

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 588 193

51 Int. Cl.:

C07D 405/12 (2006.01) C07D 417/12 (2006.01) A01N 43/40 (2006.01) A01N 43/78 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 27.03.2009 PCT/EP2009/053668

(87) Fecha y número de publicación internacional: 01.10.2009 WO09118411

96 Fecha de presentación y número de la solicitud europea: 27.03.2009 E 09724061 (8)

97 Fecha y número de publicación de la concesión europea: 25.05.2016 EP 2254886

Título: Derivados de 3,4-dihidro-2H-pirazino[1,2-a]indol-1-ona activos como inhibidores de cinasa, proceso para su preparación y composiciones farmacéuticas que los comprenden

(30) Prioridad:

28.03.2008 EP 08153532

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 31.10.2016 (73) Titular/es:

NERVIANO MEDICAL SCIENCES S.R.L. (100.0%) 11 Viale Pasteur, 10 20014 Nerviano (MI), IT

(72) Inventor/es:

CERVI, GIOVANNI; D'ANELLO, MATTEO; PAPEO, GIANLUCA MARIANO ENRICO y SALOM, BARBARA

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

Observaciones:

Véase nota informativa (Remarks) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Derivados de 3,4-dihidro-2H-pirazino[1,2-a]indol-1-ona activos como inhibidores de cinasa, proceso para su preparación y composiciones farmacéuticas que los comprenden

La presente invención La presente invención se refiere a ciertos derivados 8-amino de compuestos 3,4-dihidro-2H-pirazino[1,2-a]indol-1-ona que modulan la actividad de proteína cinasas. Por consiguiente, los compuestos de esta invención son útiles en el tratamiento de enfermedades causadas por una actividad proteína cinasa desregulada. La presente invención proporciona también métodos para la preparación de estos compuestos, bibliotecas combinatorias de los mismos, composiciones farmacéuticas que comprenden estos compuestos, y métodos para el tratamiento de enfermedades que utilizan composiciones farmacéuticas que comprenden estos compuestos.

La disfunción de las proteínas cinasas (PKs, del inglés protein kinases) es el rasgo distintivo de numerosas enfermedades. Una gran parte de los oncogenes y proto-oncogenes implicados en los cánceres humanos codifican para PKs. Las actividades mejoradas de las PKs también están involucradas en muchas enfermedades no malignas, como la hiperplasia benigna de próstata, la adenomatosis familiar, la poliposis, la neurofibromatosis, la psoriasis, la proliferación de células lisas vasculares asociada con aterosclerosis, la fibrosis pulmonar, la artritis, la glomerulonefritis y la estenosis y reestenosis post-quirúrgica.

Las PKs también están implicadas en estados inflamatorios y en la multiplicación de virus y parásitos. Las PKs pueden jugar también un papel importante en la patogénesis y el desarrollo de trastornos neurodegenerativos.

Como referencia general sobre el mal funcionamiento o falta de regulación de las PKs, véase por ejemplo, Current Opinion in Chemical Biology 1999, 3, 459 – 465 y Carcinogenesis 2008, 29, 1087 – 191.

Los derivados 3,4-dihidro-2h-pirazino[1,2-a]indol-1-ona para el tratamiento de trastornos del sistema nerviosos central y la obesidad se dan a conocer en el documento WO 2002/010169 y el documento WO 2002/072584, ambos a nombre de F. Hoffmann-La Roche A. –G. y Vernalis Research (Limited).

Los derivados 8-oxi de 3,4-dihidro-2H-pirazino[1,2-a]indol-1-ona se dan a conocer en el documento WO2007/065820 a nombre de F. Hoffmann-La Roche A. –G. La fórmula (I) que abarca estos compuestos difiere principalmente de la presente invención en la posición del grupo oxi y los sustituyentes R³, R³. Además estos compuestos se dan a conocer para un uso diferente, que es el tratamiento de la obesidad.

Los derivados 7-carbamoil de 3,4-dihidro-2H-pirazino[1,2-a]indol-1-ona para el tratamiento de trastornos mediados por citoquinas, como la artritis reumatoide, la enfermedad inflamatoria intestinal y la enfermedad de Alzheimer se dan a conocer en el documento US200627453, a nombre de Boehringer Ingelheim Pharmaceuticals, Inc., EUA.

Los presentes inventores han descubierto ahora que los compuestos de la fórmula (I), descritos abajo, son inhibidores de cinasa y por tanto son útiles en las terapias como agentes anti-tumorales.

Correspondientemente, un primer objeto de la presente invención es proporcionar un compuesto 8-amino-3,4-dihidro-2H-pirazino[1,2-a]indol-1-ona representado por la fórmula (I):

35 donde

40

25

R se selecciona del grupo consistente en $-R^a$, $-COR^a$, $-COR^aR^b$ y $-SO2R^a$, y R1 es un grupo $-NR^cR^d$, donde R^a , R^b , R^c y R^d , iguales o diferentes, son cada uno independientemente hidrógeno o un grupo seleccionado entre alquilo C_1-C_6 lineal o ramificado, cicloalquilo C_3-C_6 , cicloalquil alquilo C_1-C_6 , arilo, aril alquilo C_1-C_6 y heteroarilo, opcionalmente sustituido por uno o varios grupos seleccionados entre halógeno, ciano, alquilo C_1-C_6 , alquilo polifluorado, cicloalquilo, heterociclilo, arilo, dialquilamino y alcoxi, donde:

el término "cicloalquilo C₃-C₆" representa un anillo monocíclico todo de carbono de 3 a 6 miembros, el cual

5

10

20

25

30

35

40

45

50

55

puede contener uno o varios enlaces dobles pero no tiene un sistema electrónico π completamente conjugado;

el término "heterociclilo" representa un anillo carbocíclico saturado o parcialmente insaturado de 3 a 7 miembros, donde uno o varios átomos de carbono se sustituyen por heteroátomos seleccionados entre nitrógeno y oxígeno;

el término "arilo" representa un hidrocarburo mono-, bi- o policarbocíclico con sistemas de 1 a 4 anillos, opcionalmente también fundidos o unidos entre sí mediante enlaces sencillos, donde al menos uno de los anillos carbocíclicos es "aromático", refiriéndose el término "aromático" a un sistema de enlace electrónico π completamente conjugado;

el término "heteroarilo" representa anillos heterocíclicos aromáticos, típicamente heterociclos de 5 a 7 miembros con 1 a 3 heteroátomos seleccionados entre N o S; el anillo heteroarilo opcionalmente también puede estar fundido o unido a anillos carbocíclicos y heterocíclicos aromáticos y no aromáticos; y sales farmacéuticamente aceptables del mismo.

La presente invención proporciona también métodos de síntesis de compuestos 8-amino-3,4-dihidro-2H-pirazino[1,2-15 a]indol-1-ona sustituidos, representados por la fórmula (I), preparados mediante un proceso consistente en transformaciones sintéticas estándar.

La presente invención proporciona también un método para el tratamiento de enfermedades causadas por y/o asociadas con la actividad proteína cinasa desregulada, particularmente la familia PLK, ABL, AKT1, ALK, AUR1, AUR2, BRK, CDC7/DBF4, CDK2/CYCA, CHK1, CK2, EE2FK, EGFR1, ERK2, FAK, FGFR1, FLT3, GSK3beta, IGFR1, IKK2, IR, JAK2, JAK3, KIT, LCK, MAPKAPK2, MET, MPS1, NEK6, NIM1, P38alpha, PAK4, PDGFR, PDK1, PERK, PIM1, PKAalpha, PKCbeta, PLK1, RET, B-RAF, STLK2, SULU1, TRKA, VEGFR2, VEGFR3, ZAP70.

Un método preferido de la presente invención da a conocer el tratamiento de una enfermedad causada por y/o asociada con la actividad proteína cinasa desregulada seleccionada del grupo consistente en cáncer, infecciones víricas, prevención del desarrollo de SIDA en individuos infectados con VIH, trastornos proliferativos celulares, trastornos autoinmunes y neurodegenerativos.

Otro método preferido de la presente invención da a conocer el tratamiento de tipos específicos de cáncer, incluyendo pero sin limitarse a: carcinoma tal como cáncer de vejiga, mama, colon, riñón, hígado, pulmón, incluyendo cáncer de pulmón de células pequeñas, esófago, vesícula, ovario, páncreas, estómago, cerviz, tiroides, próstata, y piel, incluyendo carcinoma de células escamosas; tumores hematopoyéticos de linaje linfático, incluyendo leucemia, leucemia linfocítica aguda, leucemia linfoblástica aguda, linfoma de células B, linfoma de células T, linfoma de Hodgkin, linfoma no Hodgkin, linfoma de células pilosas y linfoma de Burkitt; tumores hematopoyéticos de linaje mieloide, incluyendo las leucemias mielogénicas aguda y crónica, síndrome mielodisplásico y leucemia promielocítica; tumores de origen mesenquimal, incluyendo fibrosarcoma y rabdomiosarcoma; tumores del sistema nervioso central y periférico, incluyendo astrocitoma, neuroblastoma, glioma y schwannomas; otros tumores, que incluyen mesotelioma, melanoma, seminoma, teratocarcinoma, osteosarcoma, xeroderma pigmentoso, queratoxantoma, cáncer folicular de tiroides y sarcoma de Kaposi.

Otro método preferido revelado aquí es tratar los trastornos de proliferación celular específicos, como por ejemplo, la hiperplasia benigna de próstata, la adenomatosis familiar, la poliposis, la neurofibromatosis, la psoriasis, la proliferación de células lisas vasculares asociada con aterosclerosis, la fibrosis pulmonar, la artritis, la glomerulonefritis y la estenosis y reestenosis post-quirúrgica.

Además, el método de la presente invención da a conocer también la inhibición de la angiogénesis y la metástasis tumoral, así como el tratamiento del rechazo en el trasplante de órganos y la enfermedad injerto contra huésped.

En otra realización preferida, el método de la presente invención da a conocer además someter al mamífero necesitado del mismo a terapia de radiación o régimen de quimioterapia en combinación con al menos un agente citostático o citotóxico.

Asimismo, la invención da a conocer un método in vitro para la inhibición de la actividad de la familia de proteínas RaF, que comprende la puesta en contacto de dicha proteína con una cantidad eficaz de un compuesto de fórmula (I).

La presente invención proporciona también una composición farmacéutica que comprende uno o varios compuestos de fórmula (I) o una sal farmacéuticamente aceptable de los mismos y un excipiente, portador o diluyente farmacéuticamente aceptable.

La presente invención proporciona además una composición farmacéutica que comprende un compuesto de fórmula (I) en combinación con agentes citostáticos o citotóxicos, agentes tipo antibiótico, agentes dañinos para el ADN o agentes intercalantes, agentes basados en platino, agentes alquilantes, agentes anti-metabolito, agentes hormonales, agentes anti-hormonales como anti-estrógenos, anti-andrógenos e inhibidores de la aromatasa, agentes inmunológicos, agentes tipo interferona, inhibidores de la ciclooxigenasa (p. ej. inhibidores de COX-2), inhibidores de metaloproteasa matriz, inhibidores de la tirosina cinasa, otros inhibidores cinasa, agentes anti receptor del factor de crecimiento, agentes anti-HER, agentes anti-EGFR, agentes anti-angiogénesis (p. ej. inhibidores de la

angiogénesis), inhibidores de farnesil transferasa, inhibidores de la ruta de transducción de señal ras-raf, inhibidores del ciclo celular, otros inhibidores de cdks, agentes de unión a tubulina, inhibidores de la topoisomerasa I, inhibidores de la topoisomerasa II, inhibidores de cinesinas, anticuerpos monoclonales terapéuticos, inhibidores de mTOR, inhibidores de la histona desacetilasa, inhibidores de la respuesta hipóxica y similares.

Adicionalmente, la invención proporciona un producto o kit que comprende un compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo, como se define arriba, o composiciones farmacéuticas del mismo y uno o varios agentes quimioterapéuticos, como una preparación combinada para el uso simultáneo, separado o secuencial en la terapia contra el cáncer.

Incluso en otro aspecto, la invención proporciona un compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo, tal y como se define arriba, para su uso como medicamento.

Además la invención da a conocer el uso de un compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo, como se define arriba, en la preparación de un medicamento para el tratamiento de trastornos causados por y/o asociados a una actividad proteína cinasa alterada.

Finalmente, la invención proporciona un compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo, como se define arriba, para el uso en un método de tratamiento contra el cáncer.

Si no se especifica lo contrario, al referirse a los compuestos de fórmula (I) per se así como a cualquier composición farmacéutica de los mismos o a cualquier tratamiento terapéutico de tratamiento que los comprenda, la presente invención incluye todos los solvatos, hidratos, complejos, metabolitos, pro-fármacos, portadores, N-óxidos y sales farmacéuticamente aceptables de los compuestos de esta invención.

"Solvato" representa una asociación física de un compuesto de esta invención con una o varias moléculas de solvente. Esta asociación física implica variar grados de enlace iónico y covalente, incluyendo enlace de hidrógeno. En ciertos casos el solvato será capaz de aislarse, por ejemplo cuando una o varias moléculas de solvente se incorporan en la red cristalina del sólido cristalino. "Solvato" engloba tanto la fase solución como solvatos aislables. Ejemplos no limitantes de solvatos apropiados incluyen etanolatos, metanolatos y similares.

25 "Hidrato" es un solvato sonde la molécula de solventes es H₂O.

10

15

30

35

45

50

Un metabolito de un compuesto de fórmula (I) es cualquier compuesto en que es convertido *in vivo* este mismo compuesto de fórmula (I), por ejemplo tras la administración a un mamífero con necesidad del mismo. Típicamente, aunque sin que represente un ejemplo limitante, tras la administración de un compuesto de fórmula (I), este mismo derivado puede ser convertido en una variedad de compuestos, por ejemplo, incluyendo derivados más solubles como derivados hidroxilados que se excretan fácilmente. Por lo tanto, dependiendo de la ruta metabólica que esté ocurriendo, cualquiera de estos derivados hidroxilados puede ser considerado un metabolito de los compuestos de fórmula (I).

El término "pro-fármaco", como se emplea aquí, indica un compuesto que es un precursor del fármaco, el cual al administrarse a un sujeto sufre conversión química mediante procesos metabólicos o químicos para rendir un compuesto de fórmula (I) o una sal y/o solvato del mismo.

Una discusión sobre pro-fármacos se presenta en T. Higuchi y V. Stella, Pro-drugs as Novel Delivery Systema (1987) volúmen 14 de A.C.S Symposium Series, y en Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press.

Todas las formas de isómeros quirales u otras formas de isómeros, incluyendo enantiómeros y diastereómeros, están destinadas a cubrirse aquí. Los compuestos que contienen un centro quiral se pueden usar como una mezcla racémica, una mezcla enriquecida enantioméricamente, o la mezcla racémica se puede separar usando técnicas bien conocidas y se puede usar un enantiómero individual solo.

En los casos en los que los compuestos pueden existir en formas tautoméricas, tales como los tautómeros ceto-enol, cada forma tautomérica se contempla como si se incluyera en esta invención, tanto si existe en equilibrio o está predominantemente en una forma.

En la presente descripción, a menos que se indique lo contrario, con el término "alquilo C_1 - C_6 lineal o ramificado", se indica cualquier grupo como, por ejemplo, metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, sec-butilo, terc-butilo, n-pentilo, terc-butilo, t

Con el término "alquenilo C_2 - C_6 lineal o ramificado" o "alquinilo C_2 - C_6 lineal o ramificado" se indica cualquiera de los grupos alquenilo o alquinilo insaturados con 2 a 6 átomos de carbono, incluyendo por ejemplo vinilo, alilo, 1-propenilo, isopropenilo, 1-, 2- o 3-butenilo, pentenilo, hexenilo, etinilo, 1- o 2-propinilo, butinilo, pentinilo, hexinilo y similares

Con el término "cicloalquilo C₃-C₆" se indica, a menos que se especifique lo contrario, un anillo monocíclico todo de carbono de 3 a 6 miembros, el cual puede contener uno o varios enlaces dobles pero no tiene un sistema electrónico

π completamente conjugado. Son ejemplos de grupos cicloalquilo, sin limitación, ciclopropano, ciclobutano, ciclopentano, ciclopentano, ciclohexano, ciclohexano,

Con el término "heterociclilo" se indica un anillo carbocíclico saturado o parcialmente insaturado, de 3 a 7 miembros, donde uno o varios átomos de carbono se sustituyen por heteroátomos como nitrógeno, oxígeno y azufre. Son ejemplos no limitantes de grupos heterociclilo, por ejemplo, pirano, pirrolidina, pirrolina, imidazolina, imidazolidina, pirazolidina, pirazolidina, tiazolina, tiazolidina, dihidrofurano, tetrahidrofurano, 1,3-dioxolano, piperidina, piperazina, morfolina y similares.

El término "arilo" se indica un hidrocarburo mono-, bi- o policarbocíclico con sistemas de 1 a 4 anillos, opcionalmente también fundidos o unidos entre sí mediante enlaces sencillos, donde al menos uno de los anillos carbocíclicos es "aromático", refiriéndose el término "aromático" a un sistema de enlace electrónico π completamente conjugado. Son ejemplos no limitantes de dichos grupos arilo, los grupos fenilo, α - o β -naftilo o bifenilo.

Con el término "heteroarilo" se indican anillos heterocíclicos aromáticos, típicamente heterociclos de 5 a 7 miembros con 1 a 3 heteroátomos seleccionados entre N, O o S; el anillo heteroarilo opcionalmente también puede estar fundido o unido a anillos carbocíclicos y heterocíclicos aromáticos o no aromáticos. Son ejemplos no limitantes de dichos grupos heteroarilo, por ejemplo, piridilo, pirazinilo, pirimidinilo, piridazinilo, indolilo, imidazolilo, tiazolilo, isotiazolilo, pirrolilo, fenil-pirrolilo, furilo, fenil-furilo, oxazolilo, isoxazolilo, pirazolilo, tienilo, benzotienilo, isoindolinilo, benzoimidazolilo, quinolinilo, isoquinolinilo, 1,2,3-triazolilo, 1-fenil-1,2,3-triazolilo, 2,3-dihidrobenzotiofenilo; benzopiranilo, 2,3-dihidrobenzoxazinilo, 2,3-dihidroquinoxalinilo y similares.

De acuerdo con los significados proporcionados a Rª, Rb, Rc y Rd, cualquiera de os grupos anteriores puede estar sustituido opcionalmente en cualquiera de sus posiciones libres por uno o varios grupos, por ejemplo 1 a 6 grupos, seleccionados entre: halógeno, ciano, alquilo C₁-C₆, alquilo polifluorado, cicloalquilo, heterociclilo, arilo, dialquilamino y alcoxi.

A su vez, siempre que sea apropiado, cada uno de los sustituyentes anteriores puede estar sustituido también por uno o varios de los grupos mencionados anteriormente.

En la presente descripción, a menos que se indique lo contrario, con el término ciano se indica un residuo -CN.

Con el término nitro se indica un grupo -NO₂.

5

10

15

35

40

45

50

55

Con el término "halógeno" se indica un átomo de flúor, cloro, bromo o yodo.

Con el término "alquilo o alcoxi polifluorado" se indica cualquiera de los grupos alcoxi o alquilo C₁-C₆ lineales o ramificados como se definen anteriormente, donde más de un átomo de hidrógeno se sustituye por átomos de flúor, como por ejemplo, trifluorometilo, trifluorometoxi, 2,2,2- trifluoroetilo, 2,2,2-trifluoroetoxi, 1,2-difluoroetilo, 1,1,1,3,3,3-hexafluoropropil-2-ilo, y similares.

A partir de todo lo anterior, resulta claro para un experto en la materia que cualquier grupo cuyo nombre se ha identificado como un nombre compuesto, como por ejemplo, cicloalquilalquilo, arilalquilo, heterociclilalquilo, alcoxi, alquiltio, arilalquiloxi, alquilcarboniloxi y similares, se tiene que entender como construido de forma convencional a partir de las partes de las que deriva. Hasta el momento, como ejemplo, los términos heterociclil-alquilo y cicloalquilalquilo, representan un grupo alquilo lineal o ramificado que además está sustituido por un grupo heterocíclico o cicloalquilo, respectivamente, como se define arriba.

El término "sales farmacéuticamente aceptables" abarca sales usadas normalmente para formar sales metálicas alcalinas y para formar sales de adición de ácidos libres o bases libres. La naturaleza de la sal no es crítica, mientras sea farmacéuticamente aceptable. Las sales de adición de ácido farmacéuticamente aceptables del compuesto de la presente invención se pueden preparar a partir de un ácido inorgánico o un ácido orgánico. Son ejemplos de dichos ácidos inorgánicos, ácido clorhídrico, bromhídrico, vodhídrico, nítrico, carbónico, sulfúrico, y fosfórico. Los ácidos orgánicos apropiados se pueden seleccionar de clases de ácidos orgánicos alifáticos, cicloalifáticos, aromáticos, aralifáticos, heterocíclicos, carboxílicos y sulfónicos, ejemplos de los cuales son ácido fórmico, acético, trifluoroacético, propiónico, succínico, glicólico, glucónico, láctico, málico, fumárico, tartárico, cítrico, glucurónico, maleico, fumárico, pirúvico, aspártico, glutámico, benzoico, antranílico, mesílico, salicílico, p-hidroxibenzoico, fenilacético, mandélico, embónico (pamoico), metanosulfónico, etanosulfónico, bencenosulfónico, pantoténico, toluenosulfónico, 2-hidroxietanosulfónico, sulfanílico, esteárico, ciclohexilaminosulfónico, algénico, hidroxibutírico, galactárico y galacturónico. Las sales de adición de base apropiadas farmacéuticamente aceptables de los compuestos de la presente invención incluyen sales metálicas de aluminio, calcio, litio, magnesio, potasio, sodio y cinc o sales orgánicas de N,N'-dibenciletilendiamina, cloroprocaína, colina, dietanolamina, etilendiamina, meglumina (N-metil-glucamina) y procaína. Todas estas sales se pueden preparar por medios convencionales a partir de los compuestos correspondientes de la presente invención, por ejemplo mediante la reacción de los mismos con el ácido o base apropiado.

Una clase preferida de compuestos de fórmula (I) son los compuestos donde:

R1 es un grupo $-NR^cR^d$ y uno de R^c o R^d es un átomo de hidrógeno y el restante de R^c o R^d es un alquilo C_1-C_6 lineal o ramificado o un grupo arilo C_1-C_6 opcionalmente sustituido.

Otra clase preferida de compuestos de fórmula (I) son los compuestos donde:

R es un grupo R^a donde R^a es un grupo $-SO_2R^a$ donde R^a es un alquilo C_1 - C_6 lineal o ramificado o arilo o arilalquilo opcionalmente sustituido.

Otra clase aún más preferida de compuestos de fórmula (I) son los compuestos donde:

R es un grupo – COR^a donde R^a es un alquilo C_1 - C_6 lineal o ramificado, cicloalquilo un grupo arilo o arilalquilo opcionalmente sustituido.

Una clase más preferida de compuestos de fórmula (I) son los compuestos donde:

R es un grupo –CONRªR^b donde uno de Rª y R^b es hidrógeno y el otro es un alquilo C₁-C₆ lineal o ramificado, un grupo arilo o arilalquilo opcionalmente sustituido.

Para una referencia a cualquier compuesto específico de fórmula (I) de la invención, opcionalmente en forma de sales farmacéuticamente aceptables, véase la sección experimental.

El compuesto intermedio de fórmula (VII):

15

5

10

donde R1 es como se define arriba, es novedosa y representa por tanto otro objeto de la invención.

La presente invención proporciona también un proceso para la preparación de un compuesto de fórmula (I) como se define arriba, caracterizado por que el proceso comprende:

a) La hidrolización bajo condiciones ácidas o básicas el compuesto de fórmula (II):

20

b) La reacción del compuesto resultante de fórmula (III) o una sal del mismo:

con 2,2-dimetoxi-etilamina, tras la activación del grupo carboxilo:

c) La desprotección bajo condiciones ácidas del compuesto resultante de fórmula (IV):

d) la reacción bajo condiciones básicas del compuesto resultante de fórmula (V):

5 con un fosfonato de fórmula (VI):

donde Alc es alquilo C_1 - C_6 y R^c es alquilo C_1 - C_6 ; convirtiendo opcionalmente el compuesto resultante de fórmula (VII):

donde R1 representa ORc y Rc es alquilo C1-C6, en otro compuesto de fórmula (VII) reemplazando el grupo -ORc 10 con un grupo diferente entre aquellos representados por R1; e) la reducción de dicho compuesto de fórmula (VII) para rendir un compuesto de fórmula (I') o una sal del

mismo:

donde R1 es ORc y Rc es alquilo C₁-C₆;

5

10

15

20

separando opcionalmente el compuesto resultante de fórmula (I) en los isómeros individuales; convirtiendo el compuesto resultante de fórmula (I') en un compuesto diferente de fórmula (I) mediante derivatización de la fracción amino, y/o mediante la sustitución del grupo -ORc con un grupo diferente entre aquellos representados por R1, y/o en una sal farmacéuticamente aceptable si se desea.

La presente invención proporciona además un proceso para la preparación de un compuesto de fórmula (l') como se define arriba, caracterizado por que el compuesto de fórmula (l') preparado en las etapas de la a) a la e) descritas arriba, se convierte en otro compuesto de fórmula (l') mediante derivatización de la fracción amino, llevándose a cabo dicha derivatización mediante una o varias de las reacciones siguientes:

f) la reacción de un compuesto de fórmula (l') donde R es hidrógeno y R1 es -OR c y R c es alquilo C $_1$ -C $_6$, de acuerdo con cualquiera de las etapas alternativas:

f.1) con un ácido o un haluro de acilo de fórmula (VIII):

donde R^a es como se define arriba y Z es un halógeno o un grupo –OH, para rendir un compuesto de fórmula (I'):

donde R1 es -OR c y R c es alquilo C $_1$ -C $_6$ y R a son como se define arriba; o f.2) con un isocianato de fórmula (IX):

donde Ra es como se define arriba, para rendir un compuesto de fórmula (l'):

donde R1 es -OR c y R c es alquilo C1-C6 y R a son como se define arriba; o f.3) con un haluro de sulfonilo de fórmula (X):

$$R^aSO_2Z'$$
 (X)

5 donde Ra es como se define arriba y Z' es halógeno, para rendir un compuesto de fórmula (l'):

donde R1 es -OR c y R c es alquilo C1-C6 y R a son como se define arriba; o f.5) con una amina de fórmula (XII):

donde R^a y R^b son como se define arriba, en presencia de un cloroformiato apropiado, para rendir un compuesto de fórmula (l'):

donde R1 es -OR^c y R^c es alquilo C₁-C₆, y R^a y R^b son como se define arriba; o f.6) con un derivado aldehído o cetona apropiado de fórmula (XIII):

donde cada Ra, igual o diferente, es como se define arriba, para dar un compuesto de fórmula (l'):

donde R1 es -OR c y R c es alquilo C $_1$ -C $_6$, y cada R a , igual o diferente, es como se define arriba; o f.7) con un haluro de fórmula (XIV):

5

10

15

20

25

30

donde Ra y Z son como se define arriba, para rendir un compuesto de fórmula (l'):

donde R1 es -OR $^{\rm c}$ y R $^{\rm c}$ es alquilo C $_1$ -C $_6$, y R $^{\rm a}$ son como se define arriba; opcionalmente separando el compuesto resultante de fórmula (I') en los isómeros individuales; convirtiendo el compuesto resultante de fórmula (I') en un compuesto diferente de fórmula (I) reemplazando el grupo -OR $^{\rm c}$ con un grupo diferente entre aquellos representados por R1, y/o en una sal farmacéuticamente aceptable si se desea.

La presente invención proporciona además un proceso para la preparación de un compuesto de fórmula (I) como se define arriba, caracterizado por que el compuesto de fórmula (I') se convierte en un compuesto de fórmula (I), llevándose a cabo dicha conversión mediante una o varias de las reacciones siguientes:

g.3) aminolisis de un compuesto de fórmula (l') donde R₁ es -OR^c y R^c es alquilo C₁-C₆, por reacción con un compuesto de fórmula (XVI):

para rendir el correspondiente compuesto de fórmula (I) donde R1 es -NR°Rd;

g.5) amidación de un compuesto de fórmula (l') donde R1 es un grupo -OH o su sal correspondiente, por reacción con un compuesto de fórmula (XVI) como se define arriba, para rendir el correspondiente compuesto de fórmula (I) donde R1 es -NRºRd.

La presente invención proporciona además un proceso para la preparación de un compuesto de fórmula (I) como se define arriba, caracterizado por que el compuesto de fórmula (VII) como se define arriba, se convierte en otro compuesto de fórmula (VII), llevándose a cabo dicha conversión mediante una o varias de las reacciones siguientes:

- h.1) hidrólisis ácida o básica de un compuesto de fórmula (VII) donde R1 es -OR° y R° es alquilo C₁-C₆, para rendir un compuesto de fórmula (VII) donde R1 es -OR° y R° es hidrógeno, o la sal correspondiente;
- h.2) trans-esterificación de un compuesto de fórmula (VII) donde R1 es -OR c y R c es alquilo C₁-C₆, por reacción con un compuesto de fórmula (XV) como se define arriba, para rendir un compuesto de fórmula (VII) donde R1 es -OR c y R c es un alquilo C₁-C₆ diferente;
- h.3) amidación de un compuesto de fórmula (VII) donde R1 es -ORc y Rc es alquilo C₁-C₆, por reacción con un compuesto de fórmula (XVI) como se define arriba, para rendir un compuesto de fórmula (VII) donde R1 es NRcRd;

h.4) esterificación de un compuesto de fórmula (VII) donde R1 es -OR $^{\rm c}$ y R $^{\rm c}$ es hidrógeno, o la sal correspondiente, por reacción con un compuesto de fórmula (XV) como se define arriba, para rendir un compuesto de fórmula (VII) donde R1 es -OR $^{\rm c}$ y R $^{\rm c}$ es diferente de hidrógeno;

h.5) amidación de un compuesto de fórmula (VII) donde R1 es -ORc y Rc es hidrógeno, por reacción con un compuesto de fórmula (XVI) como se define arriba, para rendir un compuesto de fórmula (VII) donde R1 es - NRcRd.

A partir de todo lo anterior, resulta claro para un experto en la materia que si un compuesto de fórmula (I) o (VII), preparado de acuerdo con los procesos anteriores comprendiendo cualquier variante de los mismos, se obtiene como una mezcla de isómeros, su separación en los isómeros individuales de fórmula (I), llevado a cabo de acuerdo con técnicas convencionales, está aún dentro del alcance de la presente invención.

5

10

20

35

40

Asimismo, la conversión del compuesto de fórmula (I) en una sal farmacéuticamente aceptable del mismo o, alternativamente, la conversión en el compuesto (I) de la sal correspondiente, de acuerdo con procedimientos bien conocidos en la técnica, está aún dentro del alcance de la presente invención.

Cuando se preparan los compuestos de fórmula (I) de acuerdo con cualquier variante del proceso, las cuales deben estar todas dentro del alcance de la presente invención, los grupos funcionales opcionales entre los materiales de partida, los reactivos o los intermedios de los mismos, y que podrían dar lugar a reacciones secundarias indeseadas, necesitan protegerse adecuadamente de acuerdo con técnicas convencionales.

Los materiales de partida del proceso objeto de la presente invención, comprendiendo cualquier posible variante, así como cualquier reactivo de los mismos, son compuestos conocidos y si no están disponibles comercialmente per se, pueden prepararse de acuerdo con métodos bien conocidos.

Asimismo, los compuestos de fórmula (II), (IV), (VIII), (IX), (X), (XI), (XII), (XIII), (XIV), (XV), (XV), son conocidos o se obtienen fácilmente de acuerdo con métodos conocidos, para una referencia general véase: Smith, Michael – March's Advanced Organic Chemistry: reactions mechanisms and structure – 5ª edición, Michael B. Smith y Jerry March, John Wiley & Sons Inc., New York (NY), 2001.

De acuerdo con la etapa (a) del proceso, la hidrólisis del compuesto de fórmula (II) bajo condiciones ácidas o básicas se puede llevar a cabo en una variedad de formas, de acuerdo con los métodos convencionales para la hidrólisis de derivados de ésteres. Preferentemente, la reacción se lleva a cabo en presencia de hidróxido de litio acuoso, metanol y tetrahidrofurano, a una temperatura en el intervalo de temperatura ambiente hasta uno 90°C y durante un tiempo de 4 horas hasta un día. De acuerdo con las condiciones operativas empleadas, el compuesto de fórmula (III) se podría obtener bien en su forma ácida o, alternativamente, como una sal.

De acuerdo con la etapa (b) del proceso, la conversión del compuesto de fórmula (III) en el correspondiente derivado amido de fórmula (IV) se puede realizar en una variedad de formas, de acuerdo con métodos convencionales para la obtención de derivados amido a partir de los ácidos correspondientes. Por ejemplo la reacción se puede llevar a cabo con 2,2-dimetoxi-etilamina tras la activación de la función carboxílica del compuesto de fórmula (III) por reacción con cloruro de tionilo, cloruro de oxalilo o alternativamente en presencia de un agente de condensación apropiado, por ejemplo diciclohexilcarbodiimida (DCC), 1-etil-3-(3'-dimetilaminopropil)carbodiimida (EDC), Obenzotriazolil-tetrametil-isouronio tetrafluoroborato (TBTU) o benzotriazol-1-iloxi-tripirrolidino-fosfonio hexafluorofosfato (PyBOP). Preferentemente, la reacción se lleva a cabo usando cloruro de tionilo en dioxano como solvente y el cloruro de acilo aislado, mediante la eliminación de volátiles, reacciona con 2,2-dimetoxi-etilamina bajo condiciones de Schotten-Baumann bien conocidas.

De acuerdo con la etapa (c) del proceso, la desprotección del di-metil acetal del compuesto de fórmula (IV) se puede llevar a cabo en una variedad de formas, de acuerdo con los métodos convencionales de eliminación de acetal. Preferentemente, la reacción se lleva a cabo en presencia de un disolvente apropiado, por ejemplo en acetona y agua, bajo condiciones acídicas, por ejemplo en presencia de ácido mineral, preferentemente ácido clorhídrico.

- De acuerdo con la etapa (d) del proceso, la reacción del compuesto de fórmula (VI) se puede llevar a cabo en una variedad de formas, de acuerdo con los métodos convencionales para la reacción de Horner-Emmons. Preferentemente, la reacción se lleva a cabo usando diferentes bases orgánicas e inorgánicas tales como hidróxido de litio en tetrahidrofurano y agua o 1,8-diazabiciclo[5.4.0]undec-7-eno en acetonitrilo con el trimetil fosfonoacetato de fórmula (VI).
- De acuerdo con la etapa (e) del proceso, la reducción del grupo nitro del compuesto de fórmula (VII) para rendir un compuesto de fórmula (I), se puede llevar a cabo en una variedad de formas, de acuerdo con los métodos convencionales para la reducción del grupo nitro en el correspondiente derivado amino. Preferentemente, la reacción se lleva a cabo en presencia de cloruro de estaño (II) en dimetilformamida (DMF) a temperatura ambiente durante un tiempo en el intervalo de 4 a 24 horas.
- De acuerdo con cualquiera de las etapas (f.1) a (f.7) la preparación de derivados amino funcionalizados partiendo de la amina correspondiente se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales.

Preferentemente, de acuerdo con las etapas (f.1) y (f.3) del proceso, el compuesto de fórmula (I) se disuelve en un disolvente apropiado como diclorometano, dimeetilformamida, tetrahidrofurano, dioxano o similares, y se le añade una base apropiada como trietilamina, diisopropiletilamina o carbonato sódico.

Los compuestos de fórmula general (VIII), (X) o (XI) se añaden después y la mezcla se agita durante un tiempo desde unas 2 horas hasta unas 15 horas, a una temperatura en el intervalo desde unos 20°C hasta unos 80°C. Opcionalmente se puede usar un catalizador apropiado como dimetilamino piridina.

Preferentemente de acuerdo con la etapa (f.2) del proceso, las condiciones de reacción son las mismas que se han indicado arriba para las etapas (f.1) y (f.3) excepto que la base puede no ser necesaria. Entonces se añade el compuesto de fórmula general (IX) y la mezcla se agita como se indica arriba para las etapas (f.1) y (f.3).

- Preferentemente de acuerdo con la etapa (f.5) del proceso, el compuesto de fórmula (I) reacciona con un derivado amino de fórmula (XII) tras la activación por reacción con un cloroformiato apropiado tal como, por ejemplo, 4-nitrofenilcloroformiato. La reacción se lleva a cabo en un disolvente apropiado tal como un hidrocarburo halogenado, preferentemente diclorometano, en presencia de una base como por ejemplo diisopropiletilamina o trietilamina y trabajando a temperatura ambiente.
- Preferentemente de acuerdo con la etapa (f.6) del proceso, el compuesto de fórmula (I) reacciona con un derivado aldehído o cetona de fórmula (XIII). Resulta evidente para el experto que al emplear un derivado aldehído de fórmula (XIII) donde uno de los dos Rª es un átomo de hidrógeno, se obtienen los derivados correspondientes donde R es CH₂Rª. Asimismo, al emplear un derivado cetona, se obtienen los compuestos con R como -CH(Rª)Rª, donde cada Rª es, independientemente uno de otro, como se indica anteriormente pero distinto de hidrógeno. La reacción se puede llevar a cabo en una variedad de formas, de acuerdo con los métodos convencionales para la aminación reductiva. Preferentemente, la reacción se lleva a cabo por reacción con un derivado aldehído o cetona de fórmula (XIII) en un disolvente apropiado como tetrahidrofurano y después de un tiempo de 2 a 12 horas mediante adición de un agente reductor como cianoborohidruro sódico o triacetoxiborohidruro sódico.
- Preferentemente de acuerdo con la etapa (f.7) del proceso, el compuesto de fórmula (I) reacciona con un yoduro o bromuro aromático de fórmula (XIV) en presencia de un catalizador apropiado, por ejemplo un catalizador de paladio como acetato de paladio o Pd₂(dba)₃, y de un ligando apropiado. Véase, para una referencia general a la reacción de arilación anterior y las condiciones operativas de la misma, también incluidos solventes, catalizadores y ligandos, J. Am. Chem. Soc., (2003), 125, 6653-55; JOC (2001), 66, 2560-2565; y JOC (2002), 67, 6479-6486.
- De acuerdo con cualquiera de las etapas (g.3) a (g.5) la conversión de un compuesto de fórmula (I) en otro compuesto de fórmula (I) se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales.

Preferentemente de acuerdo con la etapa (g.3) del proceso, la aminolisis de un compuesto de fórmula (I) donde R1 es –OCH₃, para rendir el correspondiente compuesto de fórmula (I) donde R1 es –NR^cR^d, se lleva a cabo en un disolvente apropiado como dioxano o diclorometano opcionalmente en presencia de un catalizador apropiado basado en metal, como trimetil aluminio.

Preferentemente de acuerdo con la etapa (g.5) del proceso, la amidación de un compuesto de fórmula (I) donde R1 es un grupo –OH, para rendir el correspondiente compuesto de fórmula (I) donde R1 es –NR°Rd se puede llevar a cabo en una variedad de formas, de acuerdo con los métodos convencionales para la obtención de derivado amido a partir de los ácidos correspondientes.

Preferentemente, la reacción se lleva a cabo por reacción con un compuesto de fórmula (XVI) tras la activación de la función carboxílica del compuesto de fórmula (I) por reacción con cloruro de tionilo, cloruro de oxalilo o alternativamente en presencia de un agente de condensación apropiado, por ejemplo diciclohexilcarbodiimida (DCC), 1-etil-3-(3'-dimetilaminopropil)carbodiimida (EDC), O-benzotriazolil-tetrametilisouronio tetrafluoroborato (TBTU) o benzotriazol-1-iloxitripirrolidinofosfonio hexafluorofosfato (PyBOP), en un disolvente apropiado como diclorometano, y/o dimetilformamida.

De acuerdo con cualquiera de las etapas (h.1) a (h.5) la conversión de un compuesto de fórmula (VII) en otro compuesto de fórmula (VII) se puede llevar a cabo en una variedad de formas, de acuerdo con métodos convencionales.

Preferentemente se lleva a cabo como se describe bajo las etapas de (g.3) a (g.5).

35

55

- Además de lo anterior, los compuestos de fórmula (I) se pueden preparar ventajosamente de acuerdo con técnicas de química combinatoria ampliamente conocidas en la técnica, completando las reacciones mencionadas anteriormente entre los intermedios en serie y trabajando bajo condiciones de síntesis en fase sólida (SPS, del inglés solid-phase-synthesis).
 - Como ejemplo, los intermedios derivados de carboxi éster de fórmula (VII), donde R1 representa OR^c y R^c es alquilo C_1 - C_6 , obteniéndose en la etapa (d) de los procesos anteriores, se puede convertir primero en el derivado de carboxi

ácido libre mediante la hidrólisis llevada a cabo de acuerdo con métodos convencionales, soportada fácilmente sobre una resina polimérica, por ejemplo a través de la formación de un grupo carboxamido.

El intermedio así soportado puede seguir reaccionando de acuerdo con las etapas restantes del proceso.

La ruta sintética anterior se puede resumir como sigue:

Cualquiera de las reacciones anteriores se lleva a cabo de acuerdo con métodos conocidos, trabajando como se indica anteriormente, y permite obtener compuestos de fórmula (I) como se expone a continuación. Preferentemente, la resina anterior es una resina poliestirénica disponible comercialmente que incluye, por ejemplo, resina de Wang, resina de tritilo, resina de CI-tritilo, resina de amida Rink, resina OH Tentagel y derivados de las mismas.

De acuerdo con una realización preferida de la invención, la resina poliestirénica es una resina poliestirénica de formilo derivatizada que se puede obtener por reacción de una resina poliestirénica de formilo disponible comercialmente, p. ej. resina 4-(4-formil-3-metoxifenoxi)butiril AM, con un derivado amino apropiado bajo condiciones reductoras, por ejemplo en presencia de triacetoxiborohidruro sódico y derivados del mismo, sustancialmente como sigue:

La reacción se puede llevar a cabo en un disolvente apropiado como tetrahidrofurano y en presencia de ácido acético.

Los derivados amino soportados en polímero así obtenidos, particularmente aquellos a los que se hace referencia arriba como resina poliestirénica de formilo derivatizada, son ampliamente conocidos en la técnica.

En general, las aminas cargadas sobre resinas formilpoliestirénicas también conocidas como resinas de poliestireno MetoxiBenzaldehído Sensibles a Ácido (resina AMEBA) se preparan por aminación reductiva estándar en presencia de un exceso de amina en TMOF/DCE y NaBH(OAc)₃ o AcOH/DMF y NaCNBH₃, por ejemplo como se indica en Tetrahedron Letters (1997), 38, 7151-7154; J. Am. Chem. Soc. (1998), 120, 5441; y Chem. Eur. J. (1999),5 2787.

Por consiguiente, es otro objeto de la presente invención un proceso para preparar los compuestos de fórmula (I), y las sales farmacéuticamente aceptables de los mismos, cuyo proceso comprende:

- i) hidrólisis bajo condiciones ácidas o básicas del compuesto de fórmula (VII) donde R1 representa OR^c y R^c es alquilo C_1 - C_6 ;
- j) reacción del derivado de ácido resultante con una resina poliestirénica de formilo derivatizada de fórmula (XVII):

donde (P) es la resina y R^c es como se define arriba; k) reacción del compuesto resultante de fórmula (XVIII):

5

10

15

20

30

donde (P) y R^c son como se define arriba, con un agente reductor apropiado como cloruro de cromo (II), hidrogeno sulfuro de tetrabutilamonio o cloruro de estaño (II); y I) reacción del compuesto resultante de fórmula (XIX):

5

donde (P) y R^c son como se describe arriba, tal como se describe bajo cualquiera de las etapas de (f.1) a (f.7); m) separación de la resina bajo condiciones ácidas del compuesto resultante de fórmula (XX):

10

15

para rendir un compuesto de fórmula (I), donde R es como se define arriba y R1 es –NHRc, donde R^c es como se define arriba, opcionalmente separando el compuesto resultante de fórmula (I) en los isómeros individuales; convirtiendo el compuesto resultante de fórmula (I) en un compuesto diferente de fórmula (I) y/o en una sal farmacéuticamente aceptable si se desea.

De acuerdo con la etapa (i) del proceso, la hidrólisis de un compuesto de fórmula (VII) donde R₁ es -OCH₃, para rendir el correspondiente compuesto de fórmula (VII) donde R1 es -OH se lleva a cabo como se describe bajo la etapa (h.1).

De acuerdo con la etapa (j) del proceso, la reacción con la resina de poliestireno se realiza en un disolvente apropiado, por ejemplo NMP, en presencia de diisopropiletilamina (DIPEA) y de un agente de condensación apropiado como, por ejemplo, 1-etil-3-(3'-dimetilaminopropil)carbodiimida (EDC), O-benzotriazolil-tetrametil-isouronio tetrafluoroborato (TBTU).

20 De acuerdo con la etapa (k) del proceso, el compuesto soportado de fórmula (XVIII) se reduce para obtener el derivado amino correspondiente; la reacción se lleva a cabo en presencia de cloruro de estaño (II) en

dimetilformamida (DMF) a temperatura ambiente durante un tiempo en el intervalo de 4 a 24 horas.

De acuerdo con la etapa (I) del proceso, el compuesto soportado de fórmula (XIX) sigue reaccionando opcionalmente para rendir una variedad de compuestos funcionalizados en posición 5 del anillo 3,4-dihidro-2H-pirazino[1,2-a]indol-1-ona, como se describe bajo cualquiera de las etapas de (f.1) a (f.7).

De acuerdo con la etapa (m) del proceso, la separación de la resina se realiza bajo condiciones ácidas en presencia de ácidos apropiados como, por ejemplo, clorhídrico, trifluoroacético, metanosulfónico o p-toluenosulfónico. Preferentemente la reacción se lleva a cabo usando ácido trifluoroacético en dislorometano como disolvente.

Claramente, trabajando de acuerdo con las técnicas de química combinatoria como se ha indicado anteriormente, se pueden obtener una variedad de compuestos de fórmula (I).

10 Por lo tanto, otro objeto de la presente invención es una biblioteca de compuesto individuales con fórmula (I)

donde

15

25

30

35

R se selecciona del grupo consistente en $-R^a$, $-COR^a$, $-CONR^aR^b$ y $-SO_2R^a$, y R1 es un grupo $-NR^cR^d$, donde R^a , R^b , R^c y R^d , iguales o diferentes, son cada uno independientemente hidrógeno o un grupo seleccionado entre alquilo C_1 - C_6 lineal o ramificado, cicloalquilo C_3 - C_6 , cicloalquil alquilo C_1 - C_6 , arilo, aril alquilo C_1 - C_6 , alquilo polifluorado, cicloalquilo, heterociclilo, arilo, dialquilamino y alcoxi, y sales farmacéuticamente aceptables del mismo.

De acuerdo con una realización preferida de la invención, la biblioteca mencionada anteriormente comprende los compuestos de fórmula (I) donde R1 es un grupo –NR°Rd y R° y Rd son ambas hidrógeno o una de ellas es un átomo de hidrógeno y el R° y Rd restante es alquilo C1-C6 lineal o ramificado o es un grupo arilo o arilalquilo opcionalmente sustituido.

También se prefiere una biblioteca de compuestos de fórmula (I) donde R es un grupo R^a con R^a como un átomo de hidrógeno o un grupo $-SO_2R^a$ con R^a como un grupo alquilo C_1-C_6 lineal o ramificado o un grupo arilo o arilalquilo opcionalmente sustituido; y R_1 es como se define arriba.

También se prefiere una biblioteca de compuestos de fórmula (I) donde R es un grupo -COR a com R a como un grupo alquilo C_{1} - C_{6} lineal o ramificado, cicloalquilo o un grupo arilo o arilalquilo opcionalmente sustituido.

También se prefiere una biblioteca de compuestos de fórmula (I) donde R es un grupo -CONRªR^b con uno de Rª y R^b como un átomo de hidrógeno y el otro Rª y R^b como alquilo C₁-C₆ lineal o ramificado, un grupo arilo o arilalquilo opcionalmente sustituido.

Para una referencia general a las bibliotecas anteriores de compuestos de fórmula (I), véase la sección experimental.

A partir de todo lo anterior, resulta evidente para el experto en la materia que una vez que está preparada una biblioteca de derivados de 3,4-dihidro-2H-pirazino[1,2-a]indol-1-ona, por ejemplo consistente en unos pocos miles de compuestos de fórmula (I), dicha biblioteca se puede usar muy ventajosamente para la exploración respecto a cinasas dadas, como se indica anteriormente.

Véase, para una referencia general a bibliotecas de compuestos y usos de los mismos como herramientas de exploración de actividades biológicas, J. Med. Cjem. 1999, 42, 2373-2382; y Bioorg. Med. Chem. Lett. 10 (2000), 223-226.

40 FARMACOLOGÍA

La actividad inhibidora de los inhibidores putativos de cinasa y la potencia de los compuestos seleccionados se determinó mediante un método de ensayo basado en el uso del ensayo de Cinasa Luminiscente Kinase-Glo® (disponible comercialmente en Promega corporation y descrito en Koresawa, M. Y Okabe, T. (2004) High-throughput screening with quantitation of ATP consumption: a universal non-radioisotope, homogeneous assay for protein kinase. Assay Drug Dev. Technol. 2, 153-60).

La disminución de ATP como resultado de la actividad cinasa se puede monitorizar de una forma altamente sensible mediante el uso de Kinase-Glo® o Kinase-Glo® Plus Reagent, el cual usa luciferina, oxígeno y ATP como sustrato en una reacción que produce oxiluciferina y luz.

Las formas cortas y abreviaturas usadas aquí tienen el significado diguiente:

10 BSA albúmina de suero bovino

5

15

25

30

40

45

Tris 2-amino-2-(hidroximetil)-1,3-propanodiol

Hepes ácido N-(2-hidroxietil)piperazin-N'-(2-etanosulfónico

DTT threo-1,4-dimercapto-2,3-butanodiol

THF tetrahidrofurano
MTBE éter metil terc-butílico

DIPEA disiopropiletilamina

PyBOP benzotriazol-iloxitris(pirrolidino)fosfonio hexafluorofosfato

TFA ácido trifluoroacético TMOF trimetil ortoformiato

20 DCE dicloroetano
DCM diclorometano
DMF dimetilformamida
DMSO dimetilsulfóxido
KDa Kilo Dalton

mg miligramo

μg microgramo ng nanogramo

L litro
mL mililitro
µL microlitro
M molar

mM milimolar μM micromolar nM nanolar

Las condiciones de reacción de la cinasa dependen de la diana (enzima) y por tanto sufren adaptaciones individuales. El Ensayo Cinasa Luminiscente Kinase-Glo® se puede usar con virtualmente cualquier combinación de cinasa y sustrato.

Las condiciones del tampón también pueden variar dependiendo de la cinasa de interés (p. ej. para PKA se usa una composición de Tris pH 7,5 40 mM, MgCl₂ 20 mM, BSA 0,1 mg/ml, en 50 μl de volumen final). Típicamente el intervalo de titulación del ATP es 0,1 μM a 10 μM.

El sustrato cinasa óptimo da como resultado el mayor cambio en la luminiscencia, al comparar los pocillos de reacción con cinasa con los pocillos sin cinasa.

La cantidad óptima de cinasa se determina haciendo dos diluciones en serie a través de placas usando la cantidad óptima de ATP y el sustrato cinasa óptimo. La cantidad óptima de cinasa que se debe usar en los posteriores cribajes de compuestos y determinaciones de IC50 es la cantidad necesaria para que la luminiscencia se encuentre en el intervalo lineal de la curva de titulación de cinasa (respuesta sigmoidal según la dosis).

Ensayo Kinase-Glo® robotizado

Este ensayo se estableció para la medición de la actividad y/o la inhibición de cinasa. Es homogéneo, rápido, exento de radioctividad y es adecuado para todo tipo de proteína cinasas.

- 50 Se estableció el ensayo en placas de 384 pocillos: la mezcla de ensayo consistió en:
 - 1) 3x mezcla de enzimas (realizado en tampón cinasa 3X), 5 µl/pocillo
 - 2) 3x mezcla de sustrato y ATP (realizado en ddH_2O), $5~\mu l/pocillo$
 - 3) 3x compuesto de fórmula (I) (diluido en ddH $_2$ O DMSO al 3 %), 5 μ l/pocillo

Como resultado, se evaluó el porcentaje de inhibición a 10 µM para cada compuesto ensayado: véase abajo la dilución del compuesto y el esquema del ensayo. Cada enzima tuvo su propia constitución de tampón, tipo de sustrato y concentración. En cambio, el tiempo de incubación fue 90 min para todas las dianas.

Los compuestos de ensayo se introdujeron en placas de 96 pocillos como una solución 1 mM en DMSO 100 %. Las placas se diluyeron hasta 30 μ M en ddH₂O, DMSO 3 %; 4 placas se reorganizaron en placas de 384 pocillos dispersando 5 μ I de capa placa de 96 pocillos en los cuatro cuadrantes de una placa de 384 pocillos. En el pocillo P23 y P24 se añadió el estándar interno inhibidor estaurosporina.

5 Esquema del ensayo

15

40

45

Las placas de ensayo se llenaron primero con $5 \mu l$ de dilución del compuesto $(30 \mu M)$, correspondiente a dilución 3X) y después se cargaron sobre una estación robotizada junto con un depósito para la mezcla de enzima (3X) y uno para la mezcla de ATP (3X), específico para cada diana estudiada.

Para iniciar el ensayo, el robot aspiró 5 μl de mezcla ATP/sustrato, creó un espacio de aire dentro de las puntas (5 μl) y aspiró 5 μl de la mezcla de enzima. El posterior dispensado en las placas de ensayo permitió el inicio de la reacción cinasa tras 3 ciclos de mezclado, realizado por el propio robot pipeteando arriba y abajo. En este punto, se restauró la concentración correcta para todos los reactivos.

El robot incubó las placas durante 90 minutos a temperatura ambiente y después paró la reacción mediante pipeteado de 15 µl de reactivo Kinase-Glo® en la mezcla de reacción. Se realizaron tres ciclos de mezclado inmediatamente después de la adición del reactivo.

El principio de la técnica Kinase-Glo® es la presencia en la mezcla de reactivo de oxígeno, luciferina y enzima luciferasa: en presencia del ATP que queda de la reacción de cinasa, se produce oxi-luciferina con la emisión de luz, que depende directamente de la cantidad de ATP. Para obtener rendimientos óptimos de esta técnica, la reacción de cinasa debería utilizar al menos un 15-20 % del ATP disponible.

Tras otros 60 minutos de incubación para estabilizar la señal luminiscente, las placas se leyeron en un instrumento ViewLux®. Los datos se analizaron usando el paquete de software Assay Explorer® que proporciona datos de porcentajes de inhibición.

Como ejemplo, aquí se presentan las condiciones de ensayo usadas para probar los compuestos de fórmula (I) frente a ALKtide YFF APCo cinasa;

25 Concentración de ATP: 1 μM

Concentración de enzima: 100 nM

Tampón de reacción: Hepes 50 mM pH 7,5, MgCl₂ 5 mM, MnCl₂ 1 mM, DTT 1 mM, Na₃VO₄ 3 uM, BSA 0,2 mg/ml Procedimiento de ensayo: añadir 5 ul de compuesto de fórmula (I) (3x), añadir 5 μl de mezcla (3x) ATP/S en tampón 1x; añadir 5 μl de enzima en tampón 2x+3X BSA; para el blanco, añadir 5 μl de tampón 2x+3x BSA sin enzima. Después de 90 minutos de incubación, añadir 15 μl/pocillo de reactivo Kinase-Glo. Tras 60-90 minutos de incubación

Después de 90 minutos de incubación, añadir 15 µl/pocillo de reactivo Kinase-Glo. Tras 60para estabilizar la señal de luminiscencia, se leen las placas en un instrumento ViuwLux.

Algunos compuestos representativos de la invención de la fórmula (I), tales como los compuestos A23-M-B63, A23-M-B55 y A20-M-B14 (para los significados de los códigos, véase la sección de Ejemplos), a una dosis de 10 μ l han demostrado tener un % de inhibición > 25 % al ensayarse en el método descrito arriba.

Por tanto, los compuestos novedosos de la invención inesperadamente están provistos de una actividad cinasa inhibidora frente a un panel seleccionado de cinasas, y de este modo son particularmente ventajosas en la terapia contra los trastornos proliferativos asociados a una actividad cinasa alterada.

Los compuestos de la presente invención se pueden administrar de forma individual o, alternativamente, en combinación con tratamientos contra el cáncer conocidos, como terapia de radiación o régimen de quimioterapia en combinación con agentes citostáticos o citotóxicos, agentes tipo antibiótico, agentes alquilantes, agentes antimetabolito, agentes hormonales, agentes inmunológicos, agentes tipo interferona, inhibidores de la ciclooxigenasa (p. ej. inhibidores de COX-2), inhibidores de metaloproteasa matriz, inhibidores de la telomerasa, inhibidores de tirosina cinasa, agentes receptores del factor anti-crecimiento, agentes anti-HER, agentes anti-EGFR, agentes anti-angiogénesis (p. ej. inhibidores de la angiogénesis), inhibidores de farnesil transferasa, inhibidores de la ruta de transducción de señal ras-raf, inhibidores del ciclo celular, otros inhibidores del cdks, agentes de unión a tubulina. inhibidores de la topoisomerasa I. inhibidores de la topoisomerasa II. y similares.

Si se formulan como una dosis fija, dichos productos combinados emplean los compuestos de esta invención dentro del intervalo de dosificación descrito abajo y emplean el otro agente farmacéuticamente activo dentro del intervalo de dosificación aprobado.

50 Los compuestos de fórmula (I) se pueden usar secuencialmente con agentes anticancerígenos conocidos cuando una formulación combinada es inapropiada.

Los compuestos de fórmula (I) de la presente invención, adecuados para la administración a un mamífero, p. ej., a humanos, se pueden administrar mediante las rutas usuales y el nivel de dosificación depende de la edad, el peso, la condición del paciente y la vía de administración.

Por ejemplo, una dosificación adecuada adoptada para la administración oral de un compuesto de fórmula (I) puede estar en el intervalo de aproximadamente 10 hasta aproximadamente 500 mg por dosis, de 1 a 5 veces al día. Los compuestos de la invención se pueden administrar en una variedad de formas de dosificación, p. ej., oralmente, en forma de comprimidos, cápsulas, comprimidos grajeados o recubiertos con película, soluciones líquidas o suspensiones; rectalmente en forma de supositorios; parenteralmente, p. ej., intramuscularmente, o mediante inyección o infusión intravenosa y/o intratecal y/o intraespinal.

La presente invención también incluye composiciones farmacéuticas que comprenden un compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo en asociación con un excipiente farmacéuticamente aceptable, el cual puede ser un portador o un diluyente.

- Las composiciones farmacéuticas que contienen los compuestos de la invención se preparan usualmente siguiendo métodos convencionales y se administran en una forma farmacéuticamente adecuada. Por ejemplo, las formas orales sólidas pueden contener, junto con el principio activo, diluyentes, p. ej., lactosa, dextrosa, sacarosa, sucrosa, celulosa, almidón de maíz o almidón de patata; lubricantes, p. ej., sílice, talco, ácido esteárico, estearato magnésico o cálcico, y/o polietilenglicoles; agentes aglutinantes, p. ej., almidones, goma arábiga, gelatina metilcelulosa, carboximetilcelulosa o polivinil pirrolidona; agentes desintegrantes, p. ej., almidón, ácido algínico, alginatos o glicolato de almidón de maíz; mezclas efervescentes; sustancias colorantes; edulcorantes; agentes humectantes como lecitina, polisorbatos, laurilsulfatos; y, en general, sustancias no tóxicas y farmacológicamente inactivas usadas en formulaciones farmacéuticas. Estas preparaciones farmacéuticas se pueden preparar de forma conocida, por ejemplo, mediante procedimientos de mezcla, granulación, compresión, grajeado, o recubrimiento con película.
- Las dispersiones líquidas para administración oral pueden ser, p. ej., jarabes, emulsiones y suspensiones. Como ejemplo, los jarabes pueden contener, como portador, sacarosa o sacarosa con glicerina y/o manitol y sorbitol.

Las suspensiones y las emulsiones pueden contener, como ejemplos de portadores, goma natural, agar, alginato sódico, pectina, metilcelulosa, carboximetilcelulosa, o alcohol polivinílico. La suspensión o soluciones para inyecciones intramusculares pueden contener, junto con el principio activo, un portador farmacéuticamente aceptable, p. ej., agua estéril, aceite de oliva, etil oleato, glicoles, p. ej., propilenglicol y, si se desea, una cantidad adecuada de clorhidrato de lidocaína.

Las soluciones para inyecciones o infusiones intravenosas pueden contener, como portador, agua estéril o preferentemente deben encontrarse en forma de soluciones estériles, acuosos, isotónicas, salinas, o pueden contener propilenglicol como portador.

Los supositorios pueden contener, juntos con el principio activo, un portador farmacéuticamente aceptable, p. ej., manteca de cacao, polietilenglicol, un detergente éster de ácido graso sorbitán polioxietileno o lecitina.

Con la intención de ilustrar mejor la presente invención, sin poner ninguna limitación a la misma, ahora se indican los ejemplos siguientes.

Sección experimental

35 Métodos generales

5

25

40

45

LA cromatografía flash se realizó en gel de sílice (Merck grado 9395, 60A). Los tiempos de retención de cromatografía líquida de alta presión (HPLC: valores t.r.) se determinaron mediante:

HPLC Método 1A y 1B:

En esta solicitud se utilizó un Waters Alliance LC mod. 2795 equipado con un detector de UV variable mod 2487, un detector de quimio-luminiscencia de nitrógeno (CLND, Antek 8060) y un detector de masas Waters ZQ2000 (interfaz ESI). El flujo total se dividió y distribuyó entre los tres detectores con una relación fija (64:15:21 UV:MS:CLND). El cromatógrafo de líquidos estaba equipado con una columna de diámetro interno 30 × 3,0 mm (Waters xBridge C18, partículas de 3,5 μm), termostatizada a 50°C. Se utilizaron dos fases móviles: la fase A era ácido fórmico 0,05 % p/v en (1 ml/L de ácido fórmico al 50 % Fluka 09676 en agua altamente purificada) y la fase B era 70/25/5 (v/v/v) MeOH/iPrOH/H₂O conteniendo 0,035 % p/v de ácido fórmico (700 μl/L de ácido fórmico al 50 % Fluka 09676).

Se inyectó un volumen de 5 µl de una solución muestra nominal 1 mM en DMSO (secuencial, modo bucle parcial sin espacios de aire) y se llevó a cabo un análisis genérico de gradiente de fase reversa a 0,8 ml/min, o bien en una variante rápida (método 1A) o lenta (método 1B), tal y como se indica en la siguiente tabla:

Método 1A		Método 1	В
tR (min)	Fase B (%)	tR (min)	Fase B (%)
0,00	0	0,00	0

Método 1	Método 1A			В
tR (min)	Fase B (%)		tR (min)	Fase B (%)
5,00	100		8,00	100
5,70	100		9,00	100
5,71	0		9,01	0
6,3	Tiempo de parada		9,6	Tiempo de parada
7,9	Tiempo total de análisis (*)		11,2	Tiempo total de análisis (*)
(*) entre i	nyecciones consecutivas			

El detector de UV operaba a 220 nm, con una frecuencia de muestreo de 5 Hz. El aparato de MS operaba a 3,2 kV de voltaje de capilaridad, 30 V de cono, 2 V de extractor, 0,5 V de lente RF, 400 L/h de flujo de desolvatación, 100 L/h de flujo de cono, 100°C de temperatura de fuente, 150°C de temperatura de desolvatación, barrido completo ESI(+) con adquisición entre 120-1200 amu, con una frecuencia de muestreo de 1,7Hz. El detector CNLD operaba a una temperatura de horno de 1050°C, flujo de entrada de oxígeno 280 ml/min, flujo de entrada de argón de 80 ml/min, flujo de compensación de argón de 25 ml/min, 30 ml/min de ozono, vacío de 28 torr, voltaje de 750 V PMT. cámara PMT a +10°C, alta sensibilidad, selección 5, frecuencia de muestreo de 4 Hz.

10 HPLC Método 2:

5

15

Instrumentación: Sistema HPLC Waters 2790 equipado con un detector Waters PDA y un espectrómetro de masas de cuadrupolo simple Micromass mod. ZQ 2000, equipado con una fuente de iones de electroespray (ESI).

Condiciones cromatográficas: Columna Waters X Terra RP18 ($4,6 \times 50$ mm, 3,5 µm); la fase móvil A era tampón acetato amónico 5 mM (pH 5,2 con ácido acético)/acetonitrilo (95:5) y la fase móvil B H₂O/acetonitrilo (5:95). El gradiente fue del 10 al 90 % en B durante 8 min, constante al 100 % en B durante 2 min. Se extrajeron los canales de PDA a 220 y 254 nm. El flujo era de 1 ml/min. El volumen de inyección 10 µl. Barrido completo, rango de masas desde 100 a 800 amu. El voltaje de capilaridad era de 3,5 kV; temperatura de la fuente 120°C; cono de 14 V. Los tiempos de retención (HPLC t.r.) se dan en minutos a 220 nm o a 254 nm. Las masas se dan en relación m/z.

En caso necesario, los compuestos se purificaron mediante HPLC preparativa en una columna Waters X-Bridge Prep Shield RP18 (19 × 100 mm, 5 μm) o en una columna Phenomenex Gemini C18 (21,2 ×□250 mm, 10 μm), utilizando un sistema de auto-purificación Waters FractionLynx equipado con un detector Waters PDA y un espectrómetro de masas de cuadrupolo simple Micromass mod. ZQ, ionización de electroespray, modo positivo. La fase móvil A era agua al 0,05 % en NH₃/acetonitrilo 95:5 y la fase móvil B era acetonitrilo. El gradiente iba de 10 a 90 % en B durante 8 min o 15 min. El flujo era de 20 ml/min.

Se realizó espectrometría ¹H-RMN en un instrumento Bruker AVANCE 400MHz de compartimento simple con gradientes. Equipado con una sonda QNP (sonda de 4 núcleos intercambiable – 1H, 13C, 19F y 31P) (Método 1 de RMN) o en un Mercury VX 400 operando a 400,45 MHz equipado con una sonda de resonancia doble de 5 mm [1H (15N-31P) ID_PFG Varian] (Método 2 de RMN).

Los compuestos de fórmula (I) con un carbono asimétrico que se obtuvieron como mezcla racémica se resolvieron mediante separación HPLC en columnas quirales. Específicamente, por ejemplo, se pueden utilizar columnas preparativas CHIRALPACK® AD, CHIRALPACK® AS, CHIRALCELL® OJ.

Tal y como se indicó previamente, muchos compuestos de fórmula (I) de la invención se sintetizaron en paralelo, de acuerdo con las técnicas de química combinatoria.

A este respecto, algunos compuestos así preparados se identificaron convenientemente de forma inequívoca, mediante los sistemas de codificación de las tablas III, VI, V y VI junto con los tiempos de retención de HPLC (métodos 1 y 2) y masas.

Cada código, el cual identifica un único compuesto de fórmula (I), consiste en tres unidades A-M-B.

A representa cualquier sustituyente R₁- [véase fórmula (I)] y está unido al resto de la fracción 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona a través del átomo del grupo carbonilo para dar derivados de 3,4-dihidro-2H-piracino[1,2-

a]indol-1-ona; cada radical A (sustituyente) está representado en la siguiente tabla I.

5

15

B representa cualquier sustituyente R- [véase fórmula (I)] y está unido al resto de la fracción 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona a través del átomo de nitrógeno del grupo NH para dar derivados de 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona sustituidos en la posición 8; cada radical B (sustituyente) está representado en la siguiente tabla II

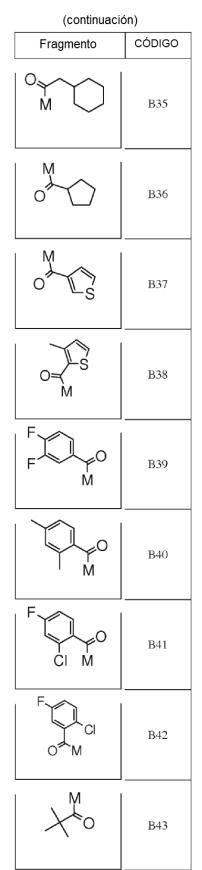
M se refiere al núcleo central de la estructura divalente de 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona sustituida en los grupos carbonilo por grupos A y en la posición 8 (a través del grupo NH) por los grupos B, esencialmente como se describe a continuación:

Para facilitar la referencia, cada grupo A o B de las tablas I y II ha sido identificado con la fórmula química apropiada indicando a su vez el punto de unión con el resto de la molécula M.

A modo de ejemplo, el compuesto A2-M-B2 de la tabla III (entrada 1) representa una 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona M sustituida en la posición 8 por el grupo B2 (a través del grupo NH), y por el grupo A2 a través del grupo CO; igualmente, el compuesto A4-M-B9 de la tabla IV (entrada 780) representa una 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona M sustituida en la posición 8 por el grupo B9 (a través del grupo NH), y por el grupo A4 a través del grupo CO, tal y como sigue:

Tabla I - grupos A

Fragmento	CÓDIGO	Fragmento	CÓDIGO
N-M	A1	H	A15
N H M	A2	N. M	A16
N N N N N N N N N N N N N N N N N N N	А3		A18


,		., \
$1 \cap \cap$	ntını	ación)
100	Hullu	acioii

Fragmento	CÓDIGO	Fragmento	CÓDIGO
H	A4	HNM	A19
, M	A5	, ii.	A20
→ H _M	A6	F M	A21
N H M	A8	△ N M	A22
O H M	A10	FHNM	A23
→ N M	A11	N-M	A24
√N N M M	A12	N-M	A25
N M	A13	N M	A27
T, M	A14	M H	A28

Tabla II - grupos B

Fragmento	CÓDIGO		Fragmento	CÓDIGO	Fragmento	CÓDIGO
	B1	C	S O O O	В9	M O	B17
O	В2		M·S:OS	B10	O M	B18
S—O M	В3	F	F O M	B11	O S O	B19
	В4			B12	o s	B20
$\begin{array}{ c c } O \underset{M}{\checkmark} H \\ \hline \end{array}$	В5		F O N	B13	S M	B21
LO NHO	В6	C	M	B14	O M	B22
	В7		M 🔷	B15	O M	B23
F F O NH	В8		O M	B16	M	B24

Fragmento	CÓDIGO
o M	B25
Mo	B26
↓ M _o	B27
O M	B28
F O M CI	B30
O M F	B31
ÇŞ∵M	B32
M _o	В33
F	B34

Fragmento	CÓDIGO
O N	B45
CI O M	B46
M M	B47
O M	B48
	B49
MO M	B50
F O M	B51
Mo	B52
$ \bigcirc_{M}^{H} \bigcirc_{M} $	B53

		(continuació	,	· ·
Fragmento	CÓDIGO	Fragmento	CÓDIGO	Fragmento CÓDIGO
FOM	B54	F S M	B62	O Br B70
CI O'S'O	B55	F F O=\$=O M	В63	O M B71
H O M	B56	O N	B64	Q F F B72
H O M	B57	F M	B65	M-O N- H B73
	B58	OM	В66	M-¢O N- H B74
F M	B59	O CI	В67	M B75
O M	В60	O=M	B68	Br B76
N N O M	B61	M.S.	B69	

Preparación de ácido 5-nitro-1H-indol-2-carboxílico (III)

Se añadió LiOH· H_2O (1,06 g, 46,2 mmol, 2,1 eq.) a una suspensión de 5-nitro-1H-indol-2-carboxilato de etilo (II) (5,15 g, 22 mmol, 1 eq.) en THF/MeOH/ H_2O 1:1:2 (180 ml). La suspensión final se volvió de color amarillo oscuro y se agitó a 25°C. Después de 30 min se completó la solubilización y la conversión total se consiguió después de 6 horas. Se enfrió la mezcla de reacción a 0°C y se neutralizó con HCl 2 N hasta que la solución alcanzó pH 5. Los compuestos orgánicos volátiles se eliminaron mediante evaporación bajo presión reducida y se filtró y secó el precipitado blanco para dar el compuesto de fórmula (III). Rendimiento = 4,53 g (cuantitativo).

El mismo procedimiento a una escala de 50 g rindió 42,2 g del compuesto de fórmula (III) (rendimiento del 96 %).

LCMS (HPLC Método 2): m/z 205 [M-H]⁻ @ t.r. 2,58 min. ¹H-RMN (400 MHz, DMSO-d₆) δ ppm 2,59 (dd, J = 15,91, 5,67 Hz, 1H) 2,82 (dd, J = 15,97, 8,29 Hz, 1H) 3,58 (dd, J = 12,86, 5,67 Hz, 1H) 3,89 (dd, J = 13,35, 4,08 Hz, 1H) 5,17 - 5,23 (m, 1H) 7,36 (s, 1H) 7,80 (d, J = 9,15 Hz, 1H) 8,15 (dd, J = 9,15, 2,32 Hz, 1H) 8,27 (d, J = 5,12 Hz, 1H) 8,72 (d, J = 2,32Hz, 1H) 12,58 (br.s., IH).

Preparación de (2,2-dimetoxi-etil)-amida del ácido 5-nitro-1H-indol-2-carboxílico (IV)

5

10

15

20

25

35

40

45

50

Se añadió cloruro de tionilo (8 ml, 110 mmol, 5 eq.) a una suspensión del compuesto de fórmula (III) (4,53 g, 22 mmol, 1 eq.) en dioxano seco (50 ml). La suspensión final se llevó a reflujo en atmósfera seca (válvula de CaCl₂) durante 2 h, y la reacción se volvió de color marrón claro durante el procedimiento. Se enfrió la reacción a 25°C y los compuestos orgánicos volátiles se eliminaron mediante evaporación bajo presión reducida, se añadió entonces tolueno seco (25 ml) y se eliminó bajo vacío, repitiéndose esta operación dos veces. El residuo marrón (22 mmol, 1 eq.) se añadió por porciones a una solución enfriada a 0°C de NaHCO₃ (3,7 g, 43,95 mmol, 2 eq.) y 2,2-dimetoxietilamina (2,39 ml, 21,97 mmol, 1 eq.) en dioxano/agua 4:1 (100 ml), y se agitó la suspensión durante 2 h a t.a. Los compuestos orgánicos volátiles se eliminaron mediante evaporación bajo presión reducida y el precipitado amarillo se filtró y secó para dar (2,2-dimetoxi-etil)-amida del ácido 5-nitro-1H-indol-2-carboxílico (IV). Rendimiento = 5,80 g (90 %).

El mismo procedimiento a una escala de 42,2 g rindió 52,75 g del compuesto de fórmula (IV) (rendimiento del 82 %).

LCMS (HPLC Método 2): m/z 294 [M+H]⁺ @ t.r. 4,46 min. ¹H-RMN (400 MHz, DMSO-d₆) δ ppm 3,31 (s, 6H) 3,40 (t, J = 5,73 Hz, 2H) 4,53 (t, J = 5,49 Hz, 1H) 7,43 (d, J = 1,46 Hz, 1H) 7,57 (d, J = 9,02 Hz, 1H) 8,07 (dd, J = 9,02, 2,32 Hz, 1H) 8,70 (d, J = 2,32 Hz, 1H) 8,80 (t, J = 6,04 Hz, 1H) 12,30 (s, 1H).

Preparación de 4-hidroxi-8-nitro-3,4-dihidro-2H-piracino[1,2-a]indol-1-ona (V)

Se añadió HCl 2 N (13,75 ml, 27,5 mmol, 2,5 eq.) a una solución del compuesto de fórmula (IV) (3 g, 11 mmol, 1 eq.) en acetona (200 ml), la solución final se agitó a 25°C durante 48 h. La solución se secó bajo presión reducida rindiendo el compuesto de fórmula (V) como un sólido amarillo que se utilizó en el siguiente paso sin ninguna purificación adicional. El mismo procedimiento a una escala de 30 g se llevó a cabo sin problemas. Rendimiento típico: 97 %.

Advertencia: a una escala mayor se debe realizar obligatoriamente una etapa de secado cuidadoso hasta llegar a un peso constante para evitar que el HCl residual interfiera la etapa siguiente.

LCMS (HPLC Método 2): m/z 246 [M+H]⁺ @ t.r. 3,1 min (pico ancho).

30 Preparación de (8-nitro-1-oxo-1,2,3,4-tetrahidro-piracino[1,2-a]indol-4-il)-acetato de metilo (VII)

Se añadió $LiOH \cdot H_2O$ (509 mg, 12,14 mmol, 1,5 eq.) a una solución de trimetil fosfonoacetato (VI) (1,28 ml, 8,90 mmol, 1,2 eq.), al compuesto de fórmula (V) (2,0 g, 8,09 mmol, 1 eq.) y agua (4,4 ml, 240 mmol, 30 eq.) en THF (100 ml) y se agitó la solución a 25°C durante 4 horas, se eliminaron entonces los compuestos orgánicos volátiles bajo presión reducida y el crudo del residuo se utilizó en el siguiente paso sin ninguna purificación adicional, después de la adición de 100 ml de aqua.

A una escala mayor (110 mol) la reacción fue peor (conversión baja) por el residuo de HCl mencionado anteriormente.

LCMS (HPLC Método 2): m/z 304 [M+H]⁺ @ t.r. 3,96 min. ¹H-RMN (sobre el producto aislado)(400 MHz, DMSO-d₆) δ ppm 2,68 (dd, J = 15,61, 6,22 Hz, 1H) 2,92 (dd, J = 15,49, 7,44 Hz, 1H) 3,51 (s, 3H) 3,58 (ddd, J = 13,29, 5,37, 1,10 Hz, 1H) 3,90 (dd, J = 13,41, 4,15 Hz, 1H) 5,25 (dt, J = 6,83, 3,66 Hz, 1H) 7,36 (s, 1H), 7,75 (d, J = 9,15 Hz, 1H9 8,17 (dd, J = 9,27, 2,32 Hz, 1H) 8,28 (d, J = 5,00 Hz, 1H) 8,72 (d, J = 2,20 Hz, 1H).

Preparación de ácido (8-nitro-1-oxo-1,2,3,4-tetrahidro-piracino[1,2-a]indol-4-il)-acético (VII)

Se añadió LiOH·H₂O (408 mg, 9,72 mmol, 1,2 eq.) a una solución acuosa del crudo del ejemplo 4 y la suspensión resultante se agitó a 25°C durante 4 horas. Se filtró la suspensión marrón. Se neutralizó la disolución madre de color marrón oscuro con HCl 2 N hasta alcanzar pH 5 (precipitado amarillo), los compuestos orgánicos volátiles se eliminaron bajo presión reducida y se filtró el precipitado amarillo. El crudo del material se agitó con acetona (20 ml/g de crudo) durante 12 horas, se filtró entonces el material sin disolver y se secó bajo presión reducida (sólido amarillo pálido). Rendimientos: 1,2 g del derivado ácido de fórmula (VII) (50 % en dos etapas) 89 % pureza UV @254 nm.

El mismo procedimiento a una mayor escala rindió el compuesto de fórmula III con un rendimiento medio del 35 % en dos etapas y un 90 % de pureza UV @254 nm, la impureza principal es el material de partida del ejemplo 4.

LCMS (HPLC Método 2): m/z 288 [M+H]⁺ @ t.r. 2,62 min. ¹H-RMN (sobre el producto aislado)(400 MHz, DMSO-d₆) δ ppm 2,59 (dd, J = 15,91, 5,67 Hz, 1H) 2,82 (dd, J = 15,97, 8,29 Hz, 1H) 3,58 (dd, J = 12,86, 5,67 Hz, 1H) 3,89 (dd, J

= 13,35, 4,08 Hz, 1H) 5,17 - 5,23 (m, 1H) 7,36 (s, 1H) 7,80 (d, J = 9,15 Hz, 1H) 8,15 (dd, J = 9,15, 2,32 Hz, 1H) 8,27 (d, J = 5,12 Hz, 1H) 8,72 (d, J = 2,32 Hz, 1H) 12,58 (br.s., 1H).

Procedimiento general: carga de alilamina (correspondiente al fragmento A7 de la Tabla I) en una resina de metoxibenzaldehído poliestireno sensible a ácido (resina AMEBA II).

Se suspendió resina 4-(4-formil-3-metoxifenoxi)butiril aminometil (copoliestireno-1 %DVB) (6,0 g, 5,88 mmol, 0,98 mmol/g, 1 eq.) en THF seco (60 ml) y se añadió alilamina (29,4 mmol, 5 eq.). La suspensión resultante se agitó a 25°C durante 2 h. Se añadieron entonces ácido acético (1,68 ml, 29,4 mmol, 5 eq.) y NaBH(AcO)₃ (3,12 g, 14,7 mmol, 3 eq.) y se agitó la suspensión final durante 16 h a 25°C. Se enjuagó la resina con THF (2 ciclos), MeOH (2 ciclos), DCM (2 ciclos), MeOH (2 ciclos), DMF (2 ciclos) y DCM (3 ciclos) y se secó entonces con un flujo de nitrógeno.

Carga de la matriz de 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona sobre la resina preparada anteriormente

Se agitó durante 30 min una solución del derivado de ácido de fórmula (VII) (57 mg, 0,2 mmol, 2 eq.), DIPEA (0,068 ml, 0,39 mmol, 4 eq.), PyBOP (102,75 mg, 0,2 mmol, 2 eq.) en DMF seco (2,0 ml) y se añadió entonces la resina del ejemplo 6 (0,1 mmol, 1 eq.) y se agitó la suspensión final durante 20 h a 25°C. Se lavó la resina secuencialmente con DMF (1 ml), DCM (1 ml), DCM (1 ml), DCM (1 ml), MeOH (1 ml), MeOH (1 ml), MeOH (1 ml), DCM (1 ml), MeOH (1 ml), DCM (1 ml), MeOH (1 ml), Me

Reducción del grupo nitro

15

Se suspendió la resina de fórmula (XVIII) (0,1 mmol, 1 eq.) en una solución de SnCl₂·2H₂O 2 M en DMF (1,5 ml). Se agitó el compuesto final de fórmula (XIX) en suspensión durante 48 horas a 25°C. La resina se lavó secuencialmente con DMF (1 ml), DCM (1 ml), DMF (1 ml), DCM (1 ml), MeOH (1 ml), MeOH (1 ml), MeOH (1 ml), DCM (1 ml), MeOH (1 ml), DCM (1 ml), MTBE (1 ml, 2 ciclos) y se secó entonces con flujo de nitrógeno. Se hizo reaccionar la resina anteriormente mencionada cargada con 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona de acuerdo con las etapas alternativas posteriores para conseguir los derivados de carboxamida, sulfonamida, urea y amina.

Ejemplo 1

Preparación de A28-M-B1

Se añadió un ácido carboxílico de fórmula (VIII) (0,3 mmol, 3 eq.), donde Rª corresponde al fragmento B1 de la tabla II, a la resina del ejemplo 8 donde Rc corresponde al fragmento A28 de la tabla I, en una solución de DIPEA (68,5 L, 0,4 mmol, 4 eq.) y PyBOP (156 mg, 0,3 mmol, 3 eq.) en DMF seco (2,5 ml) y se agitó la solución durante 30 min, entonces se añadió a la resina del ejemplo 8 (0,1 mmol, 1 eq.) y se agitó a 25°C en un reactor (Quest 210™ o Miniblocks™). La resina se lavó secuencialmente con DMF (1 ml), DCM (1 ml), DMF (1 ml), DCM (1 ml), MeOH (1 ml), MeOH (1 ml), MeOH (1 ml), MeOH (1 ml), DCM (1 ml), MeOH (1 ml), MTBE (1 ml, 2 ciclos) y se secó entonces con aire. Se suspendió la resina (0,1 mmol, 1 eq.) en una solución de TFA/DCM 1:1 (2 ml) y se agitó durante 2 h a 25°C. Se recogió la fase en solución y se enjuagó la resina con DCM (que se recogió igualmente), y se realizó un segundo ciclo. El lavado final se realizó con MeOH. Todos los recogidos se secaron bajo presión reducida rindiendo el compuesto A28-M-B1 (véase entrada 754 de la tabla III más adelante).

5

10

15

20

LCMS (HPLC Método 1A): m/z 377 [M+H]⁺ @ t.r. 2,41 min. ¹H-RMN (400 MHz, DMSO-d₆) δ ppm 9,62 (s, 1H) 8,07 (s, 1H) 8,03 (d, J = 4,9 Hz, 1H) 7,92 (t, J = 5,6 Hz, 1H) 7,36 – 7,47 (m, 2H) 7,00 (s, 1H) 4,85 – 5,14 (m, 1H) 3,83 (dd, J = 13,2, 4,3 Hz, 1H) 3,48 (dd, J = 12,8, 5,6 Hz, 1H) 3,09 (s, 2H) 2,85 – 3,03 (m, 2H) 2,31 (s, 6H) 2,20 (br.s., 8H) 1,27 – 1,51 (m, 2H).

Se prepararon también los siguientes compuestos de la tabla III siguiendo el procedimiento descrito en el ejemplo 9 y empleando cualquier reactivo adecuado según el procedimiento de la invención, lo que significa cargando cualquier amina compatible con la resina, mediante la acilación de la función amino en posición 8 de la fracción 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona con un ácido carboxílico adecuado y finalmente llevando a cabo la hidrólisis de la resina.

Tabla III

-	,	Método	HPLC	F3.4.1.13 ⁺
Entrada	Compuesto	HPLC	tR (min)	[M+H] [†]
1	A2-M-B2	IB	0,49	429
2	A2-M-B3	IB	3,02	468
3	A2-M-B4	IB	3,09	506
4	A3-M-B2	IB	0,49	457
5	A3-M-B12	IB	3,15	519
6	A3-M-B4	IB	3,16	534
7	A4-M-B2	IB	0,53	402
8	A4-M-B3	IB	4,31	441
9	A4-M-B12	IB	4,26	464
10	A4-M-B4	IB	4,36	479
11	A5-M-B2	IB	2,47	448
12	A5-M-B3	IB	5,38	487
13	A5-M-B12	IB	5,35	510
14	A5-M-B4	IB	5,39	525
15	A6-M-B2	IB	2,37	414
16	A6-M-B3	IB	5,35	453
17	A6-M-B12	IB	5,33	476
18	A6-M-B4	IB	5,36	491
23	A8-M-B4	IB	3,15	506
24	A10-M-B14	1A	2,58	472
25	A10-M-B15	1A	2,49	425
26	A10-M-B16	1A	2,24	411
27	A10-M-B17	1A	3,22	475
28	A10-M-B18	1A	2,7	465
29	A10-M-B20	1A	2,55	453
30	A10-M-B22	1A	2,77	461
31	A10-M-B23	1A	2,98	461
32	A10-M-B24	1A	2,98	461
33	A10-M-B25	1A	3,06	453
34	A10-M-B26	1A	2,82	441
35	A10-M-B27	1A	2,63	427
36	A10-M-B28	1A	3,11	475
38	A10-M-B30	1A	2,66	499
39	A10-M-B31	1A	2,54	483
40	A10-M-B33	1A	2,58	427
41	A10-M-B34	1A	3,1	483
42	A10-M-B35	1A	3,33	467
43	A10-M-B36	1A	2,76	439
44	A10-M-B37	1A	2,55	453
45	A10-M-B38	1A	2,74	467
46	A10-M-B39	1A	3,1	483

Entrada Compuesto HPLC tR (min) [M+H] 47 A10-M-B40 1A 3,11 475 48 A10-M-B41 1A 2,91 499 49 A10-M-B42 1A 2,83 499 50 A11-M-B33 1A 2,68 385 51 A10-M-B43 1A 2,59 427 53 A10-M-B45 1A 2,26 498 54 A10-M-B46 1A 2,71 481 55 A10-M-B47 1A 2,1 399 56 A10-M-B48 1A 2,71 427 57 A10-M-B49 1A 2,36 413 58 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B16 1A 2,14 452 68 A12-M-B16 1A 1,96 489 70 A12-M-B20 1A 2,83 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B20 1A 2,83 502 74 A12-M-B20 1A 2,83 502 75 A10-M-B35 1A 2,87 397 79 A12-M-B26 1A 2,87 397 79 A12-M-B26 1A 2,87 397 79 A12-M-B36 1A 2,67 482 76 A11-M-B36 1A 2,67 482 77 A12-M-B36 1A 2,67 482 78 A11-M-B36 1A 2,67 482 79 A12-M-B30 1A 2,41 524 81 A12-M-B31 1A 2,41 524 81 A12-M-B31 1A 2,45 468 82 A12-M-B31 1A 2,45 468 83 A12-M-B31 1A 2,45 468 84 A12-M-B36 1A 2,67 482 85 A12-M-B36 1A 2,67 482 86 A12-M-B36 1A 2,67 482 87 A12-M-B36 1A 2,67 482 88 A12-M-B36 1A 2,67 482 88 A12-M-B36 1A 2,62 480 86 A12-M-B36 1A 2,62 480 86 A12-M-B36 1A 2,62 480 88 A12-M-B36 1A 2,63 502			Método	HPLC	+
48	Entrada	Compuesto	HPLC	tR (min)	[M+H] ⁺
49 A10-M-B42 1A 2,83 499 50 A11-M-B33 1A 2,68 385 51 A10-M-B43 1A 2,59 427 53 A10-M-B45 1A 2,26 498 54 A10-M-B46 1A 2,71 481 55 A10-M-B47 1A 2,1 399 56 A10-M-B48 1A 2,71 427 57 A10-M-B49 1A 2,36 413 58 A10-M-B50 1A 2,33 413 59 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B51 1A 2,86 465 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44					
50 A11-M-B33 1A 2,68 385 51 A10-M-B43 1A 2,59 427 53 A10-M-B45 1A 2,26 498 54 A10-M-B46 1A 2,71 481 55 A10-M-B47 1A 2,1 399 56 A10-M-B48 1A 2,71 427 57 A10-M-B49 1A 2,36 413 58 A10-M-B50 1A 2,33 413 59 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46	48	A10-M-B41			499
51 A10-M-B43 1A 2,59 427 53 A10-M-B45 1A 2,26 498 54 A10-M-B46 1A 2,71 481 55 A10-M-B47 1A 2,1 399 56 A10-M-B48 1A 2,71 427 57 A10-M-B49 1A 2,36 413 58 A10-M-B50 1A 2,33 413 59 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B51 1A 2,86 465 61 A10-M-B52 1A 1,88 385 61 A10-M-B65 1A 2,86 465 62 A10-M-B64 1A 2,47 465 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,37	49	A10-M-B42	1A	2,83	499
53 A10-M-B45 1A 2,26 498 54 A10-M-B46 1A 2,71 481 55 A10-M-B47 1A 2,1 399 56 A10-M-B48 1A 2,71 427 57 A10-M-B49 1A 2,36 413 58 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B51 1A 2,86 465 60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,44 465 67 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,43		A11-M-B33	1A	2,68	385
54 A10-M-B46 1A 2,71 481 55 A10-M-B47 1A 2,1 399 56 A10-M-B48 1A 2,71 427 57 A10-M-B49 1A 2,36 413 58 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B60 1A 2,47 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B15 1A 2,14 452 68 A12-M-B16 1A 1,96 489 70 A12-M-B31 1A 2,43	51	A10-M-B43	1A	2,59	427
55 A10-M-B47 1A 2,1 399 56 A10-M-B48 1A 2,71 427 57 A10-M-B49 1A 2,36 413 58 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B60 1A 2,47 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B15 1A 2,14 452 68 A12-M-B16 1A 2,43 494 70 A12-M-B20 1A 2,43 494 71 A12-M-B22 1A 2,63	53	A10-M-B45	1A	2,26	498
56 A10-M-B48 1A 2,71 427 57 A10-M-B49 1A 2,36 413 58 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B20 1A 2,43 494 71 A12-M-B20 1A 2,43 494 71 A12-M-B24 1A 2,83 <td< td=""><td>54</td><td>A10-M-B46</td><td>1A</td><td>2,71</td><td>481</td></td<>	54	A10-M-B46	1A	2,71	481
57 A10-M-B49 1A 2,36 413 58 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B20 1A 2,43 494 71 A12-M-B20 1A 2,43 494 71 A12-M-B22 1A 2,63 502 72 A11-M-B34 1A 2,83 <td< td=""><td>55</td><td>A10-M-B47</td><td>1A</td><td>2,1</td><td>399</td></td<>	55	A10-M-B47	1A	2,1	399
58 A10-M-B50 1A 2,33 413 59 A10-M-B51 1A 2,85 465 60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B22 1A 2,63 502 72 A11-M-B34 1A 3,23 441 73 A12-M-B25 1A 2,83 <td< td=""><td>56</td><td>A10-M-B48</td><td>1A</td><td>2,71</td><td>427</td></td<>	56	A10-M-B48	1A	2,71	427
59 A10-M-B51 1A 2,85 465 60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B17 1A 3,08 516 69 A12-M-B20 1A 2,43 494 71 A12-M-B20 1A 2,63 502 72 A11-M-B34 1A 2,83 502 74 A12-M-B25 1A 2,88 <td< td=""><td>57</td><td>A10-M-B49</td><td>1A</td><td>2,36</td><td>413</td></td<>	57	A10-M-B49	1A	2,36	413
60 A10-M-B52 1A 1,88 385 61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B20 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,83 502 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,41 524 81 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B34 1A 2,96 524 83 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B36 1A 2,62 480 86 A12-M-B36 1A 2,62 480 87 A12-M-B36 1A 2,62 480 88 A12-M-B36 1A 2,62 480	58	A10-M-B50	1A	2,33	413
61 A10-M-B54 1A 2,86 465 62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B20 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,83 502 74 A12-M-B26 1A 2,67 482 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,41 524 81 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B31 1A 2,41 524 83 A12-M-B33 1A 2,45 468 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	59	A10-M-B51	1A	2,85	465
62 A10-M-B59 1A 3,19 479 63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B20 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,83 502 74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,41 524 81 A12-M-B31 1A 2,41 524 81 A12-M-B31 1A 2,41 524 82 A12-M-B31 1A 2,45 468 82 A12-M-B31 1A 2,45 468 82 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B36 1A 2,62 480 86 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B66 1A 3,16 516	60	A10-M-B52	1A	1,88	385
63 A10-M-B60 1A 2,47 465 64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B22 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,83 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,41 524 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B34 1A 2,96 524 83 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B66 1A 3,16 516	61	A10-M-B54	1A	2,86	465
64 A10-M-B61 1A 2,44 465 65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B20 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 2,96 <td< td=""><td>62</td><td>A10-M-B59</td><td>1A</td><td>3,19</td><td>479</td></td<>	62	A10-M-B59	1A	3,19	479
65 A12-M-B14 1A 2,46 513 66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B22 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B34 1A 2,96 524 83 A12-M-B35 1A 3,19 508 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B66 1A 3,16 516	63	A10-M-B60	1A	2,47	465
66 A12-M-B15 1A 2,37 466 67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B22 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,83 502 74 A12-M-B25 1A 2,83 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,41 524 81 A12-M-B33 1A 2,45 <td< td=""><td>64</td><td>A10-M-B61</td><td>1A</td><td>2,44</td><td>465</td></td<>	64	A10-M-B61	1A	2,44	465
67 A12-M-B16 1A 2,14 452 68 A12-M-B17 1A 3,08 516 69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B22 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B34 1A 2,96 524 83 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B37 1A 2,43 494	65	A12-M-B14	1A	2,46	513
68	66	A12-M-B15	1A	2,37	466
69 A12-M-B64 1A 1,96 489 70 A12-M-B20 1A 2,43 494 71 A12-M-B22 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B38 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B33 1A 2,45 468 82 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 <td< td=""><td>67</td><td>A12-M-B16</td><td>1A</td><td>2,14</td><td>452</td></td<>	67	A12-M-B16	1A	2,14	452
70 A12-M-B20 1A 2,43 494 71 A12-M-B22 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B33 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 <td< td=""><td>68</td><td>A12-M-B17</td><td>1A</td><td>3,08</td><td>516</td></td<>	68	A12-M-B17	1A	3,08	516
71 A12-M-B22 1A 2,63 502 72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B38 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B33 1A 2,45 468 82 A12-M-B34 1A 2,96 524 83 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 <td< td=""><td>69</td><td>A12-M-B64</td><td>1A</td><td>1,96</td><td>489</td></td<>	69	A12-M-B64	1A	1,96	489
72 A11-M-B34 1A 3,22 441 73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B33 1A 2,45 468 82 A12-M-B34 1A 2,96 524 83 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B36 1A 2,43 494	70	A12-M-B20	1A	2,43	494
73 A12-M-B24 1A 2,83 502 74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B33 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	71	A12-M-B22	1A	2,63	502
74 A12-M-B25 1A 2,88 494 75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B33 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	72	A11-M-B34	1A	3,22	441
75 A12-M-B26 1A 2,67 482 76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B65 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	73	A12-M-B24	1A	2,83	502
76 A11-M-B35 1A 3,46 425 77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B65 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	74	A12-M-B25	1A	2,88	494
77 A12-M-B28 1A 2,96 516 78 A11-M-B36 1A 2,87 397 79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B65 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	75	A12-M-B26	1A	2,67	482
78	76	A11-M-B35	1A	3,46	425
79 A12-M-B30 1A 2,54 540 80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B65 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	77	A12-M-B28	1A	2,96	516
80 A12-M-B31 1A 2,41 524 81 A12-M-B33 1A 2,45 468 82 A12-M-B65 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	78	A11-M-B36	1A	2,87	397
81 A12-M-B33 1A 2,45 468 82 A12-M-B65 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	79	A12-M-B30	1A	2,54	540
82 A12-M-B65 1A 2,72 524 83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	80	A12-M-B31	1A	2,41	524
83 A12-M-B34 1A 2,96 524 84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	81	A12-M-B33	1A	2,45	468
84 A12-M-B35 1A 3,19 508 85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	82	A12-M-B65	1A	2,72	524
85 A12-M-B36 1A 2,62 480 86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	83	A12-M-B34	1A	2,96	524
86 A12-M-B66 1A 3,16 516 87 A12-M-B37 1A 2,43 494	84	A12-M-B35	1A	3,19	508
87 A12-M-B37 1A 2,43 494	85	A12-M-B36	1A	2,62	480
	86	A12-M-B66	1A	3,16	516
88 A12-M-B38 1A 2,61 508	87	A12-M-B37	1A	2,43	494
	88	A12-M-B38	1A	2,61	508

		NA / 4 1 -	LIDLO	(Con
Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
89	A12-M-B39	1A	2,95	524
90	A12-M-B40	1A	2,96	516
91	A12-M-B41	1A	2,76	540
92	A12-M-B43	1A	2,46	468
93	A12-M-B46	1A	2,57	523
94	A12-M-B47	1A	2	440
95	A12-M-B48	1A	2,57	468
96	A12-M-B49	1A	2,25	454
97	A12-M-B50	1A	2,2	454
98	A12-M-B51	1A	2,71	506
99	A13-M-B14	1A	2,62	430
100	A13-M-B15	1A	2,54	383
101	A13-M-B16	1A	2,28	369
102	A13-M-B17	1A	3,31	433
103	A13-M-B18	1A	2,77	423
104	A13-M-B64	1A	2,06	406
105	A13-M-B20	1A	2,6	411
106	A13-M-B22	1A	2,85	419
107	A13-M-B23	1A	3,06	419
108	A13-M-B24	1A	3,04	419
109	A13-M-B25	1A	3,12	411
110	A13-M-B26	1A	2,89	399
111	A13-M-B27	1A	2,7	385
112	A13-M-B28	1A	3,19	433
114	A13-M-B30	1A	2,72	457
115	A13-M-B31	1A	2,58	441
116	A13-M-B33	1A	2,63	385
117	A13-M-B34	1A	3,19	441
118	A13-M-B35	1A	3,43	425
119	A13-M-B36	1A	2,83	397
120	A13-M-B66	1A	3,39	433
121	A13-M-B37	1A	2,61	411
122	A13-M-B38	1A	2,81	425
123	A13-M-B39	1A	3,16	441
124	A13-M-B40	1A	3,19	433
125	A13-M-B41	1A	2,98	457
126	A13-M-B42	1A	2,88	457
127	A13-M-B67	1A	3,22	457
128	A13-M-B43	1A	2,63	385
130	A13-M-B45	1A	2,3	456
131	A13-M-B46	1A	2,77	439
132	A13-M-B47	1A	2,12	357
133	A13-M-B48	1A	2,78	385
134	A13-M-B49	1A	2,4	371
135	A13-M-B50	1A	2,37	371
136	A13-M-B51	1A	2,91	423

		Método	HPLC	
Entrada	Compuesto	HPLC	tR (min)	[M+H] ⁺
137	A13-M-B54	1A	2,92	423
138	A13-M-B59	1A	3,26	437
139	A13-M-B68	1A	2,31	409
140	A13-M-B60	1A	2,52	423
141	A13-M-B61	1A	2,5	423
142	A14-M-B14	1A	3	478
143	A14-M-B15	1A	2,96	431
144	A14-M-B16	1A	2,69	417
145	A14-M-B17	1A	3,62	481
146	A14-M-B18	1A	3,14	471
147	A14-M-B20	1A	2,99	459
148	A14-M-B22	1A	3,22	467
149	A14-M-B23	1A	3,41	467
150	A14-M-B24	1A	3,39	467
151	A14-M-B25	1A	3,48	459
152	A14-M-B26	1A	3,28	447
153	A14-M-B28	1A	3,53	481
155	A14-M-B30	1A	3,09	505
156	A14-M-B31	1A	2,95	489
157	A14-M-B33	1A	3,05	433
158	A14-M-B34	1A	3,55	489
159	A14-M-B35	1A	3,73	473
160	A14-M-B66	1A	3,7	481
161	A14-M-B37	1A	3,01	459
162	A14-M-B38	1A	3,18	473
163	A14-M-B39	1A	3,52	489
164	A14-M-B40	1A	3,52	481
165	A14-M-B41	1A	3,35	505
166	A14-M-B42	1A	3,26	505
167	A14-M-B67	1A	3,55	505
169	A14-M-B45	1A	2,68	504
170	A14-M-B52	1A	2,28	391
171	A14-M-B54	1A	3,3	471
172	A14-M-B59	1A	3,58	485
173	A15-M-B14	1A	2,83	444
174	A15-M-B15	1A	2,78	397
175	A15-M-B16	1A	2,51	383
176	A15-M-B17	1A	3,5	447
177	A15-M-B18	1A	2,99	437
178	A15-M-B20	1A	2,82	425
179	A15-M-B22	1A	3,06	433
180	A15-M-B23	1A	3,26	433
181	A15-M-B24	1A	3,25	433
182	A15-M-B25	1A	3,33	425
183	A15-M-B26	1A	3,13	413
184	A11-M-B66	1A	3,43	433

	1	NA441:	LIDIA	(Con
Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
186	A15-M-B30	1A	2,93	471
187	A15-M-B31	1A	2,8	455
188	A15-M-B33	1A	2,87	399
189	A15-M-B34	1A	3,4	455
190	A15-M-B35	1A	3,62	439
191	A11-M-B37	1A	2,64	411
192	A15-M-B37	1A	2,84	425
193	A15-M-B38	1A	3,02	439
194	A15-M-B39	1A	3,37	455
195	A15-M-B40	1A	3,38	447
196	A15-M-B41	1A	3,2	471
197	A15-M-B42	1A	3,1	471
198	A15-M-B67	1A	3,41	471
200	A15-M-B45	1A	2,5	470
201	A15-M-B52	1A	2,09	357
202	A15-M-B54	1A	3,14	437
203	A15-M-B59	1A	3,46	451
204	A16-M-B14	1A	2,91	456
205	A16-M-B15	1A	2,87	409
206	A16-M-B16	1A	2,6	395
207	A16-M-B17	1A	3,57	459
208	A16-M-B18	1A	3,07	449
209	A16-M-B64	1A	2,33	432
210	A16-M-B20	1A	2,91	437
211	A16-M-B22	1A	3,15	445
212	A16-M-B23	1A	3,35	445
213	A16-M-B24	1A	3,33	445
214	A16-M-B25	1A	3,42	437
215	A16-M-B26	1A	3,21	425
216	A16-M-B27	1A	3,03	411
217	A16-M-B28	1A	3,45	459
219	A16-M-B30	1A	3,01	483
220	A16-M-B31	1A	2,87	467
221	A16-M-B33	1A	2,97	411
222	A16-M-B34	1A	3,49	467
223	A16-M-B35	1A	3,69	451
224	A16-M-B36	1A	3,14	423
225	A16-M-B66	1A	3,64	459
226	A16-M-B37	1A	2,93	437
227	A16-M-B38	1A	3,11	451
228	A16-M-B39	1A	3,47	467
229	A16-M-B40	1A	3,47	459
230	A16-M-B41	1A	3,28	483
231	A16-M-B42	1A	3,18	483
232	A16-M-B67 A16-M-B43	1A 1A	3,49	483 411
	A 10-WI-D43	l ix	2,98	411

ación)		Método	HPLC	
Entrada	Compuesto	HPLC	tR (min)	[M+H] ⁺
235	A16-M-B45	1A	2,59	482
236	A16-M-B46	1A	3,07	465
237	A16-M-B47	1A	2,42	383
238	A16-M-B48	1A	3,09	411
239	A16-M-B49	1A	2,74	397
240	A16-M-B50	1A	2,7	397
241	A16-M-B51	1A	3,22	449
242	A16-M-B52	1A	2,16	369
243	A16-M-B54	1A	3,22	449
244	A16-M-B59	1A	3,53	463
245	A11-M-B38	1A	2,84	425
246	A16-M-B61	1A	2,78	449
249	A11-M-B39	1A	3,21	441
250	A18-M-B14	1A	3,15	492
251	A18-M-B15	1A	3,14	445
252	A18-M-B16	1A	2,88	431
253	A18-M-B17	1A	3,73	495
254	A18-M-B18	1A	3,28	485
255	A18-M-B20	1A	3,15	473
256	A18-M-B22	1A	3,35	481
257	A18-M-B23	1A	3,55	481
258	A18-M-B25	1A	3,62	473
259	A18-M-B26	1A	3,44	461
260	A11-M-B40	1A	3,21	433
261	A11-M-B41	1A	3,02	457
262	A18-M-B30	1A	3,24	519
263	A11-M-B42	1A	2,91	457
264	A18-M-B33	1A	3,23	447
265	A18-M-B34	1A	3,68	503
266	A18-M-B35	1A	3,85	487
267	A18-M-B66	1A	3,81	495
268	A18-M-B37	1A	3,17	473
269	A18-M-B38	1A	3,31	487
270	A18-M-B39	1A	3,65	503
271	A11-M-B67	1A	3,24	457
272	A18-M-B41	1A	3,47	519
273	A18-M-B42	1A	3,4	519
274	A18-M-B67	1A	3,66	519
275	A11-M-B43	1A	2,68	385
276	A18-M-B45	1A	2,86	518
277	A18-M-B52	1A	2,49	405
278	A18-M-B54	1A	3,45	485
279	A18-M-B59	1A	3,71	499
280	A4-M-B15	1A	2,33	399
281	A4-M-B16	1A	2,1	385
282	A4-M-B17	1A	3,09	449

Entrada	Compuesto	Método	HPLC	[M+H] ⁺
Entrada	Compuesto	HPLC	tR (min)	[IVIŦ□]
283	A4-M-B18	1A	2,57	439
284	A4-M-B64	1A	1,9	422
285	A4-M-B20	1A	2,39	427
286	A4-M-B22	1A	2,63	435
287	A4-M-B23	1A	2,86	435
288	A4-M-B24	1A	2,83	435
289	A4-M-B25	1A	2,89	427
290	A4-M-B26	1A	2,65	415
291	A4-M-B27	1A	2,48	401
292	A4-M-B28	1A	2,96	449
294	A4-M-B30	1A	2,52	473
295	A4-M-B31	1A	2,4	457
296	A4-M-B33	1A	2,42	401
297	A4-M-B34	1A	2,96	457
298	A4-M-B35	1A	3,21	441
299	A4-M-B36	1A	2,61	413
301	A4-M-B37	1A	2,4	427
302	A4-M-B38	1A	2,6	441
303	A4-M-B39	1A	2,93	457
304	A4-M-B40	1A	2,97	449
305	A4-M-B41	1A	2,76	473
306	A4-M-B42	1A	2,67	473
307	A4-M-B67	1A	3	473
308	A4-M-B43	1A	2,43	401
310	A4-M-B46	1A	2,56	455
311	A4-M-B47	1A	1,96	373
312	A4-M-B48	1A	2,56	401
313	A4-M-B49	1A	2,21	387
314	A4-M-B50	1A	2,17	387
315	A4-M-B51	1A	2,69	439
316	A4-M-B54	1A	2,7	439
317	A4-M-B59	1A	3,06	453
318	A4-M-B60	1A	2,34	439
319	A4-M-B61	1A	2,33	439
320	A19-M-B17	1A	3,15	419
321	A19-M-B64	1A	1,91	392
322	A19-M-B25	1A	2,95	397
323	A19-M-B26	1A	2,7	385
324	A19-M-B28	1A	3,01	419
326	A19-M-B30	1A	2,55	443
327	A19-M-B31	1A	2,42	427
328	A19-M-B33	1A	2,46	371
329	A19-M-B65	1A	2,78	427
330	A19-M-B34	1A	3,01	427
331	A19-M-B35	1A	3,28	411
332	A19-M-B66	1 A	9 94	

acion)		Método	HPLC	
Entrada	Compuesto	HPLC	tR (min)	[M+H] ⁺
333	A19-M-B37	1A	2,42	397
334	A19-M-B38	1A	2,64	411
335	A11-M-B45	1A	2,32	456
336	A19-M-B40	1A	3,01	419
337	A19-M-B41	1A	2,81	443
338	A19-M-B42	1A	2,71	443
339	A19-M-B67	1A	3,05	443
340	A11-M-B46	1A	2,8	439
341	A19-M-B45	1A	2,14	442
342	A19-M-B52	1A	1,76	329
343	A19-M-B54	1A	2,74	409
344	A19-M-B59	1A	3,09	423
345	A19-M-B68	1A	2,17	395
346	A19-M-B61	1A	2,36	409
347	A20-M-B14	1A	3,39	484
348	A20-M-B15	1A	3,4	437
349	A20-M-B16	1A	3,23	423
350	A20-M-B17	1A	4	487
351	A20-M-B18	1A	3,58	477
352	A20-M-B64	1A	2,87	460
353	A20-M-B20	1A	3,46	465
354	A20-M-B22	1A	3,67	473
355	A20-M-B23	1A	3,83	473
356	A20-M-B24	1A	3,81	473
357	A11-M-B47	1A	2,15	357
358	A20-M-B26	1A	3,73	453
359	A20-M-B28	1A	3,93	487
361	A20-M-B30	1A	3,51	511
362	A20-M-B31	1A	3,4	495
363	A20-M-B33	1A	3,56	439
364	A20-M-B36	1A	3,7	451
365	A20-M-B66	1A	4,07	487
366	A20-M-B37	1A	3,49	465
367	A20-M-B39	1A	3,93	495
368	A20-M-B40	1A	3,93	487
369	A20-M-B42	1A	3,68	511
370	A20-M-B67	1A	3,92	511
371	A20-M-B43	1A	3,53	439
373	A20-M-B45	1A	3,17	510
374	A20-M-B46	1A	3,58	494
375	A20-M-B47	1A	3,09	411
376	A20-M-B49	1A	3,28	425
377	A20-M-B52	1A	2,75	397
378	A20-M-B54	1A	3,73	477
379	A20-M-B59	1A	3,95	491
380	A20-M-B60	1A	3,33	477

_		Método	HPLC	(Con
Entrada	Compuesto	HPLC	tR (min)	[M+H] ⁺
407	A11-M-B48	1A	2,82	385
408	A21-M-B14	1A	3,07	496
409	A21-M-B15	1A	3,07	449
410	A21-M-B16	1A	2,8	435
411	A21-M-B17	1A	3,7	499
412	A21-M-B18	1A	3,22	489
413	A21-M-B64	1A	2,51	472
414	A21-M-B20	1A	3,07	477
415	A21-M-B22	1A	3,32	485
416	A21-M-B23	1A	3,5	485
417	A21-M-B24	1A	3,47	485
418	A21-M-B25	1A	3,58	477
419	A21-M-B26	1A	3,39	465
420	A21-M-B27	1A	3,22	451
421	A21-M-B28	1A	3,61	499
423	A21-M-B30	1A	3,16	523
424	A21-M-B31	1A	3,02	507
425	A21-M-B33	1A	3,17	451
426	A21-M-B34	1A	3,62	507
427	A21-M-B35	1A	3,8	491
428	A21-M-B36	1A	3,34	463
429	A21-M-B66	1A	3,76	499
430	A21-M-B37	1A	3,1	477
431	A21-M-B38	1A	3,28	491
432	A21-M-B39	1A	3,59	507
433	A21-M-B40	1A	3,61	499
434	A21-M-B41	1A	3,43	523
435	A21-M-B42	1A	3,33	523
436	A21-M-B67	1A	3,61	523
437	A21-M-B43	1A	3,21	451
439	A21-M-B45	1A	2,73	522
440	A21-M-B46	1A	3,23	505
441	A21-M-B47	1A	2,64	423
442	A21-M-B48	1A	3,27	451
443	A21-M-B49	1A	2,93	437
444	A21-M-B50	1A	2,92	437
445	A21-M-B52	1A	2,37	409
446	A21-M-B54	1A	3,37	489
447	A21-M-B59	1A	3,64	503
448	A21-M-B68	1A	2,75	475
449	A21-M-B60	1A	2,96	489
450	A21-M-B61	1A	2,93	489
451	A22-M-B14	1A	2,48	428
452	A22-M-B15	1A	2,37	381
453	A22-M-B16	1A	2,13	367
454	A22-M-B17	1A	3,15	431

Fueton de	0	Método	HPLC	FN4 - 1 13 ⁺
Entrada	Compuesto	HPLC	tR (min)	[M+H] ⁺
455	A22-M-B18	1A	2,62	4 21
456	A11-M-B49	1A	2,44	371
457	A22-M-B20	1A	2,43	409
458	A22-M-B22	1A	2,67	417
459	A22-M-B23	1A	2,91	417
460	A22-M-B24	1A	2,88	417
461	A22-M-B25	1A	2,96	409
462	A22-M-B26	1A	2,71	397
463	A22-M-B27	1A	2,54	383
464	A22-M-B28	1A	3,02	431
466	A22-M-B30	1A	2,56	455
467	A22-M-B31	1A	2,43	439
468	A22-M-B33	1A	2,46	383
469	A22-M-B34	1A	3,03	439
470	A22-M-B35	1A	3,29	423
471	A22-M-B36	1A	2,66	395
472	A22-M-B66	1A	3,25	431
473	A22-M-B37	1A	2,44	409
474	A22-M-B38	1A	2,64	423
475	A22-M-B39	1A	3	439
476	A22-M-B40	1A	3,02	431
477	A22-M-B41	1A	2,82	455
478	A22-M-B42	1A	2,72	455
479	A22-M-B67	1A	3,07	455
480	A22-M-B43	1A	2,46	383
482	A22-M-B45	1A	2,16	454
483	A22-M-B46	1A	2,62	437
484	A22-M-B47	1A	1,98	355
485	A22-M-B48	1A	2,61	383
486	A22-M-B49	1A	2,25	369
487	A22-M-B51	1A	2,74	421
488	A22-M-B52	1A	1,76	341
489	A22-M-B54	1A	2,75	421
490	A22-M-B59	1A	3,1	435
491	A23-M-B14	1A	3,04	496
492	A23-M-B15	1A	3,02	449
493	A23-M-B16	1A	2,76	435
494	A23-M-B17	1A	3,65	499
495	A23-M-B18	1A	3,2	489
496	A23-M-B64	1A	2,5	472
497	A23-M-B20	1A	3,04	477
498	A23-M-B22	1A	3,28	485
499	A23-M-B23	1A	3,46	485
500	A23-M-B24	1A	3,42	485
501	A23-M-B25	1A	3,53	477
502	A23-M-B26	1A	3,33	4 65

- to a dec	0	Método	HPLC	(001
Entrada	Compuesto	HPLC	tR (min)	[M+H] ⁺
503	A23-M-B27	1A	3,16	451
504	A23-M-B28	1A	3,56	499
506	A23-M-B30	1A	3,13	523
507	A23-M-B31	1A	2,99	507
508	A23-M-B33	1A	3,12	451
509	A23-M-B34	1A	3,59	507
510	A23-M-B35	1A	3,77	491
511	A23-M-B36	1A	3,29	463
512	A23-M-B66	1A	3,73	499
513	A23-M-B37	1A	3,06	477
514	A23-M-B38	1A	3,24	491
515	A23-M-B39	1A	3,56	507
516	A23-M-B40	1A	3,57	499
517	A23-M-B41	1A	3,39	523
518	A23-M-B42	1A	3,31	523
519	A23-M-B67	1A	3,58	523
520	A23-M-B43	1A	3,14	451
522	A23-M-B45	1A	2,73	522
523	A23-M-B46	1A	3,2	505
524	A23-M-B47	1A	2,6	423
525	A23-M-B48	1A	3,23	451
526	A23-M-B49	1A	2,88	437
527	A23-M-B50	1A	2,85	437
528	A23-M-B51	1A	3,33	489
529	A23-M-B52	1A	2,35	409
530	A23-M-B54	1A	3,34	489
531	A23-M-B59	1A	3,62	503
532	A11-M-B54	1A	2,95	423
533	A23-M-B61	1A	2,9	489
534	A24-M-B14	1A	3,19	492
535	A24-M-B15	1A	3,18	445
536	A24-M-B16	1A	2,92	431
537	A24-M-B17	1A	3,8	495
538	A24-M-B18	1A	3,33	485
539	A24-M-B64	1A	2,66	468
540	A24-M-B20	1A	3,2	473
541	A24-M-B22	1A	3,42	481
542	A24-M-B23	1A	3,59	481
543	A24-M-B24	1A	3,58	481
544	A24-M-B25	1A	3,67	473
545	A24-M-B26	1A	3,49	461
546	A24-M-B27	1A	3,32	447
547	A24-M-B28	1A	3,71	495
549	A24-M-B30	1A	3,27	519
550	A24-M-B31	1A	3,14	503
551	A24-M-B33	1A	3,27	447

Entrada	Compuests	Método	HPLC	[M+H] ⁺
Liliaua	Compuesto	HPLC	tR (min)	[IVITI]
552	A24-M-B34	1A	3,74	503
553	A24-M-B35	1A	3,88	487
554	A24-M-B36	1A	3,44	459
555	A24-M-B66	1A	3,87	495
556	A24-M-B37	1A	3,23	473
557	A24-M-B38	1A	3,38	487
558	A24-M-B39	1A	3,7	503
559	A24-M-B40	1A	3,7	495
560	A24-M-B41	1A	3,54	519
561	A24-M-B42	1A	3,45	519
562	A24-M-B67	1A	3,71	519
563	A24-M-B43	1A	3,31	447
565	A24-M-B45	1A	2,89	518
566	A24-M-B46	1A	3,34	501
567	A24-M-B47	1A	2,76	419
568	A24-M-B48	1A	3,38	447
569	A24-M-B49	1A	3,06	433
570	A24-M-B50	1A	3,03	433
571	A24-M-B52	1A	2,52	405
572	A24-M-B54	1A	3,49	485
573	A24-M-B59	1A	3,76	499
574	A24-M-B60	1A	3,09	485
575	A25-M-B14	1A	3,23	492
576	A25-M-B15	1A	3,23	445
577	A25-M-B16	1A	2,97	431
578	A25-M-B17	1A	3,81	495
579	A25-M-B18	1A	3,37	485
580	A25-M-B64	1A	2,71	468
581	A25-M-B20	1A	3,24	473
582	A25-M-B22	1A	3,47	481
583	A25-M-B23	1A	3,63	481
584	A25-M-B24	1A	3,62	481
585	A25-M-B25	1A	3,7	473
586	A25-M-B26	1A	3,53	461
587	A25-M-B27	1A	3,36	447
588	A25-M-B28	1A	3,73	495
590	A25-M-B30	1A	3,33	519
591	A25-M-B31	1A	3,2	503
592	A25-M-B33	1A	3,33	447
593	A25-M-B34	1A	3,77	503
594	A25-M-B35	1A	3,92	487
595	A25-M-B36	1A	3,48	459
596	A25-M-B66	1A	3,89	495
597	A25-M-B37	1A	3,27	473
598	A25-M-B38	1A	3,41	487
599	A25-M-B39	1A	3,74	503

1 1		MASSA	LIDLO	(Coı
Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H] ⁺
600	A25-M-B40	1A	3,73	495
601	A25-M-B42	1A	3,49	519
602	A25-M-B67	1A	3,75	519
603	A25-M-B43	1A	3,36	447
605	A25-M-B45	1A	2,93	518
606	A25-M-B46	1A	3,38	501
607	A25-M-B47	1A	2,83	419
608	A25-M-B48	1A	3,43	447
609	A25-M-B49	1A	3,11	433
610	A25-M-B50	1A	3,09	433
611	A25-M-B52	1A	2,58	405
612	A25-M-B54	1A	3,52	485
613	A25-M-B59	1A	3,78	499
614	A25-M-B68	1A	2,92	471
615	A25-M-B61	1A	3,08	485
655	A27-M-B14	1A	3,14	470
656	A27-M-B15	1A	3,12	423
657	A27-M-B16	1A	2,86	409
658	A27-M-B17	1A	3,77	473
659	A27-M-B18	1A	3,29	463
660	A27-M-B64	1A	2,58	446
661	A27-M-B20	1A	3,15	451
662	A27-M-B22	1A	3,38	459
663	A27-M-B23	1A	3,56	459
664	A27-M-B24	1A	3,55	459
665	A27-M-B25	1A	3,63	4 51
666	A27-M-B26	1A	3,45	439
667	A27-M-B27	1A	3,27	425
668	A27-M-B28	1A	3,67	473
670	A27-M-B30	1A	3,23	497
671	A27-M-B31	1A	3,1	481
672	A27-M-B33	1A	3,22	425
673	A27-M-B34	1A	3,7	481
674	A27-M-B35	1A	3,87	465
675	A27-M-B36	1A	3,39	437
676	A27-M-B66	1A	3,83	473
677	A27-M-B37	1A	3,16	451
678	A27-M-B38	1A	3,33	465
679	A27-M-B39	1A	3,67	481
680	A27-M-B40	1A	3,67	473
681	A27-M-B41	1A	3,5	497
682	A27-M-B42	1A	3,4	497
683	A27-M-B67	1A	3,69	497
684	A27-M-B43	1A	3,26	425
686	A27-M-B45	1A	2,82	496
687	A27-M-B46	1A	3,29	4 79

lacion)	_	Método	HPLC	
Entrada	Compuesto	HPLC	tR (min)	[M+H] ⁺
688	A27-M-B47	1A	2,7	397
689	A27-M-B48	1A	3,33	425
690	A27-M-B49	1A	2,99	411
691	A27-M-B50	1A	2,97	411
692	A27-M-B51	1A	3,45	463
693	A27-M-B54	1A	3,45	463
694	A27-M-B59	1A	3,73	477
695	A27-M-B60	1A	3,03	463
696	A11-M-B59	1A	3,28	437
697	A1-M-B15	1A	2,86	397
698	A1-M-B16	1A	2,59	383
699	A1-M-B17	1A	3,55	447
700	A1-M-B18	1A	3,05	437
701	A1-M-B20	1A	2,89	425
702	A1-M-B22	1A	3,14	433
703	A1-M-B23	1A	3,33	433
704	A1-M-B24	1A	3,32	433
705	A1-M-B25	1A	3,41	425
706	A1-M-B26	1A	3,21	413
707	A1-M-B27	1A	3,02	399
708	A1-M-B28	1A	3,45	447
710	A1-M-B30	1A	2,99	471
711	A1-M-B33	1A	2,97	399
712	A1-M-B65	1A	3,23	455
713	A1-M-B34	1A	3,48	455
714	A11-M-B60	1A	2,56	423
715	A1-M-B36	1A	3,14	411
716	A1-M-B66	1A	3,63	447
717	A1-M-B37	1A	2,91	425
718	A1-M-B38	1A	3,09	439
719	A1-M-B39	1A	3,45	455
720	A11-M-B61	1A	2,53	423
721	A1-M-B41	1A	3,26	471
722	A1-M-B42	1A	3,17	471
723	A1-M-B43	1A	3	399
724	A1-M-B45	1A	2,57	470
725	A1-M-B46	1A	3,06	453
726	A1-M-B47	1A	2,42	371
727	A1-M-B48	1A	3,08	399
728	A1-M-B49	1A	2,72	385
729	A1-M-B51	1A	3,2	437
730	A1-M-B52	1A	2,16	357
731	A1-M-B54	1A	3,21	437
732	A1-M-B59	1A	3,52	451
733	A1-M-B60	1A	2,79	437
734	A28-M-B17	1A	3,03	405

				(Con
Entrada	Compuesto	Método	HPLC	[M+H] ⁺
Lilliada	Compuesto	HPLC	tR (min)	נויויוון
735	A28-M-B25	1A	2,82	383
736	A28-M-B26	1A	2,56	371
737	A28-M-B28	1A	2,89	405
739	A28-M-B30	1A	2,44	429
740	A28-M-B31	1A	2,3	413
741	A28-M-B33	1A	2,33	357
742	A28-M-B65	1A	2,64	413
743	A28-M-B34	1A	2,86	413
744	A28-M-B35	1A	3,15	397
745	A28-M-B66	1A	3,12	405
746	A28-M-B37	1A	2,3	383
747	A28-M-B39	1A	2,85	413
748	A28-M-B40	1A	2,89	405
749	A28-M-B41	1A	2,68	429
750	A28-M-B42	1A	2,57	429
751	A28-M-B67	1A	2,91	429
752	A28-M-B45	1A	2,04	428
753	A28-M-B52	1A	1,67	315
754	A28-M-B1	1A	2,41	377

Entrada	Compuesto	Método	HPLC	[M+H] ⁺
		HPLC	tR (min)	
755	A28-M-B54	1A	2,6	395
756	A28-M-B59	1A	2,97	409
757	A11-M-B14	1A	2,65	430
758	A11-M-B15	1A	2,58	383
759	A11-M-B17	1A	3,33	433
760	A11-M-B18	1A	2,8	423
761	A11-M-B20	1A	2,63	411
762	A11-M-B22	1A	2,87	419
763	A11-M-B23	1A	3,08	419
764	A11-M-B24	1A	3,07	419
765	A11-M-B25	1A	3,15	411
766	A11-M-B26	1A	2,92	399
767	A11-M-B27	1A	2,74	385
768	A11-M-B28	1A	3,21	433
770	A11-M-B30	1A	2,74	457
771	A25-M-B41	1A	3,58	519
772	A14-M-B70	2	5,28	546
773	A14-M-B71	2	4,76	467

Ejemplo 2

Preparación de A2-M-B9

- Se añadió un cloruro de sulfonilo de fórmula (X), donde Ra corresponde al fragmento B9 de la tabla II (0,12 mmol, 1,2 eq.), a una suspensión de la resina del ejemplo 8 donde Rc corresponde al fragmento A2 de la tabla I (0,1 mmol, 1 eq.) en DCM seco (2,5 ml) y N-metil-morfolina (22,0 μl, 0,2 mmol, 2 eq.). La suspensión final se agitó durante una noche a 25°C en un reactor (Quest 210™ o Miniblocks™). La resina se lavó secuencialmente con DMF (1 ml), DCM (1 ml), DMF (1 ml), DCM (1 ml), MeOH (1 ml), MeOH (1 ml), DCM (1 ml), MeOH (1 ml), MTBE (1 ml, 2 ciclos) y se secó con aire. Se suspendió la resina (0,1 mmol, 1 eq.) en una solución de TFA/DCM 1:1 (2 ml) y se agitó durante 2 h a 25°C. Se recogió la fase en solución y se enjuagó la resina con DCM (recogida a su vez), y se llevó a cabo un segundo ciclo. El lavado final se llevó a cabo con MeOH. Todos los recogidos se secaron bajo presión reducida rindiendo el compuesto A2-M-B9 (véase entrada 774 de la tabla IV más adelante).
- LCMS (HPLC Método 1B): m/z 519 [M+H]⁺ @ t.r. 3,2 min. 1 H-RMN (400 MHz, DMSO-d₆) δ ppm 8,03 (d, J = 5,0 Hz, 1H), 7,86 (t, J = 5,4 Hz, 1H), 7,66 7,72 (m, 2H), 7,56 7,61 (m, 2H), 7,37 (d, J = 8,9 Hz, 1H) 7,33 (d, J = 1,8 Hz, 1H) 6,99 (dd, J = 9,0, 2,0 Hz, 1H) 6,96 (s, 1H), 4,91 5,00 (m, 1H), 3,77 (dd, J = 13,0, 4,5 Hz, 1H) 3,42 3,49 (m, 1H), 2,85 2,94 (m, 2H) 2,38 2,58 (m, 2H) 2,13 (br.s., 8H), 1,29 1,40 (m, 2H).
- Se prepararon también los siguientes compuestos de la tabla IV siguiendo el procedimiento descrito en el ejemplo 10 y utilizando cualquier reactivo adecuado según el procedimiento de la invención, lo que significa cargando cualquier amina compatible con la resina, mediante sulfonilación de la función amino en posición 8 de la fracción 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona con cualquier derivado de cloruro de sulfonilo adecuado y finalmente llevando a cabo la hidrólisis de la resina.

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]+
774	A2-M-B9	IB	3,2	519
775	A2-M-B10	IB	2,51	490
776	A2-M-B11	IB	2,79	520
777	A3-M-B9	IB	3,25	547
778	A3-M-B10	IB	2,55	518
779	A3-M-B11	IB	2,83	548
780	A4-M-B9	IB	4,46	491
781	A4-M-B10	IB	3,54	463
782	A4-M-B11	IB	3,94	493
783	A5-M-B9	IB	5,45	538
784	A5-M-B13	IB	4,72	509
785	A5-M-B10	IB	4,69	509
786	A5-M-B11	IB	5,04	539
787	A6-M-B9	IB	5,42	504
788	A6-M-B10	IB	4,6	475
789	A6-M-B11	IB	4,97	505
793	A10-M-B19	1A	1,87	421
794	A10-M-B21	1A	2,74	497
795	A10-M-B32	1A	2,02	435
796	A11-M-B32	1A	2,03	393
797	A10-M-B55	1A	2,65	518
798	A10-M-B62	1A	2,95	515
799	A10-M-B63	1A	2,95	519
800	A13-M-B19	1A	1,84	379
801	A13-M-B21	1A	2,78	455
802	A13-M-B32	1A	1,99	393
803	A13-M-B55	1A	2,68	475
804	A13-M-B62	1A	3	473
805	A13-M-B63	1A	3,01	477
806	A14-M-B19	1A	2,26	427
807	A14-M-B21	1A	3,12	503
808	A14-M-B32	1A	2,42	441
809	A14-M-B55	1A	3,06	524
810	A14-M-B62	1A	3,32	521
811	A14-M-B63	1A	3,33	525
812	A15-M-B19	1A	2,04	393
813	A15-M-B21	1A	2,97	469
814	A15-M-B32	1A	2,21	407
815	A15-M-B55	1A	2,87	489
816	A15-M-B62	1A	3,19	487
817	A15-M-B63	1A	3,21	491
818	A16-M-B19	1A	2,11	405
819	A16-M-B21	1A	3,04	481

Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]+
820	A16-M-B32	1A	2,29	419
821	A16-M-B69	1A	2,96	481
822	A16-M-B55	1A	2,94	502
823	A16-M-B62	1A	3,25	499
824	A16-M-B63	1A	3,28	503
830	A18-M-B21	1A	3,26	517
831	A18-M-B32	1A	2,62	455
832	A18-M-B55	1A	3,18	538
833	A18-M-B62	1A	3,45	535
834	A18-M-B63	1A	3,48	539
835	A4-M-B19	1A	1,73	395
836	A4-M-B21	1A	2,6	471
837	A4-M-B32	1A	1,88	409
838	A4-M-B69	1A	2,49	471
839	A4-M-B55	1A	2,51	491
840	A4-M-B62	1A	2,82	489
841	A4-M-B63	1A	2,8	493
842	A19-M-B19	1A	1,72	365
843	A19-M-B21	1A	2,63	441
844	A19-M-B32	1A	1,87	379
845	A20-M-B19	1A	2,68	433
846	A20-M-B21	1A	3,45	509
847	A20-M-B32	1A	2,84	447
848	A20-M-B69	1A	3,48	509
849	A20-M-B55	1A	3,36	530
850	A20-M-B62	1A	3,63	527
851	A20-M-B63	1A	3,74	531
858	A21-M-B19	1A	2,36	445
859	A21-M-B21	1A	3,21	521
860	A21-M-B32	1A	2,54	459
861	A21-M-B55	1A	3,15	542
862	A21-M-B62	1A	3,39	539
863	A21-M-B63	1A	3,4	543
864	A22-M-B19	1A	1,72	377
865	A22-M-B21	1A	2,63	453
866	A22-M-B32	1A	1,87	391
867	A22-M-B55	1A	2,54	473
868	A22-M-B62	1A	2,85	471
869	A22-M-B63	1A	2,83	475
870	A23-M-B19	1A	2,33	445
871	A23-M-B21	1A	3,16	521
872	A23-M-B32	1A	2,5	459
873	A23-M-B55	1A	3,1	542

100	ntini	iación)
(CO	Huric	iacion)

				(C
Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]+
874	A23-M-B62	1A	3,34	539
875	A23-M-B63	1A	3,38	543
876	A24-M-B19	1A	2,5	441
877	A24-M-B21	1A	3,3	517
878	A24-M-B32	1A	2,66	455
879	A24-M-B69	1A	3,24	517
880	A24-M-B55	1A	3,23	538
881	A11-M-B55	1A	2,71	475
882	A24-M-B62	1A	3,48	535
883	A24-M-B63	1A	3,51	539
884	A25-M-B19	1A	2,57	441
885	A25-M-B21	1A	3,36	517
886	A25-M-B32	1A	2,72	455
887	A25-M-B55	1A	3,28	538
888	A25-M-B62	1A	3,53	535
889	A25-M-B63	1A	3,57	539
896	A27-M-B19	1A	2,38	419
897	A27-M-B21	1A	3,25	495
898	A27-M-B32	1A	2,57	433

<u> </u>				
Entrada	Compuesto	Método HPLC	HPLC tR (min)	[M+H]+
899	A27-M-B55	1A	3,18	516
900	A27-M-B62	1A	3,45	513
901	A27-M-B63	1A	3,48	517
902	A1-M-B19	1A	2,13	393
903	A1-M-B21	1A	3,04	469
904	A1-M-B32	1A	2,3	407
905	A11-M-B62	1A	3,02	473
906	A1-M-B55	1A	2,96	489
907	A1-M-B62	1A	3,25	487
908	A1-M-B63	1A	3,28	491
909	A28-M-B19	1A	1,64	351
910	A28-M-B21	1A	2,52	427
911	A28-M-B32	1A	1,79	365
912	A28-M-B55	1A	2,42	447
913	A28-M-B63	1A	3,1	449
914	A11-M-B19	1A	1,87	379
915	A11-M-B63	1A	3,03	477
916	A11-M-B21	1A	2,81	455
917	A14-M-B72	2	5,33	557

Ejemplo 3

20

Preparación de A7-M-B6

- Se añadió un isocianato de fórmula (IX), donde Ra corresponde al fragmento B6 de la tabla II (0,3 mmol, 3 eq.), a una suspensión de la resina del ejemplo 8, donde Rc corresponde al fragmento A7 de la tabla I (0,1 mmol, 1 eq.), en DCM seco (2,5 ml) y DIPEA (17,1 μl, 0,1 mmol, 1 eq.). La suspensión final se agitó durante una noche a 25°C en un reactor (Quest 210TM o MiniblocksTM). La resina se lavó secuencialmente con DMF (1 ml), DCM (1 ml), DMF (1 ml), DCM (1 ml), MeOH (1 ml), MeOH (1 ml), DCM (1 ml), MeOH (1 ml), MTBE (1 ml, 2 ciclos) y se secó con aire. La resina (0,1 mmol, 1 eq.) se suspendió en una solución de TFA/DCM 1:1 (2 ml) y se agitó durante 2 h a 25°C. Se recogió la fase en solución y se enjuagó la resina con DCM (recogido a su vez), y se realizó un segundo ciclo. El lavado final se llevó a cabo con MeOH. Todos los recogidos se secaron bajo presión reducida rindiendo el compuesto A7-M-B6 (véase entrada 937 de la tabla V más adelante).
- LCMS (HPLC Método 1B): m/z 448 [M+H]⁺ @ t.r. 4,3 min. ¹H-RMN (400 MHz, DMSO-d₆) δ ppm 8,51 (s, 1H), 8,46 (s, 1H), 8,11 (t, J = 5,6 Hz, 1H), 8,00 (d, J = 5,0 Hz, 1H), 7,83 (d, J = 1,7 Hz, 1H), 7,43 (d, J = 8,9 Hz, 1H), 7,34 7,39 (m, 2H), 7,24 (dd, J = 9,0, 2,0 Hz, 1H), 6,97 (s, 1H), 6,84 6,89 (m, 2H), 5,59 5,71 (m, 1H), 4,95 5,04 (m, 3H), 3,83 (dd, J = 12,9, 4,0 Hz, 1H), 3,72 (s, 3H), 3,60 3,65 (m, 2H), 3,49 (dd, J = 13,4, 5,2 Hz, 1H), 2,57 2,64 (m, 1H), 2,46 2,53 (m, 1H).
 - Se prepararon también los siguientes compuestos de la tabla V siguiendo el procedimiento descrito en el ejemplo 11 y utilizando cualquier reactivo adecuado según el procedimiento de la invención, lo que significa cargando cualquier amina compatible con la resina, mediante la preparación del derivado de carbamato en la posición 8 de la fracción 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona con cualquier derivado de isocianato adecuado y finalmente llevando a

cabo la hidrólisis de la resina.

Tabla V

Entrada	Compuesto	Método HPLC	HPLC tR(min)	[M+H]+
918	A2-M-B5	1B	3.16	469
919	Λ2-M-B6	1B	2.93	493
920	Λ2-Μ-Β7	1B	3.14	491
921	А3-М-В5	1B	3.23	497
922	Λ3-М-В6	1B	2.99	521
923	Λ3-М-В7	1B	3.22	519
924	A4-M-B5	1B	4.6	442
925	A4-M-B6	1B	4.09	466
926	A4-M-B7	1B	4.57	464
927	A4-M-B8	1B	5.46	504
928	A5-M-B5	1B	5.66	488
929	Λ5-M-B6	1B	5.15	512
930	Λ5-M-B7	1B	5.61	510
931	Λ5-M-B8	1B	6.23	550
932	A6-M-B5	1B	5.63	454
933	A6-M-B6	1B	5.12	478
934	A6-M-B7	1B	5.58	476
935	A6-M-B8	1B	6.23	516
940	A8-M-B5	1B	3.26	469
941	A8-M-B7	1B	3.26	491

Entrada	Compuesto	Método HPLC	HPLC tR(min)	[M+H]+
943	A10-M-B5	1Λ	3.06	468
944	A10-M-B53	1Λ	2.75	454
945	A10-M-B56	1Λ	2.68	442
946	A10-M-B57	1Λ	1.86	400
947	A10-M-B58	1Λ	2.04	444
948	Λ13-M-B5	1Λ	3.13	426
949	A13-M-B53	1A	2.82	412
950	A13-M-B56	1A	2.74	400
951	A13-M-B57	1A	1.85	358
952	A13-M-B58	1A	2.05	402
953	A14-M-B5	1A	3.48	474
954	A14-M-B53	1A	3.21	460
955	A14-M-B56	1Λ	3.13	448
956	A14-M-B57	1Λ	2.26	406
957	A15-M-B5	1A	3.36	440
958	A15-M-B56	1A	2.97	414
959	A15-M-B57	1A	2.06	372
960	A16-M-B5	1A	3.43	452
961	A16-M-B53	1A	3.13	438
962	A16-M-B56	1A	3.06	426

Entrada	Compuesto	Método HPLC	HPLC tR(min)	[M+H]+
963	A16-M-B57	lΛ	2.14	384
964	A16-M-B58	1Λ	2.33	428
970	Λ18-M-B5	1Λ	3.61	488
971	A18-M-B53	1Λ	3.36	474
972	A18-M-B56	1Λ	3.31	462
973	Λ18-M-B57	1Λ	2.46	420
974	Λ18-M-B58	1Λ	2.57	464
975	Λ4-M-B53	1A	2.62	428
976	A4-M-B56	1A	2.52	416
977	A4-M-B57	1A	1.73	374
978	A19-M-B5	1A	2.97	412
979	A19-M-B53	1A	2.63	398
980	A19-M-B56	1A	2.56	386
981	A19-M-B57	1A	1.73	344
982	A19-M-B58	1A	1.92	388
983	A20-M-B5	1A	3.9	480
984	A20-M-B53	1Λ	3.68	466
985	A20-M-B56	1Λ	3.63	454
986	A20-M-B58	1Λ	2.96	456
990	A21-M-B5	1Λ	3.58	492
991	A21-M-B53	1A	3.33	478
992	A21-M-B56	1A	3.24	466
993	A21-M-B57	1A	2.36	424
994	A21-M-B58	1A	2.55	468
995	A22-M-B5	1A	2.98	424
996	A22-M-B53	1A	2.65	410
997	A22-M-B56	1A	2.56	398
998	A22-M-B57	1A	1.74	356
999	Λ11-M-B53	lΛ	2.85	412
1000	A23-M-B5	1Λ	3.52	492
1001	A23-M-B53	lΛ	3.27	478
1002	A23-M-B56	lΛ	3.2	466
1003	A23-M-B57	lΛ	2.32	424
1004	Λ23-M-B58	lΛ	2.51	468

Entrada	Compuesto	Método HPLC	HPLC tR(min)	[M+H]+
1005	Λ24-M-B5	1Λ	3.66	488
1006	Λ24-M-B53	1A	3.42	474
1007	Λ24-M-B57	1A	2.5	420
1008	Λ24-M-B58	1Λ	2.67	464
1009	Λ25-M-B5	1Λ	3.71	488
1010	Λ25-M-B53	1Λ	3.46	474
1011	Λ25-M-B56	1Λ	3.4	462
1012	A25-M-B57	1Λ	2.56	420
1013	A25-M-B58	1A	2.72	464
1015	A11-M-B56	1A	2.77	400
1016	A11-M-B57	1A	1.89	358
1018	A26-M-B56	1A	3.6	454
1019	A26-M-B57	1A	2.76	412
1020	A26-M-B58	1A	2.92	456
1021	A27-M-B5	1A	3.64	466
1022	A27-M-B53	1A	3.38	452
1023	Λ27-M-B56	1Λ	3.31	440
1024	Λ27-M-B57	1Λ	2.41	398
1025	Λ27-M-B58	1Λ	2.59	442
1026	Λ11-M-B58	1Λ	2.09	402
1027	A1-M-B5	1A	3.43	440
1028	A1-M-B53	1A	3.13	426
1029	A1-M-B56	1A	3.05	414
1030	A1-M-B57	1A	2.14	372
1031	A1-M-B58	1A	2.34	416
1032	A28-M-B5	1A	2.84	398
1033	A28-M-B53	1A	2.51	384
1034	A28-M-B57	1A	1.64	330
1035	Λ28-M-B58	1Λ	1.83	374
1036	A11-M-B5	1Λ	3.16	426
1037	Λ14-M-B73	2	4.53	482
1038	Λ14-M-B74	2	3.83	434

Ejemplo 4

Preparación de A14-M-B76

5 Se añadió un aldehído de fórmula (XIII), donde Ra corresponde al fragmento B76 de la tabla II (1,0 mmol, 10 eq.) a una suspensión de la resina del ejemplo 8, donde Rc corresponde al fragmento A14 de la tabla I (0,1 mmol, 1 eq.), en una mezcla seca de CH(OCH₃)₃/DMF/MeOH 9:1:2 (2 ml) y ácido acético (20 μl). Se agitó la suspensión final

durante una noche a 25°C en un reactor (Quest 210[™] o Miniblocks[™]). La resina se lavó secuencialmente con DMF (1 ml), DCM (1 ml), DMF (1 ml), DCM (1 ml). Se suspendió la resina (0,1 mmol, 1 eq.) en THF, se añadió NaCNBH₃ (314 mg, 5,0 mmol, 50 eq.) y se agitó la suspensión final durante 16 h a 25°C. Se lavó la resina secuencialmente con Quest 210[™] o Miniblocks[™]). La resina se lavó secuencialmente con DMF (1 ml), DCM (1 ml), DMF (1 ml), DCM (1 ml), MeOH (1 ml), MeOH (1 ml), MeOH (1 ml), MeOH (1 ml), MTBE (1 ml, 2 ciclos) y se secó con aire. La resina (0,1 mmol, 1 eq.) se suspendió en una solución de TFA/DCM 1:1 (2 ml) y se agitó durante 2 h a 25°C. Se recogió la fase en solución y se enjuagó la resina con DCM (también recogido), y se realizó un segundo ciclo. El lavado final se llevó a cabo con MeOH. Todos los recogidos se secaron bajo presión reducida rindiendo el compuesto A14-M-B76 (véase entrada 1039 de la tabla VI más adelante).

LCMS (HPLC Método 1B): m/z 517 [M+H]⁺ @ t.r. 5,91 min. ¹H-RMN (400 MHz, DMSO-d₆) δ ppm 8,40 (t, J = 5,7 Hz, 2H), 7,87 – 8,04 (m, 2H), 7,27 – 7,33 (m, 2H), 7,01 (dd, J = 7,6, 1,6 Hz, 3H), 4,88 – 5,08 (m, 2H), 4,38 (s, 3H), 4,06 – 4,26 (m, 4H).

Se prepararon también los siguientes compuestos de la tabla VI siguiendo el procedimiento descrito en el ejemplo 12 y utilizando cualquier reactivo adecuado según el procedimiento de la invención, lo que significa cargando cualquier amina compatible con la resina, mediante la preparación del derivado amino en la posición 8 de la fracción 3,4-dihidro-2H-piracino[1,2-a]indol-1-ona con cualquier derivado aldehídico adecuado y finalmente llevando a cabo la hidrólisis de la resina.

Tabla VI

Entrada	Compuesto	Método HPLC	HPLC tR(min)	[M+H] ⁺
1039	A14-M-B75	2	6.27	445
1040	A14-M-B76	2	5.91	517

20

5

15

REIVINDICACIONES

1. Un compuesto de fórmula (I)

donde

10

15

20

25

5 R se selecciona del grupo consistente en –Rª, -CORª, -CONRªRb y –SO2Rª, y R1 es un grupo –NRcRd.

donde R^a , R^b , R^c y R^d , iguales o diferentes, son cada uno independientemente hidrógeno o un grupo seleccionado entre alquilo C_1 - C_6 lineal o ramificado, cicloalquilo C_3 - C_6 , cicloalquil alquilo C_1 - C_6 , arilo, aril alquilo C_1 - C_6 y heteroarilo, opcionalmente sustituido por uno o varios grupos seleccionados entre halógeno, ciano, alquilo C_1 - C_6 , alquilo polifluorado, cicloalquilo, heterociclilo, arilo, dialquilamino y alcoxi,

el término "cicloalquilo C_3 - C_6 " representa un anillo monocíclico todo de carbono de 3 a 6 miembros, el cual puede contener uno o varios enlaces dobles pero no tiene un sistema electrónico π completamente conjugado;

el término "heterociclilo" representa un anillo carbocíclico saturado o parcialmente insaturado de 3 a 7 miembros, donde uno o varios átomos de carbono se sustituyen por heteroátomos seleccionados entre nitrógeno y oxígeno;

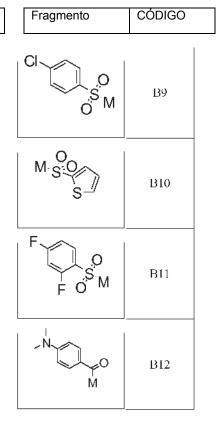
el término "arilo" representa un hidrocarburo mono-, bi- o policarbocíclico con sistemas de 1 a 4 anillos, opcionalmente también fundidos o unidos entre sí mediante enlaces sencillos, donde al menos uno de los anillos carbocíclicos es "aromático", refiriéndose el término "aromático" a un sistema de enlace electrónico π completamente conjugado;

el término "heteroarilo" representa anillos heterocíclicos aromáticos, típicamente heterociclos de 5 a 7 miembros con 1 a 3 heteroátomos seleccionados entre N o S; el anillo heteroarilo opcionalmente también puede estar fundido o unido a anillos carbocíclicos y heterocíclicos aromáticos y no aromáticos;

y sales farmacéuticamente aceptables del mismo.

2. Un compuesto de fórmula (I) de acuerdo con la reivindicación 1 donde:

R1 es un grupo $-NR^cR^d$ y uno de R^c o R^d es un átomo de hidrógeno y el restante de R^c o R^d es un grupo alquilo C_1 - C_6 lineal o ramificado o un grupo aril alquilo C_1 - C_6 opcionalmente sustituido.


- 3. Un compuesto de fórmula (I) de acuerdo con las reivindicaciones 1 o 2 donde cualquiera de R^a , R^b , R^c y R^d es independientemente alquilo C_1 - C_6 , cicloalquilo C_3 - C_6 , o arilo.
 - 4. Un compuesto de fórmula (I) de acuerdo con cualquiera de las reivindicaciones de la 1 a la 3 donde R1 es un fragmento representado por cualquiera de los códigos A1-A28 y R es un fragmento representado por cualquiera de los códigos B1-B76

Fragmento	CÓDIGO	Fragmento	CÓDIGO
N M	A1	L H M	A15
I H M	A2	M H M	A16
N N N M	A3	H, M	A18
-O H M	A4	→ H _M	A19
H _M	A5	, M	A20
H	A6	F N M	A21
N H M	A8	△ N M	A22
O H M	A 10	F H M	A23
N M	A11	H H	A24
N H M	A12	N-M H	A25
N M	A13	N-M	A27
H	A14	M H	A28

CÓDIGO

Fragmento

Fragmento	CÓDIGO
OM	BI
N. MO	B2
S—O M	B3
-0	В4

Fragmento	CÓDIGO	Fragmento	CÓDIGO	Fragmento	CÓDIGO
F S M	B13	O M	B22	∫ S M	B32
o M	B14	OM	1323	- M _O	В33
M O	B15	M	O B24	F F	В34
O M	B16	o M	B25	O M	В35
M	1317	M	1326	o	B36
O M	B18	\	B27	oMs	В37
O.M S.M	1319	OM	1328	O=\S	В38
o s	1320	F O M CI	B30	F O M	В39
O M	B21	F O M F	В31	M	B40

Fragmento	CÓDIGO	Fragmento	CÓDIGO	Fragmento CÓDIGC)
F O CI M	B41	F O M	B51	O M B60	
F CI	B42	MO	B52	N N=O B61	
Mo	B43	O M	В53	F S M B62	
O N N N N N N N N N N N N N N N N N N N	B45	FOM	B54	F F B63	
CI O M	B46	CI O M O	B55	O N B64	
M O	В47	H N O		F M B65	
M M	В48	H O M	В57	O M B66	
Mo	1349	~0~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	В58	O CI B67	
O	B50	F M	B59	O B68	

Fragmento	CÓDIGO
M.S.	B69
O _M Br	В70
O	B71

5

10

Fragmento	CÓDIGO
Q F M O F	B72
M~O	В73
M PO	B74

Fragmento	CÓDIGO
M	B75
M Br	В76

- 5. Un proceso para la preparación de un compuesto de fórmula (I) como se define en la reivindicación 1 caracterizado porque el proceso comprende:
 - f) Reacción de un compuesto de fórmula (l'):

donde R es hidrógeno y R1 es -ORc y Rc es alquilo C1-C6, de acuerdo con cualquiera de las etapas alternativas:

f.1) con un ácido o un haluro de acilo de fórmula (VIII):

donde Ra es como se define en la reivindicación 1 y Z es un halógeno o un grupo –OH, para rendir un compuesto de fórmula (l'):

donde R1 es -OR c y R c es alquilo C $_1$ -C $_6$ y R a son como se define arriba; o f.2) con un isocianato de fórmula (IX):

RaNCO (IX)

donde Ra es como se define arriba, para rendir un compuesto de fórmula (l'):

donde R1 es -OR c y R c es alquilo C $_1$ -C $_6$ y R a son como se define arriba; o f.3) con un haluro de sulfonilo de fórmula (X): R a SO $_2$ Z $^\prime$ (X)

donde Ra es como se define arriba y Z' es halógeno, para rendir un compuesto de fórmula (l'):

10

5

donde R1 es -OR c y R c es alquilo C₁-C₆ y R a son como se define arriba; o f.5) con una amina de fórmula (XII): HNR a R b (XII)

donde R^a y R^b son como se define arriba, en presencia de un cloroformiato apropiado, para rendir un compuesto de fórmula (l'):

donde R1 es -OR^c y R^c es alquilo C₁-C₆, y R^a y R^b son como se define arriba; o f.6) con un derivado aldehído o cetona apropiado de fórmula (XIII):

Ra-CO-Ra (XIII)

20

donde cada Ra, igual o diferente, es como se define arriba, para dar un compuesto de fórmula (l'):

donde R1 es -OR c y R c es alquilo C $_1$ -C $_6$, y cada R a , igual o diferente, es como se define arriba; o f.7) con un haluro de fórmula (XIV):

donde Ra y Z son como se define arriba, para rendir un compuesto de fórmula (l'):

5

10

15

20

donde R1 es -ORc y Rc es alquilo C1-C6 y Ra son como se define arriba;

opcionalmente separando el compuesto resultante de fórmula (l') en los isómeros individuales; convirtiendo el compuesto resultante de fórmula (l') en un compuesto diferente de fórmula (l) reemplazando el grupo -ORc con un grupo diferente entre aquellos representados por R1 como se define en la reivindicación 1, y/o en una sal farmacéuticamente aceptable si se desea.

- 6. Un proceso de acuerdo con la reivindicación 5, caracterizado por que la conversión de un compuesto de fórmula (l') en un compuesto de fórmula (l) se lleva a cabo mediante una o varias de las reacciones siguientes:
 - g.3) aminolisis de un compuesto de fórmula (l') donde R₁ es -OR^c y R^c es alquilo C₁-C₆, por reacción con un compuesto de fórmula (XVI):

para rendir el correspondiente compuesto de fórmula (I) donde R1 es -NRcRd;

- g.5) amidación de un compuesto de fórmula (l') donde R1 es un grupo –OH o su sal correspondiente, por reacción con un compuesto de fórmula (XVI) como se define arriba, para rendir el correspondiente compuesto de fórmula (l) donde R1 es -NR^cR^d.
- 7. Un proceso para la preparación de un compuesto de fórmula (I) como se define en la reivindicación 1, o una sal farmacéuticamente aceptable del mismo, el cual comprende:
 - i) La hidrólisis bajo condiciones ácidas o básicas del compuesto de fórmula (VII)

donde R1 es -ORc y Rc es alquilo C1-C6;

j) la reacción del derivado ácido con una resina formil poliestirénica derivatizada de fórmula (XVII):

donde (P) es la resina y R^c es como se define en la reivindicación 1;
 k) reacción del compuesto resultante de fórmula (XVIII):

donde (P) y R^c son como se define arriba, con un agente reductor apropiado como cloruro de cromo (II), hidrogeno sulfuro de tetrabutilamonio o cloruro de estaño (II);

y 1.) reacción del compuesto resultante de fórmula (XIX):

10

$$(XIX) \bigvee_{O} \bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{P} \bigvee_{P} \bigvee_{N} \bigvee_{P} \bigvee_{N} \bigvee_{P} \bigvee_{N} \bigvee_{N$$

donde (P) y R^c son como se define arriba, como se describe bajo cualquiera de las etapas de (f.1) hasta (f.7); m) separación de la resina bajo condiciones ácidas del compuesto resultante de fórmula (XX):

para rendir un compuesto de fórmula (I), donde R es como se define en la reivindicación 1 y R1 es -NHRc, donde Rc es como se define en la reivindicación 1, opcionalmente separando el compuesto resultante de fórmula (I) en los isómeros individuales; convirtiendo el compuesto resultante de fórmula (I) en un compuesto diferente de fórmula (I) y/o en una sal farmacéuticamente aceptable si se desea.

8. Una biblioteca de compuestos individuales con la fórmula (I)

donde

10

15

5

R se selecciona del grupo consistente en -Ra, -CORa, -CONRaRb y -SO2Ra, y R1 es un grupo –NR^cR^d,

donde Ra, Rb, Rc y Rd, iguales o diferentes, son cada uno independientemente hidrógeno o un grupo seleccionado entre alquilo C₁-C₆ lineal o ramificado, cicloalquilo C₃-C₆, cicloalquil alquilo C₁-C₆ arilo, aril alquilo C₁-C₆ y heteroarilo, opcionalmente sustituido por uno o varios grupos seleccionados entre halógeno, ciano, alquilo C₁-C₆, alquilo polifluorado, cicloalquilo, heterociclilo, arilo, dialquilamino y alcoxi,

donde los términos cicloalquilo C₃-C₆, heterociclilo, arilo y heteroarilo son como se define en la reivindicación 1, y sales farmacéuticamente aceptables del mismo.

9. Una biblioteca de acuerdo con la reivindicación 8 donde el compuesto tienen la fórmula:

М B ⇔ HN. (I)

donde los fragmentos A y B son como se define en la reivindicación 4, y donde el compuesto es uno de los listados a continuación

Entrada	Compuesto
1	A2-M-B2
2	A2-M-B3
3	Λ2-M-B4
4	A3-M-B2
5	Λ3-M-B12
6	A3-M-B4
7	A4-M-B2
8	A4-M-B3
9	A4-M-B12
10	A4-M-B4
11	A5-M-B2
12	Λ5-M-B3
13	A5-M-B12
14	A5-M-B4
15	Λ6-M-B2
16	A6-M-B3
17	Λ6-M-B12
18	Λ6-M-B4
23	Λ8-M-B4
24	A10-M-B14
25	A10-M-B15
26	A10-M-B16
27	A10-M-B17
28	A10-M-B18
29	A10-M-B20
30	A10-M-B22
31	A10-M-B23
32	A10-M-B24
33	A10-M-B25
34	A10-M-B26
35	A10-M-B27
36	A10-M-B28
38	A10-M-B30
39	A10-M-B31
40	A10-M-B33
41	A10-M-B34
42	A10-M-B35
43	A10-M-B36
44	A10-M-B37
45	A10-M-B38
46	A10-M-B39
47	A10-M-B40
48	A10-M-B41
49	A10-M-B42
50	A11-M-B33
51	A10-M-B43

Entrada	Compuesto
53	Λ10-M-B45
54	A10-M-B46
55	Λ10-M-B47
56	Λ10-M-B48
57	Λ10-M-B49
58	A10-M-B50
59	A10-M-B51
60	A10-M-B52
61	A10-M-B54
62	A10-M-B59
63	A10-M-B60
64	A10-M-B61
65	A12-M-B14
66	Λ12-M-B15
67	A12-M-B16
68	Λ12-M-B17
69	Λ12-M-B64
70	A12-M-B20
71	A12-M-B22
72	A11-M-B34
73	A12-M-B24
74	A12-M-B25
75	A12-M-B26
76	A11-M-B35
77	A12-M-B28
78	A11-M-B36
79	A12-M-B30
80	Λ12-M-B31
81	A12-M-B33
82	A12-M-B65
83	Λ12-M-B34
84	A12-M-B35
85	Λ12-M-B36 Λ12-M-B66
86 87	A12-M-B37
88	A12-M-B38
89	A12-M-B39
90	A12-M-B40
91	A12-M-B40
92	A12-M-B43
93	Λ12-M-B46
94	A12-M-B47
95	Λ12-M-B48
96	Λ12-M-B49
97	Λ12-M-B50
98	Λ12-M-B51
70	1112-111-1001

Entrada ·	Compuesto
99	Λ13-M-B14
100	A13-M-B15
101	Λ13-M-B16
102	Λ13-M-B17
103	A13-M-B18
104	A13-M-B64
105	A13-M-B20
106	A13-M-B22
107	A13-M-B23
108	A13-M-B24
109	A13-M-B25
110	A13-M-B26
111	A13-M-B27
112	A13-M-B28
114	A13-M-B30
115	A13-M-B31
116	A13-M-B33
117	A13-M-B34
118	A13-M-B35
119	A13-M-B36
120	A13-M-B66
121	A13-M-B37
122	A13-M-B38
123	A13-M-B39
124	A13-M-B40
125	A13-M-B41
126	A13-M-B42
127	A13-M-B67
128	A13-M-B43
130	Λ13-M-B45
131	A13-M-B46
132	Л13-М-В47
133	A13-M-B48
134	Λ13-M-B49
135	A13-M-B50
136	A13-M-B51
137	A13-M-B54
138	A13-M-B59
139	A13-M-B68
140	A13-M-B60
141	A13-M-B61
142	A14-M-B14
143	A14-M-B15
144	Λ14-M-B16
145	A14-M-B17
146	A14-M-B18

Entrada-	Compuesto
147	A14-M-B20
148	A14-M-B22
149	A14-M-B23
150	Λ14-M-B24
151	A14-M-B25
152	A14-M-B26
153	A14-M-B28
155	A14-M-B30
156	A14-M-B31
157	A14-M-B33
158	A14-M-B34
159	A14-M-B35
160	A14-M-B66
161	A14-M-B37
162	A14-M-B38
163	A14-M-B39
164	A14-M-B40
165	A14-M-B41
166	A14-M-B42
167	A14-M-B67
169	A14-M-B45
170	A14-M-B52
171	A14-M-B54
172 173	A14-M-B59 A15-M-B14
174	A15-M-B15
175	A15-M-B16
176	A15-M-B17
177	A15-M-B18
178	A15-M-B20
179	A15-M-B22
180	A15-M-B23
181	Λ15-M-B24
182	A15-M-B25
183	A15-M-B26
184	A11-M-B66
186	A15-M-B30
187	A15-M-B31
188	A15-M-B33
189	A15-M-B34
190	A15-M-B35
191	A11-M-B37
192	A15-M-B37
193	A15-M-B38
194	A15-M-B39
195	Λ15-M-B40

Entrada	Compuesto
196	Λ15-M-B41
197	A15-M-B42
198	Λ15-M-B67
200	Λ15-M-B45
201	Λ15-M-B52
202	A15-M-B54
203	A15-M-B59
204	A16-M-B14
205	A16-M-B15
206	A16-M-B16
207	A16-M-B17
208	A16-M-B18
209	A16-M-B64
210	A16-M-B20
211	Λ16-M-B22
212	Λ16-M-B23
213	Λ16-M-B24
214	A16-M-B25
215	A16-M-B26
216	A16-M-B27
217	A16-M-B28
219	A16-M-B30
220	A16-M-B31
221	A16-M-B33
222	A16-M-B34
223	A16-M-B35
224	A16-M-B36
225	Λ16-M-B66
226	A16-M-B37
227	A16-M-B38
228	A16-M-B39
229	A16-M-B40
230	Λ16-M-B41
231	A16-M-B42
232	A16-M-B67
233	A16-M-B43
235	A16-M-B45
236	A16-M-B46
237	Λ16-M-B47
238	A16-M-B48
239	A16-M-B49
240	A16-M-B50
241	A16-M-B51
242	A16-M-B52
243	A16-M-B54
244	Λ16-M-B59

Entrada	Compuesto
245	Λ11-M-B38
246	A16-M-B61
249	Λ11-M-B39
250	Λ18-M-B14
251	Λ18-M-B15
252	A18-M-B16
253	A18-M-B17
254	A18-M-B18
255	A18-M-B20
256	A18-M-B22
257	A18-M-B23
258	A18-M-B25
259	A18-M-B26
260	Λ11-M-B40
261	Λ11-M-B41
262	A18-M-B30
263	A11-M-B42
264	A18-M-B33
265	A18-M-B34
266	A18-M-B35
267	A18-M-B66
268	A18-M-B37
269	A18-M-B38
270	A18-M-B39
271	A11-M-B67
272	A18-M-B41
273	A18-M-B42
274	A18-M-B67
275	A11-M-B43
276	A18-M-B45
277	A18-M-B52
278	A18-M-B54
279	A18-M-B59
280	Λ4-M-B15 Α4-M-B16
281	
282	A4-M-B17
283	A4-M-B18
284	A4-M-B64
285 286	Λ4-M-B20 A4-M-B22
286	A4-M-B23
288 289	A4-M-B24
	Λ4-M-B25
290 291	Λ4-M-B26 Λ4-M-B27
291	Λ4-M-B28
292	/\d-\M-B28

Entrada ·	Compuesto
294	Λ4-M-B30
295	A4-M-B31
296	Λ4-M-B33
297	Λ4-M-B34
298	Λ4-M-B35
299	A4-M-B36
301	A4-M-B37
302	A4-M-B38
303	A4-M-B39
304	A4-M-B40
305	A4-M-B41
306	Λ4-M-B42
307	A4-M-B67
308	Λ4-Μ-Β43
310	Λ4-M-B46
311	Λ4-Μ-Β47
312	Λ4-Μ-Β48
313	Λ4-M-B49
314	Λ4-M-B50
315	A4-M-B51
316	Λ4-M-B54
317	A4-M-B59
318	A4-M-B60
319	A4-M-B61
320	A19-M-B17
321	A19-M-B64
322	A19-M-B25
323	A19-M-B26
324	A19-M-B28
326	A19-M-B30
327	A19-M-B31
328	A19-M-B33
329	A19-M-B65
330	A19-M-B34 A19-M-B35
	A19-M-B35 A19-M-B66
332 333	A19-M-B66 A19-M-B37
334	
335	A19-M-B38 A11-M-B45
336	A11-M-B45 A19-M-B40
337	A19-M-B41
337	A19-M-B42
339	A19-M-B67
340	A11-M-B46
341	A19-M-B45
342	A19-M-B52
244	2319-WI-D32

Entrada.	Compuesto
343	A19-M-B54
344	A19-M-B59
345	A19-M-B68
346	A19-M-B61
347	A20-M-B14
348	A20-M-B15
349	A20-M-B16
350	A20-M-B17
351	A20-M-B18
352	A20-M-B64
353	A20-M-B20
354	A20-M-B22
355	A20-M-B23
356	A20-M-B24
357	Λ11-M-B47
358	A20-M-B26
359	A20-M-B28
361	A20-M-B30
362	A20-M-B31
363	A20-M-B33
364	A20-M-B36
365	A20-M-B66
366	A20-M-B37
367	A20-M-B39
368	A20-M-B40
369	A20-M-B42
370	A20-M-B67
371	A20-M-B43
373	A20-M-B45
374	A20-M-B46
375	A20-M-B47
376	A20-M-B49
377	A20-M-B52
378	A20-M-B54
379	A20-M-B59
380	A20-M-B60
407	A11-M-B48
408	A21-M-B14
409	A21-M-B15
410	A21-M-B16
411	A21-M-B17
412	A21-M-B18
413	A21-M-B64
414	A21-M-B20 A21-M-B22
415	
416	A21-M-B23

Entrada	Compuesto
417	Λ21-M-B24
418	A21-M-B25
419	Λ21-M-B26
420	A21-M-B27
421	A21-M-B28
423	A21-M-B30
424	A21-M-B31
425	A21-M-B33
426	A21-M-B34
427	A21-M-B35
428	A21-M-B36
429	А21-М-В66
430	A21-M-B37
431	A21-M-B38
432	A21-M-B39
433	A21-M-B40
434	Λ21-M-B41
435	A21-M-B42
436	A21-M-B67
437	A21-M-B43
439	A21-M-B45
440	A21-M-B46
441	A21-M-B47
442	A21-M-B48
443	A21-M-B49
444	A21-M-B50
445	A21-M-B52
446	Λ21-M-B54
447	A21-M-B59
448	A21-M-B68
449	A21-M-B60
450	Λ21-M-B61
451	A22-M-B14
452	A22-M-B15
453	A22-M-B16
454	A22-M-B17
455	A22-M-B18
456	A11-M-B49
457	A22-M-B20
458	A22-M-B22
459	A22-M-B23
460	A22-M-B24
461	A22-M-B25 A22-M-B26
462	A22-M-B26 A22-M-B27
463	
464	A22-M-B28

Entrada	Compuesto
466	A22-M-B30
467	A22-M-B31
468	A22-M-B33
469	A22-M-B34
470	A22-M-B35
471	A22-M-B36
472	A22-M-B66
473	A22-M-B37
474	A22-M-B38
475	A22-M-B39
476	A22-M-B40
477	Λ22-M-B41
478	A22-M-B42
479	A22-M-B67
480	Λ22-M-B43
482	Λ22-M-B45
483	Λ22-M-B46
484	Λ22-M-B47
485	Λ22-M-B48
486	A22-M-B49
487	Λ22-M-B51
488	A22-M-B52
489	A22-M-B54
490	A22-M-B59
491	A23-M-B14
492	A23-M-B15
493	A23-M-B16
494	Λ23-M-B17
495	A23-M-B18
496	Λ23-M-B64
497	A23-M-B20
498	A23-M-B22
499	A23-M-B23
500	Λ23-M-B24
501	A23-M-B25
502	A23-M-B26
503	A23-M-B27
504	A23-M-B28
506	A23-M-B30
507	A23-M-B31
508	A23-M-B33
509	A23-M-B34
510	A23-M-B35
511	A23-M-B36
512	A23-M-B66
513	A23-M-B37

Entrada ·	Compuesto
514	A23-M-B38
515	A23-M-B39
516	A23-M-B40
517	A23-M-B41
518	A23-M-B42
519	A23-M-B67
520	A23-M-B43
522	A23-M-B45
523	A23-M-B46
524	A23-M-B47
525	A23-M-B48
526	A23-M-B49
527	A23-M-B50
528	A23-M-B51
529	A23-M-B52
530	A23-M-B54
531	A23-M-B59
532	A11-M-B54
533	A23-M-B61
534	A24-M-B14
535	A24-M-B15
536	A24-M-B16
537	A24-M-B17
538	A24-M-B18
539	A24-M-B64
540	A24-M-B20
541	A24-M-B22
542	A24-M-B23
543	A24-M-B24
544	A24-M-B25
545	A24-M-B26
546	A24-M-B27
547	A24-M-B28
549	A24-M-B30
550	A24-M-B31
551	A24-M-B33
552	A24-M-B34
553	A24-M-B35
554	Λ24-M-B36
555	A24-M-B66
556	Λ24-M-B37
557	A24-M-B38
558	A24-M-B39
559	A24-M-B40
560	Λ24-M-B41
561	A24-M-B42

Entrada ·	Compuesto	Entrada.	Compuesto
514	A23-M-B38	562	A24-M-B67
515	A23-M-B39	563	A24-M-B43
516	A23-M-B40	565	Λ24-M-B45
517	A23-M-B41	566	Λ24-M-B46
518	A23-M-B42	567	Λ24-M-B47
519	A23-M-B67	568	A24-M-B48
520	A23-M-B43	569	A24-M-B49
522	A23-M-B45	570	A24-M-B50
523	A23-M-B46	571	A24-M-B52
524	A23-M-B47	572	A24-M-B54
25	A23-M-B48	573	A24-M-B59
526	A23-M-B49	574	A24-M-B60
527	A23-M-B50	575	A25-M-B14
528	Λ23-M-B51	576	A25-M-B15
529	Λ23-M-B52	577	Λ25-M-B16
530	Λ23-M-B54	578	A25-M-B17
531	A23-M-B59	579	A25-M-B18
532	A11-M-B54	580	A25-M-B64
33	A23-M-B61	581	A25-M-B20
34	A24-M-B14	582	A25-M-B22
35	A24-M-B15	583	A25-M-B23
6	A24-M-B16	584	A25-M-B24
7	A24-M-B17	585	A25-M-B25
88	A24-M-B18	586	A25-M-B26
39	A24-M-B64	587	A25-M-B27
10	A24-M-B20	588	A25-M-B28
ŀl	A24-M-B22	590	A25-M-B30
42_	A24-M-B23	591	A25-M-B31
543	A24-M-B24	592	A25-M-B33
544	Λ24-M-B25	593	A25-M-B34
545	A24-M-B26	594	A25-M-B35
546	Λ24-M-B27	595	A25-M-B36
547	A24-M-B28	596	A25-M-B66
549	A24-M-B30	597	A25-M-B37
550	A24-M-B31	598	A25-M-B38
55 l	A24-M-B33	599	A25-M-B39
552	A24-M-B34	600	A25-M-B40
553	A24-M-B35	601	A25-M-B42
554	Λ24-M-B36	602	A25-M-B67
555	A24-M-B66	603	A25-M-B43
556	Λ24-M-B37	605	A25-M-B45
557	A24-M-B38	606	A25-M-B46
558	A24-M-B39	607	A25-M-B47
559	Λ24-M-B40	608	A25-M-B48
560	A24-M-B41	609	A25-M-B49
61	Λ24-M-B42	610	A25-M-B50

Entrada	Compuesto
611	A25-M-B52
612	Λ25-M-B54
613	A25-M-B59
614	A25-M-B68
615	A25-M-B61
655	Λ27-M-B14
656	A27-M-B15
657	Λ27-M-B16
658	Λ27-M-B17
659	Λ27-M-B18
660	Λ27-M-B64
661	A27-M-B20
662	A27-M-B22
663	A27-M-B23
664	A27-M-B24
665	A27-M-B25
666	A27-M-B26
667	A27-M-B27
668	A27-M-B28
670	A27-M-B30
671	A27-M-B31
672	A27-M-B33
673	A27-M-B34
674	A27-M-B35
675	A27-M-B36
676	A27-M-B66
677	A27-M-B37
678	A27-M-B38
679	A27-M-B39
680	A27-M-B40

Entrada	Compuesto
681	A27-M-B41
682	A27-M-B42
683	A27-M-B67
684	A27-M-B43
686	A27-M-B45
687	Λ27-M-B46
688	Λ27-M-B47
689	Λ27-M-B48
690	Λ27-M-B49
691	A27-M-B50
692	A27-M-B51
693	A27-M-B54
694	A27-M-B59
695	A27-M-B60
696	A11-M-B59
697	A1-M-B15
698	A1-M-B16
699	A1-M-B17
700	Λ1-M-B18
701	A1-M-B20
702	Λ1-M-B22
703	A1-M-B23
704	A1-M-B24
705	A1-M-B25
706	A1-M-B26
707	A1-M-B27
708	A1-M-B28
710	A1-M-B30
711	A1-M-B33
712	Λ1-M-B65

Entrada ·	Compuesto
713	A1-M-B34
714	A11-M-B60
715	A1-M-B36
716	A1-M-B66
717	A1-M-B37
718	Λ1-M-B38
719	Λ1-M-B39
720	Λ11-M-B61
721	Λ1-M-B41
722	Λ1-M-B42
723	Λ1-M-B43
724	A1-M-B45
725	Λ1-M-B46
726	A1-M-B47
727	A1-M-B48
728	A1-M-B49
729	A1-M-B51
730	A1-M-B52
731	Λ1-M-B54
732	A1-M-B59
733	A1-M-B60
734	A28-M-B17
735	A28-M-B25
736	A28-M-B26
737	A28-M-B28
739	A28-M-B30
740	A28-M-B31
741	A28-M-B33
742	A28-M-B65
743	A28-M-B34

Entrada ·	Compuesto
744	A28-M-B35
745	A28-M-B66
746	A28-M-B37
747	A28-M-B39
748	A28-M-B40
749	Λ28-M-B41
750	A28-M-B42
751	A28-M-B67
752	A28-M-B45
753	A28-M-B52
754	A28-M-B1
755	A28-M-B54
756	A28-M-B59
757	A11-M-B14
758	A11-M-B15
759	A11-M-B17
760	A11-M-B18
761	A11-M-B20
762	A11-M-B22
763	A11-M-B23
764	A11-M-B24
765	A11-M-B25
766	A11-M-B26
767	A11-M-B27
768	A11-M-B28
770	A11-M-B30
77 l	A25-M-B41
772	A14-M-B70
773	A14-M-B71

Entrada	Compuesto
774	А2-М-В9
775	A2-M-B10
776	A2-M-B11
777	A3-M-B9
778	A3-M-B10
779	А3-М-В11
780	A4-M-B9
781	Λ4-M-B10
782	A4-M-B11
783	A5-M-B9

Entrada	Compuesto
784	Λ5-M-B13
785	A5-M-B10
786	A5-M-B11
787	A6-M-B9
788	A6-M-B10
789	А6-М-В11
793	A10-M-B19
794	A10-M-B21
795	A10-M-B32
796	A11-M-B32

Entrada	Compuesto
797	A10-M-B55
798	A10-M-B62
799	A10-M-B63
800	A13-M-B19
801	A13-M-B21
802	A13-M-B32
803	A13-M-B55
804	A13-M-B62
805	A13-M-B63
806	Λ14-M-B19

Entrada	Compuesto
807	Λ14-M-B21
808	A14-M-B32
809	A14-M-B55
810	A14-M-B62
811	Λ14-M-B63
812	Λ15-M-B19
813	A15-M-B21
814	A15-M-B32
815	A15-M-B55
816	A15-M-B62

Entrada	Compuesto
817	A15-M-B63
818	A16-M-B19
819	Λ16-M-B21
820	A16-M-B32
821	A16-M-B69
822	A16-M-B55
823	A16-M-B62
824	A16-M-B63
830	A18-M-B21
831	A18-M-B32
832	A18-M-B55
833	A18-M-B62
834	A18-M-B63
835	Λ4-M-B19
836	A4-M-B21
837	Λ4-M-B32
838	Λ4-M-B69
839	A4-M-B55
840	А4-М-В62
841	A4-M-B63
842	Λ19-M-B19
843	A19-M-B21

Entrada	Compuesto
844	A19-M-B32
845	A20-M-B19
846	Λ20-M-B21
847	A20-M-B32
848	A20-M-B69
849	A20-M-B55
850	A20-M-B62
851	A20-M-B63
858	A21-M-B19
859	A21-M-B21
860	A21-M-B32
861	A21-M-B55
862	A21-M-B62
863	A21-M-B63
864	A22-M-B19
865	A22-M-B21
866	A22-M-B32
867	A22-M-B55
868	A22-M-B62
869	A22-M-B63
870	Л23-М- В19
871	A23-M-B21

Entrada	Compuesto
872	A23-M-B32
873	A23-M-B55
874	A23-M-B62
875	A23-M-B63
876	A24-M-B19
877	Λ24-M-B21
878	Λ24-M-B32
879	Λ24-M-B69
880	A24-M-B55
881	A11-M-B55
882	A24-M-B62
883	A24-M-B63
884	Λ25-M-B19
885	Λ25-M-B21
886	A25-M-B32
887	Λ25-M-B55
888	Λ25-M-B62
889	A25-M-B63
896	Λ27-M-B19
897	A27-M-B21
898	A27-M-B32
899	Λ27-M-B55

Entrada	Compuesto
900	A27-M-B62
901	A27-M-B63
902	Λ1-M-B19
903	A1-M-B21
904	A1-M-B32
905	A11-M-B62
906	A1-M-B55
907	A1-M-B62
908	A1-M-B63
909	A28-M-B19
910	A28-M-B21
911	A28-M-B32
912	A28-M-B55
913	A28-M-B63
914	A11-M-B19
915	A11-M-B63
916	A11-M-B21
917	A14-M-B72

Entrada	Compuesto
918	A2-M-B5
919	A2-M-B6
920	A2-M-B7
921	A3-M-B5
922	A3-M-B6
923	A3-M-B7
924	Λ4-M-B5
925	A4-M-B6
926	A4-M-B7
927	A4-M-B8
928	A5-M-B5
929	A5-M-B6
930	A5-M-B7
931	A5-M-B8
932	A6-M-B5
933	A6-M-B6
934	A6-M-B7
935	A6-M-B8
940	A8-M-B5

Entrada.	Compuesto
941	A8-M-B7
943	A10-M-B5
944	A10-M-B53
945	A10-M-B56
946	A10-M-B57
947	A10-M-B58
948	A13-M-B5
949	A13-M-B53
950	A13-M-B56
951	A13-M-B57
952	A13-M-B58
953	A14-M-B5
954	A14-M-B53
955	A14-M-B56
956	A14-M-B57
957	A15-M-B5
958	A15-M-B56
959	A15-M-B57
960	A16-M-B5

Entrada	Compuesto
961	A16-M-B53
962	A16-M-B56
963	Λ16-M-B57
964	A16-M-B58
970	A18-M-B5
971	A18-M-B53
972	A18-M-B56
973	A18-M-B57
974	A18-M-B58
975	A4-M-B53
976	A4-M-B56
977	Λ4-M-B57
978	A19-M-B5
979	A19-M-B53
980	A19-M-B56
981	A19-M-B57
982	A19-M-B58
983	A20-M-B5
984	A20-M-B53

Entrada	Compuesto
985	A20-M-B56
986	A20-M-B58
990	A21-M-B5
991	A21-M-B53
992	A21-M-B56
993	A21-M-B57
994	A21-M-B58
995	A22-M-B5
996	A22-M-B53
997	A22-M-B56
998	A22-M-B57
999	A11-M-B53
1000	A23-M-B5
1001	A23-M-B53
1002	A23-M-B56
1003	A23-M-B57
1004	A23-M-B58
1005	A24-M-B5
1006	A24-M-B53

Entrada	Compuesto
1007	A24-M-B57
1008	A24-M-B58
1009	A25-M-B5
1010	A25-M-B53
1011	A25-M-B56
1012	A25-M-B57
1013	A25-M-B58
1015	A11-M-B56

Entrada	Compuesto
1016	A11-M-B57
1021	A27-M-B5
1022	A27-M-B53
1023	A27-M-B56
1024	A27-M-B57
1025	A27-M-B58
1026	A11-M-B58
1027	A1-M-B5

Entrada	Compuesto
1028	A1-M-B53
1029	A1-M-B56
1030	A1-M-B57
1031	A1-M-B58
1032	A28-M-B5
1033	A28-M-B53
1034	A28-M-B57
1035	A28-M-B58

Entrada	Compuesto
1036	All-M-B5
1037	A14-M-B73
1038	A14-M-B74
1039	A14-M-B75
1040	A14-M-B76

- 10. Una composición farmacéutica que comprende una cantidad terapéuticamente eficaz de un compuesto de fórmula (I) como se define en la reivindicación 1 y, al menos, un excipiente, portador y/o diluyente farmacéuticamente aceptable.
- 11. Un producto o kit que comprende un compuesto de fórmula (I) como se define en la reivindicación 1 o una sal farmacéuticamente aceptable del mismo como se define en la reivindicación 10, y uno o varios agentes quimioterapéuticos, como una preparación combinada para el uso en la terapia anti-cáncer simultánea, separada o secuencial.
- 12. Un compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo, como se define en la reivindicación 1, para el uso como medicamento.
 - 13. Un compuesto de fórmula (I) o una sal farmacéuticamente aceptable del mismo, como se define en la reivindicación 1, para el uso en un método para el tratamiento del cáncer.
 - 14. Un intermedio de fórmula (VII)

donde R1 es como se define en la reivindicación 1.