeno y el agente antibiótico o antifúngico proporciona una eficacia mayor que la eficacia de cualquier agente administrado en solitario.
- 50 6. La composición, terapia de combinación, preparación combinada de acuerdo con cualquiera de las reivindicaciones anteriores, donde la fuente de peróxido de hidrógeno es un sistema antimicrobiano e inmunoestimulador estable en almacenamiento que comprende glucosa oxidasa, D-glucosa, uno o más de sacarosa, fructosa y/o maltosa, y peróxido de hidrógeno en una solución acuosa
- 55 donde está presente una cantidad eficaz de glucosa oxidasa en una actividad de al menos 10 U por 100 g del sistema;

donde D-glucosa está presente del 20 % al 85 % en peso en base al peso del sistema total;

ES 2 581 387 T3

uno o más de sacarosa, fructosa y/o maltosa están presentes del 10 % al 70 % en peso en base al peso del sistema total;

el agua está presente del 10 al 20 % en peso en base al peso del sistema total;

el sistema tiene un pH de 4 a 8; y

el sistema proporciona una liberación de peróxido de hidrógeno en dos fases en la que

- 10 (a) el peróxido de hidrógeno producido de forma endógena y estable en almacenamiento está biodisponible en el sistema a un nivel de al menos 10 mg por litro para una liberación inmediata; y
 - (b) la liberación sostenida de peróxido de hidrógeno adicional durante al menos un periodo de veinticuatro horas se produce tras la rehidratación del sistema.
 - 7. La composición, terapia de combinación o preparación combinada de acuerdo con cualquiera de las reivindicaciones anteriores, donde la infección microbiana es una infección bacteriana o fúngica, preferiblemente una infección cutánea, una infección de uñas, mastitis, MRSA u otra infección resistente a antibióticos.
- 20 8. La composición, terapia de combinación o preparación combinada de acuerdo con cualquiera de las reivindicaciones 1 a 7, donde la fuente de peróxido de hidrógeno y/o el agente antibiótico o antifúngico están adaptados para administración tópica, enteral o parenteral.
- 9. La composición, terapia de combinación o preparación combinada de acuerdo con la reivindicación 8, 25 donde la fuente de peróxido de hidrógeno y el agente antimicrobiano están adaptados para administración tópica.
 - 10. El uso de una composición, terapia de combinación o preparación combinada de acuerdo con cualquiera de las reivindicaciones 1 a 7 en un método para la fabricación de un medicamento para el tratamiento de una infección microbiana.

30

15

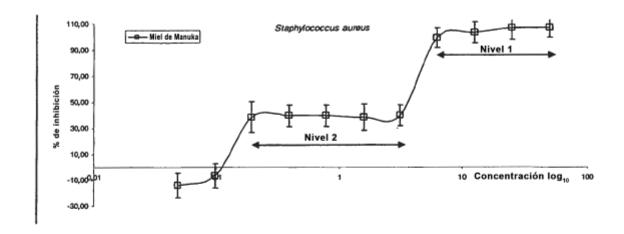


Fig. 1a

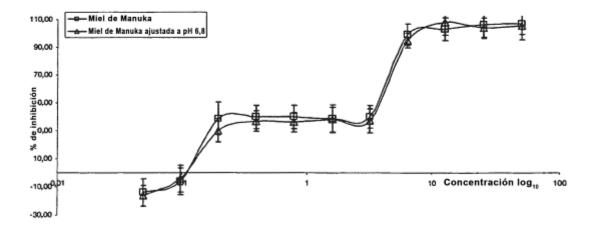


Fig. 1b

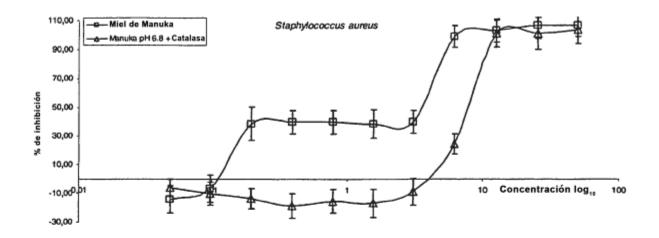


Fig. 1c

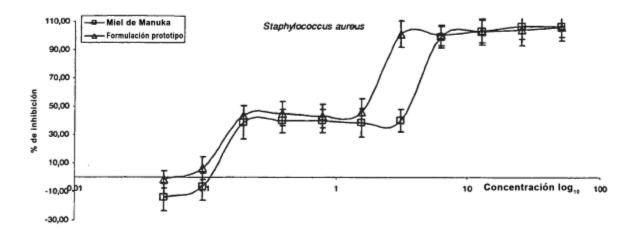


Fig. 2

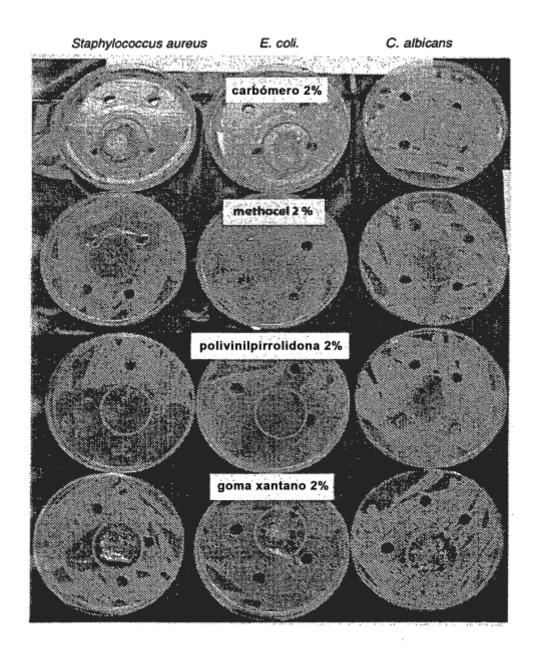


Fig. 3a

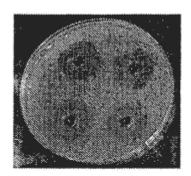
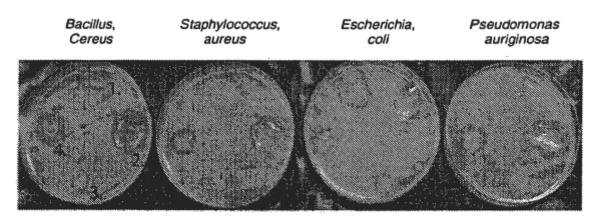



Fig. 3b

Para todas las placas

1=2% carbómero 3=4% carbómero 2=2% xantano 4=4% xantano

Fig. 4a

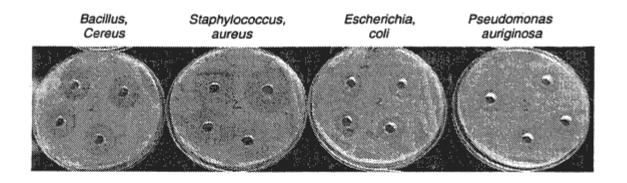


Fig. 4b

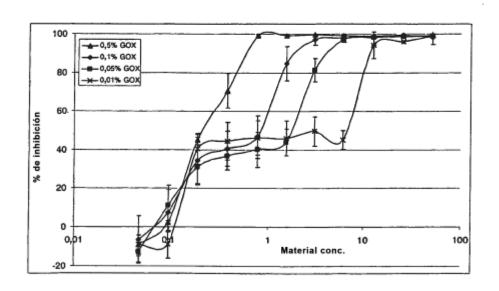


Fig. 5a

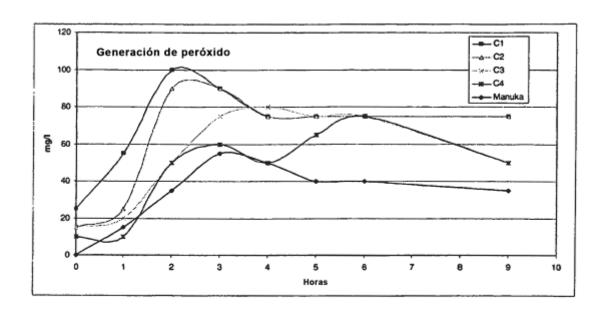


Fig. 5b

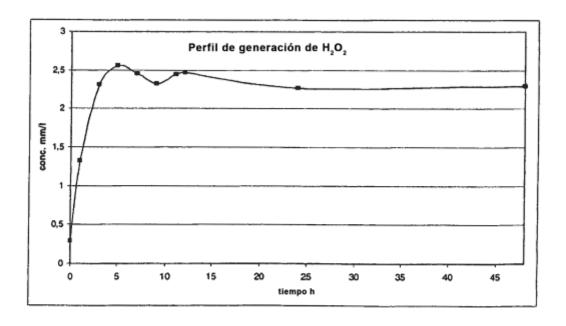


Fig. 5c

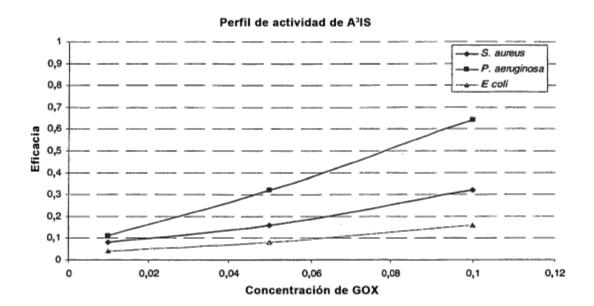


Fig. 5d

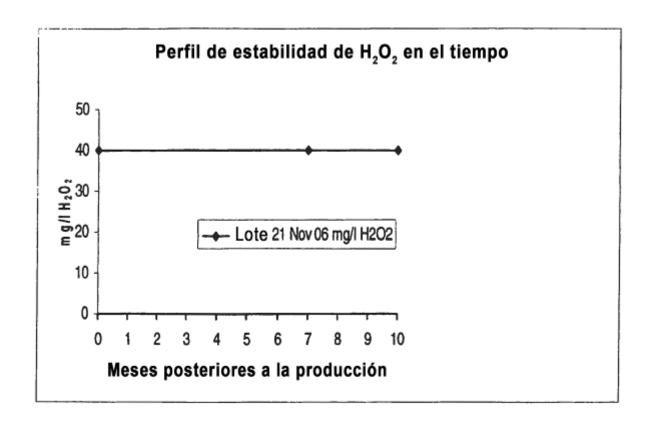


Fig. 6

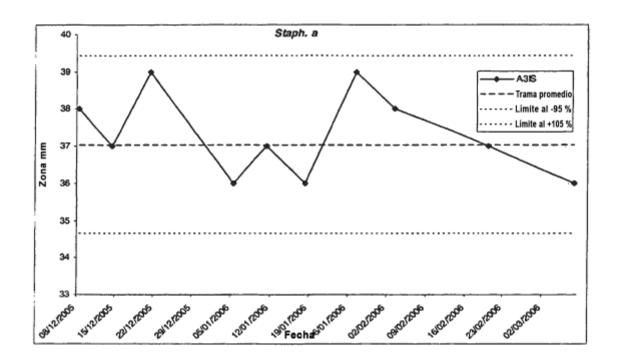


Fig. 7a

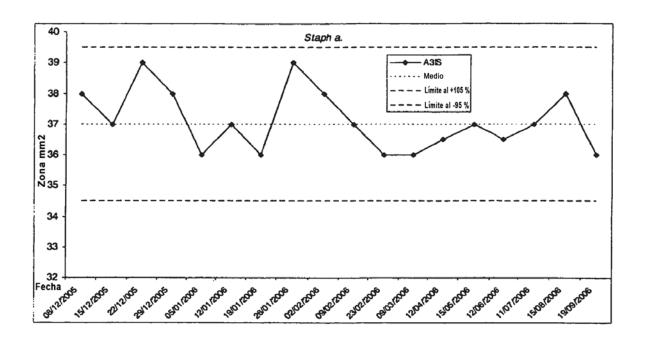


Fig. 7b

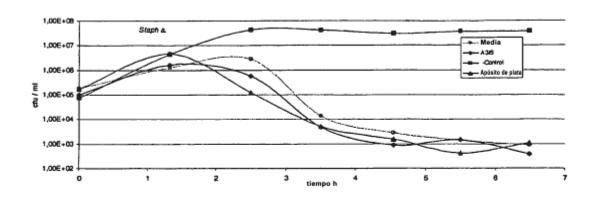


Fig. 8a

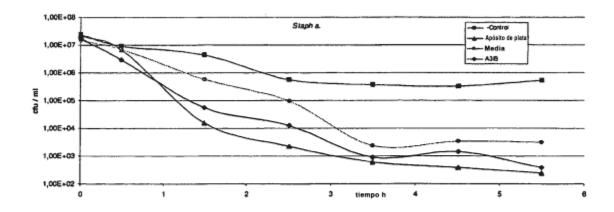


Fig. 8b

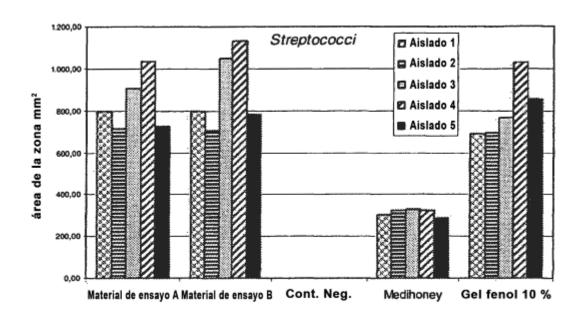
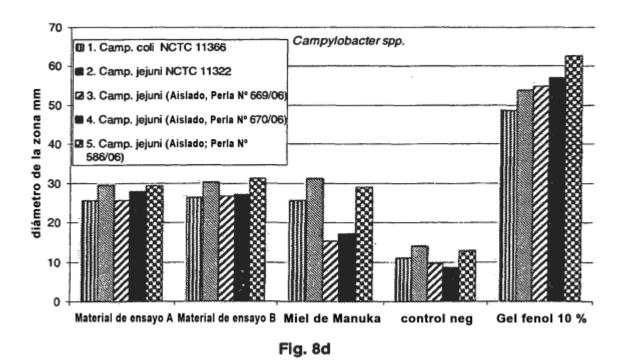



Fig. 8c

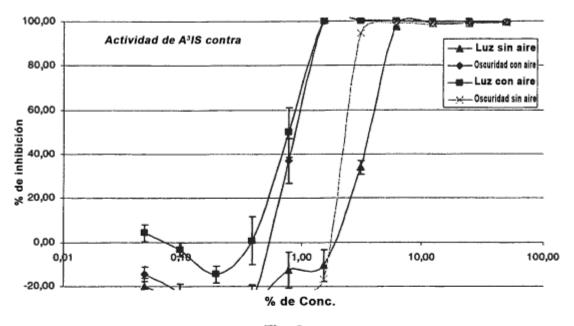


Fig. 9a

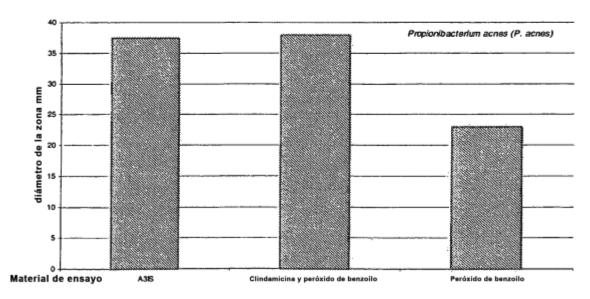


Fig. 9b

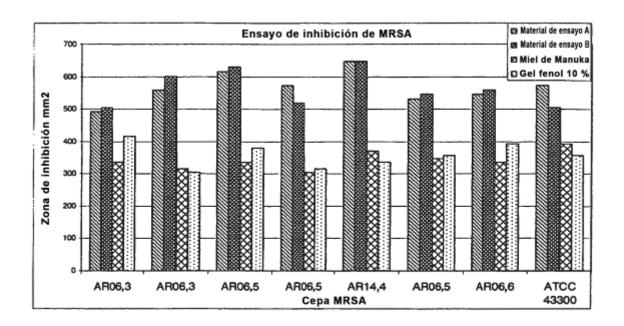
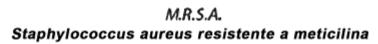



Fig. 10

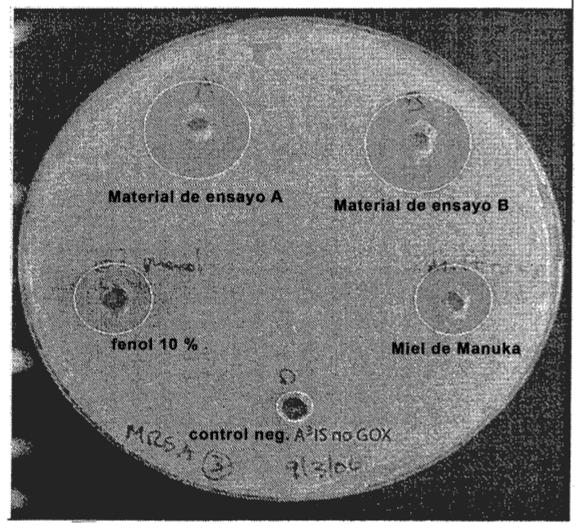


Fig. 11a

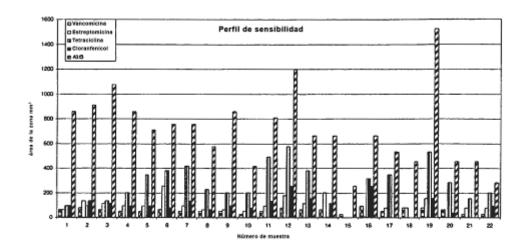


Fig. 11b

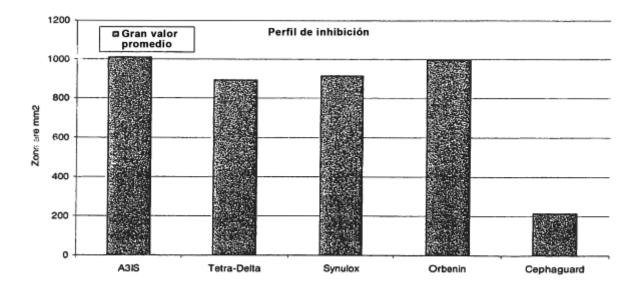


Fig. 11c

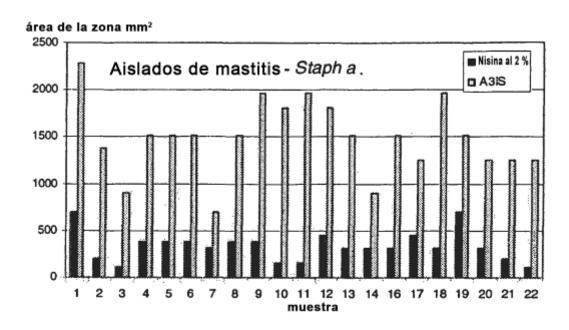


Fig. 11d

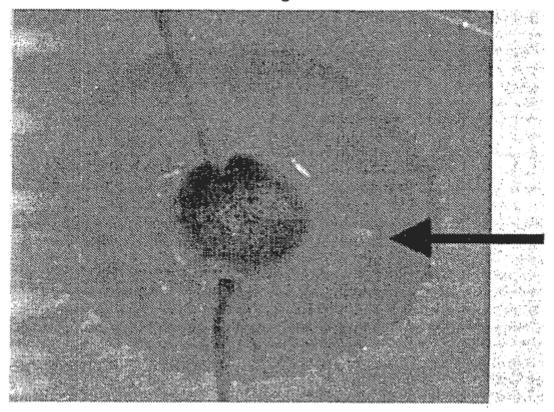


Fig. 11e

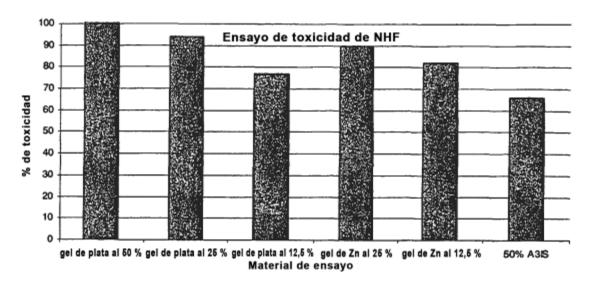


Fig. 12a

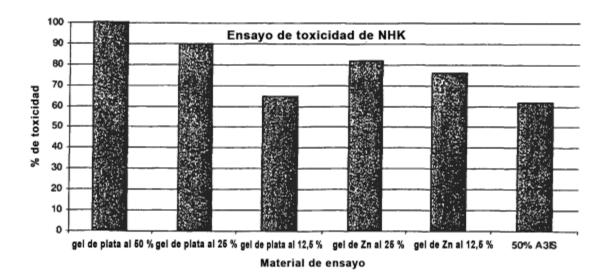


Fig. 12b

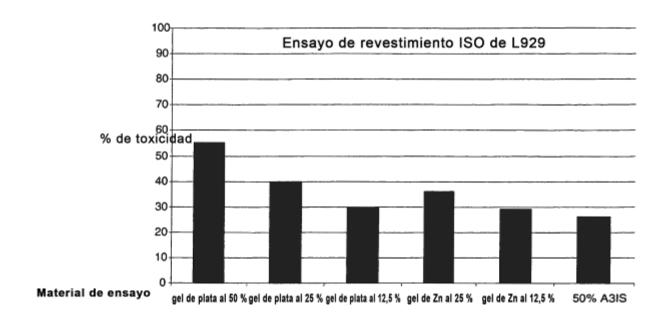


Fig. 12c

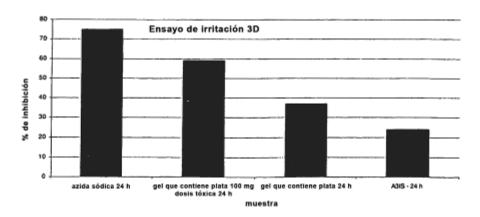


Fig. 12d

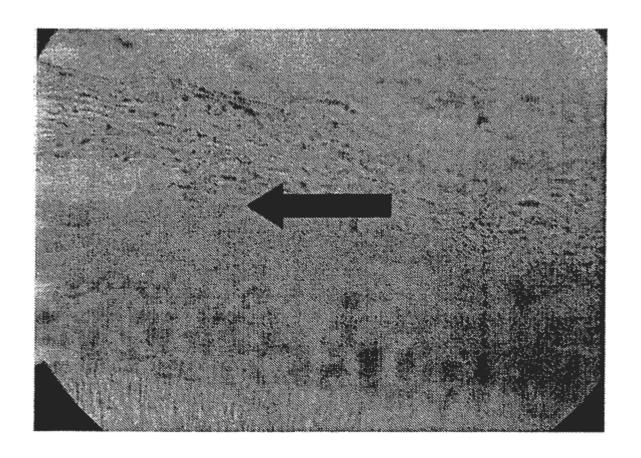


Fig. 12e

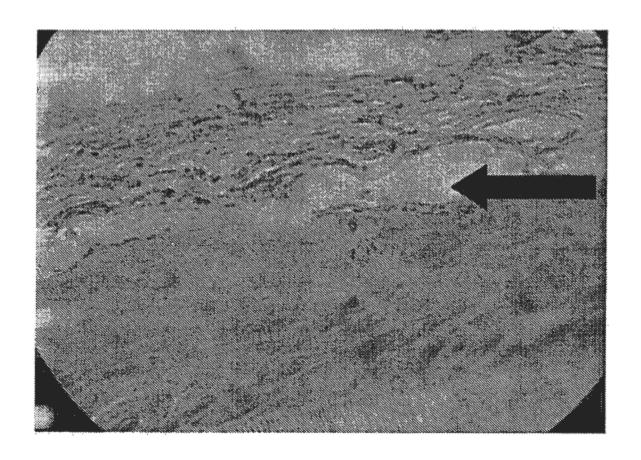


Fig. 12f

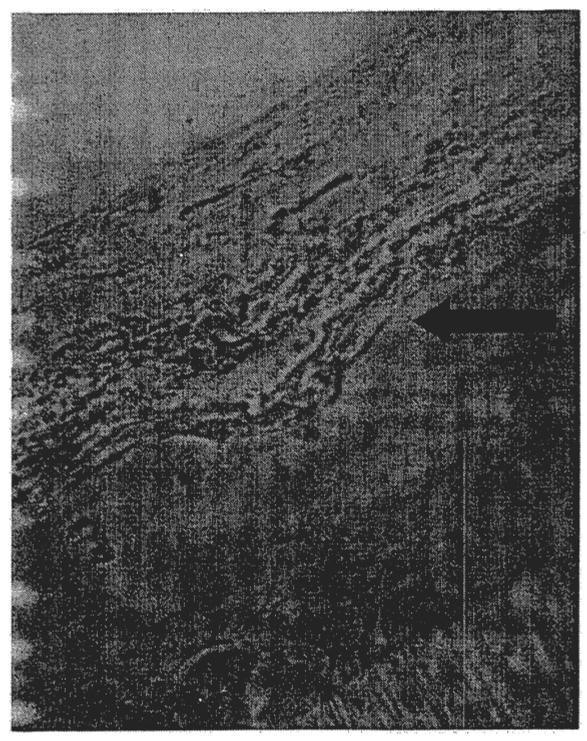


Fig. 12g

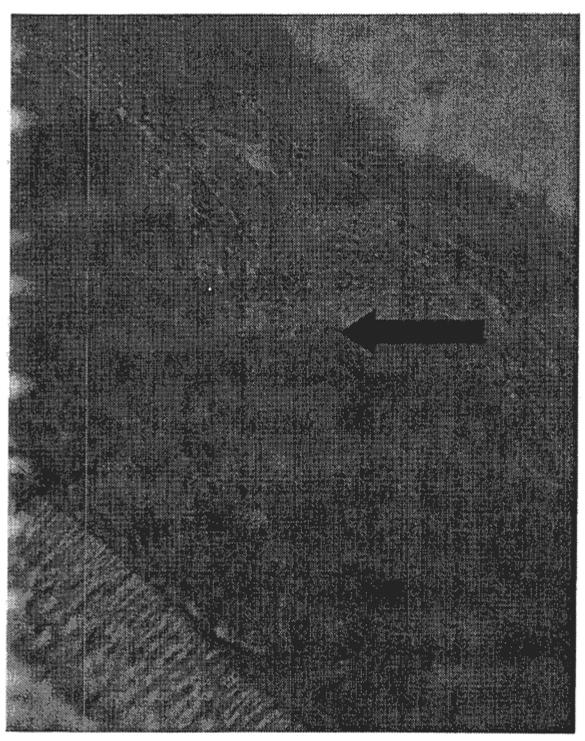
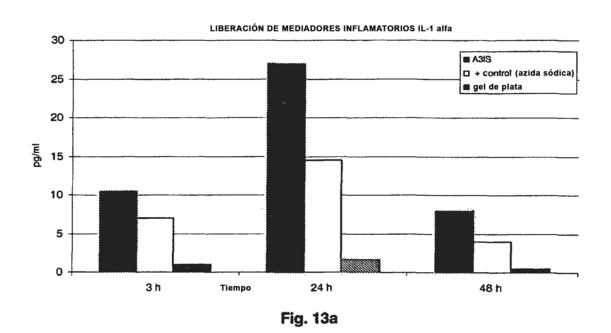



Fig. 12h

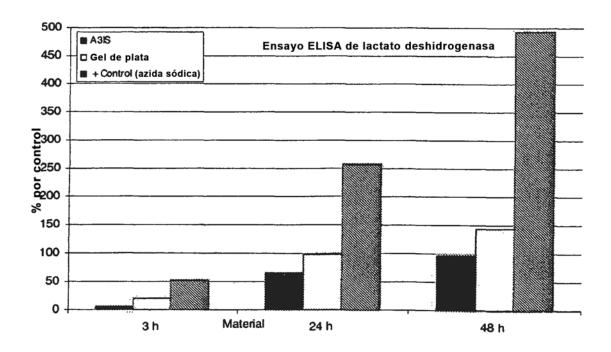


Fig. 13b

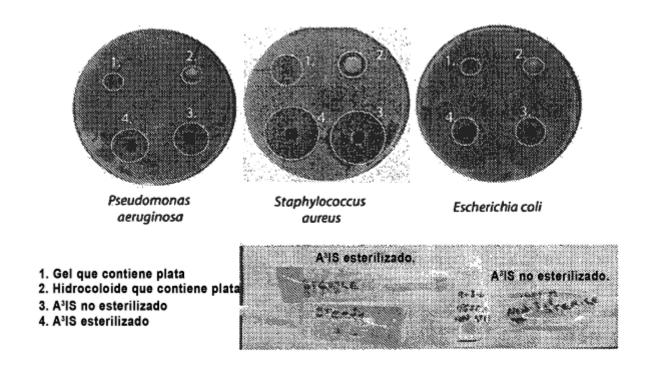


Fig. 14

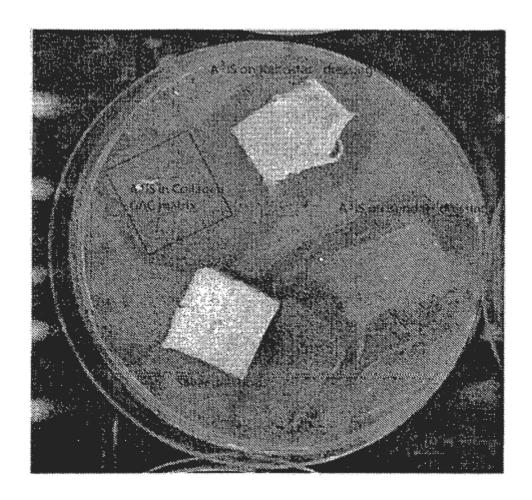


Fig. 15a

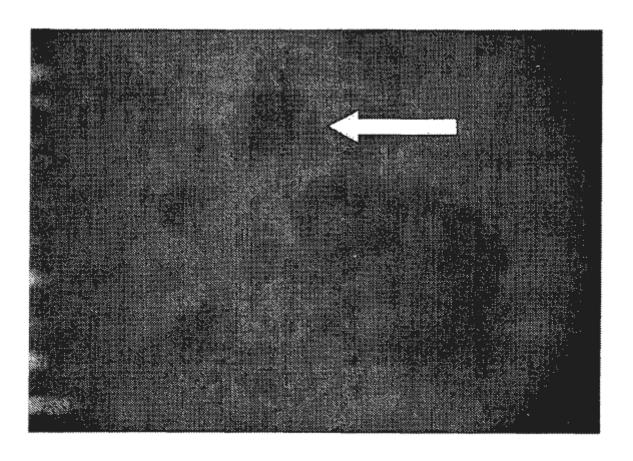


Fig. 15b

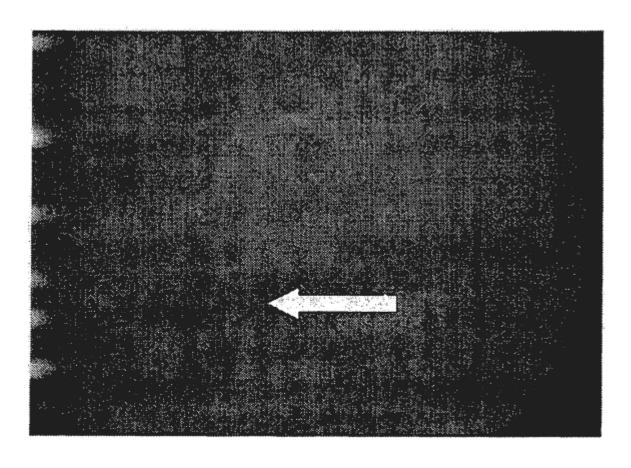


Fig. 15c

Staphylococcus aureus

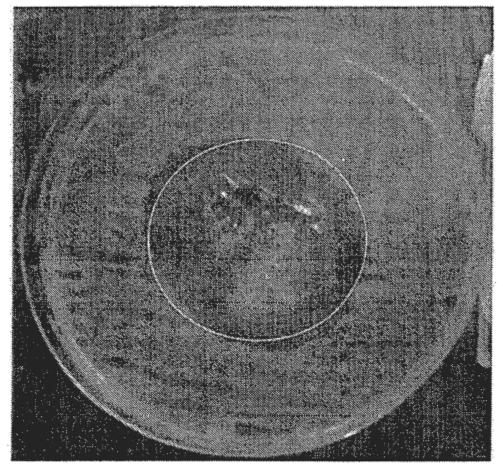


Fig. 16a

Staphylococcus aureus

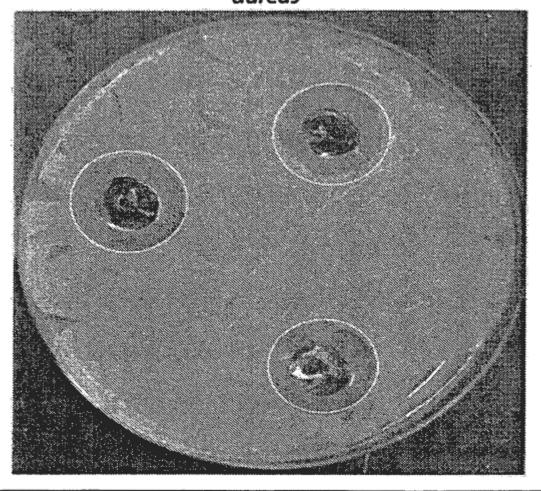


Fig. 16b

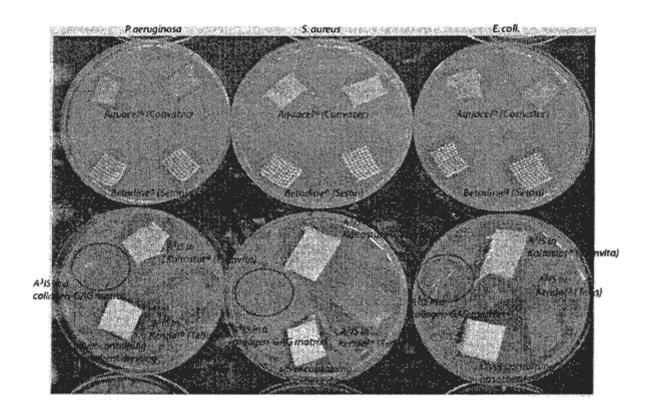


Fig. 17

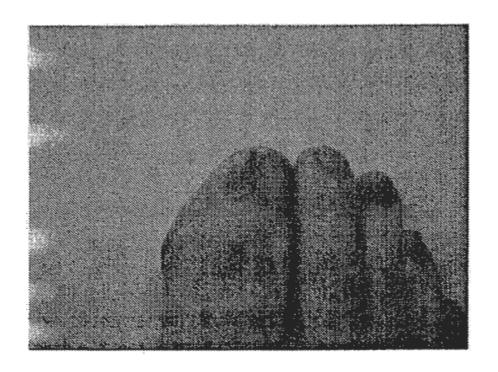


Fig. 18a

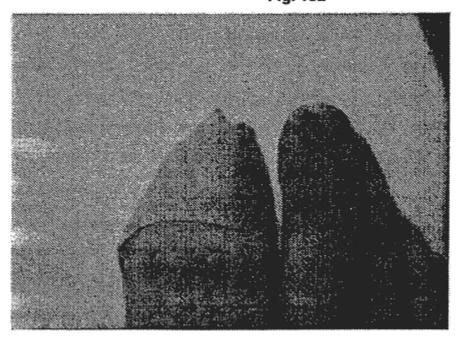


Fig. 18b

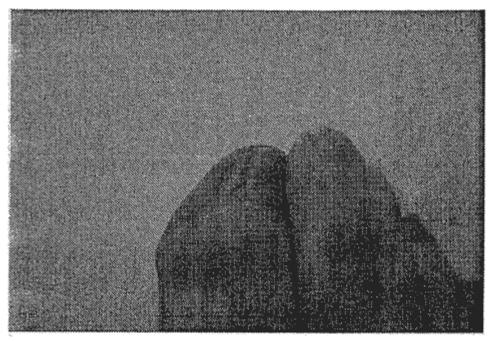


Fig. 18c

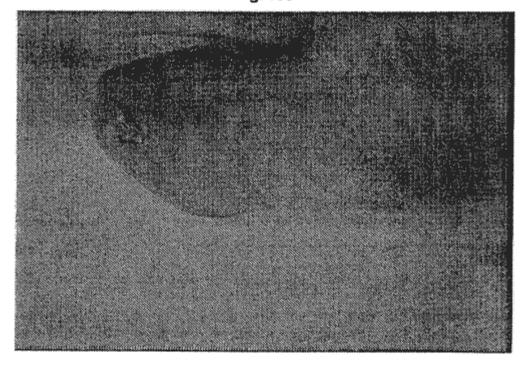


Fig. 18d

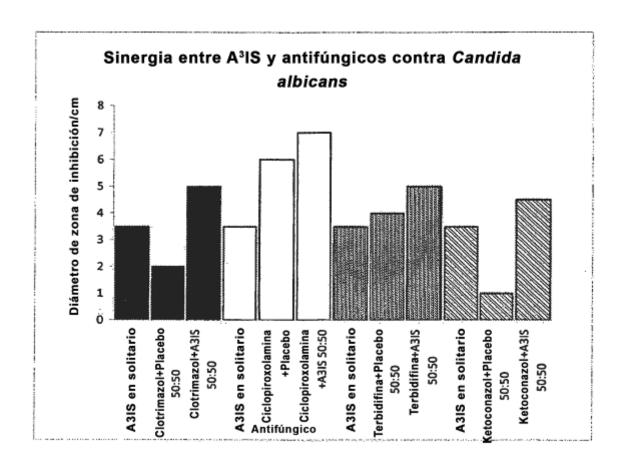


Figura 19