

ESPAÑA

① Número de publicación: 2 587 256

51 Int. Cl.:

C07D 207/09 (2006.01)
C07D 209/44 (2006.01)
C07D 211/26 (2006.01)
C07D 211/58 (2006.01)
A61K 31/4035 (2006.01)
A61K 31/445 (2006.01)
A61R 31/166 (2006.01)
A61P 19/02 (2006.01)
C07C 235/50 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (86) Fecha de presentación y número de la solicitud internacional: 10.06.2011 PCT/GB2011/000879
- (87) Fecha y número de publicación internacional: 15.12.2011 WO11154708
- (96) Fecha de presentación y número de la solicitud europea: 10.06.2011 E 11726470 (5)
- (97) Fecha y número de publicación de la concesión europea: 20.07.2016 EP 2580193
 - (54) Título: Derivados de la benzamida y su uso como inhibidores de HSP90
 - (30) Prioridad:

11.06.2010 GB 201009853

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 21.10.2016 (73) Titular/es:

CHROMA THERAPEUTICS LTD. (100.0%) 93 Milton Park Abingdon, Oxfordshire OX14 4RY, GB

(72) Inventor/es:

DONALD, ALASTAIR, DAVID, GRAHAM; MCDERMOTT, JOANNE; PATEL, SANJAY, RATILAL y MOFFAT, DAVID, FESTUS, CHARLES

(74) Agente/Representante:

PONS ARIÑO, Ángel

Observaciones:

Véase nota informativa (Remarks) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Derivados de la benzamida y su uso como inhibidores de HSP90

La presente invención hace referencia a una serie de derivados de aminoácidos, a composiciones que los contienen, a procesos para su preparación y a su uso en medicina como inhibidores de HSP90. Los compuestos pueden utilizarse además en el tratamiento de enfermedades proliferativas celulares tales como el cáncer, que están mediadas por la actividad aberrante de HSP90, además de trastornos inflamatorios e inmunes tales como la artritis reumatoide, enfermedad pulmonar obstructiva crónica (EPOC), psoriasis, enfermedad de Crohn, colitis ulcerosa, lupus eritematoso sistémico, y trastornos relacionados con la angiogénesis tales como la degeneración macular relacionada con la edad, retinopatía diabética y endometriosis. Los compuestos pueden además ser utilizados en la protección de células normales contra la acción de agentes citotóxicos.

Antecedentes de la invención

5

10

15

20

25

30

35

Las células responden al estrés aumentando la síntesis de varias chaperonas moleculares: las máquinas celulares que facilitan el plegamiento de proteínas. Las proteínas de choque térmico (Hsps) son chaperonas moleculares que ayudan al plegamiento general de proteínas y evitan reacciones secundarias no funcionales, tales como la agregación no específica de proteínas mal plegadas o no plegadas, incluso en condiciones normales. Suponen del 1 al 2% de la proteína total en células sin estrés. Sin embargo, sus niveles de expresión intracelular aumentan en respuesta a los agentes de envejecimiento que desnaturalizan las proteínas, tales como el cambio de temperatura, como una respuesta conservada evolutivamente para restaurar el entorno de plegamiento de proteínas normal y para aumentar la supervivencia celular. Las funciones chaperonas esenciales de las Hsp son alteradas durante la oncogénesis para hacer posible la transformación maligna y para facilitar una rápida evolución somática.

La Hsp90 (proteína de choque térmico de 90kDa), una de las proteínas más abundantes expresadas en las células, es un miembro de la familia de proteínas de choque térmico, reguladas por incremento en respuesta al estrés. Se ha identificado como un mediador importante de la supervivencia de células cancerígenas. La Hsp90 se une a una variedad de proteínas diana o "cliente", entre ellas muchos receptores de hormonas esteroides, proteínas quinasas y factores de transcripción. Interactúa con proteínas-cliente facilitando su estabilización y activación, o dirigiéndolas para su degradación proteasomal. Gracias a su habilidad polifacética para influenciar la transducción de señales, la remodelación de cromatina y la regulación epigenética, el desarrollo y la evolución morfológica, se considera como una diana prometedora para la terapia contra el cáncer.

La proteína Hsp90 contiene tres dominios bien definidos, cada uno de estos juega un papel crucial en la función de la proteína. El dominio N-terminal, el sitio de unión de ATP, es también el sitio de unión de la Geldanamicina, un representante de los fármacos de ansamicina que específicamente establecen como diana la Hsp90. El dominio central completa el sitio de la ATPasa y se une a las proteínas cliente. Finalmente, en el dominio de dimerización C-terminal, la Hsp90 forma homo-dímeros en los que los sitios de contacto entre las sub-unidades están localizados dentro del extremo C-terminal en la conformación abierta del dímero. Durante el ciclo de la ATPasa, los tres dominios de la Hsp90 se desplazad desde un estado de ATP-libre "abierto" a un estado de ATP-enlazado "cerrado". Los extremos N-terminal también entran en contacto en la conformación cerrada del dímero. Las funciones de la Hsp90 incluyen ayudar en el plegamiento de proteínas, la señalización celular, y la represión tumoral. En células sin estrés, la Hsp90 tiene varias funciones importantes, que incluyen ayudar en el plegamiento, transporte intracelular, mantenimiento y degradación de proteínas, además de facilitar la señalización celular.

40 La mayoría de los inhibidores de la Hsp90 conocidos, tales como los productos naturales que pertenecen a las familias de las ansamicinas o del radicicol o purinas sintéticas, se unen al sitio del ATP en el dominio N-terminal, lo que da como resultado la desactivación, desestabilización y degradación de la proteína cliente. Sin embargo, se ha descrito que los compuestos tales como la novobiocina y el cisplatino se unen al dominio C-terminal de la Hsp90, lo que da como resultado también un efecto anti cancerígeno. La inhibición de la Hsp90 puede también ser un 45 resultado de la inactivación a través de la modificación post-traduccional, habitualmente acetilación o ubiquitinación. Cuando se inhibe la Hsp90, sus funciones reguladoras se interrumpen. Debido a que la Hsp90 está implicada en la regulación de muchas oncoproteínas relevantes, se sugiere que su inhibición dará como resultado una amplia gama de actividades biológicas, por lo tanto la molécula de chaperona Hsp es una atractiva diana para el cáncer. Las células cancerosas sobre-expresan una variedad de proteínas, incluyendo PI3K y AKT y la inhibición de estas dos 50 proteínas desencadena la apoptosis. A medida que la Hsp90 estabiliza las proteínas PI3K y AKT, su inhibición parece inducir la apoptosis a través de la inhibición de la vía de señalización de PI3K/AKT. Junto con sus cochaperonas, la Hsp90 modula la apoptosis de células tumorales, mediada a través de los efectos sobre AKT, los receptores del factor de necrosis tumoral (TNFR) y la función del factor nuclear κB (NF-κB). Finalmente, la Hsp90 participa en muchos procesos clave en la oncogénesis tales como la autosuficiencia en las señales de crecimiento, 55 estabilización de proteínas mutantes, angiogénesis y metástasis.

Recientes estudios han mostrado que la Hsp90 también juega un papel importante en la regulación de las vías de señalización pro-inflamatorias. Por ejemplo, se ha descrito que los agonistas que estimulan la producción de NO activan un mecanismo que recluta la Hsp90 a la eNOS. La interacción entre la Hsp90 y la eNOS aumenta la activación de la enzima en células y en vasos sanguíneos intactos lo que conduce a la producción de NO. A continuación de este descubrimiento, se demostró que la geldanamicina, un conocido inhibidor natural de la Hsp90, es un antiinflamatorio in vivo. También se mostró que el tratamiento con geldanamicina induce una reducción significativa de los niveles de la proteína IKK. La IKK fosforila IκB, marcándola para su posterior degradación proteasomal. Es por lo tanto un regulador crucial de la vía de NF-κB, que tiene importantes funciones en la inflamación y en el cáncer. Se ha mostrado que los inhibidores de la Hsp90 alargan la supervivencia, reducen o suprimen la inflamación pulmonar y sistémica, y restauran la función pulmonar normal en un modelo murino de sepsis. La sepsis se asocia con la activación de mediadores pro-inflamatorios, incluyendo NF-κB, un importante factor de transcripción pro-inflamatorio que media en la expresión regulada por incremento de diversas citocinas y quimiocinas, tales como el factor de necrosis tumoral α (TNF-α), IL-6, IL-8 e IL-1β, de vital importancia para la lesión inflamatoria. Es necesario formar un complejo de Hsp90 con el receptor de glucocorticoides (GR, por sus siglas en inglés), para mantener el GR en una conformación capaz de enlazar la hormona. La unión de la hormona al GR causa un cambio conformacional en el complejo que tiene como resultado que la interacción entre la Hsp90 y el GR se interrumpa: el receptor entonces pasa desde el citoplasma al núcleo, se dimeriza y se une al ADN para activar la transcripción de los genes diana. También se requiere la Hsp90 para el funcionamiento adecuado de diversos receptores esteroides distintos, incluyendo aquellos responsables de la unión de aldosterona, andrógeno, estrógeno v progesterona.

La HSP90 también ha estado implicada en una serie de condiciones diferentes, tales como la infección vírica y la enfermedad de Alzheimer.

Se ha identificado en la actualidad un grupo de compuestos que son inhibidores potentes y selectivos de la HSP90 y las isoformas y variantes de corte y empalme de las mismas. Los compuestos se caracterizan por la presencia en la molécula de un motivo de éster de aminoácidos que es hidrolizable mediante carboxilesterasas intracelulares. Los compuestos de la invención que tienen motivos de éster de aminoácidos lipofílicos cruzan la membrana celular, y se hidrolizan a ácido por dichas carboxilesterasas. El producto de la hidrólisis polar se acumula en la célula ya que no cruza fácilmente la membrana celular y por ello la actividad inhibidora de la Hsp90 del compuesto se prolonga y se mejora. Los compuestos de la invención se relacionan con los inhibidores de la HSP90 abarcados por las revelaciones en las patentes WO2006/109075, WO2006/109085 y WO2006/117669 pero difieren de los mismos en que los presentes compuestos tienen el motivo de aminoácidos al que se hace referencia anteriormente. Los compuestos son por tanto de utilidad en la medicina, por ejemplo en el tratamiento de una variedad de estados de enfermedad proliferativa, en los cuales puede estar implicada la acción inadecuada de la HSP90, tales como el cáncer, trastornos inflamatorios e inmunes tales como la artritis reumatoide, EPOC, psoriasis, enfermedad de Crohn, colitis ulcerosa, lupus eritematoso sistémico, y trastornos relacionados con la angiogénesis tales como la degeneración macular relacionada con la edad, retinopatía diabética y endometriosis. Los inhibidores de la Hsp90 pueden ser útiles en el tratamiento de la inflamación. La inflamación está mediada por una variedad de factores solubles, incluyendo un grupo de polipéptidos secretados conocidos como citocinas. Entre los mediadores de la inflamación aguda se encuentran IL-1, TNF-a, IL-6, IL-11, IL-8, G-CSF, y M-CSF. La citocinas implicadas en la inflamación crónica pueden ser subdivididas en citocinas mediadoras de las respuestas humorales tales como la IL-4, IL-5, IL-6, IL-7, e IL-13, y aquellas que son mediadoras en las respuestas celulares tales como IL-1, IL-2, IL-3, IL-4, IL-7, IL-9, IL-10, IL-12, interferones, factor de crecimiento transformante -b, y el factor de necrosis tumoral a y b. Algunas citocinas, tales como la IL-1, contribuyen de forma significativa a la inflamación tanto aguda como crónica. Los compuestos pueden también utilizarse en la protección de células normales contra la acción de agentes citotóxicos o en el manejo de la infección viral o de la enfermedad de Alzheimer.

La patente WO-A-2008 044041 describe compuestos que son inhibidores de la HSP90 y son útiles para el tratamiento de los trastornos inflamatorios tales como la artritis reumatoide.

Breve descripción de la invención

10

15

20

25

30

35

40

45

La invención proporciona un compuesto que es (a) un derivado de fenilamida de la fórmula (I) o un tautómero del mismo, o (b) una sal farmacéuticamente aceptable, N-óxido, hidrato o solvato del mismo:

$$R^{1}$$
 R^{2}
 R^{3}
 R^{3}
 R^{4}

en donde:

- R¹ v R³ son hidroxi;

- R^2 , R^4 y R^5 son iguales o diferentes y representan átomos de hidrógeno o halógeno o grupos alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , alcoxi C_{1-6} , hidroxi, ciano, nitro o -NR'R" en donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-4} no sustituido, y a condición de que no más de dos de R^2 , R^4 y R^5 sean ciano o nitro;

- o bien:

5

10

15

20

25

(i) R^6 se selecciona de alquilo C_{1-4} y R^7 representa - CR^8R^9 -A en donde R^8 y R^9 son iguales o diferentes y representan un átomo de hidrógeno o halógeno o un grupo alquilo C_{1-4} , alquenilo C_{2-4} , alcoxi C_{1-4} , hidroxi o -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-4} no sustituido, y A representa un anillo de fenilo o un grupo heteroarilo de 5 o 6 miembros y se sustituye con un grupo W; o

(ii) R⁶ y R⁷, junto con el átomo de nitrógeno al que se enlazan, forman un grupo heterociclilo de 5 o 6 miembros que está o bien (a) sin fusionar, o (b) fusionado a un anillo de fenilo o a un grupo heteroarilo de 5 o 6 miembros, y en donde ya sea el grupo heterociclilo, cuando se fusiona, el grupo heterocicliclo o el anillo de fenilo o el grupo heteroarilo al que éste se fusiona, se sustituye con un grupo W;

- W representa un grupo -Alk¹-R;

- Alk¹ representa un enlace, un grupo alquileno C_{1-4} o un grupo -(alquileno C_{1-4})-NR'-(alquileno C_{1-4})- en donde R' representa hidrógeno o alquilo C_{1-4} ;

- R representa un grupo de la fórmula (X) o (Y):

$$-\frac{\xi}{\xi} - \sqrt{\frac{Alk^2 - R^{11}}{R^{10}}} \qquad \frac{R^{11}}{\xi} - \frac{R^{11}}{\chi} = \frac{1}{\chi} = \frac{$$

- R¹⁰, cuando está presente, representa un átomo de hidrógeno o un grupo alquilo C₁₋₄;

- Alk² representa un grupo de fórmula -C(R^{12})(R^{13})- cuando R es de fórmula (X), o -C(R^{12})- cuando R es de fórmula (Y), en donde R^{12} y R^{13} son iguales o diferentes y representan hidrógeno o los sustituyentes α de un compuesto de alicina α-sustituida o glicina α-disustituida o éster de glicina;

- un anillo D, cuando se encuentra presente, es un grupo heterociclilo de 5 o 6 miembros que contiene Alk^2 y en donde R^{11} está ligado al anillo D a través de Alk^2 , y el anillo D se fusiona opcionalmente a un segundo anillo que comprende un grupo fenilo, heterarilo de 5 o 6 miembros, carbocililo C_{3-7} o heterociclilo de 5 o 6 miembros; y
- R¹¹ es un grupo éster que es hidrolizable por una o más enzimas de carboxilesterasa intracelular a un grupo COOH en donde R¹¹ es un grupo COOR²⁰ en donde R²⁰ es -CR¹⁴R¹⁵R¹⁶ y en donde:
 - (i) R^{15} representa hidrógeno o un grupo de la fórmula -[alquileno $C_{1-4}]_b$ - $(Z^1)_a$ -[alquilo $C_{1-4}]_o$ [alquileno $C_{1-4}]_b$ - $(Z^1)_a$ -[alquenilo $C_{2-4}]_o$ en donde a y b son iguales o diferentes y representan 0 o 1, y Z^1 representa -O-, -S-, o -NR¹⁷- en donde R^{17} es hidrógeno o alquilo C_{1-4} , R^{16} representa hidrógeno o alquilo C_{1-4} , y R^{14} representa hidrógeno o alquilo C_{1-4} ;
- (ii) R^{15} representa un grupo fenilo o heteroarilo de 5- o 6- miembros, opcionalmente fusionado a un grupo adicional fenilo, heteroarilo de 5- o 6- miembros, carbociclilo C_{3-7} o heterociclilo de 5- o 6- miembros, R^{16} representa hidrógeno o alquilo C_{1-4} , y R^{14} representa hidrógeno;
 - (iii) R^{15} representa un grupo de la fórmula -(Alk⁴)-NR¹⁸R¹⁹ en donde Alk⁴ representa un grupo alquileno C_{1-4} , y o bien (a) R^{18} y R^{19} son iguales o diferentes y representan hidrógeno o alquilo C_{1-4} , o bien (b) R^{18} y R^{19} , junto con el átomo de nitrógeno al que se enlazan, forman un grupo heteroarilo de 5 o 6 miembros o heterociclilo de 5 o 6 miembros opcionalmente fusionado a un grupo adicional fenilo, heteroarilo de 5 o 6 miembros, carbociclilo C_{3-7} o heterociclilo de 5 o 6 miembros; R^{16} representa hidrógeno o alquilo C_{1-4} , y R^{14} representa hidrógeno; o
- R¹⁵ y R¹⁶, junto con el átomo de carbono al que se enlazan, forman un grupo fenilo, heteroarilo de 5 o 6 miembros, carbociclilo C₃₋₇ o heterociclilo de 5 o 6 miembros opcionalmente fusionado con un grupo adicional fenilo, heteroarilo de 5 o 6 miembros, carbociclilo C₃₋₇ o heterociclilo de 5 o 6 miembros, y R¹⁴ representa hidrógeno;

y en donde, a menos que se indique lo contrario:

5

15

25

- las fracciones y grupos alquilo, alquenilo y alquinilo en R^2 , R^3 , R^4 , R^5 , R^6 , R^8 , R^9 , Alk^1 , R^{12} y R^{13} son sustituidos o no sustituidos con 1, 2 o 3 sustituyentes no sustituidos que son los mismos o diferentes y se seleccionan de átomos de halógeno y grupos alquilo C_{1-4} , alquenilo C_{2-4} , alcoxi C_{1-4} , alqueniloxi C_{2-4} , haloalqueniloxi C_{1-4} , haloalqueniloxi C_{2-4} , hidroxilo, -SR', ciano, nitro, hidroxialquilo C_{1-4} y -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-2} no sustituido; y
- las fracciones y grupos arilo, heteroarilo, carbociclilo y heterociclilo en R⁶ y R⁷ son no sustituidos o sustituidos por 1, 2, 3 o 4 sustituyentes no sustituidos seleccionados de átomos de halógeno, y grupos ciano, nitro, alquilo C₁₋₄, 30 alcoxi C₁₋₄, alquenilo C₂₋₄, alqueniloxi C₂₋₄, haloalquilo C₁₋₄, haloalquenilo C₂₋₄, haloalqueniloxi C₂₋₄, hidroxilo, hidroxialquilo C₁₋₄, -SR' y -NR'R", en donde cada R' y R" es igual o diferente y representa hidrógeno o alquilo C₁₋₄ no sustituido, o de sustituyentes de la fórmula -COOH, -COOR^A, -COR^A, -SO₂R^A, -CONH₂, -SO₂NH₂, -CONHR^A, -SO₂NHR^A, -CONR^AR^B, -SO₂NR^AR^B, -OCONH₂, -OCONHR^A, -OCONR^AR^B, -NHCOR^A, -NR^BCOR^A, -NR^BCOR^A, -NR^BCOR^A, -NR^BSO₂OH, -NHSO₂H, -NR^BSO₂OR^A, -NHCONH₂, -NR^ACONH₂, -NR^ACONH₂, -NR^ACONH^AR^B o -NR^ACONR^AR^B en donde R^A y R^B son iguales o diferentes y representan alquilo C₁₋₆ no sustituido, cicloalquilo C₃₋₆, fenilo no fusionado o heteroarilo de 5 o 6 miembros no fusionados, o R^A y R^B cuando están unidos al mismo átomo de nitrógeno forman un grupo heterociclilo de 5 o 6 miembros no fusionado.
- Cuando R¹² y/o R¹³ representan los sustituyentes α o un compuesto de glicina α-sustituida o α,α-disustituida o de éster de glicina, cualquier grupo funcional en estos grupos R¹² y R¹³ puede estar protegido. Es conocido para el experto en el arte que el término "protegido", cuando se utiliza en relación con un sustituyente funcional en una cadena lateral de un α-aminoácido, significa un derivado de un sustituyente de este tipo que es sustancialmente no funcional. Los grupos protectores adecuados se describirán más adelante.
- Los compuestos de la invención contienen un motivo que es hidrolizable por una carboxilesterasa intracelular. Los compuestos de la invención pueden cruzar la membrana celular, y pueden ser hidrolizados a ácido por las carboxilesterasas intracelulares. El producto de la hidrólisis polar se acumula en la célula ya que no cruza fácilmente la membrana celular. Por lo tanto, la actividad de la HSP90 del compuesto se ve prolongada y aumentada dentro de la célula.
- Preferiblemente, los compuestos de la invención son derivados de fenilamida de la fórmula (I) o tautómeros de los mismos, o sales farmacéuticamente aceptables de los mismos.
 - En un aspecto adicional la invención proporciona un compuesto según se define anteriormente para su uso en el tratamiento del organismo humano o animal. Más preferiblemente, la invención proporciona el uso de un compuesto

según se ha definido anteriormente para su uso en el tratamiento o la prevención de trastornos mediados por la HSP90, en donde el trastorno se selecciona de cáncer, enfermedades autoinmunes e inflamatorias.

La invención proporciona además una composición farmacéutica que comprende un compuesto según se ha definido anteriormente y un soporte o diluyente farmacéuticamente aceptable del mismo.

5 Los compuestos de los que se ocupa la invención pueden ser utilizados para la inhibición de la actividad de la HSP90 ex vivo o in vivo.

Los compuestos de la invención son también particularmente útiles en el tratamiento de la inflamación, por ejemplo en el tratamiento de la artritis reumatoide.

Los compuestos de la invención son también particularmente útiles en el tratamiento del cáncer, en particular cáncer de mama, cáncer de ovarios, cáncer pancreático y carcinoma hepatocelular.

En un aspecto de la invención, los compuestos de la invención pueden ser utilizados en la preparación de una composición para el tratamiento del cáncer (por ejemplo, tipos de cáncer derivados de monocitosis), trastornos inflamatorios e inmunes tales como la artritis reumatoide, psoriasis, enfermedad de Crohn, colitis ulcerosa, lupus eritematoso sistémico, y trastornos relacionados con la angiogénesis, tales como la degeneración macular relacionada con la edad, retinopatía diabética y endometriosis. Los compuestos pueden además ser de utilidad en la protección de células normales contra la acción de agentes citotóxicos o en el manejo de una infección vírica o enfermedad de Alzheimer.

15

20

25

30

35

40

45

50

55

Tal como se menciona anteriormente, los compuestos de los que se ocupa la invención son de utilidad para la inhibición de la actividad de la Hsp90. La inhibición de la actividad de la Hsp90 es un mecanismo para el tratamiento de una variedad de enfermedades, incluyendo enfermedades proliferativas celulares tales como el cáncer (incluyendo malignidades de linajes de células monocíticas, por ejemplo, leucemia mielomonocítica juvenil) y psoriasis, enfermedades poliglutamínicas tales como la enfermedad de Huntingdon, enfermedades neurogenerativas tales como la enfermedad de Alzheimer, enfermedades autoinmunes tales como artritis reumatoide (incluyendo la artritis idiopática juvenil sistémica), la diabetes, enfermedades hematológicas, enfermedades inflamatorias, enfermedad cardiovascular, aterosclerosis, cirrosis biliar primaria, granulomatosis de Wegener, y secuelas inflamatorias de la infección. Ejemplos en particular de enfermedades tratables mediante la inhibición de la actividad de la HSP90 son el cáncer (incluyendo malignidades del linaje celular monocítico, por ejemplo, leucemia mielomonocítica juvenil) y psoriasis, enfermedades poliglutamínicas tales como la enfermedad de Huntingdon, enfermedades neurogenerativas tales como la enfermedad de Alzheimer, enfermedades autoinmunes tales como artritis reumatoide (incluyendo la artritis idiopática juvenil sistémica), enfermedades hematológicas, enfermedades inflamatorias, enfermedad cardiovascular, aterosclerosis, cirrosis biliar primaria, granulomatosis de Wegener, y secuelas inflamatorias de la infección.

La enfermedad autoinmune presenta a menudo un componente inflamatorio. Tales condiciones incluyen la alopecia universal diseminada, enfermedades positivas en ANCA, enfermedad de Behcet, enfermedad de Chagas, síndrome de fatiga crónica, disautonomía, encefalomielitis, espondilitis anquilosante, anemia aplásica, hidradenitis supurativa, hepatitis autoinmune, ooforitis autoinmune, enfermedad celíaca, enfermedad inflamatoria intestinal, enfermedad de Crohn, diabetes mellitus de tipo 1, síndrome de Fanconi, arteritis de células gigantes, glomerulonefritis, síndrome de Goodpasture, Enfermedad de Graves, síndrome de Guillain-barre, enfermedad e Hashimoto, Púrpura de Schönlein-Henoch, enfermedad de Kawasaki, lupus eritematoso sistémico, colitis microscópica, poliarteritis microscópica, enfermedad mixta del tejido conectivo, esclerosis múltiple, miastenia gravis, síndrome de opsoclono mioclono, neuritis óptica, tiroiditis de Ord, pénfigo, poliarteritis nodosa, polimialgia, artritis reumatoide, síndrome de Reiter, síndrome de Sjogren, arteritis temporal, granulomatosis de Wegener, anemia hemolítica autoinmune por anticuerpos calientes, cistitis intersticial, enfermedad de lyme, morfea, psoriasis, sarcoidosis, esclerodermia, colitis ulcerosa, y vitíligo.

Otras condiciones inflamatorias que pueden ser tratadas con los compuestos de la invención incluyen, por ejemplo, apendicitis, dermatitis, dermatomiositis, endocarditis, fibrositis, gingivitis, glositis, hepatitis, hidradenitis supurativa, iritis, laringitis, mastitis, miocarditis, nefritis, otitis, pancreatitis, parotitis, percarditis, peritonitis, faringitis, pleuritis; neumonitis, prostatitis, pielonefritis, y estomatitis, rechazo de trasplante (que implica órganos tales como el riñón, hígado, corazón, pulmón, páncreas (por ejemplo, células de los islotes), médula ósea, córnea, intestino delgado, alotrasplantes de piel, trasplantes homólogos de piel, y xenoinjertos de válvulas cardíacas, enfermedad del suero, y enfermedad de injerto contra huésped, pancreatitis aguda, pancreatitis crónica, síndrome disneico agudo, síndrome de Sèzary, hiperplasia adrenal congénita, tiroiditis no supurativa, hipercalcemia asociada con cáncer, pénfigo, dermatitis bullosa herpetiforme, eritema multiforme grave, dermatitis exfoliativa, dermatitis seborreica, rinitis alérgica perenne o estacional, asma bronquial, dermatitis de contacto, dermatitis atópica, reacciones de hipersensibilidad a fármacos, conjuntivitis alérgica, queratitis, herpes zoster oftálmico, iritis e iridociclitis, coriorretinitis, neuritis óptica, sarcoidosis sintomática, quimioterapia de la tuberculosis pulmonar diseminada o fulminante, púrpura trombocitopénica idiopática en adultos, trombocitopenia secundaria en adultos, anemia hemolítica (autoinmune)

adquirida, leucemia y linfoma en adultos, leucemia aguda de la infancia, enteritis regional, vasculitis autoinmune, esclerosis múltiple, enfermedad pulmonar obstructiva crónica, rechazo de trasplante de órganos sólidos, sepsis, cirrosis biliar primaria y colangitis esclerosante primaria.

Los tratamientos que utilizan compuestos de la invención incluyen tratamiento del rechazo de trasplante, artritis reumatoide, artritis psoriásica, diabetes del tipo 1, asma, enfermedad inflamatoria intestinal, lupus eritematoso sistémico, e inflamación que acompaña condiciones infecciosas (por ejemplo, sepsis), psoriasis, enfermedad de Crohn, colitis ulcerosa, enfermedad pulmonar obstructiva crónica, esclerosis múltiple, dermatitis atópica, y enfermedad de injerto contra huésped. Por ejemplo, los compuestos de la invención puede ser utilizados en el tratamiento del rechazo a trasplante, artritis reumatoide, artritis psoriásica, asma, enfermedad inflamatoria intestinal, lupus eritematoso sistémico, e inflamación que acompaña condiciones infecciosas (por ejemplo, sepsis), psoriasis, enfermedad de Crohn, colitis ulcerosa, enfermedad pulmonar obstructiva crónica, esclerosis múltiple, dermatitis atópica, y enfermedad de injerto contra huésped.

Otro uso preferido de los compuestos de la invención es en el tratamiento del cáncer, en particular del cáncer de mama, cáncer de ovarios, cáncer pancreático y carcinoma hepatocelular.

15 Descripción detallada de la invención

5

10

Aunque las definiciones anteriores incluyen potencialmente moléculas de alto peso molecular, resulta preferible, en línea con los principios generales de la práctica de la química médica, que los compuestos de los que se ocupa la presente invención deberían tener pesos moleculares de no más de 900, más preferiblemente no más de 600.

- Los grupos y fracciones alquilo, alquenilo y alquinilo en R², R³, R⁴, R⁵, R⁶, Rⁿ, Alk¹, R¹² y R¹³ son no sustituidos o sustituidos con 1, 2 o 3 sustituyentes no sustituidos que son los mismos o diferentes y se seleccionan de átomos de halógeno y grupos alquilo C₁-₄, alquenilo C₂-₄, alcoxi C₁-₄, alqueniloxi C₂-₄, haloalquilo C₁-₄, haloalqueniloxi C₂-₄, haloalqueniloxi C₂-₄, hidroxilo, -SR², ciano, nitro, hidroxialquilo C₁-₄ y -NR²R" donde R² y R" son iguales o diferentes y representan hidrógeno o alquilo C₁-₂ no sustituido. A menos que se especifique de otro modo, los propios sustituyentes descritos anteriormente son preferiblemente no sustituidos.
- Entre los sustituyentes preferidos se incluyen átomos de halógeno y grupos alquilo C₁₋₄, alquenilo C₂₋₄, alcoxi C₁₋₄, alqueniloxi C₂₋₄, haloalquenilo C₂₋₄, haloalquenilo C₂₋₄, haloalqueniloxi C₂₋₄, hidroxilo, mercapto, ciano, nitro, hidroxialquilo C₁₋₄, hidroxialquenilo C₂₋₄, alquiltio C₁₋₄, alqueniltio C₂₋₄, y -NR'R" en donde cada R' y R" es igual o diferente y representa hidrógeno o alquilo C₁₋₄.
- Entre los sustituyentes de mayor preferencia se incluyen halógeno, alquilo C₁₋₄, alquenilo C₂₋₄, alcoxi C₁₋₄, hidroxilo, haloalquilo C₁₋₄, haloalquenilo C₂₋₄, haloalquiloxi C₁₋₄ y -NR'R" en donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C₁₋₂. Los sustituyentes de mayor preferencia son grupos halógeno, alquilo C₁₋₄ no sustituido, alcoxi C₁₋₄, hidroxilo y -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C₁₋₂ no sustituido. Por ejemplo, los sustituyentes particularmente preferidos incluyen grupos alquilo C₁₋₄ no sustituido, alcoxi C₁₋₄, hidroxilo y -NR'R", donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C₁₋₂ no sustituido.

Cuando las fracciones alquilo, alquenilo y alquinilo se sustituyen por dos o tres sustituyentes, se prefiere que no más de dos sustituyentes se seleccionen de ciano y nitro. Más preferiblemente, no más de un sustituyente se selecciona de ciano y nitro.

- Tal como se utiliza en la presente patente, un grupo o fracción alquilo C_{1-6} es una fracción o grupo alquilo lineal o ramificado que contiene de 1 a 6 átomos de carbono, por ejemplo una fracción o grupo alquilo C_{1-4} que contiene de 1 a 4 átomos de carbono. Ejemplos de grupos alquilo C_{1-4} incluyen metilo, etilo, n-propilo, i-propilo, n-butilo, i-butilo y t-butilo. Para evitar dudas, cuando dos fracciones alquilo están presentes en un grupo, las fracciones alquilo pueden ser iguales o diferentes.
- Tal como se utiliza en la presente patente, una fracción o grupo alquenilo C₂₋₆ es una fracción o grupo alquenilo lineal o ramificado que tiene al menos un enlace doble de éter de estereoquímica E o Z cuando proceda, y que contiene de 2 a 6 átomos de carbono, por ejemplo, una fracción o grupo alquenilo C₂₋₄ que contiene de 2 a 4 átomos de carbono, tales como -CH=CH₂ o -CH₂-CH=CH₂, -CH₂-CH=CH₂, -CH₂-CH=CH-CH₃, -CH=C(CH₃)-CH₃ y -CH₂-C(CH₃)=CH₂. Para evitar dudas, cuando dos fracciones de alquenilo están presentes en un grupo, éstas pueden ser iguales o diferentes.
- Tal como se utiliza en la presente patente, una fracción o grupo alquinilo C₂₋₆ es una fracción o grupo alquinilo lineal o ramificado que contiene de 2 a 6 átomos de carbono, por ejemplo una fracción o grupo alquinilo C₂₋₄ que contiene de 2 a 5 átomos de carbono. Ejemplos de grupos alquinilo incluyen -C=CH o -CH₂-C=CH, además de 1- y 2-butinilo,

2-metilo-2-propinilo, 2-pentinilo, 3-pentinilo, 4-pentinilo, 2-hexinilo, 3-hexinilo, 4-hexinilo, y 5-hexinilo. Para evitar dudas, cuando dos fracciones de alquinilo están presentes en un grupo, éstas pueden ser iguales o diferentes.

Tal como se utiliza en la presente patente, una fracción o grupo alquileno C_{1-6} es una fracción o grupo lineal o ramificado, por ejemplo una fracción o grupo alquileno C_{1-4} . Entre los ejemplos se incluyen fracciones y grupos metileno, n-etileno, n-propileno y -C(CH₃)₂₋.

5

15

20

25

30

35

40

45

50

Tal como se utiliza en la presente patente, una fracción o grupo alquenileno C_{2-6} es una fracción o grupo alquenileno lineal o ramificado, por ejemplo una fracción o grupo alquenileno C_{2-4} . Entre los ejemplos se incluyen -CH=CH-, -CH=CH-CH₂-, -CH₂-CH=CH-Y--CH=CHCH=CH-.

Tal como se utiliza en la presente patente, una fracción o grupo alquinileno C_{2-6} es una fracción o grupo alquinileno C_{2-6} lineal o ramificado, por ejemplo una fracción o grupo alquinileno C_{2-4} . Entre los ejemplos se incluyen -C \equiv C-, -C \equiv C-CH₂- γ -CH₂-C \equiv C-.

Tal como se utiliza en la presente patente, un átomo de halógeno es habitualmente cloro, flúor, bromo o yodo.

Tal como se utiliza en la presente patente, un grupo alcoxi C_{1-6} o un grupo alqueniloxi C_{2-6} es habitualmente dicho grupo alquilo C_{1-6} (por ejemplo, alquilo C_{1-4}) o dicho grupo alquenilo C_{2-6} (por ejemplo alquenilo C_{2-4}) respectivamente que está unido a un átomo de oxígeno.

Un grupo haloalquilo, haloaquenilo, haloalcoxi o haloalqueniloxi es habitualmente dicho grupo alquilo, alquenilo, alcoxi o alqueniloxi respectivamente que ese sustituye por uno o más de dichos átomos de halógeno. Habitualmente, se sustituye por 1, 2 o 3 de dichos átomos de halógeno. Entre los grupos haloalquilo y haloalcoxi preferidos se incluyen grupos perhaloalquilo y perhaloalcoxi tales como -CX₃ y -OCX₃ en donde se dice que X es un átomo de halógeno, por ejemplo cloro y flúor.

Tal como se utiliza en la presente patente, un grupo hidroxialquilo $C_{1.4}$ es un grupo alquilo $C_{1.4}$ sustituido por uno o más grupos hidroxi. Habitualmente, se sustituye por uno, dos o tres grupos hidroxi. Preferiblemente, se sustituye por un único grupo hidroxi.

Tal como se utiliza en la presente patente, una fracción o grupo heteroarilo de 5 o 6 miembros es un anillo aromático de 5 o 6 miembros monocíclico que contiene al menos un heteroátomo, por ejemplo, 1, 2, 3 o 4 heteroátomos, seleccionados de O, S y N. Cuando el anillo contiene 4 heteroátomos, estos son preferiblemente todos átomos de nitrógeno. Entre los ejemplos se incluyen grupos tienilo, furilo, pirrolilo, imidazolilo, tiazolilo, isotiazolilo, pirazolilo, oxazolilo, isoxazolilo, triazolilo, triazolilo, triazolilo, oxadiazolilo, piridinilo, piridazinilo, pirazolilo, pirazolilo, isoxazolilo, triazolilo, piridinilo, piridazinilo, piridinilo, piridinilo, piridazinilo, piridinilo, pi

Tal como se utiliza en la presente patente, una fracción o grupo heterociclilo de 4- a 7- miembros es un anillo de carbocíclico C₄₋₇ no aromático, saturado o insaturado en el que uno o más, por ejemplo, 1, 2, 3 o 4 de los átomos de carbono se reemplazan con una fracción seleccionada de N, O, S, S(O) y S(O)₂, y en donde uno o más de los átomos de carbono restantes es opcionalmente reemplazado por un grupo -C(O)- o -C(S)-. Cuando uno o más de los átomos de carbono restantes es reemplazado por un grupo -C(O)- o -C(S)-, preferiblemente, solamente se reemplazan uno o dos (más preferiblemente dos) de dichos átomos de carbono. Grupos heterociclilo preferidos son grupos heterociclilo de 5 y 6 miembros.

Las fracciones y grupos heterociclilo adecuados incluyen grupos y fracciones azetidinilo, oxetanilo, tietanilo, imidazolidinilo, oxazolidinilo, isoxazolidinilo, tiazolidinilo, isotiazolidinilo. tetrahidrofuranilo. tetrahidrotienilo, tetrahidropiranilo, tetrahidrotiopiranilo, ditiolanilo, dioxolanilo, pirazolidinilo, piperidinilo, piperazinilo, hexahidropirimidinilo, metilenodioxifenilo, etilenodioxifenilo, tiomorfolinilo, S-oxo-tiomorfolinilo, S,S-dioxo-tiomorfolinilo, norfolinilo, 1,2-dioxolanilo, 1,4-dioxolanilo, tritianilo, imidazolinilo, piranilo, pirazolinilo, tioxolanilo, tioxotiazolidinilo, 1H-pirazol-5-(4H)-onilo, 1,3,4-tiadiazol-2(3H)-tionilo, oxopirrolidinilo, oxotiazolidinilo, oxotiazolidinilo, succinimido y maleimido. Son grupos heterociclilo preferidos grupos y fracciones pirrolidinilo, imidazolidinilo, oxazolidinilo, isoxazolidinilo, tiazolidinilo, isotiazolidinilo, tetrahidrofuranilo, tetrahidrofuranilo, tetrahidrofuranilo, tetrahidrotiopiranilo, pirazolidinilo, tetrahidropiranilo, ditiolanilo, dioxolanilo, piperidinilo, hexahidropirimidinilo, tiomorfolinilo y morfolinilo. Grupos heterociclilo de mayor preferencia son grupos y fracciones pirrolidinilo, imidazolidinilo, oxazolidinilo, isoxazolidinilo, tiazolidinilo, isotiazolidinilo, pirazolidinilo, piperidinilo, piperazinilo, hexahidropirimidinilo, tiomorfolinilo y morfolinilo, más preferiblemente grupos y fracciones pirrolidinilo. imidazolidinilo, pirazolidinilo, piperidinilo, piperazinilo y hexahidropirimidinilo. Entre los grupos particularmente preferidos se incluyen piperidinilo y pirrolidinilo.

Cuando una fracción o grupo heterociclilo se fusiona con otro grupo, puede fusionarse a un grupo adicional fenilo, heteroarilo de 5 o 6 miembros o heterociclilo de 5 o 6 miembros. Cuando una fracción o grupo heterociclilo se fusiona a otro grupo, puede fusionarse a un grupo adicional fenilo o heteroarilo de 5 a 6 miembros, más preferiblemente a un grupo fenilo. Entre los grupos heterociclilo fusionados preferidos se incluyen indolinilo, isoindolinilo, 2,3-dihidro-1H-benzo[d]imidazolilo, 2,3-dihidro-1H-benzo[d]imidazolilo, 2,3-dihidrobenzo[d]isoxazolilo. Entre los grupos heterociclilo fusionados preferidos se incluyen indolinilo e isoindolinilo, de mayor preferencia isoindolinilo.

Para evitar dudas, aunque las definiciones anteriores de grupos heteroarilo y heterociclilo hacen referencia a una fracción "N" que puede estar presente en el anillo, tal como resultará evidente para un químico experto el átomo de N será protonado (o portará un sustituyente tal como se ha definido a continuación) se está unido a cada uno de los átomo del anillo adyacente a través de un único enlace.

10

15

20

40

Tal como se utiliza en la presente patente, una fracción o grupo carbocíclico C₃₋₇ es un anillo de hidrocarburo saturado o insaturado no aromático que tiene de 3 a 7 átomos de carbono. Preferiblemente, es un anillo de hidrocarburo saturado o mono-saturado (es decir, una fracción cicloalquilo o una fracción cicloalquenilo) que tiene de 3 a 7 átomos de carbono, más preferiblemente que tiene de 3 a 6 átomos de carbono. Entre los ejemplos se incluyen ciclopropilo, ciclobutilo, ciclopentilo y ciclohexilo y sus variantes mono-insaturadas, más particularmente ciclopentilo y ciclohexilo. Una fracción o grupo carbociclilo C₃₋₇ también incluye fracciones o grupos carbociclilo C₃₋₇ descritos anteriormente pero en donde uno o más átomos de carbono del anillo son reemplazados por un grupo -C(O)-. Más preferiblemente, uno o dos átomos de carbono del anillo (más preferiblemente dos) son reemplazados por -C(O)-. Un grupo preferido de este tipo es la benzoquinona.

Cuando una fracción o grupo carbociclilo se fusiona con otro grupo, puede fusionarse con un anillo adicional de fenilo, heteroarilo de 5 o 6 miembros o heterociclilo de 5 o 6 miembros. Por ejemplo, puede fusionarse a un anillo adicional de fenilo. Un ejemplo de grupo carbociclilo fusionado es el indanilo. Más preferiblemente, los grupos carbociclilo son monocíclicos (es decir, no fusionados).

A menos que se indique lo contrario, los grupos y fracciones arilo, heteroarilo, carbociclilo y heterociclilo son no sustituidos o sustituidos por 1, 2, 3 o 4 sustituyentes no sustituidos seleccionado de átomos de halógeno, y grupos ciano, nitro, alquilo C₁₋₄, alcoxi C₁₋₄, alquenilo C₂₋₄, alqueniloxi C₂₋₄, haloalquilo C₁₋₄, haloalquenilo C₂₋₄, haloalquenilo C₂₋₄, haloalquenilo C₂₋₄, haloalquenilo C₂₋₄, haloalquenilo C₂₋₄, haloalquenilo C₁₋₄, -SR' y -NR'R" en donde cada R' y R" es igual o diferente y representa hidrógeno o alquilo C1-4 no sustituido, o de sustituyentes de fórmula -COOH, -COOR^A, -COR^A, -SO₂R^A, -CONH₂, -SO₂NH₂, -CONH₂, -SO₂NH₃, -SO₂NH₄, -CONR^AR^B, -SO₂NR^AR^B, -OCONH₂, -OCONH₄, -OCONR^AR^B, -NHCOR^A, -NR^BCOR^A, -NR^BCOR^A, -NR^BCOOH, -NHCOOH, -NHSO₂R^A, -NR^BSO₂R^A, -NHSO₂OR^A, -NR^BSO₂OH, -NHSO₂H, -NR^BSO₂OR^A, -NHCONH₂, -NR^ACONH₂, -NHCONH₃, -NR^ACONH₄, -NR^ACONH₄, -NR^ACONR^AR^B en donde R^A y R^B son iguales o diferentes y representan alquilo C₁₋₆ no sustituido, cicloalquilo C₃₋₆, fenilo no fusionado o un heteroarilo de 5 o 6 miembros no fusionado, o R^A y R^B cuando están unidos al mismo átomo de nitrógeno forman un grupo heterociclilo de 5 a 6 miembros no fusionado. A menos que se indique lo contrario, los propios sustituyentes son preferiblemente no sustituidos. En particular se prefiere que R^A y R^B sean no sustituidos.

- Habitualmente, las fracciones fenilo, heteroarilo, heterociclilo y carbociclilo en los grupos y fracciones arilo, heteroarilo, carbociclilo y heterociclilo son no sustituidos o sustituidos por 1, 2, 3 o 4 sustituyentes, por ejemplo por 1, 2 o 3 sustituyentes. Entre los sustituyentes preferidos se incluyen átomos de halógeno y grupos alquilo C₁₋₄, alquenilo C₂₋₄, alcoxi C₁₋₄, alqueniloxi C₂₋₄, haloalquilo C₁₋₄, haloalquenilo C₂₋₄, haloalquenilo C₂₋₄, haloalqueniloxi C₂₋₄, hidroxilo, mercapto, ciano, nitro, hidroxialquilo C₁₋₄, hidroxialquenilo C₂₋₄, alquiltio C₁₋₄, alqueniltio C₂₋₄ y -NR'R" en donde cada R' y R" es igual o diferente y representa hidrógeno o alquilo C₁₋₄. Preferiblemente, los propios sustituyentes son no sustituidos. Los sustituyentes de mayor preferencia incluyen átomos de halógeno y grupos alquilo C₁₋₄, alcoxi C₁₋₄, hidroxilo, haloalquilo C₁₋₄, haloalcoxi C₁₋₄, hidroxialquilo C₁₋₂ no sustituido. Los sustituyentes de mayor preferencia incluyen átomos de halógeno y grupos alquilo C₁₋₂ y alcoxi C₁₋₂.
- Tal como se utiliza en la presente patente, el término "sal" incluye sales de adición básica, de adición ácida y cuaternarias. Los compuestos de la invención que son ácidos pueden formar sales, incluyendo sales farmacéuticamente aceptables con bases tales como hidróxidos de metales alcalinos, por ejemplo, hidróxidos de sodio o potasio; hidróxidos de metales alcalinotérreos, por ejemplo hidróxidos de calcio, bario y magnesio; con bases

orgánicas, por ejemplo N-metil-D-glucamina, colina tris(hidroximetil)amino-metano, L-arginina, L-lisina, N-etil piperidina, dibencilamina y similares. Aquellos compuestos (I) que son básicos pueden formar sales, incluyendo sales farmacéuticamente aceptables con ácidos inorgánicos, por ejemplo con ácidos hidrácidos tales como ácidos clorhídricos o bromhídricos, ácido sulfúrico, ácido nítrico o ácido fosfórico y similares, y con ácidos orgánicos, por ejemplo, ácidos acético, tartárico, succínico, fumárico, maleico, salicílico, cítrico, metasulfónico, p-toluenosulfónico, benzoico, bencenosulfónico, glutámico, láctico, y mandélico y similares.

Los compuestos de la invención que contienen uno o más centros quirales potenciales o reales, debido a la presencia de átomos de carbono asimétricos, pueden existir como un número de diastereoisómeros con estereoquímica R o S en cada centro quiral. La invención incluye todos los diastereoisómeros de este tipo y mezclas de los mismos.

10

15

20

25

30

40

Tal como se utiliza en la presente patente, el término "profármaco" representa un derivado de un compuesto de fenilamida de fórmula (I) que se administra en una forma menos activa y que, una vez administrado, es metabolizado en un metabolito activo de fórmula (I). Se conocen en el arte diversas formas de profármacos. Para ejemplos de tales profármacos ver: Design of Prodrugs, editado por H. Bundgaard, (Elsevier, 1985) y Methods in Enzymology, Vol. 42, p. 309-396, editado por K. Widder, et al. (Academic Press, 1985); A Textbook of Drug Design and Development, editado por Krogsgaard-Larsen y H. Bundgaard, Capítulo 5 "Design and Application of Prodrugs", por H. Bundgaard p. 113-191 (1991); H. Bundgaard, Advanced Drug Deliver Reviews, 8, 1-38 (1992); H. Bundgaard, et al., Journal of Pharmaceutical Sciences, 77, 285 (1988); y N. Kakeya, et al., Chem Pharm Bull, 32, 692 (1984).

Ejemplos de profármacos incluyen ésteres divisibles de compuestos de la fórmula (I). Un éster divisible *in vivo* de un compuesto de la invención que contiene un grupo carboxi es, por ejemplo, un éster farmacéuticamente aceptable que se divide en el organismo humano o animal para producir el ácido parental. Ésteres farmacéuticamente aceptables adecuados para carboxi incluyen alquilésteres C₁₋₆, por ejemplo éster metílico o etílico; ésteres alcoximetílicos C₁₋₆, por ejemplo éster metoximetílico; ésteres alacanoiloximetílicos C₁₋₆; éster ftalidílico; C₃₋₈ cicloalcoxicarboniloxiC₁₋₆alquil ésteres, por ejemplo 1-ciclohexilcarboniloxietil; 1,3-dioxolan-2-ilmetil ésteres, por ejemplo 5-metil-1,3-dioxolan-2-ilmetil; C₁₋₆ alcoxicarboniloxietil ésteres, por ejemplo 1-metoxicarboniloxietil; aminocarbonilmetil ésteres y mono- o di-N-(C₁₋₆ alquil) versiones de los mismos, por ejemplo N,N-dimetilaminocarbonilmetil ésteres y N-etilaminocarbonilmetil ésteres; y pueden formarse en cualquier grupo carboxi en los compuestos de la invención. Un éster divisible *in vivo* de un compuesto de la invención que contiene un grupo hidroxi es, por ejemplo, un éster farmacéuticamente aceptable que se divide en el organismo humano o animal para producir el grupo hidroxi parental. Los ésteres farmacéuticamente aceptables para hidroxi incluyen C₁₋₆ alcanoil ésters, por ejemplo acetil ésteres; y ésteres de benzoilo en donde el grupo fenilo puede ser sustituido con aminometilo o mono- o di- alquil-aminometilo C₁₋₆ N-sustituido, por ejemplo 4-aminometilbenzoil ésteres y 4-N,N-dimetilaminometilbenzoil ésteres.

Entre los ejemplos adicionales de tales profármacos se incluyen amidas divisibles *in vivo* de un compuesto de la fórmula (I). Entre los ejemplos de tales amidas divisibles *in vivo* se incluyen alquilamida N-C₁₋₆ y N,N-di-(C₁₋₆ alquil)amida tal como N-metilo, N-etilo, N-propilo, N,N-dimetilo, N-etil-N-metilo o N,N-dietilamida.

Entre los profármacos se incluyen derivados de carbamato, acetiloxi y carbonato. Por ejemplo, un grupo hidroxi de un compuesto de la fórmula (I) puede estar presente en un profármaco como -O-CONR i R ii , -O-COR iii o -O-C(O)OR iii donde R iii es alquilo C₁₋₄ no sustituido o sustituido, y R i y R ii son iguales o diferentes y representan alquilo C₁₋₄, o NR i R ii forma un anillo de heterociclilo de 4 a 7 miembros. Los sustituyentes en los grupos alquilo y heterociclilo son tal como se define anteriormente. Preferiblemente, los grupos alquilo en R i , R ii y R iii son no sustituidos. Cuando NR i R ii forma un anillo de heterociclilo de 4- a 7- miembros, preferiblemente es un anillo de heterociclilo de 5 o 6 miembros. Preferiblemente, el anillo de heterociclilo es no sustituido.

Otros profármacos preferidos incluyen derivados de aminoácidos. Aminoácidos adecuados incluyen α-aminoácidos ligados al grupo A, a través de su grupo –OH. Tales profármacos pueden dividirse *in vivo* para producir compuestos de la fórmula (I) que portan un grupo hidroxi. Por consiguiente, tales grupos de aminoácidos se emplean preferiblemente en las posiciones de la fórmula (I) donde un grupo hidroxi se requiere finalmente. Ejemplos de profármacos de esta realización de la invención son por lo tanto compuestos de la fórmula (I) que portan un grupo de la fórmula -OC(O)-CH(NH₂)R^{iv}, donde R^{iv} es una cadena lateral de aminoácidos. Los aminoácidos preferidos incluyen glicina, alanina, valina y serina. El aminoácido también puede ser funcionalizado, por ejemplo el grupo amino puede ser alquilado. Un aminoácido funcionalizado adecuado es N,N-dimetilglicina.

Preferiblemente, R^2 representa un átomo de hidrógeno o halógeno o un grupo hidroxi, alquilo C_{1-4} no sustituido o alcoxi C_{1-4} no sustituido. Más preferiblemente R^2 representa un átomo de hidrógeno.

Preferiblemente, R⁴ representa un átomo de hidrógeno o halógeno o un grupo hidroxi, alquilo C₁₋₄ no sustituido o alcoxi C₁₋₄ no sustituido. Más preferiblemente R⁴ representa un grupo alquilo C₁₋₄ no sustituido, preferiblemente un grupo isopropilo.

Preferiblemente, R^5 representa un átomo de hidrógeno o halógeno o un grupo hidroxi, alquilo C_{1-4} no sustituido o C_{1-4} no sustituido. Más preferiblemente R^5 representa un átomo de hidrógeno.

En una primera realización, R6 se selecciona de alquilo C_{1-4} y R^7 representa - CR^8R^9 -A, en donde R^8 y R^9 son iguales o diferentes y representan un átomo de hidrógeno o un grupo alquilo C_{1-4} , alquenilo C_{2-4} , alcoxi C_{1-4} , hidroxi o -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-4} no sustituido, y A representa un anillo de fenilo o un grupo heteroarilo de 5 o 6 miembros y se sustituye con un grupo W. Preferiblemente, R^6 es un grupo alquilo C_{1-2} no sustituido, más preferiblemente R^6 es - CH_3 .

Cuando R^6 es alquilo C_{1-4} , preferiblemente R^8 y R^9 , los cuales son iguales o diferentes, representan un átomo de hidrógeno o halógeno o un grupo alquilo C_{1-4} no sustituido o alcoxi C_{1-4} . Más preferiblemente, R^8 y R^9 , que son iguales o diferentes, representan hidrógeno o un alquilo C_{1-2} no sustituido. De mayor preferencia, R^8 y R^9 son ambos hidrógeno.

Cuando R^6 es alquilo $C_{1.4}$, preferiblemente A representa un anillo de fenilo sustituido con un grupo W. Preferiblemente, el anillo de fenilo no porta sustituyentes diferentes del grupo W.

De acuerdo con esta primera realización, más preferiblemente R⁶ representa -CH₃ y R⁷ representa -CH₂-fenilo, en donde el anillo de fenilo es sustituido con un único grupo W.

En una segunda realización, R^6 y R^7 , junto con el átomo de nitrógeno al que se enlazan, forman un grupo heterociclilo de 5 o 6 miembros que está o bien (a) sin fusionar, o (b) fusionado a un anillo de fenilo o a un grupo heterociclilo de 5 a 6 miembros, y en donde ya sea el grupo heterociclilo o bien, cuando está fusionado, el grupo heterociclilo o el anillo de fenilo o el grupo heterociclilo o el sustituido con un grupo W.

De acuerdo con esta segunda realización, preferiblemente R⁶ y R⁷, junto con el átomo de nitrógeno al que se enlazan, forman un grupo pirrolidinilo, piperidinilo o isoindolinilo que es sustituido con un grupo W y es, de manera opcional, sustituido adicionalmente con 1 o 2 grupos que son iguales o diferentes y se selecciona de entre átomos de halógeno y grupos alquilo C₁₋₄ no sustituido, alcoxi C₁₋₄, hidroxilo, haloalquilo C₁₋₄, haloalcoxi C₁₋₄, hidroxialquilo C₁₋₄, ciano, nitro, -SR' y -NR'R", donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C₁₋₂ no sustituido. Más preferiblemente, R⁶ y R⁷, junto con el átomo de nitrógeno al que se enlazan, forman un grupo pirrolidinilo, piperidinilo o isoindolinilo que es sustituido con un único grupo W.

Preferiblemente, Alk^1 representa un enlace, un grupo alquileno C_{1-4} no sustituido, o un grupo -(alquileno C_{1-2})-NH-(alquileno C_{1-4})- no sustituido. Cuando Alk^1 es un grupo alquileno C1-4 no sustituido, es preferiblemente un grupo metileno, etileno o propileno. Cuando Alk^1 es un grupo propileno preferiblemente es un grupo de cadena recta (es decir, -CH₂-CH₂-CH₂-). Cuando Alk^1 es un grupo -(alquileno C_{1-2})-NH-(alquileno C_{1-4})- no sustituido, preferiblemente es un grupo -CH₂-NH-(alquileno C_{1-4})-, más preferiblemente un grupo -CH₂-NH-CH₂CH₂-.

R representa un grupo de la fórmula (X) o (Y):

5

10

15

30

35

40

$$-\frac{\xi}{\xi} - \sqrt{\frac{Alk^2 - R^{11}}{\xi}} \qquad \frac{\xi}{\xi} - \sqrt{\frac{R^{11}}{\lambda lk^2}}$$
(X)
(Y)

El anillo D está presente cuando el grupo R es de la fórmula (Y). Entre los grupos (Y) preferidos se incluyen aquellos en los que el anillo D es un grupo no fusionado heteroarilo de 5 a 6 miembros o heterociclilo donde R¹¹ está ligado al grupo Alk², que proporciona el átomo de carbono adyacente que se muestra en el anillo D. Más preferiblemente, el anillo D es un grupo heterociclilo de 5 a 6 miembros no fusionado, por ejemplo un grupo pirrolidinilo, oxazolidinilo, isoxazolidinilo, imidazolidinilo, pirazolidinilo, tiazolidinilo, isotiazolidinilo, piperidinilo, morfolinilo o tiomorfolinilo. Más preferiblemente el anillo D es un grupo pirrolidinilo, piperazinilo o piperidinilo, más preferiblemente un grupo piperidilo o piperazinilo.

Cuando el anillo D está presente, -Al k^2 - es -C(R^{12})-. En particular, el átomo de carbonol del Al k^2 forma parte del anillo D, y (además de estar enlazado a otros dos átomos del anillo) porta el grupo R^{12} además de portar el grupo R^{11} . Ejemplos preferidos de R^{12} se discuten en más detalle más adelante.

Preferiblemente, el anillo D, además de contener Alk^2 y portar el grupo R^{11} , es no sustituido o sustituido por 1 o 2 grupos seleccionados de entre átomos de halógeno y grupos alquilo C_{1-4} , alcoxi C_{1-4} e hidroxilo. Más preferiblemente el anillo D, aparte de contener Alk^2 y portar un grupo R^{11} , es no sustituido.

Preferiblemente, el anillo D, además de contener Alk^2 y portar un grupo R^{11} , es no sustituido o sustituido por 1 o 2 grupos seleccionados de entre átomos de halógeno y grupos alquilo C_{1-4} , alcoxi C_{1-4} e hidroxilo. Más preferiblemente, el anillo D, aparte de contener Alk^2 y portar un grupo R^{11} , es no sustituido.

Cuando R representa un grupo de la fórmula (X), R^{10} preferiblemente representa un átomo de halógeno o un alquilo C_{1-2} no sustituido. Más preferiblemente, R^{10} representa un átomo de hidrógeno. Preferiblemente, R representa un grupo de la fórmula (X).

- Alk² representa un grupo metileno sustituido con un grupo R^{12} y, cuando R representa un grupo de la fórmula (X), un grupo R^{13} . R^{12} y R^{13} son hidrógeno o los α -sustituyentes de una glicina o éster de glicina α -sustituida o α , α -disustituida. Estos sustituyentes pueden, por lo tanto, seleccionarse independientemente de entre hidrógeno y las cadenas laterales de un alfa-aminoácido natural o no natural. En dichas cadenas laterales cualquier grupo funcional puede estar protegido.
- Será conocido para la persona experta en el arte que el término "protegido", cuando se utiliza en relación a un sustituyente funcional en una cadena lateral de un α-aminoácido, significa un derivado de dicho sustituyente que es sustancialmente no funcional. Por ejemplo, los grupos carboxi pueden ser esterificados (por ejemplo, como un éster alquílico C₁₋₆), los grupos amino pueden convertirse a amidas (por ejemplo, como una NHCOC₁-C₆ alquilamida) o carbamatos (por ejemplo, como NHC(=O)OC₁-C₆ alquilo o un NHC(=O)OCH₂Ph carbamato), grupos hidroxilo pueden ser convertidos a éteres (por ejemplo un OC₁-C₆ alquilo o un O(alquilo C₁-C₆)fenil éter) o ésteres (por ejemplo un OC(=O)C₁-C₆ alquil éster) y los grupos tiol pueden convertirse a tioéteres (por ejemplo un terc-butil o bencil tioéter) o tioésteres (por ejemplo un SC(=O)C₁-C₆ alquil tioéster).

Ejemplos de R¹² y R¹³incluyen hidrógeno, fenilo y grupos de fórmula - CR^aR^bR^c en donde:

5

30

35

40

- (a) R^a , R^b y R^c son iguales o diferentes y representan un átomo de hidrógeno o un grupo alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , fenilo, heteroarilo de 5 a 6 miembros, fenil(C_{1-6})alquilo o carbociclilo(C_{3-8}), -OH, -SH, halógeno, -CN, -CO₂H, perfluoroalquilo(C_{1-4}), -CH₂OH, -O-alquilo(C_{1-6}), -O(C_{2-6})alquenilo, -SO(C_{1-6})alquilo, -SO(C_{1-6})alquilo, -SO(C_{1-6}) alquilo, -SO(C_{2-6})alquenilo, -SO(C_{2-6})alquenilo; o
 - (b) dos de R^a , R^b y R^c representan un grupo mencionado en (a) anteriormente y el otro de R^a , R^b y R^c representa un grupo -Q-W en donde Q representa un enlace o -O-, -S-, -SO- o -SO₂- y W representa un grupo fenilo, fenil(C_{1-6})alquilo, carbociclilo C_{3-8} , carbociclilo C_{3-8} -alquilo(C_{1-6}), cicloalquenilo C_{4-8} , cicloalquenilo C_{4-8} -alquilo(C_{1-6}), heteroarilo de 5- o 6- miembros, heteroarilo o heteroaril-alquilo(C_{1-6}) de 5 o 6 miembros, cuyo grupo W es no sustituido o sustituido por uno o más sustituyentes que son iguales o diferentes y representan hidroxilo, halógeno, -CN, -CONH2, -CONH(C_{1-6})alquilo, -CONH(alquilo C_{1-6})2, -CHO, -CH2OH, -perfluoroalquilo(C_{1-4}), -O(C_{1-6})alquilo, -S(C_{1-6})alquilo, -SO(C_{1-6})alquilo, -SO2(C_{1-6})alquilo, -NO2, -NH2, -NH(C1-6) alquilo, -N(alquilo (C1-6))2, -NHCO(C_{1-6}) alquilo, alquilo(C_{1-6}), alquenilo (C_{2-6}), alquinilo (C_{2-6}), carbociclilo (C_{3-8}), cicloalquenilo (C_{4-8}), fenilo o bencilo; o
 - (c) uno de Rª, Rb y Rc representa un grupo mencionado en el apartado (a) anterior y los otros dos de Rª, Rb y Rc, junto con el átomo de carbono al que se unen, forman un anillo de carbociclilo de 3 a 8 miembros, heteroarilo de 5- a 6-miembros o heterociclilo de 5 a 6 miembros, o Rª, Rb y Rc, junto con el átomo de carbono al que se unen, forman un sistema tricíclico.

Por ejemplo, en una realización cada uno de R^a , R^b y R^c es igual o diferente y representa un átomo de hidrógeno o un grupo alquilo C_{1-6} , alquenilo C_{2-6} , fenil-alquilo(C_{1-6}) o carbociclilo(C_{3-8}).

En otra realización, R^c es hidrógeno y R^a y R^b son iguales o diferentes y representan un grupo fenilo o heteroarilo de 5 o 6 miembros. Los grupos heteroarilo particularmente adecuados incluyen piridilo.

- En otra realización Rc representa un átomo de hidrógeno o un grupo alquilo C_{1-6} , alquenilo C_{2-6} , fenil(C_{1-6})alquilo o carbociclilo(C_{3-8}), y R^a y R^b , junto con el átomo de carbono al que se unen, forman un anillo de carbociclilo de 3 a 8 miembros, heteroarilo de 5 a 6 miembros o heterociclilo de 5 a 6 miembros.
 - En otra realización, Ra, Rb y Rc, junto con el átomo de carbono al que se unen, forman un sistema tricíclico. Un sistema tricíclico particularmente adecuado es adamantilo.
- 50 En otra realización R^a and R^b son iguales o diferentes y representan un grupo alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , o fenil-alquilo(C_{1-6}), o un grupo según se define para R^c a continuación distinto de hidrógeno, o R^a y R^b , junto con el

átomo de carbono al que se unen, forman un grupo carbociclilo C_{3-8} o heterociclilo de 5- o 6- miembros, y R^c representa un átomo de hidrógeno o un grupo seleccionado de -OH, -SH, halógeno, -CN, -CO₂H, perfluoroalquilo(C_{1-4}), -CH₂OH, -O(C_{1-6})alquilo, -O(C_{2-6})alquenilo -S(C_{1-6})alquilo, -SO(C_{1-6})alquilo, -SO₂(C_{1-6}) alquilo, -S(C_{2-6})alquenilo, o R^c representa un grupo -Q-W, en donde Q representa un enlace o -O-, -S-, -SO- o -SO₂ y W representa un grupo fenilo, fenil(C_{1-6})alquilo, carbociclilo C_{3-8} , C_{3-8} cicloalquilo(C_{1-6})alquilo, cicloalquenilo C_{4-8} , C_{4-8} cicloalquenilo(C_{1-6})alquilo, heteroarilo de 5- o 6- miembros o heteroaril(C_{1-6})alquilo de 5 o 6 miembros, cuyo grupo W es no sustituido o sustituido por uno o más sustituyentes que son iguales o diferentes y representan hidroxilo, halógeno, -CN, -CONH₂, -CONH(C_{1-6})alquilo, -CONH(alquilo C_{1-6})₂, -CHO, -CH₂OH, perfluoroalquilo(C_{1-4}), -O(C_{1-6})alquilo, -S(C_{1-6})alquilo, -SO(C_{1-6})alquilo, -SO(C_{1-6})alquilo, -NO₂, -NH₂, -NH(C_{1-6})alquilo, -N(alquilo(C_{1-6}))₂, -NHCO(C_{1-6})alquilo, alquilo(C_{1-6}), alquenilo(C_{2-6}), carbociclilo(C_{3-8}), cicloalquenilo(C_{4-8}), fenilo o bencilo.

En otra realización, cuando R es un grupo de la fórmula (X), los sustituyentes R¹² y R¹³, tomados junto con el carbono al que se unen, forman un anillo de carbociclilo o heterociclilo saturado de 3 a 6 miembros. Los anillos adecuados de carbociclilo incluyen un anillo de ciclopropilo, ciclopentilo y ciclohexilo; los anillos de heterociclilo adecuados incluyen anillos de piperidin-4-ilo.

En una realización preferida, o bien:

5

10

15

- (i) R^{12} y R^{13} son iguales o diferentes y representan hidrógeno, alquilo C_{1-6} , carbociclilo C_{3-7} , arilo C_{6-10} , (alquilo C_{1-4})-(arilo C_{6-10}), o -(alquilo C_{1-4})-(carbociclilo C_{3-7}); o
- (ii) R¹² y R¹³, junto con el átomo de carbono al que se enlazan, forman un grupo carbociclilo C₃₋₇;
- en donde los grupos y fracciones alquilo son no sustituidos o sustituidos con 1 o 2 sustituyentes seleccionados de grupos alquilo C₁₋₄ no sustituido, alcoxi C₁₋₄, hidroxi y -NR'R", donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C₁₋₂ no sustituido, y en donde los grupos y fracciones arilo y carbociclilo son no sustituidos o sustituidos con 1 o 2 sustituyentes seleccionados de átomos de halógeno y grupos alquilo C₁₋₄ no sustituido, alcoxi C₁₋₄, hidroxilo, haloalquilo C₁₋₄, haloalcoxi C₁₋₄, hidroxialquilo C₁₋₄, ciano, nitro, -SR' y -NR'R", donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C₁₋₂ no sustituido.
 - Cuando R^{12} y R^{13} no forman juntos un grupo carbociclilo, entonces preferiblemente R^{12} y R^{13} son iguales o diferentes y representan un átomo de hidrógeno o un grupo no sustituido seleccionado de alquilo C_{1-4} , carbociclilo C_{3-7} , fenilo, hidroxi-alquilo(C_{1-4}), -alcoxi(C_{1-4}), -alquilo(C_{1-4}), -alquilo(C_{1-2}) -fenilo o -(C_{1-2})alquilo-(C_{3-7})carbociclilo.
- Cuando R¹² y R¹³ no forman juntos un grupo carbociclilo, entonces uno de R¹² y R¹³ es distinto de hidrógeno. En los casos en que uno de R¹² y R¹³ es metilo, entonces el otro grupo es hidrógeno o metilo.
 - Cuando R^{12} y R^{13} no forman juntos un grupo carbociclilo, entonces preferiblemente uno de R^{12} y R^{13} es hidrógeno o alquilo C_{1-2} no sustituido y el otro de R^{12} y R^{13} es un grupo no sustituido seleccionado de alquilo C_{1-4} , carbociclilo C_{3-7} , fenilo, -hidroxi-alquilo (C_{1-4}) , -alcoxi (C_{1-4}) , -alquilo (C_{1-4}) , -alquilo (C_{1-2}) -fenilo o -alquilo (C_{1-2}) carbociclilo (C_{3-7}) .
- Cuando R¹² y R¹³ no forman juntos un grupo carbociclilo, junto con el átomo de carbono al que se enlazan, preferiblemente el grupo carbociclilo es un grupo carbociclilo C₃₋₇ no sustituido. Un grupo carbociclilo de mayor preferencia es un grupo ciclopentilo.
 - R^{11} es un grupo éster -COOR 20 . El término "éster" o "grupo carboxilo esterificado" en conexión con el sustituyente R11 anterior significa un grupo -COOR 20 en el cual R^{20} es el grupo que caracteriza el éster, teóricamente obtenido del alcohol R^{20} -OH.
- R11 es un grupo éster que en el compuesto de la invención es hidrolizable por uno o más enzimas de carboxilesterasa intracelular a un grupo ácido carboxílico. Las enzimas de carboxilesterasa capaces de hidrolizar el grupo éster de un compuesto de la invención al correspondiente ácido, incluyen los tres isotipos conocidos de enzimas humanas hCE-1, hCE-2 and hCE-3. Aunque se consideran que éstas son las principales enzimas, otras encimas tales como la bifenilhidrolasa (BPH) pueden además cumplir una función en la hidrolización de los conjugados. En general, si la carboxilesterasa hidroliza el éster de aminoácido libre al ácido parental, también hidrolizará el motivo éster cuando se conjuga de forma covalente con el inhibidor de la HSP90. Por tanto, el ensayo de células rotas descrito más adelante proporciona un primer cribado directo, rápido y simple para determinar ésteres que presentan el perfil de hidrólisis requerido. Los motivos ésteres seleccionados de esa manera pueden entonces volver a someterse a ensayo en el mismo ensayo de carboxilesterasa cuando se conjugan con el inhibidor de la HSP90 a través de la química de conjugación elegida, para confirmar que es aún un sustrato de carboxilesterasa en ese fondo.

Se sabe que los macrófagos juegan un papel clave en los trastornos inflamatorios a través de la liberación de citoquinas, en particular TNF-α e IL-1. En la artritis reumatoide son los principales contribuyentes al mantenimiento de la inflamación de articulaciones y destrucción de articulaciones. Los macrófagos también están implicados en el crecimiento y desarrollo tumoral. Por tanto, los agentes que selectivamente establecen como diana la proliferación de macrófagos podrían ser de valor en el tratamiento contra el cáncer y la enfermedad autoinmune. Sería de esperar que establecer como diana tipos de células específicas conduzca a una reducción de los efectos secundarios. Los inventores han descubierto un método para dirigir los inhibidores de la HSP90 a los macrófagos y otras células obtenidas del linaje mielo-monocítico tales como los monocitos, osteoclastos y células dendríticas. Esto está basado en la observación de que la manera en la que el motivo de esterasa se une al inhibidor de la HSP90 determina si está hidrolizada, y por tanto si se acumula o no en diferentes tipos de células. Específicamente, se ha observado que los macrófagos y otras células derivadas del linaje mielomonocítico contienen la carboxilesterasa hCE-1 mientras que otros tipos de célula no. Los compuestos de la fórmula (I), en donde en todos los casos el nitrógeno del motivo de esterasa (X) o (Y) no está directamente ligado a un carbonilo (-C(=O)-), será hidrolizado únicamente por hCE-1 y por tanto los inhibidores se acumularán de forma selectiva en células asociadas a macrófagos. En la presente patente, a menos que se especifique "monocito" o "monocitos", el término macrófago o macrófagos se utilizará para indicar macrófagos (incluyendo macrófagos asociados a tumores) y/o monocitos.

10

15

20

25

30

35

40

45

Sujetos al requerimiento de que sean hidrolizables por las enzimas de carboxilesterasa intracelular, los ejemplos de grupos éster en particular -COOR²⁰ incluyen aquellos en donde R²⁰ es -CR¹⁴R¹⁵R¹⁶ en donde:

- (i) R^{15} representa hidrógeno o un grupo de la fórmula -[alquileno $C_{1-4}]_b$ -[alquileno $C_{1-4}]_b$ -[alquileno $C_{2-4}]_b$ -[alquileno C_{2-
- (ii) R^{15} representa un grupo fenilo o heteroarilo de 5 o 6 miembros fusionado a un grupo adicional fenilo, heteroarilo de 5 o 6 miembros, carbociclilo C_{3-7} o heterociclilo de 5- o 6 miembros, R^{16} representa hidrógeno o alquilo C_{1-4} , y R^{14} representa hidrógeno;
- (iii) R^{15} representa un grupo de la fórmula -(Alk⁴)-NR¹⁸R¹⁹, en donde Alk⁴ representa un grupo alquileno C_{1-4} y o bien (a) R^{18} y R^{19} son iguales o diferentes y representan hidrógeno o alquilo C_{1-4} , o (b) R^{18} y R^{19} , junto con el átomo de nitrógeno al que se enlazan, forman un grupo heteroarilo de 5 o 6 miembros o heterociclilo de 5- o 6 miembros, opcionalmente fusionados a un grupo adicional fenilo, heteroarilo de 5- o 6- miembros, carbociclilo C_{3-7} o heterociclilo de 5- o 6- miembros; R^{16} representa hidrógeno o alquilo C_{1-4} , y R^{14} representa hidrógeno; o
- (iv) R^{15} y R^{16} , junto con el átomo de carbono al que se enlazan, forman un grupo fenilo, heteroarilo de 5 a 6 miembros, carbociclilo C_{3-7} o heterociclilo de 5- o 6- miembros que se fusiona opcionalmente a un grupo adicional fenilo, heteroarilo de 5- o 6- miembros, carbociclilo C_{3-7} o heterociclilo de 5- o 6- miembros, y R^{14} representa hidrógeno.

Los sustituyentes preferidos en los grupos alquilo, alquileno y alquenilo en los grupos R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} y Alk^4 incluyen uno o dos sustituyentes que son iguales o diferentes y se seleccionan de halógeno, alquilo C_{1-4} , alquenilo C_{2-4} , alcoxi C_{1-4} , hidroxilo y -NR'R" en donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-2} . Los sustituyentes de mayor preferencia son halógeno, alcoxi C_{1-2} , hidroxilo y -NR'R" en donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-2} . De mayor preferencia los grupos alquilo, alquileno y alquenilo en R^{15} , R^{16} y Alk^4 son no sustituidos.

- Los sustituyentes preferidos en los grupos fenilo, heteroarilo, carbociclilo y heterociclilo en o formados por grupos R^{15} , R^{16} , R^{18} y R^{19} , incluyen uno o dos sustituyentes que son iguales o diferentes y se seleccionan de entre átomos de halógeno y grupos alquilo C_{1-4} , alquileno C_{1-4} , alcoxi C_{1-4} , haloalquilo C_{1-4} , hidroxilo, ciano, nitro y -NR'R" en donde cada R' y R'' es igual o diferente y representa hidrógeno o alquilo C_{1-4} , más preferiblemente átomos de halógeno y grupos alquilo C_{1-2} , alquileno C_{1-2} , alcoxi C_{1-2} e hidroxilo. Más preferiblemente, los grupos fenilo, heteroarilo, carbociclilo y heterociclilo en o formado por R^{15} , R^{16} , R^{18} y R^{19} son no sustituidos y sustituidos por un grupo alquileno C_{1-2} , en particular un grupo metileno. De mayor preferencia, los grupos fenilo, heteroarilo, carbociclilo y heterociclilo en o formados por R^{15} , R^{16} , R^{18} y R^{19} son no sustituidos.
- Cuando R¹⁵ representa un grupo de la fórmula -[alquileno C₁₋₄]b-(Z¹)_a-[alquilo C₁₋₄], preferiblemente o bien a o b es cero, por ejemplo, ambos a y b son cero. Cuando está presente [alquileno C₁₋₄], es preferiblemente un alquileno C₁₋₃, más preferiblemente un alquileno C₁₋₂, tal como un grupo -CH₂-CH₂-.
 - Cuando R^{15} representa un grupo de la fórmula -[alquileno $C_{1-4}]_{b^-}(Z^1)_{a^-}$ [alquilo C_{1-4}], preferiblemente alquilo C_{1-4} es un grupo alquilo C_{1-3} , tal como metilo, etilo o n-propilo, de mayor preferencia metilo.

- Cuando R^{15} representa un grupo de fórmula -[alquileno $C_{1-4}]_{b^-}(Z^1)_a$ -[alquilo $C_{1-4}]$ y a es 1, Z^1 es preferiblemente -O- o -NMR¹⁷- en donde R^{17} es hidrógeno o alquilo C_{1-2} , más preferiblemente Z^1 es -O-.
- Cuando R^{15} representa un grupo de la fórmula -[alquileno $C_{1-4}]_b$ -(Z^1)_a-[alquenilo C_{2-4}], preferiblemente o bien a o b es cero, más preferiblemente ambos a y b son cero. Cuando está presente [alquileno C_{1-4}], es preferiblemente un alquileno C_{1-3} , más preferiblemente un alquileno C_{1-2} .

5

40

45

- Cuando R^{15} representa un grupo de la fórmula -[alquileno $C_{1-4}]_{b}$ - $(Z^1)_{a}$ -[alquenilo C_{2-4}], preferiblemente alquenilo C_{2-3} es un grupo alquenilo C_{2-3} , en particular -CH=CH₂.
- Cuando R^{15} representa un grupo de fórmula -[alquileno $C_{1-4}]_{b^-}(Z^1)_a$ -[alquenilo $C_{1-4}]$ y a es 1, Z^1 es preferiblemente -O o $-NR^{17}$ -, en donde R^{17} es hidrógeno o alquilo C_{1-2} , más preferiblemente Z^1 es -O-. De mayor preferencia Z^1 está ausente (es decir, a es cero).
 - Cuando R^{15} representa hidrógeno o un grupo de la fórmula -[alquileno $C_{1\cdot4}]_b$ -[alquilo $C_{1\cdot4}]_o$ -[alquileno $C_{1\cdot4}]_b$ -[alquenilo $C_{2\cdot4}]_o$ -[alquileno $C_{1\cdot4}]_o$ -[alquenilo $C_{2\cdot4}]_o$ -[alquenilo $C_{2\cdot4}]_o$ -[alquileno $C_{1\cdot4}]_o$ -[alquileno C_{1
- Cuando R^{15} representa hidrógeno o un grupo de fórmula -[alquileno $C_{1-4}]_b$ -(Z^1)_a-[alquilo $C_{1-4}]$ o -[alquileno $C_{1-4}]_b$ -(Z^1)_a-[alquenilo $C_{2-4}]$, preferiblemente R^{16} representa hidrógeno o alquilo C_{1-2} , más preferiblemente hidrógeno o metilo.
 - Cuando R^{15} representa hidrógeno o un grupo de fórmula -[alquileno $C_{1-4}]_b$ - $(Z^1)_a$ -[alquilo $C_{1-4}]$ o -[alquileno $C_{1-4}]_b$ - $(Z^1)_a$ -[alquenilo $C_{2-4}]$, preferiblemente R^{14} representa hidrógeno o alquilo C_{1-2} , más preferiblemente R^{14} representa hidrógeno o metilo.
- Cuando R^{15} representa hidrógeno o un grupo de fórmula -[alquileno $C_{1-4}]_b$ -(Z^1)_a-[alquilo $C_{1-4}]_b$ o -[alquileno $C_{1-4}]_b$ -(Z^1)_a-[alquenilo $C_{2-4}]_b$, preferiblemente los grupos alquilo, alquileno y alquenilo tanto en R^{15} como en R^{16} spon no sustituidos.
- Cuando R¹⁵ representa un grupo fenilo o heteroarilo de 5 o 6 miembros opcionalmente fusionado con un grupo adicional fenilo, heteroarilo de 5 o 6 miembros, carbociclilo C₃₋₇ o heterociclilo de 5- o 6- miembros, preferiblemente representa un grupo fenilo no fusionado o heteroarilo de 5 o 6 miembros no fusionado. Grupos heteroarilo preferidos incluyen piridilo, pirrolilo, isotiazolilo, pirazolilo e isoxazolilo, de mayor preferencia priridilo.
 - Cuando R^{15} representa un grupo fenilo o heteroarilo de 5 o 6 miembros opcionalmente fusionado a un grupo adicional fenilo, heteroarilo de 5 o 6 miembros, carbociclilo C_{3-7} o heterociclilo de 5 o 6 miembros, preferiblemente los grupos fenilo, heteroarilo, carbociclilo y heterociclilo en R^{13} son no sustituidos.
- Cuando R^{15} representa un grupo fenilo o heteroarilo de 5 o 6 miembros opcionalmente fusionado con un grupo adicional fenilo, heteroarilo de 5- o 6- miembros, cabociclilo C_{3-7} o heterociclilo de 5- o 6- miembros, R^{16} preferiblemente representa hidrógeno o alquilo C_{1-4} , más preferiblemente hidrógeno o alquilo C_{1-2} , de mayor preferencia hidrógeno. Preferiblemente, los grupos alquilo C_{1-4} de R^{16} son no sustituidos.
- Cuando R¹⁵ representa un grupo de fórmula -(Alk⁴)-NR¹⁸R¹⁹, Alk⁴ preferiblemente representa un grupo alquileno C₁₋₂, preferiblemente o bien -CH₂- o -CH₂CH₂-.
 - Cuando R^{15} representa un grupo de fórmula -(Alk⁴)-NR¹⁸R¹⁹ y R¹⁸ y R¹⁹ son iguales o diferentes y representan hidrógeno o alquilo C₁₋₂, preferiblemente R¹⁸ representa hidrógeno o alquilo C₁₋₂, más preferiblemente R¹⁸ representa un grupo metilo. Cuando R¹⁵ representa un grupo de fórmula -(Alk⁴)-NR¹⁸R¹⁹ y R¹⁸ y R¹⁹ son iguales o diferentes y representan hidrógeno o alquilo C₁₋₄, preferiblemente R¹⁹ representa hidrógeno o alquilo C₁₋₂, más preferiblemente R¹⁹ representa un grupo metilo.
 - Cuando R^{15} representa un grupo de fórmula -(Alk⁴)-NR¹⁸R¹⁹ y R¹⁸ y R¹⁹, junto con el átomo de nitrógeno al que se enlazan, forman un grupo heteroarilo de 5 o 6 miembros o heterociclilo de 5 o 6 miembros opcionalmente fusionado con un grupo adicional fenilo, heteroarilo de 5- o 6- miembros, carbociclilo C_{3-7} , o heterociclilo de 5- o 6- miembros, preferiblemente forman un heteroarilo no fusionado de 5 o 6 miembros o heterociclilo no fusionado de 5 o 6 miembros. Más preferiblemente, forman un grupo heterociclilo de 5 o 6 miembros. Entre los grupos heterociclilo preferidos se incluyen piperidinilo, piperazinilo, morfolinilo y pirrolidinilo, de mayor preferencia morfolinilo.
 - Cuando R^{15} representa un grupo de fórmula -(Alk⁴)-NR¹⁸R¹⁹, Alk⁴ preferiblemente representa un grupo alquileno C_{1-2} , más preferiblemente un grupo -CH₂CH₂-.

Cuando R^{15} representa un grupo de fórmula -(Alk⁴)-NR¹⁸R¹⁹, R^{16} preferiblemente representa hidrógeno o alquilo C_{1-2} , más preferiblemente hidrógeno.

Cuando R^{15} representa un grupo de fórmula -(Alk⁴)-N $R^{18}R^{19}$, preferiblemente los grupos alquilo y alquileno en Alk⁴, R^{18} y R^{19} son no sustituidos. Cuando R^{15} representa un grupo de fórmula -(Alk⁴)-N $R^{18}R^{19}$, preferiblemente los grupos fenilo, heteroarilo, carbociclilo y heterociclilo en R^{18} y R^{19} son no sustituidos.

Cuando R^{15} representa un grupo de fórmula -(Alk⁴)-NR¹⁸R¹⁹, los grupos preferidos incluyen -CH₂-CH₂-NMe₂ y -CH₂-CH₂-morfolinilo.

Cuando R^{15} y R^{16} , junto con el átomo de carbono al que se enlazan, forman un grupo fenilo, heteroarilo de 5 o 6 miembros, carbociclilo C_{3-7} o heterociclilo de 5- o 6- miembros que opcionalmente se fusiona con un grupo adicional fenilo, heteroarilo de 5- o 6- miembros, carbociclilo C_{3-7} o heterociclilo de 5- o 6- miembros, los grupos preferidos incluyen fenilo no fusionado, heteroarilo de 5 o 6 miembros no fusionado, heterociclilo C_{3-7} no fusionado y carbociclilo C_{3-7} fusionado a un anillo de fenilo, más preferiblemente fenilo no fusionado, heterociclilo de 5 o 6 miembros no fusionado, carbociclilo C_{3-7} no fusionado y carbociclilo C_{3-7} fusionado a un anillo de fenilo.

Cuando R¹⁵ y R¹⁶ forman un grupo cíclico junto con el átomo de carbono al que está enlazado, los grupos preferidos heterociclilo de 5 o 6 miembros no fusionados incluyen grupos piperidinilo, tetrahidrofuranilo, piperazinilo, morfolinilo y pirrolidinilo, más preferiblemente grupos piperidinilo y tetrahidrofuranilo. Cuando R¹⁵ y R¹⁶ forman un grupo cíclico junto con el átomo de carbono al que se enlazan, los grupos preferidos carbociclilo C₃₋₇ no fusionados incluyen ciclopentilo y ciclohexilo, más preferiblemente ciclopentilo. Cuando R¹⁵ y R¹⁶ forman un grupo cíclico junto con el átomo de carbono al que se enlazan, los grupos carbociclilo C₃₋₇ preferidos fusionados a un anillo de fenilo incluyen indanilo.

Cuando R^{15} y R^{16} forman un grupo cíclico junto con el átomo de carbono al que se enlazan, preferiblemente los grupos fenilo, heteroarilo, carbociclilo y heterociclilo formados son no sustituidos o sustituidos por uno o dos sustituyentes que son iguales o diferentes y se seleccionan de átomos de halógeno y grupos alquilo C_{1-4} , alquileno C_{1-4} , haloalquilo C_{1-4} , hidroxilo, ciano, nitro y -NR'R" en donde cada R' y R" es igual o diferente y representa hidrógeno o alquilo C_{1-4} , más preferiblemente seleccionado de átomos de halógeno o grupos alquilo C_{1-2} , alquileno C_{1-2} , alcoxi C_{1-2} e hidroxilo. De mayor preferencia los grupos fenilo, heteroarilo, carbociclilo y heterociclilo formados son no sustituidos o sustituidos por un grupo alquilo C_{1-2} (tal como un grupo metilo) o por un grupo alquileno C_{1-2} (tal como por un grupo metileno). Incluso más preferiblemente, los grupos fenilo, heteroarilo, carbociclilo y heterociclilo formados de este modo son no sustituidos.

Grupos R^{11} preferidos son -COOR 20 donde R^{20} representa grupos alquilo C_{1-4} (tales como metilo, etilo, n- o isopropilo y n-, sec- y terc-butilo), grupos carbociclilo C_{3-7} (tales como ciclopentilo y ciclohexilo), grupos alquenilo C_{2-4} (tales como alilo), y también grupos fenilo, bencilo, 2-piridilmetilo, 3-piridilmetilo, 4-piridilmetilo, N-metilpiperidin-4-ilo, tetrahidrofuran-3-ilo, metoxietilo, indanilo, norbonilo, dimetilaminoetilo y morfolinoetilo. Más preferiblemente, R^{20} representa alquilo C_{1-4} o carbociclilo C_{3-7} . Cuando R^{11} es -COOR 20 más preferiblemente R^{20} representa alquilo C_{1-4} no sustituido o carbociclilo C_{3-7} . De mayor preferencia los grupos R^{20} incluyen ciclopentilo, t-butilo e iso-propilo.

En una realización preferida de la invención, se proporciona un compuesto que es (a) un derivado de la fenilamida de la fórmula (IA) o un tautómero del mismo, o (b) una sal, N-óxido, hidrato o solvato farmacéuticamente aceptable del mismo:

$$R^6$$
 R^7
 R^7
 R^4
 R^4

5

10

25

30

35

en donde:

- R⁴ representa un grupo alquilo C₁₋₄ no sustituido;
- o bien

5

10

30

- o R⁶ representa -CH₃, R⁷ representa -CR⁸R⁹-A en donde R⁸ y R⁹ son iguales o diferentes y representan un átomo de hidrógeno o halógeno o un grupo alquilo C₁₋₄ no sustituido o alcoxi C₁₋₄, y A representa un anillo de fenilo sustituido con un grupo W; o
- o R^6 y R^7 , junto con el átomo de nitrógeno al que se enlazan, forman un grupo pirrolidina, piperidina o isoindolina que es sustituido con un grupo W y que es de forma opcional sustituido adicionalmente con 1 o 2 grupos que son iguales o diferentes y se seleccionan de entre átomos de halógeno y grupos alquilo $C_{1.4}$ no sustituido, alcoxi $C_{1.4}$, hidroxilo, haloalquilo $C_{1.4}$, haloalcoxi $C_{1.4}$, hidroxialquilo $C_{1.4}$, ciano, nitro, -SR' y -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo $C_{1.2}$ no sustituido;
- Alk^1 representa un enlace, un grupo alquileno C_{1-4} no sustituido, o un grupo -(alquileno C_{1-2})-NH-(alquileno C_{1-4})- no sustituido;
- R representa un grupo de fórmula (X) en donde R¹⁰ representa hidrógeno;
- Alk² representa un grupo de la fórmula -C(R¹²)(R¹³)- en donde o bien:
 - o R^{12} y R^{13} son iguales o diferentes y representan hidrógeno, alquilo C_{1-6} , carbociclilo C_{3-7} , arilo C_{6-10} , (alquilo C_{1-4})-(arilo C_{6-10}), o -(alquilo C_{1-4})-(carbociclilo C_{3-7}); o
 - o R^{12} y R^{13} , junto con el átomo de carbono al que se enlazan, forman un grupo carbociclilo C_{3-7} ,
- en donde los grupos y fracciones alquilo en R¹² y R¹³ son no sustituidos o sustituidos con 1 o 2 sustituyentes seleccionados de grupos alquilo C₁₋₄ no sustituido, alcoxi C₁₋₄, hidroxi y -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C₁₋₂ no sustituido, y en donde los grupos y fracciones carbociclilo en R¹² y R¹³ son no sustituidos o sustituidos con 1 o 2 sustituyentes seleccionados de átomos de halógeno y grupos alquilo C₁₋₄ no sustituido, alcoxi C₁₋₄, hidroxilo, haloalquilo C₁₋₄, haloalcoxi C₁₋₄, hidroxialquilo C₁₋₄, ciano, nitro, -SR' y -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C₁₋₂ no sustituido; y R¹¹ es -COOR²⁰ en donde R²⁰ representa alquilo C₁₋₄ no sustituido o carbociclilo C₃₋₇.

En el caso de un compuesto de la fórmula (IA), preferiblemente R⁴ representa isopropilo. Además, preferiblemente o bien:

- R⁶ representa -CH₃, y R⁷ representa -CH₂-fenilo en donde el anillo de fenilo es sustituido con un único grupo W; o
- R⁶ y R⁷, junto con el átomo de nitrógeno al que se enlazan, forman un grupo pirrolidinilo, piperidinilo o isoindolinilo que es sustituido con un único grupo W.

En el caso de un compuesto de la fórmula (IA), preferiblemente uno de R^{12} y R^{13} es hidrógeno o alquilo C_{1-2} no sustituido y el otro de R^{12} y R^{13} es un grupo no sustituido seleccionado de alquilo C_{1-4} , carbociclilo C_{3-7} , fenilo, - hidroxi-alquilo(C_{1-4}), -alcoxi(C_{1-4}), -alquilo(C_{1-4}), -alquilo(C_{1-2}) -fenilo o -alquilo(C_{1-2}) -carbociclilo(C_{3-7}).

- 35 Compuestos preferidos de la fórmula (I) son:
 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-leucinato de ciclopentilo;
 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-2-metilalaninato de ciclopentilo;
 - *N*-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-valinato de ciclopentilo;
 - (2S)-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)amino](fenil)etanoato de ciclopentilo;
- $40 \qquad \textit{N-}(1-\{[2,4-\text{dihidroxi-5-(propan-2-il)fenil}] carbonil\} piperidin-4-il)-L-alaninato de ciclopentilo;$
 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-leucinato de terc-butilo;

```
N-(I-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-3-il)-L-leucinato de ciclopentilo;
       N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-alaninato de terc-butilo;
       N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-fenilalaninato de ciclopentilo;
       N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil)piperidin-4-il)-L-norleucinato de ciclopentilo;
 5
        O-terc-butil-N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-serinato de terc-butilo;
        N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-D-leucinato de ciclopentilo;
        3-ciclohexil-N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-alaninato de ciclopentilo;
        (2S)-ciclohexil[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)amino]etanoato de ciclopentilo;
        (2S)-ciclohexil[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)amino]etanoato de terc-butilo;
10
        N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-fenilalaninato de terc-butilo;
        O-terc-butil-N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-serinato de ciclopentilo;
        N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-serinato de ciclopentilo;
        N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-D-leucinato de terc-butilo;
       N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-3-il)-L-leucinato de ciclopentilo;
15
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-leucinato de ciclopentilo;
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-alaninato de ciclopentilo;
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-fenilalaninato de ciclopentilo;
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-leucinato de terc-butilo;
       N-[(1-\{[2,4-\text{dihidroxi-5-(propan-2-il)fenil}]\text{carbonil}]piperidin-4-il)metil]-L-fenilalaninato de terc-butilo;
20
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-alaninato de terc-butilo;
       N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-D-leucinato de terc-butilo;
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-D-leucinato de ciclopentilo;
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-valinato de ciclopentilo;
       (2S)-ciclohexil{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)metil] amino} etanoato de ciclopentilo;
25
       (2S)-ciclohexil{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carboxil} piperidin-4-il)metil] amino}etanoato de terc-butilo;
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-2-metil-L-alaninato de ciclopentilo;
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-serinato de ciclopentilo;
        O-terc-butil-N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil} piperidin-4-il)metil]-L-serinato de ciclopentilo;
        O-terc-butil-N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-serinato de terc-butilo;
30
       (2S)-{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]amino}(fenil)etanoato de ciclopentilo;
       N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-serinato de terc-butilo;
```

```
N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-leucinato de ciclopentilo;
       N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-alaninato de ciclopentilo;
       N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-fenilalaninato de ciclopentilo;
       N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-fenilalaninato de terc-butilo;
 5
       N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-leucinato de terc-butilo;
       N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-alaninato de terc-butilo;
       N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-2-metilalaninato de ciclopentilo;
       O-terc-butil-N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serinato de ciclopentilo;
       N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-valinato de ciclopentilo;
10
       N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serinato de ciclopentilo;
       (2S)-ciclohexil{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}etanoato de ciclopentilo;
       (2S)-ciclohexil{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}etanoato de terc-butilo;
       (2S)-{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}(fenil)etanoato de terc-butilo;
       (2S)-{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}(fenil)etanoato de ciclopentilo;
15
       N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serinato de terc-butilo;
       O-terc-butil-N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serinato de terc-butilo;
       N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil)-2,3-dihidro-1H-isoindol-5-il)metil]-L-leucinato de ciclopentilo;
       N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]-2-metilalaninato de ciclopentilo;
       N-[(2- {[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]-L-alaninato de terc-butilo;
20
       N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]-L-alaninato de etilo;
       propan-2-il N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihydro-1H-isoindol-5-il)metil]-L-alaninato;
       N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]-L-alaninato de ciclopentilo;
       1-{[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]amino}ciclopentanocarboxilato
                                                                                                                                   de
       ciclopentilo;
25
       N-[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)etil]-L-leucinato de ciclopentilo;
       N-[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)etil]-L-leucinato de terc-butilo;
       1-{[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)etil]amino}ciclopentanocarboxilato
       ciclopentilo;
       N-[3-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)propil]-L-leucinato de ciclopentilo;
       1-{[3-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)propil]amino}ciclopentanocarboxilato
30
       de ciclopentilo;
```

N-(3-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)-L-leucinato de ciclopentilo;

N-(3-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil} bencil)-2-metilalaninato de ciclopentilo;

1-[(3-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)amino]ciclopentanocarboxilato ciclopentilo;

de

- (2S)-[(3-{[{2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil]bencil)amino](fenil) etanoato de ciclopentilo;
- 5 N-(4-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)-L-leucinato de ciclopentilo;
 - (2S)-[(4-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil]bencil)amino](fenil) etanoato de ciclopentilo;
 - N-(4-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)-2-metilalaninato de ciclopentilo;
 - N-[2-(4-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil]fenil)etil]-2-metilalaninato de ciclopentilo;
 - N-{[(2R)-1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-2-il]metil}-L-leucinato de ciclopentilo;
- 10 N-{[(2S)-1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-2-il]metil}-L-leucinato de ciclopentilo;
 - N(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-3-il)-D-leucinato de ciclopentilo; y

15

20

25

30

35

40

45

N-{3-[(1-{[2,4-dihidroxi-5-(propan-2-il) fenil]carbonil}piperidin-4-il)amino]propil} -L-leucinato de ciclopentilo.

Tal como se ha mencionado anteriormente, los compuestos de los que la invención se ocupa son inhibidores de la actividad de la HSP90 y son, por lo tanto, de utilidad para el tratamiento contra el cáncer, enfermedades autoinmunes e inflamatorias, incluyendo la enfermedad pulmonar obstructiva crónica, asma, artritis reumatoide, psoriasis, enfermedad inflamatoria intestinal, enfermedad de Crohn, colitis ulcerosa, esclerosis múltiple, diabetes, dermatitis atópica, enfermedad de injerto contra huésped, lupus eritematoso sistémico, infección vírica, enfermedad de Alzheimer y otras. Por ejemplo, los compuestos pueden ser utilizados en el tratamiento contra el cáncer, enfermedades autoinmunes y enfermedades inflamatorias, incluyendo la enfermedad pulmonar obstructiva crónica, asma, artritis reumatoide, psoriasis, enfermedad inflamatoria intestinal, enfermedad de Crohn, colitis ulcerosa, esclerosis múltiple, dermatitis atópica, enfermedad de injerto contra huésped, lupus eritematoso sistémico, infección vírica y enfermedad de Alzheimer. Una utilidad preferida de los compuestos de la invención es su uso en el tratamiento del cáncer, en particular del cáncer de mama, cáncer de ovarios, cáncer de páncreas o carcinoma hepatocelular. Otra utilidad preferida de los compuestos de la invención es para su uso en el tratamiento de la inflamación.

Se entenderá que el nivel de dosis específico para cualquier paciente en particular dependerá de una variedad de factores que incluyen la actividad del compuesto específico empleado, la edad, peso corporal, salud general, sexo, dieta, tiempo de administración, vía de administración, tasa de excreción, combinación de fármacos y gravedad de la enfermedad en particular a la que se está aplicando el tratamiento. Los niveles de dosis óptimos y la frecuencia de dosificación serán determinados mediante ensayo clínico, pero un ejemplo de dosificación sería 0,1-1000mg por día.

Los compuestos de los que se ocupa la invención pueden ser preparados para su administración por cualquier vía consistente con sus propiedades farmacocinéticas. La composición administrable por vía oral puede estar en forma de comprimidos, cápsulas, polvos, gránulos, grageas, preparaciones líquidas o en gel, tales como suspensiones o soluciones orales, tópicas o estériles parenterales. Los comprimidos y cápsulas para su administración por vía oral pueden encontrarse en una forma de presentación de dosis unitaria, y puede contener excipientes convencionales tales como agentes aglutinantes, por ejemplo jarabe, goma arábiga, gelatina, goma tragacanto, o polivinilpirrolidona; agentes de relleno, por ejemplo lactosa, azúcar, almidón de maíz, fosfato cálcico, sorbitol o glicina; lubricante para la formación de comprimidos, por ejemplo estearato de magnesio, talco, polietilenglicol o sílice; desintegrantes, por ejemplo almidón de patata, o agentes humectantes aceptables, tales como laurilsulfato de sodio. Los comprimidos pueden ser recubiertos de acuerdo con métodos bien conocidos en la práctica farmacéutica habitual. Las preparaciones líquidas orales pueden encontrarse en forma de, por ejemplo, suspensiones acuosas u oleosas, soluciones, emulsiones, iarabes o elixires, o pueden presentarse como un producto seco para su reconstitución con agua u otro vehículo antes de su uso. Tales preparaciones líquidas pueden contener aditivos convencionales tales como agentes de suspensión, por ejemplo sorbitol, jarabe, metilcelulosa, jarabe de glucosa, grasas comestibles hidrogenadas de gelatina; agentes emulsionantes, por ejemplo lecitina, monooleato de sorbitano, o goma arábiga; vehículos no acuosos (que pueden incluir aceites comestibles), por ejemplo aceite de almendra, aceite de coco fraccionado, ésteres oleosos, tales como glicerina, propilenglicol, o alcohol etílico; conservantes, por ejemplo phidroxibenzoato de metilo o propilo o ácido sórbico, y se desea agentes colorantes o aromatizantes convencionales.

Para su aplicación tópica en la piel, los compuestos médicos pueden convertirse en una crema, loción o pomada.

Las formulaciones en crema o pomada que pueden ser utilizadas para el fármaco son formulaciones convencionales

bien conocidas en el arte, por ejemplo tal como se describe en manuales estándar de farmacéutica, tales como la Farmacopea Británica.

Para la aplicación tópica por inhalación, el fármaco puede ser formulado para su administración por aerosol por ejemplo, mediante boquillas nebulizadoras o atomizadores ultrasónicos presurizados, o preferiblemente mediante aerosoles medidores impulsados por propelente o administración libre de propelente de polvos micronizados, por ejemplo, cápsulas de inhalación u otros sistemas de administración de "polvo seco" diferentes. Excipientes tales como, por ejemplo, propelentes (por ejemplo, Frigen en el caso de aerosoles medidores), sustancias tensioactivas, emulsionantes, estabilizantes, conservantes, aromatizantes, y sustancias de relleno (por ejemplo, lactosa en el caso de inhaladores de polvo), pueden estar presentes en tales formulaciones inhaladas. Para propósitos de inhalación, se encuentran disponibles una gran cantidad de aparatos con los que pueden generarse y administrarse aerosoles de tamaño de partícula óptimo, utilizando una técnica de inhalación que sea apropiada para el paciente. Además del uso de adaptadores (espaciadores, alargadores) y envases en forma de pera (por ejemplo Nebulator®, Volumatic ®), y dispositivos automáticos que emiten una pulverización de inhalador (Autohaler®), para aerosoles medidores, en particular en el caso de inhaladores de polvo, una cantidad de soluciones técnicas se encuentran disponibles (por ejemplo, Diskhaler®, Rotadisk®, Turbohaler® o los inhaladores por ejemplo según se describen en la solicitud de patente europea EP 0 505 321).

Para su aplicación tópica en el ojo, el fármaco puede convertirse en una solución o suspensión en un vehículo acuoso o no acuoso estéril adecuado. Pueden también incluirse aditivos, por ejemplo tampones tales como metabisulfito de sodio o edeato disódico; conservantes incluyendo agentes bactericidas y fungicidas tales como acetato o nitrato fenilmercúrico; cloruro de benzalconio o clorhexidina, y agentes espesantes tales como hipromelosa.

El ingrediente activo puede también administrarse por vía parenteral en un medio estéril. Dependiendo del vehículo y la concentración utilizada, el fármaco puede bien ser suspendido o disuelto en el vehículo. De manera ventajosa, los adyuvantes tales como un anestésico local, conservante y agentes tampón pueden ser disueltos en el vehículo.

Los compuestos de la invención pueden ser utilizados en conjunto con diversas sustancias farmacéuticamente activas conocidas. Por ejemplo, los compuestos de la invención pueden ser utilizados con citotóxicos, inhibidores de HDAC, inhibidores de quinasas, inhibidores de aminopeptidasa y anticuerpos monoclonales (por ejemplo, aquellos dirigidos a los receptores de factores de crecimiento). Entre los citotóxicos preferidos se incluyen, por ejemplo, taxanos, platinos, anti-metabolitos tales como 5-fluoracilo, inhibidores de topoisomerasa y similares. Los medicamentos de la invención que comprenden derivados de aminoácidos de la fórmula (I), tautómeros de los mismos o sales, N-óxidos, hidratos, profármacos o solvatos farmacéuticamente aceptables de los mismos, por lo tanto, comprenden también habitualmente un citotóxico, un inhibidor de HDAC, un inhibidor de quinasas, un inhibidor de aminopeptidasa y/o un anticuerpo monoclonal.

Además, la presente invención hace referencia a una composición farmacéutica que comprende:

- (a) un derivado de fenilamida de fórmula (I), un tautómero del mismo o una sal, N-óxido, hidrato o solvato farmacéuticamente aceptable del mismo;
- (b) un agente citotóxico, un inhibidor de la HDAC, un inhibidor de quinasas, un inhibidor de aminopeptidasa y/o un anticuerpo monoclonal;

У

5

10

15

20

35

40

45

(c) un soporte o diluyente farmacéuticamente aceptable.

También se prevé un producto que comprende:

- (a) un derivado de fenilamida de la fórmula (I), un tautómero del mismo o una sal, N-óxido, hidrato o solvato farmacéuticamente aceptable del mismo; y
- (b) un agente citotóxico, un inhibidor de la HDAC, un inhibidor de quinasas, un inhibidor de aminopeptidasa y/o un anticuerpo monoclonal,

para el uso por separado, simultáneo o secuencial en el tratamiento de un organismo humano o animal.

Síntesis

Existen múltiples estrategias sintéticas para la síntesis de los compuestos de la fórmula (I), de los que se ocupa la invención, pero todos se basan en la química conocida, conocida para el experto en química orgánica de síntesis. Por tanto, los compuestos de acuerdo con la fórmula (I) pueden ser sintetizados de acuerdo con los procedimientos descritos en la literatura estándar y son bien conocidos por los expertos en el arte. Las referencias en la literatura habituales son "Advanced organic chemistry", 4^a Edición (Wiley), J March, "Comprehensive Organic Transformation", 2^a Edición (Wiley), R.C. Larock, "Handbook of Heterocyclic Chemistry", 2^a Edición (Pergamon), A.R. Katritzky, artículos de revisión como los que se encuentran en "Synthesis", "Acc. Chem. Res.", "Chem. Rev", o en las referencias directas de la literatura identificadas por búsquedas estándar online en la literatura, o a partir de referencias indirectas tales como "Chemical Abstracts" o "Beilstein". Los compuestos de la invención pueden ser preparados mediante diversos procesos generalmente descritos a continuación y más específicamente en los Ejemplos más adelante. En las reacciones descritas a continuación, puede ser necesario proteger los grupos funcionales reactivos, por ejemplo grupos hidroxilo, amino y carboxi, en los que éstos se desean en el producto final, para evitar su participación no deseada en las reacciones [ver por ejemplo, Greene, T.W., "Protecting Groups in Organic Synthesis", John Wiley and Sons, 1999]. Los grupos protectores convencionales pueden ser utilizados en conjunto con la práctica estándar. En algunos ejemplos, la desprotección puede ser la etapa final en la síntesis de un compuesto de la fórmula general (I), y se entiende que los procesos de acuerdo con la invención descritos más adelante, se extienden hasta dicha eliminación de los grupos protectores.

Esquema 1- Esquema genérico para la preparación de los bloques de construcción de éster de aminoácido (R¹², R¹³ y R²⁰ son tal como se definen en la presente patente, P es un grupo protector adecuado):

Ruta 1:

$$R^{12} R^{13} OH$$

protección

esterificación

 $R^{12} R^{13} OH$
 $R^{13} OH$
 $R^{12} R^{13} OH$

Ruta 2:

 $R^{12} R^{13} OH$
 $R^{13} OH$
 $R^{13} OH$
 $R^{12} R^{13} OH$
 $R^{13} OH$
 R^{13

20

25

5

10

15

Los bloques de construcción de éster de aminoácido pueden prepararse de diversas formas. El esquema 1 ilustra las principales rutas empleadas para su preparación para el propósito de la presente solicitud. Resultará obvio para el químico experto en el arte que existen otras metodologías que también lograrán la preparación de estos productos intermedios. Ejemplos de la preparación de dichos productos intermedios se describen en WO2009/106848, WO2006/117567 y W2008/040934.

Esquema 2 – Esquema genérico para la preparación de inhibidores a base de isoindolina de la Hsp90 (R¹², R¹³ y R²⁰ son tal como se define en la presente patente, P es un grupo protector adecuado, X es un halógeno adecuado):

Ruta 1:

Ruta 2:

Ruta 3:

Ruta 4:

5

Los inhibidores de Hsp90 basados en isoindolina pueden ser preparados de diversas maneras. El esquema 2 ilustra las principales rutas para su preparación para el propósito de la presente solicitud. Para el químico experto en el arte resultará obvio que existen otras metodologías que lograrán la preparación de estos productos intermedios.

Esquema 3 – esquema genérico para la preparación de los inhibidores de Hsp90 basados en piperidina (R^{12} , R^{13} y R^{20} son tal como se definen en la presente patente, P es un grupo protector adecuado)

Ruta 1:

HO OH R12 R13 R26

Ruta 2:

Ruta 3:

5

Los inhibidores de la Hsp90 basados en piperidina pueden prepararse de diversas maneras. Los esquemas 3, 4 y 5 ilustran las principales rutas empleadas para su preparación para el propósito de la presente solicitud. Para el químico experto en el arte resultará obvio que existen otras metodologías que también lograrán la preparación de estos productos intermedios.

Esquema 4 – esquema genérico para la preparación de inhibidores de Hsp90 a base de piperidino-metilo (R^{12} , R^{13} y R^{20} son tal como se definen en la presente patente, P es un grupo protector adecuado):

Ruta 1:

Esquema 5 – esquema genérico para la preparación de inhibidores de Hsp90 basados en piperidino-etilo (R^{12} , R^{13} y R^{20} son tal como se define en la presente patente, P es un grupo protector adecuado):

5 Esquema 6 – esquema genérico para la preparación de inhibidores de Hsp90 a base de pirrolidina (R¹², R¹³ y R²⁰ son tal como se define en la presente patente, P es un grupo protector adecuado):

Los inhibidores de Hsp90 basados en pirrolidina pueden prepararse de diversas maneras. El esquema 6 ilustra las principales rutas empleadas para su preparación para el propósito de la presente solicitud. Para el químico experto en el arte, resultará obvio que existen otras metodologías que lograrán también la preparación de estos productos intermedios.

5 Los siguientes ejemplos ilustran la preparación y propiedades de algunos compuestos específicos de la invención. Se utilizan las siguientes abreviaturas:

ACN = acetonitrilo

Boc = terc-butoxicarbonilo

CO₂ = dióxido de carbono

10 DCE = dicloroetano

DCM = diclorometano

Periodinano de Dess-Martin = 1,1,1-Triacetoxi-1,1-dihidro-1,2-benciodoxol-3(1H)-ona

DIPEA = diisopropiletilamina

DMAP = 4-dimetilaminopiridina

15 DMF = dimetilformamida

DMP = Periodinano de Dess-Martin

DMSO = dimetil sulfóxido

EDCI = clorhidrato de N-(3-Dimetilaminopropil)-N'-etilcarbodiimida

Et₂O = éter dietílico

20 EtOAc = acetato de etilo

EtOH = etanol

Et₃N o TEA = trietilamina

ELS = Dispersión de luz evaporativa

g = gramo(s)

25 HATU = hexafluorofosfato de 2-(1H-7-Azabenzotriazol-1-il)--1,1,3,3-tetrametiluronio

HCI = ácido clorhídrico

HOBt = 1-hidroxibenzotriazol

LC/MS = cromatografía líquida de alto rendimiento /espectrometría de masas

LiAlH₄ = hidruro de litio-aluminio

30 LiOH = hidróxido de litio

MeOH = metanol

MgSO₄ = sulfato de magnesio

mg = miligramo(s)

mol = moles

mmol = milimol(es)

mL = mililitro

N₂ = nitrógeno

5 Na₂CO₃ = carbonato de sodio

NaHCO₃ = bicarbonato de sodio

Na₂SO₄ = sulfato de sodio

NaH = hidruro sódico

NaOH = hidróxido sódico

10 NH₃ = amoniaco

NH₄CI = cloruro de amonio

RMN = resonancia magnética nuclear

Pd/C = paladio sobre carbono

Ta = temperatura ambiente

15 sat. = solución acuosa saturada

STAB = Triacetoxiborohidruro de sodio

TBAF = fluoruro de tetrabutilamonio

TFA = ácido trifluoroacético

THF = tetrahidrofurano

25

35

20 TLC = cromatografía de capa fina

Se utilizaron reactivos y disolventes comercialmente disponibles (grado HPLC) sin purificación adicional. Los disolventes se eliminaron utilizando un evaporador rotatorio Buchi o un liofilizador VirTis Benchtop SLC. Se realizó irradiación de microondas utilizando un sintetizador de microondas Initiator™ Eight de Biotage. La purificación de compuestos mediante cromatografía flash en columna se realizó utilizando gel de sílice, tamaño de partícula 40-63 mm (malla de 230-400) obtenida de Fluorochem. La purificación de compuestos mediante HPLC preparativa se realizó en sistemas Gilson utilizando columnas en fase inversa Axia™ prep Luna C18 (10 μm, 100 x 21,2 mm), gradiente 0-100% B (A = agua + TFA al 0,05%, B = acetonitrilo) durante 10 min, flujo = 25 mL/min, detección UV a 254 nm.

Los espectros de ¹H RMN fueron registrados en un espectrómetro Bruker 300 MHz AV en disolventes deuterados.

Los desplazamientos químicos δ se expresan en partes por millón. El análisis de cromatografía de capa fina (TLC) se realizó con placas Kieselgel 60 F254 (Merck) y se visualizaron utilizando luz UV.

Se realizó HPLC/MS analítica en un sistema Agilent HP1100 LC utilizando columnas Luna C18 en fase inversa (3 μ m, 50 x 4,6 mm), gradiente 5-95% B (A = agua + ácido fórmico al 0,1 %, B = acetonitrilo + ácido fórmico al 0,1 %) durante 2,25 min, flujo = 2,25 mL/min. Los espectros UV se registraron a 220 y 254 nm utilizando un detector G1315B DAD. Se obtuvieron espectros de masas sobre el rango m/z de 150 a 800 en un detector LC/MSD SL G1956B. Se integraron y se describieron los datos utilizando los software ChemStation y ChemStation Data Browser.

Productos intermedios

Preparación de ácido 2,4-bis(benciloxi)-5-(prop-1-en-2-il)benzoico (Producto intermedio A)

Producto intermedio A

5 Etapa 1 - 4-(acetiloxi)-2-hidroxibenzoato de metilo

A una solución de 2,4-dihidroxibenzoato de metilo (100,00 g, 595 mmol) en tolueno (400 mL) se añadió 4-dimetilaminopiridina (0,45 g, 4,5 mmol) y anhídrido acético (60 mL, 635 mmol). La mezcla se calentó a 55°C durante 1 hora, y a continuación se concentró bajo vacío. El producto se cristalizó en reposo durante la noche, y se utilizó sin purificación adicional. LC/MS: m/z 211 [M+H]⁺

10 Etapa 2 - 5-acetil-2,4-dihidroxibenzoato de metilo

15

20

25

30

El sólido obtenido en la Etapa 1 se dividió en trozos pequeños, y se disolvió en tolueno (500 mL). La solución se enfrió (baño de hielo), a continuación se añadió ácido trifluorometanosulfónico (52 mL, 588 mmol) lentamente mediante un embudo de adición. Después de que se completara la adición, se agitó la mezcla durante 30 minutos, se calentó a temperatura ambiente y se agitó durante 2 horas más. Se añadió cloruro de acetilo (4 ml, 56 mmol) y la solución se agitó durante 18 horas más. La mezcla se vertió a continuación en un embudo de decantación de 3 litros y se extinguió mediante adición de una solución de acetato de sodio (48,00 g en 400 mL de agua). Se añadió acetato de etilo (1000 mL) y la capa orgánica se lavó con agua (2 veces 400 mL). La fracción orgánica se secó (MgSO₄), se concentró y se purificó mediante recristalización (isopropanol-heptano al 10%, aprox. 1000 mL – la solución caliente fue decantada del matraz de recristalización para separar un residuo negro y oleoso) para obtener el producto deseado (67,47 g, 321 mmol, rendimiento del 54% sobre 2 etapas). El filtrado pudo concentrarse y recristalizarse (EtOH) para obtener una segunda cosecha del producto. LC/MS: m/z 211 [M+H]⁺

Etapa 3 - 5-acetil-2,4-bis(benciloxi)benzoato de metilo

A una solución del producto obtenido en la Etapa 2 (67,47 g, 321 mmol) en acetonitrilo (500 mL) se añadió carbonato de potasio (97,26 g, 703 mmol) y bromuro de bencilo (77 ml, 643 mmol). La mezcla se agitó a 75°C durante 18 horas. Se añadió bromuro de bencilo adicional (2 ml, 16,7 mmol) y la mezcla se agitó durante 24 horas más. La solución se vertió a continuación en agua (3000 ml) y el matraz de reacción se lavó con agua adicional (1000 ml). La suspensión del producto se agitó bien, el producto se recogió mediante filtración y se lavó con agua (500 mL) y se secó bajo vacío. El producto se purificó mediante recristalización (etanol, aprox. 1100 mL) para obtener el producto deseado (116,50 g, rendimiento 89%). El filtrado pudo ser concentrado y recristalizado (EtOH, aprox. 50 mL) para obtener una segunda cosecha del producto (6,60 g, rendimiento 5%). LC/MS: *m/z* 391.25 [M+H][†]

Etapa 4 - 2,4-bis(benciloxi)-5-(prop-1-en-2-il)benzoato de metilo

A una suspensión agitada rápidamente de bromuro de metiltrifenilfosfonio (34,00 g, 95,2 mmol) en THF seco (100 mL) se añadió *terc*-butóxido de potasio (8,66 g, 77,2 mmol). La mezcla se agitó fuertemente durante 30 minutos. El producto de la Etapa 3 se añadió a través de un embudo (25,01 g, 64,1 mmol), y la mezcla se agitó durante 30 minutos y a continuación se extinguió mediante adición de metanol (20 mL). La mezcla de reacción se concentró bajo vacío y el residuo obtenido se purificó mediante recristalización (metanol, aproximadamente 400 mL) para obtener el producto deseado (17,63 g, rendimiento 71%). LC/MS: *m/z* 389.25 [M+H]⁺

Etapa 5 - ácido 2,4-bis(benciloxi)-5-(prop-1-en-2-il)benzoico (Producto intermedio A)

Al producto obtenido en la Etapa 4 (38,33 g, 98,7 mmol) en metanol (500 mL), se añadió hidróxido de potasio (12,70 g, 226 mmol). La mezcla se calentó a 75°C durante 20 horas, a continuación se enfrió a temperatura ambiente y se vertió en 2M de HCl (2000 mL) y se diluyó con agua adicional (1000 mL). Después de reposar a temperatura ambiente durante 30 minutos, el producto se recogió mediante filtración y se purificó mediante recristalización (etanol) para obtener el producto deseado (29,53 g, rendimiento 80%). ¹H RMN (300 MHz, d6-DMSO) 12.32 (1H, br s), 7.60 (1H, s), 7.52 (2H, d, J=7.0 Hz), 7.27-7.49 (8H, m), 6.94 (1H, s), 5.22 (4H, d, J=10.2 Hz), 5.06 (2H, d, J=7.2 Hz), 2.03 (3H, s). LC/MS: m/z 375.25 [M+H]⁺

Preparación de productos intermedios B1-B8 (Método 1)

5

10

15

20

Producto intermedio B1

Etapa 1 - 4-{[1-(ciclopentiloxi)-2-metil-1-oxopropan-2-il] amino}piperidina-1-carboxilato de terc-butilo

A una solución de N-Boc-piperidinona (2,00 g, 10,0 mmol) en dicloroetano (25 mL) se añadió tosilato del éster ciclopentílico de α,α-dimetilglicina (3,97 g, 11,6 mmol) y triacetoxiborohidruro de sodio (4,248 g, 20,0 mmol). La mezcla se agitó a temperatura ambiente durante 22 horas, y a continuación se vertió en acetato de etilo (300 mL). La capa orgánica se lavó con agua (3 veces 100 mL), se secó (MgSO₄) y se concentró para obtener el producto deseado (3,556 g, rendimiento 84%) con el que se continuó sin purificación adicional. LC/MS: *m/z* 355.25 [M+H][†]

Etapa 2 – diclorhidrato de 2-metil-N-piperidin-4-ilalaninato de ciclopentilo (Producto Intermedio B1)

Al producto obtenido en la etapa 1 (3,540 g, 10,0 mmol) en dioxano (20 mL) se añadió HCl (20 mL, 4M de solución en dioxano, 80 mmol). La solución se agitó a temperatura ambiente durante 1 hora y a continuación se concentró bajo vacío para obtener el producto deseado (3,270 g, rendimiento 100%, sal de diclorhidrato) que se utilizó sin purificación adicional. LC/MS: m/z 255.25 [M+H]⁺

Los siguientes compuestos se prepararon de forma similar al producto intermedio B1:

30 Producto Intermedio B2 – diclorhidrato de N-piperidin-4-il-L-leucinato de ciclopentilo

LC/MS: m/z 283.25 [M+H]⁺

Producto Intermedio B3 – diclorhidrato de N-piperidin-4-il-L-norleucinato de ciclopentil

5 LC/MS: m/z 283 [M+H]+

Producto Intermedio B4 – diclorhidrato de N-piperidin-4-il-L-fenilalaninato de ciclopentilo

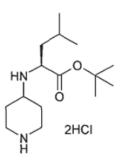
LC/MS: m/z 317 [M+H]⁺

Producto Intermedio B5 – diclorhidrato de N-piperidin-4-il-L-alaninato de ciclopentilo

10

LC/MS: m/z 283.25 [M+H]⁺

Producto Intermedio B6 – diclorhidrato de (2S)-fenil(piperidin-4-ilamino)etanoato de ciclopentilo


LC/MS: m/z 241 [M+H]⁺

Producto Intermedio B7 – diclorhidrato de N-piperidin-4-il-L-valinato de ciclopentilo

5

LC/MS: m/z 255 [M+H]⁺

Producto Intermedio B8 - N-piperidin-4-il-L-leucinato de terc-butilo

LC/MS: m/z 271.25 [M+H]⁺

Preparación del producto intermedio B9 - N-piperidin-4-il-L-alaninato de terc-butilo (Método 2) 10

Etapa 1 - 4-{[(2S)-1-terc-butoxi-1-oxopropan-2-il]amino}piperidin-1-carboxilato de bencilo

A una solución de N-Cbz-4-piperidinona (3,497 g, 15,0 mmol) en dicloroetano (100 mL) se añadió L-alanina *terc*-butil éster clorhidrato (2,731 g, 15,03 mmol) y triacetoxiborohidruro de sodio (6,47 g, 30,5 mmol). La mezcla se agitó durante 20 horas a temperatura ambiente, y a continuación se extinguió mediante adición de cloruro de amonio saturado (100 mL). La mezcla se vertió en acetato de etilo (500 mL), se lavó con agua (2 veces 100 mL), se secó (MgSO₄) y se concentró para obtener el producto deseado (5,30 g, rendimiento 97%). LC/MS: *m/z* 325.25 [M+H]⁺

Etapa 2 - N-piperidin-4-il-L-alaninato de terc-butilo (Producto Intermedio B9)

10

15

20

A una solución del producto de la Etapa 1 (5,304 g, 14,6 mmol) en acetato de etilo (200 mL) se añadió paladio sobre carbono (1,77 g, 10%, 1,67 mmol, 11 mol%). La cuba de reacción se vació y se llenó con hidrógeno dos veces, y a continuación se agitó durante 3h. El matraz se purgó con nitrógeno, se añadió Celite, y la mezcla se filtró a través de una almohadilla de Celite para obtener el producto deseado (3,044 g, rendimiento 72%). LC/MS: *m/z* 229.25 [M+H]⁺

Preparación del producto Intermediario B10 – diclorihidrato de N-piperidin-3-il-L-leucinato de ciclopentilo

Etapa 1 - N-[1-(terc-butoxicarbonil)piperidin-3-il]-L-leucinato de ciclopentilo

A una solución de éster *terc*-butílico del ácido 3-oxo-piperidin-1-carboxílico (0,458 g, 2,3 mmol) en dicloroetano (18 mL), se añadió sal de ácido tósico del éster ciclopentílico del ácido (S)-2-amino-4-metil-pentanoico (0,496 g, 2,53 mmol) y triacetoxiborohidruro de sodio (0,975 g, 4,6 mmol). La solución se agitó a temperatura ambiente durante 18 horas. Una solución acuosa de bicarbonato de sodio (20 mL) se añadió y la mezcla se agitó durante 20 minutos. El producto deseado se extrajo en acetato de etilo (3 veces 15 mL). Las capas orgánicas se combinaron, se secaron (MgSO₄) y se concentraron para proporcionar el producto deseado (0,840 g, rendimiento 95%) que se utilizó sin purificación adicional. LC/MS: *m/z* 383 [M+H]⁺

Etapa 2 – diclorhidrato de N-piperidin-3-il-L-leucinato de ciclopentilo

A una solución de éster terc-butílico del ácido 3-((S)-1-ciclopentiloxicarbonil-3-metil-butilamino)-piperidin-1-carboxílico (0,840 g, 2,20 mmol) en diclorometano (5 mL), se añadió 4M de cloruro de hidrógeno en dioxano (10 mL). La reacción se agitó a temperatura ambiente durante 90 minutos y a continuación se concentró para proporcionar el producto (184 mg, rendimiento 24%). LC/MS: m/z 283 [M+H]⁺

Preparación del producto intermedio D11 - N-pirrolidin-3-il-L-leucinato de ciclopentilo

Etapa 1 - N-(1-(terc-butoxicarbonil)pirrolidin-3-il)-L-leucinato de ciclopentilo

A una solución de N-terc-butoxicarbonil-3-pirrolidinona (0,382 g, 4,76 mmol) en dicloroetano (20 mL), se añadió tosilato del éster ciclopentílico de L-leucina (1,96 g, 5,3 mmol) y triacetoxiborohidruro de sodio (2,65 g, 12,5 mmol). La mezcla se agitó a temperatura ambiente durante 3 horas, a continuación se vertió en acetato de etilo (150 mL) y se extinguió con una solución saturada de cloruro de amonio (50 mL) y se lavó con una solución saturada de bicarbonato de sodio (3 veces 30 mL). Los extractos orgánicos se secaron (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (7:3 acetato de etilo:heptano) para obtener el producto deseado. LC/MS: m/z 369.25 [M+H][†]

Etapa 2 - N-pirrolidin-3-il-L-leucinato de ciclopentilo

5

10

15

20

25

A una solución del producto de la etapa 1 en diclorometano (5 mL), se añadió HCl (2 veces 10 mL, 4M de solución en dioxano, 80 mmol). La mezcla se agitó a temperatura ambiente durante 1 hora, se añadió éter dietílico (100 mL) y el producto se recogió mediante filtración. El sólido se lavó con éter dietílico (50 mL), a continuación se secó bajo vacío para proporcionar el producto deseado (0,855 g, rendimiento 53% sobre dos etapas). LC/MS: *m/z* 269.25 [M+H][†]

Preparación de 1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil} piperidin-4-carbaldehído (Producto Intermedio C)

Producto Intermedio C

Etapa 1- [2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil][4-(hidroximetil)piperidin-1-il]metanona

A una solución del producto Intermedio A (2,156 g, 5,76 mmol), en diclorometano (50 mL), se añadió 4-piperidinemetanol (1,186 g, 10,3 mmol), trietilamina (5 mL, 35 mmol) y EDCI (3,39 g, 17,7 mmol). La mezcla se agitó a temperatura ambiente durante 36 horas, se vertió en acetato de etilo (250 mL), y se lavó con 1M de HCI (200 mL). El extracto orgánico se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna para obtener el producto deseado (1,456 g, rendimiento 54%). LC/MS: *m/z* 472.25 [M+H]⁺

Etapa 2 -1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}piperidin-4-carbaldehído (Producto Intermedio C)

A una solución del producto de la Etapa 1 (0,250 g, 0,53 mmol) en diclorometano (20 mL) se añadió tamices moleculares de tipo 4A (1,68 g), N-metilmorfolina-N-óxido (0,23 g, 2,75 mmol) y perrutenato de tetrapropilamonio (0,011 g, 0,031 mmol, 6 mol%). La mezcla se agitó a temperatura ambiente durante 90 minutos, a continuación se filtró a través de una almohadilla de gel de sílice (35 mm de ancho x 50 mm de fondo), lavando con acetato de etilo (100 mL). El filtrado se concentró bajo vacío para obtener el producto deseado (0,194 g, rendimiento 78%), que se utilizó sin purificación adicional.

Preparación de (1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}piperidin-4-il)acetaldehído (Producto Intermedio D)

Producto Intermedio D

Etapa 1 - [2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil][4-(2-hidroxietil)piperidin-1-ilmetanona

5

10

15

20

25

A 4-piperidin-etanol (1,026 g, 7,9 mmol) en diclorometano (10 mL) se añadió el producto Intermedio A (1,84 g, 4,92 mmol), N,N-diisopropiletilamina (2 mL, 11,5 mmol) y EDCI (3,87 g, 20 mmol). La mezcla se agitó durante 7 horas, a continuación se cargó directamente en una columna de gel de sílice y se eluyó con acetato de etilo para proporcionar el producto deseado (1,808 g, rendimiento 76%). LC/MS: m/z 486.25 [M+H]⁺

Etapa 2 - (1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}piperidin-4-il) acetaldehído (Producto Intermedio D)

A una solución del producto de la Etapa 1 (0,245 g, 0,50 mmol) en diclorometano (8 mL) se añadió periodinano de Dess-Martin (0,275 g, 0,64 mmol). Después de 2 horas, se añadió una segunda parte del periodinano de Dess-Martin (0,105 g, 0,24 mmol) y la mezcla se agitó durante 30 minutos adicionales. La reacción se extinguió mediante adición de bicarbonato de sodio:tiosulfato de sodio (10 mL) saturado en una relación de 1:1. Después de agitar durante 5 minutos, la mezcla se vertió en acetato de etilo (100 mL) y se lavó con agua (3 veces 20 mL). El extracto orgánico se secó y se concentró y se continuó sin ninguna purificación adicional.

Preparación del producto Intermedio E - 2-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil carbonil}-2,3-dihidro-1-*H* isoindol-5-carbaldehído

Etapa 1 - 2,4-bis(benciloxi)-5-(prop-1-en-2-il)-N,N di(prop-2-in-1-il)benzamida

5

20

A una solución de clorhidrato de N,N-dipropargilamina (3,36 g, 25,9 mmol) en diclorometano (100 mL), se añadió N,N-diisopropiletilamina (10 mL, 57 mmol), producto Intermedio A (3,48 g, 10,1 mmol), 4-dimetilaminopiridina (0,245 g, 2 mmol) y EDCI (5,69 g, 29,7 mmol). La mezcla se agitó a temperatura ambiente durante 100 horas, a continuación se vertió en éter dietílico (400 mL) y se lavó con una solución de 1M HCI (4 veces 50 mL). La fracción orgánica se secó (MgSO₄), se filtró a través de un tapón de Celite (lavando con éter), a continuación se concentró bajo vacío para obtener el producto (3,208 g, rendimiento 71%). LC/MS: *m/z* 450 [M+H]⁺

Producto Intermedio E

Etapa 2 - [2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil][5-(hidroximetil)-1,3-dihidro-2H-isoindol-2-il]metanona

A una solución del producto de la Etapa 1 (3,208 g, 7,13 mmol) en tolueno (20 mL) se añadió alcohol propargílico (1 mL, 17,2 mmol). La solución se calentó a 65°C, a continuación se añadió RhCl(PPh₃)₃ (0,033 g, 0,020 g, 0,06 mmol) en dos partes cinco minutos después. La mezcla se calentó durante dos horas y la mezcla del producto se concentró en gel de sílice. La purificación mediante cromatografía flash en columna (SiO₂, acetato de etilo:heptano en una relación 7:3) produjo el producto deseado (2,483 g, rendimiento 69%). LC/MS: w/z 506.25 [M+H][†]

Etapa 3 - 2-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-carbaldehído (Producto Intermedio E)

A una solución del producto de la Etapa 2 (0,915 g, 1,8 mmol) en diclorometano (100 mL) se añadió dióxido de manganeso (4,310 g, 50 mmol). La suspensión se agitó durante 30 minutos y a continuación se filtró a través de Celite. El filtrado se concentró para obtener el producto deseado que se utilizó sin purificación adicional (0,805 g, rendimiento 89%).

Preparación del Producto Intermedio F - (2-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil] carbonil}-2,3-dihidro-1*H*-isoindol-5-yil)acetaldehído

Producto Intermedio F

Etapa 1- [2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil][5-(2-hidroxietil)-1,3-dihidro-2H-isoindol-2-il]metanona

5

10

15

20

25

A una solución de 2,4-bis-benciloxi-5-isopropenil-N,N-di-prop-2-inil-benzamida (0,940 g, 2,1 mmol) en acetato de etilo (2 mL) se añadió 3-butin-1-ol (0,30 mL, 4,0 mmol) y RhCl(PPh₃)₃ (0,162 g, 0,17 mmol). La mezcla se agitó a temperatura ambiente durante 24 horas, a continuación se cargó directamente en una columna de gel de sílice, eluyendo con acetato de etilo:heptano en una relación 7:3, para proporcionar el producto deseado (0,444 g, rendimiento 38%). LC/MS: *m/z* 520.25 [M+H]⁺

Etapa 2 - (2-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)acetaldehído (Producto Intermedio F)

A una solución del producto de la Etapa 1 (0,169 g, 0,32 mmol) en diclorometano (5 mL), se añadió periodinano de Dess-Martin (0,295 g, 0,69 mmol). La solución se agitó durante 90 minutos y a continuación se extinguió mediante adición de una solución de bicarbonato de sodio saturado:tiosulfato de sodio saturado (20 mL) en una relación 1:1. Después de dos minutos, la mezcla se vertió en diclorometano (100 mL), y el producto se extrajo con diclorometano (100 mL). Los extractos orgánicos combinados se secaron (MgSO₄) y se concentraron para producir el producto deseado que se utilizó sin purificación adicional.

Preparación del Producto Intermedio G - 3-(2-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il) fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)propanal

Producto Intermedio G

Etapa 1- [2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil][5-(3-hidroxipropil)-1,3-dihidro-2H-isoindol-2-il]metanona

A una solución de 2,4-bis-benciloxi-5-isopropenil-N,N-di-prop-2-inil-benzamida (0,545 g, 1,21 mmol) en acetato de etilo (10 mL), se añadió 4-pentin-1-ol (0,30 mL, 3,2 mmol) y RhCl(PPh₃)₃ (0,161 g, 0,17 mmol). El disolvente se eliminó bajo vacío, y la mezcla se agitó a temperatura ambiente durante la noche. Se añadió 4-pentin-1-ol (2,5 mL, 26 mmol) y RhCl(PPh₃)₃ (0,155 g, 0,17 mmol) y la mezcla se agitó durante 48 horas. La mezcla se cargó en en una columna de gel de sílice y se eluyó con acetato de etilo:heptano en una relación de 7:3 para producir el producto deseado (0,254 g, rendimiento 39%). LC/MS: m/z 534.25 [M+H]⁺

Etapa 2 - 3-(2-{[2,4-bis(benciloxi)-5-(prop-l-en-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)propanal (Producto Intermedio G)

A una solución del producto de la Etapa 1 (0,160 g, 0,30 mmol) en diclorometano (5 mL) se añadió periodinano de Dess-Martin (0,290 g, 0,68 mmol). La solución se agitó durante 90 minutos, a continuación se extinguió mediante adición de bicarbonato de sodio saturado:tiosulfato de sodio saturado (20 mL) en una relación 1:1. Después de dos minutos, la mezcla se vertió en diclorometano (100 mL), y el producto se extrajo con diclorometano (100 mL). Los extractos orgánicos combinados se secaron (MgSO₄) y se concentraron para producir el producto deseado que se utilizó sin purificación adicional.

5

Preparación del Producto Intermedio H - 2,4-bis(benciloxi)-*N*-(3-formilbencil)-*N*-metil-5-(prop-1-en-2-il)benzamida

Producto Intermedio H

A 3-(bromometil)benzaldehído (0,734 g, 3,69 mmol) se añadió metilamina (8M en metanol). La mezcla se agitó durante 1 hora y a continuación se concentró bajo vacío. El residuo obtenido se disolvió en diclorometano (10 mL) y se añadió N,N-diisopropiletilamina (5 mL, 28,6 mmol), Producto Intermedio A (1,29 g, 3,45 mmol) y HATU (3,17 g, 8,28 mmol). La mezcla se agitó a temperatura ambiente durante 18 horas, a continuación se cargó directamente en una columna de gel de sílice y se eluyó con heptano:acetato de etilo para producir el producto deseado (0,128 g, rendimiento 14%). LC/MS: *m/z* 506.25 [M+H]⁺

20 Preparación del Producto Intermedio I - 2,4-bis(benciloxi)-N-(4-formilbencil)-*N*-metil-5-(prop-1-en-2-il)benzamida

Producto Intermedio I

Etapa 1- ácido 4-{[(terc-butoxicarbonil)amino]metil}benzoico

A una solución de ácido 4-aminometil benzoico (19,22 g, 126 mmol) en THF (200 mL) se añadió una solución saturada de bicarbonato de sodio (300 mL) y dicarbonato de di-*terc*-butilo (42,72 g, 195,7 mmol). La mezcla se agitó a temperatura ambiente durante 48 horas, a continuación se vertió en acetato de etilo (250 mL). La capa acuosa se lavó con acetato de etilo (250 mL), a continuación se acidificó con una solución de 2M de HCl. El precipitado se recogió mediante filtración y se secó bajo alto vacío para producir el producto deseado (24,6 g, rendimiento 78%). LC/MS: *m/z* 274 [M+Na]⁺

Etapa 2 - {4-[(metilamino)metil]fenil}metanol

5

20

25

35

40

A una suspensión enfriada (baño de hielo) de hidruro de litio-aluminio (5,03 g, 132 mmol) en tetrahidrofurano (100 mL) se añadió lentamente una solución del producto de la Etapa 1 (5,34 g, 21 mmol) en tetrahidrofurano (20 mL). Después de completar la adición, la mezcla se calentó a temperatura ambiente y a continuación se calentó a reflujo durante 96 horas. La mezcla se enfrió entonces a temperatura ambiente, y el exceso de hidruro de litio-aluminio se extinguió mediante adición, con cautela, de acetato de etilo (20 mL durante 15 minutos) seguido de la adición lenta de 2M de HCl (100 mL). La mezcla se extrajo con acetato de etilo (2 veces 100 mL). La capa acuosa se basificó a continuación mediante adición de hidróxido de sodio y se añadió dicarbonato de di-terc-butilo (9,0 g, 27 mmol). La mezcla se agitó a temperatura ambiente durante 3 horas, a continuación el producto se extrajo con acetato de etilo (3 veces 250 mL), los extractos orgánicos combinados se secaron (MgSO4) y se concentraron.

Al residuo obtenido (1,278 g, rendimiento 16%) se añadió HCl (10 mL, 4M de solución en dioxano). La solución se agitó a temperatura ambiente durante 1 hora, a continuación se concentró bajo vacío. El sólido obtenido se lavó con éter dietílico (2 veces 50 mL), y se secó para obtener el producto deseado (0,890 g, rendimiento 23%). LC/MS: *m/*z 152 [M+H]⁺

Etapa 3 - 2,4-bis(benciloxi)-N-[4-(hidroximetil)bencil]-N-metil-5-(prop-1-en-2-il)benzamida

A una suspensión del producto de la Etapa 2 (0,890 g, 4,6 mmol) en diclorometano (20 mL), se añadió el Producto Intermedio A (1,278 g, 3,42 mmol), N,N-diisopropiletilamina (7 mL, 40 mmol) y EDCI (3,05 g, 15,9 mmol). La mezcla se agitó durante 16 horas, a continuación se vertió en acetato de etilo y se lavó con 0,5M de HCI (2 veces 50 mL) y salmuera (100 mL). La fracción orgánica se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, acetato de etilo:heptano en una relación 1:1) para obtener el producto deseado (0,646 g, rendimiento 37%). LC/MS: *m/z* 508.25 [M+H][†]

Etapa 4 - 2,4-bis(benciloxi)-N-(4-formilbencil)-N-metil-5-(prop-1-en-2-il) benzamida (Producto Intermedio I)

A una solución del producto de la Etapa 3 (630 mg, 1,24 mmol) en diclorometano (100 mL), se añadió dióxido de manganeso (4,60 g, 52,8 mmol). La mezcla se agitó durante 10 minutos, a continuación se filtró a través de Celite y se concentró para obtener el producto deseado (0,506 g, rendimiento 81%) que se utilizó sin purificación adicional.

Preparación del Producto Intermedio J - 1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil] carbonil}piperidin-4-ona

Producto Intermedio J

Etapa 1 - [2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil](4-hidroxipiperidin-1-il)metanona

A una solución del producto Intermedio A (2,313 g, 6,2 mmol) en DCM (20 mL), se añadió 4-hidroxipiperidina (1,11 g, 10,97 mmol), DIPEA (3 mL) y EDC (2,62 g, 13,7 mmol). La solución se agitó a temperatura ambiente durante 23 horas, a continuación se purificó directamente mediante cromatografía flash en seco (acetato de etilo) para obtener el producto deseado (1,764 g, rendimiento 62%). LC/MS: m/z 458.25 [M+H]⁺

Etapa 2 - 1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}piperidin-4-ona (producto Intermedio J)

A una solución del producto de la Etapa 1 (0,850 g, 1,85 mmol) en DCM (30 mL), se añadió periodinano de Dess-Martin (1,42 g, 3,34 mmol). La reacción se agitó a temperatura ambiente hasta que se completó el consumo del material de partida. La reacción se extinguió mediante adición de bicarbonato de sodio saturado:tiosulfato de sodio en una relación 1:1, y a continuación se extrajo con acetato de etilo (20 mL, 10 mL). Los extractos orgánicos se secaron (MgSO₄) y se concentraron para obtener el producto deseado que se utilizó sin purificación adicional (conteniendo algo de exceso de oxidante). LC/MS: m/z 456 [M+H]⁺

Ejemplos

5

10

15

20

25

30

Preparación del Ejemplo 1 - *N*-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-leucinato de ciclopentilo

Ejemplo 1

Etapa 1 - N-(1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil} piperidin-4-il)-L-leucinato de ciclopentilo

A una solución del Producto Intermedio A (0,883 g, 2,37 mmol) en diclorometano (10 mL), se añadió trietilamina (2 mL, 14,3 mmol), Producto Intermedio B2 (1,043 g, 2,9 mmol), 4-dimetilaminopiridina (0.094 g, 0.77 mmol) y EDCI (1,47 g, 7,7 mmol). La mezcla se agitó a temperatura ambiente durante 18 horas, a continuación se vertió en acetato de etilo (150 mL). El extracto orgánico se lavó con agua (3 veces 50 mL), se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, EtOAc:heptano en una relación 7:3) para producir el producto deseado (0,908 g, rendimiento 60%). LC/MS: m/z 639.25 [M+H] $^+$

Etapa 2 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)-L-leucinato de ciclopentilo (Ejemplo 1)

A una solución del producto de la Etapa 1 (0,908 g, 1,92 mmol) en acetato de etilo (30 mL) se añadió paladio sobre carbono (0,857 g, 10%, 0,8 mmol, 56%). La cuba de reacción se vació y se rellenó con hidrógeno dos veces. La mezcla se agitó durante 1 hora, y a continuación se purgó con nitrógeno. Se añadió Celite, lavando con acetato de etilo adicional (100 ml). El filtrado se concentró a continuación para obtener el producto deseado (0,596 g, rendimiento 91%). 1 H RMN (300 MHz, d6-DMSO) 9.46 (1H, s), 9.41 (1H, s), 6.79 (1H, s), 6.32 (1H, s), 5.09 (1H, t, J=6.0 Hz), 3.69-3.93 (2H, m), 3.17-3.29 (1H, m), 3.05 (1H, sep, J=6.8 Hz), 2.91 (2H, q, J=10.5 Hz), 2.45-2.63 (1H, m), 1.50-1.97 (12H, m), 1.33 (2H, t, J=7.0 Hz), 1.14-1.26 (1H, m), 1.09 (6H, d, J=6.9 Hz), 0.87 (3H, d, J=6.7 Hz), 0.84 (3H, d, J=6.6 Hz). LC/MS: pureza >98%, m/z 461.25 [M+H] $^+$

Los siguientes compuestos se prepararon en una forma similar a la del Ejemplo 1:

Ejemplo 2 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)-2-metilalaninato de ciclopentilo

Preparado a partir del Producto Intermedio A y del Producto Intermedio B1. ¹H RMN (300 MHz, d6-DMSO) 9.47 (1H, s), 9.42 (1H, s), 6.79 (1H, s), 6.33 (1H, s), 5.04 (1H, t, J=5.8 Hz), 3.75-3.95 (2H, m), 3.05 (1H, sep, J=6.8 Hz), 2.86 (2H, t, J=12.2 H), 2.54-2.61 (1H, obs m), 1.47-1.98 (12H, m), 1.17 (6H, s), 1.09 (6H, d, J=6.8 Hz)

LC/MS: pureza 98%, m/z 433.25 [M+H]⁺

35 Ejemplo 3 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)-L-valinato de ciclopentilo

Preparado a partir del Producto Intermedio A y Producto Intermedio B7. 1 H RMN (CDCl₃) 10.01 (1H, br s), 7.07 (1H, s), 6.40 (1H, s), 5.26 (1H, t, J=5.8Hz), 4.29-4.03 (2H, m), 3.32-3.01 (4H, m), 1H,br s), 2.72 (1H, br s), 2.01-1.35 (15H, m), 1.22 (6H, d, J=7.0Hz), 0.96 (6H, m) LC/MS: pureza 100%, m/z 477 [M+H] $^{+}$

Ejemplo 4 - (2S)-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)amino](fenil) etanoato de ciclopentilo

Preparado a partir del Producto Intermedio A y Producto Intermedio B6. 1 H RMN (CDCl₃) 7.51-7.29 (5H, m), 7.02 (1H, s), 6.37 (1H,s), 5.20 (1H, m), 4.52 (1H, s), 4.32-4.04 (2H, m), 3.13-2.95 (2H, m), 2.87-2.61 (1H, m), 2.16-1.38 (12H, m), 1.17 (6H, d, J=6.8Hz)

LC/MS: pureza 100%, m/z 481 [M+H]+

5

10

15

20

25

30

35

Ejemplo 5 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-alaninato de ciclopentilo

Preparado a partir del Producto Intermedio A y el Producto Intermedio B5. 1H NMR (300 MHz, d6-DMSO) 9.45 (1H, s), 9.41 (1H, s), 6.80 (1H, s), 6.33 (1H, s), 5.76 (1H, s), 5.09 (1H, m), 4.09 (1H, q, J=5.4 Hz), 3.84 (2H, br s), 3.05 (1H, m), 2.89 (2H, q, J=10.8 Hz), 2.66-2.55 (1H, m), 1.67-1.50 (12H, m), 1.21-1.16 (3H, d, J=7.2Hz), 1.10 (6H, d, J=7.0Hz). LC/MS: pureza 100%, *m/z* 419 [M+H]⁺

Ejemplo 6 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-leucinato de terc-butilo

Preparado a partir del Producto Intermedio A y del Producto Intermedio B8. ¹H RMN (300 MHz, d3-MeOD) 6.84 (1H, s), 6.21 (1H, s), 3.92-4.09 (2H, m), 3.25 (1H, obs m), 3.06 (1H, sep, J=6.9 Hz), 3.00-3.04 (2H, m), 2.54-2.67 (1H, m), 1.48-1.90 (4H, m), 1.39, (9H, s), 1.11-1.45 (3H, m), 1.07 (6H, d, J=6.9 Hz), 0.85 (3H, d, J=6.6 Hz), 0.82 (3H, d, J=6.6 Hz) LC/MS: pureza 98%, *m/z* 449.25 [M+H]⁺

Ejemplo 7 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-3-il)-L-leucinato de ciclopentilo

Preparado a partir del producto Intermedio A y el Producto Intermedio B10. ¹H RMN (300 MHz, d3-MeOD) 7.0 (1H, s), 6.37 (1H, s), 5.36 (1H, br s), 4.42 (1H, br s), 4.10 (2H, br s), 3.27-2.84 (3H, m), 2.36-1.57 (16H, m), 1.19 (6H, d, J=7.0 Hz), 1.06-0.96 (6H, m). LC/MS: pureza >98%, *m/z* 461 [M+H]⁺

Ejemplo 8 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)-L-alaninato de terc-butilo

Preparado a partir del Producto Intermedio A y del Producto Intermedio B9. ¹H RMN (300 MHz, d6-DMSO) 9.46 (1H, s), 9.41 (1H, s), 6.80 (1H, s), 6.33 (1H, s), 4.01-4.13 (1H, m), 3.73-3.95 (2H, m), 3.21-3.25 (1H, q, J=6.9 Hz), 3.00-3.12 (1H, m), 2.80-2.97 (2H, m), 2.55-2.69 (1H, m), 1.56-1.79 (2H, m), 1.41 (9H, s), 1.22 (3H, d, J=7.2 Hz), 1.12-1.22 (2H, m),1.11 (6H, t, J=6.9 Hz). LC/MS: pureza 98%, *m/z* 407.25 [M+H]⁺

Ejemplo 9 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)-L-fenilalaninato de ciclopentilo

Preparado a partir del Producto Intermedio A y del Producto Intermedio B4. ¹H RMN (300 MHz, d3-MeOD) 7.35-7.12 (5H, m), 6.95 (1H, s), 6.33 (1H, s), 5.12-5.02 (1H, m), 4.04 (1H, br s), 3.66 (1H, dd, J=6.0, 8.7Hz), 3.18 (1H, dt, J=6.9, 13.8 Hz), 3.08-2.91 (2H, m), 2.90-2.78 (1H, m), 2.73 (1H, t, J=9.9Hz), 1.96-1.22 (14H, m), 1.19 (6H, d, J=6.8Hz). LC/MS: pureza 100%, m/z 495 [M+H]⁺

Ejemplo 10 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)-L-norleucinato de ciclopentilo

Preparado a partir del Producto Intermedio A y del Producto Intermedio B3. 1 H RMN (300 MHz, d3-MeOD) 7.01 (1H, d, J=3.8Hz), 6.37 (1H, d, J=1.3Hz), 5.36 (2H, br s), 4.81 (2H, s), 4.46 (1H, br s), 4.17 (2H, br s), 3.16 (6H, m), 2.35 (2H, m), 2.17-1.54 (8H, m), 1.42 (3H, m), 1.19 (6H, d, J=6.8Hz), 1.03-0.87 (3H, m). LC/MS: pureza 96%, m/z 461 $[M+H]^{+}$

Ejemplo 11 - O-terc-butil-N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)-L-serinato de terc-butilo

Ejemplo 11

Paso 1: a una solución del producto Intermedio J (0,150 g, 0,3 mmol) en dicloroetano (10 mL), se añadió éster terc-butílico del ácido (S)-2-amino-3-terc-butoxi-propiónico (0,069 g, 0,3 mmol) y triacetoxiborohidruro de sodio (0,127 g, 0,6 mmol). La solución se agitó a temperatura ambiente durante 2 horas. Una solución acuosa de bicarbonato de sodio (10 mL), se añadió y el producto deseado se extrajo en acetato de etilo (3 veces 10 mL). Las capas orgánicas se combinaron, se secaron (MgSO₄) y se concentraron. El residuo se purificó mediante cromatografía flash (SiO₂, gradiente de elución desde heptano al 100% a acetato de etilo al 100%), para proporcionar el producto como un aceite transparente (0,090 g, rendimiento 45%). ¹H RMN (300 MHz, d3-MeOD) 7.43-7.29 (12H, m), 7.07 (1H, d, J=20Hz), 6.77 (1H, d, J=5.3 Hz), 5.25-5.08 (5H, m), 5.04 (2H, d, J=5.5 Hz), 4.51 (1H, d, J=13.8 Hz); 3.58 (5H, m), 3.11-2.63 (4H, m), 1.96-1.57 (9H, m), 1.31 (2H, m), 1.16 (9H, s) LC/MS: pureza 100%; *m/z* 669 [M+H][†].

Paso 2: La hidrogenación del producto obtenido para obtener el Ejemplo 11 se realizó tal como se describe para el Ejemplo 1. ¹H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.35 (1H, s), 4.34 (3H, m), 4.02-3.76 (2H, m), 3.55-3.38 (1H, m), 3.26-3.11 (1H, m), 3.09-2.90 (2H, m), 2.27-2.10 (2H, m), 1.81-1.60 (2H, m), 1.56 (9H, s), 1.26 (9H, s), 1.19 (6H, d, J=7.0Hz). LC/MS: pureza 98%, *m/z* 479 [M+H]⁺

Los siguientes compuestos se prepararon de manera similar al Ejemplo 11:

5

10

20

25

30

Ejemplo 12 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)-D-leucinato de ciclopentilo

Preparado a partir del Producto Intermedio J y tosilato del éster ciclopentílico de D-leucina. ¹H RMN (300 MHz, d3-MeOD) 6.95 (1H, s), 6.32 (1H, s), 5.22 (1H, t, J=5.7Hz), 4.11 (2H, d, J=11.9 Hz), 3.41 (1H, t, J=7.3Hz), 3.28-2.93 (3H, m), 2.77-2.58 (1H, m), 2.03-1.28 (16H, m), 1.18 (6H, d, J=7.0Hz), 0.94 (6H, dd, J=6.7, 8.9 Hz). LC/MS: pureza 100%, *m/z* 461 [M+H][†]

Ejemplo 13 - 3-ciclohexil-*N*-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)-Lalaninato de ciclopentilo

Preparado a partir del Producto Intermedio J y tosilato del éster ciclopentílico de L-ciclohexilalanina. ¹H RMN (300 MHz, d3-MeOD) 6.97 (1H, s), 6.36 (1H, s), 5.37 (1H, t, J=5.6Hz), 4.31 (2H, br s), 4.15 (1H, m), 3.45 (1H, m), 3.18 (1H, dt, J=13.8, 6.9Hz), 3.09-2.86 (2H, m), 2.13 (2H, t, J=16.1Hz), 1.93 (3H, d, J=11.5Hz), 1.87-1.62 (15H, m), 1.45 (1H, br s), 1.39-1.21 (3H, m), 1.19 (6H, d, J=7.0Hz), 1.16-0.91 (2H, m), LC/MS: pureza 98%, *m/z* 501 [M+H]⁺

Ejemplo 14 - (2S)-ciclohexil[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)amino] etanoato de ciclopentilo

Preparado a partir del Producto Intermedio J y tosilato del éster ciclopentílico de L-ciclohexilglicina. ¹H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.35 (1H, s), 5.42-5.27 (1H, m), 4.32 (2H, br s), 4.06 (1H, d, J=3.6Hz), 3.49-3.37 (1H, m), 3.18 (1H, dt, J=13.8, 6.9Hz), 3.08-2.82 (2H, m), 2.26-1.64 (18H, m), 1.96 (3H, br s), 1.35 (2H, t, J=9.7Hz), 1.19 (6H, d, J=7.0Hz), LC/MS: pureza 100%, *m/z* 387 [M+H]⁺

Ejemplo 15 - (2S)-ciclohexil[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)amino] etanoato de terc-butilo

Preparado a partir del Producto Intermedio J y clorhidrato del éster *terc*-butílico de L-ciclohexilglicina. 1 H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.36 (1H, s), 4.32 (2H, br s), 3.97 (2H, br s), 2.26-1.63 (15H, m), 1.57 (9H, s), 1.37 (3H, t, J=10.9Hz), 1.19 (6H, d, J=6.8Hz) LC/MS: pureza 100%, m/z 475 [M+H] $^{+}$

Preparación del Ejemplo 16 - *N*-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-fenilalaninato de *terc*-butilo

5

10

30

Preparado a partir del Producto Intermedio J y clorhidrato del éster *terc*-butílico de L-fenilalanina. ¹H RMN (300 MHz, d3-MeOD) 7.34-7.17 (5H, m), 6.95 (1H, s), 6.32 (1H, s), 4.06 (2H, br s), 3.58 (1H, dd, J=8.5, 6.2 Hz), 3.18 (6H, m), 2.88-2.66 (2H, m), 1.96-1.73 (2H, m), 1.32 (9H, s), 1.18 (6H, d, J=7.0 Hz). LC/MS: pureza 99%, *m/z* 483 [M+H]⁺

Ejemplo 17 - *O-terc*-butil-*N*-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-serinato de ciclopentilo

Preparado a partir del Producto Intermedio J y éster ciclopentílico de L-O-*terc*-butil serina. ¹H RMN (300 MHz, d6-DMSO) 9.45 (1H, s), 9.40 (1H, s), 6.80 (1H, s), 6.33 (1H, s), 5.10 (1H, t, J=5.6 Hz), 3.75-3.94 (2H, m), 3.30-3.51 (3H, m), 3.06 (1H, sep, J=7.0 Hz), 2.80-2.99 (2H, m), 2.57-2.67 (1H, m), 1.44-1.98 (12H, m), 1.10 (6H, d, J=9.1 Hz), 1.08 (9H, s) LC/MS: pureza 100%, *m/z* 491 [M+H]⁺

15 Ejemplo 18 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)-L-serinato de ciclopentilo

Preparado a partir del producto Intermedio J y éster ciclopentílico de L-O-bencil-serina. 1 H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.35 (1H, s), 5.42-5.29 (1H, m), 4.34 (1H, br s), 4.29 (2H, t, J=3.3Hz), 4.08-4.01 (2H, m), 3.61-3.46 (1H, m), 3.18 (1H, dt, J=6.8,13.8Hz), 3.01 (2H, t, J=13.0Hz), 2.18 (2H, br s), 2.04-1.93 (2H, m), 1.93-1.60(8H, m), 1.19 (6H, d, J=7.0Hz), LC/MS: pureza 100%, m/z 435 [M+H] $^{+}$

20 Ejemplo 19 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)-D-leucinato de terc-butílico

Preparado a partir del Producto Intermedio J y clorhidrato del éster D-leucina *terc*-butílico. ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.33 (1H, s), 4.19-3.96 (2H, m), 3.27-2.91 (4H, m), 2.79-2.64 (1H, m), 1.99-1.66 (4H, m),1.50 (8H, s), 1.46-1.21 (5H, m), 1.19 (6H, d, J=7.0Hz), 0.95 (6H, dd, J=6.6, 9.6 Hz). LC/MS: pureza 95%, *m/z* 449 [M+H]⁺

Ejemplo 20 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil) pirrolidin-3-il)-L-leucinato de ciclopentilo

25 Preparado a partir del Producto Intermedio A y del Producto Intermedio B11. ¹H RMN (300 MHz, d6-DMSO) 10.74 (0.5H, s), 10.63 (0.5H, s), 9.70 (1H, s), 7.05 (1H, s), 6.31 (1H, s), 4.96-5.14 (1H, m), 2.97-3.66 (8H, m), 2.05-2.35 (1H, m), 1.27-1.98 (11H, m), 1.12 (3H, d, J=6.9 Hz), 1.12 (3H, d, J=6.9 Hz), 0.85 (6H, t, J=6.7 Hz). LC/MS: pureza >98%, m/z 447.25 [M+H]⁺

Preparación del Ejemplo 21 - *N*-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-leucinato de ciclopentilo

Ejemplo 21

Etapa 1- *N*-[(1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil} piperidin-4-il)metil]-L-leucinato de ciclopentilo

A una solución del Producto Intermedio C (0,194 g, 0,41 mmol) en dicloroetano (10 mL), se añadió tosilato de éster ciclopentílico de L-leucina (0,240 g, 0,61 mmol), y a continuación triacetoxiborohidruro de sodio (0,240 g, 1,13 mmol). La mezcla se agitó durante 1 hora, y a continuación se extinguió mediante adición de cloruro de sodio

saturado (20 mL). La mezcla se vertió en acetato de etilo (200 mL) y se lavó con bicarbonato de sodio saturado (2 veces 25 mL). La fracción orgánica se secó (MgSO₄), se concentró y a continuación se purificó mediante cromatografía flash en columna (SiO₂, acetato de etilo:heptano en una relación 7:3) para obtener el producto deseado (0,211 g, rendimiento 79%). LC/MS: *m/z* 653.25 [M+H)⁺

5 Etapa 2 - *N*-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil)} piperidin-4-il)metil]-L-leucinato de ciclopentilo (Ejemplo 21)

A una solución del producto de la Etapa 2 (0,211 g, 0,32 mmol) en acetato de etilo (10 mL), se añadió paladio sobre carbono (0,194 g, 10%, 0,18 mmol, 57%). La cuba de reacción se vació y se rellenó con hidrógeno dos veces, a continuación se agitó durante 90 minutos. El matraz se purgó con nitrógeno, se añadió Celite, a continuación la mezcla se filtró a través de una almohadilla de Celite, lavando con acetato de etilo adicional (100 mL, 50 mL). El filtrado se concentró para producir el producto deseado (0,151 mg, rendimiento 99%). ¹H RMN (300 MHz, d6-DMSO) 9.26 (1H, s), 9.41 (1H, s), 6.80 (1H, s), 6.32 (1H, s), 5.09 (1H, t, J=6.0 Hz), 3.85-4.05 (2H, m), 3.00-3.10 (2H, m), 2.77 (2H, t, J=12.0 Hz), 2.38 (1H, dd, J=6.9, 11.4 Hz), 2.23 (1H, dd, J=6.6, 11.4 Hz), 1.50-1.91 (12H, m), 1.32 (2H, t, J=6.9 Hz), 1.09 (6H, d, J=6.9 Hz), 0.98-1.04 (3H, m), 0.86 (3H, d, J=6.6 Hz), 0.83 (3H, d, J=6.6 Hz) LC/MS: pureza >98%, m/z 475.25 [M+H]⁺

Los siguientes compuestos se prepararon de forma similar al Ejemplo 21:

10

15

20

45

Ejemplo 22 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-alaninato de ciclopentilo

Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de L-alanina. ¹H RMN (300 MHz, d3-MeOD) 6.92 (1H, s), 6.33 (1H, s), 5.21 (1H, m), 4.12 (2H, m), 3.31 (2H, m), 3.18 (1H, penteto, J=6.9Hz), 2.95 (2H, t, J=12.6Hz), 2.46 (2H, m), 1.75 (12H, m), 1.28 (3H, d, J=6.9Hz), 1.19 (6H, d, J=6.9Hz). LC/MS: pureza 95%, *m/z* 433 [M+H]⁺

Ejemplo 23 - *N*-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)metil]-L-fenilalaninato de ciclopentilo

Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de L-fenilalanina. ¹H RMN (300 MHz, d3-MeOD) 7.24 (5H, m), 6.95 (1H, s), 6.33 (1H, s), 5.06 (1H, m), 4.15 (2H, m), 3.46 (1H, t, J=6.3Hz), 3.18 (1H, penteto, J=6.9Hz), 2.96 (4H, m), 2.45 (2H, m), 1.70 (13H, m), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 98%, *m/z* 509 [M+H][†]

Ejemplo 24 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-leucinato de terc-butilo

Preparado a partir del Producto Intermedio C y éster *terc*-butílico de L-leucina. ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.33 (1H, s), 4.18 (2H, m), 3.33 (1H, m), 3.15 (2H, m), 2.95 (2H, t, J=12.3Hz), 2.44 (2H, m), 1.75 (4H, m), 1.49 (9H, s), 1.30 (3H, m), 1.18 (6H, d, J=6.6Hz), 0.94 (6H, m). LC/MS: pureza 98%, *m/z* 463 [M+H]⁺

Ejemplo 25 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)metil]-L-fenilalaninato de terc-butilo

Preparado a partir del Producto Intermedio C y éster *terc-butílico* de L-fenilalanina. ¹H RMN (300 MHz, d3-MeOD) 7.26 (5H, m), 6.95 (1H, s), 6.34 (1H, s), 4.16 (2H, m), 3.40 (1H, m), 3.33 (1H, m), 3.18 (1H, penteto, J=6.9Hz), 2.92 (4H, m), 2.46 (2H, m), 1.74 (3H, m), 1.36 (9H, s), 1.31 (1H, m), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 95%, *m/z* 497 [M+H][†]

Ejemplo 26 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-alaninato de terc-butilo

Preparado a partir del Producto Intermedio C y éster terc-butílico de L-alanina. ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.33 (1H, s), 4.19 (2H, m), 3.33 (2H, m), 3.20 (2H, m), 2.96 (2H, t, J=12.6Hz), 2.46 (2H, m), 1.80 (3H, m), 1.49 (9H, s), 1.27 (3H, d, J=7.2Hz), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 95%, *m/z* 421 [M+H]⁺

Ejemplo 27 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)metil]-D-leucinato de terc-butilo

Preparado a partir del Producto Intermedio C y éster *terc*-butílico de D-leucina. ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.33 (1H, s), 4.18 (2H, m), 3.33 (1H, m), 3.16 (2H, m), 2.95 (2H, t, J=12.0Hz), 2.46 (2H, m), 1.72 (4H, m), 1.50 (9H, s), 1.35 (3H, m), 1.18 (6H, d, J=6.9Hz), 0.93 (6H, m). LC/MS: pureza 98%, *m/z* 463 [M+H]⁺

Ejemplo 28 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)metil]-D-leucinato de ciclopentilo

Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de D-leucina. ¹H RMN (300 MHz, d3-MeOD) 6.95 (1H, s), 6.33 (1H, s), 5.21 (1H, m), 4.18 (1H, m), 3.33 (1H, m), 3.20 (2H, m), 2.95 (2H, t, J=12.6Hz), 2.42 (2H, m), 1.72 (13H, m), 1.50 (2H, m), 1.32 (1H, m), 1.21 (6H, d, J=6.9Hz), 0.91 (6H, m). LC/MS: pureza 98%, *m/z* 475 [M+H]⁺

5 Ejemplo 29 - N-((1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)metil]-L-valinato de ciclopentilo

Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de L-valina. ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.34 (1H, s), 4.21 (2H, m), 3.92 (1H, m), 3.18 (1H, penteto, J=6.6Hz), 3.01 (4H, m), 2.37 (1H, m), 1.90 (3H, m), 1.35 (2H, m), 1.19 (9H, m), 1.08 (3H, d, J=6.9Hz). LC/MS: pureza 95%, *m/z* 393 [M+H]⁺

Ejemplo 30 - (2S)-ciclohexil{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil] amino] etanoato de ciclopentilo

Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de L-ciclohexilglicina. 1 H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.35 (1H, s), 5.36 (1H, m), 4.22 (2H, m), 1.88 (1H, s, d, J=3.9Hz), 3.18 (1H, penteto, J=6.9z), 2.98 (4H, m), 2.10-1.70 (18H, m), 1.36 (4H, m), 1.18 (6H, d, J=6.9Hz), 1.02 (2H, m). LC/MS: pureza 98%, m/z 501 [M+H] $^{+}$

Ejemplo 31 - (2S)-ciclohexil{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil] amino] etanoato de *terc*-butilo

20

25

30

Preparado a partir del Producto Intermedio C y éster *terc*-butílico de L-ciclohexilglicina. ¹H RMN (300 MHz, d3-MeOD) 6.95 (1H, s), 6.33 (1H, s), 4.18 (2H, m), 3.18 (1H, penteto, J=6.9Hz), 3.95 (3H, m), 2.49 (1H, m), 2.38 (1H, m), 1.72 (9H, m), 1.50 (9H, s), 1.30 (4H, m), 1.22 (6H, d, J=7.0Hz), 0.90 (2H, m). LC/MS: pureza 98%, *m/z* 489 [M+H]⁺

Ejemplo 32 - *N*-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)metil]-2-metil-L-alaninato de ciclopentilo

Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de α,α-dimetilglicina. ¹H RMN (300 MHz, d3-MeOD) 9.50 (1H, s), 9.45 (1H, m), 8.91 (1H, m), 6.82 (1H, s), 6.35 (1H, s), 5.21 (1H, m), 3.23 (1H, m), 3.07 (2H, m), 2.85 (4H, m), 1.75 (8H, m), 1.48 (6H, s), 1.17 (2H, m), 1.11 (6H, d, J=6.9Hz). LC/MS: pureza 90%, *m/z* 447 [M+H][†]

Ejemplo 33 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)metil]-L-serinato de ciclopentilo

Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de L-O-bencil-serina. ¹H RMN (300 MHz, d3-MeOD) 6.97 (1H, s), 6.34 (1H, s), 5.34 (1H, m), 4.25 (2H, m), 4.14 (1H, m), 4.08 (2H, m), 3.18 (1H, penteto, J=6.9Hz), 3.03 (4H, m), 2.09 (1H, m), 1.80 (10H, m), 1.43 (2H, m), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 95%, *m/z* 447 [M+H]⁺

Ejemplo 34 - *O-terc*-butil-*N*-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-serinato de ciclopentilo

Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de L-O-*terc*-butil serina. ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.33 (1H, s), 5.22 (1H, m), 4.18 (2H, m), 3.64 (2H, m), 3.37 (1H, m), 3.32 (2H, m), 3.18 (1H, penteto, J=6.9Hz), 2.96 (2H, m), 2.51 (2H, m), 1.77 (9H, m), 1.25 (2H, m), 1.18 (15H, m). LC/MS: pureza 98%, *m/z* 505 [M+H]⁺

Ejemplo 35 - O-terc-butil-N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)metil]-L-serinato de terc-butilo

40 Preparado a partir del Producto Intermedio C y éster *terc*-butílico de L-O-*terc*-butil serina. ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.33 (1H, s), 4.19 (2H, m), 3.60 (2H, m), 3.18 (1H, penteto, J=6.9Hz), 2.95 (3H, m), 2.51 (2H, m), 1.81 (3H, m), 1.50 (9H, s), 1.27 (2H, m), 1.19 (15H, m). LC/MS: pureza 98%, *m/z* 493 [M+H]⁺

Ejemplo 36 - (2,S)-{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)metil]amino}(fenil)etanoato de ciclopentilo

45 Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de L-fenilglicina. ¹H RMN (300 MHz, d3-MeOD) 7.36 (5H, m), 6.95 (1H, s), 6.33 (1H, s), 5.17 (1H, m), 4.33 (1H, s), 4.15 (2H, m), 3.18 (1H, penteto,

J=6.9Hz), 2.94 (2H, t, J=11.1Hz), 2.40 (2H, m), 1.88-1.40 (11H, m), 1.17 (6H, d, J=6.9Hz), 0.91 (2H, m). LC/MS: pureza 98%, m/z 495 [M+H]⁺

Ejemplo 37 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)metil]-L-serinato de terc-butilo

Preparado a partir del Producto Intermedio C y tosilato del éster ciclopentílico de L-O-*terc*-butil serina. ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.33 (1H, s), 4.29 (2H, m), 3.74 (3H, m), 3.25 (1H, t, J=5.1Hz), 3.20 (1H, penteto, J=6.6Hz), 2.96 (2H, t, J=12.6Hz), 2.55 (1H, m), 2.49 (1H, m), 1.89 (4H, m), 1.50 (9H, s), 1.18 (6H, d, J=6.6Hz). LC/MS: pureza 98%, *m/z* 437 [M+H]⁺

Preparación del Ejemplo 38 - *N*-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-leucinato de ciclopentilo

Ejemplo 38

Etapa 1 - *N*-[2-(1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil] carbonil}piperidin-4-il)etil]-L-leucinato de ciclopentilo

A una solución del Producto Intermedio D (0,245 g, 0,5 mmol) en dicloroetano (10 mL), se añadió tosilato del éster ciclopentílico de L-leucina (0,398 g, 1,07 mmol) y triacetoxiborohidruro de sodio (0,417 g, 1,97 mmol). La mezcla se agitó durante una hora, y a continuación se cargó directamente en una columna de gel de sílice y se eluyó con acetato de etilo:heptano en una relación 7:3 para obtener el producto deseado (0,250 g, rendimiento 75%). LC/MS: m/z 667.25 [M+H]⁺

Etapa 2 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-L-leucinato de ciclopentilo (Ejemplo 38)

A una solución del producto de la Etapa 1 (0,250 g, 0,37 mmol) en acetato de etilo (10 mL), se añadió paladio sobre carbono (0,238 g, 10%, 0,22 mmol, 60%). La cuba de reacción se vació y se rellenó con hidrógeno dos veces. La mezcla se agitó durante 1 hora, y a continuación se purgó con nitrógeno. Se añadió Celite, y la mezcla se filtró a través de Celite, lavando con acetato de etilo adicional (100 mL). El filtrado se concentró para obtener el producto deseado (77,1 mg, rendimiento 42%). ¹H RMN (300 MHz, CDCl3) 7.03 (1H, s), 6.42 (1H, s), 5.25 (1H, t, J=5.8 Hz), 4.30 (2H, d, J=13.3 Hz), 3.31 (1H, t, J=7.3 Hz), 3.16 (1H, sep, 6.9 Hz), 2.92 (2H, t, J=12.8 Hz), 2.53-2.74 (2H, m), 1.43-1.97 (17H, m), 1.20 (6H, d, J=6.9 Hz), 0.94 (3H, d, J=6.5 Hz), 0.92 (3H, d, J=6.5 Hz)

LC/MS: pureza 98%, m/z 489.25 [M+H]⁺

5

10

15

20

25

Los siguientes compuestos se prepararon de forma similar al Ejemplo 38

30 Ejemplo 39 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-L-alaninato de ciclopentilo

Preparado a partir del Producto Intermedio D y tosilato del éster ciclopentílico de L-alanina. ^{1}H RMN (300MHz, d3-MeOD) 6.96 (1H, s), 6.34 (1H, s), 5.34 (1H, m), 4.17 (2H, m), 4.07 (1H, m), 3.19 (3H, m), 2.98 (2H, t, J=12Hz), 1.96 (2H, m), 1.93 (11H, m), 1.56 (3H, d, J=7.2 Hz), 1.29 (2H, m), 1.18 (6H, d, J=6.9 Hz). LC/MS: pureza >98%, m/z 447.25 $[M+H]^{+}$

35 Ejemplo 40 - *N*-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-L-fenilalaninato de ciclopentilo

Preparado a partir del Producto Intermedio D y tosilato del éster ciclopentílico de L-fenilalanina. ¹H RMN (300 MHz, d3-MeOD) 7.44-7.17 (5H, m), 6.95 (1H, s), 6.34 (1H, s), 5.17, (1H, m), 4.35-4.12 (4H, m), 3.46-3.35(1H, m), 3.27-2.85(6H, m), 1.93-1.21, (13H, m), 1.19 (6H, d, J=7.0Hz). LC/MS: pureza 98.4%, *m/z* 523 [M+H]⁺

Ejemplo 41- *N*-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-L-fenilalaninato de *terc*-butilo

5

45

Preparado a partir del Producto Intermedio D y éster *terc-butílico* de L-fenilalanina. ¹H RMN (300 MHz, d3-MeOD) 7.46-7.21 (5H, m), 6.95 (1H, s), 6.34 (1H, s),4.32-4.09 (3H, m), 3.27-2.88 (6H, m), 1.84-1.63 (5H, m),1.34 (9H, s), 1.19 (6H, d, J=7.0Hz). LC/MS: pureza 97.5%, *m/z* 511 [M+H][†]

Ejemplo 42 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-L-leucinato de terc-butilo

Preparado a partir del Producto Intermedio D y éster *terc*-butílico de L-leucina. ¹H RMN (300 MHz, d3-MeOD) 6.95 (1H, s), 6.33 (1H, s), 4.17 (2H, m), 3.33 (1H, m), 3.28 (1H, m), 2.95 (2H, t, J=12.6Hz), 2.65 (2H, m), 1.74 (4H, m), 1.57 (11H, m), 1.44 (4H, m), 1.20 (6H, d, J=9.0Hz), 0.97 (6H, m). LC/MS: pureza 96%, *m/z* 477 [M+H][†]

Ejemplo 43 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-L-alaninato de terc-butilo

Preparado a partir del Producto Intermedio D y éster *terc-butílico* de L-alanina. ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.33 (1H, s), 4.17 (2H, m), 3.19 (3H, m), 2.95 (2H, t, J=12.0Hz), 2.60 (2H, m), 1.78 (4H, m), 1.50 (9H, m), 1.27 (3H, d, J=6.9Hz), 1.23 (2H, m), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 98%, *m/z* 435 [M+H]⁺

Ejemplo 44 - *N*-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-2-metilalaninato de ciclopentilo

Preparado a partir del Producto Intermedio D y éster ciclopentílico de α,α-dimetilglicina. 1 H RMN (300 MHz, d3-20 MeOD) 6.96 (1H, s), 6.34 (1H, s), 5.26 - 5.39 (1 H, m), 4.29 (2H, br. s.), 3.28 (1H, br. s.), 3.18 (1H, dt, J=13.6, 6.8 Hz), 3.03 - 3.12 (2H, m), 2.98 (2H, t, J=12.4 Hz), 1.64 - 2.01 (11H, m), 1.59 (6H, s), 1.24 - 1.38 (3H, m), 1.19 (6H, d, J=7.0 Hz) LC/MS: pureza 97%, m/z 461 [M+H] $^{+}$

Ejemplo 45 - *O-terc*-butil-*N*-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serinato de ciclopentilo

25 Preparado a partir del Producto Intermedio D y tosilato del éster ciclopentílico de L-O-*terc*-butilserina. ¹H RMN (300 MHz, CDCl₃) 7.04 (1H, d, J=14.3 Hz), 6.45 (1H, d, J=11 Hz), 5.28 (1H, t, J=5.64 Hz), 4.41-4.21 (2H, m), 3.84-3.56 (2H, m), 3.16 (1H, septeto, J=6.78 Hz), 3.03-2.73 (4H, m), 2.07 (1H, d, J=9.1 Hz), 1.95-1.52 (12H, m), 1.40-1.21 (6H, m), 1.17 (9H, s). LC/MS: pureza 98%, *m/z* 519.25 [M+H]⁺

Ejemplo 46 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-L-valinato de ciclopentilo

Preparado a partir del Producto Intermedio D y tosilato del éster ciclopentílico de L-valina. ¹H RMN (300 MHz, d3-MeOD) 6.95 (1H, s), 6.34 (1H, s), 5.31-5.44 (1H, m), 4.08-4.35 (2H, m), 3.94 (1H, d, J=3.8 Hz), 3.05-3.25 (3H, m), 2.96 (2H, t, J=12.5 Hz), 2.26-2.42 (1H, m), 1.89-2.08 (3H, m), 1.61-1.88 (8H, m), 1.13-1.24 (12H, m) and 1.05 (6H, d, J=6.8 Hz) LC/MS: pureza 85%, *m/z* 475 [M+H][†]

Ejemplo 47 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-L-serinato de ciclopentilo

35 Preparado a partir del Producto Intermedio D y tosilato del éster ciclopentílico de L-O-bencil-serina. ¹H RMN (300 MHz, d3-MeOD): 6.96 (1H, s), 6.35 (1H, s), 5.33-5.24 (1H, m), 4.63-4.46 (1H, m), 4.27-4.13 (1H, m),3.94-3.88 (1H, m), 3.83-3.77 (1H, m), 3.73 (1H, t, J=4.1Hz), 3.18 (1H, septeto, J=6.9 Hz), 3.05-2.82 (4H, m), 1.85-1.52 (15H, m), 1.19 (6H, d, J=6.9 Hz). LC/MS: pureza 96%, *m/z* 463.25 [M+H]⁺

Ejemplo 48 - (2S)-ciclohexil{[2-(1-{(2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}etanoato de ciclopentilo

Preparado a partir del Producto Intermedio D y tosilato del éster ciclopentílico de L-ciclohexilglicina. 1 H RMN: (300 MHz, d3-MeOD) 6.89 (1H, s), 6.28 (1H, s), 5.31 (1H, t, J=5.7 Hz), 4.14 (2H, d, J=12.3 Hz), 3.83 (1H, d ,J=3.8 Hz), 3.27 (2H, quin, J=1.5 Hz), 3.13 (1H, quin, J=6.8 Hz), 2.97 - 3.08 (2H, m), 2.90 (2H, t, J=12.3 Hz), 1.84 - 2.00 (3H, m), 1.56 - 1.84 (15H, m), 1.16 - 1.39 (5H,m), 1.14 (6H, d, J=7.0 Hz), 0.9 - 1.07 (1H, m). LC/MS: pureza 95%, m/z 515.25 $[M+H]^{+}$

Ejemplo 49 - (2S)-ciclohexil{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}etanoato de *terc*-butilo

Preparado a partir del Producto Intermedio D y éster *terc*-butílico de L-ciclohexilglicina. ¹H RMN: (300 MHz, d3-MeOD) 6.88 (1H, s), 6.35 (1H, s), 3.94-4.18 (2H, m), 3.58-3.72 (2H, m), 2.80-3.16(5H,m), 1.54-1.96 (11H, m), 1.46 (9H, s), 1.13-1.32 (4H, m), 1.09 (6H, d, J=6.8 Hz), 0.87-1.04 (2H, m), LC/MS: pureza 95%, m/z 503 [M+H]⁺

5

10

 $\label{lem:lemond} \mbox{Ejemplo 50 - (2S)-{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}] piperidin-4-il)etil]amino} (fenil)etanoato de $\it tercbutilo $\it tercb$

Preparado a partir del producto Intermedio D y éster *terc*-butílico de L-fenilglicina. ¹H RMN (300MHz, d3-MeOD): (4:7 mezcla de rotámeros) 7.43-7.28 (5H, m), 6.94 (1H, s), 6.32 (1H, s), 4.34 (1H, br s), 3.18 (1H, septeto, J=6.9 Hz), 2.93 (2H, t, J=13.1 Hz), 2.69-2.54

(2H, m), 1.79-1.46 (9H, m), 1.41 (Rotámero A, 9H, s), 1.40 (Rotámero B, 9H, s), 1.18 (6H, d, J=6.9 Hz). LC/MS: pureza 100%, m/z 497.25 [M+H]⁺

Ejemplo 51- (2S)-{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)etil]amino}(fenil)etanoato de ciclopentilo

Preparado a partir del Producto Intermedio D y tosilato del éster ciclopentílico de L-fenilglicina. ¹H RMN (300MHz, d3-MeOD), 7.45-7.25 (5H, m), 6.94 (1H, s), 6.32 (1H, s), 5.24-5.11 (2H, m), 4.42 (1H, s), 4.23-409 (1H, m), 3.18 (1H, septeto, J=6.9 Hz), 3.01-2.88 (2H, m), 2.71-2.53 (2H, m), 1.81-1.53 (15H, m), 1.18 (6H, d, J=7.0 Hz). LC/MS: pureza 100%, *m/z* 509.25 [M+H]⁺

Ejemplo 52 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)etil]-L-serinato de terc-butilo

20 Preparado a partir del Producto Intermedio D y éster *terc*-butílico de L-O-bencilserina. ¹H RMN (300MHz, d3-MeOD) 6.98 (1H, s); 6.35 (1H, s); 4.53-4.47 (1H, m); 4.32-4.15 (2H, m); 3.18 (1H, septeto, J=6.9 Hz); 3.10-2.88 (2H, m); 2.40-2.24 (2H, m); 1.94-1.76 (2H, m); 1.61-1.55 (2H, m); 1.50 (9H, s); 1.47-1.30 (5H, m); 1.18 (6H, d, J=6.9 Hz) LC/MS: pureza 99%, *m/z* 541.25 [M+H]⁺

Ejemplo 53 - O-*terc*-butil-*N*-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)etil]-L-serinato de *terc*-butilo

Preparado a partir del Producto Intermedio D y éster terc-butílico de L-terc-butil serina. ¹H RMN (300 MHz, d3-MeOD): 6.96 (1H, s); 6.34 (1H, s); 4.56-4.40 (1H, m); 4.28-4.13 (2H, m); 3.69-3.60 (1H, m); 3.18 (1H, septeto, J=6.9 Hz); 2.95 (2H, t, J=11.7 Hz); 2.81-2.61 (1H, m); 1.81-1.72 (2H, m); 1.50 (9H, s); 1.32-1.23 (8H, m); 1.20 (9H, s); 1.18 (6H, d, J=6.9 Hz). LC/MS: pureza 97%, m/z 507.25 [M+H]^{\dagger}

Preparación del Ejemplo 54 - *N*-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]-L-leucinato de ciclopentilo

Eiemplo 54

Etapa 1 - *N*-[(2-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]-2,3-dihidro-1H-isoindol-5-il)metil]-L-leucinato de ciclopentilo

A una solución del Producto Intermedio E (0,120 g, 0,24 mmol) en dicloroetano (3 mL), se añadió tosilato del éster ciclopentílico de L-leucina (0,120 g, 0,32 mmol) y triacetoxiborohidruro de sodio (0,152 g, 0,71 mmol). La mezcla se agitó a temperatura ambiente durante 90 minutos, y a continuación se vertió en una mezcla de diclorometano (50 mL)/cloruro de amonio saturado (25 mL). El producto se extrajo con diclorometano (2 veces 50 mL), y los extractos combinados se secaron (MgSO₄), se concentraron y se purificaron mediante cromatografía flash en columna (SiO₂, diclorometano:metanol en una relación 96:4) para obtener el producto deseado (0,082 g, rendimiento 50%). LC/MS: *m/z* 506.25 [M+H]⁺

10 Etapa 2 - *N*-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]-L-leucinato de ciclopentilo (Ejemplo 54)

A una solución del producto de la Etapa 1 (0,082 g, 0,12 mmol) en acetato de etilo (5 mL), se añadió carbonato de potasio (0,302 g, 2,18 mmol) y paladio sobre carbono (0,108 g, 0,10 mmol). La cuba reacción se vació y rellenó con hidrógeno dos veces y a continuación se agitó durante 2 horas. La cuba de reacción a continuación se lavó con nitrógeno, se filtró a través de Celite, se lavó con acetato de etilo adicional (50 mL). Las orgánicas se concentraron para obtener el producto deseado (0,055 g, rendimiento 91%). ¹H RMN (300 MHz, CDCl₃) 7.29-7.42 (2H, m), 7.11-7.23 (3H, m), 5.13-5.21 (1H, m), 4.88-5.04 (4H, m), 3.73 (1H, d, J=12.6 Hz), 3.55 (1H, d, J=12.7 Hz), 3.08-3.22 (2H, m), 1.44-1.89 (10H, m), 1.35-1.44 (2H, m), 1.18 (6H, d, J=6.8 Hz), 0.84 (3H, dd, J=1.1, 6.6 Hz), 0.78 (3H, dd, J=1.6, 6.5 Hz). LC/MS: pureza >98%, *m/z* 509.25 [M+H]⁺

20 Los siguientes compuestos se prepararon de forma similar al Ejemplo 54

15

25

30

35

Ejemplo 55 - *N*-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]-2-metilalaninato de ciclopentilo

Preparado a partir del Producto Intermedio E y éster ciclopentílico de α,α-dimetilglicina. 1 H RMN (300 MHz, CDCl₃) 7.43 (1H, s), 7.31 (1H, s), 5.23-5.31 (1H, m), 4.97-5.11 (6H, m), 3.66 (2H, br s), 3.51 (1H, s), 3.15-3.26 (1H, m), 1.50-2.07 (9H, m), 1.39 (6H, s), 1.30 (3H, s), 1.27 (3H, s). LC/MS: pureza >98%, m/z 481.25 [M+H]⁺

Ejemplo 56 - *N*-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]-L-alaninato de *terc*-butilo

Preparado a partir del Producto Intermedio E y éster *terc*-butílico de L-alanina. ¹H RMN (300 MHz, d6-DMSO) 8.44 (1H, br s), 4.99 (2H, quin, J=6.4 Hz), 4.02 (2H, m), 1.39 (6H, d, J=8.7 Hz), 1.21-1.27 (12H, m). LC/MS: pureza >98%, *m/z* 455.25 [M+H]⁺

Ejemplo 57 - *N*-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]-L-alaninato de etilo

Preparado a partir del Producto Intermedio E y éster etílico L-alanina. ^{1}H RMN (300 MHz, CDCl₃) 7.31 (1H, s), 7.11-7.22 (3H, m), 6.02 (1H, s), 4.78-5.03 (4H, m), 4.16 (2H, q, J=7.1 Hz), 3.67 (2H, ABq, J=12.4 Hz), 3.37 (1H, q, J=7.0 Hz), 3.12 (1H, sep, J=6.9 Hz), 1.28 (3H, d, J=7.0 Hz), 1.23 (3H, t, J=8.0 Hz), 1.18 (3H, d, J=6.9 Hz), 1.17 (3H, d, J=7.5 Hz). LC/MS: pureza >98%, m/z 427.25 [M+H] $^{+}$

Ejemplo 58 - N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]-L-alaninato de propan-2-ilo

Preparado a partir del Producto Intermedio E y éster isopropílico de L-alanina. ¹H RMN (300 MHz, CDCl₃) 11.49 (1H, 40 s), 7.46 (1H, s), 7.15-7.30 (3H, m), 6.30 (1H, s), 4.99-5.16 (4H, m), 3.76 (2H, ABq, J=12.6 Hz), 3.36 (1H, q, J=7.1 Hz), 3.20 (1H, sep, J=6.9 Hz), 1.34 (3H, d, J=7.1 Hz), 1.25-1.33 (9H, m). LC/MS: pureza >98%, *m/z* 441.25 [M+H]⁺

Ejemplo 59 - *N*-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]-L-alaninato de ciclopentilo

Preparado a partir del Producto Intermedio E y éster ciclopentílico de L-alanina. ¹H RMN (300 MHz, CDCl₃) 7.20-7.35 (4H, m), 6.20 (1H, s), 5.35 (1H, t, J=5.5 Hz), 4.70-5.00 (4H, m), 4.15 (2H, ABq, J=13.3 Hz), 3.71-3.80 (1H, m), 3.75 (1H, q, J=7.0 Hz), 3.18 (1H, sep, J=6.1 Hz), 1.57-2.03 (8H, m), 1.26 (3H, d, J=7.0 Hz), 1.25 (3H, d, J=7.0 Hz). LC/MS: pureza >98%, *m/z* 467.25 [M+H]⁺

Ejemplo 60 - 1-{[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]amino}ciclopentanocarboxilato de ciclopentilo

Preparado a partir del Producto Intermedio E y éster ciclopentílico de cicloleucina. ¹H RMN (300 MHz, d6-DMSO) 10.08 (1H, br s), 9.66 (1H, br s), 9.38-9.54 (2H, m), 7.32-7.55 (3H, m), 7.05 (1H, s), 6.41 (1H, s), 5.20-5.29 (1H, m), 4.82 (4H, m), 4.14 (2H, m), 3.10 (1H, sep, J=6.8 Hz), 1.55-2.29 (16H, m), 1.14 (6H, d, J=6.9 Hz). LC/MS: pureza >98%, m/z 507.25 [M+H]⁺

5

10

15

20

25

30

35

Preparación del Ejemplo 61 - *N*-[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)etil]-L-leucinato de ciclopentilo

Ejemplo 61

Etapa 1 - *N*-[2-(2-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)etil]-L-leucinato de ciclopentilo

A una solución del Producto Intermedio F (0,165~g, 0,32~mmol) en dicloroetano (10~mL), se añadió tosilato del éster ciclopentílico de L-leucina (0,197~g, 0,52~mmol) y triacetoxiborohidruro de sodio (0,151~g, 0,71~mmol). La mezcla se agitó durante 90 minutos, a continuación se extinguió mediante adición de cloruro de amonio saturado (20~mL). El producto se extrajo con diclorometano (3~veces~100~mL) y los extractos orgánicos combinados se secaron $(MgSO_4)$, se concentraron y se purificaron mediante cromatografía flash en columna $(SiO_2, acetato de etilo)$ para obtener el producto deseado (0,089~g, rendimiento~53%). LC/MS: $m/z~701.25~[M+H]^+$

Etapa 2 - N-[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)etil]-L-leucinato de ciclopentilo (Ejemplo 61)

A una solución del producto de la Etapa 1 (0,089 g, 0,16 mmol) en acetato de etilo (2 mL), se añadió carbonato de potasio (0,215 g, 1,55 mmol) y paladio sobre carbono (0,079 g, 10%, 0,07 mmol, 46%). La cuba de reacción se vació y se rellenó con hidrógeno dos veces. La mezcla se agitó durante 18 horas, y a continuación se lavó con nitrógeno y se filtró a través de Celite, se lavó con acetato de etilo y se concentró para obtener el producto deseado (0,035 g, rendimiento 41%). ¹H RMN (300 MHz, d6-DMSO) 7.43 (1H, s), 7.05-7.20 (3H, m), 6.33 (1H, s), 5.23 (1H, t, J=5.4 Hz), 4.95-5.11 (4H, m), 3.21-3.28 (2H, m), 2.45-2.81 (3H, m), 1.56-1.94 (11H, m), 1.48 (2H, t, J=6.1 Hz), 1.27 (6H, d, J=6.8 Hz), 0.91 (6H, t, J=7.2 Hz). LC/MS: pureza >98%, *m/z* 523.25 [M+H]⁺

Los siguientes compuestos se prepararon de forma similar al Ejemplo 61

Ejemplo 62 - *N*-[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)etil]-L-leucinato de *terc*-butilo

Preparado a partir del Producto Intermedio F y éster *terc*-butílico de L-leucina. 1 H RMN (300 MHz, d3-MeOD) 7.31-7.12 (4H, m), 6.38 (1H, s), 3.24-3.04 (2H, m), 2.90-2.69 (4H, m), 1.76-1.56 (1H, m), 1.45 (9H, s), 1.23 (6H, d, J=7.0 Hz), 0.93 (6H, dd, J=10.9, 6.6 Hz). LC/MS: pureza >98%, m/z 511 [M+H] $^{+}$

Ejemplo 63 - 1-{[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}-2,3-dihidro-1*H*-isoindol-5-il)etil]amino}ciclopentanocarboxilato de ciclopentilo

Preparado a partir del Producto Intermedio F y éster ciclopentílico de cicloleucina. 1 H RMN (300 MHz, d3-MeOD) 6.99-7.20 (4H, m), 6.26 (1H, s) 5.01 (1H, t, J=5.7 Hz), 3.38-3.67 (3H, m), 3.09 (1H, sep, J=6.8 Hz), 2.57-2.75 (4H, m), 1.37-2.15 (16H, m), 1.10 (6H, d, J=6.9 Hz) LC/MS: pureza >98%, m/z 521.25 [M+H] †

Preparación del Ejemplo 64 - *N*-[3-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)propil]-L-leucinato de ciclopentilo

Ejemplo 64

5 Etapa 1 - *N*-[3-(2-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)propil]-L-leucinato de ciclopentilo

A una solución del Producto Intermedio G (0,160 g, 0,3 mmol) en dicloroetano (5 mL), se añadió tosilato del éster ciclopentílico de L-leucina (0,163 g, 0,44 mmol) y triacetoxiborohidruro de sodio (0,187 g, 0,88 mmol). La mezcla se agitó durante 90 minutos, a continuación se extinguió mediante adición de cloruro de amonio saturado (20 mL). El producto se extrajo con diclorometano (3 veces 100 mL), y los extractos orgánicos combinados se secaron (MgSO₄), se concentraron y se purificaron mediante cromatografía flash en columna (SiO₂, acetato de etilo) para obtener el producto deseado (0,077 g, rendimiento 48%). LC/MS: *m/z* 715.25 [M+H]⁺

Etapa 2 - *N*-[3-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)propil]-L-leucinato de ciclopentilo (Ejemplo 64)

A una solución del producto de la Etapa 1 (0,070 g, 0,14 mmol) en acetato de etilo (2 mL), se añadió carbonato de potasio (0,208 g, 1,53 mmol) y paladio sobre carbono (0,069 g, 10%, 0,07 mmol, 50%). La cuba de reacción se vació y se rellenó con hidrógeno dos veces. La mezcla se agitó durante 18 horas y a continuación se lavó con nitrógeno y se filtró a través de Celite, se lavó con acetato de etilo y se concentró para obtener el producto deseado (0,054 g, rendimiento 71%). ¹H RMN (300 MHz, d6-DMSO) 7.42 (1H, s), 7.10-7.28 (3H, m), 6.27 (1H, s), 5.22 (1H, t, J=5.7 Hz), 4.94-5.12 (4H, m), 3.20-3.35 (1H, m), 2.74-2.93 (4H, m), 1.43-1.96 (11H, m), 1.26 (6H, d, J=6.8 Hz), 0.91 (3H, d, J=6.5 Hz), 0.88 (3H, d, J=6.5 Hz). LC/MS: pureza >98%, m/z 537.25 [M+H]⁺

Los siguientes compuestos se prepararon de forma similar al Ejemplo 64

Ejemplo 65 - 1-{[3-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}-2,3-dihidro-1*H*-isoindol-5-il)propil]amino}ciclopentanocarboxilato de ciclopentilo

25 Preparado a partir del Producto Intermedio G y éster ciclopentílico de cicloleucina. ¹H RMN (300 MHz, d3-MeOD) 7.35-7.14 (5H, m), 5.35-5.22 (1H, m), 3.25-3.15, (1H, m), 3.00 (2H, t), 2.78 (2H, t), 2.37-2.20 (2H, m), 2.11-1.80 (10H, m), 1.69 (6H, br. s.), 1.22 (6H, d, J=6.8 Hz) LC/MS: pureza >98%, *m/z* 535 [M+H][†]

Preparación del Ejemplo 66- *N*-(3-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)-L-leucinato de ciclopentilo

30

10

Ejemplo 66

Etapa 1- N-{3-[(metilamino)metil)bencil}-L-leucinato de ciclopentilo

A una solución de 3-(bromometil)-benzaldehído (0,513 g, 2,57 mmol) en dicloroetano (10 mL), se añadió tosilato del éster ciclopentílico de L-leucina (1,29 g, 3,46 mmol) y triacetoxiborohidruro (1,37 g, 6,46 mmol). La mezcla se agitó durante 30 minutos a temperatura ambiente y a continuación se vertió en acetato de etilo (200 mL). Los extractos orgánicos se lavaron con cloruro de amonio saturado (2 veces 50 mL) y agua (50 mL). Los extractos orgánicos se secaron a continuación (MgSO₄) y se concentraron. El residuo se disolvió en etanol (30 mL), y se añadió clorhidrato de metilamina (4,17 g, 61,7 mmol) seguido de bicarbonato de sodio (4,32 g, 51 mmol). La mezcla se agitó a temperatura ambiente durante 18 horas, a continuación se concentró bajo vacío, se cargó directamente en una columna de gel de sílice y se eluyó con diclorometano:metanol en una relación de 95:5 para obtener el producto deseado (0,130 g, rendimiento 15%). LC/MS: m/z 333.25 [M+H]⁺

A una solución del producto de la Etapa 1 (0,130 g, 0,39 mmol) en diclorometano (5 mL) se añadió trietilamina (0,20 mL, 1,43 mmol), el Producto Intermedio A (0,100 g, 0,26 mmol) y HATU (0,190 g, 0,50 mmol). La solución se agitó durante 1 hora a temperatura ambiente, a continuación se cargó directamente en una columna de gel de sílice y se eluyó con diclorometano:metanol para obtener el producto deseado (0,094 g, rendimiento 33%). LC/MS: *m*/z 689.25 [M+H]⁺

20 Etapa 3 - N-(3-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}bencil)-Lleucinato de ciclopentilo

(Ejemplo 66)

10

25

30

A una solución del producto de la Etapa 2 (0,094 g, 0,14 mmol) se añadió carbonato de potasio (0,268 g, 1,94 mmol) y paladio sobre carbono (0,095 g, 10% sobre carbono, 0,09 mmol). La cuba de reacción se vació y se rellenó con hidrógeno dos veces. La mezcla se agitó a temperatura ambiente durante la noche, a continuación el matraz se lavó con nitrógeno y se añadió Celite. La mezcla se filtró a través de un tapón de Celite y el filtrado concentrado se purificó mediante HPLC de fase inversa para obtener el producto deseado (0,001 g, rendimiento 3%). ¹H RMN (300 MHz, d6-DMSO) 9.62 (1H, s), 9.50 (2H, br s), 7.27-7.50 (4H, m), 6.90 (1H, s), 6.37 (1H, s), 5.20 (1H, t, J=5.25 Hz), 4.57 (2H, s), 4.05-4.27 (2H, m), 3.88-4.03 (1H, m), 3.05 (1H, sep, J=6.9 Hz), 2.82 (3H, s), 1.54-1.92 (11H, m), 1.07 (6H, d, J=7.0 Hz), 0.90 (6H, d, J=6.0 Hz). LC/MS: pureza >98%, m/z 511.25 [M+H]⁺

$\label{lem:lemplo 67 - N-(3-{[[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil} (metil) amino] metil} bencil) - 2-metilalaninato de ciclopentilo \\$

Ejemplo 67

15

25

30

35

Etapa 1 - N-[3-(bromometil)bencil]-2-metilalaninato de ciclopentilo

A una solución de 3-(bromometil)-benzaldehído (0,503 g, 2,52 mmol) en dicloroetano (20 mL) se añadió éster cilocpentílico de α,α-dimetilglicina (0,893 g, 5,2 mmol) y triacetoxiborohiduro de sodio (1,47 g, 6,9 mmol). La mezcla se agitó a temperatura ambiente durante 3 horas, a continuación se vertió en acetato de etilo (200 mL) y se lavó con una solución saturada de cloruro de amonio (3 veces 50 mL). La fracción orgánica se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, heptano:acetato de etilo en una relación 7:3) para obtener el producto deseado (0,350 g, rendimiento 39%). LC/MS: *m/z* 354/356 [M+H][†]

10 Etapa 2 - 2-metil-N-{3-[(metilamino)metil]bencil}alaninato de ciclopentilo

Al producto de la Etapa 1 (0,350 g, 1,01 mmol) se añadió metilamina en metanol (25 mL, 8M de solución, 200 mmol). La solución se agitó a temperatura ambiente durante 24 horas, a continuación se vertió en acetato de etilo (350 mL) y se lavó con agua (4 veces 50 mL). La fracción orgánica se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, diclorometano:metanol en una relación 9:1, a continuación diclorometano:metanol en una relación 4:1) para obtener el producto deseado (0,096 g, rendimiento 31%). LC/MS: m/z 305.25 [M+H]⁺

Etapa 3 - N-(3-{[{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}(metil)amino]metil}bencil)-2-metilalaninato de ciclopentilo

A una solución del producto de la Etapa 2 (0,096 g, 0,31 mmol) en diclorometano (5 mL) se añadió N,Ndiisopropiletilamina (1 mL, 5,7 mmol), el Producto Intermedio A (0,118 g, 0,31 mmol) y HATU (0,180 g, 0,47 mmol). La solución se agitó durante 1 hora a temperatura ambiente, a continuación se cargó directamente en una columna de gel de sílice y se eluyó con heptano:acetato de etilo en una relación 1:1 para obtener el producto deseado (0,167 g, rendimiento 81%). LC/MS: m/z 661.25 [M+H]⁺

Etapa 4 - N-(3-{[[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}(metil)amino]metil}bencil)-2-etilalaninato de ciclopentilo (Ejemplo 67)

A una solución del producto de la Etapa 3 (0,096 g, 0,14 mmol) en acetato de etilo (10 mL), se añadió carbonato de potasio (0,195 g, 1,4 mmol) y paladio sobre carbono (0,202 g, 10%, 0,19 mmol). La cuba de reacción se vació y se rellenó con hidrógeno dos veces. La mezcla se agitó a temperatura ambiente durante 24 horas, y a continuación se lavó con nitrógeno. Se añadió Celite y la mezcla se filtró a través de un tapón de Celite. El filtrado se concentró y se purificó mediante cromatografía flash en columna (SiO₂, acetato de etilo:heptano en una relación 7:3) para obtener el producto deseado (0,009 g, rendimiento 14%). ¹H RMN (300 MHz, d3-MeOD) 7.19-7.40 (4H, m), 7.02 (1H, s), 6.35 (1H, s), 5.20 (1H, m), 4.66 (2H, m), 3.63 (2H, s), 3.16 (1H, sep, J=6.9 Hz), 2.96 (3H, s), 1.56-1.98 (8H, m), 1.35 (6H, s), 1.12 (6H, d, J=6.9 Hz). LC/MS: pureza >98%, m/z 483.25 [M+H]⁺

Ejemplo 68 - 1-[(3-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}bencil) amino]ciclopentanocarboxilato de ciclopentilo

Ejemplo 68

Etapa 1- 1-{[3-(bromometil)bencil]amino}ciclopentanocarboxilato de ciclopentilo

A una solución de 3-(bromometil)-benzaldehído (0,467 g, 2,44 mmol) en diclorometano (20 mL) se añadió éster ciclopentílico de cicloleucina (0,802 g, 4,06 mmol) y triacetoxiborohidruro de sodio (1,18 g, 5,56 mmol). La mezcla se agitó a temperatura ambiente durante 3 horas, a continuación se vertió en acetato de etilo (200 mL) y se lavó con una solución de cloruro de amonio saturado (3 veces 50 mL). La fracción orgánica se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, heptano:acetato de etilo en una relación 7:3) para obtener el producto deseado (0,568 g, rendimiento 61%). LC/MS: *m/z* 380/382 [M+H]⁺

10 Etapa 2 - 1-({3-[(metilamino)metil]bencil}amino)ciclopentano carboxilato de ciclopentilo

15

25

30

Al producto de la Etapa 1 (0,568 g, 1,49 mmol) se añadió metilamina en metanol (25 mL, 8M de solución, 200 mmol). La solución se agitó a temperatura ambiente durante 24 horas, a continuación se vertió en acetato de etilo (350 mL) y se lavó con agua (4 veces 50 mL). La fracción orgánica se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, diclorometano:metanol en una relación 9:1, a continuación diclorometano:metanol en una relación 4:1) para obtener el producto deseado (0,173 g, rendimiento 17%). LC/MS: m/z 331.25 [M+H][†]

Etapa 3 - 1-[(3-{[[[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil] carbonil} (metil)amino] metil} bencil)amino] ciclopentanocarboxilato de ciclopentilo

A una solución del producto de la Etapa 2 (0,173 g, 0,45 mmol) en diclorometano (5 mL) se añadió N,Ndiisopropiletilamina (1 mL, 5,7 mmol), el Producto Intermedio A (0,142 g, 0,38 mmol) y HATU (0,206 g, 0,54 mmol). La solución se agitó durante 1 hora a temperatura ambiente, a continuación se cargó directamente en una columna de gel de sílice y se eluyó con heptano:acetato de etilo en una relación 1:1 para obtener el producto deseado (0,243 g, rendimiento 78%). LC/MS: m/z 687.25 [M+H]⁺

Etapa 4 - 1-[(3-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}bencil)amino] ciclopentanocarboxilato de ciclopentilo (Ejemplo 68)

A una solución del producto de la Etapa 3 (0,243 g, 0,35 mmol) en acetato de etilo (10 mL), se añadió carbonato de potasio (0,353 g, 2,55 mmol) y paladio sobre carbono (0,213 g, 10%, 0,2 mmol). La cuba de reacción se vació y se rellenó con hidrógeno dos veces. La mezcla se agitó a temperatura ambiente durante 24 horas, y a continuación se lavó con nitrógeno. Se añadió Celite y la mezcla se filtró a través de un tapón de Celite. El filtrado se concentró y se purificó mediante cromatografía flash en columna (SiO₂, acetato de etilo:heptano en una relación 7:3) para obtener el producto deseado (0,016 g, rendimiento 9%). ¹H RMN (300 MHz, d3-MeOD) 7.19-7.36 (4H, m), 7.02 (1H, s), 6.35 (1H, s), 5.21 (1H, m), 4.66 (2H, s), 1.87 (2H, s), 3.16 (1H, sep, J=6.9 Hz), 2.03-2.15 (2H, m), 1.58-1.98 (14H, m), 1.12 (6H, d, J=6.9 Hz). LC/MS: pureza >98%, *m/z* 509.25 [M+H]⁺

Ejemplo 69 - (2S)-[(3-{[[[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}(metil)amino]metil}bencil) amino](fenil)etanoato de ciclopentilo

Ejemplo 69

Etapa 1 - (2S)-[(3-{[{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil] carbonil}(metil)amino]metil} bencil)amino](fenil)etanoato de ciclopentilo

5

10

15

20

A una solución del Producto Intermedio H (0,128 g, 0,25 mmol) en dicloroetano (10 mL), se añadió tosilato del éster ciclopentílico de L-fenilglicina (0,199 g, 0,51 mmol) y triacetoxiborohidruro de sodio. La mezcla se agitó durante 90 minutos a temperatura ambiente, a continuación se cargó directamente en una columna de gel de sílice y se eluyó con acetato de etilo:heptano en una relación de 7:3 para obtener el producto deseado (0,154 g, rendimiento 86%). LC/MS: m/z 709.25 [M+H]⁺

Etapa 2 - (2S)-[(3-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}bencil) amino](fenil)etanoato de ciclopentilo (Ejemplo 69)

A una solución del producto de la Etapa 1 (0,154 g, 0,22 mmol) en acetato de etilo (10 mL), se añadió carbonato de potasio (0,125 g, 0,90 mmol) y paladio sobre carbono (0,118 g, 10%, 0,11 mmol). La cuba de reacción se vació y se rellenó con hidrógeno dos veces y se agitó durante 3 horas. La mezcla se purgó con nitrógeno, se añadió Celite y la mezcla se filtró a través de Celite, y se lavó con acetato de etilo adicional (50 mL). El filtrado se concentró para obtener el producto deseado (0,056 g, rendimiento 47%). ¹H RMN (300 MHz, d6-DMSO) 9.62 (1H, br s), 9.47 (1H, br s), 7.07-7.38 (9H, m), 6.85 (1H, s), 6.36 (1H, s), 5.00-5.08 (1H, m), 4.52 (2H, s), 4,24 (1H, d, J=8.8 Hz), 3.62 (2H, d, J=5.3 Hz), 2.91-3.09 (2H, m), 2.81 (3H, s), 1.28-1.83 (8H, m), 1.03 (6H, d, J=6.6 Hz) LC/MS: pureza >98%, *m/z* 531.25 [M+H]⁺

Preparación del Ejemplo 70 - N-(4-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil)(metil)amino] metil}bencil)-L-leucinato de ciclopentilo

Etapa 1- N-[4-(bromometil)bencil]-L-leucinato de ciclopentilo

5

15

20

25

30

A una solución de 4-(bromometil)-benzaldehído (0,940 g, 4,72 mmol) en diclorometano (20 mL) se añadió tosilato del éster ciclopentílico de L-leucina (2,40 g, 6,4 mmol) y triacetoxiborohidruro de sodio (2,53 g, 11,9 mmol). La mezcla de reacción se agitó durante 1 hora, a continuación se vertió en acetato de etilo (300 mL). La fracción orgánica se lavó con bicarbonato de sodio saturado (100 mL, 3 veces 50 mL), a continuación se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, gradiente 0-3% de metanol-diclorometano) para obtener el producto deseado (1,504 g, rendimiento 83%). LC/MS: m/z 382/384 [M+H]⁺

Etapa 2 - N-{4-[(metilamino)metil]bencil}-L-leucinato de ciclopentilo

Al producto de la Etapa 1 (1,504 g, 3,9 mmol) en etanol (30mL) se añadió clorhidrato de metilamina (1,98 g, 29 mmol) y bicarbonato de sodio (1,69 g, 20,1 mmol). La mezcla se agitó a temperatura ambiente durante la noche, se concentró bajo vacío y se cargó directamente en una columna de gel de sílice, eluyendo con metanol:diclorometano en una relación 1:9, para obtener el producto deseado (0,120 g, rendimiento 92%). LC/MS: m/z 333.25 [M+H]⁺

Etapa 3 - N-(4-{[[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil] carbonil}(metil)amino]metil}bencil)-L-leucinato de ciclopentilo

A una solución del Producto Intermedio A (0,138 g, 0,37 mmol) en diclorometano (10 mL) se añadió el producto de la Etapa 2 (0,120 g, 0,36 mmol), N,Ndiisopropiletilamina (1 mL, 5 mmol), HOBt (0,010 g, 0,074 mmol) y EDCI (0,094 g, 0,49 mmol). La solución se agitó a temperatura ambiente durante la noche, a continuación se cargó directamente en una columna de gel de sílice y se eluyó con metanol:diclorometano en una relación 2:98 para obtener el producto deseado (0,164 g, rendimiento 64%). LC/MS: m/z 689.25 [M+H]⁺

Etapa 4 - N-(4-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}bencil)-L-leucinato de ciclopentilo (Ejemplo 70)

A una solución del producto de la Etapa 3 (0,081 g, 0,12 mmol) en acetato de etilo (5 mL), se añadió carbonato de potasio (0,057 g, 0,41 mmol) y paladio sobre carbono (0,046 g, 0,04 mmol). La cuba de reacción se vació y se rellenó con hidrógeno dos veces y se agitó durante 90 minuots. La reacción se lavó con nitrógeno, se filtró a través de Celite y se lavó con acetato de etilo. El filtrado se concentró para obtener el producto deseado (0,040 g, rendimiento 66%). ¹H RMN (300 MHz, CDCl₃) 7.36 (2H, d, J=8.1 Hz), 7.24 (2H, d, J=8.1 Hz), 7.09 (1H, s), 6.36 (1H, s), 5.23-5.30 (1H, m), 3.84 (1H, d, J=12.8 Hz), 3.67 (1H, d, J=12.8 Hz), 3.30 (1H, t, J=7.3 Hz), 3.30-3.20 (4H, m), 1.57-1.99 (9H, m), 1.50 (2H, t, J=7.1 Hz), 0.97 (6H, d, J=6.9 Hz), 0.92 (3H, d, J=6.6 Hz), 0.86 (3H, d, J=6.6 Hz). LC/MS: pureza >98%, *m/z* 511.25 [M+H]⁺

Preparación del Ejemplo 71- (2S)-[(4-{[[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino] metil}bencil)amino](fenil)etanoato de ciclopentilo

Ejemplo 71

Etapa 1- (2S)-[(4-{[[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}(metil)amino]metil} bencil)amino](fenil)etanoato de ciclopentilo

A una solución del Producto Intermedio I (0,108 g, 0,21 mmol) en dicloroetano (10 mL), se añadió tosilato del éster ciclopentílico de L-fenilglicina (0,138 g, 0,35 mmol) y triacetoxiborohidruro de sodio. La mezcla se agitó a temperatura ambiente hasta que se consumió todo el Producto Intermedio I, a continuación se vertió en acetato de etilo y se lavó con cloruro de amonio saturado (3 veces 50 mL). La fracción orgánica se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, heptano:acetato de etilo en una relación 7:3 a heptano:acetato de etilo en una relación 1:1) para obtener el producto deseado (0,221 g, rendimiento 100%). LC/MS: m/z 709.25 [M+H]⁺

Etapa 2 - (2S)-[(4-{[[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}(metil)amino]metil}bencil) amino](fenil)etanoato de ciclopentilo (Ejemplo 71)

A una solución del producto de la Etapa 1 (0,221 g, 0,31 mmol) en acetato de etilo (10 mL) se añadió carbonato de potasio (0,140 g, 1,01 mmol) y paladio sobre carbono (0,140 g, 10%, 0,13 mmol). La cuba de reacción se vació y se rellenó con hidrógeno, a continuación se agitó a temperatura ambiente durante la noche. La reacción se lavó con nitrógeno, se añadió Celite y la mezcla se filtró a través de un tapón de Celite. El filtrado se concentró para obtener el producto deseado (0,035 g, rendimiento 21%). ¹H RMN (300 MHz, CDCl₃) 7.23-7.43 (10H, m), 7.09 (1H, s), 6.34 (1H, s), 5.21 (1H, m), 4.72 (2H, s), 4.36 (1H, s), 3.77 (2H, s), 3.08 (3H, s), 3.06 (1H, sep, J=6.9 Hz), 1.43-1.92 (9H, m), 0.98 (6H, d, J=6.9 Hz). LC/MS: m/z 531.25 [M+H]⁺

20 Los siguientes compuestos se prepararon de forma similar al Ejemplo 71

5

10

15

25

Ejemplo 72 - N-(4-{[[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}bencil)-2-metilalaninato de ciclopentilo

Preparado a partir del Porducto Intermedio I y tosilato del éster ciclopentílico de α,α-dimetilglicina. ¹H RMN (300 MHz, CDCl₃) 7.20-7.42 (4H, m), 7.06-7.12 (1H, m), 6.28 (1H, s), 5.28 (1H, m), 4.70 (2H, m), 3.66, (1H, m), 3.03-3.08 (4H, m), 1.59-2.02 (8H, m), 1.35 (6H, s), 0.97 (6H, d, J=6.9 Hz). LC/MS: pureza >98%, m/z 482.35 [M+H]⁺

Preparación del Ejemplo 73 - *N*-[2-(4-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carboni]}(metil)amino]metil} fenil)etil]-2-metilalaninato de ciclopentilo

Etapa 1 - 2-{4-[(metilamino)metil]fenil}etanol

15

35

Ejemplo 73

A una solución de ácido 4-(bromometil)-fenilacético (0,586 g, 2,36 mmol) en tolueno/tetrahidrofurano (10mL/8mL) se añadió borano-dimetilsulfuro (4,5 mL, 45 mmol de borano). La mezcla se agitó a temperatura ambiente durante 1 hora, a continuación se extinguió mediante la adición con cautela de agua (50 mL). La mezcla se vertió en acetato de etilo (250 mL) y se lavó con agua (50 mL) y se saturó con salmuera (50 mL). La fracción orgánica se secó (MgSO₄) y se concentró. Al residuo obtenido se añadió metilamina en metanol (20 mL, 8M de solución, 160 mmol). La solución se agitó a temperatura ambiente durante 15 minutos, a continuación se concentró bajo vacío y se utilizó sin purificación adicional. LC/MS: m/z 166 [M+H]⁺

10 Etapa 2 - 2,4-bis(benciloxi)-N-[4-(2-hidroxietil)bencil]-N-metil-5-(prop-1-en-2-il)benzamida

Al producto obtenido en la Etapa 1 (~2 mmol) en diclorometano (40 mL) se añadió N,Ndiisopropiletilamina (5 mL, 28,7 mmol), el Producto Intermedio A (1,01 g, 2,7 mmol) y HATU (1,108 g, 2,84 mmol). La mezcla se agitó durante 18 horas a temperatura ambiente, a continuación se vertió en acetato de etilo (300 mL). El extracto orgánico se lavó con una solución de 2M HCl (3 veces 50 mL), y una solución de hidróxido de sodio de 1M (50 mL). La fracción orgánica se secó (MgSO₄), y se concentró y purificó mediante cromatografía flash en columna (SiO₂, heptano:acetato de etilo en una relación 1:1) para obtener el producto deseado (0,712 g, rendimiento 58% (2 pasos)). LC/MS: m/z 522.25 [M+H]⁺

Etapa 3 - *N*-[2-(4-{[{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}(metil)amino]metil} fenil)etil]-2-metilalaninato de ciclopentilo

Al producto de la Etapa 2 (0,163 g, 0,31 mmol) en diclorometano (10 mL), se añadió periodinano de Dess-Martin (0,196 g, 0,46 mmol). La solución se agitó durante 30 minutos, y a continuación se extinguió mediante adición de bicarbonato de sodio saturado:tiosulfato de sodio saturado en una relación de 1:1 (10 mL). Después de agitar durante 5 minutos la mezcla se extrajo con diclorometano (2 veces 100 mL), y los extractos combinados se secaron (MgSO₄) y se concentraron. Al residuo obtenido (aldehído crudo) en dicloroetano (10 mL), se añadió éster ciclopentílico de α,α-dimetilglicina (0,260 g, 0,66 mmol) y triacetoxiborohidruro de sodio (0,215 g, 1,01 mmol). La mezcla se agitó durante 1 hora, a continuación se extinguió con cloruro de amonio saturado (50 mL). El producto se extrajo con acetato de etilo (2 veces 100 mL) y los extractos combinados se secaron (MgSO₄), se concentraron y se purificaron mediante cromatografía flash en columna (SiO₂, acetato de etilo:heptano en una relación 3:1) para obtener el producto deseado (0,077 g, rendimiento 37%). LC/MS: *m/z* 675.25 [M+H]⁺

30 Etapa 4 - *N*-[2-(4-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}fenil) etil]-2-metilalaninato de ciclopentilo (Ejemplo 73)

A una solución del producto de la Etapa 3 (0,077 g, 0,11 mmol) en acetato de etilo (10 mL), se añadió carbonato de potasio (0,201 g, 1,45 mmol) y paladio sobre carbono (0,023 g, 10%, 0,02 mmol). La cuba de reacción se vació y se rellenó con hidrógeno dos veces, y a continuación se agitó durante la noche. Después de purgar con nitrógeno, se añadió una segunda parte del paladio sobre carbono (0,075 g, 0,06 mmol), y el matraz se vació y se rellenó con

hidrógeno. Después de 1 hora, la cuba de reacción se purgó con nitrógeno y la mezcla se filtró a través de Cellite. El filtrado se concentró para proporcionar el producto deseado (0,051 g, rendimiento 94%). ¹H RMN (300 MHz, CDCl₃) 7.20-7.35 (4H, m), 7.09-7.14 (1H, m), 6.40-6.47 (1H, m), 5.17-5.25 (1H, m), 4.67-4.75 (1H, m), 2.75-3.13 (7H, m), 1.23-1.94 (17H, m), 0.93-1.05 (6H, m). LC/MS: pureza >98%, m/z 497.25 [M+H]⁺

5 Preparación del Ejemplo 74 - *N*-{[(2R)-1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin- 2-il]metil}-L-leucinato de ciclopentilo

Etapa 1- [2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil][(2R)-2-(hidroximetil)pirrolidin-1-il]metanona

A una solución del Producto Intermedio A (0,342 g, 0,91 mmol) en diclorometano (10 mL), se añadió una solución de (R)-1-pirrolidin-2-il-metanol (1,00 g, 10 mmol) en diclorometano (3 mL), a continuación trietilamina (1 mL, 7,1 mmol) y EDCI (0,660 g, 3,43 mmol). La mezcla se agitó a temperatura ambiente durante 24 horas, a continuación se vertió en acetato de etilo (200 mL). La capa orgánica se lavó con una solución de 1M HCI (4 veces 50 mL), a continuación se secó (MgSO₄), se concentró y se utilizó sin purificación adicional (0,344 g, rendimiento 83%). LC/MS: m/z 458.25 IM+HI⁺

Etapa 2 - *N*-{[(2*R*)-1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}pirrolidin-2-il]metil}-L-leucinato de ciclopentilo

Ejemplo 74

A una solución del producto de la Etapa 1 (0,277 g, 0,61 mmol) en diclorometano (10 mL), se añadió periodinano de Dess-Martin (0,370 g, 0,87 mmol). La solución se agitó a temperatura ambiente durante 30 minutos, a continuación se extinguió mediante adición de bicarbonato de sodio saturado:tiosulfato de sodio (20 mL) en una relación 1:1. La mezcla se agitó durante 10 minutos, a continuación se vertió en acetato de etilo (100 mL) y se lavó con agua (2 veces 50 mL). La fracción orgánica se secó (MgSO₄) y se concentró. A una solución del residuo obtenido (aldehído crudo) en dicloroetano (10 mL), se añadió tosilato del éster ciclopentílico de L-leucina (0,465 g, 1,25 mmol) y triacetoxiborohidruro de sodio (0,568 g, 2,7 mmol). La mezcla se agitó durante 1 hora y a continuación se vertió en una solución saturada de cloruro de amonio:diclorometano en una relación 1:1. El producto se extrajo con diclorometano (100 mL) y los extractos orgánicos combinados se secaron (MgSO₄), se concentraron y se purificaron mediante cromatografía flash en columna (SiO₂, acetato de etilo:heptano en una relación 7:3) para obtener el producto deseado (0,047 g, rendimiento 12%). LC/MS: *m/z* 639.25 [M+H]

5

10

30

Etapa 3 - *N*-{[(2*R*)-1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} pirrolidin-2-il]metil}-L-leucinato de ciclopentilo (Ejemplo 74)

A una solución del producto de la Etapa 2 (0,047 g, 0,07 mmol) en acetato de etilo (5 mL) se añadió paladio sobre carbono (0,023 g, 10% sobre carbono, 0,03 mmol). La cuba de reacción se vació y se llenó con hidrógeno dos veces. La mezcla de reacción se agitó durante 30 minutos, a continuación se añadió paladio sobre carbono adicional (0,075 g, 0,06 mmol). La mezcla se agitó durante 30 minutos, la reacción se lavó con nitrógeno, se añadió Celite y la mezcla de reacción se filtró a través de una almohadilla de Celite, lavando con acetato de etilo (100 mL). El filtrado se concentró para obtener el producto deseado (0,006 g, rendimiento 17%) al cual se añadió agua, seguido de liofilización durante la noche. ¹H RMN (300 MHz, d6-DMSO) 10.76 (1H, br s), 9.95 (1H, br s), 7.29 (1H, s), 6.62 (1H, s), 5.37 (1H, s), 4.30-4.44 (1H, m), 3.59-3.83 (5H, m), 3.30-3.47 (2H, m), 1.50-2.30 (1H, m), 1.32-1.50 (6H, m), 1.06-1.22 (6H, m). LC/MS: pureza >98%, m/z 461.25 [M+H]⁺

Preparación del Ejemplo 75 - $N-\{[(2S)-1-\{[2,4-dihidroxi-5-(propan-2-il)fenil\}carbonil\}pirrolidin-2-il]metil}-L-leucinato de ciclopentilo$

25 El Ejemplo 75 se preparó de forma similar al Ejemplo 74 comenzando con (*S*)-1-pirrolidin-2-il-metanol y el Producto Intermedio A. ¹H RMN (300 MHz, d6-DMSO) 10.04 (1H, br s), 9.75 (1H, br s), 9.39 (1H, br s), 7.00 (1H, s), 6.37 (1H, s), 5.23 (1H, t, J=5.64 Hz), 4.34 (1H, br s), 4.08 (1H, br s), 3.37-3.53 (2H, m), 3.05-3.11 (2H, m), 1.52-2.19 (15H, m), 1.12 (3H, d, J=6.9 Hz), 1.11 (3H, d, J=6.9 Hz), 0.92 (6H, d, J=5.2 Hz). LC/MS: pureza >98%, m/z 461.25 [M+H]⁺

Preparación del Ejemplo 76 - *N*-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-3-il)-D-leucinato de ciclopentilo

Etapa 1- diclorhidrato de N-pirrolidin-3-il-D-leucinato de ciclopentilo

A una solución de N-Boc-3-pirrolidinona (0,382 g, 4,76 mmol) en dicloroetano (20 mL) se añadió tosilato del éster ciclopentílico de L-leucina (1,96 g, 5,3 mmol) y triacetoxiborohidruro de sodio (2,65 g, 12,5 mmol). La mezcla se agitó a temperatura ambiente durante 3 horas, a continuación se vertió en acetato de etilo (150 mL) y se extinguió con cloruro de amonio saturado (50 mL). La capa orgánica se lavó con bicarbonato de sodio saturado (3 veces 30 mL), a continuación se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, acetato de etilo:heptano en una relación 7:3) para obtener el producto porotegido con NBoc. Este material se disolvió en diclorometano (5 mL) y a continuación se añadió HCI (20 mL, 4M de solución en dioxano, 80 mmol) (2 veces, lotes de 10 mL cinco minutos después). La mezcla se agitó a temperatura ambiente durante 1 hora, a continuación se añadió éter dietílico (100 mL). El precipitado se recogió mediante filtración, se lavó con éter dietílico adicional (50 mL), a continuación se secó bajo vacío para obtener el producto deseado como la sal bis-HCI (0,855 g, rendimiento 52%). LC/MS: *m/z* 269.25 [M+H][†]

Etapa 2 - N-(1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil}pirrolidin-3-il)-D-leucinato de ciclopentilo

A una solución del Producto Intermedio A (0,823 g, 2,2 mmol) en diclorometano (12 mL) se añadió trietilamina (2 mL, 19,7 mmol), el producto de la Etapa 1 (0,816 g, 2,39 mmol) y EDCI (3,11 g, 15,8 mmol). La mezcla se agitó durante 16 horas, se vertió en acetato de etilo (150 mL) y se lavó con agua (4 veces 50 mL). La fracción orgánica se secó (MgSO₄), se concentró y se purificó mediante cromatografía flash en columna (SiO₂, acetato de etilo:heptano en una relación 7:3) para obtener el producto deseado (0,755 g, rendimiento 55%). LC/MS: *m/z* 625.25 [M+H]⁺

Etapa 3 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} pirrolidin-3-il)-D-leucinato de ciclopentilo (Ejemplo 76)

A una solución del producto de la Etapa 2 (0,755 g, 1,2 mmol) en acetato de etilo (25 mL) se añadió paladio sobre carbono (0,180 g, 10%, 0,17 mmol). La cuba de reacción se vació y se llenó con hidrógeno dos veces. La mezcla se agitó durante 3 horas, la cuba de reacción se purgó con nitrógeno y se añadió una segunda parte de paladio sobre carbono (0,212g, 10%, 0,2 mmol). La mezcla se agitó durante 1 hora más, a continuación la cuba de reacción se lavó con nitrógeno y la mezcla de reacción se filtró a través de un tapón de Celite, lavando con acetato de etilo (150 mL). El filtrado se concentró para obtener el producto deseado (0,493 g, rendimiento 92%). ¹H RMN (300 MHz, d6-DMSO) 10.74 (0.5H, s), 10.63 (0.5H, s), 9.70 (1H, s), 7.05 (1H, s), 6.31 (1H, s), 4.96-5.14 (1H, m), 2.97-3.66 (8H, m), 2.05-2.35 (1H, m), 1.27-1.98 (11H, m), 1.12(3H, d, J=6.9 Hz), 1.12 (3H, d, J=6.9 Hz), 0.85 (6H, t, J=6.7 Hz). LC/MS: pureza >98%, m/z 447.25 [M+H]⁺

Métodos generales para la preparación de ácidos carboxílicos a partir del correspondiente éster alquílico

30 Método A

10

15

A una solución de éster ciclopentílico en etanol se añadió una solución de hidróxido de sodio al 50%. La mezcla se agitó a temperatura ambiente hasta que todo el material de partida se había consumido. La mezcla se neutralizó con HCI (1M de solución) y se extrajo con acetato de etilo para obtener el producto deseado que se purificó mediante HPLC de fase inversa.

35 **Método B**

A una solución de éster ciclopentílico en metanol se añadió una solución de hidróxido de sodio de 2M. La mezcla se agitó a temperatura ambiente hasta que todo el material de partida se había consumido. La mezcla se neutralizó con HCI (1M de solución) y se extrajo con acetato de etilo para obtener el producto deseado que fue purificado mediante HPLC de fase inversa.

40 Método C

A una solución de éster ciclopentílico en THF se añadió trimetilsilanolato de potasio. La mezcla se agitó durante 2 horas. La mezcla se concentró y se purificó mediante HPLC de fase inversa para obtener el producto deseado.

Método D

A una solución de éster ciclopentílico en metanol se añadió una solución de 1M de hidróxido de sodio. La mezcla se agitó a temperatura ambiente hasta que todo el material de partida se había consumido. La mezcla se neutralizó con HCI (1M de solución), se extrajo con acetato de etilo y se purificó mediante HPLC de fase inversa para obtener el producto deseado.

Método E

A una solución de éster terc-butílico en DCM se añadió HCI (4M de solución en dioxano). La mezcla se agitó a 35°C durante 48 horas, a continuación se concentró bajo vacío y se purificó mediante HPLC de fase inversa para obtener el producto deseado.

Los siguientes Ejemplos 77 a 125 son ejemplos de referencia que describen los ácidos correspondientes a los ésteres ejemplificados descritos anteriormente.

Ejemplo 77 -N-(4-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil) amino] metil}bencil)-L-leucina

Método A - Preparado a partir del Ejemplo 70

5

10

15

25

30

¹H RMN (300 MHz, d6-DMSO) 9.65 (1H, br s), 9.54 (1H, br s), 7.49 (2H, d, J=7.8 Hz), 7.33 (2H, d, J=7.6 Hz), 6.87 (1H, s), 6.42 (1H, s), 4.57 (2H, br s), 4.12 (2H, q, J=7.4 Hz), 3.67-3.78 (1H, m), 2.99-3.12 (1H, m), 2.79 (3H, s), 1.62-1.82 (3H, m), 1.08 (6H, d, J=6.9 Hz), 0.88 (6H, app t, J=4.5 Hz). LC/MS: pureza >98%, m/z 433.25 [M+H]⁺

Ejemplo 78 - N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro -1H-isoindol-5-il)metil]-L-leucina

Método A - Preparado a partir del Ejemplo 54

 1 H RMN (300 MHz, d6-DMSO) 10.07 (1H, br s), 9.65 (1H, br s), 7.31-7.51 (4H, m), 7.04 (1H, s), 4.79 (4H, m), 3.99-4.11 (2H, m), 1.46-1.57 (2H, m), 1.13 (6H, d, J=6.9 Hz), 0.87 (6H, app t, J=7.0 Hz). LC/MS: pureza >98%, m/z 441.25 $[M+H]^{+}$

Ejemplo 79 - *N*-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]-2-metilalanina

Método A - Preparado a partir del Ejemplo 55

¹H RMN (300 MHz, d3-MeOD) 7.35 (3H, br s), 7.05 (1H, s), 6.27 (1H, s), 4.08-4.87 (4H, m), 4.12 (2H, s), 3.10 (1H, sep, J=6.8 Hz), 1.58 (6H, s), 1.10 (6H, d, J=7.0 Hz) LC/MS: pureza >98%, *m/z* 413.25 [M+H][†]

Ejemplo 80 - N-[3-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)propil]-L-leucina

Método A - Preparado a partir del Ejemplo 64

¹H RMN (300 MHz, d6-DMSO) 7.07-7.34 (4H, m), 6.39 (1H, s), 4.66-4.79 (4H, m), 3.06-3.11 (2H, m), 2.55-2.89 (3H, m), 1.70-1.88 (2H, m), 1.31-1.59 (3H, m), 1.13 (6H, d, J=6.9 Hz), 0.86 (6H, t, J=7.2 Hz). LC/MS: pureza>98%, m/z 469.25 [M+H]⁺

Ejemplo 81- N-[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil)-2,3-dihidro-1H-isoindol-5-il)etil]-L-leucina

Método A - Preparado a partir del Ejemplo 61

¹H RMN (300 MHz, d6-DMSO) 7.07-7.31 (4H, m), 6.41 (1H, s), 4.64-4.80 (4H, m), 3.00-3.13 (2H, m), 2.70-2.92 (3H, m), 1.68-1.82 (1H, m), 1.28-1.51 (3H, m), 1.12 (6H, d, J=6.9 Hz), 0.85 (6H, t, J=6.6 Hz). LC/MS: pureza >98%, *m/z* 455.25 [M+H]⁺

Ejemplo 82 - N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]-L-alanina

Método A - Preparado a partir del Ejemplo 56

¹H RMN (300 MHz, d3-MeOD) 7.37-7.60 (3H, m), 7.17 (1H, s), 6.39 (1H, s), 4.94 (4H, s), 4.28 (2H, ABq, J=12.8 Hz), 4.08 (1H, g, J=9.5 Hz), 3.21 (1H, sep, J=6.8 Hz), 1.63 (3H, d, J=7.1 Hz), LC/MS: pureza >98%, m/z 399.25 [M+H]⁺

35 Ejemplo 83 – ácido 1-{[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)metil]amino} ciclopentanocarboxílico

Método A – Preparado a partir del Ejemplo 60

¹H RMN (300 MHz, d6-DMSO) 7.02-7.52 (4H, m), 6.44 (1H, s), 5.00-5.10 (2H, m), 4.75 (4H, s), 3.09 (1H, sep, J=6.6 Hz), 1.40-1.80 (8H, m), 1.13 (6H, d, J=6.9 Hz) LC/MS: pureza >98%, m/z 439.25 [M+H][†]

Ejemplo 84 - N-(3-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}bencil)-L-leucina

Método A - Preparado a partir del Ejemplo 66

5

¹H RMN (300 MHz, d6-DMSO) 7.46 (1H, br s), 7.06-7.30 (4H, m), 6.83 (1H, s), 6.39 (1H, s), 4.33 (1H, d, J=13.4 Hz), 3.72 (1H, d, J=12.5 Hz), 3.39 (2H, d, J=12.4 Hz), 3.05 (1H, sep. J=6.5 Hz), 2.75 (3H, s), 1.82 (3H, s), 1.09 (6H, d, J=6.9 Hz), 0.76 (6H, d, J=5.5 Hz). LC/MS: pureza >98%, m/z 443.25 [M+H]⁺

Ejemplo 85 - ácido (2*S*)-[(4-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil} bencil)amino] (fenil)etanoico

Método A - Preparado a partir del Ejemplo 71

¹H RMN (300 MHz, d6-DMSO) 9.63 (1H, s), 9.52 (1H, s), 7.24-7.54 (9H, m), 6.87 (1H, s), 6.37 (1H, s), 4.74 (1H, s), 4,55 (2H, s), 4.94 (2H, ABq, J=13,3 Hz), 3.05 (1H, sep, J=6.8 Hz), 2.79 (3H, s), 1.07 (6H, d, J=6.9 Hz). LC/MS: pureza >98%, *m/z* 463.25 [M+H][†]

Ejemplo 86 - N-(4-{[[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}bencil)-2-metilalanina

Método A - Preparado a partir del Ejemplo 72

¹H RMN (300 MHz, d6-DMSO) 9.61 (1H, s), 9.50 (1H, s), 9.18 (1H, br s), 7.46 (2H, d, J=8.2 Hz), 7.36 (2H, d, J=7.6 Hz), 6.88 (1H, s), 6.38 (1H, s), 4.57 (2H, s), 4.11 (2H, s), 3.06 (1H, sep, J=6.9 Hz), 2.80 (3H, s), 1.55 (6H, s), 1.09 (6H, d, J=6.9 Hz) LC/MS: pureza >98%, *m/z* 415.25 [M+H]⁺

Ejemplo 87 - N-(3-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil}bencil)-2-metilalanina

Método B - Preparado a partir del Ejemplo 67

¹H RMN (300 MHz, d3-MeOD) 7.43-7.52 (4H, m), 7.01 (1H, s), 6.37 (1H, s), 4.72 (2H, s), 4.10 (2H, s), 3.17 (1H, sep, J=6.9 Hz), 3.04 (3H, s), 1.57 (6H, s), 1,14 (6H, d, J=6.9 Hz), LC/MS: pureza >98%, *m/z* 415.25 [M+H]⁺

Ejemplo 88 – ácido 1-[(3-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil} bencil)amino] ciclopentanocarboxílico

Método B - Preparado a partir del Ejemplo 68

¹H RMN (300 MHz, d3-MeOD) 7.41-7.52 (4H, m), 7.01 (1H, s), 6.37 (1H, s), 4.72 (2H, s), 4.14 (2H, s), 3.19 (1H, sep, J=6.9 Hz), 2.98 (3H, s), 1.75-1.94 (8H, m), 1.15 (6H, d, J=6.9 Hz). LC/MS: pureza >98%, mlz 441.25 [M+H]⁺

Ejemplo 89 - ácido (2S)-[(3-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil} bencil)amino] (fenil)etanoico

Método B - Preparado a partir del Ejemplo 69

¹H RMN (300 MHz, d3-MeOD) 7.33-7.54 (9H, m), 7.00 (1H, s), 6.36 (1H, s), 4.70 (2H, br s), 4.53 (1H, s), 4.14 (2H, ABq, J=15.8 Hz), 3.17 (1H, sep, J=6.9 Hz), 1.15 (6H, d, J=6.9 Hz). LC/MS: pureza >98%, *m/z* 463.25 [M+H]⁺

Ejemplo 90- ácido 1-{[3-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)propil] amino} ciclopentanocarboxílico

Método A – Preparado a partir del Ejemplo 65

1H RMN (300 MHz, d6-DMSO) 10.07 (1H, br s), 9.61 (1H, br s), 7.11-7.33 (3H, m), 7.04 (1H, s), 6.39 (1H, s), 4.74 (4H, br s), 3.19-3.44 (4H, m), 3.09 (1H, sep, J=6.9 Hz), 2.59-2.76 (2H, m), 1.78-2.06 (4H, m), 1.64 (4H, m), 1.13 (6H, d, J=6.9 Hz) LC/MS: pureza >98%, pureza 467.25 [M+H]⁺

Ejemplo 91- N-[2-(4-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil) amino] metil}fenil)etil]-2-metilalanina

Método A - Preparado a partir del Ejemplo 73

 1 H RMN (300 MHz, d6-DMSO) 7.10-7.23 (3H, m), m6.84 (1H, s), 6.36 (1H, s), 4.45-4.56 (2H, m), 3.04 (1H, sep, J=6.7 Hz), 2.77-2.85 (2H, m), 2.79 (3H, s), 1.78-1.83 (2H, m), 1.22-1.24 (6H, m), 1.06 (6H, d, J=6.9 Hz). LC/MS: pureza >98%, m/z 429.25 [M+H] $^{+}$

Ejemplo 92 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-alanina

5 Método C – Preparado a partir del Ejemplo 39

¹H RMN (300MHz, d3-MeOD) ppm, 6.95 (1H, s), 6.34 (1H, s), 4.35 (2H, m), 3.19 (1H, m), 3.05 (1H, m), 2.97 (4H, m), 2.00 (5H, m), 1.49 (3H, d, J=7.2 Hz), 1.34 (2H, m), 1.26 (6H, d, J=4.8 Hz). LC/MS: pureza >98%, m/z 379 [M+H][↑]

Ejemplo 93 – ácido 1-{[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1*H*-isoindol-5-il)etil]amino} ciclopentanocarboxílico

10 Método B – Preparado a partir del Ejemplo 63

¹H RMN (300 MHz, d3-MeOD) 7.45-7.12 (4H, m), 6.38 (1H, s), 3.11-2.98 (2H, m), 2.43-2.25 (2H, m), 2.08-1.80 (8H, m), 1.22 (6H, d, J=7.0 Hz) LC/MS: pureza >98%, m/z 453 [M+H]⁺

Ejemplo 94 - N-{[(2S)-1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} pirrolidin-2-il]metil}-L-leucina

Método B - Preparado a partir del Ejemplo 75

¹H RMN (300 MHz, d6-DMSO) 9.70 (1H, br s), 6.99 (1H, s), 6.37 (1H, s), 5.23 (1H, t, J=5.6 Hz), 4.33 (1H, m), 4.01 (1H, m), 3.21-3.56 (4H, m), 3.10 (1H, sep, J=6.9 Hz), 1.62-2.20 (8H, m), 1.12 (3H, d, J=6.9 Hz), 1.11 (3H, d, J=6.9 Hz), 0.93 (6H, d, J=6.3 Hz). LC/MS: pureza >98%, m/z 393.25 [M+H]⁺

Ejemplo 95 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-3-il)-L-leucina

Método B – Preparado a partir del Ejemplo 76

¹H RMN (300 MHz, d6-DMSO) 10.35 (1H, br s), 9.75 (1H, s), 9.24 (1H, br s), 7.02 (1H, s), 6.36 (1H, s), 3.45-4.0 (6H, m), 3.09 (1H, sep, J=6.9 Hz), 1.93-2.34 (2H, m), 1.59-1.80 (3H, m), 1.12 (6H, d, J=6.9 Hz), 0.92 (6H, d, J=5.6 Hz). LC/MS: pureza >98%, *m/z* 379 [M+H]⁺

Ejemplo 96 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-leucina

Método B - Preparado a partir del Ejemplo 1

¹H RMN (300 MHz, d6-DMSO) 9.55 (1H, br s), 9.49 (1H, br s), 6.81 (1H, s), 6.36 (1H, s), 3.86-4.14 (2H, m), 3.59-3.76 (1H, m), 3.14-3.23 (1H, m), 3.06 (1H, sep, J=6.9 Hz), 2.83 (2H, q, J=11.1 Hz), 1.86-2.09 (2H, m), 1.35-1.83 (5H, m), 1.10 (6H, d, J=6.9 Hz), 0.91 (3H, d, J=6.3 Hz), 0.90 (3H, d, J=6.4 Hz). LC/MS: pureza >98%, *m/z* 393.25 [M+H][†]

Ejemplo 97 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-2-metilalanina

Método B - Preparado a partir del Ejemplo 2

¹H RMN (300 MHz, d6-DMSO) 9.54 (1H, br s), 9.50 (1H, brr s), 8.80 (2H, br s), 6.82 (1H, s), 6.36 (1H, br s), 3.89-4.11 (1H, br s), 3.24-3.54 (2H, m), 3.06 (1H, sep, J=6.8 Hz), 2.81-3.01 (2H, m), 1.91-2.03 (2H, m), 1.47-1.65 (2H, m), 1.51 (6H, s), 1.10 (6H, d, J=6.8 Hz). LC/MS: pureza >98%, m/z 365.25 [M+H]⁺

Ejemplo 98 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-valina

Método D - Preparado a partir del Ejemplo 3

¹H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.36 (1H, s), 4.33 (1H, s), 4.02 (1H, d, J=3.6Hz), 3.37 (1H, m), 3.18 (1H, dt, J=13.8, 6.9Hz), 3.00 (2H, t, J=12.8Hz), 2.42-2.29 (1H, m), 2.18 (2H, t, J=14.0Hz), 1.71 (2H, m), 1.26 (1H, t, J=7.1Hz), 1.22-1.15 (9H, m), 1.09 (3H, d, J=7.0Hz). LC/MS: pureza 100%, *m/z* 379 [M+H]⁺

$Ejemplo~99~-\'acido~(2S)-[(1-\{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil\}piperidin-4-il)amino](fenil)etanoico~-(propan-2-il)fenil]carbonil-4-il)amino](fenil)etanoico~-(propan-2-il)fenil]carbonil-4-il)amino](fenil)etanoico~-(propan-2-il)fenil)eta$

Método D - Preparado a partir del Ejemplo 4

 1 H RMN (300 MHz, d3-MeOD) 7.61-7.47 (5H, m), 6.97 (1H, s), 6.34 (1H, s), 4.30 (1H, br s), 3.97-3.88 (1H, m), 3.42-3.36 (2H, m), 3.18 (1H, m), 2.95 (2H, m), 2.25 (2H, m), 1.7 (2H, m), 1.26 (2H, t, J=7.1Hz), 1.18 (6H, d, J=7.0Hz). LC/MS: pureza 100%, m/z 413 [M+H] $^{+}$

Ejemplo 100 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-alanina

5 Método D – Preparado a partir del Ejemplo 5

¹H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.36 (1H, s), 4.33 (1H, br s), 4.22 (1H, q, J=7.2Hz), 3.53 (1H, m), 3.18 (1H, dt, J=6.8, 13.8Hz), 3.02 (3H, t, J=13.5Hz), 2.16 (2H, d, J=12.6Hz), 1.67(2H, m), 1.61 (3H, d, J=7.2Hz), 1.19 (6H, d, J=6.8Hz). LC/MS: pureza >98%, *m/z* 351 [M+H]⁺

Ejemplo 101- N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-fenilalanina

10 Método D – Preparado a partir del Ejemplo 9

¹H RMN (300 MHz, d3-MeOD) 7.35 (5H, m), 6.96 (1H, s), 6.34 (1H, s), 4.30 (3H, m), 3.11-3.24 (4H, m), 2.95 (2H, br s), 2.13 (2H, t, J=12.0Hz), 1.75-1.47 (2H, m), 1.18 (6H, d, J=7.0Hz). LC/MS: pureza 100%, m/z 427 $[M+H]^{+}$

Ejemplo 102 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-3-il)-L-leucina

Método D - Preparado a partir del Ejemplo 7

¹H RMN (300 MHz, d3-MeOD) 7.03 (1H, s), 6.37 (1H, s), 5.19-5.07 (1H, m), 4.48-4.29 (1H, m), 4.02 (2H, br s), 3.39 (1H, br s), 3.23-3.13 (2H, m), 2.37-2.18 (2H, m), 1.76-1.584 (5H, m), 1.19 (6H, d, J=6.8Hz), 1.06-0.94 (6H, m). LC/MS: pureza 95%, *m/z* 393 [M+H][†]

Ejemplo 103 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-leucina

Método D - Preparado a partir del Ejemplo 21

¹H RMN (300 MHz, d6-DMSO) 9.52 (1H, br s), 9.46 (1H, br s), 8.82 (1H, br s), 6.82 (1H, s), 6.35 (1H, s), 3.91-4.14 (2H, m), 3.87 (1H, t, J=7.6 Hz), 3.07 (1H, sep, J=7.0 Hz), 2.69-3.00 (4H, m), 1.59-1.99 (6H, m), 1.09-1.23 (2H, m), 1.10 (6H, d, J=7.0 Hz), 0.93 (3H, d, J=6.1 Hz), 0.92 (3H, d, J=6.3 Hz). LC/MS: pureza 98%, m/z 407.25 [M+H]⁺

Ejemplo 104 - N-[2-(1{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-leucina

Método D - Preparado a partir del Ejemplo 38

¹H RMN (300 MHz, d6-DMSO) 9.50 (1H, br s), 9.44 (1H, br s), 8.87 (1H, br s), 6.81 (1H, s), 6.34 (1H, s), 3.91-4.10 (2H, m), 3.88 (1H, t, J=6.5 Hz), 3.06 (1H, sep, J=6.9 Hz), 2.73-3.10 (4H, m), 1.49-1.80 (8H, m), 1.10 (6H, d, J=6.9 Hz), 0.92 (3H, d, J=6.1 Hz), 0.92 (3H, d, J=6.3 Hz). LC/MS: pureza 98%, *m/z* 421.25 [M+H]⁺

Ejemplo 105 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-norleucina

Método D - Preparado a partir del Ejemplo 10

¹H RMN (300 MHz, d3-MeOD) 7.00 (1H, d, J=3.8Hz), 6.38 (1H, d, J=1.3Hz), 3.99 (2H, br s), 3.28-2.90 (3H, m), 2.40-2.19 (1H, m), 2.07-1.55 (6H, m), 1.54-1.32 (4H, m), 1.19 (6H, d, J=7.0Hz), 1.00-0.87 (3H, m). LC/MS: pureza 96%, m/z 393 [M+H]⁺

Ejemplo 106 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-alanina

Método D – Preparado a partir del Ejemplo 22

35 ¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.33 (1H, s), 4.19 (2H, m), 3.24 (1H, m), 3.18 (1H, penteto, J=6.9Hz), 2.97 (2H, t, J=12.0Hz), 2.67 (2H, m), 1.91 (4H, m), 1.36 (3H, d, J=6.9Hz), 1.28 (1H, m), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 98%, m/z 365 [M+HI⁺]

Ejemplo 107 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-fenilalanina

Método D - Preparado a partir del Ejemplo 23

¹H RMN (300 MHz, d3-MeOD) 7.21 (5H, m), 6.91 (1H, s), 6.26 (1H, s), 4.14 (4H, m), 3.23 (2H, m), 2.95 (4H, m), 2.50 (1H, m), 2.35 (1H, m), 1.69 (5H, m), 1.17 (6H, d, J=6.6Hz). LC/MS: pureza 98%, *m/z* 441 [M+H]⁺

Ejemplo 108 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-D-leucina

Método D – Preparado a partir del Ejemplo 28

5 ¹H RMN (300 MHz, d6-DMSO) 6.76 (1H, s), 6.34 (1H, s), 3.97 (2H, m), 3.34 (4H, m), 3.05 (1H, penteto, =6.9Hz), 2.70 (3H, m), 2.39 (1H, m), 2.14 (1H, m), 1.65 (5H, bcm), 1.27 (1H, m), 1.09 (6H, d, J=6.9Hz), 1.02 (2H, m), 0.81 (6H, m). LC/MS: pureza 98%, m/z 407 [M+H]⁺

Ejemplo 109 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-D-leucina

Método D - Preparado a partir del Ejemplo 12

¹H RMN (300 MHz, d3-MeOD) 6.97 (1H, s), 6.35 (1H, s), 3.93 (1H, t, J=6.4Hz), 3.61 (1H, t, J=7.0Hz), 3.18 (2H, m), 3.00 (3H, br s), 2.29-2.03 (4H, m), 2.19-1.56 (4H, m), 1.18 (6H, d, J=7.0Hz), 1.01 (6H, m). LC/MS: pureza 100%, m/z 393 [M+H]⁺

Ejemplo 110 - 3-ciclohexil-N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-alanina

Método D - Preparado a partir del Ejemplo 13

¹H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.35 (1H, s), 4.32 (2H, br s), 4.05(1H, br s), 3.57-3.38, (1H, m), 3.24-3.10 (1H, m), 3.10-2.92 (2H, m), 2.28-2.08 (2H, m), 1.94 (1H, d, J=11.9Hz), 1.85-1.62 (8H, m), 1.27 (3H, br s), 1.19 (6H, d, J=7.0Hz), 1.10-0.90, (2H, m). LC/MS: pureza 97%, *m/z* 433 [M+H]⁺

Ejemplo 111 - N-[2(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-fenilalanina

Método D - Preparado a partir del Ejemplo 40

¹H RMN (300 MHz, d3-MeOD) 7.42-7.21 (5H, m), 6.94 (1H, s), 6.33 (1H, s), 4.15(1H, s), 4.00-3.81 (1H, m), 3.27-2.79 (12H, m), 1.78-1.50 (4H, m), 1.19 (6H, d, J=6.8Hz) LC/MS: pureza 100%, *m/z* 455 [M+H]⁺

Ejemplo 112 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-valina

Método D - Preparado a partir del Ejemplo 29

¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.34 (1H, s), 4.21 (2H, m), 3.92 (1H, m), 3.18 (1H, penteto, J=6.6Hz), 3.01 (4H, m), 2.37 (1H, m), 1.90 (3H, m), 1.35 (2H, m), 1.19 (9H, m), 1.08 (3H, d, J=6.9Hz). LC/MS: pureza 95%, *m/z* 393 [M+H]⁺

Ejemplo 113- ácido (2S)-ciclohexil[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)amino]etanoico

Método D - Preparado a partir del Ejemplo 14

H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.35 (1H, s), 4.32 (2H, br s), 4.00-3.87 (2H, m), 3.18 (1H, dt, J=6.9, 3.00 (2H, t, J=12.4Hz), 2.17 (2H, t, J=14.0Hz), 2.02 (2H, d, J=6.6Hz), 1.92-1.56 (9H, m), 1.47-1.30 (3H, m), 1.26 (2H,t, J=7.2Hz), 1.19 (6H, d, J=7.0Hz). LC/MS: pureza 97%, *m/z* 419 [M+H]⁺

Ejemplo 114 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-2-metilalanina

Método E – Preparado a partir de *N*-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-2-metilalaninato de *terc*-butilo

¹H RMN (300 MHz, d3-MeOD) 6.94 (1H, s), 6.33 (1H, s), 4.19 (2H, s), 2.78-3.24 (6H, m), 1.78 (3H, d, J=13.0Hz), 1.63-1.70 (3H, m), 1.59 (6H, s) and 1.17 (6H, d, J=5.7Hz) LC/MS: pureza 97%, *m/z* 351 [M+H]⁺

Ejemplo 115 - O-terc-butil-N-[2-(1-{[2.4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serina

Método B - Preparado a partir del Ejemplo 45

¹H RMN: (300 MHz, d6-DMSO) 9.45 (1H, s), 9.41 (1H, s), 6.80 (1H, s), 6.33 (1H, s), 5.10 (1H, t, J=6.0 Hz), 3.48-3.36 (2H, m), 3.23, (1H, q, J=4.3 Hz), 3.11-3.01 (1H, septeto, J=6.9 Hz), 2.84-2.71 (2H, m), 1.87-1.72 (1H, m), 1.69-1.49 (8H, m), 1.39-1.27 (2H, m), 1.10 (6H, d, J=6.8 Hz), 1.08 (9H, s). LC/MS: pureza 97% *m/z* 451.25 [M+H][†]

Ejemplo 116 – ácido (2S)-ciclohexil{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil] amino} etanoico

Método D - Preparado a partir del Ejemplo 30

5

¹H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.35 (1H, s), 4.22 (2H, m), 3.92 (2H, m), 3.60 (1H, d, J=3.6Hz), 3.18 (1H, penteto, J=6.9Hz), 3.98 (4H, m), 2.10-1.70 (10H, m), 1.30 (4H, m), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 98%, *m/z* 433 [M+H]⁺

10 Ejemplo 117 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-2-metilalanina

Método D – Preparado a partir del Ejemplo 32

¹H RMN (300 MHz, d3-MeOD) 6.97 (1H, s), 6.35 (1H, s), 4.24 (2H, m), 3.18 (1H, penteto, J=6.9Hz), 3.01 (4H, m), 2.06 (1H, m), 1.89 (2H, m), 1.62 (6H, s), 1.36 (2H, m), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 98%, *m/z* 379 [M+H]⁺

Ejemplo 118 - N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-serina

15 Método D – Preparado a partir del Ejemplo 33

¹H RMN (300 MHz, d3-MeOD) 6.97 (1H, s), 6.35 (1H, s), 4.25 (2H, m), 4.08 (3H, m), 3.21 (1H, penteto, J=6.9Hz), 3.04 (4H, m), 2.08 (1H, m), 1.89 (2H, m), 1.33 (2H, m), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 95%, *m/z* 381 [M+H][†]

Ejemplo 119 - O-terc-butil-N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)metil]-L-serina

Método D - Preparado a partir del Ejemplo 34

¹H RMN (300 MHz, d3-MeOD) 6.97 (1H, s), 6.35 (1H, s), 4.19 (3H, m), 3.93 (2H, m), 3.18 (1H, penteto, 6.9Hz), 3.02 (4H, m), 2.08 (1H, m), 1.88 (2H, m), 1.35 (2H, m), 1.25 (9H, s), 1.18 (6H, d, J=6.9Hz). LC/MS: pureza 98%, *m/z* 437 [M+H][†]

Ejemplo 120 - ácido (2S)-{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)metil]amino} (fenil) etanoico

25 Método D – Preparado a partir del Ejemplo 36

¹H RMN (300 MHz, d3-MeOD) 7.53 (5H, m), 6.96 (1H, s), 6.33 (1H, s), 5.07 (1H, s), 4.20 (2H, m), 3.17 (1H, penteto, J=6.9Hz), 3.01-2.81 (4H, m), 2.05 (1H, m), 1.82 (2H, m), 1.32 (2H, m), 1.17 (6H, d, J=6.9Hz). LC/MS: pureza 98%, *m/z* 427 [M+H]⁺

Ejemplo 121 - N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-valina

30 Método D – Preparado a partir del Ejemplo 46

¹H RMN (300 MHz, d3-MeOD) 6.84 (1H, s), 6.22 (1H, s), 4.89 (1H, s), 3.54 (1H, d, J=11.3 Hz), 3.42-3.46 (1H, m), 2.92-3.12 (2H, m), 2.85 (3H, t, J=12.5 Hz), 2.17 (2H, br. s), 1.53-1.73 (2H, m), 1.24 (6H, s), 1.05 (4H, m), 0.94 (6H, d, J=6.8 Hz) LC/MS: pureza 100%, m/z 407.25 $[M+H]^{+}$

Ejemplo 122 - O-terc-butil-N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)-L-serina

35 Método D – Preparado a partir del Ejemplo 17

40

 1 H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.34 (1H, s), 4.60 (1H, br s), 4.28 (2H, br s), 3.88-3.63 (2H, m), 3.56 3.25-2.84 (3H, m), 2.11(2H, m), 1.64(3H, m), 1.24 (9H, s), 1.19 (6H, d, J=7.0Hz). LC/MS: pureza 100%, m/z 423 $[M+H]^{+}$

Ejemplo 123 – ácido (2S)-ciclohexil{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)etil]amino} etanoico

Método E - Preparado a partir del Ejemplo 49

 ^{1}H RMN (300 MHz, d3-MeOD) 6.90 (1H, s), 6.28 (1H, s), 4.08-4.22 (2H, m), 3.67 (1H, br.s.), 3.12 (1H, quin, J=7.3 Hz), 2.99-3.07 (1H, m), 2.91 (1H, t, J=12.4 Hz), 1.54-1.94 (12H, m), 1.16-1.39 (7H, m), 1.13 (6H, d, J=7.0 Hz), 1.09 (1H, m). LC/MS: pureza 92.60%, m/z 447.25 [M+H] $^{+}$

5 Ejemplo 124 – ácido (2S)-{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)etil]amino}(fenil) etanoico

Método D - Preparado a partir del Ejemplo 50

10

15

25

30

 1 H RMN (300MHz, d3-MeOD) 7.63-7.46 (5H, m), 6.94 (1H, s), 6.33 (1H, s), 4.23-4.18 (1H, m), 3.18 (1H, septeto, J=6.8 Hz), 3.11-3.03 (1H, m), 2.93 (2H, m), 1.77-1.61 (4H, m), 1.34-1.2 (2H, m), 1.18 (6H, d, J=6.9 Hz). LC/MS: pureza 99%, m/z 441.25 [M+H] †

Ejemplo 125 - N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-serina

Método D - Preparado a partir del Ejemplo 18

¹H RMN (300 MHz, d3-MeOD) 6.98 (1H, s), 6.35 (1H, s), 4.33 (1H, d, J=9.8Hz), 4.27-4.21 (1H, m), 4.16-3.97 (3H, m), 3.63-3.47 (1H, m),3.18 (1H, m), 3.01 (2H, t, J=12.7Hz), 2.19 (2H, d, J=11.7Hz), 1.81-1.58 (2H, m), 1.19 (6H, d, J=7.0Hz). LC/MS: pureza 100%, m/z 367 [M+H]⁺

Preparación del Ejemplo 126 - *N*-{3-[(1-{[2,4-dihidroxi-5-(propan-2-il) fenil]carbonil}piperidin-4-il)amino]propil}-L-leucinato de ciclopentilo

20 Etapa 1-N-{3-[(1-{[2,4-bis(benciloxi)-5-(prop-1-en-2-il)fenil]carbonil} piperidin -4-il)amino]propil}-L-leucina

A una solución agitada del Producto Intermedio C (0,200 g, 0,43mmol) se añadió triacetoxiborohidruro de sodio (0,136 g, 0,64mmol) y *N*-(3-aminopropil)-L-leucinato de ciclopentilo (0,110 g, 0,43mmol) bajo atmósfera de nitrógeno. La reacción se agitó durante 2 horas y a continuación se dividió entre agua y DCM (100m1/100m1). La capa orgánica se separó y la acuosa se extrajo con DCM (100ml). Las capas orgánicas combinadas se secaron sobre Na₂SO₄ y el disolvente se eliminó en vacío para proporcionar el producto en forma de un aceite de color amarillo que se utilizó en la siguiente etapa sin purificación adicional. LC/MS: *m/z* 710 [M+H]⁺

Etapa 2 - *N*-{3-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} piperidin-4-il)amino]propil}-L-leucinato de ciclopentilo (Ejemplo 126)

La hidrogenación del producto obtenido en la Etapa 1 para proporcionar el Ejemplo 126 se realizó según se describe para el Ejemplo 1.

 1 H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.34 (1H, s), 5.35 (1H, m), 4.22 (2H, m), 4.01 (1H, m), 3.92 (1H, t, J = 6.6Hz), 3.18 (5H, m), 2.99 (4H, m), 2.18 (2H, m), 2.05-1.60 (13H, m), 1.37 (2H, m), 1.18 (6H, d, J = 6.9Hz), 1.02 (6H, t, J = 5.7Hz)

LC/MS: pureza 95%, m/z 532 [M+H]

35 Ejemplo de referencia 127 - N-{3-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin -4-il)amino]propil}-L-leucina

Método D – Preparado a partir del Ejemplo 126

 1 H RMN (300 MHz, d3-MeOD) 6.96 (1H, s), 6.34 (1H, s), 4.25 (2H, m), 3.93 (2H, m), 3.18 (5H, m), 2.99 (4H, m), 2.18 (2H, m), 1.99 (3H, m), 1.34 (2H, m), 1.19 (6H, d, J = 6.8Hz), 1.02 (6H, t, J = 5.7Hz), 0.95 (2H, m). LC/MS: pureza 95%, m/z 464 [M+H]^{$^{+}$}

Ensayos Biológicos

10

20

25

35

5 Ensayo enzimático de HSP90

Se utiliza un ensayo HTRF (del inglés "homogeneous time resolved fluorescence" (resonancia de fluorescencia resuelta en tiempo homogéneo)) para medir la interacción de los compuestos con la HSP90. El ensayo mide la unión de Geldanamicina biotinilada (bio-GM; Biomol, # El-341, lote: A9199a) con la HSP90α marcada con His recombinante humana (HSP90; Prospec Technogene, #HSP90, lote: 260HSP9001). Se genera una señal mediante la transferencia de energía por resonancia de fluorescencia de un anticuerpo anti-his marcado con criptato de europio (anti-his-K; Cisbio International, # 61HISKLA, lote: 33V) mediante el complejo HSP90-GM-biotina a un aceptor de fluorescencia (aloficocianina) ligado a estreptavidina (SA-XL; Cisbio International, # 610SAXLB, lote: 089)

GM o compuestos no marcados compiten con la bio-GM para unirse a la HSP90, lo que da como resultado una señal de ensayo/transferencia de energía de fluorescencia reducida.

Un complejo formado previamente (1 hora de incubación) de HSP90 con el anti-his-K, se añade a la solución del compuesto en una microplaca de 384 pocillos (Corning, # 3710) y se incuba durante 15 minutos. Un complejo formado previamente (1 hora de incubación) de bio-GM con la SA-XL se añadió a los pocillos y se incuba durante 20 horas. Todas las incubaciones se realizan a temperatura ambiente. El volumen final del ensayo es 50µl/pocillo. Las concentraciones finales en el ensayo son: 50mM Hepes pH 7,3, 50mM NaCl, 100mM KF, 1mM EDTA, 1mM DTT, 0, 1% Triton-X-100, 1nM anti-his-K, 40nM HSP90, 40nM SA-XL, 40nM bio-GM. Los compuestos de ensayo se disuelven en DMSO, son diluidos previamente en un tampón de ensayo y se someten a ensayo a una concentración final entre 5000nM y 0,3nM. La concentración de DMSO resultante es 0,5% y se incluye en todos los controles. Los controles altos son sin los compuestos de ensayo, los controles bajos sin compuestos de ensayo, sin HSP90 y sin bio-GM. Como inhibidor de referencia se utiliza GM no marcada en las mismas concentraciones que los compuestos de ensayo.

La inhibición se calcula en comparación a los controles de ensayo utilizando una hoja de cálculo de Excel (Microsoft). Los valores de la IC_{50} se calculan mediante mínimas cuadradas no lineales que se ajustan al modelo estándar de respuesta a dosis utilizando GraphPad Prism (GraphPad Software Inc).

30 Ensavo de proliferación

Se siembran células en placas de cultivo tisular de 96 pocillos (1 pocillo = 30mm²) a una densidad adecuada (2000 células por pocillo para células U937, 2250 células por pocillo para células HUT-78 y MINO) en 50µl de medio de cultivo (ver detalles más adelante). 24 horas después se añaden 50µl del compuesto preparado en el mismo medio en forma de diluciones de 3 veces para proporcionar concentraciones finales en el rango de 5-10.000nM (n=6 para cada concentración). Las placas se incuban a continuación a 37°C, CO₂ al 5% durante 72 horas. Se analiza la proliferación celular utilizando WST-1 (un colorante indicador metabólico, Roche Cat nº 11644807001) de acuerdo con las instrucciones del fabricante. Los resultados se calculan como el porcentaje de la respuesta del vehículo y se representa gráficamente como una curva de respuesta a la dosis. Los valores de la IC₅0 representan la concentración del compuesto que inhibe la respuesta del vehículo en un 50%.

40 El medio de cultivo para las células U937 y HUT-78 es RPMI1640 (Sigma R0883) con suero fetal de ternera inactivado por calor al 10% (Hyclone SH30071, Perbio), más 2mM de glutamina (Sigma G7513) y 50U/ml de penicilina y sulfato de estreptomicina (Sigma P0781). El medio de cultivo celular MINO es igual que el utilizado para U937 y HUT-78 pero complementado con piruvato de sodio (Sigma S8636) a una concentración final de 1mM.

Estimulación con LPS de células THP-1

45 Se colocan en placas células THP-1 en 100μl a una densidad de 4x10⁴ células /por pocillo, en placas de cultivo tisular tratadas de 96 pocillos con fondo en V, y se incuban a 37°C en CO₂ al 5% durante 16 horas. 2 Horas después de la adición del inhibidor en 100μl de medio de cultivo celular, las células se estimulan con LPS (cepa de E. Coli 005 :B5, Sigma) a una concentració final de 1μg/ml y se incuba a 37°C en CO₂ al 5% durante 6 horas. Se miden los niveles de TNF-α de los sobrenadantes libres de células mediante un ensayo ELISA tipo sándwich (R&D Systems #QTA00B).

Estimulación con LPS de sangre entera humana

Se obtiene sangre entera mediante punción venosa utilizando tubos vacutainer heparinizados (Becton Dickinson) y se diluye en igual volumen de medio de cultivo tisular RPMI1640 (Sigma). A continuación se colocan 100µl en placas de cultivo tisular tratadas de 96 pocillos con fondo en V. 2 Horas después de la adición del inhibidor en 100µl de medio RPMI1640, la sangre se estimula con LPS (cepa de E. Coli 005:B5, Sigma) a una concentración final de 100ng/ml y se incuba a 37°C en CO_2 al 5% durante 6 horas. Se miden los niveles de TNF- α de los sobrenadantes libres de células mediante ensayo ELISA tipo sándwich (R&D Systems #QTA00B).

Resultados

5

Los valores de la IC₅₀ se sitúan en uno de los tres rangos siguientes:

Range A: IC₅₀ < 100nM

10 Range B: 100nM < IC₅₀ < 1000nM

Range C: IC₅₀ > 1000nM

NT = no sometido a test

En la Tabla que sigue a continuación, los Ejemplos 77 a 125 y 127 son ejemplos de referencia:

Tabla 1

Ejemplo	Ensayo enzimático	Ensayo con THP-1	Ensayo con sangre entera
1	Α	A	В
2	Α	В	В
3	A	С	С
4	Α	С	С
5	А	В	В
6	А	С	NT
7	В	С	NT
8	A	С	NT
9	A	В	В
10	A	В	С
11	Α	С	NT
12	A	С	NT
13	A	В	A
14	В	С	NT
15	В	NT	NT
16	А	С	NT
17	Α	Α	В
18	А	В	NT
19	А	С	NT
20	А	С	С
21	А	А	В
22	Α	Α	Α

Tabla 1 (continuación)

Ejemplo	Ensayo enzimático	Ensayo con THP-1	Ensayo con sangre entera
23	Α	В	В
24	Α	С	NT
25	Α	С	NT
26	Α	С	NT
27	A	С	NT
28	Α	В	В
29	Α	С	NT
30	В	С	NT
31	В	NT	NT
32	A	В	В
33	А	В	В
34	Α	В	В
35	A	С	NT
36	A	В	В
37	A	В	NT
38	Α	В	В
39	Α	A	NT
40	С	В	С
41	A	NT	NT
42	Α	В	NT
43	A	NT	NT
44	Α	Α	В
45	Α	В	В
46	Α	С	NT
47	А	В	NT
48	В	С	NT
49	A	NT	NT
50	А	NT	NT
51	Α	В	NT
52	A	NT	NT
53	A	NT	NT
54	A	В	В
55	A	В	В
56	В	С	С
57	A	NT	NT
58	A	NT	NT
<u> </u>		l	

Tabla 1 (continuación)

59 A A B 60 A A B 61 A B B 62 A B B 63 A B B 63 A B B 64 A A B 65 A B B 66 A B B 66 A B B 67 A B B 68 A B B 69 B C C 70 A B B B 71 B B B B 72 A B B B 73 A B B B 74 B C C C 75 C C C C 76 A NT NT NT <th>Ejemplo</th> <th>Ensayo enzimático</th> <th>Ensayo con THP-1</th> <th colspan="6">Ensayo con sangre entera</th>	Ejemplo	Ensayo enzimático	Ensayo con THP-1	Ensayo con sangre entera					
61 A B B C 62 A B B C 63 A B B B 64 A A B B 65 A B B B 66 A B B B 67 A B B B 68 A B B B 69 B C C C 70 A B B B B 71 B A N T T A N T N T N <t< td=""><td>59</td><td>А</td><td>Α</td><td colspan="6">В</td></t<>	59	А	Α	В					
62 A B C 63 A B B 64 A A B 65 A B B 66 A B B 67 A B B 68 A B B 69 B C C 69 B C C 70 A B B B 71 B B B B 71 B B B B 72 A B B B 8 B B B B 8 B B B B 73 A B B B B 74 B C C C C C C C C C C C C C C C C	60	Α	Α	В					
63 A B B B 64 A A B A A A A A A A A	61	Α	В	В					
64 A A B A A N T A A N T A	62	Α	В	С					
65 A B B C 66 A B C C 67 A B A A NT NT NT NT NT NT	63	A	В	В					
66 A B C 67 A B B 68 A B C 69 B C C 70 A B B 71 B B B B 71 B B B B 72 A B B B 73 A B B B 74 B C C C 75 C C C C 76 A C C C 77 A NT NT NT 78 A NT NT NT 80 A NT NT NT 81 A NT NT NT 82 A NT NT NT 83 A NT NT NT 84 A	64	А	Α	В					
67 A B B B C N NT NT	65	Α	В	В					
68 A B C C 69 B C C C 70 A B B B B 71 B B B B B B B C N NT	66	А	В	С					
69 B C C 70 A B B 71 B B B 72 A B B 73 A B B 74 B C C 75 C C C 76 A C C 77 A NT NT 78 A NT NT 79 A NT NT 80 A NT NT 81 A NT NT 81 A NT NT 82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 89 A NT NT	67	Α	В	В					
70 A B B B 71 B B B B 72 A B B B 73 A B B B 74 B C C C 75 C C C C 76 A C C C 77 A NT NT NT 78 A NT NT NT 80 A NT NT NT 81 A NT NT NT 81 A NT NT NT 82 A NT NT NT 83 A NT NT NT 84 A NT NT NT 85 A NT NT NT 86 A NT NT NT 88 A <td< td=""><td>68</td><td>A</td><td>В</td><td>С</td></td<>	68	A	В	С					
71 B B B B 72 A B B B 73 A B B B 74 B C C C 75 C C C C 76 A C C C 77 A NT NT NT 78 A NT NT NT 79 A NT NT NT 80 A NT NT NT 81 A NT NT NT 81 A NT NT NT 82 A NT NT NT 83 A NT NT NT 84 A NT NT NT 85 A NT NT NT 86 A NT NT NT 89 A	69	В	С	С					
72 A B B B 73 A B B B 74 B C C C 75 C C C C 76 A C C C 77 A NT NT NT 78 A NT NT NT 80 A NT NT NT 80 A NT NT NT 81 A NT NT NT 82 A NT NT NT 83 A NT NT NT 84 A NT NT NT 85 A NT NT NT 86 A NT NT NT 88 A NT NT NT 90 A NT NT NT 90 A	70	A	В	В					
73 A B B B 74 B C C C 75 C C C C 76 A C C C 77 A NT NT NT 78 A NT NT NT 80 A NT NT NT 81 A NT NT NT 82 A NT NT NT 83 A NT NT NT 84 A NT NT NT 85 A NT NT NT 86 A NT NT NT 87 A NT NT NT 89 A NT NT NT 90 A NT NT NT 91 A NT NT NT 92 A	71	В	В	В					
74 B C C 75 C C C 76 A C C 77 A NT NT 78 A NT NT 79 A NT NT 80 A NT NT 81 A NT NT 82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	72	A	В	В					
75 C C C 76 A C C 77 A NT NT 78 A NT NT 79 A NT NT 80 A NT NT 81 A NT NT 82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	73	Α	В	В					
76 A C C 77 A NT NT 78 A NT NT 79 A NT NT 80 A NT NT 81 A NT NT 82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	74	В	С	С					
77 A NT NT 78 A NT NT 79 A NT NT 80 A NT NT 81 A NT NT 82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	75	С	С	С					
78 A NT NT 79 A NT NT 80 A NT NT 81 A NT NT 82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	76	A	С	С					
79 A NT NT 80 A NT NT 81 A NT NT 82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	77	A	NT	NT					
80 A NT NT 81 A NT NT 82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	78	A	NT	NT					
81 A NT NT 82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	79	Α	NT	NT					
82 A NT NT 83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	80	А	NT	NT					
83 A NT NT 84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	81	Α	NT	NT					
84 A NT NT 85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	82	Α	NT	NT					
85 A NT NT 86 A NT NT 87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	83	А	NT	NT					
86 A NT NT 87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	84	A	NT	NT					
87 A NT NT 88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	85	А	NT	NT					
88 A NT NT 89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	86	A	NT	NT					
89 A NT NT 90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	87	A	NT	NT					
90 A NT NT 91 A NT NT 92 A NT NT 93 A NT NT	88	А	NT	NT					
91 A NT NT 92 A NT	89	А	NT	NT					
92 A NT NT 93 A NT NT	90	А	NT	NT					
93 A NT NT	91	А	NT	NT					
	92	А	NT	NT					
94 B NT NT	93	А	NT	NT					
	94	В	NT	NT					

Tabla 1 (continuación)

Ejemplo	Ensayo enzimático	Ensayo con THP-1	Ensayo con sangre entera					
95	Α	NT	NT					
96	Α	NT	NT					
97	Α	NT	NT					
98	Α	NT	NT					
99	A	NT	NT					
100	Α	NT	NT					
101	Α	NT	NT					
102	А	NT	NT					
103	Α	NT	NT					
104	Α	NT	NT					
105	Α	NT	NT					
106	А	NT	NT					
107	A	NT	NT					
108	A	NT	NT					
109	С	NT	NT					
110	A	NT	NT					
111	A	NT	NT					
112	A	NT	NT					
113	A	NT	NT					
114	A	NT	NT					
115	A	NT	NT					
116	A	NT	NT					
117	A	NT	NT					
118	A	NT	NT					
119	A	NT	NT					
120	A	NT	NT					
121	A	NT	NT					
122	A	NT	NT					
123	А	NT	NT					
124	A	NT	NT					
125	A	NT	NT					
126	А	С	NT					
127	A	NT	NT					

Tabla 2

		Ensayo de l	oroliferación		Ensayo con
Compuesto	Ensayo enzimático: Inhibición de Hsp90 (IC ₅₀ (nM)	Inhibición de proliferación de células U937 (hCE- 1 ^{+ve}) IC ₅₀ (nM)	Inhibición de proliferación de células Hut78 (hCE-1 ⁻ ^{ve}) IC ₅₀ (nM)	Relación de IC ₅₀ de células Hut78 con respecto a U937	THP-1: Inhibición de liberación de TNα de células THP-1 estimuladas con LPS (hCE-1 ^{+ve}) (IC ₅₀ nM)
CHR-7310	8	200	145	~1	476
HO H	42 (éster) 7 (ácido)	27	760	28	45

La Tabla 2 muestra que el ácido del Ejemplo 17 presenta una IC₅₀ similar en el ensayo de unión de la Hsp90 a la mólecula parental no-éster CHR-7310 (es decir, la misma estructura química pero en la que el motivo aminoácido (éster) se encuentra ausente), lo que indica que la unión a la enzima no ha sido interrumpida por el acoplamiento del motivo aminoácido (éster) motif. Los ésteres tales como el Ejemplo 17 son hidrolizados por hCE-1 en líneas celulares de hCE-1^{+ve} monocíticas, tales como las células U937 y THP-1, y como consecuencia el ácido carboxílico resultante se acumula de forma selectiva en estos tipos de células. Esta acumulación de ácido carboxílico como consecuencia de la hidrólisis de hCE-1, da como resultado que el compuesto del Ejemplo 17 sea significativamente más potente que el compuesto parental no éster CHR-7310 en células U937 y THP-1, a pesar de que el éster del Ejemplo 17 sea más débil como inhibidor de la Hsp90 que el CHR-7310. Puede también observarse que el compuesto del Ejemplo 17 es significativamente más débil en células Hut78 que no contienen hCE-1 y por tanto no puede hidrolizar el Ejemplo 17 a su ácido carboxílico. Estos datos subrayan los beneficios de potencia y selectividad que pueden lograrse mediante el acoplamiento del motivo aminoácido (éster) en compuestos tales como el Ejemplo 17.

Acumulación de ácido carboxílico en células de expresión (U937 & THP-1) y que no expresan (Hut78)

10

15

La valoración de la acumulación de ácido obtenido de éster en células tumorales humanas intactas, puede medirse utilizando el siguiente método:

Se incubaron células U937, THP-1 o Hut 78 cells (4x10⁴/ml) a 37°C en medio de cultivo que contenía 6μM de compuesto. Las incubaciones se finallizaron mediante centrifugación (300g; 5 min; 4°C). Se añadieron los sobrenadantes a 4 volúmenes de acetonitrilo de grado HPLC. Después de decantar el sobrenadante, el pellet de células residuales (1x10⁶ cells) se extrajo en 1ml de acetonitrilo. Se analizaron las muestras para determinar el metabolito éster y ácido a temperatura ambiente mediante LC/MS/MS (Sciex API3000). La cromatografía se realizó en base a una columna de AceCN (75*21mm) con una fase móvil de acetonitrilo al 5-95% (v/v), ácido fórmico al 0,1% (v/v). Los resultados se muestran en la Tabla 3:

Tabla 3

Compuesto	Acumulación de ácido	Acumulación de ácido	Acumulación de ácido			
	mediante células U937	mediante células THP-1	mediante células Hut78			
	intactas (ng/10 ⁶ células	intactas (ng/10 ⁶ células	intactas (ng/10 ⁶ células			
	@ 6h)	@ 6h)	@ 6h)			
Ejemplo 1	1433	2393	7			

La Tabla 3 muestra la acumulación selectiva de la hidrólisis celular derivada de ácido shows del compuesto del Ejemplo 1 en células monocíticas U937 y THP-1 que contienen hCE-1, en comparación con células Hut78 que no contienen hCE-1 y en consecuencia no pueden hidrolizar el Ejemplo 1 a su correspondiente ácido. Puede observarse que las células U937 y THP-1 acumulan cantidades significativas de ácido carboxílico, pero se detecta una cantidad insignificante de ácido en células Hut78.

Ensayo de células rotas

10

15

20

25

30

Para determinar si un compuesto que contiene un particular grupo R²⁰ es hidrolizable por una o más enzimas de carboxilesterasa intracelular a un grupo -COOH group, el compuesto puede ser sometido a prueba en el siguiente ensayo:

Preparación del extracto celular

Se lavan células tumorales U937 o HUT78 (~109) en 4 volúmenes de PBS de Dulbeccos (~1 litro) y se pelletiza a 525g durante 10 minutos a 4°C. Esta acción se repite dos veces y el pellet de células final es re-suspendido en 35ml de tampón homogeneizante frío (Trizma 10mM, NaCl 130mM, CaCl₂ 0,5mM pH 7,0 a 25°C). Los homogenados se preparan mediante cavitación con nitrógeno (700psi durante 50 minutos a 4°C). El homogenado se mantiene en hielo y se complementa con un cóctel de inhibidores a concentraciones finales de Leupeptina 1mM, Aprotinina 0,1mM, E64 8mM, Pepstatina 1,5mM, Bestatina 162mM, Quimostatina 33 mM. Después de la clarificación del homogenado celular mediante centrifugación a 525g durante 10 minutos, el sobrenadante resultante se utiliza como una fuente de actividad esterasa y se almacena a -80°C hasta que se requiera.

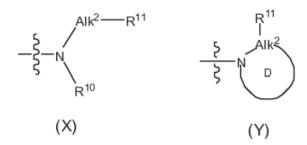
Medición de la escisión del éster

La hidrólisis de ésteres a los correspondientes ácidos carboxílicos puede medirse utilizando el extracto celular, preparado tal como se explica anteriormente. A este efecto, el extracto celular (~30µg / volumen total de ensayo de 0,5ml) se incuba a 37°C en un tampón de Tris- HCl 25mM, 125mM NaCl, pH 7,5 a 25°C. En el momento cero el éster (substrato) se encuentra entonces a una concentración final de 2,5mM, y las muestras se incuban a 37°C durante el tiempo adecuado (habitualmente 0 u 80 minutos). Las reacciones se detienen mediante adición de 2 x volúmenes de acetonitrilo. Para muestras del momento cero el acetonitrilo se añade previamente al compuesto éster. Después de la centrifugación a 12000g durante 5 minutos, las muestras se analizan para determinar el éster y su correspondiente ácido carboxílico a temperatura ambiente mediante LC/MS (Sciex API 3000, HP1100 de bomba binaria, CTC PAL). La cromatografía se basó en una columna de AceCN (75*2,1mm) y una fase móvil de acetonitrilo al 5-95% en agua /ácido fórmico al 0,1%.

REIVINDICACIONES

1. Compuesto que es (a) un derivado de fenilamida de la fórmula (I) o un tautómero del mismo, o (b) una sal, N-óxido, hidrato o solvato farmacéuticamente aceptable del mismo:

$$R^6$$
 R^7
 R^7
 R^7
 R^8
 R^8
 R^8
 R^8


5 en donde:

10

15

20

- R¹ y R³ son hidroxi;
- R^2 , R^4 y R^5 son iguales o diferentes y representan átomos de hidrógeno o halógeno o grupos alquilo C_{1-6} , alquenilo C_{2-6} , alquinilo C_{2-6} , alcoxi C_{1-6} , hidroxi, ciano, nitro o -NR'R" en donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-4} no sustituido, y a condición de que no más de dos de R^2 , R^4 y R^5 sean ciano o nitro;
- o bien:
- (i) R^6 se selecciona de alquilo C_{1-4} y R^7 representa - CR^8R^9 -A en donde R^8 y R^9 son iguales o diferentes y representan un átomo de hidrógeno o halógeno o un grupo alquilo C_{1-4} , alquenilo C_{2-4} , alcoxi C_{1-4} , hidroxi o -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-4} no sustituido, y A representa un anillo de fenilo o un grupo heteroarilo de 5 o 6 miembros y se sustituye con un grupo W; o
- (ii) R⁶ y R⁷, junto con el átomo de nitrógeno al que se enlazan, forman un grupo heterociclilo de 5 o 6 miembros que está o bien (a) sin fusionar, o (b) fusionado a un anillo de fenilo o a un grupo heteroarilo de 5 o 6 miembros, y en donde ya sea el grupo heterociclilo, cuando se fusiona, el grupo heterociclilo o el anillo de fenilo o el grupo heteroarilo al que éste se fusiona, se sustituye con un grupo W;
- W representa un grupo -Alk¹-R;
- Alk¹ representa un enlace, un grupo alquileno C_{1-4} o un grupo -(alquileno C_{1-4})-NR'-(alquileno C_{1-4})- en donde R' representa hidrógeno o alquilo C_{1-4} ;
- R representa un grupo de la fórmula (X) o (Y):

- R¹⁰, cuando está presente, representa un átomo de hidrógeno o un grupo alquilo C₁₋₄;
- Alk² representa un grupo de fórmula -C(R^{12})(R^{13})- cuando R es de fórmula (X), o -C(R^{12})- cuando R es de fórmula (Y), en donde R^{12} y R^{13} son iguales o diferentes y representan hidrógeno o los sustituyentes α de un compuesto de alicina α -sustituida o glicina α . α -disustituida o éster de alicina:
- un anillo D, cuando se encuentra presente, es un grupo heterociclilo de 5 o 6 miembros que contiene Alk² y en donde R¹¹ está ligado al anillo D a través de Alk², y el anillo D se fusiona opcionalmente a un segundo anillo que comprende un grupo fenilo, heterarilo de 5 o 6 miembros, carbocililo C₃-7 o heterociclilo de 5 o 6 miembros; y
- R^{11} es un grupo éster que es hidrolizable por una o más enzimas de carboxilesterasa intracelular a un grupo COOH en donde R^{11} es un grupo COOR 20 en donde R^{20} es -CR 14 R 15 R 16 y en donde:
 - (i) R^{15} representa hidrógeno o un grupo de la fórmula -[alquileno $C_{1-4}]_b$ - $(Z^1)_a$ -[alquilo $C_{1-4}]$ o [alquileno $C_{1-4}]_b$ - $(Z^1)_a$ -[alquenilo $C_{2-4}]$ en donde a y b son iguales o diferentes y representan 0 o 1, y Z^1 representa -O-, -S-, o -NR 17 en donde R^{17} es hidrógeno o alquilo C_{1-4} , R^{16} representa hidrógeno o alquilo C_{1-4} , y R^{14} representa hidrógeno o alquilo C_{1-4} ;
 - (ii) R^{15} representa un grupo fenilo o heteroarilo de 5- o 6- miembros, opcionalmente fusionado a un grupo adicional fenilo, heteroarilo de 5- o 6- miembros, carbociclilo C_{3-7} o heterociclilo de 5- o 6- miembros, R^{16} representa hidrógeno o alquilo C_{1-4} , y R^{14} representa hidrógeno;
 - (iii) R^{15} representa un grupo de la fórmula -(Alk⁴)-NR¹⁸R¹⁹ en donde Alk⁴ representa un grupo alquileno $C_{1.4}$ y o bien (a) R^{18} y R^{19} son iguales o diferentes y representan hidrógeno o alquilo $C_{1.4}$, o bien (b) R^{18} y R^{19} , junto con el átomo de nitrógeno al que se enlazan, forman un grupo heteroarilo de 5 o 6 miembros o heterociclilo de 5 o 6 miembros opcionalmente fusionado a un grupo adicional fenilo, heteroarilo de 5 o 6 miembros, carbociclilo $C_{3.7}$ o heterociclilo de 5 o 6 miembros; R^{16} representa hidrógeno o alquilo $C_{1.4}$, y R^{14} representa hidrógeno; o
 - (iv) R^{15} y R^{16} , junto con el átomo de carbono al que se enlazan, forman un grupo fenilo, heteroarilo de 5 o 6 miembros, carbociclilo C_{3-7} o heterociclilo de 5 o 6 miembros que se encuentra opcionalmente fusionado con un grupo adicional fenilo, heteroarilo de 5 o 6 miembros, carbociclilo C_{3-7} o heterociclilo de 5 o 6 miembros, y R^{14} representa hidrógeno;

y en donde, a menos que se indique lo contrario:

5

10

15

20

25

30

35

40

- las fracciones y grupos alquilo, alquenilo y alquinilo en R^2 , R^3 , R^4 , R^5 , R^6 , R^8 , R^9 , Alk^1 , R^{12} y R^{13} son sustituidos o no sustituidos con 1, 2 o 3 sustituyentes no sustituidos que son los mismos o diferentes y se seleccionan de átomos de halógeno y grupos alquilo C_{1-4} , alquenilo C_{2-4} , alcoxi C_{1-4} , alqueniloxi C_{2-4} , haloalquilo C_{1-4} , haloalquenilo C_{2-4} , haloalqueniloxi C_{2-4} , hidroxilo, -SR', ciano, nitro, hidroxialquilo C_{1-4} y -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-2} no sustituido; y
 - las fracciones y grupos arilo, heteroarilo, carbociclilo y heterociclilo en R^6 y R^7 son no sustituidos o sustituidos por 1, 2, 3 o 4 sustituyentes no sustituidos seleccionados de átomos de halógeno, y grupos ciano, nitro, alquilo C_{1-4} , alcoxi C_{1-4} , alquenilo C_{2-4} , alqueniloxi C_{2-4} , haloalquilo C_{1-4} , haloalqueniloxi C_{2-4} , haloalquen

 NR^BCOOH , -NHCOOH, $-NHSO_2R^A$, $-NR^BSO_2R^A$, $-NHSO_2OR^A$, $-NR^BSO_2OH$, $-NHSO_2H$, $-NR^BSO_2OR^A$, $-NHSO_2OH$, $-NHSO_2O$

- 2. Compuesto según la reivindicación 1 en donde R^2 , R^4 y R^5 son iguales o diferentes y representan átomos de hidrógeno o halógeno o grupos hidroxi, alquilo $C_{1.4}$ no sustituido o alcoxi $C_{1.4}$ no susituido.
- 3. Compuesto según la reivindicación 1 o 2 en donde o bien:

5

10

15

25

30

- (i) R⁶ representa –CH₃, R⁷ representa -CR⁸R⁹-A en donde R⁸ y R⁹ son iguales o diferentes y representan un átomo de hidrógeno o halógeno o un grupo alquilo C₁₋₄ o alcoxi C₁₋₄ no sustituido, y A representa un anillo de fenilo sustituido con un grupo W; o
- (ii) R^6 y R^7 , junto con el átomo de nitrógeno al que se enlazan, forman un grupo pirrolidinilo, piperidinilo o isoindolinilo que es sustituido con un grupo W y es, de manera opcional, sustituido adicionalmente con 1 o 2 grupos que son iguales o diferentes y se selecciona de entre átomos de halógeno y grupos alquilo C_{1-4} no sustituido, alcoxi C_{1-4} , hidroxilo, haloalquilo C_{1-4} , haloalcoxi C_{1-4} , hidroxialquilo C_{1-4} , ciano, nitro, -SR' y -NR'R", donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-2} no sustituido.
- 4. Compuesto según cualquiera de las reivindicaciones precedentes en donde Alk^1 representa un enlace, un grupo alquileno C_{1-4} no sustituido, o un grupo -(alquileno C_{1-2})-NH-(alquileno C_{1-4}) no sustituido.
- 5. Compuesto según cualquiera de las reivindicaciones precedentes en donde o bien:
- 20 (i) R^{12} y R^{13} son iguales o diferentes y representan hidrógeno, alquilo C_{1-6} , carbociclilo C_{3-7} , arilo C_{6-10} , (alquilo C_{1-4})-(arilo C_{6-10}), o -(alquilo C_{1-4})-(carbociclilo C_{3-7}); o
 - (ii) R¹² y R¹³, junto con el átomo de carbono al que se enlazan, forman un grupo carbociclilo C₃₋₇;
 - en donde los grupos y fracciones alquilo son no sustituidos o sustituidos con 1 o 2 sustituyentes seleccionados de grupos alquilo C_{1-4} no sustituido, alcoxi C_{1-4} , hidroxi y -NR'R", donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-2} no sustituido, y en donde los grupos y fracciones arilo y carbociclilo son no sustituidos o sustituidos con 1 o 2 sustituyentes seleccionados de átomos de halógeno y grupos alquilo C_{1-4} no sustituido, alcoxi C_{1-4} , hidroxilo, haloalquilo C_{1-4} , haloalcoxi C_{1-4} , hidroxialquilo C_{1-4} , ciano, nitro, -SR' y -NR'R", donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-2} no sustituido.
 - 6. Compuesto según la reivindicación 5 en donde o bien:
 - (i) R^{12} y R^{13} son iguales o diferentes y representan un átomo de hidrógeno o un grupo no sustituido seleccionado de alquilo C_{1-4} , carbociclilo C_{3-7} , fenilo, -hidroxi-qlquilo(C_{1-4}), -alcoxi(C_{1-4}) -alquilo(C_{1-2})-fenilo o -alquilo(C_{1-2}) -carbociclilo(C_{3-7}); o
 - (ii) R^{12} y R^{13} , junto con el átomo de carbono al que se enlazan, forman un grupo carbociclilo C_{3-7} no sustituido
- Compuesto según cualquiera de las reivindicaciones precedentes en donde R representa un grupo de la fórmula (X) y R¹⁰ representa un átomo de hidrógeno.
 - 8. Compuesto según cualquiera de las reivindicaciones precedentes en donde R^{11} es -COO R^{20} en donde R^{20} representa alquilo C_{1-4} no sustituido o carbociclilo C_{3-7} .
- 9. Compuesto según cualquiera de las reivindicaciones precedentes que es (a) un derivado de fenilamida de la fórmula (IA) o un tautómero del mismo, o (b) una sal, N-óxido, hidrato o solvato farmacéuticamente aceptable del mismo:

$$R^6$$
 R^7
 R^7
 R^4
 R^4

en donde:

5

10

15

20

25

30

- R⁴ representa un grupo alquilo C₁₋₄ no sustituido;
- o bien:

o R^6 representa -CH $_3$, R^7 representa -CR 8 R 9 -A en donde R^8 y R^9 son iguales o diferentes y representan un átomo de hidrógeno o halógeno o un grupo alquilo C_{1-4} no sustituido o alcoxi C_{1-4} , y A representa un anillo de fenilo sustituido con un grupo W; o

o R^6 y R^7 , junto con el átomo de nitrógeno al que se enlazan, forman un grupo pirrolidina, piperidina o isoindolina que es sustituido con un grupo W y que es de forma opcional sustituido adicionalmente con 1 o 2 grupos que son iguales o diferentes y se seleccionan de entre átomos de halógeno y grupos alquilo C_{1-4} no sustituido, alcoxi C_{1-4} , hidroxilo, haloalquilo C_{1-4} , haloalcoxi C_{1-4} , hidroxialquilo C_{1-4} , ciano, nitro, -SR' y -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo C_{1-2} no sustituido;

- Alk¹ representa un enlace, un grupo alquileno C_{1-4} no sustituido, o un grupo -(alquileno C_{1-2})-NH-(alquileno C_{1-4})- no sustituido;
- R representa un grupo de fórmula (X) en donde R¹⁰ representa hidrógeno:
- Alk² representa un grupo de la fórmula -C(R¹²)(R¹³)- en donde o bien:

o R^{12} y R^{13} son iguales o diferentes y representan hidrógeno, alquilo C_{1-6} , carbociclilo C_{3-7} , arilo C_{6-10} , -(alquilo C_{1-4})-(arilo C_{6-10}), o -(alquilo C_{1-4})-(carbociclilo C_{3-7}); o

o R¹² y R¹³, junto con el átomo de carbono al que se enlazan, forman un grupo carbociclilo C₃₋₇,

en donde los grupos y fracciones alquilo en R^{12} y R^{13} son no sustituidos o sustituidos con 1 o 2 sustituyentes seleccionados de grupos alquilo $C_{1\text{-}4}$ no sustituido, alcoxi $C_{1\text{-}4}$, hidroxi y -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo $C_{1\text{-}2}$ no sustituido, y en donde los grupos y fracciones carbociclilo en R^{12} y R^{13} son no sustituidos o susituidos con 1 o 2 sustituyentes seleccionados de átomos de halógeno y grupos alquilo $C_{1\text{-}4}$ no sustituido, alcoxi $C_{1\text{-}4}$, hidroxilo, haloalquilo $C_{1\text{-}4}$, haloalcoxi $C_{1\text{-}4}$, hidroxialquilo $C_{1\text{-}4}$, ciano, nitro, -SR' y -NR'R" donde R' y R" son iguales o diferentes y representan hidrógeno o alquilo $C_{1\text{-}2}$ no sustituido; y

- R¹¹ es -COOR²⁰ en donde R²⁰ representa alquilo C₁₋₄ no sustituido o carbociclilo C₃₋₇.
- 10. Compuesto según la reivindicación 9 (i) en donde R⁴ representa isopropilo, y/o (ii) en donde o bien:
 - R⁶ representa -CH₃, R⁷ representa -CH₂-fenilo en donde el anillo de fenilo es sustituido con un único grupo W; o
 - R^6 y R^7 , junto con el átomo de nitrógeno al que se enlazan, forman un grupo pirrolidinilo, piperidinilo o isoindolinilo que es sustituido con un único grupo W; y/o

(iii) en donde uno de R^{12} y R^{13} es hidrógeno o alquilo C_{1-2} no sustituido y el otro de R^{12} y R^{13} es un grupo no sustituido seleccionado de alquilo C_{1-4} , carbociclilo C_{3-7} , fenilo, -hidroxi-alquilo(C_{1-4}), -alcoxi(C_{1-4}) -alquilo(C_{1-4}), -alquilfenilo C_{1-2}) o -alquilo(C_{1-2}) -carbociclilo(C_{3-7}).

11. Compuesto según la reivindicación 1 que se selección de:

5 N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-leucinato de ciclopentilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-2-metilalaninato de ciclopentilo; *N*-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-valinato de ciclopentilo; (2S)-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)amino](fenil)etanoato de ciclopentilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-alaninato de ciclopentilo; 10 *N*-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-leucinato de terc-butilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-3-il)-L-leucinato de ciclopentilo; *N*-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-alaninato de terc-butilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-fenilalaninato de ciclopentilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil)piperidin-4-il)-L-norleucinato de ciclopentilo; 15 O-terc-butil-N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-serinato de terc-butilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-D-leucinato de ciclopentilo; 3-ciclohexil-N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-alaninato de ciclopentilo; (2S)-ciclohexil[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)amino]etanoato de ciclopentilo; (2S)-ciclohexil[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)amino]etanoato de terc-butilo; 20 N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-fenilalaninato de terc-butilo; O-terc-butil-N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-serinato de ciclopentilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-L-serinato de ciclopentilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)-D-leucinato de terc-butilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-3-il)-L-leucinato de ciclopentilo; 25 N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-leucinato de ciclopentilo; N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-alaninato de ciclopentilo; N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-fenilalaninato de ciclopentilo; N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-leucinato de terc-butilo; N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-fenilalaninato de terc-butilo; 30 N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-alaninato de terc-butilo; N-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-D-leucinato de terc-butilo; N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-D-leucinato de ciclopentilo;

	N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-valinato de ciclopentilo;
	(2S)-ciclohexil{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil}piperidin-4-il)metil] amino} etanoato de ciclopentilo;
5	(2S)-ciclohexil{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carboxil} piperidin-4-il)metil] amino}etanoato de tercbutilo;
	N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-2-metil-L-alaninato de ciclopentilo;
	N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-serinato de ciclopentilo;
	O-terc-butil-N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil] carbonil} piperidin-4-il)metil]-L-serinato de ciclopentilo;
	O-terc-butil-N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-serinato de terc-butilo;
10	(2S)-{[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]amino}(fenil)etanoato de ciclopentilo;
	N-[(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)metil]-L-serinato de terc-butilo;
	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-leucinato de ciclopentilo;
	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-alaninato de ciclopentilo;
	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-fenilalaninato de ciclopentilo;
15	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-fenilalaninato de terc-butilo;
	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-leucinato de terc-butilo;
	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-alaninato de terc-butilo;
	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-2-metilalaninato de ciclopentilo;
	O-terc-butil-N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serinato de ciclopentilo;
20	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-valinato de ciclopentilo;
	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serinato de ciclopentilo;
	(2S)-ciclohexil{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}etanoato de ciclopentilo;
25	(2S)-ciclohexil{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}etanoato de tercbutilo;
	(2S)-{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}(fenil)etanoato de terc-butilo;
	(2S)-{[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]amino}(fenil)etanoato de ciclopentilo;
	N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serinato de terc-butilo;
	O-terc-butil-N-[2-(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}piperidin-4-il)etil]-L-serinato de terc-butilo;
30	N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil)-2,3-dihidro-1H-isoindol-5-il)metil]-L-leucinato de ciclopentilo;
	N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]-2-metilalaninato de ciclopentilo;
	N-[(2- {[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]-L-alaninato de terc-butilo;

N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]-L-alaninato de etilo;

 $\textit{N-}[(2-\{[2,4-\text{dihidroxi-5-(propan-2-il)fenil}] carbonil}\}-2,3-\text{dihidro-1H-isoindol-5-il}) metil]-L-alaninato$

ciclopentilo;

inflamatorias.

propan-2-il N-[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihydro-1H-isoindol-5-il)metil]-L-alaninato;

de

5	1-{[(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)metil]amino}ciclopentanocarboxilato de ciclopentilo;
	N-[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)etil]-L-leucinato de ciclopentilo;
	N-[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)etil]-L-leucinato de terc-butilo;
10	1-{[2-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)etil]amino}ciclopentanocarboxilato de ciclopentilo;
	N-[3-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)propil]-L-leucinato de ciclopentilo;
15	1-{[3-(2-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}-2,3-dihidro-1H-isoindol-5-il)propil]amino}ciclopentanocarboxilato de ciclopentilo;
	N-(3-{[[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)-L-leucinato de ciclopentilo;
	N-(3-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil} (metil)amino]metil} bencil)-2-metilalaninato de ciclopentilo;
	1-[(3-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)amino]ciclopentanocarboxilato de ciclopentilo;
20	(2S)-[(3-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)amino](fenil) etanoato de ciclopentilo;
	N-(4-{[[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)-L-leucinato de ciclopentilo;
	(2S)-[(4-{[{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)amino](fenil) etanoato de ciclopentilo;
25	N-(4-{[[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}bencil)-2-metilalaninato de ciclopentilo;
	N-[2-(4-{[[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}(metil)amino]metil}fenil)etil]-2-metilalaninato de ciclopentilo;
	N-{[(2R)-1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-2-il]metil}-L-leucinato de ciclopentilo;
	N-{[(2S)-1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-2-il]metil}-L-leucinato de ciclopentilo;
30	N(1-{[2,4-dihidroxi-5-(propan-2-il)fenil]carbonil}pirrolidin-3-il)-D-leucinato de ciclopentilo; y
	N-{3-[(1-{[2,4-dihidroxi-5-(propan-2-il) fenil]carbonil}piperidin-4-il)amino]propil} -L-leucinato de ciclopentilo.
	12. Compuesto según se define en cualquiera de las reivindicaciones precedentes, para su uso en el tratamiento del organismo humano o animal.
35	13. Composición farmacéutica que comprende un compuesto según se define en cualquiera de las reivindicaciones 1 a 11 y un soporte o diluyente farmacéuticamente aceptable.
	14. Compuesto según cualquiera de las reivindicaciones 1 a 11 para su uso en el tratamiento o la prevención de trastornos mediados por la HSP90, en donde el trastorno se selecciona de cáncer, enfermedades autoinmunes o

15. Compuesto para reumatoide.	su u	uso s	según I	а	reivindicación	14	en	donde	el	trastorno	mediado	por	HSP90	es	artritis