

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 586 143

51 Int. Cl.:

G01N 33/44 (2006.01) B29C 47/92 (2006.01) B29C 45/76 (2006.01) G01N 17/02 (2006.01) G01N 27/07 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 04.03.2014 E 14157700 (7)
Fecha y número de publicación de la concesión europea: 11.05.2016 EP 2775299

(54) Título: Máquina con un dispositivo para producir caldo de material plástico y un dispositivo para establecer la corrosión de este caldo de material plástico, así como procedimiento para establecer la corrosión mediante esta máquina

(30) Prioridad:

05.03.2013 DE 102013203747

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 11.10.2016

(73) Titular/es:

FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V. (100.0%) Hansastrasse 27c 80686 München, DE

(72) Inventor/es:

STEINHOFF, BERND; LELLINGER, DIRK y KOTHE, HANS

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Máquina con un dispositivo para producir caldo de material plástico y un dispositivo para establecer la corrosión de este caldo de material plástico, así como procedimiento para establecer la corrosión mediante esta máquina

La presente solicitud se refiere a una máquina, que contiene un dispositivo para producir caldo de material plástico así como un dispositivo para establecer la corrosión de un caldo de material plástico. Se refiere además a un procedimiento para medir la corrosión del caldo de material plástico.

5

15

20

35

40

45

Según la composición algunos materiales plásticos poliméricos presentan unas características corrosivas de alta graduación frente a aleaciones férricas. Estas características corrosivas (corrosión) influyen negativamente, por ejemplo en partes de las máquinas de tratamiento de materiales plásticos.

La corrosión puede estar causada por ejemplo por los aditivos anti llama. Estos aditivos pueden reaccionar por ejemplo directamente con las aleaciones férricas, aunque también es posible que las sustancias químicas agresivas como los ácidos inorgánicos no se produzcan hasta la descomposición térmica de ciertos aditivos durante la producción del caldo de material plástico.

Para desarrollar un material plástico que, por un lado cumpla los máximos requisitos con relación p.ej. a la protección anti llama y que, además de esto, no ataque con excesiva intensidad por ejemplo las máquinas de tratamiento de materiales plásticos, es necesario encontrar aquí un óptimo correspondiente mediante un método de medición apropiado. El método debería entregar por un lado unos resultados reproducibles y, por otro lado, la cantidad de material necesaria para la medición debería ser lo más pequeña posible.

El documento US 3 259 840 se refiere a un dispositivo y a un procedimiento para establecer la corrosión de la tierra húmeda. Este aparato de medición comprende una carcasa con una cavidad para llenarse con la muestra así como dos electrodos de diferentes materiales y un elemento de medición. Por ello la tarea de la presente invención consiste en proporcionar unas máquinas o unos procedimientos correspondientes que, de un modo económico y sencillo, establezcan la corrosión de diferentes caldos de material plástico.

Esta tarea es resuelta mediante los objetos de las reivindicaciones independientes. En primer lugar se trata de una máquina, que contiene un dispositivo para producir caldo de material plástico así como un dispositivo para establecer la corrosión de un caldo de material plástico, que contiene una carcasa con una cavidad para llenarse con caldo de material plástico, un primer electrodo de un primer material y un segundo electrodo de un segundo material, en donde el primer y el segundo electrodo presentan respectivamente una superficie de contacto respecto a la cavidad y el primer material presenta un potencial estándar superior al del segundo material, y el primer y el segundo electrodo pueden unirse además entre ellos, a través de un elemento de medición, para determinar una corriente eléctrica y/o una tensión eléctrica entre las superficies de contacto.

A causa del caldo de material plástico situado en la cavidad el segundo electrodo se ve atacado por la corrosión en su superficie de contacto. El proceso corrosivo descrito puede valorarse mediante técnicamente de medición si los dos electrodos están conectados, tanto de forma eléctricamente conductora a través de una conexión eléctricamente conductora como a través del caldo situado entremedio. El proceso corrosivo tiene como consecuencia que los electrones fluyen desde el ánodo (es decir el electrodo del material "no noble", es decir con el potencial estándar bajo) hasta el cátodo (es decir, el electrodo de un material con un potencial estándar superior). Durante el desarrollo de este proceso corrosivo fluye por lo tanto una corriente, cuya intensidad puede establecerse a través de un elemento de medición para determinar la corriente eléctrica. Esto es a su vez una medida de la corrosión.

El valor absoluto de la corriente ofrece información, teniendo en cuenta el tamaño de las superficies de contacto de los electrodos, sobre las tasas de corrosión a esperar o las velocidades de corrosión, que dependen de muchas magnitudes determinantes y sin una medición de este tipo sólo pueden evaluarse con dificultad. Alternativamente puede obtenerse también información sobre la corrosión procedente de la medición de otras magnitudes eléctricas, p.ej. del potencial entre los electrodos.

Un perfeccionamiento del dispositivo para medir la corrosión prevé la instalación de sensores adicionales, de forma preferida sensores de temperatura, sensores de presión, sensores para espectroscopía óptica, técnica de medición de ultrasonidos, espectroscopía dieléctrica y/o dispersión luminosa. De este modo pueden normalizarse todos los parámetros relevantes para la medición.

Un perfeccionamiento prevé que el dispositivo para medir la corrosión presente una abertura para alimentar caldo de material plástico, por ejemplo para la conexión de una extrusionadora de tornillo sin fin. De este modo el dispositivo conforme a la invención puede anexionarse directamente a cualquier dispositivo para producir caldo de material plástico, para llevar a cabo aquí unas mediciones normalizadas.

ES 2 586 143 T3

Otro perfeccionamiento prevé que la cavidad que puede llenarse con caldo de material plástico sea alargada y presente, perpendicularmente a su dirección longitudinal, al menos por zonas una sección transversal rectangular, redonda u oval, o bien combinaciones de las mismas. A este respecto la ventaja consiste en que estas formas básicas geométricas hacen posible la introducción de electrodos con una superficies de contacto lo más grandes posible. Además de esto, con geometría estándar también será posible más fácilmente la limpieza de la cavidad.

5

15

20

30

35

40

En un perfeccionamiento uno o los dos electrodos penetran en la cavidad, de tal manera que el caldo se cizalla sobre las superficies de electrodo. El desgaste mecánico que tiene lugar con ello hace que puedan sacarse a tiempo conclusiones sobre la abrasión del caldo.

Un perfeccionamiento prevé que el primer material sea cobre, platino, paladio, carbono amorfo, rodio, iridio, níquel, plata, oro, hierro o aleaciones de los antes citados, y/o que el segundo material sea cinc o una aleación férrica, en especial acero al carbono.

Un perfeccionamiento prevé que el primer y/o el segundo electrodo se introduzcan en la carcasa formando parte de un suplemento. La ventaja de esto consiste en que, por ejemplo con fines de limpieza o en el caso de desgaste (en especial del segundo electrodo, es decir, el electrodo con el potencial estándar más bajo), es posible con facilidad sustituir el electrodo. El suplemento puede estar realizado por ejemplo también como suplemento roscado. De este modo la fijación del suplemento resiste incluso las presiones más elevadas y a pesar de ello es estanca. Además de esto, de este modo puede dado el caso "reajustarse" el electrodo. De forma preferida este electrodo está aislado eléctricamente con relación a la carcasa mediante un aislamiento eléctrico (por ejemplo una carcasa cerámica).

En principio es también posible prever solamente un electrodo como suplemento externo y, en el caso de un material adecuado de la carcasa (que puede ser por ejemplo en sí mismo de acero al carbono), utilizar una parte definida de la carcasa como "otro electrodo".

Una alternativa prevé que ambos electrodos (es decir, el primer y el segundo electrodo) estén combinados en un único suplemento (aislados eléctricamente uno del otro).

Un perfeccionamiento prevé que la carcasa pueda separarse (por ejemplo que esté dividida en dos) para abrir la cavidad y para una mejor accesibilidad a las superficies de contacto. De este modo puede limpiarse por un lado la superficie de contacto de forma sencilla y en profundidad, y además es muy posible un control visual de la superficie, para sacar por ejemplo conclusiones sobre la abrasión.

Otro perfeccionamiento prevé que estén previstas varias parejas de primeros y segundos electrodos. De este modo es posible que puedan realizarse diferentes mediciones al mismo tiempo. Es posible por ejemplo prever diferentes materiales para los segundos electrodos, para de esta forma obtener el mayor número posible de valores de medición para un caldo de material plástico muy determinado, mediante la utilización del menor material plástico posible.

Otro aspecto de la máquina, que contiene un dispositivo para producir caldo de material plástico así como un dispositivo para establecer la corrosión, como la que se describe anteriormente, se explica a continuación. En el caso de la máquina o de los dispositivos para producir caldo de material plástico puede tratarse por ejemplo de una máquina de moldeo por inyección, una extrusionadora o un amasador. A este respecto un perfeccionamiento ventajoso prevé que la máquina presente dos salidas para caldo de material plástico, en donde una primera salida está unida al dispositivo para establecer la corrosión y la segunda salida de la máquina no está unida al dispositivo para establecer la corrosión. De este modo se hace por ejemplo posible que a la segunda salida esté conectado, p.ej., un molde de inyección y aquí se produzcan continuamente determinados productos. Mediante la primera salida adicional se hace posible, con el funcionamiento en marcha, medir la corrosión del respectivo material.

Un perfeccionamiento ventajoso prevé que la primera salida pueda cerrarse por separado respecto a la segunda salida. De este modo puede llevarse a cabo una medición "pulsando un botón", mientras que por lo demás la máquina puede hacerse funcionar de forma completamente normal.

La invención se refiere finalmente a un procedimiento para medir la corrosión de caldo de material plástico, en donde se introduce caldo de material plástico en una cavidad y están previstos un primer electrodo de un primer material y un segundo electrodo de un segundo material, y el primer y el segundo electrodo presentan respectivamente una superficie de contacto respecto a la cavidad, en donde el primer material presenta un potencial estándar superior al del segundo material y el primer y el segundo electrodo pueden conectarse además entre ellos a través de un elemento de medición, y se establecen una corriente eléctrica y/o una tensión eléctrica entre el primer y el segundo electrodo.

De forma preferida se necesitan menos de 1.000 g de caldo de material plástico para emplear el procedimiento.

ES 2 586 143 T3

A continuación se explica la invención en base a varias figuras. Aquí muestran:

5

10

25

30

35

40

45

50

la fig. 1 una máquina conforme a la invención con dos salidas, en donde la primera salida está unida a un dispositivo para establecer la corrosión,

la fig. 2a una sección transversal a través de un dispositivo conforme a la invención para medir la corrosión con una extrusionadora de tornillo sin fin conectada al mismo, y

la fig. 2b la exposición de una forma constructiva alternativa de un dispositivo conforme a la invención para establecer la corrosión, en donde aquí se muestra la carcasa en el estado de apertura.

La fig. 1 muestra (a modo de ejemplo) una máquina de moldeo por inyección. Ésta presenta en primer lugar un dispositivo para producir un caldo de material plástico 10, que contiene una tolva de carga para cargar granulado de material plástico 10a, un dispositivo de caldeo no representado así como un accionamiento 10b. Al extremo se han aplicado una primera salida 11a y una segunda salida 11b.

La segunda salida 11b puede unirse a un molde de inyección de material plástico 12, en el que pueden producirse por ejemplo bandejas de material plástico, etc. La primera salida 11a está unida a una abertura 6 de un dispositivo 1 para establecer la corrosión de un caldo de material plástico.

La salida 11a puede cerrarse, de tal manera que en el caso de un cierre de esta salida solamente queda abierta la salida 11b, y se impide un flujo de caldo de material plástico hasta el dispositivo 1.

A continuación se analizan detalles del dispositivo para establecer la corrosión de un caldo de material plástico, en base a las figuras 2a y 2b.

La fig. 2a muestra una extrusionadora de tornillo sin fin 7, que está conectada a una abertura 6 para alimentar caldo de material plástico al dispositivo 1 para establecer la corrosión. El dispositivo presenta una carcasa 2 con una cavidad 3 que puede llenarse con caldo de material plástico.

La cavidad puede presentar en dirección longitudinal una sección transversal rectangular, redonda y también oval.

Se muestran además dos electrodos, un primer electrodo 4 y un segundo electrodo 5. El primer electrodo 4 es de un primer material y el segundo electrodo 5 de un segundo material, en donde el primer material presenta un mayor potencial estándar que el segundo material.

El primer electrodo tiene una superficie de contacto 4a respecto a la cavidad, mientras que el segundo electrodo tiene una superficie de contacto 5a respecto a la cavidad. Los electrodos están rodeados por un aislamiento eléctrico 9 en forma de un manguito cerámico, que también forma parte de un suplemento 8 que puede atornillarse en la carcasa 2. Los electrodos están además conectados eléctricamente entre sí por sus extremos alejados de la cavidad, a través de una línea eléctrica 14 y un elemento de medición 13, para medir la corriente eléctrica.

La superficie de contacto 4a o la superficie de contacto 5a están aplicadas fundamentalmente enrasadas con la pared de la cavidad 3 de la carcasa 2 del dispositivo 1. A este respecto es favorable que como primer material para el primer electrodo 4 se utilicen por ejemplo cobre, latino, paladio o aleaciones de los metales antes citados y para el segundo material, es decir el segundo electrodo 5, por ejemplo acero al carbono. El dispositivo mostrado en la fig. 2a presenta solamente una pareja de electrodos. Sin embargo, también es posible disponer a lo largo de la longitud de la cavidad 3 varias parejas de electrodos unas enfrente de las otras, para de este modo poder llevar a cabo simultáneamente varias mediciones (por ejemplo con diferentes materiales de electrodo).

Fig. 2b muestra el estado de rebatimiento de un dispositivo alternativo 1. La estructura con relación a los electrodos, etc. es a este respecto idéntica, y puede apreciarse bien la forma de sección transversal rectangular de la cavidad, perpendicular a la dirección longitudinal de la cavidad. Es digno de mencionar que el emplazamiento de la alimentación del caldo de material plástico (véase la abertura 6), que es diferente al de la fig. 2a. El dispositivo mostrado en la fig. 2b está dividido en dos, y puede dejarse al descubierto mediante un rebatimiento de la carcasa 2 en la cavidad 3, de tal manera que las superficies de contacto 4a y 5a puedan limpiarse de forma especialmente sencilla (junto con las restantes paredes de la cavidad), y además puede realizarse fácilmente una comprobación visual de las superficies de contacto limpiadas de los electrodos.

Los objetos mostrados en las figuras 1 a 2b son apropiados para llevar a cabo un procedimiento para medir la corrosión de caldo de material plástico, en donde se introduce caldo de material plástico en una cavidad (3) y están previstos un primer electrodo (4) de un primer material y un segundo electrodo (5) de un segundo material, y el primer y el segundo electrodo presentan respectivamente una superficie de contacto respecto a la cavidad, en donde el primer material presenta un potencial estándar superior al del segundo material y el primer (4) y el segundo electrodo (5) pueden conectarse además entre ellos a través de un elemento de medición, y se establecen

ES 2 586 143 T3

una corriente eléctrica y/o una tensión eléctrica entre el primer (4) y el segundo electrodo (5).

Lista de símbolos de referencia

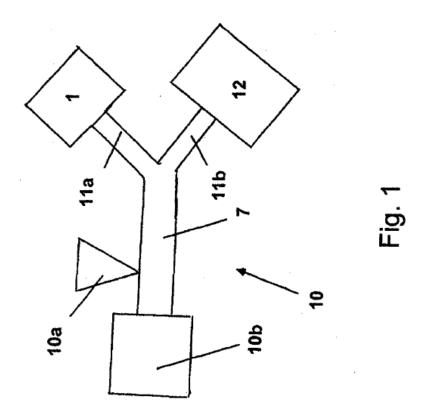
14

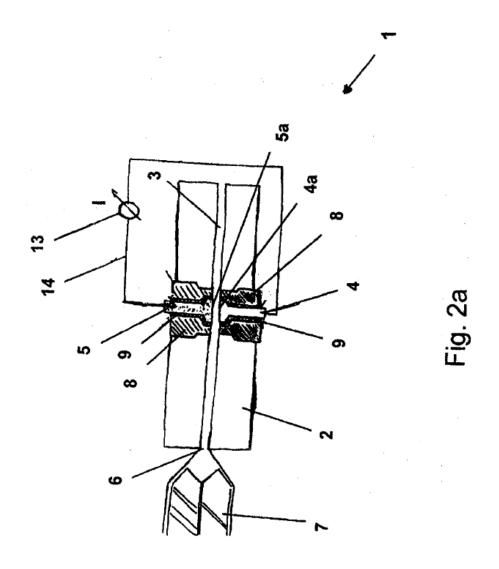
Línea eléctrica

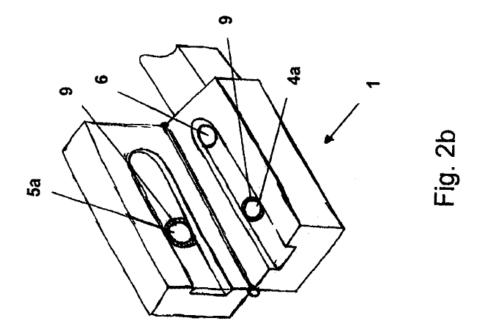
1	Dispositivo para establecer la corrosión
2	Carcasa
3	Cavidad
4	Primer electrodo
4a	Superficie de contacto del primer electrodo
5	Segundo electrodo
5a	Superficie de contacto del segundo electrodo
6	Abertura para alimentar caldo de material plástico
7	Extrusionadora de tornillo sin fin
8	Suplemento
9	Aislamiento
10	Dispositivo para producir caldo de material plástico
10a	Tolva de carga
10b	Accionamiento
11a	Primera salida
11b	Segunda salida
12	Molde de inyección
13	Elemento de medición

REIVINDICACIONES

- 1. Máquina, que contiene un dispositivo para producir caldo de material plástico así como un dispositivo (1) para establecer la corrosión de este caldo de material plástico, que contiene
 - un elemento de medición (13),


5


10


20

30

- una carcasa (2) con una cavidad (3) para llenarse con caldo de material plástico,
- un primer electrodo (4) de un primer material y un segundo electrodo (5) de un segundo material, en donde el primer y el segundo electrodo presentan respectivamente una superficie de contacto (4a, 5a) respecto a la cavidad, en donde
- el primer material presenta un potencial estándar superior al del segundo material, y
- el primer (4) y el segundo electrodo (5) pueden unirse además entre ellos, a través del elemento de medición (13), para determinar una corriente eléctrica y/o una tensión eléctrica entre las superficies de contacto (4a, 5a).
- 2. Máquina según la reivindicación 1, **caracterizada porque** la máquina presenta una abertura (6) para alimentar caldo de material plástico, de forma preferida para la conexión de una extrusionadora de tornillo sin fin.
- 3. Máquina según una de las reivindicaciones anteriores, **caracterizada porque** la cavidad (3) es alargada al menos por zonas y presenta, perpendicularmente a la dirección longitudinal de la cavidad (3), de forma preferida una sección transversal rectangular, redonda u oval, o bien combinaciones de las mismas.
 - 4. Máquina según una de las reivindicaciones anteriores, **caracterizada porque** el primer material es cobre, platino, paladio, carbono amorfo, rodio, iridio, níquel, plata, oro, hierro o aleaciones de los antes citados, y/o el segundo material es cinc o una aleación férrica, en especial acero al carbono.
 - 5. Máquina según una de las reivindicaciones anteriores, **caracterizada porque** el primer y/o el segundo electrodo (4, 5) se introducen en la carcasa formando parte de un suplemento (8).
 - 6. Máquina según la reivindicación 5, **caracterizada porque** el suplemento presenta un aislamiento eléctrico (9) con relación a la carcasa.
- 7. Máquina según una de las reivindicaciones anteriores, **caracterizada porque** la carcasa (2) puede separarse para abrir la cavidad (3) y para una mejor accesibilidad a las superficies de contacto (4a, 5a).
 - 8. Máquina según una de las reivindicaciones anteriores, **caracterizada porque** están previstas varias parejas de primeros y segundos electrodos (4, 5).
 - 9. Máquina según una de las reivindicaciones anteriores, que contiene dos salidas para caldo de material plástico, en donde una primera salida (11a) está unida a la abertura (6) del dispositivo para establecer la corrosión y la segunda salida (11b) no está unida al dispositivo para establecer la corrosión.
 - 10. Máquina según la reivindicación 9, **caracterizada porque** la primera salida (11a) puede cerrarse por separado respecto a la segunda salida (11b).
- 11. Procedimiento para medir la corrosión de caldo de material plástico mediante un dispositivo según una de las reivindicaciones anteriores, en donde se introduce caldo de material plástico en la cavidad (3) y se establecen una corriente eléctrica y/o una tensión eléctrica entre el primer (4) y el segundo electrodo (5).

