

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 587 721

61 Int. Cl.:

B65B 27/04 (2006.01) B65B 13/04 (2006.01) B65B 13/18 (2006.01) B65B 57/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 06.02.2014 E 14154054 (2)
 (97) Fecha y número de publicación de la concesión europea: 08.06.2016 EP 2789540
 - (54) Título: Procedimiento y dispositivo para el embalaje de tubos o botes
 - (30) Prioridad:

11.04.2013 CH 7582013 29.05.2013 CH 10292013

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 26.10.2016

73) Titular/es:

TEXA AG (100.0%) Oldisstrasse 51 7023 Haldenstein, CH

(72) Inventor/es:

BENZ, GOTTLIEB

74) Agente/Representante:

DE ELZABURU MÁRQUEZ, Alberto

DESCRIPCIÓN

Procedimiento y dispositivo para el embalaje de tubos o botes

- La presente invención se refiere a un procedimiento para el embalaje de tubos o botes, los cuales vienen de una línea de producción y se disponen por medio de una unidad de agrupamiento en grupos de tubos o botes situados contiguos en una cantidad prefijada y estos grupos son recogidos respectivamente por una unidad de transporte.
- La invención se refiere también a una instalación para el embalaje de tubos o botes que comprende una unidad de agrupamiento que actúa junto con una línea de producción de tubos o botes, una unidad de transporte para el transporte de grupos a una unidad de flejado en la que pueden flejarse los grupos reunidos en una formación.
 - Hoy en día los botes o tubos se fabrican en líneas de producción extremadamente productivas y después deben embalarse para el envío posterior. Esto sucede bien porque los tubos o botes se llenan en cajas o se reúnen en formaciones mayores y se flejan, reuniéndose estas formaciones entonces sobre palés y enviándose.
- Para ello la solicitante ha desarrollado unidades de agrupamiento especiales en las que los tubos o botes que llegan continuamente desde una línea de producción se colocan en grupos de tubos o botes situados contiguos con una cantidad de unidades prefijada, transfiriéndose estos grupos respectivamente a una unidad de transporte. Esta unidad de transporte es frecuentemente un desplazador que entonces empuja estos botes o tubos por capas a una caja.
- La solicitante ha desarrollado además también para el transporte intermedio un molde auxiliar, frecuentemente en forma hexagonal, en el que se introducen por capas los tubos o botes agrupados y se transportan entonces a una estación de flejado. El documento DE 1 0006 484 A muestra una solución de este tipo.
 - Del documento DE2825800 se conoce una instalación para el embalaje de tubos o botes, la cual presenta una unidad de agrupamiento y de flejado. Una vez que se ha formado un grupo de producto, éste se empuja hacia delante para el flejado por medio de un desplazador a través de una rendija. En este caso permanece parcialmente en la unidad de agrupamiento hasta que se termina el flejado. Tras la expulsión completa del grupo del producto flejado, se forma un siguiente grupo de producto en la unidad de agrupamiento.
 - En el mercado también pueden obtenerse instalaciones de embalado en las que los tubos o botes se recogen en grupos por medio de un robot de manipulación y de esta forma se construye una formación, que después se fleja.
 - La solicitante ha desarrollado además un procedimiento y un dispositivo para el embalado de tubos o botes, en el que los botes o tubos son desplazados por la unidad de agrupamiento sobre una placa con una pluralidad de espigas colocadas densamente hasta que se conforma una formación deseada, continuando entonces esta placa de espigas con el transporte de esta formación de tubos o botes, para llenar las cajas. Para poder alcanzar el rendimiento requerido, hoy en día hay disponibles de forma preferida en esta instalación dos de estas placas de espigas, que interactúan alternativamente con la unidad de agrupamiento.
- Una instalación de embalado de este tipo trabaja ciertamente muy rápido, pero las líneas de producción se mueven a día de hoy con una velocidad cada vez más alta y la instalación conocida según la patente europea EP 1 656 298 se encuentra ahora en el límite de rendimiento.
- Para elevar la capacidad de rendimiento, existe la posibilidad de aumentar la velocidad de flejado, con lo que pueden ganarse algunas décimas de segundo, sin embargo, cuanto más rápido se produzca el flejado, más alto es el impulso de la banda de plástico dispuesta a modo de látigo alrededor de la formación, con lo que entonces los tubos o botes sufren frecuentemente daños en la zona perimetral externa. Esto tiene que ver en buena medida, con que por motivos de ahorro de material, tanto los tubos como también los botes se fabrican con paredes cada vez más finas.
- Durante el flejado la formación de tubos o botes debe quedarse fija en su posición y en correspondencia la formación no puede ser soltada por la placa de espigas o el robot de manipulado y puede transportarse ya de nuevo hacia la unidad de agrupamiento, mientras la formación de botes o tubos no está flejada.
 - Es por tanto tarea de la presente invención conseguir un procedimiento o proporcionar una instalación con la que los tubos o botes, que vienen de una línea de producción, se puedan fijar y flejar más rápidamente.
 - Esta tarea la resuelve un procedimiento según la reivindicación 1 y una instalación según la reivindicación 7.
 - El aro de sujeción puede ser un aro de sujeción intercambiable, adaptado a la forma de la formación que va a conformarse.

65

60

15

30

35

40

A continuación, se representa una instalación según la invención en una forma de realización preferida y se describe el procedimiento según la invención mediante esta instalación con referencia al dibujo que acompaña.

En el dibujo se representa, como se ha mencionado, una forma de realización preferida de la instalación según la invención y muestra:

- Fig. 1: una representación esquemática de las diferentes unidades de una instalación de embalaje para la explicación de los diferentes pasos del procedimiento;
- Fig. 2: muestra una representación en perspectiva de la unidad de flejado con una formación suministrada de los tubos o botes;
- Fig. 3: la misma vista de la unidad de flejado con superficie de trabajo elevada y la formación de tubos o botes flejada;
- Fig. 4: muestra nuevamente en vista en perspectiva el aro de sujeción en sí y
- Fig. 5: la misma vista del aro de sujeción, pero en una vista lateral.

10

15

35

40

45

50

65

Fig. 6: muestra una guía de banda de flejado de la unidad de flejado.

En la figura 1 se representa esquemáticamente como se ha mencionado, la instalación de embalado completa para el embalado de tubos y botes. La caja abierta en el dibujo hacia la derecha, muestra el extremo de una línea de producción 1. Desde aquí llegan continuamente los tubos o botes y se dirigen a continuación, a una unidad de 20 agrupamiento 2, que por ejemplo y preferiblemente está configurada en correspondencia con la realización descrita en el documento EP 1 114 784 B1. A esto le sigue una unidad transportadora 3 con al menos una placa de espigas 7, 7', que por ejemplo, y también preferiblemente, se corresponde con una realización según el documento EP 1 656 298 B1. Entre la línea de producción 1 y la unidad de agrupación 2 se introduce usualmente un almacén intermedio 8, que se usa al cambiarse la placa de espigas 7, 7'. La placa de espigas 7, 7' se transporta desde la unidad de agrupamiento 2 a una unidad de flejado 6, donde se recogen los botes o tubos T. Mientras que esta primera placa 25 de espigas 7 transporta una formación lista de tubos o botes hacia la unidad de flejado 6, se llena de nuevo una segunda placa de espigas 7' (aquí no representada). Cuando la primera placa de espigas 7 ha entregado los tubos a la unidad de flejado 6, se conduce inmediatamente de vuelta a la unidad de agrupamiento y se queda allí en la posición de espera hasta que se llena la segunda placa de espigas 7' y se dirige hacia la unidad de flejado 6, de 30 modo que la primera placa de espigas 7 está lista nuevamente para llenarse.

En la unidad de agrupamiento 2 se colocan grupos de tubos o botes contiguos en una cantidad de unidades prefijada y son recogidos por grupos por la unidad de transporte. Esto se produce de forma preferida en cuanto que se desplazan estos grupos de tubos o botes sobre una placa de espigas 7, 7' que forma parte de la unidad de transporte 3.

La unidad de transporte 3 consiste esencialmente en habitualmente dos placas de espigas 7, 7' y un medio para mover estas placas de espigas 7, 7' desde la unidad de agrupamiento 2 a la unidad de flejado 6. Esto puede conseguirse por medio de al menos un robot de manipulación, el cual coge cada vez una placa de espigas llena y la mueve hacia la unidad de flejado 6. Tan pronto como la formación 9 de tubos o botes T se entrega a la unidad de flejado, esta placa de espigas se retorna a la unidad de agrupamiento y se lleva a una posición de espera, que aquí se representa mediante una línea rayada. El movimiento de la placa de espigas correspondiente desde la posición de espera a la posición de carga puede conseguirse entonces con medios sobre la unidad de agrupamiento 2 o con otro robot de manipulación.

Tan pronto como una de las dos placas de espigas 7, 7' está completamente llena, se retira esta placa de espigas de la unidad de agrupamiento 2 y se transporta elevada a una unidad de flejado 6. Esta unidad de flejado 6 posee un arco de recogida 13 dentro del cual hay colocado un aro de sujeción 5. La placa de espigas 7, 7' llena se lleva con los botes y tubos allí sostenidos sobre las espigas, al aro de sujeción 5, y se deposita sobre una mesa de trabajo 4 elevada, sobre la que la placa de espigas expulsa todos los tubos o botes e inmediatamente puede retornar a la unidad de agrupamiento 2 y queda de nuevo disponible para la siguiente carga.

El aro de sujeción 5 engancha ahora la formación 9, de forma que todos los tubos o botes quedan sujetos. La formación 9 se fleja ahora por medio de una banda de plástico K de forma usual. Cuando la formación está flejada, entonces la mesa de trabajo 4 se eleva desde una posición inferior y la formación 9 de tubos o botes T se fleja una segunda vez. Entonces la formación 9 flejada se baja por medio de la mesa de trasporte 4' hasta la posición más inferior y se desplaza. Desde allí puede producirse una conducción automática hacia un palé.

Con respecto a otros detalles del procedimiento y de la instalación preferida para la puesta en práctica del procedimiento, se hace referencia a las figuras que siguen y a su descripción.

En la Figura 2 se representa en detalle la unidad de flejado 6 en dimensiones mayores, junto con la mesa de trabajo 4 y una mesa de transporte 4' a continuación. La unidad de flejado 6 posee un chasis 10 sobre el cual se fija una carcasa 11. En esta carcasa 11 está dispuesto sobre el extremo superior el arco de recogida 13 ya mencionado. La unidad de flejado 6 incluye además una caja 12 en la que está dispuesto un aparato de flejado usual, como lo distribuye por ejemplo la empresa Simplex AG. En la caja 12 se forma el arco de recogida 13 horizontal saliente

aproximadamente paralelo a la mesa de trabajo 4. Este arco de recogida 13 consiste en dos brazos longitudinales 14 y en una viga de yugo 15 que une estos brazos longitudinales. En esta viga de yugo 15 hay dispuesta en este caso una unidad de control. Esta unidad de control 16 puede supervisar por ejemplo, la presencia o la ausencia de una placa de espigas 7, 7' y a tenor de la presencia de una formación 9 de botes o tubos T iniciar los otros pasos del procedimiento requeridos. En el caso expuesto, esto sería el movimiento de la mesa de trabajo 4, la supervisión de la posición de la mesa de trabajo 4, a continuación, el inicio de un movimiento de aprisionamiento del aro de sujeción 5 y tras ello el inicio de un procedimiento de flejado. Tras esto la placa de trabajo puede o bien elevarse algo más o bajarse algo más y por ejemplo realizarse un segundo flejado y a continuación bajarse la formación 9 flejada al nivel de la mesa de transporte 4'.

10

15

5

Sobre el lado frontal de la mesa de trabajo 4 apoyado sobre la carcasa 11 de la unidad de flejado 6 hay disponible un listón de tope 17. Este listón de tope 17 sirve para desplazar la formación 9 formada. Si la formación 9 flejada se baja a la mesa de trabajo 4, entonces el listón de tope 17 se moverá por medio de una transmisión de cadena 18 que es accionada por un motor de transmisión19 eléctrico, en dirección de la mesa de transporte 4' para posicionar allí la formación flejada. Desde allí esta formación flejada 9 puede por ejemplo depositarse sobre palés.

En la figura 3 se representa en perspectiva de nuevo la unidad de flejado 6 con la mesa de transporte 4 en sí. Aquí la mesa de trabajo está elevada. La formación 9 de los tubos o botes T descansa dentro del aro de sujeción 5. La formación 9 de tubos o botes se representa aquí en hexágono. Para ello la formación se adapta con un canto lateral a una placa frontal 20. Los otros cinco lados de la formación hexagonal están formados por el aro de sujeción 5. Más tarde se abordará la conformación concreta del aro de sujeción 5.

Ya que la mesa de trabajo 4 se encuentra en la posición elevada, ésta misma no puede verse, pueden reconocerse por el contrario elementos elevadores 21 por medio de los cuales la mesa de trabajo 4 puede elevarse y bajarse. Los elementos elevadores 21 pueden ser unidades de pistones cilíndricos o husillos elevadores.

En principio debería ser suficiente la provisión de solo un medio elevador 21 activo y proporcionar por lo demás barras de guía alojadas de forma deslizante. Para un guiado exacto puede ser razonable sin embargo, proporcionar dos o más medios elevadores 21 accionables de forma activa que corran de forma síncrona.

30

40

45

Aquí puede reconocerse ahora claramente también el listón de tope 17, el cual aún se encuentra en la posición final. Si la formación 9 está flejada tal como se desea, la superficie de trabajo 4 se baja nuevamente y ahora el listón de tope 17, el cual está unido con una transmisión de cadena o de correa dentada, es accionado y se desplaza desde la unidad de control 16 o desde una unidad de control central no representada en este caso, en dirección de la mesa de transporte 4'.

35 de t

Como ya se ha mencionado, el aro de sujeción 5 puede configurarse preferiblemente unido fijamente con una placa frontal 20, de manera que la combinación completa de aro de sujeción 5 y placa frontal 20 puede intercambiarse conjuntamente de manera muy sencilla. Este intercambio se produce sobre todo cuando se combina otro tamaño de tubos o botes T en una formación y deben ser flejados. Como puede reconocerse fácilmente, la unidad combinada de placa frontal 20 y aro de sujeción 5 puede estar conformada como unidad puramente conectable por enchufe de la unidad de flejado 6. La placa frontal 20 presenta en sección transversal una forma de L. El brazo más corto está colocado en el lado frontal en la carcasa 11. El brazo 24 esencialmente más largo conforma en este caso parte de la cubierta de la carcasa 11. El brazo 25 más corto presenta lateralmente hendiduras 23, que conforman parte de una guía de un soporte conectable de la placa frontal 20 con la caja 10. En el brazo largo 24 hay conformadas dos escotaduras 26 aproximadamente ovales. Estas escotaduras sirven para poder agarrar bien la placa frontal 20 para cambiar la placa frontal.

El aro de sujeción 5 está compuesto, como se representa aquí, preferiblemente a partir de diferentes secciones de

perfiles en L. El brazo 25 corto de la placa frontal 20 forma una sección 53 sobre la que va a descansar la formación

50

55

9 que va a ser flejada. Las secciones del aro de sujeción 5 en sí se designan con 50. La sección 51, que está colocada enfrente del brazo 25 corto de la placa frontal 20 o de la sección 53, está separada. Estas dos secciones 51 separadas están unidas entre sí mediante un elemento de accionamiento 52. Este elemento de accionamiento puede ser por ejemplo, una unidad de pistón cilíndrico hidráulica o neumática o estar conformado como una unidad consistente en un husillo roscado con accionamiento electromotor. Como elemento de accionamiento 52 también se tiene en consideración un imán de elevación accionado eléctricamente. El aro de sujeción 5 debe describir sólo un recorrido muy pequeño para el movimiento tipo tenaza. Debido a ello, el aro de sujeción 5 puede estar conformado sin bisagras. El aro de sujeción 5 está dimensionado de forma que se corresponde exactamente con el perímetro de la formación 9 que va a ser flejada. Para facilitar sin embargo la introducción de los tubos o botes que se mantienen sobre la placa de espigas, el aro de sujeción 5 se abre ligeramente por medio del elemento de accionamiento 52 mencionado. El recorrido de apertura será preferiblemente sólo de algunos milímetros hasta como máximo de 3

60

65

centímetros.

El anillo de sujeción 5 también puede presentar naturalmente uno o varios puntos de bisagra y en este caso deben producirse naturalmente tanto el movimiento de apertura como también el de cierre del aro de sujeción 5 de forma

activa. Dado que sin embargo, una solución tal es costosa tanto en la fabricación como también en el accionamiento, se prefiere la solución mencionada en primer lugar.

- En la figura 6 puede verse una vista parcial del arco de recogida 13. La vista es desde el lado interior sobre la viga 5 de yugo 15 y una parte de uno de los dos brazos longitudinales 14. Tanto la viga de yugo 15 como también ambos brazos longitudinales 14, están provistos en sus lados dispuestos hacia el centro de una abertura 25' en forma de ranura circundante. Esta abertura 25' en forma de ranura circundante queda cubierta en su mayor medida por un cepillo 26'. La banda de flejado se guía por el arco de recogida 13 y al estirarse se extrae de este arco de recogida 13, por lo que el cepillo 26' desplaza esta banda de flejado a la zona inferior. Al tensarse la banda de flejado, ésta ha 10 de disponerse en una posición exactamente definida sobre la formación 9. Esto se logra por medio de correspondientes chapas de quía. En el dibujo se reconoce una chapa de quía 27 superior y una chapa de quía 28 inferior. Ambas chapas de guía están fijadas de forma intercambiable, ya que estas chapas de guía deben adaptarse en correspondencia con el diámetro de los botes o tubos que van a ser flejados, y los dientes 29 dispuestos sobre estas chapas de quía 27. 28 deben corresponderse en su distancia contigua con el diámetro de los botes que van a 15 ser flejados. En este caso es esencial que la banda de flejado no entre en contacto en una posición cualquiera sobre los botes, sino a una altura definida. En correspondencia estas chapas de guía 27, 28 tienen por ello una especial importancia. En particular, en el caso de los botes que van a ser flejados, hay diversas formas de realización, esencialmente formas cilíndricas y formas cilíndricas tales que son entalladas en una zona central. Las bandas de flejado solo pueden disponerse naturalmente en las zonas cilíndricas. En particular en la zona cilíndrica inferior de 20 tales botes, es de gran importancia que éstos no sean presionados demasiado cerca de la zona de la base. Los botes de aluminio son habitualmente en diámetro, en la zona de la base, algo más gruesos que en la zona cilíndrica que está sobre ella. Este fenómeno se conoce en el lenguaje técnico como llamada pata de elefante. En correspondencia el flejado se realiza preferiblemente primero en una zona cilíndrica superior y sólo cuando ya se ha producido este flejado y los botes están colocados de una forma relativamente estable entre sí, se realiza el flejado 25 en la zona inferior. Con esto se evita que aparezcan deformaciones de los botes en la zona mencionada. Si aparecieran tales deformaciones, esto generaría impresiones visibles, que no serían aceptadas por el fabricante.
- Las chapas de guía 27, 28 están colocadas en vigas de yugo 15 en la zona de la unidad de control 16. Tan pronto como la formación 9 está colocada dentro del aro de sujeción 5, el aro de sujeción 5 agarra la formación y coloca los botes en un empaquetado denso, tras lo cual las chapas de guía 28 y 28 se desplazan hacia el centro y los dientes 29 se enganchan entre los tubos o botes individuales. En este caso los dientes 29 están dimensionados de tal manera, que estos dientes no entran en contacto con los botes, al igual que tampoco las chapas de guía 27 y 28, sino que sólo llevan a que la banda de fleiado descanse en la posición exacta.

35	Lista	de signos de referencia.
	1	Línea de producción
	2	Unidad de agrupamiento
	2 3	Unidad de transporte
	4	Mesa de trabajo
40	4'	Mesa de transporte
	5	Aro de sujeción
	6	Unidad de flejado
	7	Placa de espigas
	7'	Segunda placa de espigas
45	8	Almacén intermedio
	9	Formación de tubos o botes
	10	Chasis
	11	Carcasa
	12	Caja
50	13	Arco de recogida
	14	Brazos longitudinales
	15	Viga de yugo
	16	Unidad de control
	17	Listón de tope
55	18	Transmisión de cadena
	19	Motor de transmisión eléctrico
	20	Placa frontal en forma de L
	21	Medio elevador
	23	Ranuras
60	24	Brazo largo de la placa frontal 20
	25	Brazo corto de la placa frontal 20
	26	Escotaduras ovales en la placa frontal
	25'	Abertura circundante
<i>(</i>	26'	Cepillo
65	27	Chapa de guía superior
	28	Chapa de guía inferior

	29	Dientes de las chapas de guía 27, 28
	50	Sección del aro de sujeción
	51	Sección separada por medio de una rendija
_	52	Elemento de accionamiento
	53	Sección
	Т	Tubos o botes
	K	Banda de plástico

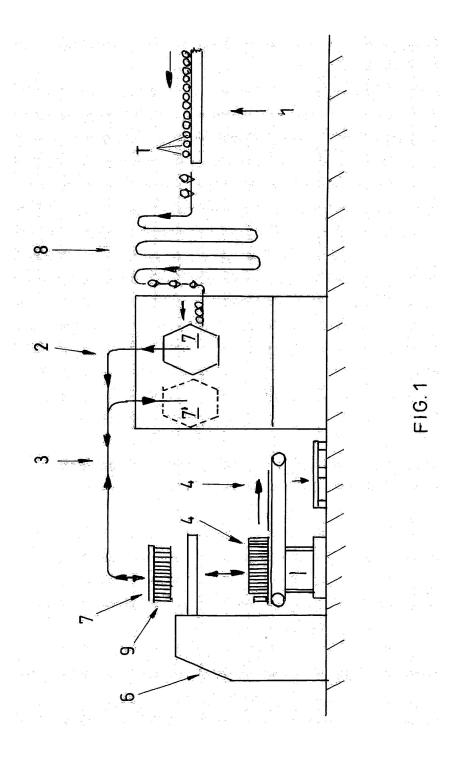
REIVINDICACIONES

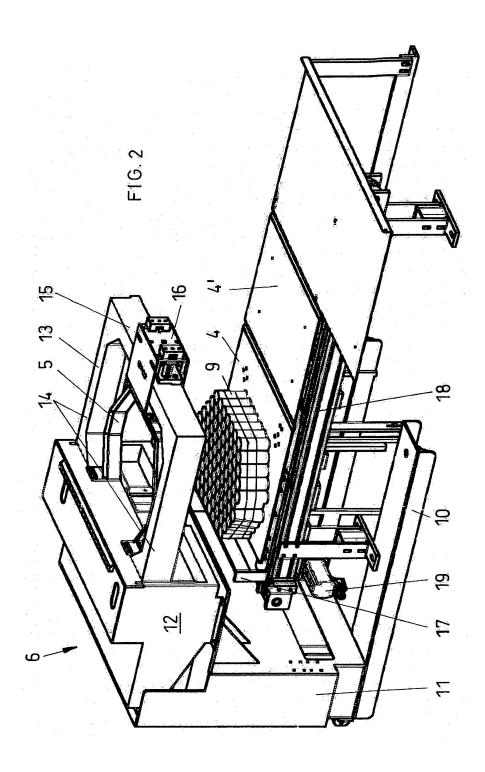
1. Procedimiento para el embalado de tubos o botes (T) que vienen de una línea de producción (1) y que se disponen por medio de una unidad de agrupamiento (2) en grupos de tubos o botes contiguos entre sí con una cantidad de unidades prefijada y estos grupos son recogidos por una unidad de transporte (3) respectivamente, caracterizado por que la unidad de transporte (3) conduce los tubos o botes (T) en una formación (9) deseada a un aro de sujeción (5), que es parte de una unidad de flejado (6) y fija la formación (9), tras lo cual la unidad de transporte (3) regresa inmediatamente de nuevo a la unidad de agrupamiento (2) y la formación de tubos o botes se fleja al menos una vez en el aro de sujeción (5) y después de esto la formación (9) flejada se continua transportando.

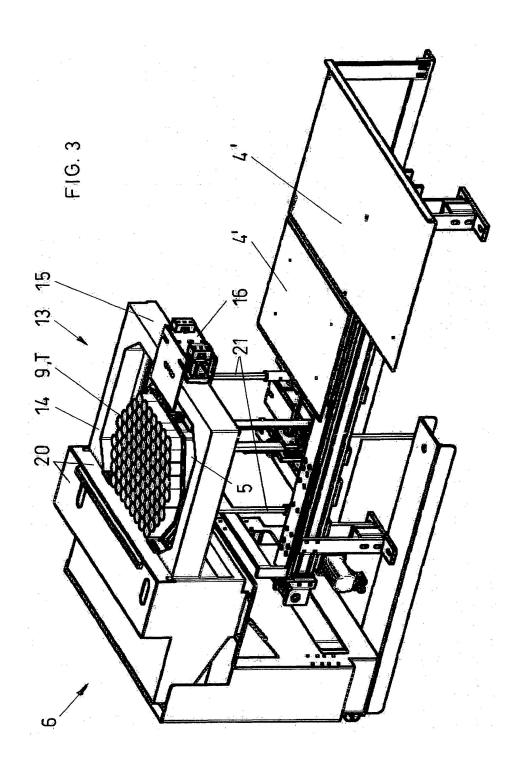
5

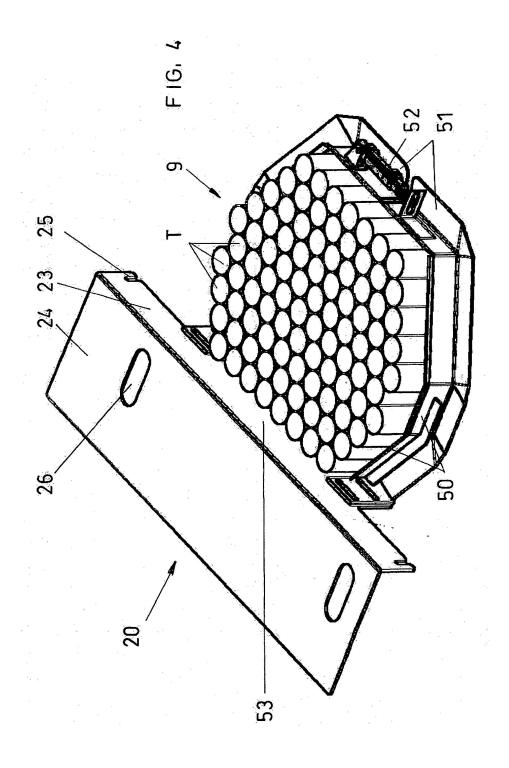
10

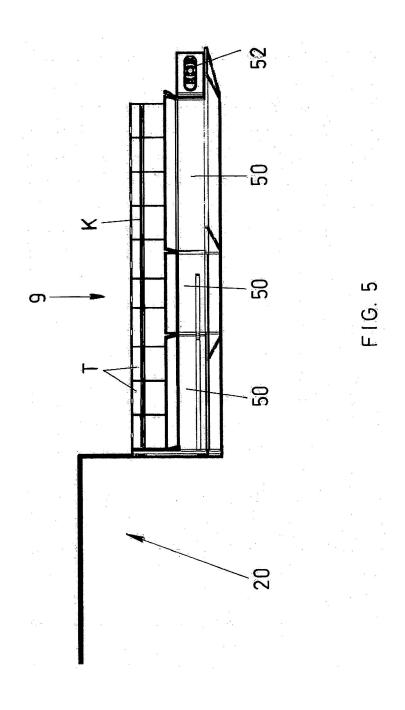
25


40


45


- 2. Procedimiento según la reivindicación 1, caracterizado por que como unidad de transporte (3) se utiliza al menos una placa de espigas (7, 7'), sobre la que se desplazan los tubos o botes (T) en grupos desde la unidad de agrupamiento (2) hasta la conformación de la formación (9) completa.
- 3. Procedimiento según la reivindicación 2, caracterizado por que la placa de espigas (7, 7') cargada se mueve desde la unidad de agrupamiento (2) a la unidad de flejado (6) y allí introduce desde arriba los botes o tubos (T) en el aro de sujeción (5), los coloca sobre una mesa de trabajo (4) elevada e inmediatamente la placa de espigas (7, 7') retorna, mientras que entonces se produce al menos un flejado de la formación (9).
- 4. Procedimiento según la reivindicación 3, caracterizado por que la formación (9) flejada una vez depositada se baja o se eleva por medio de la mesa de trabajo (4) a razón de una distancia prefijada y se realiza un segundo flejado.
 - 5. Procedimiento según la reivindicación 3 o 4, caracterizado por que la formación (9) flejada se baja por medio de la mesa de trabajo (4) al nivel de una mesa de transporte (4') contigua y se desplaza por medio de un listón de tope (17) desplazable a la mesa de transporte.
 - 6. Procedimiento según la reivindicación 3 o 4, caracterizado por que previamente al flejado se colocan chapas de guía en posición.
- 7. Instalación para el embalaje de tubos o botes (T) según el procedimiento según una de las reivindicaciones anteriores, que comprende una unidad de agrupamiento (2) que actúa conjuntamente con una línea de producción (1) de tubos o botes, por medio de la cual los tubos o botes (T) se disponen en grupos de tubos o botes (T) contiguos entre sí, una unidad de flejado (6) y una unidad de transporte (3) para el transporte de los grupos a la unidad de flejado (6), en la que se flejan los grupos que se mantienen unidos en una formación (9), caracterizada porque la unidad de flejado (6) presenta un aro de sujeción (5) para enganchar y fijar la formación (9), de manera que la unidad de transporte (3) puede retornarse inmediatamente de nuevo a la unidad de agrupamiento (2).
 - 8. Instalación según la reivindicación 7, caracterizada por que el aro de sujeción (5) es un aro de sujeción (5) adaptado a la forma de la formación que va a ser flejada, que puede ser reemplazado.
 - 9. Instalación según la reivindicación 7 u 8, caracterizada por que el aro de sujeción (5) consiste en dos partes, que están unidas entre sí mediante un medio y que con la ayuda de un elemento de accionamiento (52) rodea la formación (9) de tubos o botes (T) a modo de tenazas, por lo que preferiblemente el aro de sujeción (5) que actúa a modo de tenazas está rodeado de un arco de recogida (13).
 - 10. Instalación según la reivindicación 8, caracterizada por que el aro de sujeción está configurado sin articulaciones y se ensancha por medio del elemento de accionamiento (52) para la recogida de la formación (9) y coge la formación (9) a modo de tenazas por deformación elástica.
- 50 11. Instalación según la reivindicación 9, caracterizada por que el arco de recogida sirve para el guiado y para la protección de una banda de plástico para el flejado y la unidad de flejado comprende una carcasa (11), en la que se coloca un aparato de flejado comercial.
- 12. Instalación según la reivindicación 11, caracterizada por que la carcasa (11) presenta una placa frontal (20) en forma de L que puede colgarse en la carcasa mediante conexión enchufable, por lo que el aro de sujeción(5) con la placa frontal (20) en forma de L está instalado firmemente en su brazo (25) más corto.
- 13. Instalación según la reivindicación 12, caracterizada por que el aro de sujeción (5) está conformado a partir de varias secciones (50) conformadas por doblado o soldado y la placa frontal (20) forma con su brazo (25) más corto una sección (53), sobre la que se adapta la formación (9) que va a ser flejada, mientras que la sección diametralmente opuesta a esta sección (53) consiste en dos secciones parciales (51) separadas por una rendija, a las que se engancha el elemento de accionamiento (52).
- 14. Instalación según la reivindicación 7, caracterizada por que el aro de sujeción (5) está colocado dentro de un arco de recogida (13) que lo rodea, de la unidad de flejado (6) y éste consiste en dos brazos longitudinales (14) y en una viga de yugo (15) por los cuales se guía la banda de plástico que sirve para el flejado, por lo que los brazos


longitudinales (14) y la viga de yugo (15) presentan una abertura (25) circundante hacia el centro, que está cubierta al menos parcialmente por un cepillo (26).


15. Instalación según la reivindicación 14, caracterizada por que en la viga de yugo (15) hay colocadas, de forma que pueden cambiarse, una chapa de guía (27) superior y una chapa de guía (28) inferior alineadas con los bordes de la abertura (25') circundante y presentan dientes (29).

