

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 584 184

61 Int. Cl.:

A61M 1/36 (2006.01) C12N 11/06 (2006.01) A61L 33/00 (2006.01) A61M 1/34 (2006.01) C12N 9/52 (2006.01) C12N 11/14 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 16.12.2014 E 14198204 (1) 97 Fecha y número de publicación de la concesión europea: 25.05.2016 EP 2886142
- (54) Título: Equipo para el tratamiento extracorporal de la sangre
- (30) Prioridad:

17.12.2013 EP 13197790

Fecha de publicación y mención en BOPI de la traducción de la patente: 26.09.2016

(73) Titular/es:

UNIVERSITY OF LIMERICK (100.0%) Plassey Technological Park Limerick, IE

(72) Inventor/es:

COONEY, JAKKI; KAGAWA, TODD FUMIO y MAGNER, EDMOND

(74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Equipo para el tratamiento extracorporal de la sangre

Antecedentes de la invención

5

10

15

20

25

30

35

40

45

50

La septicemia se trata en la actualidad en los hospitales mediante la aplicación de «Los seis de la septicemia» (PMID 21398303). Estos son una serie de procedimientos para estabilizar al paciente, que incluyen la administración de antibióticos, el cultivo microbiano, la administración de un elevado flujo de oxígeno, y líquidos. Hasta la fecha, han fracasado los procedimientos para mitigar el daño de los órganos con la septicemia. El tratamiento con drotrecogina α activada, una serina proteasa que interviene en la desactivación de la coagulación, era, hasta hace muy poco, el principal procedimiento autorizado por la FDA para el tratamiento de la septicemia en los humanos. Sin embargo, en 2011, la FDA anunció que Eli Lily había retirado Xigris (drotrecogina α). El 8 de agosto de 2012, AstraZeneca anunció que un estudio de fase Ilb donde se analizaba la eficacia del CytoFabTM, un fragmento de anticuerpo policlonal anti-TNFα, para el tratamiento de la septicemia grave y/o el choque septicémico, no mostraba ninguna mejora significativa frente al placebo, y AstraZeneca paralizó los futuros desarrollos.

Se han propuesto dos tratamientos más sobre la base de una estrategia de purificación de la sangre con alguna similitud al propuesto en este documento. El casete de adsorción de la IL-8 de Cytosorb se basa en un material poroso que adsorbe la citocina IL-8, pero la técnica no es selectiva y retira otros componentes proteicos pequeños de la sangre (http://www.cytosorbents.com/tech.htm). La segunda estrategia es una resina de adsorción específica que retira el LPS bacteriano de la sangre que se hace circular por dentro de un casete (http://www.altecomedical.com/market_product.php), y es un tratamiento limitado a la septicemia ocasionada por bacterias gramnegativas.

La solicitud de patente internacional WO-A-2010039690 describe el uso de inhibidores, incluidos los anticuerpos, para la purificación de la sangre.

Existe un gran cuerpo de resultados que establecen la función del C5a en la septicemia. La ScpA, una proteasa de la envoltura celular bacteriana, actúa selectivamente sobre el mediador proinflamatorio inmunitario C5a y escinde específicamente el mediador, con lo que lo activa.

Es un objeto de la invención solucionar al menos uno de los problemas citados más arriba.

Compendio de la invención

La invención se basa en un método y un producto sanitario para el tratamiento extracorporal de las afecciones inflamatorias de un paciente, en especial las enfermedades autoinmunitarias, las infecciones generalizadas o la septicemia, que implica hacer reaccionar la sangre extraída de un paciente con una enzima proteásica inmovilizada en un soporte, en donde la enzima es específica de un mediador proinflamatorio presente en la sangre del paciente y es capaz de escindir el mediador proinflamatorio, y con esto reduce la abundancia del mediador proinflamatorio en la sangre del paciente antes de devolverle al paciente la sangre tratada.

En un primer aspecto, la invención se refiere a un equipo para el tratamiento extracorporal de la sangre, que comprende:

- un circuito extracorporal de sangre;
- opcionalmente, una bomba configurada para desplazar el líquido dentro del circuito extracorporal de sangre;
 v
- una cámara de reacción conectada al circuito extracorporal de sangre y configurada para recibir la sangre o una fracción de sangre que contiene el mediador proinflamatorio desde el circuito, y tratar la sangre o la fracción de sangre que contiene el mediador proinflamatorio,

caracterizado por que la cámara de reacción comprende una enzima proteásica inmovilizada de forma irreversible a un soporte, en donde la enzima proteásica es específica de un mediador proinflamatorio de humanos presente en la sangre o en el plasma, y es capaz de escindirlo de forma irreversible, de tal modo que se reduce, o preferiblemente queda destruida, la capacidad quimiotáctica del mediador proinflamatorio, en donde la abundancia del mediador proinflamatorio funcional en la sangre o el plasma tratados es menor que en la sangre o el plasma sin tratar.

El equipo de la invención tiene una serie de ventajas cuando se compara con los productos sanitarios extracorporales de tratamiento que operan en función de la adsorción de los mediadores proinflamatorios. Cada molécula de enzima es capaz de escindir un gran número de moléculas de sustrato durante un procedimiento de tratamiento; esto contrasta con el proceso de adsorción, en el que el ligando, una vez fijado a su molécula diana, es incapaz de fijarse a otras moléculas diana. Segundo, las estrategias de la técnica anterior basadas en la afinidad de

los anticuerpos son proclives a dar una reacción cruzada con moléculas que no son las deseadas, lo que implica costes importantes para el desarrollo y la generación de los anticuerpos idóneos. Por el contrario, en la bibliografía se conocen las enzimas que son específicas de los mediadores proinflamatorios y se pueden producir con facilidad mediante la tecnología del ADN recombinante.

5 Preferiblemente, el mediador proinflamatorio se selecciona de un grupo que consiste en, pero sin limitarse a ellos: C3a, C4a, C5a, IL-8, IL-6, TNFα, IL-1 o Mig. Así pues, en una realización, la enzima proteásica es capaz de escindir un mediador proinflamatorio de humanos seleccionado de un grupo que consiste en, pero sin limitarse a ellos, C3a, C4a, C5a, IL-8, IL-6, TNFα, IL-1 y Mig.

En una realización preferida, la invención da a conocer un equipo para el tratamiento extracorporal de la sangre, que comprende:

un circuito extracorporal de sangre;

10

15

20

25

30

35

40

45

50

opcionalmente, una bomba configurada para desplazar el líquido dentro del circuito extracorporal de sangre; y

una cámara de reacción conectada al circuito extracorporal de sangre y configurada para recibir sangre o una fracción de sangre que contiene el C5a de humano desde el circuito y tratar la sangre o la fracción de sangre que contiene el C5a de humano,

caracterizado por que la cámara de reacción comprende una enzima proteásica inmovilizada de forma irreversible a un soporte, en donde la enzima proteásica es específica del C5a de humano presente en la sangre o en la fracción de sangre, y es capaz de escindirlo de forma irreversible, de tal manera que se reduce la capacidad quimiotáctica del C5a de humano escindido, en donde la abundancia del C5a de humano funcional en la sangre o la fracción de sangre tratadas es menor que en la sangre o la fracción de sangre sin tratar.

Tal y como se usa en la presente memoria, la terminología «C5a de humano funcional» se debe entender que significa que el C5a de humano que tiene capacidad quimiotáctica según se determina con el ensayo de capacidad quimiotáctica que se describe a continuación. Asimismo, la terminología «C5a de humano afuncional» se debe entender que significa que la proteína escindida de C5a ha reducido, o está desprovista, de la capacidad quimiotáctica, según se determina con el ensayo de la capacidad quimiotáctica que se describe a continuación.

La invención también da a conocer un equipo para tratar la sangre humana, o una fracción de sangre que contiene el mediador proinflamatorio, en donde el equipo comprende una enzima proteásica fijada de forma irreversible a un soporte, en donde la enzima proteásica es específica de un mediador proinflamatorio presente en la sangre o en la fracción de sangre, y es capaz de escindirlo de forma irreversible, de tal manera que se reduce la capacidad quimiotáctica del mediador proinflamatorio de humano escindido.

La invención también da a conocer un equipo para tratar la sangre humana o una fracción de sangre que contiene el C5a, en donde el equipo comprende una enzima proteásica fijada de forma irreversible a un soporte, en donde la enzima proteásica es específica del C5a de humano presente en la sangre o en la fracción de sangre, y es capaz de escindirlo de forma irreversible, de tal manera que se reduce la capacidad quimiotáctica del C5a de humano escindido.

La invención también da a conocer una enzima proteásica que comprende la secuencia de A-B-C-D, en la que:

A es una enzima proteásica que es específica de un mediador proinflamatorio humano presente en la sangre, y es capaz de escindirlo de forma irreversible, de tal manera que se reduce la capacidad quimiotáctica del mediador proinflamatorio escindido, B es un motivo de polilisina, policisteína o poliglutamato, C es un espaciador y D es un motivo de polihistidina.

Preferiblemente, la enzima proteásica es una proteasa bacteriana recombinante de C5a que comprende una secuencia de SEQ ID n.º 3 o una variante funcional de la misma, que tiene típicamente una identidad de secuencia de al menos el 70%, 80% o 90% con la SEQ ID n.º 3.

El término «variante funcional», tal y como se aplica a la SEQ ID n.º 3, hace referencia a una proteasa que es específica del C5a de humano, y es capaz escindirlo de forma irreversible, de tal manera que se reduce, o preferiblemente se destruye, la capacidad quimiotáctica del C5a de humano escindido.

Los ejemplos de variantes funcionales de la SEQ ID n.º 3 se seleccionan de la SEQ ID n.º 4 y la SEQ ID n.º 5.

En una realización, el equipo de la invención incluye medios de separación adaptados para separar la sangre en una fracción que contiene el C5a y una fracción que no contiene el C5a, en donde la cámara de reacción recibe la fracción que contiene el C5a. Los medios de separación podrían ser, por ejemplo, un filtro configurado para separar la sangre o una fracción de la misma en una fracción que contiene una masa molecular baja y una segunda fracción,

en donde la fracción que contiene la masa molecular baja es la fracción que contiene el C5a.

Idóneamente, el equipo de la invención incluye medios configurados para volver a combinar la fracción que contiene el C5a tratado (a saber, la fracción de masa molecular baja) con la segunda fracción que no contiene el C5a. Una vez que se han vuelto a unir las fracciones, se devuelven al paciente.

En una realización preferida de la invención, un extremo carboxilo de la enzima proteásica comprende una primera etiqueta y una segunda etiqueta localizada distalmente de la primera etiqueta y separada de la primera etiqueta por un espaciador. Típicamente, el soporte comprende un ion coordinado de metal de transición y uno o varios grupos funcionales. Idóneamente, la primera etiqueta comprende un motivo capaz de reaccionar covalentemente con uno o grupos funcionales, y en donde la segunda etiqueta comprende un motivo capaz de interaccionar con el ion coordinado del metal de transición.

De esta forma, la enzima proteásica se puede orientar con respecto a la superficie, de tal manera que el extremo carboxilo de la enzima está dispuesto adyacente a la superficie (esto se consigue mediante la interacción entre la segunda etiqueta y el metal de transición coordinado de la superficie del soporte), lo que permite que la primera etiqueta adyacente se una de forma covalente a los grupos funcionales de la superficie. Esto impedirá la fijación inespecífica entre los grupos funcionales de la superficie y los restos de lisina de la enzima proteásica.

Preferiblemente, la primera etiqueta se selecciona de una etiqueta de polilisina, poliglutamato o policisteína, y los grupos funcionales de la superficie son grupos que son capaces de fijarse de forma covalente a estos motivos.

Idóneamente, la segunda etiqueta comprende una etiqueta de polihistidina u otra etiqueta capaz de interaccionar con un metal de transición.

20 Preferiblemente, el ion coordinado de metal de transición se selecciona de níquel o cobalto.

Típicamente, el soporte comprende un material de sílice, preferiblemente un material de sílice mesoporoso, preferiblemente material de silicato mesoporoso monodisperso modificado, e idealmente un material de sílice mesoporoso modificado con Ni²⁺.

Idóneamente, el soporte comprende una perla. Preferiblemente, la cámara de reacción comprende una columna que contiene muchas perlas.

La invención también se refiere a un equipo de la invención para ser usado en un método para el tratamiento ex vivo de la sangre en un mamífero, típicamente un humano. Preferiblemente, el mamífero tiene una afección inflamatoria, tal como septicemia.

La secuencia de ácido nucleico que codifica la proproteasa bacteriana de C5a, ScpA de *Streptococcus pyogenes*, se da a conocer en la SEQ ID n.º 1 que viene a continuación:

Secuencia de ADN (SEQ ID n.º 1)

15

25

35

40

45

50

TGAGGAAGCACCATCATCAAAGGAAACCAAAATCCCACAAACTCCTGGTGATGCAGAAGAAACAGTAGCAG ATGACGCTAATGATCTAGCCCCTCAAGCTCCTGCTAAAACTGCTGATACACCAGCAACCTCAAAAGCGACTATTA GGGATTTGAACGACCCTTCTCAGGTCAAAACCCTGCAGGAAAAAGCAGGCAAGGGAGCTGGGACTGTTGTTGC AGTGATTGATGCTGGTTTTGATAAAAATCATGAAGCGTGGCGCTTAACAGACAAAACTAAAGCACGTTACCAATC AAAAGAAGATCTTGAAAAAAGCTAAAAAAGGCACGGTATTACCTATGGCGAGTGGGTCAATGATAAGGTTGCTTA TTACCACGATTATAGTAAAGATGGTAAAACCGCTGTCGATCAAGAGCACGGCACACACGTGTCAGGGATCTTGT CAGGAAATGCTCCATCTGAAACGAAAGAACCTTACCGCCTAGAAGGTGCGATGCCTGAGGCTCAATTGCTTTTG ATGCGTGTCGAAATTGTAAATGGACTAGCAGACTATGCTCGTAACTACGCTCAAGCTATCAGAGATGCTGTCAAC TTGGGAGCTAAGGTGATTAATATGAGCTTTGGTAATGCTGCACTAGCTTACGCCAACCTTCCAGACGAAACCAAA AAAGCCTTTGACTATGCCAAATCAAAAGGTGTTAGCATTGTGACCTCAGCTGGTAATGATAGTAGCTTTGGGGGC AAAACCCGTCTACCTCTAGCAGATCATCCTGATTATGGGGTGGTTGGGACGCCTGCAGCGGCAGACTCAACATT GACAGTTGCTTCTTACAGCCCAGATAAACAGCTCACTGAAACTGCTACGGTCAAAACAGACGATCATCAAGCTAA AGAAATGCCTGTTCTTTCAACAAACCGTTTTGAGCCAAACAAGGCTTACGACTATGCTTATGCTAATCGTGGGAT GAAAGAAGATGATTTTAAGGATGTCAAAGGCAAAATTGCCCTTATTGAACGTGGTGATATTGATTTCAAAGATAAG ATTGCAAACGCTAAAAAAGCTGGTGCTGTAGGGGTCTTGATCTATGACAATCAAGACAAGGGCTTCCCGATTGAA TTGCCAAATGTTGATCAGATGCCTGCGGCCTTTATCAGTCGAAAAGACGGTCTCTTATTAAAAGACAATTCTAAAA AAACCATCACCTTCAATGCGACACCTAAGGTATTGCCAACAGCAAGTGACACCAAACTAAGCCGCTTCTCAAGCT GGGGTTTGACAGCTGACGCAATATTAAGCCAGATATTGCAGCACCCGGCCAAGATATTTTGTCATCAGTGGCT AACAACAAGTATGCCAAACTTTCTGGAACTAGTATGTCTGCGCCCATTGGTAGCGGGTATCATGGGACTATTGCAA AAGCAATATGAGACACAGTATCCTGATATGACACCATCAGAGCGTCTTGATTTAGCTAAAAAAGTATTGATGAGCT CAGCAACTGCCTTATATGATGAAGATGAAAAAGCTTATTTTTCTCCTCGCCAACAAGGAGCAGGAGCAGTCGATG

TTTCTGATAAATTTGAAGTAACAGTAACAGTTCACAACAAATCTGATAAACCTCAAGAGTTGTATTACCAAGCAAC TGTTCAAACAGATAAAGTAGATGGAAAACACTTTGCCTTGGCTCCTAAAGCATTGTATGAGACATCATGGCAAAA AATCACAATTCCAGCCAATAGCAGCAAACAAGTCACCGTTCCAATCGATGCTAGTCGATTTAGCAAGGACTTGCT TGCCCAAATGAAAAATGGCTATTTCTTAGAAGGTTTTGTTCGTTTCAAACAAGATCCTAAAAAAAGAAGAGCTTATG AGCATTCCATATATTGGTTTCCGAGGTGATTTTGGCAATCTGTCAGCCTTAGAAAAACCAATCTATGATAGCAAAG 5 ACGGTAGCAGCTACTATCATGAAGCAAATAGTGATGCCAAAGACCAATTAGATGGTGATGGATTACAGTTTTACG CTCTGAAAAATAACTTTACAGCACTTACCACAGAGTCTAACCCATGGACGATTATTAAAGCTGTCAAAGAAGGGG TTGAAAACATAGAGGATATCGAATCTTCAGAGATCACAGAAACCATTTTTGCAGGTACTTTTGCAAAACAAGACGA TGATAGCCACTACTATATCCACCGTCACGCTAATGGCAAACCATATGCTGCGATCTCTCCAAATGGGGACGGTAA CAGAGATTATGTCCAATTCCAAGGTACTTTCTTGCGTAATGCTAAAAACCTTGTGGCTGAAGTCTTGGACAAAGA 10 AGGAAATGTTGTTTGGACAAGTGAGGTAACCGAGCAAGTTGTTAAAAACTACAACAATGACTTGGCAAGCACACT TGGTTCAACCCGTTTTGAAAAAACGCGTTGGGACGGTAAAGATAAAGACGGCAAAGTTGTTGTTAACGGAACCTA CAATACGACACCTGAAGTCGCAACATCGGCAACATTCTCAACAGAAGATCGTCGTTTGACACTTGCATCTAAACC 15 AAAAACCAGCCAACCGATTTACCGTGAGCGTATTGCTTACACTTATATGGATGAGGATCTGCCAACAACAGAGTA TATTTCTCCAAATGAAGATGGTACCTTTACTCTTCCTGAAGAGGCTGAAACAATGGAAGGCGGTACTGTTCCATT GAAAATGTCAGACTTTACTTATGTTGTTGAAGATATGGCTGGTAACATCACTTATACACCAGTGACTAAGCTATTG

La secuencia de aminoácidos de la proproteasa bacteriana de C5a, ScpA de *Streptococcus pyogenes*, se da a conocer en la SEQ ID n.º 2 que viene a continuación:

Secuencia de proteína (SEQ ID n.º 2)

GAGGGCCACTCTTAA

20

55

GPLGSNTVTEDTPATEQAVETPQPTAVSEEAPSSSKETKIPQTPGDAEETVADDANDLAPQAPAKTADTPATSKATIR DLNDPSQVKTLQEKASKGAGTVVAVIDAGFDKNHEAWRLTDKTKARYQSKEDLEKAKKEHGITYGEWVNDKVAYYH DYSKDGKTAVDQEHGTHVSGILSGNAPSETKEPYRLEGAMPEAQLLLMRVEIVNGLADYARNYAQAIRDAVNLGAKVI NMSFGNAALAYANLPDETKKAFDYAKSKGVSIVTSAGNDSSFGGKTRLPLADHPDYGVVGTPAAADSTLTVASYSPD KQLTETATVKTDDHQAKEMPVLSTNRFEPNKAYDYAYANRGMKEDDFKDVKGKIALIERGDIDFKDKIANAKKAGAVG VLIYDNQDKGFPIELPNVDQMPAAFISRKDGLLLKDNSKKTITFNATPKVLPTASDTKLSRFSSWGLTADGNIKPDIAAP GQDILSSVANNKYAKLSGTSMSAPLVAGIMGLLQKQYETQYPDMTPSERLDLAKKVLMSSATALYDEDEKAYFSPRQ QGAGAVDAKKASAATMYVTDKDNTSSKVHLNNVSDKFEVTVTVHNKSDKPQELYYQATVQTDKVDGKHFALAPKAL YETSWQKITIPANSSKQVTVPIDASRFSKDLLAQMKNGYFLEGFVRFKQDPKKEELMSIPYIGFRGDFGNLSALEKPIY DSKDGSSYYHEANSDAKDQLDGDGLQFYALKNNFTALTTESNPWTIIKAVKEGVENIEDIESSEITETIFAGTFAKQDD DSHYYIHRHANGKPYAAISPNGDGNRDYVQFQGTFLRNAKNLVAEVLDKEGNVVWTSEVTEQVVKNYNNDLASTLG STRFEKTRWDGKDKDGKVVVNGTYTYRVRYTPISSGAKEQHTDFDVIVDNTTPEVATSATFSTEDRRLTLASKPKTSQ PIYRERIAYTYMDEDLPTTEYISPNEDGTFTLPEEAETMEGGTVPLKMSDFTYVVEDMAGNITYTPVTKLLEGHS

La secuencia de aminoacidos de la proteasa bacteriana madura de C5a, ScpA de *Streptococcus pyogenes*, se da a conocer en la SEQ ID n.º 3 que viene a continuación:

AEETVADDANDLAPQAPAKTADTPATSKATIRDLNDPSQVKTLQEKASKGAGTVVAVIDAGFDKNHEAWRLTDKTKA RYQSKEDLEKAKKEHGITYGEWVNDKVAYYHDYSKDGKTAVDQEHGTHVSGILSGNAPSETKEPYRLEGAMPEAQL LLMRVEIVNGLADYARNYAQAIRDAVNLGAKVINMSFGNAALAYANLPDETKKAFDYAKSKGVSIVTSAGNDSSFGGK TRLPLADHPDYGVVGTPAAADSTLTVASYSPDKQLTETATVKTDDHQAKEMPVLSTNRFEPNKAYDYAYANRGMKE DDFKDVKGKIALIERGDIDFKDKIANAKKAGAVGVLIYDNQDKGFPIELPNVDQMPAAFISRKDGLLLKDNSKKTITFNAT PKVLPTASDTKLSRFSSWGLTADGNIKPDIAAPGQDILSSVANNKYAKLSGTSMSAPLVAGIMGLLQKQYETQYPDMT PSERLDLAKKVLMSSATALYDEDEKAYFSPRQQGAGAVDAKKASAATMYVTDKDNTSSKVHLNNVSDKFEVTVTVHN KSDKPQELYYQATVQTDKVDGKHFALAPKALYETSWQKITIPANSSKQVTVPIDASRFSKDLLAQMKNGYFLEGFVRF KQDPKKEELMSIPYIGFRGDFGNLSALEKPIYDSKDGSSYYHEANSDAKDQLDGDGLQFYALKNNFTALTTESNPWTII KAVKEGVENIEDIESSEITETIFAGTFAKQDDDSHYYIHRHANGKPYAAISPNGDGNRDYVQFQGTFLRNAKNLVAEVL DKEGNVVWTSEVTEQVVKNYNNDLASTLGSTRFEKTRWDGKDKDGKVVVNGTYTYRVRYTPISSGAKEQHTDFDVI VDNTTPEVATSATFSTEDRRLTLASKPKTSQPIYRERIAYTYMDEDLPTTEYISPNEDGTFTLPEEAETMEGGTVPLKM SDFTYVVEDMAGNITYTPVTKLLEGHS

La secuencia de aminoácidos de una primera variante de la proteasa bacteriana madura de C5a, ScpA de Streptococcus pyogenes, se da a conocer en la SEQ ID n.º 4 que viene a continuación:

DANDLAPQAPAKTADTPATSKATIRDLNDPSQVKTLQEKASKGAGTVVAVIDAGFDKNHEAWRLTDKTKARYQSKED LEKAKKEHGITYGEWVNDKVAYYHDYSKDGKTAVDQEHGTHVSGILSGNAPSETKEPYRLEGAMPEAQLLLMRVEIV NGLADYARNYAQAIRDAVNLGAKVINMSFGNAALAYANLPDETKKAFDYAKSKGVSIVTSAGNDSSFGGKTRLPLADH PDYGVVGTPAAADSTLTVASYSPDKQLTETATVKTDDHQAKEMPVLSTNRFEPNKAYDYAYANRGMKEDDFKDVKG KIALIERGDIDFKDKIANAKKAGAVGVLIYDNQDKGFPIELPNVDQMPAAFISRKDGLLLKDNSKKTITFNATPKVLPTAS DTKLSRFSSWGLTADGNIKPDIAAPGQDILSSVANNKYAKLSGTSMSAPLVAGIMGLLQKQYETQYPDMTPSERLDLA KKVLMSSATALYDEDEKAYFSPRQQGAGAVDAKKASAATMYVTDKDNTSSKVHLNNVSDKFEVTVTVHNKSDKPQE

LYYQATVQTDKVDGKHFALAPKALYETSWQKITIPANSSKQVTVPIDASRFSKDLLAQMKNGYFLEGFVRFKQDPKKE ELMSIPYIGFRGDFGNLSALEKPIYDSKDGSSYYHEANSDAKDQLDGDGLQFYALKNNFTALTTESNPWTIIKAVKEGV ENIEDIESSEITETIFAGTFAKQDDDSHYYIHRHANGKPYAAISPNGDGNRDYVQFQGTFLRNAKNLVAEVLDKEGNVV WTSEVTEQVVKNYNNDLASTLGSTRFEKTRWDGKDKDGKVVVNGTYTYRVRYTPISSGAKEQHTDFDVIVDNTTPEV ATSATFSTEDRRLTLASKPKTSQPIYRERIAYTYMDEDLPTTEYISPNEDGTFTLPEEAETMEGGTVPLKMSDFTYVVE DMAGNITYTPVTKLLEGHS

La secuencia de aminoácidos de una segunda variante de la proteasa bacteriana madura de C5a, ScpA de Streptococcus pyogenes, se da a conocer en la SEQ ID n.º 5 que viene a continuación:

KTADTPATSKATIRDLNDPSQVKTLQEKASKGAGTVVAVIDAGFDKNHEAWRLTDKTKARYQSKEDLEKAKKEHGITY GEWVNDKVAYYHDYSKDGKTAVDQEHGTHVSGILSGNAPSETKEPYRLEGAMPEAQLLLMRVEIVNGLADYARNYA 10 QAIRDAVNLGAKVINMSFGNAALAYANLPDETKKAFDYAKSKGVSIVTSAGNDSSFGGKTRLPLADHPDYGVVGTPAA ADSTLTVASYSPDKQLTETATVKTDDHQAKEMPVLSTNRFEPNKAYDYAYANRGMKEDDFKDVKGKIALIERGDIDFK DKIANAKKAGAVGVLIYDNQDKGFPIELPNVDQMPAAFISRKDGLLLKDNSKKTITFNATPKVLPTASDTKLSRFSSWG LTADGNIKPDIAAPGQDILSSVANNKYAKLSGTSMSAPLVAGIMGLLQKQYETQYPDMTPSERLDLAKKVLMSSATALY DEDEKAYFSPRQQGAGAVDAKKASAATMYVTDKDNTSSKVHLNNVSDKFEVTVTVHNKSDKPQELYYQATVQTDKV 15 DGKHFALAPKALYETSWQKITIPANSSKQVTVPIDASRFSKDLLAQMKNGYFLEGFVRFKQDPKKEELMSIPYIGFRGD FGNLSALEKPIYDSKDGSSYYHEANSDAKDQLDGDGLQFYALKNNFTALTTESNPWTIIKAVKEGVENIEDIESSEITETI FAGTFAKQDDDSHYYIHRHANGKPYAAISPNGDGNRDYVQFQGTFLRNAKNLVAEVLDKEGNVVWTSEVTEQVVKN YNNDLASTLGSTRFEKTRWDGKDKDGKVVVNGTYTYRVRYTPISSGAKEQHTDFDVIVDNTTPEVATSATFSTEDRR LTLASKPKTSQPIYRERIAYTYMDEDLPTTEYISPNEDGTFTLPEEAETMEGGTVPLKMSDFTYVVEDMAGNITYTPVT 20 **KLLEGHS**

Las proteasas de SEQ ID n.ºs 2, 3, 4 y 5 son capaces de escindir el C5a de humano, de tal manera que se destruye la capacidad quimiotáctica de la proteasa escindida.

La secuencia de aminoácidos de la proteína del C5a se da a conocer en la SEQ ID n.º 6 que viene a continuación.

25 Proteína del C5a (SEQ ID n.º 6)

5

MLQKKIEEIAAKYKHSVVKKCCYDGACVNNDETCEQRAARISLGPRCIKAFTECCVVASQLRANISHKDMQLGR

Otras proteasas que son específicas del C5a de humano, y capaces de escindirlo, incluyen ScpB de *Streptococcus agalactiae* y las variantes funcionales de las mismas.

Los ejemplos de enzimas proteásicas capaces de escindir específicamente la IL-8 incluyen ScpC de *Streptococcus pyogenes*, SpyCEP de *Streptococcus agalactiae* y las variantes funcionales de las mismas.

Los ejemplos de enzimas proteásicas capaces de escindir específicamente la IL-6 incluyen una enzima de *Pseudomonas* publicada que la degrada completamente (PMID *16913841*). Las gingipaínas K y R también parecen tener actividad de degradación de varios mediadores, pero carecen de la especificidad necesaria.

Idóneamente, el equipo comprende además medios para separar la sangre completa en una fracción de plasma y 35 una fracción de células, y los medios para volver a combinar la fracción de células con la fracción de plasma tratada. En un proceso de separación, el plasma de la sangre del paciente se separa típicamente de los demás constituyentes. El plasma separado se mezcla con un tampón de acetato saturado con heparina. Esto disminuye el grado de acidez del plasma (valor de pH) a 5,12, lo que precipita selectivamente del plasma el colesterol LDL, la Lp(a) y el fibrinógeno. Junto con el aditivo heparina, los constituyentes separados forman precipitados insolubles que se pueden retirar del plasma con una simple etapa de filtración. El excedente de heparina sin utilizar queda retenido 40 en un adsorbente independiente y se utiliza la ultrafiltración en bicarbonato para restaurar el plasma purificado al nivel fisiológicamente aceptable. El plasma purificado y tratado selectivamente se vuelve a mezclar a continuación con los demás constituyentes de sangre y se le reincorporan al paciente. Durante la aféresis H.E.L.P., estas cuatro etapas (separación del plasma, precipitación con la posterior filtración, adsorción a la heparina y ultrafiltración) se realizan en un único producto sanitario, el PLASMAT Futura. Los ejemplos de productos sanitarios capaces de 45 separar la sangre completa en una fracción de plasma y una fracción de células en circuitos extracorporales de sangre los conocen los expertos en la técnica e incluyen el equipo de plasmaforesis (por ejemplo, PLASMAT Futura Gambro hemodiálisis Braun) el equipo de (por ejemplo, PHEONIX www.gambro.com/en/global/Products/Hemodyalisis/Monitors/Phoenix-dialysis-system/).

Típicamente, la cámara de reacción comprende una columna que comprende perlas, en donde la enzima se inmoviliza en las perlas. Como alternativa, la cámara de reacción puede comprende un cartucho.

En otro aspecto, la invención se refiere a un método para el tratamiento o la prevención de una afección inflamatoria en un humano, que comprende las etapas de hacer reaccionar la sangre que se ha extraído al paciente, o una fracción de la sangre que contiene el mediador proinflamatorio, con una enzima proteásica inmovilizada en un

soporte, en el que la enzima proteásica es específica de, y capaz escindirlo de forma irreversible, un mediador proinflamatorio humano presente en la sangre o fracción, de tal manera que se reduce, o preferiblemente se destruye, la capacidad quimiotáctica del mediador proinflamatorio, en donde la abundancia del mediador proinflamatorio funcional en la sangre o fracción tratadas es menor que en la sangre o fracción sin tratar.

5 Típicamente, el mediador proinflamatorio de humano se selecciona del grupo que consiste en, pero sin limitarse a ellos, C3a, C4a, C5a, IL-8, IL-6, TNFα, IL-1 γ Mig.

En un aspecto más, la invención se refiere a un método para el tratamiento o la prevención de una afección inflamatoria en un humano, que comprende las etapas de hacer reaccionar la sangre que se ha extraído al paciente, o una fracción de la sangre que contiene el mediador proinflamatorio, con una enzima proteásica inmovilizada en un soporte, en donde la enzima proteásica es específica del C5a de humano, y es capaz escindirlo de forma irreversible, en la sangre o fracción, de tal manera que la capacidad quimiotáctica del C5a de humano escindido queda reducida o preferiblemente destruida, en donde la abundancia del C5a funcional en la sangre o fracción tratadas es menor que en la sangre o plasma sin tratar.

Idóneamente, el método incluye las etapas de separar la sangre en una fracción de plasma y una fracción de células, tratar la fracción de plasma y a continuación volver a combinar la fracción de células con la fracción de plasma tratada antes de devolverle la sangre al paciente.

Como alternativa, o adicionalmente, el método incluye las etapas de separar la sangre en una fracción que contiene el C5a (por ejemplo, una fracción de masa molecular baja) y una segunda fracción, tratar la fracción que contiene el C5a y, a continuación, volver a combinar la segunda fracción con la fracción que contiene el C5a tratado antes de devolverle la sangre al paciente.

Típicamente, el método se realiza de una manera continua en un circuito extracorporal de sangre.

Idóneamente, la enzima proteásica es una proteína recombinante.

10

20

25

30

35

40

45

50

La invención también se refiere al soporte y a una enzima proteásica recombinante inmovilizada en el soporte, en donde la enzima proteásica recombinante comprende una etiqueta de polihistidina en el extremo carboxilo y una etiqueta de polilisina en el extremo carboxilo, y en donde la enzima proteásica recombinante comprende una proteasa que es específica de un mediador proinflamatorio humano presente en la sangre o el plasma, y es capaz de escindirlo de forma irreversible.

En esta especificación, la terminología «circuito extracorporal de sangre» se debe entender que hace referencia a una disposición de conductos capaces de retirar la sangre del cuerpo para el tratamiento fuera del cuerpo y devolver la sangre así tratada al cuerpo.

En esta especificación, la terminología «cámara de reacción» se debe entender que hace referencia a una cámara adaptada para recibir la sangre o el plasma del circuito extracorporal de sangre y permitir el contacto entre la sangre o el plasma y las enzima proteásica que está inmovilizada en un soporte dentro de la cámara de reacción.

En esta especificación, el término «plasma» se debe entender que hace referencia a la sangre de la cual se han retirado total o parcialmente las células.

En esta especificación, la terminología «mediador proinflamatorio» se debe entender que hace referencia a una entidad proteínica del hospedador producida por la respuesta autoinmunitaria o por la septicemia que estimula otros componentes del sistema inmunitario del hospedador, que provoca en particular la migración o la estimulación de los leucocitos de cualquier clase y las formas progenitoras de estas células. Los ejemplos específicos de los mediadores proinflamatorios específicos de la respuesta inflamatoria humana incluyen C3a, C4a, C5a, IL-8, IL-6, TNFα, IL-1 y Mig.

En la especificación, la terminología «enzima proteásica que es específica de un mediador proinflamatorio de humano» se debe entender que hace referencia a una enzima con la capacidad de hidrolizar selectivamente, o, de forma ideal, únicamente, enlaces peptídicos de los mediadores proinflamatorios de origen humano. La proteasa también puede proceder de la proteasa madre y haber sido modificada para incluir un grupo de funcionalización, por ejemplo, una o más etiquetas de polihistidina, polilisina o poliglutamato.

En esta especificación, la terminología «variante funcional de la misma», cuando se aplica a una enzima proteásica específica, se debe entender que hace referencia a una variante de la enzima proteásica que conserva la capacidad de fijarse de forma específica y escindir de forma irreversible el mediador proinflamatorio deseado, de tal manera que se reduce o destruye la actividad quimiotáctica del mediador proinflamatorio escindido. Así pues, por ejemplo, una variante funcional de ScpA de *Streptococcus pyogenes* incluye proteasas ScpA variantes que tienen la capacidad de fijarse de forma específica y escindir de forma irreversible la proteína del C5a de humano, de tal manera que se reduce o destruye la capacidad quimiotáctica de la proteasa escindida, e incluye proteasas ScpA de

Streptococcus pyogenes (SEQ ID n.º 3, 4, 5) y de otras especies de Streptococcus. El término «variante» se debe entender que hace referencia a proteínas o polipéptidos que tienen una homología de secuencia de al menos el 70% con la proteasa de referencia, y que están alteradas con respecto a uno o más restos aminoacídicos. Preferiblemente, tales alteraciones implican la inserción, adición, deleción y/o sustitución de 20, 10, 5 o menos aminoácidos, más preferiblemente de 4 o menos, incluso más preferiblemente de 3 o menos, lo más preferiblemente de 1 o 2 aminoácidos únicamente. Se contempla la inserción, adición y sustitución con aminoácidos modificados y naturales. La variante puede tener cambios conservativos de aminoácidos, en donde el aminoácido que se introduce es similar, desde los puntos de vista estructural, químico o funcional, al que se sustituye. Típicamente, las proteínas que se han alterado por la sustitución o la deleción de restos importantes para la actividad catalítica se excluirán del término «variante». Para cualquier enzima proteásica dada, los detalles de tales restos importantes desde el punto de vista catalítico serán conocidos por los expertos en la técnica. Por lo general, la variante tendrá al menos una homología de secuencia de aminoácidos del 70%, preferiblemente una homología de secuencia de al menos el 80%, más preferiblemente una homología de secuencia de al menos el 90%, e idealmente una homología de secuencia de al menos el 95%, 96%, 97%, 98% o 99% con la proteasa de referencia. En este contexto, la homología de secuencia comprende tanto la identidad como la similifud de secuencia, a saber, una secuencia polipeptídica que comparte una homología de aminoácidos del 90% con la peptidasa bacteriana madura de tipo silvestre de C5a es una en la que cualquiera del 90% de los restos alineados son idénticos a los restos correspondientes de la peptidasa bacteriana de tipo silvestre de C5a, o bien sustituciones conservativas de los mismos. La sustitución puede ser una sustitución conservativa o no conservativa, y puede implicar el uso de aminoácidos naturales o análogos de aminoácidos.

El término «variante» también pretende incluir los derivados químicos de una proteasa, a saber, donde uno o más restos de una proteasa se transforman químicamente al hacer reacción a través de un grupo lateral funcional. También se incluyen dentro del término variante las moléculas de proteasas en las que los restos aminoacídicos que aparecen de forma natural están reemplazados por los análogos de aminoácidos.

Las proteínas y los polipéptidos (entre ellos variantes y fragmentos de los mismos) de y para ser usados en la invención se pueden generar total o parcialmente mediante síntesis química o mediante la expresión desde un ácido nucleico. Las proteínas y los péptidos de y para ser usados en la presente invención se pueden preparar con facilidad de acuerdo con métodos conocidos en la técnica de síntesis de péptidos bien establecidos y estándares en líquido o, preferiblemente, en fase sólida [véase, por ejemplo, J. M. Stewart y J. D. Young, *Solid Phase Peptide Synthesis*, 2.ª edición, Pierce Chemical Company, Rockford, Illinois (1984) en M. Bodanzsky y A. Bodanzsky, *The Practice of Peptide Synthesis*, Springer Verlag, Nueva York (1984)].

En esta especificación, la terminología «afección inflamatoria» significa una afección en la que el hospedador monta una respuesta contra una agresión. Los ejemplos de afecciones inflamatorias incluyen las afecciones inflamatorias crónicas o agudas que incluyen septicemia, choque septicémico, síndrome de respuesta inflamatoria sistémica, síndrome de disfunción multiorgánica, enfermedad de las vías aéreas hiperreactivas, reacción alérgica.

En un aspecto diferente, la invención da a conocer un método para unir una molécula que comprende una secuencia poliaminoacídica a una superficie, en donde el extremo carboxilo de la enzima proteásica comprende una primera etiqueta y una segunda etiqueta localizada distalmente de la primera etiqueta y separada de la primera etiqueta por un espaciador, y en donde el soporte comprende un ion coordinado de metal de transición y uno o varios grupos funcionales, y en donde la primera etiqueta comprende un motivo capaz de reaccionar covalentemente con uno o varios grupos funcionales, y en donde la segunda etiqueta comprende un motivo capaz de interaccionar con el ion coordinado de metal de transición, en donde el método comprende la etapa de hacer reaccionar con la superficie la molécula que comprende una secuencia poliaminoacídica.

Breve descripción de las figuras

10

15

20

35

40

50

55

45 Figura 1. Representación esquemática de la invención de purificación de la sangre.

El diagrama muestra los componentes y la ruta del flujo de la sangre concebidos para la aplicación de la invención. Se extrae la sangre del paciente y se fracciona en una fracción de plasma rica en proteínas y una fracción rica en células de la sangre. La primera se hace pasar sobre el material activo (enzima inmovilizada) en la cámara de reacción y a continuación se vuelve a combinar con la última antes de devolverla al paciente. Los componentes de la invención están etiquetados; 1 la invención completa, 2 el producto sanitario extracorporal de purificación de sangre, 3 línea de extracción de sangre, 4 brazo del paciente, 5 línea de retorno de la sangre, 6 sistema de bombeo, 7 separador de la sangre, 8 cámara de reacción, 9 cámaras de separación de la sangre con alojamiento para cartuchos, 10a y 10b cámaras de separación de la sangre, 11 membrana semipermeable restrictiva para el tamaño biocompatible, 12 línea que introduce el plasma rico en proteínas en la cámara de reacción, 13 línea que introduce la fracción rica en células sanguíneas en la cámara de mezclado, 14 línea que introduce el plasma tratado en la cámara de mezclado, 15 cámara de mezclado para la reconstitución de la sangre, 16 componente activo de la cámara de reacción para alojar los vasos, 17 material reactivo que comprende la enzima inmovilizada que está unida de forma irreversible al material de soporte sólido.

Figura 2. Actividad de ScpA frente al mediador proinflamatorio C5a

El panel a muestra el análisis por SDS-PAGE de C5a sin tratar (-) y tratado (+) con ScpA

El panel b muestra el enlace escindible de la secuencia de C5a confirmado mediante análisis por espectrometría de masas de C5a escindido con ScpA.

5 Figura 3A: construcción del prototipo

El diagrama muestra el prototipo y la ruta del flujo de circulación simple. 1 es la cámara de reacción que contiene ScpA-agarosa empaquetada en un casete, 2 bomba peristáltica, 3 cámara que contiene el suero humano enriquecido con C5a. Las flechas indican la dirección del flujo, * indica el punto donde se tomó la muestra del primer paso (FP).

10 Figura 3B: pruebas de actividad para el prototipo.

Las muestras del régimen de pruebas del prototipo se analizaron por SDS-PAGE. Los puntos temporales se tomaron del agotamiento del reservorio y de la albúmina antes del análisis. FP indica que la muestra se tomó inmediatamente después de la exposición a la cámara de reacción, a saber, antes de la recirculación. La flecha a la derecha del gel indica la posición del C5a sin escindir.

15 Descripción detallada de la invención

20

25

30

35

40

50

Con respecto a la figura 1, se da a conocer un equipo para el tratamiento extracorporal de la sangre de acuerdo con la invención y se indica por lo general mediante el número 1 de referencia. El equipo 1 comprende un circuito extracorporal de sangre 2, que tiene una línea de alimentación 3 para extraer la sangre del brazo de un paciente 4 para el tratamiento y una línea de retorno 5 para devolver la sangre tratada al paciente, y una bomba ajustable 6 que se proporciona en la línea de alimentación para que la sangre se desplace por dentro del circuito de sangre 2.

El equipo también incluye un separador de sangre 7 y una cámara de reacción 8 en el circuito 2, en donde el separador 7 se proporciona antes de la cámara de reacción 8. El separador comprende un cartucho 9 que tiene dos cámaras 10a y 10b separadas por una membrana semipermeable 11 adaptada para que las proteínas de la sangre se separen de las células de la sangre. La sangre completa pasa desde el paciente a la primera cámara 10a, donde las proteínas del plasma sanguíneo pasan a la segunda cámara 10b, lo que forma una fracción de plasma rica en proteínas en la segunda cámara y deja las células sanguíneas en la primera cámara 10a. Se proporciona un tubo 12 para transferir el plasma de la fracción rica en proteínas así formada desde la primera cámara 10b a la cámara de reacción 8, donde se trata. Se proporciona además un tubo 13 para transferir la fracción rica en células desde la primera cámara 10a para reagruparse con el plasma tratado distalmente de la cámara de reacción 8 en una cámara de mezclado 15, donde las dos fracciones se mezclan antes de devolverlas al paciente a través de la línea de retorno 5 de la sangre completa.

La cámara de reacción comprende un vaso cilíndrico 16 rellenado con un material de soporte funcionalizado 17 que contiene la enzima inmovilizada, con lo que se proporciona una gran superficie para el tratamiento del plasma entrante. Con el tubo 12 se alimenta el vaso cilíndrico 16 por la parte superior, y el plasma se filtra a través del cilindro antes de salir del vaso a través de un tubo 14.

Los materiales de sílice mesoporoso (MPS) (entre ellos, pero sin limitarse a ellos, los materiales de tipo MCM, SBA, MCF y PMO) se preparan con un método de síntesis con modelo. Idealmente, estas partículas tienen una naturaleza monodispersa. Las partículas tendrán un tamaño de partícula específico en el margen de 0,1 a 50 μ m, que contienen nanoporos con un diámetro interno final en el margen de 8 a 12 nm y tienen una superficie grande, de 300 a 800 m 2 g $^{-1}$.

Las características de la superficie de los nanovehículos de sílice se modificarán directamente con una serie de grupos funcionales (p. ej., -NH₂, -COOH, -SH) durante la síntesis del material, o mediante el injerto posterior a la síntesis para facilitar el acoplamiento covalente (a través de los restos de polilisina o de poliglutamato o de cisteína, respectivamente) de la enzima a la superficie después de la adsorción específica de la orientación.

45 El MPS modificado con Ni²⁺ se preparará mediante la adhesión de 3-yodotrimetoxipropilsilano a la superficie del silicato seguido de la reacción con ciclam y la incorporación del ion de metal. Con esto se inmoviliza la proteasa en una orientación controlada.

Al ser usado, el circuito extracorporal de sangre se conecta a un paciente, por lo general a un brazo de un paciente, y se hace funcionar la bomba para extraer la sangre del paciente y bombearla a través del circuito. La sangre completa del paciente entra al separador 7 y se separa con presión en las dos fracciones. La fracción de plasma se bombea desde la primera cámara (10a) a la cámara de reacción 8, donde la sangre se percola a través del lecho del casete funcionalizado 21. En la cámara de reacción, el mediador en el plasma se fija a la enzima proteásica que está

inmovilizada en el material de soporte y se escinde en una forma inactiva que se devuelve al plasma y deja la enzima inmovilizada libre para otra reacción. Como resultado de pasar el plasma a través de la cámara de reacción, se reduce significativamente la concentración del mediador funcional en el plasma. El plasma así tratado se bombea a continuación a la cámara de mezclado 17, donde se reúne con la fracción rica en células para formar la sangre completa que está significativamente desprovista de la proteína mediadora activa. La sangre completa se devuelve al paciente a través de la línea de retorno 4.

Se apreciará que es opcional el uso de un separador para filtrar la sangre antes del tratamiento, y que el tratamiento de la sangre completa en la cámara de reacción forma parte de la invención.

Experimental

5

15

25

10 Materiales y métodos

Ensavos de actividad de la peptidasa de C5a

Se produjo el C5a recombinante como una fusión con etiqueta de His en el extremo amino (HT-C5a) de acuerdo con el método de Toth et al¹, y la actividad quimiotáctica se comprobó en un ensayo de migración en agarosa (datos sin mostrar). La actividad C5a-asa de ScpA se mostró en las reacciones que consistían en ScpA a 42 nM con HT-C5a a 37 µM, en Tris/HCl a 50 mM (pH 7,5), NaCl a 100 mM y CaCl₂ a 5 mM durante 30 min a 20 ° C. La actividad C5a-asa observada era independiente de la presencia del cóctel inhibidor Complete Mini EDTAfree (Roche). Se realizó el análisis de escisión de HT-C5a mediante espectrometría de masas (EM) de tiempo de vuelo acoplada a la ionización/desorción por láser asistida por matriz.

Construcción del prototipo

La ScpA se inmovilizó de forma irreversible a una partícula de agarosa. El acoplamiento implicó la unión covalente de la enzima, a través de una cisteína del extremo carboxilo que se introdujo en la proteína por mutagénesis, a la partícula de silicato a través de un conector de yodoacetilo sobre la superficie de la partícula de agarosa.

El material de agarosa con la enzima se empaquetó en un reactor de flujo y, mediante una bomba peristáltica, se le aplicó el suero humano enriquecido con C5a (figura 3a). La escisión de C5a se monitorizó mediante la toma de muestras del suero en circulación después del primer contacto y a continuación monitorizando la desaparición del C5a activo desde un reservorio de suero. La pérdida de masa de 830 Da del C5a se confirmó mediante el análisis de MALDI-TOF acoplado a EM.

Resultados

Ensayo de la actividad

30 El ensayo de la actividad mostró que el ScpA escindió el C5a en un solo sitio (figura 2a). El análisis de EM indicó una pérdida de 830 Da, que concordaba con la retirada de siete restos del extremo carboxilo (figura 2b) que eliminan la capacidad quimiotáctica.

Funcionalidad del prototipo

Las muestras del pase inicial del suero humano enriquecido a través del prototipo indican que el C5a se escinde a un nivel que se aproxima a una eficacia del 100% (figura 3b). La monitorización del C5a en circulación desde el vaso de reacción indica que 1 hora de circulación da lugar a una escisión completa y a la desaparición de una cantidad de C5a coherente con el C5a total esperado en un humano en el pico de una respuesta a la septicemia (figura 3b). La pérdida de 830 Da del C5a confirmó que se habían retirado del C5a las secuencias estimuladoras.

40

LISTA SECUENCIAS

5	<110> UNIVERSITY OF LIMERICK	
	<120> Equipo para el tratamiento extracorporal de la sangre	
40	<130> P11172EP01	
10	<150> EP 13197790.2 <151> 17-12-2013	
	<160> 6	
15	<170> PatentIn versión 3.5	
20	<210> 1 <211> 3015 <212> ADN <213> Streptococcus pyogenes	
25	<220> <221> CARACTERÍSTICA MISCELÁNEA <222> (1)(3015) <223> Gen que codifica ScpA	
30	<400> 1 ggatccaata ctgtgacaga agacactcct gctaccgaac aagccgtaga aaccccacaa	60
	ccaacagcgg tttctgagga agcaccatca tcatcaaagg aaaccaaaat cccacaaact	120
	cctggtgatg cagaagaaac agtagcagat gacgctaatg atctagcccc tcaagctcct	180
	gctaaaactg ctgatacacc agcaacctca aaagcgacta ttagggattt gaacgaccct	240
	totoaggtoa aaacootgoa ggaaaaagoa ggoaagggag otgggaotgt tgttgoagtg	300
	attgatgctg gttttgataa aaatcatgaa gcgtggcgct taacagacaa aactaaagca	360
	cgttaccaat caaaagaaga tcttgaaaaa gctaaaaaag agcacggtat tacctatggc	420
	gagtgggtca atgataaggt tgcttattac cacgattata gtaaagatgg taaaaccgct	480
	gtcgatcaag agcacggcac acacgtgtca gggatcttgt caggaaatgc tccatctgaa	540
	acgaaagaac cttaccgcct agaaggtgcg atgcctgagg ctcaattgct tttgatgcgt	600
	gtcgaaattg taaatggact agcagactat gctcgtaact acgctcaagc tatcagagat	660
	gctgtcaact tgggagctaa ggtgattaat atgagctttg gtaatgctgc actagcttac	720
	gccaacette cagacgaaac caaaaaagce tttgactatg ccaaatcaaa aggtgttage	780
	attgtgacct cagctggtaa tgatagtagc tttgggggca aaacccgtct acctctagca	840
	gatcatcctg attatggggt ggttgggacg cctgcagcgg cagactcaac attgacagtt	900
	gcttcttaca gcccagataa acagctcact gaaactgcta cggtcaaaac agacgatcat	960
	caagctaaag aaatgcctgt tctttcaaca aaccgttttg agccaaacaa ggcttacgac	1020
	tatgcttatg ctaatcgtgg gatgaaagaa gatgatttta aggatgtcaa aggcaaaatt	1080

gcccttattg aacgtggtga tattgatttc aaagataaga ttgcaaacgc taaaaaagct	1140
ggtgctgtag gggtcttgat ctatgacaat caagacaagg gcttcccgat tgaattgcca	1200
aatgttgatc agatgcctgc ggcctttatc agtcgaaaag acggtctctt attaaaagac	1260
aattotaaaa aaaccatcac ottoaatgog acacctaagg tattgocaac agcaagtgac	1320
accaaactaa gccgcttctc aagctggggt ttgacagctg acggcaatat taagccagat	1380
attgcagcac ccggccaaga tattttgtca tcagtggcta acaacaagta tgccaaactt	1440
tetggaacta gtatgtetge gecattggta gegggtatea tgggaetatt gcaaaageaa	1500
tatgagacac agtatcctga tatgacacca tcagagcgtc ttgatttagc taaaaaagta	1560
ttgatgaget cageaactge ettatatgat gaagatgaaa aagettattt tteteetege	1620
caacaaggag caggagcagt cgatgctaaa aaagcttcag cagcaacgat gtatgtgaca	1680
gataaggaca atacctcaag caaggttcac ctgaacaatg tttctgataa atttgaagta	1740
acagtaacag ttcacaacaa atctgataaa cctcaagagt tgtattacca agcaactgtt	1800
caaacagata aagtagatgg aaaacacttt gccttggctc ctaaagcatt gtatgagaca	1860
tcatggcaaa aaatcacaat tooagecaat agcagcaaac aagtcaccgt tocaatcgat	1920
gctagtcgat ttagcaagga cttgcttgcc caaatgaaaa atggctattt cttagaaggt	1980
tttgttcgtt tcaaacaaga tcctaaaaaa gaagagctta tgagcattcc atatattggt	2040
ttccgaggtg attttggcaa tctgtcagcc ttagaaaaac caatctatga tagcaaagac	2100
ggtagcagct actatcatga agcaaatagt gatgccaaag accaattaga tggtgatgga	2160
ttacagtttt acgctctgaa aaataacttt acagcactta ccacagagtc taacccatgg	2220
acgattatta aagctgtcaa agaaggggtt gaaaacatag aggatatcga atcttcagag	2280
atcacagaaa ccatttttgc aggtactttt gcaaaacaag acgatgatag ccactactat	2340
atecacegte aegetaatgg caaaceatat getgegatet etecaaatgg ggaeggtaae	2400
agagattatg tecaatteca aggtaettte ttgegtaatg etaaaaacet tgtggetgaa	2460
gtcttggaca aagaaggaaa tgttgtttgg acaagtgagg taaccgagca agttgttaaa	2520
aactacaaca atgacttggc aagcacactt ggttcaaccc gttttgaaaa aacgcgttgg	2580
gacggtaaag ataaagacgg caaagttgtt gttaacggaa cctacaccta tcgtgtccgc	2640
tacactccga ttagctcagg tgcaaaagaa caacacactg attttgatgt gattgtagac	2700
aatacgacac ctgaagtcgc aacatcggca acattctcaa cagaagatcg tcgtttgaca	2760
cttgcatcta aaccaaaaac cagccaaccg atttaccgtg agcgtattgc ttacacttat	2820
atggatgagg atctgccaac aacagagtat atttctccaa atgaagatgg tacctttact	2880
cttcctgaag aggctgaaac aatggaaggc ggtactgttc cattgaaaat gtcagacttt	2940
acttatgttg ttgaagatat ggctggtaac atcacttata caccagtgac taagctattg	3000
gagggccact cttaa	3015

5

<210> 2 <211> 1007

<212> PRT

<213> Streptococcus pyogenes

5	<222	> CA > (1).	RACT (100 -prote	7)			CELÁ	NEA								
	<400 Gly 1	_	Leu	Gly	Ser 5	Asn	Thr	Val	Thr	Glu 10	Asp	Thr	Pro	Ala	Thr 15	Glu
	Gln	Ala	Val	Glu 20	Thr	Pro	Gln	Pro	Thr 25	Ala	Val	Ser	Glu	Glu 30	Ala	Pro
	Ser	Ser	Ser 35	Lys	Glu	Thr	Lys	Ile 40	Pro	Gln	Thr	Pro	Gly 45	Asp	Ala	Glu
	Glu	Thr 50	Val	Ala	Asp	Asp	Ala 55	Asn	Asp	Leu	Ala	Pro 60	Gln	Ala	Pro	Ala
	Lys 65	Thr	Ala	Asp	Thr	Pro 70	Ala	Thr	Ser	Lys	Ala 75	Thr	Ile	Arg	Asp	Let 80
	Asn	Asp	Pro	Ser	Gln 85	Val	Lys	Thr	Leu	Gln 90	Glu	Lys	Ala	Ser	Lys 95	Gly
	Ala	Gly	Thr	Val 100	Val	Ala	Val	Ile	Asp 105	Ala	Gly	Phe	Asp	Lys 110	Asn	His
	Glu	Ala	Trp 115	Arg	Leu	Thr	Asp	Lys 120	Thr	Lys	Ala	Arg	Tyr 125	Gln	Ser	Lys
	Glu	Asp 130	Leu	Glu	Lys	Ala	Lys 135	Lys	Glu	His	Gly	Ile 140	Thr	Tyr	Gly	Glu
	Trp 145	Val	Asn	Asp	Lys	Val 150	Ala	Tyr	Tyr	His	Asp 155	Tyr	Ser	Lys	Asp	Gly 160
	Lys	Thr	Ala	Val	Asp 165	Gln	Glu	His	Gly	Thr 170	His	Val	Ser	Gly	Ile 175	Let

Ser Gly Asn Ala Pro Ser Glu Thr Lys Glu Pro Tyr Arg Leu Glu Gly 180 185 190

10

Ala	Met	Pro 195	Glu	Ala	Gln	Leu	Leu 200	Leu	Met	Arg	Val	Glu 205	Ile	Val	Asn
Gly	Leu 210	Ala	Asp	Tyr	Ala	Arg 215	Asn	Tyr	Ala	Gln	Ala 220	Ile	Arg	Asp	Ala
Val 225	Asn	Leu	Gly	Ala	Lys 230	Val	Ile	Asn	Met	Ser 235	Phe	Gly	Asn	Ala	Ala 240
Leu	Ala	Tyr	Ala	Asn 245	Leu	Pro	Asp	Glu	Thr 250	Lys	Lys	Ala	Phe	Asp 255	Tyr
Ala	Lys	Ser	Lys 260	Gly	Val	Ser	Ile	Val 265	Thr	Ser	Ala	Gly	As n 270	Asp	Ser
Ser	Phe	Gly 275	Gly	Lys	Thr	Arg	Leu 280	Pro	Leu	Ala	Asp	His 285	Pro	Asp	Tyr
Gly	Val 290	Val	Gly	Thr	Pro	Ala 295	Ala	Ala	Asp	Ser	Thr 300	Leu	Thr	Val	Ala
Ser 305	Tyr	Ser	Pro	Asp	Lys 310	Gln	Leu	Thr	Glu	Thr 315	Ala	Thr	Val	Lys	Thr 320
Asp	Asp	His	Gln	Ala 325	Lys	Glu	Met	Pro	Val 330	Leu	Ser	Thr	Asn	Arg 335	Phe
Glu	Pro	Asn	Lys 340	Ala	Tyr	Asp	Tyr	Ala 345	Tyr	Ala	Asn	Arg	Gly 350	Met	Lys
Glu	Asp	Asp 355	Phe	Lys	Asp	Val	Lys 360	Gly	Lys	Ile	Ala	Leu 365	Ile	Glu	Arg
Gly	Asp 370	Ile	Asp	Phe	Lys	Asp 375	Lys	Ile	Ala	Asn	Ala 380	Lys	Lys	Ala	Gly
Ala 385	Val	Gly	Val	Leu	11e 390	Tyr	Asp	Asn	Gln	Asp 395	Lys	Gly	Phe	Pro	Ile 400
Glu	Leu	Pro	Asn	Val 405	Asp	Gln	Met	Pro	Ala 410	Ala	Phe	Ile	Ser	Arg 415	Lys
Asp	Gly	Leu	Leu 420	Leu	Lys	Asp	Asn	Ser 425	Lys	Lys	Thr	Ile	Thr 430	Phe	Asn
Ala	Thr	Pro	Lys	Val	Leu	Pro	Thr	Ala	Ser	Asp	Thr	Lys	Leu	Ser	Arg

		435					440					445			
Phe	Ser 450	Ser	Trp	Gly	Leu	Thr 455	Ala	Asp	Gly	Asn	Ile 460	Lys	Pro	Asp	Ile
Ala 465	Ala	Pro	Gly	Gln	Asp 470	Ile	Leu	Ser	Ser	Val 475	Ala	Asn	Asn	Lys	Tyr 480
Ala	L y s	Leu	Ser	Gly 485	Thr	Ser	Met	Ser	Ala 490	Pro	Leu	Val	Ala	Gly 495	Ile
Met	Gly	Leu	Leu 500	Gln	Lys	Gln	Tyr	G1u 505	Thr	Gln	Tyr	Pro	Asp 510	Met	Thr
Pro	Ser	Glu 515	Arg	Leu	Asp	Leu	A la 520	Lys	Lys	Val	Leu	Met 525	Ser	Ser	Ala
Thr	Ala 530	Leu	Tyr	Asp	Glu	Asp 535	Glu	Lys	Ala	Tyr	Phe 540	Ser	Pro	Arg	Gln
Gln 545	Gly	Ala	Gly	Ala	Val 550	Asp	Ala	Lys	Lys	Ala 555	Ser	Ala	Ala	Thr	Met 560
Tyr	Val	Thr	Asp	Lys 565	Asp	Asn	Thr	Ser	Ser 570	Lys	Val	His	Leu	Asn 575	Asn
Val	Ser	Asp	Lys 580	Phe	Glu	Val	Thr	Val 585	Thr	Val	His	Asn	Ly s 590	Ser	Asp
Lys	Pro	Gln 595	Glu	Leu	Tyr	Tyr	Gln 600	Ala	Thr	Val	Gln	Thr 605	Asp	Lys	Val
Asp	Gly 610	Lys	His	Phe	Ala	Leu 615	Ala	Pro	Lys	Ala	Leu 620	Tyr	Glu	Thr	Ser
Trp 625	Gln	Lys	Ile	Thr	11e 630	Pro	Ala	Asn	Ser	Ser 635	Lys	Gln	Val	Thr	Val 640
Pro	Ile	Asp	Ala	Ser 645	Arg	Phe	Ser	Lys	Asp 650	Leu	Leu	Ala	Gln	Met 655	Lys
Asn	Gly	Tyr	Phe 660	Leu	Glu	Gly	Phe	Val 665	Arg	Phe	Lys	Gln	Asp 670	Pro	Lys
Lys	Glu	Glu 675	Leu	Met	Ser	Ile	Pro 680	Tyr	Ile	Gly	Phe	Arg 685	Gly	Asp	Phe

Gly	Asn 690	Leu	Ser	Ala	Leu	Glu 695	Lys	Pro	Ile	Tyr	Asp 700	Ser	Lys	Asp	Gly
Ser 705	Ser	Tyr	Tyr	His	Glu 710	Ala	Asn	Ser	Asp	Ala 715	Lys	Asp	Gln	Leu	Asp 720
Gly	Asp	Gly	Leu	Gln 725	Phe	Tyr	Ala	Leu	Lys 730	Asn	Asn	Phe	Thr	Ala 735	Leu
Thr	Thr	Glu	Ser 740	Asn	Pro	Trp	Thr	Ile 745	Ile	Lys	Ala	Val	Lys 750	Glu	Gly
Val	Gl u	Asn 755	Ile	Glu	Asp	Ile	Glu 760	Ser	Ser	Glu	Ile	Thr 765	Glu	Thr	Ile
Phe	Ala 770	G1y	Thr	Phe	Ala	Lys 775	Gln	Asp	Asp	Asp	Ser 780	His	Tyr	Tyr	Ile
His 785	Arg	His	Ala	Asn	Gly 790	Lys	Pro	Tyr	Ala	Ala 795	Ile	Ser	Pro	Asn	Gly 800
Asp	Gly	Asn	Arg	Asp 805	Tyr	Val	Gln	Phe	Gln 810	Gly	Thr	Phe	Leu	Arg 815	Asn
Ala	Lys	Asn	Leu 820	Val	Ala	Glu	Val	Leu 825	Asp	Lys	Glu	Gly	A sn 830	Val	Val
Trp	Thr	Ser 835	Glu	Val	Thr	Glu	Gln 840	Val	Val	Lys	Asn	Tyr 845	Asn	Asn	Asp
Leu	Ala 850	Ser	Thr	Leu	Gly	Ser 855	Thr	Arg	Phe	Glu	Lys 860	Thr	Arg	Trp	Asp
G ly 865	Lys	Asp	Lys	Asp	Gly 870	Lys	Val	Val	Val	Asn 875	Gly	Thr	Tyr	Thr	Tyr 880
Arg	Val	Arg	Tyr	Thr 885	Pro	Ile	Ser	Ser	Gly 890	Ala	Lys	Glu	Gln	His 895	Thr
Asp	Phe	Asp	Val 900	Ile	Val	Asp	Asn	Thr 905	Thr	Pro	Glu	Val	Ala 910	Thr	Ser
Ala	Thr	Phe 915	Ser	Thr	Glu	Asp	A rg 920	Arg	Leu	Thr	Leu	Ala 925	Ser	Lys	Pro
Lys	Thr 930	Ser	Gln	Pro	Ile	Tyr 935	Arg	Glu	Arg	Ile	Ala 940	Tyr	Thr	Tyr	Met

Asp Glu Asp Leu Pro Thr Thr Glu Tyr Ile Ser Pro Asn Glu Asp Gly 945 950 950 955 960

Thr Phe Thr Leu Pro Glu Glu Ala Glu Thr Met Glu Gly Gly Thr Val 965 970 975

Pro Leu Lys Met Ser Asp Phe Thr Tyr Val Val Glu Asp Met Ala Gly

	Asn	Ile	Thr 995	Tyr	Thr	Pro	Val	Thr 1000	Lys)	Let	ı Let	ı Glu	100		is Se	er
5		> 961 > PR		occus	s pyog	genes	:									
10	<222	> CA > (1).	RACT (961 oteasa)			CELÁ	NEA								
	<400 Ala 1	-	Glu	Thr	Val 5	Ala	Asp	Asp	Ala	Asn 10	Asp	Leu	Ala	Pro	Gln 15	Ala
	Pro	Ala	Lys	Thr 20	Ala	Asp	Thr	Pro	Ala 25	Thr	Ser	Lys	Ala	Thr 30	Ile	Arg
	Asp	Leu	Asn 35	Asp	Pro	Ser	Gln	Val 40	Lys	Thr	Leu	Gln	G1u 45	Lys	Ala	Ser
	Lys	Gly 50	Ala	Gly	Thr	Val	Val 55	Ala	Val	Ile	Asp	Ala 60	Gly	Phe	Asp	Lys
	Asn 65	His	Glu	Ala	Trp	Arg 70	Leu	Thr	Asp	Lys	Thr 75	Lys	Ala	Arg	Tyr	Gln 80
	Ser	Lys	Glu	Asp	Leu 85	Glu	Lys	Ala	Lys	Lys 90	Glu	His	Gly	Ile	Thr 95	Tyr
	Gly	Glu	Trp	Val 100	Asn	Asp	Lys	Val	Ala 105	Tyr	Tyr	His	Asp	Tyr 110	Ser	Lys
	Asp	Gly	Lys 115	Thr	Ala	Val	Asp	Gln 120	Glu	His	Gly	Thr	His 125	Val	Ser	Gly
15	Ile	Leu	Ser	Gly	Asn	Ala	Pro	Ser	Glu	Thr	Lys	Glu	Pro	Tyr	Arg	Leu

	130					135					140				
Glu 145	Gly	Ala	Met	Pro	Glu 150	Ala	Gln	Leu	Leu	Leu 155	Met	Arg	Val	Glu	Ile 160
Val	Asn	Gly	Leu	Ala 165	Asp	Tyr	Ala	Arg	Asn 170	Tyr	Ala	Gln	Ala	Ile 175	Arg
Asp	Ala	Val	Asn 180	Leu	Gly	Ala	Lys	Val 185	Ile	Asn	Met	Ser	Phe 190	Gly	Asn
Ala	Ala	Leu 195	Ala	Tyr	Ala	Asn	Leu 200	Pro	Asp	Glu	Thr	Lys 205	Lys	Ala	Phe
Asp	Tyr 210	Ala	Lys	Ser	Lys	Gly 215	Val	Ser	Ile	Val	Thr 220	Ser	Ala	Gly	Asn
Asp 225	Ser	Ser	Phe	Gly	Gly 230	Lys	Thr	Arg	Leu	Pro 235	Leu	Ala	Asp	His	Pro 240
Asp	Tyr	Gly	Val	Val 245	Gly	Thr	Pro	Ala	Ala 250	Ala	Asp	Ser	Thr	Leu 255	Thr
Val	Ala	Sèr	Tyr 260	Ser	Pro	Asp	Lys	Gln 265	Leu	Thr	Glu	Thr	Ala 270	Thr	Val
Lys	Thr	Asp 275	Asp	His	Gln	Ala	Lys 280	Glu	Met	Pro	Val	Leu 285	Ser	Thr	Asn
Arg	Phe 290	Glu	Pro	Asn	Lys	Ala 295	Tyr	Asp	Tyr	Ala	Tyr 300	Ala	Asn	Arg	Gly
Met 305	Lys	Glu	Asp	Asp	Phe 310	Lys	Asp	Val	Lys	Gly 315	Lys	Ile	Ala	Leu	11e 320
Glu	Arg	Gly	Asp	11e 325	Asp	Phe	Lys	Asp	Lys 330	Ile	Ala	Asn	Ala	Lys 335	Lys
Ala	Gly	Ala	Val 340	Gly	Val	Leu	Ile	Tyr 345	Asp	Asn	Gln	Asp	Lys 350	Gly	Phe
Pro	Ile	Glu 355	Leu	Pro	Asn	Val	Asp 360	Gln	Met	Pro	Ala	Ala 365	Phe	Ile	Ser
Arg	Lys 370	Asp	Gly	Leu	Leu	Leu 375	Lys	Asp	Asn	Ser	Lys 380	Lys	Thr	Ile	Thr

Phe 385	Asn	Ala	Thr	Pro	Lys 390	Val	Leu	Pro	Thr	Ala 395	Ser	Asp	Thr	Lys	Leu 400
Ser	Arg	Phe	Ser	Ser 405	Trp	Gly	Leu	Thr	Ala 410	Asp	Gly	Asn	Ile	Lys 415	Pro
Asp	Ile	Ala	Ala 420	Pro	Gly	Gln	Asp	Ile 425	Leu	Ser	Ser	Val	Ala 430	Asn	Asn
Lys	Tyr	Ala 435	Lys	Leu	Ser	Gly	Thr 440	Ser	Met	Ser	Ala	Pro 445	Leu	Val	Ala
Gly	Ile 450	Met	Gly	Leu	Leu	Gln 455	Lys	Gln	Tyr	Glu	Thr 460	Gln	Tyr	Pro	Asp
Met 465	Thr	Pro	Ser	Glu	Arg 470	Leu	Asp	Leu	Ala	Lys 475	Lys	Val	Leu	Met	Ser 480
Ser	Ala	Thr	Ala	Leu 485	Tyr	Asp	Glu	Asp	Glu 490	Lys	Ala	Tyr	Phe	Ser 495	Pro
Arg	Gln	Gln	Gly 500	Ala	Gly	Ala	Val	Asp 505	Ala	Lys	Lys	Ala	Ser 510	Ala	Ala
Thr	Met	Tyr 515	Val	Thr	Asp	Lys	Asp 520	Asn	Thr	Ser	Ser	Lys 525	Val	His	Leu
Asn	Asn 530	Val	Ser	Asp	Lys	Phe 535	Glu	Val	Thr	Val	Thr 540	Val	His	Asn	Lys
Ser 545	Asp	Lys	Pro	Gln	Glu 550	Leu	Tyr	Tyr	Gln	Ala 555	Thr	Val	Gln	Thr	Asp 560
Lys	Val	Asp	Gly	Lys 565	His	Phe	Ala	Leu	Ala 570	Pro	Lys	Ala	Leu	Tyr 575	Glu
Thr	Ser	Trp	Gln 580	Lys	Ile	Thr	Ile	Pro 585	Ala	Asn	Ser	Ser	Lys 590	Gln	Val
Thr	Val	Pro 59 5	Ile	Asp	Ala	Ser	Arg 600	Phe	Ser	Lys	Asp	Leu 605	Leu	Ala	Gln
Met	Lys 610	Asn	Gly	Tyr	Phe	Leu 615	Glu	Gly	Phe	Val	Arg 620	Phe	Lys	Gln	Asp
Pro 625	Lys	Lys	Glu	Glu	Leu 630	Met	Ser	Ile	Pro	Tyr 635	Ile	Gly	Phe	Arg	Gly 640

Asp	Pne	GIY	ASII	645	ser	АТА	ren	GIU	650	PIO	ııe	Tyr	Asp	655	тйя
Asp	Gly	Ser	Ser 660	Tyr	Tyr	His	Glu	Ala 665	Asn	Ser	Asp	Ala	Lys 670	Asp	Gln
Leu	Asp	Gly 675	Asp	Gly	Leu	Gln	Phe 680	Tyr	Ala	Leu	Lys	Asn 685	Asn	Phe	Thr
Ala	Leu 690	Thr	Thr	Glu	Ser	Asn 695	Pro	Trp	Thr	Ile	Ile 700	Lys	Ala	Val	Lys
Glu 705	Gly	Val	Glu	Asn	Ile 710	Glu	Asp	Ile	Glu	Ser 715	Ser	Glu	Ile	Thr	Glu 720
Thr	Ile	Phe	Ala	Gly 725	Thr	Phe	Ala	Lys	Gln 730	Asp	Asp	Asp	Ser	His 735	Tyr
Tyr	Ile	His	Arg 740	His	Ala	Asn	Gly	Lys 745	Pro	Tyr	Ala	Ala	11e 750	Ser	Pro
Asn	Gly	Asp 755	Gly	Asn	Arg	Asp	Tyr 760	Val	Gln	Phe	Gln	Gly 765	Thr	Phe	Leu
Arg	Asn 770	Ala	Lys	Asn	Leu	Val 775	Ala	Glu	Val	Leu	Asp 780	Lys	Glu	Gly	Asn
Val 785	Val	Trp	Thr	Ser	Glu 790	Val	Thr	Glu	Gln	Val 795	Val	Lys	Asn	Tyr	Asn 800
Asn	Asp	Leu	Ala	Ser 805	Thr	Leu	Gly	Ser	Thr 810	Arg	Phe	Glu	Lys	Thr 815	Arg
Trp	Asp	Gly	Lys 820	Asp	Lys	Asp	Gly	Lys 825	Val	Val	Val	Asn	Gly 830	Thr	Tyr
Thr	Tyr	Arg 835	Val	Arg	Tyr	Thr	Pro 840	Ile	Ser	Ser	Gly	Ala 845	Lys	Glu	Gln
His	Thr 850	Asp	Phe	Asp	Val	Ile 855	Val	Asp	Asn	Thr	Thr 860	Pro	Glu	Val	Ala

Thr Ser Ala Thr Phe Ser Thr Glu Asp Arg Arg Leu Thr Leu Ala Ser 865 870 880

Lys Pro Lys Thr Ser Gln Pro Ile Tyr Arg Glu Arg Ile Ala Tyr Thr 885 890 895

Tyr Met Asp Glu Asp Leu Pro Thr Thr Glu Tyr Ile Ser Pro Asn Glu 900 905 Asp Gly Thr Phe Thr Leu Pro Glu Glu Ala Glu Thr Met Glu Gly Gly 915 Thr Val Pro Leu Lys Met Ser Asp Phe Thr Tyr Val Val Glu Asp Met Ala Gly Asn Ile Thr Tyr Thr Pro Val Thr Lys Leu Leu Glu Gly His 950 955 Ser <210> 4 <211> 954 <212> PRT <213> Streptococcus pyogenes <221> CARACTERÍSTICA MISCELÁNEA <222> (1)..(954) <223> Variante de la proteasa ScpA <400> 4 Asp Ala Asn Asp Leu Ala Pro Gln Ala Pro Ala Lys Thr Ala Asp Thr Pro Ala Thr Ser Lys Ala Thr Ile Arg Asp Leu Asn Asp Pro Ser Gln 25 Val Lys Thr Leu Gln Glu Lys Ala Ser Lys Gly Ala Gly Thr Val Val Ala Val Ile Asp Ala Gly Phe Asp Lys Asn His Glu Ala Trp Arg Leu Thr Asp Lys Thr Lys Ala Arg Tyr Gln Ser Lys Glu Asp Leu Glu Lys

Ala Lys Lys Glu His Gly Ile Thr Tyr Gly Glu Trp Val Asn Asp Lys

Val Ala Tyr Tyr His Asp Tyr Ser Lys Asp Gly Lys Thr Ala Val Asp 100 105 110

10

Gln	Glu	His 115	Gly	Thr	His	Val	Ser 120	Gly	Ile	Leu	Ser	GLy 125	Asn	Ala	Pro
Ser	Glu 130	Thr	Lys	Glu	Pro	Tyr 135	Arg	Leu	Glu	Gly	Ala 140	Met	Pro	Glu	Ala
Gln 145	Leu	Leu	Leu	Met	Arg 150	Val	Glu	Ile	Val	Asn 155	Gly	Leu	Ala	Asp	Tyr 160
Ala	Arg	Asn	Tyr	Ala 165	Gln	Ala	Ile	Arg	Asp 170	Ala	Val	Asn	Leu	Gly 175	Ala
Lys	Val	Ile	Asn 180	Met	Ser	Phe	Gly	Asn 185	Ala	Ala	Leu	Ala	Tyr 190	Ala	Asn
Leu	Pro	Asp 195	Glu	Thr	Lys	Lys	Ala 200	Phe	Asp	Tyr	Ala	Lys 205	Ser	Lys	Gly
Val	Ser 210	Ile	Val	Thr	Ser	Ala 215	Gly	Asn	Asp	Ser	Ser 220	Phe	Gly	Gly	Lys
225	Arg				230	_				235				-	240
	Ala			245					250			_		255	
-	Gln		260					265	-		_	-	270		
-	Glu	275					280					285		-	
-	Asp 290					295					300	_	_		
305	Val				310					315		_		-	320
-	Asp	-		325			-	-	330	_			_	335	
	Tyr	•	340		-	-		345					350		
nsp	Gln	355	FEO	WTQ	wid	FIIG	360	oer	nry.	тÃа	rap	365	TICIT	TIGU	neu

	Lys	370	Asn	Ser	Lys	Lys	7hr 375	Ile	Thr	Phe		380	Thr	Pro	Lys	Val
	Leu 385	Pro	Thr	Ala	Ser	Asp 390	Thr	Lys	Leu	Ser	Arg 395	Phe	Ser	Ser	Trp	Gly 400
	Leu	Thr	Ala	Asp	Gly 405	Asn	Ile	Lys	Pro	Asp 410	Ile	Ala	Ala	Pro	Gly 415	Gln
	Asp	Ile	Leu	Ser 420	Ser	Val	Ala	Asn	A sn 42 5	Lys	Tyr	Ala	Lys	Leu 430	Ser	Gly
	Thr	Ser	Met 435	Ser	Ala	Pro	Leu	Val 440	Ala	Gly	Ile	Met	Gly 445	Leu	Leu	Gln
	Lys	Gln 450	Tyr	Glu	Thr	Gln	Tyr 455	Pro	Asp	Met	Thr	Pro 460	Ser	Glu	Arg	Leu
	Asp 465	Leu	Ala	Lys	Lys	Val 470	Leu	Met	Ser	Ser	Ala 475	Thr	Ala	Leu	Tyr	Asp 480
	Glu	Asp	Glu	Lys	Ala 485	Tyr	Phe	Ser	Pro	Arg 490	Gln	Gln	Gly	Ala	Gly 495	Ala
	Val	Asp	Ala	Lys 500	Lys	Ala	Ser	Ala	Ala 505	Thr	Met	Tyr	Val	Thr 510	Asp	Lys
	Asp	Asn	Thr 515	Ser	Ser	Lys	Val	His 520	Leu	Asn	Asn	Val	Ser 525	Asp	Lys	Phe
	Glu	Val 530	Thr	Val	Thr	Val	His 535	Asn	Lys	Ser	Asp	Lys 540	Pro	Gln	Glu	Leu
	Tyr 545	Tyr	Gln	Ala	Thr	Val 550	Gln	Thr	Asp	Lys	Val 555	Asp	Gly	Lys	His	Phe 560
	Ala	Leu	Ala	Pro	Lys 565	Ala	Leu	Tyr	G1u	Thr 570	Ser	Trp	Gln	Lys	Ile 575	Thr
	Ile	Pro	Ala	Asn 580	Ser	Ser	Lys	Gln	Val 585	Thr	Val	Pro	Ile	Asp 590	Ala	Ser
	Arg	Phe	Ser 595	Lys	Asp	Leu	Leu	Ala 600	Gln	Met	Lys	Asn	Gly 605	Tyr	Phe	Leu
,	Glu	Gly 610	Phe	Val	Arg		Lys 615		Asp	Pro		Lys 620	Glu	G l u	Leu	Met

625	ıre	Pro	Tyr	ше	630	Pne	Arg	GIY.	ASP	635	GIY	ASN	Leu	ser	640
Leu	Glu	Lys	Pro	Ile 645	Tyr	Asp	Ser	Lys	Asp 650	Gly	Ser	Ser	туг	Tyr 655	His
Glu	Ala	Asn	Ser 660	Asp	Ala	Lys	Asp	Gln 665	Leu	Asp	Gly	Asp	Gly 670	Leu	Gln
Phe	Tyr	Ala 675	Leu	Lys	Asn	Asn	Phe 680	Thr	Ala	Leu	Thr	Thr 685	Glu	Ser	Asn
Pro	Trp 690	Thr	Ile	Ile	Lys	Ala 695	Val	Lys	Glu	Gly	Val 700	Glu	Asn	Ile	Glu
Asp 705	Ile	Glu	Ser	Ser	Glu 710	Ile	Thr	Glu	Thr	Ile 715	Phe	Ala	Gly	Thr	Phe 720
Ala	Lys	Gln	Asp	Asp 725	Asp	Ser	His	Tyr	Tyr 730	Ile	His	Arg	His	Ala 735	Asn
Gly	Lys	Pro	Tyr 740	Ala	Ala	Ile	Ser	Pro 745	Asn	Gly	Asp	Gly	Asn 750	Arg	Asp
Tyr	Val	Gln 755	Phe	Gln	Gly	Thr	Phe 760	Leu	Arg	Asn	Ala	Lys 765	Asn	Leu	Val
Ala	Glu 770	Val	Leu	Asp	Lys	Glu 775	Gly	Asn	Val	Val	Trp 780	Thr	Ser	Glu	Val
Thr 785	Glu	Gln	Val	Val	Lys 790	Asn	Tyr	Asn	Asn	Asp 795	Leu	Ala	Ser	Thr	Leu 800
Gly	Ser	Thr	Arg	Phe 805	Glu	Lys	Thr	Arg	Trp 810	Asp	Gly	Lys	Asp	Lys 815	Asp
Gly	Lys	Val	Val 820	Val	Asn	Gly	Thr	Tyr 825	Thr	Tyr	Arg	Val	Arg 830	Tyr	Thr
Pro	Ile	Ser 835	Ser	Gly	Ala	Lys	Glu 840	Gln	His	Thr	Asp	Phe 845	Asp	Val	Ile
Val	Asp 850	Asn	Thr	Thr	Pro	Glu 855	Val	Ala	Thr	Ser	Ala 860	Thr	Phe	Ser	Thr
Glu	Asp	Arg	Arg	Leu	Thr	Leu	Ala	Ser	Lys	Pro	Lys	Thr	Ser	G1n	Pro

	Ile	Tyr	Arg	Glu	Arg 885	Ile	Ala	Tyr	Thr	Tyr 890	Met	Asp	Glu	Asp	Leu 895	Pro
	Thr	Thr	Glu	Tyr 900	Ile	Ser	Pro	Asn	Glu 905	Asp	Gly	Thr	Phe	Thr 910	Leu	Pro
	Glu	Glu	Ala 915	Glu	Thr	Met	Glu	Gly 920	Gly	Thr	Val	Pro	Leu 925	Lys	Met	Ser
	Asp	Phe 930	Thr	Tyr	Val	Val	Glu 935	Asp	Met	Ala	Gly	Asn 940	Ile	Thr	Tyr	Thr
	Pro 945	Val	Thr	Lys	Leu	Leu 950	Glu	Gly	His	Ser						
5	<210 <211 <212 <213	> 943 > PR		occus	s pyog	genes	i									
10	<222	> CA > (1).	RAC .(943 riante)			CELÁ ScpA	NEA								
	<400 Lys 1	-	Ala	Asp	Thr 5	Pro	Ala	Thr	Ser	Lys 10	Ala	Thr	Ile	Arg	Asp 15	Leu
	Asn	Asp	Pro	Ser 20	Gln	Val	Lys	Thr	Leu 25	Gln	Glu	Lys	Ala	Ser 30	Lys	Gly
	Ala	Gly	Thr 35	Val	Val	Ala	Val	Ile 40	Asp	Ala	Gly	Phe	Asp 45	Lys	Asn	His
	Glu	Ala 50	Trp	Arg	Leu	Thr	Asp 55	Lys	Thr	Lys	Ala	Arg 60	Tyr	G l n	Ser	Lys
	Glu 65	Asp	Leu	Glu	Lys	Ala 70	Lys	Lys	Glu	His	Gly 75	Ile	Thr	Tyr	Gly	Glu 80
	Trp	Val	Asn	Asp	Lys 85	۷al	Ala	Tyr	Tyr	His 90	Asp	Tyr	Ser	Lys	Asp 95	Gly
15	Lys	Thr	Ala	Val 100	Asp	Gln	Glu	His	Gly 105	Thr	His	Val		Gly 110	Ile	Leu

Ser	Gly	Asn 115	Ala	Pro	Ser	Glu	Thr 120	Lys	Glu	Pro	Tyr	Arg 125	Leu	Glu	Gly
Ala	Met 130	Pro	Glu	Ala	Gln	Leu 135	Leu	Leu	Met	Arg	Val 140	Glu	Ile	Val	Asn
Gly 145	Leu	Ala	Asp	Tyr	Ala 150	Arg	Asn	Tyr	Ala	Gln 155	Ala	Ile	Arg	Asp	Ala 160

- Val Asn Leu Gly Ala Lys Val Ile Asn Met Ser Phe Gly Asn Ala Ala 165 170 175
- Leu Ala Tyr Ala Asn Leu Pro Asp Glu Thr Lys Lys Ala Phe Asp Tyr 180 185 190
- Ala Lys Ser Lys Gly Val Ser Ile Val Thr Ser Ala Gly Asn Asp Ser 195 200 205
- Ser Phe Gly Gly Lys Thr Arg Leu Pro Leu Ala Asp His Pro Asp Tyr 210 215 220
- Gly Val Val Gly Thr Pro Ala Ala Asp Ser Thr Leu Thr Val Ala 225 230 235 240
- Ser Tyr Ser Pro Asp Lys Gln Leu Thr Glu Thr Ala Thr Val Lys Thr 245 250 255
- Asp Asp His Gln Ala Lys Glu Met Pro Val Leu Ser Thr Asn Arg Phe 260 265 270
- Glu Pro Asn Lys Ala Tyr Asp Tyr Ala Tyr Ala Asn Arg Gly Met Lys 275 280 285
- Glu Asp Asp Fhe Lys Asp Val Lys Gly Lys Ile Ala Leu Ile Glu Arg 290 295 300
- Gly Asp Ile Asp Phe Lys Asp Lys Ile Ala Asn Ala Lys Lys Ala Gly 305 310 315 320
- Glu Leu Pro Asn Val Asp Gln Met Pro Ala Ala Phe Ile Ser Arg Lys 340 345 350
- Asp Gly Leu Leu Leu Lys Asp Asn Ser Lys Lys Thr Ile Thr Phe Asn 355 360 365

Ala	370	Pro	Lys	Val	Leu	Pro 375	Thr	Ala	Ser	Asp	380	Lys	Leu	Ser	Arg
Phe 385	Ser	Ser	Trp	Gly	Leu 390	Thr	Ala	Asp	Gly	Asn 395	Ile	Lys	Pro	Asp	11e 400
Ala	Ala	Pro	Gly	Gln 405	Asp	Ile	Leu	Ser	Ser 410	Val	Ala	Asn	Asn	Lys 415	Tyr
Ala	Lys	Leu	Ser 420	Gly	Thr	Ser	Met	Ser 425	Ala	Pro	Leu	Val	Ala 430	Gly	Ile
Met	Gly	Leu 435	Leu	Gln	Lys	Gln	Tyr 440	Glu	Thr	Gln	Tyr	Pro 445	Asp	Met	Thr
Pro	Ser 450	Glu	Arg	Leu	Asp	Leu 455	Ala	Lys	Lys	Val	Leu 460	Met	Ser	Ser	Ala
Thr 465	Ala	Leu	Tyr	Asp	Glu 470	Asp	Glu	Lys	Ala	Tyr 475	Phe	Ser	Pro	Arg	Gln 480
Gln	Gly	Ala	Gly	Ala 485	Val	Asp	Ala	Lys	Lys 490	Ala	Ser	Ala	Ala	Thr 495	Met
Tyr	Val	Thr	Asp 500	Lys	Asp	Asn	Thr	Ser 505	Ser	Lys	Val	His	Leu 510	Asn	Asn
Val	Ser	Asp 515	Lys	Phe	Glu	Val	Thr 520	Val	Thr	Val	His	Asn 525	Lys	Ser	Asp
Lys	Pro 530	Gln	Glu	Leu	Tyr	Tyr 535	Gln	Ala	Thr	Val	Gln 540	Thr	Asp	Lys	Val
Asp 545	Gly	Lys	His	Phe	Ala 550	Leu	Ala	Pro	Lys	Ala 555	Leu	Tyr	Glu	Thr	Ser 560
Trp	Gln	Lys	Ile	Thr 565	Ile	Pro	Ala	Asn	Ser 570	Ser	Lys	Gln	Val	Thr 575	Val
Pro	Ile	Asp	Ala 580	Ser	Arg	Phe	Ser	Ly s 585	Asp	Leu	Leu	Ala	Gln 590	Met	Lys
Asn	Gly	Туг 595	Phe	Leu	Glu	Gly	Phe 600	Val	Arg	Phe	Lys	Gln 605	Asp	Pro	Lys
Lys	Glu	Glu	Leu	Met	Ser	Ile	Pro	Tyr	Ile	Gly	Phe	Arg	Gly	Asp	Phe

	610					615					620				
G1y 625	Asn	Leu	Ser	Ala	Leu 630	Glu	Lys	Pro	Ile	Tyr 635	Asp	Ser	Lys	Asp	Gly 640
Ser	Ser	Tyr	Tyr	His 645	Glu	Ala	Asn	Ser	Asp 650	Ala	Lys	Asp	Gln	Leu 655	Asp
Gly	Asp	Gly	Leu 660	Gln	Phe	Tyr	Ala	Leu 665	Lys	Asn	Asn	Phe	Thr 670	Ala	Leu
Thr	Thr	Glu 675	Ser	Asn	Pro	Trp	Thr 680	Ile	Ile	Lys	Ala	Val 685	Lys	Glu	Gly
Val	Glu 690	Asn	Ile	Glu	Asp	Ile 695	Glu	Ser	Ser	Glu	Ile 700	Thr	Glu	Thr	Ile
Phe 705	Ala	Gly	Thr	Phe	Ala 710	Lys	Gln	Asp	Asp	Asp 715	Ser	His	Tyr	Tyr	Ile 720
His	Arg	His	Ala	Asn 725	Gly	Lys	Pro	Tyr	Ala 730	Ala	Ile	Ser	Pro	Asn 735	Gly
Asp	Gly	Asn	Arg 740	Asp	Tyr	Val	Gln	Phe 745	Gln	Gly	Thr	Phe	Leu 750	Arg	Asn
Ala	Lys	Asn 755	Leu	Val	Ala	Glu	Val 760	Leu	Asp	Lys	Glu	Gly 765	Asn	Val	Val
Trp	Thr 770	Ser	Glu	Val	Thr	Glu 775	Gln	Val	Val	Lys	Asn 780	Tyr	Asn	Asn	Asp
Leu 785	Ala	Ser	Thr	Leu	Gly 790	Ser	Thr	Arg	Phe	Glu 795	Lys	Thr	Arg	Trp	Asp 800
Gly	Lys	Asp	Lys	Asp 805	Gly	Lys	Val	Val	Val 810	Asn	Gly	Thr	туг	Thr 815	Tyr
Arg	Val	Arg	Tyr 820	Thr	Pro	Ile	Ser	Ser 825	Gly	Ala	Lys	Glu	Gln 830	His	Thr
Asp	Phe	Asp 835	Val	Ile	Val	Asp	A sn 840	Thr	Thr	Pro	Glu	Val 845	Ala	Thr	Ser
Ala	Thr 850	Phe	Ser	Thr	Glu	Asp 855	Arg	Arg	Leu	Thr	Leu 860	Ala	Ser	Lys	Pro

	Lys 865	Thr	Ser	Gln	Pro	Ile 870	Tyr	Arg	Glu	Arg	Ile 875	Ala	Tyr	Thr	Tyr	Met 880
	Asp	Glu	Asp	Leu	Pro 885	Thr	Thr	Glu	Tyr	Ile 890	Ser	Pro	Asn	Glu	Asp 895	Gly
	Thr	Phe	Thr	Leu 900	Pro	Glu	Glu	Ala	Glu 905	Thr	Met	Glu	Gly	Gly 910	Thr	Val
	Pro	Leu	Lys 915	Met	Ser	Asp	Phe	Thr 920	Tyr	Val	Val	Glu	Asp 925	Met	Ala	Gly
	Asn	Ile 930	Thr	Tyr	Thr	Pro	Val 935	Thr	Lys	Leu	Leu	Glu 940	Gly	His	Ser	
5		-		ıpiens	3											
10	<220> <221> CARACTERÍSTICA MISCELÁNEA <222> (1)(74) <223> Proteína C5a humana															
	<400 Met 1	-	Gln	Lys	Lys 5	Ile	Glu	Glu	Ile	Ala 10	Ala	Lys	туг	Lys	His 15	Ser
	Val	Val	Lys	Lys 20	Cys	Cys	Tyr	Asp	Gly 25	Ala	Cys	Val	Asn	Asn 30	Asp	Glu
	Thr	Суѕ	Glu 35	Gln	Arg	Ala	Ala	Arg 40	Ile	Ser	Leu	Gly	Pro 45	Arg	Суз	Ile
	Lys	Ala 50	Phe	Thr	Glu	Cys	Cys 55	Val	Val	Ala	Ser	Gln 60	Leu	Arg	Ala	Asn
15	Ile 65	Ser	His	Lys	Asp	Met 70	Gln	Leu	Gly	Arg						

REIVINDICACIONES

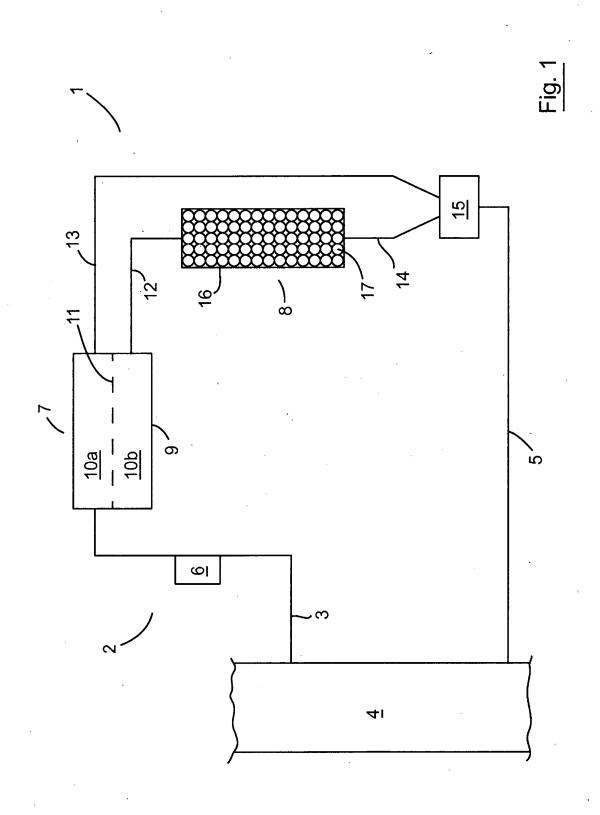
- 1. Un equipo para el tratamiento extracorporal de la sangre, que comprende:
 - un circuito extracorporal de sangre;

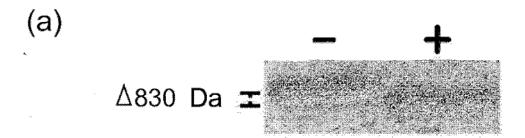
5

40

una bomba configurada para desplazar el líquido por dentro del circuito extracorporal de sangre; y

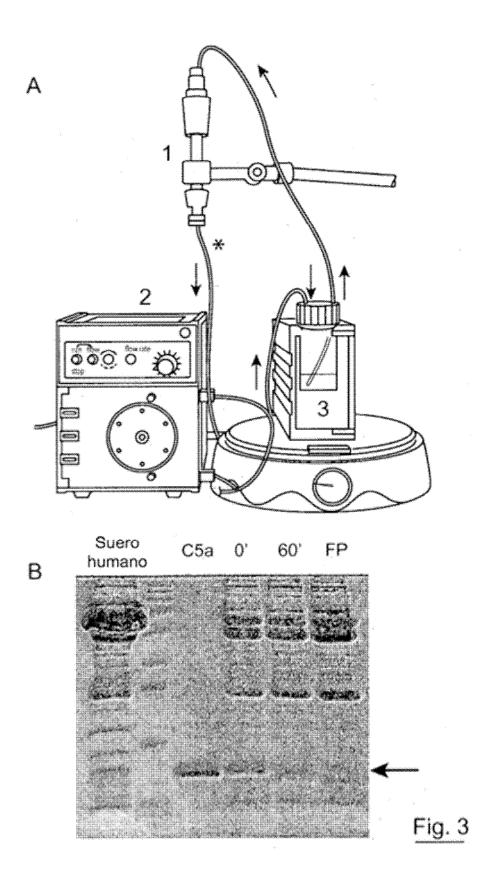
una cámara de reacción conectada al circuito extracorporal de sangre y configurada para recibir la sangre o una fracción de sangre que contiene el C5a de humano desde el circuito y tratar la sangre o la fracción de sangre que contiene el C5a de humano.


caracterizado por que la cámara de reacción comprende una enzima proteásica inmovilizada de forma irreversible a un soporte, en donde la enzima proteásica es específica del C5a de humano presente en la sangre o fracción de sangre, y es capaz de escindirlo de forma irreversible, de tal manera que se reduce la capacidad quimiotáctica del C5a de humano escindido, en donde la abundancia del C5a funcional de humano en la sangre o la fracción de sangre tratada es menor que en la sangre o la fracción de sangre sin tratar.


- 2. Un equipo de acuerdo con la reivindicación 1, en donde la enzima proteásica es una proteasa bacteriana recombinante de C5a que comprende una secuencia de SEQ ID n.º 3 o una variante funcional de la misma que tiene una identidad de secuencia de al menos el 90% con la SEQ ID n.º 3.
 - 3. Un equipo de acuerdo con la reivindicación 2, en donde las variantes funcionales de la SEQ ID n.º 3 se seleccionan de SEQ ID n.º 4 y SEQ ID n.º 5.
- 4. Un equipo de acuerdo con cualquier reivindicación anterior y que incluye medios de separación adaptados para separar la sangre en una fracción que contiene el C5a y una fracción que no contiene el C5a, en donde la cámara de reacción recibe la fracción que contiene el C5a.
 - 5. Un equipo de acuerdo con la reivindicación 4 y que incluye medios configurados para que la fracción que contiene el C5a tratado se vuelva a combinar con la fracción que no contiene el C5a.
- 6. Un equipo de acuerdo con cualquier reivindicación anterior, en donde un extremo carboxilo de la enzima proteásica comprende una primera etiqueta y una segunda etiqueta localizada distalmente de la primera etiqueta y separada de la primera etiqueta por un espaciador, y en donde el soporte comprende un ion coordinado de metal de transición y uno o varios grupos funcionales, en donde la primera etiqueta comprende un motivo capaz de reaccionar covalentemente con uno o varios grupos funcionales, y en donde la segunda etiqueta comprende un motivo capaz de interaccionar con el ion coordinado de metal de transición.
- 30 7. Un equipo de acuerdo con la reivindicación 6, en donde la primera etiqueta se selecciona de etiqueta de polilisina, poliglutamato o policisteína, y en donde la segunda etiqueta comprende una etiqueta de polihistidina.
 - 8. Un equipo de acuerdo con la reivindicación 6 o 7, en donde el soporte comprende un material de sílice mesoporoso modificado con Ni²⁺.
- 9. Un equipo de acuerdo con cualquiera de las reivindicaciones anteriores, en donde el soporte comprende muchas perlas, en donde la enzima proteásica está inmovilizada de forma irreversible en la superficie de las perlas.
 - 10. Un equipo de acuerdo con las reivindicaciones 1 a 9 para ser usado en un método para el tratamiento *ex vivo* de la sangre en un humano con septicemia.
 - 11. Un equipo para tratar la sangre humana o una fracción de sangre que contiene el C5a, en donde el equipo comprende una enzima proteásica unida de forma irreversible a un soporte, en donde la enzima proteásica es específica del C5a de humano presente en la sangre o en la fracción de sangre, y es capaz escindirlo de forma irreversible, de tal manera que se reduce la capacidad quimiotáctica de C5a de humano escindido.
 - 12. Un equipo de acuerdo con la reivindicación 11, en donde la enzima proteásica es una proteasa bacteriana recombinante de C5a que comprende una secuencia de SEQ ID n.º 3 o una variante funcional de la misma que tiene una identidad de secuencia de al menos el 90% con la SEQ ID n.º 3.
- 45 13. Un equipo de acuerdo con la reivindicación 11 o 12, en donde un extremo carboxilo de la enzima proteásica comprende una primera etiqueta y una segunda etiqueta localizada distalmente de la primera etiqueta y separada de la primera etiqueta por un espaciador, y en donde el soporte comprende un ion coordinado de metal y uno o varios grupos funcionales, en donde la primera etiqueta comprende un motivo capaz de reaccionar covalentemente con uno o varios grupos funcionales, y en donde la segunda etiqueta comprende un motivo capaz de interaccionar con el

ion coordinado de metal.

- 14. Una enzima proteásica unida a soporte de acuerdo con la reivindicación 13, en donde la primera etiqueta se selecciona de la etiqueta de polilisina, poliglutamato o policisteína, y en donde la segunda etiqueta comprende una etiqueta de polihistidina.
- 5 15. Una enzima proteásica que comprende la secuencia de A-B-C-D, en donde A comprende una secuencia de aminoácidos de SEQ ID n.º 3 o una variante funcional de la misma que tiene una homología de secuencia de al menos el 90% con la SEQ ID n.º 3, B es un motivo de polilisina, policisteína o poliglutamato, C es un espaciador y D es un motivo de polihistidina.


10

(b) P4 P3 P2 P1 \checkmark P1' P2' N64s 165s S66s H67s... K68s D69s

Fig. 2

