



# OFICINA ESPAÑOLA DE PATENTES Y MARCAS

**ESPAÑA** 



11 Número de publicación: 2 587 382

(51) Int. CI.:

C08J 3/20 (2006.01) CO8K 3/22 (2006.01) C08K 13/02 (2006.01) C08K 5/12 (2006.01) C08L 101/06 (2006.01) CO8K 9/06 (2006.01)

C01G 41/02 (2006.01) C08K 13/06 (2006.01) C08L 27/06 (2006.01) C08J 5/18 B82Y 30/00 (2011.01) C08J 3/205 (2006.01) C08L 33/00 (2006.01)

(12)

# TRADUCCIÓN DE PATENTE EUROPEA

T3

23.04.2008 PCT/JP2008/057802 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 13.11.2008 WO08136317

(96) Fecha de presentación y número de la solicitud europea: 23.04.2008 E 08751940 (1)

18.05.2016 (97) Fecha y número de publicación de la concesión europea: EP 2143762

(54) Título: Composición para producir una película de poli(cloruro de vinilo) protectora de la radiación térmica, procedimiento de producción de la composición y película de poli(cloruro de vinilo) protectora de la radiación térmica

(30) Prioridad:

26.04.2007 JP 2007117019

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 24.10.2016

(73) Titular/es:

**SUMITOMO METAL MINING CO., LTD. (100.0%)** 11-3, SHIMBASHI 5-CHOME MINATO-KU, TOKYO 105-8716, JP

(72) Inventor/es:

**FUJITA, KENICHI** 

(74) Agente/Representante:

**CARPINTERO LÓPEZ, Mario** 

### **DESCRIPCIÓN**

Composición para producir una película de poli(cloruro de vinilo) protectora de la radiación térmica, procedimiento de producción de la composición y película de poli(cloruro de vinilo) protectora de la radiación térmica

### Campo técnico

15

La presente invención se refiere a una composición para fabricar una película de poli(cloruro de vinilo) protectora de la radiación térmica y a un procedimiento de fabricación de la misma, aplicado a una película de poli(cloruro de vinilo) que tiene excelente transmitancia de luz visible y que tiene excelente función protectora de la radiación térmica, y además se refiere a una película de poli(cloruro de vinilo) protectora de la radiación térmica a la cual se aplica la composición para fabricar una película de poli(cloruro de vinilo) protectora de la radiación térmica.

### 10 Descripción de la técnica relacionada

Los rayos solares incidentes desde una parte denominada de abertura, tal como ventanas y puertas de diversos edificios y vehículos, incluye rayos ultravioletas y rayos infrarrojos además de luz visible. Un rayo del infrarrojo cercano que tiene longitudes de onda de 800 a 2500 nm de entre los rayos infrarrojos incluidos en los rayos solares se denomina rayo térmico y este rayo térmico provoca que la temperatura en una habitación aumente cuando este entra en la habitación desde las partes de abertura. Para resolver tal estado, en los últimos años, en un campo de un material para ventanas de diversos edificios y vehículos, ha aumentado rápidamente una demanda para una pieza de moldeo protectora de la radiación térmica capaz de proteger de la radiación térmica mientras captura suficientemente la luz visible y suprime el aumento de temperatura en la habitación mientras mantiene el brillo, y se han propuesto muchas patentes respecto a la pieza de moldeo protectora de la radiación térmica.

Por ejemplo, se ha propuesto una plata protectora de la radiación térmica, en la que una película reflectante de la radiación térmica, formada depositando un metal y un óxido metálico sobre una película de resina transparente, se une a una pieza de moldeo transparente tal como vidrio, placa acrílica y placa de policarbonato.

También, por ejemplo, se propone una pluralidad de placas protectoras de la radiación térmica formadas depositando directamente el metal o el óxido metálico sobre la superficie de la pieza de moldeo transparente.

- Además, por ejemplo, se propone una placa protectora de la radiación térmica y una película (véanse los documentos de patente 1 y 2) en la que un agente absorbente de rayos del infrarrojo cercano orgánico, representado por un compuesto basado en ftalocianina y un compuesto basado en antraquinona, se amasa con una resina transparente termoplástica tal como una resina de polietilentereftalato, una resina de policarbonato, una resina acrílica, una resina de polietileno y una resina de poliestireno.
- Además, por ejemplo, se propone también una placa protectora de la radiación térmica (véanse los documentos de patente 3 y 4) en la que una partícula fina inorgánica, tal como mica revestida con óxido de titanio, que tiene una capacidad de reflexión de la radiación térmica, o revestida con óxido de titanio, se amasa con una resina transparente, tal como una resina acrílica y una resina de policarbonato.
- Asimismo, como una lámina protectora de la radiación térmica usando resina de poli(cloruro de vinilo), el documento de patente 5 propone una lámina protectora de la radiación térmica capaz de evitar un aumento de temperatura por rayos solares dentro de una estructura similar a una lámina, tal como una tienda, reflejando el rayo solar mediante la "capa de reflexión" de una capa más externa y absorbiendo eficazmente la luz transmitida, que no se refleja completamente, por una "capa de absorción" en una estructura de laminación de la "capa de reflexión" y la "capa de absorción", en la que la "capa de reflexión" contiene al menos uno seleccionado de perlas de vidrio, bolas de vidrio huecas y microcápsulas, y pigmento blanco basado en óxido de titanio mezclado en la resina de poli(cloruro de vinilo), para reflejar una luz que tiene una longitud de onda específica; y la "capa de absorción" contiene al menos una seleccionada de resina de poli(cloruro de vinilo), resina acrílica, resina de poliéster, resina poliolefínica y resina de uretano, para absorber una luz transmitida a través de esta capa de reflexión y que tiene una longitud de onda
- Mientras tanto, un solicitante de la presente invención se centra en nanopartículas de hexaboruro que tiene una gran cantidad de electrones libres como componentes que tienen un efecto protector de la radiación térmica, y ya ha propuesto el material laminar de resina protectora de la radiación térmica (documento de patente 6) en el que las nanopartículas de hexaboruro están dispersadas, o las nanopartículas de hexaboruro y partículas ITO y/o partículas ATO están dispersadas en la resina de policarbonato y la resina acrílica.

que contribuye particularmente a la generación de calor.

En las características ópticas del material laminar de resina protectora de la radiación térmica al que se aplican singularmente las nanopartículas de hexaboruro, o al que se aplican las nanopartículas de hexaboruro y partículas ITO y/o partículas ATO, la transmitancia de luz visible mejora en un 70 % o más y la transmitancia de luz solar mejora en un 50 %, debido a que el material laminar de resina protectora de la radiación térmica tiene una transmitancia máxima en la región de rayos visibles y presenta una fuerte absorción y, de esta manera, una transmitancia mínima en una región del infrarrojo cercano.

Además, en el documento de patente 7, el solicitante de la presente invención proporciona una mezcla madre principalmente compuesta de resina termoplástica y un material de hexaboruro protector de la radiación térmica (XB<sub>6</sub>, en la que X es al menos una o más clases de elementos seleccionados entre La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr y Ca) capaz de preparar la resina transparente protectora de la radiación térmica moldeada de diversas formas que tiene una alta función protectora de la radiación térmica, mientras mantiene una excelente capacidad de transmitancia de luz visible, sin usar un procedimiento físico de formación de película a un alto coste, y también propone una pieza de moldeo de resina transparente protectora de la radiación térmica y un laminado transparente protector de la radiación térmica al que se aplica esta mezcla madre.

También, en el documento de patente 8, el solicitante de la presente invención propone un filtro de absorción de rayos infrarrojos para un panel de pantalla de plasma, que tiene una gran potencia de absorción de rayos del infrarrojo cercano y excelente durabilidad y puede fabricarse a un bajo coste, en el que las nanopartículas de material inorgánico con resistencia a la intemperie mejorada y capaces de transmitir la luz de la región de luz visible y proteger la luz de la región de rayos de infrarrojo cercano, están compuestas de nanopartículas de óxido de volframio y óxido de volframio compuesto, con un tamaño de partícula dispersada promedio ajustado a 800 nm o menor.

### Documento de patente 1:

Publicación de Patente Japonesa Abierta a Inspección Pública n.º 06-256541

Documento de patente 2:

Publicación de Patente Japonesa Abierta a Inspección Pública n.º 06-264050

20 Documento de patente 3:

Publicación de Patente Japonesa Abierta a Inspección Pública n.º 02-173060

Documento de patente 4:

Publicación de Patente Japonesa Abierta a Inspección Pública n.º 05-78544

Documento de patente 5:

Publicación de Patente Japonesa Abierta a Inspección Pública n.º 2006-231869

Documento de patente 6:

Publicación de Patente Japonesa Abierta a Inspección Pública n.º 2003-327717

Documento de patente 7:

Publicación de Patente Japonesa Abierta a Inspección Pública n.º 2004-59875

30 Documento de patente 8:

25

35

50

Publicación de Patente Japonesa Abierta a Inspección Pública n.º 2006-154516

Además, el documento JP-A-08 217908 se refiere a un aditivo persistente para resinas, que puede añadirse a una resina en una etapa de molienda y que puede conferir propiedades protectoras de la radiación térmica y capacidad de procesamiento a la resina mezclando una sustancia líquida especificada con un compuesto especificado. El aditivo se prepara mezclando una sustancia líquida (por ejemplo, ftalato de di-2-etilhexilo) que, cuando se añade a una sustancia polimérica (por ejemplo, una resina de polivinil butiral), mejora la capacidad de procesamiento de la resina o cambia sus propiedades físicas y es deseablemente un plastificante, con un compuesto inorgánico protector de la radiación térmica que es deseablemente una solución sólida de óxido de estaño y óxido de antimonio o una solución sólida de óxido de indio y óxido de estaño.

En el documento JP-A-2006 219662, se proporciona un material laminar de resina protector de la radiación térmica capaz de mantener excelentes propiedades de transmisión de luz visible y presentar elevadas propiedades protectoras de la radiación térmica al mismo tiempo y con un excelente aspecto de resistencia. El material laminar de resina protector de la radiación térmica contiene partículas finas que tienen una función protectora de la radiación térmica en un material a base de resina transparente, en el que las partículas finas que tienen la función protectora de la radiación térmica están compuestas de partículas finas de un óxido de volframio y/o partículas finas de un óxido de volframio compuesto y que tienen una estructura cristalina hexagonal.

El documento JP-A-2006 132042 desvela una fibra que contiene un material de absorción de la radiación térmica que tiene excelente resistencia a la intemperie, excelente eficacia de absorción de la radiación térmica y excelente transparencia, que es de bajo coste y tiene una propiedad de retención de calor. Las partículas finas de Cs<sub>0,33</sub>WO<sub>3</sub> se mezclan con tolueno y un dispersante para dispersar las partículas finas para dar una dispersión y después el

tolueno se retira para preparar el polvo dispersante de Cs<sub>0,33</sub>WO<sub>3</sub>. El polvo dispersante se mezcla uniformemente con gránulos de resina de polietilentereftalato y la mezcla se extruye para dar hebras, que se granulan para dar una mezcla madre que contiene partículas finas de Cs<sub>0,33</sub>WO<sub>3</sub>. La mezcla madre se mezcla con una mezcla madre que no contiene partículas finas inorgánicas, se somete a hilado en estado fundido y se estira para producir un hilo multifilamento de poliéster. El hilo monofilamento de poliéster se corta y se producen fibras cortas de poliéster para dar un hilo hilado, que se usa para dar artículos tejidos que tienen propiedad de retención de calor.

En el documento JP-A-2006 199850, se desvela una mezcla madre que contiene un componente que contiene un componente protector de la radiación térmica que posibilita la producción de un material moldeado con resina transparente protector de la radiación térmica que tiene una baja turbidez, una excelente capacidad de transmisión de luz visible y una alta función protectora de la radiación térmica. Esta mezcla madre que contiene el componente protector de la radiación térmica contiene un óxido de estaño dopado con antimonio y una resina termoplástica. Las partículas finas del óxido de estaño dopado con antimonio se tratan en superficie con al menos 1 clase de agente de tratamiento de superficie seleccionado de un agente de acoplamiento con silano, un agente de acoplamiento con titanio, un agente de acoplamiento con aluminio y un agente de acoplamiento con circonio que tiene un grupo funcional alcoxi o hidroxi y uno orgánico, y también la relación de combinación X del agente de tratamiento superficial al óxido de estaño dopado con antimonio (el peso del agente de tratamiento superficial)/(el peso de óxido del estaño dopado con antimonio) se ajusta dentro del intervalo de 0,05<X<10.

El documento EP-A-1 676 890 desvela un cuerpo de protección de infrarrojos que transmite suficientemente los rayos visibles, que no tiene aspecto con forma de semiespejo, que no requiere un aparato a gran escala cuando se forma una película sobre un sustrato, que corta eficazmente los rayos del infrarrojo cercano invisibles con un intervalo de longitud de onda de 780 m o mayor, mientras elimina un tratamiento térmico a alta temperatura después de la formación de la película, y que tiene una característica espectral tal como transparencia, sin cambio del tono de color. El material de partida, que es una mezcla que contiene una cantidad predeterminada de un compuesto de volframio, se calienta a 550 °C en una atmósfera reductora durante 1 hora, después se enfría a temperatura ambiente una vez que está en una atmósfera de argón, produciendo de esta manera polvo de W<sub>18</sub> O<sub>49</sub>. Después, el polvo, el disolvente y el dispersante se mezclan, después se someten a tratamiento de dispersión para obtener una solución de dispersión. La solución de dispersión y la resina de revestimiento duro curable por UV se mezclan para obtener una solución de dispersión de partículas finas del material de protección de infrarrojos. La solución de la dispersión de partículas finas de material de protección de infrarrojos se aplica sobre una película de resina de PET para formar una película, que después se cura, y se obtiene de esta manera una película protectora del infrarrojo que tiene un perfil de transmisión mostrado en la figura.

El documento EP-A-1 640 348 proporciona una estructura laminada para proteger contra la radiación solar que tiene altas características de bloqueo de radiación solar con bajos costes de fabricación. Se obtienen partículas finas que funcionan para bloquear la radiación solar por combustión de ácido túngstico en una atmósfera reductora, se prepara un líquido de dispersión para formar un material de bloqueo de radiación solar por tratamiento de aplastado y dispersión de las partículas finas, un agente dispersante base de polímero y disolvente y, de esta manera, se prepara un líquido de dispersión para formar un material de bloqueo de radiación solar que se añade a la resina de vinilo, que se moldea en una forma de lámina para tener una película intermedia.

## Divulgación de la invención

5

10

15

20

25

30

35

45

50

55

### 40 Problema que debe resolver la invención

Como se ha descrito anteriormente, una película protectora de la radiación térmica se forma depositando un metal sobre una película de resina transparente. Entonces, la placa protectora de la radiación térmica, con una película de reflexión de la radiación térmica unida a una pieza de moldeo transparente tal como vidrio, supone altos costes, porque esta película de reflexión de la radiación térmica por sí misma es extremadamente cara y se requiere un procedimiento complicado, tal como un procedimiento de enlace. Además, una propiedad de enlace entre la pieza de moldeo transparente y la película de reflexión es de mala calidad, implicando de esta manera un problema de que la separación de la película se genera debido a un cambio con el paso del tiempo.

Es necesario fabricar un aparato que requiere un control de atmósfera, tal como ajustar una atmósfera en un estado de alto vacío con alta precisión, para la placa protectora de la radiación térmica formada depositando directamente el metal sobre la superficie de la pieza de moldeo transparente, que implica de esta manera un problema de que la productividad en masa es baja y la usabilidad universal es pobre.

Para proteger suficientemente de la radiación térmica, debe mezclarse una gran cantidad de agente absorbente de rayos del infrarrojo cercano en la placa protectora de la radiación térmica con un agente absorbente de rayos del infrarrojo cercano orgánico amasado con la resina transparente termoplástica, tal como una resina de polietilentereftalato. Después, cuando una gran cantidad de agente absorbente de rayos del infrarrojo cercano se mezcla en la placa protectora de la radiación térmica, hay un problema de que una capacidad de transmitancia de luz visible se reduce con el tiempo. Además, puesto que se usa un compuesto orgánico como el agente absorbente de rayos infrarrojos, hay dificultad en la resistencia a la intemperie cuando se aplica a materiales para ventana de edificios y vehículos, que siempre están expuestos a la luz solar directa.

Para mejorar la capacidad protectora de la radiación térmica, es necesario añadir una gran cantidad de partículas de reflexión de la radiación térmica a la placa protectora de la radiación térmica, con partículas inorgánicas tales como óxido de titanio que tienen la capacidad de reflexión de la radiación térmica amasados con la resina transparente, tal como resina acrílica. Sin embargo, con un aumento de una relación de mezcla de las partículas de reflexión de la radiación térmica hay un problema similar al problema del agente absorbente del infrarrojo cercano orgánico, de manera que la capacidad de transmitancia de luz visible se reduce. Por lo tanto, aunque la capacidad de transmitancia de luz visible mejora cuando se reduce una cantidad de adición de las partículas de reflexión de la radiación térmica, una capacidad de producción de la radiación térmica se reduce en esta ocasión. Como resultado, hay un problema de que es difícil satisfacer simultáneamente la capacidad protectora de la radiación térmica y la capacidad de transmitancia de luz visible. Además, cuando una gran cantidad de partículas de reflexión de la radiación térmica se mezclan, hay también un problema desde un aspecto de la resistencia, tal que la propiedad física de la resina transparente que se moldea se deteriora y, en particular, se deterioran la resistencia al impacto y tenacidad.

Una lámina protectora de la radiación térmica está compuesta de una "capa de reflexión" fabricada de resina de poli(cloruro de vinilo) que contiene perlas de vidrio y un pigmento blanco basado en óxido de titanio, y una "capa de absorción" fabricada de resina de poli(cloruro de vinilo) y una función de reflexión es una función principal de la lámina protectora de la radiación térmica. Después, hay un problema similar al problema de la técnica mencionada anteriormente, porque está contenido óxido de titanio. Además, hay también un problema de que la fabricación no es fácil, puesto que esta lámina protectora de la radiación térmica tiene una estructura bicapa.

Para resolver los problemas descritos anteriormente, los inventores de la presente invención han conseguido una técnica de conferir una función protectora de la radiación térmica a una película de poli(cloruro de vinilo) con excelentes características mecánicas y rendimiento de coste, sin dañar tales características y a un bajo coste.

Por lo tanto, los inventores de la presente invención han descubierto que la función protectora de la radiación térmica puede conferirse a la película de poli(cloruro de vinilo) a un bajo coste añadiendo directamente nanopartículas de óxido de volframio y óxido de volframio compuesto en la película de poli(cloruro de vinilo) y dispersando uniformemente las nanopartículas en su interior. Sin embargo, cuando se realiza esta operación, se ha encontrado que ocurre la aglutinación de nanopartículas, y es difícil dispersar uniformemente las nanopartículas de óxido de volframio y óxido de volframio compuesto en la película de poli(cloruro de vinilo).

A la vista de las circunstancias descritas anteriormente, se proporciona la presente invención, y un objeto de la presente invención es proporcionar una composición para fabricar una película de poli(cloruro de vinilo) protectora de la radiación térmica que puede aplicarse a una etapa de fabricación normal de la película de poli(cloruro de vinilo), y un procedimiento de fabricación de la misma. Otro objeto de la presente invención es proporcionar la película de poli(cloruro de vinilo) que tiene una alta función protectora de la radiación térmica mientras mantiene una excelente capacidad de transmitancia de luz visible, aplicando la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica.

# Medios para resolver el problema

10

25

40

45

50

55

Como resultado de los grandes esfuerzos para resolver los problemas descritos anteriormente, los inventores de la presente invención han conseguido un concepto completamente nuevo de una composición para fabricar una película de poli(cloruro de vinilo) protectora de la radiación térmica, con nanopartículas de óxido de volframio y óxido de volframio compuesto dispersadas en un plastificante para fabricar una película de poli(cloruro de vinilo). Esta es una técnica completamente diferente de un concepto convencional, de manera que después de dispersar las partículas que tienen características ópticas, tales como óxido de volframio y óxido de volframio compuesto en una resina de poli(cloruro de vinilo) a la que ya se ha añadido plastificante, las partículas se dispersan uniformemente en su interior, o después de que las partículas que tienen las características ópticas se han dispersado en su interior al mismo tiempo que el plastificante, las partículas se dispersan uniformemente en su interior.

En concreto, la nanopartículas se dispersan en la resina de poli(cloruro de vinilo), en un estado de dispersar suficientemente las nanopartículas del óxido de volframio, el óxido de volframio compuesto y un plastificante para fabricar la película de poli(cloruro de vinilo), pasando a través de la etapa de la composición para fabricar el poli(cloruro de vinilo) protector de la radiación térmica. Como resultado, parece que las nanopartículas del óxido de volframio y óxido de volframio compuesto se dispersan uniformemente en la resina de poli(cloruro de vinilo), mientras están asistidas por un efecto de "inhibir que la resina se oriente regularmente por introducción en un espacio de la resina, y manteniendo un estado amorfo incluso en un punto de transición vítrea o menor".

En concreto, los inventores de la presente invención han descubierto que la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica fabricada mezclando en un disolvente orgánico, el plastificante para fabricar la película de poli(cloruro de vinilo) en un líquido de dispersión obtenido dispersando las nanopartículas de óxido de volframio expresadas mediante una fórmula general  $WO_x$  (que satisface  $2,45 \le x \le 2,999$ ) y/o las nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general  $M_yWO_z$  (en la que M es una o más clases de elementos seleccionados entre Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, y Cu, que satisface  $0,1 \le y \le 0,5,\ 2,2 \le z \le 3,0$ ) y que tiene una estructura cristalina hexagonal, y posteriormente retirar el

disolvente orgánico hasta una concentración del disolvente es 5 % en peso o menor por un procedimiento de destilación al vacío.

Después, la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica se amasa con la resina de poli(cloruro de vinilo), que después se moldea en forma de película por procedimientos de conocimiento público, tales como un procedimiento de extrusión y calandrado. Con todo ello, se ha descubierto que puede prepararse una película de poli(cloruro de vinilo) protectora de la radiación térmica, que tiene una transmitancia máxima en la región de rayos visibles y que presenta una absorción fuerte en la región del infrarrojo cercano. La presente invención se completa basándose en tal descubrimiento técnico.

La presente invención se define en las reivindicaciones independientes. Las reivindicaciones dependientes definen realizaciones de la presente invención.

Un procedimiento de fabricación de una composición usada para fabricar una película de poli(cloruro de vinilo) protectora de la radiación térmica incluye las etapas de:

obtener un líquido de dispersión dispersando nanopartículas de óxido de volframio expresadas mediante una fórmula general WO<sub>x</sub> (que satisface 2,45  $\le$  x  $\le$  2,999( y/o las nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general M<sub>y</sub>WO<sub>z</sub> (en la que M es una o más clases de elementos seleccionados entre Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, y Cu, que satisface 0,1  $\le$  y  $\le$  0,5, 2,2  $\le$  z  $\le$  3,0) y que tiene una estructura cristalina hexagonal, y un dispersante que tiene un grupo hidroxilo, un grupo carboxi o un grupo epoxi como grupos funcionales, en un disolvente orgánico que tiene un punto de ebullición de 120 °C o menor, ajustándose una cantidad de adición del dispersante en un intervalo de 0,1 a 4 veces en una relación en peso respecto a las nanopartículas de óxido de volframio y/o las nanopartículas de óxido de volframio compuesto y siendo la concentración de las nanopartículas de óxido de volframio y/o nanopartículas de óxido de volframio compuesto en el disolvente orgánico del 5 % en peso al 50 % en peso;

obtener una mezcla mezclando un plastificante para fabricar un poli(cloruro de vinilo), en este líquido de dispersión; y

obtener una composición para la película de poli(cloruro de vinilo) protectora de la radiación térmica usando un procedimiento de destilación al vacío y retirando el disolvente orgánico de esta mezcla hasta que una concentración del disolvente orgánico es del 5 % en peso o menor.

El disolvente orgánico es al menos una clase seleccionada de tolueno, metil etil cetona, metil isobutil cetona, alcohol isopropílico y etanol.

30 El plastificante para fabricar la película de poli(cloruro de vinilo) es ftalato de dioctilo o ftalato de diisononilo.

Las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto son nanopartículas que tienen un tamaño de partícula promedio de 800 nm o menor.

Las nanopartículas de óxido de volframio y nanopartículas de óxido de volframio compuesto se someten a tratamiento en superficie mediante un compuesto que contiene una o más clases de elementos seleccionados entre Si, Ti, Zr y Al.

Una composición para una película de poli(cloruro de vinilo) protectora de la radiación térmica contiene: nanopartículas de óxido de volframio expresadas mediante una fórmula general WO<sub>x</sub> (que satisface 2,45  $\leq$  x  $\leq$  2,999) y/o las nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general M<sub>y</sub>WO<sub>z</sub> (en la que M es una o más clases de elementos seleccionados entre Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, y Cu, que satisface 0,1  $\leq$  y  $\leq$  0,5, 2,2  $\leq$  z  $\leq$  3,0) y que tiene una estructura cristalina hexagonal, un dispersante que tiene un grupo hidroxilo, un grupo carboxi o un grupo epoxi como grupos funcionales, un plastificante para una película de poli(cloruro de vinilo), y un disolvente orgánico que tiene un punto de ebullición de 120 °C o menor y una concentración del 5 % en peso o menor, ajustándose una cantidad de adición del dispersante en un intervalo de 0,1 a 4 veces en una relación en peso de las nanopartículas de óxido de volframio y/o las nanopartículas de óxido de volframio compuesto.

La película de poli(cloruro de vinilo) protectora de la radiación térmica puede fabricarse por amasado de la composición con resina de poli(cloruro de vinilo) y moldeo de la misma en una forma de película.

## Ventaja de la invención

5

10

15

20

35

40

45

50

55

De acuerdo con la presente invención, como una composición que tiene una función protectora de la radiación térmica, es posible obtener una composición para fabricar una película de poli(cloruro de vinilo) protectora de la radiación térmica que contiene nanopartículas de óxido de volframio expresadas mediante una fórmula general WO<sub>x</sub> y/o nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general MyWO<sub>z</sub>, y que tienen una estructura cristalina hexagonal, un dispersante, un plastificante para fabricar una película de poli(cloruro de vinilo), un disolvente orgánico que tiene una concentración del 5 % en peso o menor. Después, por amasado de la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica, con la resina de poli(cloruro de vinilo) y moldeándola en una forma de película, puede prepararse la película de poli(cloruro de vinilo)

protectora de la radiación térmica, que tiene una transmitancia máxima en una región de rayos visibles y que presenta una fuerte absorción en una región del infrarrojo cercano.

### Mejor modo para llevar a cabo la invención

5

10

15

25

30

35

40

45

50

Las realizaciones preferidas de la presente invención se describirán en detalle a continuación en el presente documento.

Se obtiene una composición para fabricar una película de poli(cloruro de vinilo) protectora de la radiación térmica de acuerdo con la presente invención, de tal manera que nanopartículas de óxido de volframio expresadas mediante una fórmula general  $WO_x$  (que satisface  $2,45 \le x \le 2,999$ ) y/o nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general  $M_yWO_z$  (en la que M es una o más clases de elementos seleccionados entre Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, y Cu, que satisface  $0,1 \le y \le 0,5,\ 2,2 \le z \le 3,0$ ) y que tiene una estructura cristalina hexagonal, se usan como nanopartículas que tienen una función protectora de la radiación térmica, y nanopartículas que tienen la función protectora de la radiación térmica y se dispersa un dispersante en un disolvente orgánico, para obtener de esta manera un líquido de dispersión, y un plastificante para fabricar una película de poli(cloruro de vinilo) se mezcla en el líquido de dispersión obtenido, y el disolvente orgánico se retira hasta que una concentración de disolvente es del 5 % en peso o menor usando un procedimiento de destilación al varío

La composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica se describirá en detalle a continuación en el presente documento.

(1) Nanopartículas que tienen la función protectora de la radiación térmica

Las nanopartículas que tienen la función protectora de la radiación térmica usadas en la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica de acuerdo con la presente invención son nanopartículas de óxido de volframio y/o nanopartículas de óxido de volframio compuesto.

Las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto absorben luz en una región del infrarrojo cercano y, particularmente, la luz de 1000 nm o mayor, se absorbe en gran medida. Por lo tanto, su tono de color de transmisión es un tono de color azulado.

Los tamaños de partícula de las nanopartículas de óxido de volframio y nanopartículas de óxido de volframio compuesto pueden seleccionarse adecuadamente, de acuerdo con un fin de uso.

Por ejemplo, cuando se usa para una aplicación de mantener la transparencia, las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto preferentemente tienen un tamaño de partícula dispersada de 800 nm o menos. Cuando el tamaño de partícula dispersada es de 800 nm o menos, la luz no se protege completamente por dispersión, y la visibilidad en una región de luz visible puede mantenerse y simultáneamente la transparencia puede mantenerse eficazmente.

En particular, cuando se resalta la transparencia de la región de luz de visible, la dispersión mediante partículas se tiene en cuenta preferentemente de forma adicional. Después, cuando se resalta la reducción de la dispersión mediante estas nanopartículas, el tamaño de partícula dispersada de las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto se ajusta para que sea de 200 nm o menor, o preferentemente se ajusta a 100 nm o menor.

Esto se debe a que, cuando el tamaño de partícula dispersada es más pequeño, la dispersión de la luz en una región de luz visible de longitudes de onda de 400 nm a 780 nm se reduce, debido a la dispersión geométrica o dispersión de Mie.

Cuando la dispersión de la luz se reduce, una película protectora de la radiación térmica se convierte en un vidrio empañado, y es posible evitar una situación tal en la que no pueda obtenerse una transparencia perfecta. Esto se debe a que cuando el tamaño de partícula dispersada es de 200 nm o menor, la dispersión geométrica o la dispersión de Mie se reducen, y un área se convierte en un área de dispersión de Rayleigh. En el área de dispersión de Rayleigh las luces dispersadas se reducen a una proporción inversa a la 6ª potencia del tamaño de partícula y, por lo tanto, la dispersión se reduce con la reducción del tamaño de partícula dispersada, y la transparencia mejora. Además, cuando el tamaño de partícula dispersada es de 100 nm o menor, las luces dispersadas se reducen preferentemente extremadamente. El tamaño de partícula dispersada es preferentemente más pequeño, desde un punto de vista de evitar la dispersión de las luces y la fabricación industrial es fácil cuando el tamaño de partícula dispersada es de 1 nm o mayor.

# (a) Nanopartículas de óxido de volframio

Como las nanopartículas de óxido de volframio expresadas mediante una fórmula general  $WO_x$  (que satisface  $2,45 \le x \le 2,999$ ) pueden citarse, por ejemplo,  $W_{18}O_{49}$ ,  $W_{20}O_{58}$ ,  $W_4O_{11}$ . Cuando un valor de x es 2,45 o mayor, es posible evitar completamente una situación en la que la fase cristalina del  $WO_2$ , que está fuera del objetivo, aparezca en el

material protector de la radiación térmica y también puede obtenerse la estabilidad química de un material. Mientras tanto, cuando el valor de x es de 2,999 o menor, se genera una cantidad suficiente de electrones libres y las nanopartículas de óxido de volframio se convierten en un material protector de la radiación térmica eficaz. Cuando el valor de x es de 2,95 o menor, las nanopartículas de óxido de volframio son más preferibles como el material protector de la radiación térmica. Obsérvese que el compuesto  $WO_x$ , con un intervalo de x que satisface  $2,45 \le x \le 2,999$  está contenido en un compuesto denominado fase de Magneli.

(b) Nanopartículas de óxido de volframio compuesto

5

10

15

20

25

30

35

45

50

55

Como las nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general MyWOz (en la que M es una o más clases de elementos seleccionados entre Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, y Cu, que satisface  $0,1 \le y \le 0,5,\ 2,2 \le z \le 3,0)$  y que tiene una estructura cristalina hexagonal, pueden citarse  $Cs_{0,33}WO_3$ ,  $Rb_{0,33}WO_3$ ,  $K_{0,33}WO_3$ , Sin embargo, cuando y y z están dentro del intervalo mencionado anteriormente, pueden obtenerse características protectoras de la radiación térmica útiles. Una cantidad adicional de elemento añadido M preferentemente es de 0,1 o mayor y 0,5 o menor, y preferentemente además en la cercanía de 0,33. Esto se debe a que un valor calculado teóricamente a partir de una estructura cristalina hexagonal es 0,33, y las características ópticas preferibles pueden obtenerse por la cantidad de adición de aproximadamente 0,33. También, un intervalo de z se ajusta preferentemente a  $2,2 \le z \le 3,0$ . Esto es porque incluso en un caso de que el material de óxido de volframio compuesto expresado por  $M_yWO_z$ , funciona un mecanismo, que es similar al mecanismo del material de óxido de volframio expresado por el  $WO_x$  mencionado anteriormente, y también en el intervalo de  $z \le 3,0$  y un suministro de los electrones libres por adición del elemento M mencionado anteriormente. Desde el punto de vista de las características ópticas, el intervalo de z se ajusta más preferentemente a  $2,2 \le z \le 2,99$  y, además preferentemente, se ajusta a  $2,45 \le z \le 2,99$ .

(c) Procedimiento de fabricación de las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto

Las nanopartículas de óxido de volframio mencionadas anteriormente expresadas mediante una fórmula general  $WO_x$  y las nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general  $M_YWO_Z$  pueden obtenerse aplicando tratamiento térmico a una materia prima de partida de un compuesto de volframio en una atmósfera de gas inerte o una atmósfera de gas reductor.

En primer lugar, se describirá la materia prima de partida de compuesto de volframio.

La materia prima de partida de compuesto de volframio preferentemente es una o más clases seleccionadas de un polvo de trióxido de volframio, un polvo de dióxido de volframio o un hidrato del óxido de volframio, o un polvo de hexacloruro de volframio, o un polvo de tungstato de amonio, un polvo hidratado del óxido de volframio obtenido disolviendo el hexacloruro de volframio en un alcohol y después secándolo, o un polvo hidratado del óxido de volframio obtenido disolviendo el hexacloruro de volframio en un alcohol y añadiendo agua al mismo para provocar la precipitación y secándolo, o un polvo de compuesto de volframio obtenido secando la solución acuosa de tungstato de amonio y un polvo de metal de volframio.

En este caso, cuando se fabrican las nanopartículas de óxido de volframio, se usa preferentemente el polvo hidratado del óxido de volframio, el trióxido de volframio o el polvo de compuesto de volframio obtenido secando la solución acuosa de tungstato de amonio, además desde el punto de vista de facilitar las etapas de fabricación.

Mientras tanto, cuando se fabrican las nanopartículas de óxido de volframio compuesto, la solución acuosa de tungstato de amonio y la solución de hexacloruro de tungsteno, se usan además preferentemente, desde el punto de vista de que cada elemento, con su materia prima de partida en forma de una solución, pueda mezclarse uniformemente de forma fácil.

Usando estas materias primas y aplicando tratamiento térmico a las mismas en la atmósfera de gas inerte y la atmósfera de gas reductora, pueden obtenerse las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto que tienen el tamaño de partícula mencionado anteriormente.

Además, las nanopartículas de material protector de la radiación térmica que contiene las nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general  $M_YWO_Z$  que contiene el elemento M es similar a la materia prima de partida del compuesto de volframio de las nanopartículas de material protector de la radiación térmica que contiene las nanopartículas de óxido de volframio expresadas por la fórmula general  $WO_x$ , y además el elemento M se ajusta como la materia prima de partida del elemento que contiene el compuesto de volframio M en una forma de un cuerpo simple o compuesto.

En este caso, para fabricar la materia prima de partida, con cada componente mezclado uniformemente a un nivel molecular, cada materia prima se mezcla preferentemente en una solución, y la materia prima de partida del compuesto de volframio que contiene elemento M preferentemente puede disolverse en agua y en disolvente, tal como en disolvente orgánico. Por ejemplo, tungstato, cloruro, nitrato, sulfato, oxalato, óxido, carbonato e hidróxido que contienen el elemento M pueden citarse como un ejemplo. Sin embargo, la materia prima de partida del

# ES 2 587 382 T3

compuesto de volframio no está limitada a esto, y preferentemente se ajusta en un estado en solución.

A continuación, se describirá el tratamiento térmico en la atmósfera de gas inerte o la atmósfera de gas reductor.

En primer lugar, es preferible una temperatura de 650 °C o mayor como la condición de tratamiento térmico en la atmósfera de gas inerte. La materia prima de partida sometida a tratamiento térmico a 650 °C o mayor tiene una potencia de absorción de rayos del infrarrojo cercano suficiente y tiene una buena eficacia como la nanopartícula protectora de la radiación térmica. Preferentemente se usa un gas inerte tal como Ar y N<sub>2</sub> como el gas inerte.

Como la condición de tratamiento térmico en la atmósfera reductora, es preferible que la materia prima de partida se someta en primer lugar a tratamiento térmico a 100 °C o mayor y 650 °C o menor en la atmósfera de gas reductor, y después se someta al tratamiento térmico a 650 °C o mayor y 1200 °C o menor en la atmósfera de gas inerte. El gas reductor en esta ocasión no está particularmente limitado, aunque es preferible H<sub>2</sub>. Después, cuando se usa H<sub>2</sub> como el gas reductor, como la composición de la atmósfera reductora, por ejemplo, H<sub>2</sub> se mezcla preferentemente en el gas inerte tal como Ar y N<sub>2</sub> en una relación en volumen del 0,1 % o mayor y se mezcla preferentemente además en una relación en volumen del 0,2 % o mayor. Cuando el H<sub>2</sub> es el 0,1 % o mayor en la relación de volumen, la reducción puede avanzar eficazmente.

La materia prima de partida en polvo reducida mediante hidrógeno contiene la fase de Magneli y muestra excelentes características protectoras de la radiación térmica. Por consiguiente, en este estado también, esta materia prima de partida en polvo puede usarse como la nanopartícula protectora de la radiación térmica.

Es preferible aplicar un tratamiento superficial a las superficies de las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto de la presente invención, de tal manera que queden revestidas con un compuesto o preferentemente un óxido que contiene una o más clases de elementos seleccionados entre Si, Ti, Zr y Al, desde el punto de vista de mejorar la resistencia a la intemperie.

Además, para obtener una composición deseada para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica, es deseable que los las potencias de color de las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto satisfagan las condiciones de que L\* se ajuste entre 25 y 80, a\* se ajuste entre -10 y 10, y b\* se ajuste entre -15 y 15 en las potencias de color en un sistema de color L\* a\*b\* recomendado por la Comisión internacional de iluminación (CIE).

Usando las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto que tienen las potencias de color, puede obtenerse la película de poli(cloruro de vinilo) protectora de la radiación térmica que tiene excelentes características ópticas.

# 30 (2) Dispersante

5

10

20

25

Como un dispersante usado en la película de poli(cloruro de vinilo) protectora de la radiación térmica de la presente invención, es preferible un dispersante que tenga una temperatura de descomposición térmica de 200 °C o mayor medida por un dispositivo de medición simultánea para calor diferencial y gravitación térmica, y que también tenga cadenas principales acrílica y de estireno.

- Esto se debe a que el dispersante no se descompone durante el amasado con la resina de poli(cloruro de vinilo), si la temperatura de descomposición térmica es de 200 °C o mayor. También, esto se debe a que es posible evitar una situación tal como el pardeamiento de la película de poli(cloruro de vinilo) protectora de la radiación térmica debido a la descomposición del dispersante, deterioro de la transmitancia de luz visible, e imposibilidad de obtener las características ópticas originales.
- Además, como el dispersante, el dispersante tiene un grupo hidroxilo, un grupo carboxi o un grupo epoxi como grupos funcionales. Estos grupos funcionales tienen efectos tales que se adsorben sobre las superficies de las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto, evitando de esta manera la aglutinación de las nanopartículas de óxido de volframio y las partículas de óxido de volframio compuesto y dispersando uniformemente estas nanopartículas en el plastificante para fabricar la película de poli(cloruro de vinilo) o la película de cloruro de polietileno obtenida. Específicamente, un dispersante de copolímero acrílico-estireno que tiene el grupo hidroxilo como un grupo funcional y un dispersante de copolímero acrílico-estireno que tiene el grupo carboxi, grupo funcional, pueden citarse como ejemplos.

Además, una cantidad de adición de este dispersante se ajusta en un intervalo de 0,1 a 4 veces, si preferentemente se ajusta en un intervalo de 0,3 a 2,5 veces, en una relación en peso de las nanopartículas de óxido de volframio y/o las nanopartículas de óxido de volframio compuesto. Esto se debe a que cuando la cantidad de adición del dispersante se ajusta en el intervalo mencionado anteriormente, las nanopartículas de óxido de volframio y las nanopartículas de volframio compuestas se dispersan uniformemente en el plastificante para fabricar la película de poli(cloruro de vinilo), no teniendo así una influencia adversa sobre las propiedades físicas de la resina de poli(cloruro de vinilo) obtenida.

### (3) Disolvente orgánico

20

50

Como el disolvente orgánico usado en la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica de la presente invención, se usa un disolvente orgánico que tiene un punto de ebullición de 120 °C o menos.

- Si el punto de ebullición es 120 °C o menos, el disolvente orgánico puede retirarse fácilmente por destilación al vacío. Como resultado, la retirada del disolvente orgánico progresa rápidamente en la etapa de destilación al vacío y esto contribuye a una productividad de la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica. Además, la etapa de destilación al vacío progresa rápida y suficientemente, y por lo tanto es posible evitar una situación en la que un disolvente orgánico excesivo permanezca en la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica de la presente invención. Como resultado, es posible evitar una situación de que ocurra un problema tal como generación de burbujas de aire durante el moldeo de la película de poli(cloruro de vinilo). Específicamente, pueden citarse como ejemplos tolueno, metil etil cetona, metil isobutil cetona, alcohol isopropílico y etanol. Sin embargo, el disolvente orgánico capaz de dispersar uniformemente las nanopartículas que tienen el punto de ebullición de 120 °C o menor y que tienen la función protectora de la radiación térmica puede seleccionarse arbitrariamente.
  - (4) Plastificante para fabricar la película de poli(cloruro de vinilo)

El plastificante usado en la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica de la presente invención preferentemente es un compuesto éster sintetizado a partir de ácido y alcohol. Pueden citarse ácido ftálico, ácido trimelítico, ácido adípico, ácido fosfórico, ácido cítrico, como el ácido mencionado anteriormente. Asimismo, pueden citarse octanol, butanol, nonanol y alcohol mixto de calidad superior como el alcohol mencionado anteriormente.

En particular, el éster del ácido ftlático tiene diversas propiedades tales como compatibilidad con poli(cloruro de vinilo) y resistencia al frío, y también excelente capacidad de procesamiento y alta eficacia económica y, por lo tanto, es preferible. El ftalato de dioctilo o ftalato de diisononilo pueden citarse como un éster de ácido ftlático típico.

25 (5) Un procedimiento de dispersión de nanopartículas que tiene la función protectora de la radiación térmica en el disolvente orgánico

Se describirá a continuación en el presente documento un procedimiento para dispersar las nanopartículas de óxido de volframio mencionadas anteriormente y nanopartículas de óxido de volframio compuesto en el disolvente orgánico.

30 El procedimiento para dispersar las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto en el disolvente orgánico puede seleccionarse arbitrariamente si es un procedimiento para dispersar uniformemente las partículas en el disolvente orgánico. Por ejemplo, pueden usarse molienda con perlas, molienda con bolas, molienda con arena y dispersión ultrasónica.

La concentración de las nanopartículas de óxido de volframio y/o nanopartículas de óxido de volframio compuesto en el disolvente orgánico se ajusta para que sea del 5 al 50 % en peso. Esto se debe a que cuando se ajusta al 5 % en peso o mayor, la cantidad del disolvente orgánico que debería retirarse aumenta excesivamente, y es posible evitar una situación tal como un alto coste de fabricación y también cuando es del 50 % o menos, es posible evitar una situación de que la aglutinación de las nanopartículas ocurra fácilmente y las nanopartículas apenas se dispersen, o que la viscosidad del líquido aumente notablemente, haciendo así difícil manipular tal líquido.

40 (6) Un procedimiento de adición del plastificante para fabricar la película de poli(cloruro de vinilo)

Las nanopartículas de óxido de volframio y/o las nanopartículas de óxido de volframio compuesto, y el dispersante se dispersan en el disolvente orgánico y, posteriormente, el plastificante para fabricar la película de poli(cloruro de vinilo) se añade a este líquido de dispersión, que después se mezcla usando un dispositivo de agitación y mezclado general.

45 (7) Un procedimiento de retirada de disolvente orgánico

Como un procedimiento de retirada de disolvente orgánico para obtener la composición para fabricar la película de poli(cloruro de vinilo) de la presente invención, se usa un procedimiento para destilar al vacío de la mezcla obtenida. Específicamente, en el procedimiento de destilación al vacío, la mezcla mencionada anteriormente se somete a destilación al vacío mientras se agita, para separar así la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica, y un componente de disolvente orgánico. Como un aparato usado en la destilación al vacío, puede citarse por ejemplo una secadora de tipo agitación al vacío. Sin embargo, un aparato que tiene la función mencionada anteriormente puede ser aceptable, y el aparato no está particularmente limitado.

Usando tal procedimiento de destilación al vacío, la eficacia de retirada de un disolvente mejora, y también la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica mencionada

anteriormente no se expone a una alta temperatura durante un largo tiempo, permitiendo de esta manera que no ocurra aglutinación en las nanopartículas dispersadas, lo que es preferible. Además, la productividad mejora y el disolvente orgánico evaporado puede recuperarse fácilmente, y esto es preferible desde el punto de vista de la consideración medioambiental.

5 (8) Otro agente aditivo

10

15

25

30

35

40

Además, un agente aditivo general puede mezclarse también en la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica de la presente invención. Por ejemplo, tintes y pigmentos generalmente usados en la coloración de resina termoplástica tales como tintes basados en azina, tintes basados en cianina, tintes basados en quinolina, tintes basados en perileno, y negro de humo, para presentar un tono de color arbitrario según sea necesario, pueden añadirse también. Un estabilizador con impedimentos basado en fenol y fósforo, un agente de liberación del molde, absorbentes de rayos ultravioletas orgánicos basados en hidroxibenzofenona, basados en salicílico, basados en HALS, basados en triazol y basados en triazina, absorbentes de rayos ultravioletas inorgánicos tales como óxido de cinc, óxido de titanio, y óxido de cerio, un agente de acoplamiento, un agente superficialmente activo y un agente antiestático pueden usarse también como agentes aditivos

(9) Película de poli(cloruro de vinilo) protectora de la radiación térmica

A continuación en el presente documento se describirá la película de poli(cloruro de vinilo) protectora de la radiación térmica de acuerdo con la presente invención.

La película de poli(cloruro de vinilo) protectora de la radiación térmica de la presente invención se obtendrá por amasado de la composición mencionada anteriormente con la resina de poli(cloruro de vinilo) y, posteriormente, moldeándola en una forma de película por procedimientos conocidos públicamente, tales como un procedimiento de extrusión y calandrado.

La película de poli(cloruro de vinilo) protectora de la radiación térmica de la presente invención puede usarse de tal manera que se fija a materiales de construcción tal como un vidrio de ventana y un pórtico, y también puede usarse en materiales de construcción de tal manera que se fija a piezas de moldeo transparentes, tales como vidrio inorgánico, vidrio de resina y una película de resina por un procedimiento adecuado, como un laminado transparente protector de la radiación térmica integral. Por ejemplo, fijando la película de poli(cloruro de vinilo) protectora de la radiación térmica al vidrio inorgánico, el laminado transparente protector de la radiación térmica que tiene la función protectora de la radiación térmica y puede obtenerse una función antidispersión. El laminado transparente protector de la radiación térmica puede usarse como un material de construcción más útil, complementando los defectos mutuos, mientras presenta eficazmente ventajas mutuas de las piezas de moldeo.

Como se ha descrito anteriormente en detalle, la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica puede obtenerse mezclando el plastificante para fabricar la película de poli(cloruro de vinilo) en el líquido de dispersión obtenido dispersando las nanopartículas de óxido de volframio, que son componentes protectores de la radiación térmica, y/o las nanopartículas de óxido de volframio compuesto y el dispersante en el disolvente orgánico que tiene el punto de ebullición de 120 °C o menor, y posteriormente retirando este disolvente orgánico hasta que la concentración del disolvente es del 5 % en peso o menor usando el procedimiento de destilación al vacío. Después, esta composición y la resina de poli(cloruro de vinilo) se amasan entre sí y se moldean en forma de película mediante un procedimiento conocido públicamente, haciendo posible así proporcionar la película de poli(cloruro de vinilo) protectora de la radiación térmica que tiene una máxima transmitancia en la región de rayos visibles y que presenta una fuerte absorción en la región del infrarrojo cercano.

### **Ejemplos**

Los ejemplos de la presente invención se describirán específicamente en el presente documento junto con ejemplos comparativos.

45 Sin embargo, la presente invención no está limitada a los ejemplos.

Además, en cada ejemplo, la potencia del color (campo visual de 10°, fuente de luz D65) de las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto y la transmitancia de luz visible y la transmitancia de luz solar de la película de poli(cloruro de vinilo) protectora de la radiación térmica se midieron usando un espectrofotómetro U-4000 producido por HITACHI LTD.

Obsérvese que la transmitancia de luz solar es un índice que muestra la capacidad protectora de la radiación térmica de la película de poli(cloruro de vinilo) protectora de la radiación térmica.

Además, se midió un valor de turbidez basándose en JIS K 7105, usando un HR-200 producido por MURAKAMI COLOR RESEARCH LABORATORY.

### [Ejemplo 1]

5

25

30

35

50

55

Un frasco de cuarzo, con 50 g de  $H_2WO_4$  introducidos en su interior, se puso en un horno tubular de cuarzo, que después se calentó mientras se suministraba un 5 % de  $H_2$  gas, con  $N_2$  gas como portador, y se sometió a tratamiento de reducción durante 1 hora a una temperatura de 600 °C, y posteriormente se sinterizó durante 30 minutos 800 °C en una atmósfera de  $N_2$  gas, para obtener de esta manera una partícula (abreviado como partícula "a" en lo sucesivo en el presente documento). Como la potencia de color de esta partícula "a", L\* era 36,9288, a\* era 1,2573 y b\* era -9,1426 y, como resultado de la identificación de una fase cristalina por difracción de rayos X de polvo, se observó la fase cristalina de  $W_{18}O_{49}$ .

A continuación, se pesaron un 6 % en peso de la partícula "a", un 12 % en peso de dispersante acrílico que tenía el grupo hidroxilo como el grupo funcional y 82 % en peso de tolueno, y después se sometieron a un tratamiento de pulverización/dispersión durante 6 horas mediante un agitador de pintura, con perlas de ZrO<sub>2</sub> de 0,3 mm φ puestas en su interior, para ajustar así un líquido de dispersión de nanopartículas de óxido de volframio (abreviado como líquido A en lo sucesivo en el presente documento).

Además se añadió, un 82 % en peso de ftalato de dioctilo y se mezcló en 100 % en peso del líquido A, que después se sometió a destilación al vacío calentándolo durante 1 hora a 80 °C usando una secadora de vacío de tipo agitación (mezcladora universal producida por TSUKISHIMA KIKAI CO. LTD.) y el tolueno se retira, para obtener esta manera la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica (abreviada como composición A en lo sucesivo en el presente documento) del ejemplo 1.

En este caso, cuando se midió una cantidad residual de tolueno en la composición A mediante un medidor de humedad de tipo seco, era de 3,5 % en peso. Además, cuando el tamaño de partícula dispersada de las nanopartículas de óxido de volframio en la composición A se midió por un medidor de distribución de tamaño de partícula producido por OTSUKA ELECTRONICS CO, LTD., este era de 77 nm.

A continuación, se mezclaron un 6,7 % en peso de la compensación A obtenida, un 33,3 % de DOP, un 60 % en peso de resina de poli(cloruro de vinilo) y se amasaron durante 15 minutos a 150 °C usando dos rodillos, para obtener de esta manera la película de poli(cloruro de vinilo) protectora de la radiación térmica (abreviada como película A en lo sucesivo en el presente documento) del ejemplo 1, que tiene un espesor de película de 0,3 mm, mediante un procedimiento de rodillo de calandrado.

Como se muestra en la tabla 1, las características ópticas de la película A son las siguientes. La transmitancia de luz solar era del 40,5 % cuando la transmitancia de luz visible era del 60,1 % y el valor de turbidez era del 2,3 %. Tales resultados se muestran en la tabla 1.

### [Ejemplo 2]

La composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica del ejemplo 2 (abreviada como composición B en lo sucesivo en el presente documento) se obtuvo de la misma manera que en el ejemplo 1, excepto un punto en el que se usó metil etil cetona como el disolvente orgánico. En este caso, cuando la cantidad de metil etil cetona residual de la composición B se midió mediante el medidor de humedad de tipo seco, era del 3,7 % en peso. Asimismo, cuando el tamaño de partícula dispersando de las nanopartículas de óxido de volframio en la composición B se midió por el medidor de distribución de tamaño de partícula producido por OTSUKA ELECTRONICS CO.LTD., este era de 83 nm.

A continuación, se obtuvo la película de poli(cloruro de vinilo) protectora de la radiación térmica del ejemplo 2 (abreviada como película B en lo sucesivo en el presente documento), de la misma manera que en el ejemplo 1, excepto un punto de que se usó la composición B obtenida.

Como se muestra en la tabla 1, las características ópticas de la película B eran las siguientes. La transmitancia de luz solar era del 41,1 % cuando la transmitancia de luz visible era del 60,8 % y el valor de turbidez era del 2,2 %. Tales resultados se muestran en la tabla 1.

# 45 **[Ejemplo 3]**

Los polvos obtenidos mezclando suficientemente 50 g de  $H_2WO_4$  y 17,0 g de  $Cs(OH)_2$  (correspondientes a Cs/W = 0.3) mediante un mortero de ágata, se calentaron mientras se suministraba 5 % de  $H_2$  gas, con  $N_2$  gas como portador, y se sometió a tratamiento de reducción durante 1 hora a una temperatura de 600 °C y, posteriormente, se sinterizó durante 30 minutos a 800 °C en atmósfera de  $N_2$  gas para obtener de esta manera una partícula (abreviada como partícula "b" en lo sucesivo en el presente documento). La fórmula de la composición de la partícula "b" era  $Cs_{0.3}WO_3$ , y como la potencia de color,  $L^*$  era 35,2745,  $a^*$  era 1,4918, and  $b^*$  era -5,3118.

A continuación, el líquido de dispersión de nanopartículas de óxido de volframio del ejemplo 3 (abreviado como líquido C en lo sucesivo en el presente documento) se ajustó de la misma manera que en el ejemplo 1, excepto un punto de que se usó la partícula "b". Después, la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica (abreviada como composición C en lo sucesivo en el presente documento) se

obtuvo de la misma manera que en el ejemplo 1, excepto un punto de que se usó el líquido C. En este caso, cuando la cantidad de tolueno residual de la composición C se midió mediante un medidor de humedad de tipo seco, esta era del 3,2 % en peso. Además, cuando el tamaño de partícula dispersada de las nanopartículas de óxido de volframio de la composición C se midió mediante el medidor de distribución de tamaño de partícula producido por OTSUKA ELECTRONICS CO.LTD., este era de 90 nm.

A continuación, la película de poli(cloruro de vinilo) protectora de la radiación térmica del ejemplo 3 (abreviada como película C en lo sucesivo en el presente documento) se obtuvo de la misma manera que en el ejemplo 1, excepto un punto de que se usó la composición C obtenida.

Como se muestra en la tabla 1, las características ópticas de la película C fueron las siguientes. La transmitancia de luz solar era del 34,8 % cuando la transmitancia de luz visible era del 69,9 % y el valor de turbidez era del 2,2 %. Tales resultados muestran en la tabla 1.

### [Ejemplo 4]

5

10

15

20

30

35

45

Se añadió metiltrimetoxisilano al líquido C, que después se agitó y mezcló durante 1 hora mediante un agitador mecánico, y se retiró el tolueno usando un secador de dispersión, para obtener de esta manera la nanopartícula de óxido de volframio compuesta (partícula "c") sometida a tratamiento superficial mediante un compuesto de silano. Después, la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica del ejemplo 4 (abreviada como composición D en lo sucesivo en el presente documento) se obtuvo de la misma manera que en el ejemplo 1, excepto un punto de que se usó la partícula "c". En este caso, cuando la cantidad de tolueno residual de la composición D se midió por el medidor de humedad de tipo seco, esta era del 3,5 % en peso. Además, cuando el tamaño de partícula dispersada de la nanopartícula de óxido de volframio se midió por el medidor de distribución de tamaño de partícula producido por OTSUKA ELECTRONICS CO.LTD., este era de 85 nm.

A continuación, la película de poli(cloruro de vinilo) protectora de la radiación térmica del ejemplo 4 (abreviada como película D en lo sucesivo en el presente documento) se obtuvo de la misma manera que en el ejemplo 1, excepto un punto de que se usó la composición D obtenida.

Como se muestra la tabla 1, las características ópticas de la película D fueron las siguientes. La transmitancia de luz solar era del 33,1 % cuando la transmitancia de luz visible era del 68,8 %, y el valor de turbidez era del 2,9 %. Tales resultados se muestran en la tabla 1.

# [Ejemplo comparativo 1]

La composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica (abreviada como composición E en lo sucesivo en el presente documento) se obtuvo de la misma manera que en el ejemplo 1, excepto un punto de que el tolueno se retiró por agitación durante 12 horas a una presión normal y a 80 °C, sin usar la secadora de tipo agitación al vacío capaz de realizar la destilación al vacío. En este caso, cuando la cantidad de tolueno residual de la composición E se midió mediante el medidor de humedad de tipo seco, esta era del 8,1 % en peso. Además, cuando el tamaño de partícula dispersada de la nanopartícula de óxido de volframio en la composición E se midió por el medidor de distribución de tamaño de partícula producido por OTSUKA ELECTRONICS CO.LTD., este era de 180 nm. A continuación, la película de poli(cloruro de vinilo) protectora de la radiación térmica del ejemplo comparativo 1 (abreviada como película E en lo sucesivo en el presente documento) se obtuvo de la misma manera que en el ejemplo 1, excepto un punto de que se usó la composición E obtenida.

Puesto que había mucho tolueno residual de la composición E usada, que era del 8,1 % en peso, el tolueno residual no pudo retirarse suficientemente durante el amasado con el poli(cloruro de vinilo), la resina y se observaron burbujas de aire en la película E, provocando así un aspecto exterior no tan bueno.

Como se muestra en la tabla 1, las características ópticas de la película E fueron las siguientes. La transmitancia de luz solar era del 36,2 % cuando la transmitancia de luz visible era del 68,8 %, y el valor de turbidez era del 10,2 %. Parece que esto se debe a que el tolueno se retiró por calentamiento durante un largo tiempo a una presión normal, sin usar la secadora de tipo agitación al vacío y, por lo tanto, ocurre aglutinación de las nanopartículas, elevando esta manera el valor de turbidez y la pérdida de transparencia. Tales resultados se muestran en la tabla 1.

[Tabla 1]

|                       |            | Transmitancia de luz visible | Transmitancia de luz solar | Turbidez |
|-----------------------|------------|------------------------------|----------------------------|----------|
|                       |            | ( %)                         | ( %)                       | ( %)     |
| Ejemplo 1             | Película A | 60,1                         | 40,5                       | 2,3      |
| Ejemplo 2             | Película B | 60,8                         | 41,1                       | 2,2      |
| Ejemplo 3             | Película C | 69,9                         | 34,8                       | 2,2      |
| Ejemplo 4             | Película D | 68,8                         | 33,1                       | 2,9      |
| Ejemplo Comparativo 1 | Película E | 68,8                         | 36,2                       | 10,2     |

[Evaluación de los ejemplos 1 a 4 y ejemplo comparativo 1]

5

10

En los ejemplos 1 a 4, usando la secadora de agitación de tipo al vacío, la cantidad residual del disolvente orgánico se ajustó en un intervalo del 5 % en peso o menor. De esta manera, pueden obtenerse las películas A a D con excelente aspecto exterior sin burbujas de aire en las películas. Asimismo, usando la secadora de agitación de tipo al vacío, el disolvente orgánico puede retirarse en un corto tiempo, pudiendo evitarse entonces la aglutinación de las nanopartículas debido a un calentamiento excesivo durante un largo tiempo, y pueden obtenerse las películas transparentes A a D, con bajos valores de turbidez. Mientras tanto, en el ejemplo comparativo 1, el disolvente orgánico se retira por calentamiento y agitación a una presión normal y, por lo tanto, la cantidad residual del disolvente orgánico aumenta del 5 % en peso. Por consiguiente, el tolueno residual no puede retirarse suficientemente durante el amasado, y se observan burbujas de aire en la película E, proporcionando así un aspecto exterior no tan bueno. Asimismo, para retirar el disolvente orgánico, se aplica un largo tiempo de calentamiento sin usar la secadora y, de esta manera, ocurre la aglutinación de las nanopartículas, elevando así el valor de turbidez de la película E obtenida y perdiendo la transparencia.

### **REIVINDICACIONES**

- 1. Un procedimiento de fabricación de una composición usada para fabricar una película de poli(cloruro de vinilo) protectora de la radiación térmica, que comprende las etapas de:
- obtener un líquido de dispersión dispersando nanopartículas de óxido de volframio expresadas mediante una fórmula general  $WO_x$  (que satisface  $2,45 \le x \le 2,999$ ) y/o nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general  $M_yWO_z$  (en la que M es una o más clases de elementos seleccionados entre Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al y Cu, que satisface  $0,1 \le y \le 0,5, 2,2 \le z \le 3,0$ ) y que tienen una estructura cristalina hexagonal, y un dispersante que tiene un grupo hidroxilo, un grupo carboxi o un grupo epoxi como grupos funcionales, en un disolvente orgánico que tiene un punto de ebullición de 120 °C o menor, ajustándose una cantidad de adición del dispersante en el intervalo de 0,1 a 4 veces en una relación en peso de las nanopartículas de óxido de volframio y/o las nanopartículas de óxido de volframio compuesto, y siendo la concentración de las nanopartículas de óxido de volframio y/o nanopartículas de óxido de volframio compuesto en el disolvente orgánico del 5 % en peso al 50 % en peso;
  - obtener una mezcla mezclando un plastificante para fabricar un poli(cloruro de vinilo), en este líquido de dispersión; y
  - obtener una composición para la película de poli(cloruro de vinilo) protectora de la radiación térmica usando un procedimiento de destilación al vacío y retirar el disolvente orgánico de esta mezcla hasta que una concentración del disolvente orgánico es del 5 % en peso o menor.
- El procedimiento de fabricación de la composición para fabricar la película de poli(cloruro de vinilo) protectora de
  la radiación térmica de acuerdo con la reivindicación 1, en el que el disolvente orgánico es al menos una clase seleccionada entre tolueno, metil etil cetona, metil isobutil cetona, alcohol isopropílico y etanol.

15

- 3. El procedimiento de fabricación de la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica de acuerdo con la reivindicación 1 o la reivindicación 2, en el que el plastificante para fabricar la película de poli(cloruro de vinilo) es ftalato de dioctilo o ftalato de diisononilo.
- 4. El procedimiento de fabricación de la composición para fabricar la película de poli(cloruro de vinilo) protectora de la radiación térmica de acuerdo con una cualquiera de las reivindicaciones 1 a 3, en el que las nanopartículas de óxido de volframio y las nanopartículas de óxido de volframio compuesto se someten a tratamiento superficial mediante un compuesto que contiene una o más clases de elementos seleccionados entre Si, Ti, Zr y Al.
- 5. Una composición para una película de poli(cloruro de vinilo) protectora de la radiación térmica que contiene: nanopartículas de óxido de volframio expresadas mediante una fórmula general  $WO_x$  (que satisface  $2,45 \le x \le 2,999$ ) y/o nanopartículas de óxido de volframio compuesto expresadas mediante una fórmula general  $M_yWO_z$  (en la que M es una o más clases de elementos seleccionados entre Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al y Cu, que satisface  $0,1 \le y \le 0,5, 2,2 \le z \le 3,0$ ) y que tienen una estructura cristalina hexagonal, y un dispersante que tiene un grupo hidroxilo, un grupo carboxi o un grupo epoxi como grupos funcionales, un plastificante para una película de poli(cloruro de vinilo) y un disolvente orgánico que tiene un punto de ebullición de  $120\,^{\circ}C$  o menor y una concentración del  $5\,\%$  en peso o menor, ajustándose una cantidad de adición del dispersante en un intervalo de 0,1 a 4 veces en una relación en peso a las nanopartículas de óxido de volframio y0 las nanopartículas de óxido de volframio compuesto.
- 6. Una película de poli(cloruro de vinilo) protectora de la radiación térmica, que se fabrica por amasado de la composición de acuerdo con la reivindicación 5, con resina de poli(cloruro de vinilo), y moldeándola en forma de una película.